From 9adcbd6455f3695748e7827f377f704efe63d6c8 Mon Sep 17 00:00:00 2001 From: andy Date: Fri, 9 Apr 2021 13:04:40 +0100 Subject: [PATCH] exponential and sigmoid results --- .gitignore | 1 - .../exponential/1e-1/0.85/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-1/0.85/conf.csv | 197 + .../exponential/1e-1/0.85/deploy.prototxt | 341 ++ .../exponential/1e-1/0.85/large.png | Bin 0 -> 99969 bytes .../exponential/1e-1/0.85/original.prototxt | 388 ++ .../exponential/1e-1/0.85/pred.csv | 1619 ++++++ .../exponential/1e-1/0.85/small.png | Bin 0 -> 94836 bytes .../exponential/1e-1/0.85/solver.prototxt | 14 + .../exponential/1e-1/0.85/train_val.prototxt | 382 ++ .../exponential/1e-1/0.9/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-1/0.9/conf.csv | 197 + .../exponential/1e-1/0.9/deploy.prototxt | 341 ++ .../exponential/1e-1/0.9/large.png | Bin 0 -> 42040 bytes .../exponential/1e-1/0.9/original.prototxt | 388 ++ .../exponential/1e-1/0.9/pred.csv | 1619 ++++++ .../exponential/1e-1/0.9/small.png | Bin 0 -> 64246 bytes .../exponential/1e-1/0.9/solver.prototxt | 14 + .../exponential/1e-1/0.9/train_val.prototxt | 382 ++ .../exponential/1e-2/0.7/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.7/conf.csv | 197 + .../exponential/1e-2/0.7/deploy.prototxt | 341 ++ .../exponential/1e-2/0.7/large.png | Bin 0 -> 71313 bytes .../exponential/1e-2/0.7/original.prototxt | 388 ++ .../exponential/1e-2/0.7/pred.csv | 1619 ++++++ .../exponential/1e-2/0.7/small.png | Bin 0 -> 77651 bytes .../exponential/1e-2/0.7/solver.prototxt | 14 + .../exponential/1e-2/0.7/train_val.prototxt | 382 ++ .../exponential/1e-2/0.8/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.8/conf.csv | 197 + .../exponential/1e-2/0.8/deploy.prototxt | 341 ++ .../exponential/1e-2/0.8/large.png | Bin 0 -> 82466 bytes .../exponential/1e-2/0.8/original.prototxt | 388 ++ .../exponential/1e-2/0.8/pred.csv | 1619 ++++++ .../exponential/1e-2/0.8/small.png | Bin 0 -> 85046 bytes .../exponential/1e-2/0.8/solver.prototxt | 14 + .../exponential/1e-2/0.8/train_val.prototxt | 382 ++ .../exponential/1e-2/0.9/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.9/conf.csv | 197 + .../exponential/1e-2/0.9/deploy.prototxt | 341 ++ .../exponential/1e-2/0.9/large.png | Bin 0 -> 109567 bytes .../exponential/1e-2/0.9/original.prototxt | 388 ++ .../exponential/1e-2/0.9/pred.csv | 1619 ++++++ .../exponential/1e-2/0.9/small.png | Bin 0 -> 99903 bytes .../exponential/1e-2/0.9/solver.prototxt | 14 + .../exponential/1e-2/0.9/train_val.prototxt | 382 ++ .../exponential/1e-2/0.925/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.925/conf.csv | 197 + .../exponential/1e-2/0.925/deploy.prototxt | 341 ++ .../exponential/1e-2/0.925/large.png | Bin 0 -> 105849 bytes .../exponential/1e-2/0.925/original.prototxt | 388 ++ .../exponential/1e-2/0.925/pred.csv | 1619 ++++++ .../exponential/1e-2/0.925/small.png | Bin 0 -> 99210 bytes .../exponential/1e-2/0.925/solver.prototxt | 14 + .../exponential/1e-2/0.925/train_val.prototxt | 382 ++ .../exponential/1e-2/0.95/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.95/conf.csv | 197 + .../exponential/1e-2/0.95/large.png | Bin 0 -> 104428 bytes .../exponential/1e-2/0.95/pred.csv | 1619 ++++++ .../exponential/1e-2/0.95/small.png | Bin 0 -> 101948 bytes .../exponential/1e-2/0.98/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.98/conf.csv | 197 + .../exponential/1e-2/0.98/large.png | Bin 0 -> 110028 bytes .../exponential/1e-2/0.98/pred.csv | 1619 ++++++ .../exponential/1e-2/0.98/small.png | Bin 0 -> 104632 bytes .../exponential/1e-2/0.99/caffe_output.log | 4566 ++++++++++++++++ .../exponential/1e-2/0.99/conf.csv | 197 + .../exponential/1e-2/0.99/large.png | Bin 0 -> 117717 bytes .../exponential/1e-2/0.99/pred.csv | 1619 ++++++ .../exponential/1e-2/0.99/small.png | Bin 0 -> 108387 bytes .../fixed/1e-1/100e/conf.csv | 197 + .../fixed/1e-1/100e/pred.csv | 1619 ++++++ .../fixed/1e-2/100e/conf.csv | 197 + .../fixed/1e-2/100e/pred.csv | 1619 ++++++ .../fixed/1e-3/100e/conf.csv | 197 + .../fixed/1e-3/100e/pred.csv | 1619 ++++++ .../fixed/1e-4/100e/conf.csv | 197 + .../fixed/1e-4/100e/pred.csv | 1619 ++++++ .../fixed/1e-5/100e/conf.csv | 197 + .../fixed/1e-5/100e/pred.csv | 1619 ++++++ .../fixed/1e-6/100e/conf.csv | 197 + .../fixed/1e-6/100e/pred.csv | 1619 ++++++ .../fixed/5e-2/100e/conf.csv | 197 + .../fixed/5e-2/100e/pred.csv | 1619 ++++++ .../fixed/5e-3/100e/conf.csv | 197 + .../fixed/5e-3/100e/pred.csv | 1619 ++++++ cars/lr-investigations/lr.ipynb | 358 +- .../sigmoid/1e-2/50_0.05/caffe_output.log | 4567 +++++++++++++++++ .../sigmoid/1e-2/50_0.05/conf.csv | 197 + .../sigmoid/1e-2/50_0.05/large.png | Bin 0 -> 109889 bytes .../sigmoid/1e-2/50_0.05/pred.csv | 1619 ++++++ .../sigmoid/1e-2/50_0.05/small.png | Bin 0 -> 105006 bytes .../sigmoid/1e-2/50_0.1/caffe_output.log | 4567 +++++++++++++++++ .../sigmoid/1e-2/50_0.1/conf.csv | 197 + .../sigmoid/1e-2/50_0.1/large.png | Bin 0 -> 109053 bytes .../sigmoid/1e-2/50_0.1/pred.csv | 1619 ++++++ .../sigmoid/1e-2/50_0.1/small.png | Bin 0 -> 104192 bytes .../sigmoid/1e-2/50_0.15/caffe_output.log | 4567 +++++++++++++++++ .../sigmoid/1e-2/50_0.15/conf.csv | 197 + .../sigmoid/1e-2/50_0.15/deploy.prototxt | 341 ++ .../sigmoid/1e-2/50_0.15/large.png | Bin 0 -> 110506 bytes .../sigmoid/1e-2/50_0.15/original.prototxt | 388 ++ .../sigmoid/1e-2/50_0.15/pred.csv | 1619 ++++++ .../sigmoid/1e-2/50_0.15/small.png | Bin 0 -> 106614 bytes .../sigmoid/1e-2/50_0.15/solver.prototxt | 15 + .../sigmoid/1e-2/50_0.15/train_val.prototxt | 382 ++ .../sigmoid/1e-2/50_0.2/caffe_output.log | 4567 +++++++++++++++++ .../sigmoid/1e-2/50_0.2/conf.csv | 197 + .../sigmoid/1e-2/50_0.2/large.png | Bin 0 -> 109210 bytes .../sigmoid/1e-2/50_0.2/pred.csv | 1619 ++++++ .../sigmoid/1e-2/50_0.2/small.png | Bin 0 -> 104351 bytes .../step-down/1e-2/33_0.1/caffe_output.log | 4567 +++++++++++++++++ .../step-down/1e-2/33_0.25/caffe_output.log | 4567 +++++++++++++++++ .../step-down/1e-2/33_0.5/caffe_output.log | 4567 +++++++++++++++++ .../step-down/1e-2/33_0.75/caffe_output.log | 4567 +++++++++++++++++ 115 files changed, 123983 insertions(+), 18 deletions(-) create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/deploy.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/large.png create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/original.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/small.png create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/solver.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.85/train_val.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/deploy.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/large.png create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/original.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/small.png create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/solver.prototxt create mode 100644 cars/lr-investigations/exponential/1e-1/0.9/train_val.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/deploy.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/original.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/small.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/solver.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.7/train_val.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/deploy.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/original.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/small.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/solver.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.8/train_val.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/deploy.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/original.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/small.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/solver.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.9/train_val.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/deploy.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/original.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/small.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/solver.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.925/train_val.prototxt create mode 100644 cars/lr-investigations/exponential/1e-2/0.95/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.95/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.95/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.95/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.95/small.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.98/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.98/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.98/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.98/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.98/small.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.99/caffe_output.log create mode 100644 cars/lr-investigations/exponential/1e-2/0.99/conf.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.99/large.png create mode 100644 cars/lr-investigations/exponential/1e-2/0.99/pred.csv create mode 100644 cars/lr-investigations/exponential/1e-2/0.99/small.png create mode 100644 cars/lr-investigations/fixed/1e-1/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/1e-1/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/1e-2/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/1e-2/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/1e-3/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/1e-3/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/1e-4/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/1e-4/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/1e-5/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/1e-5/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/1e-6/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/1e-6/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/5e-2/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/5e-2/100e/pred.csv create mode 100644 cars/lr-investigations/fixed/5e-3/100e/conf.csv create mode 100644 cars/lr-investigations/fixed/5e-3/100e/pred.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.05/caffe_output.log create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.05/conf.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.05/large.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.05/pred.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.05/small.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.1/caffe_output.log create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.1/conf.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.1/large.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.1/pred.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.1/small.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/caffe_output.log create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/conf.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/deploy.prototxt create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/large.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/original.prototxt create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/pred.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/small.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/solver.prototxt create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.15/train_val.prototxt create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.2/caffe_output.log create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.2/conf.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.2/large.png create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.2/pred.csv create mode 100644 cars/lr-investigations/sigmoid/1e-2/50_0.2/small.png create mode 100644 cars/lr-investigations/step-down/1e-2/33_0.1/caffe_output.log create mode 100644 cars/lr-investigations/step-down/1e-2/33_0.25/caffe_output.log create mode 100644 cars/lr-investigations/step-down/1e-2/33_0.5/caffe_output.log create mode 100644 cars/lr-investigations/step-down/1e-2/33_0.75/caffe_output.log diff --git a/.gitignore b/.gitignore index 7ba4f88..b0e6e40 100644 --- a/.gitignore +++ b/.gitignore @@ -65,7 +65,6 @@ cover/ *.pot # Django stuff: -*.log local_settings.py db.sqlite3 db.sqlite3-journal diff --git a/cars/lr-investigations/exponential/1e-1/0.85/caffe_output.log b/cars/lr-investigations/exponential/1e-1/0.85/caffe_output.log new file mode 100644 index 0000000..984bc45 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.85/caffe_output.log @@ -0,0 +1,4566 @@ +I0408 07:38:25.138231 31616 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210408-073823-fd70/solver.prototxt +I0408 07:38:25.138411 31616 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0408 07:38:25.138418 31616 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0408 07:38:25.138491 31616 caffe.cpp:218] Using GPUs 1 +I0408 07:38:25.158753 31616 caffe.cpp:223] GPU 1: GeForce GTX 1080 Ti +I0408 07:38:25.416832 31616 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.1 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.99840796 +momentum: 0.9 +weight_decay: 0.001 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 1 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0408 07:38:25.417500 31616 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0408 07:38:25.418243 31616 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0408 07:38:25.418259 31616 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0408 07:38:25.418402 31616 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 07:38:25.418490 31616 layer_factory.hpp:77] Creating layer train-data +I0408 07:38:25.420650 31616 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db +I0408 07:38:25.420856 31616 net.cpp:84] Creating Layer train-data +I0408 07:38:25.420866 31616 net.cpp:380] train-data -> data +I0408 07:38:25.420886 31616 net.cpp:380] train-data -> label +I0408 07:38:25.420897 31616 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 07:38:25.425640 31616 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 07:38:25.556176 31616 net.cpp:122] Setting up train-data +I0408 07:38:25.556200 31616 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 07:38:25.556205 31616 net.cpp:129] Top shape: 128 (128) +I0408 07:38:25.556208 31616 net.cpp:137] Memory required for data: 79149056 +I0408 07:38:25.556218 31616 layer_factory.hpp:77] Creating layer conv1 +I0408 07:38:25.556238 31616 net.cpp:84] Creating Layer conv1 +I0408 07:38:25.556243 31616 net.cpp:406] conv1 <- data +I0408 07:38:25.556255 31616 net.cpp:380] conv1 -> conv1 +I0408 07:38:26.110599 31616 net.cpp:122] Setting up conv1 +I0408 07:38:26.110620 31616 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 07:38:26.110625 31616 net.cpp:137] Memory required for data: 227833856 +I0408 07:38:26.110643 31616 layer_factory.hpp:77] Creating layer relu1 +I0408 07:38:26.110654 31616 net.cpp:84] Creating Layer relu1 +I0408 07:38:26.110658 31616 net.cpp:406] relu1 <- conv1 +I0408 07:38:26.110664 31616 net.cpp:367] relu1 -> conv1 (in-place) +I0408 07:38:26.110949 31616 net.cpp:122] Setting up relu1 +I0408 07:38:26.110958 31616 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 07:38:26.110961 31616 net.cpp:137] Memory required for data: 376518656 +I0408 07:38:26.110965 31616 layer_factory.hpp:77] Creating layer norm1 +I0408 07:38:26.110975 31616 net.cpp:84] Creating Layer norm1 +I0408 07:38:26.110977 31616 net.cpp:406] norm1 <- conv1 +I0408 07:38:26.111002 31616 net.cpp:380] norm1 -> norm1 +I0408 07:38:26.111438 31616 net.cpp:122] Setting up norm1 +I0408 07:38:26.111449 31616 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 07:38:26.111452 31616 net.cpp:137] Memory required for data: 525203456 +I0408 07:38:26.111456 31616 layer_factory.hpp:77] Creating layer pool1 +I0408 07:38:26.111464 31616 net.cpp:84] Creating Layer pool1 +I0408 07:38:26.111467 31616 net.cpp:406] pool1 <- norm1 +I0408 07:38:26.111472 31616 net.cpp:380] pool1 -> pool1 +I0408 07:38:26.111508 31616 net.cpp:122] Setting up pool1 +I0408 07:38:26.111515 31616 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 07:38:26.111517 31616 net.cpp:137] Memory required for data: 561035264 +I0408 07:38:26.111521 31616 layer_factory.hpp:77] Creating layer conv2 +I0408 07:38:26.111531 31616 net.cpp:84] Creating Layer conv2 +I0408 07:38:26.111534 31616 net.cpp:406] conv2 <- pool1 +I0408 07:38:26.111539 31616 net.cpp:380] conv2 -> conv2 +I0408 07:38:26.118985 31616 net.cpp:122] Setting up conv2 +I0408 07:38:26.118999 31616 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 07:38:26.119004 31616 net.cpp:137] Memory required for data: 656586752 +I0408 07:38:26.119012 31616 layer_factory.hpp:77] Creating layer relu2 +I0408 07:38:26.119020 31616 net.cpp:84] Creating Layer relu2 +I0408 07:38:26.119024 31616 net.cpp:406] relu2 <- conv2 +I0408 07:38:26.119029 31616 net.cpp:367] relu2 -> conv2 (in-place) +I0408 07:38:26.119446 31616 net.cpp:122] Setting up relu2 +I0408 07:38:26.119457 31616 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 07:38:26.119460 31616 net.cpp:137] Memory required for data: 752138240 +I0408 07:38:26.119463 31616 layer_factory.hpp:77] Creating layer norm2 +I0408 07:38:26.119470 31616 net.cpp:84] Creating Layer norm2 +I0408 07:38:26.119474 31616 net.cpp:406] norm2 <- conv2 +I0408 07:38:26.119479 31616 net.cpp:380] norm2 -> norm2 +I0408 07:38:26.119772 31616 net.cpp:122] Setting up norm2 +I0408 07:38:26.119781 31616 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 07:38:26.119784 31616 net.cpp:137] Memory required for data: 847689728 +I0408 07:38:26.119788 31616 layer_factory.hpp:77] Creating layer pool2 +I0408 07:38:26.119796 31616 net.cpp:84] Creating Layer pool2 +I0408 07:38:26.119798 31616 net.cpp:406] pool2 <- norm2 +I0408 07:38:26.119803 31616 net.cpp:380] pool2 -> pool2 +I0408 07:38:26.119830 31616 net.cpp:122] Setting up pool2 +I0408 07:38:26.119835 31616 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 07:38:26.119838 31616 net.cpp:137] Memory required for data: 869840896 +I0408 07:38:26.119841 31616 layer_factory.hpp:77] Creating layer conv3 +I0408 07:38:26.119850 31616 net.cpp:84] Creating Layer conv3 +I0408 07:38:26.119853 31616 net.cpp:406] conv3 <- pool2 +I0408 07:38:26.119858 31616 net.cpp:380] conv3 -> conv3 +I0408 07:38:26.129544 31616 net.cpp:122] Setting up conv3 +I0408 07:38:26.129555 31616 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:38:26.129559 31616 net.cpp:137] Memory required for data: 903067648 +I0408 07:38:26.129568 31616 layer_factory.hpp:77] Creating layer relu3 +I0408 07:38:26.129575 31616 net.cpp:84] Creating Layer relu3 +I0408 07:38:26.129578 31616 net.cpp:406] relu3 <- conv3 +I0408 07:38:26.129583 31616 net.cpp:367] relu3 -> conv3 (in-place) +I0408 07:38:26.130009 31616 net.cpp:122] Setting up relu3 +I0408 07:38:26.130019 31616 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:38:26.130023 31616 net.cpp:137] Memory required for data: 936294400 +I0408 07:38:26.130026 31616 layer_factory.hpp:77] Creating layer conv4 +I0408 07:38:26.130036 31616 net.cpp:84] Creating Layer conv4 +I0408 07:38:26.130040 31616 net.cpp:406] conv4 <- conv3 +I0408 07:38:26.130046 31616 net.cpp:380] conv4 -> conv4 +I0408 07:38:26.140185 31616 net.cpp:122] Setting up conv4 +I0408 07:38:26.140199 31616 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:38:26.140203 31616 net.cpp:137] Memory required for data: 969521152 +I0408 07:38:26.140210 31616 layer_factory.hpp:77] Creating layer relu4 +I0408 07:38:26.140218 31616 net.cpp:84] Creating Layer relu4 +I0408 07:38:26.140237 31616 net.cpp:406] relu4 <- conv4 +I0408 07:38:26.140242 31616 net.cpp:367] relu4 -> conv4 (in-place) +I0408 07:38:26.140579 31616 net.cpp:122] Setting up relu4 +I0408 07:38:26.140588 31616 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:38:26.140592 31616 net.cpp:137] Memory required for data: 1002747904 +I0408 07:38:26.140596 31616 layer_factory.hpp:77] Creating layer conv5 +I0408 07:38:26.140606 31616 net.cpp:84] Creating Layer conv5 +I0408 07:38:26.140610 31616 net.cpp:406] conv5 <- conv4 +I0408 07:38:26.140616 31616 net.cpp:380] conv5 -> conv5 +I0408 07:38:26.148886 31616 net.cpp:122] Setting up conv5 +I0408 07:38:26.148898 31616 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 07:38:26.148901 31616 net.cpp:137] Memory required for data: 1024899072 +I0408 07:38:26.148913 31616 layer_factory.hpp:77] Creating layer relu5 +I0408 07:38:26.148921 31616 net.cpp:84] Creating Layer relu5 +I0408 07:38:26.148926 31616 net.cpp:406] relu5 <- conv5 +I0408 07:38:26.148931 31616 net.cpp:367] relu5 -> conv5 (in-place) +I0408 07:38:26.149410 31616 net.cpp:122] Setting up relu5 +I0408 07:38:26.149418 31616 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 07:38:26.149421 31616 net.cpp:137] Memory required for data: 1047050240 +I0408 07:38:26.149425 31616 layer_factory.hpp:77] Creating layer pool5 +I0408 07:38:26.149432 31616 net.cpp:84] Creating Layer pool5 +I0408 07:38:26.149435 31616 net.cpp:406] pool5 <- conv5 +I0408 07:38:26.149442 31616 net.cpp:380] pool5 -> pool5 +I0408 07:38:26.149478 31616 net.cpp:122] Setting up pool5 +I0408 07:38:26.149484 31616 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 07:38:26.149487 31616 net.cpp:137] Memory required for data: 1051768832 +I0408 07:38:26.149490 31616 layer_factory.hpp:77] Creating layer fc6 +I0408 07:38:26.149499 31616 net.cpp:84] Creating Layer fc6 +I0408 07:38:26.149503 31616 net.cpp:406] fc6 <- pool5 +I0408 07:38:26.149508 31616 net.cpp:380] fc6 -> fc6 +I0408 07:38:26.597638 31616 net.cpp:122] Setting up fc6 +I0408 07:38:26.597661 31616 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:38:26.597666 31616 net.cpp:137] Memory required for data: 1053865984 +I0408 07:38:26.597676 31616 layer_factory.hpp:77] Creating layer relu6 +I0408 07:38:26.597684 31616 net.cpp:84] Creating Layer relu6 +I0408 07:38:26.597688 31616 net.cpp:406] relu6 <- fc6 +I0408 07:38:26.597697 31616 net.cpp:367] relu6 -> fc6 (in-place) +I0408 07:38:26.598387 31616 net.cpp:122] Setting up relu6 +I0408 07:38:26.598397 31616 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:38:26.598402 31616 net.cpp:137] Memory required for data: 1055963136 +I0408 07:38:26.598405 31616 layer_factory.hpp:77] Creating layer drop6 +I0408 07:38:26.598413 31616 net.cpp:84] Creating Layer drop6 +I0408 07:38:26.598417 31616 net.cpp:406] drop6 <- fc6 +I0408 07:38:26.598423 31616 net.cpp:367] drop6 -> fc6 (in-place) +I0408 07:38:26.598451 31616 net.cpp:122] Setting up drop6 +I0408 07:38:26.598456 31616 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:38:26.598460 31616 net.cpp:137] Memory required for data: 1058060288 +I0408 07:38:26.598464 31616 layer_factory.hpp:77] Creating layer fc7 +I0408 07:38:26.598472 31616 net.cpp:84] Creating Layer fc7 +I0408 07:38:26.598476 31616 net.cpp:406] fc7 <- fc6 +I0408 07:38:26.598484 31616 net.cpp:380] fc7 -> fc7 +I0408 07:38:26.770041 31616 net.cpp:122] Setting up fc7 +I0408 07:38:26.770061 31616 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:38:26.770066 31616 net.cpp:137] Memory required for data: 1060157440 +I0408 07:38:26.770074 31616 layer_factory.hpp:77] Creating layer relu7 +I0408 07:38:26.770084 31616 net.cpp:84] Creating Layer relu7 +I0408 07:38:26.770088 31616 net.cpp:406] relu7 <- fc7 +I0408 07:38:26.770097 31616 net.cpp:367] relu7 -> fc7 (in-place) +I0408 07:38:26.770745 31616 net.cpp:122] Setting up relu7 +I0408 07:38:26.770756 31616 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:38:26.770759 31616 net.cpp:137] Memory required for data: 1062254592 +I0408 07:38:26.770762 31616 layer_factory.hpp:77] Creating layer drop7 +I0408 07:38:26.770769 31616 net.cpp:84] Creating Layer drop7 +I0408 07:38:26.770792 31616 net.cpp:406] drop7 <- fc7 +I0408 07:38:26.770797 31616 net.cpp:367] drop7 -> fc7 (in-place) +I0408 07:38:26.770824 31616 net.cpp:122] Setting up drop7 +I0408 07:38:26.770829 31616 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:38:26.770833 31616 net.cpp:137] Memory required for data: 1064351744 +I0408 07:38:26.770836 31616 layer_factory.hpp:77] Creating layer fc8 +I0408 07:38:26.770844 31616 net.cpp:84] Creating Layer fc8 +I0408 07:38:26.770848 31616 net.cpp:406] fc8 <- fc7 +I0408 07:38:26.770853 31616 net.cpp:380] fc8 -> fc8 +I0408 07:38:26.779201 31616 net.cpp:122] Setting up fc8 +I0408 07:38:26.779211 31616 net.cpp:129] Top shape: 128 196 (25088) +I0408 07:38:26.779215 31616 net.cpp:137] Memory required for data: 1064452096 +I0408 07:38:26.779222 31616 layer_factory.hpp:77] Creating layer loss +I0408 07:38:26.779228 31616 net.cpp:84] Creating Layer loss +I0408 07:38:26.779232 31616 net.cpp:406] loss <- fc8 +I0408 07:38:26.779237 31616 net.cpp:406] loss <- label +I0408 07:38:26.779244 31616 net.cpp:380] loss -> loss +I0408 07:38:26.779254 31616 layer_factory.hpp:77] Creating layer loss +I0408 07:38:26.779892 31616 net.cpp:122] Setting up loss +I0408 07:38:26.779901 31616 net.cpp:129] Top shape: (1) +I0408 07:38:26.779906 31616 net.cpp:132] with loss weight 1 +I0408 07:38:26.779924 31616 net.cpp:137] Memory required for data: 1064452100 +I0408 07:38:26.779928 31616 net.cpp:198] loss needs backward computation. +I0408 07:38:26.779935 31616 net.cpp:198] fc8 needs backward computation. +I0408 07:38:26.779939 31616 net.cpp:198] drop7 needs backward computation. +I0408 07:38:26.779942 31616 net.cpp:198] relu7 needs backward computation. +I0408 07:38:26.779947 31616 net.cpp:198] fc7 needs backward computation. +I0408 07:38:26.779949 31616 net.cpp:198] drop6 needs backward computation. +I0408 07:38:26.779953 31616 net.cpp:198] relu6 needs backward computation. +I0408 07:38:26.779956 31616 net.cpp:198] fc6 needs backward computation. +I0408 07:38:26.779960 31616 net.cpp:198] pool5 needs backward computation. +I0408 07:38:26.779964 31616 net.cpp:198] relu5 needs backward computation. +I0408 07:38:26.779968 31616 net.cpp:198] conv5 needs backward computation. +I0408 07:38:26.779973 31616 net.cpp:198] relu4 needs backward computation. +I0408 07:38:26.779976 31616 net.cpp:198] conv4 needs backward computation. +I0408 07:38:26.779980 31616 net.cpp:198] relu3 needs backward computation. +I0408 07:38:26.779983 31616 net.cpp:198] conv3 needs backward computation. +I0408 07:38:26.779989 31616 net.cpp:198] pool2 needs backward computation. +I0408 07:38:26.779994 31616 net.cpp:198] norm2 needs backward computation. +I0408 07:38:26.779997 31616 net.cpp:198] relu2 needs backward computation. +I0408 07:38:26.780000 31616 net.cpp:198] conv2 needs backward computation. +I0408 07:38:26.780004 31616 net.cpp:198] pool1 needs backward computation. +I0408 07:38:26.780009 31616 net.cpp:198] norm1 needs backward computation. +I0408 07:38:26.780012 31616 net.cpp:198] relu1 needs backward computation. +I0408 07:38:26.780015 31616 net.cpp:198] conv1 needs backward computation. +I0408 07:38:26.780019 31616 net.cpp:200] train-data does not need backward computation. +I0408 07:38:26.780023 31616 net.cpp:242] This network produces output loss +I0408 07:38:26.780037 31616 net.cpp:255] Network initialization done. +I0408 07:38:26.780544 31616 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 07:38:26.780575 31616 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 07:38:26.780725 31616 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 07:38:26.780827 31616 layer_factory.hpp:77] Creating layer val-data +I0408 07:38:26.782496 31616 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0408 07:38:26.782703 31616 net.cpp:84] Creating Layer val-data +I0408 07:38:26.782712 31616 net.cpp:380] val-data -> data +I0408 07:38:26.782722 31616 net.cpp:380] val-data -> label +I0408 07:38:26.782729 31616 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 07:38:26.786876 31616 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 07:38:26.818327 31616 net.cpp:122] Setting up val-data +I0408 07:38:26.818347 31616 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 07:38:26.818352 31616 net.cpp:129] Top shape: 32 (32) +I0408 07:38:26.818356 31616 net.cpp:137] Memory required for data: 19787264 +I0408 07:38:26.818363 31616 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 07:38:26.818377 31616 net.cpp:84] Creating Layer label_val-data_1_split +I0408 07:38:26.818380 31616 net.cpp:406] label_val-data_1_split <- label +I0408 07:38:26.818387 31616 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 07:38:26.818397 31616 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 07:38:26.818439 31616 net.cpp:122] Setting up label_val-data_1_split +I0408 07:38:26.818444 31616 net.cpp:129] Top shape: 32 (32) +I0408 07:38:26.818449 31616 net.cpp:129] Top shape: 32 (32) +I0408 07:38:26.818451 31616 net.cpp:137] Memory required for data: 19787520 +I0408 07:38:26.818455 31616 layer_factory.hpp:77] Creating layer conv1 +I0408 07:38:26.818466 31616 net.cpp:84] Creating Layer conv1 +I0408 07:38:26.818470 31616 net.cpp:406] conv1 <- data +I0408 07:38:26.818476 31616 net.cpp:380] conv1 -> conv1 +I0408 07:38:26.820694 31616 net.cpp:122] Setting up conv1 +I0408 07:38:26.820705 31616 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 07:38:26.820709 31616 net.cpp:137] Memory required for data: 56958720 +I0408 07:38:26.820719 31616 layer_factory.hpp:77] Creating layer relu1 +I0408 07:38:26.820727 31616 net.cpp:84] Creating Layer relu1 +I0408 07:38:26.820730 31616 net.cpp:406] relu1 <- conv1 +I0408 07:38:26.820736 31616 net.cpp:367] relu1 -> conv1 (in-place) +I0408 07:38:26.821051 31616 net.cpp:122] Setting up relu1 +I0408 07:38:26.821060 31616 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 07:38:26.821064 31616 net.cpp:137] Memory required for data: 94129920 +I0408 07:38:26.821067 31616 layer_factory.hpp:77] Creating layer norm1 +I0408 07:38:26.821076 31616 net.cpp:84] Creating Layer norm1 +I0408 07:38:26.821079 31616 net.cpp:406] norm1 <- conv1 +I0408 07:38:26.821085 31616 net.cpp:380] norm1 -> norm1 +I0408 07:38:26.821571 31616 net.cpp:122] Setting up norm1 +I0408 07:38:26.821581 31616 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 07:38:26.821584 31616 net.cpp:137] Memory required for data: 131301120 +I0408 07:38:26.821588 31616 layer_factory.hpp:77] Creating layer pool1 +I0408 07:38:26.821596 31616 net.cpp:84] Creating Layer pool1 +I0408 07:38:26.821599 31616 net.cpp:406] pool1 <- norm1 +I0408 07:38:26.821605 31616 net.cpp:380] pool1 -> pool1 +I0408 07:38:26.821636 31616 net.cpp:122] Setting up pool1 +I0408 07:38:26.821641 31616 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 07:38:26.821645 31616 net.cpp:137] Memory required for data: 140259072 +I0408 07:38:26.821648 31616 layer_factory.hpp:77] Creating layer conv2 +I0408 07:38:26.821655 31616 net.cpp:84] Creating Layer conv2 +I0408 07:38:26.821660 31616 net.cpp:406] conv2 <- pool1 +I0408 07:38:26.821682 31616 net.cpp:380] conv2 -> conv2 +I0408 07:38:26.830883 31616 net.cpp:122] Setting up conv2 +I0408 07:38:26.830897 31616 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 07:38:26.830901 31616 net.cpp:137] Memory required for data: 164146944 +I0408 07:38:26.830911 31616 layer_factory.hpp:77] Creating layer relu2 +I0408 07:38:26.830919 31616 net.cpp:84] Creating Layer relu2 +I0408 07:38:26.830924 31616 net.cpp:406] relu2 <- conv2 +I0408 07:38:26.830929 31616 net.cpp:367] relu2 -> conv2 (in-place) +I0408 07:38:26.831462 31616 net.cpp:122] Setting up relu2 +I0408 07:38:26.831471 31616 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 07:38:26.831475 31616 net.cpp:137] Memory required for data: 188034816 +I0408 07:38:26.831480 31616 layer_factory.hpp:77] Creating layer norm2 +I0408 07:38:26.831490 31616 net.cpp:84] Creating Layer norm2 +I0408 07:38:26.831493 31616 net.cpp:406] norm2 <- conv2 +I0408 07:38:26.831499 31616 net.cpp:380] norm2 -> norm2 +I0408 07:38:26.832056 31616 net.cpp:122] Setting up norm2 +I0408 07:38:26.832065 31616 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 07:38:26.832069 31616 net.cpp:137] Memory required for data: 211922688 +I0408 07:38:26.832073 31616 layer_factory.hpp:77] Creating layer pool2 +I0408 07:38:26.832079 31616 net.cpp:84] Creating Layer pool2 +I0408 07:38:26.832083 31616 net.cpp:406] pool2 <- norm2 +I0408 07:38:26.832090 31616 net.cpp:380] pool2 -> pool2 +I0408 07:38:26.832121 31616 net.cpp:122] Setting up pool2 +I0408 07:38:26.832127 31616 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 07:38:26.832130 31616 net.cpp:137] Memory required for data: 217460480 +I0408 07:38:26.832134 31616 layer_factory.hpp:77] Creating layer conv3 +I0408 07:38:26.832145 31616 net.cpp:84] Creating Layer conv3 +I0408 07:38:26.832149 31616 net.cpp:406] conv3 <- pool2 +I0408 07:38:26.832154 31616 net.cpp:380] conv3 -> conv3 +I0408 07:38:26.843953 31616 net.cpp:122] Setting up conv3 +I0408 07:38:26.843971 31616 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:38:26.843974 31616 net.cpp:137] Memory required for data: 225767168 +I0408 07:38:26.843986 31616 layer_factory.hpp:77] Creating layer relu3 +I0408 07:38:26.843994 31616 net.cpp:84] Creating Layer relu3 +I0408 07:38:26.843998 31616 net.cpp:406] relu3 <- conv3 +I0408 07:38:26.844004 31616 net.cpp:367] relu3 -> conv3 (in-place) +I0408 07:38:26.844552 31616 net.cpp:122] Setting up relu3 +I0408 07:38:26.844561 31616 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:38:26.844565 31616 net.cpp:137] Memory required for data: 234073856 +I0408 07:38:26.844568 31616 layer_factory.hpp:77] Creating layer conv4 +I0408 07:38:26.844581 31616 net.cpp:84] Creating Layer conv4 +I0408 07:38:26.844585 31616 net.cpp:406] conv4 <- conv3 +I0408 07:38:26.844592 31616 net.cpp:380] conv4 -> conv4 +I0408 07:38:26.854796 31616 net.cpp:122] Setting up conv4 +I0408 07:38:26.854810 31616 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:38:26.854813 31616 net.cpp:137] Memory required for data: 242380544 +I0408 07:38:26.854821 31616 layer_factory.hpp:77] Creating layer relu4 +I0408 07:38:26.854828 31616 net.cpp:84] Creating Layer relu4 +I0408 07:38:26.854832 31616 net.cpp:406] relu4 <- conv4 +I0408 07:38:26.854840 31616 net.cpp:367] relu4 -> conv4 (in-place) +I0408 07:38:26.855211 31616 net.cpp:122] Setting up relu4 +I0408 07:38:26.855219 31616 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:38:26.855223 31616 net.cpp:137] Memory required for data: 250687232 +I0408 07:38:26.855227 31616 layer_factory.hpp:77] Creating layer conv5 +I0408 07:38:26.855237 31616 net.cpp:84] Creating Layer conv5 +I0408 07:38:26.855242 31616 net.cpp:406] conv5 <- conv4 +I0408 07:38:26.855248 31616 net.cpp:380] conv5 -> conv5 +I0408 07:38:26.864305 31616 net.cpp:122] Setting up conv5 +I0408 07:38:26.864317 31616 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 07:38:26.864321 31616 net.cpp:137] Memory required for data: 256225024 +I0408 07:38:26.864333 31616 layer_factory.hpp:77] Creating layer relu5 +I0408 07:38:26.864341 31616 net.cpp:84] Creating Layer relu5 +I0408 07:38:26.864346 31616 net.cpp:406] relu5 <- conv5 +I0408 07:38:26.864368 31616 net.cpp:367] relu5 -> conv5 (in-place) +I0408 07:38:26.864893 31616 net.cpp:122] Setting up relu5 +I0408 07:38:26.864903 31616 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 07:38:26.864907 31616 net.cpp:137] Memory required for data: 261762816 +I0408 07:38:26.864912 31616 layer_factory.hpp:77] Creating layer pool5 +I0408 07:38:26.864923 31616 net.cpp:84] Creating Layer pool5 +I0408 07:38:26.864926 31616 net.cpp:406] pool5 <- conv5 +I0408 07:38:26.864933 31616 net.cpp:380] pool5 -> pool5 +I0408 07:38:26.864974 31616 net.cpp:122] Setting up pool5 +I0408 07:38:26.864979 31616 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 07:38:26.864984 31616 net.cpp:137] Memory required for data: 262942464 +I0408 07:38:26.864986 31616 layer_factory.hpp:77] Creating layer fc6 +I0408 07:38:26.864993 31616 net.cpp:84] Creating Layer fc6 +I0408 07:38:26.864997 31616 net.cpp:406] fc6 <- pool5 +I0408 07:38:26.865003 31616 net.cpp:380] fc6 -> fc6 +I0408 07:38:27.241144 31616 net.cpp:122] Setting up fc6 +I0408 07:38:27.241164 31616 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:38:27.241168 31616 net.cpp:137] Memory required for data: 263466752 +I0408 07:38:27.241178 31616 layer_factory.hpp:77] Creating layer relu6 +I0408 07:38:27.241187 31616 net.cpp:84] Creating Layer relu6 +I0408 07:38:27.241192 31616 net.cpp:406] relu6 <- fc6 +I0408 07:38:27.241199 31616 net.cpp:367] relu6 -> fc6 (in-place) +I0408 07:38:27.242046 31616 net.cpp:122] Setting up relu6 +I0408 07:38:27.242056 31616 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:38:27.242059 31616 net.cpp:137] Memory required for data: 263991040 +I0408 07:38:27.242063 31616 layer_factory.hpp:77] Creating layer drop6 +I0408 07:38:27.242070 31616 net.cpp:84] Creating Layer drop6 +I0408 07:38:27.242074 31616 net.cpp:406] drop6 <- fc6 +I0408 07:38:27.242081 31616 net.cpp:367] drop6 -> fc6 (in-place) +I0408 07:38:27.242108 31616 net.cpp:122] Setting up drop6 +I0408 07:38:27.242115 31616 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:38:27.242117 31616 net.cpp:137] Memory required for data: 264515328 +I0408 07:38:27.242121 31616 layer_factory.hpp:77] Creating layer fc7 +I0408 07:38:27.242128 31616 net.cpp:84] Creating Layer fc7 +I0408 07:38:27.242132 31616 net.cpp:406] fc7 <- fc6 +I0408 07:38:27.242138 31616 net.cpp:380] fc7 -> fc7 +I0408 07:38:27.398536 31616 net.cpp:122] Setting up fc7 +I0408 07:38:27.398552 31616 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:38:27.398556 31616 net.cpp:137] Memory required for data: 265039616 +I0408 07:38:27.398566 31616 layer_factory.hpp:77] Creating layer relu7 +I0408 07:38:27.398574 31616 net.cpp:84] Creating Layer relu7 +I0408 07:38:27.398579 31616 net.cpp:406] relu7 <- fc7 +I0408 07:38:27.398586 31616 net.cpp:367] relu7 -> fc7 (in-place) +I0408 07:38:27.399019 31616 net.cpp:122] Setting up relu7 +I0408 07:38:27.399027 31616 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:38:27.399030 31616 net.cpp:137] Memory required for data: 265563904 +I0408 07:38:27.399034 31616 layer_factory.hpp:77] Creating layer drop7 +I0408 07:38:27.399041 31616 net.cpp:84] Creating Layer drop7 +I0408 07:38:27.399044 31616 net.cpp:406] drop7 <- fc7 +I0408 07:38:27.399049 31616 net.cpp:367] drop7 -> fc7 (in-place) +I0408 07:38:27.399073 31616 net.cpp:122] Setting up drop7 +I0408 07:38:27.399078 31616 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:38:27.399081 31616 net.cpp:137] Memory required for data: 266088192 +I0408 07:38:27.399085 31616 layer_factory.hpp:77] Creating layer fc8 +I0408 07:38:27.399091 31616 net.cpp:84] Creating Layer fc8 +I0408 07:38:27.399096 31616 net.cpp:406] fc8 <- fc7 +I0408 07:38:27.399101 31616 net.cpp:380] fc8 -> fc8 +I0408 07:38:27.406790 31616 net.cpp:122] Setting up fc8 +I0408 07:38:27.406801 31616 net.cpp:129] Top shape: 32 196 (6272) +I0408 07:38:27.406805 31616 net.cpp:137] Memory required for data: 266113280 +I0408 07:38:27.406810 31616 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 07:38:27.406817 31616 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 07:38:27.406821 31616 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 07:38:27.406842 31616 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 07:38:27.406850 31616 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 07:38:27.406881 31616 net.cpp:122] Setting up fc8_fc8_0_split +I0408 07:38:27.406886 31616 net.cpp:129] Top shape: 32 196 (6272) +I0408 07:38:27.406890 31616 net.cpp:129] Top shape: 32 196 (6272) +I0408 07:38:27.406893 31616 net.cpp:137] Memory required for data: 266163456 +I0408 07:38:27.406896 31616 layer_factory.hpp:77] Creating layer accuracy +I0408 07:38:27.406903 31616 net.cpp:84] Creating Layer accuracy +I0408 07:38:27.406908 31616 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 07:38:27.406911 31616 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 07:38:27.406916 31616 net.cpp:380] accuracy -> accuracy +I0408 07:38:27.406924 31616 net.cpp:122] Setting up accuracy +I0408 07:38:27.406927 31616 net.cpp:129] Top shape: (1) +I0408 07:38:27.406929 31616 net.cpp:137] Memory required for data: 266163460 +I0408 07:38:27.406934 31616 layer_factory.hpp:77] Creating layer loss +I0408 07:38:27.406939 31616 net.cpp:84] Creating Layer loss +I0408 07:38:27.406942 31616 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 07:38:27.406946 31616 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 07:38:27.406950 31616 net.cpp:380] loss -> loss +I0408 07:38:27.406957 31616 layer_factory.hpp:77] Creating layer loss +I0408 07:38:27.407544 31616 net.cpp:122] Setting up loss +I0408 07:38:27.407555 31616 net.cpp:129] Top shape: (1) +I0408 07:38:27.407558 31616 net.cpp:132] with loss weight 1 +I0408 07:38:27.407568 31616 net.cpp:137] Memory required for data: 266163464 +I0408 07:38:27.407572 31616 net.cpp:198] loss needs backward computation. +I0408 07:38:27.407577 31616 net.cpp:200] accuracy does not need backward computation. +I0408 07:38:27.407582 31616 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 07:38:27.407584 31616 net.cpp:198] fc8 needs backward computation. +I0408 07:38:27.407588 31616 net.cpp:198] drop7 needs backward computation. +I0408 07:38:27.407591 31616 net.cpp:198] relu7 needs backward computation. +I0408 07:38:27.407594 31616 net.cpp:198] fc7 needs backward computation. +I0408 07:38:27.407598 31616 net.cpp:198] drop6 needs backward computation. +I0408 07:38:27.407600 31616 net.cpp:198] relu6 needs backward computation. +I0408 07:38:27.407603 31616 net.cpp:198] fc6 needs backward computation. +I0408 07:38:27.407608 31616 net.cpp:198] pool5 needs backward computation. +I0408 07:38:27.407611 31616 net.cpp:198] relu5 needs backward computation. +I0408 07:38:27.407614 31616 net.cpp:198] conv5 needs backward computation. +I0408 07:38:27.407618 31616 net.cpp:198] relu4 needs backward computation. +I0408 07:38:27.407621 31616 net.cpp:198] conv4 needs backward computation. +I0408 07:38:27.407625 31616 net.cpp:198] relu3 needs backward computation. +I0408 07:38:27.407629 31616 net.cpp:198] conv3 needs backward computation. +I0408 07:38:27.407631 31616 net.cpp:198] pool2 needs backward computation. +I0408 07:38:27.407635 31616 net.cpp:198] norm2 needs backward computation. +I0408 07:38:27.407639 31616 net.cpp:198] relu2 needs backward computation. +I0408 07:38:27.407642 31616 net.cpp:198] conv2 needs backward computation. +I0408 07:38:27.407645 31616 net.cpp:198] pool1 needs backward computation. +I0408 07:38:27.407649 31616 net.cpp:198] norm1 needs backward computation. +I0408 07:38:27.407652 31616 net.cpp:198] relu1 needs backward computation. +I0408 07:38:27.407655 31616 net.cpp:198] conv1 needs backward computation. +I0408 07:38:27.407660 31616 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 07:38:27.407663 31616 net.cpp:200] val-data does not need backward computation. +I0408 07:38:27.407666 31616 net.cpp:242] This network produces output accuracy +I0408 07:38:27.407670 31616 net.cpp:242] This network produces output loss +I0408 07:38:27.407688 31616 net.cpp:255] Network initialization done. +I0408 07:38:27.407758 31616 solver.cpp:56] Solver scaffolding done. +I0408 07:38:27.408179 31616 caffe.cpp:248] Starting Optimization +I0408 07:38:27.408186 31616 solver.cpp:272] Solving +I0408 07:38:27.408197 31616 solver.cpp:273] Learning Rate Policy: exp +I0408 07:38:27.409468 31616 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 07:38:27.409478 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:38:27.488181 31616 blocking_queue.cpp:49] Waiting for data +I0408 07:38:31.677695 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:38:31.722256 31616 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 07:38:31.722285 31616 solver.cpp:397] Test net output #1: loss = 5.28337 (* 1 = 5.28337 loss) +I0408 07:38:31.817409 31616 solver.cpp:218] Iteration 0 (-6.82655e-36 iter/s, 4.40903s/12 iters), loss = 5.30827 +I0408 07:38:31.819274 31616 solver.cpp:237] Train net output #0: loss = 5.30827 (* 1 = 5.30827 loss) +I0408 07:38:31.819308 31616 sgd_solver.cpp:105] Iteration 0, lr = 0.1 +I0408 07:38:35.750808 31616 solver.cpp:218] Iteration 12 (3.05235 iter/s, 3.93139s/12 iters), loss = 5.35019 +I0408 07:38:35.750854 31616 solver.cpp:237] Train net output #0: loss = 5.35019 (* 1 = 5.35019 loss) +I0408 07:38:35.750866 31616 sgd_solver.cpp:105] Iteration 12, lr = 0.0981062 +I0408 07:38:40.634084 31616 solver.cpp:218] Iteration 24 (2.45747 iter/s, 4.88306s/12 iters), loss = 5.3197 +I0408 07:38:40.634131 31616 solver.cpp:237] Train net output #0: loss = 5.3197 (* 1 = 5.3197 loss) +I0408 07:38:40.634143 31616 sgd_solver.cpp:105] Iteration 24, lr = 0.0962482 +I0408 07:38:45.653894 31616 solver.cpp:218] Iteration 36 (2.39063 iter/s, 5.01959s/12 iters), loss = 5.29957 +I0408 07:38:45.653937 31616 solver.cpp:237] Train net output #0: loss = 5.29957 (* 1 = 5.29957 loss) +I0408 07:38:45.653949 31616 sgd_solver.cpp:105] Iteration 36, lr = 0.0944255 +I0408 07:38:50.638828 31616 solver.cpp:218] Iteration 48 (2.40736 iter/s, 4.98472s/12 iters), loss = 5.28263 +I0408 07:38:50.638872 31616 solver.cpp:237] Train net output #0: loss = 5.28263 (* 1 = 5.28263 loss) +I0408 07:38:50.638883 31616 sgd_solver.cpp:105] Iteration 48, lr = 0.0926373 +I0408 07:38:55.629715 31616 solver.cpp:218] Iteration 60 (2.40448 iter/s, 4.99068s/12 iters), loss = 5.28315 +I0408 07:38:55.629863 31616 solver.cpp:237] Train net output #0: loss = 5.28315 (* 1 = 5.28315 loss) +I0408 07:38:55.629873 31616 sgd_solver.cpp:105] Iteration 60, lr = 0.0908829 +I0408 07:39:00.611550 31616 solver.cpp:218] Iteration 72 (2.4089 iter/s, 4.98152s/12 iters), loss = 5.30475 +I0408 07:39:00.611589 31616 solver.cpp:237] Train net output #0: loss = 5.30475 (* 1 = 5.30475 loss) +I0408 07:39:00.611598 31616 sgd_solver.cpp:105] Iteration 72, lr = 0.0891617 +I0408 07:39:05.616482 31616 solver.cpp:218] Iteration 84 (2.39774 iter/s, 5.00472s/12 iters), loss = 5.28231 +I0408 07:39:05.616528 31616 solver.cpp:237] Train net output #0: loss = 5.28231 (* 1 = 5.28231 loss) +I0408 07:39:05.616540 31616 sgd_solver.cpp:105] Iteration 84, lr = 0.0874732 +I0408 07:39:10.618319 31616 solver.cpp:218] Iteration 96 (2.39922 iter/s, 5.00162s/12 iters), loss = 5.2954 +I0408 07:39:10.618366 31616 solver.cpp:237] Train net output #0: loss = 5.2954 (* 1 = 5.2954 loss) +I0408 07:39:10.618376 31616 sgd_solver.cpp:105] Iteration 96, lr = 0.0858166 +I0408 07:39:12.341301 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:39:12.698467 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 07:39:15.777462 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 07:39:18.098502 31616 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 07:39:18.098533 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:39:22.492331 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:39:22.569065 31616 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:39:22.569108 31616 solver.cpp:397] Test net output #1: loss = 5.28388 (* 1 = 5.28388 loss) +I0408 07:39:24.557962 31616 solver.cpp:218] Iteration 108 (0.860886 iter/s, 13.9391s/12 iters), loss = 5.2996 +I0408 07:39:24.558012 31616 solver.cpp:237] Train net output #0: loss = 5.2996 (* 1 = 5.2996 loss) +I0408 07:39:24.558024 31616 sgd_solver.cpp:105] Iteration 108, lr = 0.0841914 +I0408 07:39:29.859488 31616 solver.cpp:218] Iteration 120 (2.2636 iter/s, 5.30129s/12 iters), loss = 5.27317 +I0408 07:39:29.859647 31616 solver.cpp:237] Train net output #0: loss = 5.27317 (* 1 = 5.27317 loss) +I0408 07:39:29.859659 31616 sgd_solver.cpp:105] Iteration 120, lr = 0.082597 +I0408 07:39:34.821799 31616 solver.cpp:218] Iteration 132 (2.41839 iter/s, 4.96199s/12 iters), loss = 5.24011 +I0408 07:39:34.821838 31616 solver.cpp:237] Train net output #0: loss = 5.24011 (* 1 = 5.24011 loss) +I0408 07:39:34.821848 31616 sgd_solver.cpp:105] Iteration 132, lr = 0.0810328 +I0408 07:39:39.851938 31616 solver.cpp:218] Iteration 144 (2.38572 iter/s, 5.02993s/12 iters), loss = 5.29906 +I0408 07:39:39.851975 31616 solver.cpp:237] Train net output #0: loss = 5.29906 (* 1 = 5.29906 loss) +I0408 07:39:39.851985 31616 sgd_solver.cpp:105] Iteration 144, lr = 0.0794981 +I0408 07:39:44.865990 31616 solver.cpp:218] Iteration 156 (2.39339 iter/s, 5.01382s/12 iters), loss = 5.26736 +I0408 07:39:44.866037 31616 solver.cpp:237] Train net output #0: loss = 5.26736 (* 1 = 5.26736 loss) +I0408 07:39:44.866050 31616 sgd_solver.cpp:105] Iteration 156, lr = 0.0779926 +I0408 07:39:49.950726 31616 solver.cpp:218] Iteration 168 (2.36011 iter/s, 5.08451s/12 iters), loss = 5.25363 +I0408 07:39:49.950770 31616 solver.cpp:237] Train net output #0: loss = 5.25363 (* 1 = 5.25363 loss) +I0408 07:39:49.950781 31616 sgd_solver.cpp:105] Iteration 168, lr = 0.0765156 +I0408 07:39:54.984666 31616 solver.cpp:218] Iteration 180 (2.38392 iter/s, 5.03372s/12 iters), loss = 5.27786 +I0408 07:39:54.984712 31616 solver.cpp:237] Train net output #0: loss = 5.27786 (* 1 = 5.27786 loss) +I0408 07:39:54.984724 31616 sgd_solver.cpp:105] Iteration 180, lr = 0.0750665 +I0408 07:39:59.976857 31616 solver.cpp:218] Iteration 192 (2.40386 iter/s, 4.99197s/12 iters), loss = 5.28667 +I0408 07:39:59.976987 31616 solver.cpp:237] Train net output #0: loss = 5.28667 (* 1 = 5.28667 loss) +I0408 07:39:59.977001 31616 sgd_solver.cpp:105] Iteration 192, lr = 0.0736449 +I0408 07:40:03.830072 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:40:04.513257 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 07:40:07.516614 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 07:40:09.848512 31616 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 07:40:09.848538 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:40:14.204177 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:40:14.327591 31616 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 07:40:14.327634 31616 solver.cpp:397] Test net output #1: loss = 5.27992 (* 1 = 5.27992 loss) +I0408 07:40:14.417979 31616 solver.cpp:218] Iteration 204 (0.830996 iter/s, 14.4405s/12 iters), loss = 5.24821 +I0408 07:40:14.418030 31616 solver.cpp:237] Train net output #0: loss = 5.24821 (* 1 = 5.24821 loss) +I0408 07:40:14.418040 31616 sgd_solver.cpp:105] Iteration 204, lr = 0.0722502 +I0408 07:40:18.669932 31616 solver.cpp:218] Iteration 216 (2.82236 iter/s, 4.25176s/12 iters), loss = 5.28302 +I0408 07:40:18.669984 31616 solver.cpp:237] Train net output #0: loss = 5.28302 (* 1 = 5.28302 loss) +I0408 07:40:18.669996 31616 sgd_solver.cpp:105] Iteration 216, lr = 0.0708819 +I0408 07:40:23.689206 31616 solver.cpp:218] Iteration 228 (2.39089 iter/s, 5.01904s/12 iters), loss = 5.21986 +I0408 07:40:23.689256 31616 solver.cpp:237] Train net output #0: loss = 5.21986 (* 1 = 5.21986 loss) +I0408 07:40:23.689268 31616 sgd_solver.cpp:105] Iteration 228, lr = 0.0695396 +I0408 07:40:28.710597 31616 solver.cpp:218] Iteration 240 (2.38988 iter/s, 5.02117s/12 iters), loss = 5.28175 +I0408 07:40:28.710633 31616 solver.cpp:237] Train net output #0: loss = 5.28175 (* 1 = 5.28175 loss) +I0408 07:40:28.710644 31616 sgd_solver.cpp:105] Iteration 240, lr = 0.0682226 +I0408 07:40:33.813529 31616 solver.cpp:218] Iteration 252 (2.35169 iter/s, 5.10272s/12 iters), loss = 5.27541 +I0408 07:40:33.813670 31616 solver.cpp:237] Train net output #0: loss = 5.27541 (* 1 = 5.27541 loss) +I0408 07:40:33.813683 31616 sgd_solver.cpp:105] Iteration 252, lr = 0.0669306 +I0408 07:40:38.756767 31616 solver.cpp:218] Iteration 264 (2.42771 iter/s, 4.94293s/12 iters), loss = 5.26822 +I0408 07:40:38.756814 31616 solver.cpp:237] Train net output #0: loss = 5.26822 (* 1 = 5.26822 loss) +I0408 07:40:38.756827 31616 sgd_solver.cpp:105] Iteration 264, lr = 0.0656631 +I0408 07:40:43.712366 31616 solver.cpp:218] Iteration 276 (2.42161 iter/s, 4.95538s/12 iters), loss = 5.28654 +I0408 07:40:43.712409 31616 solver.cpp:237] Train net output #0: loss = 5.28654 (* 1 = 5.28654 loss) +I0408 07:40:43.712419 31616 sgd_solver.cpp:105] Iteration 276, lr = 0.0644195 +I0408 07:40:48.746851 31616 solver.cpp:218] Iteration 288 (2.38366 iter/s, 5.03427s/12 iters), loss = 5.28431 +I0408 07:40:48.746893 31616 solver.cpp:237] Train net output #0: loss = 5.28431 (* 1 = 5.28431 loss) +I0408 07:40:48.746904 31616 sgd_solver.cpp:105] Iteration 288, lr = 0.0631996 +I0408 07:40:53.683094 31616 solver.cpp:218] Iteration 300 (2.4311 iter/s, 4.93603s/12 iters), loss = 5.28415 +I0408 07:40:53.683140 31616 solver.cpp:237] Train net output #0: loss = 5.28415 (* 1 = 5.28415 loss) +I0408 07:40:53.683152 31616 sgd_solver.cpp:105] Iteration 300, lr = 0.0620027 +I0408 07:40:54.674050 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:40:55.703016 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 07:40:58.741807 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 07:41:01.068857 31616 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 07:41:01.068882 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:41:05.245556 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:41:05.403631 31616 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:41:05.403678 31616 solver.cpp:397] Test net output #1: loss = 5.29373 (* 1 = 5.29373 loss) +I0408 07:41:07.418812 31616 solver.cpp:218] Iteration 312 (0.873667 iter/s, 13.7352s/12 iters), loss = 5.29357 +I0408 07:41:07.418856 31616 solver.cpp:237] Train net output #0: loss = 5.29357 (* 1 = 5.29357 loss) +I0408 07:41:07.418869 31616 sgd_solver.cpp:105] Iteration 312, lr = 0.0608285 +I0408 07:41:12.847282 31616 solver.cpp:218] Iteration 324 (2.21066 iter/s, 5.42824s/12 iters), loss = 5.25252 +I0408 07:41:12.847326 31616 solver.cpp:237] Train net output #0: loss = 5.25252 (* 1 = 5.25252 loss) +I0408 07:41:12.847337 31616 sgd_solver.cpp:105] Iteration 324, lr = 0.0596765 +I0408 07:41:18.121636 31616 solver.cpp:218] Iteration 336 (2.27526 iter/s, 5.27412s/12 iters), loss = 5.26068 +I0408 07:41:18.121690 31616 solver.cpp:237] Train net output #0: loss = 5.26068 (* 1 = 5.26068 loss) +I0408 07:41:18.121701 31616 sgd_solver.cpp:105] Iteration 336, lr = 0.0585463 +I0408 07:41:23.188395 31616 solver.cpp:218] Iteration 348 (2.36848 iter/s, 5.06653s/12 iters), loss = 5.26836 +I0408 07:41:23.188441 31616 solver.cpp:237] Train net output #0: loss = 5.26836 (* 1 = 5.26836 loss) +I0408 07:41:23.188452 31616 sgd_solver.cpp:105] Iteration 348, lr = 0.0574376 +I0408 07:41:28.266566 31616 solver.cpp:218] Iteration 360 (2.36316 iter/s, 5.07795s/12 iters), loss = 5.28463 +I0408 07:41:28.266613 31616 solver.cpp:237] Train net output #0: loss = 5.28463 (* 1 = 5.28463 loss) +I0408 07:41:28.266624 31616 sgd_solver.cpp:105] Iteration 360, lr = 0.0563498 +I0408 07:41:33.362016 31616 solver.cpp:218] Iteration 372 (2.35515 iter/s, 5.09523s/12 iters), loss = 5.24212 +I0408 07:41:33.362063 31616 solver.cpp:237] Train net output #0: loss = 5.24212 (* 1 = 5.24212 loss) +I0408 07:41:33.362076 31616 sgd_solver.cpp:105] Iteration 372, lr = 0.0552827 +I0408 07:41:38.421098 31616 solver.cpp:218] Iteration 384 (2.37208 iter/s, 5.05886s/12 iters), loss = 5.2156 +I0408 07:41:38.421244 31616 solver.cpp:237] Train net output #0: loss = 5.2156 (* 1 = 5.2156 loss) +I0408 07:41:38.421257 31616 sgd_solver.cpp:105] Iteration 384, lr = 0.0542357 +I0408 07:41:43.432109 31616 solver.cpp:218] Iteration 396 (2.39488 iter/s, 5.01069s/12 iters), loss = 5.21519 +I0408 07:41:43.432154 31616 solver.cpp:237] Train net output #0: loss = 5.21519 (* 1 = 5.21519 loss) +I0408 07:41:43.432166 31616 sgd_solver.cpp:105] Iteration 396, lr = 0.0532086 +I0408 07:41:46.574033 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:41:48.003901 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 07:41:51.026553 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 07:41:53.337975 31616 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 07:41:53.337998 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:41:57.613430 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:41:57.817296 31616 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0408 07:41:57.817343 31616 solver.cpp:397] Test net output #1: loss = 5.22255 (* 1 = 5.22255 loss) +I0408 07:41:57.908268 31616 solver.cpp:218] Iteration 408 (0.82898 iter/s, 14.4756s/12 iters), loss = 5.26391 +I0408 07:41:57.908316 31616 solver.cpp:237] Train net output #0: loss = 5.26391 (* 1 = 5.26391 loss) +I0408 07:41:57.908329 31616 sgd_solver.cpp:105] Iteration 408, lr = 0.0522009 +I0408 07:42:02.107146 31616 solver.cpp:218] Iteration 420 (2.85804 iter/s, 4.19868s/12 iters), loss = 5.25125 +I0408 07:42:02.107192 31616 solver.cpp:237] Train net output #0: loss = 5.25125 (* 1 = 5.25125 loss) +I0408 07:42:02.107203 31616 sgd_solver.cpp:105] Iteration 420, lr = 0.0512123 +I0408 07:42:07.070392 31616 solver.cpp:218] Iteration 432 (2.41788 iter/s, 4.96303s/12 iters), loss = 5.2037 +I0408 07:42:07.070442 31616 solver.cpp:237] Train net output #0: loss = 5.2037 (* 1 = 5.2037 loss) +I0408 07:42:07.070454 31616 sgd_solver.cpp:105] Iteration 432, lr = 0.0502425 +I0408 07:42:12.103612 31616 solver.cpp:218] Iteration 444 (2.38427 iter/s, 5.033s/12 iters), loss = 5.19325 +I0408 07:42:12.103706 31616 solver.cpp:237] Train net output #0: loss = 5.19325 (* 1 = 5.19325 loss) +I0408 07:42:12.103716 31616 sgd_solver.cpp:105] Iteration 444, lr = 0.049291 +I0408 07:42:17.094890 31616 solver.cpp:218] Iteration 456 (2.40432 iter/s, 4.99101s/12 iters), loss = 5.20942 +I0408 07:42:17.094935 31616 solver.cpp:237] Train net output #0: loss = 5.20942 (* 1 = 5.20942 loss) +I0408 07:42:17.094947 31616 sgd_solver.cpp:105] Iteration 456, lr = 0.0483575 +I0408 07:42:22.080705 31616 solver.cpp:218] Iteration 468 (2.40693 iter/s, 4.98559s/12 iters), loss = 5.23055 +I0408 07:42:22.080744 31616 solver.cpp:237] Train net output #0: loss = 5.23055 (* 1 = 5.23055 loss) +I0408 07:42:22.080751 31616 sgd_solver.cpp:105] Iteration 468, lr = 0.0474417 +I0408 07:42:27.046478 31616 solver.cpp:218] Iteration 480 (2.41665 iter/s, 4.96556s/12 iters), loss = 5.14033 +I0408 07:42:27.046521 31616 solver.cpp:237] Train net output #0: loss = 5.14033 (* 1 = 5.14033 loss) +I0408 07:42:27.046532 31616 sgd_solver.cpp:105] Iteration 480, lr = 0.0465433 +I0408 07:42:32.016582 31616 solver.cpp:218] Iteration 492 (2.41454 iter/s, 4.96989s/12 iters), loss = 5.19471 +I0408 07:42:32.016618 31616 solver.cpp:237] Train net output #0: loss = 5.19471 (* 1 = 5.19471 loss) +I0408 07:42:32.016624 31616 sgd_solver.cpp:105] Iteration 492, lr = 0.0456618 +I0408 07:42:37.110918 31616 solver.cpp:218] Iteration 504 (2.35566 iter/s, 5.09412s/12 iters), loss = 5.22792 +I0408 07:42:37.110973 31616 solver.cpp:237] Train net output #0: loss = 5.22792 (* 1 = 5.22792 loss) +I0408 07:42:37.110989 31616 sgd_solver.cpp:105] Iteration 504, lr = 0.0447971 +I0408 07:42:37.352072 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:42:39.058738 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 07:42:42.144682 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 07:42:44.474432 31616 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 07:42:44.474459 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:42:48.764165 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:42:49.018999 31616 solver.cpp:397] Test net output #0: accuracy = 0.00857843 +I0408 07:42:49.019044 31616 solver.cpp:397] Test net output #1: loss = 5.1883 (* 1 = 5.1883 loss) +I0408 07:42:50.983103 31616 solver.cpp:218] Iteration 516 (0.865072 iter/s, 13.8717s/12 iters), loss = 5.16051 +I0408 07:42:50.983139 31616 solver.cpp:237] Train net output #0: loss = 5.16051 (* 1 = 5.16051 loss) +I0408 07:42:50.983147 31616 sgd_solver.cpp:105] Iteration 516, lr = 0.0439487 +I0408 07:42:55.995774 31616 solver.cpp:218] Iteration 528 (2.39403 iter/s, 5.01246s/12 iters), loss = 5.22895 +I0408 07:42:55.995810 31616 solver.cpp:237] Train net output #0: loss = 5.22895 (* 1 = 5.22895 loss) +I0408 07:42:55.995818 31616 sgd_solver.cpp:105] Iteration 528, lr = 0.0431164 +I0408 07:43:00.980262 31616 solver.cpp:218] Iteration 540 (2.40757 iter/s, 4.98428s/12 iters), loss = 5.16887 +I0408 07:43:00.980296 31616 solver.cpp:237] Train net output #0: loss = 5.16887 (* 1 = 5.16887 loss) +I0408 07:43:00.980304 31616 sgd_solver.cpp:105] Iteration 540, lr = 0.0422998 +I0408 07:43:05.903517 31616 solver.cpp:218] Iteration 552 (2.43752 iter/s, 4.92305s/12 iters), loss = 5.13655 +I0408 07:43:05.903555 31616 solver.cpp:237] Train net output #0: loss = 5.13655 (* 1 = 5.13655 loss) +I0408 07:43:05.903568 31616 sgd_solver.cpp:105] Iteration 552, lr = 0.0414988 +I0408 07:43:10.854038 31616 solver.cpp:218] Iteration 564 (2.42409 iter/s, 4.95031s/12 iters), loss = 5.16353 +I0408 07:43:10.854080 31616 solver.cpp:237] Train net output #0: loss = 5.16353 (* 1 = 5.16353 loss) +I0408 07:43:10.854092 31616 sgd_solver.cpp:105] Iteration 564, lr = 0.0407129 +I0408 07:43:15.865064 31616 solver.cpp:218] Iteration 576 (2.39482 iter/s, 5.01081s/12 iters), loss = 5.14719 +I0408 07:43:15.865525 31616 solver.cpp:237] Train net output #0: loss = 5.14719 (* 1 = 5.14719 loss) +I0408 07:43:15.865536 31616 sgd_solver.cpp:105] Iteration 576, lr = 0.0399418 +I0408 07:43:20.819622 31616 solver.cpp:218] Iteration 588 (2.42232 iter/s, 4.95392s/12 iters), loss = 5.14864 +I0408 07:43:20.819674 31616 solver.cpp:237] Train net output #0: loss = 5.14864 (* 1 = 5.14864 loss) +I0408 07:43:20.819684 31616 sgd_solver.cpp:105] Iteration 588, lr = 0.0391854 +I0408 07:43:25.807504 31616 solver.cpp:218] Iteration 600 (2.40594 iter/s, 4.98765s/12 iters), loss = 5.16798 +I0408 07:43:25.807550 31616 solver.cpp:237] Train net output #0: loss = 5.16798 (* 1 = 5.16798 loss) +I0408 07:43:25.807561 31616 sgd_solver.cpp:105] Iteration 600, lr = 0.0384433 +I0408 07:43:28.197990 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:43:30.344760 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 07:43:33.319943 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 07:43:35.627280 31616 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 07:43:35.627307 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:43:39.779489 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:43:40.065376 31616 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0408 07:43:40.065423 31616 solver.cpp:397] Test net output #1: loss = 5.17748 (* 1 = 5.17748 loss) +I0408 07:43:40.154954 31616 solver.cpp:218] Iteration 612 (0.836416 iter/s, 14.3469s/12 iters), loss = 5.19623 +I0408 07:43:40.155004 31616 solver.cpp:237] Train net output #0: loss = 5.19623 (* 1 = 5.19623 loss) +I0408 07:43:40.155015 31616 sgd_solver.cpp:105] Iteration 612, lr = 0.0377153 +I0408 07:43:44.445817 31616 solver.cpp:218] Iteration 624 (2.79677 iter/s, 4.29066s/12 iters), loss = 5.22341 +I0408 07:43:44.445871 31616 solver.cpp:237] Train net output #0: loss = 5.22341 (* 1 = 5.22341 loss) +I0408 07:43:44.445883 31616 sgd_solver.cpp:105] Iteration 624, lr = 0.037001 +I0408 07:43:49.603087 31616 solver.cpp:218] Iteration 636 (2.32692 iter/s, 5.15704s/12 iters), loss = 5.10505 +I0408 07:43:49.603235 31616 solver.cpp:237] Train net output #0: loss = 5.10505 (* 1 = 5.10505 loss) +I0408 07:43:49.603247 31616 sgd_solver.cpp:105] Iteration 636, lr = 0.0363003 +I0408 07:43:54.541349 31616 solver.cpp:218] Iteration 648 (2.43016 iter/s, 4.93795s/12 iters), loss = 5.16046 +I0408 07:43:54.541389 31616 solver.cpp:237] Train net output #0: loss = 5.16046 (* 1 = 5.16046 loss) +I0408 07:43:54.541400 31616 sgd_solver.cpp:105] Iteration 648, lr = 0.0356128 +I0408 07:43:59.502673 31616 solver.cpp:218] Iteration 660 (2.41881 iter/s, 4.96111s/12 iters), loss = 5.15856 +I0408 07:43:59.502717 31616 solver.cpp:237] Train net output #0: loss = 5.15856 (* 1 = 5.15856 loss) +I0408 07:43:59.502728 31616 sgd_solver.cpp:105] Iteration 660, lr = 0.0349384 +I0408 07:44:04.528733 31616 solver.cpp:218] Iteration 672 (2.38766 iter/s, 5.02585s/12 iters), loss = 5.16786 +I0408 07:44:04.528769 31616 solver.cpp:237] Train net output #0: loss = 5.16786 (* 1 = 5.16786 loss) +I0408 07:44:04.528776 31616 sgd_solver.cpp:105] Iteration 672, lr = 0.0342767 +I0408 07:44:09.541687 31616 solver.cpp:218] Iteration 684 (2.3939 iter/s, 5.01274s/12 iters), loss = 5.03777 +I0408 07:44:09.541733 31616 solver.cpp:237] Train net output #0: loss = 5.03777 (* 1 = 5.03777 loss) +I0408 07:44:09.541743 31616 sgd_solver.cpp:105] Iteration 684, lr = 0.0336276 +I0408 07:44:10.329670 31616 blocking_queue.cpp:49] Waiting for data +I0408 07:44:14.572522 31616 solver.cpp:218] Iteration 696 (2.38539 iter/s, 5.03062s/12 iters), loss = 5.12815 +I0408 07:44:14.572567 31616 solver.cpp:237] Train net output #0: loss = 5.12815 (* 1 = 5.12815 loss) +I0408 07:44:14.572579 31616 sgd_solver.cpp:105] Iteration 696, lr = 0.0329908 +I0408 07:44:19.194945 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:44:19.569211 31616 solver.cpp:218] Iteration 708 (2.4017 iter/s, 4.99647s/12 iters), loss = 5.15877 +I0408 07:44:19.569254 31616 solver.cpp:237] Train net output #0: loss = 5.15877 (* 1 = 5.15877 loss) +I0408 07:44:19.569267 31616 sgd_solver.cpp:105] Iteration 708, lr = 0.032366 +I0408 07:44:21.589589 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 07:44:24.637953 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 07:44:26.962600 31616 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 07:44:26.962626 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:44:31.111527 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:44:31.432562 31616 solver.cpp:397] Test net output #0: accuracy = 0.00857843 +I0408 07:44:31.432610 31616 solver.cpp:397] Test net output #1: loss = 5.16469 (* 1 = 5.16469 loss) +I0408 07:44:33.295684 31616 solver.cpp:218] Iteration 720 (0.874255 iter/s, 13.726s/12 iters), loss = 5.15832 +I0408 07:44:33.295733 31616 solver.cpp:237] Train net output #0: loss = 5.15832 (* 1 = 5.15832 loss) +I0408 07:44:33.295745 31616 sgd_solver.cpp:105] Iteration 720, lr = 0.031753 +I0408 07:44:38.330070 31616 solver.cpp:218] Iteration 732 (2.38371 iter/s, 5.03416s/12 iters), loss = 5.11874 +I0408 07:44:38.330116 31616 solver.cpp:237] Train net output #0: loss = 5.11874 (* 1 = 5.11874 loss) +I0408 07:44:38.330127 31616 sgd_solver.cpp:105] Iteration 732, lr = 0.0311517 +I0408 07:44:43.358129 31616 solver.cpp:218] Iteration 744 (2.38671 iter/s, 5.02784s/12 iters), loss = 5.09504 +I0408 07:44:43.358166 31616 solver.cpp:237] Train net output #0: loss = 5.09504 (* 1 = 5.09504 loss) +I0408 07:44:43.358175 31616 sgd_solver.cpp:105] Iteration 744, lr = 0.0305617 +I0408 07:44:48.379001 31616 solver.cpp:218] Iteration 756 (2.39012 iter/s, 5.02066s/12 iters), loss = 5.12618 +I0408 07:44:48.379045 31616 solver.cpp:237] Train net output #0: loss = 5.12618 (* 1 = 5.12618 loss) +I0408 07:44:48.379057 31616 sgd_solver.cpp:105] Iteration 756, lr = 0.0299829 +I0408 07:44:53.404371 31616 solver.cpp:218] Iteration 768 (2.38799 iter/s, 5.02515s/12 iters), loss = 5.13358 +I0408 07:44:53.404464 31616 solver.cpp:237] Train net output #0: loss = 5.13358 (* 1 = 5.13358 loss) +I0408 07:44:53.404474 31616 sgd_solver.cpp:105] Iteration 768, lr = 0.0294151 +I0408 07:44:58.528870 31616 solver.cpp:218] Iteration 780 (2.34181 iter/s, 5.12423s/12 iters), loss = 5.17351 +I0408 07:44:58.528908 31616 solver.cpp:237] Train net output #0: loss = 5.17351 (* 1 = 5.17351 loss) +I0408 07:44:58.528914 31616 sgd_solver.cpp:105] Iteration 780, lr = 0.0288581 +I0408 07:45:03.536484 31616 solver.cpp:218] Iteration 792 (2.39645 iter/s, 5.0074s/12 iters), loss = 5.07982 +I0408 07:45:03.536522 31616 solver.cpp:237] Train net output #0: loss = 5.07982 (* 1 = 5.07982 loss) +I0408 07:45:03.536530 31616 sgd_solver.cpp:105] Iteration 792, lr = 0.0283115 +I0408 07:45:08.582595 31616 solver.cpp:218] Iteration 804 (2.37817 iter/s, 5.0459s/12 iters), loss = 5.10905 +I0408 07:45:08.582630 31616 solver.cpp:237] Train net output #0: loss = 5.10905 (* 1 = 5.10905 loss) +I0408 07:45:08.582638 31616 sgd_solver.cpp:105] Iteration 804, lr = 0.0277754 +I0408 07:45:10.366106 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:45:13.193408 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 07:45:16.189122 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 07:45:18.512367 31616 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 07:45:18.512393 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:45:22.639384 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:45:22.994988 31616 solver.cpp:397] Test net output #0: accuracy = 0.0122549 +I0408 07:45:22.995026 31616 solver.cpp:397] Test net output #1: loss = 5.14045 (* 1 = 5.14045 loss) +I0408 07:45:23.086086 31616 solver.cpp:218] Iteration 816 (0.827416 iter/s, 14.503s/12 iters), loss = 5.1391 +I0408 07:45:23.086143 31616 solver.cpp:237] Train net output #0: loss = 5.1391 (* 1 = 5.1391 loss) +I0408 07:45:23.086153 31616 sgd_solver.cpp:105] Iteration 816, lr = 0.0272494 +I0408 07:45:27.627353 31616 solver.cpp:218] Iteration 828 (2.64256 iter/s, 4.54105s/12 iters), loss = 5.18486 +I0408 07:45:27.627456 31616 solver.cpp:237] Train net output #0: loss = 5.18486 (* 1 = 5.18486 loss) +I0408 07:45:27.627470 31616 sgd_solver.cpp:105] Iteration 828, lr = 0.0267333 +I0408 07:45:32.655043 31616 solver.cpp:218] Iteration 840 (2.38691 iter/s, 5.02742s/12 iters), loss = 5.05967 +I0408 07:45:32.655088 31616 solver.cpp:237] Train net output #0: loss = 5.05967 (* 1 = 5.05967 loss) +I0408 07:45:32.655100 31616 sgd_solver.cpp:105] Iteration 840, lr = 0.026227 +I0408 07:45:37.696506 31616 solver.cpp:218] Iteration 852 (2.38036 iter/s, 5.04125s/12 iters), loss = 5.07769 +I0408 07:45:37.696553 31616 solver.cpp:237] Train net output #0: loss = 5.07769 (* 1 = 5.07769 loss) +I0408 07:45:37.696565 31616 sgd_solver.cpp:105] Iteration 852, lr = 0.0257303 +I0408 07:45:42.712090 31616 solver.cpp:218] Iteration 864 (2.39265 iter/s, 5.01536s/12 iters), loss = 5.10282 +I0408 07:45:42.712152 31616 solver.cpp:237] Train net output #0: loss = 5.10282 (* 1 = 5.10282 loss) +I0408 07:45:42.712165 31616 sgd_solver.cpp:105] Iteration 864, lr = 0.0252431 +I0408 07:45:47.793377 31616 solver.cpp:218] Iteration 876 (2.36172 iter/s, 5.08105s/12 iters), loss = 5.11746 +I0408 07:45:47.793426 31616 solver.cpp:237] Train net output #0: loss = 5.11746 (* 1 = 5.11746 loss) +I0408 07:45:47.793438 31616 sgd_solver.cpp:105] Iteration 876, lr = 0.024765 +I0408 07:45:53.259599 31616 solver.cpp:218] Iteration 888 (2.19539 iter/s, 5.46599s/12 iters), loss = 5.049 +I0408 07:45:53.259644 31616 solver.cpp:237] Train net output #0: loss = 5.049 (* 1 = 5.049 loss) +I0408 07:45:53.259656 31616 sgd_solver.cpp:105] Iteration 888, lr = 0.024296 +I0408 07:45:58.729102 31616 solver.cpp:218] Iteration 900 (2.19408 iter/s, 5.46927s/12 iters), loss = 5.14732 +I0408 07:45:58.729255 31616 solver.cpp:237] Train net output #0: loss = 5.14732 (* 1 = 5.14732 loss) +I0408 07:45:58.729269 31616 sgd_solver.cpp:105] Iteration 900, lr = 0.0238359 +I0408 07:46:02.860586 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:46:03.980706 31616 solver.cpp:218] Iteration 912 (2.28516 iter/s, 5.25128s/12 iters), loss = 4.93611 +I0408 07:46:03.980753 31616 solver.cpp:237] Train net output #0: loss = 4.93611 (* 1 = 4.93611 loss) +I0408 07:46:03.980764 31616 sgd_solver.cpp:105] Iteration 912, lr = 0.0233845 +I0408 07:46:06.030757 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 07:46:09.067178 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 07:46:11.364539 31616 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 07:46:11.364558 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:46:15.508631 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:46:15.915931 31616 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0408 07:46:15.915978 31616 solver.cpp:397] Test net output #1: loss = 5.12334 (* 1 = 5.12334 loss) +I0408 07:46:17.888979 31616 solver.cpp:218] Iteration 924 (0.862827 iter/s, 13.9078s/12 iters), loss = 5.12286 +I0408 07:46:17.889024 31616 solver.cpp:237] Train net output #0: loss = 5.12286 (* 1 = 5.12286 loss) +I0408 07:46:17.889034 31616 sgd_solver.cpp:105] Iteration 924, lr = 0.0229416 +I0408 07:46:22.877449 31616 solver.cpp:218] Iteration 936 (2.40565 iter/s, 4.98826s/12 iters), loss = 5.16666 +I0408 07:46:22.877493 31616 solver.cpp:237] Train net output #0: loss = 5.16666 (* 1 = 5.16666 loss) +I0408 07:46:22.877504 31616 sgd_solver.cpp:105] Iteration 936, lr = 0.0225072 +I0408 07:46:27.861094 31616 solver.cpp:218] Iteration 948 (2.40798 iter/s, 4.98343s/12 iters), loss = 5.05375 +I0408 07:46:27.861140 31616 solver.cpp:237] Train net output #0: loss = 5.05375 (* 1 = 5.05375 loss) +I0408 07:46:27.861150 31616 sgd_solver.cpp:105] Iteration 948, lr = 0.0220809 +I0408 07:46:32.888554 31616 solver.cpp:218] Iteration 960 (2.38699 iter/s, 5.02725s/12 iters), loss = 5.03113 +I0408 07:46:32.888629 31616 solver.cpp:237] Train net output #0: loss = 5.03113 (* 1 = 5.03113 loss) +I0408 07:46:32.888641 31616 sgd_solver.cpp:105] Iteration 960, lr = 0.0216627 +I0408 07:46:37.884999 31616 solver.cpp:218] Iteration 972 (2.40183 iter/s, 4.9962s/12 iters), loss = 5.15696 +I0408 07:46:37.885042 31616 solver.cpp:237] Train net output #0: loss = 5.15696 (* 1 = 5.15696 loss) +I0408 07:46:37.885054 31616 sgd_solver.cpp:105] Iteration 972, lr = 0.0212525 +I0408 07:46:42.896351 31616 solver.cpp:218] Iteration 984 (2.39467 iter/s, 5.01114s/12 iters), loss = 5.06481 +I0408 07:46:42.896409 31616 solver.cpp:237] Train net output #0: loss = 5.06481 (* 1 = 5.06481 loss) +I0408 07:46:42.896425 31616 sgd_solver.cpp:105] Iteration 984, lr = 0.02085 +I0408 07:46:47.871466 31616 solver.cpp:218] Iteration 996 (2.41211 iter/s, 4.97489s/12 iters), loss = 5.00329 +I0408 07:46:47.871511 31616 solver.cpp:237] Train net output #0: loss = 5.00329 (* 1 = 5.00329 loss) +I0408 07:46:47.871524 31616 sgd_solver.cpp:105] Iteration 996, lr = 0.0204552 +I0408 07:46:52.920747 31616 solver.cpp:218] Iteration 1008 (2.37668 iter/s, 5.04906s/12 iters), loss = 5.16084 +I0408 07:46:52.920792 31616 solver.cpp:237] Train net output #0: loss = 5.16084 (* 1 = 5.16084 loss) +I0408 07:46:52.920804 31616 sgd_solver.cpp:105] Iteration 1008, lr = 0.0200678 +I0408 07:46:53.955449 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:46:57.669365 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 07:47:00.682564 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 07:47:02.988415 31616 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 07:47:02.988494 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:47:07.036924 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:47:07.470001 31616 solver.cpp:397] Test net output #0: accuracy = 0.0128676 +I0408 07:47:07.470048 31616 solver.cpp:397] Test net output #1: loss = 5.09197 (* 1 = 5.09197 loss) +I0408 07:47:07.557474 31616 solver.cpp:218] Iteration 1020 (0.819885 iter/s, 14.6362s/12 iters), loss = 5.0054 +I0408 07:47:07.557520 31616 solver.cpp:237] Train net output #0: loss = 5.0054 (* 1 = 5.0054 loss) +I0408 07:47:07.557533 31616 sgd_solver.cpp:105] Iteration 1020, lr = 0.0196877 +I0408 07:47:11.896536 31616 solver.cpp:218] Iteration 1032 (2.7657 iter/s, 4.33886s/12 iters), loss = 5.06774 +I0408 07:47:11.896589 31616 solver.cpp:237] Train net output #0: loss = 5.06774 (* 1 = 5.06774 loss) +I0408 07:47:11.896600 31616 sgd_solver.cpp:105] Iteration 1032, lr = 0.0193149 +I0408 07:47:16.890416 31616 solver.cpp:218] Iteration 1044 (2.40305 iter/s, 4.99365s/12 iters), loss = 5.08926 +I0408 07:47:16.890465 31616 solver.cpp:237] Train net output #0: loss = 5.08926 (* 1 = 5.08926 loss) +I0408 07:47:16.890475 31616 sgd_solver.cpp:105] Iteration 1044, lr = 0.0189491 +I0408 07:47:21.849994 31616 solver.cpp:218] Iteration 1056 (2.41967 iter/s, 4.95936s/12 iters), loss = 5.05789 +I0408 07:47:21.850037 31616 solver.cpp:237] Train net output #0: loss = 5.05789 (* 1 = 5.05789 loss) +I0408 07:47:21.850049 31616 sgd_solver.cpp:105] Iteration 1056, lr = 0.0185902 +I0408 07:47:26.884702 31616 solver.cpp:218] Iteration 1068 (2.38356 iter/s, 5.03448s/12 iters), loss = 5.0882 +I0408 07:47:26.884749 31616 solver.cpp:237] Train net output #0: loss = 5.0882 (* 1 = 5.0882 loss) +I0408 07:47:26.884760 31616 sgd_solver.cpp:105] Iteration 1068, lr = 0.0182382 +I0408 07:47:31.874933 31616 solver.cpp:218] Iteration 1080 (2.40481 iter/s, 4.99001s/12 iters), loss = 5.03647 +I0408 07:47:31.874980 31616 solver.cpp:237] Train net output #0: loss = 5.03647 (* 1 = 5.03647 loss) +I0408 07:47:31.874991 31616 sgd_solver.cpp:105] Iteration 1080, lr = 0.0178928 +I0408 07:47:36.921846 31616 solver.cpp:218] Iteration 1092 (2.3778 iter/s, 5.04669s/12 iters), loss = 5.05334 +I0408 07:47:36.921973 31616 solver.cpp:237] Train net output #0: loss = 5.05334 (* 1 = 5.05334 loss) +I0408 07:47:36.921986 31616 sgd_solver.cpp:105] Iteration 1092, lr = 0.0175539 +I0408 07:47:41.957986 31616 solver.cpp:218] Iteration 1104 (2.38291 iter/s, 5.03585s/12 iters), loss = 4.99918 +I0408 07:47:41.958034 31616 solver.cpp:237] Train net output #0: loss = 4.99918 (* 1 = 4.99918 loss) +I0408 07:47:41.958045 31616 sgd_solver.cpp:105] Iteration 1104, lr = 0.0172215 +I0408 07:47:45.076318 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:47:46.923022 31616 solver.cpp:218] Iteration 1116 (2.41701 iter/s, 4.96481s/12 iters), loss = 5.09505 +I0408 07:47:46.923065 31616 solver.cpp:237] Train net output #0: loss = 5.09505 (* 1 = 5.09505 loss) +I0408 07:47:46.923077 31616 sgd_solver.cpp:105] Iteration 1116, lr = 0.0168953 +I0408 07:47:48.969234 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 07:47:51.799646 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 07:47:54.124765 31616 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 07:47:54.124792 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:47:58.117023 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:47:58.595216 31616 solver.cpp:397] Test net output #0: accuracy = 0.0116422 +I0408 07:47:58.595264 31616 solver.cpp:397] Test net output #1: loss = 5.07408 (* 1 = 5.07408 loss) +I0408 07:48:00.585912 31616 solver.cpp:218] Iteration 1128 (0.878324 iter/s, 13.6624s/12 iters), loss = 5.09519 +I0408 07:48:00.585971 31616 solver.cpp:237] Train net output #0: loss = 5.09519 (* 1 = 5.09519 loss) +I0408 07:48:00.585983 31616 sgd_solver.cpp:105] Iteration 1128, lr = 0.0165754 +I0408 07:48:05.931356 31616 solver.cpp:218] Iteration 1140 (2.245 iter/s, 5.34521s/12 iters), loss = 5.06787 +I0408 07:48:05.931402 31616 solver.cpp:237] Train net output #0: loss = 5.06787 (* 1 = 5.06787 loss) +I0408 07:48:05.931413 31616 sgd_solver.cpp:105] Iteration 1140, lr = 0.0162615 +I0408 07:48:10.828953 31616 solver.cpp:218] Iteration 1152 (2.45029 iter/s, 4.89737s/12 iters), loss = 4.98532 +I0408 07:48:10.829103 31616 solver.cpp:237] Train net output #0: loss = 4.98532 (* 1 = 4.98532 loss) +I0408 07:48:10.829116 31616 sgd_solver.cpp:105] Iteration 1152, lr = 0.0159535 +I0408 07:48:15.763157 31616 solver.cpp:218] Iteration 1164 (2.43216 iter/s, 4.93388s/12 iters), loss = 5.03088 +I0408 07:48:15.763203 31616 solver.cpp:237] Train net output #0: loss = 5.03088 (* 1 = 5.03088 loss) +I0408 07:48:15.763214 31616 sgd_solver.cpp:105] Iteration 1164, lr = 0.0156514 +I0408 07:48:20.752701 31616 solver.cpp:218] Iteration 1176 (2.40514 iter/s, 4.98932s/12 iters), loss = 5.08253 +I0408 07:48:20.752737 31616 solver.cpp:237] Train net output #0: loss = 5.08253 (* 1 = 5.08253 loss) +I0408 07:48:20.752744 31616 sgd_solver.cpp:105] Iteration 1176, lr = 0.015355 +I0408 07:48:25.766324 31616 solver.cpp:218] Iteration 1188 (2.39358 iter/s, 5.01341s/12 iters), loss = 4.98988 +I0408 07:48:25.766361 31616 solver.cpp:237] Train net output #0: loss = 4.98988 (* 1 = 4.98988 loss) +I0408 07:48:25.766371 31616 sgd_solver.cpp:105] Iteration 1188, lr = 0.0150642 +I0408 07:48:31.202939 31616 solver.cpp:218] Iteration 1200 (2.20735 iter/s, 5.43638s/12 iters), loss = 5.12648 +I0408 07:48:31.202981 31616 solver.cpp:237] Train net output #0: loss = 5.12648 (* 1 = 5.12648 loss) +I0408 07:48:31.202993 31616 sgd_solver.cpp:105] Iteration 1200, lr = 0.0147789 +I0408 07:48:36.207854 31616 solver.cpp:218] Iteration 1212 (2.39775 iter/s, 5.0047s/12 iters), loss = 5.08486 +I0408 07:48:36.207899 31616 solver.cpp:237] Train net output #0: loss = 5.08486 (* 1 = 5.08486 loss) +I0408 07:48:36.207911 31616 sgd_solver.cpp:105] Iteration 1212, lr = 0.014499 +I0408 07:48:36.485121 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:48:40.788803 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 07:48:43.791978 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 07:48:46.093151 31616 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 07:48:46.093178 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:48:50.061739 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:48:50.575479 31616 solver.cpp:397] Test net output #0: accuracy = 0.0177696 +I0408 07:48:50.575526 31616 solver.cpp:397] Test net output #1: loss = 5.05504 (* 1 = 5.05504 loss) +I0408 07:48:50.666594 31616 solver.cpp:218] Iteration 1224 (0.829978 iter/s, 14.4582s/12 iters), loss = 5.06283 +I0408 07:48:50.666642 31616 solver.cpp:237] Train net output #0: loss = 5.06283 (* 1 = 5.06283 loss) +I0408 07:48:50.666653 31616 sgd_solver.cpp:105] Iteration 1224, lr = 0.0142244 +I0408 07:48:55.211163 31616 solver.cpp:218] Iteration 1236 (2.64064 iter/s, 4.54436s/12 iters), loss = 5.14757 +I0408 07:48:55.211201 31616 solver.cpp:237] Train net output #0: loss = 5.14757 (* 1 = 5.14757 loss) +I0408 07:48:55.211210 31616 sgd_solver.cpp:105] Iteration 1236, lr = 0.013955 +I0408 07:49:00.269984 31616 solver.cpp:218] Iteration 1248 (2.3722 iter/s, 5.05861s/12 iters), loss = 4.96403 +I0408 07:49:00.270026 31616 solver.cpp:237] Train net output #0: loss = 4.96403 (* 1 = 4.96403 loss) +I0408 07:49:00.270036 31616 sgd_solver.cpp:105] Iteration 1248, lr = 0.0136908 +I0408 07:49:05.294869 31616 solver.cpp:218] Iteration 1260 (2.38822 iter/s, 5.02466s/12 iters), loss = 4.9498 +I0408 07:49:05.294924 31616 solver.cpp:237] Train net output #0: loss = 4.9498 (* 1 = 4.9498 loss) +I0408 07:49:05.294936 31616 sgd_solver.cpp:105] Iteration 1260, lr = 0.0134315 +I0408 07:49:10.271879 31616 solver.cpp:218] Iteration 1272 (2.4112 iter/s, 4.97678s/12 iters), loss = 5.02342 +I0408 07:49:10.271924 31616 solver.cpp:237] Train net output #0: loss = 5.02342 (* 1 = 5.02342 loss) +I0408 07:49:10.271935 31616 sgd_solver.cpp:105] Iteration 1272, lr = 0.0131771 +I0408 07:49:15.245976 31616 solver.cpp:218] Iteration 1284 (2.41261 iter/s, 4.97387s/12 iters), loss = 5.01801 +I0408 07:49:15.246506 31616 solver.cpp:237] Train net output #0: loss = 5.01801 (* 1 = 5.01801 loss) +I0408 07:49:15.246520 31616 sgd_solver.cpp:105] Iteration 1284, lr = 0.0129276 +I0408 07:49:20.361241 31616 solver.cpp:218] Iteration 1296 (2.34624 iter/s, 5.11456s/12 iters), loss = 4.9425 +I0408 07:49:20.361287 31616 solver.cpp:237] Train net output #0: loss = 4.9425 (* 1 = 4.9425 loss) +I0408 07:49:20.361299 31616 sgd_solver.cpp:105] Iteration 1296, lr = 0.0126827 +I0408 07:49:25.487433 31616 solver.cpp:218] Iteration 1308 (2.34102 iter/s, 5.12597s/12 iters), loss = 4.96702 +I0408 07:49:25.487478 31616 solver.cpp:237] Train net output #0: loss = 4.96702 (* 1 = 4.96702 loss) +I0408 07:49:25.487488 31616 sgd_solver.cpp:105] Iteration 1308, lr = 0.0124426 +I0408 07:49:27.983836 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:49:30.483196 31616 solver.cpp:218] Iteration 1320 (2.40214 iter/s, 4.99554s/12 iters), loss = 4.97239 +I0408 07:49:30.483242 31616 solver.cpp:237] Train net output #0: loss = 4.97239 (* 1 = 4.97239 loss) +I0408 07:49:30.483253 31616 sgd_solver.cpp:105] Iteration 1320, lr = 0.0122069 +I0408 07:49:32.531602 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 07:49:35.596608 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 07:49:37.914716 31616 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 07:49:37.914742 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:49:41.779742 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:49:42.340714 31616 solver.cpp:397] Test net output #0: accuracy = 0.0189951 +I0408 07:49:42.340750 31616 solver.cpp:397] Test net output #1: loss = 5.01444 (* 1 = 5.01444 loss) +I0408 07:49:44.329427 31616 solver.cpp:218] Iteration 1332 (0.866694 iter/s, 13.8457s/12 iters), loss = 4.93946 +I0408 07:49:44.329474 31616 solver.cpp:237] Train net output #0: loss = 4.93946 (* 1 = 4.93946 loss) +I0408 07:49:44.329486 31616 sgd_solver.cpp:105] Iteration 1332, lr = 0.0119757 +I0408 07:49:49.318250 31616 solver.cpp:218] Iteration 1344 (2.40548 iter/s, 4.9886s/12 iters), loss = 4.84857 +I0408 07:49:49.318351 31616 solver.cpp:237] Train net output #0: loss = 4.84857 (* 1 = 4.84857 loss) +I0408 07:49:49.318362 31616 sgd_solver.cpp:105] Iteration 1344, lr = 0.0117489 +I0408 07:49:54.341426 31616 solver.cpp:218] Iteration 1356 (2.38906 iter/s, 5.0229s/12 iters), loss = 4.94899 +I0408 07:49:54.341476 31616 solver.cpp:237] Train net output #0: loss = 4.94899 (* 1 = 4.94899 loss) +I0408 07:49:54.341487 31616 sgd_solver.cpp:105] Iteration 1356, lr = 0.0115264 +I0408 07:49:59.335431 31616 solver.cpp:218] Iteration 1368 (2.40299 iter/s, 4.99378s/12 iters), loss = 4.94715 +I0408 07:49:59.335476 31616 solver.cpp:237] Train net output #0: loss = 4.94715 (* 1 = 4.94715 loss) +I0408 07:49:59.335489 31616 sgd_solver.cpp:105] Iteration 1368, lr = 0.0113082 +I0408 07:50:00.533535 31616 blocking_queue.cpp:49] Waiting for data +I0408 07:50:04.356199 31616 solver.cpp:218] Iteration 1380 (2.39018 iter/s, 5.02055s/12 iters), loss = 4.856 +I0408 07:50:04.356240 31616 solver.cpp:237] Train net output #0: loss = 4.856 (* 1 = 4.856 loss) +I0408 07:50:04.356251 31616 sgd_solver.cpp:105] Iteration 1380, lr = 0.011094 +I0408 07:50:09.721052 31616 solver.cpp:218] Iteration 1392 (2.23688 iter/s, 5.36462s/12 iters), loss = 4.84415 +I0408 07:50:09.721098 31616 solver.cpp:237] Train net output #0: loss = 4.84415 (* 1 = 4.84415 loss) +I0408 07:50:09.721109 31616 sgd_solver.cpp:105] Iteration 1392, lr = 0.0108839 +I0408 07:50:14.938874 31616 solver.cpp:218] Iteration 1404 (2.29991 iter/s, 5.2176s/12 iters), loss = 4.95866 +I0408 07:50:14.938920 31616 solver.cpp:237] Train net output #0: loss = 4.95866 (* 1 = 4.95866 loss) +I0408 07:50:14.938930 31616 sgd_solver.cpp:105] Iteration 1404, lr = 0.0106778 +I0408 07:50:19.567827 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:50:19.918016 31616 solver.cpp:218] Iteration 1416 (2.41016 iter/s, 4.97892s/12 iters), loss = 4.99573 +I0408 07:50:19.918061 31616 solver.cpp:237] Train net output #0: loss = 4.99573 (* 1 = 4.99573 loss) +I0408 07:50:19.918072 31616 sgd_solver.cpp:105] Iteration 1416, lr = 0.0104756 +I0408 07:50:24.500674 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 07:50:27.593374 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 07:50:29.916231 31616 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 07:50:29.916258 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:50:33.888236 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:50:34.496140 31616 solver.cpp:397] Test net output #0: accuracy = 0.0220588 +I0408 07:50:34.496186 31616 solver.cpp:397] Test net output #1: loss = 4.95566 (* 1 = 4.95566 loss) +I0408 07:50:34.587548 31616 solver.cpp:218] Iteration 1428 (0.818052 iter/s, 14.669s/12 iters), loss = 5.00591 +I0408 07:50:34.587620 31616 solver.cpp:237] Train net output #0: loss = 5.00591 (* 1 = 5.00591 loss) +I0408 07:50:34.587635 31616 sgd_solver.cpp:105] Iteration 1428, lr = 0.0102772 +I0408 07:50:38.797297 31616 solver.cpp:218] Iteration 1440 (2.85068 iter/s, 4.20952s/12 iters), loss = 4.90005 +I0408 07:50:38.797345 31616 solver.cpp:237] Train net output #0: loss = 4.90005 (* 1 = 4.90005 loss) +I0408 07:50:38.797356 31616 sgd_solver.cpp:105] Iteration 1440, lr = 0.0100825 +I0408 07:50:43.726888 31616 solver.cpp:218] Iteration 1452 (2.43439 iter/s, 4.92936s/12 iters), loss = 4.94611 +I0408 07:50:43.726949 31616 solver.cpp:237] Train net output #0: loss = 4.94611 (* 1 = 4.94611 loss) +I0408 07:50:43.726961 31616 sgd_solver.cpp:105] Iteration 1452, lr = 0.0098916 +I0408 07:50:48.666391 31616 solver.cpp:218] Iteration 1464 (2.42951 iter/s, 4.93927s/12 iters), loss = 4.97895 +I0408 07:50:48.666437 31616 solver.cpp:237] Train net output #0: loss = 4.97895 (* 1 = 4.97895 loss) +I0408 07:50:48.666448 31616 sgd_solver.cpp:105] Iteration 1464, lr = 0.00970427 +I0408 07:50:53.811532 31616 solver.cpp:218] Iteration 1476 (2.3324 iter/s, 5.14492s/12 iters), loss = 4.89645 +I0408 07:50:53.811619 31616 solver.cpp:237] Train net output #0: loss = 4.89645 (* 1 = 4.89645 loss) +I0408 07:50:53.811628 31616 sgd_solver.cpp:105] Iteration 1476, lr = 0.00952049 +I0408 07:50:58.810092 31616 solver.cpp:218] Iteration 1488 (2.40082 iter/s, 4.9983s/12 iters), loss = 4.90534 +I0408 07:50:58.810135 31616 solver.cpp:237] Train net output #0: loss = 4.90534 (* 1 = 4.90534 loss) +I0408 07:50:58.810145 31616 sgd_solver.cpp:105] Iteration 1488, lr = 0.00934019 +I0408 07:51:03.837568 31616 solver.cpp:218] Iteration 1500 (2.38699 iter/s, 5.02726s/12 iters), loss = 4.80827 +I0408 07:51:03.837613 31616 solver.cpp:237] Train net output #0: loss = 4.80827 (* 1 = 4.80827 loss) +I0408 07:51:03.837625 31616 sgd_solver.cpp:105] Iteration 1500, lr = 0.00916331 +I0408 07:51:08.836627 31616 solver.cpp:218] Iteration 1512 (2.40056 iter/s, 4.99884s/12 iters), loss = 4.92935 +I0408 07:51:08.836676 31616 solver.cpp:237] Train net output #0: loss = 4.92935 (* 1 = 4.92935 loss) +I0408 07:51:08.836688 31616 sgd_solver.cpp:105] Iteration 1512, lr = 0.00898977 +I0408 07:51:10.704996 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:51:13.927680 31616 solver.cpp:218] Iteration 1524 (2.35718 iter/s, 5.09083s/12 iters), loss = 4.93544 +I0408 07:51:13.927728 31616 solver.cpp:237] Train net output #0: loss = 4.93544 (* 1 = 4.93544 loss) +I0408 07:51:13.927739 31616 sgd_solver.cpp:105] Iteration 1524, lr = 0.00881952 +I0408 07:51:15.967728 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 07:51:18.935122 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 07:51:21.256014 31616 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 07:51:21.256039 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:51:25.089570 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:51:25.728775 31616 solver.cpp:397] Test net output #0: accuracy = 0.0269608 +I0408 07:51:25.728823 31616 solver.cpp:397] Test net output #1: loss = 4.92514 (* 1 = 4.92514 loss) +I0408 07:51:27.717633 31616 solver.cpp:218] Iteration 1536 (0.870231 iter/s, 13.7894s/12 iters), loss = 4.91204 +I0408 07:51:27.717684 31616 solver.cpp:237] Train net output #0: loss = 4.91204 (* 1 = 4.91204 loss) +I0408 07:51:27.717694 31616 sgd_solver.cpp:105] Iteration 1536, lr = 0.0086525 +I0408 07:51:33.150182 31616 solver.cpp:218] Iteration 1548 (2.209 iter/s, 5.43231s/12 iters), loss = 4.80586 +I0408 07:51:33.150226 31616 solver.cpp:237] Train net output #0: loss = 4.80586 (* 1 = 4.80586 loss) +I0408 07:51:33.150238 31616 sgd_solver.cpp:105] Iteration 1548, lr = 0.00848864 +I0408 07:51:38.249778 31616 solver.cpp:218] Iteration 1560 (2.35323 iter/s, 5.09937s/12 iters), loss = 4.73796 +I0408 07:51:38.249830 31616 solver.cpp:237] Train net output #0: loss = 4.73796 (* 1 = 4.73796 loss) +I0408 07:51:38.249841 31616 sgd_solver.cpp:105] Iteration 1560, lr = 0.00832788 +I0408 07:51:43.284282 31616 solver.cpp:218] Iteration 1572 (2.38366 iter/s, 5.03428s/12 iters), loss = 4.91681 +I0408 07:51:43.284327 31616 solver.cpp:237] Train net output #0: loss = 4.91681 (* 1 = 4.91681 loss) +I0408 07:51:43.284337 31616 sgd_solver.cpp:105] Iteration 1572, lr = 0.00817016 +I0408 07:51:48.263532 31616 solver.cpp:218] Iteration 1584 (2.41011 iter/s, 4.97903s/12 iters), loss = 4.87915 +I0408 07:51:48.263574 31616 solver.cpp:237] Train net output #0: loss = 4.87915 (* 1 = 4.87915 loss) +I0408 07:51:48.263584 31616 sgd_solver.cpp:105] Iteration 1584, lr = 0.00801544 +I0408 07:51:53.412134 31616 solver.cpp:218] Iteration 1596 (2.33083 iter/s, 5.14838s/12 iters), loss = 4.76891 +I0408 07:51:53.412180 31616 solver.cpp:237] Train net output #0: loss = 4.76891 (* 1 = 4.76891 loss) +I0408 07:51:53.412191 31616 sgd_solver.cpp:105] Iteration 1596, lr = 0.00786364 +I0408 07:51:58.360231 31616 solver.cpp:218] Iteration 1608 (2.42528 iter/s, 4.94788s/12 iters), loss = 4.8375 +I0408 07:51:58.360330 31616 solver.cpp:237] Train net output #0: loss = 4.8375 (* 1 = 4.8375 loss) +I0408 07:51:58.360342 31616 sgd_solver.cpp:105] Iteration 1608, lr = 0.00771472 +I0408 07:52:02.279415 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:52:03.370769 31616 solver.cpp:218] Iteration 1620 (2.39508 iter/s, 5.01027s/12 iters), loss = 4.78704 +I0408 07:52:03.370817 31616 solver.cpp:237] Train net output #0: loss = 4.78704 (* 1 = 4.78704 loss) +I0408 07:52:03.370829 31616 sgd_solver.cpp:105] Iteration 1620, lr = 0.00756862 +I0408 07:52:07.830539 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 07:52:10.831476 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 07:52:13.155333 31616 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 07:52:13.155361 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:52:16.964057 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:52:17.638135 31616 solver.cpp:397] Test net output #0: accuracy = 0.0300245 +I0408 07:52:17.638183 31616 solver.cpp:397] Test net output #1: loss = 4.88031 (* 1 = 4.88031 loss) +I0408 07:52:17.729100 31616 solver.cpp:218] Iteration 1632 (0.835783 iter/s, 14.3578s/12 iters), loss = 4.92894 +I0408 07:52:17.729151 31616 solver.cpp:237] Train net output #0: loss = 4.92894 (* 1 = 4.92894 loss) +I0408 07:52:17.729162 31616 sgd_solver.cpp:105] Iteration 1632, lr = 0.00742528 +I0408 07:52:21.968442 31616 solver.cpp:218] Iteration 1644 (2.83076 iter/s, 4.23914s/12 iters), loss = 4.9666 +I0408 07:52:21.968487 31616 solver.cpp:237] Train net output #0: loss = 4.9666 (* 1 = 4.9666 loss) +I0408 07:52:21.968497 31616 sgd_solver.cpp:105] Iteration 1644, lr = 0.00728466 +I0408 07:52:26.955826 31616 solver.cpp:218] Iteration 1656 (2.40618 iter/s, 4.98716s/12 iters), loss = 4.72623 +I0408 07:52:26.955881 31616 solver.cpp:237] Train net output #0: loss = 4.72623 (* 1 = 4.72623 loss) +I0408 07:52:26.955893 31616 sgd_solver.cpp:105] Iteration 1656, lr = 0.0071467 +I0408 07:52:31.892500 31616 solver.cpp:218] Iteration 1668 (2.4309 iter/s, 4.93644s/12 iters), loss = 4.64714 +I0408 07:52:31.892618 31616 solver.cpp:237] Train net output #0: loss = 4.64714 (* 1 = 4.64714 loss) +I0408 07:52:31.892632 31616 sgd_solver.cpp:105] Iteration 1668, lr = 0.00701136 +I0408 07:52:36.934027 31616 solver.cpp:218] Iteration 1680 (2.38037 iter/s, 5.04124s/12 iters), loss = 4.77155 +I0408 07:52:36.934062 31616 solver.cpp:237] Train net output #0: loss = 4.77155 (* 1 = 4.77155 loss) +I0408 07:52:36.934070 31616 sgd_solver.cpp:105] Iteration 1680, lr = 0.00687858 +I0408 07:52:41.934906 31616 solver.cpp:218] Iteration 1692 (2.39968 iter/s, 5.00067s/12 iters), loss = 4.70856 +I0408 07:52:41.934952 31616 solver.cpp:237] Train net output #0: loss = 4.70856 (* 1 = 4.70856 loss) +I0408 07:52:41.934963 31616 sgd_solver.cpp:105] Iteration 1692, lr = 0.00674831 +I0408 07:52:47.058099 31616 solver.cpp:218] Iteration 1704 (2.34239 iter/s, 5.12297s/12 iters), loss = 4.51524 +I0408 07:52:47.058145 31616 solver.cpp:237] Train net output #0: loss = 4.51524 (* 1 = 4.51524 loss) +I0408 07:52:47.058156 31616 sgd_solver.cpp:105] Iteration 1704, lr = 0.00662051 +I0408 07:52:52.042564 31616 solver.cpp:218] Iteration 1716 (2.40759 iter/s, 4.98424s/12 iters), loss = 4.80264 +I0408 07:52:52.042613 31616 solver.cpp:237] Train net output #0: loss = 4.80264 (* 1 = 4.80264 loss) +I0408 07:52:52.042623 31616 sgd_solver.cpp:105] Iteration 1716, lr = 0.00649513 +I0408 07:52:53.088043 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:52:56.994876 31616 solver.cpp:218] Iteration 1728 (2.42322 iter/s, 4.95209s/12 iters), loss = 4.87298 +I0408 07:52:56.994925 31616 solver.cpp:237] Train net output #0: loss = 4.87298 (* 1 = 4.87298 loss) +I0408 07:52:56.994936 31616 sgd_solver.cpp:105] Iteration 1728, lr = 0.00637212 +I0408 07:52:59.025677 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 07:53:01.995255 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 07:53:04.352141 31616 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 07:53:04.352166 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:53:08.119674 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:53:08.827344 31616 solver.cpp:397] Test net output #0: accuracy = 0.0379902 +I0408 07:53:08.827394 31616 solver.cpp:397] Test net output #1: loss = 4.81556 (* 1 = 4.81556 loss) +I0408 07:53:10.799504 31616 solver.cpp:218] Iteration 1740 (0.869305 iter/s, 13.8041s/12 iters), loss = 4.68471 +I0408 07:53:10.799544 31616 solver.cpp:237] Train net output #0: loss = 4.68471 (* 1 = 4.68471 loss) +I0408 07:53:10.799552 31616 sgd_solver.cpp:105] Iteration 1740, lr = 0.00625145 +I0408 07:53:15.827571 31616 solver.cpp:218] Iteration 1752 (2.38671 iter/s, 5.02784s/12 iters), loss = 4.68621 +I0408 07:53:15.827622 31616 solver.cpp:237] Train net output #0: loss = 4.68621 (* 1 = 4.68621 loss) +I0408 07:53:15.827634 31616 sgd_solver.cpp:105] Iteration 1752, lr = 0.00613306 +I0408 07:53:20.847589 31616 solver.cpp:218] Iteration 1764 (2.39054 iter/s, 5.01978s/12 iters), loss = 4.69132 +I0408 07:53:20.847637 31616 solver.cpp:237] Train net output #0: loss = 4.69132 (* 1 = 4.69132 loss) +I0408 07:53:20.847646 31616 sgd_solver.cpp:105] Iteration 1764, lr = 0.00601691 +I0408 07:53:25.860276 31616 solver.cpp:218] Iteration 1776 (2.39403 iter/s, 5.01246s/12 iters), loss = 4.80645 +I0408 07:53:25.860323 31616 solver.cpp:237] Train net output #0: loss = 4.80645 (* 1 = 4.80645 loss) +I0408 07:53:25.860334 31616 sgd_solver.cpp:105] Iteration 1776, lr = 0.00590296 +I0408 07:53:30.828291 31616 solver.cpp:218] Iteration 1788 (2.41556 iter/s, 4.96779s/12 iters), loss = 4.81064 +I0408 07:53:30.828341 31616 solver.cpp:237] Train net output #0: loss = 4.81064 (* 1 = 4.81064 loss) +I0408 07:53:30.828352 31616 sgd_solver.cpp:105] Iteration 1788, lr = 0.00579117 +I0408 07:53:35.753311 31616 solver.cpp:218] Iteration 1800 (2.43665 iter/s, 4.9248s/12 iters), loss = 4.66656 +I0408 07:53:35.753455 31616 solver.cpp:237] Train net output #0: loss = 4.66656 (* 1 = 4.66656 loss) +I0408 07:53:35.753468 31616 sgd_solver.cpp:105] Iteration 1800, lr = 0.0056815 +I0408 07:53:40.791122 31616 solver.cpp:218] Iteration 1812 (2.38213 iter/s, 5.0375s/12 iters), loss = 4.7261 +I0408 07:53:40.791168 31616 solver.cpp:237] Train net output #0: loss = 4.7261 (* 1 = 4.7261 loss) +I0408 07:53:40.791180 31616 sgd_solver.cpp:105] Iteration 1812, lr = 0.0055739 +I0408 07:53:43.967396 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:53:45.869632 31616 solver.cpp:218] Iteration 1824 (2.363 iter/s, 5.07829s/12 iters), loss = 4.68351 +I0408 07:53:45.869681 31616 solver.cpp:237] Train net output #0: loss = 4.68351 (* 1 = 4.68351 loss) +I0408 07:53:45.869693 31616 sgd_solver.cpp:105] Iteration 1824, lr = 0.00546834 +I0408 07:53:50.442407 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 07:53:53.467550 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 07:53:55.789494 31616 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 07:53:55.789520 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:53:59.385141 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:54:00.137202 31616 solver.cpp:397] Test net output #0: accuracy = 0.0465686 +I0408 07:54:00.137249 31616 solver.cpp:397] Test net output #1: loss = 4.71595 (* 1 = 4.71595 loss) +I0408 07:54:00.228615 31616 solver.cpp:218] Iteration 1836 (0.835744 iter/s, 14.3585s/12 iters), loss = 4.69996 +I0408 07:54:00.228660 31616 solver.cpp:237] Train net output #0: loss = 4.69996 (* 1 = 4.69996 loss) +I0408 07:54:00.228670 31616 sgd_solver.cpp:105] Iteration 1836, lr = 0.00536478 +I0408 07:54:04.782361 31616 solver.cpp:218] Iteration 1848 (2.63531 iter/s, 4.55354s/12 iters), loss = 4.64176 +I0408 07:54:04.782403 31616 solver.cpp:237] Train net output #0: loss = 4.64176 (* 1 = 4.64176 loss) +I0408 07:54:04.782413 31616 sgd_solver.cpp:105] Iteration 1848, lr = 0.00526318 +I0408 07:54:09.843951 31616 solver.cpp:218] Iteration 1860 (2.3709 iter/s, 5.06138s/12 iters), loss = 4.57581 +I0408 07:54:09.844060 31616 solver.cpp:237] Train net output #0: loss = 4.57581 (* 1 = 4.57581 loss) +I0408 07:54:09.844072 31616 sgd_solver.cpp:105] Iteration 1860, lr = 0.00516351 +I0408 07:54:14.845785 31616 solver.cpp:218] Iteration 1872 (2.39925 iter/s, 5.00155s/12 iters), loss = 4.63306 +I0408 07:54:14.845829 31616 solver.cpp:237] Train net output #0: loss = 4.63306 (* 1 = 4.63306 loss) +I0408 07:54:14.845840 31616 sgd_solver.cpp:105] Iteration 1872, lr = 0.00506572 +I0408 07:54:19.840087 31616 solver.cpp:218] Iteration 1884 (2.40284 iter/s, 4.99408s/12 iters), loss = 4.53756 +I0408 07:54:19.840142 31616 solver.cpp:237] Train net output #0: loss = 4.53756 (* 1 = 4.53756 loss) +I0408 07:54:19.840157 31616 sgd_solver.cpp:105] Iteration 1884, lr = 0.00496978 +I0408 07:54:24.813102 31616 solver.cpp:218] Iteration 1896 (2.41313 iter/s, 4.97279s/12 iters), loss = 4.74505 +I0408 07:54:24.813148 31616 solver.cpp:237] Train net output #0: loss = 4.74505 (* 1 = 4.74505 loss) +I0408 07:54:24.813159 31616 sgd_solver.cpp:105] Iteration 1896, lr = 0.00487567 +I0408 07:54:29.838616 31616 solver.cpp:218] Iteration 1908 (2.38792 iter/s, 5.02529s/12 iters), loss = 4.73452 +I0408 07:54:29.838662 31616 solver.cpp:237] Train net output #0: loss = 4.73452 (* 1 = 4.73452 loss) +I0408 07:54:29.838673 31616 sgd_solver.cpp:105] Iteration 1908, lr = 0.00478333 +I0408 07:54:34.869614 31616 solver.cpp:218] Iteration 1920 (2.38532 iter/s, 5.03078s/12 iters), loss = 4.7208 +I0408 07:54:34.869661 31616 solver.cpp:237] Train net output #0: loss = 4.7208 (* 1 = 4.7208 loss) +I0408 07:54:34.869673 31616 sgd_solver.cpp:105] Iteration 1920, lr = 0.00469274 +I0408 07:54:35.175947 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:54:39.913192 31616 solver.cpp:218] Iteration 1932 (2.37937 iter/s, 5.04336s/12 iters), loss = 4.66148 +I0408 07:54:39.913345 31616 solver.cpp:237] Train net output #0: loss = 4.66148 (* 1 = 4.66148 loss) +I0408 07:54:39.913359 31616 sgd_solver.cpp:105] Iteration 1932, lr = 0.00460387 +I0408 07:54:41.978394 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 07:54:44.989630 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 07:54:47.308470 31616 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 07:54:47.308495 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:54:50.993592 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:54:51.782778 31616 solver.cpp:397] Test net output #0: accuracy = 0.0514706 +I0408 07:54:51.782820 31616 solver.cpp:397] Test net output #1: loss = 4.65284 (* 1 = 4.65284 loss) +I0408 07:54:53.751893 31616 solver.cpp:218] Iteration 1944 (0.867171 iter/s, 13.8381s/12 iters), loss = 4.70182 +I0408 07:54:53.751930 31616 solver.cpp:237] Train net output #0: loss = 4.70182 (* 1 = 4.70182 loss) +I0408 07:54:53.751938 31616 sgd_solver.cpp:105] Iteration 1944, lr = 0.00451668 +I0408 07:54:58.798759 31616 solver.cpp:218] Iteration 1956 (2.37781 iter/s, 5.04666s/12 iters), loss = 4.57858 +I0408 07:54:58.798796 31616 solver.cpp:237] Train net output #0: loss = 4.57858 (* 1 = 4.57858 loss) +I0408 07:54:58.798805 31616 sgd_solver.cpp:105] Iteration 1956, lr = 0.00443115 +I0408 07:55:03.844610 31616 solver.cpp:218] Iteration 1968 (2.37829 iter/s, 5.04564s/12 iters), loss = 4.61035 +I0408 07:55:03.844650 31616 solver.cpp:237] Train net output #0: loss = 4.61035 (* 1 = 4.61035 loss) +I0408 07:55:03.844660 31616 sgd_solver.cpp:105] Iteration 1968, lr = 0.00434723 +I0408 07:55:08.803964 31616 solver.cpp:218] Iteration 1980 (2.41977 iter/s, 4.95914s/12 iters), loss = 4.53098 +I0408 07:55:08.804010 31616 solver.cpp:237] Train net output #0: loss = 4.53098 (* 1 = 4.53098 loss) +I0408 07:55:08.804023 31616 sgd_solver.cpp:105] Iteration 1980, lr = 0.0042649 +I0408 07:55:13.911834 31616 solver.cpp:218] Iteration 1992 (2.34942 iter/s, 5.10765s/12 iters), loss = 4.60955 +I0408 07:55:13.911960 31616 solver.cpp:237] Train net output #0: loss = 4.60955 (* 1 = 4.60955 loss) +I0408 07:55:13.911972 31616 sgd_solver.cpp:105] Iteration 1992, lr = 0.00418413 +I0408 07:55:18.950891 31616 solver.cpp:218] Iteration 2004 (2.38154 iter/s, 5.03876s/12 iters), loss = 4.40763 +I0408 07:55:18.950937 31616 solver.cpp:237] Train net output #0: loss = 4.40763 (* 1 = 4.40763 loss) +I0408 07:55:18.950947 31616 sgd_solver.cpp:105] Iteration 2004, lr = 0.00410489 +I0408 07:55:23.978474 31616 solver.cpp:218] Iteration 2016 (2.38694 iter/s, 5.02736s/12 iters), loss = 4.5066 +I0408 07:55:23.978521 31616 solver.cpp:237] Train net output #0: loss = 4.5066 (* 1 = 4.5066 loss) +I0408 07:55:23.978533 31616 sgd_solver.cpp:105] Iteration 2016, lr = 0.00402715 +I0408 07:55:26.538842 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:55:28.993343 31616 solver.cpp:218] Iteration 2028 (2.39299 iter/s, 5.01465s/12 iters), loss = 4.37514 +I0408 07:55:28.993386 31616 solver.cpp:237] Train net output #0: loss = 4.37514 (* 1 = 4.37514 loss) +I0408 07:55:28.993398 31616 sgd_solver.cpp:105] Iteration 2028, lr = 0.00395089 +I0408 07:55:33.558377 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 07:55:36.597468 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 07:55:38.932289 31616 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 07:55:38.932315 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:55:42.526522 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:55:43.362041 31616 solver.cpp:397] Test net output #0: accuracy = 0.0551471 +I0408 07:55:43.362089 31616 solver.cpp:397] Test net output #1: loss = 4.58979 (* 1 = 4.58979 loss) +I0408 07:55:43.453364 31616 solver.cpp:218] Iteration 2040 (0.829904 iter/s, 14.4595s/12 iters), loss = 4.58173 +I0408 07:55:43.453413 31616 solver.cpp:237] Train net output #0: loss = 4.58173 (* 1 = 4.58173 loss) +I0408 07:55:43.453424 31616 sgd_solver.cpp:105] Iteration 2040, lr = 0.00387606 +I0408 07:55:47.680399 31616 solver.cpp:218] Iteration 2052 (2.839 iter/s, 4.22684s/12 iters), loss = 4.47134 +I0408 07:55:47.680567 31616 solver.cpp:237] Train net output #0: loss = 4.47134 (* 1 = 4.47134 loss) +I0408 07:55:47.680583 31616 sgd_solver.cpp:105] Iteration 2052, lr = 0.00380266 +I0408 07:55:49.263283 31616 blocking_queue.cpp:49] Waiting for data +I0408 07:55:52.696161 31616 solver.cpp:218] Iteration 2064 (2.39262 iter/s, 5.01543s/12 iters), loss = 4.5001 +I0408 07:55:52.696204 31616 solver.cpp:237] Train net output #0: loss = 4.5001 (* 1 = 4.5001 loss) +I0408 07:55:52.696216 31616 sgd_solver.cpp:105] Iteration 2064, lr = 0.00373064 +I0408 07:55:57.780520 31616 solver.cpp:218] Iteration 2076 (2.36028 iter/s, 5.08414s/12 iters), loss = 4.4973 +I0408 07:55:57.780565 31616 solver.cpp:237] Train net output #0: loss = 4.4973 (* 1 = 4.4973 loss) +I0408 07:55:57.780576 31616 sgd_solver.cpp:105] Iteration 2076, lr = 0.00365999 +I0408 07:56:02.693392 31616 solver.cpp:218] Iteration 2088 (2.44267 iter/s, 4.91266s/12 iters), loss = 4.27186 +I0408 07:56:02.693439 31616 solver.cpp:237] Train net output #0: loss = 4.27186 (* 1 = 4.27186 loss) +I0408 07:56:02.693449 31616 sgd_solver.cpp:105] Iteration 2088, lr = 0.00359068 +I0408 07:56:07.684542 31616 solver.cpp:218] Iteration 2100 (2.40436 iter/s, 4.99093s/12 iters), loss = 4.43748 +I0408 07:56:07.684587 31616 solver.cpp:237] Train net output #0: loss = 4.43748 (* 1 = 4.43748 loss) +I0408 07:56:07.684598 31616 sgd_solver.cpp:105] Iteration 2100, lr = 0.00352268 +I0408 07:56:12.685272 31616 solver.cpp:218] Iteration 2112 (2.39975 iter/s, 5.00051s/12 iters), loss = 4.38264 +I0408 07:56:12.685318 31616 solver.cpp:237] Train net output #0: loss = 4.38264 (* 1 = 4.38264 loss) +I0408 07:56:12.685329 31616 sgd_solver.cpp:105] Iteration 2112, lr = 0.00345597 +I0408 07:56:17.387578 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:56:17.709911 31616 solver.cpp:218] Iteration 2124 (2.38833 iter/s, 5.02442s/12 iters), loss = 4.36394 +I0408 07:56:17.710041 31616 solver.cpp:237] Train net output #0: loss = 4.36394 (* 1 = 4.36394 loss) +I0408 07:56:17.710052 31616 sgd_solver.cpp:105] Iteration 2124, lr = 0.00339052 +I0408 07:56:22.711308 31616 solver.cpp:218] Iteration 2136 (2.39947 iter/s, 5.0011s/12 iters), loss = 4.44366 +I0408 07:56:22.711351 31616 solver.cpp:237] Train net output #0: loss = 4.44366 (* 1 = 4.44366 loss) +I0408 07:56:22.711362 31616 sgd_solver.cpp:105] Iteration 2136, lr = 0.00332631 +I0408 07:56:24.781121 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 07:56:27.804852 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 07:56:30.127763 31616 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 07:56:30.127789 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:56:33.737108 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:56:34.603698 31616 solver.cpp:397] Test net output #0: accuracy = 0.0661765 +I0408 07:56:34.603741 31616 solver.cpp:397] Test net output #1: loss = 4.53215 (* 1 = 4.53215 loss) +I0408 07:56:36.437136 31616 solver.cpp:218] Iteration 2148 (0.874296 iter/s, 13.7253s/12 iters), loss = 4.43989 +I0408 07:56:36.437181 31616 solver.cpp:237] Train net output #0: loss = 4.43989 (* 1 = 4.43989 loss) +I0408 07:56:36.437192 31616 sgd_solver.cpp:105] Iteration 2148, lr = 0.00326331 +I0408 07:56:41.408836 31616 solver.cpp:218] Iteration 2160 (2.41377 iter/s, 4.97148s/12 iters), loss = 4.38554 +I0408 07:56:41.408881 31616 solver.cpp:237] Train net output #0: loss = 4.38554 (* 1 = 4.38554 loss) +I0408 07:56:41.408892 31616 sgd_solver.cpp:105] Iteration 2160, lr = 0.00320151 +I0408 07:56:46.424782 31616 solver.cpp:218] Iteration 2172 (2.39247 iter/s, 5.01573s/12 iters), loss = 4.47429 +I0408 07:56:46.424837 31616 solver.cpp:237] Train net output #0: loss = 4.47429 (* 1 = 4.47429 loss) +I0408 07:56:46.424854 31616 sgd_solver.cpp:105] Iteration 2172, lr = 0.00314088 +I0408 07:56:51.458348 31616 solver.cpp:218] Iteration 2184 (2.3841 iter/s, 5.03334s/12 iters), loss = 4.38139 +I0408 07:56:51.458504 31616 solver.cpp:237] Train net output #0: loss = 4.38139 (* 1 = 4.38139 loss) +I0408 07:56:51.458519 31616 sgd_solver.cpp:105] Iteration 2184, lr = 0.0030814 +I0408 07:56:56.488905 31616 solver.cpp:218] Iteration 2196 (2.38558 iter/s, 5.03023s/12 iters), loss = 4.39074 +I0408 07:56:56.488953 31616 solver.cpp:237] Train net output #0: loss = 4.39074 (* 1 = 4.39074 loss) +I0408 07:56:56.488966 31616 sgd_solver.cpp:105] Iteration 2196, lr = 0.00302304 +I0408 07:57:01.465364 31616 solver.cpp:218] Iteration 2208 (2.41146 iter/s, 4.97624s/12 iters), loss = 4.26672 +I0408 07:57:01.465411 31616 solver.cpp:237] Train net output #0: loss = 4.26672 (* 1 = 4.26672 loss) +I0408 07:57:01.465423 31616 sgd_solver.cpp:105] Iteration 2208, lr = 0.00296579 +I0408 07:57:06.555429 31616 solver.cpp:218] Iteration 2220 (2.35764 iter/s, 5.08984s/12 iters), loss = 4.37398 +I0408 07:57:06.555472 31616 solver.cpp:237] Train net output #0: loss = 4.37398 (* 1 = 4.37398 loss) +I0408 07:57:06.555483 31616 sgd_solver.cpp:105] Iteration 2220, lr = 0.00290963 +I0408 07:57:08.387689 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:57:11.575706 31616 solver.cpp:218] Iteration 2232 (2.39041 iter/s, 5.02006s/12 iters), loss = 4.46262 +I0408 07:57:11.575757 31616 solver.cpp:237] Train net output #0: loss = 4.46262 (* 1 = 4.46262 loss) +I0408 07:57:11.575771 31616 sgd_solver.cpp:105] Iteration 2232, lr = 0.00285452 +I0408 07:57:16.124629 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 07:57:19.197443 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 07:57:21.520879 31616 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 07:57:21.520963 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:57:25.078173 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:57:25.990725 31616 solver.cpp:397] Test net output #0: accuracy = 0.0618873 +I0408 07:57:25.990773 31616 solver.cpp:397] Test net output #1: loss = 4.49577 (* 1 = 4.49577 loss) +I0408 07:57:26.080353 31616 solver.cpp:218] Iteration 2244 (0.827351 iter/s, 14.5041s/12 iters), loss = 4.42477 +I0408 07:57:26.080401 31616 solver.cpp:237] Train net output #0: loss = 4.42477 (* 1 = 4.42477 loss) +I0408 07:57:26.080412 31616 sgd_solver.cpp:105] Iteration 2244, lr = 0.00280047 +I0408 07:57:30.462342 31616 solver.cpp:218] Iteration 2256 (2.73861 iter/s, 4.38179s/12 iters), loss = 4.10495 +I0408 07:57:30.462391 31616 solver.cpp:237] Train net output #0: loss = 4.10495 (* 1 = 4.10495 loss) +I0408 07:57:30.462404 31616 sgd_solver.cpp:105] Iteration 2256, lr = 0.00274743 +I0408 07:57:35.498373 31616 solver.cpp:218] Iteration 2268 (2.38293 iter/s, 5.03581s/12 iters), loss = 4.0761 +I0408 07:57:35.498417 31616 solver.cpp:237] Train net output #0: loss = 4.0761 (* 1 = 4.0761 loss) +I0408 07:57:35.498428 31616 sgd_solver.cpp:105] Iteration 2268, lr = 0.0026954 +I0408 07:57:40.537715 31616 solver.cpp:218] Iteration 2280 (2.38137 iter/s, 5.03912s/12 iters), loss = 4.29065 +I0408 07:57:40.537762 31616 solver.cpp:237] Train net output #0: loss = 4.29065 (* 1 = 4.29065 loss) +I0408 07:57:40.537775 31616 sgd_solver.cpp:105] Iteration 2280, lr = 0.00264435 +I0408 07:57:45.616601 31616 solver.cpp:218] Iteration 2292 (2.36282 iter/s, 5.07867s/12 iters), loss = 4.34931 +I0408 07:57:45.616636 31616 solver.cpp:237] Train net output #0: loss = 4.34931 (* 1 = 4.34931 loss) +I0408 07:57:45.616645 31616 sgd_solver.cpp:105] Iteration 2292, lr = 0.00259427 +I0408 07:57:50.693698 31616 solver.cpp:218] Iteration 2304 (2.36365 iter/s, 5.07689s/12 iters), loss = 4.2572 +I0408 07:57:50.693744 31616 solver.cpp:237] Train net output #0: loss = 4.2572 (* 1 = 4.2572 loss) +I0408 07:57:50.693756 31616 sgd_solver.cpp:105] Iteration 2304, lr = 0.00254514 +I0408 07:57:55.730337 31616 solver.cpp:218] Iteration 2316 (2.38264 iter/s, 5.03642s/12 iters), loss = 4.26902 +I0408 07:57:55.730479 31616 solver.cpp:237] Train net output #0: loss = 4.26902 (* 1 = 4.26902 loss) +I0408 07:57:55.730489 31616 sgd_solver.cpp:105] Iteration 2316, lr = 0.00249694 +I0408 07:57:59.667167 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:58:00.722102 31616 solver.cpp:218] Iteration 2328 (2.40411 iter/s, 4.99146s/12 iters), loss = 4.27466 +I0408 07:58:00.722146 31616 solver.cpp:237] Train net output #0: loss = 4.27466 (* 1 = 4.27466 loss) +I0408 07:58:00.722157 31616 sgd_solver.cpp:105] Iteration 2328, lr = 0.00244966 +I0408 07:58:05.771020 31616 solver.cpp:218] Iteration 2340 (2.37685 iter/s, 5.0487s/12 iters), loss = 4.43374 +I0408 07:58:05.771067 31616 solver.cpp:237] Train net output #0: loss = 4.43374 (* 1 = 4.43374 loss) +I0408 07:58:05.771080 31616 sgd_solver.cpp:105] Iteration 2340, lr = 0.00240326 +I0408 07:58:07.763186 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 07:58:10.840998 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 07:58:13.167079 31616 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 07:58:13.167101 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:58:16.833422 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:58:17.777416 31616 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0408 07:58:17.777464 31616 solver.cpp:397] Test net output #1: loss = 4.42475 (* 1 = 4.42475 loss) +I0408 07:58:19.597235 31616 solver.cpp:218] Iteration 2352 (0.867948 iter/s, 13.8257s/12 iters), loss = 4.28756 +I0408 07:58:19.597285 31616 solver.cpp:237] Train net output #0: loss = 4.28756 (* 1 = 4.28756 loss) +I0408 07:58:19.597296 31616 sgd_solver.cpp:105] Iteration 2352, lr = 0.00235775 +I0408 07:58:24.513005 31616 solver.cpp:218] Iteration 2364 (2.44123 iter/s, 4.91555s/12 iters), loss = 4.04836 +I0408 07:58:24.513059 31616 solver.cpp:237] Train net output #0: loss = 4.04836 (* 1 = 4.04836 loss) +I0408 07:58:24.513072 31616 sgd_solver.cpp:105] Iteration 2364, lr = 0.0023131 +I0408 07:58:29.459911 31616 solver.cpp:218] Iteration 2376 (2.42587 iter/s, 4.94668s/12 iters), loss = 4.20321 +I0408 07:58:29.460000 31616 solver.cpp:237] Train net output #0: loss = 4.20321 (* 1 = 4.20321 loss) +I0408 07:58:29.460011 31616 sgd_solver.cpp:105] Iteration 2376, lr = 0.00226929 +I0408 07:58:34.418308 31616 solver.cpp:218] Iteration 2388 (2.42026 iter/s, 4.95814s/12 iters), loss = 4.12323 +I0408 07:58:34.418354 31616 solver.cpp:237] Train net output #0: loss = 4.12323 (* 1 = 4.12323 loss) +I0408 07:58:34.418365 31616 sgd_solver.cpp:105] Iteration 2388, lr = 0.00222632 +I0408 07:58:39.366501 31616 solver.cpp:218] Iteration 2400 (2.42523 iter/s, 4.94798s/12 iters), loss = 4.09436 +I0408 07:58:39.366550 31616 solver.cpp:237] Train net output #0: loss = 4.09436 (* 1 = 4.09436 loss) +I0408 07:58:39.366561 31616 sgd_solver.cpp:105] Iteration 2400, lr = 0.00218416 +I0408 07:58:44.291842 31616 solver.cpp:218] Iteration 2412 (2.43649 iter/s, 4.92512s/12 iters), loss = 3.94153 +I0408 07:58:44.291889 31616 solver.cpp:237] Train net output #0: loss = 3.94153 (* 1 = 3.94153 loss) +I0408 07:58:44.291900 31616 sgd_solver.cpp:105] Iteration 2412, lr = 0.00214279 +I0408 07:58:49.234539 31616 solver.cpp:218] Iteration 2424 (2.42793 iter/s, 4.94248s/12 iters), loss = 4.21517 +I0408 07:58:49.234582 31616 solver.cpp:237] Train net output #0: loss = 4.21517 (* 1 = 4.21517 loss) +I0408 07:58:49.234592 31616 sgd_solver.cpp:105] Iteration 2424, lr = 0.00210221 +I0408 07:58:50.294668 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:58:54.193106 31616 solver.cpp:218] Iteration 2436 (2.42016 iter/s, 4.95836s/12 iters), loss = 4.18478 +I0408 07:58:54.193153 31616 solver.cpp:237] Train net output #0: loss = 4.18478 (* 1 = 4.18478 loss) +I0408 07:58:54.193163 31616 sgd_solver.cpp:105] Iteration 2436, lr = 0.0020624 +I0408 07:58:58.696079 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 07:59:01.819816 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 07:59:04.151643 31616 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 07:59:04.151670 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:59:07.641461 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:59:08.621606 31616 solver.cpp:397] Test net output #0: accuracy = 0.0870098 +I0408 07:59:08.621654 31616 solver.cpp:397] Test net output #1: loss = 4.34987 (* 1 = 4.34987 loss) +I0408 07:59:08.712793 31616 solver.cpp:218] Iteration 2448 (0.826494 iter/s, 14.5192s/12 iters), loss = 4.09 +I0408 07:59:08.712841 31616 solver.cpp:237] Train net output #0: loss = 4.09 (* 1 = 4.09 loss) +I0408 07:59:08.712852 31616 sgd_solver.cpp:105] Iteration 2448, lr = 0.00202334 +I0408 07:59:12.955442 31616 solver.cpp:218] Iteration 2460 (2.82855 iter/s, 4.24245s/12 iters), loss = 4.13402 +I0408 07:59:12.955497 31616 solver.cpp:237] Train net output #0: loss = 4.13402 (* 1 = 4.13402 loss) +I0408 07:59:12.955509 31616 sgd_solver.cpp:105] Iteration 2460, lr = 0.00198502 +I0408 07:59:17.925141 31616 solver.cpp:218] Iteration 2472 (2.41474 iter/s, 4.96947s/12 iters), loss = 4.26278 +I0408 07:59:17.925187 31616 solver.cpp:237] Train net output #0: loss = 4.26278 (* 1 = 4.26278 loss) +I0408 07:59:17.925199 31616 sgd_solver.cpp:105] Iteration 2472, lr = 0.00194743 +I0408 07:59:22.998451 31616 solver.cpp:218] Iteration 2484 (2.36542 iter/s, 5.07309s/12 iters), loss = 4.234 +I0408 07:59:22.998495 31616 solver.cpp:237] Train net output #0: loss = 4.234 (* 1 = 4.234 loss) +I0408 07:59:22.998505 31616 sgd_solver.cpp:105] Iteration 2484, lr = 0.00191055 +I0408 07:59:28.027292 31616 solver.cpp:218] Iteration 2496 (2.38634 iter/s, 5.02863s/12 iters), loss = 4.39567 +I0408 07:59:28.027335 31616 solver.cpp:237] Train net output #0: loss = 4.39567 (* 1 = 4.39567 loss) +I0408 07:59:28.027346 31616 sgd_solver.cpp:105] Iteration 2496, lr = 0.00187437 +I0408 07:59:33.083034 31616 solver.cpp:218] Iteration 2508 (2.37364 iter/s, 5.05552s/12 iters), loss = 4.15206 +I0408 07:59:33.083139 31616 solver.cpp:237] Train net output #0: loss = 4.15206 (* 1 = 4.15206 loss) +I0408 07:59:33.083151 31616 sgd_solver.cpp:105] Iteration 2508, lr = 0.00183887 +I0408 07:59:38.113029 31616 solver.cpp:218] Iteration 2520 (2.38582 iter/s, 5.02972s/12 iters), loss = 4.15217 +I0408 07:59:38.113073 31616 solver.cpp:237] Train net output #0: loss = 4.15217 (* 1 = 4.15217 loss) +I0408 07:59:38.113085 31616 sgd_solver.cpp:105] Iteration 2520, lr = 0.00180405 +I0408 07:59:41.319569 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:59:43.126520 31616 solver.cpp:218] Iteration 2532 (2.39364 iter/s, 5.01328s/12 iters), loss = 4.34828 +I0408 07:59:43.126564 31616 solver.cpp:237] Train net output #0: loss = 4.34828 (* 1 = 4.34828 loss) +I0408 07:59:43.126575 31616 sgd_solver.cpp:105] Iteration 2532, lr = 0.00176988 +I0408 07:59:48.120995 31616 solver.cpp:218] Iteration 2544 (2.40276 iter/s, 4.99426s/12 iters), loss = 3.97785 +I0408 07:59:48.121039 31616 solver.cpp:237] Train net output #0: loss = 3.97785 (* 1 = 3.97785 loss) +I0408 07:59:48.121052 31616 sgd_solver.cpp:105] Iteration 2544, lr = 0.00173636 +I0408 07:59:50.140858 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 07:59:53.163604 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 07:59:55.481950 31616 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 07:59:55.481989 31616 net.cpp:676] Ignoring source layer train-data +I0408 07:59:58.927572 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:59:59.956086 31616 solver.cpp:397] Test net output #0: accuracy = 0.0863971 +I0408 07:59:59.956130 31616 solver.cpp:397] Test net output #1: loss = 4.2964 (* 1 = 4.2964 loss) +I0408 08:00:01.859114 31616 solver.cpp:218] Iteration 2556 (0.873513 iter/s, 13.7376s/12 iters), loss = 4.12776 +I0408 08:00:01.859156 31616 solver.cpp:237] Train net output #0: loss = 4.12776 (* 1 = 4.12776 loss) +I0408 08:00:01.859167 31616 sgd_solver.cpp:105] Iteration 2556, lr = 0.00170348 +I0408 08:00:06.882908 31616 solver.cpp:218] Iteration 2568 (2.38874 iter/s, 5.02358s/12 iters), loss = 4.17538 +I0408 08:00:06.883049 31616 solver.cpp:237] Train net output #0: loss = 4.17538 (* 1 = 4.17538 loss) +I0408 08:00:06.883064 31616 sgd_solver.cpp:105] Iteration 2568, lr = 0.00167122 +I0408 08:00:11.875176 31616 solver.cpp:218] Iteration 2580 (2.40386 iter/s, 4.99196s/12 iters), loss = 4.17282 +I0408 08:00:11.875222 31616 solver.cpp:237] Train net output #0: loss = 4.17282 (* 1 = 4.17282 loss) +I0408 08:00:11.875236 31616 sgd_solver.cpp:105] Iteration 2580, lr = 0.00163957 +I0408 08:00:16.920344 31616 solver.cpp:218] Iteration 2592 (2.37862 iter/s, 5.04495s/12 iters), loss = 4.24512 +I0408 08:00:16.920392 31616 solver.cpp:237] Train net output #0: loss = 4.24512 (* 1 = 4.24512 loss) +I0408 08:00:16.920403 31616 sgd_solver.cpp:105] Iteration 2592, lr = 0.00160852 +I0408 08:00:21.979598 31616 solver.cpp:218] Iteration 2604 (2.372 iter/s, 5.05902s/12 iters), loss = 4.1916 +I0408 08:00:21.979645 31616 solver.cpp:237] Train net output #0: loss = 4.1916 (* 1 = 4.1916 loss) +I0408 08:00:21.979657 31616 sgd_solver.cpp:105] Iteration 2604, lr = 0.00157806 +I0408 08:00:26.986119 31616 solver.cpp:218] Iteration 2616 (2.39698 iter/s, 5.0063s/12 iters), loss = 4.20111 +I0408 08:00:26.986163 31616 solver.cpp:237] Train net output #0: loss = 4.20111 (* 1 = 4.20111 loss) +I0408 08:00:26.986174 31616 sgd_solver.cpp:105] Iteration 2616, lr = 0.00154817 +I0408 08:00:32.038040 31616 solver.cpp:218] Iteration 2628 (2.37543 iter/s, 5.05171s/12 iters), loss = 4.09596 +I0408 08:00:32.038086 31616 solver.cpp:237] Train net output #0: loss = 4.09596 (* 1 = 4.09596 loss) +I0408 08:00:32.038098 31616 sgd_solver.cpp:105] Iteration 2628, lr = 0.00151885 +I0408 08:00:32.487084 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:00:37.094305 31616 solver.cpp:218] Iteration 2640 (2.3734 iter/s, 5.05605s/12 iters), loss = 3.97887 +I0408 08:00:37.094403 31616 solver.cpp:237] Train net output #0: loss = 3.97887 (* 1 = 3.97887 loss) +I0408 08:00:37.094414 31616 sgd_solver.cpp:105] Iteration 2640, lr = 0.00149009 +I0408 08:00:41.699570 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 08:00:44.724618 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 08:00:47.047075 31616 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 08:00:47.047102 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:00:50.458787 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:00:51.520221 31616 solver.cpp:397] Test net output #0: accuracy = 0.0900735 +I0408 08:00:51.520263 31616 solver.cpp:397] Test net output #1: loss = 4.2503 (* 1 = 4.2503 loss) +I0408 08:00:51.611395 31616 solver.cpp:218] Iteration 2652 (0.826644 iter/s, 14.5165s/12 iters), loss = 4.16303 +I0408 08:00:51.611443 31616 solver.cpp:237] Train net output #0: loss = 4.16303 (* 1 = 4.16303 loss) +I0408 08:00:51.611452 31616 sgd_solver.cpp:105] Iteration 2652, lr = 0.00146187 +I0408 08:00:55.896250 31616 solver.cpp:218] Iteration 2664 (2.80069 iter/s, 4.28466s/12 iters), loss = 3.85902 +I0408 08:00:55.896293 31616 solver.cpp:237] Train net output #0: loss = 3.85902 (* 1 = 3.85902 loss) +I0408 08:00:55.896303 31616 sgd_solver.cpp:105] Iteration 2664, lr = 0.00143418 +I0408 08:01:00.829555 31616 solver.cpp:218] Iteration 2676 (2.43255 iter/s, 4.93309s/12 iters), loss = 3.79704 +I0408 08:01:00.829589 31616 solver.cpp:237] Train net output #0: loss = 3.79704 (* 1 = 3.79704 loss) +I0408 08:01:00.829598 31616 sgd_solver.cpp:105] Iteration 2676, lr = 0.00140702 +I0408 08:01:05.928750 31616 solver.cpp:218] Iteration 2688 (2.35341 iter/s, 5.09899s/12 iters), loss = 4.15059 +I0408 08:01:05.928788 31616 solver.cpp:237] Train net output #0: loss = 4.15059 (* 1 = 4.15059 loss) +I0408 08:01:05.928797 31616 sgd_solver.cpp:105] Iteration 2688, lr = 0.00138038 +I0408 08:01:10.928269 31616 solver.cpp:218] Iteration 2700 (2.40033 iter/s, 4.99931s/12 iters), loss = 4.08304 +I0408 08:01:10.928397 31616 solver.cpp:237] Train net output #0: loss = 4.08304 (* 1 = 4.08304 loss) +I0408 08:01:10.928407 31616 sgd_solver.cpp:105] Iteration 2700, lr = 0.00135423 +I0408 08:01:15.957285 31616 solver.cpp:218] Iteration 2712 (2.3863 iter/s, 5.02871s/12 iters), loss = 3.83676 +I0408 08:01:15.957335 31616 solver.cpp:237] Train net output #0: loss = 3.83676 (* 1 = 3.83676 loss) +I0408 08:01:15.957347 31616 sgd_solver.cpp:105] Iteration 2712, lr = 0.00132859 +I0408 08:01:20.916154 31616 solver.cpp:218] Iteration 2724 (2.42001 iter/s, 4.95865s/12 iters), loss = 4.2246 +I0408 08:01:20.916200 31616 solver.cpp:237] Train net output #0: loss = 4.2246 (* 1 = 4.2246 loss) +I0408 08:01:20.916211 31616 sgd_solver.cpp:105] Iteration 2724, lr = 0.00130343 +I0408 08:01:23.529944 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:01:25.997117 31616 solver.cpp:218] Iteration 2736 (2.36186 iter/s, 5.08074s/12 iters), loss = 3.81658 +I0408 08:01:25.997160 31616 solver.cpp:237] Train net output #0: loss = 3.81658 (* 1 = 3.81658 loss) +I0408 08:01:25.997170 31616 sgd_solver.cpp:105] Iteration 2736, lr = 0.00127874 +I0408 08:01:30.892971 31616 solver.cpp:218] Iteration 2748 (2.45116 iter/s, 4.89564s/12 iters), loss = 4.04079 +I0408 08:01:30.893019 31616 solver.cpp:237] Train net output #0: loss = 4.04079 (* 1 = 4.04079 loss) +I0408 08:01:30.893031 31616 sgd_solver.cpp:105] Iteration 2748, lr = 0.00125453 +I0408 08:01:32.926486 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 08:01:35.949060 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 08:01:38.273721 31616 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 08:01:38.273746 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:01:41.405122 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:01:41.641459 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:01:42.752270 31616 solver.cpp:397] Test net output #0: accuracy = 0.0931373 +I0408 08:01:42.752317 31616 solver.cpp:397] Test net output #1: loss = 4.23731 (* 1 = 4.23731 loss) +I0408 08:01:44.756315 31616 solver.cpp:218] Iteration 2760 (0.865623 iter/s, 13.8628s/12 iters), loss = 4.01234 +I0408 08:01:44.756361 31616 solver.cpp:237] Train net output #0: loss = 4.01234 (* 1 = 4.01234 loss) +I0408 08:01:44.756373 31616 sgd_solver.cpp:105] Iteration 2760, lr = 0.00123077 +I0408 08:01:49.922722 31616 solver.cpp:218] Iteration 2772 (2.3228 iter/s, 5.16619s/12 iters), loss = 4.06585 +I0408 08:01:49.922767 31616 solver.cpp:237] Train net output #0: loss = 4.06585 (* 1 = 4.06585 loss) +I0408 08:01:49.922780 31616 sgd_solver.cpp:105] Iteration 2772, lr = 0.00120746 +I0408 08:01:54.892756 31616 solver.cpp:218] Iteration 2784 (2.41457 iter/s, 4.96982s/12 iters), loss = 4.03872 +I0408 08:01:54.892794 31616 solver.cpp:237] Train net output #0: loss = 4.03872 (* 1 = 4.03872 loss) +I0408 08:01:54.892804 31616 sgd_solver.cpp:105] Iteration 2784, lr = 0.00118459 +I0408 08:01:59.943940 31616 solver.cpp:218] Iteration 2796 (2.37578 iter/s, 5.05097s/12 iters), loss = 3.84238 +I0408 08:01:59.943984 31616 solver.cpp:237] Train net output #0: loss = 3.84238 (* 1 = 3.84238 loss) +I0408 08:01:59.943994 31616 sgd_solver.cpp:105] Iteration 2796, lr = 0.00116216 +I0408 08:02:04.954099 31616 solver.cpp:218] Iteration 2808 (2.39523 iter/s, 5.00995s/12 iters), loss = 3.96735 +I0408 08:02:04.954133 31616 solver.cpp:237] Train net output #0: loss = 3.96735 (* 1 = 3.96735 loss) +I0408 08:02:04.954140 31616 sgd_solver.cpp:105] Iteration 2808, lr = 0.00114015 +I0408 08:02:10.094741 31616 solver.cpp:218] Iteration 2820 (2.33444 iter/s, 5.14042s/12 iters), loss = 3.92424 +I0408 08:02:10.094784 31616 solver.cpp:237] Train net output #0: loss = 3.92424 (* 1 = 3.92424 loss) +I0408 08:02:10.094791 31616 sgd_solver.cpp:105] Iteration 2820, lr = 0.00111856 +I0408 08:02:14.794780 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:02:15.081473 31616 solver.cpp:218] Iteration 2832 (2.40649 iter/s, 4.98652s/12 iters), loss = 3.95135 +I0408 08:02:15.081521 31616 solver.cpp:237] Train net output #0: loss = 3.95135 (* 1 = 3.95135 loss) +I0408 08:02:15.081533 31616 sgd_solver.cpp:105] Iteration 2832, lr = 0.00109737 +I0408 08:02:20.086261 31616 solver.cpp:218] Iteration 2844 (2.39781 iter/s, 5.00457s/12 iters), loss = 3.93281 +I0408 08:02:20.086298 31616 solver.cpp:237] Train net output #0: loss = 3.93281 (* 1 = 3.93281 loss) +I0408 08:02:20.086306 31616 sgd_solver.cpp:105] Iteration 2844, lr = 0.00107659 +I0408 08:02:24.645660 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 08:02:27.666152 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 08:02:29.992784 31616 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 08:02:29.992810 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:02:33.324308 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:02:34.472738 31616 solver.cpp:397] Test net output #0: accuracy = 0.0980392 +I0408 08:02:34.472784 31616 solver.cpp:397] Test net output #1: loss = 4.18163 (* 1 = 4.18163 loss) +I0408 08:02:34.565032 31616 solver.cpp:218] Iteration 2856 (0.828829 iter/s, 14.4783s/12 iters), loss = 3.85297 +I0408 08:02:34.565076 31616 solver.cpp:237] Train net output #0: loss = 3.85297 (* 1 = 3.85297 loss) +I0408 08:02:34.565088 31616 sgd_solver.cpp:105] Iteration 2856, lr = 0.0010562 +I0408 08:02:39.120304 31616 solver.cpp:218] Iteration 2868 (2.63443 iter/s, 4.55507s/12 iters), loss = 4.00851 +I0408 08:02:39.120352 31616 solver.cpp:237] Train net output #0: loss = 4.00851 (* 1 = 4.00851 loss) +I0408 08:02:39.120362 31616 sgd_solver.cpp:105] Iteration 2868, lr = 0.0010362 +I0408 08:02:44.161023 31616 solver.cpp:218] Iteration 2880 (2.38072 iter/s, 5.0405s/12 iters), loss = 3.71859 +I0408 08:02:44.161084 31616 solver.cpp:237] Train net output #0: loss = 3.71859 (* 1 = 3.71859 loss) +I0408 08:02:44.161099 31616 sgd_solver.cpp:105] Iteration 2880, lr = 0.00101658 +I0408 08:02:49.581073 31616 solver.cpp:218] Iteration 2892 (2.2141 iter/s, 5.41981s/12 iters), loss = 4.13988 +I0408 08:02:49.581176 31616 solver.cpp:237] Train net output #0: loss = 4.13988 (* 1 = 4.13988 loss) +I0408 08:02:49.581187 31616 sgd_solver.cpp:105] Iteration 2892, lr = 0.000997325 +I0408 08:02:54.809819 31616 solver.cpp:218] Iteration 2904 (2.29513 iter/s, 5.22847s/12 iters), loss = 4.005 +I0408 08:02:54.809859 31616 solver.cpp:237] Train net output #0: loss = 4.005 (* 1 = 4.005 loss) +I0408 08:02:54.809866 31616 sgd_solver.cpp:105] Iteration 2904, lr = 0.000978438 +I0408 08:02:59.813423 31616 solver.cpp:218] Iteration 2916 (2.39837 iter/s, 5.0034s/12 iters), loss = 3.9892 +I0408 08:02:59.813460 31616 solver.cpp:237] Train net output #0: loss = 3.9892 (* 1 = 3.9892 loss) +I0408 08:02:59.813468 31616 sgd_solver.cpp:105] Iteration 2916, lr = 0.000959908 +I0408 08:03:04.786926 31616 solver.cpp:218] Iteration 2928 (2.41289 iter/s, 4.97329s/12 iters), loss = 3.85898 +I0408 08:03:04.786962 31616 solver.cpp:237] Train net output #0: loss = 3.85898 (* 1 = 3.85898 loss) +I0408 08:03:04.786970 31616 sgd_solver.cpp:105] Iteration 2928, lr = 0.000941729 +I0408 08:03:06.601087 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:03:09.695272 31616 solver.cpp:218] Iteration 2940 (2.44492 iter/s, 4.90814s/12 iters), loss = 3.89527 +I0408 08:03:09.695307 31616 solver.cpp:237] Train net output #0: loss = 3.89527 (* 1 = 3.89527 loss) +I0408 08:03:09.695315 31616 sgd_solver.cpp:105] Iteration 2940, lr = 0.000923895 +I0408 08:03:14.677645 31616 solver.cpp:218] Iteration 2952 (2.40859 iter/s, 4.98216s/12 iters), loss = 3.91243 +I0408 08:03:14.677682 31616 solver.cpp:237] Train net output #0: loss = 3.91243 (* 1 = 3.91243 loss) +I0408 08:03:14.677691 31616 sgd_solver.cpp:105] Iteration 2952, lr = 0.000906398 +I0408 08:03:16.718639 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 08:03:19.737541 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 08:03:22.060817 31616 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 08:03:22.060843 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:03:25.340231 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:03:26.524425 31616 solver.cpp:397] Test net output #0: accuracy = 0.103554 +I0408 08:03:26.524473 31616 solver.cpp:397] Test net output #1: loss = 4.13897 (* 1 = 4.13897 loss) +I0408 08:03:28.359957 31616 solver.cpp:218] Iteration 2964 (0.877076 iter/s, 13.6818s/12 iters), loss = 3.53113 +I0408 08:03:28.360008 31616 solver.cpp:237] Train net output #0: loss = 3.53113 (* 1 = 3.53113 loss) +I0408 08:03:28.360018 31616 sgd_solver.cpp:105] Iteration 2964, lr = 0.000889232 +I0408 08:03:33.392971 31616 solver.cpp:218] Iteration 2976 (2.38436 iter/s, 5.03279s/12 iters), loss = 3.76324 +I0408 08:03:33.393013 31616 solver.cpp:237] Train net output #0: loss = 3.76324 (* 1 = 3.76324 loss) +I0408 08:03:33.393023 31616 sgd_solver.cpp:105] Iteration 2976, lr = 0.000872392 +I0408 08:03:38.408035 31616 solver.cpp:218] Iteration 2988 (2.39289 iter/s, 5.01485s/12 iters), loss = 4.02781 +I0408 08:03:38.408075 31616 solver.cpp:237] Train net output #0: loss = 4.02781 (* 1 = 4.02781 loss) +I0408 08:03:38.408084 31616 sgd_solver.cpp:105] Iteration 2988, lr = 0.00085587 +I0408 08:03:43.418810 31616 solver.cpp:218] Iteration 3000 (2.39494 iter/s, 5.01057s/12 iters), loss = 3.90833 +I0408 08:03:43.418848 31616 solver.cpp:237] Train net output #0: loss = 3.90833 (* 1 = 3.90833 loss) +I0408 08:03:43.418856 31616 sgd_solver.cpp:105] Iteration 3000, lr = 0.000839662 +I0408 08:03:48.453606 31616 solver.cpp:218] Iteration 3012 (2.38351 iter/s, 5.03458s/12 iters), loss = 3.85333 +I0408 08:03:48.453646 31616 solver.cpp:237] Train net output #0: loss = 3.85333 (* 1 = 3.85333 loss) +I0408 08:03:48.453656 31616 sgd_solver.cpp:105] Iteration 3012, lr = 0.00082376 +I0408 08:03:53.490175 31616 solver.cpp:218] Iteration 3024 (2.38268 iter/s, 5.03636s/12 iters), loss = 3.82716 +I0408 08:03:53.490281 31616 solver.cpp:237] Train net output #0: loss = 3.82716 (* 1 = 3.82716 loss) +I0408 08:03:53.490295 31616 sgd_solver.cpp:105] Iteration 3024, lr = 0.00080816 +I0408 08:03:57.507783 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:03:58.546654 31616 solver.cpp:218] Iteration 3036 (2.37332 iter/s, 5.0562s/12 iters), loss = 3.74511 +I0408 08:03:58.546700 31616 solver.cpp:237] Train net output #0: loss = 3.74511 (* 1 = 3.74511 loss) +I0408 08:03:58.546712 31616 sgd_solver.cpp:105] Iteration 3036, lr = 0.000792855 +I0408 08:04:03.599668 31616 solver.cpp:218] Iteration 3048 (2.37492 iter/s, 5.05279s/12 iters), loss = 3.92943 +I0408 08:04:03.599720 31616 solver.cpp:237] Train net output #0: loss = 3.92943 (* 1 = 3.92943 loss) +I0408 08:04:03.599732 31616 sgd_solver.cpp:105] Iteration 3048, lr = 0.00077784 +I0408 08:04:08.161221 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 08:04:11.149196 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 08:04:13.463227 31616 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 08:04:13.463253 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:04:16.711464 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:04:17.931354 31616 solver.cpp:397] Test net output #0: accuracy = 0.112745 +I0408 08:04:17.931385 31616 solver.cpp:397] Test net output #1: loss = 4.09621 (* 1 = 4.09621 loss) +I0408 08:04:18.022279 31616 solver.cpp:218] Iteration 3060 (0.832057 iter/s, 14.4221s/12 iters), loss = 3.81445 +I0408 08:04:18.022317 31616 solver.cpp:237] Train net output #0: loss = 3.81445 (* 1 = 3.81445 loss) +I0408 08:04:18.022326 31616 sgd_solver.cpp:105] Iteration 3060, lr = 0.000763109 +I0408 08:04:22.395367 31616 solver.cpp:218] Iteration 3072 (2.74417 iter/s, 4.3729s/12 iters), loss = 3.88502 +I0408 08:04:22.395402 31616 solver.cpp:237] Train net output #0: loss = 3.88502 (* 1 = 3.88502 loss) +I0408 08:04:22.395411 31616 sgd_solver.cpp:105] Iteration 3072, lr = 0.000748657 +I0408 08:04:27.426096 31616 solver.cpp:218] Iteration 3084 (2.38544 iter/s, 5.03051s/12 iters), loss = 3.80124 +I0408 08:04:27.426249 31616 solver.cpp:237] Train net output #0: loss = 3.80124 (* 1 = 3.80124 loss) +I0408 08:04:27.426261 31616 sgd_solver.cpp:105] Iteration 3084, lr = 0.000734479 +I0408 08:04:32.438549 31616 solver.cpp:218] Iteration 3096 (2.39419 iter/s, 5.01213s/12 iters), loss = 3.75061 +I0408 08:04:32.438589 31616 solver.cpp:237] Train net output #0: loss = 3.75061 (* 1 = 3.75061 loss) +I0408 08:04:32.438601 31616 sgd_solver.cpp:105] Iteration 3096, lr = 0.000720569 +I0408 08:04:37.414170 31616 solver.cpp:218] Iteration 3108 (2.41186 iter/s, 4.97541s/12 iters), loss = 3.80979 +I0408 08:04:37.414206 31616 solver.cpp:237] Train net output #0: loss = 3.80979 (* 1 = 3.80979 loss) +I0408 08:04:37.414213 31616 sgd_solver.cpp:105] Iteration 3108, lr = 0.000706923 +I0408 08:04:42.555474 31616 solver.cpp:218] Iteration 3120 (2.33414 iter/s, 5.14109s/12 iters), loss = 3.57515 +I0408 08:04:42.555521 31616 solver.cpp:237] Train net output #0: loss = 3.57515 (* 1 = 3.57515 loss) +I0408 08:04:42.555532 31616 sgd_solver.cpp:105] Iteration 3120, lr = 0.000693535 +I0408 08:04:47.602990 31616 solver.cpp:218] Iteration 3132 (2.37751 iter/s, 5.0473s/12 iters), loss = 3.94757 +I0408 08:04:47.603039 31616 solver.cpp:237] Train net output #0: loss = 3.94757 (* 1 = 3.94757 loss) +I0408 08:04:47.603049 31616 sgd_solver.cpp:105] Iteration 3132, lr = 0.000680401 +I0408 08:04:48.734793 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:04:52.649073 31616 solver.cpp:218] Iteration 3144 (2.37819 iter/s, 5.04586s/12 iters), loss = 3.57563 +I0408 08:04:52.649119 31616 solver.cpp:237] Train net output #0: loss = 3.57563 (* 1 = 3.57563 loss) +I0408 08:04:52.649129 31616 sgd_solver.cpp:105] Iteration 3144, lr = 0.000667516 +I0408 08:04:57.668869 31616 solver.cpp:218] Iteration 3156 (2.39064 iter/s, 5.01958s/12 iters), loss = 3.69919 +I0408 08:04:57.668998 31616 solver.cpp:237] Train net output #0: loss = 3.69919 (* 1 = 3.69919 loss) +I0408 08:04:57.669010 31616 sgd_solver.cpp:105] Iteration 3156, lr = 0.000654874 +I0408 08:04:59.649837 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 08:05:02.776257 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 08:05:05.103051 31616 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 08:05:05.103077 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:05:08.300787 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:05:09.567469 31616 solver.cpp:397] Test net output #0: accuracy = 0.107843 +I0408 08:05:09.567514 31616 solver.cpp:397] Test net output #1: loss = 4.07963 (* 1 = 4.07963 loss) +I0408 08:05:11.570698 31616 solver.cpp:218] Iteration 3168 (0.863231 iter/s, 13.9013s/12 iters), loss = 3.69168 +I0408 08:05:11.570736 31616 solver.cpp:237] Train net output #0: loss = 3.69168 (* 1 = 3.69168 loss) +I0408 08:05:11.570745 31616 sgd_solver.cpp:105] Iteration 3168, lr = 0.000642472 +I0408 08:05:16.589541 31616 solver.cpp:218] Iteration 3180 (2.39109 iter/s, 5.01863s/12 iters), loss = 3.90691 +I0408 08:05:16.589588 31616 solver.cpp:237] Train net output #0: loss = 3.90691 (* 1 = 3.90691 loss) +I0408 08:05:16.589601 31616 sgd_solver.cpp:105] Iteration 3180, lr = 0.000630305 +I0408 08:05:21.656119 31616 solver.cpp:218] Iteration 3192 (2.36856 iter/s, 5.06636s/12 iters), loss = 3.74242 +I0408 08:05:21.656158 31616 solver.cpp:237] Train net output #0: loss = 3.74242 (* 1 = 3.74242 loss) +I0408 08:05:21.656168 31616 sgd_solver.cpp:105] Iteration 3192, lr = 0.000618368 +I0408 08:05:27.145923 31616 solver.cpp:218] Iteration 3204 (2.18596 iter/s, 5.48958s/12 iters), loss = 3.87437 +I0408 08:05:27.145965 31616 solver.cpp:237] Train net output #0: loss = 3.87437 (* 1 = 3.87437 loss) +I0408 08:05:27.145973 31616 sgd_solver.cpp:105] Iteration 3204, lr = 0.000606658 +I0408 08:05:32.153581 31616 solver.cpp:218] Iteration 3216 (2.39643 iter/s, 5.00745s/12 iters), loss = 3.71989 +I0408 08:05:32.153699 31616 solver.cpp:237] Train net output #0: loss = 3.71989 (* 1 = 3.71989 loss) +I0408 08:05:32.153709 31616 sgd_solver.cpp:105] Iteration 3216, lr = 0.000595169 +I0408 08:05:37.123462 31616 solver.cpp:218] Iteration 3228 (2.41468 iter/s, 4.96959s/12 iters), loss = 3.8041 +I0408 08:05:37.123502 31616 solver.cpp:237] Train net output #0: loss = 3.8041 (* 1 = 3.8041 loss) +I0408 08:05:37.123509 31616 sgd_solver.cpp:105] Iteration 3228, lr = 0.000583897 +I0408 08:05:40.320792 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:05:42.059391 31616 solver.cpp:218] Iteration 3240 (2.43126 iter/s, 4.93572s/12 iters), loss = 4.00916 +I0408 08:05:42.059427 31616 solver.cpp:237] Train net output #0: loss = 4.00916 (* 1 = 4.00916 loss) +I0408 08:05:42.059433 31616 sgd_solver.cpp:105] Iteration 3240, lr = 0.000572839 +I0408 08:05:47.082572 31616 solver.cpp:218] Iteration 3252 (2.38902 iter/s, 5.02297s/12 iters), loss = 3.58321 +I0408 08:05:47.082612 31616 solver.cpp:237] Train net output #0: loss = 3.58321 (* 1 = 3.58321 loss) +I0408 08:05:47.082619 31616 sgd_solver.cpp:105] Iteration 3252, lr = 0.000561991 +I0408 08:05:51.624866 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 08:05:54.563872 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 08:05:56.852632 31616 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 08:05:56.852653 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:06:00.022775 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:06:01.325923 31616 solver.cpp:397] Test net output #0: accuracy = 0.109681 +I0408 08:06:01.325984 31616 solver.cpp:397] Test net output #1: loss = 4.06159 (* 1 = 4.06159 loss) +I0408 08:06:01.417243 31616 solver.cpp:218] Iteration 3264 (0.837161 iter/s, 14.3342s/12 iters), loss = 3.69041 +I0408 08:06:01.417291 31616 solver.cpp:237] Train net output #0: loss = 3.69041 (* 1 = 3.69041 loss) +I0408 08:06:01.417302 31616 sgd_solver.cpp:105] Iteration 3264, lr = 0.000551348 +I0408 08:06:05.969991 31616 solver.cpp:218] Iteration 3276 (2.63589 iter/s, 4.55254s/12 iters), loss = 3.56373 +I0408 08:06:05.970103 31616 solver.cpp:237] Train net output #0: loss = 3.56373 (* 1 = 3.56373 loss) +I0408 08:06:05.970115 31616 sgd_solver.cpp:105] Iteration 3276, lr = 0.000540906 +I0408 08:06:11.129606 31616 solver.cpp:218] Iteration 3288 (2.32589 iter/s, 5.15932s/12 iters), loss = 3.62456 +I0408 08:06:11.129664 31616 solver.cpp:237] Train net output #0: loss = 3.62456 (* 1 = 3.62456 loss) +I0408 08:06:11.129676 31616 sgd_solver.cpp:105] Iteration 3288, lr = 0.000530663 +I0408 08:06:16.129978 31616 solver.cpp:218] Iteration 3300 (2.39993 iter/s, 5.00015s/12 iters), loss = 3.85881 +I0408 08:06:16.130017 31616 solver.cpp:237] Train net output #0: loss = 3.85881 (* 1 = 3.85881 loss) +I0408 08:06:16.130026 31616 sgd_solver.cpp:105] Iteration 3300, lr = 0.000520613 +I0408 08:06:21.182337 31616 solver.cpp:218] Iteration 3312 (2.37523 iter/s, 5.05215s/12 iters), loss = 3.90797 +I0408 08:06:21.182381 31616 solver.cpp:237] Train net output #0: loss = 3.90797 (* 1 = 3.90797 loss) +I0408 08:06:21.182394 31616 sgd_solver.cpp:105] Iteration 3312, lr = 0.000510753 +I0408 08:06:26.250433 31616 solver.cpp:218] Iteration 3324 (2.36785 iter/s, 5.06788s/12 iters), loss = 3.68278 +I0408 08:06:26.250474 31616 solver.cpp:237] Train net output #0: loss = 3.68278 (* 1 = 3.68278 loss) +I0408 08:06:26.250484 31616 sgd_solver.cpp:105] Iteration 3324, lr = 0.000501081 +I0408 08:06:31.235785 31616 solver.cpp:218] Iteration 3336 (2.40716 iter/s, 4.98514s/12 iters), loss = 3.73479 +I0408 08:06:31.235823 31616 solver.cpp:237] Train net output #0: loss = 3.73479 (* 1 = 3.73479 loss) +I0408 08:06:31.235833 31616 sgd_solver.cpp:105] Iteration 3336, lr = 0.000491591 +I0408 08:06:31.715585 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:06:36.277113 31616 solver.cpp:218] Iteration 3348 (2.38043 iter/s, 5.04112s/12 iters), loss = 3.64489 +I0408 08:06:36.277251 31616 solver.cpp:237] Train net output #0: loss = 3.64489 (* 1 = 3.64489 loss) +I0408 08:06:36.277266 31616 sgd_solver.cpp:105] Iteration 3348, lr = 0.000482281 +I0408 08:06:41.344807 31616 solver.cpp:218] Iteration 3360 (2.36809 iter/s, 5.06738s/12 iters), loss = 3.57084 +I0408 08:06:41.344859 31616 solver.cpp:237] Train net output #0: loss = 3.57084 (* 1 = 3.57084 loss) +I0408 08:06:41.344871 31616 sgd_solver.cpp:105] Iteration 3360, lr = 0.000473148 +I0408 08:06:43.348273 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 08:06:46.372313 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 08:06:48.752211 31616 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 08:06:48.752238 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:06:51.878132 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:06:53.218048 31616 solver.cpp:397] Test net output #0: accuracy = 0.117034 +I0408 08:06:53.218096 31616 solver.cpp:397] Test net output #1: loss = 4.04044 (* 1 = 4.04044 loss) +I0408 08:06:55.121011 31616 solver.cpp:218] Iteration 3372 (0.871099 iter/s, 13.7757s/12 iters), loss = 3.56951 +I0408 08:06:55.121059 31616 solver.cpp:237] Train net output #0: loss = 3.56951 (* 1 = 3.56951 loss) +I0408 08:06:55.121071 31616 sgd_solver.cpp:105] Iteration 3372, lr = 0.000464187 +I0408 08:07:00.104526 31616 solver.cpp:218] Iteration 3384 (2.40805 iter/s, 4.98329s/12 iters), loss = 3.61781 +I0408 08:07:00.104573 31616 solver.cpp:237] Train net output #0: loss = 3.61781 (* 1 = 3.61781 loss) +I0408 08:07:00.104583 31616 sgd_solver.cpp:105] Iteration 3384, lr = 0.000455397 +I0408 08:07:05.131309 31616 solver.cpp:218] Iteration 3396 (2.38732 iter/s, 5.02656s/12 iters), loss = 3.63093 +I0408 08:07:05.131356 31616 solver.cpp:237] Train net output #0: loss = 3.63093 (* 1 = 3.63093 loss) +I0408 08:07:05.131368 31616 sgd_solver.cpp:105] Iteration 3396, lr = 0.000446772 +I0408 08:07:10.136662 31616 solver.cpp:218] Iteration 3408 (2.39754 iter/s, 5.00513s/12 iters), loss = 3.75059 +I0408 08:07:10.136770 31616 solver.cpp:237] Train net output #0: loss = 3.75059 (* 1 = 3.75059 loss) +I0408 08:07:10.136783 31616 sgd_solver.cpp:105] Iteration 3408, lr = 0.000438311 +I0408 08:07:15.181547 31616 solver.cpp:218] Iteration 3420 (2.37878 iter/s, 5.04461s/12 iters), loss = 3.36372 +I0408 08:07:15.181591 31616 solver.cpp:237] Train net output #0: loss = 3.36372 (* 1 = 3.36372 loss) +I0408 08:07:15.181602 31616 sgd_solver.cpp:105] Iteration 3420, lr = 0.000430011 +I0408 08:07:20.208076 31616 solver.cpp:218] Iteration 3432 (2.38743 iter/s, 5.02632s/12 iters), loss = 3.72446 +I0408 08:07:20.208110 31616 solver.cpp:237] Train net output #0: loss = 3.72446 (* 1 = 3.72446 loss) +I0408 08:07:20.208118 31616 sgd_solver.cpp:105] Iteration 3432, lr = 0.000421867 +I0408 08:07:22.805893 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:07:25.236590 31616 solver.cpp:218] Iteration 3444 (2.38649 iter/s, 5.02831s/12 iters), loss = 3.4019 +I0408 08:07:25.236624 31616 solver.cpp:237] Train net output #0: loss = 3.4019 (* 1 = 3.4019 loss) +I0408 08:07:25.236631 31616 sgd_solver.cpp:105] Iteration 3444, lr = 0.000413878 +I0408 08:07:30.377765 31616 solver.cpp:218] Iteration 3456 (2.33419 iter/s, 5.14096s/12 iters), loss = 3.52959 +I0408 08:07:30.377805 31616 solver.cpp:237] Train net output #0: loss = 3.52959 (* 1 = 3.52959 loss) +I0408 08:07:30.377815 31616 sgd_solver.cpp:105] Iteration 3456, lr = 0.00040604 +I0408 08:07:34.952911 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 08:07:37.970567 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 08:07:40.299139 31616 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 08:07:40.299254 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:07:40.738548 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:07:43.346483 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:07:44.733256 31616 solver.cpp:397] Test net output #0: accuracy = 0.124387 +I0408 08:07:44.733299 31616 solver.cpp:397] Test net output #1: loss = 4.0212 (* 1 = 4.0212 loss) +I0408 08:07:44.824702 31616 solver.cpp:218] Iteration 3468 (0.830656 iter/s, 14.4464s/12 iters), loss = 3.60182 +I0408 08:07:44.824748 31616 solver.cpp:237] Train net output #0: loss = 3.60182 (* 1 = 3.60182 loss) +I0408 08:07:44.824756 31616 sgd_solver.cpp:105] Iteration 3468, lr = 0.00039835 +I0408 08:07:49.066082 31616 solver.cpp:218] Iteration 3480 (2.8294 iter/s, 4.24119s/12 iters), loss = 3.64588 +I0408 08:07:49.066124 31616 solver.cpp:237] Train net output #0: loss = 3.64588 (* 1 = 3.64588 loss) +I0408 08:07:49.066133 31616 sgd_solver.cpp:105] Iteration 3480, lr = 0.000390806 +I0408 08:07:54.070433 31616 solver.cpp:218] Iteration 3492 (2.39802 iter/s, 5.00414s/12 iters), loss = 3.83344 +I0408 08:07:54.070477 31616 solver.cpp:237] Train net output #0: loss = 3.83344 (* 1 = 3.83344 loss) +I0408 08:07:54.070487 31616 sgd_solver.cpp:105] Iteration 3492, lr = 0.000383405 +I0408 08:07:59.080163 31616 solver.cpp:218] Iteration 3504 (2.39544 iter/s, 5.00951s/12 iters), loss = 3.51601 +I0408 08:07:59.080209 31616 solver.cpp:237] Train net output #0: loss = 3.51601 (* 1 = 3.51601 loss) +I0408 08:07:59.080219 31616 sgd_solver.cpp:105] Iteration 3504, lr = 0.000376144 +I0408 08:08:04.106724 31616 solver.cpp:218] Iteration 3516 (2.38742 iter/s, 5.02635s/12 iters), loss = 3.47697 +I0408 08:08:04.106760 31616 solver.cpp:237] Train net output #0: loss = 3.47697 (* 1 = 3.47697 loss) +I0408 08:08:04.106768 31616 sgd_solver.cpp:105] Iteration 3516, lr = 0.00036902 +I0408 08:08:09.189931 31616 solver.cpp:218] Iteration 3528 (2.36081 iter/s, 5.083s/12 iters), loss = 3.6246 +I0408 08:08:09.189972 31616 solver.cpp:237] Train net output #0: loss = 3.6246 (* 1 = 3.6246 loss) +I0408 08:08:09.189981 31616 sgd_solver.cpp:105] Iteration 3528, lr = 0.000362032 +I0408 08:08:13.965139 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:08:14.225734 31616 solver.cpp:218] Iteration 3540 (2.38304 iter/s, 5.03559s/12 iters), loss = 3.44248 +I0408 08:08:14.225776 31616 solver.cpp:237] Train net output #0: loss = 3.44248 (* 1 = 3.44248 loss) +I0408 08:08:14.225786 31616 sgd_solver.cpp:105] Iteration 3540, lr = 0.000355176 +I0408 08:08:19.266021 31616 solver.cpp:218] Iteration 3552 (2.38092 iter/s, 5.04007s/12 iters), loss = 3.63079 +I0408 08:08:19.266067 31616 solver.cpp:237] Train net output #0: loss = 3.63079 (* 1 = 3.63079 loss) +I0408 08:08:19.266078 31616 sgd_solver.cpp:105] Iteration 3552, lr = 0.000348449 +I0408 08:08:24.236243 31616 solver.cpp:218] Iteration 3564 (2.41448 iter/s, 4.97001s/12 iters), loss = 3.49816 +I0408 08:08:24.236279 31616 solver.cpp:237] Train net output #0: loss = 3.49816 (* 1 = 3.49816 loss) +I0408 08:08:24.236287 31616 sgd_solver.cpp:105] Iteration 3564, lr = 0.00034185 +I0408 08:08:26.286280 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 08:08:29.305879 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 08:08:31.672600 31616 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 08:08:31.672626 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:08:34.798038 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:08:36.213928 31616 solver.cpp:397] Test net output #0: accuracy = 0.127451 +I0408 08:08:36.213990 31616 solver.cpp:397] Test net output #1: loss = 4.00105 (* 1 = 4.00105 loss) +I0408 08:08:38.091349 31616 solver.cpp:218] Iteration 3576 (0.866137 iter/s, 13.8546s/12 iters), loss = 3.52731 +I0408 08:08:38.091398 31616 solver.cpp:237] Train net output #0: loss = 3.52731 (* 1 = 3.52731 loss) +I0408 08:08:38.091408 31616 sgd_solver.cpp:105] Iteration 3576, lr = 0.000335376 +I0408 08:08:43.124406 31616 solver.cpp:218] Iteration 3588 (2.38434 iter/s, 5.03284s/12 iters), loss = 3.36639 +I0408 08:08:43.124441 31616 solver.cpp:237] Train net output #0: loss = 3.36639 (* 1 = 3.36639 loss) +I0408 08:08:43.124449 31616 sgd_solver.cpp:105] Iteration 3588, lr = 0.000329025 +I0408 08:08:48.160398 31616 solver.cpp:218] Iteration 3600 (2.38294 iter/s, 5.03579s/12 iters), loss = 3.57174 +I0408 08:08:48.160516 31616 solver.cpp:237] Train net output #0: loss = 3.57174 (* 1 = 3.57174 loss) +I0408 08:08:48.160526 31616 sgd_solver.cpp:105] Iteration 3600, lr = 0.000322794 +I0408 08:08:53.159919 31616 solver.cpp:218] Iteration 3612 (2.40037 iter/s, 4.99924s/12 iters), loss = 3.57897 +I0408 08:08:53.159948 31616 solver.cpp:237] Train net output #0: loss = 3.57897 (* 1 = 3.57897 loss) +I0408 08:08:53.159955 31616 sgd_solver.cpp:105] Iteration 3612, lr = 0.000316681 +I0408 08:08:58.168148 31616 solver.cpp:218] Iteration 3624 (2.39615 iter/s, 5.00803s/12 iters), loss = 3.56843 +I0408 08:08:58.168191 31616 solver.cpp:237] Train net output #0: loss = 3.56843 (* 1 = 3.56843 loss) +I0408 08:08:58.168201 31616 sgd_solver.cpp:105] Iteration 3624, lr = 0.000310684 +I0408 08:09:03.122742 31616 solver.cpp:218] Iteration 3636 (2.4221 iter/s, 4.95438s/12 iters), loss = 3.58727 +I0408 08:09:03.122786 31616 solver.cpp:237] Train net output #0: loss = 3.58727 (* 1 = 3.58727 loss) +I0408 08:09:03.122795 31616 sgd_solver.cpp:105] Iteration 3636, lr = 0.0003048 +I0408 08:09:05.023947 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:09:08.176728 31616 solver.cpp:218] Iteration 3648 (2.37447 iter/s, 5.05377s/12 iters), loss = 3.46391 +I0408 08:09:08.176774 31616 solver.cpp:237] Train net output #0: loss = 3.46391 (* 1 = 3.46391 loss) +I0408 08:09:08.176786 31616 sgd_solver.cpp:105] Iteration 3648, lr = 0.000299027 +I0408 08:09:13.183192 31616 solver.cpp:218] Iteration 3660 (2.397 iter/s, 5.00625s/12 iters), loss = 3.51722 +I0408 08:09:13.183229 31616 solver.cpp:237] Train net output #0: loss = 3.51722 (* 1 = 3.51722 loss) +I0408 08:09:13.183238 31616 sgd_solver.cpp:105] Iteration 3660, lr = 0.000293364 +I0408 08:09:17.697124 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 08:09:20.861346 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 08:09:23.280462 31616 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 08:09:23.280489 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:09:26.281801 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:09:27.743927 31616 solver.cpp:397] Test net output #0: accuracy = 0.13174 +I0408 08:09:27.743974 31616 solver.cpp:397] Test net output #1: loss = 3.98292 (* 1 = 3.98292 loss) +I0408 08:09:27.834777 31616 solver.cpp:218] Iteration 3672 (0.819053 iter/s, 14.6511s/12 iters), loss = 3.20263 +I0408 08:09:27.834820 31616 solver.cpp:237] Train net output #0: loss = 3.20263 (* 1 = 3.20263 loss) +I0408 08:09:27.834830 31616 sgd_solver.cpp:105] Iteration 3672, lr = 0.000287809 +I0408 08:09:32.059854 31616 solver.cpp:218] Iteration 3684 (2.84031 iter/s, 4.22489s/12 iters), loss = 3.7122 +I0408 08:09:32.059902 31616 solver.cpp:237] Train net output #0: loss = 3.7122 (* 1 = 3.7122 loss) +I0408 08:09:32.059916 31616 sgd_solver.cpp:105] Iteration 3684, lr = 0.000282358 +I0408 08:09:37.084518 31616 solver.cpp:218] Iteration 3696 (2.38832 iter/s, 5.02445s/12 iters), loss = 3.51259 +I0408 08:09:37.084561 31616 solver.cpp:237] Train net output #0: loss = 3.51259 (* 1 = 3.51259 loss) +I0408 08:09:37.084573 31616 sgd_solver.cpp:105] Iteration 3696, lr = 0.000277011 +I0408 08:09:42.089241 31616 solver.cpp:218] Iteration 3708 (2.39784 iter/s, 5.00451s/12 iters), loss = 3.49912 +I0408 08:09:42.089288 31616 solver.cpp:237] Train net output #0: loss = 3.49912 (* 1 = 3.49912 loss) +I0408 08:09:42.089299 31616 sgd_solver.cpp:105] Iteration 3708, lr = 0.000271765 +I0408 08:09:47.067802 31616 solver.cpp:218] Iteration 3720 (2.41044 iter/s, 4.97835s/12 iters), loss = 3.53722 +I0408 08:09:47.067836 31616 solver.cpp:237] Train net output #0: loss = 3.53722 (* 1 = 3.53722 loss) +I0408 08:09:47.067843 31616 sgd_solver.cpp:105] Iteration 3720, lr = 0.000266618 +I0408 08:09:52.018519 31616 solver.cpp:218] Iteration 3732 (2.42399 iter/s, 4.95051s/12 iters), loss = 3.31853 +I0408 08:09:52.018649 31616 solver.cpp:237] Train net output #0: loss = 3.31853 (* 1 = 3.31853 loss) +I0408 08:09:52.018658 31616 sgd_solver.cpp:105] Iteration 3732, lr = 0.000261569 +I0408 08:09:56.045289 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:09:57.055292 31616 solver.cpp:218] Iteration 3744 (2.38262 iter/s, 5.03647s/12 iters), loss = 3.48082 +I0408 08:09:57.055337 31616 solver.cpp:237] Train net output #0: loss = 3.48082 (* 1 = 3.48082 loss) +I0408 08:09:57.055349 31616 sgd_solver.cpp:105] Iteration 3744, lr = 0.000256615 +I0408 08:10:02.146940 31616 solver.cpp:218] Iteration 3756 (2.3569 iter/s, 5.09143s/12 iters), loss = 3.63181 +I0408 08:10:02.146982 31616 solver.cpp:237] Train net output #0: loss = 3.63181 (* 1 = 3.63181 loss) +I0408 08:10:02.146993 31616 sgd_solver.cpp:105] Iteration 3756, lr = 0.000251755 +I0408 08:10:07.239800 31616 solver.cpp:218] Iteration 3768 (2.35634 iter/s, 5.09264s/12 iters), loss = 3.37794 +I0408 08:10:07.239845 31616 solver.cpp:237] Train net output #0: loss = 3.37794 (* 1 = 3.37794 loss) +I0408 08:10:07.239856 31616 sgd_solver.cpp:105] Iteration 3768, lr = 0.000246988 +I0408 08:10:09.256520 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 08:10:14.248198 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 08:10:16.552078 31616 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 08:10:16.552105 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:10:19.495391 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:10:20.993294 31616 solver.cpp:397] Test net output #0: accuracy = 0.134191 +I0408 08:10:20.993332 31616 solver.cpp:397] Test net output #1: loss = 3.96484 (* 1 = 3.96484 loss) +I0408 08:10:22.815011 31616 solver.cpp:218] Iteration 3780 (0.770482 iter/s, 15.5747s/12 iters), loss = 3.58319 +I0408 08:10:22.815107 31616 solver.cpp:237] Train net output #0: loss = 3.58319 (* 1 = 3.58319 loss) +I0408 08:10:22.815117 31616 sgd_solver.cpp:105] Iteration 3780, lr = 0.00024231 +I0408 08:10:27.822332 31616 solver.cpp:218] Iteration 3792 (2.39662 iter/s, 5.00705s/12 iters), loss = 3.45694 +I0408 08:10:27.822376 31616 solver.cpp:237] Train net output #0: loss = 3.45694 (* 1 = 3.45694 loss) +I0408 08:10:27.822386 31616 sgd_solver.cpp:105] Iteration 3792, lr = 0.000237721 +I0408 08:10:32.830026 31616 solver.cpp:218] Iteration 3804 (2.39642 iter/s, 5.00748s/12 iters), loss = 3.58517 +I0408 08:10:32.830072 31616 solver.cpp:237] Train net output #0: loss = 3.58517 (* 1 = 3.58517 loss) +I0408 08:10:32.830085 31616 sgd_solver.cpp:105] Iteration 3804, lr = 0.000233219 +I0408 08:10:37.861935 31616 solver.cpp:218] Iteration 3816 (2.38489 iter/s, 5.03169s/12 iters), loss = 3.39571 +I0408 08:10:37.861994 31616 solver.cpp:237] Train net output #0: loss = 3.39571 (* 1 = 3.39571 loss) +I0408 08:10:37.862006 31616 sgd_solver.cpp:105] Iteration 3816, lr = 0.000228803 +I0408 08:10:42.853152 31616 solver.cpp:218] Iteration 3828 (2.40434 iter/s, 4.99098s/12 iters), loss = 3.33241 +I0408 08:10:42.853200 31616 solver.cpp:237] Train net output #0: loss = 3.33241 (* 1 = 3.33241 loss) +I0408 08:10:42.853212 31616 sgd_solver.cpp:105] Iteration 3828, lr = 0.000224469 +I0408 08:10:47.838223 31616 solver.cpp:218] Iteration 3840 (2.40729 iter/s, 4.98485s/12 iters), loss = 3.57385 +I0408 08:10:47.838276 31616 solver.cpp:237] Train net output #0: loss = 3.57385 (* 1 = 3.57385 loss) +I0408 08:10:47.838289 31616 sgd_solver.cpp:105] Iteration 3840, lr = 0.000220218 +I0408 08:10:48.949867 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:10:52.839192 31616 solver.cpp:218] Iteration 3852 (2.39964 iter/s, 5.00074s/12 iters), loss = 3.29988 +I0408 08:10:52.839339 31616 solver.cpp:237] Train net output #0: loss = 3.29988 (* 1 = 3.29988 loss) +I0408 08:10:52.839356 31616 sgd_solver.cpp:105] Iteration 3852, lr = 0.000216048 +I0408 08:10:57.798527 31616 solver.cpp:218] Iteration 3864 (2.41983 iter/s, 4.95902s/12 iters), loss = 3.53863 +I0408 08:10:57.798568 31616 solver.cpp:237] Train net output #0: loss = 3.53863 (* 1 = 3.53863 loss) +I0408 08:10:57.798579 31616 sgd_solver.cpp:105] Iteration 3864, lr = 0.000211956 +I0408 08:11:02.525147 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 08:11:10.031441 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 08:11:13.953583 31616 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 08:11:13.953603 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:11:16.752446 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:11:18.296878 31616 solver.cpp:397] Test net output #0: accuracy = 0.139093 +I0408 08:11:18.296923 31616 solver.cpp:397] Test net output #1: loss = 3.95439 (* 1 = 3.95439 loss) +I0408 08:11:18.388177 31616 solver.cpp:218] Iteration 3876 (0.582837 iter/s, 20.5889s/12 iters), loss = 3.4522 +I0408 08:11:18.388226 31616 solver.cpp:237] Train net output #0: loss = 3.4522 (* 1 = 3.4522 loss) +I0408 08:11:18.388236 31616 sgd_solver.cpp:105] Iteration 3876, lr = 0.000207942 +I0408 08:11:22.661990 31616 solver.cpp:218] Iteration 3888 (2.80793 iter/s, 4.27362s/12 iters), loss = 3.5474 +I0408 08:11:22.662034 31616 solver.cpp:237] Train net output #0: loss = 3.5474 (* 1 = 3.5474 loss) +I0408 08:11:22.662045 31616 sgd_solver.cpp:105] Iteration 3888, lr = 0.000204004 +I0408 08:11:27.666864 31616 solver.cpp:218] Iteration 3900 (2.39777 iter/s, 5.00466s/12 iters), loss = 3.54762 +I0408 08:11:27.666949 31616 solver.cpp:237] Train net output #0: loss = 3.54762 (* 1 = 3.54762 loss) +I0408 08:11:27.666960 31616 sgd_solver.cpp:105] Iteration 3900, lr = 0.000200141 +I0408 08:11:32.660637 31616 solver.cpp:218] Iteration 3912 (2.40311 iter/s, 4.99352s/12 iters), loss = 3.54788 +I0408 08:11:32.660677 31616 solver.cpp:237] Train net output #0: loss = 3.54788 (* 1 = 3.54788 loss) +I0408 08:11:32.660687 31616 sgd_solver.cpp:105] Iteration 3912, lr = 0.000196351 +I0408 08:11:37.686533 31616 solver.cpp:218] Iteration 3924 (2.38773 iter/s, 5.02568s/12 iters), loss = 3.17756 +I0408 08:11:37.686581 31616 solver.cpp:237] Train net output #0: loss = 3.17756 (* 1 = 3.17756 loss) +I0408 08:11:37.686594 31616 sgd_solver.cpp:105] Iteration 3924, lr = 0.000192632 +I0408 08:11:42.739367 31616 solver.cpp:218] Iteration 3936 (2.37501 iter/s, 5.05261s/12 iters), loss = 3.49678 +I0408 08:11:42.739418 31616 solver.cpp:237] Train net output #0: loss = 3.49678 (* 1 = 3.49678 loss) +I0408 08:11:42.739429 31616 sgd_solver.cpp:105] Iteration 3936, lr = 0.000188984 +I0408 08:11:46.108940 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:11:47.752247 31616 solver.cpp:218] Iteration 3948 (2.39394 iter/s, 5.01266s/12 iters), loss = 3.77014 +I0408 08:11:47.752295 31616 solver.cpp:237] Train net output #0: loss = 3.77014 (* 1 = 3.77014 loss) +I0408 08:11:47.752308 31616 sgd_solver.cpp:105] Iteration 3948, lr = 0.000185405 +I0408 08:11:52.775391 31616 solver.cpp:218] Iteration 3960 (2.38905 iter/s, 5.02293s/12 iters), loss = 3.39268 +I0408 08:11:52.775439 31616 solver.cpp:237] Train net output #0: loss = 3.39268 (* 1 = 3.39268 loss) +I0408 08:11:52.775450 31616 sgd_solver.cpp:105] Iteration 3960, lr = 0.000181894 +I0408 08:11:57.786329 31616 solver.cpp:218] Iteration 3972 (2.39487 iter/s, 5.01072s/12 iters), loss = 3.45778 +I0408 08:11:57.786486 31616 solver.cpp:237] Train net output #0: loss = 3.45778 (* 1 = 3.45778 loss) +I0408 08:11:57.786500 31616 sgd_solver.cpp:105] Iteration 3972, lr = 0.000178449 +I0408 08:11:59.842278 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 08:12:04.939494 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 08:12:07.261677 31616 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 08:12:07.261703 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:12:10.289059 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:12:11.877338 31616 solver.cpp:397] Test net output #0: accuracy = 0.136642 +I0408 08:12:11.877384 31616 solver.cpp:397] Test net output #1: loss = 3.93338 (* 1 = 3.93338 loss) +I0408 08:12:13.786293 31616 solver.cpp:218] Iteration 3984 (0.750033 iter/s, 15.9993s/12 iters), loss = 3.3434 +I0408 08:12:13.786348 31616 solver.cpp:237] Train net output #0: loss = 3.3434 (* 1 = 3.3434 loss) +I0408 08:12:13.786362 31616 sgd_solver.cpp:105] Iteration 3984, lr = 0.00017507 +I0408 08:12:18.887877 31616 solver.cpp:218] Iteration 3996 (2.35232 iter/s, 5.10136s/12 iters), loss = 3.46246 +I0408 08:12:18.887923 31616 solver.cpp:237] Train net output #0: loss = 3.46246 (* 1 = 3.46246 loss) +I0408 08:12:18.887935 31616 sgd_solver.cpp:105] Iteration 3996, lr = 0.000171754 +I0408 08:12:24.114204 31616 solver.cpp:218] Iteration 4008 (2.29617 iter/s, 5.2261s/12 iters), loss = 3.4958 +I0408 08:12:24.114248 31616 solver.cpp:237] Train net output #0: loss = 3.4958 (* 1 = 3.4958 loss) +I0408 08:12:24.114259 31616 sgd_solver.cpp:105] Iteration 4008, lr = 0.000168501 +I0408 08:12:29.313391 31616 solver.cpp:218] Iteration 4020 (2.30815 iter/s, 5.19896s/12 iters), loss = 3.60612 +I0408 08:12:29.313469 31616 solver.cpp:237] Train net output #0: loss = 3.60612 (* 1 = 3.60612 loss) +I0408 08:12:29.313478 31616 sgd_solver.cpp:105] Iteration 4020, lr = 0.00016531 +I0408 08:12:34.327014 31616 solver.cpp:218] Iteration 4032 (2.3936 iter/s, 5.01337s/12 iters), loss = 3.63843 +I0408 08:12:34.327056 31616 solver.cpp:237] Train net output #0: loss = 3.63843 (* 1 = 3.63843 loss) +I0408 08:12:34.327065 31616 sgd_solver.cpp:105] Iteration 4032, lr = 0.00016218 +I0408 08:12:39.368516 31616 solver.cpp:218] Iteration 4044 (2.38034 iter/s, 5.04129s/12 iters), loss = 3.45458 +I0408 08:12:39.368564 31616 solver.cpp:237] Train net output #0: loss = 3.45458 (* 1 = 3.45458 loss) +I0408 08:12:39.368577 31616 sgd_solver.cpp:105] Iteration 4044, lr = 0.000159108 +I0408 08:12:39.879206 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:12:44.416186 31616 solver.cpp:218] Iteration 4056 (2.37744 iter/s, 5.04745s/12 iters), loss = 3.3973 +I0408 08:12:44.416222 31616 solver.cpp:237] Train net output #0: loss = 3.3973 (* 1 = 3.3973 loss) +I0408 08:12:44.416230 31616 sgd_solver.cpp:105] Iteration 4056, lr = 0.000156095 +I0408 08:12:49.452875 31616 solver.cpp:218] Iteration 4068 (2.38262 iter/s, 5.03648s/12 iters), loss = 3.28184 +I0408 08:12:49.452922 31616 solver.cpp:237] Train net output #0: loss = 3.28184 (* 1 = 3.28184 loss) +I0408 08:12:49.452934 31616 sgd_solver.cpp:105] Iteration 4068, lr = 0.000153139 +I0408 08:12:53.991739 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 08:12:57.121907 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 08:12:59.443238 31616 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 08:12:59.443344 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:13:02.425042 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:13:04.040304 31616 solver.cpp:397] Test net output #0: accuracy = 0.137255 +I0408 08:13:04.040350 31616 solver.cpp:397] Test net output #1: loss = 3.94385 (* 1 = 3.94385 loss) +I0408 08:13:04.131348 31616 solver.cpp:218] Iteration 4080 (0.817553 iter/s, 14.6779s/12 iters), loss = 3.17375 +I0408 08:13:04.131397 31616 solver.cpp:237] Train net output #0: loss = 3.17375 (* 1 = 3.17375 loss) +I0408 08:13:04.131409 31616 sgd_solver.cpp:105] Iteration 4080, lr = 0.000150239 +I0408 08:13:08.699779 31616 solver.cpp:218] Iteration 4092 (2.62684 iter/s, 4.56823s/12 iters), loss = 3.42679 +I0408 08:13:08.699826 31616 solver.cpp:237] Train net output #0: loss = 3.42679 (* 1 = 3.42679 loss) +I0408 08:13:08.699837 31616 sgd_solver.cpp:105] Iteration 4092, lr = 0.000147394 +I0408 08:13:13.673195 31616 solver.cpp:218] Iteration 4104 (2.41293 iter/s, 4.9732s/12 iters), loss = 3.51938 +I0408 08:13:13.673240 31616 solver.cpp:237] Train net output #0: loss = 3.51938 (* 1 = 3.51938 loss) +I0408 08:13:13.673251 31616 sgd_solver.cpp:105] Iteration 4104, lr = 0.000144602 +I0408 08:13:18.647600 31616 solver.cpp:218] Iteration 4116 (2.41245 iter/s, 4.97419s/12 iters), loss = 3.45164 +I0408 08:13:18.647648 31616 solver.cpp:237] Train net output #0: loss = 3.45164 (* 1 = 3.45164 loss) +I0408 08:13:18.647660 31616 sgd_solver.cpp:105] Iteration 4116, lr = 0.000141864 +I0408 08:13:23.643328 31616 solver.cpp:218] Iteration 4128 (2.40216 iter/s, 4.99551s/12 iters), loss = 3.12911 +I0408 08:13:23.643374 31616 solver.cpp:237] Train net output #0: loss = 3.12911 (* 1 = 3.12911 loss) +I0408 08:13:23.643386 31616 sgd_solver.cpp:105] Iteration 4128, lr = 0.000139177 +I0408 08:13:28.625419 31616 solver.cpp:218] Iteration 4140 (2.40873 iter/s, 4.98187s/12 iters), loss = 3.42797 +I0408 08:13:28.625483 31616 solver.cpp:237] Train net output #0: loss = 3.42797 (* 1 = 3.42797 loss) +I0408 08:13:28.625499 31616 sgd_solver.cpp:105] Iteration 4140, lr = 0.000136541 +I0408 08:13:31.481263 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:13:34.023475 31616 solver.cpp:218] Iteration 4152 (2.22312 iter/s, 5.39781s/12 iters), loss = 3.27412 +I0408 08:13:34.023522 31616 solver.cpp:237] Train net output #0: loss = 3.27412 (* 1 = 3.27412 loss) +I0408 08:13:34.023535 31616 sgd_solver.cpp:105] Iteration 4152, lr = 0.000133956 +I0408 08:13:35.681429 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:13:39.014807 31616 solver.cpp:218] Iteration 4164 (2.40427 iter/s, 4.99111s/12 iters), loss = 3.45628 +I0408 08:13:39.014853 31616 solver.cpp:237] Train net output #0: loss = 3.45628 (* 1 = 3.45628 loss) +I0408 08:13:39.014865 31616 sgd_solver.cpp:105] Iteration 4164, lr = 0.000131419 +I0408 08:13:44.057144 31616 solver.cpp:218] Iteration 4176 (2.37995 iter/s, 5.04212s/12 iters), loss = 3.3423 +I0408 08:13:44.057194 31616 solver.cpp:237] Train net output #0: loss = 3.3423 (* 1 = 3.3423 loss) +I0408 08:13:44.057206 31616 sgd_solver.cpp:105] Iteration 4176, lr = 0.00012893 +I0408 08:13:46.082165 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 08:13:49.085947 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 08:13:51.388973 31616 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 08:13:51.388998 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:13:54.206394 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:13:55.866106 31616 solver.cpp:397] Test net output #0: accuracy = 0.145833 +I0408 08:13:55.866145 31616 solver.cpp:397] Test net output #1: loss = 3.92976 (* 1 = 3.92976 loss) +I0408 08:13:57.690603 31616 solver.cpp:218] Iteration 4188 (0.880219 iter/s, 13.633s/12 iters), loss = 3.54444 +I0408 08:13:57.690649 31616 solver.cpp:237] Train net output #0: loss = 3.54444 (* 1 = 3.54444 loss) +I0408 08:13:57.690660 31616 sgd_solver.cpp:105] Iteration 4188, lr = 0.000126488 +I0408 08:14:02.622189 31616 solver.cpp:218] Iteration 4200 (2.4334 iter/s, 4.93137s/12 iters), loss = 3.48685 +I0408 08:14:02.622303 31616 solver.cpp:237] Train net output #0: loss = 3.48685 (* 1 = 3.48685 loss) +I0408 08:14:02.622314 31616 sgd_solver.cpp:105] Iteration 4200, lr = 0.000124093 +I0408 08:14:07.778848 31616 solver.cpp:218] Iteration 4212 (2.32722 iter/s, 5.15637s/12 iters), loss = 3.30198 +I0408 08:14:07.778892 31616 solver.cpp:237] Train net output #0: loss = 3.30198 (* 1 = 3.30198 loss) +I0408 08:14:07.778904 31616 sgd_solver.cpp:105] Iteration 4212, lr = 0.000121743 +I0408 08:14:12.644686 31616 solver.cpp:218] Iteration 4224 (2.46628 iter/s, 4.86563s/12 iters), loss = 3.24664 +I0408 08:14:12.644739 31616 solver.cpp:237] Train net output #0: loss = 3.24664 (* 1 = 3.24664 loss) +I0408 08:14:12.644752 31616 sgd_solver.cpp:105] Iteration 4224, lr = 0.000119437 +I0408 08:14:17.662500 31616 solver.cpp:218] Iteration 4236 (2.39159 iter/s, 5.01759s/12 iters), loss = 3.44757 +I0408 08:14:17.662549 31616 solver.cpp:237] Train net output #0: loss = 3.44757 (* 1 = 3.44757 loss) +I0408 08:14:17.662559 31616 sgd_solver.cpp:105] Iteration 4236, lr = 0.000117175 +I0408 08:14:22.415172 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:14:22.645406 31616 solver.cpp:218] Iteration 4248 (2.40834 iter/s, 4.98269s/12 iters), loss = 3.28811 +I0408 08:14:22.645452 31616 solver.cpp:237] Train net output #0: loss = 3.28811 (* 1 = 3.28811 loss) +I0408 08:14:22.645464 31616 sgd_solver.cpp:105] Iteration 4248, lr = 0.000114956 +I0408 08:14:27.681033 31616 solver.cpp:218] Iteration 4260 (2.38312 iter/s, 5.03541s/12 iters), loss = 3.49976 +I0408 08:14:27.681082 31616 solver.cpp:237] Train net output #0: loss = 3.49976 (* 1 = 3.49976 loss) +I0408 08:14:27.681093 31616 sgd_solver.cpp:105] Iteration 4260, lr = 0.000112779 +I0408 08:14:32.667853 31616 solver.cpp:218] Iteration 4272 (2.40645 iter/s, 4.9866s/12 iters), loss = 3.27963 +I0408 08:14:32.667958 31616 solver.cpp:237] Train net output #0: loss = 3.27963 (* 1 = 3.27963 loss) +I0408 08:14:32.667970 31616 sgd_solver.cpp:105] Iteration 4272, lr = 0.000110643 +I0408 08:14:37.238435 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 08:14:40.329362 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 08:14:42.657132 31616 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 08:14:42.657158 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:14:45.441901 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:14:47.137472 31616 solver.cpp:397] Test net output #0: accuracy = 0.139093 +I0408 08:14:47.137521 31616 solver.cpp:397] Test net output #1: loss = 3.91481 (* 1 = 3.91481 loss) +I0408 08:14:47.228806 31616 solver.cpp:218] Iteration 4284 (0.824154 iter/s, 14.5604s/12 iters), loss = 3.49614 +I0408 08:14:47.228853 31616 solver.cpp:237] Train net output #0: loss = 3.49614 (* 1 = 3.49614 loss) +I0408 08:14:47.228864 31616 sgd_solver.cpp:105] Iteration 4284, lr = 0.000108548 +I0408 08:14:51.491111 31616 solver.cpp:218] Iteration 4296 (2.81552 iter/s, 4.26209s/12 iters), loss = 3.22578 +I0408 08:14:51.491204 31616 solver.cpp:237] Train net output #0: loss = 3.22578 (* 1 = 3.22578 loss) +I0408 08:14:51.491219 31616 sgd_solver.cpp:105] Iteration 4296, lr = 0.000106492 +I0408 08:14:56.665611 31616 solver.cpp:218] Iteration 4308 (2.31917 iter/s, 5.17426s/12 iters), loss = 3.42893 +I0408 08:14:56.665652 31616 solver.cpp:237] Train net output #0: loss = 3.42893 (* 1 = 3.42893 loss) +I0408 08:14:56.665661 31616 sgd_solver.cpp:105] Iteration 4308, lr = 0.000104475 +I0408 08:15:01.765425 31616 solver.cpp:218] Iteration 4320 (2.35312 iter/s, 5.0996s/12 iters), loss = 3.52168 +I0408 08:15:01.765462 31616 solver.cpp:237] Train net output #0: loss = 3.52168 (* 1 = 3.52168 loss) +I0408 08:15:01.765471 31616 sgd_solver.cpp:105] Iteration 4320, lr = 0.000102497 +I0408 08:15:06.717475 31616 solver.cpp:218] Iteration 4332 (2.42334 iter/s, 4.95185s/12 iters), loss = 3.34948 +I0408 08:15:06.717610 31616 solver.cpp:237] Train net output #0: loss = 3.34948 (* 1 = 3.34948 loss) +I0408 08:15:06.717620 31616 sgd_solver.cpp:105] Iteration 4332, lr = 0.000100556 +I0408 08:15:11.726895 31616 solver.cpp:218] Iteration 4344 (2.39563 iter/s, 5.00912s/12 iters), loss = 3.35869 +I0408 08:15:11.726928 31616 solver.cpp:237] Train net output #0: loss = 3.35869 (* 1 = 3.35869 loss) +I0408 08:15:11.726935 31616 sgd_solver.cpp:105] Iteration 4344, lr = 9.86514e-05 +I0408 08:15:13.648878 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:15:16.778534 31616 solver.cpp:218] Iteration 4356 (2.37556 iter/s, 5.05143s/12 iters), loss = 3.35964 +I0408 08:15:16.778579 31616 solver.cpp:237] Train net output #0: loss = 3.35964 (* 1 = 3.35964 loss) +I0408 08:15:16.778590 31616 sgd_solver.cpp:105] Iteration 4356, lr = 9.67831e-05 +I0408 08:15:22.031456 31616 solver.cpp:218] Iteration 4368 (2.28454 iter/s, 5.2527s/12 iters), loss = 3.51172 +I0408 08:15:22.031504 31616 solver.cpp:237] Train net output #0: loss = 3.51172 (* 1 = 3.51172 loss) +I0408 08:15:22.031517 31616 sgd_solver.cpp:105] Iteration 4368, lr = 9.49503e-05 +I0408 08:15:27.089555 31616 solver.cpp:218] Iteration 4380 (2.37254 iter/s, 5.05788s/12 iters), loss = 3.22259 +I0408 08:15:27.089601 31616 solver.cpp:237] Train net output #0: loss = 3.22259 (* 1 = 3.22259 loss) +I0408 08:15:27.089612 31616 sgd_solver.cpp:105] Iteration 4380, lr = 9.31521e-05 +I0408 08:15:29.124517 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 08:15:32.152354 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 08:15:34.532014 31616 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 08:15:34.532038 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:15:37.243600 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:15:38.992259 31616 solver.cpp:397] Test net output #0: accuracy = 0.13848 +I0408 08:15:38.992305 31616 solver.cpp:397] Test net output #1: loss = 3.90618 (* 1 = 3.90618 loss) +I0408 08:15:40.991557 31616 solver.cpp:218] Iteration 4392 (0.863216 iter/s, 13.9015s/12 iters), loss = 3.33143 +I0408 08:15:40.991617 31616 solver.cpp:237] Train net output #0: loss = 3.33143 (* 1 = 3.33143 loss) +I0408 08:15:40.991631 31616 sgd_solver.cpp:105] Iteration 4392, lr = 9.13879e-05 +I0408 08:15:46.294520 31616 solver.cpp:218] Iteration 4404 (2.26299 iter/s, 5.30273s/12 iters), loss = 3.59832 +I0408 08:15:46.294562 31616 solver.cpp:237] Train net output #0: loss = 3.59832 (* 1 = 3.59832 loss) +I0408 08:15:46.294574 31616 sgd_solver.cpp:105] Iteration 4404, lr = 8.96572e-05 +I0408 08:15:51.236129 31616 solver.cpp:218] Iteration 4416 (2.42846 iter/s, 4.9414s/12 iters), loss = 3.24514 +I0408 08:15:51.236164 31616 solver.cpp:237] Train net output #0: loss = 3.24514 (* 1 = 3.24514 loss) +I0408 08:15:51.236172 31616 sgd_solver.cpp:105] Iteration 4416, lr = 8.79593e-05 +I0408 08:15:56.286785 31616 solver.cpp:218] Iteration 4428 (2.37603 iter/s, 5.05044s/12 iters), loss = 3.15138 +I0408 08:15:56.286834 31616 solver.cpp:237] Train net output #0: loss = 3.15138 (* 1 = 3.15138 loss) +I0408 08:15:56.286845 31616 sgd_solver.cpp:105] Iteration 4428, lr = 8.62935e-05 +I0408 08:16:01.340132 31616 solver.cpp:218] Iteration 4440 (2.37477 iter/s, 5.05313s/12 iters), loss = 3.31588 +I0408 08:16:01.340173 31616 solver.cpp:237] Train net output #0: loss = 3.31588 (* 1 = 3.31588 loss) +I0408 08:16:01.340183 31616 sgd_solver.cpp:105] Iteration 4440, lr = 8.46593e-05 +I0408 08:16:05.374133 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:16:06.354945 31616 solver.cpp:218] Iteration 4452 (2.39301 iter/s, 5.0146s/12 iters), loss = 3.35244 +I0408 08:16:06.354995 31616 solver.cpp:237] Train net output #0: loss = 3.35244 (* 1 = 3.35244 loss) +I0408 08:16:06.355005 31616 sgd_solver.cpp:105] Iteration 4452, lr = 8.3056e-05 +I0408 08:16:11.397087 31616 solver.cpp:218] Iteration 4464 (2.38005 iter/s, 5.04192s/12 iters), loss = 3.47392 +I0408 08:16:11.397217 31616 solver.cpp:237] Train net output #0: loss = 3.47392 (* 1 = 3.47392 loss) +I0408 08:16:11.397229 31616 sgd_solver.cpp:105] Iteration 4464, lr = 8.14831e-05 +I0408 08:16:16.364267 31616 solver.cpp:218] Iteration 4476 (2.416 iter/s, 4.96689s/12 iters), loss = 3.34414 +I0408 08:16:16.364307 31616 solver.cpp:237] Train net output #0: loss = 3.34414 (* 1 = 3.34414 loss) +I0408 08:16:16.364317 31616 sgd_solver.cpp:105] Iteration 4476, lr = 7.99399e-05 +I0408 08:16:20.919070 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 08:16:23.897980 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 08:16:26.224347 31616 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 08:16:26.224371 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:16:28.918891 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:16:30.697877 31616 solver.cpp:397] Test net output #0: accuracy = 0.144608 +I0408 08:16:30.697924 31616 solver.cpp:397] Test net output #1: loss = 3.90053 (* 1 = 3.90053 loss) +I0408 08:16:30.789155 31616 solver.cpp:218] Iteration 4488 (0.831925 iter/s, 14.4244s/12 iters), loss = 3.3816 +I0408 08:16:30.789202 31616 solver.cpp:237] Train net output #0: loss = 3.3816 (* 1 = 3.3816 loss) +I0408 08:16:30.789213 31616 sgd_solver.cpp:105] Iteration 4488, lr = 7.8426e-05 +I0408 08:16:35.388197 31616 solver.cpp:218] Iteration 4500 (2.60936 iter/s, 4.59884s/12 iters), loss = 3.16625 +I0408 08:16:35.388240 31616 solver.cpp:237] Train net output #0: loss = 3.16625 (* 1 = 3.16625 loss) +I0408 08:16:35.388252 31616 sgd_solver.cpp:105] Iteration 4500, lr = 7.69408e-05 +I0408 08:16:40.418081 31616 solver.cpp:218] Iteration 4512 (2.38584 iter/s, 5.02967s/12 iters), loss = 3.40715 +I0408 08:16:40.418129 31616 solver.cpp:237] Train net output #0: loss = 3.40715 (* 1 = 3.40715 loss) +I0408 08:16:40.418141 31616 sgd_solver.cpp:105] Iteration 4512, lr = 7.54837e-05 +I0408 08:16:45.442375 31616 solver.cpp:218] Iteration 4524 (2.3885 iter/s, 5.02406s/12 iters), loss = 3.30406 +I0408 08:16:45.442490 31616 solver.cpp:237] Train net output #0: loss = 3.30406 (* 1 = 3.30406 loss) +I0408 08:16:45.442502 31616 sgd_solver.cpp:105] Iteration 4524, lr = 7.40542e-05 +I0408 08:16:50.431447 31616 solver.cpp:218] Iteration 4536 (2.40539 iter/s, 4.98879s/12 iters), loss = 3.2431 +I0408 08:16:50.431486 31616 solver.cpp:237] Train net output #0: loss = 3.2431 (* 1 = 3.2431 loss) +I0408 08:16:50.431494 31616 sgd_solver.cpp:105] Iteration 4536, lr = 7.26517e-05 +I0408 08:16:55.459590 31616 solver.cpp:218] Iteration 4548 (2.38667 iter/s, 5.02793s/12 iters), loss = 3.46962 +I0408 08:16:55.459636 31616 solver.cpp:237] Train net output #0: loss = 3.46962 (* 1 = 3.46962 loss) +I0408 08:16:55.459648 31616 sgd_solver.cpp:105] Iteration 4548, lr = 7.12758e-05 +I0408 08:16:56.768453 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:17:00.840152 31616 solver.cpp:218] Iteration 4560 (2.23035 iter/s, 5.38033s/12 iters), loss = 3.09842 +I0408 08:17:00.840204 31616 solver.cpp:237] Train net output #0: loss = 3.09842 (* 1 = 3.09842 loss) +I0408 08:17:00.840216 31616 sgd_solver.cpp:105] Iteration 4560, lr = 6.9926e-05 +I0408 08:17:06.202210 31616 solver.cpp:218] Iteration 4572 (2.23804 iter/s, 5.36183s/12 iters), loss = 3.38445 +I0408 08:17:06.202253 31616 solver.cpp:237] Train net output #0: loss = 3.38445 (* 1 = 3.38445 loss) +I0408 08:17:06.202263 31616 sgd_solver.cpp:105] Iteration 4572, lr = 6.86018e-05 +I0408 08:17:11.248553 31616 solver.cpp:218] Iteration 4584 (2.37806 iter/s, 5.04613s/12 iters), loss = 3.37198 +I0408 08:17:11.248598 31616 solver.cpp:237] Train net output #0: loss = 3.37198 (* 1 = 3.37198 loss) +I0408 08:17:11.248610 31616 sgd_solver.cpp:105] Iteration 4584, lr = 6.73026e-05 +I0408 08:17:13.290439 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 08:17:16.323405 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 08:17:18.652626 31616 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 08:17:18.652655 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:17:21.262461 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:17:23.090238 31616 solver.cpp:397] Test net output #0: accuracy = 0.144608 +I0408 08:17:23.090272 31616 solver.cpp:397] Test net output #1: loss = 3.88988 (* 1 = 3.88988 loss) +I0408 08:17:25.030089 31616 solver.cpp:218] Iteration 4596 (0.870761 iter/s, 13.781s/12 iters), loss = 3.23796 +I0408 08:17:25.030143 31616 solver.cpp:237] Train net output #0: loss = 3.23796 (* 1 = 3.23796 loss) +I0408 08:17:25.030153 31616 sgd_solver.cpp:105] Iteration 4596, lr = 6.6028e-05 +I0408 08:17:30.101382 31616 solver.cpp:218] Iteration 4608 (2.36637 iter/s, 5.07107s/12 iters), loss = 3.39027 +I0408 08:17:30.101424 31616 solver.cpp:237] Train net output #0: loss = 3.39027 (* 1 = 3.39027 loss) +I0408 08:17:30.101434 31616 sgd_solver.cpp:105] Iteration 4608, lr = 6.47775e-05 +I0408 08:17:35.116541 31616 solver.cpp:218] Iteration 4620 (2.39285 iter/s, 5.01495s/12 iters), loss = 3.57876 +I0408 08:17:35.116580 31616 solver.cpp:237] Train net output #0: loss = 3.57876 (* 1 = 3.57876 loss) +I0408 08:17:35.116587 31616 sgd_solver.cpp:105] Iteration 4620, lr = 6.35508e-05 +I0408 08:17:40.164918 31616 solver.cpp:218] Iteration 4632 (2.3771 iter/s, 5.04817s/12 iters), loss = 3.10703 +I0408 08:17:40.164959 31616 solver.cpp:237] Train net output #0: loss = 3.10703 (* 1 = 3.10703 loss) +I0408 08:17:40.164968 31616 sgd_solver.cpp:105] Iteration 4632, lr = 6.23473e-05 +I0408 08:17:45.220134 31616 solver.cpp:218] Iteration 4644 (2.37389 iter/s, 5.055s/12 iters), loss = 3.28388 +I0408 08:17:45.220170 31616 solver.cpp:237] Train net output #0: loss = 3.28388 (* 1 = 3.28388 loss) +I0408 08:17:45.220178 31616 sgd_solver.cpp:105] Iteration 4644, lr = 6.11665e-05 +I0408 08:17:48.608186 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:17:50.218197 31616 solver.cpp:218] Iteration 4656 (2.40103 iter/s, 4.99786s/12 iters), loss = 3.62192 +I0408 08:17:50.218235 31616 solver.cpp:237] Train net output #0: loss = 3.62192 (* 1 = 3.62192 loss) +I0408 08:17:50.218242 31616 sgd_solver.cpp:105] Iteration 4656, lr = 6.00081e-05 +I0408 08:17:55.231053 31616 solver.cpp:218] Iteration 4668 (2.39394 iter/s, 5.01265s/12 iters), loss = 3.29419 +I0408 08:17:55.231087 31616 solver.cpp:237] Train net output #0: loss = 3.29419 (* 1 = 3.29419 loss) +I0408 08:17:55.231096 31616 sgd_solver.cpp:105] Iteration 4668, lr = 5.88717e-05 +I0408 08:18:00.215637 31616 solver.cpp:218] Iteration 4680 (2.40752 iter/s, 4.98438s/12 iters), loss = 3.34508 +I0408 08:18:00.215672 31616 solver.cpp:237] Train net output #0: loss = 3.34508 (* 1 = 3.34508 loss) +I0408 08:18:00.215678 31616 sgd_solver.cpp:105] Iteration 4680, lr = 5.77568e-05 +I0408 08:18:04.721927 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 08:18:07.778697 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 08:18:10.224488 31616 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 08:18:10.224516 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:18:12.820256 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:18:14.680388 31616 solver.cpp:397] Test net output #0: accuracy = 0.139706 +I0408 08:18:14.680435 31616 solver.cpp:397] Test net output #1: loss = 3.90413 (* 1 = 3.90413 loss) +I0408 08:18:14.771497 31616 solver.cpp:218] Iteration 4692 (0.824439 iter/s, 14.5554s/12 iters), loss = 3.25086 +I0408 08:18:14.771546 31616 solver.cpp:237] Train net output #0: loss = 3.25086 (* 1 = 3.25086 loss) +I0408 08:18:14.771559 31616 sgd_solver.cpp:105] Iteration 4692, lr = 5.6663e-05 +I0408 08:18:19.086534 31616 solver.cpp:218] Iteration 4704 (2.7811 iter/s, 4.31484s/12 iters), loss = 3.40187 +I0408 08:18:19.086663 31616 solver.cpp:237] Train net output #0: loss = 3.40187 (* 1 = 3.40187 loss) +I0408 08:18:19.086675 31616 sgd_solver.cpp:105] Iteration 4704, lr = 5.55899e-05 +I0408 08:18:24.061975 31616 solver.cpp:218] Iteration 4716 (2.41199 iter/s, 4.97514s/12 iters), loss = 3.46747 +I0408 08:18:24.062019 31616 solver.cpp:237] Train net output #0: loss = 3.46747 (* 1 = 3.46747 loss) +I0408 08:18:24.062031 31616 sgd_solver.cpp:105] Iteration 4716, lr = 5.45371e-05 +I0408 08:18:29.095806 31616 solver.cpp:218] Iteration 4728 (2.38397 iter/s, 5.03362s/12 iters), loss = 3.42128 +I0408 08:18:29.095850 31616 solver.cpp:237] Train net output #0: loss = 3.42128 (* 1 = 3.42128 loss) +I0408 08:18:29.095862 31616 sgd_solver.cpp:105] Iteration 4728, lr = 5.35043e-05 +I0408 08:18:34.136124 31616 solver.cpp:218] Iteration 4740 (2.3809 iter/s, 5.0401s/12 iters), loss = 3.40982 +I0408 08:18:34.136170 31616 solver.cpp:237] Train net output #0: loss = 3.40982 (* 1 = 3.40982 loss) +I0408 08:18:34.136183 31616 sgd_solver.cpp:105] Iteration 4740, lr = 5.2491e-05 +I0408 08:18:39.180758 31616 solver.cpp:218] Iteration 4752 (2.37887 iter/s, 5.04442s/12 iters), loss = 3.48585 +I0408 08:18:39.180815 31616 solver.cpp:237] Train net output #0: loss = 3.48585 (* 1 = 3.48585 loss) +I0408 08:18:39.180830 31616 sgd_solver.cpp:105] Iteration 4752, lr = 5.14969e-05 +I0408 08:18:39.709244 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:18:44.191637 31616 solver.cpp:218] Iteration 4764 (2.3949 iter/s, 5.01066s/12 iters), loss = 3.19278 +I0408 08:18:44.191682 31616 solver.cpp:237] Train net output #0: loss = 3.19278 (* 1 = 3.19278 loss) +I0408 08:18:44.191694 31616 sgd_solver.cpp:105] Iteration 4764, lr = 5.05217e-05 +I0408 08:18:49.198812 31616 solver.cpp:218] Iteration 4776 (2.39666 iter/s, 5.00696s/12 iters), loss = 3.21319 +I0408 08:18:49.198922 31616 solver.cpp:237] Train net output #0: loss = 3.21319 (* 1 = 3.21319 loss) +I0408 08:18:49.198935 31616 sgd_solver.cpp:105] Iteration 4776, lr = 4.95649e-05 +I0408 08:18:54.258569 31616 solver.cpp:218] Iteration 4788 (2.37179 iter/s, 5.05947s/12 iters), loss = 3.20628 +I0408 08:18:54.258620 31616 solver.cpp:237] Train net output #0: loss = 3.20628 (* 1 = 3.20628 loss) +I0408 08:18:54.258632 31616 sgd_solver.cpp:105] Iteration 4788, lr = 4.86262e-05 +I0408 08:18:56.259759 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 08:18:59.281116 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 08:19:01.609931 31616 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 08:19:01.609969 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:19:04.174432 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:19:06.078675 31616 solver.cpp:397] Test net output #0: accuracy = 0.142157 +I0408 08:19:06.078722 31616 solver.cpp:397] Test net output #1: loss = 3.87755 (* 1 = 3.87755 loss) +I0408 08:19:08.028357 31616 solver.cpp:218] Iteration 4800 (0.871505 iter/s, 13.7693s/12 iters), loss = 3.1199 +I0408 08:19:08.028409 31616 solver.cpp:237] Train net output #0: loss = 3.1199 (* 1 = 3.1199 loss) +I0408 08:19:08.028420 31616 sgd_solver.cpp:105] Iteration 4800, lr = 4.77054e-05 +I0408 08:19:13.053424 31616 solver.cpp:218] Iteration 4812 (2.38813 iter/s, 5.02485s/12 iters), loss = 3.37574 +I0408 08:19:13.053468 31616 solver.cpp:237] Train net output #0: loss = 3.37574 (* 1 = 3.37574 loss) +I0408 08:19:13.053480 31616 sgd_solver.cpp:105] Iteration 4812, lr = 4.68019e-05 +I0408 08:19:18.171428 31616 solver.cpp:218] Iteration 4824 (2.34476 iter/s, 5.11779s/12 iters), loss = 3.47489 +I0408 08:19:18.171465 31616 solver.cpp:237] Train net output #0: loss = 3.47489 (* 1 = 3.47489 loss) +I0408 08:19:18.171473 31616 sgd_solver.cpp:105] Iteration 4824, lr = 4.59156e-05 +I0408 08:19:23.214457 31616 solver.cpp:218] Iteration 4836 (2.37962 iter/s, 5.04282s/12 iters), loss = 3.251 +I0408 08:19:23.214591 31616 solver.cpp:237] Train net output #0: loss = 3.251 (* 1 = 3.251 loss) +I0408 08:19:23.214607 31616 sgd_solver.cpp:105] Iteration 4836, lr = 4.5046e-05 +I0408 08:19:25.221735 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:19:28.199570 31616 solver.cpp:218] Iteration 4848 (2.40731 iter/s, 4.98481s/12 iters), loss = 3.41041 +I0408 08:19:28.199613 31616 solver.cpp:237] Train net output #0: loss = 3.41041 (* 1 = 3.41041 loss) +I0408 08:19:28.199625 31616 sgd_solver.cpp:105] Iteration 4848, lr = 4.41929e-05 +I0408 08:19:30.859331 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:19:33.183300 31616 solver.cpp:218] Iteration 4860 (2.40794 iter/s, 4.98352s/12 iters), loss = 3.00141 +I0408 08:19:33.183342 31616 solver.cpp:237] Train net output #0: loss = 3.00141 (* 1 = 3.00141 loss) +I0408 08:19:33.183354 31616 sgd_solver.cpp:105] Iteration 4860, lr = 4.3356e-05 +I0408 08:19:38.202513 31616 solver.cpp:218] Iteration 4872 (2.39091 iter/s, 5.019s/12 iters), loss = 3.27604 +I0408 08:19:38.202558 31616 solver.cpp:237] Train net output #0: loss = 3.27604 (* 1 = 3.27604 loss) +I0408 08:19:38.202569 31616 sgd_solver.cpp:105] Iteration 4872, lr = 4.25349e-05 +I0408 08:19:43.199080 31616 solver.cpp:218] Iteration 4884 (2.40175 iter/s, 4.99635s/12 iters), loss = 3.29388 +I0408 08:19:43.199123 31616 solver.cpp:237] Train net output #0: loss = 3.29388 (* 1 = 3.29388 loss) +I0408 08:19:43.199133 31616 sgd_solver.cpp:105] Iteration 4884, lr = 4.17294e-05 +I0408 08:19:47.748093 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 08:19:53.071386 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 08:19:55.389565 31616 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 08:19:55.389616 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:19:57.951390 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:20:00.137908 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:20:00.137969 31616 solver.cpp:397] Test net output #1: loss = 3.86419 (* 1 = 3.86419 loss) +I0408 08:20:00.229172 31616 solver.cpp:218] Iteration 4896 (0.70466 iter/s, 17.0295s/12 iters), loss = 3.30328 +I0408 08:20:00.229215 31616 solver.cpp:237] Train net output #0: loss = 3.30328 (* 1 = 3.30328 loss) +I0408 08:20:00.229225 31616 sgd_solver.cpp:105] Iteration 4896, lr = 4.09391e-05 +I0408 08:20:04.586544 31616 solver.cpp:218] Iteration 4908 (2.75407 iter/s, 4.35718s/12 iters), loss = 3.52969 +I0408 08:20:04.586586 31616 solver.cpp:237] Train net output #0: loss = 3.52969 (* 1 = 3.52969 loss) +I0408 08:20:04.586597 31616 sgd_solver.cpp:105] Iteration 4908, lr = 4.01638e-05 +I0408 08:20:09.655419 31616 solver.cpp:218] Iteration 4920 (2.36749 iter/s, 5.06867s/12 iters), loss = 3.3 +I0408 08:20:09.655457 31616 solver.cpp:237] Train net output #0: loss = 3.3 (* 1 = 3.3 loss) +I0408 08:20:09.655465 31616 sgd_solver.cpp:105] Iteration 4920, lr = 3.94032e-05 +I0408 08:20:14.686408 31616 solver.cpp:218] Iteration 4932 (2.38532 iter/s, 5.03078s/12 iters), loss = 3.37912 +I0408 08:20:14.686448 31616 solver.cpp:237] Train net output #0: loss = 3.37912 (* 1 = 3.37912 loss) +I0408 08:20:14.686458 31616 sgd_solver.cpp:105] Iteration 4932, lr = 3.8657e-05 +I0408 08:20:19.579344 31616 solver.cpp:218] Iteration 4944 (2.45262 iter/s, 4.89272s/12 iters), loss = 3.359 +I0408 08:20:19.579391 31616 solver.cpp:237] Train net output #0: loss = 3.359 (* 1 = 3.359 loss) +I0408 08:20:19.579403 31616 sgd_solver.cpp:105] Iteration 4944, lr = 3.79249e-05 +I0408 08:20:24.413832 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:20:24.611301 31616 solver.cpp:218] Iteration 4956 (2.38486 iter/s, 5.03174s/12 iters), loss = 3.24102 +I0408 08:20:24.611349 31616 solver.cpp:237] Train net output #0: loss = 3.24102 (* 1 = 3.24102 loss) +I0408 08:20:24.611361 31616 sgd_solver.cpp:105] Iteration 4956, lr = 3.72066e-05 +I0408 08:20:29.564504 31616 solver.cpp:218] Iteration 4968 (2.42278 iter/s, 4.95299s/12 iters), loss = 3.39631 +I0408 08:20:29.564615 31616 solver.cpp:237] Train net output #0: loss = 3.39631 (* 1 = 3.39631 loss) +I0408 08:20:29.564628 31616 sgd_solver.cpp:105] Iteration 4968, lr = 3.6502e-05 +I0408 08:20:34.587162 31616 solver.cpp:218] Iteration 4980 (2.38931 iter/s, 5.02238s/12 iters), loss = 3.02468 +I0408 08:20:34.587209 31616 solver.cpp:237] Train net output #0: loss = 3.02468 (* 1 = 3.02468 loss) +I0408 08:20:34.587220 31616 sgd_solver.cpp:105] Iteration 4980, lr = 3.58107e-05 +I0408 08:20:39.574256 31616 solver.cpp:218] Iteration 4992 (2.40631 iter/s, 4.98688s/12 iters), loss = 3.35754 +I0408 08:20:39.574292 31616 solver.cpp:237] Train net output #0: loss = 3.35754 (* 1 = 3.35754 loss) +I0408 08:20:39.574301 31616 sgd_solver.cpp:105] Iteration 4992, lr = 3.51326e-05 +I0408 08:20:41.619143 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 08:20:47.811890 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 08:20:50.781114 31616 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 08:20:50.781138 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:20:53.283807 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:20:55.256986 31616 solver.cpp:397] Test net output #0: accuracy = 0.147059 +I0408 08:20:55.257031 31616 solver.cpp:397] Test net output #1: loss = 3.87101 (* 1 = 3.87101 loss) +I0408 08:20:57.204054 31616 solver.cpp:218] Iteration 5004 (0.680689 iter/s, 17.6292s/12 iters), loss = 3.06516 +I0408 08:20:57.204097 31616 solver.cpp:237] Train net output #0: loss = 3.06516 (* 1 = 3.06516 loss) +I0408 08:20:57.204106 31616 sgd_solver.cpp:105] Iteration 5004, lr = 3.44672e-05 +I0408 08:21:02.212747 31616 solver.cpp:218] Iteration 5016 (2.39594 iter/s, 5.00848s/12 iters), loss = 3.34036 +I0408 08:21:02.212828 31616 solver.cpp:237] Train net output #0: loss = 3.34036 (* 1 = 3.34036 loss) +I0408 08:21:02.212837 31616 sgd_solver.cpp:105] Iteration 5016, lr = 3.38145e-05 +I0408 08:21:07.224170 31616 solver.cpp:218] Iteration 5028 (2.39465 iter/s, 5.01117s/12 iters), loss = 3.45308 +I0408 08:21:07.224207 31616 solver.cpp:237] Train net output #0: loss = 3.45308 (* 1 = 3.45308 loss) +I0408 08:21:07.224215 31616 sgd_solver.cpp:105] Iteration 5028, lr = 3.31741e-05 +I0408 08:21:12.179831 31616 solver.cpp:218] Iteration 5040 (2.42158 iter/s, 4.95545s/12 iters), loss = 3.21041 +I0408 08:21:12.179873 31616 solver.cpp:237] Train net output #0: loss = 3.21041 (* 1 = 3.21041 loss) +I0408 08:21:12.179883 31616 sgd_solver.cpp:105] Iteration 5040, lr = 3.25458e-05 +I0408 08:21:17.167641 31616 solver.cpp:218] Iteration 5052 (2.40597 iter/s, 4.98759s/12 iters), loss = 3.41201 +I0408 08:21:17.167688 31616 solver.cpp:237] Train net output #0: loss = 3.41201 (* 1 = 3.41201 loss) +I0408 08:21:17.167699 31616 sgd_solver.cpp:105] Iteration 5052, lr = 3.19295e-05 +I0408 08:21:19.073235 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:21:22.120553 31616 solver.cpp:218] Iteration 5064 (2.42292 iter/s, 4.9527s/12 iters), loss = 3.37441 +I0408 08:21:22.120591 31616 solver.cpp:237] Train net output #0: loss = 3.37441 (* 1 = 3.37441 loss) +I0408 08:21:22.120600 31616 sgd_solver.cpp:105] Iteration 5064, lr = 3.13248e-05 +I0408 08:21:27.229178 31616 solver.cpp:218] Iteration 5076 (2.34907 iter/s, 5.10841s/12 iters), loss = 3.3098 +I0408 08:21:27.229226 31616 solver.cpp:237] Train net output #0: loss = 3.3098 (* 1 = 3.3098 loss) +I0408 08:21:27.229239 31616 sgd_solver.cpp:105] Iteration 5076, lr = 3.07316e-05 +I0408 08:21:32.255306 31616 solver.cpp:218] Iteration 5088 (2.38763 iter/s, 5.02591s/12 iters), loss = 2.99942 +I0408 08:21:32.255360 31616 solver.cpp:237] Train net output #0: loss = 2.99942 (* 1 = 2.99942 loss) +I0408 08:21:32.255368 31616 sgd_solver.cpp:105] Iteration 5088, lr = 3.01496e-05 +I0408 08:21:36.809877 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 08:21:41.441824 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 08:21:47.001075 31616 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 08:21:47.001107 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:21:49.451608 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:21:51.469614 31616 solver.cpp:397] Test net output #0: accuracy = 0.148284 +I0408 08:21:51.469660 31616 solver.cpp:397] Test net output #1: loss = 3.8627 (* 1 = 3.8627 loss) +I0408 08:21:51.560561 31616 solver.cpp:218] Iteration 5100 (0.621614 iter/s, 19.3046s/12 iters), loss = 3.34935 +I0408 08:21:51.560608 31616 solver.cpp:237] Train net output #0: loss = 3.34935 (* 1 = 3.34935 loss) +I0408 08:21:51.560619 31616 sgd_solver.cpp:105] Iteration 5100, lr = 2.95786e-05 +I0408 08:21:56.070734 31616 solver.cpp:218] Iteration 5112 (2.66077 iter/s, 4.50997s/12 iters), loss = 3.43997 +I0408 08:21:56.070771 31616 solver.cpp:237] Train net output #0: loss = 3.43997 (* 1 = 3.43997 loss) +I0408 08:21:56.070781 31616 sgd_solver.cpp:105] Iteration 5112, lr = 2.90184e-05 +I0408 08:22:01.163908 31616 solver.cpp:218] Iteration 5124 (2.35619 iter/s, 5.09296s/12 iters), loss = 3.27208 +I0408 08:22:01.163954 31616 solver.cpp:237] Train net output #0: loss = 3.27208 (* 1 = 3.27208 loss) +I0408 08:22:01.163964 31616 sgd_solver.cpp:105] Iteration 5124, lr = 2.84689e-05 +I0408 08:22:06.192411 31616 solver.cpp:218] Iteration 5136 (2.3865 iter/s, 5.02829s/12 iters), loss = 3.30623 +I0408 08:22:06.192549 31616 solver.cpp:237] Train net output #0: loss = 3.30623 (* 1 = 3.30623 loss) +I0408 08:22:06.192562 31616 sgd_solver.cpp:105] Iteration 5136, lr = 2.79297e-05 +I0408 08:22:11.172379 31616 solver.cpp:218] Iteration 5148 (2.4098 iter/s, 4.97966s/12 iters), loss = 3.19492 +I0408 08:22:11.172427 31616 solver.cpp:237] Train net output #0: loss = 3.19492 (* 1 = 3.19492 loss) +I0408 08:22:11.172438 31616 sgd_solver.cpp:105] Iteration 5148, lr = 2.74008e-05 +I0408 08:22:15.292285 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:22:16.236593 31616 solver.cpp:218] Iteration 5160 (2.36967 iter/s, 5.06399s/12 iters), loss = 3.38631 +I0408 08:22:16.236639 31616 solver.cpp:237] Train net output #0: loss = 3.38631 (* 1 = 3.38631 loss) +I0408 08:22:16.236649 31616 sgd_solver.cpp:105] Iteration 5160, lr = 2.68819e-05 +I0408 08:22:21.270475 31616 solver.cpp:218] Iteration 5172 (2.38395 iter/s, 5.03367s/12 iters), loss = 3.3672 +I0408 08:22:21.270521 31616 solver.cpp:237] Train net output #0: loss = 3.3672 (* 1 = 3.3672 loss) +I0408 08:22:21.270534 31616 sgd_solver.cpp:105] Iteration 5172, lr = 2.63728e-05 +I0408 08:22:26.324944 31616 solver.cpp:218] Iteration 5184 (2.37424 iter/s, 5.05425s/12 iters), loss = 3.25895 +I0408 08:22:26.324988 31616 solver.cpp:237] Train net output #0: loss = 3.25895 (* 1 = 3.25895 loss) +I0408 08:22:26.325001 31616 sgd_solver.cpp:105] Iteration 5184, lr = 2.58733e-05 +I0408 08:22:31.374752 31616 solver.cpp:218] Iteration 5196 (2.37643 iter/s, 5.04959s/12 iters), loss = 3.20738 +I0408 08:22:31.374799 31616 solver.cpp:237] Train net output #0: loss = 3.20738 (* 1 = 3.20738 loss) +I0408 08:22:31.374810 31616 sgd_solver.cpp:105] Iteration 5196, lr = 2.53833e-05 +I0408 08:22:33.445405 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 08:22:39.109964 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 08:22:44.614540 31616 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 08:22:44.614575 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:22:47.019302 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:22:49.075390 31616 solver.cpp:397] Test net output #0: accuracy = 0.148284 +I0408 08:22:49.075425 31616 solver.cpp:397] Test net output #1: loss = 3.86579 (* 1 = 3.86579 loss) +I0408 08:22:51.045543 31616 solver.cpp:218] Iteration 5208 (0.610063 iter/s, 19.6701s/12 iters), loss = 3.10444 +I0408 08:22:51.045588 31616 solver.cpp:237] Train net output #0: loss = 3.10444 (* 1 = 3.10444 loss) +I0408 08:22:51.045598 31616 sgd_solver.cpp:105] Iteration 5208, lr = 2.49026e-05 +I0408 08:22:56.086436 31616 solver.cpp:218] Iteration 5220 (2.38063 iter/s, 5.04068s/12 iters), loss = 3.39579 +I0408 08:22:56.086475 31616 solver.cpp:237] Train net output #0: loss = 3.39579 (* 1 = 3.39579 loss) +I0408 08:22:56.086485 31616 sgd_solver.cpp:105] Iteration 5220, lr = 2.4431e-05 +I0408 08:23:01.142966 31616 solver.cpp:218] Iteration 5232 (2.37327 iter/s, 5.05632s/12 iters), loss = 3.39371 +I0408 08:23:01.143013 31616 solver.cpp:237] Train net output #0: loss = 3.39371 (* 1 = 3.39371 loss) +I0408 08:23:01.143025 31616 sgd_solver.cpp:105] Iteration 5232, lr = 2.39684e-05 +I0408 08:23:06.276264 31616 solver.cpp:218] Iteration 5244 (2.33778 iter/s, 5.13307s/12 iters), loss = 3.20834 +I0408 08:23:06.276309 31616 solver.cpp:237] Train net output #0: loss = 3.20834 (* 1 = 3.20834 loss) +I0408 08:23:06.276321 31616 sgd_solver.cpp:105] Iteration 5244, lr = 2.35144e-05 +I0408 08:23:11.260799 31616 solver.cpp:218] Iteration 5256 (2.40755 iter/s, 4.98432s/12 iters), loss = 3.32495 +I0408 08:23:11.260936 31616 solver.cpp:237] Train net output #0: loss = 3.32495 (* 1 = 3.32495 loss) +I0408 08:23:11.260949 31616 sgd_solver.cpp:105] Iteration 5256, lr = 2.30691e-05 +I0408 08:23:12.556793 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:23:16.299890 31616 solver.cpp:218] Iteration 5268 (2.38153 iter/s, 5.03878s/12 iters), loss = 3.08814 +I0408 08:23:16.299935 31616 solver.cpp:237] Train net output #0: loss = 3.08814 (* 1 = 3.08814 loss) +I0408 08:23:16.299947 31616 sgd_solver.cpp:105] Iteration 5268, lr = 2.26322e-05 +I0408 08:23:21.353619 31616 solver.cpp:218] Iteration 5280 (2.37459 iter/s, 5.05351s/12 iters), loss = 3.39819 +I0408 08:23:21.353664 31616 solver.cpp:237] Train net output #0: loss = 3.39819 (* 1 = 3.39819 loss) +I0408 08:23:21.353674 31616 sgd_solver.cpp:105] Iteration 5280, lr = 2.22036e-05 +I0408 08:23:26.291182 31616 solver.cpp:218] Iteration 5292 (2.43045 iter/s, 4.93735s/12 iters), loss = 3.34026 +I0408 08:23:26.291230 31616 solver.cpp:237] Train net output #0: loss = 3.34026 (* 1 = 3.34026 loss) +I0408 08:23:26.291242 31616 sgd_solver.cpp:105] Iteration 5292, lr = 2.17831e-05 +I0408 08:23:30.883316 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 08:23:35.971262 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 08:23:41.989156 31616 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 08:23:41.989260 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:23:44.363548 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:23:46.461647 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:23:46.461696 31616 solver.cpp:397] Test net output #1: loss = 3.85979 (* 1 = 3.85979 loss) +I0408 08:23:46.553030 31616 solver.cpp:218] Iteration 5304 (0.592267 iter/s, 20.2611s/12 iters), loss = 3.3093 +I0408 08:23:46.553078 31616 solver.cpp:237] Train net output #0: loss = 3.3093 (* 1 = 3.3093 loss) +I0408 08:23:46.553089 31616 sgd_solver.cpp:105] Iteration 5304, lr = 2.13706e-05 +I0408 08:23:51.034096 31616 solver.cpp:218] Iteration 5316 (2.67806 iter/s, 4.48086s/12 iters), loss = 3.20575 +I0408 08:23:51.034143 31616 solver.cpp:237] Train net output #0: loss = 3.20575 (* 1 = 3.20575 loss) +I0408 08:23:51.034154 31616 sgd_solver.cpp:105] Iteration 5316, lr = 2.09659e-05 +I0408 08:23:56.309662 31616 solver.cpp:218] Iteration 5328 (2.27474 iter/s, 5.27534s/12 iters), loss = 3.34202 +I0408 08:23:56.309705 31616 solver.cpp:237] Train net output #0: loss = 3.34202 (* 1 = 3.34202 loss) +I0408 08:23:56.309715 31616 sgd_solver.cpp:105] Iteration 5328, lr = 2.05688e-05 +I0408 08:24:01.348052 31616 solver.cpp:218] Iteration 5340 (2.38182 iter/s, 5.03817s/12 iters), loss = 3.27148 +I0408 08:24:01.348104 31616 solver.cpp:237] Train net output #0: loss = 3.27148 (* 1 = 3.27148 loss) +I0408 08:24:01.348115 31616 sgd_solver.cpp:105] Iteration 5340, lr = 2.01793e-05 +I0408 08:24:06.348954 31616 solver.cpp:218] Iteration 5352 (2.39967 iter/s, 5.00068s/12 iters), loss = 3.30796 +I0408 08:24:06.348999 31616 solver.cpp:237] Train net output #0: loss = 3.30796 (* 1 = 3.30796 loss) +I0408 08:24:06.349009 31616 sgd_solver.cpp:105] Iteration 5352, lr = 1.97971e-05 +I0408 08:24:09.797652 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:24:11.375365 31616 solver.cpp:218] Iteration 5364 (2.38749 iter/s, 5.02619s/12 iters), loss = 3.43398 +I0408 08:24:11.375404 31616 solver.cpp:237] Train net output #0: loss = 3.43398 (* 1 = 3.43398 loss) +I0408 08:24:11.375416 31616 sgd_solver.cpp:105] Iteration 5364, lr = 1.94222e-05 +I0408 08:24:16.672168 31616 solver.cpp:218] Iteration 5376 (2.26561 iter/s, 5.29659s/12 iters), loss = 3.20355 +I0408 08:24:16.672313 31616 solver.cpp:237] Train net output #0: loss = 3.20355 (* 1 = 3.20355 loss) +I0408 08:24:16.672327 31616 sgd_solver.cpp:105] Iteration 5376, lr = 1.90544e-05 +I0408 08:24:21.777130 31616 solver.cpp:218] Iteration 5388 (2.3508 iter/s, 5.10465s/12 iters), loss = 3.29897 +I0408 08:24:21.777175 31616 solver.cpp:237] Train net output #0: loss = 3.29897 (* 1 = 3.29897 loss) +I0408 08:24:21.777186 31616 sgd_solver.cpp:105] Iteration 5388, lr = 1.86935e-05 +I0408 08:24:26.766538 31616 solver.cpp:218] Iteration 5400 (2.4052 iter/s, 4.98919s/12 iters), loss = 3.35498 +I0408 08:24:26.766580 31616 solver.cpp:237] Train net output #0: loss = 3.35498 (* 1 = 3.35498 loss) +I0408 08:24:26.766590 31616 sgd_solver.cpp:105] Iteration 5400, lr = 1.83395e-05 +I0408 08:24:28.833333 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 08:24:32.990829 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 08:24:36.685386 31616 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 08:24:36.685420 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:24:39.031677 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:24:41.166698 31616 solver.cpp:397] Test net output #0: accuracy = 0.153186 +I0408 08:24:41.166736 31616 solver.cpp:397] Test net output #1: loss = 3.85291 (* 1 = 3.85291 loss) +I0408 08:24:43.008674 31616 solver.cpp:218] Iteration 5412 (0.738845 iter/s, 16.2416s/12 iters), loss = 3.19893 +I0408 08:24:43.008724 31616 solver.cpp:237] Train net output #0: loss = 3.19893 (* 1 = 3.19893 loss) +I0408 08:24:43.008735 31616 sgd_solver.cpp:105] Iteration 5412, lr = 1.79922e-05 +I0408 08:24:48.191529 31616 solver.cpp:218] Iteration 5424 (2.31543 iter/s, 5.18263s/12 iters), loss = 3.31384 +I0408 08:24:48.191615 31616 solver.cpp:237] Train net output #0: loss = 3.31384 (* 1 = 3.31384 loss) +I0408 08:24:48.191628 31616 sgd_solver.cpp:105] Iteration 5424, lr = 1.76515e-05 +I0408 08:24:53.227658 31616 solver.cpp:218] Iteration 5436 (2.3829 iter/s, 5.03587s/12 iters), loss = 3.34584 +I0408 08:24:53.227708 31616 solver.cpp:237] Train net output #0: loss = 3.34584 (* 1 = 3.34584 loss) +I0408 08:24:53.227720 31616 sgd_solver.cpp:105] Iteration 5436, lr = 1.73172e-05 +I0408 08:24:58.264688 31616 solver.cpp:218] Iteration 5448 (2.38246 iter/s, 5.03681s/12 iters), loss = 3.28734 +I0408 08:24:58.264736 31616 solver.cpp:237] Train net output #0: loss = 3.28734 (* 1 = 3.28734 loss) +I0408 08:24:58.264748 31616 sgd_solver.cpp:105] Iteration 5448, lr = 1.69892e-05 +I0408 08:25:03.403403 31616 solver.cpp:218] Iteration 5460 (2.33531 iter/s, 5.13849s/12 iters), loss = 3.33196 +I0408 08:25:03.403445 31616 solver.cpp:237] Train net output #0: loss = 3.33196 (* 1 = 3.33196 loss) +I0408 08:25:03.403455 31616 sgd_solver.cpp:105] Iteration 5460, lr = 1.66675e-05 +I0408 08:25:04.026001 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:25:08.617460 31616 solver.cpp:218] Iteration 5472 (2.30157 iter/s, 5.21384s/12 iters), loss = 3.2516 +I0408 08:25:08.617499 31616 solver.cpp:237] Train net output #0: loss = 3.2516 (* 1 = 3.2516 loss) +I0408 08:25:08.617508 31616 sgd_solver.cpp:105] Iteration 5472, lr = 1.63518e-05 +I0408 08:25:13.590584 31616 solver.cpp:218] Iteration 5484 (2.41307 iter/s, 4.97291s/12 iters), loss = 2.97083 +I0408 08:25:13.590621 31616 solver.cpp:237] Train net output #0: loss = 2.97083 (* 1 = 2.97083 loss) +I0408 08:25:13.590629 31616 sgd_solver.cpp:105] Iteration 5484, lr = 1.60422e-05 +I0408 08:25:18.926779 31616 solver.cpp:218] Iteration 5496 (2.24889 iter/s, 5.33598s/12 iters), loss = 3.16755 +I0408 08:25:18.926932 31616 solver.cpp:237] Train net output #0: loss = 3.16755 (* 1 = 3.16755 loss) +I0408 08:25:18.926946 31616 sgd_solver.cpp:105] Iteration 5496, lr = 1.57384e-05 +I0408 08:25:23.514488 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 08:25:27.774662 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 08:25:31.466892 31616 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 08:25:31.466923 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:25:33.746644 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:25:35.924170 31616 solver.cpp:397] Test net output #0: accuracy = 0.147059 +I0408 08:25:35.924216 31616 solver.cpp:397] Test net output #1: loss = 3.86179 (* 1 = 3.86179 loss) +I0408 08:25:36.015611 31616 solver.cpp:218] Iteration 5508 (0.702242 iter/s, 17.0881s/12 iters), loss = 3.16899 +I0408 08:25:36.015683 31616 solver.cpp:237] Train net output #0: loss = 3.16899 (* 1 = 3.16899 loss) +I0408 08:25:36.015700 31616 sgd_solver.cpp:105] Iteration 5508, lr = 1.54403e-05 +I0408 08:25:40.216073 31616 solver.cpp:218] Iteration 5520 (2.85697 iter/s, 4.20025s/12 iters), loss = 3.23552 +I0408 08:25:40.216120 31616 solver.cpp:237] Train net output #0: loss = 3.23552 (* 1 = 3.23552 loss) +I0408 08:25:40.216132 31616 sgd_solver.cpp:105] Iteration 5520, lr = 1.51479e-05 +I0408 08:25:42.626154 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:25:45.180694 31616 solver.cpp:218] Iteration 5532 (2.41721 iter/s, 4.96441s/12 iters), loss = 3.20728 +I0408 08:25:45.180739 31616 solver.cpp:237] Train net output #0: loss = 3.20728 (* 1 = 3.20728 loss) +I0408 08:25:45.180752 31616 sgd_solver.cpp:105] Iteration 5532, lr = 1.4861e-05 +I0408 08:25:50.206820 31616 solver.cpp:218] Iteration 5544 (2.38763 iter/s, 5.02591s/12 iters), loss = 3.14503 +I0408 08:25:50.206900 31616 solver.cpp:237] Train net output #0: loss = 3.14503 (* 1 = 3.14503 loss) +I0408 08:25:50.206913 31616 sgd_solver.cpp:105] Iteration 5544, lr = 1.45796e-05 +I0408 08:25:55.220432 31616 solver.cpp:218] Iteration 5556 (2.3936 iter/s, 5.01336s/12 iters), loss = 3.39797 +I0408 08:25:55.220476 31616 solver.cpp:237] Train net output #0: loss = 3.39797 (* 1 = 3.39797 loss) +I0408 08:25:55.220489 31616 sgd_solver.cpp:105] Iteration 5556, lr = 1.43035e-05 +I0408 08:25:57.918640 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:26:00.235287 31616 solver.cpp:218] Iteration 5568 (2.39299 iter/s, 5.01464s/12 iters), loss = 3.04199 +I0408 08:26:00.235337 31616 solver.cpp:237] Train net output #0: loss = 3.04199 (* 1 = 3.04199 loss) +I0408 08:26:00.235348 31616 sgd_solver.cpp:105] Iteration 5568, lr = 1.40326e-05 +I0408 08:26:05.222270 31616 solver.cpp:218] Iteration 5580 (2.40637 iter/s, 4.98676s/12 iters), loss = 3.33206 +I0408 08:26:05.222316 31616 solver.cpp:237] Train net output #0: loss = 3.33206 (* 1 = 3.33206 loss) +I0408 08:26:05.222327 31616 sgd_solver.cpp:105] Iteration 5580, lr = 1.37668e-05 +I0408 08:26:10.516597 31616 solver.cpp:218] Iteration 5592 (2.26667 iter/s, 5.2941s/12 iters), loss = 3.41479 +I0408 08:26:10.516644 31616 solver.cpp:237] Train net output #0: loss = 3.41479 (* 1 = 3.41479 loss) +I0408 08:26:10.516654 31616 sgd_solver.cpp:105] Iteration 5592, lr = 1.35061e-05 +I0408 08:26:15.817221 31616 solver.cpp:218] Iteration 5604 (2.26398 iter/s, 5.3004s/12 iters), loss = 3.31891 +I0408 08:26:15.817255 31616 solver.cpp:237] Train net output #0: loss = 3.31891 (* 1 = 3.31891 loss) +I0408 08:26:15.817262 31616 sgd_solver.cpp:105] Iteration 5604, lr = 1.32503e-05 +I0408 08:26:17.978848 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 08:26:22.239348 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 08:26:26.092208 31616 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 08:26:26.092243 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:26:28.307824 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:26:30.654902 31616 solver.cpp:397] Test net output #0: accuracy = 0.151348 +I0408 08:26:30.654951 31616 solver.cpp:397] Test net output #1: loss = 3.84758 (* 1 = 3.84758 loss) +I0408 08:26:32.652766 31616 solver.cpp:218] Iteration 5616 (0.712802 iter/s, 16.835s/12 iters), loss = 3.33916 +I0408 08:26:32.652817 31616 solver.cpp:237] Train net output #0: loss = 3.33916 (* 1 = 3.33916 loss) +I0408 08:26:32.652827 31616 sgd_solver.cpp:105] Iteration 5616, lr = 1.29994e-05 +I0408 08:26:38.062642 31616 solver.cpp:218] Iteration 5628 (2.21826 iter/s, 5.40965s/12 iters), loss = 3.21 +I0408 08:26:38.062687 31616 solver.cpp:237] Train net output #0: loss = 3.21 (* 1 = 3.21 loss) +I0408 08:26:38.062696 31616 sgd_solver.cpp:105] Iteration 5628, lr = 1.27532e-05 +I0408 08:26:43.031296 31616 solver.cpp:218] Iteration 5640 (2.41525 iter/s, 4.96844s/12 iters), loss = 3.445 +I0408 08:26:43.031334 31616 solver.cpp:237] Train net output #0: loss = 3.445 (* 1 = 3.445 loss) +I0408 08:26:43.031343 31616 sgd_solver.cpp:105] Iteration 5640, lr = 1.25117e-05 +I0408 08:26:48.025720 31616 solver.cpp:218] Iteration 5652 (2.40278 iter/s, 4.99421s/12 iters), loss = 3.46959 +I0408 08:26:48.025768 31616 solver.cpp:237] Train net output #0: loss = 3.46959 (* 1 = 3.46959 loss) +I0408 08:26:48.025780 31616 sgd_solver.cpp:105] Iteration 5652, lr = 1.22748e-05 +I0408 08:26:52.883069 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:26:53.052280 31616 solver.cpp:218] Iteration 5664 (2.38742 iter/s, 5.02634s/12 iters), loss = 3.0836 +I0408 08:26:53.052322 31616 solver.cpp:237] Train net output #0: loss = 3.0836 (* 1 = 3.0836 loss) +I0408 08:26:53.052332 31616 sgd_solver.cpp:105] Iteration 5664, lr = 1.20423e-05 +I0408 08:26:58.387032 31616 solver.cpp:218] Iteration 5676 (2.2495 iter/s, 5.33453s/12 iters), loss = 3.45828 +I0408 08:26:58.387070 31616 solver.cpp:237] Train net output #0: loss = 3.45828 (* 1 = 3.45828 loss) +I0408 08:26:58.387079 31616 sgd_solver.cpp:105] Iteration 5676, lr = 1.18142e-05 +I0408 08:27:03.522488 31616 solver.cpp:218] Iteration 5688 (2.33679 iter/s, 5.13524s/12 iters), loss = 3.01447 +I0408 08:27:03.522527 31616 solver.cpp:237] Train net output #0: loss = 3.01447 (* 1 = 3.01447 loss) +I0408 08:27:03.522536 31616 sgd_solver.cpp:105] Iteration 5688, lr = 1.15905e-05 +I0408 08:27:08.545727 31616 solver.cpp:218] Iteration 5700 (2.389 iter/s, 5.02302s/12 iters), loss = 3.25092 +I0408 08:27:08.545766 31616 solver.cpp:237] Train net output #0: loss = 3.25092 (* 1 = 3.25092 loss) +I0408 08:27:08.545776 31616 sgd_solver.cpp:105] Iteration 5700, lr = 1.1371e-05 +I0408 08:27:13.289435 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 08:27:20.070325 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 08:27:25.769842 31616 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 08:27:25.769919 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:27:27.984532 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:27:30.232493 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:27:30.232542 31616 solver.cpp:397] Test net output #1: loss = 3.85668 (* 1 = 3.85668 loss) +I0408 08:27:30.323716 31616 solver.cpp:218] Iteration 5712 (0.551034 iter/s, 21.7772s/12 iters), loss = 3.04481 +I0408 08:27:30.323766 31616 solver.cpp:237] Train net output #0: loss = 3.04481 (* 1 = 3.04481 loss) +I0408 08:27:30.323777 31616 sgd_solver.cpp:105] Iteration 5712, lr = 1.11557e-05 +I0408 08:27:34.627547 31616 solver.cpp:218] Iteration 5724 (2.78834 iter/s, 4.30364s/12 iters), loss = 3.40646 +I0408 08:27:34.627580 31616 solver.cpp:237] Train net output #0: loss = 3.40646 (* 1 = 3.40646 loss) +I0408 08:27:34.627589 31616 sgd_solver.cpp:105] Iteration 5724, lr = 1.09444e-05 +I0408 08:27:39.584904 31616 solver.cpp:218] Iteration 5736 (2.42075 iter/s, 4.95715s/12 iters), loss = 3.35659 +I0408 08:27:39.584955 31616 solver.cpp:237] Train net output #0: loss = 3.35659 (* 1 = 3.35659 loss) +I0408 08:27:39.584967 31616 sgd_solver.cpp:105] Iteration 5736, lr = 1.07371e-05 +I0408 08:27:44.587258 31616 solver.cpp:218] Iteration 5748 (2.39898 iter/s, 5.00213s/12 iters), loss = 3.29693 +I0408 08:27:44.587307 31616 solver.cpp:237] Train net output #0: loss = 3.29693 (* 1 = 3.29693 loss) +I0408 08:27:44.587319 31616 sgd_solver.cpp:105] Iteration 5748, lr = 1.05338e-05 +I0408 08:27:49.602880 31616 solver.cpp:218] Iteration 5760 (2.39263 iter/s, 5.0154s/12 iters), loss = 3.38212 +I0408 08:27:49.602931 31616 solver.cpp:237] Train net output #0: loss = 3.38212 (* 1 = 3.38212 loss) +I0408 08:27:49.602941 31616 sgd_solver.cpp:105] Iteration 5760, lr = 1.03343e-05 +I0408 08:27:51.528442 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:27:54.562569 31616 solver.cpp:218] Iteration 5772 (2.41961 iter/s, 4.95947s/12 iters), loss = 3.3882 +I0408 08:27:54.562614 31616 solver.cpp:237] Train net output #0: loss = 3.3882 (* 1 = 3.3882 loss) +I0408 08:27:54.562623 31616 sgd_solver.cpp:105] Iteration 5772, lr = 1.01386e-05 +I0408 08:27:59.561740 31616 solver.cpp:218] Iteration 5784 (2.4005 iter/s, 4.99895s/12 iters), loss = 3.36207 +I0408 08:27:59.561852 31616 solver.cpp:237] Train net output #0: loss = 3.36207 (* 1 = 3.36207 loss) +I0408 08:27:59.561864 31616 sgd_solver.cpp:105] Iteration 5784, lr = 9.94657e-06 +I0408 08:28:04.573181 31616 solver.cpp:218] Iteration 5796 (2.39466 iter/s, 5.01116s/12 iters), loss = 3.12302 +I0408 08:28:04.573231 31616 solver.cpp:237] Train net output #0: loss = 3.12302 (* 1 = 3.12302 loss) +I0408 08:28:04.573243 31616 sgd_solver.cpp:105] Iteration 5796, lr = 9.7582e-06 +I0408 08:28:09.584087 31616 solver.cpp:218] Iteration 5808 (2.39488 iter/s, 5.01068s/12 iters), loss = 3.41599 +I0408 08:28:09.584126 31616 solver.cpp:237] Train net output #0: loss = 3.41599 (* 1 = 3.41599 loss) +I0408 08:28:09.584134 31616 sgd_solver.cpp:105] Iteration 5808, lr = 9.5734e-06 +I0408 08:28:11.613010 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 08:28:15.982117 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 08:28:19.726797 31616 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 08:28:19.726819 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:28:21.823704 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:28:24.117630 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:28:24.117678 31616 solver.cpp:397] Test net output #1: loss = 3.85089 (* 1 = 3.85089 loss) +I0408 08:28:26.102618 31616 solver.cpp:218] Iteration 5820 (0.726482 iter/s, 16.518s/12 iters), loss = 3.31013 +I0408 08:28:26.102667 31616 solver.cpp:237] Train net output #0: loss = 3.31013 (* 1 = 3.31013 loss) +I0408 08:28:26.102679 31616 sgd_solver.cpp:105] Iteration 5820, lr = 9.3921e-06 +I0408 08:28:31.190199 31616 solver.cpp:218] Iteration 5832 (2.35879 iter/s, 5.08736s/12 iters), loss = 3.20774 +I0408 08:28:31.190295 31616 solver.cpp:237] Train net output #0: loss = 3.20774 (* 1 = 3.20774 loss) +I0408 08:28:31.190308 31616 sgd_solver.cpp:105] Iteration 5832, lr = 9.21423e-06 +I0408 08:28:36.260591 31616 solver.cpp:218] Iteration 5844 (2.36681 iter/s, 5.07013s/12 iters), loss = 3.35769 +I0408 08:28:36.260637 31616 solver.cpp:237] Train net output #0: loss = 3.35769 (* 1 = 3.35769 loss) +I0408 08:28:36.260648 31616 sgd_solver.cpp:105] Iteration 5844, lr = 9.03973e-06 +I0408 08:28:41.175375 31616 solver.cpp:218] Iteration 5856 (2.44172 iter/s, 4.91457s/12 iters), loss = 3.16509 +I0408 08:28:41.175422 31616 solver.cpp:237] Train net output #0: loss = 3.16509 (* 1 = 3.16509 loss) +I0408 08:28:41.175436 31616 sgd_solver.cpp:105] Iteration 5856, lr = 8.86854e-06 +I0408 08:28:45.399540 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:28:46.216305 31616 solver.cpp:218] Iteration 5868 (2.38062 iter/s, 5.04071s/12 iters), loss = 3.11306 +I0408 08:28:46.216352 31616 solver.cpp:237] Train net output #0: loss = 3.11306 (* 1 = 3.11306 loss) +I0408 08:28:46.216364 31616 sgd_solver.cpp:105] Iteration 5868, lr = 8.70058e-06 +I0408 08:28:51.191845 31616 solver.cpp:218] Iteration 5880 (2.41191 iter/s, 4.97532s/12 iters), loss = 3.52969 +I0408 08:28:51.191891 31616 solver.cpp:237] Train net output #0: loss = 3.52969 (* 1 = 3.52969 loss) +I0408 08:28:51.191902 31616 sgd_solver.cpp:105] Iteration 5880, lr = 8.53581e-06 +I0408 08:28:56.225104 31616 solver.cpp:218] Iteration 5892 (2.38424 iter/s, 5.03304s/12 iters), loss = 3.35271 +I0408 08:28:56.225150 31616 solver.cpp:237] Train net output #0: loss = 3.35271 (* 1 = 3.35271 loss) +I0408 08:28:56.225160 31616 sgd_solver.cpp:105] Iteration 5892, lr = 8.37416e-06 +I0408 08:29:01.262979 31616 solver.cpp:218] Iteration 5904 (2.38206 iter/s, 5.03766s/12 iters), loss = 3.18375 +I0408 08:29:01.263121 31616 solver.cpp:237] Train net output #0: loss = 3.18375 (* 1 = 3.18375 loss) +I0408 08:29:01.263134 31616 sgd_solver.cpp:105] Iteration 5904, lr = 8.21557e-06 +I0408 08:29:05.754638 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 08:29:10.095127 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 08:29:13.320051 31616 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 08:29:13.320076 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:29:15.518864 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:29:17.852165 31616 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0408 08:29:17.852200 31616 solver.cpp:397] Test net output #1: loss = 3.84827 (* 1 = 3.84827 loss) +I0408 08:29:17.943213 31616 solver.cpp:218] Iteration 5916 (0.719444 iter/s, 16.6796s/12 iters), loss = 3.23404 +I0408 08:29:17.943253 31616 solver.cpp:237] Train net output #0: loss = 3.23404 (* 1 = 3.23404 loss) +I0408 08:29:17.943262 31616 sgd_solver.cpp:105] Iteration 5916, lr = 8.05998e-06 +I0408 08:29:22.468539 31616 solver.cpp:218] Iteration 5928 (2.65186 iter/s, 4.52513s/12 iters), loss = 3.29655 +I0408 08:29:22.468580 31616 solver.cpp:237] Train net output #0: loss = 3.29655 (* 1 = 3.29655 loss) +I0408 08:29:22.468590 31616 sgd_solver.cpp:105] Iteration 5928, lr = 7.90734e-06 +I0408 08:29:27.917929 31616 solver.cpp:218] Iteration 5940 (2.20217 iter/s, 5.44916s/12 iters), loss = 3.3757 +I0408 08:29:27.917986 31616 solver.cpp:237] Train net output #0: loss = 3.3757 (* 1 = 3.3757 loss) +I0408 08:29:27.917999 31616 sgd_solver.cpp:105] Iteration 5940, lr = 7.75759e-06 +I0408 08:29:32.963774 31616 solver.cpp:218] Iteration 5952 (2.3783 iter/s, 5.04562s/12 iters), loss = 3.09153 +I0408 08:29:32.963867 31616 solver.cpp:237] Train net output #0: loss = 3.09153 (* 1 = 3.09153 loss) +I0408 08:29:32.963876 31616 sgd_solver.cpp:105] Iteration 5952, lr = 7.61068e-06 +I0408 08:29:38.035154 31616 solver.cpp:218] Iteration 5964 (2.36635 iter/s, 5.07111s/12 iters), loss = 3.18533 +I0408 08:29:38.035212 31616 solver.cpp:237] Train net output #0: loss = 3.18533 (* 1 = 3.18533 loss) +I0408 08:29:38.035228 31616 sgd_solver.cpp:105] Iteration 5964, lr = 7.46654e-06 +I0408 08:29:39.355314 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:29:43.025128 31616 solver.cpp:218] Iteration 5976 (2.40493 iter/s, 4.98974s/12 iters), loss = 3.0543 +I0408 08:29:43.025177 31616 solver.cpp:237] Train net output #0: loss = 3.0543 (* 1 = 3.0543 loss) +I0408 08:29:43.025187 31616 sgd_solver.cpp:105] Iteration 5976, lr = 7.32514e-06 +I0408 08:29:48.198459 31616 solver.cpp:218] Iteration 5988 (2.31969 iter/s, 5.17311s/12 iters), loss = 3.38941 +I0408 08:29:48.198495 31616 solver.cpp:237] Train net output #0: loss = 3.38941 (* 1 = 3.38941 loss) +I0408 08:29:48.198504 31616 sgd_solver.cpp:105] Iteration 5988, lr = 7.18642e-06 +I0408 08:29:53.219660 31616 solver.cpp:218] Iteration 6000 (2.38997 iter/s, 5.02099s/12 iters), loss = 3.22189 +I0408 08:29:53.219702 31616 solver.cpp:237] Train net output #0: loss = 3.22189 (* 1 = 3.22189 loss) +I0408 08:29:53.219712 31616 sgd_solver.cpp:105] Iteration 6000, lr = 7.05032e-06 +I0408 08:29:58.509155 31616 solver.cpp:218] Iteration 6012 (2.26875 iter/s, 5.28927s/12 iters), loss = 3.18168 +I0408 08:29:58.509212 31616 solver.cpp:237] Train net output #0: loss = 3.18168 (* 1 = 3.18168 loss) +I0408 08:29:58.509223 31616 sgd_solver.cpp:105] Iteration 6012, lr = 6.9168e-06 +I0408 08:30:00.533124 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 08:30:05.318994 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 08:30:07.650614 31616 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 08:30:07.650641 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:30:09.814193 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:30:12.190716 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:30:12.190765 31616 solver.cpp:397] Test net output #1: loss = 3.85352 (* 1 = 3.85352 loss) +I0408 08:30:14.097056 31616 solver.cpp:218] Iteration 6024 (0.769855 iter/s, 15.5873s/12 iters), loss = 3.27557 +I0408 08:30:14.097095 31616 solver.cpp:237] Train net output #0: loss = 3.27557 (* 1 = 3.27557 loss) +I0408 08:30:14.097103 31616 sgd_solver.cpp:105] Iteration 6024, lr = 6.78581e-06 +I0408 08:30:19.044330 31616 solver.cpp:218] Iteration 6036 (2.42568 iter/s, 4.94706s/12 iters), loss = 3.31956 +I0408 08:30:19.044376 31616 solver.cpp:237] Train net output #0: loss = 3.31956 (* 1 = 3.31956 loss) +I0408 08:30:19.044386 31616 sgd_solver.cpp:105] Iteration 6036, lr = 6.6573e-06 +I0408 08:30:24.028353 31616 solver.cpp:218] Iteration 6048 (2.4078 iter/s, 4.9838s/12 iters), loss = 3.26941 +I0408 08:30:24.028401 31616 solver.cpp:237] Train net output #0: loss = 3.26941 (* 1 = 3.26941 loss) +I0408 08:30:24.028414 31616 sgd_solver.cpp:105] Iteration 6048, lr = 6.53122e-06 +I0408 08:30:29.051499 31616 solver.cpp:218] Iteration 6060 (2.38905 iter/s, 5.02293s/12 iters), loss = 3.21508 +I0408 08:30:29.051548 31616 solver.cpp:237] Train net output #0: loss = 3.21508 (* 1 = 3.21508 loss) +I0408 08:30:29.051560 31616 sgd_solver.cpp:105] Iteration 6060, lr = 6.40754e-06 +I0408 08:30:32.470175 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:30:33.995986 31616 solver.cpp:218] Iteration 6072 (2.42705 iter/s, 4.94427s/12 iters), loss = 3.34123 +I0408 08:30:33.996031 31616 solver.cpp:237] Train net output #0: loss = 3.34123 (* 1 = 3.34123 loss) +I0408 08:30:33.996042 31616 sgd_solver.cpp:105] Iteration 6072, lr = 6.28619e-06 +I0408 08:30:39.045348 31616 solver.cpp:218] Iteration 6084 (2.37664 iter/s, 5.04914s/12 iters), loss = 3.33526 +I0408 08:30:39.045430 31616 solver.cpp:237] Train net output #0: loss = 3.33526 (* 1 = 3.33526 loss) +I0408 08:30:39.045444 31616 sgd_solver.cpp:105] Iteration 6084, lr = 6.16714e-06 +I0408 08:30:44.013922 31616 solver.cpp:218] Iteration 6096 (2.4153 iter/s, 4.96833s/12 iters), loss = 3.35746 +I0408 08:30:44.013965 31616 solver.cpp:237] Train net output #0: loss = 3.35746 (* 1 = 3.35746 loss) +I0408 08:30:44.013973 31616 sgd_solver.cpp:105] Iteration 6096, lr = 6.05035e-06 +I0408 08:30:48.987985 31616 solver.cpp:218] Iteration 6108 (2.41261 iter/s, 4.97386s/12 iters), loss = 3.31829 +I0408 08:30:48.988020 31616 solver.cpp:237] Train net output #0: loss = 3.31829 (* 1 = 3.31829 loss) +I0408 08:30:48.988027 31616 sgd_solver.cpp:105] Iteration 6108, lr = 5.93576e-06 +I0408 08:30:53.521718 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 08:30:58.551581 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 08:31:02.861202 31616 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 08:31:02.861230 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:31:04.884259 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:31:07.293810 31616 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0408 08:31:07.293859 31616 solver.cpp:397] Test net output #1: loss = 3.84923 (* 1 = 3.84923 loss) +I0408 08:31:07.385263 31616 solver.cpp:218] Iteration 6120 (0.652293 iter/s, 18.3966s/12 iters), loss = 3.3215 +I0408 08:31:07.385313 31616 solver.cpp:237] Train net output #0: loss = 3.3215 (* 1 = 3.3215 loss) +I0408 08:31:07.385324 31616 sgd_solver.cpp:105] Iteration 6120, lr = 5.82335e-06 +I0408 08:31:11.628904 31616 solver.cpp:218] Iteration 6132 (2.82789 iter/s, 4.24345s/12 iters), loss = 3.34011 +I0408 08:31:11.629011 31616 solver.cpp:237] Train net output #0: loss = 3.34011 (* 1 = 3.34011 loss) +I0408 08:31:11.629024 31616 sgd_solver.cpp:105] Iteration 6132, lr = 5.71307e-06 +I0408 08:31:16.613298 31616 solver.cpp:218] Iteration 6144 (2.40765 iter/s, 4.98412s/12 iters), loss = 3.41327 +I0408 08:31:16.613343 31616 solver.cpp:237] Train net output #0: loss = 3.41327 (* 1 = 3.41327 loss) +I0408 08:31:16.613354 31616 sgd_solver.cpp:105] Iteration 6144, lr = 5.60488e-06 +I0408 08:31:21.652040 31616 solver.cpp:218] Iteration 6156 (2.38165 iter/s, 5.03852s/12 iters), loss = 3.43229 +I0408 08:31:21.652091 31616 solver.cpp:237] Train net output #0: loss = 3.43229 (* 1 = 3.43229 loss) +I0408 08:31:21.652103 31616 sgd_solver.cpp:105] Iteration 6156, lr = 5.49873e-06 +I0408 08:31:26.665408 31616 solver.cpp:218] Iteration 6168 (2.39371 iter/s, 5.01314s/12 iters), loss = 3.16028 +I0408 08:31:26.665458 31616 solver.cpp:237] Train net output #0: loss = 3.16028 (* 1 = 3.16028 loss) +I0408 08:31:26.665470 31616 sgd_solver.cpp:105] Iteration 6168, lr = 5.39459e-06 +I0408 08:31:27.271740 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:31:31.705729 31616 solver.cpp:218] Iteration 6180 (2.3809 iter/s, 5.0401s/12 iters), loss = 3.25973 +I0408 08:31:31.705775 31616 solver.cpp:237] Train net output #0: loss = 3.25973 (* 1 = 3.25973 loss) +I0408 08:31:31.705787 31616 sgd_solver.cpp:105] Iteration 6180, lr = 5.29243e-06 +I0408 08:31:36.699165 31616 solver.cpp:218] Iteration 6192 (2.40326 iter/s, 4.99322s/12 iters), loss = 2.99059 +I0408 08:31:36.699221 31616 solver.cpp:237] Train net output #0: loss = 2.99059 (* 1 = 2.99059 loss) +I0408 08:31:36.699236 31616 sgd_solver.cpp:105] Iteration 6192, lr = 5.1922e-06 +I0408 08:31:41.654119 31616 solver.cpp:218] Iteration 6204 (2.42193 iter/s, 4.95473s/12 iters), loss = 3.09322 +I0408 08:31:41.654184 31616 solver.cpp:237] Train net output #0: loss = 3.09322 (* 1 = 3.09322 loss) +I0408 08:31:41.654192 31616 sgd_solver.cpp:105] Iteration 6204, lr = 5.09387e-06 +I0408 08:31:46.788313 31616 solver.cpp:218] Iteration 6216 (2.33738 iter/s, 5.13396s/12 iters), loss = 3.11826 +I0408 08:31:46.788354 31616 solver.cpp:237] Train net output #0: loss = 3.11826 (* 1 = 3.11826 loss) +I0408 08:31:46.788364 31616 sgd_solver.cpp:105] Iteration 6216, lr = 4.9974e-06 +I0408 08:31:48.998090 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 08:31:54.067435 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 08:32:00.316241 31616 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 08:32:00.316267 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:32:02.344130 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:32:03.618767 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:32:04.791937 31616 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0408 08:32:04.791980 31616 solver.cpp:397] Test net output #1: loss = 3.84732 (* 1 = 3.84732 loss) +I0408 08:32:06.705859 31616 solver.cpp:218] Iteration 6228 (0.602505 iter/s, 19.9169s/12 iters), loss = 3.2202 +I0408 08:32:06.705904 31616 solver.cpp:237] Train net output #0: loss = 3.2202 (* 1 = 3.2202 loss) +I0408 08:32:06.705915 31616 sgd_solver.cpp:105] Iteration 6228, lr = 4.90276e-06 +I0408 08:32:11.705181 31616 solver.cpp:218] Iteration 6240 (2.40043 iter/s, 4.99911s/12 iters), loss = 3.37969 +I0408 08:32:11.705328 31616 solver.cpp:237] Train net output #0: loss = 3.37969 (* 1 = 3.37969 loss) +I0408 08:32:11.705341 31616 sgd_solver.cpp:105] Iteration 6240, lr = 4.80991e-06 +I0408 08:32:16.729626 31616 solver.cpp:218] Iteration 6252 (2.38847 iter/s, 5.02413s/12 iters), loss = 3.21293 +I0408 08:32:16.729672 31616 solver.cpp:237] Train net output #0: loss = 3.21293 (* 1 = 3.21293 loss) +I0408 08:32:16.729684 31616 sgd_solver.cpp:105] Iteration 6252, lr = 4.71882e-06 +I0408 08:32:21.735725 31616 solver.cpp:218] Iteration 6264 (2.39718 iter/s, 5.00588s/12 iters), loss = 3.3938 +I0408 08:32:21.735769 31616 solver.cpp:237] Train net output #0: loss = 3.3938 (* 1 = 3.3938 loss) +I0408 08:32:21.735780 31616 sgd_solver.cpp:105] Iteration 6264, lr = 4.62946e-06 +I0408 08:32:24.464148 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:32:26.762490 31616 solver.cpp:218] Iteration 6276 (2.38732 iter/s, 5.02655s/12 iters), loss = 3.08628 +I0408 08:32:26.762537 31616 solver.cpp:237] Train net output #0: loss = 3.08628 (* 1 = 3.08628 loss) +I0408 08:32:26.762548 31616 sgd_solver.cpp:105] Iteration 6276, lr = 4.54178e-06 +I0408 08:32:31.791658 31616 solver.cpp:218] Iteration 6288 (2.38618 iter/s, 5.02895s/12 iters), loss = 3.46769 +I0408 08:32:31.791705 31616 solver.cpp:237] Train net output #0: loss = 3.46769 (* 1 = 3.46769 loss) +I0408 08:32:31.791718 31616 sgd_solver.cpp:105] Iteration 6288, lr = 4.45577e-06 +I0408 08:32:36.781514 31616 solver.cpp:218] Iteration 6300 (2.40498 iter/s, 4.98964s/12 iters), loss = 3.35253 +I0408 08:32:36.781559 31616 solver.cpp:237] Train net output #0: loss = 3.35253 (* 1 = 3.35253 loss) +I0408 08:32:36.781570 31616 sgd_solver.cpp:105] Iteration 6300, lr = 4.37139e-06 +I0408 08:32:41.788278 31616 solver.cpp:218] Iteration 6312 (2.39686 iter/s, 5.00654s/12 iters), loss = 3.37527 +I0408 08:32:41.788415 31616 solver.cpp:237] Train net output #0: loss = 3.37527 (* 1 = 3.37527 loss) +I0408 08:32:41.788429 31616 sgd_solver.cpp:105] Iteration 6312, lr = 4.2886e-06 +I0408 08:32:46.302944 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 08:32:51.161813 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 08:33:02.396637 31616 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 08:33:02.396670 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:33:04.389991 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:33:06.872965 31616 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0408 08:33:06.873008 31616 solver.cpp:397] Test net output #1: loss = 3.84472 (* 1 = 3.84472 loss) +I0408 08:33:06.964154 31616 solver.cpp:218] Iteration 6324 (0.476665 iter/s, 25.1749s/12 iters), loss = 3.45266 +I0408 08:33:06.964195 31616 solver.cpp:237] Train net output #0: loss = 3.45266 (* 1 = 3.45266 loss) +I0408 08:33:06.964205 31616 sgd_solver.cpp:105] Iteration 6324, lr = 4.20738e-06 +I0408 08:33:11.570526 31616 solver.cpp:218] Iteration 6336 (2.6052 iter/s, 4.60617s/12 iters), loss = 3.18407 +I0408 08:33:11.570571 31616 solver.cpp:237] Train net output #0: loss = 3.18407 (* 1 = 3.18407 loss) +I0408 08:33:11.570583 31616 sgd_solver.cpp:105] Iteration 6336, lr = 4.1277e-06 +I0408 08:33:16.547881 31616 solver.cpp:218] Iteration 6348 (2.41103 iter/s, 4.97713s/12 iters), loss = 3.48238 +I0408 08:33:16.547983 31616 solver.cpp:237] Train net output #0: loss = 3.48238 (* 1 = 3.48238 loss) +I0408 08:33:16.547997 31616 sgd_solver.cpp:105] Iteration 6348, lr = 4.04953e-06 +I0408 08:33:21.556514 31616 solver.cpp:218] Iteration 6360 (2.396 iter/s, 5.00836s/12 iters), loss = 3.3559 +I0408 08:33:21.556568 31616 solver.cpp:237] Train net output #0: loss = 3.3559 (* 1 = 3.3559 loss) +I0408 08:33:21.556581 31616 sgd_solver.cpp:105] Iteration 6360, lr = 3.97284e-06 +I0408 08:33:26.454479 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:33:26.594074 31616 solver.cpp:218] Iteration 6372 (2.38221 iter/s, 5.03733s/12 iters), loss = 3.31555 +I0408 08:33:26.594120 31616 solver.cpp:237] Train net output #0: loss = 3.31555 (* 1 = 3.31555 loss) +I0408 08:33:26.594130 31616 sgd_solver.cpp:105] Iteration 6372, lr = 3.89761e-06 +I0408 08:33:31.629608 31616 solver.cpp:218] Iteration 6384 (2.38317 iter/s, 5.03532s/12 iters), loss = 3.32486 +I0408 08:33:31.629654 31616 solver.cpp:237] Train net output #0: loss = 3.32486 (* 1 = 3.32486 loss) +I0408 08:33:31.629665 31616 sgd_solver.cpp:105] Iteration 6384, lr = 3.82379e-06 +I0408 08:33:36.577531 31616 solver.cpp:218] Iteration 6396 (2.42537 iter/s, 4.94771s/12 iters), loss = 3.14113 +I0408 08:33:36.577580 31616 solver.cpp:237] Train net output #0: loss = 3.14113 (* 1 = 3.14113 loss) +I0408 08:33:36.577591 31616 sgd_solver.cpp:105] Iteration 6396, lr = 3.75138e-06 +I0408 08:33:41.592520 31616 solver.cpp:218] Iteration 6408 (2.39293 iter/s, 5.01477s/12 iters), loss = 3.16522 +I0408 08:33:41.592567 31616 solver.cpp:237] Train net output #0: loss = 3.16522 (* 1 = 3.16522 loss) +I0408 08:33:41.592578 31616 sgd_solver.cpp:105] Iteration 6408, lr = 3.68033e-06 +I0408 08:33:46.642355 31616 solver.cpp:218] Iteration 6420 (2.37642 iter/s, 5.04961s/12 iters), loss = 3.10344 +I0408 08:33:46.642498 31616 solver.cpp:237] Train net output #0: loss = 3.10344 (* 1 = 3.10344 loss) +I0408 08:33:46.642510 31616 sgd_solver.cpp:105] Iteration 6420, lr = 3.61063e-06 +I0408 08:33:48.682621 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 08:34:00.515266 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 08:34:09.719628 31616 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 08:34:09.719661 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:34:11.650585 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:34:14.190075 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:34:14.190124 31616 solver.cpp:397] Test net output #1: loss = 3.84823 (* 1 = 3.84823 loss) +I0408 08:34:16.419162 31616 solver.cpp:218] Iteration 6432 (0.403013 iter/s, 29.7757s/12 iters), loss = 3.38891 +I0408 08:34:16.419206 31616 solver.cpp:237] Train net output #0: loss = 3.38891 (* 1 = 3.38891 loss) +I0408 08:34:16.419216 31616 sgd_solver.cpp:105] Iteration 6432, lr = 3.54226e-06 +I0408 08:34:21.862668 31616 solver.cpp:218] Iteration 6444 (2.20456 iter/s, 5.44328s/12 iters), loss = 3.46007 +I0408 08:34:21.862746 31616 solver.cpp:237] Train net output #0: loss = 3.46007 (* 1 = 3.46007 loss) +I0408 08:34:21.862757 31616 sgd_solver.cpp:105] Iteration 6444, lr = 3.47517e-06 +I0408 08:34:27.207454 31616 solver.cpp:218] Iteration 6456 (2.24529 iter/s, 5.34452s/12 iters), loss = 3.24758 +I0408 08:34:27.207501 31616 solver.cpp:237] Train net output #0: loss = 3.24758 (* 1 = 3.24758 loss) +I0408 08:34:27.207512 31616 sgd_solver.cpp:105] Iteration 6456, lr = 3.40936e-06 +I0408 08:34:32.229290 31616 solver.cpp:218] Iteration 6468 (2.38967 iter/s, 5.02161s/12 iters), loss = 3.32057 +I0408 08:34:32.229336 31616 solver.cpp:237] Train net output #0: loss = 3.32057 (* 1 = 3.32057 loss) +I0408 08:34:32.229347 31616 sgd_solver.cpp:105] Iteration 6468, lr = 3.34479e-06 +I0408 08:34:34.251771 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:34:37.214887 31616 solver.cpp:218] Iteration 6480 (2.40704 iter/s, 4.98538s/12 iters), loss = 3.16656 +I0408 08:34:37.214934 31616 solver.cpp:237] Train net output #0: loss = 3.16656 (* 1 = 3.16656 loss) +I0408 08:34:37.214944 31616 sgd_solver.cpp:105] Iteration 6480, lr = 3.28145e-06 +I0408 08:34:42.141856 31616 solver.cpp:218] Iteration 6492 (2.43568 iter/s, 4.92675s/12 iters), loss = 3.09726 +I0408 08:34:42.141901 31616 solver.cpp:237] Train net output #0: loss = 3.09726 (* 1 = 3.09726 loss) +I0408 08:34:42.141913 31616 sgd_solver.cpp:105] Iteration 6492, lr = 3.2193e-06 +I0408 08:34:47.168617 31616 solver.cpp:218] Iteration 6504 (2.38733 iter/s, 5.02654s/12 iters), loss = 3.04079 +I0408 08:34:47.168661 31616 solver.cpp:237] Train net output #0: loss = 3.04079 (* 1 = 3.04079 loss) +I0408 08:34:47.168673 31616 sgd_solver.cpp:105] Iteration 6504, lr = 3.15834e-06 +I0408 08:34:52.067868 31616 solver.cpp:218] Iteration 6516 (2.44946 iter/s, 4.89904s/12 iters), loss = 3.39861 +I0408 08:34:52.067983 31616 solver.cpp:237] Train net output #0: loss = 3.39861 (* 1 = 3.39861 loss) +I0408 08:34:52.067996 31616 sgd_solver.cpp:105] Iteration 6516, lr = 3.09852e-06 +I0408 08:34:56.624363 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 08:35:05.280706 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 08:35:10.634513 31616 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 08:35:10.634543 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:35:12.536142 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:35:15.103744 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:35:15.103787 31616 solver.cpp:397] Test net output #1: loss = 3.85664 (* 1 = 3.85664 loss) +I0408 08:35:15.192075 31616 solver.cpp:218] Iteration 6528 (0.518956 iter/s, 23.1233s/12 iters), loss = 3.41343 +I0408 08:35:15.192119 31616 solver.cpp:237] Train net output #0: loss = 3.41343 (* 1 = 3.41343 loss) +I0408 08:35:15.192129 31616 sgd_solver.cpp:105] Iteration 6528, lr = 3.03984e-06 +I0408 08:35:19.446523 31616 solver.cpp:218] Iteration 6540 (2.8207 iter/s, 4.25426s/12 iters), loss = 3.25876 +I0408 08:35:19.446568 31616 solver.cpp:237] Train net output #0: loss = 3.25876 (* 1 = 3.25876 loss) +I0408 08:35:19.446578 31616 sgd_solver.cpp:105] Iteration 6540, lr = 2.98228e-06 +I0408 08:35:24.519874 31616 solver.cpp:218] Iteration 6552 (2.3654 iter/s, 5.07313s/12 iters), loss = 3.35174 +I0408 08:35:24.519980 31616 solver.cpp:237] Train net output #0: loss = 3.35174 (* 1 = 3.35174 loss) +I0408 08:35:24.519992 31616 sgd_solver.cpp:105] Iteration 6552, lr = 2.9258e-06 +I0408 08:35:29.494491 31616 solver.cpp:218] Iteration 6564 (2.41238 iter/s, 4.97434s/12 iters), loss = 3.2256 +I0408 08:35:29.494536 31616 solver.cpp:237] Train net output #0: loss = 3.2256 (* 1 = 3.2256 loss) +I0408 08:35:29.494549 31616 sgd_solver.cpp:105] Iteration 6564, lr = 2.87039e-06 +I0408 08:35:33.770682 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:35:34.554764 31616 solver.cpp:218] Iteration 6576 (2.37152 iter/s, 5.06006s/12 iters), loss = 3.15813 +I0408 08:35:34.554811 31616 solver.cpp:237] Train net output #0: loss = 3.15813 (* 1 = 3.15813 loss) +I0408 08:35:34.554821 31616 sgd_solver.cpp:105] Iteration 6576, lr = 2.81603e-06 +I0408 08:35:39.569979 31616 solver.cpp:218] Iteration 6588 (2.39283 iter/s, 5.01499s/12 iters), loss = 3.35301 +I0408 08:35:39.570024 31616 solver.cpp:237] Train net output #0: loss = 3.35301 (* 1 = 3.35301 loss) +I0408 08:35:39.570034 31616 sgd_solver.cpp:105] Iteration 6588, lr = 2.7627e-06 +I0408 08:35:44.783238 31616 solver.cpp:218] Iteration 6600 (2.30192 iter/s, 5.21304s/12 iters), loss = 3.25094 +I0408 08:35:44.783283 31616 solver.cpp:237] Train net output #0: loss = 3.25094 (* 1 = 3.25094 loss) +I0408 08:35:44.783294 31616 sgd_solver.cpp:105] Iteration 6600, lr = 2.71038e-06 +I0408 08:35:49.819561 31616 solver.cpp:218] Iteration 6612 (2.3828 iter/s, 5.0361s/12 iters), loss = 3.11496 +I0408 08:35:49.819605 31616 solver.cpp:237] Train net output #0: loss = 3.11496 (* 1 = 3.11496 loss) +I0408 08:35:49.819617 31616 sgd_solver.cpp:105] Iteration 6612, lr = 2.65905e-06 +I0408 08:35:54.859656 31616 solver.cpp:218] Iteration 6624 (2.38101 iter/s, 5.03988s/12 iters), loss = 3.26604 +I0408 08:35:54.859747 31616 solver.cpp:237] Train net output #0: loss = 3.26604 (* 1 = 3.26604 loss) +I0408 08:35:54.859758 31616 sgd_solver.cpp:105] Iteration 6624, lr = 2.60869e-06 +I0408 08:35:56.884045 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 08:36:01.232319 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 08:36:04.892117 31616 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 08:36:04.892144 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:36:06.749200 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:36:09.350641 31616 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0408 08:36:09.350687 31616 solver.cpp:397] Test net output #1: loss = 3.84654 (* 1 = 3.84654 loss) +I0408 08:36:11.161470 31616 solver.cpp:218] Iteration 6636 (0.736142 iter/s, 16.3012s/12 iters), loss = 3.15032 +I0408 08:36:11.161523 31616 solver.cpp:237] Train net output #0: loss = 3.15032 (* 1 = 3.15032 loss) +I0408 08:36:11.161535 31616 sgd_solver.cpp:105] Iteration 6636, lr = 2.55929e-06 +I0408 08:36:16.185300 31616 solver.cpp:218] Iteration 6648 (2.38872 iter/s, 5.02361s/12 iters), loss = 3.42589 +I0408 08:36:16.185333 31616 solver.cpp:237] Train net output #0: loss = 3.42589 (* 1 = 3.42589 loss) +I0408 08:36:16.185343 31616 sgd_solver.cpp:105] Iteration 6648, lr = 2.51082e-06 +I0408 08:36:21.198978 31616 solver.cpp:218] Iteration 6660 (2.39355 iter/s, 5.01347s/12 iters), loss = 3.22801 +I0408 08:36:21.199020 31616 solver.cpp:237] Train net output #0: loss = 3.22801 (* 1 = 3.22801 loss) +I0408 08:36:21.199031 31616 sgd_solver.cpp:105] Iteration 6660, lr = 2.46327e-06 +I0408 08:36:26.159595 31616 solver.cpp:218] Iteration 6672 (2.41916 iter/s, 4.9604s/12 iters), loss = 3.28648 +I0408 08:36:26.159708 31616 solver.cpp:237] Train net output #0: loss = 3.28648 (* 1 = 3.28648 loss) +I0408 08:36:26.159720 31616 sgd_solver.cpp:105] Iteration 6672, lr = 2.41662e-06 +I0408 08:36:27.496767 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:36:31.056077 31616 solver.cpp:218] Iteration 6684 (2.45088 iter/s, 4.8962s/12 iters), loss = 3.16661 +I0408 08:36:31.056123 31616 solver.cpp:237] Train net output #0: loss = 3.16661 (* 1 = 3.16661 loss) +I0408 08:36:31.056134 31616 sgd_solver.cpp:105] Iteration 6684, lr = 2.37085e-06 +I0408 08:36:35.999694 31616 solver.cpp:218] Iteration 6696 (2.42748 iter/s, 4.9434s/12 iters), loss = 3.58602 +I0408 08:36:35.999737 31616 solver.cpp:237] Train net output #0: loss = 3.58602 (* 1 = 3.58602 loss) +I0408 08:36:35.999747 31616 sgd_solver.cpp:105] Iteration 6696, lr = 2.32595e-06 +I0408 08:36:41.064468 31616 solver.cpp:218] Iteration 6708 (2.36941 iter/s, 5.06456s/12 iters), loss = 3.32763 +I0408 08:36:41.064509 31616 solver.cpp:237] Train net output #0: loss = 3.32763 (* 1 = 3.32763 loss) +I0408 08:36:41.064520 31616 sgd_solver.cpp:105] Iteration 6708, lr = 2.28191e-06 +I0408 08:36:46.318017 31616 solver.cpp:218] Iteration 6720 (2.28427 iter/s, 5.25333s/12 iters), loss = 3.23526 +I0408 08:36:46.318063 31616 solver.cpp:237] Train net output #0: loss = 3.23526 (* 1 = 3.23526 loss) +I0408 08:36:46.318074 31616 sgd_solver.cpp:105] Iteration 6720, lr = 2.23869e-06 +I0408 08:36:50.902586 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 08:36:55.542481 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 08:36:59.601461 31616 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 08:36:59.601577 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:37:01.398221 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:37:04.040047 31616 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0408 08:37:04.040096 31616 solver.cpp:397] Test net output #1: loss = 3.84953 (* 1 = 3.84953 loss) +I0408 08:37:04.131484 31616 solver.cpp:218] Iteration 6732 (0.673672 iter/s, 17.8128s/12 iters), loss = 3.48208 +I0408 08:37:04.131561 31616 solver.cpp:237] Train net output #0: loss = 3.48208 (* 1 = 3.48208 loss) +I0408 08:37:04.131578 31616 sgd_solver.cpp:105] Iteration 6732, lr = 2.19629e-06 +I0408 08:37:08.678115 31616 solver.cpp:218] Iteration 6744 (2.63945 iter/s, 4.5464s/12 iters), loss = 3.42722 +I0408 08:37:08.678162 31616 solver.cpp:237] Train net output #0: loss = 3.42722 (* 1 = 3.42722 loss) +I0408 08:37:08.678174 31616 sgd_solver.cpp:105] Iteration 6744, lr = 2.1547e-06 +I0408 08:37:14.086100 31616 solver.cpp:218] Iteration 6756 (2.21904 iter/s, 5.40775s/12 iters), loss = 3.0908 +I0408 08:37:14.086148 31616 solver.cpp:237] Train net output #0: loss = 3.0908 (* 1 = 3.0908 loss) +I0408 08:37:14.086160 31616 sgd_solver.cpp:105] Iteration 6756, lr = 2.11389e-06 +I0408 08:37:19.083971 31616 solver.cpp:218] Iteration 6768 (2.40113 iter/s, 4.99765s/12 iters), loss = 3.25232 +I0408 08:37:19.084017 31616 solver.cpp:237] Train net output #0: loss = 3.25232 (* 1 = 3.25232 loss) +I0408 08:37:19.084028 31616 sgd_solver.cpp:105] Iteration 6768, lr = 2.07386e-06 +I0408 08:37:22.609416 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:37:24.112087 31616 solver.cpp:218] Iteration 6780 (2.38668 iter/s, 5.0279s/12 iters), loss = 3.46846 +I0408 08:37:24.112123 31616 solver.cpp:237] Train net output #0: loss = 3.46846 (* 1 = 3.46846 loss) +I0408 08:37:24.112131 31616 sgd_solver.cpp:105] Iteration 6780, lr = 2.03459e-06 +I0408 08:37:29.141736 31616 solver.cpp:218] Iteration 6792 (2.38595 iter/s, 5.02943s/12 iters), loss = 3.27656 +I0408 08:37:29.141784 31616 solver.cpp:237] Train net output #0: loss = 3.27656 (* 1 = 3.27656 loss) +I0408 08:37:29.141795 31616 sgd_solver.cpp:105] Iteration 6792, lr = 1.99606e-06 +I0408 08:37:34.136795 31616 solver.cpp:218] Iteration 6804 (2.40248 iter/s, 4.99484s/12 iters), loss = 3.36162 +I0408 08:37:34.136917 31616 solver.cpp:237] Train net output #0: loss = 3.36162 (* 1 = 3.36162 loss) +I0408 08:37:34.136929 31616 sgd_solver.cpp:105] Iteration 6804, lr = 1.95825e-06 +I0408 08:37:39.145059 31616 solver.cpp:218] Iteration 6816 (2.39618 iter/s, 5.00797s/12 iters), loss = 3.21296 +I0408 08:37:39.145107 31616 solver.cpp:237] Train net output #0: loss = 3.21296 (* 1 = 3.21296 loss) +I0408 08:37:39.145118 31616 sgd_solver.cpp:105] Iteration 6816, lr = 1.92117e-06 +I0408 08:37:44.176746 31616 solver.cpp:218] Iteration 6828 (2.38499 iter/s, 5.03147s/12 iters), loss = 3.26163 +I0408 08:37:44.176790 31616 solver.cpp:237] Train net output #0: loss = 3.26163 (* 1 = 3.26163 loss) +I0408 08:37:44.176801 31616 sgd_solver.cpp:105] Iteration 6828, lr = 1.88478e-06 +I0408 08:37:46.234119 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 08:37:51.133172 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 08:37:55.301250 31616 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 08:37:55.301278 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:37:57.083932 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:37:59.760707 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:37:59.760756 31616 solver.cpp:397] Test net output #1: loss = 3.85167 (* 1 = 3.85167 loss) +I0408 08:38:01.631209 31616 solver.cpp:218] Iteration 6840 (0.687527 iter/s, 17.4539s/12 iters), loss = 3.34364 +I0408 08:38:01.631253 31616 solver.cpp:237] Train net output #0: loss = 3.34364 (* 1 = 3.34364 loss) +I0408 08:38:01.631263 31616 sgd_solver.cpp:105] Iteration 6840, lr = 1.84909e-06 +I0408 08:38:06.592804 31616 solver.cpp:218] Iteration 6852 (2.41868 iter/s, 4.96138s/12 iters), loss = 3.48458 +I0408 08:38:06.592883 31616 solver.cpp:237] Train net output #0: loss = 3.48458 (* 1 = 3.48458 loss) +I0408 08:38:06.592895 31616 sgd_solver.cpp:105] Iteration 6852, lr = 1.81407e-06 +I0408 08:38:11.617285 31616 solver.cpp:218] Iteration 6864 (2.38843 iter/s, 5.02423s/12 iters), loss = 3.27987 +I0408 08:38:11.617333 31616 solver.cpp:237] Train net output #0: loss = 3.27987 (* 1 = 3.27987 loss) +I0408 08:38:11.617345 31616 sgd_solver.cpp:105] Iteration 6864, lr = 1.77972e-06 +I0408 08:38:16.588536 31616 solver.cpp:218] Iteration 6876 (2.41399 iter/s, 4.97103s/12 iters), loss = 3.37403 +I0408 08:38:16.588588 31616 solver.cpp:237] Train net output #0: loss = 3.37403 (* 1 = 3.37403 loss) +I0408 08:38:16.588600 31616 sgd_solver.cpp:105] Iteration 6876, lr = 1.74601e-06 +I0408 08:38:17.213762 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:38:21.618140 31616 solver.cpp:218] Iteration 6888 (2.38598 iter/s, 5.02938s/12 iters), loss = 3.23426 +I0408 08:38:21.618186 31616 solver.cpp:237] Train net output #0: loss = 3.23426 (* 1 = 3.23426 loss) +I0408 08:38:21.618197 31616 sgd_solver.cpp:105] Iteration 6888, lr = 1.71295e-06 +I0408 08:38:26.635972 31616 solver.cpp:218] Iteration 6900 (2.39157 iter/s, 5.01762s/12 iters), loss = 3.12523 +I0408 08:38:26.636019 31616 solver.cpp:237] Train net output #0: loss = 3.12523 (* 1 = 3.12523 loss) +I0408 08:38:26.636030 31616 sgd_solver.cpp:105] Iteration 6900, lr = 1.68051e-06 +I0408 08:38:32.018950 31616 solver.cpp:218] Iteration 6912 (2.22935 iter/s, 5.38275s/12 iters), loss = 3.05228 +I0408 08:38:32.018999 31616 solver.cpp:237] Train net output #0: loss = 3.05228 (* 1 = 3.05228 loss) +I0408 08:38:32.019011 31616 sgd_solver.cpp:105] Iteration 6912, lr = 1.64868e-06 +I0408 08:38:37.249126 31616 solver.cpp:218] Iteration 6924 (2.29448 iter/s, 5.22995s/12 iters), loss = 3.11503 +I0408 08:38:37.249279 31616 solver.cpp:237] Train net output #0: loss = 3.11503 (* 1 = 3.11503 loss) +I0408 08:38:37.249292 31616 sgd_solver.cpp:105] Iteration 6924, lr = 1.61746e-06 +I0408 08:38:41.842813 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 08:38:46.184185 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 08:38:54.534974 31616 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 08:38:54.534997 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:38:55.197566 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:38:56.276058 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:38:59.000392 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:38:59.000438 31616 solver.cpp:397] Test net output #1: loss = 3.85177 (* 1 = 3.85177 loss) +I0408 08:38:59.091662 31616 solver.cpp:218] Iteration 6936 (0.549408 iter/s, 21.8417s/12 iters), loss = 3.15667 +I0408 08:38:59.091709 31616 solver.cpp:237] Train net output #0: loss = 3.15667 (* 1 = 3.15667 loss) +I0408 08:38:59.091722 31616 sgd_solver.cpp:105] Iteration 6936, lr = 1.58683e-06 +I0408 08:39:03.655408 31616 solver.cpp:218] Iteration 6948 (2.62954 iter/s, 4.56354s/12 iters), loss = 3.2697 +I0408 08:39:03.655457 31616 solver.cpp:237] Train net output #0: loss = 3.2697 (* 1 = 3.2697 loss) +I0408 08:39:03.655469 31616 sgd_solver.cpp:105] Iteration 6948, lr = 1.55678e-06 +I0408 08:39:09.123601 31616 solver.cpp:218] Iteration 6960 (2.1946 iter/s, 5.46796s/12 iters), loss = 3.37752 +I0408 08:39:09.123703 31616 solver.cpp:237] Train net output #0: loss = 3.37752 (* 1 = 3.37752 loss) +I0408 08:39:09.123715 31616 sgd_solver.cpp:105] Iteration 6960, lr = 1.52729e-06 +I0408 08:39:14.569298 31616 solver.cpp:218] Iteration 6972 (2.20369 iter/s, 5.44541s/12 iters), loss = 3.3119 +I0408 08:39:14.569345 31616 solver.cpp:237] Train net output #0: loss = 3.3119 (* 1 = 3.3119 loss) +I0408 08:39:14.569356 31616 sgd_solver.cpp:105] Iteration 6972, lr = 1.49837e-06 +I0408 08:39:17.405339 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:39:19.659626 31616 solver.cpp:218] Iteration 6984 (2.35751 iter/s, 5.09011s/12 iters), loss = 3.15513 +I0408 08:39:19.659667 31616 solver.cpp:237] Train net output #0: loss = 3.15513 (* 1 = 3.15513 loss) +I0408 08:39:19.659677 31616 sgd_solver.cpp:105] Iteration 6984, lr = 1.46999e-06 +I0408 08:39:24.638233 31616 solver.cpp:218] Iteration 6996 (2.41042 iter/s, 4.9784s/12 iters), loss = 3.39642 +I0408 08:39:24.638281 31616 solver.cpp:237] Train net output #0: loss = 3.39642 (* 1 = 3.39642 loss) +I0408 08:39:24.638293 31616 sgd_solver.cpp:105] Iteration 6996, lr = 1.44215e-06 +I0408 08:39:29.631716 31616 solver.cpp:218] Iteration 7008 (2.40324 iter/s, 4.99326s/12 iters), loss = 3.43895 +I0408 08:39:29.631762 31616 solver.cpp:237] Train net output #0: loss = 3.43895 (* 1 = 3.43895 loss) +I0408 08:39:29.631772 31616 sgd_solver.cpp:105] Iteration 7008, lr = 1.41484e-06 +I0408 08:39:34.603225 31616 solver.cpp:218] Iteration 7020 (2.41386 iter/s, 4.97129s/12 iters), loss = 3.32431 +I0408 08:39:34.603266 31616 solver.cpp:237] Train net output #0: loss = 3.32431 (* 1 = 3.32431 loss) +I0408 08:39:34.603276 31616 sgd_solver.cpp:105] Iteration 7020, lr = 1.38805e-06 +I0408 08:39:39.537739 31616 solver.cpp:218] Iteration 7032 (2.43195 iter/s, 4.9343s/12 iters), loss = 3.52857 +I0408 08:39:39.537875 31616 solver.cpp:237] Train net output #0: loss = 3.52857 (* 1 = 3.52857 loss) +I0408 08:39:39.537887 31616 sgd_solver.cpp:105] Iteration 7032, lr = 1.36176e-06 +I0408 08:39:41.540555 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 08:39:49.478011 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 08:39:51.797149 31616 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 08:39:51.797171 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:39:53.496562 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:39:56.260334 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:39:56.260375 31616 solver.cpp:397] Test net output #1: loss = 3.84431 (* 1 = 3.84431 loss) +I0408 08:39:58.271492 31616 solver.cpp:218] Iteration 7044 (0.64058 iter/s, 18.733s/12 iters), loss = 3.38262 +I0408 08:39:58.271538 31616 solver.cpp:237] Train net output #0: loss = 3.38262 (* 1 = 3.38262 loss) +I0408 08:39:58.271548 31616 sgd_solver.cpp:105] Iteration 7044, lr = 1.33597e-06 +I0408 08:40:03.246739 31616 solver.cpp:218] Iteration 7056 (2.41204 iter/s, 4.97503s/12 iters), loss = 3.40234 +I0408 08:40:03.246786 31616 solver.cpp:237] Train net output #0: loss = 3.40234 (* 1 = 3.40234 loss) +I0408 08:40:03.246798 31616 sgd_solver.cpp:105] Iteration 7056, lr = 1.31067e-06 +I0408 08:40:08.296222 31616 solver.cpp:218] Iteration 7068 (2.37658 iter/s, 5.04927s/12 iters), loss = 3.38444 +I0408 08:40:08.296259 31616 solver.cpp:237] Train net output #0: loss = 3.38444 (* 1 = 3.38444 loss) +I0408 08:40:08.296267 31616 sgd_solver.cpp:105] Iteration 7068, lr = 1.28585e-06 +I0408 08:40:13.240579 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:40:13.351163 31616 solver.cpp:218] Iteration 7080 (2.37401 iter/s, 5.05473s/12 iters), loss = 3.20701 +I0408 08:40:13.351202 31616 solver.cpp:237] Train net output #0: loss = 3.20701 (* 1 = 3.20701 loss) +I0408 08:40:13.351209 31616 sgd_solver.cpp:105] Iteration 7080, lr = 1.2615e-06 +I0408 08:40:18.375558 31616 solver.cpp:218] Iteration 7092 (2.38845 iter/s, 5.02418s/12 iters), loss = 3.26842 +I0408 08:40:18.375603 31616 solver.cpp:237] Train net output #0: loss = 3.26842 (* 1 = 3.26842 loss) +I0408 08:40:18.375613 31616 sgd_solver.cpp:105] Iteration 7092, lr = 1.23761e-06 +I0408 08:40:23.604005 31616 solver.cpp:218] Iteration 7104 (2.29523 iter/s, 5.22822s/12 iters), loss = 3.20397 +I0408 08:40:23.604049 31616 solver.cpp:237] Train net output #0: loss = 3.20397 (* 1 = 3.20397 loss) +I0408 08:40:23.604059 31616 sgd_solver.cpp:105] Iteration 7104, lr = 1.21417e-06 +I0408 08:40:28.566360 31616 solver.cpp:218] Iteration 7116 (2.41831 iter/s, 4.96214s/12 iters), loss = 3.16155 +I0408 08:40:28.566402 31616 solver.cpp:237] Train net output #0: loss = 3.16155 (* 1 = 3.16155 loss) +I0408 08:40:28.566412 31616 sgd_solver.cpp:105] Iteration 7116, lr = 1.19118e-06 +I0408 08:40:33.560753 31616 solver.cpp:218] Iteration 7128 (2.4028 iter/s, 4.99418s/12 iters), loss = 3.21304 +I0408 08:40:33.560789 31616 solver.cpp:237] Train net output #0: loss = 3.21304 (* 1 = 3.21304 loss) +I0408 08:40:33.560797 31616 sgd_solver.cpp:105] Iteration 7128, lr = 1.16862e-06 +I0408 08:40:38.102464 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 08:40:43.724007 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 08:40:46.135792 31616 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 08:40:46.135816 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:40:47.792302 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:40:50.598158 31616 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0408 08:40:50.598206 31616 solver.cpp:397] Test net output #1: loss = 3.84978 (* 1 = 3.84978 loss) +I0408 08:40:50.689314 31616 solver.cpp:218] Iteration 7140 (0.700608 iter/s, 17.128s/12 iters), loss = 3.24644 +I0408 08:40:50.689363 31616 solver.cpp:237] Train net output #0: loss = 3.24644 (* 1 = 3.24644 loss) +I0408 08:40:50.689374 31616 sgd_solver.cpp:105] Iteration 7140, lr = 1.14649e-06 +I0408 08:40:55.066745 31616 solver.cpp:218] Iteration 7152 (2.74146 iter/s, 4.37723s/12 iters), loss = 3.40412 +I0408 08:40:55.066787 31616 solver.cpp:237] Train net output #0: loss = 3.40412 (* 1 = 3.40412 loss) +I0408 08:40:55.066797 31616 sgd_solver.cpp:105] Iteration 7152, lr = 1.12477e-06 +I0408 08:41:00.116654 31616 solver.cpp:218] Iteration 7164 (2.37638 iter/s, 5.0497s/12 iters), loss = 3.36793 +I0408 08:41:00.116690 31616 solver.cpp:237] Train net output #0: loss = 3.36793 (* 1 = 3.36793 loss) +I0408 08:41:00.116698 31616 sgd_solver.cpp:105] Iteration 7164, lr = 1.10347e-06 +I0408 08:41:05.153084 31616 solver.cpp:218] Iteration 7176 (2.38274 iter/s, 5.03622s/12 iters), loss = 3.24129 +I0408 08:41:05.153120 31616 solver.cpp:237] Train net output #0: loss = 3.24129 (* 1 = 3.24129 loss) +I0408 08:41:05.153127 31616 sgd_solver.cpp:105] Iteration 7176, lr = 1.08257e-06 +I0408 08:41:07.258922 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:41:10.151870 31616 solver.cpp:218] Iteration 7188 (2.40069 iter/s, 4.99857s/12 iters), loss = 3.32909 +I0408 08:41:10.151906 31616 solver.cpp:237] Train net output #0: loss = 3.32909 (* 1 = 3.32909 loss) +I0408 08:41:10.151914 31616 sgd_solver.cpp:105] Iteration 7188, lr = 1.06207e-06 +I0408 08:41:15.470827 31616 solver.cpp:218] Iteration 7200 (2.25617 iter/s, 5.31874s/12 iters), loss = 3.15893 +I0408 08:41:15.470959 31616 solver.cpp:237] Train net output #0: loss = 3.15893 (* 1 = 3.15893 loss) +I0408 08:41:15.470973 31616 sgd_solver.cpp:105] Iteration 7200, lr = 1.04196e-06 +I0408 08:41:20.562640 31616 solver.cpp:218] Iteration 7212 (2.35686 iter/s, 5.09151s/12 iters), loss = 3.04585 +I0408 08:41:20.562686 31616 solver.cpp:237] Train net output #0: loss = 3.04585 (* 1 = 3.04585 loss) +I0408 08:41:20.562698 31616 sgd_solver.cpp:105] Iteration 7212, lr = 1.02223e-06 +I0408 08:41:25.599895 31616 solver.cpp:218] Iteration 7224 (2.38235 iter/s, 5.03704s/12 iters), loss = 3.52475 +I0408 08:41:25.599943 31616 solver.cpp:237] Train net output #0: loss = 3.52475 (* 1 = 3.52475 loss) +I0408 08:41:25.599956 31616 sgd_solver.cpp:105] Iteration 7224, lr = 1.00287e-06 +I0408 08:41:30.631778 31616 solver.cpp:218] Iteration 7236 (2.3849 iter/s, 5.03167s/12 iters), loss = 3.23374 +I0408 08:41:30.631826 31616 solver.cpp:237] Train net output #0: loss = 3.23374 (* 1 = 3.23374 loss) +I0408 08:41:30.631839 31616 sgd_solver.cpp:105] Iteration 7236, lr = 9.83875e-07 +I0408 08:41:32.641150 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 08:41:37.444378 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 08:41:39.788539 31616 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 08:41:39.788565 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:41:41.416011 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:41:44.260751 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:41:44.260800 31616 solver.cpp:397] Test net output #1: loss = 3.84617 (* 1 = 3.84617 loss) +I0408 08:41:46.231606 31616 solver.cpp:218] Iteration 7248 (0.769267 iter/s, 15.5993s/12 iters), loss = 3.14036 +I0408 08:41:46.231776 31616 solver.cpp:237] Train net output #0: loss = 3.14036 (* 1 = 3.14036 loss) +I0408 08:41:46.231789 31616 sgd_solver.cpp:105] Iteration 7248, lr = 9.65242e-07 +I0408 08:41:51.277240 31616 solver.cpp:218] Iteration 7260 (2.37845 iter/s, 5.04529s/12 iters), loss = 3.16399 +I0408 08:41:51.277287 31616 solver.cpp:237] Train net output #0: loss = 3.16399 (* 1 = 3.16399 loss) +I0408 08:41:51.277298 31616 sgd_solver.cpp:105] Iteration 7260, lr = 9.46963e-07 +I0408 08:41:56.349925 31616 solver.cpp:218] Iteration 7272 (2.36571 iter/s, 5.07247s/12 iters), loss = 3.18634 +I0408 08:41:56.349982 31616 solver.cpp:237] Train net output #0: loss = 3.18634 (* 1 = 3.18634 loss) +I0408 08:41:56.349995 31616 sgd_solver.cpp:105] Iteration 7272, lr = 9.29029e-07 +I0408 08:42:00.715783 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:42:01.470664 31616 solver.cpp:218] Iteration 7284 (2.34352 iter/s, 5.12051s/12 iters), loss = 3.2807 +I0408 08:42:01.470706 31616 solver.cpp:237] Train net output #0: loss = 3.2807 (* 1 = 3.2807 loss) +I0408 08:42:01.470717 31616 sgd_solver.cpp:105] Iteration 7284, lr = 9.11435e-07 +I0408 08:42:06.478385 31616 solver.cpp:218] Iteration 7296 (2.3964 iter/s, 5.00751s/12 iters), loss = 3.44417 +I0408 08:42:06.478428 31616 solver.cpp:237] Train net output #0: loss = 3.44417 (* 1 = 3.44417 loss) +I0408 08:42:06.478440 31616 sgd_solver.cpp:105] Iteration 7296, lr = 8.94174e-07 +I0408 08:42:11.532456 31616 solver.cpp:218] Iteration 7308 (2.37443 iter/s, 5.05385s/12 iters), loss = 3.47438 +I0408 08:42:11.532505 31616 solver.cpp:237] Train net output #0: loss = 3.47438 (* 1 = 3.47438 loss) +I0408 08:42:11.532516 31616 sgd_solver.cpp:105] Iteration 7308, lr = 8.7724e-07 +I0408 08:42:16.632993 31616 solver.cpp:218] Iteration 7320 (2.3528 iter/s, 5.10032s/12 iters), loss = 3.30783 +I0408 08:42:16.633092 31616 solver.cpp:237] Train net output #0: loss = 3.30783 (* 1 = 3.30783 loss) +I0408 08:42:16.633105 31616 sgd_solver.cpp:105] Iteration 7320, lr = 8.60627e-07 +I0408 08:42:21.689209 31616 solver.cpp:218] Iteration 7332 (2.37344 iter/s, 5.05595s/12 iters), loss = 3.31716 +I0408 08:42:21.689252 31616 solver.cpp:237] Train net output #0: loss = 3.31716 (* 1 = 3.31716 loss) +I0408 08:42:21.689263 31616 sgd_solver.cpp:105] Iteration 7332, lr = 8.44328e-07 +I0408 08:42:26.157680 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 08:42:30.281188 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 08:42:32.625182 31616 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 08:42:32.625208 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:42:34.204988 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:42:37.081573 31616 solver.cpp:397] Test net output #0: accuracy = 0.152574 +I0408 08:42:37.081620 31616 solver.cpp:397] Test net output #1: loss = 3.84214 (* 1 = 3.84214 loss) +I0408 08:42:37.172614 31616 solver.cpp:218] Iteration 7344 (0.775051 iter/s, 15.4829s/12 iters), loss = 3.21229 +I0408 08:42:37.172677 31616 solver.cpp:237] Train net output #0: loss = 3.21229 (* 1 = 3.21229 loss) +I0408 08:42:37.172691 31616 sgd_solver.cpp:105] Iteration 7344, lr = 8.28338e-07 +I0408 08:42:41.539029 31616 solver.cpp:218] Iteration 7356 (2.74838 iter/s, 4.3662s/12 iters), loss = 3.2522 +I0408 08:42:41.539078 31616 solver.cpp:237] Train net output #0: loss = 3.2522 (* 1 = 3.2522 loss) +I0408 08:42:41.539089 31616 sgd_solver.cpp:105] Iteration 7356, lr = 8.12651e-07 +I0408 08:42:46.476300 31616 solver.cpp:218] Iteration 7368 (2.4306 iter/s, 4.93705s/12 iters), loss = 3.25882 +I0408 08:42:46.476351 31616 solver.cpp:237] Train net output #0: loss = 3.25882 (* 1 = 3.25882 loss) +I0408 08:42:46.476362 31616 sgd_solver.cpp:105] Iteration 7368, lr = 7.97261e-07 +I0408 08:42:51.497938 31616 solver.cpp:218] Iteration 7380 (2.38976 iter/s, 5.02142s/12 iters), loss = 3.10027 +I0408 08:42:51.498046 31616 solver.cpp:237] Train net output #0: loss = 3.10027 (* 1 = 3.10027 loss) +I0408 08:42:51.498059 31616 sgd_solver.cpp:105] Iteration 7380, lr = 7.82162e-07 +I0408 08:42:52.897222 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:42:56.518260 31616 solver.cpp:218] Iteration 7392 (2.39042 iter/s, 5.02004s/12 iters), loss = 3.37777 +I0408 08:42:56.518308 31616 solver.cpp:237] Train net output #0: loss = 3.37777 (* 1 = 3.37777 loss) +I0408 08:42:56.518321 31616 sgd_solver.cpp:105] Iteration 7392, lr = 7.6735e-07 +I0408 08:43:01.524708 31616 solver.cpp:218] Iteration 7404 (2.39701 iter/s, 5.00623s/12 iters), loss = 3.27868 +I0408 08:43:01.524750 31616 solver.cpp:237] Train net output #0: loss = 3.27868 (* 1 = 3.27868 loss) +I0408 08:43:01.524762 31616 sgd_solver.cpp:105] Iteration 7404, lr = 7.52818e-07 +I0408 08:43:06.586478 31616 solver.cpp:218] Iteration 7416 (2.37081 iter/s, 5.06155s/12 iters), loss = 3.15637 +I0408 08:43:06.586525 31616 solver.cpp:237] Train net output #0: loss = 3.15637 (* 1 = 3.15637 loss) +I0408 08:43:06.586536 31616 sgd_solver.cpp:105] Iteration 7416, lr = 7.38561e-07 +I0408 08:43:11.585489 31616 solver.cpp:218] Iteration 7428 (2.40058 iter/s, 4.9988s/12 iters), loss = 3.24341 +I0408 08:43:11.585536 31616 solver.cpp:237] Train net output #0: loss = 3.24341 (* 1 = 3.24341 loss) +I0408 08:43:11.585546 31616 sgd_solver.cpp:105] Iteration 7428, lr = 7.24574e-07 +I0408 08:43:16.672502 31616 solver.cpp:218] Iteration 7440 (2.35905 iter/s, 5.08679s/12 iters), loss = 3.40129 +I0408 08:43:16.672551 31616 solver.cpp:237] Train net output #0: loss = 3.40129 (* 1 = 3.40129 loss) +I0408 08:43:16.672562 31616 sgd_solver.cpp:105] Iteration 7440, lr = 7.10852e-07 +I0408 08:43:18.683008 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 08:43:24.135306 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 08:43:26.547438 31616 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 08:43:26.547461 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:43:28.090369 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:43:31.012917 31616 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0408 08:43:31.012966 31616 solver.cpp:397] Test net output #1: loss = 3.8491 (* 1 = 3.8491 loss) +I0408 08:43:32.980933 31616 solver.cpp:218] Iteration 7452 (0.735842 iter/s, 16.3079s/12 iters), loss = 3.32773 +I0408 08:43:32.980986 31616 solver.cpp:237] Train net output #0: loss = 3.32773 (* 1 = 3.32773 loss) +I0408 08:43:32.980998 31616 sgd_solver.cpp:105] Iteration 7452, lr = 6.9739e-07 +I0408 08:43:38.190380 31616 solver.cpp:218] Iteration 7464 (2.30361 iter/s, 5.20921s/12 iters), loss = 3.04053 +I0408 08:43:38.190420 31616 solver.cpp:237] Train net output #0: loss = 3.04053 (* 1 = 3.04053 loss) +I0408 08:43:38.190429 31616 sgd_solver.cpp:105] Iteration 7464, lr = 6.84182e-07 +I0408 08:43:43.223577 31616 solver.cpp:218] Iteration 7476 (2.38427 iter/s, 5.03298s/12 iters), loss = 3.19402 +I0408 08:43:43.223623 31616 solver.cpp:237] Train net output #0: loss = 3.19402 (* 1 = 3.19402 loss) +I0408 08:43:43.223634 31616 sgd_solver.cpp:105] Iteration 7476, lr = 6.71225e-07 +I0408 08:43:46.801288 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:43:48.301174 31616 solver.cpp:218] Iteration 7488 (2.36342 iter/s, 5.07738s/12 iters), loss = 3.37615 +I0408 08:43:48.301216 31616 solver.cpp:237] Train net output #0: loss = 3.37615 (* 1 = 3.37615 loss) +I0408 08:43:48.301225 31616 sgd_solver.cpp:105] Iteration 7488, lr = 6.58514e-07 +I0408 08:43:53.374778 31616 solver.cpp:218] Iteration 7500 (2.36528 iter/s, 5.07339s/12 iters), loss = 3.18723 +I0408 08:43:53.374825 31616 solver.cpp:237] Train net output #0: loss = 3.18723 (* 1 = 3.18723 loss) +I0408 08:43:53.374836 31616 sgd_solver.cpp:105] Iteration 7500, lr = 6.46043e-07 +I0408 08:43:58.450742 31616 solver.cpp:218] Iteration 7512 (2.36418 iter/s, 5.07575s/12 iters), loss = 3.33819 +I0408 08:43:58.450870 31616 solver.cpp:237] Train net output #0: loss = 3.33819 (* 1 = 3.33819 loss) +I0408 08:43:58.450881 31616 sgd_solver.cpp:105] Iteration 7512, lr = 6.33808e-07 +I0408 08:44:03.512430 31616 solver.cpp:218] Iteration 7524 (2.37089 iter/s, 5.06139s/12 iters), loss = 3.24795 +I0408 08:44:03.512477 31616 solver.cpp:237] Train net output #0: loss = 3.24795 (* 1 = 3.24795 loss) +I0408 08:44:03.512488 31616 sgd_solver.cpp:105] Iteration 7524, lr = 6.21805e-07 +I0408 08:44:08.529624 31616 solver.cpp:218] Iteration 7536 (2.39188 iter/s, 5.01697s/12 iters), loss = 3.2163 +I0408 08:44:08.529671 31616 solver.cpp:237] Train net output #0: loss = 3.2163 (* 1 = 3.2163 loss) +I0408 08:44:08.529683 31616 sgd_solver.cpp:105] Iteration 7536, lr = 6.10029e-07 +I0408 08:44:13.083104 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 08:44:17.703831 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 08:44:20.225931 31616 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 08:44:20.225970 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:44:21.735590 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:44:24.836527 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:44:24.836575 31616 solver.cpp:397] Test net output #1: loss = 3.8445 (* 1 = 3.8445 loss) +I0408 08:44:24.927867 31616 solver.cpp:218] Iteration 7548 (0.731811 iter/s, 16.3977s/12 iters), loss = 3.40394 +I0408 08:44:24.927914 31616 solver.cpp:237] Train net output #0: loss = 3.40394 (* 1 = 3.40394 loss) +I0408 08:44:24.927927 31616 sgd_solver.cpp:105] Iteration 7548, lr = 5.98476e-07 +I0408 08:44:29.359437 31616 solver.cpp:218] Iteration 7560 (2.70797 iter/s, 4.43137s/12 iters), loss = 3.26854 +I0408 08:44:29.359573 31616 solver.cpp:237] Train net output #0: loss = 3.26854 (* 1 = 3.26854 loss) +I0408 08:44:29.359586 31616 sgd_solver.cpp:105] Iteration 7560, lr = 5.87142e-07 +I0408 08:44:34.376281 31616 solver.cpp:218] Iteration 7572 (2.39209 iter/s, 5.01654s/12 iters), loss = 3.32863 +I0408 08:44:34.376322 31616 solver.cpp:237] Train net output #0: loss = 3.32863 (* 1 = 3.32863 loss) +I0408 08:44:34.376332 31616 sgd_solver.cpp:105] Iteration 7572, lr = 5.76023e-07 +I0408 08:44:39.381788 31616 solver.cpp:218] Iteration 7584 (2.39746 iter/s, 5.00529s/12 iters), loss = 3.11061 +I0408 08:44:39.381831 31616 solver.cpp:237] Train net output #0: loss = 3.11061 (* 1 = 3.11061 loss) +I0408 08:44:39.381841 31616 sgd_solver.cpp:105] Iteration 7584, lr = 5.65114e-07 +I0408 08:44:40.034859 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:44:44.447484 31616 solver.cpp:218] Iteration 7596 (2.36898 iter/s, 5.06548s/12 iters), loss = 3.19353 +I0408 08:44:44.447528 31616 solver.cpp:237] Train net output #0: loss = 3.19353 (* 1 = 3.19353 loss) +I0408 08:44:44.447540 31616 sgd_solver.cpp:105] Iteration 7596, lr = 5.54412e-07 +I0408 08:44:49.460306 31616 solver.cpp:218] Iteration 7608 (2.39396 iter/s, 5.01261s/12 iters), loss = 3.20609 +I0408 08:44:49.460350 31616 solver.cpp:237] Train net output #0: loss = 3.20609 (* 1 = 3.20609 loss) +I0408 08:44:49.460361 31616 sgd_solver.cpp:105] Iteration 7608, lr = 5.43912e-07 +I0408 08:44:54.469110 31616 solver.cpp:218] Iteration 7620 (2.39588 iter/s, 5.00859s/12 iters), loss = 3.00052 +I0408 08:44:54.469154 31616 solver.cpp:237] Train net output #0: loss = 3.00052 (* 1 = 3.00052 loss) +I0408 08:44:54.469166 31616 sgd_solver.cpp:105] Iteration 7620, lr = 5.33612e-07 +I0408 08:44:56.851730 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:44:59.429221 31616 solver.cpp:218] Iteration 7632 (2.41941 iter/s, 4.9599s/12 iters), loss = 2.97571 +I0408 08:44:59.429325 31616 solver.cpp:237] Train net output #0: loss = 2.97571 (* 1 = 2.97571 loss) +I0408 08:44:59.429337 31616 sgd_solver.cpp:105] Iteration 7632, lr = 5.23506e-07 +I0408 08:45:04.508356 31616 solver.cpp:218] Iteration 7644 (2.36274 iter/s, 5.07886s/12 iters), loss = 3.24411 +I0408 08:45:04.508407 31616 solver.cpp:237] Train net output #0: loss = 3.24411 (* 1 = 3.24411 loss) +I0408 08:45:04.508419 31616 sgd_solver.cpp:105] Iteration 7644, lr = 5.13592e-07 +I0408 08:45:06.466889 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 08:45:11.339368 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 08:45:18.063351 31616 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 08:45:18.063375 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:45:19.519598 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:45:22.523649 31616 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0408 08:45:22.523699 31616 solver.cpp:397] Test net output #1: loss = 3.84128 (* 1 = 3.84128 loss) +I0408 08:45:24.443061 31616 solver.cpp:218] Iteration 7656 (0.601986 iter/s, 19.934s/12 iters), loss = 3.32539 +I0408 08:45:24.443116 31616 solver.cpp:237] Train net output #0: loss = 3.32539 (* 1 = 3.32539 loss) +I0408 08:45:24.443128 31616 sgd_solver.cpp:105] Iteration 7656, lr = 5.03865e-07 +I0408 08:45:29.421690 31616 solver.cpp:218] Iteration 7668 (2.41041 iter/s, 4.9784s/12 iters), loss = 3.28115 +I0408 08:45:29.421739 31616 solver.cpp:237] Train net output #0: loss = 3.28115 (* 1 = 3.28115 loss) +I0408 08:45:29.421752 31616 sgd_solver.cpp:105] Iteration 7668, lr = 4.94323e-07 +I0408 08:45:34.491230 31616 solver.cpp:218] Iteration 7680 (2.36718 iter/s, 5.06932s/12 iters), loss = 3.20764 +I0408 08:45:34.491328 31616 solver.cpp:237] Train net output #0: loss = 3.20764 (* 1 = 3.20764 loss) +I0408 08:45:34.491338 31616 sgd_solver.cpp:105] Iteration 7680, lr = 4.84962e-07 +I0408 08:45:37.335021 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:45:39.562650 31616 solver.cpp:218] Iteration 7692 (2.36633 iter/s, 5.07115s/12 iters), loss = 3.17892 +I0408 08:45:39.562696 31616 solver.cpp:237] Train net output #0: loss = 3.17892 (* 1 = 3.17892 loss) +I0408 08:45:39.562707 31616 sgd_solver.cpp:105] Iteration 7692, lr = 4.75777e-07 +I0408 08:45:44.620442 31616 solver.cpp:218] Iteration 7704 (2.37268 iter/s, 5.05757s/12 iters), loss = 3.32653 +I0408 08:45:44.620488 31616 solver.cpp:237] Train net output #0: loss = 3.32653 (* 1 = 3.32653 loss) +I0408 08:45:44.620499 31616 sgd_solver.cpp:105] Iteration 7704, lr = 4.66767e-07 +I0408 08:45:49.683656 31616 solver.cpp:218] Iteration 7716 (2.37014 iter/s, 5.063s/12 iters), loss = 3.48341 +I0408 08:45:49.683692 31616 solver.cpp:237] Train net output #0: loss = 3.48341 (* 1 = 3.48341 loss) +I0408 08:45:49.683702 31616 sgd_solver.cpp:105] Iteration 7716, lr = 4.57927e-07 +I0408 08:45:54.665110 31616 solver.cpp:218] Iteration 7728 (2.40903 iter/s, 4.98125s/12 iters), loss = 3.36426 +I0408 08:45:54.665136 31616 solver.cpp:237] Train net output #0: loss = 3.36426 (* 1 = 3.36426 loss) +I0408 08:45:54.665144 31616 sgd_solver.cpp:105] Iteration 7728, lr = 4.49255e-07 +I0408 08:45:59.703034 31616 solver.cpp:218] Iteration 7740 (2.38204 iter/s, 5.0377s/12 iters), loss = 3.39145 +I0408 08:45:59.703092 31616 solver.cpp:237] Train net output #0: loss = 3.39145 (* 1 = 3.39145 loss) +I0408 08:45:59.703104 31616 sgd_solver.cpp:105] Iteration 7740, lr = 4.40747e-07 +I0408 08:46:04.306344 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 08:46:07.686282 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 08:46:12.072862 31616 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 08:46:12.072888 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:46:13.494439 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:46:16.532758 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:46:16.532804 31616 solver.cpp:397] Test net output #1: loss = 3.85264 (* 1 = 3.85264 loss) +I0408 08:46:16.620908 31616 solver.cpp:218] Iteration 7752 (0.709334 iter/s, 16.9173s/12 iters), loss = 3.24051 +I0408 08:46:16.620959 31616 solver.cpp:237] Train net output #0: loss = 3.24051 (* 1 = 3.24051 loss) +I0408 08:46:16.620970 31616 sgd_solver.cpp:105] Iteration 7752, lr = 4.324e-07 +I0408 08:46:20.935550 31616 solver.cpp:218] Iteration 7764 (2.78135 iter/s, 4.31445s/12 iters), loss = 3.33043 +I0408 08:46:20.935593 31616 solver.cpp:237] Train net output #0: loss = 3.33043 (* 1 = 3.33043 loss) +I0408 08:46:20.935604 31616 sgd_solver.cpp:105] Iteration 7764, lr = 4.24211e-07 +I0408 08:46:25.954469 31616 solver.cpp:218] Iteration 7776 (2.39106 iter/s, 5.0187s/12 iters), loss = 3.25297 +I0408 08:46:25.954515 31616 solver.cpp:237] Train net output #0: loss = 3.25297 (* 1 = 3.25297 loss) +I0408 08:46:25.954525 31616 sgd_solver.cpp:105] Iteration 7776, lr = 4.16178e-07 +I0408 08:46:31.009716 31616 solver.cpp:218] Iteration 7788 (2.37387 iter/s, 5.05503s/12 iters), loss = 3.17705 +I0408 08:46:31.009760 31616 solver.cpp:237] Train net output #0: loss = 3.17705 (* 1 = 3.17705 loss) +I0408 08:46:31.009771 31616 sgd_solver.cpp:105] Iteration 7788, lr = 4.08296e-07 +I0408 08:46:31.017782 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:46:36.157208 31616 solver.cpp:218] Iteration 7800 (2.33133 iter/s, 5.14727s/12 iters), loss = 3.17921 +I0408 08:46:36.157253 31616 solver.cpp:237] Train net output #0: loss = 3.17921 (* 1 = 3.17921 loss) +I0408 08:46:36.157264 31616 sgd_solver.cpp:105] Iteration 7800, lr = 4.00564e-07 +I0408 08:46:41.209062 31616 solver.cpp:218] Iteration 7812 (2.37547 iter/s, 5.05164s/12 iters), loss = 3.09345 +I0408 08:46:41.211571 31616 solver.cpp:237] Train net output #0: loss = 3.09345 (* 1 = 3.09345 loss) +I0408 08:46:41.211585 31616 sgd_solver.cpp:105] Iteration 7812, lr = 3.92978e-07 +I0408 08:46:46.212301 31616 solver.cpp:218] Iteration 7824 (2.39973 iter/s, 5.00056s/12 iters), loss = 3.18622 +I0408 08:46:46.212345 31616 solver.cpp:237] Train net output #0: loss = 3.18622 (* 1 = 3.18622 loss) +I0408 08:46:46.212357 31616 sgd_solver.cpp:105] Iteration 7824, lr = 3.85536e-07 +I0408 08:46:51.261559 31616 solver.cpp:218] Iteration 7836 (2.37669 iter/s, 5.04904s/12 iters), loss = 3.35923 +I0408 08:46:51.261605 31616 solver.cpp:237] Train net output #0: loss = 3.35923 (* 1 = 3.35923 loss) +I0408 08:46:51.261615 31616 sgd_solver.cpp:105] Iteration 7836, lr = 3.78234e-07 +I0408 08:46:56.338025 31616 solver.cpp:218] Iteration 7848 (2.36395 iter/s, 5.07625s/12 iters), loss = 3.23236 +I0408 08:46:56.338073 31616 solver.cpp:237] Train net output #0: loss = 3.23236 (* 1 = 3.23236 loss) +I0408 08:46:56.338084 31616 sgd_solver.cpp:105] Iteration 7848, lr = 3.71071e-07 +I0408 08:46:58.363358 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 08:47:03.575925 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 08:47:08.080215 31616 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 08:47:08.080241 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:47:09.474618 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:47:12.630698 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:47:12.630813 31616 solver.cpp:397] Test net output #1: loss = 3.85012 (* 1 = 3.85012 loss) +I0408 08:47:14.631373 31616 solver.cpp:218] Iteration 7860 (0.655999 iter/s, 18.2927s/12 iters), loss = 3.44929 +I0408 08:47:14.631419 31616 solver.cpp:237] Train net output #0: loss = 3.44929 (* 1 = 3.44929 loss) +I0408 08:47:14.631428 31616 sgd_solver.cpp:105] Iteration 7860, lr = 3.64044e-07 +I0408 08:47:19.710130 31616 solver.cpp:218] Iteration 7872 (2.36288 iter/s, 5.07854s/12 iters), loss = 3.44129 +I0408 08:47:19.710176 31616 solver.cpp:237] Train net output #0: loss = 3.44129 (* 1 = 3.44129 loss) +I0408 08:47:19.710188 31616 sgd_solver.cpp:105] Iteration 7872, lr = 3.5715e-07 +I0408 08:47:24.740576 31616 solver.cpp:218] Iteration 7884 (2.38558 iter/s, 5.03023s/12 iters), loss = 3.34756 +I0408 08:47:24.740622 31616 solver.cpp:237] Train net output #0: loss = 3.34756 (* 1 = 3.34756 loss) +I0408 08:47:24.740633 31616 sgd_solver.cpp:105] Iteration 7884, lr = 3.50386e-07 +I0408 08:47:26.923909 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:47:29.855511 31616 solver.cpp:218] Iteration 7896 (2.34617 iter/s, 5.11472s/12 iters), loss = 3.16348 +I0408 08:47:29.855559 31616 solver.cpp:237] Train net output #0: loss = 3.16348 (* 1 = 3.16348 loss) +I0408 08:47:29.855572 31616 sgd_solver.cpp:105] Iteration 7896, lr = 3.4375e-07 +I0408 08:47:34.863971 31616 solver.cpp:218] Iteration 7908 (2.39605 iter/s, 5.00824s/12 iters), loss = 3.2515 +I0408 08:47:34.864017 31616 solver.cpp:237] Train net output #0: loss = 3.2515 (* 1 = 3.2515 loss) +I0408 08:47:34.864027 31616 sgd_solver.cpp:105] Iteration 7908, lr = 3.3724e-07 +I0408 08:47:40.209312 31616 solver.cpp:218] Iteration 7920 (2.24504 iter/s, 5.34512s/12 iters), loss = 3.00759 +I0408 08:47:40.209349 31616 solver.cpp:237] Train net output #0: loss = 3.00759 (* 1 = 3.00759 loss) +I0408 08:47:40.209357 31616 sgd_solver.cpp:105] Iteration 7920, lr = 3.30854e-07 +I0408 08:47:45.327819 31616 solver.cpp:218] Iteration 7932 (2.34453 iter/s, 5.1183s/12 iters), loss = 3.40795 +I0408 08:47:45.327960 31616 solver.cpp:237] Train net output #0: loss = 3.40795 (* 1 = 3.40795 loss) +I0408 08:47:45.327972 31616 sgd_solver.cpp:105] Iteration 7932, lr = 3.24588e-07 +I0408 08:47:50.341717 31616 solver.cpp:218] Iteration 7944 (2.3935 iter/s, 5.01359s/12 iters), loss = 3.35484 +I0408 08:47:50.341759 31616 solver.cpp:237] Train net output #0: loss = 3.35484 (* 1 = 3.35484 loss) +I0408 08:47:50.341769 31616 sgd_solver.cpp:105] Iteration 7944, lr = 3.18441e-07 +I0408 08:47:54.861229 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 08:47:59.668320 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 08:48:07.934800 31616 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 08:48:07.934826 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:48:09.646250 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:48:12.818608 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:48:12.818657 31616 solver.cpp:397] Test net output #1: loss = 3.84558 (* 1 = 3.84558 loss) +I0408 08:48:12.909783 31616 solver.cpp:218] Iteration 7956 (0.531743 iter/s, 22.5673s/12 iters), loss = 3.16186 +I0408 08:48:12.909835 31616 solver.cpp:237] Train net output #0: loss = 3.16186 (* 1 = 3.16186 loss) +I0408 08:48:12.909847 31616 sgd_solver.cpp:105] Iteration 7956, lr = 3.1241e-07 +I0408 08:48:17.299005 31616 solver.cpp:218] Iteration 7968 (2.7341 iter/s, 4.38902s/12 iters), loss = 3.29111 +I0408 08:48:17.299110 31616 solver.cpp:237] Train net output #0: loss = 3.29111 (* 1 = 3.29111 loss) +I0408 08:48:17.299121 31616 sgd_solver.cpp:105] Iteration 7968, lr = 3.06494e-07 +I0408 08:48:22.310195 31616 solver.cpp:218] Iteration 7980 (2.39477 iter/s, 5.01092s/12 iters), loss = 3.28093 +I0408 08:48:22.310238 31616 solver.cpp:237] Train net output #0: loss = 3.28093 (* 1 = 3.28093 loss) +I0408 08:48:22.310248 31616 sgd_solver.cpp:105] Iteration 7980, lr = 3.00689e-07 +I0408 08:48:26.454586 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:48:27.157308 31616 solver.cpp:218] Iteration 7992 (2.47581 iter/s, 4.8469s/12 iters), loss = 3.17611 +I0408 08:48:27.157357 31616 solver.cpp:237] Train net output #0: loss = 3.17611 (* 1 = 3.17611 loss) +I0408 08:48:27.157369 31616 sgd_solver.cpp:105] Iteration 7992, lr = 2.94995e-07 +I0408 08:48:32.050458 31616 solver.cpp:218] Iteration 8004 (2.45252 iter/s, 4.89292s/12 iters), loss = 3.47977 +I0408 08:48:32.050520 31616 solver.cpp:237] Train net output #0: loss = 3.47977 (* 1 = 3.47977 loss) +I0408 08:48:32.050534 31616 sgd_solver.cpp:105] Iteration 8004, lr = 2.89408e-07 +I0408 08:48:36.975358 31616 solver.cpp:218] Iteration 8016 (2.43671 iter/s, 4.92467s/12 iters), loss = 3.46105 +I0408 08:48:36.975406 31616 solver.cpp:237] Train net output #0: loss = 3.46105 (* 1 = 3.46105 loss) +I0408 08:48:36.975419 31616 sgd_solver.cpp:105] Iteration 8016, lr = 2.83927e-07 +I0408 08:48:42.115424 31616 solver.cpp:218] Iteration 8028 (2.3347 iter/s, 5.13984s/12 iters), loss = 3.21203 +I0408 08:48:42.115470 31616 solver.cpp:237] Train net output #0: loss = 3.21203 (* 1 = 3.21203 loss) +I0408 08:48:42.115483 31616 sgd_solver.cpp:105] Iteration 8028, lr = 2.7855e-07 +I0408 08:48:47.163744 31616 solver.cpp:218] Iteration 8040 (2.37713 iter/s, 5.0481s/12 iters), loss = 3.21919 +I0408 08:48:47.163789 31616 solver.cpp:237] Train net output #0: loss = 3.21919 (* 1 = 3.21919 loss) +I0408 08:48:47.163800 31616 sgd_solver.cpp:105] Iteration 8040, lr = 2.73275e-07 +I0408 08:48:52.216050 31616 solver.cpp:218] Iteration 8052 (2.37526 iter/s, 5.05209s/12 iters), loss = 3.22624 +I0408 08:48:52.216164 31616 solver.cpp:237] Train net output #0: loss = 3.22624 (* 1 = 3.22624 loss) +I0408 08:48:52.216177 31616 sgd_solver.cpp:105] Iteration 8052, lr = 2.681e-07 +I0408 08:48:54.261777 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 08:49:00.517650 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 08:49:04.591143 31616 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 08:49:04.591169 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:49:05.889778 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:49:09.054152 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:49:09.054199 31616 solver.cpp:397] Test net output #1: loss = 3.85395 (* 1 = 3.85395 loss) +I0408 08:49:11.035975 31616 solver.cpp:218] Iteration 8064 (0.637647 iter/s, 18.8192s/12 iters), loss = 3.52379 +I0408 08:49:11.036029 31616 solver.cpp:237] Train net output #0: loss = 3.52379 (* 1 = 3.52379 loss) +I0408 08:49:11.036041 31616 sgd_solver.cpp:105] Iteration 8064, lr = 2.63022e-07 +I0408 08:49:16.169587 31616 solver.cpp:218] Iteration 8076 (2.33764 iter/s, 5.13339s/12 iters), loss = 3.24793 +I0408 08:49:16.169636 31616 solver.cpp:237] Train net output #0: loss = 3.24793 (* 1 = 3.24793 loss) +I0408 08:49:16.169648 31616 sgd_solver.cpp:105] Iteration 8076, lr = 2.58041e-07 +I0408 08:49:21.231037 31616 solver.cpp:218] Iteration 8088 (2.37097 iter/s, 5.06122s/12 iters), loss = 3.08764 +I0408 08:49:21.231086 31616 solver.cpp:237] Train net output #0: loss = 3.08764 (* 1 = 3.08764 loss) +I0408 08:49:21.231097 31616 sgd_solver.cpp:105] Iteration 8088, lr = 2.53154e-07 +I0408 08:49:22.616535 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:49:26.226953 31616 solver.cpp:218] Iteration 8100 (2.40206 iter/s, 4.9957s/12 iters), loss = 3.26381 +I0408 08:49:26.226989 31616 solver.cpp:237] Train net output #0: loss = 3.26381 (* 1 = 3.26381 loss) +I0408 08:49:26.226997 31616 sgd_solver.cpp:105] Iteration 8100, lr = 2.4836e-07 +I0408 08:49:31.249174 31616 solver.cpp:218] Iteration 8112 (2.38948 iter/s, 5.02201s/12 iters), loss = 3.3854 +I0408 08:49:31.249212 31616 solver.cpp:237] Train net output #0: loss = 3.3854 (* 1 = 3.3854 loss) +I0408 08:49:31.249222 31616 sgd_solver.cpp:105] Iteration 8112, lr = 2.43657e-07 +I0408 08:49:36.253662 31616 solver.cpp:218] Iteration 8124 (2.39795 iter/s, 5.00428s/12 iters), loss = 3.28079 +I0408 08:49:36.253708 31616 solver.cpp:237] Train net output #0: loss = 3.28079 (* 1 = 3.28079 loss) +I0408 08:49:36.253720 31616 sgd_solver.cpp:105] Iteration 8124, lr = 2.39042e-07 +I0408 08:49:41.282732 31616 solver.cpp:218] Iteration 8136 (2.38623 iter/s, 5.02885s/12 iters), loss = 3.20986 +I0408 08:49:41.282775 31616 solver.cpp:237] Train net output #0: loss = 3.20986 (* 1 = 3.20986 loss) +I0408 08:49:41.282788 31616 sgd_solver.cpp:105] Iteration 8136, lr = 2.34515e-07 +I0408 08:49:46.278654 31616 solver.cpp:218] Iteration 8148 (2.40206 iter/s, 4.99571s/12 iters), loss = 3.2761 +I0408 08:49:46.278702 31616 solver.cpp:237] Train net output #0: loss = 3.2761 (* 1 = 3.2761 loss) +I0408 08:49:46.278714 31616 sgd_solver.cpp:105] Iteration 8148, lr = 2.30074e-07 +I0408 08:49:50.843502 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 08:49:57.355304 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 08:50:00.776304 31616 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 08:50:00.776331 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:50:02.011605 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:50:05.353273 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:50:05.353322 31616 solver.cpp:397] Test net output #1: loss = 3.84525 (* 1 = 3.84525 loss) +I0408 08:50:05.444547 31616 solver.cpp:218] Iteration 8160 (0.626134 iter/s, 19.1652s/12 iters), loss = 3.45749 +I0408 08:50:05.444597 31616 solver.cpp:237] Train net output #0: loss = 3.45749 (* 1 = 3.45749 loss) +I0408 08:50:05.444609 31616 sgd_solver.cpp:105] Iteration 8160, lr = 2.25717e-07 +I0408 08:50:09.606139 31616 solver.cpp:218] Iteration 8172 (2.88364 iter/s, 4.1614s/12 iters), loss = 3.09415 +I0408 08:50:09.606181 31616 solver.cpp:237] Train net output #0: loss = 3.09415 (* 1 = 3.09415 loss) +I0408 08:50:09.606192 31616 sgd_solver.cpp:105] Iteration 8172, lr = 2.21442e-07 +I0408 08:50:14.507963 31616 solver.cpp:218] Iteration 8184 (2.44817 iter/s, 4.90162s/12 iters), loss = 3.30611 +I0408 08:50:14.508004 31616 solver.cpp:237] Train net output #0: loss = 3.30611 (* 1 = 3.30611 loss) +I0408 08:50:14.508013 31616 sgd_solver.cpp:105] Iteration 8184, lr = 2.17249e-07 +I0408 08:50:18.053645 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:50:19.521919 31616 solver.cpp:218] Iteration 8196 (2.39342 iter/s, 5.01374s/12 iters), loss = 3.4018 +I0408 08:50:19.521973 31616 solver.cpp:237] Train net output #0: loss = 3.4018 (* 1 = 3.4018 loss) +I0408 08:50:19.521984 31616 sgd_solver.cpp:105] Iteration 8196, lr = 2.13134e-07 +I0408 08:50:24.520720 31616 solver.cpp:218] Iteration 8208 (2.40068 iter/s, 4.99858s/12 iters), loss = 3.15247 +I0408 08:50:24.520771 31616 solver.cpp:237] Train net output #0: loss = 3.15247 (* 1 = 3.15247 loss) +I0408 08:50:24.520787 31616 sgd_solver.cpp:105] Iteration 8208, lr = 2.09098e-07 +I0408 08:50:29.648880 31616 solver.cpp:218] Iteration 8220 (2.34012 iter/s, 5.12794s/12 iters), loss = 3.41602 +I0408 08:50:29.648993 31616 solver.cpp:237] Train net output #0: loss = 3.41602 (* 1 = 3.41602 loss) +I0408 08:50:29.649003 31616 sgd_solver.cpp:105] Iteration 8220, lr = 2.05138e-07 +I0408 08:50:34.668123 31616 solver.cpp:218] Iteration 8232 (2.39093 iter/s, 5.01896s/12 iters), loss = 3.31703 +I0408 08:50:34.668157 31616 solver.cpp:237] Train net output #0: loss = 3.31703 (* 1 = 3.31703 loss) +I0408 08:50:34.668166 31616 sgd_solver.cpp:105] Iteration 8232, lr = 2.01253e-07 +I0408 08:50:39.727342 31616 solver.cpp:218] Iteration 8244 (2.37201 iter/s, 5.05901s/12 iters), loss = 3.21334 +I0408 08:50:39.727389 31616 solver.cpp:237] Train net output #0: loss = 3.21334 (* 1 = 3.21334 loss) +I0408 08:50:39.727401 31616 sgd_solver.cpp:105] Iteration 8244, lr = 1.97442e-07 +I0408 08:50:44.726773 31616 solver.cpp:218] Iteration 8256 (2.40038 iter/s, 4.99921s/12 iters), loss = 3.26209 +I0408 08:50:44.726822 31616 solver.cpp:237] Train net output #0: loss = 3.26209 (* 1 = 3.26209 loss) +I0408 08:50:44.726833 31616 sgd_solver.cpp:105] Iteration 8256, lr = 1.93703e-07 +I0408 08:50:46.758710 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 08:50:52.209462 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 08:50:54.541615 31616 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 08:50:54.541643 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:50:55.732800 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:50:58.965786 31616 solver.cpp:397] Test net output #0: accuracy = 0.148284 +I0408 08:50:58.965816 31616 solver.cpp:397] Test net output #1: loss = 3.85348 (* 1 = 3.85348 loss) +I0408 08:51:00.962814 31616 solver.cpp:218] Iteration 8268 (0.739123 iter/s, 16.2355s/12 iters), loss = 3.34844 +I0408 08:51:00.962972 31616 solver.cpp:237] Train net output #0: loss = 3.34844 (* 1 = 3.34844 loss) +I0408 08:51:00.962987 31616 sgd_solver.cpp:105] Iteration 8268, lr = 1.90034e-07 +I0408 08:51:06.332113 31616 solver.cpp:218] Iteration 8280 (2.23507 iter/s, 5.36897s/12 iters), loss = 3.41362 +I0408 08:51:06.332154 31616 solver.cpp:237] Train net output #0: loss = 3.41362 (* 1 = 3.41362 loss) +I0408 08:51:06.332165 31616 sgd_solver.cpp:105] Iteration 8280, lr = 1.86435e-07 +I0408 08:51:11.383628 31616 solver.cpp:218] Iteration 8292 (2.37563 iter/s, 5.0513s/12 iters), loss = 3.2897 +I0408 08:51:11.383671 31616 solver.cpp:237] Train net output #0: loss = 3.2897 (* 1 = 3.2897 loss) +I0408 08:51:11.383682 31616 sgd_solver.cpp:105] Iteration 8292, lr = 1.82905e-07 +I0408 08:51:12.071570 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:51:16.403214 31616 solver.cpp:218] Iteration 8304 (2.39074 iter/s, 5.01937s/12 iters), loss = 3.22313 +I0408 08:51:16.403273 31616 solver.cpp:237] Train net output #0: loss = 3.22313 (* 1 = 3.22313 loss) +I0408 08:51:16.403286 31616 sgd_solver.cpp:105] Iteration 8304, lr = 1.79441e-07 +I0408 08:51:19.288038 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:51:21.408510 31616 solver.cpp:218] Iteration 8316 (2.39757 iter/s, 5.00507s/12 iters), loss = 3.30727 +I0408 08:51:21.408555 31616 solver.cpp:237] Train net output #0: loss = 3.30727 (* 1 = 3.30727 loss) +I0408 08:51:21.408565 31616 sgd_solver.cpp:105] Iteration 8316, lr = 1.76043e-07 +I0408 08:51:26.471325 31616 solver.cpp:218] Iteration 8328 (2.37032 iter/s, 5.0626s/12 iters), loss = 3.10312 +I0408 08:51:26.471364 31616 solver.cpp:237] Train net output #0: loss = 3.10312 (* 1 = 3.10312 loss) +I0408 08:51:26.471374 31616 sgd_solver.cpp:105] Iteration 8328, lr = 1.72709e-07 +I0408 08:51:31.456053 31616 solver.cpp:218] Iteration 8340 (2.40746 iter/s, 4.98451s/12 iters), loss = 3.14338 +I0408 08:51:31.456158 31616 solver.cpp:237] Train net output #0: loss = 3.14338 (* 1 = 3.14338 loss) +I0408 08:51:31.456171 31616 sgd_solver.cpp:105] Iteration 8340, lr = 1.69438e-07 +I0408 08:51:36.479296 31616 solver.cpp:218] Iteration 8352 (2.38903 iter/s, 5.02297s/12 iters), loss = 3.29666 +I0408 08:51:36.479341 31616 solver.cpp:237] Train net output #0: loss = 3.29666 (* 1 = 3.29666 loss) +I0408 08:51:36.479352 31616 sgd_solver.cpp:105] Iteration 8352, lr = 1.66229e-07 +I0408 08:51:40.990399 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 08:51:45.160194 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 08:51:47.489504 31616 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 08:51:47.489531 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:51:48.692531 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:51:51.971599 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:51:51.971647 31616 solver.cpp:397] Test net output #1: loss = 3.8579 (* 1 = 3.8579 loss) +I0408 08:51:52.062985 31616 solver.cpp:218] Iteration 8364 (0.770063 iter/s, 15.5831s/12 iters), loss = 3.36696 +I0408 08:51:52.063036 31616 solver.cpp:237] Train net output #0: loss = 3.36696 (* 1 = 3.36696 loss) +I0408 08:51:52.063047 31616 sgd_solver.cpp:105] Iteration 8364, lr = 1.63081e-07 +I0408 08:51:56.282610 31616 solver.cpp:218] Iteration 8376 (2.84399 iter/s, 4.21943s/12 iters), loss = 3.27798 +I0408 08:51:56.282660 31616 solver.cpp:237] Train net output #0: loss = 3.27798 (* 1 = 3.27798 loss) +I0408 08:51:56.282672 31616 sgd_solver.cpp:105] Iteration 8376, lr = 1.59993e-07 +I0408 08:52:01.248806 31616 solver.cpp:218] Iteration 8388 (2.41644 iter/s, 4.96598s/12 iters), loss = 3.30127 +I0408 08:52:01.248855 31616 solver.cpp:237] Train net output #0: loss = 3.30127 (* 1 = 3.30127 loss) +I0408 08:52:01.248867 31616 sgd_solver.cpp:105] Iteration 8388, lr = 1.56963e-07 +I0408 08:52:04.052263 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:52:06.242750 31616 solver.cpp:218] Iteration 8400 (2.40302 iter/s, 4.99373s/12 iters), loss = 3.32152 +I0408 08:52:06.242796 31616 solver.cpp:237] Train net output #0: loss = 3.32152 (* 1 = 3.32152 loss) +I0408 08:52:06.242807 31616 sgd_solver.cpp:105] Iteration 8400, lr = 1.5399e-07 +I0408 08:52:11.300813 31616 solver.cpp:218] Iteration 8412 (2.37255 iter/s, 5.05785s/12 iters), loss = 3.42809 +I0408 08:52:11.300863 31616 solver.cpp:237] Train net output #0: loss = 3.42809 (* 1 = 3.42809 loss) +I0408 08:52:11.300876 31616 sgd_solver.cpp:105] Iteration 8412, lr = 1.51074e-07 +I0408 08:52:16.276366 31616 solver.cpp:218] Iteration 8424 (2.4119 iter/s, 4.97533s/12 iters), loss = 3.47266 +I0408 08:52:16.276413 31616 solver.cpp:237] Train net output #0: loss = 3.47266 (* 1 = 3.47266 loss) +I0408 08:52:16.276424 31616 sgd_solver.cpp:105] Iteration 8424, lr = 1.48213e-07 +I0408 08:52:21.294600 31616 solver.cpp:218] Iteration 8436 (2.39139 iter/s, 5.01801s/12 iters), loss = 3.36055 +I0408 08:52:21.294648 31616 solver.cpp:237] Train net output #0: loss = 3.36055 (* 1 = 3.36055 loss) +I0408 08:52:21.294659 31616 sgd_solver.cpp:105] Iteration 8436, lr = 1.45406e-07 +I0408 08:52:26.219028 31616 solver.cpp:218] Iteration 8448 (2.43694 iter/s, 4.92421s/12 iters), loss = 3.51933 +I0408 08:52:26.219074 31616 solver.cpp:237] Train net output #0: loss = 3.51933 (* 1 = 3.51933 loss) +I0408 08:52:26.219084 31616 sgd_solver.cpp:105] Iteration 8448, lr = 1.42652e-07 +I0408 08:52:31.236317 31616 solver.cpp:218] Iteration 8460 (2.39183 iter/s, 5.01707s/12 iters), loss = 3.18621 +I0408 08:52:31.236362 31616 solver.cpp:237] Train net output #0: loss = 3.18621 (* 1 = 3.18621 loss) +I0408 08:52:31.236372 31616 sgd_solver.cpp:105] Iteration 8460, lr = 1.39951e-07 +I0408 08:52:33.282629 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 08:52:37.874752 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 08:52:40.188285 31616 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 08:52:40.188310 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:52:41.358067 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:52:44.814496 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:52:44.814544 31616 solver.cpp:397] Test net output #1: loss = 3.85264 (* 1 = 3.85264 loss) +I0408 08:52:46.718385 31616 solver.cpp:218] Iteration 8472 (0.775118 iter/s, 15.4815s/12 iters), loss = 3.42241 +I0408 08:52:46.718425 31616 solver.cpp:237] Train net output #0: loss = 3.42241 (* 1 = 3.42241 loss) +I0408 08:52:46.718433 31616 sgd_solver.cpp:105] Iteration 8472, lr = 1.373e-07 +I0408 08:52:51.753904 31616 solver.cpp:218] Iteration 8484 (2.38317 iter/s, 5.03531s/12 iters), loss = 3.41469 +I0408 08:52:51.753943 31616 solver.cpp:237] Train net output #0: loss = 3.41469 (* 1 = 3.41469 loss) +I0408 08:52:51.753952 31616 sgd_solver.cpp:105] Iteration 8484, lr = 1.347e-07 +I0408 08:52:56.793215 31616 solver.cpp:218] Iteration 8496 (2.38138 iter/s, 5.0391s/12 iters), loss = 3.19651 +I0408 08:52:56.793258 31616 solver.cpp:237] Train net output #0: loss = 3.19651 (* 1 = 3.19651 loss) +I0408 08:52:56.793269 31616 sgd_solver.cpp:105] Iteration 8496, lr = 1.32149e-07 +I0408 08:52:56.844379 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:53:02.023025 31616 solver.cpp:218] Iteration 8508 (2.29463 iter/s, 5.22959s/12 iters), loss = 3.29825 +I0408 08:53:02.023061 31616 solver.cpp:237] Train net output #0: loss = 3.29825 (* 1 = 3.29825 loss) +I0408 08:53:02.023069 31616 sgd_solver.cpp:105] Iteration 8508, lr = 1.29646e-07 +I0408 08:53:07.017347 31616 solver.cpp:218] Iteration 8520 (2.40283 iter/s, 4.99411s/12 iters), loss = 2.99169 +I0408 08:53:07.017400 31616 solver.cpp:237] Train net output #0: loss = 2.99169 (* 1 = 2.99169 loss) +I0408 08:53:07.017412 31616 sgd_solver.cpp:105] Iteration 8520, lr = 1.27191e-07 +I0408 08:53:11.965776 31616 solver.cpp:218] Iteration 8532 (2.42512 iter/s, 4.94821s/12 iters), loss = 3.21257 +I0408 08:53:11.965914 31616 solver.cpp:237] Train net output #0: loss = 3.21257 (* 1 = 3.21257 loss) +I0408 08:53:11.965926 31616 sgd_solver.cpp:105] Iteration 8532, lr = 1.24782e-07 +I0408 08:53:17.007462 31616 solver.cpp:218] Iteration 8544 (2.3803 iter/s, 5.04138s/12 iters), loss = 3.46537 +I0408 08:53:17.007513 31616 solver.cpp:237] Train net output #0: loss = 3.46537 (* 1 = 3.46537 loss) +I0408 08:53:17.007525 31616 sgd_solver.cpp:105] Iteration 8544, lr = 1.22419e-07 +I0408 08:53:21.972048 31616 solver.cpp:218] Iteration 8556 (2.41722 iter/s, 4.96437s/12 iters), loss = 3.26871 +I0408 08:53:21.972084 31616 solver.cpp:237] Train net output #0: loss = 3.26871 (* 1 = 3.26871 loss) +I0408 08:53:21.972095 31616 sgd_solver.cpp:105] Iteration 8556, lr = 1.20101e-07 +I0408 08:53:26.456158 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 08:53:30.023264 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 08:53:32.654738 31616 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 08:53:32.654760 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:53:33.716866 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:53:37.082185 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:53:37.082234 31616 solver.cpp:397] Test net output #1: loss = 3.85481 (* 1 = 3.85481 loss) +I0408 08:53:37.173856 31616 solver.cpp:218] Iteration 8568 (0.789408 iter/s, 15.2013s/12 iters), loss = 3.40171 +I0408 08:53:37.173928 31616 solver.cpp:237] Train net output #0: loss = 3.40171 (* 1 = 3.40171 loss) +I0408 08:53:37.173945 31616 sgd_solver.cpp:105] Iteration 8568, lr = 1.17826e-07 +I0408 08:53:41.405432 31616 solver.cpp:218] Iteration 8580 (2.83596 iter/s, 4.23137s/12 iters), loss = 3.2886 +I0408 08:53:41.405465 31616 solver.cpp:237] Train net output #0: loss = 3.2886 (* 1 = 3.2886 loss) +I0408 08:53:41.405473 31616 sgd_solver.cpp:105] Iteration 8580, lr = 1.15595e-07 +I0408 08:53:46.549742 31616 solver.cpp:218] Iteration 8592 (2.33277 iter/s, 5.1441s/12 iters), loss = 3.18502 +I0408 08:53:46.549815 31616 solver.cpp:237] Train net output #0: loss = 3.18502 (* 1 = 3.18502 loss) +I0408 08:53:46.549827 31616 sgd_solver.cpp:105] Iteration 8592, lr = 1.13406e-07 +I0408 08:53:48.697456 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:53:51.518874 31616 solver.cpp:218] Iteration 8604 (2.41502 iter/s, 4.96889s/12 iters), loss = 3.18916 +I0408 08:53:51.518920 31616 solver.cpp:237] Train net output #0: loss = 3.18916 (* 1 = 3.18916 loss) +I0408 08:53:51.518932 31616 sgd_solver.cpp:105] Iteration 8604, lr = 1.11258e-07 +I0408 08:53:56.528088 31616 solver.cpp:218] Iteration 8616 (2.39569 iter/s, 5.009s/12 iters), loss = 3.12639 +I0408 08:53:56.528133 31616 solver.cpp:237] Train net output #0: loss = 3.12639 (* 1 = 3.12639 loss) +I0408 08:53:56.528146 31616 sgd_solver.cpp:105] Iteration 8616, lr = 1.09151e-07 +I0408 08:54:01.565106 31616 solver.cpp:218] Iteration 8628 (2.38246 iter/s, 5.0368s/12 iters), loss = 3.18652 +I0408 08:54:01.565147 31616 solver.cpp:237] Train net output #0: loss = 3.18652 (* 1 = 3.18652 loss) +I0408 08:54:01.565158 31616 sgd_solver.cpp:105] Iteration 8628, lr = 1.07084e-07 +I0408 08:54:06.583931 31616 solver.cpp:218] Iteration 8640 (2.3911 iter/s, 5.0186s/12 iters), loss = 3.3878 +I0408 08:54:06.583981 31616 solver.cpp:237] Train net output #0: loss = 3.3878 (* 1 = 3.3878 loss) +I0408 08:54:06.583992 31616 sgd_solver.cpp:105] Iteration 8640, lr = 1.05056e-07 +I0408 08:54:11.590838 31616 solver.cpp:218] Iteration 8652 (2.39679 iter/s, 5.00669s/12 iters), loss = 3.27056 +I0408 08:54:11.590883 31616 solver.cpp:237] Train net output #0: loss = 3.27056 (* 1 = 3.27056 loss) +I0408 08:54:11.590895 31616 sgd_solver.cpp:105] Iteration 8652, lr = 1.03066e-07 +I0408 08:54:16.858358 31616 solver.cpp:218] Iteration 8664 (2.27821 iter/s, 5.2673s/12 iters), loss = 3.19816 +I0408 08:54:16.858462 31616 solver.cpp:237] Train net output #0: loss = 3.19816 (* 1 = 3.19816 loss) +I0408 08:54:16.858474 31616 sgd_solver.cpp:105] Iteration 8664, lr = 1.01115e-07 +I0408 08:54:18.975677 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 08:54:24.055073 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 08:54:26.386166 31616 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 08:54:26.386193 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:54:27.468109 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:54:30.864930 31616 solver.cpp:397] Test net output #0: accuracy = 0.148284 +I0408 08:54:30.864959 31616 solver.cpp:397] Test net output #1: loss = 3.84972 (* 1 = 3.84972 loss) +I0408 08:54:32.832590 31616 solver.cpp:218] Iteration 8676 (0.751239 iter/s, 15.9736s/12 iters), loss = 3.34385 +I0408 08:54:32.832638 31616 solver.cpp:237] Train net output #0: loss = 3.34385 (* 1 = 3.34385 loss) +I0408 08:54:32.832649 31616 sgd_solver.cpp:105] Iteration 8676, lr = 9.91996e-08 +I0408 08:54:37.853142 31616 solver.cpp:218] Iteration 8688 (2.39028 iter/s, 5.02033s/12 iters), loss = 3.35923 +I0408 08:54:37.853188 31616 solver.cpp:237] Train net output #0: loss = 3.35923 (* 1 = 3.35923 loss) +I0408 08:54:37.853199 31616 sgd_solver.cpp:105] Iteration 8688, lr = 9.7321e-08 +I0408 08:54:42.202483 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:54:42.890873 31616 solver.cpp:218] Iteration 8700 (2.38213 iter/s, 5.03752s/12 iters), loss = 3.28517 +I0408 08:54:42.890918 31616 solver.cpp:237] Train net output #0: loss = 3.28517 (* 1 = 3.28517 loss) +I0408 08:54:42.890928 31616 sgd_solver.cpp:105] Iteration 8700, lr = 9.54779e-08 +I0408 08:54:48.039932 31616 solver.cpp:218] Iteration 8712 (2.33062 iter/s, 5.14884s/12 iters), loss = 3.48903 +I0408 08:54:48.040050 31616 solver.cpp:237] Train net output #0: loss = 3.48903 (* 1 = 3.48903 loss) +I0408 08:54:48.040062 31616 sgd_solver.cpp:105] Iteration 8712, lr = 9.36698e-08 +I0408 08:54:53.258318 31616 solver.cpp:218] Iteration 8724 (2.29975 iter/s, 5.21796s/12 iters), loss = 3.17866 +I0408 08:54:53.258368 31616 solver.cpp:237] Train net output #0: loss = 3.17866 (* 1 = 3.17866 loss) +I0408 08:54:53.258379 31616 sgd_solver.cpp:105] Iteration 8724, lr = 9.18958e-08 +I0408 08:54:58.485476 31616 solver.cpp:218] Iteration 8736 (2.2958 iter/s, 5.22693s/12 iters), loss = 3.36795 +I0408 08:54:58.485522 31616 solver.cpp:237] Train net output #0: loss = 3.36795 (* 1 = 3.36795 loss) +I0408 08:54:58.485534 31616 sgd_solver.cpp:105] Iteration 8736, lr = 9.01555e-08 +I0408 08:55:03.533367 31616 solver.cpp:218] Iteration 8748 (2.37733 iter/s, 5.04767s/12 iters), loss = 3.32611 +I0408 08:55:03.533414 31616 solver.cpp:237] Train net output #0: loss = 3.32611 (* 1 = 3.32611 loss) +I0408 08:55:03.533425 31616 sgd_solver.cpp:105] Iteration 8748, lr = 8.84481e-08 +I0408 08:55:08.582563 31616 solver.cpp:218] Iteration 8760 (2.37672 iter/s, 5.04898s/12 iters), loss = 3.29454 +I0408 08:55:08.582607 31616 solver.cpp:237] Train net output #0: loss = 3.29454 (* 1 = 3.29454 loss) +I0408 08:55:08.582618 31616 sgd_solver.cpp:105] Iteration 8760, lr = 8.67731e-08 +I0408 08:55:13.167217 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 08:55:18.623742 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 08:55:21.250299 31616 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 08:55:21.250324 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:55:22.282254 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:55:25.723796 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:55:25.723843 31616 solver.cpp:397] Test net output #1: loss = 3.85113 (* 1 = 3.85113 loss) +I0408 08:55:25.813987 31616 solver.cpp:218] Iteration 8772 (0.696424 iter/s, 17.2309s/12 iters), loss = 3.46359 +I0408 08:55:25.814038 31616 solver.cpp:237] Train net output #0: loss = 3.46359 (* 1 = 3.46359 loss) +I0408 08:55:25.814049 31616 sgd_solver.cpp:105] Iteration 8772, lr = 8.51298e-08 +I0408 08:55:30.100670 31616 solver.cpp:218] Iteration 8784 (2.79947 iter/s, 4.28652s/12 iters), loss = 3.16449 +I0408 08:55:30.100710 31616 solver.cpp:237] Train net output #0: loss = 3.16449 (* 1 = 3.16449 loss) +I0408 08:55:30.100719 31616 sgd_solver.cpp:105] Iteration 8784, lr = 8.35176e-08 +I0408 08:55:35.105060 31616 solver.cpp:218] Iteration 8796 (2.39798 iter/s, 5.00422s/12 iters), loss = 2.97787 +I0408 08:55:35.105108 31616 solver.cpp:237] Train net output #0: loss = 2.97787 (* 1 = 2.97787 loss) +I0408 08:55:35.105118 31616 sgd_solver.cpp:105] Iteration 8796, lr = 8.19359e-08 +I0408 08:55:36.529672 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:55:40.015961 31616 solver.cpp:218] Iteration 8808 (2.44363 iter/s, 4.91073s/12 iters), loss = 3.26268 +I0408 08:55:40.016008 31616 solver.cpp:237] Train net output #0: loss = 3.26268 (* 1 = 3.26268 loss) +I0408 08:55:40.016019 31616 sgd_solver.cpp:105] Iteration 8808, lr = 8.03842e-08 +I0408 08:55:45.035480 31616 solver.cpp:218] Iteration 8820 (2.39075 iter/s, 5.01934s/12 iters), loss = 3.44941 +I0408 08:55:45.035527 31616 solver.cpp:237] Train net output #0: loss = 3.44941 (* 1 = 3.44941 loss) +I0408 08:55:45.035539 31616 sgd_solver.cpp:105] Iteration 8820, lr = 7.88619e-08 +I0408 08:55:50.074230 31616 solver.cpp:218] Iteration 8832 (2.38163 iter/s, 5.03857s/12 iters), loss = 3.11327 +I0408 08:55:50.074344 31616 solver.cpp:237] Train net output #0: loss = 3.11327 (* 1 = 3.11327 loss) +I0408 08:55:50.074357 31616 sgd_solver.cpp:105] Iteration 8832, lr = 7.73684e-08 +I0408 08:55:55.016728 31616 solver.cpp:218] Iteration 8844 (2.42804 iter/s, 4.94226s/12 iters), loss = 3.20047 +I0408 08:55:55.016767 31616 solver.cpp:237] Train net output #0: loss = 3.20047 (* 1 = 3.20047 loss) +I0408 08:55:55.016777 31616 sgd_solver.cpp:105] Iteration 8844, lr = 7.59032e-08 +I0408 08:56:00.081465 31616 solver.cpp:218] Iteration 8856 (2.3694 iter/s, 5.06457s/12 iters), loss = 3.24832 +I0408 08:56:00.081497 31616 solver.cpp:237] Train net output #0: loss = 3.24832 (* 1 = 3.24832 loss) +I0408 08:56:00.081506 31616 sgd_solver.cpp:105] Iteration 8856, lr = 7.44657e-08 +I0408 08:56:05.059160 31616 solver.cpp:218] Iteration 8868 (2.41084 iter/s, 4.97752s/12 iters), loss = 3.38869 +I0408 08:56:05.059209 31616 solver.cpp:237] Train net output #0: loss = 3.38869 (* 1 = 3.38869 loss) +I0408 08:56:05.059221 31616 sgd_solver.cpp:105] Iteration 8868, lr = 7.30555e-08 +I0408 08:56:07.106380 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 08:56:10.082861 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 08:56:16.293116 31616 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 08:56:16.293135 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:56:17.290057 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:56:20.765416 31616 solver.cpp:397] Test net output #0: accuracy = 0.151348 +I0408 08:56:20.765529 31616 solver.cpp:397] Test net output #1: loss = 3.84052 (* 1 = 3.84052 loss) +I0408 08:56:22.741881 31616 solver.cpp:218] Iteration 8880 (0.678647 iter/s, 17.6822s/12 iters), loss = 3.10205 +I0408 08:56:22.741927 31616 solver.cpp:237] Train net output #0: loss = 3.10205 (* 1 = 3.10205 loss) +I0408 08:56:22.741938 31616 sgd_solver.cpp:105] Iteration 8880, lr = 7.16719e-08 +I0408 08:56:28.031030 31616 solver.cpp:218] Iteration 8892 (2.26888 iter/s, 5.28896s/12 iters), loss = 3.27031 +I0408 08:56:28.031073 31616 solver.cpp:237] Train net output #0: loss = 3.27031 (* 1 = 3.27031 loss) +I0408 08:56:28.031083 31616 sgd_solver.cpp:105] Iteration 8892, lr = 7.03146e-08 +I0408 08:56:31.599436 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:56:33.001186 31616 solver.cpp:218] Iteration 8904 (2.4145 iter/s, 4.96998s/12 iters), loss = 3.34856 +I0408 08:56:33.001240 31616 solver.cpp:237] Train net output #0: loss = 3.34856 (* 1 = 3.34856 loss) +I0408 08:56:33.001251 31616 sgd_solver.cpp:105] Iteration 8904, lr = 6.8983e-08 +I0408 08:56:37.939527 31616 solver.cpp:218] Iteration 8916 (2.43006 iter/s, 4.93816s/12 iters), loss = 3.05685 +I0408 08:56:37.939565 31616 solver.cpp:237] Train net output #0: loss = 3.05685 (* 1 = 3.05685 loss) +I0408 08:56:37.939575 31616 sgd_solver.cpp:105] Iteration 8916, lr = 6.76766e-08 +I0408 08:56:42.891376 31616 solver.cpp:218] Iteration 8928 (2.42342 iter/s, 4.95168s/12 iters), loss = 3.54844 +I0408 08:56:42.891422 31616 solver.cpp:237] Train net output #0: loss = 3.54844 (* 1 = 3.54844 loss) +I0408 08:56:42.891433 31616 sgd_solver.cpp:105] Iteration 8928, lr = 6.63949e-08 +I0408 08:56:47.750669 31616 solver.cpp:218] Iteration 8940 (2.46958 iter/s, 4.85912s/12 iters), loss = 3.25627 +I0408 08:56:47.750725 31616 solver.cpp:237] Train net output #0: loss = 3.25627 (* 1 = 3.25627 loss) +I0408 08:56:47.750739 31616 sgd_solver.cpp:105] Iteration 8940, lr = 6.51375e-08 +I0408 08:56:52.745864 31616 solver.cpp:218] Iteration 8952 (2.4024 iter/s, 4.99501s/12 iters), loss = 3.26586 +I0408 08:56:52.746019 31616 solver.cpp:237] Train net output #0: loss = 3.26586 (* 1 = 3.26586 loss) +I0408 08:56:52.746033 31616 sgd_solver.cpp:105] Iteration 8952, lr = 6.3904e-08 +I0408 08:56:57.775959 31616 solver.cpp:218] Iteration 8964 (2.38578 iter/s, 5.02981s/12 iters), loss = 3.3668 +I0408 08:56:57.776005 31616 solver.cpp:237] Train net output #0: loss = 3.3668 (* 1 = 3.3668 loss) +I0408 08:56:57.776017 31616 sgd_solver.cpp:105] Iteration 8964, lr = 6.26937e-08 +I0408 08:57:02.414443 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 08:57:05.452863 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 08:57:09.369490 31616 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 08:57:09.369518 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:57:10.324012 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:57:13.832839 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 08:57:13.832887 31616 solver.cpp:397] Test net output #1: loss = 3.85124 (* 1 = 3.85124 loss) +I0408 08:57:13.924185 31616 solver.cpp:218] Iteration 8976 (0.743137 iter/s, 16.1478s/12 iters), loss = 3.37783 +I0408 08:57:13.924230 31616 solver.cpp:237] Train net output #0: loss = 3.37783 (* 1 = 3.37783 loss) +I0408 08:57:13.924242 31616 sgd_solver.cpp:105] Iteration 8976, lr = 6.15064e-08 +I0408 08:57:18.152873 31616 solver.cpp:218] Iteration 8988 (2.83787 iter/s, 4.22852s/12 iters), loss = 3.24417 +I0408 08:57:18.152917 31616 solver.cpp:237] Train net output #0: loss = 3.24417 (* 1 = 3.24417 loss) +I0408 08:57:18.152928 31616 sgd_solver.cpp:105] Iteration 8988, lr = 6.03416e-08 +I0408 08:57:21.465160 31616 blocking_queue.cpp:49] Waiting for data +I0408 08:57:23.204404 31616 solver.cpp:218] Iteration 9000 (2.3756 iter/s, 5.05135s/12 iters), loss = 3.32745 +I0408 08:57:23.204511 31616 solver.cpp:237] Train net output #0: loss = 3.32745 (* 1 = 3.32745 loss) +I0408 08:57:23.204524 31616 sgd_solver.cpp:105] Iteration 9000, lr = 5.91989e-08 +I0408 08:57:23.985669 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:57:28.619493 31616 solver.cpp:218] Iteration 9012 (2.21613 iter/s, 5.41484s/12 iters), loss = 3.13931 +I0408 08:57:28.619537 31616 solver.cpp:237] Train net output #0: loss = 3.13931 (* 1 = 3.13931 loss) +I0408 08:57:28.619549 31616 sgd_solver.cpp:105] Iteration 9012, lr = 5.80778e-08 +I0408 08:57:33.709981 31616 solver.cpp:218] Iteration 9024 (2.35743 iter/s, 5.09029s/12 iters), loss = 3.13523 +I0408 08:57:33.710028 31616 solver.cpp:237] Train net output #0: loss = 3.13523 (* 1 = 3.13523 loss) +I0408 08:57:33.710039 31616 sgd_solver.cpp:105] Iteration 9024, lr = 5.69779e-08 +I0408 08:57:38.731060 31616 solver.cpp:218] Iteration 9036 (2.39001 iter/s, 5.0209s/12 iters), loss = 3.20841 +I0408 08:57:38.731096 31616 solver.cpp:237] Train net output #0: loss = 3.20841 (* 1 = 3.20841 loss) +I0408 08:57:38.731103 31616 sgd_solver.cpp:105] Iteration 9036, lr = 5.58988e-08 +I0408 08:57:43.756893 31616 solver.cpp:218] Iteration 9048 (2.38775 iter/s, 5.02566s/12 iters), loss = 3.10969 +I0408 08:57:43.756932 31616 solver.cpp:237] Train net output #0: loss = 3.10969 (* 1 = 3.10969 loss) +I0408 08:57:43.756942 31616 sgd_solver.cpp:105] Iteration 9048, lr = 5.48402e-08 +I0408 08:57:48.830852 31616 solver.cpp:218] Iteration 9060 (2.3651 iter/s, 5.07378s/12 iters), loss = 3.27115 +I0408 08:57:48.830889 31616 solver.cpp:237] Train net output #0: loss = 3.27115 (* 1 = 3.27115 loss) +I0408 08:57:48.830899 31616 sgd_solver.cpp:105] Iteration 9060, lr = 5.38016e-08 +I0408 08:57:53.876416 31616 solver.cpp:218] Iteration 9072 (2.37841 iter/s, 5.04539s/12 iters), loss = 3.28007 +I0408 08:57:53.876566 31616 solver.cpp:237] Train net output #0: loss = 3.28007 (* 1 = 3.28007 loss) +I0408 08:57:53.876579 31616 sgd_solver.cpp:105] Iteration 9072, lr = 5.27827e-08 +I0408 08:57:55.924410 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 08:57:59.059675 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 08:58:04.627741 31616 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 08:58:04.627768 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:58:05.529867 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:58:09.085148 31616 solver.cpp:397] Test net output #0: accuracy = 0.150123 +I0408 08:58:09.085194 31616 solver.cpp:397] Test net output #1: loss = 3.8513 (* 1 = 3.8513 loss) +I0408 08:58:11.089083 31616 solver.cpp:218] Iteration 9084 (0.697185 iter/s, 17.2121s/12 iters), loss = 3.20463 +I0408 08:58:11.089136 31616 solver.cpp:237] Train net output #0: loss = 3.20463 (* 1 = 3.20463 loss) +I0408 08:58:11.089148 31616 sgd_solver.cpp:105] Iteration 9084, lr = 5.17831e-08 +I0408 08:58:16.537907 31616 solver.cpp:218] Iteration 9096 (2.20239 iter/s, 5.44862s/12 iters), loss = 3.17293 +I0408 08:58:16.537981 31616 solver.cpp:237] Train net output #0: loss = 3.17293 (* 1 = 3.17293 loss) +I0408 08:58:16.537992 31616 sgd_solver.cpp:105] Iteration 9096, lr = 5.08025e-08 +I0408 08:58:19.511804 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:58:21.578965 31616 solver.cpp:218] Iteration 9108 (2.38054 iter/s, 5.04087s/12 iters), loss = 3.43145 +I0408 08:58:21.579000 31616 solver.cpp:237] Train net output #0: loss = 3.43145 (* 1 = 3.43145 loss) +I0408 08:58:21.579010 31616 sgd_solver.cpp:105] Iteration 9108, lr = 4.98404e-08 +I0408 08:58:26.628692 31616 solver.cpp:218] Iteration 9120 (2.37645 iter/s, 5.04955s/12 iters), loss = 3.26593 +I0408 08:58:26.628755 31616 solver.cpp:237] Train net output #0: loss = 3.26593 (* 1 = 3.26593 loss) +I0408 08:58:26.628764 31616 sgd_solver.cpp:105] Iteration 9120, lr = 4.88965e-08 +I0408 08:58:31.723814 31616 solver.cpp:218] Iteration 9132 (2.35529 iter/s, 5.09491s/12 iters), loss = 3.47597 +I0408 08:58:31.723856 31616 solver.cpp:237] Train net output #0: loss = 3.47597 (* 1 = 3.47597 loss) +I0408 08:58:31.723866 31616 sgd_solver.cpp:105] Iteration 9132, lr = 4.79705e-08 +I0408 08:58:36.756630 31616 solver.cpp:218] Iteration 9144 (2.38444 iter/s, 5.03263s/12 iters), loss = 3.47513 +I0408 08:58:36.756677 31616 solver.cpp:237] Train net output #0: loss = 3.47513 (* 1 = 3.47513 loss) +I0408 08:58:36.756688 31616 sgd_solver.cpp:105] Iteration 9144, lr = 4.7062e-08 +I0408 08:58:41.812826 31616 solver.cpp:218] Iteration 9156 (2.37341 iter/s, 5.05601s/12 iters), loss = 3.36465 +I0408 08:58:41.812860 31616 solver.cpp:237] Train net output #0: loss = 3.36465 (* 1 = 3.36465 loss) +I0408 08:58:41.812867 31616 sgd_solver.cpp:105] Iteration 9156, lr = 4.61707e-08 +I0408 08:58:46.953722 31616 solver.cpp:218] Iteration 9168 (2.33431 iter/s, 5.14071s/12 iters), loss = 3.17304 +I0408 08:58:46.953763 31616 solver.cpp:237] Train net output #0: loss = 3.17304 (* 1 = 3.17304 loss) +I0408 08:58:46.953771 31616 sgd_solver.cpp:105] Iteration 9168, lr = 4.52964e-08 +I0408 08:58:51.679314 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 08:58:56.068938 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 08:59:00.194442 31616 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 08:59:00.194557 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:59:01.139602 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:59:04.750202 31616 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0408 08:59:04.750252 31616 solver.cpp:397] Test net output #1: loss = 3.84761 (* 1 = 3.84761 loss) +I0408 08:59:04.841753 31616 solver.cpp:218] Iteration 9180 (0.670859 iter/s, 17.8875s/12 iters), loss = 3.48267 +I0408 08:59:04.841809 31616 solver.cpp:237] Train net output #0: loss = 3.48267 (* 1 = 3.48267 loss) +I0408 08:59:04.841823 31616 sgd_solver.cpp:105] Iteration 9180, lr = 4.44385e-08 +I0408 08:59:09.335726 31616 solver.cpp:218] Iteration 9192 (2.67035 iter/s, 4.49379s/12 iters), loss = 3.26772 +I0408 08:59:09.335772 31616 solver.cpp:237] Train net output #0: loss = 3.26772 (* 1 = 3.26772 loss) +I0408 08:59:09.335783 31616 sgd_solver.cpp:105] Iteration 9192, lr = 4.35969e-08 +I0408 08:59:14.546533 31616 solver.cpp:218] Iteration 9204 (2.30299 iter/s, 5.21062s/12 iters), loss = 3.16648 +I0408 08:59:14.546579 31616 solver.cpp:237] Train net output #0: loss = 3.16648 (* 1 = 3.16648 loss) +I0408 08:59:14.546591 31616 sgd_solver.cpp:105] Iteration 9204, lr = 4.27713e-08 +I0408 08:59:14.625761 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:59:19.487088 31616 solver.cpp:218] Iteration 9216 (2.42897 iter/s, 4.94037s/12 iters), loss = 3.23117 +I0408 08:59:19.487133 31616 solver.cpp:237] Train net output #0: loss = 3.23117 (* 1 = 3.23117 loss) +I0408 08:59:19.487145 31616 sgd_solver.cpp:105] Iteration 9216, lr = 4.19613e-08 +I0408 08:59:24.498469 31616 solver.cpp:218] Iteration 9228 (2.39464 iter/s, 5.01119s/12 iters), loss = 3.22624 +I0408 08:59:24.498524 31616 solver.cpp:237] Train net output #0: loss = 3.22624 (* 1 = 3.22624 loss) +I0408 08:59:24.498539 31616 sgd_solver.cpp:105] Iteration 9228, lr = 4.11666e-08 +I0408 08:59:29.496433 31616 solver.cpp:218] Iteration 9240 (2.40107 iter/s, 4.99777s/12 iters), loss = 3.07697 +I0408 08:59:29.496477 31616 solver.cpp:237] Train net output #0: loss = 3.07697 (* 1 = 3.07697 loss) +I0408 08:59:29.496487 31616 sgd_solver.cpp:105] Iteration 9240, lr = 4.0387e-08 +I0408 08:59:34.531509 31616 solver.cpp:218] Iteration 9252 (2.38337 iter/s, 5.03488s/12 iters), loss = 3.36628 +I0408 08:59:34.532009 31616 solver.cpp:237] Train net output #0: loss = 3.36628 (* 1 = 3.36628 loss) +I0408 08:59:34.532022 31616 sgd_solver.cpp:105] Iteration 9252, lr = 3.96222e-08 +I0408 08:59:39.502065 31616 solver.cpp:218] Iteration 9264 (2.41453 iter/s, 4.96992s/12 iters), loss = 3.48428 +I0408 08:59:39.502111 31616 solver.cpp:237] Train net output #0: loss = 3.48428 (* 1 = 3.48428 loss) +I0408 08:59:39.502123 31616 sgd_solver.cpp:105] Iteration 9264, lr = 3.88718e-08 +I0408 08:59:44.547765 31616 solver.cpp:218] Iteration 9276 (2.37835 iter/s, 5.04551s/12 iters), loss = 3.28046 +I0408 08:59:44.547814 31616 solver.cpp:237] Train net output #0: loss = 3.28046 (* 1 = 3.28046 loss) +I0408 08:59:44.547825 31616 sgd_solver.cpp:105] Iteration 9276, lr = 3.81356e-08 +I0408 08:59:46.573705 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 08:59:51.065172 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 08:59:53.400940 31616 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 08:59:53.400964 31616 net.cpp:676] Ignoring source layer train-data +I0408 08:59:54.223748 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:59:57.872272 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 08:59:57.872311 31616 solver.cpp:397] Test net output #1: loss = 3.86038 (* 1 = 3.86038 loss) +I0408 08:59:59.643466 31616 solver.cpp:218] Iteration 9288 (0.794953 iter/s, 15.0952s/12 iters), loss = 3.37266 +I0408 08:59:59.643507 31616 solver.cpp:237] Train net output #0: loss = 3.37266 (* 1 = 3.37266 loss) +I0408 08:59:59.643515 31616 sgd_solver.cpp:105] Iteration 9288, lr = 3.74134e-08 +I0408 09:00:04.764024 31616 solver.cpp:218] Iteration 9300 (2.34358 iter/s, 5.12037s/12 iters), loss = 3.31146 +I0408 09:00:04.764128 31616 solver.cpp:237] Train net output #0: loss = 3.31146 (* 1 = 3.31146 loss) +I0408 09:00:04.764139 31616 sgd_solver.cpp:105] Iteration 9300, lr = 3.67049e-08 +I0408 09:00:07.181633 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:00:10.218631 31616 solver.cpp:218] Iteration 9312 (2.20008 iter/s, 5.45435s/12 iters), loss = 3.28025 +I0408 09:00:10.218672 31616 solver.cpp:237] Train net output #0: loss = 3.28025 (* 1 = 3.28025 loss) +I0408 09:00:10.218683 31616 sgd_solver.cpp:105] Iteration 9312, lr = 3.60098e-08 +I0408 09:00:15.360975 31616 solver.cpp:218] Iteration 9324 (2.33365 iter/s, 5.14216s/12 iters), loss = 3.24066 +I0408 09:00:15.361012 31616 solver.cpp:237] Train net output #0: loss = 3.24066 (* 1 = 3.24066 loss) +I0408 09:00:15.361021 31616 sgd_solver.cpp:105] Iteration 9324, lr = 3.53278e-08 +I0408 09:00:20.384305 31616 solver.cpp:218] Iteration 9336 (2.38894 iter/s, 5.02315s/12 iters), loss = 3.03865 +I0408 09:00:20.384349 31616 solver.cpp:237] Train net output #0: loss = 3.03865 (* 1 = 3.03865 loss) +I0408 09:00:20.384361 31616 sgd_solver.cpp:105] Iteration 9336, lr = 3.46588e-08 +I0408 09:00:25.476902 31616 solver.cpp:218] Iteration 9348 (2.35645 iter/s, 5.09241s/12 iters), loss = 3.60713 +I0408 09:00:25.476948 31616 solver.cpp:237] Train net output #0: loss = 3.60713 (* 1 = 3.60713 loss) +I0408 09:00:25.476959 31616 sgd_solver.cpp:105] Iteration 9348, lr = 3.40024e-08 +I0408 09:00:30.606976 31616 solver.cpp:218] Iteration 9360 (2.33924 iter/s, 5.12988s/12 iters), loss = 3.42638 +I0408 09:00:30.607012 31616 solver.cpp:237] Train net output #0: loss = 3.42638 (* 1 = 3.42638 loss) +I0408 09:00:30.607018 31616 sgd_solver.cpp:105] Iteration 9360, lr = 3.33585e-08 +I0408 09:00:35.592646 31616 solver.cpp:218] Iteration 9372 (2.40699 iter/s, 4.98549s/12 iters), loss = 3.22668 +I0408 09:00:35.592778 31616 solver.cpp:237] Train net output #0: loss = 3.22668 (* 1 = 3.22668 loss) +I0408 09:00:35.592792 31616 sgd_solver.cpp:105] Iteration 9372, lr = 3.27267e-08 +I0408 09:00:40.147673 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 09:00:43.121167 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 09:00:45.429734 31616 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 09:00:45.429762 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:00:46.207883 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:00:49.885890 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 09:00:49.885937 31616 solver.cpp:397] Test net output #1: loss = 3.84613 (* 1 = 3.84613 loss) +I0408 09:00:49.976919 31616 solver.cpp:218] Iteration 9384 (0.834275 iter/s, 14.3837s/12 iters), loss = 3.28615 +I0408 09:00:49.976964 31616 solver.cpp:237] Train net output #0: loss = 3.28615 (* 1 = 3.28615 loss) +I0408 09:00:49.976975 31616 sgd_solver.cpp:105] Iteration 9384, lr = 3.21069e-08 +I0408 09:00:54.275784 31616 solver.cpp:218] Iteration 9396 (2.79155 iter/s, 4.29869s/12 iters), loss = 3.18538 +I0408 09:00:54.275828 31616 solver.cpp:237] Train net output #0: loss = 3.18538 (* 1 = 3.18538 loss) +I0408 09:00:54.275840 31616 sgd_solver.cpp:105] Iteration 9396, lr = 3.14989e-08 +I0408 09:00:58.652781 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:00:59.302536 31616 solver.cpp:218] Iteration 9408 (2.38732 iter/s, 5.02656s/12 iters), loss = 3.42495 +I0408 09:00:59.302582 31616 solver.cpp:237] Train net output #0: loss = 3.42495 (* 1 = 3.42495 loss) +I0408 09:00:59.302594 31616 sgd_solver.cpp:105] Iteration 9408, lr = 3.09024e-08 +I0408 09:01:04.310513 31616 solver.cpp:218] Iteration 9420 (2.39627 iter/s, 5.00779s/12 iters), loss = 3.29648 +I0408 09:01:04.310557 31616 solver.cpp:237] Train net output #0: loss = 3.29648 (* 1 = 3.29648 loss) +I0408 09:01:04.310568 31616 sgd_solver.cpp:105] Iteration 9420, lr = 3.03171e-08 +I0408 09:01:09.301673 31616 solver.cpp:218] Iteration 9432 (2.40434 iter/s, 4.99097s/12 iters), loss = 3.09224 +I0408 09:01:09.304023 31616 solver.cpp:237] Train net output #0: loss = 3.09224 (* 1 = 3.09224 loss) +I0408 09:01:09.304036 31616 sgd_solver.cpp:105] Iteration 9432, lr = 2.9743e-08 +I0408 09:01:14.330292 31616 solver.cpp:218] Iteration 9444 (2.38753 iter/s, 5.02612s/12 iters), loss = 3.2777 +I0408 09:01:14.330340 31616 solver.cpp:237] Train net output #0: loss = 3.2777 (* 1 = 3.2777 loss) +I0408 09:01:14.330353 31616 sgd_solver.cpp:105] Iteration 9444, lr = 2.91797e-08 +I0408 09:01:19.395890 31616 solver.cpp:218] Iteration 9456 (2.36901 iter/s, 5.0654s/12 iters), loss = 3.37954 +I0408 09:01:19.395938 31616 solver.cpp:237] Train net output #0: loss = 3.37954 (* 1 = 3.37954 loss) +I0408 09:01:19.395951 31616 sgd_solver.cpp:105] Iteration 9456, lr = 2.86271e-08 +I0408 09:01:24.328517 31616 solver.cpp:218] Iteration 9468 (2.43288 iter/s, 4.93244s/12 iters), loss = 3.23857 +I0408 09:01:24.328562 31616 solver.cpp:237] Train net output #0: loss = 3.23857 (* 1 = 3.23857 loss) +I0408 09:01:24.328575 31616 sgd_solver.cpp:105] Iteration 9468, lr = 2.8085e-08 +I0408 09:01:29.331001 31616 solver.cpp:218] Iteration 9480 (2.3989 iter/s, 5.00229s/12 iters), loss = 3.31861 +I0408 09:01:29.331044 31616 solver.cpp:237] Train net output #0: loss = 3.31861 (* 1 = 3.31861 loss) +I0408 09:01:29.331055 31616 sgd_solver.cpp:105] Iteration 9480, lr = 2.75531e-08 +I0408 09:01:31.360803 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 09:01:34.416666 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 09:01:36.800496 31616 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 09:01:36.800519 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:01:37.525534 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:01:41.254321 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 09:01:41.254429 31616 solver.cpp:397] Test net output #1: loss = 3.84415 (* 1 = 3.84415 loss) +I0408 09:01:43.065886 31616 solver.cpp:218] Iteration 9492 (0.873715 iter/s, 13.7345s/12 iters), loss = 3.27745 +I0408 09:01:43.065938 31616 solver.cpp:237] Train net output #0: loss = 3.27745 (* 1 = 3.27745 loss) +I0408 09:01:43.065953 31616 sgd_solver.cpp:105] Iteration 9492, lr = 2.70313e-08 +I0408 09:01:47.977442 31616 solver.cpp:218] Iteration 9504 (2.44332 iter/s, 4.91136s/12 iters), loss = 3.22407 +I0408 09:01:47.977483 31616 solver.cpp:237] Train net output #0: loss = 3.22407 (* 1 = 3.22407 loss) +I0408 09:01:47.977495 31616 sgd_solver.cpp:105] Iteration 9504, lr = 2.65194e-08 +I0408 09:01:49.386102 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:01:52.875916 31616 solver.cpp:218] Iteration 9516 (2.44983 iter/s, 4.89829s/12 iters), loss = 3.1979 +I0408 09:01:52.875978 31616 solver.cpp:237] Train net output #0: loss = 3.1979 (* 1 = 3.1979 loss) +I0408 09:01:52.875990 31616 sgd_solver.cpp:105] Iteration 9516, lr = 2.60171e-08 +I0408 09:01:57.893620 31616 solver.cpp:218] Iteration 9528 (2.39163 iter/s, 5.01749s/12 iters), loss = 3.53372 +I0408 09:01:57.893667 31616 solver.cpp:237] Train net output #0: loss = 3.53372 (* 1 = 3.53372 loss) +I0408 09:01:57.893679 31616 sgd_solver.cpp:105] Iteration 9528, lr = 2.55244e-08 +I0408 09:02:02.860472 31616 solver.cpp:218] Iteration 9540 (2.41611 iter/s, 4.96666s/12 iters), loss = 3.23711 +I0408 09:02:02.860513 31616 solver.cpp:237] Train net output #0: loss = 3.23711 (* 1 = 3.23711 loss) +I0408 09:02:02.860522 31616 sgd_solver.cpp:105] Iteration 9540, lr = 2.5041e-08 +I0408 09:02:07.888458 31616 solver.cpp:218] Iteration 9552 (2.38673 iter/s, 5.0278s/12 iters), loss = 3.22474 +I0408 09:02:07.888504 31616 solver.cpp:237] Train net output #0: loss = 3.22474 (* 1 = 3.22474 loss) +I0408 09:02:07.888516 31616 sgd_solver.cpp:105] Iteration 9552, lr = 2.45668e-08 +I0408 09:02:12.806488 31616 solver.cpp:218] Iteration 9564 (2.4401 iter/s, 4.91784s/12 iters), loss = 3.26748 +I0408 09:02:12.806641 31616 solver.cpp:237] Train net output #0: loss = 3.26748 (* 1 = 3.26748 loss) +I0408 09:02:12.806654 31616 sgd_solver.cpp:105] Iteration 9564, lr = 2.41016e-08 +I0408 09:02:17.801404 31616 solver.cpp:218] Iteration 9576 (2.40259 iter/s, 4.99462s/12 iters), loss = 3.44657 +I0408 09:02:17.801455 31616 solver.cpp:237] Train net output #0: loss = 3.44657 (* 1 = 3.44657 loss) +I0408 09:02:17.801465 31616 sgd_solver.cpp:105] Iteration 9576, lr = 2.36451e-08 +I0408 09:02:22.357878 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 09:02:25.382966 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 09:02:27.813663 31616 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 09:02:27.813690 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:02:28.501844 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:02:32.414116 31616 solver.cpp:397] Test net output #0: accuracy = 0.14951 +I0408 09:02:32.414147 31616 solver.cpp:397] Test net output #1: loss = 3.84436 (* 1 = 3.84436 loss) +I0408 09:02:32.505314 31616 solver.cpp:218] Iteration 9588 (0.816135 iter/s, 14.7034s/12 iters), loss = 3.08752 +I0408 09:02:32.505352 31616 solver.cpp:237] Train net output #0: loss = 3.08752 (* 1 = 3.08752 loss) +I0408 09:02:32.505360 31616 sgd_solver.cpp:105] Iteration 9588, lr = 2.31973e-08 +I0408 09:02:36.625244 31616 solver.cpp:218] Iteration 9600 (2.91279 iter/s, 4.11977s/12 iters), loss = 3.31424 +I0408 09:02:36.625288 31616 solver.cpp:237] Train net output #0: loss = 3.31424 (* 1 = 3.31424 loss) +I0408 09:02:36.625299 31616 sgd_solver.cpp:105] Iteration 9600, lr = 2.2758e-08 +I0408 09:02:40.241709 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:02:41.624579 31616 solver.cpp:218] Iteration 9612 (2.40041 iter/s, 4.99914s/12 iters), loss = 3.33998 +I0408 09:02:41.624614 31616 solver.cpp:237] Train net output #0: loss = 3.33998 (* 1 = 3.33998 loss) +I0408 09:02:41.624624 31616 sgd_solver.cpp:105] Iteration 9612, lr = 2.2327e-08 +I0408 09:02:46.569931 31616 solver.cpp:218] Iteration 9624 (2.42661 iter/s, 4.94517s/12 iters), loss = 2.99107 +I0408 09:02:46.570034 31616 solver.cpp:237] Train net output #0: loss = 2.99107 (* 1 = 2.99107 loss) +I0408 09:02:46.570044 31616 sgd_solver.cpp:105] Iteration 9624, lr = 2.19042e-08 +I0408 09:02:51.562515 31616 solver.cpp:218] Iteration 9636 (2.40368 iter/s, 4.99234s/12 iters), loss = 3.39393 +I0408 09:02:51.562551 31616 solver.cpp:237] Train net output #0: loss = 3.39393 (* 1 = 3.39393 loss) +I0408 09:02:51.562558 31616 sgd_solver.cpp:105] Iteration 9636, lr = 2.14894e-08 +I0408 09:02:56.576004 31616 solver.cpp:218] Iteration 9648 (2.39364 iter/s, 5.01329s/12 iters), loss = 3.40208 +I0408 09:02:56.576056 31616 solver.cpp:237] Train net output #0: loss = 3.40208 (* 1 = 3.40208 loss) +I0408 09:02:56.576071 31616 sgd_solver.cpp:105] Iteration 9648, lr = 2.10824e-08 +I0408 09:03:01.649034 31616 solver.cpp:218] Iteration 9660 (2.36554 iter/s, 5.07283s/12 iters), loss = 3.34748 +I0408 09:03:01.649070 31616 solver.cpp:237] Train net output #0: loss = 3.34748 (* 1 = 3.34748 loss) +I0408 09:03:01.649077 31616 sgd_solver.cpp:105] Iteration 9660, lr = 2.06831e-08 +I0408 09:03:06.583515 31616 solver.cpp:218] Iteration 9672 (2.43196 iter/s, 4.93429s/12 iters), loss = 3.34765 +I0408 09:03:06.583564 31616 solver.cpp:237] Train net output #0: loss = 3.34765 (* 1 = 3.34765 loss) +I0408 09:03:06.583575 31616 sgd_solver.cpp:105] Iteration 9672, lr = 2.02914e-08 +I0408 09:03:11.629783 31616 solver.cpp:218] Iteration 9684 (2.37809 iter/s, 5.04607s/12 iters), loss = 3.29272 +I0408 09:03:11.629829 31616 solver.cpp:237] Train net output #0: loss = 3.29272 (* 1 = 3.29272 loss) +I0408 09:03:11.629840 31616 sgd_solver.cpp:105] Iteration 9684, lr = 1.99072e-08 +I0408 09:03:13.674434 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 09:03:16.687908 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 09:03:19.026182 31616 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 09:03:19.026211 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:03:19.676735 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:03:22.503330 31616 blocking_queue.cpp:49] Waiting for data +I0408 09:03:23.491811 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 09:03:23.491855 31616 solver.cpp:397] Test net output #1: loss = 3.85837 (* 1 = 3.85837 loss) +I0408 09:03:25.472277 31616 solver.cpp:218] Iteration 9696 (0.866923 iter/s, 13.8421s/12 iters), loss = 3.1917 +I0408 09:03:25.472317 31616 solver.cpp:237] Train net output #0: loss = 3.1917 (* 1 = 3.1917 loss) +I0408 09:03:25.472326 31616 sgd_solver.cpp:105] Iteration 9696, lr = 1.95302e-08 +I0408 09:03:30.525286 31616 solver.cpp:218] Iteration 9708 (2.37491 iter/s, 5.05282s/12 iters), loss = 3.44879 +I0408 09:03:30.525329 31616 solver.cpp:237] Train net output #0: loss = 3.44879 (* 1 = 3.44879 loss) +I0408 09:03:30.525341 31616 sgd_solver.cpp:105] Iteration 9708, lr = 1.91603e-08 +I0408 09:03:31.264282 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:03:35.571991 31616 solver.cpp:218] Iteration 9720 (2.37788 iter/s, 5.04651s/12 iters), loss = 3.16624 +I0408 09:03:35.572036 31616 solver.cpp:237] Train net output #0: loss = 3.16624 (* 1 = 3.16624 loss) +I0408 09:03:35.572048 31616 sgd_solver.cpp:105] Iteration 9720, lr = 1.87974e-08 +I0408 09:03:40.628262 31616 solver.cpp:218] Iteration 9732 (2.37338 iter/s, 5.05607s/12 iters), loss = 3.32528 +I0408 09:03:40.628309 31616 solver.cpp:237] Train net output #0: loss = 3.32528 (* 1 = 3.32528 loss) +I0408 09:03:40.628321 31616 sgd_solver.cpp:105] Iteration 9732, lr = 1.84414e-08 +I0408 09:03:45.573480 31616 solver.cpp:218] Iteration 9744 (2.42668 iter/s, 4.94502s/12 iters), loss = 3.19877 +I0408 09:03:45.573523 31616 solver.cpp:237] Train net output #0: loss = 3.19877 (* 1 = 3.19877 loss) +I0408 09:03:45.573534 31616 sgd_solver.cpp:105] Iteration 9744, lr = 1.80922e-08 +I0408 09:03:50.568976 31616 solver.cpp:218] Iteration 9756 (2.40226 iter/s, 4.9953s/12 iters), loss = 3.1347 +I0408 09:03:50.569093 31616 solver.cpp:237] Train net output #0: loss = 3.1347 (* 1 = 3.1347 loss) +I0408 09:03:50.569106 31616 sgd_solver.cpp:105] Iteration 9756, lr = 1.77496e-08 +I0408 09:03:55.583469 31616 solver.cpp:218] Iteration 9768 (2.39319 iter/s, 5.01423s/12 iters), loss = 3.30993 +I0408 09:03:55.583513 31616 solver.cpp:237] Train net output #0: loss = 3.30993 (* 1 = 3.30993 loss) +I0408 09:03:55.583524 31616 sgd_solver.cpp:105] Iteration 9768, lr = 1.74134e-08 +I0408 09:04:00.598063 31616 solver.cpp:218] Iteration 9780 (2.39311 iter/s, 5.0144s/12 iters), loss = 3.35885 +I0408 09:04:00.598109 31616 solver.cpp:237] Train net output #0: loss = 3.35885 (* 1 = 3.35885 loss) +I0408 09:04:00.598121 31616 sgd_solver.cpp:105] Iteration 9780, lr = 1.70836e-08 +I0408 09:04:05.248132 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 09:04:08.239058 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 09:04:10.581401 31616 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 09:04:10.581429 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:04:11.190697 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:04:15.042297 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 09:04:15.042346 31616 solver.cpp:397] Test net output #1: loss = 3.845 (* 1 = 3.845 loss) +I0408 09:04:15.133391 31616 solver.cpp:218] Iteration 9792 (0.825601 iter/s, 14.5349s/12 iters), loss = 3.3387 +I0408 09:04:15.133440 31616 solver.cpp:237] Train net output #0: loss = 3.3387 (* 1 = 3.3387 loss) +I0408 09:04:15.133450 31616 sgd_solver.cpp:105] Iteration 9792, lr = 1.67601e-08 +I0408 09:04:19.303144 31616 solver.cpp:218] Iteration 9804 (2.87799 iter/s, 4.16958s/12 iters), loss = 3.33874 +I0408 09:04:19.303196 31616 solver.cpp:237] Train net output #0: loss = 3.33874 (* 1 = 3.33874 loss) +I0408 09:04:19.303207 31616 sgd_solver.cpp:105] Iteration 9804, lr = 1.64427e-08 +I0408 09:04:22.297327 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:04:24.303475 31616 solver.cpp:218] Iteration 9816 (2.39994 iter/s, 5.00013s/12 iters), loss = 3.33079 +I0408 09:04:24.303519 31616 solver.cpp:237] Train net output #0: loss = 3.33079 (* 1 = 3.33079 loss) +I0408 09:04:24.303534 31616 sgd_solver.cpp:105] Iteration 9816, lr = 1.61313e-08 +I0408 09:04:29.302361 31616 solver.cpp:218] Iteration 9828 (2.40063 iter/s, 4.99869s/12 iters), loss = 3.25041 +I0408 09:04:29.302403 31616 solver.cpp:237] Train net output #0: loss = 3.25041 (* 1 = 3.25041 loss) +I0408 09:04:29.302414 31616 sgd_solver.cpp:105] Iteration 9828, lr = 1.58258e-08 +I0408 09:04:34.295169 31616 solver.cpp:218] Iteration 9840 (2.40355 iter/s, 4.99261s/12 iters), loss = 3.33721 +I0408 09:04:34.295217 31616 solver.cpp:237] Train net output #0: loss = 3.33721 (* 1 = 3.33721 loss) +I0408 09:04:34.295228 31616 sgd_solver.cpp:105] Iteration 9840, lr = 1.55261e-08 +I0408 09:04:39.309623 31616 solver.cpp:218] Iteration 9852 (2.39318 iter/s, 5.01425s/12 iters), loss = 3.40838 +I0408 09:04:39.309671 31616 solver.cpp:237] Train net output #0: loss = 3.40838 (* 1 = 3.40838 loss) +I0408 09:04:39.309684 31616 sgd_solver.cpp:105] Iteration 9852, lr = 1.52321e-08 +I0408 09:04:44.349931 31616 solver.cpp:218] Iteration 9864 (2.3809 iter/s, 5.04011s/12 iters), loss = 3.27902 +I0408 09:04:44.349987 31616 solver.cpp:237] Train net output #0: loss = 3.27902 (* 1 = 3.27902 loss) +I0408 09:04:44.349998 31616 sgd_solver.cpp:105] Iteration 9864, lr = 1.49436e-08 +I0408 09:04:49.327867 31616 solver.cpp:218] Iteration 9876 (2.41074 iter/s, 4.97773s/12 iters), loss = 3.2725 +I0408 09:04:49.327915 31616 solver.cpp:237] Train net output #0: loss = 3.2725 (* 1 = 3.2725 loss) +I0408 09:04:49.327927 31616 sgd_solver.cpp:105] Iteration 9876, lr = 1.46606e-08 +I0408 09:04:54.252853 31616 solver.cpp:218] Iteration 9888 (2.43665 iter/s, 4.92479s/12 iters), loss = 3.61321 +I0408 09:04:54.252959 31616 solver.cpp:237] Train net output #0: loss = 3.61321 (* 1 = 3.61321 loss) +I0408 09:04:54.252971 31616 sgd_solver.cpp:105] Iteration 9888, lr = 1.4383e-08 +I0408 09:04:56.298525 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 09:04:59.270483 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 09:05:02.025544 31616 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 09:05:02.025569 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:05:02.594628 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:05:06.467025 31616 solver.cpp:397] Test net output #0: accuracy = 0.148284 +I0408 09:05:06.467067 31616 solver.cpp:397] Test net output #1: loss = 3.85053 (* 1 = 3.85053 loss) +I0408 09:05:08.485982 31616 solver.cpp:218] Iteration 9900 (0.843134 iter/s, 14.2326s/12 iters), loss = 3.39405 +I0408 09:05:08.486025 31616 solver.cpp:237] Train net output #0: loss = 3.39405 (* 1 = 3.39405 loss) +I0408 09:05:08.486033 31616 sgd_solver.cpp:105] Iteration 9900, lr = 1.41106e-08 +I0408 09:05:13.486522 31616 solver.cpp:218] Iteration 9912 (2.39983 iter/s, 5.00035s/12 iters), loss = 3.28365 +I0408 09:05:13.486562 31616 solver.cpp:237] Train net output #0: loss = 3.28365 (* 1 = 3.28365 loss) +I0408 09:05:13.486572 31616 sgd_solver.cpp:105] Iteration 9912, lr = 1.38433e-08 +I0408 09:05:13.603199 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:05:18.480712 31616 solver.cpp:218] Iteration 9924 (2.40288 iter/s, 4.994s/12 iters), loss = 3.33666 +I0408 09:05:18.480754 31616 solver.cpp:237] Train net output #0: loss = 3.33666 (* 1 = 3.33666 loss) +I0408 09:05:18.480764 31616 sgd_solver.cpp:105] Iteration 9924, lr = 1.35812e-08 +I0408 09:05:23.448964 31616 solver.cpp:218] Iteration 9936 (2.41543 iter/s, 4.96805s/12 iters), loss = 3.02995 +I0408 09:05:23.449010 31616 solver.cpp:237] Train net output #0: loss = 3.02995 (* 1 = 3.02995 loss) +I0408 09:05:23.449023 31616 sgd_solver.cpp:105] Iteration 9936, lr = 1.3324e-08 +I0408 09:05:28.470093 31616 solver.cpp:218] Iteration 9948 (2.39 iter/s, 5.02093s/12 iters), loss = 3.15942 +I0408 09:05:28.470213 31616 solver.cpp:237] Train net output #0: loss = 3.15942 (* 1 = 3.15942 loss) +I0408 09:05:28.470227 31616 sgd_solver.cpp:105] Iteration 9948, lr = 1.30717e-08 +I0408 09:05:33.520088 31616 solver.cpp:218] Iteration 9960 (2.37637 iter/s, 5.04973s/12 iters), loss = 3.37996 +I0408 09:05:33.520121 31616 solver.cpp:237] Train net output #0: loss = 3.37996 (* 1 = 3.37996 loss) +I0408 09:05:33.520129 31616 sgd_solver.cpp:105] Iteration 9960, lr = 1.28241e-08 +I0408 09:05:38.607285 31616 solver.cpp:218] Iteration 9972 (2.35895 iter/s, 5.087s/12 iters), loss = 3.33365 +I0408 09:05:38.607333 31616 solver.cpp:237] Train net output #0: loss = 3.33365 (* 1 = 3.33365 loss) +I0408 09:05:38.607344 31616 sgd_solver.cpp:105] Iteration 9972, lr = 1.25812e-08 +I0408 09:05:43.664227 31616 solver.cpp:218] Iteration 9984 (2.37307 iter/s, 5.05673s/12 iters), loss = 3.39842 +I0408 09:05:43.664276 31616 solver.cpp:237] Train net output #0: loss = 3.39842 (* 1 = 3.39842 loss) +I0408 09:05:43.664288 31616 sgd_solver.cpp:105] Iteration 9984, lr = 1.2343e-08 +I0408 09:05:48.185866 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 09:05:51.199342 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 09:05:53.516358 31616 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 09:05:53.516381 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:05:54.037163 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:05:57.988113 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 09:05:57.988162 31616 solver.cpp:397] Test net output #1: loss = 3.84843 (* 1 = 3.84843 loss) +I0408 09:05:58.078088 31616 solver.cpp:218] Iteration 9996 (0.832559 iter/s, 14.4134s/12 iters), loss = 3.32454 +I0408 09:05:58.078135 31616 solver.cpp:237] Train net output #0: loss = 3.32454 (* 1 = 3.32454 loss) +I0408 09:05:58.078147 31616 sgd_solver.cpp:105] Iteration 9996, lr = 1.21092e-08 +I0408 09:06:02.289891 31616 solver.cpp:218] Iteration 10008 (2.84926 iter/s, 4.21162s/12 iters), loss = 3.23418 +I0408 09:06:02.290014 31616 solver.cpp:237] Train net output #0: loss = 3.23418 (* 1 = 3.23418 loss) +I0408 09:06:02.290030 31616 sgd_solver.cpp:105] Iteration 10008, lr = 1.18799e-08 +I0408 09:06:04.553897 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:06:07.344219 31616 solver.cpp:218] Iteration 10020 (2.37433 iter/s, 5.05405s/12 iters), loss = 3.09193 +I0408 09:06:07.344264 31616 solver.cpp:237] Train net output #0: loss = 3.09193 (* 1 = 3.09193 loss) +I0408 09:06:07.344276 31616 sgd_solver.cpp:105] Iteration 10020, lr = 1.16549e-08 +I0408 09:06:12.385731 31616 solver.cpp:218] Iteration 10032 (2.38033 iter/s, 5.04131s/12 iters), loss = 3.13656 +I0408 09:06:12.385776 31616 solver.cpp:237] Train net output #0: loss = 3.13656 (* 1 = 3.13656 loss) +I0408 09:06:12.385788 31616 sgd_solver.cpp:105] Iteration 10032, lr = 1.14342e-08 +I0408 09:06:17.422922 31616 solver.cpp:218] Iteration 10044 (2.38238 iter/s, 5.03699s/12 iters), loss = 3.33215 +I0408 09:06:17.422977 31616 solver.cpp:237] Train net output #0: loss = 3.33215 (* 1 = 3.33215 loss) +I0408 09:06:17.422991 31616 sgd_solver.cpp:105] Iteration 10044, lr = 1.12176e-08 +I0408 09:06:22.489442 31616 solver.cpp:218] Iteration 10056 (2.36859 iter/s, 5.06631s/12 iters), loss = 3.51147 +I0408 09:06:22.489488 31616 solver.cpp:237] Train net output #0: loss = 3.51147 (* 1 = 3.51147 loss) +I0408 09:06:22.489500 31616 sgd_solver.cpp:105] Iteration 10056, lr = 1.10052e-08 +I0408 09:06:27.568796 31616 solver.cpp:218] Iteration 10068 (2.3626 iter/s, 5.07915s/12 iters), loss = 3.35305 +I0408 09:06:27.568835 31616 solver.cpp:237] Train net output #0: loss = 3.35305 (* 1 = 3.35305 loss) +I0408 09:06:27.568845 31616 sgd_solver.cpp:105] Iteration 10068, lr = 1.07968e-08 +I0408 09:06:32.553828 31616 solver.cpp:218] Iteration 10080 (2.4073 iter/s, 4.98484s/12 iters), loss = 3.14856 +I0408 09:06:32.553992 31616 solver.cpp:237] Train net output #0: loss = 3.14856 (* 1 = 3.14856 loss) +I0408 09:06:32.554005 31616 sgd_solver.cpp:105] Iteration 10080, lr = 1.05923e-08 +I0408 09:06:37.538856 31616 solver.cpp:218] Iteration 10092 (2.40736 iter/s, 4.98472s/12 iters), loss = 3.17362 +I0408 09:06:37.538902 31616 solver.cpp:237] Train net output #0: loss = 3.17362 (* 1 = 3.17362 loss) +I0408 09:06:37.538913 31616 sgd_solver.cpp:105] Iteration 10092, lr = 1.03917e-08 +I0408 09:06:39.545188 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 09:06:42.561805 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 09:06:44.936506 31616 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 09:06:44.936527 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:06:45.423218 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:06:49.421339 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 09:06:49.421375 31616 solver.cpp:397] Test net output #1: loss = 3.85336 (* 1 = 3.85336 loss) +I0408 09:06:51.426683 31616 solver.cpp:218] Iteration 10104 (0.864094 iter/s, 13.8874s/12 iters), loss = 3.16381 +I0408 09:06:51.426720 31616 solver.cpp:237] Train net output #0: loss = 3.16381 (* 1 = 3.16381 loss) +I0408 09:06:51.426728 31616 sgd_solver.cpp:105] Iteration 10104, lr = 1.01949e-08 +I0408 09:06:56.214447 31620 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:06:56.898712 31616 solver.cpp:218] Iteration 10116 (2.19305 iter/s, 5.47182s/12 iters), loss = 3.22939 +I0408 09:06:56.898748 31616 solver.cpp:237] Train net output #0: loss = 3.22939 (* 1 = 3.22939 loss) +I0408 09:06:56.898757 31616 sgd_solver.cpp:105] Iteration 10116, lr = 1.00018e-08 +I0408 09:07:02.114977 31616 solver.cpp:218] Iteration 10128 (2.30059 iter/s, 5.21606s/12 iters), loss = 3.44386 +I0408 09:07:02.115027 31616 solver.cpp:237] Train net output #0: loss = 3.44386 (* 1 = 3.44386 loss) +I0408 09:07:02.115039 31616 sgd_solver.cpp:105] Iteration 10128, lr = 9.81243e-09 +I0408 09:07:07.150169 31616 solver.cpp:218] Iteration 10140 (2.38332 iter/s, 5.03499s/12 iters), loss = 3.39375 +I0408 09:07:07.150269 31616 solver.cpp:237] Train net output #0: loss = 3.39375 (* 1 = 3.39375 loss) +I0408 09:07:07.150291 31616 sgd_solver.cpp:105] Iteration 10140, lr = 9.6266e-09 +I0408 09:07:12.170254 31616 solver.cpp:218] Iteration 10152 (2.39052 iter/s, 5.01983s/12 iters), loss = 3.36659 +I0408 09:07:12.170297 31616 solver.cpp:237] Train net output #0: loss = 3.36659 (* 1 = 3.36659 loss) +I0408 09:07:12.170307 31616 sgd_solver.cpp:105] Iteration 10152, lr = 9.44429e-09 +I0408 09:07:17.227344 31616 solver.cpp:218] Iteration 10164 (2.373 iter/s, 5.05689s/12 iters), loss = 3.20429 +I0408 09:07:17.227388 31616 solver.cpp:237] Train net output #0: loss = 3.20429 (* 1 = 3.20429 loss) +I0408 09:07:17.227399 31616 sgd_solver.cpp:105] Iteration 10164, lr = 9.26544e-09 +I0408 09:07:22.578837 31616 solver.cpp:218] Iteration 10176 (2.24245 iter/s, 5.35128s/12 iters), loss = 3.27397 +I0408 09:07:22.578884 31616 solver.cpp:237] Train net output #0: loss = 3.27397 (* 1 = 3.27397 loss) +I0408 09:07:22.578896 31616 sgd_solver.cpp:105] Iteration 10176, lr = 9.08997e-09 +I0408 09:07:27.588835 31616 solver.cpp:218] Iteration 10188 (2.39531 iter/s, 5.00979s/12 iters), loss = 3.57061 +I0408 09:07:27.588873 31616 solver.cpp:237] Train net output #0: loss = 3.57061 (* 1 = 3.57061 loss) +I0408 09:07:27.588882 31616 sgd_solver.cpp:105] Iteration 10188, lr = 8.91782e-09 +I0408 09:07:32.105206 31616 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 09:07:35.164217 31616 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 09:07:37.533205 31616 solver.cpp:310] Iteration 10200, loss = 3.33724 +I0408 09:07:37.533324 31616 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 09:07:37.533332 31616 net.cpp:676] Ignoring source layer train-data +I0408 09:07:37.919234 31621 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:07:41.935091 31616 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 09:07:41.935127 31616 solver.cpp:397] Test net output #1: loss = 3.85234 (* 1 = 3.85234 loss) +I0408 09:07:41.935134 31616 solver.cpp:315] Optimization Done. +I0408 09:07:41.935139 31616 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-1/0.85/conf.csv b/cars/lr-investigations/exponential/1e-1/0.85/conf.csv new file mode 100644 index 0000000..6ae6809 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.85/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.3333 +Acura RL Sedan 2012,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Acura TL Type-S 2008,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0 +Acura Integra Type R 2001,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.0909 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW ActiveHybrid 5 Sedan 2012,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW X6 SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +BMW M3 Coupe 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0.1 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Buick Regal GS 2012,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.1111 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.1111 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.25 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,2,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.2 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0.125 +Chevrolet Tahoe Hybrid SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Avalanche Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1818 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chrysler 300 SRT-8 2010,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chrysler Crossfire Convertible 2008,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.125 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.0714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.0769 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.6923 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.1429 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4615 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +HUMMER H2 SUT Crew Cab 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1111 +Hyundai Sonata Sedan 2012,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.125 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.5714 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Jeep Wrangler SUV 2012,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.0909 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Land Rover LR2 SUV 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +MINI Cooper Roadster Convertible 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.1667 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1875 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Spyker C8 Convertible 2009,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0.0769 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0.3636 +Toyota Camry Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1429 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.0769 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0.25 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0.0769 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.1429 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0.0909 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0.1667 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,0,0,0.3333 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.125 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/exponential/1e-1/0.85/deploy.prototxt b/cars/lr-investigations/exponential/1e-1/0.85/deploy.prototxt new file mode 100644 index 0000000..d7f4b54 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.85/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/exponential/1e-1/0.85/large.png b/cars/lr-investigations/exponential/1e-1/0.85/large.png new file mode 100644 index 0000000000000000000000000000000000000000..052cbd131da7c9c20b67d7c2e2cf31136edd333e GIT binary patch literal 99969 zcma&O1yodD)IMw>f*>M|gfu82CEcAvgQOyjbhjX#0z*pI&}TH)B}FMrbYk=yH*R3cNQ6Z>SZanyQ{d2R!Cg14B zjjLQ4aS=6F{f%kVSGa9Qs5>qQlv|m!4`o;VXL58tWW9>YFx)(?8?1x)1I86nS%q`r9tz4tLRS83#D^?uYA3Wuie_AG^1P*B|Z{a=kg2*(EU zI%_y%n zf`Y>zb16P(v%9Fr)Y`@5)PLsR`MvzjK_+)~I?8?gPPzXkL}qigWp>m1u;uFV8H+M;D#L`r&|;to z%wCREKIvwe1w1ce>X!P$+XsI<8cE*=ul94eM=~Z83#I2NL(gr9`x2-m;s=NnQnRU$ zk)m)cIK99Bz27I{)+!xBSdH&CT1-}3+22i<}XU|%#e?B7?e z{qcn2mVUs~p*4!Te>-S#)vs+B_`JJCUwFL-O(%X&GPdzUxm$jHu|HMs&RJk-y9e zFk3$-CeyF{&$ju~VE=!!^6#+~v)%r6`x_{qx-owLDohjLf6o=~DPd6%Vg6r^#Q()O zA5s3kpzRlt|9NcxXDZNN#S#5J^PMa@8urdpwdWdt+%P}CeEz>$!`~PD;rIT39^3z! z3f#|6*?*sTBM$cwpu z_ul_snb2;3;zpzYAXMWGyiAfQ(yD%3;{EqI_Wi<{WsSb zal8~mR`a^VtWMcx5F2hrP=Ev4zt=R*JuXS|>O$@?n0WYJX4`;1t;g>X{&=8~RA3aD z)(_VC{f%vA!>dP>a}<}*71zRzFLi$Z^j~@RX(_%2sHb09v0L%k2MX#yLC_yw|2Elr z;QDXXr(}rFXAIp>wl}l9jF%tOFYV(EZ1jJLj^6Ht)OoxJ#{czf z87g7v;^hy5@_FV7TXfT;p`MNWeb{ob^GhLkN=u5tW;bn@CaxUk^tJ75SvL8iWn(qS za?0XcLvqlfp17Su4(8b`59#18Jx5_L=*n!f-duc9MJ|NiM*6_%lsjzP;jwZy1e-z6 zE+4L#t}MeFH#;OeDE<{nx>@d`ahSJqgbFO;qG%;3vn1Dw^0~E%TUjP?_qox>=S3vu z=v5dN4j1*ddh)(wi`11mNs3r3pq>5Tg{!tru(vBDbHc+(zuy@FPM8r-lUrO_$jH>o zGTU1d!&R~rJh|JUsxOHfkb^~Ouvx7m5vV*SIfA%od)A3<8{uvMneJ_yV9fIOfpPiQctbAIl^+(qAWSAv+&xp;#K5)#S9a5@P19SQJro_NY5{!Lnny?e09 zQ{$(}vIb(U2#@4jmIHA@`{>mrT@ROc_{4m%eUy}1ZE$ft}WsKc-Tja`moGj6^U(BoOh$0{ONjCjqNFlKVr$cF8G0w$7 zx_DFHKp_oF=0dBaqCHDDj}!J%+L~ycDX)^Xtj;Eej~iMlJ4+(l{B{Pk38d0}s9AOR zQkKt^CAULBWPHNO?T(DTk*py|H8)HUemC>z{kcwc#Qq7ShFJEzb3o2xrZMK9KsL+WsN7g4clN{4{ z*^fwD;M?9draOd?Y<6t-;(@()DA2pMWSdVo>5t?+WQBI(jbNmBGJ!JAzZ z1Ipb4k+@VcS|v|!f)g#Mxr50XYtg*QsU!EGvtN!4T7JC8o%-?E{y5KatVoUsbu0IL z>bYGr#rN5S>Zle!XA%LibjB&UrsUC_*VDv9sQX8Q*%!&m*7|~*{PChp>l!pdv->PQ zZQsfb4GoR3)P(<>PY*wn!I;_vX-X2PiMGa;;w-BeTEuURo7H4be}G|MX`t<8GqF6# zF}GYW?}=s~uGS}Pa}LRBF6)Dcbst)Q>aex7TztYo3VtbYFxQWNNub6K+9DVOA}?Ilg^ zJTX!x$>n1C1oS&0rx&0W?{~;Wd$rDbr6j4CwvjZpDRDhOlXXOYp2ob{YxXp=l!Uu$Dp*YJp4U!@10;bWj+_4M~G*?$Sa+^c1fs9T#6t335 zvY%Eje&~o}@)p8^za1-(b$0q96DFqJL-xxJ2qSdq(V}Gy)T*eh5i?5Gh^?*Z#7nPJ z6>Y%^axb4*31p{nU+XZwn0IrmerlcAq5PP0F{miLCB?h8jIV^uiATWwrGuTGsXo0i ziR-&g#HsDsn3lAIGg%f6Su8~<=yPqWTAlH!UE9sN+{z>Mg*mMZ{C}m7;`?9KS&@4O zo2&6*#G&zLuqx4|I`IJv3z>1ZlL`o*YYe0vSEI<{$$`0s9CTxA2DbPtwDfK;`LiI< zgVcNEGQJ0SF*d9EWMxzXthM;;by-$9Q*1nMu`$p%aJcYp7E1p+sgDkHv5_vD8dQXC z>B2^x+{2p;!1+6`q9;3Lwx~eSd$+shVihh&MwO+%4KP3v>$plD4|vXFTkV@DVB5-Z z?k$#MKukPrc2JdalbFt*tyXf6=NSpQSQ#?0FM6x7C6`qe-yZT`M6D1N&GEl+Qq=A55K6jb*_SJz9EbT5#p$a{ zYd7ZE*|&Qo)k(L$jz-(u1EoisKHoJxRt>h{me4GdI{3Dxl=_1gc@fyQc#p#}a4~gF zW|HhGoVJ8lTIWG}o{3Z8pg>bL0}p$WGtG7u{u~oMzqG-N#J-7SVX8c9MlHWYoTmjz zb$hy5#F;mt*1b2zpS^{Z;y@2N%`H^Ri1ntjs`>GL8FIfVkoNPt2;SKN;tK51B>D?R zDB|%Vj#50svjdb^)PCV(!nV!{Rua`tIf!*cs-LR#>ymHN`&MmqtYl^3MUz$mulTE zMjzN&g4v=TWH%z)7Z(ylA8ZDl_kSq6B0|sSN$;f7nNjKDb|@Mui8dJO{8CbY*!NM@ zZ$2R$$Dzd18v>^_RK#syTk+TjR+I85upSh`tPF~CR1s}gTV$A`s}L#X*rv+LtydL? zX9H#}LgBnz98&edu-Z^ZdHL`SU-UoHJ2W9*0%9JDU}CqC)dG&%R*nvqx3UUX_hg?` z>Mn(W$&Ltfx5&im7+4p3F|nxx?NvW2Zz1}@ajs~_WGyPXGasBhpBR%gCR9Y~N$^1G zmGvdX&bpf@GuaTwCCHtrpaQ*K$vre~+5w7C>w1mhXS-$P;N)R6Cz(Lc%C|y#2S7@C zn4pl=*ZBf6ifgdN>yK zCC`Z(=kwq_wsmYCxB8Ii5!>J^Or9Ftazi9Nc^* zv?#w$$x`C59AH)xEhhJXC9}ybmL7`WQ_DT+QL7r)ah&pbdZMWV5^=i9fqzk5;&ddx zY>=`>kO+=a(&1OfuHS87*3`vEjTu5@qj(sDOt*hC4B)$uDDhgsoV)gN32CWPBYqcE zOmsXX+KD77=ARxM4YFhTx*Z_K_{g$NMm~ml-`va+xfBGuo6#H7>B+hw`ouq0tfSbI zBuf(oZRKplHZibN3i6!yKRjs|W$SwIQZ%a1CtPs+7>y~?K;E0)Uvn;*DCT?ESY@Z}DvRR%PdVKg@9a&+*D#e({nNTr)<(WUqP zNR>Ujjbjn4_K-j!MXE!U%{VGwapZ~i;gm6SUkhDt|5BxUf2W3D;1i9&L>bXEa@=0K z4g}H;Z>YwMxJV5W*>xg0e`WUZa9!sSqhJy+m+Ruq5+Iwdfs&`%rN)LoXx{VPIVVq* z?#l9_8_Jj2R4UZtRGK0vJ=i^Z&^v9Zz>wx2 zhaqoyn1q7aKp0?BJ?9}~j_MVyJ-Ky>6C%u3^OSqL2Xc6mcdrU{R)tS_qwl;Hxopld z*1d7?c7stm@Hu+{yzaFVwb-vM|D*Vozck8MG=D3p0VR2(L_)pSKLTFS_I{UykG8A6 zO`wm)_!Ph6x*Al49EiUIc#I<9_#gg+?iAsb=Phg6-dER%TE>3s8Y|1 z%CbI4rVo|AGp#ygM>jvm_9DN+n?5|Ua_j+*6)deL;R@K_oj%@WW5rwTVtBl|fa0;* zS%AUo&MU?!a()b2H-B?(p4_pLckZyDYvDA)o$_kPE*Uhn)z=a4-PaJ*AdC^4ySl+lhy7?7Kt8IX$lyyX@J$-iW= zh}p^b0Ki}IC`+&PZ>?h`WE-F^bDk6&7!Edng+C77RLwEMmkc=}#AkNls~XUMzj&Vj zWmuQeL);C4Sv7f&Iz2;dafeeAZa0U_End(JRi@<^2wEH_S$_OTs@YeHf#q3DA&>S@ zJ?rg7o?kmpDUBI?VNNanw7h+w?;%qeH~YSw*U4lK^zEsY7r!2WQ7i)Q4yGEEWCb)R z2JdUR1`E+ZR#u7d`y-{j1s`-T$)gM9>@8mDj)DbGUCL(czO_s|-NO_Vbt5{UUqMQo zI(elmF8Jv3T|7h?JyU2X;J^6ltcbd_GMsbXdphA%(OK60!0oQ`=l@5D}k6x&u)LCD%Td`4GNUvMLGB0&TnXjd~wiqN# zc@kiCjk`;EZqan8=ZG-xs`ofnj8)>q7hC z=uL9o9c7tmxEObH!M>5#Wy4!hGP^SHQ-lo~!Z4=^I4}Lw^j--8BZHS6< zL}qdlS7@9SiMJ_z&)jE^oCd(1rsl`BQn$8LG+6ObcL?(?reYcB1ap=xJ9M_77 zD77ywrb96H-FegR)SI~U{kI9YqIGyZTDT=Iu$_%3?`iY7-%#+VO&E1huz=?4s9PgE zT~CPnd~+Np(i3T`#m>DDN`OCw^JydXxI;Yerv)7Phm5zBjyoaSjo%a~d|whj5rGPo zJ_FV@@R}THgf1`cbmcag_n2=pGnF5Kd8e`ZQ0Qs_(F30a-BD0wz zz7}}9e&UzlvXHh^{t$<9dZN@!LJ?!j8_Q;o#4{SIa^4`Pujf-SWK?Qb)~=5g!Q?N$V*9$_7%lpkTU#o-Ac2H}?YbNgI+87; zP!9n?&3fd(^1;D~=gDC@!}usKSA?9-V5jf9vP#00B((olfpgTS7WeitPZH#9tqadz5!YrOFkEPlV28l9ygxU5 z^}AS%FO}JRI^1ZDH~yxSb#=0_dTNNM3+r1!I0ACrzBXL)86ca5t= zFA7xOui?(Gdn+YrgVl^FQz$XmPnc7urU6u)SSspi9| zv!#%*7;v&el%lp&lYT0T_SUa_UARqS4u=vg_6>t`1-}LPb!C|GptAH39q%qE{Uv9i zP@l)zBW-q*8yAPtHmAm}IH!B1)&Uk#wpKX$LoTjIfmv3npme`C`7b3v#f03x*StEq zq#HG4T_#AxYR%$`cjLCoYEiBot~zI^H}M{hz~JRgR*Th~SzYu9?{vSlOPMdqvr0{? zG$;q+7^t9l?}H?W&y2K>6|bxmbaFoa3=i$^WJV%MKe|wgpJq}>j*idr=Fjr9nJd~O z%EsH_(UeQuc?0qAZZEn5k62=krJHXS`^Rs-W*z_n3h_6jLhAS!*w1zBkLyO6(Ym%I zIu7-zJj6At%B09Kwy8a6a0KiFd+rgWmE#?CKOFxx$=ofv^k;CuwdK71@NhR$r$tLf z&J8hl)}!mqZ5?JDhjZS;$`tDwRVIz^y~i~w9sr_MH)oAZ zKiI>KfQul4Y#@!`7q}bSVmkW7;>{BdE8Bfi=IhbyhKt=loTK-?Zee=cuv)>HErVgD z`v9u=&4&Ltx6j-FrK9$2iAu1(ZgxkLLQ4Vn7Z5#~OZk== z+kuo0LvDi8@kAcXs_kKpvy_^;zFCq&{y4HkG`TfMob{*Z%_GO-7w=7a@T>oh(!vsf z{`bJ&eVDCiYa9=o`Ihv)Bx)ATsasY@Hi$yWrzeugS{ixuCMq6G+bfHOmJ(6sbtp9p z>MqWCD~M0l**T$OVLqJXytO`*6x-L8gu^^UBQ_zSB5q67E!&tfbSNNV?vXxf{f%>c z0V$LFnfL0$H_bB5uSMTK(N+}&k3Ph;-HH`&6ZuDG99k$^P%Pvc`kROW7@=x+61>l$ zUNVmRrq7I`Rw1bF!GdFl+_BMAijPODZYt$x zP#lSN?6y=LK%EF{`%G}S6ZXy8rI1~|W-?w{4hyRa&zG%CtJQk@Yx|@`ed_LYdw>>w zABRq0BI+ZP$Iom$BK;$U2d|F-d3P5ahme-+nW0xRcfQCs1xHE`mL=n1xOWyq#%RkT zLA8j7^{x{s2luJ0d&b3Wfhd1-0)(C!~*-p%-R#dH4zY6kd9DwA=mTbZp6xfMi(P$|SOV9}*I*Irf=nG4Z{0vgIKDN>#O^kg$sac#2kMGVES zYz^7|$mw$I>P<5vkyRd$D^c$bV&=%2ZfpX#fhYj?c)k#`6) zbzK#RnJ{lRQ!Zkk)OBQHhgDH8VTHrKxsPG;_vQFAMg~qDsKnf@QjG-8+HmjYQ&S7v z(cr_B2{B(MlNg_4d*1n@R6-s$^Cc1YorbF6{Smj}!?u?k$4za}-4FU_IgOeBe3pE* zuYTvNo3BX`vk(?MrX!oJ(RcV}7g5%m@;(9+QpjmH`|i8E&a`rG9eOUtuEs??A|au0 zf0f?s1*1-}KEc7#g;TaOyGao8+~%YCX!RXl_ou2U?Gic$$G2_de@*cU`t=m!<@(tz zXlHWN>QPrk6w-niHquKjS{rQ$DZ#z z{USd^8K9#KCzt8L(uc67q}+%isw{aKvb3Koczr_U9JVI^Ibp&yj1BhzzX?Ha2h;#& zo2xgGD^~~DOh;D^=BmlB7`l@`Ca}a%^d{N(ydONf?@UJEB;~E|5PVFznOz7l=TzM? zTQV={?ha+Al8wx~wx`dT)8wcP)32>k?t4{6BleFZ8xZ8Vj+|(G;r=`j1e6Nsrv>6Yl&+-yi*Ai% zSmIXfc0ix>pp0Yoa=6Lqb!l@gJjwb^nV4Sd!3w*TzPOH#-s$e_#+f`h#Yngnr8}BJ z)&PX~nR;f4fPFB5)R)iLKy)MK%(4AK$=pnwo+6X9TcflxAt0_7JuPT6*d>1?6TRXy zDSCzj7x#);@`zo{8_)>mrK9S%8YPUA4?OVZfBowXfGl`8C53(LjZvw_a;6vbC|@-LOwxqE{l`L z?4&ssd9io<_q8*GP5cIe$UP0#J!C}DfMdmK`X3ZV&f8p7A=DD^<}cFpQAFu)+B zGfi3+;ZRlmWRHz7dhl!KjYcb5Ku98n#=Es$T zOUe&1zhu1@GO80jC2a8kDxwW898PbQ^q^BU>)$`sPsNb9Q$*KZQyHtg_S6Qna^cu! zUoM-$>5udD+Bog@wljSsCVAPyC&tEN>1a_?`#Uq`X0(J=$4FuzbwPg%h;arOl=Stf zQ@GX{tMpm^wN4zb-=)luk3<O-LVzSB_He>b@X4t$tFz(S0(h!gll+Z3 z**GfkYtnfW&?SUA17ao)n=?BL6+X3Mh1m3^dVUsDwb_?vk>3w%7;pDxixtl#Rm%O& zX~9@t-C^qkwRQ`Ob@gd)1gVKL)46;;U#tEGY|A6(pRPiQu4T8(VDxsH%kCF!WANGbZjJgb(T)z3verth&+L!wp{ zJku@$fK%NP+24{K%^|{I2A1md@;4pb4&(O8tFHd5Ru_%l4kWmIa?7je`XmGwJ0b~NJ@fK&45WcP-2RMxhX!PPc*ayJM;OsnRF zq$(es>9+H{ZZ34Sv>VnJxxCqoDWy`g-WU?Lu5+Pi%g7S_lV;=DEMa0-wR<&1)n1f#*JyrJmDt7_=^TO>02c6PuGUR%E&L4CPZ#I1Wut_v?ia z^(JHHkQEiBX(A50=__Tk;9{Bi&djI2-pFoDW}Ks6L9O36jl+URnT02ncCSY3bSM5^ z7Fo8quR3dA-WQHgFAr{Wh=%m_cF{9a&xuf`tSY)2>U;*ng{^T<&*5IN=__*0$>(h# zir)wUwveNArF2aIj>vd~r?{!F3Qyo~DlDm^TbW^|XslR}WI-$F9vKbc5g5TMAiNeE*MBIK_9=HI2ZVl-Z_}k=>+UICo!CGPz?Fa) zz!cN4O6)$*Mizho)XXHvD2u{E>7;QcKeo2|;`p%%bzOO42Ewr7C}n?a6bpLS+*@X& z#2=xLjQM_e=WoyQQ*eC)92+3062g3%AHrS@UkN+vB2zZ1dcx~IQH))2H9}$EQ|Y_Sn5EZI>?EbT zYemBC@UET7CuEd-QurkiC&P340DFeGujiKVPk{rl3=@F@b${Jvf}hrs0sd8LxX}#* zj|7?ZM8g5G5NC431!3Q~vwVua5PxF)Wlj2b=5D{#4#aNy3xH=Lu{XQoxi9;P4RzDU z=@THiC}#<=zH~(4IUi!6H{=D_drEs=`ZG092FO;VwS2a7nO3 z;r)OUNmzUvo4u#Y#xM-+{5|Mdyg>BiT9SmAZyM=v@il1sX2YzI{1B@O-Pr=c63)JNO(l?AB*M~}ef=6TCP zY_<0qWO_217tVNk`;(l*a}5t1&t_}jTZ_~4drHlJ*~CAsgJ7hrluo?x?n!8M&RQS} zjE2b)ZnLht9&%orWqX0e{MDU}N#~FRdgNL-wH#-rBJRP>BL*#&n`TCyIkmuZF`09r zDIB4EICP4$wuZMO3|RGl^CfD|KRtOTUigZYkmCA-lt+{4ETK3TL+EIW(d4v19`t?5 zy#d1JVAj@5Evqd<@!K3dbc6nL-SE|B0JMWm zJNsqoQx2C_nhH%e1LlxyK$q!o-mZ%$c61mLFEIV%2p?WeWoi_)9=tl>Aw-V46gu?8 z{VI|yqQE_vd>Rf38C^S&-a21V)OLBB`n|e=?NqiNsO=0F>9e?@E8Cl}1)v7}*8QnT z0(yPNHtFD2P}cXmHA7|Av7|lbS#Jan93r#Q_P{a1qIc9R+3fEw>7@AyKFIPa!-#H* z(ec^A1)@)~;hK83B4$yKs=~9w)ErZvacLko?os83#nK2)kh*OzM>?vXxkHbJ^;s1H zr2?U4(`n41wZZYEFKIQhS%=G1(%nbbWh^60GA|%Us_-=hM4LW~O2-80(yxkm23sA_ zD)sC$IO$F@haqtr^HsF<2S{yjRJIdGvb*`sxeR$-3Q*Ag*8trwu1X)Juj_|$p|MYD z4$T%{5Pfy$C=dxtYYLAS7z3rvhg=56r*G$QnQY=trc50#huWAekUmD7J!^qnts{Ln z+&Ybt?Y?2umrZ-AvDea)DhkNAY@AA5>m8K!U!H`14~!9^vH4?FJa*5&b8j~qm&=eC zGb)Deds_#rjD-njoB`rMq&yG;)lF+_k9bV?h~|(ypYYmo*~||6TG!=MQ~^X5(@|4F z8siV`N28QQ8h}1CJ2RaTvW=fRw2(>;LHUM1NOxN>dL_AWs$cg z;wGY$lJ9Di9+R9yZYcz;`#BT;|QwK&Yz=rB{V5%gCoxGQ3jImlF$f5*~*lWyy0=aJ?l)>cqtz1!A@k3)HbZ zQaYDGOrI%XKmdlFfO7OV->;rx?9xL-r}W(EE;9$0S9OZU79WEL^Mcr&Eh)A8S;2)O z!{x7?3iW6{%%n8Q2}$WDvTRb5mv~*pD{|y`QCE?3ee5?{G=r@FhbL*zFa#=hh{~Tv zh@EYxIUfz?R&8gHN~yMmas#A5m*vmY;Pc6%=y-Z*292DhyQQmA0(5yhi>P*n-<@F8BcMrClekj&x^>QW$ z{I)Ll%=L?YU2a$bkr)qZIxPf#aO6|BBvr1rW52~tBD3&kgpXbJx}WWJYqB~_FdLv zpRj9PPaUor=hSF+^b}h}Q$417AL5xu{nWWGagAq+b5SW8Uc>AtdEOSwKsH~CK8^O4 zChb4sc|Nt@`F&6VKv~D?EVI>*4!2&bUf^tVbL$Jdyhf8ScEhe|fTfLvtln)O&RjvQ z0YD`tg0`EV7yNafIs2N(^=!M@+ft;J=wqt0pqy62?M$cxAIRTZnkP$EdGTLk}oHm5jESkd9+O z-TPT{Ug1r3^DW;xfSr}Bp+Wq<)Q**tk;HW#V1T&yNnWc>)a8vB1C$v5B-*7N^S2)F+Qc(3H4UzBU(;z zpRw{70;69xNze4Ft@e0o9bOziHRKdJY#EfOE9I#rp^il>^@T{$o|~UeY6?%Zie=0) zpHx>T9Cr?z3RU&NkU-^DrYXLF*qD5a(*3xjj^%XGblY&PyJVl>?*{d&huVcTxPXARCYX2(BTlDuLW}tukgYJ(INoLo z2|b4eFmk|9PkD;&p0$sIbY1CSXl3!QICoZ+j;$%MXcEeQ>3=yo zoMo-DNW;58dxs`i1F)hXZ##E)h zz`B)FH}(Qw$?$-HA){Tz-oGRZ>qWB+pySfh$N2?+J%9VrwK&eZqtvLNa#q`jD83eL ziI!46Mv$GJ$=Gv`qNL{xiV+#aU^k9gXNRIDeR5!OlJH5( z+4uy(tH0UkbszClT3Sh<1AdecSCgQ%n^z(b@}2M^B1jSTRgVr`J+&WNjPb2mn^t4^6!D=oZOGq{4 z*T3WX&nQ`5YEIYL_-4P+G7vYaX3Ir5VW(jtq!U7;Uq~C(!cDGmrDj>X;bd&C#}u8h z>jXxRTvVQp&aAB7nscT=M+KtBM`!R$1V|;K_i=%{utGFp9ir@`*;Iuca=$-a;_P&7 ztj%fDe$T#9w|GpVc&36KcW0Yg9pIvV6sO4dbCCAa@g>!!azF2D-$CrZzi}$`ljpo88U_tNm%1i0i6C z58zoLwT*O*h6)>WJq!tuY1dBxm6gTmU4xh2ffgB?6p(PiBmYh`Uv;9kA)C`nizkz z4%$-u_X>b#1B7ardpMg(7!HNK?C-UQt_5*G{H6r4UR2Wf&LlUATgZ>cqQtpF9)diI~BmOQ}56BhzH{$%5wUhc*EdA6Fb}utvN4wWj*ROC{7d+dvVy9$2)wVa{8@a`_I~h8oRXowWA#GyRj5E?p&G zCH2Qcfk0ZdejH215I?hafZ62TwT_&Qn}t~tv`AKoS->;FVvb`%F0jh5wA{sBqwb!8 zY#>|t-Piq;<-Zqv*t9>9SA1O_ijEbnQ>tpU8{bHU=s#u@o2Hb&jUWEz)wY>VKHV4ShIUR^efpDl|%OW@`EdR%TU-I}XlE1*k@4 z4S9l2wQlez8X7Y9*`%b>7@7kDXimZ3JSSaVk}I^UYDczxW`TZm>`QJ<4b5&@xQrM0 z87uPT|I0em+FzN9h8~uQ72o|v`Sq5BCE*aW3iS0CZ|J%fdf)d&ZP&OuqVJhwRCbT5 ziVPz3FFp8D<$LfU4rj+;%xl63*~{{gp0h_6b495_a4(zw;_+dE4lm?z)`#FC;jY4C z@mZ_0$RP)$J6&$T--F=KSBsQUw*HV06tv1E13{v{iEB%!<*xIMjqxSJ;5CE0;I9Y5 zyqxG`mre>{NE*=&efxs^1`dn|3C0J)zm#^JXfDZSg(M#rv?I77#@Vg+9- zFS%Z{MAIVEgsW~P4@M7DA=}ruR`(2;AuglMVjb`(cv*u_Zpbsb&}#0#c~M}x-mxKO zassEGCRs@>sx$#mDlP#87$9|Z4XI3~x*c6xwH{nsH;2>UZB4#Tz}EJpzhFyt*y{dJ z^X*CTU@MnpYd+c-T0rLg7;qb&zSr6d;z>)!lJCR*^DhL25vXJtQ{Yi>a;l_()k)~x zbGCQw%#Y=SHjibXHl=Q=GrvMi3d?^h*Uf%+%fb`4BmeQy1=v?fT?}e5f=o-6bQ4oJd)%9w9MsJt{z&bFN?$ty4nkY@^~}{Ly^Jg-ZpKw zoQ){J(yNSKLfY=dctTEGK6UZY_AvdKbSOJF{FFk=OJd0D@nzt6>6B+70)G7pDDDE$ z|F7e{hJX^!2nFV!(=`--|0sT@nA4Tk9)JGBo!n||9gSeKBsR-3C|NUJ@Yp44in5SJ zvvNE=QE@~Jx#Uy!_Avu`3ER&K`{Kssp|-lNW!f-CK8xfBHLQGQ5X^YR1YQL%%SCtq zte@^5F`NELTLxW(J#QC-Pka-HZ+rxzz-u>My2&ib`!rK4`Gw&lnodhK4glE;huFRz z7GjbBRXXTN$m=uU|p~WzjnI}hN5mG@uWVIv|5=$gv9-O-n}5q0T4Qk?x2@x*3mgT?DK8&{MLO{g z^_5uTmy~@=2;?9VZPDL<)-<*)u%^^-+jz+sHf!etZ^wDeKqnNWK~tO+EhpJ++0gB< z4C{~Olej(xmAKp9-KQILt%RSvNynXZOgNx3671UG)URi66=RZvb8haoR z4kH8V|1`-jVpV&MO>FpRYjgup5KbZ(?|x3}TG@`*S?M>% zWX>kPdnG)pzgxoJ2BopP?{rnpH_fxJ=ar6(fu9BGYy!>PYo;@+>gwsQ7i39jUr+OQ%Zb%zUpirAL_BWDMKGp2 z4lXC)6_zp%b~W;F|6rO8Ib#gz>f6syjAT6Zu#mIBJi1YQlp8*0~Nzgec^j(*Pn z)n=oA(*DGE{>7x^J0zh*Pkw^n?~1l7cDB^8J-6GG98D{hH_Zk72H5=cd={Kw(_9MZ zo}fodUn)%9*H$7ptgITf&`gGZj3SRgk9Fgxs^;rS%4YM&u*!dGStO8v=p|n&Hrdbv zXv1^gfH*lmVbzm2?&_VJbPgS{8r>3-s5=SpAxIyqHKA8{S;CUrW4$)|PCvFvj=v63 zxda6yhUHDyc`Q@Grp%=IdFU>b$Bw7Nhqd%yKtyFcG660=t1%`91&peqQ+b@XA>;Ypv@#uj4$9@2N!Pc=cYf2jlEn zJ{Zxeh(?B!4F0QK$S4Z5IJf`=*LzdsqTX_~yW_tIC@OuAl$~z9NgPD{(swnU<@emf zWd<+lM-7c3so zHSjH%fpeWHX6Z4xsU|6%;-GF|f_hKEV~bF-NvsK;vlu|73fp5O zfUg6VRd}q?g)k#rgT(7%{|rde$@t7quS(nM<`r1qx8FIX^SV>AG~2xJcfXc7lkJm{ zG{n8O!k7IepU+%q_$u|<-?cO8Y+>@y`p5AzcgBt9!dzRgRLes256~8)|5F_PTNwt- zCfZr-#Lw}>>|}7hiQYrv0q4x+aB7~bg4H27EWz(MM8;pIz+6wO-Q_ujVq%_dxf~8n z)wj&l)D(qy61pIyj+HhCPake(x!(vOhV&%&ijc8)ehJr`9{DIr`?j zOEv+f+&%iN(`4yvHdP|W{m?F=gtPV6;XIn#PAs?62%OWYs1u4^SRj)crAIg4{(b)u zC>E1!G5SBnW|Y$WuH>lrsgX;VzE`fDCMsT)T~wE>p&F{GtC(+aEj??g>pB(c;T~Gi z`ZFfhLS_0p24_9Y4eD4(rA7W6XzHxgMH}Y{njU;Z75%6M-e#kM*=9gfef#=gcx-vQ zQv)I|46+$Z58+0&I7~Ia2I3$UZ1`=GGrlMev-+e0wHxg}Aru4azlsjvY547dC5`Q< zG_ih0=-A|hFTqkanQ(wd^UR(`GOG9VWs^%L%~;1!?bjLoc$lD@XJkEJl2&uv)2hpv zncn3s?r>`$G*wcyW_fcl;I#9_aX4ZOG(pPR=%Y}kFWF_Twg1M}Ft3hpxZ{z&SH}D+ ztvZnXo!PjV8V-Aux#hf~K%$RiZ5}u-6A8=?8)Ms8afod=sD-)+Lwc^D`;x zV{Yk#-Sy3lvEOD)E=DL zb@5KgxOCc)44#u3P?x0@zvFdk*q5VD5XYy)eMhx8`^ATw8&3$3IScYN+)9=J_KFRB z`>xvS0#zOR*INTU24QCxJfDE?cB4OR?MAgwD!R@}p~ui9S1E!KUMXn378(0U6vGDN zWR$*A-L%~L2lMJtGQ~xIuZp$8Dxs}@Sw&j=UjktY6+q_tkQ(px9zqmB|3*gq&t<>$ z*pMevm)4?=_4_G_7k48N55t??O2?Bw4O@t;nkK1NE?>Zr-6P+npRo8`Z~(0jS2^<7 z`@sx)&dpNd<_4A8{miyBqPv{4eW4kerx-^C4s3?6e6tF+^3@{(Bleq`9dA5pFVBo- z#(svx6F@xIfQGt^`Vf=U6fZQ(X!ksEA7#jYXA!Dt`8tsRuY`yt&*F+QU{MS}uKnI3 z*1#B#F7@$Y^K3YYv8opi2*)X~(8s01jV}baT%z6_3l`nz45E&^gmm?D<2Y_#vG~6d zPit>iT?!v31FpkM@AeN(MvkHsS4_yaSC4&~_r}Jds)3~x249u)vz_I_zVEaYMceRZ zJKiP}_OW@E2%r3(_1Xpslqf(I`p?=VBB*4QL2{Krb$<@#?jD1n82|!lcr(lh91Sdh zP-Y|*`A7T-V=Vt1uJ!SOWL4YBG83%fYjYu&!a%xi3i?XMo41G}7Uur>xvA6<=hJ|b ze(}NWr$hZ*$Q$X0eFyfYM@I!pC_6n{bTl<?fHeI3RAdAFt-jA+NzifE?z6#>0 z0b5bLl97t9O1_$RL;y)%Y%x#^qrAoaEZSMANZ~nR+JYS^{XK2Ap;7^>!`Z^A(S0(j zvByY}=kOnJs>12bDz3sl;&dT%j*2!17Ns`Z*P)M_<7ih}li3s3SDJ8$VrW+^0vHa{ z-aLi6BIZ}O)(H%b8Iy_#Md)TvKK*C0_#AEQS`|P)=>OI0)hJG-21%OPbEjvf3{(-heLQaCaT(E-V9yY|Bvl=0L;<6pIadFHVkGfO>JK}g+ImM}> zcO;wp*%EE^m$`d^P$ODpZx3=x;VutZ%foDzS#WB$|8X&(L&Eld&E!7vI0F6ux?I5e znYzG2QAzWug!2Kx52rnxu_Se#pOi2`UXT1e!5t}K;gvt1LKdr6MwoV|zcuT$(RDza zc{Y9oUXJu$jnyKzZ3NsoB(io(1H9i-C{GUSpDYF77o5jxIz5Fg^4ucHlas941G@pL zRn9C9+wq=b51AP^dHr9d*8qweL+ATz{T(3WY=;B6J0p``_|k%4dascoyJ&~E-me4o zmJ-nUCXjCY4rgc>`{71enE#6w6ct9bYU-+UYxJ8&v#}TBo(so`b@Lr~dt8jsLNyjxE5)2$RsLaq=D%71RHR`Xsw z1dQBBaV&=-fS}d;%u+EfpBqBGwtHF+JA>c@TQW&BU(e@ToL>EDxwuR{ETVqx%QjpF z&fF{vvEoRHos@RS`>*K^lFt%DYX5|}J`4t9v36kK4eIk7L(JfDroKA~1-TXtee=o- z)Xk9-E^$`dd8*3h8Q%)R!BLXoox>|Km-Q{+bPXqQB_I-~#jOXcTsPzj=<%L)_Cxb1 zA5&Gtuzj&8ZiF^~DT4FAsty25_V1bxSj1n8W8wZbM>Sj_alvYw@>);0<;xW%YLUf8 zZsvd`>BiP3W4fN~dd^a>o;Shuj=&|4Nq-F4leq0;Nd+ONt>s zE=`N`8|*=I#ks?o;*`~TfrnSmyp)P3NX?*L`u(#6#TCg2Zj!F{rHeMk^?}G|teXN3 zms~)|_a_}mmuqIz*-oL#4mA2sLE@fV9^URC^TP^@2;dg5FgU2ys7oz50y*j%(A02l z=xFEG|G(FQg7F?T?+G+3$5&kr>hJx0TS~effH5yFujMHjV+&Z^t4p?+PrI!X*udSe z)dhy9g=^n!_ErH){b23$p?3VKhFKy=WDc;?ql#dwKzku^w)-~2S}keZ-ppY_c%BRc zgb059a)kHu?6@tBo|mJ&3k}i(X?!+G=McXlo~f^V;C~NU%Q@yLveW*-2rj2LQaQ94|Qy0q%8dP zQQJf|!-s$l-D!A63IK5BVm~V#i}+(hl%i9>A+#vl-TqCZE)zT|N?5z@QgR$`JMv`f}hGO8|Zn6e8*ozs)M$bfi+TtfwK^SbycO?xmap zrdF*9u>~ECA zoD2E9rG<4R^uKJB0P-8f#ZCZpKKV{{@erA)?r}`!+73sZ5~`|>BPLDY29Q?-E(@bk@)&JGTM4!I!V2l ztP;o~jSFnX5U(=1ZQu~R03E5Pg`>4uVl7PHN`q{7;KFra`tr1QdvTCFpkg1}rpzm` zIWKhQJAX?d&kyKk@I0i|#aMEtI^&X!$Rb@2MwGILKxD{c6~szz%_+|BqJ{pJ4Z4V% z@k0r!%X^&*1OL`zv)RPP(Ah~_1spGLovhMmK?<2;rsK2Q#H}5TNhZ*1Rlt%k)Z`NP zS3Q@EjZ3}74>%53-(=xZPdXSmSeCrmv~3fLADvG4EZ%T#EepAAlgO|R|}jj??ycb~SMd(YZfiI*JO>eoP#zkwR>aV7r6%1kT2X$!un4uRhVr6oEG* z28l}_BgVq2(0b~NLS*B?TTSC;kxwvl35JbXecvw{8J`RILl?+XTrJj^dl<2*@|~q~ zt(!jYozM(oPOvgzWJzlX=GPNDbkQhXSs{}i%T;BsX=Vfrxq%LWj>YGU?Sd>qQ=z}a~)+d4oRwwPAdG298Oq_GW8J8@@Sr`?1jatz6SvMiV(hv;lNH9@V|S#8_8q;qcN#p+$~ zJ#ecslJp|)tNwx_s(ECzi%cZm=q#JoIo^PhpA{7QbDZQRGA?_$Mj! zWoj;lbE)d@mw`+ULisR{E*y+cE3vCxqSCf|p1b|s8piu40zEp#xADP#-YI2)qo{jc z_?C#G3Y%Yg7?L}t_YDQjEK1R}OCAF2x91lT3enB3Cexz#jT$6Hzi&VK^8W(0|7CTV zXnAk?IYqsC!gL-3^Mp+{^@tHyr8Imu^nI+vu|aE{Pej(6s^+R_qjL4FbloMdF61tq z0jK%?Fj+kB|{T#XKZ-qXyj&Huowv*DQlOmwN$3{Yl!0_Sa7b zv@nXPSdXtkSKF z?ux`$uGML4IWSDGazb|ysESOiN$jzaQHvj;Ii<`oO7e|NMH~nsJygZbbv4yFeh-gkL_$onCtd0l zuS=tDK+8M)S|lsLv1EfF80dNFf!qrKnJg;0b01l=6S#NBFdG%Nw019i_JHP5)1~QG-`-l4G@x?9`?@P%Db*u+sJO&~?24YmTL(Y9X zL@4-Eau`U@f?lGuFv*9e`&1`CB$QR0OIUJCaMu+|zJT1-8_;V-nUogW_YA^-X3=P0 zg9qysQs~A!DT8#asxs1i{vMDHzQM+Zpx~LJv5#d@Hv)X#n=iSsPBVVqm>p7a+4eKe z(46+=pOD_?f`ygVIu|i8S_D_9|KvzB&J2nUi zBEY$|E}jZHZ$99DYDeoETA`>T2XxQH_UBJ)=_%Q}rMwn&ovniy*XNq0?W$H21aFDm zGQVuD4E3z-DjNk*wpDFDLlurd8~s)b zIJY_Rzzh@%elgn$nb`#0gkvYdx{3I`i!lpx6QQpca3M z6Stq<0YvBItCF9NZz-pB?&DOoIM*x*yCd-sSx07F>Kvfgg++Z`NB!d}+c_pU{aIx| zJuz$V?lG9?S(*xW+=E2`33`UzV9C(%2nV~-<$5;l(ZmHge9B#!y}oT@!kA`C&y45S z(EdHcfX6K@UbShCV_S9CD6;mv->GnsrS${4f*o~>D~&r@z@ze+P}uhiW9=^Mt2NeF zxOgPeb3hAst`~WDcOoQUSwhkE`8m_<^{v2i30p7GD`otQSZ(b#c~QrE)eBj_>(xx* z#mM#5D!>&t;PxA*m1eY3OOV~Q(C5SXr);U?Xq4P@qDI?pee(Nf)tQ;89(KbdbuD_p z8*l#2ZClv*cUy@BKG^};T(EZAn@VloTGrS@Zll}ZYb2?&>^ltGdo0F8G1VqQEVeq) zCXX&-5i3C}rbV3snvs|rcSUP~<|@3G9R{k5;3Vn{EKt+%;5am)NlnvM`8A;Fj71L` z=l2{(ZSLwVYD(acuTxJ++HB2Hy&7wg+XeW&F83WhaKK?Q3}S z^h3rK=h0d(q;0;{AmRD%{^6XAR`T>(vqV`v(ko<^%$3Uv$AG2fZZ4?P5t8=^xwT$x zXoLIoc6K(QHdt@Me&d3>hyBKHYzz1Tfe6G-l`=p_iIl<6D^gyZyD;*}9mK1)THSgs z%5d$Uv}bYbmSManGa84Fk8$sC>6E<3C4;=-zulfp(=QR5Kp*ETuktqD92Qr31cUS0 zoNw;(+PEcN+*Z!SWgT49UhRKh({UE>lnrwc56Xtb>;)fNtw%hf*;cH-%Zzbx{Uqal z;!7}f#c{NS8Mt_|^&EQW^5)vDwky8*##qh+j5;5;5=XRRm?S}2pmo{%*dOdIajzvH=aI|(OJRo(=%}vIwjz~16 z_zj6aSPuCKG)_FPDPo)s`|ns#A?WGepvJzkg*hJs`Ll}a=g@vj3!v=z&8e}qU3;ti)?=JVGK6Q5(i(d~Wdh}&M zk4}|w4sVJ7625G?ieIXB$UVFp9n2FgH+~7qf55;{&bMOLrl|8SZTi&*zwv0Vu4~Mt zoNfTJYNOlWAz8Nlt)!8-Z?<(n+caz~ z;aRvkc66$jB|l7)@b=1;g?4YPQ!r^V!K{F!qW9{Md$Fc*Xve>EP(B}xr+70@G!5P>E|RhA}J%<)qdu3mrohlWEM=gziIHU>Zox) z+}`B~hc|A_txuVPmap{IoM;pFMHbFV(q_$RLR0)GGwB;+!&kgLpPdx(Ft)a zD)7Q_`^&LRI3Ii0a0x09p$`QEVgkQ5@?PO)d! z3q0L^Jd17$u}iruXfjt`T&UP!YGqZX9>W}tXcmZ?q;okjdPEuu$G6};Qqgyj({~CL!kd&2D#Gls);N7^$ zu{4(!GMAmF6BVM9EN>W&0c3$fr<_CWG?~P!OLr%|`jDT%2inGGUVAMpw6FtC{@DG_ z&l$d)_OWw9Y@kXSyUvNrjAXuMLio^2@ zzf@R!{mJh)_e!?~3w(Mu3p3nDL@tXt%S>X@gAG=~U4!wDsn|C&LG8x9{%aJ&)%)Wb z=&fe9-5<5ZR%x~-`(p4OWVrLqW$u}h9Kz6jq4?f?@kyTOzEr=1Tw{uacRJ)~j8uQg zQj(}Y=X=q6n1CJtS(hZPp?3k%MtT&bc)4ElJND5yjk*ryQ!%uA(_*jDQY}#uO;pBQ zwIv!OGW@n|426WZhT8%M+~jDFz1JT@waEqCWLtUlW!6%_xkiH--|Pq%W0WnjaLZar z_+Xuf_kK$Q8tNh0%99P4zS#tBBs9lEmqP;8VcMx{FFZVN`3ECS&=~qRpJg)mR(^iY zKMYWx**^@#_z=ls8Qohw_OJZ_sqcaKA~6;I0I4C0ZO;ZJ+KT&_Pq*_kes|f1ppO9f zQ0tqpA7|YvH`Z8U0o%kF(N17E5e-u*`VDMqww~JrR<2Ai>qV`Epx(G?#{-CBB>aBq z0Rl^tK%&=Y8Npqk9PxIo+AE+gits={49Jg+1m&M`#6Pc!uf#aHETC9}d~O>+JCrKu zb4wK-(qv^3kr(z|uqT}ced81G=aJ{g&Md+^x(z@ZKJ?hA5$W+VZqCZvXTc-IatwcasKO`~utksVrzJp!* zDe=6L0=wrx8hdhjk%aTHzQnMPa8L2Wy~Fhv4_fm~mMM~=^H^EAnmg5jVU%)xnmx8C#fC!69lrQY3GDxn-lPrxe`XH1-}KL)FO0v8ahW0T&0qD^VA zdsc$Nzvu@jmJ7lSc%>C7FrAT^LT|E)B#FJ{LsV;eo5w`$NA6V#&a~+omZ>|5Yv2GG&-$MlQ)Sd#ic7$ zI5zt=jJI~Uo*-smw`0C32SisT#`RWhIQ;}CC7Gt431nCv)SmcnA*?b}yVzH!@EO>z z_#Ltjm+*yT$LsHylaiQpZVuNGvyte`kATF!iCOr^>EFX(yChgnwsOo+rfP9+{2Umqh4#0-c2!s`5>3gBSC9Buy z_?nuB;!#1W^R-6jF9lo&>UzUWWLso`CWU~~?c8l5pRKc9GoUaHdWhFk2}_`mcm=uiHX4o?w>Mk7?DqgKv5%wclx&E1gS%ymTxbGNgh9uwK`4ajj*_As8tZ zUwvPrNC7em(X&(rr)J{W7>-^#^6E!*e12ysc6P*%7(iAXV-fj>4S_29cnxY_^&GY@ zCL0FTG1uleJR7fg7FH1LoHh(~g`YfVD8vvOH5v zq8aPOpvRoc3&TpZ5402BTiMaOv&XL$4$J*zE+Vq_PiPm$E+}W*G!s8%-TJL-=JJ6$ z1a0wrR2a`%*99IM9CmbgU^gxX3DU8w4~((LO#PwKS+%w$%7Ecrib?cygEpuLX8Wr# zgCV1Qg}Ob%eU((qpc@=5Gl&E-+7LLOJB13&18;IAy_)lo)5xZ^-xPGiW!nyKW~ zkmMF7hKxVCSG)T)RJ`?~RL#PQ3L1aNN#3<7T(IPbDBVOXX-{?wLJwz_h_3uc;$)ay zKh4YHJAaxNkxy`0{mRzY&qwLf30@0P(mgWkjC@N8?~N2!4gvWnHvawrmm*7kOKk3#nt@%ebZj$UD(@7e)>W;0zk>*XugED7;^(+=ebA0jm@0B@%RAaRN% zf_F`w`@$rOYA+v-E@GaY0$B0ji*}*3$$gbV2N@N0MRV@m*~TMP121(wEI?5evXFig zYWJB&(Vdlo$RIBtFf2X7ppaPj{!P3`9iAt5)!h387lC|(k%itp7KFuSG!}NSJE3#& z8mE=01epE@7+K!NnFot>{g}pJawNz|?EWYd*vNci-6L}lo2lW|TPW>J(9@z;PO$dSRi(I5u zf=R9KY6`yL;CXO-QQBMOPxG*vsyTC6-8Ofnub<|u0;n-e8Ig~pgh^JPW!!Er<`+&= zF1DEzD2BcL_xF0o(cLYmEaZ?&EBKx+Qp^SQKR?gfRHyvw4@#x?f?8RsO4!P$>s=EgC5;~xEA_6d$NyeWmsS%ZrV#+bNu6?Ej)f-ny6WPWY|lWly|5{(uilH}#GgWKTeCRes7a5=zf|duqo@&$ zzK@PSzH*^h*x zz9jwuGTNwAHa2bHm`js5W&_)8rRZb@jiF2m`E*;RNK;#M*4_71f&{)7sv2q`nDw(1 zsbw(9P$Fo^j?Dc*PI!P0^X%!2s6H-Wgk5BN`hR@%gLeh6Z_-bmMF4ytCyv4%;=vPA zZ_Te02o=;wuI)p4Spt6^AS;x6o?i?j5oQ^4#_Bz3RbAQ_{C$=CRx3q-j!v342*EpMb}*02-^@f3q6@ zTQHZv8lV>^v~V!$V~p4}s{7zikPZ+ww^PVwVUu}GxlYR>ec!YuUV@_5ojJXFgVTH_ zo@%wQYt>cFGDzq1G4YCKr^1!;6QE!6-q~tZ5q|af?D+y1@<)>?51Bp}pC=io|3tYz zCy7cHCH}V%6w3Mb;N#FQ7L2olXIL2gk*7DdjNGa@>Ck6cYW=)_QJCb~leUaG|$zO{Y=ukgZTY#A_yK9bC$~%~AwwW_Z zgg*MBuu~GmQmfEJFVq8B>j!GSY5%LdwNKb3gH337HrEYXI}Yl!M*?IR>&WIP-{l9D7Ba`ccj!~1*l$_ zh@I^K4XmMUlyLtdSejd6=l}vgdHdX!2n4K}@m13c8Yl?O~|Cdx2 z-{x(-99IREIK{@wiv1lRlhSWP_8vwpp8eFkf-2GUTDYKRa9M8#vEk5Ufv+g{e_hvu z4ohdmU!;fyARi6ZF93u4q*T8Ir`ibK7?ORV5h9L1S$7}gmcIJmeobY1%c6PPG7rB|DN)Kah!c##rx`Y~5!#7KWY4CF7c}C++G7y?vmx zSVT-GnQL7Dif3jU0W1^0Z)#@3^Uc`plK1huQB(3%gO)GXk4+KYd-R`t_gN7 z_=-{PMu4gwQO%pmB4Y1mBQ-sq1;E#_NIEH2`-W5Bcwj0&{>nS>&Jji$Ll-z)C&Owd zJ>^x(R{yv@@;Nf<&;OQD0^IQr9#}CcvbO2#t@>oxS8eD!?&H!mD6ZsOF!A4{D7WZ_ zP3aMJFL1OKR6teLfTK~wg?pG?>|Ytuk5NzlJ$CabZdE!|hkydDhra80b5CuSBg`jAvwd1Zv^>Q_Dyo;c zvsKUvyttw`0Q%P01rdetOPbwJzt&^^KYsBC4>AhSS2|tG%!QPy*i#Q!FqDnE0hZ33 z!4>z4d*L)sE4MHBr;A_1?YkT%{xF>T1)2r}x&liWGk_uZDx&{tHc=pRCEyGl^7#}n zi@W!e-2)j^_M+Cd@`Wj@fEh^u;qWgYx%a1kkPE1iL<6flPfEVk9rELqD>=#)0i?I1 zlj3G^sb!Qc-UAWAZ2)||kxU-T!k(C@+t@C9-$0}W22x66QV8pfc3PMSyG5{2gY{e- zq0vg1@aZZ2jRVp|;Bzvo-huBA9A@mFKzP%5#^^CW==!YdP=6a(o`D^ffZ{*)lmB_{ zf-VVoEeeZ?lWSj=v6D)E9@F=x?TZfFmY{^dbyR9Ud3pjPOeWz|Npz3w5x=y(z8lEQ zx&f5uFL$%vl8!0A2K=j8BLRdSJ1RgrsPGvIL1i~n;2uZaDrDW;*-FPnQiI4S>_e&l zp@C#7VWA+arz>N*!r3mWw=dLrMhcu*pI5X{UoVDC{WT-|V-3FM023#=9d&{2dst+G zEhR3)ZNbMj?ple?>V|e{$_^8(X9;ioE2*m02sIoGI5lp))u1tf**OIcuRpgL6VAmK z0xjiTBm?F|sQ=Yyp{v5PEYez2<3#PkC&(IZF#sjt4~*3wu>4(bHg3^H-h6|k1I8I# z@9qGYCkWu>y6fhGxl)Y-Or3wtw?4&3vx6t3`B*66o;eulJHCi*k*2z{{+;!m2nU9^ zT^XcNzy=b30buEg634oC4hr;&l6l6HE6yXFXbVI>3t!%Qb43cGz#AX<_44GuWp8J* zAY8lF?&hWCN-S4%Z1n4_PJcMmmIRJU{~jp~ zDQEY#*u3~OvDpY*w{0cM7qdfOGNZ@;Gy1y&(e){+5@`}I<^uMzGP`Ah39yuPx;x-2 zLweE`&U{M6TwS8|fP@Kkk4JY`%uw(4!^hXxwp5tZM7j4_Kfk|h9^k3lgv8413;;u% z#12{UL)CaGM-RU;_@__gUOYQv5+&lU6hqBQ+V2~*UKWhrhK}*5+G@?Dj@HfE>ig4k zGpji6{661X1~wx`UgJQlri}p5Om?y~;F4GRgPi$U!#rdgFee*XME^0R+9Kt*-z(f4WF1sPk`OzO$}!Rn^j&__ z6mhN-Mo#F@#$`&yD;vqo#qVM~x#KwbRBon*d+J3=6sp-oykBX?#AR{*%ExwB`o;xd z{yNTD!hE{MRD^cs=DBy)Y@%RIu6#3o^J&2I7wwh(EerB1Phm;t<sZ8T@QfRepD&i;I2YlkTsV` zM?m^dUL6RGWO1Xn?(dW8?k6Wb6vRF2?yBO{T@~`8hrG_9EmoxipxFV2UTGKPYqO+2 zUEO^v`4_6GrsalH14OEKJHl&=~`+0_~KLD!PDu~$qlyjl{X-v_ zw?`K+*>ki4Ff)RALL)>_nQ(w`3ak~2Cis#pmBg=WdY6Z(Mf`*adf(g%X1H^3e_hO~ zQMmA!_Zl#NvX=0&6%UThfW;?#+{u!;6PFcxh9}II^hE+S-tFS)-a`3NxVK;R-dipI z-w*_a7nMHuc(xWrqCOqb3qnbj?rq{s_RMZ);CtQDRoJaLS1nWqoV#9+)-!k3eJ-!F z9Jqb}tX!J)#I^CItbi>wKnhr&Ptrq{QCx=CC4vxL8(Gx9khu8s&*9k{_WlMs(m%{%#dN2vM! z1iMDfQ=*VbOddC?2Lr79!r@tI)j_NQNPsLw)oKOe_g`Wx`B7v)268}R68x{H4mIR5 zz%>dD$Mmh1@rvq8;4P-Bhac?EMBLp#Mexa&Z&DqynOqF}ZbH#broD12)MM2=W&S0uTS<_4-V9fr$cnQ=wfw{SfzVt8Epd`^I&z;YvEy|0S%i@P{t z=F4Yl+}CbEZWrt_obFzwGQ)J>an#?{W-65izMK7P4(5r->M7uz8ZVDCaqDhXp8yz)8MULNgfEB(oX$L53d5h!z2!!f1 zo`zVn(N1}~XSUlNf^`83??n5QOQvAocRBMIFC!77tj&l5x#N@Wr~gw6F$T5<-<^{B z>peaUaf32W5*tj2Bx=PUsE7)W1W(3Lz9Z|y&IfWdI29B1kGs8Du_x;TxP7h?3#*G- zfMCJ==rQ&wV4Et4uP=`y zoLrx8{r!JV$=pA2(Pmo@CwSa__6-Hh1d=xEC8TC45WPgV} zg@$tx08%AEW8MEv^ZxMGC&jucFb9aw%Ip#vO4!S24-p}2!0(czyJ2IqmjXr@$J^&) z+k*tN{mk@gYkN^$bm@-~(;GuOdo9hdF*JQ(i}a*<+>lE^gMa~UxmuiNY*U8WlxwMDNqItHevh_k zWyK*}2NUHe1w|r^xVA`}-20V^OzX>T<`O$IfBBz>WY}XZZeC+dO+InlJ6!=rYuDdD zCMeE;(@K$c^n$-wrsiJHPo>Z@9rc!Hy3Y|YOWA=_)|wR|ZB7lBlCKv|uAkcS>^i|* zp&TUa9%#sF9-~{sdEj-zjK7{amVQ{mr-E!vSj>io6T$^v=^cP4#<|10xk4Ye8#C)2 zNc0aa`ouIV0@HW`zH8LZYsc3MM)cGl z41FRaB6i+Q?vBIsx}L1DB%^w7{upco-s}t|teBl*3;!X8>B9bL#Ove@--m3xztxj` zp*+U5^K6k7CoX%7x$V}`c`6_mBnhu$hLE<82`OxD^GSjXeG3`pKat#Xj06I_p~v0; zk~>%Pp;96V!?D>H@Sg-!umAo<9bM0#qkho@vk{;Jb@QR!{}G9TfVl6Hhs8zNqdD8p z5mA-c`T`-_VXUgIgTgftC3}af1a83CB&MRL{7l3B80c^`?Tj)=fZ5L^b>}PNN=Rq9 zaVp{d7L28E$)OA>1n4Qi;Dq{V?2Ai0|FT0c)i;3PC~3?Zhc`$EsU;9!yQ>-FfdL9q z_fIm%%g7hp2SxZP4JTPVWAoLfI6!Is@K8$XwAaiLcmN;~Z`;0=buN1Ksbk?flu6GZ z-g6pO;m`Cl z9vH{*GGzf3FLbAHSspc6Ow33c@kJm*Xt?_EgQIqgsXAuaPtJqL)9^2q%bFxvRP*u( zXLr&4TF;4h$L)Iq`=_;3+CJhx(kGYawwIdo^K`H3hp3b*3}z}RAKjeFq{L4)EVf_k zZ#s%fXitK)i**B0M4aY`q- z>Nif#Uau@=R^~l{Bi+J^e&}4RfQLzxc)6kpBNJe5>mMFxX-U9r z?8}4e%O!X{?7n4NCK*^?6##0miK|XU|G8gk{z7j#i%{ios@QjDVU8{^XF%=n%+ZHy z-~9%M3m^@j_l@rjQJ}DU_0jKp76*g)dQrG#pA?m2=|bg2nIM$wtED6VYvt_L0f9_e zsPXk|&l!`DBoOkj?(%RbiFLr(OjIFw-IRh*9;irMf$1RA)|>4$sc7$|aXD3$9hqi@0i|2ZNnEGh{r1af!@Q`mvs$LzqQS-H zLzs_zH4w&<`v?rV)cC%t+lM{@hI=r2iHlTe7B^1Sa&V+51!nb=*X@~VSyQe$cmiHX@){R7T`U!bC@AB{7)9z?;bt7>{FJ8jl7 z;!!$ZKF*!?&-8Za33+#q$DSR3YOA$(0!-?V*}WRi2p{QI4)liM+iF!s24I$1^+;`X z0@Q)qG74%^VF-8Jq-q~Zj4!@{6 zB9oQVUSc!ZTqd7lJ2AqnANisqm7)(Gyyx0`54g?JpB!kfJfr%=2gELh{|#YY`7^XX;Zd zu<3R%f&e{`UeC9^Zx}2pPVp#@$NMIkU4C6zHF=_SSXwvUWuTs&-zaKt%Dx39b67ut!18p;r`7A zwVXVAdF^Q}0`IKKT5Ye1rEvbfnQ09R9#TZUP$B>N5s#vK;8h%8N%EJ^G1SW1GVh=9 zQJxFh(zMvL7nBBcvcw;KVy}V@WH4tjUEH8tuHMDDp>@MjAW(>uZqzB^#Kbg0X?F!Z;)s*3 zAMr~~B{a_*8D!KO11@m|L*!hWjO^N1fnj(+WXRR~d(!|!84~^as{c>Sz-ujd@ACvzNIP;4Ws3d*f@G?dvekxx&^D{PO1_oW4tVG%Fkdy%(Q+Ud@N0 zHxssRFsc0#S!yl5-lALRU+YVTJ|K&)Fth-%t!`*~+?<|f^0)jI=d#7M8eE8T2EDe! zqQ7fvdzteS?gofC)*tuW%G$jbnpSr#g<@9|bCBX^<|Xx6Mx z&c$&!^x0#TewHL8FK>B?iW`Ufh=_g#aH=V+J#X4C&xTk~z}2*1FoL?=zNR9+SEEVN zEJdGgUbZ?`rMb~+rA89;=>7v9#^2IDyOw!R{CXBe)b|qUUUuaTRSCZJ>&ftDZQaGD zDsT@k8x{2gx%r34tO!YW+B5-J)`LM&;|M4tw8;Mp^FWFF)ZPJqmb5<3sd8je>Ve#A z;$EltPEM#j?vLpEGXFm^TabLf$Z$JB#ZB$HLXXlY3aI7qy%G?h|8&97Odlh_ICqce{V64-Xws{&k*!TZ0CD&O2{qdFfyy`2Aa0i@*V&+0 zC)j^pR_s4=tUxB>OTwoHxT_{A1L{7>SObomQo1$7DmOd+o9K2|0DU-(C*mm-+dZ(j zMU!$%m$8)ubS+PK+!P+R@%w_U+d}Qsh*j7TZz>ZfKQl(IQXbayJd(VhbJP%n~oiJ){U`q18HeXr;f&tf1`mhV@n5@#npWN5E<>Gy`p#f1TC#yrIn) zm*lp=4k2qWKJ`H*%jG`h%be6|whORxuLcwF+GQJifOabs710rh5yTI{v0(r61Ps5s z54x>$Bde=D zu1gDmj{)LB&|;F4 z$x-H_TFV1K`|YmM3vidS-e~!8{eMioWn2^fANFe@($YwZvAOc24}zjeV_9>Pxfff_Sv_t>v~^DB$At@t5VLY{@;$q&FRWh z#bt(dzb_dm1R5krdfQWJz;`IsF({C)=&aR*OpO$-CLt2{s6l4nkAsvx^=>jjyO$S+?JSD4sBW`^bpe_4xWmLg5| zGS5Vu0KvzDDb?64mB1~ONPcdrShov^gG z%SsqYv`fWpjO;e&$Wo9V+z)AdHiQ&bEQ_G3ha)=tDentuw8v>PNa(3QcAq0a;OjSa z7V&PUKWXR(CTB1q9z$@zg$Qy;Rx+9e+tGFmYFb+#yFKmQ6;lXUN!*Yr5?c{Bi%@fG zoZ&e9_3M{*1G9J^U`%mud2)EXw7i0dV#O4tk=G&9toM7d+xLIk(^rOr`n^_Inv4H~ z<10Wk0V2?lYdK3Uk7tR^h&A4;{om7J90d*bR5`aMz0N3T%v!GH{M46+EaQOlAEYHu zm-lhJB7(`9h{ zk#F^W=k1}Wd3;%yb*EnI%NDcm#(Bs6==yreYv=t>d7^HcrvBI98kfd>BKs{-lHN7% z(&D;Ce@nzf$W-R$>lpY&b?Z(*Ocv6LZc)&|Ate2IA1BY*V_IiG-VTypKfC@Nz~2rJ z68Z{pk2#2Vw6}(m;iLXjx*k2s{|lEe-TOriTw`=ERj~a&XbzeaXEwDsjMQG?l-*B@ z^!Ht9LxKax50aPL)B6p%s13aweU5`7XuVc33O%o5(EUuBy+mmlbObF^0a#GzPH%7= zb8(7u2p`(4WKNyl34Cn%DYknJLYAWDdd-sT;BuN~=RDeT6N1TyTD*t z$89}J{EfM?7Vj3>M9;5&h~A9u`cKd+bDspKmad=jRZ5s;D8^V7Ox^QV11R9=25TB= zKpB97foGvef}T@OTHCoz%HrdO=&RULW2&OKK&Y!6zUJeK zvrlcQ;&XC%%~vVgcI`ckZP`s79A4SA>(*8bGhP%6?Gq2oMH~N?>POF4>_1 zdW#uan{IT^3_Sty;CziXlT@-lKx4lHcVb$-B+Xu;6G9#wix5(+Gi1AbGmlTsWsnak|izW8B$yu1jD zc74(*Zwkz$YGG0T!5;|SOR4F+y?@A4HHGpY0bRrYD?hU~{Jb6zfsx*cE&nR&tkUgl zGdZ~sz&>IsnJKE=wyQo|z$EHerDADiJnv;3RkdnMpEu`oE>QqvmT%rz(X~xu5NKGp zs3^I=lrdW?m4O>bRHfLY!e%5Xj?)fw43J4Q#Ns2d!P7L)mw zd7H$~vWM#FYT+JFg6ezMsH2pL`mQL8Ia+7Mdp#caI^MmKB_15is{oh>=QXq^Tt;MQ!&b$wtRTekLsI}a)uwnmgWBU?6i)2 zkHKmxolJV?a3dBAg`?-Z79vKbc#sWB4-lUKGt^gXiTmV0hPEBhXUy7C8NJNG9uq`r z8go-$SW;)8|NDJz!d>U;aMUxdh14{Sx}xG0ICC6o#uKUJrkm4;3dg#Ji#Y`cRx8TH zfjR~oDihAGECyF^VB?CxdDs$Wxux)r52_WLxF>gKxXh$N*fU+wYT|w>yeg&5$2H&P z=F5KPclo-%X%+5BD2>jkW@UQ72%ZufIp54QZsTk8FyY}f3hH%LQ(w8TfE%A@Qx0{0 zQ(rYGKw{o4?42W+ukxDt&mWNIdJR>@=L{ECtN~=83tqW#SvP;=9qz$-E>GbIcV z8{OxKk?8d04XZ{_(5g=(2eiF8s~!FhlcCoZ7<3_l+KReu>6LVontP~TCMjpM#qU-g z%ue#!OJ*!mVZl>P>Inn&zAD!?*&pi9ck)57#Fc= z;+C$Xz?0}KKJ$c%uF0sO2={10OfklMpdsmNJq8TaNi$}yB9^UV4f$i?@NBiFix56c zk7(vHLx8$hhf=swue*|tP7{!x4GRaGJENFC0-MXYSB}M(6UssB_Fo9sZ&X5A$8))P z{i~X1^qdR|uos2UMo1p!=uErSrZ-zgnQOnneek7|HI8M608?eoV=@=0r+cjNEH;aDPCGqqneH4>O$&G`* zGEbL>ra6~d>BW85H#bQ)2b?-UJZ&JU$;H6fh#*ij;m~HeiODLmT~NU$b$7i#Rvptn zopQh8vys5H>1!vTn4<qpxk$RS`KkS=D0bUJkhBCfn+Z_gYE znP^zq96Gml5o=-tpa({%{xu$ZgCI&FfR*pw%{-6(6zam%(nexr z7%*V+Kmw5|n&;UPFZLbsSKY@rZ=&X@Ht&ep48|h$`!bVxq-xw&8SAezB(3|U?FKH2 z@J%B7jgNoq#*>ga&qkKh(EiFv=83edVan!DagviLPcq^yD(-zccjE-iqJ9RoaHJ8Q8uSd0 zU65G77;#|YEE%zTB@&W)*`L;@o-uTAd@vPy_v8F_(WUcIBVaO0GCncI?8~&(2~D)> z%7S+Q{`{12MdMyf%9M8+b1j&GOb9;64<~}$@9p&L*#)6IShlv%!P*Ghk9qmhCsCi^45_Lc&RhRnI!6PS}%iv~9xZPf_ZWoCSpkiR(STXO}Qhd8d(5;4K{ce6tR>%GLSL0V} zH_I{0!MyRzGgn&bF85t6lJ; zD0oQ~YdizO4!chvBe`DfUT&6(xjbT+qRViMD!N2?W&@AOFV!Y}t}$RhD&CRsyS?k= zPJZ$*$X&R-WA9mwLU+GK)e*2_IzXg}e>V}9&D~G);2(}cGU`<;vgZ6M0%kNrp1mi0 z?J-VX-KCQa7Gn6#y|wo*F7F*Byr$WX;tCYFBi94#k2fax(!xuZa`j@lfSO1UT>ZYP2p!bnjYpy~U71L7_62!pj zywR4xFqS@Sh|Wc$l?Kb8O4zMW^@lO3Qm%qPtzZ4?)()9k#`EvN1(7E5`^Ls0(6yFL zyW~y`fDTcd(dAMTwOOt(Let>$uOL0J}x&7EX z=#{E0vP>OZ@O!jr)t&|yJZYbtd!>;i>1KJ%;laiSMN8UQt5JmjoZ52Zy{Lcb)NOhVV4H+EyFM{*}_*1fO$%Z2AT_z@fRE1IgD zi*FxW7qGd~E>SvL-gNBoh~>Ic2QvgWYnv}oiaRNOVpaQwsF6E9qx7=GqOVSpf(^&m zVXV-X)lTJ8m~Oh4S2Ew0oW!!RqT;f6>|fIdc>@|R{mr|02-_>IowV1h*JG-@!1CJq z2Y-h@P?y5xmb~?j#0UZ!Q}L|UrdO{-x_tzqA38eQjxc6K8z>`BjG~k7`$~^FRd>0> z1nxn1_4qfkB~Vs~iCc@T^)*sT4A+aKwJ9i#`*2@`=wff`$$)E6AkTEdh#x3aijp?? z8#>yS&Tb=0AW=`)Zs(h_Ufljkdol*)HNcP3))I5b_F?b1^6gfB+M*lRI5?Z$-d}~b zZPR|FTPyX=NJ{>0HJm{gHC>;5T5fT4Z6CbNVx(ICCh4qIo;>koUHrVo*G5RXHsm|B zh}8r-VVSgERX}$sR~dncOJG~txrkXZ<0UZH@vSNPe26IXea$eP6gyGNCIheGC~^^( zDs%|f5!e#3?<{GYN8a%&OwD>+v_AZS+j?}RcYw^eFl5+}Ub98X zB}~*%6ijv9HBg5?hlrn{;R7!e3!sC zq(&wu&;Rcw^ljT-i4%zj!1rrP>FaOyFEs$rxpDXhYHy#&clz;qLm1~npt3>2--8R7 zx;WAtJ4(Ot%5 z5g%3?)Xz&!E6{?j>khta5oZ7Jcd|E40_8+;PiJ!1q^&Md!ed6tglzirjDoo&w#Ys_ zVZ=9ZyQ;|ZQq_I>#kqEy>5)zz zS$40wbZ4i8VIC}+{&D->Q1q64XR2U-9!I0Bbytoi<)K(B!jIRNdzf!hanhH=xEkGE zg!NzGVV0fU#6JFNBWJM0v-Ncm>|`DlA5s_*df%etPq#1j2vMAZ&de5WZz0m8`8T>qNpaMTWq1~%^yECl3I2V;6Gc{-ql~y zYic)%whKlt^wWcmXNxpKDX{B$6_Q)w;t-^L~f!fhDS0tE6aC%a)El*H<-cxyT z_*%WXY2Edf@GHH$nR#o)6{VLLyz^T#k1@&USk!=}E%5l)<;BPs&3pGem(b*I;&V0M z;ZE;LpVjpD&|)e71TJ|eqUjHb&)9!enrvZhB4a4wUR;}|WPz(4oPSNom=dkk^Fc*G zgsaYEE8FdoM}0fOXo)PSU5kK2%27FLytOZ#~5mmvvcAM1Vlo$~GfTPuR;51ivQ zs2{wF3F`u6hc@%@ATU2y)vg~|mcIHI&6pgK`&#bXw91;}LxrpXLbA~gKFdXUP9~f$ zM<2r?4guUTy)$aD+bSD<(&qd^4CIQt;&p^>d)A(}cuA(;e`Df>X>~G0k+8Jh9w3{i zpB*7wg}u|#0yDaDc=~-j7kOO4K<1ZxAB*oQb@pP5)c_e(?bQAwIG#tO^(7m~xPG1@(7SF!h;SlS5h5$mV3$C!P z`f(pv2EKY9w5|yS5_u1%a~FDa#h31&S2w^-txv`<5|V{UUxz6WeoY~cPZ<45OqF>b z&f)8Jo8$HkfVHk!{{yjK|;u460$eD_$$r8=7$*u4he zGofQd{tm=_Nt<-?Yqu76JJBdTg*Sb|_7o&K^+maOUb*ZBh-T&zN{`vDDDjcOYs>b^ z0*gT=`q+YLtk_6dRPGjE`@lHHBRV~-zuuFU3(7a_@>XR#Tp3!>cI%Q(m^;S<8oPFB z4qMQ-cx7_M(i#`NFEw>qCVp==ow~S}OM@Hz#vZ)&ACzebAT(8+f-Q&Y)3mvpY^^Nr zk!{kXe3vp*B!7Hs<5{3`uQyQk1c*I#7g|y+!d_xbH8UvAi@R_1s_6ypX|JEi)y{4}*i}D(JW7!De zB`+vJWH)KD1q8anLY}?j*`hO7Jw1;<6!HehNv(Jj1AX=N-Hd$70MhP#f10bjR36gX zos%8)20Z?h5x;rpDkL{u)L?L)R7`3Ed_;-)D#j*15l4Q;BTN5bno|Ho zs%A7iFX^Q6@}?v^#yQe3oayA61tiw^lwub z;$p~Hh|jU9S*LN-%g;^_V_QwR&+9@x`dQfi@aW#yk5Vo(#ODn~t;JSt(Sqt_pPbs9 zZFCg1DoLn{ma+hIW;&9s1m~?qR2MO4Bmt-1qP?HdKoY5(cCh(H9gmQhN;lG0J|_b@4Qnsa)2`puQd<@0+ z-7RD@N8OBzX1k{EXf5hZ)ht>@SQF_}Q5f)_KVzMg{o&;IDgV2ZB?D{$q;8QXSQd9F z@A3Hd!XJXQ2pMDZz$ew?z&;ITM=(t(An)>}cGAuGS z!y8=7l<_iGWmALXerQns;S75)iJ+_s zHF|_HwrP;wzkn9BE={kAcF;teiGmy*uXmLR36FD7!phVX z%iZ^%ZHF8T>~N8Q)_aau_P9ss6n|DX^YfUlW!2K}uAxtRubex6qs)eAYi;YB0fz38 zaAkq4m9tF}$#m}V3rlIAoR?lmy5k~^Uqh93Qia)8&Df%*3h;QhYUNV@3=y`C%Mk6B zdPP|D{1hEz-{VEo=A#+KDGoQJ#8{q4WQXNdCN@-!wx9FB#CKm~%GXZO!x?2J{)EWd zQYK6#T7n8@iGOJ~_+?UBV&@)@uz6hVeSd&y{_99d5u1Rozj7kb!Q1DXcfZe7Oy;Q6 zMcy;G_g0D8ZW-a}dCd~u)e0OPs z&^YAo(Bp7kY`TPYJae)MhdEHxVxKheQE3D$osC|$Q;ul;YG3IjTekVS*@#(X%?kI^ zJ&k3Dh1?VH2}#-u9K0ag5&q3Tk=tcZiQER!cFso-Y}{W@w|23c(o;kO(m)8-z&^R| zt@%9)tGOj=!Pjr`(NNOQ=S?)Zb>U7yRI|nCIl9Pnn>nwc$2mWY*3Ncty9~n}8e;G7 zF(KN=Y_5Yb*13ncpb6az$p)YRIn&#KjSD{YI4#btz3Z-APy8@-T3Y?A?V}(GHoz^4 zA3^12BK?n?1g*`dW!tf-0Xbs!2k!Ayqg92Ho+KX+)3adnqFXq^y3RNF#3ZgJ8@6w+ zi!MZ)1w=Wz_E6Zj9d(|oV``*CebZ=nhT*_^*pR!JaR;{_evUi<9p27z-tB~~zkaoq z?hwY?m#-(&`%b~YHiCUh$8wUFD(QCGhryurTT{SAKHOTTcI?*vhOELHlHZ)sf|eZR z{q^1o-piZD9wH-aCU)#kJ2N_i(sjD`cZsw~9z3>i>7Z7L58{@!aQmp)5_m6Zl)OMY zyBCz(0pENWxwEd{OCcK31_QVuTAl1IZ zTizjR8(03n{Vf%A-%DsSV$SeUs*TvD6{&;01iPX39mkX|YP<~Y;jc~BK{|Bg)LOm2 ze-;B4-P`VN%+D`$z0%xJM9njUK|Z$eVcP1u5ItR7`;&w+Vm6wUQ4&DzQ~MD7W-M%P z^OT1t6$UNiQMeVM4lF+Q;Gk-4jro3@*hsSn0|g&t;YxbZXZT`x;}AOzxszR@Ls)UK zailFYUeJ2v*t<3A&&)yMyAUhmx~w+BjoO~DOxWbE*6eX@3t!=srG01EN1IpI)GITr zI()L3Hk9;#O>c@qRbpqKp0Sp(thlF7er93}>-o}H$zl8+cwEmr_4JD*9#+qh_hfZb zc;BZXhBIbUtyt(YtX*5Br7{Lwq4Os{PKw0xrAHl`Dh zztr2RI-J}oJm6Ve;!j7a`@Kwd2o01t4mgt)VX`f8V@2NcCfN&wxwG^sq+X5SvpKP4 z~6C8VunJ+U^}T1ZK~VHZ2n|;&gdN?+wylykV^dB>Q)rcRpfpzJkKezUvTXM z>LTm`WCZIZ4!oXqCi%n^d9ngw^)Mm8zm}Cl&rjNY~Ov{i>FwXu5GO|N4Z(AmYj3@YV zkc27s`6UwRl7q@Gml1`telxKqqYQ*xMlgx70G-D;K=J&;X5hQQy>`3@S0BjIsTk`T zGg4ND@S=?bS2;X&zro(o_|Em&Gkh2ww?%=G@%;<7gG`mPto-+}hqtXvj_x}yU%ee6 zo_){0{S&k3FpENc(|PCU5o*Lc6j-&)TD`vaU|||t6vIAr=Q=RzX7RRHU=)v~AMu^; zeF&-5v?Z|J`xkIzGt9a+ejnOL$r{s}DVT9zUf(jl0CXqHiV4YwGcT|&|524m7HY_= zHU!kZidp{ZkyC@01CVj3%^A0E4LM|B01gs{N8f*bPluws#0n;$sB)N1&>1*??R(J5 z<+0B5b;NhZ>_zh@^Snv}PJbsFA%>AF3vcjsD;U5A-)bXyuc6~ng^sy7>v2qc5fG*6CSL4H*XP*ls}vOtrwfu{)fhg}T)Tjc$&f`Mw2? zNJGt!zst%9FM%@l2v_PG7Hx*51lJXRxX>G*Pm&z00vvuw>!e&i zouPy#y3&JyLkRa75vHw}g?$zCsdE9o4e%n^q;}^?-(OC8W zxpL`<_`!llQS;V*NHY%_aoyP)x%4Dx;hoJ-4ugCt$`-Q?o(Is1fWQ5Aly6=}Ovh1= z!!(b2Ti8jQ*#YmL$WV(JKgcJR@W)S*TjW2z7{gFcj9-yc^nCpic(kT%Uam*ujoP;D z-AJo1HZRmJ^9G8|rlRcv>z_H5PZC9hSM^Iav3AJL9<_`maYiWJnS6`6<_x@{7g=jK zocZi!MTIwsLm~=t_0iWCKrYQ(CnYxj+cb+2lF?zhuI<++I*S@Rke(a`tucN^}O#tq)J$7j`}5Y`-HndUa>s%EFf3n?m6f}o>`@Qs?;^=1bo zRUD<~-o3=M0F#U}y6#SSIAOIjP%I!r2GE#o>-FCfuF7V=GHq!)Q3fCdsCe;WHM&}* zswOOonEsWG4RY=K_l@sQP(r-dW!X!TlH1IV{MY-4gyIlU!Ks*wv_%`eNVAJFj#fw@ zVXG6YIj9x7EjGv+ZMkKCCqX$I@q?t@Cuup!nOX!0-lxJN{cvo!Af**E5=6c>PQaF6 z6SD7teFqP@!Akj8zp&$(u;*)5#y9BY$+rjHSI5rqxS!Nq8((u)b2d$mA2mT|oA~ON z97MvNzPm8Z?IM29r!RY>j+Rl12pc!~r!zIDCa=S=Q3s(dQzk#LQhK4NzQI=`;o0|b zQB<;qzQNzCo=mpNGTllH`O`PSHgjCc9d`h0%E)u18pX;uvYm1m8 z;Q5gBy>Qwo-hdMmL0x37dfv)gU$qlMO$U9E+_&OV2kaIJ>>$8RomPruZSkGUX z{!HxZZ~3v6iW`_X7*N8hc}kBcD%?w0XfAbJN!Zy6I;A) zB?Sv`FDS5kLu@3Bl=?)5YLHnWPNk;KP>t*~+1^QHUz6>SpM~VOK^bd{nP{-6=u4Ru zMDcO6tWH3o{ppkr@&wH6jF^(teSRzLNp!$}a+-6NLfQYh5(wi>OnWFR5 zZ`1Y}BdA!6-Vlphayn63wF(g&ww}$$$cXb8+zu5`j!yM=J(&L z=I;sP5H(+8Iez-2V=IS;yAg-zW;G4LH)scs*SzqwF~oO#qrZ$_3+IrCniKCyb11?`S*w3B5eKfpWp|KOBmPk?j1 zUYQjoGQ7izY%qVJH3h1SF|gh~T@afUG89*cI~~>8an12h#Dy_X7aVI_ROHK0?HQ2n zt^WI;$h#x`c`=7D>PrIhE2ktJ`b__JPxQUH?CiE@(?Ei+-jMrZP;1x@!IQ;&vBM`jZy>ehCp zMOH@dJ}@%7@v9djcjxXUxvn~t0p73ofj1}!g_LxUg|Nx+u7p>1<&U*!iL_d)BU3&k zFO-*iI8hCK&id=Q7Q@Ihb@^gxFz1KD*zDaNccW>FH#p%1+l*QJ!2I)}U9JYOovTPVSlE} ztExI+Sc7c;-$S^RQPfHDB*aGG0e6c(XgIT#BYQbwYCyi}s%4Ya9Y%^k6VNy~1`+=o zf5#Bm6lX@=73g|W-8?Q?qWpej1iESTuD~LxL#hour>59m@;$6Xqibe7#ojURd7!!N z8e4|UJgu0Kd{qv+woYW0@^yCwgAGFWa_W4oaB1=a52U;oSsa$8Y7vf;Wr7>WYWK?!CF$ccJ>U6Le$&1A+5N~wuPgWiw8pa&gIm7S}BBsxMwEY&^$e!w=8;6oWNN!=k3s zyc9_C!9N;V=n6A0Ia9nk(&>0)R@SV>UcRVU#~q!eJ1Y;*RzGK1zB*uh(|a=)|8=@; z-ytYSfz@C3C8hCe0tclH$dakkMcmk4J2Pbxd3YclA&TWJ2tw;4E6Cm7OL|ng zhf_b8K=O74P^valL*AT6qS?7$JpqR=xlm1P)X|Eu~v}dZu9F`&smBoyiQ22z1og0?2y5x$3{jMsSZ)NXijS}Q3~n0 zbt`e-3!N6DHkuwKr!W&K6=S@1Ht>V%*cmNEKob3lFQPyu+ zaD?id0J1yM?HF_3>&Ay-!0~k4fEo{DTE4{iU7n9iX6} zcc@DA(T{h41&6HcQFv?2%2=QgX-&d{hCgrKCx09Gb4a90?bd9jrX-~VV*X9rgd--P znfbDxLMf)4amOOUsy|x5M#O<9>1xvOWLZ*|R-7v*ofkFQnD3JJ5@C6o;PxOqLO(%6 zH#QJbtef^_wgP1~PX8H8{VbZ8qNGHMlI3&iI;B$syYv1^KrOtdrz)$Z=s5ja`pqNR zyuynu+ZVIz>wG5Tcxl-qBvL@>mF_y8a`5wxgy(GR`npB)_i%}mLSsNuODM5}J7y*R z?Bz52CoGdqGU&mhiSFm8x(ciNv||)I*NR|MONs=;i7dq5Co+Q?WRY z7W^4ZPe+<187!73FH5-PDNw)HJd6fEvhR=c?ro826%~nHDrhkY8hCMgY%V5OCp5Y% zYKjnhl4F@=n=V8Eg{+eI-4gLbH7e&m;5BjD*I)0^ZL#`GGM6PGgF_zDJ=j`3^2JVA zhA+vP`Ce1u(vG))zRq_bRICTv9U{k2k^a)c3_S^~rQ1}6!hp?5!UuZrtrr4W@{et9 zS2WM7X&^fQczV-Qbv`^YfVy`$PJhYxrcfc7o=ax2W?Wu%An&Rhe28hdfV zt!L&FRBqyR_kNkaGiU{(r2V;xz$A7vtsWxjjupH_`Ee1a_!Cm*eLKatI5e&?*lyP9 znWoaPTgO#e)&xCAUPj1#eJlJHl~?ua!o_cDjr-Z8s{Uh*AlkJKg$a>X#LIqVFtcm{ zUY&`SQfu2sbD>}HmZud^$>p8u;P1pwa_^?hOCBY0e33-%vbh&P6oN*Q7w5`ghq-B# zBMm29@woTTBXH%h12d)+lklF#)0jb^nx;L^dqqP#))9Cu=8=C070QP>7wArW>dbow zc0-*UNafGIf(+@nz{Uv=T^Xjv?wrs!DNKDkExwU> z?y}fV=m5jZ>e;5Y5S;~?A_m}dO`RI}u>Wn^ij~`t4A7;oXD$hHsH{!~9}` zvl<$CdaJ$3glem{T-|Ji*nnM5T4k-6!Gx>jnxZz^9=(oWDIm`+f>E{}nJR5@*t+_B zh$vx+<3wan{~Bz5?-JkmrQwTY>!=LiZ6GJzhoWGKL@M0o#RC-NxKRXfEx~6HU2H@mK^B;{JsCQw2>(jyz61(K;hmeh!$!4fw_50H z<-g((@^nZsfKEE{>I)VM=xpOwhr93X=Z3o5XKGcj{Z>RVSS*R6hOr3^N->Ue|cJAe-H7q}g zyl7i-z&$hE#1k~p0(`Tw`StQ+(_Q70&ySDajMvQ74*tz;HvCni*i#cPA5(LxklrIJ zoP^n)o}T&n26}z%A_61o#C4kt2+>y$+kZL$4Ko3_0w`OPsgZ&&MdN?H~GGy&_*pTLkHl|!0)l7zm z7aeB{`IU*(SlLT;lRy^BeEp?zCro!2pC}r%%7+A@n4*FNKl%ZuRyL#VdMh z6xC1d^W_8xPC>hqca(Hni=%G0bTtELDJ$>;zguZehG!hTH$~1&w}ceVn2=%tT4|2K$5xa`Pbuf!Q<`vwr9| zK3Jc8{fQpV@V(CIvZ(UzWU&sz9lBc08-;rmQdet7LF@Tb=ACikYfExrwTGXU58Bl7=~ zD4HUu$S&~0BWktqtF>Yd!4HxS50x9zjFoSXCwT-YFN6v$6+N`iZj58Lf44r`ZI}xj z-zrnz2*lCkhd8$(MTZ13yBTb3C|Q&3?ZPN+`^{?Gh~G?aI&}Aju6y&RJGMFBGjrjI+JcxefBE#2tpql-!T zr~cLt?SAGfi}njH@}{jov3Kh==YI~_q;>eRqNKIHw9vr@3fzd#nZkwJGe70c9jY=> z=OV-+k6$}m;eT|hz+uC00Kc=O;fY7de3ZeyP$WFb<9_)7=R{ed&vU*xyCD%nWbN7w zj@iCBs?BnDEZ9PMhI`(UhKy33SHFeZe*O8Jeq@guN08iwzn`!XM9J_Ll1 zkDJ>f5)BoCtX;)26`hjz1tt5?QAft}qX9%VkcGt`XI2D`P&%ai=%&JJ87HAm)kQti z?HCkc{jfdl*ESH!%&=B2@cQ4f`!2ygt!S@+Q^tJ&9Qdb0L{V>PLJRFVOthyXE>+QB zR8u(liV1r!Kr9G4n)Xd*WyQPEU)`Vq|6&<&{B{PjeNM(n$&>^*LBDYc4bmBNYh&-r z4#T&~;?hU+=z(lGFT2Su2sJA9iH-&pPsYxJBXNk|ys@t>nf}E3>vA+I8CIvOVAVo| z*sE#1nEMv;Om_^WCEz89+q_%&l=6c)&0g)#J<3Xl2NinL3?Tg_P2wl?!)B3}T8rr* z*@beo@2UE2SK61`f;RS^nvle?dKS~ua9|qq?R21aaGmD$3T5m%U>n#JAl7zr7rH5O zTCLO|q@QUlsaAwoAa0RBXVL~{PqBhkO@8)~U4%#ABjmA;sda}4n#0kbr?^@&C~i`w z?%NNpf?u8oMTM8{79{s*UB0RY;8pHr5@Z#7+>PG)=T#?Zk|2X!Pe+Tb^(fJd*?boH zU9R`=-bH~|)S+Cq+h=i4N4Bd^7^ukJ@-M#xFD=J2dqgUjnf-kK$@|VBDDOCDyY%d| z@qk)&x9jI4SG0Q=9eKO2{y_=wU$+hD=GG*+@hHr+^^LP6ivQpC1WQ^^k5yw$*4`k@ zV4lri$t(|!J$#C{n8EVHxj-HVaiY6LjT@+g*V3yIjxGtkKg*sC#?U#<3AmwMHSc2M z55mSb**<8lilHDEW$PI#*OW=8?pa~-4S3hKzQIOjs)=MVz27gU0eL?96oWvp!I>p@ z@Z!&j)ErIyN{+YXAx>nUzLc|+Q#@B-dJ>Q(AJtjRmD0t{-k4WAD7Z`87Nhns&u*N> z*jQeoux4=6=Ie=otu`MxtZk){cPtl-c0Yhd|KiGXHrY#nR&)$=;(AkYP_x*1RU^yz zY{S&3`|fs2K@c93;ZD+JPWm(SVyjhz|9H5fO%Oxmg)*OV%GjO)PJYil(uei&6HLT? zpwLn6hnBM2Hv(X6Flhc|sL*ESOXsD9B%Wg2(YYvN$=2_(9>ka9-#K=3PD41di7EyP z+mYSX>J4ZBVy+Tkpy(7whmxnP*7iKze@g(ay+wwFyKUX9wlsr3te#i7i}iO-lGo<> zyF}gXb_>Cs{+@!Vnx25gBStCOYkwflgd|7>KDVNN6YZRI|BC>fZjw;`fukjP#{PiC zrDpcRI=)~r7n)$lodDbUDxN36CjXu=Ln4V|Cq&o}zmV&WG1Obam)=WWb3)@9pb1%4 z#g56bkMC;&y+l@JGVSiwIgHcMw=B!$1+XE06qb2Ip~NO*?8Pf*T+uYOAZ5M5Cgy*Q zxEG*4kHlNsG_~HBpj&2vS8sP0`dmA~?+1xVn5u_W3}T)M2=|mor*eFQH|4b4uYtbw zU)bL3#rSg3-=h!wm-+@Zo&Du^J0{=5;(W2ks{@?Z1RjPzuS$i1bWGS%C(?%#z7pt* zxsI-PTBWk64SlShl)I=7r#gG?K>7LA&p-0r?61$z*1Mg2%+;@Uh?=4$2**!~7fB57I3p z^*5=pHp`l${M|3lzxDi8bGt}{P-ggiS(YOTXm;=Vbu~g(i_VlZ2N0!$_kQOa7I5f7 zeoq#gG#Qx$tWOD14nK2Q?qJsPiT$1zppx_nua~9gXYCO4`RT2*AI>$FtdqOCc+HvK*H+i%-n@cG&dE{U4 z`2b{U(FD+oshCR|tq@VzP}WJ?O}2d=YU3*u00fAQL*B76fFFJ-u?9Nlb>G7h{ys~; z&YEcJBOk?n^}k6CBmHkuQ|UtiE7uV#3<(36(WJ?$2;Pjy;nV{Lb@j@lp`donsu7SJiR*_L<{M8$IYV6P18Pa~OyU-O7L)<_-6ON}M4vs5$Aazd`m^DQ zX=R~S!xDJ?s(M*l$xWR`QjpR&9UI>Xd1I`tj!TxB8^rTx^I;QP)#-wDkX&nb5d4>1 z<+62q+>^h-K_j5~tv5VIW)0=|yK4L~qGyehw%eES;zw#cQ z60;s$BQpBy^dQe!xJ$H=d`(4_H@dlMrSNZMb14#MWyLIECg zb0l04CbgUZDcGu4p8r^-O^|!W?e=mWKMPYXYe;h477{POOLUx_>Hxh&xgq;J3!PfB z4Aa(ElJPRr3Zf2R`gC+qChhT8y`C$m$&qXRjrTL&lEV_;E=E$0>yF@B{$^Gyfy*OS zmlr!+e`qEI$2;+t8P(ndUe_{ukqKUsHtYVYjAP> zVw)OSQf97LTMz(wXA9Z^CHO5G@n=lBq41H}(p9PqNaC}|DX;N&#`8^fO==Qc)`XlV zCynL1Yn%Uj*Cq(rPylWOSjr3*d2T$2?m??-^787l;05&K#_#((dCKi8gMw2p9lqYg zY8Sj*0XH&nL4FXqH=7yKma@ zyY%TnBKtAF5z`8;-46@Kd3_$lLMIV|O=JCa4i0f4%fZ)t@a6A=v#MTEeLU$ zWtQt~;xc_x;41#eBkjGi-N}Hyu^2*u@J?ZAn`2QFU^1ipVX@WJlBc-0=c905jH&^! zNjzwV0`N(;z^m&0bqor+rR{%suKG5fZI*19$NE~fF*G4Q!FH=4KiGLu%xoFF`)iA;&D!15jVGp<5FysbtJU=BUE&DZb!qN;55JW=qK`v{fkYw!{IwY2$dKcigI&L z_A|EIbx@m|(5jIg@>rs>Nu=VW8jk&X1H~LO{eks?c%E$~2q|%nl#d}NpdPCGRDX&@ z^4zuD#BeS9gLfIfovV#QCJQeP@Uep4;H3$)6(cBB59 z*R%3u!G$jkAsA{^(9uo2g$r~j!rVs-4hb%i zH(a_21pk{sQVEll$w3OX<(R5SFX>OomCjSsRo5Si7VGQGv_FO!e((RjxW?!|im zb+quTtINA}-P1khb`t%@jB5+M<*UlgPN>)FW4tPJR3!L{*b$rD*PLFi&3oLCjafn& z3$gEM>8vyGCczhd>Xm$-iwBU7n3pafR-4@&KG{9ZialFlL$7%^8Y;eE?(635PSU6J zqW5NT*XZjAgqwH65H@bNdH>fI%L9AspwW|amOH=gcX}-NRuXVlR6-FqJxEBenrsCE}-uTw;^Gd5G;lc^WK zJvxR`uE1*64H?)`Dtwi)QO%@+A2i}2^En;d&(N$3WAw>(CqCC>MNHHX-&o`BdPQe> z%sgf~w@A8l&ocqcXc>g08_RWCnbO-gN1?X%C1=A&1!qXH2bMK>700dY#VbP0#%mp6 zgIDf&ZW3=ZvECOl`7YV>t8O2lv^7(uMMAS}6pDN-L0SPDWx7^TEj^Y*X%x0$rzin* z^7Fb>BWA7dcC9*%GAi>^0eo!kc*Ic*o9jLB$U3ZXQyS^w3vNzPyoUX-MBH7U+h_KR zTg37z`NOOkbObdwp~`z7jQ3JoHVeE|D9jr4)DjfCGkpaU#Og5VsZIPDt?DF#g4_%v z92MQ}{dozL&JTZX4KFxwj0xzOx*;{?EX_o$cEf9Tx0k!fO(>9q(@ste?;`TrN!2mf z3WwV=!|Aa2KH*l?(E3rc5a_u}n3@%fknNpm`DVu6t>o7B_?a%b5n9mI z*xFxwX_)Soy!q6_!`{kA-F~gl7pslekdhtd-zdyq5w zu>|=(%#w(+nNIffi6pf=>Z3kQY3UX&&o_-!#S-ZVg&NWI_%r+RjJ=uIJS0R{lrD!Y z=9A6m89-1gb+>H64hOS#TSLBGJ!n}$>UPz}xpHYqw9P0lUQk@@7=R427wxjK<{&+Q zp>?x{Ou2%tgp|d?Y`YuDSD#azlCoNu@Ic6XwWnCylQ=*bF{xZZv)LFXn%Bl_)!LdYcUHOe00HF z7>Mva?%{0m8AEe_N#Mpy_Bcmy)hjy{9b+PXko|K#_qtc}V*QOT=3|shWXVX*>MA(Q z(?0>cxvs*UXZ^l{a9xrOI&-ev=$8l02MN!WD_Y`@W)zfc3nl{yTGaapf?6M;Cse0C zeX1GYXoxwUwL*V;czAACdf3yEV6f8h?g=6ysM8)EmvFcrlVY6(QLdLcOGx9)r<0-i z!Ug)IvY}=gqRkxRrd=)yu%w zc;jpbSD~Ma!)1J{L6w3q#3V54FPT;iqu;H*1S-M`aro$uQxeZ|lV~7~`oAiO0Z z4HA%@21{`bpe$!#8G%X#CVY8d70$DhIb~NR*c1yHu0-YG{VNB6vy${)xP=^Z)N;mb zAdgkSxxVG`YOWVkgPoVvbX2x7G9K~5!Y<_;-5aWh_+_G#$hXPQTWyT*P zG^7m5!|`2e#}_HeQ*ZDajn%N}-PP>OSPVHg)@h0;B3Cp&jp(JPVqS}JS7$!8Wc4u#M5mVqSXeM>tSE4JZo=W-rC!Q%B-DiOnW`rrOwW5Bw1wjo_cOh;eqfa!z$=sCb=6_F&4{TTZdn{TgBcyWY>7#$m#LeC|KV0Q*+3+ zr;LL}RiB}()s{63bV&CRnH>2^kN91l3-{L5*Jf3Xh_fY9cr$3NNIH}fYEJzaLsAd0 zFmJ^AY&CBudm0>S4y+T(=?0#HC<{CjBr@TB0dK)@$(^aG2KdA+ zJQ0lDNsiGIDQ#bIxbFCqg4tpth4MWemMID;;JPzy8*6HqP4fr8qsLNW?Ms;kIP4s zP|t@&C#geYw%`d3fr-R3HgQYuRM4{<>>|k92D>bW*lh~3Z4Pr@#f)pI+E>wWy2OxI zHnM>jIBckQ)sDqyLiq%35K|a?4ID%HT-^z@Io!`@Z8O%%}D$Au8YmgS+NKN{!46iHg>oeB;|L9 zqxCB}3pYEa=Pz?BU!4}}R!W@Ww!uOqw+35y4&|7XAw3!vIYXg-PHo%g*1PMM)`aiM zP#bB0KekuX6I$FCPiwoC5Y=mY9dFif&*R?7a)*pRtdWeNv&|s#=7vlqRXe{~OtGGI z1B<6~%ANPOw(NLmfyHiJ?Bq(GSI@Z=?s*dDJUCwtg)hr!)(UVuyYx9;k|ECxHuj%W zFGIGXzJR#h`P4JVq$RZ2Kvio~jvJW)sSx4fT38WeJZyytW>C?eQX!Dzw~N(cmu)-S zB*#=Q&JAk$=B?g9A?y&9(QvBW+8?CZ1zc#SMG7B#SV+&q0slZ>f`MYDs<0S&>ONTsr03$Jos*!cEI(3bX0rGi5(xNIgQCl6rO?ANiGlybry1EUj6 zF$UT#SzYh08<(#jW|??~^Op4)E?`#LUfpq3xfw*s-(0f*_VbBIB04ob(cR6QN2#sa z*7D6jy1t}g|0*936AFAmz`Iwk&-=0mS*f;T$QYod%nIYsQu+E*W)s|F9U1TV%1D{x zMd;Kdm|^c=V|^rKaEMR$7^l&1K5K3w-7JJYAb(CM6DDt5L|qCqUlBTATtpI+`T!O` z1QAT@acCC&56AR$*XFz4}qxc7qan z_YMv5S;ymx%NIthVJJKWVMDT@T_y(iir!`yj|KskKQdTc?WvX{RRs+3NNP^U((D2T zI_vq5Xl;{1-^)&veBcfZIo{>mdp`Z~k=%HR1|N;ek!2ERI_BFVF7(jgq>mQf;}Ij! z{(3hmW`*kRZrz3STVGmCowuavwv@J+KCdGTC<@$Ir!H|bW3@sE!M@*;#Md%g;APW` zF0!CcZnL8-Dsy7vi22~az1nEA|syNe*gx(;9sub6}HMl)Gvp-gT2AVFF z+Rws_!KsOy6w2t46IZ{(&~mg=lB?#6K*4R)4(NA@9MQvfwJ@vbb>ybpE(q~uwgq-P z#;XDFWrIb1mae^pH+`kq%lvYm+v@IIX>Y5wzA&saXm51GDYp?U^GC#2oL_@ST2`s& z*)k6i(gO`T4Pj#p$LLuV;4Y1c9)MOaLwR)d)@HX3f0Y( zIxS`^aaAzxX(X(S2UDX(W9*qo3p=EQCzpa^YJ0o~#p=;hUunTZd_MeanDK+O)rgWd zV$R5!H@+rtUdfy(MMWgUZ^=?BeXkea;eG*W(NYy-D{FySKZKPJEQ?0Go1Y)@;~k3E ze0>U@P2pCK78?m7gT^qD@#%1%-cN;*%;4-}OXd5Dk6RyUIu$7M?KN12BhAsQUP zDu+JRDlD&)xxY>ie^39xS>OkFw4ro^YuXlagF-?qU}&=ufB02T)Zt=eW)%HvqlT~4 zDv?M;#!M!q%ax}tDrutw~tzlM%gM^is3HA4e~=-kC*$>IBO z8Km71bgroUJ;&KOw-ywayJZlRr6omF&a|uM%t2PY2J;=mG;@&Nh{+54gSB(c%ILLr zd;;ba2HD%omHOe9kBgq;wx|9N4oswkU8La zhZkxEJJ(T!+IbP=bc#ZvEExfG%O*zS6xqK7hfsIA=| zz(xjLd}3+}GD3qOv0!LqOY>3ZVu4qaz!0BhZO~o2gzP-i@wmGQCVkyt(eV1FUZ%rh zE@$*36^m=7d5mkFB#Wie1;8upwD(-7;rr&Y^}AnA%a>*8r^)vwP>gP15qS&6Sbk&S zC<5)k%s#?wyUgSuo2$D9C22Q=_0k+qq9@xY1Wq<`ofg*PIb9b>?YOAVB!V(^b}rgi z(G#I>WJ9r#$^BY(vMhFuq~AK5x?W0Ap!v|=JoQ;)L|d`f`=0(XbewK6tZf$X3PcG$jAvLG)oy?S=XIV$oE8ppnoZ2=aUD*A+e z4#;E3i#Dp*c&ym0h4d=$);b1P3#L;f$>DNySZMGnrN$M0nq-Oz1fr-p*yt@fLe1Lu zI%zF`?Tz%zjlg0sI!Q0zOlJOZ?CtV|ct^&?_5=-EQK~zt3HvqDo}lJoWP$f{kxio^ z}e%wQVCt)nPK>*pbaz#B+mRX)35?({eHOYpb0@YXB9gz{z*7W z%J+@id?GP5=Wks8l5WrUVzP2fC2vf+v<4|aIpdupSc-<`HR(9VzCMSN{Vq<*o^!KQ zu{peLJr|4JnfMOrlQnFydCm39qW1`u{^P|Nhhu4Kf<5F3v{D}+JA-fq#j*_27wHIi zN!k!4kLe)qvtHDY^XxCz%ZOslp$FrZ;G_hI@HIE>ch9%3=7rCOfRe)&VO?jzK+$@d zHVm_wuCE#`asCUI#=A*M_PuI1Tqd;jvb41Rrv1e1J%#*99-Vz(DhT)6lB&9gIf(r& zLU!`8U$dLoy6vf|I#r^gIGruuIYUxl2gpq_ z25-DMtGYyUnz{7_rYkT`YN!v9w;da6XBtM|y23tP|3r-RpzmFnU#sIYAhMSK;$(Li zFO;T;jC5fbk8UTgAq<#Jsz#g&p7ch{>~S*OW*|bs5E>r@ZsGygL~AfoGisds*$375 zx6QJ(I;&(v&vwGs$WOr>!7|?s8sqmQBBZ17>aoaY$H>(*xfeFp2h9jSpzk~#EIE!3i=JTWj9+mp?!;+$-0XJ zt2lJ@N^?iMh9sJ0%SIoMh0rWdEzO~ZxdZlGSX>U9{BuR(#DSG5p}FY029(icC(B!U zc5u*q+{0d(rxH%^lO+p%go&9L=b#idiPSX9;85-Bo7}wn|5X$yI~vb^mxaEliV@%_ zF$U!O4Wi9}R^@}Vd$s$k=pT$kq8tQL$YW{HE@Kb8k8EYuIj+j&?8ox;3l%^BDU?f_uK`#HG73jn>{Rljcy=If#GuN9b_JnnpqvbFNn)BT8F0nv_O1rD zr*J8m6p`aIZ=XvS^ANyN*WQfU*xrPS^PnAhZ=(>~TstaRw}@cPb~H&hcWkqLM*B=l zrEjPed&qBRonpZib80%>StKREjWjWz?h2nYbNi`tpn%35|K-R_3X#{_qLe;0{6c9m zjG_w0@UBbe&5mGo!OJHSpRP`hY1dwinG_#22x$yR=J*_4yz9dad~+KsMz^L6YjD%S zAeiY}QJ7zB_uz7t#~t_WhGLWSoMC`WjEa{5ez~j53#5K@n2LnC3u4h&olPTlZ)gyw zmqqoq1sDEtT6yyhyZ$9lvTi~2n}Is~`G9vv1yVIZ_zZHgxzKS~mA@r(cFm+j7~8Sr zYu=0e_fq`*{VwYOo;JVj)5hCtAjj6jwDpS27zpwT_XFhs9w*<+OODOo7(XsNxD{x` zo+OBQA%&HE3xO=x`zUYxs`b<5;_*TWI@rc7wfi%YMrIgp`}Zh@@S-{1Pqt9Ses0RnOr@z`8TQdl^TMPrLwz zn+x*AwO1qw;>apc?by~K0uCFRwJDnwz@}0&x6@>v62E4y5l2It4Dxx3NSPZw&$7bmB=wK8JSb5+RdF#@V zTr=mx0L2gzTqv1CGP&&ElF~G+8LGyjFLZAh&PC+L%Uf(8 zs?C$yVmurP*6^ZO6FZJz*TkF7Y3_K1EWe}$We;i^ztGM|z<9^EnM2kLCIJnMU zDK=ZUXDwbK9tJlK<+BE~oK97@hx^7U6CJebHH8+uzuiE%o)zP6ms4LaeVsfjWw(J} zbM-!L+=CK{v*1dx0BWWejk4CXE=QN@Aj|=pCV%niuGV3}f(Y`aoRI-7}zc(p} zAiC<#i!G&7v%xk=iW>eVgM%Wc{v@70|H~)7*Ziusj5|Dy*npy^L63$g`*KnDx+k#{ z+s8T#$xM3J@HFKxVo+q!xo(9KSRGY$ue`-wj3=WAztSj(29K4<%@Pk)c8;W-A1MiS z9%#sY6d~KAzA~-)klAaX4cJ2xINv}ldJM#-H{-%x#DIQple^P(3^@8CRLJ$B8&5Id z^AlOdo(K%X^u}NreW(sW0{dO{zEpE_CD@;@4nIhreR84@8NKUSG37R=gk^uxL z``M5V;|Agi52!-na+HVmHZV$##Q_-M;SI0m#Af?C{zK@bKv6hQdGUaz(?TCjS3bT# zQadoAJ^~y%%K0aRot_z}qrjX-} z()1o=R^wz}%`c9f$ux!yKAPHCT&(CkHN#=e#G z+Q6x&5_G*h+tBJ~j+B}nCglLyK|G-o79Fdw)AAktu>E<88@`asQE5663iu6DknoBR zT)V|wjbP4HuDkt(C##T-3VIHrCzeU5x>amarE!LwI5lGwyOETe)E zY`58!vAv*D5hZcDl;wzxbz|bo-6o5U2@AmE~NtLL0S4Y zb{wig-;R~cr!k>4c!4{HE7vP1slKa`5W&MDhO;tUaC*EYHM>nH^k)f?2}g=v1U6H+ zwMdgjg&h^-Z;M&ONmS=#ODrn7JcW?~FGz>OVX~E$r0v0ifdCb5<4Gw74OOR^4{|>< z$QEuPWJr#x*Z0u5Pz5dCFZHQ(rP zmZ&;po0&9krjv@dym)?ecYZoThbbXAaHFXj6R^DZc-w0c6-)2y8ADmZvsBW@Y<;bR zITyzpa#fX=Dj{$_^zdtZ_Vvf%GuPrfX}DYLkM+3bS#6-=oKA%?&7mm)Q$cNo3stCo zySn-HAT>?3t%`7=F6*A0bbTJ1v;uJACjg3&oGdKX7erk;_!$D{E1x3?iEIb?5B8n} z@z`Q==Uj#XA}K9)yDzM%@pZ1|KBF9ckWInZMzNvC>Stz(d6GNer*U%9I-SxEjP0Uh zlZ6B(7&_A@mNni2rPQ6H$KxXFqZ6uO#^2)SxoOj_1v3N1DRQYvRf zCV*!{IP*RV&Lz=6uMx${g%K#M%IJF;RoWE^y-J2Pr>oENz86!Klw@nk?i3}?^01kF zT8@>szdG$ej+&pJzhKh4s*b#fDkz>x6A**sw1M`Z6nLe03~hmA`6~M zy^zH%cII?e#!e+?rN`F|+x%!|#h7`-@rkG@Obp?h_W{`-d>15va(VpxpJnHLvsWaq8!aQR z_ks-_rXBHVs*XNXvL?7j0k8X1&~U2WIYt?l9k+2Z(qJr&NHBxv=CpM9v}7bsC)MV6 z`7Dl=w2&YI&kDWeASA}hnY{{=^_bkzWXVdVqFke>{2 zP~>NF)N-SkVHJ@F!!R^o&&bxUN5?Ero}o=o$7;J-zv^p+a<}lSvuMKr-~?c0w$iOw zjW;Riv!Q40`3uB0zcd+n8TnP)u`LM+R*A(_`z7>64FGlJ@Fc4^7EA4!MAEC!c%QM6 zNPD@qZ@7vM@&XRdM;304&rtNR7Qi&w7w;NLncv$Tjiv}S+Swb;?^6yLuI}&f`3hfz z%>m9di*kb{mTs-(K32+ZA5H8R*yy*bFFkgroR4AMi!qy+EAwms;8J@kuGiI?{#gx1 zKXbHd3i!EHyQ}o|P1o7Bi`>vis297Jt|klE2;*V(h{~94_*VC$nkOUBaU`-D)ww~# zsqZ>hfnNJBe3pAo2+{S6X5KwTPS2xj!be0zM1@MS`6MX=#7H_%u7=1J8nJ8-damZf zt~C4$mGGR8klE*@xw)JS;_Oa^*-g!yIx<9A7C0(2VsI+T%J~xL_UzlGlnNtLqAg;V ze@AGz&De6iRg7A2zOthZu{g(#Nd0nVg+)kYiP>3M;@$1-%v)&>o`&}g=jMrh;?K)8 za&n1`_l}+bJbTOUg4Bw_fK9mS6!5(_XDv!SP(Af)xWwZ@vwXJ}*GzUA(~XoF1YSuN z4J2Z0@XZem#9qE-BI(;uv$@`Vv^?1p;)xA)ATt>8`sR9jX$8oHBrfNry z9TtGCrEy z-@SgJX9eeERsTUeOS2*C9DxQtz6UmpVUfRc^t}vn5^pixYq@uRets^_>K9=z4+PtJ zMs>@_&HD1V)G5s6-Kp8n_6YP;ZG-nn0$lXE84g>g0~c9gBWHweUB}!Ga7H_(POw+{ zLX|oJ?uJOmsp*n4_IRj%-AiWf1WcrBfR`TuW-38UiZ2BS){*1r)RF3tCIqUs#z~;H z0BWg$Wa8Yzp2awEN8AEoL3Iyj$#CqofiTNQJ1r8DkB|uC-nWW|x{;HNZxjdD+^aL;l_H2UJk zZJk_Kr!Lk`U|JMA~mTCxF(Ph2oXH>Pl(NeK`{nYx&CG*UUuJ0cYKKm+su<#A#!w z=8a8=8khtA-fIT<^OUS?h)X=v*$ytrw~7<<0KJD?}~cdy{$pe2F)8bZU~%#gHdK zx1LZpg8r4XFdo@_H1eITmtMXkj3oHZGx=vNiO`mIROlw2ia1W?*Jp_lXmVQ^JD(P~9JHeNbCi~HX>h) z{^rm6{+CVs-f!#M0!B6gHxs~N z{o#2K2OsIQn%}V~N8AYgI0sRIPQ00ic~OZk#+^k%O@yQ6tK9_9dZRF92{NDr%SMjB zvsnM$sPp*jk~6?$iMFLOELS?9NydGW)=#7cq-iZcdXGeIWc2Sr$r9JqNZp``4@lsL zv^KLUqOwnXXQ>c>YSCsP@S_CD?7R`eUw$Lda_;wL6MwHY_q`5(=voEaA2i&5SO6ru z0?7~cVf^DTkMMpgnc)Tf;&lDX&?Np%+aeKcrg`!mW$%?fn3N^R=kaDy`|X){{-Lp# z%CriU-86v)L6ecXQN5+EVI#doVVLOpNF)+)zg{SKsXbLCOM``vlF~d%ZiZ9AdU=y> zWvKV_kSu}1DtNdRs56ZeYqcz@W_te>PWql3gyKcmSO(f9P&WZL!@hoSXu%%6iU5SRKl3|*~FlA*c#JIO!}{R-RE@kPbhj4 zXomm-&+mOE|4z-v9q54k3AHl)ogk~;J+wQt+5j{0Qah7N2EB}>V94yfHje*hdj8q{ zisE^NFX=@G1;kIn#uK1Mc8J`ar)B+NaPt~HmUP>x;#!3+Rtn=J(ryK8zHR0&O=T`t zrm4zv`GGfSzhfnN`hpJ}eON$$!~fdee$$Bmk@^0mg5l`>jxE3ZVLoMG+I}tK4vhOw zQY3A^9Qs>U?Hhu~|Cb#DhO_u-utfob_(LB2R4BjJPkfy}Hy!;uW%xeRALA8#W08FC z#`aI=TIP2^M;@Hf`vU?YR!INLK@7V0n*Uo(hEUw^9)}Td>^~OpzrkdDo9XYvefRIb z+{Hf4s5qlIr>T3?%xG_`7aW9-Iot31Q#PZxLUC^h^Rkm(Fi2_`ddbK!h-JD&$hU|7 zFpr3%LXlE_$K0+yy)5J^4;Dg|PxphP0NQCd{DQpWnm#1!g#Q{5FCK>sM3lbZa@_QLeiJBWn|4H8`2peNw zs1Nej&hkP=pR!1_E9b=`=9W>MLgcIo>C^bW;;bL0UuL#E`p|{}!>-Ehr?t(i9g|Hq z6HLmJwQl{TT>l$|`X6l5pJ3QTF69r||G#q#K!HD>;}v@62#Ms0#(c^pb^*$wfITsV z&Jl=%B#CFgKE2?jHoy-`qQxo55rIH3EA2{!{t@_PWL@NOdd9Ke-KivKz~sAI`O)v} zZxAgO4djj94As&Hj%4e+{MF7;okeG;kZ9;!`n!12KOCXhCyJmmX3NFabD2<6CWcr2 z6Fb_N%(M+OJvg~W>3#bDf|~<^J$`!95e6%lahgk=zJI^(y`Ok&#CfcsG8sw{xgS zc=%sJuD`S9{}_qhJBL54c>#d@l=*&-3RQ4_9hh>pKll1qoDVGU2h{vA+_$!}e;*e= z_xfouWw3tQc0!}Hf7wfn`_~Zs-m&(dhW;4`8rlB)aDRA{H-9+)9B=LaA_n@Sm*3y$ z_P3e-kjIbU@0Zb9d@nfzfLZT@V@z)P2BP~i57VpuSiFIddKt7iddbUhcrYucTrOx^y4_EewJ40w{^+z^MC%(?e^7!?#+_LkCI>h=` zRu07DqJoo%6kryWb(-HjwJasR3jHA;@)**TXSvCW1gOJ#8FBYHHu=tV7m#RRw{ec&tBJvJ=YtN(HKdLDz{@p*TeX!IIEo|2=F)p{UiXi<%|_QGNWG zl~evAp;gxipvv}8$lsG8cjxf)|6}LMm;uz}Gx4yfKvhAJnKpi%PbdIbX`=lvrwEGy za-HKutwzI$dVtaIdu*CRAFoU+r!O3LG0yn&*z((!Y38X}dv}^HL1re5$fwGUeve9b zu^IU&N!RjN(?kCyoj9a@pY(eYKho=W^^Br%W|o<+9W=B`|M}-JApigA8UHbb`8}cb zSI_v58R~mS`+tdN3|eLA?)A)-wM^?g0rvCuK>gyc?nj~vNVZ_v_{^XUApJntAbtj6 zKlz@KydhZzAl*RH;2V$d>%mOAJ!fx*jplb5#9M(^ikzRfulW;u^X9LdN_kGFPy-(Ik=>I#i_^-^L zN-`>bU>yT+83&LH$$z9%6F`tO^MqD?A%u5atnmOdjq8rQp(L)(Hl;J8(Jw1FQxjHn zKQ1_HLeIE+OOvtNvUm|WT(yzlQ1wXTzN~JzI9>Vrn(K+lu607weaVLYyJG?22hJnr zx+!Gd6%wk#`|lmQFi9=%3Hg7#W^8C#2fbdtj#-LhbGoAlXKys%I#WM#oDNJph6-`ocO3B+ciKFR^PcOWuyaO{ z-7W>4+8KXzU~4n0;=Pq4px;|?Xve4y?aXENJDy=`Xc>N8LfOWp9MnGL%Lp2^&FQHr zz(}}aNsRyicOTCETP*lbj=OEby=nYmC-`)$N)D3X%GV{rx!BtnSW%q%6Ws%@&+6_c zBb4=wh2_%|@OgSoCzJb@QX7I(FUSMO#lN#*9%W;UrlCyOowc*BDn^_q?WlD=&}Nh3 zi=J3`|7wv=)l`q&qAej&1KNN?^BV3McDSifz)MGN(bboZ0~~8$!UU#PDcUK!XRL=t z;ilpb((lX&ci7qxFxpx-L-qpd9CSEzOmv_J*>R{#t-?F=r26KySi6ZaeyPqTgZ+I0Q`MiE%%xInxeD&=;EiI$@l?Q)}ZU zFMM@eVCc+ov$nk>^O0$X|Mad>xM+vJa*B@f_yi~F%G&iL*xinDKDKn7+wJLg*v9n}9=#r!Q9sDV6&GLp=H;!=}?4nj+%I$fvu1M2%%l5qn@8e9_ z8K)}Gd$lX681-ROW0z7V^t`nDmD*hNb&4LLs8sT9`C}0niaKnK_gU&|Z+*qMm@7L7 z%BCA*7`LRYr*K{JM}5z;Q7RY}q~(p-}8q#8=O}OFcQ^dCpJ8qMqPVndco4ED?z0VLKN5*P1Uk zSjmHEz=pTIu69PZ$+Qp^6|3oNDR`i|h|;Q}m&&R?8~qUYs2gH68BW_0DGy z?#1f8ShaeXvO$It){0RM=2+sZDT0 z1*ANBjqlz--8}Adv{UP6vyDfh!ekn>$2et+GI_9WI5l=%!7vTgg~~07`zek$l7i*E z$~h}}=bl4UCnR!AuyNnWwbmrlNBhBovjqV7?2sY{xj3>ujk}qaXUI^e-_a;tj z1c7zGGB}y&oQ7_aKUERlBOp|bYj)%=bG4v$*}6S{&{D9LH$b0K)BbU7o7-S-&z2RQ zHq>+w6w;K=?1|+ju*(;G!$C|gjSSu4cjXMwYOWg3p9&W4b!ayV1y0TfxE8g$B{#hj zX6Se)JWT6)X@kjL`3k6$2YgeF7Z_e^X0+&GG_kxT6vTT+!RP&on+A_cX}(U!dfrOQ zNjJ5r*dN6v#dD94$DUlBi?lbPC&1LuRnSDG+&DAZO6TxMK;c8XD1+Ds+u~x>Iw3&Z zc5ITmTbvn>q4G4B7V-5pQ0r;9jHj)_4Q{bei*Zn19R#M9b!@DjnC|7t z4*dpxtbTxc$mx^kz~$(H*U5;p?>hP^RZp)KT*zr#Om+tXR`n}Etp|;#OGyu7K` zYGnoDJkR!~D?%w?#gQF{P`VR2CDNeW-LzmVU8YQgxZ~c&KP2z{+K@TLdg9?JpHeLd zb<0J!b=@6w&htnDBrW|kO#~|5j-^(Szbj*4u4{yaXC|JA_(>JJwC;Y6;q9DQdNVe( zz2Ro@EYHx*YpH~1`AClYR>);~LpN_<6Rc_xfSww;eytDx$P-zHkTS3vm`!4;3hqW( zHm+Ni{&E4$m19yzEQ>^pVlj8>GB)QmatUqu|_ZI zlPQ(0A){Skdc{I#Vn)N%@kVj6B9e6txRUggCk98&G$daZ?M--V-N-h~)7WQkR)G)J z>t`e1^N}mTO*dJZpsUb>Adjg>Le8cuVhuNCa;hra=O4t&%3csh`YzpaI83yK-ao>T6%--L4Uh z$&2c9$w%k|hRsJqFftzK=)IEI)@k+AxiSyNKuPObSvigtS5=E-m}GY(7wBKqQZ`zO zaxUgzyiKn;_anEb;Q0gtgU*d?(#(y2iw(RXb2ot2(|`kB^X7WmyZ(?C2~U|inEPr z{mX{VBg5!YE;rAieiUh`6fD%B>4a$lVy_2u6Hf!I6<|IGV@rY>wMt6lZrzlER~~ z>qd_d3P-!;IrZe6Z?Wk0f+M1Tl!voH{1<|Qcjs#=zO+Lag?#G$wG+%Ha4<)4vFWSR zMl?ennc8i4aYu^oWsN4t^KXE+t$nG1TSFiD@(L%Vu75jHgLk4Z`-1w=xLQ+v-i=%o ziIoLDNNxZuox2QpDtWpFX*A(BAsol4R?$+*sy(ODuTh?t9 zb&Uk`8Ep+p!0%XYJE!OHNcrPgfe)mj-1twO8eM%z`w`3C5pgsCdohb9q1k&p#A#ZF zFawz_CgBY=Id?4T00w)?^FtE3SaZMktIcIjg%l&O%;WX{eGluE(oXo(_X>~FRcLZdEj%e)(ux&~ z+T6@^I?AMBH<1RkL5d#(6t*i(dofUIX9F&J?-D8L5!Na(jOK8Tde)sExHG-czfHbS zwIeIL&{jyXeFc}}I?z3W^okI%3+9+;>ABXGUeRjQaBPP{$uwGkvJ|-u4&y1;NbJB1 zJ7?lHWQm%=y8d>?+uA*$NxHUMpVp}P@@IWE0h8mKwI+_*-QNr~khVuXZq*GJB5h~D zyB4h+h#SH;B4Z@IwmQqFrvu9#;M#@a#x!;g2vhu|SB@WNM6;n-;Sd-6SL%$vQ_u`a>9gLXWoDRrlNr=2`J5ukpXRk(T3 zTw=62_%UM`?Vwjb^Q7jY{G9`D$#i9jwsg!+^d7^O6}8d!YgDJkPswDUN>d%9ZP%QV zWTov>@>R#S_HsII~w-2AIeU{_$B+qwPmAhjeK)B1VL;bQ%Lz0{Brl(G}wbc^h@mOqgrkD%cBMK zPhP#1pNo`iz57?B;c%xRiK-cy`&=*l{rp7VJq_0nc^aPOAp!B7W6qY-^UT|Jzkm3w zE9@o|aat0yvAqsUi9wL&FvrrvjdjorYo{w*`g0N4`*rNkTknu@HPRn3l8u+9NxgNZ zMpND|@BDlt;FE*_XSpW$Xk&tC6UXv)JExwJt%74Cbm$2TfeTjzhT;6&hnP-k@H1uo zIrllD17z)-=ABR*j|PlE#cPIR30m$3h6ilBwdwFXtJnb7?$0In7o?B?E71C$8MrMj z`z>3V<7I4zGA-pjoa-yxh7zu!Hd@eB zV#~KBzZ@0A?_JXXb|L8$6-%*VE!D9639(QZv1Rc~GUq-)QNMqjD#yacx5{NQT)qGo zllPTdmPIHc%5Ow3Q7xT5ZuesX@u3mOp z*xjXfhAWL1m_G}8^45*}T9RdJ@rC}44-VQu)T;u1S*dWjTclw6F9vJp{S!n=`tf5p zZUQa_8wV_Zsk^nczWsg66&Am5`NWpJ|IC4D2_L83Iue}mCm>jn(g;n_OeJElF|)D4gv@p;={xsLHFs z8=(z6{kLEaIYOFwVygt^D1r!rS~A%Dynm9=GelFtGB=uyg;POSVDo)c@Wt}@cW*s9 z^9B~#IoC(5tDujVnKln*;AhdtHJ|u;@*TF?!Ux#U-&bCaay{B+Psg=NRp7{;03CA9#tk+H$LL#@v!v!NdXxI01gpn!K5DKreGY zLx!5Q=A1VH!}jQM&-d^_-pZBF8yGxTrFxX^65I`|)ii45mMg8(-8iRgkyuxX2wNlr z@Q+h-#aJ?NFOep3Xye7!k`M05Nis)6D&51Tixe^b-cFPE_++Sd!LJrH_qBW)_4|3>F zhYywi_MP4OJJI7?7V!J~rMk>G#g+@M1Qcofv*g@?RE=Mj|z zK}?X_c=L$H(;CaMVE;r;hIsAd`^<#!Qy@nj!E5^xV8{gm+|On0x8dr8dmT_^8CYl? z5+S=nYZ;?Oel9E>Gj1ZfvjOXF`0>C^(dy3Aj51_Ahk;Nq>PA(*a7xl5djkA_Oi)Q2 zb|TjZfb35YW#E}{UL4-a9R!6Ny^t-VOFnpart>(~oD*;0zUVI_*7n0?$UL;Mxtv}A z0!1B!@PacxpGbj4ozKaH`RIYyXB@zBK;B>%UvAxE8rUznuh(Yg0fnYXUx1;KrxQ*M z@F64pnt({#nOaoR$D}^H^TUxqgI!f;>t4Pe$usiJSzrBkcX303V*4g~O>(}~RgeYrhKWAl z2>g_#ASj)AnUQid=m(mOHZ-OE4REm$0h|IL6n{+bw$+HCd@ujfhh7m=P=xYcPPe$| z>$MryBbvZw2(wGO+wW6Fs9_3}vI+?QkP7IhBEO%UX30xBJY&)MG!@;Cv=Ts{g1}-e z#2!gc<#R#UU_uj8(Q77fM;XD)dWg+Wi-@jOpcT|Vul@flyxj&`K$y^ez7PTtoR2*L z?;yy$c6I5a7i0GWP|{#%S!7p$%CfAD30|LhF|F`|IC*}1Og01-z-`xVqD{{v3=`c&Z~PlE$DxK}KC zPDICILwn?O&^5Q^D^7C3q#!n%Oq|8|x>jRz-3`y!iq-b=_mbtm>Z)(6Mh$v*`>cA54B z`$1So^FWtt)Wf+O$*{;`6PiWSCBeo34U1@LdWnI>hcJaPuXs5evQ6Y-)UK~VI2G&FCkkD+=>SFT%?WP4PsCFicq(^cUz(Y0_58Kz#AvS{DmF_HYmKGCA` z&7F_e-+-HbfEN7gZyQTF1Gup!Z#(hTT)DxktRCe6CDpLC*xLzo`DlZ+rRbcurGSCO zsf6h<%l-=dXFm;i=1=rkH+9OoqqRKY;8LjSpf5#dn# zt}@?qs~JjW!4r0i?oiEvsz20#bY1I+OYednsd(Wr8aW4X?X^@I`75`Co@n8yVk53m zOLj1gLRytIYD%{eH@4a29S zU8LuXk){#%Oi>!>-f|zvv+4W{AiD3i*eW+E=uH}o*1`|u##A;UeOHaa(ThS<=WAPn zqW@4`{7=urE`+6#n7sR^y3(x>m*|YK3KJaw7c$S(@*>sXW;pW*}mex;i_{x zXMlgx5en9QHUsDrJqQ~d%50wQAm|Zjr8VIV_(ul$%pXF}!>VJ`+C&;Nx-EW_b~I>C zxv3r}OK4FH{0kLOUmj1Wl=wCBm4KSdK^J{i0LgqeiJE!lRaK9RD-}a6H4+2tILG30 zp1%Rdq_@PD2mB#rb6y~zFZmbdS=kydxu~&KZ$UxIz!!>Fyk6<2@pQJfzY9YE>rmep zZ=p%}*R3;dY{jve03xqtDUJIdAaqQ8z3Ki^8Dvs3uBSutg8{GC8mr{vkl%ZjG)B;h zswC&L^CQ*Z!+(z3{?P7O&0hL@jT?5iHPKk+St$_u#cbV>;DsRC(eeu&!?jkk1mtJy znbC5S9MK!R&DT(Rk4&nGTj!5x@tSv%M#g8h$-&@7(rrPJmf#yt9HCG3H$|d_nJie> zk+{JM*n4sDd7ssTEP6qk5r%cv0$t)nj|vEnTh-;RTt4)0*A57T9_<}5fmfNMeRpuc zDpDlpSLs`l?+T)}$*xGGoKOCB>)%}cBiVqDDS*DmY?#6pbi?F-)QUcXj9i$M50uzG#v4<(Ck6KGRR-nZH?d**|PK*Wa#(+)bd_j8cu8B|Votvj9qrvjpaez+_u#_AWs@~*zx#vaR7xV+z8dN;@#z)-xp?E2sjRXsmHHwdbhBCzOL>G7$OFo@c1J1 zLVLui0WgFXY0axFzl(nwnv*~%uU3jrX!{zd-?a=-2Kxk%Gs)iS{UEd_-*WC$q#pL~ zPU`>Qtk%6YFF));D%g*CgG=0Fto6D7#m)X#;FjGTXzC`r%l~K7rT&Au(2{Ld?hFK7 zv_i$CDMtgIdh;K9bY$g!I51V7IMcISJ@$UV4*l2Q1_%zNZ&>NJ1BE7p4XD4sm_w0x zbBb%o#mLh|PXF?|Dhp%{+wZ{fn^EufnfTyz^e{R~DW%_W#Q@>o(HUF&M}{1*X}UBj zI{oa8xaO^}vF0;Xup7I4Eyd&GE-HC%dzycIh7_nq+TH;ksL293vX`LsvSg6}ND=A# z9(H{6JOFZ15Inm13xwEwo`ZgQsyWk3+>Ov59EE@h_rTrCErmufV!1TiSb#{(T5*H3N)GiEyHtf<05I|ABvt~fgc!UZ<6j*m_+%Cuuy7j ze4y*{_+8i5Q0V~J0hG6Wcyvw|4-|oXQr|kf;Mn>sFeIQbb`45--hg9Pn zDSku+2Ik+XW#DI#d0h;Rls6=XNBRn|__w+);jd6ti~cYC;qOfHhS9Cz>N@2`A8*Kd zd|@2XbnD9Xco zGFRo2bfcS`J+!FS<`q|2Fn^p9oo}e#L@|G275YM{zt?(TP*yiW+zljdj%4T%L5D@3 zQgR%3Hy_bpg+aP_>VKafx!Csr<3aE*_!~p)p-aIQLRW?kAbS#c+V9033>i3WnjCdXP4YVz2C`xEzX>}&N&W zCj%Iy1THm*tlnX)w3j}eZuOIkYi9n%^2fjx-~gPh8`yK);`00!_?IqFn+1w^Ib{SC zSE0xUfBZ;Z;LSn?=`05G+J^d4Gs^b&$`AUvS24-{N0Hy3bh@M#d$p!do|c^ZxN&~B zr{Q%N?dwL22_m!qs0g`PD8aA^m7MMFGy1A)awZwJYl3;<(4NVO7OLq%$hDNdd@8qz(pc+gG`;lyCNsI!K(o*m5ZYE zFd7mjX&x86r)u&pK%*<-Kg*N|KtP{9KF9C2OX?CPnmhLcpQ|g@@n&4Pfm3wlbGqJb zF;_y9Ff$Isd12$YSi7s&oTr+{MyoNVl9FmGx# zavvGjqh3dFzW(O-Q3b4L0CiRdV7(>n6O%RN;;uq_X87e>5Y;_P82#o}Q$Pf`s4xU- z`@ihL8_GK`QzEYiEJkdwD;9yqkQSS>{=E}M3c9{o)vdvCdUnQne4~mvb;mT=>KZ1 z=sMQ+{jTRnrF_n8*3`+r6+KJ?7UAU#F5Ex|DTZ3zf;Dj$lGE-V}Vq^TO)=R%PRC3 zZ~|5_k(R1Vm*%N_$1a9)@tb=cpjm*o4;aIuPGhcX$w|}}{adM}uVXVYfKu)$Oxt2) zXXFVF`Te}dA4J-C>KcKN*5(@d;*TksHM~JmQtfYLU1anqa!1%VC->YY>-4~SX}7YR z)y>~cxB(B8im?7Gbb;Hq>~VNx^;;Ic>(^jGl~u8wTd;9^ShZ7&-)4bHoOV_eM+V*E z+tV3ki)rPJtFDcMs;whLW{mMc_1+_w^K8$*rDOs;0AXh4*21MW*gSw~w8X^MacRIu z{$UFT-y09WUdA5a6(jZ57U-flJQXaK{O|if8o3F)2JOQ5>J2S=2uI2*lt}8g!(ADR z@Z+@%PG)?f-z~h#jXrlB^TLmAl4AEysMu2iSITDli+pfu{ZM@{^l+vcC^`q)G+tsZ zVE6GjnSf(=ve$n8(59#P5#hV6u95ip8=b`!fPs6R>zw#+G`xVlpbs~sAN2r6kgDcR zxlbcE{B&kplqOqFKE9)Nc_#2vCA{<~+6-aB#&=Wy=RI!R@REwRE~qHi&;Fl)$A6{% zf66C=SWYtdU`gg-Y!jP%tMhVCQ-N8-Iol_~5&ajkm-go42s!vwSkEkJ9uGu3GgSt? z3L$*Gc3;I}@gN)7ta@8&3biLBL^)xh{HbTfV}LI2z+x(5co>NMBCSM6s4e>{ff~+* zHa*=C>9(+8u3s{8uyripVZ(vqQH*mxw>^Jh$d%FzF;b1wT#e)G(}5!0(tBs|!%8815Tb<8cOxxn1Oi`H< zB7~DbTrjfy#Y*uU0pu8@9)`1uYwKxp#z^(cI~Zz?!*}u@4}UEz!U@)A^g0a5|0inj ze*@BgelA4I_)~(0?$RWy%jzWspTn1Cv9fnEca*W-UB0#R{VWv|6qHJ53c7#dJL95c zc+znxx|M}76U^ugcS=n{Qr9PkZOxq&`0=Q(ac509(r zjmA!D4o~1bL z>X(%p3EXxyn`oc5-e(DAw!*;#ihQ!dmf?2-9U)507?|NS?w`dkwsJ;d@-_2cR9X$B zddB_va6}ZiNZfDhYxvLWD+I)|)Ln*g{zp!V&Agyo!5TUCf9e;|)%m4fMDUuD9<=f{ zaROo=VhDd}DFEc~{U7*F{-Jj`{bDaEYsD3@!AAE(RpFyxmc?D*<|1OKxdF-0z{_t~ z10SM#L&dcIp^|>}i+hz>wAL|ET4U_PE1>Z(_X$4$~r39{S>Hm%M|Gf`PczJC&ooy@rtD#4Pi)rFN znh4zJYW^X|)XB$WmMgUU^>(CO>ian3_n3ok12#Z|2@z0Xq#WLf5beeRn?i2&C0dFp z(F*FpkCg_d3kF)1#`g`9+eDbPtv-{5H#}KyAtnzVC_FAy#q*@L_Xpt3QJB<4H00)8 zHdpFHvDdifUvL(o3+_V~{_vkat5~`a-*V0Le~?VERoCC_3s=kTUfewbX+h@p9MAV4 zW0B8T8IS9_s^DK5ox-&Gg^zf6Q&~j4>!3 z6Bzch2&;!;Y?Y$>4S!KW;kIrchYuHDzzzL5rftKrCBAH?4JG+GCYQv#T=Y!JPoW7t zuy{$e{_FcxUwvRqo0Vl;u!a@8B5wg8C_fgN-X+J72Q--LCb;Wt>}i{yR4y}`U$Qw! zO{sjT_T}Vy{7O(gcje2~2%z?IIb+w}_>eQukv>nl9N? zty}k~p3t6U;W}`5wdg)NT9;jsYnqqNAH!kVPbF}4Y?}pb+bT;PPIv}0p6!@{!o}E?Ot%PXtb$WlAP4=oG^^K8U-3hp;?{s;VL~Xe~`SFYGIS#nO^3}t|+`Q$FH00n>nX`JJ zIl>eGoF5t8?*1}<(N}Nq@@~U|;T;w-8S>!K@BU_Cb3#B@oi|+X6^%@}I)9>Tt0-cm zae$_3g4;pZwnYQVmo<^RPrhk3g>aaE$=A19kd#r_L`q_He|cvw#f9G$+15+Hxv^#P zf%i$qRlW(ga0?$>X^DGmKZTgg&z022fR9v;t2~aVG-RDi%I{*5`{_=QawL~Nk}9Fe zRi(YEg#Um~D>nMZA{1-Wyh+R0`(m3HQ=0O4b<{)%c#I*@WvbR%`^f~|Z(NUIdpW)R z6Q4wAfz!ddBcjJMX78mHYlSD2f6QBo&w#=EIZo!TdHIYf>|moX8^gT3;T!I()is@| zBd}M19S^iCD(znCV#b=jiU~~WtmKP}Ww+|?m0@%qI3Y^V;Y^wlHTWDVC>-~RvN*K? zuQY{pQ6+8UlFII;t;;`7^>c;XkE+Yu3y66WUp(M@!2u5vQj6GE8!0eIMVQGk?q4}O zJs*fY0p186_<8*Tz`Apff2C^X<&{Oy14pIvz`{@TrxoxjXz#!ee={mvR97CMyyvQe zo7{fgAN40UAtbD!e=m;D0T?fgLv9#-@0Eq z$@T*>8KAw$jb+R324wy~LL@jm!B>>0VA}*aVpt9T?MMK45%|AA0D!RAPROPxm8al5 zh^ z3dm~W9r8`2%2gGneQxfC68raJY4O#4vvbq>+0U+^L_zd;%(|z)URl*`f*OFe`Fwm{ zXd7Oe19n_V_}h)CXS@Gr2?E=h`BSbWU(A#|AFM&d5`C8&0J~7cGxG*#Z{DwOmMN8L zhMY>Fy}#G{Jv+US=Fc@duCKSk0hU$cZLaOhx|{Ae1r=X4Ckm@9y0=w9KmwvM*6}}D zK9q<3u1oPcqp!|>dnK}7jW|GPw#l*YoM z2R6@7)21760`sHjhJIrZgoG37(P|M|oN3%1O@8?$y@3`T*`#(LX_}YA9(A`PaTrM# zURRGY(;kxB`oAwyJ|4^_g?o8&GqM>HVHghJ>s6TsYn35Yh4Pa6uwI+yr_FLCp9!+B zSPS5TY@a?)hG$rec+_bj?7!3#!DVcWB3tiVvUnLKNc?djU)CR8uw zj6)IaXpT9H*HQ3#Wlh6%?tI;+UzSvBW9w9w;U(TbQCTI4$9t%m5VdPsqk-CoDQECk zs1&~eAqh{YqeF#PbfKnBw`BfFd`p9tzlasSsMpZmz_ATlW9ggkKPAESyIH0bbKc-522Oz2@}AYf`sDLAxGM`^;k&*Exjov&V9@noTIJyUlR zm^leg0C~Id#Fte^k_(hbYtk~>AI@+Q2It}tN!qNO97T~HZ$MRY4e~#}+ty=XpDF=s zQ%yd9F7&)`z}wa2xsbg+%Z^Zqu*Tw}?;jf$FO|hhluLw%46GOH8l;c&>`+N|<+?i~1VIMjo=J}_erTDupeX{I7BBbUSvwSBtOC|STHi8JpuuY1RG!^kwi%B){ z7)NNm_snMkPzz@ZQa9%2X0MvcN?8jaD!PCuhjDXrlqEBGu|Fd-hFH8byA5w=k;fF z+>H5TU!mKMMG@_u#W7iUUlAQw5^L2$5)->_Um&nV4Y*`|qZ36Ib<*=|t3$d!S^9L9 z5nS}aJ{}*2bV?K4_k?=GRgzUu?o^ht1K!Htgr+S9l8j(|?Ur^Ht9dpaa#fE6aDt4D zo=#sG>6Fet+OgB=n~g2XSyM|BjLqzncKN0WGw)sdPXQ9CGj^xS&jwMNKO-8Fj@{RdD##*cHxnHNQN3)BP zm$m6`Z&K7ImyUqfNvb0Ldfqfv5L8MtzF+<$FW2!y|Ks)`+w-$v?mpUJvA*tc$`sTH zy>g9wrG?r@fwzr=3+^Yf7d6T8x*UnxI|IJ9!PTHD<=N_)CscMq)0F)6LzCHWb1hU5 zaD$#y!3@iRSuVb6#4XV;_C7P!Esf&v*{5$=43rvEIV~8U9Q!d~%&CZl-MNi(Y|Ol! z;*8Jmvu)V7GQUg})jyU<<7SX-bjU2z*HoUF~S^qer^37J}evcFU3 zOO)PvWAq+~(TwL_{17t>U~WE9CH>?Ip6yACeyCJ9@AB6Cs&=bZzjnLoMd3r;z6&80 zrcXcLof^>X!QLgD?L6)K!s)GYy>HN~li{PBTr08Gg_!EA=%`IxF!ISoz1m**>XR4$ zsXmMJcj}fs8G=KYP5(6yCv|&m)i(d~jNPXXqs-6VF0GXd!@CEVQ6KN++meBerxFu_ zWBWB7eXzL}4#i6%lk_%`G^)|t4`^m93`~%@Pa<&kntQ&{{sS>$_W1(R6Wmm1QSolS zTtm|MJSBIwv{E@KY-_Owg7-^ONyxqs%)~yWTvke++7SEBVM=t~bg%Lg$igP8#3K5E zfznW%#5e2w%+Va#_)`$0PV0S$Asw|&%I{|{L?|k3*6BgIDrxTQOcUn$f!0V!sS&&#!wraL}xEY;PX)o_XG257B?|4nKPGoxFQ zC)2}Mpxk1U=f>9-UrPomHFTag!ixq3C?EXLL;pBU1o_z8Ip*lxQ=pKsZb18-e(<07 z?!i4MO9~FNXJEj(|AA}o$Fx415zOtAwjHc@$++2mfb_CKpW}dg_A~!>;MzT+=hQ@h zmK7M+7@FNo2=oQba`Ruy5@%}jx!3?_p%H$JY&_`w;7>0I z((Mt8F0#BDm9OoX5lo|;?9T_rv^WpEKMc>4e2qwfZE1F?w~JrSz7qAz`dX8~gM=CC z^@ZLnY=JXSXC0SeiWLd=fBDj2W#QxjTcK0zrh3zkU>aWANqhqw$IEYd^C-tGt$N9I zxCz_)ovkA=8<+E64x+-amQoh^wLG!RYbyk?-8ElcM7G2V0R#@@ebw~KOc;7X}{tBJi08z|One4-H~mHeh{ zPm7HdLT}!dpe;nWUhO!xaOGwbEoqny+XFavixOH)i%&fZ@U})c{Q|;;j!srK>rq11 z*}p;Df(D@CSMW(1T4rj(*yWP5_nsYY*e4_*mTy~fAI6*y`*Pd`R3+)c7vnJ;4!nrH1is|X6gk)-O| zbdCI&8**=wqAzC35HOiDZZ8!@J!Sy`%EDjUla@J#@5bFL_jEvO+l8TgXAO0hi+hbf z9Wca{EybT}K;1#RsHVfVS6;g%@-AzK{_bL}KG9OiVkQ^Q;%430QyQHjclqlZMO7R> zvMiqKJuEY1g4xd)*Y3@0Oo9wqc7#ikEsMaPU$Ykp7bgzx+2u0VNKZN%E^-hFs!`aU z-yup5_T6JKOpU5iA-sKjAo!>{C~h zHK)by+D+_YgY$p=>~YBg{+v4EM#Z-=w801r4QmA`E?C6VIhVM9=OMjlYy`zg?r?MAb{q2nfU0``-8RW z{&0x97a9`z$?#BI7Z+1dcvv{R=v&a*UkTXt*Fg;K)k7XNdQOWe*dJ%^U?mXO(?#O9 z`aFJp{8K%?@?`7!PA?9l)=PfOAt~&z3G`WQwmc8Dm6wlTCuw zUCDzolNs0pjhK*owsZB&G9NxVx%3iGX|eh~AbPsrdA&W=(c|yIU?y%}zL1UhHeI`$%Y3qBm9ZwrZg46l&ITDwx&_|R` zG&4_?7M3I`#69tLb{?e!#(8LnS$3ymx}(87fB7;e-R{kywVGicIL`2Db>9X>J@9no zIf!)YLLm+BKW?H+HA0`Uqo((K2EI4KrpzfmeD)eG#=l7D73{B8Szr{*kr59-^uXX% z2}H78J<0D~Bgx5Nh9BO`-~pFuXqxdWLGLg7K49oq^d=ucFh;y_paqp%S?w`{xrlVX{NCmA}=xuKwe%naxToSSsyR~r?O6tG8enBrU zeRoK)y`2d|<|=t8ggDH)ne5&QGTR-~1u=s>R{RSC2S>#1K)Ut~enE3!yU@LJo9tlL zd(EDb_ol8km!qjaj5}#I;Tz*W`M{tY#I1Z8`ZDJZ*?fJ$v)g#(rSGF3Ju}0|a{bou zS@tV!WJI*1-wbog2g7y}GJz-Q3>AUUBg$6m6_eGwJ7O72+67{>*{)7d~j`=F?US=daW$YfTfA$&5X>|<_f=&CgU?1oW3ZxF6&0n z?gD;RG@?^HGaS*rxr)AAZ$(ejdS>oCB0rIAlxP}qn)|WrZ?Dp%d$+@O)!CQ%;@j;e z-JUYR5JVSW$N?EwxQ`?DPNZHvXsJUI%OQovH}0DDae%?6AcNAdcK^@#lY}sG*v5f+ zbFxQ9B4gLXa=$r~$FVh~q4nhEDHT#8(^BQ>p=J-RuBOT7&hM1t=_%CN*TYlIc<)G$%HTK<>i_`I3yp`c9>6C^XY%vbFmRL#A#*nM5hJOcFgeg z`khny8Tm!^{ZcB<#&&UuYG~W2ceYAwc~pWL5lOHzn$OfXQfO z1EM{i?Edm3u5){qfnt+XlBl5&_D~1!ryb{*VeDmRqh!$5@8!49R#(4r)RC<> zl}keyJTEKiBy0LYyq>i^TC?pDnGP%CG~^PNLfSA$7%mG*Jfb!E? zM?3CYE$$svaP)z<*H?5ubl}1)ZMnVQSPn{d7rCphQ(ObvL5&%g?}UNkhoE-Lq30@l z)+@Xm*s0>2CRN7Wi${g%mwc-V5sLuf$!b$c4@wj)t)aKD#&-PTLZ z{$AHqLJFP`S&v`lSvy=JgsvReN%s$$0qkrHMZ+aTSO@LjT)LVXs5Nesob_l47{jd% zUNVt93`?&FsJ><}4FLs#JoXqIVSYc=NzA;Qjv|KI(VmWs#KSd3FrlS=s8B0fPl}rC z$=Vy3slg9(DzdhcuWUtA=5{EC4f*LbFn00HTn zAUjr(cpig2*s!sH2gW`Cq5$$eI`@yE_FY&`q^s(4JI=D28EV*BkKg^Vigqe~({N<0 zw@8(B-nt7lsv3O#9&vu9#y#tYQHC3!+*OMNes&s-1*7U)g$^tVJxIDeq>s0l0#25V}?~U$LM_YFAaqvUQ6ojIU#|AR_Ww@{+*yH%^rFMrz+@1SZ zU7aMoq3OhgcE#$Ws5heJS?+xC%T+uFE5RoMap!_o5U~+^SGrnExV-NJS`TO?{z2$w zdO2zmUd0=~>RTq=JPO5`TwRlrv?PY>x!09c&^SS&HAX8pSK!;&oBsBT#GAvw9P)k? ztq_G>9EkC2g~NWm+vVyL@i=f(^W>$eNh|M0oJ6tM!Wc+uZgY^r;kCUP%wCqt+SQN_ zg<=_SZW-aiZ%IR2wzfo&qhQ=2o#EG%9KHK}m|9m)-8TugctneobVAJdwNWqb8{R<{ zUyGw#&<@brPXC~xwsVMjT^#%b?I%Q5%n~QIiyy(gaby&X-ihDv-`%vy{!k4}ms%FX zg|6SL!dn*oDYY^0_2{{(B&Xkicm1Y0+9}2y-R?(t5a`y)_r|2{`0>MK{|LXO$xW$h zr~nd0Uy8lkVln8Gm1cP#F=hzEf#SlocXdT{O~uS#A2Ou)NG8#2QuvaYL7vSyNl>=X z4Xz`p?X3|;yKgc+aI~#{*ZR3n_TGaK`l=;rPuTNg9Xs@N@@Tfi{l(bt!BP(xJ6 zobR9#YCVjb-SEp=Ft?&OcN5POo$2E4GqRPAWEKU2_T;Dj6EgIeIGA$>skK9u+u5OKJ z%!9x^x3L+9y^B?u5kGgX(q5uR%*b8egd`@Mq}5bS1P|ude(uBvv>h&{2Ipk5kHt6k zJ?iFbT~3tyb~A&a!@k%rpR~#st{TTP&OC7qjGSIC3|z|G$ty?+!DTnJ2t7=(p$+|9 zpUP2>Pv-8)$t5)J=YRxFo!%=4l{df4AeRL-qK?FUnI|zKF${TD%pM*@;##!&H0G%w zeZ|A3mi>K`irPqBpiwA$D9E60K~g+S-}H&^zR9FmbGq`-SzVS`OF75%VntRXvSAN+ zVy?Gfl!60uLN3Z`O>_w+Pd;S#KH}P)gS(d-IgRX>5f5Ul%X&{0;%wFi8t8C9D<^jD z?e9!mMPMcoXKg}>=HSqZtW%MF*P}LTbDFu@+ZcMXQc7Nh+&wU64Z&F0Zr=l1M}AAuob=bmYqp_OaTFF zxh5IC2PDPLE%J%V)CNfEx>yvoJ9XBy24>v>d4=-6gK7S z$=ykL5I?n4voF%^7ZDG+@_YcN65m)MXc3;o*nDX3$Z>6WVi;hsBtZ}`rA09$i$~Mc zEj4+0K-{{?;9pO7*vF7!5I zO!=;Z=%H8rvkvR}=uY2qwF>l+xH#RMU3rPq*YLf~B~d*t!{XaqbMd@nK6+R{$D=@h z{c?P>^Fx)_rIxL=UGQhp)9MdH=Pk>%xYRa_v^o=C9r!-bHWgb=No4ZkmoD+ zX!qS50^rG*01isX>j9%8YejzIo3lE9RO%l{a#AV*5u0>vJ8p36a-sKkIOV8QBXEuJ z4mGFZ?ePC)GHotl`1sBa_@mxwya5N5|S^f)}V^P=f4^upbE~H2Kb?AKw+eIhpHtWMr%X4wKPrbU>xmVF=yxGa7G*~ z$-!M4FQ#yqd36-D7bzoD>%~i8?jfFiD-33O8*e9!eA)HGEg8NCn6pj><})uXZ{y#wrjR) zh-s(I!~yC@n?x7t!KfA;`MO5%S-~MpwHU^mwWM%o1OtujPg8>x*K)ehO}u2)d|=!U0U>KE+3ZHhP_+NV z43wD&i299c_(^o8x-s#uoW3UBfy}$vOm#CqJQRltYRd#-A#z?K*TKPKJMp%~NDjlh z%MDLFFHPqn^d}OJzQwcEB7J?ajDy)AN+Hyhnv41qrn~_K4FUV@mbGkb^|&gCIN zsrD0p-~Pec;n=CK=a`bN8}i|^>(EN`j1ddl3@Qk{d^#BTuRYO%w9Na>fs}t_lWKtl>31N?zp7kGjj?JOfpR^ zY2eU#gOG+!Y8i)5eIKL-n>L~mKoAD^;C+@@cAi%rqJJl=RL`!CuvThg)3>}+atOp? zZ(@%-r$8)N*RKSBMC&QR#aL1HX1+pVL<^^)t&1V`da95kUT<>`L z2GtO4r0X{i!nJ2GAP@?D+ey>6RV(~v=19Dl<({bxU-(e#&hU2u_`sIPwmHI)1YW`Q zn)5K@@iESu@ENca;x_3V>D2TKiwoKP@Sw)D! zVck8(0D6pa2ae}R=m3nzj7G2Ntj{4@c zJ}Z+;v?6l-u^+`sDqrXw+e<4b{HmkQYP$G2l8|;x=>6 zDS@AHZ1wree@}s5sF**M>|)OK$ZOi9{JxX@?aX+~?yE2~Es8t!r>U1yI)fyzDVgE8 zWajqj*VGYfca!eJZlRJPFQ((B^QO7yuL2P#K#Ud8=4~cs4(U3k-w@GdSa4W;W_Az7 zJXq&okaG(i*${hno7xcwWgY7gP_)R@irBrKbvQnw-A2EOS=MT8vRJZNO8G*c>Q_?K zlt=%usgcuu`_=oPCvXOFy1r=CyfcPF!#rQZkgJ+N1=^^;oKwRU2TGPiQ`ROKc>dV0 zF|UqrP*=n;2Pal6zTS@zH80K|zdFMy1*h@gSe_%;LlJh89-za=6fI~>JZU8H`@;5O z{O-)vzB}2U3q;>T?SB=64_vg!n$q=!y8&L9@vjwRFoS#LPS{@blo?&8YlX>e<9NNs zb!XI_mNBQ2V8k6nMhI&ycG6VW!d|c^mxDQM6+Lg~C!)Aa9e%<(=%pugeTnZ$19zgOKzw8vq}G%d-E0Jwnk*Ec^lK3At#RrjSW{Re0o~-xSxHc|jUmYre^MGQhT-Yb z3O1Q7m+0Cg{z2r_QZ}|`|EgJ+AD3~s&}6-m>cyqxyx0sbRg>_N8`98lZAp@m{Z^Sg z$DBMp(Osmfq1>v!;g%_FD2KfXS7qE{mRk1A;B|Rv_7L|8Pj#uc@6TH8 z$`?FoxT+5q>RVmNzUnDlno{s|xmIxPuaJ;6DbX%x6OrxK_oQB3`Zj{f4UwT#WY+ID zSF$O2+guct^X7L?4qrccSuck@Np&P6z2;~#FYI>|iK-~|l(^^RDPb184t1w>sO8Lz zrhMs{>4(;ZSM0UZn_9(}z#}9bHqDjzholOvkz6~WKBB{R%^)YW;cD7g1eFW^E7d$;p zWcTDE0>$!|&?ET4>|5q(^?u~22XLu6i23zxd-h`fm2gWasPk@CY!JppUz>NMh$(8B z-7 zA|X9Cj>pX>89eq;q*K#;Ywh*TNAleL3Anv)7%-nFyYp&4*JPB9esacD{h{>LZprw* zgUnU2aIb@iU%)}r!H7@XAoT$F-A0df3my4DI-);C>VTi$dSSCarV`6{Kp1Z3_XOwr z`tXmp6k72b;t${I>kBb4o;E!I$?^tfTMkQ7*J)0K|59=$;|w+{MQATlE;SK1L^b|;?p6k3+E6I0VfrtwoL3H{;6WXc6 z5s{o-FL#QMCgcl;kn`X6)XG+Q*=U93ck))Vl8jEqPET8Y>Fj*<9^O1_`6WS%S`k7w z!4xa~1W}G2Y*X&vSN+AW*c_q~e`%vWgzGr>H2R_=~1mH$R1wi5;b#FXyaW7frupVEW?lf__II2XQ0Jytff6rFqGwv%twE$uLJgM`dfLX#c@@x0A3bLxY>jCbu z6o~PCCYV6H*!4v#q|BeT#L@6T&qE*nB5TZh3*7`#&+0Q!{A70_pHxyH!aX5tcqQQP zOf_;`cx4`w<9^0+k^U57u#fG_$D!gaj*h!J}tbQ4BT)tg^H)T{k$E}PJm zG+p1*E^Npk_0)}BLR=<0{t1I7Zb{vBRNL0(F)QxVY=c#2=;nT5Qp7})dEiD7`M!tb zw1Ui?TZejE8+Sm$DADiSDhtX#UW6UL_z2Ib0S`yM&>wRaxp#um^qyn<=+zV zx!(q4Bd^choK?q>jSzV8w76wu^7{h>abvysywEfEoVVYX$KR&zCHX-5zI=us=UzRE zr?7l!bXqA1uiRtpo?RG!OVtare(-AU8qQxf|Eoffby#ID>Dw9kEW5L0#xFj#cWevu z)MfauMt%(YHv?_+vex6F_Xo@&uw~-{+F7QNVKH$n(p&FkmGJMxB>zm3zeXz!Wjx7F zb3S|D+_X7#s@0T9#5Im!f&OYS< zx=G!x8c~rt9SVN#h{GP7S@sGpUKA5@_tve$A8-4m_U~WMzYr09jCqm&f111Qpr)5^ zAFub)3<4sefCy5rG(mb5X#$sW#S21!NDDt83Br$rPEeF;R6qggNEJ*#Is_8wO^RS> zA#gDwfzW#m?~A|ry?HZl=Kb^L&Ak2V%+A@fXZP&+?Ah;p_bkWZjEj@Wi*QP#h2-qI zAuw@3iTt%E&s#+Fms1*aV?J((^(R#VzHt2~k?Vgq_9qe9EBbG)m{aLMDG~ZVVDd&u zfzN_~#H9V6_`}wvzQJT7gBZ{jVs+fM)CZ06AXmoB`M#EDv(jvgFdR};5){nS7=$tFbZ;wwfV?znn0%L-)KDV z_cr|izuCukU{w6qea9K1$R)*ARVqVLX^wl%;M_j~&=D~)4q z3EpDBoHuXu6iwtq-LVK2_niF$^zPTho5RBG(Mi zmqmO1LQ@m<%5$-}7G+L(mvqCdWN8mIfC>t0fBK;7*LQ-tcbV$5FZgj?yeO<&JR@G6 zKDWE6o9iJ{O4n@n@LnXyTV$@J*$(T-Z$I|-h8O3Na*jdGn=!ZW8Rr#Bu}|3|7k>{a zj5_hROgd{Jl`O#gykvI`X8O|j|; ziQH#~AUVvOiLMh`V-73}pKcw+OqQ#X%I3hf58d72TpES)IATnct}hH5yAYuK-`1Rw zR_Y(VR$v@VFOF4U?XtC(qiH_P#S!_UD*{xkageNeG(<~a@N@}-E?mD&meyaV&rguS zq=0Z#W21f#yM)N3N|M{zefC`<$wF*8J&&R)?9s!*SzLz*I~rPQJ2`(#$NjbJS`R-C za<{R7@fMBfQzkAh#!e*8_Y)7aV1p5D+tBW4(hp6E-!;FGCDun%_m1L?U8S?^gd{c2 z06hzd13i;Ej6Yf_(}TJ3K90*nvuMukguRYX7~}-GvoKgm(dd2G{^_4H-4}i{3~9MOV>RWBIGJ= zSX$KGCO!hCx}^qAL?kZoeW^dln~P`TES@t$9i(QjH;=2NKvtzT6=dvZbN0D&PI8%J z$&J2&5>K6r>ukR}Y4G%t{Kds(oRvdYc3b~A9dYg?i<;;LNl)pJu===S6P_rh7|XE<_~7N`t!s*OJ=Y7qA7l;jT*)c-BxzYB*Z0~}N&FXlWVtC?>5+mvtL#R)hA?Vp(FHqcp0JOHMwVn_+Lyy-ztj zGt+Z?2Yg^U(`DMM7Op3SmW=<}XVddwD0!`kl+Ojp0J8t$^i2(^S_WuK z=NcPNQwi(4LB{UfDb)ek+eT^wyd})R1L@T6ePZieZ*4rv*9`i{3AuRp4pRDtM)w;H#;5&hkDND5GlS1kDV zsg_%SkrQb!^VR6*qs@F7o2i|7nCj$(;rb==B(=e8`C;KESBb;NxPv4MH6lD#|1DtT z>=4^`6HX$=avWu`foceJ3KFI#J5~k0S2^ie>Z>q zUVtczhmUeKbqCYR1(=sg@Vb@19^bMl&r*tU9a2D0dMDN7@lW0JlIoF7s-|U+=TryI zRM|t-5hz@`7AL+u8t~MXJK-B!PZA7s$8?49gg*>JdQ_OLwbuw0fXEAlT_RFnA(>+0mu`OJxJi45WMMn+B{y5Oa6!zL~dUjZO88E+9FD5fw` z^toecba<&h-_PSrp+Nso8;zAKFIH5dodZl*vz@?O~=2>2gcA;K~=3s6MiJS_*XD z+RCO*+1NG^8(cJkR*nc89P{a`K0boz(i%2=cKMf7B+8GJZdfLc-s)`FJj(xQ#}7Xa zIo$1iHELk%tKWz#W~A9=3sh+S0?HLUT`W;1oP>`W8PGCFGtujus+&o;+my;8%ya3f zLLhaLJ!3zjc;gb69lWOq-a6B&1mhQ$9WUsoc>9;NY|w-Cu;--6kwSIb9sTfhf!%L4 zwQ(tP39xyZdSE)Qh+FXw#0rv91m_BHfJsD7P3m>TXbhZk0(?wNbW zI2xRk^gqYLHb0b4hTUT|E1<_`)@w7|@GTMkt=KAenLPQrX(y#n57#a}HH*16UR6}c zfUPTa8uGDW#9mgbpA=U#TN|l9qqHAVUxJV;W6jWQ%nA^M)IGC4$w*+JZq`v;?N#_t3;#y8Cz0 zqkr#4n=BcsR*%fZ$>x0%EFijP98P^d#wJDhtyX+Cr9J4JW~0r$S(SWm5)LB}P2dH8 zvO;P%b}IXGI955WC`nej*opQz56T)AiFH%m9v%orHr2tUj9vF%VV^sQHB_Sm2P6%y zi(r^IWvu#)zn7CFKlB`>r#g$&)GYr#ugV<3&?^snwa5mFL;|5N2%L$-Zr{8p{r+#( zuYW^PIKn7}ZKF41ISnaD!I~E@q&)M>IM;!zO_q+iJ)ks?3r*DYD)!1c#tHakn;?Ez zO4o5x{sC6=anu+IAX|F(sXAo;Svr_zC6Alv?dVw+H(NR4O2}d;`D;_&Q5`0pvD(xI z$jV}9wkb^;Uq#3O*icUoA(zz+#N@_Y>Af#*(gow0m6)-HovonBNH~Ou=nBvpmOHmz zdlgmoBRxIFk$I}d7tJqk*p@x&WbB(POzPBC@VfLz5>JpB4fU=G8g+frJ%wdg)7v44 z6~uT5tu)1QQ%@F+H@68tknyZcLl7%3BDomW(>L#)y6*02oW}AJ&*r5~`=s&%KlqGt z&oPR${rEj|6x+0M>99WBgE3k&C1a?0<57lXxw2eU`N*=T!5(W^>EkRrd91$^;%{?w z;3~|2TOUZ`GVvFOqGcljHUKN4%*cy1#=C}#VQtZ6{h!l(rs^!-satIN7Rua^M7Vd6 zrJIXU_SwV*?_s~~NB!ht(wpuv(@j1L=3)lWbJTqk5GWu4I1oQvqo=Od1ZQm4eG;m< z0;#Y#If_yw$BewR_GKPw80=pkBqP4&&jUyMmZg_fj)_@FOOlkqcuZM`d6RkB`sVL z#Osgmsr5QkX6k`1Kqa?}4aOrO2-zx*oExpZ>o4-5)#!y>77x{aC|SsLQ+JbdyW_XHpM literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-1/0.85/original.prototxt b/cars/lr-investigations/exponential/1e-1/0.85/original.prototxt new file mode 100644 index 0000000..c9d0d1c --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.85/original.prototxt @@ -0,0 +1,388 @@ +name: "AlexNet" +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "train" + } + transform_param { + mirror: true + crop_size: 227 + } + data_param { + batch_size: 128 + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "val" + } + transform_param { + crop_size: 227 + } + data_param { + batch_size: 32 + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + stage: "val" + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" + exclude { + stage: "deploy" + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" + include { + stage: "deploy" + } +} diff --git a/cars/lr-investigations/exponential/1e-1/0.85/pred.csv b/cars/lr-investigations/exponential/1e-1/0.85/pred.csv new file mode 100644 index 0000000..c4d65c9 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.85/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Mazda Tribute SUV 2011 9.97% Hyundai Tucson SUV 2012 7.21% Chevrolet Traverse SUV 2012 4.88% Hyundai Veracruz SUV 2012 4.7% GMC Acadia SUV 2012 4.08% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Dodge Caravan Minivan 1997 4.48% Chevrolet Traverse SUV 2012 3.01% Lincoln Town Car Sedan 2011 2.67% Ram C/V Cargo Van Minivan 2012 2.25% Honda Odyssey Minivan 2012 2.22% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Toyota Camry Sedan 2012 6.88% Toyota Corolla Sedan 2012 6.63% Hyundai Sonata Hybrid Sedan 2012 4.06% Maybach Landaulet Convertible 2012 3.31% BMW M3 Coupe 2012 3.0% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Chevrolet Impala Sedan 2007 8.32% Lincoln Town Car Sedan 2011 6.63% Ford F-150 Regular Cab 2007 4.45% GMC Terrain SUV 2012 4.37% Mercedes-Benz 300-Class Convertible 1993 3.98% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Jeep Liberty SUV 2012 4.63% BMW X5 SUV 2007 4.42% Land Rover LR2 SUV 2012 2.84% AM General Hummer SUV 2000 2.63% Ford Edge SUV 2012 2.62% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Dodge Ram Pickup 3500 Quad Cab 2009 29.01% Dodge Ram Pickup 3500 Crew Cab 2010 7.98% Chevrolet Silverado 1500 Extended Cab 2012 7.22% Chevrolet Silverado 1500 Regular Cab 2012 7.2% Audi 100 Wagon 1994 6.31% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 BMW M3 Coupe 2012 3.24% Maybach Landaulet Convertible 2012 3.23% Chevrolet Monte Carlo Coupe 2007 3.13% Aston Martin V8 Vantage Coupe 2012 3.13% Chevrolet Cobalt SS 2010 2.8% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Jeep Grand Cherokee SUV 2012 21.68% GMC Terrain SUV 2012 14.06% Chevrolet Monte Carlo Coupe 2007 5.82% Dodge Caliber Wagon 2012 4.28% Lincoln Town Car Sedan 2011 3.61% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Jeep Liberty SUV 2012 3.64% Infiniti QX56 SUV 2011 2.91% Daewoo Nubira Wagon 2002 2.8% Volvo 240 Sedan 1993 2.41% Land Rover Range Rover SUV 2012 2.3% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 34.44% Bentley Arnage Sedan 2009 6.32% Jeep Liberty SUV 2012 3.37% Bentley Continental Flying Spur Sedan 2007 2.94% Spyker C8 Convertible 2009 2.04% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 BMW 3 Series Wagon 2012 16.22% Audi A5 Coupe 2012 10.64% Audi S4 Sedan 2007 7.09% Chevrolet Malibu Hybrid Sedan 2010 4.92% Mitsubishi Lancer Sedan 2012 4.49% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bugatti Veyron 16.4 Convertible 2009 8.21% MINI Cooper Roadster Convertible 2012 4.81% Maybach Landaulet Convertible 2012 4.33% Suzuki Kizashi Sedan 2012 4.26% Chevrolet Sonic Sedan 2012 4.22% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chrysler PT Cruiser Convertible 2008 4.58% Land Rover Range Rover SUV 2012 4.51% Hyundai Veracruz SUV 2012 4.1% Hyundai Sonata Sedan 2012 4.05% Infiniti QX56 SUV 2011 3.91% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Ford Ranger SuperCab 2011 10.39% GMC Canyon Extended Cab 2012 7.68% Volvo XC90 SUV 2007 6.26% GMC Acadia SUV 2012 4.93% Hyundai Santa Fe SUV 2012 4.84% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 6.9% Dodge Caravan Minivan 1997 4.72% Honda Odyssey Minivan 2007 3.6% Ram C/V Cargo Van Minivan 2012 3.23% Ford Freestar Minivan 2007 3.17% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Dakota Club Cab 2007 19.14% Ford Ranger SuperCab 2011 10.87% Chevrolet Silverado 1500 Regular Cab 2012 10.29% Chevrolet Silverado 2500HD Regular Cab 2012 9.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.41% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 AM General Hummer SUV 2000 24.01% Jeep Wrangler SUV 2012 10.24% Jeep Patriot SUV 2012 5.44% HUMMER H2 SUT Crew Cab 2009 4.95% Chevrolet TrailBlazer SS 2009 4.67% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Mazda Tribute SUV 2011 15.88% GMC Acadia SUV 2012 10.77% Buick Rainier SUV 2007 8.02% Chevrolet Tahoe Hybrid SUV 2012 7.9% Chevrolet Traverse SUV 2012 7.7% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Jaguar XK XKR 2012 9.01% Chevrolet Corvette ZR1 2012 6.51% Porsche Panamera Sedan 2012 4.93% Acura TL Type-S 2008 4.25% Chevrolet Camaro Convertible 2012 3.56% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 Jaguar XK XKR 2012 3.7% Spyker C8 Coupe 2009 3.69% BMW 1 Series Convertible 2012 3.29% Hyundai Veloster Hatchback 2012 3.17% BMW 1 Series Coupe 2012 2.83% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 33.06% Audi S4 Sedan 2012 6.53% Hyundai Sonata Sedan 2012 5.37% Audi TTS Coupe 2012 4.18% Dodge Journey SUV 2012 3.81% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Dodge Durango SUV 2012 5.14% Ford Edge SUV 2012 5.08% Acura ZDX Hatchback 2012 2.8% Audi S5 Coupe 2012 2.58% Hyundai Azera Sedan 2012 2.47% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 7.77% Honda Odyssey Minivan 2007 4.63% Chevrolet Malibu Sedan 2007 4.57% Chevrolet Impala Sedan 2007 4.2% Lincoln Town Car Sedan 2011 3.99% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Ram C/V Cargo Van Minivan 2012 5.63% Honda Odyssey Minivan 2007 5.1% Acura RL Sedan 2012 5.06% Chevrolet Malibu Hybrid Sedan 2010 4.37% Suzuki Aerio Sedan 2007 3.75% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi R8 Coupe 2012 9.82% Bentley Mulsanne Sedan 2011 5.38% Audi TTS Coupe 2012 5.35% Audi TT Hatchback 2011 5.1% Rolls-Royce Phantom Sedan 2012 4.14% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 25.45% Hyundai Genesis Sedan 2012 6.4% Mercedes-Benz SL-Class Coupe 2009 5.35% Mercedes-Benz C-Class Sedan 2012 4.55% Audi S6 Sedan 2011 3.84% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 Infiniti QX56 SUV 2011 9.77% Land Rover LR2 SUV 2012 8.7% Dodge Journey SUV 2012 8.55% BMW X5 SUV 2007 7.21% Land Rover Range Rover SUV 2012 6.63% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Aston Martin Virage Coupe 2012 32.06% Chevrolet Corvette Convertible 2012 7.86% Ferrari FF Coupe 2012 7.36% Ferrari California Convertible 2012 4.95% Lamborghini Aventador Coupe 2012 4.83% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Audi S4 Sedan 2012 10.42% Mercedes-Benz C-Class Sedan 2012 10.37% Dodge Durango SUV 2012 8.22% Honda Accord Coupe 2012 6.21% Hyundai Sonata Sedan 2012 6.14% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Honda Odyssey Minivan 2007 25.94% Ram C/V Cargo Van Minivan 2012 20.59% Chrysler Town and Country Minivan 2012 11.33% Suzuki Aerio Sedan 2007 8.38% Daewoo Nubira Wagon 2002 6.62% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 13.78% Audi TT RS Coupe 2012 12.81% Audi TT Hatchback 2011 12.51% Audi TTS Coupe 2012 9.0% Audi S5 Convertible 2012 8.62% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 9.39% Bugatti Veyron 16.4 Convertible 2009 8.27% Bentley Continental Supersports Conv. Convertible 2012 6.88% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.68% BMW 6 Series Convertible 2007 2.71% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 41.34% Dodge Ram Pickup 3500 Crew Cab 2010 10.56% Chevrolet Silverado 1500 Regular Cab 2012 9.31% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.3% GMC Canyon Extended Cab 2012 6.16% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Jaguar XK XKR 2012 16.43% Spyker C8 Coupe 2009 4.78% Ford GT Coupe 2006 4.35% Hyundai Veloster Hatchback 2012 3.04% Lamborghini Aventador Coupe 2012 2.63% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Plymouth Neon Coupe 1999 4.71% Eagle Talon Hatchback 1998 4.09% Nissan 240SX Coupe 1998 3.96% Dodge Caravan Minivan 1997 3.82% Suzuki Kizashi Sedan 2012 3.05% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Audi A5 Coupe 2012 7.64% Chevrolet Malibu Sedan 2007 4.92% Audi S4 Sedan 2012 4.16% Dodge Durango SUV 2012 3.63% Hyundai Sonata Sedan 2012 3.39% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Dodge Journey SUV 2012 10.18% Hyundai Sonata Sedan 2012 7.94% Land Rover Range Rover SUV 2012 5.84% Hyundai Tucson SUV 2012 4.67% Chrysler Sebring Convertible 2010 4.52% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Hyundai Santa Fe SUV 2012 12.28% Land Rover Range Rover SUV 2012 11.51% Toyota Sequoia SUV 2012 7.2% Dodge Journey SUV 2012 6.72% Dodge Durango SUV 2012 6.45% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Volkswagen Golf Hatchback 1991 49.93% Geo Metro Convertible 1993 19.4% GMC Canyon Extended Cab 2012 8.47% GMC Savana Van 2012 3.76% Dodge Dakota Club Cab 2007 2.98% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 9.33% BMW 3 Series Sedan 2012 9.14% Mercedes-Benz E-Class Sedan 2012 7.13% Acura ZDX Hatchback 2012 6.41% Volvo C30 Hatchback 2012 5.4% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 7.36% Rolls-Royce Phantom Sedan 2012 5.46% Nissan 240SX Coupe 1998 4.66% Bentley Continental Flying Spur Sedan 2007 4.48% Chevrolet Monte Carlo Coupe 2007 4.28% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Ferrari California Convertible 2012 13.15% Ferrari 458 Italia Coupe 2012 11.26% Ferrari 458 Italia Convertible 2012 10.5% Aston Martin V8 Vantage Coupe 2012 8.97% Chevrolet Camaro Convertible 2012 6.99% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Spyker C8 Convertible 2009 23.24% Bugatti Veyron 16.4 Coupe 2009 18.65% Bentley Continental GT Coupe 2007 9.01% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.74% Bentley Continental Flying Spur Sedan 2007 6.67% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 13.91% Chevrolet Silverado 1500 Regular Cab 2012 6.15% Dodge Ram Pickup 3500 Quad Cab 2009 5.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.2% Audi 100 Sedan 1994 5.15% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Buick Rainier SUV 2007 7.52% GMC Yukon Hybrid SUV 2012 7.34% Buick Enclave SUV 2012 6.43% Ram C/V Cargo Van Minivan 2012 5.87% Land Rover LR2 SUV 2012 5.02% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 2.46% BMW 6 Series Convertible 2007 2.13% smart fortwo Convertible 2012 2.0% Porsche Panamera Sedan 2012 1.92% Bugatti Veyron 16.4 Convertible 2009 1.91% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Infiniti QX56 SUV 2011 7.91% Honda Odyssey Minivan 2007 7.26% Land Rover Range Rover SUV 2012 6.8% Chrysler PT Cruiser Convertible 2008 6.8% Ford Expedition EL SUV 2009 4.27% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Mercedes-Benz S-Class Sedan 2012 14.38% Mercedes-Benz E-Class Sedan 2012 13.78% Hyundai Genesis Sedan 2012 8.89% Audi V8 Sedan 1994 6.61% Mercedes-Benz SL-Class Coupe 2009 6.03% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Nissan 240SX Coupe 1998 8.83% Ferrari 458 Italia Coupe 2012 6.06% Ferrari California Convertible 2012 5.07% Chevrolet HHR SS 2010 4.64% Suzuki Kizashi Sedan 2012 4.32% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Honda Accord Sedan 2012 4.4% Chevrolet Malibu Hybrid Sedan 2010 4.22% Hyundai Elantra Sedan 2007 4.17% Acura TSX Sedan 2012 3.69% Mitsubishi Lancer Sedan 2012 3.64% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Extended Cab 2012 13.59% Ford F-150 Regular Cab 2007 8.19% Chevrolet Silverado 2500HD Regular Cab 2012 7.54% Dodge Dakota Club Cab 2007 6.47% Ford Freestar Minivan 2007 5.61% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Drophead Coupe Convertible 2012 13.48% Bentley Continental GT Coupe 2007 5.72% Mercedes-Benz 300-Class Convertible 1993 5.63% Eagle Talon Hatchback 1998 5.36% Chevrolet Corvette ZR1 2012 4.55% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 14.47% Chevrolet Silverado 2500HD Regular Cab 2012 13.21% Chevrolet Silverado 1500 Extended Cab 2012 9.36% GMC Canyon Extended Cab 2012 6.13% Ford F-150 Regular Cab 2007 5.93% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Bentley Mulsanne Sedan 2011 7.41% BMW ActiveHybrid 5 Sedan 2012 5.8% Bugatti Veyron 16.4 Convertible 2009 4.69% Mercedes-Benz SL-Class Coupe 2009 3.86% Audi 100 Wagon 1994 3.61% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 BMW X5 SUV 2007 5.15% Volvo XC90 SUV 2007 4.84% Cadillac SRX SUV 2012 4.33% Toyota 4Runner SUV 2012 3.41% Jeep Compass SUV 2012 3.25% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 65.31% Chevrolet Express Cargo Van 2007 22.95% Chevrolet Express Van 2007 11.7% Audi V8 Sedan 1994 0.01% Audi 100 Sedan 1994 0.01% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 11.89% Jeep Patriot SUV 2012 9.0% Audi 100 Sedan 1994 8.04% Ford Ranger SuperCab 2011 6.56% Chevrolet Express Van 2007 5.57% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Chevrolet Cobalt SS 2010 24.27% BMW 1 Series Coupe 2012 6.84% Toyota Camry Sedan 2012 3.41% Hyundai Accent Sedan 2012 3.34% Ferrari FF Coupe 2012 3.0% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Hyundai Elantra Touring Hatchback 2012 22.26% Cadillac CTS-V Sedan 2012 18.65% Acura TSX Sedan 2012 7.06% Honda Accord Coupe 2012 5.24% Toyota Camry Sedan 2012 4.49% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 BMW M3 Coupe 2012 4.13% Mercedes-Benz S-Class Sedan 2012 4.02% Tesla Model S Sedan 2012 2.98% Buick Regal GS 2012 2.95% Suzuki Aerio Sedan 2007 2.27% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Jaguar XK XKR 2012 12.39% Aston Martin V8 Vantage Convertible 2012 9.21% Aston Martin Virage Convertible 2012 5.76% Dodge Charger Sedan 2012 3.58% Chevrolet Camaro Convertible 2012 3.55% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Hyundai Elantra Sedan 2007 7.96% Hyundai Accent Sedan 2012 7.3% Dodge Journey SUV 2012 5.4% Audi TT RS Coupe 2012 4.85% Nissan 240SX Coupe 1998 4.02% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Hyundai Genesis Sedan 2012 5.81% Fisker Karma Sedan 2012 5.31% Infiniti G Coupe IPL 2012 5.07% Tesla Model S Sedan 2012 3.26% Bentley Mulsanne Sedan 2011 2.66% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Aston Martin Virage Convertible 2012 22.46% Aston Martin V8 Vantage Coupe 2012 10.91% Fisker Karma Sedan 2012 9.78% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.71% Aston Martin V8 Vantage Convertible 2012 6.76% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 35.77% McLaren MP4-12C Coupe 2012 12.61% Lamborghini Aventador Coupe 2012 11.71% Spyker C8 Coupe 2009 8.54% Aston Martin V8 Vantage Coupe 2012 5.47% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Aston Martin V8 Vantage Coupe 2012 3.04% Jaguar XK XKR 2012 2.71% Audi R8 Coupe 2012 2.67% Ferrari FF Coupe 2012 2.54% Infiniti G Coupe IPL 2012 2.49% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Suzuki Aerio Sedan 2007 4.87% Tesla Model S Sedan 2012 3.8% Honda Odyssey Minivan 2012 3.64% Acura TSX Sedan 2012 3.62% BMW M5 Sedan 2010 2.57% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 Audi S5 Convertible 2012 9.53% Mitsubishi Lancer Sedan 2012 4.85% Dodge Charger Sedan 2012 2.81% Bentley Arnage Sedan 2009 2.66% Chevrolet Corvette ZR1 2012 2.6% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Mercedes-Benz S-Class Sedan 2012 10.4% Mercedes-Benz E-Class Sedan 2012 9.96% Mercedes-Benz SL-Class Coupe 2009 8.94% Mercedes-Benz C-Class Sedan 2012 7.83% Audi S6 Sedan 2011 6.43% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Hyundai Azera Sedan 2012 19.11% Mercedes-Benz S-Class Sedan 2012 11.54% Mercedes-Benz E-Class Sedan 2012 10.26% Dodge Journey SUV 2012 6.04% Dodge Durango SUV 2012 5.1% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 22.53% Eagle Talon Hatchback 1998 13.04% Nissan 240SX Coupe 1998 12.33% Bentley Continental Flying Spur Sedan 2007 5.19% Ford Mustang Convertible 2007 3.76% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 6.03% Lamborghini Reventon Coupe 2008 5.24% Infiniti G Coupe IPL 2012 4.62% Ferrari FF Coupe 2012 4.1% Tesla Model S Sedan 2012 3.44% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 7.04% Hyundai Elantra Touring Hatchback 2012 5.55% Chevrolet Malibu Hybrid Sedan 2010 4.64% Ford Focus Sedan 2007 3.44% Mitsubishi Lancer Sedan 2012 3.33% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 11.09% Chevrolet Tahoe Hybrid SUV 2012 6.36% Audi 100 Wagon 1994 5.6% Nissan NV Passenger Van 2012 4.73% Audi V8 Sedan 1994 3.49% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 10.73% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.44% Chrysler Aspen SUV 2009 8.91% Ford F-150 Regular Cab 2012 7.77% Dodge Ram Pickup 3500 Crew Cab 2010 7.07% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Chrysler Aspen SUV 2009 13.12% Hyundai Santa Fe SUV 2012 9.23% Hyundai Tucson SUV 2012 7.46% Ford Edge SUV 2012 6.39% Hyundai Azera Sedan 2012 5.74% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Nissan Juke Hatchback 2012 8.08% Tesla Model S Sedan 2012 2.76% Acura RL Sedan 2012 2.43% Acura ZDX Hatchback 2012 2.12% Chrysler 300 SRT-8 2010 1.86% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Volvo C30 Hatchback 2012 15.51% BMW 1 Series Coupe 2012 6.0% Chevrolet HHR SS 2010 4.12% Dodge Charger SRT-8 2009 3.23% Scion xD Hatchback 2012 2.98% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 17.23% Dodge Charger Sedan 2012 12.51% Plymouth Neon Coupe 1999 9.67% Ferrari 458 Italia Coupe 2012 8.25% Dodge Charger SRT-8 2009 7.18% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Sedan 1994 24.41% Dodge Caravan Minivan 1997 18.28% Mercedes-Benz 300-Class Convertible 1993 9.29% Audi V8 Sedan 1994 6.38% Audi 100 Wagon 1994 4.72% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Chrysler Aspen SUV 2009 5.42% Isuzu Ascender SUV 2008 3.91% Toyota Sequoia SUV 2012 3.61% Ford E-Series Wagon Van 2012 3.22% Hyundai Santa Fe SUV 2012 3.06% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 25.71% Bentley Arnage Sedan 2009 5.91% Audi R8 Coupe 2012 4.12% Audi TTS Coupe 2012 4.03% Chrysler 300 SRT-8 2010 3.74% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 5.01% GMC Acadia SUV 2012 4.47% Cadillac Escalade EXT Crew Cab 2007 3.82% Chevrolet Silverado 2500HD Regular Cab 2012 3.52% GMC Terrain SUV 2012 3.19% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 27.72% Audi 100 Wagon 1994 10.03% Dodge Sprinter Cargo Van 2009 3.85% Chevrolet Tahoe Hybrid SUV 2012 3.81% Chevrolet Express Cargo Van 2007 3.49% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW ActiveHybrid 5 Sedan 2012 9.71% BMW M5 Sedan 2010 6.13% Acura TL Sedan 2012 5.99% Volkswagen Beetle Hatchback 2012 5.66% Audi S5 Convertible 2012 4.03% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 BMW X5 SUV 2007 14.92% BMW X3 SUV 2012 11.72% Chevrolet Tahoe Hybrid SUV 2012 4.07% Cadillac SRX SUV 2012 3.94% GMC Yukon Hybrid SUV 2012 3.76% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Honda Odyssey Minivan 2007 6.76% Ram C/V Cargo Van Minivan 2012 5.76% Honda Odyssey Minivan 2012 4.92% Ford Freestar Minivan 2007 4.71% Suzuki Aerio Sedan 2007 2.95% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Jaguar XK XKR 2012 11.09% Audi TT RS Coupe 2012 9.23% Aston Martin V8 Vantage Convertible 2012 7.46% Porsche Panamera Sedan 2012 6.26% Aston Martin V8 Vantage Coupe 2012 5.63% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Nissan Juke Hatchback 2012 10.22% FIAT 500 Abarth 2012 10.18% Chevrolet Corvette ZR1 2012 6.39% Bugatti Veyron 16.4 Coupe 2009 5.76% Suzuki SX4 Sedan 2012 4.34% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Chevrolet Tahoe Hybrid SUV 2012 3.87% Volvo 240 Sedan 1993 3.06% BMW X3 SUV 2012 2.29% Buick Enclave SUV 2012 2.17% Acura ZDX Hatchback 2012 1.99% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Bugatti Veyron 16.4 Convertible 2009 5.95% Ford GT Coupe 2006 5.4% Volkswagen Golf Hatchback 1991 4.51% Lamborghini Diablo Coupe 2001 3.97% Dodge Challenger SRT8 2011 3.84% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Chevrolet TrailBlazer SS 2009 8.95% Cadillac Escalade EXT Crew Cab 2007 7.46% Jeep Grand Cherokee SUV 2012 6.59% Land Rover Range Rover SUV 2012 4.91% Dodge Durango SUV 2012 4.55% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Ferrari FF Coupe 2012 18.21% Audi S5 Coupe 2012 8.71% Audi A5 Coupe 2012 5.52% Audi TTS Coupe 2012 3.91% Audi S4 Sedan 2012 3.87% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Abarth 2012 15.63% Bentley Arnage Sedan 2009 8.56% Bentley Continental Flying Spur Sedan 2007 8.41% Eagle Talon Hatchback 1998 6.75% Bentley Continental GT Coupe 2007 4.95% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 13.91% Chevrolet Express Van 2007 10.03% Dodge Caravan Minivan 1997 9.51% Jeep Patriot SUV 2012 7.29% GMC Yukon Hybrid SUV 2012 5.13% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet TrailBlazer SS 2009 11.49% Chevrolet Silverado 2500HD Regular Cab 2012 11.31% Chevrolet Silverado 1500 Regular Cab 2012 6.73% Nissan 240SX Coupe 1998 5.93% Ford F-150 Regular Cab 2007 5.38% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Acura TL Sedan 2012 10.77% Audi A5 Coupe 2012 6.8% Audi S5 Coupe 2012 6.35% Acura TSX Sedan 2012 4.28% Chevrolet Malibu Hybrid Sedan 2010 4.25% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Ferrari 458 Italia Convertible 2012 16.84% Acura Integra Type R 2001 11.03% BMW Z4 Convertible 2012 10.91% Chevrolet Corvette Convertible 2012 10.63% Lamborghini Diablo Coupe 2001 10.07% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 BMW M6 Convertible 2010 12.4% Porsche Panamera Sedan 2012 6.34% Audi S5 Coupe 2012 5.58% Nissan 240SX Coupe 1998 4.55% Chevrolet Camaro Convertible 2012 3.86% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 BMW M3 Coupe 2012 7.01% Aston Martin V8 Vantage Coupe 2012 5.48% Maybach Landaulet Convertible 2012 4.04% Chevrolet Cobalt SS 2010 3.73% Chevrolet Camaro Convertible 2012 3.29% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Dakota Club Cab 2007 13.4% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.07% Dodge Dakota Crew Cab 2010 10.49% Chevrolet Silverado 1500 Extended Cab 2012 10.41% Chevrolet Avalanche Crew Cab 2012 8.95% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 Volkswagen Beetle Hatchback 2012 10.26% Acura TL Sedan 2012 6.13% Volkswagen Golf Hatchback 2012 6.1% BMW ActiveHybrid 5 Sedan 2012 5.55% Acura ZDX Hatchback 2012 4.47% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chrysler 300 SRT-8 2010 7.53% Eagle Talon Hatchback 1998 6.84% Nissan 240SX Coupe 1998 6.46% BMW M6 Convertible 2010 4.2% Audi V8 Sedan 1994 4.18% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2007 24.17% Ford Ranger SuperCab 2011 19.58% Chevrolet Silverado 1500 Extended Cab 2012 14.9% GMC Canyon Extended Cab 2012 6.65% Chevrolet Silverado 1500 Regular Cab 2012 6.6% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 16.86% Audi TT Hatchback 2011 9.11% Acura TL Sedan 2012 8.69% Audi S5 Coupe 2012 4.27% Tesla Model S Sedan 2012 4.13% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 BMW 3 Series Wagon 2012 4.35% Suzuki Aerio Sedan 2007 3.63% Ford Focus Sedan 2007 3.11% Acura TSX Sedan 2012 2.67% Volkswagen Golf Hatchback 2012 2.27% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 52.4% Mercedes-Benz 300-Class Convertible 1993 6.25% Audi 100 Sedan 1994 5.11% Nissan 240SX Coupe 1998 3.85% Volvo 240 Sedan 1993 3.18% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 8.04% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.07% Bugatti Veyron 16.4 Coupe 2009 5.02% Lamborghini Reventon Coupe 2008 4.76% Bentley Continental Supersports Conv. Convertible 2012 3.31% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.24% Chrysler Aspen SUV 2009 7.77% Chevrolet Silverado 1500 Extended Cab 2012 6.95% Ford F-150 Regular Cab 2007 6.72% Chevrolet Silverado 2500HD Regular Cab 2012 5.16% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 18.34% BMW M3 Coupe 2012 4.89% Audi S5 Convertible 2012 3.97% BMW ActiveHybrid 5 Sedan 2012 3.2% Audi TT RS Coupe 2012 3.19% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Chevrolet Silverado 1500 Extended Cab 2012 52.77% Chevrolet Silverado 1500 Regular Cab 2012 11.59% GMC Canyon Extended Cab 2012 6.52% Ford F-150 Regular Cab 2007 5.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.38% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Chevrolet Impala Sedan 2007 9.28% Volkswagen Golf Hatchback 2012 8.02% Hyundai Elantra Touring Hatchback 2012 6.26% Lincoln Town Car Sedan 2011 5.62% Scion xD Hatchback 2012 4.71% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 31.87% MINI Cooper Roadster Convertible 2012 14.8% smart fortwo Convertible 2012 5.06% Rolls-Royce Phantom Sedan 2012 3.6% Fisker Karma Sedan 2012 3.59% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Chevrolet Silverado 1500 Extended Cab 2012 6.78% Chevrolet Traverse SUV 2012 4.13% Dodge Caravan Minivan 1997 3.62% Dodge Dakota Club Cab 2007 3.38% Volvo 240 Sedan 1993 3.36% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 21.64% Chevrolet Corvette Convertible 2012 12.02% Lamborghini Diablo Coupe 2001 11.46% Audi RS 4 Convertible 2008 9.16% BMW Z4 Convertible 2012 7.7% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Chrysler Sebring Convertible 2010 4.95% Honda Odyssey Minivan 2007 4.54% Honda Accord Sedan 2012 3.67% Dodge Caravan Minivan 1997 3.38% Ford Freestar Minivan 2007 3.3% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 5.87% Audi 100 Sedan 1994 5.44% Audi V8 Sedan 1994 4.65% Mercedes-Benz Sprinter Van 2012 3.31% Audi 100 Wagon 1994 2.87% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford Expedition EL SUV 2009 19.33% Ford F-150 Regular Cab 2012 13.58% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.23% Ford F-450 Super Duty Crew Cab 2012 5.47% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.85% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Lamborghini Reventon Coupe 2008 15.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 13.12% Bentley Continental Supersports Conv. Convertible 2012 10.79% Lamborghini Aventador Coupe 2012 9.31% Spyker C8 Coupe 2009 8.9% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Bentley Mulsanne Sedan 2011 8.16% Chevrolet Corvette ZR1 2012 6.98% Infiniti G Coupe IPL 2012 6.86% Audi RS 4 Convertible 2008 4.73% Hyundai Genesis Sedan 2012 4.35% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 BMW M3 Coupe 2012 4.54% Nissan Leaf Hatchback 2012 2.92% Tesla Model S Sedan 2012 2.77% Maybach Landaulet Convertible 2012 2.64% Suzuki Aerio Sedan 2007 2.06% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Ford Edge SUV 2012 25.01% Chrysler Sebring Convertible 2010 4.64% Chrysler Crossfire Convertible 2008 4.05% Audi V8 Sedan 1994 3.72% GMC Acadia SUV 2012 3.6% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 96.61% Geo Metro Convertible 1993 0.9% Acura Integra Type R 2001 0.55% Bentley Continental Supersports Conv. Convertible 2012 0.4% Dodge Challenger SRT8 2011 0.29% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Plymouth Neon Coupe 1999 8.68% Mercedes-Benz 300-Class Convertible 1993 8.38% Dodge Caravan Minivan 1997 7.04% Volvo 240 Sedan 1993 3.97% Audi 100 Wagon 1994 3.42% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 12.1% FIAT 500 Abarth 2012 6.76% Chevrolet Corvette ZR1 2012 6.0% Bugatti Veyron 16.4 Coupe 2009 4.93% BMW M3 Coupe 2012 4.46% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 33.42% Ford F-450 Super Duty Crew Cab 2012 18.36% Land Rover Range Rover SUV 2012 12.99% Chrysler Aspen SUV 2009 4.68% Dodge Durango SUV 2012 3.65% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Hyundai Tucson SUV 2012 16.33% Chevrolet Traverse SUV 2012 15.48% Chevrolet Impala Sedan 2007 7.33% Lincoln Town Car Sedan 2011 6.79% Ford Freestar Minivan 2007 5.01% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Eagle Talon Hatchback 1998 24.14% Bentley Continental Flying Spur Sedan 2007 8.37% Chevrolet Corvette ZR1 2012 8.36% Spyker C8 Convertible 2009 7.8% Ford Mustang Convertible 2007 7.67% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Lincoln Town Car Sedan 2011 10.15% Chevrolet Malibu Sedan 2007 8.52% Chevrolet Impala Sedan 2007 8.52% Toyota Corolla Sedan 2012 4.72% Scion xD Hatchback 2012 3.54% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Bentley Continental GT Coupe 2007 9.53% Suzuki SX4 Sedan 2012 5.36% BMW M5 Sedan 2010 3.5% Bentley Continental Flying Spur Sedan 2007 3.46% Bugatti Veyron 16.4 Coupe 2009 3.26% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 20.31% Bentley Arnage Sedan 2009 14.63% Rolls-Royce Ghost Sedan 2012 11.89% Cadillac CTS-V Sedan 2012 8.11% Chrysler 300 SRT-8 2010 5.44% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Geo Metro Convertible 1993 72.05% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.96% AM General Hummer SUV 2000 3.43% Chevrolet Corvette Convertible 2012 2.41% smart fortwo Convertible 2012 2.25% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Mercedes-Benz C-Class Sedan 2012 9.6% Cadillac Escalade EXT Crew Cab 2007 8.37% Ford F-450 Super Duty Crew Cab 2012 6.72% BMW X5 SUV 2007 5.03% Volvo XC90 SUV 2007 3.57% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Tucson SUV 2012 13.11% GMC Terrain SUV 2012 6.11% Lincoln Town Car Sedan 2011 3.88% Chevrolet Malibu Sedan 2007 3.76% Chevrolet Traverse SUV 2012 3.53% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Ford Edge SUV 2012 6.37% BMW X6 SUV 2012 5.93% Hyundai Azera Sedan 2012 5.31% Dodge Dakota Crew Cab 2010 5.26% Volvo 240 Sedan 1993 3.98% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 39.68% Lamborghini Diablo Coupe 2001 25.07% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.6% Acura Integra Type R 2001 8.5% Dodge Charger Sedan 2012 3.63% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Mercedes-Benz C-Class Sedan 2012 6.21% Mercedes-Benz S-Class Sedan 2012 5.79% Hyundai Genesis Sedan 2012 5.39% Honda Accord Sedan 2012 4.16% Chrysler Town and Country Minivan 2012 3.68% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Bentley Mulsanne Sedan 2011 8.05% BMW ActiveHybrid 5 Sedan 2012 5.65% Bugatti Veyron 16.4 Convertible 2009 5.45% BMW 6 Series Convertible 2007 4.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.09% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Chevrolet Corvette ZR1 2012 6.62% Fisker Karma Sedan 2012 6.24% Infiniti G Coupe IPL 2012 5.95% Mercedes-Benz SL-Class Coupe 2009 4.49% Mercedes-Benz E-Class Sedan 2012 4.17% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 HUMMER H3T Crew Cab 2010 8.08% Audi 100 Sedan 1994 6.95% Audi V8 Sedan 1994 6.41% Chevrolet Express Cargo Van 2007 5.98% GMC Savana Van 2012 5.78% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 13.27% HUMMER H2 SUT Crew Cab 2009 10.64% Cadillac Escalade EXT Crew Cab 2007 5.92% Chevrolet TrailBlazer SS 2009 5.06% GMC Acadia SUV 2012 4.86% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Cadillac CTS-V Sedan 2012 6.91% Honda Accord Coupe 2012 5.48% Tesla Model S Sedan 2012 5.15% Dodge Caliber Wagon 2007 3.97% Hyundai Elantra Touring Hatchback 2012 3.97% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Suzuki Aerio Sedan 2007 4.75% Daewoo Nubira Wagon 2002 4.48% Lincoln Town Car Sedan 2011 4.39% Ford Focus Sedan 2007 3.85% Suzuki SX4 Hatchback 2012 3.35% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 15.86% Honda Accord Coupe 2012 10.43% Dodge Journey SUV 2012 7.17% Dodge Charger Sedan 2012 6.59% Dodge Dakota Crew Cab 2010 4.83% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 GMC Terrain SUV 2012 15.58% Jeep Grand Cherokee SUV 2012 8.02% Toyota 4Runner SUV 2012 7.89% Mazda Tribute SUV 2011 6.36% GMC Acadia SUV 2012 5.05% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Bentley Arnage Sedan 2009 7.03% Rolls-Royce Phantom Sedan 2012 6.66% Cadillac Escalade EXT Crew Cab 2007 2.94% Infiniti QX56 SUV 2011 2.88% BMW M6 Convertible 2010 2.74% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 GMC Savana Van 2012 56.05% Chevrolet Express Cargo Van 2007 25.26% Chevrolet Express Van 2007 18.33% Jeep Patriot SUV 2012 0.24% AM General Hummer SUV 2000 0.03% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Nissan Juke Hatchback 2012 29.14% Dodge Journey SUV 2012 7.49% Hyundai Elantra Sedan 2007 5.73% Ford Ranger SuperCab 2011 4.86% BMW X6 SUV 2012 4.48% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 9.42% Chevrolet TrailBlazer SS 2009 4.39% GMC Yukon Hybrid SUV 2012 4.27% Toyota Sequoia SUV 2012 4.19% Cadillac Escalade EXT Crew Cab 2007 3.95% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 63.21% Nissan 240SX Coupe 1998 5.25% Dodge Charger SRT-8 2009 3.72% Ford Mustang Convertible 2007 3.21% BMW 3 Series Sedan 2012 2.18% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 7.32% Audi 100 Wagon 1994 4.99% Bugatti Veyron 16.4 Convertible 2009 4.92% Buick Enclave SUV 2012 4.82% Lamborghini Reventon Coupe 2008 4.74% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 BMW X6 SUV 2012 3.48% Dodge Charger Sedan 2012 3.2% BMW X5 SUV 2007 3.17% Dodge Journey SUV 2012 2.83% Hyundai Tucson SUV 2012 2.48% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chevrolet Monte Carlo Coupe 2007 4.21% Ford Freestar Minivan 2007 4.15% Honda Odyssey Minivan 2012 3.59% Chevrolet TrailBlazer SS 2009 3.19% Ford F-150 Regular Cab 2007 2.8% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Acura TL Type-S 2008 11.73% Suzuki Aerio Sedan 2007 6.63% Honda Odyssey Minivan 2007 5.41% Daewoo Nubira Wagon 2002 4.06% Honda Odyssey Minivan 2012 3.77% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Maybach Landaulet Convertible 2012 5.01% Rolls-Royce Phantom Sedan 2012 4.47% Buick Regal GS 2012 4.2% BMW ActiveHybrid 5 Sedan 2012 4.17% Cadillac CTS-V Sedan 2012 2.93% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 5.33% Rolls-Royce Ghost Sedan 2012 4.24% GMC Terrain SUV 2012 3.26% Bentley Arnage Sedan 2009 3.01% Land Rover Range Rover SUV 2012 2.89% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Acura TL Sedan 2012 8.16% MINI Cooper Roadster Convertible 2012 7.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.9% Aston Martin V8 Vantage Convertible 2012 4.95% Infiniti G Coupe IPL 2012 4.08% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 17.65% Ford F-450 Super Duty Crew Cab 2012 15.27% Ford Expedition EL SUV 2009 9.59% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.82% Dodge Dakota Crew Cab 2010 6.72% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Bugatti Veyron 16.4 Coupe 2009 13.47% Spyker C8 Coupe 2009 9.52% Audi RS 4 Convertible 2008 7.74% Chevrolet Corvette Convertible 2012 4.99% Aston Martin V8 Vantage Coupe 2012 4.83% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Eagle Talon Hatchback 1998 14.43% Ford Mustang Convertible 2007 13.57% Nissan 240SX Coupe 1998 10.01% Chevrolet Cobalt SS 2010 7.33% Ferrari California Convertible 2012 6.09% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 19.04% Chrysler Town and Country Minivan 2012 8.7% Mercedes-Benz S-Class Sedan 2012 5.14% Acura TSX Sedan 2012 3.64% Mercedes-Benz E-Class Sedan 2012 3.21% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 BMW M3 Coupe 2012 4.2% Porsche Panamera Sedan 2012 4.0% Acura Integra Type R 2001 3.92% Bentley Continental Supersports Conv. Convertible 2012 3.92% Audi RS 4 Convertible 2008 3.48% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 18.75% Dodge Durango SUV 2012 9.77% Cadillac SRX SUV 2012 8.23% Chevrolet TrailBlazer SS 2009 7.36% Dodge Magnum Wagon 2008 3.93% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Audi V8 Sedan 1994 18.61% Volvo 240 Sedan 1993 6.69% Chrysler Crossfire Convertible 2008 4.62% Bentley Mulsanne Sedan 2011 4.43% Eagle Talon Hatchback 1998 4.21% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 3.8% Chevrolet HHR SS 2010 2.04% Nissan Juke Hatchback 2012 2.03% Mitsubishi Lancer Sedan 2012 1.95% Nissan 240SX Coupe 1998 1.87% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz S-Class Sedan 2012 16.3% Mercedes-Benz E-Class Sedan 2012 13.38% Hyundai Genesis Sedan 2012 11.49% Chevrolet Camaro Convertible 2012 6.47% Hyundai Azera Sedan 2012 4.34% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Canyon Extended Cab 2012 20.04% Dodge Ram Pickup 3500 Quad Cab 2009 14.73% Chevrolet Traverse SUV 2012 11.14% Chevrolet Silverado 1500 Regular Cab 2012 8.67% Ford F-150 Regular Cab 2007 8.35% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 GMC Yukon Hybrid SUV 2012 12.32% Ford F-150 Regular Cab 2007 7.72% Dodge Caravan Minivan 1997 7.44% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.02% Chevrolet Silverado 1500 Regular Cab 2012 5.79% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 66.25% Dodge Ram Pickup 3500 Quad Cab 2009 6.05% Dodge Dakota Crew Cab 2010 2.8% Ford F-450 Super Duty Crew Cab 2012 2.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.62% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 BMW ActiveHybrid 5 Sedan 2012 6.07% Acura TL Sedan 2012 6.04% Chrysler 300 SRT-8 2010 4.73% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.16% Bentley Continental GT Coupe 2012 3.77% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Chevrolet Camaro Convertible 2012 11.96% Chevrolet Cobalt SS 2010 11.37% Chevrolet Corvette Convertible 2012 6.72% Dodge Charger SRT-8 2009 6.3% Aston Martin V8 Vantage Coupe 2012 5.47% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Audi S5 Coupe 2012 9.75% Audi A5 Coupe 2012 5.95% Audi S6 Sedan 2011 4.05% Mercedes-Benz S-Class Sedan 2012 3.8% Acura RL Sedan 2012 3.65% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 8.11% BMW 1 Series Convertible 2012 6.13% FIAT 500 Convertible 2012 5.14% Volkswagen Golf Hatchback 2012 4.56% BMW 3 Series Wagon 2012 4.5% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Dodge Magnum Wagon 2008 4.7% Acura TL Sedan 2012 3.84% Scion xD Hatchback 2012 2.92% Nissan Juke Hatchback 2012 2.57% Chrysler 300 SRT-8 2010 2.52% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 14.34% Buick Enclave SUV 2012 8.74% BMW X5 SUV 2007 7.79% BMW X6 SUV 2012 3.95% Audi V8 Sedan 1994 3.77% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Suzuki Aerio Sedan 2007 3.09% Tesla Model S Sedan 2012 2.55% BMW M3 Coupe 2012 2.21% Scion xD Hatchback 2012 2.14% Ford Focus Sedan 2007 2.08% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.46% Chevrolet Silverado 1500 Extended Cab 2012 6.32% Audi 100 Sedan 1994 5.43% Chrysler Town and Country Minivan 2012 4.84% Dodge Ram Pickup 3500 Crew Cab 2010 3.45% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Audi RS 4 Convertible 2008 52.91% Lamborghini Diablo Coupe 2001 27.18% BMW Z4 Convertible 2012 4.42% Ferrari 458 Italia Convertible 2012 4.3% Acura Integra Type R 2001 2.78% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Chrysler 300 SRT-8 2010 3.76% Rolls-Royce Ghost Sedan 2012 2.86% GMC Terrain SUV 2012 2.84% Jeep Grand Cherokee SUV 2012 2.74% Scion xD Hatchback 2012 2.69% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 25.12% Dodge Caliber Wagon 2012 7.48% Ford Focus Sedan 2007 5.54% Volvo 240 Sedan 1993 5.34% BMW X6 SUV 2012 4.44% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 BMW ActiveHybrid 5 Sedan 2012 6.44% BMW 6 Series Convertible 2007 4.84% Fisker Karma Sedan 2012 3.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Audi S5 Convertible 2012 3.75% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Dodge Durango SUV 2012 15.56% Toyota 4Runner SUV 2012 9.78% Honda Odyssey Minivan 2012 7.74% Acura ZDX Hatchback 2012 6.43% Mercedes-Benz E-Class Sedan 2012 6.37% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 BMW X3 SUV 2012 5.61% Honda Accord Sedan 2012 3.95% Honda Odyssey Minivan 2012 3.46% Cadillac SRX SUV 2012 3.43% Chrysler Town and Country Minivan 2012 3.26% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Aston Martin V8 Vantage Convertible 2012 15.33% BMW Z4 Convertible 2012 9.07% BMW 6 Series Convertible 2007 6.44% Audi TT RS Coupe 2012 3.98% Bentley Continental GT Coupe 2012 3.67% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 Jaguar XK XKR 2012 16.68% Aston Martin Virage Convertible 2012 6.85% FIAT 500 Convertible 2012 6.16% Chevrolet Camaro Convertible 2012 5.75% BMW 1 Series Convertible 2012 5.37% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Hyundai Tucson SUV 2012 11.58% Hyundai Veracruz SUV 2012 9.0% GMC Acadia SUV 2012 5.86% Chevrolet Traverse SUV 2012 5.78% Ford F-150 Regular Cab 2007 5.55% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 75.0% Aston Martin Virage Coupe 2012 5.81% Lamborghini Diablo Coupe 2001 5.46% Aston Martin V8 Vantage Coupe 2012 2.34% Hyundai Veloster Hatchback 2012 1.99% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 65.42% Ford E-Series Wagon Van 2012 5.56% Ford F-150 Regular Cab 2012 3.99% Ford F-150 Regular Cab 2007 3.15% Dodge Dakota Club Cab 2007 2.97% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Ford Freestar Minivan 2007 8.94% Honda Odyssey Minivan 2007 6.16% Chevrolet Silverado 1500 Extended Cab 2012 4.51% Lincoln Town Car Sedan 2011 4.04% Chrysler Aspen SUV 2009 3.96% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bentley Continental GT Coupe 2007 6.95% Rolls-Royce Ghost Sedan 2012 6.91% Bentley Continental Flying Spur Sedan 2007 5.44% Chrysler 300 SRT-8 2010 4.54% Rolls-Royce Phantom Sedan 2012 4.23% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Suzuki SX4 Sedan 2012 7.83% Nissan Leaf Hatchback 2012 7.4% Suzuki Aerio Sedan 2007 5.07% Tesla Model S Sedan 2012 2.9% Daewoo Nubira Wagon 2002 2.81% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Chrysler Town and Country Minivan 2012 8.09% BMW X3 SUV 2012 5.66% Toyota Sequoia SUV 2012 4.53% Ford Freestar Minivan 2007 4.36% Honda Odyssey Minivan 2007 3.87% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Buick Rainier SUV 2007 17.1% Buick Enclave SUV 2012 16.59% BMW X6 SUV 2012 9.88% Mazda Tribute SUV 2011 5.3% Jeep Liberty SUV 2012 4.63% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Fisker Karma Sedan 2012 9.91% BMW 6 Series Convertible 2007 7.33% Bugatti Veyron 16.4 Convertible 2009 5.43% BMW Z4 Convertible 2012 3.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.9% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Dodge Dakota Crew Cab 2010 14.07% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.83% Dodge Dakota Club Cab 2007 7.11% Ford F-450 Super Duty Crew Cab 2012 6.92% Chevrolet Silverado 2500HD Regular Cab 2012 6.46% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 Spyker C8 Coupe 2009 57.91% Bugatti Veyron 16.4 Coupe 2009 9.02% Spyker C8 Convertible 2009 7.98% FIAT 500 Convertible 2012 3.28% Nissan Juke Hatchback 2012 2.38% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 27.84% Suzuki SX4 Hatchback 2012 7.23% Hyundai Tucson SUV 2012 5.2% Jeep Grand Cherokee SUV 2012 4.03% Audi 100 Sedan 1994 3.34% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Chrysler Sebring Convertible 2010 8.3% Hyundai Sonata Sedan 2012 7.69% Dodge Journey SUV 2012 6.42% Hyundai Azera Sedan 2012 5.58% Chevrolet Camaro Convertible 2012 5.19% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Audi A5 Coupe 2012 19.03% Hyundai Sonata Hybrid Sedan 2012 6.23% Audi S5 Coupe 2012 5.43% Acura TL Sedan 2012 4.48% Buick Regal GS 2012 4.16% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Audi 100 Sedan 1994 40.16% Chevrolet Silverado 2500HD Regular Cab 2012 13.66% Chevrolet Silverado 1500 Regular Cab 2012 9.38% Dodge Ram Pickup 3500 Quad Cab 2009 5.28% Chevrolet Silverado 1500 Extended Cab 2012 4.72% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Hyundai Elantra Sedan 2007 17.96% BMW X3 SUV 2012 7.65% BMW X6 SUV 2012 6.63% Acura RL Sedan 2012 6.04% Honda Odyssey Minivan 2012 4.6% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Rolls-Royce Ghost Sedan 2012 16.53% Porsche Panamera Sedan 2012 7.76% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.18% Nissan 240SX Coupe 1998 4.57% Chevrolet Camaro Convertible 2012 3.81% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 13.23% Jeep Patriot SUV 2012 6.46% Audi V8 Sedan 1994 5.77% GMC Savana Van 2012 5.16% Volvo 240 Sedan 1993 4.85% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 40.76% Audi RS 4 Convertible 2008 14.28% Acura Integra Type R 2001 9.16% BMW Z4 Convertible 2012 6.32% Spyker C8 Coupe 2009 5.87% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 66.95% Chevrolet Express Cargo Van 2007 28.87% Chevrolet Express Van 2007 4.18% Audi 100 Sedan 1994 0.0% Volkswagen Golf Hatchback 1991 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Acura ZDX Hatchback 2012 6.6% Aston Martin Virage Coupe 2012 5.55% Hyundai Azera Sedan 2012 3.39% Hyundai Veloster Hatchback 2012 3.36% Mitsubishi Lancer Sedan 2012 2.89% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 15.14% Chevrolet Corvette Convertible 2012 11.9% Ferrari 458 Italia Coupe 2012 9.43% Ferrari 458 Italia Convertible 2012 7.84% Dodge Charger SRT-8 2009 5.01% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Ferrari California Convertible 2012 36.92% Ferrari 458 Italia Coupe 2012 8.72% Ferrari 458 Italia Convertible 2012 8.25% Aston Martin V8 Vantage Convertible 2012 3.49% Audi TT RS Coupe 2012 3.2% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Isuzu Ascender SUV 2008 21.22% Chevrolet Tahoe Hybrid SUV 2012 11.89% Dodge Ram Pickup 3500 Crew Cab 2010 9.9% Chrysler Town and Country Minivan 2012 8.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.63% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 50.18% Dodge Charger Sedan 2012 6.15% Hyundai Veloster Hatchback 2012 6.04% Lamborghini Diablo Coupe 2001 4.06% Ford Mustang Convertible 2007 3.49% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Isuzu Ascender SUV 2008 6.99% Chevrolet Avalanche Crew Cab 2012 6.29% Ford E-Series Wagon Van 2012 5.89% Chevrolet Silverado 1500 Extended Cab 2012 5.54% Chrysler Aspen SUV 2009 5.15% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Nissan Juke Hatchback 2012 20.77% Rolls-Royce Phantom Sedan 2012 5.86% Bugatti Veyron 16.4 Coupe 2009 5.04% FIAT 500 Abarth 2012 4.96% Rolls-Royce Ghost Sedan 2012 3.56% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 19.95% McLaren MP4-12C Coupe 2012 18.37% Hyundai Veloster Hatchback 2012 17.24% Lamborghini Diablo Coupe 2001 11.59% Spyker C8 Convertible 2009 8.05% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Dodge Caliber Wagon 2007 26.26% Honda Accord Coupe 2012 4.45% Dodge Journey SUV 2012 3.1% Cadillac CTS-V Sedan 2012 3.02% Suzuki SX4 Hatchback 2012 2.87% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Bentley Mulsanne Sedan 2011 15.72% Bentley Continental GT Coupe 2012 10.01% Bugatti Veyron 16.4 Coupe 2009 9.87% Bentley Continental GT Coupe 2007 6.27% Infiniti G Coupe IPL 2012 4.8% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Acura TL Sedan 2012 8.8% Acura TSX Sedan 2012 5.14% Chevrolet Malibu Hybrid Sedan 2010 4.59% Tesla Model S Sedan 2012 4.19% Mitsubishi Lancer Sedan 2012 4.08% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Maybach Landaulet Convertible 2012 3.15% Cadillac CTS-V Sedan 2012 3.06% Infiniti QX56 SUV 2011 3.05% Chevrolet Malibu Hybrid Sedan 2010 2.92% Bentley Mulsanne Sedan 2011 2.76% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Volkswagen Golf Hatchback 1991 7.11% Volvo 240 Sedan 1993 5.89% Jeep Liberty SUV 2012 3.45% Nissan NV Passenger Van 2012 3.06% Jeep Patriot SUV 2012 3.0% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ford Fiesta Sedan 2012 19.16% Volkswagen Beetle Hatchback 2012 14.96% Eagle Talon Hatchback 1998 6.14% Geo Metro Convertible 1993 5.5% Toyota Corolla Sedan 2012 3.26% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 15.43% Dodge Dakota Crew Cab 2010 14.71% Isuzu Ascender SUV 2008 10.55% Ford F-450 Super Duty Crew Cab 2012 7.19% Ford F-150 Regular Cab 2012 5.84% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 37.38% Dodge Sprinter Cargo Van 2009 22.73% Mercedes-Benz Sprinter Van 2012 17.44% Chevrolet Express Cargo Van 2007 5.62% Chevrolet Express Van 2007 4.91% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Aston Martin Virage Coupe 2012 24.04% Bentley Continental GT Coupe 2012 6.81% Volvo C30 Hatchback 2012 5.94% Lamborghini Aventador Coupe 2012 5.41% Ferrari FF Coupe 2012 4.99% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Chrysler Aspen SUV 2009 21.42% Hyundai Azera Sedan 2012 17.36% Ford Expedition EL SUV 2009 16.6% Dodge Ram Pickup 3500 Crew Cab 2010 5.3% Land Rover LR2 SUV 2012 4.76% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 16.83% Geo Metro Convertible 1993 12.43% Daewoo Nubira Wagon 2002 7.53% Dodge Sprinter Cargo Van 2009 4.95% Volkswagen Golf Hatchback 1991 4.18% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford Mustang Convertible 2007 15.73% GMC Canyon Extended Cab 2012 11.72% Chevrolet Silverado 1500 Extended Cab 2012 7.31% Chevrolet Silverado 1500 Regular Cab 2012 7.24% Dodge Caliber Wagon 2007 7.12% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi S6 Sedan 2011 19.8% Audi A5 Coupe 2012 17.01% Audi S4 Sedan 2012 11.37% Audi S5 Coupe 2012 7.82% Mercedes-Benz S-Class Sedan 2012 6.44% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Infiniti G Coupe IPL 2012 9.26% Fisker Karma Sedan 2012 7.63% MINI Cooper Roadster Convertible 2012 4.75% Tesla Model S Sedan 2012 4.07% Acura TL Sedan 2012 3.92% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Dodge Challenger SRT8 2011 10.82% Aston Martin V8 Vantage Coupe 2012 9.8% Audi R8 Coupe 2012 7.65% Aston Martin V8 Vantage Convertible 2012 6.18% Bentley Mulsanne Sedan 2011 3.78% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.3% Ford F-450 Super Duty Crew Cab 2012 8.57% Chevrolet Silverado 1500 Regular Cab 2012 7.18% Dodge Dakota Crew Cab 2010 7.11% Dodge Ram Pickup 3500 Quad Cab 2009 5.95% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Audi TTS Coupe 2012 19.97% Cadillac CTS-V Sedan 2012 7.79% Infiniti G Coupe IPL 2012 6.69% Audi R8 Coupe 2012 6.52% Audi A5 Coupe 2012 5.34% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 37.49% Chevrolet Tahoe Hybrid SUV 2012 13.52% Toyota Sequoia SUV 2012 7.34% Isuzu Ascender SUV 2008 4.79% Buick Rainier SUV 2007 3.89% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 6.52% Volvo 240 Sedan 1993 5.96% Audi 100 Wagon 1994 4.55% Audi 100 Sedan 1994 4.33% Chrysler Aspen SUV 2009 3.99% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Suzuki SX4 Sedan 2012 6.88% Acura TL Sedan 2012 5.27% Suzuki Aerio Sedan 2007 4.68% Volkswagen Golf Hatchback 2012 3.5% Nissan Leaf Hatchback 2012 2.75% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Mercedes-Benz 300-Class Convertible 1993 8.63% Plymouth Neon Coupe 1999 6.3% Dodge Caravan Minivan 1997 4.03% Lincoln Town Car Sedan 2011 3.72% Volvo 240 Sedan 1993 2.72% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 23.32% Hyundai Genesis Sedan 2012 10.42% Land Rover Range Rover SUV 2012 8.7% Volkswagen Golf Hatchback 1991 6.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.97% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 9.64% Chevrolet Impala Sedan 2007 6.42% Chevrolet Malibu Sedan 2007 6.39% Honda Odyssey Minivan 2007 6.38% Honda Odyssey Minivan 2012 6.19% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 46.19% BMW 1 Series Convertible 2012 10.26% Hyundai Veloster Hatchback 2012 5.1% Toyota Camry Sedan 2012 2.1% Chevrolet Camaro Convertible 2012 2.1% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Infiniti QX56 SUV 2011 12.59% Ford Expedition EL SUV 2009 8.18% Hyundai Santa Fe SUV 2012 7.79% Land Rover Range Rover SUV 2012 6.89% Ford Edge SUV 2012 6.33% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Rolls-Royce Phantom Sedan 2012 21.42% Lamborghini Reventon Coupe 2008 6.55% Fisker Karma Sedan 2012 4.34% Rolls-Royce Ghost Sedan 2012 4.17% Hyundai Azera Sedan 2012 3.99% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 MINI Cooper Roadster Convertible 2012 9.89% Mercedes-Benz E-Class Sedan 2012 6.99% Hyundai Azera Sedan 2012 6.83% Mercedes-Benz S-Class Sedan 2012 6.16% Jaguar XK XKR 2012 5.77% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 5.15% Porsche Panamera Sedan 2012 5.11% Audi TT RS Coupe 2012 4.91% Jaguar XK XKR 2012 4.08% Audi TT Hatchback 2011 3.16% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 HUMMER H3T Crew Cab 2010 73.58% Dodge Ram Pickup 3500 Quad Cab 2009 15.69% Chevrolet Silverado 1500 Regular Cab 2012 2.27% GMC Canyon Extended Cab 2012 2.04% HUMMER H2 SUT Crew Cab 2009 1.31% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 26.01% Hyundai Elantra Sedan 2007 11.12% Dodge Journey SUV 2012 5.26% Hyundai Elantra Touring Hatchback 2012 5.08% Cadillac CTS-V Sedan 2012 4.95% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 31.92% Audi 100 Wagon 1994 5.51% Toyota 4Runner SUV 2012 4.69% Dodge Sprinter Cargo Van 2009 4.61% Audi V8 Sedan 1994 3.94% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 Nissan Leaf Hatchback 2012 12.83% Suzuki SX4 Sedan 2012 9.38% smart fortwo Convertible 2012 6.65% Chevrolet Impala Sedan 2007 5.77% Chevrolet Sonic Sedan 2012 4.74% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 MINI Cooper Roadster Convertible 2012 12.46% BMW ActiveHybrid 5 Sedan 2012 6.59% Audi S5 Convertible 2012 3.96% Audi A5 Coupe 2012 3.94% Audi TT Hatchback 2011 3.52% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Isuzu Ascender SUV 2008 19.99% Toyota 4Runner SUV 2012 8.99% Toyota Sequoia SUV 2012 5.11% GMC Canyon Extended Cab 2012 4.19% Mazda Tribute SUV 2011 3.33% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 79.95% McLaren MP4-12C Coupe 2012 12.45% Lamborghini Aventador Coupe 2012 2.48% Lamborghini Diablo Coupe 2001 1.14% Aston Martin V8 Vantage Coupe 2012 1.13% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Mercedes-Benz 300-Class Convertible 1993 41.15% Audi 100 Sedan 1994 10.71% Audi 100 Wagon 1994 7.04% Chevrolet Express Cargo Van 2007 6.93% Volkswagen Golf Hatchback 1991 6.13% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Infiniti QX56 SUV 2011 9.69% Toyota Sequoia SUV 2012 7.56% Ford Expedition EL SUV 2009 5.09% Dodge Journey SUV 2012 4.49% Chrysler PT Cruiser Convertible 2008 4.33% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 BMW 3 Series Wagon 2012 24.6% Toyota Corolla Sedan 2012 16.3% Honda Accord Coupe 2012 11.87% Eagle Talon Hatchback 1998 11.72% Toyota Camry Sedan 2012 7.58% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW 1 Series Convertible 2012 13.64% Acura TSX Sedan 2012 5.27% Acura TL Sedan 2012 4.03% BMW ActiveHybrid 5 Sedan 2012 4.0% BMW M5 Sedan 2010 3.44% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 GMC Acadia SUV 2012 4.73% Buick Rainier SUV 2007 4.62% Buick Enclave SUV 2012 4.51% Dodge Caliber Wagon 2012 4.28% Chevrolet Avalanche Crew Cab 2012 4.13% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Audi S5 Convertible 2012 10.19% Audi RS 4 Convertible 2008 7.05% Audi R8 Coupe 2012 5.45% Infiniti G Coupe IPL 2012 4.74% Porsche Panamera Sedan 2012 4.68% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Hyundai Santa Fe SUV 2012 18.33% Ford F-450 Super Duty Crew Cab 2012 14.72% Ford Ranger SuperCab 2011 14.25% Dodge Ram Pickup 3500 Crew Cab 2010 6.99% Ford F-150 Regular Cab 2012 6.24% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 69.54% Fisker Karma Sedan 2012 2.23% Mercedes-Benz S-Class Sedan 2012 1.6% Infiniti G Coupe IPL 2012 1.54% BMW Z4 Convertible 2012 1.34% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Lamborghini Aventador Coupe 2012 16.18% McLaren MP4-12C Coupe 2012 12.87% Nissan Juke Hatchback 2012 11.36% Bugatti Veyron 16.4 Coupe 2009 10.32% BMW M3 Coupe 2012 6.63% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Audi V8 Sedan 1994 3.05% Hyundai Veracruz SUV 2012 2.83% Chrysler 300 SRT-8 2010 2.79% BMW M6 Convertible 2010 2.31% Chevrolet TrailBlazer SS 2009 2.18% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Fisker Karma Sedan 2012 9.8% Bugatti Veyron 16.4 Convertible 2009 7.19% BMW 6 Series Convertible 2007 6.34% BMW ActiveHybrid 5 Sedan 2012 5.29% smart fortwo Convertible 2012 4.94% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 17.28% HUMMER H3T Crew Cab 2010 7.74% Hyundai Tucson SUV 2012 6.5% Ford Ranger SuperCab 2011 6.36% Chevrolet Silverado 1500 Regular Cab 2012 4.54% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 12.97% Bentley Continental Flying Spur Sedan 2007 6.84% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.45% BMW 6 Series Convertible 2007 5.11% Bugatti Veyron 16.4 Convertible 2009 5.1% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 17.3% Daewoo Nubira Wagon 2002 11.02% Volkswagen Golf Hatchback 2012 8.82% Chevrolet Express Van 2007 7.5% Hyundai Elantra Touring Hatchback 2012 4.65% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Bentley Arnage Sedan 2009 5.16% Lamborghini Reventon Coupe 2008 3.08% Suzuki SX4 Sedan 2012 2.93% Nissan Juke Hatchback 2012 2.92% Nissan Leaf Hatchback 2012 2.7% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Acura ZDX Hatchback 2012 3.62% Cadillac SRX SUV 2012 3.55% Hyundai Tucson SUV 2012 3.54% Jeep Compass SUV 2012 3.46% Dodge Magnum Wagon 2008 3.4% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Porsche Panamera Sedan 2012 3.52% Suzuki Aerio Sedan 2007 3.13% Hyundai Veracruz SUV 2012 3.0% Land Rover LR2 SUV 2012 2.52% Mercedes-Benz 300-Class Convertible 1993 2.32% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 BMW M3 Coupe 2012 2.9% Audi S5 Convertible 2012 2.45% Bentley Continental Supersports Conv. Convertible 2012 2.3% Audi R8 Coupe 2012 2.28% Audi S4 Sedan 2007 2.03% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Chrysler Aspen SUV 2009 22.86% Isuzu Ascender SUV 2008 13.45% Ford E-Series Wagon Van 2012 11.98% Dodge Ram Pickup 3500 Crew Cab 2010 11.89% Hyundai Santa Fe SUV 2012 6.47% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Audi V8 Sedan 1994 9.04% Audi 100 Wagon 1994 8.25% Mercedes-Benz 300-Class Convertible 1993 6.39% Nissan 240SX Coupe 1998 4.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.15% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 23.63% Bentley Continental GT Coupe 2007 18.71% Bentley Continental GT Coupe 2012 9.41% Bentley Mulsanne Sedan 2011 5.92% Audi TTS Coupe 2012 3.55% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 Audi 100 Sedan 1994 12.14% Volkswagen Golf Hatchback 1991 10.57% smart fortwo Convertible 2012 9.19% BMW 1 Series Coupe 2012 7.17% GMC Canyon Extended Cab 2012 6.89% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 43.99% Jeep Compass SUV 2012 7.84% Buick Rainier SUV 2007 6.49% Mazda Tribute SUV 2011 5.9% Dodge Caliber Wagon 2012 3.86% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Eagle Talon Hatchback 1998 11.08% Plymouth Neon Coupe 1999 10.32% Ford Mustang Convertible 2007 8.11% Chrysler 300 SRT-8 2010 7.74% Chrysler Crossfire Convertible 2008 3.79% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 BMW 6 Series Convertible 2007 15.3% Lamborghini Reventon Coupe 2008 7.64% Geo Metro Convertible 1993 4.73% Bugatti Veyron 16.4 Convertible 2009 4.59% FIAT 500 Convertible 2012 4.19% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 31.41% Isuzu Ascender SUV 2008 22.81% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.77% Chevrolet Silverado 1500 Extended Cab 2012 4.98% Dodge Ram Pickup 3500 Quad Cab 2009 4.66% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 16.82% Dodge Ram Pickup 3500 Crew Cab 2010 12.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 10.05% Chevrolet Silverado 1500 Extended Cab 2012 9.42% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.36% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Ferrari FF Coupe 2012 10.99% BMW 3 Series Sedan 2012 9.22% BMW 1 Series Coupe 2012 7.39% BMW 3 Series Wagon 2012 6.43% Ferrari California Convertible 2012 5.77% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Toyota Corolla Sedan 2012 6.91% Acura TSX Sedan 2012 5.37% Audi A5 Coupe 2012 5.19% Toyota Camry Sedan 2012 3.78% Hyundai Elantra Sedan 2007 3.3% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Chevrolet Sonic Sedan 2012 5.56% Hyundai Azera Sedan 2012 4.26% Hyundai Sonata Hybrid Sedan 2012 3.83% Audi A5 Coupe 2012 3.3% Chevrolet Malibu Hybrid Sedan 2010 3.0% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 44.22% Dodge Ram Pickup 3500 Crew Cab 2010 17.91% Isuzu Ascender SUV 2008 16.38% Chrysler Aspen SUV 2009 4.93% Hyundai Santa Fe SUV 2012 3.94% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Dodge Caravan Minivan 1997 5.31% GMC Savana Van 2012 4.9% Chevrolet Express Van 2007 4.7% Plymouth Neon Coupe 1999 4.4% Suzuki Aerio Sedan 2007 3.69% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Land Rover Range Rover SUV 2012 16.08% Ford E-Series Wagon Van 2012 13.14% Ford Expedition EL SUV 2009 11.19% Ford F-450 Super Duty Crew Cab 2012 8.85% Isuzu Ascender SUV 2008 7.22% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Infiniti G Coupe IPL 2012 6.58% BMW M5 Sedan 2010 5.56% Acura TL Sedan 2012 4.44% Hyundai Genesis Sedan 2012 3.99% Audi S4 Sedan 2007 3.88% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Lincoln Town Car Sedan 2011 6.54% Hyundai Veracruz SUV 2012 5.02% Chrysler Sebring Convertible 2010 4.77% Chevrolet Traverse SUV 2012 3.96% Ford Focus Sedan 2007 3.67% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 51.64% GMC Canyon Extended Cab 2012 13.96% Chevrolet Silverado 1500 Regular Cab 2012 9.81% Ford F-150 Regular Cab 2007 7.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.69% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.39% Mercedes-Benz 300-Class Convertible 1993 10.47% smart fortwo Convertible 2012 6.84% Rolls-Royce Ghost Sedan 2012 6.44% BMW 6 Series Convertible 2007 5.09% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Ford Mustang Convertible 2007 10.19% Dodge Caliber Wagon 2007 4.91% Honda Accord Coupe 2012 4.26% Hyundai Elantra Sedan 2007 3.71% Chevrolet TrailBlazer SS 2009 3.38% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Lamborghini Reventon Coupe 2008 28.83% Bugatti Veyron 16.4 Coupe 2009 13.87% Bugatti Veyron 16.4 Convertible 2009 10.12% Spyker C8 Convertible 2009 6.59% Lamborghini Aventador Coupe 2012 5.95% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Hyundai Azera Sedan 2012 18.18% Ford Edge SUV 2012 3.58% MINI Cooper Roadster Convertible 2012 3.42% Mercedes-Benz S-Class Sedan 2012 3.34% Dodge Challenger SRT8 2011 3.1% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 HUMMER H3T Crew Cab 2010 22.46% HUMMER H2 SUT Crew Cab 2009 12.02% GMC Yukon Hybrid SUV 2012 9.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.49% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.35% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Hyundai Santa Fe SUV 2012 16.36% Chevrolet Avalanche Crew Cab 2012 14.52% Ford Expedition EL SUV 2009 11.58% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.58% Ford F-150 Regular Cab 2012 4.36% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Bentley Continental GT Coupe 2012 14.17% Audi TT Hatchback 2011 11.91% Infiniti G Coupe IPL 2012 11.54% Acura TL Type-S 2008 5.85% Fisker Karma Sedan 2012 5.62% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Bugatti Veyron 16.4 Convertible 2009 32.39% Maybach Landaulet Convertible 2012 7.27% MINI Cooper Roadster Convertible 2012 5.16% Rolls-Royce Phantom Sedan 2012 4.6% smart fortwo Convertible 2012 3.39% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Hyundai Santa Fe SUV 2012 15.01% Ford F-150 Regular Cab 2012 8.22% Volvo XC90 SUV 2007 7.99% Ford F-450 Super Duty Crew Cab 2012 6.36% Ford Edge SUV 2012 4.19% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Hyundai Tucson SUV 2012 12.32% Ford Freestar Minivan 2007 11.63% Chevrolet Traverse SUV 2012 9.44% Chevrolet Avalanche Crew Cab 2012 4.8% Dodge Durango SUV 2007 3.73% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Acura RL Sedan 2012 15.09% Hyundai Elantra Sedan 2007 9.09% Hyundai Accent Sedan 2012 7.52% Tesla Model S Sedan 2012 6.4% Chevrolet Sonic Sedan 2012 5.85% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 64.78% Rolls-Royce Ghost Sedan 2012 7.68% MINI Cooper Roadster Convertible 2012 2.07% Dodge Challenger SRT8 2011 1.47% Chevrolet Sonic Sedan 2012 1.44% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 BMW 1 Series Coupe 2012 48.5% Volvo C30 Hatchback 2012 4.89% Suzuki SX4 Hatchback 2012 4.58% Dodge Caliber Wagon 2007 4.33% BMW 3 Series Sedan 2012 2.97% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Silverado 1500 Extended Cab 2012 6.54% Chevrolet Traverse SUV 2012 4.52% Chevrolet Silverado 2500HD Regular Cab 2012 4.2% Ford Freestar Minivan 2007 3.68% Chevrolet Silverado 1500 Regular Cab 2012 3.24% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Hyundai Sonata Sedan 2012 8.32% Ford Edge SUV 2012 5.23% Dodge Durango SUV 2012 4.55% Hyundai Santa Fe SUV 2012 3.46% Chrysler PT Cruiser Convertible 2008 3.28% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 BMW X5 SUV 2007 9.8% Hyundai Santa Fe SUV 2012 8.81% Toyota Sequoia SUV 2012 8.19% Hyundai Veracruz SUV 2012 7.99% Chevrolet Avalanche Crew Cab 2012 7.39% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Nissan Leaf Hatchback 2012 5.54% Jaguar XK XKR 2012 4.29% Chevrolet Corvette ZR1 2012 4.03% Nissan Juke Hatchback 2012 3.13% Porsche Panamera Sedan 2012 2.81% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Bentley Mulsanne Sedan 2011 16.88% Fisker Karma Sedan 2012 12.15% Bentley Continental GT Coupe 2007 8.37% Bugatti Veyron 16.4 Convertible 2009 7.5% Spyker C8 Convertible 2009 6.17% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Plymouth Neon Coupe 1999 16.85% Dodge Challenger SRT8 2011 11.26% Acura Integra Type R 2001 10.71% Chevrolet Corvette ZR1 2012 7.82% Eagle Talon Hatchback 1998 6.74% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 22.01% Lamborghini Diablo Coupe 2001 11.23% Hyundai Veloster Hatchback 2012 9.79% BMW Z4 Convertible 2012 7.91% Bugatti Veyron 16.4 Coupe 2009 5.37% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Ford Mustang Convertible 2007 14.12% BMW X6 SUV 2012 8.21% Chevrolet TrailBlazer SS 2009 5.29% Chevrolet Cobalt SS 2010 5.22% Dodge Caliber Wagon 2007 4.89% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caliber Wagon 2012 7.14% Dodge Journey SUV 2012 7.06% Cadillac SRX SUV 2012 6.62% Ford Edge SUV 2012 6.55% BMW X5 SUV 2007 6.07% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Suzuki Aerio Sedan 2007 8.57% Honda Odyssey Minivan 2007 8.29% Acura TSX Sedan 2012 6.73% Chevrolet Malibu Hybrid Sedan 2010 5.41% Chevrolet Impala Sedan 2007 4.72% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 50.01% Acura TL Type-S 2008 10.0% BMW Z4 Convertible 2012 7.52% Infiniti G Coupe IPL 2012 6.1% Fisker Karma Sedan 2012 5.92% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Dodge Ram Pickup 3500 Crew Cab 2010 9.66% Volvo XC90 SUV 2007 6.55% Hyundai Santa Fe SUV 2012 6.38% Chrysler Aspen SUV 2009 5.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.95% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 13.73% Chevrolet Impala Sedan 2007 6.83% Suzuki Aerio Sedan 2007 5.61% Suzuki SX4 Hatchback 2012 5.03% Lincoln Town Car Sedan 2011 4.09% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Cadillac CTS-V Sedan 2012 7.68% Bentley Continental GT Coupe 2007 6.81% Chrysler 300 SRT-8 2010 6.59% Bentley Continental Flying Spur Sedan 2007 5.34% Fisker Karma Sedan 2012 3.84% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Dakota Club Cab 2007 12.66% Ford Ranger SuperCab 2011 11.73% GMC Canyon Extended Cab 2012 8.1% Chevrolet Silverado 1500 Regular Cab 2012 7.84% Isuzu Ascender SUV 2008 6.07% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Mercedes-Benz S-Class Sedan 2012 8.37% Acura TL Type-S 2008 3.12% BMW ActiveHybrid 5 Sedan 2012 3.03% FIAT 500 Convertible 2012 3.02% Maybach Landaulet Convertible 2012 2.88% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 46.85% Chevrolet Silverado 1500 Regular Cab 2012 12.47% Chevrolet Silverado 1500 Extended Cab 2012 4.04% Audi 100 Wagon 1994 2.36% HUMMER H2 SUT Crew Cab 2009 2.25% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Dodge Ram Pickup 3500 Quad Cab 2009 28.87% Ford F-450 Super Duty Crew Cab 2012 12.63% Chevrolet Silverado 1500 Regular Cab 2012 6.2% Dodge Ram Pickup 3500 Crew Cab 2010 5.54% Ford F-150 Regular Cab 2007 5.32% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Acura TL Sedan 2012 7.11% BMW 6 Series Convertible 2007 6.45% BMW 1 Series Convertible 2012 4.12% BMW ActiveHybrid 5 Sedan 2012 4.11% BMW M5 Sedan 2010 3.82% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 36.95% Hyundai Sonata Hybrid Sedan 2012 24.48% Hyundai Elantra Sedan 2007 4.96% Toyota Corolla Sedan 2012 4.39% Buick Regal GS 2012 3.49% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 21.73% Dodge Dakota Club Cab 2007 12.98% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 12.93% Chevrolet Silverado 2500HD Regular Cab 2012 9.88% Chevrolet Silverado 1500 Regular Cab 2012 8.11% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Buick Rainier SUV 2007 52.38% Dodge Caliber Wagon 2012 9.88% Dodge Durango SUV 2007 4.46% Chevrolet TrailBlazer SS 2009 2.96% Dodge Dakota Crew Cab 2010 2.75% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 25.34% Aston Martin Virage Coupe 2012 13.38% Lamborghini Diablo Coupe 2001 13.2% Bentley Continental GT Coupe 2012 8.14% Hyundai Veloster Hatchback 2012 6.93% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Jeep Liberty SUV 2012 17.76% Jeep Grand Cherokee SUV 2012 14.61% Jeep Patriot SUV 2012 10.27% Mazda Tribute SUV 2011 9.8% Suzuki SX4 Hatchback 2012 3.69% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 5.2% Toyota Camry Sedan 2012 4.39% Hyundai Elantra Touring Hatchback 2012 4.31% Audi S4 Sedan 2007 3.84% Mitsubishi Lancer Sedan 2012 3.79% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 17.26% Dodge Journey SUV 2012 13.58% Cadillac SRX SUV 2012 9.83% Toyota Sequoia SUV 2012 7.67% Ford Edge SUV 2012 6.36% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 37.12% Ferrari 458 Italia Coupe 2012 19.59% Lamborghini Aventador Coupe 2012 11.18% Ferrari California Convertible 2012 6.12% Dodge Magnum Wagon 2008 4.95% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Aston Martin V8 Vantage Coupe 2012 10.46% Bugatti Veyron 16.4 Convertible 2009 8.17% Aston Martin V8 Vantage Convertible 2012 6.15% Porsche Panamera Sedan 2012 5.16% Bentley Continental GT Coupe 2007 5.0% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 63.66% Chevrolet Express Cargo Van 2007 27.09% Chevrolet Express Van 2007 8.48% Volkswagen Golf Hatchback 1991 0.11% Dodge Caravan Minivan 1997 0.11% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Eagle Talon Hatchback 1998 10.46% Volkswagen Beetle Hatchback 2012 6.88% Plymouth Neon Coupe 1999 6.12% Suzuki Kizashi Sedan 2012 5.76% Bentley Continental Flying Spur Sedan 2007 4.55% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Suzuki SX4 Hatchback 2012 13.4% Acura RL Sedan 2012 9.98% Suzuki SX4 Sedan 2012 4.88% Chevrolet Sonic Sedan 2012 4.57% BMW X6 SUV 2012 4.48% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 18.94% smart fortwo Convertible 2012 14.49% Nissan Leaf Hatchback 2012 9.66% Suzuki SX4 Sedan 2012 7.28% Bugatti Veyron 16.4 Convertible 2009 2.77% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Fisker Karma Sedan 2012 18.22% Infiniti G Coupe IPL 2012 17.32% Aston Martin V8 Vantage Coupe 2012 6.31% Audi R8 Coupe 2012 5.95% Audi TTS Coupe 2012 4.3% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 16.8% Hyundai Sonata Sedan 2012 13.75% Acura RL Sedan 2012 12.28% Honda Odyssey Minivan 2012 6.22% BMW 3 Series Sedan 2012 4.47% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 23.61% Lamborghini Aventador Coupe 2012 5.39% Jaguar XK XKR 2012 4.29% Aston Martin V8 Vantage Coupe 2012 3.12% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.46% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Chevrolet TrailBlazer SS 2009 7.67% Nissan 240SX Coupe 1998 5.82% Volkswagen Golf Hatchback 1991 5.42% Chrysler 300 SRT-8 2010 5.2% Volvo 240 Sedan 1993 5.03% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Hyundai Tucson SUV 2012 3.8% Dodge Caliber Wagon 2012 3.58% Dodge Magnum Wagon 2008 3.08% Cadillac SRX SUV 2012 2.92% Chevrolet Avalanche Crew Cab 2012 2.8% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Chevrolet Cobalt SS 2010 10.1% Ferrari 458 Italia Coupe 2012 8.46% Ferrari 458 Italia Convertible 2012 7.04% Ferrari California Convertible 2012 6.61% Ford GT Coupe 2006 6.18% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 44.09% BMW Z4 Convertible 2012 6.31% Chevrolet Camaro Convertible 2012 3.72% Toyota Corolla Sedan 2012 3.56% Ferrari FF Coupe 2012 3.22% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Geo Metro Convertible 1993 15.49% Eagle Talon Hatchback 1998 11.13% Nissan 240SX Coupe 1998 6.41% Dodge Charger SRT-8 2009 5.44% Ferrari California Convertible 2012 4.77% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 70.64% Ford F-450 Super Duty Crew Cab 2012 6.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.67% Ford Expedition EL SUV 2009 4.66% Chrysler Aspen SUV 2009 3.74% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 40.85% BMW 1 Series Coupe 2012 5.98% Nissan Juke Hatchback 2012 3.82% BMW X3 SUV 2012 3.25% Dodge Caliber Wagon 2012 2.46% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Spyker C8 Convertible 2009 9.49% Rolls-Royce Ghost Sedan 2012 6.7% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.41% Rolls-Royce Phantom Sedan 2012 4.73% Bentley Continental Flying Spur Sedan 2007 4.36% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Ford Mustang Convertible 2007 2.89% Chrysler 300 SRT-8 2010 2.87% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.49% Eagle Talon Hatchback 1998 2.15% Audi V8 Sedan 1994 2.02% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Ford Focus Sedan 2007 8.3% Daewoo Nubira Wagon 2002 6.21% Suzuki Aerio Sedan 2007 4.6% Nissan Leaf Hatchback 2012 3.81% Plymouth Neon Coupe 1999 3.58% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 18.39% Dodge Magnum Wagon 2008 12.64% Nissan 240SX Coupe 1998 5.99% Volkswagen Beetle Hatchback 2012 5.34% Ferrari California Convertible 2012 5.24% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Audi TT Hatchback 2011 7.53% Dodge Charger Sedan 2012 6.05% Scion xD Hatchback 2012 5.67% Aston Martin V8 Vantage Convertible 2012 5.34% Ferrari California Convertible 2012 5.07% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 8.15% Dodge Sprinter Cargo Van 2009 7.22% Audi 100 Wagon 1994 7.21% Dodge Caravan Minivan 1997 6.83% Mercedes-Benz Sprinter Van 2012 5.95% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Nissan Juke Hatchback 2012 2.57% Suzuki Aerio Sedan 2007 1.6% Lamborghini Reventon Coupe 2008 1.58% Nissan Leaf Hatchback 2012 1.49% Dodge Sprinter Cargo Van 2009 1.4% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 36.61% FIAT 500 Convertible 2012 22.21% Spyker C8 Convertible 2009 12.24% Hyundai Veloster Hatchback 2012 5.85% smart fortwo Convertible 2012 2.46% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Ram C/V Cargo Van Minivan 2012 25.5% Honda Odyssey Minivan 2007 23.22% Ford Freestar Minivan 2007 16.07% Chrysler Town and Country Minivan 2012 8.13% Dodge Caliber Wagon 2012 5.5% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Suzuki SX4 Sedan 2012 4.54% Nissan Juke Hatchback 2012 3.17% Suzuki SX4 Hatchback 2012 2.7% Nissan Leaf Hatchback 2012 2.61% Dodge Sprinter Cargo Van 2009 2.56% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Ford Expedition EL SUV 2009 38.67% Infiniti QX56 SUV 2011 19.12% Chrysler Aspen SUV 2009 9.04% Land Rover Range Rover SUV 2012 5.76% Chrysler PT Cruiser Convertible 2008 2.69% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 10.46% Audi 100 Sedan 1994 4.25% BMW 3 Series Sedan 2012 4.19% Bentley Arnage Sedan 2009 3.56% HUMMER H3T Crew Cab 2010 3.23% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 19.82% GMC Yukon Hybrid SUV 2012 9.83% Jeep Compass SUV 2012 6.05% Cadillac Escalade EXT Crew Cab 2007 5.07% Isuzu Ascender SUV 2008 4.92% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Jeep Wrangler SUV 2012 9.88% Jeep Grand Cherokee SUV 2012 7.61% AM General Hummer SUV 2000 7.15% GMC Terrain SUV 2012 4.91% HUMMER H3T Crew Cab 2010 4.35% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 10.53% AM General Hummer SUV 2000 8.72% Jeep Patriot SUV 2012 5.22% Jeep Grand Cherokee SUV 2012 4.22% HUMMER H2 SUT Crew Cab 2009 3.8% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Lincoln Town Car Sedan 2011 7.3% Ram C/V Cargo Van Minivan 2012 5.21% Hyundai Tucson SUV 2012 4.51% Ford Freestar Minivan 2007 4.29% Chevrolet Malibu Sedan 2007 3.59% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Volkswagen Beetle Hatchback 2012 6.02% Acura TL Sedan 2012 5.62% BMW ActiveHybrid 5 Sedan 2012 5.13% BMW M5 Sedan 2010 4.56% Porsche Panamera Sedan 2012 4.53% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Infiniti QX56 SUV 2011 31.37% Ford Expedition EL SUV 2009 9.82% Land Rover Range Rover SUV 2012 6.02% Chrysler Aspen SUV 2009 5.59% Toyota Sequoia SUV 2012 5.19% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 12.11% Dodge Durango SUV 2012 11.15% Dodge Journey SUV 2012 7.53% Ford Edge SUV 2012 7.53% Chrysler PT Cruiser Convertible 2008 6.16% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 49.78% Audi RS 4 Convertible 2008 9.62% Chevrolet Cobalt SS 2010 4.96% Acura Integra Type R 2001 4.78% Chevrolet Corvette Convertible 2012 3.8% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 15.65% Mercedes-Benz S-Class Sedan 2012 7.04% Dodge Ram Pickup 3500 Crew Cab 2010 4.89% Hyundai Genesis Sedan 2012 4.83% Mercedes-Benz E-Class Sedan 2012 3.73% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Bugatti Veyron 16.4 Coupe 2009 15.79% Chevrolet Corvette ZR1 2012 7.58% Spyker C8 Convertible 2009 3.8% Eagle Talon Hatchback 1998 3.5% Suzuki SX4 Sedan 2012 3.4% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 14.51% Dodge Ram Pickup 3500 Quad Cab 2009 8.38% GMC Acadia SUV 2012 7.77% Buick Enclave SUV 2012 7.45% Volvo XC90 SUV 2007 6.69% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Chevrolet Traverse SUV 2012 7.47% Lincoln Town Car Sedan 2011 6.97% Hyundai Veracruz SUV 2012 6.41% Hyundai Tucson SUV 2012 5.93% Chevrolet Avalanche Crew Cab 2012 3.92% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Mustang Convertible 2007 14.69% Hyundai Elantra Sedan 2007 9.05% Dodge Caliber Wagon 2007 7.46% Ford Freestar Minivan 2007 5.15% Hyundai Accent Sedan 2012 4.02% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Camaro Convertible 2012 9.83% Mercedes-Benz 300-Class Convertible 1993 4.0% Porsche Panamera Sedan 2012 3.46% Rolls-Royce Ghost Sedan 2012 3.25% Acura TSX Sedan 2012 3.11% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.88% Chevrolet Silverado 1500 Regular Cab 2012 6.06% Cadillac Escalade EXT Crew Cab 2007 5.85% Chevrolet Silverado 2500HD Regular Cab 2012 5.67% Dodge Durango SUV 2007 5.64% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Maybach Landaulet Convertible 2012 8.3% Chevrolet Corvette Ron Fellows Edition Z06 2007 8.13% Bugatti Veyron 16.4 Convertible 2009 5.93% Nissan Leaf Hatchback 2012 5.67% smart fortwo Convertible 2012 5.48% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 BMW 3 Series Sedan 2012 19.88% Dodge Journey SUV 2012 6.06% Dodge Caliber Wagon 2007 4.9% Nissan Juke Hatchback 2012 4.2% Hyundai Elantra Sedan 2007 4.06% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 76.58% Chevrolet Express Van 2007 16.56% Chevrolet Express Cargo Van 2007 6.83% Audi 100 Sedan 1994 0.01% Dodge Caravan Minivan 1997 0.01% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Nissan Juke Hatchback 2012 10.47% Bugatti Veyron 16.4 Coupe 2009 8.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.46% Spyker C8 Coupe 2009 4.67% Lamborghini Reventon Coupe 2008 4.12% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 8.43% Bugatti Veyron 16.4 Coupe 2009 6.06% Infiniti G Coupe IPL 2012 5.62% Chrysler 300 SRT-8 2010 3.96% Bentley Mulsanne Sedan 2011 3.66% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Suzuki SX4 Sedan 2012 3.07% Nissan Leaf Hatchback 2012 3.0% Suzuki Aerio Sedan 2007 2.92% Acura TSX Sedan 2012 2.08% Mitsubishi Lancer Sedan 2012 1.99% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Jeep Patriot SUV 2012 7.9% Jeep Liberty SUV 2012 4.95% HUMMER H3T Crew Cab 2010 3.1% GMC Yukon Hybrid SUV 2012 2.74% AM General Hummer SUV 2000 2.74% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Ford Expedition EL SUV 2009 3.67% Honda Odyssey Minivan 2012 3.53% Mercedes-Benz C-Class Sedan 2012 3.51% Land Rover LR2 SUV 2012 3.27% Hyundai Genesis Sedan 2012 3.21% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Fisker Karma Sedan 2012 10.2% MINI Cooper Roadster Convertible 2012 5.29% Audi S5 Convertible 2012 4.96% Rolls-Royce Ghost Sedan 2012 4.6% Infiniti G Coupe IPL 2012 3.9% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Chrysler 300 SRT-8 2010 3.12% Volvo 240 Sedan 1993 2.81% Bentley Arnage Sedan 2009 2.56% Nissan 240SX Coupe 1998 2.45% BMW M6 Convertible 2010 2.4% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Chevrolet Malibu Sedan 2007 12.47% Lincoln Town Car Sedan 2011 7.09% Chevrolet Impala Sedan 2007 5.64% FIAT 500 Convertible 2012 5.19% Daewoo Nubira Wagon 2002 4.53% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 Fisker Karma Sedan 2012 4.39% Aston Martin V8 Vantage Coupe 2012 3.76% Audi R8 Coupe 2012 3.58% Bentley Continental GT Coupe 2007 3.23% BMW M6 Convertible 2010 2.72% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 BMW 3 Series Wagon 2012 3.97% BMW 1 Series Convertible 2012 3.79% Acura TSX Sedan 2012 3.78% Jaguar XK XKR 2012 3.68% BMW ActiveHybrid 5 Sedan 2012 2.86% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TL Sedan 2012 3.66% Porsche Panamera Sedan 2012 2.68% Acura TL Type-S 2008 2.59% BMW X5 SUV 2007 2.49% Acura ZDX Hatchback 2012 2.47% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Volvo XC90 SUV 2007 6.27% Isuzu Ascender SUV 2008 6.04% Land Rover LR2 SUV 2012 6.03% GMC Yukon Hybrid SUV 2012 5.81% Chevrolet Tahoe Hybrid SUV 2012 5.01% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Audi S6 Sedan 2011 16.35% Mercedes-Benz C-Class Sedan 2012 8.54% Hyundai Genesis Sedan 2012 6.33% Mercedes-Benz E-Class Sedan 2012 6.07% Audi S5 Coupe 2012 5.69% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 BMW 1 Series Convertible 2012 15.66% Jaguar XK XKR 2012 7.47% Audi TT RS Coupe 2012 4.97% BMW M5 Sedan 2010 3.81% Porsche Panamera Sedan 2012 3.8% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 30.87% Jeep Wrangler SUV 2012 26.18% Jeep Grand Cherokee SUV 2012 14.72% Jeep Compass SUV 2012 3.29% Hyundai Tucson SUV 2012 2.21% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Ford Edge SUV 2012 8.62% BMW X5 SUV 2007 3.39% Infiniti QX56 SUV 2011 2.98% Dodge Durango SUV 2012 2.87% Cadillac Escalade EXT Crew Cab 2007 2.66% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Aston Martin V8 Vantage Coupe 2012 5.71% Jaguar XK XKR 2012 5.33% Porsche Panamera Sedan 2012 4.2% Aston Martin V8 Vantage Convertible 2012 4.09% Audi TT RS Coupe 2012 3.98% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 Volvo 240 Sedan 1993 15.13% Ford Ranger SuperCab 2011 4.11% Volvo XC90 SUV 2007 3.63% Jeep Grand Cherokee SUV 2012 3.02% Jeep Compass SUV 2012 3.01% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 22.33% Audi R8 Coupe 2012 14.82% Audi S5 Coupe 2012 13.18% Audi TT Hatchback 2011 9.57% Audi S6 Sedan 2011 4.24% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 28.71% GMC Terrain SUV 2012 20.44% Jeep Compass SUV 2012 7.55% Hyundai Tucson SUV 2012 4.88% Chevrolet Monte Carlo Coupe 2007 4.5% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 BMW X6 SUV 2012 13.06% Honda Odyssey Minivan 2012 9.34% Dodge Caliber Wagon 2007 8.25% Dodge Caliber Wagon 2012 5.71% Buick Rainier SUV 2007 4.89% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 27.13% Ford Expedition EL SUV 2009 11.83% Hyundai Santa Fe SUV 2012 9.17% Infiniti QX56 SUV 2011 7.2% Volvo XC90 SUV 2007 6.59% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 7.51% Lincoln Town Car Sedan 2011 4.48% Chevrolet Malibu Sedan 2007 3.43% Suzuki Aerio Sedan 2007 3.33% Chrysler Sebring Convertible 2010 2.89% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 9.13% Jeep Liberty SUV 2012 8.04% Chevrolet TrailBlazer SS 2009 7.47% Infiniti QX56 SUV 2011 5.23% AM General Hummer SUV 2000 4.98% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Ram C/V Cargo Van Minivan 2012 5.44% Buick Rainier SUV 2007 4.47% Lincoln Town Car Sedan 2011 3.71% Chevrolet Traverse SUV 2012 3.46% Chevrolet Avalanche Crew Cab 2012 3.23% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Audi TTS Coupe 2012 7.63% Audi R8 Coupe 2012 5.49% Bentley Continental GT Coupe 2012 4.96% Bentley Continental GT Coupe 2007 4.63% Chevrolet Corvette ZR1 2012 4.45% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Suzuki SX4 Sedan 2012 4.91% Spyker C8 Coupe 2009 4.84% Nissan Leaf Hatchback 2012 4.22% Buick Regal GS 2012 3.42% Chevrolet Sonic Sedan 2012 3.19% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Audi TT RS Coupe 2012 10.02% Volkswagen Beetle Hatchback 2012 8.11% Chevrolet Cobalt SS 2010 7.42% Chevrolet Corvette Convertible 2012 6.94% Ferrari 458 Italia Convertible 2012 5.13% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Jeep Liberty SUV 2012 5.78% Bentley Arnage Sedan 2009 4.16% Nissan Juke Hatchback 2012 2.93% Ford F-150 Regular Cab 2007 2.76% Dodge Durango SUV 2007 2.6% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Nissan Leaf Hatchback 2012 5.92% Maybach Landaulet Convertible 2012 4.02% Tesla Model S Sedan 2012 2.25% Suzuki Aerio Sedan 2007 2.21% Suzuki Kizashi Sedan 2012 2.17% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 92.49% Aston Martin Virage Coupe 2012 3.12% Lamborghini Aventador Coupe 2012 1.5% Aston Martin V8 Vantage Coupe 2012 0.83% Audi TTS Coupe 2012 0.38% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Dodge Caliber Wagon 2012 3.85% Honda Odyssey Minivan 2007 2.79% Chrysler Town and Country Minivan 2012 2.34% Chevrolet Malibu Hybrid Sedan 2010 2.31% Ford Freestar Minivan 2007 2.13% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Cadillac SRX SUV 2012 12.91% BMW X5 SUV 2007 10.64% Cadillac Escalade EXT Crew Cab 2007 9.08% Toyota 4Runner SUV 2012 6.97% Dodge Durango SUV 2012 6.03% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 77.33% Lamborghini Aventador Coupe 2012 7.74% Aston Martin Virage Coupe 2012 7.42% Hyundai Veloster Hatchback 2012 2.01% Spyker C8 Convertible 2009 1.09% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 41.77% Jeep Wrangler SUV 2012 30.17% Jeep Patriot SUV 2012 17.81% Jeep Liberty SUV 2012 2.68% HUMMER H3T Crew Cab 2010 2.36% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Ferrari FF Coupe 2012 8.2% Honda Accord Coupe 2012 4.88% BMW 3 Series Sedan 2012 4.76% BMW 1 Series Coupe 2012 4.7% Chevrolet Cobalt SS 2010 3.86% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 BMW 6 Series Convertible 2007 2.62% Scion xD Hatchback 2012 2.09% Lincoln Town Car Sedan 2011 1.91% Chrysler 300 SRT-8 2010 1.83% Audi TT Hatchback 2011 1.82% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 BMW 3 Series Sedan 2012 10.85% BMW Z4 Convertible 2012 9.39% Ferrari FF Coupe 2012 7.73% Suzuki Kizashi Sedan 2012 4.7% Acura TSX Sedan 2012 4.23% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 BMW X5 SUV 2007 9.86% Jeep Compass SUV 2012 8.16% GMC Yukon Hybrid SUV 2012 6.31% Jeep Liberty SUV 2012 5.8% Volvo 240 Sedan 1993 5.0% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Hyundai Sonata Sedan 2012 25.56% Acura RL Sedan 2012 12.4% Hyundai Elantra Sedan 2007 11.09% Nissan 240SX Coupe 1998 8.55% Hyundai Sonata Hybrid Sedan 2012 7.61% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 HUMMER H3T Crew Cab 2010 7.47% HUMMER H2 SUT Crew Cab 2009 7.22% AM General Hummer SUV 2000 6.7% Chevrolet Silverado 1500 Regular Cab 2012 6.26% Ford F-150 Regular Cab 2007 5.79% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 17.81% Mercedes-Benz SL-Class Coupe 2009 4.59% Chevrolet Corvette ZR1 2012 3.24% Fisker Karma Sedan 2012 3.03% Porsche Panamera Sedan 2012 2.97% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Audi S5 Coupe 2012 6.58% Hyundai Genesis Sedan 2012 5.66% Bentley Arnage Sedan 2009 5.54% BMW 3 Series Sedan 2012 4.09% Chrysler 300 SRT-8 2010 3.96% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 BMW X5 SUV 2007 5.73% Mazda Tribute SUV 2011 4.92% BMW X6 SUV 2012 4.58% Buick Enclave SUV 2012 4.26% Nissan Juke Hatchback 2012 4.23% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Dodge Caliber Wagon 2012 5.96% Ram C/V Cargo Van Minivan 2012 4.16% Honda Odyssey Minivan 2007 3.77% Daewoo Nubira Wagon 2002 3.44% Chrysler Sebring Convertible 2010 2.99% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Porsche Panamera Sedan 2012 7.39% Aston Martin V8 Vantage Convertible 2012 5.93% BMW M3 Coupe 2012 5.32% Dodge Challenger SRT8 2011 4.68% Jaguar XK XKR 2012 4.65% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Rolls-Royce Ghost Sedan 2012 14.31% Cadillac CTS-V Sedan 2012 13.02% Bentley Continental Flying Spur Sedan 2007 9.71% Rolls-Royce Phantom Sedan 2012 8.16% Chrysler 300 SRT-8 2010 4.79% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 10.94% Volvo XC90 SUV 2007 7.64% Ford F-150 Regular Cab 2012 5.12% Hyundai Santa Fe SUV 2012 4.73% Toyota 4Runner SUV 2012 3.51% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 Mercedes-Benz S-Class Sedan 2012 8.24% Hyundai Azera Sedan 2012 6.89% Mercedes-Benz E-Class Sedan 2012 4.61% Mercedes-Benz SL-Class Coupe 2009 4.23% MINI Cooper Roadster Convertible 2012 3.0% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Bentley Mulsanne Sedan 2011 26.52% Hyundai Genesis Sedan 2012 5.84% Fisker Karma Sedan 2012 5.39% Cadillac CTS-V Sedan 2012 3.78% Infiniti QX56 SUV 2011 3.14% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Volkswagen Golf Hatchback 2012 8.28% Toyota Camry Sedan 2012 7.82% Audi TT Hatchback 2011 7.09% Audi TT RS Coupe 2012 5.76% Audi S4 Sedan 2012 5.59% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Hyundai Tucson SUV 2012 4.25% Chevrolet Monte Carlo Coupe 2007 4.1% Toyota Camry Sedan 2012 3.42% Scion xD Hatchback 2012 2.47% Chevrolet Malibu Hybrid Sedan 2010 2.36% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Audi A5 Coupe 2012 10.71% Ferrari FF Coupe 2012 8.38% Audi TT RS Coupe 2012 6.78% Infiniti G Coupe IPL 2012 5.57% Aston Martin V8 Vantage Coupe 2012 5.53% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 24.57% BMW 3 Series Wagon 2012 10.61% Ferrari FF Coupe 2012 7.52% Jaguar XK XKR 2012 6.04% Toyota Corolla Sedan 2012 3.19% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Van 2007 48.12% Chevrolet Express Cargo Van 2007 33.23% GMC Savana Van 2012 18.24% Dodge Caravan Minivan 1997 0.15% Audi 100 Sedan 1994 0.08% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 Mitsubishi Lancer Sedan 2012 8.23% Ford GT Coupe 2006 6.88% Bugatti Veyron 16.4 Coupe 2009 4.75% Spyker C8 Coupe 2009 4.63% BMW M5 Sedan 2010 4.29% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 31.52% Rolls-Royce Ghost Sedan 2012 20.54% Bentley Mulsanne Sedan 2011 9.52% Cadillac CTS-V Sedan 2012 6.98% Bentley Arnage Sedan 2009 5.72% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 Ford E-Series Wagon Van 2012 28.98% Ford Ranger SuperCab 2011 24.93% GMC Canyon Extended Cab 2012 8.09% Volvo XC90 SUV 2007 3.62% Ford F-450 Super Duty Crew Cab 2012 3.33% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Buick Rainier SUV 2007 14.28% Ford Freestar Minivan 2007 10.31% Chevrolet Avalanche Crew Cab 2012 8.18% Chevrolet Traverse SUV 2012 5.98% Chevrolet Tahoe Hybrid SUV 2012 5.34% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Chevrolet Traverse SUV 2012 13.22% Dodge Ram Pickup 3500 Crew Cab 2010 13.21% GMC Acadia SUV 2012 9.47% Chevrolet Silverado 1500 Regular Cab 2012 7.22% Dodge Ram Pickup 3500 Quad Cab 2009 3.09% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 15.58% Rolls-Royce Phantom Sedan 2012 7.63% Cadillac CTS-V Sedan 2012 5.37% Bentley Continental Flying Spur Sedan 2007 4.8% Audi TTS Coupe 2012 3.94% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Suzuki Aerio Sedan 2007 3.64% Lincoln Town Car Sedan 2011 3.02% BMW 1 Series Convertible 2012 3.0% Toyota Camry Sedan 2012 2.89% Acura TSX Sedan 2012 2.67% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Rainier SUV 2007 13.79% Chevrolet Avalanche Crew Cab 2012 12.55% Chevrolet Traverse SUV 2012 7.99% Hyundai Veracruz SUV 2012 5.06% Hyundai Tucson SUV 2012 5.0% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Bugatti Veyron 16.4 Convertible 2009 8.18% Bugatti Veyron 16.4 Coupe 2009 7.39% Chevrolet Corvette ZR1 2012 6.08% Bentley Mulsanne Sedan 2011 5.35% MINI Cooper Roadster Convertible 2012 3.63% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Ford GT Coupe 2006 7.25% Suzuki SX4 Hatchback 2012 4.44% Aston Martin Virage Coupe 2012 4.42% Volvo C30 Hatchback 2012 3.99% Chevrolet Corvette ZR1 2012 3.65% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Mercedes-Benz E-Class Sedan 2012 6.08% Mercedes-Benz SL-Class Coupe 2009 5.45% Mercedes-Benz S-Class Sedan 2012 4.1% Hyundai Elantra Touring Hatchback 2012 4.03% Chrysler PT Cruiser Convertible 2008 3.44% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 73.75% Spyker C8 Convertible 2009 4.81% McLaren MP4-12C Coupe 2012 2.72% Acura Integra Type R 2001 1.9% Dodge Charger Sedan 2012 1.51% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Lincoln Town Car Sedan 2011 10.25% Ford Focus Sedan 2007 5.27% Volvo 240 Sedan 1993 5.03% Dodge Caravan Minivan 1997 4.57% Chevrolet Traverse SUV 2012 4.03% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 BMW X6 SUV 2012 12.1% Hyundai Sonata Hybrid Sedan 2012 4.49% BMW 1 Series Coupe 2012 3.93% Dodge Magnum Wagon 2008 3.6% BMW 3 Series Sedan 2012 3.26% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Toyota Camry Sedan 2012 5.19% BMW M3 Coupe 2012 3.87% Buick Regal GS 2012 3.82% Toyota Corolla Sedan 2012 3.78% Audi S5 Coupe 2012 3.6% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 29.88% Audi R8 Coupe 2012 6.28% Bentley Continental GT Coupe 2012 4.39% Chrysler 300 SRT-8 2010 4.23% Rolls-Royce Ghost Sedan 2012 4.12% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Hyundai Veloster Hatchback 2012 14.71% Land Rover LR2 SUV 2012 12.66% Audi RS 4 Convertible 2008 7.41% Dodge Challenger SRT8 2011 5.82% Spyker C8 Coupe 2009 4.61% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Jaguar XK XKR 2012 5.2% Aston Martin V8 Vantage Convertible 2012 4.22% Lamborghini Reventon Coupe 2008 3.92% Chevrolet Camaro Convertible 2012 3.77% Aston Martin V8 Vantage Coupe 2012 3.31% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Suzuki SX4 Sedan 2012 3.78% Dodge Durango SUV 2012 3.62% Buick Verano Sedan 2012 3.51% Honda Odyssey Minivan 2012 3.44% Chevrolet Malibu Hybrid Sedan 2010 3.36% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Hyundai Tucson SUV 2012 4.09% Chrysler PT Cruiser Convertible 2008 3.83% Honda Odyssey Minivan 2012 3.78% Nissan Juke Hatchback 2012 3.22% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.74% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 16.86% Acura RL Sedan 2012 5.44% Mercedes-Benz S-Class Sedan 2012 4.75% Dodge Durango SUV 2012 4.1% Mercedes-Benz E-Class Sedan 2012 3.57% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Geo Metro Convertible 1993 30.51% Acura Integra Type R 2001 23.85% Lamborghini Diablo Coupe 2001 14.41% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.94% Chevrolet Corvette Convertible 2012 5.7% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Hatchback 2012 19.19% Volkswagen Golf Hatchback 1991 12.19% Geo Metro Convertible 1993 7.69% Volvo C30 Hatchback 2012 5.7% Volkswagen Beetle Hatchback 2012 3.27% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Lincoln Town Car Sedan 2011 18.19% GMC Terrain SUV 2012 9.02% Ford F-150 Regular Cab 2007 7.7% Mercedes-Benz 300-Class Convertible 1993 5.14% Geo Metro Convertible 1993 4.78% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 13.23% Audi TT Hatchback 2011 8.42% Audi S6 Sedan 2011 5.91% Audi TTS Coupe 2012 5.15% Audi TT RS Coupe 2012 5.1% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Yukon Hybrid SUV 2012 4.09% Chevrolet TrailBlazer SS 2009 3.87% Hyundai Tucson SUV 2012 3.63% Cadillac SRX SUV 2012 2.99% Cadillac Escalade EXT Crew Cab 2007 2.97% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Aston Martin V8 Vantage Coupe 2012 8.9% Aston Martin V8 Vantage Convertible 2012 5.11% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.75% BMW 6 Series Convertible 2007 3.97% BMW 1 Series Convertible 2012 3.74% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Acura ZDX Hatchback 2012 3.72% Audi 100 Wagon 1994 3.64% Audi V8 Sedan 1994 3.49% BMW ActiveHybrid 5 Sedan 2012 2.35% Daewoo Nubira Wagon 2002 2.04% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Caliber Wagon 2007 12.13% Ford Mustang Convertible 2007 11.38% Mercedes-Benz 300-Class Convertible 1993 8.25% Geo Metro Convertible 1993 4.79% Ford Freestar Minivan 2007 4.34% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Chevrolet Corvette Convertible 2012 33.43% Chevrolet Cobalt SS 2010 17.71% Ferrari California Convertible 2012 13.96% Ferrari 458 Italia Convertible 2012 9.03% Dodge Charger SRT-8 2009 8.97% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 31.57% Rolls-Royce Ghost Sedan 2012 10.3% Audi R8 Coupe 2012 9.66% Cadillac CTS-V Sedan 2012 9.32% Bentley Mulsanne Sedan 2011 5.37% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Ford GT Coupe 2006 21.73% Spyker C8 Convertible 2009 13.35% Bugatti Veyron 16.4 Coupe 2009 11.24% Aston Martin V8 Vantage Coupe 2012 6.5% Chevrolet Corvette ZR1 2012 6.06% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 66.52% Chevrolet Express Cargo Van 2007 19.55% Chevrolet Express Van 2007 13.69% Dodge Caravan Minivan 1997 0.06% Audi 100 Wagon 1994 0.06% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Jeep Liberty SUV 2012 12.75% HUMMER H2 SUT Crew Cab 2009 8.67% Jeep Patriot SUV 2012 6.38% GMC Yukon Hybrid SUV 2012 6.24% Toyota 4Runner SUV 2012 4.48% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Mitsubishi Lancer Sedan 2012 6.56% Audi S4 Sedan 2012 4.62% Volvo C30 Hatchback 2012 2.55% BMW 3 Series Sedan 2012 2.47% Suzuki SX4 Hatchback 2012 2.41% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 31.37% Chevrolet TrailBlazer SS 2009 9.38% Volvo 240 Sedan 1993 6.67% Isuzu Ascender SUV 2008 6.66% GMC Canyon Extended Cab 2012 3.96% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 38.56% AM General Hummer SUV 2000 9.66% HUMMER H3T Crew Cab 2010 4.05% Jeep Patriot SUV 2012 3.46% Jeep Grand Cherokee SUV 2012 3.14% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Dodge Caliber Wagon 2007 16.81% Hyundai Sonata Sedan 2012 13.49% Dodge Dakota Crew Cab 2010 9.84% Buick Verano Sedan 2012 6.75% Hyundai Elantra Sedan 2007 6.62% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Audi V8 Sedan 1994 22.86% Volvo 240 Sedan 1993 14.33% Eagle Talon Hatchback 1998 9.44% Nissan 240SX Coupe 1998 5.6% Volkswagen Golf Hatchback 1991 4.63% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Cadillac SRX SUV 2012 11.58% BMW X3 SUV 2012 9.7% BMW X5 SUV 2007 8.46% Dodge Durango SUV 2012 7.47% Land Rover LR2 SUV 2012 3.7% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Chevrolet Corvette ZR1 2012 16.47% Bentley Continental GT Coupe 2007 9.22% Bentley Continental Flying Spur Sedan 2007 8.27% Volkswagen Beetle Hatchback 2012 6.57% Bentley Continental GT Coupe 2012 6.32% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 7.25% Mercedes-Benz 300-Class Convertible 1993 5.6% Audi 100 Sedan 1994 4.92% Dodge Ram Pickup 3500 Quad Cab 2009 4.19% Mercedes-Benz Sprinter Van 2012 3.39% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Chevrolet Monte Carlo Coupe 2007 4.7% GMC Terrain SUV 2012 3.02% Lincoln Town Car Sedan 2011 2.8% Jeep Compass SUV 2012 2.73% Jeep Grand Cherokee SUV 2012 2.64% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Volkswagen Golf Hatchback 1991 5.8% BMW 3 Series Wagon 2012 4.75% Land Rover Range Rover SUV 2012 4.37% Mercedes-Benz C-Class Sedan 2012 4.27% Hyundai Genesis Sedan 2012 3.91% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 FIAT 500 Abarth 2012 25.54% Chevrolet Corvette ZR1 2012 11.44% Jaguar XK XKR 2012 3.2% Nissan 240SX Coupe 1998 3.06% Audi 100 Wagon 1994 2.67% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 10.47% Hyundai Sonata Hybrid Sedan 2012 8.63% Hyundai Elantra Sedan 2007 7.19% Toyota Camry Sedan 2012 6.5% Jaguar XK XKR 2012 5.3% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Wrangler SUV 2012 37.91% Chevrolet Express Cargo Van 2007 10.76% Jeep Patriot SUV 2012 8.4% AM General Hummer SUV 2000 3.42% HUMMER H3T Crew Cab 2010 2.75% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 27.31% Chevrolet Silverado 2500HD Regular Cab 2012 12.14% Ford F-150 Regular Cab 2012 8.43% Chevrolet Avalanche Crew Cab 2012 7.53% Isuzu Ascender SUV 2008 6.54% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 MINI Cooper Roadster Convertible 2012 16.53% Mercedes-Benz E-Class Sedan 2012 5.92% Mercedes-Benz SL-Class Coupe 2009 5.49% Hyundai Azera Sedan 2012 4.5% Jaguar XK XKR 2012 4.2% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 7.29% Dodge Dakota Crew Cab 2010 5.71% Jeep Grand Cherokee SUV 2012 5.45% Ford Expedition EL SUV 2009 4.79% Toyota 4Runner SUV 2012 4.66% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Monte Carlo Coupe 2007 4.68% Honda Accord Coupe 2012 2.55% Chrysler 300 SRT-8 2010 2.35% Chevrolet Impala Sedan 2007 2.06% Mercedes-Benz 300-Class Convertible 1993 1.94% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Spyker C8 Coupe 2009 17.05% Bugatti Veyron 16.4 Coupe 2009 9.23% Fisker Karma Sedan 2012 5.08% Spyker C8 Convertible 2009 3.69% Lamborghini Aventador Coupe 2012 3.51% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Spyker C8 Coupe 2009 6.55% Chrysler Crossfire Convertible 2008 4.03% Dodge Challenger SRT8 2011 2.82% Hyundai Veloster Hatchback 2012 2.68% Spyker C8 Convertible 2009 2.45% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW 1 Series Convertible 2012 12.96% Jaguar XK XKR 2012 10.48% Chevrolet Camaro Convertible 2012 5.76% Toyota Camry Sedan 2012 5.55% Toyota Corolla Sedan 2012 3.77% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Malibu Sedan 2007 10.34% Chevrolet Monte Carlo Coupe 2007 8.06% Honda Accord Coupe 2012 7.04% Dodge Magnum Wagon 2008 5.31% Dodge Caliber Wagon 2012 4.6% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Jaguar XK XKR 2012 3.28% Toyota Camry Sedan 2012 2.77% Audi A5 Coupe 2012 1.6% Mitsubishi Lancer Sedan 2012 1.54% BMW 6 Series Convertible 2007 1.51% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Acura ZDX Hatchback 2012 13.73% Hyundai Sonata Sedan 2012 7.9% Hyundai Azera Sedan 2012 6.91% Mercedes-Benz E-Class Sedan 2012 3.61% Dodge Charger Sedan 2012 3.41% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 HUMMER H2 SUT Crew Cab 2009 28.65% Dodge Ram Pickup 3500 Quad Cab 2009 18.62% Jeep Wrangler SUV 2012 15.74% Chevrolet Silverado 1500 Regular Cab 2012 8.66% GMC Canyon Extended Cab 2012 6.77% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Cadillac SRX SUV 2012 9.28% Dodge Durango SUV 2012 7.43% Ford Edge SUV 2012 7.31% BMW X5 SUV 2007 5.83% BMW X3 SUV 2012 4.73% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Eagle Talon Hatchback 1998 14.69% Geo Metro Convertible 1993 13.1% Plymouth Neon Coupe 1999 5.67% Ford Focus Sedan 2007 4.56% Hyundai Elantra Touring Hatchback 2012 3.42% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Hyundai Elantra Touring Hatchback 2012 13.65% Chrysler Town and Country Minivan 2012 6.82% Dodge Caravan Minivan 1997 5.54% Ford Focus Sedan 2007 4.95% Honda Odyssey Minivan 2007 4.86% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 3.69% BMW X3 SUV 2012 2.79% BMW 3 Series Sedan 2012 2.21% Audi S5 Convertible 2012 2.11% Audi S6 Sedan 2011 2.11% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Jeep Compass SUV 2012 20.95% BMW X5 SUV 2007 14.63% Jeep Grand Cherokee SUV 2012 8.26% Rolls-Royce Phantom Sedan 2012 5.26% Rolls-Royce Ghost Sedan 2012 4.47% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 8.27% Dodge Journey SUV 2012 6.5% Toyota Camry Sedan 2012 5.48% Audi S4 Sedan 2012 4.11% BMW 6 Series Convertible 2007 2.89% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Acura TL Sedan 2012 9.76% Volkswagen Golf Hatchback 2012 5.25% Volkswagen Beetle Hatchback 2012 4.69% Suzuki SX4 Sedan 2012 4.1% Ram C/V Cargo Van Minivan 2012 3.11% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Hyundai Genesis Sedan 2012 10.06% Mercedes-Benz S-Class Sedan 2012 9.1% Hyundai Santa Fe SUV 2012 8.59% Hyundai Tucson SUV 2012 5.42% Chrysler Town and Country Minivan 2012 5.07% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 13.32% Ford F-150 Regular Cab 2012 11.7% GMC Canyon Extended Cab 2012 10.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.97% Chevrolet Silverado 1500 Regular Cab 2012 6.06% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 30.83% Mercedes-Benz S-Class Sedan 2012 17.51% Mercedes-Benz E-Class Sedan 2012 16.2% Hyundai Genesis Sedan 2012 9.07% Chrysler Crossfire Convertible 2008 5.15% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 GMC Canyon Extended Cab 2012 9.09% Chevrolet Avalanche Crew Cab 2012 5.78% Chevrolet Silverado 1500 Extended Cab 2012 5.52% Dodge Ram Pickup 3500 Quad Cab 2009 5.5% Dodge Dakota Club Cab 2007 5.37% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 30.19% BMW 1 Series Coupe 2012 11.33% Aston Martin Virage Coupe 2012 11.28% Ferrari 458 Italia Coupe 2012 6.89% Chevrolet HHR SS 2010 6.71% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Coupe 2012 24.0% Ferrari California Convertible 2012 9.18% Ferrari 458 Italia Convertible 2012 5.46% Volkswagen Beetle Hatchback 2012 4.49% Eagle Talon Hatchback 1998 4.39% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Jaguar XK XKR 2012 4.55% BMW M6 Convertible 2010 3.32% Chrysler 300 SRT-8 2010 2.75% BMW 6 Series Convertible 2007 2.45% Chevrolet Camaro Convertible 2012 2.25% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Ford Mustang Convertible 2007 22.48% Ferrari 458 Italia Coupe 2012 8.06% BMW 3 Series Wagon 2012 6.28% Honda Accord Coupe 2012 5.2% Chevrolet Camaro Convertible 2012 3.9% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 7.18% Ford F-450 Super Duty Crew Cab 2012 4.82% Isuzu Ascender SUV 2008 4.61% Dodge Durango SUV 2007 4.52% Jeep Liberty SUV 2012 4.51% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Nissan 240SX Coupe 1998 5.41% Aston Martin V8 Vantage Coupe 2012 4.83% BMW M3 Coupe 2012 3.8% Chevrolet Cobalt SS 2010 3.63% Jaguar XK XKR 2012 3.16% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Nissan Juke Hatchback 2012 5.19% BMW 3 Series Sedan 2012 3.4% Spyker C8 Coupe 2009 2.96% Mitsubishi Lancer Sedan 2012 2.93% Ford GT Coupe 2006 2.92% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mazda Tribute SUV 2011 10.15% BMW X5 SUV 2007 8.22% BMW X3 SUV 2012 6.52% Land Rover LR2 SUV 2012 5.77% Suzuki SX4 Hatchback 2012 3.53% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Hyundai Sonata Sedan 2012 13.34% Dodge Durango SUV 2012 12.62% Honda Accord Coupe 2012 7.63% Honda Accord Sedan 2012 6.69% Chrysler Crossfire Convertible 2008 5.26% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 8.03% Ford E-Series Wagon Van 2012 6.94% Ford F-150 Regular Cab 2012 6.75% Hyundai Santa Fe SUV 2012 6.4% Volvo XC90 SUV 2007 6.21% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 smart fortwo Convertible 2012 20.47% Suzuki SX4 Hatchback 2012 19.55% Volkswagen Golf Hatchback 1991 10.73% GMC Savana Van 2012 8.83% BMW X6 SUV 2012 5.62% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 10.59% Cadillac Escalade EXT Crew Cab 2007 5.76% Jeep Grand Cherokee SUV 2012 4.06% Chevrolet TrailBlazer SS 2009 3.39% HUMMER H2 SUT Crew Cab 2009 3.29% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Aston Martin Virage Coupe 2012 39.42% Bentley Continental GT Coupe 2012 12.39% BMW M3 Coupe 2012 7.38% Volvo C30 Hatchback 2012 4.94% Hyundai Veloster Hatchback 2012 4.21% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 BMW 1 Series Convertible 2012 6.67% Toyota Camry Sedan 2012 4.83% Jaguar XK XKR 2012 4.02% BMW M5 Sedan 2010 2.75% Chevrolet Camaro Convertible 2012 2.33% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 15.68% Buick Regal GS 2012 10.17% Audi A5 Coupe 2012 9.84% BMW ActiveHybrid 5 Sedan 2012 5.53% Bentley Continental GT Coupe 2012 5.05% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Spyker C8 Convertible 2009 6.46% Audi S5 Convertible 2012 6.05% Fisker Karma Sedan 2012 5.49% Chevrolet Corvette ZR1 2012 3.71% Bentley Continental Supersports Conv. Convertible 2012 3.6% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 GMC Canyon Extended Cab 2012 12.37% Ford F-150 Regular Cab 2012 7.66% Ford Ranger SuperCab 2011 6.46% Dodge Ram Pickup 3500 Quad Cab 2009 5.79% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.57% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Suzuki Aerio Sedan 2007 4.8% Daewoo Nubira Wagon 2002 4.23% Ford Focus Sedan 2007 3.54% GMC Savana Van 2012 3.48% Dodge Caravan Minivan 1997 3.3% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Isuzu Ascender SUV 2008 36.7% Buick Rainier SUV 2007 18.8% Jeep Patriot SUV 2012 10.04% Nissan NV Passenger Van 2012 5.79% Chevrolet Tahoe Hybrid SUV 2012 4.34% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Infiniti G Coupe IPL 2012 5.49% Lamborghini Reventon Coupe 2008 4.54% Cadillac CTS-V Sedan 2012 3.84% Dodge Challenger SRT8 2011 3.61% Tesla Model S Sedan 2012 3.58% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Honda Accord Sedan 2012 7.62% Mercedes-Benz S-Class Sedan 2012 6.36% Hyundai Accent Sedan 2012 5.54% Honda Odyssey Minivan 2012 4.34% Mercedes-Benz E-Class Sedan 2012 4.01% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Spyker C8 Convertible 2009 5.22% Ford GT Coupe 2006 4.54% Eagle Talon Hatchback 1998 3.09% Bentley Continental Flying Spur Sedan 2007 2.91% Bugatti Veyron 16.4 Coupe 2009 2.91% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 16.26% Chevrolet Silverado 1500 Extended Cab 2012 12.03% GMC Canyon Extended Cab 2012 8.82% Chevrolet Silverado 2500HD Regular Cab 2012 7.32% Dodge Ram Pickup 3500 Quad Cab 2009 6.83% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 14.42% Chevrolet Impala Sedan 2007 9.27% Chevrolet Traverse SUV 2012 6.27% GMC Terrain SUV 2012 3.42% Dodge Caliber Wagon 2012 3.29% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 BMW 3 Series Sedan 2012 31.92% BMW 3 Series Wagon 2012 4.96% Ferrari 458 Italia Convertible 2012 3.53% Ferrari California Convertible 2012 3.42% Dodge Magnum Wagon 2008 2.31% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Volkswagen Golf Hatchback 1991 29.62% HUMMER H3T Crew Cab 2010 26.51% GMC Savana Van 2012 14.06% GMC Canyon Extended Cab 2012 7.84% Dodge Ram Pickup 3500 Quad Cab 2009 3.94% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Jeep Compass SUV 2012 7.04% BMW X5 SUV 2007 5.61% Nissan Juke Hatchback 2012 5.2% Hyundai Veracruz SUV 2012 5.09% Volvo 240 Sedan 1993 4.63% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Grand Cherokee SUV 2012 37.59% Jeep Compass SUV 2012 21.57% GMC Terrain SUV 2012 16.31% BMW X5 SUV 2007 11.12% Jeep Liberty SUV 2012 3.02% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Isuzu Ascender SUV 2008 8.9% Dodge Ram Pickup 3500 Quad Cab 2009 6.8% HUMMER H2 SUT Crew Cab 2009 5.82% Dodge Ram Pickup 3500 Crew Cab 2010 5.77% Ford Ranger SuperCab 2011 5.43% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Chrysler 300 SRT-8 2010 8.93% Rolls-Royce Phantom Sedan 2012 8.31% Rolls-Royce Ghost Sedan 2012 6.4% BMW M6 Convertible 2010 5.28% Aston Martin V8 Vantage Coupe 2012 4.64% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Liberty SUV 2012 5.04% GMC Yukon Hybrid SUV 2012 3.32% Jeep Grand Cherokee SUV 2012 3.31% Chevrolet Avalanche Crew Cab 2012 3.04% Jeep Compass SUV 2012 2.87% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Hyundai Elantra Sedan 2007 12.77% Eagle Talon Hatchback 1998 10.58% Plymouth Neon Coupe 1999 5.0% Spyker C8 Coupe 2009 4.91% Honda Accord Coupe 2012 4.9% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 18.3% Audi A5 Coupe 2012 15.63% Audi S4 Sedan 2012 15.35% Audi S5 Coupe 2012 12.21% Audi S4 Sedan 2007 5.51% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Jeep Compass SUV 2012 48.33% Jeep Patriot SUV 2012 12.21% Jeep Grand Cherokee SUV 2012 6.15% GMC Terrain SUV 2012 5.81% GMC Acadia SUV 2012 5.37% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Ram C/V Cargo Van Minivan 2012 3.48% Honda Accord Sedan 2012 3.36% Chrysler Town and Country Minivan 2012 3.17% Suzuki Aerio Sedan 2007 2.75% Honda Odyssey Minivan 2012 2.61% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Mercedes-Benz C-Class Sedan 2012 8.29% Daewoo Nubira Wagon 2002 5.13% BMW 1 Series Coupe 2012 3.94% Volkswagen Golf Hatchback 2012 3.27% Chevrolet Malibu Hybrid Sedan 2010 3.01% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Mercedes-Benz S-Class Sedan 2012 18.29% Mercedes-Benz E-Class Sedan 2012 5.96% Chevrolet Malibu Hybrid Sedan 2010 5.47% Hyundai Genesis Sedan 2012 5.4% Hyundai Sonata Sedan 2012 3.93% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 4.48% Audi V8 Sedan 1994 3.6% Audi 100 Wagon 1994 3.6% Mercedes-Benz 300-Class Convertible 1993 3.46% Audi 100 Sedan 1994 2.85% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 5.28% Hyundai Tucson SUV 2012 4.95% Chevrolet Malibu Sedan 2007 4.66% Honda Odyssey Minivan 2007 3.69% Ram C/V Cargo Van Minivan 2012 3.37% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Hyundai Tucson SUV 2012 12.04% Hyundai Veracruz SUV 2012 10.59% Chevrolet Traverse SUV 2012 8.62% Buick Enclave SUV 2012 6.25% BMW X5 SUV 2007 4.68% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 8.67% Chevrolet Malibu Sedan 2007 5.2% Toyota Camry Sedan 2012 5.11% Volkswagen Golf Hatchback 2012 4.73% Acura TSX Sedan 2012 4.42% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Volkswagen Beetle Hatchback 2012 8.47% BMW ActiveHybrid 5 Sedan 2012 6.36% Acura TL Sedan 2012 4.25% Volkswagen Golf Hatchback 2012 4.07% Audi S5 Convertible 2012 3.88% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 15.82% Chevrolet Monte Carlo Coupe 2007 7.3% Chevrolet Malibu Sedan 2007 6.77% Jeep Grand Cherokee SUV 2012 6.25% GMC Terrain SUV 2012 5.73% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Fisker Karma Sedan 2012 7.98% Audi TTS Coupe 2012 6.94% Cadillac CTS-V Sedan 2012 6.64% Bentley Mulsanne Sedan 2011 6.23% Infiniti G Coupe IPL 2012 5.63% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Chrysler 300 SRT-8 2010 6.99% Nissan 240SX Coupe 1998 6.96% Audi V8 Sedan 1994 5.89% Chevrolet TrailBlazer SS 2009 4.02% Eagle Talon Hatchback 1998 3.29% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Eagle Talon Hatchback 1998 12.82% Plymouth Neon Coupe 1999 6.62% Chrysler 300 SRT-8 2010 6.46% Mercedes-Benz 300-Class Convertible 1993 4.65% Ford Mustang Convertible 2007 4.36% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 MINI Cooper Roadster Convertible 2012 13.43% Cadillac SRX SUV 2012 9.21% Hyundai Azera Sedan 2012 8.19% Dodge Durango SUV 2012 3.88% Acura ZDX Hatchback 2012 3.87% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Aston Martin Virage Coupe 2012 54.05% Spyker C8 Convertible 2009 8.87% Lamborghini Aventador Coupe 2012 5.78% Hyundai Veloster Hatchback 2012 4.17% Dodge Charger SRT-8 2009 3.3% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 BMW 1 Series Coupe 2012 18.2% Ferrari FF Coupe 2012 8.89% Bentley Continental GT Coupe 2007 6.1% BMW M6 Convertible 2010 4.93% Spyker C8 Coupe 2009 4.59% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Jeep Grand Cherokee SUV 2012 9.22% GMC Terrain SUV 2012 8.05% Hyundai Tucson SUV 2012 6.85% Jeep Compass SUV 2012 4.49% Mazda Tribute SUV 2011 3.69% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 15.92% Nissan NV Passenger Van 2012 5.4% Bentley Mulsanne Sedan 2011 4.61% Rolls-Royce Phantom Sedan 2012 4.47% Cadillac Escalade EXT Crew Cab 2007 3.81% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Nissan NV Passenger Van 2012 11.23% Bentley Arnage Sedan 2009 10.41% Rolls-Royce Phantom Sedan 2012 8.26% FIAT 500 Abarth 2012 7.46% Nissan Juke Hatchback 2012 3.93% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 11.22% Toyota Sequoia SUV 2012 5.96% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.63% Volvo XC90 SUV 2007 3.95% GMC Canyon Extended Cab 2012 3.87% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-150 Regular Cab 2007 10.46% Chevrolet Silverado 2500HD Regular Cab 2012 10.43% Ford F-450 Super Duty Crew Cab 2012 7.78% Chevrolet Silverado 1500 Extended Cab 2012 7.75% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.35% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 19.56% Hyundai Genesis Sedan 2012 12.43% Aston Martin Virage Convertible 2012 7.19% Acura TL Type-S 2008 3.99% Audi TTS Coupe 2012 3.77% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Ford Freestar Minivan 2007 5.88% Mazda Tribute SUV 2011 5.66% Chevrolet Traverse SUV 2012 4.9% Chevrolet Avalanche Crew Cab 2012 4.69% Hyundai Veracruz SUV 2012 4.01% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Aston Martin Virage Coupe 2012 50.6% McLaren MP4-12C Coupe 2012 10.47% Volvo C30 Hatchback 2012 10.05% Bentley Continental GT Coupe 2012 3.5% Lamborghini Aventador Coupe 2012 2.95% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Land Rover Range Rover SUV 2012 20.88% Hyundai Genesis Sedan 2012 7.99% BMW 3 Series Wagon 2012 4.69% Mercedes-Benz C-Class Sedan 2012 3.34% Chevrolet TrailBlazer SS 2009 3.18% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 25.57% McLaren MP4-12C Coupe 2012 21.76% Hyundai Veloster Hatchback 2012 15.21% Spyker C8 Convertible 2009 6.84% Lamborghini Diablo Coupe 2001 6.31% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Suzuki Aerio Sedan 2007 4.59% BMW 6 Series Convertible 2007 4.37% Acura TSX Sedan 2012 3.41% Chevrolet Corvette ZR1 2012 3.0% Chrysler Sebring Convertible 2010 2.79% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Jeep Patriot SUV 2012 12.78% GMC Savana Van 2012 10.69% Volkswagen Golf Hatchback 1991 8.41% Jeep Liberty SUV 2012 6.98% AM General Hummer SUV 2000 5.15% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 19.75% Bugatti Veyron 16.4 Convertible 2009 8.42% Tesla Model S Sedan 2012 4.62% Bentley Continental GT Coupe 2007 3.85% Nissan Leaf Hatchback 2012 3.81% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 56.43% Audi 100 Wagon 1994 16.83% GMC Savana Van 2012 4.83% Chevrolet Express Van 2007 3.83% Mercedes-Benz 300-Class Convertible 1993 3.43% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 61.65% Mercedes-Benz Sprinter Van 2012 27.43% Nissan NV Passenger Van 2012 3.64% Dodge Sprinter Cargo Van 2009 2.76% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.58% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Chrysler 300 SRT-8 2010 7.56% BMW M6 Convertible 2010 7.31% Cadillac CTS-V Sedan 2012 5.64% Audi TTS Coupe 2012 3.24% BMW 6 Series Convertible 2007 2.92% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 MINI Cooper Roadster Convertible 2012 12.99% Jaguar XK XKR 2012 11.06% BMW 1 Series Convertible 2012 7.68% Aston Martin Virage Convertible 2012 6.82% Aston Martin V8 Vantage Convertible 2012 5.71% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Bugatti Veyron 16.4 Coupe 2009 12.86% Ford GT Coupe 2006 12.08% Eagle Talon Hatchback 1998 7.09% Mercedes-Benz 300-Class Convertible 1993 4.88% Lamborghini Reventon Coupe 2008 4.7% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Cadillac CTS-V Sedan 2012 9.91% Chrysler 300 SRT-8 2010 5.04% Chevrolet Monte Carlo Coupe 2007 4.21% Audi TTS Coupe 2012 3.72% Audi A5 Coupe 2012 3.57% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Dodge Dakota Crew Cab 2010 24.0% Ford Freestar Minivan 2007 21.67% Dodge Durango SUV 2007 5.02% Chevrolet Silverado 1500 Regular Cab 2012 3.89% Dodge Dakota Club Cab 2007 3.02% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Cadillac CTS-V Sedan 2012 8.13% Rolls-Royce Phantom Sedan 2012 3.71% Bentley Mulsanne Sedan 2011 2.99% Audi A5 Coupe 2012 2.86% Bentley Continental Flying Spur Sedan 2007 2.51% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Audi S5 Convertible 2012 9.09% Volkswagen Beetle Hatchback 2012 6.73% Porsche Panamera Sedan 2012 4.63% Volkswagen Golf Hatchback 2012 4.39% Acura TL Type-S 2008 4.26% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 GMC Yukon Hybrid SUV 2012 12.39% GMC Terrain SUV 2012 7.01% Jeep Grand Cherokee SUV 2012 6.37% Ford F-150 Regular Cab 2012 5.89% Chevrolet Avalanche Crew Cab 2012 5.17% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 33.03% Ferrari 458 Italia Coupe 2012 32.5% Ferrari California Convertible 2012 21.41% Chevrolet Corvette Convertible 2012 2.25% Audi TT RS Coupe 2012 1.4% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 7.99% Suzuki SX4 Sedan 2012 6.44% Nissan Leaf Hatchback 2012 5.7% Spyker C8 Coupe 2009 5.13% Chevrolet Impala Sedan 2007 4.29% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Eagle Talon Hatchback 1998 25.92% Plymouth Neon Coupe 1999 17.15% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.28% Mercedes-Benz 300-Class Convertible 1993 10.47% Spyker C8 Convertible 2009 3.51% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Hyundai Veracruz SUV 2012 4.39% Chevrolet Traverse SUV 2012 4.15% Ram C/V Cargo Van Minivan 2012 3.82% Chevrolet Avalanche Crew Cab 2012 3.56% Ford Focus Sedan 2007 3.44% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Fisker Karma Sedan 2012 23.94% Bugatti Veyron 16.4 Convertible 2009 11.52% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.82% BMW ActiveHybrid 5 Sedan 2012 4.34% Maybach Landaulet Convertible 2012 4.15% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Chevrolet TrailBlazer SS 2009 7.85% Dodge Journey SUV 2012 7.11% Hyundai Elantra Sedan 2007 6.07% BMW X6 SUV 2012 5.22% Ford Freestar Minivan 2007 4.55% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Dodge Caliber Wagon 2012 14.09% Dodge Durango SUV 2012 7.53% Honda Odyssey Minivan 2007 6.17% Cadillac Escalade EXT Crew Cab 2007 4.13% Chrysler Town and Country Minivan 2012 3.74% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Mercedes-Benz Sprinter Van 2012 18.19% Volvo XC90 SUV 2007 8.52% Isuzu Ascender SUV 2008 5.26% Ford E-Series Wagon Van 2012 4.62% Ford Ranger SuperCab 2011 3.27% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 9.12% Porsche Panamera Sedan 2012 7.21% Audi S5 Convertible 2012 6.78% Aston Martin Virage Convertible 2012 5.34% Bentley Arnage Sedan 2009 3.83% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chevrolet Monte Carlo Coupe 2007 14.48% Chrysler 300 SRT-8 2010 12.06% Cadillac CTS-V Sedan 2012 6.21% Dodge Charger SRT-8 2009 3.71% BMW 6 Series Convertible 2007 3.49% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 McLaren MP4-12C Coupe 2012 35.7% HUMMER H3T Crew Cab 2010 12.88% Hyundai Veloster Hatchback 2012 8.41% HUMMER H2 SUT Crew Cab 2009 7.78% Lamborghini Aventador Coupe 2012 7.72% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Nissan Juke Hatchback 2012 11.48% BMW X6 SUV 2012 9.18% Audi TT RS Coupe 2012 8.96% Volkswagen Beetle Hatchback 2012 6.97% Jaguar XK XKR 2012 5.71% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Nissan Leaf Hatchback 2012 7.32% Tesla Model S Sedan 2012 6.48% Suzuki Aerio Sedan 2007 4.17% Suzuki SX4 Sedan 2012 3.75% BMW M3 Coupe 2012 3.07% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Monte Carlo Coupe 2007 6.46% Chevrolet Malibu Sedan 2007 6.43% Dodge Magnum Wagon 2008 4.88% Dodge Durango SUV 2012 4.7% Dodge Caliber Wagon 2012 4.11% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 27.92% Bugatti Veyron 16.4 Coupe 2009 10.76% Lamborghini Reventon Coupe 2008 9.76% Lamborghini Aventador Coupe 2012 8.96% Aston Martin V8 Vantage Coupe 2012 4.09% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 HUMMER H3T Crew Cab 2010 4.79% Ford Edge SUV 2012 4.42% HUMMER H2 SUT Crew Cab 2009 3.5% Ford Ranger SuperCab 2011 3.1% Volvo XC90 SUV 2007 3.08% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 36.6% Hyundai Azera Sedan 2012 14.68% Mercedes-Benz E-Class Sedan 2012 4.68% Chrysler PT Cruiser Convertible 2008 3.82% Hyundai Accent Sedan 2012 3.35% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 BMW X6 SUV 2012 10.06% BMW M5 Sedan 2010 6.79% Chevrolet Sonic Sedan 2012 6.41% Suzuki SX4 Sedan 2012 5.22% Suzuki SX4 Hatchback 2012 4.76% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Audi TTS Coupe 2012 11.54% Aston Martin Virage Convertible 2012 8.71% Bugatti Veyron 16.4 Coupe 2009 6.39% Fisker Karma Sedan 2012 5.03% Audi R8 Coupe 2012 3.96% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Eagle Talon Hatchback 1998 25.28% Nissan 240SX Coupe 1998 6.78% Mercedes-Benz 300-Class Convertible 1993 6.22% Plymouth Neon Coupe 1999 5.87% Chrysler 300 SRT-8 2010 4.18% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Chevrolet Corvette ZR1 2012 10.97% Dodge Challenger SRT8 2011 4.95% FIAT 500 Abarth 2012 4.57% Audi S5 Convertible 2012 4.0% Aston Martin V8 Vantage Convertible 2012 3.46% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Malibu Sedan 2007 13.94% Chevrolet Impala Sedan 2007 13.75% Lincoln Town Car Sedan 2011 7.02% Chevrolet Monte Carlo Coupe 2007 3.6% Dodge Caliber Wagon 2012 3.31% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Acura RL Sedan 2012 13.19% Hyundai Sonata Hybrid Sedan 2012 6.71% Dodge Magnum Wagon 2008 5.19% Audi A5 Coupe 2012 4.94% Hyundai Azera Sedan 2012 3.74% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 BMW 6 Series Convertible 2007 16.8% Bentley Mulsanne Sedan 2011 13.05% Bugatti Veyron 16.4 Convertible 2009 6.66% Fisker Karma Sedan 2012 3.82% Lamborghini Reventon Coupe 2008 3.37% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 20.66% Audi R8 Coupe 2012 6.42% Audi TT Hatchback 2011 6.03% Audi TTS Coupe 2012 4.66% BMW M5 Sedan 2010 2.87% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Dodge Durango SUV 2012 6.02% Infiniti QX56 SUV 2011 5.73% Toyota 4Runner SUV 2012 3.63% Hyundai Genesis Sedan 2012 3.43% Acura ZDX Hatchback 2012 3.34% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 6.78% Volkswagen Golf Hatchback 1991 4.54% Jeep Liberty SUV 2012 3.33% Jeep Patriot SUV 2012 3.32% Chrysler 300 SRT-8 2010 2.69% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 smart fortwo Convertible 2012 10.44% Geo Metro Convertible 1993 9.37% Daewoo Nubira Wagon 2002 8.37% Suzuki SX4 Sedan 2012 4.53% FIAT 500 Convertible 2012 3.61% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Caliber Wagon 2012 15.66% GMC Terrain SUV 2012 8.31% Chevrolet Traverse SUV 2012 5.68% Jeep Grand Cherokee SUV 2012 5.6% Chevrolet Avalanche Crew Cab 2012 5.5% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Geo Metro Convertible 1993 27.14% Mazda Tribute SUV 2011 11.08% Audi 100 Wagon 1994 9.17% Volvo 240 Sedan 1993 5.95% Mercedes-Benz 300-Class Convertible 1993 4.6% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 35.41% Bugatti Veyron 16.4 Coupe 2009 5.93% Aston Martin Virage Convertible 2012 2.61% Lamborghini Aventador Coupe 2012 2.35% Fisker Karma Sedan 2012 2.32% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Audi S5 Convertible 2012 18.17% Mercedes-Benz SL-Class Coupe 2009 8.15% Fisker Karma Sedan 2012 5.89% Chevrolet Corvette ZR1 2012 3.29% Porsche Panamera Sedan 2012 2.63% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Honda Odyssey Minivan 2007 6.45% Land Rover Range Rover SUV 2012 4.86% Daewoo Nubira Wagon 2002 4.14% Nissan Leaf Hatchback 2012 3.17% Ford Expedition EL SUV 2009 2.41% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Nissan 240SX Coupe 1998 9.18% Eagle Talon Hatchback 1998 7.48% Chevrolet Monte Carlo Coupe 2007 4.64% Mercedes-Benz 300-Class Convertible 1993 4.63% Dodge Charger SRT-8 2009 3.74% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 42.52% Ford F-150 Regular Cab 2012 10.24% Chevrolet Silverado 2500HD Regular Cab 2012 8.34% Isuzu Ascender SUV 2008 4.57% Chevrolet Avalanche Crew Cab 2012 3.17% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Hyundai Elantra Touring Hatchback 2012 10.3% Ford Focus Sedan 2007 8.8% Volkswagen Golf Hatchback 2012 7.98% Acura TSX Sedan 2012 6.96% Volkswagen Beetle Hatchback 2012 5.29% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Cadillac SRX SUV 2012 9.63% MINI Cooper Roadster Convertible 2012 6.71% Dodge Durango SUV 2012 6.46% Hyundai Azera Sedan 2012 4.67% Rolls-Royce Phantom Sedan 2012 4.57% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 BMW 1 Series Convertible 2012 3.14% Jaguar XK XKR 2012 1.79% BMW ActiveHybrid 5 Sedan 2012 1.75% Audi V8 Sedan 1994 1.68% BMW 6 Series Convertible 2007 1.65% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 Spyker C8 Convertible 2009 6.04% Nissan Juke Hatchback 2012 5.82% Jeep Compass SUV 2012 5.32% Bugatti Veyron 16.4 Coupe 2009 4.66% Jeep Grand Cherokee SUV 2012 3.27% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 25.53% Chevrolet Corvette ZR1 2012 8.76% Audi S4 Sedan 2007 6.74% Audi S5 Convertible 2012 5.12% Audi RS 4 Convertible 2008 3.98% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Buick Rainier SUV 2007 7.65% Buick Enclave SUV 2012 7.46% Jeep Liberty SUV 2012 7.2% Ford F-150 Regular Cab 2012 7.12% Dodge Ram Pickup 3500 Crew Cab 2010 5.72% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Mitsubishi Lancer Sedan 2012 4.98% BMW 6 Series Convertible 2007 4.27% Acura TSX Sedan 2012 3.31% Tesla Model S Sedan 2012 3.02% Acura TL Sedan 2012 2.62% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Chevrolet Corvette ZR1 2012 8.87% Audi S5 Convertible 2012 5.05% Bentley Continental Supersports Conv. Convertible 2012 3.98% Volkswagen Beetle Hatchback 2012 3.91% Porsche Panamera Sedan 2012 3.87% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Eagle Talon Hatchback 1998 4.47% Audi V8 Sedan 1994 4.09% Nissan 240SX Coupe 1998 3.81% Chrysler 300 SRT-8 2010 3.66% Volvo 240 Sedan 1993 2.82% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Volkswagen Beetle Hatchback 2012 27.08% Audi TT RS Coupe 2012 7.65% Ferrari 458 Italia Coupe 2012 7.02% Toyota Corolla Sedan 2012 6.73% Suzuki Kizashi Sedan 2012 4.55% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 20.22% Jeep Grand Cherokee SUV 2012 9.35% Jeep Wrangler SUV 2012 8.72% HUMMER H3T Crew Cab 2010 6.18% Jeep Liberty SUV 2012 5.48% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 35.9% Dodge Dakota Crew Cab 2010 17.94% Chevrolet HHR SS 2010 5.09% Nissan NV Passenger Van 2012 2.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.93% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 13.43% Ford GT Coupe 2006 6.67% Chevrolet Sonic Sedan 2012 5.0% Spyker C8 Coupe 2009 4.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.31% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 10.4% BMW 3 Series Wagon 2012 10.18% Audi S6 Sedan 2011 5.21% Volkswagen Golf Hatchback 2012 4.03% Chevrolet Sonic Sedan 2012 2.84% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota Sequoia SUV 2012 10.64% Dodge Ram Pickup 3500 Crew Cab 2010 10.43% Chrysler Aspen SUV 2009 7.31% Land Rover Range Rover SUV 2012 7.23% Volvo XC90 SUV 2007 7.21% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Suzuki SX4 Hatchback 2012 10.05% Dodge Caliber Wagon 2007 7.16% Volkswagen Golf Hatchback 1991 6.46% Ford Fiesta Sedan 2012 6.06% Jeep Compass SUV 2012 5.01% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Chevrolet Malibu Sedan 2007 9.63% Dodge Caliber Wagon 2012 6.46% Chevrolet Impala Sedan 2007 4.95% Lincoln Town Car Sedan 2011 4.18% Dodge Journey SUV 2012 3.51% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 10.04% Mercedes-Benz 300-Class Convertible 1993 5.41% Bentley Continental GT Coupe 2007 4.07% Eagle Talon Hatchback 1998 3.99% Chrysler Crossfire Convertible 2008 3.82% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Eagle Talon Hatchback 1998 15.96% Geo Metro Convertible 1993 12.21% Ferrari 458 Italia Coupe 2012 5.49% Nissan 240SX Coupe 1998 4.93% Ford Fiesta Sedan 2012 3.13% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 5.67% BMW X6 SUV 2012 4.89% Toyota Sequoia SUV 2012 4.18% Chrysler Town and Country Minivan 2012 3.97% Chevrolet Traverse SUV 2012 3.03% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 14.48% Chevrolet Malibu Hybrid Sedan 2010 4.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.1% Hyundai Genesis Sedan 2012 2.86% BMW M3 Coupe 2012 2.77% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Malibu Sedan 2007 13.02% Dodge Durango SUV 2012 5.63% Hyundai Sonata Sedan 2012 5.3% Hyundai Tucson SUV 2012 4.43% Honda Odyssey Minivan 2012 3.97% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Lamborghini Gallardo LP 570-4 Superleggera 2012 69.97% Ford Fiesta Sedan 2012 9.08% Dodge Challenger SRT8 2011 5.8% Acura Integra Type R 2001 2.58% Plymouth Neon Coupe 1999 1.53% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 54.19% Dodge Ram Pickup 3500 Crew Cab 2010 11.86% Ford F-150 Regular Cab 2012 7.08% Ford Expedition EL SUV 2009 5.99% Hyundai Santa Fe SUV 2012 4.19% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 34.72% Toyota Corolla Sedan 2012 11.29% Scion xD Hatchback 2012 5.31% Eagle Talon Hatchback 1998 4.92% Chevrolet Monte Carlo Coupe 2007 4.08% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 BMW 6 Series Convertible 2007 7.52% Aston Martin V8 Vantage Convertible 2012 6.12% Bentley Continental GT Coupe 2012 5.95% Bentley Continental GT Coupe 2007 4.09% BMW M5 Sedan 2010 4.01% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Hyundai Tucson SUV 2012 16.53% Chrysler PT Cruiser Convertible 2008 11.52% Chevrolet Traverse SUV 2012 8.47% Lincoln Town Car Sedan 2011 5.16% Hyundai Veracruz SUV 2012 4.37% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Bentley Mulsanne Sedan 2011 4.84% Cadillac CTS-V Sedan 2012 4.6% Audi S4 Sedan 2007 3.9% Audi S5 Coupe 2012 3.85% Bentley Arnage Sedan 2009 3.69% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Dodge Caravan Minivan 1997 34.48% Audi 100 Wagon 1994 14.82% GMC Savana Van 2012 12.91% Chevrolet Express Van 2007 11.79% Audi V8 Sedan 1994 4.22% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 HUMMER H3T Crew Cab 2010 21.68% HUMMER H2 SUT Crew Cab 2009 4.78% Volkswagen Golf Hatchback 1991 3.34% Volvo C30 Hatchback 2012 3.27% AM General Hummer SUV 2000 3.2% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Hyundai Sonata Hybrid Sedan 2012 16.88% Acura RL Sedan 2012 11.01% Hyundai Sonata Sedan 2012 9.01% Hyundai Azera Sedan 2012 6.44% Buick Regal GS 2012 3.5% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 3.73% BMW X6 SUV 2012 2.51% Cadillac SRX SUV 2012 2.34% BMW X3 SUV 2012 2.22% BMW 3 Series Wagon 2012 1.73% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Ford Ranger SuperCab 2011 25.3% Chevrolet Express Van 2007 10.06% Dodge Caravan Minivan 1997 9.39% Ford E-Series Wagon Van 2012 8.58% Ford F-150 Regular Cab 2012 6.48% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Bentley Mulsanne Sedan 2011 41.38% Cadillac CTS-V Sedan 2012 7.42% Rolls-Royce Phantom Sedan 2012 5.83% Bentley Continental GT Coupe 2007 5.58% Rolls-Royce Ghost Sedan 2012 4.9% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Bentley Arnage Sedan 2009 5.43% Chrysler 300 SRT-8 2010 4.74% Audi S4 Sedan 2007 4.02% Audi S5 Coupe 2012 3.04% Audi S5 Convertible 2012 3.04% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Geo Metro Convertible 1993 9.48% Ford Mustang Convertible 2007 4.57% Dodge Charger Sedan 2012 4.01% Volkswagen Golf Hatchback 1991 3.94% Dodge Dakota Club Cab 2007 3.92% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 56.39% Acura Integra Type R 2001 21.07% Chevrolet Cobalt SS 2010 7.78% Geo Metro Convertible 1993 6.35% Chevrolet Corvette Convertible 2012 2.08% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 BMW 1 Series Coupe 2012 12.43% Suzuki Aerio Sedan 2007 6.66% Daewoo Nubira Wagon 2002 5.45% BMW 3 Series Wagon 2012 5.16% Nissan Leaf Hatchback 2012 4.37% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 6.14% Hyundai Veracruz SUV 2012 5.5% Cadillac Escalade EXT Crew Cab 2007 5.38% Chevrolet Silverado 1500 Regular Cab 2012 3.95% GMC Acadia SUV 2012 3.31% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 10.26% Volkswagen Golf Hatchback 1991 6.0% Ford F-150 Regular Cab 2012 5.33% Dodge Ram Pickup 3500 Quad Cab 2009 5.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.43% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 11.9% Land Rover Range Rover SUV 2012 7.55% Chrysler PT Cruiser Convertible 2008 6.78% Toyota Sequoia SUV 2012 6.49% Cadillac SRX SUV 2012 5.28% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 4.65% Hyundai Veracruz SUV 2012 3.92% Chevrolet Silverado 2500HD Regular Cab 2012 2.98% Rolls-Royce Ghost Sedan 2012 2.97% GMC Terrain SUV 2012 2.53% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 45.24% Ferrari California Convertible 2012 22.21% BMW M3 Coupe 2012 8.49% Ferrari 458 Italia Convertible 2012 7.79% Chevrolet Camaro Convertible 2012 3.67% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Hyundai Veracruz SUV 2012 7.42% Chevrolet Traverse SUV 2012 5.98% Dodge Ram Pickup 3500 Crew Cab 2010 5.47% Dodge Ram Pickup 3500 Quad Cab 2009 5.29% Chevrolet Silverado 1500 Regular Cab 2012 5.22% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 8.94% Aston Martin V8 Vantage Coupe 2012 5.24% Chevrolet Corvette ZR1 2012 4.59% Aston Martin V8 Vantage Convertible 2012 3.22% BMW M5 Sedan 2010 2.74% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 29.74% Chevrolet Corvette Convertible 2012 12.9% Chevrolet Camaro Convertible 2012 11.42% Audi TTS Coupe 2012 5.75% Chevrolet Corvette ZR1 2012 5.06% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 FIAT 500 Convertible 2012 21.02% smart fortwo Convertible 2012 7.72% Suzuki SX4 Sedan 2012 6.47% Nissan Leaf Hatchback 2012 5.17% Acura ZDX Hatchback 2012 3.94% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Chevrolet Sonic Sedan 2012 5.78% Nissan Juke Hatchback 2012 5.44% BMW X6 SUV 2012 4.24% Ford Edge SUV 2012 3.8% BMW X3 SUV 2012 3.74% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 20.56% BMW 1 Series Coupe 2012 19.86% Chevrolet Cobalt SS 2010 7.04% BMW 1 Series Convertible 2012 4.29% Ford Focus Sedan 2007 4.06% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Veracruz SUV 2012 3.32% GMC Terrain SUV 2012 2.28% Nissan Juke Hatchback 2012 2.14% GMC Acadia SUV 2012 1.98% Hyundai Tucson SUV 2012 1.88% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Mercedes-Benz E-Class Sedan 2012 7.82% Fisker Karma Sedan 2012 3.77% Hyundai Genesis Sedan 2012 3.49% Acura TL Type-S 2008 3.25% Infiniti G Coupe IPL 2012 3.12% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Bentley Arnage Sedan 2009 10.38% Dodge Charger Sedan 2012 6.87% BMW 3 Series Sedan 2012 6.19% Mercedes-Benz E-Class Sedan 2012 5.64% Jeep Grand Cherokee SUV 2012 3.63% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Honda Odyssey Minivan 2007 17.23% Land Rover Range Rover SUV 2012 6.93% Infiniti QX56 SUV 2011 5.72% Land Rover LR2 SUV 2012 5.06% Toyota Sequoia SUV 2012 4.93% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Chevrolet Malibu Sedan 2007 7.95% Chevrolet Malibu Hybrid Sedan 2010 6.27% Toyota Camry Sedan 2012 6.23% Chevrolet Impala Sedan 2007 5.92% Chevrolet Monte Carlo Coupe 2007 4.4% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Jaguar XK XKR 2012 12.37% Toyota Camry Sedan 2012 4.88% Chevrolet Monte Carlo Coupe 2007 4.66% Chevrolet Camaro Convertible 2012 4.1% Dodge Charger SRT-8 2009 3.63% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Geo Metro Convertible 1993 20.22% smart fortwo Convertible 2012 8.91% Bentley Continental Supersports Conv. Convertible 2012 5.09% FIAT 500 Convertible 2012 4.29% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.94% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 45.81% Acura Integra Type R 2001 15.87% Chevrolet Cobalt SS 2010 11.79% Geo Metro Convertible 1993 7.06% Dodge Charger Sedan 2012 2.5% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 8.07% Toyota Camry Sedan 2012 5.66% Chevrolet Camaro Convertible 2012 5.32% Hyundai Sonata Sedan 2012 4.31% Chrysler Sebring Convertible 2010 4.1% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TTS Coupe 2012 13.87% Bentley Mulsanne Sedan 2011 10.66% Bentley Arnage Sedan 2009 8.54% Cadillac CTS-V Sedan 2012 5.32% BMW 3 Series Wagon 2012 5.24% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 29.77% Ford Expedition EL SUV 2009 17.45% Hyundai Santa Fe SUV 2012 7.98% Chevrolet Silverado 1500 Extended Cab 2012 4.97% Chrysler Aspen SUV 2009 4.53% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 9.04% BMW M6 Convertible 2010 5.12% Infiniti G Coupe IPL 2012 4.42% Jaguar XK XKR 2012 4.36% Chevrolet Camaro Convertible 2012 4.06% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Suzuki SX4 Hatchback 2012 25.03% BMW 1 Series Coupe 2012 6.82% Volvo C30 Hatchback 2012 6.04% Mitsubishi Lancer Sedan 2012 4.53% BMW 3 Series Sedan 2012 4.32% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Spyker C8 Convertible 2009 14.65% Bugatti Veyron 16.4 Coupe 2009 10.83% Bentley Continental GT Coupe 2007 9.53% Bentley Continental Flying Spur Sedan 2007 8.62% Ford GT Coupe 2006 7.75% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Rolls-Royce Phantom Sedan 2012 23.78% FIAT 500 Abarth 2012 14.28% Bentley Arnage Sedan 2009 14.25% BMW M6 Convertible 2010 8.47% Cadillac CTS-V Sedan 2012 3.8% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 35.9% Dodge Dakota Crew Cab 2010 17.94% Chevrolet HHR SS 2010 5.09% Nissan NV Passenger Van 2012 2.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.93% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Audi S6 Sedan 2011 6.63% Audi A5 Coupe 2012 4.65% Audi S5 Coupe 2012 4.22% Mercedes-Benz E-Class Sedan 2012 4.19% Mercedes-Benz C-Class Sedan 2012 3.99% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 21.26% Dodge Durango SUV 2012 18.77% Honda Accord Sedan 2012 13.88% Chrysler Town and Country Minivan 2012 9.33% Cadillac SRX SUV 2012 8.73% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 18.6% Dodge Caliber Wagon 2007 16.69% Suzuki SX4 Hatchback 2012 10.89% Land Rover LR2 SUV 2012 6.08% Bentley Continental GT Coupe 2007 5.74% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 17.2% Aston Martin Virage Convertible 2012 12.88% Chevrolet Corvette ZR1 2012 7.3% Spyker C8 Convertible 2009 5.44% Aston Martin V8 Vantage Coupe 2012 4.0% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Jeep Liberty SUV 2012 15.79% Chevrolet Tahoe Hybrid SUV 2012 9.91% Ford E-Series Wagon Van 2012 8.55% Isuzu Ascender SUV 2008 8.11% Nissan NV Passenger Van 2012 3.39% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 16.38% HUMMER H2 SUT Crew Cab 2009 9.38% HUMMER H3T Crew Cab 2010 7.61% Jeep Patriot SUV 2012 4.69% Chevrolet Silverado 1500 Regular Cab 2012 4.15% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Audi S5 Convertible 2012 4.1% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.08% Chevrolet Corvette ZR1 2012 3.64% Bentley Continental Supersports Conv. Convertible 2012 3.36% Spyker C8 Convertible 2009 2.64% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 BMW 1 Series Convertible 2012 5.76% Toyota Camry Sedan 2012 2.78% Chevrolet Camaro Convertible 2012 2.58% Jaguar XK XKR 2012 2.43% BMW ActiveHybrid 5 Sedan 2012 2.32% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Audi S5 Coupe 2012 5.03% Bentley Arnage Sedan 2009 4.55% BMW 3 Series Sedan 2012 3.45% Hyundai Genesis Sedan 2012 3.39% BMW 3 Series Wagon 2012 3.33% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Jaguar XK XKR 2012 7.99% Porsche Panamera Sedan 2012 4.96% BMW ActiveHybrid 5 Sedan 2012 4.39% Infiniti G Coupe IPL 2012 4.34% BMW 1 Series Convertible 2012 4.21% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 BMW M3 Coupe 2012 13.52% Ford GT Coupe 2006 9.26% Ferrari 458 Italia Convertible 2012 6.79% Spyker C8 Coupe 2009 4.84% Ferrari 458 Italia Coupe 2012 4.54% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Nissan Leaf Hatchback 2012 9.57% Volvo C30 Hatchback 2012 6.63% Suzuki SX4 Hatchback 2012 6.54% BMW 1 Series Coupe 2012 4.18% Chevrolet Malibu Sedan 2007 2.67% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Lamborghini Reventon Coupe 2008 5.78% Audi R8 Coupe 2012 5.07% Nissan Juke Hatchback 2012 4.34% Aston Martin V8 Vantage Convertible 2012 2.74% Chrysler 300 SRT-8 2010 2.68% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Mercedes-Benz 300-Class Convertible 1993 7.52% Volkswagen Golf Hatchback 1991 3.99% Volvo 240 Sedan 1993 2.77% Rolls-Royce Phantom Sedan 2012 2.35% Audi 100 Wagon 1994 2.33% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Suzuki Aerio Sedan 2007 8.65% Lincoln Town Car Sedan 2011 6.49% GMC Savana Van 2012 5.09% Ram C/V Cargo Van Minivan 2012 5.02% Chevrolet Malibu Sedan 2007 4.98% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 13.17% Dodge Sprinter Cargo Van 2009 7.86% Audi 100 Sedan 1994 4.53% Ford E-Series Wagon Van 2012 4.09% Audi V8 Sedan 1994 2.75% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 Dodge Dakota Club Cab 2007 30.13% GMC Canyon Extended Cab 2012 25.65% Chevrolet Silverado 1500 Extended Cab 2012 10.37% Ford F-150 Regular Cab 2012 9.41% Ford Ranger SuperCab 2011 3.8% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Lincoln Town Car Sedan 2011 10.39% Hyundai Elantra Touring Hatchback 2012 8.38% Volvo 240 Sedan 1993 4.55% Dodge Caravan Minivan 1997 4.23% Ford Focus Sedan 2007 3.7% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 10.64% Audi 100 Wagon 1994 4.91% Audi S5 Convertible 2012 4.45% Audi V8 Sedan 1994 4.06% Porsche Panamera Sedan 2012 3.97% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Honda Odyssey Minivan 2012 7.13% Acura TL Type-S 2008 6.83% Hyundai Genesis Sedan 2012 5.74% Honda Accord Sedan 2012 5.13% Chevrolet Malibu Hybrid Sedan 2010 4.03% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 BMW X5 SUV 2007 6.22% Bentley Arnage Sedan 2009 5.54% Jeep Compass SUV 2012 3.89% Volvo 240 Sedan 1993 3.8% Chrysler 300 SRT-8 2010 3.65% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 34.22% Suzuki SX4 Hatchback 2012 17.43% Hyundai Tucson SUV 2012 5.99% Hyundai Elantra Sedan 2007 4.04% Tesla Model S Sedan 2012 3.97% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 11.18% Ferrari FF Coupe 2012 10.46% Ferrari California Convertible 2012 8.82% Suzuki Kizashi Sedan 2012 6.17% BMW 3 Series Sedan 2012 5.62% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Terrain SUV 2012 13.25% Chevrolet Traverse SUV 2012 7.41% Hyundai Tucson SUV 2012 6.81% Hyundai Veracruz SUV 2012 5.62% Chevrolet Avalanche Crew Cab 2012 5.57% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 15.64% Cadillac Escalade EXT Crew Cab 2007 15.19% Chevrolet TrailBlazer SS 2009 13.16% HUMMER H3T Crew Cab 2010 7.13% Jeep Patriot SUV 2012 4.87% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Wagon 2012 9.62% Chevrolet HHR SS 2010 5.55% Ford Fiesta Sedan 2012 5.47% Chevrolet Sonic Sedan 2012 4.53% Toyota Corolla Sedan 2012 4.47% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 14.09% Aston Martin Virage Convertible 2012 6.9% Bugatti Veyron 16.4 Coupe 2009 6.27% Lamborghini Aventador Coupe 2012 5.31% Spyker C8 Coupe 2009 5.12% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Juke Hatchback 2012 4.67% Audi 100 Wagon 1994 4.61% Bentley Arnage Sedan 2009 3.88% Audi V8 Sedan 1994 3.39% Mercedes-Benz 300-Class Convertible 1993 3.3% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Hyundai Azera Sedan 2012 8.21% Acura ZDX Hatchback 2012 3.62% Dodge Challenger SRT8 2011 3.26% Aston Martin V8 Vantage Coupe 2012 2.84% BMW M3 Coupe 2012 2.8% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Chevrolet Avalanche Crew Cab 2012 22.47% Ford Freestar Minivan 2007 7.4% Buick Rainier SUV 2007 6.24% Dodge Dakota Club Cab 2007 5.59% Chevrolet Tahoe Hybrid SUV 2012 4.85% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Geo Metro Convertible 1993 23.28% Eagle Talon Hatchback 1998 11.05% Nissan 240SX Coupe 1998 9.52% Plymouth Neon Coupe 1999 6.26% Hyundai Elantra Sedan 2007 5.18% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Daewoo Nubira Wagon 2002 9.1% Volkswagen Golf Hatchback 2012 8.84% Audi S4 Sedan 2007 4.93% Hyundai Elantra Touring Hatchback 2012 4.01% BMW 1 Series Coupe 2012 3.92% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Jaguar XK XKR 2012 3.66% BMW 1 Series Convertible 2012 3.34% Toyota Camry Sedan 2012 3.17% Infiniti G Coupe IPL 2012 3.08% BMW 6 Series Convertible 2007 2.63% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Hyundai Sonata Sedan 2012 7.78% Hyundai Azera Sedan 2012 7.3% Nissan 240SX Coupe 1998 4.59% Ford Edge SUV 2012 3.76% Dodge Durango SUV 2012 3.48% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Acura Integra Type R 2001 49.5% Lamborghini Diablo Coupe 2001 28.27% Chevrolet Cobalt SS 2010 17.01% Dodge Charger Sedan 2012 1.63% Ferrari 458 Italia Convertible 2012 0.95% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Audi S6 Sedan 2011 10.82% Mercedes-Benz SL-Class Coupe 2009 5.3% Mercedes-Benz E-Class Sedan 2012 5.23% Audi S4 Sedan 2007 4.64% Mercedes-Benz C-Class Sedan 2012 3.94% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Maybach Landaulet Convertible 2012 3.11% Audi V8 Sedan 1994 2.67% Audi 100 Wagon 1994 2.29% Chrysler Crossfire Convertible 2008 2.08% Nissan 240SX Coupe 1998 2.07% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Volkswagen Golf Hatchback 2012 4.3% Toyota Camry Sedan 2012 3.69% Suzuki Aerio Sedan 2007 3.47% Buick Verano Sedan 2012 3.18% BMW 1 Series Coupe 2012 3.13% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Volvo C30 Hatchback 2012 5.78% Volkswagen Beetle Hatchback 2012 5.11% BMW 1 Series Coupe 2012 4.62% Ferrari California Convertible 2012 4.08% Hyundai Elantra Touring Hatchback 2012 3.83% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Chevrolet Malibu Sedan 2007 9.63% Lincoln Town Car Sedan 2011 7.48% Scion xD Hatchback 2012 6.2% Dodge Caliber Wagon 2012 5.36% Chevrolet Impala Sedan 2007 5.02% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Audi V8 Sedan 1994 8.25% Volvo 240 Sedan 1993 5.5% Audi 100 Wagon 1994 4.99% Ford Mustang Convertible 2007 4.44% Volkswagen Golf Hatchback 1991 4.42% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 49.15% Chevrolet Tahoe Hybrid SUV 2012 17.76% Toyota Sequoia SUV 2012 6.77% Buick Rainier SUV 2007 2.94% Toyota 4Runner SUV 2012 2.52% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 BMW 3 Series Sedan 2012 25.35% Chevrolet HHR SS 2010 7.82% Ferrari California Convertible 2012 6.98% Ferrari FF Coupe 2012 6.18% Ford Mustang Convertible 2007 5.73% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Daewoo Nubira Wagon 2002 5.86% GMC Savana Van 2012 5.71% Dodge Caravan Minivan 1997 4.58% Suzuki Aerio Sedan 2007 3.63% Ford Focus Sedan 2007 2.1% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 6.53% Audi 100 Wagon 1994 4.23% Audi S5 Coupe 2012 3.19% Eagle Talon Hatchback 1998 3.04% Chrysler 300 SRT-8 2010 2.83% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 4.9% Lamborghini Reventon Coupe 2008 4.41% Chevrolet Corvette ZR1 2012 4.33% Bentley Continental Supersports Conv. Convertible 2012 3.75% Acura Integra Type R 2001 3.32% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 McLaren MP4-12C Coupe 2012 59.65% Aston Martin Virage Coupe 2012 28.07% Lamborghini Aventador Coupe 2012 4.43% BMW M3 Coupe 2012 3.45% Hyundai Veloster Hatchback 2012 2.16% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 8.79% Geo Metro Convertible 1993 7.69% Ford Fiesta Sedan 2012 4.9% smart fortwo Convertible 2012 4.34% AM General Hummer SUV 2000 3.62% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 78.52% Ford E-Series Wagon Van 2012 6.01% Dodge Sprinter Cargo Van 2009 3.93% Isuzu Ascender SUV 2008 1.6% Nissan NV Passenger Van 2012 1.05% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford GT Coupe 2006 13.3% Lamborghini Aventador Coupe 2012 10.04% Chevrolet HHR SS 2010 8.75% Dodge Charger SRT-8 2009 6.59% McLaren MP4-12C Coupe 2012 5.17% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 66.34% BMW M3 Coupe 2012 8.33% Honda Accord Coupe 2012 4.46% Dodge Charger Sedan 2012 2.86% Chevrolet Cobalt SS 2010 2.24% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 23.8% Lamborghini Reventon Coupe 2008 8.97% Maybach Landaulet Convertible 2012 8.3% Ford GT Coupe 2006 4.97% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.18% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 64.34% Ford Fiesta Sedan 2012 7.19% Volkswagen Golf Hatchback 1991 4.59% Dodge Dakota Club Cab 2007 3.47% Dodge Sprinter Cargo Van 2009 3.28% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 12.02% Spyker C8 Convertible 2009 7.62% Hyundai Veloster Hatchback 2012 6.2% Mitsubishi Lancer Sedan 2012 4.78% Audi TTS Coupe 2012 3.78% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 59.96% Dodge Sprinter Cargo Van 2009 21.11% Ford E-Series Wagon Van 2012 5.25% Audi 100 Wagon 1994 1.46% Audi 100 Sedan 1994 1.39% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 14.62% Dodge Sprinter Cargo Van 2009 7.49% Bugatti Veyron 16.4 Convertible 2009 4.43% Mercedes-Benz 300-Class Convertible 1993 3.87% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.59% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Hyundai Genesis Sedan 2012 3.69% Mercedes-Benz E-Class Sedan 2012 3.16% Hyundai Elantra Sedan 2007 3.15% Mercedes-Benz SL-Class Coupe 2009 2.93% BMW M3 Coupe 2012 2.48% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 17.17% Bugatti Veyron 16.4 Coupe 2009 16.4% Lamborghini Reventon Coupe 2008 7.3% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.51% Lamborghini Aventador Coupe 2012 5.43% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 19.83% Jeep Grand Cherokee SUV 2012 15.51% Suzuki SX4 Hatchback 2012 7.8% Dodge Caliber Wagon 2007 4.51% Chevrolet Malibu Sedan 2007 4.5% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Mercedes-Benz E-Class Sedan 2012 12.31% Mercedes-Benz S-Class Sedan 2012 7.83% BMW 3 Series Wagon 2012 6.12% Mercedes-Benz SL-Class Coupe 2009 5.58% Mercedes-Benz C-Class Sedan 2012 4.24% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 MINI Cooper Roadster Convertible 2012 6.75% Audi S6 Sedan 2011 3.84% Dodge Challenger SRT8 2011 3.74% Hyundai Azera Sedan 2012 3.55% Jaguar XK XKR 2012 2.96% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 38.2% Audi A5 Coupe 2012 11.82% Audi S4 Sedan 2012 8.05% Audi S5 Coupe 2012 5.59% Audi S4 Sedan 2007 4.06% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi S5 Convertible 2012 7.21% Audi TT Hatchback 2011 5.86% BMW M3 Coupe 2012 5.61% Porsche Panamera Sedan 2012 5.11% Audi S5 Coupe 2012 3.76% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 BMW X5 SUV 2007 7.49% Chrysler 300 SRT-8 2010 4.07% Audi A5 Coupe 2012 3.95% BMW X3 SUV 2012 3.82% GMC Terrain SUV 2012 3.63% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Spyker C8 Convertible 2009 27.68% Eagle Talon Hatchback 1998 8.61% Plymouth Neon Coupe 1999 5.09% Ford GT Coupe 2006 4.8% Bentley Continental Flying Spur Sedan 2007 4.57% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 10.05% BMW X3 SUV 2012 3.42% Hyundai Elantra Touring Hatchback 2012 3.0% Nissan Juke Hatchback 2012 2.97% BMW X6 SUV 2012 2.57% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Chrysler 300 SRT-8 2010 12.56% Bentley Mulsanne Sedan 2011 6.35% Audi R8 Coupe 2012 4.87% Bentley Continental GT Coupe 2012 4.61% Porsche Panamera Sedan 2012 4.53% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Audi A5 Coupe 2012 2.35% Chrysler 300 SRT-8 2010 2.31% Acura ZDX Hatchback 2012 2.06% Lincoln Town Car Sedan 2011 2.0% Chevrolet Malibu Sedan 2007 1.84% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Audi TTS Coupe 2012 18.12% Audi S5 Coupe 2012 10.48% Infiniti G Coupe IPL 2012 6.01% Bentley Mulsanne Sedan 2011 5.18% Audi RS 4 Convertible 2008 5.07% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 HUMMER H2 SUT Crew Cab 2009 11.87% Jeep Wrangler SUV 2012 10.17% HUMMER H3T Crew Cab 2010 5.08% AM General Hummer SUV 2000 3.57% Hyundai Veracruz SUV 2012 3.1% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 23.32% Lamborghini Reventon Coupe 2008 17.79% Bentley Continental Supersports Conv. Convertible 2012 7.38% Lamborghini Aventador Coupe 2012 5.38% Bugatti Veyron 16.4 Coupe 2009 5.09% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Mazda Tribute SUV 2011 13.19% Isuzu Ascender SUV 2008 9.18% Volvo XC90 SUV 2007 7.89% Hyundai Santa Fe SUV 2012 7.03% Toyota Sequoia SUV 2012 6.12% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Malibu Sedan 2007 4.35% Lincoln Town Car Sedan 2011 3.92% GMC Terrain SUV 2012 2.91% Ram C/V Cargo Van Minivan 2012 2.25% Chevrolet Monte Carlo Coupe 2007 2.01% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 11.93% Buick Regal GS 2012 5.54% BMW Z4 Convertible 2012 4.89% BMW 3 Series Wagon 2012 4.41% Jaguar XK XKR 2012 4.19% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Hyundai Elantra Sedan 2007 6.46% Volkswagen Golf Hatchback 2012 4.37% Acura TSX Sedan 2012 4.04% Suzuki SX4 Sedan 2012 3.65% Mercedes-Benz S-Class Sedan 2012 3.16% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Dodge Caravan Minivan 1997 39.89% Hyundai Elantra Touring Hatchback 2012 7.34% Audi 100 Sedan 1994 6.49% Volvo 240 Sedan 1993 6.36% Plymouth Neon Coupe 1999 5.83% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 20.38% Ford Expedition EL SUV 2009 9.15% Ford F-450 Super Duty Crew Cab 2012 8.4% Chrysler Aspen SUV 2009 6.99% Land Rover Range Rover SUV 2012 6.57% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari California Convertible 2012 30.41% Ferrari 458 Italia Coupe 2012 18.82% Ferrari 458 Italia Convertible 2012 13.58% Dodge Charger SRT-8 2009 7.05% Eagle Talon Hatchback 1998 5.83% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Dodge Charger Sedan 2012 9.16% Audi TT Hatchback 2011 7.35% Dodge Charger SRT-8 2009 6.65% Dodge Magnum Wagon 2008 5.34% Ferrari California Convertible 2012 5.19% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Ford F-150 Regular Cab 2007 3.58% Dodge Caravan Minivan 1997 3.17% Cadillac Escalade EXT Crew Cab 2007 2.85% Buick Enclave SUV 2012 2.81% Honda Odyssey Minivan 2012 2.76% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 18.76% Bugatti Veyron 16.4 Coupe 2009 5.87% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.1% Buick Regal GS 2012 4.99% Tesla Model S Sedan 2012 4.04% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Ford E-Series Wagon Van 2012 16.28% Dodge Durango SUV 2007 8.27% Land Rover LR2 SUV 2012 4.85% Buick Enclave SUV 2012 4.81% Volvo XC90 SUV 2007 3.58% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Audi V8 Sedan 1994 18.96% Mercedes-Benz Sprinter Van 2012 13.99% Dodge Sprinter Cargo Van 2009 12.16% Audi 100 Sedan 1994 8.66% Mercedes-Benz SL-Class Coupe 2009 3.03% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Yukon Hybrid SUV 2012 10.71% GMC Terrain SUV 2012 4.69% Cadillac Escalade EXT Crew Cab 2007 4.4% Jeep Liberty SUV 2012 4.14% Ford F-150 Regular Cab 2007 3.33% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Rolls-Royce Phantom Sedan 2012 39.11% Bentley Arnage Sedan 2009 10.97% Rolls-Royce Ghost Sedan 2012 9.49% Audi TTS Coupe 2012 4.27% Chrysler 300 SRT-8 2010 2.98% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Ford Fiesta Sedan 2012 7.41% Geo Metro Convertible 1993 5.03% Hyundai Elantra Sedan 2007 4.97% Mercedes-Benz 300-Class Convertible 1993 3.49% Ford Mustang Convertible 2007 3.15% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Nissan 240SX Coupe 1998 13.88% Eagle Talon Hatchback 1998 10.64% Chrysler 300 SRT-8 2010 8.66% Audi V8 Sedan 1994 7.07% Volkswagen Golf Hatchback 1991 5.69% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Audi S6 Sedan 2011 10.42% Suzuki Kizashi Sedan 2012 4.71% Mercedes-Benz C-Class Sedan 2012 3.44% Plymouth Neon Coupe 1999 3.41% Chrysler Crossfire Convertible 2008 3.37% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 53.6% Chevrolet Traverse SUV 2012 24.74% Buick Rainier SUV 2007 3.25% GMC Acadia SUV 2012 1.9% Chevrolet Avalanche Crew Cab 2012 1.72% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 HUMMER H2 SUT Crew Cab 2009 17.02% HUMMER H3T Crew Cab 2010 8.29% Chevrolet Silverado 2500HD Regular Cab 2012 8.17% Chevrolet Silverado 1500 Regular Cab 2012 5.96% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.47% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Aston Martin Virage Coupe 2012 24.85% Ford GT Coupe 2006 8.9% Hyundai Veloster Hatchback 2012 6.88% Lamborghini Diablo Coupe 2001 6.67% Spyker C8 Convertible 2009 5.84% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Toyota 4Runner SUV 2012 16.17% Dodge Durango SUV 2007 10.81% Cadillac Escalade EXT Crew Cab 2007 8.99% GMC Yukon Hybrid SUV 2012 6.29% Volvo XC90 SUV 2007 4.65% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 BMW X6 SUV 2012 22.0% Suzuki SX4 Sedan 2012 13.21% Hyundai Sonata Hybrid Sedan 2012 5.61% Daewoo Nubira Wagon 2002 4.89% Acura ZDX Hatchback 2012 4.32% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Bentley Arnage Sedan 2009 10.7% Audi S5 Coupe 2012 6.09% Porsche Panamera Sedan 2012 5.05% Mercedes-Benz C-Class Sedan 2012 3.76% Chrysler 300 SRT-8 2010 3.37% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 95.86% Ferrari 458 Italia Convertible 2012 0.81% Audi TT RS Coupe 2012 0.57% Dodge Challenger SRT8 2011 0.57% McLaren MP4-12C Coupe 2012 0.47% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Acura TL Type-S 2008 6.03% Hyundai Genesis Sedan 2012 4.89% Volvo 240 Sedan 1993 3.86% Porsche Panamera Sedan 2012 2.74% Mercedes-Benz SL-Class Coupe 2009 2.43% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 5.15% Chrysler Aspen SUV 2009 3.84% BMW X5 SUV 2007 3.51% Land Rover LR2 SUV 2012 3.27% Mazda Tribute SUV 2011 3.05% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Audi A5 Coupe 2012 27.64% BMW 6 Series Convertible 2007 6.23% Acura TL Sedan 2012 4.5% Audi S5 Coupe 2012 4.08% Toyota Camry Sedan 2012 3.88% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Nissan Leaf Hatchback 2012 20.84% Daewoo Nubira Wagon 2002 17.6% smart fortwo Convertible 2012 11.63% Suzuki Aerio Sedan 2007 8.72% Suzuki SX4 Sedan 2012 5.28% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Audi TT RS Coupe 2012 70.44% Ferrari 458 Italia Coupe 2012 3.08% Ferrari 458 Italia Convertible 2012 2.87% Ferrari California Convertible 2012 2.77% Lamborghini Aventador Coupe 2012 2.44% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Honda Odyssey Minivan 2012 6.14% Suzuki SX4 Sedan 2012 3.56% Honda Odyssey Minivan 2007 3.19% Chevrolet Impala Sedan 2007 2.65% Dodge Caravan Minivan 1997 2.58% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Wagon 2012 9.21% Chevrolet Sonic Sedan 2012 4.28% Audi S6 Sedan 2011 4.22% Bentley Continental Flying Spur Sedan 2007 2.42% Audi S4 Sedan 2007 2.32% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 20.99% Dodge Caliber Wagon 2012 8.33% GMC Terrain SUV 2012 6.61% Jeep Grand Cherokee SUV 2012 6.51% Chevrolet Traverse SUV 2012 5.52% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Aston Martin Virage Coupe 2012 90.26% Volvo C30 Hatchback 2012 2.63% Aston Martin V8 Vantage Coupe 2012 1.75% McLaren MP4-12C Coupe 2012 0.66% Audi TTS Coupe 2012 0.5% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 26.89% McLaren MP4-12C Coupe 2012 23.14% Spyker C8 Convertible 2009 9.06% Lamborghini Aventador Coupe 2012 5.72% Lamborghini Diablo Coupe 2001 4.93% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Suzuki SX4 Sedan 2012 7.86% MINI Cooper Roadster Convertible 2012 7.72% Hyundai Sonata Hybrid Sedan 2012 6.81% Acura RL Sedan 2012 5.13% Chevrolet Sonic Sedan 2012 4.39% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 BMW 6 Series Convertible 2007 7.92% Bentley Arnage Sedan 2009 3.68% Chrysler 300 SRT-8 2010 3.66% Audi TTS Coupe 2012 3.2% BMW X5 SUV 2007 2.79% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 10.19% Bugatti Veyron 16.4 Coupe 2009 8.65% Maybach Landaulet Convertible 2012 8.29% Aston Martin Virage Convertible 2012 7.89% Lamborghini Reventon Coupe 2008 5.82% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 15.52% Aston Martin V8 Vantage Coupe 2012 11.89% Aston Martin V8 Vantage Convertible 2012 6.29% BMW 1 Series Convertible 2012 5.56% Aston Martin Virage Convertible 2012 4.43% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 86.36% GMC Savana Van 2012 9.11% Chevrolet Express Van 2007 4.49% Audi 100 Wagon 1994 0.03% Dodge Caravan Minivan 1997 0.01% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Geo Metro Convertible 1993 10.4% Mercedes-Benz 300-Class Convertible 1993 6.35% Chrysler PT Cruiser Convertible 2008 4.1% Lincoln Town Car Sedan 2011 3.51% Ford Focus Sedan 2007 3.29% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Dodge Caliber Wagon 2007 16.52% Chevrolet Traverse SUV 2012 8.36% Ford Freestar Minivan 2007 5.11% GMC Canyon Extended Cab 2012 4.55% Dodge Caliber Wagon 2012 3.63% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Chevrolet TrailBlazer SS 2009 4.11% Cadillac CTS-V Sedan 2012 4.03% FIAT 500 Abarth 2012 3.98% Chrysler 300 SRT-8 2010 3.54% Cadillac Escalade EXT Crew Cab 2007 3.18% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Mercedes-Benz Sprinter Van 2012 31.58% Dodge Caravan Minivan 1997 4.7% Audi V8 Sedan 1994 4.64% Audi 100 Wagon 1994 3.16% BMW X3 SUV 2012 2.97% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Eagle Talon Hatchback 1998 9.18% Daewoo Nubira Wagon 2002 7.86% Plymouth Neon Coupe 1999 7.09% Volkswagen Golf Hatchback 1991 7.06% Mercedes-Benz 300-Class Convertible 1993 4.35% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Volkswagen Beetle Hatchback 2012 16.17% Audi TT RS Coupe 2012 13.75% Ferrari California Convertible 2012 6.24% Audi TT Hatchback 2011 3.57% Chevrolet HHR SS 2010 3.29% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Chevrolet Corvette Ron Fellows Edition Z06 2007 32.43% Geo Metro Convertible 1993 8.0% Maybach Landaulet Convertible 2012 4.47% Mercedes-Benz 300-Class Convertible 1993 4.05% Eagle Talon Hatchback 1998 2.66% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 25.47% Chevrolet HHR SS 2010 17.33% Ferrari 458 Italia Coupe 2012 14.94% Volkswagen Beetle Hatchback 2012 12.47% Ferrari California Convertible 2012 4.97% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 22.03% Ferrari 458 Italia Coupe 2012 18.07% Ferrari 458 Italia Convertible 2012 16.86% Chevrolet Corvette Convertible 2012 16.82% Chevrolet Camaro Convertible 2012 9.76% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 24.12% Chrysler Aspen SUV 2009 11.47% Dodge Ram Pickup 3500 Crew Cab 2010 11.36% Land Rover Range Rover SUV 2012 6.34% Ford F-450 Super Duty Crew Cab 2012 5.31% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Mercedes-Benz S-Class Sedan 2012 4.37% Mercedes-Benz E-Class Sedan 2012 3.85% Acura TSX Sedan 2012 3.78% Acura RL Sedan 2012 3.29% Audi A5 Coupe 2012 3.19% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Volvo XC90 SUV 2007 3.51% Audi 100 Sedan 1994 3.2% Volvo 240 Sedan 1993 3.18% Dodge Dakota Crew Cab 2010 2.73% Audi V8 Sedan 1994 2.69% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Bentley Continental Flying Spur Sedan 2007 6.51% Eagle Talon Hatchback 1998 5.37% Chrysler 300 SRT-8 2010 3.54% Ford Mustang Convertible 2007 2.87% Plymouth Neon Coupe 1999 2.85% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 FIAT 500 Abarth 2012 49.93% Chevrolet Corvette ZR1 2012 5.99% Spyker C8 Convertible 2009 4.72% Bugatti Veyron 16.4 Coupe 2009 3.8% Dodge Challenger SRT8 2011 1.85% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette ZR1 2012 6.16% Spyker C8 Convertible 2009 5.77% Lamborghini Reventon Coupe 2008 3.95% Bentley Continental Flying Spur Sedan 2007 3.74% Volkswagen Beetle Hatchback 2012 3.73% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Volkswagen Beetle Hatchback 2012 4.75% Bentley Continental Flying Spur Sedan 2007 4.48% Bentley Continental GT Coupe 2012 4.46% Chevrolet Corvette ZR1 2012 3.88% Audi S5 Convertible 2012 3.85% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Jeep Liberty SUV 2012 5.14% Jeep Patriot SUV 2012 3.28% Jeep Compass SUV 2012 2.95% Nissan NV Passenger Van 2012 2.76% BMW X5 SUV 2007 2.66% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Acadia SUV 2012 14.9% Ford Ranger SuperCab 2011 14.74% Chevrolet Traverse SUV 2012 8.38% Buick Enclave SUV 2012 7.03% Buick Rainier SUV 2007 6.48% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Hyundai Tucson SUV 2012 5.89% Dodge Journey SUV 2012 3.58% BMW X5 SUV 2007 3.43% Ford Fiesta Sedan 2012 3.18% BMW X3 SUV 2012 3.17% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Chrysler 300 SRT-8 2010 5.13% Hyundai Veracruz SUV 2012 5.03% Audi 100 Sedan 1994 3.17% BMW M6 Convertible 2010 3.13% BMW 3 Series Sedan 2012 2.93% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Ferrari FF Coupe 2012 28.58% Ferrari California Convertible 2012 10.45% Aston Martin V8 Vantage Coupe 2012 9.61% Ferrari 458 Italia Coupe 2012 6.42% BMW M3 Coupe 2012 4.96% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Spyker C8 Convertible 2009 14.74% Spyker C8 Coupe 2009 11.96% Dodge Challenger SRT8 2011 7.82% Chevrolet Corvette ZR1 2012 3.73% Bugatti Veyron 16.4 Coupe 2009 3.65% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 13.04% Lamborghini Diablo Coupe 2001 6.12% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.64% Aston Martin V8 Vantage Coupe 2012 5.05% Bugatti Veyron 16.4 Coupe 2009 4.85% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Land Rover LR2 SUV 2012 17.27% Cadillac SRX SUV 2012 12.21% Land Rover Range Rover SUV 2012 7.61% BMW X5 SUV 2007 4.0% Chevrolet TrailBlazer SS 2009 3.19% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Maybach Landaulet Convertible 2012 6.19% Chevrolet Camaro Convertible 2012 5.88% Chevrolet Monte Carlo Coupe 2007 5.02% Scion xD Hatchback 2012 4.68% Toyota Corolla Sedan 2012 3.42% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 13.01% Cadillac SRX SUV 2012 8.39% Land Rover Range Rover SUV 2012 7.57% Chevrolet TrailBlazer SS 2009 6.88% Land Rover LR2 SUV 2012 4.76% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 19.22% Dodge Ram Pickup 3500 Quad Cab 2009 9.79% Dodge Dakota Crew Cab 2010 9.46% GMC Canyon Extended Cab 2012 5.92% Isuzu Ascender SUV 2008 4.86% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 42.13% Lamborghini Diablo Coupe 2001 19.78% Chevrolet Cobalt SS 2010 7.15% Audi RS 4 Convertible 2008 6.38% Dodge Charger Sedan 2012 5.39% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 9.3% Honda Accord Sedan 2012 5.63% Audi V8 Sedan 1994 5.27% Lincoln Town Car Sedan 2011 4.29% Audi 100 Sedan 1994 4.19% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 17.51% Plymouth Neon Coupe 1999 9.28% Honda Accord Coupe 2012 7.77% Chevrolet Monte Carlo Coupe 2007 5.21% Dodge Charger SRT-8 2009 4.97% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Ford GT Coupe 2006 34.71% Lamborghini Aventador Coupe 2012 5.72% Ferrari 458 Italia Convertible 2012 3.18% Ferrari FF Coupe 2012 3.15% McLaren MP4-12C Coupe 2012 3.0% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 BMW X5 SUV 2007 13.49% Dodge Caravan Minivan 1997 5.97% Hyundai Elantra Touring Hatchback 2012 5.11% Volkswagen Golf Hatchback 2012 3.75% Land Rover LR2 SUV 2012 3.55% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 6.11% Lamborghini Reventon Coupe 2008 5.7% Lamborghini Aventador Coupe 2012 3.68% Maybach Landaulet Convertible 2012 3.67% Spyker C8 Coupe 2009 2.35% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 AM General Hummer SUV 2000 18.71% Mazda Tribute SUV 2011 7.25% smart fortwo Convertible 2012 6.72% Ford F-150 Regular Cab 2007 5.98% Jeep Patriot SUV 2012 5.66% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Jeep Wrangler SUV 2012 45.74% Jeep Compass SUV 2012 5.83% Suzuki SX4 Hatchback 2012 5.78% Volkswagen Golf Hatchback 1991 5.26% Mazda Tribute SUV 2011 3.88% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 56.46% GMC Savana Van 2012 30.29% Chevrolet Express Van 2007 11.03% HUMMER H3T Crew Cab 2010 0.44% Jeep Patriot SUV 2012 0.35% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Jaguar XK XKR 2012 14.54% BMW 1 Series Convertible 2012 8.6% Aston Martin V8 Vantage Convertible 2012 7.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.5% Hyundai Veloster Hatchback 2012 4.92% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Toyota Corolla Sedan 2012 9.28% BMW Z4 Convertible 2012 8.32% Buick Verano Sedan 2012 5.55% Suzuki Kizashi Sedan 2012 4.79% BMW 3 Series Wagon 2012 4.48% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.91% Isuzu Ascender SUV 2008 10.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 8.76% Chevrolet Silverado 1500 Extended Cab 2012 8.75% Chevrolet Silverado 2500HD Regular Cab 2012 7.94% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 8.04% Suzuki SX4 Hatchback 2012 7.45% BMW X6 SUV 2012 5.79% Buick Verano Sedan 2012 5.24% Honda Accord Coupe 2012 4.52% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Extended Cab 2012 11.78% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.58% Chevrolet Silverado 2500HD Regular Cab 2012 9.52% Ford F-150 Regular Cab 2012 9.08% GMC Canyon Extended Cab 2012 5.22% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Wrangler SUV 2012 28.19% Jeep Patriot SUV 2012 27.03% Jeep Compass SUV 2012 10.76% Jeep Liberty SUV 2012 10.59% Jeep Grand Cherokee SUV 2012 4.24% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Audi R8 Coupe 2012 5.0% Bentley Arnage Sedan 2009 4.25% Bentley Mulsanne Sedan 2011 3.22% Dodge Challenger SRT8 2011 2.47% Audi S5 Convertible 2012 2.26% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Expedition EL SUV 2009 14.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.64% Hyundai Santa Fe SUV 2012 8.25% Chrysler Aspen SUV 2009 7.53% Chevrolet Avalanche Crew Cab 2012 6.39% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Jeep Liberty SUV 2012 11.57% Jeep Compass SUV 2012 10.62% Jeep Grand Cherokee SUV 2012 9.19% BMW X5 SUV 2007 8.31% GMC Terrain SUV 2012 7.93% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Infiniti QX56 SUV 2011 15.11% Dodge Journey SUV 2012 8.77% Land Rover Range Rover SUV 2012 8.37% Dodge Durango SUV 2012 4.78% Cadillac Escalade EXT Crew Cab 2007 4.1% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Ford Freestar Minivan 2007 3.52% Land Rover Range Rover SUV 2012 2.78% Honda Odyssey Minivan 2007 2.47% Dodge Caravan Minivan 1997 2.34% Chevrolet Traverse SUV 2012 2.27% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Mazda Tribute SUV 2011 9.6% Jeep Patriot SUV 2012 9.36% Dodge Caliber Wagon 2012 8.65% Ford Edge SUV 2012 8.29% Jeep Liberty SUV 2012 8.03% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 41.6% Chevrolet Monte Carlo Coupe 2007 6.81% Maybach Landaulet Convertible 2012 4.81% Rolls-Royce Ghost Sedan 2012 2.97% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.91% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Jeep Grand Cherokee SUV 2012 11.3% Chevrolet TrailBlazer SS 2009 11.08% Jeep Compass SUV 2012 8.44% Rolls-Royce Ghost Sedan 2012 5.84% GMC Terrain SUV 2012 4.92% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Bentley Mulsanne Sedan 2011 58.31% Bentley Continental GT Coupe 2007 6.98% Cadillac CTS-V Sedan 2012 3.29% Aston Martin V8 Vantage Convertible 2012 2.15% Rolls-Royce Phantom Sedan 2012 1.79% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 34.81% Lamborghini Reventon Coupe 2008 12.36% Spyker C8 Convertible 2009 6.39% Lamborghini Aventador Coupe 2012 6.26% Ford GT Coupe 2006 5.23% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Hatchback 2012 54.98% Tesla Model S Sedan 2012 2.91% Volvo C30 Hatchback 2012 2.35% Nissan Juke Hatchback 2012 2.06% Buick Enclave SUV 2012 1.98% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 MINI Cooper Roadster Convertible 2012 4.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Suzuki Kizashi Sedan 2012 3.64% Hyundai Sonata Hybrid Sedan 2012 3.43% Jaguar XK XKR 2012 3.39% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Audi 100 Wagon 1994 9.89% Mercedes-Benz 300-Class Convertible 1993 7.03% Chevrolet Silverado 1500 Extended Cab 2012 5.17% Audi 100 Sedan 1994 5.1% GMC Savana Van 2012 4.05% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Cadillac Escalade EXT Crew Cab 2007 9.24% Toyota 4Runner SUV 2012 7.32% GMC Yukon Hybrid SUV 2012 5.69% Cadillac SRX SUV 2012 4.61% Dodge Durango SUV 2007 4.19% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 26.36% Jeep Wrangler SUV 2012 23.69% Jeep Patriot SUV 2012 9.73% Jeep Liberty SUV 2012 8.31% HUMMER H2 SUT Crew Cab 2009 5.23% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 HUMMER H2 SUT Crew Cab 2009 10.02% Jeep Wrangler SUV 2012 9.29% AM General Hummer SUV 2000 6.24% Jeep Liberty SUV 2012 5.34% HUMMER H3T Crew Cab 2010 4.02% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Chevrolet Corvette ZR1 2012 18.32% Jaguar XK XKR 2012 4.79% Porsche Panamera Sedan 2012 4.14% Audi RS 4 Convertible 2008 4.09% Audi S6 Sedan 2011 3.66% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Ford Freestar Minivan 2007 6.33% Chevrolet Traverse SUV 2012 4.9% Dodge Dakota Crew Cab 2010 3.91% Chrysler Aspen SUV 2009 2.59% Chevrolet Impala Sedan 2007 2.54% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Audi 100 Sedan 1994 2.28% Audi 100 Wagon 1994 1.94% Mercedes-Benz 300-Class Convertible 1993 1.93% Maybach Landaulet Convertible 2012 1.92% Lincoln Town Car Sedan 2011 1.82% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Honda Odyssey Minivan 2007 6.27% Chrysler Town and Country Minivan 2012 4.8% Suzuki Aerio Sedan 2007 3.93% Chevrolet Impala Sedan 2007 3.4% Ford Focus Sedan 2007 3.14% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 Ford Edge SUV 2012 27.78% BMW 1 Series Coupe 2012 8.63% Dodge Caliber Wagon 2007 6.57% Dodge Caliber Wagon 2012 6.3% GMC Terrain SUV 2012 4.44% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Audi RS 4 Convertible 2008 15.39% Lamborghini Gallardo LP 570-4 Superleggera 2012 12.43% Dodge Challenger SRT8 2011 11.16% Chevrolet Corvette ZR1 2012 7.45% Audi V8 Sedan 1994 6.29% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Eagle Talon Hatchback 1998 19.93% Plymouth Neon Coupe 1999 10.98% Volkswagen Golf Hatchback 1991 8.36% Mercedes-Benz 300-Class Convertible 1993 3.98% Volvo 240 Sedan 1993 3.79% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 25.14% Ford Mustang Convertible 2007 11.1% Nissan 240SX Coupe 1998 6.86% Volkswagen Golf Hatchback 1991 4.16% Chevrolet Cobalt SS 2010 3.95% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 74.65% Ford Fiesta Sedan 2012 6.98% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.86% Acura Integra Type R 2001 1.4% smart fortwo Convertible 2012 1.11% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caravan Minivan 1997 8.45% GMC Savana Van 2012 7.21% Chevrolet Silverado 1500 Extended Cab 2012 6.97% Dodge Ram Pickup 3500 Quad Cab 2009 6.23% Audi 100 Wagon 1994 5.56% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Jeep Patriot SUV 2012 17.29% Dodge Caliber Wagon 2012 12.99% Chevrolet Traverse SUV 2012 12.43% Jeep Grand Cherokee SUV 2012 10.61% GMC Acadia SUV 2012 6.68% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Acura ZDX Hatchback 2012 2.5% Spyker C8 Convertible 2009 2.4% Audi 100 Wagon 1994 2.22% Hyundai Azera Sedan 2012 2.0% Spyker C8 Coupe 2009 1.94% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Dodge Challenger SRT8 2011 11.89% Audi S5 Convertible 2012 5.99% MINI Cooper Roadster Convertible 2012 5.44% Fisker Karma Sedan 2012 4.94% Bugatti Veyron 16.4 Convertible 2009 3.87% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Chevrolet Monte Carlo Coupe 2007 21.7% Scion xD Hatchback 2012 9.62% Lincoln Town Car Sedan 2011 8.25% Chevrolet Malibu Sedan 2007 6.89% Chevrolet Impala Sedan 2007 5.58% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Suzuki Aerio Sedan 2007 9.37% Lincoln Town Car Sedan 2011 7.95% Chevrolet Impala Sedan 2007 6.14% Chevrolet Malibu Sedan 2007 4.25% Chevrolet Monte Carlo Coupe 2007 4.24% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 16.97% Chevrolet Silverado 1500 Extended Cab 2012 15.32% Dodge Ram Pickup 3500 Quad Cab 2009 14.02% Ford F-150 Regular Cab 2007 13.7% Chevrolet Silverado 1500 Classic Extended Cab 2007 13.64% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura Integra Type R 2001 6.04% Bentley Continental Supersports Conv. Convertible 2012 5.32% Jaguar XK XKR 2012 4.36% Nissan 240SX Coupe 1998 2.36% Suzuki Aerio Sedan 2007 2.32% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Rolls-Royce Ghost Sedan 2012 7.54% Jeep Grand Cherokee SUV 2012 5.17% Chevrolet Sonic Sedan 2012 4.95% Chevrolet Malibu Sedan 2007 4.3% MINI Cooper Roadster Convertible 2012 4.19% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Audi 100 Sedan 1994 5.83% Audi V8 Sedan 1994 5.19% Volvo 240 Sedan 1993 4.92% Audi 100 Wagon 1994 4.03% Volvo XC90 SUV 2007 3.61% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Chevrolet Malibu Hybrid Sedan 2010 6.44% Toyota Camry Sedan 2012 5.05% Toyota Corolla Sedan 2012 4.08% Hyundai Genesis Sedan 2012 3.55% Audi A5 Coupe 2012 3.27% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Scion xD Hatchback 2012 2.81% Nissan 240SX Coupe 1998 2.48% BMW ActiveHybrid 5 Sedan 2012 2.28% BMW M3 Coupe 2012 2.11% Suzuki Kizashi Sedan 2012 1.87% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Volkswagen Golf Hatchback 1991 50.16% Ford Mustang Convertible 2007 11.48% GMC Savana Van 2012 6.06% GMC Canyon Extended Cab 2012 4.82% Geo Metro Convertible 1993 4.32% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Ram C/V Cargo Van Minivan 2012 12.39% Chrysler Town and Country Minivan 2012 11.5% Dodge Caliber Wagon 2012 8.56% Honda Odyssey Minivan 2007 5.21% Suzuki Aerio Sedan 2007 4.52% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Ford F-450 Super Duty Crew Cab 2012 22.3% Dodge Ram Pickup 3500 Crew Cab 2010 12.21% Ford Expedition EL SUV 2009 10.05% Chevrolet TrailBlazer SS 2009 5.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.81% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 BMW 3 Series Sedan 2012 29.34% Ferrari FF Coupe 2012 26.94% Ford GT Coupe 2006 3.06% Chevrolet Corvette ZR1 2012 2.46% Spyker C8 Coupe 2009 2.32% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bentley Continental GT Coupe 2007 9.68% Bugatti Veyron 16.4 Coupe 2009 4.34% BMW M5 Sedan 2010 4.25% Bentley Continental Flying Spur Sedan 2007 3.86% Spyker C8 Convertible 2009 3.4% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Toyota Camry Sedan 2012 9.98% Chrysler Sebring Convertible 2010 8.45% Chevrolet Monte Carlo Coupe 2007 7.96% Honda Accord Coupe 2012 5.84% Hyundai Sonata Sedan 2012 5.73% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 AM General Hummer SUV 2000 40.64% Jeep Patriot SUV 2012 14.44% HUMMER H3T Crew Cab 2010 11.33% Jeep Wrangler SUV 2012 7.61% HUMMER H2 SUT Crew Cab 2009 5.83% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 39.71% Bentley Continental Supersports Conv. Convertible 2012 22.01% Geo Metro Convertible 1993 5.03% Ford GT Coupe 2006 3.08% Acura Integra Type R 2001 2.93% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Honda Accord Coupe 2012 6.31% Chevrolet Malibu Sedan 2007 6.3% Hyundai Sonata Sedan 2012 5.36% Dodge Magnum Wagon 2008 4.6% Chevrolet Monte Carlo Coupe 2007 3.8% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 MINI Cooper Roadster Convertible 2012 13.28% BMW Z4 Convertible 2012 6.98% BMW ActiveHybrid 5 Sedan 2012 6.0% Bugatti Veyron 16.4 Convertible 2009 4.67% Fisker Karma Sedan 2012 4.39% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 11.95% Jeep Grand Cherokee SUV 2012 10.94% Ford Edge SUV 2012 5.5% Dodge Caliber Wagon 2012 5.27% Chevrolet Traverse SUV 2012 4.72% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Ford Freestar Minivan 2007 9.4% Lincoln Town Car Sedan 2011 7.7% Honda Odyssey Minivan 2007 6.37% Chevrolet Traverse SUV 2012 5.6% GMC Terrain SUV 2012 3.56% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 45.02% Geo Metro Convertible 1993 12.93% Acura Integra Type R 2001 12.31% Ferrari 458 Italia Convertible 2012 6.1% Audi RS 4 Convertible 2008 4.67% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 53.16% Mercedes-Benz Sprinter Van 2012 44.2% Ford E-Series Wagon Van 2012 0.81% GMC Savana Van 2012 0.43% Chevrolet Express Van 2007 0.19% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 28.1% Dodge Caliber Wagon 2012 15.68% Dodge Journey SUV 2012 12.47% Dodge Caliber Wagon 2007 10.8% Ford Freestar Minivan 2007 4.48% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 17.65% Bentley Continental Supersports Conv. Convertible 2012 10.52% smart fortwo Convertible 2012 7.14% Plymouth Neon Coupe 1999 5.14% BMW 6 Series Convertible 2007 3.8% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Chrysler Sebring Convertible 2010 7.12% BMW 3 Series Wagon 2012 4.61% Honda Odyssey Minivan 2007 4.21% Chevrolet Malibu Hybrid Sedan 2010 3.59% Toyota Corolla Sedan 2012 2.96% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Bentley Arnage Sedan 2009 12.9% Rolls-Royce Phantom Sedan 2012 10.85% Rolls-Royce Ghost Sedan 2012 6.16% BMW 3 Series Sedan 2012 6.09% Volvo XC90 SUV 2007 5.32% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 13.88% Bentley Arnage Sedan 2009 13.7% Rolls-Royce Phantom Sedan 2012 11.02% Chrysler 300 SRT-8 2010 5.0% Cadillac CTS-V Sedan 2012 4.75% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 66.36% Chevrolet Cobalt SS 2010 14.62% Lamborghini Diablo Coupe 2001 14.14% Dodge Charger Sedan 2012 0.81% BMW Z4 Convertible 2012 0.67% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Isuzu Ascender SUV 2008 6.35% Dodge Ram Pickup 3500 Quad Cab 2009 5.66% Volvo XC90 SUV 2007 4.02% Chevrolet Silverado 1500 Extended Cab 2012 3.62% Toyota Sequoia SUV 2012 3.21% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Acura Integra Type R 2001 20.17% BMW Z4 Convertible 2012 16.03% Lamborghini Diablo Coupe 2001 15.99% Dodge Charger Sedan 2012 7.63% Hyundai Veloster Hatchback 2012 7.42% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 BMW Z4 Convertible 2012 5.7% Eagle Talon Hatchback 1998 5.09% Toyota Corolla Sedan 2012 4.85% FIAT 500 Convertible 2012 4.75% Dodge Charger SRT-8 2009 4.26% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Suzuki SX4 Sedan 2012 5.36% Suzuki SX4 Hatchback 2012 4.39% Nissan Leaf Hatchback 2012 4.14% Tesla Model S Sedan 2012 3.84% Geo Metro Convertible 1993 3.79% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Eagle Talon Hatchback 1998 6.15% Mercedes-Benz 300-Class Convertible 1993 5.3% Plymouth Neon Coupe 1999 4.67% Volvo 240 Sedan 1993 3.7% Ford Mustang Convertible 2007 2.81% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 5.66% Chevrolet Silverado 1500 Regular Cab 2012 4.97% Nissan NV Passenger Van 2012 4.19% Chevrolet Silverado 2500HD Regular Cab 2012 3.99% Chevrolet Silverado 1500 Extended Cab 2012 2.93% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 10.07% Nissan NV Passenger Van 2012 7.51% Nissan Juke Hatchback 2012 6.2% Audi 100 Wagon 1994 5.93% Hyundai Tucson SUV 2012 5.83% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Nissan 240SX Coupe 1998 4.72% Maybach Landaulet Convertible 2012 3.86% Bentley Continental Supersports Conv. Convertible 2012 3.55% Aston Martin V8 Vantage Coupe 2012 3.07% Chevrolet Cobalt SS 2010 3.0% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 18.84% GMC Canyon Extended Cab 2012 17.96% Jeep Wrangler SUV 2012 15.76% Dodge Dakota Club Cab 2007 5.76% Ford Ranger SuperCab 2011 4.95% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Audi S5 Convertible 2012 17.72% Chevrolet Corvette ZR1 2012 14.82% Porsche Panamera Sedan 2012 6.2% Bentley Continental Supersports Conv. Convertible 2012 5.84% Aston Martin V8 Vantage Convertible 2012 4.24% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Ford Expedition EL SUV 2009 11.55% Audi V8 Sedan 1994 6.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.3% Ford F-450 Super Duty Crew Cab 2012 3.86% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.66% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 5.38% Aston Martin V8 Vantage Convertible 2012 4.82% BMW 1 Series Convertible 2012 4.57% BMW Z4 Convertible 2012 4.45% Audi TT Hatchback 2011 4.43% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Isuzu Ascender SUV 2008 5.89% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.81% Dodge Dakota Crew Cab 2010 5.59% Volvo XC90 SUV 2007 4.82% Ford F-150 Regular Cab 2012 4.44% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 54.98% Dodge Sprinter Cargo Van 2009 32.51% Dodge Caravan Minivan 1997 2.26% Audi 100 Sedan 1994 1.57% Ford E-Series Wagon Van 2012 1.21% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Volkswagen Golf Hatchback 1991 24.09% GMC Savana Van 2012 17.38% smart fortwo Convertible 2012 8.21% Dodge Dakota Club Cab 2007 4.78% Geo Metro Convertible 1993 4.31% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 BMW 3 Series Wagon 2012 17.06% Mitsubishi Lancer Sedan 2012 16.69% BMW M5 Sedan 2010 10.01% Tesla Model S Sedan 2012 8.96% Buick Regal GS 2012 5.64% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Isuzu Ascender SUV 2008 14.33% HUMMER H2 SUT Crew Cab 2009 11.27% Jeep Patriot SUV 2012 6.52% HUMMER H3T Crew Cab 2010 6.05% Ford Ranger SuperCab 2011 5.78% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 smart fortwo Convertible 2012 13.16% Land Rover LR2 SUV 2012 11.17% BMW 1 Series Coupe 2012 6.26% Volvo C30 Hatchback 2012 6.04% Ford Ranger SuperCab 2011 5.98% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 11.43% Bugatti Veyron 16.4 Coupe 2009 6.67% FIAT 500 Abarth 2012 5.89% Nissan Leaf Hatchback 2012 3.57% Chevrolet Corvette ZR1 2012 3.07% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Aston Martin V8 Vantage Coupe 2012 5.62% Cadillac CTS-V Sedan 2012 5.08% Dodge Charger SRT-8 2009 4.63% Chrysler 300 SRT-8 2010 4.44% Aston Martin V8 Vantage Convertible 2012 3.14% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Dodge Caliber Wagon 2012 13.31% Ram C/V Cargo Van Minivan 2012 7.14% Chevrolet Malibu Sedan 2007 5.89% Chevrolet Avalanche Crew Cab 2012 5.52% Buick Rainier SUV 2007 5.3% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 5.9% Bentley Continental Flying Spur Sedan 2007 5.22% Bentley Continental GT Coupe 2007 4.84% Chrysler 300 SRT-8 2010 3.39% Dodge Charger SRT-8 2009 3.12% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 BMW X6 SUV 2012 8.18% Tesla Model S Sedan 2012 7.43% Jeep Compass SUV 2012 7.02% Suzuki Kizashi Sedan 2012 6.56% Volkswagen Beetle Hatchback 2012 5.73% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 7.15% Maybach Landaulet Convertible 2012 4.77% Suzuki SX4 Sedan 2012 4.41% Suzuki Aerio Sedan 2007 3.73% Chevrolet Monte Carlo Coupe 2007 3.46% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Chrysler Sebring Convertible 2010 8.05% Chrysler PT Cruiser Convertible 2008 4.78% Hyundai Sonata Sedan 2012 4.33% Dodge Magnum Wagon 2008 3.58% Chevrolet Malibu Sedan 2007 3.51% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Dodge Dakota Crew Cab 2010 13.41% Ford Edge SUV 2012 7.84% Chevrolet Silverado 1500 Regular Cab 2012 7.44% Hyundai Santa Fe SUV 2012 6.41% GMC Acadia SUV 2012 6.34% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Dakota Club Cab 2007 5.31% Chevrolet Avalanche Crew Cab 2012 5.03% Dodge Dakota Crew Cab 2010 4.82% Ford Ranger SuperCab 2011 4.58% GMC Acadia SUV 2012 4.47% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Rolls-Royce Ghost Sedan 2012 3.47% Lincoln Town Car Sedan 2011 3.19% Chevrolet Camaro Convertible 2012 3.18% Mercedes-Benz 300-Class Convertible 1993 3.09% Acura TSX Sedan 2012 2.92% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Extended Cab 2012 33.7% Ford F-150 Regular Cab 2007 27.4% GMC Canyon Extended Cab 2012 10.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.16% GMC Savana Van 2012 4.43% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Chevrolet Impala Sedan 2007 16.08% Chevrolet Monte Carlo Coupe 2007 11.52% Chevrolet Malibu Sedan 2007 6.02% Mercedes-Benz 300-Class Convertible 1993 5.86% Suzuki Aerio Sedan 2007 5.46% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Cadillac Escalade EXT Crew Cab 2007 7.78% Chevrolet TrailBlazer SS 2009 4.86% Toyota 4Runner SUV 2012 3.52% BMW X6 SUV 2012 3.2% Dodge Durango SUV 2012 2.7% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 BMW M3 Coupe 2012 3.02% Toyota Camry Sedan 2012 2.6% Mitsubishi Lancer Sedan 2012 2.41% Scion xD Hatchback 2012 2.24% Suzuki Aerio Sedan 2007 2.22% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Mercedes-Benz S-Class Sedan 2012 16.73% Hyundai Genesis Sedan 2012 13.39% Infiniti QX56 SUV 2011 12.79% Mercedes-Benz C-Class Sedan 2012 9.42% Chrysler Aspen SUV 2009 6.99% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Chevrolet Express Cargo Van 2007 11.75% HUMMER H3T Crew Cab 2010 8.36% Nissan NV Passenger Van 2012 6.77% Chevrolet Silverado 1500 Regular Cab 2012 6.27% HUMMER H2 SUT Crew Cab 2009 5.67% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 BMW X5 SUV 2007 15.77% Chrysler 300 SRT-8 2010 9.63% Jeep Compass SUV 2012 7.64% Rolls-Royce Ghost Sedan 2012 5.15% Jeep Grand Cherokee SUV 2012 4.95% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 AM General Hummer SUV 2000 17.87% Mazda Tribute SUV 2011 14.39% Audi 100 Wagon 1994 6.26% Jeep Patriot SUV 2012 5.11% HUMMER H2 SUT Crew Cab 2009 5.02% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 18.97% Spyker C8 Convertible 2009 6.57% Aston Martin V8 Vantage Convertible 2012 6.13% Bentley Continental GT Coupe 2007 4.9% Aston Martin V8 Vantage Coupe 2012 4.22% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Bentley Arnage Sedan 2009 15.92% FIAT 500 Abarth 2012 8.99% Rolls-Royce Phantom Sedan 2012 8.14% Bentley Continental Flying Spur Sedan 2007 5.66% Cadillac CTS-V Sedan 2012 5.17% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Maybach Landaulet Convertible 2012 13.56% Chevrolet Monte Carlo Coupe 2007 6.37% Chevrolet Impala Sedan 2007 5.44% Lincoln Town Car Sedan 2011 4.29% Chevrolet Malibu Hybrid Sedan 2010 3.83% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 25.1% Dodge Magnum Wagon 2008 6.85% Chevrolet Corvette Convertible 2012 6.68% Chevrolet Camaro Convertible 2012 5.89% Dodge Charger SRT-8 2009 4.42% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Corvette Convertible 2012 15.55% Acura Integra Type R 2001 13.91% Lamborghini Diablo Coupe 2001 10.96% Ferrari 458 Italia Convertible 2012 8.25% Chevrolet Cobalt SS 2010 8.16% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 14.95% Bentley Continental Supersports Conv. Convertible 2012 9.74% Audi S5 Convertible 2012 5.46% Audi RS 4 Convertible 2008 4.66% Aston Martin V8 Vantage Convertible 2012 4.24% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Hyundai Tucson SUV 2012 14.96% BMW X5 SUV 2007 7.34% GMC Acadia SUV 2012 6.2% Cadillac SRX SUV 2012 4.03% Jeep Grand Cherokee SUV 2012 3.61% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 16.39% Ford F-150 Regular Cab 2012 11.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.14% Ford F-450 Super Duty Crew Cab 2012 8.46% Ford E-Series Wagon Van 2012 8.07% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz E-Class Sedan 2012 10.03% Mercedes-Benz SL-Class Coupe 2009 4.53% Fisker Karma Sedan 2012 3.39% Mercedes-Benz S-Class Sedan 2012 2.36% BMW ActiveHybrid 5 Sedan 2012 2.23% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 BMW 6 Series Convertible 2007 8.7% Acura Integra Type R 2001 5.17% Acura ZDX Hatchback 2012 4.51% Maybach Landaulet Convertible 2012 2.97% FIAT 500 Convertible 2012 2.84% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 BMW X5 SUV 2007 4.79% Toyota Sequoia SUV 2012 3.98% Toyota 4Runner SUV 2012 3.8% Buick Rainier SUV 2007 3.28% Hyundai Veracruz SUV 2012 3.0% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Land Rover Range Rover SUV 2012 6.84% Chevrolet Sonic Sedan 2012 6.71% Land Rover LR2 SUV 2012 5.47% Honda Odyssey Minivan 2012 5.46% Cadillac SRX SUV 2012 5.31% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 20.91% Chevrolet Silverado 1500 Regular Cab 2012 9.91% GMC Canyon Extended Cab 2012 9.49% Ford Expedition EL SUV 2009 9.25% Dodge Ram Pickup 3500 Quad Cab 2009 8.94% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 16.7% Ford F-150 Regular Cab 2012 14.73% Chevrolet Silverado 1500 Regular Cab 2012 9.37% Ford F-150 Regular Cab 2007 7.85% GMC Yukon Hybrid SUV 2012 5.98% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 9.17% Isuzu Ascender SUV 2008 8.99% Buick Rainier SUV 2007 3.67% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.33% Chrysler Aspen SUV 2009 2.91% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Hyundai Elantra Sedan 2007 13.53% Chevrolet Impala Sedan 2007 12.03% Plymouth Neon Coupe 1999 11.31% Buick Verano Sedan 2012 9.88% Chrysler Crossfire Convertible 2008 9.79% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 21.81% Ford Edge SUV 2012 14.68% Ford F-450 Super Duty Crew Cab 2012 9.28% Chevrolet Silverado 1500 Regular Cab 2012 6.92% Dodge Ram Pickup 3500 Crew Cab 2010 6.38% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Bentley Continental GT Coupe 2012 6.93% Tesla Model S Sedan 2012 6.06% Bentley Continental Flying Spur Sedan 2007 5.66% BMW 6 Series Convertible 2007 5.09% Acura TL Sedan 2012 3.69% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 60.81% HUMMER H2 SUT Crew Cab 2009 13.24% AM General Hummer SUV 2000 4.38% Geo Metro Convertible 1993 2.91% Dodge Dakota Club Cab 2007 2.62% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 81.13% Chevrolet Express Cargo Van 2007 16.41% Chevrolet Express Van 2007 2.47% Jeep Patriot SUV 2012 0.0% Audi 100 Wagon 1994 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Lamborghini Reventon Coupe 2008 28.75% Nissan Leaf Hatchback 2012 6.88% Bugatti Veyron 16.4 Coupe 2009 6.41% Tesla Model S Sedan 2012 3.44% Suzuki SX4 Sedan 2012 2.38% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 GMC Terrain SUV 2012 4.15% Jeep Grand Cherokee SUV 2012 3.18% Rolls-Royce Ghost Sedan 2012 3.09% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.76% Chevrolet Monte Carlo Coupe 2007 2.74% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 GMC Terrain SUV 2012 20.17% Jeep Grand Cherokee SUV 2012 16.68% Chevrolet Monte Carlo Coupe 2007 7.14% Chevrolet TrailBlazer SS 2009 3.57% Chevrolet Avalanche Crew Cab 2012 3.48% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 31.67% Ferrari 458 Italia Convertible 2012 15.0% Chevrolet Camaro Convertible 2012 14.68% BMW M3 Coupe 2012 13.43% Lamborghini Aventador Coupe 2012 6.19% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Audi S5 Coupe 2012 4.59% Audi A5 Coupe 2012 4.12% Cadillac SRX SUV 2012 2.88% Chrysler Town and Country Minivan 2012 2.69% Honda Odyssey Minivan 2012 2.6% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Ferrari 458 Italia Coupe 2012 58.25% Ferrari 458 Italia Convertible 2012 8.17% Ferrari FF Coupe 2012 7.5% Lamborghini Aventador Coupe 2012 6.0% BMW M3 Coupe 2012 3.99% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Audi 100 Wagon 1994 14.38% Chevrolet Tahoe Hybrid SUV 2012 13.68% Ford E-Series Wagon Van 2012 10.4% Nissan NV Passenger Van 2012 10.38% Mercedes-Benz Sprinter Van 2012 7.21% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Buick Verano Sedan 2012 17.0% Honda Odyssey Minivan 2012 7.69% Hyundai Elantra Sedan 2007 6.23% Honda Accord Coupe 2012 5.64% Acura RL Sedan 2012 3.95% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Rolls-Royce Ghost Sedan 2012 13.21% Rolls-Royce Phantom Sedan 2012 9.43% Maybach Landaulet Convertible 2012 4.18% Dodge Magnum Wagon 2008 3.6% Hyundai Sonata Hybrid Sedan 2012 2.97% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Acura ZDX Hatchback 2012 7.75% Nissan Juke Hatchback 2012 3.31% BMW 1 Series Convertible 2012 2.95% Acura TL Type-S 2008 2.94% MINI Cooper Roadster Convertible 2012 2.54% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Suzuki Aerio Sedan 2007 5.87% Mercedes-Benz 300-Class Convertible 1993 4.49% Acura TL Type-S 2008 4.39% Audi 100 Wagon 1994 3.49% Honda Accord Sedan 2012 3.25% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 17.92% Dodge Dakota Crew Cab 2010 15.21% Ford Ranger SuperCab 2011 12.2% Dodge Dakota Club Cab 2007 10.13% Dodge Ram Pickup 3500 Quad Cab 2009 8.77% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 BMW X6 SUV 2012 11.03% Mitsubishi Lancer Sedan 2012 6.67% BMW X3 SUV 2012 5.4% Acura RL Sedan 2012 5.19% Suzuki SX4 Hatchback 2012 4.83% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Hyundai Genesis Sedan 2012 12.59% Fisker Karma Sedan 2012 9.31% Mercedes-Benz E-Class Sedan 2012 8.73% Infiniti G Coupe IPL 2012 5.49% Mercedes-Benz SL-Class Coupe 2009 5.06% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Chevrolet Malibu Hybrid Sedan 2010 12.25% Acura TSX Sedan 2012 8.83% Toyota Camry Sedan 2012 5.08% Acura TL Sedan 2012 4.5% Suzuki Aerio Sedan 2007 4.04% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 31.07% Audi S4 Sedan 2012 24.23% Hyundai Azera Sedan 2012 9.53% Hyundai Sonata Sedan 2012 6.86% Dodge Charger Sedan 2012 2.36% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Volkswagen Beetle Hatchback 2012 3.61% Hyundai Elantra Touring Hatchback 2012 3.15% Acura TL Type-S 2008 2.79% Nissan Leaf Hatchback 2012 2.52% BMW M5 Sedan 2010 2.46% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 55.64% Ford Edge SUV 2012 11.35% Volvo XC90 SUV 2007 3.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.36% Dodge Dakota Crew Cab 2010 2.89% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 4.33% Mercedes-Benz S-Class Sedan 2012 3.94% Audi S5 Convertible 2012 3.86% MINI Cooper Roadster Convertible 2012 2.78% Mercedes-Benz SL-Class Coupe 2009 2.6% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 40.47% FIAT 500 Abarth 2012 24.76% Bentley Arnage Sedan 2009 13.26% Spyker C8 Coupe 2009 4.43% Chevrolet Corvette ZR1 2012 1.54% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Rolls-Royce Phantom Sedan 2012 7.95% Cadillac CTS-V Sedan 2012 6.78% Chrysler 300 SRT-8 2010 6.58% BMW M6 Convertible 2010 6.13% Infiniti G Coupe IPL 2012 5.61% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 34.2% Ferrari 458 Italia Convertible 2012 4.93% BMW M3 Coupe 2012 3.45% Bentley Continental GT Coupe 2007 3.26% Ferrari 458 Italia Coupe 2012 3.22% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 4.24% Toyota 4Runner SUV 2012 3.0% Audi S5 Coupe 2012 2.84% Cadillac CTS-V Sedan 2012 2.1% BMW 3 Series Sedan 2012 2.08% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Mercedes-Benz E-Class Sedan 2012 4.6% Mercedes-Benz S-Class Sedan 2012 3.83% Ram C/V Cargo Van Minivan 2012 2.85% Acura TL Type-S 2008 2.65% BMW M3 Coupe 2012 2.6% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Land Rover Range Rover SUV 2012 14.16% Ford Edge SUV 2012 5.26% Land Rover LR2 SUV 2012 5.19% Ford F-450 Super Duty Crew Cab 2012 4.78% Cadillac Escalade EXT Crew Cab 2007 4.44% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2012 12.55% Ford Focus Sedan 2007 9.37% Suzuki SX4 Hatchback 2012 6.76% Dodge Caliber Wagon 2007 5.91% Buick Verano Sedan 2012 4.75% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 BMW M6 Convertible 2010 4.11% Fisker Karma Sedan 2012 3.73% Chrysler 300 SRT-8 2010 2.56% Mercedes-Benz C-Class Sedan 2012 2.52% Infiniti G Coupe IPL 2012 2.36% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 10.51% Audi RS 4 Convertible 2008 8.07% BMW Z4 Convertible 2012 6.25% Aston Martin Virage Coupe 2012 3.86% BMW M3 Coupe 2012 3.86% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 34.5% Nissan NV Passenger Van 2012 9.47% Ford F-150 Regular Cab 2012 7.6% Ford F-150 Regular Cab 2007 4.52% Isuzu Ascender SUV 2008 3.48% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Geo Metro Convertible 1993 92.03% Volkswagen Golf Hatchback 1991 0.97% Chevrolet HHR SS 2010 0.65% Ferrari 458 Italia Convertible 2012 0.53% Chevrolet Corvette Convertible 2012 0.51% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 17.08% Chevrolet Traverse SUV 2012 6.22% Chevrolet Avalanche Crew Cab 2012 4.58% Dodge Journey SUV 2012 4.43% Ford Freestar Minivan 2007 4.19% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 15.41% Spyker C8 Coupe 2009 13.58% Bugatti Veyron 16.4 Coupe 2009 6.4% Fisker Karma Sedan 2012 6.09% Hyundai Azera Sedan 2012 3.15% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chrysler 300 SRT-8 2010 5.66% Chevrolet TrailBlazer SS 2009 5.2% Cadillac Escalade EXT Crew Cab 2007 4.19% Bentley Arnage Sedan 2009 3.7% Nissan 240SX Coupe 1998 2.1% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Aston Martin V8 Vantage Convertible 2012 12.51% Chevrolet Corvette Ron Fellows Edition Z06 2007 9.94% Jaguar XK XKR 2012 9.25% Chevrolet Camaro Convertible 2012 4.41% Aston Martin V8 Vantage Coupe 2012 3.67% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Ram C/V Cargo Van Minivan 2012 7.45% Chrysler PT Cruiser Convertible 2008 6.23% Honda Odyssey Minivan 2007 5.01% Chrysler Aspen SUV 2009 5.0% Ford Freestar Minivan 2007 4.58% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 GMC Terrain SUV 2012 8.29% Jeep Grand Cherokee SUV 2012 7.3% Isuzu Ascender SUV 2008 6.21% Mazda Tribute SUV 2011 4.83% Chevrolet Silverado 1500 Extended Cab 2012 4.56% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Hyundai Elantra Sedan 2007 14.27% Dodge Journey SUV 2012 6.35% Ford Fiesta Sedan 2012 5.71% Suzuki Kizashi Sedan 2012 4.11% Dodge Caliber Wagon 2007 3.42% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Geo Metro Convertible 1993 23.02% Volkswagen Golf Hatchback 1991 7.58% Lamborghini Reventon Coupe 2008 6.96% Bentley Continental Supersports Conv. Convertible 2012 4.96% Audi 100 Wagon 1994 4.57% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 29.81% Bentley Arnage Sedan 2009 11.73% Fisker Karma Sedan 2012 5.59% Audi S5 Convertible 2012 5.08% Chevrolet Corvette ZR1 2012 4.38% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 BMW 3 Series Sedan 2012 19.57% Ferrari California Convertible 2012 10.87% Ferrari FF Coupe 2012 7.32% Ferrari 458 Italia Coupe 2012 5.0% Audi TT RS Coupe 2012 4.97% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Nissan 240SX Coupe 1998 17.13% Eagle Talon Hatchback 1998 8.85% Porsche Panamera Sedan 2012 4.0% Dodge Charger SRT-8 2009 3.89% Spyker C8 Convertible 2009 3.24% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 58.75% Dodge Ram Pickup 3500 Quad Cab 2009 14.8% GMC Canyon Extended Cab 2012 10.31% Ford Ranger SuperCab 2011 9.8% Ford F-150 Regular Cab 2012 1.77% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 14.35% Aston Martin V8 Vantage Coupe 2012 4.9% Acura Integra Type R 2001 4.78% Bentley Continental Supersports Conv. Convertible 2012 3.4% Lamborghini Diablo Coupe 2001 3.2% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Suzuki Kizashi Sedan 2012 12.33% BMW 3 Series Sedan 2012 8.26% Jaguar XK XKR 2012 5.41% Ferrari FF Coupe 2012 5.13% Toyota Camry Sedan 2012 4.84% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 21.48% Dodge Dakota Club Cab 2007 19.09% Dodge Ram Pickup 3500 Quad Cab 2009 10.64% Dodge Ram Pickup 3500 Crew Cab 2010 9.45% Ford Freestar Minivan 2007 9.41% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Lamborghini Diablo Coupe 2001 5.66% Acura Integra Type R 2001 4.7% Chevrolet Tahoe Hybrid SUV 2012 3.52% BMW Z4 Convertible 2012 3.12% Mitsubishi Lancer Sedan 2012 3.07% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Toyota 4Runner SUV 2012 8.48% Chevrolet Tahoe Hybrid SUV 2012 7.34% BMW X5 SUV 2007 7.29% BMW X6 SUV 2012 6.02% Cadillac Escalade EXT Crew Cab 2007 5.64% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Audi V8 Sedan 1994 18.2% Chevrolet TrailBlazer SS 2009 10.63% Volvo 240 Sedan 1993 6.69% Bentley Arnage Sedan 2009 6.07% Eagle Talon Hatchback 1998 4.74% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 60.01% Lamborghini Aventador Coupe 2012 13.21% Chevrolet Camaro Convertible 2012 6.94% Ferrari California Convertible 2012 2.24% Ferrari 458 Italia Coupe 2012 1.99% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Chevrolet Silverado 1500 Extended Cab 2012 8.47% Ford F-150 Regular Cab 2007 6.26% Dodge Ram Pickup 3500 Quad Cab 2009 4.75% Chevrolet Silverado 1500 Regular Cab 2012 4.74% Ford Freestar Minivan 2007 4.42% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Tahoe Hybrid SUV 2012 13.2% GMC Yukon Hybrid SUV 2012 7.24% Cadillac Escalade EXT Crew Cab 2007 6.35% Isuzu Ascender SUV 2008 5.46% Toyota 4Runner SUV 2012 4.81% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 15.23% Acura RL Sedan 2012 15.14% Hyundai Accent Sedan 2012 12.04% Hyundai Elantra Sedan 2007 8.2% Toyota Camry Sedan 2012 7.45% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Hyundai Veracruz SUV 2012 6.34% Toyota 4Runner SUV 2012 3.21% Volvo 240 Sedan 1993 2.79% Land Rover Range Rover SUV 2012 2.75% GMC Terrain SUV 2012 2.73% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Suzuki SX4 Hatchback 2012 10.47% Volvo C30 Hatchback 2012 8.08% Honda Accord Coupe 2012 4.42% Hyundai Elantra Touring Hatchback 2012 4.11% Suzuki SX4 Sedan 2012 3.73% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Audi TT Hatchback 2011 5.38% Audi S5 Coupe 2012 4.66% Toyota Camry Sedan 2012 3.06% Audi A5 Coupe 2012 3.01% Audi TT RS Coupe 2012 2.84% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 HUMMER H2 SUT Crew Cab 2009 8.04% Cadillac Escalade EXT Crew Cab 2007 7.5% Jeep Liberty SUV 2012 6.2% GMC Yukon Hybrid SUV 2012 4.66% AM General Hummer SUV 2000 3.69% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Bentley Mulsanne Sedan 2011 27.08% Bugatti Veyron 16.4 Convertible 2009 8.33% Lamborghini Reventon Coupe 2008 8.11% Maybach Landaulet Convertible 2012 4.48% Infiniti QX56 SUV 2011 3.54% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Bentley Continental GT Coupe 2007 5.43% Aston Martin V8 Vantage Convertible 2012 3.66% Aston Martin V8 Vantage Coupe 2012 3.45% BMW 6 Series Convertible 2007 3.43% Lamborghini Reventon Coupe 2008 3.42% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 33.5% FIAT 500 Abarth 2012 9.04% Cadillac CTS-V Sedan 2012 6.83% Chrysler 300 SRT-8 2010 6.61% Jeep Liberty SUV 2012 6.51% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Ford GT Coupe 2006 8.7% smart fortwo Convertible 2012 7.07% Daewoo Nubira Wagon 2002 6.56% Eagle Talon Hatchback 1998 5.59% Maybach Landaulet Convertible 2012 4.96% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 BMW ActiveHybrid 5 Sedan 2012 8.53% Bentley Mulsanne Sedan 2011 3.85% Audi S5 Convertible 2012 3.62% Audi R8 Coupe 2012 3.57% Audi TT Hatchback 2011 2.65% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Hyundai Azera Sedan 2012 6.99% Audi A5 Coupe 2012 6.52% MINI Cooper Roadster Convertible 2012 6.41% Mercedes-Benz S-Class Sedan 2012 4.1% Mercedes-Benz SL-Class Coupe 2009 3.43% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Nissan Juke Hatchback 2012 3.15% Suzuki SX4 Sedan 2012 3.0% Rolls-Royce Ghost Sedan 2012 2.41% Chevrolet Sonic Sedan 2012 2.21% Jeep Grand Cherokee SUV 2012 2.12% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 15.36% Ford E-Series Wagon Van 2012 15.28% Nissan NV Passenger Van 2012 12.18% Dodge Sprinter Cargo Van 2009 8.89% Chevrolet Express Van 2007 7.2% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 23.02% Isuzu Ascender SUV 2008 10.56% Volvo XC90 SUV 2007 10.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.24% GMC Yukon Hybrid SUV 2012 6.58% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Convertible 2012 7.29% Chevrolet Impala Sedan 2007 4.98% Chevrolet Malibu Sedan 2007 4.45% Suzuki Kizashi Sedan 2012 2.62% Chevrolet Monte Carlo Coupe 2007 2.4% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 12.31% Isuzu Ascender SUV 2008 5.77% GMC Canyon Extended Cab 2012 4.42% Dodge Dakota Crew Cab 2010 3.47% Buick Enclave SUV 2012 3.03% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Nissan NV Passenger Van 2012 12.91% GMC Canyon Extended Cab 2012 9.52% Dodge Ram Pickup 3500 Quad Cab 2009 8.01% Buick Rainier SUV 2007 5.88% Dodge Durango SUV 2007 5.37% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Audi 100 Sedan 1994 7.43% Cadillac Escalade EXT Crew Cab 2007 5.89% Volvo XC90 SUV 2007 5.44% GMC Yukon Hybrid SUV 2012 5.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.41% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 13.42% Cadillac Escalade EXT Crew Cab 2007 6.52% Jeep Compass SUV 2012 5.03% Land Rover Range Rover SUV 2012 3.61% Dodge Durango SUV 2012 3.38% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Audi V8 Sedan 1994 11.49% Nissan 240SX Coupe 1998 9.24% Mercedes-Benz 300-Class Convertible 1993 8.63% Audi 100 Wagon 1994 3.56% Eagle Talon Hatchback 1998 3.38% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 96.75% Hyundai Veloster Hatchback 2012 1.01% Spyker C8 Coupe 2009 0.18% Jaguar XK XKR 2012 0.16% Tesla Model S Sedan 2012 0.15% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chevrolet Silverado 2500HD Regular Cab 2012 9.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.81% Chevrolet Silverado 1500 Regular Cab 2012 5.53% Chevrolet Silverado 1500 Extended Cab 2012 5.01% Dodge Dakota Club Cab 2007 5.01% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Hyundai Veracruz SUV 2012 5.17% GMC Savana Van 2012 4.57% Nissan Juke Hatchback 2012 4.05% Lamborghini Reventon Coupe 2008 3.0% Buick Enclave SUV 2012 2.85% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 8.48% Hyundai Elantra Sedan 2007 5.5% Hyundai Accent Sedan 2012 4.46% Toyota Corolla Sedan 2012 4.19% Ram C/V Cargo Van Minivan 2012 3.89% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 32.99% Hyundai Veloster Hatchback 2012 13.14% Spyker C8 Convertible 2009 8.01% Volvo C30 Hatchback 2012 6.43% McLaren MP4-12C Coupe 2012 5.3% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Yukon Hybrid SUV 2012 10.22% Audi 100 Sedan 1994 5.93% Chevrolet Silverado 2500HD Regular Cab 2012 5.92% Volvo XC90 SUV 2007 5.88% Cadillac Escalade EXT Crew Cab 2007 4.1% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Maybach Landaulet Convertible 2012 12.47% Nissan Leaf Hatchback 2012 8.54% Mercedes-Benz 300-Class Convertible 1993 7.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.06% Chevrolet Monte Carlo Coupe 2007 3.64% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 HUMMER H3T Crew Cab 2010 18.4% HUMMER H2 SUT Crew Cab 2009 10.42% Mercedes-Benz 300-Class Convertible 1993 7.65% Audi 100 Wagon 1994 5.81% Nissan 240SX Coupe 1998 5.4% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Chevrolet Express Cargo Van 2007 26.47% Chevrolet Express Van 2007 21.64% GMC Savana Van 2012 18.63% Dodge Caravan Minivan 1997 7.36% Audi 100 Wagon 1994 2.72% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Audi S5 Coupe 2012 4.44% Dodge Magnum Wagon 2008 3.78% Audi A5 Coupe 2012 3.22% Ram C/V Cargo Van Minivan 2012 2.66% Dodge Durango SUV 2012 2.52% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 41.52% BMW 1 Series Coupe 2012 18.45% BMW X3 SUV 2012 3.77% Dodge Durango SUV 2012 2.51% Dodge Caliber Wagon 2012 2.19% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Audi R8 Coupe 2012 6.03% Buick Regal GS 2012 5.41% BMW X5 SUV 2007 3.6% Audi A5 Coupe 2012 3.29% BMW X6 SUV 2012 3.23% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 9.51% Chevrolet TrailBlazer SS 2009 8.26% Ford Edge SUV 2012 7.11% Chrysler 300 SRT-8 2010 6.38% Buick Enclave SUV 2012 3.61% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Nissan 240SX Coupe 1998 12.76% Chrysler 300 SRT-8 2010 6.67% Eagle Talon Hatchback 1998 6.06% Chevrolet Monte Carlo Coupe 2007 5.42% Mercedes-Benz 300-Class Convertible 1993 4.73% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Jaguar XK XKR 2012 5.69% BMW 1 Series Convertible 2012 5.54% Porsche Panamera Sedan 2012 4.36% Audi TT RS Coupe 2012 4.12% Tesla Model S Sedan 2012 4.02% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 BMW 1 Series Coupe 2012 18.03% Volkswagen Golf Hatchback 2012 17.16% Tesla Model S Sedan 2012 5.22% Suzuki SX4 Sedan 2012 3.56% Suzuki Aerio Sedan 2007 3.37% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 24.15% Hyundai Accent Sedan 2012 15.39% Nissan 240SX Coupe 1998 11.96% Toyota Camry Sedan 2012 9.49% Chevrolet HHR SS 2010 5.09% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Volvo XC90 SUV 2007 6.31% Cadillac Escalade EXT Crew Cab 2007 4.75% Chevrolet TrailBlazer SS 2009 4.54% Dodge Durango SUV 2012 4.26% Cadillac SRX SUV 2012 3.45% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Chevrolet Corvette ZR1 2012 6.08% Audi V8 Sedan 1994 4.77% FIAT 500 Abarth 2012 4.2% Ford Mustang Convertible 2007 3.69% Audi S6 Sedan 2011 3.12% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 BMW M3 Coupe 2012 4.13% Hyundai Genesis Sedan 2012 2.15% Mercedes-Benz E-Class Sedan 2012 2.1% Suzuki Kizashi Sedan 2012 1.89% Acura TL Type-S 2008 1.8% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Volvo 240 Sedan 1993 5.4% BMW X5 SUV 2007 4.01% Jaguar XK XKR 2012 2.86% Hyundai Veracruz SUV 2012 2.84% Hyundai Tucson SUV 2012 2.7% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 67.11% HUMMER H2 SUT Crew Cab 2009 8.24% AM General Hummer SUV 2000 2.05% Land Rover LR2 SUV 2012 1.18% Bugatti Veyron 16.4 Coupe 2009 1.11% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 30.13% Ford F-150 Regular Cab 2007 19.23% Chevrolet Silverado 1500 Extended Cab 2012 14.55% GMC Savana Van 2012 14.03% GMC Canyon Extended Cab 2012 12.07% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Ford Edge SUV 2012 10.85% Dodge Caliber Wagon 2012 8.23% GMC Acadia SUV 2012 7.86% Dodge Dakota Crew Cab 2010 6.91% BMW X6 SUV 2012 5.73% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 22.98% Bentley Mulsanne Sedan 2011 15.68% Nissan NV Passenger Van 2012 9.74% Audi S5 Coupe 2012 5.64% Cadillac CTS-V Sedan 2012 3.57% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Volkswagen Golf Hatchback 2012 4.12% Hyundai Elantra Touring Hatchback 2012 4.09% Honda Accord Sedan 2012 4.05% Chrysler Town and Country Minivan 2012 3.45% Chevrolet Malibu Hybrid Sedan 2010 3.19% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 12.66% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.37% Hyundai Santa Fe SUV 2012 5.0% Dodge Durango SUV 2007 4.95% Chevrolet Silverado 1500 Extended Cab 2012 3.95% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Aston Martin V8 Vantage Coupe 2012 6.09% Audi TT Hatchback 2011 3.51% Jaguar XK XKR 2012 3.36% Acura TL Sedan 2012 3.3% Aston Martin V8 Vantage Convertible 2012 2.9% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Lamborghini Reventon Coupe 2008 9.36% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.81% Bentley Continental Supersports Conv. Convertible 2012 6.47% Bugatti Veyron 16.4 Coupe 2009 6.43% Geo Metro Convertible 1993 4.52% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Fisker Karma Sedan 2012 4.41% Rolls-Royce Ghost Sedan 2012 4.03% Hyundai Genesis Sedan 2012 4.02% Dodge Charger SRT-8 2009 3.94% Chevrolet Camaro Convertible 2012 3.63% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 BMW 3 Series Wagon 2012 5.32% Chevrolet Malibu Hybrid Sedan 2010 4.96% Suzuki Aerio Sedan 2007 4.53% Acura TL Sedan 2012 4.36% Acura TSX Sedan 2012 3.55% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 30.82% Hyundai Sonata Sedan 2012 10.86% Mercedes-Benz E-Class Sedan 2012 8.14% Mercedes-Benz S-Class Sedan 2012 5.49% Honda Accord Sedan 2012 4.66% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2007 16.79% Bentley Continental Flying Spur Sedan 2007 11.24% Spyker C8 Convertible 2009 7.04% Aston Martin Virage Convertible 2012 5.48% Aston Martin V8 Vantage Coupe 2012 5.2% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 HUMMER H3T Crew Cab 2010 46.69% HUMMER H2 SUT Crew Cab 2009 26.92% Jeep Wrangler SUV 2012 14.16% AM General Hummer SUV 2000 12.13% Dodge Ram Pickup 3500 Quad Cab 2009 0.02% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Dodge Sprinter Cargo Van 2009 19.9% GMC Savana Van 2012 15.39% Chevrolet Express Cargo Van 2007 14.84% Nissan NV Passenger Van 2012 7.16% Ram C/V Cargo Van Minivan 2012 5.48% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 58.58% Ferrari 458 Italia Coupe 2012 18.44% Ferrari California Convertible 2012 11.02% Chevrolet Corvette Convertible 2012 2.97% Dodge Charger SRT-8 2009 2.44% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 HUMMER H3T Crew Cab 2010 5.58% Volvo 240 Sedan 1993 5.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.84% Audi 100 Sedan 1994 3.83% Volvo XC90 SUV 2007 3.31% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Maybach Landaulet Convertible 2012 5.62% BMW 6 Series Convertible 2007 5.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.79% Bentley Continental Supersports Conv. Convertible 2012 4.5% Mercedes-Benz 300-Class Convertible 1993 3.7% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bentley Continental Flying Spur Sedan 2007 5.74% Rolls-Royce Ghost Sedan 2012 4.97% Bentley Continental GT Coupe 2007 4.69% Rolls-Royce Phantom Sedan 2012 3.19% Bugatti Veyron 16.4 Coupe 2009 2.76% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Hyundai Azera Sedan 2012 14.84% Hyundai Sonata Sedan 2012 13.44% Chrysler Sebring Convertible 2010 8.14% BMW 3 Series Wagon 2012 5.63% BMW 1 Series Convertible 2012 2.8% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 72.27% Chevrolet Express Van 2007 13.23% GMC Savana Van 2012 11.85% Audi 100 Wagon 1994 0.91% Audi 100 Sedan 1994 0.64% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Acura ZDX Hatchback 2012 8.19% Hyundai Azera Sedan 2012 5.72% Audi V8 Sedan 1994 5.21% Audi 100 Sedan 1994 4.22% MINI Cooper Roadster Convertible 2012 3.1% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Chevrolet Tahoe Hybrid SUV 2012 14.22% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.77% Dodge Dakota Crew Cab 2010 10.23% Toyota Sequoia SUV 2012 8.53% Ford Edge SUV 2012 5.02% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 14.17% Honda Accord Sedan 2012 6.0% Hyundai Genesis Sedan 2012 5.22% Hyundai Elantra Touring Hatchback 2012 5.2% BMW X3 SUV 2012 4.72% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Bugatti Veyron 16.4 Coupe 2009 5.62% Nissan Leaf Hatchback 2012 5.6% Volkswagen Beetle Hatchback 2012 5.48% Bugatti Veyron 16.4 Convertible 2009 5.26% Tesla Model S Sedan 2012 4.04% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Jaguar XK XKR 2012 6.11% Hyundai Veloster Hatchback 2012 5.68% Spyker C8 Coupe 2009 4.76% Spyker C8 Convertible 2009 4.4% Ford GT Coupe 2006 3.9% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 6.97% Volvo XC90 SUV 2007 4.63% Jeep Compass SUV 2012 4.37% BMW 3 Series Sedan 2012 3.94% GMC Yukon Hybrid SUV 2012 3.5% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 23.55% BMW 3 Series Sedan 2012 7.57% Ford GT Coupe 2006 6.41% Ford Mustang Convertible 2007 5.65% Chevrolet Corvette ZR1 2012 4.32% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Isuzu Ascender SUV 2008 33.03% Buick Rainier SUV 2007 8.29% Chevrolet Tahoe Hybrid SUV 2012 4.31% Mazda Tribute SUV 2011 4.29% Jeep Patriot SUV 2012 3.95% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 14.84% Chrysler Aspen SUV 2009 6.74% Chevrolet Silverado 1500 Extended Cab 2012 5.63% Chevrolet Avalanche Crew Cab 2012 5.4% Honda Odyssey Minivan 2007 4.08% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 7.29% Geo Metro Convertible 1993 6.91% Daewoo Nubira Wagon 2002 4.57% FIAT 500 Convertible 2012 4.38% Suzuki Aerio Sedan 2007 3.64% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 21.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 15.58% Chevrolet Silverado 1500 Regular Cab 2012 14.04% Dodge Ram Pickup 3500 Crew Cab 2010 13.16% GMC Canyon Extended Cab 2012 7.5% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 MINI Cooper Roadster Convertible 2012 39.38% Bugatti Veyron 16.4 Convertible 2009 6.14% BMW ActiveHybrid 5 Sedan 2012 4.91% FIAT 500 Convertible 2012 3.93% smart fortwo Convertible 2012 2.29% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 19.69% Jeep Grand Cherokee SUV 2012 7.15% Jeep Compass SUV 2012 6.98% Jeep Liberty SUV 2012 6.79% GMC Yukon Hybrid SUV 2012 6.23% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Cadillac CTS-V Sedan 2012 5.01% Acura TL Type-S 2008 2.94% Chrysler 300 SRT-8 2010 2.74% BMW M5 Sedan 2010 2.7% BMW 3 Series Wagon 2012 2.38% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Audi A5 Coupe 2012 8.73% Buick Regal GS 2012 7.69% Audi TT Hatchback 2011 5.63% BMW M3 Coupe 2012 5.07% Audi TT RS Coupe 2012 4.42% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Acura ZDX Hatchback 2012 5.24% BMW X3 SUV 2012 4.31% Buick Enclave SUV 2012 3.83% Land Rover LR2 SUV 2012 3.49% Chrysler Town and Country Minivan 2012 2.66% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Ford Freestar Minivan 2007 26.41% Chrysler Town and Country Minivan 2012 12.52% Dodge Caliber Wagon 2007 10.78% Chrysler Sebring Convertible 2010 5.1% Cadillac Escalade EXT Crew Cab 2007 4.95% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 19.78% Buick Enclave SUV 2012 9.55% Hyundai Tucson SUV 2012 6.48% GMC Acadia SUV 2012 5.66% Chrysler Sebring Convertible 2010 5.15% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 19.54% Ferrari California Convertible 2012 16.92% Chevrolet Corvette Convertible 2012 15.63% Ferrari 458 Italia Convertible 2012 14.2% Chevrolet Camaro Convertible 2012 6.11% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Ford Expedition EL SUV 2009 11.83% Land Rover Range Rover SUV 2012 6.78% Dodge Durango SUV 2007 6.61% Dodge Durango SUV 2012 6.38% Chevrolet Tahoe Hybrid SUV 2012 5.75% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Fisker Karma Sedan 2012 9.0% Spyker C8 Coupe 2009 7.05% Spyker C8 Convertible 2009 5.49% Nissan Juke Hatchback 2012 4.89% Lamborghini Reventon Coupe 2008 4.63% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Audi 100 Wagon 1994 10.37% Audi 100 Sedan 1994 9.98% Audi V8 Sedan 1994 7.37% Mercedes-Benz 300-Class Convertible 1993 5.18% Ford Mustang Convertible 2007 4.32% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Ford Edge SUV 2012 23.63% Dodge Durango SUV 2012 11.0% Hyundai Santa Fe SUV 2012 5.56% GMC Acadia SUV 2012 4.87% Chevrolet Traverse SUV 2012 4.85% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Chevrolet Corvette ZR1 2012 7.44% Audi V8 Sedan 1994 5.89% Eagle Talon Hatchback 1998 4.58% Suzuki Kizashi Sedan 2012 4.26% Plymouth Neon Coupe 1999 2.75% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 MINI Cooper Roadster Convertible 2012 16.26% Bugatti Veyron 16.4 Coupe 2009 3.6% Bugatti Veyron 16.4 Convertible 2009 3.56% Buick Regal GS 2012 2.07% Rolls-Royce Phantom Sedan 2012 2.05% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Dodge Ram Pickup 3500 Crew Cab 2010 9.16% Dodge Ram Pickup 3500 Quad Cab 2009 6.37% Chevrolet Silverado 1500 Regular Cab 2012 5.45% Ford F-150 Regular Cab 2012 5.39% GMC Canyon Extended Cab 2012 5.2% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Porsche Panamera Sedan 2012 4.78% Aston Martin V8 Vantage Convertible 2012 4.08% Chevrolet Corvette ZR1 2012 3.97% BMW 6 Series Convertible 2007 3.8% Jaguar XK XKR 2012 3.76% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Jeep Compass SUV 2012 8.21% Jeep Liberty SUV 2012 8.2% Jeep Grand Cherokee SUV 2012 7.55% Jeep Patriot SUV 2012 6.45% GMC Terrain SUV 2012 4.27% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 13.74% Ford GT Coupe 2006 6.13% Lamborghini Reventon Coupe 2008 5.22% Hyundai Veloster Hatchback 2012 3.36% Dodge Challenger SRT8 2011 3.07% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Acura ZDX Hatchback 2012 8.96% Bentley Mulsanne Sedan 2011 5.19% BMW X3 SUV 2012 4.98% Hyundai Elantra Touring Hatchback 2012 4.59% BMW ActiveHybrid 5 Sedan 2012 3.48% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Ford GT Coupe 2006 16.2% Bugatti Veyron 16.4 Coupe 2009 8.97% Maybach Landaulet Convertible 2012 6.35% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.53% Bugatti Veyron 16.4 Convertible 2009 4.8% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Chevrolet Camaro Convertible 2012 7.53% Dodge Charger Sedan 2012 6.32% Hyundai Veracruz SUV 2012 5.79% Land Rover Range Rover SUV 2012 4.38% Volvo 240 Sedan 1993 4.22% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 22.4% smart fortwo Convertible 2012 20.46% Dodge Sprinter Cargo Van 2009 13.72% Chevrolet HHR SS 2010 3.71% Chevrolet Corvette Convertible 2012 3.42% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 73.78% Bugatti Veyron 16.4 Coupe 2009 5.37% Spyker C8 Coupe 2009 4.37% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.32% Bentley Arnage Sedan 2009 2.67% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Audi V8 Sedan 1994 9.86% Rolls-Royce Phantom Sedan 2012 4.92% Mercedes-Benz 300-Class Convertible 1993 4.48% Chrysler 300 SRT-8 2010 4.41% Audi 100 Wagon 1994 3.74% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Jaguar XK XKR 2012 6.28% Aston Martin V8 Vantage Convertible 2012 6.23% Aston Martin V8 Vantage Coupe 2012 3.93% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.56% BMW 6 Series Convertible 2007 2.48% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Cadillac SRX SUV 2012 4.13% Land Rover Range Rover SUV 2012 3.22% Honda Odyssey Minivan 2012 3.1% Chevrolet TrailBlazer SS 2009 3.1% Chevrolet Traverse SUV 2012 2.62% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Dodge Caliber Wagon 2012 5.12% Dodge Dakota Crew Cab 2010 4.28% Ford Freestar Minivan 2007 3.8% Jeep Grand Cherokee SUV 2012 3.45% Ford Mustang Convertible 2007 3.41% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 16.15% Audi S4 Sedan 2012 5.85% Toyota Camry Sedan 2012 5.16% Hyundai Accent Sedan 2012 3.96% Audi S6 Sedan 2011 3.93% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Infiniti QX56 SUV 2011 14.59% BMW X3 SUV 2012 7.49% Hyundai Genesis Sedan 2012 6.32% Chrysler PT Cruiser Convertible 2008 3.83% Chevrolet Malibu Hybrid Sedan 2010 3.68% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Daewoo Nubira Wagon 2002 27.44% Suzuki Aerio Sedan 2007 10.47% Nissan Leaf Hatchback 2012 9.01% Volkswagen Golf Hatchback 2012 8.53% BMW 3 Series Wagon 2012 5.82% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Bentley Arnage Sedan 2009 15.41% Cadillac Escalade EXT Crew Cab 2007 5.13% Volvo 240 Sedan 1993 4.09% Rolls-Royce Phantom Sedan 2012 3.83% BMW 3 Series Wagon 2012 3.47% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Chrysler 300 SRT-8 2010 5.57% Audi S5 Coupe 2012 4.48% Audi S6 Sedan 2011 4.19% Audi V8 Sedan 1994 4.13% BMW M6 Convertible 2010 3.83% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 9.76% Porsche Panamera Sedan 2012 7.9% Audi S5 Coupe 2012 7.65% Chevrolet Camaro Convertible 2012 5.34% Bentley Arnage Sedan 2009 4.37% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 4.83% Isuzu Ascender SUV 2008 2.74% Chevrolet TrailBlazer SS 2009 2.64% Dodge Dakota Crew Cab 2010 2.44% Dodge Durango SUV 2007 1.93% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 BMW X6 SUV 2012 13.03% BMW 1 Series Coupe 2012 10.03% Chevrolet Cobalt SS 2010 5.0% Dodge Magnum Wagon 2008 4.58% Hyundai Sonata Hybrid Sedan 2012 4.07% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Sedan 2012 8.63% Mitsubishi Lancer Sedan 2012 5.8% BMW M5 Sedan 2010 4.94% Buick Regal GS 2012 4.8% Chevrolet Sonic Sedan 2012 3.44% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Audi S5 Convertible 2012 14.6% Porsche Panamera Sedan 2012 10.6% Acura TL Type-S 2008 8.49% Mercedes-Benz E-Class Sedan 2012 7.93% Fisker Karma Sedan 2012 7.17% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 8.58% Mercedes-Benz S-Class Sedan 2012 8.15% Mercedes-Benz E-Class Sedan 2012 7.02% Hyundai Genesis Sedan 2012 4.61% Acura TL Type-S 2008 3.86% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Aston Martin V8 Vantage Convertible 2012 12.17% Fisker Karma Sedan 2012 7.51% Bugatti Veyron 16.4 Convertible 2009 6.35% Maybach Landaulet Convertible 2012 5.74% Bugatti Veyron 16.4 Coupe 2009 5.32% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Maybach Landaulet Convertible 2012 7.75% Bentley Mulsanne Sedan 2011 7.26% Bugatti Veyron 16.4 Convertible 2009 4.8% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.31% Lamborghini Reventon Coupe 2008 4.29% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 15.61% Chevrolet Silverado 2500HD Regular Cab 2012 11.95% Chevrolet Silverado 1500 Extended Cab 2012 4.95% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.81% Chevrolet Avalanche Crew Cab 2012 3.7% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 70.33% Aston Martin Virage Coupe 2012 5.21% Lamborghini Diablo Coupe 2001 4.16% Aston Martin V8 Vantage Coupe 2012 3.8% BMW Z4 Convertible 2012 3.1% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 47.12% Chevrolet Express Cargo Van 2007 27.41% Chevrolet Express Van 2007 15.73% Dodge Caravan Minivan 1997 2.02% Audi 100 Wagon 1994 1.22% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Hyundai Elantra Sedan 2007 33.41% Honda Accord Coupe 2012 12.19% Buick Verano Sedan 2012 10.99% Acura RL Sedan 2012 10.61% Hyundai Accent Sedan 2012 6.22% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 15.27% Hyundai Tucson SUV 2012 10.11% Ford Freestar Minivan 2007 6.01% Hyundai Veracruz SUV 2012 4.31% Honda Odyssey Minivan 2007 3.26% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Ford Expedition EL SUV 2009 4.6% Chevrolet TrailBlazer SS 2009 3.11% Chevrolet Monte Carlo Coupe 2007 3.09% Chrysler 300 SRT-8 2010 2.9% Ford Focus Sedan 2007 2.56% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Volkswagen Golf Hatchback 2012 12.42% Ram C/V Cargo Van Minivan 2012 7.86% Suzuki Aerio Sedan 2007 5.47% Chevrolet Impala Sedan 2007 4.34% Chevrolet Malibu Sedan 2007 4.06% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 8.98% smart fortwo Convertible 2012 7.44% Bugatti Veyron 16.4 Convertible 2009 7.36% Spyker C8 Convertible 2009 5.76% Audi S5 Convertible 2012 4.69% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Dodge Caliber Wagon 2012 7.25% Hyundai Sonata Sedan 2012 6.97% Honda Odyssey Minivan 2012 5.97% Ford Edge SUV 2012 4.33% Ford Expedition EL SUV 2009 3.43% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Fisker Karma Sedan 2012 5.66% Infiniti G Coupe IPL 2012 4.79% Audi R8 Coupe 2012 4.47% Chevrolet Corvette ZR1 2012 3.72% Tesla Model S Sedan 2012 3.21% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Hyundai Genesis Sedan 2012 25.7% Hyundai Azera Sedan 2012 13.8% Chrysler PT Cruiser Convertible 2008 9.82% Hyundai Sonata Sedan 2012 9.76% Infiniti QX56 SUV 2011 5.67% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Bentley Arnage Sedan 2009 3.8% Audi S6 Sedan 2011 3.61% Audi S4 Sedan 2007 3.41% Volvo 240 Sedan 1993 2.98% Dodge Challenger SRT8 2011 2.68% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 smart fortwo Convertible 2012 8.25% AM General Hummer SUV 2000 6.43% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.83% Jeep Wrangler SUV 2012 4.35% Spyker C8 Convertible 2009 3.84% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 GMC Terrain SUV 2012 19.15% Jeep Grand Cherokee SUV 2012 16.68% Hyundai Tucson SUV 2012 13.84% Jeep Compass SUV 2012 12.87% Chevrolet Avalanche Crew Cab 2012 4.35% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 9.92% Dodge Caravan Minivan 1997 4.64% Chevrolet Silverado 2500HD Regular Cab 2012 4.4% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.22% Chevrolet Silverado 1500 Extended Cab 2012 3.95% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Chevrolet Express Cargo Van 2007 31.22% Audi 100 Sedan 1994 11.56% Audi 100 Wagon 1994 8.54% Nissan NV Passenger Van 2012 4.29% Chevrolet Express Van 2007 3.49% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Convertible 2009 3.67% BMW ActiveHybrid 5 Sedan 2012 2.89% BMW 6 Series Convertible 2007 2.54% Bentley Mulsanne Sedan 2011 2.11% Fisker Karma Sedan 2012 2.11% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Hyundai Veracruz SUV 2012 14.19% Chevrolet Traverse SUV 2012 9.79% Hyundai Tucson SUV 2012 9.25% Chevrolet Avalanche Crew Cab 2012 4.9% GMC Terrain SUV 2012 4.6% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Camaro Convertible 2012 7.98% Mitsubishi Lancer Sedan 2012 3.53% BMW Z4 Convertible 2012 3.35% Aston Martin V8 Vantage Convertible 2012 3.16% Acura TSX Sedan 2012 3.12% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 FIAT 500 Convertible 2012 4.8% Acura ZDX Hatchback 2012 4.71% Lamborghini Reventon Coupe 2008 4.24% Acura Integra Type R 2001 4.11% BMW 6 Series Convertible 2007 3.46% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Chevrolet Monte Carlo Coupe 2007 4.99% Lincoln Town Car Sedan 2011 4.95% GMC Terrain SUV 2012 4.58% Chevrolet Camaro Convertible 2012 2.5% Chevrolet Traverse SUV 2012 2.49% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 BMW 1 Series Coupe 2012 13.92% BMW M3 Coupe 2012 7.25% Toyota Camry Sedan 2012 4.87% BMW 1 Series Convertible 2012 3.75% Hyundai Sonata Hybrid Sedan 2012 3.74% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Daewoo Nubira Wagon 2002 9.79% Plymouth Neon Coupe 1999 5.57% Bentley Continental Supersports Conv. Convertible 2012 5.13% Nissan Leaf Hatchback 2012 4.64% Volkswagen Golf Hatchback 1991 4.59% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Ram C/V Cargo Van Minivan 2012 16.6% Chrysler Town and Country Minivan 2012 7.59% Nissan NV Passenger Van 2012 6.3% GMC Savana Van 2012 6.26% Mercedes-Benz Sprinter Van 2012 4.92% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Dodge Caliber Wagon 2012 14.93% Lincoln Town Car Sedan 2011 7.62% Jeep Grand Cherokee SUV 2012 6.96% Chevrolet Traverse SUV 2012 5.89% Buick Enclave SUV 2012 3.76% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Audi 100 Wagon 1994 12.93% Mercedes-Benz 300-Class Convertible 1993 12.75% Volkswagen Golf Hatchback 1991 8.54% Plymouth Neon Coupe 1999 3.88% Spyker C8 Convertible 2009 3.42% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 9.5% Nissan Leaf Hatchback 2012 8.12% smart fortwo Convertible 2012 6.01% Suzuki SX4 Sedan 2012 4.12% Bugatti Veyron 16.4 Coupe 2009 3.45% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Aston Martin V8 Vantage Convertible 2012 9.77% BMW M6 Convertible 2010 6.94% Aston Martin V8 Vantage Coupe 2012 5.84% Jaguar XK XKR 2012 5.26% Chrysler 300 SRT-8 2010 4.91% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 13.52% Geo Metro Convertible 1993 13.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.51% Eagle Talon Hatchback 1998 4.79% Nissan 240SX Coupe 1998 4.23% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Nissan Leaf Hatchback 2012 6.5% Chevrolet Impala Sedan 2007 6.38% Chevrolet Monte Carlo Coupe 2007 6.38% Chevrolet Malibu Sedan 2007 5.9% Mitsubishi Lancer Sedan 2012 4.98% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 smart fortwo Convertible 2012 5.95% BMW 3 Series Wagon 2012 4.82% Porsche Panamera Sedan 2012 3.73% Chevrolet Corvette ZR1 2012 3.69% Acura TSX Sedan 2012 3.08% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 30.97% Chevrolet Silverado 1500 Regular Cab 2012 17.06% Chevrolet Silverado 1500 Extended Cab 2012 9.21% Dodge Ram Pickup 3500 Quad Cab 2009 7.66% Dodge Dakota Club Cab 2007 4.57% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Chevrolet Impala Sedan 2007 12.14% Chevrolet Malibu Sedan 2007 9.09% Suzuki Aerio Sedan 2007 7.01% Chevrolet Monte Carlo Coupe 2007 6.51% Lincoln Town Car Sedan 2011 5.83% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Lamborghini Aventador Coupe 2012 63.88% McLaren MP4-12C Coupe 2012 5.08% Ferrari 458 Italia Coupe 2012 4.82% Chevrolet HHR SS 2010 3.98% Volvo C30 Hatchback 2012 1.96% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Audi 100 Sedan 1994 22.56% Audi V8 Sedan 1994 14.47% Volvo 240 Sedan 1993 5.52% Volvo XC90 SUV 2007 5.4% Volkswagen Golf Hatchback 1991 4.83% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Bugatti Veyron 16.4 Coupe 2009 28.17% Spyker C8 Convertible 2009 21.41% Chevrolet Corvette ZR1 2012 4.95% Bugatti Veyron 16.4 Convertible 2009 3.52% Fisker Karma Sedan 2012 3.28% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Nissan 240SX Coupe 1998 15.65% Eagle Talon Hatchback 1998 8.71% Chrysler 300 SRT-8 2010 6.61% Bentley Continental Flying Spur Sedan 2007 3.64% Spyker C8 Convertible 2009 3.59% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 73.58% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.18% Isuzu Ascender SUV 2008 3.58% Chrysler Aspen SUV 2009 2.74% Dodge Ram Pickup 3500 Crew Cab 2010 2.28% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 BMW M5 Sedan 2010 13.04% Eagle Talon Hatchback 1998 7.28% Hyundai Sonata Sedan 2012 6.5% BMW M6 Convertible 2010 6.41% Suzuki SX4 Sedan 2012 6.06% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 10.45% Chevrolet TrailBlazer SS 2009 8.5% Toyota 4Runner SUV 2012 6.7% GMC Yukon Hybrid SUV 2012 4.75% Cadillac SRX SUV 2012 4.37% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Cadillac SRX SUV 2012 7.38% Dodge Durango SUV 2012 4.63% Hyundai Tucson SUV 2012 3.88% Ford Freestar Minivan 2007 3.84% Honda Odyssey Minivan 2007 3.68% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Chrysler Crossfire Convertible 2008 5.51% Maybach Landaulet Convertible 2012 4.82% Nissan 240SX Coupe 1998 3.27% Plymouth Neon Coupe 1999 3.11% Eagle Talon Hatchback 1998 2.68% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Audi S5 Convertible 2012 7.05% Bentley Continental GT Coupe 2012 7.03% Porsche Panamera Sedan 2012 5.87% Audi TT RS Coupe 2012 5.37% Audi TT Hatchback 2011 5.05% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Dodge Caravan Minivan 1997 12.59% Chevrolet Express Van 2007 11.47% Chevrolet Express Cargo Van 2007 6.16% Nissan NV Passenger Van 2012 5.78% Buick Enclave SUV 2012 4.33% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 BMW 1 Series Convertible 2012 13.35% Acura TSX Sedan 2012 4.16% Acura TL Sedan 2012 3.76% Mercedes-Benz S-Class Sedan 2012 3.31% Toyota Corolla Sedan 2012 3.28% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 HUMMER H2 SUT Crew Cab 2009 8.17% HUMMER H3T Crew Cab 2010 4.01% Ford Edge SUV 2012 3.17% Hyundai Veracruz SUV 2012 2.15% Ford F-150 Regular Cab 2007 2.08% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Audi 100 Sedan 1994 24.9% Chevrolet Silverado 2500HD Regular Cab 2012 6.24% Audi V8 Sedan 1994 5.64% Nissan 240SX Coupe 1998 4.02% Chevrolet TrailBlazer SS 2009 3.08% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Plymouth Neon Coupe 1999 19.12% Eagle Talon Hatchback 1998 12.18% Dodge Challenger SRT8 2011 8.72% Mercedes-Benz 300-Class Convertible 1993 4.19% Chrysler Crossfire Convertible 2008 4.1% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Chrysler 300 SRT-8 2010 2.33% Eagle Talon Hatchback 1998 2.27% Audi R8 Coupe 2012 1.98% Bentley Continental Flying Spur Sedan 2007 1.9% BMW 6 Series Convertible 2007 1.85% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 BMW 1 Series Coupe 2012 14.57% Volkswagen Golf Hatchback 2012 8.16% Daewoo Nubira Wagon 2002 6.1% Hyundai Elantra Touring Hatchback 2012 4.27% BMW M3 Coupe 2012 4.09% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Bentley Continental GT Coupe 2007 4.3% Jeep Liberty SUV 2012 3.03% Jeep Compass SUV 2012 2.91% Chevrolet Sonic Sedan 2012 2.91% Chrysler 300 SRT-8 2010 2.85% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Ghost Sedan 2012 17.67% Rolls-Royce Phantom Drophead Coupe Convertible 2012 10.87% Chrysler 300 SRT-8 2010 7.79% Spyker C8 Convertible 2009 6.93% Rolls-Royce Phantom Sedan 2012 4.37% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 55.83% Dodge Sprinter Cargo Van 2009 30.28% Ford E-Series Wagon Van 2012 3.52% Audi 100 Sedan 1994 1.47% Nissan NV Passenger Van 2012 0.95% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 22.81% Suzuki SX4 Sedan 2012 9.55% Acura RL Sedan 2012 6.46% Chrysler PT Cruiser Convertible 2008 5.6% Suzuki SX4 Hatchback 2012 4.02% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 5.71% BMW X3 SUV 2012 4.71% BMW X5 SUV 2007 4.11% Acura ZDX Hatchback 2012 4.0% Chrysler 300 SRT-8 2010 3.82% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Honda Odyssey Minivan 2007 13.31% Volkswagen Golf Hatchback 2012 9.11% Chevrolet Malibu Sedan 2007 7.86% Dodge Caliber Wagon 2012 6.8% Ford Focus Sedan 2007 5.26% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Infiniti QX56 SUV 2011 4.83% Land Rover LR2 SUV 2012 4.57% Chrysler PT Cruiser Convertible 2008 3.99% Ford Edge SUV 2012 3.59% Hyundai Genesis Sedan 2012 3.17% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 5.58% Chrysler 300 SRT-8 2010 5.32% Eagle Talon Hatchback 1998 3.52% Volvo 240 Sedan 1993 2.77% Ford Mustang Convertible 2007 2.69% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 14.28% Ford Freestar Minivan 2007 12.44% Hyundai Tucson SUV 2012 11.83% Chevrolet Traverse SUV 2012 5.64% GMC Acadia SUV 2012 5.55% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 9.42% Hyundai Santa Fe SUV 2012 9.28% Volvo XC90 SUV 2007 7.55% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.28% GMC Yukon Hybrid SUV 2012 6.11% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 34.53% Toyota 4Runner SUV 2012 9.85% Cadillac SRX SUV 2012 8.33% Dodge Durango SUV 2012 7.5% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.88% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 BMW X3 SUV 2012 6.85% Honda Odyssey Minivan 2007 6.78% Ford Freestar Minivan 2007 6.7% Toyota Sequoia SUV 2012 5.27% Ram C/V Cargo Van Minivan 2012 4.13% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 BMW 3 Series Sedan 2012 18.02% Suzuki SX4 Hatchback 2012 13.21% Mitsubishi Lancer Sedan 2012 7.37% Tesla Model S Sedan 2012 5.28% Ferrari FF Coupe 2012 5.14% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 19.08% Lamborghini Aventador Coupe 2012 11.09% Lamborghini Reventon Coupe 2008 8.14% Aston Martin V8 Vantage Coupe 2012 5.84% Bugatti Veyron 16.4 Coupe 2009 4.91% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Elantra Sedan 2007 16.88% Dodge Caliber Wagon 2007 9.69% Acura RL Sedan 2012 8.55% Dodge Caliber Wagon 2012 7.32% Buick Verano Sedan 2012 5.96% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 11.46% Nissan NV Passenger Van 2012 10.29% Suzuki SX4 Hatchback 2012 5.04% Chevrolet Express Van 2007 4.72% Jeep Liberty SUV 2012 3.52% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 14.26% Dodge Dakota Club Cab 2007 10.16% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.98% Chevrolet Silverado 2500HD Regular Cab 2012 5.52% Nissan NV Passenger Van 2012 5.37% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Ram C/V Cargo Van Minivan 2012 16.26% Suzuki SX4 Sedan 2012 8.89% Suzuki Aerio Sedan 2007 7.33% Suzuki SX4 Hatchback 2012 6.83% Volkswagen Golf Hatchback 2012 4.91% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Corvette Convertible 2012 3.66% Ford Mustang Convertible 2007 3.3% Dodge Magnum Wagon 2008 3.19% Nissan 240SX Coupe 1998 3.11% Aston Martin Virage Coupe 2012 3.1% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 17.3% Aston Martin Virage Convertible 2012 16.36% Lamborghini Reventon Coupe 2008 6.73% Hyundai Veloster Hatchback 2012 4.77% Fisker Karma Sedan 2012 4.11% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Lincoln Town Car Sedan 2011 22.82% Chevrolet Monte Carlo Coupe 2007 6.53% Ford Focus Sedan 2007 5.23% Chevrolet Impala Sedan 2007 5.22% Chevrolet Malibu Sedan 2007 4.84% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac CTS-V Sedan 2012 4.62% BMW X5 SUV 2007 2.53% Cadillac SRX SUV 2012 2.46% Audi S4 Sedan 2007 2.39% Dodge Durango SUV 2012 2.34% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Hyundai Sonata Hybrid Sedan 2012 17.88% Acura RL Sedan 2012 16.01% BMW X6 SUV 2012 7.88% BMW M5 Sedan 2010 5.69% Acura TSX Sedan 2012 4.78% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Chevrolet Cobalt SS 2010 35.58% Ferrari FF Coupe 2012 11.04% Ford Mustang Convertible 2007 7.31% Honda Accord Coupe 2012 5.46% Eagle Talon Hatchback 1998 3.36% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 42.95% GMC Canyon Extended Cab 2012 20.37% Chevrolet Silverado 1500 Regular Cab 2012 11.83% Ford F-150 Regular Cab 2007 7.94% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.21% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Aston Martin V8 Vantage Coupe 2012 7.88% Aston Martin V8 Vantage Convertible 2012 4.15% Jaguar XK XKR 2012 3.98% Dodge Challenger SRT8 2011 3.98% Tesla Model S Sedan 2012 3.17% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Chevrolet Tahoe Hybrid SUV 2012 19.57% Bentley Mulsanne Sedan 2011 19.42% Infiniti QX56 SUV 2011 12.36% BMW X3 SUV 2012 9.52% Audi 100 Wagon 1994 4.38% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Ford Edge SUV 2012 11.66% Jeep Grand Cherokee SUV 2012 7.81% Hyundai Santa Fe SUV 2012 7.8% Chevrolet Avalanche Crew Cab 2012 6.63% Dodge Dakota Crew Cab 2010 6.48% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Dodge Charger Sedan 2012 7.58% Ferrari California Convertible 2012 6.69% Dodge Magnum Wagon 2008 4.93% Audi TT Hatchback 2011 4.92% Dodge Charger SRT-8 2009 4.54% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Dodge Caliber Wagon 2012 17.34% Honda Odyssey Minivan 2007 9.28% Ford Freestar Minivan 2007 6.43% Dodge Durango SUV 2012 5.4% Chevrolet Impala Sedan 2007 4.56% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Aston Martin V8 Vantage Coupe 2012 13.37% Lamborghini Aventador Coupe 2012 10.21% Lamborghini Reventon Coupe 2008 8.46% Bugatti Veyron 16.4 Coupe 2009 5.75% Aston Martin V8 Vantage Convertible 2012 5.15% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 5.83% BMW 1 Series Convertible 2012 5.72% Bugatti Veyron 16.4 Convertible 2009 4.4% Acura TL Sedan 2012 3.97% Porsche Panamera Sedan 2012 3.5% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Volvo 240 Sedan 1993 11.89% Hyundai Veracruz SUV 2012 4.07% GMC Terrain SUV 2012 3.51% Jeep Wrangler SUV 2012 3.1% Lincoln Town Car Sedan 2011 2.84% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Nissan 240SX Coupe 1998 7.26% BMW M6 Convertible 2010 5.06% Eagle Talon Hatchback 1998 4.46% Chrysler 300 SRT-8 2010 4.29% Audi V8 Sedan 1994 4.08% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 12.66% BMW 3 Series Sedan 2012 8.27% BMW 1 Series Coupe 2012 8.08% Tesla Model S Sedan 2012 6.74% Ferrari FF Coupe 2012 4.8% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 9.91% Chevrolet TrailBlazer SS 2009 8.28% Chevrolet Tahoe Hybrid SUV 2012 4.6% Ford Edge SUV 2012 4.56% Land Rover LR2 SUV 2012 4.3% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Mercedes-Benz Sprinter Van 2012 22.06% Audi V8 Sedan 1994 13.34% Audi 100 Sedan 1994 6.4% Dodge Sprinter Cargo Van 2009 5.67% Acura ZDX Hatchback 2012 4.51% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Diablo Coupe 2001 8.53% Ferrari California Convertible 2012 7.87% Audi RS 4 Convertible 2008 7.78% Acura Integra Type R 2001 6.17% Chevrolet Corvette Convertible 2012 5.73% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 BMW 1 Series Convertible 2012 9.43% Jaguar XK XKR 2012 4.8% Toyota Camry Sedan 2012 2.99% Maybach Landaulet Convertible 2012 2.94% BMW 6 Series Convertible 2007 2.82% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Chevrolet Monte Carlo Coupe 2007 12.22% Dodge Magnum Wagon 2008 9.05% Hyundai Sonata Hybrid Sedan 2012 4.1% Chevrolet Cobalt SS 2010 3.87% Toyota Corolla Sedan 2012 3.44% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Chevrolet Corvette ZR1 2012 17.16% Bentley Mulsanne Sedan 2011 14.2% Bentley Continental GT Coupe 2007 10.98% Bentley Continental Flying Spur Sedan 2007 10.63% Bentley Continental GT Coupe 2012 5.76% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 8.65% Chevrolet Silverado 1500 Regular Cab 2012 7.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.08% Dodge Ram Pickup 3500 Quad Cab 2009 5.95% GMC Canyon Extended Cab 2012 5.55% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Eagle Talon Hatchback 1998 9.16% Chevrolet Corvette ZR1 2012 7.22% Audi S6 Sedan 2011 5.06% Suzuki Kizashi Sedan 2012 5.03% Chrysler 300 SRT-8 2010 4.57% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 39.0% Chevrolet Express Van 2007 30.07% GMC Savana Van 2012 27.25% Dodge Caravan Minivan 1997 0.69% Audi 100 Wagon 1994 0.59% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Nissan 240SX Coupe 1998 20.26% Eagle Talon Hatchback 1998 13.48% Mercedes-Benz 300-Class Convertible 1993 10.04% Plymouth Neon Coupe 1999 6.46% Volkswagen Golf Hatchback 1991 3.63% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Hyundai Tucson SUV 2012 6.22% Chevrolet Impala Sedan 2007 4.73% Dodge Caliber Wagon 2012 4.16% Chevrolet Malibu Sedan 2007 3.64% Ram C/V Cargo Van Minivan 2012 3.25% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Plymouth Neon Coupe 1999 29.53% Bentley Continental Flying Spur Sedan 2007 6.32% Eagle Talon Hatchback 1998 6.22% Ford Focus Sedan 2007 5.83% Dodge Challenger SRT8 2011 4.66% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Land Rover LR2 SUV 2012 11.13% Land Rover Range Rover SUV 2012 7.16% Infiniti QX56 SUV 2011 6.94% BMW X5 SUV 2007 4.14% Cadillac SRX SUV 2012 3.88% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 47.4% Jeep Wrangler SUV 2012 8.29% Hyundai Veloster Hatchback 2012 8.01% HUMMER H2 SUT Crew Cab 2009 5.5% Audi TTS Coupe 2012 4.9% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Eagle Talon Hatchback 1998 15.11% Bentley Continental Flying Spur Sedan 2007 13.71% Bentley Continental GT Coupe 2007 12.22% Nissan 240SX Coupe 1998 9.71% Chrysler 300 SRT-8 2010 8.44% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Geo Metro Convertible 1993 16.58% Mercedes-Benz 300-Class Convertible 1993 7.76% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.95% Ford GT Coupe 2006 5.06% Maybach Landaulet Convertible 2012 3.92% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 34.98% BMW 3 Series Wagon 2012 2.97% Chrysler 300 SRT-8 2010 2.17% Bentley Mulsanne Sedan 2011 1.83% FIAT 500 Abarth 2012 1.8% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Cadillac SRX SUV 2012 7.32% BMW X5 SUV 2007 3.99% Acura RL Sedan 2012 3.7% Jeep Compass SUV 2012 3.45% GMC Terrain SUV 2012 3.38% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 48.27% GMC Savana Van 2012 34.26% Chevrolet Express Van 2007 16.44% Dodge Caravan Minivan 1997 0.25% Audi 100 Sedan 1994 0.23% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Audi RS 4 Convertible 2008 43.43% Lamborghini Diablo Coupe 2001 10.25% Acura Integra Type R 2001 8.6% BMW Z4 Convertible 2012 7.2% Ferrari 458 Italia Convertible 2012 4.59% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 39.34% Dodge Magnum Wagon 2008 4.1% BMW 1 Series Coupe 2012 4.06% Ford Fiesta Sedan 2012 2.88% Ford Mustang Convertible 2007 2.08% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 MINI Cooper Roadster Convertible 2012 4.66% Audi S5 Convertible 2012 3.74% Mercedes-Benz SL-Class Coupe 2009 2.98% Aston Martin V8 Vantage Convertible 2012 2.6% Dodge Challenger SRT8 2011 2.56% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 BMW X6 SUV 2012 24.07% Nissan Juke Hatchback 2012 7.82% Suzuki SX4 Hatchback 2012 4.8% Hyundai Tucson SUV 2012 3.99% Jaguar XK XKR 2012 3.6% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 FIAT 500 Convertible 2012 13.84% Hyundai Veloster Hatchback 2012 9.62% Aston Martin V8 Vantage Convertible 2012 8.28% Jaguar XK XKR 2012 7.56% Mercedes-Benz E-Class Sedan 2012 5.67% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Hyundai Sonata Hybrid Sedan 2012 19.28% Chevrolet Cobalt SS 2010 9.7% Chrysler Sebring Convertible 2010 5.16% Ford Focus Sedan 2007 4.31% BMW 1 Series Convertible 2012 3.89% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Rolls-Royce Phantom Sedan 2012 5.21% Infiniti G Coupe IPL 2012 4.75% Aston Martin V8 Vantage Coupe 2012 4.26% Chrysler 300 SRT-8 2010 4.16% Audi TT Hatchback 2011 4.03% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 37.95% Ferrari California Convertible 2012 26.18% Ferrari FF Coupe 2012 10.24% Ferrari 458 Italia Convertible 2012 3.42% Ford GT Coupe 2006 3.02% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 7.77% Toyota Corolla Sedan 2012 6.36% BMW 1 Series Convertible 2012 5.26% Suzuki Aerio Sedan 2007 4.33% Acura TL Sedan 2012 3.41% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 26.45% Lamborghini Diablo Coupe 2001 23.75% Chevrolet Corvette Convertible 2012 12.18% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.77% Dodge Charger Sedan 2012 5.72% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Suzuki Aerio Sedan 2007 3.24% Mercedes-Benz 300-Class Convertible 1993 3.15% Audi 100 Sedan 1994 2.99% FIAT 500 Convertible 2012 2.99% Chrysler PT Cruiser Convertible 2008 2.7% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 50.76% Chevrolet Express Van 2007 40.14% Chevrolet Express Cargo Van 2007 7.49% Dodge Caravan Minivan 1997 0.95% Ford E-Series Wagon Van 2012 0.29% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Hyundai Elantra Sedan 2007 16.3% Dodge Journey SUV 2012 7.91% Dodge Caliber Wagon 2007 7.76% Buick Verano Sedan 2012 7.39% Honda Accord Coupe 2012 7.26% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.98% Nissan 240SX Coupe 1998 7.52% Chrysler 300 SRT-8 2010 6.98% Eagle Talon Hatchback 1998 5.63% BMW M6 Convertible 2010 4.73% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Nissan Leaf Hatchback 2012 8.12% Suzuki SX4 Sedan 2012 7.7% smart fortwo Convertible 2012 4.21% Tesla Model S Sedan 2012 4.16% Bentley Continental Flying Spur Sedan 2007 3.09% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 18.15% Hyundai Veloster Hatchback 2012 11.25% Acura Integra Type R 2001 9.91% Dodge Charger Sedan 2012 8.05% BMW Z4 Convertible 2012 5.93% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 31.26% Lamborghini Diablo Coupe 2001 28.0% Chevrolet Corvette Convertible 2012 14.03% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.08% Dodge Charger Sedan 2012 4.67% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 MINI Cooper Roadster Convertible 2012 10.05% Rolls-Royce Phantom Sedan 2012 6.53% Audi S6 Sedan 2011 5.48% Audi R8 Coupe 2012 4.48% Aston Martin V8 Vantage Coupe 2012 3.19% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2012 15.41% Toyota Camry Sedan 2012 11.13% Audi TT RS Coupe 2012 8.8% Audi TT Hatchback 2011 7.49% Toyota Corolla Sedan 2012 6.1% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 15.55% BMW Z4 Convertible 2012 9.29% Hyundai Veloster Hatchback 2012 8.79% Acura Integra Type R 2001 7.65% Spyker C8 Convertible 2009 5.75% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Spyker C8 Convertible 2009 19.2% Spyker C8 Coupe 2009 8.8% smart fortwo Convertible 2012 4.74% Bugatti Veyron 16.4 Coupe 2009 4.61% Chevrolet Sonic Sedan 2012 4.36% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Monte Carlo Coupe 2007 5.03% Jaguar XK XKR 2012 3.84% Toyota Camry Sedan 2012 3.33% Chevrolet Malibu Sedan 2007 3.24% GMC Terrain SUV 2012 3.21% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Ferrari FF Coupe 2012 11.11% Ford GT Coupe 2006 10.89% BMW 3 Series Sedan 2012 10.11% Ferrari 458 Italia Coupe 2012 8.69% Ferrari 458 Italia Convertible 2012 8.09% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Volkswagen Golf Hatchback 1991 34.31% Eagle Talon Hatchback 1998 10.82% Audi 100 Wagon 1994 9.1% Mercedes-Benz 300-Class Convertible 1993 7.34% Bentley Mulsanne Sedan 2011 2.48% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 12.76% Isuzu Ascender SUV 2008 10.12% Chevrolet Silverado 1500 Extended Cab 2012 10.05% Chevrolet Silverado 2500HD Regular Cab 2012 9.73% Dodge Dakota Club Cab 2007 9.08% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 30.07% Ford F-150 Regular Cab 2007 13.64% HUMMER H3T Crew Cab 2010 13.31% HUMMER H2 SUT Crew Cab 2009 8.15% GMC Canyon Extended Cab 2012 7.25% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Mazda Tribute SUV 2011 23.45% Jeep Wrangler SUV 2012 19.51% Jeep Compass SUV 2012 11.14% Jeep Patriot SUV 2012 7.7% Jeep Grand Cherokee SUV 2012 7.06% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 BMW 1 Series Convertible 2012 5.88% Acura TL Sedan 2012 3.94% BMW M5 Sedan 2010 3.7% BMW ActiveHybrid 5 Sedan 2012 3.22% Acura TSX Sedan 2012 2.77% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Jeep Grand Cherokee SUV 2012 4.31% Jeep Compass SUV 2012 3.58% Cadillac SRX SUV 2012 3.09% Chrysler 300 SRT-8 2010 2.65% BMW X6 SUV 2012 2.44% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 BMW 1 Series Convertible 2012 10.22% FIAT 500 Convertible 2012 8.38% Jaguar XK XKR 2012 5.06% Nissan 240SX Coupe 1998 4.32% Suzuki Kizashi Sedan 2012 3.75% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Corvette ZR1 2012 9.31% BMW M5 Sedan 2010 3.88% Jaguar XK XKR 2012 3.78% Porsche Panamera Sedan 2012 3.67% Audi RS 4 Convertible 2008 2.94% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 66.04% Jeep Wrangler SUV 2012 23.24% HUMMER H3T Crew Cab 2010 4.13% HUMMER H2 SUT Crew Cab 2009 3.72% GMC Savana Van 2012 0.57% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Magnum Wagon 2008 5.09% Suzuki Kizashi Sedan 2012 4.24% Chevrolet Monte Carlo Coupe 2007 3.39% Chevrolet HHR SS 2010 3.27% Cadillac CTS-V Sedan 2012 3.24% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 HUMMER H3T Crew Cab 2010 10.15% Volvo 240 Sedan 1993 9.79% HUMMER H2 SUT Crew Cab 2009 7.1% Bentley Arnage Sedan 2009 6.95% Buick Enclave SUV 2012 3.84% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 MINI Cooper Roadster Convertible 2012 11.54% Acura TSX Sedan 2012 6.44% Acura TL Sedan 2012 6.29% BMW 1 Series Convertible 2012 3.99% Mercedes-Benz S-Class Sedan 2012 3.82% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Nissan Leaf Hatchback 2012 9.37% Nissan Juke Hatchback 2012 5.76% Tesla Model S Sedan 2012 3.78% Suzuki SX4 Sedan 2012 3.33% BMW M3 Coupe 2012 3.0% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Hyundai Genesis Sedan 2012 3.12% Bentley Arnage Sedan 2009 2.92% Chrysler 300 SRT-8 2010 2.4% Porsche Panamera Sedan 2012 2.22% Audi S5 Coupe 2012 2.14% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 11.82% Mercedes-Benz Sprinter Van 2012 5.5% Audi V8 Sedan 1994 4.75% Acura ZDX Hatchback 2012 4.15% Mercedes-Benz SL-Class Coupe 2009 4.02% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 10.76% Acura TL Type-S 2008 10.73% BMW M5 Sedan 2010 7.07% Hyundai Genesis Sedan 2012 6.53% Suzuki Kizashi Sedan 2012 6.37% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Hyundai Veracruz SUV 2012 3.5% GMC Acadia SUV 2012 2.33% Toyota 4Runner SUV 2012 2.31% HUMMER H3T Crew Cab 2010 1.9% HUMMER H2 SUT Crew Cab 2009 1.86% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volkswagen Beetle Hatchback 2012 4.14% Acura TL Sedan 2012 3.65% BMW ActiveHybrid 5 Sedan 2012 3.03% Hyundai Elantra Touring Hatchback 2012 2.52% BMW 6 Series Convertible 2007 1.79% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Chevrolet Corvette ZR1 2012 8.61% Bugatti Veyron 16.4 Coupe 2009 5.39% Spyker C8 Coupe 2009 4.99% Aston Martin Virage Coupe 2012 4.02% Dodge Challenger SRT8 2011 3.79% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Chrysler 300 SRT-8 2010 3.31% Chevrolet Monte Carlo Coupe 2007 2.62% Hyundai Tucson SUV 2012 2.32% Honda Odyssey Minivan 2012 2.0% Ford Focus Sedan 2007 1.83% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chevrolet Monte Carlo Coupe 2007 9.98% Lincoln Town Car Sedan 2011 7.57% Chevrolet Camaro Convertible 2012 3.86% Jaguar XK XKR 2012 3.27% Chrysler Crossfire Convertible 2008 2.93% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Mercedes-Benz C-Class Sedan 2012 5.92% Hyundai Genesis Sedan 2012 5.87% BMW 3 Series Wagon 2012 3.75% Mercedes-Benz SL-Class Coupe 2009 3.51% Suzuki Kizashi Sedan 2012 2.57% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 40.1% Bugatti Veyron 16.4 Coupe 2009 19.27% Spyker C8 Convertible 2009 18.79% Chevrolet Corvette ZR1 2012 2.6% Bentley Continental Flying Spur Sedan 2007 2.41% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Audi S5 Convertible 2012 5.93% Tesla Model S Sedan 2012 5.13% Audi S6 Sedan 2011 4.11% Chevrolet Corvette ZR1 2012 4.02% Audi RS 4 Convertible 2008 3.87% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 24.68% Ford Expedition EL SUV 2009 22.43% Dodge Ram Pickup 3500 Crew Cab 2010 22.02% Dodge Ram Pickup 3500 Quad Cab 2009 5.47% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.99% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 39.92% Chevrolet Express Van 2007 16.3% Daewoo Nubira Wagon 2002 7.17% Suzuki SX4 Hatchback 2012 3.46% Ram C/V Cargo Van Minivan 2012 2.71% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Land Rover Range Rover SUV 2012 9.6% Infiniti QX56 SUV 2011 4.93% Hyundai Genesis Sedan 2012 4.77% Hyundai Sonata Sedan 2012 4.6% Cadillac Escalade EXT Crew Cab 2007 4.49% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Hyundai Tucson SUV 2012 6.3% Chevrolet Traverse SUV 2012 5.01% GMC Terrain SUV 2012 4.51% Chevrolet Impala Sedan 2007 4.03% Chrysler Sebring Convertible 2010 3.99% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Audi S6 Sedan 2011 5.12% Chevrolet Corvette ZR1 2012 4.24% FIAT 500 Abarth 2012 3.33% Mercedes-Benz SL-Class Coupe 2009 3.31% Audi S5 Convertible 2012 3.27% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Chrysler 300 SRT-8 2010 5.39% Rolls-Royce Ghost Sedan 2012 3.37% Bentley Continental Flying Spur Sedan 2007 3.28% Aston Martin V8 Vantage Convertible 2012 3.27% Land Rover Range Rover SUV 2012 2.56% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 5.28% Fisker Karma Sedan 2012 4.36% Bentley Mulsanne Sedan 2011 3.39% Bugatti Veyron 16.4 Convertible 2009 3.35% Infiniti G Coupe IPL 2012 3.14% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 15.58% Volvo 240 Sedan 1993 8.79% Audi 100 Wagon 1994 6.38% Audi 100 Sedan 1994 4.32% Mercedes-Benz 300-Class Convertible 1993 3.45% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Acura TL Type-S 2008 5.09% Porsche Panamera Sedan 2012 4.91% Chrysler 300 SRT-8 2010 3.78% Acura TL Sedan 2012 3.46% Infiniti G Coupe IPL 2012 2.76% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Audi TT RS Coupe 2012 16.63% Buick Regal GS 2012 14.69% Bentley Continental GT Coupe 2012 11.87% Tesla Model S Sedan 2012 7.46% Audi TTS Coupe 2012 6.3% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 20.66% Acura Integra Type R 2001 18.74% AM General Hummer SUV 2000 11.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 11.44% Geo Metro Convertible 1993 11.1% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Toyota Camry Sedan 2012 4.35% BMW Z4 Convertible 2012 4.18% BMW M5 Sedan 2010 3.99% Toyota Corolla Sedan 2012 3.18% Hyundai Veloster Hatchback 2012 3.02% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Mercedes-Benz 300-Class Convertible 1993 9.45% Chevrolet Express Cargo Van 2007 8.63% Nissan NV Passenger Van 2012 7.68% Jeep Liberty SUV 2012 7.55% Volkswagen Golf Hatchback 1991 6.53% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Volkswagen Golf Hatchback 2012 11.75% Chevrolet Impala Sedan 2007 7.37% Suzuki Aerio Sedan 2007 7.34% Nissan Leaf Hatchback 2012 5.77% Daewoo Nubira Wagon 2002 5.59% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 10.41% Ford E-Series Wagon Van 2012 8.24% Nissan NV Passenger Van 2012 6.36% Ford F-150 Regular Cab 2012 4.17% Isuzu Ascender SUV 2008 4.03% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Ford Focus Sedan 2007 9.1% Daewoo Nubira Wagon 2002 6.89% Hyundai Elantra Touring Hatchback 2012 6.58% BMW 3 Series Wagon 2012 4.26% Volkswagen Golf Hatchback 2012 3.85% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.81% Ford F-150 Regular Cab 2012 6.58% Ford F-450 Super Duty Crew Cab 2012 6.09% GMC Yukon Hybrid SUV 2012 6.01% Chevrolet Silverado 1500 Regular Cab 2012 4.08% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Hyundai Elantra Sedan 2007 73.57% Hyundai Sonata Hybrid Sedan 2012 4.06% Dodge Journey SUV 2012 3.49% Acura RL Sedan 2012 2.86% Hyundai Accent Sedan 2012 2.33% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 71.23% HUMMER H2 SUT Crew Cab 2009 26.84% Jeep Wrangler SUV 2012 0.93% AM General Hummer SUV 2000 0.5% Dodge Ram Pickup 3500 Quad Cab 2009 0.12% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Chevrolet Impala Sedan 2007 4.55% Chevrolet Monte Carlo Coupe 2007 4.17% Toyota Camry Sedan 2012 3.23% Honda Accord Coupe 2012 2.8% Chevrolet Malibu Sedan 2007 2.4% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 Chrysler 300 SRT-8 2010 7.83% Nissan 240SX Coupe 1998 7.79% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.55% BMW M6 Convertible 2010 6.51% Spyker C8 Convertible 2009 3.15% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 4.2% Dodge Charger SRT-8 2009 3.59% Chevrolet TrailBlazer SS 2009 3.55% Rolls-Royce Ghost Sedan 2012 3.27% Chevrolet Monte Carlo Coupe 2007 3.26% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ram C/V Cargo Van Minivan 2012 9.57% Chrysler Town and Country Minivan 2012 7.47% Honda Odyssey Minivan 2007 5.96% Chevrolet Impala Sedan 2007 5.4% Ford Focus Sedan 2007 4.93% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Aston Martin Virage Coupe 2012 12.39% Hyundai Veloster Hatchback 2012 10.93% McLaren MP4-12C Coupe 2012 7.61% Spyker C8 Convertible 2009 4.59% Audi TTS Coupe 2012 4.07% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Aston Martin V8 Vantage Coupe 2012 14.96% Aston Martin V8 Vantage Convertible 2012 8.63% Bugatti Veyron 16.4 Coupe 2009 7.46% Bentley Continental GT Coupe 2007 5.88% Jaguar XK XKR 2012 5.11% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Infiniti QX56 SUV 2011 4.09% GMC Terrain SUV 2012 3.97% Jeep Liberty SUV 2012 3.43% BMW X5 SUV 2007 2.39% Bentley Arnage Sedan 2009 2.07% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 BMW 3 Series Sedan 2012 4.13% Hyundai Sonata Sedan 2012 4.08% Chevrolet Sonic Sedan 2012 3.42% BMW M5 Sedan 2010 3.17% Hyundai Sonata Hybrid Sedan 2012 2.96% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 8.69% Bentley Mulsanne Sedan 2011 8.26% Audi S5 Convertible 2012 7.93% Audi S5 Coupe 2012 6.09% Mercedes-Benz E-Class Sedan 2012 4.43% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 5.89% Bentley Arnage Sedan 2009 4.03% Chrysler 300 SRT-8 2010 3.71% BMW 3 Series Wagon 2012 3.55% BMW 3 Series Sedan 2012 3.14% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 89.39% Jeep Wrangler SUV 2012 8.78% HUMMER H2 SUT Crew Cab 2009 1.32% HUMMER H3T Crew Cab 2010 0.31% Bugatti Veyron 16.4 Coupe 2009 0.03% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Dodge Journey SUV 2012 18.99% Dodge Durango SUV 2012 11.11% Hyundai Tucson SUV 2012 6.7% Chevrolet Avalanche Crew Cab 2012 5.01% Dodge Caliber Wagon 2012 4.01% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Aston Martin V8 Vantage Coupe 2012 17.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 11.13% Aston Martin Virage Convertible 2012 6.51% Aston Martin V8 Vantage Convertible 2012 5.76% Bentley Continental Supersports Conv. Convertible 2012 4.7% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Hyundai Genesis Sedan 2012 4.86% Porsche Panamera Sedan 2012 3.41% Jaguar XK XKR 2012 3.08% Acura TL Type-S 2008 2.54% BMW M6 Convertible 2010 2.45% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 15.58% Land Rover Range Rover SUV 2012 14.75% Mercedes-Benz E-Class Sedan 2012 13.88% Chrysler Town and Country Minivan 2012 7.98% Infiniti QX56 SUV 2011 7.38% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Chrysler Town and Country Minivan 2012 28.14% Dodge Journey SUV 2012 9.57% Hyundai Tucson SUV 2012 8.15% Cadillac SRX SUV 2012 6.05% Honda Odyssey Minivan 2007 4.31% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Dodge Dakota Club Cab 2007 12.73% Chevrolet Silverado 2500HD Regular Cab 2012 7.6% HUMMER H3T Crew Cab 2010 5.06% GMC Canyon Extended Cab 2012 4.4% Chevrolet Silverado 1500 Regular Cab 2012 4.31% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 19.08% BMW ActiveHybrid 5 Sedan 2012 5.77% Nissan Leaf Hatchback 2012 5.69% Bugatti Veyron 16.4 Coupe 2009 5.68% Suzuki SX4 Sedan 2012 4.16% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 25.44% Hyundai Elantra Sedan 2007 9.76% Toyota Corolla Sedan 2012 7.67% Honda Accord Coupe 2012 6.91% Eagle Talon Hatchback 1998 6.06% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 HUMMER H3T Crew Cab 2010 32.04% Jeep Wrangler SUV 2012 25.61% HUMMER H2 SUT Crew Cab 2009 13.84% AM General Hummer SUV 2000 10.61% McLaren MP4-12C Coupe 2012 2.6% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 64.75% Bentley Continental Supersports Conv. Convertible 2012 11.35% Chevrolet Corvette Convertible 2012 4.22% Dodge Challenger SRT8 2011 2.4% Chevrolet Corvette ZR1 2012 2.3% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 19.64% Chevrolet Silverado 2500HD Regular Cab 2012 11.23% Chevrolet Silverado 1500 Regular Cab 2012 7.91% Cadillac Escalade EXT Crew Cab 2007 5.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.36% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Jeep Patriot SUV 2012 12.91% Ford F-150 Regular Cab 2012 10.84% Ford Ranger SuperCab 2011 7.32% Dodge Dakota Club Cab 2007 5.9% Mazda Tribute SUV 2011 5.78% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Aston Martin Virage Convertible 2012 7.57% Rolls-Royce Ghost Sedan 2012 6.8% Fisker Karma Sedan 2012 5.98% Bugatti Veyron 16.4 Coupe 2009 3.13% Chevrolet Camaro Convertible 2012 3.12% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Volvo XC90 SUV 2007 10.29% Isuzu Ascender SUV 2008 8.47% Ford E-Series Wagon Van 2012 6.83% Ford F-150 Regular Cab 2012 6.13% Toyota Sequoia SUV 2012 5.58% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 HUMMER H2 SUT Crew Cab 2009 25.34% HUMMER H3T Crew Cab 2010 5.05% Dodge Charger Sedan 2012 2.82% Bentley Arnage Sedan 2009 2.75% Bugatti Veyron 16.4 Coupe 2009 2.49% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 11.53% Nissan Leaf Hatchback 2012 11.38% Lincoln Town Car Sedan 2011 7.31% Chevrolet Impala Sedan 2007 5.53% Chevrolet Monte Carlo Coupe 2007 4.47% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Spyker C8 Convertible 2009 15.06% Chevrolet Sonic Sedan 2012 7.08% Bentley Continental Flying Spur Sedan 2007 6.36% FIAT 500 Abarth 2012 5.29% Dodge Challenger SRT8 2011 2.91% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chrysler Town and Country Minivan 2012 17.26% Mercedes-Benz C-Class Sedan 2012 16.69% Hyundai Genesis Sedan 2012 13.24% Mercedes-Benz S-Class Sedan 2012 8.26% Chrysler PT Cruiser Convertible 2008 6.54% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Audi S6 Sedan 2011 18.1% Mercedes-Benz C-Class Sedan 2012 17.78% Chrysler Crossfire Convertible 2008 10.37% Mercedes-Benz E-Class Sedan 2012 5.55% Audi V8 Sedan 1994 4.15% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 18.84% HUMMER H3T Crew Cab 2010 8.89% AM General Hummer SUV 2000 5.97% Jeep Wrangler SUV 2012 4.14% Bentley Arnage Sedan 2009 2.46% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 9.85% Aston Martin Virage Coupe 2012 7.45% Spyker C8 Coupe 2009 7.11% Volvo C30 Hatchback 2012 4.32% Mitsubishi Lancer Sedan 2012 3.42% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Hyundai Genesis Sedan 2012 8.48% Chevrolet Sonic Sedan 2012 8.23% Dodge Challenger SRT8 2011 7.71% Mercedes-Benz SL-Class Coupe 2009 6.94% Mercedes-Benz S-Class Sedan 2012 4.21% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Dodge Caravan Minivan 1997 5.15% Mercedes-Benz Sprinter Van 2012 3.99% Hyundai Tucson SUV 2012 3.57% Nissan Juke Hatchback 2012 2.99% Hyundai Veracruz SUV 2012 2.97% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Honda Odyssey Minivan 2007 27.55% Ram C/V Cargo Van Minivan 2012 26.05% Chrysler Town and Country Minivan 2012 22.95% Ford Freestar Minivan 2007 2.98% Chrysler PT Cruiser Convertible 2008 2.08% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Bentley Mulsanne Sedan 2011 4.46% Cadillac CTS-V Sedan 2012 4.44% Acura TL Sedan 2012 4.05% Audi TTS Coupe 2012 3.62% BMW 6 Series Convertible 2007 3.01% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Buick Verano Sedan 2012 14.07% Suzuki SX4 Hatchback 2012 13.14% Acura RL Sedan 2012 6.42% Ford Fiesta Sedan 2012 5.0% Tesla Model S Sedan 2012 4.7% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 12.52% Volkswagen Golf Hatchback 2012 11.06% Hyundai Elantra Sedan 2007 8.66% Toyota Corolla Sedan 2012 8.59% Chevrolet Malibu Hybrid Sedan 2010 4.95% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Dodge Dakota Crew Cab 2010 7.96% Dodge Caliber Wagon 2012 7.64% Ford Freestar Minivan 2007 6.7% Jeep Grand Cherokee SUV 2012 3.12% Chevrolet Malibu Sedan 2007 2.9% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 61.6% Geo Metro Convertible 1993 18.85% Acura Integra Type R 2001 8.15% Lamborghini Diablo Coupe 2001 3.86% Ferrari 458 Italia Convertible 2012 1.31% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Jeep Grand Cherokee SUV 2012 10.12% Jeep Compass SUV 2012 8.75% Chevrolet TrailBlazer SS 2009 6.2% Cadillac Escalade EXT Crew Cab 2007 5.15% GMC Terrain SUV 2012 4.12% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 87.52% Aston Martin Virage Coupe 2012 3.62% Hyundai Veloster Hatchback 2012 2.27% Lamborghini Aventador Coupe 2012 1.39% BMW M3 Coupe 2012 1.38% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Dodge Challenger SRT8 2011 30.44% Lamborghini Gallardo LP 570-4 Superleggera 2012 17.59% Audi RS 4 Convertible 2008 6.36% Chrysler Crossfire Convertible 2008 3.83% Hyundai Veloster Hatchback 2012 3.48% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 BMW M3 Coupe 2012 5.53% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.28% Bugatti Veyron 16.4 Coupe 2009 4.22% Tesla Model S Sedan 2012 3.3% Lamborghini Reventon Coupe 2008 2.84% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Eagle Talon Hatchback 1998 5.65% Plymouth Neon Coupe 1999 5.25% Hyundai Elantra Touring Hatchback 2012 3.79% Tesla Model S Sedan 2012 3.1% Volvo C30 Hatchback 2012 2.64% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 Acura ZDX Hatchback 2012 3.77% Volvo 240 Sedan 1993 3.03% Lincoln Town Car Sedan 2011 2.71% Chrysler Crossfire Convertible 2008 2.56% BMW ActiveHybrid 5 Sedan 2012 2.23% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 68.47% Ferrari 458 Italia Coupe 2012 15.88% Dodge Magnum Wagon 2008 2.68% Chevrolet Corvette Convertible 2012 2.34% Ferrari California Convertible 2012 2.31% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Hyundai Veloster Hatchback 2012 17.91% Aston Martin Virage Coupe 2012 14.77% Chevrolet Corvette ZR1 2012 14.75% Bugatti Veyron 16.4 Coupe 2009 13.0% Audi RS 4 Convertible 2008 9.1% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 BMW 3 Series Sedan 2012 33.02% Toyota Camry Sedan 2012 7.32% Chevrolet HHR SS 2010 5.44% Toyota Corolla Sedan 2012 3.69% Mitsubishi Lancer Sedan 2012 2.93% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 42.61% Bugatti Veyron 16.4 Convertible 2009 9.1% Lamborghini Aventador Coupe 2012 6.93% Bentley Mulsanne Sedan 2011 5.99% BMW 6 Series Convertible 2007 4.32% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 62.59% Eagle Talon Hatchback 1998 11.75% Dodge Challenger SRT8 2011 2.38% Mercedes-Benz 300-Class Convertible 1993 2.11% Volkswagen Golf Hatchback 1991 1.77% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.29% Hyundai Genesis Sedan 2012 2.21% Hyundai Elantra Sedan 2007 1.87% Hyundai Azera Sedan 2012 1.82% Suzuki Aerio Sedan 2007 1.81% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Audi S5 Coupe 2012 10.9% Audi R8 Coupe 2012 5.66% Audi V8 Sedan 1994 5.48% Mercedes-Benz C-Class Sedan 2012 4.79% BMW 3 Series Sedan 2012 3.76% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 BMW X3 SUV 2012 8.17% Tesla Model S Sedan 2012 5.44% Volkswagen Beetle Hatchback 2012 4.35% Ferrari FF Coupe 2012 4.05% Acura RL Sedan 2012 3.14% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 17.93% Dodge Ram Pickup 3500 Crew Cab 2010 14.38% Ford F-450 Super Duty Crew Cab 2012 11.91% Dodge Ram Pickup 3500 Quad Cab 2009 9.88% Chevrolet Silverado 1500 Regular Cab 2012 6.62% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz S-Class Sedan 2012 10.83% Hyundai Genesis Sedan 2012 10.27% Mercedes-Benz C-Class Sedan 2012 9.59% Mercedes-Benz E-Class Sedan 2012 7.42% Hyundai Azera Sedan 2012 6.78% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 BMW X6 SUV 2012 17.01% Jeep Compass SUV 2012 11.22% Dodge Caliber Wagon 2007 6.36% Nissan Juke Hatchback 2012 5.37% Hyundai Tucson SUV 2012 4.7% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Toyota Camry Sedan 2012 26.01% Dodge Journey SUV 2012 7.55% Audi S4 Sedan 2012 5.79% Chevrolet Camaro Convertible 2012 4.41% Toyota Corolla Sedan 2012 3.8% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Dodge Magnum Wagon 2008 10.54% Chevrolet Malibu Hybrid Sedan 2010 9.96% Dodge Journey SUV 2012 6.79% Chrysler Sebring Convertible 2010 4.41% Dodge Durango SUV 2012 4.13% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Daewoo Nubira Wagon 2002 8.46% FIAT 500 Convertible 2012 6.57% Nissan Leaf Hatchback 2012 5.63% Suzuki SX4 Hatchback 2012 4.62% Hyundai Elantra Touring Hatchback 2012 4.46% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 MINI Cooper Roadster Convertible 2012 6.31% Rolls-Royce Phantom Sedan 2012 4.77% Dodge Durango SUV 2012 3.49% Cadillac SRX SUV 2012 2.25% Audi R8 Coupe 2012 2.24% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Volvo C30 Hatchback 2012 8.84% Dodge Charger SRT-8 2009 8.47% BMW 3 Series Sedan 2012 8.34% Chevrolet HHR SS 2010 6.39% Chevrolet Sonic Sedan 2012 4.38% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 BMW 6 Series Convertible 2007 5.21% Chevrolet Corvette Convertible 2012 3.28% Bentley Continental Supersports Conv. Convertible 2012 2.85% Porsche Panamera Sedan 2012 2.32% Suzuki Aerio Sedan 2007 2.25% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Gallardo LP 570-4 Superleggera 2012 11.54% Dodge Challenger SRT8 2011 7.66% Ford Fiesta Sedan 2012 7.54% Lamborghini Diablo Coupe 2001 4.86% Spyker C8 Coupe 2009 3.94% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H3T Crew Cab 2010 50.77% HUMMER H2 SUT Crew Cab 2009 14.52% Chevrolet Silverado 1500 Extended Cab 2012 9.14% Jeep Wrangler SUV 2012 7.17% GMC Canyon Extended Cab 2012 5.27% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 23.86% Suzuki SX4 Hatchback 2012 12.84% Dodge Journey SUV 2012 4.72% BMW X6 SUV 2012 4.71% Chevrolet Traverse SUV 2012 4.58% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Suzuki Aerio Sedan 2007 5.65% Lincoln Town Car Sedan 2011 5.02% Mercedes-Benz 300-Class Convertible 1993 3.79% Chevrolet Impala Sedan 2007 2.88% Chrysler Sebring Convertible 2010 2.34% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 31.78% Hyundai Genesis Sedan 2012 31.17% Mercedes-Benz C-Class Sedan 2012 7.88% Infiniti QX56 SUV 2011 4.34% Chevrolet Malibu Hybrid Sedan 2010 3.42% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 22.5% HUMMER H3T Crew Cab 2010 19.98% Chevrolet Silverado 1500 Classic Extended Cab 2007 12.83% Dodge Ram Pickup 3500 Crew Cab 2010 10.66% Chevrolet Silverado 1500 Regular Cab 2012 5.52% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 24.63% Ferrari 458 Italia Convertible 2012 23.72% BMW 3 Series Sedan 2012 12.94% Ferrari FF Coupe 2012 12.83% Ferrari 458 Italia Coupe 2012 12.12% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Hyundai Santa Fe SUV 2012 16.97% Ford Edge SUV 2012 14.3% Ford F-450 Super Duty Crew Cab 2012 13.93% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.42% Dodge Ram Pickup 3500 Crew Cab 2010 5.0% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Jeep Wrangler SUV 2012 34.19% AM General Hummer SUV 2000 20.77% HUMMER H3T Crew Cab 2010 13.47% Jeep Patriot SUV 2012 10.96% Jeep Compass SUV 2012 3.13% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Hyundai Genesis Sedan 2012 3.28% MINI Cooper Roadster Convertible 2012 2.23% Cadillac SRX SUV 2012 2.15% Mercedes-Benz Sprinter Van 2012 2.1% Land Rover LR2 SUV 2012 2.0% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 21.29% Nissan NV Passenger Van 2012 18.23% Dodge Sprinter Cargo Van 2009 12.26% Mercedes-Benz Sprinter Van 2012 7.79% GMC Savana Van 2012 4.97% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Dodge Caliber Wagon 2012 9.54% Chevrolet Avalanche Crew Cab 2012 8.24% Dodge Durango SUV 2012 7.03% Dodge Journey SUV 2012 6.66% Hyundai Tucson SUV 2012 6.16% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Nissan Juke Hatchback 2012 5.56% Rolls-Royce Ghost Sedan 2012 5.02% Rolls-Royce Phantom Sedan 2012 4.94% Acura RL Sedan 2012 4.55% Jeep Compass SUV 2012 4.27% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Acura RL Sedan 2012 18.02% Honda Odyssey Minivan 2012 9.1% Buick Verano Sedan 2012 5.45% BMW M5 Sedan 2010 5.43% Suzuki SX4 Sedan 2012 5.23% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Jeep Grand Cherokee SUV 2012 36.77% Jeep Compass SUV 2012 22.63% Jeep Patriot SUV 2012 10.6% Jeep Liberty SUV 2012 5.05% GMC Terrain SUV 2012 3.67% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Volkswagen Golf Hatchback 1991 48.53% Volvo 240 Sedan 1993 13.62% Dodge Ram Pickup 3500 Quad Cab 2009 10.66% Audi 100 Sedan 1994 6.08% GMC Savana Van 2012 5.54% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bentley Continental GT Coupe 2007 12.1% Aston Martin V8 Vantage Coupe 2012 4.28% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.94% Bugatti Veyron 16.4 Coupe 2009 3.59% Aston Martin V8 Vantage Convertible 2012 3.3% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Audi RS 4 Convertible 2008 34.09% Lamborghini Diablo Coupe 2001 29.14% Acura Integra Type R 2001 10.55% Hyundai Veloster Hatchback 2012 2.5% Bugatti Veyron 16.4 Coupe 2009 2.22% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Chevrolet Tahoe Hybrid SUV 2012 28.0% Nissan NV Passenger Van 2012 10.04% Chevrolet Silverado 1500 Extended Cab 2012 7.01% Audi 100 Wagon 1994 5.9% Volvo 240 Sedan 1993 4.9% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Buick Regal GS 2012 7.71% Lincoln Town Car Sedan 2011 6.69% Scion xD Hatchback 2012 5.27% Nissan Leaf Hatchback 2012 3.6% Hyundai Veloster Hatchback 2012 3.3% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 BMW M6 Convertible 2010 18.25% Bentley Arnage Sedan 2009 11.93% BMW 3 Series Sedan 2012 7.77% Chrysler 300 SRT-8 2010 7.27% Audi S5 Coupe 2012 6.58% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 BMW 3 Series Wagon 2012 5.02% Bentley Arnage Sedan 2009 3.79% BMW X3 SUV 2012 2.62% Audi S6 Sedan 2011 2.54% Audi S4 Sedan 2007 2.46% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Ford GT Coupe 2006 11.37% Ferrari California Convertible 2012 8.06% Aston Martin V8 Vantage Coupe 2012 7.24% Chevrolet Camaro Convertible 2012 6.09% Chevrolet Cobalt SS 2010 4.94% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Edge SUV 2012 16.9% Hyundai Santa Fe SUV 2012 7.2% Dodge Dakota Crew Cab 2010 4.51% Cadillac Escalade EXT Crew Cab 2007 3.69% Chevrolet Traverse SUV 2012 2.84% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 11.15% Bentley Arnage Sedan 2009 10.16% Chrysler 300 SRT-8 2010 5.01% FIAT 500 Abarth 2012 4.57% Jeep Compass SUV 2012 4.02% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 18.24% Audi A5 Coupe 2012 7.44% Toyota Corolla Sedan 2012 6.26% Hyundai Sonata Hybrid Sedan 2012 5.27% Ford Fiesta Sedan 2012 4.56% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Ford Freestar Minivan 2007 59.25% Dodge Caliber Wagon 2007 6.16% Buick Rainier SUV 2007 4.21% Dodge Durango SUV 2007 2.99% Dodge Dakota Crew Cab 2010 2.81% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Volvo 240 Sedan 1993 7.86% Ford Ranger SuperCab 2011 5.64% Jeep Grand Cherokee SUV 2012 5.02% Buick Rainier SUV 2007 4.38% Jeep Patriot SUV 2012 3.96% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Drophead Coupe Convertible 2012 10.53% Audi R8 Coupe 2012 7.33% Chrysler 300 SRT-8 2010 5.73% Rolls-Royce Ghost Sedan 2012 5.21% Lamborghini Aventador Coupe 2012 3.44% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Cadillac Escalade EXT Crew Cab 2007 8.21% Volvo XC90 SUV 2007 7.84% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.31% Chevrolet Avalanche Crew Cab 2012 6.8% Ford F-450 Super Duty Crew Cab 2012 6.2% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 BMW M5 Sedan 2010 12.38% Mitsubishi Lancer Sedan 2012 7.61% Buick Regal GS 2012 7.34% BMW 3 Series Wagon 2012 5.83% Chevrolet Sonic Sedan 2012 5.04% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Spyker C8 Coupe 2009 10.09% Hyundai Veloster Hatchback 2012 3.86% Jaguar XK XKR 2012 3.18% Chevrolet Sonic Sedan 2012 3.09% Volvo C30 Hatchback 2012 2.08% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 33.59% GMC Canyon Extended Cab 2012 19.23% Chevrolet Silverado 1500 Regular Cab 2012 11.73% Chevrolet Silverado 1500 Extended Cab 2012 9.62% Dodge Ram Pickup 3500 Quad Cab 2009 7.67% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Audi A5 Coupe 2012 11.13% Ferrari FF Coupe 2012 9.01% Audi S4 Sedan 2012 7.04% Audi S5 Coupe 2012 5.93% Audi TTS Coupe 2012 2.85% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Bentley Mulsanne Sedan 2011 13.13% smart fortwo Convertible 2012 8.55% Rolls-Royce Phantom Sedan 2012 5.24% Bentley Arnage Sedan 2009 3.11% Bugatti Veyron 16.4 Convertible 2009 2.96% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Jeep Liberty SUV 2012 26.32% Jeep Grand Cherokee SUV 2012 6.23% Jeep Patriot SUV 2012 5.51% Mazda Tribute SUV 2011 4.2% Jeep Compass SUV 2012 3.63% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 71.97% McLaren MP4-12C Coupe 2012 5.13% Geo Metro Convertible 1993 2.23% Ferrari 458 Italia Convertible 2012 2.01% Ferrari 458 Italia Coupe 2012 1.21% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Rolls-Royce Phantom Sedan 2012 18.22% Infiniti QX56 SUV 2011 3.59% Hyundai Azera Sedan 2012 3.47% Ford Expedition EL SUV 2009 2.89% Chrysler Aspen SUV 2009 2.82% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Acura RL Sedan 2012 8.33% Acura ZDX Hatchback 2012 6.62% Nissan Juke Hatchback 2012 4.14% Hyundai Azera Sedan 2012 3.97% MINI Cooper Roadster Convertible 2012 3.1% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Audi RS 4 Convertible 2008 7.15% BMW M6 Convertible 2010 6.98% Audi S4 Sedan 2012 6.6% Audi TTS Coupe 2012 5.91% Ferrari FF Coupe 2012 4.59% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Volkswagen Golf Hatchback 2012 11.69% Suzuki Aerio Sedan 2007 9.22% Acura TSX Sedan 2012 7.09% Ram C/V Cargo Van Minivan 2012 5.6% Chevrolet Malibu Hybrid Sedan 2010 3.48% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 11.76% Chevrolet Silverado 2500HD Regular Cab 2012 11.39% Dodge Ram Pickup 3500 Quad Cab 2009 10.31% Chevrolet Silverado 1500 Extended Cab 2012 8.53% Ford F-150 Regular Cab 2012 7.81% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Infiniti QX56 SUV 2011 17.59% Chevrolet Malibu Hybrid Sedan 2010 6.14% BMW X3 SUV 2012 4.53% Bentley Mulsanne Sedan 2011 4.34% Cadillac Escalade EXT Crew Cab 2007 3.5% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Bentley Continental GT Coupe 2007 7.91% Bugatti Veyron 16.4 Coupe 2009 7.67% Lamborghini Aventador Coupe 2012 7.16% Aston Martin V8 Vantage Convertible 2012 6.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.4% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Acura ZDX Hatchback 2012 5.93% MINI Cooper Roadster Convertible 2012 4.07% Hyundai Azera Sedan 2012 3.76% Nissan Juke Hatchback 2012 3.71% BMW M3 Coupe 2012 3.52% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 40.71% Ferrari 458 Italia Coupe 2012 12.31% Ferrari 458 Italia Convertible 2012 6.67% Chevrolet Cobalt SS 2010 4.42% Chevrolet Camaro Convertible 2012 2.96% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Acura TL Sedan 2012 5.49% Honda Accord Sedan 2012 3.59% Volkswagen Beetle Hatchback 2012 3.26% BMW ActiveHybrid 5 Sedan 2012 3.15% BMW 1 Series Convertible 2012 3.01% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Lincoln Town Car Sedan 2011 10.02% Chevrolet Malibu Sedan 2007 5.35% Scion xD Hatchback 2012 4.53% Chevrolet Impala Sedan 2007 4.18% Ford Focus Sedan 2007 3.88% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 HUMMER H2 SUT Crew Cab 2009 31.99% AM General Hummer SUV 2000 18.53% Bentley Arnage Sedan 2009 11.05% HUMMER H3T Crew Cab 2010 6.84% Jeep Patriot SUV 2012 4.72% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chevrolet Monte Carlo Coupe 2007 6.91% Chrysler 300 SRT-8 2010 3.19% Chevrolet Malibu Sedan 2007 3.08% Mercedes-Benz 300-Class Convertible 1993 2.54% Chevrolet Impala Sedan 2007 2.31% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 BMW 3 Series Sedan 2012 28.32% Ford Mustang Convertible 2007 14.24% Nissan 240SX Coupe 1998 7.8% Hyundai Azera Sedan 2012 6.55% Hyundai Sonata Hybrid Sedan 2012 5.49% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 11.99% Hyundai Genesis Sedan 2012 11.51% Infiniti QX56 SUV 2011 8.14% Mercedes-Benz C-Class Sedan 2012 6.27% Land Rover LR2 SUV 2012 5.84% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 BMW M3 Coupe 2012 7.1% Mercedes-Benz S-Class Sedan 2012 5.58% Acura RL Sedan 2012 4.35% Audi S5 Coupe 2012 4.35% MINI Cooper Roadster Convertible 2012 4.23% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 45.2% Audi 100 Sedan 1994 11.7% Volkswagen Golf Hatchback 1991 9.62% Volvo 240 Sedan 1993 4.11% Audi 100 Wagon 1994 3.95% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 43.49% Bugatti Veyron 16.4 Coupe 2009 3.21% Tesla Model S Sedan 2012 3.14% Hyundai Tucson SUV 2012 2.98% Suzuki SX4 Hatchback 2012 2.4% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Mercedes-Benz S-Class Sedan 2012 5.06% Honda Accord Sedan 2012 3.75% smart fortwo Convertible 2012 3.17% Hyundai Genesis Sedan 2012 3.03% Acura RL Sedan 2012 2.98% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Audi S5 Coupe 2012 7.29% Audi S6 Sedan 2011 4.48% BMW 3 Series Wagon 2012 4.41% Audi S4 Sedan 2012 4.3% Audi A5 Coupe 2012 4.21% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Hyundai Santa Fe SUV 2012 15.3% Ford F-150 Regular Cab 2012 12.62% Ford Ranger SuperCab 2011 11.28% Dodge Dakota Club Cab 2007 8.06% Ford Expedition EL SUV 2009 4.79% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 16.26% Chevrolet Avalanche Crew Cab 2012 12.12% Hyundai Santa Fe SUV 2012 6.33% Buick Rainier SUV 2007 5.61% Mazda Tribute SUV 2011 5.25% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 20.09% Dodge Dakota Club Cab 2007 8.8% HUMMER H3T Crew Cab 2010 8.14% Chevrolet Silverado 1500 Regular Cab 2012 7.58% Ford Ranger SuperCab 2011 6.67% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Hyundai Azera Sedan 2012 7.44% Mercedes-Benz SL-Class Coupe 2009 6.82% Hyundai Genesis Sedan 2012 6.79% Jaguar XK XKR 2012 5.44% Mercedes-Benz S-Class Sedan 2012 3.69% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Audi RS 4 Convertible 2008 8.01% Chevrolet Corvette ZR1 2012 7.16% Dodge Challenger SRT8 2011 6.12% Jaguar XK XKR 2012 4.24% Bentley Continental Supersports Conv. Convertible 2012 4.15% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Bentley Mulsanne Sedan 2011 33.8% Cadillac CTS-V Sedan 2012 10.24% Infiniti G Coupe IPL 2012 6.97% Audi TTS Coupe 2012 6.05% Rolls-Royce Ghost Sedan 2012 4.9% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Tesla Model S Sedan 2012 6.08% Nissan Juke Hatchback 2012 6.01% Buick Verano Sedan 2012 4.14% Chrysler 300 SRT-8 2010 3.47% Acura RL Sedan 2012 2.92% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Chrysler Sebring Convertible 2010 11.06% Hyundai Elantra Sedan 2007 9.04% Chevrolet Malibu Sedan 2007 7.35% Toyota Corolla Sedan 2012 5.62% Lincoln Town Car Sedan 2011 4.57% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Rolls-Royce Phantom Sedan 2012 12.74% Bentley Continental GT Coupe 2007 11.37% Bentley Continental Flying Spur Sedan 2007 8.58% Rolls-Royce Ghost Sedan 2012 8.28% Bentley Mulsanne Sedan 2011 5.87% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Jaguar XK XKR 2012 4.19% Nissan 240SX Coupe 1998 4.16% BMW M3 Coupe 2012 3.35% BMW 1 Series Convertible 2012 2.81% Chevrolet Cobalt SS 2010 2.26% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 13.63% Buick Enclave SUV 2012 10.89% Buick Rainier SUV 2007 6.84% Chevrolet Traverse SUV 2012 6.46% Hyundai Santa Fe SUV 2012 5.95% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Ford Mustang Convertible 2007 16.2% Ferrari 458 Italia Coupe 2012 8.13% Honda Accord Coupe 2012 7.54% Eagle Talon Hatchback 1998 6.37% Chevrolet Camaro Convertible 2012 4.99% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Audi S6 Sedan 2011 7.83% Fisker Karma Sedan 2012 6.57% Audi R8 Coupe 2012 6.25% BMW M6 Convertible 2010 3.69% Mercedes-Benz C-Class Sedan 2012 3.49% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 52.01% Chevrolet Express Van 2007 14.99% Volkswagen Golf Hatchback 1991 7.1% Audi V8 Sedan 1994 5.14% Mercedes-Benz 300-Class Convertible 1993 4.48% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Coupe 2012 21.59% Ferrari California Convertible 2012 18.31% Lamborghini Aventador Coupe 2012 17.25% Ferrari 458 Italia Convertible 2012 5.48% Ford GT Coupe 2006 3.54% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Cadillac SRX SUV 2012 19.82% Dodge Durango SUV 2012 17.29% Honda Odyssey Minivan 2012 11.62% Dodge Caliber Wagon 2012 6.89% Ford Edge SUV 2012 4.32% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 9.46% Bugatti Veyron 16.4 Convertible 2009 6.95% Fisker Karma Sedan 2012 5.71% Tesla Model S Sedan 2012 5.23% MINI Cooper Roadster Convertible 2012 4.62% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 BMW 1 Series Coupe 2012 10.2% Volkswagen Golf Hatchback 2012 6.4% Daewoo Nubira Wagon 2002 5.89% Buick Verano Sedan 2012 3.45% Suzuki Aerio Sedan 2007 3.33% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 72.77% Mercedes-Benz 300-Class Convertible 1993 7.91% Eagle Talon Hatchback 1998 2.46% Audi 100 Wagon 1994 1.8% Nissan 240SX Coupe 1998 1.4% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 13.01% Ford Edge SUV 2012 9.55% Ford Expedition EL SUV 2009 8.49% Dodge Durango SUV 2012 7.6% Hyundai Santa Fe SUV 2012 7.08% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Hyundai Elantra Sedan 2007 20.85% Volkswagen Golf Hatchback 2012 13.96% Hyundai Accent Sedan 2012 3.83% Suzuki SX4 Sedan 2012 3.7% Suzuki Aerio Sedan 2007 3.52% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Chrysler PT Cruiser Convertible 2008 23.68% Hyundai Azera Sedan 2012 6.44% Mercedes-Benz Sprinter Van 2012 6.34% Audi 100 Sedan 1994 4.7% Mercedes-Benz S-Class Sedan 2012 4.4% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 36.57% Mercedes-Benz E-Class Sedan 2012 16.94% Mercedes-Benz C-Class Sedan 2012 12.26% Mercedes-Benz S-Class Sedan 2012 4.6% Mercedes-Benz SL-Class Coupe 2009 3.67% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Honda Odyssey Minivan 2007 5.87% Dodge Caliber Wagon 2012 5.48% Ford Freestar Minivan 2007 4.93% Chrysler Town and Country Minivan 2012 3.93% Chevrolet Traverse SUV 2012 3.64% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Chrysler 300 SRT-8 2010 5.52% Nissan Juke Hatchback 2012 3.05% Bentley Continental GT Coupe 2012 2.74% Audi R8 Coupe 2012 2.52% Rolls-Royce Ghost Sedan 2012 2.5% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 5.06% Audi TT RS Coupe 2012 3.55% Audi TT Hatchback 2011 3.22% Buick Regal GS 2012 3.17% Tesla Model S Sedan 2012 2.48% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Bugatti Veyron 16.4 Coupe 2009 6.13% Spyker C8 Convertible 2009 5.68% Nissan Juke Hatchback 2012 3.83% Spyker C8 Coupe 2009 3.71% Ford GT Coupe 2006 2.6% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Chrysler 300 SRT-8 2010 4.44% Jeep Liberty SUV 2012 3.25% GMC Yukon Hybrid SUV 2012 3.13% HUMMER H2 SUT Crew Cab 2009 2.75% GMC Terrain SUV 2012 2.65% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Lincoln Town Car Sedan 2011 13.58% Chevrolet Impala Sedan 2007 5.96% Chevrolet Malibu Sedan 2007 5.44% Chevrolet Monte Carlo Coupe 2007 4.7% BMW 1 Series Convertible 2012 3.03% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Camaro Convertible 2012 5.07% BMW 1 Series Convertible 2012 5.0% Fisker Karma Sedan 2012 2.79% Aston Martin Virage Convertible 2012 2.41% Toyota Camry Sedan 2012 2.39% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 21.29% Chevrolet Impala Sedan 2007 10.25% Ford Freestar Minivan 2007 5.45% Chevrolet Malibu Sedan 2007 5.43% Chevrolet Monte Carlo Coupe 2007 5.42% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Chevrolet Impala Sedan 2007 15.79% Chrysler Sebring Convertible 2010 6.04% Dodge Magnum Wagon 2008 5.81% Chevrolet Malibu Hybrid Sedan 2010 4.83% Ram C/V Cargo Van Minivan 2012 4.61% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Chevrolet Impala Sedan 2007 3.21% Honda Odyssey Minivan 2007 3.18% Chevrolet Malibu Hybrid Sedan 2010 2.69% Suzuki Aerio Sedan 2007 2.25% Maybach Landaulet Convertible 2012 2.1% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 BMW 6 Series Convertible 2007 16.98% Acura Integra Type R 2001 11.05% Chevrolet Corvette Convertible 2012 5.97% Fisker Karma Sedan 2012 4.97% Bentley Mulsanne Sedan 2011 4.35% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura Integra Type R 2001 33.54% Lamborghini Diablo Coupe 2001 19.06% Ford Mustang Convertible 2007 6.28% Hyundai Veloster Hatchback 2012 4.72% Spyker C8 Convertible 2009 4.16% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 12.67% Ford Freestar Minivan 2007 12.48% Hyundai Santa Fe SUV 2012 7.03% Buick Rainier SUV 2007 6.24% Dodge Caliber Wagon 2012 5.19% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 15.1% Chevrolet Silverado 1500 Extended Cab 2012 10.67% Chevrolet Silverado 2500HD Regular Cab 2012 8.52% Ford F-150 Regular Cab 2007 5.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.96% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 43.43% McLaren MP4-12C Coupe 2012 16.23% Lamborghini Diablo Coupe 2001 12.61% Aston Martin V8 Vantage Coupe 2012 4.24% Lamborghini Aventador Coupe 2012 3.45% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 BMW 1 Series Convertible 2012 6.69% Toyota Camry Sedan 2012 3.71% Suzuki Aerio Sedan 2007 3.37% Toyota Corolla Sedan 2012 2.82% Maybach Landaulet Convertible 2012 2.53% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Nissan Leaf Hatchback 2012 19.47% Volkswagen Beetle Hatchback 2012 14.64% Daewoo Nubira Wagon 2002 7.09% BMW M5 Sedan 2010 6.82% Volkswagen Golf Hatchback 2012 5.64% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Audi V8 Sedan 1994 7.25% Bentley Arnage Sedan 2009 6.99% BMW M6 Convertible 2010 6.0% Volkswagen Golf Hatchback 1991 5.17% Audi 100 Sedan 1994 4.89% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Hyundai Elantra Sedan 2007 39.82% Hyundai Azera Sedan 2012 10.75% Hyundai Sonata Sedan 2012 7.17% Dodge Journey SUV 2012 5.87% Dodge Caliber Wagon 2012 4.13% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Aston Martin V8 Vantage Convertible 2012 6.87% Eagle Talon Hatchback 1998 6.06% Ford Mustang Convertible 2007 4.87% Chevrolet Monte Carlo Coupe 2007 4.39% Bentley Continental GT Coupe 2007 3.93% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 11.3% Ford GT Coupe 2006 10.94% Acura Integra Type R 2001 8.28% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.92% AM General Hummer SUV 2000 5.16% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 46.39% Audi TT RS Coupe 2012 22.38% Ferrari 458 Italia Convertible 2012 6.86% Ferrari FF Coupe 2012 5.91% BMW M3 Coupe 2012 3.57% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Bentley Mulsanne Sedan 2011 14.23% Cadillac CTS-V Sedan 2012 7.54% Rolls-Royce Phantom Sedan 2012 3.3% Bentley Arnage Sedan 2009 2.98% Bentley Continental GT Coupe 2012 2.97% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Bentley Continental GT Coupe 2007 8.16% BMW 3 Series Sedan 2012 5.07% Mitsubishi Lancer Sedan 2012 4.86% Nissan Juke Hatchback 2012 4.85% Nissan Leaf Hatchback 2012 4.82% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Grand Cherokee SUV 2012 26.79% Jeep Patriot SUV 2012 12.79% Jeep Compass SUV 2012 9.53% Dodge Dakota Club Cab 2007 7.36% Dodge Dakota Crew Cab 2010 5.28% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Porsche Panamera Sedan 2012 12.09% Mercedes-Benz 300-Class Convertible 1993 6.92% Chevrolet Camaro Convertible 2012 5.8% Chevrolet Corvette ZR1 2012 5.36% Fisker Karma Sedan 2012 5.08% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 19.17% Dodge Caliber Wagon 2007 10.24% Suzuki SX4 Hatchback 2012 8.64% BMW X6 SUV 2012 7.85% Bentley Continental GT Coupe 2007 4.42% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Acura RL Sedan 2012 7.77% Chrysler Crossfire Convertible 2008 4.05% Mercedes-Benz 300-Class Convertible 1993 3.19% Cadillac SRX SUV 2012 3.15% Acura TL Sedan 2012 2.98% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 BMW M3 Coupe 2012 5.77% Audi TT RS Coupe 2012 4.25% BMW M5 Sedan 2010 4.13% MINI Cooper Roadster Convertible 2012 4.09% Tesla Model S Sedan 2012 3.45% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Lamborghini Aventador Coupe 2012 65.09% McLaren MP4-12C Coupe 2012 5.51% Ferrari 458 Italia Coupe 2012 5.13% Aston Martin Virage Coupe 2012 4.81% BMW M3 Coupe 2012 3.91% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Nissan Juke Hatchback 2012 22.92% Suzuki SX4 Hatchback 2012 15.0% Hyundai Tucson SUV 2012 7.97% Hyundai Azera Sedan 2012 5.28% Tesla Model S Sedan 2012 4.74% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 23.6% Ford F-150 Regular Cab 2007 13.03% Volkswagen Golf Hatchback 1991 6.33% Chevrolet Silverado 1500 Extended Cab 2012 5.09% Ford Ranger SuperCab 2011 4.55% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 22.52% Honda Odyssey Minivan 2007 16.09% Chrysler Town and Country Minivan 2012 12.29% Dodge Caliber Wagon 2012 5.8% Honda Odyssey Minivan 2012 3.99% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 12.46% Dodge Caliber Wagon 2012 5.4% BMW X5 SUV 2007 5.35% BMW X3 SUV 2012 4.3% Ram C/V Cargo Van Minivan 2012 3.27% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 11.53% Rolls-Royce Ghost Sedan 2012 8.69% Rolls-Royce Phantom Sedan 2012 7.31% Bugatti Veyron 16.4 Coupe 2009 3.85% Bentley Continental Flying Spur Sedan 2007 3.45% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Isuzu Ascender SUV 2008 7.68% Cadillac Escalade EXT Crew Cab 2007 7.19% Volvo XC90 SUV 2007 6.97% Hyundai Santa Fe SUV 2012 6.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.73% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Dodge Ram Pickup 3500 Crew Cab 2010 8.62% Infiniti QX56 SUV 2011 7.16% Audi V8 Sedan 1994 5.43% Volvo 240 Sedan 1993 5.34% Volkswagen Golf Hatchback 1991 5.19% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Land Rover Range Rover SUV 2012 11.21% Cadillac SRX SUV 2012 8.08% BMW 3 Series Wagon 2012 7.3% Land Rover LR2 SUV 2012 3.86% Mercedes-Benz C-Class Sedan 2012 3.36% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 42.76% Chevrolet Cobalt SS 2010 9.97% Chevrolet Corvette Convertible 2012 5.93% Lamborghini Diablo Coupe 2001 5.78% Audi RS 4 Convertible 2008 5.16% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Nissan Juke Hatchback 2012 33.72% Acura ZDX Hatchback 2012 5.71% FIAT 500 Abarth 2012 5.16% Bugatti Veyron 16.4 Coupe 2009 4.59% Hyundai Azera Sedan 2012 4.32% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Lincoln Town Car Sedan 2011 6.81% Audi 100 Sedan 1994 4.12% Mercedes-Benz 300-Class Convertible 1993 2.23% Honda Accord Sedan 2012 2.21% Chevrolet Malibu Sedan 2007 2.15% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Chevrolet Tahoe Hybrid SUV 2012 22.93% Volvo 240 Sedan 1993 9.36% Bentley Mulsanne Sedan 2011 5.35% Volkswagen Golf Hatchback 1991 5.3% Nissan NV Passenger Van 2012 3.82% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Cadillac Escalade EXT Crew Cab 2007 8.96% Dodge Durango SUV 2012 6.96% Chevrolet TrailBlazer SS 2009 5.94% Cadillac SRX SUV 2012 5.83% Dodge Journey SUV 2012 4.0% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 13.13% Ford GT Coupe 2006 7.25% Volvo C30 Hatchback 2012 6.52% Eagle Talon Hatchback 1998 4.5% Geo Metro Convertible 1993 3.84% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 22.3% BMW 3 Series Sedan 2012 14.76% Ford GT Coupe 2006 7.96% Spyker C8 Coupe 2009 5.15% Ferrari 458 Italia Convertible 2012 4.13% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 GMC Terrain SUV 2012 7.61% Ford F-150 Regular Cab 2007 4.18% HUMMER H2 SUT Crew Cab 2009 3.72% Chevrolet Silverado 1500 Extended Cab 2012 3.68% Chevrolet Silverado 1500 Regular Cab 2012 2.94% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Ford GT Coupe 2006 39.32% BMW 1 Series Coupe 2012 9.3% BMW M3 Coupe 2012 7.82% Ferrari 458 Italia Coupe 2012 6.07% Ferrari FF Coupe 2012 4.5% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 14.77% Lamborghini Reventon Coupe 2008 7.2% Bugatti Veyron 16.4 Coupe 2009 6.9% Aston Martin Virage Convertible 2012 4.22% Bentley Continental GT Coupe 2007 3.61% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Maybach Landaulet Convertible 2012 8.01% Hyundai Veloster Hatchback 2012 6.97% Spyker C8 Coupe 2009 6.8% Aston Martin Virage Convertible 2012 6.29% Rolls-Royce Phantom Sedan 2012 5.4% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Plymouth Neon Coupe 1999 8.81% Eagle Talon Hatchback 1998 7.44% Nissan 240SX Coupe 1998 6.18% Suzuki Kizashi Sedan 2012 4.51% Hyundai Elantra Touring Hatchback 2012 4.44% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Hyundai Elantra Touring Hatchback 2012 6.79% Acura TL Type-S 2008 6.05% Acura TL Sedan 2012 4.46% Audi S5 Convertible 2012 4.05% Volkswagen Beetle Hatchback 2012 3.83% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Spyker C8 Convertible 2009 35.35% Ford GT Coupe 2006 7.21% AM General Hummer SUV 2000 4.41% Bugatti Veyron 16.4 Coupe 2009 3.02% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.96% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Jeep Patriot SUV 2012 27.94% Jeep Liberty SUV 2012 9.65% AM General Hummer SUV 2000 8.15% Chevrolet TrailBlazer SS 2009 5.4% Volkswagen Golf Hatchback 1991 4.4% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 FIAT 500 Abarth 2012 21.14% Chevrolet Sonic Sedan 2012 8.32% Nissan Juke Hatchback 2012 4.16% Ford Edge SUV 2012 3.01% Hyundai Azera Sedan 2012 2.35% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Audi RS 4 Convertible 2008 32.58% Chevrolet Corvette Convertible 2012 12.38% Acura Integra Type R 2001 7.97% Hyundai Veloster Hatchback 2012 7.22% Chevrolet Corvette ZR1 2012 6.13% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Jaguar XK XKR 2012 10.67% Ford GT Coupe 2006 9.09% Spyker C8 Coupe 2009 6.33% Aston Martin V8 Vantage Convertible 2012 5.36% Hyundai Veloster Hatchback 2012 4.33% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Bentley Continental GT Coupe 2007 25.04% Aston Martin V8 Vantage Convertible 2012 8.43% Eagle Talon Hatchback 1998 6.86% Chevrolet Corvette ZR1 2012 5.09% Aston Martin V8 Vantage Coupe 2012 4.65% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 12.17% Rolls-Royce Phantom Sedan 2012 10.12% Aston Martin V8 Vantage Coupe 2012 8.14% Rolls-Royce Ghost Sedan 2012 7.02% Bentley Continental GT Coupe 2007 3.99% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Dodge Caliber Wagon 2007 13.65% Ford Focus Sedan 2007 10.39% Ford Freestar Minivan 2007 10.02% Hyundai Elantra Sedan 2007 9.78% Plymouth Neon Coupe 1999 4.93% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Ford Freestar Minivan 2007 7.68% Dodge Durango SUV 2012 7.18% Cadillac SRX SUV 2012 4.33% Dodge Magnum Wagon 2008 3.97% Chevrolet Avalanche Crew Cab 2012 3.45% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Bentley Continental Supersports Conv. Convertible 2012 5.69% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.58% Chevrolet Corvette ZR1 2012 4.94% Eagle Talon Hatchback 1998 4.3% Volkswagen Beetle Hatchback 2012 3.72% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 BMW X3 SUV 2012 15.89% Land Rover LR2 SUV 2012 10.1% Cadillac SRX SUV 2012 7.14% Chevrolet Sonic Sedan 2012 6.48% Suzuki SX4 Sedan 2012 5.71% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 46.92% Hyundai Genesis Sedan 2012 5.08% MINI Cooper Roadster Convertible 2012 4.52% Cadillac SRX SUV 2012 3.0% Mercedes-Benz S-Class Sedan 2012 2.66% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Jeep Patriot SUV 2012 10.12% GMC Canyon Extended Cab 2012 5.32% Chevrolet Silverado 1500 Regular Cab 2012 4.67% Chevrolet Avalanche Crew Cab 2012 4.25% Dodge Dakota Crew Cab 2010 3.94% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 BMW X3 SUV 2012 6.32% Volkswagen Beetle Hatchback 2012 5.25% BMW ActiveHybrid 5 Sedan 2012 5.23% Suzuki SX4 Sedan 2012 4.28% Acura RL Sedan 2012 4.03% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Isuzu Ascender SUV 2008 6.62% Ford E-Series Wagon Van 2012 5.23% Toyota 4Runner SUV 2012 4.45% Volvo XC90 SUV 2007 3.88% GMC Yukon Hybrid SUV 2012 3.32% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Canyon Extended Cab 2012 7.97% Dodge Ram Pickup 3500 Quad Cab 2009 7.73% Jeep Compass SUV 2012 7.33% Dodge Dakota Crew Cab 2010 7.15% HUMMER H3T Crew Cab 2010 5.93% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Geo Metro Convertible 1993 15.15% Ford Freestar Minivan 2007 4.95% Hyundai Tucson SUV 2012 4.54% Dodge Caravan Minivan 1997 4.11% Lincoln Town Car Sedan 2011 3.98% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 47.0% Mercedes-Benz Sprinter Van 2012 45.85% Audi 100 Sedan 1994 1.26% Nissan NV Passenger Van 2012 0.87% Chevrolet Express Cargo Van 2007 0.81% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Jaguar XK XKR 2012 11.54% Hyundai Veloster Hatchback 2012 5.55% Nissan Leaf Hatchback 2012 4.34% Spyker C8 Coupe 2009 4.17% Tesla Model S Sedan 2012 4.13% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Eagle Talon Hatchback 1998 11.93% Plymouth Neon Coupe 1999 7.94% Ford Mustang Convertible 2007 7.37% Mercedes-Benz 300-Class Convertible 1993 6.31% Nissan 240SX Coupe 1998 5.69% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Jaguar XK XKR 2012 3.46% Chevrolet Corvette ZR1 2012 2.84% Porsche Panamera Sedan 2012 2.54% Suzuki Aerio Sedan 2007 2.39% Chevrolet Camaro Convertible 2012 2.22% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Hyundai Elantra Sedan 2007 14.61% Dodge Caliber Wagon 2007 8.16% Ford Freestar Minivan 2007 7.47% Hyundai Sonata Hybrid Sedan 2012 6.59% Chevrolet TrailBlazer SS 2009 6.27% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Honda Odyssey Minivan 2007 10.37% Chevrolet Impala Sedan 2007 10.28% Ram C/V Cargo Van Minivan 2012 7.5% Suzuki Aerio Sedan 2007 5.87% Ford Focus Sedan 2007 4.17% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 65.07% Plymouth Neon Coupe 1999 11.17% Bentley Continental Supersports Conv. Convertible 2012 6.66% Mercedes-Benz 300-Class Convertible 1993 2.96% Eagle Talon Hatchback 1998 2.75% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 44.0% Nissan Leaf Hatchback 2012 6.08% Bugatti Veyron 16.4 Coupe 2009 3.91% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.54% Bentley Continental Supersports Conv. Convertible 2012 3.25% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Jeep Patriot SUV 2012 6.8% AM General Hummer SUV 2000 6.65% Mercedes-Benz 300-Class Convertible 1993 5.14% Eagle Talon Hatchback 1998 3.84% Dodge Caravan Minivan 1997 3.73% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Rolls-Royce Phantom Sedan 2012 12.82% Rolls-Royce Ghost Sedan 2012 10.5% Bugatti Veyron 16.4 Convertible 2009 6.1% Bentley Continental Flying Spur Sedan 2007 5.16% Maybach Landaulet Convertible 2012 5.03% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 HUMMER H2 SUT Crew Cab 2009 10.55% Dodge Ram Pickup 3500 Crew Cab 2010 10.19% Dodge Dakota Crew Cab 2010 6.1% HUMMER H3T Crew Cab 2010 5.95% Toyota 4Runner SUV 2012 5.47% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Scion xD Hatchback 2012 4.22% Nissan Juke Hatchback 2012 3.72% Chrysler 300 SRT-8 2010 3.09% BMW M5 Sedan 2010 2.93% Audi TT Hatchback 2011 2.92% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Chevrolet Sonic Sedan 2012 8.5% MINI Cooper Roadster Convertible 2012 5.13% Nissan Juke Hatchback 2012 4.14% smart fortwo Convertible 2012 4.11% BMW X3 SUV 2012 3.18% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Hyundai Tucson SUV 2012 4.38% BMW 3 Series Sedan 2012 4.2% BMW X6 SUV 2012 3.95% Ford Edge SUV 2012 2.99% Volvo 240 Sedan 1993 2.75% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Audi 100 Sedan 1994 6.3% Hyundai Veracruz SUV 2012 3.5% Lincoln Town Car Sedan 2011 3.17% Chrysler 300 SRT-8 2010 2.93% Volvo 240 Sedan 1993 2.51% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Hyundai Elantra Sedan 2007 19.92% Mercedes-Benz C-Class Sedan 2012 12.25% Hyundai Sonata Sedan 2012 8.33% Hyundai Sonata Hybrid Sedan 2012 8.13% Hyundai Azera Sedan 2012 7.0% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Infiniti QX56 SUV 2011 20.96% Audi 100 Wagon 1994 15.48% Volvo 240 Sedan 1993 8.51% Chevrolet Tahoe Hybrid SUV 2012 5.03% BMW X3 SUV 2012 4.55% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Audi S6 Sedan 2011 29.51% Dodge Challenger SRT8 2011 12.91% Mercedes-Benz C-Class Sedan 2012 10.57% Mercedes-Benz E-Class Sedan 2012 10.26% FIAT 500 Abarth 2012 10.14% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Eagle Talon Hatchback 1998 6.82% Chevrolet Monte Carlo Coupe 2007 5.27% Ferrari 458 Italia Coupe 2012 4.64% Mercedes-Benz 300-Class Convertible 1993 4.19% Dodge Charger Sedan 2012 3.82% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford Freestar Minivan 2007 26.99% Dodge Dakota Crew Cab 2010 9.26% Ram C/V Cargo Van Minivan 2012 6.58% Chrysler Aspen SUV 2009 5.1% Honda Odyssey Minivan 2007 4.83% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Ferrari California Convertible 2012 15.9% Lamborghini Aventador Coupe 2012 12.94% Dodge Charger SRT-8 2009 8.83% Ferrari 458 Italia Coupe 2012 8.24% Ferrari 458 Italia Convertible 2012 7.6% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 10.49% Hyundai Santa Fe SUV 2012 7.38% Ford Ranger SuperCab 2011 5.77% Volvo 240 Sedan 1993 5.17% Dodge Dakota Crew Cab 2010 4.7% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 7.8% Mazda Tribute SUV 2011 7.05% Buick Rainier SUV 2007 6.58% Jeep Liberty SUV 2012 5.26% GMC Acadia SUV 2012 4.62% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Eagle Talon Hatchback 1998 10.9% Nissan 240SX Coupe 1998 8.99% Mercedes-Benz 300-Class Convertible 1993 6.76% Plymouth Neon Coupe 1999 5.99% Volkswagen Golf Hatchback 1991 5.78% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 61.65% Chevrolet Corvette Convertible 2012 5.65% Volkswagen Golf Hatchback 1991 3.49% Eagle Talon Hatchback 1998 3.43% Ford Mustang Convertible 2007 3.16% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Buick Regal GS 2012 13.63% MINI Cooper Roadster Convertible 2012 6.4% Bugatti Veyron 16.4 Convertible 2009 4.93% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.29% Rolls-Royce Ghost Sedan 2012 4.08% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 35.79% McLaren MP4-12C Coupe 2012 33.3% Lamborghini Aventador Coupe 2012 24.91% BMW M3 Coupe 2012 2.65% Aston Martin V8 Vantage Coupe 2012 1.02% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Nissan NV Passenger Van 2012 32.09% Chrysler Town and Country Minivan 2012 20.92% Buick Rainier SUV 2007 6.61% Dodge Caravan Minivan 1997 6.26% Dodge Caliber Wagon 2007 5.32% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 BMW 6 Series Convertible 2007 5.26% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.0% Acura TL Sedan 2012 4.87% BMW ActiveHybrid 5 Sedan 2012 4.37% BMW 1 Series Convertible 2012 3.64% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 9.02% Acura TL Sedan 2012 4.73% BMW 1 Series Convertible 2012 4.64% Toyota Corolla Sedan 2012 4.42% Chevrolet Malibu Hybrid Sedan 2010 4.06% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 10.25% Audi V8 Sedan 1994 4.4% Nissan Juke Hatchback 2012 4.21% Dodge Caravan Minivan 1997 3.77% Dodge Sprinter Cargo Van 2009 3.72% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 22.8% GMC Yukon Hybrid SUV 2012 11.62% Toyota Sequoia SUV 2012 7.73% Jeep Liberty SUV 2012 6.46% Mazda Tribute SUV 2011 5.06% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Volvo C30 Hatchback 2012 5.45% BMW 3 Series Sedan 2012 4.59% BMW X6 SUV 2012 3.47% Dodge Caliber Wagon 2007 3.36% Volkswagen Golf Hatchback 1991 3.35% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 64.91% Dodge Sprinter Cargo Van 2009 18.66% Ford E-Series Wagon Van 2012 9.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.3% Ford Ranger SuperCab 2011 0.54% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Mercedes-Benz S-Class Sedan 2012 9.64% Chrysler PT Cruiser Convertible 2008 7.68% Mercedes-Benz E-Class Sedan 2012 7.35% Hyundai Azera Sedan 2012 5.97% Chrysler Town and Country Minivan 2012 5.5% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Chrysler PT Cruiser Convertible 2008 16.45% Hyundai Sonata Sedan 2012 5.22% Ford Edge SUV 2012 5.01% Chrysler Sebring Convertible 2010 4.38% Dodge Durango SUV 2012 4.1% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 7.05% Mercedes-Benz S-Class Sedan 2012 6.19% BMW M3 Coupe 2012 5.72% Hyundai Elantra Sedan 2007 5.05% Toyota Corolla Sedan 2012 4.49% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Toyota Sequoia SUV 2012 4.37% Ram C/V Cargo Van Minivan 2012 4.06% Cadillac Escalade EXT Crew Cab 2007 2.8% Toyota 4Runner SUV 2012 2.55% Chevrolet Silverado 1500 Extended Cab 2012 2.34% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Dodge Durango SUV 2007 3.38% Chrysler Aspen SUV 2009 3.1% Toyota 4Runner SUV 2012 2.29% GMC Acadia SUV 2012 1.95% Hyundai Santa Fe SUV 2012 1.82% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Mercedes-Benz C-Class Sedan 2012 4.54% Fisker Karma Sedan 2012 3.0% Chrysler Crossfire Convertible 2008 2.89% BMW M6 Convertible 2010 2.76% Audi R8 Coupe 2012 2.7% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 23.8% HUMMER H3T Crew Cab 2010 16.15% Jeep Wrangler SUV 2012 8.38% Bentley Arnage Sedan 2009 6.27% AM General Hummer SUV 2000 2.4% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 36.7% Dodge Ram Pickup 3500 Quad Cab 2009 7.25% Ford F-450 Super Duty Crew Cab 2012 7.16% Ford Expedition EL SUV 2009 5.98% Cadillac Escalade EXT Crew Cab 2007 5.1% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Ferrari 458 Italia Convertible 2012 43.9% Ferrari 458 Italia Coupe 2012 21.49% Ferrari California Convertible 2012 7.74% Audi TT RS Coupe 2012 3.98% Lamborghini Aventador Coupe 2012 3.5% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Cadillac CTS-V Sedan 2012 13.09% Buick Verano Sedan 2012 11.9% Hyundai Elantra Sedan 2007 11.08% Honda Accord Coupe 2012 6.61% Chevrolet Monte Carlo Coupe 2007 4.8% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Rolls-Royce Ghost Sedan 2012 4.78% Bentley Arnage Sedan 2009 3.44% Audi S5 Coupe 2012 3.38% Porsche Panamera Sedan 2012 3.33% Mercedes-Benz 300-Class Convertible 1993 3.27% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 Audi S6 Sedan 2011 23.14% FIAT 500 Abarth 2012 17.12% BMW M6 Convertible 2010 6.87% Audi R8 Coupe 2012 4.09% Audi S4 Sedan 2007 3.89% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 13.2% Dodge Dakota Crew Cab 2010 12.31% Dodge Ram Pickup 3500 Crew Cab 2010 5.24% Chevrolet Avalanche Crew Cab 2012 4.45% Chrysler Aspen SUV 2009 3.7% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Chevrolet TrailBlazer SS 2009 13.39% Chrysler 300 SRT-8 2010 9.49% Volvo 240 Sedan 1993 7.99% Audi V8 Sedan 1994 6.77% Cadillac Escalade EXT Crew Cab 2007 4.02% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Corvette ZR1 2012 5.41% Aston Martin Virage Convertible 2012 4.88% Audi S5 Convertible 2012 3.81% Aston Martin V8 Vantage Convertible 2012 3.12% Porsche Panamera Sedan 2012 2.86% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 BMW 3 Series Wagon 2012 26.21% BMW 3 Series Sedan 2012 18.72% Eagle Talon Hatchback 1998 11.55% Hyundai Elantra Sedan 2007 5.93% Ferrari California Convertible 2012 5.26% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 BMW 3 Series Sedan 2012 9.8% Honda Accord Coupe 2012 7.5% Hyundai Elantra Touring Hatchback 2012 4.4% Audi TT Hatchback 2011 4.29% Dodge Charger Sedan 2012 3.31% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Cadillac SRX SUV 2012 1.93% Audi S5 Coupe 2012 1.72% Cadillac Escalade EXT Crew Cab 2007 1.65% Dodge Durango SUV 2007 1.62% Chevrolet TrailBlazer SS 2009 1.56% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 19.88% Bentley Continental GT Coupe 2007 10.4% Bugatti Veyron 16.4 Coupe 2009 9.68% Chevrolet Corvette ZR1 2012 9.64% Bentley Continental Flying Spur Sedan 2007 6.54% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Bentley Continental GT Coupe 2007 10.38% Aston Martin V8 Vantage Convertible 2012 8.45% Bentley Mulsanne Sedan 2011 7.79% Aston Martin V8 Vantage Coupe 2012 4.45% Chevrolet Corvette ZR1 2012 4.39% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Lincoln Town Car Sedan 2011 13.08% Chevrolet Monte Carlo Coupe 2007 9.9% Chevrolet Malibu Sedan 2007 6.05% Toyota Corolla Sedan 2012 6.0% Chevrolet Impala Sedan 2007 5.27% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 BMW 3 Series Wagon 2012 3.94% Chrysler Town and Country Minivan 2012 3.42% Land Rover Range Rover SUV 2012 3.33% Infiniti QX56 SUV 2011 3.21% Cadillac Escalade EXT Crew Cab 2007 3.03% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Mercedes-Benz Sprinter Van 2012 6.49% Acura ZDX Hatchback 2012 4.7% Audi V8 Sedan 1994 4.36% MINI Cooper Roadster Convertible 2012 3.65% BMW ActiveHybrid 5 Sedan 2012 2.8% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Eagle Talon Hatchback 1998 7.09% Plymouth Neon Coupe 1999 6.49% Mercedes-Benz 300-Class Convertible 1993 4.9% Nissan 240SX Coupe 1998 4.0% Chevrolet Corvette ZR1 2012 3.74% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 33.22% Dodge Caliber Wagon 2007 20.87% Dodge Dakota Club Cab 2007 5.68% Dodge Caliber Wagon 2012 3.7% Volvo C30 Hatchback 2012 3.04% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 22.11% Chevrolet Silverado 1500 Regular Cab 2012 10.76% Chevrolet Silverado 1500 Extended Cab 2012 5.98% Ford F-150 Regular Cab 2007 5.87% GMC Yukon Hybrid SUV 2012 5.13% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Audi V8 Sedan 1994 4.19% Maybach Landaulet Convertible 2012 4.09% Ford F-150 Regular Cab 2007 3.73% Audi 100 Wagon 1994 3.35% Mercedes-Benz 300-Class Convertible 1993 3.27% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Honda Odyssey Minivan 2007 21.52% Chrysler Sebring Convertible 2010 8.06% Honda Odyssey Minivan 2012 6.22% Ford Freestar Minivan 2007 5.53% Chrysler Town and Country Minivan 2012 4.87% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Hyundai Azera Sedan 2012 43.07% Mercedes-Benz S-Class Sedan 2012 5.61% Hyundai Genesis Sedan 2012 3.02% Mercedes-Benz E-Class Sedan 2012 2.97% Rolls-Royce Phantom Sedan 2012 2.16% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-450 Super Duty Crew Cab 2012 23.97% Dodge Ram Pickup 3500 Crew Cab 2010 13.12% Dodge Ram Pickup 3500 Quad Cab 2009 12.38% Chevrolet Silverado 1500 Regular Cab 2012 7.7% Chrysler Aspen SUV 2009 5.0% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Charger Sedan 2012 3.45% Aston Martin V8 Vantage Convertible 2012 3.36% Chevrolet Monte Carlo Coupe 2007 3.13% Chrysler 300 SRT-8 2010 2.86% GMC Terrain SUV 2012 2.69% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 40.26% Acura Integra Type R 2001 22.08% McLaren MP4-12C Coupe 2012 17.44% BMW Z4 Convertible 2012 2.92% Ford Mustang Convertible 2007 2.18% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 12.47% Bugatti Veyron 16.4 Coupe 2009 8.09% Aston Martin Virage Convertible 2012 7.65% Lamborghini Aventador Coupe 2012 4.13% Aston Martin V8 Vantage Coupe 2012 3.94% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Buick Rainier SUV 2007 11.7% Dodge Dakota Crew Cab 2010 9.26% Ford Freestar Minivan 2007 9.02% Dodge Durango SUV 2007 7.06% Ford Ranger SuperCab 2011 6.97% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Volvo 240 Sedan 1993 6.07% Hyundai Veracruz SUV 2012 5.66% Mercedes-Benz Sprinter Van 2012 5.22% Audi 100 Sedan 1994 4.87% Chevrolet Traverse SUV 2012 4.47% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 11.16% Geo Metro Convertible 1993 10.35% Plymouth Neon Coupe 1999 8.62% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.28% Eagle Talon Hatchback 1998 7.15% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 33.04% Acura Integra Type R 2001 31.8% Chevrolet Cobalt SS 2010 14.31% Lamborghini Diablo Coupe 2001 4.57% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.14% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Acura ZDX Hatchback 2012 8.11% Acura RL Sedan 2012 7.19% MINI Cooper Roadster Convertible 2012 4.63% Suzuki SX4 Sedan 2012 3.65% Chrysler 300 SRT-8 2010 2.9% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Audi A5 Coupe 2012 6.57% Scion xD Hatchback 2012 4.2% Toyota Corolla Sedan 2012 3.84% Mitsubishi Lancer Sedan 2012 3.75% Dodge Magnum Wagon 2008 3.62% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 BMW M3 Coupe 2012 5.79% Hyundai Veloster Hatchback 2012 5.58% Aston Martin V8 Vantage Coupe 2012 5.51% Aston Martin Virage Coupe 2012 5.33% Dodge Challenger SRT8 2011 3.85% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Chrysler Aspen SUV 2009 16.15% Hyundai Santa Fe SUV 2012 14.65% Toyota Sequoia SUV 2012 13.27% Isuzu Ascender SUV 2008 7.29% Ford E-Series Wagon Van 2012 6.45% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 smart fortwo Convertible 2012 6.15% Suzuki Aerio Sedan 2007 5.71% BMW 6 Series Convertible 2007 4.09% Mercedes-Benz 300-Class Convertible 1993 3.21% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.89% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 11.73% BMW Z4 Convertible 2012 6.37% Audi S5 Convertible 2012 5.29% Porsche Panamera Sedan 2012 4.6% BMW 6 Series Convertible 2007 4.55% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Audi 100 Wagon 1994 10.66% Ford F-150 Regular Cab 2007 8.8% Nissan NV Passenger Van 2012 8.14% Chevrolet Silverado 2500HD Regular Cab 2012 7.51% Mazda Tribute SUV 2011 5.43% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 38.06% Nissan NV Passenger Van 2012 17.05% Mercedes-Benz Sprinter Van 2012 8.49% Isuzu Ascender SUV 2008 4.35% GMC Yukon Hybrid SUV 2012 4.24% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 20.01% Audi TT Hatchback 2011 19.38% Audi S5 Coupe 2012 7.72% Audi S4 Sedan 2012 4.57% Audi TT RS Coupe 2012 4.47% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 11.24% Hyundai Genesis Sedan 2012 8.91% Honda Accord Sedan 2012 6.42% Dodge Durango SUV 2012 5.04% Chrysler Town and Country Minivan 2012 4.74% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Hyundai Azera Sedan 2012 7.65% Infiniti G Coupe IPL 2012 5.43% Tesla Model S Sedan 2012 4.64% BMW M6 Convertible 2010 4.64% Dodge Challenger SRT8 2011 4.54% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 6.37% Aston Martin Virage Convertible 2012 5.65% BMW Z4 Convertible 2012 5.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.6% Maybach Landaulet Convertible 2012 3.73% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 29.39% Bugatti Veyron 16.4 Coupe 2009 8.49% Geo Metro Convertible 1993 7.47% Ford GT Coupe 2006 5.58% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.12% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 MINI Cooper Roadster Convertible 2012 9.72% Bugatti Veyron 16.4 Convertible 2009 6.79% Bugatti Veyron 16.4 Coupe 2009 4.58% Fisker Karma Sedan 2012 4.42% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.21% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 50.05% Audi V8 Sedan 1994 15.96% Chevrolet Express Cargo Van 2007 13.91% Chevrolet Express Van 2007 10.71% Audi 100 Sedan 1994 3.55% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 98.96% Hyundai Veloster Hatchback 2012 0.24% BMW 1 Series Convertible 2012 0.2% Chevrolet Impala Sedan 2007 0.08% Toyota Corolla Sedan 2012 0.07% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Bentley Continental GT Coupe 2007 22.4% Bentley Continental GT Coupe 2012 20.87% Audi R8 Coupe 2012 10.67% Chevrolet Corvette ZR1 2012 6.22% Audi TTS Coupe 2012 4.81% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 16.48% MINI Cooper Roadster Convertible 2012 12.9% Mercedes-Benz S-Class Sedan 2012 4.84% Hyundai Sonata Sedan 2012 3.69% Mercedes-Benz E-Class Sedan 2012 3.25% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 4.85% Acura TSX Sedan 2012 3.41% Volkswagen Beetle Hatchback 2012 3.19% Acura ZDX Hatchback 2012 3.12% BMW 1 Series Convertible 2012 2.96% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Toyota Sequoia SUV 2012 7.6% GMC Terrain SUV 2012 5.19% Mazda Tribute SUV 2011 5.16% Toyota 4Runner SUV 2012 4.52% Chevrolet Traverse SUV 2012 4.16% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Infiniti G Coupe IPL 2012 8.11% Audi A5 Coupe 2012 7.74% Audi S4 Sedan 2012 4.37% Cadillac CTS-V Sedan 2012 3.9% Hyundai Sonata Sedan 2012 3.71% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Mercedes-Benz SL-Class Coupe 2009 15.31% Audi S6 Sedan 2011 8.13% Audi V8 Sedan 1994 3.8% Mercedes-Benz C-Class Sedan 2012 3.56% Audi RS 4 Convertible 2008 3.47% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 12.49% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.99% Dodge Dakota Club Cab 2007 7.39% Ford F-150 Regular Cab 2012 6.63% Chevrolet Avalanche Crew Cab 2012 5.92% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Infiniti QX56 SUV 2011 36.04% Hyundai Veracruz SUV 2012 8.61% Buick Enclave SUV 2012 6.87% Land Rover Range Rover SUV 2012 4.79% Bentley Mulsanne Sedan 2011 3.79% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 45.16% Ford GT Coupe 2006 12.21% Spyker C8 Convertible 2009 8.57% Spyker C8 Coupe 2009 3.97% Hyundai Veloster Hatchback 2012 2.8% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Extended Cab 2012 16.33% Ford F-150 Regular Cab 2012 13.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 12.18% Chevrolet Silverado 1500 Regular Cab 2012 12.07% Dodge Caliber Wagon 2007 6.15% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Chrysler Sebring Convertible 2010 7.95% Honda Odyssey Minivan 2007 7.75% Hyundai Sonata Sedan 2012 4.4% Chevrolet Malibu Sedan 2007 4.1% Honda Odyssey Minivan 2012 3.86% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 24.49% Plymouth Neon Coupe 1999 18.95% FIAT 500 Abarth 2012 11.87% Audi V8 Sedan 1994 9.01% Chevrolet Express Cargo Van 2007 5.82% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 MINI Cooper Roadster Convertible 2012 3.44% Bugatti Veyron 16.4 Convertible 2009 2.11% Fisker Karma Sedan 2012 2.05% Mercedes-Benz SL-Class Coupe 2009 1.83% Infiniti G Coupe IPL 2012 1.79% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Chrysler PT Cruiser Convertible 2008 38.91% Chrysler Town and Country Minivan 2012 10.5% Toyota Sequoia SUV 2012 7.05% Ford Expedition EL SUV 2009 5.56% Ford Edge SUV 2012 4.07% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Fisker Karma Sedan 2012 8.96% Audi TTS Coupe 2012 8.69% Tesla Model S Sedan 2012 5.87% Infiniti G Coupe IPL 2012 5.2% Bentley Mulsanne Sedan 2011 4.79% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 26.41% Chevrolet Avalanche Crew Cab 2012 8.2% Mazda Tribute SUV 2011 4.61% Chevrolet Impala Sedan 2007 4.33% Buick Rainier SUV 2007 4.28% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Audi S5 Coupe 2012 6.61% BMW 3 Series Sedan 2012 5.13% Chrysler 300 SRT-8 2010 4.35% Bentley Arnage Sedan 2009 4.32% Audi R8 Coupe 2012 3.68% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Ferrari California Convertible 2012 12.92% Bentley Continental GT Coupe 2012 10.6% Ferrari 458 Italia Coupe 2012 10.3% BMW M3 Coupe 2012 9.61% Ford GT Coupe 2006 8.87% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 FIAT 500 Convertible 2012 13.54% MINI Cooper Roadster Convertible 2012 10.83% BMW 1 Series Convertible 2012 4.92% Bugatti Veyron 16.4 Convertible 2009 4.3% Jaguar XK XKR 2012 4.21% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 HUMMER H3T Crew Cab 2010 52.39% HUMMER H2 SUT Crew Cab 2009 14.75% Jeep Wrangler SUV 2012 7.62% AM General Hummer SUV 2000 5.6% Nissan Juke Hatchback 2012 2.51% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 16.78% Nissan 240SX Coupe 1998 10.29% Chrysler 300 SRT-8 2010 7.07% Eagle Talon Hatchback 1998 4.6% Volvo 240 Sedan 1993 3.5% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Jaguar XK XKR 2012 9.98% Chevrolet Corvette ZR1 2012 8.26% Porsche Panamera Sedan 2012 3.76% Aston Martin Virage Coupe 2012 3.58% Audi S5 Convertible 2012 3.5% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford Freestar Minivan 2007 13.01% Honda Odyssey Minivan 2007 7.43% Mazda Tribute SUV 2011 5.65% Daewoo Nubira Wagon 2002 5.0% Suzuki SX4 Sedan 2012 4.92% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Suzuki Aerio Sedan 2007 5.03% Toyota Corolla Sedan 2012 4.77% Chrysler Sebring Convertible 2010 4.68% Lincoln Town Car Sedan 2011 4.28% Chevrolet Malibu Sedan 2007 4.13% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 10.51% Audi V8 Sedan 1994 8.48% Chrysler 300 SRT-8 2010 4.21% Bentley Arnage Sedan 2009 3.6% BMW M6 Convertible 2010 3.44% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Chevrolet Avalanche Crew Cab 2012 5.97% Dodge Durango SUV 2012 5.63% Dodge Durango SUV 2007 5.07% Cadillac Escalade EXT Crew Cab 2007 4.08% Chevrolet Malibu Sedan 2007 2.94% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 22.21% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.21% Ford F-150 Regular Cab 2012 7.04% Dodge Durango SUV 2007 6.31% Volvo XC90 SUV 2007 3.83% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Fisker Karma Sedan 2012 4.53% Infiniti G Coupe IPL 2012 4.39% Hyundai Genesis Sedan 2012 3.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.92% Audi S6 Sedan 2011 2.61% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 45.13% Dodge Sprinter Cargo Van 2009 8.35% Ford E-Series Wagon Van 2012 8.23% GMC Savana Van 2012 3.38% Chevrolet Express Van 2007 2.53% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Rolls-Royce Phantom Sedan 2012 4.27% Toyota 4Runner SUV 2012 2.02% Hyundai Genesis Sedan 2012 1.67% Chrysler 300 SRT-8 2010 1.63% Mercedes-Benz 300-Class Convertible 1993 1.58% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Chrysler Town and Country Minivan 2012 10.95% Honda Accord Sedan 2012 9.08% Audi V8 Sedan 1994 8.84% Mercedes-Benz E-Class Sedan 2012 6.56% Audi 100 Sedan 1994 5.94% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 31.44% Dodge Caliber Wagon 2012 15.5% Jeep Compass SUV 2012 8.32% GMC Terrain SUV 2012 3.99% Ford Edge SUV 2012 3.61% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Hyundai Azera Sedan 2012 14.23% Hyundai Sonata Hybrid Sedan 2012 6.43% Tesla Model S Sedan 2012 6.32% Hyundai Sonata Sedan 2012 5.06% Acura TSX Sedan 2012 4.2% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 29.57% Hyundai Veloster Hatchback 2012 8.61% BMW Z4 Convertible 2012 3.79% Jaguar XK XKR 2012 3.48% Maybach Landaulet Convertible 2012 3.41% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Volkswagen Golf Hatchback 1991 5.92% Volvo 240 Sedan 1993 4.92% Bentley Arnage Sedan 2009 4.4% Bentley Continental Supersports Conv. Convertible 2012 3.65% Audi 100 Wagon 1994 3.36% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Volvo 240 Sedan 1993 8.09% Mercedes-Benz 300-Class Convertible 1993 3.71% Audi 100 Sedan 1994 3.67% Hyundai Veracruz SUV 2012 3.23% Lincoln Town Car Sedan 2011 2.88% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Acura ZDX Hatchback 2012 7.09% BMW ActiveHybrid 5 Sedan 2012 5.9% Audi V8 Sedan 1994 5.21% Audi S5 Convertible 2012 4.96% Mercedes-Benz SL-Class Coupe 2009 4.21% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Jeep Grand Cherokee SUV 2012 6.81% Chevrolet TrailBlazer SS 2009 5.09% GMC Terrain SUV 2012 4.54% Hyundai Tucson SUV 2012 3.9% Chevrolet Avalanche Crew Cab 2012 3.8% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Scion xD Hatchback 2012 7.99% Toyota Corolla Sedan 2012 7.48% Lincoln Town Car Sedan 2011 6.4% Chevrolet Camaro Convertible 2012 6.4% Chevrolet Monte Carlo Coupe 2007 6.14% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 44.84% Dodge Caliber Wagon 2012 20.05% Ford Focus Sedan 2007 2.95% Ford Edge SUV 2012 2.89% Chrysler Crossfire Convertible 2008 2.67% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 Cadillac SRX SUV 2012 14.03% Dodge Magnum Wagon 2008 10.36% Dodge Durango SUV 2012 8.08% Acura RL Sedan 2012 4.5% Hyundai Sonata Hybrid Sedan 2012 3.13% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Jaguar XK XKR 2012 7.92% Hyundai Veloster Hatchback 2012 3.53% Nissan 240SX Coupe 1998 3.45% Nissan Juke Hatchback 2012 2.85% BMW M3 Coupe 2012 2.54% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 GMC Terrain SUV 2012 4.32% Hyundai Tucson SUV 2012 3.41% Jeep Grand Cherokee SUV 2012 3.06% Chevrolet Traverse SUV 2012 2.91% Lincoln Town Car Sedan 2011 2.85% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 15.03% BMW 3 Series Wagon 2012 6.81% Chevrolet Cobalt SS 2010 5.78% Audi TT Hatchback 2011 5.12% Audi TT RS Coupe 2012 5.07% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Ford GT Coupe 2006 8.54% Spyker C8 Convertible 2009 7.25% Bugatti Veyron 16.4 Convertible 2009 5.43% Eagle Talon Hatchback 1998 4.48% Dodge Challenger SRT8 2011 4.48% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Bentley Mulsanne Sedan 2011 12.68% Cadillac CTS-V Sedan 2012 7.17% Chrysler 300 SRT-8 2010 6.12% Chevrolet Corvette ZR1 2012 5.37% Bentley Continental GT Coupe 2007 5.28% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Honda Accord Sedan 2012 3.71% Hyundai Genesis Sedan 2012 3.22% Chevrolet Traverse SUV 2012 3.06% Hyundai Veracruz SUV 2012 2.96% Ford F-150 Regular Cab 2007 2.62% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 BMW X5 SUV 2007 19.73% Hyundai Santa Fe SUV 2012 8.08% BMW X3 SUV 2012 5.99% Dodge Durango SUV 2012 4.27% Cadillac SRX SUV 2012 4.24% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 BMW X6 SUV 2012 12.11% BMW 1 Series Coupe 2012 9.96% BMW 3 Series Sedan 2012 8.71% Ferrari FF Coupe 2012 6.76% Mitsubishi Lancer Sedan 2012 5.13% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 smart fortwo Convertible 2012 12.95% Bugatti Veyron 16.4 Coupe 2009 11.33% Geo Metro Convertible 1993 11.27% Bentley Continental Supersports Conv. Convertible 2012 8.94% Lamborghini Reventon Coupe 2008 8.8% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 10.3% HUMMER H3T Crew Cab 2010 7.9% FIAT 500 Abarth 2012 7.47% Land Rover LR2 SUV 2012 4.98% Volkswagen Golf Hatchback 1991 4.56% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 BMW Z4 Convertible 2012 25.33% Acura Integra Type R 2001 10.53% Lamborghini Diablo Coupe 2001 9.41% Dodge Charger Sedan 2012 7.6% Ferrari 458 Italia Convertible 2012 7.1% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Mercedes-Benz Sprinter Van 2012 17.57% Dodge Sprinter Cargo Van 2009 12.76% Audi 100 Sedan 1994 8.25% Mercedes-Benz 300-Class Convertible 1993 8.22% Audi 100 Wagon 1994 5.68% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 9.53% Ford Expedition EL SUV 2009 9.2% Ford F-150 Regular Cab 2007 7.15% Land Rover Range Rover SUV 2012 6.65% Dodge Durango SUV 2007 3.73% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 12.67% Chevrolet Monte Carlo Coupe 2007 10.25% Chevrolet Impala Sedan 2007 7.65% Chevrolet Malibu Sedan 2007 6.77% Toyota Corolla Sedan 2012 5.01% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Mazda Tribute SUV 2011 12.98% HUMMER H2 SUT Crew Cab 2009 9.34% Isuzu Ascender SUV 2008 8.99% Chevrolet Tahoe Hybrid SUV 2012 8.72% Chevrolet Silverado 2500HD Regular Cab 2012 7.7% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Dakota Crew Cab 2010 18.79% Dodge Caliber Wagon 2007 7.8% BMW X6 SUV 2012 6.33% Ford Ranger SuperCab 2011 4.18% Ford Edge SUV 2012 3.58% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Rolls-Royce Ghost Sedan 2012 8.43% Chevrolet Camaro Convertible 2012 7.84% Porsche Panamera Sedan 2012 5.51% BMW M6 Convertible 2010 5.41% Fisker Karma Sedan 2012 4.4% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-1/0.85/small.png b/cars/lr-investigations/exponential/1e-1/0.85/small.png new file mode 100644 index 0000000000000000000000000000000000000000..8bfe92317c1a31c100661bf9105ff6f21665d369 GIT binary patch literal 94836 zcmce8Wmp{Twj~4&?(Ux85?q24Gzr1oA-Dv0cL?qhED74UyE`Ee+}#^@rih&H-gD14 z_sl$Z=0`#|-E>#gyWh3!@3=VD zfFF?dZzV+_N`{HHfhW)=!g9h85TGc;TRj-y`BNJyHG2pMl#a)LkUiF)4Iv;N@?MDv zzjM~!n}^fInwW$;@**(HeTg8hzSTtUPeE+)nIoRe)3J-`+JcPO&10v+Nm$Gm8xbBu zSmafZf5vN(=h;+LAc9p0sGsk9d`YXXkhMdPy4`4;3c1kQ&fCw= zeXeq*tVi?GZsH`xOR}RA686uZ7V*;6j(Va@4&NXi>j%8)iXz#Vc-ft z`_`Q9gC3@=8|2)K#FxO>2_HcwCfdn^_vb)B&p$y3r$(P837YdxdI{n2_2ZDK3YsAC z`|Ef2z4oshpTUicN1^mSVq?H#$_$!p4h%72VfpjzN*Iv}qTWih18BTnWpf2FY5r$; z;bhdcFJ~fp!qs*^##u~p@{g)WJbX{`B zX9!8y{$$h2n2^xL5dM|-QZaMyYn?;<1Bx|jC>R)It1UDdok4T@t}}J^wB;2QtS-lf zbwS$!!bmvA{qVY0fXA5U4Us}Ucdl2~$)46Fk)hsXL zBM~GpsJ-3x`yFPg9Va`5rJ;la@dB!6w%%<|=BM-c8mmeEgdqV_y;;$VNktM|Ce7&5 zqKrvlKcBnH*lm9_BJ1sf=5`Km4Y zDd|9f!2kumx9Ji$oG3CkH+OI_?xt=TYJbbiSJvv)7SDjwPvdivzun&5rN1}4eojZ% zdUdkdRkyph$8fs)Mbv==08L2e9+z+_oB@r!n zPeJTL7C1|!MMxABOC*iL=&#ZXQ?8D5jtm;X=qoO8;i{ES_y~k;d~6gV{s99e%ZRUy zS>4(`zYv-HYR78|jq01JB2aqe#34(h`wzHKEw=Ucnc%C`4xP+ny&F@PHWHv7CtcU= z?d?V55ld>OgM%WT{r2rG5YQ3F&}-}KeK_NY^U0s=6NmNknfu#b_9T=v4GPvS>I!}T zk=H0UCpm+YZj-_KS^<_6`n)pVoH`jffDJl?}IGZ5o4MWMDw5tE&T+Kt@_R zl)E}0AOLtwNW9qDDF(dt+4JWZJ)AshIVAXn*a*R6AUOqvM7N}cm6a7VVq!)OS%r@u zKL$rdB{Jr79dK##{`2|#xdsMR-GAX%_(X~*z7eVZgh-WiB7>T5R~YVqfUH8?+Q*o+ zHy*nA%+zl%e^geZN^?j&P2HON;OLm(mP|q?tSv8(a(j2TywwY`b;}~60JhoD(NQ$8 zOFyTI_e>59ARZhX*fEboQCko6_xnagp=xSrt!wAg9&k;eQoA_V*kN?y4UDwU}|FOP2 zY5+85d*cz$o}M}Y0mjJ0gfccZR^D}rg^wR{dFc#fWR!nCQ=Ygt z=j6(a@5WvGVyIOgF}dSZ>=ntgS0oc~#@BB#Uf9Z+-(-my#Fd2%Ynhms0K41=V{LtH zt#xscG%}Kium-N5d}Vw4DJm)|a5z5oY7Q1njg3nO2TTBtygsfjDq^_2ylkDAP&zPj zUGen0dmST5OG|5e&vy4FMv~w+JcRVvpLaBIC?7hzx!K#a$$$21O^3e8MzPY>B?Fe* z8`jvtf~Qtj2oe$!*yd0>o!{yP+FO~`js2#>97GmLj!v=(y$RfCFm^N2<-wE2MPoD+{2S+pJ7fem5c6N65;*1j_kG8kB zN2jLJ18AO`n;UGPp{hy;JRSqf$;!qt<|lsoL}6%(gJ~|w=jcKt4R3kb;Yt|FJY!Hs-)inPniEvZ8&~gdV-{12c@hl z>B1C1j7RjX+cjF4;R{55seF7Xv*^waU3eLW;Z%#4Py&Mcmq0U*D^=7FjOrH9o2B z^Ji2xw*N{GhzDL*1bZXv+v)^ zuJc2AaKnx0{IZg}Z8xPO(h$2Fk^KB>OQ8QmY<>_dj;?70cs$?0qqiX6Tln}rKVCTr z{YH>!Vm6T=34Iw_=@(y&E8GGpNPQ~aN3;>bHoJS!omUog_t{JHneS? zpZy5&@OmFJpAY`enn>a0ONd9{bT2N&j{lecxMmCCu$YwVci~hx}#Nqy|dHMl)A>1AF$Gr_BC-EYc&R8uq6%`o;g$U5^=o=WIV`5Tj z$Xau}L_|aswX!M!Qe{j`3`L}+o?bTaSfYoEmGw<^l6GilXeUTcUOvGsNt=#LqK8vJ zKnp;fu&^*u2Zu@vRsnGd2?{|$?dqh3+C`gf8{mQy&C9pvtOnVbfuOj&DxuOdroB^J zR1qsZkV`!EY~FjqGc|ua+B$lsJqIRtq&8kIVZK-jBM#{`zv9uHX$cYwQUJT|DJC@@ zsP73hsoXX_sNsgyhpU2iJ*c@n^VmvtE$6%mysN zA5+|(INf`a(s+81avBQ2n3O_ah1cD#xbMl%Kl|(JFkobE6GDt^jA%{BDw|xQ z$=zKD2iu=TiJThSyJ=0fPZCd!%V38vqtxn3MZWQzv%Tt-g z=QQ|enIu>u74@m?b{(8of(l@TvJoiSh&OFxuBv4!!^k-u{ER)}LCaw6 zwFIK1YE|%XdxX!5t@VQ&_$Vu=>pu7teh%D2tgo@3EsVO{e1EZ=Le z*41MtUtBKc`}$iCCwzKB=;-uD1t|d`un!>8qeVAR+E%E;SgTIn)&1Byn(k1ww?RHP z*_ZT|geci{C#Lz3MwJP3p1~XSAmJX~yLb5J-FqY)*K5!d;43u!%bX z6HfdmCqm{uXI=EwEj8L~Pc93H7%6gZY-(~D1q^C!$ ztmtdg=)r9cr(=2@J4oKp{b2+K2B=QsGc%*o(ugi^Zcf;q^7Rc4VqJ+kC;K=5Zsx)g zUu_lT=0dBfsp+TiFvpgm0&Uy~P_cEMdH^3vip#8xWq=?gBs64%;To}tMX{6xjqO05my?UVQbMcjtp%R*(#L$U5#Q0>mO8|oQbukPY?tbFL>TEO_dnxS^vxGf#Tn* znd=bZ7LJdP0UZC;MsFQh{xf#(OQ5?7IXfc59`7?}t zgXtcYlf-1zdV?=gI9C#Dgh?2@F!cBLBp05gv$Fmex(;)5mSSz;Kkpy zi>e|fzZp!{bDre$eZQoWI|TkO3?8PqzO;$OJ!w~k5lYmi=k2#Vsx5o36wL-C!l96m z{k`l}!uNJ)HC`@nhu96IrB%kbMI-j~Ip@BD zg!4v}>W3Z3#!5G8?ddxNtGj*W#% zd{GVHF*R^rXv>b!Gsk|LsnYTZyaFK#RlYQ{Kr#9fVFY?reZcLH+r_)TQg3jZj8{&OjUY>M@L*RzcXb7?j5 zib!fenBJNT+Q}-Urlyhdg&sK$;Ad&Q{Bf@=ck64YGqAt=`iS4<;^M|Sy_UOETk#NTxzSs9Pc($#Nbj5z zmyVNc{c2x)Ck*riWqbGQqb5xy0KZZcq} z6NZ1PQ0YxT=4@Ad2y-DdU-6Q3H>TLQd!g{|v()e_93C=H{$on3n|;o-dK>BHlt0lY z+6@^fk!xaZT?ZVu6}%lLspN3mdaaE!Bm(m*(z@w4s5SV3Vr`UP)wL*!~jDP_Xl!(ddiG;#+G^S-czZ%A5^>gIL*NiBGs}e znF8TZCMdl)zYA7Spf?m!gcO_*s&l=%+J)ARFFCPBZy--f-_gqvE;J7fs{6DvM9;=E z{GwVAbIG17zUz`LbX`csg0JcX89vWE@8l>=nox~2ZPFc03=^~)bmm20?L zM}tQVeS^9`yx?Sz-5w{%K9N`vQgrPVpy5KY2)pTV_{f-}5#-dF=%np)b|Kp}!sX%p zx$e!>3lrS>c)^Gm&2e)xd#%Yu>Y*5pl7! zRhM&&-w|-Jg3n)b$Ma@iWPilKYvsx-vxj{)LwIZXbzP#8xP=9SzP`R;*meZ0sh*x* z@6Zs?)@i?e`?eDVFpzOTi??-2Lqh`;NiuKVeB`d~>nqpg9Y==g+?vWSFjwi+ufoN} z4cgi=1*(nE@NhAA_eP)_v~5}bwhSRk$!=|d%l|=1p|&n*VJ0=Ox<{i132PQLayOKe z6ffi|wtf||!(6E8&aTm8fDD|*$P~$RWOLr?Ywp@HJyyx&d(69*S&P|>(zHgBRmp;O z)mM{EW>CIti;eKjGI6kIu-r?h{V>F9S#0C;Pup`KBD3r4)3A&~{@rnKg)dG>`qNQE+qPuI_v6g+aM|}$lhKSr59z-WK z!#!E0aLdO^iK`287ZgnF@`3}uOM*cXAX21wczDU^S}_F=nCzlFeQyQ8b1#~X)`?Y? zy0-6FiYhXvNVm{~1%1+4?4|g|l<9kG39e`lM3$4s@HU(TvzX$DRc3T4v)9}}hs$k4s4HgzrK{D8)|l%o*vrqB^%p-@Y#8z5|K4ufJ=x*qsG#@D z^RU1j!KF%~8gR{zF8e@1^8Kb0}Ap3u=b7tk^ zBm70*Jhsjp5fB~2@iy?tz7iIAGEX^O;%dc*0PyRV?+ms#Oyww<-{rz4v8 zNHNS*1`|F?QoNE6P1W)X>0;}lgSWDEa7T`3-5Lgq?d!$NiEh7RCjvWabFbjlAiErI zIms4ou8fV(M4HZtG2S;&o`u?*4XOmOxV7`oXqsf3QS&IJjpk!RHMI3rTY=Fe_TY6T z9sM;UN?ZG=RPf&VNWaQ^z66g!hT50qh~*$E_YjLe1WI8D4cdQT4-;c*8qPj!7kkVd zooRKH-3U>F4+gcj)=UssxcSDu>_EivkgZ>u5(PIB7Mu$Nqk8T6g_Me|><R8ukxz6`Lp=5IDnh;Bd4T<>gwtOU>6af4h%HZ z)lc{t208mNqZ1Qpf!2)UP28{+Z&32jq0C>M3<~T&5wAWFq8KsFaFaom=!$ybQStDJ zBjxokzNpaGDUID3)ayEMc~OxF1{<41>h5}VFDC{`E(gI$EVY(DbH3goIgalZi`kxz z8)>ug8K&<{O-0e`8v%dvP+4p^>OdA+N~X_f^Ml$j=o>`^w;x@A7cMV4PbP`@&6`g@ zvHsT~Pd-0|Ea|gn&sL^zaB%v6cAA)&m;mdU_xZCF(d^pV&spgceFuy2ak*D{$<6;X z_7e3A_yA|-Bw(Np4X>d*^ zyZDVdGj|vn^XClT?8e31RzVS$4vPg-(Y25PdG5AizbML#b4?;^G0J9L7S=~JM0tuxDZI$WU0`CJTF*yOYC0Y194N)r0gkTmgH zX#oJ(f%?ywCLg0y7&SKZS8i5(1QADb0&MHVB@ZK=ZI=9MvuBY%$(dG*Om;C$v+;gd z#!A@xJniPiR0{v}*>rDxtGU>3z=gzuFECi#;HE67uV`3rdsFe4&n@z>G7r>Fiwl3fUbMH^dg zA(6$2iMVs~#mwUd6Ow(i!2EY9mBqP%b ztEeo!x+33qz8@O_d^9nO{^4@~{l2`}mKG#uE?%o}akf$7(2tc>li7BlZZ(6oc`h<{J#U=g}~%Zc%dzEZqNU3$`RI#YGjs(>2Nc~gVZHm-8k zNf_96oj}_i3N)bQ8W6_FX0+9ebq(Cv=7k&ON^hbS(1?gFycpgxbC@YWqWL(}AL zk&JfOrr70I9ILLjBdV!2i9XWu>Xsb#j-7lJaLZ9WC7nGr$X%3}_5CK^$Zm?@y!dID zwUTD1<(=x2*UE-z=x>zghydcqcDYxP+e?>~DSrs-rr6fH0oJP6Gr(^^t+sLsW`wD< zqwoj&(cU$Jrn(hosmsG5rPM%k@Hj5QQR?z$cILCQTXArjz~4>3-_G(Vs}8-%@NVQs z@!W~9vKXzC*<=~VeFSNlAKJ#Gzh)k97if%0f$F#f)gfK?Ll_iN(ZVY!sh476{uUGR zBa_-m-y5(u6n1>f{Fq|he7b~sQrB(D;=FkAa3lF6()?s>mXAcRGDxi5KMg(=HwpZd z+uBc*#Mbe^gVUO~?#OX?%{Hh00MTQdyz)#kk=@3;3bF)}5VSjmAMRpAA6RmUh*}id z?iVO|6qXA9B5o$v)YaWhK|><}kX)wT0Qd&ZX=*>osfmljvb6wMUto~N#oHVb5(13$ z-oATB6=`W_R}N5UB9N@S)!W+{CYm&?2UWk?*Yl=k&U;{i)RArZp)xo^F{-4pIJ-Gpv}+IIzbFP zRrCEw{>_P3OJh&9Y%Na@-?JYq8x>a^DvhANtly6mr@aSZGU8`r znm~;qGrS{!&n#af0QD&!7~3>AH?JtL2B9{b?}+QuRT90BUCXH^0%WMpBH9Oe3$xCJvcUw zZ1F`!^o(=rO9!4#1Ipr$H3~cKK3D7?ec0)va*!!o5>6;I2v)#7w$DeJkid`l z%IHfH_+&_GKn~OL&($6QuJ#nQqt3$(8VN?^Pz5KYs}&ZLQzmL0{_a`Eu!3lBAR1M= z0){2ys{(t_z70*Jaf(XLZxs`$9w6tZgH)?*=HK0XqKb;6Dm5BNuu~Y1`H+pK(tLtW zr0#_PCuvar(#gc>6nyA+I_KbUyzQSnZ>%qt%IeJP!0Z{yL#-`Zvb%`GJhBC+ppx?R z&BuRHRm>bh7UD}sC&tD?d3kwp^V(U=k za20dznGw_$bgK$D9LA?F?|#Rwqb;KK;a9EgKYCiCniA%V)TrtEt3u$D(vHAyLj(a@ zlfk$2h&nz2ZR}<0N(^*=Gad5*x%TEHV`ikyL7|j^eEYJY<*hc@@vy#ZGWY-9g-P1q zssr@zevSHB-5~+JTNF>`0EEc#`^IWhUgaiq-${K*bN@yV!Z>b|F^<1!(OOaR&G+H*0O0qDqmQPx#Md>lF%niOt8$*HVx#l>aZ#niVS zIG3Z4b#w}iwRy^Q%Y)NIyqQyItpaXTP6@2ZS?FG*eMtDT(gg8e7)p<`z*~zgE$(@B zmDVP$*&Y}fSWk(z!BjCbg!id5F`Xc`pT}Bn^-`k_CJyI1hs+-1I93$NOFLi|Rx^Oq z>Jm~|P(8LZoRi8b`cF2f0vYs#lKEBjG`gIu(NDC4&3avn;B_EYec>^}VV3E=#Wj#d zo)r7RLM_sg_g&^Dw+VMwMnxox;shH}ilDC|zD${KLMR7L!lvnNSwQu9E`BTT(M}yV#mpo$p0s_m+ z%jAFt17OyFw`4z|(33MAet*(5 z<4l;z;>@`6!X5u1&q9dFgfYLQ4AqQ35+^KXCyBwR-g5b) zGWbC4z#H97h5Q3!{8!nIozxj!d7<%>2>eA@{i2NBg|9ptuuh$pfkC{rFRgYwG3U~% zWZuRQKjX8xi~6w|kj|`oKY4|BdPW9zX4`v3mHs28w(D0JSdo9W_d2&EvK=0dTBieE ztXTd9A_=rmW~fq3=GC%?4x>W$ zhbx{U${>LE+pIy`mo!+3IAJ}RJ@=hjUJC)?jYwdEUy-aj@jBWE=LucZ=yXCIwmPL@ z@%9xPYizdJ5(HGClW7xHv5bMzxKNgmVCpgceccr)*jaBXs5XfWu`VPkhogoMK&QdM zkNoy22K)|)IqQsOY7ow_ok7PH9PPnR^nMCgd9*IHIU(mox`uAyB78 z>O+``&Ee^sK<)E9`5ltOrrrU4Kh9(w8!=7$KSGM zWRBM8zzME5O=A~Fxo6XhZwX?~pNu!a_Hh;-HvW-8yb!Oz^W`Iq%qgOr1_WZ+ug&X%WpgC zx?WIl^287{V{31Z`2((AzN~(N%;!M^6r=6PVG7Sn+XV;@ zg|*QWtAEk=MPJOFAp_SYoLQh%&m^QK68NcT$@`CbPA9&sU*W!0k<^2R!&jxmO>{@8 zgXt&GeUWxgv{`G(N8uZ3KvDC zloHvh5rs|F@I{m=h}B0tF&-6&9;q}JN&bO>UyXT9g_1msOiWe>@iQECG??V8g%*at z7SKASh2LB+(rVDyyAHMG_>qXK=oqw1nSWxV3-3WdKmg`!J}dhBttf?cx3})L7BVt& z)JnJgEVKByEi%)w^t`X7w!mN5x4yX6v*_g z(Ty(4@`B2M!1m=Z;pktrN9wSxB07D{($O-le`EklSZdvQlz5zI`S8V8*+` zw)&^FR8<^rO_2KDdIZK!5cOv!^$Dm@UM^X-gENTuewpDjb$S_J>m`f(IIdhMf2&}I zf7JR_3M>AdNBvc}6}yeW4??2>|0f>rzW5rm4&He%Erhxwl6HD}KisT7*z{yNEsc9* z_W!{yf(i*d-7Jg*l%zK#ui<|&blS=wC+xRBlv!U<86a!cC~G@!>||Wp9H24a9XzE? zmY`x~$7R0vY@Pc2X`M206(F$4b5(+SM~)V4AFwS;jkQ-?)JYW}11|IzMBlk$QGBBi zYh4CLYN4BdIN3zeH9cj{b7{-g@NU1J*ujENJFQ-Er zq}@GQjTf=WnISNBT{X`7$dden@rSpqtmBQV&fu&@wtG38P@p8}#SFSdVIIDgdI zsf{oZ{GUT)N%BoRgcpes5?C%Vw-r z(j8bHNelE;s3*VIgb?T7HdcII1pF2^SiA1G zN8qp%{ARb1;Q;%Bxv#n_XNLi1Ltla!PkUP>(cJm8)tiJ)vU@rAnhm&+~%9vN4!8X<%6Kw628K*H}uW>kQW7I%zBqMI@ z`c!}@G+Ah*vyC0jmiK{UW#j>IbK|LvO+S0{%XMevE{`+f|LpV8kf!S2^Luppyl5QJ z@&IfAzhLO6COXfYxdQb=i_do0b$wh-$YbG>wF{+1t2)2(SSVp&V4$I+lLOWq5C{|; z5`sR_CzIOvAC(BZp`$kN>5EW5=5setT(V89n1Kk}rfJZgCZnaf~q##YMd z2I649MdZY4V0ooMqq+UFjCaA@d+y)NS0Yw{$%Y+N;{_2Z3$8D|o zHF*?V=$!{nmm6uRePJge8Y*Oc{Y|QWxAo_hRFwk*v*$}rG=ssxu<;u`{X^w)n8vdo zfqHk%SMFmyJRuEU=YaazXAi94N7iw{Wow@Ew;wI?C2x2D*2fn&{(*eINI;hXo)=2J9?P5u~ViSdY01;%M5oJQ#MBnwhA3)Eu_FLyuB)I%n zXK|hLQ+=bMnMMRYOIKN9(^+-ZJLCP@Ifz($5+)!e)rS*;XMN2=RO4QWsZbPwJ!>yG z9T1-OO>L}b~NVwlV1ZPjz)ffhRBZp{7-#~q|yy? z(e>w28JE-~kJl)$^@5`xd?y%DSjt>!$;lzn(b0jbKc_)&xP5X1S zp~*O){Y${^!)mN_%(Lq>ryo1As+w^A^1AeHTZ-4xE&8tJeR9`jMt&OV+HkXzzEmN3 zdESPhV0wG|fSY!LMr;0RD$9O>*`>o_!KJ{qQzPk(V95j6RV>&3DD)Rc<_0vC27_N6 z87<=9RcLwBjCZqzRJa5L^O&XB@#MRC&#`^V!^o7s!iqw5Ap(>^Z(?SVVYU@*myhh} znsq&{#3Zy~uRW$wf85y+XWVa^)&0oL%7tLw_k30TJHfaDXbgMl?2XGz=7OAz>2g<0>E~oz5V7;>0=H0rajiX)X z0Q>c7hepuSIy}^0ryphhAdAm;D*!tKBo!ErI&xm^P<@N1p3xqiW()d zIN;t{o$z_pg!Rtj$I_fGcwY8_;KcGctsCbZr3%8ABGZxV=k}j7MX0*;`wiG>-1R9|G9+sB?Hgx{I1Bc{$vj6^aq&#DG&r;8?IP@!snB{i}O8R0~fCA=10) zON!q_NIWoZ04$XxLuqJhhao?#2p~p`yNwX~OisW%nQ&dzDXuP^o!UyNle~2b^!|4y zM4UsUenSf3Z98s(ZJ;uCgtrBhccTx>uiL4dc^t(wk9iE&2?o&TCpS481vfr~oAN!` zPpRpcIyV5HU)F$ovm}=$2HmFv^0+7$rosSuFTazV z!t@it*$n^7IE!gEHf9Agz6W3G{{2zvES^B8^A2EM=#%4T%iCVvk&Jis4M+3gparko z9W&uxzldI-ZrsqFdt3BYaMkHC$%k7DkzAZMz!92Qb;ijncA8f{x(z;`(oM5{Lcj(W ztlE~eUW4iB=w3=lz=noJuyZ7N9-o|a{qctVY}S6Naw;+6f2ne$rKLMTKg%Sy3&Iq( zo!tx}uSZ`DlXfHBznBTL3jCSR?imapMdD2@s8}faCib+13EO^Qoft@-Yd`k(i_L-R zK4oE6P$R~4g;|MDzB3w_+k7DDh{=o)hGiVmN-;3LNG{LY&yc&&U2Z`{Ps9(}tQHD- zx~R~~NNClz^&$rhjP=(F2mh7nx*PwwtQR1n$E4p-)T>hb_lCfeH_wY4|3GDa1D7?Y z($~k7dvPyFQO$M8_2EenOqG8_Sggf_?1SUv370!)6|bC0wWaU{l?}XlZB;ZQBFalZ zSLVrkjJa{k2?t12#Rc_FKeYdF{xDKl{+j`$1PHM3?Z{(R{ug;c7Le9fy#Bf4byJ_z zNrazLn(waR&niYLWK`WZhQ%V{AnO2{A1isQtvxN5FU_SG%_5FISI4M71A8(lz#z}h z@3Y7oFzDM+5e0Cgi?;$!v}%t7D20BsllIq_VCVo_IJX?cNhs1B!A!O z?R&EqCf6TuaZvwD0-=-=cU#oTl#yZ)1T z`gLNuzo2E)*i3_dP<>e~(n!f7y++kZfA~G#{E$vHR(J4mM`2DGJFCn=Ve>tZ1B%XA zroX+0UBg*l$&7tSg2C-wt_T8uJ4iGf2tMXSx_2#;!sB^AMCaaoXn%!Nh=e@&QsCx+wkK#wCRazHBcYYepWQltT##A+@Olk&1z z=im!#_Z|)TI=_7SIFs82;F^gvnrNPR!svH-U7~lno&E9B^Z>1>K?qMk!!2y{vuoFW z=Ap2K-H?n0BWV>;$4n9&ezy}|l*`>_cDyA0DvCkXAVPKKOyq6^GWVr?h5x%q9rV9MG#|x{#T{!5g#~V%>bPsV8%)R*WFCQq~G5r z;{n|WUPbCSu0=5gQNi-3e4kvqf# z*+tz6U=jqqaFg#(=p&}|D|3EtJzX9py3LaWctp!j!q!M)IR&jQ*B$~tDa_84dgbCH zRNl5>z>v;xT89akxs?G^s5uP*E%ydp$C2r+m2ntr$)<>;LALsy_P7BAo2Wp6eYstb`RE~Z z*qxMn7v9fyjhFEy&y3B&+andlH406+y@)4`9@ErCF?05ubi1JV0+hV`W7L z?$%LzP`}GzzclI`dEHTc-5J-Rx6tTPZWPl0x>|Uv@}2*1wG>_RA5CF@p)_5o0$?PA zsSb;K;Vfqj3uScVkmNHVN7e>waMmURRG8=J>4pPa3-o-m0)R@S=D7WblNNci7(-r0 zOE9$%ZLjkF?dI{r5|}(HC%%D|7O0ZY5+YOs^C%Nm0GD0}HI9J#IogPtovqzRjhV;{ zzEI$fI7^X2hmW#hA)+ft!YIo)#ttX-e)-29M8ci#Nn&aJPf2^o9_F#y&(tD8SNoDH zyjY+J4p-_?aSID)_Kw~h*MB>hO<{{JQ89_y(;_!T)tel-aC4;16)2@ABB*~{v@K98 zmTiOSLDt(?Kvlzh6@Isln-Hu@@i3Ed>>pP4(o~uiEmI|0g3=JnhvbsDIlklOx=2acFa!r znCR1@aLq>ef4`gCCmxqa`kUk8YlDD=vazl*uT<_}<%-sZ3RS-H17Z1Hjzmj%}^p z4&H875dR|Ezy30WnzksN>VVzJ8yPICJK_nF!YJ7&hh#SOb|mDQ2{l%M}@JS9N{x}{dFdeEhwm(mez$jztz zg|{lD%?a>xevU2j%etG8O`R}jWSwrWXVvDN zHhC8(M}94-LMRymbWSNZ+ufO?(*+e%`B^a3ak;nXCGsVBi=O<(XGzo<4On!-B*iu7 zKaKL6wAFCZ$5OjK0{j-VCPovY^9;Pz+S=MFyWVO;Z>+rk(+x%5hu#I&i~OzP6!R&I zzd>FHdZsKVV?g5sqFFC)K_MgwG8{0xitu1{a+aL_x;TuT)&}*()Hy zag;gkh630;dkWlyx~6?Aj+1u~tq8+sZ{{K)E+F`u_RSs@wt@x@9*MgkyYJFK0sI^f zZkPy7IJktdzQ5_`a-8A*l-xt(wI}lFLOW)K=jQ?UJ|Tn*yt}zD*q^B?&x??k5G2Pp zS5@BU^@)1m2{lmbW^->Q8A7WtjhV8d`^?sf3)Tq^#p1{!{h>!>wf~{e9Y@v8hB4t# zlSu<-OS-f}EaFE`BOvk($JU-CRuB3?sf}Af49^JVavo~JT05aTMgvL)al3&TcwL=} zqWyl#PWIjc9@0BN8t!M594-9>DLXqmiN`+QLam1uVA>TQ@(2e8l&w7Vk?Ns2aAzaB z1{!p_xo%nj57K6!Kv43$Nhto)kwa&apy79ELvNJcU6)6Bk=F7xQ1Vl29=tF+_@>EF zm6aPa@^I4#&q8PHkm^HCnb4~|5g!*%wr7YptjX^;+?>wJJ&M)(Q;bx|gu*hVkb}w+ zJdGG;*wKDELGVGQ&|5+3W`zjpyu|jsC`#-)Z3dGR}?m zMKvXeQh2yJ$|gHT7Ydu)VW&Lb^KINIf%Y(lg7L;2q2;x>14KO5^^3->f@LIbK?HnLAdGVOsdSd&gW+bdYW=l z3AtSa|7mvn={FbeFCBZF6vAQ>11ilCY9StjVaIFw8%jl#4C+L;=OIvXr<;iV-2*R< zD^>hT*PAA>M}d>1TUDK(`Az$zh3ghkJd7LOF9umnfGJ>v0+}Ca zDr$jyN(5_dgUQ3i{`0+{`gVSr7@I>(1Z{EQ$mn@FrB656qSRf<_ZabfWNOH?+gy$q zWJ+0g9P9Jp@SS!PYTJB|ACLdDU549iZDz%x*Dvj`8?;|pf^DGc>v1e7RCn_#4u1V| z#i2hDPyaWU%v0n8B><*Ku_f{Qc8u{{=hOE0$iH^*$UpcxmYf@iKs(98#tIBNp4X*1 zAmCxaIg@wI;}B{e)YpdQ^@%q8t-FjZpY)QRE8YMRt5>V{Mrmos51J54oFTgBb0@He zGMfuGU%#00{{W>qohDG);SjgCc7Z(czlGG5X&!PWrGJY8=9*s;fqkeIngS-C9J|Wz z^nXu$3t>KoHDhzQ@P5=sZZpuQ(BY9ejOS}UrSh%nuufC;e)K6x zE?CewvOi3SO<$&5NPn#z1sHZI@NlYQu}Q^?LDq=l!GoM|puY7!CgeRXkVlqyH_*-(?Oy%PmLZa=hF2>2dEI@;x5v&h2qm0vIOUcwjSZr$tx#ySGV~zdXWLuZl%L|EO|OPg?I88Pm%JmUwuZR z+iYJy-?!n=;u$oePv5KFjOK2~tk2nvnLedFoRYZg;X>kbgW)JOKXtdJ@X@)ahgTo; zM{L_XkHX@vYx2`B_L+dnFxH-h(^uKM)z`6?{SQFF7kKTJqhKe0W))<8iQ=*S)SJK4 zzJnDP5adkI$Cioi;Bgl5Vw!V5g#4FF**f=4isbxSy>7uGq7n{9!x%xjB(OX=w%G#q zz-lBzl(F{=`gC7J;;x%kRa2v; zqbcwW4FV;A`imqk&}ETiONT@T$5-Cdid&pnjBs{5c&aId_^;s2Z7GOa$)K?6t1Woi z(yZ66_g0fn+DGYJ<`8}S3-&D!9b2)oSivRPi=N9DJhXJSPw*B^M zs?)SV#{E6-?d?@>* zYcJ~?B+w|NCf8;RNi;UCW#x54fWke7ii3}yZRv&092&T=B7yaJICU}^m-PY7w4ggO z*SM$Ya^qNSQPy-Ij1=S6dUx1-gdOkTHyThY*hc&1Zj)xk=V8reQ34&tsDIGCJGmO@ zjMGRCS@v(2u2JLB^bEOf**_aAo^Vu&t}ad;5MdZ2hW`mO)Y+=d z7>+4yj3TtMl)b_>fHsw%_uE)9kU?7ibz_zzxinvEI?X6R&lu=JwGVSId@p^YiTYh9 z=PVY^;M`%3^mX2Les^I?tWKt;22mvYI&fme2}e8UpsmaABBvF30M4>MS%(P}k`MO+ zh+3{)<0?6_X9*JsKkLfPKou!aAIDj!Z`)bOheSd%7zKO1=Gh^XhzOX#;~C0{Q_1<# zvg89--Zb`&;1k1{5Z-`3$1atZVF(}U&Uot=!u1hgh|*XqHuom zc`zKea+eZH>2L239OSai&G3hFQ*^uM(YrAW?Z1p^Vj)l_&>CykHN$-qB(;3c7?UX) z;gP${nl&Pm^(_ohRMY=(+%n!Gd%W82Xo+I>g`viKY=tasR2dCuLWO9&qt5|}DF5HGX&o`h4sqN1Jrq9Iw$BYP*fX=~!@oK@H%ZcGbnQ(GV-fHb2` z@bj5A8hKJJg5`LJmk*9-qtxu7Xw1W_M+(%RlNcyN5I#eXCxOSL6CT!|ts2s>3Nvd8N#_k>ZZNPEP38EFJvw$=&Fn z$JJ|y7N0;9_a|hO>p^%%KFDZxQy@Muks3JrIY-tj6ik?;!3l5^=WkeiK1^Pkztf6) ztueH!6>{=D5NY-B4_mOH9+wmYBLl_@3h=NGj}j_?urbZ-x*E5MrVGez$cz|M2UZDV3e|G*78iSYj|6zOSn4w*O{Pf`ykP zL-Tg)_)$aVd$J^V#=)dW0wsS=3z`PWri(<%tWOfu-@ z9x@&i``tN#N*V&GmE3sALuu8~xyT6@l)w1V<0n!zWw>*ty#F`Gi~^IcV+5e%G`W4nh> zK>A^MX@7gKwu~chUm_F4iTb734@eKk6f`TEFwer~ZZn+e)y|aDn$jf$<1IB+4 zj^EMdP4lg2~;m^mKW+3)zM zDwZfRW`qAa-=sJguG>MngBEV#qX<|9-7iPTs)oz0u&5z#Gs(I$yo)~@a(!2Q6!~?G zO_{B!WCP^sdE9MrghQS-cIC$w>~&6>O6#F5dNu}Q=p(Xlm%{K$DX15PoIaey<- zE%g_hT_7X&V{zHV9L;owJOl0gK}Os*)w~FE73x$t#)4pse@@Zvx~Z@UYlQl;@>lbZ zKey#ZdU6aLGID9tJ3gxcc#rfQlPCx^j3~9YE)reFgIM{PThAr(=V-F8#QZbZm(obV zy5?%iOA#QFTs77=lDUgmww?y@pcKzFZP}g0wCdeYFdn<|xGC$50Bm0xdU~YCXSi?K z9KOCDoS4T#QSCymITjAL>Pr5Sk9Q?8i$=u@gm#O$pXN2@J5w@kL1P=DNvz+-3Vi7h zsb)^aeT8n!I0N%57yBDTw6e>#a#p2HNd_{{g|FXUnmK7#XXnNUFU{p%DF{Qf_cvx` z(YLHft6DaSW#HfIkxIbl&0e+@G`|c*oH)ONI@J^6XSas?ANr?yaqq-D9Zd!h)$%dK z6>3p^4t|6G0g{6D6#dBloK54}N{rQs!4x4s_E|pyP)yN_V2N7dj;!1EUj@#kQ`rsN z4NE#WzOT4FJsrz=z*Oq_bLRHi(AacX*Lo#(mvmW z=Y%aI?U>9;D^4Y>zF+l%j90sVVO3v#u_lZOhBG!cGWUI|ha>+zW7HS{gPAS3arT%> zZ-G$M?!8&s#I(ay{qWI#sHp+ltu@Xo{pMN5$q6%25QZI``Ym+V?TZJP;Z2C>8nuCd5HkHXY1Bg7}5d z7|{oVt4Fs=|)G5 z3qmZw&r?(7I0n`s5rUhqKS+jOS5!%LVi|5&U&beT^mWn%3!kq{ti1nRk%V8Db9G$$ zvGR+nh@6O7j7TJYTMmR5AJW5Vci-a%dT3b!1vxJMw@;bPU?oQ50fzu3ML$AiKjQ#kJ0W{pRYb znSqftZY){VF%(y2((-fgFn9L|F2X%Pz(}s9z+o+=w`xpjjpQQYCF#g=)*?h3bKjvz1hr`rnALtF*KshvaW zC3DSOK^E7mfyp@y#qq)bh4%-TzMyfKFY-b2QY-fftXGijgC)tL!7()ibIj0{X2r11 zcUYje_T0#jd<3V$4JLGKd~TP(!?Fpgv{6~sI)hNe=y8(qb$d6r@hjL1YugjY6Kv7_ zo5=0*(eQD!j8@mH>49;SVxl_BofqDS)HJi)Fm+O*%m@)Xn058K(%i&_5L}EvYp+CF zfdcMsx=IF>HrW~I-OkY=drW7&dM)sdguzUxt4}|Xu%dcb3o6k+)QU#*Id@=C82Iz~ z>oOCU&!5i~@A0jsH}$jzz*aJWUn|2-(RFgJl7rpOA9amZMl{!IRkjmvM_WiTD#A34 zQsF4LOGAU{^ca4LujoG&+=F>^^z_eLC$>`(wV>+6;2sY`!>}@PLGw<`evAG;oH@6TBN0nqQ8SFobaRWC4;JSZ()U}{GxRZ<0vcbc{bzGxlcRi7KXu=xt?GpZ}H^ole75}2629x zotO*(<3QR}yByGi1kNfB)nUV2ORkDs|IR2cLTp*~RTS>|G_QU~c~-8#&USTZuoQk& ziJgUKOQ}+ZyPGnc0=Jo%ru)g8O}L`CK}2p4@v$ajlh`@25Q!%5mx_t@j*@iDgnJ%W z|3+uN^07v#8&<0s^bxA+zVTyG@5sM&s`Im@R&WDF&iI)_7vqcdOVZb2Ad# zFEdo)75eA|=n}|{{6uU_Q4)FBFcY*(fHTX0gPotl@Q(fPfjC#>xmayySvCo>Yx}Ik zkd90PNpXs2^L&Zpy)|Q~R*fOT2wcutwugeo8)Jp|(yp16uJet$j}m-kdH~~?=@913 z(B$qNATkgahi!2!PF_l#9zEIU@6E~(NWqQbF=tKV>n>b~-hZhvYTVOSZCEO_u=+bi zXz{}QMTC5m@#qs@4xYuug|z<`N}bgt?45e_z~1`TF*AEd`fj3nW#MGHJwQ?LPDx2R zmO^;-&*HU<9`x2!Z&F!2aKF{SK?^oWbvx$k{P?ZzV3U%DCu1B%`5FjI(VG0ACkC%q z(_0?>9e8nih?5~%Jj7RztW*)B;B_2+9;A4oP9y~pm-`}Bpe}wf26tBt6K#F(57SJC zOrC6VxmlsxA-6(s@GJat2+#MuMM6~6A5a!7y-KCdqtEGh>*5T=Vkj?mIV-x~p7@lB zROz|Q3vOCLKH9sM?Q9o(Ft>@9ItY=Y41ZyqxPOa6i*4ZXAP^TGZQ-t}F0JsKcd4B8 zC*YE@f+`PvU>SEN!THYF77B;nI>}Ulb~KkmKci?!gNr$F?pvOY%PslwloVQ>n`f;z zc|CxZYsB!BQa{6|ad{3c&JH~RrFh0pF~BYmX$QO-MME97qIIT;$Bu!M#;=?IQYY@> z%}2YKOGS*(%g_v&aSa%RbzBL&>q*^brEj!)R0db*(|jEo7yET8tO>o5>m)M&+9;HH?Wgsr=av#d2h;k=!#_Lm6EVM?*3-N?>tmg zJwNwp%ba;wjE{^@u;i3H0)>e&I!rOK>Om6GGZPwt@uNyDGu96*?8Y}WO}x-C@f-2F z(I;JDi_agv#v@<)u6d0tqP!B8>~V|x3RCh;s$|^qW}34yA}ej?sT5C|iQ&~=ZU|-X zdcM^upve6>5@xBR(daCxw2nZ0ypNjpN6>jlIQs6ms zKN$vWB{}cdEYX+^{yvc+QgSZfmg^(c8LOp?dHYhGf@TmW$4vxh@QNc~$M+<2awQu? zum|vV7@rQQ0a!QXKeMsR&4YvJnR5N^=a4-B(ElCdYP)}if7bGQb1OK@RNaxS@+Z`q zq5F8$-)g1iv=y#5bawf6fGsb*m0@03&ucBDS#ovlkS^xvXJ*n`njyW^@tTBq^|eQ+ zd!4^!EGVV|$!@+bC@Cq)-ou?tV6SLmiH)>QjqnM;9i;Y$A~H@D=X@}Cl^w(tmL+dG zdEAhuKf1N=6K@H|<(vqNh9l-)&DX`YId@Sl^i(Ys xOwagVyB6YLawahg^E-x+M z`Jo`oM&OZ-&y5$1SUvSVe-3Mkq)-9bC8f5i#3O25GiV(D!(8t3bA>6VONxMVGQB|x0Skws+*a z6ply83bs0L9w)_~;Fk;{NiCM#o+wV&SUwecanGbq> z1s!{L1dqW|>>V4MhE?F68DXBAm@*O$d^860$8Q8ysNo~4m2^OlB)16+i5OtSo+`{g z>)#GfZiiZULES!!c;I700`r3X15oLT#{x+2)v4sfD+`5a&jrV`xY2f(VXq>|RhHixmFW1-u?Nw9_CES0>EGz_4`Yz&e2AwL1!uGN&%`u!=(E&SDoa#F`?@RZGOF6D9;5riFCYD#@!Rxcd{i~0td z#Z8snWvB#&2}G3Oem5h*#b&jt5(GmEGmDP_$H1RnnO2$1ne&NBUv(=0H9}Q31<}DK z{x$2lYEhGd0xUe~FSWusT#R44_C5-;i8&jFhEuN!TN5-1zgiR&!Hd~&|I8Qs%&k*% zuS>vvo%15Gp}=`kth^}iXW8q*`93o;X=unJ1*tC-q81&D&D|Yxh^?P?tC(PDbqO;P z0TFLg;i9~Wieq5+a*V#tu;LJH-*@GNX_R`xq`f}#IAdoIE0o#BqYcathzu6tPR>5l zIJnANk#1J=rnDZwdJy4uEN5$BR$B5Ha&ALSB@n|x-5U2PVk6Qa*GzQPo@aBSzdzMV ziVV{ClL?|i)q+Bj6UnTyH)K4T7>gjArPq}`ij3Z!j5jn1rgcI`_}nH1E-GjvR@pEV z7!~!Z*ujXGbuT`Ol+O4s4?^!0gLr{A1xHS7K<_@>i0|ijk=T{lCb8;s;?X5k<1F;3 z#Ht*j!KTyVvkIs+<37;2##&^(VtA#9Kf$)?jBjZY({%MCBnNmI1I5G{!Ly3O|1|}9 zGvjG1|E^!yn4}Q%%6>n3g@SX5K<$GeLr)Zz`|2<2A@n^=9e+v6VT_6<-Zn@RK8?{l z%cH(2v*$lHggwmXDd{(%H+`vfIEIQIl(_0OPP~<-15H>@{3SRBR5Kg3+_h^10|oW| zlpo2Zy&Ih55dLXZM&mp?dn9R@#?r@?t$J;?7n@zyyA*{CGn~BWCsR*5S>=`0?L$|t zblJNbnFpE(6IGoj0CNI95!vk8GIw43+{EWuUM)q5-V!=dQR9~j6Y2-At;;U|re!UM z6~3QK;z|F5ZeVjJL%skz7K&S5(&~Zj zlfy(B;)_$lbRjc8lhr*_J;`_QbyZayzqd#&1y!2|w<|cyv9O{Q3Gk9)bbN3)df#UDKL5e6Iy60dkk9F2V z+DB^erj+XpN7EoGe8|1^esR zxAH-?98URPQri{JXm;@1!m~&Y&t78&w&J%M!C%GHX(K_c%0Gp-L|Px5qmGIVD_j2` z1E>FgJSYEK$Hd|Vd^x*QQ;P$*8N@Tyg@KL^TtdGH_m9~i5&_z?Iv|^n##*As4f_9L zJBjqMiK?cHmX}-RXL{G5_{f!yRPo1NFvtv)kT~O;qhl0Q{o7o_WzSXwGjHo(`Y#yy zIf)5AB{ZBR1K2*Rb71c^ukOpE*qFYM4FG-yb};eT_XtRB<K=!OFY+#KlJRe((YRnI#b>RW#rS|vA<{A8z zH}}MTs6=dgT#@g!CrCIw18kMhjjruP4)^hL@&gP9{)U5DX=8Hp)7N9lm zBE@_5?CA(|12kPB-s&{lu4CHtC_X;&ujPA!Nye`m>&%Vo9()b0_QAqK{t8&5aL*P= z9`3LSm*YA21CoeJ2O)+=9kb__9C2wOMcOZNF2u%ftg8Uz^rW{_4p}h%Gr4T7szLM~ zzL7nfb1Aj42a#({oK=m0a{54b*wbs%n@SXbQ9fYv5QXQ1FjyYZ=U$;}g#H|+G!y^^ z{6O_J-sL7|h$plIx&H+G=qjx3DE~9c_lM>AR^qxQBGNKZq0gSr7%29Fz}Mgg^g4%exd7S!fu{CY5m1rhvx7doqR)- zcf)0$Y$FDa7abE<|FO?w>4{GVmk&0byF<|bj?=DGAqlrwQ|j~<9*~E{+osAfBSU$$AD7=b`0`$+{doF zD1OT^(4rcC*AavNnW~)M)YE<@Oz;ciS3vSuM_ix)2(0oPm+p29XzcRrU50g&I% z(!oPM7@+WT?4lUKkeeQ-6y)uvYTQ_jMD+7#h5zw|6`lST-8p(4K-~Rb+;e4_;KQw` zOaB=pf6YPlA)wSed>c5ZN{aWofy1}!=@iQF$JjmL9XBI!-zgAHSkID7>2t@h6HNcy zCUKyyO13fS$UEj86Sf#^%Ax_PX>wB4AKz77N3R|*=mU^_I!kv{e;8!i@A)Wn@mL2L zj8A@8l+C*thzynd$W7roq?~NNF9@2K1VE9jGs(|sr#{laDVG`Wj)USmNq7G^WL%*~ zLv(wfNr@Fe_9=z(4+r|6=q?03;5^h41oy$=2I{5 z4>`+A!Ni`mySWv$U3m}uO{?*wKIX^_zUfsnMk_ zAh_Mc@Za79rbex!edY~!|nH`o5v`>7%QDvL3>8{0|g zXRyuNxx{6F0}l-2F}eO>$GaYwgRT~qxee^EN0Uz;F^9Q@LRnT`cL>(~DqR7_6WGjr zfBLUy8zYeHvMTfD)eQ9=azC!CR5Lo4ZvCy8lD0-l(_YiE)%zlLpKbDIy*w@_@AP5( z$1IsGNUGnE71Fh4zD{cF?o5C^fe1j$wlRJrHFmu$lVB1yPPF-z8p1o2*0)o;hCsZ7 zff4hgiu?=g!eiRM{LN^tH#QqxAhm0zdz~BGk>9m9 zop&mkL8bu-6u{+rY=rml!wDL2cnmp23y?iWL46zF zHE=B1!QI|@@(Jg^&=pU8?T0zVdE??77LW?2i6SQlnd=;{#z%pV zf+8z4xI#=uX*@8knQ7r6%oTmNNV2Pqva;{j>f3+U_67EA!S4c{yxdf`wLpM^$L#tG zv5t%N+go3~EExEQ)*01;<4GdV5+1X%6I}3GIi%;i+xx=kdxX8CZwd!mpiF8WJ|g<4_Ul)R<}hKLGzuEjb3_zNS;G=U)jVh0}#8 zUzCp*UT}gp#yMO#it_yKsJ47N;Z$s1kVi$S75oDLGAmQt@kzn*u6u*g7v^gFs*!1L za)#_c?-!e}=hY76GzF)>#u@11_MHCyl1O1dPP?b8VQ~Qb^oX>ap|#NDDhLMVu56L5=v3L|2EFRev{NGh=H>JwzE6)arLUOLc} znBwT=cmW(()3mZ?DFysS`=y9{g(N+{wx`FtQ{Yfh%l4P5wr7et)QUR4ba$7@X0tKPy7%1S1L zGyGEI!gv%uiabX1zt--zeZuq659pLfe>iXCqwM>c)VO+5&)HF)9u{Z#N zR>OopJOVM`oHo69FZ`W@yi~d5^rjxI%cr#PSq>@G!EMzfT)c+%;X4%pm%kM}5?GfX z!@;v?&27(|pxjdQGl5R{EO(9~&KX?w`e4rC78)(FD}t-pG6!?P8FZx_Pw4yUS7I#%UhBs0%x1OBF2n<^CDchSOtW!w|{%B zd4Fif(m=^?n91!~i8LY-&tq9&^s1H;_~WoKEX%xlbhz3-UQySp#W&vOHzrZlw>yJ} zu%2gIK{`Ih9EnR%BH_}wkAr%qAYFYepcREUaxz z>EZQ(U+pGv0GU+sFn`~ym(0fa@GTt^-1JOy8+E!6SnrY-An~=4y+OW9RO||{#Cl_N zWw$t{Po~Ca{%O}Y?{|M9OX(|4yOq-ALS4yv%h6%25!35F%v$0w@(KE815+ULXg!usv7ysZj4_$Md`IGxU)H-V)m{b^#ecx*}F(K7DSfJb)LiNRh> zwZiV@m`9{IOF{=L3uCW?j|S()1NqysZbkSKowG%64PAp?LH!sLzbVGKk|!Fc17<)6%KIvu1uF@MR4TiZsG~JgP|1zf^&|TJoczKI18z;{ss?|}2XuVoCje?? zK>zK@P!v*rO(L-HlR(^@bzh=~^R|LReY@ga(ZrSc(wq}F+B3|AOPTPYPGuHipfo<5 zDyq3X7}YhOyO*XJ6c&JK9#J!Xk#(|l`NL%T`i&P4MV|THWFJ{6VMI;Bzm>HF;=Zc0 zZIg!@dZh$xvg&``u~vRVAtj_aYdR!~`OM|N-xG^;{BRCG-lVB=oMBqbpJFq=kau_I z9ZfIRiAxSk=H*UU^!z?y_LFdOp`XUJZW-P1UZEac^_`V~yaKrK64Xu+f6BR7(&AIYne9!! z9lWm2N%lj_JRYBwH^!uGFtfE0OnS#?Mk6X?Y^z=wc9uVw!5v~__cqj2c7j$Z#Ce5Ff^ zhU1fp%#%a|6Z?1Jt@81(-Vg9JJ+4}V=Bq1<1Rha4AIFZG3_5CTis0{7n<}U|&BL=@ zteLBG1jfyJ#?kQ!wK~`q2ruH5_6#PEa*#z+X$yL^dI7S61o=N$^4VM zrr;3&5=uIdDSlTZ!_TIi-dq>rBjACDSC8b}pjw!C>Z*#=$h5zembx9V7}?uNZ#wy? zXe;Qer)ivG@z#NXNX*bnfE!b#JhI#PZnD=)SrmQ*y-3AeH`lHV%x;Y25CphSmJ15C zMeg3UC$3D43$)M}=_eS{ScN9Cx^5e$oT?~5D-KJS@ESlVR*qqVmZftNLugY&m<$d; z^(IsgOYca2@CO-)q1ZtG9FSx-ss&76#Zh?ubILb9Ya`S=uny`gds%bZ_~5)hacxu| z-}k0Dmv#?{p@YM>QN8K}DD8D(X#iTRi|mF6#L~etSW-YoAFKvAj6s{ORuX1oh(sn- z_#dhsLrGT@&;0N|Sfx5}m_>mQ{JK^=%zIJcDo02IMeLMnk#7yRXbNiSSXxnW(CAH1 zF8riqr;VmOCMMVgB3e^;2!OR!it`t752cFTS;PZ<@8kzEZkST^r2~Uo1tHW3B~gX* z&$UfgrN{;h9Lp(>e#Rv_q7^T&V)W6`i_pmsh!}o~h0qT=IgKnVlr(APKYCs-SaGr@ zow`EtmvGqaiqBY%KymJeInxuRmr@%3opT_k_UrLswCkg-?wWioz1hb#(a)aut;B8D zcR{Ca>uIF5lEn4(QpCedV(_UU&~W(>>GCt@>YWz6DGcQqr>0MVyuW} zmc01kOdBSal_fhP6)AYh%=g-4x&jY0h@c6&k*2lavI%v!{VYzd2#aXOmZcDxc&D2- z&q?^$r1F|1KVNiM1kjAD`EM+pX3G|j zAd&!^1PIsb=O%+KeqwLMA`mG_HnG!_ZJ;s!8-f04& zWTjui))XYew9w4o7G8`i_$z;JbI9qrb)xljywHD&-~IwooYM>i(uVX#4;z8D(*f*H zPO6F_pxpX1d>y$)27d2i)pcc5U-SU$T84J->4gQU?L+}N^CztCn21jBiOPwmU+#ripE1e>{ZV-N#HYdA z`}wBLh)b(o>-MiBW1%iy_xt+NxRTxu460|Vdkju|py&d>N=^d>hVZlA7_+yAVd9_N zSr<8_-P+Z2U-IF@G)TAO_spkyO2GaCU7_PuI=S#h@13D3^upv7Fo>0nb~-B1D(qVj zcLY#pWqouwB8lO-!tAfurb`{ExaOym{{0fTMB@_PS82a)pJIm16=;IyCM3P>*c+6& zc=cV?*soGA;$1CeIjx5lG)kcT1>gR3>=pVLX$S_FCL>A- z&|Clpw1eX&nFR&Q994Gt9^HF`Frb|N)aA9p)>blfc>hlVmOUUpMffzJ^3_8%ml#5- z+e-j;&*DZGV5*2Kh~ZI^J31dmT)cD3ThzxHseuSuVsxc0%?A*6|!33TBa6qB{ zZoWHoZ1yY5!f#jE4l&Z3Y_3=3?9fx+m~XL^v$dpU=kN&~M~C}i)U`b=57icmTTI^( z+nWnEm4aAE8k97p30zGsiYeKo; z^zw^+{9l@hf%PX&cplMq&BL>XuQwm8oL$iE@`tGzxX=;nUBomI5MC$fT5(I7CQHvr zu;PEfsMXO=3IxyJj~8#JtVHDyVm!d-E0kw*BbZ7pt$m0rZ<{&YMF+#B9Mn zauY|&a5QD~)BJGJWJviYlOcRs8t8qA!XEgLg-pQ^UsOt;viDIf40f$AIv7o#!w38=Gd4}jJ zN7I!(Zl-Ffy&FylJrGfrGVZ?ewKUaB@GGkZy0rWnY#>tpxyCnS?U_%K=wFz~ zUW_*bx3FnMXK7mVw_swZj!R#ki`%AbH_W&WXC5`_%Nc~BmZPnxqq7c;Z6{TleL>b; z&!eNk0A=rta`A8FXN*m?2jUin`?z8t!{LDCco(8_y1et_W9)6aQmq+F(V_zaSb4z5 zJwCN;+BfsOB8kO{!H0hX2Ku=@z&y|N(W9EcA`wb;mZEy#c6?bS0~$O^WELQXe|`Fe z^@$dizWlefDtl~^jk?hUfV2=2Y6e=yr5I2CN+FQFd;#vw+V|-;>FUp&UFS6xsCu%dDfuiQY-Xu zSwlj-HyU1PD6i<{q48ON@@87KRLF)O<2?Kz;FP*<#I)dqe%F!HlJht-PF+^fyx!fh zykDHK%t&S0e{VI?!tzTs=cX7LGkKUFTrRy4t=eE?Q0WcWWO`r=Uo+cI2GVFOW^5d5#ZFQpHaki`&+jb zwkyAYBCk{wZLjr+=c3U@cX%^&EJsTu)V>}$YP#3eYj85V$>qbB>u-l88lx|zKfX7) z59&oHzql~b*-oTxwsTt&p66}_;K3~4RFeww_REdWQddBSz&9jOGQIE7&1#ku$JHM? zV6d*N(ToY^3o6L{GO(`$8Aa3>16kPn&w~(@7@BR+9IaKFG&1lAT zo_c0ZG|}GV!?pmwD-Nd$A^zqt-D9&+0&)Q9I5UW>*D^SG3avM1@B}+`z>CX+$ zp@azD)BUwfGqNecFKa>ODB$3VX%)o^&kWi|gJsxQl9*4of|8MueZ$nByuDr^ zy!@?BN9DU23%|+F!@$>L*G1mDE$v64dd$&SWdrLK5u)yB(%I)+J_s!%Dc`i>j;vrp z^f>M6Y8)ZKm{%l-UY){k=2^svQx*#eIy%5QH+5R6mv>`pCA3r;s&h)ITFM@a$V<{o z?mutqyirYchITSiQa-n}4Kfo!UETD;$~|pO`R*UGsvQXw1P7(QN-&Li7Q5N*zGBL? zB3Ur>83@cIyl+ymhvhrJko6Ef(8Y6&5#nfwv`uMxD`fH~ju2chXPPCX#T-HF|PXuUjzXYK6EPfYrpPt{9IE)swhdlX7kaDf*@ zu16u(rCSnsJ`v?_8u|;cC%<`LwUY8I2n1m@+&hCc3b_z|4N}PQd|@eT9K(%;4dYSJ9gWT`)$kGBCGc zW5>EQh;T4OZJH#EruFvyQX5W=4KnBt)#pNX9gIuuUI1j?dl6KDr>K8@iWB-&SVHaO zj3@z4{-qZE--U7i!T}4`ZxsvvgK^sEUkOkafSyF$nJI4{dC-Z>hkcs*Du3?}}qtI#7&clqX_6~y?h81gzMsq!Ap zMRe(t_0vMoI1m@v(Qa5ZCL@>BH<#UAR8p)Hwt^H_sf4A*z+=Qv0*iie|4fVh7SV>9 z%jOETFgdW&lVHGthc3*+3ZpCxRmVD?UT*1)?@0+p)!aHVoNiWzB|}}*l>NIai|#^2{m$_8 zP|?GcK*z86ZlrI*7`JMt-|zICrCUkzBJGsI^tw$oXOxEBfF`&p5&WpV_)EpUIN|-k zMFSr5p*rXbu?=TP(76UJTiM8;tiPEL?I#ymT7H68p<~V7bBHMpO?1r5Sb|Izo4S$; zVUK3l_8Og`r{?!7maV;R*>85|8bW+h_@|k56>D3kjyAN{5|G}NJ%em#!+!ioMG7Lt zN-Z`adHYWCYsTrM^YdO?r+s#5CBBV`w|URQcS?7NnK_B4BrV`3-c}DW`%vg<3@WF6 z2&azZv&mf^10GS_vrDZ|qMa^TFFoEMD9FkbN{eNQi*8*HOjT8XOZs*ipS2vgZ-<`> zE@?7n1v5l=g$5y+T0ruIeR@GBaJ*!Hc z7sQsI$&$Q7{mtz&nTL%fFPTQ*$i08*k;Al?%v8@gBF0u6_htJ-p{$5+ZYQlZ(Re@I zcnZCh=i=~z#{`?(K&3bJ7+21_irl90*u?1Yy)~UyhY=*dOflg`a280*Z%c`hq(N}hC0Fl*&YQTs(ydkP4{e2d-NNfh zOP}HAcW!2X^8Q>He~-_2U`f4{!dlOpg`GvchOX3m*jX;g6XpXAx6{Z?Wt%6d)s%KNqtf1W=MM4CxDr$K@Hv;3-l%LJ@ z6;xdrzo0o2o*_DqricGF_eSBHhDHN_Nmy|+uYu826(v>gTR?!+KpUd@4UXF@9uj?%s!uksk`wU|2?{-a(gV7o>=rfjIROREV~5-x zRll)mu)|CN&7{1LlHVs(t=qzCQT4PS!6d0nZ8QM_$z+O>x{5-_WhL=+V+$t;u-=#R zbFc0TO5wGt8D+@ua{O@! zpkflCt>);&IB0`-E(LR;yDCqM4QX2|&o71ef`bK((DS7Zf*{C=Z-*8k?_c7VZVVCN z-pbjE06#Mw@Cq+H+YJhQQu2O?eta~SK}AhvN^+iR#gKk(-x_oRJNPUL9>^#PV+%bz z*9FhiZYcpJh<_ICec?13%Qe4h@rz<+5AB2MY={BIQn^(FUYJw01eWAaB+w{i+}xaiG6@9^=1u98cj{G z>AAl=lima-vxQzyol**y8o^H`@!?Vnv%|LRV|!>OT?lAowvutfYj{}L_C#ibmG5Sr zo{U9FwN?xIE+`6l)6-gBjq8FPK2dc^xdF>vSBA$_xIa1xe$$d&PWsZ3$d^w` zsA!brFOMT22@@s|%I%_O(f)SJdTS&XqC==C`*9M5DlqA@$O#u(<^;1U+F1|*X=%zx zq=>~a70qXyAdealDr|Yp24xqjq19yFYnfd=$@)IBW45NG<|~_o<+V_jMASYB630it z!osq%T&O9!wtAUNQk>cGe518o*jX>mh_JfaWGQiHSX-9O*}g}T6>+PEB|zZw=qy3T zVMnPtnOYHzqp#TDvkz>U${7kf%@~A)gln_4=0=`#ofM$GfDq+Eu_=rV2-z{PhlT~X z$j{ej6bE`AGQpY+x%8X6{WA9cdoS~Okk&i-V#M2$@5^nkp^;eVVP3|jyb%mR{*HVa z@o5Y@9-rgU)Ea9T$R%KE3?4wbLApUU===C`d$QMwKlo7bg#euyIlq#-dX0x~X?OfM}1Usp$)a<3Dk+XWJO=*u+&{YVNi~K3o$Sc8L8Tz^8#1`#hRc3 zL>*#d`sN@Qkxab}=>{E`M>~kDtK(F!ojOE@WIYCEk)Rk8m6n#mA|m=%*`G(7Rtz*W zHIddgndzEZsna+j_cmX19^7%G<=KZjkEYSb^UuDq2yc>o`fB`vJ|>OFz$6hG6bI%j zrk21h$VApL@_Pp0>VRl*^=U$t2XO4zATIpJ@edJWjb4olW}-`(ZX*&#&`?Ulva{*~ zf~LgGrgOtVNJDeWJWfxoAYh7Hxq-R_&?bD_?b3pEyd}ya7 zJK8*^P9ZobM^!Jht+_YX|33O11C+YaxZ{^MH0!9-owLn zl^?2CZ@GD8eNWZw0f$E}e|OyR>9ggD^Cgslhs@-bzj3zgXAwz}p0;3B$BbX6On+|+= zpC?{n=A8`Ud2paitJGK7w4iksmyjGhQn1`Vl%8i1baVzO6GAs?D5vj@jEQ@?ih9cx z?gK1Da!G@dEX7$Cft2$?VRXo{@_~Pq60GcE2`;{OqZCh&Ko|3_!eQOi`~5aISO4j~ zxFAZ07>#zUKzkuLQAI4rAuBNILGdS_)g!W;eRyLdzxi z4No|4r>Cv0_Smfr?uoFkCbX=Q`2?&qa^CMp_)hJR8+wx`5?MI<_71#vM6}eoLJY)= z^I*Wbug3zWicIby^ODne0FycV6Gk=1(vjYT;L}QKz6-=Iy*p!SwMQn&>$Ts#e5s&$ zir;nF3H168QzOrAx(YLTc^HT&$Ozg)f?w1a!Sz@;!cl4UqYl22Wk(-UhVncBu{N|; zvXDyO-5G~O%R;*;*-T4MipG)Ghd#6L|JmU`{BFjBLu6|t4IOa9P*8z_HjlmbOJukV z*<&&?7$ZyE=$%qU@=7ZO^_5uG7bMbEK~1^r>^V_p5F%-kIf}{Tj!qYNFgg?mCqM)D zo6;|CN&bzMf$GM_6elO)ZP`Xzjy2jPB{F!*iyi?5XivcrIl{JzJFHv!pArQhPYrPt zy{qR2F)$}wJ1d?r=F6F=QwO}|pVK~7Lj)KL@+bwoIgm`TcrK5~<2V#et(`AP1Mg!F zNu}dw^75WkU9+=0DlI3|6J%0vjN(EIDGK@>m@ofWY9n!m85YPAoQNyCw~E&h9K0aS z-6~KlW}j4Y-grIhhVfVpZVO`V2F3-HVFHGLtGfWHbeLF*`>bTn%JTvR$O0}sUihSs zKKSs5-D6BnnNh$(Nm0pd6XJ0(dMp-UzWqFO2UPc-1AQR;$_|>Jdh!l9eqXv1UaGgk_1{G$EFxZ$0Cf;qHb%`F1_d3a-e z%)I0U)yl4MRjBWI4jDXrAFsO4o%~>1`E}I zLzKd`leztb1j>jU-C3Y{IRnay0Bt`wjBM}ATX1_X8sIG%!cn=PFh zSzo%Y>8f%`u@R(41WesQXd$|~y{9!uYj<>Q4ur6PQN zwedkd!07AG6_chV7=%dAO_LpsOy~KPDrCnXLM1#SJ-*u@y6drOFSy8lqblFTRqDCi z`AlZM(_|GJD<5_pxuC)m83qr}{&JdFV{y90OF*NU)xCU{frbXHmxHU}8bQPCB0%0G z9U3n7=#XBCXy63q(SDw0 zGo53(bqUO{`J^XMup!UjoloOP2rZFW`0TxzGCtH0EK)p(3$uD`E7BN*N+anmORBaO z6L=Xrq9l2@a1}~}FcSEroSgtM#j^)8J~}P+$Fl5D7`~sa{1JwwpI_AI417wFo2x z1*Jr2J1=>M`5O!jDLq(7VY$SzWmQ$HaLgkj<@r9}%H1TvPyeF5{jypu47upzd|{=h zZa|p~GNywM1(laY=S5WHqp z(hdBfUpYq=-t9p_4f|&m?6XC90j-*kCxx<)u7@Fy7i(HpGy;eNYraIq2EDmU&$m*D zL(B0gr)Ru%60lA};2THWI-y10evrEZW7J#hW*=VLvg5YXZlQTfQ}<>rz zo~4Te#^YF>ZiSmn1BBgvog~lSsq}bV#CPe`YX)}5ox=wTG;*U&=P*;6!|2_c6%HjS zD-F}a)6pa2gpa(cYkeFax zYfw#SA;heINAQ5OF!hBw+icb%EPtE_M=|~7TrM!CWVfv(i>G|;p!J3OB+XKm5@VF? z7H0)km0?ui>D#c9<&NPw@x_v*7TwRV2V)=7Mn++J9J{fcH6yW*GTN>URX-AGx0!u- zi~QDaY&EUM1Rf-|V}vHb^fqm!qVmyi%U5E9SVGE$l8i$FsP%T`I|Xh_$J2)2hadt? zU(^6{YfOj}FD}ZITG%Lrr0if}-jXW`r?ckvO9Wb)TZ7$-(MB9Km0fOhhVT36<~ER` zc_KgQP7c{SdVE?VP;g;UzqbK!Vh}i+g(Rw>Q+M(NUusVAV3XmRnlMOs(-CGIbq<)D zIeR?hBFvCVCGkTE#u0iwURrd!8TH5A__)5hxzVK2`9xERvulY{W05q0(wm&yDS`r% zvIDh!_A&#d99+(Yw`5`*`4Wl~XDWECuIzJ#_A3Bb7On^|;4nMQ~;CEs+BpyI2^z8LSy zcW2QYuz66JUN^aMvwN0$xf{mTlj1d*vfNreQ?7pRKh|ibK*Fn}N3SXypdgPZ#@$29eM~GtV6=jRzlR3+|--ZIKlhd zW;7N;(o>iBba#v3FF5TNzV=Lw$D)EGs4*?MsZHP!h1MJO4bh+OUyV}=fQr+vUcYADD@X zfaJR^U8Fyp9@%cYzn_?Oek4!CJesr|X51ckobUs1OUT%k=_G$!D12eJzaqMvK6wb94x%6=H? z>=Z(ri1YcVb83vO?8jpk>!W3%1~2v9duYJnMu1VJibrc2K;Q4NVbK;YdmkRm<_Dv2uxO^Lvl3WlYOe0J9x`N*Y26M zcC7Awd**HGrQ;N~(&)v$#WR=r)-=?wIa9ev7NX>hN0TCQ}z#FkM6zM3Y--0C)NE zPVs&6%o|QlPP=`_LL;TmJybtj9V^97#kTk6FS8y`V;d9;a#6E-#(;ZAf)SVep*aSv z%e^QYvarXy%bKf%s}QXpJfdbPV&4rb!}Sj+lB4)>Gpk7%Gg580Wagk$dnFv`jv^fd z>k#6b&6Xy%OJ^~N=cdQWEA1?cw~%$==0rBdf2*2jg)!|3cQbn`Wm1cUyRC}na_z>} zSx<8t=@{ZQ{hF`|tyjBIIXw?qU-#&`N2muY-%KmV)ej5 zGU$2sxqr>tvI#TLCp}_rsRHu_!=6v{8g*4V)uDgoRIo&tJPS9Jl4F({V{GujR*vR_95Zq?XqPWP_>(bL#x=#LBSqHg+eT$Kv0B)D>9xqJMH%*=b@&kQP8W#%99 za)Dz|wYS(v&?;a)M4)nwJ7}{VMvRvu45#EI8yz{`xJ*>sJfpsiT*HhKbbOEn>N2FM zg@zc$C!j6n%iX|Y%%^b$4lUy`Sm?FwJoBHn(TJb_^8H6OMt-3n7GSfkcizDxo}T$YRpcB3Mm|b>6BD zr|~#T^Co&?U|#lF64<$E=KA`Ykt+Y_dR~3m;%3j9Q_@nTJWR`~q#%Bb<7F6y zdV(;yaVPO}G-97`-mRDE;uM|lYPmQKue|1Whxk~@VpxG$e5XxYx6(hh10+YWU)2lH zCJconfB1-;cRd}`uebo33onvWkJ?mcaEH^)uf@+uK2o?{G-XN$EoZZsqih;B-S z1PTU+iEXQj$?wvJj#Y@sUE_tcvO&dflw3wQnsVwj96Fp4>5T!-1-wCx8 zdcB5!7{?2**Z-(?+3>mha;c?ybi$6(@QlMSNqDbh*#i;lZbqkkyY}^JlSs`4s%~e> z)@9lQk&uZ=o=TmgW5x1Jhpu&`O!2GXl)Qa6>Y+@J)$-xrCrzUgZjPIy+&#>ng z7Frsu%uilp;qRlCkbcb^dK+<3zb+#ql2+KEiNEYQbEREwKvz&)EUczxQ+t2BcF=2H zez{U1&Y5Axzar&{{Z?N8A>;1oS$+l3@%nQi%{3M5_g#8DI7QNK^+1j(>+S8}G)*Pn zEC|2g;BXw1p$KP~+Rp zjn7JAAW?>b8%=sJ#n%_X9i7Pfx}@#a#KpH)1&O3%UDs~=B7@&Osjitcq2y-U=(PDe zSMzJMdQtBmiXUz9`@fD9g(E){N3?WV^q)dTeQsHaMc3C>+L|h2H3$!nUcH*#$Xk;_ zh`N(rQ;b+=p0Kv0?V+&g4pyQHXFMQ?d5TCv!eU(9U|ZTUgH^VTZ1TNleEYLk<$E!W z1DpJMpiiLW^(np8Qse%arUl6b!3nFq{dw^EoGF6Lh3bz{EcX*x;WdY7gJ?kt2+oI- zb$CU-IljG8M zc$r?2(n4iu+BGH^9wMk@?0;irRTXP8$jLe-z{w)NGt|`_r-<(ecS=f4#db6kZrm7N zrz9FPJ@JN;Y;Hy&YFcAkG##OByYA|f0bvu}ZqU>%*CJVL&Tmkc(F>okTL<>qedve^ zwwxb#U)E8ukC{V9MGYARA)MGQXkeWoW>Hdj-T0U}d<*}iw+^|gG-F!d^`%G-D#2fi z{k|xTLarjOPC9C4JK(t!JXXe3lX_1rc0b`^$fs2&HOgL7Uci1S`uaZTY-@OH_(GXuHM&`4 zB;$Kp6Vd(R2KG>85eu(o!`f*X4|;~%@ON!#bez_u9GW_V^?3F~qnrJrgNWBtD{Squ z9yjlco2+=IwGr8t++n8mNNZEDmSpSE2W?b>1))vuZ?9Av9lo(lN|SA+ITK>is~cW+ z)hsS*YC6ps_4Q#B37w0@%vG7VJMy@m7&5}?Zd?}~6-DXzzV_IZFY~E0{HV6w`_wq; z;rNDOPh7Q^YvDGf?Z(= zwsH}LjTcl-q~o!2oJfk7-$qUaLrUw27X8kE7L!5;KU_S9!nOARcrsO~3#MlkgEB(q zu^umS7+WVy_-?W!WMnRPoO;4L9AU-2&XsUN z3(8Ei2Tz_NLn3y&{J_**j~g7i6Xm^a=UAzIu}KcedYS-H$LoPF#?1ElXnxETzKVL5 zxeyrqtvAm$oCp7Psz9Md%J)-rv@bAGnv62)9ZN+B89n`Q(SmS_YFMX&EBjG#5-I1c zE18y;F+=TAIlhcdGcKsEWeKmQBL_=M4Yk%EcdPSZqu+RsZ(D}?)zT#C8|lG8rscW& zyUsK%?KcCXx6Sxime;J>59eZXKccYiU*PL%Jw#hHY#iC1OkT}s?1=UlA1 z+%A#|Vvf$8=}vqRSzdX&H#(~gy!9?5^xm%s+uU&BBEJ8Tq~bmp*7ypO99vUxv(&fy z$M!~^nYrJ)=c`yt3712!bYHvfp0_9j#cMU7&gx&EIeAmz*J_@8YQvpXvuLGq;ddCYrm6Z&e@59za z^a_`6cVA6x&|AzBNt3U}t!ga0A?F4(}=upOC@cN=7-lE6(`N|%h6UiUR4jLGOdOMJS=ZJron zb>OXuwte8t_pP|qOFAB$joq@ZIyQ~?Ih;Bn4^3XoxiWSD zA|g-&gM<6&^|kJo))+q_iq3`1VnJEif=h_!H=K~ad2{S>$TPbAD7Ln2dD%kg%M9IqEFa%Zsg6kWLenQ z0DrH5y7h$+S?$1pL~LB#9G_i5bv1^Pl9H2*rb5%p+O-7}JtU6x(sXK6Ryo^cCpzjx z_G{%&u;iiGX@iP^n<+o+rL5so3;=^+`E+|90=?(4`l4xO=JI~JDSYMlj0o`Mtd(vm zwXj!*=;BOc zHi?r0&Yr0;p}^3vC$f}@(a7~H4Tfk#V!7k4G9E@qO9%i`j7Hge35`x26ljqh2_IhO z-@2Jg6vI{{wQi*$uCj-_6p)7>FaY<$6MGDZq`X#wWbs5fdDV#rPtPOEBoR zVVt|tLp$0Ywd|agpnJ@YO3NJ#d`#A#e&~5tg%f4@Jg@a-5N%dU!dco%Z1BcrE}jMB z#i2dDlubhzLCVK+#998Kcd>RM*G+dhv~}7BI?K=PFd!k3c4x}!$k)(-UVq|*GccHS zZ$grLc9W-j@z5if_0Xfh-@X}Y&@eCwYFk*)=E`J5b_w@Z-B4tD!tfmLl-+`wBF?_g zq(+V=OSjZ_7-ODR85$dt08TnS6ye>{^u&bk-k#-`FZEJ;)ciGgzMW)IK>cOunD&6V zpY#TUi;GK}Pb{?T_0}c%jAcdB^nmR04Ek{@C}o^U{RGYJZar8a%@@f23#ZXuh4$*4o9xuo`?jLPy|`mh!%wZ3&*(!pIaOGK?(kwc8$_fp!ng7q z4hg_)zJ?y`&$Ahh;cpHpShpk)QD0x`c7bD{i8282*-?^bbpA!tFC z=ZP}iw5kG*<13xe(}^y=ksQR~JdDdkzpRFaxxtqt*32-FyR}6{gYm(Vz+v;VlV{a+ zbqi>A0azR^dneeKb%}mHe{ny9%~EKHo4PAkK3i}z&4$6LzC_8|y0uD|7Zg%^jB5JT z-$F?vuQ0!AyDwWQEF!SJLSbTCYT8M}!qr|Sfh;I36%`i`0i!3-(9p_K$s4c_xeSGgmx0mv!9C@{Z;MXiIH^0rCp) ztw=M`!&~pXC(zJXx3|z)1B4bY7=YCQu5|)PL``v$=~}=G+zhogV?cQ3E;4q)z^mwM zbb#%2?oiS*GT)2yqhk*V-#28*y%;R7bs?Pws|CBb?>}On`X*hC*!-Xe{a(?4FkpFr zZR^rY{N_;P*nl%~1*bUaN^+0S-8<}i-@=`(SFhJu-)k%KT0XoB34`W?ELmh|)SuU< zC+q-BGEjgx>u+MBB%-aTvU$_n7*ydX`I=THJkdzi4zK*+<-|^yduNHdLgv4*3#82w^%j;iAOnqT5 z@#_#acsJW+z{$lm_qdHe&dkq;exJ-EWtOWrCT0qH3yia$n4GiiNXf~&<3lCQIiCfI6UIbGH?ONK8bpg-P``iwzS%7jL&p0ck)JV! zVnoZ2yt_q`4|6&F!$y>is9#+&i62^3`R3w2A1yth&i(G3Tg39~OYL2HI-QW=rrOWM zBgDaz5Rg|dM!K+Clq0iOo>I3H|6C;&j_!qwu)R|jIen`7l`6pidM9T`s#&Ict~Nxr z)9aGnAsrl<4ya#`GO3>ArrFaEfejt%GT=N!Ov<(+W39q02#oZhCn@yj5(S65-_xK8 z;wC|KMoPVXJNre6%ux1UZyt*w^s%KSz@T4fH>_0*8mKPnBSTNqkG7y8KDxhJhEoo4 zCSWgZ!K71?rM7*^4cnkH7>E7Gd_e?3HPBSFx~66h%`T_4b*X3}G7?#Xq_o1z!rXi> zy?$bD?mNgzOUs4Z&d%ov^R$(MLJU3XO#M3@HMJyQcS%S}$|)%s0lTXPPoKI6JVa1o zgk(%k=F&iQZGDUaFZ)3d@F2itxTq0WlhyoOuI>m#93=MSx5c4`q&%jqKd*IdW)6`w zT-13skvBbASEpMB-zRc_pv`^Qd|GZgP6B|Djm^!q%0UJpQPDtpR2AdV^nK9&xBeKw zPI|7>IBn9w=qeOa$=^Wxsa*EJ&W=t`KLG8AKLuKf%zUpzGhi~6iY_p5%wDQ_cI`QGAkdZ?(SUgK>hajgL_KrWlB)aO?2ht zU5}yrQO@My{%*F)Bno)?7YE>7E41*=Ae8Ke1{|?S{0j25fet^Imd5>^ol5ex`2%p% z_%B
JLZR=C~H@>S}1FD00!tYMKK>8AZE_qF*fp`hkd$We4O2B%QJjk@BlO&$cM zNq+mE|1l33M?p?b4m^m${Cojd*9I{9%&Z_S4b2-3jTB%Vc6N7x|G2$fPQHe_TbG;L za}YwCmX@Xso(6#cy9)Tb-O$j|$|)-w1B}(gguJ4X5&+Jm_5)R~CGE;zKp~%?(*E9R zBrGo<6Sil?jhwL~%+>h4GDL6E>wKcjgKMr`>P!h zwnELi7#Nm9F(@>kE)cr>aA8!SUR%1oI<0W{F5g7SkmkJPs#`UhFuXeCw|j)-<>qN#Ps?zDx{-)X9$12tEwDMo!e(nM0Yi$xxym5E=py zu=J1Dx*v@cm@QtR+wl}w>H;v+JM~=oo@`)l^1Bp{VZh=P@}$o>;6x=P;7?9YKBlHx zN_NFnSF@E_qobeKyug6&o7F?FOH4}nHw=hOlmA2olE)&7Aa6{yNnud&w=?O}1s+BO zUPZ~uIu)YMVt(m!BF0%vqn)m?KmLn^1y!>d6WlFXZfxz#IWV#Spq=P7>*AJKeoAC` zroQ|t?*}hnxJ55;!|s;{zzz4Tb_R_vE{2neMb4txZLDNA~tEY{D2lY=v^{RnfHxzW2 zYMqpn6tG}LKWW1M$uCW^#Qol0Xq5B{)W2T~{{6=+O!NvkO2_+pIE=%!WpN?Dk#qKN)4z>UT!*5ybOM z_zFw3=5ZAFXgVLTW#*fl%K)#6OvE3)xoM2g^}Y+(e=sP7XFI=8qD7PQp{Toi6X4Wc zlz#cv-R<%0zkZ2>g*sq=S^!7iPexF9W%>kgU!%Diyhja(B)D zSrp%;arnUsWZDYXgyk}@SBj^vkO5P>t{=imWsDyz!``eR4a<9O|BM7Z@z&`$Ag2JX zPsfGW&RCY6J!@l7rzKR021M}fi3m&>%hrAfcT!=n&c~q!xk4Dr2U}J@K4j;->MHq9 zWA>BUO^W<~!@oYa26E{X!ef?{zH!SGr`e#VOtnuD9RupuG3}cG{4qE1eXf+=pXkj| zm2T+{9F?uv;JzwaZD`j?Z_xA1kEjW8aRFwNxj^(W+nFi=$d<>EG{DF;U?; z=uDR9D=I+pRd9Ghag!#yZ~%1g@brw~z7`BL9ewc|Bx1*dEpNJ-I1I=Utkn*5g4_7! zal?f2Bn5x(ICSyZZg1uii)bp*We-bix+Zp zDS%HZDJy?2E*=8nOioTteqmuHfIxz4@SH3|lY28w^q!VYF6kbWbkK<@JQwAG!v1Z< zfnTsw;`h4-Ku(-p8i~5(9LqTIq(>ves;+|sRH+aZ#((=Hbc6zNyn)H8R{eKP4Geje zFe_Ex+aplO?@YDmu@?06@@HGRv9p2i((+VhIAfnac&5BXx_l6{pvIHT%3KfBjKaB3 zw?=y>awGxj%3;ZMOK<$M2=KrLhljh360`z=p#s3y8A|6{C|c-`p#-woh;tsBC0^jk zyh~>5FIwQT|H^0-g7E$OcWv-UA~S$6ED*35y4JeG9{=F|)s{hrFBI?x5vswmD#1}$ z#Fp^>{t6!iMbrLQ!2@6FzX2Zf=K%8OkOoDL19~IXDhbX&f+lk~fT1eYf*kDmUd~i{Ny3jDR4x}!s&=0Mi zU88eM2sNBe2K(K$rm6BD^sq5>fB6xd6wQmRP#c-{_m*Op!yKtAP%mrsL8T=v+4!I1 zA{1~fXtGD{?`|qgMhStSwhwNa0fJf(3X!P2J!>RBmp%Xi{9sVr92YzCt3I~oq-$z;l2QR(g_by~7hks~EM)56`6};^ z3HC7o?>9NS2}c2B^=Pc~!hUN=)tdj`z$_Z)->jOc8ZHEIYQX7+X0Z?x~VE$uiUj%rHXs_EiZ& z!ap-yD;1RlAoWb7%>1?bLmlluSHBw{vH0)lme!_Kv@R12=Y9UI9matc?&Xx>s3I_m&5 zb~CA6U8ZqtbdKX$DQW52oVBOu-)d@WfpW+9x9=1!d0~fMMt}O`14Kp*5{B}m?#AJv zAz^j(Wcn9aiOnTBIZ!|x0zz0t&RX=NTaWGq>P3e?UR(lp;u#9Ghc8PfEdVO)H4}zY z{R0E?wl9e-iSs`_$LFv;JvqV9goWTS{<&H)DJexOZy;uaH!1)!(|wPv+!~-NBY%bp z6@b0`@|eU1nRYyzHgOMqJPJJ&v;_&dWHZrPR7#Fr` zotBmsfTax5KU`cm0ZtNFsGo5a)1ImPFB>?iPTaQxACdQ;N*(@P>LLw5#n{gcz#Q!C zK;lwTS&0TD_JGT!p{Ey7Qi=mIz$xojUVm9Fsc;A(t(VFGiIJ4rvOoWZZ9eFC1S0cV zf8E}`@^z72Reo`Q*za5I-6DHp4)LFG!U~t$3AQ?nk_4dM*J2putku@1L)AuJV|uj8 z`}3i`T(y?4ui*7N1Cdn!S81`T8{c+(5*!?yw=yySnf^3It$1N*=pDd9%*osN^e?EZ ztA7OaJ3!lRfJ!d_SY`^>cM=jOkveu!;)HW~ef|B%J6zG%_8mBvCDlnYHX_b0wt}K9 zK$L;PdioXG7Z>Wf!j&(^3wlKl8O zd>rAoX}m8E!P1?rfUAP9)iXF&r>heAV>1~cFCO238=TfN0(OM9 zS=edLD@Lisb4+*;{E^MF-)`Cy6_R~n38XF%eTiz%8`}@Em>LEiDHt_~_({JkP z{w29#v59%+$A#?zV463g(_L^({!m!8+C)60oj@+v;!kvE^`GGVf6pysgrMq{cLYRq zgYTfRw)d(=FDgSW>V9MRw>poOL{4pG`*OM(_7@riL=5#POc)QQNVQ1|j)RfIIpteU<6C!3TswY)=%;A z#**Do6gC!SW`aPoQGnmFEU5nixa`Dl%m9nUz6(WQURQ&GUieM;4)X%P;^gs99>+3z-6>u1b?_m+QblF9!`VD0v679rh6(NK|$V< zw9`(m?`??9x{6&Rv}a=D4Wdvwk8K zqa_MBXnUrk+xAm`i$Uvyp6T7YF~Rz@8YeViE&5tLxD%l#u*p?ViinouMr37E!`7NB*7I!{8WSFZQ)kRr~RTuBsb7 z?GJop$+ArvSc)T#1YNfz=Zs*%j_jf0K{36oQkt(B~0+%x^0E4S4KTi&94IymFq4n7ZTT~Q37ICe+ z3$--dRg#01Iiw5XD6*xMmE(aLtsbOcg#SvpPf9{U-XqFkHUI;NH5Cw1J^C+Ex+pCu ztVM%7AE1!?#`YIG4un6-pA4BW0z;Pxg|cQ9+5$X3VeL0VKn%O|A8Sr@y;Ekxcxtg3c*6duyJ;oGjR!A&7*_RDTUxIgY8f`Ich&#m zqxfen3_oHU9-;GIYh-*!O9%3TvdiOx8~AtqU73#=X)0s4tJxaimVDr*La6&t$JpZH z-o|s(pY_vUITHIO+;4IgFaBRyc{tsF$iec(ICi7{?*qvRq(F}P|7wtIz|#)o`buyq zvX;&U^A-JgpJ$!%y4qsaegAg@pIIb;U1V}bs+|Mh|MVR|0rV<*3#+BAq?_fYKAhnn z2y}Xo)#c<+=jZ1Em?f{Ha|p5$6AJ?JF4Z=6c6I=9ec#&y2-?!p5rC{k46d+FNlpen z38*4MDl1ul{5|ebg4OAd9ulB(GI|a>^b<)i=MP;Mz1c zA``~?!BgGSQftc=yAb+a8B%j180GYMn@f>jxVx){8CzF1um-Fl$JBd(oR3+f@xcnJ zD%SgVZIO)FfTw?5cM7DR*PsRzpJTkUvTP~iY5SPWhcjLiNhUDVxUWsPZlwi@gkb`t zA3Y~0R)Urj4$w*+xOEoy3(GQVN||(^D8oK|*z9@=FkCEV6M*7wYY68o4i)Fizd=db z-iALw0L}n7g#yG3cUGpM=6eduF78D;n{4{;HIBQ}<)4tpIpLI*l`(UrQXWfS1qyj? zDbIjPHWbiq9T-_&OTH!nBy}ovAtCDz7P~HbAHoSZ?85ecA>5MR8o)m!2QaP>2xIYo zBz>RQ1vSjC`gE)gMOQ$lf2E7x>cD|hS(%jgXZ`(++Ar?oQ^T)Q^(`e-t*sj?F7!3n zo;Blk2y|Yb?^^vKn4tiuXL1{*Tkq1%Joz%zMkms-h;tpX6PDqRQtblZ$<6++LN!!? z3&ZDi87o>SEoA^+?=Q9B{etPMj`%-edda`gn2}oGLt_IRzSUFZ^Jf_KJ6%q6a2g`| zSL-R`wmMJTs#y9=<+ZdTqNC9OOH)!*%xrF61T1Y25WNGc_mW}2CeP2$fg+WI15mJv zIM+~6Fu3fB8yS%MGhqoSn+s-N;^X4Hj+g}}1sI&~hi z)HDJ<72 zQXZ?fK+@D_VP(~Q_I>hGV*ael^F$#s;GhgZ^8)OKE^C-$3edw6DDXbY+FUgxB@uu| z5`fBBU$UG0|4yPN@6GVaJf}ZDCN3^#<&D6sfGjCcrd!$E*Z`Ik!fEK|YEg1>0z3>v zIqIN+N(a>CteNg3gu(x*`zQt0So~)tV%!%2jjm?u4{2fjU%viFxuE~eVJ7}5BFm1V zic0pEFI@no4{Sv$Mn<4AjLTyxA|hgHVF8f;5}uwdDs=<|1dr^`-SpHH;6HMzswRsT z8XLI*SHVQw0~`Y}2Q&-nMn>cV0|Sp$26gq&!a^E=CMp2i-U0ysSIA&_+g(TLBJLry zkV|mkLl{BT%(2HcgP9y1BKY_GLDyFA(P@l<_oe)Hmuhf$63&rWFqZidES|eb`!&=- zS6MUGMn&5E?a?6SW1}oTwQR0{V6}q#Qv{uZc%$|5px)@Q)ZjMq4r8$aht{S6G5}q- zHudpK5B-PHCCLEbw*O^tfts;?41Qo$_X==C?xXJR+0|;^9T#o6`8mfFO*=8m$-h?< zo>BfSRaslq_~nlOX-t7le_g1zVRp5oZLlw`>&SoG(&{uF`S1=Ah$pW|gueEC4Mf5# z_qub__#Mj)p4`|c=y)~Motv!O6UK1Odmvn1DUjeEY6YmF6z|MkUX3oeNkP_XFKciU zQnxc9{(1W0QhTFF-xlph&*RM_hM}=)ExRrbYE&_4(pH{8N3h5JH#INXy{rF@GNIzg zmw9x&qIUHemZ|YQnyw_h`My^@`PDj4y}%=(sqo*AI1~cLWvD%W4>^0fK+yRwie!XZ z@N*7&5|a9rq?o9<**VTE190bTqmj{aSJZm!pFEDlPu9bIITfMzD86Jdkew6rtIYS= z$MTKt|KRRDfSPRAeQzKX=?E$yO{pqHnskT?3MfTI1*I1Sl`36I2pt6if=D$e3MyTc z4hbEk1Vp4mC=%&`P!bZ7^Mu!Tt+m&F*WPQ-cg{Cw4l@p8;W1CU@2mX(ziZr0_4WBb zpZmiXsE=#gg!`R{JIu^Baxt$~$F7~Hwea%>sfcX}3M5q%(#tvKp8xHzpbWFH;_I8| z0xaQ&*#R}QZBa+NYO$yS+uci|7XR-ofIM=5!6u0A_N2fS#L3?etDMn$8c+mlcgD8a z<#T;6XX}-{VBV*7ai`m~7wlZz-FF_x##&N~1Aj=Vj^hsGs@h&rKw0s>k*o6G;Son( zi#KLwlPdz+m6ZmUi~mpeAmGf0?Of`2IjA0@+Pd}TGnSIS&vVTvmZqg=x#|sZ0jPTa z-V>~{JPn1JHs@1JXMb3Ftor{h)+9G_*JgycG`sxHtQlP!Li1&pA1(hV4j_(CyYD)T z|IW>J|9@{_NQjHS2lH}$`6gO)_siEuY+F@^W&d|oBD3#y{kILNOgq|WYC^AhKU|+* z=r0VM|4moJ(ON$YJjoWkebY`?1v{rohthTx5sWS|LE9m7UPWKY-PA#kg2%&W{+_1k zUH9ngo?72~CaY$`QAI}~%VJw^=l)c;Wf+JBUQCW<6bo4(2T&s8)>cj+j2 z4s7$Zn|(SQ!81Z;&t1I-p%6O4f=c+G#AGIrZ9@dB-88U2Q=scsbXtT*M7wlQe#;#j z7aNp6l=m6%b7KfX>5H7bmi!jMIK*7tOS*9#dXno=Y(m=tW~Gdi1G*R{wNE%^MJAam z;L6Wt_7T@tK=#7;L)eDymG!&Kq-lop)_O@Hu*DV104a#^eq|_4z#iug^bp(F3SI?^ z-#@RPI&g~VIMn=AmFD4(!ZeM3lAa#4o)jX~LylIsaZ<-c;k{=;U>|B2kFswd`KE-( zUwjlnus%DIa|%Dw2dATu8W)*ce<9a?dWX(}3r>ovO>NQNpnU2p9M2XtQ$_6$>B!S- zsjSsc>}VeC9k= zf2^8#24@4|!*^x%>`TMgzpVsyxz??iuz|EOKMRc4w>yxCwVkEY!lz^W#D-j<4#=n5 z?daS68oikCrV6nb*9(#QL^}T4nVZmcAU#jRjT2Xg8ZIqd-ZUe}>67aM%`4 z7(>4I6X;?vM~4~W(sm2DgSo<_si=F3$tcTNM1JS{o=|~q5Htfr=bVvvUCj?$mD%SN z5V1coggi6ua$k(73g21R*Z6r085Gn10Y5Xeus-ST-)u$kMjPSy%6WSFGz2zIJ~N8J zyXAvgl8;zUJ+i@htbi_mBovh>=0FFHond6x#&Hp%EhV(NhzDw#mFW50x;(f1Td;iy zQ@{hMBz2Glo&y(TgwdLRcVqD6Io~!8G$*v69k1N$Y+%Q?GQ=F0{{ipBTf5hYVM65{Sxe^^#<3!b`ed(>>a!{qK``OlWPqSv~vC zKp?w_{X{=y4+WtjiS-RgdzD;e)ZwX3V_ddBad)(4uZ6O_8i~n%82XZsg+UBWOZhd1 zK3YC8KMSKRr97Wh7+G{E(3xlxQAH8Xg3~=wajFCVnpnS;hrk z8=BCHX$KMIMo1KeeCdh`Cfzi1S0hLT+XD~lT?k0rS||l!vNWXpCMwfW#sOSsFv{pv zF#Y`;%(~Kv7DuIThTYIz%9O|`^14p_yLtlhMb)9^gSru-tF?S z+PJ1i-1>w9nHPQ0WYnk8ep0a5uXJtbCnZQYB}IwU5qIHycS#O+YZ5xHE-%cnEftQBjL|!8aYn3F}SLfyLBJq}q}h>Kx^- zRpW%gYN`Hdf!YfVIsO@x5!)W(#(Q;+mIim8vK1ckex4B0wAXniDi+5F78%Y&C`4i= zz*#6Yuz%~5hKFME&L0q_!9tM6q2N&X=5C-&L!TC=6}KOvi18yup%ma=8U$_%CcCRAn))1`Y7*BVDTZ}g}!Rrd$Ci%vT;o+4z2_>#Tx>RP8~g9j=F z-m6UWviX>R2O%)g4Q(gSblMdD1>(X*Z#lStm%9Va3tBgwm=0FB5{8bLyNy34II*GY zQ&}GtKbR)AI1Ae;*3{jvL7xJmX^j&R?`U*AkJudoGO{NAn_*C)sE8mE(Fyg?+FO5Yu4Uy7opLZ&^NB38})$%Jx`rK^49i)kfD-6B2i%<^C* zh}Zp!@HM;Rb6|wd-qAj3;}``orc+8n5iVk;jM9VODTS04QqdxEy+>9*N$*MBqVgxG zt#e`*(XB)4+b0+i`sV(i{obT;r99nqM`nz%zGVB0AExOVIib-M9ZItxPqLh1hZ4wz zEv(FO2yXa*Ol(CNipymLH)Q{`B_DJf(szZTqwf$IPIq#}vk~QEk|BTw!@AXm~3|=^WSKhsbu+OH)1%`nY;j7pB#hunJk=OU)K4iIc2t_!om#-Ta z(cJqbc!`uf={&WJEnJsMN1=QdwA%XQHk`4}mmIF8VK__@;*K7Ax0^ZKP4nm{YTr?d z8}xDIhC(%eZ(;8SAm3{0g;1uBU9SEmwiBQrL}2PsIDA@y6`!u&_sMh%wMgQKO;s7v z>d;Di(8tQ=K2H~`p>|Kz#$wGfMT-?MHP_@5^R5Xqv)+!b z?+%X19ur8X7DHI%*&;YP?G&n!|4tdkxK78xPo%Vm)UN!nMF8*m-g^IN-5j4ls~}xS z?kGZ|%Oqrsne3>qxi4M1qL!c8j?T!RITp(B?WjtApv0+6)sRWj)G(pN8sg$E76p?- zADy*m@eVwfVGi(Wv}jv6Z;XVxb{-Wpz%(v8s-fl?&4DnijCjMKaia$lpJPV0X8Wku&D1>n z6?YaDwJ{&eyts}_SMJif|Em8SGMG}n<>k}?{!#w?703#2PtlH7S&G1u8y4<+cLY0o z(;tOp7_gndVX(WNTl&gux4re~K`08TL^d8d=eNj2dd8N0oR=L@3jU_qVEDHs<&xgz zhqUu)&20w1?=+W)-HXI-r9!th=d?tS7*P$eyJeM=){&=L#}cDBhm?O9|dvV!aI`aDP<0O?|@6g~w>YMWr|KBZp>=Ugw}B-diM+ zPBZbg^37)ZSArYnzaOp46{!!`Io*C!_{kiFW<7+f`c(V+Y`?t@xx^M!v(Ny$M;;Hu zm8?_Nmr5h#)rBlP6Ts)70B?P!e~z6PhRWIXBN<7{BEAZO7PjG@m{e zd{(_)`xxUGzSeQ(&~vD#yBg-TZF%1@Jv*C-F9}Fqn-%BU7avA&Q}#HEEwiqdQ}dYS zL&m1Dt=WuH)=vJ>r?-}gL8ZEkxH|$ps72Fy$}2{k5+iY!V@qqn+hQ-&JGjH*USfv? zm}0oVCtUJjp}yBKtEwEE-Gz~VuXUX5rpHwIk@c?e*G=`QdI@qu%*UJL*`5Z(#j?@G zOugLifkS#Y2HWy^6w~`g?Yu^0lxn@Zsx12I`qonQ^;4bIP ziQZ1?TIt^Y>eE^5+@ZG=YsPj?3H{^>&1!#`q+ocICrW|&ZWoL+Z~c0LJ{v}9*L;Fu z>Bw}{uu#W^wX9;fAFxM41TcpBEq&-IzKo?&+Ta#*5`mH}O}Uu*;&^(Qj8?gAw^Ha0 zb&d}?Zd0&|sg;)%?itw9`51Djc;jVBai>WyzO71FdUIJmYl^g@JXf>KezJFCT-*uH z##s@i*qRd70t|uJQ)$$=?ocag@D4iT4}K zXxIWDyM(ioek?P#nWtPK9i!bLSKiqg7i@Csj<|P3Fp--Q`nHM;2M^~kpGG+A_z$Et zk`_l!xBYy}>enaA7K%aZtp2Q5?>cLVMvIkXGK6zu-!Uwq zd+2g^A$Rk6?wCFB4wxKUX3!&s{BW#wZntrF5A%^L)W2B8x4ku)#5UzsOVJeD@LE9F z({&hRpTS-?Gq2ZvGJ?`R%$|U;x@nj|I?zQu8{Gq{jSH#erb#S+c(%ZnX6) z^Wm?n*X{eBS#?Qf4rh3y;XPjcLie7sp!SVczM{sa2@QOHCLA-<-4o1i#sl81!1hY2 z-|)YAxoC>Jd9JrR#IaAvYEdHd6(-$Vw+IMU8X=}0;kMhD@I0Cp`CnmdX^-XU_0{>p z-wCqWr-x{bZQ8h=FF$$o#;z$sVd$Yo%Zgn^Q*%w~40-34PnJm_ozj_iP@YD274eJ<+2*8X1+~_`!zty5 zl~ya1cv$@82h}wr*>0z=dzVJ^zF-#Br!5O?E!wXCB%-4ol^zs6XfOIQ#Bqv+vE(9N zIAb>#*TyY=zgO?u8-Kw%7A7x4U7eQ~7;Iz{wmvOlQzzJ!(>b`!i|m9Gu5EtiVk{9> z+HTF|(o9`(QR2}ue}i^jF<mWL8;@>fnE^q>6CW~cDGky(0Wr>@I$HIH)bg@ zudd8S%Bvhd#*?BTt>JVIS^W?;1|FKUOcTk9?Fz9Lh)7K)T?9-EqhQP6!s#;*64i|0wZg9|Rm3Ip1ZVLrfrJ z&RKoVz2$Q0Ws-~GVO?l_QfJsX6qDffc66YD(~VX=oDl99&U?fjLwGK>)VzUTm=@5; z4_KqT(3ZQHE;g5wUvg3Uygbd<^Db|(Ll)_!5roucuX%n5Z^X$~l)aOp$t%_Ad!f7$ z7mloYH={Fm1?v=}Ujst%BX)d@LP<^E&Tuyk0KYPm3JpBd!R8(YCJG7CgIH(3<;i@U zuX*d{&6D*@O(%z4tINf>N3V6tvp4u>T|WQoA-UApF{L}DEkcNBG40cnh2$uz+BpKFiMt9q?%*8Q3&A*%&tDvEw zfi1M%XL)u^wt2At?tT^2ig-pV?I+%>aLU|KBh>0cSc0qM7AuSXQ|yw;G^oUct8v~= zEpZHeYo^~N!38hK_;Z91k8CZ4;9EpI2QKl>yiGCc0CR(q?k$j--bNYWJCH_r?$8Tp zufzOF$7QCI2zO{`9$OgdUAXBtHhSSFCQ(Rm?Qek59b)^R{4#S z@D#|Mb;Z1yo#DAIF!_-6g1>CQK5<`zt>Xlj=I#(;19b6;XH77>+$ss_pY|$88BO8Z&p&JnDjKm(n-OU@~q)ffU z3wjIB?dpC$ZBV327BtyFPYcS%c7;is3(b1-rLurwIE=RsZ3L{yUsyW1Lx@K}$)zof zry#{snN7bb%JF<;4n!wr@B^RG?4i$|Y&2dzjQYnPf4I$fbEM=@$GWndGZ4{uwhZ&! zjT3DRzP#f>Iegdl38PY764?AfwcNS^aC>(Guo;}e8hs=PT zcpM--j1K)U5lqNpylAw)oy*RFzRJ( zQ6N!R`>AwEnV5cS1}%t<`z2sY1Soj3#vV_2zI{vVHOm8D$kh4kdU}a%CtbW6b}1MjlP2UBs>=f$a(YQbO;B&O%odPrbm`z(c=nTOu%FO zk{ugY3^rdSa*pek-;!8NtM}4n870&PCR(3kkgX$-%v+C8_14yGWIG=Gsg?6k$`9KNPp9zDxWG z0a5&4hn%3pSSp^jHRr`Lc?-xMYA)LLfR!(uSI!2J3d`z2t%1$K+C60B^5@r%k|s#n z3X1id`c4-W6Cc{Wk(Nw}Z(Ui;&TKkI08s%-9@XwoYT4h$^86NZ=Wz_an3?O}2iO=M zSMFZ9@>KTdOF+Qb_ewh`DK%Bu>#<5g8PyH-k7f`CzUT`~Z)4*hp1Ty<{BFK0^!E0( zW<3W2r_Ce(=78m3_&wpXt62|1)v8;kE{SZs40hV_yuXjxf?itR;yD>DPdt~RbIF0b zbFg%4-J4Ku8+or)Qu4vv5Xs`vW=C@{_Yi_^EYmnAn^i^u{PL<(l%r&T+`YiurV@*d zxT&ITIfXmNUbbarE0FXKNJ}zQbvbRceLwAK(Y)KAZ}F;W%se+G7P7boR*8i1m87H* zu6|ai&>U`owGJ?gD1hPSlS~mAJvCb5JQ{r(C{82KOkK76r2DzhZiK?MCf_ltcr5xK z5?QC4vx?RbeE4J>QeujOpli+4il%wF`z$){h;Fx+Hckps4GF11pzd*()=$D&sC`1k zD^%NzL}2Q_(oA$P4F61&IAZnd?AvUJI=0-w&JE=Gv$(SVYc{hL#KXfAS`Ey}dlrTo zrlG7$poPG!GS!|~^o3IQy7ZS9=$fcD1_ipSimrcJ+5SBrtj}2 z%vnC5o*AeObU&aXjlw|71wndu12Pm7eWAXJUwy~qNa-Dn>4n^@I-rRywzB)I*jLju z@M6Zk;0TJvTOXWKi?=j=?tj35)VNny5B-LK{QFKCe%3KR5V-buzzU?dD*wTX7eg$y zYqcnjCQ65W3JNO;jh2$PE9+BkRv$w*bB;I5dsKtcy`huk`SXOlBb&Bvjk1ZoNEvDm zliP&a-sU|nqQ3)1L_b?@e3m*(+2G-+-AX59)KT30n*})pY%=UT#Co-OEy^qX+agti zkK&QK$Ylh5eHUrM^aU+%XeY#o+WT}$ry70YhIuTZ>-8)dFTkx6A(V?t9D@%K%NNmY zLOaa5Wx$O(-|9JCl1F|FD;G~UQ|FO+9N580Vpi*w)9ngtp7p0&SN>_3vi~WmW?|c! zq+quQ@FsDtuc@xKPV9rDarW1K4A?1jiKWaN1N;X-l=fQBn2LaKZ-XZKp&vQZ#8|pr zNauM;BeGXGS-ztb*3Xvh$&%z3E~`x54?>@!Udvaeu9+-aGM<@5KfC|6Tf{rgC1guy*zNv#a!EzZkIfESA=8JSI#NLo_^& z2!0CJg{GU%Of5f&V7+NZPnwq{D<IviSciYaFMD4pp6cpz~U546&EK5N8Hx6R5-%sJ*BC+Hu#4x|ydQ@ThYm z@r*d3{>e$If4XQK#;zN$|JNE8L(T=AfVI+v@y7OJ7P2Th%8FE=Xn}l>4cieCT>ug0 z>9V6Jn4TTeXJ*S;Pc%oKo2LEYN;}2BS}4_%;Zf%Q1}JGYD3uQl59a}lgug4h^nw}1 z-G9?x)Bz}X{ek-Bw8Kv!ul&F8-i5oX0@yAVX76E|Li4fb@>COl+KZ83XWIKu7yv~I z=6+HAPmUudVWo6{zs70yA%wqr_X*mvJ1l65G1yT7+YO^-+NJrK1!dB4fb+EoAUJ~Y zhtcuFAWTtfw+Eg!6tV|-y)QcrTCjG9J7sU4fjnCv?a~ZSv)1q7Do^xSHZo@iG)_{b z`pI*p0Puh&%iq^=IpM17o%Gtft}Wd2sB)sRGsErTspz{@i%)wwlRFK0U$f3pp$z*o z7~FqN6={$;Xydrf);!)A;+ixA^eY9{x7JH7ScAWjbP}Hg5ILb)uNc$n$NyM_F2~)o z7;iYrFhd(DpYTN!Iz*5!?s8ly5~5^KP1DI6%Zp$-M1T}lXs~>G?*hcID~XpvtA&%Q zQ(_bRBJW!=$shSaigtZp7TbiN8FpiIAK@t4gQ~MijZ5*V7Z3vl`tC3oW!SS)x4_mf z`oe+qRZ~wM^{kFhlPg2=*)IKdlJWfdn}ADBp=&N#Ouv2`+E#q+O}Q|8lY zKz{@Kl_8<63IDWMNe1@(_vVk*WFvEj5aH)~v02eB zX!mZq04GkV=ZW3X<7=!x?M{@OQDC(!eSiey*jGF9%15uv3GmDm8cCdPNy70^GJ|gBBVXG%{}q`Egkf{vH!vkSE(NGkG5zf_c8W7uJPJ`^p`{eGPDR} zc_nQGt3pqY>gqSyFYmt)XVT_j>u9=!hP2}^L3b)S1fH#C+14LkPAgtg6)OO9N`5vn za9K`JjO+Bm!q(}chH1gJpj1--vCAX-9(EYh{rW?tS{|$kfYu^lQ`N8IV>K_n?;R3# zn{HZO$`7Y5a_vU^<;5rwI>r2PAu;tK)JxAUXJ93CICyyUM0>hAuB@zN^_Q>NyH0-k zFSO3~k^kPn^yk_MCFn3kReo9Pgxg2>)fuyUNMb0{gav#3B4m{(Ch@;?rOv!J z{Ex0wzN4$rUQgZr(VQ;G+3oI*ykFELap(6vm`4P&BlAIZ}{z&T81d>!M_fp-4sIG zmm8hdBQsPu)d<`tmh~*3;1hYUnhyO&-%G;;K zmQ~RSKCz8)o$@}P2{lJD;hz|;dw%FLvte-B;h75=at<>!r(rEAXZZ2lALK!6jDXQVDUh+G!D?<$X_3kXy&<@}9o2VZxSOG;Pp^HTbayJKd;F+g&a+X>X|b=EXME`J5jR1g}wO8%ed(&}^G* zD7?-_tFIv6|A(9wSdD?$(JRExOFH%a>Hc%Y(xGdmTwa}$a+#^Lg6eEOF%ml2l-m&H zCRPZBiA8Py41`6unpYS^4i+d|7C8tVho_cIA$;%tr428U(&XO(`nO!c4lUXf^V)1G5@l zgKmgNV?;oqq|0?YZQ_GoGpSK+hp*n)DcHYj z?F(vV9_mR`_rQB5-q@G)%%)4fnE0Q-!O3aNhxwnEh#^aakk9TfA8)U1s)JYhze)E> zgtr1^6X2^|!WbCr^pBePuZ~)c41k~tIavw{b*a?s*_Uz zUtv%Gf!sKPK2RqANp6e}9cSm}t@Qmjzy}TTg5_n~5&68l$3`A_(5^wi*LF=Ux$=wo z)$CL>#+bEySh0Dk_^a336~BKt?8x<7guh%M>}2u(71TFJ9Z$o5gdlEGs+ zanIt~)63#I+^J+WfV6R<^vjo{g9WDg4sRUhF4%D-1N5J_1qA@~2ihz1!wr~w0>IY* z13hxyO;%R6v#$@}{ZT717ny|%OmdbcpK2Oyrl+RP3n6BOQ?x#rCa0v#4S9=Gi;%Z7 z<24Sr!qq#tbI1sI(_3dsm?3JvX@XJ&zj{)u+OxUq{1UTYM`tI)6j=-neneg7ywk>* z-l)wS337ID{P)-m@@2W`i}HT~Wa+fkVbAtIk5#}7`eR~gOPc!okMcB<#$E@xo9$a;!n}Dc4{+>PuEjZ*E zaKJSP=q#Asl_H648K%7l28Hg5AX}=&rSui7gM8CD_0K-pqhbT^TmNnc2WTS)l)OLf-~fK)wHDj# zvGLk}?NBwy^5dtE*X=c(^G4d70^}>;iiZE#p(A2&( z@hm_*o6$taM#B^I58<+J~&mUP~gVX{cHBa8t0pxXobMI8&1aG{& zR{0A-I(m}(vn%Y6{WYb(cSToG+-mU2f5M$$Bd=}UgB*=bR5_u}00@uH{}4nEl+rRW zrkn3&NQHgyhJIusWwXhPU`XA-V@81KANt>A!E$H>x2gYE7OVr+k%89&N+7I*+yRJS zOelIPt0EcgpGQqBIq0w(F@ znq=Gm3ET0MJo7(;?OaxnyeC6Aj4jB5LV|f+Afq~V`#)9CGYR>_qf6@|=h#n}#8p#5 zkXPS@-jR`#WxAi^>_740pAoTH>ME@t{tJeuFJK9?KY%AHpTFqD|JT_58ER$6N$t1@ zQzMX_p`F84r)fedfoOrNVHlAwFz`$%-GE4l*maT>^k^BA$t$Hy zwQtypfh-O=W$j0;F5ySd*bT~{HD8W2^QrC6fL}38?Fga8AfTz5qXBa{=bJ*vnj&mZ{5 z12LkN-PgW=9NFIlG)tT${$Jplwm8}YlG-uX9cVB@%nbP;&VRo7y zWlBJhd4ZRsj%NX&z(the#f~yQ_x=dad;MkLSfu)*19~6wSyK#%3J<`A#no+paY6WW_5ej%U)7|b{6DTu zax#@J2E0z~F998{Hc%(uYXmP!JsKG?h&?&m^GD<^CRFHyWcY#< zv_M!{hzJ=8Kj|Q!yHJW8gkbgQA|JWYtleSwzCU=3FUXd@vVNG9C2DD>MdU?iT@72e z=9mbP0196~aRG=Ba4t_GOPAPW9^G3GazqE}$ zb;*iV`qPy1Pi}5NwBzZk9vi*!HR!W6A)+mtj&qu0B1i~WL!i85cacN5ZdeA;Q4Dox zsVm*A>U_YKJ%)WbPJ-jc1pp7qDyTgLv7@;T4iUJ9=RhYag&`=VA^rH}mtndJqT`6Y z>c9{I4SShWd4Xq-NFV1T&ZkDCW&)4F5K}UN=sn(G_DUHO795dNTec zDqq|LqLj11WbCY^cpf=GhuF`Cydd+gD++B*k1#dMo6=~m+G_GtYxCkKA$VO%%eh;G zoDg!h>^kkMz2Xq$M`_x|FFo~%nqd%%@F~J;cxO`8Nd!>~P^qt32)1Fv7Qe@M!sFOQ z&IvsrXG130N!ac4i>6_drUZy?(6f+F+x<@<8m(^XA^Iov9BAe}@^vZ0#`mS#9VA{L zXwIxL+$GlR^-nUaK)Oivp(SK&hg1O_Zki=~`!YgiB5)YQn~BI8KR3;AUv|@5YCdxp z3XM6cIxZCrsQOj>n};gTA0%Cp^+H)sh-vr7k5sx$=&7EhWBY^peOcFEwYE;6r{P?> zZ_voCy_qu#IbL$Qe9edHr)}Id7Qt8?8+M6uc52aoN;h3BOr5d0w7Nou#1guiw}VNC zqu^%SSJ4=T1~Dd%sy%Q-RdT==id23CprunM7c3g+jh1Qku~9g$eS4 z8Tlbw`AXo-NN(pwsuCwYn4Oy0EVDp&NsQH7m+fi@nk5L{>IKc6xc0yW53)frToXEY zlF#S&;%@-J}^23gCfi@lLJ@$@TkUJnAZ(X{gZzwvPUsqD0QHwENO zoA$bIkir9Bf=0ce&Xgm>E2Qu$g82v>FX6eBBpdI!!~)cG(EJM;BW|o>Mtw9IjOo+8 zS|G9QlKUAf6C!hiKIEXVp3zWpOnZl$edGfIa?=!KcAo}<*DCXW8FGT{rJs=|Z2&10 zjZ*mWF=VwES*YXaFP;XJeyLQ7s@Y@I3hv&vd0_hiepp^^SqF1#qMlV zjBY+r{+n~z+udyjfD=~I%c(R(6L)vOX-{h>mev7$Un?I(9-%n`x6l6 z2XCDCH7ciDrVIXHx5ZTfHd@D%A;-}6Om}y*E9BYYcT>%wW0$=)^orDn>5CUpHZ=l_#*Tx457=~#ct?i1y{rRzygZ8j! zGmf-Su7F_`yB$$W7pHlGA-5^w+cAsN8DxWSp#5f)!2MZmZX1~}gd|daF{$cM>fz@V zGT(M}B*q@_I$MhR>GmDjrt0 zTiy=IGp(BR11i(A2LVBBCmva^$HXC67IYFQyp>H%_&63@&rG%4l1QT+uN!uF<804I zF%-^g91RV7z0)2GYQcAzhK7q!@Ev|+nw-s`%vwJ(%#LjsNh+LKt?`3m~HiM#0i~6 zwD}HO18h?26a^CCvujFFor(oej+SH3n1xN%e;)C87DdZgslE5q>vd*GpC(RB?xCsC z-Aixaqld~{Q+#hS?j-uxgMgV>0kd&Z02SqvLmP{auW#T5MXz--alK<{sBi;62b;_G z?gOBrbOH{l6P}>s0s;z-?Q8(kLP33T?8_ss<>D&foS_-B8EvFxTZ)Fx_6JkoBxV2^ zTziJ|tGMRoi&l{RZD4Lo?b64>`V*shFr9}0@u2M)Z&1!SlW+hMz-&xY$h#XeoDe== zUthJ2)-o;6G+-E4A0E|2E%Z+UlONq>KHt$kn5W}fx0-K%Fp~(l{Z0;dcN(ei=f|#N z_N;!c&70J@M#Ljlxy;G)UZcJ2Bk||bUnGS^M&4PNy03hyR{S6l7S&ZKps{?W>M*Ie zBimc)Dx`9Z)5D1rpnTzWGJupL);82&rt)ikGw&4zc}rJUEi+{mOQ-en@16N0AJ7y3 zk4%j}7J2~mN`)FwpOFTs3jl8A3ou|rGA|kZi^L^38L-R)K~*S;YWA^^K zey&T!L>Jgq#9rvms$USEKlgCdaJ2TZReahnM$$x~drTjgbL;yZxa>;ZRm_AMd$8+A zV7f&FzVF5)2j{Zvl5+MePd-f%iJGR(o|GdYc|>5p?P0qIzAe^w>o%X zkkA}8JO0u!r(rsxWA~Hq2%knH^|pPwb*iWW)=hK#I#I1m(Z@BqGVA4N$DQ?xGRD_) zbxjk`v>GMOsJOJC8m{Z?ejJ|x*cq?qK0A*mCM+Zalj-DP&--dNj{h3DS!bUfU~`Dl zr`REvw!Mn|=pG|=n_`dl3-9BFDjk)M=)YF|NuW^GKa0l$=5kN*$atMG==Her;ac;O z%T*7sV~;mQl%!(h2fm8m_&)b|cwy~D{wvk>*~BFkoua~P)^~08-IZZ@pGMEzfV>Z9 zz1?Hg@P{D9Acl$>fNt ze2psq;Md}LX+Lzcarz?gw|>7!dvQ~cSR2gDJq=rWQ!zfq4?Cl7$QnZWgWU%U?+VKv zQ|T3rY{qj9{&tgY;{%f+ythX`3HyE-iF?rrcih$PE}K=cb1rtM-Om81bUxGO{TPc? zU0(qy8{_e(;X2#;n%5uY&1u-ScGc|xRs8jO=BuvBD4P(l?DQHj&H6#+aoF(ELzJD~ zJ}E{4=Arau3bS#5BB^{eXZc0}zAB4smk!bo@Bfrl7o;Ea-hC2icXWH)dCP@8+b&k3YE=qqz}%yc-+KJW>9am}l`h0J7tHv-3kfw!~e+bo4pzAk3?1 zjIB%2By&-p{`WldgvpU78q6U$hDg-%t;t%uK2HA<(38HZx8Cj~631$-W>CyeUP@5&D`gy`BL_RNoXX!M1R6~+atHzY(i(>wbYQ#nRHw)=@$fOLk>jD~EPR(=EgDR;&b;F+ z7kG_p^CXxBHpi?J3k?F;mDX8;fMGQqd?vzaZzBURF^+KI)^> z9u&PUY!+F4TkGq3ux^MU zm1mu5=_Yr}iA3WeH?5V&J~P{G5(RrQ z=L&F90@u@)o)&dGF4^pz>o0$}r7fao8+!c>cByi={>_10#Xq>E~#}$}9vzf*7M9$_QB$y-UeuB?9Kk1 zCils|8>XKTzTtvTWjD?McKeJ|)Na<{41>y|rsJ+vgHp%KMpt@kwU1n+ zPQbfk;qCrw!`&6(CX^P#z|Uuuev8I+>Ry4}3Uym-2C!AkBhlwL=kuD##ORB_h)2hW zBf#k>QX#g$H#vE(e$9`${?Aq>JX&{v&5igs9TX(BDKVzklo=vu;fM1x`^3Q+L>qZ9 z@3=^&o|VD7J_f4JFfulo0O&G89On`k7Nm&xZE9Jh%Xz*WZ=)W3?SOiwDA#&rv-()W z44tE|&gQB$Dmz%FN#!gJFi{FO($R~s0S5h5qz#^Uc)gCn;`y}gx6T)xoD3qs^>n&O zmDuU&?G40^b*x$gcRe}ukB^<~`r%S>!}13}1faQOcc1*+QDj}|;Ykrfp>7^O@DqA_ z0F9q|fIBfiwGD;-4Co}m107+1*XWBJ5+Cp4O+2Zc~RJ+6M}eZb>EH zF}w&IK~nJdJ+&|t?mc!)9=X&z6902Yq0T|i^hU=$i|!W^!kpT`q`xZpDqRoZ7%Jyn zcc!mw`rL0J5V5NWY-f#m=B17H26vJ%4oHc`y_eeeSjNht}3$B#vC zth5tffBJ4{xHJ0u)6T)^*jljblL^%eWY|c<%vB?U^A~3iR|uWkg=PBB8K8djS_)p^ z)kscDO<4S(q#&lvDdmi6o+ujaRN8gEpZ+PHU+pwboWgX_%8iW`lmdc9-FtJa7Pt=8 z(S|vX#||0`Z{g8hU546XXP$FEm%q1p#L4I@GS$$m{zU7dRJJ?il50weWRT^<8xK)# zS8hDrt)N~z;LCwpn|?KB9W#We8(TA$VNQ<}caKYvKW(r0JTOa*KczSA`HIH}HY1}e z7oI$3QIsS?Sv=-&c#Fp$dAANRfCIAB)hqlVkE3}<{)pj|%XI+}`Y*LH=+nugeja!Z zk;UfZJnLUtV{R%_yB?Z#q))(D+JT8De8xnMz^Vi$zr3IQ?&3yc&m!j=46?sJ^w=GR ztA+L$f_dW7AiBzKu_dZu1NH8!9Unw}M<%FO5g9E1Fx zNmc@^-;AqcgNe1~9B)FWFDS2RMlx13d|p4Q{JAkaA4DvpU}?q0{W6P%3^eG)g)cfd z!~|Ap_O@qpT2B>Mp#-_q9%^h%fFJJkB9;S%MKFzlG8<+4tBwNtrcTCvo0Ti6u4jMA z2Yq#&&&N1i-edD{bZ1?t{(b6AW?}Z(PhP(h>Mf3`KTIRHsvbZSG&a8RbaY2pBl3qX zlUME>7l)uuWMyKD%le9*rL!i7pKyDVSd16mAV#DWOUGA#Pq8~sy9pNA+G0?4A*p{q z@~sMSJhAi+e}$)C->BN7u{%>b=A7ydODTCK7Nt}BC35K$F$sH?8{8F1nW+g~%y-fw zjf^gWa}PCJG*Pe^9$(=*C&WD=Qry?fHMHlfef@*e!sQEZ#YTs4raO?1ku^FC9n zQIYgg1?2t7*?#K#s9MNnNjXh1-h!W}Gx85|w0L7cZkyh0b;MNl%WOtIC?LOPNZ`Z3 zlvk^O1lrB7l?G>t-9g&R?ea&9N${nXU5IHlBqqy0fY(eu`np4`x(`S38&2wf8W;+s z`^Ix0y^^iu8Aw*I-s`zEwZ(q0$tITrz&HNgyPQH7x^O|)_GYC=2+h)`g1pWGx8n<} zJxz^pPh7kz)6|fOn;RzTdqeek3QSbJ%eBjT%I*0mcS>R|tDD;M{-m;*?Q8A-1K z9*A7A4QLxz`wAUYe%#|1-jI`)9G-o;{+#8WlgD1WXMHgCUj5@=M_1H8GbOksxVWlj z)f9vKW37n-J#)rt0X_lH*tI^M{-KPB5)O*r<6R#stzG5%?Fm8vF1%v(_gj8B8i;&5 zMqlT}^n2#go)rpUhBaX6{l4Fti~4cbNAialv=G8(_GH$lrz<-lP^xF=c6)lV0!V4l z`HA%X?4&1j`R`0{X&XllKD!t2(UY$~t&v=lE^W1i2MN}3Xu(=jFIP0gw|2=I7(9jS zT{`q~Av;Zleeg!leRop>b=q!ItHiFjlvSmkxMtE>w;P$fN$4~Mb}QvI-|f0?;gzomi<{aqjs$xTF&=wsw~d9o-J*(=pgr$coqru= z8ebY0F?h@I@cgf7g`2a0vCRFOw^L3z-wW97OEuF|sK0xeQx8>=XFQ)h&q$H&W#Q~B zV=8cB4%`ZaZ8Iiu-Dj_Gy_7iSA=?smn(US%l>a)Gy{vG;)Z6s88#IVKhy(7boL4~_ zBs5nzAM!K?UWtiXBYpYGP0h`Zx5S?PxnYlPQL)bh*=ADm#D;>(I_gTcO4u%}OE+xl zmc91KQ3Oq#SK4w?spZo}f!s~GIB6v<0L7Dp13T~A*LuOfaUz;{k z(hEzjWTt29Hnv}nNo?TcJh=bGXLNy`?6&-uFCG&)V+k1;2k}M<8E5v@w!n~U9)UVS zXjx@ITVwJIVABqws7T%N`(SF(U7*H^yNMK^XY#4cX|wqwl#X`R&LZNSsaFZDma<1TPyBZp3C=#Y-#G6E z>_^;^BB8sf@{s%C@lJ0LjXQ*n*{_}~#l1x56^d_slj?H2GZEvP&mM|Eca_51iEMbg zP{`*MglRR(n)lvt?kC|&1qJ|gpcd*C`7~xb8mD-L+%4yjZt#eYugUgU#eMsQ1gm1F zwd$k&YJ>;;{xy_%W4H0mm)*ACtX}|c-?^QXmje^ueJH>^h>6)}v4jjihO_UTFuXm*mxA1si#rrsFSCw2 zY47fBJwElxc~_b_PZW*Vd9E1nh_551B0GLz9}|*rEm2SZ`*mRzmeSfIUIpXZyEp`< z4^DRz92FtB9H^X;>a%?G;e@xxuL$`vKU@=vq7cx~)ZC%&$e4zq8)wAY(#9g5mN|k% zkHV@GKIZ4{%f(k9s`i9Xs6#1vYQB2vyNr~*>w#TBx6L-A>5Z^A-<3^2DmNm0V;~ON zq0H(9=$B`*JoQkySi{Bw3~Q%^alr*GuC32D@oDG#sP^d!Wmxp|@@q>dacB^V#ozTq zT#-e~z7nanr%OqZiYRh-NVp(eI2ilaI?QMdx;484m7P=E58jP9Wgd1pwycA2w5-c| zKXyjBqC$ZWB6eWGsn+UQx%caDJr5k_)3+NJ#@n3THXs!Obb;cu%HB#DwTB{sL9 za zu0}HDl-vrGe9sce1m~}*ix#lfdMzohWm|Iq-FXJQDK0y{n7ne z{8a^81INt(oyF|=Rr*J76K=U*sCJLq(QxZ%Y42j%o&^qv(DoLNrbavJu>@r2$TXD! zLO_sJg^Cds-%YWzM_s+E3L%aPaO5av#7p}QGeyDb!@1@!2rVY%ppoW+RUsc3wE#aDT64oX)dXUf%`39$eBBC(-$I`1CY?fBsml zwFR<7B9GLWvzJ!;%Oo!5xsGLmef_W&#;hApw5hJ#A-ns)XoKj*&9W|x=Xy!@oBKKN zsEyKNFLt)!p%Sas;b3k0{^EB8m}E#&L%SQ;hOe-FLBw8uR)c1sVFX1i6;T7)Z}Sc) zfr=xP$=)NhHM$n=Fy7t3`3#9-#D{HTOT2e)w^IUbdDAyI1a9!!+O58$s%H| zUdTGE3PPdSFy^gD%)g)Sf}Ne0c$nyz*0D)fFuL!UAgF)i3asaAvMZ z@;Bdn(N77Q0eq%m)wX3x9QjQv^-qOO29^?~aqEtar>JI6ef5EdFlnLzp=VC^8$onVUTc+>@_cwx zo~O`Pjxwcw?;T3UE#4^MZO|IL_293-Zbq_PKZ|FoQ-V0Vi{6{z9<$azt#(499*u-A zvqPvwcjj~Ox{I|*^423EMfz!^nUX+vbiwYG!FyQ?G~Sn94gJF+3Jsd2)FL3l{r666>94-UtnubQ<@Jo!x*A zY&TZ%BTtrDXq6+|^`$+zho0Ihirm7C#A&lnJ!#pFYCb1q_UWed9s+k!|>aeAwSO(KM zaJe!obARQ@I_#ObNeSK2_IRo79}{tp^UP)#eZ`kjP1~(pe?lE%fSe`WDx}NgY^fLx z#&rh$@p(Ku(_DIX9h5RjL~!UpHhjS7m6SxL&d!U_HTW>hC!tr!#8#G_!T>`idnr--(^p2JNqy<+%R7kKDmurzKe56sAA-hhv(65t*H|_j^Y%<$<$34xG z&X=Y{HCb1s``e2c6M##IvjZ~hqK^{O5%UdFCJimFyg{^OhVrn+qj~s`;v^50vQ;+_ zx2KK*(|HXXQH9KeY{19f8edqbm%;uiRmjx1m|Nq$7gxjYFE`B@1xBem3ot8m^UIp1HHj%`768V2mQkMUzEzTc!fOacTq19 z!p4n0S6EJpRxwC7sfy)~TraDau{FWGs2f>TBaVc%_%-z{9Y` znlvzR>x^ciz-<9|19j1<4CaJzPFn@sma_0330L(ym){ekp8E}Cou6608?RF(vq%YE zI4>I^I^#HF;UCTEm-o@J;VxxJ?V6%5_)Di7T3KzxpS*6bc=OpL`g|jD5Edc=qJHZ z4wf{tv|-TJD5x~ndVzdIAK|{H?Di(NxmrJWOC#5MHhOZR~mJ6HJKAD4L7ap#~_s~@%C?@PFBylnWil-D~Jkq&}iOK8175g^W1xHURW)<*Uk#na<--v`y}SmIB>=ommiaNkdXU+&AudK+W)(B z?RzfI=!h#KG}6F6FfSGV5wT!WCd~ZsrKQ@C505FWe^6u22;DG?7UKAg_X65@`KF}8 zi0$&`HNUqiY?;^G(?UU|%%{O@sLr>%+(&4c@8PNk$) zZZX7i_G}lYR>_G-p&a?8$xv)Q~kM;uFMvwE61&5&PLh$|LV9Kjh3e~W4#qJIg(%dnT*Zrt!0WwdT8)dVL8=(%3 zS*wr5mc^0z`2t~WjQbQeikME65tu|K5ef%h{N>Ca{3Cd&mfC5aVR2tA@86Fae^O(dxP`&FO*#+N6NznX(ULawDlFX`aV3$WQxY z51d@_y_5~zy@74{#-1(GUQxM5G#}Q%M|crV9yQt=yX|N~o+=EeH?|b-ccZrlUg9!x zd{roErUQ3jmDd9)QKf6~x|hIqt-T;H!v9Zp*G_XS1zL9>cfPn9-zz~A^GW>$lVg)} z=MX3LJZR?EbT&G;ZCUGgvh_3wNy2a^Yx+*n!Ot^gXS1Q;#!~o0 z*RDS_!!DZSk$Qlcn)RAHzfU)NFasF#<289)l|An&rBVJaPHTq*w~2zTk|$0cvD{h? z?zRhG$hiNdG3Q=K65a9{%!~i;Yr`v_J{TPbR#~eF+*ZrpKMT#@qN*Y7Z%^vI+4!10 z*Z6%AKB|NlyahJV1%-L@Gne*Zahd75u1bjoPUcuDNIxqJNBc^B6W)(KG3U_RN}Y{e z3V8bZMU+S)DSZA^Ncm6so$0eohw2|)A<+SY7u0aXjgRgM*d0+WK4Xsj=0hss*@vZK zANFS;xJpF8``(v3-+)WKgzc2Bk4D?Vii*?N&qn)Ef$gh`?yicC0`zC26HHVLI;2>435~Bs#XxP3G-qUp7IG$rkB6 z#kI236(RvO(ad!SL4u$w zez8^K!w$r{xZZHP*iEq{4HIG9X>!JE3J3hA!Sl&(iK1^}_iId1+pIB*(YB-ObtRs| z0^fH!LQ6Mg-L+lq!iiB{qg*96M841OaJ{!Pe0E)FOe?d?iR7ir9>V0ycL`4YsqH!`hDkz{Sl1E{x)aiGb$Mcce$TC&qTk`Zx{8% z^)e#Y;wb@vAPkrqxIO;V-g*Z)EqHjmQw0$i!c1@n*1zO>5u|6`Fk!8UaHgJb!t3ZC>4!&Tf)$T~#7| zqM@C|jK)g52>`#7%;)84*>SHYZx?QQ)BOYytc{HIk1~2(Awc#P{LN&h$G-L)((|k+ zveWt=G`?NbZ0+uygu5$_Mc0WMEKr>EnnJD^qn>3i9V4ilHIVLierFj26`438#%0L1 zD~E;(OhZPX(Jp>V!}8CSOqV43p{q+d(0x|aXgct#Tj!3e`4`|-AqD#^Y3U5Mw&j({ zCke@nP6Ux$@UQlel?(wLaLeEb1fG#Cy7mh>tGjSE?@S~LkMP*(7T@Az8AvL8G9yX= z8s*df8kc5t&A~57(98x>yFZL+*l(WRaltRglDYDg#mPlP0fprukY83f^CG%hKh6mWI|Jzj~ndKaNhI7^jqEBJC;#M##AEg!`+^8^+b)TQ`(t7lx zFEsuszuy@|pnF3+psDVZ-?NvFz%M2*Mz!>etp4rt*JDD!Vx}JmIHU=sxfA2yeFS}? zr?=7$QhDvS@3`5vhu^NucL}+Y4on0yrmQ-6a+0iB1 zR_*`POz%prurx6hiteIT&Jl)Mn9M|n>r*O zXMA@476`Sy&QiYPh8u3k<&S3LDQzX!7> zEF&TAmX(m>O3LUQ^JG;|*=HBC8-@yvt<+FS4jGw5=R~Hx$SJW|AlR>pD%g5V;JWoDirs~kTR8# z?I$o5tjZd{BPtp(e^1>)5e8l+!>b ztC`Nl!RWgDwSIJ$f{Dn!2)y``{E3<@rA2XiAv!Ca)*5!iS6JfKbK6o>DCoi-dvXwj zE&JKeg4^$>FI~1x&)?=Iu!1szIbln&*AjE5RC6tu1s|+@ycB~E?%a*31|BEs1P-!> zZTu=-)uLR4>iWOeyC$>yzB6jyoJvf}v#G9XCGO*AoquEf7jjtWK{ZMI3*8Xi*`oj3 z-!Huj|DOMkryu+`lYB123zxMA|Hb?NpA#myeOOM~{)KAf=HCol2W_=Tdo_h((zQ@GrQ)5QMZyRNV*jbfM~)BW?+ z)43T7rvTp46I^J@-yK@!Yi%dCVQOnAF=gdh?1Ce3{&koUPz5!Xq`Kihf69&h<-=B^ zv!kZ6QUe-mb$90l%I)RnJeSTob*Lu8TAbjH!eSun zO3HU`gOyNPGr?;RD^D+nAn$>aO#hJGd1n(j_z0HETtM9klro> z@|pnAVIO00uVJZ0AIssiBwP1gytRBik-tWsqCoqdqb(xMK9_v=j%|jW9G4>7R^R+n zzl!-&5@9Ul)ZJ}Oju|n`Yg8mu>C-hg z%d^$DO7c##-sM+%dkZ}1rByEM&9Nfph{UQ(dHg}YR}_x&pCOmCqPY&GD?pps_2y#= z;Iq6Q9n*Fr7TAO@O9vr)5a|=eo9$3DRB#kZZ_}6}7-Zh2=1$-wmO^Re;(C7R9gO`P z-)1W}w$U~n+kjCU@&=QUu#hfOUkT2(W=j}5#hoFz>X_ zwcymTx@%XjjteH;>bWO4NS0+gGR9fJi7z-!DwKZ!?|ok)weKIKr?dkfXb&CGM4#Q4 ze_s{gy*GO$UX1wz$hTUS_PfnuR6<}v-qv>g@jGN5u<;|SGTW|Ar&C?vY1h?PcjXuY zo|f;Uqh@(ZG0<3}wY!yl(-N=uqDEa(mZD0O15mNlO403BA&Ep&8df5qRw5On&dlhcoR=S^Z(i_8>0I=a&(X~8xe}~* z-V#D2WiAh5&o$zKw6i<-xhL?egT3w`jcI}WuQ+yUE!gJLPPEjJG2 z3;GvseM<}l*;UAo?)ab3iUpb*YhOW0Jphq_a&)p0BZ2~QLH}dWkenw8I}pWh!7r^`Ws-coT?VCM-m+Yg=SIPWyLp|@Ln{|dSmIxF2DbQ zSOIZnRyEFQBf-apEFxyS(`(f8#(R}A9igprPwIaKHFI2;P+jx5+v%7hHEbmtZU$|^ z*~pSM^|Ynyb!^Ztp}_{^(RBL%xpas%HlvrVOY8RX{Q%cI1o4h+)_w^lJ@1NOFKGG` zrzmJ44OLtxv80>lvM2Blgo@E>pyhR1!AgdAnUJc&&`64fo)$jwONjrFiJyKr8&d~2 z`JJyr4&7Dv(>i=8}J&%Z=;NNr#)`{Ak9uCuk*Tm4Zz zy-Fvd#ImE^>RPejlCVgU|N6cO;RNfDLNLGU_p)yrhr(h4+f4bl^u9YEX ze@W)y*19WY9<){5wDL)S2%PcQUwRsHK4{f5X=D{2C)CoH_KA{6{&7YG<-{748!i)T zTK+0t`Kx%k5J@aT3?|@Ejod2(mmnU^Tsit_3x6V~W;(Hg+CerPOC}8q;Hs@n$bB=^ zMl3Jd`I?y9MigsAGVOp~dDwemDO81n?mI->kV(zk>n$xU`+Z!A#45*I{|&$nH!rX4 z?%c1Y<0&)ZdsYLW>}zXlOaGUcoz+x5?M_l!1#2Sk2n8fy&h}%JKNHKh<`6+d4fW|4 z-ks|8jsNx>@kiJH1g&5RCwn6G@#4_cGiWurP^uZZ>6e1_pGzIH61P}r-afT1UyAIj ze@(&gHc6<``$Koz?;baI|J99G57N17>Z)BzJ>s+G1r5J-4#ZjNJAOQT5O;T`i)QWP zz1u%kNbk9FT2|faqW6J*?rA7`nYNR3M-~_Mq<^R|Nit|-tPpVyMGujLyIf-=xqSX# z8dA#uWlUyWROKNS4VBk$lt4Bp%*aj9n#F(@O))3C-f5$bsf(4WFgHcyy#_~cLxU86 z!pt6W@xH|tS-(aNVEXqh)_RPc{~9FbTpj;sqnhs2_U5np8HWBk_JTNB1Vz(VB?DRI z%A>DXH>b?kbLwi;_V&Nl<1+@l)4{%_4+;Eh!pG0KiX?3g-BwEKT2?l?O<_hs>_~px zo_wO-AIT@$HPWB*%JtiHO@>j5fvuh&f~+N>uh^frTTCF1 z1cBN&ZR2$Dr_py?Q3{F7UIVbS2myQV^@FD%H25oO_ohp6h;UZ%;bHuz3bJ>ei)PEg zIxx2vpaf9r_@vq^I<%&UlwIDh*N7H_a@W6ZGY`uxAK{0^?2RDBY?j1V`FYIY+<51Q za6?YN@q~@&y&)HCDR+LD!PmdlbY)=)LPPW?JKp{@tWG4J1sc;)n?q{kmp zROO-nN|lInt2k#fYjjO+q_#!4=!U+^MH+qxDk!=fV8y3)ofFjjtJ#O{(p6uSzhY>= zqQNrp7jKcG5e3?_!JbZyM(lvam05;2`)>?Q0BkHNtukc?DSYc_@td+v<$C~0&^NHK z46?!UT;~xKl7&w9&*&1<1bLoO#f89_Nk zR}nkGG1Df(o4ev#@$)7lCliG$r|lmDmE61_Yv&Buo7CM#gVOw>@Li2JMegq&ek?wX z#LjKrI&2Vi)9&+s;J6+03og68Ao!xyCWW8iuyq|}difr%i+EMG-D}%%m1^MyLI(Ud z=1ohlve^1Z#YL~D{g}Ar-HkdphW}WIZ~ldS=+5%Ebf%_yg||278|m=}`43oq*AkUm zrK7RP1H&8nV4P@bZAn(|TJv<6HnqKsoC zL8JV*@`KzoL?y-#yE9jfJ-Uu=mAaLj?-xnQ9_Vk>$0e_vTdNLpn`yztWL*xh_dN;e zetoNK!AWP+gRRvPiuW)0%~Q)PmNlLZw>{sJQrTOnR-_Hsu>R0<#k@|wxr9prQzTj9$>CjExbVXB-)uVl5_Y@5wd?-@Uh z{+gs^7(P95wS4?R-#l6Qr1rPA0M;8K6aDixSyuK8bOO)*I!(Ay=q;aQY&X{b))EMe zh&HzPxWat+ur46-i?gA(OPwGPiNow4XR_Lkwxty zbFtue)pP&01QCq$I{mkxuA%#fxA3+Yvp$Iz%O{rWjhQv>OnN@Z_QUx%1)t;wcmk2p z-tsLg*jhJP1Fv$~?YN#F9_3Ys;E;!?nkrNK$w!s6{O~Y3`kBC1Lr_(!!C}MG9c;yk zMd^qyVl3#}sJ8K-`y6$)ey{tzz*ZCD!T*KMxp-SnXFYSHl*H7N33>4HeGiX8*?p?k zWQ$?+_h^=%{KIvB)jZeLVJ*u(REB7fN@4oN_bdF@7$5uD+6cNk-F1C!f>$(^8XSJFCu z(t+%o#|qG|FCNMT2c3L^xYx#^-%qFn4iB4NY#J*p zrZGqy$H^Y&-xx$be3vVAJ%P<=W7w0s-9NdSFL8p+><7l`!M1|v_f19KD zCIGT!TmItAviDMZ)#q;JMS2e)5E5q*DX$w1&*8BzQJRnNxhYYl+9xYbJyxvaqp(WU zk2$&D%!(4_HHi#4*IZ|8f65ywBB%G&xAxUM1!dJq!h0i$19m0XVEUuOmga60XKHF% zUw2x~BLvWwn+cfBtGczl=;S_LJ6Jl35w(A1I&Zpsfl@| z-FnMuSTVkKdRFd&p8X@gmyNs+S$ZlS*Ed(==wy^ms4l@DZFU-8jDLP%iF|_@04U4Z z9(D!(t-(vJs}hV-OXZRI#q_}53p0m&*hhX_<>`+&3&X?dU7pI{B4OhcY~@Xf&xfSO ztav3t9xeIkSMpJ9DB_!c`@~{IKMcX;Ljvsy+i=30%0qIs`ZN5{36;5|?V_j4E5!|W z{Vbs*CHn!j)6|=AYjj>Zug?rBm7D1EVQw{UBP1TO-w+7k{Jtr8xje?iScTZJK&%7q-@A(fIWP`5|+oBNkNUE+WNjogb?ng0=?K+tZZm{!YnRT~4QA ze;kEx`<78-%J+nCRiR<#VRbS-ds(xfZ*r7S#&Kr3)KpacF+0~bN{WpbhWsF>`Y8-G zeO5Yk;w?wmrYRnYS_dlYu4=B*$G0&X4#V00J4ZHTYR=DJl)LnV+PFo&G}$oq4XVczvZt8R)d zID&aErKGB4psn4B8@g`TI2?BSjgiPta?t1OTF33rXMxxAb)1|>K{dk8&!jB(1thA! z^+N}dH%L0tYWE&oA(?3co;4EYj%*d{ zR0?hY$Wy1u1wi}(8H^*rmh4`ZW>6`E1;zZ+?EKHG(mBWU@R5y39>rw8srcV`0p*;4 z&7!+Q`DldvX%^HV87l(ZHOfndngu}4!SH(^0S@fy^oMI|+jd(>LqW}r*7bfh{7yyd zF$&mzt|keDBy%hxhskZ@v?IFKygM!`1h!~F>xsdsr(pl#HGMjl)&v;#0Ho=xIGV14U@@39sFCBxV7V$VHHNx8Y#)w}krFVky3FA(0iaY&n!swO)RR>~IUqZkRk zAQZ|>@*xE$J+g zg|y}_k0$JKP5bbMnnSqzE4Sx%#Rb#Y?*Qqi-iTsA2X; zsN(ZN-On%fKrQPWJBEAaUhlHH-@G{x|2tY9ruVAcM1P9eX>?Z*(qvn%gKt!LW%;Tq zSG_%dVu3p`fn%Tkq!5M!{nXlRZ7GI|NsdfOr)*TogE0{|9bd(=xL9G2CY{!4s0QFR zmA)=#@L9v8(T9*XPYUIZSuow%3i<-oG{Duh06Fsx3+AaNa|3D3v z*)+u5Zi1m0z_+N9lJ$k;oGj?zNxGkcUWS#D=a^56q1x@~IxTw*xCvX5-!DZoV}IK~ zzS5!LqT37riLiPryzP_$Ywf^f794*EK`@>3%TWBfa@z3JXg|hYFw|BqVtVyc9@F?T zthz_bYdIsUP4^_htAujL0uhmZ>^d$&J!7TeZ)LpreEeaW+e3*ux!i)R9516`mwZ72 zkIcBxrxNv#KhGjT3b zcF>8Nn`JWG$)awsMZx4cAo6n*pTEa&{JfmU|scDBEeB z5OBppHW>Q{c&_dabnp;tn`GZfx`df{n`X6`W+}WJu^wmS~db;~BfCU0iFjh=z=_>4anu5va{#yHKc(|y< z`^xpW7yS0^jN^De@1eQYwP4=wn+&qQPE4k^JfuiSB-pM}k&I55PPVAMf(^?7&Oe1T zI?_(lwCT(3wC-}?m_yu6y|+Ne`+I@cy+ySwg&^fBit`EsK0?m9VinHn2PwF$pj%U4 z-8uO438rPBsx9o6&2@j-Y;49t*4SvPr*D4tbR=QW<={lp0uy4I6ba$hyQa_@q$&N_ zV3}$sg2&I7&xccQT1ud{`8lB9W(p+}hjd=T-}4a&m;ik+enSZ_PCYYb4h@BD(Ydgn zQ#JgqkBgGj`kl#cle=XZFFesq&`I9_$lH~)2un*(;Rt|ZPUtxfYV5 zJK$3ll3NS_WXG0{16uq&U$jp^Rw_}&hoo`zYvsQ5pTaQf7 z{cJRGq<2geBnmmp?^r;k3<2n2%dOwlzuOZsZSCb&N>%27RR)p1RMPI7_^M5j+(A;x zEG20(soVl)P)o%$9ISV)5_eJ`*VLoaJ*jByqw$P5ksxRFIDaj~#mmzMxnS6YZ%n0D z8)?@-F7xy=w;!7)g)h_^qlarU0|bi72B$>p23(CTK$?7YVgm)yJCIa91|{FyM6Ibe zny7zDv;u;Cv4iqi@^e*dv0=NX*<`2hKs~pu1e$|B92@!)_zTW;NdLxDe86IUDa#a0 zc-yu#h?IX@?5F}{^IL8kboe|=X`G6lpP$o=IrNV-Z3{8R;XfuDfWA(bbZiwlz>)eJ z64wMq=k=9fT-ladA;^N-@Vv zZ)RA_>9hc$S-1z^@j)9mBm#hx;6vJLb`}7SAJFD`Rq92|i{f%8L4ELjN1M41$G|2~ zMOW*49LO=yvOlqSsV#3;viN%@l19zU>h;EtS85T5$^c$^V}E>;Qu)}(XP(Fn99i$( z;SWHJnFzOOTCbldeRiEHIOq~+HUF%oN1%Zqh-fYWN*xmJ5! zedwA{^hDTP>G_8-9=B=$J@wASkN`Rh2znZPzO0k`LF;VaedH>C&EP~0d-1)*@@aLm zX)n_|5G8vZh0*hA4l5(z`9%{Ex!`~gvg};Z-sjoHcexR}cOzgMh}|nBwX9m|<60fo ztTLt@#mQN&Eb*y^UmvEfTISo<0@BCUL-v1DRAcPt=ME@I|YHYJ(8@R19m z_*qIhwQ^a*l5{b@Ygf^q3$u*mnmNTxq-QVy@Q zv`#nf;=GKL8gB@>&aGC-x9K>axR&$4xtmBx5?Q#2UTBst20O#JEM*_Hlu#|HPs>xO zA!4^9pDnH;_~g0 z)pGfJVaV}nht!Mfl2=F+-2Rt?`*Qr3PZgc@zu*6N4Iy;`?W5mh_8}wjtCt^Ff3E$k JO2s data +I0408 07:39:40.242031 31856 net.cpp:380] train-data -> label +I0408 07:39:40.242045 31856 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 07:39:40.249358 31856 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 07:39:40.382967 31856 net.cpp:122] Setting up train-data +I0408 07:39:40.382990 31856 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 07:39:40.382995 31856 net.cpp:129] Top shape: 128 (128) +I0408 07:39:40.382999 31856 net.cpp:137] Memory required for data: 79149056 +I0408 07:39:40.383009 31856 layer_factory.hpp:77] Creating layer conv1 +I0408 07:39:40.383030 31856 net.cpp:84] Creating Layer conv1 +I0408 07:39:40.383036 31856 net.cpp:406] conv1 <- data +I0408 07:39:40.383049 31856 net.cpp:380] conv1 -> conv1 +I0408 07:39:40.925521 31856 net.cpp:122] Setting up conv1 +I0408 07:39:40.925542 31856 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 07:39:40.925546 31856 net.cpp:137] Memory required for data: 227833856 +I0408 07:39:40.925566 31856 layer_factory.hpp:77] Creating layer relu1 +I0408 07:39:40.925576 31856 net.cpp:84] Creating Layer relu1 +I0408 07:39:40.925581 31856 net.cpp:406] relu1 <- conv1 +I0408 07:39:40.925586 31856 net.cpp:367] relu1 -> conv1 (in-place) +I0408 07:39:40.925873 31856 net.cpp:122] Setting up relu1 +I0408 07:39:40.925881 31856 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 07:39:40.925884 31856 net.cpp:137] Memory required for data: 376518656 +I0408 07:39:40.925889 31856 layer_factory.hpp:77] Creating layer norm1 +I0408 07:39:40.925897 31856 net.cpp:84] Creating Layer norm1 +I0408 07:39:40.925900 31856 net.cpp:406] norm1 <- conv1 +I0408 07:39:40.925925 31856 net.cpp:380] norm1 -> norm1 +I0408 07:39:40.926416 31856 net.cpp:122] Setting up norm1 +I0408 07:39:40.926427 31856 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 07:39:40.926431 31856 net.cpp:137] Memory required for data: 525203456 +I0408 07:39:40.926435 31856 layer_factory.hpp:77] Creating layer pool1 +I0408 07:39:40.926442 31856 net.cpp:84] Creating Layer pool1 +I0408 07:39:40.926446 31856 net.cpp:406] pool1 <- norm1 +I0408 07:39:40.926452 31856 net.cpp:380] pool1 -> pool1 +I0408 07:39:40.926487 31856 net.cpp:122] Setting up pool1 +I0408 07:39:40.926493 31856 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 07:39:40.926497 31856 net.cpp:137] Memory required for data: 561035264 +I0408 07:39:40.926501 31856 layer_factory.hpp:77] Creating layer conv2 +I0408 07:39:40.926512 31856 net.cpp:84] Creating Layer conv2 +I0408 07:39:40.926514 31856 net.cpp:406] conv2 <- pool1 +I0408 07:39:40.926519 31856 net.cpp:380] conv2 -> conv2 +I0408 07:39:40.933037 31856 net.cpp:122] Setting up conv2 +I0408 07:39:40.933049 31856 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 07:39:40.933053 31856 net.cpp:137] Memory required for data: 656586752 +I0408 07:39:40.933063 31856 layer_factory.hpp:77] Creating layer relu2 +I0408 07:39:40.933069 31856 net.cpp:84] Creating Layer relu2 +I0408 07:39:40.933073 31856 net.cpp:406] relu2 <- conv2 +I0408 07:39:40.933079 31856 net.cpp:367] relu2 -> conv2 (in-place) +I0408 07:39:40.933502 31856 net.cpp:122] Setting up relu2 +I0408 07:39:40.933511 31856 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 07:39:40.933516 31856 net.cpp:137] Memory required for data: 752138240 +I0408 07:39:40.933518 31856 layer_factory.hpp:77] Creating layer norm2 +I0408 07:39:40.933526 31856 net.cpp:84] Creating Layer norm2 +I0408 07:39:40.933529 31856 net.cpp:406] norm2 <- conv2 +I0408 07:39:40.933535 31856 net.cpp:380] norm2 -> norm2 +I0408 07:39:40.933818 31856 net.cpp:122] Setting up norm2 +I0408 07:39:40.933826 31856 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 07:39:40.933830 31856 net.cpp:137] Memory required for data: 847689728 +I0408 07:39:40.933833 31856 layer_factory.hpp:77] Creating layer pool2 +I0408 07:39:40.933841 31856 net.cpp:84] Creating Layer pool2 +I0408 07:39:40.933845 31856 net.cpp:406] pool2 <- norm2 +I0408 07:39:40.933851 31856 net.cpp:380] pool2 -> pool2 +I0408 07:39:40.933876 31856 net.cpp:122] Setting up pool2 +I0408 07:39:40.933881 31856 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 07:39:40.933884 31856 net.cpp:137] Memory required for data: 869840896 +I0408 07:39:40.933887 31856 layer_factory.hpp:77] Creating layer conv3 +I0408 07:39:40.933895 31856 net.cpp:84] Creating Layer conv3 +I0408 07:39:40.933899 31856 net.cpp:406] conv3 <- pool2 +I0408 07:39:40.933904 31856 net.cpp:380] conv3 -> conv3 +I0408 07:39:40.943643 31856 net.cpp:122] Setting up conv3 +I0408 07:39:40.943655 31856 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:39:40.943658 31856 net.cpp:137] Memory required for data: 903067648 +I0408 07:39:40.943667 31856 layer_factory.hpp:77] Creating layer relu3 +I0408 07:39:40.943675 31856 net.cpp:84] Creating Layer relu3 +I0408 07:39:40.943677 31856 net.cpp:406] relu3 <- conv3 +I0408 07:39:40.943682 31856 net.cpp:367] relu3 -> conv3 (in-place) +I0408 07:39:40.944100 31856 net.cpp:122] Setting up relu3 +I0408 07:39:40.944109 31856 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:39:40.944113 31856 net.cpp:137] Memory required for data: 936294400 +I0408 07:39:40.944116 31856 layer_factory.hpp:77] Creating layer conv4 +I0408 07:39:40.944125 31856 net.cpp:84] Creating Layer conv4 +I0408 07:39:40.944128 31856 net.cpp:406] conv4 <- conv3 +I0408 07:39:40.944134 31856 net.cpp:380] conv4 -> conv4 +I0408 07:39:40.954257 31856 net.cpp:122] Setting up conv4 +I0408 07:39:40.954270 31856 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:39:40.954273 31856 net.cpp:137] Memory required for data: 969521152 +I0408 07:39:40.954280 31856 layer_factory.hpp:77] Creating layer relu4 +I0408 07:39:40.954288 31856 net.cpp:84] Creating Layer relu4 +I0408 07:39:40.954308 31856 net.cpp:406] relu4 <- conv4 +I0408 07:39:40.954313 31856 net.cpp:367] relu4 -> conv4 (in-place) +I0408 07:39:40.954648 31856 net.cpp:122] Setting up relu4 +I0408 07:39:40.954655 31856 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 07:39:40.954658 31856 net.cpp:137] Memory required for data: 1002747904 +I0408 07:39:40.954663 31856 layer_factory.hpp:77] Creating layer conv5 +I0408 07:39:40.954671 31856 net.cpp:84] Creating Layer conv5 +I0408 07:39:40.954675 31856 net.cpp:406] conv5 <- conv4 +I0408 07:39:40.954681 31856 net.cpp:380] conv5 -> conv5 +I0408 07:39:40.966033 31856 net.cpp:122] Setting up conv5 +I0408 07:39:40.966045 31856 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 07:39:40.966049 31856 net.cpp:137] Memory required for data: 1024899072 +I0408 07:39:40.966061 31856 layer_factory.hpp:77] Creating layer relu5 +I0408 07:39:40.966068 31856 net.cpp:84] Creating Layer relu5 +I0408 07:39:40.966073 31856 net.cpp:406] relu5 <- conv5 +I0408 07:39:40.966078 31856 net.cpp:367] relu5 -> conv5 (in-place) +I0408 07:39:40.966560 31856 net.cpp:122] Setting up relu5 +I0408 07:39:40.966571 31856 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 07:39:40.966574 31856 net.cpp:137] Memory required for data: 1047050240 +I0408 07:39:40.966578 31856 layer_factory.hpp:77] Creating layer pool5 +I0408 07:39:40.966584 31856 net.cpp:84] Creating Layer pool5 +I0408 07:39:40.966588 31856 net.cpp:406] pool5 <- conv5 +I0408 07:39:40.966595 31856 net.cpp:380] pool5 -> pool5 +I0408 07:39:40.966631 31856 net.cpp:122] Setting up pool5 +I0408 07:39:40.966637 31856 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 07:39:40.966640 31856 net.cpp:137] Memory required for data: 1051768832 +I0408 07:39:40.966643 31856 layer_factory.hpp:77] Creating layer fc6 +I0408 07:39:40.966655 31856 net.cpp:84] Creating Layer fc6 +I0408 07:39:40.966657 31856 net.cpp:406] fc6 <- pool5 +I0408 07:39:40.966662 31856 net.cpp:380] fc6 -> fc6 +I0408 07:39:41.321069 31856 net.cpp:122] Setting up fc6 +I0408 07:39:41.321091 31856 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:39:41.321095 31856 net.cpp:137] Memory required for data: 1053865984 +I0408 07:39:41.321105 31856 layer_factory.hpp:77] Creating layer relu6 +I0408 07:39:41.321115 31856 net.cpp:84] Creating Layer relu6 +I0408 07:39:41.321118 31856 net.cpp:406] relu6 <- fc6 +I0408 07:39:41.321125 31856 net.cpp:367] relu6 -> fc6 (in-place) +I0408 07:39:41.321755 31856 net.cpp:122] Setting up relu6 +I0408 07:39:41.321765 31856 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:39:41.321768 31856 net.cpp:137] Memory required for data: 1055963136 +I0408 07:39:41.321772 31856 layer_factory.hpp:77] Creating layer drop6 +I0408 07:39:41.321779 31856 net.cpp:84] Creating Layer drop6 +I0408 07:39:41.321784 31856 net.cpp:406] drop6 <- fc6 +I0408 07:39:41.321789 31856 net.cpp:367] drop6 -> fc6 (in-place) +I0408 07:39:41.321818 31856 net.cpp:122] Setting up drop6 +I0408 07:39:41.321823 31856 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:39:41.321827 31856 net.cpp:137] Memory required for data: 1058060288 +I0408 07:39:41.321830 31856 layer_factory.hpp:77] Creating layer fc7 +I0408 07:39:41.321839 31856 net.cpp:84] Creating Layer fc7 +I0408 07:39:41.321842 31856 net.cpp:406] fc7 <- fc6 +I0408 07:39:41.321847 31856 net.cpp:380] fc7 -> fc7 +I0408 07:39:41.478929 31856 net.cpp:122] Setting up fc7 +I0408 07:39:41.478951 31856 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:39:41.478955 31856 net.cpp:137] Memory required for data: 1060157440 +I0408 07:39:41.478965 31856 layer_factory.hpp:77] Creating layer relu7 +I0408 07:39:41.478974 31856 net.cpp:84] Creating Layer relu7 +I0408 07:39:41.478978 31856 net.cpp:406] relu7 <- fc7 +I0408 07:39:41.478984 31856 net.cpp:367] relu7 -> fc7 (in-place) +I0408 07:39:41.479599 31856 net.cpp:122] Setting up relu7 +I0408 07:39:41.479609 31856 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:39:41.479612 31856 net.cpp:137] Memory required for data: 1062254592 +I0408 07:39:41.479616 31856 layer_factory.hpp:77] Creating layer drop7 +I0408 07:39:41.479624 31856 net.cpp:84] Creating Layer drop7 +I0408 07:39:41.479645 31856 net.cpp:406] drop7 <- fc7 +I0408 07:39:41.479652 31856 net.cpp:367] drop7 -> fc7 (in-place) +I0408 07:39:41.479676 31856 net.cpp:122] Setting up drop7 +I0408 07:39:41.479682 31856 net.cpp:129] Top shape: 128 4096 (524288) +I0408 07:39:41.479686 31856 net.cpp:137] Memory required for data: 1064351744 +I0408 07:39:41.479688 31856 layer_factory.hpp:77] Creating layer fc8 +I0408 07:39:41.479697 31856 net.cpp:84] Creating Layer fc8 +I0408 07:39:41.479701 31856 net.cpp:406] fc8 <- fc7 +I0408 07:39:41.479707 31856 net.cpp:380] fc8 -> fc8 +I0408 07:39:41.487897 31856 net.cpp:122] Setting up fc8 +I0408 07:39:41.487907 31856 net.cpp:129] Top shape: 128 196 (25088) +I0408 07:39:41.487910 31856 net.cpp:137] Memory required for data: 1064452096 +I0408 07:39:41.487916 31856 layer_factory.hpp:77] Creating layer loss +I0408 07:39:41.487924 31856 net.cpp:84] Creating Layer loss +I0408 07:39:41.487928 31856 net.cpp:406] loss <- fc8 +I0408 07:39:41.487933 31856 net.cpp:406] loss <- label +I0408 07:39:41.487939 31856 net.cpp:380] loss -> loss +I0408 07:39:41.487948 31856 layer_factory.hpp:77] Creating layer loss +I0408 07:39:41.488543 31856 net.cpp:122] Setting up loss +I0408 07:39:41.488552 31856 net.cpp:129] Top shape: (1) +I0408 07:39:41.488555 31856 net.cpp:132] with loss weight 1 +I0408 07:39:41.488572 31856 net.cpp:137] Memory required for data: 1064452100 +I0408 07:39:41.488576 31856 net.cpp:198] loss needs backward computation. +I0408 07:39:41.488584 31856 net.cpp:198] fc8 needs backward computation. +I0408 07:39:41.488587 31856 net.cpp:198] drop7 needs backward computation. +I0408 07:39:41.488590 31856 net.cpp:198] relu7 needs backward computation. +I0408 07:39:41.488593 31856 net.cpp:198] fc7 needs backward computation. +I0408 07:39:41.488597 31856 net.cpp:198] drop6 needs backward computation. +I0408 07:39:41.488601 31856 net.cpp:198] relu6 needs backward computation. +I0408 07:39:41.488605 31856 net.cpp:198] fc6 needs backward computation. +I0408 07:39:41.488608 31856 net.cpp:198] pool5 needs backward computation. +I0408 07:39:41.488612 31856 net.cpp:198] relu5 needs backward computation. +I0408 07:39:41.488615 31856 net.cpp:198] conv5 needs backward computation. +I0408 07:39:41.488620 31856 net.cpp:198] relu4 needs backward computation. +I0408 07:39:41.488622 31856 net.cpp:198] conv4 needs backward computation. +I0408 07:39:41.488626 31856 net.cpp:198] relu3 needs backward computation. +I0408 07:39:41.488629 31856 net.cpp:198] conv3 needs backward computation. +I0408 07:39:41.488633 31856 net.cpp:198] pool2 needs backward computation. +I0408 07:39:41.488636 31856 net.cpp:198] norm2 needs backward computation. +I0408 07:39:41.488641 31856 net.cpp:198] relu2 needs backward computation. +I0408 07:39:41.488643 31856 net.cpp:198] conv2 needs backward computation. +I0408 07:39:41.488647 31856 net.cpp:198] pool1 needs backward computation. +I0408 07:39:41.488651 31856 net.cpp:198] norm1 needs backward computation. +I0408 07:39:41.488654 31856 net.cpp:198] relu1 needs backward computation. +I0408 07:39:41.488657 31856 net.cpp:198] conv1 needs backward computation. +I0408 07:39:41.488662 31856 net.cpp:200] train-data does not need backward computation. +I0408 07:39:41.488665 31856 net.cpp:242] This network produces output loss +I0408 07:39:41.488679 31856 net.cpp:255] Network initialization done. +I0408 07:39:41.489208 31856 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 07:39:41.489238 31856 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 07:39:41.489377 31856 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 07:39:41.489471 31856 layer_factory.hpp:77] Creating layer val-data +I0408 07:39:41.491112 31856 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0408 07:39:41.491314 31856 net.cpp:84] Creating Layer val-data +I0408 07:39:41.491324 31856 net.cpp:380] val-data -> data +I0408 07:39:41.491333 31856 net.cpp:380] val-data -> label +I0408 07:39:41.491339 31856 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 07:39:41.495204 31856 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 07:39:41.547219 31856 net.cpp:122] Setting up val-data +I0408 07:39:41.547238 31856 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 07:39:41.547243 31856 net.cpp:129] Top shape: 32 (32) +I0408 07:39:41.547246 31856 net.cpp:137] Memory required for data: 19787264 +I0408 07:39:41.547251 31856 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 07:39:41.547263 31856 net.cpp:84] Creating Layer label_val-data_1_split +I0408 07:39:41.547267 31856 net.cpp:406] label_val-data_1_split <- label +I0408 07:39:41.547274 31856 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 07:39:41.547282 31856 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 07:39:41.547331 31856 net.cpp:122] Setting up label_val-data_1_split +I0408 07:39:41.547336 31856 net.cpp:129] Top shape: 32 (32) +I0408 07:39:41.547340 31856 net.cpp:129] Top shape: 32 (32) +I0408 07:39:41.547343 31856 net.cpp:137] Memory required for data: 19787520 +I0408 07:39:41.547348 31856 layer_factory.hpp:77] Creating layer conv1 +I0408 07:39:41.547358 31856 net.cpp:84] Creating Layer conv1 +I0408 07:39:41.547361 31856 net.cpp:406] conv1 <- data +I0408 07:39:41.547367 31856 net.cpp:380] conv1 -> conv1 +I0408 07:39:41.556671 31856 net.cpp:122] Setting up conv1 +I0408 07:39:41.556682 31856 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 07:39:41.556686 31856 net.cpp:137] Memory required for data: 56958720 +I0408 07:39:41.556696 31856 layer_factory.hpp:77] Creating layer relu1 +I0408 07:39:41.556702 31856 net.cpp:84] Creating Layer relu1 +I0408 07:39:41.556706 31856 net.cpp:406] relu1 <- conv1 +I0408 07:39:41.556711 31856 net.cpp:367] relu1 -> conv1 (in-place) +I0408 07:39:41.557004 31856 net.cpp:122] Setting up relu1 +I0408 07:39:41.557013 31856 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 07:39:41.557016 31856 net.cpp:137] Memory required for data: 94129920 +I0408 07:39:41.557019 31856 layer_factory.hpp:77] Creating layer norm1 +I0408 07:39:41.557027 31856 net.cpp:84] Creating Layer norm1 +I0408 07:39:41.557031 31856 net.cpp:406] norm1 <- conv1 +I0408 07:39:41.557036 31856 net.cpp:380] norm1 -> norm1 +I0408 07:39:41.557487 31856 net.cpp:122] Setting up norm1 +I0408 07:39:41.557497 31856 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 07:39:41.557500 31856 net.cpp:137] Memory required for data: 131301120 +I0408 07:39:41.557504 31856 layer_factory.hpp:77] Creating layer pool1 +I0408 07:39:41.557510 31856 net.cpp:84] Creating Layer pool1 +I0408 07:39:41.557514 31856 net.cpp:406] pool1 <- norm1 +I0408 07:39:41.557519 31856 net.cpp:380] pool1 -> pool1 +I0408 07:39:41.557547 31856 net.cpp:122] Setting up pool1 +I0408 07:39:41.557552 31856 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 07:39:41.557555 31856 net.cpp:137] Memory required for data: 140259072 +I0408 07:39:41.557559 31856 layer_factory.hpp:77] Creating layer conv2 +I0408 07:39:41.557566 31856 net.cpp:84] Creating Layer conv2 +I0408 07:39:41.557569 31856 net.cpp:406] conv2 <- pool1 +I0408 07:39:41.557592 31856 net.cpp:380] conv2 -> conv2 +I0408 07:39:41.566066 31856 net.cpp:122] Setting up conv2 +I0408 07:39:41.566078 31856 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 07:39:41.566082 31856 net.cpp:137] Memory required for data: 164146944 +I0408 07:39:41.566092 31856 layer_factory.hpp:77] Creating layer relu2 +I0408 07:39:41.566098 31856 net.cpp:84] Creating Layer relu2 +I0408 07:39:41.566102 31856 net.cpp:406] relu2 <- conv2 +I0408 07:39:41.566107 31856 net.cpp:367] relu2 -> conv2 (in-place) +I0408 07:39:41.566609 31856 net.cpp:122] Setting up relu2 +I0408 07:39:41.566618 31856 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 07:39:41.566622 31856 net.cpp:137] Memory required for data: 188034816 +I0408 07:39:41.566625 31856 layer_factory.hpp:77] Creating layer norm2 +I0408 07:39:41.566635 31856 net.cpp:84] Creating Layer norm2 +I0408 07:39:41.566638 31856 net.cpp:406] norm2 <- conv2 +I0408 07:39:41.566645 31856 net.cpp:380] norm2 -> norm2 +I0408 07:39:41.567157 31856 net.cpp:122] Setting up norm2 +I0408 07:39:41.567165 31856 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 07:39:41.567169 31856 net.cpp:137] Memory required for data: 211922688 +I0408 07:39:41.567173 31856 layer_factory.hpp:77] Creating layer pool2 +I0408 07:39:41.567180 31856 net.cpp:84] Creating Layer pool2 +I0408 07:39:41.567184 31856 net.cpp:406] pool2 <- norm2 +I0408 07:39:41.567189 31856 net.cpp:380] pool2 -> pool2 +I0408 07:39:41.567221 31856 net.cpp:122] Setting up pool2 +I0408 07:39:41.567226 31856 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 07:39:41.567229 31856 net.cpp:137] Memory required for data: 217460480 +I0408 07:39:41.567232 31856 layer_factory.hpp:77] Creating layer conv3 +I0408 07:39:41.567241 31856 net.cpp:84] Creating Layer conv3 +I0408 07:39:41.567245 31856 net.cpp:406] conv3 <- pool2 +I0408 07:39:41.567251 31856 net.cpp:380] conv3 -> conv3 +I0408 07:39:41.578121 31856 net.cpp:122] Setting up conv3 +I0408 07:39:41.578135 31856 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:39:41.578140 31856 net.cpp:137] Memory required for data: 225767168 +I0408 07:39:41.578150 31856 layer_factory.hpp:77] Creating layer relu3 +I0408 07:39:41.578158 31856 net.cpp:84] Creating Layer relu3 +I0408 07:39:41.578162 31856 net.cpp:406] relu3 <- conv3 +I0408 07:39:41.578168 31856 net.cpp:367] relu3 -> conv3 (in-place) +I0408 07:39:41.578680 31856 net.cpp:122] Setting up relu3 +I0408 07:39:41.578688 31856 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:39:41.578691 31856 net.cpp:137] Memory required for data: 234073856 +I0408 07:39:41.578696 31856 layer_factory.hpp:77] Creating layer conv4 +I0408 07:39:41.578706 31856 net.cpp:84] Creating Layer conv4 +I0408 07:39:41.578709 31856 net.cpp:406] conv4 <- conv3 +I0408 07:39:41.578716 31856 net.cpp:380] conv4 -> conv4 +I0408 07:39:41.588099 31856 net.cpp:122] Setting up conv4 +I0408 07:39:41.588110 31856 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:39:41.588114 31856 net.cpp:137] Memory required for data: 242380544 +I0408 07:39:41.588120 31856 layer_factory.hpp:77] Creating layer relu4 +I0408 07:39:41.588127 31856 net.cpp:84] Creating Layer relu4 +I0408 07:39:41.588130 31856 net.cpp:406] relu4 <- conv4 +I0408 07:39:41.588140 31856 net.cpp:367] relu4 -> conv4 (in-place) +I0408 07:39:41.588479 31856 net.cpp:122] Setting up relu4 +I0408 07:39:41.588487 31856 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 07:39:41.588490 31856 net.cpp:137] Memory required for data: 250687232 +I0408 07:39:41.588495 31856 layer_factory.hpp:77] Creating layer conv5 +I0408 07:39:41.588505 31856 net.cpp:84] Creating Layer conv5 +I0408 07:39:41.588508 31856 net.cpp:406] conv5 <- conv4 +I0408 07:39:41.588515 31856 net.cpp:380] conv5 -> conv5 +I0408 07:39:41.599427 31856 net.cpp:122] Setting up conv5 +I0408 07:39:41.599442 31856 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 07:39:41.599445 31856 net.cpp:137] Memory required for data: 256225024 +I0408 07:39:41.599457 31856 layer_factory.hpp:77] Creating layer relu5 +I0408 07:39:41.599465 31856 net.cpp:84] Creating Layer relu5 +I0408 07:39:41.599469 31856 net.cpp:406] relu5 <- conv5 +I0408 07:39:41.599493 31856 net.cpp:367] relu5 -> conv5 (in-place) +I0408 07:39:41.599979 31856 net.cpp:122] Setting up relu5 +I0408 07:39:41.599988 31856 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 07:39:41.599992 31856 net.cpp:137] Memory required for data: 261762816 +I0408 07:39:41.599995 31856 layer_factory.hpp:77] Creating layer pool5 +I0408 07:39:41.600006 31856 net.cpp:84] Creating Layer pool5 +I0408 07:39:41.600010 31856 net.cpp:406] pool5 <- conv5 +I0408 07:39:41.600016 31856 net.cpp:380] pool5 -> pool5 +I0408 07:39:41.600055 31856 net.cpp:122] Setting up pool5 +I0408 07:39:41.600060 31856 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 07:39:41.600064 31856 net.cpp:137] Memory required for data: 262942464 +I0408 07:39:41.600067 31856 layer_factory.hpp:77] Creating layer fc6 +I0408 07:39:41.600075 31856 net.cpp:84] Creating Layer fc6 +I0408 07:39:41.600077 31856 net.cpp:406] fc6 <- pool5 +I0408 07:39:41.600082 31856 net.cpp:380] fc6 -> fc6 +I0408 07:39:41.954593 31856 net.cpp:122] Setting up fc6 +I0408 07:39:41.954614 31856 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:39:41.954618 31856 net.cpp:137] Memory required for data: 263466752 +I0408 07:39:41.954628 31856 layer_factory.hpp:77] Creating layer relu6 +I0408 07:39:41.954638 31856 net.cpp:84] Creating Layer relu6 +I0408 07:39:41.954641 31856 net.cpp:406] relu6 <- fc6 +I0408 07:39:41.954649 31856 net.cpp:367] relu6 -> fc6 (in-place) +I0408 07:39:41.955479 31856 net.cpp:122] Setting up relu6 +I0408 07:39:41.955489 31856 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:39:41.955492 31856 net.cpp:137] Memory required for data: 263991040 +I0408 07:39:41.955497 31856 layer_factory.hpp:77] Creating layer drop6 +I0408 07:39:41.955504 31856 net.cpp:84] Creating Layer drop6 +I0408 07:39:41.955508 31856 net.cpp:406] drop6 <- fc6 +I0408 07:39:41.955513 31856 net.cpp:367] drop6 -> fc6 (in-place) +I0408 07:39:41.955541 31856 net.cpp:122] Setting up drop6 +I0408 07:39:41.955547 31856 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:39:41.955550 31856 net.cpp:137] Memory required for data: 264515328 +I0408 07:39:41.955554 31856 layer_factory.hpp:77] Creating layer fc7 +I0408 07:39:41.955560 31856 net.cpp:84] Creating Layer fc7 +I0408 07:39:41.955564 31856 net.cpp:406] fc7 <- fc6 +I0408 07:39:41.955569 31856 net.cpp:380] fc7 -> fc7 +I0408 07:39:42.112435 31856 net.cpp:122] Setting up fc7 +I0408 07:39:42.112457 31856 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:39:42.112462 31856 net.cpp:137] Memory required for data: 265039616 +I0408 07:39:42.112470 31856 layer_factory.hpp:77] Creating layer relu7 +I0408 07:39:42.112480 31856 net.cpp:84] Creating Layer relu7 +I0408 07:39:42.112485 31856 net.cpp:406] relu7 <- fc7 +I0408 07:39:42.112491 31856 net.cpp:367] relu7 -> fc7 (in-place) +I0408 07:39:42.112921 31856 net.cpp:122] Setting up relu7 +I0408 07:39:42.112929 31856 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:39:42.112933 31856 net.cpp:137] Memory required for data: 265563904 +I0408 07:39:42.112937 31856 layer_factory.hpp:77] Creating layer drop7 +I0408 07:39:42.112943 31856 net.cpp:84] Creating Layer drop7 +I0408 07:39:42.112947 31856 net.cpp:406] drop7 <- fc7 +I0408 07:39:42.112953 31856 net.cpp:367] drop7 -> fc7 (in-place) +I0408 07:39:42.112977 31856 net.cpp:122] Setting up drop7 +I0408 07:39:42.112980 31856 net.cpp:129] Top shape: 32 4096 (131072) +I0408 07:39:42.112984 31856 net.cpp:137] Memory required for data: 266088192 +I0408 07:39:42.112987 31856 layer_factory.hpp:77] Creating layer fc8 +I0408 07:39:42.112995 31856 net.cpp:84] Creating Layer fc8 +I0408 07:39:42.112999 31856 net.cpp:406] fc8 <- fc7 +I0408 07:39:42.113005 31856 net.cpp:380] fc8 -> fc8 +I0408 07:39:42.120700 31856 net.cpp:122] Setting up fc8 +I0408 07:39:42.120710 31856 net.cpp:129] Top shape: 32 196 (6272) +I0408 07:39:42.120713 31856 net.cpp:137] Memory required for data: 266113280 +I0408 07:39:42.120719 31856 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 07:39:42.120725 31856 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 07:39:42.120729 31856 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 07:39:42.120754 31856 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 07:39:42.120760 31856 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 07:39:42.120790 31856 net.cpp:122] Setting up fc8_fc8_0_split +I0408 07:39:42.120795 31856 net.cpp:129] Top shape: 32 196 (6272) +I0408 07:39:42.120800 31856 net.cpp:129] Top shape: 32 196 (6272) +I0408 07:39:42.120802 31856 net.cpp:137] Memory required for data: 266163456 +I0408 07:39:42.120805 31856 layer_factory.hpp:77] Creating layer accuracy +I0408 07:39:42.120811 31856 net.cpp:84] Creating Layer accuracy +I0408 07:39:42.120815 31856 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 07:39:42.120820 31856 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 07:39:42.120824 31856 net.cpp:380] accuracy -> accuracy +I0408 07:39:42.120832 31856 net.cpp:122] Setting up accuracy +I0408 07:39:42.120836 31856 net.cpp:129] Top shape: (1) +I0408 07:39:42.120839 31856 net.cpp:137] Memory required for data: 266163460 +I0408 07:39:42.120842 31856 layer_factory.hpp:77] Creating layer loss +I0408 07:39:42.120847 31856 net.cpp:84] Creating Layer loss +I0408 07:39:42.120851 31856 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 07:39:42.120855 31856 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 07:39:42.120859 31856 net.cpp:380] loss -> loss +I0408 07:39:42.120867 31856 layer_factory.hpp:77] Creating layer loss +I0408 07:39:42.121454 31856 net.cpp:122] Setting up loss +I0408 07:39:42.121462 31856 net.cpp:129] Top shape: (1) +I0408 07:39:42.121465 31856 net.cpp:132] with loss weight 1 +I0408 07:39:42.121476 31856 net.cpp:137] Memory required for data: 266163464 +I0408 07:39:42.121480 31856 net.cpp:198] loss needs backward computation. +I0408 07:39:42.121485 31856 net.cpp:200] accuracy does not need backward computation. +I0408 07:39:42.121490 31856 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 07:39:42.121492 31856 net.cpp:198] fc8 needs backward computation. +I0408 07:39:42.121495 31856 net.cpp:198] drop7 needs backward computation. +I0408 07:39:42.121498 31856 net.cpp:198] relu7 needs backward computation. +I0408 07:39:42.121501 31856 net.cpp:198] fc7 needs backward computation. +I0408 07:39:42.121505 31856 net.cpp:198] drop6 needs backward computation. +I0408 07:39:42.121508 31856 net.cpp:198] relu6 needs backward computation. +I0408 07:39:42.121511 31856 net.cpp:198] fc6 needs backward computation. +I0408 07:39:42.121515 31856 net.cpp:198] pool5 needs backward computation. +I0408 07:39:42.121520 31856 net.cpp:198] relu5 needs backward computation. +I0408 07:39:42.121522 31856 net.cpp:198] conv5 needs backward computation. +I0408 07:39:42.121526 31856 net.cpp:198] relu4 needs backward computation. +I0408 07:39:42.121529 31856 net.cpp:198] conv4 needs backward computation. +I0408 07:39:42.121532 31856 net.cpp:198] relu3 needs backward computation. +I0408 07:39:42.121536 31856 net.cpp:198] conv3 needs backward computation. +I0408 07:39:42.121539 31856 net.cpp:198] pool2 needs backward computation. +I0408 07:39:42.121543 31856 net.cpp:198] norm2 needs backward computation. +I0408 07:39:42.121546 31856 net.cpp:198] relu2 needs backward computation. +I0408 07:39:42.121549 31856 net.cpp:198] conv2 needs backward computation. +I0408 07:39:42.121553 31856 net.cpp:198] pool1 needs backward computation. +I0408 07:39:42.121556 31856 net.cpp:198] norm1 needs backward computation. +I0408 07:39:42.121560 31856 net.cpp:198] relu1 needs backward computation. +I0408 07:39:42.121563 31856 net.cpp:198] conv1 needs backward computation. +I0408 07:39:42.121567 31856 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 07:39:42.121572 31856 net.cpp:200] val-data does not need backward computation. +I0408 07:39:42.121573 31856 net.cpp:242] This network produces output accuracy +I0408 07:39:42.121577 31856 net.cpp:242] This network produces output loss +I0408 07:39:42.121594 31856 net.cpp:255] Network initialization done. +I0408 07:39:42.121662 31856 solver.cpp:56] Solver scaffolding done. +I0408 07:39:42.122084 31856 caffe.cpp:248] Starting Optimization +I0408 07:39:42.122093 31856 solver.cpp:272] Solving +I0408 07:39:42.122105 31856 solver.cpp:273] Learning Rate Policy: exp +I0408 07:39:42.123391 31856 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 07:39:42.123401 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:39:42.201939 31856 blocking_queue.cpp:49] Waiting for data +I0408 07:39:46.508920 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:39:46.553926 31856 solver.cpp:397] Test net output #0: accuracy = 0.0067402 +I0408 07:39:46.553982 31856 solver.cpp:397] Test net output #1: loss = 5.28147 (* 1 = 5.28147 loss) +I0408 07:39:46.655428 31856 solver.cpp:218] Iteration 0 (2.81634e+37 iter/s, 4.53312s/12 iters), loss = 5.2668 +I0408 07:39:46.656940 31856 solver.cpp:237] Train net output #0: loss = 5.2668 (* 1 = 5.2668 loss) +I0408 07:39:46.656958 31856 sgd_solver.cpp:105] Iteration 0, lr = 0.1 +I0408 07:39:50.715729 31856 solver.cpp:218] Iteration 12 (2.95666 iter/s, 4.05863s/12 iters), loss = 5.33498 +I0408 07:39:50.715775 31856 solver.cpp:237] Train net output #0: loss = 5.33498 (* 1 = 5.33498 loss) +I0408 07:39:50.715787 31856 sgd_solver.cpp:105] Iteration 12, lr = 0.0987681 +I0408 07:39:55.664290 31856 solver.cpp:218] Iteration 24 (2.42506 iter/s, 4.94834s/12 iters), loss = 5.31827 +I0408 07:39:55.664324 31856 solver.cpp:237] Train net output #0: loss = 5.31827 (* 1 = 5.31827 loss) +I0408 07:39:55.664332 31856 sgd_solver.cpp:105] Iteration 24, lr = 0.0975514 +I0408 07:40:00.598390 31856 solver.cpp:218] Iteration 36 (2.43217 iter/s, 4.93387s/12 iters), loss = 5.30907 +I0408 07:40:00.598469 31856 solver.cpp:237] Train net output #0: loss = 5.30907 (* 1 = 5.30907 loss) +I0408 07:40:00.598486 31856 sgd_solver.cpp:105] Iteration 36, lr = 0.0963497 +I0408 07:40:05.611399 31856 solver.cpp:218] Iteration 48 (2.39389 iter/s, 5.01275s/12 iters), loss = 5.29501 +I0408 07:40:05.611444 31856 solver.cpp:237] Train net output #0: loss = 5.29501 (* 1 = 5.29501 loss) +I0408 07:40:05.611456 31856 sgd_solver.cpp:105] Iteration 48, lr = 0.0951628 +I0408 07:40:10.632692 31856 solver.cpp:218] Iteration 60 (2.38993 iter/s, 5.02107s/12 iters), loss = 5.29672 +I0408 07:40:10.632872 31856 solver.cpp:237] Train net output #0: loss = 5.29672 (* 1 = 5.29672 loss) +I0408 07:40:10.632886 31856 sgd_solver.cpp:105] Iteration 60, lr = 0.0939905 +I0408 07:40:15.576858 31856 solver.cpp:218] Iteration 72 (2.42728 iter/s, 4.94381s/12 iters), loss = 5.29647 +I0408 07:40:15.576903 31856 solver.cpp:237] Train net output #0: loss = 5.29647 (* 1 = 5.29647 loss) +I0408 07:40:15.576913 31856 sgd_solver.cpp:105] Iteration 72, lr = 0.0928326 +I0408 07:40:20.449589 31856 solver.cpp:218] Iteration 84 (2.4628 iter/s, 4.87251s/12 iters), loss = 5.28835 +I0408 07:40:20.449625 31856 solver.cpp:237] Train net output #0: loss = 5.28835 (* 1 = 5.28835 loss) +I0408 07:40:20.449633 31856 sgd_solver.cpp:105] Iteration 84, lr = 0.091689 +I0408 07:40:25.463470 31856 solver.cpp:218] Iteration 96 (2.39346 iter/s, 5.01366s/12 iters), loss = 5.29692 +I0408 07:40:25.463523 31856 solver.cpp:237] Train net output #0: loss = 5.29692 (* 1 = 5.29692 loss) +I0408 07:40:25.463536 31856 sgd_solver.cpp:105] Iteration 96, lr = 0.0905595 +I0408 07:40:27.178887 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:40:27.532021 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 07:40:30.594744 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 07:40:32.882464 31856 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 07:40:32.882488 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:40:37.222254 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:40:37.299163 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:40:37.299209 31856 solver.cpp:397] Test net output #1: loss = 5.28295 (* 1 = 5.28295 loss) +I0408 07:40:39.151324 31856 solver.cpp:218] Iteration 108 (0.876723 iter/s, 13.6873s/12 iters), loss = 5.29993 +I0408 07:40:39.151361 31856 solver.cpp:237] Train net output #0: loss = 5.29993 (* 1 = 5.29993 loss) +I0408 07:40:39.151369 31856 sgd_solver.cpp:105] Iteration 108, lr = 0.0894439 +I0408 07:40:44.105979 31856 solver.cpp:218] Iteration 120 (2.42207 iter/s, 4.95444s/12 iters), loss = 5.28416 +I0408 07:40:44.106108 31856 solver.cpp:237] Train net output #0: loss = 5.28416 (* 1 = 5.28416 loss) +I0408 07:40:44.106122 31856 sgd_solver.cpp:105] Iteration 120, lr = 0.0883421 +I0408 07:40:49.201555 31856 solver.cpp:218] Iteration 132 (2.35512 iter/s, 5.09527s/12 iters), loss = 5.25178 +I0408 07:40:49.201593 31856 solver.cpp:237] Train net output #0: loss = 5.25178 (* 1 = 5.25178 loss) +I0408 07:40:49.201602 31856 sgd_solver.cpp:105] Iteration 132, lr = 0.0872538 +I0408 07:40:54.218611 31856 solver.cpp:218] Iteration 144 (2.39195 iter/s, 5.01683s/12 iters), loss = 5.29956 +I0408 07:40:54.218664 31856 solver.cpp:237] Train net output #0: loss = 5.29956 (* 1 = 5.29956 loss) +I0408 07:40:54.218677 31856 sgd_solver.cpp:105] Iteration 144, lr = 0.086179 +I0408 07:40:59.175700 31856 solver.cpp:218] Iteration 156 (2.42088 iter/s, 4.95687s/12 iters), loss = 5.26616 +I0408 07:40:59.175732 31856 solver.cpp:237] Train net output #0: loss = 5.26616 (* 1 = 5.26616 loss) +I0408 07:40:59.175740 31856 sgd_solver.cpp:105] Iteration 156, lr = 0.0851173 +I0408 07:41:04.153755 31856 solver.cpp:218] Iteration 168 (2.41068 iter/s, 4.97784s/12 iters), loss = 5.26727 +I0408 07:41:04.153801 31856 solver.cpp:237] Train net output #0: loss = 5.26727 (* 1 = 5.26727 loss) +I0408 07:41:04.153812 31856 sgd_solver.cpp:105] Iteration 168, lr = 0.0840688 +I0408 07:41:09.166651 31856 solver.cpp:218] Iteration 180 (2.39393 iter/s, 5.01268s/12 iters), loss = 5.26742 +I0408 07:41:09.166687 31856 solver.cpp:237] Train net output #0: loss = 5.26742 (* 1 = 5.26742 loss) +I0408 07:41:09.166697 31856 sgd_solver.cpp:105] Iteration 180, lr = 0.0830332 +I0408 07:41:14.096338 31856 solver.cpp:218] Iteration 192 (2.43434 iter/s, 4.92947s/12 iters), loss = 5.27359 +I0408 07:41:14.096387 31856 solver.cpp:237] Train net output #0: loss = 5.27359 (* 1 = 5.27359 loss) +I0408 07:41:14.096398 31856 sgd_solver.cpp:105] Iteration 192, lr = 0.0820103 +I0408 07:41:18.063547 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:41:18.733198 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 07:41:21.693964 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 07:41:24.017093 31856 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 07:41:24.017117 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:41:28.366246 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:41:28.489265 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:41:28.489312 31856 solver.cpp:397] Test net output #1: loss = 5.28525 (* 1 = 5.28525 loss) +I0408 07:41:28.578266 31856 solver.cpp:218] Iteration 204 (0.82865 iter/s, 14.4814s/12 iters), loss = 5.26982 +I0408 07:41:28.578316 31856 solver.cpp:237] Train net output #0: loss = 5.26982 (* 1 = 5.26982 loss) +I0408 07:41:28.578328 31856 sgd_solver.cpp:105] Iteration 204, lr = 0.081 +I0408 07:41:32.791604 31856 solver.cpp:218] Iteration 216 (2.84823 iter/s, 4.21314s/12 iters), loss = 5.28074 +I0408 07:41:32.791640 31856 solver.cpp:237] Train net output #0: loss = 5.28074 (* 1 = 5.28074 loss) +I0408 07:41:32.791649 31856 sgd_solver.cpp:105] Iteration 216, lr = 0.0800022 +I0408 07:41:37.777174 31856 solver.cpp:218] Iteration 228 (2.40705 iter/s, 4.98536s/12 iters), loss = 5.26192 +I0408 07:41:37.777221 31856 solver.cpp:237] Train net output #0: loss = 5.26192 (* 1 = 5.26192 loss) +I0408 07:41:37.777233 31856 sgd_solver.cpp:105] Iteration 228, lr = 0.0790167 +I0408 07:41:42.742178 31856 solver.cpp:218] Iteration 240 (2.41702 iter/s, 4.96478s/12 iters), loss = 5.28366 +I0408 07:41:42.742224 31856 solver.cpp:237] Train net output #0: loss = 5.28366 (* 1 = 5.28366 loss) +I0408 07:41:42.742236 31856 sgd_solver.cpp:105] Iteration 240, lr = 0.0780433 +I0408 07:41:47.727130 31856 solver.cpp:218] Iteration 252 (2.40735 iter/s, 4.98473s/12 iters), loss = 5.26868 +I0408 07:41:47.727175 31856 solver.cpp:237] Train net output #0: loss = 5.26868 (* 1 = 5.26868 loss) +I0408 07:41:47.727188 31856 sgd_solver.cpp:105] Iteration 252, lr = 0.0770819 +I0408 07:41:52.683199 31856 solver.cpp:218] Iteration 264 (2.42138 iter/s, 4.95585s/12 iters), loss = 5.26947 +I0408 07:41:52.683341 31856 solver.cpp:237] Train net output #0: loss = 5.26947 (* 1 = 5.26947 loss) +I0408 07:41:52.683354 31856 sgd_solver.cpp:105] Iteration 264, lr = 0.0761323 +I0408 07:41:57.657167 31856 solver.cpp:218] Iteration 276 (2.41271 iter/s, 4.97365s/12 iters), loss = 5.29241 +I0408 07:41:57.657214 31856 solver.cpp:237] Train net output #0: loss = 5.29241 (* 1 = 5.29241 loss) +I0408 07:41:57.657227 31856 sgd_solver.cpp:105] Iteration 276, lr = 0.0751944 +I0408 07:42:02.617693 31856 solver.cpp:218] Iteration 288 (2.41921 iter/s, 4.9603s/12 iters), loss = 5.2836 +I0408 07:42:02.617745 31856 solver.cpp:237] Train net output #0: loss = 5.2836 (* 1 = 5.2836 loss) +I0408 07:42:02.617755 31856 sgd_solver.cpp:105] Iteration 288, lr = 0.0742681 +I0408 07:42:07.568352 31856 solver.cpp:218] Iteration 300 (2.42403 iter/s, 4.95044s/12 iters), loss = 5.283 +I0408 07:42:07.568388 31856 solver.cpp:237] Train net output #0: loss = 5.283 (* 1 = 5.283 loss) +I0408 07:42:07.568395 31856 sgd_solver.cpp:105] Iteration 300, lr = 0.0733532 +I0408 07:42:08.549046 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:42:09.605105 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 07:42:12.591753 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 07:42:14.916762 31856 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 07:42:14.916785 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:42:19.215107 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:42:19.372702 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:42:19.372747 31856 solver.cpp:397] Test net output #1: loss = 5.28542 (* 1 = 5.28542 loss) +I0408 07:42:21.217432 31856 solver.cpp:218] Iteration 312 (0.879212 iter/s, 13.6486s/12 iters), loss = 5.28521 +I0408 07:42:21.217470 31856 solver.cpp:237] Train net output #0: loss = 5.28521 (* 1 = 5.28521 loss) +I0408 07:42:21.217478 31856 sgd_solver.cpp:105] Iteration 312, lr = 0.0724496 +I0408 07:42:26.198144 31856 solver.cpp:218] Iteration 324 (2.4094 iter/s, 4.9805s/12 iters), loss = 5.24894 +I0408 07:42:26.198247 31856 solver.cpp:237] Train net output #0: loss = 5.24894 (* 1 = 5.24894 loss) +I0408 07:42:26.198261 31856 sgd_solver.cpp:105] Iteration 324, lr = 0.0715571 +I0408 07:42:31.194491 31856 solver.cpp:218] Iteration 336 (2.40189 iter/s, 4.99607s/12 iters), loss = 5.26241 +I0408 07:42:31.194535 31856 solver.cpp:237] Train net output #0: loss = 5.26241 (* 1 = 5.26241 loss) +I0408 07:42:31.194546 31856 sgd_solver.cpp:105] Iteration 336, lr = 0.0706756 +I0408 07:42:36.153450 31856 solver.cpp:218] Iteration 348 (2.41997 iter/s, 4.95874s/12 iters), loss = 5.26733 +I0408 07:42:36.153493 31856 solver.cpp:237] Train net output #0: loss = 5.26733 (* 1 = 5.26733 loss) +I0408 07:42:36.153504 31856 sgd_solver.cpp:105] Iteration 348, lr = 0.069805 +I0408 07:42:41.699478 31856 solver.cpp:218] Iteration 360 (2.1638 iter/s, 5.5458s/12 iters), loss = 5.29264 +I0408 07:42:41.699527 31856 solver.cpp:237] Train net output #0: loss = 5.29264 (* 1 = 5.29264 loss) +I0408 07:42:41.699539 31856 sgd_solver.cpp:105] Iteration 360, lr = 0.0689451 +I0408 07:42:46.822773 31856 solver.cpp:218] Iteration 372 (2.34234 iter/s, 5.12308s/12 iters), loss = 5.27355 +I0408 07:42:46.822818 31856 solver.cpp:237] Train net output #0: loss = 5.27355 (* 1 = 5.27355 loss) +I0408 07:42:46.822830 31856 sgd_solver.cpp:105] Iteration 372, lr = 0.0680957 +I0408 07:42:51.789793 31856 solver.cpp:218] Iteration 384 (2.41604 iter/s, 4.96681s/12 iters), loss = 5.27866 +I0408 07:42:51.789824 31856 solver.cpp:237] Train net output #0: loss = 5.27866 (* 1 = 5.27866 loss) +I0408 07:42:51.789832 31856 sgd_solver.cpp:105] Iteration 384, lr = 0.0672569 +I0408 07:42:56.872190 31856 solver.cpp:218] Iteration 396 (2.36119 iter/s, 5.08219s/12 iters), loss = 5.27202 +I0408 07:42:56.872310 31856 solver.cpp:237] Train net output #0: loss = 5.27202 (* 1 = 5.27202 loss) +I0408 07:42:56.872323 31856 sgd_solver.cpp:105] Iteration 396, lr = 0.0664283 +I0408 07:43:00.002873 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:43:01.420270 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 07:43:04.410343 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 07:43:06.729014 31856 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 07:43:06.729040 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:43:10.995857 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:43:11.199187 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:43:11.199234 31856 solver.cpp:397] Test net output #1: loss = 5.28681 (* 1 = 5.28681 loss) +I0408 07:43:11.286504 31856 solver.cpp:218] Iteration 408 (0.832539 iter/s, 14.4137s/12 iters), loss = 5.28324 +I0408 07:43:11.286543 31856 solver.cpp:237] Train net output #0: loss = 5.28324 (* 1 = 5.28324 loss) +I0408 07:43:11.286553 31856 sgd_solver.cpp:105] Iteration 408, lr = 0.06561 +I0408 07:43:15.606535 31856 solver.cpp:218] Iteration 420 (2.77788 iter/s, 4.31985s/12 iters), loss = 5.27509 +I0408 07:43:15.606582 31856 solver.cpp:237] Train net output #0: loss = 5.27509 (* 1 = 5.27509 loss) +I0408 07:43:15.606595 31856 sgd_solver.cpp:105] Iteration 420, lr = 0.0648018 +I0408 07:43:20.614491 31856 solver.cpp:218] Iteration 432 (2.39629 iter/s, 5.00774s/12 iters), loss = 5.26868 +I0408 07:43:20.614539 31856 solver.cpp:237] Train net output #0: loss = 5.26868 (* 1 = 5.26868 loss) +I0408 07:43:20.614550 31856 sgd_solver.cpp:105] Iteration 432, lr = 0.0640035 +I0408 07:43:25.596621 31856 solver.cpp:218] Iteration 444 (2.40871 iter/s, 4.98191s/12 iters), loss = 5.289 +I0408 07:43:25.596670 31856 solver.cpp:237] Train net output #0: loss = 5.289 (* 1 = 5.289 loss) +I0408 07:43:25.596681 31856 sgd_solver.cpp:105] Iteration 444, lr = 0.0632151 +I0408 07:43:30.549934 31856 solver.cpp:218] Iteration 456 (2.42273 iter/s, 4.9531s/12 iters), loss = 5.2839 +I0408 07:43:30.550068 31856 solver.cpp:237] Train net output #0: loss = 5.2839 (* 1 = 5.2839 loss) +I0408 07:43:30.550082 31856 sgd_solver.cpp:105] Iteration 456, lr = 0.0624363 +I0408 07:43:35.528946 31856 solver.cpp:218] Iteration 468 (2.41026 iter/s, 4.97872s/12 iters), loss = 5.28698 +I0408 07:43:35.528993 31856 solver.cpp:237] Train net output #0: loss = 5.28698 (* 1 = 5.28698 loss) +I0408 07:43:35.529004 31856 sgd_solver.cpp:105] Iteration 468, lr = 0.0616672 +I0408 07:43:40.442513 31856 solver.cpp:218] Iteration 480 (2.44232 iter/s, 4.91336s/12 iters), loss = 5.26481 +I0408 07:43:40.442565 31856 solver.cpp:237] Train net output #0: loss = 5.26481 (* 1 = 5.26481 loss) +I0408 07:43:40.442577 31856 sgd_solver.cpp:105] Iteration 480, lr = 0.0609075 +I0408 07:43:45.412904 31856 solver.cpp:218] Iteration 492 (2.4144 iter/s, 4.97018s/12 iters), loss = 5.29332 +I0408 07:43:45.412948 31856 solver.cpp:237] Train net output #0: loss = 5.29332 (* 1 = 5.29332 loss) +I0408 07:43:45.412959 31856 sgd_solver.cpp:105] Iteration 492, lr = 0.0601572 +I0408 07:43:50.389490 31856 solver.cpp:218] Iteration 504 (2.41139 iter/s, 4.97638s/12 iters), loss = 5.26921 +I0408 07:43:50.389547 31856 solver.cpp:237] Train net output #0: loss = 5.26921 (* 1 = 5.26921 loss) +I0408 07:43:50.389564 31856 sgd_solver.cpp:105] Iteration 504, lr = 0.0594161 +I0408 07:43:50.630673 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:43:52.344296 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 07:43:55.365569 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 07:43:57.690620 31856 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 07:43:57.690644 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:44:01.912189 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:44:02.150765 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 07:44:02.150813 31856 solver.cpp:397] Test net output #1: loss = 5.28651 (* 1 = 5.28651 loss) +I0408 07:44:04.113329 31856 solver.cpp:218] Iteration 516 (0.874421 iter/s, 13.7234s/12 iters), loss = 5.28023 +I0408 07:44:04.113371 31856 solver.cpp:237] Train net output #0: loss = 5.28023 (* 1 = 5.28023 loss) +I0408 07:44:04.113381 31856 sgd_solver.cpp:105] Iteration 516, lr = 0.0586842 +I0408 07:44:09.004204 31856 solver.cpp:218] Iteration 528 (2.45365 iter/s, 4.89067s/12 iters), loss = 5.27449 +I0408 07:44:09.004249 31856 solver.cpp:237] Train net output #0: loss = 5.27449 (* 1 = 5.27449 loss) +I0408 07:44:09.004261 31856 sgd_solver.cpp:105] Iteration 528, lr = 0.0579613 +I0408 07:44:13.914484 31856 solver.cpp:218] Iteration 540 (2.44395 iter/s, 4.91008s/12 iters), loss = 5.27706 +I0408 07:44:13.914527 31856 solver.cpp:237] Train net output #0: loss = 5.27706 (* 1 = 5.27706 loss) +I0408 07:44:13.914539 31856 sgd_solver.cpp:105] Iteration 540, lr = 0.0572473 +I0408 07:44:18.869307 31856 solver.cpp:218] Iteration 552 (2.42198 iter/s, 4.95462s/12 iters), loss = 5.27326 +I0408 07:44:18.869352 31856 solver.cpp:237] Train net output #0: loss = 5.27326 (* 1 = 5.27326 loss) +I0408 07:44:18.869364 31856 sgd_solver.cpp:105] Iteration 552, lr = 0.056542 +I0408 07:44:23.918439 31856 solver.cpp:218] Iteration 564 (2.37674 iter/s, 5.04893s/12 iters), loss = 5.25699 +I0408 07:44:23.918483 31856 solver.cpp:237] Train net output #0: loss = 5.25699 (* 1 = 5.25699 loss) +I0408 07:44:23.918496 31856 sgd_solver.cpp:105] Iteration 564, lr = 0.0558455 +I0408 07:44:28.857138 31856 solver.cpp:218] Iteration 576 (2.42989 iter/s, 4.9385s/12 iters), loss = 5.27907 +I0408 07:44:28.857184 31856 solver.cpp:237] Train net output #0: loss = 5.27907 (* 1 = 5.27907 loss) +I0408 07:44:28.857195 31856 sgd_solver.cpp:105] Iteration 576, lr = 0.0551576 +I0408 07:44:33.869105 31856 solver.cpp:218] Iteration 588 (2.39437 iter/s, 5.01177s/12 iters), loss = 5.26557 +I0408 07:44:33.869199 31856 solver.cpp:237] Train net output #0: loss = 5.26557 (* 1 = 5.26557 loss) +I0408 07:44:33.869208 31856 sgd_solver.cpp:105] Iteration 588, lr = 0.0544781 +I0408 07:44:38.866616 31856 solver.cpp:218] Iteration 600 (2.40132 iter/s, 4.99726s/12 iters), loss = 5.26111 +I0408 07:44:38.866660 31856 solver.cpp:237] Train net output #0: loss = 5.26111 (* 1 = 5.26111 loss) +I0408 07:44:38.866672 31856 sgd_solver.cpp:105] Iteration 600, lr = 0.053807 +I0408 07:44:41.269970 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:44:43.418272 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 07:44:46.444160 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 07:44:48.770545 31856 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 07:44:48.770570 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:44:52.957783 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:44:53.242952 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:44:53.243000 31856 solver.cpp:397] Test net output #1: loss = 5.28661 (* 1 = 5.28661 loss) +I0408 07:44:53.332844 31856 solver.cpp:218] Iteration 612 (0.829546 iter/s, 14.4658s/12 iters), loss = 5.27657 +I0408 07:44:53.332890 31856 solver.cpp:237] Train net output #0: loss = 5.27657 (* 1 = 5.27657 loss) +I0408 07:44:53.332901 31856 sgd_solver.cpp:105] Iteration 612, lr = 0.0531441 +I0408 07:44:57.686480 31856 solver.cpp:218] Iteration 624 (2.75643 iter/s, 4.35345s/12 iters), loss = 5.29212 +I0408 07:44:57.686525 31856 solver.cpp:237] Train net output #0: loss = 5.29212 (* 1 = 5.29212 loss) +I0408 07:44:57.686537 31856 sgd_solver.cpp:105] Iteration 624, lr = 0.0524895 +I0408 07:45:02.857689 31856 solver.cpp:218] Iteration 636 (2.32064 iter/s, 5.17099s/12 iters), loss = 5.28739 +I0408 07:45:02.857740 31856 solver.cpp:237] Train net output #0: loss = 5.28739 (* 1 = 5.28739 loss) +I0408 07:45:02.857753 31856 sgd_solver.cpp:105] Iteration 636, lr = 0.0518428 +I0408 07:45:07.835764 31856 solver.cpp:218] Iteration 648 (2.41067 iter/s, 4.97787s/12 iters), loss = 5.27454 +I0408 07:45:07.835893 31856 solver.cpp:237] Train net output #0: loss = 5.27454 (* 1 = 5.27454 loss) +I0408 07:45:07.835904 31856 sgd_solver.cpp:105] Iteration 648, lr = 0.0512042 +I0408 07:45:12.880250 31856 solver.cpp:218] Iteration 660 (2.37897 iter/s, 5.0442s/12 iters), loss = 5.26884 +I0408 07:45:12.880295 31856 solver.cpp:237] Train net output #0: loss = 5.26884 (* 1 = 5.26884 loss) +I0408 07:45:12.880304 31856 sgd_solver.cpp:105] Iteration 660, lr = 0.0505734 +I0408 07:45:17.933501 31856 solver.cpp:218] Iteration 672 (2.3748 iter/s, 5.05305s/12 iters), loss = 5.27694 +I0408 07:45:17.933538 31856 solver.cpp:237] Train net output #0: loss = 5.27694 (* 1 = 5.27694 loss) +I0408 07:45:17.933548 31856 sgd_solver.cpp:105] Iteration 672, lr = 0.0499504 +I0408 07:45:22.986377 31856 solver.cpp:218] Iteration 684 (2.37498 iter/s, 5.05267s/12 iters), loss = 5.27601 +I0408 07:45:22.986426 31856 solver.cpp:237] Train net output #0: loss = 5.27601 (* 1 = 5.27601 loss) +I0408 07:45:22.986438 31856 sgd_solver.cpp:105] Iteration 684, lr = 0.0493351 +I0408 07:45:23.812376 31856 blocking_queue.cpp:49] Waiting for data +I0408 07:45:27.989174 31856 solver.cpp:218] Iteration 696 (2.39876 iter/s, 5.00259s/12 iters), loss = 5.27049 +I0408 07:45:27.989223 31856 solver.cpp:237] Train net output #0: loss = 5.27049 (* 1 = 5.27049 loss) +I0408 07:45:27.989234 31856 sgd_solver.cpp:105] Iteration 696, lr = 0.0487273 +I0408 07:45:32.612839 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:45:32.989018 31856 solver.cpp:218] Iteration 708 (2.40018 iter/s, 4.99963s/12 iters), loss = 5.25811 +I0408 07:45:32.989063 31856 solver.cpp:237] Train net output #0: loss = 5.25811 (* 1 = 5.25811 loss) +I0408 07:45:32.989073 31856 sgd_solver.cpp:105] Iteration 708, lr = 0.0481271 +I0408 07:45:35.031399 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 07:45:38.025775 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 07:45:40.360303 31856 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 07:45:40.360328 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:45:44.501019 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:45:44.820711 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:45:44.820760 31856 solver.cpp:397] Test net output #1: loss = 5.28761 (* 1 = 5.28761 loss) +I0408 07:45:46.816815 31856 solver.cpp:218] Iteration 720 (0.867846 iter/s, 13.8273s/12 iters), loss = 5.27272 +I0408 07:45:46.816864 31856 solver.cpp:237] Train net output #0: loss = 5.27272 (* 1 = 5.27272 loss) +I0408 07:45:46.816876 31856 sgd_solver.cpp:105] Iteration 720, lr = 0.0475342 +I0408 07:45:52.155390 31856 solver.cpp:218] Iteration 732 (2.24788 iter/s, 5.33836s/12 iters), loss = 5.27948 +I0408 07:45:52.155438 31856 solver.cpp:237] Train net output #0: loss = 5.27948 (* 1 = 5.27948 loss) +I0408 07:45:52.155450 31856 sgd_solver.cpp:105] Iteration 732, lr = 0.0469486 +I0408 07:45:57.152434 31856 solver.cpp:218] Iteration 744 (2.40152 iter/s, 4.99684s/12 iters), loss = 5.27799 +I0408 07:45:57.152483 31856 solver.cpp:237] Train net output #0: loss = 5.27799 (* 1 = 5.27799 loss) +I0408 07:45:57.152496 31856 sgd_solver.cpp:105] Iteration 744, lr = 0.0463703 +I0408 07:46:02.025661 31856 solver.cpp:218] Iteration 756 (2.46254 iter/s, 4.87302s/12 iters), loss = 5.27614 +I0408 07:46:02.025712 31856 solver.cpp:237] Train net output #0: loss = 5.27614 (* 1 = 5.27614 loss) +I0408 07:46:02.025724 31856 sgd_solver.cpp:105] Iteration 756, lr = 0.0457991 +I0408 07:46:07.016105 31856 solver.cpp:218] Iteration 768 (2.40469 iter/s, 4.99024s/12 iters), loss = 5.27993 +I0408 07:46:07.016155 31856 solver.cpp:237] Train net output #0: loss = 5.27993 (* 1 = 5.27993 loss) +I0408 07:46:07.016166 31856 sgd_solver.cpp:105] Iteration 768, lr = 0.0452349 +I0408 07:46:12.147337 31856 solver.cpp:218] Iteration 780 (2.33871 iter/s, 5.13102s/12 iters), loss = 5.26595 +I0408 07:46:12.147471 31856 solver.cpp:237] Train net output #0: loss = 5.26595 (* 1 = 5.26595 loss) +I0408 07:46:12.147485 31856 sgd_solver.cpp:105] Iteration 780, lr = 0.0446776 +I0408 07:46:17.147652 31856 solver.cpp:218] Iteration 792 (2.39998 iter/s, 5.00003s/12 iters), loss = 5.26701 +I0408 07:46:17.147686 31856 solver.cpp:237] Train net output #0: loss = 5.26701 (* 1 = 5.26701 loss) +I0408 07:46:17.147694 31856 sgd_solver.cpp:105] Iteration 792, lr = 0.0441272 +I0408 07:46:22.119532 31856 solver.cpp:218] Iteration 804 (2.41367 iter/s, 4.97169s/12 iters), loss = 5.28888 +I0408 07:46:22.119581 31856 solver.cpp:237] Train net output #0: loss = 5.28888 (* 1 = 5.28888 loss) +I0408 07:46:22.119593 31856 sgd_solver.cpp:105] Iteration 804, lr = 0.0435837 +I0408 07:46:23.962733 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:46:26.778221 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 07:46:29.806574 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 07:46:32.133385 31856 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 07:46:32.133410 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:46:36.245563 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:46:36.600198 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:46:36.600248 31856 solver.cpp:397] Test net output #1: loss = 5.28754 (* 1 = 5.28754 loss) +I0408 07:46:36.690506 31856 solver.cpp:218] Iteration 816 (0.823582 iter/s, 14.5705s/12 iters), loss = 5.27764 +I0408 07:46:36.690557 31856 solver.cpp:237] Train net output #0: loss = 5.27764 (* 1 = 5.27764 loss) +I0408 07:46:36.690568 31856 sgd_solver.cpp:105] Iteration 816, lr = 0.0430468 +I0408 07:46:40.928126 31856 solver.cpp:218] Iteration 828 (2.8319 iter/s, 4.23744s/12 iters), loss = 5.28256 +I0408 07:46:40.928176 31856 solver.cpp:237] Train net output #0: loss = 5.28256 (* 1 = 5.28256 loss) +I0408 07:46:40.928189 31856 sgd_solver.cpp:105] Iteration 828, lr = 0.0425165 +I0408 07:46:45.871578 31856 solver.cpp:218] Iteration 840 (2.42755 iter/s, 4.94325s/12 iters), loss = 5.22944 +I0408 07:46:45.874416 31856 solver.cpp:237] Train net output #0: loss = 5.22944 (* 1 = 5.22944 loss) +I0408 07:46:45.874433 31856 sgd_solver.cpp:105] Iteration 840, lr = 0.0419927 +I0408 07:46:50.863304 31856 solver.cpp:218] Iteration 852 (2.40542 iter/s, 4.98874s/12 iters), loss = 5.30188 +I0408 07:46:50.863353 31856 solver.cpp:237] Train net output #0: loss = 5.30188 (* 1 = 5.30188 loss) +I0408 07:46:50.863364 31856 sgd_solver.cpp:105] Iteration 852, lr = 0.0414754 +I0408 07:46:55.891186 31856 solver.cpp:218] Iteration 864 (2.38679 iter/s, 5.02768s/12 iters), loss = 5.26192 +I0408 07:46:55.891232 31856 solver.cpp:237] Train net output #0: loss = 5.26192 (* 1 = 5.26192 loss) +I0408 07:46:55.891242 31856 sgd_solver.cpp:105] Iteration 864, lr = 0.0409645 +I0408 07:47:00.956457 31856 solver.cpp:218] Iteration 876 (2.36917 iter/s, 5.06507s/12 iters), loss = 5.26986 +I0408 07:47:00.956511 31856 solver.cpp:237] Train net output #0: loss = 5.26986 (* 1 = 5.26986 loss) +I0408 07:47:00.956524 31856 sgd_solver.cpp:105] Iteration 876, lr = 0.0404598 +I0408 07:47:05.987921 31856 solver.cpp:218] Iteration 888 (2.38509 iter/s, 5.03125s/12 iters), loss = 5.2656 +I0408 07:47:05.987957 31856 solver.cpp:237] Train net output #0: loss = 5.2656 (* 1 = 5.2656 loss) +I0408 07:47:05.987965 31856 sgd_solver.cpp:105] Iteration 888, lr = 0.0399614 +I0408 07:47:10.969987 31856 solver.cpp:218] Iteration 900 (2.40873 iter/s, 4.98187s/12 iters), loss = 5.27382 +I0408 07:47:10.970032 31856 solver.cpp:237] Train net output #0: loss = 5.27382 (* 1 = 5.27382 loss) +I0408 07:47:10.970043 31856 sgd_solver.cpp:105] Iteration 900, lr = 0.0394692 +I0408 07:47:14.765868 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:47:15.885040 31856 solver.cpp:218] Iteration 912 (2.44158 iter/s, 4.91485s/12 iters), loss = 5.25793 +I0408 07:47:15.885174 31856 solver.cpp:237] Train net output #0: loss = 5.25793 (* 1 = 5.25793 loss) +I0408 07:47:15.885183 31856 sgd_solver.cpp:105] Iteration 912, lr = 0.0389829 +I0408 07:47:17.865926 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 07:47:20.864789 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 07:47:23.180239 31856 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 07:47:23.180263 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:47:27.180380 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:47:27.582005 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:47:27.582041 31856 solver.cpp:397] Test net output #1: loss = 5.2874 (* 1 = 5.2874 loss) +I0408 07:47:29.492398 31856 solver.cpp:218] Iteration 924 (0.881911 iter/s, 13.6068s/12 iters), loss = 5.28481 +I0408 07:47:29.492432 31856 solver.cpp:237] Train net output #0: loss = 5.28481 (* 1 = 5.28481 loss) +I0408 07:47:29.492441 31856 sgd_solver.cpp:105] Iteration 924, lr = 0.0385027 +I0408 07:47:34.502605 31856 solver.cpp:218] Iteration 936 (2.3952 iter/s, 5.01001s/12 iters), loss = 5.26078 +I0408 07:47:34.502652 31856 solver.cpp:237] Train net output #0: loss = 5.26078 (* 1 = 5.26078 loss) +I0408 07:47:34.502663 31856 sgd_solver.cpp:105] Iteration 936, lr = 0.0380284 +I0408 07:47:39.531824 31856 solver.cpp:218] Iteration 948 (2.38615 iter/s, 5.02901s/12 iters), loss = 5.28849 +I0408 07:47:39.531870 31856 solver.cpp:237] Train net output #0: loss = 5.28849 (* 1 = 5.28849 loss) +I0408 07:47:39.531883 31856 sgd_solver.cpp:105] Iteration 948, lr = 0.0375599 +I0408 07:47:44.534422 31856 solver.cpp:218] Iteration 960 (2.39885 iter/s, 5.00239s/12 iters), loss = 5.26028 +I0408 07:47:44.534469 31856 solver.cpp:237] Train net output #0: loss = 5.26028 (* 1 = 5.26028 loss) +I0408 07:47:44.534482 31856 sgd_solver.cpp:105] Iteration 960, lr = 0.0370972 +I0408 07:47:49.540148 31856 solver.cpp:218] Iteration 972 (2.39736 iter/s, 5.00551s/12 iters), loss = 5.27398 +I0408 07:47:49.540299 31856 solver.cpp:237] Train net output #0: loss = 5.27398 (* 1 = 5.27398 loss) +I0408 07:47:49.540314 31856 sgd_solver.cpp:105] Iteration 972, lr = 0.0366402 +I0408 07:47:54.565762 31856 solver.cpp:218] Iteration 984 (2.38791 iter/s, 5.02531s/12 iters), loss = 5.29183 +I0408 07:47:54.565799 31856 solver.cpp:237] Train net output #0: loss = 5.29183 (* 1 = 5.29183 loss) +I0408 07:47:54.565809 31856 sgd_solver.cpp:105] Iteration 984, lr = 0.0361889 +I0408 07:47:59.534030 31856 solver.cpp:218] Iteration 996 (2.41542 iter/s, 4.96807s/12 iters), loss = 5.27692 +I0408 07:47:59.534078 31856 solver.cpp:237] Train net output #0: loss = 5.27692 (* 1 = 5.27692 loss) +I0408 07:47:59.534090 31856 sgd_solver.cpp:105] Iteration 996, lr = 0.0357431 +I0408 07:48:04.564409 31856 solver.cpp:218] Iteration 1008 (2.38561 iter/s, 5.03017s/12 iters), loss = 5.28939 +I0408 07:48:04.564453 31856 solver.cpp:237] Train net output #0: loss = 5.28939 (* 1 = 5.28939 loss) +I0408 07:48:04.564465 31856 sgd_solver.cpp:105] Iteration 1008, lr = 0.0353028 +I0408 07:48:05.578002 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:48:09.093708 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 07:48:12.185070 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 07:48:14.499219 31856 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 07:48:14.499245 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:48:18.586706 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:48:19.024741 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:48:19.024788 31856 solver.cpp:397] Test net output #1: loss = 5.28723 (* 1 = 5.28723 loss) +I0408 07:48:19.115025 31856 solver.cpp:218] Iteration 1020 (0.824735 iter/s, 14.5501s/12 iters), loss = 5.28737 +I0408 07:48:19.115067 31856 solver.cpp:237] Train net output #0: loss = 5.28737 (* 1 = 5.28737 loss) +I0408 07:48:19.115077 31856 sgd_solver.cpp:105] Iteration 1020, lr = 0.0348679 +I0408 07:48:23.664100 31856 solver.cpp:218] Iteration 1032 (2.63801 iter/s, 4.54889s/12 iters), loss = 5.24805 +I0408 07:48:23.664245 31856 solver.cpp:237] Train net output #0: loss = 5.24805 (* 1 = 5.24805 loss) +I0408 07:48:23.664258 31856 sgd_solver.cpp:105] Iteration 1032, lr = 0.0344383 +I0408 07:48:28.758426 31856 solver.cpp:218] Iteration 1044 (2.3557 iter/s, 5.09402s/12 iters), loss = 5.25736 +I0408 07:48:28.758473 31856 solver.cpp:237] Train net output #0: loss = 5.25736 (* 1 = 5.25736 loss) +I0408 07:48:28.758486 31856 sgd_solver.cpp:105] Iteration 1044, lr = 0.0340141 +I0408 07:48:33.767923 31856 solver.cpp:218] Iteration 1056 (2.39555 iter/s, 5.00929s/12 iters), loss = 5.26391 +I0408 07:48:33.767977 31856 solver.cpp:237] Train net output #0: loss = 5.26391 (* 1 = 5.26391 loss) +I0408 07:48:33.767989 31856 sgd_solver.cpp:105] Iteration 1056, lr = 0.0335951 +I0408 07:48:38.786708 31856 solver.cpp:218] Iteration 1068 (2.39112 iter/s, 5.01857s/12 iters), loss = 5.28826 +I0408 07:48:38.786756 31856 solver.cpp:237] Train net output #0: loss = 5.28826 (* 1 = 5.28826 loss) +I0408 07:48:38.786768 31856 sgd_solver.cpp:105] Iteration 1068, lr = 0.0331812 +I0408 07:48:43.778952 31856 solver.cpp:218] Iteration 1080 (2.40383 iter/s, 4.99203s/12 iters), loss = 5.26928 +I0408 07:48:43.779009 31856 solver.cpp:237] Train net output #0: loss = 5.26928 (* 1 = 5.26928 loss) +I0408 07:48:43.779022 31856 sgd_solver.cpp:105] Iteration 1080, lr = 0.0327725 +I0408 07:48:48.798550 31856 solver.cpp:218] Iteration 1092 (2.39073 iter/s, 5.01939s/12 iters), loss = 5.2832 +I0408 07:48:48.798596 31856 solver.cpp:237] Train net output #0: loss = 5.2832 (* 1 = 5.2832 loss) +I0408 07:48:48.798607 31856 sgd_solver.cpp:105] Iteration 1092, lr = 0.0323688 +I0408 07:48:53.839665 31856 solver.cpp:218] Iteration 1104 (2.38052 iter/s, 5.04091s/12 iters), loss = 5.27281 +I0408 07:48:53.839745 31856 solver.cpp:237] Train net output #0: loss = 5.27281 (* 1 = 5.27281 loss) +I0408 07:48:53.839756 31856 sgd_solver.cpp:105] Iteration 1104, lr = 0.03197 +I0408 07:48:56.992406 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:48:58.821897 31856 solver.cpp:218] Iteration 1116 (2.40867 iter/s, 4.982s/12 iters), loss = 5.27318 +I0408 07:48:58.821943 31856 solver.cpp:237] Train net output #0: loss = 5.27318 (* 1 = 5.27318 loss) +I0408 07:48:58.821966 31856 sgd_solver.cpp:105] Iteration 1116, lr = 0.0315762 +I0408 07:49:00.851161 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 07:49:03.880844 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 07:49:06.229163 31856 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 07:49:06.229182 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:49:10.115803 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:49:10.592509 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:49:10.592555 31856 solver.cpp:397] Test net output #1: loss = 5.28719 (* 1 = 5.28719 loss) +I0408 07:49:12.590222 31856 solver.cpp:218] Iteration 1128 (0.871594 iter/s, 13.7679s/12 iters), loss = 5.27309 +I0408 07:49:12.590270 31856 solver.cpp:237] Train net output #0: loss = 5.27309 (* 1 = 5.27309 loss) +I0408 07:49:12.590282 31856 sgd_solver.cpp:105] Iteration 1128, lr = 0.0311872 +I0408 07:49:17.688853 31856 solver.cpp:218] Iteration 1140 (2.35367 iter/s, 5.09842s/12 iters), loss = 5.26606 +I0408 07:49:17.688899 31856 solver.cpp:237] Train net output #0: loss = 5.26606 (* 1 = 5.26606 loss) +I0408 07:49:17.688910 31856 sgd_solver.cpp:105] Iteration 1140, lr = 0.030803 +I0408 07:49:22.682353 31856 solver.cpp:218] Iteration 1152 (2.40322 iter/s, 4.9933s/12 iters), loss = 5.28002 +I0408 07:49:22.682399 31856 solver.cpp:237] Train net output #0: loss = 5.28002 (* 1 = 5.28002 loss) +I0408 07:49:22.682411 31856 sgd_solver.cpp:105] Iteration 1152, lr = 0.0304236 +I0408 07:49:27.666371 31856 solver.cpp:218] Iteration 1164 (2.40779 iter/s, 4.98382s/12 iters), loss = 5.27333 +I0408 07:49:27.666489 31856 solver.cpp:237] Train net output #0: loss = 5.27333 (* 1 = 5.27333 loss) +I0408 07:49:27.666499 31856 sgd_solver.cpp:105] Iteration 1164, lr = 0.0300488 +I0408 07:49:32.678524 31856 solver.cpp:218] Iteration 1176 (2.39432 iter/s, 5.01187s/12 iters), loss = 5.28834 +I0408 07:49:32.678584 31856 solver.cpp:237] Train net output #0: loss = 5.28834 (* 1 = 5.28834 loss) +I0408 07:49:32.678596 31856 sgd_solver.cpp:105] Iteration 1176, lr = 0.0296786 +I0408 07:49:37.670977 31856 solver.cpp:218] Iteration 1188 (2.40373 iter/s, 4.99224s/12 iters), loss = 5.27003 +I0408 07:49:37.671025 31856 solver.cpp:237] Train net output #0: loss = 5.27003 (* 1 = 5.27003 loss) +I0408 07:49:37.671036 31856 sgd_solver.cpp:105] Iteration 1188, lr = 0.029313 +I0408 07:49:42.666337 31856 solver.cpp:218] Iteration 1200 (2.40233 iter/s, 4.99516s/12 iters), loss = 5.28962 +I0408 07:49:42.666376 31856 solver.cpp:237] Train net output #0: loss = 5.28962 (* 1 = 5.28962 loss) +I0408 07:49:42.666385 31856 sgd_solver.cpp:105] Iteration 1200, lr = 0.0289519 +I0408 07:49:47.697098 31856 solver.cpp:218] Iteration 1212 (2.38542 iter/s, 5.03056s/12 iters), loss = 5.26632 +I0408 07:49:47.697142 31856 solver.cpp:237] Train net output #0: loss = 5.26632 (* 1 = 5.26632 loss) +I0408 07:49:47.697154 31856 sgd_solver.cpp:105] Iteration 1212, lr = 0.0285952 +I0408 07:49:47.974186 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:49:52.153074 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 07:49:55.161722 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 07:49:57.459547 31856 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 07:49:57.459569 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:50:01.430933 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:50:01.954469 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 07:50:01.954515 31856 solver.cpp:397] Test net output #1: loss = 5.28717 (* 1 = 5.28717 loss) +I0408 07:50:02.044698 31856 solver.cpp:218] Iteration 1224 (0.836404 iter/s, 14.3471s/12 iters), loss = 5.28364 +I0408 07:50:02.044751 31856 solver.cpp:237] Train net output #0: loss = 5.28364 (* 1 = 5.28364 loss) +I0408 07:50:02.044762 31856 sgd_solver.cpp:105] Iteration 1224, lr = 0.028243 +I0408 07:50:06.539321 31856 solver.cpp:218] Iteration 1236 (2.66997 iter/s, 4.49443s/12 iters), loss = 5.2717 +I0408 07:50:06.539363 31856 solver.cpp:237] Train net output #0: loss = 5.2717 (* 1 = 5.2717 loss) +I0408 07:50:06.539373 31856 sgd_solver.cpp:105] Iteration 1236, lr = 0.0278951 +I0408 07:50:11.567061 31856 solver.cpp:218] Iteration 1248 (2.38685 iter/s, 5.02754s/12 iters), loss = 5.27928 +I0408 07:50:11.567104 31856 solver.cpp:237] Train net output #0: loss = 5.27928 (* 1 = 5.27928 loss) +I0408 07:50:11.567116 31856 sgd_solver.cpp:105] Iteration 1248, lr = 0.0275514 +I0408 07:50:16.557530 31856 solver.cpp:218] Iteration 1260 (2.40468 iter/s, 4.99027s/12 iters), loss = 5.27115 +I0408 07:50:16.557577 31856 solver.cpp:237] Train net output #0: loss = 5.27115 (* 1 = 5.27115 loss) +I0408 07:50:16.557588 31856 sgd_solver.cpp:105] Iteration 1260, lr = 0.027212 +I0408 07:50:21.559259 31856 solver.cpp:218] Iteration 1272 (2.39927 iter/s, 5.00152s/12 iters), loss = 5.2444 +I0408 07:50:21.559306 31856 solver.cpp:237] Train net output #0: loss = 5.2444 (* 1 = 5.2444 loss) +I0408 07:50:21.559320 31856 sgd_solver.cpp:105] Iteration 1272, lr = 0.0268768 +I0408 07:50:26.560036 31856 solver.cpp:218] Iteration 1284 (2.39972 iter/s, 5.00058s/12 iters), loss = 5.28323 +I0408 07:50:26.560073 31856 solver.cpp:237] Train net output #0: loss = 5.28323 (* 1 = 5.28323 loss) +I0408 07:50:26.560084 31856 sgd_solver.cpp:105] Iteration 1284, lr = 0.0265457 +I0408 07:50:31.465169 31856 solver.cpp:218] Iteration 1296 (2.44651 iter/s, 4.90494s/12 iters), loss = 5.26807 +I0408 07:50:31.465272 31856 solver.cpp:237] Train net output #0: loss = 5.26807 (* 1 = 5.26807 loss) +I0408 07:50:31.465283 31856 sgd_solver.cpp:105] Iteration 1296, lr = 0.0262187 +I0408 07:50:36.480300 31856 solver.cpp:218] Iteration 1308 (2.39288 iter/s, 5.01488s/12 iters), loss = 5.25252 +I0408 07:50:36.480337 31856 solver.cpp:237] Train net output #0: loss = 5.25252 (* 1 = 5.25252 loss) +I0408 07:50:36.480346 31856 sgd_solver.cpp:105] Iteration 1308, lr = 0.0258957 +I0408 07:50:38.973259 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:50:41.422797 31856 solver.cpp:218] Iteration 1320 (2.42802 iter/s, 4.9423s/12 iters), loss = 5.27524 +I0408 07:50:41.422844 31856 solver.cpp:237] Train net output #0: loss = 5.27524 (* 1 = 5.27524 loss) +I0408 07:50:41.422856 31856 sgd_solver.cpp:105] Iteration 1320, lr = 0.0255767 +I0408 07:50:43.440116 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 07:50:46.465788 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 07:50:48.821497 31856 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 07:50:48.821517 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:50:52.731935 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:50:53.289760 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:50:53.289808 31856 solver.cpp:397] Test net output #1: loss = 5.28769 (* 1 = 5.28769 loss) +I0408 07:50:55.264642 31856 solver.cpp:218] Iteration 1332 (0.866965 iter/s, 13.8414s/12 iters), loss = 5.28784 +I0408 07:50:55.264694 31856 solver.cpp:237] Train net output #0: loss = 5.28784 (* 1 = 5.28784 loss) +I0408 07:50:55.264708 31856 sgd_solver.cpp:105] Iteration 1332, lr = 0.0252616 +I0408 07:51:00.425369 31856 solver.cpp:218] Iteration 1344 (2.32535 iter/s, 5.16052s/12 iters), loss = 5.28661 +I0408 07:51:00.425410 31856 solver.cpp:237] Train net output #0: loss = 5.28661 (* 1 = 5.28661 loss) +I0408 07:51:00.425420 31856 sgd_solver.cpp:105] Iteration 1344, lr = 0.0249504 +I0408 07:51:05.410478 31856 solver.cpp:218] Iteration 1356 (2.40726 iter/s, 4.98491s/12 iters), loss = 5.2752 +I0408 07:51:05.410588 31856 solver.cpp:237] Train net output #0: loss = 5.2752 (* 1 = 5.2752 loss) +I0408 07:51:05.410602 31856 sgd_solver.cpp:105] Iteration 1356, lr = 0.0246431 +I0408 07:51:10.437546 31856 solver.cpp:218] Iteration 1368 (2.3872 iter/s, 5.02681s/12 iters), loss = 5.26895 +I0408 07:51:10.437582 31856 solver.cpp:237] Train net output #0: loss = 5.26895 (* 1 = 5.26895 loss) +I0408 07:51:10.437590 31856 sgd_solver.cpp:105] Iteration 1368, lr = 0.0243395 +I0408 07:51:11.645582 31856 blocking_queue.cpp:49] Waiting for data +I0408 07:51:15.436029 31856 solver.cpp:218] Iteration 1380 (2.40082 iter/s, 4.99829s/12 iters), loss = 5.27378 +I0408 07:51:15.436075 31856 solver.cpp:237] Train net output #0: loss = 5.27378 (* 1 = 5.27378 loss) +I0408 07:51:15.436086 31856 sgd_solver.cpp:105] Iteration 1380, lr = 0.0240397 +I0408 07:51:20.401940 31856 solver.cpp:218] Iteration 1392 (2.41657 iter/s, 4.96571s/12 iters), loss = 5.27181 +I0408 07:51:20.401999 31856 solver.cpp:237] Train net output #0: loss = 5.27181 (* 1 = 5.27181 loss) +I0408 07:51:20.402010 31856 sgd_solver.cpp:105] Iteration 1392, lr = 0.0237435 +I0408 07:51:25.449156 31856 solver.cpp:218] Iteration 1404 (2.37765 iter/s, 5.04701s/12 iters), loss = 5.27616 +I0408 07:51:25.449193 31856 solver.cpp:237] Train net output #0: loss = 5.27616 (* 1 = 5.27616 loss) +I0408 07:51:25.449200 31856 sgd_solver.cpp:105] Iteration 1404, lr = 0.023451 +I0408 07:51:30.013347 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:51:30.359678 31856 solver.cpp:218] Iteration 1416 (2.44383 iter/s, 4.91033s/12 iters), loss = 5.25988 +I0408 07:51:30.359724 31856 solver.cpp:237] Train net output #0: loss = 5.25988 (* 1 = 5.25988 loss) +I0408 07:51:30.359735 31856 sgd_solver.cpp:105] Iteration 1416, lr = 0.0231622 +I0408 07:51:34.932807 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 07:51:37.917521 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 07:51:40.230288 31856 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 07:51:40.230310 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:51:44.172572 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:51:44.770495 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:51:44.770542 31856 solver.cpp:397] Test net output #1: loss = 5.2872 (* 1 = 5.2872 loss) +I0408 07:51:44.860641 31856 solver.cpp:218] Iteration 1428 (0.827558 iter/s, 14.5005s/12 iters), loss = 5.27449 +I0408 07:51:44.860687 31856 solver.cpp:237] Train net output #0: loss = 5.27449 (* 1 = 5.27449 loss) +I0408 07:51:44.860697 31856 sgd_solver.cpp:105] Iteration 1428, lr = 0.0228768 +I0408 07:51:49.384742 31856 solver.cpp:218] Iteration 1440 (2.65257 iter/s, 4.52392s/12 iters), loss = 5.28489 +I0408 07:51:49.384789 31856 solver.cpp:237] Train net output #0: loss = 5.28489 (* 1 = 5.28489 loss) +I0408 07:51:49.384801 31856 sgd_solver.cpp:105] Iteration 1440, lr = 0.022595 +I0408 07:51:54.379912 31856 solver.cpp:218] Iteration 1452 (2.40242 iter/s, 4.99496s/12 iters), loss = 5.28029 +I0408 07:51:54.379961 31856 solver.cpp:237] Train net output #0: loss = 5.28029 (* 1 = 5.28029 loss) +I0408 07:51:54.379972 31856 sgd_solver.cpp:105] Iteration 1452, lr = 0.0223167 +I0408 07:51:59.374670 31856 solver.cpp:218] Iteration 1464 (2.40261 iter/s, 4.99456s/12 iters), loss = 5.2763 +I0408 07:51:59.374707 31856 solver.cpp:237] Train net output #0: loss = 5.2763 (* 1 = 5.2763 loss) +I0408 07:51:59.374716 31856 sgd_solver.cpp:105] Iteration 1464, lr = 0.0220417 +I0408 07:52:04.341657 31856 solver.cpp:218] Iteration 1476 (2.41604 iter/s, 4.9668s/12 iters), loss = 5.27634 +I0408 07:52:04.341703 31856 solver.cpp:237] Train net output #0: loss = 5.27634 (* 1 = 5.27634 loss) +I0408 07:52:04.341714 31856 sgd_solver.cpp:105] Iteration 1476, lr = 0.0217702 +I0408 07:52:09.358603 31856 solver.cpp:218] Iteration 1488 (2.39199 iter/s, 5.01675s/12 iters), loss = 5.2517 +I0408 07:52:09.358707 31856 solver.cpp:237] Train net output #0: loss = 5.2517 (* 1 = 5.2517 loss) +I0408 07:52:09.358721 31856 sgd_solver.cpp:105] Iteration 1488, lr = 0.021502 +I0408 07:52:14.312783 31856 solver.cpp:218] Iteration 1500 (2.42232 iter/s, 4.95393s/12 iters), loss = 5.26898 +I0408 07:52:14.312834 31856 solver.cpp:237] Train net output #0: loss = 5.26898 (* 1 = 5.26898 loss) +I0408 07:52:14.312846 31856 sgd_solver.cpp:105] Iteration 1500, lr = 0.0212372 +I0408 07:52:19.332715 31856 solver.cpp:218] Iteration 1512 (2.39056 iter/s, 5.01973s/12 iters), loss = 5.28582 +I0408 07:52:19.332754 31856 solver.cpp:237] Train net output #0: loss = 5.28582 (* 1 = 5.28582 loss) +I0408 07:52:19.332764 31856 sgd_solver.cpp:105] Iteration 1512, lr = 0.0209755 +I0408 07:52:21.118330 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:52:24.289999 31856 solver.cpp:218] Iteration 1524 (2.42077 iter/s, 4.95709s/12 iters), loss = 5.2738 +I0408 07:52:24.290043 31856 solver.cpp:237] Train net output #0: loss = 5.2738 (* 1 = 5.2738 loss) +I0408 07:52:24.290055 31856 sgd_solver.cpp:105] Iteration 1524, lr = 0.0207171 +I0408 07:52:26.339627 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 07:52:29.368022 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 07:52:31.689699 31856 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 07:52:31.689723 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:52:35.526577 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:52:36.176578 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:52:36.176625 31856 solver.cpp:397] Test net output #1: loss = 5.28695 (* 1 = 5.28695 loss) +I0408 07:52:38.138628 31856 solver.cpp:218] Iteration 1536 (0.86654 iter/s, 13.8482s/12 iters), loss = 5.27619 +I0408 07:52:38.138676 31856 solver.cpp:237] Train net output #0: loss = 5.27619 (* 1 = 5.27619 loss) +I0408 07:52:38.138689 31856 sgd_solver.cpp:105] Iteration 1536, lr = 0.0204619 +I0408 07:52:43.111807 31856 solver.cpp:218] Iteration 1548 (2.41304 iter/s, 4.97298s/12 iters), loss = 5.23117 +I0408 07:52:43.111966 31856 solver.cpp:237] Train net output #0: loss = 5.23117 (* 1 = 5.23117 loss) +I0408 07:52:43.111979 31856 sgd_solver.cpp:105] Iteration 1548, lr = 0.0202099 +I0408 07:52:48.146845 31856 solver.cpp:218] Iteration 1560 (2.38344 iter/s, 5.03473s/12 iters), loss = 5.29209 +I0408 07:52:48.146885 31856 solver.cpp:237] Train net output #0: loss = 5.29209 (* 1 = 5.29209 loss) +I0408 07:52:48.146895 31856 sgd_solver.cpp:105] Iteration 1560, lr = 0.0199609 +I0408 07:52:53.175092 31856 solver.cpp:218] Iteration 1572 (2.38661 iter/s, 5.02805s/12 iters), loss = 5.25757 +I0408 07:52:53.175137 31856 solver.cpp:237] Train net output #0: loss = 5.25757 (* 1 = 5.25757 loss) +I0408 07:52:53.175149 31856 sgd_solver.cpp:105] Iteration 1572, lr = 0.019715 +I0408 07:52:58.112462 31856 solver.cpp:218] Iteration 1584 (2.43054 iter/s, 4.93718s/12 iters), loss = 5.26636 +I0408 07:52:58.112507 31856 solver.cpp:237] Train net output #0: loss = 5.26636 (* 1 = 5.26636 loss) +I0408 07:52:58.112520 31856 sgd_solver.cpp:105] Iteration 1584, lr = 0.0194721 +I0408 07:53:03.125162 31856 solver.cpp:218] Iteration 1596 (2.39402 iter/s, 5.01249s/12 iters), loss = 5.26744 +I0408 07:53:03.125206 31856 solver.cpp:237] Train net output #0: loss = 5.26744 (* 1 = 5.26744 loss) +I0408 07:53:03.125218 31856 sgd_solver.cpp:105] Iteration 1596, lr = 0.0192323 +I0408 07:53:08.188580 31856 solver.cpp:218] Iteration 1608 (2.37003 iter/s, 5.06322s/12 iters), loss = 5.26641 +I0408 07:53:08.188622 31856 solver.cpp:237] Train net output #0: loss = 5.26641 (* 1 = 5.26641 loss) +I0408 07:53:08.188633 31856 sgd_solver.cpp:105] Iteration 1608, lr = 0.0189953 +I0408 07:53:12.133883 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:53:13.203768 31856 solver.cpp:218] Iteration 1620 (2.39283 iter/s, 5.01499s/12 iters), loss = 5.25448 +I0408 07:53:13.204844 31856 solver.cpp:237] Train net output #0: loss = 5.25448 (* 1 = 5.25448 loss) +I0408 07:53:13.204857 31856 sgd_solver.cpp:105] Iteration 1620, lr = 0.0187613 +I0408 07:53:17.786801 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 07:53:20.812237 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 07:53:23.135349 31856 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 07:53:23.135373 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:53:26.944607 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:53:27.702716 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:53:27.702764 31856 solver.cpp:397] Test net output #1: loss = 5.28707 (* 1 = 5.28707 loss) +I0408 07:53:27.792800 31856 solver.cpp:218] Iteration 1632 (0.82262 iter/s, 14.5875s/12 iters), loss = 5.2887 +I0408 07:53:27.792850 31856 solver.cpp:237] Train net output #0: loss = 5.2887 (* 1 = 5.2887 loss) +I0408 07:53:27.792860 31856 sgd_solver.cpp:105] Iteration 1632, lr = 0.0185302 +I0408 07:53:32.272929 31856 solver.cpp:218] Iteration 1644 (2.67861 iter/s, 4.47994s/12 iters), loss = 5.25396 +I0408 07:53:32.272976 31856 solver.cpp:237] Train net output #0: loss = 5.25396 (* 1 = 5.25396 loss) +I0408 07:53:32.272989 31856 sgd_solver.cpp:105] Iteration 1644, lr = 0.018302 +I0408 07:53:37.239146 31856 solver.cpp:218] Iteration 1656 (2.41642 iter/s, 4.96602s/12 iters), loss = 5.29288 +I0408 07:53:37.239187 31856 solver.cpp:237] Train net output #0: loss = 5.29288 (* 1 = 5.29288 loss) +I0408 07:53:37.239195 31856 sgd_solver.cpp:105] Iteration 1656, lr = 0.0180765 +I0408 07:53:42.206677 31856 solver.cpp:218] Iteration 1668 (2.41578 iter/s, 4.96734s/12 iters), loss = 5.25971 +I0408 07:53:42.206722 31856 solver.cpp:237] Train net output #0: loss = 5.25971 (* 1 = 5.25971 loss) +I0408 07:53:42.206734 31856 sgd_solver.cpp:105] Iteration 1668, lr = 0.0178538 +I0408 07:53:47.237643 31856 solver.cpp:218] Iteration 1680 (2.38532 iter/s, 5.03077s/12 iters), loss = 5.27378 +I0408 07:53:47.237803 31856 solver.cpp:237] Train net output #0: loss = 5.27378 (* 1 = 5.27378 loss) +I0408 07:53:47.237818 31856 sgd_solver.cpp:105] Iteration 1680, lr = 0.0176339 +I0408 07:53:52.461763 31856 solver.cpp:218] Iteration 1692 (2.29718 iter/s, 5.2238s/12 iters), loss = 5.28875 +I0408 07:53:52.461807 31856 solver.cpp:237] Train net output #0: loss = 5.28875 (* 1 = 5.28875 loss) +I0408 07:53:52.461818 31856 sgd_solver.cpp:105] Iteration 1692, lr = 0.0174167 +I0408 07:53:57.698137 31856 solver.cpp:218] Iteration 1704 (2.29175 iter/s, 5.23617s/12 iters), loss = 5.26765 +I0408 07:53:57.698186 31856 solver.cpp:237] Train net output #0: loss = 5.26765 (* 1 = 5.26765 loss) +I0408 07:53:57.698199 31856 sgd_solver.cpp:105] Iteration 1704, lr = 0.0172021 +I0408 07:54:02.721616 31856 solver.cpp:218] Iteration 1716 (2.38888 iter/s, 5.02328s/12 iters), loss = 5.28061 +I0408 07:54:02.721662 31856 solver.cpp:237] Train net output #0: loss = 5.28061 (* 1 = 5.28061 loss) +I0408 07:54:02.721673 31856 sgd_solver.cpp:105] Iteration 1716, lr = 0.0169902 +I0408 07:54:03.776299 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:54:07.758786 31856 solver.cpp:218] Iteration 1728 (2.38238 iter/s, 5.03698s/12 iters), loss = 5.28511 +I0408 07:54:07.758821 31856 solver.cpp:237] Train net output #0: loss = 5.28511 (* 1 = 5.28511 loss) +I0408 07:54:07.758828 31856 sgd_solver.cpp:105] Iteration 1728, lr = 0.0167809 +I0408 07:54:09.834604 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 07:54:12.799048 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 07:54:15.197979 31856 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 07:54:15.198004 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:54:18.962846 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:54:19.667923 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:54:19.667973 31856 solver.cpp:397] Test net output #1: loss = 5.28739 (* 1 = 5.28739 loss) +I0408 07:54:21.625869 31856 solver.cpp:218] Iteration 1740 (0.865386 iter/s, 13.8666s/12 iters), loss = 5.25418 +I0408 07:54:21.625926 31856 solver.cpp:237] Train net output #0: loss = 5.25418 (* 1 = 5.25418 loss) +I0408 07:54:21.625937 31856 sgd_solver.cpp:105] Iteration 1740, lr = 0.0165742 +I0408 07:54:26.802873 31856 solver.cpp:218] Iteration 1752 (2.31804 iter/s, 5.17679s/12 iters), loss = 5.26494 +I0408 07:54:26.802918 31856 solver.cpp:237] Train net output #0: loss = 5.26494 (* 1 = 5.26494 loss) +I0408 07:54:26.802929 31856 sgd_solver.cpp:105] Iteration 1752, lr = 0.01637 +I0408 07:54:31.840972 31856 solver.cpp:218] Iteration 1764 (2.38195 iter/s, 5.0379s/12 iters), loss = 5.26516 +I0408 07:54:31.841012 31856 solver.cpp:237] Train net output #0: loss = 5.26516 (* 1 = 5.26516 loss) +I0408 07:54:31.841022 31856 sgd_solver.cpp:105] Iteration 1764, lr = 0.0161683 +I0408 07:54:36.853570 31856 solver.cpp:218] Iteration 1776 (2.39406 iter/s, 5.0124s/12 iters), loss = 5.28106 +I0408 07:54:36.853622 31856 solver.cpp:237] Train net output #0: loss = 5.28106 (* 1 = 5.28106 loss) +I0408 07:54:36.853633 31856 sgd_solver.cpp:105] Iteration 1776, lr = 0.0159692 +I0408 07:54:41.848414 31856 solver.cpp:218] Iteration 1788 (2.40258 iter/s, 4.99464s/12 iters), loss = 5.26388 +I0408 07:54:41.848461 31856 solver.cpp:237] Train net output #0: loss = 5.26388 (* 1 = 5.26388 loss) +I0408 07:54:41.848472 31856 sgd_solver.cpp:105] Iteration 1788, lr = 0.0157724 +I0408 07:54:46.881067 31856 solver.cpp:218] Iteration 1800 (2.38452 iter/s, 5.03245s/12 iters), loss = 5.27917 +I0408 07:54:46.881111 31856 solver.cpp:237] Train net output #0: loss = 5.27917 (* 1 = 5.27917 loss) +I0408 07:54:46.881122 31856 sgd_solver.cpp:105] Iteration 1800, lr = 0.0155781 +I0408 07:54:51.936967 31856 solver.cpp:218] Iteration 1812 (2.37356 iter/s, 5.0557s/12 iters), loss = 5.26887 +I0408 07:54:51.937077 31856 solver.cpp:237] Train net output #0: loss = 5.26887 (* 1 = 5.26887 loss) +I0408 07:54:51.937088 31856 sgd_solver.cpp:105] Iteration 1812, lr = 0.0153862 +I0408 07:54:55.161865 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:54:56.969811 31856 solver.cpp:218] Iteration 1824 (2.38446 iter/s, 5.03258s/12 iters), loss = 5.27338 +I0408 07:54:56.969861 31856 solver.cpp:237] Train net output #0: loss = 5.27338 (* 1 = 5.27338 loss) +I0408 07:54:56.969874 31856 sgd_solver.cpp:105] Iteration 1824, lr = 0.0151967 +I0408 07:55:01.500442 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 07:55:04.497344 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 07:55:06.835839 31856 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 07:55:06.835865 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:55:10.551635 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:55:11.301118 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:55:11.301164 31856 solver.cpp:397] Test net output #1: loss = 5.28679 (* 1 = 5.28679 loss) +I0408 07:55:11.391268 31856 solver.cpp:218] Iteration 1836 (0.83212 iter/s, 14.421s/12 iters), loss = 5.27689 +I0408 07:55:11.391319 31856 solver.cpp:237] Train net output #0: loss = 5.27689 (* 1 = 5.27689 loss) +I0408 07:55:11.391331 31856 sgd_solver.cpp:105] Iteration 1836, lr = 0.0150095 +I0408 07:55:15.697244 31856 solver.cpp:218] Iteration 1848 (2.78694 iter/s, 4.30579s/12 iters), loss = 5.27107 +I0408 07:55:15.697291 31856 solver.cpp:237] Train net output #0: loss = 5.27107 (* 1 = 5.27107 loss) +I0408 07:55:15.697304 31856 sgd_solver.cpp:105] Iteration 1848, lr = 0.0148246 +I0408 07:55:20.731840 31856 solver.cpp:218] Iteration 1860 (2.3836 iter/s, 5.0344s/12 iters), loss = 5.28237 +I0408 07:55:20.731887 31856 solver.cpp:237] Train net output #0: loss = 5.28237 (* 1 = 5.28237 loss) +I0408 07:55:20.731900 31856 sgd_solver.cpp:105] Iteration 1860, lr = 0.014642 +I0408 07:55:25.773897 31856 solver.cpp:218] Iteration 1872 (2.38007 iter/s, 5.04186s/12 iters), loss = 5.26855 +I0408 07:55:25.774008 31856 solver.cpp:237] Train net output #0: loss = 5.26855 (* 1 = 5.26855 loss) +I0408 07:55:25.774020 31856 sgd_solver.cpp:105] Iteration 1872, lr = 0.0144616 +I0408 07:55:30.772915 31856 solver.cpp:218] Iteration 1884 (2.40059 iter/s, 4.99876s/12 iters), loss = 5.28526 +I0408 07:55:30.772961 31856 solver.cpp:237] Train net output #0: loss = 5.28526 (* 1 = 5.28526 loss) +I0408 07:55:30.772972 31856 sgd_solver.cpp:105] Iteration 1884, lr = 0.0142834 +I0408 07:55:35.976665 31856 solver.cpp:218] Iteration 1896 (2.30612 iter/s, 5.20355s/12 iters), loss = 5.26527 +I0408 07:55:35.976708 31856 solver.cpp:237] Train net output #0: loss = 5.26527 (* 1 = 5.26527 loss) +I0408 07:55:35.976719 31856 sgd_solver.cpp:105] Iteration 1896, lr = 0.0141075 +I0408 07:55:41.038765 31856 solver.cpp:218] Iteration 1908 (2.37065 iter/s, 5.0619s/12 iters), loss = 5.28352 +I0408 07:55:41.038810 31856 solver.cpp:237] Train net output #0: loss = 5.28352 (* 1 = 5.28352 loss) +I0408 07:55:41.038820 31856 sgd_solver.cpp:105] Iteration 1908, lr = 0.0139337 +I0408 07:55:46.079782 31856 solver.cpp:218] Iteration 1920 (2.38057 iter/s, 5.04082s/12 iters), loss = 5.27528 +I0408 07:55:46.079828 31856 solver.cpp:237] Train net output #0: loss = 5.27528 (* 1 = 5.27528 loss) +I0408 07:55:46.079839 31856 sgd_solver.cpp:105] Iteration 1920, lr = 0.0137621 +I0408 07:55:46.386561 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:55:51.043612 31856 solver.cpp:218] Iteration 1932 (2.41758 iter/s, 4.96363s/12 iters), loss = 5.28033 +I0408 07:55:51.043658 31856 solver.cpp:237] Train net output #0: loss = 5.28033 (* 1 = 5.28033 loss) +I0408 07:55:51.043669 31856 sgd_solver.cpp:105] Iteration 1932, lr = 0.0135925 +I0408 07:55:53.104212 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 07:55:56.102324 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 07:55:58.404997 31856 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 07:55:58.405023 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:56:01.951529 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:56:02.738528 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:56:02.738572 31856 solver.cpp:397] Test net output #1: loss = 5.28724 (* 1 = 5.28724 loss) +I0408 07:56:04.723791 31856 solver.cpp:218] Iteration 1944 (0.877209 iter/s, 13.6797s/12 iters), loss = 5.27066 +I0408 07:56:04.723839 31856 solver.cpp:237] Train net output #0: loss = 5.27066 (* 1 = 5.27066 loss) +I0408 07:56:04.723850 31856 sgd_solver.cpp:105] Iteration 1944, lr = 0.0134251 +I0408 07:56:09.830379 31856 solver.cpp:218] Iteration 1956 (2.35 iter/s, 5.10639s/12 iters), loss = 5.2801 +I0408 07:56:09.830427 31856 solver.cpp:237] Train net output #0: loss = 5.2801 (* 1 = 5.2801 loss) +I0408 07:56:09.830438 31856 sgd_solver.cpp:105] Iteration 1956, lr = 0.0132597 +I0408 07:56:14.853121 31856 solver.cpp:218] Iteration 1968 (2.38923 iter/s, 5.02254s/12 iters), loss = 5.27207 +I0408 07:56:14.853155 31856 solver.cpp:237] Train net output #0: loss = 5.27207 (* 1 = 5.27207 loss) +I0408 07:56:14.853164 31856 sgd_solver.cpp:105] Iteration 1968, lr = 0.0130964 +I0408 07:56:19.815860 31856 solver.cpp:218] Iteration 1980 (2.41811 iter/s, 4.96255s/12 iters), loss = 5.25455 +I0408 07:56:19.815914 31856 solver.cpp:237] Train net output #0: loss = 5.25455 (* 1 = 5.25455 loss) +I0408 07:56:19.815928 31856 sgd_solver.cpp:105] Iteration 1980, lr = 0.012935 +I0408 07:56:24.811852 31856 solver.cpp:218] Iteration 1992 (2.40202 iter/s, 4.99579s/12 iters), loss = 5.28091 +I0408 07:56:24.811892 31856 solver.cpp:237] Train net output #0: loss = 5.28091 (* 1 = 5.28091 loss) +I0408 07:56:24.811904 31856 sgd_solver.cpp:105] Iteration 1992, lr = 0.0127757 +I0408 07:56:29.812636 31856 solver.cpp:218] Iteration 2004 (2.39971 iter/s, 5.0006s/12 iters), loss = 5.27636 +I0408 07:56:29.812732 31856 solver.cpp:237] Train net output #0: loss = 5.27636 (* 1 = 5.27636 loss) +I0408 07:56:29.812744 31856 sgd_solver.cpp:105] Iteration 2004, lr = 0.0126183 +I0408 07:56:34.886811 31856 solver.cpp:218] Iteration 2016 (2.36503 iter/s, 5.07393s/12 iters), loss = 5.25365 +I0408 07:56:34.886848 31856 solver.cpp:237] Train net output #0: loss = 5.25365 (* 1 = 5.25365 loss) +I0408 07:56:34.886857 31856 sgd_solver.cpp:105] Iteration 2016, lr = 0.0124629 +I0408 07:56:37.420694 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:56:39.877785 31856 solver.cpp:218] Iteration 2028 (2.40443 iter/s, 4.99079s/12 iters), loss = 5.27657 +I0408 07:56:39.877827 31856 solver.cpp:237] Train net output #0: loss = 5.27657 (* 1 = 5.27657 loss) +I0408 07:56:39.877837 31856 sgd_solver.cpp:105] Iteration 2028, lr = 0.0123093 +I0408 07:56:44.542753 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 07:56:47.558302 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 07:56:49.884771 31856 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 07:56:49.884797 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:56:53.531903 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:56:54.361114 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 07:56:54.361153 31856 solver.cpp:397] Test net output #1: loss = 5.28694 (* 1 = 5.28694 loss) +I0408 07:56:54.450245 31856 solver.cpp:218] Iteration 2040 (0.823497 iter/s, 14.572s/12 iters), loss = 5.28236 +I0408 07:56:54.450297 31856 solver.cpp:237] Train net output #0: loss = 5.28236 (* 1 = 5.28236 loss) +I0408 07:56:54.450309 31856 sgd_solver.cpp:105] Iteration 2040, lr = 0.0121577 +I0408 07:56:58.707707 31856 solver.cpp:218] Iteration 2052 (2.8187 iter/s, 4.25728s/12 iters), loss = 5.28371 +I0408 07:56:58.707758 31856 solver.cpp:237] Train net output #0: loss = 5.28371 (* 1 = 5.28371 loss) +I0408 07:56:58.707769 31856 sgd_solver.cpp:105] Iteration 2052, lr = 0.0120079 +I0408 07:57:00.317699 31856 blocking_queue.cpp:49] Waiting for data +I0408 07:57:03.656080 31856 solver.cpp:218] Iteration 2064 (2.42514 iter/s, 4.94817s/12 iters), loss = 5.27464 +I0408 07:57:03.656129 31856 solver.cpp:237] Train net output #0: loss = 5.27464 (* 1 = 5.27464 loss) +I0408 07:57:03.656141 31856 sgd_solver.cpp:105] Iteration 2064, lr = 0.01186 +I0408 07:57:08.727556 31856 solver.cpp:218] Iteration 2076 (2.36627 iter/s, 5.07128s/12 iters), loss = 5.27832 +I0408 07:57:08.727594 31856 solver.cpp:237] Train net output #0: loss = 5.27832 (* 1 = 5.27832 loss) +I0408 07:57:08.727602 31856 sgd_solver.cpp:105] Iteration 2076, lr = 0.0117139 +I0408 07:57:13.747721 31856 solver.cpp:218] Iteration 2088 (2.39045 iter/s, 5.01997s/12 iters), loss = 5.2746 +I0408 07:57:13.747781 31856 solver.cpp:237] Train net output #0: loss = 5.2746 (* 1 = 5.2746 loss) +I0408 07:57:13.747795 31856 sgd_solver.cpp:105] Iteration 2088, lr = 0.0115696 +I0408 07:57:18.703567 31856 solver.cpp:218] Iteration 2100 (2.42148 iter/s, 4.95564s/12 iters), loss = 5.27026 +I0408 07:57:18.703613 31856 solver.cpp:237] Train net output #0: loss = 5.27026 (* 1 = 5.27026 loss) +I0408 07:57:18.703624 31856 sgd_solver.cpp:105] Iteration 2100, lr = 0.0114271 +I0408 07:57:23.682942 31856 solver.cpp:218] Iteration 2112 (2.41003 iter/s, 4.97918s/12 iters), loss = 5.28009 +I0408 07:57:23.682986 31856 solver.cpp:237] Train net output #0: loss = 5.28009 (* 1 = 5.28009 loss) +I0408 07:57:23.682997 31856 sgd_solver.cpp:105] Iteration 2112, lr = 0.0112863 +I0408 07:57:28.362546 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:57:28.677412 31856 solver.cpp:218] Iteration 2124 (2.40275 iter/s, 4.99427s/12 iters), loss = 5.25763 +I0408 07:57:28.677455 31856 solver.cpp:237] Train net output #0: loss = 5.25763 (* 1 = 5.25763 loss) +I0408 07:57:28.677466 31856 sgd_solver.cpp:105] Iteration 2124, lr = 0.0111473 +I0408 07:57:33.958818 31856 solver.cpp:218] Iteration 2136 (2.27221 iter/s, 5.28121s/12 iters), loss = 5.27448 +I0408 07:57:33.958901 31856 solver.cpp:237] Train net output #0: loss = 5.27448 (* 1 = 5.27448 loss) +I0408 07:57:33.958914 31856 sgd_solver.cpp:105] Iteration 2136, lr = 0.0110099 +I0408 07:57:36.094588 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 07:57:39.158179 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 07:57:41.463755 31856 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 07:57:41.463783 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:57:45.074801 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:57:45.937942 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:57:45.938004 31856 solver.cpp:397] Test net output #1: loss = 5.28715 (* 1 = 5.28715 loss) +I0408 07:57:47.913049 31856 solver.cpp:218] Iteration 2148 (0.859984 iter/s, 13.9538s/12 iters), loss = 5.28133 +I0408 07:57:47.913100 31856 solver.cpp:237] Train net output #0: loss = 5.28133 (* 1 = 5.28133 loss) +I0408 07:57:47.913110 31856 sgd_solver.cpp:105] Iteration 2148, lr = 0.0108743 +I0408 07:57:53.075068 31856 solver.cpp:218] Iteration 2160 (2.32476 iter/s, 5.16182s/12 iters), loss = 5.28616 +I0408 07:57:53.075111 31856 solver.cpp:237] Train net output #0: loss = 5.28616 (* 1 = 5.28616 loss) +I0408 07:57:53.075122 31856 sgd_solver.cpp:105] Iteration 2160, lr = 0.0107404 +I0408 07:57:58.094192 31856 solver.cpp:218] Iteration 2172 (2.39095 iter/s, 5.01893s/12 iters), loss = 5.27486 +I0408 07:57:58.094239 31856 solver.cpp:237] Train net output #0: loss = 5.27486 (* 1 = 5.27486 loss) +I0408 07:57:58.094251 31856 sgd_solver.cpp:105] Iteration 2172, lr = 0.010608 +I0408 07:58:03.127097 31856 solver.cpp:218] Iteration 2184 (2.3844 iter/s, 5.0327s/12 iters), loss = 5.27135 +I0408 07:58:03.127142 31856 solver.cpp:237] Train net output #0: loss = 5.27135 (* 1 = 5.27135 loss) +I0408 07:58:03.127153 31856 sgd_solver.cpp:105] Iteration 2184, lr = 0.0104774 +I0408 07:58:08.107820 31856 solver.cpp:218] Iteration 2196 (2.40939 iter/s, 4.98052s/12 iters), loss = 5.25074 +I0408 07:58:08.107973 31856 solver.cpp:237] Train net output #0: loss = 5.25074 (* 1 = 5.25074 loss) +I0408 07:58:08.107986 31856 sgd_solver.cpp:105] Iteration 2196, lr = 0.0103483 +I0408 07:58:13.151659 31856 solver.cpp:218] Iteration 2208 (2.37928 iter/s, 5.04354s/12 iters), loss = 5.2694 +I0408 07:58:13.151707 31856 solver.cpp:237] Train net output #0: loss = 5.2694 (* 1 = 5.2694 loss) +I0408 07:58:13.151719 31856 sgd_solver.cpp:105] Iteration 2208, lr = 0.0102208 +I0408 07:58:18.348774 31856 solver.cpp:218] Iteration 2220 (2.30906 iter/s, 5.19692s/12 iters), loss = 5.28266 +I0408 07:58:18.348810 31856 solver.cpp:237] Train net output #0: loss = 5.28266 (* 1 = 5.28266 loss) +I0408 07:58:18.348817 31856 sgd_solver.cpp:105] Iteration 2220, lr = 0.0100949 +I0408 07:58:20.303956 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:58:23.485124 31856 solver.cpp:218] Iteration 2232 (2.33638 iter/s, 5.13616s/12 iters), loss = 5.28489 +I0408 07:58:23.485170 31856 solver.cpp:237] Train net output #0: loss = 5.28489 (* 1 = 5.28489 loss) +I0408 07:58:23.485183 31856 sgd_solver.cpp:105] Iteration 2232, lr = 0.00997055 +I0408 07:58:28.082458 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 07:58:31.052436 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 07:58:33.351107 31856 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 07:58:33.351131 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:58:36.916347 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:58:37.824314 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:58:37.824355 31856 solver.cpp:397] Test net output #1: loss = 5.28706 (* 1 = 5.28706 loss) +I0408 07:58:37.914448 31856 solver.cpp:218] Iteration 2244 (0.831666 iter/s, 14.4289s/12 iters), loss = 5.27832 +I0408 07:58:37.914495 31856 solver.cpp:237] Train net output #0: loss = 5.27832 (* 1 = 5.27832 loss) +I0408 07:58:37.914505 31856 sgd_solver.cpp:105] Iteration 2244, lr = 0.00984773 +I0408 07:58:42.084966 31856 solver.cpp:218] Iteration 2256 (2.87746 iter/s, 4.17034s/12 iters), loss = 5.24022 +I0408 07:58:42.087437 31856 solver.cpp:237] Train net output #0: loss = 5.24022 (* 1 = 5.24022 loss) +I0408 07:58:42.087452 31856 sgd_solver.cpp:105] Iteration 2256, lr = 0.00972642 +I0408 07:58:47.068490 31856 solver.cpp:218] Iteration 2268 (2.4092 iter/s, 4.98091s/12 iters), loss = 5.28563 +I0408 07:58:47.068533 31856 solver.cpp:237] Train net output #0: loss = 5.28563 (* 1 = 5.28563 loss) +I0408 07:58:47.068544 31856 sgd_solver.cpp:105] Iteration 2268, lr = 0.0096066 +I0408 07:58:52.116134 31856 solver.cpp:218] Iteration 2280 (2.37744 iter/s, 5.04745s/12 iters), loss = 5.25348 +I0408 07:58:52.116189 31856 solver.cpp:237] Train net output #0: loss = 5.25348 (* 1 = 5.25348 loss) +I0408 07:58:52.116204 31856 sgd_solver.cpp:105] Iteration 2280, lr = 0.00948826 +I0408 07:58:57.089413 31856 solver.cpp:218] Iteration 2292 (2.413 iter/s, 4.97307s/12 iters), loss = 5.27254 +I0408 07:58:57.089458 31856 solver.cpp:237] Train net output #0: loss = 5.27254 (* 1 = 5.27254 loss) +I0408 07:58:57.089470 31856 sgd_solver.cpp:105] Iteration 2292, lr = 0.00937137 +I0408 07:59:02.127133 31856 solver.cpp:218] Iteration 2304 (2.38212 iter/s, 5.03752s/12 iters), loss = 5.27018 +I0408 07:59:02.127184 31856 solver.cpp:237] Train net output #0: loss = 5.27018 (* 1 = 5.27018 loss) +I0408 07:59:02.127197 31856 sgd_solver.cpp:105] Iteration 2304, lr = 0.00925593 +I0408 07:59:07.146349 31856 solver.cpp:218] Iteration 2316 (2.39091 iter/s, 5.01901s/12 iters), loss = 5.26122 +I0408 07:59:07.146395 31856 solver.cpp:237] Train net output #0: loss = 5.26122 (* 1 = 5.26122 loss) +I0408 07:59:07.146407 31856 sgd_solver.cpp:105] Iteration 2316, lr = 0.0091419 +I0408 07:59:11.159482 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:59:12.212113 31856 solver.cpp:218] Iteration 2328 (2.36893 iter/s, 5.06557s/12 iters), loss = 5.25865 +I0408 07:59:12.212270 31856 solver.cpp:237] Train net output #0: loss = 5.25865 (* 1 = 5.25865 loss) +I0408 07:59:12.212283 31856 sgd_solver.cpp:105] Iteration 2328, lr = 0.00902929 +I0408 07:59:17.243355 31856 solver.cpp:218] Iteration 2340 (2.38524 iter/s, 5.03093s/12 iters), loss = 5.29202 +I0408 07:59:17.243407 31856 solver.cpp:237] Train net output #0: loss = 5.29202 (* 1 = 5.29202 loss) +I0408 07:59:17.243418 31856 sgd_solver.cpp:105] Iteration 2340, lr = 0.00891806 +I0408 07:59:19.289551 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 07:59:22.309226 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 07:59:24.636312 31856 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 07:59:24.636344 31856 net.cpp:676] Ignoring source layer train-data +I0408 07:59:28.168236 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 07:59:29.111135 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 07:59:29.111181 31856 solver.cpp:397] Test net output #1: loss = 5.28738 (* 1 = 5.28738 loss) +I0408 07:59:31.081810 31856 solver.cpp:218] Iteration 2352 (0.867177 iter/s, 13.838s/12 iters), loss = 5.25647 +I0408 07:59:31.081862 31856 solver.cpp:237] Train net output #0: loss = 5.25647 (* 1 = 5.25647 loss) +I0408 07:59:31.081874 31856 sgd_solver.cpp:105] Iteration 2352, lr = 0.0088082 +I0408 07:59:36.084288 31856 solver.cpp:218] Iteration 2364 (2.39891 iter/s, 5.00228s/12 iters), loss = 5.30544 +I0408 07:59:36.084338 31856 solver.cpp:237] Train net output #0: loss = 5.30544 (* 1 = 5.30544 loss) +I0408 07:59:36.084350 31856 sgd_solver.cpp:105] Iteration 2364, lr = 0.00869969 +I0408 07:59:41.105362 31856 solver.cpp:218] Iteration 2376 (2.39002 iter/s, 5.02087s/12 iters), loss = 5.26027 +I0408 07:59:41.105409 31856 solver.cpp:237] Train net output #0: loss = 5.26027 (* 1 = 5.26027 loss) +I0408 07:59:41.105420 31856 sgd_solver.cpp:105] Iteration 2376, lr = 0.00859252 +I0408 07:59:46.065176 31856 solver.cpp:218] Iteration 2388 (2.41954 iter/s, 4.95962s/12 iters), loss = 5.27404 +I0408 07:59:46.066583 31856 solver.cpp:237] Train net output #0: loss = 5.27404 (* 1 = 5.27404 loss) +I0408 07:59:46.066601 31856 sgd_solver.cpp:105] Iteration 2388, lr = 0.00848667 +I0408 07:59:51.103801 31856 solver.cpp:218] Iteration 2400 (2.38234 iter/s, 5.03707s/12 iters), loss = 5.2832 +I0408 07:59:51.103854 31856 solver.cpp:237] Train net output #0: loss = 5.2832 (* 1 = 5.2832 loss) +I0408 07:59:51.103866 31856 sgd_solver.cpp:105] Iteration 2400, lr = 0.00838212 +I0408 07:59:56.129665 31856 solver.cpp:218] Iteration 2412 (2.38775 iter/s, 5.02566s/12 iters), loss = 5.26963 +I0408 07:59:56.129711 31856 solver.cpp:237] Train net output #0: loss = 5.26963 (* 1 = 5.26963 loss) +I0408 07:59:56.129724 31856 sgd_solver.cpp:105] Iteration 2412, lr = 0.00827887 +I0408 08:00:01.173768 31856 solver.cpp:218] Iteration 2424 (2.37911 iter/s, 5.0439s/12 iters), loss = 5.27672 +I0408 08:00:01.173816 31856 solver.cpp:237] Train net output #0: loss = 5.27672 (* 1 = 5.27672 loss) +I0408 08:00:01.173828 31856 sgd_solver.cpp:105] Iteration 2424, lr = 0.00817688 +I0408 08:00:02.269979 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:00:06.229383 31856 solver.cpp:218] Iteration 2436 (2.37369 iter/s, 5.05542s/12 iters), loss = 5.27968 +I0408 08:00:06.229431 31856 solver.cpp:237] Train net output #0: loss = 5.27968 (* 1 = 5.27968 loss) +I0408 08:00:06.229442 31856 sgd_solver.cpp:105] Iteration 2436, lr = 0.00807615 +I0408 08:00:10.845404 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 08:00:13.814189 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 08:00:16.122295 31856 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 08:00:16.122416 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:00:19.726774 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:00:20.705483 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:00:20.705529 31856 solver.cpp:397] Test net output #1: loss = 5.2871 (* 1 = 5.2871 loss) +I0408 08:00:20.795570 31856 solver.cpp:218] Iteration 2448 (0.823852 iter/s, 14.5657s/12 iters), loss = 5.25584 +I0408 08:00:20.795621 31856 solver.cpp:237] Train net output #0: loss = 5.25584 (* 1 = 5.25584 loss) +I0408 08:00:20.795632 31856 sgd_solver.cpp:105] Iteration 2448, lr = 0.00797666 +I0408 08:00:24.927350 31856 solver.cpp:218] Iteration 2460 (2.90444 iter/s, 4.1316s/12 iters), loss = 5.26353 +I0408 08:00:24.927397 31856 solver.cpp:237] Train net output #0: loss = 5.26353 (* 1 = 5.26353 loss) +I0408 08:00:24.927408 31856 sgd_solver.cpp:105] Iteration 2460, lr = 0.0078784 +I0408 08:00:29.665330 31856 solver.cpp:218] Iteration 2472 (2.53283 iter/s, 4.73779s/12 iters), loss = 5.27083 +I0408 08:00:29.665382 31856 solver.cpp:237] Train net output #0: loss = 5.27083 (* 1 = 5.27083 loss) +I0408 08:00:29.665395 31856 sgd_solver.cpp:105] Iteration 2472, lr = 0.00778135 +I0408 08:00:34.626003 31856 solver.cpp:218] Iteration 2484 (2.41912 iter/s, 4.96047s/12 iters), loss = 5.27539 +I0408 08:00:34.626047 31856 solver.cpp:237] Train net output #0: loss = 5.27539 (* 1 = 5.27539 loss) +I0408 08:00:34.626058 31856 sgd_solver.cpp:105] Iteration 2484, lr = 0.00768549 +I0408 08:00:39.650667 31856 solver.cpp:218] Iteration 2496 (2.38831 iter/s, 5.02447s/12 iters), loss = 5.26982 +I0408 08:00:39.650699 31856 solver.cpp:237] Train net output #0: loss = 5.26982 (* 1 = 5.26982 loss) +I0408 08:00:39.650707 31856 sgd_solver.cpp:105] Iteration 2496, lr = 0.00759081 +I0408 08:00:44.600577 31856 solver.cpp:218] Iteration 2508 (2.42438 iter/s, 4.94972s/12 iters), loss = 5.28824 +I0408 08:00:44.600627 31856 solver.cpp:237] Train net output #0: loss = 5.28824 (* 1 = 5.28824 loss) +I0408 08:00:44.600639 31856 sgd_solver.cpp:105] Iteration 2508, lr = 0.0074973 +I0408 08:00:49.675268 31856 solver.cpp:218] Iteration 2520 (2.36477 iter/s, 5.0745s/12 iters), loss = 5.27605 +I0408 08:00:49.675355 31856 solver.cpp:237] Train net output #0: loss = 5.27605 (* 1 = 5.27605 loss) +I0408 08:00:49.675364 31856 sgd_solver.cpp:105] Iteration 2520, lr = 0.00740494 +I0408 08:00:52.834082 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:00:54.573863 31856 solver.cpp:218] Iteration 2532 (2.4498 iter/s, 4.89836s/12 iters), loss = 5.28309 +I0408 08:00:54.573900 31856 solver.cpp:237] Train net output #0: loss = 5.28309 (* 1 = 5.28309 loss) +I0408 08:00:54.573909 31856 sgd_solver.cpp:105] Iteration 2532, lr = 0.00731372 +I0408 08:00:59.630755 31856 solver.cpp:218] Iteration 2544 (2.37309 iter/s, 5.0567s/12 iters), loss = 5.27364 +I0408 08:00:59.630802 31856 solver.cpp:237] Train net output #0: loss = 5.27364 (* 1 = 5.27364 loss) +I0408 08:00:59.630813 31856 sgd_solver.cpp:105] Iteration 2544, lr = 0.00722363 +I0408 08:01:01.698560 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 08:01:04.746521 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 08:01:07.062657 31856 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 08:01:07.062680 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:01:10.494936 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:01:11.517621 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:01:11.517669 31856 solver.cpp:397] Test net output #1: loss = 5.28701 (* 1 = 5.28701 loss) +I0408 08:01:13.516783 31856 solver.cpp:218] Iteration 2556 (0.864205 iter/s, 13.8856s/12 iters), loss = 5.27907 +I0408 08:01:13.516834 31856 solver.cpp:237] Train net output #0: loss = 5.27907 (* 1 = 5.27907 loss) +I0408 08:01:13.516845 31856 sgd_solver.cpp:105] Iteration 2556, lr = 0.00713464 +I0408 08:01:18.895067 31856 solver.cpp:218] Iteration 2568 (2.23128 iter/s, 5.37807s/12 iters), loss = 5.2862 +I0408 08:01:18.895112 31856 solver.cpp:237] Train net output #0: loss = 5.2862 (* 1 = 5.2862 loss) +I0408 08:01:18.895123 31856 sgd_solver.cpp:105] Iteration 2568, lr = 0.00704675 +I0408 08:01:23.904915 31856 solver.cpp:218] Iteration 2580 (2.39538 iter/s, 5.00965s/12 iters), loss = 5.26715 +I0408 08:01:23.905097 31856 solver.cpp:237] Train net output #0: loss = 5.26715 (* 1 = 5.26715 loss) +I0408 08:01:23.905114 31856 sgd_solver.cpp:105] Iteration 2580, lr = 0.00695994 +I0408 08:01:28.910599 31856 solver.cpp:218] Iteration 2592 (2.39743 iter/s, 5.00536s/12 iters), loss = 5.28705 +I0408 08:01:28.910637 31856 solver.cpp:237] Train net output #0: loss = 5.28705 (* 1 = 5.28705 loss) +I0408 08:01:28.910645 31856 sgd_solver.cpp:105] Iteration 2592, lr = 0.0068742 +I0408 08:01:33.887663 31856 solver.cpp:218] Iteration 2604 (2.41115 iter/s, 4.97687s/12 iters), loss = 5.25873 +I0408 08:01:33.887717 31856 solver.cpp:237] Train net output #0: loss = 5.25873 (* 1 = 5.25873 loss) +I0408 08:01:33.887729 31856 sgd_solver.cpp:105] Iteration 2604, lr = 0.00678952 +I0408 08:01:38.825851 31856 solver.cpp:218] Iteration 2616 (2.43014 iter/s, 4.93799s/12 iters), loss = 5.27992 +I0408 08:01:38.825896 31856 solver.cpp:237] Train net output #0: loss = 5.27992 (* 1 = 5.27992 loss) +I0408 08:01:38.825907 31856 sgd_solver.cpp:105] Iteration 2616, lr = 0.00670588 +I0408 08:01:43.863003 31856 solver.cpp:218] Iteration 2628 (2.38239 iter/s, 5.03696s/12 iters), loss = 5.27877 +I0408 08:01:43.863046 31856 solver.cpp:237] Train net output #0: loss = 5.27877 (* 1 = 5.27877 loss) +I0408 08:01:43.863057 31856 sgd_solver.cpp:105] Iteration 2628, lr = 0.00662327 +I0408 08:01:44.291226 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:01:48.877213 31856 solver.cpp:218] Iteration 2640 (2.39329 iter/s, 5.01402s/12 iters), loss = 5.27972 +I0408 08:01:48.877249 31856 solver.cpp:237] Train net output #0: loss = 5.27972 (* 1 = 5.27972 loss) +I0408 08:01:48.877259 31856 sgd_solver.cpp:105] Iteration 2640, lr = 0.00654168 +I0408 08:01:53.448668 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 08:01:56.418642 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 08:01:58.847200 31856 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 08:01:58.847225 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:02:02.407630 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:02:03.467496 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:02:03.467545 31856 solver.cpp:397] Test net output #1: loss = 5.2872 (* 1 = 5.2872 loss) +I0408 08:02:03.557631 31856 solver.cpp:218] Iteration 2652 (0.817441 iter/s, 14.68s/12 iters), loss = 5.26843 +I0408 08:02:03.557680 31856 solver.cpp:237] Train net output #0: loss = 5.26843 (* 1 = 5.26843 loss) +I0408 08:02:03.557691 31856 sgd_solver.cpp:105] Iteration 2652, lr = 0.0064611 +I0408 08:02:07.906095 31856 solver.cpp:218] Iteration 2664 (2.75971 iter/s, 4.34828s/12 iters), loss = 5.27957 +I0408 08:02:07.906144 31856 solver.cpp:237] Train net output #0: loss = 5.27957 (* 1 = 5.27957 loss) +I0408 08:02:07.906157 31856 sgd_solver.cpp:105] Iteration 2664, lr = 0.0063815 +I0408 08:02:12.857254 31856 solver.cpp:218] Iteration 2676 (2.42377 iter/s, 4.95096s/12 iters), loss = 5.26826 +I0408 08:02:12.857300 31856 solver.cpp:237] Train net output #0: loss = 5.26826 (* 1 = 5.26826 loss) +I0408 08:02:12.857311 31856 sgd_solver.cpp:105] Iteration 2676, lr = 0.00630289 +I0408 08:02:17.853932 31856 solver.cpp:218] Iteration 2688 (2.40169 iter/s, 4.99648s/12 iters), loss = 5.25805 +I0408 08:02:17.853998 31856 solver.cpp:237] Train net output #0: loss = 5.25805 (* 1 = 5.25805 loss) +I0408 08:02:17.854012 31856 sgd_solver.cpp:105] Iteration 2688, lr = 0.00622525 +I0408 08:02:22.865034 31856 solver.cpp:218] Iteration 2700 (2.39479 iter/s, 5.01088s/12 iters), loss = 5.28102 +I0408 08:02:22.865087 31856 solver.cpp:237] Train net output #0: loss = 5.28102 (* 1 = 5.28102 loss) +I0408 08:02:22.865098 31856 sgd_solver.cpp:105] Iteration 2700, lr = 0.00614856 +I0408 08:02:27.842916 31856 solver.cpp:218] Iteration 2712 (2.41076 iter/s, 4.97768s/12 iters), loss = 5.28191 +I0408 08:02:27.843039 31856 solver.cpp:237] Train net output #0: loss = 5.28191 (* 1 = 5.28191 loss) +I0408 08:02:27.843048 31856 sgd_solver.cpp:105] Iteration 2712, lr = 0.00607282 +I0408 08:02:32.883822 31856 solver.cpp:218] Iteration 2724 (2.38065 iter/s, 5.04064s/12 iters), loss = 5.25704 +I0408 08:02:32.883867 31856 solver.cpp:237] Train net output #0: loss = 5.25704 (* 1 = 5.25704 loss) +I0408 08:02:32.883878 31856 sgd_solver.cpp:105] Iteration 2724, lr = 0.00599801 +I0408 08:02:35.461216 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:02:37.856808 31856 solver.cpp:218] Iteration 2736 (2.41313 iter/s, 4.97279s/12 iters), loss = 5.27976 +I0408 08:02:37.856853 31856 solver.cpp:237] Train net output #0: loss = 5.27976 (* 1 = 5.27976 loss) +I0408 08:02:37.856863 31856 sgd_solver.cpp:105] Iteration 2736, lr = 0.00592412 +I0408 08:02:42.833467 31856 solver.cpp:218] Iteration 2748 (2.41135 iter/s, 4.97647s/12 iters), loss = 5.27673 +I0408 08:02:42.833510 31856 solver.cpp:237] Train net output #0: loss = 5.27673 (* 1 = 5.27673 loss) +I0408 08:02:42.833521 31856 sgd_solver.cpp:105] Iteration 2748, lr = 0.00585114 +I0408 08:02:44.882509 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 08:02:47.896185 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 08:02:50.225663 31856 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 08:02:50.225690 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:02:53.326213 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:02:53.562350 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:02:54.668500 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 08:02:54.668540 31856 solver.cpp:397] Test net output #1: loss = 5.28703 (* 1 = 5.28703 loss) +I0408 08:02:56.510478 31856 solver.cpp:218] Iteration 2760 (0.877412 iter/s, 13.6766s/12 iters), loss = 5.2787 +I0408 08:02:56.510524 31856 solver.cpp:237] Train net output #0: loss = 5.2787 (* 1 = 5.2787 loss) +I0408 08:02:56.510535 31856 sgd_solver.cpp:105] Iteration 2760, lr = 0.00577906 +I0408 08:03:01.525264 31856 solver.cpp:218] Iteration 2772 (2.39302 iter/s, 5.01459s/12 iters), loss = 5.27724 +I0408 08:03:01.525377 31856 solver.cpp:237] Train net output #0: loss = 5.27724 (* 1 = 5.27724 loss) +I0408 08:03:01.525388 31856 sgd_solver.cpp:105] Iteration 2772, lr = 0.00570787 +I0408 08:03:06.589394 31856 solver.cpp:218] Iteration 2784 (2.36973 iter/s, 5.06386s/12 iters), loss = 5.27798 +I0408 08:03:06.589442 31856 solver.cpp:237] Train net output #0: loss = 5.27798 (* 1 = 5.27798 loss) +I0408 08:03:06.589454 31856 sgd_solver.cpp:105] Iteration 2784, lr = 0.00563755 +I0408 08:03:11.545820 31856 solver.cpp:218] Iteration 2796 (2.42119 iter/s, 4.95623s/12 iters), loss = 5.2694 +I0408 08:03:11.545868 31856 solver.cpp:237] Train net output #0: loss = 5.2694 (* 1 = 5.2694 loss) +I0408 08:03:11.545881 31856 sgd_solver.cpp:105] Iteration 2796, lr = 0.00556811 +I0408 08:03:16.467557 31856 solver.cpp:218] Iteration 2808 (2.43826 iter/s, 4.92154s/12 iters), loss = 5.2632 +I0408 08:03:16.467603 31856 solver.cpp:237] Train net output #0: loss = 5.2632 (* 1 = 5.2632 loss) +I0408 08:03:16.467615 31856 sgd_solver.cpp:105] Iteration 2808, lr = 0.00549951 +I0408 08:03:21.419183 31856 solver.cpp:218] Iteration 2820 (2.42354 iter/s, 4.95143s/12 iters), loss = 5.27605 +I0408 08:03:21.419225 31856 solver.cpp:237] Train net output #0: loss = 5.27605 (* 1 = 5.27605 loss) +I0408 08:03:21.419236 31856 sgd_solver.cpp:105] Iteration 2820, lr = 0.00543177 +I0408 08:03:26.157158 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:03:26.443996 31856 solver.cpp:218] Iteration 2832 (2.38824 iter/s, 5.02462s/12 iters), loss = 5.26093 +I0408 08:03:26.444043 31856 solver.cpp:237] Train net output #0: loss = 5.26093 (* 1 = 5.26093 loss) +I0408 08:03:26.444054 31856 sgd_solver.cpp:105] Iteration 2832, lr = 0.00536485 +I0408 08:03:31.679652 31856 solver.cpp:218] Iteration 2844 (2.29206 iter/s, 5.23546s/12 iters), loss = 5.26854 +I0408 08:03:31.679764 31856 solver.cpp:237] Train net output #0: loss = 5.26854 (* 1 = 5.26854 loss) +I0408 08:03:31.679776 31856 sgd_solver.cpp:105] Iteration 2844, lr = 0.00529876 +I0408 08:03:36.275094 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 08:03:39.268036 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 08:03:41.596624 31856 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 08:03:41.596650 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:03:44.813886 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:03:45.959398 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:03:45.959443 31856 solver.cpp:397] Test net output #1: loss = 5.28725 (* 1 = 5.28725 loss) +I0408 08:03:46.049568 31856 solver.cpp:218] Iteration 2856 (0.835109 iter/s, 14.3694s/12 iters), loss = 5.29032 +I0408 08:03:46.049643 31856 solver.cpp:237] Train net output #0: loss = 5.29032 (* 1 = 5.29032 loss) +I0408 08:03:46.049659 31856 sgd_solver.cpp:105] Iteration 2856, lr = 0.00523349 +I0408 08:03:50.169209 31856 solver.cpp:218] Iteration 2868 (2.91301 iter/s, 4.11945s/12 iters), loss = 5.27956 +I0408 08:03:50.169245 31856 solver.cpp:237] Train net output #0: loss = 5.27956 (* 1 = 5.27956 loss) +I0408 08:03:50.169255 31856 sgd_solver.cpp:105] Iteration 2868, lr = 0.00516902 +I0408 08:03:55.063998 31856 solver.cpp:218] Iteration 2880 (2.45168 iter/s, 4.89461s/12 iters), loss = 5.27905 +I0408 08:03:55.064035 31856 solver.cpp:237] Train net output #0: loss = 5.27905 (* 1 = 5.27905 loss) +I0408 08:03:55.064044 31856 sgd_solver.cpp:105] Iteration 2880, lr = 0.00510534 +I0408 08:03:59.990983 31856 solver.cpp:218] Iteration 2892 (2.43566 iter/s, 4.9268s/12 iters), loss = 5.27191 +I0408 08:03:59.991021 31856 solver.cpp:237] Train net output #0: loss = 5.27191 (* 1 = 5.27191 loss) +I0408 08:03:59.991029 31856 sgd_solver.cpp:105] Iteration 2892, lr = 0.00504245 +I0408 08:04:04.994119 31856 solver.cpp:218] Iteration 2904 (2.39859 iter/s, 5.00295s/12 iters), loss = 5.25381 +I0408 08:04:04.994210 31856 solver.cpp:237] Train net output #0: loss = 5.25381 (* 1 = 5.25381 loss) +I0408 08:04:04.994220 31856 sgd_solver.cpp:105] Iteration 2904, lr = 0.00498033 +I0408 08:04:09.977519 31856 solver.cpp:218] Iteration 2916 (2.40811 iter/s, 4.98317s/12 iters), loss = 5.27025 +I0408 08:04:09.977555 31856 solver.cpp:237] Train net output #0: loss = 5.27025 (* 1 = 5.27025 loss) +I0408 08:04:09.977564 31856 sgd_solver.cpp:105] Iteration 2916, lr = 0.00491898 +I0408 08:04:14.963368 31856 solver.cpp:218] Iteration 2928 (2.40691 iter/s, 4.98565s/12 iters), loss = 5.27863 +I0408 08:04:14.963430 31856 solver.cpp:237] Train net output #0: loss = 5.27863 (* 1 = 5.27863 loss) +I0408 08:04:14.963446 31856 sgd_solver.cpp:105] Iteration 2928, lr = 0.00485839 +I0408 08:04:16.823374 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:04:19.984349 31856 solver.cpp:218] Iteration 2940 (2.39007 iter/s, 5.02078s/12 iters), loss = 5.28258 +I0408 08:04:19.984385 31856 solver.cpp:237] Train net output #0: loss = 5.28258 (* 1 = 5.28258 loss) +I0408 08:04:19.984392 31856 sgd_solver.cpp:105] Iteration 2940, lr = 0.00479854 +I0408 08:04:24.983307 31856 solver.cpp:218] Iteration 2952 (2.40059 iter/s, 4.99877s/12 iters), loss = 5.28079 +I0408 08:04:24.983353 31856 solver.cpp:237] Train net output #0: loss = 5.28079 (* 1 = 5.28079 loss) +I0408 08:04:24.983363 31856 sgd_solver.cpp:105] Iteration 2952, lr = 0.00473942 +I0408 08:04:27.019115 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 08:04:29.941658 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 08:04:32.245548 31856 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 08:04:32.245574 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:04:35.520767 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:04:36.706836 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:04:36.706883 31856 solver.cpp:397] Test net output #1: loss = 5.28697 (* 1 = 5.28697 loss) +I0408 08:04:38.524425 31856 solver.cpp:218] Iteration 2964 (0.886218 iter/s, 13.5407s/12 iters), loss = 5.24092 +I0408 08:04:38.524472 31856 solver.cpp:237] Train net output #0: loss = 5.24092 (* 1 = 5.24092 loss) +I0408 08:04:38.524483 31856 sgd_solver.cpp:105] Iteration 2964, lr = 0.00468104 +I0408 08:04:43.491489 31856 solver.cpp:218] Iteration 2976 (2.41601 iter/s, 4.96687s/12 iters), loss = 5.2834 +I0408 08:04:43.491539 31856 solver.cpp:237] Train net output #0: loss = 5.2834 (* 1 = 5.2834 loss) +I0408 08:04:43.491550 31856 sgd_solver.cpp:105] Iteration 2976, lr = 0.00462337 +I0408 08:04:48.490908 31856 solver.cpp:218] Iteration 2988 (2.40037 iter/s, 4.99922s/12 iters), loss = 5.26222 +I0408 08:04:48.490953 31856 solver.cpp:237] Train net output #0: loss = 5.26222 (* 1 = 5.26222 loss) +I0408 08:04:48.490965 31856 sgd_solver.cpp:105] Iteration 2988, lr = 0.00456642 +I0408 08:04:53.509644 31856 solver.cpp:218] Iteration 3000 (2.39113 iter/s, 5.01854s/12 iters), loss = 5.26789 +I0408 08:04:53.509685 31856 solver.cpp:237] Train net output #0: loss = 5.26789 (* 1 = 5.26789 loss) +I0408 08:04:53.509696 31856 sgd_solver.cpp:105] Iteration 3000, lr = 0.00451017 +I0408 08:04:58.512076 31856 solver.cpp:218] Iteration 3012 (2.39893 iter/s, 5.00223s/12 iters), loss = 5.27262 +I0408 08:04:58.512120 31856 solver.cpp:237] Train net output #0: loss = 5.27262 (* 1 = 5.27262 loss) +I0408 08:04:58.512130 31856 sgd_solver.cpp:105] Iteration 3012, lr = 0.00445461 +I0408 08:05:03.508736 31856 solver.cpp:218] Iteration 3024 (2.40169 iter/s, 4.99647s/12 iters), loss = 5.25644 +I0408 08:05:03.508769 31856 solver.cpp:237] Train net output #0: loss = 5.25644 (* 1 = 5.25644 loss) +I0408 08:05:03.508778 31856 sgd_solver.cpp:105] Iteration 3024, lr = 0.00439973 +I0408 08:05:07.393584 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:05:08.435508 31856 solver.cpp:218] Iteration 3036 (2.43576 iter/s, 4.92659s/12 iters), loss = 5.25798 +I0408 08:05:08.435556 31856 solver.cpp:237] Train net output #0: loss = 5.25798 (* 1 = 5.25798 loss) +I0408 08:05:08.435568 31856 sgd_solver.cpp:105] Iteration 3036, lr = 0.00434553 +I0408 08:05:13.536279 31856 solver.cpp:218] Iteration 3048 (2.35268 iter/s, 5.10057s/12 iters), loss = 5.2902 +I0408 08:05:13.536329 31856 solver.cpp:237] Train net output #0: loss = 5.2902 (* 1 = 5.2902 loss) +I0408 08:05:13.536340 31856 sgd_solver.cpp:105] Iteration 3048, lr = 0.004292 +I0408 08:05:18.070724 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 08:05:21.048480 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 08:05:23.340708 31856 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 08:05:23.340728 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:05:27.107467 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:05:28.324355 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 08:05:28.324404 31856 solver.cpp:397] Test net output #1: loss = 5.28675 (* 1 = 5.28675 loss) +I0408 08:05:28.415472 31856 solver.cpp:218] Iteration 3060 (0.806521 iter/s, 14.8787s/12 iters), loss = 5.25563 +I0408 08:05:28.415513 31856 solver.cpp:237] Train net output #0: loss = 5.25563 (* 1 = 5.25563 loss) +I0408 08:05:28.415524 31856 sgd_solver.cpp:105] Iteration 3060, lr = 0.00423913 +I0408 08:05:32.799336 31856 solver.cpp:218] Iteration 3072 (2.73742 iter/s, 4.38369s/12 iters), loss = 5.30648 +I0408 08:05:32.799382 31856 solver.cpp:237] Train net output #0: loss = 5.30648 (* 1 = 5.30648 loss) +I0408 08:05:32.799394 31856 sgd_solver.cpp:105] Iteration 3072, lr = 0.00418691 +I0408 08:05:37.778105 31856 solver.cpp:218] Iteration 3084 (2.41033 iter/s, 4.97858s/12 iters), loss = 5.27295 +I0408 08:05:37.778265 31856 solver.cpp:237] Train net output #0: loss = 5.27295 (* 1 = 5.27295 loss) +I0408 08:05:37.778278 31856 sgd_solver.cpp:105] Iteration 3084, lr = 0.00413533 +I0408 08:05:42.654536 31856 solver.cpp:218] Iteration 3096 (2.46097 iter/s, 4.87613s/12 iters), loss = 5.27199 +I0408 08:05:42.654584 31856 solver.cpp:237] Train net output #0: loss = 5.27199 (* 1 = 5.27199 loss) +I0408 08:05:42.654595 31856 sgd_solver.cpp:105] Iteration 3096, lr = 0.00408439 +I0408 08:05:47.630491 31856 solver.cpp:218] Iteration 3108 (2.41169 iter/s, 4.97576s/12 iters), loss = 5.27868 +I0408 08:05:47.630539 31856 solver.cpp:237] Train net output #0: loss = 5.27868 (* 1 = 5.27868 loss) +I0408 08:05:47.630553 31856 sgd_solver.cpp:105] Iteration 3108, lr = 0.00403407 +I0408 08:05:52.562834 31856 solver.cpp:218] Iteration 3120 (2.43302 iter/s, 4.93215s/12 iters), loss = 5.2652 +I0408 08:05:52.562885 31856 solver.cpp:237] Train net output #0: loss = 5.2652 (* 1 = 5.2652 loss) +I0408 08:05:52.562898 31856 sgd_solver.cpp:105] Iteration 3120, lr = 0.00398438 +I0408 08:05:57.933444 31856 solver.cpp:218] Iteration 3132 (2.23447 iter/s, 5.3704s/12 iters), loss = 5.275 +I0408 08:05:57.933492 31856 solver.cpp:237] Train net output #0: loss = 5.275 (* 1 = 5.275 loss) +I0408 08:05:57.933504 31856 sgd_solver.cpp:105] Iteration 3132, lr = 0.00393529 +I0408 08:05:59.157765 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:06:03.406208 31856 solver.cpp:218] Iteration 3144 (2.19276 iter/s, 5.47255s/12 iters), loss = 5.28133 +I0408 08:06:03.406258 31856 solver.cpp:237] Train net output #0: loss = 5.28133 (* 1 = 5.28133 loss) +I0408 08:06:03.406270 31856 sgd_solver.cpp:105] Iteration 3144, lr = 0.00388681 +I0408 08:06:08.653625 31856 solver.cpp:218] Iteration 3156 (2.28693 iter/s, 5.24721s/12 iters), loss = 5.249 +I0408 08:06:08.653702 31856 solver.cpp:237] Train net output #0: loss = 5.249 (* 1 = 5.249 loss) +I0408 08:06:08.653713 31856 sgd_solver.cpp:105] Iteration 3156, lr = 0.00383893 +I0408 08:06:10.710423 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 08:06:13.737799 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 08:06:16.064016 31856 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 08:06:16.064041 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:06:19.361613 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:06:20.626188 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:06:20.626235 31856 solver.cpp:397] Test net output #1: loss = 5.2869 (* 1 = 5.2869 loss) +I0408 08:06:22.608144 31856 solver.cpp:218] Iteration 3168 (0.859966 iter/s, 13.954s/12 iters), loss = 5.2681 +I0408 08:06:22.608194 31856 solver.cpp:237] Train net output #0: loss = 5.2681 (* 1 = 5.2681 loss) +I0408 08:06:22.608206 31856 sgd_solver.cpp:105] Iteration 3168, lr = 0.00379164 +I0408 08:06:27.823179 31856 solver.cpp:218] Iteration 3180 (2.30113 iter/s, 5.21483s/12 iters), loss = 5.27133 +I0408 08:06:27.823218 31856 solver.cpp:237] Train net output #0: loss = 5.27133 (* 1 = 5.27133 loss) +I0408 08:06:27.823228 31856 sgd_solver.cpp:105] Iteration 3180, lr = 0.00374493 +I0408 08:06:32.691828 31856 solver.cpp:218] Iteration 3192 (2.46484 iter/s, 4.86846s/12 iters), loss = 5.27778 +I0408 08:06:32.691875 31856 solver.cpp:237] Train net output #0: loss = 5.27778 (* 1 = 5.27778 loss) +I0408 08:06:32.691887 31856 sgd_solver.cpp:105] Iteration 3192, lr = 0.0036988 +I0408 08:06:37.708830 31856 solver.cpp:218] Iteration 3204 (2.39196 iter/s, 5.01681s/12 iters), loss = 5.26192 +I0408 08:06:37.708868 31856 solver.cpp:237] Train net output #0: loss = 5.26192 (* 1 = 5.26192 loss) +I0408 08:06:37.708878 31856 sgd_solver.cpp:105] Iteration 3204, lr = 0.00365324 +I0408 08:06:42.826093 31856 solver.cpp:218] Iteration 3216 (2.34509 iter/s, 5.11707s/12 iters), loss = 5.28825 +I0408 08:06:42.829064 31856 solver.cpp:237] Train net output #0: loss = 5.28825 (* 1 = 5.28825 loss) +I0408 08:06:42.829078 31856 sgd_solver.cpp:105] Iteration 3216, lr = 0.00360823 +I0408 08:06:47.841595 31856 solver.cpp:218] Iteration 3228 (2.39407 iter/s, 5.01238s/12 iters), loss = 5.27716 +I0408 08:06:47.841650 31856 solver.cpp:237] Train net output #0: loss = 5.27716 (* 1 = 5.27716 loss) +I0408 08:06:47.841665 31856 sgd_solver.cpp:105] Iteration 3228, lr = 0.00356378 +I0408 08:06:51.085475 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:06:52.842403 31856 solver.cpp:218] Iteration 3240 (2.39971 iter/s, 5.00061s/12 iters), loss = 5.28199 +I0408 08:06:52.842442 31856 solver.cpp:237] Train net output #0: loss = 5.28199 (* 1 = 5.28199 loss) +I0408 08:06:52.842451 31856 sgd_solver.cpp:105] Iteration 3240, lr = 0.00351988 +I0408 08:06:57.914880 31856 solver.cpp:218] Iteration 3252 (2.3658 iter/s, 5.07228s/12 iters), loss = 5.26957 +I0408 08:06:57.914930 31856 solver.cpp:237] Train net output #0: loss = 5.26957 (* 1 = 5.26957 loss) +I0408 08:06:57.914942 31856 sgd_solver.cpp:105] Iteration 3252, lr = 0.00347652 +I0408 08:07:02.433461 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 08:07:05.476982 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 08:07:07.789440 31856 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 08:07:07.789463 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:07:10.949798 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:07:12.260018 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:07:12.260066 31856 solver.cpp:397] Test net output #1: loss = 5.28742 (* 1 = 5.28742 loss) +I0408 08:07:12.350056 31856 solver.cpp:218] Iteration 3264 (0.831329 iter/s, 14.4347s/12 iters), loss = 5.27563 +I0408 08:07:12.350104 31856 solver.cpp:237] Train net output #0: loss = 5.27563 (* 1 = 5.27563 loss) +I0408 08:07:12.350116 31856 sgd_solver.cpp:105] Iteration 3264, lr = 0.00343369 +I0408 08:07:16.592995 31856 solver.cpp:218] Iteration 3276 (2.82835 iter/s, 4.24276s/12 iters), loss = 5.28837 +I0408 08:07:16.593114 31856 solver.cpp:237] Train net output #0: loss = 5.28837 (* 1 = 5.28837 loss) +I0408 08:07:16.593127 31856 sgd_solver.cpp:105] Iteration 3276, lr = 0.00339139 +I0408 08:07:21.528760 31856 solver.cpp:218] Iteration 3288 (2.43136 iter/s, 4.9355s/12 iters), loss = 5.26016 +I0408 08:07:21.528800 31856 solver.cpp:237] Train net output #0: loss = 5.26016 (* 1 = 5.26016 loss) +I0408 08:07:21.528810 31856 sgd_solver.cpp:105] Iteration 3288, lr = 0.00334962 +I0408 08:07:26.532629 31856 solver.cpp:218] Iteration 3300 (2.39823 iter/s, 5.00368s/12 iters), loss = 5.28246 +I0408 08:07:26.532667 31856 solver.cpp:237] Train net output #0: loss = 5.28246 (* 1 = 5.28246 loss) +I0408 08:07:26.532676 31856 sgd_solver.cpp:105] Iteration 3300, lr = 0.00330835 +I0408 08:07:31.559514 31856 solver.cpp:218] Iteration 3312 (2.38726 iter/s, 5.02669s/12 iters), loss = 5.25531 +I0408 08:07:31.559563 31856 solver.cpp:237] Train net output #0: loss = 5.25531 (* 1 = 5.25531 loss) +I0408 08:07:31.559577 31856 sgd_solver.cpp:105] Iteration 3312, lr = 0.0032676 +I0408 08:07:36.532510 31856 solver.cpp:218] Iteration 3324 (2.41313 iter/s, 4.9728s/12 iters), loss = 5.28158 +I0408 08:07:36.532552 31856 solver.cpp:237] Train net output #0: loss = 5.28158 (* 1 = 5.28158 loss) +I0408 08:07:36.532564 31856 sgd_solver.cpp:105] Iteration 3324, lr = 0.00322734 +I0408 08:07:41.491703 31856 solver.cpp:218] Iteration 3336 (2.41984 iter/s, 4.959s/12 iters), loss = 5.27364 +I0408 08:07:41.491748 31856 solver.cpp:237] Train net output #0: loss = 5.27364 (* 1 = 5.27364 loss) +I0408 08:07:41.491761 31856 sgd_solver.cpp:105] Iteration 3336, lr = 0.00318759 +I0408 08:07:41.952008 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:07:46.418462 31856 solver.cpp:218] Iteration 3348 (2.43577 iter/s, 4.92657s/12 iters), loss = 5.27664 +I0408 08:07:46.418504 31856 solver.cpp:237] Train net output #0: loss = 5.27664 (* 1 = 5.27664 loss) +I0408 08:07:46.418515 31856 sgd_solver.cpp:105] Iteration 3348, lr = 0.00314832 +I0408 08:07:51.493618 31856 solver.cpp:218] Iteration 3360 (2.36455 iter/s, 5.07496s/12 iters), loss = 5.26633 +I0408 08:07:51.493803 31856 solver.cpp:237] Train net output #0: loss = 5.26633 (* 1 = 5.26633 loss) +I0408 08:07:51.493825 31856 sgd_solver.cpp:105] Iteration 3360, lr = 0.00310954 +I0408 08:07:53.526051 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 08:07:56.582269 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 08:07:58.967006 31856 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 08:07:58.967025 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:08:02.093070 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:08:03.429793 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:08:03.429836 31856 solver.cpp:397] Test net output #1: loss = 5.28712 (* 1 = 5.28712 loss) +I0408 08:08:05.351694 31856 solver.cpp:218] Iteration 3372 (0.865956 iter/s, 13.8575s/12 iters), loss = 5.28592 +I0408 08:08:05.351739 31856 solver.cpp:237] Train net output #0: loss = 5.28592 (* 1 = 5.28592 loss) +I0408 08:08:05.351749 31856 sgd_solver.cpp:105] Iteration 3372, lr = 0.00307123 +I0408 08:08:10.312674 31856 solver.cpp:218] Iteration 3384 (2.41897 iter/s, 4.96079s/12 iters), loss = 5.26577 +I0408 08:08:10.312718 31856 solver.cpp:237] Train net output #0: loss = 5.26577 (* 1 = 5.26577 loss) +I0408 08:08:10.312729 31856 sgd_solver.cpp:105] Iteration 3384, lr = 0.0030334 +I0408 08:08:15.281788 31856 solver.cpp:218] Iteration 3396 (2.41501 iter/s, 4.96892s/12 iters), loss = 5.2616 +I0408 08:08:15.281831 31856 solver.cpp:237] Train net output #0: loss = 5.2616 (* 1 = 5.2616 loss) +I0408 08:08:15.281841 31856 sgd_solver.cpp:105] Iteration 3396, lr = 0.00299603 +I0408 08:08:20.116418 31856 solver.cpp:218] Iteration 3408 (2.48219 iter/s, 4.83444s/12 iters), loss = 5.28758 +I0408 08:08:20.116472 31856 solver.cpp:237] Train net output #0: loss = 5.28758 (* 1 = 5.28758 loss) +I0408 08:08:20.116487 31856 sgd_solver.cpp:105] Iteration 3408, lr = 0.00295912 +I0408 08:08:25.012210 31856 solver.cpp:218] Iteration 3420 (2.45118 iter/s, 4.8956s/12 iters), loss = 5.27702 +I0408 08:08:25.013720 31856 solver.cpp:237] Train net output #0: loss = 5.27702 (* 1 = 5.27702 loss) +I0408 08:08:25.013734 31856 sgd_solver.cpp:105] Iteration 3420, lr = 0.00292267 +I0408 08:08:30.093207 31856 solver.cpp:218] Iteration 3432 (2.36251 iter/s, 5.07934s/12 iters), loss = 5.26053 +I0408 08:08:30.093251 31856 solver.cpp:237] Train net output #0: loss = 5.26053 (* 1 = 5.26053 loss) +I0408 08:08:30.093263 31856 sgd_solver.cpp:105] Iteration 3432, lr = 0.00288666 +I0408 08:08:32.710695 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:08:35.149653 31856 solver.cpp:218] Iteration 3444 (2.3733 iter/s, 5.05625s/12 iters), loss = 5.27387 +I0408 08:08:35.149701 31856 solver.cpp:237] Train net output #0: loss = 5.27387 (* 1 = 5.27387 loss) +I0408 08:08:35.149713 31856 sgd_solver.cpp:105] Iteration 3444, lr = 0.0028511 +I0408 08:08:40.177898 31856 solver.cpp:218] Iteration 3456 (2.38661 iter/s, 5.02805s/12 iters), loss = 5.27125 +I0408 08:08:40.177944 31856 solver.cpp:237] Train net output #0: loss = 5.27125 (* 1 = 5.27125 loss) +I0408 08:08:40.177968 31856 sgd_solver.cpp:105] Iteration 3456, lr = 0.00281598 +I0408 08:08:44.756426 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 08:08:47.754783 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 08:08:50.081413 31856 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 08:08:50.081439 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:08:50.539821 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:08:53.151266 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:08:54.533324 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:08:54.533367 31856 solver.cpp:397] Test net output #1: loss = 5.28736 (* 1 = 5.28736 loss) +I0408 08:08:54.621208 31856 solver.cpp:218] Iteration 3468 (0.830861 iter/s, 14.4429s/12 iters), loss = 5.27316 +I0408 08:08:54.621258 31856 solver.cpp:237] Train net output #0: loss = 5.27316 (* 1 = 5.27316 loss) +I0408 08:08:54.621268 31856 sgd_solver.cpp:105] Iteration 3468, lr = 0.00278129 +I0408 08:08:58.752691 31856 solver.cpp:218] Iteration 3480 (2.90465 iter/s, 4.13131s/12 iters), loss = 5.2787 +I0408 08:08:58.752838 31856 solver.cpp:237] Train net output #0: loss = 5.2787 (* 1 = 5.2787 loss) +I0408 08:08:58.752852 31856 sgd_solver.cpp:105] Iteration 3480, lr = 0.00274703 +I0408 08:09:03.780181 31856 solver.cpp:218] Iteration 3492 (2.38702 iter/s, 5.0272s/12 iters), loss = 5.28809 +I0408 08:09:03.780228 31856 solver.cpp:237] Train net output #0: loss = 5.28809 (* 1 = 5.28809 loss) +I0408 08:09:03.780239 31856 sgd_solver.cpp:105] Iteration 3492, lr = 0.00271319 +I0408 08:09:08.722959 31856 solver.cpp:218] Iteration 3504 (2.42788 iter/s, 4.94258s/12 iters), loss = 5.27186 +I0408 08:09:08.723004 31856 solver.cpp:237] Train net output #0: loss = 5.27186 (* 1 = 5.27186 loss) +I0408 08:09:08.723016 31856 sgd_solver.cpp:105] Iteration 3504, lr = 0.00267977 +I0408 08:09:13.661814 31856 solver.cpp:218] Iteration 3516 (2.42981 iter/s, 4.93866s/12 iters), loss = 5.26324 +I0408 08:09:13.661867 31856 solver.cpp:237] Train net output #0: loss = 5.26324 (* 1 = 5.26324 loss) +I0408 08:09:13.661880 31856 sgd_solver.cpp:105] Iteration 3516, lr = 0.00264675 +I0408 08:09:18.577342 31856 solver.cpp:218] Iteration 3528 (2.44134 iter/s, 4.91533s/12 iters), loss = 5.27081 +I0408 08:09:18.577387 31856 solver.cpp:237] Train net output #0: loss = 5.27081 (* 1 = 5.27081 loss) +I0408 08:09:18.577397 31856 sgd_solver.cpp:105] Iteration 3528, lr = 0.00261415 +I0408 08:09:23.354784 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:09:23.613461 31856 solver.cpp:218] Iteration 3540 (2.38288 iter/s, 5.03592s/12 iters), loss = 5.25647 +I0408 08:09:23.613504 31856 solver.cpp:237] Train net output #0: loss = 5.25647 (* 1 = 5.25647 loss) +I0408 08:09:23.613514 31856 sgd_solver.cpp:105] Iteration 3540, lr = 0.00258195 +I0408 08:09:28.624119 31856 solver.cpp:218] Iteration 3552 (2.39499 iter/s, 5.01047s/12 iters), loss = 5.26694 +I0408 08:09:28.624161 31856 solver.cpp:237] Train net output #0: loss = 5.26694 (* 1 = 5.26694 loss) +I0408 08:09:28.624171 31856 sgd_solver.cpp:105] Iteration 3552, lr = 0.00255014 +I0408 08:09:33.615391 31856 solver.cpp:218] Iteration 3564 (2.40429 iter/s, 4.99108s/12 iters), loss = 5.29196 +I0408 08:09:33.615471 31856 solver.cpp:237] Train net output #0: loss = 5.29196 (* 1 = 5.29196 loss) +I0408 08:09:33.615483 31856 sgd_solver.cpp:105] Iteration 3564, lr = 0.00251873 +I0408 08:09:35.677266 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 08:09:38.721004 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 08:09:41.071208 31856 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 08:09:41.071233 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:09:44.115823 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:09:45.529778 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:09:45.529822 31856 solver.cpp:397] Test net output #1: loss = 5.28726 (* 1 = 5.28726 loss) +I0408 08:09:47.446386 31856 solver.cpp:218] Iteration 3576 (0.867646 iter/s, 13.8305s/12 iters), loss = 5.28202 +I0408 08:09:47.446430 31856 solver.cpp:237] Train net output #0: loss = 5.28202 (* 1 = 5.28202 loss) +I0408 08:09:47.446440 31856 sgd_solver.cpp:105] Iteration 3576, lr = 0.0024877 +I0408 08:09:52.469318 31856 solver.cpp:218] Iteration 3588 (2.38913 iter/s, 5.02274s/12 iters), loss = 5.27651 +I0408 08:09:52.469354 31856 solver.cpp:237] Train net output #0: loss = 5.27651 (* 1 = 5.27651 loss) +I0408 08:09:52.469362 31856 sgd_solver.cpp:105] Iteration 3588, lr = 0.00245705 +I0408 08:09:57.501215 31856 solver.cpp:218] Iteration 3600 (2.38488 iter/s, 5.03171s/12 iters), loss = 5.26353 +I0408 08:09:57.501260 31856 solver.cpp:237] Train net output #0: loss = 5.26353 (* 1 = 5.26353 loss) +I0408 08:09:57.501271 31856 sgd_solver.cpp:105] Iteration 3600, lr = 0.00242678 +I0408 08:10:02.554610 31856 solver.cpp:218] Iteration 3612 (2.37473 iter/s, 5.0532s/12 iters), loss = 5.24015 +I0408 08:10:02.554656 31856 solver.cpp:237] Train net output #0: loss = 5.24015 (* 1 = 5.24015 loss) +I0408 08:10:02.554667 31856 sgd_solver.cpp:105] Iteration 3612, lr = 0.00239689 +I0408 08:10:07.613833 31856 solver.cpp:218] Iteration 3624 (2.372 iter/s, 5.05903s/12 iters), loss = 5.27581 +I0408 08:10:07.613987 31856 solver.cpp:237] Train net output #0: loss = 5.27581 (* 1 = 5.27581 loss) +I0408 08:10:07.614001 31856 sgd_solver.cpp:105] Iteration 3624, lr = 0.00236736 +I0408 08:10:12.801914 31856 solver.cpp:218] Iteration 3636 (2.31313 iter/s, 5.18778s/12 iters), loss = 5.27931 +I0408 08:10:12.801967 31856 solver.cpp:237] Train net output #0: loss = 5.27931 (* 1 = 5.27931 loss) +I0408 08:10:12.801980 31856 sgd_solver.cpp:105] Iteration 3636, lr = 0.0023382 +I0408 08:10:14.681524 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:10:17.828225 31856 solver.cpp:218] Iteration 3648 (2.38753 iter/s, 5.02611s/12 iters), loss = 5.28537 +I0408 08:10:17.828276 31856 solver.cpp:237] Train net output #0: loss = 5.28537 (* 1 = 5.28537 loss) +I0408 08:10:17.828287 31856 sgd_solver.cpp:105] Iteration 3648, lr = 0.0023094 +I0408 08:10:22.893208 31856 solver.cpp:218] Iteration 3660 (2.3693 iter/s, 5.06478s/12 iters), loss = 5.27778 +I0408 08:10:22.893254 31856 solver.cpp:237] Train net output #0: loss = 5.27778 (* 1 = 5.27778 loss) +I0408 08:10:22.893265 31856 sgd_solver.cpp:105] Iteration 3660, lr = 0.00228095 +I0408 08:10:27.453229 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 08:10:30.468611 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 08:10:32.795749 31856 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 08:10:32.795774 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:10:35.760123 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:10:37.220682 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:10:37.220729 31856 solver.cpp:397] Test net output #1: loss = 5.28666 (* 1 = 5.28666 loss) +I0408 08:10:37.307847 31856 solver.cpp:218] Iteration 3672 (0.832513 iter/s, 14.4142s/12 iters), loss = 5.25026 +I0408 08:10:37.307895 31856 solver.cpp:237] Train net output #0: loss = 5.25026 (* 1 = 5.25026 loss) +I0408 08:10:37.307906 31856 sgd_solver.cpp:105] Iteration 3672, lr = 0.00225285 +I0408 08:10:41.500181 31856 solver.cpp:218] Iteration 3684 (2.86249 iter/s, 4.19216s/12 iters), loss = 5.2703 +I0408 08:10:41.500360 31856 solver.cpp:237] Train net output #0: loss = 5.2703 (* 1 = 5.2703 loss) +I0408 08:10:41.500377 31856 sgd_solver.cpp:105] Iteration 3684, lr = 0.00222509 +I0408 08:10:46.481310 31856 solver.cpp:218] Iteration 3696 (2.40925 iter/s, 4.98081s/12 iters), loss = 5.26012 +I0408 08:10:46.481359 31856 solver.cpp:237] Train net output #0: loss = 5.26012 (* 1 = 5.26012 loss) +I0408 08:10:46.481370 31856 sgd_solver.cpp:105] Iteration 3696, lr = 0.00219768 +I0408 08:10:51.470810 31856 solver.cpp:218] Iteration 3708 (2.40515 iter/s, 4.9893s/12 iters), loss = 5.26836 +I0408 08:10:51.470854 31856 solver.cpp:237] Train net output #0: loss = 5.26836 (* 1 = 5.26836 loss) +I0408 08:10:51.470865 31856 sgd_solver.cpp:105] Iteration 3708, lr = 0.00217061 +I0408 08:10:56.654841 31856 solver.cpp:218] Iteration 3720 (2.31489 iter/s, 5.18383s/12 iters), loss = 5.26798 +I0408 08:10:56.654889 31856 solver.cpp:237] Train net output #0: loss = 5.26798 (* 1 = 5.26798 loss) +I0408 08:10:56.654901 31856 sgd_solver.cpp:105] Iteration 3720, lr = 0.00214387 +I0408 08:11:01.993892 31856 solver.cpp:218] Iteration 3732 (2.24768 iter/s, 5.33884s/12 iters), loss = 5.25443 +I0408 08:11:01.993944 31856 solver.cpp:237] Train net output #0: loss = 5.25443 (* 1 = 5.25443 loss) +I0408 08:11:01.993971 31856 sgd_solver.cpp:105] Iteration 3732, lr = 0.00211746 +I0408 08:11:06.341945 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:11:07.431241 31856 solver.cpp:218] Iteration 3744 (2.20704 iter/s, 5.43714s/12 iters), loss = 5.25531 +I0408 08:11:07.431293 31856 solver.cpp:237] Train net output #0: loss = 5.25531 (* 1 = 5.25531 loss) +I0408 08:11:07.431305 31856 sgd_solver.cpp:105] Iteration 3744, lr = 0.00209138 +I0408 08:11:12.556280 31856 solver.cpp:218] Iteration 3756 (2.34154 iter/s, 5.12484s/12 iters), loss = 5.27856 +I0408 08:11:12.556354 31856 solver.cpp:237] Train net output #0: loss = 5.27856 (* 1 = 5.27856 loss) +I0408 08:11:12.556366 31856 sgd_solver.cpp:105] Iteration 3756, lr = 0.00206561 +I0408 08:11:17.465306 31856 solver.cpp:218] Iteration 3768 (2.44459 iter/s, 4.90881s/12 iters), loss = 5.25977 +I0408 08:11:17.465356 31856 solver.cpp:237] Train net output #0: loss = 5.25977 (* 1 = 5.25977 loss) +I0408 08:11:17.465368 31856 sgd_solver.cpp:105] Iteration 3768, lr = 0.00204017 +I0408 08:11:19.518615 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 08:11:24.099261 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 08:11:27.677464 31856 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 08:11:27.677482 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:11:30.638794 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:11:32.136936 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:11:32.136984 31856 solver.cpp:397] Test net output #1: loss = 5.28754 (* 1 = 5.28754 loss) +I0408 08:11:34.095803 31856 solver.cpp:218] Iteration 3780 (0.721588 iter/s, 16.63s/12 iters), loss = 5.31049 +I0408 08:11:34.095858 31856 solver.cpp:237] Train net output #0: loss = 5.31049 (* 1 = 5.31049 loss) +I0408 08:11:34.095872 31856 sgd_solver.cpp:105] Iteration 3780, lr = 0.00201504 +I0408 08:11:39.095232 31856 solver.cpp:218] Iteration 3792 (2.40037 iter/s, 4.99923s/12 iters), loss = 5.27583 +I0408 08:11:39.095279 31856 solver.cpp:237] Train net output #0: loss = 5.27583 (* 1 = 5.27583 loss) +I0408 08:11:39.095293 31856 sgd_solver.cpp:105] Iteration 3792, lr = 0.00199021 +I0408 08:11:44.024853 31856 solver.cpp:218] Iteration 3804 (2.43436 iter/s, 4.92943s/12 iters), loss = 5.26875 +I0408 08:11:44.024953 31856 solver.cpp:237] Train net output #0: loss = 5.26875 (* 1 = 5.26875 loss) +I0408 08:11:44.024961 31856 sgd_solver.cpp:105] Iteration 3804, lr = 0.0019657 +I0408 08:11:49.129474 31856 solver.cpp:218] Iteration 3816 (2.35093 iter/s, 5.10437s/12 iters), loss = 5.27129 +I0408 08:11:49.129519 31856 solver.cpp:237] Train net output #0: loss = 5.27129 (* 1 = 5.27129 loss) +I0408 08:11:49.129532 31856 sgd_solver.cpp:105] Iteration 3816, lr = 0.00194148 +I0408 08:11:54.329046 31856 solver.cpp:218] Iteration 3828 (2.30797 iter/s, 5.19937s/12 iters), loss = 5.26259 +I0408 08:11:54.329095 31856 solver.cpp:237] Train net output #0: loss = 5.26259 (* 1 = 5.26259 loss) +I0408 08:11:54.329106 31856 sgd_solver.cpp:105] Iteration 3828, lr = 0.00191756 +I0408 08:11:59.361461 31856 solver.cpp:218] Iteration 3840 (2.38464 iter/s, 5.03222s/12 iters), loss = 5.26788 +I0408 08:11:59.361508 31856 solver.cpp:237] Train net output #0: loss = 5.26788 (* 1 = 5.26788 loss) +I0408 08:11:59.361521 31856 sgd_solver.cpp:105] Iteration 3840, lr = 0.00189394 +I0408 08:12:00.512135 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:12:04.339393 31856 solver.cpp:218] Iteration 3852 (2.41073 iter/s, 4.97774s/12 iters), loss = 5.27466 +I0408 08:12:04.339442 31856 solver.cpp:237] Train net output #0: loss = 5.27466 (* 1 = 5.27466 loss) +I0408 08:12:04.339470 31856 sgd_solver.cpp:105] Iteration 3852, lr = 0.00187061 +I0408 08:12:09.264854 31856 solver.cpp:218] Iteration 3864 (2.43642 iter/s, 4.92527s/12 iters), loss = 5.25342 +I0408 08:12:09.264899 31856 solver.cpp:237] Train net output #0: loss = 5.25342 (* 1 = 5.25342 loss) +I0408 08:12:09.264911 31856 sgd_solver.cpp:105] Iteration 3864, lr = 0.00184757 +I0408 08:12:13.826205 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 08:12:16.802299 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 08:12:19.129022 31856 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 08:12:19.129047 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:12:22.040495 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:12:23.585999 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:12:23.586047 31856 solver.cpp:397] Test net output #1: loss = 5.28705 (* 1 = 5.28705 loss) +I0408 08:12:23.676237 31856 solver.cpp:218] Iteration 3876 (0.832701 iter/s, 14.4109s/12 iters), loss = 5.27115 +I0408 08:12:23.676278 31856 solver.cpp:237] Train net output #0: loss = 5.27115 (* 1 = 5.27115 loss) +I0408 08:12:23.676290 31856 sgd_solver.cpp:105] Iteration 3876, lr = 0.00182481 +I0408 08:12:27.892892 31856 solver.cpp:218] Iteration 3888 (2.84597 iter/s, 4.21649s/12 iters), loss = 5.269 +I0408 08:12:27.892936 31856 solver.cpp:237] Train net output #0: loss = 5.269 (* 1 = 5.269 loss) +I0408 08:12:27.892948 31856 sgd_solver.cpp:105] Iteration 3888, lr = 0.00180233 +I0408 08:12:32.850759 31856 solver.cpp:218] Iteration 3900 (2.42049 iter/s, 4.95767s/12 iters), loss = 5.2744 +I0408 08:12:32.850803 31856 solver.cpp:237] Train net output #0: loss = 5.2744 (* 1 = 5.2744 loss) +I0408 08:12:32.850816 31856 sgd_solver.cpp:105] Iteration 3900, lr = 0.00178012 +I0408 08:12:37.804169 31856 solver.cpp:218] Iteration 3912 (2.42267 iter/s, 4.95322s/12 iters), loss = 5.2588 +I0408 08:12:37.804215 31856 solver.cpp:237] Train net output #0: loss = 5.2588 (* 1 = 5.2588 loss) +I0408 08:12:37.804226 31856 sgd_solver.cpp:105] Iteration 3912, lr = 0.0017582 +I0408 08:12:42.786600 31856 solver.cpp:218] Iteration 3924 (2.40856 iter/s, 4.98224s/12 iters), loss = 5.29162 +I0408 08:12:42.786638 31856 solver.cpp:237] Train net output #0: loss = 5.29162 (* 1 = 5.29162 loss) +I0408 08:12:42.786646 31856 sgd_solver.cpp:105] Iteration 3924, lr = 0.00173654 +I0408 08:12:47.766916 31856 solver.cpp:218] Iteration 3936 (2.40958 iter/s, 4.98013s/12 iters), loss = 5.2731 +I0408 08:12:47.767032 31856 solver.cpp:237] Train net output #0: loss = 5.2731 (* 1 = 5.2731 loss) +I0408 08:12:47.767045 31856 sgd_solver.cpp:105] Iteration 3936, lr = 0.00171514 +I0408 08:12:51.082257 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:12:52.690369 31856 solver.cpp:218] Iteration 3948 (2.43744 iter/s, 4.92319s/12 iters), loss = 5.28461 +I0408 08:12:52.690415 31856 solver.cpp:237] Train net output #0: loss = 5.28461 (* 1 = 5.28461 loss) +I0408 08:12:52.690428 31856 sgd_solver.cpp:105] Iteration 3948, lr = 0.00169402 +I0408 08:12:57.522502 31856 solver.cpp:218] Iteration 3960 (2.48347 iter/s, 4.83194s/12 iters), loss = 5.27012 +I0408 08:12:57.522547 31856 solver.cpp:237] Train net output #0: loss = 5.27012 (* 1 = 5.27012 loss) +I0408 08:12:57.522559 31856 sgd_solver.cpp:105] Iteration 3960, lr = 0.00167315 +I0408 08:13:02.421311 31856 solver.cpp:218] Iteration 3972 (2.44967 iter/s, 4.89862s/12 iters), loss = 5.28064 +I0408 08:13:02.421360 31856 solver.cpp:237] Train net output #0: loss = 5.28064 (* 1 = 5.28064 loss) +I0408 08:13:02.421371 31856 sgd_solver.cpp:105] Iteration 3972, lr = 0.00165254 +I0408 08:13:04.423765 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 08:13:07.494132 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 08:13:09.826508 31856 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 08:13:09.826534 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:13:12.805182 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:13:14.384181 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:13:14.384209 31856 solver.cpp:397] Test net output #1: loss = 5.28687 (* 1 = 5.28687 loss) +I0408 08:13:16.163450 31856 solver.cpp:218] Iteration 3984 (0.873254 iter/s, 13.7417s/12 iters), loss = 5.28052 +I0408 08:13:16.163484 31856 solver.cpp:237] Train net output #0: loss = 5.28052 (* 1 = 5.28052 loss) +I0408 08:13:16.163491 31856 sgd_solver.cpp:105] Iteration 3984, lr = 0.00163218 +I0408 08:13:21.201885 31856 solver.cpp:218] Iteration 3996 (2.38178 iter/s, 5.03825s/12 iters), loss = 5.26201 +I0408 08:13:21.202051 31856 solver.cpp:237] Train net output #0: loss = 5.26201 (* 1 = 5.26201 loss) +I0408 08:13:21.202065 31856 sgd_solver.cpp:105] Iteration 3996, lr = 0.00161207 +I0408 08:13:26.239078 31856 solver.cpp:218] Iteration 4008 (2.38243 iter/s, 5.03688s/12 iters), loss = 5.28664 +I0408 08:13:26.239122 31856 solver.cpp:237] Train net output #0: loss = 5.28664 (* 1 = 5.28664 loss) +I0408 08:13:26.239133 31856 sgd_solver.cpp:105] Iteration 4008, lr = 0.00159221 +I0408 08:13:31.683607 31856 solver.cpp:218] Iteration 4020 (2.20413 iter/s, 5.44432s/12 iters), loss = 5.25445 +I0408 08:13:31.683655 31856 solver.cpp:237] Train net output #0: loss = 5.25445 (* 1 = 5.25445 loss) +I0408 08:13:31.683667 31856 sgd_solver.cpp:105] Iteration 4020, lr = 0.0015726 +I0408 08:13:36.686658 31856 solver.cpp:218] Iteration 4032 (2.39863 iter/s, 5.00285s/12 iters), loss = 5.27359 +I0408 08:13:36.686708 31856 solver.cpp:237] Train net output #0: loss = 5.27359 (* 1 = 5.27359 loss) +I0408 08:13:36.686720 31856 sgd_solver.cpp:105] Iteration 4032, lr = 0.00155323 +I0408 08:13:41.705494 31856 solver.cpp:218] Iteration 4044 (2.39109 iter/s, 5.01864s/12 iters), loss = 5.27273 +I0408 08:13:41.705541 31856 solver.cpp:237] Train net output #0: loss = 5.27273 (* 1 = 5.27273 loss) +I0408 08:13:41.705552 31856 sgd_solver.cpp:105] Iteration 4044, lr = 0.00153409 +I0408 08:13:42.231335 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:13:46.687966 31856 solver.cpp:218] Iteration 4056 (2.40854 iter/s, 4.98227s/12 iters), loss = 5.27383 +I0408 08:13:46.688025 31856 solver.cpp:237] Train net output #0: loss = 5.27383 (* 1 = 5.27383 loss) +I0408 08:13:46.688037 31856 sgd_solver.cpp:105] Iteration 4056, lr = 0.00151519 +I0408 08:13:51.686702 31856 solver.cpp:218] Iteration 4068 (2.40071 iter/s, 4.99853s/12 iters), loss = 5.27101 +I0408 08:13:51.686810 31856 solver.cpp:237] Train net output #0: loss = 5.27101 (* 1 = 5.27101 loss) +I0408 08:13:51.686822 31856 sgd_solver.cpp:105] Iteration 4068, lr = 0.00149653 +I0408 08:13:56.186504 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 08:13:59.225401 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 08:14:01.542419 31856 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 08:14:01.542441 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:14:04.345679 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:14:05.960391 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:14:05.960440 31856 solver.cpp:397] Test net output #1: loss = 5.28741 (* 1 = 5.28741 loss) +I0408 08:14:06.048626 31856 solver.cpp:218] Iteration 4080 (0.835572 iter/s, 14.3614s/12 iters), loss = 5.28599 +I0408 08:14:06.048669 31856 solver.cpp:237] Train net output #0: loss = 5.28599 (* 1 = 5.28599 loss) +I0408 08:14:06.048681 31856 sgd_solver.cpp:105] Iteration 4080, lr = 0.00147809 +I0408 08:14:10.427610 31856 solver.cpp:218] Iteration 4092 (2.74047 iter/s, 4.37881s/12 iters), loss = 5.26395 +I0408 08:14:10.427657 31856 solver.cpp:237] Train net output #0: loss = 5.26395 (* 1 = 5.26395 loss) +I0408 08:14:10.427668 31856 sgd_solver.cpp:105] Iteration 4092, lr = 0.00145989 +I0408 08:14:15.330201 31856 solver.cpp:218] Iteration 4104 (2.44778 iter/s, 4.9024s/12 iters), loss = 5.26227 +I0408 08:14:15.330250 31856 solver.cpp:237] Train net output #0: loss = 5.26227 (* 1 = 5.26227 loss) +I0408 08:14:15.330260 31856 sgd_solver.cpp:105] Iteration 4104, lr = 0.0014419 +I0408 08:14:20.291883 31856 solver.cpp:218] Iteration 4116 (2.41863 iter/s, 4.96149s/12 iters), loss = 5.29287 +I0408 08:14:20.291927 31856 solver.cpp:237] Train net output #0: loss = 5.29287 (* 1 = 5.29287 loss) +I0408 08:14:20.291939 31856 sgd_solver.cpp:105] Iteration 4116, lr = 0.00142414 +I0408 08:14:25.246508 31856 solver.cpp:218] Iteration 4128 (2.42207 iter/s, 4.95444s/12 iters), loss = 5.26629 +I0408 08:14:25.247174 31856 solver.cpp:237] Train net output #0: loss = 5.26629 (* 1 = 5.26629 loss) +I0408 08:14:25.247185 31856 sgd_solver.cpp:105] Iteration 4128, lr = 0.00140659 +I0408 08:14:30.314545 31856 solver.cpp:218] Iteration 4140 (2.36816 iter/s, 5.06723s/12 iters), loss = 5.25894 +I0408 08:14:30.314592 31856 solver.cpp:237] Train net output #0: loss = 5.25894 (* 1 = 5.25894 loss) +I0408 08:14:30.314605 31856 sgd_solver.cpp:105] Iteration 4140, lr = 0.00138927 +I0408 08:14:33.125234 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:14:35.652468 31856 solver.cpp:218] Iteration 4152 (2.24815 iter/s, 5.33772s/12 iters), loss = 5.26901 +I0408 08:14:35.652513 31856 solver.cpp:237] Train net output #0: loss = 5.26901 (* 1 = 5.26901 loss) +I0408 08:14:35.652524 31856 sgd_solver.cpp:105] Iteration 4152, lr = 0.00137215 +I0408 08:14:37.422857 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:14:40.871410 31856 solver.cpp:218] Iteration 4164 (2.2994 iter/s, 5.21874s/12 iters), loss = 5.26413 +I0408 08:14:40.871454 31856 solver.cpp:237] Train net output #0: loss = 5.26413 (* 1 = 5.26413 loss) +I0408 08:14:40.871466 31856 sgd_solver.cpp:105] Iteration 4164, lr = 0.00135525 +I0408 08:14:46.147222 31856 solver.cpp:218] Iteration 4176 (2.27462 iter/s, 5.27561s/12 iters), loss = 5.26617 +I0408 08:14:46.147266 31856 solver.cpp:237] Train net output #0: loss = 5.26617 (* 1 = 5.26617 loss) +I0408 08:14:46.147277 31856 sgd_solver.cpp:105] Iteration 4176, lr = 0.00133855 +I0408 08:14:48.167953 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 08:14:51.191880 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 08:14:53.553222 31856 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 08:14:53.553247 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:14:56.503535 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:14:58.164508 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 08:14:58.164556 31856 solver.cpp:397] Test net output #1: loss = 5.28703 (* 1 = 5.28703 loss) +I0408 08:15:00.169193 31856 solver.cpp:218] Iteration 4188 (0.855827 iter/s, 14.0215s/12 iters), loss = 5.26887 +I0408 08:15:00.169234 31856 solver.cpp:237] Train net output #0: loss = 5.26887 (* 1 = 5.26887 loss) +I0408 08:15:00.169245 31856 sgd_solver.cpp:105] Iteration 4188, lr = 0.00132207 +I0408 08:15:05.613548 31856 solver.cpp:218] Iteration 4200 (2.2042 iter/s, 5.44415s/12 iters), loss = 5.28391 +I0408 08:15:05.613585 31856 solver.cpp:237] Train net output #0: loss = 5.28391 (* 1 = 5.28391 loss) +I0408 08:15:05.613593 31856 sgd_solver.cpp:105] Iteration 4200, lr = 0.00130578 +I0408 08:15:10.869695 31856 solver.cpp:218] Iteration 4212 (2.28313 iter/s, 5.25595s/12 iters), loss = 5.27055 +I0408 08:15:10.869743 31856 solver.cpp:237] Train net output #0: loss = 5.27055 (* 1 = 5.27055 loss) +I0408 08:15:10.869755 31856 sgd_solver.cpp:105] Iteration 4212, lr = 0.00128969 +I0408 08:15:15.993841 31856 solver.cpp:218] Iteration 4224 (2.34195 iter/s, 5.12395s/12 iters), loss = 5.26237 +I0408 08:15:15.993878 31856 solver.cpp:237] Train net output #0: loss = 5.26237 (* 1 = 5.26237 loss) +I0408 08:15:15.993887 31856 sgd_solver.cpp:105] Iteration 4224, lr = 0.00127381 +I0408 08:15:20.964406 31856 solver.cpp:218] Iteration 4236 (2.4143 iter/s, 4.97038s/12 iters), loss = 5.26641 +I0408 08:15:20.964450 31856 solver.cpp:237] Train net output #0: loss = 5.26641 (* 1 = 5.26641 loss) +I0408 08:15:20.964463 31856 sgd_solver.cpp:105] Iteration 4236, lr = 0.00125811 +I0408 08:15:25.737701 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:15:25.963163 31856 solver.cpp:218] Iteration 4248 (2.40069 iter/s, 4.99857s/12 iters), loss = 5.24341 +I0408 08:15:25.963210 31856 solver.cpp:237] Train net output #0: loss = 5.24341 (* 1 = 5.24341 loss) +I0408 08:15:25.963222 31856 sgd_solver.cpp:105] Iteration 4248, lr = 0.00124262 +I0408 08:15:31.101481 31856 solver.cpp:218] Iteration 4260 (2.33548 iter/s, 5.13812s/12 iters), loss = 5.26711 +I0408 08:15:31.101619 31856 solver.cpp:237] Train net output #0: loss = 5.26711 (* 1 = 5.26711 loss) +I0408 08:15:31.101630 31856 sgd_solver.cpp:105] Iteration 4260, lr = 0.00122731 +I0408 08:15:36.180191 31856 solver.cpp:218] Iteration 4272 (2.36294 iter/s, 5.07842s/12 iters), loss = 5.29105 +I0408 08:15:36.180229 31856 solver.cpp:237] Train net output #0: loss = 5.29105 (* 1 = 5.29105 loss) +I0408 08:15:36.180239 31856 sgd_solver.cpp:105] Iteration 4272, lr = 0.00121219 +I0408 08:15:40.684162 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 08:15:43.676412 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 08:15:45.978169 31856 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 08:15:45.978189 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:15:48.628232 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:15:50.334605 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:15:50.334653 31856 solver.cpp:397] Test net output #1: loss = 5.28715 (* 1 = 5.28715 loss) +I0408 08:15:50.424913 31856 solver.cpp:218] Iteration 4284 (0.842444 iter/s, 14.2443s/12 iters), loss = 5.27596 +I0408 08:15:50.424954 31856 solver.cpp:237] Train net output #0: loss = 5.27596 (* 1 = 5.27596 loss) +I0408 08:15:50.424965 31856 sgd_solver.cpp:105] Iteration 4284, lr = 0.00119726 +I0408 08:15:54.918377 31856 solver.cpp:218] Iteration 4296 (2.67065 iter/s, 4.49329s/12 iters), loss = 5.27531 +I0408 08:15:54.918419 31856 solver.cpp:237] Train net output #0: loss = 5.27531 (* 1 = 5.27531 loss) +I0408 08:15:54.918429 31856 sgd_solver.cpp:105] Iteration 4296, lr = 0.00118251 +I0408 08:15:59.899575 31856 solver.cpp:218] Iteration 4308 (2.40915 iter/s, 4.981s/12 iters), loss = 5.26137 +I0408 08:15:59.899621 31856 solver.cpp:237] Train net output #0: loss = 5.26137 (* 1 = 5.26137 loss) +I0408 08:15:59.899633 31856 sgd_solver.cpp:105] Iteration 4308, lr = 0.00116794 +I0408 08:16:04.923708 31856 solver.cpp:218] Iteration 4320 (2.38856 iter/s, 5.02394s/12 iters), loss = 5.24646 +I0408 08:16:04.923825 31856 solver.cpp:237] Train net output #0: loss = 5.24646 (* 1 = 5.24646 loss) +I0408 08:16:04.923837 31856 sgd_solver.cpp:105] Iteration 4320, lr = 0.00115355 +I0408 08:16:09.904603 31856 solver.cpp:218] Iteration 4332 (2.40933 iter/s, 4.98063s/12 iters), loss = 5.27581 +I0408 08:16:09.904646 31856 solver.cpp:237] Train net output #0: loss = 5.27581 (* 1 = 5.27581 loss) +I0408 08:16:09.904659 31856 sgd_solver.cpp:105] Iteration 4332, lr = 0.00113934 +I0408 08:16:14.914938 31856 solver.cpp:218] Iteration 4344 (2.39514 iter/s, 5.01014s/12 iters), loss = 5.27909 +I0408 08:16:14.914984 31856 solver.cpp:237] Train net output #0: loss = 5.27909 (* 1 = 5.27909 loss) +I0408 08:16:14.914996 31856 sgd_solver.cpp:105] Iteration 4344, lr = 0.00112531 +I0408 08:16:16.828635 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:16:19.956326 31856 solver.cpp:218] Iteration 4356 (2.38039 iter/s, 5.04119s/12 iters), loss = 5.28846 +I0408 08:16:19.956373 31856 solver.cpp:237] Train net output #0: loss = 5.28846 (* 1 = 5.28846 loss) +I0408 08:16:19.956385 31856 sgd_solver.cpp:105] Iteration 4356, lr = 0.00111144 +I0408 08:16:24.997064 31856 solver.cpp:218] Iteration 4368 (2.3807 iter/s, 5.04054s/12 iters), loss = 5.27646 +I0408 08:16:24.997110 31856 solver.cpp:237] Train net output #0: loss = 5.27646 (* 1 = 5.27646 loss) +I0408 08:16:24.997123 31856 sgd_solver.cpp:105] Iteration 4368, lr = 0.00109775 +I0408 08:16:29.895555 31856 solver.cpp:218] Iteration 4380 (2.44983 iter/s, 4.8983s/12 iters), loss = 5.2595 +I0408 08:16:29.895601 31856 solver.cpp:237] Train net output #0: loss = 5.2595 (* 1 = 5.2595 loss) +I0408 08:16:29.895612 31856 sgd_solver.cpp:105] Iteration 4380, lr = 0.00108423 +I0408 08:16:31.925308 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 08:16:34.959112 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 08:16:37.294392 31856 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 08:16:37.294417 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:16:40.051759 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:16:41.829286 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:16:41.829334 31856 solver.cpp:397] Test net output #1: loss = 5.2871 (* 1 = 5.2871 loss) +I0408 08:16:43.670310 31856 solver.cpp:218] Iteration 4392 (0.871186 iter/s, 13.7743s/12 iters), loss = 5.26739 +I0408 08:16:43.670359 31856 solver.cpp:237] Train net output #0: loss = 5.26739 (* 1 = 5.26739 loss) +I0408 08:16:43.670370 31856 sgd_solver.cpp:105] Iteration 4392, lr = 0.00107087 +I0408 08:16:49.009461 31856 solver.cpp:218] Iteration 4404 (2.24763 iter/s, 5.33895s/12 iters), loss = 5.26185 +I0408 08:16:49.009510 31856 solver.cpp:237] Train net output #0: loss = 5.26185 (* 1 = 5.26185 loss) +I0408 08:16:49.009521 31856 sgd_solver.cpp:105] Iteration 4404, lr = 0.00105768 +I0408 08:16:53.893509 31856 solver.cpp:218] Iteration 4416 (2.45708 iter/s, 4.88385s/12 iters), loss = 5.26467 +I0408 08:16:53.893558 31856 solver.cpp:237] Train net output #0: loss = 5.26467 (* 1 = 5.26467 loss) +I0408 08:16:53.893568 31856 sgd_solver.cpp:105] Iteration 4416, lr = 0.00104465 +I0408 08:16:58.886545 31856 solver.cpp:218] Iteration 4428 (2.40344 iter/s, 4.99284s/12 iters), loss = 5.26716 +I0408 08:16:58.886591 31856 solver.cpp:237] Train net output #0: loss = 5.26716 (* 1 = 5.26716 loss) +I0408 08:16:58.886602 31856 sgd_solver.cpp:105] Iteration 4428, lr = 0.00103178 +I0408 08:17:04.039417 31856 solver.cpp:218] Iteration 4440 (2.32889 iter/s, 5.15267s/12 iters), loss = 5.26113 +I0408 08:17:04.039470 31856 solver.cpp:237] Train net output #0: loss = 5.26113 (* 1 = 5.26113 loss) +I0408 08:17:04.039482 31856 sgd_solver.cpp:105] Iteration 4440, lr = 0.00101907 +I0408 08:17:08.134152 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:17:09.071727 31856 solver.cpp:218] Iteration 4452 (2.38469 iter/s, 5.03211s/12 iters), loss = 5.25571 +I0408 08:17:09.071782 31856 solver.cpp:237] Train net output #0: loss = 5.25571 (* 1 = 5.25571 loss) +I0408 08:17:09.071799 31856 sgd_solver.cpp:105] Iteration 4452, lr = 0.00100652 +I0408 08:17:14.135815 31856 solver.cpp:218] Iteration 4464 (2.36972 iter/s, 5.06388s/12 iters), loss = 5.27866 +I0408 08:17:14.135860 31856 solver.cpp:237] Train net output #0: loss = 5.27866 (* 1 = 5.27866 loss) +I0408 08:17:14.135871 31856 sgd_solver.cpp:105] Iteration 4464, lr = 0.000994119 +I0408 08:17:19.115731 31856 solver.cpp:218] Iteration 4476 (2.40977 iter/s, 4.97972s/12 iters), loss = 5.25854 +I0408 08:17:19.115767 31856 solver.cpp:237] Train net output #0: loss = 5.25854 (* 1 = 5.25854 loss) +I0408 08:17:19.115775 31856 sgd_solver.cpp:105] Iteration 4476, lr = 0.000981873 +I0408 08:17:23.632690 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 08:17:26.633458 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 08:17:28.955699 31856 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 08:17:28.955722 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:17:31.645552 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:17:33.454525 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 08:17:33.454571 31856 solver.cpp:397] Test net output #1: loss = 5.28696 (* 1 = 5.28696 loss) +I0408 08:17:33.544689 31856 solver.cpp:218] Iteration 4488 (0.831687 iter/s, 14.4285s/12 iters), loss = 5.30947 +I0408 08:17:33.544737 31856 solver.cpp:237] Train net output #0: loss = 5.30947 (* 1 = 5.30947 loss) +I0408 08:17:33.544749 31856 sgd_solver.cpp:105] Iteration 4488, lr = 0.000969778 +I0408 08:17:37.929811 31856 solver.cpp:218] Iteration 4500 (2.73664 iter/s, 4.38495s/12 iters), loss = 5.27019 +I0408 08:17:37.929847 31856 solver.cpp:237] Train net output #0: loss = 5.27019 (* 1 = 5.27019 loss) +I0408 08:17:37.929855 31856 sgd_solver.cpp:105] Iteration 4500, lr = 0.000957831 +I0408 08:17:42.915627 31856 solver.cpp:218] Iteration 4512 (2.40692 iter/s, 4.98563s/12 iters), loss = 5.26876 +I0408 08:17:42.915763 31856 solver.cpp:237] Train net output #0: loss = 5.26876 (* 1 = 5.26876 loss) +I0408 08:17:42.915777 31856 sgd_solver.cpp:105] Iteration 4512, lr = 0.000946032 +I0408 08:17:47.975008 31856 solver.cpp:218] Iteration 4524 (2.37196 iter/s, 5.0591s/12 iters), loss = 5.27407 +I0408 08:17:47.975049 31856 solver.cpp:237] Train net output #0: loss = 5.27407 (* 1 = 5.27407 loss) +I0408 08:17:47.975059 31856 sgd_solver.cpp:105] Iteration 4524, lr = 0.000934378 +I0408 08:17:52.990605 31856 solver.cpp:218] Iteration 4536 (2.39263 iter/s, 5.01541s/12 iters), loss = 5.26724 +I0408 08:17:52.990643 31856 solver.cpp:237] Train net output #0: loss = 5.26724 (* 1 = 5.26724 loss) +I0408 08:17:52.990651 31856 sgd_solver.cpp:105] Iteration 4536, lr = 0.000922867 +I0408 08:17:58.067797 31856 solver.cpp:218] Iteration 4548 (2.3636 iter/s, 5.077s/12 iters), loss = 5.26443 +I0408 08:17:58.067849 31856 solver.cpp:237] Train net output #0: loss = 5.26443 (* 1 = 5.26443 loss) +I0408 08:17:58.067865 31856 sgd_solver.cpp:105] Iteration 4548, lr = 0.000911499 +I0408 08:17:59.335331 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:18:03.126446 31856 solver.cpp:218] Iteration 4560 (2.37227 iter/s, 5.05845s/12 iters), loss = 5.27379 +I0408 08:18:03.126487 31856 solver.cpp:237] Train net output #0: loss = 5.27379 (* 1 = 5.27379 loss) +I0408 08:18:03.126497 31856 sgd_solver.cpp:105] Iteration 4560, lr = 0.00090027 +I0408 08:18:08.027798 31856 solver.cpp:218] Iteration 4572 (2.4484 iter/s, 4.90116s/12 iters), loss = 5.26223 +I0408 08:18:08.027843 31856 solver.cpp:237] Train net output #0: loss = 5.26223 (* 1 = 5.26223 loss) +I0408 08:18:08.027853 31856 sgd_solver.cpp:105] Iteration 4572, lr = 0.00088918 +I0408 08:18:13.028721 31856 solver.cpp:218] Iteration 4584 (2.39965 iter/s, 5.00073s/12 iters), loss = 5.27472 +I0408 08:18:13.028807 31856 solver.cpp:237] Train net output #0: loss = 5.27472 (* 1 = 5.27472 loss) +I0408 08:18:13.028818 31856 sgd_solver.cpp:105] Iteration 4584, lr = 0.000878226 +I0408 08:18:15.069969 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 08:18:18.057869 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 08:18:20.379843 31856 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 08:18:20.379868 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:18:23.039176 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:18:24.892537 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:18:24.892585 31856 solver.cpp:397] Test net output #1: loss = 5.28692 (* 1 = 5.28692 loss) +I0408 08:18:26.893581 31856 solver.cpp:218] Iteration 4596 (0.865527 iter/s, 13.8644s/12 iters), loss = 5.27181 +I0408 08:18:26.893630 31856 solver.cpp:237] Train net output #0: loss = 5.27181 (* 1 = 5.27181 loss) +I0408 08:18:26.893641 31856 sgd_solver.cpp:105] Iteration 4596, lr = 0.000867407 +I0408 08:18:32.213546 31856 solver.cpp:218] Iteration 4608 (2.25574 iter/s, 5.31976s/12 iters), loss = 5.27292 +I0408 08:18:32.213591 31856 solver.cpp:237] Train net output #0: loss = 5.27292 (* 1 = 5.27292 loss) +I0408 08:18:32.213603 31856 sgd_solver.cpp:105] Iteration 4608, lr = 0.000856722 +I0408 08:18:37.184370 31856 solver.cpp:218] Iteration 4620 (2.41418 iter/s, 4.97063s/12 iters), loss = 5.26217 +I0408 08:18:37.184417 31856 solver.cpp:237] Train net output #0: loss = 5.26217 (* 1 = 5.26217 loss) +I0408 08:18:37.184429 31856 sgd_solver.cpp:105] Iteration 4620, lr = 0.000846168 +I0408 08:18:42.234959 31856 solver.cpp:218] Iteration 4632 (2.37605 iter/s, 5.05039s/12 iters), loss = 5.29309 +I0408 08:18:42.235006 31856 solver.cpp:237] Train net output #0: loss = 5.29309 (* 1 = 5.29309 loss) +I0408 08:18:42.235018 31856 sgd_solver.cpp:105] Iteration 4632, lr = 0.000835744 +I0408 08:18:47.222837 31856 solver.cpp:218] Iteration 4644 (2.40593 iter/s, 4.98768s/12 iters), loss = 5.26663 +I0408 08:18:47.222970 31856 solver.cpp:237] Train net output #0: loss = 5.26663 (* 1 = 5.26663 loss) +I0408 08:18:47.222980 31856 sgd_solver.cpp:105] Iteration 4644, lr = 0.000825449 +I0408 08:18:50.595933 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:18:52.238929 31856 solver.cpp:218] Iteration 4656 (2.39244 iter/s, 5.01581s/12 iters), loss = 5.27936 +I0408 08:18:52.238976 31856 solver.cpp:237] Train net output #0: loss = 5.27936 (* 1 = 5.27936 loss) +I0408 08:18:52.238988 31856 sgd_solver.cpp:105] Iteration 4656, lr = 0.00081528 +I0408 08:18:57.387390 31856 solver.cpp:218] Iteration 4668 (2.33088 iter/s, 5.14827s/12 iters), loss = 5.2645 +I0408 08:18:57.387432 31856 solver.cpp:237] Train net output #0: loss = 5.2645 (* 1 = 5.2645 loss) +I0408 08:18:57.387441 31856 sgd_solver.cpp:105] Iteration 4668, lr = 0.000805237 +I0408 08:19:02.730449 31856 solver.cpp:218] Iteration 4680 (2.24599 iter/s, 5.34286s/12 iters), loss = 5.27471 +I0408 08:19:02.730499 31856 solver.cpp:237] Train net output #0: loss = 5.27471 (* 1 = 5.27471 loss) +I0408 08:19:02.730510 31856 sgd_solver.cpp:105] Iteration 4680, lr = 0.000795317 +I0408 08:19:07.204169 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 08:19:10.248431 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 08:19:12.580566 31856 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 08:19:12.580592 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:19:15.165493 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:19:17.062335 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:19:17.062383 31856 solver.cpp:397] Test net output #1: loss = 5.28726 (* 1 = 5.28726 loss) +I0408 08:19:17.152213 31856 solver.cpp:218] Iteration 4692 (0.832102 iter/s, 14.4213s/12 iters), loss = 5.26888 +I0408 08:19:17.152267 31856 solver.cpp:237] Train net output #0: loss = 5.26888 (* 1 = 5.26888 loss) +I0408 08:19:17.152278 31856 sgd_solver.cpp:105] Iteration 4692, lr = 0.00078552 +I0408 08:19:21.244905 31856 solver.cpp:218] Iteration 4704 (2.93218 iter/s, 4.09252s/12 iters), loss = 5.26472 +I0408 08:19:21.245028 31856 solver.cpp:237] Train net output #0: loss = 5.26472 (* 1 = 5.26472 loss) +I0408 08:19:21.245043 31856 sgd_solver.cpp:105] Iteration 4704, lr = 0.000775843 +I0408 08:19:26.265419 31856 solver.cpp:218] Iteration 4716 (2.39032 iter/s, 5.02024s/12 iters), loss = 5.27974 +I0408 08:19:26.265465 31856 solver.cpp:237] Train net output #0: loss = 5.27974 (* 1 = 5.27974 loss) +I0408 08:19:26.265476 31856 sgd_solver.cpp:105] Iteration 4716, lr = 0.000766286 +I0408 08:19:31.265692 31856 solver.cpp:218] Iteration 4728 (2.39996 iter/s, 5.00007s/12 iters), loss = 5.26192 +I0408 08:19:31.265741 31856 solver.cpp:237] Train net output #0: loss = 5.26192 (* 1 = 5.26192 loss) +I0408 08:19:31.265753 31856 sgd_solver.cpp:105] Iteration 4728, lr = 0.000756846 +I0408 08:19:36.253203 31856 solver.cpp:218] Iteration 4740 (2.4061 iter/s, 4.98731s/12 iters), loss = 5.2759 +I0408 08:19:36.253249 31856 solver.cpp:237] Train net output #0: loss = 5.2759 (* 1 = 5.2759 loss) +I0408 08:19:36.253262 31856 sgd_solver.cpp:105] Iteration 4740, lr = 0.000747523 +I0408 08:19:41.214516 31856 solver.cpp:218] Iteration 4752 (2.41881 iter/s, 4.96112s/12 iters), loss = 5.28081 +I0408 08:19:41.214562 31856 solver.cpp:237] Train net output #0: loss = 5.28081 (* 1 = 5.28081 loss) +I0408 08:19:41.214573 31856 sgd_solver.cpp:105] Iteration 4752, lr = 0.000738314 +I0408 08:19:41.762053 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:19:46.299183 31856 solver.cpp:218] Iteration 4764 (2.36013 iter/s, 5.08447s/12 iters), loss = 5.27837 +I0408 08:19:46.299232 31856 solver.cpp:237] Train net output #0: loss = 5.27837 (* 1 = 5.27837 loss) +I0408 08:19:46.299243 31856 sgd_solver.cpp:105] Iteration 4764, lr = 0.000729219 +I0408 08:19:51.338255 31856 solver.cpp:218] Iteration 4776 (2.38148 iter/s, 5.03888s/12 iters), loss = 5.2649 +I0408 08:19:51.338855 31856 solver.cpp:237] Train net output #0: loss = 5.2649 (* 1 = 5.2649 loss) +I0408 08:19:51.338867 31856 sgd_solver.cpp:105] Iteration 4776, lr = 0.000720236 +I0408 08:19:56.395038 31856 solver.cpp:218] Iteration 4788 (2.3734 iter/s, 5.05604s/12 iters), loss = 5.2927 +I0408 08:19:56.395082 31856 solver.cpp:237] Train net output #0: loss = 5.2927 (* 1 = 5.2927 loss) +I0408 08:19:56.395093 31856 sgd_solver.cpp:105] Iteration 4788, lr = 0.000711363 +I0408 08:19:58.422904 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 08:20:01.631139 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 08:20:04.013340 31856 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 08:20:04.013367 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:20:06.651443 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:20:08.552278 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 08:20:08.552325 31856 solver.cpp:397] Test net output #1: loss = 5.28654 (* 1 = 5.28654 loss) +I0408 08:20:10.536404 31856 solver.cpp:218] Iteration 4800 (0.848601 iter/s, 14.1409s/12 iters), loss = 5.27294 +I0408 08:20:10.536451 31856 solver.cpp:237] Train net output #0: loss = 5.27294 (* 1 = 5.27294 loss) +I0408 08:20:10.536463 31856 sgd_solver.cpp:105] Iteration 4800, lr = 0.0007026 +I0408 08:20:15.549914 31856 solver.cpp:218] Iteration 4812 (2.39363 iter/s, 5.01332s/12 iters), loss = 5.26398 +I0408 08:20:15.549968 31856 solver.cpp:237] Train net output #0: loss = 5.26398 (* 1 = 5.26398 loss) +I0408 08:20:15.549979 31856 sgd_solver.cpp:105] Iteration 4812, lr = 0.000693945 +I0408 08:20:20.558399 31856 solver.cpp:218] Iteration 4824 (2.39603 iter/s, 5.00829s/12 iters), loss = 5.29131 +I0408 08:20:20.558445 31856 solver.cpp:237] Train net output #0: loss = 5.29131 (* 1 = 5.29131 loss) +I0408 08:20:20.558457 31856 sgd_solver.cpp:105] Iteration 4824, lr = 0.000685396 +I0408 08:20:25.570704 31856 solver.cpp:218] Iteration 4836 (2.3942 iter/s, 5.01211s/12 iters), loss = 5.26538 +I0408 08:20:25.570830 31856 solver.cpp:237] Train net output #0: loss = 5.26538 (* 1 = 5.26538 loss) +I0408 08:20:25.570844 31856 sgd_solver.cpp:105] Iteration 4836, lr = 0.000676953 +I0408 08:20:27.655308 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:20:30.650008 31856 solver.cpp:218] Iteration 4848 (2.36266 iter/s, 5.07903s/12 iters), loss = 5.26721 +I0408 08:20:30.650054 31856 solver.cpp:237] Train net output #0: loss = 5.26721 (* 1 = 5.26721 loss) +I0408 08:20:30.650066 31856 sgd_solver.cpp:105] Iteration 4848, lr = 0.000668614 +I0408 08:20:33.528647 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:20:35.999159 31856 solver.cpp:218] Iteration 4860 (2.24343 iter/s, 5.34895s/12 iters), loss = 5.26852 +I0408 08:20:35.999203 31856 solver.cpp:237] Train net output #0: loss = 5.26852 (* 1 = 5.26852 loss) +I0408 08:20:35.999213 31856 sgd_solver.cpp:105] Iteration 4860, lr = 0.000660377 +I0408 08:20:41.052572 31856 solver.cpp:218] Iteration 4872 (2.37473 iter/s, 5.05322s/12 iters), loss = 5.26361 +I0408 08:20:41.052626 31856 solver.cpp:237] Train net output #0: loss = 5.26361 (* 1 = 5.26361 loss) +I0408 08:20:41.052640 31856 sgd_solver.cpp:105] Iteration 4872, lr = 0.000652242 +I0408 08:20:46.483731 31856 solver.cpp:218] Iteration 4884 (2.20956 iter/s, 5.43095s/12 iters), loss = 5.26859 +I0408 08:20:46.483774 31856 solver.cpp:237] Train net output #0: loss = 5.26859 (* 1 = 5.26859 loss) +I0408 08:20:46.483785 31856 sgd_solver.cpp:105] Iteration 4884, lr = 0.000644207 +I0408 08:20:50.973150 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 08:20:53.999819 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 08:20:56.346607 31856 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 08:20:56.346731 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:20:58.818188 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:21:00.751926 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:21:00.751967 31856 solver.cpp:397] Test net output #1: loss = 5.28741 (* 1 = 5.28741 loss) +I0408 08:21:00.842087 31856 solver.cpp:218] Iteration 4896 (0.835776 iter/s, 14.3579s/12 iters), loss = 5.26845 +I0408 08:21:00.842130 31856 solver.cpp:237] Train net output #0: loss = 5.26845 (* 1 = 5.26845 loss) +I0408 08:21:00.842140 31856 sgd_solver.cpp:105] Iteration 4896, lr = 0.000636271 +I0408 08:21:05.042646 31856 solver.cpp:218] Iteration 4908 (2.85688 iter/s, 4.20039s/12 iters), loss = 5.28929 +I0408 08:21:05.042682 31856 solver.cpp:237] Train net output #0: loss = 5.28929 (* 1 = 5.28929 loss) +I0408 08:21:05.042691 31856 sgd_solver.cpp:105] Iteration 4908, lr = 0.000628433 +I0408 08:21:10.085234 31856 solver.cpp:218] Iteration 4920 (2.37982 iter/s, 5.0424s/12 iters), loss = 5.26948 +I0408 08:21:10.085269 31856 solver.cpp:237] Train net output #0: loss = 5.26948 (* 1 = 5.26948 loss) +I0408 08:21:10.085278 31856 sgd_solver.cpp:105] Iteration 4920, lr = 0.000620692 +I0408 08:21:15.145346 31856 solver.cpp:218] Iteration 4932 (2.37158 iter/s, 5.05993s/12 iters), loss = 5.26461 +I0408 08:21:15.145390 31856 solver.cpp:237] Train net output #0: loss = 5.26461 (* 1 = 5.26461 loss) +I0408 08:21:15.145399 31856 sgd_solver.cpp:105] Iteration 4932, lr = 0.000613045 +I0408 08:21:20.111129 31856 solver.cpp:218] Iteration 4944 (2.41663 iter/s, 4.9656s/12 iters), loss = 5.26457 +I0408 08:21:20.111164 31856 solver.cpp:237] Train net output #0: loss = 5.26457 (* 1 = 5.26457 loss) +I0408 08:21:20.111171 31856 sgd_solver.cpp:105] Iteration 4944, lr = 0.000605493 +I0408 08:21:24.962771 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:21:25.159588 31856 solver.cpp:218] Iteration 4956 (2.37705 iter/s, 5.04828s/12 iters), loss = 5.2496 +I0408 08:21:25.159621 31856 solver.cpp:237] Train net output #0: loss = 5.2496 (* 1 = 5.2496 loss) +I0408 08:21:25.159627 31856 sgd_solver.cpp:105] Iteration 4956, lr = 0.000598034 +I0408 08:21:30.202685 31856 solver.cpp:218] Iteration 4968 (2.37958 iter/s, 5.04292s/12 iters), loss = 5.26272 +I0408 08:21:30.202791 31856 solver.cpp:237] Train net output #0: loss = 5.26272 (* 1 = 5.26272 loss) +I0408 08:21:30.202801 31856 sgd_solver.cpp:105] Iteration 4968, lr = 0.000590667 +I0408 08:21:35.160974 31856 solver.cpp:218] Iteration 4980 (2.42031 iter/s, 4.95804s/12 iters), loss = 5.29241 +I0408 08:21:35.161007 31856 solver.cpp:237] Train net output #0: loss = 5.29241 (* 1 = 5.29241 loss) +I0408 08:21:35.161015 31856 sgd_solver.cpp:105] Iteration 4980, lr = 0.000583391 +I0408 08:21:40.153481 31856 solver.cpp:218] Iteration 4992 (2.40369 iter/s, 4.99232s/12 iters), loss = 5.28425 +I0408 08:21:40.153532 31856 solver.cpp:237] Train net output #0: loss = 5.28425 (* 1 = 5.28425 loss) +I0408 08:21:40.153543 31856 sgd_solver.cpp:105] Iteration 4992, lr = 0.000576204 +I0408 08:21:42.222117 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 08:21:48.279425 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 08:21:50.598757 31856 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 08:21:50.598781 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:21:53.087986 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:21:55.059887 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:21:55.059937 31856 solver.cpp:397] Test net output #1: loss = 5.28721 (* 1 = 5.28721 loss) +I0408 08:21:56.967106 31856 solver.cpp:218] Iteration 5004 (0.713729 iter/s, 16.8131s/12 iters), loss = 5.27927 +I0408 08:21:56.967154 31856 solver.cpp:237] Train net output #0: loss = 5.27927 (* 1 = 5.27927 loss) +I0408 08:21:56.967164 31856 sgd_solver.cpp:105] Iteration 5004, lr = 0.000569106 +I0408 08:22:01.956389 31856 solver.cpp:218] Iteration 5016 (2.40525 iter/s, 4.98909s/12 iters), loss = 5.26479 +I0408 08:22:01.956861 31856 solver.cpp:237] Train net output #0: loss = 5.26479 (* 1 = 5.26479 loss) +I0408 08:22:01.956876 31856 sgd_solver.cpp:105] Iteration 5016, lr = 0.000562095 +I0408 08:22:07.016110 31856 solver.cpp:218] Iteration 5028 (2.37196 iter/s, 5.0591s/12 iters), loss = 5.24728 +I0408 08:22:07.016153 31856 solver.cpp:237] Train net output #0: loss = 5.24728 (* 1 = 5.24728 loss) +I0408 08:22:07.016165 31856 sgd_solver.cpp:105] Iteration 5028, lr = 0.000555171 +I0408 08:22:11.976807 31856 solver.cpp:218] Iteration 5040 (2.41911 iter/s, 4.96051s/12 iters), loss = 5.28556 +I0408 08:22:11.976852 31856 solver.cpp:237] Train net output #0: loss = 5.28556 (* 1 = 5.28556 loss) +I0408 08:22:11.976862 31856 sgd_solver.cpp:105] Iteration 5040, lr = 0.000548332 +I0408 08:22:16.961540 31856 solver.cpp:218] Iteration 5052 (2.40745 iter/s, 4.98454s/12 iters), loss = 5.27038 +I0408 08:22:16.961588 31856 solver.cpp:237] Train net output #0: loss = 5.27038 (* 1 = 5.27038 loss) +I0408 08:22:16.961601 31856 sgd_solver.cpp:105] Iteration 5052, lr = 0.000541577 +I0408 08:22:18.892551 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:22:21.900645 31856 solver.cpp:218] Iteration 5064 (2.42969 iter/s, 4.93891s/12 iters), loss = 5.2884 +I0408 08:22:21.900701 31856 solver.cpp:237] Train net output #0: loss = 5.2884 (* 1 = 5.2884 loss) +I0408 08:22:21.900712 31856 sgd_solver.cpp:105] Iteration 5064, lr = 0.000534906 +I0408 08:22:26.884719 31856 solver.cpp:218] Iteration 5076 (2.40777 iter/s, 4.98387s/12 iters), loss = 5.27301 +I0408 08:22:26.884768 31856 solver.cpp:237] Train net output #0: loss = 5.27301 (* 1 = 5.27301 loss) +I0408 08:22:26.884779 31856 sgd_solver.cpp:105] Iteration 5076, lr = 0.000528316 +I0408 08:22:31.832551 31856 solver.cpp:218] Iteration 5088 (2.4254 iter/s, 4.94764s/12 iters), loss = 5.26227 +I0408 08:22:31.832594 31856 solver.cpp:237] Train net output #0: loss = 5.26227 (* 1 = 5.26227 loss) +I0408 08:22:31.832605 31856 sgd_solver.cpp:105] Iteration 5088, lr = 0.000521808 +I0408 08:22:36.330077 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 08:22:43.862828 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 08:22:46.489369 31856 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 08:22:46.489395 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:22:48.905293 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:22:50.922255 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:22:50.922292 31856 solver.cpp:397] Test net output #1: loss = 5.28689 (* 1 = 5.28689 loss) +I0408 08:22:51.013396 31856 solver.cpp:218] Iteration 5100 (0.625643 iter/s, 19.1803s/12 iters), loss = 5.26598 +I0408 08:22:51.013432 31856 solver.cpp:237] Train net output #0: loss = 5.26598 (* 1 = 5.26598 loss) +I0408 08:22:51.013440 31856 sgd_solver.cpp:105] Iteration 5100, lr = 0.00051538 +I0408 08:22:55.224987 31856 solver.cpp:218] Iteration 5112 (2.84939 iter/s, 4.21143s/12 iters), loss = 5.26247 +I0408 08:22:55.225023 31856 solver.cpp:237] Train net output #0: loss = 5.26247 (* 1 = 5.26247 loss) +I0408 08:22:55.225030 31856 sgd_solver.cpp:105] Iteration 5112, lr = 0.000509031 +I0408 08:23:00.128245 31856 solver.cpp:218] Iteration 5124 (2.44744 iter/s, 4.90308s/12 iters), loss = 5.27297 +I0408 08:23:00.128283 31856 solver.cpp:237] Train net output #0: loss = 5.27297 (* 1 = 5.27297 loss) +I0408 08:23:00.128290 31856 sgd_solver.cpp:105] Iteration 5124, lr = 0.00050276 +I0408 08:23:05.158582 31856 solver.cpp:218] Iteration 5136 (2.38562 iter/s, 5.03015s/12 iters), loss = 5.26645 +I0408 08:23:05.158630 31856 solver.cpp:237] Train net output #0: loss = 5.26645 (* 1 = 5.26645 loss) +I0408 08:23:05.158641 31856 sgd_solver.cpp:105] Iteration 5136, lr = 0.000496567 +I0408 08:23:10.159900 31856 solver.cpp:218] Iteration 5148 (2.39946 iter/s, 5.00112s/12 iters), loss = 5.26092 +I0408 08:23:10.160056 31856 solver.cpp:237] Train net output #0: loss = 5.26092 (* 1 = 5.26092 loss) +I0408 08:23:10.160071 31856 sgd_solver.cpp:105] Iteration 5148, lr = 0.00049045 +I0408 08:23:14.286023 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:23:15.233453 31856 solver.cpp:218] Iteration 5160 (2.36535 iter/s, 5.07325s/12 iters), loss = 5.25554 +I0408 08:23:15.233492 31856 solver.cpp:237] Train net output #0: loss = 5.25554 (* 1 = 5.25554 loss) +I0408 08:23:15.233501 31856 sgd_solver.cpp:105] Iteration 5160, lr = 0.000484408 +I0408 08:23:20.201985 31856 solver.cpp:218] Iteration 5172 (2.41529 iter/s, 4.96834s/12 iters), loss = 5.27472 +I0408 08:23:20.202039 31856 solver.cpp:237] Train net output #0: loss = 5.27472 (* 1 = 5.27472 loss) +I0408 08:23:20.202051 31856 sgd_solver.cpp:105] Iteration 5172, lr = 0.000478441 +I0408 08:23:25.231050 31856 solver.cpp:218] Iteration 5184 (2.38622 iter/s, 5.02887s/12 iters), loss = 5.27005 +I0408 08:23:25.231089 31856 solver.cpp:237] Train net output #0: loss = 5.27005 (* 1 = 5.27005 loss) +I0408 08:23:25.231098 31856 sgd_solver.cpp:105] Iteration 5184, lr = 0.000472547 +I0408 08:23:30.208915 31856 solver.cpp:218] Iteration 5196 (2.41076 iter/s, 4.97767s/12 iters), loss = 5.3075 +I0408 08:23:30.208961 31856 solver.cpp:237] Train net output #0: loss = 5.3075 (* 1 = 5.3075 loss) +I0408 08:23:30.208972 31856 sgd_solver.cpp:105] Iteration 5196, lr = 0.000466726 +I0408 08:23:32.246233 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 08:23:38.480288 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 08:23:43.451155 31856 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 08:23:43.451210 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:23:45.863445 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:23:47.955145 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:23:47.955195 31856 solver.cpp:397] Test net output #1: loss = 5.28707 (* 1 = 5.28707 loss) +I0408 08:23:49.899955 31856 solver.cpp:218] Iteration 5208 (0.609433 iter/s, 19.6904s/12 iters), loss = 5.27162 +I0408 08:23:49.900004 31856 solver.cpp:237] Train net output #0: loss = 5.27162 (* 1 = 5.27162 loss) +I0408 08:23:49.900017 31856 sgd_solver.cpp:105] Iteration 5208, lr = 0.000460976 +I0408 08:23:54.950297 31856 solver.cpp:218] Iteration 5220 (2.37617 iter/s, 5.05014s/12 iters), loss = 5.27265 +I0408 08:23:54.950345 31856 solver.cpp:237] Train net output #0: loss = 5.27265 (* 1 = 5.27265 loss) +I0408 08:23:54.950357 31856 sgd_solver.cpp:105] Iteration 5220, lr = 0.000455297 +I0408 08:23:59.997090 31856 solver.cpp:218] Iteration 5232 (2.37784 iter/s, 5.0466s/12 iters), loss = 5.27799 +I0408 08:23:59.997129 31856 solver.cpp:237] Train net output #0: loss = 5.27799 (* 1 = 5.27799 loss) +I0408 08:23:59.997139 31856 sgd_solver.cpp:105] Iteration 5232, lr = 0.000449689 +I0408 08:24:05.012473 31856 solver.cpp:218] Iteration 5244 (2.39273 iter/s, 5.0152s/12 iters), loss = 5.27132 +I0408 08:24:05.012518 31856 solver.cpp:237] Train net output #0: loss = 5.27132 (* 1 = 5.27132 loss) +I0408 08:24:05.012529 31856 sgd_solver.cpp:105] Iteration 5244, lr = 0.000444149 +I0408 08:24:10.029275 31856 solver.cpp:218] Iteration 5256 (2.39206 iter/s, 5.01661s/12 iters), loss = 5.25962 +I0408 08:24:10.029325 31856 solver.cpp:237] Train net output #0: loss = 5.25962 (* 1 = 5.25962 loss) +I0408 08:24:10.029337 31856 sgd_solver.cpp:105] Iteration 5256, lr = 0.000438678 +I0408 08:24:11.346323 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:24:15.062913 31856 solver.cpp:218] Iteration 5268 (2.38406 iter/s, 5.03344s/12 iters), loss = 5.27651 +I0408 08:24:15.063033 31856 solver.cpp:237] Train net output #0: loss = 5.27651 (* 1 = 5.27651 loss) +I0408 08:24:15.063045 31856 sgd_solver.cpp:105] Iteration 5268, lr = 0.000433274 +I0408 08:24:20.099422 31856 solver.cpp:218] Iteration 5280 (2.38273 iter/s, 5.03624s/12 iters), loss = 5.26632 +I0408 08:24:20.099469 31856 solver.cpp:237] Train net output #0: loss = 5.26632 (* 1 = 5.26632 loss) +I0408 08:24:20.099480 31856 sgd_solver.cpp:105] Iteration 5280, lr = 0.000427936 +I0408 08:24:25.141034 31856 solver.cpp:218] Iteration 5292 (2.38028 iter/s, 5.04142s/12 iters), loss = 5.27894 +I0408 08:24:25.141075 31856 solver.cpp:237] Train net output #0: loss = 5.27894 (* 1 = 5.27894 loss) +I0408 08:24:25.141085 31856 sgd_solver.cpp:105] Iteration 5292, lr = 0.000422664 +I0408 08:24:29.636158 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 08:24:34.206511 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 08:24:37.674746 31856 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 08:24:37.674773 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:24:40.038568 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:24:42.162220 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:24:42.162267 31856 solver.cpp:397] Test net output #1: loss = 5.28683 (* 1 = 5.28683 loss) +I0408 08:24:42.252178 31856 solver.cpp:218] Iteration 5304 (0.701319 iter/s, 17.1106s/12 iters), loss = 5.27125 +I0408 08:24:42.252228 31856 solver.cpp:237] Train net output #0: loss = 5.27125 (* 1 = 5.27125 loss) +I0408 08:24:42.252238 31856 sgd_solver.cpp:105] Iteration 5304, lr = 0.000417458 +I0408 08:24:46.818768 31856 solver.cpp:218] Iteration 5316 (2.62789 iter/s, 4.5664s/12 iters), loss = 5.27025 +I0408 08:24:46.818874 31856 solver.cpp:237] Train net output #0: loss = 5.27025 (* 1 = 5.27025 loss) +I0408 08:24:46.818886 31856 sgd_solver.cpp:105] Iteration 5316, lr = 0.000412315 +I0408 08:24:52.247807 31856 solver.cpp:218] Iteration 5328 (2.21044 iter/s, 5.42877s/12 iters), loss = 5.25715 +I0408 08:24:52.247856 31856 solver.cpp:237] Train net output #0: loss = 5.25715 (* 1 = 5.25715 loss) +I0408 08:24:52.247869 31856 sgd_solver.cpp:105] Iteration 5328, lr = 0.000407236 +I0408 08:24:57.283730 31856 solver.cpp:218] Iteration 5340 (2.38297 iter/s, 5.03572s/12 iters), loss = 5.30027 +I0408 08:24:57.283776 31856 solver.cpp:237] Train net output #0: loss = 5.30027 (* 1 = 5.30027 loss) +I0408 08:24:57.283787 31856 sgd_solver.cpp:105] Iteration 5340, lr = 0.000402219 +I0408 08:25:02.204160 31856 solver.cpp:218] Iteration 5352 (2.43891 iter/s, 4.92023s/12 iters), loss = 5.27341 +I0408 08:25:02.204205 31856 solver.cpp:237] Train net output #0: loss = 5.27341 (* 1 = 5.27341 loss) +I0408 08:25:02.204216 31856 sgd_solver.cpp:105] Iteration 5352, lr = 0.000397264 +I0408 08:25:05.619758 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:25:07.214589 31856 solver.cpp:218] Iteration 5364 (2.3951 iter/s, 5.01024s/12 iters), loss = 5.27567 +I0408 08:25:07.214635 31856 solver.cpp:237] Train net output #0: loss = 5.27567 (* 1 = 5.27567 loss) +I0408 08:25:07.214648 31856 sgd_solver.cpp:105] Iteration 5364, lr = 0.000392371 +I0408 08:25:12.235154 31856 solver.cpp:218] Iteration 5376 (2.39026 iter/s, 5.02037s/12 iters), loss = 5.26452 +I0408 08:25:12.235200 31856 solver.cpp:237] Train net output #0: loss = 5.26452 (* 1 = 5.26452 loss) +I0408 08:25:12.235213 31856 sgd_solver.cpp:105] Iteration 5376, lr = 0.000387537 +I0408 08:25:17.193181 31856 solver.cpp:218] Iteration 5388 (2.42041 iter/s, 4.95783s/12 iters), loss = 5.26585 +I0408 08:25:17.193332 31856 solver.cpp:237] Train net output #0: loss = 5.26585 (* 1 = 5.26585 loss) +I0408 08:25:17.193346 31856 sgd_solver.cpp:105] Iteration 5388, lr = 0.000382763 +I0408 08:25:22.146234 31856 solver.cpp:218] Iteration 5400 (2.42289 iter/s, 4.95276s/12 iters), loss = 5.2699 +I0408 08:25:22.146271 31856 solver.cpp:237] Train net output #0: loss = 5.2699 (* 1 = 5.2699 loss) +I0408 08:25:22.146279 31856 sgd_solver.cpp:105] Iteration 5400, lr = 0.000378048 +I0408 08:25:24.205652 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 08:25:28.586903 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 08:25:32.262493 31856 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 08:25:32.262519 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:25:34.570287 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:25:36.702948 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:25:36.702996 31856 solver.cpp:397] Test net output #1: loss = 5.28696 (* 1 = 5.28696 loss) +I0408 08:25:38.697834 31856 solver.cpp:218] Iteration 5412 (0.725028 iter/s, 16.5511s/12 iters), loss = 5.26291 +I0408 08:25:38.697880 31856 solver.cpp:237] Train net output #0: loss = 5.26291 (* 1 = 5.26291 loss) +I0408 08:25:38.697890 31856 sgd_solver.cpp:105] Iteration 5412, lr = 0.000373391 +I0408 08:25:44.014827 31856 solver.cpp:218] Iteration 5424 (2.257 iter/s, 5.31678s/12 iters), loss = 5.27876 +I0408 08:25:44.014875 31856 solver.cpp:237] Train net output #0: loss = 5.27876 (* 1 = 5.27876 loss) +I0408 08:25:44.014886 31856 sgd_solver.cpp:105] Iteration 5424, lr = 0.000368791 +I0408 08:25:49.077756 31856 solver.cpp:218] Iteration 5436 (2.37026 iter/s, 5.06273s/12 iters), loss = 5.26606 +I0408 08:25:49.079154 31856 solver.cpp:237] Train net output #0: loss = 5.26606 (* 1 = 5.26606 loss) +I0408 08:25:49.079164 31856 sgd_solver.cpp:105] Iteration 5436, lr = 0.000364248 +I0408 08:25:54.073807 31856 solver.cpp:218] Iteration 5448 (2.40264 iter/s, 4.99451s/12 iters), loss = 5.27781 +I0408 08:25:54.073844 31856 solver.cpp:237] Train net output #0: loss = 5.27781 (* 1 = 5.27781 loss) +I0408 08:25:54.073853 31856 sgd_solver.cpp:105] Iteration 5448, lr = 0.000359761 +I0408 08:25:59.092623 31856 solver.cpp:218] Iteration 5460 (2.39109 iter/s, 5.01862s/12 iters), loss = 5.27862 +I0408 08:25:59.092674 31856 solver.cpp:237] Train net output #0: loss = 5.27862 (* 1 = 5.27862 loss) +I0408 08:25:59.092684 31856 sgd_solver.cpp:105] Iteration 5460, lr = 0.000355329 +I0408 08:25:59.649374 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:26:04.106410 31856 solver.cpp:218] Iteration 5472 (2.3935 iter/s, 5.01359s/12 iters), loss = 5.27856 +I0408 08:26:04.106459 31856 solver.cpp:237] Train net output #0: loss = 5.27856 (* 1 = 5.27856 loss) +I0408 08:26:04.106472 31856 sgd_solver.cpp:105] Iteration 5472, lr = 0.000350952 +I0408 08:26:09.132288 31856 solver.cpp:218] Iteration 5484 (2.38774 iter/s, 5.02568s/12 iters), loss = 5.27356 +I0408 08:26:09.132336 31856 solver.cpp:237] Train net output #0: loss = 5.27356 (* 1 = 5.27356 loss) +I0408 08:26:09.132347 31856 sgd_solver.cpp:105] Iteration 5484, lr = 0.000346628 +I0408 08:26:14.188673 31856 solver.cpp:218] Iteration 5496 (2.37333 iter/s, 5.05618s/12 iters), loss = 5.29129 +I0408 08:26:14.188721 31856 solver.cpp:237] Train net output #0: loss = 5.29129 (* 1 = 5.29129 loss) +I0408 08:26:14.188733 31856 sgd_solver.cpp:105] Iteration 5496, lr = 0.000342358 +I0408 08:26:18.732049 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 08:26:22.996979 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 08:26:26.751452 31856 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 08:26:26.751478 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:26:29.033572 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:26:31.216464 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:26:31.216513 31856 solver.cpp:397] Test net output #1: loss = 5.28793 (* 1 = 5.28793 loss) +I0408 08:26:31.306938 31856 solver.cpp:218] Iteration 5508 (0.701027 iter/s, 17.1177s/12 iters), loss = 5.27653 +I0408 08:26:31.306980 31856 solver.cpp:237] Train net output #0: loss = 5.27653 (* 1 = 5.27653 loss) +I0408 08:26:31.306989 31856 sgd_solver.cpp:105] Iteration 5508, lr = 0.000338141 +I0408 08:26:35.745813 31856 solver.cpp:218] Iteration 5520 (2.70349 iter/s, 4.4387s/12 iters), loss = 5.273 +I0408 08:26:35.745857 31856 solver.cpp:237] Train net output #0: loss = 5.273 (* 1 = 5.273 loss) +I0408 08:26:35.745868 31856 sgd_solver.cpp:105] Iteration 5520, lr = 0.000333975 +I0408 08:26:38.135560 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:26:40.715823 31856 solver.cpp:218] Iteration 5532 (2.41458 iter/s, 4.96982s/12 iters), loss = 5.28623 +I0408 08:26:40.715870 31856 solver.cpp:237] Train net output #0: loss = 5.28623 (* 1 = 5.28623 loss) +I0408 08:26:40.715881 31856 sgd_solver.cpp:105] Iteration 5532, lr = 0.000329861 +I0408 08:26:45.736137 31856 solver.cpp:218] Iteration 5544 (2.39038 iter/s, 5.02012s/12 iters), loss = 5.25877 +I0408 08:26:45.736183 31856 solver.cpp:237] Train net output #0: loss = 5.25877 (* 1 = 5.25877 loss) +I0408 08:26:45.736196 31856 sgd_solver.cpp:105] Iteration 5544, lr = 0.000325798 +I0408 08:26:50.742660 31856 solver.cpp:218] Iteration 5556 (2.39697 iter/s, 5.00633s/12 iters), loss = 5.26951 +I0408 08:26:50.742702 31856 solver.cpp:237] Train net output #0: loss = 5.26951 (* 1 = 5.26951 loss) +I0408 08:26:50.742712 31856 sgd_solver.cpp:105] Iteration 5556, lr = 0.000321784 +I0408 08:26:53.448225 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:26:55.743741 31856 solver.cpp:218] Iteration 5568 (2.39958 iter/s, 5.00088s/12 iters), loss = 5.2774 +I0408 08:26:55.743788 31856 solver.cpp:237] Train net output #0: loss = 5.2774 (* 1 = 5.2774 loss) +I0408 08:26:55.743798 31856 sgd_solver.cpp:105] Iteration 5568, lr = 0.00031782 +I0408 08:27:00.802386 31856 solver.cpp:218] Iteration 5580 (2.37227 iter/s, 5.05845s/12 iters), loss = 5.25926 +I0408 08:27:00.802428 31856 solver.cpp:237] Train net output #0: loss = 5.25926 (* 1 = 5.25926 loss) +I0408 08:27:00.802438 31856 sgd_solver.cpp:105] Iteration 5580, lr = 0.000313905 +I0408 08:27:05.781857 31856 solver.cpp:218] Iteration 5592 (2.40999 iter/s, 4.97928s/12 iters), loss = 5.27233 +I0408 08:27:05.781903 31856 solver.cpp:237] Train net output #0: loss = 5.27233 (* 1 = 5.27233 loss) +I0408 08:27:05.781913 31856 sgd_solver.cpp:105] Iteration 5592, lr = 0.000310038 +I0408 08:27:10.752493 31856 solver.cpp:218] Iteration 5604 (2.41427 iter/s, 4.97044s/12 iters), loss = 5.26388 +I0408 08:27:10.752539 31856 solver.cpp:237] Train net output #0: loss = 5.26388 (* 1 = 5.26388 loss) +I0408 08:27:10.752550 31856 sgd_solver.cpp:105] Iteration 5604, lr = 0.000306219 +I0408 08:27:12.796082 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 08:27:19.541404 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 08:27:25.091243 31856 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 08:27:25.091429 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:27:27.350395 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:27:29.561661 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:27:29.561710 31856 solver.cpp:397] Test net output #1: loss = 5.28725 (* 1 = 5.28725 loss) +I0408 08:27:31.488431 31856 solver.cpp:218] Iteration 5616 (0.578723 iter/s, 20.7353s/12 iters), loss = 5.2934 +I0408 08:27:31.488484 31856 solver.cpp:237] Train net output #0: loss = 5.2934 (* 1 = 5.2934 loss) +I0408 08:27:31.488497 31856 sgd_solver.cpp:105] Iteration 5616, lr = 0.000302446 +I0408 08:27:36.444010 31856 solver.cpp:218] Iteration 5628 (2.42161 iter/s, 4.95537s/12 iters), loss = 5.27258 +I0408 08:27:36.444058 31856 solver.cpp:237] Train net output #0: loss = 5.27258 (* 1 = 5.27258 loss) +I0408 08:27:36.444070 31856 sgd_solver.cpp:105] Iteration 5628, lr = 0.000298721 +I0408 08:27:41.441591 31856 solver.cpp:218] Iteration 5640 (2.40126 iter/s, 4.99738s/12 iters), loss = 5.2624 +I0408 08:27:41.441637 31856 solver.cpp:237] Train net output #0: loss = 5.2624 (* 1 = 5.2624 loss) +I0408 08:27:41.441648 31856 sgd_solver.cpp:105] Iteration 5640, lr = 0.000295041 +I0408 08:27:46.460428 31856 solver.cpp:218] Iteration 5652 (2.39109 iter/s, 5.01864s/12 iters), loss = 5.26667 +I0408 08:27:46.460474 31856 solver.cpp:237] Train net output #0: loss = 5.26667 (* 1 = 5.26667 loss) +I0408 08:27:46.460486 31856 sgd_solver.cpp:105] Iteration 5652, lr = 0.000291406 +I0408 08:27:51.306908 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:27:51.476466 31856 solver.cpp:218] Iteration 5664 (2.39242 iter/s, 5.01584s/12 iters), loss = 5.25095 +I0408 08:27:51.476516 31856 solver.cpp:237] Train net output #0: loss = 5.25095 (* 1 = 5.25095 loss) +I0408 08:27:51.476526 31856 sgd_solver.cpp:105] Iteration 5664, lr = 0.000287816 +I0408 08:27:56.487118 31856 solver.cpp:218] Iteration 5676 (2.395 iter/s, 5.01045s/12 iters), loss = 5.26333 +I0408 08:27:56.487236 31856 solver.cpp:237] Train net output #0: loss = 5.26333 (* 1 = 5.26333 loss) +I0408 08:27:56.487248 31856 sgd_solver.cpp:105] Iteration 5676, lr = 0.000284271 +I0408 08:28:01.484450 31856 solver.cpp:218] Iteration 5688 (2.40141 iter/s, 4.99707s/12 iters), loss = 5.29503 +I0408 08:28:01.484499 31856 solver.cpp:237] Train net output #0: loss = 5.29503 (* 1 = 5.29503 loss) +I0408 08:28:01.484510 31856 sgd_solver.cpp:105] Iteration 5688, lr = 0.000280769 +I0408 08:28:06.395375 31856 solver.cpp:218] Iteration 5700 (2.44363 iter/s, 4.91073s/12 iters), loss = 5.28679 +I0408 08:28:06.395413 31856 solver.cpp:237] Train net output #0: loss = 5.28679 (* 1 = 5.28679 loss) +I0408 08:28:06.395422 31856 sgd_solver.cpp:105] Iteration 5700, lr = 0.00027731 +I0408 08:28:10.977236 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 08:28:15.239032 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 08:28:19.052924 31856 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 08:28:19.052955 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:28:21.275388 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:28:23.523371 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:28:23.523419 31856 solver.cpp:397] Test net output #1: loss = 5.28721 (* 1 = 5.28721 loss) +I0408 08:28:23.613318 31856 solver.cpp:218] Iteration 5712 (0.696969 iter/s, 17.2174s/12 iters), loss = 5.27875 +I0408 08:28:23.613369 31856 solver.cpp:237] Train net output #0: loss = 5.27875 (* 1 = 5.27875 loss) +I0408 08:28:23.613381 31856 sgd_solver.cpp:105] Iteration 5712, lr = 0.000273894 +I0408 08:28:27.789666 31856 solver.cpp:218] Iteration 5724 (2.87345 iter/s, 4.17617s/12 iters), loss = 5.26615 +I0408 08:28:27.789872 31856 solver.cpp:237] Train net output #0: loss = 5.26615 (* 1 = 5.26615 loss) +I0408 08:28:27.789886 31856 sgd_solver.cpp:105] Iteration 5724, lr = 0.00027052 +I0408 08:28:32.742962 31856 solver.cpp:218] Iteration 5736 (2.4228 iter/s, 4.95294s/12 iters), loss = 5.24368 +I0408 08:28:32.743013 31856 solver.cpp:237] Train net output #0: loss = 5.24368 (* 1 = 5.24368 loss) +I0408 08:28:32.743026 31856 sgd_solver.cpp:105] Iteration 5736, lr = 0.000267188 +I0408 08:28:37.684002 31856 solver.cpp:218] Iteration 5748 (2.42874 iter/s, 4.94084s/12 iters), loss = 5.27716 +I0408 08:28:37.684048 31856 solver.cpp:237] Train net output #0: loss = 5.27716 (* 1 = 5.27716 loss) +I0408 08:28:37.684059 31856 sgd_solver.cpp:105] Iteration 5748, lr = 0.000263896 +I0408 08:28:42.696979 31856 solver.cpp:218] Iteration 5760 (2.39388 iter/s, 5.01278s/12 iters), loss = 5.26596 +I0408 08:28:42.697026 31856 solver.cpp:237] Train net output #0: loss = 5.26596 (* 1 = 5.26596 loss) +I0408 08:28:42.697037 31856 sgd_solver.cpp:105] Iteration 5760, lr = 0.000260645 +I0408 08:28:44.655763 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:28:47.544885 31856 solver.cpp:218] Iteration 5772 (2.47539 iter/s, 4.84771s/12 iters), loss = 5.29126 +I0408 08:28:47.544931 31856 solver.cpp:237] Train net output #0: loss = 5.29126 (* 1 = 5.29126 loss) +I0408 08:28:47.544943 31856 sgd_solver.cpp:105] Iteration 5772, lr = 0.000257434 +I0408 08:28:52.603996 31856 solver.cpp:218] Iteration 5784 (2.37205 iter/s, 5.05891s/12 iters), loss = 5.27078 +I0408 08:28:52.604045 31856 solver.cpp:237] Train net output #0: loss = 5.27078 (* 1 = 5.27078 loss) +I0408 08:28:52.604058 31856 sgd_solver.cpp:105] Iteration 5784, lr = 0.000254263 +I0408 08:28:57.569401 31856 solver.cpp:218] Iteration 5796 (2.41682 iter/s, 4.9652s/12 iters), loss = 5.26909 +I0408 08:28:57.569468 31856 solver.cpp:237] Train net output #0: loss = 5.26909 (* 1 = 5.26909 loss) +I0408 08:28:57.569484 31856 sgd_solver.cpp:105] Iteration 5796, lr = 0.000251131 +I0408 08:29:02.580991 31856 solver.cpp:218] Iteration 5808 (2.39455 iter/s, 5.01138s/12 iters), loss = 5.26432 +I0408 08:29:02.581095 31856 solver.cpp:237] Train net output #0: loss = 5.26432 (* 1 = 5.26432 loss) +I0408 08:29:02.581106 31856 sgd_solver.cpp:105] Iteration 5808, lr = 0.000248037 +I0408 08:29:04.601794 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 08:29:08.372917 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 08:29:12.077076 31856 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 08:29:12.077108 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:29:14.253326 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:29:16.545621 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:29:16.545670 31856 solver.cpp:397] Test net output #1: loss = 5.28712 (* 1 = 5.28712 loss) +I0408 08:29:18.521483 31856 solver.cpp:218] Iteration 5820 (0.752826 iter/s, 15.9399s/12 iters), loss = 5.27327 +I0408 08:29:18.521533 31856 solver.cpp:237] Train net output #0: loss = 5.27327 (* 1 = 5.27327 loss) +I0408 08:29:18.521545 31856 sgd_solver.cpp:105] Iteration 5820, lr = 0.000244982 +I0408 08:29:23.501401 31856 solver.cpp:218] Iteration 5832 (2.40977 iter/s, 4.97972s/12 iters), loss = 5.27279 +I0408 08:29:23.501448 31856 solver.cpp:237] Train net output #0: loss = 5.27279 (* 1 = 5.27279 loss) +I0408 08:29:23.501459 31856 sgd_solver.cpp:105] Iteration 5832, lr = 0.000241964 +I0408 08:29:28.444058 31856 solver.cpp:218] Iteration 5844 (2.42794 iter/s, 4.94246s/12 iters), loss = 5.26236 +I0408 08:29:28.444103 31856 solver.cpp:237] Train net output #0: loss = 5.26236 (* 1 = 5.26236 loss) +I0408 08:29:28.444113 31856 sgd_solver.cpp:105] Iteration 5844, lr = 0.000238983 +I0408 08:29:33.377364 31856 solver.cpp:218] Iteration 5856 (2.43254 iter/s, 4.93311s/12 iters), loss = 5.25979 +I0408 08:29:33.377454 31856 solver.cpp:237] Train net output #0: loss = 5.25979 (* 1 = 5.25979 loss) +I0408 08:29:33.377466 31856 sgd_solver.cpp:105] Iteration 5856, lr = 0.000236039 +I0408 08:29:37.603065 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:29:38.402926 31856 solver.cpp:218] Iteration 5868 (2.3879 iter/s, 5.02534s/12 iters), loss = 5.2529 +I0408 08:29:38.402971 31856 solver.cpp:237] Train net output #0: loss = 5.2529 (* 1 = 5.2529 loss) +I0408 08:29:38.402982 31856 sgd_solver.cpp:105] Iteration 5868, lr = 0.000233131 +I0408 08:29:43.652956 31856 solver.cpp:218] Iteration 5880 (2.28579 iter/s, 5.24983s/12 iters), loss = 5.2759 +I0408 08:29:43.653004 31856 solver.cpp:237] Train net output #0: loss = 5.2759 (* 1 = 5.2759 loss) +I0408 08:29:43.653017 31856 sgd_solver.cpp:105] Iteration 5880, lr = 0.000230259 +I0408 08:29:48.685593 31856 solver.cpp:218] Iteration 5892 (2.38453 iter/s, 5.03244s/12 iters), loss = 5.26898 +I0408 08:29:48.685638 31856 solver.cpp:237] Train net output #0: loss = 5.26898 (* 1 = 5.26898 loss) +I0408 08:29:48.685650 31856 sgd_solver.cpp:105] Iteration 5892, lr = 0.000227423 +I0408 08:29:53.604403 31856 solver.cpp:218] Iteration 5904 (2.43971 iter/s, 4.91862s/12 iters), loss = 5.30501 +I0408 08:29:53.604447 31856 solver.cpp:237] Train net output #0: loss = 5.30501 (* 1 = 5.30501 loss) +I0408 08:29:53.604458 31856 sgd_solver.cpp:105] Iteration 5904, lr = 0.000224621 +I0408 08:29:58.174218 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 08:30:01.172680 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 08:30:05.287922 31856 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 08:30:05.288044 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:30:07.416592 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:30:09.746134 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:30:09.746181 31856 solver.cpp:397] Test net output #1: loss = 5.28715 (* 1 = 5.28715 loss) +I0408 08:30:09.836124 31856 solver.cpp:218] Iteration 5916 (0.739316 iter/s, 16.2312s/12 iters), loss = 5.26645 +I0408 08:30:09.836166 31856 solver.cpp:237] Train net output #0: loss = 5.26645 (* 1 = 5.26645 loss) +I0408 08:30:09.836176 31856 sgd_solver.cpp:105] Iteration 5916, lr = 0.000221854 +I0408 08:30:14.353368 31856 solver.cpp:218] Iteration 5928 (2.65659 iter/s, 4.51706s/12 iters), loss = 5.26957 +I0408 08:30:14.353417 31856 solver.cpp:237] Train net output #0: loss = 5.26957 (* 1 = 5.26957 loss) +I0408 08:30:14.353430 31856 sgd_solver.cpp:105] Iteration 5928, lr = 0.000219121 +I0408 08:30:19.829887 31856 solver.cpp:218] Iteration 5940 (2.19126 iter/s, 5.47631s/12 iters), loss = 5.28103 +I0408 08:30:19.829936 31856 solver.cpp:237] Train net output #0: loss = 5.28103 (* 1 = 5.28103 loss) +I0408 08:30:19.829948 31856 sgd_solver.cpp:105] Iteration 5940, lr = 0.000216422 +I0408 08:30:25.262960 31856 solver.cpp:218] Iteration 5952 (2.20878 iter/s, 5.43287s/12 iters), loss = 5.27442 +I0408 08:30:25.263003 31856 solver.cpp:237] Train net output #0: loss = 5.27442 (* 1 = 5.27442 loss) +I0408 08:30:25.263015 31856 sgd_solver.cpp:105] Iteration 5952, lr = 0.000213756 +I0408 08:30:30.730512 31856 solver.cpp:218] Iteration 5964 (2.19485 iter/s, 5.46735s/12 iters), loss = 5.25822 +I0408 08:30:30.730548 31856 solver.cpp:237] Train net output #0: loss = 5.25822 (* 1 = 5.25822 loss) +I0408 08:30:30.730556 31856 sgd_solver.cpp:105] Iteration 5964, lr = 0.000211123 +I0408 08:30:32.174274 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:30:36.171356 31856 solver.cpp:218] Iteration 5976 (2.20562 iter/s, 5.44064s/12 iters), loss = 5.27623 +I0408 08:30:36.171480 31856 solver.cpp:237] Train net output #0: loss = 5.27623 (* 1 = 5.27623 loss) +I0408 08:30:36.171494 31856 sgd_solver.cpp:105] Iteration 5976, lr = 0.000208522 +I0408 08:30:41.251492 31856 solver.cpp:218] Iteration 5988 (2.36227 iter/s, 5.07986s/12 iters), loss = 5.263 +I0408 08:30:41.251539 31856 solver.cpp:237] Train net output #0: loss = 5.263 (* 1 = 5.263 loss) +I0408 08:30:41.251551 31856 sgd_solver.cpp:105] Iteration 5988, lr = 0.000205953 +I0408 08:30:46.484025 31856 solver.cpp:218] Iteration 6000 (2.29343 iter/s, 5.23233s/12 iters), loss = 5.28042 +I0408 08:30:46.484069 31856 solver.cpp:237] Train net output #0: loss = 5.28042 (* 1 = 5.28042 loss) +I0408 08:30:46.484081 31856 sgd_solver.cpp:105] Iteration 6000, lr = 0.000203416 +I0408 08:30:51.515977 31856 solver.cpp:218] Iteration 6012 (2.38485 iter/s, 5.03176s/12 iters), loss = 5.26817 +I0408 08:30:51.516012 31856 solver.cpp:237] Train net output #0: loss = 5.26817 (* 1 = 5.26817 loss) +I0408 08:30:51.516021 31856 sgd_solver.cpp:105] Iteration 6012, lr = 0.00020091 +I0408 08:30:53.484241 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 08:30:58.512954 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 08:31:02.829905 31856 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 08:31:02.829936 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:31:04.930430 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:31:07.302688 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:31:07.302848 31856 solver.cpp:397] Test net output #1: loss = 5.28716 (* 1 = 5.28716 loss) +I0408 08:31:09.287739 31856 solver.cpp:218] Iteration 6024 (0.675249 iter/s, 17.7712s/12 iters), loss = 5.26701 +I0408 08:31:09.287791 31856 solver.cpp:237] Train net output #0: loss = 5.26701 (* 1 = 5.26701 loss) +I0408 08:31:09.287802 31856 sgd_solver.cpp:105] Iteration 6024, lr = 0.000198435 +I0408 08:31:14.413326 31856 solver.cpp:218] Iteration 6036 (2.34129 iter/s, 5.12538s/12 iters), loss = 5.259 +I0408 08:31:14.413370 31856 solver.cpp:237] Train net output #0: loss = 5.259 (* 1 = 5.259 loss) +I0408 08:31:14.413381 31856 sgd_solver.cpp:105] Iteration 6036, lr = 0.000195991 +I0408 08:31:19.377472 31856 solver.cpp:218] Iteration 6048 (2.41743 iter/s, 4.96395s/12 iters), loss = 5.30244 +I0408 08:31:19.377521 31856 solver.cpp:237] Train net output #0: loss = 5.30244 (* 1 = 5.30244 loss) +I0408 08:31:19.377532 31856 sgd_solver.cpp:105] Iteration 6048, lr = 0.000193576 +I0408 08:31:24.393673 31856 solver.cpp:218] Iteration 6060 (2.39234 iter/s, 5.016s/12 iters), loss = 5.27673 +I0408 08:31:24.393723 31856 solver.cpp:237] Train net output #0: loss = 5.27673 (* 1 = 5.27673 loss) +I0408 08:31:24.393736 31856 sgd_solver.cpp:105] Iteration 6060, lr = 0.000191192 +I0408 08:31:27.885787 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:31:29.421008 31856 solver.cpp:218] Iteration 6072 (2.38704 iter/s, 5.02714s/12 iters), loss = 5.27317 +I0408 08:31:29.421051 31856 solver.cpp:237] Train net output #0: loss = 5.27317 (* 1 = 5.27317 loss) +I0408 08:31:29.421061 31856 sgd_solver.cpp:105] Iteration 6072, lr = 0.000188836 +I0408 08:31:34.396701 31856 solver.cpp:218] Iteration 6084 (2.41182 iter/s, 4.9755s/12 iters), loss = 5.25783 +I0408 08:31:34.396745 31856 solver.cpp:237] Train net output #0: loss = 5.25783 (* 1 = 5.25783 loss) +I0408 08:31:34.396757 31856 sgd_solver.cpp:105] Iteration 6084, lr = 0.00018651 +I0408 08:31:39.438273 31856 solver.cpp:218] Iteration 6096 (2.3803 iter/s, 5.04138s/12 iters), loss = 5.2612 +I0408 08:31:39.438393 31856 solver.cpp:237] Train net output #0: loss = 5.2612 (* 1 = 5.2612 loss) +I0408 08:31:39.438407 31856 sgd_solver.cpp:105] Iteration 6096, lr = 0.000184213 +I0408 08:31:44.468767 31856 solver.cpp:218] Iteration 6108 (2.38558 iter/s, 5.03023s/12 iters), loss = 5.27362 +I0408 08:31:44.468813 31856 solver.cpp:237] Train net output #0: loss = 5.27362 (* 1 = 5.27362 loss) +I0408 08:31:44.468825 31856 sgd_solver.cpp:105] Iteration 6108, lr = 0.000181943 +I0408 08:31:48.989610 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 08:31:54.047430 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 08:32:00.288918 31856 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 08:32:00.288952 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:32:02.328774 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:32:04.731139 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:32:04.731190 31856 solver.cpp:397] Test net output #1: loss = 5.28711 (* 1 = 5.28711 loss) +I0408 08:32:04.821106 31856 solver.cpp:218] Iteration 6120 (0.589631 iter/s, 20.3517s/12 iters), loss = 5.26495 +I0408 08:32:04.821144 31856 solver.cpp:237] Train net output #0: loss = 5.26495 (* 1 = 5.26495 loss) +I0408 08:32:04.821156 31856 sgd_solver.cpp:105] Iteration 6120, lr = 0.000179702 +I0408 08:32:09.282296 31856 solver.cpp:218] Iteration 6132 (2.68997 iter/s, 4.46102s/12 iters), loss = 5.27358 +I0408 08:32:09.282351 31856 solver.cpp:237] Train net output #0: loss = 5.27358 (* 1 = 5.27358 loss) +I0408 08:32:09.282362 31856 sgd_solver.cpp:105] Iteration 6132, lr = 0.000177488 +I0408 08:32:14.264307 31856 solver.cpp:218] Iteration 6144 (2.40876 iter/s, 4.98181s/12 iters), loss = 5.26869 +I0408 08:32:14.264421 31856 solver.cpp:237] Train net output #0: loss = 5.26869 (* 1 = 5.26869 loss) +I0408 08:32:14.264433 31856 sgd_solver.cpp:105] Iteration 6144, lr = 0.000175302 +I0408 08:32:19.510242 31856 solver.cpp:218] Iteration 6156 (2.2876 iter/s, 5.24567s/12 iters), loss = 5.27874 +I0408 08:32:19.510296 31856 solver.cpp:237] Train net output #0: loss = 5.27874 (* 1 = 5.27874 loss) +I0408 08:32:19.510308 31856 sgd_solver.cpp:105] Iteration 6156, lr = 0.000173142 +I0408 08:32:24.508692 31856 solver.cpp:218] Iteration 6168 (2.40084 iter/s, 4.99825s/12 iters), loss = 5.28867 +I0408 08:32:24.508736 31856 solver.cpp:237] Train net output #0: loss = 5.28867 (* 1 = 5.28867 loss) +I0408 08:32:24.508749 31856 sgd_solver.cpp:105] Iteration 6168, lr = 0.000171009 +I0408 08:32:25.115917 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:32:29.473476 31856 solver.cpp:218] Iteration 6180 (2.41712 iter/s, 4.96459s/12 iters), loss = 5.28204 +I0408 08:32:29.473523 31856 solver.cpp:237] Train net output #0: loss = 5.28204 (* 1 = 5.28204 loss) +I0408 08:32:29.473536 31856 sgd_solver.cpp:105] Iteration 6180, lr = 0.000168903 +I0408 08:32:34.489178 31856 solver.cpp:218] Iteration 6192 (2.39258 iter/s, 5.0155s/12 iters), loss = 5.26769 +I0408 08:32:34.489231 31856 solver.cpp:237] Train net output #0: loss = 5.26769 (* 1 = 5.26769 loss) +I0408 08:32:34.489243 31856 sgd_solver.cpp:105] Iteration 6192, lr = 0.000166822 +I0408 08:32:39.465016 31856 solver.cpp:218] Iteration 6204 (2.41175 iter/s, 4.97564s/12 iters), loss = 5.28615 +I0408 08:32:39.465063 31856 solver.cpp:237] Train net output #0: loss = 5.28615 (* 1 = 5.28615 loss) +I0408 08:32:39.465075 31856 sgd_solver.cpp:105] Iteration 6204, lr = 0.000164767 +I0408 08:32:44.499848 31856 solver.cpp:218] Iteration 6216 (2.38349 iter/s, 5.03463s/12 iters), loss = 5.27901 +I0408 08:32:44.499954 31856 solver.cpp:237] Train net output #0: loss = 5.27901 (* 1 = 5.27901 loss) +I0408 08:32:44.499967 31856 sgd_solver.cpp:105] Iteration 6216, lr = 0.000162737 +I0408 08:32:46.542634 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 08:32:51.374707 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 08:33:03.638099 31856 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 08:33:03.638125 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:33:05.651926 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:33:06.928434 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:33:08.125928 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:33:08.125969 31856 solver.cpp:397] Test net output #1: loss = 5.28692 (* 1 = 5.28692 loss) +I0408 08:33:10.051580 31856 solver.cpp:218] Iteration 6228 (0.469651 iter/s, 25.5509s/12 iters), loss = 5.27525 +I0408 08:33:10.051630 31856 solver.cpp:237] Train net output #0: loss = 5.27525 (* 1 = 5.27525 loss) +I0408 08:33:10.051641 31856 sgd_solver.cpp:105] Iteration 6228, lr = 0.000160733 +I0408 08:33:14.997277 31856 solver.cpp:218] Iteration 6240 (2.42645 iter/s, 4.9455s/12 iters), loss = 5.28251 +I0408 08:33:14.997404 31856 solver.cpp:237] Train net output #0: loss = 5.28251 (* 1 = 5.28251 loss) +I0408 08:33:14.997416 31856 sgd_solver.cpp:105] Iteration 6240, lr = 0.000158753 +I0408 08:33:20.036082 31856 solver.cpp:218] Iteration 6252 (2.38165 iter/s, 5.03853s/12 iters), loss = 5.25843 +I0408 08:33:20.036128 31856 solver.cpp:237] Train net output #0: loss = 5.25843 (* 1 = 5.25843 loss) +I0408 08:33:20.036139 31856 sgd_solver.cpp:105] Iteration 6252, lr = 0.000156797 +I0408 08:33:24.962867 31856 solver.cpp:218] Iteration 6264 (2.43576 iter/s, 4.92659s/12 iters), loss = 5.26486 +I0408 08:33:24.962913 31856 solver.cpp:237] Train net output #0: loss = 5.26486 (* 1 = 5.26486 loss) +I0408 08:33:24.962924 31856 sgd_solver.cpp:105] Iteration 6264, lr = 0.000154865 +I0408 08:33:27.722807 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:33:30.014328 31856 solver.cpp:218] Iteration 6276 (2.37564 iter/s, 5.05126s/12 iters), loss = 5.27758 +I0408 08:33:30.014374 31856 solver.cpp:237] Train net output #0: loss = 5.27758 (* 1 = 5.27758 loss) +I0408 08:33:30.014385 31856 sgd_solver.cpp:105] Iteration 6276, lr = 0.000152958 +I0408 08:33:35.022528 31856 solver.cpp:218] Iteration 6288 (2.39616 iter/s, 5.00801s/12 iters), loss = 5.2589 +I0408 08:33:35.022567 31856 solver.cpp:237] Train net output #0: loss = 5.2589 (* 1 = 5.2589 loss) +I0408 08:33:35.022578 31856 sgd_solver.cpp:105] Iteration 6288, lr = 0.000151073 +I0408 08:33:40.029140 31856 solver.cpp:218] Iteration 6300 (2.39692 iter/s, 5.00642s/12 iters), loss = 5.27028 +I0408 08:33:40.029191 31856 solver.cpp:237] Train net output #0: loss = 5.27028 (* 1 = 5.27028 loss) +I0408 08:33:40.029202 31856 sgd_solver.cpp:105] Iteration 6300, lr = 0.000149212 +I0408 08:33:45.067075 31856 solver.cpp:218] Iteration 6312 (2.38202 iter/s, 5.03773s/12 iters), loss = 5.26128 +I0408 08:33:45.067792 31856 solver.cpp:237] Train net output #0: loss = 5.26128 (* 1 = 5.26128 loss) +I0408 08:33:45.067806 31856 sgd_solver.cpp:105] Iteration 6312, lr = 0.000147374 +I0408 08:33:49.572382 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 08:34:01.033111 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 08:34:09.976727 31856 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 08:34:09.976755 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:34:11.965463 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:34:14.466908 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:34:14.466958 31856 solver.cpp:397] Test net output #1: loss = 5.28704 (* 1 = 5.28704 loss) +I0408 08:34:14.557128 31856 solver.cpp:218] Iteration 6324 (0.406938 iter/s, 29.4885s/12 iters), loss = 5.29891 +I0408 08:34:14.557178 31856 solver.cpp:237] Train net output #0: loss = 5.29891 (* 1 = 5.29891 loss) +I0408 08:34:14.557188 31856 sgd_solver.cpp:105] Iteration 6324, lr = 0.000145559 +I0408 08:34:18.919700 31856 solver.cpp:218] Iteration 6336 (2.75079 iter/s, 4.36239s/12 iters), loss = 5.26937 +I0408 08:34:18.919804 31856 solver.cpp:237] Train net output #0: loss = 5.26937 (* 1 = 5.26937 loss) +I0408 08:34:18.919817 31856 sgd_solver.cpp:105] Iteration 6336, lr = 0.000143766 +I0408 08:34:23.951431 31856 solver.cpp:218] Iteration 6348 (2.38499 iter/s, 5.03148s/12 iters), loss = 5.26166 +I0408 08:34:23.951475 31856 solver.cpp:237] Train net output #0: loss = 5.26166 (* 1 = 5.26166 loss) +I0408 08:34:23.951488 31856 sgd_solver.cpp:105] Iteration 6348, lr = 0.000141995 +I0408 08:34:28.980100 31856 solver.cpp:218] Iteration 6360 (2.38641 iter/s, 5.02847s/12 iters), loss = 5.26789 +I0408 08:34:28.980149 31856 solver.cpp:237] Train net output #0: loss = 5.26789 (* 1 = 5.26789 loss) +I0408 08:34:28.980161 31856 sgd_solver.cpp:105] Iteration 6360, lr = 0.000140245 +I0408 08:34:33.853119 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:34:33.988922 31856 solver.cpp:218] Iteration 6372 (2.39587 iter/s, 5.00862s/12 iters), loss = 5.25188 +I0408 08:34:33.988970 31856 solver.cpp:237] Train net output #0: loss = 5.25188 (* 1 = 5.25188 loss) +I0408 08:34:33.988981 31856 sgd_solver.cpp:105] Iteration 6372, lr = 0.000138518 +I0408 08:34:39.034200 31856 solver.cpp:218] Iteration 6384 (2.37855 iter/s, 5.04508s/12 iters), loss = 5.26763 +I0408 08:34:39.034245 31856 solver.cpp:237] Train net output #0: loss = 5.26763 (* 1 = 5.26763 loss) +I0408 08:34:39.034256 31856 sgd_solver.cpp:105] Iteration 6384, lr = 0.000136811 +I0408 08:34:44.051092 31856 solver.cpp:218] Iteration 6396 (2.39201 iter/s, 5.0167s/12 iters), loss = 5.29585 +I0408 08:34:44.051141 31856 solver.cpp:237] Train net output #0: loss = 5.29585 (* 1 = 5.29585 loss) +I0408 08:34:44.051152 31856 sgd_solver.cpp:105] Iteration 6396, lr = 0.000135126 +I0408 08:34:48.977924 31856 solver.cpp:218] Iteration 6408 (2.43574 iter/s, 4.92664s/12 iters), loss = 5.28337 +I0408 08:34:48.978085 31856 solver.cpp:237] Train net output #0: loss = 5.28337 (* 1 = 5.28337 loss) +I0408 08:34:48.978097 31856 sgd_solver.cpp:105] Iteration 6408, lr = 0.000133461 +I0408 08:34:53.883149 31856 solver.cpp:218] Iteration 6420 (2.44652 iter/s, 4.90492s/12 iters), loss = 5.27793 +I0408 08:34:53.883198 31856 solver.cpp:237] Train net output #0: loss = 5.27793 (* 1 = 5.27793 loss) +I0408 08:34:53.883208 31856 sgd_solver.cpp:105] Iteration 6420, lr = 0.000131817 +I0408 08:34:55.871040 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 08:35:05.049584 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 08:35:10.199743 31856 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 08:35:10.199775 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:35:12.137136 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:35:14.664614 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:35:14.664662 31856 solver.cpp:397] Test net output #1: loss = 5.28699 (* 1 = 5.28699 loss) +I0408 08:35:16.517031 31856 solver.cpp:218] Iteration 6432 (0.530195 iter/s, 22.6332s/12 iters), loss = 5.26945 +I0408 08:35:16.517067 31856 solver.cpp:237] Train net output #0: loss = 5.26945 (* 1 = 5.26945 loss) +I0408 08:35:16.517076 31856 sgd_solver.cpp:105] Iteration 6432, lr = 0.000130193 +I0408 08:35:21.503538 31856 solver.cpp:218] Iteration 6444 (2.40659 iter/s, 4.98631s/12 iters), loss = 5.24495 +I0408 08:35:21.503638 31856 solver.cpp:237] Train net output #0: loss = 5.24495 (* 1 = 5.24495 loss) +I0408 08:35:21.503650 31856 sgd_solver.cpp:105] Iteration 6444, lr = 0.00012859 +I0408 08:35:26.684852 31856 solver.cpp:218] Iteration 6456 (2.31613 iter/s, 5.18106s/12 iters), loss = 5.27473 +I0408 08:35:26.684896 31856 solver.cpp:237] Train net output #0: loss = 5.27473 (* 1 = 5.27473 loss) +I0408 08:35:26.684908 31856 sgd_solver.cpp:105] Iteration 6456, lr = 0.000127005 +I0408 08:35:31.851472 31856 solver.cpp:218] Iteration 6468 (2.32269 iter/s, 5.16642s/12 iters), loss = 5.26529 +I0408 08:35:31.851518 31856 solver.cpp:237] Train net output #0: loss = 5.26529 (* 1 = 5.26529 loss) +I0408 08:35:31.851531 31856 sgd_solver.cpp:105] Iteration 6468, lr = 0.000125441 +I0408 08:35:33.825182 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:35:36.835888 31856 solver.cpp:218] Iteration 6480 (2.4076 iter/s, 4.98422s/12 iters), loss = 5.28835 +I0408 08:35:36.835935 31856 solver.cpp:237] Train net output #0: loss = 5.28835 (* 1 = 5.28835 loss) +I0408 08:35:36.835947 31856 sgd_solver.cpp:105] Iteration 6480, lr = 0.000123896 +I0408 08:35:41.839684 31856 solver.cpp:218] Iteration 6492 (2.39827 iter/s, 5.0036s/12 iters), loss = 5.27008 +I0408 08:35:41.839730 31856 solver.cpp:237] Train net output #0: loss = 5.27008 (* 1 = 5.27008 loss) +I0408 08:35:41.839740 31856 sgd_solver.cpp:105] Iteration 6492, lr = 0.000122369 +I0408 08:35:46.799554 31856 solver.cpp:218] Iteration 6504 (2.41951 iter/s, 4.95967s/12 iters), loss = 5.27083 +I0408 08:35:46.799602 31856 solver.cpp:237] Train net output #0: loss = 5.27083 (* 1 = 5.27083 loss) +I0408 08:35:46.799613 31856 sgd_solver.cpp:105] Iteration 6504, lr = 0.000120862 +I0408 08:35:51.678465 31856 solver.cpp:218] Iteration 6516 (2.45966 iter/s, 4.87872s/12 iters), loss = 5.26443 +I0408 08:35:51.678580 31856 solver.cpp:237] Train net output #0: loss = 5.26443 (* 1 = 5.26443 loss) +I0408 08:35:51.678589 31856 sgd_solver.cpp:105] Iteration 6516, lr = 0.000119373 +I0408 08:35:56.153190 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 08:36:00.310091 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 08:36:04.063900 31856 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 08:36:04.063949 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:36:05.955984 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:36:08.517688 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:36:08.517735 31856 solver.cpp:397] Test net output #1: loss = 5.28705 (* 1 = 5.28705 loss) +I0408 08:36:08.607977 31856 solver.cpp:218] Iteration 6528 (0.708847 iter/s, 16.9289s/12 iters), loss = 5.27093 +I0408 08:36:08.608034 31856 solver.cpp:237] Train net output #0: loss = 5.27093 (* 1 = 5.27093 loss) +I0408 08:36:08.608047 31856 sgd_solver.cpp:105] Iteration 6528, lr = 0.000117903 +I0408 08:36:13.151530 31856 solver.cpp:218] Iteration 6540 (2.64122 iter/s, 4.54336s/12 iters), loss = 5.27185 +I0408 08:36:13.151577 31856 solver.cpp:237] Train net output #0: loss = 5.27185 (* 1 = 5.27185 loss) +I0408 08:36:13.151589 31856 sgd_solver.cpp:105] Iteration 6540, lr = 0.00011645 +I0408 08:36:18.558313 31856 solver.cpp:218] Iteration 6552 (2.21952 iter/s, 5.40657s/12 iters), loss = 5.26745 +I0408 08:36:18.558362 31856 solver.cpp:237] Train net output #0: loss = 5.26745 (* 1 = 5.26745 loss) +I0408 08:36:18.558373 31856 sgd_solver.cpp:105] Iteration 6552, lr = 0.000115016 +I0408 08:36:23.663033 31856 solver.cpp:218] Iteration 6564 (2.35086 iter/s, 5.10452s/12 iters), loss = 5.25892 +I0408 08:36:23.663165 31856 solver.cpp:237] Train net output #0: loss = 5.25892 (* 1 = 5.25892 loss) +I0408 08:36:23.663182 31856 sgd_solver.cpp:105] Iteration 6564, lr = 0.000113599 +I0408 08:36:27.836601 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:36:28.606572 31856 solver.cpp:218] Iteration 6576 (2.42755 iter/s, 4.94327s/12 iters), loss = 5.2558 +I0408 08:36:28.606607 31856 solver.cpp:237] Train net output #0: loss = 5.2558 (* 1 = 5.2558 loss) +I0408 08:36:28.606614 31856 sgd_solver.cpp:105] Iteration 6576, lr = 0.000112199 +I0408 08:36:33.715179 31856 solver.cpp:218] Iteration 6588 (2.34907 iter/s, 5.10841s/12 iters), loss = 5.27867 +I0408 08:36:33.715234 31856 solver.cpp:237] Train net output #0: loss = 5.27867 (* 1 = 5.27867 loss) +I0408 08:36:33.715246 31856 sgd_solver.cpp:105] Iteration 6588, lr = 0.000110817 +I0408 08:36:38.939280 31856 solver.cpp:218] Iteration 6600 (2.29714 iter/s, 5.22389s/12 iters), loss = 5.27212 +I0408 08:36:38.939328 31856 solver.cpp:237] Train net output #0: loss = 5.27212 (* 1 = 5.27212 loss) +I0408 08:36:38.939340 31856 sgd_solver.cpp:105] Iteration 6600, lr = 0.000109452 +I0408 08:36:43.975272 31856 solver.cpp:218] Iteration 6612 (2.38294 iter/s, 5.03579s/12 iters), loss = 5.30373 +I0408 08:36:43.975320 31856 solver.cpp:237] Train net output #0: loss = 5.30373 (* 1 = 5.30373 loss) +I0408 08:36:43.975332 31856 sgd_solver.cpp:105] Iteration 6612, lr = 0.000108104 +I0408 08:36:49.109773 31856 solver.cpp:218] Iteration 6624 (2.33722 iter/s, 5.13429s/12 iters), loss = 5.26938 +I0408 08:36:49.109822 31856 solver.cpp:237] Train net output #0: loss = 5.26938 (* 1 = 5.26938 loss) +I0408 08:36:49.109833 31856 sgd_solver.cpp:105] Iteration 6624, lr = 0.000106772 +I0408 08:36:51.360141 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 08:36:56.036026 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 08:37:00.053010 31856 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 08:37:00.053037 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:37:01.913363 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:37:04.508641 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:37:04.508690 31856 solver.cpp:397] Test net output #1: loss = 5.28715 (* 1 = 5.28715 loss) +I0408 08:37:06.469079 31856 solver.cpp:218] Iteration 6636 (0.691294 iter/s, 17.3588s/12 iters), loss = 5.27327 +I0408 08:37:06.469132 31856 solver.cpp:237] Train net output #0: loss = 5.27327 (* 1 = 5.27327 loss) +I0408 08:37:06.469144 31856 sgd_solver.cpp:105] Iteration 6636, lr = 0.000105457 +I0408 08:37:11.466054 31856 solver.cpp:218] Iteration 6648 (2.40155 iter/s, 4.99677s/12 iters), loss = 5.27655 +I0408 08:37:11.466097 31856 solver.cpp:237] Train net output #0: loss = 5.27655 (* 1 = 5.27655 loss) +I0408 08:37:11.466107 31856 sgd_solver.cpp:105] Iteration 6648, lr = 0.000104158 +I0408 08:37:16.417171 31856 solver.cpp:218] Iteration 6660 (2.42379 iter/s, 4.95092s/12 iters), loss = 5.28053 +I0408 08:37:16.417217 31856 solver.cpp:237] Train net output #0: loss = 5.28053 (* 1 = 5.28053 loss) +I0408 08:37:16.417228 31856 sgd_solver.cpp:105] Iteration 6660, lr = 0.000102874 +I0408 08:37:21.426993 31856 solver.cpp:218] Iteration 6672 (2.39539 iter/s, 5.00962s/12 iters), loss = 5.26397 +I0408 08:37:21.427039 31856 solver.cpp:237] Train net output #0: loss = 5.26397 (* 1 = 5.26397 loss) +I0408 08:37:21.427052 31856 sgd_solver.cpp:105] Iteration 6672, lr = 0.000101607 +I0408 08:37:22.791127 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:37:26.419983 31856 solver.cpp:218] Iteration 6684 (2.40346 iter/s, 4.99279s/12 iters), loss = 5.27397 +I0408 08:37:26.420100 31856 solver.cpp:237] Train net output #0: loss = 5.27397 (* 1 = 5.27397 loss) +I0408 08:37:26.420114 31856 sgd_solver.cpp:105] Iteration 6684, lr = 0.000100355 +I0408 08:37:31.451886 31856 solver.cpp:218] Iteration 6696 (2.38491 iter/s, 5.03164s/12 iters), loss = 5.26766 +I0408 08:37:31.451936 31856 solver.cpp:237] Train net output #0: loss = 5.26766 (* 1 = 5.26766 loss) +I0408 08:37:31.451946 31856 sgd_solver.cpp:105] Iteration 6696, lr = 9.91192e-05 +I0408 08:37:36.483538 31856 solver.cpp:218] Iteration 6708 (2.385 iter/s, 5.03145s/12 iters), loss = 5.27405 +I0408 08:37:36.483587 31856 solver.cpp:237] Train net output #0: loss = 5.27405 (* 1 = 5.27405 loss) +I0408 08:37:36.483599 31856 sgd_solver.cpp:105] Iteration 6708, lr = 9.78982e-05 +I0408 08:37:41.460268 31856 solver.cpp:218] Iteration 6720 (2.41132 iter/s, 4.97653s/12 iters), loss = 5.26954 +I0408 08:37:41.460319 31856 solver.cpp:237] Train net output #0: loss = 5.26954 (* 1 = 5.26954 loss) +I0408 08:37:41.460330 31856 sgd_solver.cpp:105] Iteration 6720, lr = 9.66922e-05 +I0408 08:37:46.008770 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 08:37:50.916662 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 08:37:55.086716 31856 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 08:37:55.086750 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:37:56.890884 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:37:59.528328 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:37:59.528378 31856 solver.cpp:397] Test net output #1: loss = 5.28689 (* 1 = 5.28689 loss) +I0408 08:37:59.618430 31856 solver.cpp:218] Iteration 6732 (0.66088 iter/s, 18.1576s/12 iters), loss = 5.26925 +I0408 08:37:59.618485 31856 solver.cpp:237] Train net output #0: loss = 5.26925 (* 1 = 5.26925 loss) +I0408 08:37:59.618496 31856 sgd_solver.cpp:105] Iteration 6732, lr = 9.55011e-05 +I0408 08:38:03.867974 31856 solver.cpp:218] Iteration 6744 (2.82395 iter/s, 4.24937s/12 iters), loss = 5.25978 +I0408 08:38:03.868010 31856 solver.cpp:237] Train net output #0: loss = 5.25978 (* 1 = 5.25978 loss) +I0408 08:38:03.868017 31856 sgd_solver.cpp:105] Iteration 6744, lr = 9.43246e-05 +I0408 08:38:08.859201 31856 solver.cpp:218] Iteration 6756 (2.40431 iter/s, 4.99104s/12 iters), loss = 5.29068 +I0408 08:38:08.859239 31856 solver.cpp:237] Train net output #0: loss = 5.29068 (* 1 = 5.29068 loss) +I0408 08:38:08.859248 31856 sgd_solver.cpp:105] Iteration 6756, lr = 9.31626e-05 +I0408 08:38:13.834928 31856 solver.cpp:218] Iteration 6768 (2.4118 iter/s, 4.97554s/12 iters), loss = 5.27266 +I0408 08:38:13.834969 31856 solver.cpp:237] Train net output #0: loss = 5.27266 (* 1 = 5.27266 loss) +I0408 08:38:13.834980 31856 sgd_solver.cpp:105] Iteration 6768, lr = 9.2015e-05 +I0408 08:38:17.317270 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:38:18.841006 31856 solver.cpp:218] Iteration 6780 (2.39718 iter/s, 5.00589s/12 iters), loss = 5.27532 +I0408 08:38:18.841048 31856 solver.cpp:237] Train net output #0: loss = 5.27532 (* 1 = 5.27532 loss) +I0408 08:38:18.841056 31856 sgd_solver.cpp:105] Iteration 6780, lr = 9.08815e-05 +I0408 08:38:23.845202 31856 solver.cpp:218] Iteration 6792 (2.39808 iter/s, 5.004s/12 iters), loss = 5.25896 +I0408 08:38:23.845239 31856 solver.cpp:237] Train net output #0: loss = 5.25896 (* 1 = 5.25896 loss) +I0408 08:38:23.845248 31856 sgd_solver.cpp:105] Iteration 6792, lr = 8.97619e-05 +I0408 08:38:28.830596 31856 solver.cpp:218] Iteration 6804 (2.40712 iter/s, 4.9852s/12 iters), loss = 5.26528 +I0408 08:38:28.830767 31856 solver.cpp:237] Train net output #0: loss = 5.26528 (* 1 = 5.26528 loss) +I0408 08:38:28.830780 31856 sgd_solver.cpp:105] Iteration 6804, lr = 8.86561e-05 +I0408 08:38:33.815203 31856 solver.cpp:218] Iteration 6816 (2.40756 iter/s, 4.98429s/12 iters), loss = 5.27901 +I0408 08:38:33.815248 31856 solver.cpp:237] Train net output #0: loss = 5.27901 (* 1 = 5.27901 loss) +I0408 08:38:33.815258 31856 sgd_solver.cpp:105] Iteration 6816, lr = 8.7564e-05 +I0408 08:38:38.872809 31856 solver.cpp:218] Iteration 6828 (2.37276 iter/s, 5.05741s/12 iters), loss = 5.267 +I0408 08:38:38.872856 31856 solver.cpp:237] Train net output #0: loss = 5.267 (* 1 = 5.267 loss) +I0408 08:38:38.872867 31856 sgd_solver.cpp:105] Iteration 6828, lr = 8.64853e-05 +I0408 08:38:40.897768 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 08:38:44.914863 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 08:38:51.393932 31856 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 08:38:51.393981 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:38:53.181411 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:38:55.857043 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:38:55.857087 31856 solver.cpp:397] Test net output #1: loss = 5.28768 (* 1 = 5.28768 loss) +I0408 08:38:57.845520 31856 solver.cpp:218] Iteration 6840 (0.632507 iter/s, 18.9721s/12 iters), loss = 5.27437 +I0408 08:38:57.845561 31856 solver.cpp:237] Train net output #0: loss = 5.27437 (* 1 = 5.27437 loss) +I0408 08:38:57.845568 31856 sgd_solver.cpp:105] Iteration 6840, lr = 8.54199e-05 +I0408 08:39:03.064308 31856 solver.cpp:218] Iteration 6852 (2.29947 iter/s, 5.2186s/12 iters), loss = 5.27489 +I0408 08:39:03.064411 31856 solver.cpp:237] Train net output #0: loss = 5.27489 (* 1 = 5.27489 loss) +I0408 08:39:03.064420 31856 sgd_solver.cpp:105] Iteration 6852, lr = 8.43676e-05 +I0408 08:39:08.039532 31856 solver.cpp:218] Iteration 6864 (2.41208 iter/s, 4.97497s/12 iters), loss = 5.27704 +I0408 08:39:08.039592 31856 solver.cpp:237] Train net output #0: loss = 5.27704 (* 1 = 5.27704 loss) +I0408 08:39:08.039606 31856 sgd_solver.cpp:105] Iteration 6864, lr = 8.33283e-05 +I0408 08:39:13.033634 31856 solver.cpp:218] Iteration 6876 (2.40294 iter/s, 4.99389s/12 iters), loss = 5.28383 +I0408 08:39:13.033681 31856 solver.cpp:237] Train net output #0: loss = 5.28383 (* 1 = 5.28383 loss) +I0408 08:39:13.033692 31856 sgd_solver.cpp:105] Iteration 6876, lr = 8.23018e-05 +I0408 08:39:13.664005 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:39:18.037385 31856 solver.cpp:218] Iteration 6888 (2.3983 iter/s, 5.00355s/12 iters), loss = 5.2813 +I0408 08:39:18.037434 31856 solver.cpp:237] Train net output #0: loss = 5.2813 (* 1 = 5.2813 loss) +I0408 08:39:18.037446 31856 sgd_solver.cpp:105] Iteration 6888, lr = 8.1288e-05 +I0408 08:39:23.025682 31856 solver.cpp:218] Iteration 6900 (2.40573 iter/s, 4.9881s/12 iters), loss = 5.26732 +I0408 08:39:23.025732 31856 solver.cpp:237] Train net output #0: loss = 5.26732 (* 1 = 5.26732 loss) +I0408 08:39:23.025743 31856 sgd_solver.cpp:105] Iteration 6900, lr = 8.02866e-05 +I0408 08:39:28.029680 31856 solver.cpp:218] Iteration 6912 (2.39818 iter/s, 5.0038s/12 iters), loss = 5.28519 +I0408 08:39:28.029727 31856 solver.cpp:237] Train net output #0: loss = 5.28519 (* 1 = 5.28519 loss) +I0408 08:39:28.029738 31856 sgd_solver.cpp:105] Iteration 6912, lr = 7.92975e-05 +I0408 08:39:33.011185 31856 solver.cpp:218] Iteration 6924 (2.409 iter/s, 4.98131s/12 iters), loss = 5.28133 +I0408 08:39:33.011224 31856 solver.cpp:237] Train net output #0: loss = 5.28133 (* 1 = 5.28133 loss) +I0408 08:39:33.011234 31856 sgd_solver.cpp:105] Iteration 6924, lr = 7.83207e-05 +I0408 08:39:37.529435 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 08:39:40.565460 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 08:39:47.387514 31856 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 08:39:47.387539 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:39:48.050453 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:39:49.126756 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:39:51.848417 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:39:51.848461 31856 solver.cpp:397] Test net output #1: loss = 5.28739 (* 1 = 5.28739 loss) +I0408 08:39:51.936344 31856 solver.cpp:218] Iteration 6936 (0.634096 iter/s, 18.9246s/12 iters), loss = 5.28225 +I0408 08:39:51.936415 31856 solver.cpp:237] Train net output #0: loss = 5.28225 (* 1 = 5.28225 loss) +I0408 08:39:51.936431 31856 sgd_solver.cpp:105] Iteration 6936, lr = 7.73559e-05 +I0408 08:39:56.147521 31856 solver.cpp:218] Iteration 6948 (2.8497 iter/s, 4.21097s/12 iters), loss = 5.2773 +I0408 08:39:56.147568 31856 solver.cpp:237] Train net output #0: loss = 5.2773 (* 1 = 5.2773 loss) +I0408 08:39:56.147580 31856 sgd_solver.cpp:105] Iteration 6948, lr = 7.64029e-05 +I0408 08:40:01.429113 31856 solver.cpp:218] Iteration 6960 (2.27213 iter/s, 5.28139s/12 iters), loss = 5.26388 +I0408 08:40:01.429157 31856 solver.cpp:237] Train net output #0: loss = 5.26388 (* 1 = 5.26388 loss) +I0408 08:40:01.429168 31856 sgd_solver.cpp:105] Iteration 6960, lr = 7.54617e-05 +I0408 08:40:06.579435 31856 solver.cpp:218] Iteration 6972 (2.33004 iter/s, 5.15013s/12 iters), loss = 5.26824 +I0408 08:40:06.579480 31856 solver.cpp:237] Train net output #0: loss = 5.26824 (* 1 = 5.26824 loss) +I0408 08:40:06.579491 31856 sgd_solver.cpp:105] Iteration 6972, lr = 7.45321e-05 +I0408 08:40:09.348379 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:40:11.598305 31856 solver.cpp:218] Iteration 6984 (2.39107 iter/s, 5.01868s/12 iters), loss = 5.27665 +I0408 08:40:11.598351 31856 solver.cpp:237] Train net output #0: loss = 5.27665 (* 1 = 5.27665 loss) +I0408 08:40:11.598362 31856 sgd_solver.cpp:105] Iteration 6984, lr = 7.3614e-05 +I0408 08:40:16.553599 31856 solver.cpp:218] Iteration 6996 (2.42175 iter/s, 4.9551s/12 iters), loss = 5.25668 +I0408 08:40:16.553645 31856 solver.cpp:237] Train net output #0: loss = 5.25668 (* 1 = 5.25668 loss) +I0408 08:40:16.553658 31856 sgd_solver.cpp:105] Iteration 6996, lr = 7.27072e-05 +I0408 08:40:21.561523 31856 solver.cpp:218] Iteration 7008 (2.3963 iter/s, 5.00772s/12 iters), loss = 5.26024 +I0408 08:40:21.561568 31856 solver.cpp:237] Train net output #0: loss = 5.26024 (* 1 = 5.26024 loss) +I0408 08:40:21.561578 31856 sgd_solver.cpp:105] Iteration 7008, lr = 7.18115e-05 +I0408 08:40:26.562875 31856 solver.cpp:218] Iteration 7020 (2.39944 iter/s, 5.00116s/12 iters), loss = 5.2587 +I0408 08:40:26.562920 31856 solver.cpp:237] Train net output #0: loss = 5.2587 (* 1 = 5.2587 loss) +I0408 08:40:26.562932 31856 sgd_solver.cpp:105] Iteration 7020, lr = 7.09268e-05 +I0408 08:40:31.519807 31856 solver.cpp:218] Iteration 7032 (2.42095 iter/s, 4.95674s/12 iters), loss = 5.30295 +I0408 08:40:31.519855 31856 solver.cpp:237] Train net output #0: loss = 5.30295 (* 1 = 5.30295 loss) +I0408 08:40:31.519865 31856 sgd_solver.cpp:105] Iteration 7032, lr = 7.00531e-05 +I0408 08:40:33.578599 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 08:40:38.859251 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 08:40:43.781785 31856 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 08:40:43.781939 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:40:45.643352 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:40:48.443270 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:40:48.443317 31856 solver.cpp:397] Test net output #1: loss = 5.28709 (* 1 = 5.28709 loss) +I0408 08:40:50.377007 31856 solver.cpp:218] Iteration 7044 (0.636381 iter/s, 18.8566s/12 iters), loss = 5.27118 +I0408 08:40:50.377053 31856 solver.cpp:237] Train net output #0: loss = 5.27118 (* 1 = 5.27118 loss) +I0408 08:40:50.377065 31856 sgd_solver.cpp:105] Iteration 7044, lr = 6.91901e-05 +I0408 08:40:55.694428 31856 solver.cpp:218] Iteration 7056 (2.25682 iter/s, 5.31722s/12 iters), loss = 5.27151 +I0408 08:40:55.694464 31856 solver.cpp:237] Train net output #0: loss = 5.27151 (* 1 = 5.27151 loss) +I0408 08:40:55.694473 31856 sgd_solver.cpp:105] Iteration 7056, lr = 6.83378e-05 +I0408 08:41:00.586652 31856 solver.cpp:218] Iteration 7068 (2.45296 iter/s, 4.89204s/12 iters), loss = 5.26666 +I0408 08:41:00.586699 31856 solver.cpp:237] Train net output #0: loss = 5.26666 (* 1 = 5.26666 loss) +I0408 08:41:00.586710 31856 sgd_solver.cpp:105] Iteration 7068, lr = 6.7496e-05 +I0408 08:41:05.573952 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:41:05.685356 31856 solver.cpp:218] Iteration 7080 (2.35363 iter/s, 5.09851s/12 iters), loss = 5.24278 +I0408 08:41:05.685403 31856 solver.cpp:237] Train net output #0: loss = 5.24278 (* 1 = 5.24278 loss) +I0408 08:41:05.685415 31856 sgd_solver.cpp:105] Iteration 7080, lr = 6.66645e-05 +I0408 08:41:10.699599 31856 solver.cpp:218] Iteration 7092 (2.39328 iter/s, 5.01405s/12 iters), loss = 5.26778 +I0408 08:41:10.699647 31856 solver.cpp:237] Train net output #0: loss = 5.26778 (* 1 = 5.26778 loss) +I0408 08:41:10.699658 31856 sgd_solver.cpp:105] Iteration 7092, lr = 6.58433e-05 +I0408 08:41:15.526029 31856 solver.cpp:218] Iteration 7104 (2.48641 iter/s, 4.82624s/12 iters), loss = 5.29524 +I0408 08:41:15.526108 31856 solver.cpp:237] Train net output #0: loss = 5.29524 (* 1 = 5.29524 loss) +I0408 08:41:15.526121 31856 sgd_solver.cpp:105] Iteration 7104, lr = 6.50321e-05 +I0408 08:41:20.335762 31856 solver.cpp:218] Iteration 7116 (2.49506 iter/s, 4.80951s/12 iters), loss = 5.27569 +I0408 08:41:20.335809 31856 solver.cpp:237] Train net output #0: loss = 5.27569 (* 1 = 5.27569 loss) +I0408 08:41:20.335821 31856 sgd_solver.cpp:105] Iteration 7116, lr = 6.4231e-05 +I0408 08:41:25.171137 31856 solver.cpp:218] Iteration 7128 (2.48181 iter/s, 4.83519s/12 iters), loss = 5.27428 +I0408 08:41:25.171172 31856 solver.cpp:237] Train net output #0: loss = 5.27428 (* 1 = 5.27428 loss) +I0408 08:41:25.171180 31856 sgd_solver.cpp:105] Iteration 7128, lr = 6.34398e-05 +I0408 08:41:29.623260 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 08:41:32.572762 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 08:41:36.727291 31856 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 08:41:36.727324 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:41:38.395905 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:41:41.196177 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:41:41.196220 31856 solver.cpp:397] Test net output #1: loss = 5.28728 (* 1 = 5.28728 loss) +I0408 08:41:41.283409 31856 solver.cpp:218] Iteration 7140 (0.744797 iter/s, 16.1118s/12 iters), loss = 5.26276 +I0408 08:41:41.283450 31856 solver.cpp:237] Train net output #0: loss = 5.26276 (* 1 = 5.26276 loss) +I0408 08:41:41.283460 31856 sgd_solver.cpp:105] Iteration 7140, lr = 6.26583e-05 +I0408 08:41:45.560871 31856 solver.cpp:218] Iteration 7152 (2.80552 iter/s, 4.27729s/12 iters), loss = 5.24631 +I0408 08:41:45.561017 31856 solver.cpp:237] Train net output #0: loss = 5.24631 (* 1 = 5.24631 loss) +I0408 08:41:45.561029 31856 sgd_solver.cpp:105] Iteration 7152, lr = 6.18864e-05 +I0408 08:41:50.562386 31856 solver.cpp:218] Iteration 7164 (2.39941 iter/s, 5.00122s/12 iters), loss = 5.27232 +I0408 08:41:50.562433 31856 solver.cpp:237] Train net output #0: loss = 5.27232 (* 1 = 5.27232 loss) +I0408 08:41:50.562445 31856 sgd_solver.cpp:105] Iteration 7164, lr = 6.1124e-05 +I0408 08:41:55.554733 31856 solver.cpp:218] Iteration 7176 (2.40377 iter/s, 4.99215s/12 iters), loss = 5.25706 +I0408 08:41:55.554769 31856 solver.cpp:237] Train net output #0: loss = 5.25706 (* 1 = 5.25706 loss) +I0408 08:41:55.554776 31856 sgd_solver.cpp:105] Iteration 7176, lr = 6.0371e-05 +I0408 08:41:57.670866 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:42:00.615773 31856 solver.cpp:218] Iteration 7188 (2.37115 iter/s, 5.06085s/12 iters), loss = 5.2753 +I0408 08:42:00.615823 31856 solver.cpp:237] Train net output #0: loss = 5.2753 (* 1 = 5.2753 loss) +I0408 08:42:00.615834 31856 sgd_solver.cpp:105] Iteration 7188, lr = 5.96273e-05 +I0408 08:42:05.600311 31856 solver.cpp:218] Iteration 7200 (2.40754 iter/s, 4.98434s/12 iters), loss = 5.27112 +I0408 08:42:05.600356 31856 solver.cpp:237] Train net output #0: loss = 5.27112 (* 1 = 5.27112 loss) +I0408 08:42:05.600368 31856 sgd_solver.cpp:105] Iteration 7200, lr = 5.88928e-05 +I0408 08:42:10.610838 31856 solver.cpp:218] Iteration 7212 (2.39505 iter/s, 5.01033s/12 iters), loss = 5.27952 +I0408 08:42:10.610885 31856 solver.cpp:237] Train net output #0: loss = 5.27952 (* 1 = 5.27952 loss) +I0408 08:42:10.610896 31856 sgd_solver.cpp:105] Iteration 7212, lr = 5.81673e-05 +I0408 08:42:15.600697 31856 solver.cpp:218] Iteration 7224 (2.40497 iter/s, 4.98966s/12 iters), loss = 5.26399 +I0408 08:42:15.600807 31856 solver.cpp:237] Train net output #0: loss = 5.26399 (* 1 = 5.26399 loss) +I0408 08:42:15.600821 31856 sgd_solver.cpp:105] Iteration 7224, lr = 5.74508e-05 +I0408 08:42:20.543416 31856 solver.cpp:218] Iteration 7236 (2.42794 iter/s, 4.94246s/12 iters), loss = 5.27437 +I0408 08:42:20.543468 31856 solver.cpp:237] Train net output #0: loss = 5.27437 (* 1 = 5.27437 loss) +I0408 08:42:20.543480 31856 sgd_solver.cpp:105] Iteration 7236, lr = 5.6743e-05 +I0408 08:42:22.550143 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 08:42:25.525992 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 08:42:28.805523 31856 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 08:42:28.805554 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:42:30.420169 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:42:33.259168 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:42:33.259215 31856 solver.cpp:397] Test net output #1: loss = 5.28691 (* 1 = 5.28691 loss) +I0408 08:42:35.250488 31856 solver.cpp:218] Iteration 7248 (0.81596 iter/s, 14.7066s/12 iters), loss = 5.27382 +I0408 08:42:35.250535 31856 solver.cpp:237] Train net output #0: loss = 5.27382 (* 1 = 5.27382 loss) +I0408 08:42:35.250547 31856 sgd_solver.cpp:105] Iteration 7248, lr = 5.6044e-05 +I0408 08:42:40.512401 31856 solver.cpp:218] Iteration 7260 (2.28063 iter/s, 5.26171s/12 iters), loss = 5.27217 +I0408 08:42:40.512446 31856 solver.cpp:237] Train net output #0: loss = 5.27217 (* 1 = 5.27217 loss) +I0408 08:42:40.512459 31856 sgd_solver.cpp:105] Iteration 7260, lr = 5.53536e-05 +I0408 08:42:45.801918 31856 solver.cpp:218] Iteration 7272 (2.26873 iter/s, 5.28931s/12 iters), loss = 5.2523 +I0408 08:42:45.802076 31856 solver.cpp:237] Train net output #0: loss = 5.2523 (* 1 = 5.2523 loss) +I0408 08:42:45.802090 31856 sgd_solver.cpp:105] Iteration 7272, lr = 5.46717e-05 +I0408 08:42:50.095338 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:42:50.823228 31856 solver.cpp:218] Iteration 7284 (2.38996 iter/s, 5.021s/12 iters), loss = 5.25683 +I0408 08:42:50.823274 31856 solver.cpp:237] Train net output #0: loss = 5.25683 (* 1 = 5.25683 loss) +I0408 08:42:50.823285 31856 sgd_solver.cpp:105] Iteration 7284, lr = 5.39982e-05 +I0408 08:42:55.846709 31856 solver.cpp:218] Iteration 7296 (2.38887 iter/s, 5.02329s/12 iters), loss = 5.28154 +I0408 08:42:55.846746 31856 solver.cpp:237] Train net output #0: loss = 5.28154 (* 1 = 5.28154 loss) +I0408 08:42:55.846755 31856 sgd_solver.cpp:105] Iteration 7296, lr = 5.3333e-05 +I0408 08:43:00.876673 31856 solver.cpp:218] Iteration 7308 (2.38579 iter/s, 5.02977s/12 iters), loss = 5.28244 +I0408 08:43:00.876720 31856 solver.cpp:237] Train net output #0: loss = 5.28244 (* 1 = 5.28244 loss) +I0408 08:43:00.876732 31856 sgd_solver.cpp:105] Iteration 7308, lr = 5.2676e-05 +I0408 08:43:05.881160 31856 solver.cpp:218] Iteration 7320 (2.39794 iter/s, 5.00429s/12 iters), loss = 5.29419 +I0408 08:43:05.881206 31856 solver.cpp:237] Train net output #0: loss = 5.29419 (* 1 = 5.29419 loss) +I0408 08:43:05.881217 31856 sgd_solver.cpp:105] Iteration 7320, lr = 5.20271e-05 +I0408 08:43:11.024396 31856 solver.cpp:218] Iteration 7332 (2.33325 iter/s, 5.14304s/12 iters), loss = 5.2685 +I0408 08:43:11.024441 31856 solver.cpp:237] Train net output #0: loss = 5.2685 (* 1 = 5.2685 loss) +I0408 08:43:11.024452 31856 sgd_solver.cpp:105] Iteration 7332, lr = 5.13862e-05 +I0408 08:43:15.579389 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 08:43:19.382066 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 08:43:24.234423 31856 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 08:43:24.234457 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:43:25.828020 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:43:28.700372 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:43:28.700420 31856 solver.cpp:397] Test net output #1: loss = 5.2878 (* 1 = 5.2878 loss) +I0408 08:43:28.790499 31856 solver.cpp:218] Iteration 7344 (0.675464 iter/s, 17.7656s/12 iters), loss = 5.27624 +I0408 08:43:28.790547 31856 solver.cpp:237] Train net output #0: loss = 5.27624 (* 1 = 5.27624 loss) +I0408 08:43:28.790558 31856 sgd_solver.cpp:105] Iteration 7344, lr = 5.07532e-05 +I0408 08:43:33.322620 31856 solver.cpp:218] Iteration 7356 (2.64788 iter/s, 4.53193s/12 iters), loss = 5.28379 +I0408 08:43:33.322669 31856 solver.cpp:237] Train net output #0: loss = 5.28379 (* 1 = 5.28379 loss) +I0408 08:43:33.322681 31856 sgd_solver.cpp:105] Iteration 7356, lr = 5.0128e-05 +I0408 08:43:38.559653 31856 solver.cpp:218] Iteration 7368 (2.29147 iter/s, 5.23682s/12 iters), loss = 5.2769 +I0408 08:43:38.559701 31856 solver.cpp:237] Train net output #0: loss = 5.2769 (* 1 = 5.2769 loss) +I0408 08:43:38.559715 31856 sgd_solver.cpp:105] Iteration 7368, lr = 4.95105e-05 +I0408 08:43:43.714134 31856 solver.cpp:218] Iteration 7380 (2.32816 iter/s, 5.15428s/12 iters), loss = 5.26271 +I0408 08:43:43.714190 31856 solver.cpp:237] Train net output #0: loss = 5.26271 (* 1 = 5.26271 loss) +I0408 08:43:43.714206 31856 sgd_solver.cpp:105] Iteration 7380, lr = 4.89006e-05 +I0408 08:43:45.202994 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:43:48.872630 31856 solver.cpp:218] Iteration 7392 (2.32635 iter/s, 5.15829s/12 iters), loss = 5.27243 +I0408 08:43:48.872674 31856 solver.cpp:237] Train net output #0: loss = 5.27243 (* 1 = 5.27243 loss) +I0408 08:43:48.872685 31856 sgd_solver.cpp:105] Iteration 7392, lr = 4.82982e-05 +I0408 08:43:53.859195 31856 solver.cpp:218] Iteration 7404 (2.40656 iter/s, 4.98637s/12 iters), loss = 5.26877 +I0408 08:43:53.859359 31856 solver.cpp:237] Train net output #0: loss = 5.26877 (* 1 = 5.26877 loss) +I0408 08:43:53.859373 31856 sgd_solver.cpp:105] Iteration 7404, lr = 4.77032e-05 +I0408 08:43:58.867375 31856 solver.cpp:218] Iteration 7416 (2.39623 iter/s, 5.00787s/12 iters), loss = 5.26708 +I0408 08:43:58.867419 31856 solver.cpp:237] Train net output #0: loss = 5.26708 (* 1 = 5.26708 loss) +I0408 08:43:58.867430 31856 sgd_solver.cpp:105] Iteration 7416, lr = 4.71155e-05 +I0408 08:44:03.945618 31856 solver.cpp:218] Iteration 7428 (2.36312 iter/s, 5.07804s/12 iters), loss = 5.27867 +I0408 08:44:03.945665 31856 solver.cpp:237] Train net output #0: loss = 5.27867 (* 1 = 5.27867 loss) +I0408 08:44:03.945678 31856 sgd_solver.cpp:105] Iteration 7428, lr = 4.65351e-05 +I0408 08:44:09.015604 31856 solver.cpp:218] Iteration 7440 (2.36696 iter/s, 5.06979s/12 iters), loss = 5.25891 +I0408 08:44:09.015655 31856 solver.cpp:237] Train net output #0: loss = 5.25891 (* 1 = 5.25891 loss) +I0408 08:44:09.015667 31856 sgd_solver.cpp:105] Iteration 7440, lr = 4.59619e-05 +I0408 08:44:11.057065 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 08:44:14.065387 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 08:44:17.932736 31856 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 08:44:17.932765 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:44:19.437243 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:44:22.356680 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:44:22.356727 31856 solver.cpp:397] Test net output #1: loss = 5.28712 (* 1 = 5.28712 loss) +I0408 08:44:24.143452 31856 solver.cpp:218] Iteration 7452 (0.793264 iter/s, 15.1274s/12 iters), loss = 5.26522 +I0408 08:44:24.143537 31856 solver.cpp:237] Train net output #0: loss = 5.26522 (* 1 = 5.26522 loss) +I0408 08:44:24.143548 31856 sgd_solver.cpp:105] Iteration 7452, lr = 4.53957e-05 +I0408 08:44:29.171411 31856 solver.cpp:218] Iteration 7464 (2.38676 iter/s, 5.02773s/12 iters), loss = 5.28723 +I0408 08:44:29.171460 31856 solver.cpp:237] Train net output #0: loss = 5.28723 (* 1 = 5.28723 loss) +I0408 08:44:29.171471 31856 sgd_solver.cpp:105] Iteration 7464, lr = 4.48364e-05 +I0408 08:44:34.093706 31856 solver.cpp:218] Iteration 7476 (2.43799 iter/s, 4.9221s/12 iters), loss = 5.27591 +I0408 08:44:34.093757 31856 solver.cpp:237] Train net output #0: loss = 5.27591 (* 1 = 5.27591 loss) +I0408 08:44:34.093768 31856 sgd_solver.cpp:105] Iteration 7476, lr = 4.42841e-05 +I0408 08:44:37.635160 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:44:39.105484 31856 solver.cpp:218] Iteration 7488 (2.39446 iter/s, 5.01156s/12 iters), loss = 5.269 +I0408 08:44:39.105542 31856 solver.cpp:237] Train net output #0: loss = 5.269 (* 1 = 5.269 loss) +I0408 08:44:39.105558 31856 sgd_solver.cpp:105] Iteration 7488, lr = 4.37386e-05 +I0408 08:44:44.118577 31856 solver.cpp:218] Iteration 7500 (2.39383 iter/s, 5.01289s/12 iters), loss = 5.25796 +I0408 08:44:44.118618 31856 solver.cpp:237] Train net output #0: loss = 5.25796 (* 1 = 5.25796 loss) +I0408 08:44:44.118628 31856 sgd_solver.cpp:105] Iteration 7500, lr = 4.31998e-05 +I0408 08:44:49.082751 31856 solver.cpp:218] Iteration 7512 (2.41741 iter/s, 4.96398s/12 iters), loss = 5.26148 +I0408 08:44:49.082798 31856 solver.cpp:237] Train net output #0: loss = 5.26148 (* 1 = 5.26148 loss) +I0408 08:44:49.082808 31856 sgd_solver.cpp:105] Iteration 7512, lr = 4.26676e-05 +I0408 08:44:54.090484 31856 solver.cpp:218] Iteration 7524 (2.39639 iter/s, 5.00754s/12 iters), loss = 5.26904 +I0408 08:44:54.090528 31856 solver.cpp:237] Train net output #0: loss = 5.26904 (* 1 = 5.26904 loss) +I0408 08:44:54.090539 31856 sgd_solver.cpp:105] Iteration 7524, lr = 4.2142e-05 +I0408 08:44:59.045950 31856 solver.cpp:218] Iteration 7536 (2.42166 iter/s, 4.95528s/12 iters), loss = 5.262 +I0408 08:44:59.046101 31856 solver.cpp:237] Train net output #0: loss = 5.262 (* 1 = 5.262 loss) +I0408 08:44:59.046113 31856 sgd_solver.cpp:105] Iteration 7536, lr = 4.16229e-05 +I0408 08:45:03.586653 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 08:45:06.620826 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 08:45:10.759707 31856 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 08:45:10.759739 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:45:12.269523 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:45:15.223788 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:45:15.223834 31856 solver.cpp:397] Test net output #1: loss = 5.28724 (* 1 = 5.28724 loss) +I0408 08:45:15.314013 31856 solver.cpp:218] Iteration 7548 (0.737669 iter/s, 16.2675s/12 iters), loss = 5.28059 +I0408 08:45:15.314047 31856 solver.cpp:237] Train net output #0: loss = 5.28059 (* 1 = 5.28059 loss) +I0408 08:45:15.314059 31856 sgd_solver.cpp:105] Iteration 7548, lr = 4.11101e-05 +I0408 08:45:19.658248 31856 solver.cpp:218] Iteration 7560 (2.76239 iter/s, 4.34407s/12 iters), loss = 5.27054 +I0408 08:45:19.658303 31856 solver.cpp:237] Train net output #0: loss = 5.27054 (* 1 = 5.27054 loss) +I0408 08:45:19.658315 31856 sgd_solver.cpp:105] Iteration 7560, lr = 4.06037e-05 +I0408 08:45:24.679785 31856 solver.cpp:218] Iteration 7572 (2.38981 iter/s, 5.02133s/12 iters), loss = 5.2807 +I0408 08:45:24.679841 31856 solver.cpp:237] Train net output #0: loss = 5.2807 (* 1 = 5.2807 loss) +I0408 08:45:24.679855 31856 sgd_solver.cpp:105] Iteration 7572, lr = 4.01035e-05 +I0408 08:45:29.629496 31856 solver.cpp:218] Iteration 7584 (2.42448 iter/s, 4.94951s/12 iters), loss = 5.28763 +I0408 08:45:29.629612 31856 solver.cpp:237] Train net output #0: loss = 5.28763 (* 1 = 5.28763 loss) +I0408 08:45:29.629624 31856 sgd_solver.cpp:105] Iteration 7584, lr = 3.96095e-05 +I0408 08:45:30.285974 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:45:34.665886 31856 solver.cpp:218] Iteration 7596 (2.38278 iter/s, 5.03613s/12 iters), loss = 5.27923 +I0408 08:45:34.665930 31856 solver.cpp:237] Train net output #0: loss = 5.27923 (* 1 = 5.27923 loss) +I0408 08:45:34.665940 31856 sgd_solver.cpp:105] Iteration 7596, lr = 3.91215e-05 +I0408 08:45:39.644840 31856 solver.cpp:218] Iteration 7608 (2.41024 iter/s, 4.97876s/12 iters), loss = 5.26302 +I0408 08:45:39.644886 31856 solver.cpp:237] Train net output #0: loss = 5.26302 (* 1 = 5.26302 loss) +I0408 08:45:39.644897 31856 sgd_solver.cpp:105] Iteration 7608, lr = 3.86396e-05 +I0408 08:45:44.636204 31856 solver.cpp:218] Iteration 7620 (2.40424 iter/s, 4.99117s/12 iters), loss = 5.2791 +I0408 08:45:44.636238 31856 solver.cpp:237] Train net output #0: loss = 5.2791 (* 1 = 5.2791 loss) +I0408 08:45:44.636248 31856 sgd_solver.cpp:105] Iteration 7620, lr = 3.81636e-05 +I0408 08:45:47.089852 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:45:49.664572 31856 solver.cpp:218] Iteration 7632 (2.38655 iter/s, 5.02818s/12 iters), loss = 5.27995 +I0408 08:45:49.664614 31856 solver.cpp:237] Train net output #0: loss = 5.27995 (* 1 = 5.27995 loss) +I0408 08:45:49.664628 31856 sgd_solver.cpp:105] Iteration 7632, lr = 3.76935e-05 +I0408 08:45:54.659454 31856 solver.cpp:218] Iteration 7644 (2.40255 iter/s, 4.99469s/12 iters), loss = 5.28318 +I0408 08:45:54.659495 31856 solver.cpp:237] Train net output #0: loss = 5.28318 (* 1 = 5.28318 loss) +I0408 08:45:54.659507 31856 sgd_solver.cpp:105] Iteration 7644, lr = 3.72291e-05 +I0408 08:45:56.670603 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 08:45:59.647850 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 08:46:01.990314 31856 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 08:46:01.990334 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:46:03.455940 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:46:06.468837 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:46:06.468883 31856 solver.cpp:397] Test net output #1: loss = 5.28741 (* 1 = 5.28741 loss) +I0408 08:46:08.462092 31856 solver.cpp:218] Iteration 7656 (0.869426 iter/s, 13.8022s/12 iters), loss = 5.27408 +I0408 08:46:08.462150 31856 solver.cpp:237] Train net output #0: loss = 5.27408 (* 1 = 5.27408 loss) +I0408 08:46:08.462167 31856 sgd_solver.cpp:105] Iteration 7656, lr = 3.67705e-05 +I0408 08:46:13.499574 31856 solver.cpp:218] Iteration 7668 (2.38224 iter/s, 5.03728s/12 iters), loss = 5.26723 +I0408 08:46:13.499614 31856 solver.cpp:237] Train net output #0: loss = 5.26723 (* 1 = 5.26723 loss) +I0408 08:46:13.499627 31856 sgd_solver.cpp:105] Iteration 7668, lr = 3.63175e-05 +I0408 08:46:18.498876 31856 solver.cpp:218] Iteration 7680 (2.40043 iter/s, 4.99911s/12 iters), loss = 5.26314 +I0408 08:46:18.498922 31856 solver.cpp:237] Train net output #0: loss = 5.26314 (* 1 = 5.26314 loss) +I0408 08:46:18.498934 31856 sgd_solver.cpp:105] Iteration 7680, lr = 3.58701e-05 +I0408 08:46:21.293712 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:46:23.466922 31856 solver.cpp:218] Iteration 7692 (2.41553 iter/s, 4.96785s/12 iters), loss = 5.27055 +I0408 08:46:23.466969 31856 solver.cpp:237] Train net output #0: loss = 5.27055 (* 1 = 5.27055 loss) +I0408 08:46:23.466979 31856 sgd_solver.cpp:105] Iteration 7692, lr = 3.54283e-05 +I0408 08:46:28.505157 31856 solver.cpp:218] Iteration 7704 (2.38188 iter/s, 5.03804s/12 iters), loss = 5.25349 +I0408 08:46:28.505201 31856 solver.cpp:237] Train net output #0: loss = 5.25349 (* 1 = 5.25349 loss) +I0408 08:46:28.505213 31856 sgd_solver.cpp:105] Iteration 7704, lr = 3.49918e-05 +I0408 08:46:33.510476 31856 solver.cpp:218] Iteration 7716 (2.39754 iter/s, 5.00513s/12 iters), loss = 5.2545 +I0408 08:46:33.511895 31856 solver.cpp:237] Train net output #0: loss = 5.2545 (* 1 = 5.2545 loss) +I0408 08:46:33.511906 31856 sgd_solver.cpp:105] Iteration 7716, lr = 3.45608e-05 +I0408 08:46:38.538281 31856 solver.cpp:218] Iteration 7728 (2.38747 iter/s, 5.02624s/12 iters), loss = 5.25733 +I0408 08:46:38.538327 31856 solver.cpp:237] Train net output #0: loss = 5.25733 (* 1 = 5.25733 loss) +I0408 08:46:38.538339 31856 sgd_solver.cpp:105] Iteration 7728, lr = 3.4135e-05 +I0408 08:46:43.552760 31856 solver.cpp:218] Iteration 7740 (2.39316 iter/s, 5.01428s/12 iters), loss = 5.29873 +I0408 08:46:43.552806 31856 solver.cpp:237] Train net output #0: loss = 5.29873 (* 1 = 5.29873 loss) +I0408 08:46:43.552817 31856 sgd_solver.cpp:105] Iteration 7740, lr = 3.37145e-05 +I0408 08:46:48.138260 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 08:46:51.142380 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 08:46:53.471781 31856 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 08:46:53.471808 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:46:54.780815 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:46:57.828110 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:46:57.828156 31856 solver.cpp:397] Test net output #1: loss = 5.28703 (* 1 = 5.28703 loss) +I0408 08:46:57.918592 31856 solver.cpp:218] Iteration 7752 (0.835342 iter/s, 14.3654s/12 iters), loss = 5.26764 +I0408 08:46:57.918660 31856 solver.cpp:237] Train net output #0: loss = 5.26764 (* 1 = 5.26764 loss) +I0408 08:46:57.918676 31856 sgd_solver.cpp:105] Iteration 7752, lr = 3.32992e-05 +I0408 08:47:02.132846 31856 solver.cpp:218] Iteration 7764 (2.84761 iter/s, 4.21407s/12 iters), loss = 5.27559 +I0408 08:47:02.132894 31856 solver.cpp:237] Train net output #0: loss = 5.27559 (* 1 = 5.27559 loss) +I0408 08:47:02.132905 31856 sgd_solver.cpp:105] Iteration 7764, lr = 3.2889e-05 +I0408 08:47:07.056807 31856 solver.cpp:218] Iteration 7776 (2.43716 iter/s, 4.92377s/12 iters), loss = 5.27074 +I0408 08:47:07.056937 31856 solver.cpp:237] Train net output #0: loss = 5.27074 (* 1 = 5.27074 loss) +I0408 08:47:07.056948 31856 sgd_solver.cpp:105] Iteration 7776, lr = 3.24838e-05 +I0408 08:47:11.971122 31856 solver.cpp:218] Iteration 7788 (2.44198 iter/s, 4.91404s/12 iters), loss = 5.24541 +I0408 08:47:11.971170 31856 solver.cpp:237] Train net output #0: loss = 5.24541 (* 1 = 5.24541 loss) +I0408 08:47:11.971181 31856 sgd_solver.cpp:105] Iteration 7788, lr = 3.20837e-05 +I0408 08:47:11.979290 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:47:16.903786 31856 solver.cpp:218] Iteration 7800 (2.43286 iter/s, 4.93247s/12 iters), loss = 5.26898 +I0408 08:47:16.903838 31856 solver.cpp:237] Train net output #0: loss = 5.26898 (* 1 = 5.26898 loss) +I0408 08:47:16.903851 31856 sgd_solver.cpp:105] Iteration 7800, lr = 3.16884e-05 +I0408 08:47:21.984059 31856 solver.cpp:218] Iteration 7812 (2.36217 iter/s, 5.08006s/12 iters), loss = 5.29511 +I0408 08:47:21.984107 31856 solver.cpp:237] Train net output #0: loss = 5.29511 (* 1 = 5.29511 loss) +I0408 08:47:21.984119 31856 sgd_solver.cpp:105] Iteration 7812, lr = 3.12981e-05 +I0408 08:47:26.996714 31856 solver.cpp:218] Iteration 7824 (2.39404 iter/s, 5.01245s/12 iters), loss = 5.27339 +I0408 08:47:26.996759 31856 solver.cpp:237] Train net output #0: loss = 5.27339 (* 1 = 5.27339 loss) +I0408 08:47:26.996768 31856 sgd_solver.cpp:105] Iteration 7824, lr = 3.09125e-05 +I0408 08:47:31.992081 31856 solver.cpp:218] Iteration 7836 (2.40232 iter/s, 4.99517s/12 iters), loss = 5.27355 +I0408 08:47:31.992130 31856 solver.cpp:237] Train net output #0: loss = 5.27355 (* 1 = 5.27355 loss) +I0408 08:47:31.992141 31856 sgd_solver.cpp:105] Iteration 7836, lr = 3.05317e-05 +I0408 08:47:36.942806 31856 solver.cpp:218] Iteration 7848 (2.42398 iter/s, 4.95053s/12 iters), loss = 5.25766 +I0408 08:47:36.942852 31856 solver.cpp:237] Train net output #0: loss = 5.25766 (* 1 = 5.25766 loss) +I0408 08:47:36.942863 31856 sgd_solver.cpp:105] Iteration 7848, lr = 3.01556e-05 +I0408 08:47:39.024211 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 08:47:42.048595 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 08:47:45.225278 31856 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 08:47:45.225303 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:47:46.500293 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:47:49.639971 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:47:49.640015 31856 solver.cpp:397] Test net output #1: loss = 5.2869 (* 1 = 5.2869 loss) +I0408 08:47:51.547420 31856 solver.cpp:218] Iteration 7860 (0.821684 iter/s, 14.6042s/12 iters), loss = 5.24296 +I0408 08:47:51.547463 31856 solver.cpp:237] Train net output #0: loss = 5.24296 (* 1 = 5.24296 loss) +I0408 08:47:51.547475 31856 sgd_solver.cpp:105] Iteration 7860, lr = 2.97841e-05 +I0408 08:47:56.521724 31856 solver.cpp:218] Iteration 7872 (2.41249 iter/s, 4.97411s/12 iters), loss = 5.26503 +I0408 08:47:56.521765 31856 solver.cpp:237] Train net output #0: loss = 5.26503 (* 1 = 5.26503 loss) +I0408 08:47:56.521778 31856 sgd_solver.cpp:105] Iteration 7872, lr = 2.94172e-05 +I0408 08:48:01.524030 31856 solver.cpp:218] Iteration 7884 (2.39899 iter/s, 5.00212s/12 iters), loss = 5.2568 +I0408 08:48:01.524075 31856 solver.cpp:237] Train net output #0: loss = 5.2568 (* 1 = 5.2568 loss) +I0408 08:48:01.524086 31856 sgd_solver.cpp:105] Iteration 7884, lr = 2.90548e-05 +I0408 08:48:03.612108 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:48:06.490579 31856 solver.cpp:218] Iteration 7896 (2.41626 iter/s, 4.96636s/12 iters), loss = 5.27637 +I0408 08:48:06.490614 31856 solver.cpp:237] Train net output #0: loss = 5.27637 (* 1 = 5.27637 loss) +I0408 08:48:06.490623 31856 sgd_solver.cpp:105] Iteration 7896, lr = 2.86969e-05 +I0408 08:48:11.894500 31856 solver.cpp:218] Iteration 7908 (2.22069 iter/s, 5.40372s/12 iters), loss = 5.26969 +I0408 08:48:11.894644 31856 solver.cpp:237] Train net output #0: loss = 5.26969 (* 1 = 5.26969 loss) +I0408 08:48:11.894656 31856 sgd_solver.cpp:105] Iteration 7908, lr = 2.83434e-05 +I0408 08:48:16.918831 31856 solver.cpp:218] Iteration 7920 (2.38851 iter/s, 5.02404s/12 iters), loss = 5.28534 +I0408 08:48:16.918877 31856 solver.cpp:237] Train net output #0: loss = 5.28534 (* 1 = 5.28534 loss) +I0408 08:48:16.918887 31856 sgd_solver.cpp:105] Iteration 7920, lr = 2.79942e-05 +I0408 08:48:21.877888 31856 solver.cpp:218] Iteration 7932 (2.41991 iter/s, 4.95886s/12 iters), loss = 5.26237 +I0408 08:48:21.877933 31856 solver.cpp:237] Train net output #0: loss = 5.26237 (* 1 = 5.26237 loss) +I0408 08:48:21.877944 31856 sgd_solver.cpp:105] Iteration 7932, lr = 2.76494e-05 +I0408 08:48:26.903316 31856 solver.cpp:218] Iteration 7944 (2.38795 iter/s, 5.02523s/12 iters), loss = 5.26686 +I0408 08:48:26.903362 31856 solver.cpp:237] Train net output #0: loss = 5.26686 (* 1 = 5.26686 loss) +I0408 08:48:26.903373 31856 sgd_solver.cpp:105] Iteration 7944, lr = 2.73088e-05 +I0408 08:48:31.412077 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 08:48:34.443064 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 08:48:36.837735 31856 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 08:48:36.837761 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:48:38.115895 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:48:41.291661 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:48:41.291704 31856 solver.cpp:397] Test net output #1: loss = 5.28741 (* 1 = 5.28741 loss) +I0408 08:48:41.381744 31856 solver.cpp:218] Iteration 7956 (0.828845 iter/s, 14.478s/12 iters), loss = 5.27502 +I0408 08:48:41.381794 31856 solver.cpp:237] Train net output #0: loss = 5.27502 (* 1 = 5.27502 loss) +I0408 08:48:41.381805 31856 sgd_solver.cpp:105] Iteration 7956, lr = 2.69723e-05 +I0408 08:48:45.636000 31856 solver.cpp:218] Iteration 7968 (2.82082 iter/s, 4.25408s/12 iters), loss = 5.27444 +I0408 08:48:45.636108 31856 solver.cpp:237] Train net output #0: loss = 5.27444 (* 1 = 5.27444 loss) +I0408 08:48:45.636121 31856 sgd_solver.cpp:105] Iteration 7968, lr = 2.66401e-05 +I0408 08:48:50.625751 31856 solver.cpp:218] Iteration 7980 (2.40505 iter/s, 4.98949s/12 iters), loss = 5.25334 +I0408 08:48:50.625802 31856 solver.cpp:237] Train net output #0: loss = 5.25334 (* 1 = 5.25334 loss) +I0408 08:48:50.625814 31856 sgd_solver.cpp:105] Iteration 7980, lr = 2.63119e-05 +I0408 08:48:54.848601 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:48:55.566182 31856 solver.cpp:218] Iteration 7992 (2.42903 iter/s, 4.94024s/12 iters), loss = 5.25601 +I0408 08:48:55.566226 31856 solver.cpp:237] Train net output #0: loss = 5.25601 (* 1 = 5.25601 loss) +I0408 08:48:55.566237 31856 sgd_solver.cpp:105] Iteration 7992, lr = 2.59878e-05 +I0408 08:49:00.573817 31856 solver.cpp:218] Iteration 8004 (2.39644 iter/s, 5.00743s/12 iters), loss = 5.27789 +I0408 08:49:00.573875 31856 solver.cpp:237] Train net output #0: loss = 5.27789 (* 1 = 5.27789 loss) +I0408 08:49:00.573889 31856 sgd_solver.cpp:105] Iteration 8004, lr = 2.56676e-05 +I0408 08:49:05.586632 31856 solver.cpp:218] Iteration 8016 (2.39396 iter/s, 5.01261s/12 iters), loss = 5.2775 +I0408 08:49:05.586676 31856 solver.cpp:237] Train net output #0: loss = 5.2775 (* 1 = 5.2775 loss) +I0408 08:49:05.586688 31856 sgd_solver.cpp:105] Iteration 8016, lr = 2.53514e-05 +I0408 08:49:10.688979 31856 solver.cpp:218] Iteration 8028 (2.35195 iter/s, 5.10215s/12 iters), loss = 5.2951 +I0408 08:49:10.689029 31856 solver.cpp:237] Train net output #0: loss = 5.2951 (* 1 = 5.2951 loss) +I0408 08:49:10.689043 31856 sgd_solver.cpp:105] Iteration 8028, lr = 2.50391e-05 +I0408 08:49:16.024108 31856 solver.cpp:218] Iteration 8040 (2.24933 iter/s, 5.33492s/12 iters), loss = 5.26355 +I0408 08:49:16.024220 31856 solver.cpp:237] Train net output #0: loss = 5.26355 (* 1 = 5.26355 loss) +I0408 08:49:16.024230 31856 sgd_solver.cpp:105] Iteration 8040, lr = 2.47307e-05 +I0408 08:49:21.068666 31856 solver.cpp:218] Iteration 8052 (2.37893 iter/s, 5.04429s/12 iters), loss = 5.27936 +I0408 08:49:21.068717 31856 solver.cpp:237] Train net output #0: loss = 5.27936 (* 1 = 5.27936 loss) +I0408 08:49:21.068728 31856 sgd_solver.cpp:105] Iteration 8052, lr = 2.4426e-05 +I0408 08:49:23.146718 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 08:49:29.219810 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 08:49:31.549947 31856 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 08:49:31.549986 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:49:32.869027 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:49:36.093781 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:49:36.093828 31856 solver.cpp:397] Test net output #1: loss = 5.28732 (* 1 = 5.28732 loss) +I0408 08:49:38.068310 31856 solver.cpp:218] Iteration 8064 (0.705919 iter/s, 16.9991s/12 iters), loss = 5.27921 +I0408 08:49:38.068356 31856 solver.cpp:237] Train net output #0: loss = 5.27921 (* 1 = 5.27921 loss) +I0408 08:49:38.068367 31856 sgd_solver.cpp:105] Iteration 8064, lr = 2.41251e-05 +I0408 08:49:43.149144 31856 solver.cpp:218] Iteration 8076 (2.36191 iter/s, 5.08064s/12 iters), loss = 5.27575 +I0408 08:49:43.149192 31856 solver.cpp:237] Train net output #0: loss = 5.27575 (* 1 = 5.27575 loss) +I0408 08:49:43.149204 31856 sgd_solver.cpp:105] Iteration 8076, lr = 2.38279e-05 +I0408 08:49:48.158771 31856 solver.cpp:218] Iteration 8088 (2.39548 iter/s, 5.00943s/12 iters), loss = 5.26155 +I0408 08:49:48.158876 31856 solver.cpp:237] Train net output #0: loss = 5.26155 (* 1 = 5.26155 loss) +I0408 08:49:48.158890 31856 sgd_solver.cpp:105] Iteration 8088, lr = 2.35344e-05 +I0408 08:49:49.566314 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:49:53.134150 31856 solver.cpp:218] Iteration 8100 (2.412 iter/s, 4.97513s/12 iters), loss = 5.26146 +I0408 08:49:53.134196 31856 solver.cpp:237] Train net output #0: loss = 5.26146 (* 1 = 5.26146 loss) +I0408 08:49:53.134207 31856 sgd_solver.cpp:105] Iteration 8100, lr = 2.32445e-05 +I0408 08:49:58.164921 31856 solver.cpp:218] Iteration 8112 (2.38541 iter/s, 5.03058s/12 iters), loss = 5.26607 +I0408 08:49:58.164954 31856 solver.cpp:237] Train net output #0: loss = 5.26607 (* 1 = 5.26607 loss) +I0408 08:49:58.164963 31856 sgd_solver.cpp:105] Iteration 8112, lr = 2.29581e-05 +I0408 08:50:03.170632 31856 solver.cpp:218] Iteration 8124 (2.39735 iter/s, 5.00553s/12 iters), loss = 5.27074 +I0408 08:50:03.170677 31856 solver.cpp:237] Train net output #0: loss = 5.27074 (* 1 = 5.27074 loss) +I0408 08:50:03.170688 31856 sgd_solver.cpp:105] Iteration 8124, lr = 2.26753e-05 +I0408 08:50:08.123742 31856 solver.cpp:218] Iteration 8136 (2.42281 iter/s, 4.95292s/12 iters), loss = 5.28358 +I0408 08:50:08.123788 31856 solver.cpp:237] Train net output #0: loss = 5.28358 (* 1 = 5.28358 loss) +I0408 08:50:08.123800 31856 sgd_solver.cpp:105] Iteration 8136, lr = 2.2396e-05 +I0408 08:50:13.151865 31856 solver.cpp:218] Iteration 8148 (2.38667 iter/s, 5.02793s/12 iters), loss = 5.25016 +I0408 08:50:13.151916 31856 solver.cpp:237] Train net output #0: loss = 5.25016 (* 1 = 5.25016 loss) +I0408 08:50:13.151927 31856 sgd_solver.cpp:105] Iteration 8148, lr = 2.21201e-05 +I0408 08:50:17.682551 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 08:50:22.743531 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 08:50:27.235399 31856 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 08:50:27.235422 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:50:28.506871 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:50:31.700246 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:50:31.700294 31856 solver.cpp:397] Test net output #1: loss = 5.28708 (* 1 = 5.28708 loss) +I0408 08:50:31.790799 31856 solver.cpp:218] Iteration 8160 (0.643834 iter/s, 18.6384s/12 iters), loss = 5.26329 +I0408 08:50:31.790854 31856 solver.cpp:237] Train net output #0: loss = 5.26329 (* 1 = 5.26329 loss) +I0408 08:50:31.790866 31856 sgd_solver.cpp:105] Iteration 8160, lr = 2.18476e-05 +I0408 08:50:36.161566 31856 solver.cpp:218] Iteration 8172 (2.74563 iter/s, 4.37058s/12 iters), loss = 5.28575 +I0408 08:50:36.161604 31856 solver.cpp:237] Train net output #0: loss = 5.28575 (* 1 = 5.28575 loss) +I0408 08:50:36.161613 31856 sgd_solver.cpp:105] Iteration 8172, lr = 2.15785e-05 +I0408 08:50:41.189648 31856 solver.cpp:218] Iteration 8184 (2.38669 iter/s, 5.02789s/12 iters), loss = 5.2721 +I0408 08:50:41.189687 31856 solver.cpp:237] Train net output #0: loss = 5.2721 (* 1 = 5.2721 loss) +I0408 08:50:41.189695 31856 sgd_solver.cpp:105] Iteration 8184, lr = 2.13126e-05 +I0408 08:50:44.746634 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:50:46.185623 31856 solver.cpp:218] Iteration 8196 (2.40203 iter/s, 4.99578s/12 iters), loss = 5.27324 +I0408 08:50:46.185673 31856 solver.cpp:237] Train net output #0: loss = 5.27324 (* 1 = 5.27324 loss) +I0408 08:50:46.185686 31856 sgd_solver.cpp:105] Iteration 8196, lr = 2.10501e-05 +I0408 08:50:51.238514 31856 solver.cpp:218] Iteration 8208 (2.37497 iter/s, 5.05269s/12 iters), loss = 5.25733 +I0408 08:50:51.238569 31856 solver.cpp:237] Train net output #0: loss = 5.25733 (* 1 = 5.25733 loss) +I0408 08:50:51.238584 31856 sgd_solver.cpp:105] Iteration 8208, lr = 2.07908e-05 +I0408 08:50:56.301054 31856 solver.cpp:218] Iteration 8220 (2.37045 iter/s, 5.06234s/12 iters), loss = 5.26323 +I0408 08:50:56.301136 31856 solver.cpp:237] Train net output #0: loss = 5.26323 (* 1 = 5.26323 loss) +I0408 08:50:56.301148 31856 sgd_solver.cpp:105] Iteration 8220, lr = 2.05347e-05 +I0408 08:51:01.188735 31856 solver.cpp:218] Iteration 8232 (2.45526 iter/s, 4.88746s/12 iters), loss = 5.26829 +I0408 08:51:01.188776 31856 solver.cpp:237] Train net output #0: loss = 5.26829 (* 1 = 5.26829 loss) +I0408 08:51:01.188783 31856 sgd_solver.cpp:105] Iteration 8232, lr = 2.02817e-05 +I0408 08:51:06.268967 31856 solver.cpp:218] Iteration 8244 (2.36219 iter/s, 5.08004s/12 iters), loss = 5.25167 +I0408 08:51:06.269011 31856 solver.cpp:237] Train net output #0: loss = 5.25167 (* 1 = 5.25167 loss) +I0408 08:51:06.269021 31856 sgd_solver.cpp:105] Iteration 8244, lr = 2.00319e-05 +I0408 08:51:11.344231 31856 solver.cpp:218] Iteration 8256 (2.3645 iter/s, 5.07506s/12 iters), loss = 5.27196 +I0408 08:51:11.344305 31856 solver.cpp:237] Train net output #0: loss = 5.27196 (* 1 = 5.27196 loss) +I0408 08:51:11.344326 31856 sgd_solver.cpp:105] Iteration 8256, lr = 1.97851e-05 +I0408 08:51:13.356040 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 08:51:16.454377 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 08:51:20.879000 31856 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 08:51:20.879027 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:51:22.111038 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:51:25.391914 31856 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0408 08:51:25.391961 31856 solver.cpp:397] Test net output #1: loss = 5.28719 (* 1 = 5.28719 loss) +I0408 08:51:27.369757 31856 solver.cpp:218] Iteration 8268 (0.74883 iter/s, 16.025s/12 iters), loss = 5.27796 +I0408 08:51:27.369882 31856 solver.cpp:237] Train net output #0: loss = 5.27796 (* 1 = 5.27796 loss) +I0408 08:51:27.369896 31856 sgd_solver.cpp:105] Iteration 8268, lr = 1.95414e-05 +I0408 08:51:32.395354 31856 solver.cpp:218] Iteration 8280 (2.3879 iter/s, 5.02533s/12 iters), loss = 5.28487 +I0408 08:51:32.395401 31856 solver.cpp:237] Train net output #0: loss = 5.28487 (* 1 = 5.28487 loss) +I0408 08:51:32.395414 31856 sgd_solver.cpp:105] Iteration 8280, lr = 1.93006e-05 +I0408 08:51:37.397495 31856 solver.cpp:218] Iteration 8292 (2.39907 iter/s, 5.00194s/12 iters), loss = 5.2902 +I0408 08:51:37.397543 31856 solver.cpp:237] Train net output #0: loss = 5.2902 (* 1 = 5.2902 loss) +I0408 08:51:37.397554 31856 sgd_solver.cpp:105] Iteration 8292, lr = 1.90629e-05 +I0408 08:51:38.087636 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:51:42.330049 31856 solver.cpp:218] Iteration 8304 (2.43291 iter/s, 4.93236s/12 iters), loss = 5.27839 +I0408 08:51:42.330092 31856 solver.cpp:237] Train net output #0: loss = 5.27839 (* 1 = 5.27839 loss) +I0408 08:51:42.330104 31856 sgd_solver.cpp:105] Iteration 8304, lr = 1.8828e-05 +I0408 08:51:45.249523 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:51:47.412607 31856 solver.cpp:218] Iteration 8316 (2.36111 iter/s, 5.08236s/12 iters), loss = 5.26927 +I0408 08:51:47.412652 31856 solver.cpp:237] Train net output #0: loss = 5.26927 (* 1 = 5.26927 loss) +I0408 08:51:47.412664 31856 sgd_solver.cpp:105] Iteration 8316, lr = 1.85961e-05 +I0408 08:51:52.321768 31856 solver.cpp:218] Iteration 8328 (2.44451 iter/s, 4.90896s/12 iters), loss = 5.28121 +I0408 08:51:52.321817 31856 solver.cpp:237] Train net output #0: loss = 5.28121 (* 1 = 5.28121 loss) +I0408 08:51:52.321830 31856 sgd_solver.cpp:105] Iteration 8328, lr = 1.8367e-05 +I0408 08:51:57.313102 31856 solver.cpp:218] Iteration 8340 (2.40426 iter/s, 4.99114s/12 iters), loss = 5.27303 +I0408 08:51:57.313150 31856 solver.cpp:237] Train net output #0: loss = 5.27303 (* 1 = 5.27303 loss) +I0408 08:51:57.313163 31856 sgd_solver.cpp:105] Iteration 8340, lr = 1.81408e-05 +I0408 08:52:02.336320 31856 solver.cpp:218] Iteration 8352 (2.389 iter/s, 5.02302s/12 iters), loss = 5.28909 +I0408 08:52:02.336438 31856 solver.cpp:237] Train net output #0: loss = 5.28909 (* 1 = 5.28909 loss) +I0408 08:52:02.336452 31856 sgd_solver.cpp:105] Iteration 8352, lr = 1.79173e-05 +I0408 08:52:06.846696 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 08:52:10.489913 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 08:52:13.838871 31856 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 08:52:13.838898 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:52:14.990803 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:52:18.329499 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:52:18.329546 31856 solver.cpp:397] Test net output #1: loss = 5.28688 (* 1 = 5.28688 loss) +I0408 08:52:18.419768 31856 solver.cpp:218] Iteration 8364 (0.746135 iter/s, 16.0829s/12 iters), loss = 5.26542 +I0408 08:52:18.419813 31856 solver.cpp:237] Train net output #0: loss = 5.26542 (* 1 = 5.26542 loss) +I0408 08:52:18.419826 31856 sgd_solver.cpp:105] Iteration 8364, lr = 1.76966e-05 +I0408 08:52:22.872148 31856 solver.cpp:218] Iteration 8376 (2.6953 iter/s, 4.4522s/12 iters), loss = 5.26503 +I0408 08:52:22.872197 31856 solver.cpp:237] Train net output #0: loss = 5.26503 (* 1 = 5.26503 loss) +I0408 08:52:22.872211 31856 sgd_solver.cpp:105] Iteration 8376, lr = 1.74786e-05 +I0408 08:52:27.848223 31856 solver.cpp:218] Iteration 8388 (2.41163 iter/s, 4.97588s/12 iters), loss = 5.25938 +I0408 08:52:27.848269 31856 solver.cpp:237] Train net output #0: loss = 5.25938 (* 1 = 5.25938 loss) +I0408 08:52:27.848280 31856 sgd_solver.cpp:105] Iteration 8388, lr = 1.72632e-05 +I0408 08:52:30.674094 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:52:32.862841 31856 solver.cpp:218] Iteration 8400 (2.3931 iter/s, 5.01442s/12 iters), loss = 5.26411 +I0408 08:52:32.865913 31856 solver.cpp:237] Train net output #0: loss = 5.26411 (* 1 = 5.26411 loss) +I0408 08:52:32.865926 31856 sgd_solver.cpp:105] Iteration 8400, lr = 1.70506e-05 +I0408 08:52:38.032812 31856 solver.cpp:218] Iteration 8412 (2.32255 iter/s, 5.16674s/12 iters), loss = 5.2495 +I0408 08:52:38.032868 31856 solver.cpp:237] Train net output #0: loss = 5.2495 (* 1 = 5.2495 loss) +I0408 08:52:38.032881 31856 sgd_solver.cpp:105] Iteration 8412, lr = 1.68405e-05 +I0408 08:52:43.113428 31856 solver.cpp:218] Iteration 8424 (2.36202 iter/s, 5.08041s/12 iters), loss = 5.25389 +I0408 08:52:43.113473 31856 solver.cpp:237] Train net output #0: loss = 5.25389 (* 1 = 5.25389 loss) +I0408 08:52:43.113484 31856 sgd_solver.cpp:105] Iteration 8424, lr = 1.66331e-05 +I0408 08:52:48.122983 31856 solver.cpp:218] Iteration 8436 (2.39552 iter/s, 5.00935s/12 iters), loss = 5.25338 +I0408 08:52:48.123035 31856 solver.cpp:237] Train net output #0: loss = 5.25338 (* 1 = 5.25338 loss) +I0408 08:52:48.123047 31856 sgd_solver.cpp:105] Iteration 8436, lr = 1.64282e-05 +I0408 08:52:53.110321 31856 solver.cpp:218] Iteration 8448 (2.40619 iter/s, 4.98714s/12 iters), loss = 5.29528 +I0408 08:52:53.110364 31856 solver.cpp:237] Train net output #0: loss = 5.29528 (* 1 = 5.29528 loss) +I0408 08:52:53.110374 31856 sgd_solver.cpp:105] Iteration 8448, lr = 1.62258e-05 +I0408 08:52:58.053081 31856 solver.cpp:218] Iteration 8460 (2.42789 iter/s, 4.94257s/12 iters), loss = 5.27318 +I0408 08:52:58.053124 31856 solver.cpp:237] Train net output #0: loss = 5.27318 (* 1 = 5.27318 loss) +I0408 08:52:58.053136 31856 sgd_solver.cpp:105] Iteration 8460, lr = 1.60259e-05 +I0408 08:53:00.050755 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 08:53:03.082363 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 08:53:05.492235 31856 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 08:53:05.492255 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:53:06.538030 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:53:09.905580 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:53:09.905618 31856 solver.cpp:397] Test net output #1: loss = 5.28689 (* 1 = 5.28689 loss) +I0408 08:53:11.870040 31856 solver.cpp:218] Iteration 8472 (0.868525 iter/s, 13.8165s/12 iters), loss = 5.2733 +I0408 08:53:11.870087 31856 solver.cpp:237] Train net output #0: loss = 5.2733 (* 1 = 5.2733 loss) +I0408 08:53:11.870097 31856 sgd_solver.cpp:105] Iteration 8472, lr = 1.58285e-05 +I0408 08:53:16.910061 31856 solver.cpp:218] Iteration 8484 (2.38103 iter/s, 5.03983s/12 iters), loss = 5.27145 +I0408 08:53:16.910097 31856 solver.cpp:237] Train net output #0: loss = 5.27145 (* 1 = 5.27145 loss) +I0408 08:53:16.910106 31856 sgd_solver.cpp:105] Iteration 8484, lr = 1.56335e-05 +I0408 08:53:21.932498 31856 solver.cpp:218] Iteration 8496 (2.38937 iter/s, 5.02225s/12 iters), loss = 5.25529 +I0408 08:53:21.932543 31856 solver.cpp:237] Train net output #0: loss = 5.25529 (* 1 = 5.25529 loss) +I0408 08:53:21.932555 31856 sgd_solver.cpp:105] Iteration 8496, lr = 1.54409e-05 +I0408 08:53:21.983283 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:53:26.978572 31856 solver.cpp:218] Iteration 8508 (2.37818 iter/s, 5.04587s/12 iters), loss = 5.2761 +I0408 08:53:26.978622 31856 solver.cpp:237] Train net output #0: loss = 5.2761 (* 1 = 5.2761 loss) +I0408 08:53:26.978633 31856 sgd_solver.cpp:105] Iteration 8508, lr = 1.52507e-05 +I0408 08:53:32.022629 31856 solver.cpp:218] Iteration 8520 (2.37913 iter/s, 5.04386s/12 iters), loss = 5.29444 +I0408 08:53:32.022665 31856 solver.cpp:237] Train net output #0: loss = 5.29444 (* 1 = 5.29444 loss) +I0408 08:53:32.022672 31856 sgd_solver.cpp:105] Iteration 8520, lr = 1.50628e-05 +I0408 08:53:37.123838 31856 solver.cpp:218] Iteration 8532 (2.35247 iter/s, 5.10102s/12 iters), loss = 5.2704 +I0408 08:53:37.123944 31856 solver.cpp:237] Train net output #0: loss = 5.2704 (* 1 = 5.2704 loss) +I0408 08:53:37.123957 31856 sgd_solver.cpp:105] Iteration 8532, lr = 1.48773e-05 +I0408 08:53:42.128823 31856 solver.cpp:218] Iteration 8544 (2.39773 iter/s, 5.00473s/12 iters), loss = 5.27256 +I0408 08:53:42.128868 31856 solver.cpp:237] Train net output #0: loss = 5.27256 (* 1 = 5.27256 loss) +I0408 08:53:42.128880 31856 sgd_solver.cpp:105] Iteration 8544, lr = 1.4694e-05 +I0408 08:53:47.077891 31856 solver.cpp:218] Iteration 8556 (2.42479 iter/s, 4.94888s/12 iters), loss = 5.2572 +I0408 08:53:47.077937 31856 solver.cpp:237] Train net output #0: loss = 5.2572 (* 1 = 5.2572 loss) +I0408 08:53:47.077948 31856 sgd_solver.cpp:105] Iteration 8556, lr = 1.4513e-05 +I0408 08:53:51.588027 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 08:53:55.989632 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 08:54:00.380049 31856 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 08:54:00.380071 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:54:01.494544 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:54:04.852289 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:54:04.852337 31856 solver.cpp:397] Test net output #1: loss = 5.28698 (* 1 = 5.28698 loss) +I0408 08:54:04.941992 31856 solver.cpp:218] Iteration 8568 (0.671759 iter/s, 17.8636s/12 iters), loss = 5.24644 +I0408 08:54:04.942041 31856 solver.cpp:237] Train net output #0: loss = 5.24644 (* 1 = 5.24644 loss) +I0408 08:54:04.942051 31856 sgd_solver.cpp:105] Iteration 8568, lr = 1.43342e-05 +I0408 08:54:09.371335 31856 solver.cpp:218] Iteration 8580 (2.70932 iter/s, 4.42916s/12 iters), loss = 5.26307 +I0408 08:54:09.371479 31856 solver.cpp:237] Train net output #0: loss = 5.26307 (* 1 = 5.26307 loss) +I0408 08:54:09.371492 31856 sgd_solver.cpp:105] Iteration 8580, lr = 1.41576e-05 +I0408 08:54:14.346295 31856 solver.cpp:218] Iteration 8592 (2.41222 iter/s, 4.97467s/12 iters), loss = 5.25045 +I0408 08:54:14.346347 31856 solver.cpp:237] Train net output #0: loss = 5.25045 (* 1 = 5.25045 loss) +I0408 08:54:14.346359 31856 sgd_solver.cpp:105] Iteration 8592, lr = 1.39832e-05 +I0408 08:54:16.549679 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:54:19.357064 31856 solver.cpp:218] Iteration 8604 (2.39494 iter/s, 5.01056s/12 iters), loss = 5.27025 +I0408 08:54:19.357111 31856 solver.cpp:237] Train net output #0: loss = 5.27025 (* 1 = 5.27025 loss) +I0408 08:54:19.357122 31856 sgd_solver.cpp:105] Iteration 8604, lr = 1.3811e-05 +I0408 08:54:24.318481 31856 solver.cpp:218] Iteration 8616 (2.41876 iter/s, 4.96122s/12 iters), loss = 5.26551 +I0408 08:54:24.318529 31856 solver.cpp:237] Train net output #0: loss = 5.26551 (* 1 = 5.26551 loss) +I0408 08:54:24.318539 31856 sgd_solver.cpp:105] Iteration 8616, lr = 1.36408e-05 +I0408 08:54:29.323014 31856 solver.cpp:218] Iteration 8628 (2.39792 iter/s, 5.00433s/12 iters), loss = 5.28581 +I0408 08:54:29.323065 31856 solver.cpp:237] Train net output #0: loss = 5.28581 (* 1 = 5.28581 loss) +I0408 08:54:29.323078 31856 sgd_solver.cpp:105] Iteration 8628, lr = 1.34728e-05 +I0408 08:54:34.239068 31856 solver.cpp:218] Iteration 8640 (2.44108 iter/s, 4.91586s/12 iters), loss = 5.26403 +I0408 08:54:34.239114 31856 solver.cpp:237] Train net output #0: loss = 5.26403 (* 1 = 5.26403 loss) +I0408 08:54:34.239125 31856 sgd_solver.cpp:105] Iteration 8640, lr = 1.33068e-05 +I0408 08:54:39.219059 31856 solver.cpp:218] Iteration 8652 (2.40974 iter/s, 4.9798s/12 iters), loss = 5.26539 +I0408 08:54:39.219106 31856 solver.cpp:237] Train net output #0: loss = 5.26539 (* 1 = 5.26539 loss) +I0408 08:54:39.219118 31856 sgd_solver.cpp:105] Iteration 8652, lr = 1.31429e-05 +I0408 08:54:44.209853 31856 solver.cpp:218] Iteration 8664 (2.40452 iter/s, 4.9906s/12 iters), loss = 5.27423 +I0408 08:54:44.209978 31856 solver.cpp:237] Train net output #0: loss = 5.27423 (* 1 = 5.27423 loss) +I0408 08:54:44.209991 31856 sgd_solver.cpp:105] Iteration 8664, lr = 1.2981e-05 +I0408 08:54:46.262665 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 08:54:52.733355 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 08:54:55.040185 31856 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 08:54:55.040210 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:54:56.073137 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:54:59.463732 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:54:59.463780 31856 solver.cpp:397] Test net output #1: loss = 5.2873 (* 1 = 5.2873 loss) +I0408 08:55:01.323647 31856 solver.cpp:218] Iteration 8676 (0.701213 iter/s, 17.1132s/12 iters), loss = 5.27521 +I0408 08:55:01.323688 31856 solver.cpp:237] Train net output #0: loss = 5.27521 (* 1 = 5.27521 loss) +I0408 08:55:01.323698 31856 sgd_solver.cpp:105] Iteration 8676, lr = 1.28211e-05 +I0408 08:55:06.409981 31856 solver.cpp:218] Iteration 8688 (2.35935 iter/s, 5.08614s/12 iters), loss = 5.26095 +I0408 08:55:06.410028 31856 solver.cpp:237] Train net output #0: loss = 5.26095 (* 1 = 5.26095 loss) +I0408 08:55:06.410039 31856 sgd_solver.cpp:105] Iteration 8688, lr = 1.26632e-05 +I0408 08:55:10.737715 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:55:11.424824 31856 solver.cpp:218] Iteration 8700 (2.39299 iter/s, 5.01464s/12 iters), loss = 5.26391 +I0408 08:55:11.424875 31856 solver.cpp:237] Train net output #0: loss = 5.26391 (* 1 = 5.26391 loss) +I0408 08:55:11.424887 31856 sgd_solver.cpp:105] Iteration 8700, lr = 1.25072e-05 +I0408 08:55:16.431349 31856 solver.cpp:218] Iteration 8712 (2.39697 iter/s, 5.00633s/12 iters), loss = 5.28038 +I0408 08:55:16.431499 31856 solver.cpp:237] Train net output #0: loss = 5.28038 (* 1 = 5.28038 loss) +I0408 08:55:16.431514 31856 sgd_solver.cpp:105] Iteration 8712, lr = 1.23531e-05 +I0408 08:55:21.427927 31856 solver.cpp:218] Iteration 8724 (2.40177 iter/s, 4.99632s/12 iters), loss = 5.28134 +I0408 08:55:21.427970 31856 solver.cpp:237] Train net output #0: loss = 5.28134 (* 1 = 5.28134 loss) +I0408 08:55:21.427981 31856 sgd_solver.cpp:105] Iteration 8724, lr = 1.22009e-05 +I0408 08:55:26.476982 31856 solver.cpp:218] Iteration 8736 (2.37675 iter/s, 5.04891s/12 iters), loss = 5.29521 +I0408 08:55:26.477027 31856 solver.cpp:237] Train net output #0: loss = 5.29521 (* 1 = 5.29521 loss) +I0408 08:55:26.477038 31856 sgd_solver.cpp:105] Iteration 8736, lr = 1.20506e-05 +I0408 08:55:31.559438 31856 solver.cpp:218] Iteration 8748 (2.36114 iter/s, 5.0823s/12 iters), loss = 5.27071 +I0408 08:55:31.559485 31856 solver.cpp:237] Train net output #0: loss = 5.27071 (* 1 = 5.27071 loss) +I0408 08:55:31.559497 31856 sgd_solver.cpp:105] Iteration 8748, lr = 1.19022e-05 +I0408 08:55:36.567903 31856 solver.cpp:218] Iteration 8760 (2.39602 iter/s, 5.00831s/12 iters), loss = 5.27712 +I0408 08:55:36.567945 31856 solver.cpp:237] Train net output #0: loss = 5.27712 (* 1 = 5.27712 loss) +I0408 08:55:36.567957 31856 sgd_solver.cpp:105] Iteration 8760, lr = 1.17555e-05 +I0408 08:55:41.077539 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 08:55:44.144997 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 08:55:46.456769 31856 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 08:55:46.456823 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:55:47.524367 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:55:51.141866 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:55:51.141916 31856 solver.cpp:397] Test net output #1: loss = 5.28736 (* 1 = 5.28736 loss) +I0408 08:55:51.232086 31856 solver.cpp:218] Iteration 8772 (0.818339 iter/s, 14.6638s/12 iters), loss = 5.28024 +I0408 08:55:51.232127 31856 solver.cpp:237] Train net output #0: loss = 5.28024 (* 1 = 5.28024 loss) +I0408 08:55:51.232137 31856 sgd_solver.cpp:105] Iteration 8772, lr = 1.16107e-05 +I0408 08:55:55.490233 31856 solver.cpp:218] Iteration 8784 (2.81822 iter/s, 4.25801s/12 iters), loss = 5.27487 +I0408 08:55:55.490275 31856 solver.cpp:237] Train net output #0: loss = 5.27487 (* 1 = 5.27487 loss) +I0408 08:55:55.490283 31856 sgd_solver.cpp:105] Iteration 8784, lr = 1.14677e-05 +I0408 08:56:00.534837 31856 solver.cpp:218] Iteration 8796 (2.37885 iter/s, 5.04445s/12 iters), loss = 5.25725 +I0408 08:56:00.534873 31856 solver.cpp:237] Train net output #0: loss = 5.25725 (* 1 = 5.25725 loss) +I0408 08:56:00.534879 31856 sgd_solver.cpp:105] Iteration 8796, lr = 1.13264e-05 +I0408 08:56:01.951273 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:56:05.417076 31856 solver.cpp:218] Iteration 8808 (2.45796 iter/s, 4.88209s/12 iters), loss = 5.26222 +I0408 08:56:05.417117 31856 solver.cpp:237] Train net output #0: loss = 5.26222 (* 1 = 5.26222 loss) +I0408 08:56:05.417127 31856 sgd_solver.cpp:105] Iteration 8808, lr = 1.11869e-05 +I0408 08:56:10.593487 31856 solver.cpp:218] Iteration 8820 (2.31828 iter/s, 5.17625s/12 iters), loss = 5.26531 +I0408 08:56:10.593533 31856 solver.cpp:237] Train net output #0: loss = 5.26531 (* 1 = 5.26531 loss) +I0408 08:56:10.593545 31856 sgd_solver.cpp:105] Iteration 8820, lr = 1.10491e-05 +I0408 08:56:15.573408 31856 solver.cpp:218] Iteration 8832 (2.40975 iter/s, 4.97977s/12 iters), loss = 5.26308 +I0408 08:56:15.573452 31856 solver.cpp:237] Train net output #0: loss = 5.26308 (* 1 = 5.26308 loss) +I0408 08:56:15.573464 31856 sgd_solver.cpp:105] Iteration 8832, lr = 1.0913e-05 +I0408 08:56:20.635355 31856 solver.cpp:218] Iteration 8844 (2.3707 iter/s, 5.06179s/12 iters), loss = 5.29705 +I0408 08:56:20.635505 31856 solver.cpp:237] Train net output #0: loss = 5.29705 (* 1 = 5.29705 loss) +I0408 08:56:20.635519 31856 sgd_solver.cpp:105] Iteration 8844, lr = 1.07785e-05 +I0408 08:56:25.650602 31856 solver.cpp:218] Iteration 8856 (2.39283 iter/s, 5.01499s/12 iters), loss = 5.256 +I0408 08:56:25.650650 31856 solver.cpp:237] Train net output #0: loss = 5.256 (* 1 = 5.256 loss) +I0408 08:56:25.650661 31856 sgd_solver.cpp:105] Iteration 8856, lr = 1.06458e-05 +I0408 08:56:30.688580 31856 solver.cpp:218] Iteration 8868 (2.38198 iter/s, 5.03782s/12 iters), loss = 5.25959 +I0408 08:56:30.688616 31856 solver.cpp:237] Train net output #0: loss = 5.25959 (* 1 = 5.25959 loss) +I0408 08:56:30.688625 31856 sgd_solver.cpp:105] Iteration 8868, lr = 1.05146e-05 +I0408 08:56:32.706318 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 08:56:36.200352 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 08:56:38.497848 31856 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 08:56:38.497871 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:56:39.493105 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:56:42.964637 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:56:42.964684 31856 solver.cpp:397] Test net output #1: loss = 5.28714 (* 1 = 5.28714 loss) +I0408 08:56:44.890081 31856 solver.cpp:218] Iteration 8880 (0.845001 iter/s, 14.2012s/12 iters), loss = 5.28003 +I0408 08:56:44.890122 31856 solver.cpp:237] Train net output #0: loss = 5.28003 (* 1 = 5.28003 loss) +I0408 08:56:44.890131 31856 sgd_solver.cpp:105] Iteration 8880, lr = 1.03851e-05 +I0408 08:56:49.914938 31856 solver.cpp:218] Iteration 8892 (2.3882 iter/s, 5.0247s/12 iters), loss = 5.27811 +I0408 08:56:49.914990 31856 solver.cpp:237] Train net output #0: loss = 5.27811 (* 1 = 5.27811 loss) +I0408 08:56:49.915001 31856 sgd_solver.cpp:105] Iteration 8892, lr = 1.02572e-05 +I0408 08:56:53.507752 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:56:54.932598 31856 solver.cpp:218] Iteration 8904 (2.39163 iter/s, 5.0175s/12 iters), loss = 5.27573 +I0408 08:56:54.932636 31856 solver.cpp:237] Train net output #0: loss = 5.27573 (* 1 = 5.27573 loss) +I0408 08:56:54.932644 31856 sgd_solver.cpp:105] Iteration 8904, lr = 1.01308e-05 +I0408 08:56:59.916484 31856 solver.cpp:218] Iteration 8916 (2.40783 iter/s, 4.98373s/12 iters), loss = 5.26429 +I0408 08:56:59.916524 31856 solver.cpp:237] Train net output #0: loss = 5.26429 (* 1 = 5.26429 loss) +I0408 08:56:59.916533 31856 sgd_solver.cpp:105] Iteration 8916, lr = 1.0006e-05 +I0408 08:57:04.932602 31856 solver.cpp:218] Iteration 8928 (2.39236 iter/s, 5.01596s/12 iters), loss = 5.26061 +I0408 08:57:04.932646 31856 solver.cpp:237] Train net output #0: loss = 5.26061 (* 1 = 5.26061 loss) +I0408 08:57:04.932655 31856 sgd_solver.cpp:105] Iteration 8928, lr = 9.88273e-06 +I0408 08:57:09.992895 31856 solver.cpp:218] Iteration 8940 (2.37148 iter/s, 5.06013s/12 iters), loss = 5.26569 +I0408 08:57:09.992945 31856 solver.cpp:237] Train net output #0: loss = 5.26569 (* 1 = 5.26569 loss) +I0408 08:57:09.992957 31856 sgd_solver.cpp:105] Iteration 8940, lr = 9.76099e-06 +I0408 08:57:15.188652 31856 solver.cpp:218] Iteration 8952 (2.30965 iter/s, 5.19559s/12 iters), loss = 5.25627 +I0408 08:57:15.188689 31856 solver.cpp:237] Train net output #0: loss = 5.25627 (* 1 = 5.25627 loss) +I0408 08:57:15.188696 31856 sgd_solver.cpp:105] Iteration 8952, lr = 9.64075e-06 +I0408 08:57:20.196198 31856 solver.cpp:218] Iteration 8964 (2.39646 iter/s, 5.00739s/12 iters), loss = 5.27683 +I0408 08:57:20.196245 31856 solver.cpp:237] Train net output #0: loss = 5.27683 (* 1 = 5.27683 loss) +I0408 08:57:20.196256 31856 sgd_solver.cpp:105] Iteration 8964, lr = 9.52198e-06 +I0408 08:57:24.708294 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 08:57:27.734350 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 08:57:30.047071 31856 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 08:57:30.047094 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:57:31.008754 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:57:34.515709 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:57:34.515748 31856 solver.cpp:397] Test net output #1: loss = 5.28722 (* 1 = 5.28722 loss) +I0408 08:57:34.605576 31856 solver.cpp:218] Iteration 8976 (0.832812 iter/s, 14.409s/12 iters), loss = 5.27655 +I0408 08:57:34.605619 31856 solver.cpp:237] Train net output #0: loss = 5.27655 (* 1 = 5.27655 loss) +I0408 08:57:34.605630 31856 sgd_solver.cpp:105] Iteration 8976, lr = 9.40468e-06 +I0408 08:57:38.836081 31856 solver.cpp:218] Iteration 8988 (2.83664 iter/s, 4.23036s/12 iters), loss = 5.28454 +I0408 08:57:38.836114 31856 solver.cpp:237] Train net output #0: loss = 5.28454 (* 1 = 5.28454 loss) +I0408 08:57:38.836122 31856 sgd_solver.cpp:105] Iteration 8988, lr = 9.28883e-06 +I0408 08:57:42.122444 31856 blocking_queue.cpp:49] Waiting for data +I0408 08:57:43.831961 31856 solver.cpp:218] Iteration 9000 (2.40205 iter/s, 4.99572s/12 iters), loss = 5.2885 +I0408 08:57:43.832017 31856 solver.cpp:237] Train net output #0: loss = 5.2885 (* 1 = 5.2885 loss) +I0408 08:57:43.832031 31856 sgd_solver.cpp:105] Iteration 9000, lr = 9.1744e-06 +I0408 08:57:44.511685 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:57:48.786942 31856 solver.cpp:218] Iteration 9012 (2.42189 iter/s, 4.95481s/12 iters), loss = 5.28496 +I0408 08:57:48.786988 31856 solver.cpp:237] Train net output #0: loss = 5.28496 (* 1 = 5.28496 loss) +I0408 08:57:48.786999 31856 sgd_solver.cpp:105] Iteration 9012, lr = 9.06138e-06 +I0408 08:57:53.783836 31856 solver.cpp:218] Iteration 9024 (2.40157 iter/s, 4.99673s/12 iters), loss = 5.26387 +I0408 08:57:53.783890 31856 solver.cpp:237] Train net output #0: loss = 5.26387 (* 1 = 5.26387 loss) +I0408 08:57:53.783900 31856 sgd_solver.cpp:105] Iteration 9024, lr = 8.94976e-06 +I0408 08:57:58.768981 31856 solver.cpp:218] Iteration 9036 (2.40723 iter/s, 4.98497s/12 iters), loss = 5.27226 +I0408 08:57:58.769114 31856 solver.cpp:237] Train net output #0: loss = 5.27226 (* 1 = 5.27226 loss) +I0408 08:57:58.769129 31856 sgd_solver.cpp:105] Iteration 9036, lr = 8.83951e-06 +I0408 08:58:03.701268 31856 solver.cpp:218] Iteration 9048 (2.43307 iter/s, 4.93205s/12 iters), loss = 5.27474 +I0408 08:58:03.701313 31856 solver.cpp:237] Train net output #0: loss = 5.27474 (* 1 = 5.27474 loss) +I0408 08:58:03.701324 31856 sgd_solver.cpp:105] Iteration 9048, lr = 8.73062e-06 +I0408 08:58:08.640205 31856 solver.cpp:218] Iteration 9060 (2.42975 iter/s, 4.93878s/12 iters), loss = 5.29116 +I0408 08:58:08.640250 31856 solver.cpp:237] Train net output #0: loss = 5.29116 (* 1 = 5.29116 loss) +I0408 08:58:08.640264 31856 sgd_solver.cpp:105] Iteration 9060, lr = 8.62306e-06 +I0408 08:58:13.994189 31856 solver.cpp:218] Iteration 9072 (2.24139 iter/s, 5.35381s/12 iters), loss = 5.26795 +I0408 08:58:13.994237 31856 solver.cpp:237] Train net output #0: loss = 5.26795 (* 1 = 5.26795 loss) +I0408 08:58:13.994249 31856 sgd_solver.cpp:105] Iteration 9072, lr = 8.51684e-06 +I0408 08:58:16.037851 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 08:58:19.076822 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 08:58:21.406308 31856 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 08:58:21.406333 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:58:22.318631 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:58:25.874812 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:58:25.874855 31856 solver.cpp:397] Test net output #1: loss = 5.28741 (* 1 = 5.28741 loss) +I0408 08:58:27.836671 31856 solver.cpp:218] Iteration 9084 (0.866919 iter/s, 13.8421s/12 iters), loss = 5.25864 +I0408 08:58:27.836719 31856 solver.cpp:237] Train net output #0: loss = 5.25864 (* 1 = 5.25864 loss) +I0408 08:58:27.836730 31856 sgd_solver.cpp:105] Iteration 9084, lr = 8.41192e-06 +I0408 08:58:33.019454 31856 solver.cpp:218] Iteration 9096 (2.31543 iter/s, 5.18262s/12 iters), loss = 5.26389 +I0408 08:58:33.019569 31856 solver.cpp:237] Train net output #0: loss = 5.26389 (* 1 = 5.26389 loss) +I0408 08:58:33.019578 31856 sgd_solver.cpp:105] Iteration 9096, lr = 8.3083e-06 +I0408 08:58:35.969852 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:58:38.041662 31856 solver.cpp:218] Iteration 9108 (2.3895 iter/s, 5.02198s/12 iters), loss = 5.26132 +I0408 08:58:38.041695 31856 solver.cpp:237] Train net output #0: loss = 5.26132 (* 1 = 5.26132 loss) +I0408 08:58:38.041703 31856 sgd_solver.cpp:105] Iteration 9108, lr = 8.20595e-06 +I0408 08:58:43.058965 31856 solver.cpp:218] Iteration 9120 (2.3918 iter/s, 5.01715s/12 iters), loss = 5.24945 +I0408 08:58:43.059000 31856 solver.cpp:237] Train net output #0: loss = 5.24945 (* 1 = 5.24945 loss) +I0408 08:58:43.059008 31856 sgd_solver.cpp:105] Iteration 9120, lr = 8.10486e-06 +I0408 08:58:48.071537 31856 solver.cpp:218] Iteration 9132 (2.39405 iter/s, 5.01242s/12 iters), loss = 5.25006 +I0408 08:58:48.071571 31856 solver.cpp:237] Train net output #0: loss = 5.25006 (* 1 = 5.25006 loss) +I0408 08:58:48.071579 31856 sgd_solver.cpp:105] Iteration 9132, lr = 8.00502e-06 +I0408 08:58:52.980702 31856 solver.cpp:218] Iteration 9144 (2.44448 iter/s, 4.90902s/12 iters), loss = 5.25822 +I0408 08:58:52.980738 31856 solver.cpp:237] Train net output #0: loss = 5.25822 (* 1 = 5.25822 loss) +I0408 08:58:52.980749 31856 sgd_solver.cpp:105] Iteration 9144, lr = 7.9064e-06 +I0408 08:58:57.982769 31856 solver.cpp:218] Iteration 9156 (2.39908 iter/s, 5.00191s/12 iters), loss = 5.28851 +I0408 08:58:57.982811 31856 solver.cpp:237] Train net output #0: loss = 5.28851 (* 1 = 5.28851 loss) +I0408 08:58:57.982823 31856 sgd_solver.cpp:105] Iteration 9156, lr = 7.80901e-06 +I0408 08:59:03.202567 31856 solver.cpp:218] Iteration 9168 (2.29901 iter/s, 5.21963s/12 iters), loss = 5.27189 +I0408 08:59:03.202700 31856 solver.cpp:237] Train net output #0: loss = 5.27189 (* 1 = 5.27189 loss) +I0408 08:59:03.202714 31856 sgd_solver.cpp:105] Iteration 9168, lr = 7.71281e-06 +I0408 08:59:07.886910 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 08:59:11.815214 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 08:59:14.196368 31856 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 08:59:14.196394 31856 net.cpp:676] Ignoring source layer train-data +I0408 08:59:15.067965 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:59:18.672610 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 08:59:18.672657 31856 solver.cpp:397] Test net output #1: loss = 5.28768 (* 1 = 5.28768 loss) +I0408 08:59:18.762990 31856 solver.cpp:218] Iteration 9180 (0.771211 iter/s, 15.5599s/12 iters), loss = 5.27377 +I0408 08:59:18.763046 31856 solver.cpp:237] Train net output #0: loss = 5.27377 (* 1 = 5.27377 loss) +I0408 08:59:18.763059 31856 sgd_solver.cpp:105] Iteration 9180, lr = 7.6178e-06 +I0408 08:59:23.025578 31856 solver.cpp:218] Iteration 9192 (2.8153 iter/s, 4.26243s/12 iters), loss = 5.27354 +I0408 08:59:23.025624 31856 solver.cpp:237] Train net output #0: loss = 5.27354 (* 1 = 5.27354 loss) +I0408 08:59:23.025635 31856 sgd_solver.cpp:105] Iteration 9192, lr = 7.52395e-06 +I0408 08:59:28.032235 31856 solver.cpp:218] Iteration 9204 (2.39689 iter/s, 5.00649s/12 iters), loss = 5.26429 +I0408 08:59:28.032280 31856 solver.cpp:237] Train net output #0: loss = 5.26429 (* 1 = 5.26429 loss) +I0408 08:59:28.032294 31856 sgd_solver.cpp:105] Iteration 9204, lr = 7.43127e-06 +I0408 08:59:28.111913 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 08:59:33.047488 31856 solver.cpp:218] Iteration 9216 (2.39278 iter/s, 5.01509s/12 iters), loss = 5.277 +I0408 08:59:33.047535 31856 solver.cpp:237] Train net output #0: loss = 5.277 (* 1 = 5.277 loss) +I0408 08:59:33.047546 31856 sgd_solver.cpp:105] Iteration 9216, lr = 7.33972e-06 +I0408 08:59:38.022394 31856 solver.cpp:218] Iteration 9228 (2.41219 iter/s, 4.97474s/12 iters), loss = 5.28558 +I0408 08:59:38.022537 31856 solver.cpp:237] Train net output #0: loss = 5.28558 (* 1 = 5.28558 loss) +I0408 08:59:38.022550 31856 sgd_solver.cpp:105] Iteration 9228, lr = 7.24931e-06 +I0408 08:59:43.066913 31856 solver.cpp:218] Iteration 9240 (2.37894 iter/s, 5.04426s/12 iters), loss = 5.26094 +I0408 08:59:43.066962 31856 solver.cpp:237] Train net output #0: loss = 5.26094 (* 1 = 5.26094 loss) +I0408 08:59:43.066973 31856 sgd_solver.cpp:105] Iteration 9240, lr = 7.16e-06 +I0408 08:59:48.095489 31856 solver.cpp:218] Iteration 9252 (2.38644 iter/s, 5.0284s/12 iters), loss = 5.27424 +I0408 08:59:48.095535 31856 solver.cpp:237] Train net output #0: loss = 5.27424 (* 1 = 5.27424 loss) +I0408 08:59:48.095546 31856 sgd_solver.cpp:105] Iteration 9252, lr = 7.0718e-06 +I0408 08:59:53.124303 31856 solver.cpp:218] Iteration 9264 (2.38633 iter/s, 5.02865s/12 iters), loss = 5.26008 +I0408 08:59:53.124347 31856 solver.cpp:237] Train net output #0: loss = 5.26008 (* 1 = 5.26008 loss) +I0408 08:59:53.124358 31856 sgd_solver.cpp:105] Iteration 9264, lr = 6.98468e-06 +I0408 08:59:58.079828 31856 solver.cpp:218] Iteration 9276 (2.42162 iter/s, 4.95536s/12 iters), loss = 5.24941 +I0408 08:59:58.079870 31856 solver.cpp:237] Train net output #0: loss = 5.24941 (* 1 = 5.24941 loss) +I0408 08:59:58.079881 31856 sgd_solver.cpp:105] Iteration 9276, lr = 6.89864e-06 +I0408 09:00:00.109980 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 09:00:03.296897 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 09:00:05.641863 31856 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 09:00:05.641893 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:00:06.466164 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:00:10.119437 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:00:10.119522 31856 solver.cpp:397] Test net output #1: loss = 5.2872 (* 1 = 5.2872 loss) +I0408 09:00:12.086474 31856 solver.cpp:218] Iteration 9288 (0.856759 iter/s, 14.0063s/12 iters), loss = 5.2656 +I0408 09:00:12.086519 31856 solver.cpp:237] Train net output #0: loss = 5.2656 (* 1 = 5.2656 loss) +I0408 09:00:12.086530 31856 sgd_solver.cpp:105] Iteration 9288, lr = 6.81366e-06 +I0408 09:00:17.238180 31856 solver.cpp:218] Iteration 9300 (2.3294 iter/s, 5.15154s/12 iters), loss = 5.25134 +I0408 09:00:17.238216 31856 solver.cpp:237] Train net output #0: loss = 5.25134 (* 1 = 5.25134 loss) +I0408 09:00:17.238225 31856 sgd_solver.cpp:105] Iteration 9300, lr = 6.72972e-06 +I0408 09:00:19.457482 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:00:22.278131 31856 solver.cpp:218] Iteration 9312 (2.38105 iter/s, 5.03979s/12 iters), loss = 5.27227 +I0408 09:00:22.278170 31856 solver.cpp:237] Train net output #0: loss = 5.27227 (* 1 = 5.27227 loss) +I0408 09:00:22.278179 31856 sgd_solver.cpp:105] Iteration 9312, lr = 6.64682e-06 +I0408 09:00:27.272737 31856 solver.cpp:218] Iteration 9324 (2.40267 iter/s, 4.99444s/12 iters), loss = 5.27901 +I0408 09:00:27.272773 31856 solver.cpp:237] Train net output #0: loss = 5.27901 (* 1 = 5.27901 loss) +I0408 09:00:27.272781 31856 sgd_solver.cpp:105] Iteration 9324, lr = 6.56494e-06 +I0408 09:00:32.317744 31856 solver.cpp:218] Iteration 9336 (2.37867 iter/s, 5.04484s/12 iters), loss = 5.28583 +I0408 09:00:32.317778 31856 solver.cpp:237] Train net output #0: loss = 5.28583 (* 1 = 5.28583 loss) +I0408 09:00:32.317786 31856 sgd_solver.cpp:105] Iteration 9336, lr = 6.48407e-06 +I0408 09:00:37.308511 31856 solver.cpp:218] Iteration 9348 (2.40452 iter/s, 4.99061s/12 iters), loss = 5.27109 +I0408 09:00:37.308545 31856 solver.cpp:237] Train net output #0: loss = 5.27109 (* 1 = 5.27109 loss) +I0408 09:00:37.308553 31856 sgd_solver.cpp:105] Iteration 9348, lr = 6.40419e-06 +I0408 09:00:42.355978 31856 solver.cpp:218] Iteration 9360 (2.37751 iter/s, 5.04731s/12 iters), loss = 5.27066 +I0408 09:00:42.356102 31856 solver.cpp:237] Train net output #0: loss = 5.27066 (* 1 = 5.27066 loss) +I0408 09:00:42.356117 31856 sgd_solver.cpp:105] Iteration 9360, lr = 6.3253e-06 +I0408 09:00:47.267294 31856 solver.cpp:218] Iteration 9372 (2.44346 iter/s, 4.91107s/12 iters), loss = 5.27286 +I0408 09:00:47.267343 31856 solver.cpp:237] Train net output #0: loss = 5.27286 (* 1 = 5.27286 loss) +I0408 09:00:47.267354 31856 sgd_solver.cpp:105] Iteration 9372, lr = 6.24738e-06 +I0408 09:00:51.632822 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 09:00:54.673830 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 09:00:56.978931 31856 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 09:00:56.978951 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:00:57.683883 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:01:01.344441 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:01:01.344489 31856 solver.cpp:397] Test net output #1: loss = 5.28724 (* 1 = 5.28724 loss) +I0408 09:01:01.434633 31856 solver.cpp:218] Iteration 9384 (0.847042 iter/s, 14.167s/12 iters), loss = 5.27746 +I0408 09:01:01.434685 31856 solver.cpp:237] Train net output #0: loss = 5.27746 (* 1 = 5.27746 loss) +I0408 09:01:01.434696 31856 sgd_solver.cpp:105] Iteration 9384, lr = 6.17042e-06 +I0408 09:01:05.711956 31856 solver.cpp:218] Iteration 9396 (2.8056 iter/s, 4.27716s/12 iters), loss = 5.26684 +I0408 09:01:05.712005 31856 solver.cpp:237] Train net output #0: loss = 5.26684 (* 1 = 5.26684 loss) +I0408 09:01:05.712018 31856 sgd_solver.cpp:105] Iteration 9396, lr = 6.0944e-06 +I0408 09:01:10.092221 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:01:10.753863 31856 solver.cpp:218] Iteration 9408 (2.38014 iter/s, 5.04172s/12 iters), loss = 5.26801 +I0408 09:01:10.753911 31856 solver.cpp:237] Train net output #0: loss = 5.26801 (* 1 = 5.26801 loss) +I0408 09:01:10.753922 31856 sgd_solver.cpp:105] Iteration 9408, lr = 6.01933e-06 +I0408 09:01:15.721993 31856 solver.cpp:218] Iteration 9420 (2.41548 iter/s, 4.96796s/12 iters), loss = 5.27607 +I0408 09:01:15.722113 31856 solver.cpp:237] Train net output #0: loss = 5.27607 (* 1 = 5.27607 loss) +I0408 09:01:15.722123 31856 sgd_solver.cpp:105] Iteration 9420, lr = 5.94518e-06 +I0408 09:01:20.757194 31856 solver.cpp:218] Iteration 9432 (2.38334 iter/s, 5.03496s/12 iters), loss = 5.28352 +I0408 09:01:20.757238 31856 solver.cpp:237] Train net output #0: loss = 5.28352 (* 1 = 5.28352 loss) +I0408 09:01:20.757248 31856 sgd_solver.cpp:105] Iteration 9432, lr = 5.87194e-06 +I0408 09:01:25.781625 31856 solver.cpp:218] Iteration 9444 (2.38841 iter/s, 5.02426s/12 iters), loss = 5.2866 +I0408 09:01:25.781673 31856 solver.cpp:237] Train net output #0: loss = 5.2866 (* 1 = 5.2866 loss) +I0408 09:01:25.781685 31856 sgd_solver.cpp:105] Iteration 9444, lr = 5.7996e-06 +I0408 09:01:30.809556 31856 solver.cpp:218] Iteration 9456 (2.38675 iter/s, 5.02776s/12 iters), loss = 5.26484 +I0408 09:01:30.809605 31856 solver.cpp:237] Train net output #0: loss = 5.26484 (* 1 = 5.26484 loss) +I0408 09:01:30.809617 31856 sgd_solver.cpp:105] Iteration 9456, lr = 5.72816e-06 +I0408 09:01:35.805493 31856 solver.cpp:218] Iteration 9468 (2.40204 iter/s, 4.99576s/12 iters), loss = 5.27829 +I0408 09:01:35.805544 31856 solver.cpp:237] Train net output #0: loss = 5.27829 (* 1 = 5.27829 loss) +I0408 09:01:35.805557 31856 sgd_solver.cpp:105] Iteration 9468, lr = 5.65759e-06 +I0408 09:01:40.828867 31856 solver.cpp:218] Iteration 9480 (2.38892 iter/s, 5.0232s/12 iters), loss = 5.27684 +I0408 09:01:40.828915 31856 solver.cpp:237] Train net output #0: loss = 5.27684 (* 1 = 5.27684 loss) +I0408 09:01:40.828927 31856 sgd_solver.cpp:105] Iteration 9480, lr = 5.5879e-06 +I0408 09:01:42.989866 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 09:01:45.999363 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 09:01:48.320194 31856 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 09:01:48.320216 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:01:49.055205 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:01:52.781108 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:01:52.781152 31856 solver.cpp:397] Test net output #1: loss = 5.28669 (* 1 = 5.28669 loss) +I0408 09:01:54.683440 31856 solver.cpp:218] Iteration 9492 (0.866164 iter/s, 13.8542s/12 iters), loss = 5.26855 +I0408 09:01:54.683490 31856 solver.cpp:237] Train net output #0: loss = 5.26855 (* 1 = 5.26855 loss) +I0408 09:01:54.683501 31856 sgd_solver.cpp:105] Iteration 9492, lr = 5.51906e-06 +I0408 09:01:59.696362 31856 solver.cpp:218] Iteration 9504 (2.3939 iter/s, 5.01275s/12 iters), loss = 5.25821 +I0408 09:01:59.696408 31856 solver.cpp:237] Train net output #0: loss = 5.25821 (* 1 = 5.25821 loss) +I0408 09:01:59.696419 31856 sgd_solver.cpp:105] Iteration 9504, lr = 5.45107e-06 +I0408 09:02:01.179227 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:02:04.636168 31856 solver.cpp:218] Iteration 9516 (2.42933 iter/s, 4.93963s/12 iters), loss = 5.26214 +I0408 09:02:04.636217 31856 solver.cpp:237] Train net output #0: loss = 5.26214 (* 1 = 5.26214 loss) +I0408 09:02:04.636229 31856 sgd_solver.cpp:105] Iteration 9516, lr = 5.38392e-06 +I0408 09:02:09.758335 31856 solver.cpp:218] Iteration 9528 (2.34284 iter/s, 5.12199s/12 iters), loss = 5.26318 +I0408 09:02:09.758383 31856 solver.cpp:237] Train net output #0: loss = 5.26318 (* 1 = 5.26318 loss) +I0408 09:02:09.758395 31856 sgd_solver.cpp:105] Iteration 9528, lr = 5.3176e-06 +I0408 09:02:15.013711 31856 solver.cpp:218] Iteration 9540 (2.28346 iter/s, 5.25519s/12 iters), loss = 5.24617 +I0408 09:02:15.013761 31856 solver.cpp:237] Train net output #0: loss = 5.24617 (* 1 = 5.24617 loss) +I0408 09:02:15.013773 31856 sgd_solver.cpp:105] Iteration 9540, lr = 5.25209e-06 +I0408 09:02:20.057660 31856 solver.cpp:218] Iteration 9552 (2.37917 iter/s, 5.04377s/12 iters), loss = 5.29982 +I0408 09:02:20.057809 31856 solver.cpp:237] Train net output #0: loss = 5.29982 (* 1 = 5.29982 loss) +I0408 09:02:20.057824 31856 sgd_solver.cpp:105] Iteration 9552, lr = 5.18739e-06 +I0408 09:02:25.075131 31856 solver.cpp:218] Iteration 9564 (2.39177 iter/s, 5.01719s/12 iters), loss = 5.25591 +I0408 09:02:25.075181 31856 solver.cpp:237] Train net output #0: loss = 5.25591 (* 1 = 5.25591 loss) +I0408 09:02:25.075193 31856 sgd_solver.cpp:105] Iteration 9564, lr = 5.12349e-06 +I0408 09:02:30.087968 31856 solver.cpp:218] Iteration 9576 (2.39394 iter/s, 5.01266s/12 iters), loss = 5.26153 +I0408 09:02:30.088008 31856 solver.cpp:237] Train net output #0: loss = 5.26153 (* 1 = 5.26153 loss) +I0408 09:02:30.088018 31856 sgd_solver.cpp:105] Iteration 9576, lr = 5.06038e-06 +I0408 09:02:34.619431 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 09:02:37.591339 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 09:02:41.509209 31856 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 09:02:41.509235 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:02:42.199905 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:02:45.959395 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:02:45.959441 31856 solver.cpp:397] Test net output #1: loss = 5.28699 (* 1 = 5.28699 loss) +I0408 09:02:46.049629 31856 solver.cpp:218] Iteration 9588 (0.751821 iter/s, 15.9612s/12 iters), loss = 5.27469 +I0408 09:02:46.049679 31856 solver.cpp:237] Train net output #0: loss = 5.27469 (* 1 = 5.27469 loss) +I0408 09:02:46.049690 31856 sgd_solver.cpp:105] Iteration 9588, lr = 4.99804e-06 +I0408 09:02:50.620990 31856 solver.cpp:218] Iteration 9600 (2.62513 iter/s, 4.5712s/12 iters), loss = 5.27371 +I0408 09:02:50.621054 31856 solver.cpp:237] Train net output #0: loss = 5.27371 (* 1 = 5.27371 loss) +I0408 09:02:50.621063 31856 sgd_solver.cpp:105] Iteration 9600, lr = 4.93647e-06 +I0408 09:02:54.419924 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:02:55.800562 31856 solver.cpp:218] Iteration 9612 (2.31688 iter/s, 5.17938s/12 iters), loss = 5.27087 +I0408 09:02:55.800598 31856 solver.cpp:237] Train net output #0: loss = 5.27087 (* 1 = 5.27087 loss) +I0408 09:02:55.800606 31856 sgd_solver.cpp:105] Iteration 9612, lr = 4.87566e-06 +I0408 09:03:00.844604 31856 solver.cpp:218] Iteration 9624 (2.37912 iter/s, 5.04388s/12 iters), loss = 5.26701 +I0408 09:03:00.844638 31856 solver.cpp:237] Train net output #0: loss = 5.26701 (* 1 = 5.26701 loss) +I0408 09:03:00.844646 31856 sgd_solver.cpp:105] Iteration 9624, lr = 4.81559e-06 +I0408 09:03:05.752003 31856 solver.cpp:218] Iteration 9636 (2.44537 iter/s, 4.90724s/12 iters), loss = 5.25556 +I0408 09:03:05.752038 31856 solver.cpp:237] Train net output #0: loss = 5.25556 (* 1 = 5.25556 loss) +I0408 09:03:05.752048 31856 sgd_solver.cpp:105] Iteration 9636, lr = 4.75627e-06 +I0408 09:03:10.722998 31856 solver.cpp:218] Iteration 9648 (2.41409 iter/s, 4.97082s/12 iters), loss = 5.26643 +I0408 09:03:10.723048 31856 solver.cpp:237] Train net output #0: loss = 5.26643 (* 1 = 5.26643 loss) +I0408 09:03:10.723062 31856 sgd_solver.cpp:105] Iteration 9648, lr = 4.69768e-06 +I0408 09:03:16.156813 31856 solver.cpp:218] Iteration 9660 (2.20847 iter/s, 5.43362s/12 iters), loss = 5.25275 +I0408 09:03:16.156862 31856 solver.cpp:237] Train net output #0: loss = 5.25275 (* 1 = 5.25275 loss) +I0408 09:03:16.156872 31856 sgd_solver.cpp:105] Iteration 9660, lr = 4.63981e-06 +I0408 09:03:21.487090 31856 solver.cpp:218] Iteration 9672 (2.25137 iter/s, 5.33009s/12 iters), loss = 5.27225 +I0408 09:03:21.487187 31856 solver.cpp:237] Train net output #0: loss = 5.27225 (* 1 = 5.27225 loss) +I0408 09:03:21.487200 31856 sgd_solver.cpp:105] Iteration 9672, lr = 4.58265e-06 +I0408 09:03:26.504118 31856 solver.cpp:218] Iteration 9684 (2.39196 iter/s, 5.0168s/12 iters), loss = 5.28898 +I0408 09:03:26.504164 31856 solver.cpp:237] Train net output #0: loss = 5.28898 (* 1 = 5.28898 loss) +I0408 09:03:26.504176 31856 sgd_solver.cpp:105] Iteration 9684, lr = 4.5262e-06 +I0408 09:03:28.541606 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 09:03:31.579082 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 09:03:35.984899 31856 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 09:03:35.984925 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:03:36.617101 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:03:39.428148 31856 blocking_queue.cpp:49] Waiting for data +I0408 09:03:40.415380 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:03:40.415427 31856 solver.cpp:397] Test net output #1: loss = 5.28718 (* 1 = 5.28718 loss) +I0408 09:03:42.414461 31856 solver.cpp:218] Iteration 9696 (0.754247 iter/s, 15.9099s/12 iters), loss = 5.28634 +I0408 09:03:42.414507 31856 solver.cpp:237] Train net output #0: loss = 5.28634 (* 1 = 5.28634 loss) +I0408 09:03:42.414518 31856 sgd_solver.cpp:105] Iteration 9696, lr = 4.47044e-06 +I0408 09:03:47.868088 31856 solver.cpp:218] Iteration 9708 (2.20045 iter/s, 5.45343s/12 iters), loss = 5.28858 +I0408 09:03:47.868136 31856 solver.cpp:237] Train net output #0: loss = 5.28858 (* 1 = 5.28858 loss) +I0408 09:03:47.868149 31856 sgd_solver.cpp:105] Iteration 9708, lr = 4.41537e-06 +I0408 09:03:48.681924 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:03:53.010084 31856 solver.cpp:218] Iteration 9720 (2.33381 iter/s, 5.14182s/12 iters), loss = 5.28778 +I0408 09:03:53.010229 31856 solver.cpp:237] Train net output #0: loss = 5.28778 (* 1 = 5.28778 loss) +I0408 09:03:53.010243 31856 sgd_solver.cpp:105] Iteration 9720, lr = 4.36098e-06 +I0408 09:03:57.953311 31856 solver.cpp:218] Iteration 9732 (2.4277 iter/s, 4.94296s/12 iters), loss = 5.26257 +I0408 09:03:57.953357 31856 solver.cpp:237] Train net output #0: loss = 5.26257 (* 1 = 5.26257 loss) +I0408 09:03:57.953368 31856 sgd_solver.cpp:105] Iteration 9732, lr = 4.30726e-06 +I0408 09:04:02.929603 31856 solver.cpp:218] Iteration 9744 (2.41152 iter/s, 4.97612s/12 iters), loss = 5.26781 +I0408 09:04:02.929642 31856 solver.cpp:237] Train net output #0: loss = 5.26781 (* 1 = 5.26781 loss) +I0408 09:04:02.929652 31856 sgd_solver.cpp:105] Iteration 9744, lr = 4.2542e-06 +I0408 09:04:07.857525 31856 solver.cpp:218] Iteration 9756 (2.43519 iter/s, 4.92775s/12 iters), loss = 5.27377 +I0408 09:04:07.857564 31856 solver.cpp:237] Train net output #0: loss = 5.27377 (* 1 = 5.27377 loss) +I0408 09:04:07.857573 31856 sgd_solver.cpp:105] Iteration 9756, lr = 4.20179e-06 +I0408 09:04:12.815142 31856 solver.cpp:218] Iteration 9768 (2.4206 iter/s, 4.95745s/12 iters), loss = 5.28808 +I0408 09:04:12.815186 31856 solver.cpp:237] Train net output #0: loss = 5.28808 (* 1 = 5.28808 loss) +I0408 09:04:12.815197 31856 sgd_solver.cpp:105] Iteration 9768, lr = 4.15003e-06 +I0408 09:04:17.830371 31856 solver.cpp:218] Iteration 9780 (2.3928 iter/s, 5.01506s/12 iters), loss = 5.27007 +I0408 09:04:17.830420 31856 solver.cpp:237] Train net output #0: loss = 5.27007 (* 1 = 5.27007 loss) +I0408 09:04:17.830432 31856 sgd_solver.cpp:105] Iteration 9780, lr = 4.09891e-06 +I0408 09:04:22.429347 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 09:04:25.513645 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 09:04:31.520833 31856 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 09:04:31.520853 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:04:32.130005 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:04:36.103689 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:04:36.103736 31856 solver.cpp:397] Test net output #1: loss = 5.28696 (* 1 = 5.28696 loss) +I0408 09:04:36.193759 31856 solver.cpp:218] Iteration 9792 (0.653492 iter/s, 18.3629s/12 iters), loss = 5.2523 +I0408 09:04:36.193811 31856 solver.cpp:237] Train net output #0: loss = 5.2523 (* 1 = 5.2523 loss) +I0408 09:04:36.193823 31856 sgd_solver.cpp:105] Iteration 9792, lr = 4.04841e-06 +I0408 09:04:40.603487 31856 solver.cpp:218] Iteration 9804 (2.72136 iter/s, 4.40956s/12 iters), loss = 5.2723 +I0408 09:04:40.603523 31856 solver.cpp:237] Train net output #0: loss = 5.2723 (* 1 = 5.2723 loss) +I0408 09:04:40.603531 31856 sgd_solver.cpp:105] Iteration 9804, lr = 3.99854e-06 +I0408 09:04:43.535784 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:04:45.532711 31856 solver.cpp:218] Iteration 9816 (2.43454 iter/s, 4.92905s/12 iters), loss = 5.263 +I0408 09:04:45.532758 31856 solver.cpp:237] Train net output #0: loss = 5.263 (* 1 = 5.263 loss) +I0408 09:04:45.532770 31856 sgd_solver.cpp:105] Iteration 9816, lr = 3.94928e-06 +I0408 09:04:50.450686 31856 solver.cpp:218] Iteration 9828 (2.44012 iter/s, 4.9178s/12 iters), loss = 5.25487 +I0408 09:04:50.450736 31856 solver.cpp:237] Train net output #0: loss = 5.25487 (* 1 = 5.25487 loss) +I0408 09:04:50.450747 31856 sgd_solver.cpp:105] Iteration 9828, lr = 3.90063e-06 +I0408 09:04:55.388732 31856 solver.cpp:218] Iteration 9840 (2.4302 iter/s, 4.93786s/12 iters), loss = 5.24878 +I0408 09:04:55.388793 31856 solver.cpp:237] Train net output #0: loss = 5.24878 (* 1 = 5.24878 loss) +I0408 09:04:55.388809 31856 sgd_solver.cpp:105] Iteration 9840, lr = 3.85258e-06 +I0408 09:05:00.494423 31856 solver.cpp:218] Iteration 9852 (2.35041 iter/s, 5.1055s/12 iters), loss = 5.26752 +I0408 09:05:00.494547 31856 solver.cpp:237] Train net output #0: loss = 5.26752 (* 1 = 5.26752 loss) +I0408 09:05:00.494560 31856 sgd_solver.cpp:105] Iteration 9852, lr = 3.80512e-06 +I0408 09:05:05.523126 31856 solver.cpp:218] Iteration 9864 (2.38642 iter/s, 5.02845s/12 iters), loss = 5.28879 +I0408 09:05:05.523177 31856 solver.cpp:237] Train net output #0: loss = 5.28879 (* 1 = 5.28879 loss) +I0408 09:05:05.523190 31856 sgd_solver.cpp:105] Iteration 9864, lr = 3.75825e-06 +I0408 09:05:10.459913 31856 solver.cpp:218] Iteration 9876 (2.43082 iter/s, 4.93661s/12 iters), loss = 5.27085 +I0408 09:05:10.459957 31856 solver.cpp:237] Train net output #0: loss = 5.27085 (* 1 = 5.27085 loss) +I0408 09:05:10.459970 31856 sgd_solver.cpp:105] Iteration 9876, lr = 3.71195e-06 +I0408 09:05:15.462586 31856 solver.cpp:218] Iteration 9888 (2.3988 iter/s, 5.0025s/12 iters), loss = 5.27578 +I0408 09:05:15.462630 31856 solver.cpp:237] Train net output #0: loss = 5.27578 (* 1 = 5.27578 loss) +I0408 09:05:15.462643 31856 sgd_solver.cpp:105] Iteration 9888, lr = 3.66622e-06 +I0408 09:05:17.489048 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 09:05:21.765326 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 09:05:26.217485 31856 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 09:05:26.217511 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:05:26.781911 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:05:30.678977 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:05:30.679061 31856 solver.cpp:397] Test net output #1: loss = 5.2873 (* 1 = 5.2873 loss) +I0408 09:05:32.690793 31856 solver.cpp:218] Iteration 9900 (0.696551 iter/s, 17.2277s/12 iters), loss = 5.27517 +I0408 09:05:32.690840 31856 solver.cpp:237] Train net output #0: loss = 5.27517 (* 1 = 5.27517 loss) +I0408 09:05:32.690850 31856 sgd_solver.cpp:105] Iteration 9900, lr = 3.62106e-06 +I0408 09:05:37.720953 31856 solver.cpp:218] Iteration 9912 (2.3857 iter/s, 5.02998s/12 iters), loss = 5.25691 +I0408 09:05:37.720999 31856 solver.cpp:237] Train net output #0: loss = 5.25691 (* 1 = 5.25691 loss) +I0408 09:05:37.721010 31856 sgd_solver.cpp:105] Iteration 9912, lr = 3.57645e-06 +I0408 09:05:37.833786 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:05:42.656177 31856 solver.cpp:218] Iteration 9924 (2.43159 iter/s, 4.93504s/12 iters), loss = 5.2709 +I0408 09:05:42.656236 31856 solver.cpp:237] Train net output #0: loss = 5.2709 (* 1 = 5.2709 loss) +I0408 09:05:42.656250 31856 sgd_solver.cpp:105] Iteration 9924, lr = 3.53239e-06 +I0408 09:05:47.661108 31856 solver.cpp:218] Iteration 9936 (2.39773 iter/s, 5.00474s/12 iters), loss = 5.28969 +I0408 09:05:47.661157 31856 solver.cpp:237] Train net output #0: loss = 5.28969 (* 1 = 5.28969 loss) +I0408 09:05:47.661170 31856 sgd_solver.cpp:105] Iteration 9936, lr = 3.48888e-06 +I0408 09:05:52.666942 31856 solver.cpp:218] Iteration 9948 (2.39729 iter/s, 5.00565s/12 iters), loss = 5.25891 +I0408 09:05:52.666993 31856 solver.cpp:237] Train net output #0: loss = 5.25891 (* 1 = 5.25891 loss) +I0408 09:05:52.667006 31856 sgd_solver.cpp:105] Iteration 9948, lr = 3.4459e-06 +I0408 09:05:57.634860 31856 solver.cpp:218] Iteration 9960 (2.41559 iter/s, 4.96774s/12 iters), loss = 5.26932 +I0408 09:05:57.634908 31856 solver.cpp:237] Train net output #0: loss = 5.26932 (* 1 = 5.26932 loss) +I0408 09:05:57.634922 31856 sgd_solver.cpp:105] Iteration 9960, lr = 3.40345e-06 +I0408 09:06:02.634408 31856 solver.cpp:218] Iteration 9972 (2.4003 iter/s, 4.99937s/12 iters), loss = 5.26147 +I0408 09:06:02.634500 31856 solver.cpp:237] Train net output #0: loss = 5.26147 (* 1 = 5.26147 loss) +I0408 09:06:02.634510 31856 sgd_solver.cpp:105] Iteration 9972, lr = 3.36152e-06 +I0408 09:06:07.754818 31856 solver.cpp:218] Iteration 9984 (2.34367 iter/s, 5.12018s/12 iters), loss = 5.24644 +I0408 09:06:07.754863 31856 solver.cpp:237] Train net output #0: loss = 5.24644 (* 1 = 5.24644 loss) +I0408 09:06:07.754873 31856 sgd_solver.cpp:105] Iteration 9984, lr = 3.32011e-06 +I0408 09:06:12.387825 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 09:06:17.112663 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 09:06:19.586570 31856 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 09:06:19.586594 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:06:20.096267 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:06:24.046828 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:06:24.046876 31856 solver.cpp:397] Test net output #1: loss = 5.28777 (* 1 = 5.28777 loss) +I0408 09:06:24.137099 31856 solver.cpp:218] Iteration 9996 (0.732519 iter/s, 16.3818s/12 iters), loss = 5.2697 +I0408 09:06:24.137145 31856 solver.cpp:237] Train net output #0: loss = 5.2697 (* 1 = 5.2697 loss) +I0408 09:06:24.137156 31856 sgd_solver.cpp:105] Iteration 9996, lr = 3.27921e-06 +I0408 09:06:28.266820 31856 solver.cpp:218] Iteration 10008 (2.90588 iter/s, 4.12956s/12 iters), loss = 5.24409 +I0408 09:06:28.266860 31856 solver.cpp:237] Train net output #0: loss = 5.24409 (* 1 = 5.24409 loss) +I0408 09:06:28.266870 31856 sgd_solver.cpp:105] Iteration 10008, lr = 3.23882e-06 +I0408 09:06:30.497330 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:06:33.174449 31856 solver.cpp:218] Iteration 10020 (2.44526 iter/s, 4.90746s/12 iters), loss = 5.26818 +I0408 09:06:33.174530 31856 solver.cpp:237] Train net output #0: loss = 5.26818 (* 1 = 5.26818 loss) +I0408 09:06:33.174538 31856 sgd_solver.cpp:105] Iteration 10020, lr = 3.19892e-06 +I0408 09:06:38.084575 31856 solver.cpp:218] Iteration 10032 (2.44404 iter/s, 4.90991s/12 iters), loss = 5.27718 +I0408 09:06:38.084627 31856 solver.cpp:237] Train net output #0: loss = 5.27718 (* 1 = 5.27718 loss) +I0408 09:06:38.084640 31856 sgd_solver.cpp:105] Iteration 10032, lr = 3.15951e-06 +I0408 09:06:43.101198 31856 solver.cpp:218] Iteration 10044 (2.39214 iter/s, 5.01644s/12 iters), loss = 5.28402 +I0408 09:06:43.101240 31856 solver.cpp:237] Train net output #0: loss = 5.28402 (* 1 = 5.28402 loss) +I0408 09:06:43.101251 31856 sgd_solver.cpp:105] Iteration 10044, lr = 3.12059e-06 +I0408 09:06:48.080215 31856 solver.cpp:218] Iteration 10056 (2.4102 iter/s, 4.97884s/12 iters), loss = 5.2772 +I0408 09:06:48.080260 31856 solver.cpp:237] Train net output #0: loss = 5.2772 (* 1 = 5.2772 loss) +I0408 09:06:48.080271 31856 sgd_solver.cpp:105] Iteration 10056, lr = 3.08215e-06 +I0408 09:06:53.102612 31856 solver.cpp:218] Iteration 10068 (2.38938 iter/s, 5.02222s/12 iters), loss = 5.27441 +I0408 09:06:53.102663 31856 solver.cpp:237] Train net output #0: loss = 5.27441 (* 1 = 5.27441 loss) +I0408 09:06:53.102674 31856 sgd_solver.cpp:105] Iteration 10068, lr = 3.04418e-06 +I0408 09:06:58.105274 31856 solver.cpp:218] Iteration 10080 (2.39881 iter/s, 5.00248s/12 iters), loss = 5.26209 +I0408 09:06:58.105317 31856 solver.cpp:237] Train net output #0: loss = 5.26209 (* 1 = 5.26209 loss) +I0408 09:06:58.105329 31856 sgd_solver.cpp:105] Iteration 10080, lr = 3.00668e-06 +I0408 09:07:03.116189 31856 solver.cpp:218] Iteration 10092 (2.39486 iter/s, 5.01074s/12 iters), loss = 5.27589 +I0408 09:07:03.116236 31856 solver.cpp:237] Train net output #0: loss = 5.27589 (* 1 = 5.27589 loss) +I0408 09:07:03.116247 31856 sgd_solver.cpp:105] Iteration 10092, lr = 2.96964e-06 +I0408 09:07:05.134809 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 09:07:09.718092 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 09:07:17.456862 31856 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 09:07:17.456888 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:07:17.938643 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:07:21.923045 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:07:21.923094 31856 solver.cpp:397] Test net output #1: loss = 5.28737 (* 1 = 5.28737 loss) +I0408 09:07:23.916204 31856 solver.cpp:218] Iteration 10104 (0.576939 iter/s, 20.7994s/12 iters), loss = 5.27224 +I0408 09:07:23.916252 31856 solver.cpp:237] Train net output #0: loss = 5.27224 (* 1 = 5.27224 loss) +I0408 09:07:23.916263 31856 sgd_solver.cpp:105] Iteration 10104, lr = 2.93306e-06 +I0408 09:07:28.576673 31860 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:07:29.207114 31856 solver.cpp:218] Iteration 10116 (2.26812 iter/s, 5.29072s/12 iters), loss = 5.2591 +I0408 09:07:29.207170 31856 solver.cpp:237] Train net output #0: loss = 5.2591 (* 1 = 5.2591 loss) +I0408 09:07:29.207185 31856 sgd_solver.cpp:105] Iteration 10116, lr = 2.89693e-06 +I0408 09:07:34.210388 31856 solver.cpp:218] Iteration 10128 (2.39852 iter/s, 5.00309s/12 iters), loss = 5.27369 +I0408 09:07:34.210422 31856 solver.cpp:237] Train net output #0: loss = 5.27369 (* 1 = 5.27369 loss) +I0408 09:07:34.210430 31856 sgd_solver.cpp:105] Iteration 10128, lr = 2.86124e-06 +I0408 09:07:39.179365 31856 solver.cpp:218] Iteration 10140 (2.41507 iter/s, 4.9688s/12 iters), loss = 5.28258 +I0408 09:07:39.179531 31856 solver.cpp:237] Train net output #0: loss = 5.28258 (* 1 = 5.28258 loss) +I0408 09:07:39.179543 31856 sgd_solver.cpp:105] Iteration 10140, lr = 2.82599e-06 +I0408 09:07:44.191846 31856 solver.cpp:218] Iteration 10152 (2.39417 iter/s, 5.01218s/12 iters), loss = 5.27522 +I0408 09:07:44.191888 31856 solver.cpp:237] Train net output #0: loss = 5.27522 (* 1 = 5.27522 loss) +I0408 09:07:44.191900 31856 sgd_solver.cpp:105] Iteration 10152, lr = 2.79118e-06 +I0408 09:07:49.258858 31856 solver.cpp:218] Iteration 10164 (2.36834 iter/s, 5.06683s/12 iters), loss = 5.26389 +I0408 09:07:49.258903 31856 solver.cpp:237] Train net output #0: loss = 5.26389 (* 1 = 5.26389 loss) +I0408 09:07:49.258914 31856 sgd_solver.cpp:105] Iteration 10164, lr = 2.7568e-06 +I0408 09:07:54.282733 31856 solver.cpp:218] Iteration 10176 (2.38868 iter/s, 5.02369s/12 iters), loss = 5.27613 +I0408 09:07:54.282778 31856 solver.cpp:237] Train net output #0: loss = 5.27613 (* 1 = 5.27613 loss) +I0408 09:07:54.282788 31856 sgd_solver.cpp:105] Iteration 10176, lr = 2.72283e-06 +I0408 09:07:59.234032 31856 solver.cpp:218] Iteration 10188 (2.42369 iter/s, 4.95112s/12 iters), loss = 5.27791 +I0408 09:07:59.234076 31856 solver.cpp:237] Train net output #0: loss = 5.27791 (* 1 = 5.27791 loss) +I0408 09:07:59.234087 31856 sgd_solver.cpp:105] Iteration 10188, lr = 2.68929e-06 +I0408 09:08:03.731838 31856 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 09:08:06.782351 31856 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 09:08:11.263018 31856 solver.cpp:310] Iteration 10200, loss = 5.26336 +I0408 09:08:11.263136 31856 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 09:08:11.263145 31856 net.cpp:676] Ignoring source layer train-data +I0408 09:08:11.696835 31861 data_layer.cpp:73] Restarting data prefetching from start. +I0408 09:08:15.726521 31856 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 09:08:15.726567 31856 solver.cpp:397] Test net output #1: loss = 5.28671 (* 1 = 5.28671 loss) +I0408 09:08:15.726578 31856 solver.cpp:315] Optimization Done. +I0408 09:08:15.726585 31856 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-1/0.9/conf.csv b/cars/lr-investigations/exponential/1e-1/0.9/conf.csv new file mode 100644 index 0000000..0e48fd2 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.9/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/exponential/1e-1/0.9/deploy.prototxt b/cars/lr-investigations/exponential/1e-1/0.9/deploy.prototxt new file mode 100644 index 0000000..d7f4b54 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.9/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/exponential/1e-1/0.9/large.png b/cars/lr-investigations/exponential/1e-1/0.9/large.png new file mode 100644 index 0000000000000000000000000000000000000000..fa6eecda37cbe553df99389c4daf9ed46da86841 GIT binary patch literal 42040 zcmaHScUV))*0)}dqSEvrMx^9evCsqrF+da)j?zRtf+EC-G${co0n(1rjv_=wsX`PK zP?1go1QO{|Bcikb0RjXhA%Q@8`MBr4-yd(eH_wxmnY|`6tITiqo;_v2UZ?mbaUu$ur@{9j@r}LXORbmw- z(5)Nw9bv!Uh}g7ArS+fR&7H84yPGx@_FcMg{#uMTb7IHsTXV5&xql;FU1^_2@VRrp zl^#&Jr046tWa^ndvm;a=?hptYbASQN>zxj1(l0uVUFFlvmizlcuJ)K8H6ArLf0%IL z{y+XgnQyQ7+;V$wJl|Kwj+ob4>+5rRU+x-b z^jvf~)Hr{-JT`A?gY+%^vO$8pbz?RN_iXrhlZxRs@68+HZ`yRN(shOWcWKifSexyC zmty)FuKSfnxk(OkhS3(6kEYk+Ck1_zW<7T7#Ln(Afs^vi1AjN1I=xVh->MPRXog-i ztG!tmWfyXP7Jv5>D%^A7L?oeZqRO)cF)i)?da)tQ_}j6B*QNLn>RxdCPK||U4|M)J znLO2Z+bwzY=c}l)zaR=Is|ox)Z(CV=>Cv8>E)vL4j^7+DG>g#PfDo-3{*orP`La6K zLw5_^31lN^;u(Y2YlT4RG4wWdG=2991OjfPGwb_?v;gKwLm^gObEl4L zn(^Bxc9Y?d?KkkjH)Jnz3p(`)b`U zf%$hI-*@diaO~vG!$bdTn*6Ql^8PJ;+{@Shw9Cai|Hdx69vT<^d*(m> z?&IF}#9c4c^?zOZU$g$7AlM8~{g*$F|9^#FU%s;a{EdNwmHz`H|5e>!X8#A~zdAde z@E_en?D$)Cq4t7dHf&F+;H#)v-jUJPrTVx_5O5&>{x6~=wljt*gr&Z zn>9r*K#~3TAe*$TVh_A6FQ(2DLQ?nNS+VaK7sR8jh9c-EmY#qqpJ4a~f!a0ef9I3< zopnKu!`)9#dux*G?tKc;H;7!r--zZNr0yc$`tipH592JH)j^%pe~*<0`hm98w?6ci z61SWO3nI)?cq4JXM6c?yg_g`o9co2^3C8UAvcb|fKN@DR;~R^Jftm) zsG&yEM2>%Z`A^13QlFI&@Tgut!*gsGxr8A4*zl>?9Ic_}iPtlDzQ_8C#=o`5Y~oXc zpgyHn(*w2Pk3QvO?y*`G4f*QlzB=-a3T0)~7S)A4?6&`RbM-gF1XB-(%o{#P3x~p} z4i-j`cc*G-DCjyNEY%m5lTDuWjVAiK4|<&VTke>US$OIr1Joshz(w*eM^Rl*z%B-{ z8g);$bt?Qvqt**F4*zlX-rt?PaH<8mEK&YzY1#Lmk+}g|zkdtc|GuF7J8Vpqo%(y+ z-xB|8DsH;A<3A#EgK6?_wK-v!V9D?H7Ed;L7GnMdfDaA3R)>b#%1q~Bzy&K&6z}5mWm90HMu3dKUav3Qm$GNP*J`orDi&>PG=tVJ~ z-_HJyFNTbV$fZ-&17ssAV(N;7xgcopJG}N>Ey?IA_qR=rI;X#T-0KK!EF8X$5}#k9 zR_dZDr7VA!F~C`!+Fan6U#<=<)O=hNvsV6GZsW0o6vp)vHyKXoNX0jQTuy0w*=T#_ zn}%TXGD0@L*OQkjW=S!8A0oXAKzF&94jgHU74n(3^01FymG^ws8m@Z*<{t%-(d3C3 zamE4!V|Ddg&-o*zKJrldAzm@0zQ@d(Q;J&cfnO-c+Pw?bP3xE*x(HFGGT@RwlBLU- zNge4@c`_ZrUmt~_8E+P7_rft}{*sIU(02fO!qByHvQC*g4fz?(qM3~{$l@y!=QlpJ zR-7#pl;Aq}mo1YMV$}|cHxNc=<P zz#$6h4rUS!UxU5d-=%b-_SoD0;;R|)K=A4-DOW$Y5EJB7Tb`2Svlew;()d9SLK=5Q z`bS9ao#VS1j$p>ee9R@Y;o@XqD4tD|mquCRCrIewp@7b%POLRh3W75C5oeg`Gvxha zWXZxQ@r($C=Y$KErag5rfh?P}#j}1i@$e!EqkI|hqa#%ZV1=1~H^JlP18n4W zR9U=*n3}4Z93QU`ywpPsS*{-pUMm@Jg(q`i1nav&7+&PajkwYM{Z>cNgs*C#{0g;B z+&=RD-V|E`c;#UTjsGOidTusAfk8t{>a1kr{Q;si)<_UJW;!r@*w2M5s&Udb|KY6y zqA#II?fn)}&qEf_V`FI9wVFX5a^!}F)ma~!uuHXcy2{)hQyoM*FCL{+Suc*O1v3{O z>>tN_QG>sYTv|CuV44?6GD6v^+c1ufQnMTPdJJzP%uwladc4(K>AfxXi% z)#`RYK&p2598GwFV3N(O)aTacO%xf5z+rHR{E^jK@1zlA-Gjmfv6PFQDna?k=A)^= zAhpgp6UU;_XKxwUR*mH|NX9&SWDWq)A)jE?Pf(PXh~6XIhj~Wx34$ND(R;rsBM*MboW>im&v8nJn|895#f}Sty1KS(4E!x zD885yR@C_{i57dHMp_p3XMXPOYUdMLq&w}c8S_200LXBHGLuVeQLztw!WzYV(HUuI zMORNV>ppHaWTPx{hJSrml!#bMEG}h?#t+Qxp?4@*VF4}>oT1B!oKQ-m=!uhtc{?vL z4-PbtBiBk6EE~{}<+yL53k^N_v}cv(eL8X4Gtt125FdMGRCXs@?hcQ<-dj>h)rSY% zF@;H>gRv{ciI1yqV#FB%d91;?nZe?Ab`EQV(At630a~%qt4DHUXFi)cipTmO)r4D; zjFKtNdrkJEAroarz7{42{#HmQPTxjISxxx$AO5W8*(Nh^g_!V}<;l#D?u1ij)}@0E zee_52l{sqRV!lR`Nv|foU{MaHdB)wWyX!S86Ny#r{eK8Vd~Jq$85cJpEOpW`w?LmB z0ZTXoC1Dj&ohPSXul`vJ=Z~cjdDN{@ZZihkB*8s}(G)jvfv`L#+W{u-e-(cFYZbpc ze@nCr+rccV#X}QFDW)|EiM*l|+8!%I9ud-DCCcqxa4%d8hh*`~(f%mO;_Y%KqJ1dR zGSGpHhFlAl4q18jxzwHLUkmG5FkeP@gfh|JbjD?WH3^@X1Yh%8m|MJJ;E$7vTv%h} zR`*=Ub)Az@vf~5CTbJJhqDO(Bh=UnO7AXJ`>pXEj*Wz8+4WZw{a1scI&x~d*;f8Gc zfMhuYKH}x+{Wu>+U4LaI=(QIAAoQnstF{kM>$9+94b=R{DjhJ@!P!R)_^5)x`xN3A z@lYSF${g~Fb`+*6J_5I1f9|xCTJnhAae-aG)_A=;v*m0vcdW`M_Y>=9^Jafo7rO%MX>lQ3ZFk&AwN`ojl>!^wz@TBB>vFpCdf=5W@PEVq5Nd z;PAZm0G|2-cQuasm3tqXXFAOh$0bvv5z7$rQg*;(Q#m^j5llskIld-^6r{X8S&kvl z)L7z1VXqqN?Ik)>(;U+}f6G$$r{A%5YJ8gm^oEq_#2@Xh$XoZl+tCHhGp}DmLv9+E z3rUl+D_d>=9ANeiAtvL~MV(_#E@Qefb_iad36Ku6_|*4m#UsAetK1GXDtuJFbMWI_ z5I<>g0ToS!vsYsv$o6JZs%5%tr^v_H}~|)Kg8)h@|H==q$l!e2!j;Q3-hQm z$g=p6kDP;wXW?KULv7{`dRP)`;w;ViOJ1Oym+S7~b8FWkvS=_v78zLc{LEZ}TgbEp z4iC?lsSp>|IDF`#8HIx`NvVSn`GTeydfvTtb9axK8T@(ESZ*zP`ihQ^VA|D}<0+H90 zG(cy4GV{UcL1x)+3kM_zkfcR-pv9*4I_7aI0JhRBc>#AKpTIfGo zjYWM|S?&k+%CFN$@sdK}wj|lKE{%XeamrgNto)OCdG`?cT}jJ3RqvMvkB1N%Ia@(b zM?=+&i$@rfwcSSlkA3&N|8^L{_nW#Mm zU^1}e09_{?O|t^sky$ldl>%RixK@*65uPDkUBms>L6k}4xMlOvGvX&Xkc(8QZ zpH<)FGMW`{!jhWEGNtEj)ALZPZv)~rq?b><(arJ8f550&%EnS(4bG2zfYi558XY3r z$gsGz5de%`;eNEddVIt`#3rA^0v zPS#X^1j_`7ES%6Zdqr|XE@x9l88A;MH5yh~U7Q#=S~ou5o291SxEC|GY=i~=6`e*4 z8;V9m-Op{RfTg5bnGQy;$sVUpz@2NLprzSI(LX%>Mm7DD;svL$qw5nNne|ppW~A92A{6D+(W{z$z(R*lH7GC3LxF0ZaW3ehU^pY9*71q+gD z!S!czV5%(8=)ALZi#YitSV#NV8HlHBLKRp^&0oapGQq4Lx5}M>h$1KS+%PkqVLk#R z8IpSiDjge7z~?os-k9qtXa;{z@MnI_9}IEvu!}(WkHTdOUeV|*nq6X|$N?@H35^ky zGZUpQqp`aA04J<{eokml%Yy`$luOV*!4Fe;e5_7f$5oZfB7?8p%ClhoB3{Bm{OHA&p~FdY zpWz0@*pJl=oFt2dd~ZEgd828{37RvfnlIxNm5=pNFmEt%x6bhHiGRZ6c59<4(|?wo z)LIihSeu|O69$UWKcao}YZQwi0mF%lh=DG^#ff)bGV`Ed`K6_T_1-tq!Qd7LMOK=N zm)geT3Ih*fHS{krS2BTwh@w0-)G$0W_qH6pL=OiD*SVUMxB>hVnG0g^vl}$lf@)`l zd1+NOcb9m$SB~rP9wLupSk0cn?Ub@=DOA{_WqJIjzxMb`$|4=A(;)j`uD%v=(__+Q zvii$@KQAaw`1v!>XT8IoiEA+9m8TS?We3UyDL8BffN;Pu84M#2^MICnirDGV9kH}0 z^IdC}`JDKl4q$${UvUC^zr0j?43U#MiGDf31>l|#_f7RwG8RGS82K?}d5z*>Rx(_f zd97(lxp;&oAIoK}xU(M_Ppo$D&9w;3KuLPrdC#~s4c4nD@cNyaMhu8qDr06NS}bGT zOkpBCj52hxwJ|nH+Kiyog0Y=^e@~1bCYtNdnv+rsV*7@JJ^^3B$a{fLFuWo}VF+!Z zA~fHK+YunkIyJ2%ZgucvQV)Ctf~zJ}w9f8HWe83cvRte!`_UCFUr)VAkM@fDt(OKC(PC+l;W#4NyZBq>zZqk54-Bt+SBUB6KvXVz6& zY;x>xw6vQZswk$DNvq}BYpdu5`33ImBOgENJ2f6E%Il~h)BL~)*`evc>N$0!ax*I#nX63RR# zrW?VK248A$#i;FuB(=TPh3)Vy9;sml5-F`VYz!Tv*f)*L$>KOHif|a##)ug$5 z?CZ3nxIhd~rpUy!Uv#G>jSD_wsDRcu{>El!^gWao&xi)m_+*j2nB=Hvtv!nPrRSl%0SyL+Eyb0lDhka#Fq-IOP z(39HS52;;Fm3&9}A+g+A6yyrufkQ(u3%Wdvj%?`|oW_WK2PgGePZv~Z$GFL{5gYet zD$5Yv_+1puPeSE4RH&YzMK?zJ)s!{y4gtoPi|Nc2_vI?`viEM5+)2ZvRaO?rS&I=v zWCSZREm=R9-y%76Paep_fJNr6MT)KWXQ)rw<`_-E*={hc8t<6s&in<1W+yBd1}mlc zQJe(Nt%yM%^Q?uDo&$9SWE@acflC1IrUa=03Gb`TM;^FRk}X{bzA$qCWW;sbwQR9m zCVsXsC9QG8RTB9U;yOw6c8*7>Fi%2#{sAO@>wjf^<>{LA0xlUz4(NTOf%oZo3C(?G z*p24d0+LYp_jm&)6~iCECC1*jJ(ISexJ0gQT?^3nD3|^uhdkbSyU-=(MC7ne0|Jk+ zlrK{eg(d@PYy@3NOjk{1LHuLkJ^M38FBMX-yh|9FK#_-!D55@uFIQt4*oKPpZ;sb1 z7R1k&)1*(f@W!L-s&B95AD(U-QNBhOqu)D7fN0RxA0=u+WLfZx0xyN zRif+r@ZcL5_=qm(F1^V5UU7a@I_nI_riLl)nsZ=jdbt(oNfiQU<>L+f2QnpOEPtgj zKs3iIOvY6k%9)plOI?`-^a@C7Q75AS3X15?c7?lt_u3s&NQ&ZLr&ju7Y799il`X_* z8h9+83an9dAsOZ10XSr(7imVp^}*3othdFVWDnURK8DGxkjDN7q#d+5cpXayu&R$N z&0CSub_})>!16lIY5?$d_`YGU?9P_(HYY#2NW^s{^}wc9bmi=_g?b9HdXm#uQBFMF zy{0`VE0&5okk2MQ2}X`Y_h)+sce!MY@T{n;*&Vvn5Ad=oc>apB=Q>M)nQsJv?Cl8e zvNx#0@uiIz+VYbw|Ah6iom9y+uMsfPf(dl4o)_46iSx;Zk%Vy_)Z&`}9BV8oi1pmf z;F0x7Gp3nM990j5coxE8oII;fFeOW(KJ|LgYh}TtPZQrl`>G2FC++?K*cb@OnIn%7 z;D9C!eGjS`1mB6;z@Dgv}&tb5o+}$4@_HuKz~(^ga=^uC1)yjLYbGq zirmT19Bj8!tre9^n@c}<;$Wgv}bVBRIQPoZN83&Xc) z`!c%M&UwtEnogbVwWqiA^B!EX?%PH>sh07+$uL>@YF4>@qHv7C3XtWm1$fvg7%cT@ z=j_TDFi+4eY~{}ZNu_Do(J&8%J^F=)35(O|dK`(aqdZ&t%Uecj%vjQ;pJc~I{zJDy z$bm5(N%!l;Q&0+sl@JzIryuobI;$d7^W{x~lWH~z#xuNW5b;?>=j?44^4frWSgtxxca)Ex?c`rq(}*srBT9?aHZH2FcrCX zwB%E)6bcWX8qgcSAkF0k#rm|WO1EWY zjkgUBs-E3~ipICY>AFwOcFpIDphP3B?=;au#DGRJ)r2te#NZ>2TM1DUqlu^M}MI!e@fBgk0E7Bj!ABYt~= zfeLtpHB4(e{fzIppyJAS2qGe}HTpLtDo}nW3;Pf7m-`!oEZ7bP^A%zGBkp1C)P&TYuX=kaix2KHT zo0qyA8}qd+LkvrD_vcy7fMtRQD<^$0#wEm{GQs+WGfmP8_${quL#yC?aX*8$U%l(s zc5cVpfk76)4`n(wyfW8T{D{(Mo94gp%sdGr3v?@Bz{!%P3awd6QF#59^bmQPgKfV8 z>y_Klk+tK6t(#Y(d-6D(*G$zI9<*u7p-@{(E#oD^#(9faG22MB3B!9CJ?v(9k(x5- z@@kj#EGc5#rN#KA4n>W%#lMeGKE7AJYj08yhO-~wL~B`gwiM)-eBM*AQ+!;!tR^mmd)@U7MfDf5OyI6Kj~#FBf_g>;*1S^EGfbqub~S6>?{79%R`GkDWnh6* zu2C~-mFpk;eb#8=>QdsV`mo>PLe0+loS_Wcktl9w%5>9kp>+POPzp1qT_q7Ua#gAY zx>w+3CjAsm$#5@}9i=u^LWzJpr@dU?$fTxW>tBaxXuogsA;Lv#znfXut2cz!)GV)5 zUO(6Qk;1fm7t#H9QjoH2D zRt{t;_Dp_Usmjz;8>)wDYR^-*m>JztYpJT@))Q`e=>H;w!rPay@1b4|hK|+RP*Bct zSq$(qqI@*yOB9U;db@IAi3W`CbTNRKO`C#XK)5&NSc$X7lM%org zcg9}?Nbjvl+m&&;!$G`f@G_Wgs%=F49i9_I7vtw_d7*myPP`$Y!q0Xex)l*XU=3i(DS5*R?kXlQlQy*_&#TN=PGeLjQH`|OG}9o zb;ak*U|~kljdy85NBpmJwerr6i#@mKD!f%L-}TM+lVTk6=i4up$03_W<0jXmZBfM9 z-gWaPkNfdI%3+lcB5K#}73?yOWtvi(h6{GaUbWD)S{8nFC7spiO6`N#skvvWj(+{a zuiR{Jw>v)NWA7HSxA-vc15Nu)?sr3DbQ}?v_ajQeAdC~q027kEH;P)2{Fh`y4Fl&efZau$t z!PPa#C*I@biAi6{PoH7^zZ~~33?5(eY(4X~BZ|-bIzeo$U}KZO0GT$pjRVj`+{wcG zxD7_j*Pi|nzE!>t%h=7p##ryS15bo?KsgofNGH{QR){U0gln%7ANv(FPb5xbMw7vd z$G~z@8G5e<8s6UHZ5&(~b1SL3SGBtE0eV5Kg#nc>3yBD2VtJ@f1b)q|3%BovjV z7WYzeFygm3Yu;M}&C}?qOwLuh5i@r6vW4Z(uO+*KVgWwSN9{ju?kMr&$(k^#hzW^oaJrC+Pp@y(#75Q zt^xkL2C60=3$6bNq;U2jzPSXiwLR!@S6x195=o~v#aOnQQ7F5#c`+)8*yBIErY)@{ zv8=F(ImT)8S5S~2cg(eyZtJ3$nWLkdw4#-(Lpe|s@_s#V#PEbSAXRaxU|f@p`u}2wG0|6*w?ltXYvER;5Oh6}K5~W5nlfOjKr|I=ic50fo5xQ&6KzKmd(tU;e-TsT*!^N;fv5)t=9E& z#9Or85{HB2oVD!l)+JNYDi8TjO=v+!Qx0i^q85ZyN+XB&O!DN-w4r6bU4E$eTueqv|DBZn<(-sHir{?nid_vek**A(@o-zi z+feIwwIgONC+eP_Kl<{#!QBdWiOKIGiw(qzh?3{$$fic87R0>%?LCv@Uy0wV%ohYl z_1Neq^PQDjsk2u%4io0~d#KijLr09?LlKAxDhrHW1kbo9N@5!Jz|8NCR{5@c+z1l6 z1zTTvXNX#=GK=6AU*2Q0t$+XfJ%2#9j}n@?bi5_}0mS6FOx(AopPs5?SP?0d+EIIv zO|(Lhe^s$Acze}&pw_eNG@1109MzH&w3VxP!4#G#v}m|~HYzpXJ^mo_!9EB-)yM?A z8-*vZecpJ&-k$W1XqSLGhEaVTj>vB+%(EvW`6maQZ`JrYt!(v2P7D{K?YE{ah-d7o zXUcn?Oses@@4r$wUKCl?oXXMRTb=YNIXEse70mJ+=sr%Hu(yG$4dz{tm=5fSqSd&* zA=9Xt2?r%qvVnt84I6LSwf6<2x4D3|)Saqf+Tl5|D?Jfx%I656DduiL_&!Vy z-$cg+h%X3SGWJ1fJs0ZhB!~TG&GCAZ`!EpUXBncfagsb-*hzZD_BReb;6lFp5pz}0 zsB!&>PT+DKws49~>jw@l267Y9ED$o82Azac|g zm$;putC)kID&Bl_Jaa5>O6u4#DAt(U!#BynPnOJ=#aN~=3h$1r%2jemP#wOTITy!J z?mjLmi);-NvQJo8@sgK!4qePP%BLi+&koa-S}H=6xy!Qj^zy|_2<32331e5ezbMxB z!-^ztEh3i!T=YF5uN{bV@SkekJ2bG>N~!Uw*L|S_=@`f1;!cr9U-}!|;(*fSvJ{@U z(bLqbr4e){z9qH_BU=WdA=dO2M<;^h{w>pT7H~X(^_3gyQE(sH^z2Dc%|zYt-gKA5 zSmVfH_}u5{L%%kp7Twr5l$7iyoy-A0F8V|X8feUA7sDBu=l42}e}5hNNjc*RABfYRT)x=ja9J?v_@ySSAr`Dy?CJL%tqDj9avW*4tU%yd zTuW4^$$s90T}cFQ4wMR|BdzFzhsKr@*$!A+%Nv&s3s)q&;q>BbE?L=YCi%mU=MR_% z=$W^U0SxzN9$!g zfh`!&Xc7sY&?d;8O3 z^-l2(>5asYKjP$FjMNG(hB%vMJ|XQjOg=>UUh{j##|m%Io7*zpG?u`=WGzK(UUPzgDrlDN3H);=reu&sgn)>h#B8;zC5-Jgb$ zr1iyV?U>})Bbfl2++m&KYsXgMCIexDioSjfL>_+0+xV7L9JRQ9^D*S%X_+a-M8gc{ zcPW3%q3O;rYYcX0r$chf%5y_^w4;0J-EAc6pTJ}z7rTkWTzk})sYB4bm;c;5Vqf^* z`5Jd1FVOf=`W)(x$0WQjt;l|QHJ{C%LV@IE%{?hV?0hn7M{b4%O-AdKkNG(nc;)Sz z)Hv_}xAj}a;kdK%4?;ipvdYuZ%Kix@F=31{QKOg9oHmaIJ`ueA^tAG?v8^vYK@eT} zqw@;&(6l9-R@ZnYLvyJ`J$9Ng8S~scSTLJHeSH0LKe5Mf-?J8Q>XUUISVigD_CxUv zCs&dyAD+i1Y&{rptTFQ^OmER_;`#*{!o=)sBmAqTmA;4P(cFcr-zJn}dT!`m9Ih+Y z+<9^VKZ|=AGYAn;ljpQ!K7JLdNL`%wfjXjv>wj6J2i%k7DRyTqolrRQs-K^h5YLzk zLcqHubK&H7&sdq=hvN9Rq~fWQDJ0CXWTD6vilpR4ela8e^tVk^5f>*by3FLY`~}oY zT()9er7`p+P?`UO(x-%eKHqWj~sPkX@I1;0)z!O;!F= zaf7WZWKOK5p2k*4uDr+wJ*-N8)9g$h`VPq1L;mm_r{aq(;yfEUgX0 zX1NHAYZg}kHrL}#zLZ-?0KFX82b@sX6+44T+1vXtRJC(s??|0Yeo*^;T5c(eykg(V zdJm^h6tx+4rgdEi(R{%yg1nb$l_4@CAtO$v#EUTPX|`=fz75H0shRdNKRUjhW_7_( z(zz8<P$_S7imVRwWzBd5QX#mK52#YvpXpW%P*rW$Ruz1hd*!60(_0y|ES@L(}vH z0*fek?f1Mh2kn1e5=F>|A;3!{VhhYbqC@GRzF9T9T(GFN_vhQZN}EL5^DlhpKAU7$ zngl^FUj;qRi}-mL5m`blJKCg|qk7pv_0no`>uwDEyYMsjuGg8bVR9q#ASfbv@w;XM zIe6$Aaqbx-*uBQ(YOnl^u%OLI%zo~ie0pMaBfk9T%}L3!2^h6jFM-!bCJ)qH_7;%C z$pxXS+II0z4W6#|z%l*D(^*)|ilwKlPocmpWEGPuDm(Q1`Uyj{&)1wII!{~pT&acc z>MscEd*(;hFRs)HLH#u4YMaJB(0(CWX&5MN(PSoh0+fP25P~r^yq6h#to3BVo_yA{f5L^WPwB5ypMD^rmVJSO z(pvA>z-Ct2H_6@$3|!>KMNgMvvx8eqo|_+?qjI{?C)-@pukw>A7mCe<%?~J+W1GPV*!*;+i(Knr?u z^EnSxI}75cjvOXNEQ&)0sFcUcdf!&2@C*HV{cHnH;#V>|))w8>pQ7lw@1GDP&#&>6Tkw?L$=n8u3j?|R>zumHA{{s~GEk;v~ByP_W_rX3c7XK>y zsqSz0$xi%$-(N8>TFX8c88(e;0_7wP7Eqrn_v^{WG+#Esg@&W!5k>a&d5~GLvkr`I z<9DgKRsLP`q39dCv9Bza7R$qG=PC}FSd%as^Lav8wl9rbZYZ0##N^|&E@6CRe)p~z z59{99(-lR3Hh&DQB0&M&$o9o1?Bkd#Yb2(OM#AkFD zu-M*W24l`C0xTHhMcuh~Rt32%$E|@`=9(0IIr4t!_t$x<9SarSai{NX*E{xek{wFF zs0<+~gXV7RVy-=OZ4|T)0Wu+{9K( zvfJoMsMk~QQ*A-~ai}&&$n+H^-E3`OOEjR`yQ+Ag18>Pg?5t?J5$uYMUEJgub0%Lv zN}?@(z^UGz5?f(7qzD!SLw_7V{2I1=e1PSMk}kt7xUs%n$%c=UPB&q%*KAICr9Sk` zq{#6LU)RD|)%Fb9u|p;`pWLsn2ld*2!uY|5SqrI+JP9wc|FI~(o!0Wi4 zr^u(Z1Z84iL}6?j=KG}vmz@jklF;ALx((;Kx0!uVa=WIo^ks#k*!s?z&vnb~@{_$Z zxfXA?p;FI078pxvgC|(qasLFbvfI+@apk(?H4uz|3q~7=R*Yy+s6DBlzc@{uPjJBi z4?$#ud5AanT=u2S>eIkyPX-@aM#a5u{vGg%{#ZnB{GyKX*Tao$k`sxUO*Cud=pv7r zy6zg^j1Ia60Ya=1Iac2Q`0N3QdN+ph**w;o%wHBQs61GVMXw45T*2SO`=kYimz15> z&dU3yUA8GRAxKW@z$q-dP+)8#@ADstfZkZ3!5%j_NzbpEqG`jY$l7>yZ;pl@;Pewr zPch9OR+_tCIikk04I>_^cG=l8*@k?uY}ClDcFqgjF@*u3_w*Vl~pF1FW-Y zVWGP1bJ*TQZ8C4}J)JV?L*z46kwtmJ$vM1)-J5~LygaRBU1|T} z17*9$a*1?QL@e|?cNDo6tlpKiU=~D*|0#(^fKideCc3gNRd@0k`Q`PSB7FFA zX~ixS!(~!k`-w_2+fvS#Qkek5{M{^Ou@FU;GdqX{>SJq{d|2shYl`=F#WhK@rf0)lsi?UF*8cjJooi}%nt zWF>b8Vr|sDFz*^|pS6a{HstiWay&3nPx|HJfJ(9WGmW-Ci2~@Y;3OThOD1F@1v5sh zorW6s(R;fOO`q%aMDx|pouXNAKxYmc+~7$MU>>Zg4|ZdfLyrx^!!j{k*#c>TR83%J za@+S3Vx(U9H{!*GdhS13e;TR2HF3Ib>+K=_7{(FM?Qtog={M^hc3%K}ME4B&l98@8 z^m+O`LD(cyP)(+AC(xXk?C6P3gU2dG-w2J`-P{9wh1QzJuz6F^kUKUNej!U2Mf32Y>v zxAJT?odm?;z)!hz9k9fC&GU0WC)qUGgX;MJ^6ybgLaAem;&i7*G^&`pqNHpzC#0RMiGXb3#PzlZlpwSkN=^$KO*QA!p_s7GhNtF=cCj}cj)Ihlj z7;|T;^dy9oyKxdy(-cFr0?qq6EU5G(XgMt zwWfHGfhy5zEO5ghy79Eyr$LnV0>NM{9*i>wB*wc_0>23=c?0Hio$DtFA(i45WX-a_ zi#qeIhy!l?86UkE1wMA>cmCppFuN$g`=8l6HbsUPL5tR<`GbkYE|rFGD|Hn;d}mJ} z8oFM+1LZ|u`rf8J4a3Dj{j+q41#IpN+XhGe2RY;uutbPpTgzW83}2>70r`#7~&! zFHWsr$FK$kTc&Tz!>IfCG5b1?K!}D7TZVF5EN2wO{zP}TJ2j<|ldJS%gngXmH1Qp{1NoGO(0mf4CVM82S8hXtfymssSvsOYnDRtHN z;3$y8is^CUUmW~K<3_!vO)qZA{C<)8E4lUq?cmy~5em~Z-5W59I2>Fq{q5UuHCj9Z zlt?xsqzc{g+JwwpZ3&3JsW-a4;IYcl5{NK9d9eJVek9$(Kgqf>L00(iX97qdM!!0 z6p6uA^zG^N9`R4AGej<`iL>p2bK7NE3|YXELLmd@U0-=Scj_CpXzdJYoj3VC?>f?Y zzqU3qcJs#}1`g+lKdL%fz27E)8`|1U>lEo+%gC_7oC_qe9V>`&+Fq zQ~{^Ow@CV2%{@)@MhR(Aw?(wnDOC{GZ$#Ta2~8F+YO*&{>Lx?nT0}He-k`z@E~EEx z=yC8KAc38L!mY!D9}VRVU}4^l>jRgS{qG}IYjg9TWPH33G?Hv#qSr$*-~#(DuSC&s zvYD*|X3fI`^p3j)Ad3l3x(;#u8KV{5u}@rB#4Tj`RN@jAXXuQrj~~(PshyLNb~WV~ z_bhXy=Dtqf%w)90euTmejD?K=MN4d};9MM4;}aLTar9cjRuse?ex|3oD0K&W26PRx zv5&h+!593qiUp?LeDI`BU*Sdy_n&jlYecpAOgW531@Kn9cT&6G^VUJQ9ZRjv7q`>O ze-HKa?!}nuSywk>4m;puNqOA4R_vqY#fjZ7jSH*e#l;Whpc7B%fl%$2u%14~d76vC z{MN!H>m2f-G%j5M=We(|oQIZ7SrexxAI=f>Y`j<$on}|0J#8M zDEG1dm7jv&SOICpSo=LTcQ9&Zd-)0K@$A>Avr)SuO_AFq+zMlE-WA+#xiND@NbbB^ zbqHQ_Ipn*;dsT(Ai|^-CJYCLwy~KTJbM@SrSGXi~4lZ#k6<|#ZU(J)kmFTzOXOQ$| zP{9tGKv=$=)EXBx0!8S{&LWEe3drQ67Q1wQem0y|m?a(Hbbn+E1l<#qspIYDpSw0U z;70H32{&Jak1TQ_*Q9_Hpe3iYNnS9>Y|T^&u1T6vm@{cf^JsxDH{O1s^_RH6j;(iu z-{#V*q=1$wCa}Za36DQiP4=C7SOMj}j666ud&1)Z6)mEk;j-ltVY>BSKQ9*u$ zRV$K7w}9f&+eTnA9IiOJM6Y|0VsL*FM&tDF9AwlOg`)plO|7uy4fIg{imrMrAWK-InWWy*-T94Nh;|g*+V8^hJGW3;JkF0RgZ#@tY(w#;{B&8L-tk$3t`* za|Wq^ENOAA{Gkbaq;mHgxF7k(Cqi=Q++^`2=DeK6P-SFiM)QHc{lE6!JFLm9TN`)A z5gi4w(u)kD(xrD05m1q)^ePfS2wj?#AktJiNEbm7kP=#?NL7$dL7$SB)Sqs%8)?uC{V7EjfD5VvwSaQgr*k0I%HEplcGU zI*Io9Fm)v$f}WROovo<~F*YBsxGpI%B)t{JZ4?Xx_^v`-Q0j;UlRMw)l&W>uGubNJ z@|kD4E)$8%s9G${lix05eTsmMLB1NMTxXtfS8og|Z>jldUF}f$$kNZn)a4zX3Pwi4|Z&W@tTORaTU9^6*L~~a+rzkpu`8C zCD}PTu~p-)i~UwoCVg%{HMKRaZc9%E<}``3 zE}BNp<3-hknT*9RG_*gC`+jI?3&RV`i)KC&BYwcMvdU`_jZgYA!tlMC>KMT*%2`U- z{_9lin~iBmQKR?C&jh{As~X$u2)+)B>CRKbudJ|rmF;Q2;e)K*180iF6MX5TAyc1% zSd4zrT`dSoMf{wVG`u|Q{eB(63A^YVpi=f$eTI5XZ%qD#%)x0xlc~YB;A}J4WGM4E z*32Ikqs7fR6?P!Hx$QR`e!H!Y*U(eXiONLJ@$PDU{?H}qtr9xyN9zW;Ha&p8&^w`P z5)wt$sjIg6C-h>ap}g#^DV`PftGu&MGuvOQ`$#}V=U#w?Y$%@LVe5Y zJ9U>g$0K81pp(|&V@LPWJNbyQ?~dzkY&-V~eu6Y@p(`YpQb%= z@P`;uO2EFNExQ^v;WdV)JBuajmwi=Xz=yPZP2o@eJ2R&yx36f+?lQU#7TL}{|GyCJ zxd+xa67ss{hPjzGE?u{~d86_cy3c(~gmXVx9L93;%^VwtaT4EcLCxy5SO^Zbdx(yXB(3fYu)l&N1Ip&sV_R%GwwDSqIr$1%*duT@Gi4GIx_f*TrOn@THJe|Jj{HlnK zxoOlyOn_@8Uss(u6fL4}h!5lV`NxKMl-hZh+t54&VBf?aJ0U zmzLbzoZp_L?k(L^X`1kHAO_!J?wE;?ri-}{iz4r`eL_WCdhn}z2on8qb)D7wYe}Hr zS6AlRnC0gm!ZAX=MA;#&SO03NP~pw&e%4k+t&fFggN%<8WzFK>7Q}p0FQnJt*i&`p z=6mQZyF@b!-a-m(coBRy5zYgX$ZOFPU_?KM76fc0jqIx2Fi0)X-Er|k7XwW+L#Pc5 zr{XijG+WGurb#~8QN|8qCauMgPK3@n$bMn;j$d(R%ij4_Yle^dlHMds}*GizlhV;-RH!& zE2UjAUWjxD%14rTL3oR8DLYiVEyVbEhmF)(mxtv0_!|@=2df3sHwvtK3pY^Dl^M}q zW+)RLuXxi{#AwD@AoWLjiEhee!Y=x2h6l~U%QnS|A*NOB8neK2%%&u0QjtzcfAnAJ z>PZySuIRQ^%3FB0+7zfjTa8r&h*p6!`;|t+?)s>l*?%*`!35iSl&JJIaC#{$t;A`9zualmlc?bPW;H8&WwE z+en%gdncl3q`(i~2l==;j{X?|5wB@dYr#fN65`#Os#(#YVlhBGyOk?5v6uW`l=XY?}18Mty$1k(P2| zXS;{00H@1X&ra&tl7)9`1<|?-&CX62YcA6*4Ypbp=B)Y=ID)E(YMjz$7bLY@>g>{2 zb@e4pQWa;M==Y55K@hXu@HMl6D5_qvu*FmEeYAkQW84zh+gv(dc7v+1fh3& zn?KXZ2xV+IF?s`+nd99*uI618V&dujIYHY3?&X4~slW^s6`PwR^$t+YzN^O-U`at% zMYcFc>WNbqG&H`&b({2#LZ9IfX-#6RAX}+9vMLX=QrXl<8uw|wlKtf`#c9C`(M6(P zG6ZHM6x`QIU`Q;Xl2f5f zMO%R$=vos0uo7i@_m9^03FSza_*=u5xT5~mHGK2R_(?JEx7#oA4UdbzFN~=F2lLFc3xc*aTuO$c<2jt!y z`+-HJF#jG9sDbLIZ5uyGH)EzhQJ#4(o!9J8^0FMED1*%o3&uo5aaaH0U&B;ws!SS{ z?(M`BN8x{^B(2Rz3*>Zjo5WuuuGn6d0HT8Dy4sFdzDxf;{cn#+%NwwvdrldRs$i)w zGE2g{Pe(MLBgGyhEp_XOX2bR%PBBM}Rc72Lb+^R`s z_a%jce{If;oFQLh>lv!p!gHhLO3s4whqO}}6zOuzi~`O0L3|!EeAC)0geU$zz9KuY zB7|qZ`zn(Ga5+{V0AuexZsBwc?exR!-;?jYJdz0cAN|R_9Btri@~8gwhm|wU#Q2H0 zu&Nm@?8?iF0^sZY3n80e`kRJd%)Kxd1DDH=vVg@BW7utB$hj=FI@Ms5T*UoEF{=~q zpw@o>uVaEdIsssEgXmn5aN+U`S&R&Lu83}jZW@_GX|)NC%4qfPb}ixSGhWKT&o7>u z!NKitun+W!TqP@wUT@d5Y)LTtrNFUyw?5U+_bY@Y-vbqD!(nUZ_FvD6=xlFxtUm4b zw!CE*=4`A9iuqbhZEagj7752lvu>qc6%ro$5WHmdlb^bDmrux_SQkIaLV96|Hu-EyNEuc1*H*p^X-^khQ%U$gfWXS@PT{^3= z2#rc@X5MUY__+9snD^MJ35f@_*tnugXES zP*CfqAbs+8SV&-Q%(5B*t&QC9@6F2fMA2@$Iuu}wU6jg&+MY@0(lp%oAx@tXxw7ii zk1K|6+c>+Q{1n6*f{ypLQ$qJqm-H6cT^m~!Q=wC;!|ZkPg_@B`C5rR}OqQ|-9l|~i zq*l~I2B}8GbwPCPW(5dYT#>>`hndW5xrD?iE_Bt745X74`R{R11|-UE>c~7Kh2)*9 zAP9y{E8%~63fC^~7h>mFfmrD?3s@D;PKkSDnzO0SjfRh%n?nBr`Kd#Nb@%+WGGyT1(XU=}81NQ+0d zzLSq-!Ul(fJrj5L3DrGLpXB0YcLfUKVtAw{I5#%!qZ<@l7>f6626 z&kyztG7Tsot4yI)UBzZg{i&aPIzQcDsZ4MeUTSzH4mGky$60Z8l^r+!#eoFK?J>p9 zw5>Mm_qmEdViIpcN^$M6my67<>~24WisJg)?8JTodsyT$exjWIXoeyfHEGO`U=3ZE zm2|BZL9VC9aqt;&M+qQ7Px|Oe_1KzQSqZWb;W2jytf!lMErt+UH{Z{fEJxF^^56%+O zJ9#b#($GP`G0czA@JY>uso=QMegvWxe#FKWhe=-(y%~*Ccw+n;qHG9#<^{#66;gU$ zU5F!gRuFo>D0hRk#1p&Z(_(&mpS+6iQFgx#Hoo`}jg%@ z&?u@20*8yh5RZ2o>*OhetR8*LC*H@(aP<8ob$V7(##vJBT;`d5au=@F0w9R0n~#~- zgDyw8x|i8>RRrLIbd_U@UVb+=BN~vheL)helKxR z0EBt<0|YvHEw=cK)Q$^KmNTY@V56XIX*Gh-+ZsRwv|Z|w(~t$5wNy71nDz<9V_|>{t{?;5fEVP!KKU`<@$Z8G>!GG%wM2aR%87 zX3e9!etS`3m-YPY;iF6xN>MGAp`EZNWcyqz!bkVQlvx7Dc*cmv^jng%ttJe*xFBhF zP>K}ueNLSpd9l5W-|idzXLiHcJwyJ^ixJx${Wl@T#B>UX{2H%?6m6t}R%ODW$M$SU z)9}&IbeC&!Y_^6dy5gjBC%2AniJ9{05C6k{r4$;h1ClJIM@C7}4Liwteoz+=?K^@| zf|!Gxd<{YtFt3KZdv9$5pl`3{J@x}15_S8X24k;Ibo86| zzBLRd!6iEf&38HtPnI{cK|$8O+y(Xc79%}4C!RbyY_G0bUqwrytxKRP4xAf z#ujG9q4UT2|6x|{U&u;J@$X{Z{}Ro!tnWZI1fMc-mXC^n=6UstX2j%gwXW`(Zv_fXEX6jgz+3u+itGDk?ebgeFSKw| zEUtlmT?M@ft4OU_Lh7>*KMecVOF}zcu6kQr6AJ<6Zs-(nJwr%g(TsGan4R4h4`W1; zN4DI<=yJkA^Pi7Lmx4Z_cC57zb(*>`G+tKC0Cwv?1r2UH!tRCM$rXKwmkzJx_Z72jt#l$#C*7aI^S?IX|4shU zcRhga_nm$UsOcceDTkWjj4nWJDlv&?_v;E7Y6y}xeRt9EE%FrEwv~m0xw_rdXBFw- z0`9yeY|#0j!$;3YKi)Nuu)JwE_dD5U9=XLrE+KAw$$rP4IsN937%2)tmR!{?as4Cv_?8DfZ~CdSCCBh}5jkRe0TKSan$P41?d z5A<_TbjyoKVrcy8^O^Sj&>z#7k2&U0-ZH0jDO=VzCYDP^fI$9tP$d7GOx?dk3B=; zAggqQ0Q}n&o;XVFQ@w_`$seCnv|4YcwO?;!5{I+@F{ur&Q=%TcT|89@>Zo6ct}5kr z(gd{B9WOVvB(v7q`Lnq8r##=Pm$v#sc`Sr`|1s|BIIj)6=MHyOxTF`59NPjrcZjRM zC!0gp-1_=|nU0G^#Jo2LiD004?6D&0J>5!7b<~YMxb|;V6Q-|oVWHf;J<;CnpyjR> zGpXbQberBI&9O#4S*(*GG|8J0KWN+Ah18<<)?nW+1;aoq$b~efiu&H&ZfNQ_UwdB; zGQLZi5Rx-KGHrvf9{AbD+{}|v-3RCOG_`HJAZ2MmHu%*ZNeL!efK-pkhZ2zk)z}*) zf)d1(I4C8M0PWbrilg;O6Rft~fEpFJ>R#im3w@SHYenjb{_OMmxA_8F{d+_*0eGwH zJAqEJm9o3I9+>uorlyahC;xe<<%t^RoZm`?Mx` zJ|fwvWOb#Umq=QzlaH)9%yDq9A`+j96StZ1(2~&7d}0q|WF~J#tvw($n|0U4wye1L zx^T9M~7A#cqAChJu2hla-@fz>s8hY(jl>TwBE z^Xoq{UCT!Megu7&sQ0PjA?8x{WS#su(eh9ARAX@BYWuXvk zhn#d*c(d#r%t#Y>W47HPTds)dskkJU8#vpDz-m($>COt&r(_HY+}c*y&;*>Hajs&+MxuBB?E~`WR~YVs@A$asVSJ5NBQk*r*ofevJWzq9!+F=1}kLv!;yL&(e~ffbB6`S|pj< zM|W!k5p9xZt1oHH+xQXdm~*3Pp%v(4WJ!^JAHYmj)=XBZubNjP=N?n)I8im`Qn$Kn zjjM*fL%t`>o;CfkA<1hu)tG?x(k};ytpwE^0rt{ zd}qoh55jMf(x_RWV}Q!F9_3ympiX~z@q;qSf-HvVLlmYjP#5U#a3&Eed0X4@%R-1-?T z3yrLu4uw%=MVs7N5fH8*Wg$xIt)20ZLozLlxa}k8L+wLc5lf=mzNl(Pgt=glX>7Qd}f3h$#clj7NDxxGx8tV&Vgw$&AM%{@}Gnuo*!4F_0rOs^M zVz4Y@4^VDbb4IJN21{xl6g3HuL*e8au9z3ShQ~ zL+25-1@59ocI1i+4RUgsxud)x58rFnOLD0`ZKq(Gn0ws$FQL?<$5=oC=Q;1Km$%Zp%0^xJ z9+Sdh?(-*?yVaRS3L>vHb4n2`a){X|+Tau?GF@oUVzvs|Q7o6v@iRxe<>MiVSIAhi zpc7ZfxDK=C*%=mlZ%#2|gnh^rIzKpm5Z3i4f9~n=B4OcB|5RteQaXC05>yedGS_Jq zWpVngz{~6V@&@PzXD(7l+CVVmQVXKVM-iH z=XpqxjMWN7k?H(}L4QTw_;7^J)$V2@C2HdkZE!x*?0bi3XNB3<-*o_)5pub(W^H40 z`F6i=mr?LnHx@MOlVj+aLpue=2w>a^FZ zSE12zt`t;uh!VZEbm(pWs2NRX|L~Vc^Iq4k3FB6qLe2FxKY0pP)|^iFgx4Y4xQ(Ry z7CnV%K~6%J$q>iv0!xG=CMkE#AA_?4PG&Sg35?rTiNp67+Tc>RhHL=zCXg#={eXJC z4VxFgMt;0L)7Qh8zD9xJ^$al&s-%%8qZ>JATF~3oUQC?PoXt*YOM6SHmXAkvN+fF3 zixa!fq|5y7>t{>bsRe_B z0Z)o1@7r3h|@rbPyd+_RS@*^iiJoUCIRI zyy&5Rn&c#xN@ruChM6$|*^b65kSC@SVykk|w%LkZXRpq*2|%lba_`#AN2+ke6M zx2XEGRL}I4zPUif75{c5lgPo*e?U+OAXkW7bfOUCkH#&@lCiRT8CDT1+gf4|^V8fo z)FNxA7`FsFDo7jrCg9->dU+oU`&4Gn@Q+WHExj!ro8PngMxebPF-{W1+E4S-s3+Ry z%g0`@I0EBLj9+|Vvo#W4+3YB7WwI{PO9_+`nCPEXv0 z+0Mso*nm4u+x*<(bGU(k&B~!%6#1WRC+gxqo+pVj~ zF-D+PpdlHwlo?I$-O>xbUD=3#voN4^p7gc1w7YOMsL$JR#;gE=;=qCL;>2`Huo=I9 z7+M+AkkA}$?w#dDh;`>TUzba+AC6D1^|Kr!Fg1ItvP-PZm0(O2dgIhn ztrvZKT{=EFyxMxfcqD9m`PJsU%e=%1X9;tS`U|1-4?Zm@VXAN7@kL7`*YU89jrQUP ziyyyvT=ZX82wYTI#wZOfJ21(ZJFQ64x)8dtm$54}0^+B=jLZ6KZ%`_2KGYLL)~>tP zOLO7f7k%W^*B7p%UU#lv7*>~jAuUy0Rnd?h=y1c)SsFHE$85YPP3s*CTfj+d7kLxf z={`Fxo7@QC-p1WO({|8fJ@CB@{^htpvO-g7G#xdeb&8hYI$GK;cf7<~)m`icd9*7( zMSuilB~z2=o2f0x&~?t23Qr*eOQ^fI2oI9Y>soIAraRf;skc!|MNq~Fazwjgoan5| zE(C00J0)e-Mc6&bB%A=DirRG^!G5}8>(x}qt4a6@zh-Mg zZy>@=uXJTav}66uvi0i;$sA~hcVcjV?q%*s*zu|ID2!5iUFrAD`vDD%^P+Fk22}i&HnX-r_twA7SCz&nA%3Uv)6m`dvuDE%V@z<6-LY z1tY6pZ`zN}MP2Os>~(nlz4lt)8;8{SDb=dG7OKe%nwJMN@6;J}zjHUDWruEWS_{pd95~(xmbpjdkd5goFjw=HMG=&iNskHP5 zON^FHD{iy8s8oDf!=Q}ELYGu~DI2P8czF&r_SI8zVYrNSrkJ7QJ^97OYi0c_m$%-D zIxqR*+dSQ+FgPBMQGe}JtOV`iyYX_|a7mKaZ5WL1H@mjBY8hRXQ*ubcH1=G4y&O9e zAvK;US5!h<(r)AO#=GmPseWOJ<)U12(ydJ^q63n;Rzu5{BQ4GtK`x^U0Rk{Zy|rfz zV%teok}}u|UOTMA(?V7FSY$P$6&5r7Jm(;8wJt+dZ0_CnX>djCFfxvRA%E;^Kmye? zhS`dV{#jV;vV#h7ZFMYP$$WSb*}z))`8&3Tal!7USf9gnCBl3}K*`4P`8J5&hM;m4 zCzdPzaHwGLv}MHihx0xbE}!y3=T>jYXpvGHN*z zDhQ9lvSSlpm4O?&4h^qJ>RIXDRO0PlxR2&eTT({t5r%2ID4V!N>J7=b;5?=J_ijle9n1A2>2@_4mW6mHX#?qbN)cWP zwxr&OO)tTgdxfD+(m8fg9_~$+5nLCW);9%Lrl*q6E*ev$xw$h~zUPSHLQI=gxapl= zE?Bml47&}CsAObt9_LG{r*FKcO;pqUm$4j`JTyFQIh_SpGFKl_mM=za>K+bET&P3U z2a0*MMqVnCruqEt`WaQFMZ0%iM|9a*lwNC812IarT3s&M49Lb1)!HIuiTBG^%ISv} z!_qSR35i?+ayA(OwNud#?MlC>BzwB! zRBW>Pez-GN_yCKYw9$6Fm_3fR|H4!9?@NI>zVavM@xNx;6-W+8OOy=X)@UHIUPX{z zV90u<^gB(WJCh7(b{a6KM{ zBC-jRqo?X3_Hw^y{yytY3FH2*RBGO_(J9S3dRI)0?JN1?e_4lJ+mzDxAgk|3X8ypL zv5p zPx4Q{tM^IbV|Z|A**h1N^HJL#Tv~WAT<=r8^RfQ1X=WyUbYE7n5Lz;bTtP$UI9;vAXYgce zbpWdfCHEs1-VRaI&FF|Zb>GDZdt{s0m0i#j%{0=~J~G{F9pj~Kh_4&Cpzmy_s?&Ly zzvd=9gT1e(Eo}IyO8_@i8L^Z{HwiCXU^>N4Jv?n?Ow&ft0;LYvYB27};y3))L39`7 zT0u-3Hr<7+uIZG37-XY64R@ReM1i>>gCZsDL*ahvlR*~BDDhQU+NslQM4 zxzPm>x#OJryH<;xr$@RKA!-UH8CJE=HmE<~5hyZNU&p??LBb*tvWLFuyLuTs;Rpc{ zw-%zPZMKp67f_f)d$0To*+db5j&)J=yv_21}wTA5Jth7pcW%;jcDo zu4*yM$eYD^Gd+DCn@k266*Di2T0@38u98h?Ss-V(znUudV7a}%%aTo?T%qMQr4A8D za*3*t?f}O8fR&Bsd?CH;Ju(YO?MrWBVAN(rs*eT;lc_i_f*o0SW#+d&%dp2wqak1~z&$y9^Y<@gU8!Vc<7JDJ% zg#VJz)!;>y?v*D zJ%raWtrRSYU{X-1@Ut@+zaKJzFQV>U39K(SF?-4S~ z^BcV*QWz{{L)$5Uhu%$J<=O$E_^0*a3ql{hl0o!wNt8E8M-wIR5GF(}5OKE<6|U?k zCdVFtwM=5U3mJ4P2PHFnbmnbP&C&(+cH%kH_XVE4nPfi}Z)06J(2+`rQ6emNfZGjj z>95zf-K$Md4L!6i`166g=N*XRaEh!9FNF1`W;u(2tkl3sO553-ht9+zUw=8}3N1rU z`dUI|%t735EQrtHp0nv2&Sy>NemY=90ic8{&P&E9fq0y$Y*ySCK)oN|CTdcKeTVq~ zkZ;fiDl-xoY={>3h_K0LL&sTCvzV!ZKD0BPkCz#e#SU8=PvUsp>nH} zrx%Y`Y>gxCmr;4Sb`oA!KlNMBt9FGO&dX=tr;*C=3$ut^9@$F1zwt?L*2r)Z5fT3K zICh#!scm-JfnjF*9Y>S>b7>m8@eo4!TF${(9(=X4(S9{cHx*NgY#K^K(}^kA_NA!%s7s5_P` z-?|h%cjtzP2o;qy(Rj1bD>2o?d>jerJtku^S2CWVJ_VjN;oDu$x9gO4a&e*ha_jS; zz~U$TEg~RPmHb{sKRSWT=n6)_K5}H*_Q>Ix2Z>ij=FulrTdMT?k-64%P65gvw-559xSL|ZqHU5wI79kj z_2(JhBK+&y-Suq3GCT*!2MPD^j5oX$W5QZ+#o1%nH@(tD_wE{W%up4_zQD^>8Y`oY z9C$SH8d!_B;$BjN7(^WP>DL!wDZ{j(GtYRbX=b*s`c{?r`S>=ceC_a4&_7jeXr1DA z`=_~6)!?{HX787 z^Z9l|{i3dj)Sp%`5Ik$~1UR_$SwyY9}Ym1qhc0fDpbs{@wMUv3(s z@cP`Nu_#r0_)nB)aw{oMd{oFU1qaBJuIc<0zMAzr|j+t&R|%iBGI%%_k2W zSSH%#OU&~Jp1RP)$qnfCha|`OR#hMA3cU}hlggvH^RVKZxr^U;f+>TA`l-C$NvE={ zk30*VzRp?(@(%Mn`4PRab<;tzCiRefPLn0+X}4SYdZ5-nxFh#z`PN4H+0f2+bdzey zdXjvns)sWe&nW9|XKX<*D|YXXZeEBAXp-w5M}?C2zBn%tXI-MKHE<`L0jyq;S;f~GF#?{N}rG;S;J&g^)!^z=d0SLFUv9Yyl zgzg&2`>p|%{)i^;MI29XV&3Lz=!z5d_1!1P>tmjG_~pRY5FIhxbncRrXTPKNArvFs zCzxtan*%Uua1SNg$#!UN3HGnk@TUuhC@apX>F_6 zavASP+m$Z;9`*2&aMl9{o?Qc=>LUw|$^49x!okyGi7r>}UVSho?qyE()M?K05`BR_ zL-qBDL-{oktOu?X?I!P{KZgD&hxr{^H~amwU7S|q_e1sfFUdc_9eO?4XDd(R3%0|7 P12^PVuH|06`}qF={Cfqf literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-1/0.9/original.prototxt b/cars/lr-investigations/exponential/1e-1/0.9/original.prototxt new file mode 100644 index 0000000..c9d0d1c --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.9/original.prototxt @@ -0,0 +1,388 @@ +name: "AlexNet" +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "train" + } + transform_param { + mirror: true + crop_size: 227 + } + data_param { + batch_size: 128 + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "val" + } + transform_param { + crop_size: 227 + } + data_param { + batch_size: 32 + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + stage: "val" + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" + exclude { + stage: "deploy" + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" + include { + stage: "deploy" + } +} diff --git a/cars/lr-investigations/exponential/1e-1/0.9/pred.csv b/cars/lr-investigations/exponential/1e-1/0.9/pred.csv new file mode 100644 index 0000000..1e087d0 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.9/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.88% Chrysler 300 SRT-8 2010 0.65% Chrysler PT Cruiser Convertible 2008 0.61% HUMMER H2 SUT Crew Cab 2009 0.61% Bugatti Veyron 16.4 Coupe 2009 0.6% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-1/0.9/small.png b/cars/lr-investigations/exponential/1e-1/0.9/small.png new file mode 100644 index 0000000000000000000000000000000000000000..0e47cc0115d27d759b165e1dfdc001015b5710ee GIT binary patch literal 64246 zcmb@u2T)U8_daSzETEtu9qBy^3ZaXLGyy>rkP-zHrS}dIQ4#6Ag9=FR(jfsUA(TXr z9!P`$p$8HmgtW{1``+(=%iNiJ=g!?TXR^*Y$vJ1A{jBF%d+)Uq{n%Ld@&)b-Cr+HW ztgrXL?8J#Pd?!wv+Bkpi_((lJgp z*;CKT=fnw?o`1HJFppBl6DN*h^dD%M2ik4UUkpvP$kN;q&x(LQ%Kngik@>QlHvX~u zNm>0WH`9uW$=RZ>AD&KCWmHYrHv4yKA$Aq@xxs5`eN4xl<)n*Z#cOkvNGUH!&#&-gaT2+!(ja8gMZ7X z;&lew)&CT(zM|9rv63X|+>$0UQu}Sn4ljq zR!@=)>mh4VnE&26J2{x_|50xrQaX;dsHCtRwmX(wGc;9OIPuY?D0Itsji9QjN>b9F znWhv!m{b!P8^7BL-RLShZN$^l)3g3?#mjZ;%L5@cmZ*uTrGd)B>16e9kM$lteCQkV z=+|5yuNV>7tp`$Ni87Mkwn8C>j63SP zdtaXH9byv&$Mqva)K+coewsk+Z0*Oy3_UBLW z&!6U`ME$(Hys_zN2@fy@)wi*~jy5fzE{QKEfT@MUziBxB#U0Bwio$F$?>nvfn?fBmzekKH?;Cn zGy5(7bbn1vy_Ux1V8o>Q7)EDinXG3!@u1R zkmb2KecO-jZ)_Z2^g}+uy@yVtOpq%y3QS0e%;%xEnz*>Q^pVm(6r!G=J}%{-;$hg) zPDeKExeyk9H3_+ln7dzPl*6el&!0FtIaPS^Bd3Gq^o^Jv?{no>PWtiL@AE3ka8*rR zXti;{4eQMiI7|QK1HnlhK8gC%clm0;UE%K${9=4>W>;5N z6F+@AH!qa(+}gUhxLBuo;Ev4f`ue)amGj4*P~6^b9p@%-ZS45c{ml&xPnri(J%N?| zlXw$vw>#NvBJf*HVPRoyQIA|)TvAq6ULRkGn}?^kv(xtYLj9L<=TcbyB{Rpf|F@=& z!L_v5f%7(ojpgMAQqt0XtXUuKCrk83ZE&Vo?b<)?SZU&uc>U@7PzTE!_9gF+H$1r+#%Ig>&$!Te#{0X|GWc^s4O|6^y8AHV@ zfUKzd$(H}3BVj{X^~Sf+pGjF+@DGuq=echHrz5{A0RRciOc!e{d#2?VUYNMM%N?UZ zu(ogR7!7JNBDb0z0jGOfy7_zCj*XP`^dASTa5ff4*1|jgp-!Rt_y5a1{xP!^J?YmG zKEgy#_t#YFBYD=ld`A?@QzJI{i+A~MH6`giASJ#nRlRcQoL|f%EhDC3+u@i0IW=>4-HpH5nKh#<(ZFwfs3TF`+Mb z<+r+{K|nw=H|nuOQOLlZSPv(s689v@1y9SkDh&RZvMwY$-atVh8pq7n*x0D=KhRq2rnAR@g+CV&aB{an7- z-*09IhKC)0b+ethe2I5c>vv8@2JA!RSJP|_`*uw~6uNrc1mCvr-MTR@D}VMj)Bls(=4Yk&?gZ$k zr0Sb~b1!&bjSKi9Bbf~U!{)28_W#wHNgMp~XZ7V{-9Vs%?VEpQXJ?CATdkT0iu(H> zzV+~!l9iA1>S?`Qn9QPDe0b;h?Tqag>CL3+v>E;D++rh{MUg5`?oXwHLR1e?jPtRN>Pus{EnrA&{1zEhd>Kvb!_> z!~~AhAho8T|7E^6=3g47M z75rH0^pB zI&)Y5Scv;@#5I2TlM9^vio(L$9di``wdlaD@Td;ejJgUnJY6#hy5ZcqDDCYAiX@d)NMI5cDuDr{fRGn4lJ2e}|G zMUMp+zn<^qW~no@=g=QBOA2WcD_giyL40h}yJ25}2M~-8faurVcd<><>0fIL!t#f3(|091p;C2-Je=u*4G4#LXUdvP`w|*~)uXODl z?eqb=@4;|s%8R5xy~?^<*`Du0%clAHECku2qdv4h*O1Ewa9*3HXyMexd ztlnc;xt8qPYU4~#4m!TWT^)b_CT`qrOMXM-Rc<4mtgNg@K+E@EBO)Tz&j%9;giO!c z6ESyVW!YH{mR44dS?=U1>)~T^8}7M(%HcR(QU4$L_{TVYYtD>BnT2}?|110ulK!W& zP`{e7)k%oJ-x+WNm8B%Oxuk3Q@{NecqLuZqjA3$!vg^n zUe|I|YvGApHvO*=QuVn|NW z&tR_#<3A`4{w-#Ex@JK7TX;~DlcoQi!{zlLF7GrS!yJn{uR-DBHT{5 zW3t=xvHWZC0uxWEgvcq0TfCV&DlEF+5gjI`nk3$>q~Cgap$%e;S(*Yy zM|RbnT)TWwj#HRXJhYt_H&%pXq89WHi?E-j&QlUoI^%C-=!tw^c`YwIn#7*qQ%}NP zi~>Eb!Rj;s#?;vxJH{6~4g$eOp}f?pmb^_`?CtKu{LP>jj09{id}WzfqXwYFZ>Pk( zw!O3F5=Rp1UvY#b=if^RM!=i8TRH=mbhzSK438>(=T)DHa3@s@+d89;>mO?Y>mm|% zx8eu@C|VpELVu?=IVz3`v9GbQNR-r3UUSaruYTy)VXWBX6$t8agz=~es5xbB0wdh) zxI^_PlJuG`qXh!vj1}oOtUH)iii{wa`>)rK;0N=WKGQ6>yNmEHy=Sz<#deJ8D)!)L z2gQ8iHs?9VA!I=^fJWeQ%BAEf^QHdX#Z5@MaRwzL-C{N4m$y^l34ablb~S#vsLxP# zr+4Zs;+Rh@yqi5oDfpXcn7<)lUZeAH_Kl67JzmOq1!mhHLo4|W< zNH{@Vnw9ob8$#(N5{4r(9A`vZ5w{h|E+6Xp>UbRrWQ@BWw@eGAd?Z8o6e^vc#>Cqgf6&^&>rR1!0*m z5}-MPj#X0gebN`|*HJ(Lb&WBw8AH-@o*iQ2L!>VBNH4`#pru%AY=1Pfk@3}xbjINy z@W3CYf@d*@jTSX&2{Me&5Q`<31gIdYfS$ygO_S#G_cNT_j9H$as!mC$J}hlxkc=M_ zf6?Dj*H&4JtHC+5TK8t2z9P)_mY*-#4&K)>XEBphw%LQTb(TGu(4|sEUXNfUV8slsWt8+x?J- zK`jd}$$ug=%MNm_h|97>O+ivxdUQaOA!H{Cptt{IVqN3BfL!`Vf*pC!I(=}XCSJB* z;BDXodLd179C=0AJ8~{LEFqM7*`mPmL3ra@1))kDS{(lA%ZAjFLJcj}J(`zQw`h}6 zkQSCyu)&YR$3wK}E?b1TX%*WRnhXpY1JB5Vl8U=I%_(0hrI+YabAX!mCBO2^CVLtSuEb^b zn$bp|nlzJ2>W9jF=<|^h^}N#r!Y;?!`KLoe5ps>26YgQf6WU=v05` zMt&6mgrsITm*|x{enbmxR3Cl~-J6tN?i#%rG%^W_aY84&I+zP?jC?W z#1Ds5_JWLpjw>N?wVeC$*MvjGZ9zE>ZKD+ZopB71|UObbM67t`KGy z{HU>xK^v$~7y!vqq$fW0Xh%&m(%TtDI2UApD^s|c`cPMA2oZZB*7a&>lX%WE)%fN0PxvrbrwKz_6Q7 zz!9hVz*X_qUgw|PCe=buouN&igFWx^y6Ol5etOSN<1oH(H=gO z>&+Ezi5=YHT>+Y!|asc24=bmQzA=HdWwRi=V@R#X6#55B$g2K8{ONP+U=i#%n!rIlw z@YYREHoY}-)Qiol)*ZAjqb(<4p493e5V48;4X+jKMVE14q&Ue!Uezh%h-Wv_zand;L-BfA)PqR2{UbNHa zl*L=kO4VqfSQ0I*zov9bQZ970(Yu4hf(!hcTz@@dV6tA6@Mgnee1k6lmliO1T9ma^ zhuxlY(*(Oa@~iTrlyO_@&g+SDy=K!t+`u``Aiv$G&aUhUr2YB*^~QJsRa^Q=@EA9rwB`{ZaOwaU3 z%hq0oZ22(apOvASQ9)I7Ya6tCa+w^B-v1tH%T0%vB|3n-ag(cwj)V$M;CD| ziU*eQP+U77W}<2d7Q!pO2zwid{7%xd3(Pa86{$}qv8DYC(oDAEgssTE;MufbUkGH- zoE~C7kpSV)V7|q~=^p&Aa5WZ~Ob5$5nqa?3crN7i_FY0i1>OBo?w+PCqj2Sb{x^I= z&f9JSbrGK=>H`w4kb_QVS(FhrGQz9km-WtcEpGO$2SUBk2LCYDp7dS(A}o5Np(euw za**OMDdtC4xn83|8uU3PfQYH{UKVpTB>MBdtlgHXK)bqN#1zh^=0My!f7*Ky7$@=O z4Wo+CmaCb8?ATXn9gI$^1@~wu@f+S`jyyaEBLX)ux7;=Hym8T9ywCu0XWMmEw5B;D zk%~t%Ce(!j0Ik+rQH!1(x~@^TV|#7`A@Q>zwW!(1@m=~QG7{pH-?ngqlhxmVzKdB}?PFAi8(&lL%%M)TF)evJeIwQtggtp4 zA7+bDxWF8VOba*Gpw2&>*(aEYR=x1OdW{tS5udt^!`x($9zll@)$AtdRUSE(?nO=X zQNoyJpbcb{im&h7a5>61?TIv8&V=5lsi{)Da9;K&{e?)o*S+6htVL*p097!)wC2=srI4Iqh$Xr{uYS2-wjMbXM4w=o|IKrBA)M? z@8K}z_k5l`leuD)dgGq!5$(r^$feTXT_f`23@7i6#vplI{T8Cze{uQ~3wrZR7g$;V zLcTyA_RuWkc!&MSGAE@|-IyFU>iYH)-DM1?;QRM-{ql;*z--#ZB?TyDFEi4Om!<8z zkj7!fXkVaBcEc(St_rT?I3E&xAToch!1eFlLEL(sRHN@#LnleGgW2l3=m2sd zp|BH_)CqHl$#@_DB6~5j&Iw@{SdAGx#X{dG;q1?7x#-H2k^;$e-vnzyHJw%YR%K-W z8GPr8u(#1H-(p^#6r&NZ74$t|k+SOXMf0YBC7a=m(7zS}z`Dl<9|Yy{Z)Ljj$ml8A zG;7hQ5g--Rp7GpDrv;-*rT}_xJ0$cDFpl^TkOWAlmdtq@L9$O5(6@R?qs5%IVw!El zDCgaXuXks#G6*Xf4A@%cM*mztuK?@Cw7h`LR1?}?6NI8>(ob@oh=q`h`HqTE9r+Ju zxKsgc-f3UG@K~Pq`|)r-)hPq8L{p&tPjdeV0U?bk3zwtpwlBA8vx5qu;CW2NNBl*a z?lKk%F6ampX}YCvZn`H)M%Va=UeOR+vk28Ob23tseOp@c=sx0-E)>M-yXPO_w@c<;;R?@E2q5YAeANj@szpHwfr;t0mc*3rU8p4^qZqiemkO3@jWn|LY1yXJ4(KUXDX=ci33d?>&0G+ir@9u8q2h9FLUqRyd_%*WkA8jcwH9LFP zy4?UC6Oljc^Wo(7M& zt(42A-pR>Vn^swX|%%v-LM2o0itH$8*w-1bpN0rAI0^ zQZs$up)O1fqEDNy0gp0^+8hdO;*?NUy}IAsnM0n7h~7>25&$?&ULOkpO3C5va2c02 z&~-vExuiGaSXbir2BQb0c)vP|x3Z_mQ?oEYxu9%T5|)_9n{DBSPFJd%J*gY!FKuM2N=vm#{C&-Q+#)2V)}gi+=Q?cMXDi8Z|r2 zRjPf$ObG&sNpA?WajUx%t@hs4d4mpljyW@BYsniqSQ#pd9#G!v<;nAGNts=e7c5_x zWWk}BbjkRN%O&-!nq@@Sx!vYosD8l1o#xziO-&H};7<_Z$yJ86$wB)M6*1gUX7(L+ z#*YS(J}dF1AIP+Oho6rgzLe)`Xvnp0<2}!!_a+%T0?(ax${pPJK&hLD-w5n1?6F!` zE^bR$&9B?JIf6&4XV+#LjNMH4OdNd>34J)oIc^YifAL$m&++s#m&u*gGrh_4Y+*0< zczPACrm&ogGf~M5EPP}wPC*&PU4)T_|6&#}1(!JqF1{K-PAs^dyzh(@5676}O3I+9 zapLWzO1Tpz{o~j~^%4Si-p8rk)Z|;cxCoSEPW~o@IBInR)v%Uor~Bkm?EFk9pRC?LYHwGN&Z5@r`WlJCQ5=pS+3;M}d^eL~u zE={Nn#6Fn=bgUx=mvR{9`6ZW3C6(!+wR;9Nc&k#$~*qoIiF-lCEalv{n`y6%7q2 zcVKf`_cC6_Yg{yT`lh;^DM-$6H5roB1f9mZxPtvJAkW4ulmUyuU`33$*o|O0&JZy` zcJO*zkxP`G*XT66C?V#HPW~p_Q`sSmsA{q07q*m(|7ON~N&A~w7r1{R^6}Ok+N`f% zYHpE-__IJrO@eCMr{!y|1j-n zRWF+tru-?&PFQmLYs1LNV|96RXs^5iu4x!CaLOq}D6%6vV?Q+5HOL1W5uYFeD;}-GJ<5048WMFi|ak3A5JWd|x z?z6RoI#eokvNQFr<{NS-yDY!&A+Y<#-9>oJ)7Q+b~-HZTD$s;VfM$OmIIN`qc7Pm zs^Ol^t8ySdK11;q;MEY0s8GuZHvK$xuScH}WS-s?xX*-^*xutzhD`Ol|H<-oHH8XK z?|VslV8&*(RkQSQlGagW}cA6gHJy#%vXM5EKun>S_IU&Y|6D6(y8WC+7|@9 zydLuKTjJZpuBt^u>~&Tiz;CjW{CG$S5skPS@Q^U2@_T=(&MlWz6;e&s4(nAMEqrf=DbEdEiq@6$ zsQhd5T~ET|6acO8e91o-tNu!g|At2WrU)vv!tLR?JZz^z6Py;wUk-z&szDc1^`5#GFaf z$bFBp&9E_LG!TEa89-KiDK6HvYpQO16tlk157_K&>qb!QQHO20FntcN%o9ojd@<+V zlx{B8x3z)Q+y3kEZgqk(Y)#&Y$7xP1n)$u0z*E!%ZK7Bl&lS|iT$;ytG-=-WQp%;p z!0~1?uO1!bD%z`!@vMWZ6LIv~UgqQdvOviCVfL;$;jrJT=1kt<8SILGQ#Zv;jaU0U zV9_hrEf<%h;<8wFb=@)^+u1Nu85^$;&Unt~sDD1;qvxM%7cipolp?o1Tw{0Jkje*2 zw9JD5D>&P?3x`K8Xz2+k-?KhWQ{9u%AAtdbuH+J>P%A}D)3Z|% zkAl7n!)E$tl*ME+L){DJG#F3DsKaV$mN)o2(8}+&1R8eoR6`mS^l{dM1)+=D*;4}o88wq>qd%;jrr2-G{Ta<$an z>2&EBA6K?Gde}I6z!BvLj4;W+@RL2#cysfL;Hm1ptCyWrRjE$>XJT$T*$cB9DGn`oBaKm@77B=6D55?`E2tR;QsS62v(YquA?J=hu6<;!xeY?2o?)oqneQ? zt)Vh8I9n-A59LZWq3WO8x0zZyW~K%^u=or#o$MSs&)HWk$CeTNoB0GN+II8=R!SHl zpln@rMf_Eh9ee@-uss4L)}NzGODo@?4be@!~N@hf`j1eUg|Z zr>f~)*s)b^_Ebl`u4}fIee=?OWlF$xkT{t1!`>-F{mQ9vX-jh;+wXKS`n-t~HXQG9_c7@@i}>@~16oE~EqBce7$&UwO~-_URw&2*Rp z7%@tFClVix4C2cR+ul9v?H2y2vXy!lv2ja6dwcYQR)T7iOlP7uGCEA%JJ;odc9&0aT@vtV;<7#b9)6x5S1^c?DzRy*|X6L9R zhLXLJ-ZpGzP~0#7N59S`O3tGa;Eq(@G6?up;JL=ir1y+Lui+;QhTxwMsrCK@nR z)pPP{@`evT)s7Gmxm@Z8A3?2Jd`zhWu1?>g+&pEtjHEik(W-rZt8V3%yy)gkrLy%# z{yYVVXP+Ds7S&ji&o$)YQY=faFiXftU31EoyoGg`xE>9CS^vD-pJIe!mbUsdf)3I~!}z`gYJ?Iwmxuu!cDBrGejkeoQDFc* zWZfwF3YT|$je20Na{XWs2<$`)Ssu_sMh_Cc<|h!_IS`VmZUQn%Fzc1Uqy@-gtAxlqa&QPR?|;9~G^saQ*RuuBUqL13~R=MWtVOYG0W7yxt42z1CsNLRxEi3DoBEu~~BfPf@BVwH=5o zrL577JlpwjWi|QiH{DNt=9ngjx?Z?4G-9VlqdjbxZzlqRvv_9$GJ;v&IoyA?V#?*8 zfQVWsG=B8E{n-}hOOe2d4?t%8KGt~d9jVz_6}D!b@!%C^w6|r!`!3zo2^{q2sWPF; zk7p?ZsUZn-^tD^)iM5p10GU0k@AVs<{?%4zxqf%uX}Gg;#wYK_8`m))hhblnWGD4P z7I;*2jK@DdPqI+pvV#DJM!iis2O>!TeCS_RrYR%*7V%4F;q>kRJz!AWy)yCD#rj?h zKCS1Zh#st;L%XwCwH=bSXke7I^SjTP7v>Qu{lhgJ8?uD70Esc#!4oGl?z1nRyY{ZK zV_zMy5g6B|(qFf_>hht&QoVkKn4FU@2@Nkd`ILvfS{<5ncv5S2r%`@2Af6pT;Y-xh z_d^Rr3rsJR3oyJYj5cBEYaJH!i$ zeTH2IYP6|+hO;$!@#9*Ez$7eU*Uu*RT3pKnzKhA}U0C#ku{^hjSlRt=-xXMIC7i$~ zpfYU40K7(@BXVI{)c1ZLoK@;b)XGcBD+V{fIORpJE8;r39nJ+`g8m-F(F8BU`(NU2 zMB}ov+8)QNE~p-4i34H&Y6vKFL!H1W?U8nHddtCHP~>G|Y^VqPKC|xkv35<6XcSw@ z$sXNm3zQ(bYuE2!=Q>+nr->O`@`Z(-AqUiIbZI|Fjl-`)2ie;nD!SfW#f7D<^VYDX zu)o!=xsG4Bpd9R)9&ECR@5kf@%D}FFE;p#?w;}LuC97i$tss(O32B^;iLK5&v!^4sFE9KJWuUXE{L7p&@)!H_c z8w0zn_YS5$O+>IjFJ3QbrgvyV$f!D1PF^Y}$C>2@kMJs+w7Tbz9Zi!V8;?4ykR$_fo} zM~;y`FM=3xAKwqTF4UW2j{GdcDSN#p6><;>9Xp>bEu6=Osn*Tp^U>RuUeO&6L?v#6RIua106(XpS3Yt{n$QI^^3YVAojc3a1-kb< zV2P6tFhoBNOY4Txpc1ml302Xy+pH(iDYU#X)xSwWZ!HXVi#aPc%EW)YstEtHU%83W zG$g#XtvIE6hUMK*+@jfI25rvW2^R2JmfPL#u@I=uC95r4>$|Nj*mI@Fu61#dOjwaN z@bh@oV_2g{yU0`oUOk(oq$F4aU6iuQRtP5dAQ_}5gg8tuhj<{L*YD1)S(l|zRZQ_p z7YvH2thSE-crDqg#dkCV;}s>7tpv(nLqR-p#p#r+T~QN z19G57#hz&)hqD;I!6A?~7kkG~`JstH`rLk8a8R3*FD@R|N=*)LWsFQ2n1CW&$-BKK zQ;Hea;qTvvKds|RzzSR`b0Z9)BVmp&-P`6G>mRQ;@}`KlH?sKs3A=g^;Una~T%O?_lSS+kAwankc$ zcM~K(d95HnY5TMW+#e*{Y?C7G0a5{Bcp`@mzjX=7>3()TjP}gi@nBR-bG%V?_-vx; z^&)gNek1QR=@p?7R*(UpA0;48a>i(846}elK@!%IcuNin-#%iagPs#2^6Ef(v0pT( zu*`VJRK%y#iZGM_wR`GH-(+$xjt-RrdU-59VM@>jZ$M)bfIR=a!&JbwsMN_gvM>^#K8IRr2A$qov6vBHgr<3!=a)4;sw0JZ0Yq*IJRo1erbK$wu zH_kRQdb`^u?Jxw>d1P+|wJ&ZH`UTdU5f&)pr>t3y7E_i0?t@9!$reM+jDV$HpV*3y zuq2sI!q+23eI)%-&<+#3W>vN(Od7nO{*pXalOqy1&SiaV$mnt6@>7epX&zUWTh>Aj+ zC?ta3Jl1#zE7O!G$OixR%D6UxvV-@!16i(6U0VKoQL6QWjvU16L}rRW%iC|Ee^tS$ z!B7QK-Hu-qmqu`-+D?-_d5Fh>(s~$rZ;>7Tip#6Xi(`BjcVb$XQQkRab$%)(dx5OYYRh`FZEvcsZJK?V8|V(A*ncNrtQ3aGWa<-S2f0GNxQ}Rey!Nb2Vud@@mEYu zcIsUHK;N&4|Arh9+}C*2gmmM9HH{6H#^zpsWZ+0;nNFrBML!S~$5Vtk3b7tm`9hfa zP7wX~?IV0cN5fJD-fnyIG-15>lvnX38xA%LdxO{W;O*2O?oKcNp6SsOg3%5OYkXF8 zHg8O6{FY-(%u1L*d6TTPr^>?SD0x%d&<${2=HG4non8*R21*{*s4d$0ufr0=I4y006jzVUyUuux?{aV+?&yIA%zS=0<3T8xcvQ~zrBQrX2BX?Dw0vJAKr{lKunrig~1KT<8IQg;G%VysHxRX2K{)n zQDZ$;lTFgpujBsQr_3p=aT-aPgtd+K8184wF})6+s}u3JiQ_r{VX2HBHpUbDTt1g3 zA&2`cEh+lTi`&AYd!yYM{pJx3F7Ok6@X0dv8|39*-sVZ0ptw+nt>-~d1rP%noyNWp zbPez*iHWiK(2p7C=-Fy&BiB|jC0xKTC3uKuWPA{%eb-uB-yQH^+)-4FZQtmxy>kdk z?WDbBUrcZT=qDNC@EIBB;)fIfi>Gr&hg$j<4(rNfZ0(q1_4Yk%2!o^38r$CD9JD!A zj-e3?T>11_BncBv`A*%H6bX7LfCCr+GNhc^k@Tg2dKw&~+JiUKPYJBQM0$x{Yz)T) zfLCHiG;q_AZX7B#4x3~6&kJB8+}l(7!t4_i+VBWJ`wg0|E_+rcYi7vw3KQ5$%%`Ivk33esxZa|4 zjdftFFKfO0<`6M`18rL3%{`bbYFJby>mNP4+i%xtAG2A_DJgq(hHqX%rv)FijIDl_ z)WOmFKSMK_MLu>GH^KYO1?fzAFQzxn;7Zot;zknkluxxTBec$|rYS_+bFW4UyHE8h z4gV0J=|gb5hgkOxd6-p)Oww5dLX?Hc+UCNAjG~-N?<0Tje73>!et6w#+$l3)c>1K@ znhCYa>rfrUAf`EwYS76i`xjKfT$B&kfh1u9w#jaW8pAnGjO`KH$+vzO@UCQi^>^*_ zThlw0?4QYbd~d^FXUk-3Dn{E63fQTYp1R)g(L-V|oy`fCcOHHg+VHNW*UGob4tM~e zG&K((enf-#WToX&bth&2RHgJZHZl5`$2>h@#>cL|42MnH6u*C2>a#*5F={PTSkEjC z&c!&=E@!Aj%uSzQIL05R217OI?}KyAom3n~eeqQmgRbJG%GWIi97g5Q8B=m8gfs`~ z{TFh30?Kk3Hk(hh{saP77i2%4C1u_C&(h7IxmKUPt$ZL3vV8`NsRHZU`Pz=wSbQi&g?I7ZTp5Z_N1*mbkpGA-+l01Qbl zal3ha#G@%Ym77_gdU4?GaQ%^z*0qKSOH5v3t!kD!!X_l(zK}Ev6ze1qk{1jC1#Mc9 z(d;3wx~v`vwa|WV)OfC-M1zNJ*yvKg`I}y+KHtOzy;iCDBZ_d*Yy@QW?o`pF*sgpN^NP>g)GTDsPp`kQ$3i*gofx<=LaMiOo#vcq5q!wb zk(u~>VZvlhydAs7)dRR@8|fiA!xlNz1LdY&y8y;uFs+WmA*@I|D37GmsUVj1wqYqx zS}w_C&VN4|dYW=h#`RpT;9FCzAC4)e=lpBkU@OKraDrj?V>t9G|@`KR2ro zZz_z)dU&Each73g_YN?ez z+C>*egi@ArU~&d0@J1c4Ex*P^i2(91a>zu(Zg+(~ybo6EhzbA)$7M%7MJPhS8tJ8j zzAGofH8noQX$$e=M;>GvVklkf>`119-Af1fZX!oBuWrdqd zR=#$rqE5v&O_QE-4A?KatCe(rarv5bLW$bBmPsS@sE~)nwVS7qMAj*+V^W7Ipj*?BW#tDNx z0Vv)(9~RCP{b0!tp|P!v*gd5mu!N~?`L)3n)hD{BHjICu$L0W51si8mXZGuse1v)} zui`8dH#4JHGn%NOn@Ru;n$uLik4%0uTlOg z$!3=vQF0x~;!Vxvq}Ov*Q%i7R{PXGqi;~3(1|?VJwdm|#lMW#w=V3y$K-F7~T`gN) zJ0cWH3~o$>;Gxf#5{z>>qQdSjO7nVn=IVHJ!VY$KUQRWm!>U?r*;n7P|yg#XI3}0 zk!#5Zt9s%`(PS8lw!*Y85rUlT#C};Gt9XnKBDeJ!BOXcLF)<_dPLsmsoN|?;hBA7@ z{eK#`{pyHfLWk!y0IW-`zsHy9`7X5BdL|iG{kzCBYJV>4dh#P<(VL6WpVX~Ib;Jc9 z);zsxsNy@%nHC548CN)UJcs=<**)~H)(qkCri(I8c=LSSEx10(()tpVn>V)hO5b}b zvKpzm`}TrhY0#WN>1{#w%JOrbwp1qfWx@KvMql%mYJ9euI9{FhFf8p|@S zYyo3Rh=3t5n)2h1fk+-cd|T!PV}q44o(mPzd?G8cWAve6gPOm*mi|k&&alh2XnXP23 zVtjt51{1=^=B`GHNkN!%2agR`+WX~ph$7WotF9sUJ+uJ4BokB8&}+OYt=K0SAh3u0;AFo%bUH zQQ?URAJ^_fbPEON@#DQ!F9xK0ei;{A@yC}PV}mP;@x*o1sN6&E5U8TLw%=e_xkBH$ z-GxWU&aNORROf)u;}*;8SZzUqUZZOh{l3r97nQ{4`1*n{e#7gFk5wkdmxK_e$XDbX z1apXEpaX_oLMug6*Epv3LTE)j9rlOLnGesf8Hs$awXnYJcrTfh1Uo~%T--*7 zmw`e+yuo`F9`2rX+@mygXEdhmlteTp&L=``*Tk59`9>9x463YocF}~I0=QA{McW0p4H;kUnR!*)uq@j`w~=Q5JLfO@L$R+dFgs z73+5(ZaGT}3s8170FH>HV`N+a?*a%WOG``OT^<-PF@B@aoYt70QUgxPP0ubR65guu z@{dIfg2HVHS=m(EdP1}SUVM&cm0`_Z7|s*)g-Z_~(4x6k4Vjk?!>|B1Dn5SXYG`Qi z?~b0=#GPtx06+JA!i!DpWY5>Hk+ik6+Cdp~e*P0VIXS@9sZPku z$`U>Q^2IW~WJzghcb^+KJ{W0bJ62X!P$doTUag~d=uip%>PJ}Jx3#$m>g6*tGesgI zBf+0_^z?$Zwk(DTptl&KurLfdKaLWKv^qBG*obzS&ZcSyND$+mJ%Lw6MuAAKHzlxq z1cCC)3u$*@B@|YbKGKtJ%irD8Lu_}KVAtpD#rz8Gu7o6KCH3f(a*0{}Hn~`5wc0*{ zo)cwG2put*0TKkcw#`H|3osTS z)jL#h;ZyTtw5z7QOBM@?H0StsF2lhQk&rx+kPLrRc<#><0gTx->s+zoGZksarM&i9 zl5(~6^M~v&1I`5XALq=FP*RF4;RO(3*T*0*36lH!bPP*G8EtxXlB6eT+Pc1ywm!o? zCD59`bfj~s;aP0FIbZAYl^gZofP+i~i|P34OtHT;6C~2`Od} z6zKw5NEgnP%g$gGk5wc6UjmU(mCF8Sfk=Ku9{`s>HFR;w7k&g1`E&fA--itO+dKFN zfCWHRAi7I)zIP}qEiIt2QE-@tINp!&>gxF3CpGD^TWHzE`fy(1@%PZCvj&%X%GJ($ zeL*~R*b`xJs0%s)i76@GZ8P8;I)8dvyIGYh4hs>-JskS*;f0#Iy5~1M)MJ6p&nBt6 zLetL)(J_bKhmoctB?J8Hvr!s+|kp zy_Ix!=OV5^jw{5_5VH4nk3l}q!CQ}vG&I7+8?D=r$`4V3lD&v?VDcc3>ncOc=nL!yq z(0w~SRaZmC0?@HePYW%wtK^9mO8IobvjqMKI!Sg)QVg|Xg+(vGS3O15Ono4t6?>*Y z(4arpnPk(HV^bI`)aXQ2taQ_}X31erZtNfuA@1>1`ZxAgy)l5oy{)NME3{oMequXOb-FNr1@1e`np* z^Xb39y3wqNNe|5=O=@+ljTX((Oiv8*SbS{|gz`*6GTKC({N}1kK*OHKoxf=ES9b-~ z57VpXrmCgyN%IJo>rwU-uC+(>72;hbpK^G{ywgVpSdC(bm zj_%U#f^JeuGDOgP$vr4YLOX5FfA#`A$uqY0yWP25SGx``wTc0vlF_m7Hwa<}8vg2a zastfK?kqf|bbKYU0^bq5Va4%{W;+-f>*ad3Q4ChNyD9DDjAnrK+qw49(QKUnKUn~q z$?@SO045{P@XP1--^#09brShEJLFVqiE-u`Qv@2PI|kw*<0!-=SM6&IJ#RkpJe}mT z!Y$2-)iIe8dvQm*gkKHKGC%hc{Z|T|E@yUAvf5>093%EFVp93^NRp1t15tk>J`CPZ z?cvWm68Lg;y2${mEre2@xG9tx0G=or8D$JAb~ON!3(&zD4|dnP`&whz<-x+dHR_6h z0T@0sx;+&11+K2N2NR1kFWP1#Rap&3*novdsZb&%o$)kYUahk+m|T5z;?tQ6pz*X5 zwh@loy!CB76f)~gv`Jck_~(*)n?<%-0+0=jADm9ZHETi;z6 zfWUP0Bqe1N>d^^X-g(@8ZzM=^vOj$W^rgOU03icu=@39YI|19AaM5VV1Q&)avi1CQ ztj(%69|z9C09~x)SD&_>?GW`&Fn(5Vefdp-ZeOXWfjN{TDs7V^NolBQLJW_XNMI1n z>e*JIRs%>%8-gwNSiCy8!CsQ=^ttc2b>4`litI@99_{U`d+PYS00fTv0Q@%iJzdNjMf zm&M-9!WurWUcJrvR1v!P9EK+w21rD(1zH^J80Vkx`eMTU&AzMz3>c>fzD<{5dpdt$ z$1?itUO)om>f;0t9 z=(CVjDhg13VrSe*f&_8eG`}fr*>a7lRJ6@VA$910PO)wN@;7tU;v5l<5pxR~DW|_0 z08PQ{S}VcY!0yiXhiC}mX9&~|ND{9x)p^X9HJ5Z)zepjl{%(t&dWd?Z-{s#K!1T>I zj?=y{qcqOONP|41QQOu=xc(R#Usi&->NW!-l_$+|^w}sp%*4|$YGaPYna5~%Djek1ihu`MhKM&6@MSDa>*PU4vcz z+^GW)Y0D}|fhPyjw>7WO^^$-UjPpL+BFXF`FhP=i{>gs&-`v5kZsyx1skjsk!Cj-4 zrL;7%)QpTSb~Ti%kc8`aSxUkhpS-zNBL*$v!Z5wKm6uC~4PbWnmC>=WxT&cr0UfgS zS%x@bh>cCjjve4k65lzf>eEnD^XOgZ28R6A8pLbY1i=1n#fA(1A7J^yxe_W+g+^4W z;a-KPi1ZY2DCb`57|-@!yOb|c0V_Q1CT`gO%j{QY zaoYmHIhZTuA&nzyYVFwO#)&Z z?DE0oV8qs`d(g9}Y63K1F*gkU1k0@XSvGE-=QM9{fwpo?4F(>jQUk;8wa&6KB14Ew z{Wf^bK3_9Rn_Kxt)QofXupf-S`1?Sje-Ytv^1N?5fT}kT_e)fYTX6-hEBz(=9>xaa ziARyT7;>+o(}_EPWH-55QjDEwu+XqKb86zINI2#xk2*qe2avj{h7x%W^1R+2g;b{# z;^=%MtQrTL+F~M{!YqBpA06=Wk8(s>j|~GPG*y&Mk|;iOlUp>pT_TmJpp+J)6SuZ5 zW;tF{W6VYP37e({F|0JK`jjD>vqHpri?Pr7DTaAmJrb~Xj?V4Fv)EGgCGs>}m<+hQ zpVqxep0>@GWMLn$kk-lE`$vh$u~r`~XwLnRfcvpg{vXq`q^jRM_U*n6vZ#isG2*WzN7=rc;CMG6?Cpq88fiS&*9S1;P zqh5DV)}y7NsR2D0Kvw9|#O2GE3CYQY*l>M80|(ev#2r8tD%7GxgX~I}lU(20Dm}@D z+iPlZ|If7$_@3Iq<=6hlTMV84*iYb=BanW$i~cDiVKm#e9__EA|C^TnhtmHOQrCI~ ztOdRH7_baJ587NM0{6ZB!C4~uXQ1&v zO!wC+>lZ(FM(cgl&B0NUEti<^uwc1kn{}QMqyBPg2<{NxlCi_UolB9LNAsrBgg9Ra zLg^rz9ESwG7)@@MNW|`Jz~b#bm9wjZ{G=V*(A}gzYFi$6bKu8AU4J|1Pi-(89Px<3 zlPymkG?r0ty=ijHLlB7zC6{pYVLNypF2yNp);RHttqnB!A@cAp;Q9$EQe$0 zVvq`{SGG*Nkxx+eFsXtti!ibkmu|0^Fdm(`h((BSwi!FAgoV1l0qUuJA5H8C9#S~k z&7P(n7s+i@U6z^(btS?E>Da(*Sxq-gd4XKZ!SYr2mt|ch|hqm_y?P_ZWx5V zoJU1=%cilB8(aC=_9BMNBclE9o`+_5#ujAjvItWUTaQDGFB7IY#$Zb6yNk@%9zi4&^0tIn z^=-a-X3$DH4*T$^e^CWRRU0QoXw1@T1k#IiSv1g~hD5fo^%q)dZXoKxa9Q+U!$TKn zRO^0-K%UssPqq4~Mai*J&tGKCC_qmNWP+*~2?9pzvwlaw#uy|ze=A_)QSDxzv#GW= z=;BfhnZmfa5WCUFT9PPKhr~g0--maFRJV)akRfns-m z5Nmo>t$nmfkhIseA7uPpXZ2S9YE*1mlBOF8_Vd~(MSmc#I+0^}^gg{8ocw^Ah6dsp zN=f=nhtQFM8twasG5wl5pZeR*eLqsFnV0@&0J>+=4R!O9YT<*?DjAr-i`&NoL2Zfo zjSkD5)%&~N*tRe0w(wVt#>;2Vj!@&GPX2@Hoz=or#jU{46=(SqDyFyEw}dE$$N_2N z7tYnKx2A>^=fqoixavzlNTa2T5nbUWs?}53rZ!nYP0wqW965Oru zY3A&CI7$K9L4bgJIHzO9?ZN){ znjk%dI9X~m&J6-F8Z8k?wFU2tPHqzPHu702vt9>*e^{_bHb=!3v^XJ`$qM@9jR7)5 zwMFAkGDhB341ak$lpcUAzdd_I3d{b(qTS)FmRaD%rqj*hjJeg5s{)FOF-0Iw%aaUL z67&VBsccdGPKlW4#%kzJ%qMBkCLodcRT2t_=s?`4v$L}c=6aj#=q6&PJc%j-O~*i6 zt0xWa^uF=Fq0NM+Cu;&!f?EEGf4$2dBG^sRvUr3WF3dVgO>rpF1fDs@uc~iS0=8Aj zLs;iE(60+5U_0Y^+`D`hVWlKTM-G^{0GFuNn4?0=z|UbMptZ;D|W z)_fZiQ(X0XzQY|E547`G+F6~{fi*`8uCKNKEKz!Ae8UUHe;8SqsN4@5HW+4RW&%7s z&fswX(Hgj;1kmOPUEkc?9OcSI@N7GWhcjy#(5?be8{*_(e}AgHnjjOlwCcjP*eb7V z#4kSz4lu2zOGg!nEMXxAe$x(k!1{Kb#jc#dv)Sw>6CDme!1_KD@1M@ZIU6J}Zp(z= zSYIeXMi%O*fO1~COXL;ESbwGL`oBmYiLqvrbpnlhi!~Y4y#Xj~cEc?8e^JLJcLaro z3!ayV>PC_SjDGoRoSy7-m4B<8io&~j_4E=#jpDAS^{%vE6)0vO$-t5McF{pAMepg0 zDQ8o8nY-nCBdIJx5cj9kY6~$PvE6t9x!u}lqM?prI-CCH;av5)%cSiKTWk7~LY#?A z$hW&W)TOv)F(Z**x@^>YkuAO0^7z?1K*J<|ILqj2LspPzFWD)iiW<~# zSedX3`5hgTmOuPzJ?5ASco~iJYeRR`v^2d7I-Wg^=y>br?ql- z#sfpq3zX-3@3NOhamEQZ8hWv>?$t3w@AOp5&WsY}vqpVnGuC-jAvILUXK`fItF38p zwh1Pu^o3q1=&A#TzRA^3^FD#2mMEI|b7K_Kc&X^A_xyrT2r-vKy|@)-#v63zm}NGx zfvSn2|3x&{v|B6EPjmsi-lhE83*z35EX9tye7=O}KCkTeKh}i*qB*m1HUC4eENZmc znJ{N^iB=xbri}qd%YEu}x+`66D|F+7NCF%` z8L!%;h<;%8lIzd9yA!qu|w=nIocwwGV534`C~R1DxB|i_aC@*Pr|a84BUyohH#*15Z4SI&b=| zxBE6H9cr1W8RN!H!ZttUDsyqepSu7L$Aln0U~SVNjP}W6IfN29B<5C^lh=gldM3i@ zM2M(3Q0OF7mq0rX`CxT)+j{3CO{xRoQHxt2OY!1I_rM-BHWEK80fDeFhHjS&QPI9` zt%E`u1grO1;>3xu&kky{U0AQ$Si(8KsiQNYW6PIxlJ)(!KNo^SX8l1CMsli?H2*s9tk%)pyQYzvPo@yCmO%k`r>KjF2?b;euD@4Ar0?hsrrkNBfq8(!BO zy_j1iIL%;p2)ox*&BA>~HQY&VOKqek>*1V>wPfm#j;T_IjRVLPqv(lpr}6zod_Pqn#i0-)FH0yP zG09STNd}|vmDJ{TK*>=mmmX8gOA02XCTlk53#HI@r9RZi_!snnOU{jnd^gRfTzd&C zvB+T~H}EW&Feff!%$tz#kb$D#e&VX{jP&Ae*9fM3Z2HXJoxP?+8>LJsVf+UsU}wB; zd*kslRjK}Kg5RsBpirq^)5+eld$qU3m}+KutC5DEVTnC#*3(>4jX&7TM{RWvhrpk8 zb1X6PQCfd3!t@Z*83GG+5{SyMLNps?W5tM9h>%D(e_*C+|yQwEJU74<&I9?{8E1}-Eq%0#yj1<-bIT=t!fri4O ze4ct4)FFu5B1>uLAqjah1*sJM9YhLyb+jLS-OlVFEhk_vod~&yIZ$B| z3FE2y8_ZT;fUgH}N5YX{%vIIW5&(^I)vc_ag0EHg8b|U>0$1R8>;QjSq%s(DlIrNG zulKn9z11O=Nxdkuhy9e^M3mRazq!y#%T34Gpa-DyvNT9Z<~Ksbb23AFH)Gcd>+vRiKf?UA#9 z++%lrCOs#b-L~MQm=6Ji3P@DddopBo^binItP&_h#@2Vc`dT9yVN!gdP^#dY~R7C zsT?`z0l&I`tz1E*OpW-=_lZumOD!_=Ud$+x(Lte3o67dL1;+vN(!>U+Up%$c&G11) zIpM@e09lrp63V_ipEkw&i{uPV-C%2V*6>s#UC2TlSH&R=*e=Y6tx%e=S4yfuI)ZW;&f>#RTohzg4!>BNs&g6wo$_QVU9-%2rLW`;cK6*F0LsT7KcItG!MsGWHMm~ve-z{+YqHD$^a zSa5$v3+|}$iR#B{nDm8V=`2n^YClBQsMqcmth%35yV;{&!py+?4?&;jtw5=MiVVL2 zEh!z;0F-Yvo(!uJ_)ot`KY0?p@wNV=ysJt2aOv2|D>{cNSkFUn<7KLnhO!$G4sg#k zgM2&{V(G%y*49u*J;J{EUO2BD(&MEVAmLIg-kG|VoQaJ0)h-j^m{oBZ!8c0^FfI1a zUt8XhBvmoT_42l2|LP#5&VL@f$*L}7f55XLmwKB1B%3W*8DHKr==YS(?N&4r|98!{6!DTJn3=5bZnO4(sy}T8fE!iW;1gQ!@l~ zRsU5e6?7p65$YsZMH^_zJoU7El{fX5D2W?l4}(iu@>ozb*QHyXH-Wp{-Zy&MgNXM2~A3azW4On3NEM^ zoR1N9ac5ExC7zFMxUS=TJIwjJntB3GN^^|oC*WWeeB3P`AEhM$FEvTSZ6-DxbY(vI ziJ*z%5GNC%KPjM*i8@oJDv}m|OH`l9dOI363`%99IaX)G$cbxDGWMWCZdkOd%bY{T zB8&wl{&@cD6bF|v%&PMb4<|L9Y3-(@(Qb`m z1~oB2@!inWgjzV52}C5IWWSbyKG>aB-jA-D;B_;1x5*C^5uObovgxA;s`wBgg`PG^ z(-nvW^uB_ZOdC)Wd5saT(VP#w9+(Gn&dxkWvlp8~l!ZeH27z3i6EU{S9h5CfcRwRA z)Qb*d>v}KN5|M1ff;66o87rRMFYfte?I+|K=PyUR3^ThAbf_mIkucXVbs7+FH1Onz zle|XuK%D&ZzRsgcME?xK%M;t;+5=1`Qy$oCR=`wGtZCTTGJp}L zTK78jto&@S(y{WQGq6e|zl0;7R5sDm&?MBN?XywsypD{zk@Ea zD47!$+G^*}v{`^i{We&*Vi#MKT*{`W<+dK9wKfS=`0toJK}_8ezrkv^ybZ1sgYfJ|*%D zfvVcar`6pk!+d960!$3h_x_25AOl2J#20`?_G?o!GjYlrKN0?%wEcIL>+x_`#akRs z-Nc2lPQ1LL7WpmA|7hlV9~|gTzbUo@;(?)}cY#POEX|bCsbSm#Tles5eX+s8)4) z>pI~*BT6>l(T=G4Nk2)Ti3vU&zfG!CDhbNJ?yzwFVYy4&7lC!`hXL1A2YY){Z0qw1 z3K+Bv41mHWH77@WU~mw)46KpHpbez0di85clS)zEug*sI?FC*H6*nM0It}pFUsMpz zjZ;Yp>K>vbD%t0*{Z<@zA+#C0{QRey!OkS1&5*#S`khG&6bCMm4qg>A(Y-Sq@mTz7M03TmRerO2vbC%H~w!N1zVVNl)E0kuW43w z?px`y2-ne`++6C7{&#m2kK?5xbZQ;e0l3Z2N(C=Q{&Oo6j%yk!)vg4n-5RW@09D7yfXx6gHGL0K z3O+tQog*V4G=6*1&D8m;!0*KVJ3F~xrr_600wOO#ezl8KJ`(@2P^kyBfgr|2D%MZ7 zS;CykF5lgYRW~9!KH9X^Swj^UN+2cg(= zMl1c{?A;+qk8%CxW~Dl0WYGNfq;D-m_8pg+e)uwTan_8b7X@j6-7xXlc$;cG?u-X$ zAAE^&YO?(8n+p|zbHQ08e2rNYo!=OJ+91LxsHU0+YkRx?#2nI#qYzt_WbK4X4))xjk4_C3%$RBI^I6&&xcJ1PS zBT?#*m%#J?;grzO(yA{H6@!dXOE~SL;d&(By1RgfFkw*&i|lXOboV7ED;Bxa4xR;N zhF+XR+=>B2@q0cbGB_AWTLC-})Ym`fIR zFzJnc``jia;^Ab)g5)5UW6#Fg?ve$%F-ZhMJOB+bM?Ovch`_<{jN=Ya<;@8A6p1cF zs$db_^v}z*0!)7Pk6vT@JHsIZPKDWQJHGi{RyQ}dM1aX~b9V<{-(<1x0eykL058a7 z?QgGyo??DD)<2#ctAOYED}c=Mc(pt1Kyx@KI=zRsOF?F!{KTA8!hxXSMY_Ub$b?I} zOc00cNo(W0#tYG6|LnO6;6C#{DA7hbF!2+fJQGcbm4`wx_iz~Cr=I-KxVaL3&Hwxg z6Y3Riz3FA@(k;5gjSoSasNVE$$gp~FPtkM`35}LV{9dyHEaC?6nB!R3*g;WI*botQ z+~Lbzgn;>j5!(jN`im|~w+3Imx(4VwFy7|NqL(kvH8eJ&_}0C#Z6E|Jj5xnU5HMa3 zZRWv;WSkM2>o%is{-P5NF4tZB_F3vr_HWs7|E1skd(-bO^jF{eitPNZdOi_ACnNrZ zWD(F$PNW9hB5<$1r;8Ji(E49SAoZPYGk+@L`TKn0Z`uwmF94u;%l&b6u!nu`HL6XL zhC&s?f=*OSxbIh6A%XN^RXix?ne*iDCN=A@@9vbMVOV`!S^SVez%KG6`v0z2ag^2c zdv!_eyn3%Qf&6m1pWX1?Zv}3UOJ57zP)3QrmbZmOU^*m&#KE7gCV2N4NGN_(OrSw+ z03=u)Fnnrc!wyUcCnP>$Q29OC5RLbHj*c}W4TJ!Vr#1evOraP*l#WzY08Sh@XeBaF zw3K`(x<1`q^zX@8K`_4x9`ofd314H6U(bf8ZNnx_l=Bue*%c!^9|aUDm2DTzykHvW zFV$io^i;Gf0+Rov(Q*zma0N23Tn z4^9wqd=)pPg_#-M8Gr1h^Ttf^XR7snSj}s;^=u5{Zqpy(*wZn z84Nn0af9?N9~g9sf%*A)!s}OnvL&gsRNhDb9$F_Xr&sv?y(Ey588Kzl_N;6##2k-~ z41cH-A9f!(&L(=NH;FNik*I>gD}qwWgi$J@nrePEVG6wz;*IA2lnnCW+46;CHZh-o zL3xD1Td9Tk4E7TDA=FGRCPaly0k%T-^^2}ND+~zi3s8C&bv|F>y41jeFqNRrDog}fEYBLjyi5;b}rKL6JFl}&^!yoi2}_wT)_0p5%Pex zMzgAqR@hs>8^0O;^6^$TmwT&^Zjy<}8^XYaq?)V?zrcQ0VZR?DG7l)L{6KXM_L~<> z4^pb{z)FX3t;SwD;K6?POPmZrDlMjuO|*oqP)yhG5WcyP$x=xLcuX+KM3jP{;pTid zjEq?7!ZgPlz;YvYr1IA4RbuCfm_dVCH4PThppfCkMZHpV<95gnP!178lSKj_sCv99 zjWZ1p4!h4)>x*aDdk1OYptCHR$vEK^7GrA`AGVoO(cMR{>!%t5)ffA6EGQ>$C|!CAGi}76l8_ya)fK7+nETth>hLBe*qEB zGOvSGwf5S1BqS|Ok@b)l&aBWBF_N*d7Yus&izr4Ou@;1MhVV>9JmCHH7f_6hNJvQP z((w|`BN@3%-#&Q;Mow|3&kT0Ke+|bmX>#Z~Cr%{ht2W*PGf{Uy9kewKxTDCD;ykTy zX<4Y?Tr^j9fkZUwosfq&Qd3uMy85lvPG%fB!~A7etURotj)JV#3zrzpMBy^=@?t)G z!Ji##2+q|E&?fP(*^LKqaf`)1<x%%=d5>t+E6zL^y+f#4Ai5?BPq%fofGQ@H7qwR;8DX+owaP zmufsw)rX3V!BEDb*5H6rHe#_D3Xt8+*S$e9fVe!%8vv9Pio1LVW(1HWN#SUg?xq>3 zjhUf1SGOCg|3(AaIv1xd({z6#$&^KFL}wU*QH!zYjlM!O+*O0wC?q*fE%uk=JniT1 z@&j%ln7Y+e_@bqjDC%~CU6Vu$NRUiG_c87&epGurWIBi#-7HMv+L;>}9j)I>fW!hn z3hF`C2J*CNG_Dz&VVH>qz@rk^gMv@6KX64VMHHfvhz1!?*7m~|?{!O{A`WM>&V7Z$ z+LOf>1)I{S5Fj|U{*18-^(4#}dtg2D3g=0CQUpQYFc-NgP^a0;tz`wl=3?I_cWy`!wp${LUfg7Fe;Bl4d z1CE^b-_G5dq;hFNlAxZt&D8%`q|7h}CIao}|6O z84Vr(GG09rMd%R<)}-~|@UT8uCoC%;zzhXjW&&8B{oORLtiVKwD3sf-LIk^vmb}c& zOD8O_Q}-ati7~x7=T6?3G(zP@&mKndS>i6v^esPOi!ja40o!B!@tz2XTyU>$fzsDp z)jA~D${Q({w^$lb2Pj&2PQvdr$Ap8TqV4mrWXn&z$tOEDYvqCHu#t?xCFBAVxl~Urw za_OEdijWBRCc<8Me{yx?UV+uddZ%FFROk zTKjMTInmy3J#sXU^ug1!`F1VwU%qeTaWeW9o6gv*M{MZY<`Z7!y&XtibFeyVhin}w zlsFmwTof+J@_l_^NhE8c0c2$Wp~bbE8;ZwRbm(C%WmvcXg+Nv~6Abj7)<6EPt;baB zx3`}2HYlP)XlSqrud#MH3{7wN5 zn&&s`x-S+|z~h#8+&dW(8U|V=ucYFYME@m3iNe&Pm8k%XI0WL^_6@b-u59g~n+S_u zm&g;1MaqLX!;eZ_3wjs$rl;Mh3{Q--I~uf2iQM}sO}d|A8FD3cLUr*92$rS-F}x56 zXWL2jZTY-3H=_~q#%js@%k{S&iQGJNG&<^Bm0@W`T!rR@f7}tS5t}h%0#biQ68O_Y z%)-(V95#`ytVR^rENO*pyIhW?XxEG zHxjjB^~7q%bPLoSVjP)oVF6%3(;DPpk&y4M+7MlZl2ffpyGr#CeXZfzkPOfTa7 z@~b`6OxX5+nlyv&^0Ck}1Zed*Wg27P5tmkIQ>R>YH(JZOM~GXd#fwC2F~CnGlmuDS=?A#sMEqa{IG&2BP%pYd zzUGm~I*RYb;HE3Zf|yOGtqR5FR!#=x7aO7gmaMV!?HkXzuO^8H#CtL&^lbJiQo_G4 z$!U8UNt`N*7QxvtQu;jVLiqrfGxE>x;mxz-UxKl?AWc0E_ zs)9dBn9B2h;G(?8qI-`I>g*~ZD|c7O{kqW$+dyIwg0V3VhTB?9MQ?mYFljZe8yP)h z)r}~;h&>d}Vb5|74lYkQT|M*#U?AR&w+6dB&dF{Y3hZrWW@g31>o<*Fuwsaki_B=j zR>pbOI&Q8cDf({LW$OXb{6fOSM3VZ)cgO>LXgJNby{gLTJ0A#YT)zYxgb(=$3tfJe zx&b5dej7LhQ&;)2T@YTBX74rFEnzCgUpL_yD6U zM1ivU)S62-ryhzM9(!G2ZjO7eC?42yhjE)1-H`v63^FZ7yZdMM(Jv%_e}MvtZn%=u zZflUOSS|->HR`>0L|Ob3MQc*Fsrk#C8sds(3b0th!$q$qsWY;&4#EN&C>6ljZOGGx zsx{x5n5CMHB19z?_5&V0ID4HLD(MVCz~J6wt3AwK_yF-pMk!?PsiqT7|P;$252|4 zpO@yKDX zUu^5c$gIvJZn@0aQp4tdykYI{OI1KE=f35+*iL85M|_x8|7@KDPe^3l>zHFt25R?g zRMX$SWA7utgRn0$zD8B$<=9o?b2z46@(yuua|m&mPHbw~vg4Y%TWP37x3Pb)j}HAp z@3VN|O5o~9V6sZI#kb(@yRV(s5qnG;so@0PYy6l_I|jr0*vv4(TS7zd_~U3jwZo2O zr~b%H=dPnx=MadaHSc7O&UHJkIp5o@Bwrhxw$J6!rsGt6O0>3jyc(+Mz&+&_e59GS zg+tIHwp-bqB;(agj!`^sbDaNh-PINfl=@y&hcYKSB4;5uGJZBVgnMC}2;a>KU%?RD9R>3K14v>{cc zyppz!WXwQ)D8+l~+xqf+az~-{ZG*hY;r6SH6=qx89V=yrkq&SVG`;Fq4jiXfQ^526 zAT({S!#iTlqgJcuzdLQOag+=mv+repg@|bq0;ovD=s|A%=SpRzJjJJ^4as$c9m7No z#+3x{hZ$W5P@3X&>8V*UKB`F7f?WoGrRbT;WSpkjN6p)N82%aFEfscw^@hW9mFP_N zWsD+QPaPePGmll2@11EoBN z19pFQ;+7nw!0E{&i{|^*s0GKe%p)6#Q8xRC;cGc!ke>6BzH^2*+ihlIk4u&C$TE>R zH-q077H&F5E*EGYCG3%NH+Hm}m{9@_M1; z>d~3*AqoHEXZo+nLwB3zLpj&yg;(C!hOZqiII7LBz~(zfL~U32()9aU1sx6{Xc!B} zBF2(p#NE|f+HKeR!q4{!A#T*?@+-9eXpU_Tpp zv@c9oX&tt#xo2yu-TYucNcDB${LHa(MK&`oj^2Y^W}c}Clt4?y{p?Gx%a-waZ945* z+eY8r&F-fwJ)qmenp?rqaH!mltRQ+MuN0C44>++OXG1 zNq$gAK;2>xNt~d+8p51>*j~W7QL3}gv)%APR8qs-5o$A4UAfeoB1c?h!KMujGjT|Q zNNUZiXR=mX*bR;rmWu9a=Pmb`U?=ZSRO;TA+@4?MAJxq0$E%VUMBn33B^kh=6nPVy zw7>IYy07>lv~TNCoxz;W9@g&Xg+cWpU_I|}OIpqv6J%6Rr5dc@Lzg>g()ZnQ3#&F5 zd*}v;+v$2kcIztN#nML}&{|LCV{zz>Jc15A2Q#Yx+NQc3pW9lox?ZzoOdd!HlbPva*fkeBUVB zT(eRbL?rgv=7=Cx4>?YLG&SqX5Kg$#lvJs`b&frG?g4Au=nNkK(@gqwj_z#>4{~o0 zzjLHra*GoQ87OF1eTCa(9vf+qKU&eThPmZt?MUs@Z%N-`C;7XzSF#hVEM|oAZhfNpjGA1bU=#{woQ3xh|FQB&UE=D% zXE{7K>!r)<^18NKuShQp7_{#(3va8hvm&MG$L}sCLA2$ytf4kCzBg^`dQ^2s9CNAV znkjGYK2O-QAiWWZL100-^nKcFw_aX|gOeCRUHaxy0 z?D`1nvZ*Vo^FEUzqal)p`3+OPN3Yd%OYxHq{Z}bz3uS~7;yS53r09v%`2_v3eE7}V z zq#4357c($a=T+_HLQv^=V;;a=(I<5K9RB(x_$%+x2=*&sxJ2Kknf=%#E+oV(yCyot zgw}^gGJ%?vR+3XI61TVKk%cu`XDJT*%8p0F+aQ~mrq??zc^#oB12 z+{UU%&Dy73zaPz?gt)lUZ%?M@Irr}3%ZK*J_SsTG%^&HntR245-q0Sq_rz+nH*OFe zdPDSy28%8pgSr27q&Dw%JWjmCU~zYAU=PA=!fQ|@=!~$ltoEZ8p>?lH>@eNi-b4)4 zd6GMcy9T!pz@G(k<{qX_8t(5pO5cXwCu11pnZvXac@rIfU%zWqkEQtbht4r2vSAtL zxPi)}V7yy`o9fVp_S*D;f>t`6-kr7!1GC*W_*!B7-3ar@&HHdK-7}HHMa$;$+_mp6 zF|5mSy)j+r6$TrVtG3ajLgp)4-4Sf9a#l+J6&TOBYg= zccW-_;mCApgRfh1;B9#|!_cM<>tUv3_F}u6?)9fVtr;QdlhcJ)p_jj`93vkWTR70Q zz^_NTYr{Qu#-ak@pqW9kZ0i zIeS|t12sl__#K}XEw?|+njVzZZeEBG)sB0#O~2&gGB-0jLyE|b<5N6z%h19P3K zkn4*BdbgJc@UK8e#nzP^#hz%gkl)t327T>S(dMFkWD?y^LKk*3`7@*`ID|SlOFuq# zGr8gTwq$lvNyB0_SDi4cAboOqpy2lVIB3%UYwtUwn&{eg@loMXiiHl+n{+uYUm)nsyq}ydXpwKAkvg7B_N=52pu61L}{T#2qA`$a0cJ+UFUr3TW77a&ROgH z`toaLXJ+=Ey=RyEy07cr#D@LpDyG`KJ%6Z>tAl>Av3TSsxyRKn(z;~^ewwc;-d>I* zu{K6QC;ZB)l$vE2D*~o-jJli_tY2!+sx1=8>ClWzJ+G|Ha@?t;b~P$!i!t<^6QDQ`@OHS&shpQ<4g_0y+cTBb&4sQ%}p< zUN111Uzuomay@wZ-ZwR*qO9SFx)0dIq&VU%@+{;{_Q?10x11?QpEC7FoP4AuJdwPa z{e!o+CLp2$7MUZb+!Nm~bLYV}#uSAOUcpji%jCAcGbShsUtxavE?~3RWI`RC8?4e; zk>s=7Q|7wnTcD8I@+QFmp{zA|5f-@CeBZz`m9pvMI~RsLBb~JzjzFiYwYQJHmr?Eb zYls|q{1&LVar|E4Glz-HC3R5~6<3{HDBVAehFYZ-I$OCtw?hN<>bWOGuazoZ645Q= z5LV&VnWVGqs!DCTKO-Y#3VL2*YOGRSf@ILD=anZvI`S?rWPvN*L!7vkS%|KhhjIhc z{guh9$8ftv=KDv_>t67v>=ZM4%(%o%yZ&?HugMl+q&8yUz=jPyR?H&zFH-2z%3nHq zz2-mtV7@>1ZCYY!(zvLhjy9rVn>F!vD5a*7&7%C=U<8B8FW0y&qYUkfmZqS0#TM63 zzkrI7U^Z@Gzzn_IV`3Ps#fLXNYHYet){|(?7JL$5MmEW#n@KU!xWlom)BolaNyNLz zO=a!JwX3=Pym!sV6nZ3f>@ofKB%Q6>Mag1|XxB2`k({?zl1r0(JPV*??Mdy}Y|k-b z6V#ATgMGI?zhQ!Wu|qn>s~Tckk~BC&X?hRwa)Vc1jd~7>tf8@Dwz-5Y zOn$`OQir;xx|wP{(7p7<5Sp#ry%4*ji~LoE1D`dgujDxmCsN)tV{f{!T!d4Ceipx5 z%=#ugCd%1phf<}QO-rdJ6p+afYW&y1h%RF(WVy>^S@@E_)ltIjTIy!w*QM)rN;~!W zp>nqHn!@WU)0M<{N~zK<*0~|B!;3|s$4dGpd7*0ZH?*R|O)oIP3Qd>iBNx1qby{BJ z1I4O7cCP?U1p9FF7K^v zWto^ZWhnHNAJjdTE@IS*He9?gk11ObO$c-y$d9nAZ#dCv2UR%KtgB;f) zLtD#*W{GLVJ+TdzVxdgXV0~e$*^NHT(eL5`%UZKC*VN;_jmPzcBmTs)x2_Z1yFD96 z1AKc;&|m6G4d~(MKr$%)K*p@Kl2YI=8KaPiYU*b4wYo3*umO;#oU0FL`J<+Zn`;>N zU7tz`X+mAMDV`XqV_xsC2O9`e8LIHS0RIbX_~lcCIF%J=yOH(dlyy_jABjSFApGxo zG*J^aNpHs%kE?qs1ub3VS`-|->uCzN;vUvv$|a3;y$yXTSZu+wHPj+U{;CW%9=)XM zjM7olF}X>axkXj#nyOKMYsSH0dno@o1RlI#(@k4tv93KCp=hfx(GK1*^z3u9meo(y zM)ocWCYN3?q8%-i_H={$Nhfed-<1lQY8s15z4?Z2Yt}3D=>zd6t;Ar*&vBA};Bo7^rs>k(ARWDPWFj8hXf7^=PqNI&p z{e64+aufZx`X{I37s+#hVML>gE|jMcG?HT!PR>#o8L{0!x({t{d&-Bt*dIE|V?E_t zT% zmO528mu1kixEb*)v~%;Sn|%aU+STss|4`Z|N&K(g%cprh9v_I$_a!f~8svzR7WOq}qtr zrv0H{^63r&xTG$e{WVbL;`yKBc=dIJkMob~v>QqTf#Z%W*gl*pgY1M0?Z7-;OG&pU z>$o!Opgq=63b}g{M(b>iSeN7MU$ze(?xXNtgDZc|2_&(<|AdW@Z&652;;dUykb2Od zj=M}bCFq&2xv{D950h-}{OV zw87n}c3x0%rtZ{@9&@6cUK!Z^8d%wZA*vi)E-Jptf;@UhKdEJ#UGFbeS3w}Kqo)~` z_UtyQGv>?Lhf6Xvpllqx#Tu$$H0)<+TM;C$o_=4`w!Qvn%Bt|2&~O~{?;QS}^%Ati z7`$P^q%0?L8wYNjggtY~e@O(@8M2Rf;aqyykH(g9u< zVH%tulcPfoc#WA*i~c%{V5XJ?;p7O=D>gnZ!<5n6a7rU@0B3ZF3H;;;Pe5<|J5Z=) zuu0zXWDf1NK%pW?U|C=;w5`Gz{QhTv*}w+XMs~cMv8g1<5U;8zc7K4lBR}S!Bd`N& z<&wn3g_j#(Z)9i>xNggz_~%IMkk?>$LJDP*Lb%|!6aw}cV9(-d%v%CRdttkD!ACYI(r*(r}zG~`a8 zEBvG_)Fy+h%8=KZG(ZH9e6+$3+ijwNZLP^4{=-3x%fl~B# zvYren)KGF~#vr(CE0xNq3_DQH-dmz^@v32Al}3}|XjitP7X-~;7^+tR2`y5Tl`YO_ zgOZlK^TO4Vj0G!*4m0bmC+s^9a{YsvCSGkiOB&lrR)+{CL70@B4Nna4(LcY0=@3J> z%9kEY(7NZ7J*P;NAf8|LAs$|qM8mND=8 zc>Q}-IO@u=VVaYn4>m=n+C>8Ba-Q$ATUAKhfznm#mG$w0jG{1Q#KsnOf4gnTB!~pp z!%Y$R8bos0#6r@&@@J4Cscrz#1RYh~g0+o%|I}Po*N(H<{&f{F#ODSG1w zsX2Pzc~X0hl)GEocrM-^FyyG{b`s%WDtVUXs&wcgJ_+?7jINmE`J_1MGLuSGC}W5O zqf&2}b?^8jnJYRj7&r`Pae9L{jZJ$rXB2&Fa|GX$o-BS`tkbm!LdX(J8)-2>);$v&Q})qxf<3J zv5IqC|M?AXfRuN*-%%y>A+KD~)RkOLGo5m4O6}zJVsT&FIQrL&naNO4mxD{9$8aUSfz}l-Oz(?t;XBqV>B43egUnsmeS;VrJphFN zaJLaL420uxnkvt)y@bAC&2x3nB*OX0CHYu`^$;atX}&G5GXgV0~N(lX-j`*aq-#_7)*a@ZKa- zrL=N@l#p;22kz>8bPDBDf(3>EtdJ@e9NzSgGn@v}<9Qd{+3?_fv{J73e|YVYTXgd8 zCfWU^uI^(}*@SaCHSgbirHrl7R@4q*xO(35KFQA6dbVa+=1i_DQ_5FGVDF)>787=^ z0HCAJ4=^V5LLC<11Gl-{{}5eSN-v9s60z4`130 ztHgQHC@7xxXZ>$Ej6e>)uJu{zn!Wk)CR_sSN_*6U=F`!WgsPqBQ)B-3u%WsE3h=Po zk8CTwG225~nTSJ4-l!_c9~1nuf|&QM$giJ|w^5xbp&X>`4h(W2dX=r%%+31>oatfL z4bRV{x1B0Mkt!1zE)kq14$J{wv6K?|P3*C**9XK716@HYym;J;!-A7u)|bF8CRA|I zVJ$Z$&CNB#E=xXewvK}wrPULLx+ZF#LUx1E6A|dlsccIB-7K)~MNfOHw7dqz?jeMn zBxWPq0CF2Mh#U=e3iM9${|DP@QkitZOJ{VANgo!0(ijN>$Pky;JF4_WsP)TRmb;QK z`0FDfX+MfRC{u{kyE}Q95U_+gVP6UX9+BgP^2yoYwRiDrdk+`}6N(FtmDym!onV`e zna=m`p2^&Ouu#4%rD-MkPl{#5uD<$;u~di>2z_$xVk`YS$pY!z1RDPtCLvgpAXMZh zr|FK51Y1VMWGZMZ*3q|$--z#9odwywqWAAtR&nNO>xW}`jvt3M^W*|vbdJ5=c$k`# zozwkrgOLlTMU(g5FfzBD2WBH%cPF4fkGnF$bSHJ3f*4xV-kV?*$G|bf_UzV9t4Dh4 z$AiPW=0)I5XOU9KmYFP6j^^Ro!H`ndWv7hu79eZlxk|ChoyjM?;&uLm50E=J-e*{W zd5P+!7y)qSIm=3V+-S4E8QfN3nm&XBKb^<9dS^HbXP@QkFkoY^Ud{EkAnaP6SP}vkEPTqKk-MHh zYbNY9_s@7XaG@DH5s)HFegPOxWu4u0v_P#=WS|6ddU4gacg^#bA?cS7OxGl$8fgE`AU{#AeRz2{TJM>S zsCXLhA}#A+)@j>~khS$n@%*(tg`L(jDSM?CC%t!H(tUPqhFcvDZv#U@4D=DVG5L!L z;L@ym?B>N6^mC%kH&?DMn3Nt*c~N>JAlzv4(}t1K+`|DcjJRR0?oExdo&rkYhMx@? zfdx|ZnP1<*)wkby7fw|BbrN2Ae6D%GM(lRG8U3U1iJc`&p5$lB@#oYG>Qwfi26`5B zxvwbGw}AMhAav7w+wHV=(NBr@`xo7vEOU?AJlGBn$FJj9IWt9_Mw(4KvxnqmDtZbY z_yjrU*3^qGGcgFZjMf90!o;g^5bpAx)dM@4 zEH#?j;ppxt{MGu88-=eBIj2*goYKlR502>Xvsb#7P6^Ps_nMHpgvbyAG_5svJ2Q3+ z2M&K`s{bHeQO*p-LYV5Zc(X2HDR~!$1GkRNv^KFzm%WJle)Tp0!CMu(=w1$CZ+vn7 zozwx}$pf<3G`~UayU~>tfkhQUg@z}pm9n8|HKN_3shPtXKf*cTiUpsr`P}SOb;AKbOPWxnAydkxpdsr|e|4Nv9r%xn$ul{7|IQfK^^F}MJ!PrRS zAt#CLT@72rPV|!J{GMn_xn&mtE!f*ysZ8`HJz@nD-*B1}NTvDMZP9 zk`(s>3yiV?z-a#=2J9ezB43^A5I<$k7He^EycY8APF&N;hUJRRr~3llGEbDKRS3+J z*DJc>)io#7Lulhsov;$0Wbh$ow;>nY1wEzX4B1J}X(in{?+$D8ttw73y!F7CV_Fo- zqv)fJqSHDd_dVacv`y`D^CV@+{LeJ>{PCU2|Ecr%lk}gIAOE*0%_d9~qZ=|#fw8_!}>ooTN!~thn|3ePWwyKJd z0-g4X;W@%50nXe%5EFBQj0l16a1+GNjXt@Sn7A;hrN1biPd-1_t6X0&msp>2jf42> zCRq-LN&PJf(hJ}<8Q!F<7lQd3!5Cuyy2j=+C`w-yGEKJ<+^AhHW&+HYm%x(i`B+#V z`7GHg?ND@_&ITwCHTAhjM8cKr))xGv7@xMdTA$tz%u84s;jmBI2^Mv@dhKs0dz8Rw zyKWCD$=L`73RaIXhJLe={Mx(&^Qgc#430`y83;Ok{j0;nTwGEHvpZt@nD^_Hn5WGi zK=HerbY5iUCVzUpx>VHlm!^4=gySj~=dRJ5P|4d93v=PeI~!5VwKt$%(>x5GQ!RRq zk&#jKW=sZ=*HeLpDf=U5k-Ahk)iSRNER=Mk|5XJuf}Y1!m2jiHz1b^m1S}#Fj+mt- zq}#FC;DEa(63?%a5`lei`7vl*WebtOxr>}CurV=&VC9awB&Lq+OXLt5X>u+abqvck zVmK%E`&iB2K^^itbW9W!_U1fW=VcdP)=b~Hag|pWnlz(Z5;2CVDg~bRmt{#%(>M0c zx2e5ZiWZuf&g*Rk+vQ~~3P+Y9;6ES-+WRd~t3D+L`~kAUKsnq(T053(csUS9C|iKm z$W3R1{`1XI6mSFioc{{!ga51oDSTdv{_o`i|LNla?)pz`oc$ILB83BoI$3Di@+!R zvRLDFq~FnpCGt|yAW_f&;V-lvf!&(h#1IhyBqAm#@pXt@|7!(4OUsRrAFl~T8&9&e zP&xZw^f2&0uXqr;Wp-`Ih#%Bks_}?Qo)pfpg@f%*_5)W!r+|ef5wIHFYizAXj?kmJZ3%5 z;(K_8?t}}w7fpTqq>_-yVBgu{OT$m{NcIke{ZcX3u*n7A!d=Z4$CS3m5^T@X90eo} z$<9K%4Iwtl&NW5~ph|@QNZ5w&Nd$JHyQfdAdmh(C$j?k{yy=W=;1>#eeKzm0`OPCL zOmci!nTZhwj?`==-C@)&!dySecOcVMsJ1)2J5bc00$E$rXg;JZfdayDBPdq>l)9>dn4L zs@CWc+&D^BDw2{N>3RkdkL*@; zw&g;Fe9EQBZ?a;CM-(U1k++EhH#SwPa0a)zUY;5($IkdMtVNUOR*zH&t~ogGGpEJO z%VRQ_u;UFo6UgE^`BoGrqOqGuY|B8kUg_jX)WAmtk+`1x=u@sx{`ly2sn zm!bmHa^;VCG2eWLzIm{!#jl)g4v-=st+;Yw>iCLo_h2s?m5s}|>9vE3G0;5%%ax`s z1-InOR!mKXuB3vh#NEhpCzVdS7nJHWSxnJ(Puz~p+sDK=qfAPCJt*eNzzu}!qh4OWNu%ezaLiSES33H3u zuraCG=6Src&ds%Q7kAXw;_Xkwolz2Fx?D^wuW|@A)ew+M6)Un61)X}*5l@{X#ArDF ztt9+1czUq)3N_g8BA#mvLx8~Yn$<5QqX;7a(RpTZQ3RokeQgowGWzBTfH5fr z?xtcQFkxU*Q=S|fzgGb4RcqO(%_L!Sd)_VzZW}FMpbS`Iz-GroMsmyiMW<^*dsbgo z0b=msAYY2Ep5Cj`LZx{?t@k$a1PYL1(~;iY=bYFsT&?#|rm)!>wcYQRz*ElkqHiOP zEzh@1G0X!E)$PF|6kgID@NHc$GHupBUNJGHPNoMRi93l!YR#bqRcQFIOPSA1~49#?dBx+x7P z1_}LgT|9VHSUqq_=gD^U;bcmrIk0z_(@?qqAOt=_n?x;A7kDCD#(;8fjO7biKtf<1 zsLq8t^#abQQ{Oi1xYBt%28r%dzm67Wl7if)uzxRr&X;b$@BeU#uJO9AV_%U-QwN9> zmsK^Ej+oSa;!b)v4(DoPsF@dC;@O?%ffE&Yp~Me4r(p)*$|DQ42SK0GblHv-{^WGe z zWVCLM*HeWa)*$%&cT2~|CO$i51omC0{qaT%MVGW;z1F4r;H{aRyv78N!$xtCR-3M8 z+*U!skes{b@S*E&|2@&yy;*@g<X~{n1V|0_L-4}rKb-$_!5#~yec$fLUI9%?bo|F2knHJ>yo#)0- zq$v1S=Gb@Ns235oSQV3Df!iw_8IBLwCg$KZ#L>g?mEHlJp2{zaYiPYBI$>et~_(3|8B+jWBRowNjHuuR(m^)nZ;w^?ovKWhhzs*w$Y)iETk)T+iZKu zP-})dVpwo5wj@DWHDsW*_#E09M-*+5HT>Vk&70bN`kF<@>J|ovIC^!hEjnd&e9%mg zYu3xR?QcUbeR?D^57L)zgXr(JbMARgiG591o0bT>TJD;p`;7hL3VBVUDq~H?DPq`- zYt1wEsK&Z56E~zbE9NPiU>uRggAvneoKd#n!S0C^sTinfFAeIugcEs$;BHp%((|xGq-u2OM$1!%crODsccCxJqO2Up~BszL1ON~ zs&V5j&S_KOuf*V>=hHiA`J=)pZe`;)ok`JET%2_b=qhiZ{WngHz1I8SIY)9T&}4U* z09dnw=VDvBnjCLR=V{Y9F6cr!=A!fvdSLfSd*T91ZHt8g#1d|Pw^nNG>X)IS-@+!t za*PIJo@-vW6y+qa{fzZ?Hz)1y^>-%Mqi@Z3LI>KnzwN zJHKpTX_nLFz}3=+K1`NVOQU_msPAxQVf6Gtr_8P>wFdU`x6iCTFL<{oUTX*b#a9UO z0<2cLj|UQk$BN7X;GoMvrh|{eYQ;n|RCA2@ASl*S)xKyym`9sz!n`!AOF!rh{nh<( zu?$@ESFl~ni`*@TAGXcR1ra*0PeuLb#`7;4QJ4=>oyl)>UL(-M>JL3-VU-4{sSvy z9WHXpa}=h}BHRdKYd3zQAKX=yPJGmBH1#39f1&svugMvq@5KPly~Q7Qv4B+4#lm(b z7Cs?09T#P-EIvT~J+{?qv1xz`&I%5*@F zm`a(g7!P~E*(U^pU7{G@MX{A z$Lflk7%p25wda1nmB$dS#WcmDxxf#=MczrwwBZ29q9pc{>@76p8JzPqJ&Uo2+XPEEA z|E+kt{=#H_D~Ms-RG(aED{D3^m$cHu=e>Mz*iz&Gbcfi}la@*k?X|mmu{_&mlA2WG zgUAxyl_-`Eh4&&>4ey`b$^GNXp|~!(@gL%DYaO;B#P`7 z%a0Q+^uAJ8?jD*hbbq`*hxw3r=T~>s`9#PV-Rxe-AhBrQa-F%|3|Y-Vnll0y>go>l z8+U}8w=8i;U^ZLR9tM4Z0nR5q-5)(D@8v^_n1jv0j4ZCR6?`~vKCI#|E8$UT<+xllH}oTGJ>A=)O-74J+>VFX{aBb5 zv-prDy>Xi^ZiAE~k_$iNT=>;)dx3(5>HOKb3bWiPs1Cb*ONdxoU=}riMDgd=WHjUk zel1?toh*FF8}!J4gbZYqkoRO4g&ihbwQTD@YLda0j=5c#pj0}?vLx;riYLZGh(Aqt@ZsekUEBs~3V(my4D}!`{bhA0 z=v6f}Y^}Pvq1&W744_0cd)f%iwyihZ-rDu7&;G)=4)%Wgh-oX3kP|?a6YRavWz4j5 zoQHVVlw)3W;tMxliHsf{!glK*Hsi*5E9vUD+8j^!1TBNYN^D?flHSQ;#)PQ1mWi-V z|7dd+g`0};IxuuvSZGwD=G#%>c8xjG&VpM1WR$HWK0Gja?eYp~A1A1`oA~Gq3XY?_ z1fEB(SLTPEY{Y@F_jRnOW$OJWNywe3{_PI*m}o#oL8@2 zU%$9CCQ(ZoQI}@<_3(#`X!)SB?a8-9=Z*xYma~L|cVh5n^{ZS{h)+692${m9c{$yo z-J1))ywc1gt*7UQ=!@FS*}5STT6W9QpIL`C*SZjy1`cGEL)X4%;AeP`h59p$BpX|>L%jS%fcoWAOV3M^@M0sNbpxIWd;EGTKHI{Qd>b%+-H(I>5jIv{g#)LS-e zRi#0o(q_){4w_RUr+|4struZ#kVs07)_W$w)@>!`{%k*kmUd^o%bI!&!#01MM|bLi zNn0A%fj#LUU7M@&w00~M%Q|GAE~1_X%@&S0PWB21jxk`vR)h}k*MiDz^ntkL#@kN0 z40iQUs%}ym6T^^78@pp)BcI3CIKe8&##(H|i@_3q-(i@H(ty}@JoioDr~5_y>JArb6*Jg?G|rG$fN&H) zn}yP~HXbxQ&9|lNJYT%-ROjtBta^9z=XfeW=YQvMiRzC-?7J+AW`!~&$@nGJmHD%? z4PqB7B-`;|h4Yui<0SVJayO^Adj^(Y&JxGhQBd_TBbKbYS-Y8z7aufXnh*TOm_4+q zbz&Qh6S6a`8_aUtw}5~Y7)#O4jQkeiD>WR3Y#9a*SMhsk?I^o!b}plq#k+6iTjdrC zY{F{w8U;^Ba{YcWV%u701y(+~k2_B<*<|dR-Q0CyA|ZZRS| zm^nr4cy7mr(mV}NFKOmMw|=*H^+gOZ_g#iniR6lE1$N|Rq@d)LEbWK&iW(fFywSpH zfyk3gAv;MgwtpCQa%2zGH%KOgZS(^~|Op(G&Zz<^bY%igt`q69o zR*MZi(*%U!c2 z#xk5%yt4pT%twJ-*5b4|8U9OnY`%#;3KLhJ5x8s@p`tjvw;y)|t6VmJP! zs;safDlFP#;S)pz0}<0233wDQi@xRB8QwxtN)^t@6KAZ7in!!|4N;I@=KW@T)d1J9 zy2I$FquyqoH%s<*J2CLAor1Q1C6El?E4%@HeDx%3wv&Ct3E~RW5YVF|5D()06=B%R z*eFT8W%}LJq>1a)-mY5vVBu}{RW=_YF(aos%vv*br!(N~JO}Djbd`sRJdvOU(-IC6 zxYKR983_%ACeEmWh4JAny8B4SN8OVOpHs!m7!C1mFK-;>U-&!-m=P2b{uUDH&9oec z<78&oM#;_Ghz50$5wFy0=NyAQ_RUnmTIIH;Zq?O$sBgTCS|QT=;OQsApETaTt;rcT zU>cgT2Ht#fBeO{v%xhr_GL`_Mz^vozau&G?)0dQRH2(2u{%fvMP-&*0$M4+}%TE`L ztB@7bmpQZgH|G3o+l$qZ=HWf1CPa+{&_} z4YPcUGGoJ|qVLW`)z_wEeNx`nhW$dnko~cYbVJV6eoXgm6XhnL6SnASXV~sIq2V}b z%tz;tN>O2sFuP3Vq7d`<*$hXlkkl|-`1D=(*Yaja-dPJoTDlPanut+xZDXHm5>%5#v0!AV|dyx_v(qY;XZnoByPh_{6+^NBQKZx`2nB-v!bd7m?1M^CO#*Zi| zwi&g2$7z++5q)G88xN$+56oK7b)n} z8)+kiYT)1`4;9Dp2w7;X2$4Bhnp=_xN9^W^=d+*h8yp0*R!84`x$&)UbUqvVLidA7Gj$AdQe>Y`Df8agq;}%>S zKYTBSt*RM8q~AHVBFyIumD=8ISkI?zPz{O^vkIQ$e$LRA9#%%6!xYTM90zO2zFpyM zHks2SH8VE2zKG~yIXcFdm6>&*v2iXe24dRxmhaT+CSbNRX(ekjHaT}PVFoX)OW5i$ za>&~aTaC`PpIlFa6KA^Zi>`g&vW6H*y^NHhU|9g%&Y%Cji>bqbn~NdC)Jz8J{o<(L zBU})QTPw&r?d9DaNAz7m(-yS-lDt-4mldyo-7+^$@~&>*1})eWsEDoM@`f3IRmu#( zq=M?r{E9F*s5^UVwZk!C9{rApq-|J-kw~vUzV+;iLmMkUmJqP3ms?Ta^naIq7^2m% z-~1-}qW5l&_VlVq!7^TKpTHj!Sb{#B9f@eQ7>wN6HE%c*Zr9La7|kH3~Pn8&K)O23;6XpD1c?- z4Q3sdQJ=-8S39e;I3sEVoo;I?5~Ov`&W`7{hHk-m*m2;t2FONMj2FU{CX_g>D8f;n zONY0`YR_06W83$C8K(8-XX|Z7XMva7K>niU4s*(u&XM`sNPWj;XVO^HX!c0K&ioMh zyIcH)COFD(4<)qq}eU zuw)_=lzhya<~a)n`$sQ5un|w17Fqk6%_e-zwj8aO(Vum>VbI^0JrDXp) zSSh>0lbHCvoM$gQ+{|%OgBFaSmEoxH$E$erM?m;hs z&t1NsU=#G%%u9?3Tb;1)m{eL*xoD znJju|O$v@7T6MjApA=CrP<$@@2PHSHN=5PI`>TY{vpPb%D=#rMSqC zKZn$3&>|!=-Xs5(r&;is=fKG7j`b-t97FyBOuB+|towSjY!>?NqpXbq)MLxnuFk zyrOWYfn&rpLHYEepMRox_|uOy8Cqc6l>kOJnP*ew8`<1vy5NToU+^<) zR6b#Cug_)e0^X$ls#9)FPQMyVkmC8O=D$(&o?rh$HvV6|Vb2H8F7L&4gdxVtjL#u^ NJuPF+y8HGo{|B4u6P5q~ literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-1/0.9/solver.prototxt b/cars/lr-investigations/exponential/1e-1/0.9/solver.prototxt new file mode 100644 index 0000000..3c46c82 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.9/solver.prototxt @@ -0,0 +1,14 @@ +test_iter: 51 +test_interval: 102 +base_lr: 0.10000000149 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.998967587948 +momentum: 0.899999976158 +weight_decay: 0.0010000000475 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +net: "train_val.prototxt" +solver_type: SGD diff --git a/cars/lr-investigations/exponential/1e-1/0.9/train_val.prototxt b/cars/lr-investigations/exponential/1e-1/0.9/train_val.prototxt new file mode 100644 index 0000000..eadc289 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-1/0.9/train_val.prototxt @@ -0,0 +1,382 @@ +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TRAIN + } + transform_param { + mirror: true + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" + batch_size: 128 + backend: LMDB + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TEST + } + transform_param { + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" + batch_size: 32 + backend: LMDB + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + phase: TEST + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.7/caffe_output.log b/cars/lr-investigations/exponential/1e-2/0.7/caffe_output.log new file mode 100644 index 0000000..27578df --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.7/caffe_output.log @@ -0,0 +1,4566 @@ +I0408 15:34:45.928066 27257 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210408-153444-5890/solver.prototxt +I0408 15:34:45.928289 27257 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0408 15:34:45.928299 27257 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0408 15:34:45.928391 27257 caffe.cpp:218] Using GPUs 2 +I0408 15:34:45.951186 27257 caffe.cpp:223] GPU 2: GeForce GTX 1080 Ti +I0408 15:34:46.248340 27257 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.99650931 +momentum: 0.9 +weight_decay: 0.0001 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 2 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0408 15:34:46.286235 27257 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0408 15:34:46.286885 27257 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0408 15:34:46.286900 27257 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0408 15:34:46.287050 27257 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 15:34:46.287137 27257 layer_factory.hpp:77] Creating layer train-data +I0408 15:34:46.288661 27257 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db +I0408 15:34:46.288874 27257 net.cpp:84] Creating Layer train-data +I0408 15:34:46.288885 27257 net.cpp:380] train-data -> data +I0408 15:34:46.288905 27257 net.cpp:380] train-data -> label +I0408 15:34:46.288918 27257 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 15:34:46.293511 27257 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 15:34:46.414856 27257 net.cpp:122] Setting up train-data +I0408 15:34:46.414880 27257 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 15:34:46.414885 27257 net.cpp:129] Top shape: 128 (128) +I0408 15:34:46.414889 27257 net.cpp:137] Memory required for data: 79149056 +I0408 15:34:46.414898 27257 layer_factory.hpp:77] Creating layer conv1 +I0408 15:34:46.414921 27257 net.cpp:84] Creating Layer conv1 +I0408 15:34:46.414927 27257 net.cpp:406] conv1 <- data +I0408 15:34:46.414939 27257 net.cpp:380] conv1 -> conv1 +I0408 15:34:46.982251 27257 net.cpp:122] Setting up conv1 +I0408 15:34:46.982273 27257 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 15:34:46.982277 27257 net.cpp:137] Memory required for data: 227833856 +I0408 15:34:46.982296 27257 layer_factory.hpp:77] Creating layer relu1 +I0408 15:34:46.982307 27257 net.cpp:84] Creating Layer relu1 +I0408 15:34:46.982311 27257 net.cpp:406] relu1 <- conv1 +I0408 15:34:46.982318 27257 net.cpp:367] relu1 -> conv1 (in-place) +I0408 15:34:46.982604 27257 net.cpp:122] Setting up relu1 +I0408 15:34:46.982611 27257 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 15:34:46.982615 27257 net.cpp:137] Memory required for data: 376518656 +I0408 15:34:46.982620 27257 layer_factory.hpp:77] Creating layer norm1 +I0408 15:34:46.982628 27257 net.cpp:84] Creating Layer norm1 +I0408 15:34:46.982631 27257 net.cpp:406] norm1 <- conv1 +I0408 15:34:46.982656 27257 net.cpp:380] norm1 -> norm1 +I0408 15:34:46.983094 27257 net.cpp:122] Setting up norm1 +I0408 15:34:46.983104 27257 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 15:34:46.983108 27257 net.cpp:137] Memory required for data: 525203456 +I0408 15:34:46.983111 27257 layer_factory.hpp:77] Creating layer pool1 +I0408 15:34:46.983119 27257 net.cpp:84] Creating Layer pool1 +I0408 15:34:46.983124 27257 net.cpp:406] pool1 <- norm1 +I0408 15:34:46.983129 27257 net.cpp:380] pool1 -> pool1 +I0408 15:34:46.983165 27257 net.cpp:122] Setting up pool1 +I0408 15:34:46.983171 27257 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 15:34:46.983175 27257 net.cpp:137] Memory required for data: 561035264 +I0408 15:34:46.983177 27257 layer_factory.hpp:77] Creating layer conv2 +I0408 15:34:46.983188 27257 net.cpp:84] Creating Layer conv2 +I0408 15:34:46.983192 27257 net.cpp:406] conv2 <- pool1 +I0408 15:34:46.983197 27257 net.cpp:380] conv2 -> conv2 +I0408 15:34:46.992434 27257 net.cpp:122] Setting up conv2 +I0408 15:34:46.992450 27257 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 15:34:46.992453 27257 net.cpp:137] Memory required for data: 656586752 +I0408 15:34:46.992463 27257 layer_factory.hpp:77] Creating layer relu2 +I0408 15:34:46.992471 27257 net.cpp:84] Creating Layer relu2 +I0408 15:34:46.992475 27257 net.cpp:406] relu2 <- conv2 +I0408 15:34:46.992481 27257 net.cpp:367] relu2 -> conv2 (in-place) +I0408 15:34:46.992905 27257 net.cpp:122] Setting up relu2 +I0408 15:34:46.992914 27257 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 15:34:46.992918 27257 net.cpp:137] Memory required for data: 752138240 +I0408 15:34:46.992921 27257 layer_factory.hpp:77] Creating layer norm2 +I0408 15:34:46.992928 27257 net.cpp:84] Creating Layer norm2 +I0408 15:34:46.992933 27257 net.cpp:406] norm2 <- conv2 +I0408 15:34:46.992938 27257 net.cpp:380] norm2 -> norm2 +I0408 15:34:46.993227 27257 net.cpp:122] Setting up norm2 +I0408 15:34:46.993235 27257 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 15:34:46.993238 27257 net.cpp:137] Memory required for data: 847689728 +I0408 15:34:46.993242 27257 layer_factory.hpp:77] Creating layer pool2 +I0408 15:34:46.993249 27257 net.cpp:84] Creating Layer pool2 +I0408 15:34:46.993253 27257 net.cpp:406] pool2 <- norm2 +I0408 15:34:46.993258 27257 net.cpp:380] pool2 -> pool2 +I0408 15:34:46.993285 27257 net.cpp:122] Setting up pool2 +I0408 15:34:46.993290 27257 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 15:34:46.993294 27257 net.cpp:137] Memory required for data: 869840896 +I0408 15:34:46.993296 27257 layer_factory.hpp:77] Creating layer conv3 +I0408 15:34:46.993305 27257 net.cpp:84] Creating Layer conv3 +I0408 15:34:46.993309 27257 net.cpp:406] conv3 <- pool2 +I0408 15:34:46.993314 27257 net.cpp:380] conv3 -> conv3 +I0408 15:34:47.003067 27257 net.cpp:122] Setting up conv3 +I0408 15:34:47.003080 27257 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:47.003084 27257 net.cpp:137] Memory required for data: 903067648 +I0408 15:34:47.003094 27257 layer_factory.hpp:77] Creating layer relu3 +I0408 15:34:47.003101 27257 net.cpp:84] Creating Layer relu3 +I0408 15:34:47.003105 27257 net.cpp:406] relu3 <- conv3 +I0408 15:34:47.003110 27257 net.cpp:367] relu3 -> conv3 (in-place) +I0408 15:34:47.003528 27257 net.cpp:122] Setting up relu3 +I0408 15:34:47.003537 27257 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:47.003540 27257 net.cpp:137] Memory required for data: 936294400 +I0408 15:34:47.003545 27257 layer_factory.hpp:77] Creating layer conv4 +I0408 15:34:47.003553 27257 net.cpp:84] Creating Layer conv4 +I0408 15:34:47.003557 27257 net.cpp:406] conv4 <- conv3 +I0408 15:34:47.003563 27257 net.cpp:380] conv4 -> conv4 +I0408 15:34:47.014341 27257 net.cpp:122] Setting up conv4 +I0408 15:34:47.014358 27257 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:47.014361 27257 net.cpp:137] Memory required for data: 969521152 +I0408 15:34:47.014369 27257 layer_factory.hpp:77] Creating layer relu4 +I0408 15:34:47.014376 27257 net.cpp:84] Creating Layer relu4 +I0408 15:34:47.014395 27257 net.cpp:406] relu4 <- conv4 +I0408 15:34:47.014402 27257 net.cpp:367] relu4 -> conv4 (in-place) +I0408 15:34:47.014683 27257 net.cpp:122] Setting up relu4 +I0408 15:34:47.014691 27257 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:47.014695 27257 net.cpp:137] Memory required for data: 1002747904 +I0408 15:34:47.014699 27257 layer_factory.hpp:77] Creating layer conv5 +I0408 15:34:47.014708 27257 net.cpp:84] Creating Layer conv5 +I0408 15:34:47.014712 27257 net.cpp:406] conv5 <- conv4 +I0408 15:34:47.014719 27257 net.cpp:380] conv5 -> conv5 +I0408 15:34:47.022753 27257 net.cpp:122] Setting up conv5 +I0408 15:34:47.022768 27257 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 15:34:47.022773 27257 net.cpp:137] Memory required for data: 1024899072 +I0408 15:34:47.022783 27257 layer_factory.hpp:77] Creating layer relu5 +I0408 15:34:47.022790 27257 net.cpp:84] Creating Layer relu5 +I0408 15:34:47.022794 27257 net.cpp:406] relu5 <- conv5 +I0408 15:34:47.022802 27257 net.cpp:367] relu5 -> conv5 (in-place) +I0408 15:34:47.023283 27257 net.cpp:122] Setting up relu5 +I0408 15:34:47.023291 27257 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 15:34:47.023294 27257 net.cpp:137] Memory required for data: 1047050240 +I0408 15:34:47.023298 27257 layer_factory.hpp:77] Creating layer pool5 +I0408 15:34:47.023306 27257 net.cpp:84] Creating Layer pool5 +I0408 15:34:47.023310 27257 net.cpp:406] pool5 <- conv5 +I0408 15:34:47.023315 27257 net.cpp:380] pool5 -> pool5 +I0408 15:34:47.023353 27257 net.cpp:122] Setting up pool5 +I0408 15:34:47.023360 27257 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 15:34:47.023362 27257 net.cpp:137] Memory required for data: 1051768832 +I0408 15:34:47.023366 27257 layer_factory.hpp:77] Creating layer fc6 +I0408 15:34:47.023375 27257 net.cpp:84] Creating Layer fc6 +I0408 15:34:47.023378 27257 net.cpp:406] fc6 <- pool5 +I0408 15:34:47.023386 27257 net.cpp:380] fc6 -> fc6 +I0408 15:34:47.376443 27257 net.cpp:122] Setting up fc6 +I0408 15:34:47.376462 27257 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:47.376466 27257 net.cpp:137] Memory required for data: 1053865984 +I0408 15:34:47.376475 27257 layer_factory.hpp:77] Creating layer relu6 +I0408 15:34:47.376485 27257 net.cpp:84] Creating Layer relu6 +I0408 15:34:47.376490 27257 net.cpp:406] relu6 <- fc6 +I0408 15:34:47.376497 27257 net.cpp:367] relu6 -> fc6 (in-place) +I0408 15:34:47.377110 27257 net.cpp:122] Setting up relu6 +I0408 15:34:47.377120 27257 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:47.377122 27257 net.cpp:137] Memory required for data: 1055963136 +I0408 15:34:47.377126 27257 layer_factory.hpp:77] Creating layer drop6 +I0408 15:34:47.377135 27257 net.cpp:84] Creating Layer drop6 +I0408 15:34:47.377137 27257 net.cpp:406] drop6 <- fc6 +I0408 15:34:47.377143 27257 net.cpp:367] drop6 -> fc6 (in-place) +I0408 15:34:47.377171 27257 net.cpp:122] Setting up drop6 +I0408 15:34:47.377175 27257 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:47.377178 27257 net.cpp:137] Memory required for data: 1058060288 +I0408 15:34:47.377182 27257 layer_factory.hpp:77] Creating layer fc7 +I0408 15:34:47.377189 27257 net.cpp:84] Creating Layer fc7 +I0408 15:34:47.377192 27257 net.cpp:406] fc7 <- fc6 +I0408 15:34:47.377198 27257 net.cpp:380] fc7 -> fc7 +I0408 15:34:47.535156 27257 net.cpp:122] Setting up fc7 +I0408 15:34:47.535176 27257 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:47.535179 27257 net.cpp:137] Memory required for data: 1060157440 +I0408 15:34:47.535189 27257 layer_factory.hpp:77] Creating layer relu7 +I0408 15:34:47.535198 27257 net.cpp:84] Creating Layer relu7 +I0408 15:34:47.535202 27257 net.cpp:406] relu7 <- fc7 +I0408 15:34:47.535209 27257 net.cpp:367] relu7 -> fc7 (in-place) +I0408 15:34:47.535825 27257 net.cpp:122] Setting up relu7 +I0408 15:34:47.535836 27257 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:47.535840 27257 net.cpp:137] Memory required for data: 1062254592 +I0408 15:34:47.535843 27257 layer_factory.hpp:77] Creating layer drop7 +I0408 15:34:47.535849 27257 net.cpp:84] Creating Layer drop7 +I0408 15:34:47.535871 27257 net.cpp:406] drop7 <- fc7 +I0408 15:34:47.535876 27257 net.cpp:367] drop7 -> fc7 (in-place) +I0408 15:34:47.535902 27257 net.cpp:122] Setting up drop7 +I0408 15:34:47.535907 27257 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:47.535910 27257 net.cpp:137] Memory required for data: 1064351744 +I0408 15:34:47.535913 27257 layer_factory.hpp:77] Creating layer fc8 +I0408 15:34:47.535921 27257 net.cpp:84] Creating Layer fc8 +I0408 15:34:47.535924 27257 net.cpp:406] fc8 <- fc7 +I0408 15:34:47.535930 27257 net.cpp:380] fc8 -> fc8 +I0408 15:34:47.543583 27257 net.cpp:122] Setting up fc8 +I0408 15:34:47.543594 27257 net.cpp:129] Top shape: 128 196 (25088) +I0408 15:34:47.543597 27257 net.cpp:137] Memory required for data: 1064452096 +I0408 15:34:47.543604 27257 layer_factory.hpp:77] Creating layer loss +I0408 15:34:47.543612 27257 net.cpp:84] Creating Layer loss +I0408 15:34:47.543617 27257 net.cpp:406] loss <- fc8 +I0408 15:34:47.543622 27257 net.cpp:406] loss <- label +I0408 15:34:47.543627 27257 net.cpp:380] loss -> loss +I0408 15:34:47.543637 27257 layer_factory.hpp:77] Creating layer loss +I0408 15:34:47.544246 27257 net.cpp:122] Setting up loss +I0408 15:34:47.544255 27257 net.cpp:129] Top shape: (1) +I0408 15:34:47.544258 27257 net.cpp:132] with loss weight 1 +I0408 15:34:47.544275 27257 net.cpp:137] Memory required for data: 1064452100 +I0408 15:34:47.544279 27257 net.cpp:198] loss needs backward computation. +I0408 15:34:47.544286 27257 net.cpp:198] fc8 needs backward computation. +I0408 15:34:47.544291 27257 net.cpp:198] drop7 needs backward computation. +I0408 15:34:47.544294 27257 net.cpp:198] relu7 needs backward computation. +I0408 15:34:47.544298 27257 net.cpp:198] fc7 needs backward computation. +I0408 15:34:47.544302 27257 net.cpp:198] drop6 needs backward computation. +I0408 15:34:47.544306 27257 net.cpp:198] relu6 needs backward computation. +I0408 15:34:47.544309 27257 net.cpp:198] fc6 needs backward computation. +I0408 15:34:47.544314 27257 net.cpp:198] pool5 needs backward computation. +I0408 15:34:47.544317 27257 net.cpp:198] relu5 needs backward computation. +I0408 15:34:47.544322 27257 net.cpp:198] conv5 needs backward computation. +I0408 15:34:47.544325 27257 net.cpp:198] relu4 needs backward computation. +I0408 15:34:47.544329 27257 net.cpp:198] conv4 needs backward computation. +I0408 15:34:47.544333 27257 net.cpp:198] relu3 needs backward computation. +I0408 15:34:47.544337 27257 net.cpp:198] conv3 needs backward computation. +I0408 15:34:47.544340 27257 net.cpp:198] pool2 needs backward computation. +I0408 15:34:47.544345 27257 net.cpp:198] norm2 needs backward computation. +I0408 15:34:47.544348 27257 net.cpp:198] relu2 needs backward computation. +I0408 15:34:47.544353 27257 net.cpp:198] conv2 needs backward computation. +I0408 15:34:47.544356 27257 net.cpp:198] pool1 needs backward computation. +I0408 15:34:47.544360 27257 net.cpp:198] norm1 needs backward computation. +I0408 15:34:47.544364 27257 net.cpp:198] relu1 needs backward computation. +I0408 15:34:47.544368 27257 net.cpp:198] conv1 needs backward computation. +I0408 15:34:47.544373 27257 net.cpp:200] train-data does not need backward computation. +I0408 15:34:47.544375 27257 net.cpp:242] This network produces output loss +I0408 15:34:47.544390 27257 net.cpp:255] Network initialization done. +I0408 15:34:47.544932 27257 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 15:34:47.544962 27257 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 15:34:47.545100 27257 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 15:34:47.545197 27257 layer_factory.hpp:77] Creating layer val-data +I0408 15:34:47.547108 27257 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0408 15:34:47.547333 27257 net.cpp:84] Creating Layer val-data +I0408 15:34:47.547343 27257 net.cpp:380] val-data -> data +I0408 15:34:47.547353 27257 net.cpp:380] val-data -> label +I0408 15:34:47.547358 27257 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 15:34:47.551267 27257 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 15:34:47.588660 27257 net.cpp:122] Setting up val-data +I0408 15:34:47.588678 27257 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 15:34:47.588683 27257 net.cpp:129] Top shape: 32 (32) +I0408 15:34:47.588686 27257 net.cpp:137] Memory required for data: 19787264 +I0408 15:34:47.588692 27257 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 15:34:47.588706 27257 net.cpp:84] Creating Layer label_val-data_1_split +I0408 15:34:47.588709 27257 net.cpp:406] label_val-data_1_split <- label +I0408 15:34:47.588717 27257 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 15:34:47.588726 27257 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 15:34:47.588771 27257 net.cpp:122] Setting up label_val-data_1_split +I0408 15:34:47.588778 27257 net.cpp:129] Top shape: 32 (32) +I0408 15:34:47.588781 27257 net.cpp:129] Top shape: 32 (32) +I0408 15:34:47.588784 27257 net.cpp:137] Memory required for data: 19787520 +I0408 15:34:47.588788 27257 layer_factory.hpp:77] Creating layer conv1 +I0408 15:34:47.588798 27257 net.cpp:84] Creating Layer conv1 +I0408 15:34:47.588802 27257 net.cpp:406] conv1 <- data +I0408 15:34:47.588807 27257 net.cpp:380] conv1 -> conv1 +I0408 15:34:47.590862 27257 net.cpp:122] Setting up conv1 +I0408 15:34:47.590873 27257 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 15:34:47.590876 27257 net.cpp:137] Memory required for data: 56958720 +I0408 15:34:47.590886 27257 layer_factory.hpp:77] Creating layer relu1 +I0408 15:34:47.590893 27257 net.cpp:84] Creating Layer relu1 +I0408 15:34:47.590896 27257 net.cpp:406] relu1 <- conv1 +I0408 15:34:47.590901 27257 net.cpp:367] relu1 -> conv1 (in-place) +I0408 15:34:47.591192 27257 net.cpp:122] Setting up relu1 +I0408 15:34:47.591200 27257 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 15:34:47.591203 27257 net.cpp:137] Memory required for data: 94129920 +I0408 15:34:47.591207 27257 layer_factory.hpp:77] Creating layer norm1 +I0408 15:34:47.591215 27257 net.cpp:84] Creating Layer norm1 +I0408 15:34:47.591219 27257 net.cpp:406] norm1 <- conv1 +I0408 15:34:47.591224 27257 net.cpp:380] norm1 -> norm1 +I0408 15:34:47.591677 27257 net.cpp:122] Setting up norm1 +I0408 15:34:47.591686 27257 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 15:34:47.591689 27257 net.cpp:137] Memory required for data: 131301120 +I0408 15:34:47.591693 27257 layer_factory.hpp:77] Creating layer pool1 +I0408 15:34:47.591699 27257 net.cpp:84] Creating Layer pool1 +I0408 15:34:47.591703 27257 net.cpp:406] pool1 <- norm1 +I0408 15:34:47.591708 27257 net.cpp:380] pool1 -> pool1 +I0408 15:34:47.591737 27257 net.cpp:122] Setting up pool1 +I0408 15:34:47.591742 27257 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 15:34:47.591744 27257 net.cpp:137] Memory required for data: 140259072 +I0408 15:34:47.591747 27257 layer_factory.hpp:77] Creating layer conv2 +I0408 15:34:47.591755 27257 net.cpp:84] Creating Layer conv2 +I0408 15:34:47.591758 27257 net.cpp:406] conv2 <- pool1 +I0408 15:34:47.591781 27257 net.cpp:380] conv2 -> conv2 +I0408 15:34:47.600204 27257 net.cpp:122] Setting up conv2 +I0408 15:34:47.600220 27257 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 15:34:47.600224 27257 net.cpp:137] Memory required for data: 164146944 +I0408 15:34:47.600234 27257 layer_factory.hpp:77] Creating layer relu2 +I0408 15:34:47.600244 27257 net.cpp:84] Creating Layer relu2 +I0408 15:34:47.600247 27257 net.cpp:406] relu2 <- conv2 +I0408 15:34:47.600252 27257 net.cpp:367] relu2 -> conv2 (in-place) +I0408 15:34:47.600749 27257 net.cpp:122] Setting up relu2 +I0408 15:34:47.600757 27257 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 15:34:47.600761 27257 net.cpp:137] Memory required for data: 188034816 +I0408 15:34:47.600764 27257 layer_factory.hpp:77] Creating layer norm2 +I0408 15:34:47.600775 27257 net.cpp:84] Creating Layer norm2 +I0408 15:34:47.600778 27257 net.cpp:406] norm2 <- conv2 +I0408 15:34:47.600783 27257 net.cpp:380] norm2 -> norm2 +I0408 15:34:47.601294 27257 net.cpp:122] Setting up norm2 +I0408 15:34:47.601305 27257 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 15:34:47.601310 27257 net.cpp:137] Memory required for data: 211922688 +I0408 15:34:47.601312 27257 layer_factory.hpp:77] Creating layer pool2 +I0408 15:34:47.601320 27257 net.cpp:84] Creating Layer pool2 +I0408 15:34:47.601323 27257 net.cpp:406] pool2 <- norm2 +I0408 15:34:47.601328 27257 net.cpp:380] pool2 -> pool2 +I0408 15:34:47.601361 27257 net.cpp:122] Setting up pool2 +I0408 15:34:47.601366 27257 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 15:34:47.601369 27257 net.cpp:137] Memory required for data: 217460480 +I0408 15:34:47.601372 27257 layer_factory.hpp:77] Creating layer conv3 +I0408 15:34:47.601382 27257 net.cpp:84] Creating Layer conv3 +I0408 15:34:47.601385 27257 net.cpp:406] conv3 <- pool2 +I0408 15:34:47.601392 27257 net.cpp:380] conv3 -> conv3 +I0408 15:34:47.612288 27257 net.cpp:122] Setting up conv3 +I0408 15:34:47.612306 27257 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:47.612309 27257 net.cpp:137] Memory required for data: 225767168 +I0408 15:34:47.612321 27257 layer_factory.hpp:77] Creating layer relu3 +I0408 15:34:47.612330 27257 net.cpp:84] Creating Layer relu3 +I0408 15:34:47.612334 27257 net.cpp:406] relu3 <- conv3 +I0408 15:34:47.612340 27257 net.cpp:367] relu3 -> conv3 (in-place) +I0408 15:34:47.612848 27257 net.cpp:122] Setting up relu3 +I0408 15:34:47.612856 27257 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:47.612860 27257 net.cpp:137] Memory required for data: 234073856 +I0408 15:34:47.612864 27257 layer_factory.hpp:77] Creating layer conv4 +I0408 15:34:47.612874 27257 net.cpp:84] Creating Layer conv4 +I0408 15:34:47.612879 27257 net.cpp:406] conv4 <- conv3 +I0408 15:34:47.612885 27257 net.cpp:380] conv4 -> conv4 +I0408 15:34:47.622290 27257 net.cpp:122] Setting up conv4 +I0408 15:34:47.622304 27257 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:47.622308 27257 net.cpp:137] Memory required for data: 242380544 +I0408 15:34:47.622315 27257 layer_factory.hpp:77] Creating layer relu4 +I0408 15:34:47.622323 27257 net.cpp:84] Creating Layer relu4 +I0408 15:34:47.622326 27257 net.cpp:406] relu4 <- conv4 +I0408 15:34:47.622334 27257 net.cpp:367] relu4 -> conv4 (in-place) +I0408 15:34:47.622675 27257 net.cpp:122] Setting up relu4 +I0408 15:34:47.622685 27257 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:47.622689 27257 net.cpp:137] Memory required for data: 250687232 +I0408 15:34:47.622692 27257 layer_factory.hpp:77] Creating layer conv5 +I0408 15:34:47.622701 27257 net.cpp:84] Creating Layer conv5 +I0408 15:34:47.622705 27257 net.cpp:406] conv5 <- conv4 +I0408 15:34:47.622712 27257 net.cpp:380] conv5 -> conv5 +I0408 15:34:47.631213 27257 net.cpp:122] Setting up conv5 +I0408 15:34:47.631232 27257 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 15:34:47.631235 27257 net.cpp:137] Memory required for data: 256225024 +I0408 15:34:47.631248 27257 layer_factory.hpp:77] Creating layer relu5 +I0408 15:34:47.631256 27257 net.cpp:84] Creating Layer relu5 +I0408 15:34:47.631261 27257 net.cpp:406] relu5 <- conv5 +I0408 15:34:47.631285 27257 net.cpp:367] relu5 -> conv5 (in-place) +I0408 15:34:47.631774 27257 net.cpp:122] Setting up relu5 +I0408 15:34:47.631784 27257 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 15:34:47.631788 27257 net.cpp:137] Memory required for data: 261762816 +I0408 15:34:47.631793 27257 layer_factory.hpp:77] Creating layer pool5 +I0408 15:34:47.631803 27257 net.cpp:84] Creating Layer pool5 +I0408 15:34:47.631808 27257 net.cpp:406] pool5 <- conv5 +I0408 15:34:47.631812 27257 net.cpp:380] pool5 -> pool5 +I0408 15:34:47.631850 27257 net.cpp:122] Setting up pool5 +I0408 15:34:47.631856 27257 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 15:34:47.631860 27257 net.cpp:137] Memory required for data: 262942464 +I0408 15:34:47.631865 27257 layer_factory.hpp:77] Creating layer fc6 +I0408 15:34:47.631872 27257 net.cpp:84] Creating Layer fc6 +I0408 15:34:47.631876 27257 net.cpp:406] fc6 <- pool5 +I0408 15:34:47.631882 27257 net.cpp:380] fc6 -> fc6 +I0408 15:34:47.986665 27257 net.cpp:122] Setting up fc6 +I0408 15:34:47.986685 27257 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:47.986690 27257 net.cpp:137] Memory required for data: 263466752 +I0408 15:34:47.986697 27257 layer_factory.hpp:77] Creating layer relu6 +I0408 15:34:47.986707 27257 net.cpp:84] Creating Layer relu6 +I0408 15:34:47.986711 27257 net.cpp:406] relu6 <- fc6 +I0408 15:34:47.986717 27257 net.cpp:367] relu6 -> fc6 (in-place) +I0408 15:34:47.987557 27257 net.cpp:122] Setting up relu6 +I0408 15:34:47.987566 27257 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:47.987569 27257 net.cpp:137] Memory required for data: 263991040 +I0408 15:34:47.987573 27257 layer_factory.hpp:77] Creating layer drop6 +I0408 15:34:47.987581 27257 net.cpp:84] Creating Layer drop6 +I0408 15:34:47.987584 27257 net.cpp:406] drop6 <- fc6 +I0408 15:34:47.987591 27257 net.cpp:367] drop6 -> fc6 (in-place) +I0408 15:34:47.987617 27257 net.cpp:122] Setting up drop6 +I0408 15:34:47.987622 27257 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:47.987627 27257 net.cpp:137] Memory required for data: 264515328 +I0408 15:34:47.987629 27257 layer_factory.hpp:77] Creating layer fc7 +I0408 15:34:47.987637 27257 net.cpp:84] Creating Layer fc7 +I0408 15:34:47.987639 27257 net.cpp:406] fc7 <- fc6 +I0408 15:34:47.987645 27257 net.cpp:380] fc7 -> fc7 +I0408 15:34:48.144430 27257 net.cpp:122] Setting up fc7 +I0408 15:34:48.144451 27257 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:48.144455 27257 net.cpp:137] Memory required for data: 265039616 +I0408 15:34:48.144464 27257 layer_factory.hpp:77] Creating layer relu7 +I0408 15:34:48.144474 27257 net.cpp:84] Creating Layer relu7 +I0408 15:34:48.144477 27257 net.cpp:406] relu7 <- fc7 +I0408 15:34:48.144486 27257 net.cpp:367] relu7 -> fc7 (in-place) +I0408 15:34:48.144901 27257 net.cpp:122] Setting up relu7 +I0408 15:34:48.144910 27257 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:48.144914 27257 net.cpp:137] Memory required for data: 265563904 +I0408 15:34:48.144918 27257 layer_factory.hpp:77] Creating layer drop7 +I0408 15:34:48.144924 27257 net.cpp:84] Creating Layer drop7 +I0408 15:34:48.144928 27257 net.cpp:406] drop7 <- fc7 +I0408 15:34:48.144933 27257 net.cpp:367] drop7 -> fc7 (in-place) +I0408 15:34:48.144956 27257 net.cpp:122] Setting up drop7 +I0408 15:34:48.144961 27257 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:48.144964 27257 net.cpp:137] Memory required for data: 266088192 +I0408 15:34:48.144968 27257 layer_factory.hpp:77] Creating layer fc8 +I0408 15:34:48.144976 27257 net.cpp:84] Creating Layer fc8 +I0408 15:34:48.144980 27257 net.cpp:406] fc8 <- fc7 +I0408 15:34:48.144985 27257 net.cpp:380] fc8 -> fc8 +I0408 15:34:48.152676 27257 net.cpp:122] Setting up fc8 +I0408 15:34:48.152688 27257 net.cpp:129] Top shape: 32 196 (6272) +I0408 15:34:48.152691 27257 net.cpp:137] Memory required for data: 266113280 +I0408 15:34:48.152698 27257 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 15:34:48.152704 27257 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 15:34:48.152709 27257 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 15:34:48.152735 27257 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 15:34:48.152745 27257 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 15:34:48.152776 27257 net.cpp:122] Setting up fc8_fc8_0_split +I0408 15:34:48.152781 27257 net.cpp:129] Top shape: 32 196 (6272) +I0408 15:34:48.152786 27257 net.cpp:129] Top shape: 32 196 (6272) +I0408 15:34:48.152788 27257 net.cpp:137] Memory required for data: 266163456 +I0408 15:34:48.152792 27257 layer_factory.hpp:77] Creating layer accuracy +I0408 15:34:48.152799 27257 net.cpp:84] Creating Layer accuracy +I0408 15:34:48.152802 27257 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 15:34:48.152807 27257 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 15:34:48.152812 27257 net.cpp:380] accuracy -> accuracy +I0408 15:34:48.152820 27257 net.cpp:122] Setting up accuracy +I0408 15:34:48.152824 27257 net.cpp:129] Top shape: (1) +I0408 15:34:48.152827 27257 net.cpp:137] Memory required for data: 266163460 +I0408 15:34:48.152830 27257 layer_factory.hpp:77] Creating layer loss +I0408 15:34:48.152837 27257 net.cpp:84] Creating Layer loss +I0408 15:34:48.152839 27257 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 15:34:48.152843 27257 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 15:34:48.152848 27257 net.cpp:380] loss -> loss +I0408 15:34:48.152854 27257 layer_factory.hpp:77] Creating layer loss +I0408 15:34:48.153445 27257 net.cpp:122] Setting up loss +I0408 15:34:48.153455 27257 net.cpp:129] Top shape: (1) +I0408 15:34:48.153458 27257 net.cpp:132] with loss weight 1 +I0408 15:34:48.153468 27257 net.cpp:137] Memory required for data: 266163464 +I0408 15:34:48.153472 27257 net.cpp:198] loss needs backward computation. +I0408 15:34:48.153476 27257 net.cpp:200] accuracy does not need backward computation. +I0408 15:34:48.153481 27257 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 15:34:48.153484 27257 net.cpp:198] fc8 needs backward computation. +I0408 15:34:48.153487 27257 net.cpp:198] drop7 needs backward computation. +I0408 15:34:48.153491 27257 net.cpp:198] relu7 needs backward computation. +I0408 15:34:48.153493 27257 net.cpp:198] fc7 needs backward computation. +I0408 15:34:48.153497 27257 net.cpp:198] drop6 needs backward computation. +I0408 15:34:48.153501 27257 net.cpp:198] relu6 needs backward computation. +I0408 15:34:48.153504 27257 net.cpp:198] fc6 needs backward computation. +I0408 15:34:48.153508 27257 net.cpp:198] pool5 needs backward computation. +I0408 15:34:48.153512 27257 net.cpp:198] relu5 needs backward computation. +I0408 15:34:48.153515 27257 net.cpp:198] conv5 needs backward computation. +I0408 15:34:48.153519 27257 net.cpp:198] relu4 needs backward computation. +I0408 15:34:48.153522 27257 net.cpp:198] conv4 needs backward computation. +I0408 15:34:48.153527 27257 net.cpp:198] relu3 needs backward computation. +I0408 15:34:48.153529 27257 net.cpp:198] conv3 needs backward computation. +I0408 15:34:48.153533 27257 net.cpp:198] pool2 needs backward computation. +I0408 15:34:48.153537 27257 net.cpp:198] norm2 needs backward computation. +I0408 15:34:48.153542 27257 net.cpp:198] relu2 needs backward computation. +I0408 15:34:48.153544 27257 net.cpp:198] conv2 needs backward computation. +I0408 15:34:48.153548 27257 net.cpp:198] pool1 needs backward computation. +I0408 15:34:48.153551 27257 net.cpp:198] norm1 needs backward computation. +I0408 15:34:48.153555 27257 net.cpp:198] relu1 needs backward computation. +I0408 15:34:48.153559 27257 net.cpp:198] conv1 needs backward computation. +I0408 15:34:48.153563 27257 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 15:34:48.153568 27257 net.cpp:200] val-data does not need backward computation. +I0408 15:34:48.153570 27257 net.cpp:242] This network produces output accuracy +I0408 15:34:48.153574 27257 net.cpp:242] This network produces output loss +I0408 15:34:48.153591 27257 net.cpp:255] Network initialization done. +I0408 15:34:48.153659 27257 solver.cpp:56] Solver scaffolding done. +I0408 15:34:48.154083 27257 caffe.cpp:248] Starting Optimization +I0408 15:34:48.154093 27257 solver.cpp:272] Solving +I0408 15:34:48.154462 27257 solver.cpp:273] Learning Rate Policy: exp +I0408 15:34:48.156306 27257 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 15:34:48.156317 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:34:48.245720 27257 blocking_queue.cpp:49] Waiting for data +I0408 15:34:52.539978 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:34:52.584707 27257 solver.cpp:397] Test net output #0: accuracy = 0.00367647 +I0408 15:34:52.584753 27257 solver.cpp:397] Test net output #1: loss = 5.27862 (* 1 = 5.27862 loss) +I0408 15:34:52.683163 27257 solver.cpp:218] Iteration 0 (0 iter/s, 4.52849s/12 iters), loss = 5.27479 +I0408 15:34:52.684712 27257 solver.cpp:237] Train net output #0: loss = 5.27479 (* 1 = 5.27479 loss) +I0408 15:34:52.684732 27257 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0408 15:34:56.617851 27257 solver.cpp:218] Iteration 12 (3.05112 iter/s, 3.93299s/12 iters), loss = 5.27669 +I0408 15:34:56.617883 27257 solver.cpp:237] Train net output #0: loss = 5.27669 (* 1 = 5.27669 loss) +I0408 15:34:56.617890 27257 sgd_solver.cpp:105] Iteration 12, lr = 0.00958907 +I0408 15:35:01.623180 27257 solver.cpp:218] Iteration 24 (2.39755 iter/s, 5.00511s/12 iters), loss = 5.2944 +I0408 15:35:01.623208 27257 solver.cpp:237] Train net output #0: loss = 5.2944 (* 1 = 5.2944 loss) +I0408 15:35:01.623215 27257 sgd_solver.cpp:105] Iteration 24, lr = 0.00919502 +I0408 15:35:06.521008 27257 solver.cpp:218] Iteration 36 (2.45017 iter/s, 4.89761s/12 iters), loss = 5.30128 +I0408 15:35:06.521061 27257 solver.cpp:237] Train net output #0: loss = 5.30128 (* 1 = 5.30128 loss) +I0408 15:35:06.521075 27257 sgd_solver.cpp:105] Iteration 36, lr = 0.00881717 +I0408 15:35:11.409262 27257 solver.cpp:218] Iteration 48 (2.45498 iter/s, 4.88802s/12 iters), loss = 5.32378 +I0408 15:35:11.409304 27257 solver.cpp:237] Train net output #0: loss = 5.32378 (* 1 = 5.32378 loss) +I0408 15:35:11.409312 27257 sgd_solver.cpp:105] Iteration 48, lr = 0.00845484 +I0408 15:35:16.316352 27257 solver.cpp:218] Iteration 60 (2.44555 iter/s, 4.90686s/12 iters), loss = 5.2864 +I0408 15:35:16.316498 27257 solver.cpp:237] Train net output #0: loss = 5.2864 (* 1 = 5.2864 loss) +I0408 15:35:16.316509 27257 sgd_solver.cpp:105] Iteration 60, lr = 0.0081074 +I0408 15:35:21.185464 27257 solver.cpp:218] Iteration 72 (2.46468 iter/s, 4.86878s/12 iters), loss = 5.29263 +I0408 15:35:21.185515 27257 solver.cpp:237] Train net output #0: loss = 5.29263 (* 1 = 5.29263 loss) +I0408 15:35:21.185528 27257 sgd_solver.cpp:105] Iteration 72, lr = 0.00777424 +I0408 15:35:26.153786 27257 solver.cpp:218] Iteration 84 (2.41542 iter/s, 4.96808s/12 iters), loss = 5.29702 +I0408 15:35:26.153836 27257 solver.cpp:237] Train net output #0: loss = 5.29702 (* 1 = 5.29702 loss) +I0408 15:35:26.153846 27257 sgd_solver.cpp:105] Iteration 84, lr = 0.00745477 +I0408 15:35:31.201620 27257 solver.cpp:218] Iteration 96 (2.37737 iter/s, 5.04759s/12 iters), loss = 5.31764 +I0408 15:35:31.201665 27257 solver.cpp:237] Train net output #0: loss = 5.31764 (* 1 = 5.31764 loss) +I0408 15:35:31.201676 27257 sgd_solver.cpp:105] Iteration 96, lr = 0.00714843 +I0408 15:35:32.937534 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:35:33.290911 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 15:35:38.479984 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 15:35:42.885617 27257 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 15:35:42.885643 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:35:47.317698 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:35:47.394867 27257 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 15:35:47.394915 27257 solver.cpp:397] Test net output #1: loss = 5.28706 (* 1 = 5.28706 loss) +I0408 15:35:49.208010 27257 solver.cpp:218] Iteration 108 (0.666457 iter/s, 18.0057s/12 iters), loss = 5.30687 +I0408 15:35:49.208053 27257 solver.cpp:237] Train net output #0: loss = 5.30687 (* 1 = 5.30687 loss) +I0408 15:35:49.208062 27257 sgd_solver.cpp:105] Iteration 108, lr = 0.00685468 +I0408 15:35:54.167109 27257 solver.cpp:218] Iteration 120 (2.41991 iter/s, 4.95886s/12 iters), loss = 5.27053 +I0408 15:35:54.167152 27257 solver.cpp:237] Train net output #0: loss = 5.27053 (* 1 = 5.27053 loss) +I0408 15:35:54.167163 27257 sgd_solver.cpp:105] Iteration 120, lr = 0.006573 +I0408 15:35:59.172093 27257 solver.cpp:218] Iteration 132 (2.39773 iter/s, 5.00474s/12 iters), loss = 5.24709 +I0408 15:35:59.172148 27257 solver.cpp:237] Train net output #0: loss = 5.24709 (* 1 = 5.24709 loss) +I0408 15:35:59.172161 27257 sgd_solver.cpp:105] Iteration 132, lr = 0.00630289 +I0408 15:36:04.186899 27257 solver.cpp:218] Iteration 144 (2.39303 iter/s, 5.01455s/12 iters), loss = 5.2908 +I0408 15:36:04.186946 27257 solver.cpp:237] Train net output #0: loss = 5.2908 (* 1 = 5.2908 loss) +I0408 15:36:04.186957 27257 sgd_solver.cpp:105] Iteration 144, lr = 0.00604388 +I0408 15:36:09.186424 27257 solver.cpp:218] Iteration 156 (2.40035 iter/s, 4.99928s/12 iters), loss = 5.24528 +I0408 15:36:09.186480 27257 solver.cpp:237] Train net output #0: loss = 5.24528 (* 1 = 5.24528 loss) +I0408 15:36:09.186492 27257 sgd_solver.cpp:105] Iteration 156, lr = 0.00579552 +I0408 15:36:14.190274 27257 solver.cpp:218] Iteration 168 (2.39828 iter/s, 5.00359s/12 iters), loss = 5.23398 +I0408 15:36:14.190335 27257 solver.cpp:237] Train net output #0: loss = 5.23398 (* 1 = 5.23398 loss) +I0408 15:36:14.190346 27257 sgd_solver.cpp:105] Iteration 168, lr = 0.00555736 +I0408 15:36:19.064386 27257 solver.cpp:218] Iteration 180 (2.46211 iter/s, 4.87386s/12 iters), loss = 5.14622 +I0408 15:36:19.064477 27257 solver.cpp:237] Train net output #0: loss = 5.14622 (* 1 = 5.14622 loss) +I0408 15:36:19.064486 27257 sgd_solver.cpp:105] Iteration 180, lr = 0.00532899 +I0408 15:36:23.998411 27257 solver.cpp:218] Iteration 192 (2.43223 iter/s, 4.93374s/12 iters), loss = 5.25523 +I0408 15:36:23.998450 27257 solver.cpp:237] Train net output #0: loss = 5.25523 (* 1 = 5.25523 loss) +I0408 15:36:23.998461 27257 sgd_solver.cpp:105] Iteration 192, lr = 0.00511001 +I0408 15:36:27.835398 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:36:28.491403 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 15:36:35.611292 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 15:36:40.837368 27257 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 15:36:40.837391 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:36:45.176982 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:36:45.299994 27257 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0408 15:36:45.300032 27257 solver.cpp:397] Test net output #1: loss = 5.19443 (* 1 = 5.19443 loss) +I0408 15:36:45.390074 27257 solver.cpp:218] Iteration 204 (0.560989 iter/s, 21.3908s/12 iters), loss = 5.1149 +I0408 15:36:45.390115 27257 solver.cpp:237] Train net output #0: loss = 5.1149 (* 1 = 5.1149 loss) +I0408 15:36:45.390127 27257 sgd_solver.cpp:105] Iteration 204, lr = 0.00490002 +I0408 15:36:49.724212 27257 solver.cpp:218] Iteration 216 (2.76886 iter/s, 4.33392s/12 iters), loss = 5.15064 +I0408 15:36:49.724341 27257 solver.cpp:237] Train net output #0: loss = 5.15064 (* 1 = 5.15064 loss) +I0408 15:36:49.724354 27257 sgd_solver.cpp:105] Iteration 216, lr = 0.00469866 +I0408 15:36:54.702558 27257 solver.cpp:218] Iteration 228 (2.4106 iter/s, 4.97802s/12 iters), loss = 5.18485 +I0408 15:36:54.702616 27257 solver.cpp:237] Train net output #0: loss = 5.18485 (* 1 = 5.18485 loss) +I0408 15:36:54.702630 27257 sgd_solver.cpp:105] Iteration 228, lr = 0.00450558 +I0408 15:36:59.575560 27257 solver.cpp:218] Iteration 240 (2.46268 iter/s, 4.87275s/12 iters), loss = 5.23855 +I0408 15:36:59.575614 27257 solver.cpp:237] Train net output #0: loss = 5.23855 (* 1 = 5.23855 loss) +I0408 15:36:59.575626 27257 sgd_solver.cpp:105] Iteration 240, lr = 0.00432043 +I0408 15:37:04.604301 27257 solver.cpp:218] Iteration 252 (2.38641 iter/s, 5.02848s/12 iters), loss = 5.13536 +I0408 15:37:04.604357 27257 solver.cpp:237] Train net output #0: loss = 5.13536 (* 1 = 5.13536 loss) +I0408 15:37:04.604369 27257 sgd_solver.cpp:105] Iteration 252, lr = 0.00414289 +I0408 15:37:09.585570 27257 solver.cpp:218] Iteration 264 (2.40915 iter/s, 4.98101s/12 iters), loss = 5.25194 +I0408 15:37:09.585619 27257 solver.cpp:237] Train net output #0: loss = 5.25194 (* 1 = 5.25194 loss) +I0408 15:37:09.585633 27257 sgd_solver.cpp:105] Iteration 264, lr = 0.00397264 +I0408 15:37:14.540634 27257 solver.cpp:218] Iteration 276 (2.42189 iter/s, 4.95481s/12 iters), loss = 5.17217 +I0408 15:37:14.540680 27257 solver.cpp:237] Train net output #0: loss = 5.17217 (* 1 = 5.17217 loss) +I0408 15:37:14.540689 27257 sgd_solver.cpp:105] Iteration 276, lr = 0.00380939 +I0408 15:37:19.649441 27257 solver.cpp:218] Iteration 288 (2.349 iter/s, 5.10855s/12 iters), loss = 5.04788 +I0408 15:37:19.649485 27257 solver.cpp:237] Train net output #0: loss = 5.04788 (* 1 = 5.04788 loss) +I0408 15:37:19.649497 27257 sgd_solver.cpp:105] Iteration 288, lr = 0.00365285 +I0408 15:37:24.652395 27257 solver.cpp:218] Iteration 300 (2.3987 iter/s, 5.00271s/12 iters), loss = 5.17544 +I0408 15:37:24.702081 27257 solver.cpp:237] Train net output #0: loss = 5.17544 (* 1 = 5.17544 loss) +I0408 15:37:24.702105 27257 sgd_solver.cpp:105] Iteration 300, lr = 0.00350275 +I0408 15:37:25.812702 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:37:26.852787 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 15:37:32.353132 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 15:37:35.594544 27257 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 15:37:35.594570 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:37:39.896721 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:37:40.054448 27257 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0408 15:37:40.054489 27257 solver.cpp:397] Test net output #1: loss = 5.15737 (* 1 = 5.15737 loss) +I0408 15:37:42.034953 27257 solver.cpp:218] Iteration 312 (0.692352 iter/s, 17.3322s/12 iters), loss = 5.12871 +I0408 15:37:42.035002 27257 solver.cpp:237] Train net output #0: loss = 5.12871 (* 1 = 5.12871 loss) +I0408 15:37:42.035012 27257 sgd_solver.cpp:105] Iteration 312, lr = 0.00335881 +I0408 15:37:47.062868 27257 solver.cpp:218] Iteration 324 (2.3868 iter/s, 5.02766s/12 iters), loss = 5.18643 +I0408 15:37:47.062916 27257 solver.cpp:237] Train net output #0: loss = 5.18643 (* 1 = 5.18643 loss) +I0408 15:37:47.062927 27257 sgd_solver.cpp:105] Iteration 324, lr = 0.00322078 +I0408 15:37:52.293121 27257 solver.cpp:218] Iteration 336 (2.29446 iter/s, 5.23s/12 iters), loss = 5.14557 +I0408 15:37:52.293157 27257 solver.cpp:237] Train net output #0: loss = 5.14557 (* 1 = 5.14557 loss) +I0408 15:37:52.293164 27257 sgd_solver.cpp:105] Iteration 336, lr = 0.00308843 +I0408 15:37:57.282210 27257 solver.cpp:218] Iteration 348 (2.40537 iter/s, 4.98885s/12 iters), loss = 5.13983 +I0408 15:37:57.282335 27257 solver.cpp:237] Train net output #0: loss = 5.13983 (* 1 = 5.13983 loss) +I0408 15:37:57.282348 27257 sgd_solver.cpp:105] Iteration 348, lr = 0.00296152 +I0408 15:38:02.307569 27257 solver.cpp:218] Iteration 360 (2.38804 iter/s, 5.02503s/12 iters), loss = 5.20784 +I0408 15:38:02.307619 27257 solver.cpp:237] Train net output #0: loss = 5.20784 (* 1 = 5.20784 loss) +I0408 15:38:02.307631 27257 sgd_solver.cpp:105] Iteration 360, lr = 0.00283982 +I0408 15:38:07.297788 27257 solver.cpp:218] Iteration 372 (2.40483 iter/s, 4.98996s/12 iters), loss = 5.12476 +I0408 15:38:07.297833 27257 solver.cpp:237] Train net output #0: loss = 5.12476 (* 1 = 5.12476 loss) +I0408 15:38:07.297843 27257 sgd_solver.cpp:105] Iteration 372, lr = 0.00272312 +I0408 15:38:12.326256 27257 solver.cpp:218] Iteration 384 (2.38653 iter/s, 5.02822s/12 iters), loss = 5.12628 +I0408 15:38:12.326303 27257 solver.cpp:237] Train net output #0: loss = 5.12628 (* 1 = 5.12628 loss) +I0408 15:38:12.326314 27257 sgd_solver.cpp:105] Iteration 384, lr = 0.00261122 +I0408 15:38:17.322769 27257 solver.cpp:218] Iteration 396 (2.4018 iter/s, 4.99626s/12 iters), loss = 5.09293 +I0408 15:38:17.322821 27257 solver.cpp:237] Train net output #0: loss = 5.09293 (* 1 = 5.09293 loss) +I0408 15:38:17.322831 27257 sgd_solver.cpp:105] Iteration 396, lr = 0.00250391 +I0408 15:38:20.401841 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:21.792338 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 15:38:26.915113 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 15:38:30.751431 27257 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 15:38:30.751546 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:38:35.120728 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:35.324259 27257 solver.cpp:397] Test net output #0: accuracy = 0.0110294 +I0408 15:38:35.324295 27257 solver.cpp:397] Test net output #1: loss = 5.14209 (* 1 = 5.14209 loss) +I0408 15:38:35.414556 27257 solver.cpp:218] Iteration 408 (0.663312 iter/s, 18.091s/12 iters), loss = 5.21104 +I0408 15:38:35.414594 27257 solver.cpp:237] Train net output #0: loss = 5.21104 (* 1 = 5.21104 loss) +I0408 15:38:35.414603 27257 sgd_solver.cpp:105] Iteration 408, lr = 0.00240102 +I0408 15:38:39.584920 27257 solver.cpp:218] Iteration 420 (2.87759 iter/s, 4.17015s/12 iters), loss = 5.21388 +I0408 15:38:39.584971 27257 solver.cpp:237] Train net output #0: loss = 5.21388 (* 1 = 5.21388 loss) +I0408 15:38:39.584985 27257 sgd_solver.cpp:105] Iteration 420, lr = 0.00230235 +I0408 15:38:44.583678 27257 solver.cpp:218] Iteration 432 (2.40072 iter/s, 4.99851s/12 iters), loss = 5.17066 +I0408 15:38:44.583721 27257 solver.cpp:237] Train net output #0: loss = 5.17066 (* 1 = 5.17066 loss) +I0408 15:38:44.583730 27257 sgd_solver.cpp:105] Iteration 432, lr = 0.00220774 +I0408 15:38:49.617923 27257 solver.cpp:218] Iteration 444 (2.38379 iter/s, 5.034s/12 iters), loss = 5.08991 +I0408 15:38:49.617976 27257 solver.cpp:237] Train net output #0: loss = 5.08991 (* 1 = 5.08991 loss) +I0408 15:38:49.617986 27257 sgd_solver.cpp:105] Iteration 444, lr = 0.00211702 +I0408 15:38:54.641191 27257 solver.cpp:218] Iteration 456 (2.38901 iter/s, 5.02301s/12 iters), loss = 5.14268 +I0408 15:38:54.641250 27257 solver.cpp:237] Train net output #0: loss = 5.14268 (* 1 = 5.14268 loss) +I0408 15:38:54.641263 27257 sgd_solver.cpp:105] Iteration 456, lr = 0.00203002 +I0408 15:38:59.717983 27257 solver.cpp:218] Iteration 468 (2.36382 iter/s, 5.07652s/12 iters), loss = 5.12468 +I0408 15:38:59.718027 27257 solver.cpp:237] Train net output #0: loss = 5.12468 (* 1 = 5.12468 loss) +I0408 15:38:59.718039 27257 sgd_solver.cpp:105] Iteration 468, lr = 0.0019466 +I0408 15:39:05.111238 27257 solver.cpp:218] Iteration 480 (2.22511 iter/s, 5.393s/12 iters), loss = 5.10545 +I0408 15:39:05.111299 27257 solver.cpp:237] Train net output #0: loss = 5.10545 (* 1 = 5.10545 loss) +I0408 15:39:05.111308 27257 sgd_solver.cpp:105] Iteration 480, lr = 0.00186661 +I0408 15:39:10.227691 27257 solver.cpp:218] Iteration 492 (2.3455 iter/s, 5.11618s/12 iters), loss = 5.12577 +I0408 15:39:10.227733 27257 solver.cpp:237] Train net output #0: loss = 5.12577 (* 1 = 5.12577 loss) +I0408 15:39:10.227746 27257 sgd_solver.cpp:105] Iteration 492, lr = 0.00178991 +I0408 15:39:15.227891 27257 solver.cpp:218] Iteration 504 (2.40002 iter/s, 4.99996s/12 iters), loss = 5.15966 +I0408 15:39:15.227931 27257 solver.cpp:237] Train net output #0: loss = 5.15966 (* 1 = 5.15966 loss) +I0408 15:39:15.227939 27257 sgd_solver.cpp:105] Iteration 504, lr = 0.00171635 +I0408 15:39:15.490896 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:17.300048 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 15:39:23.087808 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 15:39:25.719069 27257 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 15:39:25.719094 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:39:30.111968 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:30.352978 27257 solver.cpp:397] Test net output #0: accuracy = 0.0128676 +I0408 15:39:30.353029 27257 solver.cpp:397] Test net output #1: loss = 5.1227 (* 1 = 5.1227 loss) +I0408 15:39:32.303934 27257 solver.cpp:218] Iteration 516 (0.702768 iter/s, 17.0753s/12 iters), loss = 5.10316 +I0408 15:39:32.303987 27257 solver.cpp:237] Train net output #0: loss = 5.10316 (* 1 = 5.10316 loss) +I0408 15:39:32.303998 27257 sgd_solver.cpp:105] Iteration 516, lr = 0.00164582 +I0408 15:39:37.398000 27257 solver.cpp:218] Iteration 528 (2.3558 iter/s, 5.09381s/12 iters), loss = 5.15744 +I0408 15:39:37.398144 27257 solver.cpp:237] Train net output #0: loss = 5.15744 (* 1 = 5.15744 loss) +I0408 15:39:37.398157 27257 sgd_solver.cpp:105] Iteration 528, lr = 0.00157819 +I0408 15:39:42.542023 27257 solver.cpp:218] Iteration 540 (2.33296 iter/s, 5.14367s/12 iters), loss = 5.0741 +I0408 15:39:42.542071 27257 solver.cpp:237] Train net output #0: loss = 5.0741 (* 1 = 5.0741 loss) +I0408 15:39:42.542083 27257 sgd_solver.cpp:105] Iteration 540, lr = 0.00151334 +I0408 15:39:47.592451 27257 solver.cpp:218] Iteration 552 (2.37616 iter/s, 5.05016s/12 iters), loss = 5.09687 +I0408 15:39:47.592515 27257 solver.cpp:237] Train net output #0: loss = 5.09687 (* 1 = 5.09687 loss) +I0408 15:39:47.592528 27257 sgd_solver.cpp:105] Iteration 552, lr = 0.00145115 +I0408 15:39:52.507609 27257 solver.cpp:218] Iteration 564 (2.44156 iter/s, 4.9149s/12 iters), loss = 5.09309 +I0408 15:39:52.507654 27257 solver.cpp:237] Train net output #0: loss = 5.09309 (* 1 = 5.09309 loss) +I0408 15:39:52.507665 27257 sgd_solver.cpp:105] Iteration 564, lr = 0.00139152 +I0408 15:39:57.586175 27257 solver.cpp:218] Iteration 576 (2.36299 iter/s, 5.07831s/12 iters), loss = 5.09514 +I0408 15:39:57.586227 27257 solver.cpp:237] Train net output #0: loss = 5.09514 (* 1 = 5.09514 loss) +I0408 15:39:57.586249 27257 sgd_solver.cpp:105] Iteration 576, lr = 0.00133433 +I0408 15:40:03.015106 27257 solver.cpp:218] Iteration 588 (2.21049 iter/s, 5.42866s/12 iters), loss = 5.04682 +I0408 15:40:03.015151 27257 solver.cpp:237] Train net output #0: loss = 5.04682 (* 1 = 5.04682 loss) +I0408 15:40:03.015163 27257 sgd_solver.cpp:105] Iteration 588, lr = 0.0012795 +I0408 15:40:08.017616 27257 solver.cpp:218] Iteration 600 (2.39891 iter/s, 5.00226s/12 iters), loss = 5.08686 +I0408 15:40:08.017735 27257 solver.cpp:237] Train net output #0: loss = 5.08686 (* 1 = 5.08686 loss) +I0408 15:40:08.017747 27257 sgd_solver.cpp:105] Iteration 600, lr = 0.00122692 +I0408 15:40:10.415321 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:40:12.530850 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 15:40:19.547387 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 15:40:22.448627 27257 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 15:40:22.448653 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:40:26.576244 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:40:26.863744 27257 solver.cpp:397] Test net output #0: accuracy = 0.0134804 +I0408 15:40:26.863791 27257 solver.cpp:397] Test net output #1: loss = 5.10126 (* 1 = 5.10126 loss) +I0408 15:40:26.953325 27257 solver.cpp:218] Iteration 612 (0.633752 iter/s, 18.9349s/12 iters), loss = 5.11089 +I0408 15:40:26.953378 27257 solver.cpp:237] Train net output #0: loss = 5.11089 (* 1 = 5.11089 loss) +I0408 15:40:26.953389 27257 sgd_solver.cpp:105] Iteration 612, lr = 0.0011765 +I0408 15:40:31.296449 27257 solver.cpp:218] Iteration 624 (2.76314 iter/s, 4.34289s/12 iters), loss = 5.12859 +I0408 15:40:31.296505 27257 solver.cpp:237] Train net output #0: loss = 5.12859 (* 1 = 5.12859 loss) +I0408 15:40:31.296517 27257 sgd_solver.cpp:105] Iteration 624, lr = 0.00112816 +I0408 15:40:36.256603 27257 solver.cpp:218] Iteration 636 (2.4194 iter/s, 4.9599s/12 iters), loss = 5.0111 +I0408 15:40:36.256649 27257 solver.cpp:237] Train net output #0: loss = 5.0111 (* 1 = 5.0111 loss) +I0408 15:40:36.256660 27257 sgd_solver.cpp:105] Iteration 636, lr = 0.0010818 +I0408 15:40:41.291782 27257 solver.cpp:218] Iteration 648 (2.38335 iter/s, 5.03493s/12 iters), loss = 5.10484 +I0408 15:40:41.291919 27257 solver.cpp:237] Train net output #0: loss = 5.10484 (* 1 = 5.10484 loss) +I0408 15:40:41.291932 27257 sgd_solver.cpp:105] Iteration 648, lr = 0.00103734 +I0408 15:40:46.383949 27257 solver.cpp:218] Iteration 660 (2.35672 iter/s, 5.09182s/12 iters), loss = 5.07304 +I0408 15:40:46.383996 27257 solver.cpp:237] Train net output #0: loss = 5.07304 (* 1 = 5.07304 loss) +I0408 15:40:46.384007 27257 sgd_solver.cpp:105] Iteration 660, lr = 0.000994716 +I0408 15:40:51.671388 27257 solver.cpp:218] Iteration 672 (2.26964 iter/s, 5.28718s/12 iters), loss = 5.05731 +I0408 15:40:51.671444 27257 solver.cpp:237] Train net output #0: loss = 5.05731 (* 1 = 5.05731 loss) +I0408 15:40:51.671456 27257 sgd_solver.cpp:105] Iteration 672, lr = 0.00095384 +I0408 15:40:56.828477 27257 solver.cpp:218] Iteration 684 (2.32701 iter/s, 5.15683s/12 iters), loss = 4.93511 +I0408 15:40:56.828521 27257 solver.cpp:237] Train net output #0: loss = 4.93511 (* 1 = 4.93511 loss) +I0408 15:40:56.828533 27257 sgd_solver.cpp:105] Iteration 684, lr = 0.000914643 +I0408 15:40:57.621930 27257 blocking_queue.cpp:49] Waiting for data +I0408 15:41:01.842818 27257 solver.cpp:218] Iteration 696 (2.39325 iter/s, 5.01409s/12 iters), loss = 5.09474 +I0408 15:41:01.842861 27257 solver.cpp:237] Train net output #0: loss = 5.09474 (* 1 = 5.09474 loss) +I0408 15:41:01.842873 27257 sgd_solver.cpp:105] Iteration 696, lr = 0.000877057 +I0408 15:41:06.468576 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:41:06.843959 27257 solver.cpp:218] Iteration 708 (2.39957 iter/s, 5.0009s/12 iters), loss = 5.14442 +I0408 15:41:06.843998 27257 solver.cpp:237] Train net output #0: loss = 5.14442 (* 1 = 5.14442 loss) +I0408 15:41:06.844007 27257 sgd_solver.cpp:105] Iteration 708, lr = 0.000841016 +I0408 15:41:08.880686 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 15:41:12.741170 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 15:41:15.136365 27257 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 15:41:15.136386 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:41:19.258025 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:41:19.577401 27257 solver.cpp:397] Test net output #0: accuracy = 0.0183824 +I0408 15:41:19.577447 27257 solver.cpp:397] Test net output #1: loss = 5.07425 (* 1 = 5.07425 loss) +I0408 15:41:21.434100 27257 solver.cpp:218] Iteration 720 (0.822507 iter/s, 14.5895s/12 iters), loss = 5.10858 +I0408 15:41:21.434147 27257 solver.cpp:237] Train net output #0: loss = 5.10858 (* 1 = 5.10858 loss) +I0408 15:41:21.434157 27257 sgd_solver.cpp:105] Iteration 720, lr = 0.000806456 +I0408 15:41:26.415542 27257 solver.cpp:218] Iteration 732 (2.40906 iter/s, 4.98119s/12 iters), loss = 5.04345 +I0408 15:41:26.415588 27257 solver.cpp:237] Train net output #0: loss = 5.04345 (* 1 = 5.04345 loss) +I0408 15:41:26.415601 27257 sgd_solver.cpp:105] Iteration 732, lr = 0.000773316 +I0408 15:41:31.367712 27257 solver.cpp:218] Iteration 744 (2.4233 iter/s, 4.95192s/12 iters), loss = 5.03532 +I0408 15:41:31.367759 27257 solver.cpp:237] Train net output #0: loss = 5.03532 (* 1 = 5.03532 loss) +I0408 15:41:31.367771 27257 sgd_solver.cpp:105] Iteration 744, lr = 0.000741538 +I0408 15:41:36.238631 27257 solver.cpp:218] Iteration 756 (2.46373 iter/s, 4.87067s/12 iters), loss = 5.04359 +I0408 15:41:36.238687 27257 solver.cpp:237] Train net output #0: loss = 5.04359 (* 1 = 5.04359 loss) +I0408 15:41:36.238699 27257 sgd_solver.cpp:105] Iteration 756, lr = 0.000711066 +I0408 15:41:41.378744 27257 solver.cpp:218] Iteration 768 (2.3347 iter/s, 5.13985s/12 iters), loss = 5.11277 +I0408 15:41:41.378789 27257 solver.cpp:237] Train net output #0: loss = 5.11277 (* 1 = 5.11277 loss) +I0408 15:41:41.378801 27257 sgd_solver.cpp:105] Iteration 768, lr = 0.000681846 +I0408 15:41:46.397085 27257 solver.cpp:218] Iteration 780 (2.39135 iter/s, 5.01809s/12 iters), loss = 5.0782 +I0408 15:41:46.397269 27257 solver.cpp:237] Train net output #0: loss = 5.0782 (* 1 = 5.0782 loss) +I0408 15:41:46.397284 27257 sgd_solver.cpp:105] Iteration 780, lr = 0.000653826 +I0408 15:41:51.359091 27257 solver.cpp:218] Iteration 792 (2.41856 iter/s, 4.96163s/12 iters), loss = 4.95848 +I0408 15:41:51.359145 27257 solver.cpp:237] Train net output #0: loss = 4.95848 (* 1 = 4.95848 loss) +I0408 15:41:51.359159 27257 sgd_solver.cpp:105] Iteration 792, lr = 0.000626958 +I0408 15:41:56.523984 27257 solver.cpp:218] Iteration 804 (2.3235 iter/s, 5.16463s/12 iters), loss = 5.02789 +I0408 15:41:56.524037 27257 solver.cpp:237] Train net output #0: loss = 5.02789 (* 1 = 5.02789 loss) +I0408 15:41:56.524049 27257 sgd_solver.cpp:105] Iteration 804, lr = 0.000601195 +I0408 15:41:58.270468 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:01.052358 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 15:42:08.459982 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 15:42:11.187871 27257 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 15:42:11.187897 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:42:15.277989 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:15.633323 27257 solver.cpp:397] Test net output #0: accuracy = 0.0196078 +I0408 15:42:15.633355 27257 solver.cpp:397] Test net output #1: loss = 5.04714 (* 1 = 5.04714 loss) +I0408 15:42:15.724164 27257 solver.cpp:218] Iteration 816 (0.62502 iter/s, 19.1994s/12 iters), loss = 5.0193 +I0408 15:42:15.724217 27257 solver.cpp:237] Train net output #0: loss = 5.0193 (* 1 = 5.0193 loss) +I0408 15:42:15.724231 27257 sgd_solver.cpp:105] Iteration 816, lr = 0.00057649 +I0408 15:42:19.876171 27257 solver.cpp:218] Iteration 828 (2.89033 iter/s, 4.15178s/12 iters), loss = 5.15866 +I0408 15:42:19.876298 27257 solver.cpp:237] Train net output #0: loss = 5.15866 (* 1 = 5.15866 loss) +I0408 15:42:19.876312 27257 sgd_solver.cpp:105] Iteration 828, lr = 0.0005528 +I0408 15:42:24.855996 27257 solver.cpp:218] Iteration 840 (2.40988 iter/s, 4.97949s/12 iters), loss = 4.9917 +I0408 15:42:24.856051 27257 solver.cpp:237] Train net output #0: loss = 4.9917 (* 1 = 4.9917 loss) +I0408 15:42:24.856065 27257 sgd_solver.cpp:105] Iteration 840, lr = 0.000530083 +I0408 15:42:30.149317 27257 solver.cpp:218] Iteration 852 (2.26712 iter/s, 5.29305s/12 iters), loss = 5 +I0408 15:42:30.149353 27257 solver.cpp:237] Train net output #0: loss = 5 (* 1 = 5 loss) +I0408 15:42:30.149360 27257 sgd_solver.cpp:105] Iteration 852, lr = 0.0005083 +I0408 15:42:35.255861 27257 solver.cpp:218] Iteration 864 (2.35004 iter/s, 5.10629s/12 iters), loss = 5.04301 +I0408 15:42:35.255913 27257 solver.cpp:237] Train net output #0: loss = 5.04301 (* 1 = 5.04301 loss) +I0408 15:42:35.255925 27257 sgd_solver.cpp:105] Iteration 864, lr = 0.000487413 +I0408 15:42:40.321818 27257 solver.cpp:218] Iteration 876 (2.36887 iter/s, 5.0657s/12 iters), loss = 5.0643 +I0408 15:42:40.321866 27257 solver.cpp:237] Train net output #0: loss = 5.0643 (* 1 = 5.0643 loss) +I0408 15:42:40.321877 27257 sgd_solver.cpp:105] Iteration 876, lr = 0.000467383 +I0408 15:42:45.352877 27257 solver.cpp:218] Iteration 888 (2.3853 iter/s, 5.03081s/12 iters), loss = 4.90649 +I0408 15:42:45.352931 27257 solver.cpp:237] Train net output #0: loss = 4.90649 (* 1 = 4.90649 loss) +I0408 15:42:45.352941 27257 sgd_solver.cpp:105] Iteration 888, lr = 0.000448177 +I0408 15:42:50.424113 27257 solver.cpp:218] Iteration 900 (2.36641 iter/s, 5.07098s/12 iters), loss = 5.06128 +I0408 15:42:50.424244 27257 solver.cpp:237] Train net output #0: loss = 5.06128 (* 1 = 5.06128 loss) +I0408 15:42:50.424257 27257 sgd_solver.cpp:105] Iteration 900, lr = 0.00042976 +I0408 15:42:54.316752 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:55.439412 27257 solver.cpp:218] Iteration 912 (2.39284 iter/s, 5.01496s/12 iters), loss = 4.90481 +I0408 15:42:55.439468 27257 solver.cpp:237] Train net output #0: loss = 4.90481 (* 1 = 4.90481 loss) +I0408 15:42:55.439481 27257 sgd_solver.cpp:105] Iteration 912, lr = 0.0004121 +I0408 15:42:57.539474 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 15:43:05.104136 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 15:43:08.126418 27257 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 15:43:08.126441 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:43:12.191604 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:43:12.592460 27257 solver.cpp:397] Test net output #0: accuracy = 0.0214461 +I0408 15:43:12.592506 27257 solver.cpp:397] Test net output #1: loss = 5.02372 (* 1 = 5.02372 loss) +I0408 15:43:14.509852 27257 solver.cpp:218] Iteration 924 (0.629272 iter/s, 19.0696s/12 iters), loss = 5.06017 +I0408 15:43:14.509907 27257 solver.cpp:237] Train net output #0: loss = 5.06017 (* 1 = 5.06017 loss) +I0408 15:43:14.509919 27257 sgd_solver.cpp:105] Iteration 924, lr = 0.000395165 +I0408 15:43:19.511274 27257 solver.cpp:218] Iteration 936 (2.39944 iter/s, 5.00116s/12 iters), loss = 5.06432 +I0408 15:43:19.511325 27257 solver.cpp:237] Train net output #0: loss = 5.06432 (* 1 = 5.06432 loss) +I0408 15:43:19.511337 27257 sgd_solver.cpp:105] Iteration 936, lr = 0.000378926 +I0408 15:43:24.505925 27257 solver.cpp:218] Iteration 948 (2.40269 iter/s, 4.9944s/12 iters), loss = 4.99497 +I0408 15:43:24.506013 27257 solver.cpp:237] Train net output #0: loss = 4.99497 (* 1 = 4.99497 loss) +I0408 15:43:24.506023 27257 sgd_solver.cpp:105] Iteration 948, lr = 0.000363355 +I0408 15:43:29.506567 27257 solver.cpp:218] Iteration 960 (2.39983 iter/s, 5.00035s/12 iters), loss = 4.97092 +I0408 15:43:29.506613 27257 solver.cpp:237] Train net output #0: loss = 4.97092 (* 1 = 4.97092 loss) +I0408 15:43:29.506623 27257 sgd_solver.cpp:105] Iteration 960, lr = 0.000348424 +I0408 15:43:34.558101 27257 solver.cpp:218] Iteration 972 (2.37563 iter/s, 5.05128s/12 iters), loss = 4.97357 +I0408 15:43:34.558156 27257 solver.cpp:237] Train net output #0: loss = 4.97357 (* 1 = 4.97357 loss) +I0408 15:43:34.558169 27257 sgd_solver.cpp:105] Iteration 972, lr = 0.000334106 +I0408 15:43:39.559315 27257 solver.cpp:218] Iteration 984 (2.39954 iter/s, 5.00096s/12 iters), loss = 5.04537 +I0408 15:43:39.559353 27257 solver.cpp:237] Train net output #0: loss = 5.04537 (* 1 = 5.04537 loss) +I0408 15:43:39.559361 27257 sgd_solver.cpp:105] Iteration 984, lr = 0.000320376 +I0408 15:43:44.542299 27257 solver.cpp:218] Iteration 996 (2.40831 iter/s, 4.98274s/12 iters), loss = 4.88811 +I0408 15:43:44.542344 27257 solver.cpp:237] Train net output #0: loss = 4.88811 (* 1 = 4.88811 loss) +I0408 15:43:44.542356 27257 sgd_solver.cpp:105] Iteration 996, lr = 0.000307211 +I0408 15:43:49.614439 27257 solver.cpp:218] Iteration 1008 (2.36598 iter/s, 5.07189s/12 iters), loss = 5.05448 +I0408 15:43:49.614488 27257 solver.cpp:237] Train net output #0: loss = 5.05448 (* 1 = 5.05448 loss) +I0408 15:43:49.614501 27257 sgd_solver.cpp:105] Iteration 1008, lr = 0.000294587 +I0408 15:43:50.650677 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:43:54.138914 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 15:44:03.687189 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 15:44:07.042047 27257 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 15:44:07.042075 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:44:11.073537 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:44:11.505887 27257 solver.cpp:397] Test net output #0: accuracy = 0.0226716 +I0408 15:44:11.505936 27257 solver.cpp:397] Test net output #1: loss = 5.00609 (* 1 = 5.00609 loss) +I0408 15:44:11.596338 27257 solver.cpp:218] Iteration 1020 (0.545926 iter/s, 21.981s/12 iters), loss = 4.94042 +I0408 15:44:11.596388 27257 solver.cpp:237] Train net output #0: loss = 4.94042 (* 1 = 4.94042 loss) +I0408 15:44:11.596400 27257 sgd_solver.cpp:105] Iteration 1020, lr = 0.000282481 +I0408 15:44:15.680364 27257 solver.cpp:218] Iteration 1032 (2.93843 iter/s, 4.08381s/12 iters), loss = 5.00595 +I0408 15:44:15.680410 27257 solver.cpp:237] Train net output #0: loss = 5.00595 (* 1 = 5.00595 loss) +I0408 15:44:15.680423 27257 sgd_solver.cpp:105] Iteration 1032, lr = 0.000270873 +I0408 15:44:20.651906 27257 solver.cpp:218] Iteration 1044 (2.41386 iter/s, 4.97129s/12 iters), loss = 5.00492 +I0408 15:44:20.651960 27257 solver.cpp:237] Train net output #0: loss = 5.00492 (* 1 = 5.00492 loss) +I0408 15:44:20.651973 27257 sgd_solver.cpp:105] Iteration 1044, lr = 0.000259742 +I0408 15:44:25.560799 27257 solver.cpp:218] Iteration 1056 (2.44467 iter/s, 4.90864s/12 iters), loss = 5.08698 +I0408 15:44:25.560853 27257 solver.cpp:237] Train net output #0: loss = 5.08698 (* 1 = 5.08698 loss) +I0408 15:44:25.560863 27257 sgd_solver.cpp:105] Iteration 1056, lr = 0.000249068 +I0408 15:44:30.555474 27257 solver.cpp:218] Iteration 1068 (2.40268 iter/s, 4.99442s/12 iters), loss = 5.03233 +I0408 15:44:30.555522 27257 solver.cpp:237] Train net output #0: loss = 5.03233 (* 1 = 5.03233 loss) +I0408 15:44:30.555532 27257 sgd_solver.cpp:105] Iteration 1068, lr = 0.000238833 +I0408 15:44:35.531553 27257 solver.cpp:218] Iteration 1080 (2.41166 iter/s, 4.97583s/12 iters), loss = 4.88281 +I0408 15:44:35.531682 27257 solver.cpp:237] Train net output #0: loss = 4.88281 (* 1 = 4.88281 loss) +I0408 15:44:35.531695 27257 sgd_solver.cpp:105] Iteration 1080, lr = 0.000229019 +I0408 15:44:40.555238 27257 solver.cpp:218] Iteration 1092 (2.38884 iter/s, 5.02335s/12 iters), loss = 4.97214 +I0408 15:44:40.555290 27257 solver.cpp:237] Train net output #0: loss = 4.97214 (* 1 = 4.97214 loss) +I0408 15:44:40.555302 27257 sgd_solver.cpp:105] Iteration 1092, lr = 0.000219608 +I0408 15:44:45.547915 27257 solver.cpp:218] Iteration 1104 (2.40364 iter/s, 4.99242s/12 iters), loss = 4.96411 +I0408 15:44:45.547971 27257 solver.cpp:237] Train net output #0: loss = 4.96411 (* 1 = 4.96411 loss) +I0408 15:44:45.547984 27257 sgd_solver.cpp:105] Iteration 1104, lr = 0.000210583 +I0408 15:44:48.683210 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:44:50.529129 27257 solver.cpp:218] Iteration 1116 (2.40918 iter/s, 4.98096s/12 iters), loss = 5.03045 +I0408 15:44:50.529172 27257 solver.cpp:237] Train net output #0: loss = 5.03045 (* 1 = 5.03045 loss) +I0408 15:44:50.529181 27257 sgd_solver.cpp:105] Iteration 1116, lr = 0.00020193 +I0408 15:44:52.549170 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 15:44:58.890311 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 15:45:02.582398 27257 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 15:45:02.582437 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:45:06.630889 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:07.107926 27257 solver.cpp:397] Test net output #0: accuracy = 0.0245098 +I0408 15:45:07.107975 27257 solver.cpp:397] Test net output #1: loss = 4.99577 (* 1 = 4.99577 loss) +I0408 15:45:09.098763 27257 solver.cpp:218] Iteration 1128 (0.646243 iter/s, 18.5689s/12 iters), loss = 5.10887 +I0408 15:45:09.098803 27257 solver.cpp:237] Train net output #0: loss = 5.10887 (* 1 = 5.10887 loss) +I0408 15:45:09.098811 27257 sgd_solver.cpp:105] Iteration 1128, lr = 0.000193632 +I0408 15:45:14.223453 27257 solver.cpp:218] Iteration 1140 (2.34172 iter/s, 5.12444s/12 iters), loss = 5.06474 +I0408 15:45:14.223496 27257 solver.cpp:237] Train net output #0: loss = 5.06474 (* 1 = 5.06474 loss) +I0408 15:45:14.223505 27257 sgd_solver.cpp:105] Iteration 1140, lr = 0.000185675 +I0408 15:45:19.193370 27257 solver.cpp:218] Iteration 1152 (2.41465 iter/s, 4.96967s/12 iters), loss = 4.94893 +I0408 15:45:19.193430 27257 solver.cpp:237] Train net output #0: loss = 4.94893 (* 1 = 4.94893 loss) +I0408 15:45:19.193442 27257 sgd_solver.cpp:105] Iteration 1152, lr = 0.000178045 +I0408 15:45:24.234506 27257 solver.cpp:218] Iteration 1164 (2.38054 iter/s, 5.04087s/12 iters), loss = 4.95839 +I0408 15:45:24.234553 27257 solver.cpp:237] Train net output #0: loss = 4.95839 (* 1 = 4.95839 loss) +I0408 15:45:24.234563 27257 sgd_solver.cpp:105] Iteration 1164, lr = 0.000170728 +I0408 15:45:29.161720 27257 solver.cpp:218] Iteration 1176 (2.43558 iter/s, 4.92696s/12 iters), loss = 4.93946 +I0408 15:45:29.161777 27257 solver.cpp:237] Train net output #0: loss = 4.93946 (* 1 = 4.93946 loss) +I0408 15:45:29.161789 27257 sgd_solver.cpp:105] Iteration 1176, lr = 0.000163712 +I0408 15:45:34.215548 27257 solver.cpp:218] Iteration 1188 (2.37456 iter/s, 5.05357s/12 iters), loss = 4.9869 +I0408 15:45:34.215592 27257 solver.cpp:237] Train net output #0: loss = 4.9869 (* 1 = 4.9869 loss) +I0408 15:45:34.215601 27257 sgd_solver.cpp:105] Iteration 1188, lr = 0.000156985 +I0408 15:45:39.241067 27257 solver.cpp:218] Iteration 1200 (2.38793 iter/s, 5.02527s/12 iters), loss = 5.03307 +I0408 15:45:39.241215 27257 solver.cpp:237] Train net output #0: loss = 5.03307 (* 1 = 5.03307 loss) +I0408 15:45:39.241230 27257 sgd_solver.cpp:105] Iteration 1200, lr = 0.000150534 +I0408 15:45:44.386229 27257 solver.cpp:218] Iteration 1212 (2.33245 iter/s, 5.1448s/12 iters), loss = 5.0391 +I0408 15:45:44.386299 27257 solver.cpp:237] Train net output #0: loss = 5.0391 (* 1 = 5.0391 loss) +I0408 15:45:44.386324 27257 sgd_solver.cpp:105] Iteration 1212, lr = 0.000144348 +I0408 15:45:44.678611 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:48.914099 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 15:45:55.602048 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 15:45:59.277216 27257 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 15:45:59.277243 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:46:03.371492 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:46:03.883476 27257 solver.cpp:397] Test net output #0: accuracy = 0.0269608 +I0408 15:46:03.883522 27257 solver.cpp:397] Test net output #1: loss = 4.98536 (* 1 = 4.98536 loss) +I0408 15:46:03.973896 27257 solver.cpp:218] Iteration 1224 (0.612656 iter/s, 19.5868s/12 iters), loss = 4.93302 +I0408 15:46:03.973944 27257 solver.cpp:237] Train net output #0: loss = 4.93302 (* 1 = 4.93302 loss) +I0408 15:46:03.973973 27257 sgd_solver.cpp:105] Iteration 1224, lr = 0.000138416 +I0408 15:46:08.463707 27257 solver.cpp:218] Iteration 1236 (2.67286 iter/s, 4.48958s/12 iters), loss = 5.04266 +I0408 15:46:08.463753 27257 solver.cpp:237] Train net output #0: loss = 5.04266 (* 1 = 5.04266 loss) +I0408 15:46:08.463765 27257 sgd_solver.cpp:105] Iteration 1236, lr = 0.000132728 +I0408 15:46:13.834359 27257 solver.cpp:218] Iteration 1248 (2.23448 iter/s, 5.37039s/12 iters), loss = 4.94496 +I0408 15:46:13.834470 27257 solver.cpp:237] Train net output #0: loss = 4.94496 (* 1 = 4.94496 loss) +I0408 15:46:13.834483 27257 sgd_solver.cpp:105] Iteration 1248, lr = 0.000127274 +I0408 15:46:18.876313 27257 solver.cpp:218] Iteration 1260 (2.38018 iter/s, 5.04164s/12 iters), loss = 4.95434 +I0408 15:46:18.876358 27257 solver.cpp:237] Train net output #0: loss = 4.95434 (* 1 = 4.95434 loss) +I0408 15:46:18.876368 27257 sgd_solver.cpp:105] Iteration 1260, lr = 0.000122044 +I0408 15:46:23.860352 27257 solver.cpp:218] Iteration 1272 (2.40781 iter/s, 4.98379s/12 iters), loss = 4.86796 +I0408 15:46:23.860399 27257 solver.cpp:237] Train net output #0: loss = 4.86796 (* 1 = 4.86796 loss) +I0408 15:46:23.860410 27257 sgd_solver.cpp:105] Iteration 1272, lr = 0.000117029 +I0408 15:46:28.760159 27257 solver.cpp:218] Iteration 1284 (2.4492 iter/s, 4.89956s/12 iters), loss = 4.98694 +I0408 15:46:28.760205 27257 solver.cpp:237] Train net output #0: loss = 4.98694 (* 1 = 4.98694 loss) +I0408 15:46:28.760213 27257 sgd_solver.cpp:105] Iteration 1284, lr = 0.00011222 +I0408 15:46:33.867359 27257 solver.cpp:218] Iteration 1296 (2.34974 iter/s, 5.10694s/12 iters), loss = 4.87087 +I0408 15:46:33.867415 27257 solver.cpp:237] Train net output #0: loss = 4.87087 (* 1 = 4.87087 loss) +I0408 15:46:33.867429 27257 sgd_solver.cpp:105] Iteration 1296, lr = 0.000107608 +I0408 15:46:38.891790 27257 solver.cpp:218] Iteration 1308 (2.38845 iter/s, 5.02417s/12 iters), loss = 4.9431 +I0408 15:46:38.891842 27257 solver.cpp:237] Train net output #0: loss = 4.9431 (* 1 = 4.9431 loss) +I0408 15:46:38.891853 27257 sgd_solver.cpp:105] Iteration 1308, lr = 0.000103186 +I0408 15:46:41.418164 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:46:43.865624 27257 solver.cpp:218] Iteration 1320 (2.41275 iter/s, 4.97357s/12 iters), loss = 4.92822 +I0408 15:46:43.865773 27257 solver.cpp:237] Train net output #0: loss = 4.92822 (* 1 = 4.92822 loss) +I0408 15:46:43.865788 27257 sgd_solver.cpp:105] Iteration 1320, lr = 9.89459e-05 +I0408 15:46:45.889689 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 15:46:50.865203 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 15:46:57.657538 27257 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 15:46:57.657568 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:47:01.463919 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:47:02.019860 27257 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0408 15:47:02.019906 27257 solver.cpp:397] Test net output #1: loss = 4.98144 (* 1 = 4.98144 loss) +I0408 15:47:04.009948 27257 solver.cpp:218] Iteration 1332 (0.595729 iter/s, 20.1434s/12 iters), loss = 4.902 +I0408 15:47:04.010015 27257 solver.cpp:237] Train net output #0: loss = 4.902 (* 1 = 4.902 loss) +I0408 15:47:04.010026 27257 sgd_solver.cpp:105] Iteration 1332, lr = 9.48799e-05 +I0408 15:47:08.950651 27257 solver.cpp:218] Iteration 1344 (2.42894 iter/s, 4.94043s/12 iters), loss = 4.9171 +I0408 15:47:08.950704 27257 solver.cpp:237] Train net output #0: loss = 4.9171 (* 1 = 4.9171 loss) +I0408 15:47:08.950717 27257 sgd_solver.cpp:105] Iteration 1344, lr = 9.0981e-05 +I0408 15:47:13.945278 27257 solver.cpp:218] Iteration 1356 (2.4027 iter/s, 4.99437s/12 iters), loss = 5.00138 +I0408 15:47:13.945390 27257 solver.cpp:237] Train net output #0: loss = 5.00138 (* 1 = 5.00138 loss) +I0408 15:47:13.945403 27257 sgd_solver.cpp:105] Iteration 1356, lr = 8.72423e-05 +I0408 15:47:18.956260 27257 solver.cpp:218] Iteration 1368 (2.39489 iter/s, 5.01067s/12 iters), loss = 4.98611 +I0408 15:47:18.956307 27257 solver.cpp:237] Train net output #0: loss = 4.98611 (* 1 = 4.98611 loss) +I0408 15:47:18.956317 27257 sgd_solver.cpp:105] Iteration 1368, lr = 8.36572e-05 +I0408 15:47:20.158205 27257 blocking_queue.cpp:49] Waiting for data +I0408 15:47:23.933125 27257 solver.cpp:218] Iteration 1380 (2.41128 iter/s, 4.97661s/12 iters), loss = 4.90887 +I0408 15:47:23.933177 27257 solver.cpp:237] Train net output #0: loss = 4.90887 (* 1 = 4.90887 loss) +I0408 15:47:23.933190 27257 sgd_solver.cpp:105] Iteration 1380, lr = 8.02194e-05 +I0408 15:47:28.978385 27257 solver.cpp:218] Iteration 1392 (2.37859 iter/s, 5.045s/12 iters), loss = 4.74893 +I0408 15:47:28.978432 27257 solver.cpp:237] Train net output #0: loss = 4.74893 (* 1 = 4.74893 loss) +I0408 15:47:28.978443 27257 sgd_solver.cpp:105] Iteration 1392, lr = 7.6923e-05 +I0408 15:47:34.044008 27257 solver.cpp:218] Iteration 1404 (2.36903 iter/s, 5.06537s/12 iters), loss = 4.91067 +I0408 15:47:34.044055 27257 solver.cpp:237] Train net output #0: loss = 4.91067 (* 1 = 4.91067 loss) +I0408 15:47:34.044067 27257 sgd_solver.cpp:105] Iteration 1404, lr = 7.37619e-05 +I0408 15:47:38.865523 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:47:39.216830 27257 solver.cpp:218] Iteration 1416 (2.31993 iter/s, 5.17256s/12 iters), loss = 5.08905 +I0408 15:47:39.216887 27257 solver.cpp:237] Train net output #0: loss = 5.08905 (* 1 = 5.08905 loss) +I0408 15:47:39.216900 27257 sgd_solver.cpp:105] Iteration 1416, lr = 7.07308e-05 +I0408 15:47:43.735435 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 15:47:48.335165 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 15:47:56.360196 27257 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 15:47:56.360229 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:48:00.226580 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:00.816709 27257 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0408 15:48:00.816758 27257 solver.cpp:397] Test net output #1: loss = 4.97525 (* 1 = 4.97525 loss) +I0408 15:48:00.907163 27257 solver.cpp:218] Iteration 1428 (0.553265 iter/s, 21.6894s/12 iters), loss = 5.10387 +I0408 15:48:00.907203 27257 solver.cpp:237] Train net output #0: loss = 5.10387 (* 1 = 5.10387 loss) +I0408 15:48:00.907215 27257 sgd_solver.cpp:105] Iteration 1428, lr = 6.78243e-05 +I0408 15:48:05.528654 27257 solver.cpp:218] Iteration 1440 (2.5967 iter/s, 4.62126s/12 iters), loss = 4.94767 +I0408 15:48:05.528708 27257 solver.cpp:237] Train net output #0: loss = 4.94767 (* 1 = 4.94767 loss) +I0408 15:48:05.528720 27257 sgd_solver.cpp:105] Iteration 1440, lr = 6.50371e-05 +I0408 15:48:10.744442 27257 solver.cpp:218] Iteration 1452 (2.30083 iter/s, 5.21552s/12 iters), loss = 4.90953 +I0408 15:48:10.744490 27257 solver.cpp:237] Train net output #0: loss = 4.90953 (* 1 = 4.90953 loss) +I0408 15:48:10.744503 27257 sgd_solver.cpp:105] Iteration 1452, lr = 6.23645e-05 +I0408 15:48:16.196585 27257 solver.cpp:218] Iteration 1464 (2.20108 iter/s, 5.45187s/12 iters), loss = 4.96903 +I0408 15:48:16.196630 27257 solver.cpp:237] Train net output #0: loss = 4.96903 (* 1 = 4.96903 loss) +I0408 15:48:16.196640 27257 sgd_solver.cpp:105] Iteration 1464, lr = 5.98018e-05 +I0408 15:48:21.246515 27257 solver.cpp:218] Iteration 1476 (2.37639 iter/s, 5.04967s/12 iters), loss = 5.00097 +I0408 15:48:21.246646 27257 solver.cpp:237] Train net output #0: loss = 5.00097 (* 1 = 5.00097 loss) +I0408 15:48:21.246660 27257 sgd_solver.cpp:105] Iteration 1476, lr = 5.73443e-05 +I0408 15:48:26.243788 27257 solver.cpp:218] Iteration 1488 (2.40147 iter/s, 4.99694s/12 iters), loss = 4.98146 +I0408 15:48:26.243845 27257 solver.cpp:237] Train net output #0: loss = 4.98146 (* 1 = 4.98146 loss) +I0408 15:48:26.243857 27257 sgd_solver.cpp:105] Iteration 1488, lr = 5.49878e-05 +I0408 15:48:31.205922 27257 solver.cpp:218] Iteration 1500 (2.41844 iter/s, 4.96188s/12 iters), loss = 4.81421 +I0408 15:48:31.205986 27257 solver.cpp:237] Train net output #0: loss = 4.81421 (* 1 = 4.81421 loss) +I0408 15:48:31.205999 27257 sgd_solver.cpp:105] Iteration 1500, lr = 5.27282e-05 +I0408 15:48:36.191339 27257 solver.cpp:218] Iteration 1512 (2.40715 iter/s, 4.98515s/12 iters), loss = 5.01728 +I0408 15:48:36.191388 27257 solver.cpp:237] Train net output #0: loss = 5.01728 (* 1 = 5.01728 loss) +I0408 15:48:36.191399 27257 sgd_solver.cpp:105] Iteration 1512, lr = 5.05614e-05 +I0408 15:48:37.965972 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:41.221741 27257 solver.cpp:218] Iteration 1524 (2.38562 iter/s, 5.03014s/12 iters), loss = 5.0083 +I0408 15:48:41.221793 27257 solver.cpp:237] Train net output #0: loss = 5.0083 (* 1 = 5.0083 loss) +I0408 15:48:41.221807 27257 sgd_solver.cpp:105] Iteration 1524, lr = 4.84837e-05 +I0408 15:48:43.281489 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 15:48:46.263980 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 15:48:49.787951 27257 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 15:48:49.787978 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:48:53.589605 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:54.226128 27257 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0408 15:48:54.226176 27257 solver.cpp:397] Test net output #1: loss = 4.97527 (* 1 = 4.97527 loss) +I0408 15:48:56.178073 27257 solver.cpp:218] Iteration 1536 (0.802371 iter/s, 14.9557s/12 iters), loss = 5.03528 +I0408 15:48:56.178144 27257 solver.cpp:237] Train net output #0: loss = 5.03528 (* 1 = 5.03528 loss) +I0408 15:48:56.178158 27257 sgd_solver.cpp:105] Iteration 1536, lr = 4.64913e-05 +I0408 15:49:01.227526 27257 solver.cpp:218] Iteration 1548 (2.37662 iter/s, 5.04918s/12 iters), loss = 4.87663 +I0408 15:49:01.227576 27257 solver.cpp:237] Train net output #0: loss = 4.87663 (* 1 = 4.87663 loss) +I0408 15:49:01.227588 27257 sgd_solver.cpp:105] Iteration 1548, lr = 4.45809e-05 +I0408 15:49:06.220046 27257 solver.cpp:218] Iteration 1560 (2.40372 iter/s, 4.99226s/12 iters), loss = 4.93967 +I0408 15:49:06.220095 27257 solver.cpp:237] Train net output #0: loss = 4.93967 (* 1 = 4.93967 loss) +I0408 15:49:06.220108 27257 sgd_solver.cpp:105] Iteration 1560, lr = 4.27489e-05 +I0408 15:49:11.322223 27257 solver.cpp:218] Iteration 1572 (2.35206 iter/s, 5.10191s/12 iters), loss = 4.99052 +I0408 15:49:11.322278 27257 solver.cpp:237] Train net output #0: loss = 4.99052 (* 1 = 4.99052 loss) +I0408 15:49:11.322289 27257 sgd_solver.cpp:105] Iteration 1572, lr = 4.09922e-05 +I0408 15:49:16.292928 27257 solver.cpp:218] Iteration 1584 (2.41427 iter/s, 4.97045s/12 iters), loss = 5.04121 +I0408 15:49:16.292980 27257 solver.cpp:237] Train net output #0: loss = 5.04121 (* 1 = 5.04121 loss) +I0408 15:49:16.292992 27257 sgd_solver.cpp:105] Iteration 1584, lr = 3.93077e-05 +I0408 15:49:21.365224 27257 solver.cpp:218] Iteration 1596 (2.36591 iter/s, 5.07204s/12 iters), loss = 4.88286 +I0408 15:49:21.365273 27257 solver.cpp:237] Train net output #0: loss = 4.88286 (* 1 = 4.88286 loss) +I0408 15:49:21.365285 27257 sgd_solver.cpp:105] Iteration 1596, lr = 3.76924e-05 +I0408 15:49:26.410344 27257 solver.cpp:218] Iteration 1608 (2.37866 iter/s, 5.04486s/12 iters), loss = 5.02884 +I0408 15:49:26.410468 27257 solver.cpp:237] Train net output #0: loss = 5.02884 (* 1 = 5.02884 loss) +I0408 15:49:26.410481 27257 sgd_solver.cpp:105] Iteration 1608, lr = 3.61435e-05 +I0408 15:49:30.368433 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:49:31.448539 27257 solver.cpp:218] Iteration 1620 (2.38196 iter/s, 5.03786s/12 iters), loss = 4.82273 +I0408 15:49:31.448588 27257 solver.cpp:237] Train net output #0: loss = 4.82273 (* 1 = 4.82273 loss) +I0408 15:49:31.448601 27257 sgd_solver.cpp:105] Iteration 1620, lr = 3.46582e-05 +I0408 15:49:35.952297 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 15:49:38.945441 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 15:49:41.278787 27257 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 15:49:41.278815 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:49:45.174398 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:49:45.887455 27257 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0408 15:49:45.887503 27257 solver.cpp:397] Test net output #1: loss = 4.9734 (* 1 = 4.9734 loss) +I0408 15:49:45.977995 27257 solver.cpp:218] Iteration 1632 (0.825943 iter/s, 14.5288s/12 iters), loss = 5.06388 +I0408 15:49:45.978049 27257 solver.cpp:237] Train net output #0: loss = 5.06388 (* 1 = 5.06388 loss) +I0408 15:49:45.978061 27257 sgd_solver.cpp:105] Iteration 1632, lr = 3.3234e-05 +I0408 15:49:50.249598 27257 solver.cpp:218] Iteration 1644 (2.8094 iter/s, 4.27138s/12 iters), loss = 4.98286 +I0408 15:49:50.249640 27257 solver.cpp:237] Train net output #0: loss = 4.98286 (* 1 = 4.98286 loss) +I0408 15:49:50.249651 27257 sgd_solver.cpp:105] Iteration 1644, lr = 3.18683e-05 +I0408 15:49:55.303848 27257 solver.cpp:218] Iteration 1656 (2.37436 iter/s, 5.054s/12 iters), loss = 4.97129 +I0408 15:49:55.303898 27257 solver.cpp:237] Train net output #0: loss = 4.97129 (* 1 = 4.97129 loss) +I0408 15:49:55.303910 27257 sgd_solver.cpp:105] Iteration 1656, lr = 3.05587e-05 +I0408 15:50:00.371891 27257 solver.cpp:218] Iteration 1668 (2.3679 iter/s, 5.06779s/12 iters), loss = 4.8775 +I0408 15:50:00.372037 27257 solver.cpp:237] Train net output #0: loss = 4.8775 (* 1 = 4.8775 loss) +I0408 15:50:00.372051 27257 sgd_solver.cpp:105] Iteration 1668, lr = 2.9303e-05 +I0408 15:50:05.386389 27257 solver.cpp:218] Iteration 1680 (2.39323 iter/s, 5.01415s/12 iters), loss = 4.92434 +I0408 15:50:05.386442 27257 solver.cpp:237] Train net output #0: loss = 4.92434 (* 1 = 4.92434 loss) +I0408 15:50:05.386456 27257 sgd_solver.cpp:105] Iteration 1680, lr = 2.80988e-05 +I0408 15:50:10.402611 27257 solver.cpp:218] Iteration 1692 (2.39236 iter/s, 5.01597s/12 iters), loss = 5.02387 +I0408 15:50:10.402662 27257 solver.cpp:237] Train net output #0: loss = 5.02387 (* 1 = 5.02387 loss) +I0408 15:50:10.402673 27257 sgd_solver.cpp:105] Iteration 1692, lr = 2.69442e-05 +I0408 15:50:15.357678 27257 solver.cpp:218] Iteration 1704 (2.42189 iter/s, 4.95482s/12 iters), loss = 4.81421 +I0408 15:50:15.357726 27257 solver.cpp:237] Train net output #0: loss = 4.81421 (* 1 = 4.81421 loss) +I0408 15:50:15.357738 27257 sgd_solver.cpp:105] Iteration 1704, lr = 2.58369e-05 +I0408 15:50:20.334445 27257 solver.cpp:218] Iteration 1716 (2.41133 iter/s, 4.97652s/12 iters), loss = 4.98344 +I0408 15:50:20.334487 27257 solver.cpp:237] Train net output #0: loss = 4.98344 (* 1 = 4.98344 loss) +I0408 15:50:20.334496 27257 sgd_solver.cpp:105] Iteration 1716, lr = 2.47752e-05 +I0408 15:50:21.397259 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:50:25.378430 27257 solver.cpp:218] Iteration 1728 (2.37919 iter/s, 5.04374s/12 iters), loss = 4.92697 +I0408 15:50:25.378471 27257 solver.cpp:237] Train net output #0: loss = 4.92697 (* 1 = 4.92697 loss) +I0408 15:50:25.378480 27257 sgd_solver.cpp:105] Iteration 1728, lr = 2.37571e-05 +I0408 15:50:27.374820 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 15:50:31.342469 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 15:50:33.658190 27257 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 15:50:33.658212 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:50:37.589499 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:50:38.296407 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 15:50:38.296455 27257 solver.cpp:397] Test net output #1: loss = 4.97335 (* 1 = 4.97335 loss) +I0408 15:50:40.163158 27257 solver.cpp:218] Iteration 1740 (0.811682 iter/s, 14.7841s/12 iters), loss = 4.99912 +I0408 15:50:40.163210 27257 solver.cpp:237] Train net output #0: loss = 4.99912 (* 1 = 4.99912 loss) +I0408 15:50:40.163223 27257 sgd_solver.cpp:105] Iteration 1740, lr = 2.27809e-05 +I0408 15:50:44.957585 27257 solver.cpp:218] Iteration 1752 (2.50304 iter/s, 4.79418s/12 iters), loss = 4.94518 +I0408 15:50:44.957643 27257 solver.cpp:237] Train net output #0: loss = 4.94518 (* 1 = 4.94518 loss) +I0408 15:50:44.957655 27257 sgd_solver.cpp:105] Iteration 1752, lr = 2.18447e-05 +I0408 15:50:49.847916 27257 solver.cpp:218] Iteration 1764 (2.45395 iter/s, 4.89008s/12 iters), loss = 4.93281 +I0408 15:50:49.847951 27257 solver.cpp:237] Train net output #0: loss = 4.93281 (* 1 = 4.93281 loss) +I0408 15:50:49.847959 27257 sgd_solver.cpp:105] Iteration 1764, lr = 2.0947e-05 +I0408 15:50:54.795787 27257 solver.cpp:218] Iteration 1776 (2.4254 iter/s, 4.94763s/12 iters), loss = 5.02357 +I0408 15:50:54.795830 27257 solver.cpp:237] Train net output #0: loss = 5.02357 (* 1 = 5.02357 loss) +I0408 15:50:54.795841 27257 sgd_solver.cpp:105] Iteration 1776, lr = 2.00863e-05 +I0408 15:50:59.774678 27257 solver.cpp:218] Iteration 1788 (2.4103 iter/s, 4.97864s/12 iters), loss = 4.95197 +I0408 15:50:59.774724 27257 solver.cpp:237] Train net output #0: loss = 4.95197 (* 1 = 4.95197 loss) +I0408 15:50:59.774740 27257 sgd_solver.cpp:105] Iteration 1788, lr = 1.92608e-05 +I0408 15:51:04.765480 27257 solver.cpp:218] Iteration 1800 (2.40454 iter/s, 4.99055s/12 iters), loss = 4.8607 +I0408 15:51:04.765655 27257 solver.cpp:237] Train net output #0: loss = 4.8607 (* 1 = 4.8607 loss) +I0408 15:51:04.765676 27257 sgd_solver.cpp:105] Iteration 1800, lr = 1.84694e-05 +I0408 15:51:09.810017 27257 solver.cpp:218] Iteration 1812 (2.37898 iter/s, 5.04417s/12 iters), loss = 4.97339 +I0408 15:51:09.810060 27257 solver.cpp:237] Train net output #0: loss = 4.97339 (* 1 = 4.97339 loss) +I0408 15:51:09.810071 27257 sgd_solver.cpp:105] Iteration 1812, lr = 1.77104e-05 +I0408 15:51:12.970420 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:51:14.928959 27257 solver.cpp:218] Iteration 1824 (2.34435 iter/s, 5.11869s/12 iters), loss = 4.93465 +I0408 15:51:14.929006 27257 solver.cpp:237] Train net output #0: loss = 4.93465 (* 1 = 4.93465 loss) +I0408 15:51:14.929018 27257 sgd_solver.cpp:105] Iteration 1824, lr = 1.69826e-05 +I0408 15:51:19.610292 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 15:51:22.679270 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 15:51:25.016357 27257 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 15:51:25.016384 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:51:28.858126 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:51:29.668045 27257 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0408 15:51:29.668079 27257 solver.cpp:397] Test net output #1: loss = 4.96888 (* 1 = 4.96888 loss) +I0408 15:51:29.757830 27257 solver.cpp:218] Iteration 1836 (0.809267 iter/s, 14.8282s/12 iters), loss = 5.05345 +I0408 15:51:29.757880 27257 solver.cpp:237] Train net output #0: loss = 5.05345 (* 1 = 5.05345 loss) +I0408 15:51:29.757891 27257 sgd_solver.cpp:105] Iteration 1836, lr = 1.62847e-05 +I0408 15:51:34.064558 27257 solver.cpp:218] Iteration 1848 (2.78649 iter/s, 4.30649s/12 iters), loss = 5.04042 +I0408 15:51:34.064602 27257 solver.cpp:237] Train net output #0: loss = 5.04042 (* 1 = 5.04042 loss) +I0408 15:51:34.064612 27257 sgd_solver.cpp:105] Iteration 1848, lr = 1.56155e-05 +I0408 15:51:39.119746 27257 solver.cpp:218] Iteration 1860 (2.37392 iter/s, 5.05494s/12 iters), loss = 4.95258 +I0408 15:51:39.119832 27257 solver.cpp:237] Train net output #0: loss = 4.95258 (* 1 = 4.95258 loss) +I0408 15:51:39.119841 27257 sgd_solver.cpp:105] Iteration 1860, lr = 1.49738e-05 +I0408 15:51:44.116070 27257 solver.cpp:218] Iteration 1872 (2.4019 iter/s, 4.99604s/12 iters), loss = 4.93783 +I0408 15:51:44.116107 27257 solver.cpp:237] Train net output #0: loss = 4.93783 (* 1 = 4.93783 loss) +I0408 15:51:44.116115 27257 sgd_solver.cpp:105] Iteration 1872, lr = 1.43585e-05 +I0408 15:51:49.155417 27257 solver.cpp:218] Iteration 1884 (2.38138 iter/s, 5.0391s/12 iters), loss = 4.95372 +I0408 15:51:49.155457 27257 solver.cpp:237] Train net output #0: loss = 4.95372 (* 1 = 4.95372 loss) +I0408 15:51:49.155467 27257 sgd_solver.cpp:105] Iteration 1884, lr = 1.37685e-05 +I0408 15:51:54.178440 27257 solver.cpp:218] Iteration 1896 (2.38912 iter/s, 5.02278s/12 iters), loss = 4.97431 +I0408 15:51:54.178484 27257 solver.cpp:237] Train net output #0: loss = 4.97431 (* 1 = 4.97431 loss) +I0408 15:51:54.178496 27257 sgd_solver.cpp:105] Iteration 1896, lr = 1.32027e-05 +I0408 15:51:59.233917 27257 solver.cpp:218] Iteration 1908 (2.37378 iter/s, 5.05523s/12 iters), loss = 5.00984 +I0408 15:51:59.233974 27257 solver.cpp:237] Train net output #0: loss = 5.00984 (* 1 = 5.00984 loss) +I0408 15:51:59.233987 27257 sgd_solver.cpp:105] Iteration 1908, lr = 1.26601e-05 +I0408 15:52:04.264868 27257 solver.cpp:218] Iteration 1920 (2.38536 iter/s, 5.03069s/12 iters), loss = 5.05077 +I0408 15:52:04.264919 27257 solver.cpp:237] Train net output #0: loss = 5.05077 (* 1 = 5.05077 loss) +I0408 15:52:04.264930 27257 sgd_solver.cpp:105] Iteration 1920, lr = 1.21399e-05 +I0408 15:52:04.577024 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:09.369612 27257 solver.cpp:218] Iteration 1932 (2.35087 iter/s, 5.10448s/12 iters), loss = 4.85904 +I0408 15:52:09.369729 27257 solver.cpp:237] Train net output #0: loss = 4.85904 (* 1 = 4.85904 loss) +I0408 15:52:09.369742 27257 sgd_solver.cpp:105] Iteration 1932, lr = 1.1641e-05 +I0408 15:52:11.578819 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 15:52:14.700053 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 15:52:17.071537 27257 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 15:52:17.071564 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:52:20.752230 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:21.536826 27257 solver.cpp:397] Test net output #0: accuracy = 0.0257353 +I0408 15:52:21.536876 27257 solver.cpp:397] Test net output #1: loss = 4.97238 (* 1 = 4.97238 loss) +I0408 15:52:23.522392 27257 solver.cpp:218] Iteration 1944 (0.84793 iter/s, 14.1521s/12 iters), loss = 4.95196 +I0408 15:52:23.522426 27257 solver.cpp:237] Train net output #0: loss = 4.95196 (* 1 = 4.95196 loss) +I0408 15:52:23.522435 27257 sgd_solver.cpp:105] Iteration 1944, lr = 1.11627e-05 +I0408 15:52:28.612114 27257 solver.cpp:218] Iteration 1956 (2.35781 iter/s, 5.08948s/12 iters), loss = 4.92274 +I0408 15:52:28.612165 27257 solver.cpp:237] Train net output #0: loss = 4.92274 (* 1 = 4.92274 loss) +I0408 15:52:28.612177 27257 sgd_solver.cpp:105] Iteration 1956, lr = 1.0704e-05 +I0408 15:52:33.735723 27257 solver.cpp:218] Iteration 1968 (2.34222 iter/s, 5.12335s/12 iters), loss = 4.89329 +I0408 15:52:33.735775 27257 solver.cpp:237] Train net output #0: loss = 4.89329 (* 1 = 4.89329 loss) +I0408 15:52:33.735787 27257 sgd_solver.cpp:105] Iteration 1968, lr = 1.02641e-05 +I0408 15:52:38.693392 27257 solver.cpp:218] Iteration 1980 (2.42062 iter/s, 4.95741s/12 iters), loss = 4.83569 +I0408 15:52:38.693440 27257 solver.cpp:237] Train net output #0: loss = 4.83569 (* 1 = 4.83569 loss) +I0408 15:52:38.693451 27257 sgd_solver.cpp:105] Iteration 1980, lr = 9.84231e-06 +I0408 15:52:44.101598 27257 solver.cpp:218] Iteration 1992 (2.21896 iter/s, 5.40794s/12 iters), loss = 5.03488 +I0408 15:52:44.101711 27257 solver.cpp:237] Train net output #0: loss = 5.03488 (* 1 = 5.03488 loss) +I0408 15:52:44.101724 27257 sgd_solver.cpp:105] Iteration 1992, lr = 9.43785e-06 +I0408 15:52:49.280887 27257 solver.cpp:218] Iteration 2004 (2.31706 iter/s, 5.17897s/12 iters), loss = 4.84784 +I0408 15:52:49.280931 27257 solver.cpp:237] Train net output #0: loss = 4.84784 (* 1 = 4.84784 loss) +I0408 15:52:49.280941 27257 sgd_solver.cpp:105] Iteration 2004, lr = 9.05002e-06 +I0408 15:52:54.315289 27257 solver.cpp:218] Iteration 2016 (2.38372 iter/s, 5.03415s/12 iters), loss = 4.93212 +I0408 15:52:54.315333 27257 solver.cpp:237] Train net output #0: loss = 4.93212 (* 1 = 4.93212 loss) +I0408 15:52:54.315344 27257 sgd_solver.cpp:105] Iteration 2016, lr = 8.67812e-06 +I0408 15:52:56.852160 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:59.331915 27257 solver.cpp:218] Iteration 2028 (2.39216 iter/s, 5.01638s/12 iters), loss = 4.85911 +I0408 15:52:59.331964 27257 solver.cpp:237] Train net output #0: loss = 4.85911 (* 1 = 4.85911 loss) +I0408 15:52:59.331975 27257 sgd_solver.cpp:105] Iteration 2028, lr = 8.32151e-06 +I0408 15:53:03.977528 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 15:53:06.995626 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 15:53:09.316494 27257 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 15:53:09.316519 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:53:12.881862 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:13.837849 27257 solver.cpp:397] Test net output #0: accuracy = 0.028799 +I0408 15:53:13.837896 27257 solver.cpp:397] Test net output #1: loss = 4.96656 (* 1 = 4.96656 loss) +I0408 15:53:13.926172 27257 solver.cpp:218] Iteration 2040 (0.822276 iter/s, 14.5936s/12 iters), loss = 4.93732 +I0408 15:53:13.926229 27257 solver.cpp:237] Train net output #0: loss = 4.93732 (* 1 = 4.93732 loss) +I0408 15:53:13.926239 27257 sgd_solver.cpp:105] Iteration 2040, lr = 7.97955e-06 +I0408 15:53:18.258965 27257 solver.cpp:218] Iteration 2052 (2.76973 iter/s, 4.33256s/12 iters), loss = 4.9282 +I0408 15:53:18.259114 27257 solver.cpp:237] Train net output #0: loss = 4.9282 (* 1 = 4.9282 loss) +I0408 15:53:18.259127 27257 sgd_solver.cpp:105] Iteration 2052, lr = 7.65165e-06 +I0408 15:53:19.854233 27257 blocking_queue.cpp:49] Waiting for data +I0408 15:53:23.386797 27257 solver.cpp:218] Iteration 2064 (2.34034 iter/s, 5.12747s/12 iters), loss = 4.93693 +I0408 15:53:23.386847 27257 solver.cpp:237] Train net output #0: loss = 4.93693 (* 1 = 4.93693 loss) +I0408 15:53:23.386859 27257 sgd_solver.cpp:105] Iteration 2064, lr = 7.33722e-06 +I0408 15:53:28.484285 27257 solver.cpp:218] Iteration 2076 (2.35422 iter/s, 5.09723s/12 iters), loss = 4.94308 +I0408 15:53:28.484340 27257 solver.cpp:237] Train net output #0: loss = 4.94308 (* 1 = 4.94308 loss) +I0408 15:53:28.484352 27257 sgd_solver.cpp:105] Iteration 2076, lr = 7.03571e-06 +I0408 15:53:33.494976 27257 solver.cpp:218] Iteration 2088 (2.395 iter/s, 5.01043s/12 iters), loss = 4.83835 +I0408 15:53:33.495021 27257 solver.cpp:237] Train net output #0: loss = 4.83835 (* 1 = 4.83835 loss) +I0408 15:53:33.495030 27257 sgd_solver.cpp:105] Iteration 2088, lr = 6.74658e-06 +I0408 15:53:38.542591 27257 solver.cpp:218] Iteration 2100 (2.37748 iter/s, 5.04736s/12 iters), loss = 4.75588 +I0408 15:53:38.542637 27257 solver.cpp:237] Train net output #0: loss = 4.75588 (* 1 = 4.75588 loss) +I0408 15:53:38.542647 27257 sgd_solver.cpp:105] Iteration 2100, lr = 6.46934e-06 +I0408 15:53:43.559628 27257 solver.cpp:218] Iteration 2112 (2.39197 iter/s, 5.01678s/12 iters), loss = 4.94042 +I0408 15:53:43.559667 27257 solver.cpp:237] Train net output #0: loss = 4.94042 (* 1 = 4.94042 loss) +I0408 15:53:43.559675 27257 sgd_solver.cpp:105] Iteration 2112, lr = 6.2035e-06 +I0408 15:53:48.246152 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:48.565248 27257 solver.cpp:218] Iteration 2124 (2.39743 iter/s, 5.00536s/12 iters), loss = 5.0069 +I0408 15:53:48.565364 27257 solver.cpp:237] Train net output #0: loss = 5.0069 (* 1 = 5.0069 loss) +I0408 15:53:48.565377 27257 sgd_solver.cpp:105] Iteration 2124, lr = 5.94858e-06 +I0408 15:53:53.570394 27257 solver.cpp:218] Iteration 2136 (2.39768 iter/s, 5.00483s/12 iters), loss = 5.06671 +I0408 15:53:53.570436 27257 solver.cpp:237] Train net output #0: loss = 5.06671 (* 1 = 5.06671 loss) +I0408 15:53:53.570447 27257 sgd_solver.cpp:105] Iteration 2136, lr = 5.70413e-06 +I0408 15:53:55.530930 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 15:54:01.986840 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 15:54:04.315361 27257 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 15:54:04.315390 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:54:07.972620 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:54:08.938918 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 15:54:08.938957 27257 solver.cpp:397] Test net output #1: loss = 4.97108 (* 1 = 4.97108 loss) +I0408 15:54:10.866196 27257 solver.cpp:218] Iteration 2148 (0.693839 iter/s, 17.2951s/12 iters), loss = 4.90737 +I0408 15:54:10.866258 27257 solver.cpp:237] Train net output #0: loss = 4.90737 (* 1 = 4.90737 loss) +I0408 15:54:10.866268 27257 sgd_solver.cpp:105] Iteration 2148, lr = 5.46973e-06 +I0408 15:54:15.803418 27257 solver.cpp:218] Iteration 2160 (2.43065 iter/s, 4.93695s/12 iters), loss = 4.87647 +I0408 15:54:15.803478 27257 solver.cpp:237] Train net output #0: loss = 4.87647 (* 1 = 4.87647 loss) +I0408 15:54:15.803489 27257 sgd_solver.cpp:105] Iteration 2160, lr = 5.24496e-06 +I0408 15:54:20.826336 27257 solver.cpp:218] Iteration 2172 (2.38918 iter/s, 5.02265s/12 iters), loss = 4.96651 +I0408 15:54:20.826504 27257 solver.cpp:237] Train net output #0: loss = 4.96651 (* 1 = 4.96651 loss) +I0408 15:54:20.826519 27257 sgd_solver.cpp:105] Iteration 2172, lr = 5.02943e-06 +I0408 15:54:25.832877 27257 solver.cpp:218] Iteration 2184 (2.39704 iter/s, 5.00617s/12 iters), loss = 4.939 +I0408 15:54:25.832921 27257 solver.cpp:237] Train net output #0: loss = 4.939 (* 1 = 4.939 loss) +I0408 15:54:25.832932 27257 sgd_solver.cpp:105] Iteration 2184, lr = 4.82275e-06 +I0408 15:54:30.858114 27257 solver.cpp:218] Iteration 2196 (2.38807 iter/s, 5.02498s/12 iters), loss = 4.99944 +I0408 15:54:30.858155 27257 solver.cpp:237] Train net output #0: loss = 4.99944 (* 1 = 4.99944 loss) +I0408 15:54:30.858165 27257 sgd_solver.cpp:105] Iteration 2196, lr = 4.62457e-06 +I0408 15:54:35.901499 27257 solver.cpp:218] Iteration 2208 (2.37947 iter/s, 5.04313s/12 iters), loss = 4.86874 +I0408 15:54:35.901554 27257 solver.cpp:237] Train net output #0: loss = 4.86874 (* 1 = 4.86874 loss) +I0408 15:54:35.901566 27257 sgd_solver.cpp:105] Iteration 2208, lr = 4.43453e-06 +I0408 15:54:40.887599 27257 solver.cpp:218] Iteration 2220 (2.40681 iter/s, 4.98584s/12 iters), loss = 4.98636 +I0408 15:54:40.887643 27257 solver.cpp:237] Train net output #0: loss = 4.98636 (* 1 = 4.98636 loss) +I0408 15:54:40.887653 27257 sgd_solver.cpp:105] Iteration 2220, lr = 4.2523e-06 +I0408 15:54:42.715523 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:54:45.919721 27257 solver.cpp:218] Iteration 2232 (2.3848 iter/s, 5.03186s/12 iters), loss = 5.00028 +I0408 15:54:45.919778 27257 solver.cpp:237] Train net output #0: loss = 5.00028 (* 1 = 5.00028 loss) +I0408 15:54:45.919790 27257 sgd_solver.cpp:105] Iteration 2232, lr = 4.07756e-06 +I0408 15:54:50.463398 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 15:54:58.771744 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 15:55:02.480594 27257 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 15:55:02.480620 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:55:06.046135 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:06.954133 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 15:55:06.954180 27257 solver.cpp:397] Test net output #1: loss = 4.96827 (* 1 = 4.96827 loss) +I0408 15:55:07.044561 27257 solver.cpp:218] Iteration 2244 (0.568075 iter/s, 21.124s/12 iters), loss = 5.02333 +I0408 15:55:07.044611 27257 solver.cpp:237] Train net output #0: loss = 5.02333 (* 1 = 5.02333 loss) +I0408 15:55:07.044623 27257 sgd_solver.cpp:105] Iteration 2244, lr = 3.91e-06 +I0408 15:55:11.351584 27257 solver.cpp:218] Iteration 2256 (2.78629 iter/s, 4.30679s/12 iters), loss = 4.91081 +I0408 15:55:11.351631 27257 solver.cpp:237] Train net output #0: loss = 4.91081 (* 1 = 4.91081 loss) +I0408 15:55:11.351644 27257 sgd_solver.cpp:105] Iteration 2256, lr = 3.74932e-06 +I0408 15:55:16.343024 27257 solver.cpp:218] Iteration 2268 (2.40424 iter/s, 4.99118s/12 iters), loss = 4.86751 +I0408 15:55:16.343075 27257 solver.cpp:237] Train net output #0: loss = 4.86751 (* 1 = 4.86751 loss) +I0408 15:55:16.343086 27257 sgd_solver.cpp:105] Iteration 2268, lr = 3.59525e-06 +I0408 15:55:21.298102 27257 solver.cpp:218] Iteration 2280 (2.42188 iter/s, 4.95482s/12 iters), loss = 5.00705 +I0408 15:55:21.298158 27257 solver.cpp:237] Train net output #0: loss = 5.00705 (* 1 = 5.00705 loss) +I0408 15:55:21.298171 27257 sgd_solver.cpp:105] Iteration 2280, lr = 3.44751e-06 +I0408 15:55:26.408149 27257 solver.cpp:218] Iteration 2292 (2.34844 iter/s, 5.10978s/12 iters), loss = 5.01412 +I0408 15:55:26.408200 27257 solver.cpp:237] Train net output #0: loss = 5.01412 (* 1 = 5.01412 loss) +I0408 15:55:26.408213 27257 sgd_solver.cpp:105] Iteration 2292, lr = 3.30584e-06 +I0408 15:55:31.414317 27257 solver.cpp:218] Iteration 2304 (2.39716 iter/s, 5.00592s/12 iters), loss = 4.94299 +I0408 15:55:31.414433 27257 solver.cpp:237] Train net output #0: loss = 4.94299 (* 1 = 4.94299 loss) +I0408 15:55:31.414448 27257 sgd_solver.cpp:105] Iteration 2304, lr = 3.16999e-06 +I0408 15:55:36.447436 27257 solver.cpp:218] Iteration 2316 (2.38436 iter/s, 5.0328s/12 iters), loss = 4.96377 +I0408 15:55:36.447484 27257 solver.cpp:237] Train net output #0: loss = 4.96377 (* 1 = 4.96377 loss) +I0408 15:55:36.447494 27257 sgd_solver.cpp:105] Iteration 2316, lr = 3.03973e-06 +I0408 15:55:40.405591 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:41.444500 27257 solver.cpp:218] Iteration 2328 (2.40153 iter/s, 4.9968s/12 iters), loss = 4.80967 +I0408 15:55:41.444553 27257 solver.cpp:237] Train net output #0: loss = 4.80967 (* 1 = 4.80967 loss) +I0408 15:55:41.444566 27257 sgd_solver.cpp:105] Iteration 2328, lr = 2.91481e-06 +I0408 15:55:46.492228 27257 solver.cpp:218] Iteration 2340 (2.37743 iter/s, 5.04747s/12 iters), loss = 5.00645 +I0408 15:55:46.492274 27257 solver.cpp:237] Train net output #0: loss = 5.00645 (* 1 = 5.00645 loss) +I0408 15:55:46.492286 27257 sgd_solver.cpp:105] Iteration 2340, lr = 2.79503e-06 +I0408 15:55:48.510659 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 15:55:55.831715 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 15:55:58.582458 27257 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 15:55:58.582477 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:56:02.113425 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:03.055737 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 15:56:03.055788 27257 solver.cpp:397] Test net output #1: loss = 4.97031 (* 1 = 4.97031 loss) +I0408 15:56:04.972229 27257 solver.cpp:218] Iteration 2352 (0.649378 iter/s, 18.4792s/12 iters), loss = 5.02898 +I0408 15:56:04.972287 27257 solver.cpp:237] Train net output #0: loss = 5.02898 (* 1 = 5.02898 loss) +I0408 15:56:04.972302 27257 sgd_solver.cpp:105] Iteration 2352, lr = 2.68018e-06 +I0408 15:56:09.944651 27257 solver.cpp:218] Iteration 2364 (2.41344 iter/s, 4.97216s/12 iters), loss = 4.83857 +I0408 15:56:09.944705 27257 solver.cpp:237] Train net output #0: loss = 4.83857 (* 1 = 4.83857 loss) +I0408 15:56:09.944720 27257 sgd_solver.cpp:105] Iteration 2364, lr = 2.57004e-06 +I0408 15:56:15.021288 27257 solver.cpp:218] Iteration 2376 (2.36389 iter/s, 5.07638s/12 iters), loss = 4.90144 +I0408 15:56:15.021340 27257 solver.cpp:237] Train net output #0: loss = 4.90144 (* 1 = 4.90144 loss) +I0408 15:56:15.021353 27257 sgd_solver.cpp:105] Iteration 2376, lr = 2.46443e-06 +I0408 15:56:20.097460 27257 solver.cpp:218] Iteration 2388 (2.36411 iter/s, 5.07591s/12 iters), loss = 4.92724 +I0408 15:56:20.097514 27257 solver.cpp:237] Train net output #0: loss = 4.92724 (* 1 = 4.92724 loss) +I0408 15:56:20.097527 27257 sgd_solver.cpp:105] Iteration 2388, lr = 2.36316e-06 +I0408 15:56:25.144078 27257 solver.cpp:218] Iteration 2400 (2.37795 iter/s, 5.04636s/12 iters), loss = 5.07093 +I0408 15:56:25.144125 27257 solver.cpp:237] Train net output #0: loss = 5.07093 (* 1 = 5.07093 loss) +I0408 15:56:25.144134 27257 sgd_solver.cpp:105] Iteration 2400, lr = 2.26605e-06 +I0408 15:56:30.175154 27257 solver.cpp:218] Iteration 2412 (2.38529 iter/s, 5.03083s/12 iters), loss = 4.83498 +I0408 15:56:30.175192 27257 solver.cpp:237] Train net output #0: loss = 4.83498 (* 1 = 4.83498 loss) +I0408 15:56:30.175201 27257 sgd_solver.cpp:105] Iteration 2412, lr = 2.17293e-06 +I0408 15:56:35.239917 27257 solver.cpp:218] Iteration 2424 (2.36943 iter/s, 5.06452s/12 iters), loss = 5.0007 +I0408 15:56:35.240038 27257 solver.cpp:237] Train net output #0: loss = 5.0007 (* 1 = 5.0007 loss) +I0408 15:56:35.240049 27257 sgd_solver.cpp:105] Iteration 2424, lr = 2.08363e-06 +I0408 15:56:36.337500 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:40.299861 27257 solver.cpp:218] Iteration 2436 (2.37172 iter/s, 5.05961s/12 iters), loss = 4.92971 +I0408 15:56:40.299911 27257 solver.cpp:237] Train net output #0: loss = 4.92971 (* 1 = 4.92971 loss) +I0408 15:56:40.299922 27257 sgd_solver.cpp:105] Iteration 2436, lr = 1.99801e-06 +I0408 15:56:44.935887 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 15:56:50.376013 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 15:56:55.269650 27257 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 15:56:55.269677 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:56:58.764874 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:59.742915 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 15:56:59.742961 27257 solver.cpp:397] Test net output #1: loss = 4.96641 (* 1 = 4.96641 loss) +I0408 15:56:59.833317 27257 solver.cpp:218] Iteration 2448 (0.614356 iter/s, 19.5326s/12 iters), loss = 4.89671 +I0408 15:56:59.833365 27257 solver.cpp:237] Train net output #0: loss = 4.89671 (* 1 = 4.89671 loss) +I0408 15:56:59.833377 27257 sgd_solver.cpp:105] Iteration 2448, lr = 1.91591e-06 +I0408 15:57:04.351018 27257 solver.cpp:218] Iteration 2460 (2.65636 iter/s, 4.51746s/12 iters), loss = 4.95361 +I0408 15:57:04.351069 27257 solver.cpp:237] Train net output #0: loss = 4.95361 (* 1 = 4.95361 loss) +I0408 15:57:04.351083 27257 sgd_solver.cpp:105] Iteration 2460, lr = 1.83718e-06 +I0408 15:57:09.314286 27257 solver.cpp:218] Iteration 2472 (2.41789 iter/s, 4.96301s/12 iters), loss = 4.9627 +I0408 15:57:09.314401 27257 solver.cpp:237] Train net output #0: loss = 4.9627 (* 1 = 4.9627 loss) +I0408 15:57:09.314415 27257 sgd_solver.cpp:105] Iteration 2472, lr = 1.76168e-06 +I0408 15:57:14.343163 27257 solver.cpp:218] Iteration 2484 (2.38637 iter/s, 5.02855s/12 iters), loss = 4.97103 +I0408 15:57:14.343216 27257 solver.cpp:237] Train net output #0: loss = 4.97103 (* 1 = 4.97103 loss) +I0408 15:57:14.343228 27257 sgd_solver.cpp:105] Iteration 2484, lr = 1.68929e-06 +I0408 15:57:19.329317 27257 solver.cpp:218] Iteration 2496 (2.40679 iter/s, 4.9859s/12 iters), loss = 5.01133 +I0408 15:57:19.329375 27257 solver.cpp:237] Train net output #0: loss = 5.01133 (* 1 = 5.01133 loss) +I0408 15:57:19.329391 27257 sgd_solver.cpp:105] Iteration 2496, lr = 1.61987e-06 +I0408 15:57:24.381633 27257 solver.cpp:218] Iteration 2508 (2.37527 iter/s, 5.05206s/12 iters), loss = 4.92711 +I0408 15:57:24.381680 27257 solver.cpp:237] Train net output #0: loss = 4.92711 (* 1 = 4.92711 loss) +I0408 15:57:24.381691 27257 sgd_solver.cpp:105] Iteration 2508, lr = 1.5533e-06 +I0408 15:57:29.556557 27257 solver.cpp:218] Iteration 2520 (2.31899 iter/s, 5.17466s/12 iters), loss = 4.9326 +I0408 15:57:29.556612 27257 solver.cpp:237] Train net output #0: loss = 4.9326 (* 1 = 4.9326 loss) +I0408 15:57:29.556624 27257 sgd_solver.cpp:105] Iteration 2520, lr = 1.48947e-06 +I0408 15:57:32.758443 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:57:34.549868 27257 solver.cpp:218] Iteration 2532 (2.40334 iter/s, 4.99305s/12 iters), loss = 4.9797 +I0408 15:57:34.549909 27257 solver.cpp:237] Train net output #0: loss = 4.9797 (* 1 = 4.9797 loss) +I0408 15:57:34.549921 27257 sgd_solver.cpp:105] Iteration 2532, lr = 1.42826e-06 +I0408 15:57:39.598918 27257 solver.cpp:218] Iteration 2544 (2.3768 iter/s, 5.0488s/12 iters), loss = 5.01809 +I0408 15:57:39.599041 27257 solver.cpp:237] Train net output #0: loss = 5.01809 (* 1 = 5.01809 loss) +I0408 15:57:39.599056 27257 sgd_solver.cpp:105] Iteration 2544, lr = 1.36957e-06 +I0408 15:57:41.792222 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 15:57:46.293275 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 15:57:48.776718 27257 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 15:57:48.776743 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:57:52.139003 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:57:53.162273 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 15:57:53.162322 27257 solver.cpp:397] Test net output #1: loss = 4.96928 (* 1 = 4.96928 loss) +I0408 15:57:55.116057 27257 solver.cpp:218] Iteration 2556 (0.773375 iter/s, 15.5164s/12 iters), loss = 5.03307 +I0408 15:57:55.116109 27257 solver.cpp:237] Train net output #0: loss = 5.03307 (* 1 = 5.03307 loss) +I0408 15:57:55.116122 27257 sgd_solver.cpp:105] Iteration 2556, lr = 1.31329e-06 +I0408 15:58:00.356163 27257 solver.cpp:218] Iteration 2568 (2.29015 iter/s, 5.23984s/12 iters), loss = 4.90873 +I0408 15:58:00.356213 27257 solver.cpp:237] Train net output #0: loss = 4.90873 (* 1 = 4.90873 loss) +I0408 15:58:00.356225 27257 sgd_solver.cpp:105] Iteration 2568, lr = 1.25932e-06 +I0408 15:58:05.392586 27257 solver.cpp:218] Iteration 2580 (2.38277 iter/s, 5.03617s/12 iters), loss = 4.93937 +I0408 15:58:05.392640 27257 solver.cpp:237] Train net output #0: loss = 4.93937 (* 1 = 4.93937 loss) +I0408 15:58:05.392652 27257 sgd_solver.cpp:105] Iteration 2580, lr = 1.20757e-06 +I0408 15:58:10.438933 27257 solver.cpp:218] Iteration 2592 (2.37808 iter/s, 5.04609s/12 iters), loss = 4.96243 +I0408 15:58:10.439014 27257 solver.cpp:237] Train net output #0: loss = 4.96243 (* 1 = 4.96243 loss) +I0408 15:58:10.439028 27257 sgd_solver.cpp:105] Iteration 2592, lr = 1.15795e-06 +I0408 15:58:15.705813 27257 solver.cpp:218] Iteration 2604 (2.27852 iter/s, 5.26659s/12 iters), loss = 4.98273 +I0408 15:58:15.705875 27257 solver.cpp:237] Train net output #0: loss = 4.98273 (* 1 = 4.98273 loss) +I0408 15:58:15.705888 27257 sgd_solver.cpp:105] Iteration 2604, lr = 1.11037e-06 +I0408 15:58:20.664754 27257 solver.cpp:218] Iteration 2616 (2.41999 iter/s, 4.95869s/12 iters), loss = 4.97081 +I0408 15:58:20.664808 27257 solver.cpp:237] Train net output #0: loss = 4.97081 (* 1 = 4.97081 loss) +I0408 15:58:20.664820 27257 sgd_solver.cpp:105] Iteration 2616, lr = 1.06474e-06 +I0408 15:58:25.674525 27257 solver.cpp:218] Iteration 2628 (2.39544 iter/s, 5.00951s/12 iters), loss = 5.00719 +I0408 15:58:25.674577 27257 solver.cpp:237] Train net output #0: loss = 5.00719 (* 1 = 5.00719 loss) +I0408 15:58:25.674589 27257 sgd_solver.cpp:105] Iteration 2628, lr = 1.02099e-06 +I0408 15:58:26.124810 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:58:30.692119 27257 solver.cpp:218] Iteration 2640 (2.39171 iter/s, 5.01734s/12 iters), loss = 4.85626 +I0408 15:58:30.692167 27257 solver.cpp:237] Train net output #0: loss = 4.85626 (* 1 = 4.85626 loss) +I0408 15:58:30.692178 27257 sgd_solver.cpp:105] Iteration 2640, lr = 9.7903e-07 +I0408 15:58:35.254523 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 15:58:39.728119 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 15:58:42.452011 27257 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 15:58:42.452062 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:58:45.824546 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:58:46.884212 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 15:58:46.884263 27257 solver.cpp:397] Test net output #1: loss = 4.97089 (* 1 = 4.97089 loss) +I0408 15:58:46.974838 27257 solver.cpp:218] Iteration 2652 (0.737009 iter/s, 16.282s/12 iters), loss = 5.06718 +I0408 15:58:46.974895 27257 solver.cpp:237] Train net output #0: loss = 5.06718 (* 1 = 5.06718 loss) +I0408 15:58:46.974907 27257 sgd_solver.cpp:105] Iteration 2652, lr = 9.38798e-07 +I0408 15:58:51.264590 27257 solver.cpp:218] Iteration 2664 (2.79752 iter/s, 4.28951s/12 iters), loss = 4.9276 +I0408 15:58:51.264640 27257 solver.cpp:237] Train net output #0: loss = 4.9276 (* 1 = 4.9276 loss) +I0408 15:58:51.264653 27257 sgd_solver.cpp:105] Iteration 2664, lr = 9.0022e-07 +I0408 15:58:56.264554 27257 solver.cpp:218] Iteration 2676 (2.40014 iter/s, 4.99972s/12 iters), loss = 4.90008 +I0408 15:58:56.264596 27257 solver.cpp:237] Train net output #0: loss = 4.90008 (* 1 = 4.90008 loss) +I0408 15:58:56.264605 27257 sgd_solver.cpp:105] Iteration 2676, lr = 8.63227e-07 +I0408 15:59:01.304023 27257 solver.cpp:218] Iteration 2688 (2.38132 iter/s, 5.03922s/12 iters), loss = 4.89193 +I0408 15:59:01.304072 27257 solver.cpp:237] Train net output #0: loss = 4.89193 (* 1 = 4.89193 loss) +I0408 15:59:01.304085 27257 sgd_solver.cpp:105] Iteration 2688, lr = 8.27754e-07 +I0408 15:59:06.280553 27257 solver.cpp:218] Iteration 2700 (2.41144 iter/s, 4.97628s/12 iters), loss = 4.92245 +I0408 15:59:06.280591 27257 solver.cpp:237] Train net output #0: loss = 4.92245 (* 1 = 4.92245 loss) +I0408 15:59:06.280598 27257 sgd_solver.cpp:105] Iteration 2700, lr = 7.93739e-07 +I0408 15:59:11.355127 27257 solver.cpp:218] Iteration 2712 (2.36485 iter/s, 5.07433s/12 iters), loss = 4.88539 +I0408 15:59:11.355180 27257 solver.cpp:237] Train net output #0: loss = 4.88539 (* 1 = 4.88539 loss) +I0408 15:59:11.355190 27257 sgd_solver.cpp:105] Iteration 2712, lr = 7.61121e-07 +I0408 15:59:16.291445 27257 solver.cpp:218] Iteration 2724 (2.43109 iter/s, 4.93606s/12 iters), loss = 4.92537 +I0408 15:59:16.291577 27257 solver.cpp:237] Train net output #0: loss = 4.92537 (* 1 = 4.92537 loss) +I0408 15:59:16.291589 27257 sgd_solver.cpp:105] Iteration 2724, lr = 7.29844e-07 +I0408 15:59:18.843364 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:59:21.292943 27257 solver.cpp:218] Iteration 2736 (2.39944 iter/s, 5.00116s/12 iters), loss = 4.86544 +I0408 15:59:21.292990 27257 solver.cpp:237] Train net output #0: loss = 4.86544 (* 1 = 4.86544 loss) +I0408 15:59:21.293001 27257 sgd_solver.cpp:105] Iteration 2736, lr = 6.99853e-07 +I0408 15:59:26.231231 27257 solver.cpp:218] Iteration 2748 (2.43011 iter/s, 4.93804s/12 iters), loss = 4.95742 +I0408 15:59:26.231271 27257 solver.cpp:237] Train net output #0: loss = 4.95742 (* 1 = 4.95742 loss) +I0408 15:59:26.231279 27257 sgd_solver.cpp:105] Iteration 2748, lr = 6.71093e-07 +I0408 15:59:28.277473 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 15:59:32.995350 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 15:59:36.974885 27257 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 15:59:36.974912 27257 net.cpp:676] Ignoring source layer train-data +I0408 15:59:39.971673 27257 blocking_queue.cpp:49] Waiting for data +I0408 15:59:40.207643 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:59:41.311904 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 15:59:41.311949 27257 solver.cpp:397] Test net output #1: loss = 4.96999 (* 1 = 4.96999 loss) +I0408 15:59:43.316520 27257 solver.cpp:218] Iteration 2760 (0.702388 iter/s, 17.0846s/12 iters), loss = 4.8759 +I0408 15:59:43.316568 27257 solver.cpp:237] Train net output #0: loss = 4.8759 (* 1 = 4.8759 loss) +I0408 15:59:43.316581 27257 sgd_solver.cpp:105] Iteration 2760, lr = 6.43516e-07 +I0408 15:59:48.449590 27257 solver.cpp:218] Iteration 2772 (2.3379 iter/s, 5.13281s/12 iters), loss = 4.95607 +I0408 15:59:48.449695 27257 solver.cpp:237] Train net output #0: loss = 4.95607 (* 1 = 4.95607 loss) +I0408 15:59:48.449707 27257 sgd_solver.cpp:105] Iteration 2772, lr = 6.17072e-07 +I0408 15:59:53.486110 27257 solver.cpp:218] Iteration 2784 (2.38275 iter/s, 5.03621s/12 iters), loss = 4.9298 +I0408 15:59:53.486155 27257 solver.cpp:237] Train net output #0: loss = 4.9298 (* 1 = 4.9298 loss) +I0408 15:59:53.486163 27257 sgd_solver.cpp:105] Iteration 2784, lr = 5.91714e-07 +I0408 15:59:58.501019 27257 solver.cpp:218] Iteration 2796 (2.39299 iter/s, 5.01465s/12 iters), loss = 4.80368 +I0408 15:59:58.501070 27257 solver.cpp:237] Train net output #0: loss = 4.80368 (* 1 = 4.80368 loss) +I0408 15:59:58.501081 27257 sgd_solver.cpp:105] Iteration 2796, lr = 5.67399e-07 +I0408 16:00:03.519783 27257 solver.cpp:218] Iteration 2808 (2.39115 iter/s, 5.01851s/12 iters), loss = 4.73893 +I0408 16:00:03.519824 27257 solver.cpp:237] Train net output #0: loss = 4.73893 (* 1 = 4.73893 loss) +I0408 16:00:03.519834 27257 sgd_solver.cpp:105] Iteration 2808, lr = 5.44082e-07 +I0408 16:00:08.619516 27257 solver.cpp:218] Iteration 2820 (2.35318 iter/s, 5.09948s/12 iters), loss = 4.90954 +I0408 16:00:08.619565 27257 solver.cpp:237] Train net output #0: loss = 4.90954 (* 1 = 4.90954 loss) +I0408 16:00:08.619577 27257 sgd_solver.cpp:105] Iteration 2820, lr = 5.21724e-07 +I0408 16:00:13.318862 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:00:13.604396 27257 solver.cpp:218] Iteration 2832 (2.4074 iter/s, 4.98463s/12 iters), loss = 5.06478 +I0408 16:00:13.604445 27257 solver.cpp:237] Train net output #0: loss = 5.06478 (* 1 = 5.06478 loss) +I0408 16:00:13.604460 27257 sgd_solver.cpp:105] Iteration 2832, lr = 5.00285e-07 +I0408 16:00:18.631330 27257 solver.cpp:218] Iteration 2844 (2.38726 iter/s, 5.02668s/12 iters), loss = 5.04364 +I0408 16:00:18.631469 27257 solver.cpp:237] Train net output #0: loss = 5.04364 (* 1 = 5.04364 loss) +I0408 16:00:18.631482 27257 sgd_solver.cpp:105] Iteration 2844, lr = 4.79727e-07 +I0408 16:00:23.178892 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 16:00:26.462214 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 16:00:30.101001 27257 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 16:00:30.101022 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:00:33.486503 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:00:34.625913 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:00:34.625952 27257 solver.cpp:397] Test net output #1: loss = 4.97216 (* 1 = 4.97216 loss) +I0408 16:00:34.716329 27257 solver.cpp:218] Iteration 2856 (0.746072 iter/s, 16.0842s/12 iters), loss = 4.79556 +I0408 16:00:34.716379 27257 solver.cpp:237] Train net output #0: loss = 4.79556 (* 1 = 4.79556 loss) +I0408 16:00:34.716388 27257 sgd_solver.cpp:105] Iteration 2856, lr = 4.60013e-07 +I0408 16:00:39.022560 27257 solver.cpp:218] Iteration 2868 (2.78681 iter/s, 4.30601s/12 iters), loss = 4.90004 +I0408 16:00:39.022604 27257 solver.cpp:237] Train net output #0: loss = 4.90004 (* 1 = 4.90004 loss) +I0408 16:00:39.022615 27257 sgd_solver.cpp:105] Iteration 2868, lr = 4.41109e-07 +I0408 16:00:44.052561 27257 solver.cpp:218] Iteration 2880 (2.3858 iter/s, 5.02975s/12 iters), loss = 4.96641 +I0408 16:00:44.052599 27257 solver.cpp:237] Train net output #0: loss = 4.96641 (* 1 = 4.96641 loss) +I0408 16:00:44.052608 27257 sgd_solver.cpp:105] Iteration 2880, lr = 4.22983e-07 +I0408 16:00:49.097749 27257 solver.cpp:218] Iteration 2892 (2.37862 iter/s, 5.04494s/12 iters), loss = 4.9342 +I0408 16:00:49.097829 27257 solver.cpp:237] Train net output #0: loss = 4.9342 (* 1 = 4.9342 loss) +I0408 16:00:49.097837 27257 sgd_solver.cpp:105] Iteration 2892, lr = 4.05601e-07 +I0408 16:00:54.109079 27257 solver.cpp:218] Iteration 2904 (2.39471 iter/s, 5.01104s/12 iters), loss = 5.0315 +I0408 16:00:54.109138 27257 solver.cpp:237] Train net output #0: loss = 5.0315 (* 1 = 5.0315 loss) +I0408 16:00:54.109151 27257 sgd_solver.cpp:105] Iteration 2904, lr = 3.88934e-07 +I0408 16:00:59.119119 27257 solver.cpp:218] Iteration 2916 (2.39531 iter/s, 5.00978s/12 iters), loss = 4.85663 +I0408 16:00:59.119160 27257 solver.cpp:237] Train net output #0: loss = 4.85663 (* 1 = 4.85663 loss) +I0408 16:00:59.119169 27257 sgd_solver.cpp:105] Iteration 2916, lr = 3.72951e-07 +I0408 16:01:04.139976 27257 solver.cpp:218] Iteration 2928 (2.39015 iter/s, 5.02061s/12 iters), loss = 5.09683 +I0408 16:01:04.140034 27257 solver.cpp:237] Train net output #0: loss = 5.09683 (* 1 = 5.09683 loss) +I0408 16:01:04.140051 27257 sgd_solver.cpp:105] Iteration 2928, lr = 3.57625e-07 +I0408 16:01:05.997248 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:09.190542 27257 solver.cpp:218] Iteration 2940 (2.37609 iter/s, 5.05031s/12 iters), loss = 4.98603 +I0408 16:01:09.190580 27257 solver.cpp:237] Train net output #0: loss = 4.98603 (* 1 = 4.98603 loss) +I0408 16:01:09.190589 27257 sgd_solver.cpp:105] Iteration 2940, lr = 3.42929e-07 +I0408 16:01:14.178498 27257 solver.cpp:218] Iteration 2952 (2.40591 iter/s, 4.98771s/12 iters), loss = 4.98893 +I0408 16:01:14.178545 27257 solver.cpp:237] Train net output #0: loss = 4.98893 (* 1 = 4.98893 loss) +I0408 16:01:14.178555 27257 sgd_solver.cpp:105] Iteration 2952, lr = 3.28837e-07 +I0408 16:01:16.191988 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 16:01:19.122645 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 16:01:22.881498 27257 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 16:01:22.881520 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:01:26.380026 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:27.859921 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:01:27.859968 27257 solver.cpp:397] Test net output #1: loss = 4.96587 (* 1 = 4.96587 loss) +I0408 16:01:29.833730 27257 solver.cpp:218] Iteration 2964 (0.766549 iter/s, 15.6546s/12 iters), loss = 4.89137 +I0408 16:01:29.833786 27257 solver.cpp:237] Train net output #0: loss = 4.89137 (* 1 = 4.89137 loss) +I0408 16:01:29.833797 27257 sgd_solver.cpp:105] Iteration 2964, lr = 3.15324e-07 +I0408 16:01:34.867725 27257 solver.cpp:218] Iteration 2976 (2.38392 iter/s, 5.03373s/12 iters), loss = 4.88638 +I0408 16:01:34.867772 27257 solver.cpp:237] Train net output #0: loss = 4.88638 (* 1 = 4.88638 loss) +I0408 16:01:34.867782 27257 sgd_solver.cpp:105] Iteration 2976, lr = 3.02366e-07 +I0408 16:01:39.882925 27257 solver.cpp:218] Iteration 2988 (2.39285 iter/s, 5.01494s/12 iters), loss = 5.02777 +I0408 16:01:39.882978 27257 solver.cpp:237] Train net output #0: loss = 5.02777 (* 1 = 5.02777 loss) +I0408 16:01:39.882990 27257 sgd_solver.cpp:105] Iteration 2988, lr = 2.89941e-07 +I0408 16:01:44.965119 27257 solver.cpp:218] Iteration 3000 (2.36131 iter/s, 5.08193s/12 iters), loss = 4.98617 +I0408 16:01:44.965173 27257 solver.cpp:237] Train net output #0: loss = 4.98617 (* 1 = 4.98617 loss) +I0408 16:01:44.965185 27257 sgd_solver.cpp:105] Iteration 3000, lr = 2.78026e-07 +I0408 16:01:50.033102 27257 solver.cpp:218] Iteration 3012 (2.36793 iter/s, 5.06773s/12 iters), loss = 4.88701 +I0408 16:01:50.033181 27257 solver.cpp:237] Train net output #0: loss = 4.88701 (* 1 = 4.88701 loss) +I0408 16:01:50.033193 27257 sgd_solver.cpp:105] Iteration 3012, lr = 2.66601e-07 +I0408 16:01:55.098553 27257 solver.cpp:218] Iteration 3024 (2.36912 iter/s, 5.06517s/12 iters), loss = 4.91213 +I0408 16:01:55.098600 27257 solver.cpp:237] Train net output #0: loss = 4.91213 (* 1 = 4.91213 loss) +I0408 16:01:55.098611 27257 sgd_solver.cpp:105] Iteration 3024, lr = 2.55646e-07 +I0408 16:01:59.143043 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:00.240620 27257 solver.cpp:218] Iteration 3036 (2.33381 iter/s, 5.1418s/12 iters), loss = 4.84885 +I0408 16:02:00.240675 27257 solver.cpp:237] Train net output #0: loss = 4.84885 (* 1 = 4.84885 loss) +I0408 16:02:00.240686 27257 sgd_solver.cpp:105] Iteration 3036, lr = 2.45141e-07 +I0408 16:02:05.714309 27257 solver.cpp:218] Iteration 3048 (2.19242 iter/s, 5.47341s/12 iters), loss = 4.99697 +I0408 16:02:05.714362 27257 solver.cpp:237] Train net output #0: loss = 4.99697 (* 1 = 4.99697 loss) +I0408 16:02:05.714375 27257 sgd_solver.cpp:105] Iteration 3048, lr = 2.35067e-07 +I0408 16:02:10.469663 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 16:02:14.276937 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 16:02:19.084466 27257 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 16:02:19.084493 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:02:22.391337 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:23.713887 27257 solver.cpp:397] Test net output #0: accuracy = 0.028799 +I0408 16:02:23.713935 27257 solver.cpp:397] Test net output #1: loss = 4.96565 (* 1 = 4.96565 loss) +I0408 16:02:23.804520 27257 solver.cpp:218] Iteration 3060 (0.66337 iter/s, 18.0894s/12 iters), loss = 4.97175 +I0408 16:02:23.804590 27257 solver.cpp:237] Train net output #0: loss = 4.97175 (* 1 = 4.97175 loss) +I0408 16:02:23.804605 27257 sgd_solver.cpp:105] Iteration 3060, lr = 2.25407e-07 +I0408 16:02:28.032821 27257 solver.cpp:218] Iteration 3072 (2.83818 iter/s, 4.22806s/12 iters), loss = 4.82815 +I0408 16:02:28.032860 27257 solver.cpp:237] Train net output #0: loss = 4.82815 (* 1 = 4.82815 loss) +I0408 16:02:28.032871 27257 sgd_solver.cpp:105] Iteration 3072, lr = 2.16145e-07 +I0408 16:02:33.077757 27257 solver.cpp:218] Iteration 3084 (2.37874 iter/s, 5.04469s/12 iters), loss = 4.88058 +I0408 16:02:33.077795 27257 solver.cpp:237] Train net output #0: loss = 4.88058 (* 1 = 4.88058 loss) +I0408 16:02:33.077802 27257 sgd_solver.cpp:105] Iteration 3084, lr = 2.07262e-07 +I0408 16:02:38.054693 27257 solver.cpp:218] Iteration 3096 (2.41124 iter/s, 4.97669s/12 iters), loss = 4.93658 +I0408 16:02:38.054747 27257 solver.cpp:237] Train net output #0: loss = 4.93658 (* 1 = 4.93658 loss) +I0408 16:02:38.054759 27257 sgd_solver.cpp:105] Iteration 3096, lr = 1.98745e-07 +I0408 16:02:43.242899 27257 solver.cpp:218] Iteration 3108 (2.31306 iter/s, 5.18794s/12 iters), loss = 4.9791 +I0408 16:02:43.242946 27257 solver.cpp:237] Train net output #0: loss = 4.9791 (* 1 = 4.9791 loss) +I0408 16:02:43.242959 27257 sgd_solver.cpp:105] Iteration 3108, lr = 1.90578e-07 +I0408 16:02:48.260270 27257 solver.cpp:218] Iteration 3120 (2.39181 iter/s, 5.01712s/12 iters), loss = 4.82442 +I0408 16:02:48.260318 27257 solver.cpp:237] Train net output #0: loss = 4.82442 (* 1 = 4.82442 loss) +I0408 16:02:48.260329 27257 sgd_solver.cpp:105] Iteration 3120, lr = 1.82747e-07 +I0408 16:02:53.315023 27257 solver.cpp:218] Iteration 3132 (2.37412 iter/s, 5.0545s/12 iters), loss = 5.01939 +I0408 16:02:53.315138 27257 solver.cpp:237] Train net output #0: loss = 5.01939 (* 1 = 5.01939 loss) +I0408 16:02:53.315148 27257 sgd_solver.cpp:105] Iteration 3132, lr = 1.75237e-07 +I0408 16:02:54.423032 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:58.353546 27257 solver.cpp:218] Iteration 3144 (2.3818 iter/s, 5.0382s/12 iters), loss = 4.88529 +I0408 16:02:58.353591 27257 solver.cpp:237] Train net output #0: loss = 4.88529 (* 1 = 4.88529 loss) +I0408 16:02:58.353602 27257 sgd_solver.cpp:105] Iteration 3144, lr = 1.68036e-07 +I0408 16:03:03.373127 27257 solver.cpp:218] Iteration 3156 (2.39076 iter/s, 5.01933s/12 iters), loss = 5.00869 +I0408 16:03:03.373172 27257 solver.cpp:237] Train net output #0: loss = 5.00869 (* 1 = 5.00869 loss) +I0408 16:03:03.373181 27257 sgd_solver.cpp:105] Iteration 3156, lr = 1.61131e-07 +I0408 16:03:05.449788 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 16:03:08.508688 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 16:03:12.833223 27257 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 16:03:12.833251 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:03:16.032132 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:17.300447 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:03:17.300494 27257 solver.cpp:397] Test net output #1: loss = 4.96756 (* 1 = 4.96756 loss) +I0408 16:03:19.299794 27257 solver.cpp:218] Iteration 3168 (0.753485 iter/s, 15.926s/12 iters), loss = 5.05795 +I0408 16:03:19.299849 27257 solver.cpp:237] Train net output #0: loss = 5.05795 (* 1 = 5.05795 loss) +I0408 16:03:19.299861 27257 sgd_solver.cpp:105] Iteration 3168, lr = 1.54509e-07 +I0408 16:03:24.470880 27257 solver.cpp:218] Iteration 3180 (2.32072 iter/s, 5.17082s/12 iters), loss = 5.00366 +I0408 16:03:24.471045 27257 solver.cpp:237] Train net output #0: loss = 5.00366 (* 1 = 5.00366 loss) +I0408 16:03:24.471058 27257 sgd_solver.cpp:105] Iteration 3180, lr = 1.4816e-07 +I0408 16:03:29.540771 27257 solver.cpp:218] Iteration 3192 (2.36709 iter/s, 5.06952s/12 iters), loss = 4.93962 +I0408 16:03:29.540824 27257 solver.cpp:237] Train net output #0: loss = 4.93962 (* 1 = 4.93962 loss) +I0408 16:03:29.540836 27257 sgd_solver.cpp:105] Iteration 3192, lr = 1.42072e-07 +I0408 16:03:34.512673 27257 solver.cpp:218] Iteration 3204 (2.41369 iter/s, 4.97164s/12 iters), loss = 4.92067 +I0408 16:03:34.512725 27257 solver.cpp:237] Train net output #0: loss = 4.92067 (* 1 = 4.92067 loss) +I0408 16:03:34.512735 27257 sgd_solver.cpp:105] Iteration 3204, lr = 1.36234e-07 +I0408 16:03:39.531033 27257 solver.cpp:218] Iteration 3216 (2.39134 iter/s, 5.01811s/12 iters), loss = 5.02776 +I0408 16:03:39.531076 27257 solver.cpp:237] Train net output #0: loss = 5.02776 (* 1 = 5.02776 loss) +I0408 16:03:39.531088 27257 sgd_solver.cpp:105] Iteration 3216, lr = 1.30635e-07 +I0408 16:03:44.577971 27257 solver.cpp:218] Iteration 3228 (2.3778 iter/s, 5.04668s/12 iters), loss = 4.9555 +I0408 16:03:44.578011 27257 solver.cpp:237] Train net output #0: loss = 4.9555 (* 1 = 4.9555 loss) +I0408 16:03:44.578018 27257 sgd_solver.cpp:105] Iteration 3228, lr = 1.25267e-07 +I0408 16:03:47.857697 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:49.618227 27257 solver.cpp:218] Iteration 3240 (2.38095 iter/s, 5.04001s/12 iters), loss = 5.00874 +I0408 16:03:49.618275 27257 solver.cpp:237] Train net output #0: loss = 5.00874 (* 1 = 5.00874 loss) +I0408 16:03:49.618286 27257 sgd_solver.cpp:105] Iteration 3240, lr = 1.20119e-07 +I0408 16:03:54.643513 27257 solver.cpp:218] Iteration 3252 (2.38804 iter/s, 5.02504s/12 iters), loss = 5.05511 +I0408 16:03:54.643623 27257 solver.cpp:237] Train net output #0: loss = 5.05511 (* 1 = 5.05511 loss) +I0408 16:03:54.643633 27257 sgd_solver.cpp:105] Iteration 3252, lr = 1.15183e-07 +I0408 16:03:59.172596 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 16:04:02.139089 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 16:04:05.825155 27257 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 16:04:05.825176 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:04:09.020294 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:04:10.361096 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:04:10.361145 27257 solver.cpp:397] Test net output #1: loss = 4.96934 (* 1 = 4.96934 loss) +I0408 16:04:10.451603 27257 solver.cpp:218] Iteration 3264 (0.75914 iter/s, 15.8074s/12 iters), loss = 5.08502 +I0408 16:04:10.451653 27257 solver.cpp:237] Train net output #0: loss = 5.08502 (* 1 = 5.08502 loss) +I0408 16:04:10.451665 27257 sgd_solver.cpp:105] Iteration 3264, lr = 1.1045e-07 +I0408 16:04:14.958988 27257 solver.cpp:218] Iteration 3276 (2.66244 iter/s, 4.50715s/12 iters), loss = 4.88171 +I0408 16:04:14.959033 27257 solver.cpp:237] Train net output #0: loss = 4.88171 (* 1 = 4.88171 loss) +I0408 16:04:14.959041 27257 sgd_solver.cpp:105] Iteration 3276, lr = 1.05911e-07 +I0408 16:04:20.222555 27257 solver.cpp:218] Iteration 3288 (2.27994 iter/s, 5.26331s/12 iters), loss = 4.91775 +I0408 16:04:20.222599 27257 solver.cpp:237] Train net output #0: loss = 4.91775 (* 1 = 4.91775 loss) +I0408 16:04:20.222610 27257 sgd_solver.cpp:105] Iteration 3288, lr = 1.01559e-07 +I0408 16:04:25.223932 27257 solver.cpp:218] Iteration 3300 (2.39946 iter/s, 5.00112s/12 iters), loss = 4.91979 +I0408 16:04:25.224089 27257 solver.cpp:237] Train net output #0: loss = 4.91979 (* 1 = 4.91979 loss) +I0408 16:04:25.224103 27257 sgd_solver.cpp:105] Iteration 3300, lr = 9.73856e-08 +I0408 16:04:30.258396 27257 solver.cpp:218] Iteration 3312 (2.38374 iter/s, 5.03411s/12 iters), loss = 5.00028 +I0408 16:04:30.258441 27257 solver.cpp:237] Train net output #0: loss = 5.00028 (* 1 = 5.00028 loss) +I0408 16:04:30.258452 27257 sgd_solver.cpp:105] Iteration 3312, lr = 9.33837e-08 +I0408 16:04:35.283797 27257 solver.cpp:218] Iteration 3324 (2.38799 iter/s, 5.02515s/12 iters), loss = 5.03752 +I0408 16:04:35.283843 27257 solver.cpp:237] Train net output #0: loss = 5.03752 (* 1 = 5.03752 loss) +I0408 16:04:35.283855 27257 sgd_solver.cpp:105] Iteration 3324, lr = 8.95463e-08 +I0408 16:04:40.323261 27257 solver.cpp:218] Iteration 3336 (2.38133 iter/s, 5.03921s/12 iters), loss = 5.07727 +I0408 16:04:40.323299 27257 solver.cpp:237] Train net output #0: loss = 5.07727 (* 1 = 5.07727 loss) +I0408 16:04:40.323308 27257 sgd_solver.cpp:105] Iteration 3336, lr = 8.58665e-08 +I0408 16:04:40.803515 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:04:45.421564 27257 solver.cpp:218] Iteration 3348 (2.35384 iter/s, 5.09805s/12 iters), loss = 4.91054 +I0408 16:04:45.421623 27257 solver.cpp:237] Train net output #0: loss = 4.91054 (* 1 = 4.91054 loss) +I0408 16:04:45.421636 27257 sgd_solver.cpp:105] Iteration 3348, lr = 8.2338e-08 +I0408 16:04:50.455627 27257 solver.cpp:218] Iteration 3360 (2.38389 iter/s, 5.0338s/12 iters), loss = 5.0248 +I0408 16:04:50.455672 27257 solver.cpp:237] Train net output #0: loss = 5.0248 (* 1 = 5.0248 loss) +I0408 16:04:50.455682 27257 sgd_solver.cpp:105] Iteration 3360, lr = 7.89544e-08 +I0408 16:04:52.501416 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 16:04:55.520396 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 16:04:57.958508 27257 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 16:04:57.958535 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:05:01.089231 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:02.432273 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:05:02.432320 27257 solver.cpp:397] Test net output #1: loss = 4.9695 (* 1 = 4.9695 loss) +I0408 16:05:04.377099 27257 solver.cpp:218] Iteration 3372 (0.862015 iter/s, 13.9209s/12 iters), loss = 4.93235 +I0408 16:05:04.377157 27257 solver.cpp:237] Train net output #0: loss = 4.93235 (* 1 = 4.93235 loss) +I0408 16:05:04.377169 27257 sgd_solver.cpp:105] Iteration 3372, lr = 7.57099e-08 +I0408 16:05:09.397586 27257 solver.cpp:218] Iteration 3384 (2.39033 iter/s, 5.02023s/12 iters), loss = 4.87245 +I0408 16:05:09.397634 27257 solver.cpp:237] Train net output #0: loss = 4.87245 (* 1 = 4.87245 loss) +I0408 16:05:09.397644 27257 sgd_solver.cpp:105] Iteration 3384, lr = 7.25988e-08 +I0408 16:05:14.431437 27257 solver.cpp:218] Iteration 3396 (2.38398 iter/s, 5.03359s/12 iters), loss = 4.85853 +I0408 16:05:14.431489 27257 solver.cpp:237] Train net output #0: loss = 4.85853 (* 1 = 4.85853 loss) +I0408 16:05:14.431501 27257 sgd_solver.cpp:105] Iteration 3396, lr = 6.96154e-08 +I0408 16:05:19.464247 27257 solver.cpp:218] Iteration 3408 (2.38448 iter/s, 5.03255s/12 iters), loss = 4.93369 +I0408 16:05:19.464299 27257 solver.cpp:237] Train net output #0: loss = 4.93369 (* 1 = 4.93369 loss) +I0408 16:05:19.464311 27257 sgd_solver.cpp:105] Iteration 3408, lr = 6.67547e-08 +I0408 16:05:24.454923 27257 solver.cpp:218] Iteration 3420 (2.40461 iter/s, 4.99042s/12 iters), loss = 4.88285 +I0408 16:05:24.454960 27257 solver.cpp:237] Train net output #0: loss = 4.88285 (* 1 = 4.88285 loss) +I0408 16:05:24.454968 27257 sgd_solver.cpp:105] Iteration 3420, lr = 6.40115e-08 +I0408 16:05:29.508111 27257 solver.cpp:218] Iteration 3432 (2.37485 iter/s, 5.05294s/12 iters), loss = 4.97289 +I0408 16:05:29.508225 27257 solver.cpp:237] Train net output #0: loss = 4.97289 (* 1 = 4.97289 loss) +I0408 16:05:29.508237 27257 sgd_solver.cpp:105] Iteration 3432, lr = 6.13811e-08 +I0408 16:05:32.156392 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:34.558177 27257 solver.cpp:218] Iteration 3444 (2.37636 iter/s, 5.04975s/12 iters), loss = 4.84625 +I0408 16:05:34.558229 27257 solver.cpp:237] Train net output #0: loss = 4.84625 (* 1 = 4.84625 loss) +I0408 16:05:34.558241 27257 sgd_solver.cpp:105] Iteration 3444, lr = 5.88587e-08 +I0408 16:05:39.607565 27257 solver.cpp:218] Iteration 3456 (2.37665 iter/s, 5.04913s/12 iters), loss = 4.93599 +I0408 16:05:39.607610 27257 solver.cpp:237] Train net output #0: loss = 4.93599 (* 1 = 4.93599 loss) +I0408 16:05:39.607618 27257 sgd_solver.cpp:105] Iteration 3456, lr = 5.644e-08 +I0408 16:05:44.226102 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 16:05:47.234186 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 16:05:49.598484 27257 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 16:05:49.598510 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:05:50.161592 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:05:52.780570 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:54.162955 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:05:54.162982 27257 solver.cpp:397] Test net output #1: loss = 4.96721 (* 1 = 4.96721 loss) +I0408 16:05:54.252182 27257 solver.cpp:218] Iteration 3468 (0.819448 iter/s, 14.644s/12 iters), loss = 4.89229 +I0408 16:05:54.252226 27257 solver.cpp:237] Train net output #0: loss = 4.89229 (* 1 = 4.89229 loss) +I0408 16:05:54.252236 27257 sgd_solver.cpp:105] Iteration 3468, lr = 5.41207e-08 +I0408 16:05:58.365526 27257 solver.cpp:218] Iteration 3480 (2.91749 iter/s, 4.11312s/12 iters), loss = 4.98568 +I0408 16:05:58.365576 27257 solver.cpp:237] Train net output #0: loss = 4.98568 (* 1 = 4.98568 loss) +I0408 16:05:58.365586 27257 sgd_solver.cpp:105] Iteration 3480, lr = 5.18967e-08 +I0408 16:06:03.416131 27257 solver.cpp:218] Iteration 3492 (2.37607 iter/s, 5.05035s/12 iters), loss = 4.90967 +I0408 16:06:03.416230 27257 solver.cpp:237] Train net output #0: loss = 4.90967 (* 1 = 4.90967 loss) +I0408 16:06:03.416244 27257 sgd_solver.cpp:105] Iteration 3492, lr = 4.97641e-08 +I0408 16:06:08.469610 27257 solver.cpp:218] Iteration 3504 (2.37475 iter/s, 5.05317s/12 iters), loss = 4.88277 +I0408 16:06:08.469655 27257 solver.cpp:237] Train net output #0: loss = 4.88277 (* 1 = 4.88277 loss) +I0408 16:06:08.469666 27257 sgd_solver.cpp:105] Iteration 3504, lr = 4.77191e-08 +I0408 16:06:13.411000 27257 solver.cpp:218] Iteration 3516 (2.42859 iter/s, 4.94114s/12 iters), loss = 4.72995 +I0408 16:06:13.411036 27257 solver.cpp:237] Train net output #0: loss = 4.72995 (* 1 = 4.72995 loss) +I0408 16:06:13.411043 27257 sgd_solver.cpp:105] Iteration 3516, lr = 4.57582e-08 +I0408 16:06:18.404213 27257 solver.cpp:218] Iteration 3528 (2.40338 iter/s, 4.99297s/12 iters), loss = 4.93889 +I0408 16:06:18.404259 27257 solver.cpp:237] Train net output #0: loss = 4.93889 (* 1 = 4.93889 loss) +I0408 16:06:18.404271 27257 sgd_solver.cpp:105] Iteration 3528, lr = 4.38779e-08 +I0408 16:06:23.154150 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:06:23.414528 27257 solver.cpp:218] Iteration 3540 (2.39518 iter/s, 5.01006s/12 iters), loss = 5.00525 +I0408 16:06:23.414587 27257 solver.cpp:237] Train net output #0: loss = 5.00525 (* 1 = 5.00525 loss) +I0408 16:06:23.414599 27257 sgd_solver.cpp:105] Iteration 3540, lr = 4.20748e-08 +I0408 16:06:28.423605 27257 solver.cpp:218] Iteration 3552 (2.39578 iter/s, 5.00882s/12 iters), loss = 5.02368 +I0408 16:06:28.423648 27257 solver.cpp:237] Train net output #0: loss = 5.02368 (* 1 = 5.02368 loss) +I0408 16:06:28.423658 27257 sgd_solver.cpp:105] Iteration 3552, lr = 4.03458e-08 +I0408 16:06:33.431006 27257 solver.cpp:218] Iteration 3564 (2.39657 iter/s, 5.00715s/12 iters), loss = 4.8811 +I0408 16:06:33.431177 27257 solver.cpp:237] Train net output #0: loss = 4.8811 (* 1 = 4.8811 loss) +I0408 16:06:33.431195 27257 sgd_solver.cpp:105] Iteration 3564, lr = 3.86878e-08 +I0408 16:06:35.449437 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 16:06:38.500954 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 16:06:40.949211 27257 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 16:06:40.949236 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:06:44.055552 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:06:45.474766 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:06:45.474813 27257 solver.cpp:397] Test net output #1: loss = 4.97036 (* 1 = 4.97036 loss) +I0408 16:06:47.280287 27257 solver.cpp:218] Iteration 3576 (0.866515 iter/s, 13.8486s/12 iters), loss = 4.918 +I0408 16:06:47.280333 27257 solver.cpp:237] Train net output #0: loss = 4.918 (* 1 = 4.918 loss) +I0408 16:06:47.280342 27257 sgd_solver.cpp:105] Iteration 3576, lr = 3.7098e-08 +I0408 16:06:52.322691 27257 solver.cpp:218] Iteration 3588 (2.37994 iter/s, 5.04215s/12 iters), loss = 4.98643 +I0408 16:06:52.322734 27257 solver.cpp:237] Train net output #0: loss = 4.98643 (* 1 = 4.98643 loss) +I0408 16:06:52.322743 27257 sgd_solver.cpp:105] Iteration 3588, lr = 3.55735e-08 +I0408 16:06:57.373281 27257 solver.cpp:218] Iteration 3600 (2.37608 iter/s, 5.05034s/12 iters), loss = 4.94675 +I0408 16:06:57.373327 27257 solver.cpp:237] Train net output #0: loss = 4.94675 (* 1 = 4.94675 loss) +I0408 16:06:57.373338 27257 sgd_solver.cpp:105] Iteration 3600, lr = 3.41117e-08 +I0408 16:07:02.416548 27257 solver.cpp:218] Iteration 3612 (2.37953 iter/s, 5.04301s/12 iters), loss = 4.98113 +I0408 16:07:02.416600 27257 solver.cpp:237] Train net output #0: loss = 4.98113 (* 1 = 4.98113 loss) +I0408 16:07:02.416612 27257 sgd_solver.cpp:105] Iteration 3612, lr = 3.27099e-08 +I0408 16:07:07.462827 27257 solver.cpp:218] Iteration 3624 (2.37811 iter/s, 5.04602s/12 iters), loss = 4.89515 +I0408 16:07:07.462921 27257 solver.cpp:237] Train net output #0: loss = 4.89515 (* 1 = 4.89515 loss) +I0408 16:07:07.462931 27257 sgd_solver.cpp:105] Iteration 3624, lr = 3.13658e-08 +I0408 16:07:12.458173 27257 solver.cpp:218] Iteration 3636 (2.40238 iter/s, 4.99504s/12 iters), loss = 5.03731 +I0408 16:07:12.458238 27257 solver.cpp:237] Train net output #0: loss = 5.03731 (* 1 = 5.03731 loss) +I0408 16:07:12.458248 27257 sgd_solver.cpp:105] Iteration 3636, lr = 3.00769e-08 +I0408 16:07:14.364750 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:07:17.467195 27257 solver.cpp:218] Iteration 3648 (2.39581 iter/s, 5.00875s/12 iters), loss = 5.00272 +I0408 16:07:17.467244 27257 solver.cpp:237] Train net output #0: loss = 5.00272 (* 1 = 5.00272 loss) +I0408 16:07:17.467255 27257 sgd_solver.cpp:105] Iteration 3648, lr = 2.88409e-08 +I0408 16:07:22.533254 27257 solver.cpp:218] Iteration 3660 (2.36883 iter/s, 5.0658s/12 iters), loss = 4.98754 +I0408 16:07:22.533301 27257 solver.cpp:237] Train net output #0: loss = 4.98754 (* 1 = 4.98754 loss) +I0408 16:07:22.533313 27257 sgd_solver.cpp:105] Iteration 3660, lr = 2.76557e-08 +I0408 16:07:27.091369 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 16:07:30.098624 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 16:07:33.460054 27257 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 16:07:33.460081 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:07:36.422816 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:07:37.891294 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:07:37.891376 27257 solver.cpp:397] Test net output #1: loss = 4.96787 (* 1 = 4.96787 loss) +I0408 16:07:37.981781 27257 solver.cpp:218] Iteration 3672 (0.776806 iter/s, 15.4479s/12 iters), loss = 4.89207 +I0408 16:07:37.981837 27257 solver.cpp:237] Train net output #0: loss = 4.89207 (* 1 = 4.89207 loss) +I0408 16:07:37.981848 27257 sgd_solver.cpp:105] Iteration 3672, lr = 2.65193e-08 +I0408 16:07:42.231833 27257 solver.cpp:218] Iteration 3684 (2.82365 iter/s, 4.24982s/12 iters), loss = 4.97188 +I0408 16:07:42.231889 27257 solver.cpp:237] Train net output #0: loss = 4.97188 (* 1 = 4.97188 loss) +I0408 16:07:42.231900 27257 sgd_solver.cpp:105] Iteration 3684, lr = 2.54295e-08 +I0408 16:07:47.320924 27257 solver.cpp:218] Iteration 3696 (2.35811 iter/s, 5.08883s/12 iters), loss = 4.97212 +I0408 16:07:47.320967 27257 solver.cpp:237] Train net output #0: loss = 4.97212 (* 1 = 4.97212 loss) +I0408 16:07:47.320976 27257 sgd_solver.cpp:105] Iteration 3696, lr = 2.43845e-08 +I0408 16:07:52.719738 27257 solver.cpp:218] Iteration 3708 (2.22282 iter/s, 5.39855s/12 iters), loss = 4.96007 +I0408 16:07:52.719779 27257 solver.cpp:237] Train net output #0: loss = 4.96007 (* 1 = 4.96007 loss) +I0408 16:07:52.719789 27257 sgd_solver.cpp:105] Iteration 3708, lr = 2.33825e-08 +I0408 16:07:57.722801 27257 solver.cpp:218] Iteration 3720 (2.39865 iter/s, 5.00282s/12 iters), loss = 4.8703 +I0408 16:07:57.722843 27257 solver.cpp:237] Train net output #0: loss = 4.8703 (* 1 = 4.8703 loss) +I0408 16:07:57.722852 27257 sgd_solver.cpp:105] Iteration 3720, lr = 2.24216e-08 +I0408 16:08:02.716507 27257 solver.cpp:218] Iteration 3732 (2.40314 iter/s, 4.99346s/12 iters), loss = 4.9521 +I0408 16:08:02.716552 27257 solver.cpp:237] Train net output #0: loss = 4.9521 (* 1 = 4.9521 loss) +I0408 16:08:02.716562 27257 sgd_solver.cpp:105] Iteration 3732, lr = 2.15002e-08 +I0408 16:08:06.758651 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:08:07.766604 27257 solver.cpp:218] Iteration 3744 (2.37631 iter/s, 5.04985s/12 iters), loss = 4.77461 +I0408 16:08:07.766645 27257 solver.cpp:237] Train net output #0: loss = 4.77461 (* 1 = 4.77461 loss) +I0408 16:08:07.766654 27257 sgd_solver.cpp:105] Iteration 3744, lr = 2.06167e-08 +I0408 16:08:12.920083 27257 solver.cpp:218] Iteration 3756 (2.32864 iter/s, 5.15323s/12 iters), loss = 4.97388 +I0408 16:08:12.920194 27257 solver.cpp:237] Train net output #0: loss = 4.97388 (* 1 = 4.97388 loss) +I0408 16:08:12.920205 27257 sgd_solver.cpp:105] Iteration 3756, lr = 1.97695e-08 +I0408 16:08:17.962568 27257 solver.cpp:218] Iteration 3768 (2.37993 iter/s, 5.04217s/12 iters), loss = 4.98179 +I0408 16:08:17.962610 27257 solver.cpp:237] Train net output #0: loss = 4.98179 (* 1 = 4.98179 loss) +I0408 16:08:17.962621 27257 sgd_solver.cpp:105] Iteration 3768, lr = 1.89571e-08 +I0408 16:08:20.024267 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 16:08:24.786671 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 16:08:27.117683 27257 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 16:08:27.117708 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:08:30.346769 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:08:31.843706 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:08:31.843750 27257 solver.cpp:397] Test net output #1: loss = 4.97018 (* 1 = 4.97018 loss) +I0408 16:08:33.631363 27257 solver.cpp:218] Iteration 3780 (0.765885 iter/s, 15.6681s/12 iters), loss = 4.90851 +I0408 16:08:33.631413 27257 solver.cpp:237] Train net output #0: loss = 4.90851 (* 1 = 4.90851 loss) +I0408 16:08:33.631424 27257 sgd_solver.cpp:105] Iteration 3780, lr = 1.81781e-08 +I0408 16:08:38.712705 27257 solver.cpp:218] Iteration 3792 (2.3617 iter/s, 5.08109s/12 iters), loss = 4.95985 +I0408 16:08:38.712744 27257 solver.cpp:237] Train net output #0: loss = 4.95985 (* 1 = 4.95985 loss) +I0408 16:08:38.712754 27257 sgd_solver.cpp:105] Iteration 3792, lr = 1.74311e-08 +I0408 16:08:44.169812 27257 solver.cpp:218] Iteration 3804 (2.19908 iter/s, 5.45684s/12 iters), loss = 4.96101 +I0408 16:08:44.169930 27257 solver.cpp:237] Train net output #0: loss = 4.96101 (* 1 = 4.96101 loss) +I0408 16:08:44.169945 27257 sgd_solver.cpp:105] Iteration 3804, lr = 1.67148e-08 +I0408 16:08:49.393800 27257 solver.cpp:218] Iteration 3816 (2.29724 iter/s, 5.22366s/12 iters), loss = 5.01251 +I0408 16:08:49.393852 27257 solver.cpp:237] Train net output #0: loss = 5.01251 (* 1 = 5.01251 loss) +I0408 16:08:49.393864 27257 sgd_solver.cpp:105] Iteration 3816, lr = 1.60279e-08 +I0408 16:08:54.367600 27257 solver.cpp:218] Iteration 3828 (2.41277 iter/s, 4.97354s/12 iters), loss = 4.82062 +I0408 16:08:54.367656 27257 solver.cpp:237] Train net output #0: loss = 4.82062 (* 1 = 4.82062 loss) +I0408 16:08:54.367668 27257 sgd_solver.cpp:105] Iteration 3828, lr = 1.53693e-08 +I0408 16:08:59.374976 27257 solver.cpp:218] Iteration 3840 (2.39659 iter/s, 5.00711s/12 iters), loss = 4.98558 +I0408 16:08:59.375030 27257 solver.cpp:237] Train net output #0: loss = 4.98558 (* 1 = 4.98558 loss) +I0408 16:08:59.375042 27257 sgd_solver.cpp:105] Iteration 3840, lr = 1.47377e-08 +I0408 16:09:00.510401 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:04.425781 27257 solver.cpp:218] Iteration 3852 (2.37598 iter/s, 5.05055s/12 iters), loss = 4.94195 +I0408 16:09:04.425815 27257 solver.cpp:237] Train net output #0: loss = 4.94195 (* 1 = 4.94195 loss) +I0408 16:09:04.425824 27257 sgd_solver.cpp:105] Iteration 3852, lr = 1.41321e-08 +I0408 16:09:09.372009 27257 solver.cpp:218] Iteration 3864 (2.42621 iter/s, 4.94599s/12 iters), loss = 4.97727 +I0408 16:09:09.372051 27257 solver.cpp:237] Train net output #0: loss = 4.97727 (* 1 = 4.97727 loss) +I0408 16:09:09.372059 27257 sgd_solver.cpp:105] Iteration 3864, lr = 1.35514e-08 +I0408 16:09:13.959465 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 16:09:19.014158 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 16:09:22.846794 27257 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 16:09:22.846817 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:09:25.972002 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:27.516546 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:09:27.516592 27257 solver.cpp:397] Test net output #1: loss = 4.97035 (* 1 = 4.97035 loss) +I0408 16:09:27.607076 27257 solver.cpp:218] Iteration 3876 (0.6581 iter/s, 18.2343s/12 iters), loss = 5.04657 +I0408 16:09:27.607125 27257 solver.cpp:237] Train net output #0: loss = 5.04657 (* 1 = 5.04657 loss) +I0408 16:09:27.607137 27257 sgd_solver.cpp:105] Iteration 3876, lr = 1.29945e-08 +I0408 16:09:31.820976 27257 solver.cpp:218] Iteration 3888 (2.84787 iter/s, 4.21368s/12 iters), loss = 4.95878 +I0408 16:09:31.821027 27257 solver.cpp:237] Train net output #0: loss = 4.95878 (* 1 = 4.95878 loss) +I0408 16:09:31.821038 27257 sgd_solver.cpp:105] Iteration 3888, lr = 1.24605e-08 +I0408 16:09:36.825937 27257 solver.cpp:218] Iteration 3900 (2.39774 iter/s, 5.0047s/12 iters), loss = 4.98632 +I0408 16:09:36.826006 27257 solver.cpp:237] Train net output #0: loss = 4.98632 (* 1 = 4.98632 loss) +I0408 16:09:36.826017 27257 sgd_solver.cpp:105] Iteration 3900, lr = 1.19485e-08 +I0408 16:09:41.812849 27257 solver.cpp:218] Iteration 3912 (2.40643 iter/s, 4.98664s/12 iters), loss = 4.86288 +I0408 16:09:41.812902 27257 solver.cpp:237] Train net output #0: loss = 4.86288 (* 1 = 4.86288 loss) +I0408 16:09:41.812914 27257 sgd_solver.cpp:105] Iteration 3912, lr = 1.14575e-08 +I0408 16:09:46.892532 27257 solver.cpp:218] Iteration 3924 (2.36247 iter/s, 5.07942s/12 iters), loss = 5.01829 +I0408 16:09:46.892586 27257 solver.cpp:237] Train net output #0: loss = 5.01829 (* 1 = 5.01829 loss) +I0408 16:09:46.892598 27257 sgd_solver.cpp:105] Iteration 3924, lr = 1.09866e-08 +I0408 16:09:51.921810 27257 solver.cpp:218] Iteration 3936 (2.38615 iter/s, 5.02901s/12 iters), loss = 4.97839 +I0408 16:09:51.921921 27257 solver.cpp:237] Train net output #0: loss = 4.97839 (* 1 = 4.97839 loss) +I0408 16:09:51.921934 27257 sgd_solver.cpp:105] Iteration 3936, lr = 1.05352e-08 +I0408 16:09:55.299613 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:56.936573 27257 solver.cpp:218] Iteration 3948 (2.39308 iter/s, 5.01445s/12 iters), loss = 5.04272 +I0408 16:09:56.936617 27257 solver.cpp:237] Train net output #0: loss = 5.04272 (* 1 = 5.04272 loss) +I0408 16:09:56.936628 27257 sgd_solver.cpp:105] Iteration 3948, lr = 1.01022e-08 +I0408 16:10:01.995292 27257 solver.cpp:218] Iteration 3960 (2.37226 iter/s, 5.05847s/12 iters), loss = 4.99551 +I0408 16:10:01.995338 27257 solver.cpp:237] Train net output #0: loss = 4.99551 (* 1 = 4.99551 loss) +I0408 16:10:01.995350 27257 sgd_solver.cpp:105] Iteration 3960, lr = 9.6871e-09 +I0408 16:10:07.087110 27257 solver.cpp:218] Iteration 3972 (2.35684 iter/s, 5.09156s/12 iters), loss = 5.05536 +I0408 16:10:07.087162 27257 solver.cpp:237] Train net output #0: loss = 5.05536 (* 1 = 5.05536 loss) +I0408 16:10:07.087174 27257 sgd_solver.cpp:105] Iteration 3972, lr = 9.28902e-09 +I0408 16:10:09.178622 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 16:10:12.199743 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 16:10:14.850999 27257 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 16:10:14.851027 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:10:17.702580 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:19.280706 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:10:19.280755 27257 solver.cpp:397] Test net output #1: loss = 4.96813 (* 1 = 4.96813 loss) +I0408 16:10:21.086728 27257 solver.cpp:218] Iteration 3984 (0.857203 iter/s, 13.999s/12 iters), loss = 4.88959 +I0408 16:10:21.086786 27257 solver.cpp:237] Train net output #0: loss = 4.88959 (* 1 = 4.88959 loss) +I0408 16:10:21.086800 27257 sgd_solver.cpp:105] Iteration 3984, lr = 8.90731e-09 +I0408 16:10:26.098162 27257 solver.cpp:218] Iteration 3996 (2.39465 iter/s, 5.01118s/12 iters), loss = 4.94771 +I0408 16:10:26.098302 27257 solver.cpp:237] Train net output #0: loss = 4.94771 (* 1 = 4.94771 loss) +I0408 16:10:26.098312 27257 sgd_solver.cpp:105] Iteration 3996, lr = 8.54128e-09 +I0408 16:10:31.052676 27257 solver.cpp:218] Iteration 4008 (2.4222 iter/s, 4.95417s/12 iters), loss = 4.95163 +I0408 16:10:31.052728 27257 solver.cpp:237] Train net output #0: loss = 4.95163 (* 1 = 4.95163 loss) +I0408 16:10:31.052740 27257 sgd_solver.cpp:105] Iteration 4008, lr = 8.19029e-09 +I0408 16:10:36.168910 27257 solver.cpp:218] Iteration 4020 (2.3456 iter/s, 5.11597s/12 iters), loss = 5.0211 +I0408 16:10:36.168962 27257 solver.cpp:237] Train net output #0: loss = 5.0211 (* 1 = 5.0211 loss) +I0408 16:10:36.168977 27257 sgd_solver.cpp:105] Iteration 4020, lr = 7.85372e-09 +I0408 16:10:41.232136 27257 solver.cpp:218] Iteration 4032 (2.37015 iter/s, 5.06296s/12 iters), loss = 5.00952 +I0408 16:10:41.232193 27257 solver.cpp:237] Train net output #0: loss = 5.00952 (* 1 = 5.00952 loss) +I0408 16:10:41.232205 27257 sgd_solver.cpp:105] Iteration 4032, lr = 7.53099e-09 +I0408 16:10:46.179281 27257 solver.cpp:218] Iteration 4044 (2.42577 iter/s, 4.94688s/12 iters), loss = 5.03242 +I0408 16:10:46.179332 27257 solver.cpp:237] Train net output #0: loss = 5.03242 (* 1 = 5.03242 loss) +I0408 16:10:46.179342 27257 sgd_solver.cpp:105] Iteration 4044, lr = 7.22151e-09 +I0408 16:10:46.671474 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:51.242805 27257 solver.cpp:218] Iteration 4056 (2.37001 iter/s, 5.06326s/12 iters), loss = 4.9688 +I0408 16:10:51.242849 27257 solver.cpp:237] Train net output #0: loss = 4.9688 (* 1 = 4.9688 loss) +I0408 16:10:51.242861 27257 sgd_solver.cpp:105] Iteration 4056, lr = 6.92476e-09 +I0408 16:10:56.270273 27257 solver.cpp:218] Iteration 4068 (2.387 iter/s, 5.02722s/12 iters), loss = 5.00712 +I0408 16:10:56.270368 27257 solver.cpp:237] Train net output #0: loss = 5.00712 (* 1 = 5.00712 loss) +I0408 16:10:56.270377 27257 sgd_solver.cpp:105] Iteration 4068, lr = 6.6402e-09 +I0408 16:11:00.805979 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 16:11:04.753237 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 16:11:07.094183 27257 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 16:11:07.094211 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:11:09.928326 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:11.545348 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:11:11.545394 27257 solver.cpp:397] Test net output #1: loss = 4.97104 (* 1 = 4.97104 loss) +I0408 16:11:11.635691 27257 solver.cpp:218] Iteration 4080 (0.78101 iter/s, 15.3647s/12 iters), loss = 4.94227 +I0408 16:11:11.635743 27257 solver.cpp:237] Train net output #0: loss = 4.94227 (* 1 = 4.94227 loss) +I0408 16:11:11.635756 27257 sgd_solver.cpp:105] Iteration 4080, lr = 6.36733e-09 +I0408 16:11:15.997134 27257 solver.cpp:218] Iteration 4092 (2.75153 iter/s, 4.36121s/12 iters), loss = 4.82414 +I0408 16:11:15.997180 27257 solver.cpp:237] Train net output #0: loss = 4.82414 (* 1 = 4.82414 loss) +I0408 16:11:15.997191 27257 sgd_solver.cpp:105] Iteration 4092, lr = 6.10567e-09 +I0408 16:11:20.974861 27257 solver.cpp:218] Iteration 4104 (2.41086 iter/s, 4.97747s/12 iters), loss = 4.8762 +I0408 16:11:20.974912 27257 solver.cpp:237] Train net output #0: loss = 4.8762 (* 1 = 4.8762 loss) +I0408 16:11:20.974925 27257 sgd_solver.cpp:105] Iteration 4104, lr = 5.85477e-09 +I0408 16:11:25.978328 27257 solver.cpp:218] Iteration 4116 (2.39846 iter/s, 5.00321s/12 iters), loss = 4.98111 +I0408 16:11:25.978370 27257 solver.cpp:237] Train net output #0: loss = 4.98111 (* 1 = 4.98111 loss) +I0408 16:11:25.978380 27257 sgd_solver.cpp:105] Iteration 4116, lr = 5.61418e-09 +I0408 16:11:30.952018 27257 solver.cpp:218] Iteration 4128 (2.41282 iter/s, 4.97344s/12 iters), loss = 4.92036 +I0408 16:11:30.955075 27257 solver.cpp:237] Train net output #0: loss = 4.92036 (* 1 = 4.92036 loss) +I0408 16:11:30.955086 27257 sgd_solver.cpp:105] Iteration 4128, lr = 5.38347e-09 +I0408 16:11:35.937269 27257 solver.cpp:218] Iteration 4140 (2.40867 iter/s, 4.98199s/12 iters), loss = 4.98736 +I0408 16:11:35.937309 27257 solver.cpp:237] Train net output #0: loss = 4.98736 (* 1 = 4.98736 loss) +I0408 16:11:35.937317 27257 sgd_solver.cpp:105] Iteration 4140, lr = 5.16225e-09 +I0408 16:11:38.404724 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:40.748723 27257 solver.cpp:218] Iteration 4152 (2.49418 iter/s, 4.81121s/12 iters), loss = 4.85663 +I0408 16:11:40.748790 27257 solver.cpp:237] Train net output #0: loss = 4.85663 (* 1 = 4.85663 loss) +I0408 16:11:40.748806 27257 sgd_solver.cpp:105] Iteration 4152, lr = 4.95011e-09 +I0408 16:11:42.312703 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:11:45.553755 27257 solver.cpp:218] Iteration 4164 (2.49752 iter/s, 4.80477s/12 iters), loss = 4.83274 +I0408 16:11:45.553800 27257 solver.cpp:237] Train net output #0: loss = 4.83274 (* 1 = 4.83274 loss) +I0408 16:11:45.553809 27257 sgd_solver.cpp:105] Iteration 4164, lr = 4.7467e-09 +I0408 16:11:50.472507 27257 solver.cpp:218] Iteration 4176 (2.43977 iter/s, 4.9185s/12 iters), loss = 4.89641 +I0408 16:11:50.472560 27257 solver.cpp:237] Train net output #0: loss = 4.89641 (* 1 = 4.89641 loss) +I0408 16:11:50.472573 27257 sgd_solver.cpp:105] Iteration 4176, lr = 4.55164e-09 +I0408 16:11:52.433387 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 16:11:56.421808 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 16:11:58.798594 27257 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 16:11:58.798619 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:12:01.607568 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:03.271687 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:12:03.271735 27257 solver.cpp:397] Test net output #1: loss = 4.97092 (* 1 = 4.97092 loss) +I0408 16:12:05.281761 27257 solver.cpp:218] Iteration 4188 (0.810339 iter/s, 14.8086s/12 iters), loss = 4.93767 +I0408 16:12:05.281816 27257 solver.cpp:237] Train net output #0: loss = 4.93767 (* 1 = 4.93767 loss) +I0408 16:12:05.281829 27257 sgd_solver.cpp:105] Iteration 4188, lr = 4.3646e-09 +I0408 16:12:10.309248 27257 solver.cpp:218] Iteration 4200 (2.387 iter/s, 5.02723s/12 iters), loss = 4.91535 +I0408 16:12:10.309286 27257 solver.cpp:237] Train net output #0: loss = 4.91535 (* 1 = 4.91535 loss) +I0408 16:12:10.309293 27257 sgd_solver.cpp:105] Iteration 4200, lr = 4.18524e-09 +I0408 16:12:15.331553 27257 solver.cpp:218] Iteration 4212 (2.38946 iter/s, 5.02206s/12 iters), loss = 4.91222 +I0408 16:12:15.331609 27257 solver.cpp:237] Train net output #0: loss = 4.91222 (* 1 = 4.91222 loss) +I0408 16:12:15.331621 27257 sgd_solver.cpp:105] Iteration 4212, lr = 4.01326e-09 +I0408 16:12:20.369910 27257 solver.cpp:218] Iteration 4224 (2.38185 iter/s, 5.03809s/12 iters), loss = 4.78051 +I0408 16:12:20.369974 27257 solver.cpp:237] Train net output #0: loss = 4.78051 (* 1 = 4.78051 loss) +I0408 16:12:20.369983 27257 sgd_solver.cpp:105] Iteration 4224, lr = 3.84834e-09 +I0408 16:12:25.429664 27257 solver.cpp:218] Iteration 4236 (2.37178 iter/s, 5.0595s/12 iters), loss = 4.90871 +I0408 16:12:25.429704 27257 solver.cpp:237] Train net output #0: loss = 4.90871 (* 1 = 4.90871 loss) +I0408 16:12:25.429713 27257 sgd_solver.cpp:105] Iteration 4236, lr = 3.6902e-09 +I0408 16:12:30.210858 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:30.437129 27257 solver.cpp:218] Iteration 4248 (2.39654 iter/s, 5.00721s/12 iters), loss = 5.04675 +I0408 16:12:30.437186 27257 solver.cpp:237] Train net output #0: loss = 5.04675 (* 1 = 5.04675 loss) +I0408 16:12:30.437198 27257 sgd_solver.cpp:105] Iteration 4248, lr = 3.53856e-09 +I0408 16:12:35.469635 27257 solver.cpp:218] Iteration 4260 (2.38462 iter/s, 5.03225s/12 iters), loss = 4.98472 +I0408 16:12:35.469779 27257 solver.cpp:237] Train net output #0: loss = 4.98472 (* 1 = 4.98472 loss) +I0408 16:12:35.469792 27257 sgd_solver.cpp:105] Iteration 4260, lr = 3.39314e-09 +I0408 16:12:40.404362 27257 solver.cpp:218] Iteration 4272 (2.43191 iter/s, 4.93438s/12 iters), loss = 4.84107 +I0408 16:12:40.404420 27257 solver.cpp:237] Train net output #0: loss = 4.84107 (* 1 = 4.84107 loss) +I0408 16:12:40.404435 27257 sgd_solver.cpp:105] Iteration 4272, lr = 3.25371e-09 +I0408 16:12:44.910619 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 16:12:48.012212 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 16:12:51.180121 27257 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 16:12:51.180145 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:12:53.956029 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:55.655100 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:12:55.655146 27257 solver.cpp:397] Test net output #1: loss = 4.96957 (* 1 = 4.96957 loss) +I0408 16:12:55.745853 27257 solver.cpp:218] Iteration 4284 (0.782226 iter/s, 15.3408s/12 iters), loss = 4.90055 +I0408 16:12:55.745923 27257 solver.cpp:237] Train net output #0: loss = 4.90055 (* 1 = 4.90055 loss) +I0408 16:12:55.745937 27257 sgd_solver.cpp:105] Iteration 4284, lr = 3.12e-09 +I0408 16:12:59.975077 27257 solver.cpp:218] Iteration 4296 (2.83756 iter/s, 4.22898s/12 iters), loss = 5.00122 +I0408 16:12:59.975137 27257 solver.cpp:237] Train net output #0: loss = 5.00122 (* 1 = 5.00122 loss) +I0408 16:12:59.975150 27257 sgd_solver.cpp:105] Iteration 4296, lr = 2.99179e-09 +I0408 16:13:05.411664 27257 solver.cpp:218] Iteration 4308 (2.20738 iter/s, 5.43631s/12 iters), loss = 4.94671 +I0408 16:13:05.411713 27257 solver.cpp:237] Train net output #0: loss = 4.94671 (* 1 = 4.94671 loss) +I0408 16:13:05.411728 27257 sgd_solver.cpp:105] Iteration 4308, lr = 2.86885e-09 +I0408 16:13:10.785317 27257 solver.cpp:218] Iteration 4320 (2.23323 iter/s, 5.37339s/12 iters), loss = 5.00645 +I0408 16:13:10.785450 27257 solver.cpp:237] Train net output #0: loss = 5.00645 (* 1 = 5.00645 loss) +I0408 16:13:10.785461 27257 sgd_solver.cpp:105] Iteration 4320, lr = 2.75096e-09 +I0408 16:13:16.038295 27257 solver.cpp:218] Iteration 4332 (2.28457 iter/s, 5.25262s/12 iters), loss = 4.94333 +I0408 16:13:16.038349 27257 solver.cpp:237] Train net output #0: loss = 4.94333 (* 1 = 4.94333 loss) +I0408 16:13:16.038360 27257 sgd_solver.cpp:105] Iteration 4332, lr = 2.63791e-09 +I0408 16:13:21.030524 27257 solver.cpp:218] Iteration 4344 (2.40386 iter/s, 4.99198s/12 iters), loss = 4.9958 +I0408 16:13:21.030562 27257 solver.cpp:237] Train net output #0: loss = 4.9958 (* 1 = 4.9958 loss) +I0408 16:13:21.030571 27257 sgd_solver.cpp:105] Iteration 4344, lr = 2.52951e-09 +I0408 16:13:22.940901 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:13:26.067703 27257 solver.cpp:218] Iteration 4356 (2.3824 iter/s, 5.03693s/12 iters), loss = 4.97965 +I0408 16:13:26.067746 27257 solver.cpp:237] Train net output #0: loss = 4.97965 (* 1 = 4.97965 loss) +I0408 16:13:26.067757 27257 sgd_solver.cpp:105] Iteration 4356, lr = 2.42557e-09 +I0408 16:13:31.036998 27257 solver.cpp:218] Iteration 4368 (2.41495 iter/s, 4.96904s/12 iters), loss = 5.01939 +I0408 16:13:31.037055 27257 solver.cpp:237] Train net output #0: loss = 5.01939 (* 1 = 5.01939 loss) +I0408 16:13:31.037066 27257 sgd_solver.cpp:105] Iteration 4368, lr = 2.32589e-09 +I0408 16:13:36.059350 27257 solver.cpp:218] Iteration 4380 (2.38944 iter/s, 5.02209s/12 iters), loss = 4.93766 +I0408 16:13:36.059396 27257 solver.cpp:237] Train net output #0: loss = 4.93766 (* 1 = 4.93766 loss) +I0408 16:13:36.059407 27257 sgd_solver.cpp:105] Iteration 4380, lr = 2.23031e-09 +I0408 16:13:38.041890 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 16:13:41.072995 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 16:13:43.403878 27257 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 16:13:43.403905 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:13:46.136276 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:13:47.876191 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:13:47.876238 27257 solver.cpp:397] Test net output #1: loss = 4.96807 (* 1 = 4.96807 loss) +I0408 16:13:49.721278 27257 solver.cpp:218] Iteration 4392 (0.87839 iter/s, 13.6614s/12 iters), loss = 4.91918 +I0408 16:13:49.721318 27257 solver.cpp:237] Train net output #0: loss = 4.91918 (* 1 = 4.91918 loss) +I0408 16:13:49.721325 27257 sgd_solver.cpp:105] Iteration 4392, lr = 2.13866e-09 +I0408 16:13:54.729995 27257 solver.cpp:218] Iteration 4404 (2.39595 iter/s, 5.00846s/12 iters), loss = 4.93684 +I0408 16:13:54.730042 27257 solver.cpp:237] Train net output #0: loss = 4.93684 (* 1 = 4.93684 loss) +I0408 16:13:54.730054 27257 sgd_solver.cpp:105] Iteration 4404, lr = 2.05078e-09 +I0408 16:13:59.673045 27257 solver.cpp:218] Iteration 4416 (2.42777 iter/s, 4.9428s/12 iters), loss = 4.98269 +I0408 16:13:59.673094 27257 solver.cpp:237] Train net output #0: loss = 4.98269 (* 1 = 4.98269 loss) +I0408 16:13:59.673105 27257 sgd_solver.cpp:105] Iteration 4416, lr = 1.9665e-09 +I0408 16:14:04.991668 27257 solver.cpp:218] Iteration 4428 (2.25634 iter/s, 5.31835s/12 iters), loss = 4.8382 +I0408 16:14:04.991720 27257 solver.cpp:237] Train net output #0: loss = 4.8382 (* 1 = 4.8382 loss) +I0408 16:14:04.991732 27257 sgd_solver.cpp:105] Iteration 4428, lr = 1.88569e-09 +I0408 16:14:10.152832 27257 solver.cpp:218] Iteration 4440 (2.32518 iter/s, 5.1609s/12 iters), loss = 4.9211 +I0408 16:14:10.152890 27257 solver.cpp:237] Train net output #0: loss = 4.9211 (* 1 = 4.9211 loss) +I0408 16:14:10.152902 27257 sgd_solver.cpp:105] Iteration 4440, lr = 1.8082e-09 +I0408 16:14:14.221482 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:15.198594 27257 solver.cpp:218] Iteration 4452 (2.37836 iter/s, 5.0455s/12 iters), loss = 4.82734 +I0408 16:14:15.198639 27257 solver.cpp:237] Train net output #0: loss = 4.82734 (* 1 = 4.82734 loss) +I0408 16:14:15.198648 27257 sgd_solver.cpp:105] Iteration 4452, lr = 1.7339e-09 +I0408 16:14:20.280480 27257 solver.cpp:218] Iteration 4464 (2.36145 iter/s, 5.08163s/12 iters), loss = 4.91441 +I0408 16:14:20.280532 27257 solver.cpp:237] Train net output #0: loss = 4.91441 (* 1 = 4.91441 loss) +I0408 16:14:20.280544 27257 sgd_solver.cpp:105] Iteration 4464, lr = 1.66265e-09 +I0408 16:14:25.274204 27257 solver.cpp:218] Iteration 4476 (2.40314 iter/s, 4.99347s/12 iters), loss = 4.9489 +I0408 16:14:25.274258 27257 solver.cpp:237] Train net output #0: loss = 4.9489 (* 1 = 4.9489 loss) +I0408 16:14:25.274269 27257 sgd_solver.cpp:105] Iteration 4476, lr = 1.59432e-09 +I0408 16:14:29.920936 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 16:14:32.892755 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 16:14:35.232759 27257 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 16:14:35.232781 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:14:37.919407 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:39.692698 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:14:39.692732 27257 solver.cpp:397] Test net output #1: loss = 4.96916 (* 1 = 4.96916 loss) +I0408 16:14:39.782959 27257 solver.cpp:218] Iteration 4488 (0.827123 iter/s, 14.5081s/12 iters), loss = 4.901 +I0408 16:14:39.783012 27257 solver.cpp:237] Train net output #0: loss = 4.901 (* 1 = 4.901 loss) +I0408 16:14:39.783023 27257 sgd_solver.cpp:105] Iteration 4488, lr = 1.52881e-09 +I0408 16:14:44.298622 27257 solver.cpp:218] Iteration 4500 (2.65756 iter/s, 4.51542s/12 iters), loss = 4.82339 +I0408 16:14:44.298738 27257 solver.cpp:237] Train net output #0: loss = 4.82339 (* 1 = 4.82339 loss) +I0408 16:14:44.298750 27257 sgd_solver.cpp:105] Iteration 4500, lr = 1.46598e-09 +I0408 16:14:49.323932 27257 solver.cpp:218] Iteration 4512 (2.38806 iter/s, 5.02499s/12 iters), loss = 4.912 +I0408 16:14:49.323987 27257 solver.cpp:237] Train net output #0: loss = 4.912 (* 1 = 4.912 loss) +I0408 16:14:49.323998 27257 sgd_solver.cpp:105] Iteration 4512, lr = 1.40574e-09 +I0408 16:14:54.332545 27257 solver.cpp:218] Iteration 4524 (2.396 iter/s, 5.00835s/12 iters), loss = 5.06685 +I0408 16:14:54.332597 27257 solver.cpp:237] Train net output #0: loss = 5.06685 (* 1 = 5.06685 loss) +I0408 16:14:54.332609 27257 sgd_solver.cpp:105] Iteration 4524, lr = 1.34798e-09 +I0408 16:14:59.359674 27257 solver.cpp:218] Iteration 4536 (2.38717 iter/s, 5.02688s/12 iters), loss = 4.91783 +I0408 16:14:59.359719 27257 solver.cpp:237] Train net output #0: loss = 4.91783 (* 1 = 4.91783 loss) +I0408 16:14:59.359732 27257 sgd_solver.cpp:105] Iteration 4536, lr = 1.29258e-09 +I0408 16:15:04.435513 27257 solver.cpp:218] Iteration 4548 (2.36426 iter/s, 5.07559s/12 iters), loss = 4.93676 +I0408 16:15:04.435560 27257 solver.cpp:237] Train net output #0: loss = 4.93676 (* 1 = 4.93676 loss) +I0408 16:15:04.435571 27257 sgd_solver.cpp:105] Iteration 4548, lr = 1.23947e-09 +I0408 16:15:05.664286 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:15:09.429894 27257 solver.cpp:218] Iteration 4560 (2.40282 iter/s, 4.99413s/12 iters), loss = 4.90213 +I0408 16:15:09.429940 27257 solver.cpp:237] Train net output #0: loss = 4.90213 (* 1 = 4.90213 loss) +I0408 16:15:09.429951 27257 sgd_solver.cpp:105] Iteration 4560, lr = 1.18853e-09 +I0408 16:15:14.452354 27257 solver.cpp:218] Iteration 4572 (2.38939 iter/s, 5.0222s/12 iters), loss = 5.06119 +I0408 16:15:14.452452 27257 solver.cpp:237] Train net output #0: loss = 5.06119 (* 1 = 5.06119 loss) +I0408 16:15:14.452463 27257 sgd_solver.cpp:105] Iteration 4572, lr = 1.13969e-09 +I0408 16:15:19.520203 27257 solver.cpp:218] Iteration 4584 (2.36801 iter/s, 5.06755s/12 iters), loss = 5.05202 +I0408 16:15:19.520251 27257 solver.cpp:237] Train net output #0: loss = 5.05202 (* 1 = 5.05202 loss) +I0408 16:15:19.520263 27257 sgd_solver.cpp:105] Iteration 4584, lr = 1.09286e-09 +I0408 16:15:21.548064 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 16:15:24.988211 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 16:15:29.075120 27257 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 16:15:29.075147 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:15:31.729727 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:15:33.550168 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:15:33.550210 27257 solver.cpp:397] Test net output #1: loss = 4.96689 (* 1 = 4.96689 loss) +I0408 16:15:35.364223 27257 solver.cpp:218] Iteration 4596 (0.757416 iter/s, 15.8433s/12 iters), loss = 4.98149 +I0408 16:15:35.364289 27257 solver.cpp:237] Train net output #0: loss = 4.98149 (* 1 = 4.98149 loss) +I0408 16:15:35.364302 27257 sgd_solver.cpp:105] Iteration 4596, lr = 1.04795e-09 +I0408 16:15:40.320909 27257 solver.cpp:218] Iteration 4608 (2.42111 iter/s, 4.95641s/12 iters), loss = 4.97982 +I0408 16:15:40.320974 27257 solver.cpp:237] Train net output #0: loss = 4.97982 (* 1 = 4.97982 loss) +I0408 16:15:40.320987 27257 sgd_solver.cpp:105] Iteration 4608, lr = 1.00489e-09 +I0408 16:15:45.298789 27257 solver.cpp:218] Iteration 4620 (2.41079 iter/s, 4.97762s/12 iters), loss = 4.9354 +I0408 16:15:45.298878 27257 solver.cpp:237] Train net output #0: loss = 4.9354 (* 1 = 4.9354 loss) +I0408 16:15:45.298888 27257 sgd_solver.cpp:105] Iteration 4620, lr = 9.63591e-10 +I0408 16:15:50.499426 27257 solver.cpp:218] Iteration 4632 (2.30754 iter/s, 5.20034s/12 iters), loss = 4.93263 +I0408 16:15:50.499472 27257 solver.cpp:237] Train net output #0: loss = 4.93263 (* 1 = 4.93263 loss) +I0408 16:15:50.499485 27257 sgd_solver.cpp:105] Iteration 4632, lr = 9.23994e-10 +I0408 16:15:55.527024 27257 solver.cpp:218] Iteration 4644 (2.38695 iter/s, 5.02734s/12 iters), loss = 4.951 +I0408 16:15:55.527078 27257 solver.cpp:237] Train net output #0: loss = 4.951 (* 1 = 4.951 loss) +I0408 16:15:55.527091 27257 sgd_solver.cpp:105] Iteration 4644, lr = 8.86024e-10 +I0408 16:15:58.877755 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:16:00.496417 27257 solver.cpp:218] Iteration 4656 (2.41491 iter/s, 4.96914s/12 iters), loss = 4.97804 +I0408 16:16:00.496467 27257 solver.cpp:237] Train net output #0: loss = 4.97804 (* 1 = 4.97804 loss) +I0408 16:16:00.496480 27257 sgd_solver.cpp:105] Iteration 4656, lr = 8.49614e-10 +I0408 16:16:05.500458 27257 solver.cpp:218] Iteration 4668 (2.39819 iter/s, 5.00378s/12 iters), loss = 5.01236 +I0408 16:16:05.500514 27257 solver.cpp:237] Train net output #0: loss = 5.01236 (* 1 = 5.01236 loss) +I0408 16:16:05.500526 27257 sgd_solver.cpp:105] Iteration 4668, lr = 8.14701e-10 +I0408 16:16:10.832053 27257 solver.cpp:218] Iteration 4680 (2.25085 iter/s, 5.33132s/12 iters), loss = 5.03201 +I0408 16:16:10.832108 27257 solver.cpp:237] Train net output #0: loss = 5.03201 (* 1 = 5.03201 loss) +I0408 16:16:10.832119 27257 sgd_solver.cpp:105] Iteration 4680, lr = 7.81222e-10 +I0408 16:16:15.460064 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 16:16:18.525597 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 16:16:20.861090 27257 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 16:16:20.861119 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:16:23.478235 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:16:25.332496 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:16:25.332543 27257 solver.cpp:397] Test net output #1: loss = 4.96872 (* 1 = 4.96872 loss) +I0408 16:16:25.422909 27257 solver.cpp:218] Iteration 4692 (0.822468 iter/s, 14.5902s/12 iters), loss = 4.94677 +I0408 16:16:25.422955 27257 solver.cpp:237] Train net output #0: loss = 4.94677 (* 1 = 4.94677 loss) +I0408 16:16:25.422964 27257 sgd_solver.cpp:105] Iteration 4692, lr = 7.49119e-10 +I0408 16:16:29.628363 27257 solver.cpp:218] Iteration 4704 (2.85359 iter/s, 4.20523s/12 iters), loss = 4.95217 +I0408 16:16:29.628413 27257 solver.cpp:237] Train net output #0: loss = 4.95217 (* 1 = 4.95217 loss) +I0408 16:16:29.628425 27257 sgd_solver.cpp:105] Iteration 4704, lr = 7.18335e-10 +I0408 16:16:34.624707 27257 solver.cpp:218] Iteration 4716 (2.40188 iter/s, 4.99609s/12 iters), loss = 4.93137 +I0408 16:16:34.624752 27257 solver.cpp:237] Train net output #0: loss = 4.93137 (* 1 = 4.93137 loss) +I0408 16:16:34.624763 27257 sgd_solver.cpp:105] Iteration 4716, lr = 6.88816e-10 +I0408 16:16:39.879432 27257 solver.cpp:218] Iteration 4728 (2.28377 iter/s, 5.25447s/12 iters), loss = 5.05855 +I0408 16:16:39.879479 27257 solver.cpp:237] Train net output #0: loss = 5.05855 (* 1 = 5.05855 loss) +I0408 16:16:39.879490 27257 sgd_solver.cpp:105] Iteration 4728, lr = 6.60511e-10 +I0408 16:16:44.865288 27257 solver.cpp:218] Iteration 4740 (2.40693 iter/s, 4.9856s/12 iters), loss = 4.97187 +I0408 16:16:44.865334 27257 solver.cpp:237] Train net output #0: loss = 4.97187 (* 1 = 4.97187 loss) +I0408 16:16:44.865345 27257 sgd_solver.cpp:105] Iteration 4740, lr = 6.33368e-10 +I0408 16:16:49.868772 27257 solver.cpp:218] Iteration 4752 (2.39845 iter/s, 5.00324s/12 iters), loss = 4.97963 +I0408 16:16:49.868911 27257 solver.cpp:237] Train net output #0: loss = 4.97963 (* 1 = 4.97963 loss) +I0408 16:16:49.868925 27257 sgd_solver.cpp:105] Iteration 4752, lr = 6.07341e-10 +I0408 16:16:50.399987 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:16:54.852699 27257 solver.cpp:218] Iteration 4764 (2.4079 iter/s, 4.98359s/12 iters), loss = 4.91717 +I0408 16:16:54.852746 27257 solver.cpp:237] Train net output #0: loss = 4.91717 (* 1 = 4.91717 loss) +I0408 16:16:54.852756 27257 sgd_solver.cpp:105] Iteration 4764, lr = 5.82383e-10 +I0408 16:16:59.894204 27257 solver.cpp:218] Iteration 4776 (2.38036 iter/s, 5.04125s/12 iters), loss = 4.93377 +I0408 16:16:59.894254 27257 solver.cpp:237] Train net output #0: loss = 4.93377 (* 1 = 4.93377 loss) +I0408 16:16:59.894268 27257 sgd_solver.cpp:105] Iteration 4776, lr = 5.58451e-10 +I0408 16:17:04.905563 27257 solver.cpp:218] Iteration 4788 (2.39468 iter/s, 5.01111s/12 iters), loss = 4.92749 +I0408 16:17:04.905601 27257 solver.cpp:237] Train net output #0: loss = 4.92749 (* 1 = 4.92749 loss) +I0408 16:17:04.905609 27257 sgd_solver.cpp:105] Iteration 4788, lr = 5.35503e-10 +I0408 16:17:06.930135 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 16:17:09.967164 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 16:17:12.624492 27257 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 16:17:12.624517 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:17:15.187182 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:17:17.085501 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:17:17.085548 27257 solver.cpp:397] Test net output #1: loss = 4.97058 (* 1 = 4.97058 loss) +I0408 16:17:18.900193 27257 solver.cpp:218] Iteration 4800 (0.857508 iter/s, 13.994s/12 iters), loss = 4.85974 +I0408 16:17:18.900245 27257 solver.cpp:237] Train net output #0: loss = 4.85974 (* 1 = 4.85974 loss) +I0408 16:17:18.900257 27257 sgd_solver.cpp:105] Iteration 4800, lr = 5.13497e-10 +I0408 16:17:23.834895 27257 solver.cpp:218] Iteration 4812 (2.43188 iter/s, 4.93445s/12 iters), loss = 4.91284 +I0408 16:17:23.834997 27257 solver.cpp:237] Train net output #0: loss = 4.91284 (* 1 = 4.91284 loss) +I0408 16:17:23.835007 27257 sgd_solver.cpp:105] Iteration 4812, lr = 4.92396e-10 +I0408 16:17:28.764616 27257 solver.cpp:218] Iteration 4824 (2.43437 iter/s, 4.92941s/12 iters), loss = 4.92799 +I0408 16:17:28.764680 27257 solver.cpp:237] Train net output #0: loss = 4.92799 (* 1 = 4.92799 loss) +I0408 16:17:28.764693 27257 sgd_solver.cpp:105] Iteration 4824, lr = 4.72162e-10 +I0408 16:17:33.691179 27257 solver.cpp:218] Iteration 4836 (2.4359 iter/s, 4.9263s/12 iters), loss = 4.89457 +I0408 16:17:33.691226 27257 solver.cpp:237] Train net output #0: loss = 4.89457 (* 1 = 4.89457 loss) +I0408 16:17:33.691238 27257 sgd_solver.cpp:105] Iteration 4836, lr = 4.52759e-10 +I0408 16:17:35.699411 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:17:38.627528 27257 solver.cpp:218] Iteration 4848 (2.43107 iter/s, 4.9361s/12 iters), loss = 4.96137 +I0408 16:17:38.627574 27257 solver.cpp:237] Train net output #0: loss = 4.96137 (* 1 = 4.96137 loss) +I0408 16:17:38.627585 27257 sgd_solver.cpp:105] Iteration 4848, lr = 4.34153e-10 +I0408 16:17:41.252213 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:17:43.566388 27257 solver.cpp:218] Iteration 4860 (2.42983 iter/s, 4.93862s/12 iters), loss = 4.84169 +I0408 16:17:43.566438 27257 solver.cpp:237] Train net output #0: loss = 4.84169 (* 1 = 4.84169 loss) +I0408 16:17:43.566449 27257 sgd_solver.cpp:105] Iteration 4860, lr = 4.16313e-10 +I0408 16:17:48.503887 27257 solver.cpp:218] Iteration 4872 (2.4305 iter/s, 4.93725s/12 iters), loss = 4.85702 +I0408 16:17:48.503933 27257 solver.cpp:237] Train net output #0: loss = 4.85702 (* 1 = 4.85702 loss) +I0408 16:17:48.503943 27257 sgd_solver.cpp:105] Iteration 4872, lr = 3.99205e-10 +I0408 16:17:53.510392 27257 solver.cpp:218] Iteration 4884 (2.397 iter/s, 5.00626s/12 iters), loss = 4.91709 +I0408 16:17:53.510426 27257 solver.cpp:237] Train net output #0: loss = 4.91709 (* 1 = 4.91709 loss) +I0408 16:17:53.510433 27257 sgd_solver.cpp:105] Iteration 4884, lr = 3.828e-10 +I0408 16:17:58.294421 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 16:18:01.314669 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 16:18:03.642047 27257 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 16:18:03.642071 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:18:06.179832 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:18:08.112807 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:18:08.112848 27257 solver.cpp:397] Test net output #1: loss = 4.96875 (* 1 = 4.96875 loss) +I0408 16:18:08.203346 27257 solver.cpp:218] Iteration 4896 (0.816752 iter/s, 14.6923s/12 iters), loss = 4.93672 +I0408 16:18:08.203392 27257 solver.cpp:237] Train net output #0: loss = 4.93672 (* 1 = 4.93672 loss) +I0408 16:18:08.203402 27257 sgd_solver.cpp:105] Iteration 4896, lr = 3.6707e-10 +I0408 16:18:12.430974 27257 solver.cpp:218] Iteration 4908 (2.83862 iter/s, 4.22741s/12 iters), loss = 4.96902 +I0408 16:18:12.431016 27257 solver.cpp:237] Train net output #0: loss = 4.96902 (* 1 = 4.96902 loss) +I0408 16:18:12.431025 27257 sgd_solver.cpp:105] Iteration 4908, lr = 3.51986e-10 +I0408 16:18:17.466511 27257 solver.cpp:218] Iteration 4920 (2.38318 iter/s, 5.03529s/12 iters), loss = 4.9017 +I0408 16:18:17.466545 27257 solver.cpp:237] Train net output #0: loss = 4.9017 (* 1 = 4.9017 loss) +I0408 16:18:17.466554 27257 sgd_solver.cpp:105] Iteration 4920, lr = 3.37521e-10 +I0408 16:18:22.512141 27257 solver.cpp:218] Iteration 4932 (2.37842 iter/s, 5.04538s/12 iters), loss = 4.89805 +I0408 16:18:22.512202 27257 solver.cpp:237] Train net output #0: loss = 4.89805 (* 1 = 4.89805 loss) +I0408 16:18:22.512212 27257 sgd_solver.cpp:105] Iteration 4932, lr = 3.23652e-10 +I0408 16:18:27.525133 27257 solver.cpp:218] Iteration 4944 (2.39391 iter/s, 5.01273s/12 iters), loss = 4.96608 +I0408 16:18:27.525180 27257 solver.cpp:237] Train net output #0: loss = 4.96608 (* 1 = 4.96608 loss) +I0408 16:18:27.525192 27257 sgd_solver.cpp:105] Iteration 4944, lr = 3.10352e-10 +I0408 16:18:32.355350 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:18:32.554081 27257 solver.cpp:218] Iteration 4956 (2.3863 iter/s, 5.0287s/12 iters), loss = 5.02734 +I0408 16:18:32.554126 27257 solver.cpp:237] Train net output #0: loss = 5.02734 (* 1 = 5.02734 loss) +I0408 16:18:32.554137 27257 sgd_solver.cpp:105] Iteration 4956, lr = 2.97598e-10 +I0408 16:18:37.547755 27257 solver.cpp:218] Iteration 4968 (2.40316 iter/s, 4.99343s/12 iters), loss = 5.04395 +I0408 16:18:37.547798 27257 solver.cpp:237] Train net output #0: loss = 5.04395 (* 1 = 5.04395 loss) +I0408 16:18:37.547811 27257 sgd_solver.cpp:105] Iteration 4968, lr = 2.85369e-10 +I0408 16:18:42.691337 27257 solver.cpp:218] Iteration 4980 (2.33312 iter/s, 5.14333s/12 iters), loss = 4.79017 +I0408 16:18:42.691380 27257 solver.cpp:237] Train net output #0: loss = 4.79017 (* 1 = 4.79017 loss) +I0408 16:18:42.691390 27257 sgd_solver.cpp:105] Iteration 4980, lr = 2.73642e-10 +I0408 16:18:47.937702 27257 solver.cpp:218] Iteration 4992 (2.28741 iter/s, 5.24611s/12 iters), loss = 4.89607 +I0408 16:18:47.937737 27257 solver.cpp:237] Train net output #0: loss = 4.89607 (* 1 = 4.89607 loss) +I0408 16:18:47.937747 27257 sgd_solver.cpp:105] Iteration 4992, lr = 2.62397e-10 +I0408 16:18:49.984633 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 16:18:53.041036 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 16:18:55.346724 27257 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 16:18:55.346746 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:18:57.767482 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:18:59.929672 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:18:59.929700 27257 solver.cpp:397] Test net output #1: loss = 4.97068 (* 1 = 4.97068 loss) +I0408 16:19:01.901131 27257 solver.cpp:218] Iteration 5004 (0.859424 iter/s, 13.9628s/12 iters), loss = 5.02367 +I0408 16:19:01.901178 27257 solver.cpp:237] Train net output #0: loss = 5.02367 (* 1 = 5.02367 loss) +I0408 16:19:01.901190 27257 sgd_solver.cpp:105] Iteration 5004, lr = 2.51615e-10 +I0408 16:19:06.838408 27257 solver.cpp:218] Iteration 5016 (2.43061 iter/s, 4.93703s/12 iters), loss = 4.87585 +I0408 16:19:06.838572 27257 solver.cpp:237] Train net output #0: loss = 4.87585 (* 1 = 4.87585 loss) +I0408 16:19:06.838587 27257 sgd_solver.cpp:105] Iteration 5016, lr = 2.41275e-10 +I0408 16:19:11.919813 27257 solver.cpp:218] Iteration 5028 (2.36172 iter/s, 5.08104s/12 iters), loss = 4.9809 +I0408 16:19:11.919862 27257 solver.cpp:237] Train net output #0: loss = 4.9809 (* 1 = 4.9809 loss) +I0408 16:19:11.919873 27257 sgd_solver.cpp:105] Iteration 5028, lr = 2.3136e-10 +I0408 16:19:17.006887 27257 solver.cpp:218] Iteration 5040 (2.35904 iter/s, 5.08682s/12 iters), loss = 4.91193 +I0408 16:19:17.006935 27257 solver.cpp:237] Train net output #0: loss = 4.91193 (* 1 = 4.91193 loss) +I0408 16:19:17.006947 27257 sgd_solver.cpp:105] Iteration 5040, lr = 2.21853e-10 +I0408 16:19:22.429986 27257 solver.cpp:218] Iteration 5052 (2.21286 iter/s, 5.42283s/12 iters), loss = 5.07523 +I0408 16:19:22.430032 27257 solver.cpp:237] Train net output #0: loss = 5.07523 (* 1 = 5.07523 loss) +I0408 16:19:22.430043 27257 sgd_solver.cpp:105] Iteration 5052, lr = 2.12736e-10 +I0408 16:19:24.373406 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:19:27.440253 27257 solver.cpp:218] Iteration 5064 (2.3952 iter/s, 5.01002s/12 iters), loss = 4.9703 +I0408 16:19:27.440299 27257 solver.cpp:237] Train net output #0: loss = 4.9703 (* 1 = 4.9703 loss) +I0408 16:19:27.440311 27257 sgd_solver.cpp:105] Iteration 5064, lr = 2.03994e-10 +I0408 16:19:32.505228 27257 solver.cpp:218] Iteration 5076 (2.36933 iter/s, 5.06472s/12 iters), loss = 4.93028 +I0408 16:19:32.505276 27257 solver.cpp:237] Train net output #0: loss = 4.93028 (* 1 = 4.93028 loss) +I0408 16:19:32.505288 27257 sgd_solver.cpp:105] Iteration 5076, lr = 1.95611e-10 +I0408 16:19:37.535085 27257 solver.cpp:218] Iteration 5088 (2.38587 iter/s, 5.0296s/12 iters), loss = 4.84013 +I0408 16:19:37.535195 27257 solver.cpp:237] Train net output #0: loss = 4.84013 (* 1 = 4.84013 loss) +I0408 16:19:37.535208 27257 sgd_solver.cpp:105] Iteration 5088, lr = 1.87573e-10 +I0408 16:19:42.118491 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 16:19:45.806835 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 16:19:48.133131 27257 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 16:19:48.133154 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:19:50.596504 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:19:52.610549 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:19:52.610595 27257 solver.cpp:397] Test net output #1: loss = 4.96935 (* 1 = 4.96935 loss) +I0408 16:19:52.700944 27257 solver.cpp:218] Iteration 5100 (0.791278 iter/s, 15.1653s/12 iters), loss = 4.96642 +I0408 16:19:52.700992 27257 solver.cpp:237] Train net output #0: loss = 4.96642 (* 1 = 4.96642 loss) +I0408 16:19:52.701004 27257 sgd_solver.cpp:105] Iteration 5100, lr = 1.79865e-10 +I0408 16:19:57.105129 27257 solver.cpp:218] Iteration 5112 (2.72479 iter/s, 4.40401s/12 iters), loss = 4.95401 +I0408 16:19:57.105172 27257 solver.cpp:237] Train net output #0: loss = 4.95401 (* 1 = 4.95401 loss) +I0408 16:19:57.105183 27257 sgd_solver.cpp:105] Iteration 5112, lr = 1.72474e-10 +I0408 16:20:02.115659 27257 solver.cpp:218] Iteration 5124 (2.39505 iter/s, 5.01034s/12 iters), loss = 4.96165 +I0408 16:20:02.115706 27257 solver.cpp:237] Train net output #0: loss = 4.96165 (* 1 = 4.96165 loss) +I0408 16:20:02.115718 27257 sgd_solver.cpp:105] Iteration 5124, lr = 1.65386e-10 +I0408 16:20:07.070935 27257 solver.cpp:218] Iteration 5136 (2.42175 iter/s, 4.95509s/12 iters), loss = 4.94503 +I0408 16:20:07.070981 27257 solver.cpp:237] Train net output #0: loss = 4.94503 (* 1 = 4.94503 loss) +I0408 16:20:07.070992 27257 sgd_solver.cpp:105] Iteration 5136, lr = 1.5859e-10 +I0408 16:20:12.059240 27257 solver.cpp:218] Iteration 5148 (2.40572 iter/s, 4.98812s/12 iters), loss = 5.00146 +I0408 16:20:12.059382 27257 solver.cpp:237] Train net output #0: loss = 5.00146 (* 1 = 5.00146 loss) +I0408 16:20:12.059396 27257 sgd_solver.cpp:105] Iteration 5148, lr = 1.52073e-10 +I0408 16:20:16.140733 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:20:17.079254 27257 solver.cpp:218] Iteration 5160 (2.39057 iter/s, 5.01973s/12 iters), loss = 4.87059 +I0408 16:20:17.079305 27257 solver.cpp:237] Train net output #0: loss = 4.87059 (* 1 = 4.87059 loss) +I0408 16:20:17.079319 27257 sgd_solver.cpp:105] Iteration 5160, lr = 1.45824e-10 +I0408 16:20:22.096942 27257 solver.cpp:218] Iteration 5172 (2.39163 iter/s, 5.01749s/12 iters), loss = 4.92856 +I0408 16:20:22.096985 27257 solver.cpp:237] Train net output #0: loss = 4.92856 (* 1 = 4.92856 loss) +I0408 16:20:22.096995 27257 sgd_solver.cpp:105] Iteration 5172, lr = 1.39831e-10 +I0408 16:20:27.114568 27257 solver.cpp:218] Iteration 5184 (2.39166 iter/s, 5.01744s/12 iters), loss = 4.97727 +I0408 16:20:27.114612 27257 solver.cpp:237] Train net output #0: loss = 4.97727 (* 1 = 4.97727 loss) +I0408 16:20:27.114624 27257 sgd_solver.cpp:105] Iteration 5184, lr = 1.34085e-10 +I0408 16:20:32.119952 27257 solver.cpp:218] Iteration 5196 (2.39751 iter/s, 5.0052s/12 iters), loss = 4.94071 +I0408 16:20:32.119994 27257 solver.cpp:237] Train net output #0: loss = 4.94071 (* 1 = 4.94071 loss) +I0408 16:20:32.120005 27257 sgd_solver.cpp:105] Iteration 5196, lr = 1.28575e-10 +I0408 16:20:34.162788 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 16:20:37.192545 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 16:20:39.512465 27257 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 16:20:39.512490 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:20:41.855680 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:20:44.022662 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:20:44.022819 27257 solver.cpp:397] Test net output #1: loss = 4.96721 (* 1 = 4.96721 loss) +I0408 16:20:45.905721 27257 solver.cpp:218] Iteration 5208 (0.87049 iter/s, 13.7853s/12 iters), loss = 4.81396 +I0408 16:20:45.905766 27257 solver.cpp:237] Train net output #0: loss = 4.81396 (* 1 = 4.81396 loss) +I0408 16:20:45.905778 27257 sgd_solver.cpp:105] Iteration 5208, lr = 1.23292e-10 +I0408 16:20:50.916683 27257 solver.cpp:218] Iteration 5220 (2.39484 iter/s, 5.01077s/12 iters), loss = 4.90529 +I0408 16:20:50.916743 27257 solver.cpp:237] Train net output #0: loss = 4.90529 (* 1 = 4.90529 loss) +I0408 16:20:50.916754 27257 sgd_solver.cpp:105] Iteration 5220, lr = 1.18225e-10 +I0408 16:20:55.931586 27257 solver.cpp:218] Iteration 5232 (2.39297 iter/s, 5.01469s/12 iters), loss = 5.02489 +I0408 16:20:55.931632 27257 solver.cpp:237] Train net output #0: loss = 5.02489 (* 1 = 5.02489 loss) +I0408 16:20:55.931644 27257 sgd_solver.cpp:105] Iteration 5232, lr = 1.13367e-10 +I0408 16:21:00.917040 27257 solver.cpp:218] Iteration 5244 (2.40709 iter/s, 4.98526s/12 iters), loss = 4.8518 +I0408 16:21:00.917074 27257 solver.cpp:237] Train net output #0: loss = 4.8518 (* 1 = 4.8518 loss) +I0408 16:21:00.917083 27257 sgd_solver.cpp:105] Iteration 5244, lr = 1.08708e-10 +I0408 16:21:05.940414 27257 solver.cpp:218] Iteration 5256 (2.38892 iter/s, 5.02319s/12 iters), loss = 4.98315 +I0408 16:21:05.940457 27257 solver.cpp:237] Train net output #0: loss = 4.98315 (* 1 = 4.98315 loss) +I0408 16:21:05.940469 27257 sgd_solver.cpp:105] Iteration 5256, lr = 1.04241e-10 +I0408 16:21:07.194187 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:21:10.920470 27257 solver.cpp:218] Iteration 5268 (2.40971 iter/s, 4.97986s/12 iters), loss = 4.90413 +I0408 16:21:10.920516 27257 solver.cpp:237] Train net output #0: loss = 4.90413 (* 1 = 4.90413 loss) +I0408 16:21:10.920528 27257 sgd_solver.cpp:105] Iteration 5268, lr = 9.99575e-11 +I0408 16:21:15.876971 27257 solver.cpp:218] Iteration 5280 (2.42116 iter/s, 4.95631s/12 iters), loss = 5.07345 +I0408 16:21:15.877076 27257 solver.cpp:237] Train net output #0: loss = 5.07345 (* 1 = 5.07345 loss) +I0408 16:21:15.877089 27257 sgd_solver.cpp:105] Iteration 5280, lr = 9.58499e-11 +I0408 16:21:20.818522 27257 solver.cpp:218] Iteration 5292 (2.42851 iter/s, 4.9413s/12 iters), loss = 5.07388 +I0408 16:21:20.818559 27257 solver.cpp:237] Train net output #0: loss = 5.07388 (* 1 = 5.07388 loss) +I0408 16:21:20.818568 27257 sgd_solver.cpp:105] Iteration 5292, lr = 9.19111e-11 +I0408 16:21:25.226963 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 16:21:28.296079 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 16:21:30.609287 27257 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 16:21:30.609309 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:21:32.857915 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:21:34.953521 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:21:34.953564 27257 solver.cpp:397] Test net output #1: loss = 4.97021 (* 1 = 4.97021 loss) +I0408 16:21:35.043864 27257 solver.cpp:218] Iteration 5304 (0.843592 iter/s, 14.2249s/12 iters), loss = 4.96447 +I0408 16:21:35.043915 27257 solver.cpp:237] Train net output #0: loss = 4.96447 (* 1 = 4.96447 loss) +I0408 16:21:35.043926 27257 sgd_solver.cpp:105] Iteration 5304, lr = 8.81342e-11 +I0408 16:21:39.248546 27257 solver.cpp:218] Iteration 5316 (2.85408 iter/s, 4.2045s/12 iters), loss = 4.97892 +I0408 16:21:39.248590 27257 solver.cpp:237] Train net output #0: loss = 4.97892 (* 1 = 4.97892 loss) +I0408 16:21:39.248602 27257 sgd_solver.cpp:105] Iteration 5316, lr = 8.45125e-11 +I0408 16:21:44.159785 27257 solver.cpp:218] Iteration 5328 (2.44347 iter/s, 4.91104s/12 iters), loss = 4.93485 +I0408 16:21:44.159832 27257 solver.cpp:237] Train net output #0: loss = 4.93485 (* 1 = 4.93485 loss) +I0408 16:21:44.159844 27257 sgd_solver.cpp:105] Iteration 5328, lr = 8.10396e-11 +I0408 16:21:49.108743 27257 solver.cpp:218] Iteration 5340 (2.42485 iter/s, 4.94876s/12 iters), loss = 4.94074 +I0408 16:21:49.112059 27257 solver.cpp:237] Train net output #0: loss = 4.94074 (* 1 = 4.94074 loss) +I0408 16:21:49.112072 27257 sgd_solver.cpp:105] Iteration 5340, lr = 7.77094e-11 +I0408 16:21:54.136775 27257 solver.cpp:218] Iteration 5352 (2.38827 iter/s, 5.02456s/12 iters), loss = 4.97016 +I0408 16:21:54.136824 27257 solver.cpp:237] Train net output #0: loss = 4.97016 (* 1 = 4.97016 loss) +I0408 16:21:54.136834 27257 sgd_solver.cpp:105] Iteration 5352, lr = 7.4516e-11 +I0408 16:21:57.580374 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:21:59.155508 27257 solver.cpp:218] Iteration 5364 (2.39114 iter/s, 5.01853s/12 iters), loss = 4.90241 +I0408 16:21:59.155555 27257 solver.cpp:237] Train net output #0: loss = 4.90241 (* 1 = 4.90241 loss) +I0408 16:21:59.155566 27257 sgd_solver.cpp:105] Iteration 5364, lr = 7.14539e-11 +I0408 16:22:04.146176 27257 solver.cpp:218] Iteration 5376 (2.40459 iter/s, 4.99047s/12 iters), loss = 4.95999 +I0408 16:22:04.146225 27257 solver.cpp:237] Train net output #0: loss = 4.95999 (* 1 = 4.95999 loss) +I0408 16:22:04.146236 27257 sgd_solver.cpp:105] Iteration 5376, lr = 6.85176e-11 +I0408 16:22:09.188244 27257 solver.cpp:218] Iteration 5388 (2.38007 iter/s, 5.04187s/12 iters), loss = 5.00496 +I0408 16:22:09.188284 27257 solver.cpp:237] Train net output #0: loss = 5.00496 (* 1 = 5.00496 loss) +I0408 16:22:09.188293 27257 sgd_solver.cpp:105] Iteration 5388, lr = 6.5702e-11 +I0408 16:22:14.185822 27257 solver.cpp:218] Iteration 5400 (2.40126 iter/s, 4.99738s/12 iters), loss = 4.95212 +I0408 16:22:14.185858 27257 solver.cpp:237] Train net output #0: loss = 4.95212 (* 1 = 4.95212 loss) +I0408 16:22:14.185868 27257 sgd_solver.cpp:105] Iteration 5400, lr = 6.30021e-11 +I0408 16:22:16.241830 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 16:22:19.297199 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 16:22:21.631217 27257 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 16:22:21.631238 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:22:23.926597 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:22:26.057603 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:22:26.057641 27257 solver.cpp:397] Test net output #1: loss = 4.96717 (* 1 = 4.96717 loss) +I0408 16:22:27.958376 27257 solver.cpp:218] Iteration 5412 (0.871326 iter/s, 13.7721s/12 iters), loss = 4.91347 +I0408 16:22:27.958411 27257 solver.cpp:237] Train net output #0: loss = 4.91347 (* 1 = 4.91347 loss) +I0408 16:22:27.958420 27257 sgd_solver.cpp:105] Iteration 5412, lr = 6.04131e-11 +I0408 16:22:33.382354 27257 solver.cpp:218] Iteration 5424 (2.21248 iter/s, 5.42377s/12 iters), loss = 4.88546 +I0408 16:22:33.382397 27257 solver.cpp:237] Train net output #0: loss = 4.88546 (* 1 = 4.88546 loss) +I0408 16:22:33.382408 27257 sgd_solver.cpp:105] Iteration 5424, lr = 5.79306e-11 +I0408 16:22:38.418618 27257 solver.cpp:218] Iteration 5436 (2.38281 iter/s, 5.03606s/12 iters), loss = 5.05593 +I0408 16:22:38.418659 27257 solver.cpp:237] Train net output #0: loss = 5.05593 (* 1 = 5.05593 loss) +I0408 16:22:38.418670 27257 sgd_solver.cpp:105] Iteration 5436, lr = 5.555e-11 +I0408 16:22:43.402968 27257 solver.cpp:218] Iteration 5448 (2.40763 iter/s, 4.98415s/12 iters), loss = 4.93387 +I0408 16:22:43.403017 27257 solver.cpp:237] Train net output #0: loss = 4.93387 (* 1 = 4.93387 loss) +I0408 16:22:43.403028 27257 sgd_solver.cpp:105] Iteration 5448, lr = 5.32673e-11 +I0408 16:22:48.435099 27257 solver.cpp:218] Iteration 5460 (2.38477 iter/s, 5.03192s/12 iters), loss = 4.99723 +I0408 16:22:48.435148 27257 solver.cpp:237] Train net output #0: loss = 4.99723 (* 1 = 4.99723 loss) +I0408 16:22:48.435160 27257 sgd_solver.cpp:105] Iteration 5460, lr = 5.10783e-11 +I0408 16:22:48.991896 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:22:53.465885 27257 solver.cpp:218] Iteration 5472 (2.38541 iter/s, 5.03058s/12 iters), loss = 4.90175 +I0408 16:22:53.466049 27257 solver.cpp:237] Train net output #0: loss = 4.90175 (* 1 = 4.90175 loss) +I0408 16:22:53.466064 27257 sgd_solver.cpp:105] Iteration 5472, lr = 4.89794e-11 +I0408 16:22:58.383759 27257 solver.cpp:218] Iteration 5484 (2.44023 iter/s, 4.91756s/12 iters), loss = 5.00206 +I0408 16:22:58.383805 27257 solver.cpp:237] Train net output #0: loss = 5.00206 (* 1 = 5.00206 loss) +I0408 16:22:58.383816 27257 sgd_solver.cpp:105] Iteration 5484, lr = 4.69666e-11 +I0408 16:23:03.294068 27257 solver.cpp:218] Iteration 5496 (2.44394 iter/s, 4.91011s/12 iters), loss = 4.89756 +I0408 16:23:03.294117 27257 solver.cpp:237] Train net output #0: loss = 4.89756 (* 1 = 4.89756 loss) +I0408 16:23:03.294129 27257 sgd_solver.cpp:105] Iteration 5496, lr = 4.50366e-11 +I0408 16:23:07.868672 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 16:23:10.864080 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 16:23:13.177364 27257 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 16:23:13.177386 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:23:15.458636 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:23:17.635056 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:23:17.635093 27257 solver.cpp:397] Test net output #1: loss = 4.9724 (* 1 = 4.9724 loss) +I0408 16:23:17.725301 27257 solver.cpp:218] Iteration 5508 (0.831558 iter/s, 14.4307s/12 iters), loss = 4.87109 +I0408 16:23:17.725350 27257 solver.cpp:237] Train net output #0: loss = 4.87109 (* 1 = 4.87109 loss) +I0408 16:23:17.725361 27257 sgd_solver.cpp:105] Iteration 5508, lr = 4.31859e-11 +I0408 16:23:22.083647 27257 solver.cpp:218] Iteration 5520 (2.75346 iter/s, 4.35816s/12 iters), loss = 4.90541 +I0408 16:23:22.083693 27257 solver.cpp:237] Train net output #0: loss = 4.90541 (* 1 = 4.90541 loss) +I0408 16:23:22.083704 27257 sgd_solver.cpp:105] Iteration 5520, lr = 4.14113e-11 +I0408 16:23:24.735882 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:23:27.297564 27257 solver.cpp:218] Iteration 5532 (2.30163 iter/s, 5.2137s/12 iters), loss = 4.9233 +I0408 16:23:27.297606 27257 solver.cpp:237] Train net output #0: loss = 4.9233 (* 1 = 4.9233 loss) +I0408 16:23:27.297616 27257 sgd_solver.cpp:105] Iteration 5532, lr = 3.97095e-11 +I0408 16:23:32.289175 27257 solver.cpp:218] Iteration 5544 (2.40413 iter/s, 4.99141s/12 iters), loss = 4.90385 +I0408 16:23:32.289224 27257 solver.cpp:237] Train net output #0: loss = 4.90385 (* 1 = 4.90385 loss) +I0408 16:23:32.289237 27257 sgd_solver.cpp:105] Iteration 5544, lr = 3.80777e-11 +I0408 16:23:37.258694 27257 solver.cpp:218] Iteration 5556 (2.41482 iter/s, 4.96931s/12 iters), loss = 4.90399 +I0408 16:23:37.258741 27257 solver.cpp:237] Train net output #0: loss = 4.90399 (* 1 = 4.90399 loss) +I0408 16:23:37.258752 27257 sgd_solver.cpp:105] Iteration 5556, lr = 3.6513e-11 +I0408 16:23:39.966627 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:23:42.304548 27257 solver.cpp:218] Iteration 5568 (2.37829 iter/s, 5.04564s/12 iters), loss = 4.85677 +I0408 16:23:42.304612 27257 solver.cpp:237] Train net output #0: loss = 4.85677 (* 1 = 4.85677 loss) +I0408 16:23:42.304631 27257 sgd_solver.cpp:105] Iteration 5568, lr = 3.50126e-11 +I0408 16:23:47.222266 27257 solver.cpp:218] Iteration 5580 (2.44026 iter/s, 4.9175s/12 iters), loss = 4.89667 +I0408 16:23:47.222311 27257 solver.cpp:237] Train net output #0: loss = 4.89667 (* 1 = 4.89667 loss) +I0408 16:23:47.222322 27257 sgd_solver.cpp:105] Iteration 5580, lr = 3.35738e-11 +I0408 16:23:52.225543 27257 solver.cpp:218] Iteration 5592 (2.39853 iter/s, 5.00307s/12 iters), loss = 4.8585 +I0408 16:23:52.225592 27257 solver.cpp:237] Train net output #0: loss = 4.8585 (* 1 = 4.8585 loss) +I0408 16:23:52.225605 27257 sgd_solver.cpp:105] Iteration 5592, lr = 3.21941e-11 +I0408 16:23:57.230895 27257 solver.cpp:218] Iteration 5604 (2.39753 iter/s, 5.00514s/12 iters), loss = 4.9374 +I0408 16:23:57.231034 27257 solver.cpp:237] Train net output #0: loss = 4.9374 (* 1 = 4.9374 loss) +I0408 16:23:57.231047 27257 sgd_solver.cpp:105] Iteration 5604, lr = 3.08712e-11 +I0408 16:23:59.268397 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 16:24:02.249012 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 16:24:04.625950 27257 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 16:24:04.625995 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:24:06.860833 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:24:09.140625 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:24:09.140672 27257 solver.cpp:397] Test net output #1: loss = 4.96946 (* 1 = 4.96946 loss) +I0408 16:24:11.131330 27257 solver.cpp:218] Iteration 5616 (0.863318 iter/s, 13.8999s/12 iters), loss = 4.89286 +I0408 16:24:11.131376 27257 solver.cpp:237] Train net output #0: loss = 4.89286 (* 1 = 4.89286 loss) +I0408 16:24:11.131387 27257 sgd_solver.cpp:105] Iteration 5616, lr = 2.96026e-11 +I0408 16:24:16.186419 27257 solver.cpp:218] Iteration 5628 (2.37394 iter/s, 5.05488s/12 iters), loss = 4.9825 +I0408 16:24:16.186470 27257 solver.cpp:237] Train net output #0: loss = 4.9825 (* 1 = 4.9825 loss) +I0408 16:24:16.186482 27257 sgd_solver.cpp:105] Iteration 5628, lr = 2.83861e-11 +I0408 16:24:21.134145 27257 solver.cpp:218] Iteration 5640 (2.42546 iter/s, 4.94752s/12 iters), loss = 4.96237 +I0408 16:24:21.134194 27257 solver.cpp:237] Train net output #0: loss = 4.96237 (* 1 = 4.96237 loss) +I0408 16:24:21.134207 27257 sgd_solver.cpp:105] Iteration 5640, lr = 2.72196e-11 +I0408 16:24:26.195763 27257 solver.cpp:218] Iteration 5652 (2.37088 iter/s, 5.06141s/12 iters), loss = 5.0096 +I0408 16:24:26.195809 27257 solver.cpp:237] Train net output #0: loss = 5.0096 (* 1 = 5.0096 loss) +I0408 16:24:26.195820 27257 sgd_solver.cpp:105] Iteration 5652, lr = 2.61011e-11 +I0408 16:24:31.064707 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:24:31.229375 27257 solver.cpp:218] Iteration 5664 (2.38408 iter/s, 5.0334s/12 iters), loss = 4.9797 +I0408 16:24:31.229427 27257 solver.cpp:237] Train net output #0: loss = 4.9797 (* 1 = 4.9797 loss) +I0408 16:24:31.229439 27257 sgd_solver.cpp:105] Iteration 5664, lr = 2.50285e-11 +I0408 16:24:36.297317 27257 solver.cpp:218] Iteration 5676 (2.36793 iter/s, 5.06773s/12 iters), loss = 5.00156 +I0408 16:24:36.297363 27257 solver.cpp:237] Train net output #0: loss = 5.00156 (* 1 = 5.00156 loss) +I0408 16:24:36.297375 27257 sgd_solver.cpp:105] Iteration 5676, lr = 2.4e-11 +I0408 16:24:41.307476 27257 solver.cpp:218] Iteration 5688 (2.39523 iter/s, 5.00995s/12 iters), loss = 4.79657 +I0408 16:24:41.307520 27257 solver.cpp:237] Train net output #0: loss = 4.79657 (* 1 = 4.79657 loss) +I0408 16:24:41.307533 27257 sgd_solver.cpp:105] Iteration 5688, lr = 2.30138e-11 +I0408 16:24:46.281488 27257 solver.cpp:218] Iteration 5700 (2.41264 iter/s, 4.97381s/12 iters), loss = 4.88548 +I0408 16:24:46.281530 27257 solver.cpp:237] Train net output #0: loss = 4.88548 (* 1 = 4.88548 loss) +I0408 16:24:46.281541 27257 sgd_solver.cpp:105] Iteration 5700, lr = 2.2068e-11 +I0408 16:24:50.852946 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 16:24:53.893867 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 16:24:56.200520 27257 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 16:24:56.200541 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:24:58.300981 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:25:00.548101 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:25:00.548137 27257 solver.cpp:397] Test net output #1: loss = 4.96793 (* 1 = 4.96793 loss) +I0408 16:25:00.638859 27257 solver.cpp:218] Iteration 5712 (0.835837 iter/s, 14.3569s/12 iters), loss = 4.93778 +I0408 16:25:00.638895 27257 solver.cpp:237] Train net output #0: loss = 4.93778 (* 1 = 4.93778 loss) +I0408 16:25:00.638906 27257 sgd_solver.cpp:105] Iteration 5712, lr = 2.11612e-11 +I0408 16:25:04.791883 27257 solver.cpp:218] Iteration 5724 (2.88958 iter/s, 4.15285s/12 iters), loss = 4.9036 +I0408 16:25:04.792390 27257 solver.cpp:237] Train net output #0: loss = 4.9036 (* 1 = 4.9036 loss) +I0408 16:25:04.792407 27257 sgd_solver.cpp:105] Iteration 5724, lr = 2.02916e-11 +I0408 16:25:09.785094 27257 solver.cpp:218] Iteration 5736 (2.40359 iter/s, 4.99254s/12 iters), loss = 4.9839 +I0408 16:25:09.785145 27257 solver.cpp:237] Train net output #0: loss = 4.9839 (* 1 = 4.9839 loss) +I0408 16:25:09.785157 27257 sgd_solver.cpp:105] Iteration 5736, lr = 1.94578e-11 +I0408 16:25:14.787842 27257 solver.cpp:218] Iteration 5748 (2.39878 iter/s, 5.00254s/12 iters), loss = 4.90128 +I0408 16:25:14.787880 27257 solver.cpp:237] Train net output #0: loss = 4.90128 (* 1 = 4.90128 loss) +I0408 16:25:14.787889 27257 sgd_solver.cpp:105] Iteration 5748, lr = 1.86582e-11 +I0408 16:25:19.811921 27257 solver.cpp:218] Iteration 5760 (2.38859 iter/s, 5.02388s/12 iters), loss = 5.03145 +I0408 16:25:19.811957 27257 solver.cpp:237] Train net output #0: loss = 5.03145 (* 1 = 5.03145 loss) +I0408 16:25:19.811966 27257 sgd_solver.cpp:105] Iteration 5760, lr = 1.78914e-11 +I0408 16:25:21.798883 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:25:24.793979 27257 solver.cpp:218] Iteration 5772 (2.40875 iter/s, 4.98184s/12 iters), loss = 4.99398 +I0408 16:25:24.794029 27257 solver.cpp:237] Train net output #0: loss = 4.99398 (* 1 = 4.99398 loss) +I0408 16:25:24.794056 27257 sgd_solver.cpp:105] Iteration 5772, lr = 1.71562e-11 +I0408 16:25:29.774809 27257 solver.cpp:218] Iteration 5784 (2.40934 iter/s, 4.98061s/12 iters), loss = 4.94999 +I0408 16:25:29.774854 27257 solver.cpp:237] Train net output #0: loss = 4.94999 (* 1 = 4.94999 loss) +I0408 16:25:29.774866 27257 sgd_solver.cpp:105] Iteration 5784, lr = 1.64512e-11 +I0408 16:25:34.794260 27257 solver.cpp:218] Iteration 5796 (2.3908 iter/s, 5.01924s/12 iters), loss = 4.92305 +I0408 16:25:34.807016 27257 solver.cpp:237] Train net output #0: loss = 4.92305 (* 1 = 4.92305 loss) +I0408 16:25:34.807027 27257 sgd_solver.cpp:105] Iteration 5796, lr = 1.57752e-11 +I0408 16:25:39.790223 27257 solver.cpp:218] Iteration 5808 (2.40817 iter/s, 4.98304s/12 iters), loss = 5.01875 +I0408 16:25:39.790277 27257 solver.cpp:237] Train net output #0: loss = 5.01875 (* 1 = 5.01875 loss) +I0408 16:25:39.790289 27257 sgd_solver.cpp:105] Iteration 5808, lr = 1.51269e-11 +I0408 16:25:41.806840 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 16:25:45.633141 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 16:25:47.963241 27257 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 16:25:47.963266 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:25:50.136147 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:25:52.426148 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:25:52.426198 27257 solver.cpp:397] Test net output #1: loss = 4.97123 (* 1 = 4.97123 loss) +I0408 16:25:54.290496 27257 solver.cpp:218] Iteration 5820 (0.8276 iter/s, 14.4998s/12 iters), loss = 4.96602 +I0408 16:25:54.290544 27257 solver.cpp:237] Train net output #0: loss = 4.96602 (* 1 = 4.96602 loss) +I0408 16:25:54.290555 27257 sgd_solver.cpp:105] Iteration 5820, lr = 1.45053e-11 +I0408 16:25:59.257751 27257 solver.cpp:218] Iteration 5832 (2.41593 iter/s, 4.96704s/12 iters), loss = 4.95427 +I0408 16:25:59.257798 27257 solver.cpp:237] Train net output #0: loss = 4.95427 (* 1 = 4.95427 loss) +I0408 16:25:59.257810 27257 sgd_solver.cpp:105] Iteration 5832, lr = 1.39092e-11 +I0408 16:26:04.305184 27257 solver.cpp:218] Iteration 5844 (2.37755 iter/s, 5.04721s/12 iters), loss = 4.85183 +I0408 16:26:04.305228 27257 solver.cpp:237] Train net output #0: loss = 4.85183 (* 1 = 4.85183 loss) +I0408 16:26:04.305240 27257 sgd_solver.cpp:105] Iteration 5844, lr = 1.33377e-11 +I0408 16:26:09.340660 27257 solver.cpp:218] Iteration 5856 (2.38319 iter/s, 5.03526s/12 iters), loss = 4.99181 +I0408 16:26:09.340793 27257 solver.cpp:237] Train net output #0: loss = 4.99181 (* 1 = 4.99181 loss) +I0408 16:26:09.340809 27257 sgd_solver.cpp:105] Iteration 5856, lr = 1.27896e-11 +I0408 16:26:13.560763 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:26:14.379155 27257 solver.cpp:218] Iteration 5868 (2.3818 iter/s, 5.0382s/12 iters), loss = 4.9358 +I0408 16:26:14.379201 27257 solver.cpp:237] Train net output #0: loss = 4.9358 (* 1 = 4.9358 loss) +I0408 16:26:14.379215 27257 sgd_solver.cpp:105] Iteration 5868, lr = 1.2264e-11 +I0408 16:26:19.472704 27257 solver.cpp:218] Iteration 5880 (2.35602 iter/s, 5.09333s/12 iters), loss = 4.94114 +I0408 16:26:19.472746 27257 solver.cpp:237] Train net output #0: loss = 4.94114 (* 1 = 4.94114 loss) +I0408 16:26:19.472756 27257 sgd_solver.cpp:105] Iteration 5880, lr = 1.176e-11 +I0408 16:26:24.490634 27257 solver.cpp:218] Iteration 5892 (2.39152 iter/s, 5.01772s/12 iters), loss = 4.99763 +I0408 16:26:24.490681 27257 solver.cpp:237] Train net output #0: loss = 4.99763 (* 1 = 4.99763 loss) +I0408 16:26:24.490693 27257 sgd_solver.cpp:105] Iteration 5892, lr = 1.12768e-11 +I0408 16:26:29.542764 27257 solver.cpp:218] Iteration 5904 (2.37534 iter/s, 5.05191s/12 iters), loss = 4.85567 +I0408 16:26:29.542809 27257 solver.cpp:237] Train net output #0: loss = 4.85567 (* 1 = 4.85567 loss) +I0408 16:26:29.542819 27257 sgd_solver.cpp:105] Iteration 5904, lr = 1.08134e-11 +I0408 16:26:34.076660 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 16:26:37.117708 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 16:26:39.447201 27257 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 16:26:39.447252 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:26:41.581292 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:26:43.907274 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:26:43.907320 27257 solver.cpp:397] Test net output #1: loss = 4.96709 (* 1 = 4.96709 loss) +I0408 16:26:43.997872 27257 solver.cpp:218] Iteration 5916 (0.830186 iter/s, 14.4546s/12 iters), loss = 4.84161 +I0408 16:26:43.997910 27257 solver.cpp:237] Train net output #0: loss = 4.84161 (* 1 = 4.84161 loss) +I0408 16:26:43.997920 27257 sgd_solver.cpp:105] Iteration 5916, lr = 1.0369e-11 +I0408 16:26:48.383273 27257 solver.cpp:218] Iteration 5928 (2.73647 iter/s, 4.38521s/12 iters), loss = 4.94252 +I0408 16:26:48.383327 27257 solver.cpp:237] Train net output #0: loss = 4.94252 (* 1 = 4.94252 loss) +I0408 16:26:48.383338 27257 sgd_solver.cpp:105] Iteration 5928, lr = 9.94293e-12 +I0408 16:26:53.456125 27257 solver.cpp:218] Iteration 5940 (2.36564 iter/s, 5.07263s/12 iters), loss = 5.10598 +I0408 16:26:53.456167 27257 solver.cpp:237] Train net output #0: loss = 5.10598 (* 1 = 5.10598 loss) +I0408 16:26:53.456179 27257 sgd_solver.cpp:105] Iteration 5940, lr = 9.53434e-12 +I0408 16:26:58.468878 27257 solver.cpp:218] Iteration 5952 (2.39399 iter/s, 5.01254s/12 iters), loss = 4.86745 +I0408 16:26:58.468911 27257 solver.cpp:237] Train net output #0: loss = 4.86745 (* 1 = 4.86745 loss) +I0408 16:26:58.468919 27257 sgd_solver.cpp:105] Iteration 5952, lr = 9.14254e-12 +I0408 16:27:03.467551 27257 solver.cpp:218] Iteration 5964 (2.40074 iter/s, 4.99847s/12 iters), loss = 4.95094 +I0408 16:27:03.467595 27257 solver.cpp:237] Train net output #0: loss = 4.95094 (* 1 = 4.95094 loss) +I0408 16:27:03.467607 27257 sgd_solver.cpp:105] Iteration 5964, lr = 8.76684e-12 +I0408 16:27:04.801303 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:27:08.477892 27257 solver.cpp:218] Iteration 5976 (2.39515 iter/s, 5.01013s/12 iters), loss = 4.88215 +I0408 16:27:08.477939 27257 solver.cpp:237] Train net output #0: loss = 4.88215 (* 1 = 4.88215 loss) +I0408 16:27:08.477952 27257 sgd_solver.cpp:105] Iteration 5976, lr = 8.40659e-12 +I0408 16:27:13.440618 27257 solver.cpp:218] Iteration 5988 (2.41813 iter/s, 4.96251s/12 iters), loss = 5.02875 +I0408 16:27:13.440754 27257 solver.cpp:237] Train net output #0: loss = 5.02875 (* 1 = 5.02875 loss) +I0408 16:27:13.440768 27257 sgd_solver.cpp:105] Iteration 5988, lr = 8.06113e-12 +I0408 16:27:18.483734 27257 solver.cpp:218] Iteration 6000 (2.37963 iter/s, 5.04281s/12 iters), loss = 5.02641 +I0408 16:27:18.483779 27257 solver.cpp:237] Train net output #0: loss = 5.02641 (* 1 = 5.02641 loss) +I0408 16:27:18.483791 27257 sgd_solver.cpp:105] Iteration 6000, lr = 7.72987e-12 +I0408 16:27:23.485915 27257 solver.cpp:218] Iteration 6012 (2.39906 iter/s, 5.00196s/12 iters), loss = 4.89176 +I0408 16:27:23.485970 27257 solver.cpp:237] Train net output #0: loss = 4.89176 (* 1 = 4.89176 loss) +I0408 16:27:23.485983 27257 sgd_solver.cpp:105] Iteration 6012, lr = 7.41223e-12 +I0408 16:27:25.513196 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 16:27:28.565454 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 16:27:30.948725 27257 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 16:27:30.948752 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:27:33.070120 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:27:35.480376 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:27:35.480424 27257 solver.cpp:397] Test net output #1: loss = 4.96938 (* 1 = 4.96938 loss) +I0408 16:27:37.470996 27257 solver.cpp:218] Iteration 6024 (0.858088 iter/s, 13.9846s/12 iters), loss = 4.97884 +I0408 16:27:37.471045 27257 solver.cpp:237] Train net output #0: loss = 4.97884 (* 1 = 4.97884 loss) +I0408 16:27:37.471056 27257 sgd_solver.cpp:105] Iteration 6024, lr = 7.10763e-12 +I0408 16:27:42.724040 27257 solver.cpp:218] Iteration 6036 (2.28449 iter/s, 5.25281s/12 iters), loss = 4.80025 +I0408 16:27:42.724087 27257 solver.cpp:237] Train net output #0: loss = 4.80025 (* 1 = 4.80025 loss) +I0408 16:27:42.724099 27257 sgd_solver.cpp:105] Iteration 6036, lr = 6.81556e-12 +I0408 16:27:47.734864 27257 solver.cpp:218] Iteration 6048 (2.39492 iter/s, 5.0106s/12 iters), loss = 4.94907 +I0408 16:27:47.734970 27257 solver.cpp:237] Train net output #0: loss = 4.94907 (* 1 = 4.94907 loss) +I0408 16:27:47.734983 27257 sgd_solver.cpp:105] Iteration 6048, lr = 6.53548e-12 +I0408 16:27:52.770645 27257 solver.cpp:218] Iteration 6060 (2.38308 iter/s, 5.0355s/12 iters), loss = 4.90182 +I0408 16:27:52.770692 27257 solver.cpp:237] Train net output #0: loss = 4.90182 (* 1 = 4.90182 loss) +I0408 16:27:52.770704 27257 sgd_solver.cpp:105] Iteration 6060, lr = 6.26692e-12 +I0408 16:27:56.257431 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:27:57.800211 27257 solver.cpp:218] Iteration 6072 (2.386 iter/s, 5.02935s/12 iters), loss = 4.9445 +I0408 16:27:57.800256 27257 solver.cpp:237] Train net output #0: loss = 4.9445 (* 1 = 4.9445 loss) +I0408 16:27:57.800268 27257 sgd_solver.cpp:105] Iteration 6072, lr = 6.00939e-12 +I0408 16:28:02.809202 27257 solver.cpp:218] Iteration 6084 (2.39579 iter/s, 5.00878s/12 iters), loss = 4.97786 +I0408 16:28:02.809240 27257 solver.cpp:237] Train net output #0: loss = 4.97786 (* 1 = 4.97786 loss) +I0408 16:28:02.809248 27257 sgd_solver.cpp:105] Iteration 6084, lr = 5.76244e-12 +I0408 16:28:07.822855 27257 solver.cpp:218] Iteration 6096 (2.39357 iter/s, 5.01344s/12 iters), loss = 4.97642 +I0408 16:28:07.822899 27257 solver.cpp:237] Train net output #0: loss = 4.97642 (* 1 = 4.97642 loss) +I0408 16:28:07.822911 27257 sgd_solver.cpp:105] Iteration 6096, lr = 5.52565e-12 +I0408 16:28:12.829564 27257 solver.cpp:218] Iteration 6108 (2.39689 iter/s, 5.00649s/12 iters), loss = 4.95444 +I0408 16:28:12.829614 27257 solver.cpp:237] Train net output #0: loss = 4.95444 (* 1 = 4.95444 loss) +I0408 16:28:12.829627 27257 sgd_solver.cpp:105] Iteration 6108, lr = 5.29858e-12 +I0408 16:28:17.395328 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 16:28:20.414122 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 16:28:22.748637 27257 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 16:28:22.748663 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:28:24.781208 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:28:27.183681 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:28:27.183728 27257 solver.cpp:397] Test net output #1: loss = 4.96881 (* 1 = 4.96881 loss) +I0408 16:28:27.274281 27257 solver.cpp:218] Iteration 6120 (0.830784 iter/s, 14.4442s/12 iters), loss = 4.94181 +I0408 16:28:27.274333 27257 solver.cpp:237] Train net output #0: loss = 4.94181 (* 1 = 4.94181 loss) +I0408 16:28:27.274344 27257 sgd_solver.cpp:105] Iteration 6120, lr = 5.08084e-12 +I0408 16:28:31.807906 27257 solver.cpp:218] Iteration 6132 (2.64701 iter/s, 4.53342s/12 iters), loss = 4.91289 +I0408 16:28:31.807950 27257 solver.cpp:237] Train net output #0: loss = 4.91289 (* 1 = 4.91289 loss) +I0408 16:28:31.807961 27257 sgd_solver.cpp:105] Iteration 6132, lr = 4.87205e-12 +I0408 16:28:36.918610 27257 solver.cpp:218] Iteration 6144 (2.34812 iter/s, 5.11048s/12 iters), loss = 5.05953 +I0408 16:28:36.918666 27257 solver.cpp:237] Train net output #0: loss = 5.05953 (* 1 = 5.05953 loss) +I0408 16:28:36.918682 27257 sgd_solver.cpp:105] Iteration 6144, lr = 4.67185e-12 +I0408 16:28:41.855667 27257 solver.cpp:218] Iteration 6156 (2.43071 iter/s, 4.93683s/12 iters), loss = 4.90015 +I0408 16:28:41.855715 27257 solver.cpp:237] Train net output #0: loss = 4.90015 (* 1 = 4.90015 loss) +I0408 16:28:41.855727 27257 sgd_solver.cpp:105] Iteration 6156, lr = 4.47986e-12 +I0408 16:28:46.862510 27257 solver.cpp:218] Iteration 6168 (2.39682 iter/s, 5.00662s/12 iters), loss = 4.98516 +I0408 16:28:46.862551 27257 solver.cpp:237] Train net output #0: loss = 4.98516 (* 1 = 4.98516 loss) +I0408 16:28:46.862561 27257 sgd_solver.cpp:105] Iteration 6168, lr = 4.29577e-12 +I0408 16:28:47.455926 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:28:51.862291 27257 solver.cpp:218] Iteration 6180 (2.40021 iter/s, 4.99956s/12 iters), loss = 4.93417 +I0408 16:28:51.862365 27257 solver.cpp:237] Train net output #0: loss = 4.93417 (* 1 = 4.93417 loss) +I0408 16:28:51.862375 27257 sgd_solver.cpp:105] Iteration 6180, lr = 4.11924e-12 +I0408 16:28:56.877040 27257 solver.cpp:218] Iteration 6192 (2.39306 iter/s, 5.0145s/12 iters), loss = 5.00094 +I0408 16:28:56.877094 27257 solver.cpp:237] Train net output #0: loss = 5.00094 (* 1 = 5.00094 loss) +I0408 16:28:56.877108 27257 sgd_solver.cpp:105] Iteration 6192, lr = 3.94997e-12 +I0408 16:29:01.917001 27257 solver.cpp:218] Iteration 6204 (2.38108 iter/s, 5.03974s/12 iters), loss = 4.86343 +I0408 16:29:01.917045 27257 solver.cpp:237] Train net output #0: loss = 4.86343 (* 1 = 4.86343 loss) +I0408 16:29:01.917057 27257 sgd_solver.cpp:105] Iteration 6204, lr = 3.78765e-12 +I0408 16:29:06.930243 27257 solver.cpp:218] Iteration 6216 (2.39377 iter/s, 5.01302s/12 iters), loss = 4.79577 +I0408 16:29:06.930289 27257 solver.cpp:237] Train net output #0: loss = 4.79577 (* 1 = 4.79577 loss) +I0408 16:29:06.930301 27257 sgd_solver.cpp:105] Iteration 6216, lr = 3.63201e-12 +I0408 16:29:08.991566 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 16:29:12.001232 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 16:29:14.334620 27257 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 16:29:14.334646 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:29:16.319079 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:29:17.665274 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:29:18.908510 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:29:18.908550 27257 solver.cpp:397] Test net output #1: loss = 4.97021 (* 1 = 4.97021 loss) +I0408 16:29:20.856420 27257 solver.cpp:218] Iteration 6228 (0.861718 iter/s, 13.9257s/12 iters), loss = 4.90703 +I0408 16:29:20.856469 27257 solver.cpp:237] Train net output #0: loss = 4.90703 (* 1 = 4.90703 loss) +I0408 16:29:20.856480 27257 sgd_solver.cpp:105] Iteration 6228, lr = 3.48275e-12 +I0408 16:29:25.940784 27257 solver.cpp:218] Iteration 6240 (2.36028 iter/s, 5.08414s/12 iters), loss = 4.98304 +I0408 16:29:25.940898 27257 solver.cpp:237] Train net output #0: loss = 4.98304 (* 1 = 4.98304 loss) +I0408 16:29:25.940908 27257 sgd_solver.cpp:105] Iteration 6240, lr = 3.33964e-12 +I0408 16:29:30.969858 27257 solver.cpp:218] Iteration 6252 (2.38626 iter/s, 5.02878s/12 iters), loss = 4.94891 +I0408 16:29:30.969907 27257 solver.cpp:237] Train net output #0: loss = 4.94891 (* 1 = 4.94891 loss) +I0408 16:29:30.969918 27257 sgd_solver.cpp:105] Iteration 6252, lr = 3.2024e-12 +I0408 16:29:36.057665 27257 solver.cpp:218] Iteration 6264 (2.35869 iter/s, 5.08758s/12 iters), loss = 4.95762 +I0408 16:29:36.057709 27257 solver.cpp:237] Train net output #0: loss = 4.95762 (* 1 = 4.95762 loss) +I0408 16:29:36.057721 27257 sgd_solver.cpp:105] Iteration 6264, lr = 3.0708e-12 +I0408 16:29:38.812634 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:29:41.093921 27257 solver.cpp:218] Iteration 6276 (2.38283 iter/s, 5.03603s/12 iters), loss = 4.95547 +I0408 16:29:41.093982 27257 solver.cpp:237] Train net output #0: loss = 4.95547 (* 1 = 4.95547 loss) +I0408 16:29:41.093994 27257 sgd_solver.cpp:105] Iteration 6276, lr = 2.94461e-12 +I0408 16:29:46.119504 27257 solver.cpp:218] Iteration 6288 (2.38789 iter/s, 5.02535s/12 iters), loss = 4.88391 +I0408 16:29:46.119546 27257 solver.cpp:237] Train net output #0: loss = 4.88391 (* 1 = 4.88391 loss) +I0408 16:29:46.119557 27257 sgd_solver.cpp:105] Iteration 6288, lr = 2.82361e-12 +I0408 16:29:51.381019 27257 solver.cpp:218] Iteration 6300 (2.28081 iter/s, 5.26129s/12 iters), loss = 4.83294 +I0408 16:29:51.381062 27257 solver.cpp:237] Train net output #0: loss = 4.83294 (* 1 = 4.83294 loss) +I0408 16:29:51.381074 27257 sgd_solver.cpp:105] Iteration 6300, lr = 2.70758e-12 +I0408 16:29:56.329835 27257 solver.cpp:218] Iteration 6312 (2.42493 iter/s, 4.9486s/12 iters), loss = 4.87031 +I0408 16:29:56.329937 27257 solver.cpp:237] Train net output #0: loss = 4.87031 (* 1 = 4.87031 loss) +I0408 16:29:56.329950 27257 sgd_solver.cpp:105] Iteration 6312, lr = 2.59631e-12 +I0408 16:30:00.861224 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 16:30:03.892670 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 16:30:06.627993 27257 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 16:30:06.628013 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:30:08.616464 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:30:11.098742 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:30:11.098786 27257 solver.cpp:397] Test net output #1: loss = 4.96802 (* 1 = 4.96802 loss) +I0408 16:30:11.189404 27257 solver.cpp:218] Iteration 6324 (0.807593 iter/s, 14.859s/12 iters), loss = 4.90845 +I0408 16:30:11.189458 27257 solver.cpp:237] Train net output #0: loss = 4.90845 (* 1 = 4.90845 loss) +I0408 16:30:11.189469 27257 sgd_solver.cpp:105] Iteration 6324, lr = 2.48962e-12 +I0408 16:30:15.368607 27257 solver.cpp:218] Iteration 6336 (2.8715 iter/s, 4.179s/12 iters), loss = 4.95824 +I0408 16:30:15.368643 27257 solver.cpp:237] Train net output #0: loss = 4.95824 (* 1 = 4.95824 loss) +I0408 16:30:15.368652 27257 sgd_solver.cpp:105] Iteration 6336, lr = 2.38732e-12 +I0408 16:30:20.387655 27257 solver.cpp:218] Iteration 6348 (2.391 iter/s, 5.01883s/12 iters), loss = 4.9963 +I0408 16:30:20.387704 27257 solver.cpp:237] Train net output #0: loss = 4.9963 (* 1 = 4.9963 loss) +I0408 16:30:20.387715 27257 sgd_solver.cpp:105] Iteration 6348, lr = 2.28921e-12 +I0408 16:30:25.408210 27257 solver.cpp:218] Iteration 6360 (2.39028 iter/s, 5.02033s/12 iters), loss = 4.96673 +I0408 16:30:25.408247 27257 solver.cpp:237] Train net output #0: loss = 4.96673 (* 1 = 4.96673 loss) +I0408 16:30:25.408257 27257 sgd_solver.cpp:105] Iteration 6360, lr = 2.19514e-12 +I0408 16:30:30.262027 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:30:30.400527 27257 solver.cpp:218] Iteration 6372 (2.4038 iter/s, 4.9921s/12 iters), loss = 4.98659 +I0408 16:30:30.400563 27257 solver.cpp:237] Train net output #0: loss = 4.98659 (* 1 = 4.98659 loss) +I0408 16:30:30.400570 27257 sgd_solver.cpp:105] Iteration 6372, lr = 2.10494e-12 +I0408 16:30:35.417950 27257 solver.cpp:218] Iteration 6384 (2.39177 iter/s, 5.01721s/12 iters), loss = 5.01396 +I0408 16:30:35.417994 27257 solver.cpp:237] Train net output #0: loss = 5.01396 (* 1 = 5.01396 loss) +I0408 16:30:35.418004 27257 sgd_solver.cpp:105] Iteration 6384, lr = 2.01844e-12 +I0408 16:30:40.446652 27257 solver.cpp:218] Iteration 6396 (2.38641 iter/s, 5.02847s/12 iters), loss = 4.86842 +I0408 16:30:40.446712 27257 solver.cpp:237] Train net output #0: loss = 4.86842 (* 1 = 4.86842 loss) +I0408 16:30:40.446724 27257 sgd_solver.cpp:105] Iteration 6396, lr = 1.93549e-12 +I0408 16:30:45.496207 27257 solver.cpp:218] Iteration 6408 (2.37656 iter/s, 5.04932s/12 iters), loss = 4.9009 +I0408 16:30:45.496256 27257 solver.cpp:237] Train net output #0: loss = 4.9009 (* 1 = 4.9009 loss) +I0408 16:30:45.496269 27257 sgd_solver.cpp:105] Iteration 6408, lr = 1.85596e-12 +I0408 16:30:50.556644 27257 solver.cpp:218] Iteration 6420 (2.37144 iter/s, 5.06021s/12 iters), loss = 4.94037 +I0408 16:30:50.556690 27257 solver.cpp:237] Train net output #0: loss = 4.94037 (* 1 = 4.94037 loss) +I0408 16:30:50.556702 27257 sgd_solver.cpp:105] Iteration 6420, lr = 1.77969e-12 +I0408 16:30:52.535483 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 16:30:56.653875 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 16:30:58.982671 27257 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 16:30:58.982698 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:31:00.916060 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:31:03.446010 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:31:03.446038 27257 solver.cpp:397] Test net output #1: loss = 4.9701 (* 1 = 4.9701 loss) +I0408 16:31:05.194947 27257 solver.cpp:218] Iteration 6432 (0.819798 iter/s, 14.6378s/12 iters), loss = 4.88243 +I0408 16:31:05.194999 27257 solver.cpp:237] Train net output #0: loss = 4.88243 (* 1 = 4.88243 loss) +I0408 16:31:05.195011 27257 sgd_solver.cpp:105] Iteration 6432, lr = 1.70656e-12 +I0408 16:31:10.223837 27257 solver.cpp:218] Iteration 6444 (2.38632 iter/s, 5.02866s/12 iters), loss = 4.93451 +I0408 16:31:10.223887 27257 solver.cpp:237] Train net output #0: loss = 4.93451 (* 1 = 4.93451 loss) +I0408 16:31:10.223899 27257 sgd_solver.cpp:105] Iteration 6444, lr = 1.63643e-12 +I0408 16:31:15.193320 27257 solver.cpp:218] Iteration 6456 (2.41485 iter/s, 4.96926s/12 iters), loss = 5.0223 +I0408 16:31:15.193363 27257 solver.cpp:237] Train net output #0: loss = 5.0223 (* 1 = 5.0223 loss) +I0408 16:31:15.193374 27257 sgd_solver.cpp:105] Iteration 6456, lr = 1.56918e-12 +I0408 16:31:20.150499 27257 solver.cpp:218] Iteration 6468 (2.42084 iter/s, 4.95696s/12 iters), loss = 5.04799 +I0408 16:31:20.150543 27257 solver.cpp:237] Train net output #0: loss = 5.04799 (* 1 = 5.04799 loss) +I0408 16:31:20.150555 27257 sgd_solver.cpp:105] Iteration 6468, lr = 1.5047e-12 +I0408 16:31:22.123224 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:31:25.092751 27257 solver.cpp:218] Iteration 6480 (2.42815 iter/s, 4.94203s/12 iters), loss = 4.95421 +I0408 16:31:25.092797 27257 solver.cpp:237] Train net output #0: loss = 4.95421 (* 1 = 4.95421 loss) +I0408 16:31:25.092808 27257 sgd_solver.cpp:105] Iteration 6480, lr = 1.44287e-12 +I0408 16:31:30.127748 27257 solver.cpp:218] Iteration 6492 (2.38342 iter/s, 5.03477s/12 iters), loss = 4.86639 +I0408 16:31:30.127784 27257 solver.cpp:237] Train net output #0: loss = 4.86639 (* 1 = 4.86639 loss) +I0408 16:31:30.127791 27257 sgd_solver.cpp:105] Iteration 6492, lr = 1.38357e-12 +I0408 16:31:35.082207 27257 solver.cpp:218] Iteration 6504 (2.42216 iter/s, 4.95425s/12 iters), loss = 4.85511 +I0408 16:31:35.082348 27257 solver.cpp:237] Train net output #0: loss = 4.85511 (* 1 = 4.85511 loss) +I0408 16:31:35.082363 27257 sgd_solver.cpp:105] Iteration 6504, lr = 1.32672e-12 +I0408 16:31:39.989493 27257 solver.cpp:218] Iteration 6516 (2.4455 iter/s, 4.90698s/12 iters), loss = 4.98139 +I0408 16:31:39.989539 27257 solver.cpp:237] Train net output #0: loss = 4.98139 (* 1 = 4.98139 loss) +I0408 16:31:39.989552 27257 sgd_solver.cpp:105] Iteration 6516, lr = 1.2722e-12 +I0408 16:31:44.544095 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 16:31:47.583566 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 16:31:49.882256 27257 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 16:31:49.882277 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:31:51.772900 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:31:54.334106 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:31:54.334152 27257 solver.cpp:397] Test net output #1: loss = 4.97163 (* 1 = 4.97163 loss) +I0408 16:31:54.424810 27257 solver.cpp:218] Iteration 6528 (0.831326 iter/s, 14.4348s/12 iters), loss = 4.97076 +I0408 16:31:54.424865 27257 solver.cpp:237] Train net output #0: loss = 4.97076 (* 1 = 4.97076 loss) +I0408 16:31:54.424877 27257 sgd_solver.cpp:105] Iteration 6528, lr = 1.21992e-12 +I0408 16:31:58.912010 27257 solver.cpp:218] Iteration 6540 (2.6744 iter/s, 4.48699s/12 iters), loss = 4.89091 +I0408 16:31:58.912058 27257 solver.cpp:237] Train net output #0: loss = 4.89091 (* 1 = 4.89091 loss) +I0408 16:31:58.912070 27257 sgd_solver.cpp:105] Iteration 6540, lr = 1.16979e-12 +I0408 16:32:03.963992 27257 solver.cpp:218] Iteration 6552 (2.37541 iter/s, 5.05176s/12 iters), loss = 4.90292 +I0408 16:32:03.964026 27257 solver.cpp:237] Train net output #0: loss = 4.90292 (* 1 = 4.90292 loss) +I0408 16:32:03.964035 27257 sgd_solver.cpp:105] Iteration 6552, lr = 1.12172e-12 +I0408 16:32:08.894528 27257 solver.cpp:218] Iteration 6564 (2.43392 iter/s, 4.93032s/12 iters), loss = 4.96598 +I0408 16:32:08.894667 27257 solver.cpp:237] Train net output #0: loss = 4.96598 (* 1 = 4.96598 loss) +I0408 16:32:08.894680 27257 sgd_solver.cpp:105] Iteration 6564, lr = 1.07562e-12 +I0408 16:32:13.136072 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:32:13.901881 27257 solver.cpp:218] Iteration 6576 (2.39663 iter/s, 5.00704s/12 iters), loss = 4.92673 +I0408 16:32:13.901928 27257 solver.cpp:237] Train net output #0: loss = 4.92673 (* 1 = 4.92673 loss) +I0408 16:32:13.901939 27257 sgd_solver.cpp:105] Iteration 6576, lr = 1.03142e-12 +I0408 16:32:18.913130 27257 solver.cpp:218] Iteration 6588 (2.39472 iter/s, 5.01102s/12 iters), loss = 4.8927 +I0408 16:32:18.913174 27257 solver.cpp:237] Train net output #0: loss = 4.8927 (* 1 = 4.8927 loss) +I0408 16:32:18.913187 27257 sgd_solver.cpp:105] Iteration 6588, lr = 9.89039e-13 +I0408 16:32:23.934495 27257 solver.cpp:218] Iteration 6600 (2.3899 iter/s, 5.02114s/12 iters), loss = 4.95721 +I0408 16:32:23.934543 27257 solver.cpp:237] Train net output #0: loss = 4.95721 (* 1 = 4.95721 loss) +I0408 16:32:23.934556 27257 sgd_solver.cpp:105] Iteration 6600, lr = 9.48396e-13 +I0408 16:32:28.918179 27257 solver.cpp:218] Iteration 6612 (2.40797 iter/s, 4.98345s/12 iters), loss = 4.87676 +I0408 16:32:28.918229 27257 solver.cpp:237] Train net output #0: loss = 4.87676 (* 1 = 4.87676 loss) +I0408 16:32:28.918241 27257 sgd_solver.cpp:105] Iteration 6612, lr = 9.09423e-13 +I0408 16:32:34.026278 27257 solver.cpp:218] Iteration 6624 (2.34932 iter/s, 5.10787s/12 iters), loss = 4.83864 +I0408 16:32:34.026312 27257 solver.cpp:237] Train net output #0: loss = 4.83864 (* 1 = 4.83864 loss) +I0408 16:32:34.026320 27257 sgd_solver.cpp:105] Iteration 6624, lr = 8.72052e-13 +I0408 16:32:36.048292 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 16:32:39.113149 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 16:32:41.439904 27257 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 16:32:41.439932 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:32:43.300736 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:32:45.895826 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:32:45.895871 27257 solver.cpp:397] Test net output #1: loss = 4.9689 (* 1 = 4.9689 loss) +I0408 16:32:47.852952 27257 solver.cpp:218] Iteration 6636 (0.86792 iter/s, 13.8262s/12 iters), loss = 4.9424 +I0408 16:32:47.853000 27257 solver.cpp:237] Train net output #0: loss = 4.9424 (* 1 = 4.9424 loss) +I0408 16:32:47.853010 27257 sgd_solver.cpp:105] Iteration 6636, lr = 8.36216e-13 +I0408 16:32:52.886986 27257 solver.cpp:218] Iteration 6648 (2.38388 iter/s, 5.0338s/12 iters), loss = 5.07322 +I0408 16:32:52.887046 27257 solver.cpp:237] Train net output #0: loss = 5.07322 (* 1 = 5.07322 loss) +I0408 16:32:52.887060 27257 sgd_solver.cpp:105] Iteration 6648, lr = 8.01853e-13 +I0408 16:32:57.789335 27257 solver.cpp:218] Iteration 6660 (2.44792 iter/s, 4.90212s/12 iters), loss = 4.94209 +I0408 16:32:57.789378 27257 solver.cpp:237] Train net output #0: loss = 4.94209 (* 1 = 4.94209 loss) +I0408 16:32:57.789388 27257 sgd_solver.cpp:105] Iteration 6660, lr = 7.68903e-13 +I0408 16:33:02.803237 27257 solver.cpp:218] Iteration 6672 (2.39345 iter/s, 5.01368s/12 iters), loss = 4.97386 +I0408 16:33:02.803287 27257 solver.cpp:237] Train net output #0: loss = 4.97386 (* 1 = 4.97386 loss) +I0408 16:33:02.803298 27257 sgd_solver.cpp:105] Iteration 6672, lr = 7.37306e-13 +I0408 16:33:04.176167 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:33:07.835703 27257 solver.cpp:218] Iteration 6684 (2.38463 iter/s, 5.03223s/12 iters), loss = 4.94916 +I0408 16:33:07.835745 27257 solver.cpp:237] Train net output #0: loss = 4.94916 (* 1 = 4.94916 loss) +I0408 16:33:07.835755 27257 sgd_solver.cpp:105] Iteration 6684, lr = 7.07007e-13 +I0408 16:33:12.837365 27257 solver.cpp:218] Iteration 6696 (2.39931 iter/s, 5.00143s/12 iters), loss = 5.09324 +I0408 16:33:12.837472 27257 solver.cpp:237] Train net output #0: loss = 5.09324 (* 1 = 5.09324 loss) +I0408 16:33:12.837486 27257 sgd_solver.cpp:105] Iteration 6696, lr = 6.77954e-13 +I0408 16:33:17.879042 27257 solver.cpp:218] Iteration 6708 (2.3803 iter/s, 5.04139s/12 iters), loss = 5.05749 +I0408 16:33:17.879081 27257 solver.cpp:237] Train net output #0: loss = 5.05749 (* 1 = 5.05749 loss) +I0408 16:33:17.879089 27257 sgd_solver.cpp:105] Iteration 6708, lr = 6.50095e-13 +I0408 16:33:22.845816 27257 solver.cpp:218] Iteration 6720 (2.41616 iter/s, 4.96656s/12 iters), loss = 4.9205 +I0408 16:33:22.845850 27257 solver.cpp:237] Train net output #0: loss = 4.9205 (* 1 = 4.9205 loss) +I0408 16:33:22.845858 27257 sgd_solver.cpp:105] Iteration 6720, lr = 6.2338e-13 +I0408 16:33:27.408916 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 16:33:30.502781 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 16:33:32.854212 27257 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 16:33:32.854241 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:33:34.688370 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:33:37.325582 27257 solver.cpp:397] Test net output #0: accuracy = 0.028799 +I0408 16:33:37.325629 27257 solver.cpp:397] Test net output #1: loss = 4.9688 (* 1 = 4.9688 loss) +I0408 16:33:37.416242 27257 solver.cpp:218] Iteration 6732 (0.823617 iter/s, 14.5699s/12 iters), loss = 4.97307 +I0408 16:33:37.416291 27257 solver.cpp:237] Train net output #0: loss = 4.97307 (* 1 = 4.97307 loss) +I0408 16:33:37.416302 27257 sgd_solver.cpp:105] Iteration 6732, lr = 5.97763e-13 +I0408 16:33:41.735944 27257 solver.cpp:218] Iteration 6744 (2.7781 iter/s, 4.31949s/12 iters), loss = 4.90535 +I0408 16:33:41.735989 27257 solver.cpp:237] Train net output #0: loss = 4.90535 (* 1 = 4.90535 loss) +I0408 16:33:41.736001 27257 sgd_solver.cpp:105] Iteration 6744, lr = 5.73199e-13 +I0408 16:33:46.783674 27257 solver.cpp:218] Iteration 6756 (2.37741 iter/s, 5.0475s/12 iters), loss = 4.9069 +I0408 16:33:46.783828 27257 solver.cpp:237] Train net output #0: loss = 4.9069 (* 1 = 4.9069 loss) +I0408 16:33:46.783841 27257 sgd_solver.cpp:105] Iteration 6756, lr = 5.49645e-13 +I0408 16:33:51.819564 27257 solver.cpp:218] Iteration 6768 (2.38305 iter/s, 5.03556s/12 iters), loss = 4.96622 +I0408 16:33:51.819608 27257 solver.cpp:237] Train net output #0: loss = 4.96622 (* 1 = 4.96622 loss) +I0408 16:33:51.819619 27257 sgd_solver.cpp:105] Iteration 6768, lr = 5.27058e-13 +I0408 16:33:55.558996 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:33:57.208549 27257 solver.cpp:218] Iteration 6780 (2.22686 iter/s, 5.38875s/12 iters), loss = 5.00655 +I0408 16:33:57.208597 27257 solver.cpp:237] Train net output #0: loss = 5.00655 (* 1 = 5.00655 loss) +I0408 16:33:57.208608 27257 sgd_solver.cpp:105] Iteration 6780, lr = 5.05399e-13 +I0408 16:34:02.294358 27257 solver.cpp:218] Iteration 6792 (2.35962 iter/s, 5.08557s/12 iters), loss = 4.99052 +I0408 16:34:02.294407 27257 solver.cpp:237] Train net output #0: loss = 4.99052 (* 1 = 4.99052 loss) +I0408 16:34:02.294420 27257 sgd_solver.cpp:105] Iteration 6792, lr = 4.84631e-13 +I0408 16:34:07.305464 27257 solver.cpp:218] Iteration 6804 (2.39479 iter/s, 5.01087s/12 iters), loss = 5.00698 +I0408 16:34:07.305511 27257 solver.cpp:237] Train net output #0: loss = 5.00698 (* 1 = 5.00698 loss) +I0408 16:34:07.305523 27257 sgd_solver.cpp:105] Iteration 6804, lr = 4.64716e-13 +I0408 16:34:12.330091 27257 solver.cpp:218] Iteration 6816 (2.38835 iter/s, 5.02439s/12 iters), loss = 4.92999 +I0408 16:34:12.330148 27257 solver.cpp:237] Train net output #0: loss = 4.92999 (* 1 = 4.92999 loss) +I0408 16:34:12.330163 27257 sgd_solver.cpp:105] Iteration 6816, lr = 4.45619e-13 +I0408 16:34:17.286666 27257 solver.cpp:218] Iteration 6828 (2.42114 iter/s, 4.95634s/12 iters), loss = 4.96731 +I0408 16:34:17.286772 27257 solver.cpp:237] Train net output #0: loss = 4.96731 (* 1 = 4.96731 loss) +I0408 16:34:17.286785 27257 sgd_solver.cpp:105] Iteration 6828, lr = 4.27307e-13 +I0408 16:34:19.332589 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 16:34:22.366509 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 16:34:24.666921 27257 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 16:34:24.666946 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:34:26.464629 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:34:29.138657 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:34:29.138705 27257 solver.cpp:397] Test net output #1: loss = 4.9704 (* 1 = 4.9704 loss) +I0408 16:34:31.006120 27257 solver.cpp:218] Iteration 6840 (0.874707 iter/s, 13.7189s/12 iters), loss = 4.93493 +I0408 16:34:31.006165 27257 solver.cpp:237] Train net output #0: loss = 4.93493 (* 1 = 4.93493 loss) +I0408 16:34:31.006175 27257 sgd_solver.cpp:105] Iteration 6840, lr = 4.09748e-13 +I0408 16:34:35.992218 27257 solver.cpp:218] Iteration 6852 (2.4068 iter/s, 4.98587s/12 iters), loss = 5.13363 +I0408 16:34:35.992266 27257 solver.cpp:237] Train net output #0: loss = 5.13363 (* 1 = 5.13363 loss) +I0408 16:34:35.992278 27257 sgd_solver.cpp:105] Iteration 6852, lr = 3.9291e-13 +I0408 16:34:40.950913 27257 solver.cpp:218] Iteration 6864 (2.4201 iter/s, 4.95847s/12 iters), loss = 4.94671 +I0408 16:34:40.950963 27257 solver.cpp:237] Train net output #0: loss = 4.94671 (* 1 = 4.94671 loss) +I0408 16:34:40.950974 27257 sgd_solver.cpp:105] Iteration 6864, lr = 3.76764e-13 +I0408 16:34:45.943692 27257 solver.cpp:218] Iteration 6876 (2.40358 iter/s, 4.99255s/12 iters), loss = 4.97161 +I0408 16:34:45.943742 27257 solver.cpp:237] Train net output #0: loss = 4.97161 (* 1 = 4.97161 loss) +I0408 16:34:45.943753 27257 sgd_solver.cpp:105] Iteration 6876, lr = 3.61281e-13 +I0408 16:34:46.563009 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:34:50.953773 27257 solver.cpp:218] Iteration 6888 (2.39528 iter/s, 5.00985s/12 iters), loss = 4.90783 +I0408 16:34:50.953894 27257 solver.cpp:237] Train net output #0: loss = 4.90783 (* 1 = 4.90783 loss) +I0408 16:34:50.953907 27257 sgd_solver.cpp:105] Iteration 6888, lr = 3.46435e-13 +I0408 16:34:55.974893 27257 solver.cpp:218] Iteration 6900 (2.39005 iter/s, 5.02082s/12 iters), loss = 5.00945 +I0408 16:34:55.974951 27257 solver.cpp:237] Train net output #0: loss = 5.00945 (* 1 = 5.00945 loss) +I0408 16:34:55.974959 27257 sgd_solver.cpp:105] Iteration 6900, lr = 3.32199e-13 +I0408 16:35:00.986124 27257 solver.cpp:218] Iteration 6912 (2.39474 iter/s, 5.01099s/12 iters), loss = 4.82847 +I0408 16:35:00.986265 27257 solver.cpp:237] Train net output #0: loss = 4.82847 (* 1 = 4.82847 loss) +I0408 16:35:00.986276 27257 sgd_solver.cpp:105] Iteration 6912, lr = 3.18548e-13 +I0408 16:35:05.981638 27257 solver.cpp:218] Iteration 6924 (2.40226 iter/s, 4.99529s/12 iters), loss = 4.84179 +I0408 16:35:05.981670 27257 solver.cpp:237] Train net output #0: loss = 4.84179 (* 1 = 4.84179 loss) +I0408 16:35:05.981679 27257 sgd_solver.cpp:105] Iteration 6924, lr = 3.05458e-13 +I0408 16:35:10.473573 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 16:35:13.521345 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 16:35:15.898123 27257 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 16:35:15.898152 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:35:16.555872 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:35:17.643921 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:35:20.362224 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:35:20.362270 27257 solver.cpp:397] Test net output #1: loss = 4.97164 (* 1 = 4.97164 loss) +I0408 16:35:20.452813 27257 solver.cpp:218] Iteration 6936 (0.829266 iter/s, 14.4706s/12 iters), loss = 4.90616 +I0408 16:35:20.452864 27257 solver.cpp:237] Train net output #0: loss = 4.90616 (* 1 = 4.90616 loss) +I0408 16:35:20.452874 27257 sgd_solver.cpp:105] Iteration 6936, lr = 2.92905e-13 +I0408 16:35:24.694653 27257 solver.cpp:218] Iteration 6948 (2.8291 iter/s, 4.24163s/12 iters), loss = 4.93777 +I0408 16:35:24.694763 27257 solver.cpp:237] Train net output #0: loss = 4.93777 (* 1 = 4.93777 loss) +I0408 16:35:24.694777 27257 sgd_solver.cpp:105] Iteration 6948, lr = 2.80869e-13 +I0408 16:35:29.770772 27257 solver.cpp:218] Iteration 6960 (2.36415 iter/s, 5.07582s/12 iters), loss = 4.99756 +I0408 16:35:29.770823 27257 solver.cpp:237] Train net output #0: loss = 4.99756 (* 1 = 4.99756 loss) +I0408 16:35:29.770834 27257 sgd_solver.cpp:105] Iteration 6960, lr = 2.69327e-13 +I0408 16:35:34.660773 27257 solver.cpp:218] Iteration 6972 (2.4541 iter/s, 4.88977s/12 iters), loss = 4.96714 +I0408 16:35:34.660810 27257 solver.cpp:237] Train net output #0: loss = 4.96714 (* 1 = 4.96714 loss) +I0408 16:35:34.660820 27257 sgd_solver.cpp:105] Iteration 6972, lr = 2.58259e-13 +I0408 16:35:37.425601 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:35:39.681246 27257 solver.cpp:218] Iteration 6984 (2.39032 iter/s, 5.02025s/12 iters), loss = 4.91259 +I0408 16:35:39.681291 27257 solver.cpp:237] Train net output #0: loss = 4.91259 (* 1 = 4.91259 loss) +I0408 16:35:39.681303 27257 sgd_solver.cpp:105] Iteration 6984, lr = 2.47647e-13 +I0408 16:35:44.945780 27257 solver.cpp:218] Iteration 6996 (2.27951 iter/s, 5.2643s/12 iters), loss = 4.86538 +I0408 16:35:44.945828 27257 solver.cpp:237] Train net output #0: loss = 4.86538 (* 1 = 4.86538 loss) +I0408 16:35:44.945840 27257 sgd_solver.cpp:105] Iteration 6996, lr = 2.3747e-13 +I0408 16:35:50.274644 27257 solver.cpp:218] Iteration 7008 (2.25199 iter/s, 5.32862s/12 iters), loss = 4.85158 +I0408 16:35:50.274690 27257 solver.cpp:237] Train net output #0: loss = 4.85158 (* 1 = 4.85158 loss) +I0408 16:35:50.274701 27257 sgd_solver.cpp:105] Iteration 7008, lr = 2.27712e-13 +I0408 16:35:55.176257 27257 solver.cpp:218] Iteration 7020 (2.44829 iter/s, 4.90139s/12 iters), loss = 4.89033 +I0408 16:35:55.176393 27257 solver.cpp:237] Train net output #0: loss = 4.89033 (* 1 = 4.89033 loss) +I0408 16:35:55.176405 27257 sgd_solver.cpp:105] Iteration 7020, lr = 2.18354e-13 +I0408 16:36:00.220424 27257 solver.cpp:218] Iteration 7032 (2.37914 iter/s, 5.04385s/12 iters), loss = 4.87689 +I0408 16:36:00.220468 27257 solver.cpp:237] Train net output #0: loss = 4.87689 (* 1 = 4.87689 loss) +I0408 16:36:00.220480 27257 sgd_solver.cpp:105] Iteration 7032, lr = 2.09381e-13 +I0408 16:36:02.268992 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 16:36:05.431566 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 16:36:08.906689 27257 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 16:36:08.906716 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:36:10.621750 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:36:13.374610 27257 solver.cpp:397] Test net output #0: accuracy = 0.028799 +I0408 16:36:13.374657 27257 solver.cpp:397] Test net output #1: loss = 4.96897 (* 1 = 4.96897 loss) +I0408 16:36:15.262255 27257 solver.cpp:218] Iteration 7044 (0.797806 iter/s, 15.0413s/12 iters), loss = 4.92542 +I0408 16:36:15.262303 27257 solver.cpp:237] Train net output #0: loss = 4.92542 (* 1 = 4.92542 loss) +I0408 16:36:15.262315 27257 sgd_solver.cpp:105] Iteration 7044, lr = 2.00777e-13 +I0408 16:36:20.290259 27257 solver.cpp:218] Iteration 7056 (2.38674 iter/s, 5.02777s/12 iters), loss = 5.02629 +I0408 16:36:20.290307 27257 solver.cpp:237] Train net output #0: loss = 5.02629 (* 1 = 5.02629 loss) +I0408 16:36:20.290318 27257 sgd_solver.cpp:105] Iteration 7056, lr = 1.92527e-13 +I0408 16:36:25.267695 27257 solver.cpp:218] Iteration 7068 (2.41099 iter/s, 4.9772s/12 iters), loss = 4.95618 +I0408 16:36:25.267798 27257 solver.cpp:237] Train net output #0: loss = 4.95618 (* 1 = 4.95618 loss) +I0408 16:36:25.267812 27257 sgd_solver.cpp:105] Iteration 7068, lr = 1.84615e-13 +I0408 16:36:30.217124 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:36:30.326735 27257 solver.cpp:218] Iteration 7080 (2.37213 iter/s, 5.05875s/12 iters), loss = 4.954 +I0408 16:36:30.326777 27257 solver.cpp:237] Train net output #0: loss = 4.954 (* 1 = 4.954 loss) +I0408 16:36:30.326788 27257 sgd_solver.cpp:105] Iteration 7080, lr = 1.77029e-13 +I0408 16:36:35.341547 27257 solver.cpp:218] Iteration 7092 (2.39302 iter/s, 5.01458s/12 iters), loss = 5.0046 +I0408 16:36:35.341590 27257 solver.cpp:237] Train net output #0: loss = 5.0046 (* 1 = 5.0046 loss) +I0408 16:36:35.341600 27257 sgd_solver.cpp:105] Iteration 7092, lr = 1.69754e-13 +I0408 16:36:40.296067 27257 solver.cpp:218] Iteration 7104 (2.42214 iter/s, 4.95429s/12 iters), loss = 4.8585 +I0408 16:36:40.296116 27257 solver.cpp:237] Train net output #0: loss = 4.8585 (* 1 = 4.8585 loss) +I0408 16:36:40.296128 27257 sgd_solver.cpp:105] Iteration 7104, lr = 1.62778e-13 +I0408 16:36:45.334550 27257 solver.cpp:218] Iteration 7116 (2.38178 iter/s, 5.03825s/12 iters), loss = 4.87204 +I0408 16:36:45.334597 27257 solver.cpp:237] Train net output #0: loss = 4.87204 (* 1 = 4.87204 loss) +I0408 16:36:45.334609 27257 sgd_solver.cpp:105] Iteration 7116, lr = 1.56089e-13 +I0408 16:36:50.331952 27257 solver.cpp:218] Iteration 7128 (2.40136 iter/s, 4.99717s/12 iters), loss = 4.99004 +I0408 16:36:50.332006 27257 solver.cpp:237] Train net output #0: loss = 4.99004 (* 1 = 4.99004 loss) +I0408 16:36:50.332020 27257 sgd_solver.cpp:105] Iteration 7128, lr = 1.49675e-13 +I0408 16:36:54.888475 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 16:36:58.022539 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 16:37:00.350972 27257 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 16:37:00.350992 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:37:01.917277 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:37:04.715478 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:37:04.715524 27257 solver.cpp:397] Test net output #1: loss = 4.9708 (* 1 = 4.9708 loss) +I0408 16:37:04.803318 27257 solver.cpp:218] Iteration 7140 (0.829257 iter/s, 14.4708s/12 iters), loss = 4.85019 +I0408 16:37:04.803371 27257 solver.cpp:237] Train net output #0: loss = 4.85019 (* 1 = 4.85019 loss) +I0408 16:37:04.803383 27257 sgd_solver.cpp:105] Iteration 7140, lr = 1.43524e-13 +I0408 16:37:09.356034 27257 solver.cpp:218] Iteration 7152 (2.63592 iter/s, 4.5525s/12 iters), loss = 4.93389 +I0408 16:37:09.356073 27257 solver.cpp:237] Train net output #0: loss = 4.93389 (* 1 = 4.93389 loss) +I0408 16:37:09.356081 27257 sgd_solver.cpp:105] Iteration 7152, lr = 1.37626e-13 +I0408 16:37:14.480410 27257 solver.cpp:218] Iteration 7164 (2.34185 iter/s, 5.12415s/12 iters), loss = 4.98262 +I0408 16:37:14.480445 27257 solver.cpp:237] Train net output #0: loss = 4.98262 (* 1 = 4.98262 loss) +I0408 16:37:14.480454 27257 sgd_solver.cpp:105] Iteration 7164, lr = 1.31971e-13 +I0408 16:37:19.483848 27257 solver.cpp:218] Iteration 7176 (2.39846 iter/s, 5.00322s/12 iters), loss = 5.07846 +I0408 16:37:19.483882 27257 solver.cpp:237] Train net output #0: loss = 5.07846 (* 1 = 5.07846 loss) +I0408 16:37:19.483891 27257 sgd_solver.cpp:105] Iteration 7176, lr = 1.26548e-13 +I0408 16:37:21.588443 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:37:24.484022 27257 solver.cpp:218] Iteration 7188 (2.40002 iter/s, 4.99996s/12 iters), loss = 4.92088 +I0408 16:37:24.484055 27257 solver.cpp:237] Train net output #0: loss = 4.92088 (* 1 = 4.92088 loss) +I0408 16:37:24.484063 27257 sgd_solver.cpp:105] Iteration 7188, lr = 1.21347e-13 +I0408 16:37:29.453642 27257 solver.cpp:218] Iteration 7200 (2.41479 iter/s, 4.96939s/12 iters), loss = 4.92121 +I0408 16:37:29.453749 27257 solver.cpp:237] Train net output #0: loss = 4.92121 (* 1 = 4.92121 loss) +I0408 16:37:29.453766 27257 sgd_solver.cpp:105] Iteration 7200, lr = 1.16361e-13 +I0408 16:37:34.469256 27257 solver.cpp:218] Iteration 7212 (2.39267 iter/s, 5.01533s/12 iters), loss = 4.8803 +I0408 16:37:34.469295 27257 solver.cpp:237] Train net output #0: loss = 4.8803 (* 1 = 4.8803 loss) +I0408 16:37:34.469305 27257 sgd_solver.cpp:105] Iteration 7212, lr = 1.11579e-13 +I0408 16:37:39.481194 27257 solver.cpp:218] Iteration 7224 (2.39439 iter/s, 5.01171s/12 iters), loss = 4.95906 +I0408 16:37:39.481233 27257 solver.cpp:237] Train net output #0: loss = 4.95906 (* 1 = 4.95906 loss) +I0408 16:37:39.481242 27257 sgd_solver.cpp:105] Iteration 7224, lr = 1.06994e-13 +I0408 16:37:44.504362 27257 solver.cpp:218] Iteration 7236 (2.38904 iter/s, 5.02294s/12 iters), loss = 4.99381 +I0408 16:37:44.504415 27257 solver.cpp:237] Train net output #0: loss = 4.99381 (* 1 = 4.99381 loss) +I0408 16:37:44.504427 27257 sgd_solver.cpp:105] Iteration 7236, lr = 1.02597e-13 +I0408 16:37:46.493681 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 16:37:49.724072 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 16:37:52.054039 27257 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 16:37:52.054061 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:37:53.621009 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:37:56.511996 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:37:56.512042 27257 solver.cpp:397] Test net output #1: loss = 4.9706 (* 1 = 4.9706 loss) +I0408 16:37:58.512610 27257 solver.cpp:218] Iteration 7248 (0.856672 iter/s, 14.0077s/12 iters), loss = 4.92042 +I0408 16:37:58.512655 27257 solver.cpp:237] Train net output #0: loss = 4.92042 (* 1 = 4.92042 loss) +I0408 16:37:58.512667 27257 sgd_solver.cpp:105] Iteration 7248, lr = 9.83812e-14 +I0408 16:38:03.989447 27257 solver.cpp:218] Iteration 7260 (2.19115 iter/s, 5.47658s/12 iters), loss = 4.84748 +I0408 16:38:03.989600 27257 solver.cpp:237] Train net output #0: loss = 4.84748 (* 1 = 4.84748 loss) +I0408 16:38:03.989619 27257 sgd_solver.cpp:105] Iteration 7260, lr = 9.43384e-14 +I0408 16:38:09.121433 27257 solver.cpp:218] Iteration 7272 (2.33843 iter/s, 5.13165s/12 iters), loss = 4.99641 +I0408 16:38:09.121480 27257 solver.cpp:237] Train net output #0: loss = 4.99641 (* 1 = 4.99641 loss) +I0408 16:38:09.121491 27257 sgd_solver.cpp:105] Iteration 7272, lr = 9.04617e-14 +I0408 16:38:13.406268 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:38:14.159638 27257 solver.cpp:218] Iteration 7284 (2.38191 iter/s, 5.03797s/12 iters), loss = 4.94222 +I0408 16:38:14.159687 27257 solver.cpp:237] Train net output #0: loss = 4.94222 (* 1 = 4.94222 loss) +I0408 16:38:14.159698 27257 sgd_solver.cpp:105] Iteration 7284, lr = 8.67444e-14 +I0408 16:38:19.223803 27257 solver.cpp:218] Iteration 7296 (2.3697 iter/s, 5.06393s/12 iters), loss = 4.94294 +I0408 16:38:19.223851 27257 solver.cpp:237] Train net output #0: loss = 4.94294 (* 1 = 4.94294 loss) +I0408 16:38:19.223863 27257 sgd_solver.cpp:105] Iteration 7296, lr = 8.31797e-14 +I0408 16:38:24.276902 27257 solver.cpp:218] Iteration 7308 (2.37489 iter/s, 5.05286s/12 iters), loss = 4.95296 +I0408 16:38:24.276944 27257 solver.cpp:237] Train net output #0: loss = 4.95296 (* 1 = 4.95296 loss) +I0408 16:38:24.276955 27257 sgd_solver.cpp:105] Iteration 7308, lr = 7.97616e-14 +I0408 16:38:29.267109 27257 solver.cpp:218] Iteration 7320 (2.40482 iter/s, 4.98998s/12 iters), loss = 4.91802 +I0408 16:38:29.267155 27257 solver.cpp:237] Train net output #0: loss = 4.91802 (* 1 = 4.91802 loss) +I0408 16:38:29.267168 27257 sgd_solver.cpp:105] Iteration 7320, lr = 7.64839e-14 +I0408 16:38:34.324133 27257 solver.cpp:218] Iteration 7332 (2.37305 iter/s, 5.05679s/12 iters), loss = 4.92181 +I0408 16:38:34.324246 27257 solver.cpp:237] Train net output #0: loss = 4.92181 (* 1 = 4.92181 loss) +I0408 16:38:34.324259 27257 sgd_solver.cpp:105] Iteration 7332, lr = 7.3341e-14 +I0408 16:38:38.900820 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 16:38:45.510969 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 16:38:49.483750 27257 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 16:38:49.483779 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:38:51.062366 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:38:53.934252 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:38:53.934296 27257 solver.cpp:397] Test net output #1: loss = 4.96815 (* 1 = 4.96815 loss) +I0408 16:38:54.024938 27257 solver.cpp:218] Iteration 7344 (0.609137 iter/s, 19.7s/12 iters), loss = 4.94926 +I0408 16:38:54.024989 27257 solver.cpp:237] Train net output #0: loss = 4.94926 (* 1 = 4.94926 loss) +I0408 16:38:54.025000 27257 sgd_solver.cpp:105] Iteration 7344, lr = 7.03271e-14 +I0408 16:38:58.386967 27257 solver.cpp:218] Iteration 7356 (2.75115 iter/s, 4.36181s/12 iters), loss = 5.0934 +I0408 16:38:58.387014 27257 solver.cpp:237] Train net output #0: loss = 5.0934 (* 1 = 5.0934 loss) +I0408 16:38:58.387027 27257 sgd_solver.cpp:105] Iteration 7356, lr = 6.74372e-14 +I0408 16:39:03.371723 27257 solver.cpp:218] Iteration 7368 (2.40745 iter/s, 4.98452s/12 iters), loss = 4.95791 +I0408 16:39:03.371775 27257 solver.cpp:237] Train net output #0: loss = 4.95791 (* 1 = 4.95791 loss) +I0408 16:39:03.371788 27257 sgd_solver.cpp:105] Iteration 7368, lr = 6.4666e-14 +I0408 16:39:08.340085 27257 solver.cpp:218] Iteration 7380 (2.4154 iter/s, 4.96812s/12 iters), loss = 4.95424 +I0408 16:39:08.340240 27257 solver.cpp:237] Train net output #0: loss = 4.95424 (* 1 = 4.95424 loss) +I0408 16:39:08.340253 27257 sgd_solver.cpp:105] Iteration 7380, lr = 6.20086e-14 +I0408 16:39:09.743377 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:39:13.347023 27257 solver.cpp:218] Iteration 7392 (2.39684 iter/s, 5.0066s/12 iters), loss = 4.97164 +I0408 16:39:13.347069 27257 solver.cpp:237] Train net output #0: loss = 4.97164 (* 1 = 4.97164 loss) +I0408 16:39:13.347079 27257 sgd_solver.cpp:105] Iteration 7392, lr = 5.94605e-14 +I0408 16:39:18.310231 27257 solver.cpp:218] Iteration 7404 (2.41791 iter/s, 4.96297s/12 iters), loss = 5.00104 +I0408 16:39:18.310293 27257 solver.cpp:237] Train net output #0: loss = 5.00104 (* 1 = 5.00104 loss) +I0408 16:39:18.310309 27257 sgd_solver.cpp:105] Iteration 7404, lr = 5.7017e-14 +I0408 16:39:23.337196 27257 solver.cpp:218] Iteration 7416 (2.38725 iter/s, 5.02671s/12 iters), loss = 5.04128 +I0408 16:39:23.337245 27257 solver.cpp:237] Train net output #0: loss = 5.04128 (* 1 = 5.04128 loss) +I0408 16:39:23.337257 27257 sgd_solver.cpp:105] Iteration 7416, lr = 5.4674e-14 +I0408 16:39:28.368417 27257 solver.cpp:218] Iteration 7428 (2.38522 iter/s, 5.03098s/12 iters), loss = 4.88664 +I0408 16:39:28.368461 27257 solver.cpp:237] Train net output #0: loss = 4.88664 (* 1 = 4.88664 loss) +I0408 16:39:28.368474 27257 sgd_solver.cpp:105] Iteration 7428, lr = 5.24273e-14 +I0408 16:39:33.361927 27257 solver.cpp:218] Iteration 7440 (2.40323 iter/s, 4.99327s/12 iters), loss = 4.99796 +I0408 16:39:33.361995 27257 solver.cpp:237] Train net output #0: loss = 4.99796 (* 1 = 4.99796 loss) +I0408 16:39:33.362010 27257 sgd_solver.cpp:105] Iteration 7440, lr = 5.02729e-14 +I0408 16:39:35.390952 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 16:39:38.484207 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 16:39:40.808866 27257 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 16:39:40.808894 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:39:42.337663 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:39:45.309563 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:39:45.309612 27257 solver.cpp:397] Test net output #1: loss = 4.97031 (* 1 = 4.97031 loss) +I0408 16:39:47.261930 27257 solver.cpp:218] Iteration 7452 (0.863345 iter/s, 13.8994s/12 iters), loss = 4.95141 +I0408 16:39:47.262001 27257 solver.cpp:237] Train net output #0: loss = 4.95141 (* 1 = 4.95141 loss) +I0408 16:39:47.262013 27257 sgd_solver.cpp:105] Iteration 7452, lr = 4.8207e-14 +I0408 16:39:52.290496 27257 solver.cpp:218] Iteration 7464 (2.38649 iter/s, 5.0283s/12 iters), loss = 4.8112 +I0408 16:39:52.290540 27257 solver.cpp:237] Train net output #0: loss = 4.8112 (* 1 = 4.8112 loss) +I0408 16:39:52.290552 27257 sgd_solver.cpp:105] Iteration 7464, lr = 4.6226e-14 +I0408 16:39:57.329260 27257 solver.cpp:218] Iteration 7476 (2.38165 iter/s, 5.03853s/12 iters), loss = 5.03583 +I0408 16:39:57.329305 27257 solver.cpp:237] Train net output #0: loss = 5.03583 (* 1 = 5.03583 loss) +I0408 16:39:57.329317 27257 sgd_solver.cpp:105] Iteration 7476, lr = 4.43264e-14 +I0408 16:40:00.791548 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:40:02.269335 27257 solver.cpp:218] Iteration 7488 (2.42923 iter/s, 4.93984s/12 iters), loss = 4.90768 +I0408 16:40:02.269379 27257 solver.cpp:237] Train net output #0: loss = 4.90768 (* 1 = 4.90768 loss) +I0408 16:40:02.269392 27257 sgd_solver.cpp:105] Iteration 7488, lr = 4.25049e-14 +I0408 16:40:07.280061 27257 solver.cpp:218] Iteration 7500 (2.39498 iter/s, 5.01049s/12 iters), loss = 5.00033 +I0408 16:40:07.280104 27257 solver.cpp:237] Train net output #0: loss = 5.00033 (* 1 = 5.00033 loss) +I0408 16:40:07.280117 27257 sgd_solver.cpp:105] Iteration 7500, lr = 4.07582e-14 +I0408 16:40:12.184631 27257 solver.cpp:218] Iteration 7512 (2.44681 iter/s, 4.90435s/12 iters), loss = 4.94635 +I0408 16:40:12.187772 27257 solver.cpp:237] Train net output #0: loss = 4.94635 (* 1 = 4.94635 loss) +I0408 16:40:12.187784 27257 sgd_solver.cpp:105] Iteration 7512, lr = 3.90834e-14 +I0408 16:40:17.172341 27257 solver.cpp:218] Iteration 7524 (2.40752 iter/s, 4.98438s/12 iters), loss = 4.96445 +I0408 16:40:17.172385 27257 solver.cpp:237] Train net output #0: loss = 4.96445 (* 1 = 4.96445 loss) +I0408 16:40:17.172397 27257 sgd_solver.cpp:105] Iteration 7524, lr = 3.74773e-14 +I0408 16:40:22.155393 27257 solver.cpp:218] Iteration 7536 (2.40827 iter/s, 4.98283s/12 iters), loss = 4.88584 +I0408 16:40:22.155429 27257 solver.cpp:237] Train net output #0: loss = 4.88584 (* 1 = 4.88584 loss) +I0408 16:40:22.155437 27257 sgd_solver.cpp:105] Iteration 7536, lr = 3.59372e-14 +I0408 16:40:26.790132 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 16:40:31.129529 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 16:40:33.837774 27257 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 16:40:33.837792 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:40:35.369127 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:40:38.322508 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:40:38.322556 27257 solver.cpp:397] Test net output #1: loss = 4.96496 (* 1 = 4.96496 loss) +I0408 16:40:38.413049 27257 solver.cpp:218] Iteration 7548 (0.738142 iter/s, 16.257s/12 iters), loss = 4.90131 +I0408 16:40:38.413100 27257 solver.cpp:237] Train net output #0: loss = 4.90131 (* 1 = 4.90131 loss) +I0408 16:40:38.413110 27257 sgd_solver.cpp:105] Iteration 7548, lr = 3.44604e-14 +I0408 16:40:42.778615 27257 solver.cpp:218] Iteration 7560 (2.74892 iter/s, 4.36535s/12 iters), loss = 5.05195 +I0408 16:40:42.778695 27257 solver.cpp:237] Train net output #0: loss = 5.05195 (* 1 = 5.05195 loss) +I0408 16:40:42.778708 27257 sgd_solver.cpp:105] Iteration 7560, lr = 3.30443e-14 +I0408 16:40:47.794343 27257 solver.cpp:218] Iteration 7572 (2.3926 iter/s, 5.01546s/12 iters), loss = 4.905 +I0408 16:40:47.794390 27257 solver.cpp:237] Train net output #0: loss = 4.905 (* 1 = 4.905 loss) +I0408 16:40:47.794401 27257 sgd_solver.cpp:105] Iteration 7572, lr = 3.16864e-14 +I0408 16:40:52.763665 27257 solver.cpp:218] Iteration 7584 (2.41493 iter/s, 4.96909s/12 iters), loss = 4.9401 +I0408 16:40:52.763708 27257 solver.cpp:237] Train net output #0: loss = 4.9401 (* 1 = 4.9401 loss) +I0408 16:40:52.763720 27257 sgd_solver.cpp:105] Iteration 7584, lr = 3.03843e-14 +I0408 16:40:53.415417 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:40:57.800767 27257 solver.cpp:218] Iteration 7596 (2.38243 iter/s, 5.03687s/12 iters), loss = 4.95402 +I0408 16:40:57.800814 27257 solver.cpp:237] Train net output #0: loss = 4.95402 (* 1 = 4.95402 loss) +I0408 16:40:57.800827 27257 sgd_solver.cpp:105] Iteration 7596, lr = 2.91358e-14 +I0408 16:41:02.774006 27257 solver.cpp:218] Iteration 7608 (2.41303 iter/s, 4.973s/12 iters), loss = 4.99307 +I0408 16:41:02.774053 27257 solver.cpp:237] Train net output #0: loss = 4.99307 (* 1 = 4.99307 loss) +I0408 16:41:02.774065 27257 sgd_solver.cpp:105] Iteration 7608, lr = 2.79385e-14 +I0408 16:41:07.731607 27257 solver.cpp:218] Iteration 7620 (2.42064 iter/s, 4.95737s/12 iters), loss = 4.8741 +I0408 16:41:07.731642 27257 solver.cpp:237] Train net output #0: loss = 4.8741 (* 1 = 4.8741 loss) +I0408 16:41:07.731649 27257 sgd_solver.cpp:105] Iteration 7620, lr = 2.67904e-14 +I0408 16:41:10.178195 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:41:12.764282 27257 solver.cpp:218] Iteration 7632 (2.38453 iter/s, 5.03245s/12 iters), loss = 4.82718 +I0408 16:41:12.764331 27257 solver.cpp:237] Train net output #0: loss = 4.82718 (* 1 = 4.82718 loss) +I0408 16:41:12.764343 27257 sgd_solver.cpp:105] Iteration 7632, lr = 2.56895e-14 +I0408 16:41:17.846092 27257 solver.cpp:218] Iteration 7644 (2.36148 iter/s, 5.08156s/12 iters), loss = 4.96034 +I0408 16:41:17.846221 27257 solver.cpp:237] Train net output #0: loss = 4.96034 (* 1 = 4.96034 loss) +I0408 16:41:17.846235 27257 sgd_solver.cpp:105] Iteration 7644, lr = 2.46338e-14 +I0408 16:41:19.901427 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 16:41:23.213559 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 16:41:25.607610 27257 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 16:41:25.607635 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:41:26.938588 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:41:29.934500 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:41:29.934546 27257 solver.cpp:397] Test net output #1: loss = 4.96516 (* 1 = 4.96516 loss) +I0408 16:41:31.925119 27257 solver.cpp:218] Iteration 7656 (0.85237 iter/s, 14.0784s/12 iters), loss = 4.90714 +I0408 16:41:31.925158 27257 solver.cpp:237] Train net output #0: loss = 4.90714 (* 1 = 4.90714 loss) +I0408 16:41:31.925168 27257 sgd_solver.cpp:105] Iteration 7656, lr = 2.36215e-14 +I0408 16:41:36.969710 27257 solver.cpp:218] Iteration 7668 (2.37889 iter/s, 5.04436s/12 iters), loss = 4.99902 +I0408 16:41:36.969758 27257 solver.cpp:237] Train net output #0: loss = 4.99902 (* 1 = 4.99902 loss) +I0408 16:41:36.969770 27257 sgd_solver.cpp:105] Iteration 7668, lr = 2.26508e-14 +I0408 16:41:41.979604 27257 solver.cpp:218] Iteration 7680 (2.39537 iter/s, 5.00966s/12 iters), loss = 4.87754 +I0408 16:41:41.979650 27257 solver.cpp:237] Train net output #0: loss = 4.87754 (* 1 = 4.87754 loss) +I0408 16:41:41.979662 27257 sgd_solver.cpp:105] Iteration 7680, lr = 2.172e-14 +I0408 16:41:44.774593 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:41:46.994768 27257 solver.cpp:218] Iteration 7692 (2.39286 iter/s, 5.01493s/12 iters), loss = 4.95097 +I0408 16:41:46.994815 27257 solver.cpp:237] Train net output #0: loss = 4.95097 (* 1 = 4.95097 loss) +I0408 16:41:46.994827 27257 sgd_solver.cpp:105] Iteration 7692, lr = 2.08275e-14 +I0408 16:41:52.024271 27257 solver.cpp:218] Iteration 7704 (2.38603 iter/s, 5.02927s/12 iters), loss = 4.88123 +I0408 16:41:52.024377 27257 solver.cpp:237] Train net output #0: loss = 4.88123 (* 1 = 4.88123 loss) +I0408 16:41:52.024391 27257 sgd_solver.cpp:105] Iteration 7704, lr = 1.99716e-14 +I0408 16:41:57.026160 27257 solver.cpp:218] Iteration 7716 (2.39923 iter/s, 5.0016s/12 iters), loss = 4.90726 +I0408 16:41:57.026206 27257 solver.cpp:237] Train net output #0: loss = 4.90726 (* 1 = 4.90726 loss) +I0408 16:41:57.026217 27257 sgd_solver.cpp:105] Iteration 7716, lr = 1.91509e-14 +I0408 16:42:02.049293 27257 solver.cpp:218] Iteration 7728 (2.38906 iter/s, 5.0229s/12 iters), loss = 4.94197 +I0408 16:42:02.049340 27257 solver.cpp:237] Train net output #0: loss = 4.94197 (* 1 = 4.94197 loss) +I0408 16:42:02.049352 27257 sgd_solver.cpp:105] Iteration 7728, lr = 1.83639e-14 +I0408 16:42:07.093089 27257 solver.cpp:218] Iteration 7740 (2.37927 iter/s, 5.04356s/12 iters), loss = 4.9537 +I0408 16:42:07.093139 27257 solver.cpp:237] Train net output #0: loss = 4.9537 (* 1 = 4.9537 loss) +I0408 16:42:07.093151 27257 sgd_solver.cpp:105] Iteration 7740, lr = 1.76093e-14 +I0408 16:42:11.592063 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 16:42:16.007678 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 16:42:18.345911 27257 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 16:42:18.345937 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:42:19.778551 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:42:22.809830 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:42:22.809973 27257 solver.cpp:397] Test net output #1: loss = 4.97122 (* 1 = 4.97122 loss) +I0408 16:42:22.900413 27257 solver.cpp:218] Iteration 7752 (0.759172 iter/s, 15.8067s/12 iters), loss = 4.95543 +I0408 16:42:22.900470 27257 solver.cpp:237] Train net output #0: loss = 4.95543 (* 1 = 4.95543 loss) +I0408 16:42:22.900485 27257 sgd_solver.cpp:105] Iteration 7752, lr = 1.68857e-14 +I0408 16:42:27.265815 27257 solver.cpp:218] Iteration 7764 (2.74903 iter/s, 4.36518s/12 iters), loss = 4.96419 +I0408 16:42:27.265862 27257 solver.cpp:237] Train net output #0: loss = 4.96419 (* 1 = 4.96419 loss) +I0408 16:42:27.265875 27257 sgd_solver.cpp:105] Iteration 7764, lr = 1.61918e-14 +I0408 16:42:32.282768 27257 solver.cpp:218] Iteration 7776 (2.392 iter/s, 5.01672s/12 iters), loss = 5.0492 +I0408 16:42:32.282809 27257 solver.cpp:237] Train net output #0: loss = 5.0492 (* 1 = 5.0492 loss) +I0408 16:42:32.282821 27257 sgd_solver.cpp:105] Iteration 7776, lr = 1.55264e-14 +I0408 16:42:37.284008 27257 solver.cpp:218] Iteration 7788 (2.39952 iter/s, 5.00101s/12 iters), loss = 4.95272 +I0408 16:42:37.284050 27257 solver.cpp:237] Train net output #0: loss = 4.95272 (* 1 = 4.95272 loss) +I0408 16:42:37.284060 27257 sgd_solver.cpp:105] Iteration 7788, lr = 1.48884e-14 +I0408 16:42:37.295379 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:42:42.261803 27257 solver.cpp:218] Iteration 7800 (2.41082 iter/s, 4.97756s/12 iters), loss = 4.97677 +I0408 16:42:42.261850 27257 solver.cpp:237] Train net output #0: loss = 4.97677 (* 1 = 4.97677 loss) +I0408 16:42:42.261862 27257 sgd_solver.cpp:105] Iteration 7800, lr = 1.42766e-14 +I0408 16:42:47.262651 27257 solver.cpp:218] Iteration 7812 (2.39971 iter/s, 5.00061s/12 iters), loss = 4.8226 +I0408 16:42:47.262696 27257 solver.cpp:237] Train net output #0: loss = 4.8226 (* 1 = 4.8226 loss) +I0408 16:42:47.262707 27257 sgd_solver.cpp:105] Iteration 7812, lr = 1.36899e-14 +I0408 16:42:52.290907 27257 solver.cpp:218] Iteration 7824 (2.38662 iter/s, 5.02802s/12 iters), loss = 4.87914 +I0408 16:42:52.290949 27257 solver.cpp:237] Train net output #0: loss = 4.87914 (* 1 = 4.87914 loss) +I0408 16:42:52.290961 27257 sgd_solver.cpp:105] Iteration 7824, lr = 1.31273e-14 +I0408 16:42:57.307282 27257 solver.cpp:218] Iteration 7836 (2.39228 iter/s, 5.01614s/12 iters), loss = 5.02497 +I0408 16:42:57.307399 27257 solver.cpp:237] Train net output #0: loss = 5.02497 (* 1 = 5.02497 loss) +I0408 16:42:57.307412 27257 sgd_solver.cpp:105] Iteration 7836, lr = 1.25879e-14 +I0408 16:43:02.301044 27257 solver.cpp:218] Iteration 7848 (2.40314 iter/s, 4.99346s/12 iters), loss = 4.88196 +I0408 16:43:02.301095 27257 solver.cpp:237] Train net output #0: loss = 4.88196 (* 1 = 4.88196 loss) +I0408 16:43:02.301106 27257 sgd_solver.cpp:105] Iteration 7848, lr = 1.20706e-14 +I0408 16:43:04.331459 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 16:43:09.768787 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 16:43:12.989892 27257 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 16:43:12.989919 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:43:14.369626 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:43:17.447993 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:43:17.448041 27257 solver.cpp:397] Test net output #1: loss = 4.96923 (* 1 = 4.96923 loss) +I0408 16:43:19.463943 27257 solver.cpp:218] Iteration 7860 (0.69921 iter/s, 17.1622s/12 iters), loss = 4.95641 +I0408 16:43:19.463990 27257 solver.cpp:237] Train net output #0: loss = 4.95641 (* 1 = 4.95641 loss) +I0408 16:43:19.464001 27257 sgd_solver.cpp:105] Iteration 7860, lr = 1.15746e-14 +I0408 16:43:24.743923 27257 solver.cpp:218] Iteration 7872 (2.27284 iter/s, 5.27974s/12 iters), loss = 5.01503 +I0408 16:43:24.743968 27257 solver.cpp:237] Train net output #0: loss = 5.01503 (* 1 = 5.01503 loss) +I0408 16:43:24.743978 27257 sgd_solver.cpp:105] Iteration 7872, lr = 1.1099e-14 +I0408 16:43:29.811122 27257 solver.cpp:218] Iteration 7884 (2.36828 iter/s, 5.06696s/12 iters), loss = 5.06147 +I0408 16:43:29.811264 27257 solver.cpp:237] Train net output #0: loss = 5.06147 (* 1 = 5.06147 loss) +I0408 16:43:29.811277 27257 sgd_solver.cpp:105] Iteration 7884, lr = 1.06429e-14 +I0408 16:43:31.936383 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:43:34.793776 27257 solver.cpp:218] Iteration 7896 (2.40851 iter/s, 4.98233s/12 iters), loss = 4.94179 +I0408 16:43:34.793820 27257 solver.cpp:237] Train net output #0: loss = 4.94179 (* 1 = 4.94179 loss) +I0408 16:43:34.793831 27257 sgd_solver.cpp:105] Iteration 7896, lr = 1.02055e-14 +I0408 16:43:39.876564 27257 solver.cpp:218] Iteration 7908 (2.36102 iter/s, 5.08255s/12 iters), loss = 4.87412 +I0408 16:43:39.876616 27257 solver.cpp:237] Train net output #0: loss = 4.87412 (* 1 = 4.87412 loss) +I0408 16:43:39.876627 27257 sgd_solver.cpp:105] Iteration 7908, lr = 9.78613e-15 +I0408 16:43:44.854913 27257 solver.cpp:218] Iteration 7920 (2.41055 iter/s, 4.97811s/12 iters), loss = 4.82878 +I0408 16:43:44.854961 27257 solver.cpp:237] Train net output #0: loss = 4.82878 (* 1 = 4.82878 loss) +I0408 16:43:44.854974 27257 sgd_solver.cpp:105] Iteration 7920, lr = 9.38399e-15 +I0408 16:43:49.907428 27257 solver.cpp:218] Iteration 7932 (2.37517 iter/s, 5.05228s/12 iters), loss = 4.91342 +I0408 16:43:49.907474 27257 solver.cpp:237] Train net output #0: loss = 4.91342 (* 1 = 4.91342 loss) +I0408 16:43:49.907485 27257 sgd_solver.cpp:105] Iteration 7932, lr = 8.99837e-15 +I0408 16:43:54.887897 27257 solver.cpp:218] Iteration 7944 (2.40953 iter/s, 4.98023s/12 iters), loss = 5.01358 +I0408 16:43:54.887945 27257 solver.cpp:237] Train net output #0: loss = 5.01358 (* 1 = 5.01358 loss) +I0408 16:43:54.887957 27257 sgd_solver.cpp:105] Iteration 7944, lr = 8.6286e-15 +I0408 16:43:59.409410 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 16:44:02.910137 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 16:44:05.225018 27257 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 16:44:05.225044 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:44:06.562397 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:44:09.677405 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:44:09.677453 27257 solver.cpp:397] Test net output #1: loss = 4.96871 (* 1 = 4.96871 loss) +I0408 16:44:09.767899 27257 solver.cpp:218] Iteration 7956 (0.806483 iter/s, 14.8794s/12 iters), loss = 4.9365 +I0408 16:44:09.767951 27257 solver.cpp:237] Train net output #0: loss = 4.9365 (* 1 = 4.9365 loss) +I0408 16:44:09.767962 27257 sgd_solver.cpp:105] Iteration 7956, lr = 8.27402e-15 +I0408 16:44:14.031862 27257 solver.cpp:218] Iteration 7968 (2.81443 iter/s, 4.26375s/12 iters), loss = 4.9277 +I0408 16:44:14.031906 27257 solver.cpp:237] Train net output #0: loss = 4.9277 (* 1 = 4.9277 loss) +I0408 16:44:14.031919 27257 sgd_solver.cpp:105] Iteration 7968, lr = 7.93401e-15 +I0408 16:44:19.133150 27257 solver.cpp:218] Iteration 7980 (2.35246 iter/s, 5.10105s/12 iters), loss = 5.03631 +I0408 16:44:19.133198 27257 solver.cpp:237] Train net output #0: loss = 5.03631 (* 1 = 5.03631 loss) +I0408 16:44:19.133208 27257 sgd_solver.cpp:105] Iteration 7980, lr = 7.60798e-15 +I0408 16:44:23.479766 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:44:24.205127 27257 solver.cpp:218] Iteration 7992 (2.36605 iter/s, 5.07174s/12 iters), loss = 4.98336 +I0408 16:44:24.205160 27257 solver.cpp:237] Train net output #0: loss = 4.98336 (* 1 = 4.98336 loss) +I0408 16:44:24.205168 27257 sgd_solver.cpp:105] Iteration 7992, lr = 7.29534e-15 +I0408 16:44:29.295022 27257 solver.cpp:218] Iteration 8004 (2.35772 iter/s, 5.08967s/12 iters), loss = 4.89175 +I0408 16:44:29.295068 27257 solver.cpp:237] Train net output #0: loss = 4.89175 (* 1 = 4.89175 loss) +I0408 16:44:29.295078 27257 sgd_solver.cpp:105] Iteration 8004, lr = 6.99555e-15 +I0408 16:44:34.359115 27257 solver.cpp:218] Iteration 8016 (2.36973 iter/s, 5.06386s/12 iters), loss = 4.92155 +I0408 16:44:34.359220 27257 solver.cpp:237] Train net output #0: loss = 4.92155 (* 1 = 4.92155 loss) +I0408 16:44:34.359230 27257 sgd_solver.cpp:105] Iteration 8016, lr = 6.70808e-15 +I0408 16:44:39.334158 27257 solver.cpp:218] Iteration 8028 (2.41218 iter/s, 4.97475s/12 iters), loss = 4.88909 +I0408 16:44:39.334215 27257 solver.cpp:237] Train net output #0: loss = 4.88909 (* 1 = 4.88909 loss) +I0408 16:44:39.334230 27257 sgd_solver.cpp:105] Iteration 8028, lr = 6.43242e-15 +I0408 16:44:44.359455 27257 solver.cpp:218] Iteration 8040 (2.38804 iter/s, 5.02505s/12 iters), loss = 4.90196 +I0408 16:44:44.359504 27257 solver.cpp:237] Train net output #0: loss = 4.90196 (* 1 = 4.90196 loss) +I0408 16:44:44.359516 27257 sgd_solver.cpp:105] Iteration 8040, lr = 6.16809e-15 +I0408 16:44:49.357117 27257 solver.cpp:218] Iteration 8052 (2.40124 iter/s, 4.99743s/12 iters), loss = 4.95705 +I0408 16:44:49.357156 27257 solver.cpp:237] Train net output #0: loss = 4.95705 (* 1 = 4.95705 loss) +I0408 16:44:49.357165 27257 sgd_solver.cpp:105] Iteration 8052, lr = 5.91463e-15 +I0408 16:44:51.388566 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 16:44:56.361740 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 16:44:59.642376 27257 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 16:44:59.642402 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:45:00.949481 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:45:04.109658 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:45:04.109705 27257 solver.cpp:397] Test net output #1: loss = 4.96829 (* 1 = 4.96829 loss) +I0408 16:45:06.027470 27257 solver.cpp:218] Iteration 8064 (0.719869 iter/s, 16.6697s/12 iters), loss = 5.08316 +I0408 16:45:06.027580 27257 solver.cpp:237] Train net output #0: loss = 5.08316 (* 1 = 5.08316 loss) +I0408 16:45:06.027593 27257 sgd_solver.cpp:105] Iteration 8064, lr = 5.67157e-15 +I0408 16:45:11.072703 27257 solver.cpp:218] Iteration 8076 (2.37862 iter/s, 5.04494s/12 iters), loss = 4.89531 +I0408 16:45:11.072751 27257 solver.cpp:237] Train net output #0: loss = 4.89531 (* 1 = 4.89531 loss) +I0408 16:45:11.072762 27257 sgd_solver.cpp:105] Iteration 8076, lr = 5.43851e-15 +I0408 16:45:16.159174 27257 solver.cpp:218] Iteration 8088 (2.35931 iter/s, 5.08623s/12 iters), loss = 4.93539 +I0408 16:45:16.159219 27257 solver.cpp:237] Train net output #0: loss = 4.93539 (* 1 = 4.93539 loss) +I0408 16:45:16.159230 27257 sgd_solver.cpp:105] Iteration 8088, lr = 5.21502e-15 +I0408 16:45:17.561915 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:45:21.113539 27257 solver.cpp:218] Iteration 8100 (2.42222 iter/s, 4.95414s/12 iters), loss = 4.92818 +I0408 16:45:21.113584 27257 solver.cpp:237] Train net output #0: loss = 4.92818 (* 1 = 4.92818 loss) +I0408 16:45:21.113595 27257 sgd_solver.cpp:105] Iteration 8100, lr = 5.00072e-15 +I0408 16:45:26.018857 27257 solver.cpp:218] Iteration 8112 (2.44644 iter/s, 4.90509s/12 iters), loss = 5.07262 +I0408 16:45:26.018908 27257 solver.cpp:237] Train net output #0: loss = 5.07262 (* 1 = 5.07262 loss) +I0408 16:45:26.018919 27257 sgd_solver.cpp:105] Iteration 8112, lr = 4.79523e-15 +I0408 16:45:30.916565 27257 solver.cpp:218] Iteration 8124 (2.45024 iter/s, 4.89747s/12 iters), loss = 5.01349 +I0408 16:45:30.916612 27257 solver.cpp:237] Train net output #0: loss = 5.01349 (* 1 = 5.01349 loss) +I0408 16:45:30.916625 27257 sgd_solver.cpp:105] Iteration 8124, lr = 4.59817e-15 +I0408 16:45:35.852208 27257 solver.cpp:218] Iteration 8136 (2.43141 iter/s, 4.93541s/12 iters), loss = 4.85618 +I0408 16:45:35.852257 27257 solver.cpp:237] Train net output #0: loss = 4.85618 (* 1 = 4.85618 loss) +I0408 16:45:35.852268 27257 sgd_solver.cpp:105] Iteration 8136, lr = 4.40922e-15 +I0408 16:45:40.864315 27257 solver.cpp:218] Iteration 8148 (2.39432 iter/s, 5.01187s/12 iters), loss = 4.99219 +I0408 16:45:40.866691 27257 solver.cpp:237] Train net output #0: loss = 4.99219 (* 1 = 4.99219 loss) +I0408 16:45:40.866704 27257 sgd_solver.cpp:105] Iteration 8148, lr = 4.22803e-15 +I0408 16:45:45.425923 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 16:45:50.345716 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 16:45:53.842514 27257 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 16:45:53.842538 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:45:55.106703 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:45:58.296146 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:45:58.296193 27257 solver.cpp:397] Test net output #1: loss = 4.96835 (* 1 = 4.96835 loss) +I0408 16:45:58.386828 27257 solver.cpp:218] Iteration 8160 (0.684951 iter/s, 17.5195s/12 iters), loss = 4.97999 +I0408 16:45:58.386901 27257 solver.cpp:237] Train net output #0: loss = 4.97999 (* 1 = 4.97999 loss) +I0408 16:45:58.386917 27257 sgd_solver.cpp:105] Iteration 8160, lr = 4.05429e-15 +I0408 16:46:02.887260 27257 solver.cpp:218] Iteration 8172 (2.66655 iter/s, 4.50019s/12 iters), loss = 4.87806 +I0408 16:46:02.887296 27257 solver.cpp:237] Train net output #0: loss = 4.87806 (* 1 = 4.87806 loss) +I0408 16:46:02.887305 27257 sgd_solver.cpp:105] Iteration 8172, lr = 3.88768e-15 +I0408 16:46:07.845329 27257 solver.cpp:218] Iteration 8184 (2.42041 iter/s, 4.95784s/12 iters), loss = 5.02097 +I0408 16:46:07.845376 27257 solver.cpp:237] Train net output #0: loss = 5.02097 (* 1 = 5.02097 loss) +I0408 16:46:07.845387 27257 sgd_solver.cpp:105] Iteration 8184, lr = 3.72792e-15 +I0408 16:46:11.382015 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:46:12.805987 27257 solver.cpp:218] Iteration 8196 (2.41915 iter/s, 4.96042s/12 iters), loss = 4.88635 +I0408 16:46:12.806037 27257 solver.cpp:237] Train net output #0: loss = 4.88635 (* 1 = 4.88635 loss) +I0408 16:46:12.806051 27257 sgd_solver.cpp:105] Iteration 8196, lr = 3.57473e-15 +I0408 16:46:17.817106 27257 solver.cpp:218] Iteration 8208 (2.39479 iter/s, 5.01088s/12 iters), loss = 4.88565 +I0408 16:46:17.817152 27257 solver.cpp:237] Train net output #0: loss = 4.88565 (* 1 = 4.88565 loss) +I0408 16:46:17.817162 27257 sgd_solver.cpp:105] Iteration 8208, lr = 3.42783e-15 +I0408 16:46:22.982729 27257 solver.cpp:218] Iteration 8220 (2.32316 iter/s, 5.16538s/12 iters), loss = 4.96231 +I0408 16:46:22.982776 27257 solver.cpp:237] Train net output #0: loss = 4.96231 (* 1 = 4.96231 loss) +I0408 16:46:22.982789 27257 sgd_solver.cpp:105] Iteration 8220, lr = 3.28697e-15 +I0408 16:46:28.027213 27257 solver.cpp:218] Iteration 8232 (2.37895 iter/s, 5.04425s/12 iters), loss = 4.98207 +I0408 16:46:28.027259 27257 solver.cpp:237] Train net output #0: loss = 4.98207 (* 1 = 4.98207 loss) +I0408 16:46:28.027271 27257 sgd_solver.cpp:105] Iteration 8232, lr = 3.1519e-15 +I0408 16:46:33.066422 27257 solver.cpp:218] Iteration 8244 (2.38144 iter/s, 5.03898s/12 iters), loss = 4.87915 +I0408 16:46:33.066458 27257 solver.cpp:237] Train net output #0: loss = 4.87915 (* 1 = 4.87915 loss) +I0408 16:46:33.066468 27257 sgd_solver.cpp:105] Iteration 8244, lr = 3.02238e-15 +I0408 16:46:38.037933 27257 solver.cpp:218] Iteration 8256 (2.41387 iter/s, 4.97128s/12 iters), loss = 4.91504 +I0408 16:46:38.038002 27257 solver.cpp:237] Train net output #0: loss = 4.91504 (* 1 = 4.91504 loss) +I0408 16:46:38.038017 27257 sgd_solver.cpp:105] Iteration 8256, lr = 2.89818e-15 +I0408 16:46:40.081751 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 16:46:45.592403 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 16:46:48.054666 27257 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 16:46:48.054690 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:46:49.299636 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:46:52.547947 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:46:52.547996 27257 solver.cpp:397] Test net output #1: loss = 4.97009 (* 1 = 4.97009 loss) +I0408 16:46:54.525161 27257 solver.cpp:218] Iteration 8268 (0.727865 iter/s, 16.4866s/12 iters), loss = 5.0712 +I0408 16:46:54.525202 27257 solver.cpp:237] Train net output #0: loss = 5.0712 (* 1 = 5.0712 loss) +I0408 16:46:54.525211 27257 sgd_solver.cpp:105] Iteration 8268, lr = 2.77908e-15 +I0408 16:46:59.601068 27257 solver.cpp:218] Iteration 8280 (2.36422 iter/s, 5.07567s/12 iters), loss = 4.8865 +I0408 16:46:59.601114 27257 solver.cpp:237] Train net output #0: loss = 4.8865 (* 1 = 4.8865 loss) +I0408 16:46:59.601126 27257 sgd_solver.cpp:105] Iteration 8280, lr = 2.66488e-15 +I0408 16:47:04.611296 27257 solver.cpp:218] Iteration 8292 (2.39521 iter/s, 5.00999s/12 iters), loss = 4.88427 +I0408 16:47:04.611342 27257 solver.cpp:237] Train net output #0: loss = 4.88427 (* 1 = 4.88427 loss) +I0408 16:47:04.611353 27257 sgd_solver.cpp:105] Iteration 8292, lr = 2.55537e-15 +I0408 16:47:05.308981 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:47:09.675776 27257 solver.cpp:218] Iteration 8304 (2.36955 iter/s, 5.06425s/12 iters), loss = 4.95213 +I0408 16:47:09.675810 27257 solver.cpp:237] Train net output #0: loss = 4.95213 (* 1 = 4.95213 loss) +I0408 16:47:09.675819 27257 sgd_solver.cpp:105] Iteration 8304, lr = 2.45036e-15 +I0408 16:47:12.516958 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:47:14.640311 27257 solver.cpp:218] Iteration 8316 (2.41725 iter/s, 4.96431s/12 iters), loss = 5.02951 +I0408 16:47:14.640354 27257 solver.cpp:237] Train net output #0: loss = 5.02951 (* 1 = 5.02951 loss) +I0408 16:47:14.640367 27257 sgd_solver.cpp:105] Iteration 8316, lr = 2.34967e-15 +I0408 16:47:19.615124 27257 solver.cpp:218] Iteration 8328 (2.41226 iter/s, 4.97458s/12 iters), loss = 4.86738 +I0408 16:47:19.615283 27257 solver.cpp:237] Train net output #0: loss = 4.86738 (* 1 = 4.86738 loss) +I0408 16:47:19.615296 27257 sgd_solver.cpp:105] Iteration 8328, lr = 2.25311e-15 +I0408 16:47:24.619510 27257 solver.cpp:218] Iteration 8340 (2.39806 iter/s, 5.00404s/12 iters), loss = 4.83174 +I0408 16:47:24.619556 27257 solver.cpp:237] Train net output #0: loss = 4.83174 (* 1 = 4.83174 loss) +I0408 16:47:24.619568 27257 sgd_solver.cpp:105] Iteration 8340, lr = 2.16053e-15 +I0408 16:47:29.662845 27257 solver.cpp:218] Iteration 8352 (2.37949 iter/s, 5.0431s/12 iters), loss = 4.94168 +I0408 16:47:29.662892 27257 solver.cpp:237] Train net output #0: loss = 4.94168 (* 1 = 4.94168 loss) +I0408 16:47:29.662904 27257 sgd_solver.cpp:105] Iteration 8352, lr = 2.07174e-15 +I0408 16:47:34.193425 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 16:47:39.460583 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 16:47:42.926060 27257 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 16:47:42.926085 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:47:44.115988 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:47:47.388058 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:47:47.388104 27257 solver.cpp:397] Test net output #1: loss = 4.97039 (* 1 = 4.97039 loss) +I0408 16:47:47.476577 27257 solver.cpp:218] Iteration 8364 (0.673664 iter/s, 17.813s/12 iters), loss = 4.9534 +I0408 16:47:47.476635 27257 solver.cpp:237] Train net output #0: loss = 4.9534 (* 1 = 4.9534 loss) +I0408 16:47:47.476650 27257 sgd_solver.cpp:105] Iteration 8364, lr = 1.98661e-15 +I0408 16:47:51.850718 27257 solver.cpp:218] Iteration 8376 (2.74354 iter/s, 4.37392s/12 iters), loss = 4.86727 +I0408 16:47:51.850802 27257 solver.cpp:237] Train net output #0: loss = 4.86727 (* 1 = 4.86727 loss) +I0408 16:47:51.850811 27257 sgd_solver.cpp:105] Iteration 8376, lr = 1.90497e-15 +I0408 16:47:56.837947 27257 solver.cpp:218] Iteration 8388 (2.40628 iter/s, 4.98695s/12 iters), loss = 4.92535 +I0408 16:47:56.838009 27257 solver.cpp:237] Train net output #0: loss = 4.92535 (* 1 = 4.92535 loss) +I0408 16:47:56.838021 27257 sgd_solver.cpp:105] Iteration 8388, lr = 1.82669e-15 +I0408 16:47:59.658128 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:48:01.873754 27257 solver.cpp:218] Iteration 8400 (2.38305 iter/s, 5.03556s/12 iters), loss = 4.93698 +I0408 16:48:01.873792 27257 solver.cpp:237] Train net output #0: loss = 4.93698 (* 1 = 4.93698 loss) +I0408 16:48:01.873800 27257 sgd_solver.cpp:105] Iteration 8400, lr = 1.75163e-15 +I0408 16:48:06.900887 27257 solver.cpp:218] Iteration 8412 (2.38716 iter/s, 5.0269s/12 iters), loss = 4.89303 +I0408 16:48:06.900943 27257 solver.cpp:237] Train net output #0: loss = 4.89303 (* 1 = 4.89303 loss) +I0408 16:48:06.900957 27257 sgd_solver.cpp:105] Iteration 8412, lr = 1.67965e-15 +I0408 16:48:11.881779 27257 solver.cpp:218] Iteration 8424 (2.40933 iter/s, 4.98065s/12 iters), loss = 4.82865 +I0408 16:48:11.881834 27257 solver.cpp:237] Train net output #0: loss = 4.82865 (* 1 = 4.82865 loss) +I0408 16:48:11.881845 27257 sgd_solver.cpp:105] Iteration 8424, lr = 1.61062e-15 +I0408 16:48:16.911650 27257 solver.cpp:218] Iteration 8436 (2.38586 iter/s, 5.02963s/12 iters), loss = 4.89841 +I0408 16:48:16.911700 27257 solver.cpp:237] Train net output #0: loss = 4.89841 (* 1 = 4.89841 loss) +I0408 16:48:16.911710 27257 sgd_solver.cpp:105] Iteration 8436, lr = 1.54444e-15 +I0408 16:48:21.887681 27257 solver.cpp:218] Iteration 8448 (2.41167 iter/s, 4.9758s/12 iters), loss = 4.99484 +I0408 16:48:21.887809 27257 solver.cpp:237] Train net output #0: loss = 4.99484 (* 1 = 4.99484 loss) +I0408 16:48:21.887818 27257 sgd_solver.cpp:105] Iteration 8448, lr = 1.48097e-15 +I0408 16:48:26.919664 27257 solver.cpp:218] Iteration 8460 (2.38489 iter/s, 5.03167s/12 iters), loss = 4.91863 +I0408 16:48:26.919701 27257 solver.cpp:237] Train net output #0: loss = 4.91863 (* 1 = 4.91863 loss) +I0408 16:48:26.919709 27257 sgd_solver.cpp:105] Iteration 8460, lr = 1.42011e-15 +I0408 16:48:28.974799 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 16:48:34.672603 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 16:48:38.775039 27257 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 16:48:38.775074 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:48:40.005359 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:48:43.310956 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:48:43.311003 27257 solver.cpp:397] Test net output #1: loss = 4.96918 (* 1 = 4.96918 loss) +I0408 16:48:45.284113 27257 solver.cpp:218] Iteration 8472 (0.653462 iter/s, 18.3637s/12 iters), loss = 5.05408 +I0408 16:48:45.284150 27257 solver.cpp:237] Train net output #0: loss = 5.05408 (* 1 = 5.05408 loss) +I0408 16:48:45.284157 27257 sgd_solver.cpp:105] Iteration 8472, lr = 1.36176e-15 +I0408 16:48:50.246843 27257 solver.cpp:218] Iteration 8484 (2.41814 iter/s, 4.9625s/12 iters), loss = 5.0435 +I0408 16:48:50.246891 27257 solver.cpp:237] Train net output #0: loss = 5.0435 (* 1 = 5.0435 loss) +I0408 16:48:50.246903 27257 sgd_solver.cpp:105] Iteration 8484, lr = 1.3058e-15 +I0408 16:48:55.212218 27257 solver.cpp:218] Iteration 8496 (2.41685 iter/s, 4.96514s/12 iters), loss = 4.96949 +I0408 16:48:55.212344 27257 solver.cpp:237] Train net output #0: loss = 4.96949 (* 1 = 4.96949 loss) +I0408 16:48:55.212359 27257 sgd_solver.cpp:105] Iteration 8496, lr = 1.25214e-15 +I0408 16:48:55.239899 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:49:00.258781 27257 solver.cpp:218] Iteration 8508 (2.378 iter/s, 5.04625s/12 iters), loss = 4.93025 +I0408 16:49:00.258829 27257 solver.cpp:237] Train net output #0: loss = 4.93025 (* 1 = 4.93025 loss) +I0408 16:49:00.258841 27257 sgd_solver.cpp:105] Iteration 8508, lr = 1.20068e-15 +I0408 16:49:05.177446 27257 solver.cpp:218] Iteration 8520 (2.4398 iter/s, 4.91843s/12 iters), loss = 4.87594 +I0408 16:49:05.177495 27257 solver.cpp:237] Train net output #0: loss = 4.87594 (* 1 = 4.87594 loss) +I0408 16:49:05.177506 27257 sgd_solver.cpp:105] Iteration 8520, lr = 1.15134e-15 +I0408 16:49:10.126511 27257 solver.cpp:218] Iteration 8532 (2.42481 iter/s, 4.94883s/12 iters), loss = 4.87659 +I0408 16:49:10.126545 27257 solver.cpp:237] Train net output #0: loss = 4.87659 (* 1 = 4.87659 loss) +I0408 16:49:10.126554 27257 sgd_solver.cpp:105] Iteration 8532, lr = 1.10403e-15 +I0408 16:49:15.051244 27257 solver.cpp:218] Iteration 8544 (2.43679 iter/s, 4.92451s/12 iters), loss = 5.03985 +I0408 16:49:15.051281 27257 solver.cpp:237] Train net output #0: loss = 5.03985 (* 1 = 5.03985 loss) +I0408 16:49:15.051290 27257 sgd_solver.cpp:105] Iteration 8544, lr = 1.05866e-15 +I0408 16:49:19.987931 27257 solver.cpp:218] Iteration 8556 (2.43089 iter/s, 4.93646s/12 iters), loss = 4.89364 +I0408 16:49:19.987979 27257 solver.cpp:237] Train net output #0: loss = 4.89364 (* 1 = 4.89364 loss) +I0408 16:49:19.987991 27257 sgd_solver.cpp:105] Iteration 8556, lr = 1.01516e-15 +I0408 16:49:24.537173 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 16:49:28.059880 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 16:49:31.727730 27257 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 16:49:31.727764 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:49:32.841053 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:49:36.195742 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:49:36.195777 27257 solver.cpp:397] Test net output #1: loss = 4.97031 (* 1 = 4.97031 loss) +I0408 16:49:36.283543 27257 solver.cpp:218] Iteration 8568 (0.736424 iter/s, 16.295s/12 iters), loss = 4.94088 +I0408 16:49:36.283597 27257 solver.cpp:237] Train net output #0: loss = 4.94088 (* 1 = 4.94088 loss) +I0408 16:49:36.283608 27257 sgd_solver.cpp:105] Iteration 8568, lr = 9.73442e-16 +I0408 16:49:40.727299 27257 solver.cpp:218] Iteration 8580 (2.70056 iter/s, 4.44353s/12 iters), loss = 4.95543 +I0408 16:49:40.727340 27257 solver.cpp:237] Train net output #0: loss = 4.95543 (* 1 = 4.95543 loss) +I0408 16:49:40.727350 27257 sgd_solver.cpp:105] Iteration 8580, lr = 9.3344e-16 +I0408 16:49:45.754603 27257 solver.cpp:218] Iteration 8592 (2.38708 iter/s, 5.02707s/12 iters), loss = 5.08539 +I0408 16:49:45.754649 27257 solver.cpp:237] Train net output #0: loss = 5.08539 (* 1 = 5.08539 loss) +I0408 16:49:45.754660 27257 sgd_solver.cpp:105] Iteration 8592, lr = 8.95082e-16 +I0408 16:49:48.125407 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:49:51.199865 27257 solver.cpp:218] Iteration 8604 (2.20385 iter/s, 5.44501s/12 iters), loss = 4.87716 +I0408 16:49:51.199913 27257 solver.cpp:237] Train net output #0: loss = 4.87716 (* 1 = 4.87716 loss) +I0408 16:49:51.199923 27257 sgd_solver.cpp:105] Iteration 8604, lr = 8.583e-16 +I0408 16:49:56.212198 27257 solver.cpp:218] Iteration 8616 (2.39421 iter/s, 5.01209s/12 iters), loss = 4.96136 +I0408 16:49:56.212239 27257 solver.cpp:237] Train net output #0: loss = 4.96136 (* 1 = 4.96136 loss) +I0408 16:49:56.212250 27257 sgd_solver.cpp:105] Iteration 8616, lr = 8.2303e-16 +I0408 16:50:01.273629 27257 solver.cpp:218] Iteration 8628 (2.37098 iter/s, 5.0612s/12 iters), loss = 4.87082 +I0408 16:50:01.273747 27257 solver.cpp:237] Train net output #0: loss = 4.87082 (* 1 = 4.87082 loss) +I0408 16:50:01.273761 27257 sgd_solver.cpp:105] Iteration 8628, lr = 7.89209e-16 +I0408 16:50:06.140630 27257 solver.cpp:218] Iteration 8640 (2.46574 iter/s, 4.8667s/12 iters), loss = 4.97291 +I0408 16:50:06.140671 27257 solver.cpp:237] Train net output #0: loss = 4.97291 (* 1 = 4.97291 loss) +I0408 16:50:06.140681 27257 sgd_solver.cpp:105] Iteration 8640, lr = 7.56778e-16 +I0408 16:50:11.099876 27257 solver.cpp:218] Iteration 8652 (2.41984 iter/s, 4.95902s/12 iters), loss = 4.92563 +I0408 16:50:11.099920 27257 solver.cpp:237] Train net output #0: loss = 4.92563 (* 1 = 4.92563 loss) +I0408 16:50:11.099929 27257 sgd_solver.cpp:105] Iteration 8652, lr = 7.25679e-16 +I0408 16:50:16.116533 27257 solver.cpp:218] Iteration 8664 (2.39214 iter/s, 5.01642s/12 iters), loss = 4.88299 +I0408 16:50:16.116581 27257 solver.cpp:237] Train net output #0: loss = 4.88299 (* 1 = 4.88299 loss) +I0408 16:50:16.116593 27257 sgd_solver.cpp:105] Iteration 8664, lr = 6.95858e-16 +I0408 16:50:18.254211 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 16:50:21.254076 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 16:50:26.077761 27257 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 16:50:26.077790 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:50:27.135711 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:50:30.532002 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:50:30.532052 27257 solver.cpp:397] Test net output #1: loss = 4.97058 (* 1 = 4.97058 loss) +I0408 16:50:32.515413 27257 solver.cpp:218] Iteration 8676 (0.731786 iter/s, 16.3982s/12 iters), loss = 4.88578 +I0408 16:50:32.515533 27257 solver.cpp:237] Train net output #0: loss = 4.88578 (* 1 = 4.88578 loss) +I0408 16:50:32.515547 27257 sgd_solver.cpp:105] Iteration 8676, lr = 6.67263e-16 +I0408 16:50:37.686806 27257 solver.cpp:218] Iteration 8688 (2.3206 iter/s, 5.17108s/12 iters), loss = 4.94305 +I0408 16:50:37.686842 27257 solver.cpp:237] Train net output #0: loss = 4.94305 (* 1 = 4.94305 loss) +I0408 16:50:37.686851 27257 sgd_solver.cpp:105] Iteration 8688, lr = 6.39843e-16 +I0408 16:50:42.012267 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:50:42.690654 27257 solver.cpp:218] Iteration 8700 (2.39826 iter/s, 5.00362s/12 iters), loss = 5.05251 +I0408 16:50:42.690701 27257 solver.cpp:237] Train net output #0: loss = 5.05251 (* 1 = 5.05251 loss) +I0408 16:50:42.690712 27257 sgd_solver.cpp:105] Iteration 8700, lr = 6.1355e-16 +I0408 16:50:47.730782 27257 solver.cpp:218] Iteration 8712 (2.38101 iter/s, 5.03989s/12 iters), loss = 4.92444 +I0408 16:50:47.730830 27257 solver.cpp:237] Train net output #0: loss = 4.92444 (* 1 = 4.92444 loss) +I0408 16:50:47.730844 27257 sgd_solver.cpp:105] Iteration 8712, lr = 5.88337e-16 +I0408 16:50:52.764508 27257 solver.cpp:218] Iteration 8724 (2.38403 iter/s, 5.03349s/12 iters), loss = 4.87189 +I0408 16:50:52.764552 27257 solver.cpp:237] Train net output #0: loss = 4.87189 (* 1 = 4.87189 loss) +I0408 16:50:52.764564 27257 sgd_solver.cpp:105] Iteration 8724, lr = 5.6416e-16 +I0408 16:50:57.694423 27257 solver.cpp:218] Iteration 8736 (2.43423 iter/s, 4.92969s/12 iters), loss = 4.93732 +I0408 16:50:57.694459 27257 solver.cpp:237] Train net output #0: loss = 4.93732 (* 1 = 4.93732 loss) +I0408 16:50:57.694469 27257 sgd_solver.cpp:105] Iteration 8736, lr = 5.40977e-16 +I0408 16:51:02.687597 27257 solver.cpp:218] Iteration 8748 (2.40339 iter/s, 4.99295s/12 iters), loss = 4.8835 +I0408 16:51:02.687709 27257 solver.cpp:237] Train net output #0: loss = 4.8835 (* 1 = 4.8835 loss) +I0408 16:51:02.687723 27257 sgd_solver.cpp:105] Iteration 8748, lr = 5.18747e-16 +I0408 16:51:07.646559 27257 solver.cpp:218] Iteration 8760 (2.42001 iter/s, 4.95866s/12 iters), loss = 4.95853 +I0408 16:51:07.646603 27257 solver.cpp:237] Train net output #0: loss = 4.95853 (* 1 = 4.95853 loss) +I0408 16:51:07.646615 27257 sgd_solver.cpp:105] Iteration 8760, lr = 4.9743e-16 +I0408 16:51:12.181298 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 16:51:15.128721 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 16:51:18.312341 27257 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 16:51:18.312374 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:51:19.343052 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:51:22.807862 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:51:22.807910 27257 solver.cpp:397] Test net output #1: loss = 4.97007 (* 1 = 4.97007 loss) +I0408 16:51:22.898440 27257 solver.cpp:218] Iteration 8772 (0.786819 iter/s, 15.2513s/12 iters), loss = 5.0223 +I0408 16:51:22.898488 27257 solver.cpp:237] Train net output #0: loss = 5.0223 (* 1 = 5.0223 loss) +I0408 16:51:22.898500 27257 sgd_solver.cpp:105] Iteration 8772, lr = 4.76989e-16 +I0408 16:51:27.258625 27257 solver.cpp:218] Iteration 8784 (2.75231 iter/s, 4.35997s/12 iters), loss = 4.91904 +I0408 16:51:27.258659 27257 solver.cpp:237] Train net output #0: loss = 4.91904 (* 1 = 4.91904 loss) +I0408 16:51:27.258667 27257 sgd_solver.cpp:105] Iteration 8784, lr = 4.57388e-16 +I0408 16:51:32.318334 27257 solver.cpp:218] Iteration 8796 (2.37179 iter/s, 5.05948s/12 iters), loss = 4.93947 +I0408 16:51:32.318383 27257 solver.cpp:237] Train net output #0: loss = 4.93947 (* 1 = 4.93947 loss) +I0408 16:51:32.318395 27257 sgd_solver.cpp:105] Iteration 8796, lr = 4.38592e-16 +I0408 16:51:33.753159 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:51:37.265760 27257 solver.cpp:218] Iteration 8808 (2.42562 iter/s, 4.94718s/12 iters), loss = 5.01237 +I0408 16:51:37.265810 27257 solver.cpp:237] Train net output #0: loss = 5.01237 (* 1 = 5.01237 loss) +I0408 16:51:37.265822 27257 sgd_solver.cpp:105] Iteration 8808, lr = 4.20569e-16 +I0408 16:51:42.288640 27257 solver.cpp:218] Iteration 8820 (2.38918 iter/s, 5.02264s/12 iters), loss = 5.05665 +I0408 16:51:42.288684 27257 solver.cpp:237] Train net output #0: loss = 5.05665 (* 1 = 5.05665 loss) +I0408 16:51:42.288695 27257 sgd_solver.cpp:105] Iteration 8820, lr = 4.03286e-16 +I0408 16:51:47.294589 27257 solver.cpp:218] Iteration 8832 (2.39726 iter/s, 5.00571s/12 iters), loss = 5.00464 +I0408 16:51:47.294638 27257 solver.cpp:237] Train net output #0: loss = 5.00464 (* 1 = 5.00464 loss) +I0408 16:51:47.294651 27257 sgd_solver.cpp:105] Iteration 8832, lr = 3.86714e-16 +I0408 16:51:52.303102 27257 solver.cpp:218] Iteration 8844 (2.39604 iter/s, 5.00827s/12 iters), loss = 4.89113 +I0408 16:51:52.303149 27257 solver.cpp:237] Train net output #0: loss = 4.89113 (* 1 = 4.89113 loss) +I0408 16:51:52.303161 27257 sgd_solver.cpp:105] Iteration 8844, lr = 3.70823e-16 +I0408 16:51:57.314574 27257 solver.cpp:218] Iteration 8856 (2.39462 iter/s, 5.01124s/12 iters), loss = 4.96428 +I0408 16:51:57.314611 27257 solver.cpp:237] Train net output #0: loss = 4.96428 (* 1 = 4.96428 loss) +I0408 16:51:57.314620 27257 sgd_solver.cpp:105] Iteration 8856, lr = 3.55584e-16 +I0408 16:52:02.300974 27257 solver.cpp:218] Iteration 8868 (2.40666 iter/s, 4.98617s/12 iters), loss = 4.98163 +I0408 16:52:02.301012 27257 solver.cpp:237] Train net output #0: loss = 4.98163 (* 1 = 4.98163 loss) +I0408 16:52:02.301020 27257 sgd_solver.cpp:105] Iteration 8868, lr = 3.40972e-16 +I0408 16:52:04.348589 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 16:52:08.345896 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 16:52:11.505039 27257 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 16:52:11.505065 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:52:12.485146 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:52:15.996100 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:52:15.996146 27257 solver.cpp:397] Test net output #1: loss = 4.96829 (* 1 = 4.96829 loss) +I0408 16:52:17.879959 27257 solver.cpp:218] Iteration 8880 (0.770299 iter/s, 15.5784s/12 iters), loss = 4.8515 +I0408 16:52:17.880018 27257 solver.cpp:237] Train net output #0: loss = 4.8515 (* 1 = 4.8515 loss) +I0408 16:52:17.880033 27257 sgd_solver.cpp:105] Iteration 8880, lr = 3.2696e-16 +I0408 16:52:22.867731 27257 solver.cpp:218] Iteration 8892 (2.406 iter/s, 4.98753s/12 iters), loss = 5.02265 +I0408 16:52:22.867769 27257 solver.cpp:237] Train net output #0: loss = 5.02265 (* 1 = 5.02265 loss) +I0408 16:52:22.867779 27257 sgd_solver.cpp:105] Iteration 8892, lr = 3.13524e-16 +I0408 16:52:26.466938 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:52:27.892431 27257 solver.cpp:218] Iteration 8904 (2.38831 iter/s, 5.02447s/12 iters), loss = 4.88554 +I0408 16:52:27.892477 27257 solver.cpp:237] Train net output #0: loss = 4.88554 (* 1 = 4.88554 loss) +I0408 16:52:27.892489 27257 sgd_solver.cpp:105] Iteration 8904, lr = 3.00641e-16 +I0408 16:52:32.957832 27257 solver.cpp:218] Iteration 8916 (2.36912 iter/s, 5.06516s/12 iters), loss = 4.91547 +I0408 16:52:32.957877 27257 solver.cpp:237] Train net output #0: loss = 4.91547 (* 1 = 4.91547 loss) +I0408 16:52:32.957890 27257 sgd_solver.cpp:105] Iteration 8916, lr = 2.88286e-16 +I0408 16:52:37.979483 27257 solver.cpp:218] Iteration 8928 (2.38977 iter/s, 5.02141s/12 iters), loss = 4.89089 +I0408 16:52:37.982656 27257 solver.cpp:237] Train net output #0: loss = 4.89089 (* 1 = 4.89089 loss) +I0408 16:52:37.982671 27257 sgd_solver.cpp:105] Iteration 8928, lr = 2.7644e-16 +I0408 16:52:42.781359 27257 solver.cpp:218] Iteration 8940 (2.50077 iter/s, 4.79852s/12 iters), loss = 4.99906 +I0408 16:52:42.781406 27257 solver.cpp:237] Train net output #0: loss = 4.99906 (* 1 = 4.99906 loss) +I0408 16:52:42.781419 27257 sgd_solver.cpp:105] Iteration 8940, lr = 2.6508e-16 +I0408 16:52:47.843983 27257 solver.cpp:218] Iteration 8952 (2.37042 iter/s, 5.06238s/12 iters), loss = 4.884 +I0408 16:52:47.844029 27257 solver.cpp:237] Train net output #0: loss = 4.884 (* 1 = 4.884 loss) +I0408 16:52:47.844043 27257 sgd_solver.cpp:105] Iteration 8952, lr = 2.54187e-16 +I0408 16:52:52.905599 27257 solver.cpp:218] Iteration 8964 (2.3709 iter/s, 5.06137s/12 iters), loss = 4.92719 +I0408 16:52:52.905652 27257 solver.cpp:237] Train net output #0: loss = 4.92719 (* 1 = 4.92719 loss) +I0408 16:52:52.905664 27257 sgd_solver.cpp:105] Iteration 8964, lr = 2.43742e-16 +I0408 16:52:57.473670 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 16:53:00.500334 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 16:53:02.826571 27257 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 16:53:02.826598 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:53:03.800164 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:53:07.368206 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:53:07.368252 27257 solver.cpp:397] Test net output #1: loss = 4.97073 (* 1 = 4.97073 loss) +I0408 16:53:07.458752 27257 solver.cpp:218] Iteration 8976 (0.824597 iter/s, 14.5526s/12 iters), loss = 5.08758 +I0408 16:53:07.458796 27257 solver.cpp:237] Train net output #0: loss = 5.08758 (* 1 = 5.08758 loss) +I0408 16:53:07.458807 27257 sgd_solver.cpp:105] Iteration 8976, lr = 2.33725e-16 +I0408 16:53:11.714334 27257 solver.cpp:218] Iteration 8988 (2.81996 iter/s, 4.25538s/12 iters), loss = 4.83157 +I0408 16:53:11.714421 27257 solver.cpp:237] Train net output #0: loss = 4.83157 (* 1 = 4.83157 loss) +I0408 16:53:11.714430 27257 sgd_solver.cpp:105] Iteration 8988, lr = 2.24121e-16 +I0408 16:53:15.036991 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:53:16.771417 27257 solver.cpp:218] Iteration 9000 (2.37304 iter/s, 5.0568s/12 iters), loss = 4.91761 +I0408 16:53:16.771471 27257 solver.cpp:237] Train net output #0: loss = 4.91761 (* 1 = 4.91761 loss) +I0408 16:53:16.771486 27257 sgd_solver.cpp:105] Iteration 9000, lr = 2.14911e-16 +I0408 16:53:17.458746 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:53:21.791581 27257 solver.cpp:218] Iteration 9012 (2.39048 iter/s, 5.01992s/12 iters), loss = 4.92293 +I0408 16:53:21.791626 27257 solver.cpp:237] Train net output #0: loss = 4.92293 (* 1 = 4.92293 loss) +I0408 16:53:21.791637 27257 sgd_solver.cpp:105] Iteration 9012, lr = 2.0608e-16 +I0408 16:53:26.882236 27257 solver.cpp:218] Iteration 9024 (2.35737 iter/s, 5.09042s/12 iters), loss = 4.99745 +I0408 16:53:26.882282 27257 solver.cpp:237] Train net output #0: loss = 4.99745 (* 1 = 4.99745 loss) +I0408 16:53:26.882294 27257 sgd_solver.cpp:105] Iteration 9024, lr = 1.97611e-16 +I0408 16:53:31.936604 27257 solver.cpp:218] Iteration 9036 (2.3743 iter/s, 5.05413s/12 iters), loss = 4.92609 +I0408 16:53:31.936661 27257 solver.cpp:237] Train net output #0: loss = 4.92609 (* 1 = 4.92609 loss) +I0408 16:53:31.936674 27257 sgd_solver.cpp:105] Iteration 9036, lr = 1.89491e-16 +I0408 16:53:36.944114 27257 solver.cpp:218] Iteration 9048 (2.39652 iter/s, 5.00726s/12 iters), loss = 4.90258 +I0408 16:53:36.944164 27257 solver.cpp:237] Train net output #0: loss = 4.90258 (* 1 = 4.90258 loss) +I0408 16:53:36.944175 27257 sgd_solver.cpp:105] Iteration 9048, lr = 1.81704e-16 +I0408 16:53:41.950914 27257 solver.cpp:218] Iteration 9060 (2.39685 iter/s, 5.00657s/12 iters), loss = 4.9235 +I0408 16:53:41.951036 27257 solver.cpp:237] Train net output #0: loss = 4.9235 (* 1 = 4.9235 loss) +I0408 16:53:41.951046 27257 sgd_solver.cpp:105] Iteration 9060, lr = 1.74237e-16 +I0408 16:53:46.936291 27257 solver.cpp:218] Iteration 9072 (2.40719 iter/s, 4.98507s/12 iters), loss = 4.95133 +I0408 16:53:46.936336 27257 solver.cpp:237] Train net output #0: loss = 4.95133 (* 1 = 4.95133 loss) +I0408 16:53:46.936347 27257 sgd_solver.cpp:105] Iteration 9072, lr = 1.67077e-16 +I0408 16:53:49.002468 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 16:53:51.735451 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 16:53:54.055943 27257 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 16:53:54.055971 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:53:55.039032 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:53:58.608222 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:53:58.608270 27257 solver.cpp:397] Test net output #1: loss = 4.97079 (* 1 = 4.97079 loss) +I0408 16:54:00.587857 27257 solver.cpp:218] Iteration 9084 (0.879054 iter/s, 13.651s/12 iters), loss = 4.90815 +I0408 16:54:00.587901 27257 solver.cpp:237] Train net output #0: loss = 4.90815 (* 1 = 4.90815 loss) +I0408 16:54:00.587913 27257 sgd_solver.cpp:105] Iteration 9084, lr = 1.60211e-16 +I0408 16:54:05.741596 27257 solver.cpp:218] Iteration 9096 (2.32852 iter/s, 5.1535s/12 iters), loss = 4.8769 +I0408 16:54:05.741645 27257 solver.cpp:237] Train net output #0: loss = 4.8769 (* 1 = 4.8769 loss) +I0408 16:54:05.741657 27257 sgd_solver.cpp:105] Iteration 9096, lr = 1.53628e-16 +I0408 16:54:08.686025 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:54:10.786751 27257 solver.cpp:218] Iteration 9108 (2.37863 iter/s, 5.04492s/12 iters), loss = 4.9704 +I0408 16:54:10.786792 27257 solver.cpp:237] Train net output #0: loss = 4.9704 (* 1 = 4.9704 loss) +I0408 16:54:10.786803 27257 sgd_solver.cpp:105] Iteration 9108, lr = 1.47315e-16 +I0408 16:54:15.821466 27257 solver.cpp:218] Iteration 9120 (2.38356 iter/s, 5.03449s/12 iters), loss = 4.96375 +I0408 16:54:15.821574 27257 solver.cpp:237] Train net output #0: loss = 4.96375 (* 1 = 4.96375 loss) +I0408 16:54:15.821586 27257 sgd_solver.cpp:105] Iteration 9120, lr = 1.41261e-16 +I0408 16:54:20.840355 27257 solver.cpp:218] Iteration 9132 (2.39111 iter/s, 5.01859s/12 iters), loss = 4.90049 +I0408 16:54:20.840400 27257 solver.cpp:237] Train net output #0: loss = 4.90049 (* 1 = 4.90049 loss) +I0408 16:54:20.840410 27257 sgd_solver.cpp:105] Iteration 9132, lr = 1.35456e-16 +I0408 16:54:25.857488 27257 solver.cpp:218] Iteration 9144 (2.39191 iter/s, 5.0169s/12 iters), loss = 4.9582 +I0408 16:54:25.857534 27257 solver.cpp:237] Train net output #0: loss = 4.9582 (* 1 = 4.9582 loss) +I0408 16:54:25.857547 27257 sgd_solver.cpp:105] Iteration 9144, lr = 1.2989e-16 +I0408 16:54:30.863430 27257 solver.cpp:218] Iteration 9156 (2.39727 iter/s, 5.0057s/12 iters), loss = 4.88867 +I0408 16:54:30.863479 27257 solver.cpp:237] Train net output #0: loss = 4.88867 (* 1 = 4.88867 loss) +I0408 16:54:30.863490 27257 sgd_solver.cpp:105] Iteration 9156, lr = 1.24552e-16 +I0408 16:54:35.908851 27257 solver.cpp:218] Iteration 9168 (2.3785 iter/s, 5.04519s/12 iters), loss = 4.95698 +I0408 16:54:35.908896 27257 solver.cpp:237] Train net output #0: loss = 4.95698 (* 1 = 4.95698 loss) +I0408 16:54:35.908907 27257 sgd_solver.cpp:105] Iteration 9168, lr = 1.19434e-16 +I0408 16:54:40.489579 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 16:54:43.510995 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 16:54:46.085944 27257 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 16:54:46.086086 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:54:46.966292 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:54:50.557615 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:54:50.557660 27257 solver.cpp:397] Test net output #1: loss = 4.96765 (* 1 = 4.96765 loss) +I0408 16:54:50.648350 27257 solver.cpp:218] Iteration 9180 (0.814171 iter/s, 14.7389s/12 iters), loss = 5.10362 +I0408 16:54:50.648403 27257 solver.cpp:237] Train net output #0: loss = 5.10362 (* 1 = 5.10362 loss) +I0408 16:54:50.648416 27257 sgd_solver.cpp:105] Iteration 9180, lr = 1.14526e-16 +I0408 16:54:54.880264 27257 solver.cpp:218] Iteration 9192 (2.83574 iter/s, 4.2317s/12 iters), loss = 5.01551 +I0408 16:54:54.880311 27257 solver.cpp:237] Train net output #0: loss = 5.01551 (* 1 = 5.01551 loss) +I0408 16:54:54.880322 27257 sgd_solver.cpp:105] Iteration 9192, lr = 1.0982e-16 +I0408 16:54:59.885306 27257 solver.cpp:218] Iteration 9204 (2.39769 iter/s, 5.00482s/12 iters), loss = 4.99926 +I0408 16:54:59.885339 27257 solver.cpp:237] Train net output #0: loss = 4.99926 (* 1 = 4.99926 loss) +I0408 16:54:59.885346 27257 sgd_solver.cpp:105] Iteration 9204, lr = 1.05307e-16 +I0408 16:54:59.952867 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:55:04.733455 27257 solver.cpp:218] Iteration 9216 (2.47528 iter/s, 4.84793s/12 iters), loss = 4.89909 +I0408 16:55:04.733506 27257 solver.cpp:237] Train net output #0: loss = 4.89909 (* 1 = 4.89909 loss) +I0408 16:55:04.733518 27257 sgd_solver.cpp:105] Iteration 9216, lr = 1.00979e-16 +I0408 16:55:09.712553 27257 solver.cpp:218] Iteration 9228 (2.41019 iter/s, 4.97886s/12 iters), loss = 4.8562 +I0408 16:55:09.712590 27257 solver.cpp:237] Train net output #0: loss = 4.8562 (* 1 = 4.8562 loss) +I0408 16:55:09.712599 27257 sgd_solver.cpp:105] Iteration 9228, lr = 9.68298e-17 +I0408 16:55:14.738298 27257 solver.cpp:218] Iteration 9240 (2.38781 iter/s, 5.02552s/12 iters), loss = 4.85519 +I0408 16:55:14.738344 27257 solver.cpp:237] Train net output #0: loss = 4.85519 (* 1 = 4.85519 loss) +I0408 16:55:14.738356 27257 sgd_solver.cpp:105] Iteration 9240, lr = 9.28508e-17 +I0408 16:55:19.776895 27257 solver.cpp:218] Iteration 9252 (2.38173 iter/s, 5.03836s/12 iters), loss = 5.05268 +I0408 16:55:19.778337 27257 solver.cpp:237] Train net output #0: loss = 5.05268 (* 1 = 5.05268 loss) +I0408 16:55:19.778348 27257 sgd_solver.cpp:105] Iteration 9252, lr = 8.90352e-17 +I0408 16:55:24.808158 27257 solver.cpp:218] Iteration 9264 (2.38586 iter/s, 5.02963s/12 iters), loss = 4.92397 +I0408 16:55:24.808202 27257 solver.cpp:237] Train net output #0: loss = 4.92397 (* 1 = 4.92397 loss) +I0408 16:55:24.808212 27257 sgd_solver.cpp:105] Iteration 9264, lr = 8.53765e-17 +I0408 16:55:29.836755 27257 solver.cpp:218] Iteration 9276 (2.38646 iter/s, 5.02836s/12 iters), loss = 4.96453 +I0408 16:55:29.836802 27257 solver.cpp:237] Train net output #0: loss = 4.96453 (* 1 = 4.96453 loss) +I0408 16:55:29.836817 27257 sgd_solver.cpp:105] Iteration 9276, lr = 8.18681e-17 +I0408 16:55:31.871248 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 16:55:34.870560 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 16:55:37.197145 27257 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 16:55:37.197172 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:55:38.020462 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:55:41.656275 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:55:41.656322 27257 solver.cpp:397] Test net output #1: loss = 4.97199 (* 1 = 4.97199 loss) +I0408 16:55:43.455962 27257 solver.cpp:218] Iteration 9288 (0.881143 iter/s, 13.6187s/12 iters), loss = 4.90005 +I0408 16:55:43.456010 27257 solver.cpp:237] Train net output #0: loss = 4.90005 (* 1 = 4.90005 loss) +I0408 16:55:43.456022 27257 sgd_solver.cpp:105] Iteration 9288, lr = 7.85038e-17 +I0408 16:55:48.408154 27257 solver.cpp:218] Iteration 9300 (2.42328 iter/s, 4.95196s/12 iters), loss = 5.06722 +I0408 16:55:48.408205 27257 solver.cpp:237] Train net output #0: loss = 5.06722 (* 1 = 5.06722 loss) +I0408 16:55:48.408216 27257 sgd_solver.cpp:105] Iteration 9300, lr = 7.52778e-17 +I0408 16:55:50.582283 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:55:53.347087 27257 solver.cpp:218] Iteration 9312 (2.42979 iter/s, 4.93869s/12 iters), loss = 4.91331 +I0408 16:55:53.347136 27257 solver.cpp:237] Train net output #0: loss = 4.91331 (* 1 = 4.91331 loss) +I0408 16:55:53.347148 27257 sgd_solver.cpp:105] Iteration 9312, lr = 7.21844e-17 +I0408 16:55:58.284231 27257 solver.cpp:218] Iteration 9324 (2.43067 iter/s, 4.93691s/12 iters), loss = 4.95267 +I0408 16:55:58.284283 27257 solver.cpp:237] Train net output #0: loss = 4.95267 (* 1 = 4.95267 loss) +I0408 16:55:58.284294 27257 sgd_solver.cpp:105] Iteration 9324, lr = 6.92181e-17 +I0408 16:56:03.212690 27257 solver.cpp:218] Iteration 9336 (2.43495 iter/s, 4.92823s/12 iters), loss = 4.86582 +I0408 16:56:03.212740 27257 solver.cpp:237] Train net output #0: loss = 4.86582 (* 1 = 4.86582 loss) +I0408 16:56:03.212752 27257 sgd_solver.cpp:105] Iteration 9336, lr = 6.63737e-17 +I0408 16:56:08.128841 27257 solver.cpp:218] Iteration 9348 (2.44105 iter/s, 4.91592s/12 iters), loss = 5.0275 +I0408 16:56:08.128888 27257 solver.cpp:237] Train net output #0: loss = 5.0275 (* 1 = 5.0275 loss) +I0408 16:56:08.128898 27257 sgd_solver.cpp:105] Iteration 9348, lr = 6.36462e-17 +I0408 16:56:13.059922 27257 solver.cpp:218] Iteration 9360 (2.43366 iter/s, 4.93085s/12 iters), loss = 4.9916 +I0408 16:56:13.059963 27257 solver.cpp:237] Train net output #0: loss = 4.9916 (* 1 = 4.9916 loss) +I0408 16:56:13.059974 27257 sgd_solver.cpp:105] Iteration 9360, lr = 6.10308e-17 +I0408 16:56:17.989967 27257 solver.cpp:218] Iteration 9372 (2.43417 iter/s, 4.92981s/12 iters), loss = 4.86379 +I0408 16:56:17.990010 27257 solver.cpp:237] Train net output #0: loss = 4.86379 (* 1 = 4.86379 loss) +I0408 16:56:17.990021 27257 sgd_solver.cpp:105] Iteration 9372, lr = 5.85228e-17 +I0408 16:56:22.464357 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 16:56:25.526669 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 16:56:27.859230 27257 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 16:56:27.859256 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:56:28.650107 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:56:32.326705 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:56:32.326756 27257 solver.cpp:397] Test net output #1: loss = 4.96876 (* 1 = 4.96876 loss) +I0408 16:56:32.417320 27257 solver.cpp:218] Iteration 9384 (0.831786 iter/s, 14.4268s/12 iters), loss = 4.87339 +I0408 16:56:32.417369 27257 solver.cpp:237] Train net output #0: loss = 4.87339 (* 1 = 4.87339 loss) +I0408 16:56:32.417380 27257 sgd_solver.cpp:105] Iteration 9384, lr = 5.61179e-17 +I0408 16:56:36.663417 27257 solver.cpp:218] Iteration 9396 (2.82626 iter/s, 4.24589s/12 iters), loss = 4.97394 +I0408 16:56:36.663450 27257 solver.cpp:237] Train net output #0: loss = 4.97394 (* 1 = 4.97394 loss) +I0408 16:56:36.663458 27257 sgd_solver.cpp:105] Iteration 9396, lr = 5.38119e-17 +I0408 16:56:41.039985 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:56:41.697046 27257 solver.cpp:218] Iteration 9408 (2.38407 iter/s, 5.0334s/12 iters), loss = 5.03552 +I0408 16:56:41.697091 27257 solver.cpp:237] Train net output #0: loss = 5.03552 (* 1 = 5.03552 loss) +I0408 16:56:41.697103 27257 sgd_solver.cpp:105] Iteration 9408, lr = 5.16005e-17 +I0408 16:56:46.784843 27257 solver.cpp:218] Iteration 9420 (2.35869 iter/s, 5.08756s/12 iters), loss = 4.95236 +I0408 16:56:46.784888 27257 solver.cpp:237] Train net output #0: loss = 4.95236 (* 1 = 4.95236 loss) +I0408 16:56:46.784899 27257 sgd_solver.cpp:105] Iteration 9420, lr = 4.94801e-17 +I0408 16:56:51.810719 27257 solver.cpp:218] Iteration 9432 (2.38776 iter/s, 5.02564s/12 iters), loss = 4.95154 +I0408 16:56:51.810768 27257 solver.cpp:237] Train net output #0: loss = 4.95154 (* 1 = 4.95154 loss) +I0408 16:56:51.810781 27257 sgd_solver.cpp:105] Iteration 9432, lr = 4.74468e-17 +I0408 16:56:56.762668 27257 solver.cpp:218] Iteration 9444 (2.4234 iter/s, 4.95171s/12 iters), loss = 4.87305 +I0408 16:56:56.762806 27257 solver.cpp:237] Train net output #0: loss = 4.87305 (* 1 = 4.87305 loss) +I0408 16:56:56.762820 27257 sgd_solver.cpp:105] Iteration 9444, lr = 4.54971e-17 +I0408 16:57:01.799436 27257 solver.cpp:218] Iteration 9456 (2.38263 iter/s, 5.03645s/12 iters), loss = 4.85311 +I0408 16:57:01.799479 27257 solver.cpp:237] Train net output #0: loss = 4.85311 (* 1 = 4.85311 loss) +I0408 16:57:01.799491 27257 sgd_solver.cpp:105] Iteration 9456, lr = 4.36274e-17 +I0408 16:57:06.820339 27257 solver.cpp:218] Iteration 9468 (2.39012 iter/s, 5.02067s/12 iters), loss = 4.95224 +I0408 16:57:06.820382 27257 solver.cpp:237] Train net output #0: loss = 4.95224 (* 1 = 4.95224 loss) +I0408 16:57:06.820394 27257 sgd_solver.cpp:105] Iteration 9468, lr = 4.18346e-17 +I0408 16:57:11.852902 27257 solver.cpp:218] Iteration 9480 (2.38458 iter/s, 5.03233s/12 iters), loss = 4.98021 +I0408 16:57:11.852948 27257 solver.cpp:237] Train net output #0: loss = 4.98021 (* 1 = 4.98021 loss) +I0408 16:57:11.852962 27257 sgd_solver.cpp:105] Iteration 9480, lr = 4.01155e-17 +I0408 16:57:13.907238 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 16:57:16.930310 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 16:57:19.317243 27257 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 16:57:19.317268 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:57:20.035324 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:57:23.775843 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:57:23.775892 27257 solver.cpp:397] Test net output #1: loss = 4.96784 (* 1 = 4.96784 loss) +I0408 16:57:25.682441 27257 solver.cpp:218] Iteration 9492 (0.867742 iter/s, 13.829s/12 iters), loss = 4.89696 +I0408 16:57:25.682489 27257 solver.cpp:237] Train net output #0: loss = 4.89696 (* 1 = 4.89696 loss) +I0408 16:57:25.682502 27257 sgd_solver.cpp:105] Iteration 9492, lr = 3.8467e-17 +I0408 16:57:30.694013 27257 solver.cpp:218] Iteration 9504 (2.39457 iter/s, 5.01134s/12 iters), loss = 4.99673 +I0408 16:57:30.694133 27257 solver.cpp:237] Train net output #0: loss = 4.99673 (* 1 = 4.99673 loss) +I0408 16:57:30.694146 27257 sgd_solver.cpp:105] Iteration 9504, lr = 3.68863e-17 +I0408 16:57:32.097360 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:57:35.545784 27257 solver.cpp:218] Iteration 9516 (2.47348 iter/s, 4.85147s/12 iters), loss = 4.96317 +I0408 16:57:35.545830 27257 solver.cpp:237] Train net output #0: loss = 4.96317 (* 1 = 4.96317 loss) +I0408 16:57:35.545841 27257 sgd_solver.cpp:105] Iteration 9516, lr = 3.53705e-17 +I0408 16:57:40.554276 27257 solver.cpp:218] Iteration 9528 (2.39604 iter/s, 5.00826s/12 iters), loss = 5.08359 +I0408 16:57:40.554322 27257 solver.cpp:237] Train net output #0: loss = 5.08359 (* 1 = 5.08359 loss) +I0408 16:57:40.554334 27257 sgd_solver.cpp:105] Iteration 9528, lr = 3.3917e-17 +I0408 16:57:45.566370 27257 solver.cpp:218] Iteration 9540 (2.39432 iter/s, 5.01186s/12 iters), loss = 5.00395 +I0408 16:57:45.566413 27257 solver.cpp:237] Train net output #0: loss = 5.00395 (* 1 = 5.00395 loss) +I0408 16:57:45.566424 27257 sgd_solver.cpp:105] Iteration 9540, lr = 3.25233e-17 +I0408 16:57:50.602679 27257 solver.cpp:218] Iteration 9552 (2.38281 iter/s, 5.03608s/12 iters), loss = 4.85486 +I0408 16:57:50.602726 27257 solver.cpp:237] Train net output #0: loss = 4.85486 (* 1 = 4.85486 loss) +I0408 16:57:50.602738 27257 sgd_solver.cpp:105] Iteration 9552, lr = 3.11868e-17 +I0408 16:57:55.588151 27257 solver.cpp:218] Iteration 9564 (2.40711 iter/s, 4.98524s/12 iters), loss = 4.97236 +I0408 16:57:55.588196 27257 solver.cpp:237] Train net output #0: loss = 4.97236 (* 1 = 4.97236 loss) +I0408 16:57:55.588208 27257 sgd_solver.cpp:105] Iteration 9564, lr = 2.99052e-17 +I0408 16:58:00.616583 27257 solver.cpp:218] Iteration 9576 (2.38654 iter/s, 5.0282s/12 iters), loss = 4.9449 +I0408 16:58:00.616628 27257 solver.cpp:237] Train net output #0: loss = 4.9449 (* 1 = 4.9449 loss) +I0408 16:58:00.616641 27257 sgd_solver.cpp:105] Iteration 9576, lr = 2.86763e-17 +I0408 16:58:05.205132 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 16:58:08.435760 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 16:58:10.793327 27257 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 16:58:10.793352 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:58:11.505981 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:58:15.343433 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:58:15.343480 27257 solver.cpp:397] Test net output #1: loss = 4.96739 (* 1 = 4.96739 loss) +I0408 16:58:15.434087 27257 solver.cpp:218] Iteration 9588 (0.809885 iter/s, 14.8169s/12 iters), loss = 4.88476 +I0408 16:58:15.434134 27257 solver.cpp:237] Train net output #0: loss = 4.88476 (* 1 = 4.88476 loss) +I0408 16:58:15.434146 27257 sgd_solver.cpp:105] Iteration 9588, lr = 2.74979e-17 +I0408 16:58:19.622303 27257 solver.cpp:218] Iteration 9600 (2.86532 iter/s, 4.18801s/12 iters), loss = 5.00082 +I0408 16:58:19.622341 27257 solver.cpp:237] Train net output #0: loss = 5.00082 (* 1 = 5.00082 loss) +I0408 16:58:19.622350 27257 sgd_solver.cpp:105] Iteration 9600, lr = 2.63679e-17 +I0408 16:58:23.236552 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:58:24.634214 27257 solver.cpp:218] Iteration 9612 (2.39441 iter/s, 5.01168s/12 iters), loss = 4.89383 +I0408 16:58:24.634274 27257 solver.cpp:237] Train net output #0: loss = 4.89383 (* 1 = 4.89383 loss) +I0408 16:58:24.634285 27257 sgd_solver.cpp:105] Iteration 9612, lr = 2.52844e-17 +I0408 16:58:29.606055 27257 solver.cpp:218] Iteration 9624 (2.41371 iter/s, 4.9716s/12 iters), loss = 4.88057 +I0408 16:58:29.606101 27257 solver.cpp:237] Train net output #0: loss = 4.88057 (* 1 = 4.88057 loss) +I0408 16:58:29.606112 27257 sgd_solver.cpp:105] Iteration 9624, lr = 2.42454e-17 +I0408 16:58:34.610785 27257 solver.cpp:218] Iteration 9636 (2.39784 iter/s, 5.0045s/12 iters), loss = 5.00086 +I0408 16:58:34.610822 27257 solver.cpp:237] Train net output #0: loss = 5.00086 (* 1 = 5.00086 loss) +I0408 16:58:34.610831 27257 sgd_solver.cpp:105] Iteration 9636, lr = 2.3249e-17 +I0408 16:58:39.679328 27257 solver.cpp:218] Iteration 9648 (2.36765 iter/s, 5.06832s/12 iters), loss = 4.92564 +I0408 16:58:39.679438 27257 solver.cpp:237] Train net output #0: loss = 4.92564 (* 1 = 4.92564 loss) +I0408 16:58:39.679451 27257 sgd_solver.cpp:105] Iteration 9648, lr = 2.22936e-17 +I0408 16:58:44.717816 27257 solver.cpp:218] Iteration 9660 (2.38181 iter/s, 5.03819s/12 iters), loss = 4.95438 +I0408 16:58:44.717864 27257 solver.cpp:237] Train net output #0: loss = 4.95438 (* 1 = 4.95438 loss) +I0408 16:58:44.717876 27257 sgd_solver.cpp:105] Iteration 9660, lr = 2.13775e-17 +I0408 16:58:49.757052 27257 solver.cpp:218] Iteration 9672 (2.38143 iter/s, 5.039s/12 iters), loss = 4.91802 +I0408 16:58:49.757099 27257 solver.cpp:237] Train net output #0: loss = 4.91802 (* 1 = 4.91802 loss) +I0408 16:58:49.757112 27257 sgd_solver.cpp:105] Iteration 9672, lr = 2.04991e-17 +I0408 16:58:54.770079 27257 solver.cpp:218] Iteration 9684 (2.39387 iter/s, 5.01279s/12 iters), loss = 5.09916 +I0408 16:58:54.770119 27257 solver.cpp:237] Train net output #0: loss = 5.09916 (* 1 = 5.09916 loss) +I0408 16:58:54.770128 27257 sgd_solver.cpp:105] Iteration 9684, lr = 1.96567e-17 +I0408 16:58:56.829165 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 16:58:59.861642 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 16:59:02.188563 27257 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 16:59:02.188592 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:59:02.899673 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:59:05.734088 27257 blocking_queue.cpp:49] Waiting for data +I0408 16:59:06.719758 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 16:59:06.719805 27257 solver.cpp:397] Test net output #1: loss = 4.97172 (* 1 = 4.97172 loss) +I0408 16:59:08.708014 27257 solver.cpp:218] Iteration 9696 (0.860993 iter/s, 13.9374s/12 iters), loss = 4.81695 +I0408 16:59:08.708056 27257 solver.cpp:237] Train net output #0: loss = 4.81695 (* 1 = 4.81695 loss) +I0408 16:59:08.708067 27257 sgd_solver.cpp:105] Iteration 9696, lr = 1.88489e-17 +I0408 16:59:14.114050 27257 solver.cpp:218] Iteration 9708 (2.21984 iter/s, 5.40578s/12 iters), loss = 4.94525 +I0408 16:59:14.114208 27257 solver.cpp:237] Train net output #0: loss = 4.94525 (* 1 = 4.94525 loss) +I0408 16:59:14.114219 27257 sgd_solver.cpp:105] Iteration 9708, lr = 1.80744e-17 +I0408 16:59:14.859679 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:59:19.060254 27257 solver.cpp:218] Iteration 9720 (2.42627 iter/s, 4.94586s/12 iters), loss = 4.89453 +I0408 16:59:19.060302 27257 solver.cpp:237] Train net output #0: loss = 4.89453 (* 1 = 4.89453 loss) +I0408 16:59:19.060313 27257 sgd_solver.cpp:105] Iteration 9720, lr = 1.73316e-17 +I0408 16:59:24.086163 27257 solver.cpp:218] Iteration 9732 (2.38774 iter/s, 5.02567s/12 iters), loss = 5.00696 +I0408 16:59:24.086215 27257 solver.cpp:237] Train net output #0: loss = 5.00696 (* 1 = 5.00696 loss) +I0408 16:59:24.086225 27257 sgd_solver.cpp:105] Iteration 9732, lr = 1.66194e-17 +I0408 16:59:29.031802 27257 solver.cpp:218] Iteration 9744 (2.4265 iter/s, 4.9454s/12 iters), loss = 4.86965 +I0408 16:59:29.031848 27257 solver.cpp:237] Train net output #0: loss = 4.86965 (* 1 = 4.86965 loss) +I0408 16:59:29.031862 27257 sgd_solver.cpp:105] Iteration 9744, lr = 1.59365e-17 +I0408 16:59:34.037899 27257 solver.cpp:218] Iteration 9756 (2.39719 iter/s, 5.00587s/12 iters), loss = 4.83383 +I0408 16:59:34.037946 27257 solver.cpp:237] Train net output #0: loss = 4.83383 (* 1 = 4.83383 loss) +I0408 16:59:34.037968 27257 sgd_solver.cpp:105] Iteration 9756, lr = 1.52816e-17 +I0408 16:59:39.058562 27257 solver.cpp:218] Iteration 9768 (2.39023 iter/s, 5.02043s/12 iters), loss = 4.98705 +I0408 16:59:39.058598 27257 solver.cpp:237] Train net output #0: loss = 4.98705 (* 1 = 4.98705 loss) +I0408 16:59:39.058609 27257 sgd_solver.cpp:105] Iteration 9768, lr = 1.46536e-17 +I0408 16:59:44.129918 27257 solver.cpp:218] Iteration 9780 (2.36634 iter/s, 5.07113s/12 iters), loss = 5.02061 +I0408 16:59:44.130023 27257 solver.cpp:237] Train net output #0: loss = 5.02061 (* 1 = 5.02061 loss) +I0408 16:59:44.130033 27257 sgd_solver.cpp:105] Iteration 9780, lr = 1.40514e-17 +I0408 16:59:48.773165 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 16:59:51.758775 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 16:59:54.084501 27257 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 16:59:54.084527 27257 net.cpp:676] Ignoring source layer train-data +I0408 16:59:54.692447 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:59:58.539728 27257 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 16:59:58.539773 27257 solver.cpp:397] Test net output #1: loss = 4.9671 (* 1 = 4.9671 loss) +I0408 16:59:58.627740 27257 solver.cpp:218] Iteration 9792 (0.827747 iter/s, 14.4972s/12 iters), loss = 4.95557 +I0408 16:59:58.627791 27257 solver.cpp:237] Train net output #0: loss = 4.95557 (* 1 = 4.95557 loss) +I0408 16:59:58.627804 27257 sgd_solver.cpp:105] Iteration 9792, lr = 1.3474e-17 +I0408 17:00:02.908641 27257 solver.cpp:218] Iteration 9804 (2.80329 iter/s, 4.28069s/12 iters), loss = 5.00536 +I0408 17:00:02.908689 27257 solver.cpp:237] Train net output #0: loss = 5.00536 (* 1 = 5.00536 loss) +I0408 17:00:02.908701 27257 sgd_solver.cpp:105] Iteration 9804, lr = 1.29203e-17 +I0408 17:00:05.901372 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:00:07.960510 27257 solver.cpp:218] Iteration 9816 (2.37547 iter/s, 5.05163s/12 iters), loss = 4.99884 +I0408 17:00:07.960552 27257 solver.cpp:237] Train net output #0: loss = 4.99884 (* 1 = 4.99884 loss) +I0408 17:00:07.960564 27257 sgd_solver.cpp:105] Iteration 9816, lr = 1.23894e-17 +I0408 17:00:12.969341 27257 solver.cpp:218] Iteration 9828 (2.39588 iter/s, 5.0086s/12 iters), loss = 4.99087 +I0408 17:00:12.969389 27257 solver.cpp:237] Train net output #0: loss = 4.99087 (* 1 = 4.99087 loss) +I0408 17:00:12.969401 27257 sgd_solver.cpp:105] Iteration 9828, lr = 1.18803e-17 +I0408 17:00:17.985435 27257 solver.cpp:218] Iteration 9840 (2.39241 iter/s, 5.01586s/12 iters), loss = 4.90961 +I0408 17:00:17.985599 27257 solver.cpp:237] Train net output #0: loss = 4.90961 (* 1 = 4.90961 loss) +I0408 17:00:17.985613 27257 sgd_solver.cpp:105] Iteration 9840, lr = 1.13921e-17 +I0408 17:00:23.027413 27257 solver.cpp:218] Iteration 9852 (2.38018 iter/s, 5.04163s/12 iters), loss = 4.96484 +I0408 17:00:23.027457 27257 solver.cpp:237] Train net output #0: loss = 4.96484 (* 1 = 4.96484 loss) +I0408 17:00:23.027468 27257 sgd_solver.cpp:105] Iteration 9852, lr = 1.09239e-17 +I0408 17:00:28.061162 27257 solver.cpp:218] Iteration 9864 (2.38402 iter/s, 5.03351s/12 iters), loss = 4.93859 +I0408 17:00:28.061205 27257 solver.cpp:237] Train net output #0: loss = 4.93859 (* 1 = 4.93859 loss) +I0408 17:00:28.061218 27257 sgd_solver.cpp:105] Iteration 9864, lr = 1.0475e-17 +I0408 17:00:33.092061 27257 solver.cpp:218] Iteration 9876 (2.38537 iter/s, 5.03066s/12 iters), loss = 4.98865 +I0408 17:00:33.092104 27257 solver.cpp:237] Train net output #0: loss = 4.98865 (* 1 = 4.98865 loss) +I0408 17:00:33.092113 27257 sgd_solver.cpp:105] Iteration 9876, lr = 1.00446e-17 +I0408 17:00:38.153527 27257 solver.cpp:218] Iteration 9888 (2.37097 iter/s, 5.06123s/12 iters), loss = 5.12442 +I0408 17:00:38.153563 27257 solver.cpp:237] Train net output #0: loss = 5.12442 (* 1 = 5.12442 loss) +I0408 17:00:38.153571 27257 sgd_solver.cpp:105] Iteration 9888, lr = 9.63181e-18 +I0408 17:00:40.191577 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 17:00:43.923696 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 17:00:46.250473 27257 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 17:00:46.250495 27257 net.cpp:676] Ignoring source layer train-data +I0408 17:00:46.828006 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:00:50.727538 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 17:00:50.727670 27257 solver.cpp:397] Test net output #1: loss = 4.96783 (* 1 = 4.96783 loss) +I0408 17:00:52.733191 27257 solver.cpp:218] Iteration 9900 (0.823096 iter/s, 14.5791s/12 iters), loss = 5.05885 +I0408 17:00:52.733238 27257 solver.cpp:237] Train net output #0: loss = 5.05885 (* 1 = 5.05885 loss) +I0408 17:00:52.733250 27257 sgd_solver.cpp:105] Iteration 9900, lr = 9.23601e-18 +I0408 17:00:57.725358 27257 solver.cpp:218] Iteration 9912 (2.40388 iter/s, 4.99193s/12 iters), loss = 5.00932 +I0408 17:00:57.725406 27257 solver.cpp:237] Train net output #0: loss = 5.00932 (* 1 = 5.00932 loss) +I0408 17:00:57.725419 27257 sgd_solver.cpp:105] Iteration 9912, lr = 8.85647e-18 +I0408 17:00:57.837658 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:01:02.701193 27257 solver.cpp:218] Iteration 9924 (2.41177 iter/s, 4.9756s/12 iters), loss = 4.94913 +I0408 17:01:02.701251 27257 solver.cpp:237] Train net output #0: loss = 4.94913 (* 1 = 4.94913 loss) +I0408 17:01:02.701267 27257 sgd_solver.cpp:105] Iteration 9924, lr = 8.49253e-18 +I0408 17:01:07.729154 27257 solver.cpp:218] Iteration 9936 (2.38677 iter/s, 5.02772s/12 iters), loss = 4.89294 +I0408 17:01:07.729190 27257 solver.cpp:237] Train net output #0: loss = 4.89294 (* 1 = 4.89294 loss) +I0408 17:01:07.729198 27257 sgd_solver.cpp:105] Iteration 9936, lr = 8.14354e-18 +I0408 17:01:12.757331 27257 solver.cpp:218] Iteration 9948 (2.38666 iter/s, 5.02795s/12 iters), loss = 4.83584 +I0408 17:01:12.757375 27257 solver.cpp:237] Train net output #0: loss = 4.83584 (* 1 = 4.83584 loss) +I0408 17:01:12.757386 27257 sgd_solver.cpp:105] Iteration 9948, lr = 7.8089e-18 +I0408 17:01:17.713876 27257 solver.cpp:218] Iteration 9960 (2.42116 iter/s, 4.95631s/12 iters), loss = 5.01724 +I0408 17:01:17.713925 27257 solver.cpp:237] Train net output #0: loss = 5.01724 (* 1 = 5.01724 loss) +I0408 17:01:17.713937 27257 sgd_solver.cpp:105] Iteration 9960, lr = 7.48801e-18 +I0408 17:01:22.692941 27257 solver.cpp:218] Iteration 9972 (2.41021 iter/s, 4.97883s/12 iters), loss = 4.88564 +I0408 17:01:22.693101 27257 solver.cpp:237] Train net output #0: loss = 4.88564 (* 1 = 4.88564 loss) +I0408 17:01:22.693115 27257 sgd_solver.cpp:105] Iteration 9972, lr = 7.1803e-18 +I0408 17:01:27.682616 27257 solver.cpp:218] Iteration 9984 (2.40513 iter/s, 4.98933s/12 iters), loss = 4.96186 +I0408 17:01:27.682667 27257 solver.cpp:237] Train net output #0: loss = 4.96186 (* 1 = 4.96186 loss) +I0408 17:01:27.682679 27257 sgd_solver.cpp:105] Iteration 9984, lr = 6.88524e-18 +I0408 17:01:32.267132 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 17:01:35.276619 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 17:01:37.603838 27257 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 17:01:37.603864 27257 net.cpp:676] Ignoring source layer train-data +I0408 17:01:38.123574 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:01:42.214462 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 17:01:42.214509 27257 solver.cpp:397] Test net output #1: loss = 4.9681 (* 1 = 4.9681 loss) +I0408 17:01:42.305145 27257 solver.cpp:218] Iteration 9996 (0.820684 iter/s, 14.6219s/12 iters), loss = 4.88585 +I0408 17:01:42.305197 27257 solver.cpp:237] Train net output #0: loss = 4.88585 (* 1 = 4.88585 loss) +I0408 17:01:42.305208 27257 sgd_solver.cpp:105] Iteration 9996, lr = 6.6023e-18 +I0408 17:01:46.536041 27257 solver.cpp:218] Iteration 10008 (2.83642 iter/s, 4.23068s/12 iters), loss = 5.09032 +I0408 17:01:46.536088 27257 solver.cpp:237] Train net output #0: loss = 5.09032 (* 1 = 5.09032 loss) +I0408 17:01:46.536100 27257 sgd_solver.cpp:105] Iteration 10008, lr = 6.33099e-18 +I0408 17:01:48.774322 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:01:51.478708 27257 solver.cpp:218] Iteration 10020 (2.42795 iter/s, 4.94243s/12 iters), loss = 4.925 +I0408 17:01:51.478754 27257 solver.cpp:237] Train net output #0: loss = 4.925 (* 1 = 4.925 loss) +I0408 17:01:51.478765 27257 sgd_solver.cpp:105] Iteration 10020, lr = 6.07083e-18 +I0408 17:01:56.496419 27257 solver.cpp:218] Iteration 10032 (2.39165 iter/s, 5.01746s/12 iters), loss = 4.92808 +I0408 17:01:56.496538 27257 solver.cpp:237] Train net output #0: loss = 4.92808 (* 1 = 4.92808 loss) +I0408 17:01:56.496552 27257 sgd_solver.cpp:105] Iteration 10032, lr = 5.82136e-18 +I0408 17:02:01.525684 27257 solver.cpp:218] Iteration 10044 (2.38618 iter/s, 5.02896s/12 iters), loss = 4.93462 +I0408 17:02:01.525729 27257 solver.cpp:237] Train net output #0: loss = 4.93462 (* 1 = 4.93462 loss) +I0408 17:02:01.525740 27257 sgd_solver.cpp:105] Iteration 10044, lr = 5.58214e-18 +I0408 17:02:06.540024 27257 solver.cpp:218] Iteration 10056 (2.39325 iter/s, 5.0141s/12 iters), loss = 5.01056 +I0408 17:02:06.540071 27257 solver.cpp:237] Train net output #0: loss = 5.01056 (* 1 = 5.01056 loss) +I0408 17:02:06.540084 27257 sgd_solver.cpp:105] Iteration 10056, lr = 5.35275e-18 +I0408 17:02:11.549288 27257 solver.cpp:218] Iteration 10068 (2.39568 iter/s, 5.00902s/12 iters), loss = 4.97694 +I0408 17:02:11.549337 27257 solver.cpp:237] Train net output #0: loss = 4.97694 (* 1 = 4.97694 loss) +I0408 17:02:11.549348 27257 sgd_solver.cpp:105] Iteration 10068, lr = 5.13279e-18 +I0408 17:02:16.546064 27257 solver.cpp:218] Iteration 10080 (2.40166 iter/s, 4.99654s/12 iters), loss = 4.79155 +I0408 17:02:16.546108 27257 solver.cpp:237] Train net output #0: loss = 4.79155 (* 1 = 4.79155 loss) +I0408 17:02:16.546119 27257 sgd_solver.cpp:105] Iteration 10080, lr = 4.92186e-18 +I0408 17:02:21.697404 27257 solver.cpp:218] Iteration 10092 (2.3296 iter/s, 5.1511s/12 iters), loss = 4.84905 +I0408 17:02:21.697453 27257 solver.cpp:237] Train net output #0: loss = 4.84905 (* 1 = 4.84905 loss) +I0408 17:02:21.697465 27257 sgd_solver.cpp:105] Iteration 10092, lr = 4.71961e-18 +I0408 17:02:23.723022 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 17:02:26.743753 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 17:02:29.064265 27257 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 17:02:29.064291 27257 net.cpp:676] Ignoring source layer train-data +I0408 17:02:29.540457 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:02:33.660813 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 17:02:33.660858 27257 solver.cpp:397] Test net output #1: loss = 4.97095 (* 1 = 4.97095 loss) +I0408 17:02:35.603477 27257 solver.cpp:218] Iteration 10104 (0.862967 iter/s, 13.9055s/12 iters), loss = 5.03946 +I0408 17:02:35.603528 27257 solver.cpp:237] Train net output #0: loss = 5.03946 (* 1 = 5.03946 loss) +I0408 17:02:35.603540 27257 sgd_solver.cpp:105] Iteration 10104, lr = 4.52566e-18 +I0408 17:02:40.074640 27261 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:02:40.705761 27257 solver.cpp:218] Iteration 10116 (2.352 iter/s, 5.10204s/12 iters), loss = 4.96016 +I0408 17:02:40.705806 27257 solver.cpp:237] Train net output #0: loss = 4.96016 (* 1 = 4.96016 loss) +I0408 17:02:40.705818 27257 sgd_solver.cpp:105] Iteration 10116, lr = 4.33969e-18 +I0408 17:02:45.754565 27257 solver.cpp:218] Iteration 10128 (2.37691 iter/s, 5.04857s/12 iters), loss = 4.95262 +I0408 17:02:45.754597 27257 solver.cpp:237] Train net output #0: loss = 4.95262 (* 1 = 4.95262 loss) +I0408 17:02:45.754606 27257 sgd_solver.cpp:105] Iteration 10128, lr = 4.16136e-18 +I0408 17:02:50.702013 27257 solver.cpp:218] Iteration 10140 (2.4256 iter/s, 4.94723s/12 iters), loss = 4.93702 +I0408 17:02:50.702059 27257 solver.cpp:237] Train net output #0: loss = 4.93702 (* 1 = 4.93702 loss) +I0408 17:02:50.702070 27257 sgd_solver.cpp:105] Iteration 10140, lr = 3.99035e-18 +I0408 17:02:55.719803 27257 solver.cpp:218] Iteration 10152 (2.3916 iter/s, 5.01755s/12 iters), loss = 4.90359 +I0408 17:02:55.719847 27257 solver.cpp:237] Train net output #0: loss = 4.90359 (* 1 = 4.90359 loss) +I0408 17:02:55.719858 27257 sgd_solver.cpp:105] Iteration 10152, lr = 3.82638e-18 +I0408 17:03:00.788651 27257 solver.cpp:218] Iteration 10164 (2.36751 iter/s, 5.06861s/12 iters), loss = 4.958 +I0408 17:03:00.788769 27257 solver.cpp:237] Train net output #0: loss = 4.958 (* 1 = 4.958 loss) +I0408 17:03:00.788780 27257 sgd_solver.cpp:105] Iteration 10164, lr = 3.66914e-18 +I0408 17:03:05.853255 27257 solver.cpp:218] Iteration 10176 (2.36953 iter/s, 5.0643s/12 iters), loss = 5.00236 +I0408 17:03:05.853302 27257 solver.cpp:237] Train net output #0: loss = 5.00236 (* 1 = 5.00236 loss) +I0408 17:03:05.853314 27257 sgd_solver.cpp:105] Iteration 10176, lr = 3.51836e-18 +I0408 17:03:10.880393 27257 solver.cpp:218] Iteration 10188 (2.38716 iter/s, 5.0269s/12 iters), loss = 5.01783 +I0408 17:03:10.880443 27257 solver.cpp:237] Train net output #0: loss = 5.01783 (* 1 = 5.01783 loss) +I0408 17:03:10.880455 27257 sgd_solver.cpp:105] Iteration 10188, lr = 3.37378e-18 +I0408 17:03:15.479367 27257 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 17:03:18.451491 27257 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 17:03:20.834847 27257 solver.cpp:310] Iteration 10200, loss = 4.81335 +I0408 17:03:20.834877 27257 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 17:03:20.834883 27257 net.cpp:676] Ignoring source layer train-data +I0408 17:03:21.251238 27262 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:03:25.268174 27257 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0408 17:03:25.268221 27257 solver.cpp:397] Test net output #1: loss = 4.97038 (* 1 = 4.97038 loss) +I0408 17:03:25.268232 27257 solver.cpp:315] Optimization Done. +I0408 17:03:25.268240 27257 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.7/conf.csv b/cars/lr-investigations/exponential/1e-2/0.7/conf.csv new file mode 100644 index 0000000..9fc5fe2 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.7/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0833 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Caliber Wagon 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +GMC Savana Van 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz 300-Class Convertible 1993,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Mitsubishi Lancer Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Coupe 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/exponential/1e-2/0.7/deploy.prototxt b/cars/lr-investigations/exponential/1e-2/0.7/deploy.prototxt new file mode 100644 index 0000000..d7f4b54 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.7/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.7/large.png b/cars/lr-investigations/exponential/1e-2/0.7/large.png new file mode 100644 index 0000000000000000000000000000000000000000..fc5c2543f7a9ab37c58a12b9701fa14eed01005f GIT binary patch literal 71313 zcma%ibwFF|vM()Kv;~T5(U#%`io08Z7T4m%U4s{jyK4(YHWI8j1b3%M2oNYvfZ!J7 zrRSc#&wlsad(QhK$y$+b&6@emZ{(XqzEhLO!=}JSK|#S&RFKg`K|zy5K|!U(!a%+w zC^fW|s?#92Yl4Fv_i=lA2$fK#aj3d+NG zMH$KW-p2d6m_hGn&mSi2EqB`$KSYH*$LWh}FWQlNucE@eOuWv?&0LE1Om!xZ(7Yv* z``L5ZSR;-7AUxvdGQsG(?TrqnAShxb*9U%RA4)w@i@4iy-X0$vZ@cV(FMGk8w{x;} z>#S6#>EdKw&{xzQn&x`U>3LO;3&ARcb*+&n)D?9dpjo1=&u465Po=Qv|M8@nl2gt2 z*QxFFB-WpwgeCa$x_y*l9>ZqC_~|gH_)V9YlfcAKOfTxdZj0N+>gpTKn~=ZODWa)J z8!{*4*$c16wo*;f;OW^~Rp4MtE7MWu&*#Z+_5FjGlNXpdZ=Ino6U$72yi9HP;t#tX zYZ;tR1q6JP5fnSpcxPWRZr-5+N`u9IO5|hAn$Ec=LXvpa`>P#wjd%dIYW8`JpotMas3c)Zj22;vJ-$>5@QuZt8{6FvWVL?n}(ZtVNgU#`C3Uu)9- z?NVjY70xt``$-H<{r$+R+N=Vf{{hw9}OQ_I- z9>38J%?yy!?2lEL549*G9Tpua#-Qibr7pg-Jb7x|;S$aWBsdLcm1OwyS5Kv~`n>|0eR>iMSVP#OA{GA= zl>V_S*6JSDUjnTC?U-H_okCJU+jPt9zkv5QA^yapBuXqDBOBLgH4>Nq!^cRt{!gm; zx567zhySI^zaJNs{pUL=cot@XZbdWq|M<+GvZ4Lmi>)60XW`3x{t_na@5gVR|NodF zp`vrN=P$?oQ;0wPITVFL@-Gxjzy8m{JA07*#X)~RPAGo-AMZqB0*l8k$>WDhykcGV zyw-0{nufFVtMCI8?*6^XO35X)(?`>ASb(+1a^5kN&pHyn$tck@DO!cWSxRD357&hM zf)D+<>=>42?Ge3?jeY!HyGUC4pnbEN+y~f8DGJ_y3&MB$)EHkmbfT8{KlESl{P2t3 zRBDzkHl{c}muMQTpGs;AC@LFGQH5fW5;hf2h(l3;TCi`0xgZkXfQpISk1J4@K? zt?%~N$T*I!CPp?*6)|Up+WaY=g7gek|BTWa*U^54#XX+gOjUCB_!mlvRccLtCo;ym z->mbI+$j1{*c+M*AKm|MuYd9{?Wd;&7HH%z*R7OZK?hhfpE1jQ9+0n5G3J=Qn-(s* zTH~@-fR}0dQxX*(s{dQpkZ_7zdbS?&!Q@EcbC-L1jh5jcPF@6@#f~8KFH*%Sdm_q! zWjp*MVe|GZGbmU1$Gh{(w}wxH*<+X-S@yn$)Y^aPea zI6>n(k;W+e@3p81#CQ7zG)b_e^jh35@ES;S?N4w#nb1-0){z+(t%$hYtu-@?{Zq%b zdCndgcNqtM! zp_hNF)l_18#gy16d!ip`qkM$eCLIgf4*yb;7~i*|iYq&^ZSx+&SW zC`q^`%?Mhyw-r4idASEjXV-v!(C3)hs!TMbbm?ET*i&6?r2 z!``{A%D(ctOtX+>JGHT;k-bQSdgg5qSK*2~C~OUnGwCSx9p*LMK%(Ok>Ie=vh-k7| z+{D0)^5?sB>*BmJ`lMUn%dRtm`C&}9#=*(F1BpJi@9Bem0~cu!4zX@uSCQLgjT6|f9wq@6dZ^$pVb{JO#ai>@ z51JhgrFe<9vzJau22FUu8mXeLjys7nZq-R(&V*l^i zik1$Z{oCkEGVuWaD-JRwW8x=|_+nxtvC)$JBQI=c?I{Wb9@#Q{Q>2hwY5o+_=08?; zQvR#Q-0ZbRl@OpnLqOiMvPosQk;V*w1VcV9(8o$jqSnKk=d?NY6O!+cjc!$+10H4mh5ZCcc*AC-*+UV82Z7CW&B~qm+xP8u#b{Y585O}YQS2Q;gt(7#IuETR!o|o z%S%Q1uCVwxKvOL&gHt#jic=1En0g5IS>>cMe|Sq@>AVo!5?Fo2Q*FSOc~O|$qq9z@ zGq|*AuyJI3u#wVbv z+0dJql1rVeAJ2M^e}#DP`0dJF_u$YfN7E1}1hj&aN?)hsjtmUbFAEP9osOq)2L{M{ zrhiZ>?=}S2upHsq8l-T#4dmPA%QtUzHS=s%TAHaAnU_BXHx<6AKzFx;NEts|+y09x zr#{Oi+$8{>9c;$W4{dsNaIpJ|(Oo-OXLI5hPmByDJLJbCo;XBca?0qQjGWqE-$$|Y z1kP#;7Rehlud4GFjjGf9(#S|>z;P5}`4^|QyuoBps2hLs%Wb-ogXgwWt=4aojKM$p z=tJVkuq%>z-Vd`9S`LNho|Ko64qi8cUWxlSSFszAY=pxxh_^CZyl8U$bmNcoX3(m% zWk~;40{vf!`%?*qF9QiQ2O%ti$499-A*!10ouWzeTRj<~>oE}H6md`!R|WbNTfZTo zpU!sv6;y11uzhumiE@*Zlf8DL(0=&?i5LWAc47T*(`XuLzlI-{*Cd>0OqmI7{BT7L zU~AD>r$JHmh+EPigxT`Bq8st0g5#8?!Q-&*GaE|pB&ylgc7NCg>gMX9gZHgTG)_NJ7^cqGN*~YFpc`azmw`yezhI`tI?#OA~>**8Z*x)gx z)6C0jJ1jeZtfy|M8{FG|ylEfC^*%bF3*I}J5l;i&!c=|yc9{)meAeq+r%bGdrvy}! zSyl`z#go|&^O|MGukYAS0<~6tFzq3RC%;Pn??o>%>FVq)r8x?dFpkHjoC%psJ@fkE zn8*V0N>?_9T_-`!(q58=!HX2N>(dT}J6LdZ>ecV~l1gYiVT>=w^q4D&02V!a4ExrS zlE!g{e&b!p`+!J6Ew3@Y8UCrjX)0v#grG;f(m&3()^&Ja#U@~mmY%Rz+e4AJSv zl$Z7*;ki2MKiv)O_Aa&WIMH^=D-JWybnk@pUsIgZTU|`oB_)BmS5BJ|N=r4rTp|`x0VLz+xJD zZi(`xC;J9LI?eNY%PbR-i{RJGO*3L9jevL+u5(sQ4+m;7oG)|R9MBigHUzst$di2P zR{-H3^%L@SY|RAIdrlLbZq|6|ES}8p^a_>!E{kad zOq@$&L`svx*uaZV$tGL490zxnYgql$5|-^I(sPwN%!elygcQ<96|XOX`Om()-|1cO z4V1O3r`EE|D_Po-YAGwIt?3Ur3CJT;L^6N6qUuw3MUr+-$Vfv35KTlNFm}|W{evs^ zTm`)mD3|BHBF)`Sz%$x!-9g5G7QhbEm1 zZ`1~kCUwn=S}Omn8>2*$mDdE|wblx5(i9Rl^s(e);O_qMxlbphvvLvI*T1c*hBbr_ z=YYJfo7)7}3Km*^VRErSJAPZLY}b5A$xuYc$%WDMG-LWiDVvM9ppCn*QASgZ=BI3c z??qQIH+{WiisM^FPma5^_f-!$OCA?Su81AT_n9i-aGb2p$OSr)#r(9>$RXc$ruZf9 z(@0k^c#W3l)5)>xlF{~X24+>N_^7`OvxvB?K3TP{lp)=)4%ePF#R0kZ*hBl6j)W67bIkS=Y)`LfvOojZpGv{y`HHeMZ=e z$YoeJfgAyDKKj+U{Zs-)#Zs+uabVM2TG3%O`}BG~Fl})A&|9@QK+{zD=Oqg=LNh^| z5bWgqE?LOz+(4-Q47bKu6mlelW%}{wr?<#rrH0Zjo&WR6R@02-RLjBKyT><1h%ol9 zN7PXky7~D0DZj(3&uXRRNiybkmY3<1Ck>boPsDfmp(%jyU~{0iEdK%4NiZ6m1sN~u z_|f_`YRW;^Eb6ZM9LX|j)f%}%4859w@EqLD zy7qrv-h`VB=e+5t;qkb@z6QPA1%Nz86E#ID4iPKFT}4p&^2VWpLx+#XlL$&D4zLa4 zm-Hy$ej$LmN9VjVY|U^cLVW3L4dgQ&yjJcv@H-IUL6)23i?m>meGo0`AleRd^=5yY z@zl_<=IP;>%)R0CLw{-GYi}c6B0(2Z((8%m1D}7~xWw;j#qk1^2N-8c+D6aV%gu+v zsa@|F;E=XdGHJEj+pnIRllI-crDGZJTp>DtlGVL&lwYTd>hcDtm>Bb`-^_hS*yeLy z8I8#vb`G6omx!m>(fBt;Jwn^p^D5pq=GImc$oV*eqz5M9bR&9*I0dIL>4U;WMa#Qk z0iAZeZIY@qlJ>*IThBTs&Oool5qgbRg6v}4EUv3OzTQAjSH<3^kB%rL3L%rGkt_M4 zZ{~67(iaIm2Dsdw$sfb;hGw-^V#y^W-1(@aKK<%yTz8BL5QQx9nMdY4MChora?hug z%6Gj!W>*K;C`-MOl*cPi`f6_@2Ckm*G|cwSe;s~dZ)R?BK4&VmGiNt2%jIC@{ zp&fN^x4(XQx=l(te5afTY&2>>|a7CM&Cg0jd|peev&*rHZWB6 z0ZGga^cU@K1e2g!qPA0RQSZ+>)RbD6klCvUodX7xvGV3YQ6DdlwNhv_ol@MZ)X?1> zex!_Q%n7!sjK&X4&HP@xo*B6))I2Ccl`D!lbt6;9&M~1>C5Xe~&+J#FHxZCv{A%I2 z?-`)S8qt4qaPHP~_oj>;!TXWtt75}P-p2h`$>s1sd9~|<=mweguff7+P*wRyn=6{e zne}oKDVaM9JPw0s0qx8bFHkS3IbS3BNCpN9unHa{MM-x~DNTNhkS1{-J-oHvnx@cU zvD;sI*y0h~6yRLk1Z#XdTp-1BcAyn?$;vs)Cf(SFw!e;0_wEmW^aisdP+vr)2RI*b zwQ)O<z zG&O%)^W}szek^%n>HZHY*Snd9FoD{_1{exJD6AvyX4BmuAPdk2%0PG%gF1je1tP{# zod!;~ug`B>%LFDbVPZgbLnk~*R>~-7hFDTI+Hczj%li?7j7_4jL%0)o_vd<5fbp<- z*vNf=xD6}P=)qq_Aw#5bhYlku_3VEv$L_WDtdBsx9h$sFZD~kTB&B*4Z|Kt|a&@5L zdUq{dd~rWri%l!D+%I_wPM{O^jS|jHgT*??0w*eP+Q@=wv85 zeb^XWIk24j=(gsa7oxTD$6|H+CyLy}MiEYy?D75t%DjfnZMe58$JLCT>jGz9O|D@Z z+(1eIj!U6uLF2f~lpH&UWIwjgK3&H>dz~h2ryf250iHq)n7%8*pRb!wPTdHe*!f`^ zlBlG!*D+U8Bep6Mm|$KDgy-QK6Pz3=HG%m|$$2?W z%0FQ^Nw~CbGjAyI!;yHW%@boq63@KdHxBY9JKha@2sOM(2KI2#CUxtpwOPmq>9+nc zvrt#?u%6oIsl9je(C(y6R&Saiw@uA-qA?p`EvC!fsEQa&%V!4p(KMG$%fJxdx?NhSjHCKuy$ruYUZWXg^l~`$42OeSh47hVuzu^-4iUMDETkS)K z?Z@s9Qs)2IWD$1V9M<|pFB<^piL3uiZTz@VT~kQFnrkPbJ4{}@`q~Ud z>E|U$MU2}a+@ywW(|>n-p0_F`lsuRXp1EwwiyC-BVF+4zDk8w?`0faX7={|hQ99oG z8c7^dSvN^%zD&n=1^fFjigYEphBeC-HalFTF5(Ju@ocqx|3ivHltc9C@a4)W3_zwZIYVebcAc!|%FFk8FRp2r@rm+_GMV`;<@DU7L2pK{s2;h>_X7;hGJ$yYDptnYN$4`({iU;M|ffu}}`j^9+8%KydO*E*Nuy;4qtk z<@Qqx`@@Z<2yy9GsnGFr=HfeFRXWmvpsLD!@cH*=0DFK*hIzjhzW3)f4eG&1)32xo z3dSUI_l4ht>@z*cvheNa6v(s-abe}3R3^TJhnkOmK3$q+8G+2_B3p%k@e7J`21KVs z5^*+s$S`=|0&dza_ZWzODz%`fqD`UzPBYW2Sq8n_8cq{6u*hxubQ)1Fc7^eB@08%B z&}zWT13_c`i|dkl8t*!zKfI82qkqO;DH;@}&|7|zc)dh!C2^7(*ly-zfwDORTO6EM z+u@WZu(9i)zhd}F9c*BHJK}FAh9Uis*(_6)BLZ2G2sqxs)a)P?*q*}lO6~Feo~+ma zlsEk0MteJN$8-|7Wfe;3U;Rpq=wKd(+QwaN!F`fO_kJ(i>WFZ2n*ij5xvidoFQW7l zCWU0gM6y>=CQeuwUQYigJ3YP&k&bJ^4Ub?R^l!JFX)v~bee-}=95nn98cQ(0>Z_m- zeS5=~`NMLxYAgYjVLeV^>2;EKYtEqyc?RLsHliw+Jp969k=Su9&LB)G4 z2y+SN*&A9F+J)Xv7?kyXVr3E4@SwA9Uw*OgKyt>iRaKj3{AElISwx5!b8lvvpbh|-=+@Y#8@kMAyDp7Q4CNc^+Q2lTBF?dY$7w`TWWX8y za<{eZIFJ;D9HYx?^RS-tcz-&01kFoiA;?I2Ya4FVH?`dJbj}NL7O%AiAY-7y zQh(BuDcw@sk1IAe;(6gpnHE>e&k1?hrVa!dQ=7-b8060!ty|?;HJn&)MZy*$JOJec>XQhVhga^dDh~51R zJFcPg-4xDHYJRR2^&c-^CB*YK6$iG_+ia|*Whh_-66aciE>&k9Dfg>`>cWfJYt!%U zJcP+w4g+Zyx-gdv6Q7<$_z7w~^`8D28$a)u9{s?tjDHJGKFJjCunHuqv&!g`s@Q$L zRUBaW(6qMK8=Tu?eLfI>&~qH4A4Yrji>vTlo&PZ9cQZ}U{g$^uW|`YU;k+vRJa()C z$GJ|1rN7xAPT1*7{c9}4G)Vnm|$+dqs~ZnPRp zZMUO`?y2;%kTG`zTxNUvy!HP0#$pitEc_8kK}-W_RdNRe_U5%d>19^;>g|Jy^&aW7 z%k9NCrEyS^Q?p^jW2QYYigA#};`f;PVAIR!_ zB70mY#w2#}R9>v-r+V=ZI6Ce)gzT0fN=0i2X z@*>HiFZ14~Nw0wh`q&RY@Oqu84PEV>1PM`#u^Yt{xa&6R!@7UZvyP}=Avuz_BQ zEmes;PVnPs$udCZFnHSps+DBZG~XawYdvOd z(IXFSu$)#fs;SFYZD}!|iVqQaVK*+2A0vPw*eq<}cz9X#;Xz!%Y@US)IOc!)q5`hl zeQAq~EM8h-=Hd|Wo4H+Z+0~`#E~_b~=9&T4rUW4uqi5TuB5#4hTiV2eHPFGYPCxWI zG9WuPA^r6jkv7eO&ZkcbtKs6~_Uo`{fd!`dG{*({`1W<}Wh|AKO>1<)_VfI~eB``O zLHyJn&LhdE2SI3-%umZ7HUm4%lm|2bfA~I@W$)%|o_HaB7QM9XQ_#pPo$uDzyPea@geyIcx*bJyGduDw%nfB5N5p~#;Pt%{aeKBO zs#OT5*?1aKrrW z)FkNhE`7o4#VxZ^gn|kO#^(3uUrB?fTz31ZU0)?ls(~9B>oeFNaF@REhIw~!tyyt$ zEqtMPb&*>7h(HE5>oGh*Mo8vfl6lG5WFD@H8x2ELWh(DioOY}d#C@WCE$dN9us*Il zagVn~weIRn@{n-e&ITZ=Z+9-Q?G=xeMPEZ~4_5evB*Ck)@J(>{9hR zMRa%~6pk97x3ceU1hzOVY?@09#b(;mb*a>eD5yk7wn!~8g*?{U7}|0SjYSRU;;5Jaj3V0B@*pLwwK)q7btf<11N$_V#s9o5UbH#=CDceNNfj^s7?ijqoxgZ)7k< zl&BPgPo80VrbrWD-LN0AN>VG9*PP%=ssB#O!u@Do;)g9P?fUFpA$^6XQ{z_X*NkSS=5#zW+UOc{uE7?)Z`1zLuf0qc@(TeAQ5@LJVIMp7nwLUAsH#eJY*H|q)$Uz zz&0&1{7sM?7$S@5uWk%gu5UQFgN(QoMwob2R9e%1e<{r{Xw0*f(R9876nLXhO3^oK zB$kA#!gAbNLS>Q9u*ASQikF~2J)d2$GhdaS;vgb9EI@!`@KR z3_5Lf#94G+K>5AkG&*ViQ{qdLYPP8YhV2;Y3(Rh)jaCMW4%OU?_17dxL3ekl?)Lex zE%T?VAJOde_v+LK03bo@PYRRVqTr>BMAch7&Y_nv^pB21o7&&(ES%fScel(MSqdEl z0(@%t3JPRIqw4NK78H&tz2~0&p&f zlV_O&9&ZS8%s|Hx;2C^=BoQfegvaos*L2YfCileZwLWKj#&|%=-gxBl zrX=R%*v(JUQOEk>c=$sCO;;=_tZ5+9Zo|50BBf$#el-wYkzhVHM#@05qQ;YT;Rl!ELr78x9U#Q4~V+aGg3ZSfd==2?9m`_RVjme#l4LCZZr@jJP5 zYd<)KY4{sy00|r~fT|jKIow5lWcM~0iawIrU)s3l^R#9Mw8q~^?)!0!e{A|$F_4w&Qw^bFY0w}!sbs>6V zbkN?LT6M3+c!_cZ6Bpi2_zA#3iqJhDrye1Osxx3p>A=t?t8u@#i!S*vd~0Hyn4(3X z79rB*hbD)al7WlN4DGU0=vuWJ=dUR6a%Nf$*UfpSp z&H|ifR1CdV=smv?)5(x}U{(pdE+Hty7(avL>}js@3As&WxXca1 zGjbzRp3e{b(hNmMytlY`;$gk-xjCjDkfE=L&a|iCOWg;we$m32DPnB*tpPz0W9Omg z-bo&Wf0%fP8X&w6V+g~(_QB_0f0n{gG(2$GaRFBhpk}l03UXg6+TOUz&i`?~rRG~S zyQ9mVJdp9#?1g_!roFMPNT)EW0AzyJBZ$2&w+JIwz+Jy3v#UY5I!cZsE4|nA0#_kv z!|{yF6cUa;cTt__V7Aw2_(hJ(HhqcRC@|~&KAFYH0qruK30zdqlM}Q=p@@`e%G`J z;ZBl%G{RDn6)ZuFJ6z3JCH}U&YE2*1{yxtqFcsNRzO;OK-w$~+InYP#2S31e<7-mG zn$wIYtdu4aV0CK}lFGYXu(Ez8_X3pNvr%^i=(Ut1GQY`tJmu?wtd~p)A|F%VS6H|= zbKsU1iX3h6WN)y2B5U5e7pz@WUfgaqkaBCPzM;Y1S@j=(b8=)V8F|w?u&tBWl}j|q zM{%z;BT-a^R+ZSr*}yrRew_bAXlk}OP^kTGBPKJ6?}p;`A`?9cH}(_jgOk$YyN2?5 zLlR%8My;d#+n`R_r20C`I5&LdiNmXA-#j2wLyHj2#rV{N&-NKOqBxL9BK;}}>VcZ~ z4$6&MES@#asPr??>o~EDAD3w_d9?YdXyZ3kbi-fBJ&O<7T$SBaCQalZA!|4x$HUsR zGm1k{BA!PDS?%j0oyEJmC3a5=5AMY;YxHMSPT`lw+BUux8>d!K)g z%bP*6z(Dky*y_q-)c)=Jt1R5?w_^=snHN1y!tWvye=bM7o3s2(8R(pD`?9ZT1aK~a zy1fNgs&1rF(U=VA!NJMPVlAYJ#KOVG8vl?3A-Zt=@OkGr+EoZ+VhiRl-IstTtmFU* zk%=b5GQOV>u()EM7$JaXCvy+kJFtD8B{t8ur3>Huz)eob1YzU33a^C61UTaJfmuXDi3Prw~bLW-h;Qs!s=Ha zeHpK&q}qXQ@rfvB8%x4KaK)b`gGZq1gAt+Q&0SiHul`5N?%=N)6b`%+fmG(%hjk#@DY@fQ~Z@i!)!;CqAAldvx3t&0?l1P%UkP zyJ=mPKQ|bups#M8`4UUVq9OD`%hZ?#V#AbLO7 zc?C%M|!}F3=j1O7^;ophTi%&&foHxzw9sY}{d*Bw&fle;sdc@P1!= z?6^ZHHRs8hO@09W$dQ*6FwaChHX)+A?qf$MZOqbDv$R&-Agcy27P;FbFlX!b#MbP& zSRd~Gs@0bhb&XF!Xvtq9Jyr$272JPq zpX!Sz8Go`G@zAM&@(GqQEAy0+_I5=_MZR}gCKp4@(Q{CJ{EJXhM%?v?ir>8%iIuvn zzqoe45cG+ge@_X$Bi(@lW=x++#3O8gauC;IB(vUTMqcOlH9l*#Yh4#Mk`JkCG@m2b`Gs&AH>}ItA zGjhMUquo&M&b7s3UCul1RJ${1K|P6N-Use-*qLbseAuOyM!9sASLIzf?^9Qcs?N?! zD1& zr-ftH`~GAXy;gKdJ}mU^0NFzqzwHXko^qpmNOyYe68ffzxu+6w_uQb81zj6eD$>nq zr0VRrx909PvDoN*@ynj!A*{Q@o6D^KItL1}SKb(jBCIUIlakC{1A2a-%}L8V+!hn( z4rTMsloY^4bBU?hTY)GGfc;E~{W0iU98>X9_$}s903Ci4_I5IonM0`}Go3giBJGmazBys#`~b*3T+9nC7jqZJh6>e7!(hUyUtVgIJS^_i+00i*N8FD<+J%UKU}6# zC!bp(Zs)UPU^j)*J14AP7zmsk#$U{%3Cvd`qNEjvF9y~C*u70Wp!-&Uje*|+6q3wZ&EkKYQ640%%LVwFFE=wVx9!*F|R zisn{s*u8$GJ0stI2CuVs^^76tzhAD8EtaX(&d*l^OgM_;G9#;tEynJIN6ESmT%cgP zescbA{ z1Y6d4-Jbo@&3@1%tpSYOYJsIZfr1nMy#Rjt*7-c9R-Na{;NoYRHEd1v8yilM>~%ON zi*1~hn5qfdcY!R+7V4v)N!VIKu}5AaKM2MKS_nKViS4 z^`Wz>oCbY%ySeT0TWEV5a221OSf*UkB=oHcF;$)Gl;d51yQ}wOCY%q(Z4)HP2@qx8 zm_%J1iZ33mS$lt^8~p4rGWMAKt?(DcwF~ZcAf3o(o?i{mx9|A<_Cp9DPFN54j&b2YZiZPgS{)uMH%fILZ(a==uX4ccC*q2|FkSb?mSk~!sb5n= ziNTC#y%Jo{$1#rt4$WBgXvyFqZLf|GB2SJR+)JD@1%b~92zt3!I z>$c@moU&j{zSMI0tqp@dHg64=9axrHa+TjCQRf9H=w!zaP^a4<4nieOi9z^4aqj~e zNiub#Ytz28g?(4z^q)`Lepn=vf7ws~sqIekF}7ad>e1tZ~B>DDDvl`tTh?8H0da+VyRMYV4L~`l$SjN7H1HdprY?5E zCva6i^EY*9X36|9rqIau=x8$R5l(?SePP@V0CJay+>>}3W7(t3whlrtwcY|&1u^5F zq)av7_@6R*;j?TUtsH#HweQ9ij=|-MYjN{enCL8^bQmxoE~r#4ma_V`9ZIXYvwkrn zuy8eR;6Z103XbTP76A$P7Mypx2s*qgX89Q6Ag@4_R14&}<3?6%&ta;YBaRtQ^W+Z~ zngFif?H;D?JtTMBniPRqFtTm4pIBS!(~r)CSARr4-Bv+;@aq

Q8=vQ;bYAMq){5? z!FoIKm!D|T3M*C!((F@U$%0)v&Tp9L9A>Es`gclM?=IwLYhJHNfR}1M^C_?4HQibB zOEqmh2-#isp9h@|j)CP@Q;dN_oVORGCwWdlq1jofjq&i#tz(gDZv)O5m`|B^7Ltl?0xg)rAU z@JK{PbIG6Y>lG?ER_1>ER9uLb^mU8D{xzjfA)w+R-;@hZPKZWQ08BakVFf{H%j;w{ zf|Mdq7xTP>qBvOkWyR!Jqb3FByf!#`%$i+wUAa~GB+I$IQzFCY%Rp4-JuU|v26Pdi z^WOaWq%%}y?~S31ows~uk1An4*Kuqvk!kd90t{&0c>8K&kI5z{-A z%`l_eM?>{}j{-ko5PgDtSrs^1$OJAx4JGmJi8{po;|l4X?9rAYA)LJ0P*r8c{=2@$ z`Ekjw#W0b^7AZt2-f@@(3&!$srG}FejYAb0!$cQML*$&U07rr(H%ZP2{i08XaO2W| zV~r$30`J!KD4_J9A{j{I#}wHtw9mc4el5_{QV!LS%VFsaLf!C7HO`EsCLHn zEo zCQPvV9Z1{I+TQiUHM)K~Cj5#gA!k%{{x|WSZd5A)-GP9GgsWz1UK^zYi9%S((liu~ z?(?+xw4ZXzGwlg`VQC6YAD1!9omVh;W~TTr__*)C=i=hz55izm#(Jeu-vJbQZK#Fy zVo)<<$0;rZRge|GcuL-NPap0i&}Y1Vw06J&Z)9W?w{WYYxq(z>-`-g(bg<~Gwy^0e zmD;;vyzMrWdiCLN`R&L7;dTffU&e1rS( zDtpRN4MhNix^A(88%zDTr613g_g>&dqJRTDYfJ0*KWw$3?)HWfG}yDmD9MObj}<7+ z<|?=8hJx4HsMmZ79Gs{U`B@tV8~&O9u(6nG-P)F?gO0Tk%Ly@uT@vcv!k7;XaIB`A zsarR_PusmyEBl0cyZk%jC?1bH!mO7s=w*RqtCkG3T0P}kGy9vXp4(|_YbWoPfRqq_Z&Jh7XL}|p|s_Fje#vDjw0~h9k5^F&Xx`MuE zEfWH+NSW=uH~($BV4R^UOhb%H@^<=S6Ju}*Z!faXtj!Ob+T{KTzplh=Db+>g(~qvl2aGL zUMeN61`@TFp#{=7tXfLurFgTVl;YzrLM@vo6jq>Utc!~0Bz$VMkFkzY1feQvMs5A( zz1QkL4zIy$ikuSyB@MNqwKbe3C}^>Svo@+7B^Y&^gZQ|^p5jm3 zGSpFF)qilLUejn~J&h`R)sbSGQmPZXI%!(R3`e!2M!Dm=FSr^XxZ~sO%llq@t}`Y_gf>Y z>U=9RgMsi|V{nNoJ@0{?p}utf{mBS=?_vBaZE?*T-c(#R9iyul1J>)zk~u9E!D&*m z6K?Z|FZ(w?wKk>jOO2zN>_HG*g3&$2V5lfX2mVWS7PZfp`V3i1#PCiD@^pxh4r=sG zPuM$=@EB+ZL;zl3vuxO5oIV}IjaIj*``NP>0usmq%p^{#Jk8pWwQajDkPWP!SiK$x zT+cri7qu{FG9tRo`X_Hqv^RjtH6oQ&qzcP3bd#eeb;h!r$EvK7{>vKoLtN$0U_z-} zO%1QlW@wHw)pA(z#QEouF*BV?HmTtc`Qm7*FRTg|q+~}#WBew7QxizrdWXs5uW;5x zJN9!Ir5AN45)KNVKTMd}LS)_PyiUE|zhb^-@FZA8SaHqgC%-ho4s6P2DOp+j@Sz5^ zzS z9YfHu8Urbl2m3~e$(LmEy*5@J0?6048cdeH&`T_Sev*(=B?#(!w_EK;%#w4@WoxHP zSX5pesOYgZM~l2z6dv2asle9bB2U&~Z&i|TX1g0tcp@^E$vIRRoQL>E$n8@mciF#O+0~-rp-c;ncP|?I&I+o|-e(2XGrs$c_f{>AV$QaXxT|wm+70nK zvS<%EfAiu(wk$M@dKDdgco@_FFdmHnvgBt*vYz)*`}wBRz%B~$QKJJVjnxl^KxM`I zA1BRsNF_stpuo+k?of8;Y*|A?gzWke`lB2{+AnLskj z`PA9=z5*7hmm@!lG#JTw7zT6W4|Ww+v(a2U0NiAyBkm zhV>sU*x47v!6P|o5Z92L)0S$mqyL&k!c!RK!h6GZhD2#7n8jY1SZ{gR>>ClOrIyS% z5La zenO5Q=q4@tggue^#`Y!6=q$Jw5WxGRIJIRu7qQQpY3DSjTJa$;dFEEFZ-5O|(!o*o zhU#_*@xjI2>-wa++_rQQPE9)<8pob;qdhTnK_mbp_vGSKSv*&2wG}Jrnd1g{3y$S( zTle-@CZo71C0_72^15Iw1A)j%dfhg^Y{2E^bedVhjW3v_E7`pIav zbRWIVXQ{c!^c*Y!Zflt>`CP*AA_OAuEgI3jr!~@e(E1%N*7J2@dk0{jM3Fa;edRM2 zSVA%QgTKDZR^jnC={po|$SCAUle1Q%As|~1$a~q0ju^;?#(LKLHv>dVfd!h}0!co7 z;g9H_9tZPR8r+W0Af&uTY8{oyomP?!p$}iH1k(=bkTjkt+JDebxinLp;EE|nH_}`+QI-oQ5Cr1tvzQ4NW zO)?x6PAwhPBt~dZu_8uD6(x;G%yV?~9DEz4{KCq;rIo9}qes$&$4MAcp$fU9G}Jm* zOLApeF;HPoHSw!4C@hEOtsEjp2r=`yJVgs^5vat+(o2xCK1)HnHDcYZtFvUEQ?+oa zLJtO`+`T3!aRFGWw_UJSA|}>?2Wm>xX(&+qhWcS@F{9I*4Qp=BGj#Ti2vW{H1C_9B zgmghM;`v|gbW!MWRUGL1=Sg56P@k&-2-K3B2fZ2;E#Z5ZyDfd*5c=DAM*YJSxc7;* zYTtms{?GlcB1{2-rV%MqVxt^TUmG71)y@Yk__!W7pr6%!h!fbxnm93eOo<9Avn*c> zMv>IWw_gDqsUfLH@Y7X><-l`a3=BDtY`+YK>d>4igee4_lkd71z9 zXJVzi5!KdFjBkE#7_S$bK#uvPmhkek)8c!EuXR{4=lqNp4a=m(n$H0v zUSNKH{dEr?Y;?Uv?mn*I;a6|25W&L|2=z2PW0hthq;D6Hwy~sMFnwViyyAt7g1K{R z67IFJ!J#m3y&v*&Lb<87uRN<1f8=P4fi61Pnm%-_Z<8il<-Qm1>&a6!_=d@);P;CJ=%e-i8iR@P+BC#X^|4bIleM@?VLKa(?0t z_Iz|6s{pM0I;@1_wPI5s_T!lqi#E+|O|?jN3&&~|W}DS0JHBZP)z7!5r+()Wr6Jf` zv+YcaVqDj?xRzc8Y<2xcHt!4O};|IQbslq;n}O zKJN=%Ou`IMRr6n(%8_{cw5B9bqM4_NP{UCNuS)iPHU}d4>bbb*&iRQ_l8j#ncf_5m z21=7Ot(czJH!OdCj`BS(8*6kgXZ*cMs-O;;9F2nqmg4ga0^W(I8bFt)|u6^rNqnM-m&N+XKs%n55zg~CPHr!KVel|z~CfXKkt zE*c6$Wjoy2dLb_}w3^lg1Ud`9OTUg?5b{+Q(XM7EIgGScu$pjakT ze|G!*;k#2lRraJI`W?!bxRVTVx6O4VM>+JEH({Bpu%K+$(p0MNU9%seraXS_dmBBc zy1-P1?gUjvkRq%}Vq$-PR1AdMPg{i1P|8_a>I8p+@0`RYmtoBxabN@mghUcGGK1eg zw`QBXN1g$p`t6436~*W!ulQ&pv$quV$3@N%=6%sWMgMp|Ryyu9_gUD}MWX&P|8Okn z1{tVI-Nbp@QL3ZAVTf3^tr6D0WHpBV5MDOP#LGPxh5|vAB>jmSQYF-I9o8_0=u^mV zp;!#Dw?-1h115+&u`N4&O&5w_#DqJmDB@m_Ys8kyl_;j2+HO`1z()7}f-^SF+?u^7 zaEs+;d8kWEJe~F7M9!=n%_-sSnoXo6&_Qc-*`HdxaweQSoEJ-ym^mmGD|#$Ni%UEz zw({;BAG<_dFT`5a&cd)!-l#G$zYN0Tn}y@J}N zR@Lh);~*ihRoOP(jNpyFmmOBC(~uRVEo99H-KsPTkukiUn*nDbrKLL+wNzlbWzn(-)JFTJNB_?UeD7zrfsXpzV z9u|`!h1N05D=eA@#QtD97SZINt2=9k82zF#Fi_oXWb84V58eO0jd(n}LRUb$!(62f z{zrQQa|NMqW;tH67{HTK+lIe$noGB!7@|#)$z(HUio9LjUSdDujr93Di}S$&Xo^dK zT31fscar!p!X@++7qn(wpX}POtp`{Kc->~V2k;z_pRhN)3Oga`iuwM2meWQXej7=W z0Pt@KaW-9anN5ChXh%a6lxZZz2K&Z`OXpcBjg~Reldx-aL|hYB-Ij9eq2knB?0co; zh~vImwDqiumNI^4P)QMJ$t^>H6FazXSHn0gZ#B#&8lyrM;QEQ6BJGYEl<+?3YOa)E z(&NDyf|M9Y!A#28gxLe>NTb9(_Us}n4%sv=lEv8K_s3$9Dj)G!>XNwXOeKxTBekH} z=ai{AEHMP>@L{w@1@SHnL)B)&T_-E!C_@lm@tA&7-twZ3YK-FnDGvN&0h%U0t(9e zL`Q520tilyL@3|w6bD|M4x3z|b<|vpar!zaxPG_AS9R_O+{F-^=E{#s;nOT=bjl}`GgSV6C zNU6z5xYI&g)l_Lh$2WymS9ypO%pfaQ%EaD{P6h)4KaH5^fF=wSg?n_|^bzE11Yq+e zT_ad;WPQFE@UxcEf;<4>D(&!UkimaWJDkV^BFz^93$s)rf|~M8CrGs6+`9ahrID>Z zhKbOramZghhYq=BUX0wiuTZ~t5sdwh=8M5TZwS~;Kjl?koDhd$v8>BQf~EBp!O%-X(OYTh0LXHM2~yzDO%#iv7JCty4)O)7yhgwU2FAmC?4%m;;G{w!8-w9p z%>f^y9mC3-eDjxI*-s^Nc1;k7moIdq`ub4|o92Ir1V!WpgtMVDQUI~of9-g0h2*0f zOn%hH66?VgxCQz^btDSLrR2<@g3PXEF!P0|18#c0)P42C^ z-<6zyv`sp-(>?PWqj1`QT~2k4+`4s1SE%a`QgFVTkM+4YLJT;qgu=}hK{uWm_Nx3o}(!P9APQUGxVC|F+X#e5(}TLlpaper@n8; zfn}76>@^U*%b?kOE#_gnAr~Qdm~yO1sa2Ha)~I)0a}WwNG^qZeI}LW%auKg@o)Ht? z;)unAI$^m3pudHrqO%@Qykfb&#?95cYE)!SWQH}ygeeHEuR@slR#_LcOF|0sIwf8qxAxPPzL+Ud>hhw#6Yc zof=cB+9}iR!7{Tl0ix^6CLjra11gi8u@P3N6LMO4i(lknzSdh5pYf($@u_)>u6o`CH{nO!WUcC#1AJWI zG;^DZmOv%S&lx=m|I9H$8A z=1|-Tc5Ucl+Hq~D%G&l=S2NS6j*2<)mJSx1&PzsC+5169gX2NNDj_y+oT#gaX1!v2 z`!cr>Hdjj7v{p$$YMA}itWHYq*_d2JXHAE72LhzNhD~Adaa1Dr%=h5(aqqLpb&5hL z&=E2AaQ-PTu1}JKj>cuFP{D9&8B0M6m9JK5Eu=(v0;GHIkOxmr`_jggvIp+kK4+Js z%&p&T#n7MM3jz3K`YgU43@jeu(a*k0eMG7cDUU~J7;n7YbU3a&Kzxt6$$mW`$#(t| zon-&*FjC5G*}8E;F*Qjm`6qktiEKJiNzzY*U_>WDow(grVQj`8+7RX&gKxKDpvOn; z{OyqaJ^WFi33l4^WGpEBC5BGlFJY&!Nc7XEx!fB9pre+kxe%zx#`J$+oUg}gU%kwp z;U10Ww64wKi-MehQZ1 zm%es>AYv}a!qR#$`<|d;K7@tSR$;nsZ2G;KkSu7326n)w*Dg)nW?*?rsWA^fK9!!)aLZjX_T(2PbLV0 z;m>i%77k^XKaQ67>8@H3$8#56FR^Qy#U`+0qO+@xsw$vXxZ(kg7 z%0BH%`3_z5r^33)$ank5n~iI`C6Pk{x{j^Zh6)yQwxYhXLZwy=>V#6muvsf}sWCT@ z15dq|QB-4u4a#4$y8}-74SH~~0L_~l(<(`pzhB;o03M^!K>#no&vyg&X4fw|1(zSP zPKOKxQRp{pT%*T<=&)fh*M1*dGSTbRQsjcO!pwb~O6>p9z~ z!P2@QU&|Gol^JX)ILDXdOiw(AL9hL_(NEOj(p{jhG8shYhPi6T8OhOr014RXvMysI zBHv!E6>@!Z71$=yvJvrF`HaaTGmz(Q`fj=Ju7zknv8Kv{BaS~L+R={orrZcoULNL| zMRWlfiCeKO<-PS%t5)@~ZM6#$SPB{}1-PnASiN%hp(IhO2zb>E=4y61flSiG?VUtN zZN}Jhq8lsWst9~)Ne9Gcj=-KbAdEGyA<4W*QZaR`D*KvmfqpCm0H8qCvWU* z54pRzc-pf|u(NvvBCkh_Y2_$TWBh;%o^cL^6VsmS;{H$H6_fjfHfgG{qy;QQBRzd@ zu_E~(c7#s!wW-h2lEPp{ul?AwM9~P3Bu<-=o|4(=tkdP9%5@=)l5<2- zC)lgNwj~*&5>R$fO|f+g?%^DM=N}JC%md5F1wgunt!IsAEwA*i!;L-nzx~i1It@PN zH4h9PZ(Wy9fjkd3e~dHw9JJ2UpU!WAn%Ob3eHUJ4>~9qQHb0sHv!H<)CnrjYoY+1O zrXzNqrl$`Rctj*c-YT;9fpf;Hc)6H2;@d|u zx<@sAkp?K_qH0V)q@hc=Hh(9p7n?`4pI);OR6~^5kMdrQAj(atwl0d|^q(Z{L_5(< zi4^IG=D^GrggJHponq$s7VJxFf^2_lwGa~VlG2x$VY)6eDGCtzax(uT1=;i)ep!zQ z{9t*2gX_c=?`@w>(U=D$2mazPjnMIh>aiBFY}A?4S(D&X)Qd9ZIMvso;GGnThk~Hg z3C?Vy0YOc-eaM`0=in`G#vy)tgDQ}$MQ2eWBcfkEleSCglB%8`{N}szL)23EzTm{X z@mL0UU)Uy=4Bj}_Zf={Y$$*=}=)HWabo~dSs=ka?&LQvh-^rGpAc3rXo52X+{qi9Q?Q)*7+G|c5(fAh_MPE_4lEbtbZLX>!KG{?S_B< z8E{NwvmnDz{lhC8x`PgLh@v8(()8MGH2yPS}($zqsQ{6klLP}<`WJ`Lt;3Wbamj*r5212ZTN{shDb z96ot&c-gu;WT0h_8(O5~x-hD@NgGW|R>KK_r5E*W^^y9qWCjJ9p6Hvn{7~_DAfv+1 z$xkSs=@1MZD3lo(fauR)l-N0E-3@`Ld+DHe#uiXg%vaazzHX&n$(2CI4(_b>%h99e z)aY@dn6%n%6zxWA0<*OY+h@Apum$pRb6j47KB(?NmMU0 zAAtvt%;MEbs<28x)EVpDAVTPez>>ryNE}uFK!o6UJ3EMeg5uI?qgH9;9E1Jc%9f)g zrbBi9(}gAXF?1;5Q&*??YMlR1L;+3(5`9Bonl3r-g<641L-$i|| zozl!F#`yBAr%gQ!q=2Z>#(7FBktT+%^JS4=AeVHo8blAEhMU=VsMJ$Ts@9hW6zSk` zJiur(keVdHH8oG+mA`cQJBoicS{ZJFGM_t>$-!m^zTVQ*FA0A5w_<_6G+&Ua_+6$$ z=3v9ODKVQ6NXjG<02xVPqjrftPFXY=^66QV7}M7r6*Sb)F&fT@b$#Z6jNswEov0$v zV9vT@RJ8#0PK`~S$;6$dTw4vDIMWQiiCux_D0C38o<2)jvDP#Qim?r13Rv;HviNwk z{3?XS9Uy0~fPm39(%3=?bvdv5VGfPOu|EeH?5yOGk4qVvFg&|f&&JH9ex{hgdLLpG8wD7avEhYV+)Mj57TXvoLsUiAo??=@E4IptWlb!{UX}T7b$5l(G^t~Q~#=J zf4yL0M?G}-7StYRb+QGV3Y{)8TF3ACwOQIzqZRNyUrIb0 zW-3R1_Oe{j)39gKk;R1!jI5`LB;Rxhq|TrvK|GnvQ^JRBR4MKj8jFp2O2mw~0`HYH zSJC>mR{dh28VJM~%D>#qS-My`Mi`a~%HU|ZR!f#>)9$0UqQuA&KaQxCo)hE&NXV|woKl6KDmgspvcZjHz@^cm_e;O?dIqe@h{ zA*#rM^QG7eflmE2fF<&2NGX6Rkdcl>J6<+sLXbDc7)wMBPiWI^LgX63_8;e6L zITtCZz%un5jVd|E7-kR(l})pjoy5m|Hu95-=vz_vT&vN{TL?CX0(($Ph-nEw{*X7L z`M@fgMPk)P6oqXreLZZQmOdmYM!XWU-lhVGX#!U>CR0jwK}e&>}2ZkJzY-x-Gw|kxH%Q@7cI07& zI{AQlXKoTssRG1}4pHFZ@mL-{y?M zlC=wE7E@|W5Qy(E8+7LYgi$8gOqwz_!(lQ=UigS2FX2x5YexJX%(oKis9$ssnTxv38H z!q4VI=Q4>|0>P?ehM7oUo1>0c_snM&mULPMKigW29LsSA1p($h2YQ;0HSYFD??NvW zn*}(bG{DJMd$8}C#qKCvg&OYUX^wEAGtLpki>tbAKGh_Nm0K4 zRsQK*2`&z6%}NXge7U@*<9JMqdu#@ODFW6|qr53^G*7vPR-fz%NKbxD^73MU8IjNs z6WN1ql2DVLX+v#M4StzSu!P_{{v6HkTf7dYo&4LYLgck`?$?xy=YFW4b^I{MTZ5@v z%80Q;kd6qAxGrE*GO2D6uLkza0ps}Y8vGD4c<9TtsXV5u+Ma#$T-YGu{R;2RFbPEb zgPbjoOj0pcBCzp9#FpX~M6xibi3P(mdC?(0=}OGhE`3$4fC}2A;%Ix6CpJq;lTI>Ct`>DKwWx z-N8;Zmh5i97#kB^GEQG{ic@kwtTCiFS}UI|k8C%%W`ofU>$FVA{-sHOyI@T)w&ci! zw75vE^j`b{R5~x?_7Jqxz__8gBGk$hS`SzBi}T;fb}mg zV!s^(lT0A7x+#c4U9>w2_Sk6>J!N9#h4$>mJ{TA=b5ml#(PaNeLHv#&rZ{BH4RNIg zG0i781sZ;IQ$CcEO^_4bPfFgQr{u7~yuM-)cE%e1E&IAT`Kw@JaaoYmdzUvI>-*{v zwMm#_(C7otDn&x)wKKT#a*Rl0q8P|;_EYR6apz)9ilcVA&ZWRS2c)Q;uIu;(pTact z8!@uCXm)WH%g<=~AN#(ZzQQXCz26Byo1_<``UD1Q<&RvP-0&3+?6A-b5)L2)=kEwW z^cP5Tpjrd;=(A~GDq#9Y37|~~yt!5@Ec|=|Zrs8fim$+5!PbyHYM zhXPTOn+lWW*WpgzcOEh9IRm|ZswHLiZp~vI$DfF!S?7OI-NRx~3?O*?(I{wp+6g~N z;6Z@HCps>b4}jI??{HL83)gX&Zl zolTvfyQ4+cJGp&l=cmzC(V7`--_HtY!3edMEk!!YTz>1+z`$vYLEt~#!qpcl{XQ@z zZ#7xW6$R3>zEzMezDAD2Ci1_88<=2j_iZu?^!OwxK;a@w@Y#(H{P$PaHDGSJ(5b3b z$LQMzrXf_pj1FuQ7jcp`TL$*UzQBEAZvJwj%S0h*+TwOQ&cSBJUiHf^!m2q~KgZQ4 znX6WqU~6s5mPM6jOCIw;+l9_TDZ>=ugw_vuq!}7X*!^PfFbMxbRx>@zOL{O8vEFP} zaan4{UM3wxZ!TIla8*{02kFpeAY-`z2Tt=9xm+2NRzwF{mC&9%{ncLXc^fc$yq2W$ zeJxF5k)A?CK6hiuB}?mV3Urzr105Tm=jKMyE00PXE%`jwMdUB{a=R@T(+hv!k(llT zwkp855OKUk2TR}JgRV1y-&E#O41&4~UX;F%Zo9^^yb?;K`ziU(Xf?xCJZYscuq9_!b*q2ZNLlRDBuX(FW5)mWwsm zIcEq8di4QOX~2fv^}(^Cxi!$RdQ$ydOr`@sM`_VPE4kqWV6JA{(&4Rx|12IWT3;-u z`RO=wc0Zc4R)E59-zeC&0;PmN!*oQTraHXcKG>=UmYdB^up^{NC z^I1SZ6((z92^m(k9S9w%5d&e!IoDY6X>@2mIQKm0T+~ynuJSU1+CKm2fvO!<9tm>2 zo)U#<+4yDTA{m>`tr1y70evj%HC7E~j zhn9stzA8$!JJA}=`ylHigLuqgcE0+g`=_gIVHY-JQgcYq>II!%Hb5fcnLz$2J)i@C zQQ#UA+wJ}oNL4^4{cvqNO}Xm>g^frT=~7U~LTx5Hy;ji3A;}pu>z`IkQKiC81~HUQ z<WcW7qiRy6Esz(0sfF}Z~pu4q!tsXf71`;h8#dD#Rf zRH^uh4$q2OPgzw=L;+ahO#YNOe2FE$2q`EAnFYpEGO^Y?W$f`K;MHorc5lf)Ndyi| z1I}5wLk`@n{%LHr?YCA8o1D&+G?dT)04tF7ghFYtk9AfVKRUb|D{S(*Fa?6hf(JT2 z5CFbzwm@CIfyK-|Wj0gA&A&OhN^+{3QsVf#HQZ54{!E6l-LSkFbD0cM<7+$T$hn%` zf=e|syNWb}8ILcfkE@E$qHIQs6u!k`b3_fA`2t3qHe~x{tD4Hx?=so4uVb%kfwx<( zWV+{v;xLfr3k($q=7gr zl1hs2fFL>xtqfBn0BIe2wlD$l0J~u{kVpwKUHBUx4mw$#HjbB>CQ0i}t%O*iGe_oM zTiVYD(R4d;Im^^wmhc{OG`1ZxyrjXk(HitL%~`(4l+;0(9J5Y+Oc@qw?6H>*FKY5{iisxsfy%*gf?ZN%uqO01o-pB>)4; zFlzxw4S2%i6z`bNW_7-~v6~!9+M~|&TZpAb3v$Z(2)XFF=0Vl=6k%*-4x`24n$(P^ai67277H7&%O~;T)Ot&ca7n0WEqhUdW ztG`Ps){~7ep@p6^lf$j3eTadqy7GpjI&HS_n>&AujRHQ<=u-mzHF{VYWJf?mwNH@v zL0KPb?YMUUo0u2n9H7A4Yk8asKeo zUx)-NFGC(y)zByriLni^w^%)45@+6l1?na~a-j?Pfzw37QWJ8Ac)}(B#kE3DS5{Ji zt-?}9IPx!6AWCLo4V%kGLVz{R=wOH0Zp4f+;eMRsrrM2Ai71xcH{w$fleR~mcmCXz zsMF)VNW5W)V+Bx2CDBm0HR20yDH_;mgorWiI_;~GdJg}u2rINS@$!Tf*2-e(uL(_( zsg(~dVwM@j-5qc^eY8*}U)1u^5GXeE4cPa$b!VQ%3(x65j7Of{D`y9Cn}cbRZTN(l z7XgXqgc>Q?)*P7aGyt74u{uw-xekU3f`mZR<3=GSYFKfWTKH5ThDUp&f(dma>gcXX z<|*VFw#tcS0+sj)3-^=@UKTn#In}=cg%Vs{Rp0GioR&t`IrGH?r@%~uJCC7FSZ8Q% zm`LtH07%J!KjnvvMvzcU`gSy$VVGk!$%_necNZR~gL9o%3_2W*0XdRQoE-j6uvRH) zsuQ5x^0B#*(LLml{6OTlpazKiA}ni-D$tCN9~fXr8I0Nx;)t)&&@liE6%2U z)$%4+tL^~fy398j8S5Um>6_lW83aB1KQCKXN}Oh2tuZB}vIQ?MA{RGJvr0M8$jov@bPldMaF?lr{8Y4!xS@iCf-&;PZcH)iI-b8#N9?Ha2_zG|pS4@w$4}+$uDU@ zk?zab81AxfUtl^(%=2ch{U~mYNSEs7v9pBiY+$Fd6 zW@>a>Qa4*%PiMDY$g7=Kib@TdXQ8Z>)^j>w*6;rXc8F?Kd zdGtZb(@2`NXgs3=%Bi{W9cRj@#V^ZEg3ck=$L&u7#=hr$Fc+Jqmu3po^+-PFWG`7( zxqX=J&8(O4N6NQiWy@XhDpW{Ur4O-Hq;V77U23ybp=ieoh;>v{@e)#;7x~L_iRYnf zPYpAwj0V>7D<+vp-qOc{P!z_i`zH zV3r|XhA-kr|J!}>EP6ffMwT~ax>;3g670`{CmygLO;5xAe z-=|L+uo5Rt)e*9SY6U5gH!~YygY_{|-s?a?5N@WeLe7)gkb*OYI?n<}&Xv2~gTU{9 zrvu>K1o@s-`BV&?tb7)WhF+yFGe&YA+Ns*#l0IIO&O6>0LM9>~@OFK89vv3vC!*t; zPp3#5kK-3Zi!|?cCfWk+VgHO|8ttzX#1$*y~%E6zT`dP)wzOu<2Cov^*Xh(a92aF z(GSUW95mtWg*{}jKH_>4qD=QT;Zj;(%&PEAZuS}+#58-c%U-~J;l~IjZ(*L9D*nt* z!pzaa=LYwlzKQSK2qT51!CNz7(@onO?3-&~bW;Tm)V2%EJ$J`o^A zXFj8e+2v05knikg7UNes50F>ZY3=%g6S_av*sJ%*efZpQbDwQ)JO*B_gqF3~_fX!K zG=0?SG#&2)bFiH1Vj1T0t5WXWLY0p@(<5*3`*GNA-!v_Tgw%ma`z+fG*P%X%G+^kK+W3T!B*?4ktn3mEZJ8LOlll z)>IHm!YbU9Hc;7g>v#Fv)c2~6-Jd``*137_b=r>ap?g=MFRmu2$rp>jEYpvi7(Nne zGQ3q0)t>Js^Oyy{P=(@+d@#LPP4Zgx*6lT;9T0fvG12=z+bi*^l)`wE{!jJ zAy8KI1LsBwy;P?Vd3>-Q0IxSURB+i>`8zaFS2Xg1E%@k7VWO@Z9EzIV^3;B5x7 z(EqAP*~t&^zATPe=kE&vz#8#lUsu8&1c&tt_b-vV!!ijyr*vFHmB-Hw)h%tnwCetT zGBaQ>7P@;dfmr2(y}SF8&0A-NVclnixvb*1M5y~>uR6>RG}8Fmf`7XrC8TwK1lDpqUT9C_ zY%!>RJ^rdmATC~}V-k%oHs{+pbinKd0s_Kcm-iSjJ{4d6?^6Fw{`58_@K+!p%;*G} zV1K^tfeauShh%=g`-gS@nCM@R?5O`*w2X!0&a_)3$OOy(Wx%S9J@Y^kw@PjKwsY z)p-lrtKBphTHu6%AATKCSIi1KjpT->^BjTI+HpHbOlS4!kU+oR;eVs+ohgGSh15x{ z!|veYMm^}NugWx?7A_K@=~PJC?G)C3)xQ5)h<};vXg)oF=w8udx!OR;+itXz7q7kE z=vSX+lKN@jqiKB3hIV@*lFmD1|RE^X-@N|BwKH zDd|rl0*c|U{8wT6PeT4{FlO|BIyT5K=>KKKzgcErUizc^Fzeq7`R^#&v8MlrjXC-M z4=etiyD0pRIQ)~;|Ic=4D(1`U%Pk;RE|Gf(77UIA^sMpAU(uzP=y5E6&yN@-(J7icmXF0 z{qlIeKom_)K%sfDa)P=F5Oy$LQpZB9}z!ynIjk<;;R$Rs*o@^dMy z`VtT1JOs7Jey+OVz%jH53-h}6lU1d@Z|Oi}qaZ9)xAV@{Yoaa1lfS*)9SKst;^FL8 zV*AS~MW9(xN}1>V`nFWe_u>w_K&7&4OmgO&=Hn+gcRIelqQG;N^1)fa-(6{}bC3`7 zn&D9?z^tYQtm|<{s?v^~eN$YgQ*$Esy@yqKOO#~`T49Y`WY+iH9@b3f+9wZe)A}v1 z;^N8*%%6N51J`&(?`iL;w~IY)*Ql<}`T4Nb=`eVR`jMqYJ_y#uk>rOJmiLY?hFjEg z44`IvWPx-KcpW|7@`u>NI&A6VzuPW_Sl=J2>eu+Z#Y!4#{zn}3?I*yN{_{najnlrJ zB-g!Pox~6S_DKIRpZ^DXr0MutY2bA~a{RHK1@9*(*72{Qv2GEf-(qk6A*%Iip_&pl zU!`1fsB$rgZ!Ie=QvqV&0` zu#5_JS7Cg=#lq)aw;1MwediC+Lr9#YJA?I00m%1Ho|cwUSplkbaww5@)#TCw;GWhl zXRILFQ}uR@9Ey{}%zFg#!dHh6d|6e(oYjjZKXv7XeGu$Ob3D^tZ*ZUAK52Ng%*>^( zO$fAlRo3F|bDNwfC@t@jBM0wY`&Ur%-w5sh#^~7Lw52w=wu;{n9@pvI08E!v@*TTN z*=m+ci*s;Axs~NBXB9XjrS_w$@*~bGll}(Ov-Fb(CbyN`ZD~`UpJ<+-`eGAR*BaUE zTc=*q1Wsp|Ng^+Z||Uz z&_zLhk?~}6k(^F;koD4?lEvRlRGB=wnP8{5! zY}@8pz#Zs(D39<^E>rQ_YBa8_@B28V@`~-!C5~pCM1;+1MB9YjkC5-ak-l*g#5TPF zrN`v*<$Ckr5>yAc@FTXI#Q{C$9!sbV7DW4_wNzLD|jED>8xy~>lm4v zRH&d~y@`Hr^*HSc&k1hGfEZeyIw`01 z(A!EuKl<7y$CJ=oXLNOUe=IPIC2qO{v(9_8=IQfg+ zm&DrN19IgKDfLuq8uv9sZ)fouog#tiGIcYvc)jX;w@YcG+5ksfft@Xqi2AL` z)Nl^4D81x{6|OciDaPf@T`iT+j02rIkAN`C|;!o^n`anlmJq=?5oo5 z{aGvQ@u3^w1C=(c!UfVRqxi3}!@=MVH)P1WDoZ(vOSR#|>GSwHN39QQm$~B+&G7y_ zpRgVMhgesD{9xIUjT{KqW97pac#($QipzFCUc$ z8sxX+d~ny`t96~0f}4Mb^IVrPt!}&n>n+z+wU?DT{^bUwvBJ>!OUh^vct<7Uk~A}4 z=9mHY%9<4=7+pW`SGw8Zi3|Y%w6B}(Glw7kHBZ**EbB+B0loNZVznJrxLUY#1Z!7WYN0#QMd_Svw#>Tn) za|K*M(+g=@xXemGwB0d|x^z4-n_qt<>Lo7(jCJHL`2(%-(Ip0u?8J?Qkm zom_v*KbH7`fAMg@K(^Y5db(9q%{Kv2Dv*0udA|>_XykW?u9Xhxhoj;z`JEm{a%msi zY-AuCTjA>F;^8FCm6Z@?9+tV~@A=Q?+m=mS##?!%MbxO{iB_D~SAw115Te#tQZryT ziAS5N5*k-9lJ;RcmJ-dU*#LB2Fg{Z+kEHZ^Qrjcsfm|A{H)m1+IV*Pc>DT*(KBDK_ zcMY;@Prw%_?`8Jjm#Bq3@iOc*v0d{(fnT(&G=qJ zK#F@RddK*fZa&gDU3dD>xUBOVQb>Wj%9_k$%VG?`2OBp-AHdl_!#UoaRuI^B_x?Kq zCA%oHjyJi~Gj(%O6vw{DtD)c5L3RPIl4dp4a^SgmA}RP{y$;$|HB*3@2qxDw@*Yo zSZ{;8oVVuv$kt7(PqLJrnCR_@0xj)0ha2@^3vU}m`JZ?JHq~>HhzEbjZ7K-zdAqmW z`)|OmL?4-*WK2bO)Cwc-U~O0TPZjE3(K7!`1Yq3TG6f1(zH0|IA!BR4CN-|bQ^oO7#0Tq?hv5Cc&s}${C@gS@h{*FHO?K%a zXO4#2_ipe~sXUSif%OkFR2U3x}mJ+{ZRgq z68xC|^JM{eufib$Kp(C_kS~5NZ(YefVy3(dCITD_DL*Bc@}xSk@)5I76~4t^Cb_So z04nK#yhrjI%w=8q<-N)t2-Q?v6aSyB_PLO6Xt?*k>6O3E#NX4?|G(*#cM~kRHM<90 zW{w)Sd;b%kkoh+}M4-~+Ya|OG(rG%I9bVzI7=Q7FlYM2m4YKFbDI4EW``iep{j1?d`DKtTMtx2V<*rmI&oTRF&Tqsokln#2daSJn zy-@Oxk^!ni3d!5t10eY$g~i3)Q8uanMeOe()3ie?>`eKjyA68V{tlZg(9_W+V(t6c zJitx=XL@p3dih)SmGs~CP5)*nfjtT+NR~F<4{!JE3tQ{0DOCbEJO%(ktDlW*S7{x9 z-#e6~xx9tm8d{;K<=YGh16nH9{sGYX#vz@*2PiJ&XLY*xaFas5!Lxf%7_3i)%pb=gFIxq;52k_J?EI{EE(-1U~JrxTP;kVX30>@ZA)uku6AZ2;6$2W^O} zdTy{h(|_19G8YJc${+><*)xV=IlHR(b}# zcd3Gl4OA`nT9a-Xm#+GokXfr*%Gk8zo2Mmmu`L0Ls0-{vn1ED%)NR5k)%;VUde6Q z^LP1>y3W*-bKO092MV-6o$c*a@5vJ?4`m(*^SiCXmn2+EJL9F#8$w}Cowqqt)K-5Z ziZ(djuF0z8x%WxsQ3YMUo{9%^BjkWw^mvR=1o)@Ntn$`9;Ngb9NY$58 z)!tV(_*JCyeR)~D%s=qFWB4vrfl(l z7zzQ>pKpfXi-2HR2<@+J`fu+4JLt{-f!zNR^0s8Q{%6%_*jFDM9Q>uU?us8lJo3(n z-`YYRFrJ-z_&3&>;(8FEjMk9DP8yGWLDV8!z94GmQ!htPe1+y8``M!@N7z;`c;=>cfJ`#Q;-wY_cgmY(X?gt8~#6;o1|9@H3Fx0b&Wr3u>e zMd5vOm-M|Qtpz7p*SDy=Zub@6a?7Qy_XKuixJiDmYeU|sNhC&{T|Pu^9kBY_6axkX z(Tp!aw1W(MAP}>$^`Yz!kMlA}YtZ|g@6NefCjp>$I|TZ}c1v7fHf8b7sqUED{2wtO zgkDu)b_T)h6uHO}6+*{k5M1W13p4sKVWf~Q9iKVlMi&ElD;)E#Uy2X>8HEnfsNxM~ zJ)4_;X@ccg6{*`7(YilQgIR|!(=fDvf((y5=1lCI+iN>3Eoz8e5zWPh!}uIOQsWBt zvAS4bGWXi;tqay06G{pJMIMssh+*b+(Fz(-k)LjMBkO$Wi@S}SxJ4-%AwI^px30>e z%Y}7&OZ+j(lIk$ez}{f)(an6CH!nHpgni?haIFzbNercl`98?vP#a6k0i~`B+ok%m ztsn$50(vZaV-DwrMG0HwFsMaG<6mI?(B$i7hN=&{W|GPtjbdosd2XtuY37L|(@A5u z+&2$Lw*pP3Yi!zV3_l)1v}X?4OOrBd&^gu zVtH4nB-HqqYqN$J%Nl|=?NOWYuF|APf@)Mks<|)#o_Wi6797qu+5@AXDCiD3a&1zc z<`KB}jbKh~QCGm_V+6uUWG$=l#(btg|JQk-)OE`d4K%mP=s&>gsVOjhIY*3;0TJ|h6u9E& zIj(ByhXc2=(j!Au^}EpFt~5PRi<>UdBaaVO3+Y41hMN{k*mC5&>Pv3C(Dsf?)X})C zTUJ=NOd6pJ(^uLGCi2sU%VMfEqNE}}0E=&)?63A|h#DZSj_Iy!V0$5z<$to9R&-Ti z4gFX`E!0<@$5|2mn=@>)j_4(iqsQia7osR?az2z)mquH-nct=L{a~zA`BGP*L_d%RjG=hr5R|9n6Z9A5g>Ku-oZ*VaI1#4pfN?a9@fqcIY@4XZE z;nDsMv|Yt3;=0Yqaf3r2rt$|cH^-j1i+RMX$RQ(Cd(Fm7mBr(gAc}Ewii+q1_;5-^ zNLL7{E`MMr?}YIMHKfMk3ua59*dM*+x+|AAaMxksvz6=NM3bjo9f>E2E;ae*k94pf zyPY8MJ+}J26~K2>f5qbt_t5%4p$Z%0X9l_%1*rtIs!wESdQE@jN&G|3&t_eQx->Ys zTAa!bJzv)MnWC_dhUw*zpr%lovTbe!(xgh`WBV%eCpe=??CxuNuL9oC%yOswFL2!6 zzMzg8c4u)RS^-EXIi+H!;C!LJIePN)y$Lq9*6;qTUm6!yI9OqjM3Ch~naF%b0M;OJ zgp(WMPnrem*r{RnE>JBSRybW0C7s$ErVEh!zxCIi_g)~<^kMieuZn{`XZY)G)ZvHy zgm)=%Xch7Aud``{bHgbUu4p^y)+#^TJ4M^*{ZOn`jyuNFVu-8n@k4>tco&o;(u&N5 zxUfeWwNxY_q_BXg5PcJ5(=@9{d~Vih|6m7Na!bc5p2SawFRrns{X}hZIKEZ>r~Q$K z#8(v7e4c;NwbsaD;~CD{dHY*_;;<=(LC>Qz+k!mH{70za`B6u8u7X)l^K4O1{=5*e zlYx%R+V>&C=vfg;_6A)%HfU6-hJM|d$ob(1pw8^Xu`4Q@>sbA78=B)c5k!@$)X~wI zN%)ZRU*nd8dmLOO5-Nj!N?g>gX5Jhm=6%on&vHfa&kyaT6$81|lCKXi$U}1KgNYFDW;)Bs4XF9j_ zFWwkNSN=&^=;ELxLn%ilY%!LLh}nAWdDcsF2CO3?Y3vY090nt~(L8wJ=I?i|m}?CO z=}o^rkTrg0b;(AY+fpF&35!C_}y@zwXb`4i4{ ziIhB=rDkSlb#v_TwW6E3vt?cBSBv{$6HpnBBHJwF+4y@0wHIXgg7DA98=`UOnhMaX zdiWkAd7Q@T#r815AT@L6b=5~)nogf&9*z@#s6Y;u`NZTB6RAIS@GeZH$EoY!dG~@t z-gaR$3{&{C>stoi#G>=AXo;2Hh=5wpA zV4J8B`iG5y?zI0vN&wY(L1~@lT$o*$Ao-OLIKd>f@|4Ya+Y~kznV=TSfc^m8b}m%o zZQ}Da47Ii+mK-=)_(mNG?Mj6waDuO}oNpomiY3{(6YPPYNgMoD`Nt=@PFn%Fimh-I zpVYsB{Zc5yI_b9tHwIBrVKKW`E#5e1*^S;Hy2f2cZwco<++VZh=K12CwoT}`!Vf~l za?YLmMu^(ol=+!V;#B33>`IX-EhtueVFTUjbpw8rD3Y{q4N=1|45yWn`+mm4WTmp- z<_&g33BQJ&K9&9F+ic|Ef|s!Mt)ktAun$DepTH9vB^l_oxC>$2ofsXo2QOtHdU)U9 zd?jIl5(Eoij;` za@sgyGuksdi? zn{5-Ux@I!0TI;WUoM}#nU5QBY2N65`H zR=}JIGot3NnAu=A0imT~PRtNN_cv~q!Ob4xu267~<6?UbZ2JHhs4wnxWIcETTI)CQ zi(bEJ0kyVDRnMpTWe1y5v`>F0DkinIkS?b>g$Ha&>UP}hV#A7k_VWiYXdYq3UH=Tf ziudyNZ?z29zPAYwOo*`;J7(|uUBS8q7O4vd*FQomItLOfHH@z~d%Sl0yfc1|=ww3g;Kd3d3L&Qp=6i zRIOCLCyfOwePT)%amBh3w~O4%mR;JRF_aIIvEud6b+17mhtd-u3l2Bkb{MXt6x9&f zPn5$62z^+ee@h0&I7Cx=8@j)I+15{b!-G=$1JfySS`W`F+r(79n+h|ic{7+Ehg%Rw zR=(fTzg_Ud_6PwvNn{bHgv z+2vo8)Q)W`mG4(hm&{zaxypRSf*i&uYy))PKsqXes+vB(tL7&ZUQBS!RvVIipCOdN z*xM>i(XLrWt-1mcdxh;Ljl)LfJA<} znumI|Oq$Ip3lB12+ediH%@8b^%@j6glyHAar(S8w^~w>$ow2NucfXy#Y9oH!%sK&oy&lxEMbp|KBe3`9eW4wR4?o%QQOV9l#gsr^Bp*lgy> z$bvtEOBm_U!@_XM%N6b2A}qxPt#4CP$1d~FVs(oziv~oQ-$iDm1W=N7Sk7iGPng;Z z5B^$N#^SNSlyzq=z3?O;mKJ7+Sfv)kAcqH z-B~Jk2j(Uc0=+p~bGXrs?uc49M@=IKViF}TcXHx66H$ii3r7FQO#&C`sGgn=L{Y#{ zl(a@O`~d95Fu@rNY0>45Yy5q*qf3)=i^6qJ z^1=p;6()---O9h`XkX^#j?b(p2TR;xN1_ogcLHmPo=ZjC3a3DEpV(s3A))Qb!TNIJ zZuVi&L3r=(O^~h4spZF_|Fx)0YDzt+GYS|#iC3pzr2S%7C`KM%$5!U(SBqsZaU?x> z8z&VzgmukDgTRC$q!`@hqr2_%9u^8frwX*CZ8&BI`nfTGv~O(N=PF*S z(TxPahM5FVZn_&;LU8qyWKw!TN!TI3X1iHEOr^aSI46o~Z;CD}q==h> zTI?z)-nDBO&s@x_$A$ngpXQr^d*9de0RmlJbG?iZSZ$q(e=LP-u5Hw+m7A<0s-V26 z9x}>1GH8ZztLgKmt#YMH{4ge}Kie@*V7kT86pZ~w=+DwsIoN-zBGJRSQ4#t8@4|~H z9GfjR`8-Z+&H$qBGvjfWnRmn3$1pZU`bGz~=riBIc1b_9T^=A&Qs^rBDTvw1X32zQ zRvqEYOv@9a!&RI=6)^N(C*CByS#rCFZO%`{&gHq{5nVk)4*-Cm#RA!!@6$5K53XgT zF}tq{mKQStmgBlHH;Lj#SK4d{;hNOC#89A;Sc*JEN#)}-3#qdC2yI>m1FdRglaS7V zVN=(bk=V3_O&E-pHrzVWifPi4A(?)8VW=C=m2YD_*|3bBMapNP#(y=QVB=3jz6llL zGjT`GqEa=);V;KZX60L4NinMMMx9KSbH_S{iJ~v%sQ)VWi z2(RWzY5Qq;k-^wh8AWPC;*g$!^~|C5B^@MvxUhWbZ2a&;oJnNvr;wpr7>Rrm!r{yn zLDJ!F0IV2;Kvzx_VU4QRNx$)j#*^GEB^6O21zMSkaKuuwBAZ*+`QpVkuAGIplvKPk zPZ4?u&hr|Q)n8t?1(>0h0XXQeP_(F{EHcNKFTSP7+I#Y%K`AQ!r4%oS122b^k{*~r z>0>l2)NHTv{cU*_*(PWw?oF*X$)-i7B3aC#wiM3mW7;=fBtC(v>cS<;4A~_?+wVJ% zah>*G$AC56f9m!?ZPON7;VC$z9&3>Rb8aRLO+Qe@bT3v?R=G9q%w3+*({ANm@)+~F zh*q9KdyyAnVZ-YMebt#mr|N_gM_lewH0Xz_8I3OkOb!#kP3-jJUnlpnTTa?U#E?m^ zKFy8S&}nr=^mspBx1ty z@=v;&hXvl*PX&eU-^xkwQO5%vPJq|thd}Uq$?_U>;W4F_liY&;B=ueqbkla6IfZ@z0N&RP{UW`WQo9Zxy&5-jD zs&|_gV0{|$C*+5WobXjN_A4!L&D3DcKwE{YwIXEOvM0zYED97Pmprkcf&p^X5IaBK zGs{$UyYMk+(@cUgz275{Dxdj}$jU|-5ZjUMAAx?c5v97~h5Im97oB)j$f&5T zT6SJ~9D(4+Lw@V074=gJ*4g=uAXCcm{p@bK6HjP=SQvwRSZF_6A*fwif#=UsfaP4l*gEQ@uTvu&2QXEw{myBKXI8`rSASGA=VvxuMdcq1l?+Y0 z^{D)t6UZdQwE588cU}@2dmgVW-)yVv)$uR!5YTlbPc6JkeyRUQT~`Ic&+l_(`$EOd z**k5v()J-1J=FCYC+v&8S}G<0j#)5ieJUDcF8AA<+*y=Cn>X!D?a2KxUODKIoYk3{ zS*>tl_0Zj&!*1S6Um(@3H7FUbN>r0i_9rhp1Z*Uzj?zW{FMG#lg3_zpl4C z^+3jlSo$WU>C)qX25$B*D?+2jqu|;+kh&(D;iLswTutk%g+|P)yC>}qV4TRh>-*K zk7O=A0rRfG$6iDZ?O2-a3n*)0hZbVobb@FvxoxcL(0?G3T{`^X@$5zAjuUZ;&?TlT z)%{lMAD3rzjc$JnF8)*37GNe9ZX4DJE^e!84zWDfdFJGdbZlSR$E;|3cN0Bl?KSm9 zt2ZXV1sBb&GdaEj-c5-mk6#wtYzcTx&Av|dn{XU?wWQcnn`AF#4?mb?1N8>hWweM| zTu3pVrpkV6p4)o2I z+rQ*+(vo&*4l(>kbp6-%C7y%DU#NPisA6fRfC{pirIs|0&zE1`dxv_|SYe$mAV-V` zAKP#UBscT3X6hMd&+P6+X-Tw6+_4qeI(x0nLuvln7ao=l_&+}wXmjN>ZsUjNFJ$x* zbq4%D!FC!&XAz-Q@9C?YKV29h{YY=x@BDn2PIxr}85J6o7u6IQsah5fwYFj3C^=dy z0!vz0LNk?rkUO$(rANh#qo?}ffV!;@e5iJ6MFmhmAbZdFp4mbHRW8v$7@=pyi$T#{P5h!2X5#G2Ohbl6L z&LN7s)?9G@bXp@XgfRlLm17rcfT{WZKPu^7nKE#fPq_WZv9^%zX#@8o+P`cCNW+E7 z3k8Ugfm=QbNHbu5dxt*u0@RI#34_VIOzwxW>d;m#5pqA4DU)rSxvo^O6UV z-k-=;aFOMoVF1h8ct$)uB}4JD>aq%eIy~Mg{HXJ4OMKA~AUYb%WlIgY=s-&GZiH2@xlKp zXzNOVkjo#h&G`gStTB_$umfeauaPHz1#ZpwYUu72>FZh5o{s`L1&~1Jg8_A6mb}K3 z?+RSKJZEK3%UsTN>C&T?;K9BTf!XT{fm+jB(I{Q*UtX0I)%;m*@m3F+6Tr=y3&qfi z2=T8Ghzd<_nvBZg(cqa1cXtO)mC~G}=bPf0mq6j+oHcVyagCC0?Bb{WL7U=55#ejM z?n9(uLA+9zcTjm?=Q%-S>k+lF{LvQR7aw9QB=R2_wZ8O0U|DBe@JBq(Pkwmbb}Hy~ z_#E;K4EVGsJ$EW$f9en}&4@3TjIX`J!HmFNG|=4i>rNJSS*KSykk^jY!U^4hdgh_lXE5Ns+ij$V>fJ8y5~&RQm1%do0044+-?LQ1 zxDD+0w#4Ag`+{SqY;OI;FtK@*&n|KIu3C8pV7=>sUdg^t(L8VwrKMZi|9~$Jr|i} zxdkD)tKw=o*ATG*`2MV=YF4w~MjW-SlNIO~QM;ViD!+0oLe4SeX$6%7QRI^C+dMQ1 zOub1l#|I}gh(m4~z~dDb#&}~hie$6lpQ#(&GJ-@Aym0{Li&(|D8AKP+HKtRpqcuLH`xu6d18IV82d7NB)YZKrM3a#eX~b130Vp@dXpB~*H^sq z?4=7_^1kR+h(QgwqhC0XH8{Pr{|DTMGX=MZ*q~k-I+S`oNuSUP77JkB0YT6^A9(c8 zNHM!r$To08yI1xj@hWeG5Tlu4ik@3w)1>j854a%WL?CBpP|pjs$x;JB4d%;GvA{TwDYMpGQeQ|MvByUj1?;SteU(cM&o(Mx0Z)Oq^c6h<9syh0aX#d|H~F|8Y~XoIvandi zh|_jcK#Sy5Qv3mN>);Cq!Jwckhs?#8m%PP1!5DE;U3h{+wMhnn?6hFs7z4vDA-JZ3 z4^cCU$3iF=Qbo0VJUb8qCL~)y7gwLb6NdygLzdn+-Xl3)m-X2y>p$P8D{xI-iWCT7dwy)VC zxGsDQb03|i4@!(^NaTv(6I{m6W@UG0*F_3v`sw9B)6~A3xk8Bvr_uxs>%;|j_*B3K z9{~eI^~(EUiIZVt$KdU&FcYTG8Vba}-+V%p5X=*YS5kDCBuuqx4P7-v^do$r?YLf0 zYnI+(*}Z<@)QVcKez$BZd8-#w#hXWsf5BPqguQsbW(n`4^1|NOc_-i4)!a}5t7hQT*okQJje=bCjmkdpOYv|;WZkXYZSb`8poJz! zVq&5(w&A?tXixFV=7J!o>*915nt~R8#!Rf~?sv2oxApT%-O|03?J>L5o70Z)-`_M0 zowt*eaAG_*$8I{eAHnV&EDj*XACrsIct8A1E7x9Yh{N)x;T9mk5#+V;1_lE}wRW!)5{g z{{=$7|4>yeH@?s2LXCHuRn~!OMf=zUMZ5d+9sS)sYB>M6&8|>qb4V8(WTaJ$6nvIv ze^xeOr>V7If^ed7-iM8-`wfZmv*LHYSk8||uD(rn;yyKMITTcarXvzJyMj05ual>y zy}js_pvE3_PgArKRh?;04M?l>C=r5Ed~#LcnP5h<4!ck`qZkxpyhXvb)nH_o(PH!E ziTiH}z4a&swvG_#$nS%vXc!1z1QBE@hvu? zt>b~Muhe8XI;7Fo6fb(sxN7xq@=X2EW0aBO5aTz-o+M)-Ovo(=qLj>><$ZFJmu0A85-yMSu3Ym(-sbJL z)fxUQ1fTjzh2MK!9^#I<*Nw4~^bx#U*=lTVET;_Ws%NzS9V|}~dVlQEZ%%SMKDL)& zP#7mykP`}GQEY`7m6}bQo24oqkr)!CC=O!qW*CgL)5D^iJ?QcgeKFy@g0GM z;*UC+5XU|!VnmHst{mp5b%diUthWzNx&D?fQyps688t3&8ol3bzix7obQeuo(+X~} zdkd4?7mpo5E*3j%G9&E-e5pQi*r;NrMUgsAK>zY&#^q^3nnBZiNVU_TBsE z4Yw*J(n@C^;$g4FTc+!gdMoXJZF1Y=Qv))W)bE}@1lbIAXg7Kf;cT4vT@Bi^ryl7o zfbW`t=@NTp@)D>p;-}q4J0wRqKP~Vz3pp3m(Y#7YcjY~hi%;Op^+|E9|zGlfcllk19%Nynd)V{bB*9yfZ}s#6d?i6`Gjr z#QLHt85c=z1E;(8L$03Hs{H6O)-geS+NAJ~z?iZ1iJYbvsjfDeJj*%y=`;(EnEZVVj@vI8cczK<`1 zziZ#Q@Ml%xBP3|SkBP)Dd&VaNs^T-R6$W7DZ zx0|Xg@;L9xxE1T-S+Kg?2E12XKz$^Fk_}=pJbmoN0SM(G7Hpw9>vpv^&C6`pe7OHY z<&6TL2SrX{XlNn1!qAGeKZZYleiuEyT$M3nu$gs{c0u&v*+=}QuHH}Pvx8GY`UcV7 z#p=z9lmilpm(%LKxLZ_JwyvE*XtBAR-c%FgL3sKvTJJ*l3SNw$=D0`&?=3aJg9yrV z>h&*Z&R@jr?I~V}gu@Tg?3qA}rbL5!0-oQCypvak8SOn6B%{oz%c>oDRy=UKNyi)` zA0~cK{P6bYRTy@LYvC%6kO`XC4wvN!((oVW?y`sd2W@V3in-JIRgme%?;qxaf=J3oC5DKTMq7B2?; zI*3f3y75@?X3f*#0*5rqIkA?rUG}-gc`t$e8#x`KP0FIWNt{`Wqo{}(up4$sJ-yXSncM*%f`y2+FeeO~y zcc@8-6EJQb8INuV=I%8((G;ySZgJS|{u#S&`T5g1B=p9L%rl!|qT+iIwG8Y-h6pTk zFW8nViWm&2`h_9lN({SJYcqc;^7o&@Y3}P4h;nQwu#IHYb-2UqVeHLe4OnQ3{UYG? z{bTDhMRPSH=evf?qoA~Ca~wN%WQb%gmvPrh1QS~LDoYv7V}BgGl}`2xhX=3W5>*yA|ixllN`KW z+e#}mq$VO&U;bQ5k+5o*^?=R7F97eb_P6Ywrv8cvz=;N4MALK(u}q2JQ&9N4uem5@kDL)$5(9e@q3uW47ed zyBD43cQLLPY$Gs8T%SbKgfqP`*3sMcAu493<~Avc8DJ;0JaQe+^<^E%ZVpB#At%lOAR^;#Snl>#tOnz}ISXX1(4gGGtzk)EN!f8wcPtaz>iPl%nLqd#imW#7i0 zM*4<=r(JGx;ljr2Zepx)uJwL;{ciLMJa3|ZazKYeJZR+$i2Q^HpsdzhA~Mm^#!obl zgFYPwt0KKes?ta4iW23$h@?x|vpmiD^mS37cUy3`R5?jT^ml?r&9@U!TxfV~sN+>u zCsF@(lQ?dKGZ?9QT}AXMb?mSx@|oXr1hW}=XQ7yLe_sAatqMWo;!Le*zV+-v&*U)s zB;Zj&c)#OQ4b1fY^QbL!0aCB$-5w6d-Xg5|wcj1F2?|PM9@-ZrXe8r5A*@1>Yb9H8 z$Di7rZ$&d!W_>&_7R`xeBk`vME0whHvv7g&ykacMH0oE$$-$1H874F|&O;t~N5<&a z@$_ShH~1bi<9z0VF8oJg(C=c??jSpnEd0{gS>)S=#E1AwsQ$i7g4taSr60#<$tDnJ z7#``kC-UAr%aF8t{sylvHh6A?V^kJ45g|)|wkF6o++$7)Od{qU5;OM9XY$g-Cg&E2 z9e%>nDVIOC(b*ycNmv-#9KG1X4W6C*&^-q{?4Y-NiWpF)7D0*_(lrk?rHtZkQT+K`ry}2dnJyW7hIWz0UIQ za893zU@Q8DCSze$q8%a4995K;5mdUZT_hHl$NgqDtz<^#-Z{42%KZ9tmbw*0VsIYW z7;24uK4A2F)5379ODwxnFoO`!ftqoBp>G$MV9KdoEAvlWIz8>d<=>VZLE=A-jK+>k z#Pa7{28q!AW3Wu?L;I{`s{_#eTVIG?%kX<;1jKIR?+HDdj4>N0W-w;IyBRCP~8=j`l)aDjnH!)N$`5Y>U=T6o<&PuM;)M(iL67vgAPYO%rok`PJo znbi|GorFGK_e`*V(?VK)7A|a|LL+(7nR2C&(BxJ-e`mfdcM&!~)B-FSh|aTBtf?qs zNP2N9Q^5g}o?*<>P%?tDurP*xF{@XP<|rm^x)ItxMLIeSo+Lsjv^UNwe4j$*Fke_| zij*L5aVp2qzKgio;5$v)bMt4({dedZ<0F&CURuTiUL%u^hlg6H<6Wm!Ql`dD6M{l0 z^UMPjnLX48!~SC@Rq2wDJxzu~R`X2#WHlzSgV_z`Ku}Fyk?6bugjl#^-gl1A^QnMB zu>~{yDL%iOOUU)V)5IjwiTFqnc!MNGa(xhWE=OzL7H*e;_9KbKaXty=<_p!}WZE#C zjOIt-7efS)aTg}ZTrw4(zZ3UZ6d2M!=VIa{XJ(g0$2X-u7l7cG$9ykTwY0rsrzjuUoJ4Vc6_`@HFDfO6{V#@T0a)A~BGPkp^eOH4VaJRTfe~~PVjCbuqWCof7F}@kFikD)o@mFx`?wKQP zGYHjI1T*(6M?z-}9a?X%*Ol-LZ?_QO)k12U9!YUcGvOeJowack6D+&8HOVM zdNBQjNN0$2eZEM{O={xur#xmn!ss;6)$0;Sm^M)ZtNxnH4oyLb&uAS$W}x^kem|JMy&8G6uRQnEh;OJg;I~+AEHmBqEh@V~Q8&emkTtTE zee8pZ(S#Wc#@5)0Au+ZY+l( zHU4FmOoYy?_7cs&BGSuE-)IGDH`iANP&QpVQkbQfd|K7__yJnrDs$V9Ru@!dlH|Yj zDITm6b~Dp!cYDjR5)Mfq{FtW0^y!e0!P#7Ks6agagIE5U)mxsI=20`QPc5nk!wNeaHsfaGh>=fCeCd{mhHA7e_BF4hIQeaLS+XYTKoH~?M7Y|DfYF~4;_vo){RwZL2YoN&gJb#M_E~B$J@G|H$t^^OyQT| zTX|EF9S$_jG|9Z`HQHuiT1P!Yc~v?qfq}ggx8~01Y7U5JhDh~lY9vzbo=R$a>o}9Rkp{ejLo@q$EgVe?VE_)}f;MqP(}Yj^a|$n@+&nduSdLVvY!T1|^+}Fg0CfTx z7$8_L{Ui`h@pKMg#P?qKx1s@jdGC|1(tleP_&0I-|K*lmn4iG#!HTrtP@ll*XWt)( z`FQ%mIantr$>iD7Wk>ArWNBbw9Vgj|$fJZ$=`<{jh>n$L(7qVdsUN&O`JGlUWFN|E z9VFNnj!dpGeQ*QX0#&m(a{LH(-Cm%Dh=79Y`IRQ!8NS|ZjlrpMmQ^$KWa6+uhsQCU z?ooK8_NePdhV?`t>ap0^(9O~We0~|r9FO!*ivRkYsApcy{uiI>&)xUhh$oPrr6Q&b zr0CEuAqLFsV1nl8dbO;#-C@x?pr~k$$-4f@O5 z`PreE9kojservh+J4IJ)`ERadxK0F`DJ5#|t{W}W^Lh47YJ}N>MNgCG&q_TXz~cr& z!@R{ZO6l5rn-V_@NEpU;qYt4BobDBly|H;}Z!)GIvpoaG>oF3erwp=hl>_ie>Qd{~ zf5y98b<5uIIvJT(O}X!V`Ke9Lf6_#O!T%tf{sZ=i5MIs}hD`s92n&ZSHe+=r-{$Y8 zZJ;b+{$KG;d!a;o`UH5Cl+}9Et;W^U`yc}{TE$cqISx?B3gAHz*gCA$5McpEm4_0W?iB)DtsW> zHiPsBCqf7=4Gj#PXTpj_vRbp^AQtO5f==D>!3WksHCD5~DZ3N^l!}zX%-M*X_0pLq z-QEr-06yr&npZZ2*^VU-E9`V>yR;OO-oHA-P)9{e>#3&+K}QAo6c)=BnUUeKBH}WG zulanRLstmo3zGt{a}a#EOM&N*u*C6GafMSl)j^gmltwg!!rdqf;2Oh;?I*5s@`>yY z&QBZ@NVsax_iK$gz3fI$EJWGm{j-J$Z11?#?wPVN4-_zEU75j(`|f^L^f6rka>-I# zf2&$vmq@%Cf#78aonYUgt-FsXFzhHi7@1bsJYwN^C9?PG$dM(1Yeh@vnEo4i{L$ua z6-eU34g~M{dFs$BMnbQz ztDnPh*kwGba`Td{D7xVQTX08?B8i|9t2mt{!)-vlWI)Q|<>*Llt=T|h)X zweBSK{}g!5n`a8h;x+bR!K2)ZMiMp^%@DG%w5!7jb9-o@p*!la=Z*nu1Do`y*Qm4}1#|HTYHv)uW%Eh}y~=}ZX!fh!SXY=nhxmJs@=H+?kjYA#~wE*E7t zeuYy^wI8!s6ZEK8aD{eaKXk_-%iI?_q$6Ru*7D*ic#t!;*gUHp1)E97@hAC}l*beG zR}yObrDLz}mmIte!Tf3P`dUY1)0J?7tYE4U7HL<%B$rHA0ZQo2IH#2>LH9};@9Axo ztDM|(L@ccrxgR*ET?*Fxf6Lq-_e}A_j8<-A)G3EPyD*M3mAl8+oAE*VtE0=$Sg%H9wt-9@7Ug-G+77~W1nDc;>GPkw$B0DDG zrGaGEtTSSWWJj?%99uN-+3cm4$@j6%W_6kekggX(x-b;;N1<W zmTOnC%{1i2iK?9wjHM8&H?lki$P5$$2#qgmvterBV>yKOyZash?#^v=wke66s17b_ z-9r+{YoLua@1xiOEqCy;JJ^RyZ%1S$T*y+mX&}lE!~)N^xpO9W?$=gMs|iS}7czYG z#Gld7*Y_!_PYGH-T%+#eT!~Ztyrx`)Hc6ls2KvZoM$8B{T4)fdkL8!v46YFXhl0K` z$rZfZ<_iLP3f;6>7GQc-G;C%^(l1q{=&S2mx}bKZVHdeEENAhiriZutI#c{)!||LM zVdFB&TwsZswxToPAn0iuo7qVjhs%|EW_XI7wJP-K_8SD4ucZJkO>cM0k$7*ox7htZ zi*>Gy)4AE^B-bei1@v62N&&;+kDe7f{gb~13qz$a`UB<@Rvxw3cM(1ATlQsjm2S5k zi9$}va=>bnn!z4`(nF0{`_}q$$EbJOEgbp*c=X0>iIml-P4WkzsN|8O3it>tIoJ}- zp}D^5xjwb?Q_GlDa|X>@?=q$689yiH!Qj=J3%$rDNNU)OudydX?+LkDtZU>U1~12sVRJp$g1(2DSLj5q#9 zwV!bn+Xp&t#V-H85x|d3Czh=8=!=az+67?^)~xOAvFDl8mAX8DTLO4TG})NF5) z=oTxO&p8>)?r;lh!LiGudB}nQ!6o=#_U+-biW55hS&i>wRXPhL9}LuJhuWa1M-3GX z!b}4LYax`M%AysR;*G&1M`{QF@2M-OvQZ|ji^rB=O#6;kVC`+KNFXr67?MC$Bz+px z=P_h+uC##s#to(=ZQ#auZ3WyeY12lyOfJKZkw*j2xsrL*r)_rxu}}Fo5Ui3-I_06` zvaxiF4xWRPd=np+1vaMT1r8Lbg_bng)xM%39bg>~xE5=aq-+aq&b$7mmiLiVKTu^- zB&I@~oD^;g?qY`_QZG8_<<{cGJ&&m5shJK(@!eaKo+nn6zgA@fRA3PkH%wTS2HXxp zj3xbqm6lL+dxAu8eL6uJMkuOlAVePoGLd4RCDo)}NDuC-wMVmhQ^wcwxlr#z8yO>g zn$h?0K(y*7GOdX}Ue9a0*9-g5F`-zi6aAxM+;K{gwU&rXMc(c1 z*>);O4~SC13ZkvH3`Z#Ds! zGG6}y?~=)ZMUIesso7_+T_KLnd6SbOXq=_SE4^F#es)$>Gx)lBjee)1nA9KMsY%So z2Q??wGUg!Uv7Z56*AF982QiC<76v9bCp#e$zWMq5@NCN)3FovXM~I#NB9rV0aj(zZ==aZQqK1&f>mT~w z&Qu7#JR3;_FDxE>=bWoK?MV?BMzR)rLU7g~x| zE+t(~w-4Wx&i!%n;vFJ$;pfCO1yX&yUPwRS(+rH^MG=d^aV0Y>g*@MGF5Y&Bzqq0( z13V)a-=bYafItV+H%rZc4!qe1BtT=n!N%qE%U3PYdi^B~=<;5!sTB*ng05%2q2oBl zL(JgzK{N|l%XeYkqx=@E3n7H<1x;#HuJ`*gG+ibUpL7>!=fV~`Jm;8Ao zZs9w_)p;PrQ?b@Z_iOUa(H!TmUtdf2_B%@!_8pOq(-&?KM>=wVQd0jNjU@h;I6Gu2 aE36rbJ{4lJdYgSkHoR_nt@ICA_}>6rVsbhF literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.8/original.prototxt b/cars/lr-investigations/exponential/1e-2/0.8/original.prototxt new file mode 100644 index 0000000..c9d0d1c --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.8/original.prototxt @@ -0,0 +1,388 @@ +name: "AlexNet" +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "train" + } + transform_param { + mirror: true + crop_size: 227 + } + data_param { + batch_size: 128 + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "val" + } + transform_param { + crop_size: 227 + } + data_param { + batch_size: 32 + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + stage: "val" + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" + exclude { + stage: "deploy" + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" + include { + stage: "deploy" + } +} diff --git a/cars/lr-investigations/exponential/1e-2/0.8/pred.csv b/cars/lr-investigations/exponential/1e-2/0.8/pred.csv new file mode 100644 index 0000000..e3178e9 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.8/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Dodge Caravan Minivan 1997 2.23% Chevrolet Express Cargo Van 2007 1.92% Audi 100 Sedan 1994 1.54% GMC Savana Van 2012 1.42% Hyundai Tucson SUV 2012 1.25% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Chevrolet Express Cargo Van 2007 3.17% Mercedes-Benz Sprinter Van 2012 2.96% Dodge Sprinter Cargo Van 2009 2.88% Honda Odyssey Minivan 2007 2.83% GMC Savana Van 2012 2.57% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Ram C/V Cargo Van Minivan 2012 4.89% MINI Cooper Roadster Convertible 2012 3.47% BMW 1 Series Convertible 2012 2.43% Audi A5 Coupe 2012 2.0% Mercedes-Benz S-Class Sedan 2012 1.94% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Mercedes-Benz 300-Class Convertible 1993 3.52% Hyundai Genesis Sedan 2012 3.45% Bugatti Veyron 16.4 Coupe 2009 2.85% Lamborghini Reventon Coupe 2008 2.63% Chrysler 300 SRT-8 2010 2.36% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 HUMMER H3T Crew Cab 2010 5.1% Jeep Wrangler SUV 2012 5.1% HUMMER H2 SUT Crew Cab 2009 4.87% AM General Hummer SUV 2000 3.93% Ford Ranger SuperCab 2011 3.14% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 3.98% Dodge Sprinter Cargo Van 2009 3.1% BMW X3 SUV 2012 2.63% Hyundai Tucson SUV 2012 1.8% BMW X5 SUV 2007 1.69% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Mercedes-Benz 300-Class Convertible 1993 2.33% Aston Martin V8 Vantage Coupe 2012 2.17% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.15% Bugatti Veyron 16.4 Coupe 2009 1.87% Audi V8 Sedan 1994 1.83% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Chevrolet TrailBlazer SS 2009 3.38% Chrysler 300 SRT-8 2010 2.44% BMW M6 Convertible 2010 2.33% Cadillac CTS-V Sedan 2012 1.96% Bentley Continental GT Coupe 2007 1.42% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Daewoo Nubira Wagon 2002 4.83% Chrysler Sebring Convertible 2010 3.37% Ford Focus Sedan 2007 3.29% Chevrolet Malibu Sedan 2007 3.08% Chevrolet Impala Sedan 2007 2.4% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 10.29% Bentley Arnage Sedan 2009 4.82% Jeep Patriot SUV 2012 4.72% AM General Hummer SUV 2000 2.37% HUMMER H3T Crew Cab 2010 2.36% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Ford E-Series Wagon Van 2012 6.13% Mercedes-Benz Sprinter Van 2012 4.1% Chrysler Town and Country Minivan 2012 3.28% Isuzu Ascender SUV 2008 2.71% Dodge Journey SUV 2012 2.52% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bugatti Veyron 16.4 Convertible 2009 4.25% Nissan Leaf Hatchback 2012 3.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.09% Daewoo Nubira Wagon 2002 2.93% Chrysler PT Cruiser Convertible 2008 2.91% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Plymouth Neon Coupe 1999 2.69% Daewoo Nubira Wagon 2002 2.47% Chevrolet Monte Carlo Coupe 2007 1.85% Chevrolet Malibu Sedan 2007 1.66% Lamborghini Reventon Coupe 2008 1.63% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Regular Cab 2012 3.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.86% Chevrolet Avalanche Crew Cab 2012 3.25% Ford F-150 Regular Cab 2012 3.13% Chevrolet Silverado 1500 Extended Cab 2012 3.12% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Daewoo Nubira Wagon 2002 3.46% Nissan Leaf Hatchback 2012 2.47% Hyundai Elantra Sedan 2007 2.08% Ford Focus Sedan 2007 2.06% Chevrolet Impala Sedan 2007 2.06% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford F-150 Regular Cab 2012 3.52% Ford Ranger SuperCab 2011 3.18% Jeep Grand Cherokee SUV 2012 3.0% Hyundai Santa Fe SUV 2012 2.84% GMC Terrain SUV 2012 2.82% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 AM General Hummer SUV 2000 6.73% Jeep Wrangler SUV 2012 4.32% Jeep Liberty SUV 2012 3.89% HUMMER H2 SUT Crew Cab 2009 3.35% Cadillac Escalade EXT Crew Cab 2007 3.17% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 BMW X5 SUV 2007 1.71% Buick Rainier SUV 2007 1.56% BMW X3 SUV 2012 1.5% Audi TT Hatchback 2011 1.41% Honda Accord Sedan 2012 1.39% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 4.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Acura TL Type-S 2008 3.62% Fisker Karma Sedan 2012 3.0% Aston Martin V8 Vantage Coupe 2012 2.74% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 Mercedes-Benz E-Class Sedan 2012 2.04% FIAT 500 Convertible 2012 1.73% Bugatti Veyron 16.4 Convertible 2009 1.68% smart fortwo Convertible 2012 1.38% Spyker C8 Coupe 2009 1.33% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.54% Jeep Grand Cherokee SUV 2012 2.39% Isuzu Ascender SUV 2008 2.16% Hyundai Santa Fe SUV 2012 2.01% Dodge Durango SUV 2007 1.97% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 1.73% Cadillac SRX SUV 2012 1.55% Bentley Mulsanne Sedan 2011 1.48% Bentley Continental GT Coupe 2007 1.47% Rolls-Royce Phantom Sedan 2012 1.42% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 3.67% Dodge Sprinter Cargo Van 2009 3.36% Mercedes-Benz Sprinter Van 2012 2.86% Lincoln Town Car Sedan 2011 2.05% Chevrolet Impala Sedan 2007 1.94% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 MINI Cooper Roadster Convertible 2012 4.13% BMW ActiveHybrid 5 Sedan 2012 2.39% Audi TT Hatchback 2011 2.23% Mercedes-Benz SL-Class Coupe 2009 2.17% Audi S5 Convertible 2012 2.08% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Chrysler Aspen SUV 2009 3.34% Isuzu Ascender SUV 2008 2.51% Dodge Durango SUV 2007 2.35% Ford F-150 Regular Cab 2012 2.24% Jeep Grand Cherokee SUV 2012 1.91% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Mercedes-Benz S-Class Sedan 2012 2.54% Dodge Challenger SRT8 2011 2.3% Bugatti Veyron 16.4 Convertible 2009 2.28% MINI Cooper Roadster Convertible 2012 2.27% Hyundai Azera Sedan 2012 1.36% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 Ford E-Series Wagon Van 2012 9.23% Isuzu Ascender SUV 2008 4.79% BMW X5 SUV 2007 4.67% BMW X3 SUV 2012 3.18% Hyundai Santa Fe SUV 2012 3.01% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari 458 Italia Convertible 2012 20.08% Chevrolet Corvette Convertible 2012 9.58% Lamborghini Aventador Coupe 2012 8.71% Ferrari California Convertible 2012 8.04% Chevrolet Cobalt SS 2010 7.22% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Ford F-450 Super Duty Crew Cab 2012 2.68% Dodge Ram Pickup 3500 Crew Cab 2010 2.6% Chevrolet Silverado 2500HD Regular Cab 2012 2.12% Ford Expedition EL SUV 2009 1.89% Audi S6 Sedan 2011 1.64% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 5.13% Rolls-Royce Phantom Sedan 2012 2.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.1% Ram C/V Cargo Van Minivan 2012 2.08% Mercedes-Benz S-Class Sedan 2012 1.78% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 4.15% Audi S6 Sedan 2011 3.13% BMW X3 SUV 2012 2.98% Audi TT Hatchback 2011 2.91% Audi R8 Coupe 2012 2.7% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Geo Metro Convertible 1993 5.33% Daewoo Nubira Wagon 2002 2.91% Mercedes-Benz 300-Class Convertible 1993 2.45% Spyker C8 Convertible 2009 2.29% Lamborghini Reventon Coupe 2008 2.2% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.54% GMC Canyon Extended Cab 2012 3.44% Dodge Ram Pickup 3500 Quad Cab 2009 3.14% BMW X6 SUV 2012 2.3% Chevrolet TrailBlazer SS 2009 2.27% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 6.6% Plymouth Neon Coupe 1999 4.37% Daewoo Nubira Wagon 2002 4.35% Hyundai Elantra Sedan 2007 3.83% Chevrolet Impala Sedan 2007 3.09% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet Express Cargo Van 2007 4.77% GMC Savana Van 2012 2.96% Dodge Caravan Minivan 1997 2.52% Audi 100 Wagon 1994 2.35% Chevrolet Express Van 2007 2.14% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.1% Chrysler 300 SRT-8 2010 1.95% Audi A5 Coupe 2012 1.9% Infiniti G Coupe IPL 2012 1.82% Chevrolet Silverado 1500 Regular Cab 2012 1.53% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Honda Odyssey Minivan 2007 3.6% Lincoln Town Car Sedan 2011 2.94% Ford Freestar Minivan 2007 2.35% Dodge Caravan Minivan 1997 2.33% Hyundai Elantra Sedan 2007 2.24% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Audi S6 Sedan 2011 5.47% Chrysler Aspen SUV 2009 4.54% Dodge Ram Pickup 3500 Crew Cab 2010 3.94% Ford E-Series Wagon Van 2012 3.44% Audi A5 Coupe 2012 3.22% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 HUMMER H3T Crew Cab 2010 8.84% Dodge Caliber Wagon 2007 5.45% BMW X6 SUV 2012 5.4% Jeep Wrangler SUV 2012 5.12% HUMMER H2 SUT Crew Cab 2009 3.65% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 smart fortwo Convertible 2012 2.31% Fisker Karma Sedan 2012 1.84% Spyker C8 Convertible 2009 1.72% Mercedes-Benz 300-Class Convertible 1993 1.71% Chrysler PT Cruiser Convertible 2008 1.69% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 3.47% Chrysler 300 SRT-8 2010 3.08% Chevrolet Corvette ZR1 2012 2.96% Infiniti G Coupe IPL 2012 2.39% Jaguar XK XKR 2012 2.17% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Ferrari California Convertible 2012 17.37% Lamborghini Aventador Coupe 2012 11.96% Ferrari 458 Italia Convertible 2012 11.61% Ferrari 458 Italia Coupe 2012 8.42% Chevrolet Corvette Convertible 2012 6.05% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 BMW M6 Convertible 2010 1.83% Rolls-Royce Ghost Sedan 2012 1.62% Rolls-Royce Phantom Sedan 2012 1.56% Bentley Continental GT Coupe 2007 1.49% Fisker Karma Sedan 2012 1.49% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 6.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.89% Chevrolet Silverado 1500 Regular Cab 2012 3.6% Chevrolet TrailBlazer SS 2009 2.67% Ford F-450 Super Duty Crew Cab 2012 2.44% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 5.54% Mercedes-Benz Sprinter Van 2012 3.71% Buick Enclave SUV 2012 2.91% Ford E-Series Wagon Van 2012 2.9% Honda Odyssey Minivan 2007 2.48% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 3.48% Chevrolet Corvette ZR1 2012 2.79% Porsche Panamera Sedan 2012 2.56% Aston Martin V8 Vantage Coupe 2012 1.66% Mercedes-Benz SL-Class Coupe 2009 1.39% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Hyundai Tucson SUV 2012 3.05% Dodge Caravan Minivan 1997 2.13% Ford Freestar Minivan 2007 1.93% Ford E-Series Wagon Van 2012 1.9% Ford F-150 Regular Cab 2007 1.76% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Audi TT Hatchback 2011 6.01% Mercedes-Benz S-Class Sedan 2012 3.47% BMW ActiveHybrid 5 Sedan 2012 3.4% Audi A5 Coupe 2012 2.3% Audi 100 Sedan 1994 2.14% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Audi TT RS Coupe 2012 7.01% Ferrari California Convertible 2012 4.89% Ferrari 458 Italia Coupe 2012 3.37% Chevrolet HHR SS 2010 2.81% Volvo C30 Hatchback 2012 2.8% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Mercedes-Benz Sprinter Van 2012 7.87% Dodge Sprinter Cargo Van 2009 4.85% Dodge Caravan Minivan 1997 3.08% GMC Savana Van 2012 2.53% Chevrolet Express Cargo Van 2007 2.46% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Mercedes-Benz Sprinter Van 2012 2.12% Honda Odyssey Minivan 2007 2.12% Ford E-Series Wagon Van 2012 1.69% Chevrolet Silverado 1500 Extended Cab 2012 1.53% Ford F-150 Regular Cab 2007 1.45% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 5.56% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.24% Spyker C8 Convertible 2009 4.99% Mercedes-Benz 300-Class Convertible 1993 4.22% Bugatti Veyron 16.4 Convertible 2009 3.35% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Mercedes-Benz Sprinter Van 2012 8.8% Dodge Sprinter Cargo Van 2009 4.65% Dodge Caravan Minivan 1997 2.73% GMC Savana Van 2012 1.75% Honda Odyssey Minivan 2007 1.52% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Chevrolet Express Cargo Van 2007 8.34% GMC Savana Van 2012 4.93% Audi V8 Sedan 1994 2.87% Chevrolet Express Van 2007 2.79% Audi 100 Wagon 1994 2.22% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Bentley Arnage Sedan 2009 4.19% Spyker C8 Convertible 2009 2.93% Jeep Patriot SUV 2012 2.93% Hyundai Azera Sedan 2012 2.69% FIAT 500 Abarth 2012 2.67% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 17.06% Chevrolet Express Van 2007 7.27% Chevrolet Express Cargo Van 2007 6.83% Hyundai Tucson SUV 2012 2.21% Dodge Dakota Club Cab 2007 2.05% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Chevrolet TrailBlazer SS 2009 2.53% Chrysler 300 SRT-8 2010 2.27% Chevrolet Silverado 1500 Regular Cab 2012 2.18% Hyundai Veracruz SUV 2012 1.47% Ford F-150 Regular Cab 2007 1.4% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Audi TT RS Coupe 2012 7.36% Dodge Magnum Wagon 2008 3.36% Chevrolet HHR SS 2010 3.15% Hyundai Accent Sedan 2012 3.0% Volkswagen Beetle Hatchback 2012 2.17% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Hyundai Elantra Sedan 2007 7.69% Honda Accord Coupe 2012 5.29% Hyundai Elantra Touring Hatchback 2012 4.19% Volkswagen Beetle Hatchback 2012 4.03% Hyundai Accent Sedan 2012 3.73% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.4% Mercedes-Benz S-Class Sedan 2012 2.57% Bentley Continental Supersports Conv. Convertible 2012 1.73% Maybach Landaulet Convertible 2012 1.7% Bugatti Veyron 16.4 Coupe 2009 1.68% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Mercedes-Benz Sprinter Van 2012 3.27% Chrysler PT Cruiser Convertible 2008 1.75% Volkswagen Golf Hatchback 2012 1.67% Lincoln Town Car Sedan 2011 1.66% Acura TSX Sedan 2012 1.57% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Audi TT RS Coupe 2012 9.68% Chevrolet HHR SS 2010 3.26% Hyundai Elantra Sedan 2007 2.84% Volkswagen Beetle Hatchback 2012 2.65% BMW 3 Series Sedan 2012 2.56% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 2.11% FIAT 500 Abarth 2012 2.06% Bentley Arnage Sedan 2009 1.7% Hyundai Genesis Sedan 2012 1.66% Bugatti Veyron 16.4 Coupe 2009 1.47% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 MINI Cooper Roadster Convertible 2012 5.9% Mercedes-Benz E-Class Sedan 2012 5.53% Fisker Karma Sedan 2012 3.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.49% Mercedes-Benz S-Class Sedan 2012 2.52% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Lamborghini Aventador Coupe 2012 5.85% Chevrolet Corvette Convertible 2012 5.79% Aston Martin Virage Coupe 2012 4.86% Volvo C30 Hatchback 2012 4.47% Geo Metro Convertible 1993 4.12% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Chevrolet Express Cargo Van 2007 2.64% Audi 100 Wagon 1994 1.84% Mercedes-Benz 300-Class Convertible 1993 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 1.66% Audi V8 Sedan 1994 1.63% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Mercedes-Benz 300-Class Convertible 1993 2.73% Dodge Caravan Minivan 1997 2.64% Lincoln Town Car Sedan 2011 2.07% Chevrolet Express Cargo Van 2007 1.81% Eagle Talon Hatchback 1998 1.52% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 HUMMER H2 SUT Crew Cab 2009 12.39% HUMMER H3T Crew Cab 2010 9.86% Jeep Wrangler SUV 2012 6.62% AM General Hummer SUV 2000 4.61% Dodge Ram Pickup 3500 Quad Cab 2009 2.8% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 MINI Cooper Roadster Convertible 2012 3.88% Audi R8 Coupe 2012 2.25% Audi S6 Sedan 2011 2.18% Mercedes-Benz E-Class Sedan 2012 1.68% Mercedes-Benz C-Class Sedan 2012 1.65% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 MINI Cooper Roadster Convertible 2012 7.53% Audi R8 Coupe 2012 4.06% Audi TT Hatchback 2011 3.68% Audi A5 Coupe 2012 3.57% Audi S6 Sedan 2011 2.9% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chevrolet TrailBlazer SS 2009 5.4% Chrysler 300 SRT-8 2010 4.66% Chevrolet Silverado 1500 Regular Cab 2012 3.76% Cadillac Escalade EXT Crew Cab 2007 3.6% Chevrolet Silverado 2500HD Regular Cab 2012 2.36% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Chevrolet TrailBlazer SS 2009 3.38% Chrysler 300 SRT-8 2010 2.93% BMW M6 Convertible 2010 2.22% Cadillac Escalade EXT Crew Cab 2007 2.19% Cadillac CTS-V Sedan 2012 1.98% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 3.57% Dodge Sprinter Cargo Van 2009 2.85% Chevrolet Express Van 2007 2.81% Chevrolet Express Cargo Van 2007 2.67% Ram C/V Cargo Van Minivan 2012 2.58% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 2.29% Bugatti Veyron 16.4 Convertible 2009 2.11% Daewoo Nubira Wagon 2002 2.03% Bugatti Veyron 16.4 Coupe 2009 1.74% Mitsubishi Lancer Sedan 2012 1.43% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford F-150 Regular Cab 2012 3.7% Hyundai Santa Fe SUV 2012 3.68% Isuzu Ascender SUV 2008 3.23% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.86% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Audi TT Hatchback 2011 4.6% Audi A5 Coupe 2012 3.1% Audi R8 Coupe 2012 2.27% Mercedes-Benz S-Class Sedan 2012 2.03% Audi 100 Sedan 1994 1.77% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 FIAT 500 Abarth 2012 4.43% Bentley Arnage Sedan 2009 3.99% Spyker C8 Convertible 2009 3.47% Rolls-Royce Phantom Sedan 2012 2.45% Bugatti Veyron 16.4 Coupe 2009 2.14% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 4.56% Dodge Charger Sedan 2012 3.9% Volvo C30 Hatchback 2012 3.74% BMW 1 Series Coupe 2012 3.39% Suzuki SX4 Hatchback 2012 3.04% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 8.42% Hyundai Elantra Sedan 2007 5.08% Ferrari 458 Italia Coupe 2012 4.07% Volkswagen Beetle Hatchback 2012 3.49% Ford Fiesta Sedan 2012 3.3% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Chevrolet Express Cargo Van 2007 3.6% Dodge Caravan Minivan 1997 2.92% Chevrolet Express Van 2007 1.93% Hyundai Tucson SUV 2012 1.93% Volkswagen Golf Hatchback 1991 1.86% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Nissan Leaf Hatchback 2012 3.66% Daewoo Nubira Wagon 2002 3.63% Lincoln Town Car Sedan 2011 3.19% Chrysler Sebring Convertible 2010 2.64% Hyundai Elantra Sedan 2007 2.41% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Audi S6 Sedan 2011 2.44% MINI Cooper Roadster Convertible 2012 2.12% Audi R8 Coupe 2012 1.7% Rolls-Royce Phantom Sedan 2012 1.5% Hyundai Genesis Sedan 2012 1.38% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chevrolet TrailBlazer SS 2009 5.47% Chrysler 300 SRT-8 2010 3.97% Chevrolet Silverado 1500 Regular Cab 2012 3.25% Chevrolet Silverado 2500HD Regular Cab 2012 2.35% BMW M6 Convertible 2010 1.83% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Lamborghini Reventon Coupe 2008 3.46% Spyker C8 Convertible 2009 3.18% Bugatti Veyron 16.4 Coupe 2009 2.4% Mercedes-Benz 300-Class Convertible 1993 2.01% Geo Metro Convertible 1993 1.91% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 Mercedes-Benz S-Class Sedan 2012 2.29% BMW M3 Coupe 2012 2.04% Ram C/V Cargo Van Minivan 2012 1.8% Mercedes-Benz Sprinter Van 2012 1.68% Bugatti Veyron 16.4 Convertible 2009 1.64% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 BMW X5 SUV 2007 2.86% Audi A5 Coupe 2012 2.22% Audi V8 Sedan 1994 2.16% Hyundai Tucson SUV 2012 2.03% Hyundai Santa Fe SUV 2012 1.91% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Lincoln Town Car Sedan 2011 2.18% Chevrolet Malibu Sedan 2007 2.14% Honda Odyssey Minivan 2007 2.08% Ford Freestar Minivan 2007 1.86% Dodge Caravan Minivan 1997 1.73% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 3.71% Audi TT Hatchback 2011 2.82% Mercedes-Benz SL-Class Coupe 2009 2.33% Porsche Panamera Sedan 2012 1.91% BMW 1 Series Convertible 2012 1.7% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 FIAT 500 Abarth 2012 5.72% Lamborghini Reventon Coupe 2008 4.67% Bugatti Veyron 16.4 Coupe 2009 3.6% Spyker C8 Convertible 2009 3.33% Chevrolet Corvette ZR1 2012 2.97% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Volvo 240 Sedan 1993 1.7% GMC Savana Van 2012 1.56% Dodge Caravan Minivan 1997 1.18% Volkswagen Golf Hatchback 1991 1.16% Lamborghini Reventon Coupe 2008 1.11% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 8.52% Ford GT Coupe 2006 5.09% Spyker C8 Coupe 2009 4.88% Spyker C8 Convertible 2009 4.52% Lamborghini Diablo Coupe 2001 3.9% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Ford Expedition EL SUV 2009 4.49% Jeep Liberty SUV 2012 3.28% Dodge Dakota Crew Cab 2010 3.02% AM General Hummer SUV 2000 2.74% Cadillac Escalade EXT Crew Cab 2007 2.49% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Chrysler 300 SRT-8 2010 1.92% Audi V8 Sedan 1994 1.58% Nissan 240SX Coupe 1998 1.38% Aston Martin V8 Vantage Coupe 2012 1.34% Lamborghini Reventon Coupe 2008 1.34% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Abarth 2012 7.23% Chevrolet TrailBlazer SS 2009 2.97% Lamborghini Reventon Coupe 2008 2.52% Cadillac CTS-V Sedan 2012 2.51% Bentley Arnage Sedan 2009 2.49% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 3.02% Volkswagen Golf Hatchback 1991 2.27% Lamborghini Reventon Coupe 2008 1.99% Chevrolet Corvette ZR1 2012 1.96% Bugatti Veyron 16.4 Coupe 2009 1.91% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet TrailBlazer SS 2009 6.14% Chrysler 300 SRT-8 2010 4.54% BMW M6 Convertible 2010 3.74% Chevrolet Silverado 1500 Regular Cab 2012 2.99% Chevrolet Silverado 2500HD Regular Cab 2012 2.69% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Chrysler Town and Country Minivan 2012 1.85% Mercedes-Benz Sprinter Van 2012 1.75% Ram C/V Cargo Van Minivan 2012 1.61% Audi A5 Coupe 2012 1.52% Volkswagen Golf Hatchback 2012 1.42% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette Convertible 2012 14.9% Hyundai Veloster Hatchback 2012 12.7% McLaren MP4-12C Coupe 2012 12.34% Acura Integra Type R 2001 11.28% Aston Martin Virage Coupe 2012 7.95% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Chrysler 300 SRT-8 2010 3.8% Chevrolet Silverado 2500HD Regular Cab 2012 3.27% Chevrolet TrailBlazer SS 2009 3.0% BMW M6 Convertible 2010 2.7% Chevrolet Silverado 1500 Regular Cab 2012 2.23% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.64% Mercedes-Benz S-Class Sedan 2012 2.61% BMW M3 Coupe 2012 1.79% Hyundai Azera Sedan 2012 1.65% Audi 100 Sedan 1994 1.43% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Regular Cab 2012 2.14% Chrysler 300 SRT-8 2010 1.97% Jeep Grand Cherokee SUV 2012 1.89% Cadillac Escalade EXT Crew Cab 2007 1.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW 1 Series Convertible 2012 3.0% BMW M3 Coupe 2012 2.88% Acura TL Sedan 2012 2.59% Volkswagen Beetle Hatchback 2012 2.56% Audi TT Hatchback 2011 2.35% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chrysler 300 SRT-8 2010 3.9% Chevrolet Silverado 2500HD Regular Cab 2012 2.85% BMW M6 Convertible 2010 2.69% Chevrolet TrailBlazer SS 2009 2.05% Rolls-Royce Ghost Sedan 2012 1.88% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Caliber Wagon 2007 5.01% Volkswagen Golf Hatchback 1991 4.66% Suzuki SX4 Hatchback 2012 3.39% Ford F-150 Regular Cab 2007 3.0% BMW X6 SUV 2012 2.87% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Mercedes-Benz 300-Class Convertible 1993 2.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.35% Acura TL Sedan 2012 2.15% Aston Martin V8 Vantage Coupe 2012 2.06% Acura TL Type-S 2008 2.0% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Infiniti G Coupe IPL 2012 2.57% Chevrolet Silverado 2500HD Regular Cab 2012 2.45% Porsche Panamera Sedan 2012 2.26% Jaguar XK XKR 2012 2.01% Chevrolet Corvette ZR1 2012 1.73% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 3.21% Aston Martin V8 Vantage Coupe 2012 2.17% Audi V8 Sedan 1994 1.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.84% Audi 100 Wagon 1994 1.67% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Audi TT Hatchback 2011 1.45% Audi V8 Sedan 1994 1.34% BMW ActiveHybrid 5 Sedan 2012 1.3% Bugatti Veyron 16.4 Coupe 2009 1.25% Chevrolet Silverado 2500HD Regular Cab 2012 1.2% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 2500HD Regular Cab 2012 2.02% Audi TT Hatchback 2011 1.67% Audi A5 Coupe 2012 1.66% Infiniti G Coupe IPL 2012 1.56% Audi V8 Sedan 1994 1.41% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 20.06% Mercedes-Benz S-Class Sedan 2012 3.81% BMW M3 Coupe 2012 3.04% Mercedes-Benz E-Class Sedan 2012 2.26% Hyundai Azera Sedan 2012 2.2% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 4.93% Chevrolet Cobalt SS 2010 4.18% Volkswagen Golf Hatchback 1991 3.87% Suzuki SX4 Hatchback 2012 3.3% Dodge Charger Sedan 2012 3.08% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 7.52% Lincoln Town Car Sedan 2011 7.24% Chevrolet Express Van 2007 3.9% Dodge Sprinter Cargo Van 2009 3.51% Plymouth Neon Coupe 1999 3.46% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 4.48% Mercedes-Benz S-Class Sedan 2012 2.69% Rolls-Royce Phantom Sedan 2012 2.48% Bentley Mulsanne Sedan 2011 2.26% Dodge Challenger SRT8 2011 2.0% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 9.38% Chevrolet Express Cargo Van 2007 5.59% Chevrolet Express Van 2007 5.3% Dodge Dakota Club Cab 2007 3.23% Chevrolet Silverado 1500 Extended Cab 2012 2.96% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 32.45% Acura Integra Type R 2001 19.23% McLaren MP4-12C Coupe 2012 10.86% Chevrolet Corvette Convertible 2012 7.27% Aston Martin Virage Coupe 2012 5.14% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Rolls-Royce Phantom Sedan 2012 2.26% Ram C/V Cargo Van Minivan 2012 2.24% Hyundai Genesis Sedan 2012 1.58% Hyundai Azera Sedan 2012 1.55% Suzuki SX4 Sedan 2012 1.43% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Ram C/V Cargo Van Minivan 2012 2.54% BMW ActiveHybrid 5 Sedan 2012 2.44% BMW 1 Series Convertible 2012 2.43% Acura TSX Sedan 2012 2.12% Acura TL Sedan 2012 1.98% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 2.7% Dodge Ram Pickup 3500 Crew Cab 2010 2.48% Hyundai Santa Fe SUV 2012 2.4% Isuzu Ascender SUV 2008 2.3% Jeep Grand Cherokee SUV 2012 2.21% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Daewoo Nubira Wagon 2002 4.16% Nissan Leaf Hatchback 2012 4.03% Lamborghini Reventon Coupe 2008 3.52% Maybach Landaulet Convertible 2012 2.65% FIAT 500 Convertible 2012 2.62% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Reventon Coupe 2008 3.78% Bugatti Veyron 16.4 Coupe 2009 3.27% Bentley Mulsanne Sedan 2011 2.72% Hyundai Genesis Sedan 2012 2.6% Spyker C8 Convertible 2009 2.17% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Nissan Leaf Hatchback 2012 7.23% FIAT 500 Convertible 2012 6.74% Daewoo Nubira Wagon 2002 6.63% Maybach Landaulet Convertible 2012 6.01% Plymouth Neon Coupe 1999 2.69% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Chevrolet TrailBlazer SS 2009 3.67% Chrysler 300 SRT-8 2010 3.15% Chevrolet Silverado 1500 Regular Cab 2012 3.14% Ford F-150 Regular Cab 2007 2.12% Hyundai Veracruz SUV 2012 1.84% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 76.2% Acura Integra Type R 2001 3.75% Geo Metro Convertible 1993 3.19% Lamborghini Diablo Coupe 2001 2.62% Spyker C8 Convertible 2009 1.47% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Acura TL Sedan 2012 2.23% BMW ActiveHybrid 5 Sedan 2012 1.84% Audi TT Hatchback 2011 1.68% BMW M5 Sedan 2010 1.47% Acura TL Type-S 2008 1.4% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Aston Martin V8 Vantage Coupe 2012 2.98% Lamborghini Reventon Coupe 2008 2.65% Chevrolet Corvette ZR1 2012 2.48% Bugatti Veyron 16.4 Coupe 2009 2.46% Nissan Juke Hatchback 2012 1.92% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 6.99% Ford Expedition EL SUV 2009 5.08% Bentley Arnage Sedan 2009 4.88% Hyundai Santa Fe SUV 2012 3.38% Ford E-Series Wagon Van 2012 2.97% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Chevrolet Express Van 2007 3.18% Ford Freestar Minivan 2007 2.98% Lincoln Town Car Sedan 2011 2.48% GMC Savana Van 2012 2.44% Dodge Caravan Minivan 1997 2.41% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Chevrolet Corvette ZR1 2012 3.0% Eagle Talon Hatchback 1998 2.67% Infiniti G Coupe IPL 2012 2.26% Audi V8 Sedan 1994 2.16% Chrysler 300 SRT-8 2010 1.98% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Nissan Leaf Hatchback 2012 5.61% Plymouth Neon Coupe 1999 5.12% Dodge Caravan Minivan 1997 4.32% Daewoo Nubira Wagon 2002 4.27% Lincoln Town Car Sedan 2011 4.1% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 2.69% Eagle Talon Hatchback 1998 2.08% Lamborghini Reventon Coupe 2008 1.92% Mercedes-Benz 300-Class Convertible 1993 1.78% Daewoo Nubira Wagon 2002 1.71% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 9.16% Bentley Arnage Sedan 2009 2.32% Hyundai Genesis Sedan 2012 2.28% Bugatti Veyron 16.4 Coupe 2009 1.98% Lamborghini Reventon Coupe 2008 1.91% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 76.12% Geo Metro Convertible 1993 4.8% Acura Integra Type R 2001 4.53% Lamborghini Diablo Coupe 2001 2.18% Chevrolet Corvette Convertible 2012 1.83% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Jeep Liberty SUV 2012 4.6% Cadillac Escalade EXT Crew Cab 2007 4.28% Ford Expedition EL SUV 2009 4.07% AM General Hummer SUV 2000 3.53% Ford F-450 Super Duty Crew Cab 2012 2.97% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 2.35% Chevrolet Express Van 2007 1.88% Chevrolet Express Cargo Van 2007 1.61% Chevrolet Malibu Sedan 2007 1.53% Lincoln Town Car Sedan 2011 1.46% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.31% Spyker C8 Coupe 2009 1.99% Spyker C8 Convertible 2009 1.92% Bugatti Veyron 16.4 Coupe 2009 1.72% Ford GT Coupe 2006 1.69% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 31.66% Aston Martin Virage Coupe 2012 12.49% McLaren MP4-12C Coupe 2012 12.01% Acura Integra Type R 2001 7.94% Lamborghini Diablo Coupe 2001 5.57% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Dodge Caravan Minivan 1997 1.79% Chevrolet Monte Carlo Coupe 2007 1.41% Plymouth Neon Coupe 1999 1.35% Lincoln Town Car Sedan 2011 1.27% Chevrolet Express Cargo Van 2007 1.26% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Audi V8 Sedan 1994 1.74% Audi 100 Wagon 1994 1.25% Eagle Talon Hatchback 1998 1.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.12% Chevrolet Express Cargo Van 2007 1.12% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Fisker Karma Sedan 2012 3.16% Mercedes-Benz 300-Class Convertible 1993 2.66% Acura ZDX Hatchback 2012 2.3% Bugatti Veyron 16.4 Coupe 2009 1.88% Aston Martin Virage Convertible 2012 1.83% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Volkswagen Golf Hatchback 1991 1.76% Audi V8 Sedan 1994 1.63% Volvo 240 Sedan 1993 1.54% Jeep Patriot SUV 2012 1.51% GMC Savana Van 2012 1.49% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 8.13% Bentley Arnage Sedan 2009 5.56% Cadillac Escalade EXT Crew Cab 2007 4.48% Jeep Liberty SUV 2012 4.37% Ford Expedition EL SUV 2009 4.29% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Dodge Caliber Wagon 2007 4.06% Hyundai Elantra Sedan 2007 3.08% Suzuki SX4 Hatchback 2012 2.68% Volvo C30 Hatchback 2012 2.46% Ford Fiesta Sedan 2012 2.42% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Ram C/V Cargo Van Minivan 2012 2.09% Chevrolet Malibu Hybrid Sedan 2010 1.74% Chrysler Sebring Convertible 2010 1.49% Lincoln Town Car Sedan 2011 1.45% Ford Focus Sedan 2007 1.44% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 4.26% BMW 1 Series Coupe 2012 3.57% Volvo C30 Hatchback 2012 2.72% Dodge Charger Sedan 2012 2.66% Dodge Charger SRT-8 2009 2.34% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 5.1% Chevrolet Avalanche Crew Cab 2012 4.84% Chevrolet Silverado 1500 Extended Cab 2012 4.44% GMC Terrain SUV 2012 3.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.58% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 FIAT 500 Abarth 2012 3.49% Bugatti Veyron 16.4 Coupe 2009 2.85% Spyker C8 Convertible 2009 2.37% Lamborghini Reventon Coupe 2008 2.11% Chrysler 300 SRT-8 2010 1.87% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Silverado 1500 Extended Cab 2012 4.78% Ford F-150 Regular Cab 2012 3.59% GMC Savana Van 2012 3.57% Chevrolet Avalanche Crew Cab 2012 3.31% Isuzu Ascender SUV 2008 3.14% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Audi TT RS Coupe 2012 4.97% Nissan 240SX Coupe 1998 3.57% Volkswagen Golf Hatchback 1991 3.01% Dodge Sprinter Cargo Van 2009 2.5% Dodge Magnum Wagon 2008 2.41% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Infiniti G Coupe IPL 2012 4.23% Chevrolet Corvette ZR1 2012 2.72% Chrysler 300 SRT-8 2010 2.42% Eagle Talon Hatchback 1998 2.28% Audi V8 Sedan 1994 2.16% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 BMW 1 Series Coupe 2012 4.05% Dodge Charger SRT-8 2009 3.81% Volvo C30 Hatchback 2012 3.78% Ferrari California Convertible 2012 3.6% Chevrolet HHR SS 2010 3.39% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Porsche Panamera Sedan 2012 2.04% Acura ZDX Hatchback 2012 2.0% Dodge Caravan Minivan 1997 1.66% Dodge Sprinter Cargo Van 2009 1.66% Bugatti Veyron 16.4 Convertible 2009 1.52% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Isuzu Ascender SUV 2008 3.78% Ford E-Series Wagon Van 2012 3.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.76% Ford F-150 Regular Cab 2012 2.66% Chevrolet Avalanche Crew Cab 2012 2.22% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chevrolet Avalanche Crew Cab 2012 3.01% Chevrolet Malibu Sedan 2007 2.42% Ford F-150 Regular Cab 2007 2.27% Chevrolet Silverado 1500 Regular Cab 2012 2.19% Honda Odyssey Minivan 2012 2.11% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 5.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.28% Rolls-Royce Phantom Sedan 2012 3.94% Maybach Landaulet Convertible 2012 3.72% Hyundai Genesis Sedan 2012 3.03% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Audi S6 Sedan 2011 1.21% Chevrolet Tahoe Hybrid SUV 2012 1.19% BMW ActiveHybrid 5 Sedan 2012 1.12% Audi A5 Coupe 2012 1.1% Chevrolet Silverado 1500 Extended Cab 2012 1.07% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Lamborghini Reventon Coupe 2008 5.28% Spyker C8 Convertible 2009 4.36% Bentley Mulsanne Sedan 2011 2.97% Bentley Arnage Sedan 2009 2.96% FIAT 500 Abarth 2012 2.8% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Fisker Karma Sedan 2012 1.89% BMW ActiveHybrid 5 Sedan 2012 1.82% Infiniti G Coupe IPL 2012 1.76% Mercedes-Benz S-Class Sedan 2012 1.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 6.52% Ford F-450 Super Duty Crew Cab 2012 5.89% Ford Expedition EL SUV 2009 5.67% Dodge Dakota Crew Cab 2010 2.91% Mercedes-Benz C-Class Sedan 2012 2.64% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Aston Martin Virage Coupe 2012 9.89% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.24% McLaren MP4-12C Coupe 2012 8.92% Chevrolet Corvette Convertible 2012 7.77% Lamborghini Diablo Coupe 2001 6.15% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Ferrari California Convertible 2012 11.64% Lamborghini Aventador Coupe 2012 8.57% Ferrari 458 Italia Convertible 2012 7.92% Ferrari 458 Italia Coupe 2012 6.75% Chevrolet Cobalt SS 2010 4.99% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Mercedes-Benz Sprinter Van 2012 3.68% Acura TSX Sedan 2012 3.03% Dodge Caravan Minivan 1997 2.96% Lincoln Town Car Sedan 2011 2.94% Dodge Sprinter Cargo Van 2009 2.9% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.14% Nissan Leaf Hatchback 2012 3.89% Maybach Landaulet Convertible 2012 3.08% Porsche Panamera Sedan 2012 2.83% Jaguar XK XKR 2012 2.38% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.01% Chevrolet TrailBlazer SS 2009 1.91% Audi S6 Sedan 2011 1.82% Ford Expedition EL SUV 2009 1.63% Dodge Durango SUV 2012 1.62% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 3.72% Chevrolet Silverado 1500 Extended Cab 2012 2.14% Chevrolet Express Van 2007 2.0% Dodge Dakota Club Cab 2007 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.78% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 2.24% Honda Accord Coupe 2012 1.93% Toyota Corolla Sedan 2012 1.71% Dodge Caliber Wagon 2007 1.7% Plymouth Neon Coupe 1999 1.7% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Rolls-Royce Phantom Sedan 2012 2.0% smart fortwo Convertible 2012 1.97% Chevrolet Sonic Sedan 2012 1.55% Spyker C8 Coupe 2009 1.32% Jeep Wrangler SUV 2012 1.28% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 9.28% Dodge Ram Pickup 3500 Quad Cab 2009 7.74% Ford Ranger SuperCab 2011 6.63% BMW X6 SUV 2012 5.76% GMC Canyon Extended Cab 2012 4.47% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Chrysler 300 SRT-8 2010 2.61% Hyundai Tucson SUV 2012 2.41% Chevrolet TrailBlazer SS 2009 2.31% Land Rover Range Rover SUV 2012 1.75% Ford F-150 Regular Cab 2007 1.74% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Volvo XC90 SUV 2007 3.1% BMW X6 SUV 2012 3.01% Dodge Ram Pickup 3500 Crew Cab 2010 2.74% Ford Ranger SuperCab 2011 2.64% Hyundai Santa Fe SUV 2012 2.56% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 BMW ActiveHybrid 5 Sedan 2012 3.46% Audi TT Hatchback 2011 3.29% Mercedes-Benz SL-Class Coupe 2009 3.13% Audi S5 Convertible 2012 2.43% Audi S5 Coupe 2012 2.22% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Ferrari 458 Italia Convertible 2012 10.35% Ferrari California Convertible 2012 7.9% Ferrari 458 Italia Coupe 2012 6.28% Audi TT RS Coupe 2012 6.2% Chevrolet HHR SS 2010 4.63% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Audi V8 Sedan 1994 3.32% BMW X5 SUV 2007 2.49% Toyota Sequoia SUV 2012 2.12% Audi 100 Sedan 1994 1.81% Chrysler 300 SRT-8 2010 1.73% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Mercedes-Benz Sprinter Van 2012 7.1% Dodge Sprinter Cargo Van 2009 4.39% Chrysler Town and Country Minivan 2012 2.32% Volkswagen Golf Hatchback 2012 2.28% Ram C/V Cargo Van Minivan 2012 2.11% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Audi V8 Sedan 1994 2.01% Bugatti Veyron 16.4 Coupe 2009 1.86% Mercedes-Benz 300-Class Convertible 1993 1.46% Lamborghini Reventon Coupe 2008 1.45% Audi 100 Sedan 1994 1.41% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Dodge Caliber Wagon 2007 6.51% GMC Savana Van 2012 2.73% Chevrolet Traverse SUV 2012 2.49% Chevrolet Silverado 1500 Regular Cab 2012 2.42% Buick Rainier SUV 2007 2.4% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Dodge Caravan Minivan 1997 3.61% Chevrolet Express Cargo Van 2007 3.47% Lincoln Town Car Sedan 2011 2.54% Chevrolet Express Van 2007 1.98% GMC Savana Van 2012 1.79% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Audi R8 Coupe 2012 3.58% Audi TT Hatchback 2011 3.34% Audi A5 Coupe 2012 3.29% BMW ActiveHybrid 5 Sedan 2012 3.01% Audi S5 Coupe 2012 2.39% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 64.43% Audi RS 4 Convertible 2008 11.78% Acura Integra Type R 2001 4.97% McLaren MP4-12C Coupe 2012 2.33% Ferrari 458 Italia Convertible 2012 2.25% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Ford Freestar Minivan 2007 2.3% Hyundai Tucson SUV 2012 2.1% Dodge Caravan Minivan 1997 1.88% Volkswagen Golf Hatchback 1991 1.8% Chevrolet Traverse SUV 2012 1.6% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 6.13% Chevrolet Silverado 1500 Regular Cab 2012 4.65% GMC Canyon Extended Cab 2012 4.23% Dodge Ram Pickup 3500 Quad Cab 2009 2.89% Dodge Caliber Wagon 2012 2.67% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Mercedes-Benz SL-Class Coupe 2009 2.9% Acura TL Type-S 2008 2.7% Audi S5 Convertible 2012 2.39% Mercedes-Benz E-Class Sedan 2012 2.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.3% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 BMW X3 SUV 2012 3.53% Mercedes-Benz C-Class Sedan 2012 2.42% MINI Cooper Roadster Convertible 2012 2.2% Audi S5 Coupe 2012 2.07% Infiniti G Coupe IPL 2012 2.06% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 BMW X3 SUV 2012 2.15% BMW X5 SUV 2007 1.83% Audi S5 Coupe 2012 1.72% Volvo XC90 SUV 2007 1.58% Buick Rainier SUV 2007 1.41% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Lincoln Town Car Sedan 2011 1.85% Jaguar XK XKR 2012 1.64% Ram C/V Cargo Van Minivan 2012 1.6% Nissan Leaf Hatchback 2012 1.52% Suzuki Aerio Sedan 2007 1.39% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 2.79% Chevrolet Malibu Hybrid Sedan 2010 2.31% Ford Focus Sedan 2007 2.31% Chevrolet Silverado 1500 Extended Cab 2012 2.3% Honda Odyssey Minivan 2012 1.76% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 3.67% Chevrolet Express Van 2007 3.6% Dodge Sprinter Cargo Van 2009 2.85% Chevrolet Avalanche Crew Cab 2012 2.79% Mercedes-Benz Sprinter Van 2012 2.62% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 28.79% Aston Martin Virage Coupe 2012 14.46% Chevrolet Corvette Convertible 2012 13.74% Lamborghini Aventador Coupe 2012 7.12% Ferrari 458 Italia Convertible 2012 3.98% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 4.19% Chevrolet Silverado 1500 Extended Cab 2012 3.38% Chevrolet Express Cargo Van 2007 3.25% Buick Rainier SUV 2007 2.51% Dodge Dakota Club Cab 2007 2.17% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 3.12% Chevrolet Express Cargo Van 2007 2.4% Chevrolet Impala Sedan 2007 2.11% Acura TSX Sedan 2012 1.93% Chrysler Sebring Convertible 2010 1.8% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.53% Honda Odyssey Minivan 2007 2.41% Mercedes-Benz Sprinter Van 2012 1.71% Chrysler Town and Country Minivan 2012 1.64% Hyundai Elantra Touring Hatchback 2012 1.56% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Geo Metro Convertible 1993 16.87% Plymouth Neon Coupe 1999 6.47% Nissan Leaf Hatchback 2012 6.34% Daewoo Nubira Wagon 2002 4.79% Dodge Caravan Minivan 1997 3.39% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Mercedes-Benz Sprinter Van 2012 2.97% BMW X3 SUV 2012 1.5% BMW ActiveHybrid 5 Sedan 2012 1.33% Mercedes-Benz SL-Class Coupe 2009 1.2% Hyundai Genesis Sedan 2012 1.19% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Dodge Caliber Wagon 2007 2.96% GMC Canyon Extended Cab 2012 2.39% Suzuki SX4 Hatchback 2012 2.16% BMW X6 SUV 2012 2.14% BMW 1 Series Coupe 2012 2.02% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Convertible 2012 11.92% Maybach Landaulet Convertible 2012 4.93% Nissan Leaf Hatchback 2012 4.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.32% Acura Integra Type R 2001 2.6% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Rolls-Royce Phantom Sedan 2012 2.13% BMW M6 Convertible 2010 1.87% Audi R8 Coupe 2012 1.76% Mercedes-Benz C-Class Sedan 2012 1.66% Rolls-Royce Ghost Sedan 2012 1.63% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 8.66% Maybach Landaulet Convertible 2012 7.24% Spyker C8 Coupe 2009 4.88% Bentley Continental Supersports Conv. Convertible 2012 4.09% Spyker C8 Convertible 2009 3.8% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Audi TT RS Coupe 2012 3.11% Lamborghini Aventador Coupe 2012 2.52% Volvo C30 Hatchback 2012 2.33% Ferrari California Convertible 2012 2.29% Ferrari 458 Italia Coupe 2012 2.27% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 1.3% Bugatti Veyron 16.4 Coupe 2009 1.22% Chrysler Sebring Convertible 2010 1.13% Chrysler 300 SRT-8 2010 1.1% Honda Odyssey Minivan 2007 1.1% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 MINI Cooper Roadster Convertible 2012 4.48% Mercedes-Benz E-Class Sedan 2012 3.08% BMW ActiveHybrid 5 Sedan 2012 2.87% Audi R8 Coupe 2012 2.47% Mercedes-Benz SL-Class Coupe 2009 2.27% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.85% Audi V8 Sedan 1994 2.59% Chrysler 300 SRT-8 2010 1.73% Audi R8 Coupe 2012 1.68% Audi S5 Coupe 2012 1.64% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 2.39% Buick Rainier SUV 2007 1.85% Dodge Caliber Wagon 2007 1.73% Ford Edge SUV 2012 1.65% Jeep Liberty SUV 2012 1.62% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 4.83% Porsche Panamera Sedan 2012 2.7% Fisker Karma Sedan 2012 2.52% Mercedes-Benz E-Class Sedan 2012 2.13% Mercedes-Benz 300-Class Convertible 1993 2.12% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 26.17% AM General Hummer SUV 2000 9.42% Lamborghini Diablo Coupe 2001 8.33% Spyker C8 Convertible 2009 3.08% Bugatti Veyron 16.4 Coupe 2009 2.97% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 36.38% Ferrari 458 Italia Convertible 2012 8.82% Audi RS 4 Convertible 2008 6.18% McLaren MP4-12C Coupe 2012 5.95% Acura Integra Type R 2001 5.5% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 31.53% Chevrolet Express Cargo Van 2007 26.84% Chevrolet Express Van 2007 9.38% Hyundai Tucson SUV 2012 2.78% Buick Rainier SUV 2007 2.08% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Aston Martin Virage Coupe 2012 1.53% BMW Z4 Convertible 2012 1.48% Hyundai Veloster Hatchback 2012 1.46% Chevrolet Corvette Convertible 2012 1.33% Bugatti Veyron 16.4 Coupe 2009 1.28% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 17.43% Ferrari 458 Italia Convertible 2012 14.51% Lamborghini Aventador Coupe 2012 11.34% Aston Martin Virage Coupe 2012 9.24% Ferrari 458 Italia Coupe 2012 6.71% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Audi TT RS Coupe 2012 5.62% Ferrari California Convertible 2012 5.09% Dodge Magnum Wagon 2008 4.8% Ferrari 458 Italia Coupe 2012 3.08% Nissan 240SX Coupe 1998 2.89% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Isuzu Ascender SUV 2008 1.55% Dodge Ram Pickup 3500 Crew Cab 2010 1.48% Chrysler Aspen SUV 2009 1.47% Dodge Caliber Wagon 2012 1.36% Jeep Grand Cherokee SUV 2012 1.32% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 16.43% Ferrari 458 Italia Convertible 2012 13.0% Lamborghini Aventador Coupe 2012 10.12% Geo Metro Convertible 1993 5.72% Dodge Charger Sedan 2012 5.53% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 3.36% Ram C/V Cargo Van Minivan 2012 2.61% Lincoln Town Car Sedan 2011 2.47% Chrysler Sebring Convertible 2010 2.19% Ford Freestar Minivan 2007 2.16% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 FIAT 500 Abarth 2012 8.51% Bentley Arnage Sedan 2009 7.97% Chevrolet TrailBlazer SS 2009 3.22% Jeep Patriot SUV 2012 3.17% Spyker C8 Convertible 2009 2.71% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 23.76% McLaren MP4-12C Coupe 2012 13.92% Lamborghini Diablo Coupe 2001 4.72% Acura Integra Type R 2001 4.67% BMW Z4 Convertible 2012 4.09% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Volkswagen Golf Hatchback 1991 3.7% Dodge Caliber Wagon 2007 2.86% HUMMER H3T Crew Cab 2010 2.63% BMW X6 SUV 2012 2.42% Ford Mustang Convertible 2007 2.13% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Spyker C8 Convertible 2009 4.37% Bentley Arnage Sedan 2009 4.13% Bugatti Veyron 16.4 Coupe 2009 3.18% Bentley Mulsanne Sedan 2011 2.89% Lamborghini Reventon Coupe 2008 2.84% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Dodge Sprinter Cargo Van 2009 2.23% Acura TL Sedan 2012 1.71% Chevrolet Corvette ZR1 2012 1.71% GMC Savana Van 2012 1.58% Dodge Caravan Minivan 1997 1.58% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 2.67% Chevrolet Avalanche Crew Cab 2012 2.16% Ford F-150 Regular Cab 2012 2.0% Isuzu Ascender SUV 2008 1.99% Ford E-Series Wagon Van 2012 1.86% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Chevrolet Express Cargo Van 2007 3.92% GMC Savana Van 2012 3.35% Chevrolet Express Van 2007 2.27% Dodge Dakota Club Cab 2007 2.14% Buick Rainier SUV 2007 2.14% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ferrari California Convertible 2012 3.28% BMW 1 Series Coupe 2012 3.15% Dodge Charger SRT-8 2009 3.14% Honda Accord Coupe 2012 3.14% Chevrolet Cobalt SS 2010 2.96% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 7.99% Dodge Ram Pickup 3500 Crew Cab 2010 5.6% Ford Edge SUV 2012 3.84% Ford Expedition EL SUV 2009 3.18% Mercedes-Benz C-Class Sedan 2012 3.12% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 Mercedes-Benz Sprinter Van 2012 8.7% Dodge Sprinter Cargo Van 2009 7.15% GMC Savana Van 2012 4.93% Chevrolet Express Cargo Van 2007 4.83% Volkswagen Golf Hatchback 2012 3.28% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Aston Martin Virage Coupe 2012 10.66% McLaren MP4-12C Coupe 2012 6.05% Lamborghini Aventador Coupe 2012 5.61% Chevrolet Corvette Convertible 2012 3.6% Dodge Charger Sedan 2012 3.14% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Mulsanne Sedan 2011 5.16% Bentley Arnage Sedan 2009 4.46% Jeep Compass SUV 2012 3.8% Mercedes-Benz C-Class Sedan 2012 3.33% Ford F-450 Super Duty Crew Cab 2012 3.1% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Geo Metro Convertible 1993 10.75% Nissan Leaf Hatchback 2012 5.47% FIAT 500 Convertible 2012 4.95% Maybach Landaulet Convertible 2012 4.5% Daewoo Nubira Wagon 2002 4.36% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Cobalt SS 2010 6.98% Dodge Charger Sedan 2012 4.51% Chevrolet Corvette Convertible 2012 4.09% Ford Mustang Convertible 2007 3.99% Ferrari 458 Italia Coupe 2012 3.58% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 MINI Cooper Roadster Convertible 2012 3.75% Audi A5 Coupe 2012 3.68% Audi TT Hatchback 2011 3.38% Audi R8 Coupe 2012 3.14% BMW ActiveHybrid 5 Sedan 2012 2.88% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Audi TT Hatchback 2011 2.62% MINI Cooper Roadster Convertible 2012 2.26% BMW ActiveHybrid 5 Sedan 2012 1.85% Audi R8 Coupe 2012 1.8% Audi A5 Coupe 2012 1.67% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 5.45% Hyundai Azera Sedan 2012 3.16% Dodge Challenger SRT8 2011 3.01% Mercedes-Benz S-Class Sedan 2012 2.27% Rolls-Royce Phantom Sedan 2012 2.17% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 2.88% Dodge Ram Pickup 3500 Crew Cab 2010 2.79% Chrysler 300 SRT-8 2010 2.68% Chevrolet TrailBlazer SS 2009 2.62% Chevrolet Silverado 1500 Regular Cab 2012 2.44% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Ford Expedition EL SUV 2009 4.31% Cadillac Escalade EXT Crew Cab 2007 3.64% Bentley Arnage Sedan 2009 3.41% Ford F-450 Super Duty Crew Cab 2012 3.23% AM General Hummer SUV 2000 3.14% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Ford E-Series Wagon Van 2012 3.93% Isuzu Ascender SUV 2008 2.56% Chevrolet Tahoe Hybrid SUV 2012 2.21% Jeep Liberty SUV 2012 2.1% Dodge Ram Pickup 3500 Crew Cab 2010 1.86% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Acura TL Sedan 2012 3.49% Audi TT Hatchback 2011 2.67% BMW ActiveHybrid 5 Sedan 2012 2.42% Acura TSX Sedan 2012 2.33% BMW M5 Sedan 2010 2.16% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Nissan Leaf Hatchback 2012 4.31% Daewoo Nubira Wagon 2002 2.85% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.83% Lincoln Town Car Sedan 2011 2.64% Acura TL Sedan 2012 2.14% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.49% Mercedes-Benz 300-Class Convertible 1993 1.46% Audi 100 Sedan 1994 1.37% Audi V8 Sedan 1994 1.34% Acura TL Sedan 2012 1.33% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 HUMMER H2 SUT Crew Cab 2009 4.98% Ford F-450 Super Duty Crew Cab 2012 4.59% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Ford Expedition EL SUV 2009 3.77% Dodge Dakota Crew Cab 2010 3.15% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 4.44% Lincoln Town Car Sedan 2011 3.93% Chevrolet Express Van 2007 3.54% GMC Savana Van 2012 3.34% Honda Odyssey Minivan 2007 2.95% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 2.19% Dodge Sprinter Cargo Van 2009 2.18% Mercedes-Benz Sprinter Van 2012 1.93% Ram C/V Cargo Van Minivan 2012 1.88% Porsche Panamera Sedan 2012 1.81% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 FIAT 500 Abarth 2012 12.45% Bentley Arnage Sedan 2009 8.48% AM General Hummer SUV 2000 7.15% Jeep Patriot SUV 2012 5.15% Spyker C8 Convertible 2009 2.95% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 FIAT 500 Abarth 2012 12.62% Spyker C8 Convertible 2009 6.12% Bentley Arnage Sedan 2009 6.05% Lamborghini Reventon Coupe 2008 3.14% Bugatti Veyron 16.4 Coupe 2009 2.76% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 MINI Cooper Roadster Convertible 2012 2.91% Fisker Karma Sedan 2012 2.89% BMW ActiveHybrid 5 Sedan 2012 2.47% Audi TT Hatchback 2011 2.46% Bugatti Veyron 16.4 Coupe 2009 1.97% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Dodge Sprinter Cargo Van 2009 6.19% Ram C/V Cargo Van Minivan 2012 5.63% Acura TSX Sedan 2012 4.01% Mercedes-Benz Sprinter Van 2012 4.0% BMW 1 Series Convertible 2012 3.63% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 HUMMER H3T Crew Cab 2010 21.95% Jeep Wrangler SUV 2012 8.94% HUMMER H2 SUT Crew Cab 2009 5.59% Dodge Ram Pickup 3500 Quad Cab 2009 5.17% AM General Hummer SUV 2000 3.77% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Hyundai Elantra Sedan 2007 6.93% Honda Accord Coupe 2012 5.58% Plymouth Neon Coupe 1999 3.84% Volkswagen Beetle Hatchback 2012 3.68% Toyota Corolla Sedan 2012 3.47% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 MINI Cooper Roadster Convertible 2012 8.55% Mercedes-Benz E-Class Sedan 2012 3.61% BMW ActiveHybrid 5 Sedan 2012 3.12% Mercedes-Benz SL-Class Coupe 2009 3.06% Audi TT Hatchback 2011 2.65% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 MINI Cooper Roadster Convertible 2012 1.73% Hyundai Genesis Sedan 2012 1.73% Volvo 240 Sedan 1993 1.65% Mercedes-Benz S-Class Sedan 2012 1.53% Bugatti Veyron 16.4 Convertible 2009 1.51% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 2.59% Porsche Panamera Sedan 2012 2.13% BMW 1 Series Convertible 2012 2.07% Ram C/V Cargo Van Minivan 2012 1.79% BMW M5 Sedan 2010 1.75% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 BMW X5 SUV 2007 7.99% Hyundai Santa Fe SUV 2012 6.35% Isuzu Ascender SUV 2008 4.86% Ford F-150 Regular Cab 2012 4.42% Ford E-Series Wagon Van 2012 4.36% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 31.76% Ferrari 458 Italia Convertible 2012 11.24% McLaren MP4-12C Coupe 2012 10.53% Lamborghini Aventador Coupe 2012 9.86% Lamborghini Diablo Coupe 2001 6.14% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Dodge Caravan Minivan 1997 3.48% Geo Metro Convertible 1993 2.99% Mercedes-Benz 300-Class Convertible 1993 2.81% Plymouth Neon Coupe 1999 2.18% Daewoo Nubira Wagon 2002 2.11% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 4.66% Mercedes-Benz S-Class Sedan 2012 2.18% Volkswagen Golf Hatchback 2012 1.9% Rolls-Royce Phantom Sedan 2012 1.86% Chrysler Town and Country Minivan 2012 1.8% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Audi TT RS Coupe 2012 9.41% Ferrari 458 Italia Convertible 2012 6.16% Nissan 240SX Coupe 1998 5.58% Toyota Corolla Sedan 2012 5.35% Dodge Magnum Wagon 2008 4.82% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Ram C/V Cargo Van Minivan 2012 4.34% Dodge Sprinter Cargo Van 2009 2.52% BMW 1 Series Convertible 2012 2.42% Mercedes-Benz Sprinter Van 2012 2.31% GMC Savana Van 2012 2.18% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Avalanche Crew Cab 2012 2.72% Chevrolet Silverado 1500 Extended Cab 2012 2.41% Ford E-Series Wagon Van 2012 2.05% Isuzu Ascender SUV 2008 1.94% Honda Odyssey Minivan 2007 1.7% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Honda Odyssey Minivan 2007 1.29% Infiniti G Coupe IPL 2012 1.19% Audi S6 Sedan 2011 1.14% Jaguar XK XKR 2012 1.08% Audi S5 Coupe 2012 1.05% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Isuzu Ascender SUV 2008 5.65% Ford F-150 Regular Cab 2012 5.16% Hyundai Santa Fe SUV 2012 4.63% Dodge Ram Pickup 3500 Crew Cab 2010 4.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.6% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 10.16% Mercedes-Benz S-Class Sedan 2012 2.85% Mercedes-Benz C-Class Sedan 2012 1.96% Hyundai Genesis Sedan 2012 1.82% Bentley Mulsanne Sedan 2011 1.81% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Geo Metro Convertible 1993 5.72% Mercedes-Benz 300-Class Convertible 1993 3.89% Nissan Leaf Hatchback 2012 3.87% Dodge Caravan Minivan 1997 2.87% Daewoo Nubira Wagon 2002 2.77% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 2500HD Regular Cab 2012 9.91% Chrysler 300 SRT-8 2010 4.92% Chevrolet TrailBlazer SS 2009 3.99% Chevrolet Silverado 1500 Regular Cab 2012 3.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.93% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 4.85% FIAT 500 Convertible 2012 4.34% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.93% Acura Integra Type R 2001 3.05% Fisker Karma Sedan 2012 2.1% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Eagle Talon Hatchback 1998 2.42% Chrysler 300 SRT-8 2010 2.4% Audi V8 Sedan 1994 1.73% Hyundai Veracruz SUV 2012 1.72% Chevrolet Silverado 2500HD Regular Cab 2012 1.68% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Ram C/V Cargo Van Minivan 2012 4.09% Mercedes-Benz S-Class Sedan 2012 3.14% BMW 1 Series Convertible 2012 1.77% MINI Cooper Roadster Convertible 2012 1.67% Volkswagen Golf Hatchback 2012 1.51% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Daewoo Nubira Wagon 2002 3.76% Nissan Leaf Hatchback 2012 2.97% Bugatti Veyron 16.4 Convertible 2009 2.9% Chrysler Sebring Convertible 2010 2.77% Chrysler PT Cruiser Convertible 2008 2.59% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.78% Hyundai Azera Sedan 2012 1.26% Chevrolet Sonic Sedan 2012 1.23% Hyundai Genesis Sedan 2012 1.15% smart fortwo Convertible 2012 1.14% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Lamborghini Reventon Coupe 2008 2.44% Mercedes-Benz 300-Class Convertible 1993 2.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.79% Dodge Caravan Minivan 1997 1.69% Tesla Model S Sedan 2012 1.69% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Fisker Karma Sedan 2012 2.13% Mercedes-Benz E-Class Sedan 2012 1.96% Spyker C8 Convertible 2009 1.73% Hyundai Genesis Sedan 2012 1.43% Mercedes-Benz 300-Class Convertible 1993 1.37% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Hyundai Azera Sedan 2012 5.73% Rolls-Royce Phantom Sedan 2012 3.14% MINI Cooper Roadster Convertible 2012 2.89% Dodge Challenger SRT8 2011 2.74% Hyundai Genesis Sedan 2012 2.42% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Chrysler Aspen SUV 2009 4.78% Hyundai Santa Fe SUV 2012 4.5% Ford E-Series Wagon Van 2012 4.37% Isuzu Ascender SUV 2008 3.84% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Sedan 2012 3.61% Maybach Landaulet Convertible 2012 2.61% Bugatti Veyron 16.4 Coupe 2009 2.25% BMW M6 Convertible 2010 2.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.2% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 MINI Cooper Roadster Convertible 2012 2.38% Bentley Mulsanne Sedan 2011 1.95% Hyundai Genesis Sedan 2012 1.8% Mercedes-Benz C-Class Sedan 2012 1.71% Hyundai Azera Sedan 2012 1.57% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 10.52% Dodge Caliber Wagon 2007 5.4% Suzuki SX4 Hatchback 2012 3.64% Volkswagen Golf Hatchback 1991 2.32% Dodge Caliber Wagon 2012 1.76% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 5.75% Ford Expedition EL SUV 2009 3.83% Ford F-450 Super Duty Crew Cab 2012 3.54% Dodge Ram Pickup 3500 Crew Cab 2010 3.44% Jeep Patriot SUV 2012 3.36% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Chrysler 300 SRT-8 2010 4.18% Chevrolet TrailBlazer SS 2009 3.35% Chevrolet Silverado 2500HD Regular Cab 2012 2.44% Rolls-Royce Ghost Sedan 2012 2.18% BMW M6 Convertible 2010 2.0% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Lamborghini Reventon Coupe 2008 2.67% Chrysler PT Cruiser Convertible 2008 2.33% Mercedes-Benz 300-Class Convertible 1993 2.06% Spyker C8 Convertible 2009 1.99% Volvo 240 Sedan 1993 1.85% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Ford E-Series Wagon Van 2012 3.93% Land Rover Range Rover SUV 2012 2.51% Jeep Patriot SUV 2012 2.49% BMW X5 SUV 2007 2.42% Isuzu Ascender SUV 2008 2.05% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Audi S6 Sedan 2011 2.18% Chevrolet Silverado 2500HD Regular Cab 2012 1.92% Audi R8 Coupe 2012 1.69% Mercedes-Benz C-Class Sedan 2012 1.68% Audi A5 Coupe 2012 1.39% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Ferrari 458 Italia Convertible 2012 7.92% Lamborghini Aventador Coupe 2012 7.85% Ferrari 458 Italia Coupe 2012 7.35% Ferrari California Convertible 2012 6.09% Volvo C30 Hatchback 2012 3.72% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.55% Lincoln Town Car Sedan 2011 2.44% Chevrolet Malibu Sedan 2007 1.68% Daewoo Nubira Wagon 2002 1.67% Ford Freestar Minivan 2007 1.67% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Jeep Liberty SUV 2012 2.41% Jeep Grand Cherokee SUV 2012 2.18% Ford E-Series Wagon Van 2012 2.05% GMC Yukon Hybrid SUV 2012 1.89% Hyundai Santa Fe SUV 2012 1.74% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 6.08% Dodge Ram Pickup 3500 Crew Cab 2010 5.67% Hyundai Santa Fe SUV 2012 5.1% Isuzu Ascender SUV 2008 5.08% Chrysler Aspen SUV 2009 4.25% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 4.6% Dodge Caravan Minivan 1997 4.14% Plymouth Neon Coupe 1999 3.57% Chevrolet Express Van 2007 2.6% Hyundai Tucson SUV 2012 2.41% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Ford F-450 Super Duty Crew Cab 2012 6.06% Dodge Ram Pickup 3500 Crew Cab 2010 4.1% Ford Expedition EL SUV 2009 3.45% Mercedes-Benz C-Class Sedan 2012 3.45% Bentley Arnage Sedan 2009 2.72% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Lamborghini Reventon Coupe 2008 1.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.64% Chrysler PT Cruiser Convertible 2008 1.4% Acura TL Type-S 2008 1.36% Bugatti Veyron 16.4 Coupe 2009 1.36% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Sprinter Cargo Van 2009 6.91% Mercedes-Benz Sprinter Van 2012 5.18% Volkswagen Golf Hatchback 2012 2.62% Suzuki Aerio Sedan 2007 2.08% Acura TSX Sedan 2012 2.03% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Dodge Caliber Wagon 2007 5.21% Suzuki SX4 Hatchback 2012 3.91% Dodge Charger Sedan 2012 3.75% Chevrolet Cobalt SS 2010 3.13% Ford Mustang Convertible 2007 2.98% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 5.55% Maybach Landaulet Convertible 2012 5.32% Geo Metro Convertible 1993 3.89% Mercedes-Benz 300-Class Convertible 1993 3.81% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.29% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 3.99% Hyundai Elantra Sedan 2007 3.51% Honda Accord Coupe 2012 3.16% Dodge Charger Sedan 2012 2.8% Ford Fiesta Sedan 2012 2.59% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Spyker C8 Convertible 2009 10.37% FIAT 500 Abarth 2012 10.21% Rolls-Royce Phantom Sedan 2012 5.85% Lamborghini Reventon Coupe 2008 4.6% Bentley Continental Supersports Conv. Convertible 2012 4.0% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Hyundai Azera Sedan 2012 3.39% Bentley Mulsanne Sedan 2011 2.85% Dodge Challenger SRT8 2011 2.66% MINI Cooper Roadster Convertible 2012 2.43% Jeep Patriot SUV 2012 2.28% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.69% Chevrolet TrailBlazer SS 2009 3.62% Land Rover Range Rover SUV 2012 2.4% Hyundai Santa Fe SUV 2012 2.15% GMC Yukon Hybrid SUV 2012 2.14% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 5.59% Chevrolet Express Van 2007 3.63% Chevrolet Malibu Sedan 2007 2.38% Chevrolet Avalanche Crew Cab 2012 2.26% Chevrolet Traverse SUV 2012 1.87% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 3.27% Acura TL Type-S 2008 2.62% BMW ActiveHybrid 5 Sedan 2012 2.27% Audi 100 Wagon 1994 2.25% Acura RL Sedan 2012 2.0% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 FIAT 500 Convertible 2012 17.99% Maybach Landaulet Convertible 2012 15.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.98% Nissan Leaf Hatchback 2012 4.01% Spyker C8 Coupe 2009 3.76% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Hyundai Santa Fe SUV 2012 3.03% Ford F-150 Regular Cab 2012 2.78% Jeep Grand Cherokee SUV 2012 2.27% Ford Ranger SuperCab 2011 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.1% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Acura TL Sedan 2012 2.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.01% Aston Martin V8 Vantage Coupe 2012 1.82% Lincoln Town Car Sedan 2011 1.62% Ram C/V Cargo Van Minivan 2012 1.56% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 smart fortwo Convertible 2012 2.98% FIAT 500 Abarth 2012 2.81% Dodge Caliber Wagon 2007 2.38% Hyundai Azera Sedan 2012 2.09% Nissan Juke Hatchback 2012 2.0% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 8.45% Hyundai Azera Sedan 2012 2.95% Hyundai Genesis Sedan 2012 2.22% smart fortwo Convertible 2012 2.21% Chevrolet Sonic Sedan 2012 1.91% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 BMW 1 Series Coupe 2012 3.79% Dodge Caliber Wagon 2007 3.6% Hyundai Veloster Hatchback 2012 3.13% Suzuki SX4 Hatchback 2012 2.9% Volvo C30 Hatchback 2012 2.65% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Silverado 1500 Extended Cab 2012 7.9% GMC Savana Van 2012 6.67% Chevrolet Avalanche Crew Cab 2012 4.21% Dodge Dakota Club Cab 2007 4.19% Ford F-150 Regular Cab 2012 4.05% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Cadillac Escalade EXT Crew Cab 2007 3.3% Jeep Grand Cherokee SUV 2012 2.61% HUMMER H2 SUT Crew Cab 2009 2.4% Isuzu Ascender SUV 2008 2.27% Dodge Durango SUV 2007 2.0% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 3.84% Isuzu Ascender SUV 2008 2.87% Ford E-Series Wagon Van 2012 2.77% Chevrolet Avalanche Crew Cab 2012 2.33% Chevrolet Silverado 1500 Extended Cab 2012 2.19% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette ZR1 2012 2.81% Aston Martin V8 Vantage Coupe 2012 2.58% Mercedes-Benz 300-Class Convertible 1993 1.88% Bentley Continental Supersports Conv. Convertible 2012 1.76% Hyundai Azera Sedan 2012 1.63% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Spyker C8 Convertible 2009 5.55% Bentley Mulsanne Sedan 2011 4.17% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.88% Fisker Karma Sedan 2012 3.12% Bugatti Veyron 16.4 Coupe 2009 3.01% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Lincoln Town Car Sedan 2011 1.64% Chevrolet Malibu Sedan 2007 1.51% Honda Accord Sedan 2012 1.35% Chrysler Sebring Convertible 2010 1.35% Dodge Dakota Club Cab 2007 1.27% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 19.72% Audi RS 4 Convertible 2008 17.2% Acura Integra Type R 2001 9.0% Hyundai Veloster Hatchback 2012 6.85% McLaren MP4-12C Coupe 2012 4.42% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Geo Metro Convertible 1993 4.81% Volkswagen Golf Hatchback 1991 4.08% Dodge Caliber Wagon 2007 2.97% Buick Verano Sedan 2012 2.68% Eagle Talon Hatchback 1998 2.65% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Ford E-Series Wagon Van 2012 3.38% Isuzu Ascender SUV 2008 2.43% Chevrolet Avalanche Crew Cab 2012 2.05% Jeep Grand Cherokee SUV 2012 2.01% Hyundai Santa Fe SUV 2012 1.88% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.07% Mercedes-Benz Sprinter Van 2012 2.86% Honda Odyssey Minivan 2007 2.74% Lincoln Town Car Sedan 2011 2.37% Acura TSX Sedan 2012 2.19% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 10.78% Fisker Karma Sedan 2012 6.48% FIAT 500 Convertible 2012 5.51% MINI Cooper Roadster Convertible 2012 4.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.6% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Chrysler 300 SRT-8 2010 3.53% Audi V8 Sedan 1994 2.7% Acura TL Sedan 2012 1.45% Nissan 240SX Coupe 1998 1.38% Dodge Durango SUV 2007 1.35% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 4.08% GMC Savana Van 2012 1.95% Volkswagen Golf Hatchback 2012 1.87% Hyundai Elantra Touring Hatchback 2012 1.75% Honda Odyssey Minivan 2007 1.6% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 7.68% Cadillac Escalade EXT Crew Cab 2007 4.81% Chrysler 300 SRT-8 2010 3.25% Chevrolet TrailBlazer SS 2009 2.72% Rolls-Royce Ghost Sedan 2012 2.27% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.39% Chevrolet Avalanche Crew Cab 2012 2.94% Dodge Ram Pickup 3500 Crew Cab 2010 2.45% GMC Terrain SUV 2012 2.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.15% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 4.37% FIAT 500 Convertible 2012 3.33% Mercedes-Benz S-Class Sedan 2012 2.87% smart fortwo Convertible 2012 2.59% MINI Cooper Roadster Convertible 2012 2.11% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 5.26% Audi V8 Sedan 1994 2.3% Chevrolet Silverado 1500 Regular Cab 2012 1.54% Audi R8 Coupe 2012 1.5% Infiniti G Coupe IPL 2012 1.49% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Chevrolet Sonic Sedan 2012 2.13% Rolls-Royce Phantom Sedan 2012 2.13% Jeep Wrangler SUV 2012 1.62% FIAT 500 Abarth 2012 1.62% AM General Hummer SUV 2000 1.61% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 BMW ActiveHybrid 5 Sedan 2012 1.92% BMW 1 Series Convertible 2012 1.54% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.51% Aston Martin V8 Vantage Coupe 2012 1.36% Ram C/V Cargo Van Minivan 2012 1.33% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Dodge Caliber Wagon 2007 6.02% Volkswagen Golf Hatchback 1991 2.15% Suzuki SX4 Hatchback 2012 1.9% Buick Verano Sedan 2012 1.88% Hyundai Accent Sedan 2012 1.88% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.05% Chevrolet Silverado 1500 Extended Cab 2012 2.27% Chevrolet Silverado 1500 Regular Cab 2012 1.69% Chevrolet Avalanche Crew Cab 2012 1.56% Ford F-150 Regular Cab 2012 1.44% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 1.95% Hyundai Sonata Sedan 2012 1.55% Dodge Caliber Wagon 2012 1.5% Nissan Juke Hatchback 2012 1.46% Dodge Dakota Club Cab 2007 1.26% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Aston Martin Virage Coupe 2012 18.3% McLaren MP4-12C Coupe 2012 10.45% Lamborghini Aventador Coupe 2012 5.51% Lamborghini Diablo Coupe 2001 4.27% Ferrari California Convertible 2012 4.2% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 9.2% Spyker C8 Convertible 2009 5.7% Maybach Landaulet Convertible 2012 5.62% Spyker C8 Coupe 2009 3.45% Bentley Continental Supersports Conv. Convertible 2012 3.23% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.42% Lamborghini Reventon Coupe 2008 2.05% Nissan Leaf Hatchback 2012 1.75% Audi S5 Convertible 2012 1.71% Chrysler PT Cruiser Convertible 2008 1.52% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.71% Dodge Ram Pickup 3500 Crew Cab 2010 2.5% Isuzu Ascender SUV 2008 2.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.24% Ford F-150 Regular Cab 2012 2.16% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 23.27% Ferrari California Convertible 2012 13.71% Lamborghini Aventador Coupe 2012 9.9% Ferrari 458 Italia Coupe 2012 8.03% Audi TT RS Coupe 2012 4.3% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 MINI Cooper Roadster Convertible 2012 2.07% BMW ActiveHybrid 5 Sedan 2012 1.99% Infiniti G Coupe IPL 2012 1.81% Audi R8 Coupe 2012 1.73% Mercedes-Benz SL-Class Coupe 2009 1.65% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 BMW X5 SUV 2007 4.78% Ford F-150 Regular Cab 2012 4.04% Isuzu Ascender SUV 2008 3.8% Hyundai Santa Fe SUV 2012 3.4% Ford E-Series Wagon Van 2012 2.93% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.18% Honda Accord Sedan 2012 1.16% Buick Rainier SUV 2007 1.08% Chevrolet Express Van 2007 1.07% Hyundai Tucson SUV 2012 1.06% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 FIAT 500 Abarth 2012 4.99% Ford GT Coupe 2006 2.73% AM General Hummer SUV 2000 2.38% Chevrolet Sonic Sedan 2012 2.36% Spyker C8 Coupe 2009 2.24% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 13.52% Nissan Leaf Hatchback 2012 4.17% Maybach Landaulet Convertible 2012 3.95% Bugatti Veyron 16.4 Convertible 2009 3.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.18% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 2.8% Fisker Karma Sedan 2012 2.56% Infiniti G Coupe IPL 2012 2.27% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.15% Audi R8 Coupe 2012 2.04% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.29% Fisker Karma Sedan 2012 1.82% BMW X3 SUV 2012 1.41% Acura ZDX Hatchback 2012 1.32% Honda Odyssey Minivan 2012 1.3% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Mercedes-Benz 300-Class Convertible 1993 3.13% Chevrolet Corvette ZR1 2012 2.57% Dodge Caravan Minivan 1997 2.52% Lamborghini Reventon Coupe 2008 2.39% Eagle Talon Hatchback 1998 2.04% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Chrysler 300 SRT-8 2010 3.94% BMW M6 Convertible 2010 2.95% Chevrolet TrailBlazer SS 2009 2.83% Bugatti Veyron 16.4 Coupe 2009 2.08% Mercedes-Benz 300-Class Convertible 1993 1.81% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Mercedes-Benz Sprinter Van 2012 2.83% Dodge Sprinter Cargo Van 2009 2.3% GMC Savana Van 2012 2.04% Honda Odyssey Minivan 2007 1.92% Audi A5 Coupe 2012 1.78% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Audi TT RS Coupe 2012 16.41% Ferrari California Convertible 2012 7.05% Ferrari 458 Italia Coupe 2012 6.14% Ferrari 458 Italia Convertible 2012 4.65% Chevrolet HHR SS 2010 3.83% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 BMW 3 Series Sedan 2012 4.38% Ferrari California Convertible 2012 4.09% Ferrari 458 Italia Convertible 2012 4.09% Audi TT RS Coupe 2012 3.95% Ferrari 458 Italia Coupe 2012 3.67% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Audi TT RS Coupe 2012 10.1% Ferrari California Convertible 2012 8.73% Ferrari 458 Italia Coupe 2012 5.18% Ferrari 458 Italia Convertible 2012 4.12% Chevrolet HHR SS 2010 4.05% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 9.35% Ford Expedition EL SUV 2009 5.5% Dodge Ram Pickup 3500 Crew Cab 2010 5.39% HUMMER H2 SUT Crew Cab 2009 3.41% Toyota 4Runner SUV 2012 3.07% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Buick Rainier SUV 2007 2.34% Dodge Caliber Wagon 2007 1.98% GMC Savana Van 2012 1.93% Jeep Liberty SUV 2012 1.72% Buick Enclave SUV 2012 1.71% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Bentley Arnage Sedan 2009 7.36% AM General Hummer SUV 2000 6.3% HUMMER H2 SUT Crew Cab 2009 5.09% Jeep Wrangler SUV 2012 2.83% FIAT 500 Abarth 2012 2.52% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 BMW ActiveHybrid 5 Sedan 2012 1.39% Mercedes-Benz SL-Class Coupe 2009 1.35% Audi S5 Coupe 2012 1.09% Audi V8 Sedan 1994 1.04% BMW X3 SUV 2012 1.02% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Daewoo Nubira Wagon 2002 2.93% FIAT 500 Convertible 2012 2.28% Nissan Leaf Hatchback 2012 2.27% Bugatti Veyron 16.4 Convertible 2009 1.79% Suzuki Aerio Sedan 2007 1.74% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Ferrari 458 Italia Convertible 2012 13.48% Ferrari California Convertible 2012 10.87% Chevrolet HHR SS 2010 9.79% Audi TT RS Coupe 2012 8.7% Dodge Magnum Wagon 2008 6.14% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Ferrari California Convertible 2012 5.9% Chevrolet HHR SS 2010 5.42% Honda Accord Coupe 2012 3.62% Dodge Charger SRT-8 2009 3.31% Toyota Corolla Sedan 2012 3.21% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Nissan Leaf Hatchback 2012 5.62% Daewoo Nubira Wagon 2002 5.19% Lincoln Town Car Sedan 2011 4.74% Hyundai Elantra Sedan 2007 4.22% Ford Focus Sedan 2007 3.37% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.89% Nissan Leaf Hatchback 2012 2.47% Maybach Landaulet Convertible 2012 2.11% Lamborghini Reventon Coupe 2008 1.84% Jaguar XK XKR 2012 1.7% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 FIAT 500 Convertible 2012 13.76% smart fortwo Convertible 2012 4.72% Maybach Landaulet Convertible 2012 4.34% Bentley Continental Supersports Conv. Convertible 2012 3.83% Spyker C8 Coupe 2009 3.65% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Aspen SUV 2009 1.56% Cadillac SRX SUV 2012 1.52% Chrysler 300 SRT-8 2010 1.45% Jeep Compass SUV 2012 1.39% Dodge Durango SUV 2007 1.3% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Mercedes-Benz Sprinter Van 2012 2.92% Audi 100 Sedan 1994 2.51% Bugatti Veyron 16.4 Convertible 2009 1.89% Dodge Caravan Minivan 1997 1.79% Tesla Model S Sedan 2012 1.78% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Rolls-Royce Phantom Sedan 2012 2.41% Chrysler Aspen SUV 2009 2.23% Isuzu Ascender SUV 2008 1.68% Rolls-Royce Ghost Sedan 2012 1.66% Dodge Challenger SRT8 2011 1.65% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 MINI Cooper Roadster Convertible 2012 3.07% Dodge Challenger SRT8 2011 2.38% BMW X3 SUV 2012 2.15% Mercedes-Benz Sprinter Van 2012 1.82% Audi S6 Sedan 2011 1.74% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Ford F-450 Super Duty Crew Cab 2012 2.34% Hyundai Santa Fe SUV 2012 1.98% Dodge Ram Pickup 3500 Crew Cab 2010 1.93% Chevrolet TrailBlazer SS 2009 1.84% Volvo XC90 SUV 2007 1.77% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 3.85% Chevrolet Silverado 1500 Regular Cab 2012 3.25% Ford Expedition EL SUV 2009 2.51% Dodge Ram Pickup 3500 Crew Cab 2010 2.31% Hyundai Veracruz SUV 2012 2.1% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 AM General Hummer SUV 2000 4.73% Cadillac Escalade EXT Crew Cab 2007 4.3% HUMMER H2 SUT Crew Cab 2009 3.56% Jeep Wrangler SUV 2012 3.54% Chevrolet TrailBlazer SS 2009 2.91% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Chrysler Aspen SUV 2009 1.5% Isuzu Ascender SUV 2008 1.47% Jeep Grand Cherokee SUV 2012 1.4% Hyundai Santa Fe SUV 2012 1.23% BMW X5 SUV 2007 1.15% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 2.34% Audi TT Hatchback 2011 1.9% Dodge Sprinter Cargo Van 2009 1.85% BMW 1 Series Convertible 2012 1.84% Ram C/V Cargo Van Minivan 2012 1.81% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Ford E-Series Wagon Van 2012 3.21% Audi S6 Sedan 2011 3.2% Dodge Challenger SRT8 2011 2.53% Chrysler Aspen SUV 2009 2.36% Rolls-Royce Phantom Sedan 2012 2.03% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Isuzu Ascender SUV 2008 2.65% Chrysler Aspen SUV 2009 2.5% Ford F-150 Regular Cab 2012 2.01% Jeep Grand Cherokee SUV 2012 1.88% Dodge Ram Pickup 3500 Crew Cab 2010 1.88% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 38.7% Audi RS 4 Convertible 2008 14.76% McLaren MP4-12C Coupe 2012 5.98% Acura Integra Type R 2001 4.92% Hyundai Veloster Hatchback 2012 2.82% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Audi S6 Sedan 2011 3.84% Ford E-Series Wagon Van 2012 2.98% Dodge Challenger SRT8 2011 2.19% Chrysler Aspen SUV 2009 2.19% Audi A5 Coupe 2012 2.1% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Geo Metro Convertible 1993 4.87% Nissan Leaf Hatchback 2012 4.09% Daewoo Nubira Wagon 2002 2.56% Plymouth Neon Coupe 1999 2.45% Dodge Caravan Minivan 1997 2.26% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 2.16% Ford Edge SUV 2012 1.85% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.81% Honda Odyssey Minivan 2012 1.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.62% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Dodge Sprinter Cargo Van 2009 3.59% Mercedes-Benz Sprinter Van 2012 3.56% Ram C/V Cargo Van Minivan 2012 2.52% Acura TSX Sedan 2012 2.27% Volkswagen Golf Hatchback 2012 1.84% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ferrari FF Coupe 2012 4.04% Honda Accord Coupe 2012 3.56% Hyundai Elantra Sedan 2007 2.84% Chevrolet Cobalt SS 2010 2.15% Chevrolet Monte Carlo Coupe 2007 1.88% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz 300-Class Convertible 1993 5.97% Fisker Karma Sedan 2012 4.53% Bugatti Veyron 16.4 Coupe 2009 2.45% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.38% Acura TL Type-S 2008 2.31% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Chrysler 300 SRT-8 2010 2.89% Chevrolet Silverado 2500HD Regular Cab 2012 2.33% Chevrolet TrailBlazer SS 2009 2.32% Chevrolet Silverado 1500 Regular Cab 2012 1.97% Ford F-150 Regular Cab 2007 1.96% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 10.33% Maybach Landaulet Convertible 2012 5.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Nissan Leaf Hatchback 2012 3.62% Bugatti Veyron 16.4 Convertible 2009 3.3% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 4.19% Suzuki SX4 Hatchback 2012 2.61% Nissan Juke Hatchback 2012 2.51% BMW X6 SUV 2012 2.26% Volkswagen Golf Hatchback 1991 2.15% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 19.5% Chevrolet Silverado 1500 Extended Cab 2012 5.53% Chevrolet Express Van 2007 5.22% Chevrolet Avalanche Crew Cab 2012 3.77% Chevrolet Express Cargo Van 2007 3.29% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Bentley Arnage Sedan 2009 3.45% Jeep Patriot SUV 2012 2.44% HUMMER H2 SUT Crew Cab 2009 2.24% Bentley Mulsanne Sedan 2011 2.19% AM General Hummer SUV 2000 1.82% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 2.14% Audi V8 Sedan 1994 1.79% Bugatti Veyron 16.4 Coupe 2009 1.58% Eagle Talon Hatchback 1998 1.43% Lamborghini Reventon Coupe 2008 1.39% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Plymouth Neon Coupe 1999 3.45% Nissan Leaf Hatchback 2012 3.2% Jaguar XK XKR 2012 2.39% Chevrolet Monte Carlo Coupe 2007 2.14% Lincoln Town Car Sedan 2011 2.09% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Chevrolet Corvette ZR1 2012 2.95% Porsche Panamera Sedan 2012 2.59% Infiniti G Coupe IPL 2012 2.27% Lamborghini Reventon Coupe 2008 2.05% Mercedes-Benz SL-Class Coupe 2009 1.79% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Jeep Wrangler SUV 2012 2.62% Jeep Liberty SUV 2012 2.52% Dodge Dakota Crew Cab 2010 2.04% Dodge Caliber Wagon 2012 1.72% Cadillac Escalade EXT Crew Cab 2007 1.71% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz SL-Class Coupe 2009 1.98% Fisker Karma Sedan 2012 1.75% Mercedes-Benz E-Class Sedan 2012 1.46% Bugatti Veyron 16.4 Convertible 2009 1.46% Acura TL Type-S 2008 1.37% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 HUMMER H2 SUT Crew Cab 2009 2.43% AM General Hummer SUV 2000 1.57% Cadillac Escalade EXT Crew Cab 2007 1.5% Bentley Arnage Sedan 2009 1.39% Chrysler 300 SRT-8 2010 1.38% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Lincoln Town Car Sedan 2011 5.53% Hyundai Elantra Sedan 2007 4.19% Daewoo Nubira Wagon 2002 3.67% Chevrolet Impala Sedan 2007 3.24% Dodge Caravan Minivan 1997 3.17% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.35% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.69% BMW ActiveHybrid 5 Sedan 2012 1.65% Jaguar XK XKR 2012 1.64% Infiniti G Coupe IPL 2012 1.58% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Ram C/V Cargo Van Minivan 2012 2.36% Audi A5 Coupe 2012 1.91% Audi S6 Sedan 2011 1.68% Audi R8 Coupe 2012 1.53% Audi TT Hatchback 2011 1.46% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 1.73% BMW ActiveHybrid 5 Sedan 2012 1.44% Honda Odyssey Minivan 2007 1.42% Infiniti G Coupe IPL 2012 1.38% Porsche Panamera Sedan 2012 1.3% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 1.53% GMC Yukon Hybrid SUV 2012 1.46% Land Rover LR2 SUV 2012 1.36% Ford Expedition EL SUV 2009 1.33% Dodge Durango SUV 2012 1.28% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 3.52% Bentley Arnage Sedan 2009 3.45% Bentley Mulsanne Sedan 2011 3.09% Mercedes-Benz C-Class Sedan 2012 2.76% Rolls-Royce Phantom Sedan 2012 2.73% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Porsche Panamera Sedan 2012 3.56% Toyota Camry Sedan 2012 2.4% Jaguar XK XKR 2012 2.27% BMW 1 Series Convertible 2012 1.99% Acura TL Sedan 2012 1.85% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 HUMMER H2 SUT Crew Cab 2009 5.68% Cadillac Escalade EXT Crew Cab 2007 3.96% AM General Hummer SUV 2000 3.87% Jeep Grand Cherokee SUV 2012 3.31% Jeep Wrangler SUV 2012 3.2% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Jeep Liberty SUV 2012 3.75% Jeep Wrangler SUV 2012 2.78% Dodge Dakota Crew Cab 2010 2.54% Dodge Ram Pickup 3500 Crew Cab 2010 2.5% Ford Expedition EL SUV 2009 2.33% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Dodge Sprinter Cargo Van 2009 5.57% Mercedes-Benz Sprinter Van 2012 2.88% GMC Savana Van 2012 2.73% Ram C/V Cargo Van Minivan 2012 2.64% BMW ActiveHybrid 5 Sedan 2012 2.28% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 BMW X5 SUV 2007 3.76% Toyota Sequoia SUV 2012 2.96% Isuzu Ascender SUV 2008 2.88% BMW X3 SUV 2012 2.87% Hyundai Santa Fe SUV 2012 2.86% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi R8 Coupe 2012 2.03% Audi A5 Coupe 2012 2.01% Audi TT Hatchback 2011 1.79% Audi V8 Sedan 1994 1.67% Audi TTS Coupe 2012 1.51% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Avalanche Crew Cab 2012 2.61% Lincoln Town Car Sedan 2011 2.11% Ford Freestar Minivan 2007 2.06% Chevrolet Traverse SUV 2012 1.72% Chevrolet Malibu Sedan 2007 1.68% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 2.47% Audi TT RS Coupe 2012 2.09% Mercedes-Benz 300-Class Convertible 1993 1.85% Nissan 240SX Coupe 1998 1.8% BMW 3 Series Sedan 2012 1.75% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Ford E-Series Wagon Van 2012 16.04% Isuzu Ascender SUV 2008 7.23% Chevrolet Tahoe Hybrid SUV 2012 3.94% Jeep Liberty SUV 2012 3.28% Chevrolet Silverado 1500 Extended Cab 2012 2.39% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 4.94% Honda Odyssey Minivan 2007 3.11% Chevrolet Express Van 2007 2.63% Dodge Sprinter Cargo Van 2009 2.32% Chevrolet Silverado 1500 Extended Cab 2012 2.26% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 FIAT 500 Abarth 2012 9.93% AM General Hummer SUV 2000 6.3% Bentley Arnage Sedan 2009 5.78% Jeep Patriot SUV 2012 5.13% Ford Expedition EL SUV 2009 2.82% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Chevrolet Express Cargo Van 2007 1.86% GMC Savana Van 2012 1.5% Chevrolet Express Van 2007 1.41% Lincoln Town Car Sedan 2011 1.37% Dodge Sprinter Cargo Van 2009 1.36% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Chevrolet TrailBlazer SS 2009 3.3% Bentley Arnage Sedan 2009 3.17% Ford F-450 Super Duty Crew Cab 2012 2.21% Land Rover Range Rover SUV 2012 2.07% Jeep Compass SUV 2012 2.06% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.69% Spyker C8 Coupe 2009 3.34% Maybach Landaulet Convertible 2012 3.02% Bentley Continental Supersports Conv. Convertible 2012 2.93% FIAT 500 Convertible 2012 2.71% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Audi TT RS Coupe 2012 6.33% Hyundai Elantra Sedan 2007 5.32% Dodge Magnum Wagon 2008 5.06% Chevrolet HHR SS 2010 3.12% Volkswagen Beetle Hatchback 2012 3.02% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Chevrolet TrailBlazer SS 2009 2.15% Ford F-150 Regular Cab 2007 2.05% Dodge Durango SUV 2007 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.59% Chevrolet Silverado 1500 Regular Cab 2012 1.37% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 2.14% Geo Metro Convertible 1993 2.09% Maybach Landaulet Convertible 2012 2.03% Nissan Leaf Hatchback 2012 1.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.95% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 24.93% McLaren MP4-12C Coupe 2012 18.17% Chevrolet Corvette Convertible 2012 12.42% Lamborghini Aventador Coupe 2012 11.42% Ferrari 458 Italia Convertible 2012 4.99% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 3.01% Chevrolet Avalanche Crew Cab 2012 2.08% Buick Enclave SUV 2012 1.88% Ford E-Series Wagon Van 2012 1.8% Chevrolet Silverado 1500 Extended Cab 2012 1.73% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Chevrolet TrailBlazer SS 2009 4.42% Bentley Arnage Sedan 2009 3.62% Jeep Compass SUV 2012 3.08% Cadillac Escalade EXT Crew Cab 2007 2.94% Land Rover Range Rover SUV 2012 2.63% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Hyundai Veloster Hatchback 2012 5.55% BMW 1 Series Coupe 2012 4.38% Bugatti Veyron 16.4 Coupe 2009 4.32% McLaren MP4-12C Coupe 2012 4.15% Audi RS 4 Convertible 2008 4.05% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 5.28% Jeep Wrangler SUV 2012 5.13% Jeep Liberty SUV 2012 3.97% HUMMER H2 SUT Crew Cab 2009 3.79% Jeep Grand Cherokee SUV 2012 3.09% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Ferrari 458 Italia Convertible 2012 6.07% Ferrari 458 Italia Coupe 2012 4.78% Ferrari California Convertible 2012 4.55% Chevrolet Cobalt SS 2010 3.42% Lamborghini Aventador Coupe 2012 3.05% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Lamborghini Reventon Coupe 2008 1.97% Bugatti Veyron 16.4 Coupe 2009 1.96% Mercedes-Benz 300-Class Convertible 1993 1.63% Aston Martin V8 Vantage Coupe 2012 1.57% Plymouth Neon Coupe 1999 1.44% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Geo Metro Convertible 1993 2.88% Nissan Leaf Hatchback 2012 2.4% Acura ZDX Hatchback 2012 2.38% Porsche Panamera Sedan 2012 1.91% Dodge Caravan Minivan 1997 1.88% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 4.64% BMW X3 SUV 2012 2.91% Isuzu Ascender SUV 2008 2.86% Mercedes-Benz Sprinter Van 2012 2.82% Dodge Challenger SRT8 2011 2.61% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Geo Metro Convertible 1993 4.79% Ferrari 458 Italia Coupe 2012 3.04% Ferrari 458 Italia Convertible 2012 2.83% Nissan Leaf Hatchback 2012 2.37% BMW 3 Series Sedan 2012 2.37% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Chevrolet Corvette ZR1 2012 4.15% Lamborghini Reventon Coupe 2008 3.57% FIAT 500 Abarth 2012 2.89% Bugatti Veyron 16.4 Coupe 2009 2.29% Mercedes-Benz 300-Class Convertible 1993 1.81% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 7.64% Mercedes-Benz SL-Class Coupe 2009 2.59% BMW X3 SUV 2012 2.09% Fisker Karma Sedan 2012 1.8% Dodge Ram Pickup 3500 Quad Cab 2009 1.62% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 3.08% Ford F-450 Super Duty Crew Cab 2012 2.08% Audi S6 Sedan 2011 2.01% BMW M6 Convertible 2010 1.98% Infiniti G Coupe IPL 2012 1.94% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 BMW X5 SUV 2007 3.97% Ford E-Series Wagon Van 2012 3.63% BMW X3 SUV 2012 2.62% Jeep Compass SUV 2012 2.03% Hyundai Santa Fe SUV 2012 1.86% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 MINI Cooper Roadster Convertible 2012 12.15% Rolls-Royce Phantom Sedan 2012 4.28% Mercedes-Benz S-Class Sedan 2012 4.21% smart fortwo Convertible 2012 3.88% Bugatti Veyron 16.4 Convertible 2009 3.54% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Rolls-Royce Phantom Sedan 2012 4.21% Ram C/V Cargo Van Minivan 2012 3.17% Audi S6 Sedan 2011 2.22% MINI Cooper Roadster Convertible 2012 2.1% Mercedes-Benz S-Class Sedan 2012 1.94% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Chevrolet TrailBlazer SS 2009 6.19% Chrysler 300 SRT-8 2010 2.65% Cadillac Escalade EXT Crew Cab 2007 2.16% Cadillac CTS-V Sedan 2012 2.08% Dodge Durango SUV 2012 1.84% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 2.44% Audi S5 Coupe 2012 2.23% Toyota 4Runner SUV 2012 2.17% Dodge Ram Pickup 3500 Crew Cab 2010 2.04% Mercedes-Benz C-Class Sedan 2012 2.01% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 MINI Cooper Roadster Convertible 2012 5.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.98% Mercedes-Benz S-Class Sedan 2012 2.83% BMW M3 Coupe 2012 2.62% BMW 1 Series Convertible 2012 2.45% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Bentley Arnage Sedan 2009 5.52% FIAT 500 Abarth 2012 4.45% Bentley Mulsanne Sedan 2011 3.39% Jeep Patriot SUV 2012 3.12% Jeep Compass SUV 2012 2.08% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 4.81% Chevrolet Express Cargo Van 2007 4.12% Chevrolet Express Van 2007 3.17% Dodge Caravan Minivan 1997 2.87% Chevrolet Traverse SUV 2012 2.27% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Corvette ZR1 2012 1.98% Ford F-150 Regular Cab 2007 1.91% Chevrolet TrailBlazer SS 2009 1.83% Chrysler 300 SRT-8 2010 1.79% Hyundai Veracruz SUV 2012 1.51% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Acura TL Sedan 2012 1.99% Porsche Panamera Sedan 2012 1.87% BMW ActiveHybrid 5 Sedan 2012 1.75% BMW M5 Sedan 2010 1.64% Jaguar XK XKR 2012 1.54% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Ferrari 458 Italia Convertible 2012 12.26% Ferrari California Convertible 2012 6.63% Ferrari 458 Italia Coupe 2012 6.35% Audi TT RS Coupe 2012 3.58% Chevrolet HHR SS 2010 3.34% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 2.21% Dodge Dakota Club Cab 2007 2.1% Buick Rainier SUV 2007 1.82% Volvo 240 Sedan 1993 1.5% Dodge Caliber Wagon 2012 1.47% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 HUMMER H3T Crew Cab 2010 2.25% Volkswagen Golf Hatchback 1991 2.16% HUMMER H2 SUT Crew Cab 2009 1.83% AM General Hummer SUV 2000 1.67% Spyker C8 Convertible 2009 1.65% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 5.03% Audi S6 Sedan 2011 2.9% Hyundai Genesis Sedan 2012 2.47% MINI Cooper Roadster Convertible 2012 2.07% Chrysler Aspen SUV 2009 1.9% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 2.91% Dodge Ram Pickup 3500 Quad Cab 2009 2.77% Ford F-450 Super Duty Crew Cab 2012 2.4% Chevrolet Tahoe Hybrid SUV 2012 2.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.25% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Avalanche Crew Cab 2012 3.1% Isuzu Ascender SUV 2008 2.03% Dodge Journey SUV 2012 1.94% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.94% Chevrolet Silverado 1500 Extended Cab 2012 1.91% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Chevrolet TrailBlazer SS 2009 2.35% Chrysler 300 SRT-8 2010 1.82% Jeep Liberty SUV 2012 1.68% Cadillac Escalade EXT Crew Cab 2007 1.67% Chevrolet Silverado 1500 Regular Cab 2012 1.61% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 10.3% Jeep Patriot SUV 2012 3.39% Rolls-Royce Ghost Sedan 2012 3.35% HUMMER H2 SUT Crew Cab 2009 2.91% Cadillac Escalade EXT Crew Cab 2007 2.9% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Silverado 2500HD Regular Cab 2012 4.0% GMC Savana Van 2012 3.28% Honda Accord Sedan 2012 2.32% Chevrolet Silverado 1500 Regular Cab 2012 2.14% Chevrolet Express Cargo Van 2007 2.07% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Chevrolet Express Cargo Van 2007 4.75% GMC Savana Van 2012 4.11% Chevrolet Express Van 2007 3.59% Dodge Caravan Minivan 1997 3.14% Lincoln Town Car Sedan 2011 2.23% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Spyker C8 Convertible 2009 2.85% Lamborghini Reventon Coupe 2008 2.65% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.26% Mercedes-Benz SL-Class Coupe 2009 2.15% Bentley Continental Supersports Conv. Convertible 2012 2.14% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Lamborghini Aventador Coupe 2012 6.08% Aston Martin Virage Coupe 2012 4.77% Ferrari California Convertible 2012 4.56% McLaren MP4-12C Coupe 2012 4.33% Ferrari 458 Italia Coupe 2012 3.84% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Mercedes-Benz Sprinter Van 2012 4.57% Dodge Sprinter Cargo Van 2009 2.88% GMC Savana Van 2012 2.49% Honda Odyssey Minivan 2007 2.24% Buick Rainier SUV 2007 1.73% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 37.72% Acura Integra Type R 2001 5.36% McLaren MP4-12C Coupe 2012 3.75% Chevrolet Cobalt SS 2010 3.09% Spyker C8 Convertible 2009 2.97% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 6.73% Chevrolet Express Van 2007 4.02% Chevrolet Malibu Sedan 2007 3.4% Honda Odyssey Minivan 2007 2.84% Ford Freestar Minivan 2007 2.47% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Dodge Caliber Wagon 2007 4.81% Hyundai Elantra Sedan 2007 3.9% Hyundai Accent Sedan 2012 3.72% BMW 1 Series Coupe 2012 3.03% Buick Verano Sedan 2012 2.54% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Acura TL Sedan 2012 2.63% Audi 100 Sedan 1994 2.5% Chrysler PT Cruiser Convertible 2008 2.31% Dodge Caravan Minivan 1997 2.24% Lincoln Town Car Sedan 2011 2.16% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 BMW X3 SUV 2012 1.52% Audi S5 Coupe 2012 1.47% Audi S6 Sedan 2011 1.4% Ford F-450 Super Duty Crew Cab 2012 1.4% Volvo XC90 SUV 2007 1.24% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 18.95% Jeep Wrangler SUV 2012 14.84% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.67% Hyundai Veloster Hatchback 2012 8.29% Audi RS 4 Convertible 2008 5.7% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Chevrolet Malibu Sedan 2007 3.11% Dodge Caravan Minivan 1997 3.09% Plymouth Neon Coupe 1999 2.78% Daewoo Nubira Wagon 2002 2.78% Chevrolet Impala Sedan 2007 2.62% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Lamborghini Reventon Coupe 2008 3.06% Mercedes-Benz 300-Class Convertible 1993 1.63% Volvo 240 Sedan 1993 1.59% Plymouth Neon Coupe 1999 1.52% Bugatti Veyron 16.4 Coupe 2009 1.33% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Corvette ZR1 2012 2.33% Infiniti G Coupe IPL 2012 1.81% Acura ZDX Hatchback 2012 1.78% Lamborghini Reventon Coupe 2008 1.51% Audi V8 Sedan 1994 1.5% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 3.31% Spyker C8 Convertible 2009 2.62% Bentley Arnage Sedan 2009 2.03% Rolls-Royce Phantom Sedan 2012 1.94% Acura RL Sedan 2012 1.81% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 18.14% Chevrolet Corvette Convertible 2012 14.29% Geo Metro Convertible 1993 14.1% Lamborghini Diablo Coupe 2001 9.22% McLaren MP4-12C Coupe 2012 7.77% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Ferrari California Convertible 2012 2.71% Audi TT RS Coupe 2012 2.58% Volvo C30 Hatchback 2012 2.46% Suzuki SX4 Hatchback 2012 2.31% Dodge Caliber Wagon 2007 2.22% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Fisker Karma Sedan 2012 2.0% Infiniti G Coupe IPL 2012 1.68% Mercedes-Benz SL-Class Coupe 2009 1.62% Acura TL Type-S 2008 1.55% BMW ActiveHybrid 5 Sedan 2012 1.46% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.42% Lincoln Town Car Sedan 2011 3.61% Acura TSX Sedan 2012 2.04% Toyota Corolla Sedan 2012 1.9% Volkswagen Golf Hatchback 2012 1.76% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Chrysler 300 SRT-8 2010 1.75% Lamborghini Reventon Coupe 2008 1.69% Bentley Continental GT Coupe 2007 1.5% Chevrolet TrailBlazer SS 2009 1.49% BMW M6 Convertible 2010 1.43% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Audi TT Hatchback 2011 2.26% BMW ActiveHybrid 5 Sedan 2012 2.14% BMW 1 Series Convertible 2012 2.14% Ram C/V Cargo Van Minivan 2012 1.9% Audi A5 Coupe 2012 1.79% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Mercedes-Benz SL-Class Coupe 2009 2.55% Porsche Panamera Sedan 2012 2.49% BMW ActiveHybrid 5 Sedan 2012 2.48% Audi TT Hatchback 2011 1.87% Mercedes-Benz E-Class Sedan 2012 1.82% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Caliber Wagon 2007 5.4% Hyundai Elantra Sedan 2007 2.66% Honda Accord Coupe 2012 2.54% Volkswagen Golf Hatchback 1991 2.34% Suzuki SX4 Hatchback 2012 2.28% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 21.01% Ferrari 458 Italia Convertible 2012 19.08% Ferrari 458 Italia Coupe 2012 6.15% Chevrolet Cobalt SS 2010 6.07% Ferrari FF Coupe 2012 5.69% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 4.58% Cadillac Escalade EXT Crew Cab 2007 3.6% Jeep Wrangler SUV 2012 2.6% Land Rover Range Rover SUV 2012 2.31% Jeep Compass SUV 2012 2.31% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Lamborghini Reventon Coupe 2008 4.7% Bugatti Veyron 16.4 Coupe 2009 4.55% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.29% Spyker C8 Convertible 2009 2.9% Aston Martin V8 Vantage Coupe 2012 2.41% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 7.9% GMC Savana Van 2012 5.51% Dodge Caravan Minivan 1997 3.46% Chevrolet Express Van 2007 2.87% Dodge Sprinter Cargo Van 2009 2.45% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 3.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.21% Chevrolet Silverado 1500 Regular Cab 2012 2.41% GMC Terrain SUV 2012 2.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.23% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Dodge Caravan Minivan 1997 3.94% Plymouth Neon Coupe 1999 2.78% Nissan Leaf Hatchback 2012 2.27% Daewoo Nubira Wagon 2002 2.25% Hyundai Elantra Sedan 2007 1.96% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Rolls-Royce Phantom Sedan 2012 5.08% Rolls-Royce Ghost Sedan 2012 3.22% Bentley Mulsanne Sedan 2011 2.93% Bentley Arnage Sedan 2009 2.83% BMW M6 Convertible 2010 2.58% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.84% Mazda Tribute SUV 2011 2.43% Jeep Liberty SUV 2012 1.94% Jeep Patriot SUV 2012 1.92% Ford E-Series Wagon Van 2012 1.89% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 BMW X6 SUV 2012 4.77% Dodge Caliber Wagon 2007 4.06% Volkswagen Golf Hatchback 1991 2.7% Dodge Ram Pickup 3500 Quad Cab 2009 1.88% Mazda Tribute SUV 2011 1.75% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Rolls-Royce Phantom Sedan 2012 2.7% Rolls-Royce Ghost Sedan 2012 2.62% Dodge Dakota Crew Cab 2010 2.3% Chrysler Aspen SUV 2009 1.85% Audi S6 Sedan 2011 1.82% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Ford Edge SUV 2012 4.5% Ford F-450 Super Duty Crew Cab 2012 4.23% Toyota 4Runner SUV 2012 3.91% Volvo XC90 SUV 2007 3.62% BMW X5 SUV 2007 3.58% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Hyundai Genesis Sedan 2012 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% Bentley Continental Flying Spur Sedan 2007 1.58% Infiniti G Coupe IPL 2012 1.5% Mercedes-Benz SL-Class Coupe 2009 1.49% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 2.1% Acura ZDX Hatchback 2012 1.91% Volkswagen Golf Hatchback 1991 1.86% Mercedes-Benz SL-Class Coupe 2009 1.8% smart fortwo Convertible 2012 1.77% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 4.26% Jeep Grand Cherokee SUV 2012 2.92% Chevrolet TrailBlazer SS 2009 2.47% Dodge Ram Pickup 3500 Crew Cab 2010 2.35% Dodge Durango SUV 2007 2.19% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Infiniti G Coupe IPL 2012 2.17% Chevrolet Corvette ZR1 2012 2.03% Chevrolet Silverado 2500HD Regular Cab 2012 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.9% Chrysler 300 SRT-8 2010 1.79% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Chevrolet Corvette ZR1 2012 4.9% Lamborghini Reventon Coupe 2008 4.09% Dodge Caravan Minivan 1997 4.05% Plymouth Neon Coupe 1999 3.69% Mercedes-Benz 300-Class Convertible 1993 3.5% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Hyundai Accent Sedan 2012 4.14% Hyundai Elantra Sedan 2007 4.14% Volkswagen Beetle Hatchback 2012 3.38% Hyundai Elantra Touring Hatchback 2012 3.19% Dodge Sprinter Cargo Van 2009 3.18% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 3.15% Hyundai Tucson SUV 2012 2.96% Chevrolet Traverse SUV 2012 2.53% Ford Ranger SuperCab 2011 2.08% Dodge Dakota Club Cab 2007 2.05% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-450 Super Duty Crew Cab 2012 4.74% Isuzu Ascender SUV 2008 3.96% Jeep Grand Cherokee SUV 2012 3.92% Dodge Ram Pickup 3500 Crew Cab 2010 3.89% Ford Expedition EL SUV 2009 3.62% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 MINI Cooper Roadster Convertible 2012 10.29% Mercedes-Benz S-Class Sedan 2012 3.12% BMW X3 SUV 2012 3.08% Audi TT Hatchback 2011 2.5% Mercedes-Benz Sprinter Van 2012 1.94% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Rolls-Royce Ghost Sedan 2012 2.63% Rolls-Royce Phantom Sedan 2012 2.39% Chrysler 300 SRT-8 2010 2.07% Hyundai Genesis Sedan 2012 1.68% Bentley Arnage Sedan 2009 1.64% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Cadillac Escalade EXT Crew Cab 2007 1.44% Chrysler 300 SRT-8 2010 1.42% Jeep Grand Cherokee SUV 2012 1.4% Dodge Durango SUV 2007 1.37% Chevrolet TrailBlazer SS 2009 1.3% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Reventon Coupe 2008 2.95% Hyundai Azera Sedan 2012 2.32% Chevrolet Corvette ZR1 2012 1.82% Spyker C8 Convertible 2009 1.81% Bentley Continental Flying Spur Sedan 2007 1.65% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 FIAT 500 Convertible 2012 4.89% Maybach Landaulet Convertible 2012 3.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.68% Bugatti Veyron 16.4 Convertible 2009 2.49% Mercedes-Benz S-Class Sedan 2012 2.41% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 2.38% BMW 1 Series Convertible 2012 2.12% Jaguar XK XKR 2012 2.06% Porsche Panamera Sedan 2012 1.96% Toyota Camry Sedan 2012 1.96% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Aston Martin V8 Vantage Coupe 2012 1.66% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.52% BMW M6 Convertible 2010 1.38% Bugatti Veyron 16.4 Coupe 2009 1.28% Chrysler 300 SRT-8 2010 1.27% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.09% Chevrolet Silverado 1500 Regular Cab 2012 1.92% Ford F-150 Regular Cab 2012 1.8% Dodge Dakota Club Cab 2007 1.68% Chevrolet Silverado 1500 Extended Cab 2012 1.67% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Fisker Karma Sedan 2012 3.71% Mercedes-Benz 300-Class Convertible 1993 2.87% Acura ZDX Hatchback 2012 2.52% Ford GT Coupe 2006 2.35% Mercedes-Benz E-Class Sedan 2012 2.0% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Jeep Wrangler SUV 2012 15.91% HUMMER H3T Crew Cab 2010 12.94% HUMMER H2 SUT Crew Cab 2009 10.17% Dodge Ram Pickup 3500 Quad Cab 2009 8.98% BMW X6 SUV 2012 4.98% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 2.79% Chevrolet TrailBlazer SS 2009 2.69% Chrysler 300 SRT-8 2010 2.16% FIAT 500 Abarth 2012 2.13% BMW M6 Convertible 2010 1.76% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Ferrari California Convertible 2012 10.03% Ferrari 458 Italia Coupe 2012 6.34% Ferrari 458 Italia Convertible 2012 4.45% Dodge Charger SRT-8 2009 3.98% Geo Metro Convertible 1993 3.88% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Plymouth Neon Coupe 1999 3.14% Daewoo Nubira Wagon 2002 2.18% Nissan Leaf Hatchback 2012 1.97% Ferrari FF Coupe 2012 1.68% Hyundai Elantra Sedan 2007 1.68% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 MINI Cooper Roadster Convertible 2012 2.61% Audi S6 Sedan 2011 2.49% BMW X3 SUV 2012 2.04% Mercedes-Benz C-Class Sedan 2012 1.76% Audi R8 Coupe 2012 1.63% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Hyundai Azera Sedan 2012 4.36% Bentley Arnage Sedan 2009 4.0% Bentley Mulsanne Sedan 2011 3.84% Jeep Compass SUV 2012 3.03% Spyker C8 Convertible 2009 2.61% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Chevrolet TrailBlazer SS 2009 3.6% Cadillac Escalade EXT Crew Cab 2007 3.28% Chrysler 300 SRT-8 2010 2.54% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.24% Chevrolet Silverado 1500 Regular Cab 2012 2.02% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Dodge Sprinter Cargo Van 2009 3.94% Acura TL Sedan 2012 2.32% Porsche Panamera Sedan 2012 2.3% Dodge Caravan Minivan 1997 2.1% Jaguar XK XKR 2012 2.09% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Hyundai Santa Fe SUV 2012 4.98% BMW X5 SUV 2007 4.8% Chrysler Aspen SUV 2009 4.06% Audi S6 Sedan 2011 3.33% Ford E-Series Wagon Van 2012 3.05% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 BMW X3 SUV 2012 3.25% Audi A5 Coupe 2012 2.99% Audi S5 Coupe 2012 2.86% Audi S6 Sedan 2011 2.76% Audi R8 Coupe 2012 2.61% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler Aspen SUV 2009 1.7% Isuzu Ascender SUV 2008 1.41% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% Dodge Durango SUV 2007 1.24% Dodge Ram Pickup 3500 Crew Cab 2010 1.22% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.91% Audi A5 Coupe 2012 1.73% BMW ActiveHybrid 5 Sedan 2012 1.71% Audi S5 Coupe 2012 1.65% Audi V8 Sedan 1994 1.64% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Aston Martin Virage Coupe 2012 16.56% Lamborghini Aventador Coupe 2012 11.79% Ferrari California Convertible 2012 9.26% McLaren MP4-12C Coupe 2012 8.63% Ferrari 458 Italia Convertible 2012 8.03% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Ford Fiesta Sedan 2012 3.45% Dodge Charger SRT-8 2009 3.33% Ferrari California Convertible 2012 3.31% Dodge Charger Sedan 2012 3.27% Ferrari 458 Italia Coupe 2012 3.23% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Chevrolet TrailBlazer SS 2009 6.45% Chevrolet Silverado 1500 Regular Cab 2012 5.8% Chrysler 300 SRT-8 2010 3.93% Chevrolet Silverado 2500HD Regular Cab 2012 3.18% Hyundai Veracruz SUV 2012 2.54% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Ford Fiesta Sedan 2012 5.9% Hyundai Elantra Sedan 2007 5.23% Honda Accord Coupe 2012 3.46% Suzuki SX4 Hatchback 2012 3.21% Volkswagen Beetle Hatchback 2012 2.85% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 AM General Hummer SUV 2000 6.31% Jeep Patriot SUV 2012 4.64% Bentley Arnage Sedan 2009 4.19% HUMMER H2 SUT Crew Cab 2009 3.08% Jeep Liberty SUV 2012 2.83% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Audi TT Hatchback 2011 2.25% Audi 100 Sedan 1994 2.15% Audi V8 Sedan 1994 2.0% Acura TL Sedan 2012 1.82% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Volvo C30 Hatchback 2012 4.72% Dodge Caliber Wagon 2007 4.25% HUMMER H3T Crew Cab 2010 3.06% Suzuki SX4 Hatchback 2012 3.05% Chevrolet HHR SS 2010 2.81% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mazda Tribute SUV 2011 4.03% Jeep Compass SUV 2012 2.93% Land Rover LR2 SUV 2012 2.42% smart fortwo Convertible 2012 2.41% Jeep Patriot SUV 2012 2.26% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Ford F-450 Super Duty Crew Cab 2012 2.79% Dodge Ram Pickup 3500 Crew Cab 2010 2.6% Ford Expedition EL SUV 2009 2.34% Chevrolet Silverado 2500HD Regular Cab 2012 1.99% Chrysler 300 SRT-8 2010 1.94% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.81% Ford F-450 Super Duty Crew Cab 2012 4.74% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.43% Hyundai Santa Fe SUV 2012 2.96% Toyota 4Runner SUV 2012 2.79% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 5.06% BMW X6 SUV 2012 4.18% Jeep Wrangler SUV 2012 2.71% Suzuki SX4 Hatchback 2012 2.4% Dodge Ram Pickup 3500 Quad Cab 2009 2.23% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 AM General Hummer SUV 2000 5.47% Cadillac Escalade EXT Crew Cab 2007 4.5% HUMMER H2 SUT Crew Cab 2009 3.66% Chevrolet TrailBlazer SS 2009 2.46% Ford Expedition EL SUV 2009 2.41% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Aston Martin Virage Coupe 2012 19.63% Lamborghini Diablo Coupe 2001 10.59% McLaren MP4-12C Coupe 2012 10.42% Lamborghini Aventador Coupe 2012 5.12% BMW Z4 Convertible 2012 4.49% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.95% Infiniti G Coupe IPL 2012 1.85% Porsche Panamera Sedan 2012 1.7% BMW ActiveHybrid 5 Sedan 2012 1.62% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.61% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Mercedes-Benz Sprinter Van 2012 4.46% Audi TT Hatchback 2011 3.17% Ram C/V Cargo Van Minivan 2012 2.98% Chrysler Town and Country Minivan 2012 2.83% Audi A5 Coupe 2012 2.7% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 FIAT 500 Convertible 2012 2.34% Bugatti Veyron 16.4 Convertible 2009 2.28% Bentley Continental Supersports Conv. Convertible 2012 1.9% Mercedes-Benz E-Class Sedan 2012 1.88% Nissan Leaf Hatchback 2012 1.79% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Dodge Caliber Wagon 2007 12.4% BMW X6 SUV 2012 6.18% Ford Ranger SuperCab 2011 4.17% Buick Rainier SUV 2007 3.42% Volkswagen Golf Hatchback 1991 3.06% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 2.83% GMC Savana Van 2012 2.01% Mercedes-Benz Sprinter Van 2012 1.78% Dodge Sprinter Cargo Van 2009 1.75% Honda Odyssey Minivan 2007 1.69% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Isuzu Ascender SUV 2008 8.52% Ford E-Series Wagon Van 2012 6.48% Ford Ranger SuperCab 2011 4.59% Jeep Grand Cherokee SUV 2012 4.24% HUMMER H2 SUT Crew Cab 2009 3.48% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Cadillac SRX SUV 2012 1.81% Chrysler 300 SRT-8 2010 1.31% Hyundai Genesis Sedan 2012 1.28% Bentley Continental GT Coupe 2007 1.28% BMW M6 Convertible 2010 1.28% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Ram C/V Cargo Van Minivan 2012 4.73% BMW 1 Series Convertible 2012 2.7% Toyota Camry Sedan 2012 2.35% Acura TSX Sedan 2012 1.97% BMW ActiveHybrid 5 Sedan 2012 1.82% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Chrysler PT Cruiser Convertible 2008 1.85% Mercedes-Benz Sprinter Van 2012 1.81% Suzuki SX4 Sedan 2012 1.56% Lamborghini Reventon Coupe 2008 1.55% Dodge Caravan Minivan 1997 1.52% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Chevrolet Silverado 1500 Extended Cab 2012 2.92% Ferrari FF Coupe 2012 1.65% Dodge Dakota Crew Cab 2010 1.52% Chevrolet Monte Carlo Coupe 2007 1.43% Chevrolet Silverado 1500 Regular Cab 2012 1.41% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 3.94% Chevrolet Avalanche Crew Cab 2012 2.42% Hyundai Tucson SUV 2012 2.02% Chevrolet Malibu Sedan 2007 1.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.75% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Ferrari 458 Italia Convertible 2012 6.7% Ferrari California Convertible 2012 6.05% Ferrari 458 Italia Coupe 2012 5.86% BMW 3 Series Sedan 2012 4.89% Volvo C30 Hatchback 2012 4.2% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 BMW 1 Series Coupe 2012 4.98% Dodge Caliber Wagon 2007 4.72% Suzuki SX4 Hatchback 2012 3.83% HUMMER H3T Crew Cab 2010 3.52% BMW X6 SUV 2012 3.03% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 BMW X5 SUV 2007 4.23% Hyundai Santa Fe SUV 2012 3.48% Audi A5 Coupe 2012 2.73% Toyota Sequoia SUV 2012 2.65% Ford E-Series Wagon Van 2012 2.5% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Ford F-450 Super Duty Crew Cab 2012 4.14% Dodge Ram Pickup 3500 Crew Cab 2010 3.72% Jeep Grand Cherokee SUV 2012 3.48% Ford Expedition EL SUV 2009 3.44% Jeep Liberty SUV 2012 3.3% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 4.38% Isuzu Ascender SUV 2008 2.95% Jeep Grand Cherokee SUV 2012 2.35% Jeep Wrangler SUV 2012 2.18% AM General Hummer SUV 2000 2.05% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Chrysler 300 SRT-8 2010 4.77% BMW M6 Convertible 2010 3.58% Chevrolet TrailBlazer SS 2009 3.22% Rolls-Royce Ghost Sedan 2012 2.6% Audi V8 Sedan 1994 2.21% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Chrysler Aspen SUV 2009 3.17% Ford E-Series Wagon Van 2012 2.76% Isuzu Ascender SUV 2008 2.07% Dodge Challenger SRT8 2011 1.69% Audi S6 Sedan 2011 1.63% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Dodge Caliber Wagon 2007 4.12% Plymouth Neon Coupe 1999 2.74% Hyundai Elantra Sedan 2007 2.22% BMW 1 Series Coupe 2012 2.17% Volvo C30 Hatchback 2012 1.89% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 3.17% Audi A5 Coupe 2012 2.26% Audi R8 Coupe 2012 2.19% BMW X3 SUV 2012 1.77% MINI Cooper Roadster Convertible 2012 1.74% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 BMW X6 SUV 2012 3.64% Ford Edge SUV 2012 3.22% Jeep Compass SUV 2012 2.46% Ford Ranger SuperCab 2011 2.46% Dodge Ram Pickup 3500 Quad Cab 2009 2.25% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 2500HD Regular Cab 2012 2.16% Chevrolet Silverado 1500 Regular Cab 2012 1.75% Chrysler 300 SRT-8 2010 1.53% Audi V8 Sedan 1994 1.52% Chevrolet Silverado 1500 Extended Cab 2012 1.4% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 6.61% BMW 1 Series Convertible 2012 3.33% MINI Cooper Roadster Convertible 2012 2.18% BMW ActiveHybrid 5 Sedan 2012 1.7% BMW M3 Coupe 2012 1.58% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.36% Acura TSX Sedan 2012 2.48% Audi TT Hatchback 2011 1.69% BMW 1 Series Convertible 2012 1.69% Chevrolet Malibu Hybrid Sedan 2010 1.61% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Honda Odyssey Minivan 2007 1.41% Porsche Panamera Sedan 2012 1.22% GMC Savana Van 2012 1.21% Toyota Camry Sedan 2012 1.2% Jaguar XK XKR 2012 1.13% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Chevrolet Corvette ZR1 2012 1.47% Infiniti G Coupe IPL 2012 1.35% Acura TL Type-S 2008 1.32% Hyundai Veracruz SUV 2012 1.32% Audi 100 Wagon 1994 1.29% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Isuzu Ascender SUV 2008 4.31% Ford E-Series Wagon Van 2012 4.24% BMW X5 SUV 2007 2.87% Hyundai Santa Fe SUV 2012 2.26% Chrysler Aspen SUV 2009 2.2% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Dodge Sprinter Cargo Van 2009 2.12% Chevrolet Express Cargo Van 2007 1.93% GMC Savana Van 2012 1.86% Honda Odyssey Minivan 2007 1.8% Lincoln Town Car Sedan 2011 1.7% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.89% Volkswagen Golf Hatchback 2012 2.26% Bugatti Veyron 16.4 Convertible 2009 2.15% Suzuki Aerio Sedan 2007 2.06% FIAT 500 Convertible 2012 2.03% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Audi A5 Coupe 2012 2.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.8% Audi S5 Coupe 2012 1.55% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.53% Infiniti G Coupe IPL 2012 1.29% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 BMW M6 Convertible 2010 2.81% Chrysler 300 SRT-8 2010 2.8% Chevrolet TrailBlazer SS 2009 2.53% Bentley Continental GT Coupe 2007 2.41% Rolls-Royce Phantom Sedan 2012 2.38% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Phantom Sedan 2012 4.12% Chrysler 300 SRT-8 2010 3.92% BMW M6 Convertible 2010 2.88% Bentley Continental GT Coupe 2007 2.5% Hyundai Genesis Sedan 2012 2.16% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Eagle Talon Hatchback 1998 2.02% Audi V8 Sedan 1994 1.84% Chevrolet Corvette ZR1 2012 1.7% Chrysler 300 SRT-8 2010 1.68% Lamborghini Reventon Coupe 2008 1.6% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Bentley Mulsanne Sedan 2011 3.77% MINI Cooper Roadster Convertible 2012 2.97% Hyundai Azera Sedan 2012 2.91% Jeep Compass SUV 2012 2.3% Cadillac SRX SUV 2012 2.26% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Ferrari 458 Italia Convertible 2012 11.57% Lamborghini Aventador Coupe 2012 9.18% Ferrari 458 Italia Coupe 2012 8.09% Aston Martin Virage Coupe 2012 7.06% Ferrari California Convertible 2012 6.34% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Caliber Wagon 2007 4.91% BMW 1 Series Coupe 2012 3.7% GMC Savana Van 2012 2.08% Dodge Dakota Club Cab 2007 2.04% Hyundai Veloster Hatchback 2012 2.0% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Rolls-Royce Ghost Sedan 2012 1.56% Chrysler 300 SRT-8 2010 1.55% Chevrolet TrailBlazer SS 2009 1.44% Cadillac Escalade EXT Crew Cab 2007 1.23% Jeep Grand Cherokee SUV 2012 1.17% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 4.61% Ford Expedition EL SUV 2009 3.07% Cadillac Escalade EXT Crew Cab 2007 2.79% Jeep Patriot SUV 2012 2.32% Ford F-450 Super Duty Crew Cab 2012 2.31% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 12.75% FIAT 500 Abarth 2012 5.25% Rolls-Royce Phantom Sedan 2012 3.88% Bentley Mulsanne Sedan 2011 3.62% Jeep Compass SUV 2012 2.93% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.98% Chevrolet Silverado 1500 Regular Cab 2012 2.91% Chrysler 300 SRT-8 2010 2.7% GMC Terrain SUV 2012 2.66% Ford F-150 Regular Cab 2007 2.22% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Monte Carlo Coupe 2007 1.92% Honda Accord Coupe 2012 1.82% Chevrolet Malibu Sedan 2007 1.68% Honda Odyssey Minivan 2007 1.64% Chevrolet Silverado 2500HD Regular Cab 2012 1.61% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 2.98% Fisker Karma Sedan 2012 2.89% Infiniti G Coupe IPL 2012 2.21% Chevrolet Corvette ZR1 2012 1.63% Bugatti Veyron 16.4 Coupe 2009 1.62% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 4.6% Dodge Caravan Minivan 1997 4.07% Chevrolet Express Van 2007 3.17% Chevrolet Express Cargo Van 2007 2.49% Plymouth Neon Coupe 1999 2.19% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Jeep Wrangler SUV 2012 15.66% HUMMER H3T Crew Cab 2010 9.12% HUMMER H2 SUT Crew Cab 2009 5.23% Aston Martin Virage Coupe 2012 3.81% Suzuki SX4 Hatchback 2012 3.03% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Spyker C8 Convertible 2009 5.16% Bentley Mulsanne Sedan 2011 4.14% Hyundai Genesis Sedan 2012 3.54% Mercedes-Benz 300-Class Convertible 1993 3.36% Lamborghini Reventon Coupe 2008 3.3% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 McLaren MP4-12C Coupe 2012 15.21% Lamborghini Diablo Coupe 2001 12.26% Acura Integra Type R 2001 10.79% Aston Martin Virage Coupe 2012 8.65% Chevrolet Corvette Convertible 2012 5.13% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Geo Metro Convertible 1993 16.61% Mercedes-Benz 300-Class Convertible 1993 4.28% Nissan Leaf Hatchback 2012 3.39% Plymouth Neon Coupe 1999 2.62% Chevrolet Corvette ZR1 2012 2.52% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Chevrolet Silverado 1500 Extended Cab 2012 1.88% Isuzu Ascender SUV 2008 1.49% Chevrolet Avalanche Crew Cab 2012 1.29% Dodge Dakota Crew Cab 2010 1.17% Dodge Dakota Club Cab 2007 1.14% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Daewoo Nubira Wagon 2002 2.6% Lincoln Town Car Sedan 2011 1.87% Nissan Leaf Hatchback 2012 1.85% Chrysler PT Cruiser Convertible 2008 1.82% Chrysler Sebring Convertible 2010 1.81% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 4.18% Mercedes-Benz 300-Class Convertible 1993 2.94% Acura ZDX Hatchback 2012 2.63% Acura TL Sedan 2012 2.56% Acura TL Type-S 2008 2.3% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 11.7% Isuzu Ascender SUV 2008 5.02% Mercedes-Benz Sprinter Van 2012 4.19% Jeep Liberty SUV 2012 2.47% BMW X5 SUV 2007 2.37% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Chevrolet TrailBlazer SS 2009 4.42% BMW M6 Convertible 2010 4.15% Chrysler 300 SRT-8 2010 3.98% Chevrolet Silverado 2500HD Regular Cab 2012 2.63% Chevrolet Silverado 1500 Regular Cab 2012 2.41% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 2.44% Chevrolet Tahoe Hybrid SUV 2012 2.11% Audi S6 Sedan 2011 2.03% Audi A5 Coupe 2012 1.86% Chevrolet Silverado 1500 Extended Cab 2012 1.83% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Lamborghini Reventon Coupe 2008 4.25% Mercedes-Benz 300-Class Convertible 1993 3.55% Bugatti Veyron 16.4 Coupe 2009 3.32% Spyker C8 Convertible 2009 2.54% Hyundai Genesis Sedan 2012 2.07% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Chrysler 300 SRT-8 2010 3.11% Cadillac Escalade EXT Crew Cab 2007 2.08% Chevrolet TrailBlazer SS 2009 1.87% Audi V8 Sedan 1994 1.56% Land Rover Range Rover SUV 2012 1.46% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Chrysler 300 SRT-8 2010 1.92% Chevrolet Silverado 1500 Regular Cab 2012 1.55% Chevrolet Monte Carlo Coupe 2007 1.47% Eagle Talon Hatchback 1998 1.46% Mercedes-Benz 300-Class Convertible 1993 1.31% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Rolls-Royce Phantom Sedan 2012 2.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.06% Lamborghini Reventon Coupe 2008 1.63% Aston Martin V8 Vantage Coupe 2012 1.5% Suzuki SX4 Sedan 2012 1.4% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Mercedes-Benz Sprinter Van 2012 3.82% Dodge Sprinter Cargo Van 2009 2.34% GMC Savana Van 2012 1.51% Suzuki Aerio Sedan 2007 1.45% Suzuki SX4 Sedan 2012 1.36% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 7.11% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.5% Ford F-150 Regular Cab 2012 5.47% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.66% Ford Ranger SuperCab 2011 3.74% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 13.27% Ferrari 458 Italia Convertible 2012 11.81% Audi TT RS Coupe 2012 8.88% Dodge Magnum Wagon 2008 8.21% Chevrolet HHR SS 2010 7.69% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Ferrari 458 Italia Coupe 2012 7.22% Ferrari 458 Italia Convertible 2012 6.28% Ford GT Coupe 2006 4.89% Chevrolet HHR SS 2010 3.88% Ferrari FF Coupe 2012 3.7% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 3.04% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.87% Lamborghini Reventon Coupe 2008 2.04% Nissan Leaf Hatchback 2012 1.98% Daewoo Nubira Wagon 2002 1.94% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 8.12% Dodge Sprinter Cargo Van 2009 5.81% Acura TSX Sedan 2012 3.52% Volkswagen Golf Hatchback 2012 3.15% BMW 1 Series Convertible 2012 2.86% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 FIAT 500 Convertible 2012 13.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.98% Maybach Landaulet Convertible 2012 5.73% Mercedes-Benz E-Class Sedan 2012 3.66% Fisker Karma Sedan 2012 3.12% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 4.91% Dodge Caliber Wagon 2007 4.81% HUMMER H3T Crew Cab 2010 4.58% Chevrolet Silverado 1500 Regular Cab 2012 4.47% Ford F-150 Regular Cab 2007 4.0% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Ford Expedition EL SUV 2009 1.54% Hyundai Genesis Sedan 2012 1.29% Rolls-Royce Phantom Sedan 2012 1.29% Dodge Ram Pickup 3500 Crew Cab 2010 1.19% Chrysler Aspen SUV 2009 1.16% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 BMW X3 SUV 2012 9.22% BMW X5 SUV 2007 5.7% Ford E-Series Wagon Van 2012 4.99% Mercedes-Benz Sprinter Van 2012 3.79% Toyota Sequoia SUV 2012 3.17% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Chevrolet Express Cargo Van 2007 2.84% Acura TL Type-S 2008 2.1% Acura TL Sedan 2012 1.9% Dodge Caravan Minivan 1997 1.78% Audi 100 Wagon 1994 1.69% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 2.45% Eagle Talon Hatchback 1998 1.95% Chevrolet Monte Carlo Coupe 2007 1.94% Aston Martin V8 Vantage Coupe 2012 1.5% Lamborghini Reventon Coupe 2008 1.46% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 McLaren MP4-12C Coupe 2012 21.75% Aston Martin Virage Coupe 2012 17.41% Lamborghini Diablo Coupe 2001 15.79% Acura Integra Type R 2001 6.3% BMW Z4 Convertible 2012 3.03% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Hyundai Elantra Sedan 2007 7.66% Dodge Caliber Wagon 2007 3.09% Dodge Sprinter Cargo Van 2009 2.76% Suzuki SX4 Hatchback 2012 2.66% Chevrolet Traverse SUV 2012 2.56% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.76% Daewoo Nubira Wagon 2002 2.62% Suzuki SX4 Sedan 2012 2.61% Bentley Continental Supersports Conv. Convertible 2012 2.36% Chrysler PT Cruiser Convertible 2008 2.04% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Monte Carlo Coupe 2007 2.19% Chevrolet Malibu Sedan 2007 1.92% Chrysler 300 SRT-8 2010 1.76% Lincoln Town Car Sedan 2011 1.67% Ford Freestar Minivan 2007 1.62% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.3% Mercedes-Benz S-Class Sedan 2012 1.89% Maybach Landaulet Convertible 2012 1.7% BMW M3 Coupe 2012 1.66% Bugatti Veyron 16.4 Convertible 2009 1.53% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Jeep Liberty SUV 2012 2.41% Cadillac Escalade EXT Crew Cab 2007 2.2% Ford Expedition EL SUV 2009 2.03% Chevrolet Avalanche Crew Cab 2012 2.0% Ford E-Series Wagon Van 2012 1.99% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 6.79% Mercedes-Benz S-Class Sedan 2012 4.22% BMW M3 Coupe 2012 2.54% Audi A5 Coupe 2012 2.47% Audi TT RS Coupe 2012 2.27% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Audi TT RS Coupe 2012 3.5% Ferrari 458 Italia Coupe 2012 3.28% Geo Metro Convertible 1993 2.93% BMW 3 Series Sedan 2012 2.75% Volvo C30 Hatchback 2012 2.7% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 3.38% Rolls-Royce Phantom Sedan 2012 2.37% Infiniti G Coupe IPL 2012 2.36% Hyundai Genesis Sedan 2012 2.29% Bentley Continental GT Coupe 2007 2.1% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler 300 SRT-8 2010 2.65% Rolls-Royce Ghost Sedan 2012 1.95% BMW M6 Convertible 2010 1.61% Audi V8 Sedan 1994 1.46% Eagle Talon Hatchback 1998 1.36% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Audi S6 Sedan 2011 2.05% MINI Cooper Roadster Convertible 2012 1.93% Hyundai Azera Sedan 2012 1.83% Audi R8 Coupe 2012 1.71% Cadillac SRX SUV 2012 1.62% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.88% Maybach Landaulet Convertible 2012 1.72% Spyker C8 Convertible 2009 1.53% Spyker C8 Coupe 2009 1.51% Bugatti Veyron 16.4 Coupe 2009 1.46% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Audi V8 Sedan 1994 1.61% Mercedes-Benz S-Class Sedan 2012 1.47% Acura RL Sedan 2012 1.3% Bentley Mulsanne Sedan 2011 1.29% Bentley Continental GT Coupe 2007 1.25% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 3.82% Chevrolet Express Van 2007 2.69% Plymouth Neon Coupe 1999 2.51% Lamborghini Reventon Coupe 2008 2.36% Daewoo Nubira Wagon 2002 2.23% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi A5 Coupe 2012 3.17% BMW X3 SUV 2012 2.49% Isuzu Ascender SUV 2008 2.13% Audi TT Hatchback 2011 2.07% Chrysler Town and Country Minivan 2012 2.06% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Bentley Arnage Sedan 2009 4.85% Ford Expedition EL SUV 2009 3.42% Jeep Compass SUV 2012 2.6% Jeep Patriot SUV 2012 2.33% Chevrolet TrailBlazer SS 2009 2.32% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Lamborghini Reventon Coupe 2008 2.36% Hyundai Tucson SUV 2012 1.81% Chrysler 300 SRT-8 2010 1.8% Cadillac SRX SUV 2012 1.68% Volvo 240 Sedan 1993 1.6% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Daewoo Nubira Wagon 2002 2.95% smart fortwo Convertible 2012 2.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.13% Lamborghini Reventon Coupe 2008 1.98% Chrysler PT Cruiser Convertible 2008 1.98% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.05% Chevrolet Silverado 1500 Extended Cab 2012 1.95% Audi A5 Coupe 2012 1.85% Chevrolet Silverado 1500 Regular Cab 2012 1.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Mercedes-Benz 300-Class Convertible 1993 6.73% Acura ZDX Hatchback 2012 3.04% Lamborghini Reventon Coupe 2008 3.02% Aston Martin V8 Vantage Coupe 2012 2.65% Audi 100 Wagon 1994 2.46% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 1.85% Rolls-Royce Phantom Sedan 2012 1.73% Hyundai Genesis Sedan 2012 1.39% Chrysler PT Cruiser Convertible 2008 1.27% Plymouth Neon Coupe 1999 1.22% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Bentley Continental Supersports Conv. Convertible 2012 3.8% Spyker C8 Convertible 2009 3.61% Maybach Landaulet Convertible 2012 2.97% Spyker C8 Coupe 2009 2.89% Mercedes-Benz SL-Class Coupe 2009 2.5% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Rolls-Royce Phantom Sedan 2012 2.58% Hyundai Genesis Sedan 2012 2.39% Ford Expedition EL SUV 2009 1.69% Audi S6 Sedan 2011 1.58% Nissan NV Passenger Van 2012 1.41% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 2.37% BMW M6 Convertible 2010 2.36% Bentley Continental GT Coupe 2007 2.28% Rolls-Royce Ghost Sedan 2012 2.28% Bugatti Veyron 16.4 Coupe 2009 2.28% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Hyundai Santa Fe SUV 2012 4.59% Ford F-450 Super Duty Crew Cab 2012 3.82% BMW X5 SUV 2007 3.11% Isuzu Ascender SUV 2008 2.82% Ford F-150 Regular Cab 2012 2.5% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Mercedes-Benz Sprinter Van 2012 9.52% GMC Savana Van 2012 6.73% Dodge Sprinter Cargo Van 2009 6.31% Chevrolet Express Van 2007 4.66% Volkswagen Golf Hatchback 2012 3.27% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Bentley Mulsanne Sedan 2011 4.67% Mercedes-Benz C-Class Sedan 2012 3.5% Bentley Arnage Sedan 2009 2.81% Rolls-Royce Ghost Sedan 2012 2.61% Jeep Compass SUV 2012 2.59% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Infiniti G Coupe IPL 2012 2.27% Jaguar XK XKR 2012 2.01% Chevrolet Corvette ZR1 2012 1.95% BMW M6 Convertible 2010 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 1.82% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 FIAT 500 Abarth 2012 8.3% Bentley Arnage Sedan 2009 5.38% Spyker C8 Convertible 2009 2.99% Jeep Patriot SUV 2012 2.85% Cadillac CTS-V Sedan 2012 2.5% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 3.56% Infiniti G Coupe IPL 2012 1.88% Audi V8 Sedan 1994 1.56% Chrysler 300 SRT-8 2010 1.46% Chevrolet Silverado 1500 Regular Cab 2012 1.34% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Isuzu Ascender SUV 2008 3.23% Chevrolet Avalanche Crew Cab 2012 3.23% Jeep Liberty SUV 2012 3.2% Jeep Grand Cherokee SUV 2012 2.83% Chevrolet Silverado 1500 Extended Cab 2012 2.57% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Volvo 240 Sedan 1993 2.15% Chrysler PT Cruiser Convertible 2008 1.72% Bugatti Veyron 16.4 Convertible 2009 1.66% Audi 100 Sedan 1994 1.42% Dodge Challenger SRT8 2011 1.36% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 1.97% Dodge Sprinter Cargo Van 2009 1.78% Honda Accord Sedan 2012 1.63% Honda Odyssey Minivan 2007 1.48% Porsche Panamera Sedan 2012 1.43% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Plymouth Neon Coupe 1999 2.61% Chevrolet Monte Carlo Coupe 2007 1.72% Daewoo Nubira Wagon 2002 1.55% Eagle Talon Hatchback 1998 1.54% Dodge Charger SRT-8 2009 1.54% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Hyundai Elantra Sedan 2007 8.36% Audi TT RS Coupe 2012 6.52% Volkswagen Beetle Hatchback 2012 5.61% Nissan 240SX Coupe 1998 4.1% Toyota Corolla Sedan 2012 3.95% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 AM General Hummer SUV 2000 6.67% Ford Expedition EL SUV 2009 5.88% HUMMER H2 SUT Crew Cab 2009 4.48% Jeep Liberty SUV 2012 3.86% Ford F-450 Super Duty Crew Cab 2012 3.37% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Magnum Wagon 2008 12.83% Audi TT RS Coupe 2012 4.15% Chevrolet HHR SS 2010 4.08% Nissan 240SX Coupe 1998 3.06% Hyundai Accent Sedan 2012 2.69% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Lamborghini Reventon Coupe 2008 6.31% Spyker C8 Convertible 2009 4.09% Bentley Continental Supersports Conv. Convertible 2012 2.81% FIAT 500 Abarth 2012 2.79% Bugatti Veyron 16.4 Convertible 2009 2.5% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 HUMMER H2 SUT Crew Cab 2009 6.14% AM General Hummer SUV 2000 4.21% Cadillac Escalade EXT Crew Cab 2007 4.02% HUMMER H3T Crew Cab 2010 2.32% Jeep Wrangler SUV 2012 2.05% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 BMW X5 SUV 2007 6.11% Ford E-Series Wagon Van 2012 5.93% Hyundai Santa Fe SUV 2012 3.9% Ford F-450 Super Duty Crew Cab 2012 3.57% Toyota 4Runner SUV 2012 3.31% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 8.18% Suzuki SX4 Hatchback 2012 3.6% Volkswagen Golf Hatchback 1991 2.75% Ford Ranger SuperCab 2011 2.58% BMW X6 SUV 2012 2.53% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Ford F-150 Regular Cab 2007 1.25% Volvo 240 Sedan 1993 1.17% HUMMER H2 SUT Crew Cab 2009 1.03% Aston Martin Virage Convertible 2012 1.02% Bentley Continental Flying Spur Sedan 2007 0.97% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bugatti Veyron 16.4 Coupe 2009 3.24% Geo Metro Convertible 1993 2.97% Mercedes-Benz 300-Class Convertible 1993 2.06% Ford GT Coupe 2006 1.87% Aston Martin V8 Vantage Coupe 2012 1.83% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Audi TT RS Coupe 2012 12.1% Geo Metro Convertible 1993 4.71% Volkswagen Beetle Hatchback 2012 3.93% Ferrari 458 Italia Coupe 2012 3.51% Nissan 240SX Coupe 1998 3.39% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 2.01% Audi A5 Coupe 2012 1.69% BMW ActiveHybrid 5 Sedan 2012 1.64% Audi TT Hatchback 2011 1.57% Audi S5 Coupe 2012 1.42% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 2.66% Hyundai Genesis Sedan 2012 2.06% Rolls-Royce Phantom Sedan 2012 1.83% Lamborghini Reventon Coupe 2008 1.79% Spyker C8 Convertible 2009 1.66% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 2.81% Chrysler 300 SRT-8 2010 2.81% Chevrolet Silverado 2500HD Regular Cab 2012 2.78% Audi V8 Sedan 1994 2.36% GMC Terrain SUV 2012 2.11% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Lamborghini Gallardo LP 570-4 Superleggera 2012 17.54% AM General Hummer SUV 2000 6.42% Chevrolet Corvette ZR1 2012 2.39% Acura Integra Type R 2001 2.12% Bugatti Veyron 16.4 Coupe 2009 2.02% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 5.79% Ford Expedition EL SUV 2009 4.29% Cadillac Escalade EXT Crew Cab 2007 3.68% Dodge Ram Pickup 3500 Crew Cab 2010 3.67% Hyundai Santa Fe SUV 2012 3.48% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Hyundai Elantra Sedan 2007 7.3% Honda Accord Coupe 2012 4.87% Plymouth Neon Coupe 1999 3.7% Volkswagen Beetle Hatchback 2012 3.67% Toyota Corolla Sedan 2012 3.46% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 2.92% Chevrolet Express Cargo Van 2007 2.42% Chevrolet Express Van 2007 1.62% Honda Accord Sedan 2012 1.57% Dodge Sprinter Cargo Van 2009 1.47% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caravan Minivan 1997 4.17% Plymouth Neon Coupe 1999 3.02% Ford Freestar Minivan 2007 2.9% Lincoln Town Car Sedan 2011 2.68% Hyundai Tucson SUV 2012 2.35% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Audi S6 Sedan 2011 2.09% MINI Cooper Roadster Convertible 2012 1.99% Audi R8 Coupe 2012 1.84% Mercedes-Benz C-Class Sedan 2012 1.48% Audi A5 Coupe 2012 1.42% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Lamborghini Reventon Coupe 2008 4.2% Dodge Caravan Minivan 1997 3.4% Chevrolet Corvette ZR1 2012 3.04% Mercedes-Benz 300-Class Convertible 1993 2.52% Audi 100 Wagon 1994 2.14% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 HUMMER H3T Crew Cab 2010 17.1% HUMMER H2 SUT Crew Cab 2009 13.81% Aston Martin Virage Coupe 2012 3.25% Jeep Wrangler SUV 2012 3.15% AM General Hummer SUV 2000 2.27% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Caliber Wagon 2007 2.24% Hyundai Elantra Sedan 2007 1.84% BMW 3 Series Sedan 2012 1.67% Volvo C30 Hatchback 2012 1.67% Suzuki SX4 Hatchback 2012 1.42% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Mercedes-Benz Sprinter Van 2012 1.97% GMC Savana Van 2012 1.85% BMW X5 SUV 2007 1.63% Dodge Sprinter Cargo Van 2009 1.54% Ford E-Series Wagon Van 2012 1.41% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 5.07% Chevrolet Avalanche Crew Cab 2012 3.1% Chevrolet Silverado 1500 Extended Cab 2012 2.61% Isuzu Ascender SUV 2008 2.51% Ford F-150 Regular Cab 2012 2.4% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 5.05% Mercedes-Benz C-Class Sedan 2012 5.03% Ford Expedition EL SUV 2009 4.33% Dodge Ram Pickup 3500 Crew Cab 2010 4.0% Toyota 4Runner SUV 2012 3.75% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Audi A5 Coupe 2012 2.96% Audi TT Hatchback 2011 2.88% Audi S6 Sedan 2011 2.31% Audi R8 Coupe 2012 1.72% BMW ActiveHybrid 5 Sedan 2012 1.37% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Dodge Caliber Wagon 2007 5.48% Suzuki SX4 Hatchback 2012 2.82% Volkswagen Beetle Hatchback 2012 2.35% Hyundai Elantra Sedan 2007 2.18% Audi TT RS Coupe 2012 2.07% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 36.37% Acura Integra Type R 2001 16.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.14% Chevrolet Corvette Convertible 2012 5.39% McLaren MP4-12C Coupe 2012 4.37% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Ram C/V Cargo Van Minivan 2012 3.83% BMW 1 Series Convertible 2012 2.23% FIAT 500 Convertible 2012 2.18% Toyota Camry Sedan 2012 2.1% Nissan Leaf Hatchback 2012 1.96% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.11% Chrysler 300 SRT-8 2010 2.38% Chevrolet Silverado 1500 Regular Cab 2012 2.36% Chevrolet Monte Carlo Coupe 2007 1.8% Chevrolet Malibu Sedan 2007 1.54% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 5.02% Suzuki SX4 Hatchback 2012 3.64% Volvo C30 Hatchback 2012 3.1% Dodge Charger Sedan 2012 2.99% BMW 1 Series Coupe 2012 2.59% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Audi S6 Sedan 2011 3.49% Ford E-Series Wagon Van 2012 3.12% BMW X3 SUV 2012 2.95% Audi A5 Coupe 2012 2.86% Chrysler Aspen SUV 2009 2.18% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 2.33% HUMMER H2 SUT Crew Cab 2009 1.88% Chrysler 300 SRT-8 2010 1.77% Chevrolet TrailBlazer SS 2009 1.63% HUMMER H3T Crew Cab 2010 1.57% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 13.81% Ferrari California Convertible 2012 12.19% Ferrari 458 Italia Coupe 2012 10.78% BMW M3 Coupe 2012 10.57% Ferrari FF Coupe 2012 4.09% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Chevrolet Avalanche Crew Cab 2012 4.61% Chevrolet Silverado 1500 Regular Cab 2012 4.19% Cadillac Escalade EXT Crew Cab 2007 4.06% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.15% Dodge Ram Pickup 3500 Crew Cab 2010 2.72% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Geo Metro Convertible 1993 11.45% Ferrari FF Coupe 2012 6.29% Chevrolet Corvette ZR1 2012 4.62% Plymouth Neon Coupe 1999 4.29% Nissan Leaf Hatchback 2012 4.26% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 9.24% Lamborghini Aventador Coupe 2012 5.04% Ford Mustang Convertible 2007 4.83% Ferrari California Convertible 2012 4.41% Chevrolet Cobalt SS 2010 4.2% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 smart fortwo Convertible 2012 4.07% Hyundai Azera Sedan 2012 2.47% Nissan NV Passenger Van 2012 1.91% Mazda Tribute SUV 2011 1.91% Volvo 240 Sedan 1993 1.86% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 2.8% Jeep Wrangler SUV 2012 2.75% AM General Hummer SUV 2000 1.99% HUMMER H2 SUT Crew Cab 2009 1.75% GMC Canyon Extended Cab 2012 1.56% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Chevrolet Silverado 1500 Regular Cab 2012 5.37% Chevrolet Silverado 1500 Extended Cab 2012 4.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.33% Ford Ranger SuperCab 2011 3.76% Dodge Ram Pickup 3500 Quad Cab 2009 3.56% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 3.9% Buick Rainier SUV 2007 2.2% Chevrolet Express Cargo Van 2007 1.84% Chevrolet Silverado 1500 Extended Cab 2012 1.64% GMC Terrain SUV 2012 1.35% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Mercedes-Benz E-Class Sedan 2012 4.5% Fisker Karma Sedan 2012 2.46% FIAT 500 Convertible 2012 2.35% Porsche Panamera Sedan 2012 2.05% Mercedes-Benz SL-Class Coupe 2009 1.94% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Mazda Tribute SUV 2011 2.28% HUMMER H2 SUT Crew Cab 2009 2.28% HUMMER H3T Crew Cab 2010 2.03% Jeep Compass SUV 2012 1.84% Jeep Patriot SUV 2012 1.82% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Honda Odyssey Minivan 2007 1.95% Ford Freestar Minivan 2007 1.48% Lincoln Town Car Sedan 2011 1.45% Honda Accord Sedan 2012 1.24% Chrysler PT Cruiser Convertible 2008 1.14% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Dodge Sprinter Cargo Van 2009 3.96% GMC Savana Van 2012 3.09% Ram C/V Cargo Van Minivan 2012 2.97% Chevrolet Express Cargo Van 2007 2.67% Chevrolet Express Van 2007 2.28% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 2.16% Chevrolet Monte Carlo Coupe 2007 1.89% GMC Savana Van 2012 1.77% Honda Odyssey Minivan 2007 1.64% Eagle Talon Hatchback 1998 1.64% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Audi 100 Sedan 1994 2.48% Daewoo Nubira Wagon 2002 2.43% Lincoln Town Car Sedan 2011 2.35% Chrysler Sebring Convertible 2010 2.02% Nissan Leaf Hatchback 2012 1.94% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 36.16% Acura Integra Type R 2001 19.45% Lamborghini Gallardo LP 570-4 Superleggera 2012 11.47% Chevrolet Cobalt SS 2010 5.88% AM General Hummer SUV 2000 5.6% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Honda Odyssey Minivan 2007 2.61% Lincoln Town Car Sedan 2011 2.59% Chevrolet Malibu Sedan 2007 2.41% Ford Freestar Minivan 2007 2.11% Chrysler Sebring Convertible 2010 1.89% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Ford E-Series Wagon Van 2012 3.71% Land Rover LR2 SUV 2012 2.68% Bentley Arnage Sedan 2009 2.64% Jeep Patriot SUV 2012 2.33% HUMMER H2 SUT Crew Cab 2009 2.16% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford E-Series Wagon Van 2012 2.45% Hyundai Santa Fe SUV 2012 2.44% Isuzu Ascender SUV 2008 2.42% BMW X5 SUV 2007 2.13% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.97% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.41% Aston Martin V8 Vantage Coupe 2012 2.34% BMW 1 Series Convertible 2012 2.3% Ram C/V Cargo Van Minivan 2012 1.91% BMW ActiveHybrid 5 Sedan 2012 1.84% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 McLaren MP4-12C Coupe 2012 3.72% Aston Martin Virage Coupe 2012 3.34% BMW 1 Series Coupe 2012 2.36% Hyundai Veloster Hatchback 2012 2.31% Ford GT Coupe 2006 1.93% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 FIAT 500 Abarth 2012 5.42% AM General Hummer SUV 2000 3.99% Bentley Arnage Sedan 2009 3.67% Jeep Patriot SUV 2012 2.41% HUMMER H2 SUT Crew Cab 2009 2.31% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 18.24% FIAT 500 Abarth 2012 5.89% Cadillac Escalade EXT Crew Cab 2007 3.17% Jeep Compass SUV 2012 3.16% Jeep Patriot SUV 2012 3.15% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Magnum Wagon 2008 12.83% Audi TT RS Coupe 2012 4.15% Chevrolet HHR SS 2010 4.08% Nissan 240SX Coupe 1998 3.06% Hyundai Accent Sedan 2012 2.69% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Ram C/V Cargo Van Minivan 2012 3.68% MINI Cooper Roadster Convertible 2012 2.83% BMW ActiveHybrid 5 Sedan 2012 2.62% BMW 1 Series Convertible 2012 1.97% Mercedes-Benz S-Class Sedan 2012 1.54% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 MINI Cooper Roadster Convertible 2012 4.0% BMW ActiveHybrid 5 Sedan 2012 3.42% Audi TT Hatchback 2011 2.96% Mercedes-Benz SL-Class Coupe 2009 2.93% BMW X3 SUV 2012 2.89% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 4.81% Dodge Caliber Wagon 2007 2.75% Ferrari FF Coupe 2012 2.27% Suzuki SX4 Hatchback 2012 1.75% BMW 3 Series Sedan 2012 1.72% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 8.9% Spyker C8 Convertible 2009 7.49% Mercedes-Benz 300-Class Convertible 1993 5.71% Mercedes-Benz E-Class Sedan 2012 4.35% Bugatti Veyron 16.4 Coupe 2009 3.68% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 HUMMER H2 SUT Crew Cab 2009 4.55% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Jeep Liberty SUV 2012 3.79% Ford E-Series Wagon Van 2012 3.79% Isuzu Ascender SUV 2008 3.78% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.06% Jeep Grand Cherokee SUV 2012 1.95% GMC Terrain SUV 2012 1.75% Hyundai Santa Fe SUV 2012 1.65% Dodge Durango SUV 2007 1.63% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Chevrolet Corvette ZR1 2012 2.04% Porsche Panamera Sedan 2012 2.04% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.57% Chevrolet Corvette Convertible 2012 1.38% Mercedes-Benz SL-Class Coupe 2009 1.27% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Jaguar XK XKR 2012 1.93% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.93% BMW 1 Series Convertible 2012 1.88% Aston Martin V8 Vantage Coupe 2012 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 1.76% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Mercedes-Benz C-Class Sedan 2012 2.72% Toyota 4Runner SUV 2012 2.1% BMW X3 SUV 2012 1.86% Audi S5 Coupe 2012 1.84% Ford F-450 Super Duty Crew Cab 2012 1.71% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Silverado 2500HD Regular Cab 2012 4.22% Audi R8 Coupe 2012 2.05% Audi A5 Coupe 2012 1.94% Infiniti G Coupe IPL 2012 1.89% Audi TT Hatchback 2011 1.82% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 BMW M3 Coupe 2012 6.36% Ferrari 458 Italia Coupe 2012 4.62% BMW 1 Series Coupe 2012 3.84% Chevrolet HHR SS 2010 3.75% Suzuki SX4 Hatchback 2012 3.56% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Dodge Caliber Wagon 2007 4.3% Hyundai Elantra Sedan 2007 3.74% Ford Freestar Minivan 2007 3.22% Buick Enclave SUV 2012 2.48% Chevrolet Traverse SUV 2012 2.17% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Chevrolet Express Cargo Van 2007 3.51% GMC Savana Van 2012 2.06% Chevrolet Traverse SUV 2012 1.88% Buick Rainier SUV 2007 1.69% Chevrolet Silverado 2500HD Regular Cab 2012 1.61% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 2.62% Mercedes-Benz C-Class Sedan 2012 1.55% Fisker Karma Sedan 2012 1.53% Bentley Mulsanne Sedan 2011 1.49% BMW M6 Convertible 2010 1.4% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Lincoln Town Car Sedan 2011 5.78% Ram C/V Cargo Van Minivan 2012 3.49% Chevrolet Express Van 2007 2.86% Acura TSX Sedan 2012 2.86% Dodge Sprinter Cargo Van 2009 2.77% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Hyundai Azera Sedan 2012 2.39% MINI Cooper Roadster Convertible 2012 2.1% BMW X3 SUV 2012 2.09% Cadillac SRX SUV 2012 1.88% Mercedes-Benz Sprinter Van 2012 1.8% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 BMW 1 Series Coupe 2012 17.06% Suzuki SX4 Hatchback 2012 6.88% Dodge Caliber Wagon 2007 4.07% Hyundai Veloster Hatchback 2012 3.0% Ford Fiesta Sedan 2012 2.69% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 7.76% Dodge Sprinter Cargo Van 2009 6.82% Mercedes-Benz Sprinter Van 2012 6.09% Chevrolet Express Van 2007 5.09% Chevrolet Traverse SUV 2012 4.56% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 McLaren MP4-12C Coupe 2012 8.78% Aston Martin Virage Coupe 2012 8.38% Hyundai Veloster Hatchback 2012 3.25% Aston Martin V8 Vantage Coupe 2012 2.67% Chevrolet Corvette Convertible 2012 2.54% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Dodge Caravan Minivan 1997 3.0% Eagle Talon Hatchback 1998 2.86% Plymouth Neon Coupe 1999 2.63% Lamborghini Reventon Coupe 2008 2.46% Chevrolet Corvette ZR1 2012 2.39% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Ford E-Series Wagon Van 2012 2.53% BMW X5 SUV 2007 2.08% Hyundai Santa Fe SUV 2012 1.91% Chrysler Aspen SUV 2009 1.73% Audi S6 Sedan 2011 1.73% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 3.27% Audi TT RS Coupe 2012 1.91% Hyundai Azera Sedan 2012 1.89% Aston Martin V8 Vantage Coupe 2012 1.78% Dodge Caliber Wagon 2007 1.7% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Chevrolet Cobalt SS 2010 4.0% Ferrari 458 Italia Coupe 2012 3.51% Toyota Corolla Sedan 2012 3.48% Ferrari California Convertible 2012 3.47% Honda Accord Coupe 2012 3.19% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 6.46% Ford F-150 Regular Cab 2012 5.0% Chevrolet Express Cargo Van 2007 4.01% Chevrolet Silverado 1500 Extended Cab 2012 3.78% GMC Terrain SUV 2012 3.35% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 8.11% Ford Expedition EL SUV 2009 5.59% Ford F-450 Super Duty Crew Cab 2012 4.37% Dodge Ram Pickup 3500 Crew Cab 2010 3.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.94% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Chevrolet HHR SS 2010 5.32% Ferrari California Convertible 2012 5.23% Ferrari 458 Italia Coupe 2012 4.83% BMW 3 Series Sedan 2012 4.15% Ferrari 458 Italia Convertible 2012 4.12% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Jaguar XK XKR 2012 1.55% Lamborghini Reventon Coupe 2008 1.36% Nissan 240SX Coupe 1998 1.35% Acura TL Type-S 2008 1.31% Chevrolet Corvette ZR1 2012 1.29% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.82% Maybach Landaulet Convertible 2012 2.9% Nissan Leaf Hatchback 2012 2.45% FIAT 500 Convertible 2012 2.14% Bugatti Veyron 16.4 Convertible 2009 1.88% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Lamborghini Reventon Coupe 2008 3.16% Audi V8 Sedan 1994 2.26% Acura ZDX Hatchback 2012 1.84% Bugatti Veyron 16.4 Coupe 2009 1.77% Chrysler 300 SRT-8 2010 1.66% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Chevrolet Silverado 1500 Extended Cab 2012 3.93% Chevrolet Avalanche Crew Cab 2012 3.87% Isuzu Ascender SUV 2008 3.65% Dodge Dakota Club Cab 2007 3.02% Ford F-150 Regular Cab 2012 2.95% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Hyundai Elantra Sedan 2007 5.11% Toyota Corolla Sedan 2012 4.14% Volkswagen Beetle Hatchback 2012 3.78% Honda Accord Coupe 2012 3.43% Audi TT RS Coupe 2012 3.02% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 6.49% Bugatti Veyron 16.4 Convertible 2009 5.39% Daewoo Nubira Wagon 2002 5.18% Nissan Leaf Hatchback 2012 4.24% Suzuki SX4 Sedan 2012 3.3% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Jaguar XK XKR 2012 1.98% Aston Martin V8 Vantage Coupe 2012 1.88% Chevrolet Monte Carlo Coupe 2007 1.8% BMW M6 Convertible 2010 1.79% Chrysler 300 SRT-8 2010 1.64% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet TrailBlazer SS 2009 2.17% Chrysler 300 SRT-8 2010 1.92% Cadillac CTS-V Sedan 2012 1.61% Bugatti Veyron 16.4 Coupe 2009 1.29% BMW M6 Convertible 2010 1.25% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Acura Integra Type R 2001 24.52% Lamborghini Diablo Coupe 2001 21.28% AM General Hummer SUV 2000 15.14% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.85% Chevrolet Corvette Convertible 2012 4.96% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Audi R8 Coupe 2012 2.39% Audi S5 Coupe 2012 2.17% Mercedes-Benz C-Class Sedan 2012 2.11% BMW X3 SUV 2012 2.05% Ford Edge SUV 2012 1.66% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Volvo 240 Sedan 1993 2.25% Bugatti Veyron 16.4 Coupe 2009 1.72% Mercedes-Benz 300-Class Convertible 1993 1.65% Audi V8 Sedan 1994 1.58% Bentley Mulsanne Sedan 2011 1.4% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 2.77% MINI Cooper Roadster Convertible 2012 2.5% Porsche Panamera Sedan 2012 2.04% Mercedes-Benz E-Class Sedan 2012 1.84% BMW M5 Sedan 2010 1.77% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 6.2% Volkswagen Beetle Hatchback 2012 3.9% Audi TT RS Coupe 2012 3.54% Ferrari 458 Italia Coupe 2012 3.29% Geo Metro Convertible 1993 3.03% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 BMW 6 Series Convertible 2007 1.29% Lincoln Town Car Sedan 2011 1.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.03% Ram C/V Cargo Van Minivan 2012 1.0% Eagle Talon Hatchback 1998 0.99% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Chevrolet Express Cargo Van 2007 4.3% GMC Savana Van 2012 3.94% Audi V8 Sedan 1994 3.01% Audi 100 Wagon 1994 2.54% Chevrolet Express Van 2007 2.2% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 BMW X5 SUV 2007 5.59% Ford E-Series Wagon Van 2012 4.27% Hyundai Santa Fe SUV 2012 3.67% Toyota Sequoia SUV 2012 3.6% Isuzu Ascender SUV 2008 2.78% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Ferrari 458 Italia Convertible 2012 6.02% Chevrolet Cobalt SS 2010 5.14% Lamborghini Aventador Coupe 2012 3.81% Aston Martin Virage Coupe 2012 3.64% Ferrari FF Coupe 2012 3.37% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz Sprinter Van 2012 6.42% Dodge Sprinter Cargo Van 2009 6.21% GMC Savana Van 2012 2.96% Dodge Caravan Minivan 1997 2.27% Honda Odyssey Minivan 2007 2.17% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Chevrolet Silverado 2500HD Regular Cab 2012 2.53% Infiniti G Coupe IPL 2012 2.19% Audi R8 Coupe 2012 1.87% Audi A5 Coupe 2012 1.62% Audi S5 Coupe 2012 1.58% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Nissan Leaf Hatchback 2012 3.79% Dodge Caravan Minivan 1997 3.37% Lincoln Town Car Sedan 2011 3.14% Geo Metro Convertible 1993 3.0% Daewoo Nubira Wagon 2002 2.13% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 McLaren MP4-12C Coupe 2012 13.97% Aston Martin Virage Coupe 2012 11.07% Ferrari FF Coupe 2012 9.28% Ferrari California Convertible 2012 8.37% BMW M3 Coupe 2012 7.7% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 8.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.71% Hyundai Veloster Hatchback 2012 2.32% Audi RS 4 Convertible 2008 2.22% Chevrolet Express Cargo Van 2007 1.96% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 12.93% Ford E-Series Wagon Van 2012 3.25% BMW X3 SUV 2012 2.99% Chrysler Town and Country Minivan 2012 1.96% Buick Rainier SUV 2007 1.79% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Spyker C8 Convertible 2009 3.39% Bugatti Veyron 16.4 Coupe 2009 3.3% Lamborghini Diablo Coupe 2001 2.33% Ford GT Coupe 2006 2.13% Dodge Charger SRT-8 2009 1.81% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 20.46% Ferrari 458 Italia Convertible 2012 9.71% Honda Accord Coupe 2012 4.88% BMW M3 Coupe 2012 4.45% Chevrolet Cobalt SS 2010 3.88% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.1% Maybach Landaulet Convertible 2012 4.75% FIAT 500 Convertible 2012 4.58% Acura Integra Type R 2001 3.78% Ford GT Coupe 2006 3.73% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Honda Accord Coupe 2012 2.98% Dodge Charger SRT-8 2009 2.94% Ford Fiesta Sedan 2012 2.92% Chevrolet Cobalt SS 2010 2.88% Dodge Magnum Wagon 2008 2.78% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 13.47% Spyker C8 Coupe 2009 5.21% Ford GT Coupe 2006 4.23% smart fortwo Convertible 2012 3.49% Ferrari 458 Italia Convertible 2012 3.48% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 2.07% Bugatti Veyron 16.4 Convertible 2009 1.74% Suzuki Aerio Sedan 2007 1.64% Dodge Sprinter Cargo Van 2009 1.57% Lamborghini Reventon Coupe 2008 1.37% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Acura ZDX Hatchback 2012 2.52% Acura TL Sedan 2012 2.32% Jaguar XK XKR 2012 2.3% BMW 1 Series Convertible 2012 2.3% Porsche Panamera Sedan 2012 2.22% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Mercedes-Benz Sprinter Van 2012 8.04% Ram C/V Cargo Van Minivan 2012 4.97% Volkswagen Golf Hatchback 2012 3.37% Honda Odyssey Minivan 2007 3.1% Dodge Sprinter Cargo Van 2009 2.94% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 10.42% Lamborghini Reventon Coupe 2008 3.68% Maybach Landaulet Convertible 2012 3.38% Bugatti Veyron 16.4 Coupe 2009 3.23% Chevrolet Corvette ZR1 2012 2.1% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Volvo C30 Hatchback 2012 2.86% Chevrolet HHR SS 2010 2.51% Ferrari 458 Italia Coupe 2012 2.37% BMW 3 Series Sedan 2012 2.08% Hyundai Elantra Sedan 2007 2.02% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 MINI Cooper Roadster Convertible 2012 3.59% Mercedes-Benz S-Class Sedan 2012 2.21% Audi S6 Sedan 2011 1.93% Rolls-Royce Phantom Sedan 2012 1.89% Ram C/V Cargo Van Minivan 2012 1.86% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.6% Mercedes-Benz S-Class Sedan 2012 2.41% Maybach Landaulet Convertible 2012 2.27% Bentley Continental Supersports Conv. Convertible 2012 2.21% Bugatti Veyron 16.4 Convertible 2009 2.13% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 BMW X3 SUV 2012 5.04% Ford E-Series Wagon Van 2012 4.68% Audi S6 Sedan 2011 4.13% MINI Cooper Roadster Convertible 2012 3.91% Audi R8 Coupe 2012 2.66% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 MINI Cooper Roadster Convertible 2012 5.62% Audi S5 Convertible 2012 2.68% BMW M3 Coupe 2012 2.65% Mercedes-Benz S-Class Sedan 2012 2.35% Mercedes-Benz SL-Class Coupe 2009 2.31% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Hyundai Santa Fe SUV 2012 3.87% GMC Terrain SUV 2012 2.93% Dodge Durango SUV 2007 2.66% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.47% Ford F-150 Regular Cab 2012 2.44% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 6.86% Bentley Arnage Sedan 2009 5.5% Jeep Patriot SUV 2012 5.22% HUMMER H2 SUT Crew Cab 2009 3.81% Cadillac Escalade EXT Crew Cab 2007 3.18% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 6.85% Audi A5 Coupe 2012 4.86% BMW X3 SUV 2012 4.82% Hyundai Santa Fe SUV 2012 3.6% Ford E-Series Wagon Van 2012 3.34% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Infiniti G Coupe IPL 2012 1.97% Audi TT Hatchback 2011 1.74% Audi S5 Coupe 2012 1.68% Audi S5 Convertible 2012 1.67% Chevrolet Corvette ZR1 2012 1.67% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 MINI Cooper Roadster Convertible 2012 2.54% Mercedes-Benz Sprinter Van 2012 1.98% BMW ActiveHybrid 5 Sedan 2012 1.87% BMW X3 SUV 2012 1.81% Audi TT Hatchback 2011 1.73% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Rolls-Royce Ghost Sedan 2012 2.82% BMW M6 Convertible 2010 2.74% Toyota 4Runner SUV 2012 2.49% Mercedes-Benz C-Class Sedan 2012 2.34% Bentley Arnage Sedan 2009 2.28% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 AM General Hummer SUV 2000 5.24% Jeep Wrangler SUV 2012 3.95% HUMMER H3T Crew Cab 2010 3.43% HUMMER H2 SUT Crew Cab 2009 2.95% Jeep Liberty SUV 2012 2.69% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Mercedes-Benz 300-Class Convertible 1993 2.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.38% Chrysler PT Cruiser Convertible 2008 2.03% Audi 100 Sedan 1994 1.85% Daewoo Nubira Wagon 2002 1.77% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Jeep Compass SUV 2012 3.11% Toyota Sequoia SUV 2012 2.86% BMW X5 SUV 2007 2.78% Hyundai Santa Fe SUV 2012 2.6% Land Rover Range Rover SUV 2012 2.35% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.71% Porsche Panamera Sedan 2012 1.68% Chevrolet Express Cargo Van 2007 1.61% Audi V8 Sedan 1994 1.53% Honda Accord Sedan 2012 1.53% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Aston Martin Virage Coupe 2012 4.02% Ferrari 458 Italia Coupe 2012 3.6% Volvo C30 Hatchback 2012 3.58% Ferrari California Convertible 2012 3.19% Ferrari 458 Italia Convertible 2012 2.95% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Convertible 2009 4.18% Mercedes-Benz S-Class Sedan 2012 3.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.92% FIAT 500 Convertible 2012 2.46% BMW M3 Coupe 2012 2.42% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 4.95% Dodge Caravan Minivan 1997 4.57% Chevrolet Express Van 2007 3.48% Hyundai Tucson SUV 2012 2.66% Chevrolet Express Cargo Van 2007 2.65% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Bentley Arnage Sedan 2009 7.09% Bentley Mulsanne Sedan 2011 3.57% Ford Expedition EL SUV 2009 3.44% Ford F-450 Super Duty Crew Cab 2012 3.4% Mercedes-Benz C-Class Sedan 2012 3.39% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari 458 Italia Convertible 2012 31.52% Ferrari 458 Italia Coupe 2012 15.77% Ferrari California Convertible 2012 6.24% Chevrolet HHR SS 2010 5.34% Geo Metro Convertible 1993 3.55% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Dodge Magnum Wagon 2008 10.94% Ferrari California Convertible 2012 9.98% Audi TT RS Coupe 2012 7.17% Chevrolet HHR SS 2010 4.94% Ferrari 458 Italia Coupe 2012 4.67% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 3.6% Chevrolet Express Van 2007 2.77% Chevrolet Avalanche Crew Cab 2012 2.62% Chevrolet Malibu Sedan 2007 2.61% Chevrolet Silverado 1500 Extended Cab 2012 2.25% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 BMW 1 Series Convertible 2012 1.59% Porsche Panamera Sedan 2012 1.56% Ram C/V Cargo Van Minivan 2012 1.55% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.47% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.35% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 3.69% GMC Savana Van 2012 3.29% Chevrolet Express Cargo Van 2007 2.62% BMW X5 SUV 2007 2.56% Chevrolet Traverse SUV 2012 2.36% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TT Hatchback 2011 2.5% BMW ActiveHybrid 5 Sedan 2012 2.21% Acura TL Sedan 2012 1.87% Acura ZDX Hatchback 2012 1.75% BMW M3 Coupe 2012 1.71% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Terrain SUV 2012 4.62% Dodge Dakota Club Cab 2007 4.22% Ford F-150 Regular Cab 2012 3.22% Ford F-150 Regular Cab 2007 2.81% Chevrolet Avalanche Crew Cab 2012 2.71% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Spyker C8 Convertible 2009 3.62% Bentley Arnage Sedan 2009 3.34% Rolls-Royce Phantom Sedan 2012 3.32% BMW M6 Convertible 2010 2.86% Bugatti Veyron 16.4 Coupe 2009 2.76% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Audi TT RS Coupe 2012 6.47% Geo Metro Convertible 1993 4.24% Ferrari 458 Italia Coupe 2012 3.6% Volkswagen Beetle Hatchback 2012 3.26% BMW 3 Series Sedan 2012 3.1% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler 300 SRT-8 2010 3.22% BMW M6 Convertible 2010 2.59% Rolls-Royce Phantom Sedan 2012 2.55% Bugatti Veyron 16.4 Coupe 2009 2.47% Hyundai Genesis Sedan 2012 2.38% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.25% Ford Freestar Minivan 2007 1.96% Honda Odyssey Minivan 2012 1.78% Chevrolet Malibu Sedan 2007 1.58% Honda Accord Coupe 2012 1.55% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Dodge Caliber Wagon 2007 4.5% Ford Ranger SuperCab 2011 2.41% Ford Freestar Minivan 2007 2.31% Chevrolet Traverse SUV 2012 2.21% Dodge Caliber Wagon 2012 2.06% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Chevrolet TrailBlazer SS 2009 4.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.26% Chrysler 300 SRT-8 2010 3.25% Chevrolet Silverado 2500HD Regular Cab 2012 3.15% Chevrolet Silverado 1500 Regular Cab 2012 3.08% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 HUMMER H2 SUT Crew Cab 2009 15.18% HUMMER H3T Crew Cab 2010 10.99% AM General Hummer SUV 2000 9.56% Aston Martin Virage Coupe 2012 9.15% McLaren MP4-12C Coupe 2012 4.5% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.77% BMW X5 SUV 2007 2.75% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.7% Hyundai Santa Fe SUV 2012 2.59% Ford F-150 Regular Cab 2012 2.24% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Ford Ranger SuperCab 2011 5.64% Buick Rainier SUV 2007 5.04% Hyundai Tucson SUV 2012 4.01% Dodge Caliber Wagon 2007 3.86% Chevrolet Traverse SUV 2012 3.63% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Chevrolet TrailBlazer SS 2009 4.02% Chevrolet Silverado 1500 Regular Cab 2012 2.75% Chrysler 300 SRT-8 2010 2.73% HUMMER H3T Crew Cab 2010 2.11% Dodge Ram Pickup 3500 Quad Cab 2009 1.82% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 HUMMER H2 SUT Crew Cab 2009 10.92% HUMMER H3T Crew Cab 2010 7.36% Jeep Wrangler SUV 2012 6.38% Volvo C30 Hatchback 2012 4.58% Dodge Caliber Wagon 2007 3.86% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Acura TL Type-S 2008 1.96% Porsche Panamera Sedan 2012 1.75% Acura ZDX Hatchback 2012 1.41% Jaguar XK XKR 2012 1.39% Chevrolet Corvette ZR1 2012 1.3% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 BMW X3 SUV 2012 1.87% Chrysler Aspen SUV 2009 1.61% Isuzu Ascender SUV 2008 1.48% Hyundai Genesis Sedan 2012 1.46% Mercedes-Benz S-Class Sedan 2012 1.44% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Isuzu Ascender SUV 2008 2.98% Dodge Ram Pickup 3500 Crew Cab 2010 2.68% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.35% Audi A5 Coupe 2012 2.02% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 FIAT 500 Convertible 2012 6.93% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.04% Bugatti Veyron 16.4 Convertible 2009 2.62% Nissan Leaf Hatchback 2012 2.46% Maybach Landaulet Convertible 2012 2.24% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Audi TT RS Coupe 2012 12.24% Ferrari 458 Italia Coupe 2012 5.24% Ferrari California Convertible 2012 4.93% Geo Metro Convertible 1993 3.92% Ferrari 458 Italia Convertible 2012 3.18% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Ford Expedition EL SUV 2009 2.59% Hyundai Genesis Sedan 2012 2.06% Dodge Ram Pickup 3500 Crew Cab 2010 2.06% Rolls-Royce Ghost Sedan 2012 1.92% Rolls-Royce Phantom Sedan 2012 1.78% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 3.54% Ford E-Series Wagon Van 2012 3.29% Isuzu Ascender SUV 2008 2.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.8% Dodge Ram Pickup 3500 Crew Cab 2010 2.78% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Chevrolet Monte Carlo Coupe 2007 1.52% Chevrolet Malibu Sedan 2007 1.34% Chevrolet Impala Sedan 2007 1.31% Lincoln Town Car Sedan 2011 1.19% Plymouth Neon Coupe 1999 1.17% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Aston Martin Virage Coupe 2012 14.96% Lamborghini Aventador Coupe 2012 9.04% Ferrari 458 Italia Convertible 2012 5.15% Chevrolet Corvette Convertible 2012 5.1% Volvo C30 Hatchback 2012 5.08% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 20.37% Aston Martin Virage Coupe 2012 17.35% Ferrari 458 Italia Convertible 2012 11.34% Ferrari California Convertible 2012 10.06% Lamborghini Aventador Coupe 2012 5.96% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 2.3% Hyundai Genesis Sedan 2012 2.07% Bentley Mulsanne Sedan 2011 2.01% Bugatti Veyron 16.4 Coupe 2009 1.86% Mercedes-Benz 300-Class Convertible 1993 1.62% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 3.37% Chevrolet TrailBlazer SS 2009 3.26% Dodge Ram Pickup 3500 Quad Cab 2009 3.12% Chevrolet Silverado 1500 Regular Cab 2012 2.99% Cadillac Escalade EXT Crew Cab 2007 2.64% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 3.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.79% Lamborghini Reventon Coupe 2008 2.66% Mercedes-Benz 300-Class Convertible 1993 2.48% Bugatti Veyron 16.4 Coupe 2009 1.99% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 BMW 1 Series Convertible 2012 2.74% Ram C/V Cargo Van Minivan 2012 2.51% Aston Martin V8 Vantage Coupe 2012 2.37% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.17% Jaguar XK XKR 2012 2.08% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 26.39% GMC Savana Van 2012 14.08% Chevrolet Express Van 2007 7.01% Dodge Sprinter Cargo Van 2009 4.19% Chevrolet Traverse SUV 2012 1.87% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 4.81% Acura TL Type-S 2008 2.68% Aston Martin V8 Vantage Coupe 2012 2.62% Fisker Karma Sedan 2012 2.39% Acura ZDX Hatchback 2012 2.37% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Dodge Caliber Wagon 2007 5.59% GMC Savana Van 2012 3.87% Chevrolet Silverado 1500 Regular Cab 2012 3.39% Chevrolet Silverado 1500 Extended Cab 2012 3.19% Dodge Caliber Wagon 2012 2.86% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Abarth 2012 6.03% Cadillac CTS-V Sedan 2012 2.57% Lamborghini Reventon Coupe 2008 2.46% Cadillac Escalade EXT Crew Cab 2007 2.43% Chrysler 300 SRT-8 2010 2.2% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Mercedes-Benz S-Class Sedan 2012 3.02% Bugatti Veyron 16.4 Convertible 2009 2.39% Chrysler PT Cruiser Convertible 2008 2.23% Acura TL Sedan 2012 2.15% Volkswagen Golf Hatchback 2012 1.89% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Rolls-Royce Phantom Sedan 2012 4.29% Hyundai Genesis Sedan 2012 1.89% Aston Martin Virage Convertible 2012 1.52% Maybach Landaulet Convertible 2012 1.52% Daewoo Nubira Wagon 2002 1.48% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Audi TT RS Coupe 2012 6.43% Chevrolet HHR SS 2010 5.34% Volkswagen Beetle Hatchback 2012 5.17% Toyota Corolla Sedan 2012 4.89% Ferrari California Convertible 2012 3.88% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Geo Metro Convertible 1993 10.54% Mercedes-Benz 300-Class Convertible 1993 4.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.26% Nissan Leaf Hatchback 2012 2.82% Daewoo Nubira Wagon 2002 2.29% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 18.96% Ferrari California Convertible 2012 7.81% Ferrari 458 Italia Convertible 2012 7.74% Chevrolet HHR SS 2010 6.78% Dodge Magnum Wagon 2008 5.1% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 15.94% Ferrari 458 Italia Convertible 2012 9.51% Ferrari 458 Italia Coupe 2012 8.53% Lamborghini Aventador Coupe 2012 6.48% Dodge Charger SRT-8 2009 4.72% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 6.62% Dodge Ram Pickup 3500 Crew Cab 2010 6.01% Ford F-450 Super Duty Crew Cab 2012 3.4% Jeep Liberty SUV 2012 3.23% Cadillac Escalade EXT Crew Cab 2007 2.47% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Bugatti Veyron 16.4 Convertible 2009 3.17% FIAT 500 Convertible 2012 3.16% Bentley Continental Supersports Conv. Convertible 2012 3.06% MINI Cooper Roadster Convertible 2012 2.84% smart fortwo Convertible 2012 2.62% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.0% Ram C/V Cargo Van Minivan 2012 1.98% Infiniti G Coupe IPL 2012 1.91% BMW 1 Series Convertible 2012 1.85% BMW ActiveHybrid 5 Sedan 2012 1.85% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Chevrolet Avalanche Crew Cab 2012 2.63% GMC Savana Van 2012 2.22% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Chevrolet Silverado 1500 Extended Cab 2012 1.81% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Audi V8 Sedan 1994 1.88% Chrysler 300 SRT-8 2010 1.87% Eagle Talon Hatchback 1998 1.7% Volkswagen Golf Hatchback 1991 1.61% GMC Savana Van 2012 1.59% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 3.78% smart fortwo Convertible 2012 3.55% Nissan Leaf Hatchback 2012 2.24% FIAT 500 Convertible 2012 2.17% Daewoo Nubira Wagon 2002 2.04% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Bentley Arnage Sedan 2009 3.54% Spyker C8 Convertible 2009 2.97% Bentley Mulsanne Sedan 2011 2.19% Hyundai Azera Sedan 2012 2.14% FIAT 500 Abarth 2012 1.98% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Ford Expedition EL SUV 2009 2.79% Cadillac Escalade EXT Crew Cab 2007 2.76% Jeep Patriot SUV 2012 2.72% Bentley Arnage Sedan 2009 2.45% Jeep Liberty SUV 2012 2.38% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Chevrolet Silverado 1500 Regular Cab 2012 3.95% Ford Ranger SuperCab 2011 3.32% Dodge Caliber Wagon 2007 2.99% Chevrolet Traverse SUV 2012 2.34% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.11% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Hyundai Tucson SUV 2012 3.48% Chevrolet Traverse SUV 2012 2.29% BMW X5 SUV 2007 2.25% Ford Freestar Minivan 2007 2.25% Buick Rainier SUV 2007 2.04% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Chrysler 300 SRT-8 2010 3.17% Chevrolet Silverado 1500 Regular Cab 2012 2.64% Chevrolet Avalanche Crew Cab 2012 2.2% Chevrolet TrailBlazer SS 2009 1.98% Cadillac Escalade EXT Crew Cab 2007 1.87% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Audi TT RS Coupe 2012 4.11% Volkswagen Beetle Hatchback 2012 3.91% Chevrolet Cobalt SS 2010 3.34% Ferrari 458 Italia Convertible 2012 3.17% Honda Accord Coupe 2012 2.85% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.43% Bentley Continental Supersports Conv. Convertible 2012 3.55% Maybach Landaulet Convertible 2012 2.93% Bugatti Veyron 16.4 Convertible 2009 2.31% Spyker C8 Coupe 2009 2.29% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 Mercedes-Benz 300-Class Convertible 1993 6.08% Fisker Karma Sedan 2012 6.06% Spyker C8 Convertible 2009 4.25% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.18% Aston Martin V8 Vantage Coupe 2012 3.76% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Chrysler 300 SRT-8 2010 2.93% Rolls-Royce Ghost Sedan 2012 1.79% Chevrolet TrailBlazer SS 2009 1.7% BMW M6 Convertible 2010 1.62% Land Rover Range Rover SUV 2012 1.56% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Express Cargo Van 2007 2.53% GMC Savana Van 2012 1.74% Lincoln Town Car Sedan 2011 1.73% Chevrolet Impala Sedan 2007 1.66% Mercedes-Benz 300-Class Convertible 1993 1.55% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Bentley Arnage Sedan 2009 4.73% Cadillac Escalade EXT Crew Cab 2007 3.8% Ford F-450 Super Duty Crew Cab 2012 3.75% Chevrolet TrailBlazer SS 2009 3.67% GMC Yukon Hybrid SUV 2012 3.14% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Jeep Patriot SUV 2012 2.43% AM General Hummer SUV 2000 2.36% Bentley Mulsanne Sedan 2011 2.33% HUMMER H2 SUT Crew Cab 2009 2.06% Dodge Ram Pickup 3500 Crew Cab 2010 2.03% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 16.88% Lamborghini Diablo Coupe 2001 16.47% Geo Metro Convertible 1993 12.31% McLaren MP4-12C Coupe 2012 9.47% Chevrolet Corvette Convertible 2012 7.18% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Dodge Sprinter Cargo Van 2009 5.37% Audi TT Hatchback 2011 3.29% Mercedes-Benz Sprinter Van 2012 2.88% Acura TL Sedan 2012 2.64% BMW ActiveHybrid 5 Sedan 2012 2.16% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Ferrari California Convertible 2012 6.21% Geo Metro Convertible 1993 4.81% Ferrari 458 Italia Coupe 2012 4.38% Volkswagen Beetle Hatchback 2012 4.06% Ferrari 458 Italia Convertible 2012 3.72% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 8.31% Ferrari 458 Italia Convertible 2012 5.49% Aston Martin Virage Coupe 2012 4.74% Ferrari 458 Italia Coupe 2012 4.01% McLaren MP4-12C Coupe 2012 3.59% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Ford E-Series Wagon Van 2012 2.85% Daewoo Nubira Wagon 2002 2.79% Chrysler PT Cruiser Convertible 2008 2.21% HUMMER H2 SUT Crew Cab 2009 2.03% Chrysler Sebring Convertible 2010 2.02% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Maybach Landaulet Convertible 2012 5.69% Lamborghini Reventon Coupe 2008 3.4% Ford GT Coupe 2006 3.17% Nissan Leaf Hatchback 2012 3.0% Bugatti Veyron 16.4 Coupe 2009 2.69% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 FIAT 500 Abarth 2012 4.86% Chevrolet TrailBlazer SS 2009 2.81% Cadillac Escalade EXT Crew Cab 2007 2.67% Bentley Arnage Sedan 2009 2.38% Chrysler 300 SRT-8 2010 1.95% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 HUMMER H3T Crew Cab 2010 3.92% Suzuki SX4 Hatchback 2012 3.4% Dodge Caliber Wagon 2007 3.1% Volkswagen Golf Hatchback 1991 3.02% Volvo C30 Hatchback 2012 2.97% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 17.71% Chevrolet Express Cargo Van 2007 8.72% Chevrolet Express Van 2007 5.36% Chevrolet Silverado 1500 Extended Cab 2012 1.98% Buick Enclave SUV 2012 1.85% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Porsche Panamera Sedan 2012 3.14% Chevrolet Corvette ZR1 2012 1.98% Dodge Sprinter Cargo Van 2009 1.93% Acura ZDX Hatchback 2012 1.88% Jaguar XK XKR 2012 1.62% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 BMW 3 Series Sedan 2012 4.34% Ferrari 458 Italia Convertible 2012 3.4% Toyota Corolla Sedan 2012 2.92% Chevrolet HHR SS 2010 2.76% Ferrari 458 Italia Coupe 2012 2.69% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Isuzu Ascender SUV 2008 7.7% Ford E-Series Wagon Van 2012 7.4% Chevrolet Avalanche Crew Cab 2012 4.25% Chevrolet Silverado 1500 Extended Cab 2012 4.02% Ford F-150 Regular Cab 2012 3.39% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 3.79% Volkswagen Golf Hatchback 1991 2.41% Chevrolet Silverado 1500 Regular Cab 2012 2.13% Hyundai Elantra Sedan 2007 2.03% Buick Verano Sedan 2012 1.93% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Mercedes-Benz Sprinter Van 2012 6.62% Ford E-Series Wagon Van 2012 6.61% BMW X3 SUV 2012 2.94% Isuzu Ascender SUV 2008 2.88% BMW X5 SUV 2007 2.64% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Land Rover Range Rover SUV 2012 4.77% Ford F-450 Super Duty Crew Cab 2012 4.64% Cadillac Escalade EXT Crew Cab 2007 4.22% Chevrolet TrailBlazer SS 2009 4.18% Jeep Compass SUV 2012 3.77% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Dodge Challenger SRT8 2011 3.42% MINI Cooper Roadster Convertible 2012 3.34% Mercedes-Benz S-Class Sedan 2012 2.15% Ford E-Series Wagon Van 2012 1.96% Mercedes-Benz Sprinter Van 2012 1.89% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 BMW X5 SUV 2007 2.74% Hyundai Santa Fe SUV 2012 2.57% Ford F-150 Regular Cab 2012 2.1% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.07% Toyota Sequoia SUV 2012 1.89% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 4.62% Ford F-150 Regular Cab 2012 3.23% Chevrolet Silverado 2500HD Regular Cab 2012 3.14% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.91% Chevrolet Silverado 1500 Regular Cab 2012 2.58% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Ford E-Series Wagon Van 2012 8.14% Isuzu Ascender SUV 2008 3.65% Chrysler Aspen SUV 2009 2.9% Hyundai Santa Fe SUV 2012 2.48% BMW X5 SUV 2007 2.47% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Rolls-Royce Phantom Sedan 2012 9.55% MINI Cooper Roadster Convertible 2012 3.44% Hyundai Genesis Sedan 2012 3.01% Audi S6 Sedan 2011 2.46% Hyundai Azera Sedan 2012 1.84% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Jeep Wrangler SUV 2012 12.62% HUMMER H2 SUT Crew Cab 2009 8.5% HUMMER H3T Crew Cab 2010 8.43% AM General Hummer SUV 2000 5.19% Dodge Caliber Wagon 2007 3.43% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.91% Aston Martin V8 Vantage Coupe 2012 2.14% Mercedes-Benz 300-Class Convertible 1993 1.59% Jaguar XK XKR 2012 1.51% Bugatti Veyron 16.4 Coupe 2009 1.4% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Bentley Arnage Sedan 2009 6.47% Rolls-Royce Phantom Sedan 2012 3.44% Chrysler 300 SRT-8 2010 3.4% Chevrolet TrailBlazer SS 2009 3.08% Cadillac Escalade EXT Crew Cab 2007 2.9% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 MINI Cooper Roadster Convertible 2012 7.67% Rolls-Royce Phantom Sedan 2012 3.87% Bentley Mulsanne Sedan 2011 3.61% Hyundai Genesis Sedan 2012 3.26% Mercedes-Benz C-Class Sedan 2012 2.65% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 3.38% Mercedes-Benz 300-Class Convertible 1993 3.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.01% Lamborghini Reventon Coupe 2008 3.01% Chevrolet Corvette ZR1 2012 2.29% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Chevrolet Traverse SUV 2012 2.29% Dodge Caliber Wagon 2007 1.99% Hyundai Tucson SUV 2012 1.95% Ford Ranger SuperCab 2011 1.94% Buick Enclave SUV 2012 1.79% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 8.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.82% Nissan Leaf Hatchback 2012 2.69% Lamborghini Reventon Coupe 2008 2.52% Bugatti Veyron 16.4 Coupe 2009 1.98% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.32% BMW 1 Series Convertible 2012 1.71% Suzuki Aerio Sedan 2007 1.66% Audi S5 Convertible 2012 1.62% Acura TSX Sedan 2012 1.62% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Audi S6 Sedan 2011 3.84% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Ford E-Series Wagon Van 2012 3.13% Chrysler Aspen SUV 2009 3.03% Ford F-450 Super Duty Crew Cab 2012 2.96% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 7.34% AM General Hummer SUV 2000 4.44% HUMMER H2 SUT Crew Cab 2009 3.68% Jeep Liberty SUV 2012 2.88% Ford Expedition EL SUV 2009 2.83% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 FIAT 500 Abarth 2012 8.67% Jeep Patriot SUV 2012 5.12% Jeep Wrangler SUV 2012 4.2% AM General Hummer SUV 2000 3.4% Bentley Arnage Sedan 2009 3.15% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Chevrolet Corvette ZR1 2012 3.76% Aston Martin V8 Vantage Coupe 2012 3.69% Jaguar XK XKR 2012 3.21% Porsche Panamera Sedan 2012 2.66% Mercedes-Benz 300-Class Convertible 1993 2.09% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Chevrolet Avalanche Crew Cab 2012 2.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.42% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.9% Chevrolet Silverado 2500HD Regular Cab 2012 1.89% Ford F-150 Regular Cab 2012 1.68% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Ferrari FF Coupe 2012 2.93% Jaguar XK XKR 2012 2.62% Aston Martin V8 Vantage Coupe 2012 1.94% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.77% Porsche Panamera Sedan 2012 1.61% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Honda Odyssey Minivan 2007 3.0% GMC Savana Van 2012 2.42% Dodge Sprinter Cargo Van 2009 2.4% Mercedes-Benz Sprinter Van 2012 2.26% Honda Accord Sedan 2012 1.67% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 3.38% Ford Ranger SuperCab 2011 2.8% Dodge Dakota Club Cab 2007 2.78% Chevrolet Silverado 1500 Regular Cab 2012 2.53% Ford F-150 Regular Cab 2012 2.49% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 4.26% Bugatti Veyron 16.4 Coupe 2009 2.92% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.47% Spyker C8 Coupe 2009 2.42% Ferrari FF Coupe 2012 1.92% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Lamborghini Reventon Coupe 2008 2.63% Bugatti Veyron 16.4 Coupe 2009 2.23% Plymouth Neon Coupe 1999 1.92% Eagle Talon Hatchback 1998 1.62% Daewoo Nubira Wagon 2002 1.43% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Dodge Magnum Wagon 2008 3.96% Chevrolet Cobalt SS 2010 3.14% Ferrari California Convertible 2012 2.45% Ferrari 458 Italia Coupe 2012 2.29% BMW 3 Series Sedan 2012 2.01% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 42.97% Acura Integra Type R 2001 14.2% Geo Metro Convertible 1993 9.9% Lamborghini Diablo Coupe 2001 5.83% Chevrolet Corvette Convertible 2012 3.74% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 4.34% Mercedes-Benz Sprinter Van 2012 3.66% Chevrolet Silverado 1500 Extended Cab 2012 3.23% Honda Odyssey Minivan 2007 2.92% Chevrolet Avalanche Crew Cab 2012 2.18% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Hyundai Elantra Sedan 2007 3.0% Dodge Caliber Wagon 2007 2.03% Ford F-150 Regular Cab 2007 1.85% Plymouth Neon Coupe 1999 1.83% Chevrolet Monte Carlo Coupe 2007 1.77% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 3.02% Aston Martin V8 Vantage Coupe 2012 2.65% Mercedes-Benz 300-Class Convertible 1993 2.25% Chevrolet Corvette ZR1 2012 2.24% Mercedes-Benz E-Class Sedan 2012 2.2% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 8.63% Rolls-Royce Phantom Sedan 2012 7.2% Hyundai Azera Sedan 2012 4.49% smart fortwo Convertible 2012 3.27% Dodge Challenger SRT8 2011 3.08% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Lincoln Town Car Sedan 2011 2.15% Dodge Caravan Minivan 1997 1.62% Chevrolet Monte Carlo Coupe 2007 1.51% Acura TL Sedan 2012 1.45% Chevrolet Impala Sedan 2007 1.41% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 3.69% Acura TSX Sedan 2012 2.33% Lincoln Town Car Sedan 2011 2.33% Volkswagen Golf Hatchback 2012 2.14% Suzuki Aerio Sedan 2007 1.93% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Jeep Wrangler SUV 2012 11.12% HUMMER H3T Crew Cab 2010 6.2% Dodge Caliber Wagon 2007 4.02% HUMMER H2 SUT Crew Cab 2009 3.92% Dodge Charger Sedan 2012 2.86% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Ferrari FF Coupe 2012 5.41% Toyota Camry Sedan 2012 2.95% Nissan Leaf Hatchback 2012 2.75% Jaguar XK XKR 2012 2.53% Suzuki Aerio Sedan 2007 2.3% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Ford Edge SUV 2012 1.41% Jeep Wrangler SUV 2012 1.41% Ford Ranger SuperCab 2011 1.34% Hyundai Tucson SUV 2012 1.31% Jeep Patriot SUV 2012 1.31% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Lamborghini Reventon Coupe 2008 1.9% Nissan Juke Hatchback 2012 1.56% Spyker C8 Convertible 2009 1.51% Tesla Model S Sedan 2012 1.48% Hyundai Azera Sedan 2012 1.39% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Ram C/V Cargo Van Minivan 2012 1.83% Lincoln Town Car Sedan 2011 1.43% Daewoo Nubira Wagon 2002 1.36% Chevrolet Malibu Sedan 2007 1.3% Mercedes-Benz S-Class Sedan 2012 1.29% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 3.56% Mercedes-Benz 300-Class Convertible 1993 3.33% Audi 100 Sedan 1994 2.81% Audi 100 Wagon 1994 2.39% Hyundai Tucson SUV 2012 1.94% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Cobalt SS 2010 4.67% Volkswagen Golf Hatchback 1991 2.98% Dodge Magnum Wagon 2008 2.68% Ford Mustang Convertible 2007 2.64% Ferrari California Convertible 2012 2.42% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Chevrolet Silverado 1500 Extended Cab 2012 3.68% GMC Savana Van 2012 3.5% Chevrolet Avalanche Crew Cab 2012 2.26% Dodge Ram Pickup 3500 Quad Cab 2009 2.03% Chevrolet Tahoe Hybrid SUV 2012 1.9% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Ford Expedition EL SUV 2009 3.41% Land Rover Range Rover SUV 2012 3.22% Bentley Arnage Sedan 2009 3.2% Jeep Patriot SUV 2012 2.69% Hyundai Genesis Sedan 2012 2.37% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 14.65% Chevrolet Cobalt SS 2010 4.95% Honda Accord Coupe 2012 3.93% Ferrari 458 Italia Convertible 2012 2.77% Chevrolet Camaro Convertible 2012 2.37% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Chrysler 300 SRT-8 2010 2.12% Chevrolet TrailBlazer SS 2009 1.6% Infiniti G Coupe IPL 2012 1.59% BMW M6 Convertible 2010 1.5% Eagle Talon Hatchback 1998 1.34% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Ram C/V Cargo Van Minivan 2012 8.49% BMW 1 Series Convertible 2012 2.66% Lincoln Town Car Sedan 2011 2.61% Toyota Camry Sedan 2012 2.37% Acura TSX Sedan 2012 2.14% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H2 SUT Crew Cab 2009 10.31% AM General Hummer SUV 2000 7.4% Jeep Wrangler SUV 2012 5.95% Jeep Patriot SUV 2012 2.59% HUMMER H3T Crew Cab 2010 2.47% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Reventon Coupe 2008 6.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.73% Spyker C8 Convertible 2009 4.56% Bugatti Veyron 16.4 Coupe 2009 4.19% Aston Martin V8 Vantage Coupe 2012 3.84% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Chrysler 300 SRT-8 2010 1.92% Ford F-150 Regular Cab 2007 1.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.36% Audi V8 Sedan 1994 1.32% Chevrolet Monte Carlo Coupe 2007 1.26% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.33% Bugatti Veyron 16.4 Convertible 2009 3.41% Acura TL Type-S 2008 2.83% Mercedes-Benz S-Class Sedan 2012 2.79% MINI Cooper Roadster Convertible 2012 2.74% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 12.62% Jeep Wrangler SUV 2012 8.88% HUMMER H3T Crew Cab 2010 8.15% AM General Hummer SUV 2000 6.15% Jeep Compass SUV 2012 2.22% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Honda Odyssey Minivan 2007 1.99% Hyundai Genesis Sedan 2012 1.52% Honda Odyssey Minivan 2012 1.32% Chevrolet Impala Sedan 2007 1.26% Fisker Karma Sedan 2012 1.22% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 17.42% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.75% Geo Metro Convertible 1993 9.71% Ferrari 458 Italia Convertible 2012 8.13% Acura Integra Type R 2001 7.26% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 12.16% Dodge Sprinter Cargo Van 2009 11.85% GMC Savana Van 2012 6.42% Chevrolet Express Cargo Van 2007 4.33% Dodge Caravan Minivan 1997 3.62% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 5.82% Hyundai Elantra Sedan 2007 3.14% Ford Freestar Minivan 2007 2.09% Suzuki SX4 Hatchback 2012 2.08% Dodge Journey SUV 2012 1.95% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Maybach Landaulet Convertible 2012 11.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.2% Bentley Continental Supersports Conv. Convertible 2012 3.86% Lamborghini Reventon Coupe 2008 3.42% Aston Martin V8 Vantage Coupe 2012 2.74% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Mercedes-Benz Sprinter Van 2012 8.3% Dodge Sprinter Cargo Van 2009 4.1% GMC Savana Van 2012 3.41% Ram C/V Cargo Van Minivan 2012 2.01% Volkswagen Golf Hatchback 2012 1.7% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 6.94% Bentley Arnage Sedan 2009 3.97% Rolls-Royce Ghost Sedan 2012 3.44% Ford F-450 Super Duty Crew Cab 2012 3.35% Ford Expedition EL SUV 2009 3.08% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.05% Land Rover Range Rover SUV 2012 1.81% Dodge Durango SUV 2007 1.76% Chrysler 300 SRT-8 2010 1.7% Chevrolet TrailBlazer SS 2009 1.66% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 27.65% Acura Integra Type R 2001 21.26% Aston Martin Virage Coupe 2012 6.47% Chevrolet Cobalt SS 2010 5.76% McLaren MP4-12C Coupe 2012 5.68% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.57% Isuzu Ascender SUV 2008 2.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.18% Dodge Ram Pickup 3500 Crew Cab 2010 2.14% Chevrolet Silverado 2500HD Regular Cab 2012 2.11% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Acura Integra Type R 2001 13.32% Aston Martin Virage Coupe 2012 10.76% Lamborghini Diablo Coupe 2001 10.67% Hyundai Veloster Hatchback 2012 8.32% Chevrolet Corvette Convertible 2012 7.85% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Ferrari California Convertible 2012 4.31% Ferrari 458 Italia Coupe 2012 3.44% BMW 1 Series Coupe 2012 3.21% Volvo C30 Hatchback 2012 3.15% Dodge Charger SRT-8 2009 3.14% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 8.5% Daewoo Nubira Wagon 2002 6.27% Nissan Leaf Hatchback 2012 5.54% Lincoln Town Car Sedan 2011 4.91% Plymouth Neon Coupe 1999 3.46% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 5.17% Chevrolet Express Cargo Van 2007 4.09% Chevrolet Express Van 2007 4.07% Dodge Caravan Minivan 1997 2.46% Dodge Sprinter Cargo Van 2009 2.11% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Volvo XC90 SUV 2007 2.24% BMW X3 SUV 2012 2.11% Audi S5 Coupe 2012 2.07% BMW X6 SUV 2012 2.06% Dodge Ram Pickup 3500 Quad Cab 2009 1.92% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Dodge Caravan Minivan 1997 2.81% Chevrolet Express Cargo Van 2007 2.34% Acura TL Sedan 2012 2.16% Acura ZDX Hatchback 2012 1.63% Lincoln Town Car Sedan 2011 1.54% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Rolls-Royce Phantom Sedan 2012 2.71% Hyundai Genesis Sedan 2012 2.26% Hyundai Azera Sedan 2012 2.01% Ford Expedition EL SUV 2009 1.46% Bentley Continental GT Coupe 2007 1.24% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 14.43% Dodge Caliber Wagon 2012 3.97% Suzuki SX4 Hatchback 2012 3.76% BMW 1 Series Coupe 2012 2.69% Ford Ranger SuperCab 2011 2.47% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 MINI Cooper Roadster Convertible 2012 3.0% BMW ActiveHybrid 5 Sedan 2012 2.99% Mercedes-Benz SL-Class Coupe 2009 2.34% Bugatti Veyron 16.4 Convertible 2009 2.27% Audi TT Hatchback 2011 2.16% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 HUMMER H3T Crew Cab 2010 1.69% Mazda Tribute SUV 2011 1.5% Acura ZDX Hatchback 2012 1.48% Volkswagen Golf Hatchback 1991 1.46% Dodge Ram Pickup 3500 Quad Cab 2009 1.39% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 3.33% Mercedes-Benz E-Class Sedan 2012 2.98% Audi S5 Convertible 2012 2.61% BMW ActiveHybrid 5 Sedan 2012 2.33% Mercedes-Benz S-Class Sedan 2012 2.2% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Hyundai Santa Fe SUV 2012 2.89% Volvo XC90 SUV 2007 2.31% BMW X5 SUV 2007 2.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.07% GMC Terrain SUV 2012 1.96% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 5.09% Dodge Sprinter Cargo Van 2009 3.41% Chevrolet Express Cargo Van 2007 3.08% GMC Savana Van 2012 2.99% Dodge Caravan Minivan 1997 2.67% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Volvo C30 Hatchback 2012 3.88% Audi TT RS Coupe 2012 3.62% Dodge Caliber Wagon 2007 3.55% Dodge Magnum Wagon 2008 3.13% BMW 3 Series Sedan 2012 3.13% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 2.53% smart fortwo Convertible 2012 1.85% Acura ZDX Hatchback 2012 1.51% Volkswagen Golf Hatchback 1991 1.45% Volvo 240 Sedan 1993 1.36% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 AM General Hummer SUV 2000 7.73% HUMMER H2 SUT Crew Cab 2009 7.22% Cadillac Escalade EXT Crew Cab 2007 5.29% Jeep Wrangler SUV 2012 4.68% Jeep Liberty SUV 2012 3.18% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 HUMMER H3T Crew Cab 2010 9.6% Jeep Wrangler SUV 2012 7.14% HUMMER H2 SUT Crew Cab 2009 6.78% BMW X6 SUV 2012 4.68% Suzuki SX4 Hatchback 2012 3.49% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 4.65% FIAT 500 Abarth 2012 1.99% Cadillac CTS-V Sedan 2012 1.63% Plymouth Neon Coupe 1999 1.57% Chevrolet Corvette ZR1 2012 1.56% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Rolls-Royce Phantom Sedan 2012 4.45% Bentley Continental GT Coupe 2007 3.3% BMW M6 Convertible 2010 2.87% Chrysler 300 SRT-8 2010 2.48% Hyundai Genesis Sedan 2012 2.47% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Chrysler Sebring Convertible 2010 2.83% Lincoln Town Car Sedan 2011 2.81% GMC Savana Van 2012 2.64% Chevrolet Malibu Sedan 2007 2.43% Chevrolet Malibu Hybrid Sedan 2010 2.32% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Chevrolet Corvette ZR1 2012 1.9% Infiniti G Coupe IPL 2012 1.66% Lamborghini Reventon Coupe 2008 1.62% BMW M6 Convertible 2010 1.47% Chevrolet Monte Carlo Coupe 2007 1.39% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Chevrolet Traverse SUV 2012 2.24% Chevrolet Silverado 1500 Regular Cab 2012 1.96% Volkswagen Golf Hatchback 1991 1.9% Dodge Caliber Wagon 2007 1.81% Ford Freestar Minivan 2007 1.73% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Daewoo Nubira Wagon 2002 3.73% Nissan Leaf Hatchback 2012 2.51% FIAT 500 Convertible 2012 2.1% Lincoln Town Car Sedan 2011 2.09% Chrysler Sebring Convertible 2010 2.01% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 5.51% Chevrolet Express Van 2007 4.0% Chevrolet Express Cargo Van 2007 2.96% Chevrolet Malibu Sedan 2007 2.39% Lincoln Town Car Sedan 2011 2.3% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Dodge Caliber Wagon 2007 7.02% Chevrolet Silverado 1500 Regular Cab 2012 3.63% Hyundai Elantra Sedan 2007 3.56% Honda Accord Coupe 2012 3.37% Dodge Caliber Wagon 2012 2.71% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 4.45% HUMMER H2 SUT Crew Cab 2009 3.17% Jeep Grand Cherokee SUV 2012 2.41% Dodge Durango SUV 2007 2.1% Chrysler 300 SRT-8 2010 2.08% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 BMW M6 Convertible 2010 1.86% Infiniti G Coupe IPL 2012 1.86% Chrysler 300 SRT-8 2010 1.78% Fisker Karma Sedan 2012 1.67% Rolls-Royce Ghost Sedan 2012 1.51% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Dodge Magnum Wagon 2008 3.28% Ford Mustang Convertible 2007 2.81% Dodge Charger Sedan 2012 2.53% Chevrolet Cobalt SS 2010 2.51% Chevrolet Corvette Convertible 2012 2.43% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Jaguar XK XKR 2012 3.21% Mercedes-Benz 300-Class Convertible 1993 2.97% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.65% Aston Martin V8 Vantage Coupe 2012 2.34% Nissan 240SX Coupe 1998 2.19% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.5% Chevrolet Silverado 1500 Regular Cab 2012 1.91% Infiniti G Coupe IPL 2012 1.78% BMW M6 Convertible 2010 1.74% Dodge Ram Pickup 3500 Quad Cab 2009 1.68% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 5.27% Lincoln Town Car Sedan 2011 3.58% Chevrolet Express Cargo Van 2007 3.03% Chevrolet Impala Sedan 2007 2.09% Audi 100 Sedan 1994 1.95% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.83% Chevrolet Malibu Hybrid Sedan 2010 1.22% Bugatti Veyron 16.4 Coupe 2009 1.04% Chevrolet Express Cargo Van 2007 1.01% Chevrolet Express Van 2007 1.01% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 2500HD Regular Cab 2012 3.62% Chevrolet Silverado 1500 Extended Cab 2012 1.79% Audi A5 Coupe 2012 1.75% Ford F-150 Regular Cab 2012 1.61% GMC Savana Van 2012 1.6% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Hyundai Santa Fe SUV 2012 2.75% BMW X5 SUV 2007 2.57% Jeep Compass SUV 2012 2.5% Volvo XC90 SUV 2007 2.24% Toyota 4Runner SUV 2012 2.17% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Chevrolet TrailBlazer SS 2009 3.4% Ford F-150 Regular Cab 2007 2.24% Chrysler 300 SRT-8 2010 2.13% Chevrolet Silverado 1500 Regular Cab 2012 2.01% Hyundai Veracruz SUV 2012 1.98% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.32% Porsche Panamera Sedan 2012 3.06% Geo Metro Convertible 1993 2.68% Jaguar XK XKR 2012 2.65% Chevrolet Corvette ZR1 2012 2.48% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Chevrolet TrailBlazer SS 2009 3.89% Bentley Arnage Sedan 2009 3.83% Ford Expedition EL SUV 2009 3.3% Rolls-Royce Phantom Sedan 2012 2.9% Cadillac CTS-V Sedan 2012 2.51% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Honda Odyssey Minivan 2007 1.63% GMC Savana Van 2012 1.5% Chevrolet Impala Sedan 2007 1.38% Chevrolet Malibu Sedan 2007 1.38% Daewoo Nubira Wagon 2002 1.35% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 6.67% Ferrari 458 Italia Convertible 2012 6.58% Ferrari California Convertible 2012 6.18% Chevrolet Corvette Convertible 2012 5.35% Ferrari 458 Italia Coupe 2012 4.81% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 37.89% Acura Integra Type R 2001 22.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.88% Geo Metro Convertible 1993 4.54% Chevrolet Corvette Convertible 2012 4.24% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 3.85% Aston Martin V8 Vantage Coupe 2012 3.26% Porsche Panamera Sedan 2012 3.07% Jaguar XK XKR 2012 2.57% Toyota Camry Sedan 2012 1.55% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Chevrolet TrailBlazer SS 2009 4.38% HUMMER H3T Crew Cab 2010 3.55% HUMMER H2 SUT Crew Cab 2009 2.81% Cadillac Escalade EXT Crew Cab 2007 2.35% AM General Hummer SUV 2000 2.25% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Hyundai Santa Fe SUV 2012 1.94% Jeep Grand Cherokee SUV 2012 1.77% Ford F-450 Super Duty Crew Cab 2012 1.69% Chrysler Aspen SUV 2009 1.68% Jeep Wrangler SUV 2012 1.68% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 smart fortwo Convertible 2012 3.85% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.04% Spyker C8 Convertible 2009 2.76% AM General Hummer SUV 2000 2.44% Fisker Karma Sedan 2012 2.43% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Acura Integra Type R 2001 3.8% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.0% Ford GT Coupe 2006 2.19% Spyker C8 Convertible 2009 2.15% Geo Metro Convertible 1993 2.04% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 3.67% Buick Rainier SUV 2007 2.31% Chevrolet Express Cargo Van 2007 1.55% Dodge Sprinter Cargo Van 2009 1.52% Hyundai Veracruz SUV 2012 1.43% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 smart fortwo Convertible 2012 2.99% Hyundai Azera Sedan 2012 2.71% Mercedes-Benz E-Class Sedan 2012 2.18% Rolls-Royce Phantom Sedan 2012 2.11% Dodge Challenger SRT8 2011 1.7% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 BMW X6 SUV 2012 8.54% Ford Edge SUV 2012 7.3% Dodge Ram Pickup 3500 Quad Cab 2009 5.34% Jeep Wrangler SUV 2012 5.29% Ford Ranger SuperCab 2011 4.8% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Hyundai Santa Fe SUV 2012 2.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.44% Chevrolet TrailBlazer SS 2009 2.38% GMC Terrain SUV 2012 2.33% Dodge Durango SUV 2012 2.28% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 3.52% Jeep Liberty SUV 2012 3.01% Jeep Wrangler SUV 2012 2.82% HUMMER H2 SUT Crew Cab 2009 2.56% Isuzu Ascender SUV 2008 2.54% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Hyundai Elantra Sedan 2007 2.96% Dodge Caliber Wagon 2007 2.89% Plymouth Neon Coupe 1999 2.68% Honda Accord Coupe 2012 2.11% Dodge Caliber Wagon 2012 1.97% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 6.55% Jeep Wrangler SUV 2012 4.6% BMW X6 SUV 2012 3.78% Chevrolet Silverado 1500 Regular Cab 2012 3.06% GMC Canyon Extended Cab 2012 2.89% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Chevrolet Silverado 2500HD Regular Cab 2012 1.5% Audi A5 Coupe 2012 1.41% Audi S6 Sedan 2011 1.15% Infiniti G Coupe IPL 2012 1.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.08% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Ferrari California Convertible 2012 9.79% Ferrari 458 Italia Convertible 2012 8.24% Geo Metro Convertible 1993 8.13% Ferrari 458 Italia Coupe 2012 6.25% Lamborghini Aventador Coupe 2012 5.07% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 26.89% Chevrolet Express Cargo Van 2007 11.18% Chevrolet Express Van 2007 9.77% Hyundai Tucson SUV 2012 2.58% Chevrolet Traverse SUV 2012 2.5% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Lamborghini Reventon Coupe 2008 4.71% Dodge Caravan Minivan 1997 2.27% Chrysler PT Cruiser Convertible 2008 2.02% Hyundai Tucson SUV 2012 1.84% Plymouth Neon Coupe 1999 1.8% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.5% Chevrolet Silverado 1500 Regular Cab 2012 1.7% Dodge Ram Pickup 3500 Crew Cab 2010 1.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.58% Dodge Ram Pickup 3500 Quad Cab 2009 1.35% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Cadillac Escalade EXT Crew Cab 2007 4.22% Chevrolet Avalanche Crew Cab 2012 3.98% Chevrolet Silverado 1500 Regular Cab 2012 2.81% Dodge Durango SUV 2007 2.54% Jeep Grand Cherokee SUV 2012 2.49% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 12.37% Ferrari 458 Italia Convertible 2012 12.34% BMW M3 Coupe 2012 12.26% Ferrari 458 Italia Coupe 2012 8.35% Lamborghini Aventador Coupe 2012 6.66% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Chevrolet Corvette ZR1 2012 1.26% GMC Yukon Hybrid SUV 2012 1.2% Audi S6 Sedan 2011 1.18% Bentley Continental Flying Spur Sedan 2007 1.17% Hyundai Genesis Sedan 2012 1.14% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Nissan Juke Hatchback 2012 3.15% Hyundai Tucson SUV 2012 2.35% Dodge Caravan Minivan 1997 2.15% Hyundai Azera Sedan 2012 2.08% Plymouth Neon Coupe 1999 2.03% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 4.32% Chevrolet Express Van 2007 2.89% Chevrolet Express Cargo Van 2007 2.22% Honda Odyssey Minivan 2007 1.94% Chevrolet Silverado 1500 Extended Cab 2012 1.51% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 3.76% Hyundai Elantra Sedan 2007 3.69% Dodge Caravan Minivan 1997 2.09% Ford Freestar Minivan 2007 1.95% Suzuki SX4 Hatchback 2012 1.89% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Rolls-Royce Phantom Sedan 2012 4.42% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.44% Hyundai Genesis Sedan 2012 2.04% Bentley Continental GT Coupe 2007 1.79% Audi S6 Sedan 2011 1.79% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Dodge Sprinter Cargo Van 2009 6.5% Dodge Caravan Minivan 1997 3.53% Acura ZDX Hatchback 2012 3.51% Acura TL Sedan 2012 3.42% Chevrolet Express Cargo Van 2007 2.28% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Ram C/V Cargo Van Minivan 2012 4.4% Mercedes-Benz Sprinter Van 2012 3.61% Volkswagen Golf Hatchback 2012 3.15% Nissan Leaf Hatchback 2012 2.98% Acura TSX Sedan 2012 2.27% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.08% Ford Expedition EL SUV 2009 2.82% Ford F-450 Super Duty Crew Cab 2012 2.72% Jeep Grand Cherokee SUV 2012 2.62% Cadillac Escalade EXT Crew Cab 2007 2.01% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Geo Metro Convertible 1993 4.33% Chevrolet Corvette ZR1 2012 3.76% Aston Martin V8 Vantage Coupe 2012 2.3% Mercedes-Benz 300-Class Convertible 1993 2.13% Eagle Talon Hatchback 1998 1.84% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 5.2% Hyundai Genesis Sedan 2012 4.2% Mercedes-Benz 300-Class Convertible 1993 4.08% Bentley Mulsanne Sedan 2011 3.3% Acura TL Type-S 2008 2.99% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Ram C/V Cargo Van Minivan 2012 3.61% Audi A5 Coupe 2012 2.33% Acura TSX Sedan 2012 2.03% Chevrolet Silverado 2500HD Regular Cab 2012 1.79% Audi TT Hatchback 2011 1.73% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Dodge Caliber Wagon 2007 4.78% Buick Rainier SUV 2007 2.44% BMW X6 SUV 2012 2.39% Ford Edge SUV 2012 2.35% Ford Ranger SuperCab 2011 2.28% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 4.72% Chrysler Town and Country Minivan 2012 3.11% Honda Odyssey Minivan 2007 2.11% Hyundai Elantra Touring Hatchback 2012 2.08% Volkswagen Golf Hatchback 2012 1.97% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 BMW X6 SUV 2012 9.36% Dodge Ram Pickup 3500 Quad Cab 2009 7.16% Jeep Wrangler SUV 2012 5.88% HUMMER H3T Crew Cab 2010 5.81% Ford Edge SUV 2012 5.15% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Audi TT Hatchback 2011 2.8% Mercedes-Benz S-Class Sedan 2012 2.32% BMW ActiveHybrid 5 Sedan 2012 2.13% Ram C/V Cargo Van Minivan 2012 1.95% Audi A5 Coupe 2012 1.84% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 FIAT 500 Abarth 2012 13.56% Spyker C8 Convertible 2009 9.97% Bentley Arnage Sedan 2009 9.42% AM General Hummer SUV 2000 8.85% HUMMER H2 SUT Crew Cab 2009 6.5% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 BMW M6 Convertible 2010 4.23% Chrysler 300 SRT-8 2010 3.53% Rolls-Royce Ghost Sedan 2012 3.18% Rolls-Royce Phantom Sedan 2012 3.15% Bentley Continental GT Coupe 2007 2.64% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 2.48% Geo Metro Convertible 1993 1.59% Acura Integra Type R 2001 1.57% Audi RS 4 Convertible 2008 1.54% Nissan Leaf Hatchback 2012 1.53% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Chevrolet Silverado 2500HD Regular Cab 2012 3.66% Audi A5 Coupe 2012 3.17% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.23% Dodge Ram Pickup 3500 Crew Cab 2010 2.09% Ford F-150 Regular Cab 2012 1.89% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 6.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.94% Audi S5 Convertible 2012 2.89% Mercedes-Benz E-Class Sedan 2012 2.65% Mercedes-Benz S-Class Sedan 2012 2.33% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 6.43% Cadillac Escalade EXT Crew Cab 2007 4.93% Jeep Patriot SUV 2012 4.67% Land Rover Range Rover SUV 2012 4.1% FIAT 500 Abarth 2012 3.16% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 4.77% BMW 1 Series Coupe 2012 3.28% Honda Accord Coupe 2012 3.17% Plymouth Neon Coupe 1999 3.04% Ferrari FF Coupe 2012 2.96% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Chevrolet Silverado 2500HD Regular Cab 2012 3.53% Ford Expedition EL SUV 2009 3.48% BMW M6 Convertible 2010 3.17% Chrysler 300 SRT-8 2010 3.03% Dodge Ram Pickup 3500 Crew Cab 2010 3.03% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 9.63% McLaren MP4-12C Coupe 2012 8.21% Chevrolet Corvette Convertible 2012 6.72% Audi RS 4 Convertible 2008 6.04% Geo Metro Convertible 1993 5.09% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Audi A5 Coupe 2012 2.21% Chevrolet Silverado 2500HD Regular Cab 2012 2.02% Chevrolet Silverado 1500 Extended Cab 2012 1.77% Chrysler Town and Country Minivan 2012 1.76% Dodge Journey SUV 2012 1.7% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Ferrari 458 Italia Coupe 2012 12.04% Ferrari 458 Italia Convertible 2012 10.41% Geo Metro Convertible 1993 5.82% BMW M3 Coupe 2012 5.41% Ferrari California Convertible 2012 5.16% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chrysler PT Cruiser Convertible 2008 1.52% Mercedes-Benz Sprinter Van 2012 1.28% Tesla Model S Sedan 2012 1.22% Audi 100 Sedan 1994 1.17% Acura TSX Sedan 2012 1.14% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 3.09% Spyker C8 Convertible 2009 2.86% Mercedes-Benz E-Class Sedan 2012 2.73% smart fortwo Convertible 2012 2.44% Bentley Mulsanne Sedan 2011 2.41% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chrysler 300 SRT-8 2010 5.12% Chevrolet TrailBlazer SS 2009 3.89% Chevrolet Silverado 1500 Regular Cab 2012 3.81% Chevrolet Silverado 2500HD Regular Cab 2012 2.35% Cadillac Escalade EXT Crew Cab 2007 1.9% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Acura TL Sedan 2012 2.22% Lincoln Town Car Sedan 2011 1.76% Jaguar XK XKR 2012 1.72% BMW ActiveHybrid 5 Sedan 2012 1.66% Acura ZDX Hatchback 2012 1.64% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Ram C/V Cargo Van Minivan 2012 3.29% Lincoln Town Car Sedan 2011 2.36% Acura TSX Sedan 2012 1.76% Volkswagen Golf Hatchback 2012 1.61% Chevrolet Malibu Hybrid Sedan 2010 1.52% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 MINI Cooper Roadster Convertible 2012 5.05% BMW X3 SUV 2012 2.55% Mercedes-Benz C-Class Sedan 2012 2.1% Mercedes-Benz S-Class Sedan 2012 2.07% Audi TT Hatchback 2011 1.84% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Dodge Magnum Wagon 2008 4.56% Chevrolet HHR SS 2010 3.81% Volvo C30 Hatchback 2012 2.8% Dodge Charger Sedan 2012 2.74% Dodge Charger SRT-8 2009 2.69% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.87% Mercedes-Benz 300-Class Convertible 1993 3.2% Acura TL Type-S 2008 2.68% Chrysler PT Cruiser Convertible 2008 2.66% Acura ZDX Hatchback 2012 2.44% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 8.03% AM General Hummer SUV 2000 5.38% Fisker Karma Sedan 2012 3.59% Spyker C8 Convertible 2009 3.47% smart fortwo Convertible 2012 3.01% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Ferrari 458 Italia Convertible 2012 11.96% Ferrari California Convertible 2012 8.95% Ferrari 458 Italia Coupe 2012 6.4% Lamborghini Aventador Coupe 2012 4.81% Chevrolet HHR SS 2010 4.61% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Lamborghini Reventon Coupe 2008 3.64% Mercedes-Benz 300-Class Convertible 1993 3.39% Spyker C8 Convertible 2009 2.51% Aston Martin V8 Vantage Coupe 2012 2.26% Chevrolet Corvette ZR1 2012 2.17% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Ford Ranger SuperCab 2011 11.07% Dodge Caliber Wagon 2007 7.94% BMW X6 SUV 2012 6.55% Dodge Ram Pickup 3500 Quad Cab 2009 5.66% Ford Edge SUV 2012 4.34% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 6.96% Aston Martin V8 Vantage Coupe 2012 5.24% Spyker C8 Convertible 2009 4.06% AM General Hummer SUV 2000 3.78% Chevrolet Corvette ZR1 2012 2.69% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Audi TT RS Coupe 2012 5.9% Hyundai Elantra Sedan 2007 5.59% Nissan 240SX Coupe 1998 3.75% Volkswagen Beetle Hatchback 2012 3.69% Toyota Corolla Sedan 2012 3.28% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 HUMMER H2 SUT Crew Cab 2009 4.46% HUMMER H3T Crew Cab 2010 3.95% Dodge Ram Pickup 3500 Quad Cab 2009 3.6% BMW X6 SUV 2012 3.29% Jeep Wrangler SUV 2012 2.48% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Aston Martin Virage Coupe 2012 7.84% McLaren MP4-12C Coupe 2012 5.72% Ferrari California Convertible 2012 4.37% Lamborghini Diablo Coupe 2001 4.1% Ferrari 458 Italia Convertible 2012 3.99% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 4.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.46% Chevrolet Silverado 1500 Extended Cab 2012 2.34% Dodge Ram Pickup 3500 Crew Cab 2010 2.11% Audi A5 Coupe 2012 2.1% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 BMW M6 Convertible 2010 3.76% Chrysler 300 SRT-8 2010 2.92% Chevrolet TrailBlazer SS 2009 2.9% Bentley Continental GT Coupe 2007 2.05% Cadillac CTS-V Sedan 2012 1.61% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Lamborghini Aventador Coupe 2012 26.69% Ferrari 458 Italia Convertible 2012 10.62% Aston Martin Virage Coupe 2012 9.7% Ferrari California Convertible 2012 7.14% Ferrari 458 Italia Coupe 2012 6.72% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 5.07% Chevrolet Silverado 1500 Regular Cab 2012 4.44% Chrysler 300 SRT-8 2010 2.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.16% Chevrolet Silverado 1500 Extended Cab 2012 2.12% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Challenger SRT8 2011 2.71% Hyundai Azera Sedan 2012 2.05% Hyundai Tucson SUV 2012 1.66% Suzuki SX4 Sedan 2012 1.61% Chrysler PT Cruiser Convertible 2008 1.58% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Dodge Caliber Wagon 2007 1.75% Volkswagen Golf Hatchback 1991 1.67% BMW X6 SUV 2012 1.52% Nissan 240SX Coupe 1998 1.39% Chevrolet Traverse SUV 2012 1.37% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.83% Chevrolet Avalanche Crew Cab 2012 1.82% Dodge Ram Pickup 3500 Crew Cab 2010 1.69% Isuzu Ascender SUV 2008 1.56% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Dodge Caliber Wagon 2007 2.58% Dodge Charger Sedan 2012 2.56% Honda Accord Coupe 2012 2.39% Dodge Charger SRT-8 2009 2.28% Chevrolet Cobalt SS 2010 2.24% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Lamborghini Reventon Coupe 2008 2.93% Audi V8 Sedan 1994 1.94% Bugatti Veyron 16.4 Coupe 2009 1.88% Acura ZDX Hatchback 2012 1.86% Mercedes-Benz 300-Class Convertible 1993 1.76% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 AM General Hummer SUV 2000 15.68% HUMMER H2 SUT Crew Cab 2009 9.78% Cadillac Escalade EXT Crew Cab 2007 4.62% Jeep Wrangler SUV 2012 4.03% Jeep Liberty SUV 2012 3.89% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Jeep Patriot SUV 2012 8.78% AM General Hummer SUV 2000 6.27% Jeep Liberty SUV 2012 3.64% Land Rover Range Rover SUV 2012 3.0% Bentley Mulsanne Sedan 2011 2.44% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Chevrolet TrailBlazer SS 2009 4.56% Chrysler 300 SRT-8 2010 3.51% Cadillac Escalade EXT Crew Cab 2007 2.0% Ford F-150 Regular Cab 2007 1.73% Cadillac CTS-V Sedan 2012 1.65% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Cadillac Escalade EXT Crew Cab 2007 5.8% Bentley Arnage Sedan 2009 3.33% Jeep Patriot SUV 2012 3.19% Ford Expedition EL SUV 2009 3.11% FIAT 500 Abarth 2012 2.93% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.7% Maybach Landaulet Convertible 2012 2.6% Lamborghini Reventon Coupe 2008 2.4% Bugatti Veyron 16.4 Coupe 2009 2.28% Ford GT Coupe 2006 1.75% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Mercedes-Benz Sprinter Van 2012 2.21% Ford E-Series Wagon Van 2012 2.12% Audi A5 Coupe 2012 2.05% Isuzu Ascender SUV 2008 1.86% BMW X3 SUV 2012 1.8% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 MINI Cooper Roadster Convertible 2012 3.51% Rolls-Royce Phantom Sedan 2012 2.23% Chrysler Aspen SUV 2009 2.14% Mercedes-Benz S-Class Sedan 2012 2.11% Audi S6 Sedan 2011 2.1% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Mercedes-Benz E-Class Sedan 2012 1.89% Bugatti Veyron 16.4 Convertible 2009 1.88% Bentley Continental Supersports Conv. Convertible 2012 1.78% Hyundai Genesis Sedan 2012 1.7% MINI Cooper Roadster Convertible 2012 1.67% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Mercedes-Benz Sprinter Van 2012 3.06% Dodge Sprinter Cargo Van 2009 2.6% GMC Savana Van 2012 2.52% Ford Fiesta Sedan 2012 1.24% Chevrolet Express Cargo Van 2007 1.22% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 6.88% Jeep Compass SUV 2012 4.36% Land Rover Range Rover SUV 2012 2.94% Bentley Mulsanne Sedan 2011 2.62% Ford F-450 Super Duty Crew Cab 2012 2.57% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Maybach Landaulet Convertible 2012 2.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.28% FIAT 500 Convertible 2012 1.86% Rolls-Royce Phantom Sedan 2012 1.69% Ford GT Coupe 2006 1.51% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Cadillac Escalade EXT Crew Cab 2007 2.24% Chrysler 300 SRT-8 2010 2.04% Cadillac CTS-V Sedan 2012 1.49% Lamborghini Reventon Coupe 2008 1.33% Jeep Patriot SUV 2012 1.32% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 3.38% BMW X6 SUV 2012 2.83% Dodge Ram Pickup 3500 Quad Cab 2009 2.36% Buick Rainier SUV 2007 1.94% Suzuki SX4 Hatchback 2012 1.72% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 BMW M6 Convertible 2010 3.89% Chevrolet Silverado 2500HD Regular Cab 2012 3.07% Infiniti G Coupe IPL 2012 2.67% Chrysler 300 SRT-8 2010 2.61% Audi S6 Sedan 2011 2.31% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Land Rover Range Rover SUV 2012 3.74% Ford F-450 Super Duty Crew Cab 2012 3.19% Toyota 4Runner SUV 2012 3.1% Hyundai Santa Fe SUV 2012 3.03% Chevrolet TrailBlazer SS 2009 2.87% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.08% Aston Martin V8 Vantage Coupe 2012 2.42% Maybach Landaulet Convertible 2012 2.09% Lamborghini Reventon Coupe 2008 2.05% Mercedes-Benz 300-Class Convertible 1993 2.04% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 14.84% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.82% Maybach Landaulet Convertible 2012 3.54% Bugatti Veyron 16.4 Convertible 2009 2.71% Mercedes-Benz E-Class Sedan 2012 2.61% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chrysler 300 SRT-8 2010 2.35% Chevrolet TrailBlazer SS 2009 2.16% BMW M6 Convertible 2010 2.05% Infiniti G Coupe IPL 2012 1.63% Chevrolet Silverado 2500HD Regular Cab 2012 1.62% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Dodge Caravan Minivan 1997 7.21% Daewoo Nubira Wagon 2002 3.17% Dodge Sprinter Cargo Van 2009 2.4% Plymouth Neon Coupe 1999 2.37% Lincoln Town Car Sedan 2011 2.19% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Audi TT Hatchback 2011 7.05% BMW ActiveHybrid 5 Sedan 2012 4.01% Audi A5 Coupe 2012 3.66% Dodge Sprinter Cargo Van 2009 3.26% Ram C/V Cargo Van Minivan 2012 3.25% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 McLaren MP4-12C Coupe 2012 12.41% Aston Martin Virage Coupe 2012 11.08% Ferrari 458 Italia Convertible 2012 10.25% Lamborghini Diablo Coupe 2001 6.71% Lamborghini Aventador Coupe 2012 6.67% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 2500HD Regular Cab 2012 5.3% Chrysler 300 SRT-8 2010 4.6% Chevrolet Silverado 1500 Regular Cab 2012 2.36% Chevrolet TrailBlazer SS 2009 2.28% Infiniti G Coupe IPL 2012 2.01% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Maybach Landaulet Convertible 2012 6.25% Nissan Leaf Hatchback 2012 3.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.28% Daewoo Nubira Wagon 2002 2.59% Plymouth Neon Coupe 1999 2.54% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Chevrolet TrailBlazer SS 2009 3.73% HUMMER H2 SUT Crew Cab 2009 2.87% BMW M6 Convertible 2010 2.77% Dodge Ram Pickup 3500 Quad Cab 2009 2.15% Chrysler 300 SRT-8 2010 2.05% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 3.27% Chevrolet Express Cargo Van 2007 3.13% Hyundai Tucson SUV 2012 2.53% Chevrolet Express Van 2007 2.42% Dodge Caravan Minivan 1997 2.14% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.22% BMW M3 Coupe 2012 1.7% Acura TL Sedan 2012 1.69% Audi TT Hatchback 2011 1.6% Acura TL Type-S 2008 1.46% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 6.04% Chevrolet Silverado 1500 Regular Cab 2012 4.61% BMW X6 SUV 2012 4.17% Ford Ranger SuperCab 2011 2.82% Dodge Ram Pickup 3500 Quad Cab 2009 2.4% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 13.67% MINI Cooper Roadster Convertible 2012 5.76% Audi A5 Coupe 2012 4.59% Chrysler Town and Country Minivan 2012 3.57% Audi TT Hatchback 2011 3.55% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 7.13% FIAT 500 Abarth 2012 6.42% Jeep Patriot SUV 2012 5.71% AM General Hummer SUV 2000 5.55% Bentley Arnage Sedan 2009 4.05% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 3.4% Chevrolet Monte Carlo Coupe 2007 2.63% Chrysler 300 SRT-8 2010 2.39% Eagle Talon Hatchback 1998 2.09% Chevrolet Malibu Sedan 2007 2.0% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 BMW M3 Coupe 2012 2.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.04% Volkswagen Beetle Hatchback 2012 1.97% Mercedes-Benz S-Class Sedan 2012 1.92% FIAT 500 Convertible 2012 1.91% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Mercedes-Benz Sprinter Van 2012 6.14% Ford E-Series Wagon Van 2012 5.14% BMW X3 SUV 2012 2.31% Isuzu Ascender SUV 2008 1.81% Chrysler Town and Country Minivan 2012 1.8% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Audi TT RS Coupe 2012 7.43% Hyundai Elantra Sedan 2007 4.25% Nissan 240SX Coupe 1998 3.35% Volkswagen Beetle Hatchback 2012 3.17% Hyundai Sonata Hybrid Sedan 2012 2.69% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Ford Expedition EL SUV 2009 3.11% Ford F-450 Super Duty Crew Cab 2012 2.89% BMW M6 Convertible 2010 2.65% Dodge Ram Pickup 3500 Crew Cab 2010 2.42% Chevrolet TrailBlazer SS 2009 2.03% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 HUMMER H3T Crew Cab 2010 2.12% Jeep Patriot SUV 2012 1.85% Jeep Wrangler SUV 2012 1.72% AM General Hummer SUV 2000 1.62% HUMMER H2 SUT Crew Cab 2009 1.3% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.57% Acura TL Type-S 2008 1.96% Mercedes-Benz SL-Class Coupe 2009 1.78% Audi S5 Convertible 2012 1.71% Hyundai Azera Sedan 2012 1.58% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Mercedes-Benz Sprinter Van 2012 2.27% BMW X5 SUV 2007 1.99% Buick Rainier SUV 2007 1.85% BMW X3 SUV 2012 1.81% Chevrolet Express Cargo Van 2007 1.49% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Hyundai Veloster Hatchback 2012 3.61% Aston Martin Virage Coupe 2012 3.4% HUMMER H3T Crew Cab 2010 3.1% Dodge Charger Sedan 2012 3.06% Dodge Charger SRT-8 2009 2.63% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Chevrolet Corvette Convertible 2012 5.27% Dodge Charger Sedan 2012 4.57% Suzuki SX4 Hatchback 2012 4.32% HUMMER H3T Crew Cab 2010 3.94% Jeep Wrangler SUV 2012 3.78% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 HUMMER H3T Crew Cab 2010 3.13% Dodge Caliber Wagon 2007 2.68% Jeep Wrangler SUV 2012 2.67% Dodge Ram Pickup 3500 Quad Cab 2009 2.67% Jeep Liberty SUV 2012 2.6% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Mulsanne Sedan 2011 5.7% Bentley Arnage Sedan 2009 3.09% Spyker C8 Convertible 2009 3.06% Rolls-Royce Phantom Sedan 2012 2.29% Jeep Patriot SUV 2012 2.28% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 2.49% Honda Accord Sedan 2012 2.06% Dodge Sprinter Cargo Van 2009 2.0% Chevrolet Express Van 2007 1.8% Chevrolet Express Cargo Van 2007 1.77% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Ram Pickup 3500 Crew Cab 2010 2.55% Isuzu Ascender SUV 2008 2.27% Chrysler Aspen SUV 2009 2.22% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.86% Hyundai Santa Fe SUV 2012 1.86% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.01% Mercedes-Benz 300-Class Convertible 1993 2.46% Aston Martin V8 Vantage Coupe 2012 2.13% Acura TL Sedan 2012 2.04% Jaguar XK XKR 2012 1.85% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.62% Nissan Leaf Hatchback 2012 3.21% Maybach Landaulet Convertible 2012 2.97% FIAT 500 Convertible 2012 2.9% Bugatti Veyron 16.4 Convertible 2009 2.74% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Fisker Karma Sedan 2012 5.6% Mercedes-Benz 300-Class Convertible 1993 5.48% Hyundai Genesis Sedan 2012 3.73% Infiniti G Coupe IPL 2012 2.69% Bugatti Veyron 16.4 Coupe 2009 2.61% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Ram C/V Cargo Van Minivan 2012 3.88% Volkswagen Golf Hatchback 2012 2.32% Acura TSX Sedan 2012 2.29% Honda Odyssey Minivan 2007 2.18% Chrysler Town and Country Minivan 2012 1.82% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Audi TT Hatchback 2011 1.44% Audi A5 Coupe 2012 1.37% Audi R8 Coupe 2012 1.3% Audi S6 Sedan 2011 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 1.98% Fisker Karma Sedan 2012 1.98% Mercedes-Benz S-Class Sedan 2012 1.84% FIAT 500 Convertible 2012 1.59% Maybach Landaulet Convertible 2012 1.56% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 40.25% HUMMER H2 SUT Crew Cab 2009 22.36% Jeep Wrangler SUV 2012 13.65% HUMMER H3T Crew Cab 2010 11.42% Hyundai Veloster Hatchback 2012 0.91% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 2.68% Chevrolet Express Cargo Van 2007 1.77% GMC Savana Van 2012 1.61% Honda Accord Sedan 2012 1.45% Infiniti G Coupe IPL 2012 1.39% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 17.72% Ferrari California Convertible 2012 15.78% Ferrari 458 Italia Coupe 2012 11.27% Lamborghini Aventador Coupe 2012 8.25% Chevrolet HHR SS 2010 6.9% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Ford Expedition EL SUV 2009 1.74% Cadillac Escalade EXT Crew Cab 2007 1.7% Rolls-Royce Phantom Sedan 2012 1.69% Isuzu Ascender SUV 2008 1.64% Dodge Ram Pickup 3500 Crew Cab 2010 1.62% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 FIAT 500 Convertible 2012 4.4% Geo Metro Convertible 1993 2.52% Suzuki Aerio Sedan 2007 2.18% BMW M3 Coupe 2012 2.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.07% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.96% Lamborghini Reventon Coupe 2008 1.76% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.6% Mercedes-Benz 300-Class Convertible 1993 1.5% BMW M6 Convertible 2010 1.41% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Jeep Liberty SUV 2012 4.41% Ford Expedition EL SUV 2009 4.08% Rolls-Royce Phantom Sedan 2012 3.85% Ford E-Series Wagon Van 2012 3.58% Hyundai Genesis Sedan 2012 2.83% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 5.54% GMC Savana Van 2012 3.4% Buick Rainier SUV 2007 2.03% Chevrolet Express Van 2007 1.6% Dodge Dakota Club Cab 2007 1.5% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Audi V8 Sedan 1994 2.33% BMW M3 Coupe 2012 2.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.13% MINI Cooper Roadster Convertible 2012 2.01% Acura RL Sedan 2012 1.85% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 MINI Cooper Roadster Convertible 2012 3.34% Audi R8 Coupe 2012 3.06% Audi S6 Sedan 2011 2.39% Audi A5 Coupe 2012 2.34% BMW X3 SUV 2012 2.32% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Mercedes-Benz Sprinter Van 2012 3.42% BMW X3 SUV 2012 2.7% Audi TT Hatchback 2011 2.42% Audi A5 Coupe 2012 2.17% Honda Odyssey Minivan 2007 1.84% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Nissan Leaf Hatchback 2012 6.71% Geo Metro Convertible 1993 5.49% Plymouth Neon Coupe 1999 5.31% Dodge Caravan Minivan 1997 3.57% Daewoo Nubira Wagon 2002 3.08% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Geo Metro Convertible 1993 13.27% Chevrolet Corvette ZR1 2012 6.59% Plymouth Neon Coupe 1999 3.69% Nissan Leaf Hatchback 2012 3.62% Eagle Talon Hatchback 1998 2.67% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Mercedes-Benz C-Class Sedan 2012 1.92% Audi R8 Coupe 2012 1.82% Ford F-450 Super Duty Crew Cab 2012 1.79% Dodge Ram Pickup 3500 Crew Cab 2010 1.69% Audi S6 Sedan 2011 1.66% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Lamborghini Aventador Coupe 2012 5.87% Aston Martin Virage Coupe 2012 4.92% Ferrari 458 Italia Convertible 2012 4.55% Chevrolet Corvette Convertible 2012 4.34% Chevrolet Cobalt SS 2010 4.17% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Patriot SUV 2012 3.14% Bentley Arnage Sedan 2009 2.43% Ford E-Series Wagon Van 2012 2.35% Dodge Challenger SRT8 2011 2.24% Land Rover Range Rover SUV 2012 2.04% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Chevrolet Silverado 1500 Extended Cab 2012 2.02% GMC Savana Van 2012 1.41% Chrysler Sebring Convertible 2010 1.4% Dodge Dakota Club Cab 2007 1.38% Chevrolet Malibu Sedan 2007 1.37% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 6.32% Geo Metro Convertible 1993 5.32% Daewoo Nubira Wagon 2002 5.02% FIAT 500 Convertible 2012 3.96% Plymouth Neon Coupe 1999 3.16% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 BMW X6 SUV 2012 4.26% Jeep Compass SUV 2012 3.03% Dodge Caliber Wagon 2007 2.76% Dodge Ram Pickup 3500 Quad Cab 2009 2.61% GMC Canyon Extended Cab 2012 2.59% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 BMW X3 SUV 2012 4.94% Ford E-Series Wagon Van 2012 4.33% Hyundai Azera Sedan 2012 3.71% Land Rover LR2 SUV 2012 3.27% MINI Cooper Roadster Convertible 2012 3.25% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 9.4% HUMMER H2 SUT Crew Cab 2009 8.68% Cadillac Escalade EXT Crew Cab 2007 7.37% AM General Hummer SUV 2000 6.55% Ford F-450 Super Duty Crew Cab 2012 5.13% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Rolls-Royce Phantom Sedan 2012 1.71% Cadillac Escalade EXT Crew Cab 2007 1.56% Dodge Journey SUV 2012 1.44% Chrysler Aspen SUV 2009 1.39% Hyundai Genesis Sedan 2012 1.36% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Bugatti Veyron 16.4 Convertible 2009 2.29% Mercedes-Benz S-Class Sedan 2012 1.93% Mercedes-Benz Sprinter Van 2012 1.66% FIAT 500 Convertible 2012 1.53% MINI Cooper Roadster Convertible 2012 1.45% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 2.55% Bentley Continental GT Coupe 2012 2.46% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.22% BMW Z4 Convertible 2012 2.13% Mercedes-Benz 300-Class Convertible 1993 2.04% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Regular Cab 2012 4.22% Ford Ranger SuperCab 2011 4.15% GMC Terrain SUV 2012 3.04% Chevrolet Traverse SUV 2012 2.8% Dodge Caliber Wagon 2007 2.58% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 3.98% GMC Savana Van 2012 3.83% Chevrolet Avalanche Crew Cab 2012 3.69% Ford Freestar Minivan 2007 3.37% GMC Terrain SUV 2012 3.29% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 8.97% Ferrari California Convertible 2012 8.04% Chevrolet Cobalt SS 2010 6.68% Ferrari 458 Italia Coupe 2012 6.32% Dodge Magnum Wagon 2008 4.44% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 3.43% Ford E-Series Wagon Van 2012 2.99% Chrysler Aspen SUV 2009 2.88% Isuzu Ascender SUV 2008 2.41% Ford F-450 Super Duty Crew Cab 2012 2.19% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Rolls-Royce Phantom Sedan 2012 7.5% Spyker C8 Convertible 2009 6.96% FIAT 500 Abarth 2012 5.17% Bentley Continental Supersports Conv. Convertible 2012 4.4% smart fortwo Convertible 2012 4.33% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Chevrolet Express Cargo Van 2007 3.06% Eagle Talon Hatchback 1998 2.78% GMC Savana Van 2012 2.35% Chevrolet Corvette ZR1 2012 2.29% Volkswagen Golf Hatchback 1991 2.27% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Chevrolet TrailBlazer SS 2009 2.78% Hyundai Veracruz SUV 2012 2.14% Chevrolet Silverado 1500 Regular Cab 2012 1.92% Dodge Durango SUV 2012 1.83% Ford Expedition EL SUV 2009 1.62% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Infiniti G Coupe IPL 2012 2.54% Chevrolet Silverado 2500HD Regular Cab 2012 2.05% Aston Martin V8 Vantage Coupe 2012 1.86% Porsche Panamera Sedan 2012 1.75% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.69% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 Rolls-Royce Phantom Sedan 2012 5.06% MINI Cooper Roadster Convertible 2012 4.18% Audi R8 Coupe 2012 2.77% Audi S6 Sedan 2011 2.75% Mercedes-Benz C-Class Sedan 2012 2.7% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 BMW X3 SUV 2012 4.3% Audi A5 Coupe 2012 3.29% Audi S5 Coupe 2012 2.49% Audi S6 Sedan 2011 2.39% Audi TT Hatchback 2011 2.32% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 MINI Cooper Roadster Convertible 2012 5.76% Mercedes-Benz E-Class Sedan 2012 4.35% Audi S5 Convertible 2012 2.66% BMW ActiveHybrid 5 Sedan 2012 2.59% Mercedes-Benz SL-Class Coupe 2009 2.47% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.12% Ford F-450 Super Duty Crew Cab 2012 4.11% Mercedes-Benz C-Class Sedan 2012 4.03% Ford Expedition EL SUV 2009 3.18% Toyota 4Runner SUV 2012 2.87% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Dodge Caravan Minivan 1997 5.62% Lamborghini Reventon Coupe 2008 4.07% Plymouth Neon Coupe 1999 3.78% Mercedes-Benz 300-Class Convertible 1993 3.21% Chevrolet Corvette ZR1 2012 2.34% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Chevrolet Express Cargo Van 2007 2.9% Audi V8 Sedan 1994 2.32% Audi 100 Wagon 1994 1.89% GMC Savana Van 2012 1.84% Chevrolet Silverado 2500HD Regular Cab 2012 1.48% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Maybach Landaulet Convertible 2012 3.93% Spyker C8 Convertible 2009 2.75% Lamborghini Reventon Coupe 2008 2.53% Ford GT Coupe 2006 2.52% Bugatti Veyron 16.4 Coupe 2009 2.32% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Dodge Ram Pickup 3500 Crew Cab 2010 4.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.2% Isuzu Ascender SUV 2008 3.6% Chevrolet Silverado 1500 Extended Cab 2012 3.54% Dodge Ram Pickup 3500 Quad Cab 2009 3.29% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 7.82% Dodge Caliber Wagon 2007 4.57% BMW 3 Series Sedan 2012 3.44% Volvo C30 Hatchback 2012 2.82% Suzuki SX4 Hatchback 2012 2.61% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 5.8% smart fortwo Convertible 2012 4.64% Bentley Mulsanne Sedan 2011 2.62% Spyker C8 Coupe 2009 2.28% Mercedes-Benz E-Class Sedan 2012 2.13% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Audi R8 Coupe 2012 2.3% Bentley Mulsanne Sedan 2011 2.15% Mercedes-Benz C-Class Sedan 2012 2.14% Audi S6 Sedan 2011 1.95% Chrysler Aspen SUV 2009 1.83% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Acura TL Sedan 2012 2.88% BMW ActiveHybrid 5 Sedan 2012 2.15% BMW M5 Sedan 2010 1.97% Jaguar XK XKR 2012 1.8% Acura ZDX Hatchback 2012 1.74% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.44% Land Rover Range Rover SUV 2012 1.82% Hyundai Tucson SUV 2012 1.72% GMC Yukon Hybrid SUV 2012 1.71% Cadillac SRX SUV 2012 1.69% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Spyker C8 Convertible 2009 2.43% Spyker C8 Coupe 2009 2.37% smart fortwo Convertible 2012 1.9% Bentley Continental Supersports Conv. Convertible 2012 1.71% Ford GT Coupe 2006 1.63% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Acura TL Sedan 2012 3.58% Dodge Caravan Minivan 1997 2.64% Chevrolet Express Cargo Van 2007 1.99% Lincoln Town Car Sedan 2011 1.86% Acura TSX Sedan 2012 1.81% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Volvo 240 Sedan 1993 3.63% Bugatti Veyron 16.4 Convertible 2009 2.94% smart fortwo Convertible 2012 2.13% Mazda Tribute SUV 2011 2.1% Fisker Karma Sedan 2012 1.62% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 GMC Savana Van 2012 8.22% Chevrolet Express Van 2007 5.07% Daewoo Nubira Wagon 2002 4.76% Mercedes-Benz Sprinter Van 2012 4.56% Ford Focus Sedan 2007 3.74% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 3.06% Chrysler Aspen SUV 2009 2.17% Jeep Patriot SUV 2012 1.92% Dodge Challenger SRT8 2011 1.91% Isuzu Ascender SUV 2008 1.86% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Audi V8 Sedan 1994 1.84% Chevrolet Silverado 2500HD Regular Cab 2012 1.73% Chrysler 300 SRT-8 2010 1.64% Rolls-Royce Ghost Sedan 2012 1.42% Audi S6 Sedan 2011 1.42% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TT Hatchback 2011 2.4% Audi R8 Coupe 2012 2.37% BMW ActiveHybrid 5 Sedan 2012 2.25% MINI Cooper Roadster Convertible 2012 2.0% Mercedes-Benz SL-Class Coupe 2009 1.66% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Jeep Grand Cherokee SUV 2012 1.69% Cadillac Escalade EXT Crew Cab 2007 1.52% Dodge Durango SUV 2007 1.33% Chrysler 300 SRT-8 2010 1.17% Isuzu Ascender SUV 2008 1.17% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 4.66% Hyundai Elantra Sedan 2007 4.04% Honda Accord Coupe 2012 2.56% BMW 1 Series Coupe 2012 2.53% Suzuki SX4 Hatchback 2012 2.46% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Chevrolet Cobalt SS 2010 3.1% BMW 1 Series Coupe 2012 2.98% Geo Metro Convertible 1993 2.95% Ferrari California Convertible 2012 2.51% Ferrari FF Coupe 2012 2.42% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 5.08% Mercedes-Benz E-Class Sedan 2012 4.82% BMW ActiveHybrid 5 Sedan 2012 3.06% Porsche Panamera Sedan 2012 2.58% Audi S5 Convertible 2012 2.3% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.7% MINI Cooper Roadster Convertible 2012 3.72% Mercedes-Benz S-Class Sedan 2012 2.44% Mercedes-Benz E-Class Sedan 2012 2.14% Maybach Landaulet Convertible 2012 2.0% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 FIAT 500 Convertible 2012 3.62% Maybach Landaulet Convertible 2012 2.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.47% Nissan Leaf Hatchback 2012 1.82% Jaguar XK XKR 2012 1.71% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 2.71% Bentley Mulsanne Sedan 2011 2.26% Bentley Arnage Sedan 2009 1.73% FIAT 500 Abarth 2012 1.71% Spyker C8 Convertible 2009 1.64% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Audi V8 Sedan 1994 2.7% Audi 100 Wagon 1994 2.38% Infiniti G Coupe IPL 2012 2.23% Chevrolet Silverado 2500HD Regular Cab 2012 2.1% Acura TL Sedan 2012 1.99% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 29.93% McLaren MP4-12C Coupe 2012 28.22% Chevrolet Corvette Convertible 2012 15.4% Lamborghini Diablo Coupe 2001 4.18% Lamborghini Aventador Coupe 2012 3.93% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.51% Isuzu Ascender SUV 2008 2.19% Honda Odyssey Minivan 2007 1.87% Ford E-Series Wagon Van 2012 1.87% Dodge Dakota Club Cab 2007 1.82% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Nissan 240SX Coupe 1998 4.04% BMW 3 Series Sedan 2012 3.94% Geo Metro Convertible 1993 3.93% Toyota Corolla Sedan 2012 3.86% Audi TT RS Coupe 2012 3.39% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Ford E-Series Wagon Van 2012 5.16% Isuzu Ascender SUV 2008 3.27% Mercedes-Benz Sprinter Van 2012 3.1% Chevrolet Avalanche Crew Cab 2012 2.75% Chevrolet Silverado 1500 Extended Cab 2012 2.58% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Chevrolet Monte Carlo Coupe 2007 2.46% Cadillac CTS-V Sedan 2012 2.38% Plymouth Neon Coupe 1999 2.33% Lamborghini Reventon Coupe 2008 2.27% Chrysler 300 SRT-8 2010 2.05% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Daewoo Nubira Wagon 2002 3.99% Dodge Caravan Minivan 1997 2.99% Lincoln Town Car Sedan 2011 2.6% Nissan Leaf Hatchback 2012 2.48% Geo Metro Convertible 1993 2.41% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Rolls-Royce Phantom Sedan 2012 21.93% smart fortwo Convertible 2012 15.95% Hyundai Azera Sedan 2012 5.01% Chevrolet Sonic Sedan 2012 4.13% Mercedes-Benz E-Class Sedan 2012 3.64% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Jeep Liberty SUV 2012 3.39% Jeep Patriot SUV 2012 2.21% AM General Hummer SUV 2000 2.14% Cadillac Escalade EXT Crew Cab 2007 1.89% HUMMER H3T Crew Cab 2010 1.84% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.22% Infiniti G Coupe IPL 2012 2.91% BMW M6 Convertible 2010 2.65% Chrysler 300 SRT-8 2010 1.81% Audi S6 Sedan 2011 1.77% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Ram C/V Cargo Van Minivan 2012 4.86% Mercedes-Benz S-Class Sedan 2012 2.8% Bugatti Veyron 16.4 Convertible 2009 2.34% Acura TSX Sedan 2012 2.08% Suzuki SX4 Sedan 2012 2.02% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Jeep Compass SUV 2012 2.67% Chrysler Aspen SUV 2009 2.52% BMW X5 SUV 2007 2.48% Toyota 4Runner SUV 2012 1.97% Bentley Arnage Sedan 2009 1.88% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 6.24% HUMMER H2 SUT Crew Cab 2009 3.11% Jeep Wrangler SUV 2012 2.25% Jeep Patriot SUV 2012 1.83% Spyker C8 Convertible 2009 1.47% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Dodge Durango SUV 2012 1.37% Chrysler 300 SRT-8 2010 1.36% Ford Freestar Minivan 2007 1.24% Hyundai Tucson SUV 2012 1.24% Ford F-150 Regular Cab 2007 1.17% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 2.43% GMC Savana Van 2012 1.96% Dodge Caravan Minivan 1997 1.86% Chevrolet Corvette ZR1 2012 1.79% Audi 100 Wagon 1994 1.68% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Lincoln Town Car Sedan 2011 1.6% Chevrolet Malibu Sedan 2007 1.26% Eagle Talon Hatchback 1998 1.21% Chevrolet Monte Carlo Coupe 2007 1.18% Honda Odyssey Minivan 2007 1.12% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 1.16% Porsche Panamera Sedan 2012 1.15% Mercedes-Benz SL-Class Coupe 2009 1.12% Ram C/V Cargo Van Minivan 2012 1.1% Acura TL Sedan 2012 1.03% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Dodge Sprinter Cargo Van 2009 14.43% GMC Savana Van 2012 8.92% Chevrolet Express Van 2007 8.79% Chevrolet Express Cargo Van 2007 5.89% Dodge Caravan Minivan 1997 5.34% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Geo Metro Convertible 1993 3.22% Daewoo Nubira Wagon 2002 2.38% Plymouth Neon Coupe 1999 2.34% Mercedes-Benz 300-Class Convertible 1993 2.32% Nissan Leaf Hatchback 2012 1.97% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Chevrolet Express Cargo Van 2007 2.16% Mercedes-Benz 300-Class Convertible 1993 1.9% Bugatti Veyron 16.4 Convertible 2009 1.72% Volkswagen Golf Hatchback 1991 1.64% Audi 100 Wagon 1994 1.6% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 5.22% Chevrolet Silverado 1500 Extended Cab 2012 4.72% Chevrolet Silverado 1500 Regular Cab 2012 4.5% Chevrolet Silverado 2500HD Regular Cab 2012 4.11% Chevrolet Avalanche Crew Cab 2012 3.85% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 BMW 1 Series Coupe 2012 6.76% Ferrari FF Coupe 2012 3.18% Dodge Caliber Wagon 2007 2.97% BMW M3 Coupe 2012 1.95% Honda Accord Coupe 2012 1.9% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Dodge Caravan Minivan 1997 8.12% Daewoo Nubira Wagon 2002 4.12% GMC Savana Van 2012 3.57% Chevrolet Express Cargo Van 2007 3.47% Hyundai Tucson SUV 2012 3.1% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 MINI Cooper Roadster Convertible 2012 2.62% Mercedes-Benz Sprinter Van 2012 2.45% BMW ActiveHybrid 5 Sedan 2012 2.41% Ram C/V Cargo Van Minivan 2012 2.17% BMW 1 Series Convertible 2012 2.07% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 3.72% Buick Enclave SUV 2012 1.96% Chevrolet Malibu Sedan 2007 1.88% Jeep Liberty SUV 2012 1.76% Daewoo Nubira Wagon 2002 1.76% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Mercedes-Benz SL-Class Coupe 2009 3.41% Lamborghini Reventon Coupe 2008 3.07% Mercedes-Benz 300-Class Convertible 1993 2.89% Spyker C8 Convertible 2009 2.88% Bentley Continental Supersports Conv. Convertible 2012 2.86% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Geo Metro Convertible 1993 13.88% Mercedes-Benz 300-Class Convertible 1993 4.82% Dodge Caravan Minivan 1997 4.38% Chevrolet Corvette ZR1 2012 3.69% Plymouth Neon Coupe 1999 3.31% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Rolls-Royce Ghost Sedan 2012 2.98% Bentley Mulsanne Sedan 2011 2.65% BMW M6 Convertible 2010 2.48% Hyundai Genesis Sedan 2012 2.39% Chrysler 300 SRT-8 2010 2.29% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.07% Audi 100 Sedan 1994 2.23% Audi V8 Sedan 1994 2.18% Bugatti Veyron 16.4 Coupe 2009 2.12% Bugatti Veyron 16.4 Convertible 2009 2.0% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Dodge Caravan Minivan 1997 3.17% GMC Savana Van 2012 2.84% Chevrolet Express Van 2007 2.79% Lincoln Town Car Sedan 2011 2.28% Daewoo Nubira Wagon 2002 2.01% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.59% Chevrolet Corvette ZR1 2012 1.54% Porsche Panamera Sedan 2012 1.27% BMW 6 Series Convertible 2007 1.15% Dodge Ram Pickup 3500 Quad Cab 2009 1.12% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Express Cargo Van 2007 4.78% Chevrolet Silverado 2500HD Regular Cab 2012 3.04% Dodge Sprinter Cargo Van 2009 2.56% GMC Savana Van 2012 2.34% Acura TL Sedan 2012 2.12% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Plymouth Neon Coupe 1999 1.65% Chevrolet Monte Carlo Coupe 2007 1.55% Lamborghini Reventon Coupe 2008 1.5% Eagle Talon Hatchback 1998 1.47% Bugatti Veyron 16.4 Coupe 2009 1.45% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Lamborghini Aventador Coupe 2012 16.39% Ferrari 458 Italia Coupe 2012 8.09% Ferrari 458 Italia Convertible 2012 6.65% McLaren MP4-12C Coupe 2012 6.22% Aston Martin Virage Coupe 2012 4.68% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 5.06% Ford F-450 Super Duty Crew Cab 2012 2.95% Dodge Ram Pickup 3500 Crew Cab 2010 2.58% Chevrolet Silverado 1500 Regular Cab 2012 2.55% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.41% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Lamborghini Reventon Coupe 2008 2.1% Bugatti Veyron 16.4 Coupe 2009 1.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.87% Maybach Landaulet Convertible 2012 1.57% Bentley Continental Flying Spur Sedan 2007 1.42% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 3.47% Hyundai Genesis Sedan 2012 3.21% BMW M6 Convertible 2010 3.03% Rolls-Royce Phantom Sedan 2012 2.38% Cadillac CTS-V Sedan 2012 2.34% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 12.24% Isuzu Ascender SUV 2008 6.85% Hyundai Santa Fe SUV 2012 3.96% Chrysler Aspen SUV 2009 3.83% Dodge Ram Pickup 3500 Crew Cab 2010 3.79% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 BMW 3 Series Sedan 2012 4.6% Ferrari 458 Italia Coupe 2012 4.01% Ford GT Coupe 2006 3.44% Ferrari 458 Italia Convertible 2012 3.44% Volvo C30 Hatchback 2012 3.01% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Bentley Arnage Sedan 2009 10.49% Land Rover Range Rover SUV 2012 4.02% Jeep Compass SUV 2012 3.74% Rolls-Royce Ghost Sedan 2012 3.49% Bentley Mulsanne Sedan 2011 3.13% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Lamborghini Reventon Coupe 2008 4.73% Spyker C8 Convertible 2009 2.69% Hyundai Azera Sedan 2012 2.6% Bentley Continental Flying Spur Sedan 2007 1.98% Bugatti Veyron 16.4 Coupe 2009 1.88% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Daewoo Nubira Wagon 2002 1.83% Volvo 240 Sedan 1993 1.72% Chrysler Sebring Convertible 2010 1.43% Chevrolet Impala Sedan 2007 1.41% Chevrolet Malibu Sedan 2007 1.34% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 MINI Cooper Roadster Convertible 2012 6.0% BMW ActiveHybrid 5 Sedan 2012 3.5% Ram C/V Cargo Van Minivan 2012 3.42% Audi TT Hatchback 2011 3.1% Audi A5 Coupe 2012 2.95% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 8.52% Chevrolet Express Cargo Van 2007 5.16% Chevrolet Express Van 2007 4.13% Buick Rainier SUV 2007 3.39% Chevrolet Silverado 1500 Extended Cab 2012 2.32% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Ram C/V Cargo Van Minivan 2012 3.74% BMW 1 Series Convertible 2012 3.47% BMW ActiveHybrid 5 Sedan 2012 2.26% Audi TT Hatchback 2011 2.08% Acura TSX Sedan 2012 1.95% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 FIAT 500 Abarth 2012 3.34% Chevrolet Corvette ZR1 2012 2.13% Spyker C8 Convertible 2009 2.11% Lamborghini Reventon Coupe 2008 1.96% Bentley Continental Flying Spur Sedan 2007 1.82% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Chrysler 300 SRT-8 2010 5.03% BMW M6 Convertible 2010 4.76% Chevrolet Silverado 2500HD Regular Cab 2012 4.13% Chevrolet TrailBlazer SS 2009 3.18% Infiniti G Coupe IPL 2012 2.42% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 AM General Hummer SUV 2000 3.64% Jeep Wrangler SUV 2012 2.35% Jeep Patriot SUV 2012 2.15% Spyker C8 Convertible 2009 2.08% smart fortwo Convertible 2012 1.82% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 4.67% Chevrolet Silverado 2500HD Regular Cab 2012 4.19% Chevrolet Silverado 1500 Extended Cab 2012 3.39% Chevrolet Avalanche Crew Cab 2012 3.27% GMC Savana Van 2012 2.98% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.52% BMW 1 Series Convertible 2012 3.33% MINI Cooper Roadster Convertible 2012 2.97% BMW ActiveHybrid 5 Sedan 2012 2.49% Audi TT Hatchback 2011 2.05% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Chevrolet TrailBlazer SS 2009 2.74% Bentley Arnage Sedan 2009 2.35% Ford Expedition EL SUV 2009 2.0% Cadillac Escalade EXT Crew Cab 2007 1.81% Ford Edge SUV 2012 1.59% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Ghost Sedan 2012 2.86% Bentley Mulsanne Sedan 2011 2.14% BMW M6 Convertible 2010 1.82% Mercedes-Benz C-Class Sedan 2012 1.58% Audi V8 Sedan 1994 1.47% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 4.17% MINI Cooper Roadster Convertible 2012 3.77% Ram C/V Cargo Van Minivan 2012 2.37% Dodge Sprinter Cargo Van 2009 2.11% Audi S5 Convertible 2012 1.83% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Aston Martin Virage Coupe 2012 10.47% McLaren MP4-12C Coupe 2012 5.82% Lamborghini Diablo Coupe 2001 5.18% BMW Z4 Convertible 2012 3.77% Lamborghini Aventador Coupe 2012 3.2% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Audi V8 Sedan 1994 1.93% Acura TL Sedan 2012 1.6% Acura TL Type-S 2008 1.57% Audi 100 Wagon 1994 1.42% Audi 100 Sedan 1994 1.41% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Hyundai Elantra Sedan 2007 4.18% Daewoo Nubira Wagon 2002 3.81% Chrysler Sebring Convertible 2010 3.8% Ford Focus Sedan 2007 3.36% Lincoln Town Car Sedan 2011 3.31% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Maybach Landaulet Convertible 2012 3.12% FIAT 500 Convertible 2012 2.23% Spyker C8 Coupe 2009 1.95% Ford GT Coupe 2006 1.83% Spyker C8 Convertible 2009 1.79% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 4.5% Cadillac Escalade EXT Crew Cab 2007 3.4% HUMMER H2 SUT Crew Cab 2009 3.06% Chevrolet TrailBlazer SS 2009 3.06% Chrysler 300 SRT-8 2010 2.94% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 1.98% Chevrolet Silverado 2500HD Regular Cab 2012 1.88% Chevrolet Malibu Sedan 2007 1.63% Ford F-150 Regular Cab 2012 1.62% GMC Savana Van 2012 1.52% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.63% Chevrolet TrailBlazer SS 2009 3.22% Chrysler 300 SRT-8 2010 3.01% GMC Terrain SUV 2012 2.52% Chevrolet Silverado 1500 Regular Cab 2012 2.39% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 BMW X3 SUV 2012 2.84% Toyota Sequoia SUV 2012 2.39% Mercedes-Benz C-Class Sedan 2012 2.24% Mazda Tribute SUV 2011 2.07% Acura ZDX Hatchback 2012 2.06% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Mercedes-Benz S-Class Sedan 2012 2.88% Bugatti Veyron 16.4 Convertible 2009 2.73% FIAT 500 Convertible 2012 1.64% BMW M3 Coupe 2012 1.64% Audi 100 Sedan 1994 1.64% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Dodge Caliber Wagon 2007 3.84% GMC Savana Van 2012 2.12% Jeep Wrangler SUV 2012 1.97% Suzuki SX4 Hatchback 2012 1.97% Dodge Caliber Wagon 2012 1.93% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.55% Aston Martin V8 Vantage Coupe 2012 2.19% Acura TL Sedan 2012 1.68% BMW M3 Coupe 2012 1.66% Aston Martin V8 Vantage Convertible 2012 1.65% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Elantra Sedan 2007 6.11% Ford Freestar Minivan 2007 4.5% Dodge Caliber Wagon 2007 3.57% Chevrolet Traverse SUV 2012 2.0% Dodge Journey SUV 2012 1.94% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Chevrolet Silverado 1500 Extended Cab 2012 2.56% Chevrolet Tahoe Hybrid SUV 2012 2.0% Dodge Ram Pickup 3500 Quad Cab 2009 1.8% Audi A5 Coupe 2012 1.8% GMC Acadia SUV 2012 1.7% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Express Cargo Van 2007 5.13% GMC Savana Van 2012 4.96% Chevrolet Express Van 2007 3.0% Dodge Dakota Club Cab 2007 2.13% Ford F-150 Regular Cab 2012 1.98% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.14% BMW 1 Series Convertible 2012 1.88% BMW ActiveHybrid 5 Sedan 2012 1.63% GMC Savana Van 2012 1.45% Chrysler Town and Country Minivan 2012 1.4% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ferrari California Convertible 2012 8.64% Aston Martin Virage Coupe 2012 6.94% Ferrari 458 Italia Convertible 2012 6.04% McLaren MP4-12C Coupe 2012 5.42% Lamborghini Aventador Coupe 2012 5.07% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.49% Maybach Landaulet Convertible 2012 2.33% FIAT 500 Convertible 2012 2.28% Fisker Karma Sedan 2012 2.15% Mercedes-Benz SL-Class Coupe 2009 1.86% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 4.47% Chevrolet Express Van 2007 4.16% Lincoln Town Car Sedan 2011 3.71% Ford Focus Sedan 2007 3.29% Hyundai Elantra Sedan 2007 2.92% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Arnage Sedan 2009 4.89% AM General Hummer SUV 2000 4.78% FIAT 500 Abarth 2012 4.23% Cadillac Escalade EXT Crew Cab 2007 4.1% Cadillac CTS-V Sedan 2012 2.92% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Dodge Caliber Wagon 2007 2.3% Volvo C30 Hatchback 2012 2.06% Audi TT RS Coupe 2012 1.85% BMW 3 Series Sedan 2012 1.58% Mitsubishi Lancer Sedan 2012 1.57% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Chevrolet Cobalt SS 2010 8.84% Hyundai Elantra Sedan 2007 4.63% Honda Accord Coupe 2012 4.29% Ferrari FF Coupe 2012 3.36% Hyundai Sonata Hybrid Sedan 2012 2.68% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 3.72% Chevrolet Cobalt SS 2010 2.96% Volkswagen Golf Hatchback 1991 2.79% Honda Accord Coupe 2012 2.55% Hyundai Sonata Hybrid Sedan 2012 2.44% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Mercedes-Benz S-Class Sedan 2012 2.75% MINI Cooper Roadster Convertible 2012 2.17% Mercedes-Benz SL-Class Coupe 2009 2.04% Bugatti Veyron 16.4 Convertible 2009 1.97% Fisker Karma Sedan 2012 1.87% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Mulsanne Sedan 2011 5.12% Volvo 240 Sedan 1993 2.63% Jeep Patriot SUV 2012 2.61% Bugatti Veyron 16.4 Coupe 2009 2.41% Audi V8 Sedan 1994 2.35% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 5.87% BMW X5 SUV 2007 5.15% Jeep Grand Cherokee SUV 2012 3.56% Ford E-Series Wagon Van 2012 3.26% Isuzu Ascender SUV 2008 3.15% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 HUMMER H3T Crew Cab 2010 9.37% HUMMER H2 SUT Crew Cab 2009 8.46% Jeep Wrangler SUV 2012 6.05% Dodge Charger Sedan 2012 4.97% Dodge Caliber Wagon 2007 3.18% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Ford Freestar Minivan 2007 2.1% Rolls-Royce Phantom Sedan 2012 1.79% Hyundai Tucson SUV 2012 1.59% Ford E-Series Wagon Van 2012 1.42% Honda Odyssey Minivan 2007 1.36% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Aston Martin V8 Vantage Coupe 2012 3.36% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.38% Infiniti G Coupe IPL 2012 2.38% Jaguar XK XKR 2012 2.11% Porsche Panamera Sedan 2012 2.11% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Porsche Panamera Sedan 2012 4.44% Acura TL Sedan 2012 2.79% Nissan Leaf Hatchback 2012 2.78% Toyota Camry Sedan 2012 2.71% Jaguar XK XKR 2012 2.52% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 12.26% Dodge Sprinter Cargo Van 2009 9.3% Chevrolet Express Cargo Van 2007 8.48% GMC Savana Van 2012 4.56% Dodge Caravan Minivan 1997 3.24% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 6.77% BMW M6 Convertible 2010 2.82% Chevrolet TrailBlazer SS 2009 2.65% Eagle Talon Hatchback 1998 2.41% Chevrolet Silverado 2500HD Regular Cab 2012 2.25% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 4.75% Dodge Sprinter Cargo Van 2009 3.38% Toyota Camry Sedan 2012 3.2% Plymouth Neon Coupe 1999 3.1% Hyundai Elantra Sedan 2007 2.82% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 12.11% Rolls-Royce Phantom Sedan 2012 3.69% Rolls-Royce Ghost Sedan 2012 2.79% Jeep Patriot SUV 2012 2.57% Jeep Compass SUV 2012 2.51% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 MINI Cooper Roadster Convertible 2012 4.57% Audi S5 Convertible 2012 4.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.61% BMW M3 Coupe 2012 3.25% Mercedes-Benz S-Class Sedan 2012 3.1% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 8.97% Aston Martin Virage Coupe 2012 8.96% Audi RS 4 Convertible 2008 7.79% Hyundai Veloster Hatchback 2012 5.58% BMW 1 Series Coupe 2012 3.37% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Jaguar XK XKR 2012 2.95% Ferrari FF Coupe 2012 2.34% Toyota Camry Sedan 2012 2.2% BMW 1 Series Convertible 2012 2.04% Porsche Panamera Sedan 2012 2.0% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Lincoln Town Car Sedan 2011 1.56% Dodge Caravan Minivan 1997 1.49% Audi 100 Sedan 1994 1.39% Audi V8 Sedan 1994 1.37% Chevrolet Express Cargo Van 2007 1.36% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Audi S6 Sedan 2011 1.86% Mercedes-Benz C-Class Sedan 2012 1.77% Audi R8 Coupe 2012 1.64% Bentley Mulsanne Sedan 2011 1.26% Rolls-Royce Phantom Sedan 2012 1.26% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet TrailBlazer SS 2009 5.25% Chrysler 300 SRT-8 2010 4.07% Chevrolet Silverado 1500 Regular Cab 2012 3.03% Chevrolet Silverado 2500HD Regular Cab 2012 2.6% Ford Expedition EL SUV 2009 2.58% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Acura TL Sedan 2012 2.15% Dodge Caravan Minivan 1997 2.14% Dodge Sprinter Cargo Van 2009 1.46% Lincoln Town Car Sedan 2011 1.42% Chevrolet Express Cargo Van 2007 1.41% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 8.85% Chevrolet Express Cargo Van 2007 5.2% Chevrolet Express Van 2007 4.26% Mercedes-Benz Sprinter Van 2012 3.1% Dodge Sprinter Cargo Van 2009 2.87% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Maybach Landaulet Convertible 2012 4.6% Mercedes-Benz 300-Class Convertible 1993 3.71% Bugatti Veyron 16.4 Coupe 2009 3.04% Ford GT Coupe 2006 2.49% Aston Martin V8 Vantage Coupe 2012 2.34% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.19% Bugatti Veyron 16.4 Coupe 2009 1.53% MINI Cooper Roadster Convertible 2012 1.4% Audi S5 Convertible 2012 1.39% Mercedes-Benz SL-Class Coupe 2009 1.26% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Lamborghini Reventon Coupe 2008 2.09% Cadillac Escalade EXT Crew Cab 2007 1.72% Plymouth Neon Coupe 1999 1.69% Cadillac CTS-V Sedan 2012 1.43% Daewoo Nubira Wagon 2002 1.4% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 MINI Cooper Roadster Convertible 2012 10.42% Hyundai Azera Sedan 2012 3.14% BMW X3 SUV 2012 2.97% Dodge Challenger SRT8 2011 2.74% Mercedes-Benz S-Class Sedan 2012 2.69% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 HUMMER H2 SUT Crew Cab 2009 37.94% AM General Hummer SUV 2000 19.04% Jeep Wrangler SUV 2012 16.57% HUMMER H3T Crew Cab 2010 13.69% Chevrolet Corvette Convertible 2012 0.9% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Chrysler 300 SRT-8 2010 2.41% Chevrolet Silverado 2500HD Regular Cab 2012 2.04% Chevrolet Silverado 1500 Regular Cab 2012 1.94% Ford F-150 Regular Cab 2007 1.92% Chevrolet Malibu Sedan 2007 1.67% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Spyker C8 Convertible 2009 5.14% Lamborghini Reventon Coupe 2008 3.47% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.77% Maybach Landaulet Convertible 2012 2.72% Bentley Continental Supersports Conv. Convertible 2012 2.29% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 AM General Hummer SUV 2000 41.13% HUMMER H2 SUT Crew Cab 2009 17.43% Jeep Patriot SUV 2012 5.05% Jeep Wrangler SUV 2012 4.21% Jeep Liberty SUV 2012 2.72% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Dodge Durango SUV 2012 1.67% Hyundai Genesis Sedan 2012 1.5% Mercedes-Benz C-Class Sedan 2012 1.47% Cadillac SRX SUV 2012 1.27% Chrysler Aspen SUV 2009 1.26% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 6.84% Chevrolet Express Cargo Van 2007 5.39% Mercedes-Benz Sprinter Van 2012 4.41% Dodge Sprinter Cargo Van 2009 2.67% Chevrolet Express Van 2007 2.13% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 44.4% McLaren MP4-12C Coupe 2012 14.31% Acura Integra Type R 2001 9.23% Audi RS 4 Convertible 2008 9.13% Aston Martin Virage Coupe 2012 3.76% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Dodge Caliber Wagon 2007 9.36% Suzuki SX4 Hatchback 2012 4.31% BMW X6 SUV 2012 4.17% Volkswagen Golf Hatchback 1991 3.07% BMW 1 Series Coupe 2012 2.85% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Rolls-Royce Phantom Sedan 2012 4.98% Hyundai Azera Sedan 2012 4.45% MINI Cooper Roadster Convertible 2012 3.79% Mercedes-Benz E-Class Sedan 2012 3.31% Spyker C8 Convertible 2009 2.56% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Jeep Wrangler SUV 2012 7.44% BMW X6 SUV 2012 6.25% Dodge Caliber Wagon 2007 5.13% HUMMER H2 SUT Crew Cab 2009 4.14% HUMMER H3T Crew Cab 2010 4.02% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 FIAT 500 Convertible 2012 4.21% Mercedes-Benz E-Class Sedan 2012 2.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.14% Audi S5 Convertible 2012 1.69% Maybach Landaulet Convertible 2012 1.54% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 6.7% GMC Canyon Extended Cab 2012 3.94% Dodge Caliber Wagon 2012 2.93% Chevrolet Silverado 1500 Regular Cab 2012 2.93% Dodge Dakota Crew Cab 2010 2.35% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Audi V8 Sedan 1994 1.85% Bentley Continental GT Coupe 2007 1.55% Rolls-Royce Ghost Sedan 2012 1.48% BMW M6 Convertible 2010 1.42% Chrysler 300 SRT-8 2010 1.37% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 5.93% Ferrari 458 Italia Coupe 2012 5.81% Dodge Charger SRT-8 2009 4.33% BMW M3 Coupe 2012 4.22% Ferrari 458 Italia Convertible 2012 3.48% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 3.61% Chevrolet Express Cargo Van 2007 3.48% Dodge Sprinter Cargo Van 2009 3.24% Ram C/V Cargo Van Minivan 2012 3.14% Mercedes-Benz Sprinter Van 2012 2.9% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 22.89% Aston Martin Virage Coupe 2012 11.98% Acura Integra Type R 2001 11.96% Geo Metro Convertible 1993 9.72% McLaren MP4-12C Coupe 2012 6.67% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 FIAT 500 Convertible 2012 9.62% Maybach Landaulet Convertible 2012 5.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.76% Bugatti Veyron 16.4 Convertible 2009 3.47% Nissan Leaf Hatchback 2012 3.04% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 31.88% Chevrolet Express Van 2007 7.12% Chevrolet Express Cargo Van 2007 6.61% Chevrolet Silverado 1500 Extended Cab 2012 2.89% Buick Rainier SUV 2007 2.76% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Dodge Caliber Wagon 2007 3.79% Chevrolet Silverado 1500 Regular Cab 2012 2.8% Dodge Ram Pickup 3500 Quad Cab 2009 2.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Ford Ranger SuperCab 2011 1.8% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Infiniti G Coupe IPL 2012 3.02% Eagle Talon Hatchback 1998 2.89% Chrysler 300 SRT-8 2010 2.85% BMW M6 Convertible 2010 2.75% Chevrolet Corvette ZR1 2012 2.68% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 MINI Cooper Roadster Convertible 2012 2.32% Mercedes-Benz S-Class Sedan 2012 2.2% Bentley Continental Supersports Conv. Convertible 2012 2.08% BMW M3 Coupe 2012 1.91% Rolls-Royce Phantom Sedan 2012 1.75% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 16.15% Acura Integra Type R 2001 12.79% AM General Hummer SUV 2000 7.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.74% Geo Metro Convertible 1993 5.24% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette Convertible 2012 20.99% Geo Metro Convertible 1993 14.23% Acura Integra Type R 2001 11.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.2% Lamborghini Diablo Coupe 2001 9.71% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 4.77% MINI Cooper Roadster Convertible 2012 2.91% Hyundai Genesis Sedan 2012 2.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.17% Bentley Continental Supersports Conv. Convertible 2012 1.87% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi TT RS Coupe 2012 8.52% Toyota Corolla Sedan 2012 4.56% Nissan 240SX Coupe 1998 4.2% Dodge Magnum Wagon 2008 4.04% Chevrolet HHR SS 2010 3.34% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 23.56% Acura Integra Type R 2001 12.22% Geo Metro Convertible 1993 6.75% Ferrari 458 Italia Convertible 2012 5.76% McLaren MP4-12C Coupe 2012 4.74% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Spyker C8 Convertible 2009 5.01% Lamborghini Reventon Coupe 2008 3.29% Hyundai Azera Sedan 2012 3.13% Bentley Continental Supersports Conv. Convertible 2012 2.77% Rolls-Royce Phantom Sedan 2012 2.74% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 3.34% Chevrolet Silverado 1500 Extended Cab 2012 1.88% Chevrolet Avalanche Crew Cab 2012 1.78% Chevrolet Express Van 2007 1.73% Buick Rainier SUV 2007 1.47% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Ferrari 458 Italia Convertible 2012 12.14% Ferrari 458 Italia Coupe 2012 9.76% Ferrari California Convertible 2012 7.03% BMW M3 Coupe 2012 5.92% Lamborghini Aventador Coupe 2012 5.37% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Jeep Patriot SUV 2012 2.82% Land Rover Range Rover SUV 2012 2.49% GMC Savana Van 2012 2.23% Volvo 240 Sedan 1993 2.08% Volkswagen Golf Hatchback 1991 1.84% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 4.11% Chevrolet Silverado 1500 Extended Cab 2012 3.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.74% Dodge Ram Pickup 3500 Quad Cab 2009 2.48% Chevrolet Tahoe Hybrid SUV 2012 2.12% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 HUMMER H2 SUT Crew Cab 2009 18.16% Jeep Wrangler SUV 2012 8.84% HUMMER H3T Crew Cab 2010 8.43% AM General Hummer SUV 2000 3.85% Dodge Charger Sedan 2012 2.99% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Spyker C8 Convertible 2009 5.3% FIAT 500 Abarth 2012 3.96% Lamborghini Reventon Coupe 2008 3.51% Bugatti Veyron 16.4 Coupe 2009 2.9% Jeep Patriot SUV 2012 2.6% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Porsche Panamera Sedan 2012 3.43% Acura TL Sedan 2012 2.99% BMW 1 Series Convertible 2012 2.9% Toyota Camry Sedan 2012 2.58% Acura ZDX Hatchback 2012 2.38% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Rolls-Royce Phantom Sedan 2012 8.74% Bentley Arnage Sedan 2009 3.02% Spyker C8 Convertible 2009 2.6% Bentley Continental GT Coupe 2007 2.2% Hyundai Genesis Sedan 2012 2.04% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 3.73% Porsche Panamera Sedan 2012 2.83% Nissan 240SX Coupe 1998 2.78% Jaguar XK XKR 2012 2.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.69% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Porsche Panamera Sedan 2012 3.98% Chevrolet Corvette ZR1 2012 3.93% Jaguar XK XKR 2012 2.81% Dodge Caravan Minivan 1997 2.64% Nissan Leaf Hatchback 2012 2.37% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 25.97% AM General Hummer SUV 2000 25.03% Jeep Wrangler SUV 2012 11.52% Audi RS 4 Convertible 2008 3.58% Hyundai Veloster Hatchback 2012 2.86% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Ferrari California Convertible 2012 8.49% Dodge Charger SRT-8 2009 6.29% Ferrari 458 Italia Coupe 2012 6.14% Ferrari 458 Italia Convertible 2012 5.94% Lamborghini Aventador Coupe 2012 5.35% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 6.36% HUMMER H2 SUT Crew Cab 2009 4.72% Bentley Arnage Sedan 2009 4.01% Ford Edge SUV 2012 3.84% BMW X5 SUV 2007 3.69% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 MINI Cooper Roadster Convertible 2012 4.69% Mercedes-Benz S-Class Sedan 2012 3.13% Bugatti Veyron 16.4 Convertible 2009 2.27% Mercedes-Benz E-Class Sedan 2012 2.19% Mercedes-Benz SL-Class Coupe 2009 2.16% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 13.48% Lincoln Town Car Sedan 2011 4.62% Nissan Leaf Hatchback 2012 4.52% Daewoo Nubira Wagon 2002 4.02% Plymouth Neon Coupe 1999 3.33% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Infiniti G Coupe IPL 2012 2.52% Chevrolet Corvette ZR1 2012 2.26% Porsche Panamera Sedan 2012 1.85% Jaguar XK XKR 2012 1.61% Chrysler 300 SRT-8 2010 1.35% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 MINI Cooper Roadster Convertible 2012 3.59% Mercedes-Benz S-Class Sedan 2012 3.53% Mercedes-Benz SL-Class Coupe 2009 3.49% Audi S5 Convertible 2012 2.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.15% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Mercedes-Benz E-Class Sedan 2012 2.79% MINI Cooper Roadster Convertible 2012 2.65% Audi S5 Convertible 2012 2.3% Mercedes-Benz SL-Class Coupe 2009 2.14% BMW ActiveHybrid 5 Sedan 2012 1.94% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Buick Rainier SUV 2007 2.28% BMW X6 SUV 2012 1.95% Ford Ranger SuperCab 2011 1.79% GMC Savana Van 2012 1.78% Chevrolet Silverado 1500 Regular Cab 2012 1.77% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 1.06% Chrysler PT Cruiser Convertible 2008 1.05% BMW 6 Series Convertible 2007 1.01% Hyundai Tucson SUV 2012 0.93% Mercedes-Benz SL-Class Coupe 2009 0.9% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 AM General Hummer SUV 2000 6.79% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.39% Jeep Wrangler SUV 2012 3.51% Chevrolet Corvette ZR1 2012 2.67% HUMMER H2 SUT Crew Cab 2009 2.59% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Plymouth Neon Coupe 1999 3.98% Chevrolet Monte Carlo Coupe 2007 2.6% Chevrolet Express Van 2007 2.58% GMC Savana Van 2012 2.52% Chevrolet Malibu Sedan 2007 2.38% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chrysler 300 SRT-8 2010 2.74% BMW M6 Convertible 2010 2.48% Chevrolet TrailBlazer SS 2009 2.05% Rolls-Royce Ghost Sedan 2012 1.94% Chevrolet Silverado 2500HD Regular Cab 2012 1.84% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Ram C/V Cargo Van Minivan 2012 5.77% Toyota Camry Sedan 2012 4.22% Acura TL Sedan 2012 3.29% BMW 1 Series Convertible 2012 2.71% Lincoln Town Car Sedan 2011 2.47% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 AM General Hummer SUV 2000 3.14% FIAT 500 Abarth 2012 2.98% Spyker C8 Convertible 2009 2.47% Bugatti Veyron 16.4 Coupe 2009 2.44% Jeep Patriot SUV 2012 2.28% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bentley Continental Supersports Conv. Convertible 2012 2.8% MINI Cooper Roadster Convertible 2012 2.75% smart fortwo Convertible 2012 2.52% Mercedes-Benz Sprinter Van 2012 2.49% Bugatti Veyron 16.4 Convertible 2009 2.48% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 6.62% HUMMER H3T Crew Cab 2010 6.45% Ford Expedition EL SUV 2009 5.68% HUMMER H2 SUT Crew Cab 2009 5.28% Ford Edge SUV 2012 4.68% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 Daewoo Nubira Wagon 2002 4.27% GMC Savana Van 2012 3.55% Chevrolet Malibu Sedan 2007 2.67% Dodge Caravan Minivan 1997 2.54% Ford Focus Sedan 2007 2.44% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.56% Chevrolet Avalanche Crew Cab 2012 2.46% Ford F-150 Regular Cab 2007 2.22% GMC Yukon Hybrid SUV 2012 1.91% Chrysler 300 SRT-8 2010 1.89% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Ford Ranger SuperCab 2011 7.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.68% Dodge Caliber Wagon 2007 3.67% Chevrolet Silverado 1500 Regular Cab 2012 3.66% Buick Rainier SUV 2007 3.17% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Chrysler 300 SRT-8 2010 1.68% Cadillac CTS-V Sedan 2012 1.48% FIAT 500 Abarth 2012 1.45% Cadillac Escalade EXT Crew Cab 2007 1.37% Lamborghini Reventon Coupe 2008 1.34% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Bentley Arnage Sedan 2009 2.51% Cadillac Escalade EXT Crew Cab 2007 2.01% Cadillac SRX SUV 2012 1.78% Rolls-Royce Phantom Sedan 2012 1.75% Land Rover Range Rover SUV 2012 1.52% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.54% Porsche Panamera Sedan 2012 1.51% Acura ZDX Hatchback 2012 1.35% Jaguar XK XKR 2012 1.23% Aston Martin V8 Vantage Coupe 2012 1.19% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 2.56% Mercedes-Benz 300-Class Convertible 1993 2.22% Audi 100 Wagon 1994 1.95% Chevrolet Express Cargo Van 2007 1.94% Volvo 240 Sedan 1993 1.69% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Chevrolet Silverado 2500HD Regular Cab 2012 2.88% Chevrolet Silverado 1500 Regular Cab 2012 2.49% Audi V8 Sedan 1994 1.84% Chevrolet Traverse SUV 2012 1.8% GMC Savana Van 2012 1.69% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 MINI Cooper Roadster Convertible 2012 5.59% Mercedes-Benz S-Class Sedan 2012 4.08% Rolls-Royce Phantom Sedan 2012 3.05% Bentley Continental Supersports Conv. Convertible 2012 2.29% BMW M3 Coupe 2012 2.19% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 33.88% Acura Integra Type R 2001 16.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 12.39% McLaren MP4-12C Coupe 2012 5.16% Audi RS 4 Convertible 2008 4.6% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Aston Martin V8 Vantage Coupe 2012 2.38% Geo Metro Convertible 1993 2.32% FIAT 500 Convertible 2012 2.2% Chevrolet Corvette ZR1 2012 2.15% Nissan Leaf Hatchback 2012 2.07% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 4.44% FIAT 500 Convertible 2012 3.64% Maybach Landaulet Convertible 2012 2.97% Mercedes-Benz S-Class Sedan 2012 2.25% smart fortwo Convertible 2012 2.08% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Dodge Sprinter Cargo Van 2009 4.45% Ram C/V Cargo Van Minivan 2012 4.16% Volkswagen Beetle Hatchback 2012 3.21% Volkswagen Golf Hatchback 2012 3.21% Hyundai Elantra Touring Hatchback 2012 2.53% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Jeep Grand Cherokee SUV 2012 2.36% Dodge Dakota Club Cab 2007 2.34% Ford F-150 Regular Cab 2012 2.25% Land Rover Range Rover SUV 2012 2.16% GMC Terrain SUV 2012 2.15% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Ford E-Series Wagon Van 2012 7.02% Jeep Liberty SUV 2012 5.56% Isuzu Ascender SUV 2008 3.31% Jeep Wrangler SUV 2012 2.39% Dodge Caliber Wagon 2012 2.23% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 2500HD Regular Cab 2012 3.31% Chevrolet Silverado 1500 Regular Cab 2012 2.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.9% Audi V8 Sedan 1994 1.8% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.74% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Hyundai Elantra Sedan 2007 6.06% Toyota Corolla Sedan 2012 2.38% Volkswagen Beetle Hatchback 2012 2.19% Hyundai Accent Sedan 2012 2.11% Honda Accord Coupe 2012 2.07% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 20.65% HUMMER H2 SUT Crew Cab 2009 19.74% Jeep Wrangler SUV 2012 16.32% AM General Hummer SUV 2000 6.41% Dodge Charger Sedan 2012 2.71% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Chevrolet TrailBlazer SS 2009 3.8% Chevrolet Corvette ZR1 2012 3.02% Chevrolet Silverado 1500 Regular Cab 2012 1.84% Chrysler 300 SRT-8 2010 1.84% Hyundai Veracruz SUV 2012 1.79% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 3.51% Chrysler 300 SRT-8 2010 3.37% Infiniti G Coupe IPL 2012 3.13% Chevrolet Silverado 2500HD Regular Cab 2012 2.73% Eagle Talon Hatchback 1998 2.27% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Bentley Arnage Sedan 2009 2.36% Rolls-Royce Ghost Sedan 2012 2.27% Cadillac Escalade EXT Crew Cab 2007 1.93% HUMMER H2 SUT Crew Cab 2009 1.77% Jeep Patriot SUV 2012 1.75% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ram C/V Cargo Van Minivan 2012 5.5% Acura TSX Sedan 2012 2.73% Volkswagen Golf Hatchback 2012 2.32% Mercedes-Benz Sprinter Van 2012 2.24% Lincoln Town Car Sedan 2011 2.17% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Lamborghini Diablo Coupe 2001 18.86% McLaren MP4-12C Coupe 2012 15.02% Aston Martin Virage Coupe 2012 7.89% Acura Integra Type R 2001 5.2% Ferrari 458 Italia Convertible 2012 4.64% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 BMW 1 Series Convertible 2012 3.11% Ram C/V Cargo Van Minivan 2012 2.85% Aston Martin V8 Vantage Coupe 2012 2.51% Jaguar XK XKR 2012 2.28% Aston Martin V8 Vantage Convertible 2012 2.15% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 AM General Hummer SUV 2000 9.46% Jeep Liberty SUV 2012 6.44% Jeep Patriot SUV 2012 4.18% HUMMER H2 SUT Crew Cab 2009 3.16% Jeep Wrangler SUV 2012 3.07% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Volvo C30 Hatchback 2012 4.24% Aston Martin Virage Coupe 2012 3.43% McLaren MP4-12C Coupe 2012 2.49% Spyker C8 Convertible 2009 2.27% Ferrari California Convertible 2012 2.24% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 MINI Cooper Roadster Convertible 2012 7.91% Mercedes-Benz E-Class Sedan 2012 2.95% Audi TT Hatchback 2011 2.87% BMW ActiveHybrid 5 Sedan 2012 2.83% Mercedes-Benz SL-Class Coupe 2009 2.8% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Chevrolet TrailBlazer SS 2009 4.65% Cadillac Escalade EXT Crew Cab 2007 3.56% Chrysler 300 SRT-8 2010 2.26% Dodge Durango SUV 2007 1.78% Dodge Ram Pickup 3500 Crew Cab 2010 1.71% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 53.43% Lamborghini Gallardo LP 570-4 Superleggera 2012 23.76% Jeep Wrangler SUV 2012 5.6% HUMMER H2 SUT Crew Cab 2009 3.56% HUMMER H3T Crew Cab 2010 1.2% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Dodge Dakota Club Cab 2007 2.43% Chevrolet Avalanche Crew Cab 2012 2.38% GMC Terrain SUV 2012 2.38% Ford F-150 Regular Cab 2007 1.95% Dodge Durango SUV 2007 1.84% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 6.96% Mercedes-Benz S-Class Sedan 2012 5.09% Maybach Landaulet Convertible 2012 2.87% MINI Cooper Roadster Convertible 2012 2.66% Bentley Continental Supersports Conv. Convertible 2012 2.53% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Chevrolet Corvette ZR1 2012 2.14% Infiniti G Coupe IPL 2012 1.84% Jaguar XK XKR 2012 1.77% Chevrolet Silverado 1500 Regular Cab 2012 1.6% Chevrolet Silverado 2500HD Regular Cab 2012 1.6% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 4.61% Mercedes-Benz C-Class Sedan 2012 3.31% Bentley Mulsanne Sedan 2011 2.89% Fisker Karma Sedan 2012 2.66% MINI Cooper Roadster Convertible 2012 2.38% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 MINI Cooper Roadster Convertible 2012 5.9% Audi S6 Sedan 2011 2.99% Dodge Challenger SRT8 2011 2.36% Audi A5 Coupe 2012 2.29% Audi R8 Coupe 2012 2.27% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Volvo 240 Sedan 1993 2.56% Chevrolet Express Cargo Van 2007 2.53% GMC Savana Van 2012 2.24% Hyundai Tucson SUV 2012 2.15% Dodge Caravan Minivan 1997 2.15% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Nissan Leaf Hatchback 2012 4.24% Bugatti Veyron 16.4 Convertible 2009 3.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.13% FIAT 500 Convertible 2012 3.06% Daewoo Nubira Wagon 2002 2.24% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 3.61% Hyundai Elantra Sedan 2007 3.52% Ferrari FF Coupe 2012 3.28% Honda Accord Coupe 2012 2.87% BMW 1 Series Coupe 2012 2.77% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 Aston Martin Virage Coupe 2012 6.5% Aston Martin V8 Vantage Coupe 2012 5.98% AM General Hummer SUV 2000 5.47% Chevrolet Corvette ZR1 2012 5.16% HUMMER H2 SUT Crew Cab 2009 3.84% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 23.5% Chevrolet Corvette ZR1 2012 4.57% Chevrolet Corvette Convertible 2012 2.36% Bentley Continental Supersports Conv. Convertible 2012 2.13% Aston Martin V8 Vantage Coupe 2012 2.03% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 8.77% Chrysler 300 SRT-8 2010 6.11% Ford Expedition EL SUV 2009 4.35% Chevrolet Silverado 1500 Regular Cab 2012 4.16% BMW M6 Convertible 2010 3.47% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Hyundai Santa Fe SUV 2012 5.11% BMW X5 SUV 2007 4.31% Ford F-150 Regular Cab 2012 4.25% Ford Ranger SuperCab 2011 3.62% Isuzu Ascender SUV 2008 3.41% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 HUMMER H2 SUT Crew Cab 2009 3.82% AM General Hummer SUV 2000 3.74% Chevrolet Corvette ZR1 2012 2.75% Jeep Wrangler SUV 2012 2.31% Bugatti Veyron 16.4 Coupe 2009 2.21% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Ford E-Series Wagon Van 2012 7.61% HUMMER H2 SUT Crew Cab 2009 5.2% BMW X5 SUV 2007 4.28% Jeep Liberty SUV 2012 3.37% Mazda Tribute SUV 2011 3.17% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 HUMMER H3T Crew Cab 2010 4.67% AM General Hummer SUV 2000 4.51% HUMMER H2 SUT Crew Cab 2009 4.11% Jeep Wrangler SUV 2012 3.04% Bentley Arnage Sedan 2009 2.64% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 3.03% Ford Freestar Minivan 2007 2.71% Ford E-Series Wagon Van 2012 2.32% Chevrolet Avalanche Crew Cab 2012 2.21% Buick Enclave SUV 2012 2.14% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 FIAT 500 Abarth 2012 14.61% Spyker C8 Convertible 2009 9.15% Bentley Arnage Sedan 2009 6.46% Jeep Patriot SUV 2012 2.9% Bugatti Veyron 16.4 Coupe 2009 2.79% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Audi S6 Sedan 2011 2.45% Dodge Ram Pickup 3500 Crew Cab 2010 2.36% Chrysler Aspen SUV 2009 2.31% Ford E-Series Wagon Van 2012 2.23% Ford Expedition EL SUV 2009 2.12% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Audi V8 Sedan 1994 1.08% Mercedes-Benz 300-Class Convertible 1993 1.07% Volkswagen Golf Hatchback 1991 1.06% Chevrolet Silverado 1500 Regular Cab 2012 1.06% Volvo 240 Sedan 1993 1.05% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Bentley Arnage Sedan 2009 1.48% GMC Yukon Hybrid SUV 2012 1.38% Land Rover LR2 SUV 2012 1.38% Rolls-Royce Phantom Sedan 2012 1.28% FIAT 500 Abarth 2012 1.26% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Lamborghini Aventador Coupe 2012 17.16% Ferrari 458 Italia Convertible 2012 14.86% Ferrari 458 Italia Coupe 2012 7.54% Aston Martin Virage Coupe 2012 5.93% Ferrari California Convertible 2012 5.62% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Daewoo Nubira Wagon 2002 5.0% Nissan Leaf Hatchback 2012 3.19% Hyundai Elantra Sedan 2007 2.53% Plymouth Neon Coupe 1999 2.39% FIAT 500 Convertible 2012 2.07% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Chevrolet Express Cargo Van 2007 2.76% Dodge Caravan Minivan 1997 1.56% Audi 100 Wagon 1994 1.53% Audi V8 Sedan 1994 1.53% Acura TL Type-S 2008 1.49% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 6.28% Lincoln Town Car Sedan 2011 3.56% Volkswagen Golf Hatchback 2012 3.4% Acura TSX Sedan 2012 3.1% Mercedes-Benz Sprinter Van 2012 3.05% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.07% Chevrolet Avalanche Crew Cab 2012 1.84% Hyundai Veracruz SUV 2012 1.78% Chevrolet Silverado 2500HD Regular Cab 2012 1.76% Chrysler 300 SRT-8 2010 1.73% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Sedan 2007 4.07% Hyundai Accent Sedan 2012 4.02% Audi TT RS Coupe 2012 3.48% Volkswagen Beetle Hatchback 2012 3.38% Dodge Magnum Wagon 2008 3.1% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 FIAT 500 Convertible 2012 3.56% Nissan Leaf Hatchback 2012 2.33% Mercedes-Benz S-Class Sedan 2012 2.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.15% Suzuki Aerio Sedan 2007 2.09% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Honda Accord Coupe 2012 1.38% Chevrolet Silverado 1500 Extended Cab 2012 1.35% Chevrolet Silverado 2500HD Regular Cab 2012 1.28% Dodge Caliber Wagon 2012 1.26% Chevrolet Silverado 1500 Regular Cab 2012 1.21% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 20.48% Lamborghini Diablo Coupe 2001 13.05% Geo Metro Convertible 1993 10.96% Acura Integra Type R 2001 9.09% Ferrari 458 Italia Convertible 2012 6.12% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.63% Dodge Durango SUV 2012 3.18% Chevrolet TrailBlazer SS 2009 3.12% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.96% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 39.45% Aston Martin Virage Coupe 2012 13.68% Chevrolet Corvette Convertible 2012 9.26% Hyundai Veloster Hatchback 2012 5.68% Audi RS 4 Convertible 2008 4.89% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Gallardo LP 570-4 Superleggera 2012 11.86% Audi RS 4 Convertible 2008 3.8% Lamborghini Reventon Coupe 2008 3.13% Bugatti Veyron 16.4 Coupe 2009 3.0% Spyker C8 Convertible 2009 2.5% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.75% Jaguar XK XKR 2012 2.31% Nissan Leaf Hatchback 2012 2.27% Porsche Panamera Sedan 2012 2.09% Acura TL Sedan 2012 1.9% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Dodge Caliber Wagon 2007 7.03% Suzuki SX4 Hatchback 2012 3.11% BMW X6 SUV 2012 2.9% Ford Ranger SuperCab 2011 2.86% Volkswagen Golf Hatchback 1991 2.8% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 Fisker Karma Sedan 2012 2.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.99% Mercedes-Benz 300-Class Convertible 1993 1.77% Mercedes-Benz S-Class Sedan 2012 1.73% Aston Martin V8 Vantage Coupe 2012 1.65% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 33.05% Ferrari California Convertible 2012 9.99% Ferrari 458 Italia Coupe 2012 9.29% Audi TT RS Coupe 2012 6.48% Chevrolet HHR SS 2010 4.97% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 McLaren MP4-12C Coupe 2012 9.02% Aston Martin Virage Coupe 2012 8.88% Chevrolet Corvette Convertible 2012 7.87% Hyundai Veloster Hatchback 2012 6.8% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.59% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Audi TT RS Coupe 2012 4.58% Dodge Magnum Wagon 2008 3.88% Dodge Caliber Wagon 2007 2.77% Nissan 240SX Coupe 1998 2.65% Chevrolet HHR SS 2010 2.14% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 2.92% Audi V8 Sedan 1994 2.69% Bugatti Veyron 16.4 Coupe 2009 2.64% Bentley Mulsanne Sedan 2011 2.2% Volvo 240 Sedan 1993 2.07% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Dodge Caravan Minivan 1997 4.48% Ford Freestar Minivan 2007 2.7% Plymouth Neon Coupe 1999 2.67% Lincoln Town Car Sedan 2011 2.2% Daewoo Nubira Wagon 2002 2.19% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.36% Hyundai Azera Sedan 2012 2.04% Bentley Continental Supersports Conv. Convertible 2012 1.75% BMW M3 Coupe 2012 1.64% Suzuki SX4 Sedan 2012 1.56% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Audi V8 Sedan 1994 2.36% Chevrolet Silverado 2500HD Regular Cab 2012 2.22% Infiniti G Coupe IPL 2012 1.75% Audi S5 Coupe 2012 1.69% Chrysler 300 SRT-8 2010 1.46% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 2.61% Mercedes-Benz Sprinter Van 2012 1.81% Mercedes-Benz S-Class Sedan 2012 1.78% Hyundai Azera Sedan 2012 1.7% BMW X3 SUV 2012 1.7% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Expedition EL SUV 2009 6.58% Dodge Ram Pickup 3500 Crew Cab 2010 5.24% Ford F-450 Super Duty Crew Cab 2012 4.21% Cadillac Escalade EXT Crew Cab 2007 3.22% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.09% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.13% BMW ActiveHybrid 5 Sedan 2012 1.8% BMW 1 Series Convertible 2012 1.74% Chrysler Town and Country Minivan 2012 1.67% Acura TSX Sedan 2012 1.38% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 4.19% HUMMER H3T Crew Cab 2010 3.32% Volkswagen Golf Hatchback 1991 2.86% BMW X6 SUV 2012 2.54% Chevrolet Silverado 1500 Regular Cab 2012 2.53% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Audi S6 Sedan 2011 3.23% Audi A5 Coupe 2012 3.06% Chevrolet Silverado 2500HD Regular Cab 2012 2.29% Dodge Journey SUV 2012 1.79% Chevrolet Silverado 1500 Extended Cab 2012 1.63% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Audi V8 Sedan 1994 1.37% Chevrolet Express Cargo Van 2007 1.31% Dodge Dakota Club Cab 2007 1.19% Lincoln Town Car Sedan 2011 1.17% Hyundai Tucson SUV 2012 1.06% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 FIAT 500 Convertible 2012 6.38% Nissan Leaf Hatchback 2012 5.04% Mercedes-Benz Sprinter Van 2012 4.4% Dodge Sprinter Cargo Van 2009 4.34% Volkswagen Golf Hatchback 2012 3.04% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 4.98% FIAT 500 Abarth 2012 4.72% Jeep Patriot SUV 2012 2.52% AM General Hummer SUV 2000 2.5% Cadillac Escalade EXT Crew Cab 2007 2.32% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari California Convertible 2012 5.16% Ferrari 458 Italia Convertible 2012 4.69% Ferrari 458 Italia Coupe 2012 4.64% Aston Martin Virage Coupe 2012 4.28% Volvo C30 Hatchback 2012 4.24% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 4.45% Chevrolet Corvette ZR1 2012 3.85% Porsche Panamera Sedan 2012 3.4% Acura Integra Type R 2001 2.58% Aston Martin V8 Vantage Coupe 2012 2.33% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Gallardo LP 570-4 Superleggera 2012 35.62% Spyker C8 Coupe 2009 3.63% Ford GT Coupe 2006 2.86% Spyker C8 Convertible 2009 2.82% Lamborghini Diablo Coupe 2001 2.61% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Dodge Caliber Wagon 2007 8.63% BMW 1 Series Coupe 2012 5.59% Suzuki SX4 Hatchback 2012 5.51% HUMMER H3T Crew Cab 2010 5.5% BMW X6 SUV 2012 5.1% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 5.01% Hyundai Elantra Sedan 2007 4.24% Suzuki SX4 Hatchback 2012 2.28% Dodge Journey SUV 2012 1.85% Volkswagen Beetle Hatchback 2012 1.78% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Porsche Panamera Sedan 2012 2.76% Nissan Leaf Hatchback 2012 2.69% Jaguar XK XKR 2012 2.2% Toyota Camry Sedan 2012 1.76% Suzuki Aerio Sedan 2007 1.69% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 3.37% Fisker Karma Sedan 2012 3.05% Acura TL Type-S 2008 2.81% Hyundai Genesis Sedan 2012 2.37% Mercedes-Benz S-Class Sedan 2012 2.36% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 BMW X3 SUV 2012 4.69% Bentley Mulsanne Sedan 2011 3.93% Mercedes-Benz C-Class Sedan 2012 3.87% Toyota 4Runner SUV 2012 3.04% Mazda Tribute SUV 2011 3.03% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 12.77% Lamborghini Aventador Coupe 2012 8.26% Ferrari California Convertible 2012 7.91% Ferrari 458 Italia Coupe 2012 5.96% Aston Martin Virage Coupe 2012 5.74% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.7% Chevrolet Silverado 1500 Regular Cab 2012 3.72% Chevrolet TrailBlazer SS 2009 3.32% Ford F-450 Super Duty Crew Cab 2012 3.15% Dodge Ram Pickup 3500 Quad Cab 2009 2.89% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Jeep Patriot SUV 2012 6.84% HUMMER H2 SUT Crew Cab 2009 6.11% Bentley Arnage Sedan 2009 6.07% AM General Hummer SUV 2000 6.05% Jeep Wrangler SUV 2012 3.85% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 MINI Cooper Roadster Convertible 2012 3.79% Mercedes-Benz S-Class Sedan 2012 2.52% Bugatti Veyron 16.4 Convertible 2009 2.37% Bentley Mulsanne Sedan 2011 2.17% Fisker Karma Sedan 2012 1.95% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 12.8% Chevrolet Express Cargo Van 2007 4.88% Chevrolet Express Van 2007 4.43% Chevrolet Silverado 1500 Extended Cab 2012 3.59% Buick Rainier SUV 2007 2.29% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.17% Chrysler 300 SRT-8 2010 1.14% Dodge Durango SUV 2007 1.12% Chrysler Aspen SUV 2009 1.1% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Bentley Arnage Sedan 2009 6.99% Bentley Mulsanne Sedan 2011 5.31% Hyundai Azera Sedan 2012 3.19% Mercedes-Benz C-Class Sedan 2012 3.07% MINI Cooper Roadster Convertible 2012 2.83% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Dodge Caliber Wagon 2007 2.24% Hyundai Elantra Sedan 2007 2.02% Hyundai Azera Sedan 2012 1.66% Nissan Juke Hatchback 2012 1.44% Buick Verano Sedan 2012 1.28% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 4.27% Dodge Ram Pickup 3500 Crew Cab 2010 3.66% Ford F-450 Super Duty Crew Cab 2012 3.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.7% Hyundai Santa Fe SUV 2012 2.62% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Dodge Caliber Wagon 2007 3.82% Volvo C30 Hatchback 2012 3.5% Suzuki SX4 Hatchback 2012 2.61% Jeep Wrangler SUV 2012 2.45% smart fortwo Convertible 2012 2.34% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.53% Maybach Landaulet Convertible 2012 5.35% Aston Martin V8 Vantage Coupe 2012 2.96% Bugatti Veyron 16.4 Coupe 2009 2.38% Ford GT Coupe 2006 1.81% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 19.68% Audi RS 4 Convertible 2008 14.72% Lamborghini Diablo Coupe 2001 11.55% Hyundai Veloster Hatchback 2012 5.87% Ford GT Coupe 2006 5.67% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 3.39% Chevrolet Silverado 1500 Extended Cab 2012 2.59% Chevrolet Tahoe Hybrid SUV 2012 2.57% Dodge Dakota Club Cab 2007 2.23% Audi V8 Sedan 1994 1.96% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Dodge Caravan Minivan 1997 3.13% Ford Freestar Minivan 2007 2.95% Volkswagen Golf Hatchback 2012 2.24% Ram C/V Cargo Van Minivan 2012 2.22% Mercedes-Benz Sprinter Van 2012 2.21% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 2500HD Regular Cab 2012 6.08% Audi R8 Coupe 2012 3.79% Chrysler 300 SRT-8 2010 3.54% BMW M6 Convertible 2010 3.32% Ford F-450 Super Duty Crew Cab 2012 3.27% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Ford E-Series Wagon Van 2012 4.12% Hyundai Azera Sedan 2012 2.97% Dodge Challenger SRT8 2011 2.96% Land Rover LR2 SUV 2012 2.06% Isuzu Ascender SUV 2008 1.91% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Chevrolet Cobalt SS 2010 7.29% Ferrari California Convertible 2012 6.65% Ferrari 458 Italia Coupe 2012 5.5% Dodge Charger SRT-8 2009 4.46% Dodge Magnum Wagon 2008 3.62% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 12.4% Ford Ranger SuperCab 2011 4.45% Jeep Wrangler SUV 2012 3.27% BMW X6 SUV 2012 3.18% Dodge Caliber Wagon 2012 2.92% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 AM General Hummer SUV 2000 5.81% HUMMER H2 SUT Crew Cab 2009 5.4% Bentley Arnage Sedan 2009 4.38% Jeep Wrangler SUV 2012 3.62% Jeep Patriot SUV 2012 3.41% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.37% Mercedes-Benz Sprinter Van 2012 1.82% Lincoln Town Car Sedan 2011 1.64% Volkswagen Golf Hatchback 2012 1.55% Acura TSX Sedan 2012 1.53% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 8.42% Chevrolet Traverse SUV 2012 4.58% Volkswagen Golf Hatchback 1991 4.05% Ford Ranger SuperCab 2011 4.04% Ford Freestar Minivan 2007 3.1% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Bentley Mulsanne Sedan 2011 1.84% Dodge Challenger SRT8 2011 1.78% Chrysler Aspen SUV 2009 1.75% Audi V8 Sedan 1994 1.6% Chrysler 300 SRT-8 2010 1.57% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Audi V8 Sedan 1994 3.47% Chevrolet Silverado 2500HD Regular Cab 2012 3.16% Infiniti G Coupe IPL 2012 2.06% Audi S5 Coupe 2012 1.73% Audi 100 Wagon 1994 1.72% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 9.25% Chevrolet TrailBlazer SS 2009 5.01% Dodge Ram Pickup 3500 Crew Cab 2010 4.3% Ford Expedition EL SUV 2009 4.06% Toyota 4Runner SUV 2012 3.11% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Ferrari 458 Italia Coupe 2012 6.46% Ferrari 458 Italia Convertible 2012 5.17% Geo Metro Convertible 1993 3.92% Volvo C30 Hatchback 2012 3.54% Ferrari California Convertible 2012 3.11% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 8.05% Lamborghini Aventador Coupe 2012 6.54% McLaren MP4-12C Coupe 2012 5.24% Volvo C30 Hatchback 2012 4.81% Ferrari California Convertible 2012 3.54% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 6.72% GMC Canyon Extended Cab 2012 4.96% Chevrolet Silverado 1500 Regular Cab 2012 4.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.83% Dodge Caliber Wagon 2007 2.81% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Infiniti G Coupe IPL 2012 1.75% Mercedes-Benz E-Class Sedan 2012 1.69% MINI Cooper Roadster Convertible 2012 1.66% BMW ActiveHybrid 5 Sedan 2012 1.6% Mercedes-Benz SL-Class Coupe 2009 1.57% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Phantom Sedan 2012 4.14% Mercedes-Benz E-Class Sedan 2012 3.57% Spyker C8 Convertible 2009 3.21% Bentley Continental Supersports Conv. Convertible 2012 2.88% Hyundai Genesis Sedan 2012 2.54% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 4.5% Dodge Ram Pickup 3500 Crew Cab 2010 4.27% Ford Expedition EL SUV 2009 3.65% Chevrolet Silverado 1500 Regular Cab 2012 3.46% Dodge Ram Pickup 3500 Quad Cab 2009 2.71% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 12.6% Ferrari 458 Italia Convertible 2012 10.23% Chevrolet HHR SS 2010 8.21% Lamborghini Aventador Coupe 2012 7.22% Ferrari 458 Italia Coupe 2012 7.08% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Chrysler 300 SRT-8 2010 6.0% Rolls-Royce Phantom Sedan 2012 3.78% BMW M6 Convertible 2010 3.17% Bentley Continental GT Coupe 2007 2.54% Chevrolet TrailBlazer SS 2009 2.19% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Sedan 2012 4.42% Bentley Arnage Sedan 2009 3.18% Hyundai Azera Sedan 2012 2.76% Cadillac SRX SUV 2012 2.62% Bentley Mulsanne Sedan 2011 2.3% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Chevrolet TrailBlazer SS 2009 4.64% Cadillac Escalade EXT Crew Cab 2007 2.66% Dodge Durango SUV 2012 2.08% Chrysler 300 SRT-8 2010 1.91% Ford F-450 Super Duty Crew Cab 2012 1.82% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Ram C/V Cargo Van Minivan 2012 5.07% Dodge Sprinter Cargo Van 2009 4.12% Mercedes-Benz Sprinter Van 2012 2.41% Acura TSX Sedan 2012 2.34% GMC Savana Van 2012 2.33% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 BMW X3 SUV 2012 3.09% Ford E-Series Wagon Van 2012 2.86% MINI Cooper Roadster Convertible 2012 2.31% Chrysler Aspen SUV 2009 2.0% Isuzu Ascender SUV 2008 1.89% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.8% Fisker Karma Sedan 2012 1.41% Hyundai Genesis Sedan 2012 1.41% Bentley Mulsanne Sedan 2011 1.38% Volvo 240 Sedan 1993 1.33% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Audi R8 Coupe 2012 2.15% Infiniti G Coupe IPL 2012 1.79% Mercedes-Benz C-Class Sedan 2012 1.71% MINI Cooper Roadster Convertible 2012 1.66% BMW M6 Convertible 2010 1.63% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Hyundai Azera Sedan 2012 2.11% Acura RL Sedan 2012 1.87% Audi V8 Sedan 1994 1.81% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% MINI Cooper Roadster Convertible 2012 1.62% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 7.89% Ferrari 458 Italia Convertible 2012 7.4% Ferrari FF Coupe 2012 5.73% Ferrari 458 Italia Coupe 2012 5.53% BMW 3 Series Sedan 2012 5.35% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Dodge Sprinter Cargo Van 2009 4.08% Acura TL Sedan 2012 2.06% Dodge Caravan Minivan 1997 2.02% Chevrolet Express Cargo Van 2007 2.01% Acura ZDX Hatchback 2012 1.97% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Geo Metro Convertible 1993 2.88% FIAT 500 Convertible 2012 2.87% Suzuki Aerio Sedan 2007 2.5% Daewoo Nubira Wagon 2002 2.47% Chrysler PT Cruiser Convertible 2008 2.27% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 HUMMER H2 SUT Crew Cab 2009 9.98% Bentley Arnage Sedan 2009 6.87% Cadillac Escalade EXT Crew Cab 2007 6.83% AM General Hummer SUV 2000 5.84% Jeep Wrangler SUV 2012 3.47% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chevrolet Monte Carlo Coupe 2007 2.32% Eagle Talon Hatchback 1998 1.8% Chevrolet Corvette ZR1 2012 1.67% Plymouth Neon Coupe 1999 1.56% Chevrolet Malibu Sedan 2007 1.43% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Geo Metro Convertible 1993 7.34% Audi TT RS Coupe 2012 3.64% Volvo C30 Hatchback 2012 2.56% Ferrari 458 Italia Coupe 2012 2.1% Chevrolet HHR SS 2010 1.94% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Hyundai Santa Fe SUV 2012 3.81% BMW X5 SUV 2007 3.5% Ford E-Series Wagon Van 2012 3.11% Ford F-450 Super Duty Crew Cab 2012 2.81% GMC Yukon Hybrid SUV 2012 2.72% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Mercedes-Benz S-Class Sedan 2012 4.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.63% MINI Cooper Roadster Convertible 2012 2.61% BMW M3 Coupe 2012 2.58% Bentley Continental Supersports Conv. Convertible 2012 1.59% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 BMW ActiveHybrid 5 Sedan 2012 7.53% Audi TT Hatchback 2011 6.77% Audi S5 Coupe 2012 3.53% Audi A5 Coupe 2012 3.27% Audi R8 Coupe 2012 2.71% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 FIAT 500 Abarth 2012 2.65% Nissan Juke Hatchback 2012 2.13% Dodge Caliber Wagon 2007 1.96% Suzuki SX4 Hatchback 2012 1.46% HUMMER H3T Crew Cab 2010 1.42% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 5.02% smart fortwo Convertible 2012 4.63% Mercedes-Benz S-Class Sedan 2012 4.43% MINI Cooper Roadster Convertible 2012 3.28% Mercedes-Benz E-Class Sedan 2012 2.36% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Audi TT Hatchback 2011 6.3% Audi A5 Coupe 2012 4.9% BMW ActiveHybrid 5 Sedan 2012 3.86% BMW X3 SUV 2012 2.95% MINI Cooper Roadster Convertible 2012 2.81% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Mercedes-Benz 300-Class Convertible 1993 1.38% Bugatti Veyron 16.4 Coupe 2009 1.24% Volvo 240 Sedan 1993 1.22% Lamborghini Reventon Coupe 2008 1.11% Daewoo Nubira Wagon 2002 1.09% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Lincoln Town Car Sedan 2011 1.78% Chrysler Sebring Convertible 2010 1.77% Ram C/V Cargo Van Minivan 2012 1.69% Chrysler PT Cruiser Convertible 2008 1.61% Daewoo Nubira Wagon 2002 1.49% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 15.91% Chevrolet Express Cargo Van 2007 9.53% Chevrolet Express Van 2007 5.49% Dodge Sprinter Cargo Van 2009 3.96% Chevrolet Traverse SUV 2012 2.29% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.2% Nissan Leaf Hatchback 2012 2.99% Daewoo Nubira Wagon 2002 2.42% Maybach Landaulet Convertible 2012 2.39% Plymouth Neon Coupe 1999 2.29% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 8.77% Chevrolet Corvette ZR1 2012 8.66% Chevrolet Corvette Convertible 2012 5.29% Aston Martin V8 Vantage Coupe 2012 4.49% Geo Metro Convertible 1993 3.22% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Hyundai Genesis Sedan 2012 3.8% Infiniti G Coupe IPL 2012 3.64% Chevrolet Corvette ZR1 2012 3.37% Bugatti Veyron 16.4 Coupe 2009 2.35% Bentley Mulsanne Sedan 2011 2.22% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Abarth 2012 3.06% Chevrolet TrailBlazer SS 2009 2.2% Bentley Arnage Sedan 2009 2.11% Chrysler 300 SRT-8 2010 2.03% HUMMER H2 SUT Crew Cab 2009 1.93% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Hyundai Elantra Sedan 2007 3.73% Lincoln Town Car Sedan 2011 3.29% Plymouth Neon Coupe 1999 2.62% Chevrolet Impala Sedan 2007 2.48% Ram C/V Cargo Van Minivan 2012 2.44% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Rolls-Royce Phantom Sedan 2012 3.35% Chrysler 300 SRT-8 2010 2.72% Lamborghini Reventon Coupe 2008 2.69% Bentley Arnage Sedan 2009 2.49% Bugatti Veyron 16.4 Coupe 2009 2.44% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Audi 100 Sedan 1994 3.02% Acura TL Sedan 2012 2.73% Dodge Caravan Minivan 1997 2.32% Audi V8 Sedan 1994 2.14% Mercedes-Benz 300-Class Convertible 1993 1.92% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Mercedes-Benz Sprinter Van 2012 8.42% GMC Savana Van 2012 7.52% Daewoo Nubira Wagon 2002 3.54% Chevrolet Express Van 2007 3.09% Volkswagen Golf Hatchback 2012 2.59% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Hyundai Elantra Sedan 2007 8.09% Dodge Caliber Wagon 2007 4.17% Plymouth Neon Coupe 1999 3.73% Honda Accord Coupe 2012 3.67% Ford Fiesta Sedan 2012 3.46% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Rolls-Royce Ghost Sedan 2012 2.97% Chrysler 300 SRT-8 2010 1.77% BMW M6 Convertible 2010 1.65% Mercedes-Benz C-Class Sedan 2012 1.52% Hyundai Genesis Sedan 2012 1.44% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Geo Metro Convertible 1993 6.93% Mercedes-Benz 300-Class Convertible 1993 4.05% Chevrolet Corvette ZR1 2012 3.99% Aston Martin V8 Vantage Coupe 2012 3.33% Plymouth Neon Coupe 1999 2.52% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 7.23% Ferrari 458 Italia Convertible 2012 6.78% Dodge Magnum Wagon 2008 4.25% Chevrolet Cobalt SS 2010 4.12% Ferrari 458 Italia Coupe 2012 3.69% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Mercedes-Benz C-Class Sedan 2012 1.95% Ford F-450 Super Duty Crew Cab 2012 1.89% Bentley Arnage Sedan 2009 1.85% Toyota 4Runner SUV 2012 1.83% Ford Edge SUV 2012 1.7% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Rolls-Royce Phantom Sedan 2012 3.49% smart fortwo Convertible 2012 2.83% Bentley Continental Supersports Conv. Convertible 2012 2.63% Bugatti Veyron 16.4 Convertible 2009 2.58% FIAT 500 Convertible 2012 2.41% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 BMW ActiveHybrid 5 Sedan 2012 3.06% Audi TT Hatchback 2011 2.94% Ram C/V Cargo Van Minivan 2012 2.44% Mercedes-Benz Sprinter Van 2012 2.36% MINI Cooper Roadster Convertible 2012 2.32% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 27.79% Nissan Leaf Hatchback 2012 5.33% Mercedes-Benz 300-Class Convertible 1993 3.84% Maybach Landaulet Convertible 2012 3.56% Jaguar XK XKR 2012 2.78% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.63% Ford F-150 Regular Cab 2007 2.55% Chevrolet TrailBlazer SS 2009 2.5% Chrysler 300 SRT-8 2010 2.31% Dodge Caliber Wagon 2007 1.96% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 16.63% Nissan Leaf Hatchback 2012 6.66% Bugatti Veyron 16.4 Convertible 2009 4.34% Maybach Landaulet Convertible 2012 3.82% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.37% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 MINI Cooper Roadster Convertible 2012 4.59% BMW X3 SUV 2012 2.39% Mercedes-Benz S-Class Sedan 2012 2.14% Dodge Challenger SRT8 2011 1.57% Audi S5 Coupe 2012 1.55% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Hyundai Santa Fe SUV 2012 2.97% BMW X5 SUV 2007 2.34% Ford E-Series Wagon Van 2012 2.32% Ford F-450 Super Duty Crew Cab 2012 2.25% Toyota Sequoia SUV 2012 1.92% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 2.1% Chrysler PT Cruiser Convertible 2008 1.75% Chevrolet Express Cargo Van 2007 1.38% Suzuki SX4 Sedan 2012 1.38% Tesla Model S Sedan 2012 1.32% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Tucson SUV 2012 2.91% Dodge Dakota Club Cab 2007 2.48% Chevrolet Express Cargo Van 2007 2.46% Chevrolet Traverse SUV 2012 2.4% Ford F-150 Regular Cab 2007 2.38% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Mercedes-Benz Sprinter Van 2012 6.11% Ram C/V Cargo Van Minivan 2012 3.84% Volkswagen Golf Hatchback 2012 3.33% Acura TSX Sedan 2012 3.17% Dodge Sprinter Cargo Van 2009 3.1% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Chevrolet TrailBlazer SS 2009 2.05% HUMMER H2 SUT Crew Cab 2009 1.93% HUMMER H3T Crew Cab 2010 1.73% Ford Edge SUV 2012 1.6% Jeep Wrangler SUV 2012 1.49% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 HUMMER H2 SUT Crew Cab 2009 2.64% HUMMER H3T Crew Cab 2010 2.52% Land Rover Range Rover SUV 2012 2.02% Jeep Patriot SUV 2012 1.84% Cadillac Escalade EXT Crew Cab 2007 1.71% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Dodge Sprinter Cargo Van 2009 3.96% GMC Savana Van 2012 3.25% Chevrolet Express Cargo Van 2007 3.0% Chevrolet Express Van 2007 1.98% Honda Odyssey Minivan 2007 1.96% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.19% Chevrolet Silverado 2500HD Regular Cab 2012 1.91% Ferrari FF Coupe 2012 1.63% Chevrolet Malibu Hybrid Sedan 2010 1.44% BMW M6 Convertible 2010 1.27% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 3.99% Chevrolet Silverado 1500 Extended Cab 2012 2.59% Chevrolet Silverado 2500HD Regular Cab 2012 2.47% Chevrolet Express Van 2007 2.47% Chevrolet Avalanche Crew Cab 2012 2.43% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Ram C/V Cargo Van Minivan 2012 4.61% Lincoln Town Car Sedan 2011 2.48% Daewoo Nubira Wagon 2002 2.0% Honda Odyssey Minivan 2007 1.9% Volkswagen Golf Hatchback 2012 1.73% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Rolls-Royce Phantom Sedan 2012 2.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.62% Hyundai Genesis Sedan 2012 1.56% Maybach Landaulet Convertible 2012 1.19% Aston Martin Virage Convertible 2012 1.16% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 13.38% Lamborghini Diablo Coupe 2001 4.38% Acura Integra Type R 2001 4.32% Spyker C8 Convertible 2009 2.83% Fisker Karma Sedan 2012 2.19% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Aston Martin Virage Coupe 2012 11.67% McLaren MP4-12C Coupe 2012 7.47% Acura Integra Type R 2001 6.77% Lamborghini Diablo Coupe 2001 5.98% Hyundai Veloster Hatchback 2012 4.79% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford E-Series Wagon Van 2012 5.05% Isuzu Ascender SUV 2008 4.91% Chevrolet Avalanche Crew Cab 2012 4.19% Jeep Grand Cherokee SUV 2012 2.67% Chrysler Aspen SUV 2009 2.23% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Expedition EL SUV 2009 1.95% Chevrolet Silverado 1500 Regular Cab 2012 1.64% Cadillac CTS-V Sedan 2012 1.6% Honda Odyssey Minivan 2012 1.55% Chrysler 300 SRT-8 2010 1.54% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Ferrari 458 Italia Convertible 2012 24.5% Lamborghini Aventador Coupe 2012 9.61% Aston Martin Virage Coupe 2012 8.91% Ferrari 458 Italia Coupe 2012 5.72% Lamborghini Diablo Coupe 2001 5.53% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Jaguar XK XKR 2012 2.74% BMW 1 Series Convertible 2012 2.38% Toyota Camry Sedan 2012 2.08% Porsche Panamera Sedan 2012 2.05% Aston Martin V8 Vantage Coupe 2012 2.04% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Geo Metro Convertible 1993 17.89% Nissan Leaf Hatchback 2012 16.03% Plymouth Neon Coupe 1999 6.51% Daewoo Nubira Wagon 2002 5.33% Dodge Caravan Minivan 1997 3.98% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 2500HD Regular Cab 2012 7.35% Chevrolet Silverado 1500 Regular Cab 2012 5.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.58% Chrysler 300 SRT-8 2010 3.34% Chevrolet Silverado 1500 Extended Cab 2012 2.94% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Hyundai Elantra Sedan 2007 4.55% Dodge Caliber Wagon 2007 2.64% Volvo C30 Hatchback 2012 1.96% Plymouth Neon Coupe 1999 1.85% Toyota Corolla Sedan 2012 1.81% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Chrysler 300 SRT-8 2010 2.24% Dodge Dakota Crew Cab 2010 1.73% BMW M6 Convertible 2010 1.6% Cadillac CTS-V Sedan 2012 1.44% Dodge Durango SUV 2012 1.37% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 22.02% Acura Integra Type R 2001 7.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.24% Spyker C8 Convertible 2009 4.05% Chevrolet Cobalt SS 2010 3.88% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 11.42% Ferrari 458 Italia Convertible 2012 7.15% Chevrolet HHR SS 2010 4.78% Spyker C8 Coupe 2009 4.66% Ford GT Coupe 2006 4.44% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Eagle Talon Hatchback 1998 1.95% Aston Martin V8 Vantage Coupe 2012 1.6% Bugatti Veyron 16.4 Coupe 2009 1.53% Chrysler 300 SRT-8 2010 1.48% BMW M6 Convertible 2010 1.39% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Plymouth Neon Coupe 1999 3.68% Hyundai Elantra Sedan 2007 3.56% Dodge Caravan Minivan 1997 2.87% BMW 3 Series Sedan 2012 2.6% Dodge Caliber Wagon 2007 2.47% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Grand Cherokee SUV 2012 2.62% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.5% Chevrolet Avalanche Crew Cab 2012 2.44% Ford F-150 Regular Cab 2012 2.34% Isuzu Ascender SUV 2008 2.31% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Spyker C8 Convertible 2009 4.23% Bentley Mulsanne Sedan 2011 3.01% Fisker Karma Sedan 2012 2.95% Mercedes-Benz 300-Class Convertible 1993 2.73% Chevrolet Corvette ZR1 2012 2.29% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 4.13% Hyundai Elantra Sedan 2007 2.99% Dodge Sprinter Cargo Van 2009 2.94% Ford Fiesta Sedan 2012 2.4% Volkswagen Beetle Hatchback 2012 2.35% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Aston Martin V8 Vantage Coupe 2012 3.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.7% Mercedes-Benz 300-Class Convertible 1993 2.56% Bugatti Veyron 16.4 Coupe 2009 1.84% Chevrolet Corvette ZR1 2012 1.8% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 1.64% Mercedes-Benz SL-Class Coupe 2009 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.5% Bentley Continental Supersports Conv. Convertible 2012 1.5% Mercedes-Benz S-Class Sedan 2012 1.46% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Ferrari 458 Italia Convertible 2012 13.99% Ferrari 458 Italia Coupe 2012 9.98% Geo Metro Convertible 1993 7.56% Lamborghini Aventador Coupe 2012 7.11% Volvo C30 Hatchback 2012 4.79% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Aston Martin V8 Vantage Coupe 2012 3.62% Nissan Juke Hatchback 2012 2.98% Mercedes-Benz 300-Class Convertible 1993 2.26% Nissan 240SX Coupe 1998 2.05% Chevrolet Corvette ZR1 2012 2.0% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 5.39% Ford Ranger SuperCab 2011 4.84% Dodge Caliber Wagon 2007 4.74% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.48% BMW X6 SUV 2012 4.06% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Audi A5 Coupe 2012 2.85% Chevrolet Silverado 1500 Extended Cab 2012 2.43% Chevrolet Tahoe Hybrid SUV 2012 2.35% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.33% Dodge Ram Pickup 3500 Quad Cab 2009 2.11% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.06% Isuzu Ascender SUV 2008 3.12% Chevrolet Silverado 1500 Extended Cab 2012 2.79% Audi A5 Coupe 2012 2.75% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.72% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Dodge Challenger SRT8 2011 2.81% Hyundai Azera Sedan 2012 2.7% Mercedes-Benz S-Class Sedan 2012 2.35% Rolls-Royce Phantom Sedan 2012 2.3% Bentley Mulsanne Sedan 2011 2.23% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Ford F-450 Super Duty Crew Cab 2012 5.03% Dodge Ram Pickup 3500 Crew Cab 2010 4.32% Ford Expedition EL SUV 2009 4.2% Dodge Ram Pickup 3500 Quad Cab 2009 4.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.6% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 3.35% Chevrolet Express Van 2007 2.72% Audi V8 Sedan 1994 2.17% Chevrolet Express Cargo Van 2007 2.14% Dodge Dakota Club Cab 2007 1.75% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 BMW X3 SUV 2012 4.41% Mercedes-Benz C-Class Sedan 2012 3.26% MINI Cooper Roadster Convertible 2012 3.16% Toyota Sequoia SUV 2012 1.9% Audi S5 Coupe 2012 1.83% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 20.03% Lamborghini Diablo Coupe 2001 15.68% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.29% Geo Metro Convertible 1993 7.23% Chevrolet Corvette Convertible 2012 6.84% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 FIAT 500 Abarth 2012 17.92% Spyker C8 Convertible 2009 5.45% Lamborghini Reventon Coupe 2008 5.39% Bentley Arnage Sedan 2009 3.46% Bugatti Veyron 16.4 Coupe 2009 3.26% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Chevrolet Silverado 2500HD Regular Cab 2012 3.12% Audi V8 Sedan 1994 1.73% Ford F-150 Regular Cab 2012 1.69% Audi A5 Coupe 2012 1.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.61% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 4.82% Chevrolet Express Van 2007 2.36% Audi V8 Sedan 1994 2.08% Chevrolet Tahoe Hybrid SUV 2012 2.02% Chevrolet Silverado 1500 Regular Cab 2012 1.89% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 5.23% Chrysler 300 SRT-8 2010 3.35% BMW M6 Convertible 2010 2.52% Cadillac CTS-V Sedan 2012 2.46% Cadillac Escalade EXT Crew Cab 2007 2.42% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 9.0% Ferrari California Convertible 2012 7.14% Ferrari 458 Italia Convertible 2012 5.36% BMW M3 Coupe 2012 4.95% Chevrolet HHR SS 2010 4.95% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 27.84% Ferrari 458 Italia Convertible 2012 13.8% BMW M3 Coupe 2012 6.09% Ferrari California Convertible 2012 5.29% Chevrolet Cobalt SS 2010 3.74% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 1.91% Chrysler 300 SRT-8 2010 1.8% Rolls-Royce Phantom Sedan 2012 1.58% Cadillac CTS-V Sedan 2012 1.51% Hyundai Genesis Sedan 2012 1.44% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 BMW M3 Coupe 2012 6.48% Ferrari FF Coupe 2012 6.21% BMW 1 Series Coupe 2012 5.9% Ferrari California Convertible 2012 4.95% Ferrari 458 Italia Convertible 2012 4.28% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Hyundai Tucson SUV 2012 1.75% Ford Freestar Minivan 2007 1.36% Dodge Caravan Minivan 1997 1.31% Volkswagen Golf Hatchback 1991 1.3% Chrysler 300 SRT-8 2010 1.21% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Convertible 2012 1.84% Mercedes-Benz 300-Class Convertible 1993 1.8% smart fortwo Convertible 2012 1.54% Spyker C8 Coupe 2009 1.45% Nissan Leaf Hatchback 2012 1.45% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Hyundai Elantra Sedan 2007 3.98% Nissan 240SX Coupe 1998 3.3% Volkswagen Beetle Hatchback 2012 2.38% Hyundai Sonata Hybrid Sedan 2012 2.25% Audi TT RS Coupe 2012 2.23% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Dodge Caravan Minivan 1997 2.75% Dodge Sprinter Cargo Van 2009 2.75% Acura TL Sedan 2012 2.24% Hyundai Tucson SUV 2012 2.09% Chevrolet Traverse SUV 2012 2.03% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 AM General Hummer SUV 2000 21.13% FIAT 500 Abarth 2012 7.5% Spyker C8 Convertible 2009 3.4% Bentley Arnage Sedan 2009 3.04% HUMMER H2 SUT Crew Cab 2009 3.01% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Chevrolet Silverado 1500 Regular Cab 2012 2.6% GMC Savana Van 2012 1.97% Chevrolet Avalanche Crew Cab 2012 1.88% Chevrolet Express Van 2007 1.64% Ford Ranger SuperCab 2011 1.63% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 FIAT 500 Abarth 2012 19.79% Jeep Wrangler SUV 2012 8.59% Bentley Arnage Sedan 2009 8.51% AM General Hummer SUV 2000 7.05% HUMMER H2 SUT Crew Cab 2009 6.71% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Chevrolet Corvette Convertible 2012 16.84% AM General Hummer SUV 2000 16.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 12.67% Hyundai Veloster Hatchback 2012 7.28% McLaren MP4-12C Coupe 2012 6.01% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Geo Metro Convertible 1993 4.48% Mercedes-Benz 300-Class Convertible 1993 3.12% Plymouth Neon Coupe 1999 2.96% Hyundai Elantra Sedan 2007 2.82% Dodge Caravan Minivan 1997 2.68% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 BMW M6 Convertible 2010 3.63% Chrysler 300 SRT-8 2010 3.44% Rolls-Royce Ghost Sedan 2012 3.05% Infiniti G Coupe IPL 2012 2.88% Bentley Continental GT Coupe 2007 2.72% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.47% Bentley Continental Supersports Conv. Convertible 2012 2.89% Rolls-Royce Phantom Sedan 2012 2.69% Mercedes-Benz S-Class Sedan 2012 2.55% Spyker C8 Coupe 2009 2.43% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Dodge Caliber Wagon 2007 5.38% Chevrolet Silverado 1500 Regular Cab 2012 3.55% Hyundai Elantra Sedan 2007 3.01% Honda Accord Coupe 2012 2.87% GMC Canyon Extended Cab 2012 2.7% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Dodge Ram Pickup 3500 Quad Cab 2009 1.37% Audi A5 Coupe 2012 1.34% BMW X3 SUV 2012 1.26% Audi S5 Coupe 2012 1.23% BMW ActiveHybrid 5 Sedan 2012 1.2% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Porsche Panamera Sedan 2012 1.85% Chevrolet Corvette ZR1 2012 1.78% Mercedes-Benz SL-Class Coupe 2009 1.76% Acura ZDX Hatchback 2012 1.57% GMC Savana Van 2012 1.49% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 MINI Cooper Roadster Convertible 2012 6.53% Ford E-Series Wagon Van 2012 4.75% Dodge Challenger SRT8 2011 3.99% Mercedes-Benz S-Class Sedan 2012 3.48% Hyundai Azera Sedan 2012 3.48% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Lamborghini Reventon Coupe 2008 4.13% Hyundai Azera Sedan 2012 3.68% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.45% Bugatti Veyron 16.4 Coupe 2009 3.13% Bugatti Veyron 16.4 Convertible 2009 2.84% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 2.52% Ford Expedition EL SUV 2009 2.21% Chevrolet Silverado 1500 Extended Cab 2012 1.97% Chevrolet Silverado 2500HD Regular Cab 2012 1.79% Hyundai Genesis Sedan 2012 1.67% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 BMW X3 SUV 2012 4.26% Audi TT Hatchback 2011 3.58% Audi A5 Coupe 2012 3.48% BMW ActiveHybrid 5 Sedan 2012 2.87% MINI Cooper Roadster Convertible 2012 2.56% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 BMW X3 SUV 2012 3.26% BMW X5 SUV 2007 2.78% Mazda Tribute SUV 2011 2.52% Ford E-Series Wagon Van 2012 2.37% Land Rover LR2 SUV 2012 2.31% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 BMW X5 SUV 2007 4.45% Jeep Compass SUV 2012 3.67% Hyundai Santa Fe SUV 2012 3.23% Land Rover Range Rover SUV 2012 2.68% Ford Edge SUV 2012 2.55% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Mercedes-Benz 300-Class Convertible 1993 3.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.29% Aston Martin V8 Vantage Coupe 2012 1.87% Plymouth Neon Coupe 1999 1.72% Lamborghini Reventon Coupe 2008 1.57% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 6.22% Dodge Sprinter Cargo Van 2009 3.08% Nissan Leaf Hatchback 2012 2.4% Daewoo Nubira Wagon 2002 2.17% Suzuki Aerio Sedan 2007 1.94% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Dodge Caliber Wagon 2007 3.76% smart fortwo Convertible 2012 3.25% Volvo C30 Hatchback 2012 2.85% Spyker C8 Coupe 2009 2.09% Daewoo Nubira Wagon 2002 1.98% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Jeep Grand Cherokee SUV 2012 1.96% Land Rover Range Rover SUV 2012 1.86% Rolls-Royce Ghost Sedan 2012 1.7% Volvo 240 Sedan 1993 1.65% Ford F-150 Regular Cab 2012 1.46% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Chevrolet Corvette ZR1 2012 5.97% Porsche Panamera Sedan 2012 2.57% Eagle Talon Hatchback 1998 2.49% Lamborghini Reventon Coupe 2008 2.46% Aston Martin V8 Vantage Coupe 2012 2.24% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Dodge Caliber Wagon 2007 2.2% Hyundai Elantra Sedan 2007 1.92% Chevrolet Monte Carlo Coupe 2007 1.51% Chevrolet Silverado 1500 Regular Cab 2012 1.49% Honda Accord Coupe 2012 1.46% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Daewoo Nubira Wagon 2002 3.46% Plymouth Neon Coupe 1999 2.88% Chevrolet Malibu Sedan 2007 2.43% Chevrolet Impala Sedan 2007 1.87% Dodge Caravan Minivan 1997 1.77% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.59% Lamborghini Reventon Coupe 2008 4.08% Aston Martin V8 Vantage Coupe 2012 3.72% Chevrolet Corvette ZR1 2012 3.64% Mercedes-Benz 300-Class Convertible 1993 3.29% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 3.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.74% Dodge Caravan Minivan 1997 2.68% Plymouth Neon Coupe 1999 2.48% Nissan Leaf Hatchback 2012 2.33% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Mercedes-Benz 300-Class Convertible 1993 3.98% Lamborghini Reventon Coupe 2008 2.38% Bugatti Veyron 16.4 Coupe 2009 2.36% Chrysler 300 SRT-8 2010 2.24% BMW M6 Convertible 2010 2.1% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 AM General Hummer SUV 2000 8.9% Bentley Mulsanne Sedan 2011 4.45% Spyker C8 Convertible 2009 4.2% Bentley Arnage Sedan 2009 3.78% Jeep Patriot SUV 2012 3.2% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Dodge Ram Pickup 3500 Crew Cab 2010 3.22% Mercedes-Benz C-Class Sedan 2012 2.85% Toyota 4Runner SUV 2012 2.76% Ford Expedition EL SUV 2009 2.57% Ford F-450 Super Duty Crew Cab 2012 2.32% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 3.13% Lincoln Town Car Sedan 2011 3.07% Acura TL Sedan 2012 2.15% Scion xD Hatchback 2012 2.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.86% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Bentley Arnage Sedan 2009 6.61% Jeep Patriot SUV 2012 3.72% FIAT 500 Abarth 2012 3.12% Jeep Compass SUV 2012 2.67% Land Rover LR2 SUV 2012 2.55% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Dodge Caliber Wagon 2007 6.76% Suzuki SX4 Hatchback 2012 2.83% BMW 1 Series Coupe 2012 2.46% Volkswagen Golf Hatchback 1991 2.35% Nissan Juke Hatchback 2012 2.04% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 15.57% Chevrolet Express Cargo Van 2007 10.96% GMC Savana Van 2012 10.03% Chevrolet Express Van 2007 4.62% Mercedes-Benz Sprinter Van 2012 4.12% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 3.6% BMW 1 Series Coupe 2012 3.21% Honda Accord Coupe 2012 2.14% Dodge Caliber Wagon 2007 1.77% Hyundai Elantra Sedan 2007 1.45% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Chevrolet Express Cargo Van 2007 7.82% GMC Savana Van 2012 5.64% Chevrolet Express Van 2007 4.4% Dodge Caravan Minivan 1997 2.14% Buick Rainier SUV 2007 2.14% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Rolls-Royce Phantom Sedan 2012 8.88% Chevrolet Sonic Sedan 2012 2.34% Bentley Arnage Sedan 2009 2.03% Hyundai Azera Sedan 2012 1.93% smart fortwo Convertible 2012 1.9% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Hyundai Elantra Sedan 2007 4.32% Dodge Caliber Wagon 2007 2.93% Suzuki SX4 Hatchback 2012 2.67% Dodge Charger Sedan 2012 2.38% Dodge Journey SUV 2012 2.26% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 MINI Cooper Roadster Convertible 2012 3.72% Mercedes-Benz S-Class Sedan 2012 2.07% Hyundai Azera Sedan 2012 2.01% Dodge Challenger SRT8 2011 1.93% Bentley Mulsanne Sedan 2011 1.84% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Lamborghini Aventador Coupe 2012 8.31% Ferrari California Convertible 2012 8.22% Ferrari 458 Italia Coupe 2012 6.5% Ferrari 458 Italia Convertible 2012 6.1% Volvo C30 Hatchback 2012 4.55% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 1.73% Hyundai Tucson SUV 2012 1.48% Ford F-150 Regular Cab 2007 1.43% Jeep Patriot SUV 2012 1.35% Land Rover Range Rover SUV 2012 1.34% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 MINI Cooper Roadster Convertible 2012 3.1% Mercedes-Benz C-Class Sedan 2012 2.38% Audi S6 Sedan 2011 2.19% Hyundai Genesis Sedan 2012 1.96% Bentley Mulsanne Sedan 2011 1.92% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Lamborghini Reventon Coupe 2008 2.21% Mercedes-Benz 300-Class Convertible 1993 2.13% Chevrolet Corvette ZR1 2012 1.98% Bugatti Veyron 16.4 Coupe 2009 1.8% Aston Martin V8 Vantage Coupe 2012 1.57% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 19.46% Ferrari 458 Italia Convertible 2012 10.39% Ferrari California Convertible 2012 7.74% Ferrari 458 Italia Coupe 2012 6.01% Chevrolet Corvette Convertible 2012 3.86% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 2.53% Chevrolet Silverado 2500HD Regular Cab 2012 2.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.91% Toyota 4Runner SUV 2012 1.86% Ford Edge SUV 2012 1.86% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 29.85% McLaren MP4-12C Coupe 2012 17.46% Lamborghini Aventador Coupe 2012 10.96% Chevrolet Corvette Convertible 2012 6.45% Ferrari California Convertible 2012 3.96% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 BMW 1 Series Coupe 2012 4.7% Dodge Caliber Wagon 2007 4.11% Honda Accord Coupe 2012 3.49% Hyundai Elantra Sedan 2007 2.95% Hyundai Accent Sedan 2012 2.74% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 2.8% Ram C/V Cargo Van Minivan 2012 2.58% Audi A5 Coupe 2012 2.51% Audi TT Hatchback 2011 2.17% BMW 1 Series Convertible 2012 1.89% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Dodge Sprinter Cargo Van 2009 6.42% Ram C/V Cargo Van Minivan 2012 5.66% Mercedes-Benz Sprinter Van 2012 5.17% Acura TSX Sedan 2012 3.26% Volkswagen Golf Hatchback 2012 3.16% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Dodge Caravan Minivan 1997 4.74% Mercedes-Benz Sprinter Van 2012 4.58% Dodge Sprinter Cargo Van 2009 2.73% Hyundai Tucson SUV 2012 2.58% Chevrolet Express Cargo Van 2007 2.45% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Ford E-Series Wagon Van 2012 5.67% Isuzu Ascender SUV 2008 3.86% Chrysler Aspen SUV 2009 2.19% Dodge Challenger SRT8 2011 2.15% Chevrolet Silverado 1500 Extended Cab 2012 1.9% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Ferrari 458 Italia Coupe 2012 4.71% Geo Metro Convertible 1993 4.35% Ferrari California Convertible 2012 4.2% Audi TT RS Coupe 2012 4.08% BMW M3 Coupe 2012 3.35% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 18.02% Dodge Sprinter Cargo Van 2009 9.36% GMC Savana Van 2012 9.24% Chevrolet Express Cargo Van 2007 4.33% Chevrolet Express Van 2007 2.54% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 MINI Cooper Roadster Convertible 2012 3.93% Mercedes-Benz S-Class Sedan 2012 3.35% Audi A5 Coupe 2012 2.93% BMW X3 SUV 2012 2.7% Audi S6 Sedan 2011 2.56% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Ford Freestar Minivan 2007 1.85% Chevrolet Malibu Sedan 2007 1.67% Chevrolet Express Van 2007 1.36% Buick Rainier SUV 2007 1.35% GMC Savana Van 2012 1.35% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 FIAT 500 Convertible 2012 2.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.57% Maybach Landaulet Convertible 2012 2.25% Ram C/V Cargo Van Minivan 2012 2.07% Lincoln Town Car Sedan 2011 2.04% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.85% Audi V8 Sedan 1994 3.01% Chrysler 300 SRT-8 2010 1.8% Audi S5 Coupe 2012 1.72% Infiniti G Coupe IPL 2012 1.65% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Rolls-Royce Phantom Sedan 2012 2.07% Cadillac Escalade EXT Crew Cab 2007 1.84% Chrysler Aspen SUV 2009 1.59% Hyundai Genesis Sedan 2012 1.58% Chrysler 300 SRT-8 2010 1.44% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Chevrolet Silverado 1500 Extended Cab 2012 4.03% Dodge Ram Pickup 3500 Crew Cab 2010 2.71% Dodge Dakota Crew Cab 2010 2.65% Dodge Ram Pickup 3500 Quad Cab 2009 2.58% GMC Canyon Extended Cab 2012 2.56% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 4.87% Cadillac Escalade EXT Crew Cab 2007 4.22% Bentley Arnage Sedan 2009 4.07% Land Rover Range Rover SUV 2012 3.08% Jeep Patriot SUV 2012 2.69% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 4.44% Dodge Ram Pickup 3500 Quad Cab 2009 4.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.0% Ford Edge SUV 2012 2.88% GMC Canyon Extended Cab 2012 2.7% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Ferrari 458 Italia Convertible 2012 26.66% Ferrari California Convertible 2012 15.84% Ferrari 458 Italia Coupe 2012 11.74% Audi TT RS Coupe 2012 8.03% Lamborghini Aventador Coupe 2012 6.79% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Hyundai Elantra Sedan 2007 3.82% Chevrolet Cobalt SS 2010 3.28% Dodge Magnum Wagon 2008 3.21% Honda Accord Coupe 2012 2.96% Chevrolet HHR SS 2010 2.59% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Lamborghini Reventon Coupe 2008 2.32% Chevrolet Corvette ZR1 2012 2.01% Jeep Patriot SUV 2012 1.57% Spyker C8 Convertible 2009 1.5% Land Rover Range Rover SUV 2012 1.48% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 BMW M6 Convertible 2010 2.54% Chrysler 300 SRT-8 2010 2.51% Chevrolet TrailBlazer SS 2009 1.79% Bentley Continental GT Coupe 2007 1.33% Mercedes-Benz C-Class Sedan 2012 1.32% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.79% Chevrolet Silverado 1500 Extended Cab 2012 1.66% Audi V8 Sedan 1994 1.45% Dodge Dakota Club Cab 2007 1.4% Dodge Ram Pickup 3500 Crew Cab 2010 1.3% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Rolls-Royce Phantom Sedan 2012 5.25% Chrysler 300 SRT-8 2010 3.77% BMW M6 Convertible 2010 3.1% Bentley Continental GT Coupe 2007 2.64% Hyundai Genesis Sedan 2012 2.42% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Express Cargo Van 2007 2.15% Dodge Caravan Minivan 1997 1.98% Mercedes-Benz 300-Class Convertible 1993 1.64% Acura TL Sedan 2012 1.57% Lincoln Town Car Sedan 2011 1.55% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Geo Metro Convertible 1993 6.26% Ferrari 458 Italia Convertible 2012 5.89% Ferrari 458 Italia Coupe 2012 4.13% Ford GT Coupe 2006 3.02% BMW 3 Series Sedan 2012 2.83% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Hyundai Elantra Sedan 2007 3.66% Volkswagen Beetle Hatchback 2012 3.32% Honda Accord Coupe 2012 3.0% Chevrolet Cobalt SS 2010 2.93% Hyundai Accent Sedan 2012 2.85% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Infiniti G Coupe IPL 2012 1.74% Bugatti Veyron 16.4 Coupe 2009 1.68% BMW M6 Convertible 2010 1.45% Aston Martin V8 Vantage Coupe 2012 1.44% Hyundai Genesis Sedan 2012 1.44% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 2.16% Maybach Landaulet Convertible 2012 2.09% Bugatti Veyron 16.4 Coupe 2009 1.96% Mercedes-Benz 300-Class Convertible 1993 1.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.85% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Aston Martin V8 Vantage Coupe 2012 2.49% Bugatti Veyron 16.4 Coupe 2009 2.28% Mercedes-Benz 300-Class Convertible 1993 2.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.11% Chrysler 300 SRT-8 2010 1.52% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Chrysler Sebring Convertible 2010 2.29% Chevrolet Malibu Sedan 2007 1.7% Daewoo Nubira Wagon 2002 1.69% Chevrolet Malibu Hybrid Sedan 2010 1.63% Lincoln Town Car Sedan 2011 1.57% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Rolls-Royce Phantom Sedan 2012 2.76% smart fortwo Convertible 2012 2.08% Hyundai Azera Sedan 2012 1.84% Mercedes-Benz E-Class Sedan 2012 1.77% Mercedes-Benz S-Class Sedan 2012 1.61% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 MINI Cooper Roadster Convertible 2012 6.19% Hyundai Azera Sedan 2012 3.17% Mercedes-Benz S-Class Sedan 2012 2.65% Rolls-Royce Phantom Sedan 2012 2.44% Mercedes-Benz E-Class Sedan 2012 2.25% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Chevrolet Corvette ZR1 2012 4.86% Aston Martin V8 Vantage Coupe 2012 2.53% Eagle Talon Hatchback 1998 2.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.12% Volkswagen Golf Hatchback 1991 2.04% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 McLaren MP4-12C Coupe 2012 9.93% Aston Martin Virage Coupe 2012 8.2% Volvo C30 Hatchback 2012 4.18% Hyundai Veloster Hatchback 2012 4.14% BMW 1 Series Coupe 2012 2.91% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 4.73% Chrysler 300 SRT-8 2010 4.38% BMW M6 Convertible 2010 3.16% Chevrolet Silverado 1500 Regular Cab 2012 2.75% Chevrolet Silverado 2500HD Regular Cab 2012 2.17% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.26% Nissan Leaf Hatchback 2012 1.79% Lamborghini Reventon Coupe 2008 1.74% Daewoo Nubira Wagon 2002 1.6% Maybach Landaulet Convertible 2012 1.58% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Mercedes-Benz Sprinter Van 2012 1.83% Ford E-Series Wagon Van 2012 1.66% Honda Odyssey Minivan 2007 1.56% Chrysler Aspen SUV 2009 1.37% Dodge Challenger SRT8 2011 1.3% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Bentley Arnage Sedan 2009 11.32% FIAT 500 Abarth 2012 7.33% Spyker C8 Convertible 2009 4.55% Jeep Compass SUV 2012 3.83% Bentley Mulsanne Sedan 2011 3.68% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 3.53% Ford Ranger SuperCab 2011 3.4% GMC Canyon Extended Cab 2012 3.1% Dodge Dakota Crew Cab 2010 2.96% Dodge Ram Pickup 3500 Quad Cab 2009 2.32% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Chevrolet Malibu Sedan 2007 4.17% GMC Savana Van 2012 3.86% Hyundai Tucson SUV 2012 3.72% Dodge Caravan Minivan 1997 3.48% Plymouth Neon Coupe 1999 3.45% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 AM General Hummer SUV 2000 21.72% McLaren MP4-12C Coupe 2012 11.6% Lamborghini Diablo Coupe 2001 10.82% Acura Integra Type R 2001 10.64% Chevrolet Corvette Convertible 2012 8.39% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Mercedes-Benz 300-Class Convertible 1993 4.11% Fisker Karma Sedan 2012 3.65% Bugatti Veyron 16.4 Coupe 2009 2.37% Acura TL Type-S 2008 2.36% Aston Martin V8 Vantage Coupe 2012 2.22% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 9.42% Dodge Caliber Wagon 2012 2.41% Hyundai Elantra Sedan 2007 2.02% Suzuki SX4 Hatchback 2012 1.96% BMW X6 SUV 2012 1.92% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 11.49% Dodge Sprinter Cargo Van 2009 8.85% Chevrolet Express Cargo Van 2007 2.75% Dodge Caravan Minivan 1997 2.67% GMC Savana Van 2012 2.2% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Dodge Caravan Minivan 1997 4.57% Plymouth Neon Coupe 1999 3.38% Mercedes-Benz 300-Class Convertible 1993 3.12% Lamborghini Reventon Coupe 2008 2.79% Daewoo Nubira Wagon 2002 2.68% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Acura Integra Type R 2001 11.68% Chevrolet Corvette Convertible 2012 10.59% Geo Metro Convertible 1993 9.45% McLaren MP4-12C Coupe 2012 7.01% Lamborghini Diablo Coupe 2001 6.11% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Mercedes-Benz S-Class Sedan 2012 3.38% Audi TT Hatchback 2011 3.32% MINI Cooper Roadster Convertible 2012 3.29% BMW ActiveHybrid 5 Sedan 2012 2.65% Mercedes-Benz SL-Class Coupe 2009 2.0% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Hyundai Azera Sedan 2012 2.16% Suzuki SX4 Sedan 2012 1.38% Ford Freestar Minivan 2007 1.36% Rolls-Royce Phantom Sedan 2012 1.29% Chrysler PT Cruiser Convertible 2008 1.19% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Geo Metro Convertible 1993 10.71% Ferrari 458 Italia Convertible 2012 5.24% Ferrari 458 Italia Coupe 2012 4.26% BMW M3 Coupe 2012 3.7% Hyundai Veloster Hatchback 2012 3.52% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Isuzu Ascender SUV 2008 3.4% Dodge Ram Pickup 3500 Crew Cab 2010 3.28% Audi S6 Sedan 2011 3.14% Chevrolet Tahoe Hybrid SUV 2012 2.86% Ford F-450 Super Duty Crew Cab 2012 2.77% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.11% Bentley Continental Supersports Conv. Convertible 2012 2.79% Maybach Landaulet Convertible 2012 2.54% smart fortwo Convertible 2012 1.97% Spyker C8 Coupe 2009 1.84% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 FIAT 500 Convertible 2012 5.57% Nissan Leaf Hatchback 2012 5.38% Bugatti Veyron 16.4 Convertible 2009 3.62% Acura Integra Type R 2001 2.46% Daewoo Nubira Wagon 2002 2.44% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 9.94% Chevrolet Express Cargo Van 2007 5.88% Dodge Sprinter Cargo Van 2009 3.93% Mercedes-Benz Sprinter Van 2012 3.19% Buick Rainier SUV 2007 2.59% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 5.37% Mercedes-Benz Sprinter Van 2012 3.8% Dodge Challenger SRT8 2011 3.08% Buick Enclave SUV 2012 1.82% Mazda Tribute SUV 2011 1.77% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Ram C/V Cargo Van Minivan 2012 2.96% Audi TT Hatchback 2011 2.89% Audi A5 Coupe 2012 2.7% Mercedes-Benz Sprinter Van 2012 2.39% Mercedes-Benz S-Class Sedan 2012 2.08% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Isuzu Ascender SUV 2008 2.41% Dodge Ram Pickup 3500 Crew Cab 2010 2.36% Chevrolet Avalanche Crew Cab 2012 2.36% Chevrolet Silverado 1500 Extended Cab 2012 2.15% Dodge Dakota Crew Cab 2010 2.12% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Rolls-Royce Phantom Sedan 2012 6.16% Hyundai Azera Sedan 2012 4.91% Bentley Arnage Sedan 2009 4.22% Spyker C8 Convertible 2009 4.01% Bentley Mulsanne Sedan 2011 2.58% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Fisker Karma Sedan 2012 2.81% FIAT 500 Convertible 2012 2.25% Mercedes-Benz E-Class Sedan 2012 2.15% Mercedes-Benz 300-Class Convertible 1993 1.85% Ford GT Coupe 2006 1.83% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 3.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.28% Mercedes-Benz S-Class Sedan 2012 2.82% Spyker C8 Coupe 2009 2.36% Bentley Continental Supersports Conv. Convertible 2012 2.31% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 3.3% Dodge Ram Pickup 3500 Crew Cab 2010 3.22% Chrysler Aspen SUV 2009 2.31% Ford Expedition EL SUV 2009 2.2% Isuzu Ascender SUV 2008 2.18% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 Audi V8 Sedan 1994 2.54% Audi 100 Wagon 1994 1.74% Audi S5 Coupe 2012 1.74% Chevrolet Silverado 2500HD Regular Cab 2012 1.5% Chevrolet Express Cargo Van 2007 1.42% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 11.32% Nissan Leaf Hatchback 2012 9.12% Hyundai Elantra Sedan 2007 4.51% Jaguar XK XKR 2012 2.62% Volkswagen Beetle Hatchback 2012 2.59% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Audi S6 Sedan 2011 2.96% Audi R8 Coupe 2012 2.9% Mercedes-Benz C-Class Sedan 2012 2.23% MINI Cooper Roadster Convertible 2012 2.08% Audi S5 Coupe 2012 1.92% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.83% Maybach Landaulet Convertible 2012 4.2% Bugatti Veyron 16.4 Convertible 2009 2.82% FIAT 500 Convertible 2012 2.53% Mercedes-Benz S-Class Sedan 2012 2.5% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Sprinter Cargo Van 2009 6.24% GMC Savana Van 2012 4.17% Mercedes-Benz Sprinter Van 2012 3.34% Ram C/V Cargo Van Minivan 2012 3.29% Honda Odyssey Minivan 2007 1.93% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.91% Chevrolet Silverado 1500 Regular Cab 2012 1.91% Chevrolet Silverado 1500 Extended Cab 2012 1.8% Ford F-150 Regular Cab 2012 1.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.74% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.26% Chevrolet Avalanche Crew Cab 2012 2.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.05% Chevrolet Silverado 1500 Regular Cab 2012 1.95% Ford F-150 Regular Cab 2012 1.77% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Jaguar XK XKR 2012 2.54% Porsche Panamera Sedan 2012 2.49% Chevrolet Corvette ZR1 2012 2.31% Aston Martin V8 Vantage Coupe 2012 2.26% Acura TL Sedan 2012 1.59% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Mercedes-Benz Sprinter Van 2012 3.71% GMC Savana Van 2012 3.42% Dodge Caravan Minivan 1997 3.05% Dodge Sprinter Cargo Van 2009 3.04% Chevrolet Express Cargo Van 2007 2.18% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Bentley Mulsanne Sedan 2011 2.68% Bentley Arnage Sedan 2009 2.5% Bugatti Veyron 16.4 Coupe 2009 2.32% Ford Expedition EL SUV 2009 2.25% Land Rover Range Rover SUV 2012 2.22% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Audi RS 4 Convertible 2008 6.9% Geo Metro Convertible 1993 6.49% Lamborghini Diablo Coupe 2001 5.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.42% Acura Integra Type R 2001 3.96% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 9.89% Dodge Ram Pickup 3500 Quad Cab 2009 8.07% BMW X6 SUV 2012 6.43% Ford Ranger SuperCab 2011 5.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.13% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Mercedes-Benz Sprinter Van 2012 2.04% Dodge Sprinter Cargo Van 2009 2.01% GMC Savana Van 2012 1.96% Ram C/V Cargo Van Minivan 2012 1.51% Honda Odyssey Minivan 2007 1.42% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Rolls-Royce Phantom Sedan 2012 2.71% Chrysler 300 SRT-8 2010 1.83% Bentley Continental GT Coupe 2007 1.68% Lamborghini Reventon Coupe 2008 1.6% BMW M6 Convertible 2010 1.53% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 5.65% smart fortwo Convertible 2012 4.1% Bugatti Veyron 16.4 Convertible 2009 3.52% Nissan Leaf Hatchback 2012 2.89% Bentley Continental Supersports Conv. Convertible 2012 2.61% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Audi A5 Coupe 2012 4.73% BMW X3 SUV 2012 3.22% Audi S5 Coupe 2012 2.72% Audi S6 Sedan 2011 2.29% Audi TT Hatchback 2011 2.22% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Rolls-Royce Ghost Sedan 2012 3.89% Bentley Mulsanne Sedan 2011 2.55% BMW M6 Convertible 2010 2.49% Mercedes-Benz C-Class Sedan 2012 2.27% Chrysler 300 SRT-8 2010 1.96% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Chevrolet Express Van 2007 2.86% GMC Savana Van 2012 2.7% Chevrolet Express Cargo Van 2007 1.79% Ford Freestar Minivan 2007 1.74% Chevrolet Impala Sedan 2007 1.72% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Chevrolet TrailBlazer SS 2009 2.65% Ford F-450 Super Duty Crew Cab 2012 2.53% Chevrolet Silverado 2500HD Regular Cab 2012 2.38% Dodge Ram Pickup 3500 Quad Cab 2009 2.28% Dodge Ram Pickup 3500 Crew Cab 2010 2.13% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 BMW M3 Coupe 2012 5.55% Ferrari 458 Italia Coupe 2012 5.02% Plymouth Neon Coupe 1999 4.67% Ferrari California Convertible 2012 3.81% Ferrari 458 Italia Convertible 2012 3.51% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Acura TL Sedan 2012 3.57% Acura ZDX Hatchback 2012 2.87% Porsche Panamera Sedan 2012 2.48% Volkswagen Beetle Hatchback 2012 2.14% Jaguar XK XKR 2012 2.11% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Jeep Wrangler SUV 2012 10.01% HUMMER H3T Crew Cab 2010 8.46% BMW X6 SUV 2012 7.91% HUMMER H2 SUT Crew Cab 2009 5.19% Dodge Caliber Wagon 2007 4.37% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 3.08% Rolls-Royce Phantom Sedan 2012 2.81% Bugatti Veyron 16.4 Coupe 2009 2.37% BMW M6 Convertible 2010 2.0% Bentley Continental GT Coupe 2007 1.96% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Porsche Panamera Sedan 2012 5.46% Chevrolet Corvette ZR1 2012 3.86% Jaguar XK XKR 2012 3.59% Suzuki Aerio Sedan 2007 2.71% Toyota Camry Sedan 2012 2.67% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Maybach Landaulet Convertible 2012 6.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.71% Bugatti Veyron 16.4 Convertible 2009 3.5% FIAT 500 Convertible 2012 3.47% Bentley Continental Supersports Conv. Convertible 2012 2.66% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Lincoln Town Car Sedan 2011 3.98% Chevrolet Impala Sedan 2007 2.22% Chrysler Sebring Convertible 2010 2.19% Ram C/V Cargo Van Minivan 2012 2.1% Daewoo Nubira Wagon 2002 2.06% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 3.58% Audi S6 Sedan 2011 2.64% MINI Cooper Roadster Convertible 2012 2.57% Audi R8 Coupe 2012 2.34% Hyundai Genesis Sedan 2012 2.18% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Chrysler 300 SRT-8 2010 2.55% Ford F-150 Regular Cab 2007 2.47% Cadillac Escalade EXT Crew Cab 2007 2.25% Chevrolet Avalanche Crew Cab 2012 2.03% Dodge Durango SUV 2007 1.83% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Land Rover Range Rover SUV 2012 2.76% Chrysler 300 SRT-8 2010 2.59% Chevrolet TrailBlazer SS 2009 2.55% Jeep Compass SUV 2012 2.51% Hyundai Santa Fe SUV 2012 2.37% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Porsche Panamera Sedan 2012 2.48% Infiniti G Coupe IPL 2012 2.23% Chevrolet Corvette ZR1 2012 2.02% Jaguar XK XKR 2012 1.64% BMW ActiveHybrid 5 Sedan 2012 1.52% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 13.66% Dodge Sprinter Cargo Van 2009 6.57% Chrysler Town and Country Minivan 2012 2.97% Acura TSX Sedan 2012 2.78% Ram C/V Cargo Van Minivan 2012 2.65% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Spyker C8 Convertible 2009 2.41% Hyundai Genesis Sedan 2012 2.41% Bentley Mulsanne Sedan 2011 2.21% Rolls-Royce Phantom Sedan 2012 2.17% Bugatti Veyron 16.4 Coupe 2009 2.01% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Audi TT Hatchback 2011 8.58% BMW ActiveHybrid 5 Sedan 2012 4.24% Audi A5 Coupe 2012 3.82% MINI Cooper Roadster Convertible 2012 3.31% BMW X3 SUV 2012 2.81% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 4.01% BMW X6 SUV 2012 3.62% HUMMER H3T Crew Cab 2010 3.09% Ford Edge SUV 2012 2.97% Dodge Caliber Wagon 2007 1.98% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Dodge Caliber Wagon 2007 4.76% Volkswagen Golf Hatchback 1991 2.94% BMW X6 SUV 2012 2.2% Suzuki SX4 Hatchback 2012 1.77% Nissan Juke Hatchback 2012 1.58% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 11.83% Nissan Leaf Hatchback 2012 7.02% Geo Metro Convertible 1993 3.7% Daewoo Nubira Wagon 2002 2.92% Maybach Landaulet Convertible 2012 2.82% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Dodge Challenger SRT8 2011 3.52% Rolls-Royce Phantom Sedan 2012 3.42% MINI Cooper Roadster Convertible 2012 1.9% Hyundai Genesis Sedan 2012 1.87% Hyundai Azera Sedan 2012 1.83% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 BMW X3 SUV 2012 3.75% Audi V8 Sedan 1994 2.4% Audi 100 Sedan 1994 2.4% Audi S5 Coupe 2012 2.39% Audi TT Hatchback 2011 2.24% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 BMW X3 SUV 2012 3.54% Audi S5 Coupe 2012 3.32% Audi TT Hatchback 2011 3.07% Mercedes-Benz SL-Class Coupe 2009 2.39% Audi A5 Coupe 2012 2.34% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Chrysler 300 SRT-8 2010 1.69% GMC Terrain SUV 2012 1.65% Chevrolet TrailBlazer SS 2009 1.55% Dodge Dakota Club Cab 2007 1.52% Volkswagen Golf Hatchback 1991 1.49% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Lincoln Town Car Sedan 2011 5.39% Chevrolet Express Van 2007 5.23% Chevrolet Express Cargo Van 2007 4.29% GMC Savana Van 2012 3.51% Dodge Caravan Minivan 1997 3.42% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 6.13% Chevrolet Silverado 1500 Regular Cab 2012 3.07% Dodge Charger Sedan 2012 2.35% Dodge Caliber Wagon 2012 2.31% HUMMER H3T Crew Cab 2010 2.18% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X5 SUV 2007 3.69% Ford E-Series Wagon Van 2012 2.5% Jeep Compass SUV 2012 2.46% Hyundai Santa Fe SUV 2012 2.33% Cadillac SRX SUV 2012 2.18% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Porsche Panamera Sedan 2012 3.51% Acura TL Sedan 2012 3.06% Jaguar XK XKR 2012 3.04% Acura ZDX Hatchback 2012 2.39% Dodge Caravan Minivan 1997 2.21% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Chrysler 300 SRT-8 2010 2.05% Chevrolet TrailBlazer SS 2009 1.93% Cadillac Escalade EXT Crew Cab 2007 1.86% Land Rover Range Rover SUV 2012 1.85% Jeep Grand Cherokee SUV 2012 1.82% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 5.93% Ferrari California Convertible 2012 5.93% BMW M3 Coupe 2012 5.41% Ferrari 458 Italia Convertible 2012 4.82% Chevrolet Corvette Convertible 2012 3.52% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 FIAT 500 Abarth 2012 10.34% Spyker C8 Convertible 2009 6.03% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.63% Lamborghini Reventon Coupe 2008 5.37% Bugatti Veyron 16.4 Coupe 2009 4.53% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Audi A5 Coupe 2012 1.88% Chevrolet Silverado 2500HD Regular Cab 2012 1.75% BMW X3 SUV 2012 1.74% Toyota Sequoia SUV 2012 1.67% Audi TT Hatchback 2011 1.55% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Ford F-150 Regular Cab 2007 2.28% Chrysler 300 SRT-8 2010 2.04% Chevrolet TrailBlazer SS 2009 1.8% Cadillac Escalade EXT Crew Cab 2007 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.53% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Ford E-Series Wagon Van 2012 5.82% Hyundai Santa Fe SUV 2012 5.65% BMW X5 SUV 2007 4.72% Isuzu Ascender SUV 2008 3.2% Chrysler Aspen SUV 2009 2.92% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Dodge Caliber Wagon 2007 5.99% Chevrolet Traverse SUV 2012 2.69% BMW X6 SUV 2012 2.68% Buick Rainier SUV 2007 2.56% BMW 1 Series Coupe 2012 2.45% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Geo Metro Convertible 1993 6.16% Nissan Leaf Hatchback 2012 5.78% Maybach Landaulet Convertible 2012 5.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.72% FIAT 500 Convertible 2012 4.58% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 3.84% Chevrolet Express Van 2007 2.85% Dodge Dakota Club Cab 2007 2.4% Audi V8 Sedan 1994 1.95% Hyundai Sonata Sedan 2012 1.76% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 McLaren MP4-12C Coupe 2012 17.78% Acura Integra Type R 2001 16.11% Chevrolet Corvette Convertible 2012 10.7% Lamborghini Diablo Coupe 2001 10.17% Aston Martin Virage Coupe 2012 8.75% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Bugatti Veyron 16.4 Convertible 2009 5.15% FIAT 500 Convertible 2012 4.89% Mercedes-Benz S-Class Sedan 2012 3.49% Fisker Karma Sedan 2012 2.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.49% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Mercedes-Benz C-Class Sedan 2012 2.7% Hyundai Genesis Sedan 2012 2.28% MINI Cooper Roadster Convertible 2012 2.0% Dodge Ram Pickup 3500 Crew Cab 2010 1.63% Audi S6 Sedan 2011 1.56% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 2.42% Suzuki Aerio Sedan 2007 2.28% Ram C/V Cargo Van Minivan 2012 1.98% Jaguar XK XKR 2012 1.97% BMW 1 Series Convertible 2012 1.79% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Chevrolet Silverado 2500HD Regular Cab 2012 2.49% Dodge Ram Pickup 3500 Quad Cab 2009 1.86% Audi S6 Sedan 2011 1.39% Audi A5 Coupe 2012 1.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 5.96% BMW 1 Series Coupe 2012 3.43% Volkswagen Golf Hatchback 1991 2.42% Buick Verano Sedan 2012 2.15% Hyundai Elantra Sedan 2007 1.91% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Fisker Karma Sedan 2012 4.74% Aston Martin V8 Vantage Coupe 2012 3.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.75% Mercedes-Benz 300-Class Convertible 1993 2.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.24% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-2/0.8/small.png b/cars/lr-investigations/exponential/1e-2/0.8/small.png new file mode 100644 index 0000000000000000000000000000000000000000..114785dcd5495d682a4e1bd1c929f6c49225e5e8 GIT binary patch literal 85046 zcmce-1yq#pyDkjUjTk81NGl?sXN+S(J4h#bW z1LsA5|NZU#op0^4&pP`%vzCi@-i5$C&;4BY755vitF1ytOhb%?g+->Os;G~Jg-eNr zbz_$hAGi}&4c*8scOnt64V z=son|{>HrbzIdz0;Qr|yYU(MHn}1(%6c8jnChh&-S9g5tCG20ziH9q@(#snJEAMJTv)&&x^0kvMAIK_ay4{3r$#Gf!z9jMEl!dA9tN=jJa&;kQrmFer}B76qb`-f2wPQcYC!Swar0(eCguFRTw81}UTgeEYGq@S#Au#>}(!YS+-Za7@$#8QyWof8OW5i zmSvSJwQjXK*_-Dv$k(1=x1&y*J$uztyPFbdDMUA`4>6x425fU4#A>7l&Mts1Lo1qb8`t}o2^fqGZZ)jB*FD@<&e?*8=rUhLP zsB({Gt55(Re!AJe7G3L)+S|6SoN5apupi2h-ku{PB^?JA8;5|r0691^GP1lsbg%Z7 z*WO&=YbP~AAhG}YSJIM00$mw*7SUwLbmY;d~T35JV{`_Li& z2{#XqQ6>vFxB5gC=PcUet~jOKn$WL0!wq@2HQ7(nO^;fGoM^i{cNtS5n33>OA&J*4 ztgQE?+z4r~UgL@pkp24g%M_o2E-;#UJE;w4rjS|S+{Lh$`A%|8cUbY(-exoZapW)*+>&RiSs!;)M(#--dG5|d4WL-==p6vtWc zDK{(H{MbuKSkGc0y*wDUs>}iX$@^!NDV)NBTgt52YZUZf^&1&1}lg>b#Bf=O+#Z$#V)_3gtw=^ ze_X{*)bqQ(zJAV^FAA_&OJWidqj_T^BVY??w?%Pac4!v(9n19w)HD<;d_31=gtMBryiJNrN)AQTuxlrdW?&<*{1qH04 z;voPMavsDW+M73-v$C=pKJEmrzO=WucND-ZE!hD0`wUnG)i3ubDL)TdS2D&w_@Z<3 z&Yj%t>09R>C(q%Lb+?9+by<{P;0&j0rxkylt>Q_%8nF(IepaVnrFI zHIg#?qDa3n&KE*3X!~bn1$~y%0E`ELD~K6lg?=fp{;O>1+pt5Qsimytv!M54w)!HF z@Vk=&uTGGV>vr6#`A3YkzYs$*Bfzwo>&3L|@&^)~Uz5av8 zr=7QSgazgn{yq1B#z)|6xvItDz(jDPjG|6^IP1+SJ|!{2K14I&R17>ve70Chd7nXG z;R&fH+yDQi(ab6lSfSAQjX6-4_l#C4FP*YHCj4*lck`>f#**h#i3JD-UuMwI1%Y2r zN5qeXe&|0aU{}TZIPh~4Yxgs=sn|Z7^hmXxUFr9qlce5jYH*KQTMHgnhm~8Sl5ZkQoIuZh7@94M%0FhiBcjprDJ_jx=tcjq z$^zd%m=g29fhkbjjWg*8<}ei>pSsZh(0+)>$R={_2-sA3cz6u_w+Q~N0m)PS3=G5q zT>`tQcoQ5^Q1HNLDB~edI!4@|-l(+7>hSq-)no+hG#OnOwl$V7+HZJp!sMW&tPB(# zr7+enLN{`nimzY4UKc05z@MTF4-dCJ_>TQDXL$~&T*&6_&n`flA_uyiyg3Z$OrfEn z1@I7~gTS;mp*6!1?5~WE(g@0&X;yv;YAvJL?}}4c_}=XN;bD#cPaQ{#Dc}$`+acD* z?39)@qOgO4+3H2!yyb1-8SzW)JWR0v+MlR0A532OfunmaSz`@-*bw*+jLodQPiLKh z7ulub>g^W{yVgXimBPfy+OUSqh=~MMIG+l8+kUEeQ+T`iH~W%Y82u!Vt>wLG3a9%6 z$VfZcRk;Uzd`99@-B#T}feod_#bfMtq9tQpEoeIdUht3qb%84i2r5ywNps3SKfv-+ zTc$-a^xV9u=+^iA`%>FYK2cGV(a})=)VO$fGz5i&0HR1nU-9wd?ZSeBVRk!Md%J>B zt&x$@b%#U`^z{MV4hGOmqgp&XJmB7cp@n_Qjrjk@^S>+0;uvQw9gi2w&i2fr!X~I6 zAejJ_1PVcIvqF}Cx=%Cohje;+kfN39`%n+jhYxjO@$|8QWlc>MU$V1*E@nP*;bi(h zF1BBpRgC5ip1&0TdupofUmWGSZ-sjG^8aFOHP2w*xU?^|I6}Y>UY+C^;(v(XMhBLH zWWdRMjC+qzrkcB7&})7!SoPxG$HhxYgUd>UIp)qd&3_&90EY61=To~geRg@X%kEGy zzeM*96ek*<7DPu_C$l6WABK-ZxO;FAwpakgX-BYaenL{+`>OY&+&JUH?n8h{gHE$D zU*G?Yw)pfQW@io2-2mNUjjJ~IQa_1iWEb8OA%b58haUUQ`m`7}WE@oBhOYIc4CHRZ zThI^~u`q9dfXPB1x1s%CIP>(p7G&%_An7~}{i=I!zOoGnT8lDVi@U)n?9jVA<+EJn z&c3R7Eogu7jl$&A@IU7*6hb$)0w;!yR7>IVy8+b35oW!qsss)eA3lVcErHI~* zGeoNWefN%Hx>uZk3RQxJ$!A#dk21!j=r*#nLYY= zu_t?Fy!Our%Hd8jaxIO0r8cDgER8=x zn?wKVAR143jFL{Z9$ps0#8*H!ORQNSF5v5^fnp>fg$^vUF&_PblLvDECR|L@!y&=37AJ?k(Sg4+KWZjeBkL z_CsyW`T{MrjQ$751Z&GH0+T9#_s>rBc!NVLC5K^w3F{3Ycj4K}QR0;GNJ0FmlF<4} z(*cS1U2s<|?*V1qE4;cFOl;OxY&|9-NnRYJOs7i>a-W7VCWu-MXtwoDvy%Zq-$&<4 z)4n$O5-raT?zr#wpwx|=6Zub&vMP@4Edci1z66aTjlXaRmO!XGXkS_d#ClI?4Lh) z?v5HQG@?;dWA+u7z3V4NyJJI;h5wv)r|&0Q0J<_i28`^nx);;-zi3H5Apj03`}_Nl zFvyh`$IrKTMgM5zGvB-;n`bK?lK<#1UC0NEl8-&@m4Tn3ovLnfV zRi%clZC252Q4u%5kDp-H*VeXJD>Xo%>Y~};VC^)&^M~@^NkHcM`d>7m67YkViV|SbuqQRl=TnrkHm4<_CC8=%Xj|+ zY@WLcCXm!PkW2I?+#Q9(V|QYywyd6P%B$u*kaUM)ZoUrrobv}(aESIMBzVqy8;oe5 zE?2d06R^8NwZ_dvbmo$Mm=Z|ZsLFsz6QH^~8AW@e!IH;3`~*&pYqRn0XKxtucmB2; zdO<)m>&18PKp@;Oh5a9o7|b6>u+3SsY1r2sKej?0!JVbdxs_0jP$i%-wKG4gwDwLG zd!U>nBS-$a(b$h5y~z5eFaMFaI0iY!euz;N7dVqT+udGNH?vQcLiXIfFR{;>jD}SU zx*T@7Z?p>KHpRnB|8iP#ydgTmfhRc4Y=>k=pp_A}tY;fPEbj%#pn>eAE_?q9s%(|KysR$l_i3tCSKwPDl#6({!(EnzYo4TIP;(v`3 zY*X|BZnqs;X>+30>-TJ>Z#XCY3|UR4K4r=}3%HIRhWy3Q%SQ_!Cjcu6k0`}^Li*yGiTY$+Gf{0#O;P}}bj@XHH~2#cPM+jr{Q<9EE^g#A4FI@t zvau;zGL{4r0QSQ$d6sM%^b3RoVSF;BZ@v$1jQd_D{)zEROk{r09V*HOEkWYeG4_A> zeHb|oVc78DBg?ffH=8GpX0{1QO$s)Q8|bRE+X2$`3` z%w=0F*VO)T8YB$w$%*~glipW6R9X5gqg&KBIGlSoQs8i3pMzO?F`i%AqW+eqlXppy zH3p@PY|5+AMtB)_>zv25NRNH}?^fvKU!VJj_N--}7i}c6Q>z-zCvVpmo_zo6Uhz79 zd_u8~xJgt0)XVjqrXQMJ{MDt3;MrFZL3B`}`%vn1W$X6l*}>}iy86?nDKadQfD%@F z@gh%#r7;U9DL$U%&Ye2|h1EATE!eIp+TJ9IVBphj_4V}y&_mzSvUI!Vvz+Ta?V5iF z4%5@q@o{lkfF9b~+KNv|$d2iDc`ZukN6JKp@0}*3D|_n631_y2x_g z+NxBfK9n%lD8*$$fsVT5cFM)RN}LINhLmE;kz3#iu;37ARD>M$xZ15z@ED2zV{Xv{ zn?TxtPoS=<`#f*Bq3B-WoRH}@cZ^8%#cE3EC8D-iCrMJfeiDgig&XRcbbuYBae7Fh zW_lq+HO^a~glC{x20{i}m}V=~vq@Lt}FRkxj-s926E3n$i^H zgh@{CEV48Fi@ayE+GIC5F(rkZkENI;d%ZXRrQ}bZ1ON9|gGVN0a;_z00-f9^&AG@b zgg-E>!k_)Dv%4)=v2X?)F+TOyXCMI!)`b2R30Z==pI4GjTUhWH*On&1S|Mf&v*?VS za`7g$Z|_L&v#fMRUE61ItSY?)df9*qAv@pHNfXm+@8|#l-iuDAOp!~Y=hihY7c64q z-~(u^p{pBPG+S3E24Fc635fw{w#q>VxTbydEHsiq`YB+cbw<k9`;PJZ<2&B@c?MAXJw1xj`mqF(1xGob&aZC!$*wsC=H%Gv? zY=$+<7O2F;G6?eeeVRi}DyyNNrKW%>A?;7l#U&FAJM7i|Dyq6aUL2B~$-^QP-zxTG zCom+wk)96!LmIyf{w%zl8#2pJ3DQk#mA6~h=PD{UndPcy*d<{Q+ggqTA6KoHN!0^O zYIxOs>HcCancD}8!a`7!pJv2-yC^1Z2B)h~(Dg>}hg^;RE1+qAE~(U94|uE+`E-UbZD3C3<(udub=NeF z<$rUwD;{DuDF(+1&i{@j>&x*bvIz`-g@FI|R;9k8#HeS_U~qC;9vd>6@ywY#$lN{E zWE6RtY|bKdmBPJmw-@WG(QA(s&2@*5k|8cq_K!{erY9pqYMf8ob$QjQ{4@}2O7Q`S z(#*K|`Au{sg^A;(_WEX)oE<9-YKwaT%2f4BgXDdUp|iwXg>2PoM$Yz zf{(5k5bd3{__?s}ENxL8kMWAXl8ZauNfgMkRFpa8HubulmecyB5Cr|i3zj%&Ou3FD zL_|bJ|7$k6s;_UoqKe9gR@t#*G24y7bZ#iYWMTq%I89+*Sy55-<;$-9xbcFT8e_l` z%rUQZp`xQJ(df|z+#`pnGE1tz?wPf{eeSk_qLNaf-^mYl(i6C1X;navHGd_`*IEfZ zix~F!B5P?XJOcdgoVKs-0EMC_W{_Jf1FuCt^6nOLkYzMF$Ur#SfqnrQj+qXq7#YIJcb4i9wg~9S;y7?z2CW>50h>3xF_E(pfA{PyH zb>Ny$Qqo*dQ1Dv%OG{h2ySoEdQM>P+lpo>#al{UXzU6#*cR_INBemaTP;_hG;#BOT zcc2(o;Wv`i9vPC_JmZ956IklZ;VQ4H!!{?-1$sZ_;d~GNw)=vkZ7J-~Iz_dza@Wd$ ztSKY!zGuliG5kD}>`?%8&cEO`m5qMkt$m-(b?zfmZ5k-}0`bkqcll!04$>a5MY}g+ zMLa8OoTwGw`{h0hXdxd5Unvjnzz@MrtYljw^L50eI!@#Mg-eW-Cju|;kV@7-7WvSw zo3fgrb86+Kw|W3YJ!-B^aDSQEz3sqC@cA(5nOi569a&^p|Lwfbz2aD^a6w4B2-V=_ zRk6%?ksZo-_1-hwiXCW@{FVg#aSfkLR(}qVtTnA3t)BI7OibO`E&RAWBZ2%UZ-%;Pg%^76v>=;S?YnXn z)H-#_0xki188ZhTWe|Zv1#i<5YGYa~UFhCq%lvJ2?soxGdxcKVF|jYYRkMM>T*tX1 znw-zq8{VjIzF3EOelqyl7tzPL7B{Z4T1B6^rC&)hDVPGk-vj9m(tY~0$lWKl8L(48 z<|bV^CE9Hg;GJTflXf4{|2bFyoVg~oRnk?t??~(^A_?Jpa-WUEi9W<_4Eb7h{)ir7 zXUT$mb+_qyJ&oE8n7-;L&)u`p!KiyI?qjS5(I~UZhoG!E)D~FqJY*Vy(t^UKTEJQ^ zm!~h1Yh5xf)hnO;yTfktUq0-3*aG9uYHHy?N@4HdprNch#$I3-^Z(8!3MSquQ6!iQ zL5*ZmF5{YHcfn_ikreD%8)lt65dFq0vBDWp3Y?_*bZbcmv0m%i>+ie26|d~-?5h#~ zn0+f-xe;Yj{3Ft1;qqyQB_{p#>`y(RKO69+BM2MUu}a4By!-3TE_GA|)7b_xzju^Y zJ5e&9G(KfMUsda;9L6ZB0UwlD5c>eUIuB2^hG8b6u!9L?p~f8i%@zz8^i-wPemP>Z z>%RMXNAcQ<7G2O^o+>d8tTMUeZs^PUm7O5qcrWPJ?@EZDu1r(?UerOWoWOVpthrn* z(Mcus&!U(#Sj9(7OmgY1cCu`GbB*5R|1_q{G|Vpv)>+cXU2cQ0 z6aAq_PnMD=77I7_%IH$~uIt`rgYzHYB7{%4a$?s(bX`srpj5Z_UNxi} z!26=8%#04e3d>Dt;B6#|#ZFzsAye7Qq*-|x{r@7dKguSG>w)zb$Y(UmINv8(PLJOTM(D+NK3Z#L| zZWiORZG+KVU9@(FjUqzO1zaU2?F|oqc~>YyW~|v|_aq+-wNP_SGnd)nej za`K*4;J!x{u2|oOGGBF{gtnQ1KtJ6 zwUGNm6dEl zLIyx&J&diPrWO|wK@1RbE?!x0%wXG z(v`}S7sFz-ZDWJr$+)*9?@&phE7{{mGrcW{74NAYP9fvIBD3Pvs1FOVLgyJ=LIeYb z<^EM5l(E^T23lCVDd;{Div$OZDp${NK+W- zYM1_aG}%MYO99{C+h4cq8|MkUHGa1!gp)@l{i^5;#Ooc@k}+X4`<~z4#fw*Wdiufs z*_!;WX`6L&eBt_|I zUQk@7CNOyvv7q|Viu=>B`3nkbP9%!6uI2NsXIO0n_>>asK`8gNwV@+qT;E4#>9wCu zom;HbxY+u&Nrj)kZ$6KSV+OMzd0KwA)^96?Vp}$Yp-|cI7-E=pp*S#`>Xw z%|wk6y5MG#+>g+o-AS1>n^XdnHV21WZG_uU{_~jQ51ZHg6akNc@_~?As2Zpv!oc0Q zwdy#o+WLyeQs$z;m-lEV;n`ZQlg>X8z-k#QrheIeEEi=y26FqZgh#4KKxi1qY?jxE zcbm6Q;{M=G_OAX$pZ6E@n@d*d!`5YD^_fzSo$L~p+7_Dq?E#JHsCL6D)7kUFoK^~p z&46x%!l2#40B?JH+a5j$t~_X_^F8fwHB1)x#O&r?o=1PsCXL_6v(e1L!*9kslyMl% zkNom>*c_OMv4{-_B87tL<`6x61Hl9p0M7<&#Ho*^?pq(!+&lYfyT_->W5qM)1@@th zgMvO-nXkDM2Y#-h3kv5Oy^9INSC-mB^q)TE77Jv)Hj1v`rRN0!f6?QRjiZl)y4@plL zr!g5dYA5hlV?4vD{q8GjrGr#FHiFU-P{zy5G*pZd0#=@p(8LdopU2KrA8E4ygu*N$ zY&?~%!2CJ+yYJnaL|e@k(!mY(e)FX)|5I3AA#+7u>s>{>*2F23*a}VIgtwgQB{j9G z4W9Qsoi_Yt0{t0R{GZGcak_{waQtnF|BpCNSr1_G&&ki%(AJIymQ8%xWfRotnOqZ4 z(`2_U{XjKdWh0z7WBF;uA9v|R(~sipyvM8F3z~$aOv8F`!1^yNK*-!^D(v?2Trg0` z#7!3QNz&XA)q~X;8c(SYXB@394SM9Z81ED7F|q-oJ{~jc5*xx!tub9&t8QtuLQc5{ zOd_)XYF(ql+sfUl?ARwGia1k+3E!E6JFlcpsHyQI9yN{Vg0RoxY81W*tmkQ!enc;A%`e|)yzWKO_TT0 zR&Xfk$Hl8!Iezeo$DO*4jp+C9qxIi}$2WlsU#kuiQB92Erc?ZOhy+H#9N&Tt)3L9z zC`5Z^_#}<;w<5z#G}<#|;$+LZljvouUHrDvuLeIhCyMAJSIpeq;0odupy=ZnWLE*wo08-5!+aI9JnbyeMl9p%Hp#;8*dqbK}o>?S~w`N>iP^kY1_h2iS z#kU-N>HJ&$47Co0v%+Gar=|-J{GUi0UsmV?$u5E&4l5vNSx5y>oR4Q$Gn~DwO7ppb z8d*}LU&TqCsgd}yb$b>1+H;@UuO00}KE|_teiDK;_HARb&|dQXEF^v?auI&%-IBD} z9GBY~yt(PII9nfo@q~I>x6ZnpivX7`A#P|B3yY+;7NT770Nnf?#4SA72|<1D@`nr6~dHy~i`# zFUzN<7WvLFkykJDiY_BEIXU!>u{m!8hJynJjpU|iA1^cjsm(Hnv&3^fMZ~XGxT18; z-t^&a-7j>wW9ow`-bIAjO+9e=+?vU@C?&6a;?&SQf}NdEbBeJrYk;JldQWr7&yS6_ zf+nPM{D$ro7Voh3K}4*m@D+Pz7n}J|P)O^g0Ik-pq=8JY%!6uXajJVQMz9(!z-&eI z*|r*<(Iq)sak#qrnzt^yZxO+Im&fkHS>x(6hZ4P8oKhBlBZ6RkIJX#vRjw)e108#* z+?xDQA}~ic{qwz8X1yolk8I33`>b1eGpQl`myk>SdWX+BF82zpojs3oZmps=$R<^G z!{n5wK9`|4587|9jgK3G_84B73pJ;jJ*aKn1Ji8hx5{du={fMEaBQ5d6AGhp(RoFI! zN)U^`DuW_Qo~V6h*B(lROrc}bHU-ZvcNtxq$YQiFSvSp?$Z5!P(`p;{&h1|= zy0~k#zY#3EdW1GQw^d_E3b*haQA(QK{30v*YLpFmfIlk-e5e6*_eXAxi%3-eTu@t% z*E32p6Im6ixlB0Ba#rFb>7r3$UlR|XGQb9_&5V$N>3W9IS%B?k(^lpdz@As09)HJz zPAr|Qbqe8kr;+H4s%WiUnKExke>EnbtZV6#-XKphN7f`{xD%s#-|B#iVp19dJgv~U7+B3KJg1mad$ViLi!(Fp<`=zG>{5uTwG0lF7BspWboq091?+{h@t zIsh)+mFMmwUbW>T)CYMQz7>k+_s8+*H0VQqorm=MxV|%-6s9j!-jF_vx7!-4jv1ev z=oPp^X-w;mdKxPN_5`4P{J?e>d)VhW8pn>|`?Xrl0>9oYo3KLIZ(6b(o4hwPG!Z6J zv~lXEeYePj4JpF}TqR*d%^F@6UKpMw9FxMirpTL(%NX3N{RX~W%&s9i*G0$gCWl1d zXA9@#=zWXBKVIIDb2qo>d(R1CmwV{vanP8(VkGECJ-h1a+fY?8ZyX%(Q0Oax$WaIC z9pk73gOzNy5)Jr?Xy=*#WVX|>oJ{I9EAN1OUJslZVds6Q zsV$bb=4>vVc%N*_$@)ycWntua#tk*z=03Z+zPN9*D^Emz(CkSpE;am#j6^aZh>b1r zr$gnJA_aWpJv)nA<_qFoshQ-LZ0E%&4Z!jS^<<&)DO%!MORLFmFy5L}5?t3BQ3>nJ zvrHY|IQ+rDss7UD2p^eM)B2(n&1(zGK9TFHDJjv!dmR!Y*>&>sv}D;M5JjLN7)OZy zu~4QsTDKD8y99Nlb>I=pbhDc7(fs_Y+5dcj)!>q0YR~*|emQE$yR_d2Vp(+|`Q+R) zVXakL7bUW~eQ05|L9NS-tp1HSEzuKn);yP;`qkUmyph%jzdTGVsrhs#XlV%pqsyP+ zv265VT$1}UnOKfP?(2_W^LMDhMHBSaWvt|w)Ftm<4L>n22I83IhR*73$llhLk@@P^ zD{yfP4F)swhTCV{Sm}<^Hu%T>%7T|C%;+OKUL&!c&zzfhjrkGQ^Ye3$QbMK+O>bM^ zqyTI-n*384#_L7awit5nE(>+kCf{13i2K^2es0d3L=TgMe(`>WT~k-X_gKq{u9r*W zy{|9{)r4?9da-BH&LsiNoG+_IS_^h_-?azf(OhM*Xo1n- zsandl@fBcpk?Xj$izjpBEC+2=G<{x2b;gSABwbiKPSPCIuC0J zP)(-@9Ndaxb$N{d8@pQbiOa4RWI|so3Z>!^9tbh$KrQg*u&|5k^9K_XzR-lgHVuD! z|14p|-Qr-BG}GSqZ-7+4sZqB1p}c~b%R+n|H%wy#5%~8u)~55bE?ba|ip)-Rf1tHC zjM8n2fn~bY&xxN5a-?@fj*|MW!A-_DP@jgMkDs}Zy-z(ZW`XvZa%bKx{RlQ{v^U&& zaP~9ST9_>n4_7c#6{@f>jgH=tsL<#{(r`{uG+JrH{ZlT9sr$8`n$&3z(6sxnUP@z4 zMf+wB8IV1>wXgw*a}~yVrh@mSUVX*A_NK=V>)j6$wQiV7p6u%GBROYf^tzfm{QF9? zU5u*Amf(!7#+h+ZlA=W(ccABfa##S-dX)3N@R8qkC zSgpI}!6SF=D~}Y676te;s_D~Z#wh_c?VVwxB2+pXQlzZ2to04f*$N(K?;)nPZ&a&X z?IdQJ`(8w{b%CsR!SjC8*-EDmif@$*GvC4^8wDa-V{_{@CKkh@@h=wu^C`=!18H+e z{lOmYV)76tbIQMSo;944z3BO^!NkPHazpI7LvUv?lZS=kSQ7t@N}qD_NjgKMEHFWY zi69wtvVh8>FIfvqN)1u?{qH;|@R^ySh63yD1!bISqgu2E96eC-mjsnHHl=8(&p2zB z=gT5<1a6t%Yr3xupiC3*&2Jp8YDxPLw6>r3ZfTk9bHC`3^2fbgeR@+iYX|NYfXMyZQCtrMV&`^Q7#%`2Tt*ls%D$Hwv`P(#NMfOO+anaJ`Hm0g zqfP7so%RxFGhP=Y@K1!;qoS*Ffsu^SeE)*}`Xx3I$JU2yN}%1ltrCUvvbsgRH02~$ zO_zq^&w(MjDmd*~(J2pTVd*jw4KitHHM|SH41F_LBGU3jyR$Qm1C@C>`=ae}0Arfu zsZ0SiYWf`qF5)m*u@-wj(}9T*=XOkRbnx4* zJIsV)Q#MV>W6N(lq=R1{u`L!*&y~NqlF8n`zYSR?nxeRnsY_bU@Ybi8S_}zfEu&v2 zH98K0h+LR#A8nWI$R(G|)#!WeEf#JszV^mSa!NltaLnGVRAR?MQOrGWnrhDRLlt%| zf}1Y(2ZfL(5jn7&zH{IGVh_)yM>rE3G$^NAH#)9I#je0tvX(5{5TIz5gld>TK}FPK zMx0jcsC2(f8TTz!sJ8RUC$UcFcR@S_4^i07QLO3}r7NAee#I(NJ0a5@wATBP_v8+O zutT$HCk;4V50c0lt(K#S49rzdw(fGr1RO`*7G70$1GBL_Y3%0o*82E~a50(X zFAHVlicsXR=P^XE_y)u5t?>Y3_1C5)7tXzlhF!mbbloJ%R)>Ux_vNPWm*4JFDUIXZ zHALy1oP&M}Xq7seGgN7S8Ze%tAnonFanQ9oC;!C$S5srMvbklC3U=NQM$jCuZj~}_30J7Po)pfS*F@1t^&;4mop!iJ=eN&5q=1> zsxusTeFhmqUFUs8acksJ5!CrD1sN-88Ud}ZHgJY}o_hTjG^=yT+P3h0DrTFtJ=XzD z4;nhm8`%HW1YIh;Y&Bu8a5`d(X_Z|=AwDEPvNBfum;CFWY-~?gWjb%#VSs>vR^sE{ zI%hu&h*JtSUVijhClAW!l;ul6*S~mq@nXW&Fn=!L%zM6N+v|>;o9M>4xcgeTNzuka z5?@xr`H6j}|E+s@G|yTuPp66w_x6(XYP$zmEe*KB1TN$ppIJSYph}(iT3C7NUVk+1 zw3ejSRUAE4nmJcw{VG&hX3$k`W2qq~MfCHCJk1^VVyUzfhe9G(iB#gK;i*BW7Kq_@ z^n|ytr{A13bnu8wo5{#rL$#PcrDk&VF1!rt?-1^px3K!ueQg7-0S_Zlhhy^zszl}~7} zo0adS7DeV+MH(Zt#V^`}+1M$OYbM(DaK8yoS z1ZDZ6&;XArw7=(aw)@_jjiQZDTfzG)kf_3GXc`@FgTi)^MbLEWkc3rl$5rl)n;f`B z)EPCppq4ia4N#feD-feN@5V!E3)XL0;4Ai^IP2n#ycrB<_a!5x8^R#F-n@7*$w4sV zO>+TrV90moB_Xd%+A2G5t+8C}-`I~3nOm;HxPhg?2cqPydM=D(J{i9~g5i;p0qcj; z1Zh>LjU~X`8-LK|YgB*^Ot^@*MX?C#j+YSpTsD?pPYa6AgcT`|bKqqOUe#Q=i1toj zB;;oCffG#`T9{+Eg~>wDT^!Ebq!u>cJ4;~D)r%(#8vdHn-X>;ZPaJv9)lUOCL29hu z*cX~sweEbrfoo_r;Ae*0{g8x^X}%t%KmqCDjy(gUSz=6_D+c>fVT-Q7~xxlTGa9mU3uwEK=AF!lxi zX*$*}HSU0PJ(T=&Hb&fp()O(kRdSLcFy&o8L^UFhb0qk9jFiLE3Yho)j@3T08xp1D z-Z#1)PGAmS@F3{pvr6Lk>HSq>Zgu6Ddi^*?l!8rPZ@V;s-QcWspS(a7MFZ|>-xDF_ z0(;qQ^f#|YPP8Ri={i+4$&pM}HskWh!tGk1uGx3wNe9CzA0{JLLj>SE6jagV{ z=*W*RmHY@yOVl#;aRR?HG1&`TorjL7m7u&f(p$=Rhhxz$DDR>%2lmfpVdLn1zy`=_ zQSOX3jQXWzKiSG7VFpB}g(DnSv7I9?y+2tVLOU*XqP(81zq=DjsV(hNL<7ROUP3{y z3{GWUemX^iA12tm9M`?0JKa?LDr`QK>*LFZ^)Wtm9Xq4}GKb>T+uib+2Qs4qm6*7DI6-CCw*k~K2ROf_YBdqi8M(S*k|@~Z3XO5udW%E3H2h?tk8W7A0p z8KhtB6o2Siii!_E` z>7oQ(n&VkwW!G)GQSb94IaHMu8-kNdSG+llghI)yt$-|cYzR9EPuO}epUAyl* zGmYQB?7P_?HolVpYk~9#R+yUK6gaP~e{qD1vSPMufEH#ncI-56R=n)HV%RRq&M8|K zTUj=H;aO*yJ(Jq$P|+^g(A$}zKjg!*fc_MWq9(7K;=Bas7_30hn;SBym%VR{ zZS$Q}s%a|o4upeo9a^A~D$#O&STwc+mtjU)<}8%=YK*lF)e+cqs+Z!1KF#C_On#Fk zpM{WLAV?BoJ7i$)es_LUv^$BsL8$y(xjll9XB;_oD>(PG@zEHi5EI}1OnAfg-tyv4 z^g{SKX)w>H@ZY5i+Izm0yj9`i26=C>wJ2H9CpYPznCfG>!W6u5E9^_`_{Wl318A(1jh!y6U<#?< zY4$4Qp-ITipyl-*VnxidvCVRBDNm=-p5fui~I_WLP~u;3yvflFiiRo}?# z-MA4l9?;Hg4=T4_6B<}nJE@E0mH8IVJjqX#CzV8K(mj$;TgoHaXB?|>8bED#4^A0nR>8?{YHP33v@YLfM- zS2FaF@~jJ#Ul93oii3`GXn=v0aSqa;&Q`nAc{nQ6?jQWAGtkVBCZr7tchhSM z%plm_oGR&@&FwT(9rYa#4*ND*N*L~qeAV}UICCoPP{D&6;-odB1`Tfjt>#jV%SK)m7RfVjrRhJ@9??@dSde98wG%oVw)4ghS;8}Q*nJIFV zYaGCs+3$CF2!0AG`(@NxdM3k%8R&$UHW1Vvu=81VJzP0(407pVRZ@71~;IsK5L3-7Uk5-~X~d5yTr!kN8h zUw3K5OS{Mr=sQqD1Devjs}uN)4xf(LV}xn>8O=kjy^EDW*yT+ec30OiUnX)`h8`dOw|e#a);+aoa@mTxlV2 z2K>ZOP=F`@SVjpWBPL*^P}{KHI#lpUZyR$`L$?&aBA}oR9BFww->*3%C9ZqCB0u+~|$nWG>ok)?(~L;*A|VVxRdRq`hTO z9MSu>iA#bLf?KczcXxtY2oT)e-Q7cQ2(Aeh+}$C#+YC0i4{ietvXkFmwrcDBu(jKt zyK1`nOn0Aip69-0W7jre*QqW>ot&0-X+!)qY<7>8Rj9Z9-#W%p z$8P4xigeDe(HPM;zL@=A3G}fc8azhzA;$aw2bxdhCDSy~ zg#=0j3783*>bG5eoRms~vZmjh&UZ#KlIAMx*qWFNX=G#)ZXPphmW4FRA@ST(Amf_( zojQ!|cRTHEW~vbyF}FN_y6Y1(PDK}655h?y+51AM;<2wpZI*wF%h$8^%w`fX@H;+4 zAVqjTcU&6M5Dpfcg)svwq!PmB<2=QGxdb=`Izrxni<60I^3l#}z8!e_x8TQKA31tB ze!x!BtSz2)_Vtm`sj~JhX*rAFO z#O4trK}5@T^O8x(;~iSeB^MY=Ta;IeIQa6kTKrf#Pe=8q|6a#%D)S0I&du^CM$Fq3 zN~WqH$~CDveKe2l)9#2T+}0@_mW2K$@-PJ=`^$+Ab4kgeh6EAStG6^o-7&YWpI_VM z+H4ls;_M*Nj7gOQjYlt>M{KTx(OQ4@EWRnGupdSUtBhEMT=$6(*PuHPGIw#+iCKxk z>PVaD2bEF;;um!EA3i5{*BW|xy-G{P#s?0|l!PHX?LC=v71y_`DBOK3XNh4YUeuz< znnuXv3~8M$lgWIR+O z^6lA9PPDxuN6b6i|Nc2jhMbqT`_fOu z2as~S|6|v8>BodE==NOorE5*#Oyz-9%n;xpKow$;?d9%7B&;>`dFp3l|C%LcLU}#c z-l*Fv)%BE+K{dHYh<~?3%1;g6(-TbeTvpY5ulzR!R6DOL9!!7BGHab7w z+~)))_q;oEYHwQWo4YQuUM+Lo33uV#DY|AxbV7#)Pu3D1e@G@Kc%-)IEynT4|G->Y@s4sr zt-~wh0wU~o$5pQOJ$C-kUAJo9-+YdS(Ts;gf!|7O^)gc-%Tn?J4*m2vF4D|EvvRhL zPc%hBxd&Tt1Wm~V1Uv1}*f)@JqSnW8%&q+TIFD*F9EFuc?B3AY-2t|4^3>p^mz0{D zAM39uYBnu6+1OCdYdyi!X*=zi6#T=VPnmt6@tAFNe_yZ=&U1dTcp@Y(gS_!6h#xFT z&?wF@HWBFP`!Ce{dx!1oIZbG!^^*^8GrfC{1aDASu|^0U(MxW{m$$cI7T7W~GzSz^ zzk>4q0Y?~LHV<&X{QwpSN}b!5sJ8%rd64HUn(FbPA&5rD{XU?p=dMu8yRJ`}u-OmV zIr|2W^i(ZZ5T%l4g-XB`k;sm3m#YRmyx10THKIufw=a)}V1CV)f?T6JKew(P#uhkU zic-IAWkC8kp@NxQq`SA+>xeb26ets*Z2qOvzrFC`(N}-9)|2AkTxU3suA-%w1oOUx z{0E{?HFvd-)kx~Vbh1$_In68d7spO3`T;KSZD4P=Qo)A4ZK=Zfk^U&%?`-&~5C4ZlB3u6NUgmZPC=)<8(L~0W7U)U^^r4+yj6`Vk(~S(U`Z- zCBBRvi@=uIFX2$lS_JTOAW<{JRmD}Zg7Q^_lex0U9MsxXd8FL5u=rT!K9ohmPlDd7Kq*q`I`SevQ=VQ!Nmj)~U7PAlA zc^5rUpf{fVmH(CUSU0?fv`=u_|NW8&B2cIkC?^*UqIWjpq^|WD9uXV!%g17`4j2-F z3(;%Yd@q=rpzN!J?6`Q)4dj<+Q+Ap=s;)YrLC5tPb3i{R%Z!p+uu45V--^brm`0yM zMJlOV-{`uIE{aM;29`rjt6WZRuo+u0K2SYSRBPUM>IU2)K1=R7spqFXRWT^`sX`Z3 zFwSt4+U!mY$_L_m4klTgcu84?8-3S+IF0>?9#M8J#ElgkD~zcT4H~&73~y+U{=$7f zXsRsP_7hKK}(X zL9iG0M`{R?==6wD*pmX<4`T?Ss@#4nHJ3y;&x-i1N8eCW%Y*pX%PEiuQm(jHlEU`o zTqHT)SF&E~X$q}(Co8-l*{>H9SOOj9qn}ke%q{;jv%fg9h&YdzhNe91CSIU~j14^u3$yv99i02VVfy$7VwYvJ;$=LJ zMeSdpuyW2Q5Bl>SnA~r{??O4r4yvRYT}sA;tzy?MlFD!rez_4hIE1Q2Xq_H^M)NBK z{_4E(bTY8}s9r5#FPcfVEZozYoyr7P#;BG++q~A!$Pqu;(h+DP}*<$*ms>-(DHWlLWv(J{Y8fJdpA+~=tZ>wheOEf zdokM{jE5mL59U%{@}S+UB-hIkQCoBjDtvB|L27tvSKqZGSKFGQkuLN&Z~LgIB#`WS zb^6$IoT4oI9O)8|?1z3VqTDk6Ppo7M_TaBQy{;fM#&j_wPU#ZNcJZF=`dNNd*1$*g z9jJeyjDBAGlf8h~mz`#d5+Gksb#ta94JxLByUdKWdsKK~46yT)lcj$liHWtfk8Yq} zXVIyWTAZdkZQbdwOy|+?^Dy)8L=iG(bI%9H?+E3U)n3u8xAY|dt_uxEXM4-ZIjK7< zD>b6pr$r{mxa-oqYhuzKIfmmt%5?8P%RWBAA5_p9UZ`09TD$a(oRxc4={Hr64Z5Zk zX8#(q2PX*-I6U_!#_UDWm`{b&ERh{Js~K^ikg6a zxzk!yFus4kBf?1%6#~^XmA2RM+*`uW@*kSjmcrvd5e~+p63l`0JU2bLbydJ05H^lC zku!uUpwPBSp?H{Ip!x$KOTnnrYgCe^ zxySIqM_%r4tfbyL1CF>C{VT#g_YD?!WVxoDKz%9&}W^wac@eO?k#`z7T?bYlM_ph{c;~Hl}sRL?lZX71AcXfVr^G* zR@GQ>3UUWV4hynI1l%IcvKfL}N{0(OA-LA=#+DfFr-CMuGZ)dAs@zE0UtWnWuRD1Q z94Ev{li5GCZlX7sIY0M$CZbW9>_;+mqAn3{8-pZnx!7Y+<=?_LAfz2Ir}Mz_`%5kZ z=72vsjICg-b4t#RLKWwABiDX9#xHwkWwE8ZgC|2sPWKZuiCf(~A73bF%RhfXj7BTX zWv?T-HN`DcTBb?V&#-MZbH87}|LngaezA2)u=cBgK0w-Uu;4b#1_#b-idK4w)q zw!cd6?OzYN9rDrPLz^Bp6y^>H81G4mHW~8Qg>)R|G4IJf5L0zySEG7UR!x06X$|pv zyt;+%fmw!+=Vbn+^IV9(%2YdRG8cWf27P964p+Z+Vo zl=pY(x{rFNCY1a)D@8K)cyKGAZ$Ms_~{q zfU)jLvzOKCMYtQ_m)!3qU7{vcs7d+)v1)CNuWb5zG6kc+9!1ONMZp-JiLMJ;k1(B^ z7y3^iFp0(YIJC5fbd1!udTpO~o=Qbil_N4%082tn%BAa#u-3*0XsI&IEv7TN)X8## zY;H$LNJw%^L;vAZUaAL=-0OR_Ya#EFq^fp2sr+3Y12LfB@=MQu= zP&pWV%D?+oHW~vxd0YmPw%dTZU3cu(?=c9!V^q3OYGI_aO_O%*!ZyqImHGqi z7tzPlOiYR1W_HM$*W?RlHTSLZ^f|Vpm{jDA4GG+9bCJF!(J3;9aPLSUNYhx5f5u3` zt4$`)%#Ry$%KfkOPynukRPQqyq!^H8^OR>qd`fz|)`}v+IRG(^;H&X}>0wek;|zeh)_^&x8K zRU;w~ox7*bj^>!=BrF*Mx9Geu`B6hK1T7aq-%SWl7>+rNqlMQ28!2dAiH)7LfcmRnZTgeRu{MEl@Skb}^DVl# zzRsY)cCG$n6drU6;r#k0*tl`sJQ&3~XkEZLcWL@$CDJa@cn6DDSzW-fU!(SMBVoYZ zzB27}^}-fwh(ckg5gpjvYg(7YBCEq9OK(DL>5+VA)f}+hYoQco2E#TFdsi*0fwr)* zXLjNVLq)q;<1DkO#g{Oc7mJPWT1Kgz6Dnz$-h@Ybu;zLKwC>Z$U3{N)B!U4%JgPW) zd{0{dib^8nl&hLzcGW%IUM&Qkh#eL-zET&)+OU4>C|P4NNR1F^Ebq}g<_)7eQuWc> zjY%~z(haAYS&iQR!r}72K|m|3r!@&va+?gi`SjXB@L^yl!iVqZ0Ey5(wpq{iSKqx% zmd7@?S3;G&{&djj$hs{+Qtz6t6_u?LgWJ*m8@Zu+mP^B*y4J1D{abKQaRsiCc(3uO z1t0`7)-iXXgCn}6qf2JksT~HQHu8GZeT(V(-LP@I zA8mqC{fmX%&=vo}q^5w~B-p0ycrqyS3 zgk-QwSq!q^YYanv;|A=W!D`%5Jr1HD_RqKr5xLj+^Wh7}*!=AKR^Bgqc*ulRKCrNU zpdGo__ICOc(7q?@!&dQy@}c>;^x5^4$!JU`p*l%1|5-nh?Otxm?`l30i>@FfpU0`Z zJcg;3`HdRp&TIa?cg!>v=&c>8n^r;Kq=j6tID^b0JZ4=FNpA98@4^1_$&g#%{u2Ll z<-iV~K}9k*wSW6!yZ-HWdC0HD!~g zygY9`rI^nn9#mu!?+e8x0TuHelz2&BxAlXB+@cu4e=Ll6rWSf*-*cbn*{x)Bm(QaQ z4)I(eGWQ(^r;ARibA`hJf2Zt_BHm;K+yZ${g;Zgzvew006yWRukb82#g?3p}t=N(> zLxp@s>hxk4>-@+Zq$X2JrkLoQkKpc0@lbmi_(N@FKF-cimbuNpRf%M+(d-8p5kX@; zHWtjvX1GeUtMcGkI>CE}cpZne-09`I+hd5ZNPybql~~o8JDXt!n?JlzSi94%A~Z-$ z3ydzZ_BLH@B~+$3G$R2EC`m)30$uOq>tx7z0(lJ;pC$I&F(u&y|4vsr3KKdBn+3o5 z&^mA)8H_>Y9ZV(Z_sr1oC5S$29si3Jk$tZcZZD7T;3Ph+!`ZvS+^u#`dr+IIL5$wE z-2!D>`wGHoT$K>h?lh&nEt>nzN>uKY@G3&EU%o&=SiuCTBXF`=(%5Rn4ZKURvmRo% zzr)m%dYyN#FkiXz#A*F+3tIZ~4V6viOSb04>`<0YW`HMQ{EV~4%{mNlCCJk)uZ~SeDW(e{Z zO-L{~WBru4RXhrle1b4;=&?$kG;24~+aDmuGv-u!9cgM?432zy@Uo~^RZX}J&-`FH zzw@qeXS0fe-E2VJ#;2GB_pe+#o7?(|^+FW5)R?=hc!=$oNUuyZgzJGiM>iBQ zd{aM5bv;o$qZ_k6p2~Q;{!j)|2=vkIwAHX;%V4BjbBVN|8UAVE?ya}eTuhw24RAre z_V4>M{#!As%nh&5=}$}qY)VTZ*cv`7;1nks+gLTbL3nVhjGtWt?XS8 z+w)eYMcIv&Up{T)CzY3qjj-y>%*)U?XSLMmY9)bo$Dl7Hil)!$HFudE`UbwMw8l0| zb>L=?T*E?)hrOp+)9CuEghSPiy7{NPXfH{7Ovw8Swnm%4_oN<0Xhh`px&_VAG z2s-68!)|EP&658PO_cSQtVp*o(q+JhgokfJx-(e{DYZXYi8af-yy%$CAVK)t-v4H3 zG+9eO5t*IRLDQ!2$)Cl#42N!nQEH#Rk(%QFjfgfl?wGnw09c7jI;LH{K|; z$S}2S_g6Bi;fqSs=jyYb(Q{v#L6b7u2tT@|B*_(`UDkm_jrvX&g5#smL>!apxg}rs z0mj{Xl{*%V6sfl;ae|fV{*dN*%`mV_A^h!KRVk0o@x{q83#aXtLfd08+rr9)I>l3w zi8+q^M~;uBja`M6Kfl&F<{bHu5L6avqFcABSM0lF>PN4TVLeaA%jxShuiY{n z7tdnzeR%Fu`%R{k7JfMb1=%-3L$`s(=wX>TH7qy_He}Kj={-h5Q}+Q;f7EbtBG9gG zj`u|}LUi7+NH|aG6~JSz^9AKnX)$oC7@%-(CN53f6s7B+ossulN8Kj##~ihwt!Fgg z%vei*=mAJ#g+D_f3~rmI8oD_=D9DTMdatmVgF^8Ar2q7q!?5*a{F`Q@X{b3g zAyZ;P#HwBBvaZ z@Go!G;-}HWKh!g4Z$oGIHxXSEG8#Bn-T;&2!$=VqUlpDu&Sv_008>=`oNOt?yHZNq z=sPdx#GmD!poFgTV)Jo5HFc+9;t4I8(itX^RsHa}+6$Qk|A@q+_%GRD*kpT4Fw}4U zx?y-Eg2uN(SftyM>m`4-nltPwqbp3uwENFp%F7|OT!^qXYv8dc*g?_FtLND(a(LP$ z;19~*$O>VC?g=7N;0!?08Rg)8vV9A(tE^8LH1H@7VB}Y37QY53DUrOE^$`Zn{R?1` z|2RTuKf}dRHqt8JdPVt;&LI)qFcdAD*Wv4`@4atggR7ex9ZS_IIBt~0k$Y(t4veDu zhB@_|uOk^{lFSMu9^9limK9sjA=O9;ZiAoQ*=URNZYD_k*cqrUnKCpOfR$G^X0;AtusTFwJERG_{N?_Y#GBRQEi&8J2$;K&qG3 z+GmzaP9g=Nw}Nf+Pda_cQ23sNSDJIc+cm?8jUbq~|DC7ca%&P>)Nv`p))6@_JK~%t zeqr5x|B`%tdm$SpoyeT2a{2i#8n80A)rS!*R&7o8OS~IhY58_{-T7uAYpA-$_cKFN zPx|i9`&gOdJv3`!9~C{>56vxWf`7j?U@M)CtFZ^%HF=0N+TMMJ;Zut&gI3w`VuOeG z437~#oTh|pU55&+Q`fFj!7AV2NoeJzesdrlMc&2zgaIjb`^KaE$ZgglWGaqyU+ zM+w-WpR=TqWJ(ZB+}}4${WzceN7N*gk+uCB`a1fc8n|Mgi9Y2NJ4D05a`j#RQnFl^ zVr~TsRMfXFX2jsFQyTYQR*k*lZ^20Akj~61gy<20V3iAkAVr76KTRkvXW?Q2zmHAg zhj|8bbkF0!6sF{L;s=;q7V${kfYXhZZM&w0v9X4Vp6iD;4jv{n)a!&2tx3$rydOZ;B%D;~Eoi@YR?xtfY)UW&Y~X z0#woY?z5)*^R7LU6+_Pg6VKm#)t=^NLZ{1%dKPmucIGSBV2z7Lo(afc_Ok;T``2Nz zU;ji4?RL#BT0!6Nx*!2rFm|;0PD$DcuipPnU$YDBFTDN{n*$Tr*RTesHF zJb)J2lElFdwAX$3d%xbo44O%-d^3+cd;b#P`fUL1U3Uw)x>Eo#sIX+qNgQrCps14$ z#u?a1OhKSA3gYkKuxl1V%9*LXb@x{apQhu3U1JyOmzhsDysqK#1Io&l)c&jH=I;dP zCr~~Dw9PbDNhg*#5DAv(J=Qyn#*3%@s|8h99%yS^j(T@fOf`2F-;^w8!(%gLoQ4vk zSrO+-PIya}c$hPtA2;v7%bdSF#?+++jpvQo@~oD2DQeCv@d-(EeUO4ZJ|Az_QfiL6 zzDe|@8J7fSf)RjJPVgCk-guhhEc^S9r9~zJGIl1P(gmbRfeSIh2;b4}+EDp9!2PRA zs1qN1J)JTf!jmA%GN|@_9RjvPsWvY{0?L3EL_G6#8+UQtfz>t?Ccacp@65ptod{dP z_o_>EXyh9JaYNiEkmbRmupfJjgT%l{l~p5hHQAvX*M0edqm)PDu9GHA=r0|5yriKue<&I zZn)WC-H6X*G_DkLs0l6P9g?ITr|v;$?Hog;if?n>%b(}?2{=g@DEUr1zQEHYgYQ?| zINmnhy5iN~|LPo$nP*y+dxCx(_ZAj*-mS~eX?dmL@(jIGg&>7`J5Gs;qi*v#f}aH6 z$ohRX~dni=q^xHqzAZB7L|NGh(H z`%p$pV?xV#KudVo4Z^hqG*fXcoD)OFUAk{JS>`(o*asdW=SgG(5^K*NwR*m)CkIIE zU>35|$A&|XD~($)-0eB~caM7(#{s!}^*Rg@SICNQJ1y=!jnd4Jg|ssA;ko;@_S@IR zI$O?YMtel(p(lvF0>BKiO5Ed75jg9;!gCT*zq3*Ns(asn`h;0?FEk3{Z~Z}mZtc2X zgLj?iX}2U_lJ3?#H&$krT8DK_K-f-0t0TOP^v34>N|dw|xwkC~kt%zGG*E3%CEd5< z{E6mR?Cq~DKLOK{;!<#-_(P?W^^F&B8T2cnDq3>*XYx8Gt3;yu@F5`9JiX^!U;&0J`UBqL4>DK@lbq+v;MB4iA_gCda2AClR*reg|=NCVD}`oIhoiNR9reQej?8gm{H4) z9s2GiCvkROm;8wv46VgEmy^&b}H;k8UdO&GmwYP#rWP4_=Y7pmng3gVTt6yvJO3 zGX=7}^pV4xtGV0t(!GOJsN!-UFbD=UP+YBezI?)8^w~KYWs>#7{Oui)chZ@Fc{}D+zeLB+C~d@bnWn2YJ=m zOrO0y^9QAv6eJLPw5qlrAZI#vLVO_})jBNl7vY|Gp^L5bC+wmOBl+QbUi%*Q;5=WS zlkosdM6Mq%&9D-`S?0&OrbNA7`|&NV%{GkVr1zF7zcCs>a6wF#ct?r~_}!vfc|yoO z*Kz5~v=;_8;~{>|`JgDjqvFEHF|PE%@o3PBSa#&f8Ja==4Au?6oDKVd84vat@M<(!9CXS>yq0*$C4G%pFJ$SQN^?H#+RLk<#7oFW#zQ-k| zl9F{@hCrF6bIn$J_+%2=BLD*Hj&zh@e1#`rXcKH@wI<5M%wxMAC*j;GObU;8Q=Bng za(;d1^Lod%fJG#y|1j6Ivs<{4SC*FL9liK5gW{w}G~jUrhT7Uoy+uwd)liMkc^kvnir@5CKaZB7TdTi(m0?38 zENLaJP7P58OuF?AYkpRk2jMMM_$|o1o*A<~j%6VUz}LXj(f!cts7+DWF20$qZ~+cpseKA{{mvY^s*Z9i$uaX0ciS#f6LAZ}my&+j1il5Lo6@5? zM7P{-QXZuJDb|#bkT_n8i?Q>wg6rvdJRxSs-`h&)z7@0}g2!;LO+p7Lz5ijH4VC*% zFkvqFRSAE}q!N4h1R?f^;blMJW9l9F+*9l_oNCZa#%d#+{KLc%P+RowiEW4%39|=g z6j5M}x`r1D{0Y3TXg^(^=TS$T?@bDWU#0y37uCCck1D1{(;?)KBv4ztv7Au+2gEni z#=NFphKKTjgUk|<8gBV3XS?ICb=eB#RxRV`BnG6JHAJf@Qp*&UE|<=gc+P6S?>9UY zK>C|>iylEu4>Vl;TVB6|A+334x9ZjdG4bTS_};YHGoYmxzo!4>dniOJPC_G9960>k z3yhcSM!=?Ddv$SeF^GH8FjZqF&A3W$viTd;X7v_2|MvG_3V8@)-96e}m^SKk}!fFWbs zt}{?ag{)#?AK~(LS5-#^kM3>0lY_y|iu}$a}F@v19sZ{L+Nz2BnJ|R5?;?VToB45gp1~q3m4l8#*k)gxRaOJeF*0~+vgzEKyT$VJ7_jk)s*ppwv-IJk zXh}=;%3SLUd7)NS#G`~UtaoW=Mfke+&6Gr}s2Ojp)eeP63^97Q<%d=_qh3}H76Dd9 zC1i>2EVp>wc2k+L8FWZf6BQNJj$O(85P64Y2O>g=&`-6x5D0&3~nX4)IoX^_Io_FB>QR zSK-1qu&u2+rTcjX+i^+eii|7oA32@g#c#B|!@%J+Hm_&3ESKlgq|7_<;9n)BG(@jX zg)jcf>0)HcFFM zdi8bOo0ZChOD~mrwBL;cfvm3H8GZC83n9-e7itfSV)M-DKdEY>1x(}Bw|=AqIMw;i z|AkM3V9@%>Y_FzKB_8FCEQJ#%bG@c9RMP<*Nb4cv2z#4UF%dm4jSVfM zX3%Xp5F>=vc;$eI^u;e|7OkPwvuv({!kcNImz9F!kba)8`DTqtEUx@b&?4#yF>76>ao4Wg zle76g&Rc@}IK~pxw8g_3c%qeZ!);F1@jjZ82sHOJghEy)s^f860jyGR+`n<{r3yy5 z531rUH$Yz%eZ&%DiVJzoY&&JA3Bl<#etS$j9Vn|4pq73?33^x(g_iO!Cvr_}4`qHp zh02gwgUsk|if{QIL&5}6nG7c`yNi}hj@y#yw89Fu7|$~O`)Ke)?uRw%K5P4;io!#z zzL4zKCW%0sg+YNJc{N2tX5tN3=NdVl>^Bd(^kkI9c<5$2vr#h3v@N&y1gP2hUeL8M zVfQE_`|=Ebs6+&Hmqrie-cmH8tkb!lIR|w5KDodECp)Aly!^YJthQ5D`%LD+`7LVZA@_9-nT7pX95 zdK3a4B=g12{bS;vu?eaKHGS@%r@^?EO!veN#C2!i-IzV)*iGVYCVEQBXGiJ5({VCW z?o=*0@{ut&~oA;8jnh{~&eS3#79C$__OOJxu z=6H(sP9J)e&RCW{8sN(-Q-sAAE0^uVRQXerJHEa{sv8YoMqo87g8;{x6A>|^J6w)dgJ~CcGobOS zy?=Apo?5R@XtC(M|9z+mm7rvgFpFWbBN^Lx9F{NwMMhu5#w`r7c<0kiWgPd4C1HBP zcs2Z1;87Y z=L_7#nu9#PIF;&1Vsocf14`Yj0ONkhkn7(TClTc)9>>di_x>MN+mfmon){f5i&c0; zv@qYc6=v)CHa017yv4L+s!-jMGSM*#Ao>mt*ZP<9{j}QC2=SqIu{;(weGwIuLmhQg zyW_pKMF3C?zxj{%C4;E;{L*FpN^)%%JIh59F-?~HUyixp zqmBKAZ>41X&f<%w4p!t&0@6kv@c|eFR`x9lFH62Ht#l1g;G;vDPIuknZ*=)5frE+bhf}nRs6!La^b~xr2$XEA(yn@`Oiqp%yp1ApfFeqh`f%=J>`Vx`op*s#3GW?j z_>9{yLYXbM$CIxZVR+0*On8HwDi8?ob_G*WKCiu=V;bL5G$Vw`{#P`VW|J$vpng75 zhxRx3E&K6SPY(r)my#_>hHN)BEjO>1c70fWx*tv2LsMjpKl?qiyLk(-S3rBj$igp? zz3F+`Lp|f2A0!ib-r39p3t?S$lRA6px7%({vBGSByJU}ArQG3vX&Sxexxe)!HW87@< zoWAT+t0%8}=YMd@t0GIP-`0dB;@nN!X%T1>CdtZVkV_v&ZZD*Cq$@b@{kUwLD=`3> zT^vm>774Q&%(?7BvP2%Y&BYpaWIJXh;h9#2O^Fv17$jtb1gx+)rHquNgE+&Qe!H;( z*Gn2r2y_ltbt(I)lR?ZOnF>EzYSJH98`aMcb?TW^H6i^)t=f*V8IQ~BFT2Umkb@#0 z_ijh8+y_9Dk<*h`#&+!VkcBT&9n6lK+kuSS4GC$%BgLI#|80v5KEziQ`1S}LX)y8h z4d{zysc`dDdNs?c3~{W;W}v7MEe$Sa(9Sk&ga&8PMHt{Ixv>e49vq6D33P}4?8#ox zVqxnz&b+-ay^ zN@h?$J|1@afzqX=`Y%Xt6aGU24ibAt6Edg{6xc30|btG`L4EXDf<&=<|cs|~q3 zm=F59#?QdaS)ATUjOoi>Zgp-f-3A_Pa>2N0yh&VnF&<9K;di!7*4C8Oov4S_#>X6Z zyj|Xt{HfYFg?Z_*HzFQ&Rk=>8Ey|AeKR-Ylp(M{it;p|K$!0sGxH$b;0uD#kkAmA3 z+f6#B=|rd7PamE6P0FviwBj7)B7Y>gbA3n5AaIVEjeZ4@W-^{5Co^TS9&HM0Keb%5 z+D_D5!J3F~^Ju6^@J^}Q@|KAue%G})W)=XN%!Uz_T$;fRA?PS*3fdC&>Xn5-&MVG5 zZ$}uHV(fRTGJj)abVcl@W`u--(XU3Bdp`Xd0AD9rV?(e$E_sOK!CJkh{7kFJW)yd8 z?SJu%O4Q9qrE>WJMvA5UV9~CYJf1ImYV6baC)>fnDt2BHZO1>&x&l4x-oiIwok^}+ z?o*8xXO{l`Bv{M)K~^Uk;hTWR+6W2G0Q3F(s^^o)Mo7^^f!=1y%j zdY@TXiX$P6y>ncDe$3sD0qlYO<>O?HyqM8L?MBmpE&@-3ola75Tv^ zB&hof;Mv4A8&C=BibC=^%T-09|7R+2P{Dw>?F&?l&IiVPPWANTb%_P;39Vl(@ms(; zSpEU#uJ!_~Dz3pfDJQwahl+|Fa7~s6IXZ@(+VBv4Ay3K8B_+5x|4;wGKfY&YU6sEh z?Lxhf8C;POT`Ec;#BAWxqg;I!+{`{(})cc?d%_?Zd}?<+jc0p#~l1KkTZm+Ea*r6 zl8>*jiMYZ1q{qSf{MF5=Xp5G8RiL%L-`%g<%UV&8#@8l*Ir{mZh;*#fCP-d!Gu&rM zDf^0J0Xj;La1}8@Fq)wIjc_A=S`K%G>}g>QY5K25Bre7Ewo~p==zK)|eqO`wiu&q% zDjUokEi@u31n&HF6T)X9$f;3v{ta?dZB$8>~v%~@FI zb5~6iZK60!p1{S{^*_X>Sl#JM5(p3jZ=u3kYO5bdRTz*QKBYWw+W+X}sih)ET3vQv z8XlY7kt9xA4YN?{dMzcTSf&3Mv9M1UUTOl&bv9n+0}H7axtG^w|NOTg>k_0hu&^*4 z7?k#8v*O(5cTB~jo9n()*38n@_s+`g$0xis7K7I?+JMV2!AP)5L!RS0#gYMHA0iU& ziDQuoSi~tl(xzYpe6e3M?05RJpYVZvdheon_0BD?noAH|wY*3D@uOUBhl>k2_{7v5 zQ!&}!q13l%W!Fp|SSa zMc#D~PKKc zOVh}V6dc+v`$n)8mE7y0Y#ic;5wGiFm6w>zuj#tXCiV^;AtwWH2;{sl-`-qdl*sCo znmTN1rG@P(t_ds`V!re=|iwR?*xd{4SAw zSzjTdICSGM(_+bGxU=7^EOSw*_CLP$|2EmfP|0{B^=A$w9}K~u(}PtPm;M=1>kFRq z9GP%3gSdA}sKX?e(&?D$&_^>$f8kIp2~SrcD(8KsvLdLb;VCTiVf0|w>0l-|X|QP) z^%Fq*rKk`ep>4#Z{wx+ovC*=6ged>YTEJO!nqT5Z;GH=6;SteEr7@j}_)n$d&3Ga)2Ab{m z@%&Oupln>A$39#WCS4N#dqYl*$#8ZrbBRE*lg;_GGN}7KNWj8)KxzD^lb6CA;i~y6 zD{xNfXZGm(ql@c`^TV|s6^waYLS}8M>w{?^oq1`OA4EY}88e-O-xzWRIyPc8a~|po zL$#RB6FFWJSr{iWRy-2*;d6^(hPq}y`EH|gn%Ns2Q2+#Fbg;QV_vLSAPY4??xoPu8K4yLM$8ig$M+wj^L!A!iJE;MDF*_l-@S z@a5?HPc@Zl!|AcdOxJ7_bH}(!+@)VyV2pe*umwi2$9R4aq;Q4WQlsar`f~>P7d<^D zn90zVgdcXng!90=R2J|0tZ$a>NLFU?{BhuQr!fu*#GoxGC6x%CCy-T6k%adT18=k!F- z|JXsub79V%1^Wt`Pu_6@olOGc1e6)~shvf%nkvoY0v$wRw^h`X7bvTS$)AZ>72= zEx(sRDT_ngMu;fPRA5!>XqO4I9!5Hd9a*`z!tnH;KbynPe>Cc}%z3&cG~4@^d-z8# z{@1-Vh~&Y@UJ!k<4rHe?a*!Ae+*doF8>Z&q?^{e))WUiPd>m@WjNL22`$x@pd%TVOnulKZkG0YIAM>8UBB#FHlMBF90i^c;ga0 z>X*DNbmwk|Dp<>6e8=r|7^RPIKkO{qA9elV=$s*bAWl`Q$xlK3ob>*GUpox6YM=20 zPZAXWFZRAVtjcZc7ofJEglNq`O0q?uJF( zxfbj==R5c8{e64ibD#S>cm4G~YrU}6JLi~V{KjvLIe!O_ey0ZYV*(uwZ6HM#g(9Aw zi79+($#DD7z<(UI^#?XFF{8FNI81!aec{#$I~m!NCqhDYw4?CBTzp_t;8!QxO!?N+~k9K#vMsAhOM=E7m`DVMj)$$-qUu9BeD zIr687ZJfNINwe0?st7EgxOA!JRv?!z9vuEWBxN`v0@HO0Xn!>#uZHF``men!_Fr&% zRzPA+`Z+8t^B%D-(@z0`$)Ul)Wt;-Sp=BMY9ECOM42aN@2Tw2%2N-gzfu=5Dv{wn^ z4%H_Xpzt<~qE1~Uh~e#{f%AZv{F#4`rcusOzplzdn+nN|WG?iv_ds#L6xJBVAO-YA z|J!;;J$`p;{;RsfKT0p=u&w)ug-~UXdX~0ya!hB}_KAPZb~1S@S^36VX9FQe`4s=t z{BbZCnE=1T)0M8IU1Y3}@ckAQ6x)2#u%X;5^oF};uf27!MI_J~emej1+BK`~M^fyp zQeV=;AG3;OkF?qL!9Dp(G0CQ;^sB5ZJ8f$?`Ya_WRyd6VfBqBw=}_H0KEXpl-e3lM z_LxWRGF59z5oT4r{d*5#Yad%S>V?_h64j4$G8N-J9_Oq#H>v{+K#AzQE5@`pk66Wx zJ7iy?soSx8$Sf#ax4 z1gJHmE`4urr{v~VJw1y^ZTTDQ9&8aDZc{aY?xDziARR+Kp*z=l=kDFM84sZzI4$xz zF2lO!=4K#k2xnUbGiPclDxZ1;l=x5YZNlpjP7>tZEA+PNxPbg8iWyLpkH&=w^MKRT zte*j4*N+vgOuGg^wUDP;E^B53!gO6@cgS}c*9=<7>A%f9p{fs9b)!Y*6^=5WS= z)ln1%L@c0zsn_g(7t;DT*79;Gh>##-tqmJ3_@?GYo1AW{M`%S;aLS%SwD0)bepDG3 zC#kvc{ll_3P)ahcPRv8$y7}i9z!*BGgB3;yOwaIx2@{tWY{`E32h~DuDY*MTT!Y~1 z4pNLsd{V|&DUazsxIA9YZwIFDTefllxLUf0Cq z#Aikq1rZD^B_$${qa92d6)c;cy3b*|tA~ zdh1eD)HmIXdyqZQUS~+!04h$=qwS_%5FT;e&zbu%f?w4~EYwAFEvwy19U2g&M+kZmV`zq9=Km8@HV#|K` z+a23d4=lNa>E}p5#g?u*;Wf z6G-_lU&X#KTm|*v#-B8K3(h}Mt}R#nqPl$l@t>bVoe60HjG(P8OCb6TWjLxGC-$&}jJ*+Es#>>wk`acghy zUH{{?2{ns6iXEq6=4c$o$c*lw!>Fej1^0fkdVN8o|lcWzsJ;{ zV*2{~DXFPNfEwF~Ip^N5;WiQPSC}Kr@angj{iz(3&995<%+2&7Utpm-E>EIW8XWCH zVLL(+zNSa@WHz>|OMr}tLb#!v5FbAsIx_;wFJChD_V&(hcH@`gerzNMdT$L44Zv@} zchU}+2@89B`}nNL6(9sBg@%S^RPT9td4WLS2Rsz1-zxzDcW$>fSMVKtPZbnCXBs?* z9vbqu0TqERt(yV=+HAQ^^Z#x!`=$K0|G6s_^Z-Jxq%&_T7-(sGfd<~%nrT~WYY$k_ z|19bHul>pukV?cm9wcAIRB4Fq`c*fs05_P13@X(^=^Wwru`I2SW>lC+A0drr6)2RA$*r00y{f<7&P$C zy@dtbhYueDa0wTn5M7BzJc1c>ZGZu2h-!oXX}Ai)bu^6r$iG4Sk!9q`FCz87neERE zQnA#N;|vvjM@dbkY)$6dVCz`(@R>g4UCNm8PecMQYLmA+x1t!u7|e1eey(=5;D`+} z^?yS8^Fj5GQKjj-8ok=lM^wcxHRe`JnQn`%F-Q!p4x|5)Bsf;rv^uh@IWetFRCkke zxVv*a(Dr&TnLC|7@DN1&O)UW!AYLFegoGkkE>04kRxA5>XD{?Y3`zUoe1}t8_j0L)3ux@(>8bhNZudy5dEDG!c+R{>f zlNcK|rwL1LS$xlvFAWv3w(_$+L?E+KULiIT4CdjshBL7Ws1rdSRcIRgRCBMwy-i-I>%nODpv* z5f|2fVW)Db0cUZbeBZo4GOql|&Rqe{y{!cb%|V`9`S+*CGlRiCKblAD-i|Jkmmp!_ z8PaiqV5-;~^~?uWYQ&qd2=#0yyf3qz;-*frMQW3%{9bJrsOcT-e6ucnDpUXMHl^yP zk*H(L%ikb6l&wO3^A6)4#PJ+R5-U5Y-Y-1K32s~HbBsYqcun>#?hb#_qm}(#@{sRu znU#5C!W4A5=miCRI$R5%PSm72j@mBAa6TILtFUCQYrC#;3?1!=iXW2fR_W2}cH_GMTs04u*UDDsR;b~%tG^x~6aO3?y~ZwI4-xEo|7WDZ&FlWXG`I&U zLPPF(@_v%aR^7Xo+d6wJXK!BD{9M&>(3yP%xBOA+Y5Fc@FM|wsZ^xb= zoT^7Lp-Ca3SF)$1*+1@BqVS&E3XIVRC0cc^cvvFEr_r;HXhd9Hp%4x7kj|N82 zhz5Qjn(ueZJ5Ye|XH$UxXW(OuoX)Fn2UOCwEzp|Ai#%^TZC(CsJ=S5C;Ioei2}MN; z^IN1a>F1K%Txr0M=1Y^DtiUom&~d1JNwrz6QySz0uL0d==NIj9?|K>E47cEr+#MwH&P+{LUQSkv^#&;Aga^_eA=@Od=T0#uH5W zuxo#C9a>+6y<`orfjhg7C#jO6PXu!1$RI5sthJPX_mQrzKOu)SU~ZlT-lI)=7SIQh zpS2`@t65=GOiWM#2nYSq=@sjJDIY)tO>jj)!;cSYWdx1KndWn|uxA8-RbldAZB!l% z_%na}`$-}}LjZYw)oJpGo)i&*DL2tEmF2#@RHn=lX!sdQGshlywe0wHG75w#MQz(1KGHoBoENkdDd=9{+XrVb5lxJB4v41a)`Mw0W4l3_P-FcXnH7h@B9gR=~o|-_K8knfIXm}vTdP^ z{a53NdFI)Xkr!@-mxG*^RMeP{&IvQyi8G*zQ2cL57=V_d|D+BVyNNdiy zH{3QmUzk$5QTkkS=v>A#ZX11de^*ID<0mz)Zp^@R9O<|AREf=|hXuK=flYJA4h~s6 zU2vh5{}b}#?;^0M(axWLEQg5deqCuPO*xzj98$^5jx;z;r#*W3tzaeRHW{X*5`Pht zYkr-@dDBCc@^2x#bgeZXG7GX(++J2eeKE_dOjTrMB!r@7cpO}-t~-Xh4f%34uo!W# z#3BdrS-)iI6O?%(w<+)UX_5ys>wRstPI{gfq?SYk@9pRpM_X{e_J!^l-CTGCRe!hT z8BPZMB74U(PM!(+?~V^<)vsT&G7v5+^gSkNHXBk$l~iWez{BAxLlL-ya0d(7TCl?w+$%7-3yj|{3rw+loFgCD^**^5X{c_^p^Gb^W3YD}lH z5nV;97$p?s(Q#}6&c0GBR$SVO0;#F>FulIXRH-Q49}RE$NUrV^xlvxKyM0klV2{~7Y;CS+ zu`2|TZbJhKM~|dtdG!l8U{d5#At^yoEEwu%KaF;YLzBt%goqKbCp<|UZ7Ce#)(L01 za7wN2@vGpqPf&^7`w%`!R~YWx?RA9)2P9!M0N=IiczG>SVaqJaqOR0ay`{LF*ix{a zNZVDY=<=*i)PY>qI}c@8{yZ>dPWSwSWtkr(&h86uYy+v?{!)`|WmJ`?>#fvw6O-%b zW6P7tD84a%o7zcu?^(V6s57#S+fI(8zCE10NwM`_9DF^(@KTLRgoxT(oGYOG4ipMsfkGjkfQ-am6q+b?>%LgO?$cQb5y2^5 z zX2Hz`%#J#voU0tayjOO(Wka3lkX+;xwO{v}gL!R6_;e*3w=4$YrF%{cqzg+{=?q`u zXmiH8!_==U)bH(wltuBnJSc_`BLXqv)V*~gG&jNJ_S%KD3GQlIXQo`+zA+`{d3E zMBXsJMo&sAF!)BxoUJpr8=e0FWbo2yEoc(9u26Sf7qb2xTY=3uZ3kA0z3! z8U->GhVJk;XGJ-jO+uHUc8}#_g>`Oghoj$ci`h3QK6gIc2-T>x2l;0|_+^7$(Np=ENU5>m?%#EW-c4x2wYHWqNArD+=m}V zwO-^!s`q{k24l{zPr^-4?XMCNH$Yhl>EBb_fK3g^yM@>mJmT@D_E*EOqx%-j+WtJ1 ziKU;?iMSN=msKbnBf63}^++x3d!cf~hucnKvxG3Oi-CmwYw8HKq(Pof-yB{qaM!U1 ze$e}-mK8nK{HfIy(3qdB=9-}+*ZPTEZy;S3?!(0^QSAY9v@CIRs2GUVv0^| zBMRX*MO%&^{ev*}qTl+dV%m6kpMMM9I|3C6h2#y{{r#r}1MLMqC4aRNUe41DyNC&y|y>#@_Yj$iUh_;TyNIxnErd_=@;w#g5N zm^fFWmC*&VCu=vJB5?;SKcO=Wd}aYquJ`oxRG4i3_6?Nqq314Vf_`jgFz@5O*yOr< zOTA!9S?$+e+~u}S2Q?wE3Oc(j2}KYwsZ7=Bp3>G1o8;|}JD(l+>?C+y*Jh<$o<=N1QraMC8Ie<0H#La1@|k|}IaM+OX96n-v@%3J z)bW}B`SS=zn3A8LKYbh(ms60D@rJw66CcCn__t%ZW6X)6F)>5~Igpo4URFYHSchVG zUKdP18Q9s`@jMqiLzJtkVVwIywcOZY997$7`a|9;?s?D78?Vt6J@UX*IOvO+k;a#K zW(Kn4iSpB=#?xBcise(7HCR<<|jsAm}3DN_-$ zTke%-ZFOT#U7xHRe))R-cI{glK(9S6yHETMgQ$S$vHi%8#&<5LiPkf99`WYR&d%Vv z#AdN;rUK#{7PykWo{3JbDiU}Pbw$aAX|}%XJ|DpamK7iZ`fk~yX-rH^4WjIL)$2kwHnw91VWTt1eu>?xQtjLHhvu!> zbG>wKmem8s#12RjLuKVVt-FY^*WeM6F!x#*i`jzEKQUPA7Y`optGLLyC;S{bE*ZcZ z+Yt$>e)EKsE)LvwxQpo67*kJ5KcFI+>v(4hN3&9_f& z8lqHrH2dKUFR{7ozDhZRp)Jd-bsSCaWLVBV_-&@hSgNb0$1WR-b8Jd07f0vg40d=v z*Bc%LE1tn4Xh5t2I>jn(G)^$IV7u3$D*w4C zRiQZj!I9bAH>kNHg!(!7d8#j8zU<*ok8`&f^gN$GQZ4y-ovLGSf}2do#(M#mjOzRd zzVzH(z)z8%o!RIWzOd+_I&@~>UXpy@+_#wxH_nkmI_yNpEaLyTLGZS*ax z9Dw0ATkMLdx7){NK<^l^AN0Y_Ar}cmw9Bfwv#m9OMG|0lxHdXhid77v4Dy*5#IKBv z@8iajOIbGGSMT#B>yxh;7unv}8b6qY;ozyIY-|d1)JnT7?u&!d0Sf{MIUo$eQn>kp zS;}h4%Hd3c3S(nqo)zmG8wZrWkt+@-2kYP`0x|`4rKGrcFr1X`hGT~L=Tm@Y$NyR zC2E{DJ8on}4r_r{L)dMOXG@NIU0Qw(@8OltZ`u`^GDj)v>$yH2^$GhLjjC-69qR}- zlQ50f^P%9^Rh;g$ufM0y-BR<7%uRCZWE*~=t(^d#x{G@?JKmgHD)OfU7Te$^$VxX$ zu|oZDsgdm-+vx8k&(#_K!PHG&kVIR>M%R3H+(ZXd_ZGH9w6V!aN=X{2^ zD+|Yh!)OGc-%QKMSi;i9*$8fvPnAS9_Z0z|b?29djn>xIz#9d}#gPoGd!w$!&L+Zr zq0;pYE3n9d`AEQH2~K8iKIOsZXcEzxYzv`2VGw3uVq#h%8F-GSzdid+Bro{mLMq(Y zSMKbM4T8do+e%XEj_%of8ZGcf8G;%045~$~;jkf+MvCm#a9%I2H=}9kI8?W(!Up$Ec`BcFVuG*^lHqn@=RF zq9h|TBY}m4o~BUx^y$;ExVTLTY$Qq%up>s?04}lX4rqMSrKv}=jE06QE zlQva4hG4*kZo#Hk$JQq#wXE#RjG!bdoE8=q3A&a+#}~mZQshXmlu?PB3_$NKBIc`j z!OStndaorTx%di7M=X+N^zGgk;WL77VCdq$#unVRmNzVR!95~#hnW`i!ad~KYG@H7 zT5rEiKT_9L3^uMC0~_<0Ge(2|mpc=O82O5lc4 zA(J&OmD5iYoSd9IE6mKy_9=beUwfH3-qj_o>6vaeRW%wJ83}Bv2xxJQSJ-6%z=Y2c z?Re!u1fKoZ3l*2|5U(Ozsl{&}?u;is{Q%Y~*wrHbByDw$Ow~_VRK1^zSo~*-x2SO? z7Z+E}Em@gs6)qddS@Iz!XHxSr$N^dZIk+AyqU36Sc=mD>I41-F`t@tU zi;s+s?vBh)U~mBLF1Ens%z=wKv7~)*)jK{*MhrTyc*zsf?p+4~=(@Edsp@x+_=@%Q zbuf~VL(8jB^kz+ZiQb@}{1!I9M|nHapm;)o8|TBnyd+CNuzL#6G-zgEkOlx6yTz2L zl#~>hdevIjY5?p80h;qCl;*j19rg^QN!zyt408%Iv$IKYtt~54y0}k;V4rCHY<>sa__USW*cB!J1(=&P1mLx?bh;V2zzmgec%>y*L0kuJi zeI?%ha3YkLZ~2bfuhfbRKQRe@{wypjwq)y~E=>RFx}OPmi;!Q{XDl%@4r=O_aIzcX z0;Lwyd?1`gN`0xLtK_74Cjx@X?OV41k{4{G9W;}b{WQP0cp@h(*w$;mK6YDOf}ew9 zIGjuz>hUPvL!JG}(>?GdHt#d!(~$S0-yf^*HFqv${~U5!mB1j@>Y!(2q;kZB5$QbSM@tsf&dnBTvb(7yqoA9 z9s!=_{p&e%5l$xgTuSVog_y9>sFR)JaL>1o2vy=3>1zh*$%o6gTm8G?8lcgkriX5I z%&cCq=D|}Jm$Tk1HZ*IYs-l--s|{GZIeL=W2Eu!v5wu$Zi3Bk)g(bMK6iTbBtAWGq z=XTLhCh3*KKrGfM*1r5?#TgqD=2w(ohhSj>Z*URsdX2jI=q4!z66T5p5f6Dowo0L= zH-XS3R^GybK1kYQK#s(2Hl|C+VZH~VHkDSEavo?BVFXLNsJIx(ZhUfb9Tu|>*2e*= z1Y{cSfSHL&76|IMw&W)5?d_ouYImV?Xkg$c0JZz8!{b9aYA^u$qlr)x9+8CS#n=dk z?v?;!#Zn?E;i3!&Yy_|f_~8*X3VH#oQY(SI1NTgS0uhU#Rz(MWV-bk_*xY@fM#zT( z`^;ZbDX!q0lmUt4^G%O=v~3xjr<4i(`&QUF!ekV=%l9xTcjTT>6i{oDAYIV;}!v#9uFtiH$^dPze z|DWg{zEV&C#r#Dlwm2DaB%IMyDo*zg+nrvH#13?B%p+^uGq6 zs>HCDOw*GFxZ&WQWk{K?5*aqmux;QwoY%DXgU8IJr30Cs-umngfP@P$N!BQ44}6Dv zpBt0%^LuXGxB;R>{EyEoCF$v{JG;9sAfEp;th8Uhk(&}16}2jXO$jVt7U$dA+FJY> znUi>8I@h;>40$gn>2Gfso&38j`)=L2gUjRVhYW{yZ8iyh&HpaTb>b!gT&6*WdaonN zIKG$}K{QrT#c{Bxd8KZ^B0wW7hXzjnIV^QazDX?nYP}%d4bwtV$w4x90wb%Ea=WZ@ zQf^Vand6xu%v34lx8mP;4b}|YiPjq$=4>(UQqd1M*EV_+KVY0aG`8=kSy`#9lY&XX zuXB3e9rh;z!OdxSs(O<*vSOES=2mnXFESJ}Rebl~p1&ai@ z`98fevhz|Ln$(}KIof}J2?Mp%`}FPwy%hT~G7d80g*YzXEIeOLn+9XCXM&3e^ zX^^B^PN<^5%BT0PbmZ*pD*#%0;oJoU-mtpIJk&vkMz7fvDC&#@XD5R-;DMZBT#1O8 zm?q}25(XeBEDh2Cv97JX{U+p{ZM|17?br8F^f?KTu4IWv>|+Ji8e_eSf?rh3cEed; zbWYmgrAn^lS5%s0Yqy{|&fzUGu>QUz(YeiuJWM zDC@G&8I_Zf(FStQ)#1ESko1F0KftQdPvr8^;B)~W09)L@U3?x)%jOrA2w#0s<@gnr zL6V9CKSg0%!N-^wD(cOMmrc^M{(G{GYzJZ23uCZK=N>7vJ#f1fkoUk8&C!d8M0w%$*);Bho##s8H z-O50Gto*~c55!3<(X8LTeFI5JB0QXz`;j5sW1VI+DAH|`u!92I{rY7_Ar+{QG8LzSz*uk51v1oRW&c!PTMzj=n>Tr3z^e*k9?h$ zK+<<8i7EH4XO2%zy#%4gD5eIQrqZH#!qQaeCu;lEz9=woomC~~`wl>2kfD0udI4LA z{7-CD=r6f${TQ@_^th<&Ld*GK4EmvWJ|CO;+ZF0}7SQKa^#QvI*K{q{u=;iznw;6~<&`fG z&_8$pOz*pjLCo!e^<=RS5E4@%ycegt0B$|9nr(_VH|UC92KgJH_2bREd3GhiNNd=S z>ajZ?n1Zlfy`N)I{DG-vp%+o7`UX`&)4R-e|pjWkP1kX866|ySgxb zM?Xu)@{EEngJnvWSoCf}amfhsVNyYEHUEX+e_@#~^QeRe9K9R6hb@d68VM7oomSMs zrbT)xHfBN^m4nmV%q&k_T&i7;8c7b+ywtANk_Bv;EE`yZ&>M5~zPfN)v zDu&vo`0Q~snQTr~AAG0JI|76TIJ2W3eVY@g^R173ZNwnqTLX^;+Ex*-GU{T`wu%gM zE#{Xgb>KZNoZnRjCJPOM0Fc5U=E2{C<<{;?l7I|xX= znA}_(95YiszT^X$$NH!x+Z|O#1p@O8cdO<@N==z}38&V4JXMMs)X;W%U&>kFVR2J&arC6MJA z0J5(T71!6QMUaaJZ1K&BkFN_Sy+I(IVgBL$`v?5|)6k?mu*76IcSaQg`fve3^9nHK zl(HRQ?T;}frcu0)l$VU*W=mgG=vYi_Swf?hva)(u@AbtHu8x$HkD#vW%R?_H*xr_d z5-Qz$%l#mu7VuIi1{kEbKUn}4gkXFnV9btw&d(#A302I%&(>c@hdtzPAr(rx2Mp00 zY2YWO75n?``}@XPlY%lgdFu}kXmI(37FA8lTU{ZC5-%lL?EbJ%eyfquS>Vhj016e5 zzcWoxWSv@GJ_?f9MUc;e*gM)BKnNUcD(c9}U>4Y@(+((Cz=H`++B-OaT7uMmrOSyu zphoxh_JI2s8(WdUy8VZRF3#<%#P4I`wnsLpnE7mpX^vaG=DWek;Js+I74^2GXICJJ z;s)qVmor&+ajAb)ToZ0=CUjg!`eY6vMM=kRv8d9SO$j29x z$MNUF!WhWb9zgjZQo7^gWAH1!)NRmS6>p8!v;MevD}35eh(pIjbF+k7mHkU6eW9gE zJUYW12ksN4I6PZY26SY+Useg!#N6dQ7Ho!JI-6M%iZ2|;22(=bpai{@z~d&)Dd?ll zgp>;X*j=$OFNLTDg#}V0V)+PMPL{M(WVfF6a!NRI_#>idOk$pzfuTKy{2k%tRaW;p zu0&3wgN;d(ysDk|z?Fmk1tL(J7J7#<8c6hbZRt*BOr6d@qo@4150SK-=gzp zN>lYq?)i|VdUJAAVo|Ztdxb4(+21UvqvYB7yilI}RflAE&!CH2>^IIw3OD_qxqxEF z7Id+8JULGkj|e>_BSK^IUq+)Xj2sXs`$jh>Iyap#U479&D zfi$|Z8B`uhjjy=JDvY9`(Vdft?iQ15R(kr@lpeQAN^E9k`r6V-V}|W}B$j1|UuiUawk`r4O-RFi-JPBLDZV%Ws?zwq0t{G>D>g5s>_GIZm4OUF-n3VI zcX*!}a2mb;@Bz3rVFWm2`0ZXedjOxHWdOf$Sjv_9JWd+a2ndoh*MSR+r9y&njoPq^ zBls(7STU*(2@?zRDzzd_vLX~Pd_&rvNi3CI3L8qeq=$?M*MWCX9Fp`m`ddM_PBao0 zftgB}CrT)&CEn5QF#apWpg+kxS6ST_SaP&2XHYL_hCq~Fgfd;C!6c5{Yu71Dht#I4 z=Us2Y9$i>(f=aeS_t)lxE7+LLr+0SO;g?)_a>asSTMuDyczFCB|EYE@TiI2?0l1bw zUvTgqHuHb1^w-S-oPz=^!|s-Ub)`R8FN z)?A?1{|BZ2hdLDgKPZKw)Bndo=|7YuU~A6ZzX0-iAH`@nvI}%smHgi!LjMof+v~JI z`v#p!1RJC?2^vGPXC4&I*h|FF-<|%Oi!**BG>(?i0c=N|x&fGq)1=h}mdN?v$%el3V_Rnu2`F<6Ccaz(M%tv)ShSjsA0`3WZ&92kbKzxzGA!-9Ie z=aDPR{VOEsFTsDd{CxfVWRqm?AT;mIH-6m4PnQ&F1nd9Bob?w3|60JO$UZ_ZG%9CV zO>09$;22vxF1_HO1&0euSXqyz7!oy}b3T-mGS@aj9JA~tu8z|PZL^#A5_|3HDB)0! z?vM0mSk?fpfq&1kqH>dFlWuC2`qz7bT6yO~=c;e2r}hP0dUGs}q&g1XsqK27nTk>Z z&Ku3tjc>MR`E(fG%@q<;e@1Tgn1B*S18EKDhpD8P;eTQNY8N`l|B{RO>ntaWKEm~Y z>FlpQlqRO2{ydY3RH85DHTcG6YZp~D)`GdR=)v+W9N6k7V=o+AFmZKqhMUQE;?*}n2Bw?Zcda*XB7w!q*E%{ot4j}v zgKOw8&e~ihv@G`zR$CmGQ!{KQ;kEA-a&d9#i@33D0lSfu6?6?liAz%p%Qr-(d$YLi zp~Sq67ijqBhMY==_3N(E5!~cQuf;jvw7M))ebIZqhxE|VDrfW@qp-i5g}%Ds4sqJW zdFKAvEOxt7@i&M#qup5-k$!lppF+)uVM$*9n*XE2O2)&tQ#I^`(-zE8Gv`CQQ+n(f zJ^UY&mo*!PTVr+Yf9&g9)bv8%82>SSi)WE{gNx$`C9vPe4MWr5)ypGp3#T|Y(zcE8 z4sP~}>G@cB`(l;AlZdsqag}Ye?fUXe%=G0=cc^;3tygh3EFAXT79JFGk#My0Px3F7 zb8}TKTRpBiISf1T;R>^xr|#I1%au4k+261`pL7Y#HQ#sM<9e-Ns_dAj!1?NFlDGH-X%5=Y%h<%l~(dKZ(s_SEU9a%aM1 zb(iZx^+F(6xunwRB=qELV|v-Dcw4vjgsCv@LgR%SM2+bpeYA3u@Q8;ub#bXYlZ7|! zNw*lceC}cXXoZFMy7>Nf*x|c4`GP6p!`NDF6t~J|>-TADU6dr&>rBgB{3`k-Ul~vD zP0t)8Z$hG-yN8cZs;A2j3)Y?W^Qu=?%mPP4I7b(e4M1v!sTBCc~xb385^u8u2>tX?ni zuuE$j@0#}BS2{qcVQ#bGe{_;p>kv1`)cIb#L*K1q4fDK@|BLP-yMyykcHMej@alsf zqZhUaADL9*#w2Ak^r{Do+p{*eF{ws>P+|KGiygYU7WP$lHU2oENI^>2_hMbKJ zy3M`MUzdu#>xwe9f9G6q(RWp%^rB-w1Es;${5#<(f*1ygZOFL6sf~W+V)Puz)?RtG zs_{XVQ{e_P%QNDE=efEl4ky#| z5R~dEB)28k;YE}^@@g|ev+0{r*;>u7*|$AEvq!|Ur-?cDMrfZ%rEEIM=Zv=J@-Df& z+|eFBU_8KdQX_VlYs)Je9$OpxNvLsh{(1EA`8&6slMM~+=}%i>Q5}3+7acd!j;}3N zI{3Iade#JyK!Q!)xmMX&J|C$)Bz_pR42kQXaFz}|jkcLuc*(ElmV4Iv{Jivpk8in# zaf8dk`s{-3Li4C5WceiNygF~Vx@&xLRq_zi(OI?A6;hk?JgcO;@TxEES)BHrIufI zE;&5Z9v?d78*J}>>(a6@{nn*@zBKiMxN2`&yYfr+u$380Op{G&G-1iM?il9TlnZ8I zfyVUD1;UJz2=wVkC(o6`C;5!bwpH{wTpyZZw(UX2N~Ky+Ps%39fZ3lf8cxi_hEy?$ zkF1UfN0F!@=7lV92?a24Pu3W>J4_h-T(S4bx)^0!9#1`ZdNS!MYt|Xy6_~Kutu%~x zP;q##s*8kVd}Gf=(Yg1Fmd`i}Vz(Fs!|!D3-5l}-x6OIeevJH?mxvvI<#&v#)8N~o zoh7Ja%4u4Bcd8!}3gi!QX8|a)KtXjO=&l7?FckP(^&U28)%yT{tcNC8r!A3F9K;-f zgpQFGO{CTtYme{{{mE0@@2hyJaXm4jV}gbZGa&9ZDUb(T0<>qZsrOSyD7af*pRy*ZX) z4jJA$?w_7T-ZVF0n_Mr#ajoKvZcTBzxIm|tOGHg_4M#RbEj(|{?mJ_Ys@UJ$=SGE` z5xjZ1f?SANyxZU>Rgg7dQnPt+gq}9U%P(tyI&aaWFlF>Erf=1>+Cb?%-zLzc}ZgKE1F(EbcfIKEaBp| zKAW^eMpGGX9o^^HcGh`XmUD3Q+&n*49HBx@!x>Mi>YP?DpO(PgbwJ8T7(UR=3Ss}J zSmkMgiGg2R8ghk`bW51!2N8ppM(E8!5ST zX6Sj&d+0!$9vr{9M^X+^t`lX&zEI{6khXhEe?op(E#}x)+`gadLY3aRVk0TZ8F|sT z_LVi{p48etub8NrLuA$Yr>JbIYyO#TE*KdDrRhP~=o_mRH#e!}XMU!>Yp4~QP8zm9 zM!6@2e7i}kM_AUa-$YDVP~5C?+EH_agsR_r&Yr_Vaxdpb?y^OnFh@eexmxeExqrEBRYtyIgDx#YBevAcB<)N}nQXJ_kTlmF?T*Gyewm#uq zB+{OwqUwj_W}Z>kDn~3rK7X*l*v!gF?@X?Mm>kkIKJscFt$P-UF zKU6Ap8(pd?eO|#Qep2jxcxEx&Qt8Sn7{bFVB3O&Ke=&yXdyPla%>nHBq{)aNi(p zyDrsmphAd9ET{YF)u$>zx-C17aD znPT|vNU_vLl9=;7a$jj>jP43{YEzvM?neERXn>P%LM+Rzb;me++|Ny2&#<>wHyscJ zINCmHbVr?eId}Ulz44?{Ev*#uxrV`CG3-)If)NyJn3mBdy(7Re*(Gi~(Iq3&|1_lN z=ZxT!SC-_<_DYGU3V!3u)!>Zoi!l9QQYXz#s}Pc>-O80jRtAysx9x5{#r?W@Bp{TT zDbf&=jr?ZpQ(6+yz5)m8knGG)L8(VlrndyRil*1%_-)tf)Ui)7E8stz&g|-6tY4ff zL|Pi=r#OLDTZ$8#!?DP%rR&ag=&Dl-$mBPgSx+;VBok1}k;Nv>nX{8}m!p4B!4Xgx zT}y;l9+&2^?;xO-lQE--oc^Z2v7*ppdF&qi~tS~jDGU`dY~=)`suG(;Na zj;T>i=g&lvLp)JXx!dQcIAr*&N6?QZ;I=|PdpLV~QV~>TnA>@?6A^985tW>i@w^HT z42;jzICDyI&iM={w=mQz#|O@-PdG`F1YMKCAJ z*v#~dTCQqD2Vbucf=xszk;1o9ZQhrLI`Vw-PzX2KmX%f^UT~95!##CGYJm0ioAr6- zkC}!1eZ3Kg+>z<_Y2=XQCEg1Mxf#ZYn%zvz{c=rln@0D zi$>ocopC?1gVr~_kX;GQ8nUR)(KdvwKltGq!7|Nt<_uCEdCJg(`*G)1j&Awx@l&fO zBsZwXo$?^#^0YLGu8QGqCic^>ku>^yv2COlP)wK-N9Le^Tv2 zvTtkkA3h2_f9Zlb;C5jt_@X<*wz=t@i@WGa_fLVRo(F8<3O<5ewo}Jd~qf$vAc5YK^RAj^ER1$yYI55kNC|Wc{tJbq{<>W#_=Ob&laqR3^ z$(VW2_%whgyKm*TW_STqv>6y-nmpv5cfSet76h!rHHba)YNUPocslMRNg;zZzv{=$ zA1+VhigzdW)yr~FKLwsrQjI6V>u%kferQ69&C?=9fpaUp$7sf>8Ws0+ImG;9nC}$* zqtn|QAH`DOe~8#oG@{>d-9UC&w(qfyh;m;^7u)%ihDcQ1hy8gnM}NA4_FhM7-?B?2 zzENFiBf2h1QcRvS(Xcnqq%@Q0?GSyDJ6v|(a-~m$?xQbqMViw1ehjp)A}~bPs7Rv*Vgrm6NJ5go1p7M!Q2Q@j^i&8I1 zVV<1nG7mw%;l4s+%YGYkCczK^+BCqcnJdY5$+MBQ zH-erS^3KeWU=G)!r!GAxWSOvW3%6D^ZiqYM;jxoUOT3sPHIc+kn>4E4=9s<{TN5kU zyEE=;c(C$8pZ|1K=lR!74*wX*)EGyF$Hz1Q-ws*Lbq!e>Gfw1JcH6cNUzu_$jw!g= zyieB%IMDOi-Fzos+W5N5Qh1+Rr%lE#+R-$9F`8LtR_dM|*?0r~Nx#Ut_uwQm-3F8E zpxXiim^Vs2f@{**ux>NP&J4pm1MV|Of{OmdiD@CqG)}G&ZcN}|HwhXp$MU(yq;^4J zUQIji1zDj;E(y0IsdyRdi!FgY)eqF5@cYrC{4jnVPP2AnWX6Lgt{$Pkleos(cg6!v zCn&;*nl(E{LD;##4+-z*r=I1-<>+%C%a{V`Pb9Q4uhRQVLuag*RfV$lJH&s^^!QXgte!Yy3e+jbm*nHfv4VZ!m>wGekH*S zrC`HL{Tylk<2CRN?Q7uL{(V!eH_#mf9T%m2erY3ijpJ(;XWVq6j7{p!qh*|r!sIHs zg8``DJg=ruI-C2e>L7N>y{C^3+c0|zYrcZkgu}2=f{OAdJnlCtuwg?Ij>ePRp;)sJ zt}2!I{7(kK>Zx;SNr$3|@niTQ0}A5Js_hk+_&4wX^5C!r7!-Z>(spzG88&R$Gr7)% zTp!p`R=G;0aV^8_upsovCs>4b3ZF4FMy3oi|6^THD=P#`+)ji5tCJ~1}UF<@~ujgio z`lJ&bC4$CYE5lUGd47nlD}Tx5lYEQWeXj9L*j-|hMxLQ+( z_?qIbD&nnePGJ>j5Whb!dAIkHbT7AFc@1qa8o647q`zvTJ;b?!%XJ;_%Lmm<80x!&rCNNm<$w zw}EfOv;|;0Q+}6w>3dpM6&A$FGj^YNvzlz>yXJn?=+UX%zO(_4FSQ!Ed%T)`^i!?m z;Z{E=u1{w|#bN)bn|fhchqS|8k~Fq-0djiJl<1q7e35rO-WVb-;DziT`!t<4r?Q)J zjhK-K(=;F%S~ioryt1pA7WLYfU70&aEGt|kic!YOy$H6}5%~`BtQez_+e7G{MPywH z52m8j&gHfrO~7aEc+j6Pi%e-Yj2KT|Afu^d(~GfC3(ytZ7{~H282k+0mC6WuZGT$} zOmP?x3paxeO~1Jxr<@y}Nq67g<-|XUW0ht0!jhOliErwPxqSF}osd#xDzE;vjvhy+ zh1O2zOIQ<`qmEqlGFlTMF}eWZA0!sg(v0jh0lmbrvp!_1}>rT{6O z4k5?>4$92_)^o@@h%w(P(P@EYlDr%Dbl6DP?^^eZRz@fs=_vF40EY_5eN$b*M%cc} zZ;cP0+}MA>d(}9uP##<}CNOgU!3btOl_>15R`q@KrYKfmY&5KQau|s_#MkwLWsk(S z{JtgaYU$dfyEw`@s!M`~!R&E2wR}7n{Iyv017ep`I4Lg_n2*ZxDtsh(f@O?H(laob z%>q|Nbe}w{dcTbNIQNNQUA6F{-!I8%GtbP=;ISsYBDyx$F9OSSUrBe4e1%3CNh>-u zj?+sX#oX~u6_MH5d=euLK_J|D6wIwt&nu*c&hn=K>iJrEfQ zj)=cVNZdkIjuXE%cMRe5aQdlD3&@x3v9q}hH=D<*gpa}~CG0HHoLX`{S+`MUkX)|t zjeYqa5Uqy>$lf@&TUDqlYS_3(+DJY#;%#O9BGKa>gDFMLsKuBaXHCR+e5I?+I<5em zVXN&2Ei@og9W~%v`_RmpKN^WY!MbeZa}%*8Iof`>q8af!*zros%M%bX%gY$A{1%<| ziP7@+GP2+ZN^d?pXTBp#;d0a!>`4GYOu*s3h`2D|Fp` z^rct5(uQV?D=XvJ)5kF}qW~tXb@Nvoxlqz}PHz+&SCfX?^TV`Q=6kGGh2s}==bLXS3dtFKO%>8a zZmFl1eW)nsxeZU^sAFB;X@26jH*cpegz-#1R;EX?J zwMOqd*_xn4Pu9cDb!=GHrE(BCj$mhxN^WPgej?yMl{oTnYZg$jZs^w8mgUQpm(XMc zhLEc%_vLveM|np~e+h_8%gXk%x4C4`iB(^3$cEV#IOMqzAKg6U`tjug%%{KJ99hZv zb8Q+BJHLhP<+<}IrBA2I@K9rq;KLk7^gS2uClAk?9|M_34ms$|+oC?9;;A zMrY05?NOi^lhLD9W=p*I@rQKbPBiRv@E!8L)2nNZ>=^6~k}Z@L_>S#jE=(1r5MpPg zIDygYEpiueeI+MRu6p70FwLDYw9^Q5!?cigcv&0as5Z~|O-V-OiNcu3w~5DMSKq0r zGSl0vt>^in!ai9~yEV+Z&2BODxgBK&L4XO<0u|~c`XDxN*iitz&H1~K&)o3M7*!MC<89~zNxVW*lRS(9}fryu;bzEkK{cXjpwRPuV zM101?5JndtxoM)bK5Fx^xhDVIc`|$1b?)hKDCiJxU?DLtDY_%<3U*tR#13q2GpfZO zfgf$T)}+71Wz;kT2+QFD`ORj=vNdqpWZ%Xpa?+;0qt+OmGPBW{{*N~O=-WarNGrtT zpM$+cDk^=^t4VbtMkzMtqw`wjGG%r5M@QGzq53m=vWXdMg*%7WH;Q=7@V8HX)DYNM zzfNq~o)_GNjjcxGEUOLu< zL03(4ANDkYM~h{6EQY2IoYf31AU%@bjHC;mcx8-@&qN6$lh0bTU3+U>JXD zjN{gVWV9$G*r+~IXpzUwcTO=(Lu_S-SJ5Ms0iOouFLhlbsPZ2PZo2u3Iw^j>Kl|Fu zz+bbas5%?0dOI)|`ejt`4$5J4ZL1;WrlD4Y&b+uB{u4o9?31~HqguL~Yuf#|9I(1} z+Wjx|hi0k)5z(3Uh?HG!Oj3Q41|*Fi^T+Up#xc|DwNU9((Kg~5~h$_I8)gza``0YJL~&)#*|+pf~i2$ z8A`Ys3Q0%MWMad)4-W|?EO*?>BE0Pbd0@2z1Up$HHN_^=xOF~i!D0^!kodxgpCZ+y zdk=@1KJUq|_nxkxSKm45FM&XrS?3xoE_!7qeXwm!Q$9z{dTU5DUG$1ZjujK=Mh29z zQU~Y=LeWp!N`VNn4CI-^A|ZFMRfCiP85P5md+Elq!;|kpFHI|##u)Fp>&nG&sBwrs zxS2mM-4JfMdDLdr0z8TM4>7jU51+K)kugHJ)^0B<-gGI=3NI>om5D+t-u>}Cu!Xz8CuF;~%3_4z zShlwQS)MF0%#a&Bs-s~9xXAlcx4IlchPHSOV`>j=K^;C3C22W<>M53&$@Ce1Y3=fR zJo2ME-7#=LimN$nZ_xq=H%BFlxpdZ2m4_y|#rH;oc)gK{R zt4>&(WhIVHw3;cri;g7ZnA1w}&jfRJ8KaUliFw`Tbc!}|>x#+`%`A*jzc|m)3vk`9ZxTU(e*kLf`K5GW%pubPxYi z+j>_a`vG6l4~1FxGBVUMv(fC^n|OAna@+x zoHK)(_E34O1_o2Op(tY#xE^8Tq0=HtE$(K-&bw~1xXh`7oCW++&g0JXl7~203uVZa zo=R@DygW9+)cs^bu?)_mjfe}p?dgUpB_oy|%lG31%71uNP|~cA{_e~#1d8IVN?m|~ z_e^3P5>o8jszw-59jtOvRkC!qpQ+)$FVS>gPd(t<9{$%$Xu9n3<&hx+A%0U_&InaZ zOwI;_$jW)el;P4I-(HyekKSMp>z=J!XHKC*OF*T2{-S(F+ZX!Zx<$Q%*;ylt;xe1u zJFxe8&;9&!Y-v^*y~cL=?H$gS-RO$&6-MwY z6W7_RsoF@jswbcBK91!gZu+&q=(-p}Vch%85cXmHE=4<_3lF}@_J0{C(&Z4t*cC%@x~C*?gLjHvVl9Jk#2#Wqtn zwv9ktgo@>132Xg?gVM+nBKv3m=G-F^64e_@Pvvw4$Z~u4?pUneOWfz0-Tf)lvv4Sm zYiFo8HMXz#c@c2j17Zu+`ok-?bN+Tq@b_1ZKKRQn!Ivey`29c8M8@=tuiXF3D&a)@ zV)*6{OC(w#^24v9KL&G;CH2nWzdV(eBcB}l2zxi6g8i3ZbjK|TNsf3gVg{xi)=yZV zjgVPG35q)qB6llvL4_QtU5wVfh}Y=2I_pxZhk@!cb}!0=Nn*WsOW_=QB_0bNgClht zx1e6LZ05HX;+@(3^6!~xJ)Vd=V+{oAkes{lS-RfzI~{#B7poissO$j~R;4zAzpw5J z?nok&+a0y0EZK!|QsP>&!%LSH);~su8ps@{?;OFvd4h+^g2K4@gwxP0E{b$hJI^VF zc410^wRXfOMsyg6bRnY3nw<~|$N+>3PZgjI0UPF9uEakcdgd8GX|_CRXv5@W zYHe_e{nTxqw3}cdymkFG^@c3Kdfr>!eG}3VQuKZ{{Z?sv_7iBnGgSgJ)hae;VK{gZ z+A$w^{yd5(1>NlKBXkRQ3n*zu0nV!#gJke=vbA&3E^W5rvbbj1%d(t5d&2{j0p+Y3uSLOKWI2;>A?BY`U>WkSiC|H5I4lt z)c{b-8FeY(w(%cU%NcKPWtr;ghxWHR{|&B%d3jTW`RczQ?IfrH4>7=E_%A$Qao@oI zQC0szVTK&aG!c4oG1~EDpuCNA<1}t6NsyZLQPjc(+5w-2DOQI*Wq~6y^F1Td1U6GG zOMSevHIuos*vT7cMPYvdo8(Fe#s9YLl|~Ezg8Y*Kz`^!;@JjI-AHs4$&~#71GN?w5W_*!!+J0A?NFD#bD6*j z)kbZr0e#>kVrng^UxpwJRgv9hKO0j>?r;VMW{JsKqf<2!@eW_6rUkeBRf&&3hBWk} zQM)Wk<|oBdExN2t?wN;;*68fyLC6BNbtL4r|GP{rMUvLy#Ex>959%TGlgzyMO)inskduYDE8K58|M;q&15WxUNz3A=`BSBv{Q-Ds zDDl(*>O3bTl(-P#XkB&CM}XB?_X<)8e*Ym%Ll;265Y%sUC{?{(;pw*~mK!Y`3iZsN zuC-^sXD=3QSesZ#BTIfWBS_pYGx)RcU06c29naKoqs z9lguQ@QxuMGr?N-$CLsm4hYakfysVr0$3^KGY!+h?2<297r zN0=Avm)RqQ`bT5V`bVqbGm?d);mZp?nVg8m} zQJHZn;1GagLNX-?2p1aK#vA^aK&8EUFoNwg%!F_-Wo>8JCh%&&^G&485x8@ zhA*bRO`A$5bZ(a#cchT%4D8WLNY+`OjV$7b^}jqAd6{Q+3pwNZ+=IoRpB#rWpEWNt zppUltjUfx-!{4GT$CIP4I87(_%beha@?UO&FgH+W+U(=O4r{3Fs(53G| zyqCV0SnoCy9X)p%`mD|EJdfbk=~$SMHwPc?aZ=&E#x21JYPMgJ&f-$Arg4ro(*H3M z%oi_E+v^!Gd>4m%Pv?2@uPvJqyPrceWF65v&t4i;)C9C|yY*X(Lqw^#{a0K12)hA9 zjRdkbQVKJM-Zjv&ckhJH&f`m;0&sFn)ai%*{1f8>T#v8aeZ~^VAj}ZNA9x% z6f(>~aM^3k4&#aXA2wTFsYz`S!yRGT3pqZI(h?J<_QjLIOXScngtflcr>SN!V#dKJ zm@vSxuOZ&BaM>DC|9ktRJv3USqwu!>@{Bbgf`bf)|9>Kr{JVaX3s)8o*&$BVi>%f} z<0Wn)N)%`Oek#I|Am<#(Vq4_fx;+$`1cs@tR&8@k0q;~d434Q$Q|zGzddCy?P@-QV zAjcyT+)jW98xyWltj>k4F3;2L0qmFby*E3^r zR~$Fx3Pqf@0++Mhih_vO!}vk0s!uHX0|;J(p1Ta*$48ic&zAYi3d3Tj&tQ|_j3HUjlca1SJjWVFoMe&!q>bWx z=?>`L(&VPY%TPz+OSCiO4Z1Jn<%^eq;w#x_QdaVPG^@<1J`_TTGD1FrhWO!0l>&B& ziTDnw{G< z#gb*_-Oeb9zJ+O$Pp95$#@g*w)m5)2nL=k@L46QHy*+O9r?6xXF`UhpcZIH)Y3$dp zX~Kq|ANSG;_(GW9d2cUSH%SxDp}GWFkydQ{Hh1oVtru1OyzwR?j*EiwZ(V)(ZDsdgYQw~p4r}5v z_jVQ~+b^MDiW4X8;!`pk*dE#4ITyWe%zKT6{d2A{Q>hO9zfljRh{n(<;9Bq?SV#Vc zhAZaOztrAxi3plFi=@4HK(OX^oVCc{Dp02}!N7 zHgi1NSg}q&PD`FAhHYsL9K5$X-59Zkm^ypnH2UV!V#Vctmpo`VVaJDxADxF{1TK?O zup3_`|4Vz`o&VFAO*~mgf3YU!(GJ^zmqnyRr`w}BZ!>RqVx_i4R2R|E5nayH=Y;z@ zB}z;eJhTQ2QBkfJ1s#+=Xt0aA5YBkHe?S7^EFmr+4%C%)Jc#gZVWJg!k0>OCH~niU zCD~&Um%Q?~ySE5mZZCC%XISt0nKH+-u*KuWp>0nz7pL*%KR!cd_E;ucA^{)3|9vRl zs^3Evd#0aPbk_@Yg^GeNZyzO*y*$06rHXqQdhT6(gN}^%8UW^v$B)S3V-U)yJXw7H zA7Uu=kl*QEcgQ;(ui3X@08nkT`Dl#L$s@C%awP{SLHli&cL!G&dU$;p00>^&eh6Gz zf4VF}T?#1z0AKC~1{{qU%y>+gtpWH-E)sk@Q}YY)S(lKeCDxF8mYpAXgBBB-54j2p z3My0tn??a19)f_bDbCC5mO0AT05C=?g%)`GD2v4`cKi>3!gmIi(2zOFhJ!J1xqvEN z_JF{UN>HR#qm|0ohg! zL;?;#jb*5A{XS2?K!_Oh6f9sIzzo1-a79fg{m#`utVF}nxC!uqaF~W^8*`e@2<_P1 zDFIv$2MP?2{*1PbGI5ZKaXwVCL+>~?xT^Qf4meI9*E8X~`?yPw?&m)UrTo1W70U1? zfSbXp5cX$9P9f;@CQHI}yKDb_c(MQY`;IrK5|K+i5)G8{0L6HmsR&QwRJv4k_w3h! zTDA6VLv=X~IjduS(u)rx{%nHdKYBL*xkSDeJ?(&(?z95fp#-+f+}DC1Xz}v?KW4nm zz(5~i%X~ibh1P>b)@+e+DEXn)$Cj{KsxjF?ucv~A8dDs9HbWBHdi`&ZXz0H7pK4+T6=DJ^U2s^v4-fR5B(TK?N$Z`ebC4>B#K_m;t)=P-h$k zG<;_#r`kC?=bVEpB6-zM0}kY(-dC&~AWWMfl;k1@EE_H_|{E@eAvPDK=oI z$6LKz{(az+m~4Lef=c9m&UCY~0jx^UE~K87bxbc)peZ9Dpf}&Oye5Z6L~C1Lm;c=1Fa25w(UQWMB1(%ae6XyukHu1bmuJ%tyH`8 z+}PSOd8yZ2Wa041u}qmid83AOMZdiBjr`>YQ{Q7}jhz8P7p-j}sb)=9cGgP(9h5(U>p zoIC{g9JJGbubmp+icIUdwSqyjN;ibmf9aaG62mkrPsrYc!-m$nKELg_n1isH>Z{0d zjH#D)k{@6XeW0EJ9L%|Q=g2om&MWXxOUSf672l|wIyX#R*%-QZ;>%tdVY3-I&f~#S z{tvtWMve^oY3S0{$fkbwrQvrmm6BF=?UvieVLZnKal?K|g^2*}HQ9CBsTX3UeZ$q} zD;Wy?5c&@JexGNOH@FUg8k$;m9;J;mcSfFr6 zB3at3cEt!L5Zs}@^*$l35*lAq)83mkH;6C3h)6)?$MzI(y9`%sDiz#7?Nu3Xw6>vhsj;J;JarY8RFDDR7K*^PFNo+}i~(iu()cDq&m zhjkAuXN6wXKeg2V&2>ElJRbdV_YK#k*sDK-#RJz6ajGlk53`Bdx7t=5Yde)i+IuZ> z%tN_qvz3Q)_Ou0O-pNsAIRc~ag5X5FsYU&rkwBI5A&aM+{W(S2Tl?SYyQ3af>Dj!1 zL=pDiDRTap$->)b7HijBy|n38h5`Y-^yUohyQOzoNBy-g--VXLGMyCo@Ta%jQb#O0 z-;+E6H3!{o&YXEbeT`E@kz)Qrsx2gyhq_PbN05iuZv3p|*`6r~_@e}CO%=%1Adzzy zE|HTeY{jP%-YVy}Sk720veSv*UZQho`UL5PiviY|p-y)h`5O&hFL z!};L&^wyF@5aISUBW!x1=AWlipxjr|Kftbk#mW1xf2PRd%*H(wfc>zVxWMBb|0ehU2`{wsk0*W*y!s+@r#0I1J3ic%L!<0{7PUZWNY_ z2KdM~jMWzpQ_$TCer^)4XD^z-&4z-Cs$83%&E^0IayetxRe~p6bb@0^dI{4NRfJ39 zFGMwBjT(p;q=&WW+D(>sK%15*&RDAIcazrHrTORA?|bY6B$-*09aMthk$jcD4`P4! zUQkuxY~dYQC;b4_4TFk7eX?`GG$uz+0WfB9*=Ax}hqZ8FadRo`n(0bSYL1sdg8@yP zshL$=b(^uoWuU=tKb;+RUTj-5uRvMW0*Q@zV%$jsfNl}%z7c#WK%qC(lHH3~|0;Yc z^xAzL+w%DC{?%COxY+XH-*jzc|2Ur{60GADKM}y+iU6q(X!y|5{qaQ<`B|2TtV2fj zn}PC3T8XU;;Lhe6cn%!d#WQ5p3sYlTH(U(2ry(3JI$riV;M>T2!AA~6+fa8uz%XN3 ze)i*{>&;lhpZ#&;ns`NR^Y^<2)ZM1xK%Z%JI`a?D$38Tqd*-D=d2zDQxUi~@@Bs4j zJs~@MrTVdf^<=d7qu$lIyje01SB}aE`ma z%+r0=&^5wY0?>b;eL}|n6+H3k(qDj)Umt}33P$)>So8l1I{!bi#0VVG68X|Mr*H<% z4tj&5WvedP>CjIRAF^gxo8BOcITZ#Dl7xiW0uTZ%OeIJat;+6HayEhSHFF|kV-r$6 zMdC1Q#Io^1_Q-an(tG{wfV4EJseyZZ)n2KPh<-_&zf|7(O`_nRtw;c1SmyTC2!v5T zEdo{ZTu{m(I@N93$Ft{9e2OKnv7Cqw%@jYj`SW8TF`#JJK0c7JokjG?LVTRqz78!u zEpn9_1b2FRuvV0i(mPrhq&3w$N2?{e*Qbj5B&9;IM*1L01bn~fY0cszV(Fhj;{(&V zcemU<*eiJ;aNCoZisBdA>bt_?Ym<#JI6t(BfkpxnMFVMeebIshmCcw-*TT&GR~Q`- z#0u5{r<$Ve5Q4>LQwzjXDCbF=Yj|_BY4U5bc-itnN>|Ea#a`}x?wO5~XJSodlhzFC z)zFU`HNu~`XYA-TpieN5@F^)$Q!RfHQ^avoLc$zT#u(O`X`XX@N~v4gQpfLDuwJ(b3}(&co*^@BKQFRL70+i_t!>xHgK^t0Q07uDuQhfLUMs0HHV0&=pa3)V=H4|pLlGV)bjlsm+i>Xd0uaTuv)}0D@1#>8;=P&N%n=a{Sx#TGD zuQ%=M3EH1^1JnZ`kL6@TtQZN+PS0Z8t)DIgx^DGX!EsPW{SEhIeWAq1z|BZPl5zo< znWm_(r=8))H6Y_koMu*>uqTUiG+XPNl>>Mwm4(P5@(CII(az|V6{eXA8G&(X~xHEs7f%H ze!blYaW{H4{%&X2X7?Mv4o4>O#L189UK_K(O6V`Ws5S~lZBoD=iS;>F^mN(UNP9s+ zYhwgkxU{oc?N@<}YCynK9VzOe+w zdJHhd$|v#0k@)UhF&rirF%!yUag-y^pAt*I98^2sH!^$2sOEOVAY69s@OXa3R!2^fZS05e*w3uhE-du7Ts{uRR*KqUUL{R;WPZ5TWlH zQyMweqb@$ZgD@EQ_*%gi_lEerW85u!0*>7-3#hM{w;A>1SI_`Qne)NTLk57R(Zod5#lYKc2o+}3o!CKKBcwwgZudg4ZgwYrH$jPrYp}H zGA`}Zt*P->eu5*6#F~UAyR_^zTCjL?2PXuJzbDjGI=@sG|NL3{*I>!_I}HU&C_|d{ z&toq?#b0zfh8I>>IlgFLT0Ffe)jw9asV_@kvv?Y=4@xY&p8C6zc4HDeX+G!I369U3 zO14hf>3ZmtUV#5JlWyCRDJ&K;v#`6?#z|3(Q}o(BP()p=DV4Bg^`jxj70ZW3PJU0D zo5y*V5eZkN)&mMy)jS=ol?mDNxO`k&bwerGNln%}!y%AY+xg3OHca zd=BB*Vmrn7nLQfgoR5?G!b#}{MFwx&xO}Z{57GMIS5GEpeBU(zpX-*6CybHmuc8e$ z!(eQjDCZ*0iP<_-MpNxp)qD}$Y{yO3**K_a>WlQ8ODGyi2!G%Wlq;|AtG;>)ysW&! zL~lI>&C+Pohnv=nB&`RiyUJFj*537YX%uU&oJsR>%4=xa_EarB9`38Cz|6c$5rE#r z2siLw6nL%X-T&rEq~C5?vN_vZ3@rubNN2{V&9cPQ%6H&`7lIB0SBp$NZ*%s7LbBAu zR6+=bdlP_Ml(#@3_N|;2`itNW&3Q&CG?2sQM>{nDrU=Pum73LXWM3c3h8(-Uw%uXL zn`#h9Sq)IH5{@Z}`i>ZCUJI;3$*c!#Vs26mL=B=)vo#3dR9Tg>$}Fel&xg>8+#%z* zSIBem$?H1Y&l4lDI-y>5H$jVKC!ad7*n@_N3TR~Q%uA`^2}kLjaqx1~(V^!IVTTm0 zJmFBi78PM`JEid3fnr8_fdzQ`BI$Z?{vyw{a~B$&copQmxjxEYGmTpmg;-HS-c!Q& zxz)?|5AvpGFXxiw{rJ+=91?~LVUpAAfHRSCSFScxN;r?^wK$&O*>ERrf-|tR8M`kn z@D-IvjVQm{TV;&P=qaC(1K{R=@-8z4{(@~#tH|ye=LpnThARC7}08Swud{m%!pzON7vnSEy^&DBdeN|WTv)# zbS|5=d}X?a^A6}H%B2QQRM{Tv%_YM5wrVBFqnul2*tgyAn#WL{Nm*M&%udr5!;X=STD2S8%bQnld$VG-x~a{N zB^;W&Y*dP?C(HZQKzLAWy{n8xY#ISDAW1*bZqh~u? z9=p48Gj5vUSsi$#TF6_E>10bVxP%&`Mg>806R8j(XeN;2cT6VgZ3!;l>P3E~s!NT7 zu)VmSX?iIRtDcv%-YkWkTaQ2G14U(eiW_77b14uLE=ry57@w`Y>7!|6LxfQmCsW)t zvOK(vm0@Ns=Gb&Cz;9tiV9OJNdT}T%sbYC|Vr~>2oj_VuCpLb#SlG7p^qHe6I3{2M zor*(F00UhP_eSGJ-$<}kNPe#-O?``6uS%t=a~VX+7)xk+i?wT$dECpaM}ajBRY}jn z3WBS#_sl(zDk_?z1EE-RE**;ibnNLo)l%oNWm${C5s+H;%I_0^u}6jN7dRZ)Tfpke zgRM*1>lcd%&1kG!DJ@;*5tLrPnnk^4%4yN% zeS_WktBlmI4Nebh(7%LdBB#zdur_kX^oU$Hc3FDni7yfc_dGW4K1n?)M#I0fu)9}) z7^q!5o)369C%$B4>c2?tqUD>pff+CRE^3&>KsMGrR?@F7eLv-~Lu6i1)O7H`&0#g0 ztAN96GsG!sKd5)Wl~@g9!>_2IkzGvW#SNz7FSK`8O)-9=iH|U!U0xLg#mcngB}qB1 z#G@-i2)Z|}K$acXChr6IX;}D#R&?J24GqAV#`wYBqA)OifijblM?91ILdv9-YqLn7 z35!Q9mgzHd?4x>oWHJNpF^}-zjw2}yn5AG~WC*1-ST#zmEGneOGGy~jHGMC2!u$%= z^JkF`beX8?@udQ!4K~68{CxnF%;q0aKniX-6c&A)pc+%@hOi!I1uyI1j?Gy<5S!m-G$eY6A(f{M?kG;BXu6N9ikB2*o?^+ zc|hA3a}zvq z3eVLYjVTawJ6#so#AyP9$jM$ct3C>gOea`}v8vOj=ooGw*V13cL2agSg8bCju?t^J zh^WZ)DpXyIo=*v#fJY0aM;4NRXb%UbY`j^Azp7I+S1wU`X6&G6fP1v;xnG*6CdyMP z;F-6m(W4=y1ns-irCFmbt|&bpQ31(@Nn}y(v zs1d8=Uq2pptC6Ox$oh_N!k1-zD3UUs8bkKNoGWCTH)lDtmRxM-GdM*-?N?F~N5(8m zvBGY2;?lXCmJ>}@^=6pW>u3rmSJ&I?zk0l8TUFa=)Ci$lhX5vK-drWpeIE zPTmfa;1ou@hIQh#!nwHLlEO$*r>K+Ae6o%tD&AWYkUFKVnB?h@pz`L(OW18b0nmsO zct*1A`kf9X-b7|azQ=i}J(qm^+*>3|Nb9`I`ufSi&e4%L%q2!=>_{rBvk?(XGjTF<899OiAqckUskV8D z2*cp1{?cXiWPL&?m40?sP&K!mxT!YX;aE85Wo8< zBVEw#lftX2GNQW^7~OLqwP^R(T5Zl;m*M+3c()nFTS*7y0HN^FY;_xM^A&E1?vWiv zUXz2EKE31nyjod{EB&&2+b3On zdAW>Mipz&O3d0J~j}2qokfekTq(<7@`1QlL`3#Sm7wE{IC?g%6qSH_P7y=1(4q5hj zpyUT5MjpQDa_w$j$p@h$A*i?euVv}MHAL_dDkOwiO)!_%+*TD6<|O+AT$q+{Ln6wn z7PV;6h*Q(w36TAhaE2wj>Qi%&vQGX5)lm8RY0v$uf@%S5$L4M>%i8WqnDp3mn{-@< zIGK(6X9eYN^&QlMu{owO$R-L8%F+f@fW3)=@SNw|23lRbl^r?74vId2=Zg6qG6~X1 zD(byhTyld!H)~pMeRKH|I&k~AEuO|ND>*7)+0mKV<>`U<27?V*OTgB2kFy6lFnKo& z6PecKyHb}o!#ZJhMHSRdIflbBnOAXRjJBxWKfQ(;g;GV^Y5L>XQ`r4!Le!FkhrXJa z?dY~$P%9ZBdmu77ZgdBPH2ilCk<2yil>}q^f?TiM(gnzRulh936d}|Gg|;WgW5QemX?{t4oS3U1Vzf zy1)(L_2%gq8UFj_xL!=NPbbn;M|eu7a9oLh<+<)QUhmzd)q(lGi(p#Dr$k_&Bg1tquo-Hm|JeHpktVvj z{Ny#ey7WcnMaD{@)-VcN;#Z1rt63m-V-%{zVa1;RmZhpQ(ohEv{X}xHXkRhjQBiUrW&YR0ERG+dVC75Eprj`@wD?K>H z3rfYm9(0u@bRFd(`l1CEnI*> zC}w|-bH`_=%GZ6mu7N9n+o@I2R#N_z-D8*4=W|0j=dhCc*;1t0-NaGPMX8J&s&J?V z9YkjrQ`@3qb7mV!u`j_pKo90t#IJ~-zgX&JOy5)rhlBdiUZEITB!<>{@L+nVM|uD1 z@zccdBz_4Omq=R5T9$}7NT|_5<*vTa7}34vdpwiva9)oi(Xj$2hU-=jy@xTUP*siL zncflWDQ%+w_T%#VcAyX&mwKc|Q6B9M%2n3uW>fmb8@z#mgV`gqPa7xi3HrR+;aLmE z;T7J9YN2D6Mk_wgs>%`%g*08J6Pu~dZm}*gz=|^T^>Ezc_{*(zML(BOaFpmCAG^9} z9?q-n?s4-QiBc%;=dPH(8lOA;TX7`~)n5m6m>38)+<#HBL$V4aalT}v46Y_iFYd_m zaPZG8?(@$i?V4!9-1c{)0Lz=n`{dBf=v~jG2F8>HcIGGJ?}GAv@I*B8sK1=hP&KwaD4Jk)7Hl z8Xz6Qf6D~%5L_j@7p?&WbLImH8f<`oDFX>)eRKdy9w2WPiUOnj#2^HJDP-jcpa!aZ z-9y)a-7G}bZ7YhOcr~7_1_b<72!c0M^!4-O@0H)BfT>X4EQjM9Y|C?3(H3K@T6BZpqgg@zB+hAE2;PD;}6$> zlEIzx7e#8l{g*k}%YneI>C%8BexT*Ly1IryoEZKvPxfqmujT_*An7p8ajN2{K;1GO zptZ8iI7)>1cY#2l?LJ|phd082m`Rhe7eR0c5f6xvyjS83-T*EI^#87OsXEnb&IjE| ze|E+;94v52@Bkcge0tj6CLLTYD1DYw%6*)Eb_qyGLjI2T_)qD;fBoxU0Mdaz`OcxV zX&fPM3M38epl;dMzoA}~CthLS6f-xl09Uny{TT9Gl81L`BzQkN%vDWXMBNgQKcYQk z9qQe5I|cvQa$u#z|67&zRw@A8`~8~|NORObvJHcfWQ`p^#$t7SGMk|l@kUvK3gmYk zMYrNXD#d1-p6=wM7D?EgmJd&|?z?%^yeUSg8a8a(!t?xY%HKGKV`?a({Q?202G>Tp zJCbF?>U2)0rdx2E0=xC5^}ZeAth$^y!+lm*?vnXb&w72#WE$n03(9NxKz8n(Wi9KZ zq^PwAGWRqZ{HL<|(B(^D^Qjx^fJF(A^|`L7IDXljfsfxavUR)u#wu5RsA^2|%gZJ* z4==kfaol699#SB=I&KPWL)}gr^0ZC3)z4B-d z(*CR!J73XtCB~b;z{0K=qE{K0sM9 zGq&amFi|cksrdaTYGmoy{ZakwH31`FYKXt+cfyf_V>z|Hos}@&Gh>!7{+pxiEpDmU zXp^mCRQcvPM-P%s&scYnqPYT!(eyWE*Vy5?EzCLd>uuzPVB6;Yy=S)|ho`|0TUhy8 z=BT-EShD*b#jq^W!n(0q7;z82(X2F3BZYEbpG0 z_h(k(?ga#qyijs&eHylWO7VAa<@9*(3r`n(OkmK~QOv}cc8!(`zC-?UKNe^59md+^ z(q6y&Ju9zYJYWPlv8rc8wiK$xTVA0uGODGS-u!nn<-7itu8=GN+6H}N_zM*lrrKNQ zGa0z0`Kpq-`HRspqfQJUwkBc2u!hBP5h=)LW1(;ldiZq0>9l6C$J|44uJGH>p9dxC z=`Tz?z?^tg-C6snxy4tQ*Yf54K>VfsljHdbQxoCCsn5*u^S>})x0vw>90#)y4N$4? zB28~pxHJN22zsw1&L1wn$kentT5}N%)N&|>N)rAwhJY&IdCUAdEa zQOv(y$n#G5_bOHW%{$1u-F z)7duz(kDyB;rwO9_$4LFoxZA>A(wJ+Tno+_p!W|Nd` zkzo_=Yt~%t6*-ff(Vu(AV8v9spr;&NB1AWkA$qMuK6R;nB8b&KtGGTgXuRx>nV9Y4 z-N%4dNh`R8O2KMf@HzJ*P#W{=jceuwYDfuF)VF|c#PMjmCEe{?O)sX@HeKH@i`H(C zLkX2{$@S%#?_6IDY@`@P@=`ZfC(4Lh1Gl1Tf^DC2-5tv^n6dWNwBo1m=lA{$7SEk_ zL(jFVgdSS(-KlM)PB09A?tM}?+FN!ZL073>#C+2#S?I&dO0`W-k<*pw=q;6m*Ed}5 zieW$5X4l2)*_*NHV3@UYt2e2(X@@P+uGn4h@T;^?tJK>RyDbN%L7U~lSW_)=K`tpS zmCgTDZz|@b%f2pg!+xs0@>sE3TS$dEibe&wZY=C?&T1w$; z&#f&j|Es+-jZ1pl`ndOWk_OAuV1pjDI;A<=pyU*tb1P4p*~t`@6w9<601K5IkYlEe z>Pf}QvGSrRDvAgu3Qp-&LNgUbK(xdG5uCsQgp22Sb6-8Lo|n&l`G2whpZ|Zaz1G^F z{ax#){Hhf?ZFS@?qdyNd2aMk35&J+_Or)rA&gBrk*6qjX^{MVxDgPAVr;yGjB7~e1 zoKqjnRjaD6B`^JIEsQ>@sea|p#$TXqM_g4%oxd+{HLQ={KlDFg>c2&l|NqJV_BV)Y zKVu9v{%ViGNYNO{O5+>`zOZaPVNoEGylDF7q}&| zoY{z>#PaeW))b{9dmmn&xd>Bw0M=!2j%+F(Qr(TXct|0~tNGgfT7&HXm^d}P4)tVS zJUSe70?kS#o13X+i)QCIRG2`&a~2)$P`j4)VS^X;$(A;Km;$Qz+kL-p4jkAEqyWir%Gh$X|{81emiMnYsomBxa+v8W|^w6btSg zqA{7>l$ofl$=F)f)uUaI88vnTzZRbl)3bhP(2e{W7PIs##Oqoh(8vfL_R5E4XTus5 zTbd8bx4GwE$-CHie>N#PbA%w*-@YEg0AP3ljI&aBuBWb2f1M7Ro`MT^rzrb~P&f$y zvKj0iq?_dj0dWdy(`KL#v%xuh8t9(fIRXz;eD!k%JuknO>p341H#galaDa-TwTRb7 z&CT2tv#9b2>6qbCO2QRk>FU-}L4ur<%8H=+Ga5@E2Gy|Uz&{%JNn{}gTTeW#zU{m; zp&&_4JdNxAMHPnQtyb%;pTF*^#g#m8&k<;;l~e`(l0NsNBm6nO>RgQ1A2F|LF$tea z55CrYj_yz!Nm^WLB;%m2VZ>~pENNdt5>FC;>kYcTg@PMh2eTE<9(+}G7yLtY7s9gE z*>+96eC6upYx1t#zp-3r!BA}|KY4XH#8?X6Q?7_6X34HPD zxzq|1D#O5EipDp7Kf)=-ECcb^jCLRMx`)KsI9*5JPcp5qm;zra6&Gxm5oGrC0K?C( zF19Qefz)=qwMd}#8eGmbU;)MdHhaj3bZlo~DuWcy^Q^d2wfeXpKa z#F8B)2649swoxYok-SOW0eMvBy!J@YF@0@LS*_CW0ie()M0*(Kg1>ZEvZ)|as>Y)$n#H89nI-NRT}4u>h*Dh)s+|iQKV^5k7@&QB=0aVJ ztpODJW-hG5NS;vf6b8;1EDQG%{2~)ZZTEvjqA#`%R@`6HjjO6}nE<^xeE&pEOWA}C zd!gf+e2d08^GF>{ji%A=brlWxjdOK)##H_}TUIg8(Nji~Ih7(jY<{!<;wwa?04PJR z+res=2fAy{Qi1b?-vC}CZ1DX~n3BJ9(k|(Ncm}NlAFLWZNY7VexKNxKba;xAKerCy z=bLG-WPC}n0x$VRV&zoLy@pe9YXnzKMdKJ9g^{>+a#-Ni9!~2I2xdm2suJ3_Kx2D- zr7XQlh$HRONmtmu&gV<0lVwC&SA8^e^kXdT4@}s5MN=PoyGuD?+^R6z27A7T`nCbl zoPJ|EqTqXINXWvB%+*4hGQ0Lzo`b%0sB4)+d52il5!<f(M4JXjKxc50B=nUc@z~4^Y7djjqb+j9vVc`=(NT4*lJ7 zggd{la|iBT2=uAv%5v>H$=HmQ&Nkg`XS>h7HL>OS9J*+;KrNd|)<7o_1cD+^^sj04dGVv1D` zPnNiC&;`&3x3KpJh-Np9KaD|Fe9JsW7S4M*r$3@p64yFh!<%;?TbEC8mq8y)ykf_~ zYY+%V1PN_^kb`z+4`8Egr!G1($rB?Bi7*pHHnV-j!x4EZ1Z+P2A{AAJRlJvB{Y^Pfm_T1bq z>g4+!>Ih4 z>B+4y-)6yj8G?>UQ@!cT>f<@sggsF1eJ#{KdzT80*wa{edgvEu9-`2aP@P7+Wd(CZ*aU>)A z#E*>qF7TRXiM?enB$(s4V{2sGR_|1wzy`^d1?*9)z%8$=xMv7Q1VUZ$shOeRRFF?d z6x8=F3SHGAj^XOizr4K3&Yam+3~*{TS$gx2rqT^sI4`tYy}pD{3Yg*qtHnTq_Un5G zZO8LrlhEsdQC2^9AT>QhOSEn1jPYcwE&YA}f;%cRT^;_uB5b`oLV&|CLyvvQgSknp zC7h`P<`ymA-?k(4EVV_L5c9(_UPs`{!rTirU}}0|QD5 zn5}D*TZ{mjRg zA1gF#Il9^0+uAhWKt5*rPpK3}u>r*n)07mHuOL}zLNL|?55WpyRcz=;0716oBhN0G zo$fFo<0#qMXOijTEq3snS|jGJej`Zqm^prJf_&4-_#Li@$6w?|*U%mQwS|wkOZFW3 zLtZcoUgkRXFC-VGt?Ku=;TEev*ZJG)X4xpdn@fYvq!UHnOF38l0hWwDU332q;&h4Qjt~ z<^<8IvMMF3D4t`0X)~z4kALkK99`FIQ2sgyNk0>Ds1STjH?Q09KsQqJL{LuJHZn)N z3-A+}O-9rk8h#+^-7(6)ihht=5q}HIfAViJnCB3cS+rfVV2e|BWH{t|aX;28sx>?} zgLFD@+1<;xf^Jy%FD~3{y6Ul>W^e{*Wib|yQF`VgU*@`~BY46|HVGHh6vDS~AMnkm zgR*|-6Ts1awY<7&mRCX$w&J)?0MH-(`KiprrF=Yg8Q2i}Ir7X;=FeA}UGVbYMw=Ta z`0$1<(5RMtUHe_*KRv{D#=)h(AH9-D3-nF)Oek(OSnW)bty`gnU=$Z-4k=srH`?h*06EvwP&HvsRFLu>{YFe`W2LfyaKz55WSaXH~<|^U%xQ*()3b*Ln)Kj zj1VPmTaA8_suWKu6rJS5tfSCz0*WY1I@{*}C)yQ;Rw>3Q`QV!rr|YvuiQ+|NR_>Ov z5tFK?_;NHcg#gq&v2=>c9AD_xLdCJ6AlRi@GD}eN+b)y@j zM(M!Q>{e){n-ARj^~qcuhEBFaA88HnIiFtb35J0=xX}!JK??jgPF;G;VGyIykh(#&)J20E2upPuB7+ zfPNqTbc3ocY0_v*+wjRcC0Ncw!_$y;eH>Xx%N6l-;O81~pC<@hIDYL^)+Ad*_Ycvd z-78|BVw9JC+MPToZ+WD#JxkM9q%ZjROc63i6 zIoC9Mxa?PCuUoaADjGYW6kH(B9tPg4_)xtH4Xd_O3-Z`HCY0ogDyk<)dtQ7WTwq{X z*RKU333HnRdv%tFy6$9i+yJ_wK45*%m`p$xl3egG-#~4?$N=GJf60vn+z8Z10UR{{F!<3rr8UFr26{61#z|(Gd#Ypo! z!a7^M#SRT7gWw$bb>>-*5S_k<@BgaIo6q!B2Qe7A;p;k0xGMXd@iRpES#x>0u4nm8 zaF_v+akqL0=q@p%>*J<}mo)x-aC_P}O?g)1Q0k&mC|8cm$Bn7DY-4<`i)kQD+N zcy-}L>dHevAX|JfZv46SumUmyD^&i9W74H7MuH%UWi5_S zSyf-#YaY`%wHg~Y4nPfmb>HoHpn4AvC4vUkY75v4J-Z#%=iTIuijokLH?OdPV;f)2 z&W3{8yMG&6dCOdX!G6|W-O%;}IS$9faNJ~Xd3RmuH^R18f|MpB&9#j3TbG^=v?uIq zfkR?Ceul)fYR0W>x_rTTvQ4V*h5-(WNjl^S literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.8/solver.prototxt b/cars/lr-investigations/exponential/1e-2/0.8/solver.prototxt new file mode 100644 index 0000000..18250f9 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.8/solver.prototxt @@ -0,0 +1,14 @@ +test_iter: 51 +test_interval: 102 +base_lr: 0.00999999977648 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.997814714909 +momentum: 0.899999976158 +weight_decay: 9.99999974738e-05 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +net: "train_val.prototxt" +solver_type: SGD diff --git a/cars/lr-investigations/exponential/1e-2/0.8/train_val.prototxt b/cars/lr-investigations/exponential/1e-2/0.8/train_val.prototxt new file mode 100644 index 0000000..eadc289 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.8/train_val.prototxt @@ -0,0 +1,382 @@ +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TRAIN + } + transform_param { + mirror: true + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" + batch_size: 128 + backend: LMDB + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TEST + } + transform_param { + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" + batch_size: 32 + backend: LMDB + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + phase: TEST + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.9/caffe_output.log b/cars/lr-investigations/exponential/1e-2/0.9/caffe_output.log new file mode 100644 index 0000000..73db9da --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.9/caffe_output.log @@ -0,0 +1,4566 @@ +I0408 14:45:56.274281 20259 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210408-144554-950e/solver.prototxt +I0408 14:45:56.274528 20259 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0408 14:45:56.274538 20259 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0408 14:45:56.274643 20259 caffe.cpp:218] Using GPUs 0 +I0408 14:45:56.302160 20259 caffe.cpp:223] GPU 0: GeForce GTX 1080 Ti +I0408 14:45:56.604955 20259 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.99896759 +momentum: 0.9 +weight_decay: 0.0001 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 0 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0408 14:45:56.605783 20259 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0408 14:45:56.606354 20259 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0408 14:45:56.606371 20259 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0408 14:45:56.606513 20259 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 14:45:56.606606 20259 layer_factory.hpp:77] Creating layer train-data +I0408 14:45:56.680151 20259 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db +I0408 14:45:56.680335 20259 net.cpp:84] Creating Layer train-data +I0408 14:45:56.680349 20259 net.cpp:380] train-data -> data +I0408 14:45:56.680371 20259 net.cpp:380] train-data -> label +I0408 14:45:56.680384 20259 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 14:45:56.685596 20259 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 14:45:56.826476 20259 net.cpp:122] Setting up train-data +I0408 14:45:56.826503 20259 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 14:45:56.826508 20259 net.cpp:129] Top shape: 128 (128) +I0408 14:45:56.826512 20259 net.cpp:137] Memory required for data: 79149056 +I0408 14:45:56.826524 20259 layer_factory.hpp:77] Creating layer conv1 +I0408 14:45:56.826546 20259 net.cpp:84] Creating Layer conv1 +I0408 14:45:56.826553 20259 net.cpp:406] conv1 <- data +I0408 14:45:56.826566 20259 net.cpp:380] conv1 -> conv1 +I0408 14:45:57.340337 20259 net.cpp:122] Setting up conv1 +I0408 14:45:57.340358 20259 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 14:45:57.340363 20259 net.cpp:137] Memory required for data: 227833856 +I0408 14:45:57.340380 20259 layer_factory.hpp:77] Creating layer relu1 +I0408 14:45:57.340395 20259 net.cpp:84] Creating Layer relu1 +I0408 14:45:57.340400 20259 net.cpp:406] relu1 <- conv1 +I0408 14:45:57.340406 20259 net.cpp:367] relu1 -> conv1 (in-place) +I0408 14:45:57.340747 20259 net.cpp:122] Setting up relu1 +I0408 14:45:57.340757 20259 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 14:45:57.340760 20259 net.cpp:137] Memory required for data: 376518656 +I0408 14:45:57.340764 20259 layer_factory.hpp:77] Creating layer norm1 +I0408 14:45:57.340773 20259 net.cpp:84] Creating Layer norm1 +I0408 14:45:57.340777 20259 net.cpp:406] norm1 <- conv1 +I0408 14:45:57.340802 20259 net.cpp:380] norm1 -> norm1 +I0408 14:45:57.341315 20259 net.cpp:122] Setting up norm1 +I0408 14:45:57.341326 20259 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 14:45:57.341329 20259 net.cpp:137] Memory required for data: 525203456 +I0408 14:45:57.341333 20259 layer_factory.hpp:77] Creating layer pool1 +I0408 14:45:57.341341 20259 net.cpp:84] Creating Layer pool1 +I0408 14:45:57.341346 20259 net.cpp:406] pool1 <- norm1 +I0408 14:45:57.341351 20259 net.cpp:380] pool1 -> pool1 +I0408 14:45:57.341389 20259 net.cpp:122] Setting up pool1 +I0408 14:45:57.341395 20259 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 14:45:57.341398 20259 net.cpp:137] Memory required for data: 561035264 +I0408 14:45:57.341403 20259 layer_factory.hpp:77] Creating layer conv2 +I0408 14:45:57.341413 20259 net.cpp:84] Creating Layer conv2 +I0408 14:45:57.341416 20259 net.cpp:406] conv2 <- pool1 +I0408 14:45:57.341423 20259 net.cpp:380] conv2 -> conv2 +I0408 14:45:57.348498 20259 net.cpp:122] Setting up conv2 +I0408 14:45:57.348510 20259 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 14:45:57.348513 20259 net.cpp:137] Memory required for data: 656586752 +I0408 14:45:57.348521 20259 layer_factory.hpp:77] Creating layer relu2 +I0408 14:45:57.348529 20259 net.cpp:84] Creating Layer relu2 +I0408 14:45:57.348533 20259 net.cpp:406] relu2 <- conv2 +I0408 14:45:57.348538 20259 net.cpp:367] relu2 -> conv2 (in-place) +I0408 14:45:57.349035 20259 net.cpp:122] Setting up relu2 +I0408 14:45:57.349045 20259 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 14:45:57.349048 20259 net.cpp:137] Memory required for data: 752138240 +I0408 14:45:57.349051 20259 layer_factory.hpp:77] Creating layer norm2 +I0408 14:45:57.349058 20259 net.cpp:84] Creating Layer norm2 +I0408 14:45:57.349061 20259 net.cpp:406] norm2 <- conv2 +I0408 14:45:57.349068 20259 net.cpp:380] norm2 -> norm2 +I0408 14:45:57.349419 20259 net.cpp:122] Setting up norm2 +I0408 14:45:57.349427 20259 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 14:45:57.349431 20259 net.cpp:137] Memory required for data: 847689728 +I0408 14:45:57.349434 20259 layer_factory.hpp:77] Creating layer pool2 +I0408 14:45:57.349443 20259 net.cpp:84] Creating Layer pool2 +I0408 14:45:57.349447 20259 net.cpp:406] pool2 <- norm2 +I0408 14:45:57.349452 20259 net.cpp:380] pool2 -> pool2 +I0408 14:45:57.349480 20259 net.cpp:122] Setting up pool2 +I0408 14:45:57.349485 20259 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 14:45:57.349489 20259 net.cpp:137] Memory required for data: 869840896 +I0408 14:45:57.349493 20259 layer_factory.hpp:77] Creating layer conv3 +I0408 14:45:57.349501 20259 net.cpp:84] Creating Layer conv3 +I0408 14:45:57.349504 20259 net.cpp:406] conv3 <- pool2 +I0408 14:45:57.349511 20259 net.cpp:380] conv3 -> conv3 +I0408 14:45:57.359480 20259 net.cpp:122] Setting up conv3 +I0408 14:45:57.359491 20259 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 14:45:57.359495 20259 net.cpp:137] Memory required for data: 903067648 +I0408 14:45:57.359505 20259 layer_factory.hpp:77] Creating layer relu3 +I0408 14:45:57.359513 20259 net.cpp:84] Creating Layer relu3 +I0408 14:45:57.359516 20259 net.cpp:406] relu3 <- conv3 +I0408 14:45:57.359521 20259 net.cpp:367] relu3 -> conv3 (in-place) +I0408 14:45:57.360008 20259 net.cpp:122] Setting up relu3 +I0408 14:45:57.360018 20259 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 14:45:57.360023 20259 net.cpp:137] Memory required for data: 936294400 +I0408 14:45:57.360026 20259 layer_factory.hpp:77] Creating layer conv4 +I0408 14:45:57.360035 20259 net.cpp:84] Creating Layer conv4 +I0408 14:45:57.360039 20259 net.cpp:406] conv4 <- conv3 +I0408 14:45:57.360045 20259 net.cpp:380] conv4 -> conv4 +I0408 14:45:57.370448 20259 net.cpp:122] Setting up conv4 +I0408 14:45:57.370460 20259 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 14:45:57.370463 20259 net.cpp:137] Memory required for data: 969521152 +I0408 14:45:57.370471 20259 layer_factory.hpp:77] Creating layer relu4 +I0408 14:45:57.370478 20259 net.cpp:84] Creating Layer relu4 +I0408 14:45:57.370498 20259 net.cpp:406] relu4 <- conv4 +I0408 14:45:57.370504 20259 net.cpp:367] relu4 -> conv4 (in-place) +I0408 14:45:57.370842 20259 net.cpp:122] Setting up relu4 +I0408 14:45:57.370851 20259 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 14:45:57.370854 20259 net.cpp:137] Memory required for data: 1002747904 +I0408 14:45:57.370857 20259 layer_factory.hpp:77] Creating layer conv5 +I0408 14:45:57.370867 20259 net.cpp:84] Creating Layer conv5 +I0408 14:45:57.370872 20259 net.cpp:406] conv5 <- conv4 +I0408 14:45:57.370877 20259 net.cpp:380] conv5 -> conv5 +I0408 14:45:57.379165 20259 net.cpp:122] Setting up conv5 +I0408 14:45:57.379176 20259 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 14:45:57.379179 20259 net.cpp:137] Memory required for data: 1024899072 +I0408 14:45:57.379189 20259 layer_factory.hpp:77] Creating layer relu5 +I0408 14:45:57.379196 20259 net.cpp:84] Creating Layer relu5 +I0408 14:45:57.379200 20259 net.cpp:406] relu5 <- conv5 +I0408 14:45:57.379205 20259 net.cpp:367] relu5 -> conv5 (in-place) +I0408 14:45:57.379686 20259 net.cpp:122] Setting up relu5 +I0408 14:45:57.379698 20259 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 14:45:57.379700 20259 net.cpp:137] Memory required for data: 1047050240 +I0408 14:45:57.379704 20259 layer_factory.hpp:77] Creating layer pool5 +I0408 14:45:57.379711 20259 net.cpp:84] Creating Layer pool5 +I0408 14:45:57.379715 20259 net.cpp:406] pool5 <- conv5 +I0408 14:45:57.379720 20259 net.cpp:380] pool5 -> pool5 +I0408 14:45:57.379757 20259 net.cpp:122] Setting up pool5 +I0408 14:45:57.379763 20259 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 14:45:57.379766 20259 net.cpp:137] Memory required for data: 1051768832 +I0408 14:45:57.379770 20259 layer_factory.hpp:77] Creating layer fc6 +I0408 14:45:57.379779 20259 net.cpp:84] Creating Layer fc6 +I0408 14:45:57.379782 20259 net.cpp:406] fc6 <- pool5 +I0408 14:45:57.379789 20259 net.cpp:380] fc6 -> fc6 +I0408 14:45:57.731482 20259 net.cpp:122] Setting up fc6 +I0408 14:45:57.731501 20259 net.cpp:129] Top shape: 128 4096 (524288) +I0408 14:45:57.731505 20259 net.cpp:137] Memory required for data: 1053865984 +I0408 14:45:57.731515 20259 layer_factory.hpp:77] Creating layer relu6 +I0408 14:45:57.731524 20259 net.cpp:84] Creating Layer relu6 +I0408 14:45:57.731529 20259 net.cpp:406] relu6 <- fc6 +I0408 14:45:57.731536 20259 net.cpp:367] relu6 -> fc6 (in-place) +I0408 14:45:57.732173 20259 net.cpp:122] Setting up relu6 +I0408 14:45:57.732183 20259 net.cpp:129] Top shape: 128 4096 (524288) +I0408 14:45:57.732187 20259 net.cpp:137] Memory required for data: 1055963136 +I0408 14:45:57.732190 20259 layer_factory.hpp:77] Creating layer drop6 +I0408 14:45:57.732196 20259 net.cpp:84] Creating Layer drop6 +I0408 14:45:57.732199 20259 net.cpp:406] drop6 <- fc6 +I0408 14:45:57.732206 20259 net.cpp:367] drop6 -> fc6 (in-place) +I0408 14:45:57.732234 20259 net.cpp:122] Setting up drop6 +I0408 14:45:57.732239 20259 net.cpp:129] Top shape: 128 4096 (524288) +I0408 14:45:57.732242 20259 net.cpp:137] Memory required for data: 1058060288 +I0408 14:45:57.732245 20259 layer_factory.hpp:77] Creating layer fc7 +I0408 14:45:57.732252 20259 net.cpp:84] Creating Layer fc7 +I0408 14:45:57.732255 20259 net.cpp:406] fc7 <- fc6 +I0408 14:45:57.732261 20259 net.cpp:380] fc7 -> fc7 +I0408 14:45:57.888497 20259 net.cpp:122] Setting up fc7 +I0408 14:45:57.888518 20259 net.cpp:129] Top shape: 128 4096 (524288) +I0408 14:45:57.888522 20259 net.cpp:137] Memory required for data: 1060157440 +I0408 14:45:57.888532 20259 layer_factory.hpp:77] Creating layer relu7 +I0408 14:45:57.888541 20259 net.cpp:84] Creating Layer relu7 +I0408 14:45:57.888545 20259 net.cpp:406] relu7 <- fc7 +I0408 14:45:57.888552 20259 net.cpp:367] relu7 -> fc7 (in-place) +I0408 14:45:57.889185 20259 net.cpp:122] Setting up relu7 +I0408 14:45:57.889195 20259 net.cpp:129] Top shape: 128 4096 (524288) +I0408 14:45:57.889199 20259 net.cpp:137] Memory required for data: 1062254592 +I0408 14:45:57.889204 20259 layer_factory.hpp:77] Creating layer drop7 +I0408 14:45:57.889209 20259 net.cpp:84] Creating Layer drop7 +I0408 14:45:57.889230 20259 net.cpp:406] drop7 <- fc7 +I0408 14:45:57.889237 20259 net.cpp:367] drop7 -> fc7 (in-place) +I0408 14:45:57.889261 20259 net.cpp:122] Setting up drop7 +I0408 14:45:57.889266 20259 net.cpp:129] Top shape: 128 4096 (524288) +I0408 14:45:57.889269 20259 net.cpp:137] Memory required for data: 1064351744 +I0408 14:45:57.889272 20259 layer_factory.hpp:77] Creating layer fc8 +I0408 14:45:57.889281 20259 net.cpp:84] Creating Layer fc8 +I0408 14:45:57.889284 20259 net.cpp:406] fc8 <- fc7 +I0408 14:45:57.889290 20259 net.cpp:380] fc8 -> fc8 +I0408 14:45:57.896905 20259 net.cpp:122] Setting up fc8 +I0408 14:45:57.896914 20259 net.cpp:129] Top shape: 128 196 (25088) +I0408 14:45:57.896919 20259 net.cpp:137] Memory required for data: 1064452096 +I0408 14:45:57.896924 20259 layer_factory.hpp:77] Creating layer loss +I0408 14:45:57.896930 20259 net.cpp:84] Creating Layer loss +I0408 14:45:57.896934 20259 net.cpp:406] loss <- fc8 +I0408 14:45:57.896939 20259 net.cpp:406] loss <- label +I0408 14:45:57.896946 20259 net.cpp:380] loss -> loss +I0408 14:45:57.896955 20259 layer_factory.hpp:77] Creating layer loss +I0408 14:45:57.897543 20259 net.cpp:122] Setting up loss +I0408 14:45:57.897552 20259 net.cpp:129] Top shape: (1) +I0408 14:45:57.897555 20259 net.cpp:132] with loss weight 1 +I0408 14:45:57.897572 20259 net.cpp:137] Memory required for data: 1064452100 +I0408 14:45:57.897578 20259 net.cpp:198] loss needs backward computation. +I0408 14:45:57.897583 20259 net.cpp:198] fc8 needs backward computation. +I0408 14:45:57.897586 20259 net.cpp:198] drop7 needs backward computation. +I0408 14:45:57.897590 20259 net.cpp:198] relu7 needs backward computation. +I0408 14:45:57.897593 20259 net.cpp:198] fc7 needs backward computation. +I0408 14:45:57.897596 20259 net.cpp:198] drop6 needs backward computation. +I0408 14:45:57.897600 20259 net.cpp:198] relu6 needs backward computation. +I0408 14:45:57.897603 20259 net.cpp:198] fc6 needs backward computation. +I0408 14:45:57.897608 20259 net.cpp:198] pool5 needs backward computation. +I0408 14:45:57.897610 20259 net.cpp:198] relu5 needs backward computation. +I0408 14:45:57.897614 20259 net.cpp:198] conv5 needs backward computation. +I0408 14:45:57.897617 20259 net.cpp:198] relu4 needs backward computation. +I0408 14:45:57.897621 20259 net.cpp:198] conv4 needs backward computation. +I0408 14:45:57.897624 20259 net.cpp:198] relu3 needs backward computation. +I0408 14:45:57.897629 20259 net.cpp:198] conv3 needs backward computation. +I0408 14:45:57.897631 20259 net.cpp:198] pool2 needs backward computation. +I0408 14:45:57.897635 20259 net.cpp:198] norm2 needs backward computation. +I0408 14:45:57.897639 20259 net.cpp:198] relu2 needs backward computation. +I0408 14:45:57.897642 20259 net.cpp:198] conv2 needs backward computation. +I0408 14:45:57.897646 20259 net.cpp:198] pool1 needs backward computation. +I0408 14:45:57.897650 20259 net.cpp:198] norm1 needs backward computation. +I0408 14:45:57.897652 20259 net.cpp:198] relu1 needs backward computation. +I0408 14:45:57.897656 20259 net.cpp:198] conv1 needs backward computation. +I0408 14:45:57.897660 20259 net.cpp:200] train-data does not need backward computation. +I0408 14:45:57.897663 20259 net.cpp:242] This network produces output loss +I0408 14:45:57.897677 20259 net.cpp:255] Network initialization done. +I0408 14:45:57.898813 20259 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 14:45:57.898842 20259 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 14:45:57.898979 20259 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 14:45:57.899075 20259 layer_factory.hpp:77] Creating layer val-data +I0408 14:45:57.910606 20259 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0408 14:45:57.911365 20259 net.cpp:84] Creating Layer val-data +I0408 14:45:57.911373 20259 net.cpp:380] val-data -> data +I0408 14:45:57.911381 20259 net.cpp:380] val-data -> label +I0408 14:45:57.911388 20259 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 14:45:57.915943 20259 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 14:45:57.945870 20259 net.cpp:122] Setting up val-data +I0408 14:45:57.945892 20259 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 14:45:57.945897 20259 net.cpp:129] Top shape: 32 (32) +I0408 14:45:57.945900 20259 net.cpp:137] Memory required for data: 19787264 +I0408 14:45:57.945906 20259 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 14:45:57.945919 20259 net.cpp:84] Creating Layer label_val-data_1_split +I0408 14:45:57.945922 20259 net.cpp:406] label_val-data_1_split <- label +I0408 14:45:57.945930 20259 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 14:45:57.945940 20259 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 14:45:57.945987 20259 net.cpp:122] Setting up label_val-data_1_split +I0408 14:45:57.945993 20259 net.cpp:129] Top shape: 32 (32) +I0408 14:45:57.945996 20259 net.cpp:129] Top shape: 32 (32) +I0408 14:45:57.945999 20259 net.cpp:137] Memory required for data: 19787520 +I0408 14:45:57.946003 20259 layer_factory.hpp:77] Creating layer conv1 +I0408 14:45:57.946015 20259 net.cpp:84] Creating Layer conv1 +I0408 14:45:57.946018 20259 net.cpp:406] conv1 <- data +I0408 14:45:57.946024 20259 net.cpp:380] conv1 -> conv1 +I0408 14:45:57.948081 20259 net.cpp:122] Setting up conv1 +I0408 14:45:57.948091 20259 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 14:45:57.948094 20259 net.cpp:137] Memory required for data: 56958720 +I0408 14:45:57.948105 20259 layer_factory.hpp:77] Creating layer relu1 +I0408 14:45:57.948112 20259 net.cpp:84] Creating Layer relu1 +I0408 14:45:57.948115 20259 net.cpp:406] relu1 <- conv1 +I0408 14:45:57.948120 20259 net.cpp:367] relu1 -> conv1 (in-place) +I0408 14:45:57.948410 20259 net.cpp:122] Setting up relu1 +I0408 14:45:57.948417 20259 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 14:45:57.948421 20259 net.cpp:137] Memory required for data: 94129920 +I0408 14:45:57.948424 20259 layer_factory.hpp:77] Creating layer norm1 +I0408 14:45:57.948432 20259 net.cpp:84] Creating Layer norm1 +I0408 14:45:57.948436 20259 net.cpp:406] norm1 <- conv1 +I0408 14:45:57.948441 20259 net.cpp:380] norm1 -> norm1 +I0408 14:45:57.948894 20259 net.cpp:122] Setting up norm1 +I0408 14:45:57.948904 20259 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 14:45:57.948907 20259 net.cpp:137] Memory required for data: 131301120 +I0408 14:45:57.948910 20259 layer_factory.hpp:77] Creating layer pool1 +I0408 14:45:57.948918 20259 net.cpp:84] Creating Layer pool1 +I0408 14:45:57.948921 20259 net.cpp:406] pool1 <- norm1 +I0408 14:45:57.948926 20259 net.cpp:380] pool1 -> pool1 +I0408 14:45:57.948956 20259 net.cpp:122] Setting up pool1 +I0408 14:45:57.948961 20259 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 14:45:57.948963 20259 net.cpp:137] Memory required for data: 140259072 +I0408 14:45:57.948966 20259 layer_factory.hpp:77] Creating layer conv2 +I0408 14:45:57.948974 20259 net.cpp:84] Creating Layer conv2 +I0408 14:45:57.948978 20259 net.cpp:406] conv2 <- pool1 +I0408 14:45:57.949002 20259 net.cpp:380] conv2 -> conv2 +I0408 14:45:57.957722 20259 net.cpp:122] Setting up conv2 +I0408 14:45:57.957736 20259 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 14:45:57.957741 20259 net.cpp:137] Memory required for data: 164146944 +I0408 14:45:57.957749 20259 layer_factory.hpp:77] Creating layer relu2 +I0408 14:45:57.957756 20259 net.cpp:84] Creating Layer relu2 +I0408 14:45:57.957759 20259 net.cpp:406] relu2 <- conv2 +I0408 14:45:57.957765 20259 net.cpp:367] relu2 -> conv2 (in-place) +I0408 14:45:57.958281 20259 net.cpp:122] Setting up relu2 +I0408 14:45:57.958290 20259 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 14:45:57.958294 20259 net.cpp:137] Memory required for data: 188034816 +I0408 14:45:57.958298 20259 layer_factory.hpp:77] Creating layer norm2 +I0408 14:45:57.958307 20259 net.cpp:84] Creating Layer norm2 +I0408 14:45:57.958310 20259 net.cpp:406] norm2 <- conv2 +I0408 14:45:57.958317 20259 net.cpp:380] norm2 -> norm2 +I0408 14:45:57.958835 20259 net.cpp:122] Setting up norm2 +I0408 14:45:57.958844 20259 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 14:45:57.958848 20259 net.cpp:137] Memory required for data: 211922688 +I0408 14:45:57.958853 20259 layer_factory.hpp:77] Creating layer pool2 +I0408 14:45:57.958858 20259 net.cpp:84] Creating Layer pool2 +I0408 14:45:57.958863 20259 net.cpp:406] pool2 <- norm2 +I0408 14:45:57.958869 20259 net.cpp:380] pool2 -> pool2 +I0408 14:45:57.958899 20259 net.cpp:122] Setting up pool2 +I0408 14:45:57.958904 20259 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 14:45:57.958909 20259 net.cpp:137] Memory required for data: 217460480 +I0408 14:45:57.958911 20259 layer_factory.hpp:77] Creating layer conv3 +I0408 14:45:57.958920 20259 net.cpp:84] Creating Layer conv3 +I0408 14:45:57.958923 20259 net.cpp:406] conv3 <- pool2 +I0408 14:45:57.958930 20259 net.cpp:380] conv3 -> conv3 +I0408 14:45:57.969745 20259 net.cpp:122] Setting up conv3 +I0408 14:45:57.969758 20259 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 14:45:57.969763 20259 net.cpp:137] Memory required for data: 225767168 +I0408 14:45:57.969772 20259 layer_factory.hpp:77] Creating layer relu3 +I0408 14:45:57.969779 20259 net.cpp:84] Creating Layer relu3 +I0408 14:45:57.969784 20259 net.cpp:406] relu3 <- conv3 +I0408 14:45:57.969789 20259 net.cpp:367] relu3 -> conv3 (in-place) +I0408 14:45:57.970307 20259 net.cpp:122] Setting up relu3 +I0408 14:45:57.970316 20259 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 14:45:57.970320 20259 net.cpp:137] Memory required for data: 234073856 +I0408 14:45:57.970324 20259 layer_factory.hpp:77] Creating layer conv4 +I0408 14:45:57.970335 20259 net.cpp:84] Creating Layer conv4 +I0408 14:45:57.970338 20259 net.cpp:406] conv4 <- conv3 +I0408 14:45:57.970345 20259 net.cpp:380] conv4 -> conv4 +I0408 14:45:57.981468 20259 net.cpp:122] Setting up conv4 +I0408 14:45:57.981479 20259 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 14:45:57.981483 20259 net.cpp:137] Memory required for data: 242380544 +I0408 14:45:57.981492 20259 layer_factory.hpp:77] Creating layer relu4 +I0408 14:45:57.981498 20259 net.cpp:84] Creating Layer relu4 +I0408 14:45:57.981503 20259 net.cpp:406] relu4 <- conv4 +I0408 14:45:57.981509 20259 net.cpp:367] relu4 -> conv4 (in-place) +I0408 14:45:57.981850 20259 net.cpp:122] Setting up relu4 +I0408 14:45:57.981859 20259 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 14:45:57.981864 20259 net.cpp:137] Memory required for data: 250687232 +I0408 14:45:57.981868 20259 layer_factory.hpp:77] Creating layer conv5 +I0408 14:45:57.981878 20259 net.cpp:84] Creating Layer conv5 +I0408 14:45:57.981881 20259 net.cpp:406] conv5 <- conv4 +I0408 14:45:57.981887 20259 net.cpp:380] conv5 -> conv5 +I0408 14:45:57.997766 20259 net.cpp:122] Setting up conv5 +I0408 14:45:57.997778 20259 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 14:45:57.997782 20259 net.cpp:137] Memory required for data: 256225024 +I0408 14:45:57.997793 20259 layer_factory.hpp:77] Creating layer relu5 +I0408 14:45:57.997800 20259 net.cpp:84] Creating Layer relu5 +I0408 14:45:57.997803 20259 net.cpp:406] relu5 <- conv5 +I0408 14:45:57.997825 20259 net.cpp:367] relu5 -> conv5 (in-place) +I0408 14:45:57.998327 20259 net.cpp:122] Setting up relu5 +I0408 14:45:57.998337 20259 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 14:45:57.998339 20259 net.cpp:137] Memory required for data: 261762816 +I0408 14:45:57.998343 20259 layer_factory.hpp:77] Creating layer pool5 +I0408 14:45:57.998354 20259 net.cpp:84] Creating Layer pool5 +I0408 14:45:57.998358 20259 net.cpp:406] pool5 <- conv5 +I0408 14:45:57.998363 20259 net.cpp:380] pool5 -> pool5 +I0408 14:45:57.998404 20259 net.cpp:122] Setting up pool5 +I0408 14:45:57.998410 20259 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 14:45:57.998414 20259 net.cpp:137] Memory required for data: 262942464 +I0408 14:45:57.998416 20259 layer_factory.hpp:77] Creating layer fc6 +I0408 14:45:57.998425 20259 net.cpp:84] Creating Layer fc6 +I0408 14:45:57.998428 20259 net.cpp:406] fc6 <- pool5 +I0408 14:45:57.998433 20259 net.cpp:380] fc6 -> fc6 +I0408 14:45:58.349989 20259 net.cpp:122] Setting up fc6 +I0408 14:45:58.350009 20259 net.cpp:129] Top shape: 32 4096 (131072) +I0408 14:45:58.350013 20259 net.cpp:137] Memory required for data: 263466752 +I0408 14:45:58.350023 20259 layer_factory.hpp:77] Creating layer relu6 +I0408 14:45:58.350031 20259 net.cpp:84] Creating Layer relu6 +I0408 14:45:58.350035 20259 net.cpp:406] relu6 <- fc6 +I0408 14:45:58.350044 20259 net.cpp:367] relu6 -> fc6 (in-place) +I0408 14:45:58.350894 20259 net.cpp:122] Setting up relu6 +I0408 14:45:58.350903 20259 net.cpp:129] Top shape: 32 4096 (131072) +I0408 14:45:58.350908 20259 net.cpp:137] Memory required for data: 263991040 +I0408 14:45:58.350910 20259 layer_factory.hpp:77] Creating layer drop6 +I0408 14:45:58.350917 20259 net.cpp:84] Creating Layer drop6 +I0408 14:45:58.350920 20259 net.cpp:406] drop6 <- fc6 +I0408 14:45:58.350927 20259 net.cpp:367] drop6 -> fc6 (in-place) +I0408 14:45:58.350951 20259 net.cpp:122] Setting up drop6 +I0408 14:45:58.350956 20259 net.cpp:129] Top shape: 32 4096 (131072) +I0408 14:45:58.350960 20259 net.cpp:137] Memory required for data: 264515328 +I0408 14:45:58.350962 20259 layer_factory.hpp:77] Creating layer fc7 +I0408 14:45:58.350972 20259 net.cpp:84] Creating Layer fc7 +I0408 14:45:58.350975 20259 net.cpp:406] fc7 <- fc6 +I0408 14:45:58.350982 20259 net.cpp:380] fc7 -> fc7 +I0408 14:45:58.507237 20259 net.cpp:122] Setting up fc7 +I0408 14:45:58.507261 20259 net.cpp:129] Top shape: 32 4096 (131072) +I0408 14:45:58.507264 20259 net.cpp:137] Memory required for data: 265039616 +I0408 14:45:58.507273 20259 layer_factory.hpp:77] Creating layer relu7 +I0408 14:45:58.507283 20259 net.cpp:84] Creating Layer relu7 +I0408 14:45:58.507287 20259 net.cpp:406] relu7 <- fc7 +I0408 14:45:58.507295 20259 net.cpp:367] relu7 -> fc7 (in-place) +I0408 14:45:58.507721 20259 net.cpp:122] Setting up relu7 +I0408 14:45:58.507730 20259 net.cpp:129] Top shape: 32 4096 (131072) +I0408 14:45:58.507735 20259 net.cpp:137] Memory required for data: 265563904 +I0408 14:45:58.507737 20259 layer_factory.hpp:77] Creating layer drop7 +I0408 14:45:58.507745 20259 net.cpp:84] Creating Layer drop7 +I0408 14:45:58.507747 20259 net.cpp:406] drop7 <- fc7 +I0408 14:45:58.507753 20259 net.cpp:367] drop7 -> fc7 (in-place) +I0408 14:45:58.507776 20259 net.cpp:122] Setting up drop7 +I0408 14:45:58.507781 20259 net.cpp:129] Top shape: 32 4096 (131072) +I0408 14:45:58.507784 20259 net.cpp:137] Memory required for data: 266088192 +I0408 14:45:58.507787 20259 layer_factory.hpp:77] Creating layer fc8 +I0408 14:45:58.507797 20259 net.cpp:84] Creating Layer fc8 +I0408 14:45:58.507799 20259 net.cpp:406] fc8 <- fc7 +I0408 14:45:58.507805 20259 net.cpp:380] fc8 -> fc8 +I0408 14:45:58.515491 20259 net.cpp:122] Setting up fc8 +I0408 14:45:58.515501 20259 net.cpp:129] Top shape: 32 196 (6272) +I0408 14:45:58.515504 20259 net.cpp:137] Memory required for data: 266113280 +I0408 14:45:58.515511 20259 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 14:45:58.515518 20259 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 14:45:58.515522 20259 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 14:45:58.515544 20259 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 14:45:58.515552 20259 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 14:45:58.515584 20259 net.cpp:122] Setting up fc8_fc8_0_split +I0408 14:45:58.515589 20259 net.cpp:129] Top shape: 32 196 (6272) +I0408 14:45:58.515592 20259 net.cpp:129] Top shape: 32 196 (6272) +I0408 14:45:58.515595 20259 net.cpp:137] Memory required for data: 266163456 +I0408 14:45:58.515599 20259 layer_factory.hpp:77] Creating layer accuracy +I0408 14:45:58.515605 20259 net.cpp:84] Creating Layer accuracy +I0408 14:45:58.515609 20259 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 14:45:58.515614 20259 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 14:45:58.515619 20259 net.cpp:380] accuracy -> accuracy +I0408 14:45:58.515625 20259 net.cpp:122] Setting up accuracy +I0408 14:45:58.515630 20259 net.cpp:129] Top shape: (1) +I0408 14:45:58.515632 20259 net.cpp:137] Memory required for data: 266163460 +I0408 14:45:58.515635 20259 layer_factory.hpp:77] Creating layer loss +I0408 14:45:58.515642 20259 net.cpp:84] Creating Layer loss +I0408 14:45:58.515645 20259 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 14:45:58.515650 20259 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 14:45:58.515655 20259 net.cpp:380] loss -> loss +I0408 14:45:58.515661 20259 layer_factory.hpp:77] Creating layer loss +I0408 14:45:58.516252 20259 net.cpp:122] Setting up loss +I0408 14:45:58.516261 20259 net.cpp:129] Top shape: (1) +I0408 14:45:58.516264 20259 net.cpp:132] with loss weight 1 +I0408 14:45:58.516274 20259 net.cpp:137] Memory required for data: 266163464 +I0408 14:45:58.516278 20259 net.cpp:198] loss needs backward computation. +I0408 14:45:58.516283 20259 net.cpp:200] accuracy does not need backward computation. +I0408 14:45:58.516288 20259 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 14:45:58.516290 20259 net.cpp:198] fc8 needs backward computation. +I0408 14:45:58.516294 20259 net.cpp:198] drop7 needs backward computation. +I0408 14:45:58.516297 20259 net.cpp:198] relu7 needs backward computation. +I0408 14:45:58.516300 20259 net.cpp:198] fc7 needs backward computation. +I0408 14:45:58.516305 20259 net.cpp:198] drop6 needs backward computation. +I0408 14:45:58.516309 20259 net.cpp:198] relu6 needs backward computation. +I0408 14:45:58.516312 20259 net.cpp:198] fc6 needs backward computation. +I0408 14:45:58.516315 20259 net.cpp:198] pool5 needs backward computation. +I0408 14:45:58.516319 20259 net.cpp:198] relu5 needs backward computation. +I0408 14:45:58.516322 20259 net.cpp:198] conv5 needs backward computation. +I0408 14:45:58.516326 20259 net.cpp:198] relu4 needs backward computation. +I0408 14:45:58.516330 20259 net.cpp:198] conv4 needs backward computation. +I0408 14:45:58.516333 20259 net.cpp:198] relu3 needs backward computation. +I0408 14:45:58.516336 20259 net.cpp:198] conv3 needs backward computation. +I0408 14:45:58.516340 20259 net.cpp:198] pool2 needs backward computation. +I0408 14:45:58.516343 20259 net.cpp:198] norm2 needs backward computation. +I0408 14:45:58.516346 20259 net.cpp:198] relu2 needs backward computation. +I0408 14:45:58.516350 20259 net.cpp:198] conv2 needs backward computation. +I0408 14:45:58.516353 20259 net.cpp:198] pool1 needs backward computation. +I0408 14:45:58.516356 20259 net.cpp:198] norm1 needs backward computation. +I0408 14:45:58.516360 20259 net.cpp:198] relu1 needs backward computation. +I0408 14:45:58.516363 20259 net.cpp:198] conv1 needs backward computation. +I0408 14:45:58.516367 20259 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 14:45:58.516371 20259 net.cpp:200] val-data does not need backward computation. +I0408 14:45:58.516376 20259 net.cpp:242] This network produces output accuracy +I0408 14:45:58.516379 20259 net.cpp:242] This network produces output loss +I0408 14:45:58.516394 20259 net.cpp:255] Network initialization done. +I0408 14:45:58.516464 20259 solver.cpp:56] Solver scaffolding done. +I0408 14:45:58.516886 20259 caffe.cpp:248] Starting Optimization +I0408 14:45:58.516894 20259 solver.cpp:272] Solving +I0408 14:45:58.516906 20259 solver.cpp:273] Learning Rate Policy: exp +I0408 14:45:58.518224 20259 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 14:45:58.518232 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:45:58.596318 20259 blocking_queue.cpp:49] Waiting for data +I0408 14:46:02.891099 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:46:02.935731 20259 solver.cpp:397] Test net output #0: accuracy = 0.00428922 +I0408 14:46:02.935779 20259 solver.cpp:397] Test net output #1: loss = 5.28105 (* 1 = 5.28105 loss) +I0408 14:46:03.029799 20259 solver.cpp:218] Iteration 0 (1.17844e+37 iter/s, 4.51271s/12 iters), loss = 5.29687 +I0408 14:46:03.031318 20259 solver.cpp:237] Train net output #0: loss = 5.29687 (* 1 = 5.29687 loss) +I0408 14:46:03.031342 20259 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0408 14:46:07.205482 20259 solver.cpp:218] Iteration 12 (2.87493 iter/s, 4.17401s/12 iters), loss = 5.28522 +I0408 14:46:07.205524 20259 solver.cpp:237] Train net output #0: loss = 5.28522 (* 1 = 5.28522 loss) +I0408 14:46:07.205535 20259 sgd_solver.cpp:105] Iteration 12, lr = 0.00987681 +I0408 14:46:12.626185 20259 solver.cpp:218] Iteration 24 (2.21383 iter/s, 5.42046s/12 iters), loss = 5.29181 +I0408 14:46:12.626232 20259 solver.cpp:237] Train net output #0: loss = 5.29181 (* 1 = 5.29181 loss) +I0408 14:46:12.626243 20259 sgd_solver.cpp:105] Iteration 24, lr = 0.00975514 +I0408 14:46:17.672689 20259 solver.cpp:218] Iteration 36 (2.37799 iter/s, 5.04628s/12 iters), loss = 5.29581 +I0408 14:46:17.672734 20259 solver.cpp:237] Train net output #0: loss = 5.29581 (* 1 = 5.29581 loss) +I0408 14:46:17.672746 20259 sgd_solver.cpp:105] Iteration 36, lr = 0.00963497 +I0408 14:46:22.688122 20259 solver.cpp:218] Iteration 48 (2.39272 iter/s, 5.01521s/12 iters), loss = 5.31134 +I0408 14:46:22.688165 20259 solver.cpp:237] Train net output #0: loss = 5.31134 (* 1 = 5.31134 loss) +I0408 14:46:22.688176 20259 sgd_solver.cpp:105] Iteration 48, lr = 0.00951628 +I0408 14:46:27.637338 20259 solver.cpp:218] Iteration 60 (2.42473 iter/s, 4.949s/12 iters), loss = 5.30054 +I0408 14:46:27.637517 20259 solver.cpp:237] Train net output #0: loss = 5.30054 (* 1 = 5.30054 loss) +I0408 14:46:27.637531 20259 sgd_solver.cpp:105] Iteration 60, lr = 0.00939905 +I0408 14:46:32.609807 20259 solver.cpp:218] Iteration 72 (2.41346 iter/s, 4.97212s/12 iters), loss = 5.30169 +I0408 14:46:32.609849 20259 solver.cpp:237] Train net output #0: loss = 5.30169 (* 1 = 5.30169 loss) +I0408 14:46:32.609859 20259 sgd_solver.cpp:105] Iteration 72, lr = 0.00928326 +I0408 14:46:37.563151 20259 solver.cpp:218] Iteration 84 (2.42271 iter/s, 4.95312s/12 iters), loss = 5.30739 +I0408 14:46:37.563192 20259 solver.cpp:237] Train net output #0: loss = 5.30739 (* 1 = 5.30739 loss) +I0408 14:46:37.563203 20259 sgd_solver.cpp:105] Iteration 84, lr = 0.0091689 +I0408 14:46:42.479884 20259 solver.cpp:218] Iteration 96 (2.44075 iter/s, 4.91652s/12 iters), loss = 5.31979 +I0408 14:46:42.479928 20259 solver.cpp:237] Train net output #0: loss = 5.31979 (* 1 = 5.31979 loss) +I0408 14:46:42.479940 20259 sgd_solver.cpp:105] Iteration 96, lr = 0.00905595 +I0408 14:46:44.214381 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:46:44.525096 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 14:46:48.815670 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 14:46:56.254591 20259 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 14:46:56.254623 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:47:00.621201 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:47:00.697890 20259 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 14:47:00.697933 20259 solver.cpp:397] Test net output #1: loss = 5.28917 (* 1 = 5.28917 loss) +I0408 14:47:02.669950 20259 solver.cpp:218] Iteration 108 (0.594374 iter/s, 20.1893s/12 iters), loss = 5.31453 +I0408 14:47:02.669997 20259 solver.cpp:237] Train net output #0: loss = 5.31453 (* 1 = 5.31453 loss) +I0408 14:47:02.670008 20259 sgd_solver.cpp:105] Iteration 108, lr = 0.00894439 +I0408 14:47:08.102344 20259 solver.cpp:218] Iteration 120 (2.20907 iter/s, 5.43214s/12 iters), loss = 5.27752 +I0408 14:47:08.102394 20259 solver.cpp:237] Train net output #0: loss = 5.27752 (* 1 = 5.27752 loss) +I0408 14:47:08.102406 20259 sgd_solver.cpp:105] Iteration 120, lr = 0.00883421 +I0408 14:47:13.384189 20259 solver.cpp:218] Iteration 132 (2.27204 iter/s, 5.28161s/12 iters), loss = 5.24683 +I0408 14:47:13.384223 20259 solver.cpp:237] Train net output #0: loss = 5.24683 (* 1 = 5.24683 loss) +I0408 14:47:13.384232 20259 sgd_solver.cpp:105] Iteration 132, lr = 0.00872538 +I0408 14:47:18.408267 20259 solver.cpp:218] Iteration 144 (2.3886 iter/s, 5.02386s/12 iters), loss = 5.30965 +I0408 14:47:18.408300 20259 solver.cpp:237] Train net output #0: loss = 5.30965 (* 1 = 5.30965 loss) +I0408 14:47:18.408308 20259 sgd_solver.cpp:105] Iteration 144, lr = 0.0086179 +I0408 14:47:23.412564 20259 solver.cpp:218] Iteration 156 (2.39805 iter/s, 5.00408s/12 iters), loss = 5.25927 +I0408 14:47:23.412607 20259 solver.cpp:237] Train net output #0: loss = 5.25927 (* 1 = 5.25927 loss) +I0408 14:47:23.412618 20259 sgd_solver.cpp:105] Iteration 156, lr = 0.00851173 +I0408 14:47:28.376067 20259 solver.cpp:218] Iteration 168 (2.41776 iter/s, 4.96328s/12 iters), loss = 5.25101 +I0408 14:47:28.376111 20259 solver.cpp:237] Train net output #0: loss = 5.25101 (* 1 = 5.25101 loss) +I0408 14:47:28.376122 20259 sgd_solver.cpp:105] Iteration 168, lr = 0.00840688 +I0408 14:47:33.380045 20259 solver.cpp:218] Iteration 180 (2.3982 iter/s, 5.00375s/12 iters), loss = 5.23145 +I0408 14:47:33.380291 20259 solver.cpp:237] Train net output #0: loss = 5.23145 (* 1 = 5.23145 loss) +I0408 14:47:33.380306 20259 sgd_solver.cpp:105] Iteration 180, lr = 0.00830332 +I0408 14:47:38.365218 20259 solver.cpp:218] Iteration 192 (2.40734 iter/s, 4.98475s/12 iters), loss = 5.24787 +I0408 14:47:38.365259 20259 solver.cpp:237] Train net output #0: loss = 5.24787 (* 1 = 5.24787 loss) +I0408 14:47:38.365272 20259 sgd_solver.cpp:105] Iteration 192, lr = 0.00820103 +I0408 14:47:42.147147 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:47:42.815078 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 14:47:46.343703 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 14:47:49.153228 20259 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 14:47:49.153259 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:47:53.475123 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:47:53.597735 20259 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0408 14:47:53.597780 20259 solver.cpp:397] Test net output #1: loss = 5.20013 (* 1 = 5.20013 loss) +I0408 14:47:53.686566 20259 solver.cpp:218] Iteration 204 (0.78325 iter/s, 15.3208s/12 iters), loss = 5.12292 +I0408 14:47:53.686602 20259 solver.cpp:237] Train net output #0: loss = 5.12292 (* 1 = 5.12292 loss) +I0408 14:47:53.686612 20259 sgd_solver.cpp:105] Iteration 204, lr = 0.0081 +I0408 14:47:57.945513 20259 solver.cpp:218] Iteration 216 (2.81773 iter/s, 4.25875s/12 iters), loss = 5.17357 +I0408 14:47:57.945557 20259 solver.cpp:237] Train net output #0: loss = 5.17357 (* 1 = 5.17357 loss) +I0408 14:47:57.945569 20259 sgd_solver.cpp:105] Iteration 216, lr = 0.00800022 +I0408 14:48:02.891819 20259 solver.cpp:218] Iteration 228 (2.42616 iter/s, 4.94608s/12 iters), loss = 5.2046 +I0408 14:48:02.891862 20259 solver.cpp:237] Train net output #0: loss = 5.2046 (* 1 = 5.2046 loss) +I0408 14:48:02.891875 20259 sgd_solver.cpp:105] Iteration 228, lr = 0.00790166 +I0408 14:48:07.746657 20259 solver.cpp:218] Iteration 240 (2.47187 iter/s, 4.85462s/12 iters), loss = 5.25696 +I0408 14:48:07.746803 20259 solver.cpp:237] Train net output #0: loss = 5.25696 (* 1 = 5.25696 loss) +I0408 14:48:07.746816 20259 sgd_solver.cpp:105] Iteration 240, lr = 0.00780433 +I0408 14:48:12.762655 20259 solver.cpp:218] Iteration 252 (2.3925 iter/s, 5.01567s/12 iters), loss = 5.1629 +I0408 14:48:12.762697 20259 solver.cpp:237] Train net output #0: loss = 5.1629 (* 1 = 5.1629 loss) +I0408 14:48:12.762709 20259 sgd_solver.cpp:105] Iteration 252, lr = 0.00770819 +I0408 14:48:17.705267 20259 solver.cpp:218] Iteration 264 (2.42797 iter/s, 4.94239s/12 iters), loss = 5.26716 +I0408 14:48:17.705310 20259 solver.cpp:237] Train net output #0: loss = 5.26716 (* 1 = 5.26716 loss) +I0408 14:48:17.705322 20259 sgd_solver.cpp:105] Iteration 264, lr = 0.00761323 +I0408 14:48:22.629918 20259 solver.cpp:218] Iteration 276 (2.43683 iter/s, 4.92443s/12 iters), loss = 5.2183 +I0408 14:48:22.629969 20259 solver.cpp:237] Train net output #0: loss = 5.2183 (* 1 = 5.2183 loss) +I0408 14:48:22.629981 20259 sgd_solver.cpp:105] Iteration 276, lr = 0.00751944 +I0408 14:48:27.509900 20259 solver.cpp:218] Iteration 288 (2.45914 iter/s, 4.87976s/12 iters), loss = 5.04446 +I0408 14:48:27.509943 20259 solver.cpp:237] Train net output #0: loss = 5.04446 (* 1 = 5.04446 loss) +I0408 14:48:27.509953 20259 sgd_solver.cpp:105] Iteration 288, lr = 0.00742681 +I0408 14:48:32.483464 20259 solver.cpp:218] Iteration 300 (2.41286 iter/s, 4.97334s/12 iters), loss = 5.17342 +I0408 14:48:32.483508 20259 solver.cpp:237] Train net output #0: loss = 5.17342 (* 1 = 5.17342 loss) +I0408 14:48:32.483520 20259 sgd_solver.cpp:105] Iteration 300, lr = 0.00733532 +I0408 14:48:33.486953 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:48:34.527897 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 14:48:38.025527 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 14:48:40.610746 20259 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 14:48:40.610777 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:48:44.869441 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:48:45.026620 20259 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0408 14:48:45.026667 20259 solver.cpp:397] Test net output #1: loss = 5.15192 (* 1 = 5.15192 loss) +I0408 14:48:47.020915 20259 solver.cpp:218] Iteration 312 (0.825485 iter/s, 14.5369s/12 iters), loss = 5.1343 +I0408 14:48:47.020961 20259 solver.cpp:237] Train net output #0: loss = 5.1343 (* 1 = 5.1343 loss) +I0408 14:48:47.020973 20259 sgd_solver.cpp:105] Iteration 312, lr = 0.00724496 +I0408 14:48:52.242085 20259 solver.cpp:218] Iteration 324 (2.29844 iter/s, 5.22094s/12 iters), loss = 5.19956 +I0408 14:48:52.242131 20259 solver.cpp:237] Train net output #0: loss = 5.19956 (* 1 = 5.19956 loss) +I0408 14:48:52.242143 20259 sgd_solver.cpp:105] Iteration 324, lr = 0.00715571 +I0408 14:48:57.473065 20259 solver.cpp:218] Iteration 336 (2.29413 iter/s, 5.23075s/12 iters), loss = 5.15021 +I0408 14:48:57.473109 20259 solver.cpp:237] Train net output #0: loss = 5.15021 (* 1 = 5.15021 loss) +I0408 14:48:57.473119 20259 sgd_solver.cpp:105] Iteration 336, lr = 0.00706756 +I0408 14:49:02.520428 20259 solver.cpp:218] Iteration 348 (2.37759 iter/s, 5.04714s/12 iters), loss = 5.10575 +I0408 14:49:02.520474 20259 solver.cpp:237] Train net output #0: loss = 5.10575 (* 1 = 5.10575 loss) +I0408 14:49:02.520486 20259 sgd_solver.cpp:105] Iteration 348, lr = 0.0069805 +I0408 14:49:07.554611 20259 solver.cpp:218] Iteration 360 (2.38381 iter/s, 5.03395s/12 iters), loss = 5.15994 +I0408 14:49:07.554659 20259 solver.cpp:237] Train net output #0: loss = 5.15994 (* 1 = 5.15994 loss) +I0408 14:49:07.554673 20259 sgd_solver.cpp:105] Iteration 360, lr = 0.00689451 +I0408 14:49:12.620097 20259 solver.cpp:218] Iteration 372 (2.36908 iter/s, 5.06526s/12 iters), loss = 5.09078 +I0408 14:49:12.620258 20259 solver.cpp:237] Train net output #0: loss = 5.09078 (* 1 = 5.09078 loss) +I0408 14:49:12.620272 20259 sgd_solver.cpp:105] Iteration 372, lr = 0.00680957 +I0408 14:49:17.639410 20259 solver.cpp:218] Iteration 384 (2.39092 iter/s, 5.01898s/12 iters), loss = 5.11732 +I0408 14:49:17.639453 20259 solver.cpp:237] Train net output #0: loss = 5.11732 (* 1 = 5.11732 loss) +I0408 14:49:17.639465 20259 sgd_solver.cpp:105] Iteration 384, lr = 0.00672569 +I0408 14:49:22.606729 20259 solver.cpp:218] Iteration 396 (2.4159 iter/s, 4.9671s/12 iters), loss = 5.06889 +I0408 14:49:22.606773 20259 solver.cpp:237] Train net output #0: loss = 5.06889 (* 1 = 5.06889 loss) +I0408 14:49:22.606786 20259 sgd_solver.cpp:105] Iteration 396, lr = 0.00664283 +I0408 14:49:25.730962 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:49:27.122496 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 14:49:31.189007 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 14:49:36.088632 20259 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 14:49:36.088662 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:49:40.296902 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:49:40.499719 20259 solver.cpp:397] Test net output #0: accuracy = 0.0147059 +I0408 14:49:40.499766 20259 solver.cpp:397] Test net output #1: loss = 5.09544 (* 1 = 5.09544 loss) +I0408 14:49:40.588279 20259 solver.cpp:218] Iteration 408 (0.667375 iter/s, 17.9809s/12 iters), loss = 5.15849 +I0408 14:49:40.588320 20259 solver.cpp:237] Train net output #0: loss = 5.15849 (* 1 = 5.15849 loss) +I0408 14:49:40.588331 20259 sgd_solver.cpp:105] Iteration 408, lr = 0.006561 +I0408 14:49:44.946784 20259 solver.cpp:218] Iteration 420 (2.75336 iter/s, 4.35831s/12 iters), loss = 5.18052 +I0408 14:49:44.946890 20259 solver.cpp:237] Train net output #0: loss = 5.18052 (* 1 = 5.18052 loss) +I0408 14:49:44.946903 20259 sgd_solver.cpp:105] Iteration 420, lr = 0.00648018 +I0408 14:49:49.938585 20259 solver.cpp:218] Iteration 432 (2.40408 iter/s, 4.99152s/12 iters), loss = 5.09117 +I0408 14:49:49.938630 20259 solver.cpp:237] Train net output #0: loss = 5.09117 (* 1 = 5.09117 loss) +I0408 14:49:49.938642 20259 sgd_solver.cpp:105] Iteration 432, lr = 0.00640035 +I0408 14:49:54.935501 20259 solver.cpp:218] Iteration 444 (2.40159 iter/s, 4.99669s/12 iters), loss = 5.06978 +I0408 14:49:54.935547 20259 solver.cpp:237] Train net output #0: loss = 5.06978 (* 1 = 5.06978 loss) +I0408 14:49:54.935559 20259 sgd_solver.cpp:105] Iteration 444, lr = 0.00632151 +I0408 14:49:59.881218 20259 solver.cpp:218] Iteration 456 (2.42645 iter/s, 4.9455s/12 iters), loss = 5.11675 +I0408 14:49:59.881263 20259 solver.cpp:237] Train net output #0: loss = 5.11675 (* 1 = 5.11675 loss) +I0408 14:49:59.881274 20259 sgd_solver.cpp:105] Iteration 456, lr = 0.00624363 +I0408 14:50:04.786541 20259 solver.cpp:218] Iteration 468 (2.44643 iter/s, 4.90511s/12 iters), loss = 5.11573 +I0408 14:50:04.786588 20259 solver.cpp:237] Train net output #0: loss = 5.11573 (* 1 = 5.11573 loss) +I0408 14:50:04.786599 20259 sgd_solver.cpp:105] Iteration 468, lr = 0.00616672 +I0408 14:50:09.706053 20259 solver.cpp:218] Iteration 480 (2.43937 iter/s, 4.9193s/12 iters), loss = 5.02561 +I0408 14:50:09.706099 20259 solver.cpp:237] Train net output #0: loss = 5.02561 (* 1 = 5.02561 loss) +I0408 14:50:09.706111 20259 sgd_solver.cpp:105] Iteration 480, lr = 0.00609075 +I0408 14:50:14.616655 20259 solver.cpp:218] Iteration 492 (2.4438 iter/s, 4.91038s/12 iters), loss = 5.07615 +I0408 14:50:14.616698 20259 solver.cpp:237] Train net output #0: loss = 5.07615 (* 1 = 5.07615 loss) +I0408 14:50:14.616708 20259 sgd_solver.cpp:105] Iteration 492, lr = 0.00601572 +I0408 14:50:19.531373 20259 solver.cpp:218] Iteration 504 (2.44175 iter/s, 4.9145s/12 iters), loss = 5.09617 +I0408 14:50:19.531486 20259 solver.cpp:237] Train net output #0: loss = 5.09617 (* 1 = 5.09617 loss) +I0408 14:50:19.531497 20259 sgd_solver.cpp:105] Iteration 504, lr = 0.00594161 +I0408 14:50:19.778280 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:50:21.526355 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 14:50:25.533151 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 14:50:31.876058 20259 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 14:50:31.876091 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:50:36.098526 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:50:36.335665 20259 solver.cpp:397] Test net output #0: accuracy = 0.0153186 +I0408 14:50:36.335711 20259 solver.cpp:397] Test net output #1: loss = 5.04479 (* 1 = 5.04479 loss) +I0408 14:50:38.317932 20259 solver.cpp:218] Iteration 516 (0.63878 iter/s, 18.7858s/12 iters), loss = 4.97861 +I0408 14:50:38.317994 20259 solver.cpp:237] Train net output #0: loss = 4.97861 (* 1 = 4.97861 loss) +I0408 14:50:38.318007 20259 sgd_solver.cpp:105] Iteration 516, lr = 0.00586842 +I0408 14:50:43.357089 20259 solver.cpp:218] Iteration 528 (2.38146 iter/s, 5.03892s/12 iters), loss = 5.07809 +I0408 14:50:43.357126 20259 solver.cpp:237] Train net output #0: loss = 5.07809 (* 1 = 5.07809 loss) +I0408 14:50:43.357136 20259 sgd_solver.cpp:105] Iteration 528, lr = 0.00579613 +I0408 14:50:48.371644 20259 solver.cpp:218] Iteration 540 (2.39314 iter/s, 5.01434s/12 iters), loss = 4.98648 +I0408 14:50:48.371687 20259 solver.cpp:237] Train net output #0: loss = 4.98648 (* 1 = 4.98648 loss) +I0408 14:50:48.371698 20259 sgd_solver.cpp:105] Iteration 540, lr = 0.00572473 +I0408 14:50:53.378374 20259 solver.cpp:218] Iteration 552 (2.39688 iter/s, 5.00651s/12 iters), loss = 5.09692 +I0408 14:50:53.378520 20259 solver.cpp:237] Train net output #0: loss = 5.09692 (* 1 = 5.09692 loss) +I0408 14:50:53.378533 20259 sgd_solver.cpp:105] Iteration 552, lr = 0.0056542 +I0408 14:50:58.366642 20259 solver.cpp:218] Iteration 564 (2.4058 iter/s, 4.98795s/12 iters), loss = 5.02079 +I0408 14:50:58.366688 20259 solver.cpp:237] Train net output #0: loss = 5.02079 (* 1 = 5.02079 loss) +I0408 14:50:58.366699 20259 sgd_solver.cpp:105] Iteration 564, lr = 0.00558455 +I0408 14:51:03.244710 20259 solver.cpp:218] Iteration 576 (2.4601 iter/s, 4.87785s/12 iters), loss = 5.05422 +I0408 14:51:03.244765 20259 solver.cpp:237] Train net output #0: loss = 5.05422 (* 1 = 5.05422 loss) +I0408 14:51:03.244781 20259 sgd_solver.cpp:105] Iteration 576, lr = 0.00551576 +I0408 14:51:08.177812 20259 solver.cpp:218] Iteration 588 (2.43266 iter/s, 4.93287s/12 iters), loss = 4.95669 +I0408 14:51:08.177856 20259 solver.cpp:237] Train net output #0: loss = 4.95669 (* 1 = 4.95669 loss) +I0408 14:51:08.177868 20259 sgd_solver.cpp:105] Iteration 588, lr = 0.00544781 +I0408 14:51:13.141171 20259 solver.cpp:218] Iteration 600 (2.41782 iter/s, 4.96314s/12 iters), loss = 5.01581 +I0408 14:51:13.141216 20259 solver.cpp:237] Train net output #0: loss = 5.01581 (* 1 = 5.01581 loss) +I0408 14:51:13.141228 20259 sgd_solver.cpp:105] Iteration 600, lr = 0.0053807 +I0408 14:51:15.475916 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:51:17.651005 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 14:51:21.627491 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 14:51:23.966048 20259 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 14:51:23.978013 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:51:28.173923 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:51:28.458940 20259 solver.cpp:397] Test net output #0: accuracy = 0.0220588 +I0408 14:51:28.458988 20259 solver.cpp:397] Test net output #1: loss = 4.9928 (* 1 = 4.9928 loss) +I0408 14:51:28.548820 20259 solver.cpp:218] Iteration 612 (0.778862 iter/s, 15.4071s/12 iters), loss = 4.98769 +I0408 14:51:28.548868 20259 solver.cpp:237] Train net output #0: loss = 4.98769 (* 1 = 4.98769 loss) +I0408 14:51:28.548879 20259 sgd_solver.cpp:105] Iteration 612, lr = 0.00531441 +I0408 14:51:33.083442 20259 solver.cpp:218] Iteration 624 (2.64643 iter/s, 4.53441s/12 iters), loss = 4.97859 +I0408 14:51:33.083498 20259 solver.cpp:237] Train net output #0: loss = 4.97859 (* 1 = 4.97859 loss) +I0408 14:51:33.083511 20259 sgd_solver.cpp:105] Iteration 624, lr = 0.00524895 +I0408 14:51:37.916819 20259 solver.cpp:218] Iteration 636 (2.48285 iter/s, 4.83315s/12 iters), loss = 4.86867 +I0408 14:51:37.916872 20259 solver.cpp:237] Train net output #0: loss = 4.86867 (* 1 = 4.86867 loss) +I0408 14:51:37.916884 20259 sgd_solver.cpp:105] Iteration 636, lr = 0.00518428 +I0408 14:51:42.754170 20259 solver.cpp:218] Iteration 648 (2.48081 iter/s, 4.83713s/12 iters), loss = 5.01166 +I0408 14:51:42.754221 20259 solver.cpp:237] Train net output #0: loss = 5.01166 (* 1 = 5.01166 loss) +I0408 14:51:42.754235 20259 sgd_solver.cpp:105] Iteration 648, lr = 0.00512042 +I0408 14:51:47.698848 20259 solver.cpp:218] Iteration 660 (2.42696 iter/s, 4.94445s/12 iters), loss = 4.97954 +I0408 14:51:47.698899 20259 solver.cpp:237] Train net output #0: loss = 4.97954 (* 1 = 4.97954 loss) +I0408 14:51:47.698911 20259 sgd_solver.cpp:105] Iteration 660, lr = 0.00505734 +I0408 14:51:52.695917 20259 solver.cpp:218] Iteration 672 (2.40151 iter/s, 4.99685s/12 iters), loss = 4.9197 +I0408 14:51:52.695969 20259 solver.cpp:237] Train net output #0: loss = 4.9197 (* 1 = 4.9197 loss) +I0408 14:51:52.695982 20259 sgd_solver.cpp:105] Iteration 672, lr = 0.00499504 +I0408 14:51:57.716172 20259 solver.cpp:218] Iteration 684 (2.39042 iter/s, 5.02003s/12 iters), loss = 4.76272 +I0408 14:51:57.716351 20259 solver.cpp:237] Train net output #0: loss = 4.76272 (* 1 = 4.76272 loss) +I0408 14:51:57.716363 20259 sgd_solver.cpp:105] Iteration 684, lr = 0.00493351 +I0408 14:51:58.506124 20259 blocking_queue.cpp:49] Waiting for data +I0408 14:52:02.752746 20259 solver.cpp:218] Iteration 696 (2.38274 iter/s, 5.03623s/12 iters), loss = 4.87868 +I0408 14:52:02.752795 20259 solver.cpp:237] Train net output #0: loss = 4.87868 (* 1 = 4.87868 loss) +I0408 14:52:02.752807 20259 sgd_solver.cpp:105] Iteration 696, lr = 0.00487273 +I0408 14:52:07.624541 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:52:08.004549 20259 solver.cpp:218] Iteration 708 (2.28503 iter/s, 5.25158s/12 iters), loss = 5.01809 +I0408 14:52:08.004592 20259 solver.cpp:237] Train net output #0: loss = 5.01809 (* 1 = 5.01809 loss) +I0408 14:52:08.004604 20259 sgd_solver.cpp:105] Iteration 708, lr = 0.00481271 +I0408 14:52:10.027484 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 14:52:13.801863 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 14:52:18.746202 20259 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 14:52:18.746232 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:52:22.881793 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:52:23.201166 20259 solver.cpp:397] Test net output #0: accuracy = 0.0238971 +I0408 14:52:23.201210 20259 solver.cpp:397] Test net output #1: loss = 4.93314 (* 1 = 4.93314 loss) +I0408 14:52:25.138638 20259 solver.cpp:218] Iteration 720 (0.700382 iter/s, 17.1335s/12 iters), loss = 5.04021 +I0408 14:52:25.138675 20259 solver.cpp:237] Train net output #0: loss = 5.04021 (* 1 = 5.04021 loss) +I0408 14:52:25.138684 20259 sgd_solver.cpp:105] Iteration 720, lr = 0.00475342 +I0408 14:52:30.354228 20259 solver.cpp:218] Iteration 732 (2.30089 iter/s, 5.21537s/12 iters), loss = 4.84507 +I0408 14:52:30.354348 20259 solver.cpp:237] Train net output #0: loss = 4.84507 (* 1 = 4.84507 loss) +I0408 14:52:30.354362 20259 sgd_solver.cpp:105] Iteration 732, lr = 0.00469486 +I0408 14:52:35.349754 20259 solver.cpp:218] Iteration 744 (2.40229 iter/s, 4.99524s/12 iters), loss = 4.89179 +I0408 14:52:35.349799 20259 solver.cpp:237] Train net output #0: loss = 4.89179 (* 1 = 4.89179 loss) +I0408 14:52:35.349812 20259 sgd_solver.cpp:105] Iteration 744, lr = 0.00463703 +I0408 14:52:40.220284 20259 solver.cpp:218] Iteration 756 (2.4639 iter/s, 4.87032s/12 iters), loss = 4.91901 +I0408 14:52:40.220329 20259 solver.cpp:237] Train net output #0: loss = 4.91901 (* 1 = 4.91901 loss) +I0408 14:52:40.220341 20259 sgd_solver.cpp:105] Iteration 756, lr = 0.00457991 +I0408 14:52:45.266108 20259 solver.cpp:218] Iteration 768 (2.3783 iter/s, 5.04561s/12 iters), loss = 4.96434 +I0408 14:52:45.266145 20259 solver.cpp:237] Train net output #0: loss = 4.96434 (* 1 = 4.96434 loss) +I0408 14:52:45.266155 20259 sgd_solver.cpp:105] Iteration 768, lr = 0.00452349 +I0408 14:52:50.306257 20259 solver.cpp:218] Iteration 780 (2.38098 iter/s, 5.03994s/12 iters), loss = 4.93236 +I0408 14:52:50.306301 20259 solver.cpp:237] Train net output #0: loss = 4.93236 (* 1 = 4.93236 loss) +I0408 14:52:50.306313 20259 sgd_solver.cpp:105] Iteration 780, lr = 0.00446776 +I0408 14:52:55.314046 20259 solver.cpp:218] Iteration 792 (2.39637 iter/s, 5.00758s/12 iters), loss = 4.79754 +I0408 14:52:55.314082 20259 solver.cpp:237] Train net output #0: loss = 4.79754 (* 1 = 4.79754 loss) +I0408 14:52:55.314090 20259 sgd_solver.cpp:105] Iteration 792, lr = 0.00441272 +I0408 14:53:00.353242 20259 solver.cpp:218] Iteration 804 (2.38143 iter/s, 5.03899s/12 iters), loss = 4.82594 +I0408 14:53:00.353291 20259 solver.cpp:237] Train net output #0: loss = 4.82594 (* 1 = 4.82594 loss) +I0408 14:53:00.353302 20259 sgd_solver.cpp:105] Iteration 804, lr = 0.00435837 +I0408 14:53:02.110496 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:53:04.895567 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 14:53:07.937889 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 14:53:11.993562 20259 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 14:53:11.993594 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:53:16.110302 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:53:16.464704 20259 solver.cpp:397] Test net output #0: accuracy = 0.0281863 +I0408 14:53:16.464749 20259 solver.cpp:397] Test net output #1: loss = 4.85983 (* 1 = 4.85983 loss) +I0408 14:53:16.554633 20259 solver.cpp:218] Iteration 816 (0.740703 iter/s, 16.2008s/12 iters), loss = 4.96504 +I0408 14:53:16.554673 20259 solver.cpp:237] Train net output #0: loss = 4.96504 (* 1 = 4.96504 loss) +I0408 14:53:16.554684 20259 sgd_solver.cpp:105] Iteration 816, lr = 0.00430467 +I0408 14:53:20.906251 20259 solver.cpp:218] Iteration 828 (2.75771 iter/s, 4.35143s/12 iters), loss = 4.98639 +I0408 14:53:20.906297 20259 solver.cpp:237] Train net output #0: loss = 4.98639 (* 1 = 4.98639 loss) +I0408 14:53:20.906309 20259 sgd_solver.cpp:105] Iteration 828, lr = 0.00425165 +I0408 14:53:25.955724 20259 solver.cpp:218] Iteration 840 (2.37659 iter/s, 5.04926s/12 iters), loss = 4.71712 +I0408 14:53:25.955768 20259 solver.cpp:237] Train net output #0: loss = 4.71712 (* 1 = 4.71712 loss) +I0408 14:53:25.955781 20259 sgd_solver.cpp:105] Iteration 840, lr = 0.00419927 +I0408 14:53:30.948654 20259 solver.cpp:218] Iteration 852 (2.4035 iter/s, 4.99272s/12 iters), loss = 4.81102 +I0408 14:53:30.948701 20259 solver.cpp:237] Train net output #0: loss = 4.81102 (* 1 = 4.81102 loss) +I0408 14:53:30.948712 20259 sgd_solver.cpp:105] Iteration 852, lr = 0.00414754 +I0408 14:53:35.893749 20259 solver.cpp:218] Iteration 864 (2.42675 iter/s, 4.94489s/12 iters), loss = 4.78357 +I0408 14:53:35.893888 20259 solver.cpp:237] Train net output #0: loss = 4.78357 (* 1 = 4.78357 loss) +I0408 14:53:35.893903 20259 sgd_solver.cpp:105] Iteration 864, lr = 0.00409645 +I0408 14:53:40.867331 20259 solver.cpp:218] Iteration 876 (2.41289 iter/s, 4.97328s/12 iters), loss = 4.80087 +I0408 14:53:40.867373 20259 solver.cpp:237] Train net output #0: loss = 4.80087 (* 1 = 4.80087 loss) +I0408 14:53:40.867385 20259 sgd_solver.cpp:105] Iteration 876, lr = 0.00404598 +I0408 14:53:45.900060 20259 solver.cpp:218] Iteration 888 (2.38449 iter/s, 5.03252s/12 iters), loss = 4.679 +I0408 14:53:45.900101 20259 solver.cpp:237] Train net output #0: loss = 4.679 (* 1 = 4.679 loss) +I0408 14:53:45.900112 20259 sgd_solver.cpp:105] Iteration 888, lr = 0.00399614 +I0408 14:53:50.852123 20259 solver.cpp:218] Iteration 900 (2.42333 iter/s, 4.95186s/12 iters), loss = 4.77892 +I0408 14:53:50.852169 20259 solver.cpp:237] Train net output #0: loss = 4.77892 (* 1 = 4.77892 loss) +I0408 14:53:50.852180 20259 sgd_solver.cpp:105] Iteration 900, lr = 0.00394691 +I0408 14:53:54.679949 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:53:55.808115 20259 solver.cpp:218] Iteration 912 (2.42141 iter/s, 4.95578s/12 iters), loss = 4.58803 +I0408 14:53:55.808161 20259 solver.cpp:237] Train net output #0: loss = 4.58803 (* 1 = 4.58803 loss) +I0408 14:53:55.808173 20259 sgd_solver.cpp:105] Iteration 912, lr = 0.00389829 +I0408 14:53:57.812981 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 14:54:00.871989 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 14:54:03.200280 20259 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 14:54:03.200310 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:54:07.264240 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:54:07.664389 20259 solver.cpp:397] Test net output #0: accuracy = 0.0324755 +I0408 14:54:07.664436 20259 solver.cpp:397] Test net output #1: loss = 4.81937 (* 1 = 4.81937 loss) +I0408 14:54:09.642400 20259 solver.cpp:218] Iteration 924 (0.86744 iter/s, 13.8338s/12 iters), loss = 4.86334 +I0408 14:54:09.642442 20259 solver.cpp:237] Train net output #0: loss = 4.86334 (* 1 = 4.86334 loss) +I0408 14:54:09.642453 20259 sgd_solver.cpp:105] Iteration 924, lr = 0.00385027 +I0408 14:54:14.728230 20259 solver.cpp:218] Iteration 936 (2.35959 iter/s, 5.08562s/12 iters), loss = 4.88821 +I0408 14:54:14.728276 20259 solver.cpp:237] Train net output #0: loss = 4.88821 (* 1 = 4.88821 loss) +I0408 14:54:14.728286 20259 sgd_solver.cpp:105] Iteration 936, lr = 0.00380284 +I0408 14:54:19.724958 20259 solver.cpp:218] Iteration 948 (2.40167 iter/s, 4.99652s/12 iters), loss = 4.75039 +I0408 14:54:19.725003 20259 solver.cpp:237] Train net output #0: loss = 4.75039 (* 1 = 4.75039 loss) +I0408 14:54:19.725014 20259 sgd_solver.cpp:105] Iteration 948, lr = 0.00375599 +I0408 14:54:24.707556 20259 solver.cpp:218] Iteration 960 (2.40848 iter/s, 4.98239s/12 iters), loss = 4.61873 +I0408 14:54:24.707599 20259 solver.cpp:237] Train net output #0: loss = 4.61873 (* 1 = 4.61873 loss) +I0408 14:54:24.707612 20259 sgd_solver.cpp:105] Iteration 960, lr = 0.00370972 +I0408 14:54:29.697299 20259 solver.cpp:218] Iteration 972 (2.40503 iter/s, 4.98954s/12 iters), loss = 4.63679 +I0408 14:54:29.697341 20259 solver.cpp:237] Train net output #0: loss = 4.63679 (* 1 = 4.63679 loss) +I0408 14:54:29.697353 20259 sgd_solver.cpp:105] Iteration 972, lr = 0.00366402 +I0408 14:54:34.694308 20259 solver.cpp:218] Iteration 984 (2.40154 iter/s, 4.9968s/12 iters), loss = 4.76533 +I0408 14:54:34.694350 20259 solver.cpp:237] Train net output #0: loss = 4.76533 (* 1 = 4.76533 loss) +I0408 14:54:34.694360 20259 sgd_solver.cpp:105] Iteration 984, lr = 0.00361889 +I0408 14:54:39.695447 20259 solver.cpp:218] Iteration 996 (2.39955 iter/s, 5.00093s/12 iters), loss = 4.60976 +I0408 14:54:39.695561 20259 solver.cpp:237] Train net output #0: loss = 4.60976 (* 1 = 4.60976 loss) +I0408 14:54:39.695574 20259 sgd_solver.cpp:105] Iteration 996, lr = 0.00357431 +I0408 14:54:44.638973 20259 solver.cpp:218] Iteration 1008 (2.42755 iter/s, 4.94325s/12 iters), loss = 4.68857 +I0408 14:54:44.639014 20259 solver.cpp:237] Train net output #0: loss = 4.68857 (* 1 = 4.68857 loss) +I0408 14:54:44.639025 20259 sgd_solver.cpp:105] Iteration 1008, lr = 0.00353028 +I0408 14:54:45.662845 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:54:49.128005 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 14:54:53.645987 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 14:54:55.973137 20259 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 14:54:55.973168 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:55:00.001734 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:55:00.432750 20259 solver.cpp:397] Test net output #0: accuracy = 0.0453431 +I0408 14:55:00.432796 20259 solver.cpp:397] Test net output #1: loss = 4.74213 (* 1 = 4.74213 loss) +I0408 14:55:00.523059 20259 solver.cpp:218] Iteration 1020 (0.755499 iter/s, 15.8836s/12 iters), loss = 4.56774 +I0408 14:55:00.523103 20259 solver.cpp:237] Train net output #0: loss = 4.56774 (* 1 = 4.56774 loss) +I0408 14:55:00.523114 20259 sgd_solver.cpp:105] Iteration 1020, lr = 0.00348679 +I0408 14:55:04.836122 20259 solver.cpp:218] Iteration 1032 (2.78237 iter/s, 4.31287s/12 iters), loss = 4.67081 +I0408 14:55:04.836165 20259 solver.cpp:237] Train net output #0: loss = 4.67081 (* 1 = 4.67081 loss) +I0408 14:55:04.836179 20259 sgd_solver.cpp:105] Iteration 1032, lr = 0.00344383 +I0408 14:55:09.818311 20259 solver.cpp:218] Iteration 1044 (2.40868 iter/s, 4.98199s/12 iters), loss = 4.73981 +I0408 14:55:09.818472 20259 solver.cpp:237] Train net output #0: loss = 4.73981 (* 1 = 4.73981 loss) +I0408 14:55:09.818486 20259 sgd_solver.cpp:105] Iteration 1044, lr = 0.00340141 +I0408 14:55:14.778717 20259 solver.cpp:218] Iteration 1056 (2.41931 iter/s, 4.96009s/12 iters), loss = 4.64103 +I0408 14:55:14.778750 20259 solver.cpp:237] Train net output #0: loss = 4.64103 (* 1 = 4.64103 loss) +I0408 14:55:14.778760 20259 sgd_solver.cpp:105] Iteration 1056, lr = 0.00335951 +I0408 14:55:19.719900 20259 solver.cpp:218] Iteration 1068 (2.42866 iter/s, 4.94099s/12 iters), loss = 4.5993 +I0408 14:55:19.719944 20259 solver.cpp:237] Train net output #0: loss = 4.5993 (* 1 = 4.5993 loss) +I0408 14:55:19.719954 20259 sgd_solver.cpp:105] Iteration 1068, lr = 0.00331812 +I0408 14:55:24.731392 20259 solver.cpp:218] Iteration 1080 (2.3946 iter/s, 5.01128s/12 iters), loss = 4.65952 +I0408 14:55:24.731438 20259 solver.cpp:237] Train net output #0: loss = 4.65952 (* 1 = 4.65952 loss) +I0408 14:55:24.731451 20259 sgd_solver.cpp:105] Iteration 1080, lr = 0.00327725 +I0408 14:55:29.984321 20259 solver.cpp:218] Iteration 1092 (2.28453 iter/s, 5.25272s/12 iters), loss = 4.57057 +I0408 14:55:29.984361 20259 solver.cpp:237] Train net output #0: loss = 4.57057 (* 1 = 4.57057 loss) +I0408 14:55:29.984371 20259 sgd_solver.cpp:105] Iteration 1092, lr = 0.00323688 +I0408 14:55:35.035138 20259 solver.cpp:218] Iteration 1104 (2.37595 iter/s, 5.05061s/12 iters), loss = 4.61173 +I0408 14:55:35.035187 20259 solver.cpp:237] Train net output #0: loss = 4.61173 (* 1 = 4.61173 loss) +I0408 14:55:35.035216 20259 sgd_solver.cpp:105] Iteration 1104, lr = 0.003197 +I0408 14:55:38.128706 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:55:39.910792 20259 solver.cpp:218] Iteration 1116 (2.46131 iter/s, 4.87545s/12 iters), loss = 4.69021 +I0408 14:55:39.910900 20259 solver.cpp:237] Train net output #0: loss = 4.69021 (* 1 = 4.69021 loss) +I0408 14:55:39.910912 20259 sgd_solver.cpp:105] Iteration 1116, lr = 0.00315762 +I0408 14:55:41.956830 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 14:55:45.740370 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 14:55:50.424049 20259 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 14:55:50.424080 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:55:54.407809 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:55:54.883621 20259 solver.cpp:397] Test net output #0: accuracy = 0.060049 +I0408 14:55:54.883666 20259 solver.cpp:397] Test net output #1: loss = 4.59751 (* 1 = 4.59751 loss) +I0408 14:55:56.860944 20259 solver.cpp:218] Iteration 1128 (0.707985 iter/s, 16.9495s/12 iters), loss = 4.58863 +I0408 14:55:56.860993 20259 solver.cpp:237] Train net output #0: loss = 4.58863 (* 1 = 4.58863 loss) +I0408 14:55:56.861006 20259 sgd_solver.cpp:105] Iteration 1128, lr = 0.00311872 +I0408 14:56:02.082231 20259 solver.cpp:218] Iteration 1140 (2.29838 iter/s, 5.22107s/12 iters), loss = 4.52637 +I0408 14:56:02.082283 20259 solver.cpp:237] Train net output #0: loss = 4.52637 (* 1 = 4.52637 loss) +I0408 14:56:02.082296 20259 sgd_solver.cpp:105] Iteration 1140, lr = 0.0030803 +I0408 14:56:07.367709 20259 solver.cpp:218] Iteration 1152 (2.27047 iter/s, 5.28525s/12 iters), loss = 4.52727 +I0408 14:56:07.367758 20259 solver.cpp:237] Train net output #0: loss = 4.52727 (* 1 = 4.52727 loss) +I0408 14:56:07.367770 20259 sgd_solver.cpp:105] Iteration 1152, lr = 0.00304236 +I0408 14:56:12.419061 20259 solver.cpp:218] Iteration 1164 (2.3757 iter/s, 5.05114s/12 iters), loss = 4.53004 +I0408 14:56:12.419185 20259 solver.cpp:237] Train net output #0: loss = 4.53004 (* 1 = 4.53004 loss) +I0408 14:56:12.419198 20259 sgd_solver.cpp:105] Iteration 1164, lr = 0.00300488 +I0408 14:56:17.267153 20259 solver.cpp:218] Iteration 1176 (2.47535 iter/s, 4.84781s/12 iters), loss = 4.48682 +I0408 14:56:17.267189 20259 solver.cpp:237] Train net output #0: loss = 4.48682 (* 1 = 4.48682 loss) +I0408 14:56:17.267200 20259 sgd_solver.cpp:105] Iteration 1176, lr = 0.00296786 +I0408 14:56:22.233000 20259 solver.cpp:218] Iteration 1188 (2.4166 iter/s, 4.96565s/12 iters), loss = 4.45211 +I0408 14:56:22.233048 20259 solver.cpp:237] Train net output #0: loss = 4.45211 (* 1 = 4.45211 loss) +I0408 14:56:22.233062 20259 sgd_solver.cpp:105] Iteration 1188, lr = 0.0029313 +I0408 14:56:27.202828 20259 solver.cpp:218] Iteration 1200 (2.41467 iter/s, 4.96962s/12 iters), loss = 4.45402 +I0408 14:56:27.202873 20259 solver.cpp:237] Train net output #0: loss = 4.45402 (* 1 = 4.45402 loss) +I0408 14:56:27.202885 20259 sgd_solver.cpp:105] Iteration 1200, lr = 0.00289519 +I0408 14:56:32.210443 20259 solver.cpp:218] Iteration 1212 (2.39645 iter/s, 5.00741s/12 iters), loss = 4.56788 +I0408 14:56:32.210489 20259 solver.cpp:237] Train net output #0: loss = 4.56788 (* 1 = 4.56788 loss) +I0408 14:56:32.210500 20259 sgd_solver.cpp:105] Iteration 1212, lr = 0.00285952 +I0408 14:56:32.487967 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:56:36.687804 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 14:56:40.524717 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 14:56:44.266259 20259 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 14:56:44.266366 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:56:48.216919 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:56:48.727881 20259 solver.cpp:397] Test net output #0: accuracy = 0.067402 +I0408 14:56:48.727923 20259 solver.cpp:397] Test net output #1: loss = 4.57227 (* 1 = 4.57227 loss) +I0408 14:56:48.815940 20259 solver.cpp:218] Iteration 1224 (0.722676 iter/s, 16.6049s/12 iters), loss = 4.44153 +I0408 14:56:48.815977 20259 solver.cpp:237] Train net output #0: loss = 4.44153 (* 1 = 4.44153 loss) +I0408 14:56:48.815987 20259 sgd_solver.cpp:105] Iteration 1224, lr = 0.0028243 +I0408 14:56:53.364292 20259 solver.cpp:218] Iteration 1236 (2.63842 iter/s, 4.54817s/12 iters), loss = 4.61885 +I0408 14:56:53.364331 20259 solver.cpp:237] Train net output #0: loss = 4.61885 (* 1 = 4.61885 loss) +I0408 14:56:53.364341 20259 sgd_solver.cpp:105] Iteration 1236, lr = 0.00278951 +I0408 14:56:58.359423 20259 solver.cpp:218] Iteration 1248 (2.40244 iter/s, 4.99493s/12 iters), loss = 4.42973 +I0408 14:56:58.359458 20259 solver.cpp:237] Train net output #0: loss = 4.42973 (* 1 = 4.42973 loss) +I0408 14:56:58.359467 20259 sgd_solver.cpp:105] Iteration 1248, lr = 0.00275514 +I0408 14:57:03.348683 20259 solver.cpp:218] Iteration 1260 (2.40526 iter/s, 4.98906s/12 iters), loss = 4.57651 +I0408 14:57:03.348726 20259 solver.cpp:237] Train net output #0: loss = 4.57651 (* 1 = 4.57651 loss) +I0408 14:57:03.348737 20259 sgd_solver.cpp:105] Iteration 1260, lr = 0.0027212 +I0408 14:57:08.353936 20259 solver.cpp:218] Iteration 1272 (2.39758 iter/s, 5.00505s/12 iters), loss = 4.38664 +I0408 14:57:08.353982 20259 solver.cpp:237] Train net output #0: loss = 4.38664 (* 1 = 4.38664 loss) +I0408 14:57:08.353992 20259 sgd_solver.cpp:105] Iteration 1272, lr = 0.00268768 +I0408 14:57:13.408617 20259 solver.cpp:218] Iteration 1284 (2.37414 iter/s, 5.05447s/12 iters), loss = 4.49111 +I0408 14:57:13.408663 20259 solver.cpp:237] Train net output #0: loss = 4.49111 (* 1 = 4.49111 loss) +I0408 14:57:13.408674 20259 sgd_solver.cpp:105] Iteration 1284, lr = 0.00265457 +I0408 14:57:18.378923 20259 solver.cpp:218] Iteration 1296 (2.41444 iter/s, 4.9701s/12 iters), loss = 4.21013 +I0408 14:57:18.379076 20259 solver.cpp:237] Train net output #0: loss = 4.21013 (* 1 = 4.21013 loss) +I0408 14:57:18.379091 20259 sgd_solver.cpp:105] Iteration 1296, lr = 0.00262187 +I0408 14:57:23.447566 20259 solver.cpp:218] Iteration 1308 (2.36764 iter/s, 5.06833s/12 iters), loss = 4.313 +I0408 14:57:23.447608 20259 solver.cpp:237] Train net output #0: loss = 4.313 (* 1 = 4.313 loss) +I0408 14:57:23.447620 20259 sgd_solver.cpp:105] Iteration 1308, lr = 0.00258957 +I0408 14:57:25.935195 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:57:28.433252 20259 solver.cpp:218] Iteration 1320 (2.40699 iter/s, 4.98548s/12 iters), loss = 4.3768 +I0408 14:57:28.433297 20259 solver.cpp:237] Train net output #0: loss = 4.3768 (* 1 = 4.3768 loss) +I0408 14:57:28.433307 20259 sgd_solver.cpp:105] Iteration 1320, lr = 0.00255767 +I0408 14:57:30.481164 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 14:57:35.526753 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 14:57:38.655412 20259 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 14:57:38.655444 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:57:42.554298 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:57:43.110558 20259 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0408 14:57:43.110605 20259 solver.cpp:397] Test net output #1: loss = 4.4676 (* 1 = 4.4676 loss) +I0408 14:57:45.116750 20259 solver.cpp:218] Iteration 1332 (0.719298 iter/s, 16.6829s/12 iters), loss = 4.22474 +I0408 14:57:45.116799 20259 solver.cpp:237] Train net output #0: loss = 4.22474 (* 1 = 4.22474 loss) +I0408 14:57:45.116812 20259 sgd_solver.cpp:105] Iteration 1332, lr = 0.00252616 +I0408 14:57:50.132125 20259 solver.cpp:218] Iteration 1344 (2.39274 iter/s, 5.01516s/12 iters), loss = 4.36031 +I0408 14:57:50.132418 20259 solver.cpp:237] Train net output #0: loss = 4.36031 (* 1 = 4.36031 loss) +I0408 14:57:50.132432 20259 sgd_solver.cpp:105] Iteration 1344, lr = 0.00249504 +I0408 14:57:55.162997 20259 solver.cpp:218] Iteration 1356 (2.38549 iter/s, 5.03042s/12 iters), loss = 4.47911 +I0408 14:57:55.163040 20259 solver.cpp:237] Train net output #0: loss = 4.47911 (* 1 = 4.47911 loss) +I0408 14:57:55.163051 20259 sgd_solver.cpp:105] Iteration 1356, lr = 0.00246431 +I0408 14:58:00.160660 20259 solver.cpp:218] Iteration 1368 (2.40122 iter/s, 4.99746s/12 iters), loss = 4.29936 +I0408 14:58:00.160694 20259 solver.cpp:237] Train net output #0: loss = 4.29936 (* 1 = 4.29936 loss) +I0408 14:58:00.160702 20259 sgd_solver.cpp:105] Iteration 1368, lr = 0.00243395 +I0408 14:58:01.370779 20259 blocking_queue.cpp:49] Waiting for data +I0408 14:58:05.182054 20259 solver.cpp:218] Iteration 1380 (2.38987 iter/s, 5.0212s/12 iters), loss = 4.04368 +I0408 14:58:05.182087 20259 solver.cpp:237] Train net output #0: loss = 4.04368 (* 1 = 4.04368 loss) +I0408 14:58:05.182096 20259 sgd_solver.cpp:105] Iteration 1380, lr = 0.00240397 +I0408 14:58:10.146550 20259 solver.cpp:218] Iteration 1392 (2.41726 iter/s, 4.9643s/12 iters), loss = 4.21301 +I0408 14:58:10.146595 20259 solver.cpp:237] Train net output #0: loss = 4.21301 (* 1 = 4.21301 loss) +I0408 14:58:10.146605 20259 sgd_solver.cpp:105] Iteration 1392, lr = 0.00237435 +I0408 14:58:15.131083 20259 solver.cpp:218] Iteration 1404 (2.40755 iter/s, 4.98433s/12 iters), loss = 4.25075 +I0408 14:58:15.131126 20259 solver.cpp:237] Train net output #0: loss = 4.25075 (* 1 = 4.25075 loss) +I0408 14:58:15.131139 20259 sgd_solver.cpp:105] Iteration 1404, lr = 0.0023451 +I0408 14:58:19.800173 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:58:20.147349 20259 solver.cpp:218] Iteration 1416 (2.39232 iter/s, 5.01606s/12 iters), loss = 4.11788 +I0408 14:58:20.147521 20259 solver.cpp:237] Train net output #0: loss = 4.11788 (* 1 = 4.11788 loss) +I0408 14:58:20.147534 20259 sgd_solver.cpp:105] Iteration 1416, lr = 0.00231622 +I0408 14:58:24.702978 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 14:58:27.973378 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 14:58:32.019125 20259 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 14:58:32.019150 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:58:35.860916 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:58:36.450994 20259 solver.cpp:397] Test net output #0: accuracy = 0.0870098 +I0408 14:58:36.451038 20259 solver.cpp:397] Test net output #1: loss = 4.34982 (* 1 = 4.34982 loss) +I0408 14:58:36.538753 20259 solver.cpp:218] Iteration 1428 (0.732121 iter/s, 16.3907s/12 iters), loss = 4.34149 +I0408 14:58:36.538791 20259 solver.cpp:237] Train net output #0: loss = 4.34149 (* 1 = 4.34149 loss) +I0408 14:58:36.538802 20259 sgd_solver.cpp:105] Iteration 1428, lr = 0.00228768 +I0408 14:58:40.692587 20259 solver.cpp:218] Iteration 1440 (2.88902 iter/s, 4.15366s/12 iters), loss = 4.18426 +I0408 14:58:40.692628 20259 solver.cpp:237] Train net output #0: loss = 4.18426 (* 1 = 4.18426 loss) +I0408 14:58:40.692639 20259 sgd_solver.cpp:105] Iteration 1440, lr = 0.0022595 +I0408 14:58:45.720813 20259 solver.cpp:218] Iteration 1452 (2.38662 iter/s, 5.02802s/12 iters), loss = 4.11828 +I0408 14:58:45.720854 20259 solver.cpp:237] Train net output #0: loss = 4.11828 (* 1 = 4.11828 loss) +I0408 14:58:45.720865 20259 sgd_solver.cpp:105] Iteration 1452, lr = 0.00223167 +I0408 14:58:50.698709 20259 solver.cpp:218] Iteration 1464 (2.41075 iter/s, 4.97769s/12 iters), loss = 4.14569 +I0408 14:58:50.698820 20259 solver.cpp:237] Train net output #0: loss = 4.14569 (* 1 = 4.14569 loss) +I0408 14:58:50.698832 20259 sgd_solver.cpp:105] Iteration 1464, lr = 0.00220417 +I0408 14:58:55.660012 20259 solver.cpp:218] Iteration 1476 (2.41885 iter/s, 4.96103s/12 iters), loss = 4.3568 +I0408 14:58:55.660044 20259 solver.cpp:237] Train net output #0: loss = 4.3568 (* 1 = 4.3568 loss) +I0408 14:58:55.660053 20259 sgd_solver.cpp:105] Iteration 1476, lr = 0.00217702 +I0408 14:59:00.622750 20259 solver.cpp:218] Iteration 1488 (2.41811 iter/s, 4.96255s/12 iters), loss = 4.21057 +I0408 14:59:00.622794 20259 solver.cpp:237] Train net output #0: loss = 4.21057 (* 1 = 4.21057 loss) +I0408 14:59:00.622805 20259 sgd_solver.cpp:105] Iteration 1488, lr = 0.0021502 +I0408 14:59:05.561825 20259 solver.cpp:218] Iteration 1500 (2.4297 iter/s, 4.93887s/12 iters), loss = 3.83172 +I0408 14:59:05.561867 20259 solver.cpp:237] Train net output #0: loss = 3.83172 (* 1 = 3.83172 loss) +I0408 14:59:05.561880 20259 sgd_solver.cpp:105] Iteration 1500, lr = 0.00212372 +I0408 14:59:10.567283 20259 solver.cpp:218] Iteration 1512 (2.39748 iter/s, 5.00525s/12 iters), loss = 4.04631 +I0408 14:59:10.567327 20259 solver.cpp:237] Train net output #0: loss = 4.04631 (* 1 = 4.04631 loss) +I0408 14:59:10.567338 20259 sgd_solver.cpp:105] Iteration 1512, lr = 0.00209755 +I0408 14:59:12.362442 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:59:15.551677 20259 solver.cpp:218] Iteration 1524 (2.40761 iter/s, 4.98419s/12 iters), loss = 4.07797 +I0408 14:59:15.551719 20259 solver.cpp:237] Train net output #0: loss = 4.07797 (* 1 = 4.07797 loss) +I0408 14:59:15.551731 20259 sgd_solver.cpp:105] Iteration 1524, lr = 0.00207171 +I0408 14:59:17.596103 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 14:59:21.009210 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 14:59:25.129786 20259 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 14:59:25.129813 20259 net.cpp:676] Ignoring source layer train-data +I0408 14:59:28.953207 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 14:59:29.591075 20259 solver.cpp:397] Test net output #0: accuracy = 0.0863971 +I0408 14:59:29.591104 20259 solver.cpp:397] Test net output #1: loss = 4.35043 (* 1 = 4.35043 loss) +I0408 14:59:31.579583 20259 solver.cpp:218] Iteration 1536 (0.748719 iter/s, 16.0274s/12 iters), loss = 4.18598 +I0408 14:59:31.579629 20259 solver.cpp:237] Train net output #0: loss = 4.18598 (* 1 = 4.18598 loss) +I0408 14:59:31.579641 20259 sgd_solver.cpp:105] Iteration 1536, lr = 0.00204619 +I0408 14:59:36.724593 20259 solver.cpp:218] Iteration 1548 (2.33245 iter/s, 5.1448s/12 iters), loss = 3.65728 +I0408 14:59:36.724635 20259 solver.cpp:237] Train net output #0: loss = 3.65728 (* 1 = 3.65728 loss) +I0408 14:59:36.724647 20259 sgd_solver.cpp:105] Iteration 1548, lr = 0.00202099 +I0408 14:59:41.722734 20259 solver.cpp:218] Iteration 1560 (2.40099 iter/s, 4.99794s/12 iters), loss = 4.03168 +I0408 14:59:41.722780 20259 solver.cpp:237] Train net output #0: loss = 4.03168 (* 1 = 4.03168 loss) +I0408 14:59:41.722792 20259 sgd_solver.cpp:105] Iteration 1560, lr = 0.00199609 +I0408 14:59:46.697034 20259 solver.cpp:218] Iteration 1572 (2.4125 iter/s, 4.9741s/12 iters), loss = 4.02911 +I0408 14:59:46.697079 20259 solver.cpp:237] Train net output #0: loss = 4.02911 (* 1 = 4.02911 loss) +I0408 14:59:46.697091 20259 sgd_solver.cpp:105] Iteration 1572, lr = 0.0019715 +I0408 14:59:51.729408 20259 solver.cpp:218] Iteration 1584 (2.38466 iter/s, 5.03217s/12 iters), loss = 4.17355 +I0408 14:59:51.729532 20259 solver.cpp:237] Train net output #0: loss = 4.17355 (* 1 = 4.17355 loss) +I0408 14:59:51.729545 20259 sgd_solver.cpp:105] Iteration 1584, lr = 0.00194721 +I0408 14:59:56.775234 20259 solver.cpp:218] Iteration 1596 (2.37834 iter/s, 5.04555s/12 iters), loss = 3.98342 +I0408 14:59:56.775277 20259 solver.cpp:237] Train net output #0: loss = 3.98342 (* 1 = 3.98342 loss) +I0408 14:59:56.775288 20259 sgd_solver.cpp:105] Iteration 1596, lr = 0.00192323 +I0408 15:00:01.764425 20259 solver.cpp:218] Iteration 1608 (2.4053 iter/s, 4.98899s/12 iters), loss = 3.92634 +I0408 15:00:01.764472 20259 solver.cpp:237] Train net output #0: loss = 3.92634 (* 1 = 3.92634 loss) +I0408 15:00:01.764483 20259 sgd_solver.cpp:105] Iteration 1608, lr = 0.00189953 +I0408 15:00:05.661789 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:00:06.742993 20259 solver.cpp:218] Iteration 1620 (2.41043 iter/s, 4.97836s/12 iters), loss = 4.01644 +I0408 15:00:06.743037 20259 solver.cpp:237] Train net output #0: loss = 4.01644 (* 1 = 4.01644 loss) +I0408 15:00:06.743049 20259 sgd_solver.cpp:105] Iteration 1620, lr = 0.00187613 +I0408 15:00:11.178774 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 15:00:15.134936 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 15:00:18.390198 20259 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 15:00:18.390229 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:00:22.180678 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:00:22.850366 20259 solver.cpp:397] Test net output #0: accuracy = 0.0980392 +I0408 15:00:22.850414 20259 solver.cpp:397] Test net output #1: loss = 4.22898 (* 1 = 4.22898 loss) +I0408 15:00:22.940922 20259 solver.cpp:218] Iteration 1632 (0.74086 iter/s, 16.1974s/12 iters), loss = 3.89883 +I0408 15:00:22.940964 20259 solver.cpp:237] Train net output #0: loss = 3.89883 (* 1 = 3.89883 loss) +I0408 15:00:22.940976 20259 sgd_solver.cpp:105] Iteration 1632, lr = 0.00185302 +I0408 15:00:27.223273 20259 solver.cpp:218] Iteration 1644 (2.80232 iter/s, 4.28217s/12 iters), loss = 4.02713 +I0408 15:00:27.223307 20259 solver.cpp:237] Train net output #0: loss = 4.02713 (* 1 = 4.02713 loss) +I0408 15:00:27.223316 20259 sgd_solver.cpp:105] Iteration 1644, lr = 0.0018302 +I0408 15:00:32.169977 20259 solver.cpp:218] Iteration 1656 (2.42595 iter/s, 4.94651s/12 iters), loss = 3.94628 +I0408 15:00:32.170022 20259 solver.cpp:237] Train net output #0: loss = 3.94628 (* 1 = 3.94628 loss) +I0408 15:00:32.170033 20259 sgd_solver.cpp:105] Iteration 1656, lr = 0.00180765 +I0408 15:00:37.193637 20259 solver.cpp:218] Iteration 1668 (2.3888 iter/s, 5.02345s/12 iters), loss = 3.60912 +I0408 15:00:37.193681 20259 solver.cpp:237] Train net output #0: loss = 3.60912 (* 1 = 3.60912 loss) +I0408 15:00:37.193693 20259 sgd_solver.cpp:105] Iteration 1668, lr = 0.00178538 +I0408 15:00:42.206877 20259 solver.cpp:218] Iteration 1680 (2.39376 iter/s, 5.01304s/12 iters), loss = 3.75345 +I0408 15:00:42.206918 20259 solver.cpp:237] Train net output #0: loss = 3.75345 (* 1 = 3.75345 loss) +I0408 15:00:42.206929 20259 sgd_solver.cpp:105] Iteration 1680, lr = 0.00176339 +I0408 15:00:47.191211 20259 solver.cpp:218] Iteration 1692 (2.40764 iter/s, 4.98413s/12 iters), loss = 3.91443 +I0408 15:00:47.191255 20259 solver.cpp:237] Train net output #0: loss = 3.91443 (* 1 = 3.91443 loss) +I0408 15:00:47.191268 20259 sgd_solver.cpp:105] Iteration 1692, lr = 0.00174166 +I0408 15:00:52.179962 20259 solver.cpp:218] Iteration 1704 (2.40551 iter/s, 4.98855s/12 iters), loss = 3.45979 +I0408 15:00:52.180006 20259 solver.cpp:237] Train net output #0: loss = 3.45979 (* 1 = 3.45979 loss) +I0408 15:00:52.180016 20259 sgd_solver.cpp:105] Iteration 1704, lr = 0.00172021 +I0408 15:00:57.187173 20259 solver.cpp:218] Iteration 1716 (2.39664 iter/s, 5.00701s/12 iters), loss = 3.93349 +I0408 15:00:57.187315 20259 solver.cpp:237] Train net output #0: loss = 3.93349 (* 1 = 3.93349 loss) +I0408 15:00:57.187330 20259 sgd_solver.cpp:105] Iteration 1716, lr = 0.00169902 +I0408 15:00:58.211707 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:01:02.163875 20259 solver.cpp:218] Iteration 1728 (2.41138 iter/s, 4.9764s/12 iters), loss = 3.8868 +I0408 15:01:02.163918 20259 solver.cpp:237] Train net output #0: loss = 3.8868 (* 1 = 3.8868 loss) +I0408 15:01:02.163929 20259 sgd_solver.cpp:105] Iteration 1728, lr = 0.00167809 +I0408 15:01:04.155122 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 15:01:07.218343 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 15:01:10.119849 20259 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 15:01:10.119875 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:01:13.874931 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:01:14.579568 20259 solver.cpp:397] Test net output #0: accuracy = 0.11826 +I0408 15:01:14.579614 20259 solver.cpp:397] Test net output #1: loss = 4.06468 (* 1 = 4.06468 loss) +I0408 15:01:16.537494 20259 solver.cpp:218] Iteration 1740 (0.834891 iter/s, 14.3731s/12 iters), loss = 3.73357 +I0408 15:01:16.537541 20259 solver.cpp:237] Train net output #0: loss = 3.73357 (* 1 = 3.73357 loss) +I0408 15:01:16.537554 20259 sgd_solver.cpp:105] Iteration 1740, lr = 0.00165742 +I0408 15:01:21.491060 20259 solver.cpp:218] Iteration 1752 (2.4226 iter/s, 4.95336s/12 iters), loss = 3.8574 +I0408 15:01:21.491102 20259 solver.cpp:237] Train net output #0: loss = 3.8574 (* 1 = 3.8574 loss) +I0408 15:01:21.491113 20259 sgd_solver.cpp:105] Iteration 1752, lr = 0.001637 +I0408 15:01:26.518065 20259 solver.cpp:218] Iteration 1764 (2.3872 iter/s, 5.0268s/12 iters), loss = 3.91581 +I0408 15:01:26.518108 20259 solver.cpp:237] Train net output #0: loss = 3.91581 (* 1 = 3.91581 loss) +I0408 15:01:26.518121 20259 sgd_solver.cpp:105] Iteration 1764, lr = 0.00161683 +I0408 15:01:31.509603 20259 solver.cpp:218] Iteration 1776 (2.40417 iter/s, 4.99133s/12 iters), loss = 3.87993 +I0408 15:01:31.509758 20259 solver.cpp:237] Train net output #0: loss = 3.87993 (* 1 = 3.87993 loss) +I0408 15:01:31.509773 20259 sgd_solver.cpp:105] Iteration 1776, lr = 0.00159692 +I0408 15:01:36.430992 20259 solver.cpp:218] Iteration 1788 (2.43849 iter/s, 4.92108s/12 iters), loss = 3.99639 +I0408 15:01:36.431035 20259 solver.cpp:237] Train net output #0: loss = 3.99639 (* 1 = 3.99639 loss) +I0408 15:01:36.431046 20259 sgd_solver.cpp:105] Iteration 1788, lr = 0.00157724 +I0408 15:01:41.517416 20259 solver.cpp:218] Iteration 1800 (2.35932 iter/s, 5.08622s/12 iters), loss = 3.89101 +I0408 15:01:41.517462 20259 solver.cpp:237] Train net output #0: loss = 3.89101 (* 1 = 3.89101 loss) +I0408 15:01:41.517473 20259 sgd_solver.cpp:105] Iteration 1800, lr = 0.00155781 +I0408 15:01:46.561069 20259 solver.cpp:218] Iteration 1812 (2.37933 iter/s, 5.04345s/12 iters), loss = 3.79552 +I0408 15:01:46.561112 20259 solver.cpp:237] Train net output #0: loss = 3.79552 (* 1 = 3.79552 loss) +I0408 15:01:46.561123 20259 sgd_solver.cpp:105] Iteration 1812, lr = 0.00153862 +I0408 15:01:49.636359 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:01:51.384456 20259 solver.cpp:218] Iteration 1824 (2.48798 iter/s, 4.82319s/12 iters), loss = 3.88485 +I0408 15:01:51.384506 20259 solver.cpp:237] Train net output #0: loss = 3.88485 (* 1 = 3.88485 loss) +I0408 15:01:51.384519 20259 sgd_solver.cpp:105] Iteration 1824, lr = 0.00151967 +I0408 15:01:55.870790 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 15:02:00.090214 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 15:02:03.708695 20259 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 15:02:03.708799 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:02:07.428861 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:02:08.177227 20259 solver.cpp:397] Test net output #0: accuracy = 0.121324 +I0408 15:02:08.177273 20259 solver.cpp:397] Test net output #1: loss = 4.09417 (* 1 = 4.09417 loss) +I0408 15:02:08.267189 20259 solver.cpp:218] Iteration 1836 (0.710809 iter/s, 16.8822s/12 iters), loss = 3.92822 +I0408 15:02:08.267225 20259 solver.cpp:237] Train net output #0: loss = 3.92822 (* 1 = 3.92822 loss) +I0408 15:02:08.267235 20259 sgd_solver.cpp:105] Iteration 1836, lr = 0.00150095 +I0408 15:02:12.812937 20259 solver.cpp:218] Iteration 1848 (2.63994 iter/s, 4.54556s/12 iters), loss = 3.84958 +I0408 15:02:12.812984 20259 solver.cpp:237] Train net output #0: loss = 3.84958 (* 1 = 3.84958 loss) +I0408 15:02:12.812995 20259 sgd_solver.cpp:105] Iteration 1848, lr = 0.00148246 +I0408 15:02:18.237676 20259 solver.cpp:218] Iteration 1860 (2.21218 iter/s, 5.42452s/12 iters), loss = 3.87868 +I0408 15:02:18.237722 20259 solver.cpp:237] Train net output #0: loss = 3.87868 (* 1 = 3.87868 loss) +I0408 15:02:18.237735 20259 sgd_solver.cpp:105] Iteration 1860, lr = 0.0014642 +I0408 15:02:23.691640 20259 solver.cpp:218] Iteration 1872 (2.20032 iter/s, 5.45374s/12 iters), loss = 3.81363 +I0408 15:02:23.691691 20259 solver.cpp:237] Train net output #0: loss = 3.81363 (* 1 = 3.81363 loss) +I0408 15:02:23.691705 20259 sgd_solver.cpp:105] Iteration 1872, lr = 0.00144616 +I0408 15:02:28.823544 20259 solver.cpp:218] Iteration 1884 (2.33841 iter/s, 5.13169s/12 iters), loss = 3.64066 +I0408 15:02:28.823585 20259 solver.cpp:237] Train net output #0: loss = 3.64066 (* 1 = 3.64066 loss) +I0408 15:02:28.823598 20259 sgd_solver.cpp:105] Iteration 1884, lr = 0.00142834 +I0408 15:02:33.820520 20259 solver.cpp:218] Iteration 1896 (2.40155 iter/s, 4.99678s/12 iters), loss = 3.75052 +I0408 15:02:33.820634 20259 solver.cpp:237] Train net output #0: loss = 3.75052 (* 1 = 3.75052 loss) +I0408 15:02:33.820647 20259 sgd_solver.cpp:105] Iteration 1896, lr = 0.00141075 +I0408 15:02:38.874197 20259 solver.cpp:218] Iteration 1908 (2.37464 iter/s, 5.0534s/12 iters), loss = 3.81717 +I0408 15:02:38.874243 20259 solver.cpp:237] Train net output #0: loss = 3.81717 (* 1 = 3.81717 loss) +I0408 15:02:38.874254 20259 sgd_solver.cpp:105] Iteration 1908, lr = 0.00139337 +I0408 15:02:43.900074 20259 solver.cpp:218] Iteration 1920 (2.38774 iter/s, 5.02567s/12 iters), loss = 3.76455 +I0408 15:02:43.900118 20259 solver.cpp:237] Train net output #0: loss = 3.76455 (* 1 = 3.76455 loss) +I0408 15:02:43.900130 20259 sgd_solver.cpp:105] Iteration 1920, lr = 0.00137621 +I0408 15:02:44.221483 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:02:48.889886 20259 solver.cpp:218] Iteration 1932 (2.405 iter/s, 4.98961s/12 iters), loss = 3.61148 +I0408 15:02:48.889928 20259 solver.cpp:237] Train net output #0: loss = 3.61148 (* 1 = 3.61148 loss) +I0408 15:02:48.889940 20259 sgd_solver.cpp:105] Iteration 1932, lr = 0.00135925 +I0408 15:02:50.955826 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 15:02:56.972002 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 15:03:03.203152 20259 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 15:03:03.203186 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:03:06.880882 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:03:07.666175 20259 solver.cpp:397] Test net output #0: accuracy = 0.124387 +I0408 15:03:07.666220 20259 solver.cpp:397] Test net output #1: loss = 4.03324 (* 1 = 4.03324 loss) +I0408 15:03:09.561167 20259 solver.cpp:218] Iteration 1944 (0.580534 iter/s, 20.6706s/12 iters), loss = 4.01062 +I0408 15:03:09.561214 20259 solver.cpp:237] Train net output #0: loss = 4.01062 (* 1 = 4.01062 loss) +I0408 15:03:09.561226 20259 sgd_solver.cpp:105] Iteration 1944, lr = 0.00134251 +I0408 15:03:14.570937 20259 solver.cpp:218] Iteration 1956 (2.39542 iter/s, 5.00955s/12 iters), loss = 3.57022 +I0408 15:03:14.570973 20259 solver.cpp:237] Train net output #0: loss = 3.57022 (* 1 = 3.57022 loss) +I0408 15:03:14.570982 20259 sgd_solver.cpp:105] Iteration 1956, lr = 0.00132597 +I0408 15:03:19.590667 20259 solver.cpp:218] Iteration 1968 (2.39066 iter/s, 5.01953s/12 iters), loss = 3.34431 +I0408 15:03:19.590709 20259 solver.cpp:237] Train net output #0: loss = 3.34431 (* 1 = 3.34431 loss) +I0408 15:03:19.590721 20259 sgd_solver.cpp:105] Iteration 1968, lr = 0.00130964 +I0408 15:03:24.492404 20259 solver.cpp:218] Iteration 1980 (2.44821 iter/s, 4.90154s/12 iters), loss = 3.63317 +I0408 15:03:24.492449 20259 solver.cpp:237] Train net output #0: loss = 3.63317 (* 1 = 3.63317 loss) +I0408 15:03:24.492460 20259 sgd_solver.cpp:105] Iteration 1980, lr = 0.0012935 +I0408 15:03:29.473385 20259 solver.cpp:218] Iteration 1992 (2.40926 iter/s, 4.98078s/12 iters), loss = 3.66805 +I0408 15:03:29.473420 20259 solver.cpp:237] Train net output #0: loss = 3.66805 (* 1 = 3.66805 loss) +I0408 15:03:29.473429 20259 sgd_solver.cpp:105] Iteration 1992, lr = 0.00127757 +I0408 15:03:34.483935 20259 solver.cpp:218] Iteration 2004 (2.39504 iter/s, 5.01035s/12 iters), loss = 3.26436 +I0408 15:03:34.483968 20259 solver.cpp:237] Train net output #0: loss = 3.26436 (* 1 = 3.26436 loss) +I0408 15:03:34.483975 20259 sgd_solver.cpp:105] Iteration 2004, lr = 0.00126183 +I0408 15:03:39.495479 20259 solver.cpp:218] Iteration 2016 (2.39456 iter/s, 5.01135s/12 iters), loss = 3.5474 +I0408 15:03:39.495594 20259 solver.cpp:237] Train net output #0: loss = 3.5474 (* 1 = 3.5474 loss) +I0408 15:03:39.495609 20259 sgd_solver.cpp:105] Iteration 2016, lr = 0.00124629 +I0408 15:03:42.035094 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:03:44.485615 20259 solver.cpp:218] Iteration 2028 (2.40488 iter/s, 4.98986s/12 iters), loss = 3.59655 +I0408 15:03:44.485658 20259 solver.cpp:237] Train net output #0: loss = 3.59655 (* 1 = 3.59655 loss) +I0408 15:03:44.485671 20259 sgd_solver.cpp:105] Iteration 2028, lr = 0.00123093 +I0408 15:03:49.021239 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 15:03:52.112627 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 15:03:56.453635 20259 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 15:03:56.453666 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:04:00.084406 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:04:00.912760 20259 solver.cpp:397] Test net output #0: accuracy = 0.148897 +I0408 15:04:00.912801 20259 solver.cpp:397] Test net output #1: loss = 3.95742 (* 1 = 3.95742 loss) +I0408 15:04:01.002737 20259 solver.cpp:218] Iteration 2040 (0.726543 iter/s, 16.5166s/12 iters), loss = 3.71546 +I0408 15:04:01.002781 20259 solver.cpp:237] Train net output #0: loss = 3.71546 (* 1 = 3.71546 loss) +I0408 15:04:01.002791 20259 sgd_solver.cpp:105] Iteration 2040, lr = 0.00121577 +I0408 15:04:05.263526 20259 solver.cpp:218] Iteration 2052 (2.8165 iter/s, 4.2606s/12 iters), loss = 3.62387 +I0408 15:04:05.263574 20259 solver.cpp:237] Train net output #0: loss = 3.62387 (* 1 = 3.62387 loss) +I0408 15:04:05.263586 20259 sgd_solver.cpp:105] Iteration 2052, lr = 0.00120079 +I0408 15:04:06.891769 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:04:10.311462 20259 solver.cpp:218] Iteration 2064 (2.37731 iter/s, 5.04773s/12 iters), loss = 3.68266 +I0408 15:04:10.313899 20259 solver.cpp:237] Train net output #0: loss = 3.68266 (* 1 = 3.68266 loss) +I0408 15:04:10.313912 20259 sgd_solver.cpp:105] Iteration 2064, lr = 0.001186 +I0408 15:04:15.347347 20259 solver.cpp:218] Iteration 2076 (2.38413 iter/s, 5.03328s/12 iters), loss = 3.65474 +I0408 15:04:15.347386 20259 solver.cpp:237] Train net output #0: loss = 3.65474 (* 1 = 3.65474 loss) +I0408 15:04:15.347396 20259 sgd_solver.cpp:105] Iteration 2076, lr = 0.00117139 +I0408 15:04:20.322679 20259 solver.cpp:218] Iteration 2088 (2.412 iter/s, 4.97513s/12 iters), loss = 3.53623 +I0408 15:04:20.322723 20259 solver.cpp:237] Train net output #0: loss = 3.53623 (* 1 = 3.53623 loss) +I0408 15:04:20.322736 20259 sgd_solver.cpp:105] Iteration 2088, lr = 0.00115696 +I0408 15:04:25.234295 20259 solver.cpp:218] Iteration 2100 (2.44329 iter/s, 4.91141s/12 iters), loss = 3.38764 +I0408 15:04:25.234342 20259 solver.cpp:237] Train net output #0: loss = 3.38764 (* 1 = 3.38764 loss) +I0408 15:04:25.234355 20259 sgd_solver.cpp:105] Iteration 2100, lr = 0.00114271 +I0408 15:04:30.237833 20259 solver.cpp:218] Iteration 2112 (2.3984 iter/s, 5.00333s/12 iters), loss = 3.41621 +I0408 15:04:30.237879 20259 solver.cpp:237] Train net output #0: loss = 3.41621 (* 1 = 3.41621 loss) +I0408 15:04:30.237891 20259 sgd_solver.cpp:105] Iteration 2112, lr = 0.00112863 +I0408 15:04:34.903178 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:04:35.220469 20259 solver.cpp:218] Iteration 2124 (2.40846 iter/s, 4.98244s/12 iters), loss = 3.4461 +I0408 15:04:35.220506 20259 solver.cpp:237] Train net output #0: loss = 3.4461 (* 1 = 3.4461 loss) +I0408 15:04:35.220515 20259 sgd_solver.cpp:105] Iteration 2124, lr = 0.00111473 +I0408 15:04:40.247640 20259 solver.cpp:218] Iteration 2136 (2.38712 iter/s, 5.02697s/12 iters), loss = 3.32062 +I0408 15:04:40.247687 20259 solver.cpp:237] Train net output #0: loss = 3.32062 (* 1 = 3.32062 loss) +I0408 15:04:40.247700 20259 sgd_solver.cpp:105] Iteration 2136, lr = 0.00110099 +I0408 15:04:42.287585 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 15:04:45.326403 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 15:04:47.657306 20259 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 15:04:47.657338 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:04:51.251071 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:04:52.113543 20259 solver.cpp:397] Test net output #0: accuracy = 0.139706 +I0408 15:04:52.113590 20259 solver.cpp:397] Test net output #1: loss = 3.89249 (* 1 = 3.89249 loss) +I0408 15:04:54.081753 20259 solver.cpp:218] Iteration 2148 (0.86745 iter/s, 13.8336s/12 iters), loss = 3.46472 +I0408 15:04:54.081804 20259 solver.cpp:237] Train net output #0: loss = 3.46472 (* 1 = 3.46472 loss) +I0408 15:04:54.081817 20259 sgd_solver.cpp:105] Iteration 2148, lr = 0.00108743 +I0408 15:04:59.304219 20259 solver.cpp:218] Iteration 2160 (2.29786 iter/s, 5.22225s/12 iters), loss = 3.64403 +I0408 15:04:59.304257 20259 solver.cpp:237] Train net output #0: loss = 3.64403 (* 1 = 3.64403 loss) +I0408 15:04:59.304266 20259 sgd_solver.cpp:105] Iteration 2160, lr = 0.00107404 +I0408 15:05:04.327162 20259 solver.cpp:218] Iteration 2172 (2.38913 iter/s, 5.02274s/12 iters), loss = 3.49851 +I0408 15:05:04.327210 20259 solver.cpp:237] Train net output #0: loss = 3.49851 (* 1 = 3.49851 loss) +I0408 15:05:04.327222 20259 sgd_solver.cpp:105] Iteration 2172, lr = 0.0010608 +I0408 15:05:09.362622 20259 solver.cpp:218] Iteration 2184 (2.3832 iter/s, 5.03525s/12 iters), loss = 3.47269 +I0408 15:05:09.362668 20259 solver.cpp:237] Train net output #0: loss = 3.47269 (* 1 = 3.47269 loss) +I0408 15:05:09.362679 20259 sgd_solver.cpp:105] Iteration 2184, lr = 0.00104774 +I0408 15:05:14.371472 20259 solver.cpp:218] Iteration 2196 (2.39586 iter/s, 5.00864s/12 iters), loss = 3.27776 +I0408 15:05:14.371614 20259 solver.cpp:237] Train net output #0: loss = 3.27776 (* 1 = 3.27776 loss) +I0408 15:05:14.371627 20259 sgd_solver.cpp:105] Iteration 2196, lr = 0.00103483 +I0408 15:05:19.421101 20259 solver.cpp:218] Iteration 2208 (2.37655 iter/s, 5.04933s/12 iters), loss = 3.23975 +I0408 15:05:19.421149 20259 solver.cpp:237] Train net output #0: loss = 3.23975 (* 1 = 3.23975 loss) +I0408 15:05:19.421162 20259 sgd_solver.cpp:105] Iteration 2208, lr = 0.00102208 +I0408 15:05:24.422876 20259 solver.cpp:218] Iteration 2220 (2.39925 iter/s, 5.00157s/12 iters), loss = 3.18457 +I0408 15:05:24.422924 20259 solver.cpp:237] Train net output #0: loss = 3.18457 (* 1 = 3.18457 loss) +I0408 15:05:24.422935 20259 sgd_solver.cpp:105] Iteration 2220, lr = 0.00100949 +I0408 15:05:26.213872 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:05:29.379809 20259 solver.cpp:218] Iteration 2232 (2.42095 iter/s, 4.95672s/12 iters), loss = 3.57632 +I0408 15:05:29.379866 20259 solver.cpp:237] Train net output #0: loss = 3.57632 (* 1 = 3.57632 loss) +I0408 15:05:29.379881 20259 sgd_solver.cpp:105] Iteration 2232, lr = 0.000997055 +I0408 15:05:33.938153 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 15:05:37.829149 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 15:05:40.791296 20259 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 15:05:40.791328 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:05:44.341750 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:05:45.249097 20259 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0408 15:05:45.249219 20259 solver.cpp:397] Test net output #1: loss = 3.78959 (* 1 = 3.78959 loss) +I0408 15:05:45.339418 20259 solver.cpp:218] Iteration 2244 (0.751924 iter/s, 15.9591s/12 iters), loss = 3.61703 +I0408 15:05:45.339479 20259 solver.cpp:237] Train net output #0: loss = 3.61703 (* 1 = 3.61703 loss) +I0408 15:05:45.339496 20259 sgd_solver.cpp:105] Iteration 2244, lr = 0.000984773 +I0408 15:05:49.900413 20259 solver.cpp:218] Iteration 2256 (2.63112 iter/s, 4.56079s/12 iters), loss = 3.02109 +I0408 15:05:49.900460 20259 solver.cpp:237] Train net output #0: loss = 3.02109 (* 1 = 3.02109 loss) +I0408 15:05:49.900471 20259 sgd_solver.cpp:105] Iteration 2256, lr = 0.000972642 +I0408 15:05:54.941917 20259 solver.cpp:218] Iteration 2268 (2.38034 iter/s, 5.0413s/12 iters), loss = 3.19775 +I0408 15:05:54.941967 20259 solver.cpp:237] Train net output #0: loss = 3.19775 (* 1 = 3.19775 loss) +I0408 15:05:54.941977 20259 sgd_solver.cpp:105] Iteration 2268, lr = 0.00096066 +I0408 15:05:59.974519 20259 solver.cpp:218] Iteration 2280 (2.38455 iter/s, 5.0324s/12 iters), loss = 3.32155 +I0408 15:05:59.974562 20259 solver.cpp:237] Train net output #0: loss = 3.32155 (* 1 = 3.32155 loss) +I0408 15:05:59.974575 20259 sgd_solver.cpp:105] Iteration 2280, lr = 0.000948826 +I0408 15:06:05.020313 20259 solver.cpp:218] Iteration 2292 (2.37832 iter/s, 5.04559s/12 iters), loss = 3.28215 +I0408 15:06:05.020360 20259 solver.cpp:237] Train net output #0: loss = 3.28215 (* 1 = 3.28215 loss) +I0408 15:06:05.020372 20259 sgd_solver.cpp:105] Iteration 2292, lr = 0.000937137 +I0408 15:06:10.048588 20259 solver.cpp:218] Iteration 2304 (2.3866 iter/s, 5.02807s/12 iters), loss = 3.42641 +I0408 15:06:10.048630 20259 solver.cpp:237] Train net output #0: loss = 3.42641 (* 1 = 3.42641 loss) +I0408 15:06:10.048641 20259 sgd_solver.cpp:105] Iteration 2304, lr = 0.000925593 +I0408 15:06:15.043761 20259 solver.cpp:218] Iteration 2316 (2.40241 iter/s, 4.99497s/12 iters), loss = 3.01448 +I0408 15:06:15.043793 20259 solver.cpp:237] Train net output #0: loss = 3.01448 (* 1 = 3.01448 loss) +I0408 15:06:15.043802 20259 sgd_solver.cpp:105] Iteration 2316, lr = 0.00091419 +I0408 15:06:19.012668 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:06:20.061527 20259 solver.cpp:218] Iteration 2328 (2.3916 iter/s, 5.01757s/12 iters), loss = 3.29679 +I0408 15:06:20.061568 20259 solver.cpp:237] Train net output #0: loss = 3.29679 (* 1 = 3.29679 loss) +I0408 15:06:20.061579 20259 sgd_solver.cpp:105] Iteration 2328, lr = 0.000902929 +I0408 15:06:25.118849 20259 solver.cpp:218] Iteration 2340 (2.37289 iter/s, 5.05712s/12 iters), loss = 3.28309 +I0408 15:06:25.118893 20259 solver.cpp:237] Train net output #0: loss = 3.28309 (* 1 = 3.28309 loss) +I0408 15:06:25.118904 20259 sgd_solver.cpp:105] Iteration 2340, lr = 0.000891806 +I0408 15:06:27.176913 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 15:06:30.558990 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 15:06:33.572320 20259 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 15:06:33.572350 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:06:37.086513 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:06:38.028780 20259 solver.cpp:397] Test net output #0: accuracy = 0.166054 +I0408 15:06:38.028825 20259 solver.cpp:397] Test net output #1: loss = 3.73196 (* 1 = 3.73196 loss) +I0408 15:06:40.011312 20259 solver.cpp:218] Iteration 2352 (0.805804 iter/s, 14.892s/12 iters), loss = 3.0598 +I0408 15:06:40.011356 20259 solver.cpp:237] Train net output #0: loss = 3.0598 (* 1 = 3.0598 loss) +I0408 15:06:40.011368 20259 sgd_solver.cpp:105] Iteration 2352, lr = 0.00088082 +I0408 15:06:45.013599 20259 solver.cpp:218] Iteration 2364 (2.399 iter/s, 5.00208s/12 iters), loss = 3.21826 +I0408 15:06:45.013640 20259 solver.cpp:237] Train net output #0: loss = 3.21826 (* 1 = 3.21826 loss) +I0408 15:06:45.013653 20259 sgd_solver.cpp:105] Iteration 2364, lr = 0.000869969 +I0408 15:06:50.047030 20259 solver.cpp:218] Iteration 2376 (2.38416 iter/s, 5.03323s/12 iters), loss = 3.01606 +I0408 15:06:50.047142 20259 solver.cpp:237] Train net output #0: loss = 3.01606 (* 1 = 3.01606 loss) +I0408 15:06:50.047155 20259 sgd_solver.cpp:105] Iteration 2376, lr = 0.000859252 +I0408 15:06:55.001895 20259 solver.cpp:218] Iteration 2388 (2.42199 iter/s, 4.9546s/12 iters), loss = 3.13057 +I0408 15:06:55.001940 20259 solver.cpp:237] Train net output #0: loss = 3.13057 (* 1 = 3.13057 loss) +I0408 15:06:55.001951 20259 sgd_solver.cpp:105] Iteration 2388, lr = 0.000848667 +I0408 15:07:00.017313 20259 solver.cpp:218] Iteration 2400 (2.39272 iter/s, 5.01521s/12 iters), loss = 3.13841 +I0408 15:07:00.017355 20259 solver.cpp:237] Train net output #0: loss = 3.13841 (* 1 = 3.13841 loss) +I0408 15:07:00.017367 20259 sgd_solver.cpp:105] Iteration 2400, lr = 0.000838212 +I0408 15:07:04.953076 20259 solver.cpp:218] Iteration 2412 (2.43133 iter/s, 4.93556s/12 iters), loss = 2.90418 +I0408 15:07:04.953121 20259 solver.cpp:237] Train net output #0: loss = 2.90418 (* 1 = 2.90418 loss) +I0408 15:07:04.953133 20259 sgd_solver.cpp:105] Iteration 2412, lr = 0.000827887 +I0408 15:07:09.947500 20259 solver.cpp:218] Iteration 2424 (2.40278 iter/s, 4.99422s/12 iters), loss = 2.9752 +I0408 15:07:09.947543 20259 solver.cpp:237] Train net output #0: loss = 2.9752 (* 1 = 2.9752 loss) +I0408 15:07:09.947556 20259 sgd_solver.cpp:105] Iteration 2424, lr = 0.000817688 +I0408 15:07:11.020691 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:07:14.988600 20259 solver.cpp:218] Iteration 2436 (2.38053 iter/s, 5.04089s/12 iters), loss = 3.01001 +I0408 15:07:14.988646 20259 solver.cpp:237] Train net output #0: loss = 3.01001 (* 1 = 3.01001 loss) +I0408 15:07:14.988656 20259 sgd_solver.cpp:105] Iteration 2436, lr = 0.000807615 +I0408 15:07:19.550998 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 15:07:23.779616 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 15:07:26.113437 20259 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 15:07:26.113471 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:07:29.593128 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:07:30.568977 20259 solver.cpp:397] Test net output #0: accuracy = 0.178922 +I0408 15:07:30.569025 20259 solver.cpp:397] Test net output #1: loss = 3.63182 (* 1 = 3.63182 loss) +I0408 15:07:30.658993 20259 solver.cpp:218] Iteration 2448 (0.7658 iter/s, 15.6699s/12 iters), loss = 3.20729 +I0408 15:07:30.659030 20259 solver.cpp:237] Train net output #0: loss = 3.20729 (* 1 = 3.20729 loss) +I0408 15:07:30.659042 20259 sgd_solver.cpp:105] Iteration 2448, lr = 0.000797666 +I0408 15:07:34.969417 20259 solver.cpp:218] Iteration 2460 (2.78406 iter/s, 4.31025s/12 iters), loss = 3.18452 +I0408 15:07:34.969465 20259 solver.cpp:237] Train net output #0: loss = 3.18452 (* 1 = 3.18452 loss) +I0408 15:07:34.969477 20259 sgd_solver.cpp:105] Iteration 2460, lr = 0.00078784 +I0408 15:07:40.012507 20259 solver.cpp:218] Iteration 2472 (2.37959 iter/s, 5.04288s/12 iters), loss = 3.19344 +I0408 15:07:40.012550 20259 solver.cpp:237] Train net output #0: loss = 3.19344 (* 1 = 3.19344 loss) +I0408 15:07:40.012562 20259 sgd_solver.cpp:105] Iteration 2472, lr = 0.000778135 +I0408 15:07:45.019335 20259 solver.cpp:218] Iteration 2484 (2.39682 iter/s, 5.00663s/12 iters), loss = 3.30445 +I0408 15:07:45.019379 20259 solver.cpp:237] Train net output #0: loss = 3.30445 (* 1 = 3.30445 loss) +I0408 15:07:45.019392 20259 sgd_solver.cpp:105] Iteration 2484, lr = 0.000768549 +I0408 15:07:49.948812 20259 solver.cpp:218] Iteration 2496 (2.43444 iter/s, 4.92928s/12 iters), loss = 3.30057 +I0408 15:07:49.948856 20259 solver.cpp:237] Train net output #0: loss = 3.30057 (* 1 = 3.30057 loss) +I0408 15:07:49.948868 20259 sgd_solver.cpp:105] Iteration 2496, lr = 0.000759081 +I0408 15:07:54.933526 20259 solver.cpp:218] Iteration 2508 (2.40746 iter/s, 4.98451s/12 iters), loss = 3.16229 +I0408 15:07:54.933631 20259 solver.cpp:237] Train net output #0: loss = 3.16229 (* 1 = 3.16229 loss) +I0408 15:07:54.933642 20259 sgd_solver.cpp:105] Iteration 2508, lr = 0.00074973 +I0408 15:07:59.932819 20259 solver.cpp:218] Iteration 2520 (2.40047 iter/s, 4.99902s/12 iters), loss = 2.94978 +I0408 15:07:59.932868 20259 solver.cpp:237] Train net output #0: loss = 2.94978 (* 1 = 2.94978 loss) +I0408 15:07:59.932880 20259 sgd_solver.cpp:105] Iteration 2520, lr = 0.000740494 +I0408 15:08:03.146049 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:08:04.938446 20259 solver.cpp:218] Iteration 2532 (2.3974 iter/s, 5.00542s/12 iters), loss = 3.06421 +I0408 15:08:04.938499 20259 solver.cpp:237] Train net output #0: loss = 3.06421 (* 1 = 3.06421 loss) +I0408 15:08:04.938513 20259 sgd_solver.cpp:105] Iteration 2532, lr = 0.000731372 +I0408 15:08:09.910609 20259 solver.cpp:218] Iteration 2544 (2.41354 iter/s, 4.97195s/12 iters), loss = 3.10415 +I0408 15:08:09.910653 20259 solver.cpp:237] Train net output #0: loss = 3.10415 (* 1 = 3.10415 loss) +I0408 15:08:09.910665 20259 sgd_solver.cpp:105] Iteration 2544, lr = 0.000722363 +I0408 15:08:11.917366 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 15:08:18.483606 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 15:08:22.530958 20259 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 15:08:22.530990 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:08:25.951063 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:08:26.973307 20259 solver.cpp:397] Test net output #0: accuracy = 0.191176 +I0408 15:08:26.973354 20259 solver.cpp:397] Test net output #1: loss = 3.60702 (* 1 = 3.60702 loss) +I0408 15:08:28.952715 20259 solver.cpp:218] Iteration 2556 (0.630203 iter/s, 19.0415s/12 iters), loss = 3.15145 +I0408 15:08:28.952764 20259 solver.cpp:237] Train net output #0: loss = 3.15145 (* 1 = 3.15145 loss) +I0408 15:08:28.952775 20259 sgd_solver.cpp:105] Iteration 2556, lr = 0.000713464 +I0408 15:08:33.951498 20259 solver.cpp:218] Iteration 2568 (2.40068 iter/s, 4.99858s/12 iters), loss = 3.10466 +I0408 15:08:33.951542 20259 solver.cpp:237] Train net output #0: loss = 3.10466 (* 1 = 3.10466 loss) +I0408 15:08:33.951555 20259 sgd_solver.cpp:105] Iteration 2568, lr = 0.000704675 +I0408 15:08:38.945439 20259 solver.cpp:218] Iteration 2580 (2.40301 iter/s, 4.99373s/12 iters), loss = 2.92836 +I0408 15:08:38.945493 20259 solver.cpp:237] Train net output #0: loss = 2.92836 (* 1 = 2.92836 loss) +I0408 15:08:38.945508 20259 sgd_solver.cpp:105] Iteration 2580, lr = 0.000695994 +I0408 15:08:43.950170 20259 solver.cpp:218] Iteration 2592 (2.39783 iter/s, 5.00452s/12 iters), loss = 3.16647 +I0408 15:08:43.950224 20259 solver.cpp:237] Train net output #0: loss = 3.16647 (* 1 = 3.16647 loss) +I0408 15:08:43.950235 20259 sgd_solver.cpp:105] Iteration 2592, lr = 0.00068742 +I0408 15:08:48.948268 20259 solver.cpp:218] Iteration 2604 (2.40102 iter/s, 4.99788s/12 iters), loss = 3.00189 +I0408 15:08:48.948312 20259 solver.cpp:237] Train net output #0: loss = 3.00189 (* 1 = 3.00189 loss) +I0408 15:08:48.948323 20259 sgd_solver.cpp:105] Iteration 2604, lr = 0.000678952 +I0408 15:08:53.981889 20259 solver.cpp:218] Iteration 2616 (2.38407 iter/s, 5.03342s/12 iters), loss = 2.92384 +I0408 15:08:53.981932 20259 solver.cpp:237] Train net output #0: loss = 2.92384 (* 1 = 2.92384 loss) +I0408 15:08:53.981945 20259 sgd_solver.cpp:105] Iteration 2616, lr = 0.000670588 +I0408 15:08:59.008347 20259 solver.cpp:218] Iteration 2628 (2.38747 iter/s, 5.02625s/12 iters), loss = 3.13228 +I0408 15:08:59.008452 20259 solver.cpp:237] Train net output #0: loss = 3.13228 (* 1 = 3.13228 loss) +I0408 15:08:59.008466 20259 sgd_solver.cpp:105] Iteration 2628, lr = 0.000662327 +I0408 15:08:59.432703 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:09:03.985122 20259 solver.cpp:218] Iteration 2640 (2.41133 iter/s, 4.97651s/12 iters), loss = 2.92048 +I0408 15:09:03.985167 20259 solver.cpp:237] Train net output #0: loss = 2.92048 (* 1 = 2.92048 loss) +I0408 15:09:03.985179 20259 sgd_solver.cpp:105] Iteration 2640, lr = 0.000654168 +I0408 15:09:08.502729 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 15:09:11.435914 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 15:09:17.857976 20259 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 15:09:17.858011 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:09:21.258826 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:09:22.315614 20259 solver.cpp:397] Test net output #0: accuracy = 0.203431 +I0408 15:09:22.315662 20259 solver.cpp:397] Test net output #1: loss = 3.53559 (* 1 = 3.53559 loss) +I0408 15:09:22.402951 20259 solver.cpp:218] Iteration 2652 (0.651564 iter/s, 18.4172s/12 iters), loss = 2.85117 +I0408 15:09:22.402988 20259 solver.cpp:237] Train net output #0: loss = 2.85117 (* 1 = 2.85117 loss) +I0408 15:09:22.403000 20259 sgd_solver.cpp:105] Iteration 2652, lr = 0.00064611 +I0408 15:09:26.778522 20259 solver.cpp:218] Iteration 2664 (2.74261 iter/s, 4.37539s/12 iters), loss = 2.70883 +I0408 15:09:26.778564 20259 solver.cpp:237] Train net output #0: loss = 2.70883 (* 1 = 2.70883 loss) +I0408 15:09:26.778575 20259 sgd_solver.cpp:105] Iteration 2664, lr = 0.00063815 +I0408 15:09:31.783215 20259 solver.cpp:218] Iteration 2676 (2.39785 iter/s, 5.00449s/12 iters), loss = 2.79077 +I0408 15:09:31.786119 20259 solver.cpp:237] Train net output #0: loss = 2.79077 (* 1 = 2.79077 loss) +I0408 15:09:31.786130 20259 sgd_solver.cpp:105] Iteration 2676, lr = 0.000630289 +I0408 15:09:36.798418 20259 solver.cpp:218] Iteration 2688 (2.39419 iter/s, 5.01214s/12 iters), loss = 2.88317 +I0408 15:09:36.798454 20259 solver.cpp:237] Train net output #0: loss = 2.88317 (* 1 = 2.88317 loss) +I0408 15:09:36.798462 20259 sgd_solver.cpp:105] Iteration 2688, lr = 0.000622525 +I0408 15:09:41.805729 20259 solver.cpp:218] Iteration 2700 (2.39659 iter/s, 5.00712s/12 iters), loss = 2.72681 +I0408 15:09:41.805774 20259 solver.cpp:237] Train net output #0: loss = 2.72681 (* 1 = 2.72681 loss) +I0408 15:09:41.805786 20259 sgd_solver.cpp:105] Iteration 2700, lr = 0.000614856 +I0408 15:09:46.779611 20259 solver.cpp:218] Iteration 2712 (2.4127 iter/s, 4.97368s/12 iters), loss = 2.84788 +I0408 15:09:46.779654 20259 solver.cpp:237] Train net output #0: loss = 2.84788 (* 1 = 2.84788 loss) +I0408 15:09:46.779664 20259 sgd_solver.cpp:105] Iteration 2712, lr = 0.000607282 +I0408 15:09:51.805457 20259 solver.cpp:218] Iteration 2724 (2.38776 iter/s, 5.02564s/12 iters), loss = 2.85771 +I0408 15:09:51.805505 20259 solver.cpp:237] Train net output #0: loss = 2.85771 (* 1 = 2.85771 loss) +I0408 15:09:51.805517 20259 sgd_solver.cpp:105] Iteration 2724, lr = 0.000599801 +I0408 15:09:54.400068 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:09:56.795984 20259 solver.cpp:218] Iteration 2736 (2.40466 iter/s, 4.99032s/12 iters), loss = 2.68053 +I0408 15:09:56.796027 20259 solver.cpp:237] Train net output #0: loss = 2.68053 (* 1 = 2.68053 loss) +I0408 15:09:56.796041 20259 sgd_solver.cpp:105] Iteration 2736, lr = 0.000592412 +I0408 15:10:01.646788 20259 solver.cpp:218] Iteration 2748 (2.47392 iter/s, 4.8506s/12 iters), loss = 2.85661 +I0408 15:10:01.646834 20259 solver.cpp:237] Train net output #0: loss = 2.85661 (* 1 = 2.85661 loss) +I0408 15:10:01.646847 20259 sgd_solver.cpp:105] Iteration 2748, lr = 0.000585114 +I0408 15:10:03.652671 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 15:10:06.596385 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 15:10:08.916200 20259 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 15:10:08.916230 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:10:11.994665 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:10:12.229984 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:10:13.331696 20259 solver.cpp:397] Test net output #0: accuracy = 0.207721 +I0408 15:10:13.331739 20259 solver.cpp:397] Test net output #1: loss = 3.51276 (* 1 = 3.51276 loss) +I0408 15:10:15.313576 20259 solver.cpp:218] Iteration 2760 (0.87807 iter/s, 13.6663s/12 iters), loss = 2.91869 +I0408 15:10:15.313621 20259 solver.cpp:237] Train net output #0: loss = 2.91869 (* 1 = 2.91869 loss) +I0408 15:10:15.313633 20259 sgd_solver.cpp:105] Iteration 2760, lr = 0.000577906 +I0408 15:10:20.522575 20259 solver.cpp:218] Iteration 2772 (2.3038 iter/s, 5.20879s/12 iters), loss = 2.82486 +I0408 15:10:20.522620 20259 solver.cpp:237] Train net output #0: loss = 2.82486 (* 1 = 2.82486 loss) +I0408 15:10:20.522632 20259 sgd_solver.cpp:105] Iteration 2772, lr = 0.000570787 +I0408 15:10:25.526260 20259 solver.cpp:218] Iteration 2784 (2.39833 iter/s, 5.00348s/12 iters), loss = 3.02412 +I0408 15:10:25.526304 20259 solver.cpp:237] Train net output #0: loss = 3.02412 (* 1 = 3.02412 loss) +I0408 15:10:25.526316 20259 sgd_solver.cpp:105] Iteration 2784, lr = 0.000563755 +I0408 15:10:30.563994 20259 solver.cpp:218] Iteration 2796 (2.38212 iter/s, 5.03753s/12 iters), loss = 3.01716 +I0408 15:10:30.564038 20259 solver.cpp:237] Train net output #0: loss = 3.01716 (* 1 = 3.01716 loss) +I0408 15:10:30.564050 20259 sgd_solver.cpp:105] Iteration 2796, lr = 0.000556811 +I0408 15:10:35.542837 20259 solver.cpp:218] Iteration 2808 (2.41029 iter/s, 4.97864s/12 iters), loss = 2.75992 +I0408 15:10:35.542953 20259 solver.cpp:237] Train net output #0: loss = 2.75992 (* 1 = 2.75992 loss) +I0408 15:10:35.542963 20259 sgd_solver.cpp:105] Iteration 2808, lr = 0.000549951 +I0408 15:10:40.578519 20259 solver.cpp:218] Iteration 2820 (2.38312 iter/s, 5.03541s/12 iters), loss = 2.7338 +I0408 15:10:40.578555 20259 solver.cpp:237] Train net output #0: loss = 2.7338 (* 1 = 2.7338 loss) +I0408 15:10:40.578565 20259 sgd_solver.cpp:105] Iteration 2820, lr = 0.000543177 +I0408 15:10:45.318543 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:10:45.602277 20259 solver.cpp:218] Iteration 2832 (2.38874 iter/s, 5.02356s/12 iters), loss = 2.8311 +I0408 15:10:45.602322 20259 solver.cpp:237] Train net output #0: loss = 2.8311 (* 1 = 2.8311 loss) +I0408 15:10:45.602334 20259 sgd_solver.cpp:105] Iteration 2832, lr = 0.000536485 +I0408 15:10:50.544245 20259 solver.cpp:218] Iteration 2844 (2.42828 iter/s, 4.94176s/12 iters), loss = 2.76284 +I0408 15:10:50.544291 20259 solver.cpp:237] Train net output #0: loss = 2.76284 (* 1 = 2.76284 loss) +I0408 15:10:50.544302 20259 sgd_solver.cpp:105] Iteration 2844, lr = 0.000529876 +I0408 15:10:55.048542 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 15:10:58.136915 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 15:11:00.678031 20259 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 15:11:00.678063 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:11:03.971307 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:11:05.109498 20259 solver.cpp:397] Test net output #0: accuracy = 0.208946 +I0408 15:11:05.109541 20259 solver.cpp:397] Test net output #1: loss = 3.49857 (* 1 = 3.49857 loss) +I0408 15:11:05.199476 20259 solver.cpp:218] Iteration 2856 (0.818847 iter/s, 14.6547s/12 iters), loss = 2.7393 +I0408 15:11:05.199508 20259 solver.cpp:237] Train net output #0: loss = 2.7393 (* 1 = 2.7393 loss) +I0408 15:11:05.199519 20259 sgd_solver.cpp:105] Iteration 2856, lr = 0.000523349 +I0408 15:11:09.358388 20259 solver.cpp:218] Iteration 2868 (2.88549 iter/s, 4.15875s/12 iters), loss = 2.8615 +I0408 15:11:09.358502 20259 solver.cpp:237] Train net output #0: loss = 2.8615 (* 1 = 2.8615 loss) +I0408 15:11:09.358515 20259 sgd_solver.cpp:105] Iteration 2868, lr = 0.000516902 +I0408 15:11:14.355162 20259 solver.cpp:218] Iteration 2880 (2.40168 iter/s, 4.9965s/12 iters), loss = 2.49178 +I0408 15:11:14.355199 20259 solver.cpp:237] Train net output #0: loss = 2.49178 (* 1 = 2.49178 loss) +I0408 15:11:14.355209 20259 sgd_solver.cpp:105] Iteration 2880, lr = 0.000510534 +I0408 15:11:19.313696 20259 solver.cpp:218] Iteration 2892 (2.42017 iter/s, 4.95834s/12 iters), loss = 2.69162 +I0408 15:11:19.313741 20259 solver.cpp:237] Train net output #0: loss = 2.69162 (* 1 = 2.69162 loss) +I0408 15:11:19.313753 20259 sgd_solver.cpp:105] Iteration 2892, lr = 0.000504245 +I0408 15:11:24.284135 20259 solver.cpp:218] Iteration 2904 (2.41437 iter/s, 4.97024s/12 iters), loss = 2.60449 +I0408 15:11:24.284178 20259 solver.cpp:237] Train net output #0: loss = 2.60449 (* 1 = 2.60449 loss) +I0408 15:11:24.284189 20259 sgd_solver.cpp:105] Iteration 2904, lr = 0.000498033 +I0408 15:11:29.264302 20259 solver.cpp:218] Iteration 2916 (2.40965 iter/s, 4.97997s/12 iters), loss = 2.75321 +I0408 15:11:29.264344 20259 solver.cpp:237] Train net output #0: loss = 2.75321 (* 1 = 2.75321 loss) +I0408 15:11:29.264355 20259 sgd_solver.cpp:105] Iteration 2916, lr = 0.000491898 +I0408 15:11:34.258313 20259 solver.cpp:218] Iteration 2928 (2.40297 iter/s, 4.99381s/12 iters), loss = 2.41731 +I0408 15:11:34.258349 20259 solver.cpp:237] Train net output #0: loss = 2.41731 (* 1 = 2.41731 loss) +I0408 15:11:34.258358 20259 sgd_solver.cpp:105] Iteration 2928, lr = 0.000485839 +I0408 15:11:36.108749 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:11:39.255331 20259 solver.cpp:218] Iteration 2940 (2.40153 iter/s, 4.99682s/12 iters), loss = 2.84523 +I0408 15:11:39.255375 20259 solver.cpp:237] Train net output #0: loss = 2.84523 (* 1 = 2.84523 loss) +I0408 15:11:39.255386 20259 sgd_solver.cpp:105] Iteration 2940, lr = 0.000479854 +I0408 15:11:44.220929 20259 solver.cpp:218] Iteration 2952 (2.41672 iter/s, 4.9654s/12 iters), loss = 2.66043 +I0408 15:11:44.221079 20259 solver.cpp:237] Train net output #0: loss = 2.66043 (* 1 = 2.66043 loss) +I0408 15:11:44.221092 20259 sgd_solver.cpp:105] Iteration 2952, lr = 0.000473942 +I0408 15:11:46.206670 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 15:11:49.259179 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 15:11:52.073858 20259 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 15:11:52.073886 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:11:55.354790 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:11:56.536296 20259 solver.cpp:397] Test net output #0: accuracy = 0.219363 +I0408 15:11:56.536340 20259 solver.cpp:397] Test net output #1: loss = 3.46974 (* 1 = 3.46974 loss) +I0408 15:11:58.453583 20259 solver.cpp:218] Iteration 2964 (0.843166 iter/s, 14.2321s/12 iters), loss = 2.57463 +I0408 15:11:58.453630 20259 solver.cpp:237] Train net output #0: loss = 2.57463 (* 1 = 2.57463 loss) +I0408 15:11:58.453642 20259 sgd_solver.cpp:105] Iteration 2964, lr = 0.000468104 +I0408 15:12:03.496500 20259 solver.cpp:218] Iteration 2976 (2.37967 iter/s, 5.04271s/12 iters), loss = 2.44253 +I0408 15:12:03.496543 20259 solver.cpp:237] Train net output #0: loss = 2.44253 (* 1 = 2.44253 loss) +I0408 15:12:03.496554 20259 sgd_solver.cpp:105] Iteration 2976, lr = 0.000462337 +I0408 15:12:08.468011 20259 solver.cpp:218] Iteration 2988 (2.41385 iter/s, 4.97131s/12 iters), loss = 2.67271 +I0408 15:12:08.468058 20259 solver.cpp:237] Train net output #0: loss = 2.67271 (* 1 = 2.67271 loss) +I0408 15:12:08.468070 20259 sgd_solver.cpp:105] Iteration 2988, lr = 0.000456642 +I0408 15:12:13.516521 20259 solver.cpp:218] Iteration 3000 (2.37704 iter/s, 5.0483s/12 iters), loss = 2.56572 +I0408 15:12:13.516568 20259 solver.cpp:237] Train net output #0: loss = 2.56572 (* 1 = 2.56572 loss) +I0408 15:12:13.516580 20259 sgd_solver.cpp:105] Iteration 3000, lr = 0.000451017 +I0408 15:12:18.545464 20259 solver.cpp:218] Iteration 3012 (2.38628 iter/s, 5.02874s/12 iters), loss = 2.65478 +I0408 15:12:18.545555 20259 solver.cpp:237] Train net output #0: loss = 2.65478 (* 1 = 2.65478 loss) +I0408 15:12:18.545565 20259 sgd_solver.cpp:105] Iteration 3012, lr = 0.000445461 +I0408 15:12:23.548739 20259 solver.cpp:218] Iteration 3024 (2.39855 iter/s, 5.00303s/12 iters), loss = 2.44566 +I0408 15:12:23.548784 20259 solver.cpp:237] Train net output #0: loss = 2.44566 (* 1 = 2.44566 loss) +I0408 15:12:23.548796 20259 sgd_solver.cpp:105] Iteration 3024, lr = 0.000439973 +I0408 15:12:27.554788 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:12:28.594398 20259 solver.cpp:218] Iteration 3036 (2.37838 iter/s, 5.04546s/12 iters), loss = 2.62717 +I0408 15:12:28.594444 20259 solver.cpp:237] Train net output #0: loss = 2.62717 (* 1 = 2.62717 loss) +I0408 15:12:28.594455 20259 sgd_solver.cpp:105] Iteration 3036, lr = 0.000434553 +I0408 15:12:33.583493 20259 solver.cpp:218] Iteration 3048 (2.40534 iter/s, 4.9889s/12 iters), loss = 2.57846 +I0408 15:12:33.583537 20259 solver.cpp:237] Train net output #0: loss = 2.57846 (* 1 = 2.57846 loss) +I0408 15:12:33.583549 20259 sgd_solver.cpp:105] Iteration 3048, lr = 0.0004292 +I0408 15:12:38.050217 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 15:12:42.353797 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 15:12:46.690609 20259 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 15:12:46.690641 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:12:49.924980 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:12:51.140722 20259 solver.cpp:397] Test net output #0: accuracy = 0.237132 +I0408 15:12:51.140769 20259 solver.cpp:397] Test net output #1: loss = 3.44232 (* 1 = 3.44232 loss) +I0408 15:12:51.230756 20259 solver.cpp:218] Iteration 3060 (0.680014 iter/s, 17.6467s/12 iters), loss = 2.52506 +I0408 15:12:51.230792 20259 solver.cpp:237] Train net output #0: loss = 2.52506 (* 1 = 2.52506 loss) +I0408 15:12:51.230803 20259 sgd_solver.cpp:105] Iteration 3060, lr = 0.000423913 +I0408 15:12:55.591177 20259 solver.cpp:218] Iteration 3072 (2.75214 iter/s, 4.36025s/12 iters), loss = 2.62581 +I0408 15:12:55.591221 20259 solver.cpp:237] Train net output #0: loss = 2.62581 (* 1 = 2.62581 loss) +I0408 15:12:55.591233 20259 sgd_solver.cpp:105] Iteration 3072, lr = 0.000418691 +I0408 15:13:00.590847 20259 solver.cpp:218] Iteration 3084 (2.40025 iter/s, 4.99947s/12 iters), loss = 2.5736 +I0408 15:13:00.590880 20259 solver.cpp:237] Train net output #0: loss = 2.5736 (* 1 = 2.5736 loss) +I0408 15:13:00.590889 20259 sgd_solver.cpp:105] Iteration 3084, lr = 0.000413533 +I0408 15:13:05.534881 20259 solver.cpp:218] Iteration 3096 (2.42726 iter/s, 4.94384s/12 iters), loss = 2.5612 +I0408 15:13:05.534915 20259 solver.cpp:237] Train net output #0: loss = 2.5612 (* 1 = 2.5612 loss) +I0408 15:13:05.534924 20259 sgd_solver.cpp:105] Iteration 3096, lr = 0.000408439 +I0408 15:13:10.551599 20259 solver.cpp:218] Iteration 3108 (2.39209 iter/s, 5.01652s/12 iters), loss = 2.50254 +I0408 15:13:10.551633 20259 solver.cpp:237] Train net output #0: loss = 2.50254 (* 1 = 2.50254 loss) +I0408 15:13:10.551641 20259 sgd_solver.cpp:105] Iteration 3108, lr = 0.000403407 +I0408 15:13:15.576563 20259 solver.cpp:218] Iteration 3120 (2.38817 iter/s, 5.02477s/12 iters), loss = 2.57725 +I0408 15:13:15.576596 20259 solver.cpp:237] Train net output #0: loss = 2.57725 (* 1 = 2.57725 loss) +I0408 15:13:15.576604 20259 sgd_solver.cpp:105] Iteration 3120, lr = 0.000398438 +I0408 15:13:20.564956 20259 solver.cpp:218] Iteration 3132 (2.40568 iter/s, 4.9882s/12 iters), loss = 2.66072 +I0408 15:13:20.565064 20259 solver.cpp:237] Train net output #0: loss = 2.66072 (* 1 = 2.66072 loss) +I0408 15:13:20.565076 20259 sgd_solver.cpp:105] Iteration 3132, lr = 0.000393529 +I0408 15:13:21.681764 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:13:25.590152 20259 solver.cpp:218] Iteration 3144 (2.38809 iter/s, 5.02494s/12 iters), loss = 2.31732 +I0408 15:13:25.590190 20259 solver.cpp:237] Train net output #0: loss = 2.31732 (* 1 = 2.31732 loss) +I0408 15:13:25.590200 20259 sgd_solver.cpp:105] Iteration 3144, lr = 0.000388681 +I0408 15:13:30.515084 20259 solver.cpp:218] Iteration 3156 (2.43668 iter/s, 4.92474s/12 iters), loss = 2.47986 +I0408 15:13:30.515137 20259 solver.cpp:237] Train net output #0: loss = 2.47986 (* 1 = 2.47986 loss) +I0408 15:13:30.515153 20259 sgd_solver.cpp:105] Iteration 3156, lr = 0.000383893 +I0408 15:13:32.582094 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 15:13:35.611198 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 15:13:39.661931 20259 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 15:13:39.661974 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:13:42.855540 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:13:44.118464 20259 solver.cpp:397] Test net output #0: accuracy = 0.231005 +I0408 15:13:44.118510 20259 solver.cpp:397] Test net output #1: loss = 3.42285 (* 1 = 3.42285 loss) +I0408 15:13:46.103154 20259 solver.cpp:218] Iteration 3168 (0.769845 iter/s, 15.5876s/12 iters), loss = 2.43166 +I0408 15:13:46.103204 20259 solver.cpp:237] Train net output #0: loss = 2.43166 (* 1 = 2.43166 loss) +I0408 15:13:46.103216 20259 sgd_solver.cpp:105] Iteration 3168, lr = 0.000379164 +I0408 15:13:51.186843 20259 solver.cpp:218] Iteration 3180 (2.36059 iter/s, 5.08348s/12 iters), loss = 2.73011 +I0408 15:13:51.187003 20259 solver.cpp:237] Train net output #0: loss = 2.73011 (* 1 = 2.73011 loss) +I0408 15:13:51.187016 20259 sgd_solver.cpp:105] Iteration 3180, lr = 0.000374493 +I0408 15:13:56.154392 20259 solver.cpp:218] Iteration 3192 (2.41583 iter/s, 4.96724s/12 iters), loss = 2.39718 +I0408 15:13:56.154431 20259 solver.cpp:237] Train net output #0: loss = 2.39718 (* 1 = 2.39718 loss) +I0408 15:13:56.154440 20259 sgd_solver.cpp:105] Iteration 3192, lr = 0.00036988 +I0408 15:14:01.188258 20259 solver.cpp:218] Iteration 3204 (2.38395 iter/s, 5.03367s/12 iters), loss = 2.54828 +I0408 15:14:01.188303 20259 solver.cpp:237] Train net output #0: loss = 2.54828 (* 1 = 2.54828 loss) +I0408 15:14:01.188314 20259 sgd_solver.cpp:105] Iteration 3204, lr = 0.000365324 +I0408 15:14:06.272471 20259 solver.cpp:218] Iteration 3216 (2.36034 iter/s, 5.08401s/12 iters), loss = 2.53494 +I0408 15:14:06.272514 20259 solver.cpp:237] Train net output #0: loss = 2.53494 (* 1 = 2.53494 loss) +I0408 15:14:06.272526 20259 sgd_solver.cpp:105] Iteration 3216, lr = 0.000360823 +I0408 15:14:11.301151 20259 solver.cpp:218] Iteration 3228 (2.38641 iter/s, 5.02848s/12 iters), loss = 2.46476 +I0408 15:14:11.301184 20259 solver.cpp:237] Train net output #0: loss = 2.46476 (* 1 = 2.46476 loss) +I0408 15:14:11.301193 20259 sgd_solver.cpp:105] Iteration 3228, lr = 0.000356378 +I0408 15:14:14.570276 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:14:16.315690 20259 solver.cpp:218] Iteration 3240 (2.39313 iter/s, 5.01434s/12 iters), loss = 2.59339 +I0408 15:14:16.315734 20259 solver.cpp:237] Train net output #0: loss = 2.59339 (* 1 = 2.59339 loss) +I0408 15:14:16.315747 20259 sgd_solver.cpp:105] Iteration 3240, lr = 0.000351988 +I0408 15:14:21.263993 20259 solver.cpp:218] Iteration 3252 (2.42517 iter/s, 4.9481s/12 iters), loss = 2.20047 +I0408 15:14:21.264108 20259 solver.cpp:237] Train net output #0: loss = 2.20047 (* 1 = 2.20047 loss) +I0408 15:14:21.264122 20259 sgd_solver.cpp:105] Iteration 3252, lr = 0.000347652 +I0408 15:14:25.776235 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 15:14:28.819118 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 15:14:31.097450 20259 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 15:14:31.097476 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:14:34.252048 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:14:35.553196 20259 solver.cpp:397] Test net output #0: accuracy = 0.238358 +I0408 15:14:35.553228 20259 solver.cpp:397] Test net output #1: loss = 3.44045 (* 1 = 3.44045 loss) +I0408 15:14:35.642001 20259 solver.cpp:218] Iteration 3264 (0.834639 iter/s, 14.3775s/12 iters), loss = 2.3911 +I0408 15:14:35.642032 20259 solver.cpp:237] Train net output #0: loss = 2.3911 (* 1 = 2.3911 loss) +I0408 15:14:35.642040 20259 sgd_solver.cpp:105] Iteration 3264, lr = 0.000343369 +I0408 15:14:39.810698 20259 solver.cpp:218] Iteration 3276 (2.87871 iter/s, 4.16853s/12 iters), loss = 2.29846 +I0408 15:14:39.810737 20259 solver.cpp:237] Train net output #0: loss = 2.29846 (* 1 = 2.29846 loss) +I0408 15:14:39.810747 20259 sgd_solver.cpp:105] Iteration 3276, lr = 0.000339139 +I0408 15:14:44.854532 20259 solver.cpp:218] Iteration 3288 (2.37924 iter/s, 5.04364s/12 iters), loss = 2.45008 +I0408 15:14:44.854569 20259 solver.cpp:237] Train net output #0: loss = 2.45008 (* 1 = 2.45008 loss) +I0408 15:14:44.854578 20259 sgd_solver.cpp:105] Iteration 3288, lr = 0.000334962 +I0408 15:14:49.834599 20259 solver.cpp:218] Iteration 3300 (2.4097 iter/s, 4.97987s/12 iters), loss = 2.35783 +I0408 15:14:49.834640 20259 solver.cpp:237] Train net output #0: loss = 2.35783 (* 1 = 2.35783 loss) +I0408 15:14:49.834651 20259 sgd_solver.cpp:105] Iteration 3300, lr = 0.000330835 +I0408 15:14:54.865465 20259 solver.cpp:218] Iteration 3312 (2.38537 iter/s, 5.03066s/12 iters), loss = 2.37617 +I0408 15:14:54.865630 20259 solver.cpp:237] Train net output #0: loss = 2.37617 (* 1 = 2.37617 loss) +I0408 15:14:54.865644 20259 sgd_solver.cpp:105] Iteration 3312, lr = 0.00032676 +I0408 15:14:59.809264 20259 solver.cpp:218] Iteration 3324 (2.42744 iter/s, 4.94348s/12 iters), loss = 2.26822 +I0408 15:14:59.809311 20259 solver.cpp:237] Train net output #0: loss = 2.26822 (* 1 = 2.26822 loss) +I0408 15:14:59.809322 20259 sgd_solver.cpp:105] Iteration 3324, lr = 0.000322735 +I0408 15:15:04.800894 20259 solver.cpp:218] Iteration 3336 (2.40413 iter/s, 4.99142s/12 iters), loss = 2.40552 +I0408 15:15:04.800941 20259 solver.cpp:237] Train net output #0: loss = 2.40552 (* 1 = 2.40552 loss) +I0408 15:15:04.800953 20259 sgd_solver.cpp:105] Iteration 3336, lr = 0.000318759 +I0408 15:15:05.295838 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:15:10.056711 20259 solver.cpp:218] Iteration 3348 (2.28328 iter/s, 5.2556s/12 iters), loss = 2.25873 +I0408 15:15:10.056754 20259 solver.cpp:237] Train net output #0: loss = 2.25873 (* 1 = 2.25873 loss) +I0408 15:15:10.056766 20259 sgd_solver.cpp:105] Iteration 3348, lr = 0.000314832 +I0408 15:15:15.038326 20259 solver.cpp:218] Iteration 3360 (2.40895 iter/s, 4.98142s/12 iters), loss = 2.41431 +I0408 15:15:15.038360 20259 solver.cpp:237] Train net output #0: loss = 2.41431 (* 1 = 2.41431 loss) +I0408 15:15:15.038368 20259 sgd_solver.cpp:105] Iteration 3360, lr = 0.000310954 +I0408 15:15:17.040078 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 15:15:20.086212 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 15:15:22.410194 20259 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 15:15:22.410224 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:15:25.529645 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:15:26.863613 20259 solver.cpp:397] Test net output #0: accuracy = 0.251226 +I0408 15:15:26.863662 20259 solver.cpp:397] Test net output #1: loss = 3.4102 (* 1 = 3.4102 loss) +I0408 15:15:28.828243 20259 solver.cpp:218] Iteration 3372 (0.870229 iter/s, 13.7895s/12 iters), loss = 2.30877 +I0408 15:15:28.828289 20259 solver.cpp:237] Train net output #0: loss = 2.30877 (* 1 = 2.30877 loss) +I0408 15:15:28.828301 20259 sgd_solver.cpp:105] Iteration 3372, lr = 0.000307123 +I0408 15:15:33.745179 20259 solver.cpp:218] Iteration 3384 (2.44065 iter/s, 4.91673s/12 iters), loss = 2.35871 +I0408 15:15:33.745223 20259 solver.cpp:237] Train net output #0: loss = 2.35871 (* 1 = 2.35871 loss) +I0408 15:15:33.745235 20259 sgd_solver.cpp:105] Iteration 3384, lr = 0.00030334 +I0408 15:15:38.660660 20259 solver.cpp:218] Iteration 3396 (2.44137 iter/s, 4.91528s/12 iters), loss = 2.52522 +I0408 15:15:38.660706 20259 solver.cpp:237] Train net output #0: loss = 2.52522 (* 1 = 2.52522 loss) +I0408 15:15:38.660718 20259 sgd_solver.cpp:105] Iteration 3396, lr = 0.000299603 +I0408 15:15:43.494419 20259 solver.cpp:218] Iteration 3408 (2.48264 iter/s, 4.83356s/12 iters), loss = 2.44715 +I0408 15:15:43.494475 20259 solver.cpp:237] Train net output #0: loss = 2.44715 (* 1 = 2.44715 loss) +I0408 15:15:43.494491 20259 sgd_solver.cpp:105] Iteration 3408, lr = 0.000295912 +I0408 15:15:48.393359 20259 solver.cpp:218] Iteration 3420 (2.44962 iter/s, 4.89873s/12 iters), loss = 2.00975 +I0408 15:15:48.393405 20259 solver.cpp:237] Train net output #0: loss = 2.00975 (* 1 = 2.00975 loss) +I0408 15:15:48.393419 20259 sgd_solver.cpp:105] Iteration 3420, lr = 0.000292267 +I0408 15:15:53.376818 20259 solver.cpp:218] Iteration 3432 (2.40806 iter/s, 4.98325s/12 iters), loss = 2.23902 +I0408 15:15:53.376863 20259 solver.cpp:237] Train net output #0: loss = 2.23902 (* 1 = 2.23902 loss) +I0408 15:15:53.376874 20259 sgd_solver.cpp:105] Iteration 3432, lr = 0.000288666 +I0408 15:15:55.978663 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:15:58.385565 20259 solver.cpp:218] Iteration 3444 (2.39591 iter/s, 5.00854s/12 iters), loss = 2.0213 +I0408 15:15:58.385607 20259 solver.cpp:237] Train net output #0: loss = 2.0213 (* 1 = 2.0213 loss) +I0408 15:15:58.385619 20259 sgd_solver.cpp:105] Iteration 3444, lr = 0.00028511 +I0408 15:16:03.335829 20259 solver.cpp:218] Iteration 3456 (2.42421 iter/s, 4.95007s/12 iters), loss = 2.2016 +I0408 15:16:03.335863 20259 solver.cpp:237] Train net output #0: loss = 2.2016 (* 1 = 2.2016 loss) +I0408 15:16:03.335871 20259 sgd_solver.cpp:105] Iteration 3456, lr = 0.000281598 +I0408 15:16:07.750785 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 15:16:12.283390 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 15:16:14.617708 20259 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 15:16:14.617740 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:16:15.076900 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:16:17.684154 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:16:19.063997 20259 solver.cpp:397] Test net output #0: accuracy = 0.25 +I0408 15:16:19.064041 20259 solver.cpp:397] Test net output #1: loss = 3.38171 (* 1 = 3.38171 loss) +I0408 15:16:19.153920 20259 solver.cpp:218] Iteration 3468 (0.758649 iter/s, 15.8176s/12 iters), loss = 2.18149 +I0408 15:16:19.153975 20259 solver.cpp:237] Train net output #0: loss = 2.18149 (* 1 = 2.18149 loss) +I0408 15:16:19.153987 20259 sgd_solver.cpp:105] Iteration 3468, lr = 0.000278129 +I0408 15:16:23.354646 20259 solver.cpp:218] Iteration 3480 (2.85676 iter/s, 4.20056s/12 iters), loss = 2.49893 +I0408 15:16:23.354687 20259 solver.cpp:237] Train net output #0: loss = 2.49893 (* 1 = 2.49893 loss) +I0408 15:16:23.354699 20259 sgd_solver.cpp:105] Iteration 3480, lr = 0.000274703 +I0408 15:16:28.397028 20259 solver.cpp:218] Iteration 3492 (2.37992 iter/s, 5.04218s/12 iters), loss = 2.30262 +I0408 15:16:28.397120 20259 solver.cpp:237] Train net output #0: loss = 2.30262 (* 1 = 2.30262 loss) +I0408 15:16:28.397132 20259 sgd_solver.cpp:105] Iteration 3492, lr = 0.000271319 +I0408 15:16:33.346959 20259 solver.cpp:218] Iteration 3504 (2.4244 iter/s, 4.94969s/12 iters), loss = 2.52281 +I0408 15:16:33.346997 20259 solver.cpp:237] Train net output #0: loss = 2.52281 (* 1 = 2.52281 loss) +I0408 15:16:33.347005 20259 sgd_solver.cpp:105] Iteration 3504, lr = 0.000267977 +I0408 15:16:38.319382 20259 solver.cpp:218] Iteration 3516 (2.41341 iter/s, 4.97223s/12 iters), loss = 2.02852 +I0408 15:16:38.319425 20259 solver.cpp:237] Train net output #0: loss = 2.02852 (* 1 = 2.02852 loss) +I0408 15:16:38.319437 20259 sgd_solver.cpp:105] Iteration 3516, lr = 0.000264675 +I0408 15:16:43.611330 20259 solver.cpp:218] Iteration 3528 (2.26769 iter/s, 5.29173s/12 iters), loss = 1.95305 +I0408 15:16:43.611377 20259 solver.cpp:237] Train net output #0: loss = 1.95305 (* 1 = 1.95305 loss) +I0408 15:16:43.611389 20259 sgd_solver.cpp:105] Iteration 3528, lr = 0.000261415 +I0408 15:16:48.389279 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:16:48.649283 20259 solver.cpp:218] Iteration 3540 (2.38202 iter/s, 5.03775s/12 iters), loss = 2.1208 +I0408 15:16:48.649325 20259 solver.cpp:237] Train net output #0: loss = 2.1208 (* 1 = 2.1208 loss) +I0408 15:16:48.649338 20259 sgd_solver.cpp:105] Iteration 3540, lr = 0.000258195 +I0408 15:16:53.656181 20259 solver.cpp:218] Iteration 3552 (2.39679 iter/s, 5.0067s/12 iters), loss = 2.22157 +I0408 15:16:53.656211 20259 solver.cpp:237] Train net output #0: loss = 2.22157 (* 1 = 2.22157 loss) +I0408 15:16:53.656219 20259 sgd_solver.cpp:105] Iteration 3552, lr = 0.000255014 +I0408 15:16:58.696828 20259 solver.cpp:218] Iteration 3564 (2.38074 iter/s, 5.04046s/12 iters), loss = 2.05925 +I0408 15:16:58.696949 20259 solver.cpp:237] Train net output #0: loss = 2.05925 (* 1 = 2.05925 loss) +I0408 15:16:58.696961 20259 sgd_solver.cpp:105] Iteration 3564, lr = 0.000251873 +I0408 15:17:00.734360 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 15:17:06.249675 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 15:17:11.057160 20259 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 15:17:11.057191 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:17:14.095331 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:17:15.508710 20259 solver.cpp:397] Test net output #0: accuracy = 0.251838 +I0408 15:17:15.508755 20259 solver.cpp:397] Test net output #1: loss = 3.40355 (* 1 = 3.40355 loss) +I0408 15:17:17.473536 20259 solver.cpp:218] Iteration 3576 (0.639113 iter/s, 18.776s/12 iters), loss = 2.61419 +I0408 15:17:17.473582 20259 solver.cpp:237] Train net output #0: loss = 2.61419 (* 1 = 2.61419 loss) +I0408 15:17:17.473594 20259 sgd_solver.cpp:105] Iteration 3576, lr = 0.00024877 +I0408 15:17:22.493481 20259 solver.cpp:218] Iteration 3588 (2.39056 iter/s, 5.01974s/12 iters), loss = 1.96285 +I0408 15:17:22.493523 20259 solver.cpp:237] Train net output #0: loss = 1.96285 (* 1 = 1.96285 loss) +I0408 15:17:22.493536 20259 sgd_solver.cpp:105] Iteration 3588, lr = 0.000245705 +I0408 15:17:27.532737 20259 solver.cpp:218] Iteration 3600 (2.3814 iter/s, 5.03906s/12 iters), loss = 2.25013 +I0408 15:17:27.532780 20259 solver.cpp:237] Train net output #0: loss = 2.25013 (* 1 = 2.25013 loss) +I0408 15:17:27.532791 20259 sgd_solver.cpp:105] Iteration 3600, lr = 0.000242678 +I0408 15:17:32.491396 20259 solver.cpp:218] Iteration 3612 (2.42011 iter/s, 4.95846s/12 iters), loss = 2.07283 +I0408 15:17:32.491521 20259 solver.cpp:237] Train net output #0: loss = 2.07283 (* 1 = 2.07283 loss) +I0408 15:17:32.491534 20259 sgd_solver.cpp:105] Iteration 3612, lr = 0.000239689 +I0408 15:17:37.381690 20259 solver.cpp:218] Iteration 3624 (2.45398 iter/s, 4.89002s/12 iters), loss = 2.1454 +I0408 15:17:37.381726 20259 solver.cpp:237] Train net output #0: loss = 2.1454 (* 1 = 2.1454 loss) +I0408 15:17:37.381736 20259 sgd_solver.cpp:105] Iteration 3624, lr = 0.000236736 +I0408 15:17:42.259433 20259 solver.cpp:218] Iteration 3636 (2.46025 iter/s, 4.87755s/12 iters), loss = 2.14376 +I0408 15:17:42.259477 20259 solver.cpp:237] Train net output #0: loss = 2.14376 (* 1 = 2.14376 loss) +I0408 15:17:42.259490 20259 sgd_solver.cpp:105] Iteration 3636, lr = 0.00023382 +I0408 15:17:44.098199 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:17:47.172498 20259 solver.cpp:218] Iteration 3648 (2.44257 iter/s, 4.91287s/12 iters), loss = 2.19016 +I0408 15:17:47.172544 20259 solver.cpp:237] Train net output #0: loss = 2.19016 (* 1 = 2.19016 loss) +I0408 15:17:47.172556 20259 sgd_solver.cpp:105] Iteration 3648, lr = 0.000230939 +I0408 15:17:52.155081 20259 solver.cpp:218] Iteration 3660 (2.40849 iter/s, 4.98238s/12 iters), loss = 2.25753 +I0408 15:17:52.155125 20259 solver.cpp:237] Train net output #0: loss = 2.25753 (* 1 = 2.25753 loss) +I0408 15:17:52.155138 20259 sgd_solver.cpp:105] Iteration 3660, lr = 0.000228095 +I0408 15:17:56.674427 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 15:18:00.191483 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 15:18:02.671655 20259 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 15:18:02.671725 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:18:05.660228 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:18:07.120371 20259 solver.cpp:397] Test net output #0: accuracy = 0.257353 +I0408 15:18:07.120416 20259 solver.cpp:397] Test net output #1: loss = 3.36658 (* 1 = 3.36658 loss) +I0408 15:18:07.210685 20259 solver.cpp:218] Iteration 3672 (0.797072 iter/s, 15.0551s/12 iters), loss = 1.94612 +I0408 15:18:07.210726 20259 solver.cpp:237] Train net output #0: loss = 1.94612 (* 1 = 1.94612 loss) +I0408 15:18:07.210736 20259 sgd_solver.cpp:105] Iteration 3672, lr = 0.000225285 +I0408 15:18:11.624944 20259 solver.cpp:218] Iteration 3684 (2.71858 iter/s, 4.41408s/12 iters), loss = 2.05083 +I0408 15:18:11.624995 20259 solver.cpp:237] Train net output #0: loss = 2.05083 (* 1 = 2.05083 loss) +I0408 15:18:11.625007 20259 sgd_solver.cpp:105] Iteration 3684, lr = 0.000222509 +I0408 15:18:16.521661 20259 solver.cpp:218] Iteration 3696 (2.45072 iter/s, 4.89651s/12 iters), loss = 2.30366 +I0408 15:18:16.521697 20259 solver.cpp:237] Train net output #0: loss = 2.30366 (* 1 = 2.30366 loss) +I0408 15:18:16.521708 20259 sgd_solver.cpp:105] Iteration 3696, lr = 0.000219768 +I0408 15:18:21.610183 20259 solver.cpp:218] Iteration 3708 (2.35834 iter/s, 5.08832s/12 iters), loss = 2.11528 +I0408 15:18:21.610229 20259 solver.cpp:237] Train net output #0: loss = 2.11528 (* 1 = 2.11528 loss) +I0408 15:18:21.610239 20259 sgd_solver.cpp:105] Iteration 3708, lr = 0.000217061 +I0408 15:18:26.650837 20259 solver.cpp:218] Iteration 3720 (2.38074 iter/s, 5.04045s/12 iters), loss = 2.14861 +I0408 15:18:26.650880 20259 solver.cpp:237] Train net output #0: loss = 2.14861 (* 1 = 2.14861 loss) +I0408 15:18:26.650892 20259 sgd_solver.cpp:105] Iteration 3720, lr = 0.000214387 +I0408 15:18:31.513193 20259 solver.cpp:218] Iteration 3732 (2.46804 iter/s, 4.86216s/12 iters), loss = 1.92334 +I0408 15:18:31.513236 20259 solver.cpp:237] Train net output #0: loss = 1.92334 (* 1 = 1.92334 loss) +I0408 15:18:31.513247 20259 sgd_solver.cpp:105] Iteration 3732, lr = 0.000211746 +I0408 15:18:35.444584 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:18:36.377730 20259 solver.cpp:218] Iteration 3744 (2.46693 iter/s, 4.86434s/12 iters), loss = 2.15775 +I0408 15:18:36.377774 20259 solver.cpp:237] Train net output #0: loss = 2.15775 (* 1 = 2.15775 loss) +I0408 15:18:36.377786 20259 sgd_solver.cpp:105] Iteration 3744, lr = 0.000209138 +I0408 15:18:41.491072 20259 solver.cpp:218] Iteration 3756 (2.3469 iter/s, 5.11313s/12 iters), loss = 2.43323 +I0408 15:18:41.491122 20259 solver.cpp:237] Train net output #0: loss = 2.43323 (* 1 = 2.43323 loss) +I0408 15:18:41.491134 20259 sgd_solver.cpp:105] Iteration 3756, lr = 0.000206561 +I0408 15:18:46.415561 20259 solver.cpp:218] Iteration 3768 (2.4369 iter/s, 4.92428s/12 iters), loss = 2.09022 +I0408 15:18:46.415608 20259 solver.cpp:237] Train net output #0: loss = 2.09022 (* 1 = 2.09022 loss) +I0408 15:18:46.415621 20259 sgd_solver.cpp:105] Iteration 3768, lr = 0.000204017 +I0408 15:18:48.433030 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 15:18:54.965466 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 15:18:57.305182 20259 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 15:18:57.305212 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:19:00.270792 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:19:01.764086 20259 solver.cpp:397] Test net output #0: accuracy = 0.25674 +I0408 15:19:01.764132 20259 solver.cpp:397] Test net output #1: loss = 3.3339 (* 1 = 3.3339 loss) +I0408 15:19:03.683331 20259 solver.cpp:218] Iteration 3780 (0.694959 iter/s, 17.2672s/12 iters), loss = 2.20626 +I0408 15:19:03.683384 20259 solver.cpp:237] Train net output #0: loss = 2.20626 (* 1 = 2.20626 loss) +I0408 15:19:03.683399 20259 sgd_solver.cpp:105] Iteration 3780, lr = 0.000201504 +I0408 15:19:08.686540 20259 solver.cpp:218] Iteration 3792 (2.39856 iter/s, 5.003s/12 iters), loss = 2.13485 +I0408 15:19:08.686641 20259 solver.cpp:237] Train net output #0: loss = 2.13485 (* 1 = 2.13485 loss) +I0408 15:19:08.686650 20259 sgd_solver.cpp:105] Iteration 3792, lr = 0.000199021 +I0408 15:19:13.715085 20259 solver.cpp:218] Iteration 3804 (2.3865 iter/s, 5.02828s/12 iters), loss = 2.02356 +I0408 15:19:13.715128 20259 solver.cpp:237] Train net output #0: loss = 2.02356 (* 1 = 2.02356 loss) +I0408 15:19:13.715140 20259 sgd_solver.cpp:105] Iteration 3804, lr = 0.00019657 +I0408 15:19:18.717937 20259 solver.cpp:218] Iteration 3816 (2.39873 iter/s, 5.00265s/12 iters), loss = 2.06042 +I0408 15:19:18.717993 20259 solver.cpp:237] Train net output #0: loss = 2.06042 (* 1 = 2.06042 loss) +I0408 15:19:18.718005 20259 sgd_solver.cpp:105] Iteration 3816, lr = 0.000194148 +I0408 15:19:23.882249 20259 solver.cpp:218] Iteration 3828 (2.32374 iter/s, 5.16409s/12 iters), loss = 1.9872 +I0408 15:19:23.882297 20259 solver.cpp:237] Train net output #0: loss = 1.9872 (* 1 = 1.9872 loss) +I0408 15:19:23.882309 20259 sgd_solver.cpp:105] Iteration 3828, lr = 0.000191756 +I0408 15:19:28.875814 20259 solver.cpp:218] Iteration 3840 (2.40319 iter/s, 4.99335s/12 iters), loss = 2.12378 +I0408 15:19:28.875860 20259 solver.cpp:237] Train net output #0: loss = 2.12378 (* 1 = 2.12378 loss) +I0408 15:19:28.875871 20259 sgd_solver.cpp:105] Iteration 3840, lr = 0.000189394 +I0408 15:19:29.997422 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:19:33.895490 20259 solver.cpp:218] Iteration 3852 (2.39069 iter/s, 5.01947s/12 iters), loss = 1.86912 +I0408 15:19:33.895536 20259 solver.cpp:237] Train net output #0: loss = 1.86912 (* 1 = 1.86912 loss) +I0408 15:19:33.895547 20259 sgd_solver.cpp:105] Iteration 3852, lr = 0.000187061 +I0408 15:19:38.747684 20259 solver.cpp:218] Iteration 3864 (2.47321 iter/s, 4.85199s/12 iters), loss = 2.23307 +I0408 15:19:38.747831 20259 solver.cpp:237] Train net output #0: loss = 2.23307 (* 1 = 2.23307 loss) +I0408 15:19:38.747844 20259 sgd_solver.cpp:105] Iteration 3864, lr = 0.000184757 +I0408 15:19:43.191990 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 15:19:47.994042 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 15:19:52.372921 20259 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 15:19:52.372952 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:19:55.299605 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:19:56.841346 20259 solver.cpp:397] Test net output #0: accuracy = 0.259191 +I0408 15:19:56.841390 20259 solver.cpp:397] Test net output #1: loss = 3.35031 (* 1 = 3.35031 loss) +I0408 15:19:56.931504 20259 solver.cpp:218] Iteration 3876 (0.659952 iter/s, 18.1831s/12 iters), loss = 2.13698 +I0408 15:19:56.931540 20259 solver.cpp:237] Train net output #0: loss = 2.13698 (* 1 = 2.13698 loss) +I0408 15:19:56.931550 20259 sgd_solver.cpp:105] Iteration 3876, lr = 0.000182481 +I0408 15:20:01.248744 20259 solver.cpp:218] Iteration 3888 (2.77967 iter/s, 4.31706s/12 iters), loss = 2.17747 +I0408 15:20:01.248801 20259 solver.cpp:237] Train net output #0: loss = 2.17747 (* 1 = 2.17747 loss) +I0408 15:20:01.248817 20259 sgd_solver.cpp:105] Iteration 3888, lr = 0.000180233 +I0408 15:20:06.307523 20259 solver.cpp:218] Iteration 3900 (2.37221 iter/s, 5.05857s/12 iters), loss = 2.19284 +I0408 15:20:06.307581 20259 solver.cpp:237] Train net output #0: loss = 2.19284 (* 1 = 2.19284 loss) +I0408 15:20:06.307593 20259 sgd_solver.cpp:105] Iteration 3900, lr = 0.000178012 +I0408 15:20:11.271230 20259 solver.cpp:218] Iteration 3912 (2.41765 iter/s, 4.9635s/12 iters), loss = 1.969 +I0408 15:20:11.271332 20259 solver.cpp:237] Train net output #0: loss = 1.969 (* 1 = 1.969 loss) +I0408 15:20:11.271340 20259 sgd_solver.cpp:105] Iteration 3912, lr = 0.00017582 +I0408 15:20:16.256322 20259 solver.cpp:218] Iteration 3924 (2.4073 iter/s, 4.98483s/12 iters), loss = 1.93301 +I0408 15:20:16.256368 20259 solver.cpp:237] Train net output #0: loss = 1.93301 (* 1 = 1.93301 loss) +I0408 15:20:16.256379 20259 sgd_solver.cpp:105] Iteration 3924, lr = 0.000173654 +I0408 15:20:21.201033 20259 solver.cpp:218] Iteration 3936 (2.42694 iter/s, 4.9445s/12 iters), loss = 1.87884 +I0408 15:20:21.201081 20259 solver.cpp:237] Train net output #0: loss = 1.87884 (* 1 = 1.87884 loss) +I0408 15:20:21.201092 20259 sgd_solver.cpp:105] Iteration 3936, lr = 0.000171514 +I0408 15:20:24.597363 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:20:26.231016 20259 solver.cpp:218] Iteration 3948 (2.38579 iter/s, 5.02978s/12 iters), loss = 2.22511 +I0408 15:20:26.231060 20259 solver.cpp:237] Train net output #0: loss = 2.22511 (* 1 = 2.22511 loss) +I0408 15:20:26.231070 20259 sgd_solver.cpp:105] Iteration 3948, lr = 0.000169402 +I0408 15:20:31.281457 20259 solver.cpp:218] Iteration 3960 (2.37613 iter/s, 5.05024s/12 iters), loss = 1.94723 +I0408 15:20:31.281497 20259 solver.cpp:237] Train net output #0: loss = 1.94723 (* 1 = 1.94723 loss) +I0408 15:20:31.281505 20259 sgd_solver.cpp:105] Iteration 3960, lr = 0.000167315 +I0408 15:20:36.282706 20259 solver.cpp:218] Iteration 3972 (2.3995 iter/s, 5.00105s/12 iters), loss = 1.83351 +I0408 15:20:36.282765 20259 solver.cpp:237] Train net output #0: loss = 1.83351 (* 1 = 1.83351 loss) +I0408 15:20:36.282780 20259 sgd_solver.cpp:105] Iteration 3972, lr = 0.000165254 +I0408 15:20:38.331022 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 15:20:41.660303 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 15:20:44.157557 20259 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 15:20:44.157588 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:20:47.044946 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:20:48.621830 20259 solver.cpp:397] Test net output #0: accuracy = 0.270833 +I0408 15:20:48.621876 20259 solver.cpp:397] Test net output #1: loss = 3.3392 (* 1 = 3.3392 loss) +I0408 15:20:50.609930 20259 solver.cpp:218] Iteration 3984 (0.837595 iter/s, 14.3267s/12 iters), loss = 2.01294 +I0408 15:20:50.609984 20259 solver.cpp:237] Train net output #0: loss = 2.01294 (* 1 = 2.01294 loss) +I0408 15:20:50.609997 20259 sgd_solver.cpp:105] Iteration 3984, lr = 0.000163218 +I0408 15:20:55.908186 20259 solver.cpp:218] Iteration 3996 (2.26499 iter/s, 5.29804s/12 iters), loss = 2.01741 +I0408 15:20:55.908231 20259 solver.cpp:237] Train net output #0: loss = 2.01741 (* 1 = 2.01741 loss) +I0408 15:20:55.908242 20259 sgd_solver.cpp:105] Iteration 3996, lr = 0.000161207 +I0408 15:21:00.995841 20259 solver.cpp:218] Iteration 4008 (2.35875 iter/s, 5.08744s/12 iters), loss = 1.97462 +I0408 15:21:00.995889 20259 solver.cpp:237] Train net output #0: loss = 1.97462 (* 1 = 1.97462 loss) +I0408 15:21:00.995901 20259 sgd_solver.cpp:105] Iteration 4008, lr = 0.000159221 +I0408 15:21:05.999851 20259 solver.cpp:218] Iteration 4020 (2.39818 iter/s, 5.0038s/12 iters), loss = 2.26349 +I0408 15:21:05.999898 20259 solver.cpp:237] Train net output #0: loss = 2.26349 (* 1 = 2.26349 loss) +I0408 15:21:05.999912 20259 sgd_solver.cpp:105] Iteration 4020, lr = 0.00015726 +I0408 15:21:10.974900 20259 solver.cpp:218] Iteration 4032 (2.41214 iter/s, 4.97484s/12 iters), loss = 2.05152 +I0408 15:21:10.974949 20259 solver.cpp:237] Train net output #0: loss = 2.05152 (* 1 = 2.05152 loss) +I0408 15:21:10.974962 20259 sgd_solver.cpp:105] Iteration 4032, lr = 0.000155323 +I0408 15:21:16.035255 20259 solver.cpp:218] Iteration 4044 (2.37147 iter/s, 5.06015s/12 iters), loss = 2.13141 +I0408 15:21:16.035360 20259 solver.cpp:237] Train net output #0: loss = 2.13141 (* 1 = 2.13141 loss) +I0408 15:21:16.035372 20259 sgd_solver.cpp:105] Iteration 4044, lr = 0.000153409 +I0408 15:21:16.524933 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:21:21.239302 20259 solver.cpp:218] Iteration 4056 (2.30602 iter/s, 5.20378s/12 iters), loss = 1.94269 +I0408 15:21:21.239349 20259 solver.cpp:237] Train net output #0: loss = 1.94269 (* 1 = 1.94269 loss) +I0408 15:21:21.239362 20259 sgd_solver.cpp:105] Iteration 4056, lr = 0.000151519 +I0408 15:21:26.633163 20259 solver.cpp:218] Iteration 4068 (2.22484 iter/s, 5.39364s/12 iters), loss = 1.89917 +I0408 15:21:26.633208 20259 solver.cpp:237] Train net output #0: loss = 1.89917 (* 1 = 1.89917 loss) +I0408 15:21:26.633219 20259 sgd_solver.cpp:105] Iteration 4068, lr = 0.000149653 +I0408 15:21:31.207808 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 15:21:35.745290 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 15:21:39.246181 20259 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 15:21:39.246212 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:21:42.094470 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:21:43.706470 20259 solver.cpp:397] Test net output #0: accuracy = 0.266544 +I0408 15:21:43.706516 20259 solver.cpp:397] Test net output #1: loss = 3.32707 (* 1 = 3.32707 loss) +I0408 15:21:43.796960 20259 solver.cpp:218] Iteration 4080 (0.699169 iter/s, 17.1632s/12 iters), loss = 2.03832 +I0408 15:21:43.797019 20259 solver.cpp:237] Train net output #0: loss = 2.03832 (* 1 = 2.03832 loss) +I0408 15:21:43.797035 20259 sgd_solver.cpp:105] Iteration 4080, lr = 0.000147809 +I0408 15:21:48.009002 20259 solver.cpp:218] Iteration 4092 (2.8491 iter/s, 4.21186s/12 iters), loss = 1.78383 +I0408 15:21:48.009135 20259 solver.cpp:237] Train net output #0: loss = 1.78383 (* 1 = 1.78383 loss) +I0408 15:21:48.009146 20259 sgd_solver.cpp:105] Iteration 4092, lr = 0.000145989 +I0408 15:21:52.931219 20259 solver.cpp:218] Iteration 4104 (2.43807 iter/s, 4.92193s/12 iters), loss = 1.90191 +I0408 15:21:52.931264 20259 solver.cpp:237] Train net output #0: loss = 1.90191 (* 1 = 1.90191 loss) +I0408 15:21:52.931277 20259 sgd_solver.cpp:105] Iteration 4104, lr = 0.00014419 +I0408 15:21:57.845100 20259 solver.cpp:218] Iteration 4116 (2.44216 iter/s, 4.91368s/12 iters), loss = 2.18834 +I0408 15:21:57.845146 20259 solver.cpp:237] Train net output #0: loss = 2.18834 (* 1 = 2.18834 loss) +I0408 15:21:57.845156 20259 sgd_solver.cpp:105] Iteration 4116, lr = 0.000142414 +I0408 15:22:02.759826 20259 solver.cpp:218] Iteration 4128 (2.44174 iter/s, 4.91452s/12 iters), loss = 1.59497 +I0408 15:22:02.759869 20259 solver.cpp:237] Train net output #0: loss = 1.59497 (* 1 = 1.59497 loss) +I0408 15:22:02.759881 20259 sgd_solver.cpp:105] Iteration 4128, lr = 0.000140659 +I0408 15:22:07.930110 20259 solver.cpp:218] Iteration 4140 (2.32105 iter/s, 5.17007s/12 iters), loss = 1.95271 +I0408 15:22:07.930158 20259 solver.cpp:237] Train net output #0: loss = 1.95271 (* 1 = 1.95271 loss) +I0408 15:22:07.930171 20259 sgd_solver.cpp:105] Iteration 4140, lr = 0.000138927 +I0408 15:22:10.559337 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:22:12.944034 20259 solver.cpp:218] Iteration 4152 (2.39343 iter/s, 5.01372s/12 iters), loss = 1.67475 +I0408 15:22:12.944080 20259 solver.cpp:237] Train net output #0: loss = 1.67475 (* 1 = 1.67475 loss) +I0408 15:22:12.944092 20259 sgd_solver.cpp:105] Iteration 4152, lr = 0.000137215 +I0408 15:22:14.551028 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:22:17.965426 20259 solver.cpp:218] Iteration 4164 (2.38987 iter/s, 5.02119s/12 iters), loss = 1.84187 +I0408 15:22:17.965472 20259 solver.cpp:237] Train net output #0: loss = 1.84187 (* 1 = 1.84187 loss) +I0408 15:22:17.965484 20259 sgd_solver.cpp:105] Iteration 4164, lr = 0.000135525 +I0408 15:22:22.963990 20259 solver.cpp:218] Iteration 4176 (2.40079 iter/s, 4.99836s/12 iters), loss = 1.93514 +I0408 15:22:22.964102 20259 solver.cpp:237] Train net output #0: loss = 1.93514 (* 1 = 1.93514 loss) +I0408 15:22:22.964115 20259 sgd_solver.cpp:105] Iteration 4176, lr = 0.000133855 +I0408 15:22:25.010104 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 15:22:28.757258 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 15:22:31.609259 20259 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 15:22:31.609290 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:22:34.406277 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:22:36.063241 20259 solver.cpp:397] Test net output #0: accuracy = 0.273897 +I0408 15:22:36.063277 20259 solver.cpp:397] Test net output #1: loss = 3.30413 (* 1 = 3.30413 loss) +I0408 15:22:38.048882 20259 solver.cpp:218] Iteration 4188 (0.795528 iter/s, 15.0843s/12 iters), loss = 1.92269 +I0408 15:22:38.048929 20259 solver.cpp:237] Train net output #0: loss = 1.92269 (* 1 = 1.92269 loss) +I0408 15:22:38.048941 20259 sgd_solver.cpp:105] Iteration 4188, lr = 0.000132207 +I0408 15:22:43.050629 20259 solver.cpp:218] Iteration 4200 (2.39926 iter/s, 5.00154s/12 iters), loss = 1.92814 +I0408 15:22:43.050673 20259 solver.cpp:237] Train net output #0: loss = 1.92814 (* 1 = 1.92814 loss) +I0408 15:22:43.050685 20259 sgd_solver.cpp:105] Iteration 4200, lr = 0.000130578 +I0408 15:22:48.063274 20259 solver.cpp:218] Iteration 4212 (2.39404 iter/s, 5.01244s/12 iters), loss = 2.03343 +I0408 15:22:48.063328 20259 solver.cpp:237] Train net output #0: loss = 2.03343 (* 1 = 2.03343 loss) +I0408 15:22:48.063344 20259 sgd_solver.cpp:105] Iteration 4212, lr = 0.000128969 +I0408 15:22:53.049055 20259 solver.cpp:218] Iteration 4224 (2.40695 iter/s, 4.98557s/12 iters), loss = 1.69351 +I0408 15:22:53.049204 20259 solver.cpp:237] Train net output #0: loss = 1.69351 (* 1 = 1.69351 loss) +I0408 15:22:53.049217 20259 sgd_solver.cpp:105] Iteration 4224, lr = 0.000127381 +I0408 15:22:58.070740 20259 solver.cpp:218] Iteration 4236 (2.38978 iter/s, 5.02138s/12 iters), loss = 1.87916 +I0408 15:22:58.070782 20259 solver.cpp:237] Train net output #0: loss = 1.87916 (* 1 = 1.87916 loss) +I0408 15:22:58.070794 20259 sgd_solver.cpp:105] Iteration 4236, lr = 0.000125811 +I0408 15:23:02.862196 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:23:03.091171 20259 solver.cpp:218] Iteration 4248 (2.39033 iter/s, 5.02023s/12 iters), loss = 1.87967 +I0408 15:23:03.091212 20259 solver.cpp:237] Train net output #0: loss = 1.87967 (* 1 = 1.87967 loss) +I0408 15:23:03.091223 20259 sgd_solver.cpp:105] Iteration 4248, lr = 0.000124262 +I0408 15:23:08.103276 20259 solver.cpp:218] Iteration 4260 (2.3943 iter/s, 5.0119s/12 iters), loss = 1.93028 +I0408 15:23:08.103322 20259 solver.cpp:237] Train net output #0: loss = 1.93028 (* 1 = 1.93028 loss) +I0408 15:23:08.103333 20259 sgd_solver.cpp:105] Iteration 4260, lr = 0.000122731 +I0408 15:23:13.089500 20259 solver.cpp:218] Iteration 4272 (2.40673 iter/s, 4.98602s/12 iters), loss = 1.7452 +I0408 15:23:13.089555 20259 solver.cpp:237] Train net output #0: loss = 1.7452 (* 1 = 1.7452 loss) +I0408 15:23:13.089571 20259 sgd_solver.cpp:105] Iteration 4272, lr = 0.000121219 +I0408 15:23:17.598070 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 15:23:20.829849 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 15:23:23.541268 20259 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 15:23:23.541375 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:23:26.303488 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:23:27.995059 20259 solver.cpp:397] Test net output #0: accuracy = 0.272672 +I0408 15:23:27.995105 20259 solver.cpp:397] Test net output #1: loss = 3.30975 (* 1 = 3.30975 loss) +I0408 15:23:28.085516 20259 solver.cpp:218] Iteration 4284 (0.800239 iter/s, 14.9955s/12 iters), loss = 2.18403 +I0408 15:23:28.085577 20259 solver.cpp:237] Train net output #0: loss = 2.18403 (* 1 = 2.18403 loss) +I0408 15:23:28.085592 20259 sgd_solver.cpp:105] Iteration 4284, lr = 0.000119726 +I0408 15:23:32.299211 20259 solver.cpp:218] Iteration 4296 (2.84799 iter/s, 4.2135s/12 iters), loss = 1.73786 +I0408 15:23:32.299257 20259 solver.cpp:237] Train net output #0: loss = 1.73786 (* 1 = 1.73786 loss) +I0408 15:23:32.299269 20259 sgd_solver.cpp:105] Iteration 4296, lr = 0.000118251 +I0408 15:23:37.489699 20259 solver.cpp:218] Iteration 4308 (2.31201 iter/s, 5.19028s/12 iters), loss = 2.04976 +I0408 15:23:37.489737 20259 solver.cpp:237] Train net output #0: loss = 2.04976 (* 1 = 2.04976 loss) +I0408 15:23:37.489751 20259 sgd_solver.cpp:105] Iteration 4308, lr = 0.000116794 +I0408 15:23:42.935312 20259 solver.cpp:218] Iteration 4320 (2.2037 iter/s, 5.4454s/12 iters), loss = 2.09239 +I0408 15:23:42.935360 20259 solver.cpp:237] Train net output #0: loss = 2.09239 (* 1 = 2.09239 loss) +I0408 15:23:42.935374 20259 sgd_solver.cpp:105] Iteration 4320, lr = 0.000115355 +I0408 15:23:47.957197 20259 solver.cpp:218] Iteration 4332 (2.38964 iter/s, 5.02168s/12 iters), loss = 1.85445 +I0408 15:23:47.957243 20259 solver.cpp:237] Train net output #0: loss = 1.85445 (* 1 = 1.85445 loss) +I0408 15:23:47.957255 20259 sgd_solver.cpp:105] Iteration 4332, lr = 0.000113934 +I0408 15:23:52.892969 20259 solver.cpp:218] Iteration 4344 (2.43133 iter/s, 4.93557s/12 iters), loss = 1.63942 +I0408 15:23:52.893018 20259 solver.cpp:237] Train net output #0: loss = 1.63942 (* 1 = 1.63942 loss) +I0408 15:23:52.893029 20259 sgd_solver.cpp:105] Iteration 4344, lr = 0.000112531 +I0408 15:23:54.814090 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:23:57.894850 20259 solver.cpp:218] Iteration 4356 (2.39919 iter/s, 5.00168s/12 iters), loss = 1.98091 +I0408 15:23:57.894894 20259 solver.cpp:237] Train net output #0: loss = 1.98091 (* 1 = 1.98091 loss) +I0408 15:23:57.894906 20259 sgd_solver.cpp:105] Iteration 4356, lr = 0.000111144 +I0408 15:24:02.924823 20259 solver.cpp:218] Iteration 4368 (2.38579 iter/s, 5.02977s/12 iters), loss = 1.92794 +I0408 15:24:02.924865 20259 solver.cpp:237] Train net output #0: loss = 1.92794 (* 1 = 1.92794 loss) +I0408 15:24:02.924875 20259 sgd_solver.cpp:105] Iteration 4368, lr = 0.000109775 +I0408 15:24:07.805138 20259 solver.cpp:218] Iteration 4380 (2.45896 iter/s, 4.88012s/12 iters), loss = 1.70349 +I0408 15:24:07.805181 20259 solver.cpp:237] Train net output #0: loss = 1.70349 (* 1 = 1.70349 loss) +I0408 15:24:07.805191 20259 sgd_solver.cpp:105] Iteration 4380, lr = 0.000108423 +I0408 15:24:09.776223 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 15:24:12.824788 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 15:24:15.154793 20259 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 15:24:15.154824 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:24:17.883872 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:24:19.621820 20259 solver.cpp:397] Test net output #0: accuracy = 0.276348 +I0408 15:24:19.621866 20259 solver.cpp:397] Test net output #1: loss = 3.31631 (* 1 = 3.31631 loss) +I0408 15:24:21.527909 20259 solver.cpp:218] Iteration 4392 (0.874488 iter/s, 13.7223s/12 iters), loss = 1.87839 +I0408 15:24:21.527957 20259 solver.cpp:237] Train net output #0: loss = 1.87839 (* 1 = 1.87839 loss) +I0408 15:24:21.527969 20259 sgd_solver.cpp:105] Iteration 4392, lr = 0.000107087 +I0408 15:24:26.450794 20259 solver.cpp:218] Iteration 4404 (2.4377 iter/s, 4.92268s/12 iters), loss = 1.90253 +I0408 15:24:26.450899 20259 solver.cpp:237] Train net output #0: loss = 1.90253 (* 1 = 1.90253 loss) +I0408 15:24:26.450912 20259 sgd_solver.cpp:105] Iteration 4404, lr = 0.000105768 +I0408 15:24:31.237017 20259 solver.cpp:218] Iteration 4416 (2.50733 iter/s, 4.78597s/12 iters), loss = 1.75034 +I0408 15:24:31.237063 20259 solver.cpp:237] Train net output #0: loss = 1.75034 (* 1 = 1.75034 loss) +I0408 15:24:31.237076 20259 sgd_solver.cpp:105] Iteration 4416, lr = 0.000104465 +I0408 15:24:36.274399 20259 solver.cpp:218] Iteration 4428 (2.38229 iter/s, 5.03717s/12 iters), loss = 1.8674 +I0408 15:24:36.274443 20259 solver.cpp:237] Train net output #0: loss = 1.8674 (* 1 = 1.8674 loss) +I0408 15:24:36.274454 20259 sgd_solver.cpp:105] Iteration 4428, lr = 0.000103178 +I0408 15:24:41.271884 20259 solver.cpp:218] Iteration 4440 (2.4013 iter/s, 4.99728s/12 iters), loss = 1.69025 +I0408 15:24:41.271931 20259 solver.cpp:237] Train net output #0: loss = 1.69025 (* 1 = 1.69025 loss) +I0408 15:24:41.271943 20259 sgd_solver.cpp:105] Iteration 4440, lr = 0.000101907 +I0408 15:24:45.334162 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:24:46.292431 20259 solver.cpp:218] Iteration 4452 (2.39028 iter/s, 5.02034s/12 iters), loss = 1.86382 +I0408 15:24:46.292475 20259 solver.cpp:237] Train net output #0: loss = 1.86382 (* 1 = 1.86382 loss) +I0408 15:24:46.292487 20259 sgd_solver.cpp:105] Iteration 4452, lr = 0.000100652 +I0408 15:24:51.291518 20259 solver.cpp:218] Iteration 4464 (2.40054 iter/s, 4.99888s/12 iters), loss = 1.98677 +I0408 15:24:51.291564 20259 solver.cpp:237] Train net output #0: loss = 1.98677 (* 1 = 1.98677 loss) +I0408 15:24:51.291576 20259 sgd_solver.cpp:105] Iteration 4464, lr = 9.94119e-05 +I0408 15:24:56.231876 20259 solver.cpp:218] Iteration 4476 (2.42907 iter/s, 4.94015s/12 iters), loss = 1.73496 +I0408 15:24:56.231921 20259 solver.cpp:237] Train net output #0: loss = 1.73496 (* 1 = 1.73496 loss) +I0408 15:24:56.231933 20259 sgd_solver.cpp:105] Iteration 4476, lr = 9.81873e-05 +I0408 15:25:00.803669 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 15:25:04.662390 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 15:25:08.506767 20259 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 15:25:08.506799 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:25:11.193257 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:25:12.963153 20259 solver.cpp:397] Test net output #0: accuracy = 0.277574 +I0408 15:25:12.963198 20259 solver.cpp:397] Test net output #1: loss = 3.29556 (* 1 = 3.29556 loss) +I0408 15:25:13.053325 20259 solver.cpp:218] Iteration 4488 (0.713398 iter/s, 16.8209s/12 iters), loss = 1.95452 +I0408 15:25:13.053370 20259 solver.cpp:237] Train net output #0: loss = 1.95452 (* 1 = 1.95452 loss) +I0408 15:25:13.053381 20259 sgd_solver.cpp:105] Iteration 4488, lr = 9.69778e-05 +I0408 15:25:17.331054 20259 solver.cpp:218] Iteration 4500 (2.80535 iter/s, 4.27754s/12 iters), loss = 1.63342 +I0408 15:25:17.331100 20259 solver.cpp:237] Train net output #0: loss = 1.63342 (* 1 = 1.63342 loss) +I0408 15:25:17.331112 20259 sgd_solver.cpp:105] Iteration 4500, lr = 9.57831e-05 +I0408 15:25:22.338099 20259 solver.cpp:218] Iteration 4512 (2.39672 iter/s, 5.00684s/12 iters), loss = 1.62031 +I0408 15:25:22.338147 20259 solver.cpp:237] Train net output #0: loss = 1.62031 (* 1 = 1.62031 loss) +I0408 15:25:22.338160 20259 sgd_solver.cpp:105] Iteration 4512, lr = 9.46032e-05 +I0408 15:25:27.352943 20259 solver.cpp:218] Iteration 4524 (2.39299 iter/s, 5.01464s/12 iters), loss = 1.84866 +I0408 15:25:27.352989 20259 solver.cpp:237] Train net output #0: loss = 1.84866 (* 1 = 1.84866 loss) +I0408 15:25:27.353001 20259 sgd_solver.cpp:105] Iteration 4524, lr = 9.34378e-05 +I0408 15:25:32.459995 20259 solver.cpp:218] Iteration 4536 (2.34979 iter/s, 5.10684s/12 iters), loss = 1.84034 +I0408 15:25:32.460120 20259 solver.cpp:237] Train net output #0: loss = 1.84034 (* 1 = 1.84034 loss) +I0408 15:25:32.460134 20259 sgd_solver.cpp:105] Iteration 4536, lr = 9.22867e-05 +I0408 15:25:37.474575 20259 solver.cpp:218] Iteration 4548 (2.39316 iter/s, 5.01429s/12 iters), loss = 1.81618 +I0408 15:25:37.474623 20259 solver.cpp:237] Train net output #0: loss = 1.81618 (* 1 = 1.81618 loss) +I0408 15:25:37.474635 20259 sgd_solver.cpp:105] Iteration 4548, lr = 9.11499e-05 +I0408 15:25:38.787411 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:25:42.552481 20259 solver.cpp:218] Iteration 4560 (2.36328 iter/s, 5.0777s/12 iters), loss = 1.54352 +I0408 15:25:42.552529 20259 solver.cpp:237] Train net output #0: loss = 1.54352 (* 1 = 1.54352 loss) +I0408 15:25:42.552541 20259 sgd_solver.cpp:105] Iteration 4560, lr = 9.0027e-05 +I0408 15:25:47.563750 20259 solver.cpp:218] Iteration 4572 (2.3947 iter/s, 5.01106s/12 iters), loss = 1.86399 +I0408 15:25:47.563791 20259 solver.cpp:237] Train net output #0: loss = 1.86399 (* 1 = 1.86399 loss) +I0408 15:25:47.563800 20259 sgd_solver.cpp:105] Iteration 4572, lr = 8.8918e-05 +I0408 15:25:52.600095 20259 solver.cpp:218] Iteration 4584 (2.38278 iter/s, 5.03614s/12 iters), loss = 1.81463 +I0408 15:25:52.600139 20259 solver.cpp:237] Train net output #0: loss = 1.81463 (* 1 = 1.81463 loss) +I0408 15:25:52.600152 20259 sgd_solver.cpp:105] Iteration 4584, lr = 8.78226e-05 +I0408 15:25:54.652923 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 15:25:58.473513 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 15:26:00.802372 20259 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 15:26:00.802402 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:26:03.319869 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:26:05.135412 20259 solver.cpp:397] Test net output #0: accuracy = 0.281863 +I0408 15:26:05.135457 20259 solver.cpp:397] Test net output #1: loss = 3.29593 (* 1 = 3.29593 loss) +I0408 15:26:07.042255 20259 solver.cpp:218] Iteration 4596 (0.830928 iter/s, 14.4417s/12 iters), loss = 1.88265 +I0408 15:26:07.042304 20259 solver.cpp:237] Train net output #0: loss = 1.88265 (* 1 = 1.88265 loss) +I0408 15:26:07.042315 20259 sgd_solver.cpp:105] Iteration 4596, lr = 8.67407e-05 +I0408 15:26:12.045559 20259 solver.cpp:218] Iteration 4608 (2.39851 iter/s, 5.0031s/12 iters), loss = 1.89598 +I0408 15:26:12.045604 20259 solver.cpp:237] Train net output #0: loss = 1.89598 (* 1 = 1.89598 loss) +I0408 15:26:12.045615 20259 sgd_solver.cpp:105] Iteration 4608, lr = 8.56722e-05 +I0408 15:26:17.057658 20259 solver.cpp:218] Iteration 4620 (2.3943 iter/s, 5.0119s/12 iters), loss = 1.74582 +I0408 15:26:17.057703 20259 solver.cpp:237] Train net output #0: loss = 1.74582 (* 1 = 1.74582 loss) +I0408 15:26:17.057713 20259 sgd_solver.cpp:105] Iteration 4620, lr = 8.46168e-05 +I0408 15:26:22.076397 20259 solver.cpp:218] Iteration 4632 (2.39114 iter/s, 5.01853s/12 iters), loss = 1.62466 +I0408 15:26:22.076443 20259 solver.cpp:237] Train net output #0: loss = 1.62466 (* 1 = 1.62466 loss) +I0408 15:26:22.076455 20259 sgd_solver.cpp:105] Iteration 4632, lr = 8.35744e-05 +I0408 15:26:27.027050 20259 solver.cpp:218] Iteration 4644 (2.42402 iter/s, 4.95045s/12 iters), loss = 1.65986 +I0408 15:26:27.027096 20259 solver.cpp:237] Train net output #0: loss = 1.65986 (* 1 = 1.65986 loss) +I0408 15:26:27.027107 20259 sgd_solver.cpp:105] Iteration 4644, lr = 8.25449e-05 +I0408 15:26:30.448608 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:26:32.069109 20259 solver.cpp:218] Iteration 4656 (2.38008 iter/s, 5.04186s/12 iters), loss = 1.8164 +I0408 15:26:32.069154 20259 solver.cpp:237] Train net output #0: loss = 1.8164 (* 1 = 1.8164 loss) +I0408 15:26:32.069164 20259 sgd_solver.cpp:105] Iteration 4656, lr = 8.1528e-05 +I0408 15:26:37.114532 20259 solver.cpp:218] Iteration 4668 (2.37849 iter/s, 5.04522s/12 iters), loss = 1.60117 +I0408 15:26:37.114960 20259 solver.cpp:237] Train net output #0: loss = 1.60117 (* 1 = 1.60117 loss) +I0408 15:26:37.114974 20259 sgd_solver.cpp:105] Iteration 4668, lr = 8.05237e-05 +I0408 15:26:42.127030 20259 solver.cpp:218] Iteration 4680 (2.39429 iter/s, 5.01191s/12 iters), loss = 1.60341 +I0408 15:26:42.127076 20259 solver.cpp:237] Train net output #0: loss = 1.60341 (* 1 = 1.60341 loss) +I0408 15:26:42.127089 20259 sgd_solver.cpp:105] Iteration 4680, lr = 7.95317e-05 +I0408 15:26:46.641268 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 15:26:49.702215 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 15:26:52.028946 20259 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 15:26:52.028977 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:26:54.631623 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:26:56.483546 20259 solver.cpp:397] Test net output #0: accuracy = 0.278186 +I0408 15:26:56.483592 20259 solver.cpp:397] Test net output #1: loss = 3.30943 (* 1 = 3.30943 loss) +I0408 15:26:56.572659 20259 solver.cpp:218] Iteration 4692 (0.830729 iter/s, 14.4452s/12 iters), loss = 1.8415 +I0408 15:26:56.572696 20259 solver.cpp:237] Train net output #0: loss = 1.8415 (* 1 = 1.8415 loss) +I0408 15:26:56.572707 20259 sgd_solver.cpp:105] Iteration 4692, lr = 7.8552e-05 +I0408 15:27:01.025223 20259 solver.cpp:218] Iteration 4704 (2.69518 iter/s, 4.45239s/12 iters), loss = 1.70275 +I0408 15:27:01.025259 20259 solver.cpp:237] Train net output #0: loss = 1.70275 (* 1 = 1.70275 loss) +I0408 15:27:01.025269 20259 sgd_solver.cpp:105] Iteration 4704, lr = 7.75843e-05 +I0408 15:27:06.135251 20259 solver.cpp:218] Iteration 4716 (2.34842 iter/s, 5.10983s/12 iters), loss = 1.72133 +I0408 15:27:06.135294 20259 solver.cpp:237] Train net output #0: loss = 1.72133 (* 1 = 1.72133 loss) +I0408 15:27:06.135308 20259 sgd_solver.cpp:105] Iteration 4716, lr = 7.66286e-05 +I0408 15:27:11.129715 20259 solver.cpp:218] Iteration 4728 (2.40276 iter/s, 4.99426s/12 iters), loss = 1.5708 +I0408 15:27:11.129855 20259 solver.cpp:237] Train net output #0: loss = 1.5708 (* 1 = 1.5708 loss) +I0408 15:27:11.129869 20259 sgd_solver.cpp:105] Iteration 4728, lr = 7.56846e-05 +I0408 15:27:16.062575 20259 solver.cpp:218] Iteration 4740 (2.43281 iter/s, 4.93257s/12 iters), loss = 1.82024 +I0408 15:27:16.062608 20259 solver.cpp:237] Train net output #0: loss = 1.82024 (* 1 = 1.82024 loss) +I0408 15:27:16.062616 20259 sgd_solver.cpp:105] Iteration 4740, lr = 7.47522e-05 +I0408 15:27:21.027052 20259 solver.cpp:218] Iteration 4752 (2.41727 iter/s, 4.96429s/12 iters), loss = 1.93884 +I0408 15:27:21.027092 20259 solver.cpp:237] Train net output #0: loss = 1.93884 (* 1 = 1.93884 loss) +I0408 15:27:21.027103 20259 sgd_solver.cpp:105] Iteration 4752, lr = 7.38314e-05 +I0408 15:27:21.543506 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:27:26.003196 20259 solver.cpp:218] Iteration 4764 (2.4116 iter/s, 4.97594s/12 iters), loss = 1.78478 +I0408 15:27:26.003234 20259 solver.cpp:237] Train net output #0: loss = 1.78478 (* 1 = 1.78478 loss) +I0408 15:27:26.003245 20259 sgd_solver.cpp:105] Iteration 4764, lr = 7.29219e-05 +I0408 15:27:31.026716 20259 solver.cpp:218] Iteration 4776 (2.38886 iter/s, 5.02332s/12 iters), loss = 1.44013 +I0408 15:27:31.026759 20259 solver.cpp:237] Train net output #0: loss = 1.44013 (* 1 = 1.44013 loss) +I0408 15:27:31.026772 20259 sgd_solver.cpp:105] Iteration 4776, lr = 7.20236e-05 +I0408 15:27:36.058799 20259 solver.cpp:218] Iteration 4788 (2.38479 iter/s, 5.03189s/12 iters), loss = 1.7553 +I0408 15:27:36.058830 20259 solver.cpp:237] Train net output #0: loss = 1.7553 (* 1 = 1.7553 loss) +I0408 15:27:36.058838 20259 sgd_solver.cpp:105] Iteration 4788, lr = 7.11363e-05 +I0408 15:27:38.067230 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 15:27:41.081166 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 15:27:43.371891 20259 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 15:27:43.371968 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:27:45.927181 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:27:47.825788 20259 solver.cpp:397] Test net output #0: accuracy = 0.286152 +I0408 15:27:47.825834 20259 solver.cpp:397] Test net output #1: loss = 3.29271 (* 1 = 3.29271 loss) +I0408 15:27:49.823768 20259 solver.cpp:218] Iteration 4800 (0.871807 iter/s, 13.7645s/12 iters), loss = 1.79577 +I0408 15:27:49.823819 20259 solver.cpp:237] Train net output #0: loss = 1.79577 (* 1 = 1.79577 loss) +I0408 15:27:49.823832 20259 sgd_solver.cpp:105] Iteration 4800, lr = 7.026e-05 +I0408 15:27:55.022509 20259 solver.cpp:218] Iteration 4812 (2.30835 iter/s, 5.19853s/12 iters), loss = 1.77165 +I0408 15:27:55.022552 20259 solver.cpp:237] Train net output #0: loss = 1.77165 (* 1 = 1.77165 loss) +I0408 15:27:55.022564 20259 sgd_solver.cpp:105] Iteration 4812, lr = 6.93945e-05 +I0408 15:28:00.026742 20259 solver.cpp:218] Iteration 4824 (2.39807 iter/s, 5.00403s/12 iters), loss = 2.01948 +I0408 15:28:00.026789 20259 solver.cpp:237] Train net output #0: loss = 2.01948 (* 1 = 2.01948 loss) +I0408 15:28:00.026803 20259 sgd_solver.cpp:105] Iteration 4824, lr = 6.85396e-05 +I0408 15:28:05.001433 20259 solver.cpp:218] Iteration 4836 (2.41231 iter/s, 4.97448s/12 iters), loss = 1.53828 +I0408 15:28:05.001477 20259 solver.cpp:237] Train net output #0: loss = 1.53828 (* 1 = 1.53828 loss) +I0408 15:28:05.001489 20259 sgd_solver.cpp:105] Iteration 4836, lr = 6.76953e-05 +I0408 15:28:06.962085 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:28:09.894043 20259 solver.cpp:218] Iteration 4848 (2.45278 iter/s, 4.89241s/12 iters), loss = 2.05153 +I0408 15:28:09.894078 20259 solver.cpp:237] Train net output #0: loss = 2.05153 (* 1 = 2.05153 loss) +I0408 15:28:09.894084 20259 sgd_solver.cpp:105] Iteration 4848, lr = 6.68614e-05 +I0408 15:28:12.515727 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:28:14.843075 20259 solver.cpp:218] Iteration 4860 (2.42481 iter/s, 4.94884s/12 iters), loss = 1.66108 +I0408 15:28:14.843255 20259 solver.cpp:237] Train net output #0: loss = 1.66108 (* 1 = 1.66108 loss) +I0408 15:28:14.843268 20259 sgd_solver.cpp:105] Iteration 4860, lr = 6.60377e-05 +I0408 15:28:19.879696 20259 solver.cpp:218] Iteration 4872 (2.38271 iter/s, 5.03629s/12 iters), loss = 1.70663 +I0408 15:28:19.879751 20259 solver.cpp:237] Train net output #0: loss = 1.70663 (* 1 = 1.70663 loss) +I0408 15:28:19.879760 20259 sgd_solver.cpp:105] Iteration 4872, lr = 6.52242e-05 +I0408 15:28:24.910845 20259 solver.cpp:218] Iteration 4884 (2.38524 iter/s, 5.03095s/12 iters), loss = 1.67498 +I0408 15:28:24.910890 20259 solver.cpp:237] Train net output #0: loss = 1.67498 (* 1 = 1.67498 loss) +I0408 15:28:24.910902 20259 sgd_solver.cpp:105] Iteration 4884, lr = 6.44207e-05 +I0408 15:28:29.366780 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 15:28:32.419041 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 15:28:34.719633 20259 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 15:28:34.719657 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:28:37.235211 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:28:39.167191 20259 solver.cpp:397] Test net output #0: accuracy = 0.285539 +I0408 15:28:39.167235 20259 solver.cpp:397] Test net output #1: loss = 3.26755 (* 1 = 3.26755 loss) +I0408 15:28:39.257578 20259 solver.cpp:218] Iteration 4896 (0.836455 iter/s, 14.3463s/12 iters), loss = 2.10644 +I0408 15:28:39.257619 20259 solver.cpp:237] Train net output #0: loss = 2.10644 (* 1 = 2.10644 loss) +I0408 15:28:39.257630 20259 sgd_solver.cpp:105] Iteration 4896, lr = 6.36271e-05 +I0408 15:28:43.616276 20259 solver.cpp:218] Iteration 4908 (2.75323 iter/s, 4.35852s/12 iters), loss = 1.64009 +I0408 15:28:43.616322 20259 solver.cpp:237] Train net output #0: loss = 1.64009 (* 1 = 1.64009 loss) +I0408 15:28:43.616333 20259 sgd_solver.cpp:105] Iteration 4908, lr = 6.28433e-05 +I0408 15:28:48.637775 20259 solver.cpp:218] Iteration 4920 (2.38982 iter/s, 5.0213s/12 iters), loss = 1.74197 +I0408 15:28:48.637882 20259 solver.cpp:237] Train net output #0: loss = 1.74197 (* 1 = 1.74197 loss) +I0408 15:28:48.637895 20259 sgd_solver.cpp:105] Iteration 4920, lr = 6.20692e-05 +I0408 15:28:53.686709 20259 solver.cpp:218] Iteration 4932 (2.37686 iter/s, 5.04867s/12 iters), loss = 1.51928 +I0408 15:28:53.686748 20259 solver.cpp:237] Train net output #0: loss = 1.51928 (* 1 = 1.51928 loss) +I0408 15:28:53.686758 20259 sgd_solver.cpp:105] Iteration 4932, lr = 6.13045e-05 +I0408 15:28:58.623168 20259 solver.cpp:218] Iteration 4944 (2.43099 iter/s, 4.93626s/12 iters), loss = 1.51662 +I0408 15:28:58.623214 20259 solver.cpp:237] Train net output #0: loss = 1.51662 (* 1 = 1.51662 loss) +I0408 15:28:58.623226 20259 sgd_solver.cpp:105] Iteration 4944, lr = 6.05493e-05 +I0408 15:29:03.504830 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:29:03.710212 20259 solver.cpp:218] Iteration 4956 (2.35903 iter/s, 5.08684s/12 iters), loss = 1.90032 +I0408 15:29:03.710260 20259 solver.cpp:237] Train net output #0: loss = 1.90032 (* 1 = 1.90032 loss) +I0408 15:29:03.710273 20259 sgd_solver.cpp:105] Iteration 4956, lr = 5.98034e-05 +I0408 15:29:08.916260 20259 solver.cpp:218] Iteration 4968 (2.30511 iter/s, 5.20584s/12 iters), loss = 1.75764 +I0408 15:29:08.916303 20259 solver.cpp:237] Train net output #0: loss = 1.75764 (* 1 = 1.75764 loss) +I0408 15:29:08.916316 20259 sgd_solver.cpp:105] Iteration 4968, lr = 5.90667e-05 +I0408 15:29:13.875583 20259 solver.cpp:218] Iteration 4980 (2.41978 iter/s, 4.95913s/12 iters), loss = 1.73588 +I0408 15:29:13.875630 20259 solver.cpp:237] Train net output #0: loss = 1.73588 (* 1 = 1.73588 loss) +I0408 15:29:13.875643 20259 sgd_solver.cpp:105] Iteration 4980, lr = 5.83391e-05 +I0408 15:29:18.829838 20259 solver.cpp:218] Iteration 4992 (2.42226 iter/s, 4.95405s/12 iters), loss = 1.83718 +I0408 15:29:18.830010 20259 solver.cpp:237] Train net output #0: loss = 1.83718 (* 1 = 1.83718 loss) +I0408 15:29:18.830024 20259 sgd_solver.cpp:105] Iteration 4992, lr = 5.76204e-05 +I0408 15:29:20.859459 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 15:29:24.705224 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 15:29:27.016826 20259 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 15:29:27.016849 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:29:29.501209 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:29:31.467984 20259 solver.cpp:397] Test net output #0: accuracy = 0.284926 +I0408 15:29:31.468029 20259 solver.cpp:397] Test net output #1: loss = 3.28046 (* 1 = 3.28046 loss) +I0408 15:29:33.328789 20259 solver.cpp:218] Iteration 5004 (0.827681 iter/s, 14.4983s/12 iters), loss = 1.54916 +I0408 15:29:33.328835 20259 solver.cpp:237] Train net output #0: loss = 1.54916 (* 1 = 1.54916 loss) +I0408 15:29:33.328847 20259 sgd_solver.cpp:105] Iteration 5004, lr = 5.69106e-05 +I0408 15:29:38.323901 20259 solver.cpp:218] Iteration 5016 (2.40245 iter/s, 4.99491s/12 iters), loss = 1.91824 +I0408 15:29:38.323945 20259 solver.cpp:237] Train net output #0: loss = 1.91824 (* 1 = 1.91824 loss) +I0408 15:29:38.323956 20259 sgd_solver.cpp:105] Iteration 5016, lr = 5.62095e-05 +I0408 15:29:43.341681 20259 solver.cpp:218] Iteration 5028 (2.39159 iter/s, 5.01758s/12 iters), loss = 1.91442 +I0408 15:29:43.341719 20259 solver.cpp:237] Train net output #0: loss = 1.91442 (* 1 = 1.91442 loss) +I0408 15:29:43.341729 20259 sgd_solver.cpp:105] Iteration 5028, lr = 5.55171e-05 +I0408 15:29:48.344476 20259 solver.cpp:218] Iteration 5040 (2.39875 iter/s, 5.0026s/12 iters), loss = 1.83658 +I0408 15:29:48.344518 20259 solver.cpp:237] Train net output #0: loss = 1.83658 (* 1 = 1.83658 loss) +I0408 15:29:48.344529 20259 sgd_solver.cpp:105] Iteration 5040, lr = 5.48332e-05 +I0408 15:29:53.378688 20259 solver.cpp:218] Iteration 5052 (2.38379 iter/s, 5.03401s/12 iters), loss = 1.57613 +I0408 15:29:53.378806 20259 solver.cpp:237] Train net output #0: loss = 1.57613 (* 1 = 1.57613 loss) +I0408 15:29:53.378819 20259 sgd_solver.cpp:105] Iteration 5052, lr = 5.41577e-05 +I0408 15:29:55.269383 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:29:58.329227 20259 solver.cpp:218] Iteration 5064 (2.42411 iter/s, 4.95026s/12 iters), loss = 1.93773 +I0408 15:29:58.329274 20259 solver.cpp:237] Train net output #0: loss = 1.93773 (* 1 = 1.93773 loss) +I0408 15:29:58.329286 20259 sgd_solver.cpp:105] Iteration 5064, lr = 5.34906e-05 +I0408 15:30:03.541832 20259 solver.cpp:218] Iteration 5076 (2.30221 iter/s, 5.21239s/12 iters), loss = 1.73845 +I0408 15:30:03.541877 20259 solver.cpp:237] Train net output #0: loss = 1.73845 (* 1 = 1.73845 loss) +I0408 15:30:03.541888 20259 sgd_solver.cpp:105] Iteration 5076, lr = 5.28316e-05 +I0408 15:30:08.578619 20259 solver.cpp:218] Iteration 5088 (2.38257 iter/s, 5.03658s/12 iters), loss = 1.4774 +I0408 15:30:08.578662 20259 solver.cpp:237] Train net output #0: loss = 1.4774 (* 1 = 1.4774 loss) +I0408 15:30:08.578675 20259 sgd_solver.cpp:105] Iteration 5088, lr = 5.21808e-05 +I0408 15:30:13.152658 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 15:30:16.174319 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 15:30:19.895788 20259 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 15:30:19.895821 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:30:22.291364 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:30:24.306123 20259 solver.cpp:397] Test net output #0: accuracy = 0.285539 +I0408 15:30:24.306284 20259 solver.cpp:397] Test net output #1: loss = 3.26028 (* 1 = 3.26028 loss) +I0408 15:30:24.396438 20259 solver.cpp:218] Iteration 5100 (0.758663 iter/s, 15.8173s/12 iters), loss = 1.81392 +I0408 15:30:24.396472 20259 solver.cpp:237] Train net output #0: loss = 1.81392 (* 1 = 1.81392 loss) +I0408 15:30:24.396482 20259 sgd_solver.cpp:105] Iteration 5100, lr = 5.1538e-05 +I0408 15:30:28.566385 20259 solver.cpp:218] Iteration 5112 (2.87785 iter/s, 4.16978s/12 iters), loss = 1.80548 +I0408 15:30:28.566429 20259 solver.cpp:237] Train net output #0: loss = 1.80548 (* 1 = 1.80548 loss) +I0408 15:30:28.566440 20259 sgd_solver.cpp:105] Iteration 5112, lr = 5.09031e-05 +I0408 15:30:33.544314 20259 solver.cpp:218] Iteration 5124 (2.41074 iter/s, 4.97773s/12 iters), loss = 1.6099 +I0408 15:30:33.544358 20259 solver.cpp:237] Train net output #0: loss = 1.6099 (* 1 = 1.6099 loss) +I0408 15:30:33.544370 20259 sgd_solver.cpp:105] Iteration 5124, lr = 5.0276e-05 +I0408 15:30:38.607092 20259 solver.cpp:218] Iteration 5136 (2.37034 iter/s, 5.06257s/12 iters), loss = 1.67252 +I0408 15:30:38.607136 20259 solver.cpp:237] Train net output #0: loss = 1.67252 (* 1 = 1.67252 loss) +I0408 15:30:38.607147 20259 sgd_solver.cpp:105] Iteration 5136, lr = 4.96567e-05 +I0408 15:30:43.530026 20259 solver.cpp:218] Iteration 5148 (2.43767 iter/s, 4.92274s/12 iters), loss = 1.48614 +I0408 15:30:43.530076 20259 solver.cpp:237] Train net output #0: loss = 1.48614 (* 1 = 1.48614 loss) +I0408 15:30:43.530087 20259 sgd_solver.cpp:105] Iteration 5148, lr = 4.9045e-05 +I0408 15:30:47.590853 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:30:48.540832 20259 solver.cpp:218] Iteration 5160 (2.39492 iter/s, 5.0106s/12 iters), loss = 1.84384 +I0408 15:30:48.540875 20259 solver.cpp:237] Train net output #0: loss = 1.84384 (* 1 = 1.84384 loss) +I0408 15:30:48.540887 20259 sgd_solver.cpp:105] Iteration 5160, lr = 4.84408e-05 +I0408 15:30:53.539772 20259 solver.cpp:218] Iteration 5172 (2.40061 iter/s, 4.99874s/12 iters), loss = 2.03096 +I0408 15:30:53.539824 20259 solver.cpp:237] Train net output #0: loss = 2.03096 (* 1 = 2.03096 loss) +I0408 15:30:53.539839 20259 sgd_solver.cpp:105] Iteration 5172, lr = 4.78441e-05 +I0408 15:30:58.494871 20259 solver.cpp:218] Iteration 5184 (2.42185 iter/s, 4.95489s/12 iters), loss = 1.72827 +I0408 15:30:58.494976 20259 solver.cpp:237] Train net output #0: loss = 1.72827 (* 1 = 1.72827 loss) +I0408 15:30:58.494988 20259 sgd_solver.cpp:105] Iteration 5184, lr = 4.72547e-05 +I0408 15:31:03.348259 20259 solver.cpp:218] Iteration 5196 (2.47263 iter/s, 4.85313s/12 iters), loss = 1.67229 +I0408 15:31:03.348302 20259 solver.cpp:237] Train net output #0: loss = 1.67229 (* 1 = 1.67229 loss) +I0408 15:31:03.348313 20259 sgd_solver.cpp:105] Iteration 5196, lr = 4.66726e-05 +I0408 15:31:05.358661 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 15:31:11.696732 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 15:31:14.025517 20259 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 15:31:14.025542 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:31:16.410634 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:31:18.459992 20259 solver.cpp:397] Test net output #0: accuracy = 0.289216 +I0408 15:31:18.460038 20259 solver.cpp:397] Test net output #1: loss = 3.2747 (* 1 = 3.2747 loss) +I0408 15:31:20.368921 20259 solver.cpp:218] Iteration 5208 (0.705049 iter/s, 17.0201s/12 iters), loss = 1.5833 +I0408 15:31:20.368968 20259 solver.cpp:237] Train net output #0: loss = 1.5833 (* 1 = 1.5833 loss) +I0408 15:31:20.368980 20259 sgd_solver.cpp:105] Iteration 5208, lr = 4.60976e-05 +I0408 15:31:25.391688 20259 solver.cpp:218] Iteration 5220 (2.38922 iter/s, 5.02256s/12 iters), loss = 1.69733 +I0408 15:31:25.391737 20259 solver.cpp:237] Train net output #0: loss = 1.69733 (* 1 = 1.69733 loss) +I0408 15:31:25.391749 20259 sgd_solver.cpp:105] Iteration 5220, lr = 4.55297e-05 +I0408 15:31:30.441722 20259 solver.cpp:218] Iteration 5232 (2.37632 iter/s, 5.04982s/12 iters), loss = 1.66107 +I0408 15:31:30.441869 20259 solver.cpp:237] Train net output #0: loss = 1.66107 (* 1 = 1.66107 loss) +I0408 15:31:30.441881 20259 sgd_solver.cpp:105] Iteration 5232, lr = 4.49689e-05 +I0408 15:31:35.420858 20259 solver.cpp:218] Iteration 5244 (2.4102 iter/s, 4.97883s/12 iters), loss = 1.64895 +I0408 15:31:35.420900 20259 solver.cpp:237] Train net output #0: loss = 1.64895 (* 1 = 1.64895 loss) +I0408 15:31:35.420910 20259 sgd_solver.cpp:105] Iteration 5244, lr = 4.44149e-05 +I0408 15:31:40.464797 20259 solver.cpp:218] Iteration 5256 (2.37919 iter/s, 5.04374s/12 iters), loss = 1.736 +I0408 15:31:40.464843 20259 solver.cpp:237] Train net output #0: loss = 1.736 (* 1 = 1.736 loss) +I0408 15:31:40.464854 20259 sgd_solver.cpp:105] Iteration 5256, lr = 4.38678e-05 +I0408 15:31:41.776548 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:31:45.515383 20259 solver.cpp:218] Iteration 5268 (2.37606 iter/s, 5.05038s/12 iters), loss = 1.54788 +I0408 15:31:45.515427 20259 solver.cpp:237] Train net output #0: loss = 1.54788 (* 1 = 1.54788 loss) +I0408 15:31:45.515439 20259 sgd_solver.cpp:105] Iteration 5268, lr = 4.33274e-05 +I0408 15:31:50.519773 20259 solver.cpp:218] Iteration 5280 (2.39799 iter/s, 5.00418s/12 iters), loss = 1.67737 +I0408 15:31:50.519816 20259 solver.cpp:237] Train net output #0: loss = 1.67737 (* 1 = 1.67737 loss) +I0408 15:31:50.519829 20259 sgd_solver.cpp:105] Iteration 5280, lr = 4.27936e-05 +I0408 15:31:55.543748 20259 solver.cpp:218] Iteration 5292 (2.38864 iter/s, 5.02377s/12 iters), loss = 1.5465 +I0408 15:31:55.543795 20259 solver.cpp:237] Train net output #0: loss = 1.5465 (* 1 = 1.5465 loss) +I0408 15:31:55.543807 20259 sgd_solver.cpp:105] Iteration 5292, lr = 4.22664e-05 +I0408 15:32:00.074949 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 15:32:03.156175 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 15:32:10.140015 20259 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 15:32:10.140044 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:32:12.503530 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:32:14.598479 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 15:32:14.598526 20259 solver.cpp:397] Test net output #1: loss = 3.27312 (* 1 = 3.27312 loss) +I0408 15:32:14.688648 20259 solver.cpp:218] Iteration 5304 (0.626819 iter/s, 19.1443s/12 iters), loss = 1.72119 +I0408 15:32:14.688683 20259 solver.cpp:237] Train net output #0: loss = 1.72119 (* 1 = 1.72119 loss) +I0408 15:32:14.688694 20259 sgd_solver.cpp:105] Iteration 5304, lr = 4.17458e-05 +I0408 15:32:18.990983 20259 solver.cpp:218] Iteration 5316 (2.7893 iter/s, 4.30216s/12 iters), loss = 1.75551 +I0408 15:32:18.991031 20259 solver.cpp:237] Train net output #0: loss = 1.75551 (* 1 = 1.75551 loss) +I0408 15:32:18.991044 20259 sgd_solver.cpp:105] Iteration 5316, lr = 4.12315e-05 +I0408 15:32:23.930263 20259 solver.cpp:218] Iteration 5328 (2.4296 iter/s, 4.93908s/12 iters), loss = 1.55439 +I0408 15:32:23.930308 20259 solver.cpp:237] Train net output #0: loss = 1.55439 (* 1 = 1.55439 loss) +I0408 15:32:23.930320 20259 sgd_solver.cpp:105] Iteration 5328, lr = 4.07236e-05 +I0408 15:32:28.857858 20259 solver.cpp:218] Iteration 5340 (2.43537 iter/s, 4.92739s/12 iters), loss = 1.41277 +I0408 15:32:28.857903 20259 solver.cpp:237] Train net output #0: loss = 1.41277 (* 1 = 1.41277 loss) +I0408 15:32:28.857914 20259 sgd_solver.cpp:105] Iteration 5340, lr = 4.02219e-05 +I0408 15:32:33.797817 20259 solver.cpp:218] Iteration 5352 (2.42927 iter/s, 4.93976s/12 iters), loss = 1.56193 +I0408 15:32:33.797971 20259 solver.cpp:237] Train net output #0: loss = 1.56193 (* 1 = 1.56193 loss) +I0408 15:32:33.797983 20259 sgd_solver.cpp:105] Iteration 5352, lr = 3.97264e-05 +I0408 15:32:37.166381 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:32:38.716421 20259 solver.cpp:218] Iteration 5364 (2.43987 iter/s, 4.9183s/12 iters), loss = 1.61966 +I0408 15:32:38.716464 20259 solver.cpp:237] Train net output #0: loss = 1.61966 (* 1 = 1.61966 loss) +I0408 15:32:38.716475 20259 sgd_solver.cpp:105] Iteration 5364, lr = 3.9237e-05 +I0408 15:32:43.908639 20259 solver.cpp:218] Iteration 5376 (2.31124 iter/s, 5.19201s/12 iters), loss = 1.3889 +I0408 15:32:43.908682 20259 solver.cpp:237] Train net output #0: loss = 1.3889 (* 1 = 1.3889 loss) +I0408 15:32:43.908694 20259 sgd_solver.cpp:105] Iteration 5376, lr = 3.87537e-05 +I0408 15:32:48.938122 20259 solver.cpp:218] Iteration 5388 (2.38603 iter/s, 5.02928s/12 iters), loss = 1.42687 +I0408 15:32:48.938155 20259 solver.cpp:237] Train net output #0: loss = 1.42687 (* 1 = 1.42687 loss) +I0408 15:32:48.938163 20259 sgd_solver.cpp:105] Iteration 5388, lr = 3.82763e-05 +I0408 15:32:53.903779 20259 solver.cpp:218] Iteration 5400 (2.41669 iter/s, 4.96547s/12 iters), loss = 1.6895 +I0408 15:32:53.903822 20259 solver.cpp:237] Train net output #0: loss = 1.6895 (* 1 = 1.6895 loss) +I0408 15:32:53.903834 20259 sgd_solver.cpp:105] Iteration 5400, lr = 3.78048e-05 +I0408 15:32:55.935175 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 15:32:58.909512 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 15:33:01.361589 20259 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 15:33:01.361622 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:33:03.672029 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:33:05.801720 20259 solver.cpp:397] Test net output #0: accuracy = 0.285539 +I0408 15:33:05.801828 20259 solver.cpp:397] Test net output #1: loss = 3.27516 (* 1 = 3.27516 loss) +I0408 15:33:07.687161 20259 solver.cpp:218] Iteration 5412 (0.870643 iter/s, 13.7829s/12 iters), loss = 1.58082 +I0408 15:33:07.687206 20259 solver.cpp:237] Train net output #0: loss = 1.58082 (* 1 = 1.58082 loss) +I0408 15:33:07.687217 20259 sgd_solver.cpp:105] Iteration 5412, lr = 3.73391e-05 +I0408 15:33:12.856941 20259 solver.cpp:218] Iteration 5424 (2.32127 iter/s, 5.16957s/12 iters), loss = 1.61936 +I0408 15:33:12.856973 20259 solver.cpp:237] Train net output #0: loss = 1.61936 (* 1 = 1.61936 loss) +I0408 15:33:12.856982 20259 sgd_solver.cpp:105] Iteration 5424, lr = 3.68791e-05 +I0408 15:33:17.913581 20259 solver.cpp:218] Iteration 5436 (2.37321 iter/s, 5.05644s/12 iters), loss = 1.57584 +I0408 15:33:17.913628 20259 solver.cpp:237] Train net output #0: loss = 1.57584 (* 1 = 1.57584 loss) +I0408 15:33:17.913641 20259 sgd_solver.cpp:105] Iteration 5436, lr = 3.64248e-05 +I0408 15:33:22.879644 20259 solver.cpp:218] Iteration 5448 (2.4165 iter/s, 4.96586s/12 iters), loss = 1.34376 +I0408 15:33:22.879689 20259 solver.cpp:237] Train net output #0: loss = 1.34376 (* 1 = 1.34376 loss) +I0408 15:33:22.879701 20259 sgd_solver.cpp:105] Iteration 5448, lr = 3.59761e-05 +I0408 15:33:27.905567 20259 solver.cpp:218] Iteration 5460 (2.38772 iter/s, 5.02572s/12 iters), loss = 1.71241 +I0408 15:33:27.905608 20259 solver.cpp:237] Train net output #0: loss = 1.71241 (* 1 = 1.71241 loss) +I0408 15:33:27.905620 20259 sgd_solver.cpp:105] Iteration 5460, lr = 3.55329e-05 +I0408 15:33:28.455534 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:33:32.869886 20259 solver.cpp:218] Iteration 5472 (2.41735 iter/s, 4.96412s/12 iters), loss = 1.58092 +I0408 15:33:32.869927 20259 solver.cpp:237] Train net output #0: loss = 1.58092 (* 1 = 1.58092 loss) +I0408 15:33:32.869937 20259 sgd_solver.cpp:105] Iteration 5472, lr = 3.50952e-05 +I0408 15:33:37.886520 20259 solver.cpp:218] Iteration 5484 (2.39214 iter/s, 5.01644s/12 iters), loss = 1.6868 +I0408 15:33:37.886675 20259 solver.cpp:237] Train net output #0: loss = 1.6868 (* 1 = 1.6868 loss) +I0408 15:33:37.886689 20259 sgd_solver.cpp:105] Iteration 5484, lr = 3.46628e-05 +I0408 15:33:42.794589 20259 solver.cpp:218] Iteration 5496 (2.44511 iter/s, 4.90776s/12 iters), loss = 1.54592 +I0408 15:33:42.794637 20259 solver.cpp:237] Train net output #0: loss = 1.54592 (* 1 = 1.54592 loss) +I0408 15:33:42.794651 20259 sgd_solver.cpp:105] Iteration 5496, lr = 3.42358e-05 +I0408 15:33:47.258219 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 15:33:50.348737 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 15:33:52.680765 20259 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 15:33:52.680797 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:33:54.973433 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:33:57.147589 20259 solver.cpp:397] Test net output #0: accuracy = 0.295343 +I0408 15:33:57.147634 20259 solver.cpp:397] Test net output #1: loss = 3.28195 (* 1 = 3.28195 loss) +I0408 15:33:57.237936 20259 solver.cpp:218] Iteration 5508 (0.83086 iter/s, 14.4429s/12 iters), loss = 1.47573 +I0408 15:33:57.238001 20259 solver.cpp:237] Train net output #0: loss = 1.47573 (* 1 = 1.47573 loss) +I0408 15:33:57.238018 20259 sgd_solver.cpp:105] Iteration 5508, lr = 3.38141e-05 +I0408 15:34:01.740950 20259 solver.cpp:218] Iteration 5520 (2.66501 iter/s, 4.5028s/12 iters), loss = 1.56171 +I0408 15:34:01.740998 20259 solver.cpp:237] Train net output #0: loss = 1.56171 (* 1 = 1.56171 loss) +I0408 15:34:01.741010 20259 sgd_solver.cpp:105] Iteration 5520, lr = 3.33975e-05 +I0408 15:34:04.199939 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:34:06.766906 20259 solver.cpp:218] Iteration 5532 (2.3877 iter/s, 5.02575s/12 iters), loss = 1.691 +I0408 15:34:06.766942 20259 solver.cpp:237] Train net output #0: loss = 1.691 (* 1 = 1.691 loss) +I0408 15:34:06.766952 20259 sgd_solver.cpp:105] Iteration 5532, lr = 3.29861e-05 +I0408 15:34:11.824633 20259 solver.cpp:218] Iteration 5544 (2.3727 iter/s, 5.05753s/12 iters), loss = 1.47621 +I0408 15:34:11.824736 20259 solver.cpp:237] Train net output #0: loss = 1.47621 (* 1 = 1.47621 loss) +I0408 15:34:11.824749 20259 sgd_solver.cpp:105] Iteration 5544, lr = 3.25798e-05 +I0408 15:34:16.853211 20259 solver.cpp:218] Iteration 5556 (2.38648 iter/s, 5.02832s/12 iters), loss = 1.7106 +I0408 15:34:16.853255 20259 solver.cpp:237] Train net output #0: loss = 1.7106 (* 1 = 1.7106 loss) +I0408 15:34:16.853267 20259 sgd_solver.cpp:105] Iteration 5556, lr = 3.21784e-05 +I0408 15:34:19.543337 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:34:21.874043 20259 solver.cpp:218] Iteration 5568 (2.39014 iter/s, 5.02063s/12 iters), loss = 1.42972 +I0408 15:34:21.874086 20259 solver.cpp:237] Train net output #0: loss = 1.42972 (* 1 = 1.42972 loss) +I0408 15:34:21.874099 20259 sgd_solver.cpp:105] Iteration 5568, lr = 3.1782e-05 +I0408 15:34:26.850517 20259 solver.cpp:218] Iteration 5580 (2.41144 iter/s, 4.97628s/12 iters), loss = 1.76952 +I0408 15:34:26.850560 20259 solver.cpp:237] Train net output #0: loss = 1.76952 (* 1 = 1.76952 loss) +I0408 15:34:26.850571 20259 sgd_solver.cpp:105] Iteration 5580, lr = 3.13905e-05 +I0408 15:34:31.861371 20259 solver.cpp:218] Iteration 5592 (2.3949 iter/s, 5.01065s/12 iters), loss = 1.62653 +I0408 15:34:31.861414 20259 solver.cpp:237] Train net output #0: loss = 1.62653 (* 1 = 1.62653 loss) +I0408 15:34:31.861425 20259 sgd_solver.cpp:105] Iteration 5592, lr = 3.10038e-05 +I0408 15:34:36.893761 20259 solver.cpp:218] Iteration 5604 (2.38465 iter/s, 5.03219s/12 iters), loss = 1.76298 +I0408 15:34:36.893798 20259 solver.cpp:237] Train net output #0: loss = 1.76298 (* 1 = 1.76298 loss) +I0408 15:34:36.893810 20259 sgd_solver.cpp:105] Iteration 5604, lr = 3.06219e-05 +I0408 15:34:38.916224 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 15:34:42.748253 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 15:34:45.066460 20259 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 15:34:45.066483 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:34:47.322757 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:34:49.651703 20259 solver.cpp:397] Test net output #0: accuracy = 0.28799 +I0408 15:34:49.651751 20259 solver.cpp:397] Test net output #1: loss = 3.27366 (* 1 = 3.27366 loss) +I0408 15:34:51.539359 20259 solver.cpp:218] Iteration 5616 (0.819386 iter/s, 14.6451s/12 iters), loss = 1.30594 +I0408 15:34:51.539422 20259 solver.cpp:237] Train net output #0: loss = 1.30594 (* 1 = 1.30594 loss) +I0408 15:34:51.539438 20259 sgd_solver.cpp:105] Iteration 5616, lr = 3.02446e-05 +I0408 15:34:56.587483 20259 solver.cpp:218] Iteration 5628 (2.37722 iter/s, 5.0479s/12 iters), loss = 1.48412 +I0408 15:34:56.587529 20259 solver.cpp:237] Train net output #0: loss = 1.48412 (* 1 = 1.48412 loss) +I0408 15:34:56.587541 20259 sgd_solver.cpp:105] Iteration 5628, lr = 2.98721e-05 +I0408 15:35:01.622522 20259 solver.cpp:218] Iteration 5640 (2.3834 iter/s, 5.03483s/12 iters), loss = 1.53232 +I0408 15:35:01.622568 20259 solver.cpp:237] Train net output #0: loss = 1.53232 (* 1 = 1.53232 loss) +I0408 15:35:01.622581 20259 sgd_solver.cpp:105] Iteration 5640, lr = 2.95041e-05 +I0408 15:35:06.653211 20259 solver.cpp:218] Iteration 5652 (2.38546 iter/s, 5.03048s/12 iters), loss = 1.66102 +I0408 15:35:06.653254 20259 solver.cpp:237] Train net output #0: loss = 1.66102 (* 1 = 1.66102 loss) +I0408 15:35:06.653264 20259 sgd_solver.cpp:105] Iteration 5652, lr = 2.91406e-05 +I0408 15:35:11.512302 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:35:11.680653 20259 solver.cpp:218] Iteration 5664 (2.38699 iter/s, 5.02724s/12 iters), loss = 1.75695 +I0408 15:35:11.680691 20259 solver.cpp:237] Train net output #0: loss = 1.75695 (* 1 = 1.75695 loss) +I0408 15:35:11.680701 20259 sgd_solver.cpp:105] Iteration 5664, lr = 2.87816e-05 +I0408 15:35:16.704561 20259 solver.cpp:218] Iteration 5676 (2.38867 iter/s, 5.02371s/12 iters), loss = 1.75517 +I0408 15:35:16.704640 20259 solver.cpp:237] Train net output #0: loss = 1.75517 (* 1 = 1.75517 loss) +I0408 15:35:16.704648 20259 sgd_solver.cpp:105] Iteration 5676, lr = 2.84271e-05 +I0408 15:35:21.699957 20259 solver.cpp:218] Iteration 5688 (2.40233 iter/s, 4.99516s/12 iters), loss = 1.49891 +I0408 15:35:21.700001 20259 solver.cpp:237] Train net output #0: loss = 1.49891 (* 1 = 1.49891 loss) +I0408 15:35:21.700011 20259 sgd_solver.cpp:105] Iteration 5688, lr = 2.80769e-05 +I0408 15:35:26.724489 20259 solver.cpp:218] Iteration 5700 (2.38838 iter/s, 5.02433s/12 iters), loss = 1.57628 +I0408 15:35:26.724529 20259 solver.cpp:237] Train net output #0: loss = 1.57628 (* 1 = 1.57628 loss) +I0408 15:35:26.724537 20259 sgd_solver.cpp:105] Iteration 5700, lr = 2.7731e-05 +I0408 15:35:31.511972 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 15:35:35.763010 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 15:35:40.223670 20259 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 15:35:40.223697 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:35:42.471786 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:35:44.726387 20259 solver.cpp:397] Test net output #0: accuracy = 0.288603 +I0408 15:35:44.726433 20259 solver.cpp:397] Test net output #1: loss = 3.27965 (* 1 = 3.27965 loss) +I0408 15:35:44.816967 20259 solver.cpp:218] Iteration 5712 (0.663281 iter/s, 18.0919s/12 iters), loss = 1.4255 +I0408 15:35:44.817015 20259 solver.cpp:237] Train net output #0: loss = 1.4255 (* 1 = 1.4255 loss) +I0408 15:35:44.817028 20259 sgd_solver.cpp:105] Iteration 5712, lr = 2.73894e-05 +I0408 15:35:49.149641 20259 solver.cpp:218] Iteration 5724 (2.76977 iter/s, 4.33249s/12 iters), loss = 1.83635 +I0408 15:35:49.149794 20259 solver.cpp:237] Train net output #0: loss = 1.83635 (* 1 = 1.83635 loss) +I0408 15:35:49.149809 20259 sgd_solver.cpp:105] Iteration 5724, lr = 2.7052e-05 +I0408 15:35:54.126416 20259 solver.cpp:218] Iteration 5736 (2.41135 iter/s, 4.97647s/12 iters), loss = 1.83658 +I0408 15:35:54.126459 20259 solver.cpp:237] Train net output #0: loss = 1.83658 (* 1 = 1.83658 loss) +I0408 15:35:54.126471 20259 sgd_solver.cpp:105] Iteration 5736, lr = 2.67188e-05 +I0408 15:35:59.063977 20259 solver.cpp:218] Iteration 5748 (2.43045 iter/s, 4.93735s/12 iters), loss = 1.50384 +I0408 15:35:59.064031 20259 solver.cpp:237] Train net output #0: loss = 1.50384 (* 1 = 1.50384 loss) +I0408 15:35:59.064044 20259 sgd_solver.cpp:105] Iteration 5748, lr = 2.63896e-05 +I0408 15:36:04.063288 20259 solver.cpp:218] Iteration 5760 (2.40043 iter/s, 4.9991s/12 iters), loss = 1.56041 +I0408 15:36:04.063338 20259 solver.cpp:237] Train net output #0: loss = 1.56041 (* 1 = 1.56041 loss) +I0408 15:36:04.063349 20259 sgd_solver.cpp:105] Iteration 5760, lr = 2.60645e-05 +I0408 15:36:06.016575 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:36:08.965713 20259 solver.cpp:218] Iteration 5772 (2.44788 iter/s, 4.9022s/12 iters), loss = 1.59929 +I0408 15:36:08.965766 20259 solver.cpp:237] Train net output #0: loss = 1.59929 (* 1 = 1.59929 loss) +I0408 15:36:08.965780 20259 sgd_solver.cpp:105] Iteration 5772, lr = 2.57434e-05 +I0408 15:36:14.002707 20259 solver.cpp:218] Iteration 5784 (2.38247 iter/s, 5.03678s/12 iters), loss = 1.58486 +I0408 15:36:14.002753 20259 solver.cpp:237] Train net output #0: loss = 1.58486 (* 1 = 1.58486 loss) +I0408 15:36:14.002761 20259 sgd_solver.cpp:105] Iteration 5784, lr = 2.54263e-05 +I0408 15:36:19.034549 20259 solver.cpp:218] Iteration 5796 (2.38491 iter/s, 5.03164s/12 iters), loss = 1.39388 +I0408 15:36:19.034588 20259 solver.cpp:237] Train net output #0: loss = 1.39388 (* 1 = 1.39388 loss) +I0408 15:36:19.034598 20259 sgd_solver.cpp:105] Iteration 5796, lr = 2.51131e-05 +I0408 15:36:24.049795 20259 solver.cpp:218] Iteration 5808 (2.3928 iter/s, 5.01504s/12 iters), loss = 1.62252 +I0408 15:36:24.049885 20259 solver.cpp:237] Train net output #0: loss = 1.62252 (* 1 = 1.62252 loss) +I0408 15:36:24.049899 20259 sgd_solver.cpp:105] Iteration 5808, lr = 2.48037e-05 +I0408 15:36:26.081849 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 15:36:30.503564 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 15:36:39.062338 20259 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 15:36:39.062376 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:36:41.234472 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:36:43.529673 20259 solver.cpp:397] Test net output #0: accuracy = 0.293505 +I0408 15:36:43.529719 20259 solver.cpp:397] Test net output #1: loss = 3.26252 (* 1 = 3.26252 loss) +I0408 15:36:45.378437 20259 solver.cpp:218] Iteration 5820 (0.562643 iter/s, 21.3279s/12 iters), loss = 1.53763 +I0408 15:36:45.378490 20259 solver.cpp:237] Train net output #0: loss = 1.53763 (* 1 = 1.53763 loss) +I0408 15:36:45.378504 20259 sgd_solver.cpp:105] Iteration 5820, lr = 2.44982e-05 +I0408 15:36:50.375028 20259 solver.cpp:218] Iteration 5832 (2.40174 iter/s, 4.99638s/12 iters), loss = 1.44905 +I0408 15:36:50.375082 20259 solver.cpp:237] Train net output #0: loss = 1.44905 (* 1 = 1.44905 loss) +I0408 15:36:50.375093 20259 sgd_solver.cpp:105] Iteration 5832, lr = 2.41964e-05 +I0408 15:36:55.398449 20259 solver.cpp:218] Iteration 5844 (2.38891 iter/s, 5.02321s/12 iters), loss = 1.53043 +I0408 15:36:55.398550 20259 solver.cpp:237] Train net output #0: loss = 1.53043 (* 1 = 1.53043 loss) +I0408 15:36:55.398561 20259 sgd_solver.cpp:105] Iteration 5844, lr = 2.38983e-05 +I0408 15:37:00.347007 20259 solver.cpp:218] Iteration 5856 (2.42507 iter/s, 4.9483s/12 iters), loss = 1.45556 +I0408 15:37:00.347050 20259 solver.cpp:237] Train net output #0: loss = 1.45556 (* 1 = 1.45556 loss) +I0408 15:37:00.347061 20259 sgd_solver.cpp:105] Iteration 5856, lr = 2.36039e-05 +I0408 15:37:04.514622 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:37:05.323607 20259 solver.cpp:218] Iteration 5868 (2.41138 iter/s, 4.9764s/12 iters), loss = 1.443 +I0408 15:37:05.323650 20259 solver.cpp:237] Train net output #0: loss = 1.443 (* 1 = 1.443 loss) +I0408 15:37:05.323662 20259 sgd_solver.cpp:105] Iteration 5868, lr = 2.33131e-05 +I0408 15:37:10.249943 20259 solver.cpp:218] Iteration 5880 (2.43599 iter/s, 4.92613s/12 iters), loss = 1.83186 +I0408 15:37:10.250005 20259 solver.cpp:237] Train net output #0: loss = 1.83186 (* 1 = 1.83186 loss) +I0408 15:37:10.250017 20259 sgd_solver.cpp:105] Iteration 5880, lr = 2.30259e-05 +I0408 15:37:15.178608 20259 solver.cpp:218] Iteration 5892 (2.43484 iter/s, 4.92845s/12 iters), loss = 1.75068 +I0408 15:37:15.178665 20259 solver.cpp:237] Train net output #0: loss = 1.75068 (* 1 = 1.75068 loss) +I0408 15:37:15.178678 20259 sgd_solver.cpp:105] Iteration 5892, lr = 2.27423e-05 +I0408 15:37:20.109350 20259 solver.cpp:218] Iteration 5904 (2.43382 iter/s, 4.93053s/12 iters), loss = 1.45542 +I0408 15:37:20.109402 20259 solver.cpp:237] Train net output #0: loss = 1.45542 (* 1 = 1.45542 loss) +I0408 15:37:20.109413 20259 sgd_solver.cpp:105] Iteration 5904, lr = 2.24621e-05 +I0408 15:37:24.596175 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 15:37:29.035305 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 15:37:33.275049 20259 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 15:37:33.275075 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:37:35.566403 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:37:37.897112 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 15:37:37.897167 20259 solver.cpp:397] Test net output #1: loss = 3.2717 (* 1 = 3.2717 loss) +I0408 15:37:37.987543 20259 solver.cpp:218] Iteration 5916 (0.671231 iter/s, 17.8776s/12 iters), loss = 1.63126 +I0408 15:37:37.987591 20259 solver.cpp:237] Train net output #0: loss = 1.63126 (* 1 = 1.63126 loss) +I0408 15:37:37.987601 20259 sgd_solver.cpp:105] Iteration 5916, lr = 2.21854e-05 +I0408 15:37:42.284811 20259 solver.cpp:218] Iteration 5928 (2.7926 iter/s, 4.29708s/12 iters), loss = 1.59823 +I0408 15:37:42.284864 20259 solver.cpp:237] Train net output #0: loss = 1.59823 (* 1 = 1.59823 loss) +I0408 15:37:42.284878 20259 sgd_solver.cpp:105] Iteration 5928, lr = 2.19121e-05 +I0408 15:37:47.288873 20259 solver.cpp:218] Iteration 5940 (2.39815 iter/s, 5.00385s/12 iters), loss = 1.58027 +I0408 15:37:47.288915 20259 solver.cpp:237] Train net output #0: loss = 1.58027 (* 1 = 1.58027 loss) +I0408 15:37:47.288925 20259 sgd_solver.cpp:105] Iteration 5940, lr = 2.16422e-05 +I0408 15:37:52.414866 20259 solver.cpp:218] Iteration 5952 (2.34111 iter/s, 5.12578s/12 iters), loss = 1.7276 +I0408 15:37:52.414921 20259 solver.cpp:237] Train net output #0: loss = 1.7276 (* 1 = 1.7276 loss) +I0408 15:37:52.414934 20259 sgd_solver.cpp:105] Iteration 5952, lr = 2.13756e-05 +I0408 15:37:57.506542 20259 solver.cpp:218] Iteration 5964 (2.35689 iter/s, 5.09146s/12 iters), loss = 1.67218 +I0408 15:37:57.506604 20259 solver.cpp:237] Train net output #0: loss = 1.67218 (* 1 = 1.67218 loss) +I0408 15:37:57.506620 20259 sgd_solver.cpp:105] Iteration 5964, lr = 2.11123e-05 +I0408 15:37:58.796963 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:02.598300 20259 solver.cpp:218] Iteration 5976 (2.35685 iter/s, 5.09153s/12 iters), loss = 1.57926 +I0408 15:38:02.598385 20259 solver.cpp:237] Train net output #0: loss = 1.57926 (* 1 = 1.57926 loss) +I0408 15:38:02.598398 20259 sgd_solver.cpp:105] Iteration 5976, lr = 2.08522e-05 +I0408 15:38:07.803581 20259 solver.cpp:218] Iteration 5988 (2.30546 iter/s, 5.20503s/12 iters), loss = 1.64414 +I0408 15:38:07.803627 20259 solver.cpp:237] Train net output #0: loss = 1.64414 (* 1 = 1.64414 loss) +I0408 15:38:07.803638 20259 sgd_solver.cpp:105] Iteration 5988, lr = 2.05953e-05 +I0408 15:38:12.799757 20259 solver.cpp:218] Iteration 6000 (2.40194 iter/s, 4.99597s/12 iters), loss = 1.71173 +I0408 15:38:12.799794 20259 solver.cpp:237] Train net output #0: loss = 1.71173 (* 1 = 1.71173 loss) +I0408 15:38:12.799804 20259 sgd_solver.cpp:105] Iteration 6000, lr = 2.03416e-05 +I0408 15:38:17.749853 20259 solver.cpp:218] Iteration 6012 (2.42429 iter/s, 4.94989s/12 iters), loss = 1.58772 +I0408 15:38:17.749908 20259 solver.cpp:237] Train net output #0: loss = 1.58772 (* 1 = 1.58772 loss) +I0408 15:38:17.749922 20259 sgd_solver.cpp:105] Iteration 6012, lr = 2.0091e-05 +I0408 15:38:19.734037 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 15:38:23.352651 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 15:38:27.998204 20259 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 15:38:27.998234 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:38:30.258515 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:32.640089 20259 solver.cpp:397] Test net output #0: accuracy = 0.286765 +I0408 15:38:32.640252 20259 solver.cpp:397] Test net output #1: loss = 3.28034 (* 1 = 3.28034 loss) +I0408 15:38:34.580926 20259 solver.cpp:218] Iteration 6024 (0.712991 iter/s, 16.8305s/12 iters), loss = 1.61337 +I0408 15:38:34.580981 20259 solver.cpp:237] Train net output #0: loss = 1.61337 (* 1 = 1.61337 loss) +I0408 15:38:34.580994 20259 sgd_solver.cpp:105] Iteration 6024, lr = 1.98435e-05 +I0408 15:38:39.711002 20259 solver.cpp:218] Iteration 6036 (2.33924 iter/s, 5.12986s/12 iters), loss = 1.42086 +I0408 15:38:39.711050 20259 solver.cpp:237] Train net output #0: loss = 1.42086 (* 1 = 1.42086 loss) +I0408 15:38:39.711059 20259 sgd_solver.cpp:105] Iteration 6036, lr = 1.95991e-05 +I0408 15:38:44.718673 20259 solver.cpp:218] Iteration 6048 (2.39642 iter/s, 5.00747s/12 iters), loss = 1.75275 +I0408 15:38:44.718716 20259 solver.cpp:237] Train net output #0: loss = 1.75275 (* 1 = 1.75275 loss) +I0408 15:38:44.718725 20259 sgd_solver.cpp:105] Iteration 6048, lr = 1.93576e-05 +I0408 15:38:49.728032 20259 solver.cpp:218] Iteration 6060 (2.39561 iter/s, 5.00916s/12 iters), loss = 1.61937 +I0408 15:38:49.728075 20259 solver.cpp:237] Train net output #0: loss = 1.61937 (* 1 = 1.61937 loss) +I0408 15:38:49.728085 20259 sgd_solver.cpp:105] Iteration 6060, lr = 1.91192e-05 +I0408 15:38:53.214401 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:54.773075 20259 solver.cpp:218] Iteration 6072 (2.37867 iter/s, 5.04484s/12 iters), loss = 1.56757 +I0408 15:38:54.773121 20259 solver.cpp:237] Train net output #0: loss = 1.56757 (* 1 = 1.56757 loss) +I0408 15:38:54.773130 20259 sgd_solver.cpp:105] Iteration 6072, lr = 1.88836e-05 +I0408 15:38:59.786103 20259 solver.cpp:218] Iteration 6084 (2.39386 iter/s, 5.01283s/12 iters), loss = 1.56575 +I0408 15:38:59.786136 20259 solver.cpp:237] Train net output #0: loss = 1.56575 (* 1 = 1.56575 loss) +I0408 15:38:59.786144 20259 sgd_solver.cpp:105] Iteration 6084, lr = 1.8651e-05 +I0408 15:39:04.740792 20259 solver.cpp:218] Iteration 6096 (2.42204 iter/s, 4.95449s/12 iters), loss = 1.77866 +I0408 15:39:04.740919 20259 solver.cpp:237] Train net output #0: loss = 1.77866 (* 1 = 1.77866 loss) +I0408 15:39:04.740933 20259 sgd_solver.cpp:105] Iteration 6096, lr = 1.84213e-05 +I0408 15:39:09.676396 20259 solver.cpp:218] Iteration 6108 (2.43145 iter/s, 4.93532s/12 iters), loss = 1.58839 +I0408 15:39:09.676452 20259 solver.cpp:237] Train net output #0: loss = 1.58839 (* 1 = 1.58839 loss) +I0408 15:39:09.676466 20259 sgd_solver.cpp:105] Iteration 6108, lr = 1.81943e-05 +I0408 15:39:14.257416 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 15:39:17.515305 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 15:39:22.570930 20259 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 15:39:22.570952 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:39:24.718660 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:27.222136 20259 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0408 15:39:27.222185 20259 solver.cpp:397] Test net output #1: loss = 3.27028 (* 1 = 3.27028 loss) +I0408 15:39:27.312577 20259 solver.cpp:218] Iteration 6120 (0.680442 iter/s, 17.6356s/12 iters), loss = 1.47568 +I0408 15:39:27.312631 20259 solver.cpp:237] Train net output #0: loss = 1.47568 (* 1 = 1.47568 loss) +I0408 15:39:27.312644 20259 sgd_solver.cpp:105] Iteration 6120, lr = 1.79702e-05 +I0408 15:39:31.453552 20259 solver.cpp:218] Iteration 6132 (2.898 iter/s, 4.14079s/12 iters), loss = 1.56405 +I0408 15:39:31.453601 20259 solver.cpp:237] Train net output #0: loss = 1.56405 (* 1 = 1.56405 loss) +I0408 15:39:31.453613 20259 sgd_solver.cpp:105] Iteration 6132, lr = 1.77488e-05 +I0408 15:39:36.400072 20259 solver.cpp:218] Iteration 6144 (2.42605 iter/s, 4.94631s/12 iters), loss = 1.61531 +I0408 15:39:36.400231 20259 solver.cpp:237] Train net output #0: loss = 1.61531 (* 1 = 1.61531 loss) +I0408 15:39:36.400247 20259 sgd_solver.cpp:105] Iteration 6144, lr = 1.75302e-05 +I0408 15:39:41.426631 20259 solver.cpp:218] Iteration 6156 (2.38747 iter/s, 5.02625s/12 iters), loss = 1.36791 +I0408 15:39:41.426672 20259 solver.cpp:237] Train net output #0: loss = 1.36791 (* 1 = 1.36791 loss) +I0408 15:39:41.426683 20259 sgd_solver.cpp:105] Iteration 6156, lr = 1.73142e-05 +I0408 15:39:46.431334 20259 solver.cpp:218] Iteration 6168 (2.39784 iter/s, 5.0045s/12 iters), loss = 1.63792 +I0408 15:39:46.431381 20259 solver.cpp:237] Train net output #0: loss = 1.63792 (* 1 = 1.63792 loss) +I0408 15:39:46.431393 20259 sgd_solver.cpp:105] Iteration 6168, lr = 1.71009e-05 +I0408 15:39:47.024242 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:51.404853 20259 solver.cpp:218] Iteration 6180 (2.41287 iter/s, 4.97332s/12 iters), loss = 1.52011 +I0408 15:39:51.404896 20259 solver.cpp:237] Train net output #0: loss = 1.52011 (* 1 = 1.52011 loss) +I0408 15:39:51.404906 20259 sgd_solver.cpp:105] Iteration 6180, lr = 1.68903e-05 +I0408 15:39:56.292157 20259 solver.cpp:218] Iteration 6192 (2.45544 iter/s, 4.88711s/12 iters), loss = 1.48984 +I0408 15:39:56.292203 20259 solver.cpp:237] Train net output #0: loss = 1.48984 (* 1 = 1.48984 loss) +I0408 15:39:56.292215 20259 sgd_solver.cpp:105] Iteration 6192, lr = 1.66822e-05 +I0408 15:40:01.317489 20259 solver.cpp:218] Iteration 6204 (2.388 iter/s, 5.02513s/12 iters), loss = 1.47257 +I0408 15:40:01.317544 20259 solver.cpp:237] Train net output #0: loss = 1.47257 (* 1 = 1.47257 loss) +I0408 15:40:01.317556 20259 sgd_solver.cpp:105] Iteration 6204, lr = 1.64767e-05 +I0408 15:40:06.343101 20259 solver.cpp:218] Iteration 6216 (2.38787 iter/s, 5.0254s/12 iters), loss = 1.71377 +I0408 15:40:06.343144 20259 solver.cpp:237] Train net output #0: loss = 1.71377 (* 1 = 1.71377 loss) +I0408 15:40:06.343156 20259 sgd_solver.cpp:105] Iteration 6216, lr = 1.62737e-05 +I0408 15:40:08.436094 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 15:40:12.008253 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 15:40:17.804880 20259 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 15:40:17.804899 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:40:19.806064 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:40:21.083194 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:40:22.256162 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 15:40:22.256206 20259 solver.cpp:397] Test net output #1: loss = 3.27983 (* 1 = 3.27983 loss) +I0408 15:40:24.234210 20259 solver.cpp:218] Iteration 6228 (0.670746 iter/s, 17.8905s/12 iters), loss = 1.40494 +I0408 15:40:24.234266 20259 solver.cpp:237] Train net output #0: loss = 1.40494 (* 1 = 1.40494 loss) +I0408 15:40:24.234279 20259 sgd_solver.cpp:105] Iteration 6228, lr = 1.60733e-05 +I0408 15:40:29.430827 20259 solver.cpp:218] Iteration 6240 (2.30929 iter/s, 5.1964s/12 iters), loss = 1.58856 +I0408 15:40:29.430871 20259 solver.cpp:237] Train net output #0: loss = 1.58856 (* 1 = 1.58856 loss) +I0408 15:40:29.430881 20259 sgd_solver.cpp:105] Iteration 6240, lr = 1.58753e-05 +I0408 15:40:34.635108 20259 solver.cpp:218] Iteration 6252 (2.30588 iter/s, 5.20408s/12 iters), loss = 1.27047 +I0408 15:40:34.635155 20259 solver.cpp:237] Train net output #0: loss = 1.27047 (* 1 = 1.27047 loss) +I0408 15:40:34.635166 20259 sgd_solver.cpp:105] Iteration 6252, lr = 1.56797e-05 +I0408 15:40:39.704881 20259 solver.cpp:218] Iteration 6264 (2.36706 iter/s, 5.06957s/12 iters), loss = 1.5809 +I0408 15:40:39.704999 20259 solver.cpp:237] Train net output #0: loss = 1.5809 (* 1 = 1.5809 loss) +I0408 15:40:39.705009 20259 sgd_solver.cpp:105] Iteration 6264, lr = 1.54865e-05 +I0408 15:40:42.418893 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:40:44.714846 20259 solver.cpp:218] Iteration 6276 (2.39536 iter/s, 5.0097s/12 iters), loss = 1.49838 +I0408 15:40:44.714887 20259 solver.cpp:237] Train net output #0: loss = 1.49838 (* 1 = 1.49838 loss) +I0408 15:40:44.714900 20259 sgd_solver.cpp:105] Iteration 6276, lr = 1.52958e-05 +I0408 15:40:49.741852 20259 solver.cpp:218] Iteration 6288 (2.3872 iter/s, 5.0268s/12 iters), loss = 1.66914 +I0408 15:40:49.741905 20259 solver.cpp:237] Train net output #0: loss = 1.66914 (* 1 = 1.66914 loss) +I0408 15:40:49.741917 20259 sgd_solver.cpp:105] Iteration 6288, lr = 1.51073e-05 +I0408 15:40:54.703117 20259 solver.cpp:218] Iteration 6300 (2.41884 iter/s, 4.96106s/12 iters), loss = 1.60042 +I0408 15:40:54.703166 20259 solver.cpp:237] Train net output #0: loss = 1.60042 (* 1 = 1.60042 loss) +I0408 15:40:54.703176 20259 sgd_solver.cpp:105] Iteration 6300, lr = 1.49212e-05 +I0408 15:40:59.746345 20259 solver.cpp:218] Iteration 6312 (2.37952 iter/s, 5.04303s/12 iters), loss = 1.58483 +I0408 15:40:59.746381 20259 solver.cpp:237] Train net output #0: loss = 1.58483 (* 1 = 1.58483 loss) +I0408 15:40:59.746388 20259 sgd_solver.cpp:105] Iteration 6312, lr = 1.47374e-05 +I0408 15:41:04.465461 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 15:41:08.074236 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 15:41:11.117818 20259 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 15:41:11.117897 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:41:13.096935 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:41:15.774803 20259 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0408 15:41:15.774839 20259 solver.cpp:397] Test net output #1: loss = 3.27468 (* 1 = 3.27468 loss) +I0408 15:41:15.864925 20259 solver.cpp:218] Iteration 6324 (0.744506 iter/s, 16.1181s/12 iters), loss = 1.63211 +I0408 15:41:15.864984 20259 solver.cpp:237] Train net output #0: loss = 1.63211 (* 1 = 1.63211 loss) +I0408 15:41:15.864996 20259 sgd_solver.cpp:105] Iteration 6324, lr = 1.45559e-05 +I0408 15:41:20.144616 20259 solver.cpp:218] Iteration 6336 (2.80407 iter/s, 4.2795s/12 iters), loss = 1.46225 +I0408 15:41:20.144665 20259 solver.cpp:237] Train net output #0: loss = 1.46225 (* 1 = 1.46225 loss) +I0408 15:41:20.144677 20259 sgd_solver.cpp:105] Iteration 6336, lr = 1.43766e-05 +I0408 15:41:25.140563 20259 solver.cpp:218] Iteration 6348 (2.40204 iter/s, 4.99575s/12 iters), loss = 1.4564 +I0408 15:41:25.140609 20259 solver.cpp:237] Train net output #0: loss = 1.4564 (* 1 = 1.4564 loss) +I0408 15:41:25.140620 20259 sgd_solver.cpp:105] Iteration 6348, lr = 1.41994e-05 +I0408 15:41:30.190364 20259 solver.cpp:218] Iteration 6360 (2.37643 iter/s, 5.0496s/12 iters), loss = 1.60436 +I0408 15:41:30.190419 20259 solver.cpp:237] Train net output #0: loss = 1.60436 (* 1 = 1.60436 loss) +I0408 15:41:30.190433 20259 sgd_solver.cpp:105] Iteration 6360, lr = 1.40245e-05 +I0408 15:41:35.001929 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:41:35.143944 20259 solver.cpp:218] Iteration 6372 (2.42259 iter/s, 4.95337s/12 iters), loss = 1.68528 +I0408 15:41:35.143991 20259 solver.cpp:237] Train net output #0: loss = 1.68528 (* 1 = 1.68528 loss) +I0408 15:41:35.144003 20259 sgd_solver.cpp:105] Iteration 6372, lr = 1.38518e-05 +I0408 15:41:40.177362 20259 solver.cpp:218] Iteration 6384 (2.38417 iter/s, 5.03321s/12 iters), loss = 1.5294 +I0408 15:41:40.177428 20259 solver.cpp:237] Train net output #0: loss = 1.5294 (* 1 = 1.5294 loss) +I0408 15:41:40.177444 20259 sgd_solver.cpp:105] Iteration 6384, lr = 1.36811e-05 +I0408 15:41:45.172235 20259 solver.cpp:218] Iteration 6396 (2.40257 iter/s, 4.99466s/12 iters), loss = 1.40956 +I0408 15:41:45.172379 20259 solver.cpp:237] Train net output #0: loss = 1.40956 (* 1 = 1.40956 loss) +I0408 15:41:45.172391 20259 sgd_solver.cpp:105] Iteration 6396, lr = 1.35126e-05 +I0408 15:41:50.170750 20259 solver.cpp:218] Iteration 6408 (2.40085 iter/s, 4.99822s/12 iters), loss = 1.5128 +I0408 15:41:50.170800 20259 solver.cpp:237] Train net output #0: loss = 1.5128 (* 1 = 1.5128 loss) +I0408 15:41:50.170811 20259 sgd_solver.cpp:105] Iteration 6408, lr = 1.33461e-05 +I0408 15:41:55.158921 20259 solver.cpp:218] Iteration 6420 (2.40579 iter/s, 4.98797s/12 iters), loss = 1.6945 +I0408 15:41:55.158969 20259 solver.cpp:237] Train net output #0: loss = 1.6945 (* 1 = 1.6945 loss) +I0408 15:41:55.158982 20259 sgd_solver.cpp:105] Iteration 6420, lr = 1.31817e-05 +I0408 15:41:57.248147 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 15:42:02.637097 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 15:42:08.316396 20259 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 15:42:08.316421 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:42:10.258898 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:12.798269 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 15:42:12.798317 20259 solver.cpp:397] Test net output #1: loss = 3.28171 (* 1 = 3.28171 loss) +I0408 15:42:14.896349 20259 solver.cpp:218] Iteration 6432 (0.608001 iter/s, 19.7368s/12 iters), loss = 1.64883 +I0408 15:42:14.896399 20259 solver.cpp:237] Train net output #0: loss = 1.64883 (* 1 = 1.64883 loss) +I0408 15:42:14.896410 20259 sgd_solver.cpp:105] Iteration 6432, lr = 1.30193e-05 +I0408 15:42:20.053220 20259 solver.cpp:218] Iteration 6444 (2.32709 iter/s, 5.15666s/12 iters), loss = 1.77173 +I0408 15:42:20.053314 20259 solver.cpp:237] Train net output #0: loss = 1.77173 (* 1 = 1.77173 loss) +I0408 15:42:20.053331 20259 sgd_solver.cpp:105] Iteration 6444, lr = 1.2859e-05 +I0408 15:42:25.064617 20259 solver.cpp:218] Iteration 6456 (2.39466 iter/s, 5.01116s/12 iters), loss = 1.54028 +I0408 15:42:25.064663 20259 solver.cpp:237] Train net output #0: loss = 1.54028 (* 1 = 1.54028 loss) +I0408 15:42:25.064675 20259 sgd_solver.cpp:105] Iteration 6456, lr = 1.27005e-05 +I0408 15:42:30.099334 20259 solver.cpp:218] Iteration 6468 (2.38355 iter/s, 5.03451s/12 iters), loss = 1.56797 +I0408 15:42:30.099380 20259 solver.cpp:237] Train net output #0: loss = 1.56797 (* 1 = 1.56797 loss) +I0408 15:42:30.099393 20259 sgd_solver.cpp:105] Iteration 6468, lr = 1.25441e-05 +I0408 15:42:32.080283 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:35.005607 20259 solver.cpp:218] Iteration 6480 (2.44595 iter/s, 4.90608s/12 iters), loss = 1.82776 +I0408 15:42:35.005659 20259 solver.cpp:237] Train net output #0: loss = 1.82776 (* 1 = 1.82776 loss) +I0408 15:42:35.005671 20259 sgd_solver.cpp:105] Iteration 6480, lr = 1.23896e-05 +I0408 15:42:39.995954 20259 solver.cpp:218] Iteration 6492 (2.40474 iter/s, 4.99014s/12 iters), loss = 1.56711 +I0408 15:42:39.996009 20259 solver.cpp:237] Train net output #0: loss = 1.56711 (* 1 = 1.56711 loss) +I0408 15:42:39.996022 20259 sgd_solver.cpp:105] Iteration 6492, lr = 1.22369e-05 +I0408 15:42:45.125661 20259 solver.cpp:218] Iteration 6504 (2.33941 iter/s, 5.1295s/12 iters), loss = 1.44305 +I0408 15:42:45.125715 20259 solver.cpp:237] Train net output #0: loss = 1.44305 (* 1 = 1.44305 loss) +I0408 15:42:45.125727 20259 sgd_solver.cpp:105] Iteration 6504, lr = 1.20862e-05 +I0408 15:42:50.209467 20259 solver.cpp:218] Iteration 6516 (2.36053 iter/s, 5.08359s/12 iters), loss = 1.41553 +I0408 15:42:50.209625 20259 solver.cpp:237] Train net output #0: loss = 1.41553 (* 1 = 1.41553 loss) +I0408 15:42:50.209640 20259 sgd_solver.cpp:105] Iteration 6516, lr = 1.19373e-05 +I0408 15:42:54.754736 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 15:43:02.203675 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 15:43:06.734977 20259 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 15:43:06.735002 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:43:08.635785 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:43:11.211024 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 15:43:11.211071 20259 solver.cpp:397] Test net output #1: loss = 3.28605 (* 1 = 3.28605 loss) +I0408 15:43:11.301393 20259 solver.cpp:218] Iteration 6528 (0.568959 iter/s, 21.0912s/12 iters), loss = 1.48997 +I0408 15:43:11.301461 20259 solver.cpp:237] Train net output #0: loss = 1.48997 (* 1 = 1.48997 loss) +I0408 15:43:11.301477 20259 sgd_solver.cpp:105] Iteration 6528, lr = 1.17903e-05 +I0408 15:43:15.636314 20259 solver.cpp:218] Iteration 6540 (2.76834 iter/s, 4.33472s/12 iters), loss = 1.40413 +I0408 15:43:15.636361 20259 solver.cpp:237] Train net output #0: loss = 1.40413 (* 1 = 1.40413 loss) +I0408 15:43:15.636373 20259 sgd_solver.cpp:105] Iteration 6540, lr = 1.1645e-05 +I0408 15:43:20.671002 20259 solver.cpp:218] Iteration 6552 (2.38356 iter/s, 5.03449s/12 iters), loss = 1.44642 +I0408 15:43:20.671103 20259 solver.cpp:237] Train net output #0: loss = 1.44642 (* 1 = 1.44642 loss) +I0408 15:43:20.671113 20259 sgd_solver.cpp:105] Iteration 6552, lr = 1.15016e-05 +I0408 15:43:25.738019 20259 solver.cpp:218] Iteration 6564 (2.36838 iter/s, 5.06676s/12 iters), loss = 1.20085 +I0408 15:43:25.738060 20259 solver.cpp:237] Train net output #0: loss = 1.20085 (* 1 = 1.20085 loss) +I0408 15:43:25.738070 20259 sgd_solver.cpp:105] Iteration 6564, lr = 1.13599e-05 +I0408 15:43:29.984270 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:43:30.760300 20259 solver.cpp:218] Iteration 6576 (2.38944 iter/s, 5.02209s/12 iters), loss = 1.57337 +I0408 15:43:30.760337 20259 solver.cpp:237] Train net output #0: loss = 1.57337 (* 1 = 1.57337 loss) +I0408 15:43:30.760345 20259 sgd_solver.cpp:105] Iteration 6576, lr = 1.12199e-05 +I0408 15:43:35.724445 20259 solver.cpp:218] Iteration 6588 (2.41743 iter/s, 4.96395s/12 iters), loss = 1.5141 +I0408 15:43:35.724493 20259 solver.cpp:237] Train net output #0: loss = 1.5141 (* 1 = 1.5141 loss) +I0408 15:43:35.724505 20259 sgd_solver.cpp:105] Iteration 6588, lr = 1.10817e-05 +I0408 15:43:40.792313 20259 solver.cpp:218] Iteration 6600 (2.36795 iter/s, 5.06767s/12 iters), loss = 1.7273 +I0408 15:43:40.792352 20259 solver.cpp:237] Train net output #0: loss = 1.7273 (* 1 = 1.7273 loss) +I0408 15:43:40.792361 20259 sgd_solver.cpp:105] Iteration 6600, lr = 1.09452e-05 +I0408 15:43:45.809675 20259 solver.cpp:218] Iteration 6612 (2.39179 iter/s, 5.01716s/12 iters), loss = 1.2112 +I0408 15:43:45.809736 20259 solver.cpp:237] Train net output #0: loss = 1.2112 (* 1 = 1.2112 loss) +I0408 15:43:45.809752 20259 sgd_solver.cpp:105] Iteration 6612, lr = 1.08104e-05 +I0408 15:43:50.864586 20259 solver.cpp:218] Iteration 6624 (2.37403 iter/s, 5.0547s/12 iters), loss = 1.70659 +I0408 15:43:50.864743 20259 solver.cpp:237] Train net output #0: loss = 1.70659 (* 1 = 1.70659 loss) +I0408 15:43:50.864758 20259 sgd_solver.cpp:105] Iteration 6624, lr = 1.06772e-05 +I0408 15:43:52.923074 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 15:44:02.231133 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 15:44:05.920125 20259 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 15:44:05.920152 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:44:07.789881 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:44:10.395543 20259 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0408 15:44:10.395577 20259 solver.cpp:397] Test net output #1: loss = 3.27026 (* 1 = 3.27026 loss) +I0408 15:44:12.368757 20259 solver.cpp:218] Iteration 6636 (0.558051 iter/s, 21.5034s/12 iters), loss = 1.65219 +I0408 15:44:12.368808 20259 solver.cpp:237] Train net output #0: loss = 1.65219 (* 1 = 1.65219 loss) +I0408 15:44:12.368821 20259 sgd_solver.cpp:105] Iteration 6636, lr = 1.05457e-05 +I0408 15:44:17.818624 20259 solver.cpp:218] Iteration 6648 (2.20198 iter/s, 5.44965s/12 iters), loss = 1.68717 +I0408 15:44:17.818675 20259 solver.cpp:237] Train net output #0: loss = 1.68717 (* 1 = 1.68717 loss) +I0408 15:44:17.818686 20259 sgd_solver.cpp:105] Iteration 6648, lr = 1.04158e-05 +I0408 15:44:23.001596 20259 solver.cpp:218] Iteration 6660 (2.31537 iter/s, 5.18277s/12 iters), loss = 1.47257 +I0408 15:44:23.001699 20259 solver.cpp:237] Train net output #0: loss = 1.47257 (* 1 = 1.47257 loss) +I0408 15:44:23.001709 20259 sgd_solver.cpp:105] Iteration 6660, lr = 1.02874e-05 +I0408 15:44:28.165769 20259 solver.cpp:218] Iteration 6672 (2.32382 iter/s, 5.16391s/12 iters), loss = 1.79392 +I0408 15:44:28.165810 20259 solver.cpp:237] Train net output #0: loss = 1.79392 (* 1 = 1.79392 loss) +I0408 15:44:28.165819 20259 sgd_solver.cpp:105] Iteration 6672, lr = 1.01607e-05 +I0408 15:44:29.657486 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:44:33.644484 20259 solver.cpp:218] Iteration 6684 (2.19038 iter/s, 5.4785s/12 iters), loss = 1.57648 +I0408 15:44:33.644532 20259 solver.cpp:237] Train net output #0: loss = 1.57648 (* 1 = 1.57648 loss) +I0408 15:44:33.644543 20259 sgd_solver.cpp:105] Iteration 6684, lr = 1.00355e-05 +I0408 15:44:38.812731 20259 solver.cpp:218] Iteration 6696 (2.32196 iter/s, 5.16804s/12 iters), loss = 1.73369 +I0408 15:44:38.812773 20259 solver.cpp:237] Train net output #0: loss = 1.73369 (* 1 = 1.73369 loss) +I0408 15:44:38.812784 20259 sgd_solver.cpp:105] Iteration 6696, lr = 9.91192e-06 +I0408 15:44:43.922205 20259 solver.cpp:218] Iteration 6708 (2.34867 iter/s, 5.10928s/12 iters), loss = 1.72639 +I0408 15:44:43.922256 20259 solver.cpp:237] Train net output #0: loss = 1.72639 (* 1 = 1.72639 loss) +I0408 15:44:43.922269 20259 sgd_solver.cpp:105] Iteration 6708, lr = 9.78982e-06 +I0408 15:44:49.395648 20259 solver.cpp:218] Iteration 6720 (2.19249 iter/s, 5.47322s/12 iters), loss = 1.5398 +I0408 15:44:49.395687 20259 solver.cpp:237] Train net output #0: loss = 1.5398 (* 1 = 1.5398 loss) +I0408 15:44:49.395696 20259 sgd_solver.cpp:105] Iteration 6720, lr = 9.66922e-06 +I0408 15:44:54.059129 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 15:44:59.706882 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 15:45:03.370250 20259 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 15:45:03.370276 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:45:05.512733 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:08.152416 20259 solver.cpp:397] Test net output #0: accuracy = 0.286765 +I0408 15:45:08.152463 20259 solver.cpp:397] Test net output #1: loss = 3.27717 (* 1 = 3.27717 loss) +I0408 15:45:08.242249 20259 solver.cpp:218] Iteration 6732 (0.636739 iter/s, 18.846s/12 iters), loss = 1.51063 +I0408 15:45:08.242303 20259 solver.cpp:237] Train net output #0: loss = 1.51063 (* 1 = 1.51063 loss) +I0408 15:45:08.242314 20259 sgd_solver.cpp:105] Iteration 6732, lr = 9.55011e-06 +I0408 15:45:12.557061 20259 solver.cpp:218] Iteration 6744 (2.78124 iter/s, 4.31463s/12 iters), loss = 1.55143 +I0408 15:45:12.557103 20259 solver.cpp:237] Train net output #0: loss = 1.55143 (* 1 = 1.55143 loss) +I0408 15:45:12.557113 20259 sgd_solver.cpp:105] Iteration 6744, lr = 9.43246e-06 +I0408 15:45:17.444718 20259 solver.cpp:218] Iteration 6756 (2.45526 iter/s, 4.88746s/12 iters), loss = 1.55439 +I0408 15:45:17.444778 20259 solver.cpp:237] Train net output #0: loss = 1.55439 (* 1 = 1.55439 loss) +I0408 15:45:17.444790 20259 sgd_solver.cpp:105] Iteration 6756, lr = 9.31626e-06 +I0408 15:45:22.536154 20259 solver.cpp:218] Iteration 6768 (2.357 iter/s, 5.09122s/12 iters), loss = 1.57766 +I0408 15:45:22.536195 20259 solver.cpp:237] Train net output #0: loss = 1.57766 (* 1 = 1.57766 loss) +I0408 15:45:22.536206 20259 sgd_solver.cpp:105] Iteration 6768, lr = 9.2015e-06 +I0408 15:45:26.147696 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:27.675196 20259 solver.cpp:218] Iteration 6780 (2.33516 iter/s, 5.13884s/12 iters), loss = 1.7106 +I0408 15:45:27.675252 20259 solver.cpp:237] Train net output #0: loss = 1.7106 (* 1 = 1.7106 loss) +I0408 15:45:27.675264 20259 sgd_solver.cpp:105] Iteration 6780, lr = 9.08814e-06 +I0408 15:45:32.746213 20259 solver.cpp:218] Iteration 6792 (2.36649 iter/s, 5.07081s/12 iters), loss = 1.29652 +I0408 15:45:32.746264 20259 solver.cpp:237] Train net output #0: loss = 1.29652 (* 1 = 1.29652 loss) +I0408 15:45:32.746277 20259 sgd_solver.cpp:105] Iteration 6792, lr = 8.97619e-06 +I0408 15:45:37.743489 20259 solver.cpp:218] Iteration 6804 (2.40141 iter/s, 4.99707s/12 iters), loss = 1.79593 +I0408 15:45:37.743544 20259 solver.cpp:237] Train net output #0: loss = 1.79593 (* 1 = 1.79593 loss) +I0408 15:45:37.743556 20259 sgd_solver.cpp:105] Iteration 6804, lr = 8.86561e-06 +I0408 15:45:42.790828 20259 solver.cpp:218] Iteration 6816 (2.37759 iter/s, 5.04713s/12 iters), loss = 1.41587 +I0408 15:45:42.790870 20259 solver.cpp:237] Train net output #0: loss = 1.41587 (* 1 = 1.41587 loss) +I0408 15:45:42.790880 20259 sgd_solver.cpp:105] Iteration 6816, lr = 8.7564e-06 +I0408 15:45:48.279721 20259 solver.cpp:218] Iteration 6828 (2.18632 iter/s, 5.48868s/12 iters), loss = 1.4329 +I0408 15:45:48.279770 20259 solver.cpp:237] Train net output #0: loss = 1.4329 (* 1 = 1.4329 loss) +I0408 15:45:48.279781 20259 sgd_solver.cpp:105] Iteration 6828, lr = 8.64853e-06 +I0408 15:45:50.427691 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 15:45:57.009527 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 15:46:02.284997 20259 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 15:46:02.285022 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:46:04.096210 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:46:06.965860 20259 solver.cpp:397] Test net output #0: accuracy = 0.287377 +I0408 15:46:06.965909 20259 solver.cpp:397] Test net output #1: loss = 3.28472 (* 1 = 3.28472 loss) +I0408 15:46:08.950237 20259 solver.cpp:218] Iteration 6840 (0.580555 iter/s, 20.6699s/12 iters), loss = 1.71475 +I0408 15:46:08.950291 20259 solver.cpp:237] Train net output #0: loss = 1.71475 (* 1 = 1.71475 loss) +I0408 15:46:08.950304 20259 sgd_solver.cpp:105] Iteration 6840, lr = 8.54199e-06 +I0408 15:46:13.954866 20259 solver.cpp:218] Iteration 6852 (2.39788 iter/s, 5.00443s/12 iters), loss = 1.72485 +I0408 15:46:13.954905 20259 solver.cpp:237] Train net output #0: loss = 1.72485 (* 1 = 1.72485 loss) +I0408 15:46:13.954916 20259 sgd_solver.cpp:105] Iteration 6852, lr = 8.43676e-06 +I0408 15:46:18.974269 20259 solver.cpp:218] Iteration 6864 (2.39082 iter/s, 5.0192s/12 iters), loss = 1.41762 +I0408 15:46:18.974328 20259 solver.cpp:237] Train net output #0: loss = 1.41762 (* 1 = 1.41762 loss) +I0408 15:46:18.974340 20259 sgd_solver.cpp:105] Iteration 6864, lr = 8.33283e-06 +I0408 15:46:24.016194 20259 solver.cpp:218] Iteration 6876 (2.38014 iter/s, 5.04172s/12 iters), loss = 1.70398 +I0408 15:46:24.016244 20259 solver.cpp:237] Train net output #0: loss = 1.70398 (* 1 = 1.70398 loss) +I0408 15:46:24.016254 20259 sgd_solver.cpp:105] Iteration 6876, lr = 8.23018e-06 +I0408 15:46:24.660421 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:46:29.442899 20259 solver.cpp:218] Iteration 6888 (2.21137 iter/s, 5.42649s/12 iters), loss = 1.58446 +I0408 15:46:29.443051 20259 solver.cpp:237] Train net output #0: loss = 1.58446 (* 1 = 1.58446 loss) +I0408 15:46:29.443065 20259 sgd_solver.cpp:105] Iteration 6888, lr = 8.1288e-06 +I0408 15:46:34.925067 20259 solver.cpp:218] Iteration 6900 (2.18904 iter/s, 5.48186s/12 iters), loss = 1.55887 +I0408 15:46:34.925112 20259 solver.cpp:237] Train net output #0: loss = 1.55887 (* 1 = 1.55887 loss) +I0408 15:46:34.925122 20259 sgd_solver.cpp:105] Iteration 6900, lr = 8.02866e-06 +I0408 15:46:40.087630 20259 solver.cpp:218] Iteration 6912 (2.32452 iter/s, 5.16236s/12 iters), loss = 1.46836 +I0408 15:46:40.087677 20259 solver.cpp:237] Train net output #0: loss = 1.46836 (* 1 = 1.46836 loss) +I0408 15:46:40.087688 20259 sgd_solver.cpp:105] Iteration 6912, lr = 7.92975e-06 +I0408 15:46:45.330150 20259 solver.cpp:218] Iteration 6924 (2.28907 iter/s, 5.24231s/12 iters), loss = 1.47733 +I0408 15:46:45.330205 20259 solver.cpp:237] Train net output #0: loss = 1.47733 (* 1 = 1.47733 loss) +I0408 15:46:45.330217 20259 sgd_solver.cpp:105] Iteration 6924, lr = 7.83207e-06 +I0408 15:46:50.375672 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 15:46:57.754724 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 15:47:02.251755 20259 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 15:47:02.251839 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:47:02.824120 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:47:03.888033 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:47:06.651346 20259 solver.cpp:397] Test net output #0: accuracy = 0.288603 +I0408 15:47:06.651389 20259 solver.cpp:397] Test net output #1: loss = 3.27493 (* 1 = 3.27493 loss) +I0408 15:47:06.741407 20259 solver.cpp:218] Iteration 6936 (0.56047 iter/s, 21.4106s/12 iters), loss = 1.54381 +I0408 15:47:06.741458 20259 solver.cpp:237] Train net output #0: loss = 1.54381 (* 1 = 1.54381 loss) +I0408 15:47:06.741472 20259 sgd_solver.cpp:105] Iteration 6936, lr = 7.73559e-06 +I0408 15:47:10.909771 20259 solver.cpp:218] Iteration 6948 (2.87896 iter/s, 4.16818s/12 iters), loss = 1.60222 +I0408 15:47:10.909826 20259 solver.cpp:237] Train net output #0: loss = 1.60222 (* 1 = 1.60222 loss) +I0408 15:47:10.909838 20259 sgd_solver.cpp:105] Iteration 6948, lr = 7.64029e-06 +I0408 15:47:15.922595 20259 solver.cpp:218] Iteration 6960 (2.39396 iter/s, 5.01262s/12 iters), loss = 1.44704 +I0408 15:47:15.922634 20259 solver.cpp:237] Train net output #0: loss = 1.44704 (* 1 = 1.44704 loss) +I0408 15:47:15.922644 20259 sgd_solver.cpp:105] Iteration 6960, lr = 7.54617e-06 +I0408 15:47:20.976404 20259 solver.cpp:218] Iteration 6972 (2.37454 iter/s, 5.05361s/12 iters), loss = 1.45317 +I0408 15:47:20.976444 20259 solver.cpp:237] Train net output #0: loss = 1.45317 (* 1 = 1.45317 loss) +I0408 15:47:20.976454 20259 sgd_solver.cpp:105] Iteration 6972, lr = 7.45321e-06 +I0408 15:47:23.734763 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:47:25.992358 20259 solver.cpp:218] Iteration 6984 (2.39246 iter/s, 5.01576s/12 iters), loss = 1.48278 +I0408 15:47:25.992394 20259 solver.cpp:237] Train net output #0: loss = 1.48278 (* 1 = 1.48278 loss) +I0408 15:47:25.992403 20259 sgd_solver.cpp:105] Iteration 6984, lr = 7.3614e-06 +I0408 15:47:31.061866 20259 solver.cpp:218] Iteration 6996 (2.36718 iter/s, 5.06932s/12 iters), loss = 1.51608 +I0408 15:47:31.061909 20259 solver.cpp:237] Train net output #0: loss = 1.51608 (* 1 = 1.51608 loss) +I0408 15:47:31.061920 20259 sgd_solver.cpp:105] Iteration 6996, lr = 7.27071e-06 +I0408 15:47:36.114159 20259 solver.cpp:218] Iteration 7008 (2.37525 iter/s, 5.05209s/12 iters), loss = 1.60294 +I0408 15:47:36.114322 20259 solver.cpp:237] Train net output #0: loss = 1.60294 (* 1 = 1.60294 loss) +I0408 15:47:36.114337 20259 sgd_solver.cpp:105] Iteration 7008, lr = 7.18115e-06 +I0408 15:47:41.085947 20259 solver.cpp:218] Iteration 7020 (2.41377 iter/s, 4.97147s/12 iters), loss = 1.87901 +I0408 15:47:41.086017 20259 solver.cpp:237] Train net output #0: loss = 1.87901 (* 1 = 1.87901 loss) +I0408 15:47:41.086030 20259 sgd_solver.cpp:105] Iteration 7020, lr = 7.09268e-06 +I0408 15:47:46.220916 20259 solver.cpp:218] Iteration 7032 (2.33702 iter/s, 5.13474s/12 iters), loss = 1.79627 +I0408 15:47:46.220965 20259 solver.cpp:237] Train net output #0: loss = 1.79627 (* 1 = 1.79627 loss) +I0408 15:47:46.220978 20259 sgd_solver.cpp:105] Iteration 7032, lr = 7.00531e-06 +I0408 15:47:48.298111 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 15:47:57.502977 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 15:48:01.349452 20259 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 15:48:01.349479 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:48:03.045029 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:05.814348 20259 solver.cpp:397] Test net output #0: accuracy = 0.289216 +I0408 15:48:05.814388 20259 solver.cpp:397] Test net output #1: loss = 3.26943 (* 1 = 3.26943 loss) +I0408 15:48:07.705834 20259 solver.cpp:218] Iteration 7044 (0.558548 iter/s, 21.4843s/12 iters), loss = 1.50007 +I0408 15:48:07.705927 20259 solver.cpp:237] Train net output #0: loss = 1.50007 (* 1 = 1.50007 loss) +I0408 15:48:07.705938 20259 sgd_solver.cpp:105] Iteration 7044, lr = 6.91901e-06 +I0408 15:48:12.748883 20259 solver.cpp:218] Iteration 7056 (2.37963 iter/s, 5.0428s/12 iters), loss = 1.50448 +I0408 15:48:12.748934 20259 solver.cpp:237] Train net output #0: loss = 1.50448 (* 1 = 1.50448 loss) +I0408 15:48:12.748947 20259 sgd_solver.cpp:105] Iteration 7056, lr = 6.83378e-06 +I0408 15:48:17.724133 20259 solver.cpp:218] Iteration 7068 (2.41204 iter/s, 4.97504s/12 iters), loss = 1.56803 +I0408 15:48:17.724187 20259 solver.cpp:237] Train net output #0: loss = 1.56803 (* 1 = 1.56803 loss) +I0408 15:48:17.724200 20259 sgd_solver.cpp:105] Iteration 7068, lr = 6.7496e-06 +I0408 15:48:22.676563 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:22.789250 20259 solver.cpp:218] Iteration 7080 (2.36924 iter/s, 5.06491s/12 iters), loss = 1.47757 +I0408 15:48:22.789300 20259 solver.cpp:237] Train net output #0: loss = 1.47757 (* 1 = 1.47757 loss) +I0408 15:48:22.789314 20259 sgd_solver.cpp:105] Iteration 7080, lr = 6.66645e-06 +I0408 15:48:27.853885 20259 solver.cpp:218] Iteration 7092 (2.36947 iter/s, 5.06443s/12 iters), loss = 1.69741 +I0408 15:48:27.853936 20259 solver.cpp:237] Train net output #0: loss = 1.69741 (* 1 = 1.69741 loss) +I0408 15:48:27.853950 20259 sgd_solver.cpp:105] Iteration 7092, lr = 6.58433e-06 +I0408 15:48:32.845713 20259 solver.cpp:218] Iteration 7104 (2.40403 iter/s, 4.99163s/12 iters), loss = 1.30425 +I0408 15:48:32.845762 20259 solver.cpp:237] Train net output #0: loss = 1.30425 (* 1 = 1.30425 loss) +I0408 15:48:32.845774 20259 sgd_solver.cpp:105] Iteration 7104, lr = 6.50321e-06 +I0408 15:48:37.820039 20259 solver.cpp:218] Iteration 7116 (2.41248 iter/s, 4.97413s/12 iters), loss = 1.50494 +I0408 15:48:37.820149 20259 solver.cpp:237] Train net output #0: loss = 1.50494 (* 1 = 1.50494 loss) +I0408 15:48:37.820163 20259 sgd_solver.cpp:105] Iteration 7116, lr = 6.4231e-06 +I0408 15:48:42.673861 20259 solver.cpp:218] Iteration 7128 (2.47241 iter/s, 4.85357s/12 iters), loss = 1.41337 +I0408 15:48:42.673910 20259 solver.cpp:237] Train net output #0: loss = 1.41337 (* 1 = 1.41337 loss) +I0408 15:48:42.673924 20259 sgd_solver.cpp:105] Iteration 7128, lr = 6.34398e-06 +I0408 15:48:47.131186 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 15:48:56.344157 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 15:49:00.079398 20259 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 15:49:00.079424 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:49:01.681859 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:49:04.481055 20259 solver.cpp:397] Test net output #0: accuracy = 0.288603 +I0408 15:49:04.481099 20259 solver.cpp:397] Test net output #1: loss = 3.28285 (* 1 = 3.28285 loss) +I0408 15:49:04.571072 20259 solver.cpp:218] Iteration 7140 (0.548032 iter/s, 21.8965s/12 iters), loss = 1.60615 +I0408 15:49:04.571122 20259 solver.cpp:237] Train net output #0: loss = 1.60615 (* 1 = 1.60615 loss) +I0408 15:49:04.571135 20259 sgd_solver.cpp:105] Iteration 7140, lr = 6.26583e-06 +I0408 15:49:08.952844 20259 solver.cpp:218] Iteration 7152 (2.73874 iter/s, 4.38158s/12 iters), loss = 1.76658 +I0408 15:49:08.952992 20259 solver.cpp:237] Train net output #0: loss = 1.76658 (* 1 = 1.76658 loss) +I0408 15:49:08.953006 20259 sgd_solver.cpp:105] Iteration 7152, lr = 6.18864e-06 +I0408 15:49:13.985071 20259 solver.cpp:218] Iteration 7164 (2.38477 iter/s, 5.03193s/12 iters), loss = 1.55315 +I0408 15:49:13.985121 20259 solver.cpp:237] Train net output #0: loss = 1.55315 (* 1 = 1.55315 loss) +I0408 15:49:13.985131 20259 sgd_solver.cpp:105] Iteration 7164, lr = 6.1124e-06 +I0408 15:49:18.998927 20259 solver.cpp:218] Iteration 7176 (2.39346 iter/s, 5.01366s/12 iters), loss = 1.59992 +I0408 15:49:18.998970 20259 solver.cpp:237] Train net output #0: loss = 1.59992 (* 1 = 1.59992 loss) +I0408 15:49:18.998980 20259 sgd_solver.cpp:105] Iteration 7176, lr = 6.0371e-06 +I0408 15:49:21.156553 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:49:24.104902 20259 solver.cpp:218] Iteration 7188 (2.35028 iter/s, 5.10577s/12 iters), loss = 1.68745 +I0408 15:49:24.104955 20259 solver.cpp:237] Train net output #0: loss = 1.68745 (* 1 = 1.68745 loss) +I0408 15:49:24.104969 20259 sgd_solver.cpp:105] Iteration 7188, lr = 5.96273e-06 +I0408 15:49:29.307515 20259 solver.cpp:218] Iteration 7200 (2.30663 iter/s, 5.2024s/12 iters), loss = 1.20809 +I0408 15:49:29.307565 20259 solver.cpp:237] Train net output #0: loss = 1.20809 (* 1 = 1.20809 loss) +I0408 15:49:29.307577 20259 sgd_solver.cpp:105] Iteration 7200, lr = 5.88928e-06 +I0408 15:49:34.507109 20259 solver.cpp:218] Iteration 7212 (2.30796 iter/s, 5.19939s/12 iters), loss = 1.523 +I0408 15:49:34.507150 20259 solver.cpp:237] Train net output #0: loss = 1.523 (* 1 = 1.523 loss) +I0408 15:49:34.507160 20259 sgd_solver.cpp:105] Iteration 7212, lr = 5.81673e-06 +I0408 15:49:39.660898 20259 solver.cpp:218] Iteration 7224 (2.32847 iter/s, 5.15359s/12 iters), loss = 1.65284 +I0408 15:49:39.660957 20259 solver.cpp:237] Train net output #0: loss = 1.65284 (* 1 = 1.65284 loss) +I0408 15:49:39.660967 20259 sgd_solver.cpp:105] Iteration 7224, lr = 5.74508e-06 +I0408 15:49:44.835340 20259 solver.cpp:218] Iteration 7236 (2.31919 iter/s, 5.17423s/12 iters), loss = 1.55433 +I0408 15:49:44.835379 20259 solver.cpp:237] Train net output #0: loss = 1.55433 (* 1 = 1.55433 loss) +I0408 15:49:44.835388 20259 sgd_solver.cpp:105] Iteration 7236, lr = 5.6743e-06 +I0408 15:49:47.000068 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 15:49:55.345727 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 15:50:01.123723 20259 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 15:50:01.123754 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:50:02.750167 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:50:05.593828 20259 solver.cpp:397] Test net output #0: accuracy = 0.28799 +I0408 15:50:05.593876 20259 solver.cpp:397] Test net output #1: loss = 3.27705 (* 1 = 3.27705 loss) +I0408 15:50:07.469552 20259 solver.cpp:218] Iteration 7248 (0.530187 iter/s, 22.6335s/12 iters), loss = 1.23881 +I0408 15:50:07.469590 20259 solver.cpp:237] Train net output #0: loss = 1.23881 (* 1 = 1.23881 loss) +I0408 15:50:07.469599 20259 sgd_solver.cpp:105] Iteration 7248, lr = 5.6044e-06 +I0408 15:50:12.451169 20259 solver.cpp:218] Iteration 7260 (2.40895 iter/s, 4.98143s/12 iters), loss = 1.69007 +I0408 15:50:12.451265 20259 solver.cpp:237] Train net output #0: loss = 1.69007 (* 1 = 1.69007 loss) +I0408 15:50:12.451277 20259 sgd_solver.cpp:105] Iteration 7260, lr = 5.53536e-06 +I0408 15:50:17.484493 20259 solver.cpp:218] Iteration 7272 (2.38423 iter/s, 5.03307s/12 iters), loss = 1.67976 +I0408 15:50:17.484545 20259 solver.cpp:237] Train net output #0: loss = 1.67976 (* 1 = 1.67976 loss) +I0408 15:50:17.484555 20259 sgd_solver.cpp:105] Iteration 7272, lr = 5.46717e-06 +I0408 15:50:21.811843 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:50:22.572369 20259 solver.cpp:218] Iteration 7284 (2.35865 iter/s, 5.08766s/12 iters), loss = 1.59332 +I0408 15:50:22.572417 20259 solver.cpp:237] Train net output #0: loss = 1.59332 (* 1 = 1.59332 loss) +I0408 15:50:22.572427 20259 sgd_solver.cpp:105] Iteration 7284, lr = 5.39982e-06 +I0408 15:50:27.606168 20259 solver.cpp:218] Iteration 7296 (2.38398 iter/s, 5.03359s/12 iters), loss = 1.71394 +I0408 15:50:27.606216 20259 solver.cpp:237] Train net output #0: loss = 1.71394 (* 1 = 1.71394 loss) +I0408 15:50:27.606225 20259 sgd_solver.cpp:105] Iteration 7296, lr = 5.3333e-06 +I0408 15:50:32.635277 20259 solver.cpp:218] Iteration 7308 (2.38621 iter/s, 5.0289s/12 iters), loss = 1.62063 +I0408 15:50:32.635335 20259 solver.cpp:237] Train net output #0: loss = 1.62063 (* 1 = 1.62063 loss) +I0408 15:50:32.635352 20259 sgd_solver.cpp:105] Iteration 7308, lr = 5.2676e-06 +I0408 15:50:37.694847 20259 solver.cpp:218] Iteration 7320 (2.37184 iter/s, 5.05936s/12 iters), loss = 1.387 +I0408 15:50:37.694901 20259 solver.cpp:237] Train net output #0: loss = 1.387 (* 1 = 1.387 loss) +I0408 15:50:37.694914 20259 sgd_solver.cpp:105] Iteration 7320, lr = 5.20271e-06 +I0408 15:50:42.739939 20259 solver.cpp:218] Iteration 7332 (2.37865 iter/s, 5.04489s/12 iters), loss = 1.63477 +I0408 15:50:42.740061 20259 solver.cpp:237] Train net output #0: loss = 1.63477 (* 1 = 1.63477 loss) +I0408 15:50:42.740075 20259 sgd_solver.cpp:105] Iteration 7332, lr = 5.13862e-06 +I0408 15:50:47.387560 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 15:50:56.811072 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 15:51:01.782075 20259 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 15:51:01.782100 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:51:03.349786 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:51:06.267657 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 15:51:06.267702 20259 solver.cpp:397] Test net output #1: loss = 3.27719 (* 1 = 3.27719 loss) +I0408 15:51:06.357720 20259 solver.cpp:218] Iteration 7344 (0.508109 iter/s, 23.617s/12 iters), loss = 1.51303 +I0408 15:51:06.357775 20259 solver.cpp:237] Train net output #0: loss = 1.51303 (* 1 = 1.51303 loss) +I0408 15:51:06.357789 20259 sgd_solver.cpp:105] Iteration 7344, lr = 5.07532e-06 +I0408 15:51:10.581049 20259 solver.cpp:218] Iteration 7356 (2.84149 iter/s, 4.22314s/12 iters), loss = 1.6623 +I0408 15:51:10.581097 20259 solver.cpp:237] Train net output #0: loss = 1.6623 (* 1 = 1.6623 loss) +I0408 15:51:10.581108 20259 sgd_solver.cpp:105] Iteration 7356, lr = 5.0128e-06 +I0408 15:51:15.595728 20259 solver.cpp:218] Iteration 7368 (2.39307 iter/s, 5.01448s/12 iters), loss = 1.74052 +I0408 15:51:15.595842 20259 solver.cpp:237] Train net output #0: loss = 1.74052 (* 1 = 1.74052 loss) +I0408 15:51:15.595854 20259 sgd_solver.cpp:105] Iteration 7368, lr = 4.95105e-06 +I0408 15:51:20.581460 20259 solver.cpp:218] Iteration 7380 (2.407 iter/s, 4.98547s/12 iters), loss = 1.33494 +I0408 15:51:20.581506 20259 solver.cpp:237] Train net output #0: loss = 1.33494 (* 1 = 1.33494 loss) +I0408 15:51:20.581516 20259 sgd_solver.cpp:105] Iteration 7380, lr = 4.89006e-06 +I0408 15:51:22.068190 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:51:25.732602 20259 solver.cpp:218] Iteration 7392 (2.32967 iter/s, 5.15093s/12 iters), loss = 1.52247 +I0408 15:51:25.732661 20259 solver.cpp:237] Train net output #0: loss = 1.52247 (* 1 = 1.52247 loss) +I0408 15:51:25.732677 20259 sgd_solver.cpp:105] Iteration 7392, lr = 4.82982e-06 +I0408 15:51:30.771139 20259 solver.cpp:218] Iteration 7404 (2.38174 iter/s, 5.03833s/12 iters), loss = 1.59351 +I0408 15:51:30.771181 20259 solver.cpp:237] Train net output #0: loss = 1.59351 (* 1 = 1.59351 loss) +I0408 15:51:30.771190 20259 sgd_solver.cpp:105] Iteration 7404, lr = 4.77032e-06 +I0408 15:51:35.792557 20259 solver.cpp:218] Iteration 7416 (2.38986 iter/s, 5.02122s/12 iters), loss = 1.51135 +I0408 15:51:35.792613 20259 solver.cpp:237] Train net output #0: loss = 1.51135 (* 1 = 1.51135 loss) +I0408 15:51:35.792623 20259 sgd_solver.cpp:105] Iteration 7416, lr = 4.71155e-06 +I0408 15:51:40.817404 20259 solver.cpp:218] Iteration 7428 (2.38823 iter/s, 5.02464s/12 iters), loss = 1.39949 +I0408 15:51:40.817461 20259 solver.cpp:237] Train net output #0: loss = 1.39949 (* 1 = 1.39949 loss) +I0408 15:51:40.817474 20259 sgd_solver.cpp:105] Iteration 7428, lr = 4.65351e-06 +I0408 15:51:45.808220 20259 solver.cpp:218] Iteration 7440 (2.40452 iter/s, 4.99061s/12 iters), loss = 1.67648 +I0408 15:51:45.808341 20259 solver.cpp:237] Train net output #0: loss = 1.67648 (* 1 = 1.67648 loss) +I0408 15:51:45.808354 20259 sgd_solver.cpp:105] Iteration 7440, lr = 4.59619e-06 +I0408 15:51:47.833078 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 15:51:56.239742 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 15:52:01.206291 20259 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 15:52:01.206318 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:52:02.749297 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:05.667289 20259 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0408 15:52:05.667337 20259 solver.cpp:397] Test net output #1: loss = 3.27637 (* 1 = 3.27637 loss) +I0408 15:52:07.567656 20259 solver.cpp:218] Iteration 7452 (0.551503 iter/s, 21.7587s/12 iters), loss = 1.37871 +I0408 15:52:07.567701 20259 solver.cpp:237] Train net output #0: loss = 1.37871 (* 1 = 1.37871 loss) +I0408 15:52:07.567713 20259 sgd_solver.cpp:105] Iteration 7452, lr = 4.53957e-06 +I0408 15:52:12.568991 20259 solver.cpp:218] Iteration 7464 (2.39945 iter/s, 5.00114s/12 iters), loss = 1.66179 +I0408 15:52:12.569032 20259 solver.cpp:237] Train net output #0: loss = 1.66179 (* 1 = 1.66179 loss) +I0408 15:52:12.569042 20259 sgd_solver.cpp:105] Iteration 7464, lr = 4.48364e-06 +I0408 15:52:17.601907 20259 solver.cpp:218] Iteration 7476 (2.3844 iter/s, 5.03272s/12 iters), loss = 1.51344 +I0408 15:52:17.602030 20259 solver.cpp:237] Train net output #0: loss = 1.51344 (* 1 = 1.51344 loss) +I0408 15:52:17.602046 20259 sgd_solver.cpp:105] Iteration 7476, lr = 4.42841e-06 +I0408 15:52:21.142974 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:22.657052 20259 solver.cpp:218] Iteration 7488 (2.37395 iter/s, 5.05487s/12 iters), loss = 1.55202 +I0408 15:52:22.657096 20259 solver.cpp:237] Train net output #0: loss = 1.55202 (* 1 = 1.55202 loss) +I0408 15:52:22.657107 20259 sgd_solver.cpp:105] Iteration 7488, lr = 4.37386e-06 +I0408 15:52:27.694043 20259 solver.cpp:218] Iteration 7500 (2.38247 iter/s, 5.03679s/12 iters), loss = 1.32973 +I0408 15:52:27.694108 20259 solver.cpp:237] Train net output #0: loss = 1.32973 (* 1 = 1.32973 loss) +I0408 15:52:27.694120 20259 sgd_solver.cpp:105] Iteration 7500, lr = 4.31998e-06 +I0408 15:52:32.744510 20259 solver.cpp:218] Iteration 7512 (2.37612 iter/s, 5.05025s/12 iters), loss = 1.48946 +I0408 15:52:32.744568 20259 solver.cpp:237] Train net output #0: loss = 1.48946 (* 1 = 1.48946 loss) +I0408 15:52:32.744583 20259 sgd_solver.cpp:105] Iteration 7512, lr = 4.26676e-06 +I0408 15:52:37.828166 20259 solver.cpp:218] Iteration 7524 (2.3606 iter/s, 5.08345s/12 iters), loss = 1.47831 +I0408 15:52:37.828212 20259 solver.cpp:237] Train net output #0: loss = 1.47831 (* 1 = 1.47831 loss) +I0408 15:52:37.828223 20259 sgd_solver.cpp:105] Iteration 7524, lr = 4.2142e-06 +I0408 15:52:42.830642 20259 solver.cpp:218] Iteration 7536 (2.39891 iter/s, 5.00227s/12 iters), loss = 1.38881 +I0408 15:52:42.830696 20259 solver.cpp:237] Train net output #0: loss = 1.38881 (* 1 = 1.38881 loss) +I0408 15:52:42.830708 20259 sgd_solver.cpp:105] Iteration 7536, lr = 4.16228e-06 +I0408 15:52:47.414443 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 15:52:52.268508 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 15:52:58.525235 20259 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 15:52:58.525264 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:53:00.025040 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:02.986964 20259 solver.cpp:397] Test net output #0: accuracy = 0.293505 +I0408 15:53:02.987012 20259 solver.cpp:397] Test net output #1: loss = 3.27126 (* 1 = 3.27126 loss) +I0408 15:53:03.077098 20259 solver.cpp:218] Iteration 7548 (0.592715 iter/s, 20.2458s/12 iters), loss = 1.35288 +I0408 15:53:03.077147 20259 solver.cpp:237] Train net output #0: loss = 1.35288 (* 1 = 1.35288 loss) +I0408 15:53:03.077158 20259 sgd_solver.cpp:105] Iteration 7548, lr = 4.11101e-06 +I0408 15:53:07.646926 20259 solver.cpp:218] Iteration 7560 (2.62603 iter/s, 4.56964s/12 iters), loss = 1.56351 +I0408 15:53:07.646971 20259 solver.cpp:237] Train net output #0: loss = 1.56351 (* 1 = 1.56351 loss) +I0408 15:53:07.646982 20259 sgd_solver.cpp:105] Iteration 7560, lr = 4.06037e-06 +I0408 15:53:13.148587 20259 solver.cpp:218] Iteration 7572 (2.18124 iter/s, 5.50145s/12 iters), loss = 1.55665 +I0408 15:53:13.148636 20259 solver.cpp:237] Train net output #0: loss = 1.55665 (* 1 = 1.55665 loss) +I0408 15:53:13.148649 20259 sgd_solver.cpp:105] Iteration 7572, lr = 4.01035e-06 +I0408 15:53:18.319911 20259 solver.cpp:218] Iteration 7584 (2.32058 iter/s, 5.17112s/12 iters), loss = 1.67325 +I0408 15:53:18.319958 20259 solver.cpp:237] Train net output #0: loss = 1.67325 (* 1 = 1.67325 loss) +I0408 15:53:18.319970 20259 sgd_solver.cpp:105] Iteration 7584, lr = 3.96095e-06 +I0408 15:53:18.968515 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:23.261286 20259 solver.cpp:218] Iteration 7596 (2.42857 iter/s, 4.94117s/12 iters), loss = 1.63624 +I0408 15:53:23.261416 20259 solver.cpp:237] Train net output #0: loss = 1.63624 (* 1 = 1.63624 loss) +I0408 15:53:23.261431 20259 sgd_solver.cpp:105] Iteration 7596, lr = 3.91215e-06 +I0408 15:53:28.246706 20259 solver.cpp:218] Iteration 7608 (2.40715 iter/s, 4.98514s/12 iters), loss = 1.76036 +I0408 15:53:28.246752 20259 solver.cpp:237] Train net output #0: loss = 1.76036 (* 1 = 1.76036 loss) +I0408 15:53:28.246762 20259 sgd_solver.cpp:105] Iteration 7608, lr = 3.86396e-06 +I0408 15:53:33.348091 20259 solver.cpp:218] Iteration 7620 (2.3524 iter/s, 5.10118s/12 iters), loss = 1.36318 +I0408 15:53:33.348143 20259 solver.cpp:237] Train net output #0: loss = 1.36318 (* 1 = 1.36318 loss) +I0408 15:53:33.348156 20259 sgd_solver.cpp:105] Iteration 7620, lr = 3.81636e-06 +I0408 15:53:35.816028 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:53:38.419757 20259 solver.cpp:218] Iteration 7632 (2.36618 iter/s, 5.07146s/12 iters), loss = 1.5959 +I0408 15:53:38.419806 20259 solver.cpp:237] Train net output #0: loss = 1.5959 (* 1 = 1.5959 loss) +I0408 15:53:38.419817 20259 sgd_solver.cpp:105] Iteration 7632, lr = 3.76935e-06 +I0408 15:53:43.467442 20259 solver.cpp:218] Iteration 7644 (2.37742 iter/s, 5.04749s/12 iters), loss = 1.44024 +I0408 15:53:43.467491 20259 solver.cpp:237] Train net output #0: loss = 1.44024 (* 1 = 1.44024 loss) +I0408 15:53:43.467504 20259 sgd_solver.cpp:105] Iteration 7644, lr = 3.72291e-06 +I0408 15:53:45.559674 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 15:53:48.617008 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 15:53:54.805377 20259 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 15:53:54.805495 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:53:56.273708 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:59.281534 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 15:53:59.281580 20259 solver.cpp:397] Test net output #1: loss = 3.27189 (* 1 = 3.27189 loss) +I0408 15:54:01.254276 20259 solver.cpp:218] Iteration 7656 (0.674677 iter/s, 17.7863s/12 iters), loss = 1.68376 +I0408 15:54:01.254324 20259 solver.cpp:237] Train net output #0: loss = 1.68376 (* 1 = 1.68376 loss) +I0408 15:54:01.254335 20259 sgd_solver.cpp:105] Iteration 7656, lr = 3.67705e-06 +I0408 15:54:06.615023 20259 solver.cpp:218] Iteration 7668 (2.23858 iter/s, 5.36053s/12 iters), loss = 1.28185 +I0408 15:54:06.615079 20259 solver.cpp:237] Train net output #0: loss = 1.28185 (* 1 = 1.28185 loss) +I0408 15:54:06.615092 20259 sgd_solver.cpp:105] Iteration 7668, lr = 3.63175e-06 +I0408 15:54:11.882525 20259 solver.cpp:218] Iteration 7680 (2.27821 iter/s, 5.26729s/12 iters), loss = 1.35575 +I0408 15:54:11.882572 20259 solver.cpp:237] Train net output #0: loss = 1.35575 (* 1 = 1.35575 loss) +I0408 15:54:11.882584 20259 sgd_solver.cpp:105] Iteration 7680, lr = 3.58701e-06 +I0408 15:54:14.676180 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:54:16.926385 20259 solver.cpp:218] Iteration 7692 (2.37922 iter/s, 5.04366s/12 iters), loss = 1.54482 +I0408 15:54:16.926430 20259 solver.cpp:237] Train net output #0: loss = 1.54482 (* 1 = 1.54482 loss) +I0408 15:54:16.926440 20259 sgd_solver.cpp:105] Iteration 7692, lr = 3.54283e-06 +I0408 15:54:21.970126 20259 solver.cpp:218] Iteration 7704 (2.37928 iter/s, 5.04354s/12 iters), loss = 1.54673 +I0408 15:54:21.970182 20259 solver.cpp:237] Train net output #0: loss = 1.54673 (* 1 = 1.54673 loss) +I0408 15:54:21.970194 20259 sgd_solver.cpp:105] Iteration 7704, lr = 3.49918e-06 +I0408 15:54:27.043066 20259 solver.cpp:218] Iteration 7716 (2.36559 iter/s, 5.07273s/12 iters), loss = 1.2983 +I0408 15:54:27.043162 20259 solver.cpp:237] Train net output #0: loss = 1.2983 (* 1 = 1.2983 loss) +I0408 15:54:27.043174 20259 sgd_solver.cpp:105] Iteration 7716, lr = 3.45608e-06 +I0408 15:54:32.364795 20259 solver.cpp:218] Iteration 7728 (2.25501 iter/s, 5.32148s/12 iters), loss = 1.58262 +I0408 15:54:32.364836 20259 solver.cpp:237] Train net output #0: loss = 1.58262 (* 1 = 1.58262 loss) +I0408 15:54:32.364846 20259 sgd_solver.cpp:105] Iteration 7728, lr = 3.4135e-06 +I0408 15:54:37.876471 20259 solver.cpp:218] Iteration 7740 (2.17728 iter/s, 5.51147s/12 iters), loss = 1.66972 +I0408 15:54:37.876508 20259 solver.cpp:237] Train net output #0: loss = 1.66972 (* 1 = 1.66972 loss) +I0408 15:54:37.876518 20259 sgd_solver.cpp:105] Iteration 7740, lr = 3.37145e-06 +I0408 15:54:42.883329 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 15:54:45.883495 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 15:54:48.208757 20259 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 15:54:48.208786 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:54:49.774673 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:54:52.909700 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 15:54:52.909747 20259 solver.cpp:397] Test net output #1: loss = 3.27733 (* 1 = 3.27733 loss) +I0408 15:54:52.999189 20259 solver.cpp:218] Iteration 7752 (0.793533 iter/s, 15.1222s/12 iters), loss = 1.66033 +I0408 15:54:52.999236 20259 solver.cpp:237] Train net output #0: loss = 1.66033 (* 1 = 1.66033 loss) +I0408 15:54:52.999248 20259 sgd_solver.cpp:105] Iteration 7752, lr = 3.32992e-06 +I0408 15:54:57.420877 20259 solver.cpp:218] Iteration 7764 (2.71401 iter/s, 4.42151s/12 iters), loss = 1.37196 +I0408 15:54:57.421012 20259 solver.cpp:237] Train net output #0: loss = 1.37196 (* 1 = 1.37196 loss) +I0408 15:54:57.421025 20259 sgd_solver.cpp:105] Iteration 7764, lr = 3.2889e-06 +I0408 15:55:02.688267 20259 solver.cpp:218] Iteration 7776 (2.27829 iter/s, 5.2671s/12 iters), loss = 1.4203 +I0408 15:55:02.688318 20259 solver.cpp:237] Train net output #0: loss = 1.4203 (* 1 = 1.4203 loss) +I0408 15:55:02.688330 20259 sgd_solver.cpp:105] Iteration 7776, lr = 3.24838e-06 +I0408 15:55:07.942359 20259 solver.cpp:218] Iteration 7788 (2.28402 iter/s, 5.25388s/12 iters), loss = 1.63716 +I0408 15:55:07.942407 20259 solver.cpp:237] Train net output #0: loss = 1.63716 (* 1 = 1.63716 loss) +I0408 15:55:07.942420 20259 sgd_solver.cpp:105] Iteration 7788, lr = 3.20837e-06 +I0408 15:55:07.950439 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:13.011909 20259 solver.cpp:218] Iteration 7800 (2.36717 iter/s, 5.06935s/12 iters), loss = 1.53096 +I0408 15:55:13.011956 20259 solver.cpp:237] Train net output #0: loss = 1.53096 (* 1 = 1.53096 loss) +I0408 15:55:13.011967 20259 sgd_solver.cpp:105] Iteration 7800, lr = 3.16884e-06 +I0408 15:55:18.187966 20259 solver.cpp:218] Iteration 7812 (2.31846 iter/s, 5.17585s/12 iters), loss = 1.41673 +I0408 15:55:18.188015 20259 solver.cpp:237] Train net output #0: loss = 1.41673 (* 1 = 1.41673 loss) +I0408 15:55:18.188027 20259 sgd_solver.cpp:105] Iteration 7812, lr = 3.12981e-06 +I0408 15:55:23.272722 20259 solver.cpp:218] Iteration 7824 (2.36009 iter/s, 5.08455s/12 iters), loss = 1.54846 +I0408 15:55:23.272774 20259 solver.cpp:237] Train net output #0: loss = 1.54846 (* 1 = 1.54846 loss) +I0408 15:55:23.272787 20259 sgd_solver.cpp:105] Iteration 7824, lr = 3.09125e-06 +I0408 15:55:28.309135 20259 solver.cpp:218] Iteration 7836 (2.38275 iter/s, 5.03621s/12 iters), loss = 1.50083 +I0408 15:55:28.309263 20259 solver.cpp:237] Train net output #0: loss = 1.50083 (* 1 = 1.50083 loss) +I0408 15:55:28.309278 20259 sgd_solver.cpp:105] Iteration 7836, lr = 3.05317e-06 +I0408 15:55:33.764928 20259 solver.cpp:218] Iteration 7848 (2.19962 iter/s, 5.4555s/12 iters), loss = 1.70428 +I0408 15:55:33.764981 20259 solver.cpp:237] Train net output #0: loss = 1.70428 (* 1 = 1.70428 loss) +I0408 15:55:33.764992 20259 sgd_solver.cpp:105] Iteration 7848, lr = 3.01556e-06 +I0408 15:55:35.801054 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 15:55:38.812302 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 15:55:41.138300 20259 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 15:55:41.138326 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:55:42.506331 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:45.593159 20259 solver.cpp:397] Test net output #0: accuracy = 0.291054 +I0408 15:55:45.593211 20259 solver.cpp:397] Test net output #1: loss = 3.28351 (* 1 = 3.28351 loss) +I0408 15:55:47.610942 20259 solver.cpp:218] Iteration 7860 (0.866703 iter/s, 13.8456s/12 iters), loss = 1.5625 +I0408 15:55:47.610992 20259 solver.cpp:237] Train net output #0: loss = 1.5625 (* 1 = 1.5625 loss) +I0408 15:55:47.611004 20259 sgd_solver.cpp:105] Iteration 7860, lr = 2.97841e-06 +I0408 15:55:52.668678 20259 solver.cpp:218] Iteration 7872 (2.3727 iter/s, 5.05754s/12 iters), loss = 1.64431 +I0408 15:55:52.668713 20259 solver.cpp:237] Train net output #0: loss = 1.64431 (* 1 = 1.64431 loss) +I0408 15:55:52.668721 20259 sgd_solver.cpp:105] Iteration 7872, lr = 2.94172e-06 +I0408 15:55:57.849262 20259 solver.cpp:218] Iteration 7884 (2.31643 iter/s, 5.18039s/12 iters), loss = 1.49212 +I0408 15:55:57.849313 20259 solver.cpp:237] Train net output #0: loss = 1.49212 (* 1 = 1.49212 loss) +I0408 15:55:57.849324 20259 sgd_solver.cpp:105] Iteration 7884, lr = 2.90548e-06 +I0408 15:56:00.173946 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:03.065991 20259 solver.cpp:218] Iteration 7896 (2.30038 iter/s, 5.21653s/12 iters), loss = 1.53808 +I0408 15:56:03.066026 20259 solver.cpp:237] Train net output #0: loss = 1.53808 (* 1 = 1.53808 loss) +I0408 15:56:03.066037 20259 sgd_solver.cpp:105] Iteration 7896, lr = 2.86969e-06 +I0408 15:56:08.146749 20259 solver.cpp:218] Iteration 7908 (2.36194 iter/s, 5.08056s/12 iters), loss = 1.51872 +I0408 15:56:08.146795 20259 solver.cpp:237] Train net output #0: loss = 1.51872 (* 1 = 1.51872 loss) +I0408 15:56:08.146806 20259 sgd_solver.cpp:105] Iteration 7908, lr = 2.83434e-06 +I0408 15:56:13.380993 20259 solver.cpp:218] Iteration 7920 (2.29269 iter/s, 5.23403s/12 iters), loss = 1.35266 +I0408 15:56:13.381042 20259 solver.cpp:237] Train net output #0: loss = 1.35266 (* 1 = 1.35266 loss) +I0408 15:56:13.381052 20259 sgd_solver.cpp:105] Iteration 7920, lr = 2.79942e-06 +I0408 15:56:18.875598 20259 solver.cpp:218] Iteration 7932 (2.18404 iter/s, 5.4944s/12 iters), loss = 1.54556 +I0408 15:56:18.875635 20259 solver.cpp:237] Train net output #0: loss = 1.54556 (* 1 = 1.54556 loss) +I0408 15:56:18.875643 20259 sgd_solver.cpp:105] Iteration 7932, lr = 2.76494e-06 +I0408 15:56:24.108925 20259 solver.cpp:218] Iteration 7944 (2.29308 iter/s, 5.23313s/12 iters), loss = 1.52936 +I0408 15:56:24.108975 20259 solver.cpp:237] Train net output #0: loss = 1.52936 (* 1 = 1.52936 loss) +I0408 15:56:24.108985 20259 sgd_solver.cpp:105] Iteration 7944, lr = 2.73088e-06 +I0408 15:56:28.880300 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 15:56:31.894415 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 15:56:34.645328 20259 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 15:56:34.645351 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:56:35.923130 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:39.041749 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 15:56:39.041796 20259 solver.cpp:397] Test net output #1: loss = 3.27196 (* 1 = 3.27196 loss) +I0408 15:56:39.132097 20259 solver.cpp:218] Iteration 7956 (0.798792 iter/s, 15.0227s/12 iters), loss = 1.45057 +I0408 15:56:39.132144 20259 solver.cpp:237] Train net output #0: loss = 1.45057 (* 1 = 1.45057 loss) +I0408 15:56:39.132156 20259 sgd_solver.cpp:105] Iteration 7956, lr = 2.69723e-06 +I0408 15:56:43.693104 20259 solver.cpp:218] Iteration 7968 (2.63111 iter/s, 4.56081s/12 iters), loss = 1.75709 +I0408 15:56:43.693162 20259 solver.cpp:237] Train net output #0: loss = 1.75709 (* 1 = 1.75709 loss) +I0408 15:56:43.693176 20259 sgd_solver.cpp:105] Iteration 7968, lr = 2.66401e-06 +I0408 15:56:49.048563 20259 solver.cpp:218] Iteration 7980 (2.2408 iter/s, 5.35523s/12 iters), loss = 1.37372 +I0408 15:56:49.048612 20259 solver.cpp:237] Train net output #0: loss = 1.37372 (* 1 = 1.37372 loss) +I0408 15:56:49.048625 20259 sgd_solver.cpp:105] Iteration 7980, lr = 2.63119e-06 +I0408 15:56:53.602522 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:54.339603 20259 solver.cpp:218] Iteration 7992 (2.26808 iter/s, 5.29083s/12 iters), loss = 1.36877 +I0408 15:56:54.339649 20259 solver.cpp:237] Train net output #0: loss = 1.36877 (* 1 = 1.36877 loss) +I0408 15:56:54.339661 20259 sgd_solver.cpp:105] Iteration 7992, lr = 2.59878e-06 +I0408 15:56:59.409632 20259 solver.cpp:218] Iteration 8004 (2.36694 iter/s, 5.06983s/12 iters), loss = 1.60321 +I0408 15:56:59.409678 20259 solver.cpp:237] Train net output #0: loss = 1.60321 (* 1 = 1.60321 loss) +I0408 15:56:59.409689 20259 sgd_solver.cpp:105] Iteration 8004, lr = 2.56676e-06 +I0408 15:57:04.496012 20259 solver.cpp:218] Iteration 8016 (2.35933 iter/s, 5.08618s/12 iters), loss = 1.54441 +I0408 15:57:04.496142 20259 solver.cpp:237] Train net output #0: loss = 1.54441 (* 1 = 1.54441 loss) +I0408 15:57:04.496155 20259 sgd_solver.cpp:105] Iteration 8016, lr = 2.53514e-06 +I0408 15:57:09.541206 20259 solver.cpp:218] Iteration 8028 (2.37863 iter/s, 5.04491s/12 iters), loss = 1.26756 +I0408 15:57:09.541256 20259 solver.cpp:237] Train net output #0: loss = 1.26756 (* 1 = 1.26756 loss) +I0408 15:57:09.541268 20259 sgd_solver.cpp:105] Iteration 8028, lr = 2.50391e-06 +I0408 15:57:14.590692 20259 solver.cpp:218] Iteration 8040 (2.37657 iter/s, 5.04928s/12 iters), loss = 1.66213 +I0408 15:57:14.590739 20259 solver.cpp:237] Train net output #0: loss = 1.66213 (* 1 = 1.66213 loss) +I0408 15:57:14.590749 20259 sgd_solver.cpp:105] Iteration 8040, lr = 2.47307e-06 +I0408 15:57:19.681356 20259 solver.cpp:218] Iteration 8052 (2.35735 iter/s, 5.09046s/12 iters), loss = 1.41438 +I0408 15:57:19.681406 20259 solver.cpp:237] Train net output #0: loss = 1.41438 (* 1 = 1.41438 loss) +I0408 15:57:19.681418 20259 sgd_solver.cpp:105] Iteration 8052, lr = 2.4426e-06 +I0408 15:57:21.760780 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 15:57:24.833215 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 15:57:27.158254 20259 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 15:57:27.158282 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:57:28.465974 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:57:31.703025 20259 solver.cpp:397] Test net output #0: accuracy = 0.294118 +I0408 15:57:31.703066 20259 solver.cpp:397] Test net output #1: loss = 3.2805 (* 1 = 3.2805 loss) +I0408 15:57:33.711517 20259 solver.cpp:218] Iteration 8064 (0.855328 iter/s, 14.0297s/12 iters), loss = 1.56343 +I0408 15:57:33.711565 20259 solver.cpp:237] Train net output #0: loss = 1.56343 (* 1 = 1.56343 loss) +I0408 15:57:33.711576 20259 sgd_solver.cpp:105] Iteration 8064, lr = 2.41251e-06 +I0408 15:57:39.048552 20259 solver.cpp:218] Iteration 8076 (2.24853 iter/s, 5.33682s/12 iters), loss = 1.84715 +I0408 15:57:39.048661 20259 solver.cpp:237] Train net output #0: loss = 1.84715 (* 1 = 1.84715 loss) +I0408 15:57:39.048674 20259 sgd_solver.cpp:105] Iteration 8076, lr = 2.38279e-06 +I0408 15:57:44.127696 20259 solver.cpp:218] Iteration 8088 (2.36272 iter/s, 5.07889s/12 iters), loss = 1.49369 +I0408 15:57:44.127737 20259 solver.cpp:237] Train net output #0: loss = 1.49369 (* 1 = 1.49369 loss) +I0408 15:57:44.127749 20259 sgd_solver.cpp:105] Iteration 8088, lr = 2.35344e-06 +I0408 15:57:45.576035 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:57:49.165758 20259 solver.cpp:218] Iteration 8100 (2.38196 iter/s, 5.03786s/12 iters), loss = 1.49205 +I0408 15:57:49.165813 20259 solver.cpp:237] Train net output #0: loss = 1.49205 (* 1 = 1.49205 loss) +I0408 15:57:49.165827 20259 sgd_solver.cpp:105] Iteration 8100, lr = 2.32445e-06 +I0408 15:57:54.270485 20259 solver.cpp:218] Iteration 8112 (2.35086 iter/s, 5.10452s/12 iters), loss = 1.5086 +I0408 15:57:54.270534 20259 solver.cpp:237] Train net output #0: loss = 1.5086 (* 1 = 1.5086 loss) +I0408 15:57:54.270545 20259 sgd_solver.cpp:105] Iteration 8112, lr = 2.29581e-06 +I0408 15:57:59.193037 20259 solver.cpp:218] Iteration 8124 (2.43786 iter/s, 4.92236s/12 iters), loss = 1.66941 +I0408 15:57:59.193094 20259 solver.cpp:237] Train net output #0: loss = 1.66941 (* 1 = 1.66941 loss) +I0408 15:57:59.193106 20259 sgd_solver.cpp:105] Iteration 8124, lr = 2.26753e-06 +I0408 15:58:04.210618 20259 solver.cpp:218] Iteration 8136 (2.39169 iter/s, 5.01737s/12 iters), loss = 1.5644 +I0408 15:58:04.210672 20259 solver.cpp:237] Train net output #0: loss = 1.5644 (* 1 = 1.5644 loss) +I0408 15:58:04.210685 20259 sgd_solver.cpp:105] Iteration 8136, lr = 2.2396e-06 +I0408 15:58:09.298143 20259 solver.cpp:218] Iteration 8148 (2.35881 iter/s, 5.08732s/12 iters), loss = 1.64049 +I0408 15:58:09.298229 20259 solver.cpp:237] Train net output #0: loss = 1.64049 (* 1 = 1.64049 loss) +I0408 15:58:09.298241 20259 sgd_solver.cpp:105] Iteration 8148, lr = 2.21201e-06 +I0408 15:58:14.172454 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 15:58:17.197054 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 15:58:19.519954 20259 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 15:58:19.519979 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:58:20.775619 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:58:23.973451 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 15:58:23.973495 20259 solver.cpp:397] Test net output #1: loss = 3.26885 (* 1 = 3.26885 loss) +I0408 15:58:24.063256 20259 solver.cpp:218] Iteration 8160 (0.812755 iter/s, 14.7646s/12 iters), loss = 1.46462 +I0408 15:58:24.063305 20259 solver.cpp:237] Train net output #0: loss = 1.46462 (* 1 = 1.46462 loss) +I0408 15:58:24.063315 20259 sgd_solver.cpp:105] Iteration 8160, lr = 2.18476e-06 +I0408 15:58:28.664902 20259 solver.cpp:218] Iteration 8172 (2.60787 iter/s, 4.60146s/12 iters), loss = 1.45795 +I0408 15:58:28.664947 20259 solver.cpp:237] Train net output #0: loss = 1.45795 (* 1 = 1.45795 loss) +I0408 15:58:28.664955 20259 sgd_solver.cpp:105] Iteration 8172, lr = 2.15785e-06 +I0408 15:58:34.150632 20259 solver.cpp:218] Iteration 8184 (2.18758 iter/s, 5.48551s/12 iters), loss = 1.35441 +I0408 15:58:34.150691 20259 solver.cpp:237] Train net output #0: loss = 1.35441 (* 1 = 1.35441 loss) +I0408 15:58:34.150704 20259 sgd_solver.cpp:105] Iteration 8184, lr = 2.13126e-06 +I0408 15:58:37.927211 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:58:39.425290 20259 solver.cpp:218] Iteration 8196 (2.27513 iter/s, 5.27443s/12 iters), loss = 1.80237 +I0408 15:58:39.425443 20259 solver.cpp:237] Train net output #0: loss = 1.80237 (* 1 = 1.80237 loss) +I0408 15:58:39.425457 20259 sgd_solver.cpp:105] Iteration 8196, lr = 2.10501e-06 +I0408 15:58:44.965880 20259 solver.cpp:218] Iteration 8208 (2.16596 iter/s, 5.54027s/12 iters), loss = 1.28946 +I0408 15:58:44.965937 20259 solver.cpp:237] Train net output #0: loss = 1.28946 (* 1 = 1.28946 loss) +I0408 15:58:44.965950 20259 sgd_solver.cpp:105] Iteration 8208, lr = 2.07908e-06 +I0408 15:58:50.131405 20259 solver.cpp:218] Iteration 8220 (2.32319 iter/s, 5.16531s/12 iters), loss = 1.57963 +I0408 15:58:50.131458 20259 solver.cpp:237] Train net output #0: loss = 1.57963 (* 1 = 1.57963 loss) +I0408 15:58:50.131470 20259 sgd_solver.cpp:105] Iteration 8220, lr = 2.05347e-06 +I0408 15:58:55.225237 20259 solver.cpp:218] Iteration 8232 (2.35589 iter/s, 5.09362s/12 iters), loss = 1.7069 +I0408 15:58:55.225283 20259 solver.cpp:237] Train net output #0: loss = 1.7069 (* 1 = 1.7069 loss) +I0408 15:58:55.225292 20259 sgd_solver.cpp:105] Iteration 8232, lr = 2.02817e-06 +I0408 15:59:00.738515 20259 solver.cpp:218] Iteration 8244 (2.17665 iter/s, 5.51306s/12 iters), loss = 1.29983 +I0408 15:59:00.738566 20259 solver.cpp:237] Train net output #0: loss = 1.29983 (* 1 = 1.29983 loss) +I0408 15:59:00.738577 20259 sgd_solver.cpp:105] Iteration 8244, lr = 2.00319e-06 +I0408 15:59:06.243484 20259 solver.cpp:218] Iteration 8256 (2.17993 iter/s, 5.50475s/12 iters), loss = 1.51653 +I0408 15:59:06.243530 20259 solver.cpp:237] Train net output #0: loss = 1.51653 (* 1 = 1.51653 loss) +I0408 15:59:06.243541 20259 sgd_solver.cpp:105] Iteration 8256, lr = 1.97851e-06 +I0408 15:59:08.464223 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 15:59:11.468151 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 15:59:13.778743 20259 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 15:59:13.778771 20259 net.cpp:676] Ignoring source layer train-data +I0408 15:59:15.080463 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:59:18.310418 20259 solver.cpp:397] Test net output #0: accuracy = 0.294118 +I0408 15:59:18.310456 20259 solver.cpp:397] Test net output #1: loss = 3.27537 (* 1 = 3.27537 loss) +I0408 15:59:20.372918 20259 solver.cpp:218] Iteration 8268 (0.849318 iter/s, 14.129s/12 iters), loss = 1.63905 +I0408 15:59:20.372968 20259 solver.cpp:237] Train net output #0: loss = 1.63905 (* 1 = 1.63905 loss) +I0408 15:59:20.372982 20259 sgd_solver.cpp:105] Iteration 8268, lr = 1.95414e-06 +I0408 15:59:25.860141 20259 solver.cpp:218] Iteration 8280 (2.18698 iter/s, 5.48701s/12 iters), loss = 1.41469 +I0408 15:59:25.860181 20259 solver.cpp:237] Train net output #0: loss = 1.41469 (* 1 = 1.41469 loss) +I0408 15:59:25.860191 20259 sgd_solver.cpp:105] Iteration 8280, lr = 1.93006e-06 +I0408 15:59:31.346740 20259 solver.cpp:218] Iteration 8292 (2.18723 iter/s, 5.48639s/12 iters), loss = 1.66796 +I0408 15:59:31.346784 20259 solver.cpp:237] Train net output #0: loss = 1.66796 (* 1 = 1.66796 loss) +I0408 15:59:31.346796 20259 sgd_solver.cpp:105] Iteration 8292, lr = 1.90629e-06 +I0408 15:59:32.097007 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:59:36.553246 20259 solver.cpp:218] Iteration 8304 (2.3049 iter/s, 5.20631s/12 iters), loss = 1.38548 +I0408 15:59:36.553290 20259 solver.cpp:237] Train net output #0: loss = 1.38548 (* 1 = 1.38548 loss) +I0408 15:59:36.553303 20259 sgd_solver.cpp:105] Iteration 8304, lr = 1.8828e-06 +I0408 15:59:39.492836 20259 blocking_queue.cpp:49] Waiting for data +I0408 15:59:41.651613 20259 solver.cpp:218] Iteration 8316 (2.35379 iter/s, 5.09816s/12 iters), loss = 1.60727 +I0408 15:59:41.651760 20259 solver.cpp:237] Train net output #0: loss = 1.60727 (* 1 = 1.60727 loss) +I0408 15:59:41.651774 20259 sgd_solver.cpp:105] Iteration 8316, lr = 1.85961e-06 +I0408 15:59:46.839809 20259 solver.cpp:218] Iteration 8328 (2.31308 iter/s, 5.18789s/12 iters), loss = 1.59007 +I0408 15:59:46.839852 20259 solver.cpp:237] Train net output #0: loss = 1.59007 (* 1 = 1.59007 loss) +I0408 15:59:46.839861 20259 sgd_solver.cpp:105] Iteration 8328, lr = 1.8367e-06 +I0408 15:59:52.338871 20259 solver.cpp:218] Iteration 8340 (2.18227 iter/s, 5.49885s/12 iters), loss = 1.50293 +I0408 15:59:52.338908 20259 solver.cpp:237] Train net output #0: loss = 1.50293 (* 1 = 1.50293 loss) +I0408 15:59:52.338917 20259 sgd_solver.cpp:105] Iteration 8340, lr = 1.81408e-06 +I0408 15:59:57.533100 20259 solver.cpp:218] Iteration 8352 (2.31034 iter/s, 5.19403s/12 iters), loss = 1.42449 +I0408 15:59:57.533154 20259 solver.cpp:237] Train net output #0: loss = 1.42449 (* 1 = 1.42449 loss) +I0408 15:59:57.533167 20259 sgd_solver.cpp:105] Iteration 8352, lr = 1.79173e-06 +I0408 16:00:02.115401 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 16:00:05.155017 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 16:00:07.471422 20259 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 16:00:07.471446 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:00:08.665112 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:00:11.953892 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 16:00:11.954002 20259 solver.cpp:397] Test net output #1: loss = 3.27963 (* 1 = 3.27963 loss) +I0408 16:00:12.043985 20259 solver.cpp:218] Iteration 8364 (0.826992 iter/s, 14.5104s/12 iters), loss = 1.5127 +I0408 16:00:12.044037 20259 solver.cpp:237] Train net output #0: loss = 1.5127 (* 1 = 1.5127 loss) +I0408 16:00:12.044049 20259 sgd_solver.cpp:105] Iteration 8364, lr = 1.76966e-06 +I0408 16:00:16.382781 20259 solver.cpp:218] Iteration 8376 (2.76586 iter/s, 4.33861s/12 iters), loss = 1.37862 +I0408 16:00:16.382827 20259 solver.cpp:237] Train net output #0: loss = 1.37862 (* 1 = 1.37862 loss) +I0408 16:00:16.382838 20259 sgd_solver.cpp:105] Iteration 8376, lr = 1.74786e-06 +I0408 16:00:21.390635 20259 solver.cpp:218] Iteration 8388 (2.39633 iter/s, 5.00765s/12 iters), loss = 1.4545 +I0408 16:00:21.390689 20259 solver.cpp:237] Train net output #0: loss = 1.4545 (* 1 = 1.4545 loss) +I0408 16:00:21.390703 20259 sgd_solver.cpp:105] Iteration 8388, lr = 1.72632e-06 +I0408 16:00:24.217152 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:00:26.430754 20259 solver.cpp:218] Iteration 8400 (2.381 iter/s, 5.03991s/12 iters), loss = 1.81015 +I0408 16:00:26.430809 20259 solver.cpp:237] Train net output #0: loss = 1.81015 (* 1 = 1.81015 loss) +I0408 16:00:26.430821 20259 sgd_solver.cpp:105] Iteration 8400, lr = 1.70506e-06 +I0408 16:00:31.507580 20259 solver.cpp:218] Iteration 8412 (2.36378 iter/s, 5.07662s/12 iters), loss = 1.59489 +I0408 16:00:31.507624 20259 solver.cpp:237] Train net output #0: loss = 1.59489 (* 1 = 1.59489 loss) +I0408 16:00:31.507637 20259 sgd_solver.cpp:105] Iteration 8412, lr = 1.68405e-06 +I0408 16:00:36.518883 20259 solver.cpp:218] Iteration 8424 (2.39468 iter/s, 5.01111s/12 iters), loss = 1.79883 +I0408 16:00:36.518920 20259 solver.cpp:237] Train net output #0: loss = 1.79883 (* 1 = 1.79883 loss) +I0408 16:00:36.518929 20259 sgd_solver.cpp:105] Iteration 8424, lr = 1.66331e-06 +I0408 16:00:41.557535 20259 solver.cpp:218] Iteration 8436 (2.38168 iter/s, 5.03846s/12 iters), loss = 1.34581 +I0408 16:00:41.557582 20259 solver.cpp:237] Train net output #0: loss = 1.34581 (* 1 = 1.34581 loss) +I0408 16:00:41.557595 20259 sgd_solver.cpp:105] Iteration 8436, lr = 1.64282e-06 +I0408 16:00:46.626770 20259 solver.cpp:218] Iteration 8448 (2.36732 iter/s, 5.06903s/12 iters), loss = 1.33501 +I0408 16:00:46.626915 20259 solver.cpp:237] Train net output #0: loss = 1.33501 (* 1 = 1.33501 loss) +I0408 16:00:46.626929 20259 sgd_solver.cpp:105] Iteration 8448, lr = 1.62258e-06 +I0408 16:00:51.677991 20259 solver.cpp:218] Iteration 8460 (2.3758 iter/s, 5.05093s/12 iters), loss = 1.62333 +I0408 16:00:51.678040 20259 solver.cpp:237] Train net output #0: loss = 1.62333 (* 1 = 1.62333 loss) +I0408 16:00:51.678052 20259 sgd_solver.cpp:105] Iteration 8460, lr = 1.60259e-06 +I0408 16:00:53.734988 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 16:00:57.730253 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 16:01:00.034063 20259 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 16:01:00.034085 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:01:01.171743 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:04.541172 20259 solver.cpp:397] Test net output #0: accuracy = 0.294118 +I0408 16:01:04.541221 20259 solver.cpp:397] Test net output #1: loss = 3.27285 (* 1 = 3.27285 loss) +I0408 16:01:06.364148 20259 solver.cpp:218] Iteration 8472 (0.817122 iter/s, 14.6857s/12 iters), loss = 1.84983 +I0408 16:01:06.364207 20259 solver.cpp:237] Train net output #0: loss = 1.84983 (* 1 = 1.84983 loss) +I0408 16:01:06.364218 20259 sgd_solver.cpp:105] Iteration 8472, lr = 1.58285e-06 +I0408 16:01:11.374089 20259 solver.cpp:218] Iteration 8484 (2.39534 iter/s, 5.00973s/12 iters), loss = 1.46639 +I0408 16:01:11.374145 20259 solver.cpp:237] Train net output #0: loss = 1.46639 (* 1 = 1.46639 loss) +I0408 16:01:11.374156 20259 sgd_solver.cpp:105] Iteration 8484, lr = 1.56335e-06 +I0408 16:01:16.388453 20259 solver.cpp:218] Iteration 8496 (2.39323 iter/s, 5.01415s/12 iters), loss = 1.40098 +I0408 16:01:16.388510 20259 solver.cpp:237] Train net output #0: loss = 1.40098 (* 1 = 1.40098 loss) +I0408 16:01:16.388523 20259 sgd_solver.cpp:105] Iteration 8496, lr = 1.54409e-06 +I0408 16:01:16.436321 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:21.498039 20259 solver.cpp:218] Iteration 8508 (2.34862 iter/s, 5.10938s/12 iters), loss = 1.49852 +I0408 16:01:21.498106 20259 solver.cpp:237] Train net output #0: loss = 1.49852 (* 1 = 1.49852 loss) +I0408 16:01:21.498117 20259 sgd_solver.cpp:105] Iteration 8508, lr = 1.52507e-06 +I0408 16:01:26.599406 20259 solver.cpp:218] Iteration 8520 (2.35241 iter/s, 5.10114s/12 iters), loss = 1.62136 +I0408 16:01:26.599452 20259 solver.cpp:237] Train net output #0: loss = 1.62136 (* 1 = 1.62136 loss) +I0408 16:01:26.599462 20259 sgd_solver.cpp:105] Iteration 8520, lr = 1.50628e-06 +I0408 16:01:31.675287 20259 solver.cpp:218] Iteration 8532 (2.36421 iter/s, 5.07568s/12 iters), loss = 1.43555 +I0408 16:01:31.675329 20259 solver.cpp:237] Train net output #0: loss = 1.43555 (* 1 = 1.43555 loss) +I0408 16:01:31.675338 20259 sgd_solver.cpp:105] Iteration 8532, lr = 1.48773e-06 +I0408 16:01:36.675587 20259 solver.cpp:218] Iteration 8544 (2.39995 iter/s, 5.0001s/12 iters), loss = 1.46221 +I0408 16:01:36.675632 20259 solver.cpp:237] Train net output #0: loss = 1.46221 (* 1 = 1.46221 loss) +I0408 16:01:36.675642 20259 sgd_solver.cpp:105] Iteration 8544, lr = 1.4694e-06 +I0408 16:01:41.861938 20259 solver.cpp:218] Iteration 8556 (2.31386 iter/s, 5.18615s/12 iters), loss = 1.64272 +I0408 16:01:41.862002 20259 solver.cpp:237] Train net output #0: loss = 1.64272 (* 1 = 1.64272 loss) +I0408 16:01:41.862015 20259 sgd_solver.cpp:105] Iteration 8556, lr = 1.4513e-06 +I0408 16:01:46.491923 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 16:01:49.584295 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 16:01:51.912973 20259 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 16:01:51.913064 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:01:53.135206 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:56.492851 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 16:01:56.492898 20259 solver.cpp:397] Test net output #1: loss = 3.28522 (* 1 = 3.28522 loss) +I0408 16:01:56.582962 20259 solver.cpp:218] Iteration 8568 (0.815187 iter/s, 14.7205s/12 iters), loss = 1.5824 +I0408 16:01:56.583006 20259 solver.cpp:237] Train net output #0: loss = 1.5824 (* 1 = 1.5824 loss) +I0408 16:01:56.583019 20259 sgd_solver.cpp:105] Iteration 8568, lr = 1.43342e-06 +I0408 16:02:00.844506 20259 solver.cpp:218] Iteration 8580 (2.816 iter/s, 4.26136s/12 iters), loss = 1.46915 +I0408 16:02:00.844563 20259 solver.cpp:237] Train net output #0: loss = 1.46915 (* 1 = 1.46915 loss) +I0408 16:02:00.844576 20259 sgd_solver.cpp:105] Iteration 8580, lr = 1.41576e-06 +I0408 16:02:05.962811 20259 solver.cpp:218] Iteration 8592 (2.34462 iter/s, 5.1181s/12 iters), loss = 1.43795 +I0408 16:02:05.962859 20259 solver.cpp:237] Train net output #0: loss = 1.43795 (* 1 = 1.43795 loss) +I0408 16:02:05.962872 20259 sgd_solver.cpp:105] Iteration 8592, lr = 1.39832e-06 +I0408 16:02:08.145016 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:11.168978 20259 solver.cpp:218] Iteration 8604 (2.30505 iter/s, 5.20596s/12 iters), loss = 1.68549 +I0408 16:02:11.169024 20259 solver.cpp:237] Train net output #0: loss = 1.68549 (* 1 = 1.68549 loss) +I0408 16:02:11.169034 20259 sgd_solver.cpp:105] Iteration 8604, lr = 1.3811e-06 +I0408 16:02:16.338146 20259 solver.cpp:218] Iteration 8616 (2.32155 iter/s, 5.16897s/12 iters), loss = 1.39544 +I0408 16:02:16.338191 20259 solver.cpp:237] Train net output #0: loss = 1.39544 (* 1 = 1.39544 loss) +I0408 16:02:16.338203 20259 sgd_solver.cpp:105] Iteration 8616, lr = 1.36408e-06 +I0408 16:02:21.332856 20259 solver.cpp:218] Iteration 8628 (2.40264 iter/s, 4.99451s/12 iters), loss = 1.55833 +I0408 16:02:21.332907 20259 solver.cpp:237] Train net output #0: loss = 1.55833 (* 1 = 1.55833 loss) +I0408 16:02:21.332919 20259 sgd_solver.cpp:105] Iteration 8628, lr = 1.34728e-06 +I0408 16:02:26.331950 20259 solver.cpp:218] Iteration 8640 (2.40053 iter/s, 4.9989s/12 iters), loss = 1.6072 +I0408 16:02:26.332067 20259 solver.cpp:237] Train net output #0: loss = 1.6072 (* 1 = 1.6072 loss) +I0408 16:02:26.332079 20259 sgd_solver.cpp:105] Iteration 8640, lr = 1.33068e-06 +I0408 16:02:31.443226 20259 solver.cpp:218] Iteration 8652 (2.34787 iter/s, 5.11101s/12 iters), loss = 1.45075 +I0408 16:02:31.443272 20259 solver.cpp:237] Train net output #0: loss = 1.45075 (* 1 = 1.45075 loss) +I0408 16:02:31.443284 20259 sgd_solver.cpp:105] Iteration 8652, lr = 1.31429e-06 +I0408 16:02:36.556147 20259 solver.cpp:218] Iteration 8664 (2.34709 iter/s, 5.11272s/12 iters), loss = 1.54856 +I0408 16:02:36.556200 20259 solver.cpp:237] Train net output #0: loss = 1.54856 (* 1 = 1.54856 loss) +I0408 16:02:36.556213 20259 sgd_solver.cpp:105] Iteration 8664, lr = 1.2981e-06 +I0408 16:02:38.657410 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 16:02:42.497057 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 16:02:45.952839 20259 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 16:02:45.952864 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:02:47.001155 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:50.566177 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 16:02:50.566210 20259 solver.cpp:397] Test net output #1: loss = 3.27423 (* 1 = 3.27423 loss) +I0408 16:02:52.567844 20259 solver.cpp:218] Iteration 8676 (0.749476 iter/s, 16.0112s/12 iters), loss = 1.53079 +I0408 16:02:52.567890 20259 solver.cpp:237] Train net output #0: loss = 1.53079 (* 1 = 1.53079 loss) +I0408 16:02:52.567899 20259 sgd_solver.cpp:105] Iteration 8676, lr = 1.28211e-06 +I0408 16:02:57.646965 20259 solver.cpp:218] Iteration 8688 (2.36271 iter/s, 5.07892s/12 iters), loss = 1.54358 +I0408 16:02:57.647065 20259 solver.cpp:237] Train net output #0: loss = 1.54358 (* 1 = 1.54358 loss) +I0408 16:02:57.647076 20259 sgd_solver.cpp:105] Iteration 8688, lr = 1.26631e-06 +I0408 16:03:02.009352 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:02.699173 20259 solver.cpp:218] Iteration 8700 (2.37532 iter/s, 5.05196s/12 iters), loss = 1.55789 +I0408 16:03:02.699216 20259 solver.cpp:237] Train net output #0: loss = 1.55789 (* 1 = 1.55789 loss) +I0408 16:03:02.699226 20259 sgd_solver.cpp:105] Iteration 8700, lr = 1.25072e-06 +I0408 16:03:07.800328 20259 solver.cpp:218] Iteration 8712 (2.3525 iter/s, 5.10096s/12 iters), loss = 1.62188 +I0408 16:03:07.800369 20259 solver.cpp:237] Train net output #0: loss = 1.62188 (* 1 = 1.62188 loss) +I0408 16:03:07.800379 20259 sgd_solver.cpp:105] Iteration 8712, lr = 1.23531e-06 +I0408 16:03:13.123198 20259 solver.cpp:218] Iteration 8724 (2.25451 iter/s, 5.32266s/12 iters), loss = 1.53159 +I0408 16:03:13.123255 20259 solver.cpp:237] Train net output #0: loss = 1.53159 (* 1 = 1.53159 loss) +I0408 16:03:13.123267 20259 sgd_solver.cpp:105] Iteration 8724, lr = 1.22009e-06 +I0408 16:03:18.668267 20259 solver.cpp:218] Iteration 8736 (2.16417 iter/s, 5.54485s/12 iters), loss = 1.34031 +I0408 16:03:18.668313 20259 solver.cpp:237] Train net output #0: loss = 1.34031 (* 1 = 1.34031 loss) +I0408 16:03:18.668321 20259 sgd_solver.cpp:105] Iteration 8736, lr = 1.20506e-06 +I0408 16:03:23.757575 20259 solver.cpp:218] Iteration 8748 (2.35798 iter/s, 5.08911s/12 iters), loss = 1.58361 +I0408 16:03:23.757619 20259 solver.cpp:237] Train net output #0: loss = 1.58361 (* 1 = 1.58361 loss) +I0408 16:03:23.757629 20259 sgd_solver.cpp:105] Iteration 8748, lr = 1.19022e-06 +I0408 16:03:28.766618 20259 solver.cpp:218] Iteration 8760 (2.39576 iter/s, 5.00885s/12 iters), loss = 1.41935 +I0408 16:03:28.766741 20259 solver.cpp:237] Train net output #0: loss = 1.41935 (* 1 = 1.41935 loss) +I0408 16:03:28.766750 20259 sgd_solver.cpp:105] Iteration 8760, lr = 1.17555e-06 +I0408 16:03:33.523329 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 16:03:37.680403 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 16:03:40.312464 20259 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 16:03:40.312489 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:03:41.292652 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:44.937877 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 16:03:44.937924 20259 solver.cpp:397] Test net output #1: loss = 3.28059 (* 1 = 3.28059 loss) +I0408 16:03:45.028223 20259 solver.cpp:218] Iteration 8772 (0.737961 iter/s, 16.261s/12 iters), loss = 1.63954 +I0408 16:03:45.028271 20259 solver.cpp:237] Train net output #0: loss = 1.63954 (* 1 = 1.63954 loss) +I0408 16:03:45.028282 20259 sgd_solver.cpp:105] Iteration 8772, lr = 1.16107e-06 +I0408 16:03:49.217795 20259 solver.cpp:218] Iteration 8784 (2.86437 iter/s, 4.1894s/12 iters), loss = 1.55229 +I0408 16:03:49.217844 20259 solver.cpp:237] Train net output #0: loss = 1.55229 (* 1 = 1.55229 loss) +I0408 16:03:49.217857 20259 sgd_solver.cpp:105] Iteration 8784, lr = 1.14677e-06 +I0408 16:03:54.303505 20259 solver.cpp:218] Iteration 8796 (2.35965 iter/s, 5.0855s/12 iters), loss = 1.32894 +I0408 16:03:54.303565 20259 solver.cpp:237] Train net output #0: loss = 1.32894 (* 1 = 1.32894 loss) +I0408 16:03:54.303577 20259 sgd_solver.cpp:105] Iteration 8796, lr = 1.13264e-06 +I0408 16:03:55.758561 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:59.336318 20259 solver.cpp:218] Iteration 8808 (2.38445 iter/s, 5.0326s/12 iters), loss = 1.57443 +I0408 16:03:59.336488 20259 solver.cpp:237] Train net output #0: loss = 1.57443 (* 1 = 1.57443 loss) +I0408 16:03:59.336503 20259 sgd_solver.cpp:105] Iteration 8808, lr = 1.11869e-06 +I0408 16:04:04.371170 20259 solver.cpp:218] Iteration 8820 (2.38354 iter/s, 5.03454s/12 iters), loss = 1.54182 +I0408 16:04:04.371214 20259 solver.cpp:237] Train net output #0: loss = 1.54182 (* 1 = 1.54182 loss) +I0408 16:04:04.371225 20259 sgd_solver.cpp:105] Iteration 8820, lr = 1.10491e-06 +I0408 16:04:09.425470 20259 solver.cpp:218] Iteration 8832 (2.37431 iter/s, 5.0541s/12 iters), loss = 1.4259 +I0408 16:04:09.425518 20259 solver.cpp:237] Train net output #0: loss = 1.4259 (* 1 = 1.4259 loss) +I0408 16:04:09.425529 20259 sgd_solver.cpp:105] Iteration 8832, lr = 1.0913e-06 +I0408 16:04:14.753096 20259 solver.cpp:218] Iteration 8844 (2.2525 iter/s, 5.32742s/12 iters), loss = 1.34566 +I0408 16:04:14.753149 20259 solver.cpp:237] Train net output #0: loss = 1.34566 (* 1 = 1.34566 loss) +I0408 16:04:14.753159 20259 sgd_solver.cpp:105] Iteration 8844, lr = 1.07785e-06 +I0408 16:04:19.849367 20259 solver.cpp:218] Iteration 8856 (2.35476 iter/s, 5.09606s/12 iters), loss = 1.62204 +I0408 16:04:19.849421 20259 solver.cpp:237] Train net output #0: loss = 1.62204 (* 1 = 1.62204 loss) +I0408 16:04:19.849434 20259 sgd_solver.cpp:105] Iteration 8856, lr = 1.06458e-06 +I0408 16:04:25.185804 20259 solver.cpp:218] Iteration 8868 (2.24878 iter/s, 5.33623s/12 iters), loss = 1.38018 +I0408 16:04:25.185851 20259 solver.cpp:237] Train net output #0: loss = 1.38018 (* 1 = 1.38018 loss) +I0408 16:04:25.185863 20259 sgd_solver.cpp:105] Iteration 8868, lr = 1.05146e-06 +I0408 16:04:27.263690 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 16:04:34.346379 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 16:04:36.671352 20259 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 16:04:36.671376 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:04:37.617285 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:04:41.156415 20259 solver.cpp:397] Test net output #0: accuracy = 0.295343 +I0408 16:04:41.156455 20259 solver.cpp:397] Test net output #1: loss = 3.27084 (* 1 = 3.27084 loss) +I0408 16:04:43.011126 20259 solver.cpp:218] Iteration 8880 (0.673221 iter/s, 17.8248s/12 iters), loss = 1.66113 +I0408 16:04:43.011183 20259 solver.cpp:237] Train net output #0: loss = 1.66113 (* 1 = 1.66113 loss) +I0408 16:04:43.011196 20259 sgd_solver.cpp:105] Iteration 8880, lr = 1.03851e-06 +I0408 16:04:48.084388 20259 solver.cpp:218] Iteration 8892 (2.36544 iter/s, 5.07305s/12 iters), loss = 1.27271 +I0408 16:04:48.084443 20259 solver.cpp:237] Train net output #0: loss = 1.27271 (* 1 = 1.27271 loss) +I0408 16:04:48.084455 20259 sgd_solver.cpp:105] Iteration 8892, lr = 1.02572e-06 +I0408 16:04:51.917315 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:04:53.351692 20259 solver.cpp:218] Iteration 8904 (2.2783 iter/s, 5.26709s/12 iters), loss = 1.51783 +I0408 16:04:53.351743 20259 solver.cpp:237] Train net output #0: loss = 1.51783 (* 1 = 1.51783 loss) +I0408 16:04:53.351755 20259 sgd_solver.cpp:105] Iteration 8904, lr = 1.01308e-06 +I0408 16:04:58.816043 20259 solver.cpp:218] Iteration 8916 (2.19614 iter/s, 5.46414s/12 iters), loss = 1.25848 +I0408 16:04:58.816090 20259 solver.cpp:237] Train net output #0: loss = 1.25848 (* 1 = 1.25848 loss) +I0408 16:04:58.816102 20259 sgd_solver.cpp:105] Iteration 8916, lr = 1.0006e-06 +I0408 16:05:04.122859 20259 solver.cpp:218] Iteration 8928 (2.26133 iter/s, 5.30661s/12 iters), loss = 1.46473 +I0408 16:05:04.122908 20259 solver.cpp:237] Train net output #0: loss = 1.46473 (* 1 = 1.46473 loss) +I0408 16:05:04.122920 20259 sgd_solver.cpp:105] Iteration 8928, lr = 9.88274e-07 +I0408 16:05:09.069769 20259 solver.cpp:218] Iteration 8940 (2.42585 iter/s, 4.94671s/12 iters), loss = 1.52183 +I0408 16:05:09.069905 20259 solver.cpp:237] Train net output #0: loss = 1.52183 (* 1 = 1.52183 loss) +I0408 16:05:09.069914 20259 sgd_solver.cpp:105] Iteration 8940, lr = 9.76099e-07 +I0408 16:05:14.246440 20259 solver.cpp:218] Iteration 8952 (2.31822 iter/s, 5.17638s/12 iters), loss = 1.55841 +I0408 16:05:14.246491 20259 solver.cpp:237] Train net output #0: loss = 1.55841 (* 1 = 1.55841 loss) +I0408 16:05:14.246503 20259 sgd_solver.cpp:105] Iteration 8952, lr = 9.64075e-07 +I0408 16:05:19.622318 20259 solver.cpp:218] Iteration 8964 (2.23228 iter/s, 5.37567s/12 iters), loss = 1.37778 +I0408 16:05:19.622370 20259 solver.cpp:237] Train net output #0: loss = 1.37778 (* 1 = 1.37778 loss) +I0408 16:05:19.622383 20259 sgd_solver.cpp:105] Iteration 8964, lr = 9.52198e-07 +I0408 16:05:24.464756 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 16:05:31.375774 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 16:05:33.714248 20259 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 16:05:33.714277 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:05:34.700675 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:38.255666 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 16:05:38.255707 20259 solver.cpp:397] Test net output #1: loss = 3.28483 (* 1 = 3.28483 loss) +I0408 16:05:38.342900 20259 solver.cpp:218] Iteration 8976 (0.641026 iter/s, 18.72s/12 iters), loss = 1.63334 +I0408 16:05:38.342948 20259 solver.cpp:237] Train net output #0: loss = 1.63334 (* 1 = 1.63334 loss) +I0408 16:05:38.342959 20259 sgd_solver.cpp:105] Iteration 8976, lr = 9.40468e-07 +I0408 16:05:42.690626 20259 solver.cpp:218] Iteration 8988 (2.76018 iter/s, 4.34754s/12 iters), loss = 1.53111 +I0408 16:05:42.690716 20259 solver.cpp:237] Train net output #0: loss = 1.53111 (* 1 = 1.53111 loss) +I0408 16:05:42.690726 20259 sgd_solver.cpp:105] Iteration 8988, lr = 9.28883e-07 +I0408 16:05:46.083317 20259 blocking_queue.cpp:49] Waiting for data +I0408 16:05:47.842046 20259 solver.cpp:218] Iteration 9000 (2.32957 iter/s, 5.15117s/12 iters), loss = 1.54896 +I0408 16:05:47.842097 20259 solver.cpp:237] Train net output #0: loss = 1.54896 (* 1 = 1.54896 loss) +I0408 16:05:47.842108 20259 sgd_solver.cpp:105] Iteration 9000, lr = 9.1744e-07 +I0408 16:05:48.570582 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:52.886047 20259 solver.cpp:218] Iteration 9012 (2.37916 iter/s, 5.0438s/12 iters), loss = 1.41658 +I0408 16:05:52.886097 20259 solver.cpp:237] Train net output #0: loss = 1.41658 (* 1 = 1.41658 loss) +I0408 16:05:52.886108 20259 sgd_solver.cpp:105] Iteration 9012, lr = 9.06138e-07 +I0408 16:05:57.963055 20259 solver.cpp:218] Iteration 9024 (2.36369 iter/s, 5.0768s/12 iters), loss = 1.68597 +I0408 16:05:57.963104 20259 solver.cpp:237] Train net output #0: loss = 1.68597 (* 1 = 1.68597 loss) +I0408 16:05:57.963115 20259 sgd_solver.cpp:105] Iteration 9024, lr = 8.94976e-07 +I0408 16:06:03.069141 20259 solver.cpp:218] Iteration 9036 (2.35023 iter/s, 5.10587s/12 iters), loss = 1.5396 +I0408 16:06:03.069198 20259 solver.cpp:237] Train net output #0: loss = 1.5396 (* 1 = 1.5396 loss) +I0408 16:06:03.069212 20259 sgd_solver.cpp:105] Iteration 9036, lr = 8.83951e-07 +I0408 16:06:08.191910 20259 solver.cpp:218] Iteration 9048 (2.34258 iter/s, 5.12255s/12 iters), loss = 1.63994 +I0408 16:06:08.191972 20259 solver.cpp:237] Train net output #0: loss = 1.63994 (* 1 = 1.63994 loss) +I0408 16:06:08.191987 20259 sgd_solver.cpp:105] Iteration 9048, lr = 8.73062e-07 +I0408 16:06:13.385567 20259 solver.cpp:218] Iteration 9060 (2.31061 iter/s, 5.19344s/12 iters), loss = 1.34219 +I0408 16:06:13.385713 20259 solver.cpp:237] Train net output #0: loss = 1.34219 (* 1 = 1.34219 loss) +I0408 16:06:13.385727 20259 sgd_solver.cpp:105] Iteration 9060, lr = 8.62306e-07 +I0408 16:06:18.426993 20259 solver.cpp:218] Iteration 9072 (2.38042 iter/s, 5.04113s/12 iters), loss = 1.40485 +I0408 16:06:18.427042 20259 solver.cpp:237] Train net output #0: loss = 1.40485 (* 1 = 1.40485 loss) +I0408 16:06:18.427053 20259 sgd_solver.cpp:105] Iteration 9072, lr = 8.51684e-07 +I0408 16:06:20.485988 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 16:06:23.469067 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 16:06:29.001368 20259 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 16:06:29.001394 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:06:29.936762 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:06:33.546182 20259 solver.cpp:397] Test net output #0: accuracy = 0.293505 +I0408 16:06:33.546227 20259 solver.cpp:397] Test net output #1: loss = 3.2828 (* 1 = 3.2828 loss) +I0408 16:06:35.582062 20259 solver.cpp:218] Iteration 9084 (0.699524 iter/s, 17.1545s/12 iters), loss = 1.53138 +I0408 16:06:35.582120 20259 solver.cpp:237] Train net output #0: loss = 1.53138 (* 1 = 1.53138 loss) +I0408 16:06:35.582134 20259 sgd_solver.cpp:105] Iteration 9084, lr = 8.41192e-07 +I0408 16:06:40.681242 20259 solver.cpp:218] Iteration 9096 (2.35342 iter/s, 5.09897s/12 iters), loss = 1.61097 +I0408 16:06:40.681290 20259 solver.cpp:237] Train net output #0: loss = 1.61097 (* 1 = 1.61097 loss) +I0408 16:06:40.681301 20259 sgd_solver.cpp:105] Iteration 9096, lr = 8.3083e-07 +I0408 16:06:43.674623 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:06:45.757042 20259 solver.cpp:218] Iteration 9108 (2.36425 iter/s, 5.0756s/12 iters), loss = 1.70251 +I0408 16:06:45.757091 20259 solver.cpp:237] Train net output #0: loss = 1.70251 (* 1 = 1.70251 loss) +I0408 16:06:45.757102 20259 sgd_solver.cpp:105] Iteration 9108, lr = 8.20595e-07 +I0408 16:06:50.773378 20259 solver.cpp:218] Iteration 9120 (2.39228 iter/s, 5.01614s/12 iters), loss = 1.52616 +I0408 16:06:50.773427 20259 solver.cpp:237] Train net output #0: loss = 1.52616 (* 1 = 1.52616 loss) +I0408 16:06:50.773438 20259 sgd_solver.cpp:105] Iteration 9120, lr = 8.10486e-07 +I0408 16:06:55.952812 20259 solver.cpp:218] Iteration 9132 (2.31695 iter/s, 5.17923s/12 iters), loss = 1.45306 +I0408 16:06:55.952857 20259 solver.cpp:237] Train net output #0: loss = 1.45306 (* 1 = 1.45306 loss) +I0408 16:06:55.952867 20259 sgd_solver.cpp:105] Iteration 9132, lr = 8.00502e-07 +I0408 16:07:01.146276 20259 solver.cpp:218] Iteration 9144 (2.31069 iter/s, 5.19326s/12 iters), loss = 1.73637 +I0408 16:07:01.146320 20259 solver.cpp:237] Train net output #0: loss = 1.73637 (* 1 = 1.73637 loss) +I0408 16:07:01.146332 20259 sgd_solver.cpp:105] Iteration 9144, lr = 7.9064e-07 +I0408 16:07:06.442555 20259 solver.cpp:218] Iteration 9156 (2.26583 iter/s, 5.29608s/12 iters), loss = 1.37674 +I0408 16:07:06.442593 20259 solver.cpp:237] Train net output #0: loss = 1.37674 (* 1 = 1.37674 loss) +I0408 16:07:06.442603 20259 sgd_solver.cpp:105] Iteration 9156, lr = 7.80901e-07 +I0408 16:07:11.548780 20259 solver.cpp:218] Iteration 9168 (2.35016 iter/s, 5.10603s/12 iters), loss = 1.54431 +I0408 16:07:11.548830 20259 solver.cpp:237] Train net output #0: loss = 1.54431 (* 1 = 1.54431 loss) +I0408 16:07:11.548841 20259 sgd_solver.cpp:105] Iteration 9168, lr = 7.71281e-07 +I0408 16:07:16.152341 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 16:07:19.144953 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 16:07:21.458047 20259 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 16:07:21.458070 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:07:22.352144 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:07:26.008679 20259 solver.cpp:397] Test net output #0: accuracy = 0.292279 +I0408 16:07:26.008721 20259 solver.cpp:397] Test net output #1: loss = 3.27471 (* 1 = 3.27471 loss) +I0408 16:07:26.098871 20259 solver.cpp:218] Iteration 9180 (0.824763 iter/s, 14.5496s/12 iters), loss = 1.55813 +I0408 16:07:26.098923 20259 solver.cpp:237] Train net output #0: loss = 1.55813 (* 1 = 1.55813 loss) +I0408 16:07:26.098937 20259 sgd_solver.cpp:105] Iteration 9180, lr = 7.6178e-07 +I0408 16:07:30.144093 20259 solver.cpp:218] Iteration 9192 (2.96659 iter/s, 4.04505s/12 iters), loss = 1.54004 +I0408 16:07:30.144146 20259 solver.cpp:237] Train net output #0: loss = 1.54004 (* 1 = 1.54004 loss) +I0408 16:07:30.144160 20259 sgd_solver.cpp:105] Iteration 9192, lr = 7.52395e-07 +I0408 16:07:35.086627 20259 solver.cpp:218] Iteration 9204 (2.428 iter/s, 4.94233s/12 iters), loss = 1.43668 +I0408 16:07:35.086675 20259 solver.cpp:237] Train net output #0: loss = 1.43668 (* 1 = 1.43668 loss) +I0408 16:07:35.086688 20259 sgd_solver.cpp:105] Iteration 9204, lr = 7.43127e-07 +I0408 16:07:35.171083 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:07:40.000466 20259 solver.cpp:218] Iteration 9216 (2.44218 iter/s, 4.91364s/12 iters), loss = 1.65809 +I0408 16:07:40.000509 20259 solver.cpp:237] Train net output #0: loss = 1.65809 (* 1 = 1.65809 loss) +I0408 16:07:40.000519 20259 sgd_solver.cpp:105] Iteration 9216, lr = 7.33972e-07 +I0408 16:07:45.245474 20259 solver.cpp:218] Iteration 9228 (2.28798 iter/s, 5.24481s/12 iters), loss = 1.29174 +I0408 16:07:45.245512 20259 solver.cpp:237] Train net output #0: loss = 1.29174 (* 1 = 1.29174 loss) +I0408 16:07:45.245519 20259 sgd_solver.cpp:105] Iteration 9228, lr = 7.24931e-07 +I0408 16:07:50.721650 20259 solver.cpp:218] Iteration 9240 (2.19139 iter/s, 5.47597s/12 iters), loss = 1.55962 +I0408 16:07:50.721742 20259 solver.cpp:237] Train net output #0: loss = 1.55962 (* 1 = 1.55962 loss) +I0408 16:07:50.721753 20259 sgd_solver.cpp:105] Iteration 9240, lr = 7.16e-07 +I0408 16:07:55.873242 20259 solver.cpp:218] Iteration 9252 (2.32949 iter/s, 5.15135s/12 iters), loss = 1.54009 +I0408 16:07:55.873289 20259 solver.cpp:237] Train net output #0: loss = 1.54009 (* 1 = 1.54009 loss) +I0408 16:07:55.873299 20259 sgd_solver.cpp:105] Iteration 9252, lr = 7.0718e-07 +I0408 16:08:00.903355 20259 solver.cpp:218] Iteration 9264 (2.38573 iter/s, 5.02991s/12 iters), loss = 1.72844 +I0408 16:08:00.903401 20259 solver.cpp:237] Train net output #0: loss = 1.72844 (* 1 = 1.72844 loss) +I0408 16:08:00.903412 20259 sgd_solver.cpp:105] Iteration 9264, lr = 6.98468e-07 +I0408 16:08:06.000308 20259 solver.cpp:218] Iteration 9276 (2.35444 iter/s, 5.09675s/12 iters), loss = 1.71357 +I0408 16:08:06.000360 20259 solver.cpp:237] Train net output #0: loss = 1.71357 (* 1 = 1.71357 loss) +I0408 16:08:06.000370 20259 sgd_solver.cpp:105] Iteration 9276, lr = 6.89864e-07 +I0408 16:08:08.154443 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 16:08:11.152710 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 16:08:13.495249 20259 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 16:08:13.495276 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:08:14.324633 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:08:17.958405 20259 solver.cpp:397] Test net output #0: accuracy = 0.291054 +I0408 16:08:17.958456 20259 solver.cpp:397] Test net output #1: loss = 3.29025 (* 1 = 3.29025 loss) +I0408 16:08:19.949190 20259 solver.cpp:218] Iteration 9288 (0.860312 iter/s, 13.9484s/12 iters), loss = 1.42786 +I0408 16:08:19.949250 20259 solver.cpp:237] Train net output #0: loss = 1.42786 (* 1 = 1.42786 loss) +I0408 16:08:19.949263 20259 sgd_solver.cpp:105] Iteration 9288, lr = 6.81366e-07 +I0408 16:08:25.170270 20259 solver.cpp:218] Iteration 9300 (2.29847 iter/s, 5.22087s/12 iters), loss = 1.2944 +I0408 16:08:25.170403 20259 solver.cpp:237] Train net output #0: loss = 1.2944 (* 1 = 1.2944 loss) +I0408 16:08:25.170413 20259 sgd_solver.cpp:105] Iteration 9300, lr = 6.72972e-07 +I0408 16:08:27.425173 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:08:30.245683 20259 solver.cpp:218] Iteration 9312 (2.36447 iter/s, 5.07513s/12 iters), loss = 1.61665 +I0408 16:08:30.245731 20259 solver.cpp:237] Train net output #0: loss = 1.61665 (* 1 = 1.61665 loss) +I0408 16:08:30.245744 20259 sgd_solver.cpp:105] Iteration 9312, lr = 6.64682e-07 +I0408 16:08:35.336732 20259 solver.cpp:218] Iteration 9324 (2.35717 iter/s, 5.09085s/12 iters), loss = 1.44168 +I0408 16:08:35.336772 20259 solver.cpp:237] Train net output #0: loss = 1.44168 (* 1 = 1.44168 loss) +I0408 16:08:35.336781 20259 sgd_solver.cpp:105] Iteration 9324, lr = 6.56494e-07 +I0408 16:08:40.387236 20259 solver.cpp:218] Iteration 9336 (2.3761 iter/s, 5.0503s/12 iters), loss = 1.45994 +I0408 16:08:40.387296 20259 solver.cpp:237] Train net output #0: loss = 1.45994 (* 1 = 1.45994 loss) +I0408 16:08:40.387310 20259 sgd_solver.cpp:105] Iteration 9336, lr = 6.48406e-07 +I0408 16:08:45.792505 20259 solver.cpp:218] Iteration 9348 (2.22015 iter/s, 5.40504s/12 iters), loss = 1.52992 +I0408 16:08:45.792567 20259 solver.cpp:237] Train net output #0: loss = 1.52992 (* 1 = 1.52992 loss) +I0408 16:08:45.792582 20259 sgd_solver.cpp:105] Iteration 9348, lr = 6.40419e-07 +I0408 16:08:50.894989 20259 solver.cpp:218] Iteration 9360 (2.3519 iter/s, 5.10226s/12 iters), loss = 1.5335 +I0408 16:08:50.895048 20259 solver.cpp:237] Train net output #0: loss = 1.5335 (* 1 = 1.5335 loss) +I0408 16:08:50.895061 20259 sgd_solver.cpp:105] Iteration 9360, lr = 6.3253e-07 +I0408 16:08:55.966091 20259 solver.cpp:218] Iteration 9372 (2.36645 iter/s, 5.0709s/12 iters), loss = 1.42654 +I0408 16:08:55.966193 20259 solver.cpp:237] Train net output #0: loss = 1.42654 (* 1 = 1.42654 loss) +I0408 16:08:55.966203 20259 sgd_solver.cpp:105] Iteration 9372, lr = 6.24738e-07 +I0408 16:09:00.541530 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 16:09:03.558348 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 16:09:05.915704 20259 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 16:09:05.915732 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:09:06.668411 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:10.336406 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 16:09:10.336454 20259 solver.cpp:397] Test net output #1: loss = 3.27415 (* 1 = 3.27415 loss) +I0408 16:09:10.423491 20259 solver.cpp:218] Iteration 9384 (0.830054 iter/s, 14.4569s/12 iters), loss = 1.60228 +I0408 16:09:10.423542 20259 solver.cpp:237] Train net output #0: loss = 1.60228 (* 1 = 1.60228 loss) +I0408 16:09:10.423553 20259 sgd_solver.cpp:105] Iteration 9384, lr = 6.17042e-07 +I0408 16:09:14.648717 20259 solver.cpp:218] Iteration 9396 (2.84021 iter/s, 4.22504s/12 iters), loss = 1.49589 +I0408 16:09:14.648769 20259 solver.cpp:237] Train net output #0: loss = 1.49589 (* 1 = 1.49589 loss) +I0408 16:09:14.648782 20259 sgd_solver.cpp:105] Iteration 9396, lr = 6.0944e-07 +I0408 16:09:19.134073 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:19.843071 20259 solver.cpp:218] Iteration 9408 (2.3103 iter/s, 5.19414s/12 iters), loss = 1.61356 +I0408 16:09:19.843127 20259 solver.cpp:237] Train net output #0: loss = 1.61356 (* 1 = 1.61356 loss) +I0408 16:09:19.843140 20259 sgd_solver.cpp:105] Iteration 9408, lr = 6.01933e-07 +I0408 16:09:25.220647 20259 solver.cpp:218] Iteration 9420 (2.23158 iter/s, 5.37736s/12 iters), loss = 1.4555 +I0408 16:09:25.220688 20259 solver.cpp:237] Train net output #0: loss = 1.4555 (* 1 = 1.4555 loss) +I0408 16:09:25.220698 20259 sgd_solver.cpp:105] Iteration 9420, lr = 5.94518e-07 +I0408 16:09:30.438697 20259 solver.cpp:218] Iteration 9432 (2.2998 iter/s, 5.21785s/12 iters), loss = 1.86224 +I0408 16:09:30.438845 20259 solver.cpp:237] Train net output #0: loss = 1.86224 (* 1 = 1.86224 loss) +I0408 16:09:30.438856 20259 sgd_solver.cpp:105] Iteration 9432, lr = 5.87194e-07 +I0408 16:09:35.777252 20259 solver.cpp:218] Iteration 9444 (2.24793 iter/s, 5.33825s/12 iters), loss = 1.47691 +I0408 16:09:35.777307 20259 solver.cpp:237] Train net output #0: loss = 1.47691 (* 1 = 1.47691 loss) +I0408 16:09:35.777320 20259 sgd_solver.cpp:105] Iteration 9444, lr = 5.7996e-07 +I0408 16:09:40.850425 20259 solver.cpp:218] Iteration 9456 (2.36548 iter/s, 5.07297s/12 iters), loss = 1.6152 +I0408 16:09:40.850478 20259 solver.cpp:237] Train net output #0: loss = 1.6152 (* 1 = 1.6152 loss) +I0408 16:09:40.850492 20259 sgd_solver.cpp:105] Iteration 9456, lr = 5.72816e-07 +I0408 16:09:45.934109 20259 solver.cpp:218] Iteration 9468 (2.36059 iter/s, 5.08348s/12 iters), loss = 1.62533 +I0408 16:09:45.934163 20259 solver.cpp:237] Train net output #0: loss = 1.62533 (* 1 = 1.62533 loss) +I0408 16:09:45.934175 20259 sgd_solver.cpp:105] Iteration 9468, lr = 5.65759e-07 +I0408 16:09:51.110944 20259 solver.cpp:218] Iteration 9480 (2.31811 iter/s, 5.17663s/12 iters), loss = 1.58591 +I0408 16:09:51.110997 20259 solver.cpp:237] Train net output #0: loss = 1.58591 (* 1 = 1.58591 loss) +I0408 16:09:51.111011 20259 sgd_solver.cpp:105] Iteration 9480, lr = 5.5879e-07 +I0408 16:09:53.350499 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 16:09:57.327425 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 16:09:59.656385 20259 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 16:09:59.656412 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:10:00.391789 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:04.118126 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 16:10:04.118237 20259 solver.cpp:397] Test net output #1: loss = 3.27643 (* 1 = 3.27643 loss) +I0408 16:10:06.039902 20259 solver.cpp:218] Iteration 9492 (0.803833 iter/s, 14.9285s/12 iters), loss = 1.64066 +I0408 16:10:06.039958 20259 solver.cpp:237] Train net output #0: loss = 1.64066 (* 1 = 1.64066 loss) +I0408 16:10:06.039973 20259 sgd_solver.cpp:105] Iteration 9492, lr = 5.51906e-07 +I0408 16:10:11.054167 20259 solver.cpp:218] Iteration 9504 (2.39327 iter/s, 5.01406s/12 iters), loss = 1.49816 +I0408 16:10:11.054214 20259 solver.cpp:237] Train net output #0: loss = 1.49816 (* 1 = 1.49816 loss) +I0408 16:10:11.054226 20259 sgd_solver.cpp:105] Iteration 9504, lr = 5.45107e-07 +I0408 16:10:12.563177 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:16.207428 20259 solver.cpp:218] Iteration 9516 (2.32872 iter/s, 5.15306s/12 iters), loss = 1.66403 +I0408 16:10:16.207485 20259 solver.cpp:237] Train net output #0: loss = 1.66403 (* 1 = 1.66403 loss) +I0408 16:10:16.207497 20259 sgd_solver.cpp:105] Iteration 9516, lr = 5.38392e-07 +I0408 16:10:21.240056 20259 solver.cpp:218] Iteration 9528 (2.38454 iter/s, 5.03242s/12 iters), loss = 1.41426 +I0408 16:10:21.240103 20259 solver.cpp:237] Train net output #0: loss = 1.41426 (* 1 = 1.41426 loss) +I0408 16:10:21.240114 20259 sgd_solver.cpp:105] Iteration 9528, lr = 5.3176e-07 +I0408 16:10:26.278661 20259 solver.cpp:218] Iteration 9540 (2.38171 iter/s, 5.0384s/12 iters), loss = 1.45804 +I0408 16:10:26.278712 20259 solver.cpp:237] Train net output #0: loss = 1.45804 (* 1 = 1.45804 loss) +I0408 16:10:26.278724 20259 sgd_solver.cpp:105] Iteration 9540, lr = 5.25209e-07 +I0408 16:10:31.269182 20259 solver.cpp:218] Iteration 9552 (2.40466 iter/s, 4.99032s/12 iters), loss = 1.46663 +I0408 16:10:31.269234 20259 solver.cpp:237] Train net output #0: loss = 1.46663 (* 1 = 1.46663 loss) +I0408 16:10:31.269248 20259 sgd_solver.cpp:105] Iteration 9552, lr = 5.18739e-07 +I0408 16:10:36.697928 20259 solver.cpp:218] Iteration 9564 (2.21054 iter/s, 5.42853s/12 iters), loss = 1.62316 +I0408 16:10:36.698091 20259 solver.cpp:237] Train net output #0: loss = 1.62316 (* 1 = 1.62316 loss) +I0408 16:10:36.698104 20259 sgd_solver.cpp:105] Iteration 9564, lr = 5.12349e-07 +I0408 16:10:41.789876 20259 solver.cpp:218] Iteration 9576 (2.35681 iter/s, 5.09164s/12 iters), loss = 1.43697 +I0408 16:10:41.789929 20259 solver.cpp:237] Train net output #0: loss = 1.43697 (* 1 = 1.43697 loss) +I0408 16:10:41.789942 20259 sgd_solver.cpp:105] Iteration 9576, lr = 5.06038e-07 +I0408 16:10:46.330101 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 16:10:49.413481 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 16:10:51.722623 20259 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 16:10:51.722645 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:10:52.415767 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:56.178520 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 16:10:56.178565 20259 solver.cpp:397] Test net output #1: loss = 3.27463 (* 1 = 3.27463 loss) +I0408 16:10:56.268615 20259 solver.cpp:218] Iteration 9588 (0.828829 iter/s, 14.4783s/12 iters), loss = 1.36106 +I0408 16:10:56.268666 20259 solver.cpp:237] Train net output #0: loss = 1.36106 (* 1 = 1.36106 loss) +I0408 16:10:56.268677 20259 sgd_solver.cpp:105] Iteration 9588, lr = 4.99804e-07 +I0408 16:11:00.538429 20259 solver.cpp:218] Iteration 9600 (2.81055 iter/s, 4.26963s/12 iters), loss = 1.28628 +I0408 16:11:00.538487 20259 solver.cpp:237] Train net output #0: loss = 1.28628 (* 1 = 1.28628 loss) +I0408 16:11:00.538501 20259 sgd_solver.cpp:105] Iteration 9600, lr = 4.93647e-07 +I0408 16:11:04.174705 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:05.605695 20259 solver.cpp:218] Iteration 9612 (2.36824 iter/s, 5.06706s/12 iters), loss = 1.74893 +I0408 16:11:05.605742 20259 solver.cpp:237] Train net output #0: loss = 1.74893 (* 1 = 1.74893 loss) +I0408 16:11:05.605751 20259 sgd_solver.cpp:105] Iteration 9612, lr = 4.87566e-07 +I0408 16:11:10.675307 20259 solver.cpp:218] Iteration 9624 (2.36714 iter/s, 5.06942s/12 iters), loss = 1.18274 +I0408 16:11:10.675398 20259 solver.cpp:237] Train net output #0: loss = 1.18274 (* 1 = 1.18274 loss) +I0408 16:11:10.675410 20259 sgd_solver.cpp:105] Iteration 9624, lr = 4.81559e-07 +I0408 16:11:15.652788 20259 solver.cpp:218] Iteration 9636 (2.41097 iter/s, 4.97724s/12 iters), loss = 1.70195 +I0408 16:11:15.652825 20259 solver.cpp:237] Train net output #0: loss = 1.70195 (* 1 = 1.70195 loss) +I0408 16:11:15.652834 20259 sgd_solver.cpp:105] Iteration 9636, lr = 4.75627e-07 +I0408 16:11:20.651983 20259 solver.cpp:218] Iteration 9648 (2.40048 iter/s, 4.999s/12 iters), loss = 1.65515 +I0408 16:11:20.652036 20259 solver.cpp:237] Train net output #0: loss = 1.65515 (* 1 = 1.65515 loss) +I0408 16:11:20.652048 20259 sgd_solver.cpp:105] Iteration 9648, lr = 4.69768e-07 +I0408 16:11:25.615950 20259 solver.cpp:218] Iteration 9660 (2.41752 iter/s, 4.96376s/12 iters), loss = 1.39986 +I0408 16:11:25.615998 20259 solver.cpp:237] Train net output #0: loss = 1.39986 (* 1 = 1.39986 loss) +I0408 16:11:25.616008 20259 sgd_solver.cpp:105] Iteration 9660, lr = 4.63981e-07 +I0408 16:11:30.620100 20259 solver.cpp:218] Iteration 9672 (2.39811 iter/s, 5.00394s/12 iters), loss = 1.68673 +I0408 16:11:30.620159 20259 solver.cpp:237] Train net output #0: loss = 1.68673 (* 1 = 1.68673 loss) +I0408 16:11:30.620170 20259 sgd_solver.cpp:105] Iteration 9672, lr = 4.58265e-07 +I0408 16:11:35.683465 20259 solver.cpp:218] Iteration 9684 (2.37006 iter/s, 5.06316s/12 iters), loss = 1.55087 +I0408 16:11:35.683518 20259 solver.cpp:237] Train net output #0: loss = 1.55087 (* 1 = 1.55087 loss) +I0408 16:11:35.683531 20259 sgd_solver.cpp:105] Iteration 9684, lr = 4.5262e-07 +I0408 16:11:37.756134 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 16:11:40.846837 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 16:11:43.156502 20259 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 16:11:43.156524 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:11:43.763314 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:46.599418 20259 blocking_queue.cpp:49] Waiting for data +I0408 16:11:47.586565 20259 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0408 16:11:47.586611 20259 solver.cpp:397] Test net output #1: loss = 3.28889 (* 1 = 3.28889 loss) +I0408 16:11:49.404539 20259 solver.cpp:218] Iteration 9696 (0.874596 iter/s, 13.7206s/12 iters), loss = 1.39203 +I0408 16:11:49.404598 20259 solver.cpp:237] Train net output #0: loss = 1.39203 (* 1 = 1.39203 loss) +I0408 16:11:49.404610 20259 sgd_solver.cpp:105] Iteration 9696, lr = 4.47044e-07 +I0408 16:11:54.349273 20259 solver.cpp:218] Iteration 9708 (2.42693 iter/s, 4.94452s/12 iters), loss = 1.62186 +I0408 16:11:54.349334 20259 solver.cpp:237] Train net output #0: loss = 1.62186 (* 1 = 1.62186 loss) +I0408 16:11:54.349346 20259 sgd_solver.cpp:105] Iteration 9708, lr = 4.41537e-07 +I0408 16:11:55.073755 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:59.282208 20259 solver.cpp:218] Iteration 9720 (2.43273 iter/s, 4.93272s/12 iters), loss = 1.42922 +I0408 16:11:59.282258 20259 solver.cpp:237] Train net output #0: loss = 1.42922 (* 1 = 1.42922 loss) +I0408 16:11:59.282269 20259 sgd_solver.cpp:105] Iteration 9720, lr = 4.36098e-07 +I0408 16:12:04.495468 20259 solver.cpp:218] Iteration 9732 (2.30192 iter/s, 5.21305s/12 iters), loss = 1.65548 +I0408 16:12:04.495522 20259 solver.cpp:237] Train net output #0: loss = 1.65548 (* 1 = 1.65548 loss) +I0408 16:12:04.495535 20259 sgd_solver.cpp:105] Iteration 9732, lr = 4.30726e-07 +I0408 16:12:09.503373 20259 solver.cpp:218] Iteration 9744 (2.39631 iter/s, 5.0077s/12 iters), loss = 1.61076 +I0408 16:12:09.503427 20259 solver.cpp:237] Train net output #0: loss = 1.61076 (* 1 = 1.61076 loss) +I0408 16:12:09.503439 20259 sgd_solver.cpp:105] Iteration 9744, lr = 4.2542e-07 +I0408 16:12:14.575712 20259 solver.cpp:218] Iteration 9756 (2.36587 iter/s, 5.07213s/12 iters), loss = 1.55969 +I0408 16:12:14.575830 20259 solver.cpp:237] Train net output #0: loss = 1.55969 (* 1 = 1.55969 loss) +I0408 16:12:14.575843 20259 sgd_solver.cpp:105] Iteration 9756, lr = 4.20179e-07 +I0408 16:12:19.785558 20259 solver.cpp:218] Iteration 9768 (2.30345 iter/s, 5.20957s/12 iters), loss = 1.51824 +I0408 16:12:19.785610 20259 solver.cpp:237] Train net output #0: loss = 1.51824 (* 1 = 1.51824 loss) +I0408 16:12:19.785622 20259 sgd_solver.cpp:105] Iteration 9768, lr = 4.15003e-07 +I0408 16:12:24.987634 20259 solver.cpp:218] Iteration 9780 (2.30686 iter/s, 5.20187s/12 iters), loss = 1.61347 +I0408 16:12:24.987673 20259 solver.cpp:237] Train net output #0: loss = 1.61347 (* 1 = 1.61347 loss) +I0408 16:12:24.987680 20259 sgd_solver.cpp:105] Iteration 9780, lr = 4.09891e-07 +I0408 16:12:29.728101 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 16:12:33.653323 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 16:12:35.966068 20259 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 16:12:35.966091 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:12:36.579223 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:40.441742 20259 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0408 16:12:40.441777 20259 solver.cpp:397] Test net output #1: loss = 3.26977 (* 1 = 3.26977 loss) +I0408 16:12:40.528901 20259 solver.cpp:218] Iteration 9792 (0.772162 iter/s, 15.5408s/12 iters), loss = 1.47726 +I0408 16:12:40.528961 20259 solver.cpp:237] Train net output #0: loss = 1.47726 (* 1 = 1.47726 loss) +I0408 16:12:40.528973 20259 sgd_solver.cpp:105] Iteration 9792, lr = 4.04841e-07 +I0408 16:12:45.125795 20259 solver.cpp:218] Iteration 9804 (2.61057 iter/s, 4.59669s/12 iters), loss = 1.53574 +I0408 16:12:45.125948 20259 solver.cpp:237] Train net output #0: loss = 1.53574 (* 1 = 1.53574 loss) +I0408 16:12:45.125988 20259 sgd_solver.cpp:105] Iteration 9804, lr = 3.99854e-07 +I0408 16:12:48.220397 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:50.279351 20259 solver.cpp:218] Iteration 9816 (2.32863 iter/s, 5.15325s/12 iters), loss = 1.78226 +I0408 16:12:50.279403 20259 solver.cpp:237] Train net output #0: loss = 1.78226 (* 1 = 1.78226 loss) +I0408 16:12:50.279414 20259 sgd_solver.cpp:105] Iteration 9816, lr = 3.94928e-07 +I0408 16:12:55.355563 20259 solver.cpp:218] Iteration 9828 (2.36406 iter/s, 5.07601s/12 iters), loss = 1.51516 +I0408 16:12:55.355618 20259 solver.cpp:237] Train net output #0: loss = 1.51516 (* 1 = 1.51516 loss) +I0408 16:12:55.355629 20259 sgd_solver.cpp:105] Iteration 9828, lr = 3.90063e-07 +I0408 16:13:00.708052 20259 solver.cpp:218] Iteration 9840 (2.24204 iter/s, 5.35227s/12 iters), loss = 1.43616 +I0408 16:13:00.708106 20259 solver.cpp:237] Train net output #0: loss = 1.43616 (* 1 = 1.43616 loss) +I0408 16:13:00.708118 20259 sgd_solver.cpp:105] Iteration 9840, lr = 3.85258e-07 +I0408 16:13:06.006292 20259 solver.cpp:218] Iteration 9852 (2.26499 iter/s, 5.29803s/12 iters), loss = 1.54564 +I0408 16:13:06.006340 20259 solver.cpp:237] Train net output #0: loss = 1.54564 (* 1 = 1.54564 loss) +I0408 16:13:06.006351 20259 sgd_solver.cpp:105] Iteration 9852, lr = 3.80512e-07 +I0408 16:13:11.507820 20259 solver.cpp:218] Iteration 9864 (2.1813 iter/s, 5.50132s/12 iters), loss = 1.59497 +I0408 16:13:11.507874 20259 solver.cpp:237] Train net output #0: loss = 1.59497 (* 1 = 1.59497 loss) +I0408 16:13:11.507885 20259 sgd_solver.cpp:105] Iteration 9864, lr = 3.75825e-07 +I0408 16:13:16.582518 20259 solver.cpp:218] Iteration 9876 (2.36477 iter/s, 5.07449s/12 iters), loss = 1.53211 +I0408 16:13:16.582633 20259 solver.cpp:237] Train net output #0: loss = 1.53211 (* 1 = 1.53211 loss) +I0408 16:13:16.582645 20259 sgd_solver.cpp:105] Iteration 9876, lr = 3.71195e-07 +I0408 16:13:21.746807 20259 solver.cpp:218] Iteration 9888 (2.32377 iter/s, 5.16402s/12 iters), loss = 1.73489 +I0408 16:13:21.746860 20259 solver.cpp:237] Train net output #0: loss = 1.73489 (* 1 = 1.73489 loss) +I0408 16:13:21.746870 20259 sgd_solver.cpp:105] Iteration 9888, lr = 3.66622e-07 +I0408 16:13:23.869879 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 16:13:26.866513 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 16:13:29.213922 20259 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 16:13:29.213946 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:13:29.789970 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:13:33.722455 20259 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0408 16:13:33.722503 20259 solver.cpp:397] Test net output #1: loss = 3.28181 (* 1 = 3.28181 loss) +I0408 16:13:35.740301 20259 solver.cpp:218] Iteration 9900 (0.857569 iter/s, 13.993s/12 iters), loss = 1.43052 +I0408 16:13:35.740358 20259 solver.cpp:237] Train net output #0: loss = 1.43052 (* 1 = 1.43052 loss) +I0408 16:13:35.740370 20259 sgd_solver.cpp:105] Iteration 9900, lr = 3.62106e-07 +I0408 16:13:40.908004 20259 solver.cpp:218] Iteration 9912 (2.32221 iter/s, 5.16749s/12 iters), loss = 1.47514 +I0408 16:13:40.908053 20259 solver.cpp:237] Train net output #0: loss = 1.47514 (* 1 = 1.47514 loss) +I0408 16:13:40.908063 20259 sgd_solver.cpp:105] Iteration 9912, lr = 3.57645e-07 +I0408 16:13:41.022230 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:13:46.066826 20259 solver.cpp:218] Iteration 9924 (2.32621 iter/s, 5.15861s/12 iters), loss = 1.56249 +I0408 16:13:46.066881 20259 solver.cpp:237] Train net output #0: loss = 1.56249 (* 1 = 1.56249 loss) +I0408 16:13:46.066895 20259 sgd_solver.cpp:105] Iteration 9924, lr = 3.53239e-07 +I0408 16:13:51.602458 20259 solver.cpp:218] Iteration 9936 (2.16786 iter/s, 5.53541s/12 iters), loss = 1.43739 +I0408 16:13:51.602578 20259 solver.cpp:237] Train net output #0: loss = 1.43739 (* 1 = 1.43739 loss) +I0408 16:13:51.602589 20259 sgd_solver.cpp:105] Iteration 9936, lr = 3.48888e-07 +I0408 16:13:57.007773 20259 solver.cpp:218] Iteration 9948 (2.22015 iter/s, 5.40503s/12 iters), loss = 1.46708 +I0408 16:13:57.007822 20259 solver.cpp:237] Train net output #0: loss = 1.46708 (* 1 = 1.46708 loss) +I0408 16:13:57.007831 20259 sgd_solver.cpp:105] Iteration 9948, lr = 3.4459e-07 +I0408 16:14:02.012677 20259 solver.cpp:218] Iteration 9960 (2.39774 iter/s, 5.00471s/12 iters), loss = 1.5802 +I0408 16:14:02.012733 20259 solver.cpp:237] Train net output #0: loss = 1.5802 (* 1 = 1.5802 loss) +I0408 16:14:02.012745 20259 sgd_solver.cpp:105] Iteration 9960, lr = 3.40345e-07 +I0408 16:14:07.088116 20259 solver.cpp:218] Iteration 9972 (2.36443 iter/s, 5.07523s/12 iters), loss = 1.48492 +I0408 16:14:07.088171 20259 solver.cpp:237] Train net output #0: loss = 1.48492 (* 1 = 1.48492 loss) +I0408 16:14:07.088184 20259 sgd_solver.cpp:105] Iteration 9972, lr = 3.36152e-07 +I0408 16:14:12.165299 20259 solver.cpp:218] Iteration 9984 (2.36361 iter/s, 5.07697s/12 iters), loss = 1.3721 +I0408 16:14:12.165347 20259 solver.cpp:237] Train net output #0: loss = 1.3721 (* 1 = 1.3721 loss) +I0408 16:14:12.165356 20259 sgd_solver.cpp:105] Iteration 9984, lr = 3.32011e-07 +I0408 16:14:16.739848 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 16:14:20.613349 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 16:14:23.016172 20259 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 16:14:23.016249 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:14:23.540385 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:27.662297 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 16:14:27.662324 20259 solver.cpp:397] Test net output #1: loss = 3.26879 (* 1 = 3.26879 loss) +I0408 16:14:27.750624 20259 solver.cpp:218] Iteration 9996 (0.769979 iter/s, 15.5848s/12 iters), loss = 1.41617 +I0408 16:14:27.750663 20259 solver.cpp:237] Train net output #0: loss = 1.41617 (* 1 = 1.41617 loss) +I0408 16:14:27.750672 20259 sgd_solver.cpp:105] Iteration 9996, lr = 3.27921e-07 +I0408 16:14:32.472383 20259 solver.cpp:218] Iteration 10008 (2.54152 iter/s, 4.72158s/12 iters), loss = 1.56023 +I0408 16:14:32.472430 20259 solver.cpp:237] Train net output #0: loss = 1.56023 (* 1 = 1.56023 loss) +I0408 16:14:32.472441 20259 sgd_solver.cpp:105] Iteration 10008, lr = 3.23882e-07 +I0408 16:14:34.929520 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:37.933313 20259 solver.cpp:218] Iteration 10020 (2.19751 iter/s, 5.46072s/12 iters), loss = 1.63624 +I0408 16:14:37.933362 20259 solver.cpp:237] Train net output #0: loss = 1.63624 (* 1 = 1.63624 loss) +I0408 16:14:37.933373 20259 sgd_solver.cpp:105] Iteration 10020, lr = 3.19892e-07 +I0408 16:14:43.178344 20259 solver.cpp:218] Iteration 10032 (2.28797 iter/s, 5.24482s/12 iters), loss = 1.59165 +I0408 16:14:43.178397 20259 solver.cpp:237] Train net output #0: loss = 1.59165 (* 1 = 1.59165 loss) +I0408 16:14:43.178411 20259 sgd_solver.cpp:105] Iteration 10032, lr = 3.15951e-07 +I0408 16:14:48.300165 20259 solver.cpp:218] Iteration 10044 (2.34301 iter/s, 5.12161s/12 iters), loss = 1.25913 +I0408 16:14:48.300222 20259 solver.cpp:237] Train net output #0: loss = 1.25913 (* 1 = 1.25913 loss) +I0408 16:14:48.300236 20259 sgd_solver.cpp:105] Iteration 10044, lr = 3.12059e-07 +I0408 16:14:53.750679 20259 solver.cpp:218] Iteration 10056 (2.20171 iter/s, 5.4503s/12 iters), loss = 1.49592 +I0408 16:14:53.750787 20259 solver.cpp:237] Train net output #0: loss = 1.49592 (* 1 = 1.49592 loss) +I0408 16:14:53.750799 20259 sgd_solver.cpp:105] Iteration 10056, lr = 3.08215e-07 +I0408 16:14:59.032501 20259 solver.cpp:218] Iteration 10068 (2.27206 iter/s, 5.28155s/12 iters), loss = 1.75287 +I0408 16:14:59.032559 20259 solver.cpp:237] Train net output #0: loss = 1.75287 (* 1 = 1.75287 loss) +I0408 16:14:59.032572 20259 sgd_solver.cpp:105] Iteration 10068, lr = 3.04418e-07 +I0408 16:15:04.056104 20259 solver.cpp:218] Iteration 10080 (2.38883 iter/s, 5.02339s/12 iters), loss = 1.39128 +I0408 16:15:04.056159 20259 solver.cpp:237] Train net output #0: loss = 1.39128 (* 1 = 1.39128 loss) +I0408 16:15:04.056171 20259 sgd_solver.cpp:105] Iteration 10080, lr = 3.00668e-07 +I0408 16:15:09.446943 20259 solver.cpp:218] Iteration 10092 (2.22609 iter/s, 5.39063s/12 iters), loss = 1.60439 +I0408 16:15:09.446981 20259 solver.cpp:237] Train net output #0: loss = 1.60439 (* 1 = 1.60439 loss) +I0408 16:15:09.446991 20259 sgd_solver.cpp:105] Iteration 10092, lr = 2.96964e-07 +I0408 16:15:11.662753 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 16:15:14.687187 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 16:15:17.015518 20259 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 16:15:17.015544 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:15:17.498029 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:15:21.488771 20259 solver.cpp:397] Test net output #0: accuracy = 0.290441 +I0408 16:15:21.488819 20259 solver.cpp:397] Test net output #1: loss = 3.27969 (* 1 = 3.27969 loss) +I0408 16:15:23.496210 20259 solver.cpp:218] Iteration 10104 (0.854164 iter/s, 14.0488s/12 iters), loss = 1.52612 +I0408 16:15:23.496259 20259 solver.cpp:237] Train net output #0: loss = 1.52612 (* 1 = 1.52612 loss) +I0408 16:15:23.496270 20259 sgd_solver.cpp:105] Iteration 10104, lr = 2.93306e-07 +I0408 16:15:28.288316 20263 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:15:28.921838 20259 solver.cpp:218] Iteration 10116 (2.21181 iter/s, 5.42542s/12 iters), loss = 1.39179 +I0408 16:15:28.921880 20259 solver.cpp:237] Train net output #0: loss = 1.39179 (* 1 = 1.39179 loss) +I0408 16:15:28.921890 20259 sgd_solver.cpp:105] Iteration 10116, lr = 2.89693e-07 +I0408 16:15:33.932595 20259 solver.cpp:218] Iteration 10128 (2.39494 iter/s, 5.01056s/12 iters), loss = 1.66037 +I0408 16:15:33.932649 20259 solver.cpp:237] Train net output #0: loss = 1.66037 (* 1 = 1.66037 loss) +I0408 16:15:33.932660 20259 sgd_solver.cpp:105] Iteration 10128, lr = 2.86124e-07 +I0408 16:15:39.317703 20259 solver.cpp:218] Iteration 10140 (2.22846 iter/s, 5.38489s/12 iters), loss = 1.68438 +I0408 16:15:39.317757 20259 solver.cpp:237] Train net output #0: loss = 1.68438 (* 1 = 1.68438 loss) +I0408 16:15:39.317770 20259 sgd_solver.cpp:105] Iteration 10140, lr = 2.82599e-07 +I0408 16:15:44.808619 20259 solver.cpp:218] Iteration 10152 (2.18551 iter/s, 5.4907s/12 iters), loss = 1.2841 +I0408 16:15:44.808656 20259 solver.cpp:237] Train net output #0: loss = 1.2841 (* 1 = 1.2841 loss) +I0408 16:15:44.808665 20259 sgd_solver.cpp:105] Iteration 10152, lr = 2.79118e-07 +I0408 16:15:49.940847 20259 solver.cpp:218] Iteration 10164 (2.33826 iter/s, 5.13203s/12 iters), loss = 1.61247 +I0408 16:15:49.940903 20259 solver.cpp:237] Train net output #0: loss = 1.61247 (* 1 = 1.61247 loss) +I0408 16:15:49.940919 20259 sgd_solver.cpp:105] Iteration 10164, lr = 2.7568e-07 +I0408 16:15:55.032377 20259 solver.cpp:218] Iteration 10176 (2.35695 iter/s, 5.09132s/12 iters), loss = 1.71217 +I0408 16:15:55.032415 20259 solver.cpp:237] Train net output #0: loss = 1.71217 (* 1 = 1.71217 loss) +I0408 16:15:55.032423 20259 sgd_solver.cpp:105] Iteration 10176, lr = 2.72283e-07 +I0408 16:16:00.148418 20259 solver.cpp:218] Iteration 10188 (2.34565 iter/s, 5.11584s/12 iters), loss = 1.55766 +I0408 16:16:00.148571 20259 solver.cpp:237] Train net output #0: loss = 1.55766 (* 1 = 1.55766 loss) +I0408 16:16:00.148583 20259 sgd_solver.cpp:105] Iteration 10188, lr = 2.68929e-07 +I0408 16:16:04.726209 20259 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 16:16:07.767850 20259 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 16:16:10.137701 20259 solver.cpp:310] Iteration 10200, loss = 1.8196 +I0408 16:16:10.137730 20259 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 16:16:10.137737 20259 net.cpp:676] Ignoring source layer train-data +I0408 16:16:10.569525 20264 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:16:14.608161 20259 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0408 16:16:14.608201 20259 solver.cpp:397] Test net output #1: loss = 3.2751 (* 1 = 3.2751 loss) +I0408 16:16:14.608209 20259 solver.cpp:315] Optimization Done. +I0408 16:16:14.608215 20259 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.9/conf.csv b/cars/lr-investigations/exponential/1e-2/0.9/conf.csv new file mode 100644 index 0000000..30376e2 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.9/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5833 +Acura RL Sedan 2012,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Acura TL Sedan 2012,0,0,3,0,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Acura TL Type-S 2008,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6667 +Acura TSX Sedan 2012,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Acura Integra Type R 2001,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Acura ZDX Hatchback 2012,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.125 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Audi TTS Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0.1667 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3333 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1667 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0 +BMW 1 Series Convertible 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.3077 +BMW M3 Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +BMW M5 Sedan 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3333 +BMW M6 Convertible 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +BMW Z4 Convertible 2012,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2012,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bentley Continental GT Coupe 2007,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0.1111 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.2 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,2,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.1429 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.2 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.75 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0.1111 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Chevrolet Avalanche Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.25 +Chevrolet Cobalt SS 2010,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Town and Country Minivan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0.2222 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1538 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.25 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.2222 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,6,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.125 +Dodge Challenger SRT8 2011,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.3077 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1429 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.3636 +Ford Edge SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.2857 +Ford F-150 Regular Cab 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.0769 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.0769 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6923 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.4286 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0833 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5385 +HUMMER H3T Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0.2222 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.125 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Hyundai Elantra Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Hyundai Sonata Sedan 2012,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.125 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0.2 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Jaguar XK XKR 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.2 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4444 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4545 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Nissan NV Passenger Van 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3636 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0.1875 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0714 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Porsche Panamera Sedan 2012,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.0833 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki Aerio Sedan 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki SX4 Hatchback 2012,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Tesla Model S Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.125 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0.4545 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0.4286 +Toyota Corolla Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0.2308 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0.25 +Volkswagen Golf Hatchback 2012,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0.1538 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0.2857 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0.0909 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0.25 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.125 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0.1538 diff --git a/cars/lr-investigations/exponential/1e-2/0.9/deploy.prototxt b/cars/lr-investigations/exponential/1e-2/0.9/deploy.prototxt new file mode 100644 index 0000000..d7f4b54 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.9/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.9/large.png b/cars/lr-investigations/exponential/1e-2/0.9/large.png new file mode 100644 index 0000000000000000000000000000000000000000..5581e3a333872291c9294912e88ef9b4dddf86d2 GIT binary patch literal 109567 zcmdpeby!sI*0zNrDbmv2Idn>+2ue2ygLHSJNH<8QbeD9C#Lzu-2q-N>4ISS``JMB= z=T*=D-&_}$gF3UHy`Ht!v+jG{YX`oPlR`y$f^_TFE!1by;tIEJ-IKU=>n;i6ec*3c z^G$MrKW^J8NQvGm86aE-ez|8PA}ez1R(Uw`xgG-W`$KDKb-P=)(AutlZbPi{3~t@J z%6=v;qU5ZzHTU4PlJfNZuTGCepWG9bC5`qWE(j3)9Hj50oI$HrombniU1G-aHsGy? zx)b*1#^okGZBP*cK@hemMwSyIRm7{iWKI3TtFv|>riahEcCs7M!;X^q#YkO1Wc%M| zVLa^Y?8#{Ucja<1xdwPwlkEtApMkniJK&eu&g;LhEIhKCXcwd)|MfDZ^zMrc`1Q(@ z*OT|Td2dSjrr_>qTzp_~Vxf!@VVFVRa}dp_A(?ub-CRyi{0E1-!Q|q+j=iyw() zNE(jc1-`!*|4!iFZyPoGUw4bX_QMP&;kJtl8H2Y;&WGJrizrONc-(Cuu3|~w-C3+w0!68o29tlFd08F%{dl(dY@2@{@y1341u6Vav1fc|Ggd8};dx=L z0W7)J?DcMq_}$CjL0GIFXNQ~=QD0ELvE6m)drAz7fc*O{?iz~z(gX0)ol$8{3$hjR z`SZkJU&9XR9`8UrLK3j-#w~xv822Z5Rh7B7n>BANdRuvJV$`%I!8bEGp0!V~Cb2ZE zlizJcBW^Np&WLX=03Esx!ENL1J|N1!tA<5(v&`c1rqq?|^$>8Gv;Jv45R~(BTG87T zo)@kla=QOq?ajhJll*IQ$7rwrd)xNN|K6m3Sv3BgFqa0^%?d(8RRVAP=gDmx3EJ0_ zQ)>U)9RIe=4kQB+0fnES_doalpRd0B*PUfZ21;Nc;W=`}{`=$q)5gF(*&N~DtYM_~ z3^G5B9m`Go4fT6NCoW(TB~w?Q|{5f8l;O#WZ5amOzu^!smI_@^zr7=s?&ST(c# zzghL)TVOKl;dis1JdD@!K7YT)Cy7X^QTPbq8J9;OuP*i7iq2Y?Q%J&hJ~24L-#kS; zm>fT!fz4H=zFFtl95o8aDf*ej#@T4u8CHC-p)u6oRtv8p-PlV+pjb?f{+5{a zx*kj>$w%|FKN?6$U&|rHAdrWL!t zocf|b^hb@AixHo77IBaoZoQx!1PMy<^-JubaA_33{99nsG*H3H9*&o=Z>TsU{nM^^10y=L= zstL!WZamD?{fUIUfnBG~IV`T}H1FIBs*}uiVK%$B!alJ}aK4y=ecI?D3`P5!+v{{dw zckz4O_X)e{+7AY~5<#(*eeTh*iGlsMwI9ik!Cbzq9{m%hY3>Z-V`-;m$0GboYvNOn~SG{C4K%3M@zdexz{NE$xcyR$lYlE z+agQxiTZMP=oI^TrPvL#6FxYoy`T5!#7GYRTGoVUs_z&>XX5uYBMk9jP}vHX5hCFV zn=ciW^DcohrA==S!w5uT25qs5#PRE3g=edvoyuZ=ngV<`e~^3qtefDE7Ab5(VQ1Y; zt&^T#9+Oqa1@q*v*re#N&v9xL4e}mQg0}@Lw8D#Ko@{M{E-p(+o+IhYM+iMh(QIE@ z;MNW(u^@+EY@!vnEz^aAmm@=;njk(>@)`NU)iuXSJg~H~!9<#FK}oF@8&Jw^NZRZ` z`CN-6JGZ4Qm}EoDu$WPvJn268VmU4z|Hc*y`43alP4=q*!#G-z6Hz(b{i#Z0sMBHS`nFsM0;fI-DU zIT>=3{5QBa_i$k|KxXV~>O8Y6AJQWJ5LrL+2cULLnFnYGT2m=&nq>IO$&w?h*2h@cptv+_Kee$` zo%5p12&NAqWDhU%xp(4~SA-xTr^TK1fjE-;k8!K&hHvnCJS4^$a)6cKg38Jxbf0ba zJ)6xtllsK!M|K#nQ{@`Y(~K@W#UblhE{W~!8TqIgZL2wgVK~)2&bd;U;x^Aj(-X=@ zld_Tko)=b;pd6;pkitf%%9~2UG+v)|n>aj%Jl+J3fzKtvtqqNvwNDKGhM%)4O*Fn1 zOs-hE?Jrd--44xlX#duG2L5gVBcpBMCTy(>SUY9+PO=a)-e;QhV4OQel_M=JYp=vE zcMXoN9}ql(8h*pV0(X?W@St>zD?$E!@odWZUJtW}xj2D;T>Dfy(LmQ0guA?PoDF*Z ze$HdXV7}NX4%Qx>jh^w$4z^jmcN8izT;A$xUW{RbjAZ-Kr0njAL^dMw!!HY^!l-eF zg`1pgH#xKBgNLB@0>^0#`S-fTkdkBD*%pi?M350(e`=nZ7kS!RMqW|Eept5%;|ml0guDRW;960keQ{kc{xr&S2dr^w0p`qh_q zVBObS442djrWTD;{f>eXQ;%pKa#zMuM0&sKZ5x)j_Z~dm#QG6&V-~LE*`RIm;qe`h z*`x&j;xoI0i)xDpjjK0Cu-_;f-gww9%(38x8jy)a#^fntoK)&yBTh$W{+`r-lv6ll zzp-D!>fhTN(*9*>gVl_@(Xy4j{EC|<2!lT>VbiQhLVqe?*IUL0-II# zWOO}5akC|35Br{wP&1?wJe<|fjfixpvn!uC@sO7v#sLz$aAj+Ml}GS=WT+969%bQRZkB_nC$$O7aCsuQBGj1MKOkC}ZS!r?hgab%@=N~K72$_x?7awvh}<1MgJ z&NEi$=?T33=Sa*KtKoR($9EX#J=GQ_9+g#;|ATG*6GMCrmxz3RUJH-FS9f2n9$8Z9 zn%UPRTsX(GRlM@X@ux|r%*7=X@kI>1c!ZI1g(`(<*71-KEku|>1U+tx$9rih>XQzI zlr8e^G0kSVbHi1d9qmlRvwxY95J!T3n7g{}`rCDqpH6T^;(2IDRT@tt)irnppNAAK z+WV36*n-F#E>I(PSu)fIA-mm|>rcDnn@+Qe$o0*8c*1N-Svn-Vu0+D)U;^IAmxqFW zFU~YbppDIIGc~1u!tw%!U&9*)l|->gi4z-eX3z~YHD?T+>Fb0C)~0)A&FU_zuo&m` zu<0Fz9O{G|J&c=$=tX4FDT6og#XHk?bG(?MJEf(w7u?$GZ(3bi4aD8Zv=V7o+-E%+uWxIpVx#z2S;h&N(!kJC zmb|9^vQ%hzOtu(jcOhkEHASk7Y);D&Ty#Vm@lSEo4}>U!MWSz_e8*#c@dS*WZ)=x4 zxkj3xis)}036YuxM@ElE+=~-pP8soR@*bybu4$+9H~2SvRhTIM`zGI78{xZSb+P?I zD|&K1`8Lww6%rM~kAq41k;el|IEYBR-et8;kA~qA_xxdSUB-;MVDkPiiLak(Au~>^ zc(zT{{}+swOqrW+V1S#KlRvN1@CGrp$?+|5+&2fw?J&29rtk6w7A}aqGsI6@FBujY z1D{$S6KmtiBRrPs!nh}um0?mSak{2X*FC_}8H`-B*y+X8(Ys*5ZFGa_^QhIZcpq9Z zKkxWNoA>XCUcQ-WK0;kUaSCgpd~ z!l7i@9T;6xr+Eo=5`J8*r*ybU>K&G+6AI_wZ0h>e=VreCnDI-zshlD;!80Cy5|JN< zj7D&~7;JU9Fo_?BgetPIRTQXyT4t>#>FV^kDjwZmX`-o{e@8A@%@ffAR?_u%ops%T$ zj*Q-lHRuyB#<(6DdBY`Ut1E#nDF-E<71R9pQ;!+etw1YQw<%(Qoz^EIiMvfgEAf}q zgPwKjB!Z|RW+syFAb;T|TKIIZx<41Op=sxj)UZ`(8Eu4JR|=RD2arh+|7K?5MEmfp zK1iWqOe-kk0&L$B*?3?U*Sl<-1^wECbxOX|N1d^O~^m_B1xksbh z0L$sQmx5#cC5&-Xdg=7hQn@a43#NwoH;`JmED@=c)hvt}oKk{&xWQ#asNW~(&{3P7 zvI_*-shZ*hY9NTBxAbwz2>&P+36XaO_1(X3@Md(=FPs?LrC0CeC9uEg!4f!}1RJgt3vv6M*vs-=3YbwPyN3FoU962)p<%02-xK*Ob82cV|&X5R_GL$09FOs>s zcOVPv%>mI`bg(&jC++ft5%i1w&FFj^swh(?oGtzlqDYc@ZvfGtRPD$H_qY{*dJX;Ll} zTYni3Kl{`th_k@^kJS}(0fMIDL!`h=rHZU(K%I1_H0+Q7b!5Iz0JO*a1_d^Le+KQ_ znoa9FnRg?v1pPp2B%(83-aEB5U#+p0j7wIlo9D;SIK6bs5ctsyH<#-MJvUWf@HO~5 z4QEsT)!M*?*}z8RE;>az&C6>XxZR))olNM{THDtTK=clC$%yC=JKtP@40i^bgZoheUPuyH7Y8VqpS03re1}b-e}N7D@Y8!}p#|BVSuku`7cza`XD~6UC&7V2sUVi3qor4d43gI8255T`d zf6N(~=A}FKYByf6ZhLug9uoJ9L1Gu359{C6M{c~iIv*CeW4xG1($DZEp$Q!*SHi$83 zOw29pTZSUTk!e^7dOtS>T&Mw=NZy0Gb|5-FAsB=R;TF{EEJ=b;flQ6P+Wk(==VX56 z-B2+wL(tA%f@@a==~91Y&!U3;fjx+wFdK36xS9b@-ttY8)67(|%Kz^)D95e-w!}5C zxT2Yvj^>Pa(ktt)`W!5Rs7%kJ-j1;Ph!=|)OyJssR4$w!*egOamNt~{05w`j0&>mL z2k2QJzSrMUBUnD`w)EDc?C=5+(@kkJql6q;ZyQgTBdvhFP)2yT)WG~^#D`O(Xq-x^ zS8KP$JB7n#1_g>r6V{hbJ=9MmPLGs37#3ikQA?RxD|9Vd(~Pb%{y_+E)L?Sdr=F2e zZpzAMj|}IX6NzhrP+GlkU}Fp-<1l`|zGP7Vgh&ny2&W%A3#;xS9B=F>B3cNO$kis5 zt8|zNn{!hH!)81Ga?Aj|fa2A8&E^N_1KME2&!gRU8&|jnB@3SW56DD}Zh@QlWsRTR zVIO4{fAs-O%M>7CE-v8dYMtehRg>E?>7&}Ruzl*W;uBntV$}9;9s{asUilo}v%g@@ z2`r#dz;tGQo#HBFLbB<;(X)F<-cF<$y=K5B5|ckpg?PG~5wHJ9rRHto&6pBi#5%iGFBoeX|C4g==Wuck)6S-K?`vlu)9eWFn`!0T*s#REzyk ze3vt0sE*m|AU`>tp<->2fb%n}O&|2X#Q{(_4pO0qfq->tX>*SP;FIuEFipvcHtbSA zR2y)1t*fI;4r`9?&M_**^0Q-0yUvmFH?{ccgw`3dRGKHB{$4)1Zg&q~?0)WOvVPWr z=b^OUuBN=kn*4O5l@L_kr~AQD@+oA^8jDDj|2QPZld5Yz zA0_-ZL)jc9++Qn%n|V0*19Px8o%!mdvfot@@d((P>;{!;*m4#lQJ%ka!1N-gB zyYocPPK|NJqe&-d8fpBuv6k8$9lB*r@J1ZbB&IjchPYtdD;Soo82taBiM&faAPj?o z!&oV}t59J>$111BZs((@v~=*2Tb(tbW4;){4r!-XVJS@*I*A`w-z2vpq8(XwZUp|9 z%<cNePm z4|sL|OTKug(9n}CZICw?0j2lkK;CcO>a3wvNL;urRegCI!Y$je-zFqE6UE@5_bnkN zd&H%rNY9)T4mzGOy!i)@(5iZU{=1 zd+OqxItG0CEXQPXVMeD`FNV!I1{rkA4#;(aptpSsp8(rQ;!Ic0ho7sIwhdE0$o91u z&i`uZzMIR?Pw@+lUZEs?dVW0vWEf4yy$`DOc6s| zBLa!PVC4q6Ww#7G)oM3Arz7A2%eJr8Ht!&Pz}l+Mrq{+=qF1A98lPTmDu)D9WYQ^3 z^f&wW6g;?AMQ(Rt7M|#!3Bf?Omeim~uQN1&8f6R5RrLK6)daL;M{Wt)s*_X(85ck{ z@>Y~%qKBqK-nOGL&GJvJ#gLa=C16v`^Pli7TBkV0`lUm6TSzA{%m*|@Gvd~lg`4Ly z!T|!Pq4M|qf-n%}A0wM)^g6QSkC#eU*D@1TI~J2g-J8cZBt|H^-tFYfcc8v(AsU8; zFcN8KbYNC($_5YNxN3EB7z##d=7rw?7l+%x5fZIYH_V??C!_+sfR%QxTtMKpwPX3K z*mXuqFFh1xq+BblR&?Z-Y&EZD`nnV}jIrO82nx!PtdHqAnf$)b3iK9VC0KEjuu=pI zk|Yj2C-F$ZFCE|?rvF5DXt<(IqireIh;OBP$mKZ$t8pd9s>URmd9xU3cDl)%!gozr z{h{3tbdb~8o4^@;*D&ivB6AQ=8T=`iWJ@I;2@`6o?t_K*0I>LK%_C2E(F}hIo>fvdRlHEXLh`Py&0a0fLVoZX)MB1m`*JJYi zF@nT}PX#(8q}G-@?Kh(cs!YF0JCdnv540x($ClBIPz_Xr9?maUtB< z@i*ITi+$fk$2cyneUJTrb`)lgm^-as=q~X!8PuCqs-@X&KkJ-zGpr+4uK~LB zZ~UCh-lq{0uGgoO0x)DSS$T3*5o;aOteCVMnO5CJ;xw;j6JBQQga({LubkK11-%?k zDrlLR#+N&0(AP8jo#d+C|K3Fba=V>$zL5WmaXaMpb*t4vDawJ~k}@iC1E95mYkO{C zllDjz9wtOeKm{|tB&lJN$c5*W41Bs1h>74o=v%>q)DRBqM1={y2dLXXkra)@Gp6Pn zBS-0JUoLqhvA+qbn~35tp|%cpSok7u$5t}y!Kp%C6{aiNmVu~TkU3>Kp)zI2g%+Mo zt`ly@CF0rn-L;nYN=$&uD}lLD+)twe+rj<3z|-|bRq!9~1B!C+okggo`vXmqTMPic zW*_#IZ4=aee)nzayEZLIt&}vs7x0?rb51raPVd@Q_wYL0jGn-yCu9W&a$ObN-ASMC z@zn_}BR!hlmT_;g5w5SSR>?Zp#Phvv!*mdDirXObJ3&LKBgh(8V5uQ|91?%r8ejXF zL;D&B1vp(4%v@jY!u0inbAesaM!T6;$@9>w$8q4goHS{CBXyCiXJtpZs-B&kr+6d! zyyQtRh@XeLtEa%i21xW*Si(gfQ)k_3>(Aya-;ZLmGe==H_qMDrV5wWb#yg#@4%Kpi zfw*G zxH0QBaORz#gHgrf(Q@ zcZd^t(9B2xA_su?F^3$wLtIM<>9Hqv&9=HFgP+$&alRHL1Ru!v=bKJ0YW`L$axF$t zvXIv!J3aoknshMS-)x_gyh4$9cOc5}=?bkNvc*;YX0*fli^Rd|mef?+3tnD?@ns++ zZ)htyoa@hf@Qbf6m$Yrm7`gY7rtasK65aBL1Vt8Iv@J5)Hic3{hKg2|d>q^fHjh*r zUw(j5@p;B=z4HC*qNo5Wi6>e+529N%IJ7TwTCcgn<6c01*a)`gxomKzNltz9*yz!7 znZ!-eK#IIuWb&IkYfH~2-73$aRqL=e&Dj5=dyzrv5r=z@@$FS1Po1S%FOxpW4BnWf+^H_ZsmIpmVSpg{QnP?Xh9oWEVp3 z&Vh{FT6scHW_l!#vN8LZq-Zv{XqMdGk|?aCnBqEdl`N#sdn+>qhIri;(Q|`Osv29< z`c;y6FB18I*TWbYdH0BsY_JBFXuoCa21jkBp4tE>4EBf8Z+oRZdD|mJ_j~pKL;3|6 zqLdz=qk3Xgi%wK|gkgMxLcd})kSOC3HnBJ9gPk?(z~i0pwn$wi?;j>-0wfnGSF z?59W5p3TGzz{$)-QGodSs13)zmfjQ?jC}VPN`F&JTnL<--`-=-%PIw5+ahw z-Zlk4vlIxkYCvZ~lam-YJR7E@c{r$R%W~;3+){QpVFoYf*?0fEZaGu{G$>w6KDDbr zM!VrfWXotpmDw}g2pBz$DLtLPx&sw`5Ksb`O5(T))!J1GO^=;d@Uu)T&t^PM9th>V>-9>#_jsJ=|ge0J-8Jj zSb=$s_gWgwIL(PB^Qls6b4X4djo+1^tH-s^MvWmLNM!R+G-CtjHX4j+;l2L~lbCTI z4Ia(ndkR3sL-(s%y|^KJse zk0VKFzBa*;58`hO%;y7;Xz>n%T9mns?}t}H;(m#jxEUmJSlCwcb@HAYE#rgl>un{Z z4D)@W%V-nRHY&Q)9i%OF-R=wTRg8v`AUt4k6s*S@jTH`P@n{*E1$Waia%Fag{{FNC zc%48l4cUZ^&tK%_UIZlhesg=9(99q*_J$K#@(V9rH|Mifdx&U=z1-VGK=SmW6&x;T zXgEJh|by6P_N?0`#b4+D?gtfZUyhEAy8%Z2EsJtpN{z%#CK(dm7mOdY16)F+L|(;j?6#W^=!d z8lds8({^_?(<}*b&CIBWr+>DFbt$pol3+HQijNa!FrfZCI4NC195Iz}ZXx+bhOnpd zKsD%_}?3eDsx?#@n;z7WC`^1-qBa zU;db;fhy2dZ#E$XKEP2r=gxO|kp!~dshuvFh|+vzF8Nd=$IWaWXw(kTR}yg%&cB@) zZ!{dZ5q_xypM9JEW1tgom#-PkZ1E>QxCjTGa77&n`&z9on+Pwcy#j^%Pdk!}vcj87by@`hf?c1O&7w6p3(XsJv?-V9JTqB+T3usQ8(w7Wfoi#fMiq3s_tRU+39s6#W;C{lURLHzm>Cc zMSeiE zfql2ls$*;69LcHa3|UB{3f;&)wDYWmBrGHuMWFoPVG&Q+9SCw*+xjVdBTtpBvCVpa z{ARh-faZDZsgM7?LL-i5wY2nA7A-e6zLkadTe2@n`8JsaRoOr7!P&YvEJFiBT7{)9 zF@r7Dd;;63H|&l)yhsk;z(&Ep9LW^#+KnT(%+D8D+{%AE<@##Bl(t~r0n)XUOfpPg zo90tkAi*UnS*2mmnZVPUh3gZt2!sir2kBlGq)B?gFr{U)=>U_p*+x*cf#q-2cosrBQ=dk2HL`Ca3)0~H>HZ-%}h%Mzk0IC3?FMrLPFz3|ov*n#{ zmiIX>lkZ(~Yz!LM3Xzsf4U3EE=$pGfY1FSF~^B?^&k90M%^xSGif<5&oz<1>Tqur@;_kAfQM zvw%Zagq~sV%wyMy31|D^%oUv*ItcyRNgvu9EoatA9NS)a3eG33&mA08k-U&^e@NKP zRN495C2qhu+3hq~wu>j$$}omMVzr6gz~)pRRKWkoIuU@lSgh~1&D|Hy3d@HNZqdQ% z9I;~KG0{G@@5`kz7#)~mgxj@j2?ae^DPgPVfm=dnLKrtbCD!}>v2p`Q8TdFiL9sG< z5bRDwlD`96X2DKL^tH%Hs365SHk&x#S}O6upz|YbO?ytzN3em^KN?xhThBK`|CiHMfwh9`iir$KU_DyEqzgVoD|&+o<6 z6R?i#uoUN!gX`JoZZ|aTYfA6DNCX9<@b(1;J}>^teEqw>t@<|R+CV2J3+(+Qj-G2# z*dQhP&}s>>LGff+%{PbAdp1PyA$o5EgYSzA!A|v(hZj%n4G^hyr*H>7%kg~;C!RRC zZ&b+E?x(~^yY3Nq2sk%BUC2c-=D!tZ-*gW+g&RMeV%t?)zW!sy1bBawgJXELw9D}w zcc&{C;Ar_?q3T^5CNwc+J_Bn~_%`uO+eUK2IO~MNQkFllP&GJxCah+$U4Fh^ zDZCCP->>d3v@4XjDc#+#Pn_g}flh5rsYH1={IK>OWc2%8zWB(F+*of|4Iu}GOzuib zk4o@Q$f830$6RK|qup2AYRyAv{1%1-eLCU4k`$>Kyz_`~v|o{EZHOJ^ENq30k_S#YE#$iNi(owqBmTErZXlae(->guy}Kg2wc&UD}F_N_BQi78Jbh&vM{Qu@>s2WPO4&A}F(pH(9?VTR#$NLQo#UK1O=$1@g z<~XR!%1#za2+d!zIc5B+d<)us)>(=vp&qCAhr%V#0tzp*1eldOIm`}R zmKYe`+2LAmeUDNL!xVConMSy+6xoK-&&M?sFi2jq?x3IM zIcBIkIj0c2O(!+sUTK`M%pOe1dNxUo3A9iy^qGeJe%Do@D2>d)Y&F;Of^LG@UqfBG zYaQYfPJb!Tf#x_Ct3!E(jp&S_p+Vhch@7E8H&0Gtx$7t9hJ17G#31{?4S?G62dW^> z!_o5E)67CPr%f$^mOU4({b9~pgKa8T->!}Kg&13iTrIsBD)CwuErsPA9{IeApx+l1 zjRl6Ub#azmek#-_+M;~bT>7QkSXRYS&3`B;@w>z!BFIZf<*EtV5X?Oh7Ku+Op{mS1+z z+ThQlW}53!!W$Fdx0L)%U^u3sa z-MA{VI|6#@38@YdoSvFSR#NQ)Yu^kPy6PqDIpb{8P@``F*x%}R4I!xIeSB%{&5Fkc zllK@qtv92R@@N6T( z2hb828q!p=xRFpZCHlO%r=ij!X(&md5!P#CUp&^@nSu!6h%tO7Eohk)z|L|dHHX*O_p1ner2K@uC%e?_te|j>I;IjLB_(*u`+auZxOp zbr0d(xh?!uZO%I&!!;`8hak?rCueDqaNv(j3z7u+lRxs?x`K2;z&r!q1AtsoEWpib zkP&t_A>lx_$hhuL#_TfsQCEhxAKTGeKIGV+`Qd!ED%i!ax2>p;D}9Ho#Dy@?zmgp! z6IgNYfh~G`g0SQ9@AdFIsw_d|bc$e`CE+G>is* zxwyPC^dh4xY8@}EL+!jaL9t05w_e8I?;aSC)Or+!09@>b<4-!!sGY(?A&Pg=q9>ZJ{$U6#bi=Q`T^wYJm|S1J z(cGssG5PKSg7hd$XyPC@3C=r_uk54x0ovnUM&2L7*t{R4HO+EA8^J<8n)4RbNjcus zhRC_zSCUs+8X^9k?udiTUO3ruM^u8S4DU|^e!}X*4YiH^y6S8Anxa;SSTWMRlcM_VWb=XEE1JUF zMSKM(Bo8hyuJBIKeK;SsX%ftTAwu4M>L_3Bc{7EpTm)Q9zjJ_z!9K6oC?~tGqn5{x z2I>NDswmgMUs`tt$~JYmoO8zsU%{VxSm_U6Ns}iEi-~J2hznMGPErOSTfIh^7UG(W z&vd;vh3j;5<@UF}7?lfv>pW4qU;j3VoI@{C$(5|2H3OX<`k8%s?nZE9uq4jH51SYm zmue$sNN%~2BRd7neMi%Ew$l2db8^rpd#foT60MWlr&a6za}cM^UX%IheH_oD@35Vf zdhY(rHKpGttaE5mhV%#}4KR0#nQm^W1P(qLqOFz}|Xt0WW-1*$g zt8;ae{h*dz-NjL)?Oj>Kh9K&Z!Ae48i;7ngjjnXBR};hR#NoB-h3K6A7W zbPnq955ceYn3KzqsC+x*1ok_q1qYaEJFkP@7t}l<#aUw^?Q}$eOG8}i3n0MNqi(MS9QrPFp;>9R$+vJrO!P*4vGBe#Uiv6;3L zDxScu8XwG{835JAjC<0jOJKSYkKN+7r6)K+sNkf#HvI_I(16YnXL&ljwBvI2Vg)6I zerxAqX*STOZ&=Z4cNIwk!w_4;-t!*280Bn6D+`qS`rljJ3_Y`<%zfl`K*hRE zMGchCNs&|+@kfmU1fvWslq)@!s!Ks#4AwFWnyhC*Q#{<;T7*nI1q7v+PHkTOnY2T{ z&!E?mhM)UpZ4Thimu-<`Z+D3KuUUUyZ!hyvSqb@G@Q$c2 zPk-C67`p<5h>X@2jN2H{f^vzRT%tS3=ym_d%S%{=NXxfQb4C9`&oLbh>$e&8=it7O z-zgTYfMATkEef|9F(qfjj4z_E6dX}Qm!1YA9-(msY4B#?_~b#V!Vcy!B)fSMS5Ga_ zfG*8s@@>9K6iBgAN0R!F`lhQN&g);|h8VN(n6aC$E<(7vH+n1+ST}Eb(G|>{}e>7A>stgSt+TL4yx_$dbacz416GK>~ zg!1R-FDV?YLbd%q|gk$Z`O^_RPV(+`92lz zIUCXgR+bn;id3&bZ$t2y-mKGyifUbP`(oy9I#bpRB|1y*(*}*jMtpqK#2|YVJ6FEm zMSbqFm?pn8b<6iBl+L^T6Hy8|a9wUT6qfP*h`(;iGRQXziWC5H_hcx6P+Z6P;;iLq zUiD!WuK-K2jr=}Vg|d~U-b2r+l>Bh0d`#^18<2>MaltWOf>(*O6Pz&k=r7y)X~$ICQis?J3UeV_Xik|k-v>( zR~-$2n)efT8bTx|_zBmrN3~vB1QHd=*aPKP=bjYv=b0MRjuXL|`T?F-3LEVi7XA@N zDgjDP+0wH17Q@)3VXoLfPvn|7*U`QxsPq42MLpm-FF)_d^LRwa7{|1D@)b~Rg+QCI&P#XI8iVQ7#diG zYr-vT%_!anH|Us4;#A4Pu=h(opA+r(;}@W$J@}0X=lYIm-?}?}+|{=E-%0{IUElz- z%6Ve^GUWp6T0nPq22I>{(16lG`paTtoAVmPe^SvPCC|>GUCke`OeQE(?if#`Q zSM*|ZJxA-H536q-Y7^?OY~HOr3!$mH+ke+c;B5_y8$mdgpdWym{Bj3fo($^^tCf2p zlw7Wv_Gxiq`cjQk34IG4{J&4bxq12wU;xYPoPcuILAGl?l9TscUKvn_?^;mkue<|f zqwH}Vx_&Q9Pq0)S8x(NGbkr}9n9p|DwXW9TczcJBu9e4=F;%?+^)}1<|M9$?e?6=u z|pYhy2 zh^r7(ke@jSBLF5o?JY3#!w0ojwFMA;h#pj2m)qz*58J3e>Lz)*ZdvnKQ(hs?&mUK( zV*aE7p%Ooi8rl&7l%@H1Dp+ z@tzO{F+48$+#krDIi?=efHM!xbISO0C@KvW&$ywqxbD&%q#pPR6}X6xQg@9BN;JAf z^yyU3gxrBOlO5@a`(t!5_jCflX6V;rJ~HZkex9iFQ#_y=#B24}bqv#qVbWV_@U3S$ zsC{q*m^1l)?ycUDefAs?GwD~@NBhMHB4MO`JXZJXtG4`_rrh8`k&koTIAy@Ce>rxV zow%BT{AkWD$PY-`vQN0Il|83CfPRH(YHWg;EMWoS5{J}RXA!oX{-YKjLz4}Rb2s?{ zq4Au62*gI)MTP*=C)sYndBhZWrYIfLkoe`eO^pSiO=nuB@aOa#!Dgqm2l4nI@KWmmmH_wUYp9{Pz)x_*&fhrczS=B+OxD~mIM$v?Qq0g` zKm#bz2L;vnhj_|Hz}eCO@OQSg_uA_20~uk#GNhdqVL9cc?lp7QtDUyiXc%R6Xjc;S z{05P-Zau^Ox`)mJ3A$i7sPhZ?OX=tVGZ$Fj6IvS@p|{KfL|r+G2)+?3deE7=PQ#;z z#8pTBzHDcV0MOZWaUcil$PD z<9fx~UId%43Sg!~pzh$Apk>z|J^YdKYw;s4weunA^PSHpKz|{o+|A8^uy;aAQ{TTw zHD2i(W129m?^tCr$)xGWiP@;U(vtSpt1TwixNV*#P2}PIW}-~%P4(RspYJ)prbtyg zB4#f4D>iF82x}7E3SiRBPJ>bX2}!$~gI=Mksx3j#2dYUGvC0or7UyJP8^0cwB2Nkk z&~A^u;v;afbXdA14fm`hUa;cLg8;&grG;R}joof%dY4<0hnD^TPvW73+d9ecw0e86 z^YHGa=Io*A0^tn0#;UB9GWSHIdfrt*j6cifdr*DBoCV?9IG4hpU{f6}peS$N-@qHT z@xfPDN{ftnpt97V%(8TSoDVtqEtOcoz6dVNy-yNu!5@v2n}F1CHNNqbx@h}-NZhnP zYIRV#K05_(l<8m!ONo@9efkjbT59S!8q^uywEN7}oqdTU)e2T*CNF_Lp`|@t0n3Am zWdS1r-*IHjO`$zT*OTM3C0Q*n%AbO6~du5Pm`yECIYi(<~;b2JQA~3aB#o_M9-YtSEJ$! zG|Cw;(~72ym^*B~77<(QOdy+Gc~tlU9F98C;FnMjOAaH(4xn`9_R?ya?TPzKFo8GB z-ABuquLldh0+Tz}yq$$<2gKvCfb;)n9p*56MBI!gus2!EK*7?&+vSlSR;6tBz!z>3h2uJkxnpu z28&;*U8xK^#gqP#`DF)a>-P60nMRu`#`Vn(RSoqO%~SV80YmG&$J7Z-x*OTzce~BHj|7UD4vywQ>5c#d}5__e%})2)sWg! zy}~(r`n|ZTZ*XkCKIG4}(TDhWV@ahMOG1r-@4RwG>gD1@B#8~34DSV{iik|-wVS0# z3YXTuT}tn$d9c$DH%QykBk+3f#I<_0n&CG2;iNO|>|dtAzjK&!C!KlKl3dkXUiDFI z;s~Mt=JABrNLv1FUW)FWH($PcumaC$GW$0CsvVMHQLq~DeV(_lxBAD$0*f2GkvuhS zBJYQ%7iZb~g#07A_Kt6S|uJZ!k zpH9B*X9P)D*-lTsjcN|$X>>nN2D7E1Bt_$STYb}!Q%O>v!MPGfSy#d*^1ZNP@y-`Z zm^kK7vns}h+`9Dbg45@82a=RCStY@yM+9i=x|0iz4(&{=rap(AMS5aLjbzU~9atw{ zh&^>qlwdCyhPswolD&@}>sb~te5E*Z_Tl_Wzoq4Ew|#GCOt|;%muT_>Z;8cTjw#K*@@k<WADp;Ztj3v`&qhD%FJp+LV``nvOPi9KKMXJn z)IOo-wp1b;Wddq0b6O&Oz(MV51F7`i_|5#}d<)P-yX|b4I-{tRxCs5=YNN*7qLwoC zC;euVasaAV1a(U?R=;tg)bg)zH;dcM%LTBaLu4lk91`$|FwvF3OJ_DO&X6mP8TF#C>{7 ziQ5|@s#C19hbL~EX|D8VJ5EFe9Go7Avj(Jr^gU_s*+lA6`SCiD*@;c0Lwjjw8fG?C zcaw5vIUX6+7pElDF!giA>z^1=MB>Atrjt?s0#0SRykuC4z3$P&<9Mc7A*+8?@!3gW z48JU7bzJFOp09OY5!HkYrO-7cola-?7+{o%Y-S6jGL)Uxc>`rWeWs{NB!98qWB>Z}zdQ-}tQawpW~8B;L8)dwZWbm3|1W5bH=#z=ptYj`lJW#5-;a6O^BvmU5*EP?Ab)pHjOu?p=B6~#H=&Sc0VY6YdPcb6ga<~yX6PQC#&h_?fvN&_05-# zp~eUTMtjq;up6X4s*Ni;`yPvqPu89Iknh+jH)r$74y0c4Fb>K32fE6B#> z@(W*4o%U#0%tHB%BB~j;F-1qM?2gjs7C5-WvjuFnSc1`Y>tn+uttgoszG(|5@rJ>O z7hwP4e7L*0S+|7MTMJik+De9Y75GuuUJUyBBxbcSmKC_veDKuR6PYy;O;FXtd=WDd zjwL1-4z&RD9>L*ww5g#qJy$9Xi^He)`(ASJGMY z4<`ul*i5#W6x9niW*%DoxZ%^-WN?`O5P!8X<1sM(d@O*5;I;F)6usLSY^A2+OZcP3 zc`J+{2_f$X{02=(Rce`Gu*>SaP@DkJKBdDimXZXsFRuc@yZt?|4b zesenSkCYJ^i81xQZ7A2a{7+d|iic_01&W}Mo6l{#u-O!0b-T{nJ+}JmcQG;;s4Ro{ z-ozE(hUt$9L&>L~Kh2lDo+#MJ7DwnedmjEK0z-CD^^E$N(~cKO%0rTLcW+`|>Q{<= zQM?Bk%l5>vJDhr1QHM`=sMf_0%K_Z1zdGHQb`KBvjJH z?XSxNLq^+p459pt=M{67XB=_Zc==qW7xtkc$zfl zdg;%awBK8XNONr>KZ`NqzRN>JWJO44y_N;>COuD$3?N>tG;3`tTmQG4Gu}I))p_^I zWw&Z&V90@|?l?^w6^wXL?u(Xv{?*9bJv59Vr0)=gfj;`fk`wf7>3Uvg_m>d@GW%D1 zV9?3*&!r&~e~s0{;#tO4hA-}Kjxjn4h*bDTO?n+rIU+yL&X0CS^Dfc{#5sy$yRKAr z%L{_0n&TrsXOzekH|T6RI9tc|jhcMr>DU}mK58w(Ij@Y&TNi;|pEVfwkZV7`b6q^4eL-DR zE;vbj$CqENw)>X$!xq2TMN#cF0Y{RUWo>iXdl{SIJNqVK_+TsYm`8kq#nXkm^_j}9 z&+dOZTk5(@-D~d`+w0*M3G~N#%bH}=<(ewEe%SZ&z%7N$4<_7h6EcODpBxA?#KAln z4p5WJ+fMVrH4RUG6x@IrcsxtlVHU{LuJtWn=W2lP63&TX|Is1`M^b=QY$&=isiJmi zwR`;A>LY%QqBEFE8G>x})~*ksL~`ri#K86ctCBb>+fJnO z*o#Du8~57YH4x7UEt%e8&-(&kA98&+`{UjgzXh8X$0yA1?p`;4E$OWxHVij(0Byjb zYlU<{ahwa!kRAv`Ql+kHwfSO*ly;#_vwBpq3kX6>`5*ujygly&ZZH<_@!Db%PhAr}s9f}~+Rq=k_jB_ZOjVgp+m(GE`ksew~TdB0B!wVo4)MZwE zM*#hVN@V~kaB9G~v53su)))$A@`2h3_{isq6WszfO5`f|p115v!QjeFMU1 zbQ^yF07C%5LF&3BW`V`%BL%O4-+{1lG6xo+76Rm>IgbcIlYiRiY-8CH@u@cZHTn3B*0a8M{ojJIU z(d>hju>l1z)|EVs53l4R`@R>c%;YF^+cBCQ}JjJP%+s`xQ$hu268l~Qg2 z^2#6Qj4(yQ2*-}(ZWkv|!2N0p1wCPlFoTApR&_^nDv+|-SZkY_W+bTFhx>2yFZa3( z%+}ApcBmnadD>D8(pWfQx@4c$bI_a+lby;0hA0>Jw6`RmK=JE-KMC2J(C83|wfw!M zuAZWHp6|2bhe~Vxms3vxtsU~y7+WQw;aomdQCs_nRGU>^+O^tmoTEEop%D)stDW9t z!kP7GrQo9{s|}rH9={%gaTMt$`_X=Z|gt1_eKyt z<4g=W5Fgu67I{u^6pZ+Eb-noV?dF%;w~C&>G~N6p;kn%`U`Z}6;{8`!>d@ExTkkG2 z1|HKyJpw|VSckq&;1d6tgvI?j{jxldlk@M0s` zbwL6}zx!#+#BtMTp%?4OqFw@y1Ecld=j&t)Y8}2Git80DO?)EpA#9s&)pBO}S);mm z`ND0(%Nj5P7SZ)<`>jEmr)geF+n+4DBWXzOqhR0$)!JO*!`*DJF|J< zd#aIh*GhpF&=W?G2$9r6`Zyqtl z>uTQ1Xg+P|sUG;&jI4b_-B7S>^^4qk?F*Nwo>m}2cxL%BUD6Wh2DKWNnUmaFrr21J zD`xUwd+&PvPT2jwz>IXxfW^ax#KErUmhKE=NF@vF;QJ-Ay8daVK%wvE!$H2qA6LMw z9x&^Z+Mb@jevHj@g({~t977()+gLvE>@%)=-Zv*)X{GOyb1=33Iiuo)-_Kn6x6ovO zM=>EOJ?9KyFQvuCqgYKuTF1GQgP_`OZem@UDE;B&!-X^e$5&M@RW zp?VFD;@sTbnMXAUT5*FmVNXFyd?Fu&-qx-py2Nv*DQ^F)N*HId-Ph4qsoy2sj!kP# z{Kx4NivWtD?|ec1I_i=c}D+Tr2z_=Yt2BV zFVJEY>5YhG_<)E}N^Dubpnc1I!@opn@%Z%zFeWkJ4YWL$Btvd$hG>Sr->zHc7&O4@#!-K4GS3ypZsxpRnzVO!qgS78B^kH3W?C>98%jc>)XgV5s^3UAyy4Dt%PN;K|7J$i zA(O`yKY^7N==dpB!xwBKW4u=b40>_QsvrE%NW)rYU)F(rgp1QThkd;EKFw|YVz$fs zBbx)T2YRn7zRA1of_@m1mK~qe%+cfbNXUz@NA6@z)KJp9|77c-I+x&*e~~+uXUeD9f9S~{#qvP_jHYF zm9!lsYsn_XtYUhQ8w%B+io?o3DSTfGpO>965-PvmeXt81D4m>Dgp8?9ccwr;(5CP# zd6$UjyWpQcBnTk+934Fw86&F>911TwYfdW96bO|k#d{wNq1Tu3OJiaQL+J3u4kPn? zq(9O2`>}z64EO$lj1Hn?$}ijK;d9+R`x~3nhc9NGQs;M;yixBZaE86~1h>lTVo{4S z19Y_hFkcG-S3K|*BpmZNU!zIC3d^JK-5kgWGm^=lodrm*P85&Q6~Vlw*}2fVlFf4@ zbvXZt1JP|{Rrz6|<;*6AXJB?KiX{zKWvT28~USmTqAhS z4{4nTLd2H|UYgK`#VC1;)`4D4DPFEuMpyjvMCKiVMa*J|qpTRkvAI#p>z~_DG4#$f zW@T6wnV?I+%w!`G#_QnxqC=8{m4Wy;kSxh9xPKyrY8Jt4+N< z@p8Spz!Z5{b)s*!_Hb2`2hSKV;7~NI5JP+cI@@55YZDz1f^mtX=ESfBWvJAlBN46Y zm8N&_o+pds#i2@BRm+xIgy^5j&j>`82lr1_ARYR6dF=4G0y<^=UytM-7tiNJ7A0|t zUy7??WXh)}@9Rx0f^K{J#Uv%9&263Yc70lgT9AjWXYw?t^L|8O_Y23W+hd41b9E}S zb7@M5P9Jo*6X8{>-!;e>MJ(8)@6D{^e$h(`61unap8uv#H_Nqj$>nU#dL5)El)vEN{xoC_q!_^mcZ$sCpSRyeQ4X zAti6(r*c^GBgG<@R*1e@WM8Eyi2;7;Sq|C8hGFtk={~vc-aq}MtSs-scDYg(uq?uD53c+X~VW$$+TJfq+rzwe^ZuYFx`*C zkj}W}UES{rrSyJY$B>224aSU8#^MKH@7&#`OiQbkcC+@g2soE%$aqD(lHup=h%{G| zs@I9z*wN_ijjDi|TNcs3VScv}ZWdcvlZSbQ7xr)W-FIur340TDQvxC7F_k$<7|>TKqi`iBVoP83TOZ3(B z&$01#V3itKO&A!Uf^4g|x)PS(5M3~Z8LUk3sFH)>3s`0ez0GgSQ>9Y1X_@Tv&3qJURnXT3Bi(BnmQ6~=J4di(ZNrqPmzUN2KF0%Wz zwm5XV{=U!Z##(MCDoDz+Ex;)5c&s52PkahTKB?G@Uc3iuaorabr?_GhI9t;^{|)IT zwdeeewOdz+u-|q`QU5A}G=G3!G!o@innypk$Tn=Y(lDEQAGQB8?na?543m-FhWFpYqob|AvnVHZ`-%vy@H`2 zBV?>DEiY{j*XY7Z3&(`_2fnW{&#Oy&o|pF48}&Sbs7y(@6Q zlht*T}@$pSOm>3f(nARr$$;7-sN%qGqpIsA+!i&MXi;4 zH}E5|3Xu`&_#IgR$51!S?J`Pe^HPH2716El{ZYllZ#FO^_1|ou`O9Hk!Nk$7+TDI1*u@j zu_j9?D)c~F7>ayHBmWe7H`6aoPkmgsN{j1wFW%{c(RB70m78Y1GTNqWI0M!1MJL9Y zB}p&d5W1EUm)YSs66{@4=wK5YI2*oKJbw3QT$PS8`Rm@<`sGcc0uY%PK^rgw#~?D2 z)P!ZZxEVuNYI&SOK_+o;W3NU{-K2dh_`-BvN4tSUE*hsxJ8q8{M}(O`>Ng;yn`2T> zi^DHlYI1F$*%jO$F3NB{Qk5xmB06+=SkAlwWJJ<#)UL;8Q-48x;b11+cK$T*gof(a zY%2hFX%?%?Vdfx!t(>2|^g;7<-YDqP-ZP6h3{PAelu)`vn02y++EAi9&h2u1#J9@I zs+1*H)_{`=&VE)sq{l+F*=OdO7c1D*<&~*1)_T7+T?WFrG|uy$Mees%y>Luz0^xmJ zchMJ@hZp8F7zh%LZ#Sh~qaW>Sp)8&%!gOEGs%m0>Y?g|p7DAcuv1DGS2;raWE)Gyg z^g42M2@&udj`&5mV-e;o3n9j}H%eX>C%&7i)1XuTK)v-X0tMH?wII^!5a55PhT7w& z3XO!dx01{Wl5l$F)VSz8`W_qh2SaDy?qwSBs=>Vc#L?}#+|gUU>4m6J9Vrp*Wh60K zO^ZBL!i8ti`}VMGMV}M__uMsnU>SLaFsV@Jx3+IxuBU)>5G+qND*P~Dd!yz<$MoM>&Q<7vyEzvygNglR1tnB-6$DB{}aMpg@NGT3HD~Z>L3CMKE9WV zAY#$*mp0S|t%|cpe9I1V!%t~x!^Mv6w!-w>6Lr)f5>)6}T}Xw46g6QB!fUzs=p9in zV_OoJzwWC}rU=OjwYOx3Ow7#gOHK7HrX|WhKsspzS`e5j9aGb!Qhgif@}lx*+ocO@ z)S({vdP*8;NPKHmP2Qt-9UbnvO%~o{;k@P7t$_rDzf{`|9&19h&71eKL;hIXkB3Js z@1*qda)CN!4{sZ-S8WbG$kgV^n_cS9)F(8kW2}TNO%XT*iib-= zG1EMF7X#WEhfxcIaxC~ zQ_2cMB_R%F%cs55>F5f*_%rnALyfL^8FwyO6w7kZMR-%O>moTwU>ZF5X@Ti6?&00N=U+VKtm4bfbt*hO5S=HiSUUB zys3#BpK?2SL^KpbFyUU%EkA$c(kT;7f1&dGI2|vE`)E}-CY%G4rAFI`o|ePs`q8TM z&Y%^T36CDZl&pkToo6XnQQVW(bFdQ+zCO# zBMsOn8mDQ2FnXLv{}aFLxFxCP?~h4q902r%@u@}DB!-RWZsm4Z9f%JPoLeSOHeE|{gYS!H4RGt;`(9?q2sI%HdiBmy9)L!+t8mwDahoD&H9OsTn-fxc(Ofyc z_4TXv`y$r)&va{RHWUpvjq`u~U?Dt$7(O!71Y?r+Dn3wiDEn&BY)ws;3~X!|JsV$> z{H2dWOmbCkCqt40GY!G-m-DNo$>Y6pjlK<|DTW!namJQoXk0Jq#sk_e@x0m3DY((R zG$BEVa7o&!)VP=M13?=?EbL5-9xU6)fD6BD2PSL_6;k211%Wc6cRvyj;hDry?KrAo zH2x~VkBCs{WwO|NwOW%`sZ5JAx;)p@(g#{@o#6KmFhEJ;rllh%ETlJi9;Ngx=jGu@TgwN}qs$FbovIV6^E!DNuv1GV z+3taw`_>(qXW@8_xHb6o*?849Pugkp?0{J_Yu}-t_vQ!nLzed*bNLymC-6Ag^6;^e zM_cT&_#a|~@!GpaE5Rwqe1YH-F*Clka`_({fg`Uy9R^H4zzA zp&q)pO5{F(hHy>p>@osnF-Z>e5$}u4)8Re6&`Az1{u<)4It!tDqCCxDoZABs{99%&!$x+yBlr@ zm1kA-QleMa`u?*dt9@et^FR|iFLgNWV&FZTP3u>PM8xSd7;LU?H-DCjFFnvQ>FCiS zROdam&>zp4J6h`U;|ZbVu~e&O68U)|q#FUd|HC-oZPsfY!X8U(j+AlGm~ zT`F3;(+fipO(6<3Ub6Q^t6I7>HrIXAB#Y{BkH}L-_Ifc_Mpa|G@T}kq+Re>y3*`(M zzJ$if2()gDM|wz|B-e_WB(Y+V27QD#kWM~l%Ht%w)nr} zUBRIM3G~cmq$BJ4ZktTiNSXh#f8lnev_pc-ryfK z7K8eXG}?QDv{RqV;5wYsgSC;Cva5=;kBUUsIq76xul}cGh-8ntzP7&WLbEc141PK= zT}3%J{KG)Sth>^jsoip*J4*GTS7m#oa7R{Dzlr~c^77%tGPCVjA^nfu&dgtV9<1M; z*I=xjXEJ%%k1wI0 zU*d~97XqmER_ogA`%ho;WZ6l)4VW?MFYjXffyGWR9{+>9jD`Qm0M|t%%y)-mB`cAu z`c+VS$z}ts71UucYHFvopSf)m|H^W0 zZm`cdLrB5AN;nkk_YI^sjzL*o5&X8azh}7QJ1N!HG_dHjj48Ki`X)VYskqZHlp(F7 z$wXqsZ<};JoX=X_&SgC6qu1M20<|ox@#y{jZ)TJ2Wri$cBFI@0oi#N`7O`Lyd`K@Z z#}mKgt%Y$?G`h|?U<=&iz*cdeA96bM^Ael(6dD|Xan)YRIW&V34fV{p9DT6!P{rFL z!#Wa*%teRgA*UPfMUm&%4-2(-3Z+Db9_j~Ai$#6RLWgQZ&AI}>s-Q}J%WwM-yn^&Q zuE&uem-S-r?(THRzzUuP$^#n;KPL`^R^nrs@xQFsXhUc0sn$oFEjtgUJUz$sKvo!l zw`7wbmwf2qyx-xuS1KchzG_QR4{&?AyNQL7RNKH3yrv=;kPZsB5$aXqQyP+7Wt88F zc5Lr9gf)%m8&iGiSKqa>4VsQ(=>j}Tc8)!IXx}+NIGRBkYTXKwTs?QN-J`%H>|npD zuk*jg!@tyYSLDcV$1fH0Mt%LYw@oj`+&h+qB2}WUlbHG+O_y!uYhFB<_rW^^7|Pk{-|(<9R~BI@1Ui_P5%(NDV;B`@BaNliQoYz8zH zj3qfOfm-BRsi}-1ohAf3ESDH9g)uJ|byWOs_j~{Au)Q31CQ>5d-D!YUc>o9~NJ0Kz zwmea*Sd+FGt9A6+;Jys!ywtk{&8Pjw5Ns%gp zpb=Yiq_lcOYvn@(cW&{?@Gh0R+?=<(?H>33XkWWh4q}iBqd;z;nPyPAba!j$;=SF? zbngNMHc5Mh-> zc4PagpL3zsT@808!OXCsd{sQ>A7*BwfUm}bCxuh^U-~Q+ZM%g6SHCV(1{Kl}=v>`rq}^f?~<-(~Ei>A{98z-P9gt){-;f>VE!b-={} z5Z1OET5C6sM;#Up2Ls!}%kDlN*|l+%!D3YbMYr)dLwSN(tPTq2AU6%YY__Oih83z( z1R&&dPq{Qw06wA@_ad`en|c};o`Bj&Vr=_1r1wPNA1-5{nD23;>i|XcoMKm55Z;rd zVQw2#*6f(OqbQTx^6FeaCv}p9|DGnq{1%$z-m++W#ZCM*^R4p+xsCykiU4d%E&Cjz}SYIq&^?jWES8F zGw)K7TU(&aQYt?)g^{$b~k%-SR7{>(Cvms6XEqjFIH@LHO#PcQP^c;eX!Aed}K4=c97)-&NA@ z89<I(_9?MIY|2RnFU)HNNJ5$}&q?J#e3rV|I-$4kCsr9|dP0NK0m#<4852}8B)0%y3 z$Nrs&705jcBlPT!hQQrZ2J*SJm6!s-SvLT98hC9EAFJ|xaK}{tHGocV^%@GP2|am4(@-dW!Ne84zJqju|?=UquF?d>q@LbX|+_oY02W+j^ZbkWa|57 zgiE@@9R-(ek3{O&W5kY)VFJQ1#kbzQj*e1oSy2%(U6Gi2E9xe!-BVNE;s1;<=tI?e za%r__Qz=z^$a@y%pd|!cv30{eAFXz0EX}R^?p)$;KPT7G%tlb}w)cp_haT=OG7ty( z#Ix*DLcD{{zj1t{|E}gKN5_QEoYK&!pLcEKW>^%bJwcykVC30s=^Ll3e^RYq(I$UV z<<|eKKnYSPUeJ0;z`90nD)#!On;1=y?$iT=8PhH9lC0|l7=M;GiJ^yyrChKq2;+>r zqbOmg?3=vu?n>>aNzq|0NdyXmr2Nwi)!gyfVLsi4+U8!X>D4@ZT=yW}H52n&IoxkR z$3IGt)PbF$q{c8)Uu(292e#r2lAa~agZcYZxlhzwH8TB7VHe!pPDy8k{KzJ%zE2ai zJ>Ru*1HCAhZxPp1rIW3;-w1|3UV%JiSmu4JKG9zQ`u9RA z1pI|RJ)T0#V)L5Ya!-Y7)8vO7?nat-DU|k*brqkn2)|`h^EQL!z8-r<&7eGF-Lvbz5vU?!qg>TA$O zqM^6uAIq)buB&b%!P`#BbH_y6IQ`&{zLu$5R?7fLTmCuC0^JATWe!$q0-|?DHlK_j zX(gfO+jgG6=3CsPC*-l>nVuTQkt2KAsCv%zPMTA?B%=C99z-_qk`LDvMOjCk9UP+G z(iQ)w@)D8wa@H2MD+po_U6AiyqRTT^dsu8sWQYPT&Q{e)$O0Lg&phc*ZqGZ5F4lOw zEsBha5{F30YTU&VIJgBn&6A6y>Tc@eE~qyP!4Aloge0WShAVE=iLz8>2|Y@B3Prqn zRY!3xmFQ8Xo%x>QW(Q~Sk!$XIs4jB7-VuZx3T|=QXuhw$OmAhm8n8N1vDW{ZQm)QR zX&f$@Ya<&rU*$e=8^jQ}9w(J9Jm$qB&9x0B^Q_^tF>(_DI1ZEUpW!RB(O74d z-ioTtjjB(b&P_?=Q>o$JlS^CL6QfoQnD(yGN3gW#%d+)dUoO&JG^mJCR`w{$`(yP0 zY(uZ+SmF@CZUN^7IOXV2z(pwwjL)Z_d-?9QzExq%N?zV&uQ&6*LVz74zd@sALW?~u zQ7x|bhVp$HV?71z5T6eBV%}V>tW5d*W~E=-t8=^El$T=%S&%rsmM#?)Jxi7zZz7}N z_%94f1U2OPdGv(Aw_4`0?QRB3@(rH_Me|wO`Fsa0sc1lIB$->c0s7gXGWB16t~dIz zP*tD)lPplm*&F#x=|o>jf2}v@X@Moo4L3-)PMD`XEGBZBq0TobWKY5a`yfKHkd2g7 z0W_7|{VIaz4ViR*sb5fE*f}Wht#4LxM?o%#MDq?<{YtSx|I3jyu1j;5jJkE~ed`>h z>%$vleaZm?F^!#8B!RY`k>Qt*vYw|c4Wv%vupX&k>u0agN;jZm&{DDC@MX9JaF?AU5tW{os z$yH#3a?Id;SW577^cATEvBY5Gz7T;yx5r}dY_YQ%S{jI`)FAe<{&tXcu%W)QHJJit z%M>X>>&*xlEL2kazm#(TzqqLo`)TC0X8A59b#z@E3Ja{8SA!v!Zs%Dlrq^X$EEsk{ zca4f8E7ZI7p*s#@8WpS{ABclgqGu2bflwG@((hs&1`BU}vz!!sfr0dSrdz$$97k=) z-sZ8AeeBgF{i^#km}gtw=0T_M3E^*{KlgVXCBzydUZ`p>ld|dRuK#i6j(zAw2*pDs zHP^9L_`8Hg5@eKmCw}d#_nuGm?nV0C`M7z-^aL-pTwl};5EMb{n7x3`S5%Nd8NEI! zrlvL7f+TO7Ofx%`RQg$@*Ebw1|Gb;>*C^+4DRC#%?-+0aO2QVw6;$zLH$Cse3eOrz zO3M)Xe{$_k3f3n!zZ|5S@FSy!RDJ8%NtE=kNR;%ZlX*X>VVnA`B0+L^si7)vo+5{^ z3B2`30BZPoFV|~~g&J7WdUHjZ9N>9oi48P!?P~=zEOJy!&*To!VHdisOrES4uX(gr zgV@heKb1O`G;HacR2{NESKQ-1J6%pnzP>m9{=xANTOFjtj*(&?AvX%IOB1T&=}f+K zaQ&D9L8lwvH9a-+>7V#HgO^Um|9?uddnZUumFMnhc{ADkXF)dwZQLrG)M*tV&odto z%(M9Ba7^@)2MFK`WzN{xVG|)E#yj7Evc?wp<_rIh_i@t%2+bS4J!)*AGxK?ay?+P) z_qI$Rh!T8(f^7bwCEDMc-LF}+lG4s!~S?_0~Gp6e)Rx^p1t2M|FtW$Y%QGpzw&~GImCjUeA z_%}dWpn!6c+CPOM^(3Hs!5{wEf5f>OsQSX47XAF(xdCO zV}^kP{-ZBJr2E?=q0F68$boS zAK%NDUeHuI1@a*A6MF)?AX=#Mg+?{P(h2auZjVsSvtfAtAxsx2qa1t|8}g-nOv(0C zLg8+y^SI|RU~iePhL!C*$kZ|1&bc+|OxB&s)}PIX5*s|(#F4)>5itifTbNe_IY+-g zTRsqI>Ba;WcUwCKnIOU2wm}GOgVDnSn-(Bnhm~O^5FC$QE%Lq`o0oh4YElDMclgfe z^!c@AehmoZ>-Z3_P-YgI$OzB{nv4IihZr??fLPzWNHfw?ycPh)V9EZ2NS4`4bn}^u z!G))~;l71zNr}-u(IJJ({PQS)&YUb$;U*0B9eH7^5$45P@Gb2Il#8gyp5BfB(^PxP zQ2ZSGOM3Iuy>-^;}G8GABxW`xjT9z_iL6bdAa_`!U#OEuJ`#1Pq2y%VX zPukESB>s8zAq;TKeDCZp5}%bg09lWjl*a(3jS~_)_UiK@Fl^B@h6}NUNe6e|Qhl9ak+7 zZbMxuBjjcqZp&9;J;Lx0`IuJF#=_V}K`}@>MI*2vZK|7i7hNe_5;i9=f}R;tG|kp| zZ>Gp!Ym>Pd!cU(*+tLem8MZbsTA%kvC5(Ur=*u}7Pu!aSlu+G37=?TylITh#ax!?| zFP*tphM+xdHSIiL*{Foo?z}i+R!w1+J&b=G_M3rBFYlsADp-|DltgS?qYKobt=sWV zpL`NF^M*yc2`p>487cd}&1rSNyK*U)t3T`A=G&KdsR?3If#_Kqqfg}=L+Q(CDaRd5 z$=fM;AV2@2VGQhD79Hv0><4bOqC>H7eAiFPyHFTHRSS?@(}i@mGnYIhisg4_JZ)V4 zlgC=|)RXgLTRLV-VfXn@yi<*8#uYJ!fUaxf4`%t_Ss+j>*R`WzVPckA>S_cq2K4=j?RnDB#13088`wj<(~Qk1^8 z_6^tfvkQbdk^|z8ABP}L1S9#++2I$-uE_%;NNZk$65`$oMFZE@3=q}fGhx@M41O?L z-7FL2S3PeaJmuqy;yJP9S9b11j&C4tANPEJbEzJl>lM)oQuw0&+0Y=h{HfK;pT>O! zVO+-tQb{%;gWV1WUJ{cL>mbNNA*XFbP3Iu`B6y~#5fdP4>J;~ZxRpFoT9`Uu!Rudn z&fn7~Tk;6>Byj)8TSE$EQR7Ekvu!O49Mx3oZ}UoT6dcRW)=eVKbOwmlsOW}^!n|tkCwoW6R+Ni##8x^Das`VdN-sT zV;Lda9VT($>h|mSX-Kt0yXNAFD8uKMaDQy!li*e%@WjMm-PZGmsccK^Y|5_!R`$;2 zUdym9P7OXOwz3V`FE&Z@2{%@qrqwk%bUsxCv$)5y|EwM`Df7^xpYr}a-4K}n)zgb& zI4Kt=7){*HtY&J9qPfL$yY&@;;c>|M@408gQ+^HdF*)*Lvu8V2eV03J-)D90qpa+G3>z+Ng4b9tmGV)P=62fBLa z-K{9-Gz>PAJZ)`x@+aMgkD6SzjJP%LaPw*UglN4-ldx*#Cwb*Rq-j+VWZpGuG5inDjzj;FE+6yx;O3e)34xR@!`z_N8NbWr zOG&N1XhZElE53kXng-V~7`1-q{T-Yah(@+yp}SbnjvW^4llMm$YwWY!nAR=f>I1MI zmyujs5aVfq>K*;?X{z}5(-mMka>uJ4rxQzYs&SYb=xR+Vg(@`thPkbCz@Fi+oEoV{d7UoQ89CwU&!Idxn4s6Q~?_Ri4BzPsBf(n#=ERN6D< zUwiu@EH*x5!ZP~{I9?RTP#k3@YvGc@HCC5CVZH18mhVaMs^#3SB^v&vMLL;?HT~asV6ZvAJ&Yn`iFZ=QY{yt z&3f0`;Up>?{~3EWYOAwC>L$t?qkWqJB9=b|4;DNP#-#dxA3a`?T+Mh4HVwjb5qA!M z#GBBJCz~VLL*@6}xT5h(h9RWz(^sKeZ}8+tuM5GO``L%W09V~@6zF{2oqVeI$v63t zxs*&o;5~VlLb)891>GO@yG^N)KD5x$Z^ISa?z0I4`3WxUbp=`Ncqg8MOI}2FC2$By?`bwGSp8g_YU(OV~%S=Ks_WfJ&Z;|2ZM=p2Trgqeuj%d%nw7_G&4b+)5d zn6G=Fx<4A`qCMf?u+X~1Rt+u$LTG9#^aQ~(mf9#YuW2Z!7UNo1kJ!aOy(PEI@0oTQ0kyoXoyP0N357Vtv`)haB?i8Mb@sQdVaSG z1dGDTXh%BbBEqhe5j6uZ_&`ELMK92fodhgg3f>3_<*n=Lp9~$5alMg3C>Id!aS+#k z|J>%mJAZL0CoX9_z$-%)T*!#DQ6W8TEgjOiI6zCT#Xnq(UtdrC)M)~cdBGm*4rNzH znuZVh-J28ovxPXiKAJhup2o+9Qg2Y zge`4u%DY~pW!FARiUUM(O&8wGvu{}Fxet0Mds=@Q|3^pTzpr6?_Z7FLx%xVXJk{rF ziIMAkWucM?W{VtXAFELEcU@Kvs5Q58!L5L*U#I!kZij7mW93{O1CBXsYYy~@R-)J4 ze4-{0^z;*J{ya@Tn1j_d@aT4Su}HB0_!c(_7fSH;W;$>(^4RxL&AyQ~8U5ccNXGSe z@F$AyFBvmnX&skp5TlvTH7EcP(No`gJUOcyBvT(7l2mj$9%x0-jV5@kbEbHbbT(9LgHl;F0|<1J*b@ z9|%1ZXtzQ#zsM(dlgZVlCQTSFTh~ekU9hoPU0|FJra_D?*E&XSZvX$krr^vG zbleH957K55V%#o+wv-GZsLv|!u~!{yu>;U@tW~5Z#(mP-S|trE^y#ebN6&xA@H>Ml zqq*e&5%!irakWjiaD+ez9-QFr4#5J!T?e-WC-~q_fZ#AV!5s!CxVuYmC%C)2eVhA! z^gZwSP8ENsqJ}-aukK#Gy06tZa!~Z4Pkr%j;SK6aYX3U#-i>p;trg$`;9~;!(mt@! z0$MY_2YZtya_Ilh2=u(-<6o;xFB2wW<2h;j5@yZpcfvtR_5=9#_gC2nlt6< zAYYd380)LTCZL7-2Dd>qFH3@&5?uc7{9brB-*;_sx||vU4GbT@@K@;3_%`RJhNSR5EmtvI1@7LS*MXk zJ4~pPXG2Ur^Dz8bRrhyNzLh|HSXn8P;1zt@4j{ch1}uU7Kit8L$(LN_7Xsx!mY3dU zlXrHaba%eV<%$C2z0i*SUeW&7#7_M4rB!O$i)O=aCtcjh^YbqPaTSH3!WLpS?uD*u?T)WQyF=oZIjEk7`y$i=m$9DW#M=4Y| zw65@Z>rGyN=nb6?)3|?b) zf;3!5viCKwZ;CvK?ZW;o$nv~ZS4|Q2AL#(8MW7}Lcnk+%GdWON0+ei9DDAQq8+Q<1 z|Bg=Pvzo11He=R*UdsLlLcjm#z!LEF`&nxN78n??wDu?}0m!8`Kr{Pz;4o`5G)K+C zj?Y=ry3t`Tq4wT)$@4LRj%m^Gf}h~b&quNU_ZpZq({+6_ zo6(ua$(xt)9`^|1xs) zck%bvdRL|h+|d1nq0mO&A}a|2W3fe7`P)|?AIxc#P&VS(V(I9toX_#NqdWkuFEY)<0I2D7Ee%I#=FGnC((#bO41W=L zE5L8V5A^?h5r4loAOf-_GXAD~18sDHRtTIYr&>Myr{MB z#yhtl^241*nOJKk&?M&SzEteh0 z&#zlpxJbb5>BQaR9JuTLKb6V;=4O!TXdG4>e#7aI!MzKXx@hdyZsA}je~a5w)b8!J zg;&GzZR3ip>}RNmI42FAC$)ylW+|MkWH;<)}MPu5c`VADzmn4i08 zu8j!jJ$#Az-3gh!VJ41aO;YSlI2~@H{s)mR<|ji@Iwg?~Epwx}76?nWE-fjILQk*y zfn;;e((nsLz=AulJxZx))=v4OzsK^bZf((*&^;X+K>kiGw*Tv9&AiRPhk@gB>?ELj zP-tM+4c5Nu*SGgDZRRiFRv~D?>H}Op{$KCsc>@D!K?hIGsg>?7ZzREpzM-LkmmEf`3{`o5DvdxrJ<#VCyNmJH z>(>g*Zxuy8D*=CyB;NS2WOwvuA)%q-?();3?UL_V+g3^iFE1~fiLv8Q0(vk3TqDP4 zcAkf>`$IwoIxbKo{z&n6g4`md1><$sH@+(u(rN zVMyY>Mxy}L9Bz4JFi>GT!NnS6+m`WddwesDWRhw-(drS~KbWpDo>G+eZl^x3B8i>FLB}XWJLw#^IVf_RSHbZTl3g zqr+1N^dzRtDXs>TK~~9_bQR_0xpOqQHg05~aBtL$fR+dV2llWO{R?($j&jIjK%pPK_>7 z4MOqGnM|DU4oqnEOELFO#yHxyuw_O^X!!QKo-u>gB8jzpL{xHkibR?iXXm#G zJk!qHo>7`GZUUgHTHE^UAH0^EM>+FlUEg?RObKG>wQcCV&|Ep$MYzeS41xz;rNmy!Rr zxFGpHh8~VTHv&z>z_$kT<34gIY#>@$262Gj^tdAPPpPC6IvXjw&4C;xPoLGatLWAd zjSt6dKU8XW#&?_@&Xw?`Sm)1gi-i$GXW<^p{v_z*_yeD(hvW61=NYhU<|HmRj;%~Q zBO)BsH*~XYXfiop!gi}SSguN0Z^l-PMAe692JzM;mJD8oNP^ablyd&E5F_z?tPQs3 zB&%ULIUn)C`t|L7xddeA&6kkB5A45BZ{Uvj zprPtHAM>_iDjK&D5;Ytq)+MZh`4sTG=O<{YKXU#2`~U6K;)v81xzh}n9&Kr~ zR)_?#HrM;i2b#+d<6og~qnT^V z%buO5&w^*f(kn@oo?cwwbgO?;2G{V!RZ;FoGWko3rL=6yovP0->dFg`GNx)LrPiaz z6Qx8~_qfn8PYAfn{k#@s2(|;mE6W|XG8E3=g$;*??q^49jJl4-+iI?uNB-@d|8~{L zU!Wh7INGx_&q2gcgh0f>>@6}8FO9gZs`F+v8lf4hR@@8DgNvZ*x3G$Z_MUtm;NpmV z8LlkKKng8nuJO;K?gi?FV&dr&G&%~9xtD0xRCv+nQ{Eb=j*I?HL&}?5%@CCo8b2B+ zW;538e?|!48BpPQMF9g0vEBz4RhKADB)kK~?S41yfkl!d?oI9JIhpu%BgLGjl}mhh z@D*=t@$LJlD-#G}Gn=pip7I`6jkEeWY9^?_k!@MDD+O=9jYmf6T94&Tp~2Q)B$LAs z9iSCm&%-Bdiy+I8&<%d42#JIG5BJ2xHmslLM?{T_>=Acql7p3sKFgWBqmH41)2*v- zCNq+2PAmv67?S`3RPgF9%ctf4m$_jGFnTw_ECK_*Y*~YI@4qR?UCR`34V@CJzyvR{0qq2n1ZR6ij zH=|dluC|HH1jrLZljPFG-!*d(dPhq?l@h&4-j0eP6}+FRXM*=)ob@+;=UK4e5uh3%ACWl6;XJcgW zoVTJ^?1@8ND=52TRCrHj*E#g1p#3l&nj5b!2CzH-Y%#UYh|dqi)!>~4kh{fw&XXu0 z;zj04F_rWFRtS=7Z~+3?{-+{*TGvp~BQ%83rz?tUhec!VD17g-GAf}iLpCCFCxT$= zdg=1Rq3F~hv@^cz`z4O;(?i1qAyKkE8U2-|f2U6%8u?26SJ;CfsabITo!M~Oi zM)%ed{*uVSNf~~*55atOVei9QDzXY#vPo%ZPg$6Z6%%UTract1dU&ZKB&sCaJNwHu zK*~}QK81hnP&rGZ+(lsV-j2KE#^&AO?XJL<3R9uek8y2`G6Edor}=Fe8X1k1;<6}Q z9nxskeUUx2N1>jV=n?kqAJES~LwAQJ@@p6!4N~Ebo|?uIl;T;VACHgzk#GN*3UL3> zlw%6l!=b*-Yk3?`{t4JSzV_OBfzX}9AtnA4@9gNlu07#ZoYh6?>}ZZ2E}tEkVS+k# z$)ziem4|>5N2FBRe9dc16;zJ0BnNc}3Rk!tjO?WjZ*F1ep4b0idWXz~oZ?x{`jePr9{S5JO$sTc28J4 zu(e+28YVqa5H`UVb$Bbk?_PUeA} zlfkqkFWBjcO0c6eE7?TET~MoZkfWX)igsmaf^kN1jKWBZZY#X#=V*J>F$SRc#PtNn ze~{eDJX#9ADA6MOKKaLC3h6jJr@MZuds5ZFiR=V-0lU|(Vd~W4TJ|M6z?)ZQj2ljn z!rycmfl8++=p@eNoJl80(%-xN8-G1VS4qlz8li9OIc1w=x~2z>Lgxqb*gRF;4?O@_ zrJhq^+610xV>rl!DL?E{&99*cqc7=ose@(S58?=h!Y7AHZTw>Ug&|bgmueo7yz?q; zA!-v{lVJlZtFAd^^Pm?TPC!bEiDh?!oh>ph@ulHM7+TrwJ`*on4*;)*RJI zxxH2(6PW_=y*!rj zHQr8=r*hV9tXbqpi%6%D@J!MMc~5h8UgzXyk)GZbn|*;XJV5>EcSb8*?-1K=OFrGp zbjE4W`A1fXa&CrCzR>VwtfNP+|0E#|t9M$q7k9NgMjl(4 zzD5Oe<8vmsM-WpsI&P}xq%O0#0z2QZ0aaj;UWV>(gYVgXq&1yi}ZFz90xg-tk@^QOy(c6aH_r{ zxFV-)H6~Wue^~u9N1;I4LVKD>X8wXn2e)K;brWJon`MO?Tma7-u6o4vqq&9hFzEMv z*xm6%=!Gqx&OVMv7yyFn<}1VLyHXim?B{wB+a$7<#O9{{&cA1Twli zvht(0XHqLMIPEcCaGNm1At^EAJ@S;&8d)LP-LxZ`h031VleP4;*dfVVD`#e0pwSE~ zPLyOVq=N$NpKE1neHr#~Yg8bJb^>+iRmf7p587df5Rt9i^+Zl44++sjMSo;_rQ@z` z(IOc2Q?eXKPp8uqb;1|9yGSN%(Me~7S;~Ueovo*mu8kwv?r{Nz2(rE)S@&-LJh_U?|jtX2&RTVMWav}{suA|zl#eF>B zCOvqPm7|q2t7{f@0peAA`bJ}E|i%tguh?`w0dWaQ# zgIu}&M8(r`f?{@#S8RVMH0><8!^bSplP&N+LpA`2&OePz4K$ajJ%AW-g?Cy zwcib&9{Ba^l|QRPw(8C+Tk?c!m+Bgc0-7G_S)oM;m!c|JC)>{nU>sA|3EdS4_G(-##Y141h*@u;9Eu@z+y z#9zZJdrPz`fMdacQ4Cwg5Iwm*XF;M^=1D_=r!H0FSL^ z^jxA*X0`qYVzsN@T`ogt1OOg4-UfmjnJ}Zd0$xQbFO#7ownH*z+4j}^`<)nKdo*L3V>VwLlZ#+u_QDh7*CcGa(KkENkFNUY0;EB!&B z2fp89(~}%CLuQ@@BP?n?{%%rvbmt@cE*_ooS=R>xbjPAPCtnvr`o(rpRr!zqe}`yz zw!pVUwqI|TE#>5<`1gi{E&Xmxu4>g|GFL(*%1nw@MTY?yIExZ!;9ov za1FTJY7X|2K@-(Doa07+ik!@fOe^_*xsk<0)5w`6^$CvU0y@>Kkz+2c9HQ?5kd;j| zk3#;O9>fNIK1GrBowPm^SpUqNe;=A?R4MF1KRff-2m^ZR)8&?`e&Q$dzRN(Lba})S z?BHwl!^(MzOi_XCKfk*^%%_964J|P=EL3r?-B1WR_?;5Pv*ksmU`Pz11TPt8iwZ~c z+)4OuJG4XN(KXa463O(p+6>|=_2G1%48Dnw`)im`;O!)2+A4ms7Sv$?J;a$O#-cZf zS#jg3(T6SssDwpM0M8yjC?XG*B{kWoeh}Y~VC`VWeZBArqNfBXQUA+#0V2+bnm|O{ zX~Z-)Kt|olF`Z=rMpw5XH)G#NIG>Y!bEqU!=6(d?YXeqo*J#$znS##kOQt~4W53f^ z-<~D^zV^(Wr+M%3L2PjL2T)_J#&jbZQ#v%X5Rs-$f!Fv*oACz zl!5}Q&MdxDN`BUhd_%Qqw%k~-C$Ve8en+S-y9n$h&pvqeJz252Aw&|#ok2=q7bo8> z7awU#P(LH4O`fV4lEC9!@4)G=2}GC72swKFP*Bh} zW_n5C(eWHDl;th%r1kCM*!PGzFrp!H8BnL;z=Led{>(X;KDo~(uVOAmzA05&bBfPC z$!u=jFghqwhtpCgv$?6#usPmrr%l#cjj%VK-@WIKvPkOjN)EW{vK|DO3E-SXb8T8r zpwM9C4lqUMnT3Q@^KX9kBFQEq~3D6$ynN00RP=9M^v0ZN9R}tCw zssJ42?ts?#oCiaVQsH6y?_W` zTRs|d8yjn?GQKyPUdVG7r0IG6L`V)1L~kk{mesK1abUJxG&Yga>o=hb8uQkWr{B2M zH(_#T2>wsn@cI0vn8ilqGXe;ZNj&NyU5;t^v5{E$-hQE^LrE@(&qX;Vs4vxbu`=;Q zx|$b+XSBT4yZHoik$e~f>g&jXJQtzOUl63AF4Z2~m7kvHRcodsRM90rZ3_r=E7$aY z%ay)17}u=uM(UeKn&2^ z*B#TD&r}3Ztf>c>#Vc)Lr)lOA=9Zl1ddAxpFgF((Cp)}kKhj>pk)WKVl0D4XQ9MR(%DHrKLsrRxn7cO1=n(O{$S zGvX)yGl>G>=?k73^*%s)%!YRa#Ik)?(v`8tc#FyGaX2<-%fsVz@6sY9iC5re7E#1nb})mz6brP2C({H1!HyWcn# zEg4b;Zo{^+1cus(LTdDGs(r6dT9CG{Zv_Ji(OBI0rS${1KV!TWot;^Ii zeEFvk@25kqzA%BupLko>uXmb;)n;V_Di+=Y07`8Sg&@GnqsVQiT^X@RLCl z`!C=Pcr;@gokKo87(S$S)Ry?wo?wNfAM}08zT4hTdM!z1^As_=eRcQ#!Y7=pN2G@S z^1Vn`X1{5v2CD!qCTM(Pz4?OiY`7~X3InmY1M*tZc`e+i_79l&&q%qCJ5$qM+RSp; zA<}4L6u;vuQ^))N$$J+8s5px75|SQPdWY>67hwI z4^CRQUIH>F_&y{%+Ry^lkVVC)HemGPg-|3O?CnKm<$lvID@lNusAsTgw9i{9t`jP^ zkKuv@0K|qOI`SK%pP?^OpIp2x$nbaL*Fb~gMZE7V7xGdO6sfIeXtKxr8VBgLdK+4T zB;~;KY?0NI=U@zxLaq?&_t=wkeho$wiV8f{5^^YVJbo5zubu(!R&RU2OYW#-tUSmF zT~=JLPceHpNNqbPtL@{_Pw{XENhC3+ho>gz2W$3|%-AUP36+f8!07ZTrX=;;e5gx``jD=MPJq zLT|)Ib_P)E(eBEmC&jc-O1+o_6IE6^?S7)@@KnCtSd|DlQc$P0@z`WD5pz@ILK z*)n)lLB7j(Mn8M>8ceJ6b@!GFVr8mAs8PAG{TV{9lg*mQMoWfTs47LO5J~#-zQ!@! zbp=Dc-bkR{lk1I28UclPl%;lvBLR;;O`&6dB(=tOrDC5vUDDg=`xqQ!`*Ri}0ZRHS zEJe}OeME2{7+A11o+y^Zc``kv;Eta(n3vLwtq()e^<|iiC zheibmxe3O#CdPjjNdRDET#~tRtex>B9%DhZ7MyUlfo{bs(j=NziS;@ubYNb}Ql5TT zza4+c(mgH(*Bc-1TB9 zS77KdekZ+V($<{@Wh+4`Z=k!$o^cklOj>KIdmNe&FQx@X-dl^AlydJi0D)_o16S zfceMPfefW-m9GskJ$3MU89_)ZdgLn%j_p5hwRsTOGf)HW75B{48D~t?F=J24rUjO= zg;i`cZ$H4(J@;4Ue;mn@{SBIdfdsa~D-*_$aCG8DpFFEfQSW#NYK6a~)b%7u2I;R+ zW`r2C9v?>@jKPf(7ok*mwv_f55L^z?H*uNDJd|02p4kIgS}ZZp$(9(DvMWjKd@Jg} zd2e{bRt9GMbNW;*OjwNv3%ZlX1<_p7>zaNc0*liLU7&ZP)R4@&Gs;SU%;FU{hm{SwHGT!J? z22MsAZAKd2R=l-B3GrfMb>w>(6Csvwln(fEfQk_3#`*I0iQ(Ympuhi#EzetPN**G)1!)*|lh!aeso7BAi zkxL`Brl8dSvHdX6$A<-<{VpYGSCnx}P^w#MI=B7~-tzNYrciG$WuCte5sj#GZOxJL ze0=l8*1JD98#2T3i`#Dz1Qs!t#O0zrfym%Evi8%eM>b8a2M%3s;VZ&41@UWFLe-voHZm3hkRm0v=DmfRGSWuwy8BjmI;hoedh3214?n5yKw zwK6Z%tQ?a#%`bN}xpvRf;qm%WF}x1o(&rFuLY`++RO0=atdBF@m8BG-8@z;V5oy48 zVW1?G23HX4LY$d%L$juB%sWYowreGp4BwSK9un&Q#h#R#x&bbdEkZ16Tq-=S;4A_l zL1W88CLEsLm6fnZ;WO<(eT#8eQRCkulH&aFvBqvJ!6zQS%|glzobKHFP_KV&Al#XZ z`{93D+3L%it4WzCd9YV4w5k*&!pkLNkDbT_E$KMtC?GB*MJ)(gIpkl1ywBKqri~Xn zBIUmOvkvkH;!$)UW9l4F9vFhpGMMXsaxL9N)hcRLbSw$#jpeIK{u%QRZL8!G@!96k zCowxGWU#JxWs&#oMN!GGse%$DK`45m|&v6)V|UzUEPnvWUx#bSAvt#p-~@f5_% zzb59Qz{A(2doZ>ml(A>x8NBo&+Xr$h$sQ&yN1j!*wm-lG8GTfn7C4yBq{DNWM@u@* zS5U{gM*6x_{Q%D4FoOB>&FTl>wF|56?$>v9tUf`2?GVOUa0V3PCB~ElC@JKwT+&Mq zOz7CA54)e6(u&cMM_?rn2wCJ7F^DcpkyP*$mBx zZ7b)53qXMm!rz(H%5^Fc!#$Y;yZodGmlix!nObd<#4iQ zr+hJS;5*SqwEULA`B3AB$4;a)nV-N+jZxDIDiC6bW3bk4_vUL#&q@#ygg|&7C%j&L za&IUe?oI?1qjc>lg}k9*HFDkxLYFnxTbi z;?w$x{yy6dKjSNxLOInudD>G)LUAnFl*n%jMTQ?3O_t`p6!&^}xiE;NE(!VhRRJr_ z-Lj~F7a&r_ym?4Kbb7Y5b#)7pK@uEZK}q#`HLstVi^ZY{ws}jwWghP0y(5UDPEXyg z$ydcF)zu+FaVTIk`dHI%n#?sz8aiFKR50qNQClJTCKhtCcpY1NQ-OQk!ZNTfQ68i* z5^0!HP}xUQZN8?Njp!}mOH7gH+3Db$yVA9UH85I}`h$zm-fX)1wRqP_#ru@S`0pfa zja{*_y%|DXb{|@}kg=ON&>T{U$TmQNM{DW|Z7Z5xlVuad-&|C_Ut{337$!Xz7s`70 z(WTld0_*7vOeI9*^UE1Si*~i| zp>=7<63;`S9Pm!NEEZA|RS!=d34716*GlEn_=g%8H7}Ho(gX-~TF#_nzWMY+9s8uY z{&S)LU|F(N;f%}1_q49JUfxxK?RjB!8#4*bxEBmh*L#D%Uqi!cnZ4s-V>xB4ST*?* z8Q+s`b5YxK700P)%3q`ZoMH;=VLJAbI&c|dw6fugFBfFrQsPuA)3Vd*VLV^tQ;g@( zq!lF`$*+K zgfIyruI7~^C>Rh_&~^4bUBv-A!c|Ehy6DMLWOs%Nw)Px+M|%R1^&!Uw7bYF;dWT)p z$a^6!x!@jm<=_aoWV-8|^{r1jI}9pmY{!cEyyG#W!q4%oL*Uy*7AYI@<={nG0VvlD zhr>^SPwT>g~v$_dlQ9+3%awX}gHL;*bqFYG^ftCljLMCa_1S8HXRRK(ch!HA7@gR&=n zASA%qe%XRb7h{?ZPm=P|5`(I~Hg5191Lq8p`Ns01esjs``^m%iHyz)L<#u%|jS@ua zO6vB=(UejzD0YjmjzUJ)_wsKAeR*o&}dLLTNp~t!uktK)PUrQv`a3E#;ewN#iWbJ@`2+tZ;mTDFu^yS|K@$S#hSzd zox{Lr3S2n6Feylg99w`aLQ66IgS z<98{tvX$Ptf&7on8pf+WYdCe?`{X&B*kh-2)NmvPGayGYphhr&OU(~CJbQ6?nvbyu z`yGhHHuo92-A1=Z$hQ_^T=siha9BNnopeT}DcpE%Yu#a&L1Z&r=?s)lkFiBs%z6n@ zpjje{&PN#0L#{$y_AkjK4*{L5Pp*Av_+kP`jZ3etv)Od{kNNlqPq3N?PFNGknS_Wn za8S*u)@Ik+h6aO$#pRc?fR=5B8s1J2Ev9{TJ46JxtYzU1p>X{CzR&JY{4bwyKQT)| zXr|bL%8F3;9z|0wghxmRq7-!A6hA4XykSAf^~x5*mh@+-x;kdD_t=tW-}@-%XdM}7 z&=tM_saSiX_aXxA^KCY`P3$7uabZZ9YtxE@PPxvuN09yKiR$pd7_0h_*FkvYhx%jY z@4I#9f^)nwiTzTY)!X+mWPOz_{6+lemKBB2fr+Wx8%D*{d$DoMre-s~<1K_C1Y`rZ z*DV76jBo)f_eB*7`y*0cN99{zfFE$(OYnX^ZVv7XW2BgEwC-H>$B$9oP#g05HAie7`2tviD)sbHN{?}9G7e(FqI$=`j(zgo0I>|53R2>w2Ew0c$< zzQac3bk4XpFrcE`7jbCj<@txuxhAL<@@a!!B$DqIchKeHRb$E)8(*R&j#ck1_R#Pt zkw4ZG;`If|a?9`}*QLf5dT{b=1u06@vF&9WPV^d0V~hi{F3_5AnI@ilWDer|GWN1; zY3gOtR^ZvP^>RSc1}AK%=QlL<(5Hb%_(Wy;A1f6fMMW5MogY5XK)wM&Sdxk1FK0W3 ztbb#M^>cwfTb2E`ng#MuHXL$TN?<#LBZO?eJ6|z8L%cbSE~SH_<~~S#OV`IDEqIM| z$}=QsYMY|DIxJcfbh}mJ{NxI@s^0aZF(vzg5JLnhdF@90$c4oVo53@>-9&v zalzQI8=5+uzs6~2dWwC`;bg<8-D@sYz;;`o1qjr$Z?r{VL~uJfE%ZMV^lO_SxpvGx3i-!GP)D;;Fz8wjviPZ2O+!PbJY) z@%%x)k>HZb&bJ!x_aYu;VHgx^i(BkzizYSIB|n&QOJd~}KNxC+QFs?zGwk9nP zis%02mUn%j36*-`?e;0BLie4>$;RT<%B+PjzGN?z>+-B8t!sD3W?g%{3(gE_H}ycK zPa1lQGqTzt>c=f)SC_+w>dRA=R-$3#T~`MIh;HV49a z^vQ?SuU$?UiNQDcc8US?8H?M|&Z&Bd)V`{4rO8>?Jsb|ChTTjWTIZ|ZgJ58}fbrD; z!+?#@78?!japChN-)BM=S=-dienCMrIJ}>793MSd2|kwW`Gu6%H@BFoq^rvs{W;Q2 zk(2+$_OkBXtBtNQG34Obl|6m}@jP%OmvMDSOG@jCPXElOU8%O-C>3tHRX=-WZS9ue zKo8kFw;tQCk5@xUKJ{urR|PNTyI5L;wbdk1g8UhcF*_aNAS7VO@3{md7u9gV1Ns$= z+M7O=k!4#jA^|V)V<$&qGHy>NxbbT(9>;8#i*j|og|sKv4otc6Zy)0cG_!Gf@Sld{ zll&QL^G@r*#`S{uByA*7^O_FdlmfDwp8*j@dyU5zOf}cYQ9JHgc41;;Kijv4y78GIfuJyWTNq$)1Nu?Bbk}N$q9&jn1kYf@BJEd?mqn zHSDoPtcq#KW^{uP?Hqw9=L0Eb~4vzw5-JN7%Q+L@inn-OqMgU#Dvs z>dIx9A7#4>&%+5E?BmB9ge;99du=qMW?lKuk8m=&V+aULa@gZ5;f?17%=xV^+3|(c zYiRG0Oc7!FkqCABonike6Efw+pF|bGf(cfIwOxO0yNPX}%OSgRwN5|sR(MnW#_pH? znyQ`?{^zoN$zI1(W-0t7`nZVxyI-HN(rqYCJkC?zFkA1jSa2o3DSjQI$d2mh&mdLu z!~7Tzf{!46qRf;)L|07^1L@cM7c& z6zJ5kCv_EJ?)o;XZ4}CfQt$a{qD8D(o?fQ`x5k~1@ag9hoIT&Bl=b^F`!9AhSOO^DS-%Cw@(My_1DFX=KUBng*`@P^Dk;S2UuEUTf6J9)DvOi4bywLmx#MkGdw0 z#aT>=x0ZRTNS#+&?0~e8eB21 z*pf8Fd?MYF#!~B}FWD>MbK0q}+EUBRuyp3XzuWguAvJlikI{$oi^cRGmpFnpFfyQ( zpj2dD(E@(9cT_qpL>gU3eFbWaU~;c>)-%K5;EociaSp!>&dbqD)6+37`G!GK7rU>Q zc3T5Gw@jf(lfxtO*IC@6Z^w5&kAO^F%ZrG`VT)VvcFwG}ddOz|*QTTz6!SFcWD0G5 zmPY63fBj(gW=eXiv!1vLosR=5(TA=TQ3-C=B$QemJu_RDJ(>0QR>5(JoMFOlFx*|K;hRUEPq zUe{)(lnaQq@S?cvzC7>cA-ppA;9dTb$Tvs%wMG8o>$Im&M3_Go>c+q2TuU^!bcR{f zA_u{-vi98w${%d+5N^zmkBhjH&a7IQt~j z2vBi|mbLO@ba_tD+aOL;J>}wy;jt?BzJ*eapJXF*<0Ef&lB|oJ6b1ZvgTdd8Oor{r zrF zcv(g9AB~Kdk2vb*6*2I(FDz(12pJ2Kb+`$7Z$9@3h^EC~EuE8pGDkk4+WZ}dzIT=K zxo<5gl5M%5EfR`jbMllg;YS)fX;RGqSWxjkD75=sL;UgCjGqHi=9qGi= z*Q^<60cUu#T=5)OfhYIRfbb2V26v8yxS$|m^(E-O?znLLfvja@h=2pK97(7~3k@L> zw!YX8*NJ5m9nV>G$l4gIIxG=f>*8*DDIGmvaJ-PxNE60-U=(M&n|#hwZ%jVje)!dM zomTmMO5)U;xUfr}QtGJe9u&xO`;446rvkUwn9p#z>%Hw;kg8v4m}LQ0M?^!X+Yrn7 z)M}%%xz|iv6q^R+XM&iFMQ|tvJlYTuqolYu{9RH-1MY_rYR8YnlVRQv!42+xy=TzJDiG_ z*m{|I2%cV~?Ymc5pKp7f%lS;x3@Uw4PW$z=AwqJiokojbRuLV`l_AF<(>SK}ggU7e zqy?Mk9k28z99>9~`m}6XN8{Ln%|fEI4UC>}Lb^owFA%x=(TL7I-Bq&$lD+V4YgxeY zBZ7R$hwJNlZ1(Ltann!hWi}=V7Z~y*hfm#EBa2we7n4)1 zNEL!L(fajEW^WFZj>X8-gsqOYSkppT)3*O!Eq&NXPBt>z_j)P;gF9Rn9cPa*l{m;R*b ze-y%qcbi2WGR%Smt}Y^#(y7COl#Zp=hiS&+sX5F}+TY}XNB9n;|B-r74MA!ZQ4>LltMkC`r%tcMtgB ztM$8A3_p`eb0ZJcwj`^&98wVMn;UKKUAY-#@QPeSwe7-=Iz^d6_JnJHIl*AGEo%#8 zmhFwO(9hQsaY$nZE*#EO(YGuSUmam^|0KM%f;2`MqfNKbQk?c98>}}HxmTzkg+1vF zBnv3ipS=0Z9jm*$`LyWr!RY{xI6RDO7JQLi`Yc|6@8!zUz&C9fLxru&>x|pL23TR391SHM(pv(L(qm@(-l|u1 zg+XUD-Qdo@9UqwNVfGwB>SPDM&d`Q^rxWcBjHHLqYfH*kZ^L6doYZD}e!J0SKbH+E z;TBBcrENeAe{5lDTb9%lUVFaVw)Z?Hb0HV0xcanv6-K*OsM@r$)NuH_f34?vDR}GGFliHB}wj>DF&w2DoUjO#Jk8O$p`UW@p&q z;_;QmfGQrva2*8(w-AAKUivD*tQd*FJwo3h(x!06E%x$HKQ|lhM@QW^sh>RI{FC?h zCFc6jgJiUJ$gGNjFuh*bHNV6PS1wPY*XRt}ly^3l)sQzt7_B!`tSr(dUv>Dsoh+Z_ zNNf>7G_3fdBb*)E-%D<%kvo-x>N2(051WojXevx^Z3`NGa6EHzM|zHpP_y{^!?xKl zq&vtk=cl$1!cXHA|BvMX=8mS-2x~5izetBZUA_9laR`G2M@IrDw>+REklx;Q^Vv_e zmBKnN=7lfHqAOaR6Qj`V90U0Oqv|b~+H9kC?NUl{*9I%@?!k&%aVQSOgImxd#UYU3 z?(R_Bp~Y#7Tk%40io1V#-gobr{r!Q=By-)8wa)W6eqhIm)V(I{6;}ebMg0t}@u6GS z1HCpU6aLk4n>AK&gRYEPums$te89YV?NF~#-G7>NR3f$K2AS;15T&Q+Suc;gfJx_( zb2W{HU$dFY?LT>(nYpWq1w9JxlT{>H*Tfc6chl!7zW7xR64p^tkU)sW)oZ=8#tvF=XvRQ!&NSw$snj&?5DV zck%2B>KPA@V+u#1o<9j16|jP)`v(^_j97H{F-<=Ik+o9Ah#Yf~GZzE@lVVq@#e)P+ z4nJ<0pL`x%2||>wEb7H>ccZ^uq{0}c=VBHm75K~t_MhYh2uzQbUM&dVijuF+9`Omz zb}Q4WNdhJJ^c^1#eAFXj8^Yb;W_ro1zQ`{LLoN%|ge7aFMZBEd`)&rWrnhSAp8L&W zS_>WS0?1A!&D%5&bcj|K6mRZibCh$*+b0vgrq!13Ca^SHF3!6);f`8T+np$GY-cW* z1W=wJQc}P52?b*-NM_@1e4vIrL^NQIe*UCv|FW|zfLP2U`kuoJ zF0sRZE)=j(IVsZ2Yb!q6`#|X5LXWu<~cL zB$*Pv{fq2Q;m+#_lJkhd%Oy#l<9gK*gd)~%=oowk=6`=JGv`rHGkYh`(I^|7jo9bj zPb*f?EN1{jWlyKivcB<@$97N}sBDh1i=SPdiB6sjKz$Ae=5G1hF?+-p-|>l}hnB8d z-U_vIN(j5PgQJR>mT06YHC;MhMm;3%bKBnKQJt@`bFBir1ScChsEFS7I2a(d=0-rgXn&E$=m0}? z2}&xj!fsTS1x)wrn$_%Fw45L0bZ z-Pk@4=}aQ@qEgnW%jlM6#rGfjCC5D=m*trg$j}YbysHJ3$RNGk`H}m4y@oUbg7uZWfOu-BhcME&@qT z%2T(0Qrx?3+xdfe%W-4vexFv@YHrZj)3*N|xxmti4+5{Zd`V&9Sm4%g`*f7rUq3A6$z8NfyJbqmCV^8O*y2+- zPeEqvW_*i5mu>psSD5Obz9VFw<{iK8@VHK3H$dKXirrPtN*;KGm5a(Qw~Zcq-w__o zN0IJ)5Vo?yqV5yGm$RvRhlc29QJ^*`c1d@S$oDDEdYVRhQqf&3{-RJ8$i%*Pn>^e2{rRDq?#{kvKAh@kz1J2vcBbhpO|#%b?YR<7ZGwp=z3(o6&DZ+z zFmP)k(oRX-%vL$|nE%@vX!FFg=TPApbw~Rfjp^{y4*Q+g7%OptrLqR-+R&|0_E91z zCiy8J4afdarHH(>-r?LHHc_y2pQ8bHi5uz~WseulV&Z=oqE)dH9nB0{r#p0r=Q-M_ zjMLcP!@JYdCQ}=O1xBqW8i}~DGNK;BgNCVxW`ZN9E^fuij8AFYX09@C8@^qH|4GrE zdy{`-*W-;T9zA?U#>lYXy`$kD)IcX8<|{(-reA&5*-85yTgbLmD=8o)q|0gyaF@yD z3$c*jh@t#Zkbprmf0TH2KI*GmQSSbkI8|P;_y@lnS^X}3H^&PV^BqIrYMp%oC=u3q zxzLX5EIf}{hb|*79%b|0j=9+m?2c)mL*&Vs_Fya{Ul#o!=HrCO%AX>#@}&dq0=iXZ z*rP@_kx=4F7L8_E2_9nE)drN}F24tw0Embso;G$_R9(_Qq+HgGN|7#?y3`SMjuMgx zBelfytLL#P#wJPEnF+G4)_2bzokIpi$Ul2tALvuEhjL-A#0WtyhdP;R`w&;ekGMM* zuhiF$?&QPLd2M&30z>((CHLola@?4^@*b~WvJY^5VR2e8b6>lsX+&tcIoI+i!j9ijQmeEOC`KF_+mw@>e=OmQL+`si-fS{lBdmWOb777~VLMn2-BmderPVSNGA%ZgbK1Nl%iReUWJ$h;wsqzWzjm0$(=-QKLqa3=w! zFN@%KfNdVv*%nmjQ$gt;HemNO9}Q$4GO|DU1qm_h;fWiTuh)O(ez$;~3CWVkfi-vb z?Z*eIF$#e>GMoC08kK(KdT>+fx7ks12Dvo+leccUhq=Bk{a#Oa;Ad82C2@!N$e;8d zMHo^Y&!{5L5Ge)5%ZGqy3iRHmW_#5A5H*W4rg1$#vIMTOn+@#sEO|uHfzh1ZuxTX2 z!tuxd)@KrcX!%NaA-6l@sp)r)w#HK<4u8uca%FbS2feOj6Xg@(o0DoE9}aD+jdlaI z7@R+Qv8QlYO8(+`)g0Ge`Am5DJUAg@HUM9YC=5uw3AtBces$=X^IyMMRc9Cy zQ|%yBY2x#2G|BC=q6(JyqLjqDv{kK+fZ+b{WIj8CZ(?h#D=J-qb^dufS=nWTf~oBv zBv6XBC(nDhT-kE*Bf4lEE5zNTu*Fu|JJKDfnUoealWl4pb+f+st2(3!Z`>O9G&}ys|c1Kvb9Py$BvA zqcBrCE#4iiUp;hFqE6)jrLLkPd-|dlWG>ErSh*2!{N2!-6+6RvZfAR4DYXSIZ4Fqa z1D0(>R_C&w<~UKe4^OT4oW5b3Z{8zofN^_)jtnJFaY4RVC65$KSoc`j-Vmcdzf|*Q zSegTrC||9)YrHdfmAt@0({n}Z%Sk}wT>Uqzhp8w}x5LfI4D!>Ne^4q^emO!d)dY}+ z38Cc5uPZvkrU|*~bI|TW$T`Y(MHC-io@p9+f{K(?_$bGg(D$4+oaIr|md@Nz%NJh8&2V#&wz_5-0vL+oyK>v#ti!?ucop+cp0GU`GGF zI8mm=?DmVyK??K%v4%o~&@vOP(t8p@Grb~e%!ugD^#hQ={-@s~zSO28*D35F_s^vc z!8b;Qaq*(o8Svl#N_bK?e>h6Qt0?L$>}rj8fD?#Y_HLsO=Yx>&?#TN0KelJ8u(T=W zZv;xg#;lhw^@C*0Sl>fOpd8F0TlS>o^WQj`)3ORb9v^8CyHMwVb)i>gt)wVftsMy%nRI$Q-1wg+a&%zZCOHBf7 zK!yAIo^t=}v$J`(%o+8avKDOwK(Q5uRGLX_b}Q<0ffo9R!H2!8BD6Ss594qx6gm@*@~8aQvDO$>P7?88-sA{b zl<0kyUg`wRPr+^13FJ3pfy@Uql&5^MS`OKJcVn|6gsn6Ln0z6z2a4IOORgp5t><#d z9{GmR{yum1E|;n3lq$|Ga?yc&qbcHStmtqR8BHJOh-X{yF*kcWeFhGhQd8M}a?6y| zJRADRSxd{BAI?_Wl-GSuT~{9AwMS`IT58$5Iz~ey&fKrR&f_opM4gWtLCJ*UOnIYZ*ivry6M^ z?`!QoshLt6^`4Ugv2KlENqT-aDM}gA2W0OR@QyByP`fmRalJ4U2#(!>NhM5X>PEZ& zVL13smm%xb#&nW)D&;`Ka@@tBYP@;alq=*2N9h* z34MN4v8T9t^UbEvJ?!I)Vl(RFlbf4*sWX3LR92%=BQ(Lp9D;JashHZ8o_a_j_T^FS zl55FKx0PwYM{iuu?V`TyY%QA2x(2Dx>s)yjyEQp36PdfG@bb(q=BRL~7^h*h9zaHfx;60u)$_99Xsv;;rfV2|0RF1%{g&w((k z?y~G4K*gUT8$|Wp$NN!P?3nNeT(CvUl1R@rS7Lp#k``mfYrdbG;4!zj_w?7M#)bmo zM;$EpEy5ONg^{*%g`7w9oW;PCXMWVn*pkUp*9+*$z1v7|WY5E}8H%}EWH7pU07&^! zpU+S2Z*2q%*OiZh-CWYAN z^LWGln8<8OQ72jHJ6Nib7x3_a|JgE!9bWht>;TKo0n7PXvqa9QxjRFttPO($HMkf0 z4#qw4w?TM=TCSPf+_d`Tpvq-MaG6)eg9P(9%hFoHh2TcXI*FwhmThU)72?RnR~?e& zWNnrE-It-$*z|?_hfQfi}{lJz!r`^PXVevZDzK5axoo|D&DVSjVe)n-l#4+~A<=4lVkZhffV z)qJ|WX%kvj;e98f6 z$PBAU)rI`z#J{*V{;KX=kP1x@3iRt96)rL4bS|$c9aUs{SyHv9psA3nqkiXxNY}E{ z>F+pQ9;_y-&YI%-QD7YhNU85A;Ygwj+$1Gdyy7|=d%ZyDou=%mngdeb>h|d^GH>r| zFiMgq&jhksAy#9SA6nnK1I62TVaH?uZ)L;`{rqZ|+2U&pG+T}T0PVG3hh$%LZ9#oH z929k>6Lk9z+V--%n7~Q^3N=;`*qf3$Q2)VinJU6+!rTgu(0o|VZ=^j2P)wEAE-wJZ zn6sF=pbS{WaQ|cpD3?cMA6MYB3TH;tH{N@OcyBz1{O(v?nqrsD_3A;+ z>QWBo5-P)69&{udGouc!SBU;&I>E8vKZ5$h5luNe2lFPx=-RDpsynPBT%$G3RFW$h zZd-c-{e;#svF)ijU{|MtLzTFiuE|?U_Po-FE-WpfexGu&G%Ntt+blQ1K_mno;3-OBW4NR<~&uyD55qo?G8^ zcFaBambfKLSq;F&A`&_}5!9t?UN9EK;Lz)eMn^IIUTEA3PoaB?-!8`IRXO_1)Aw@NL*kM@`*1_ErWtj{=4#I(fG8Dtyo&Jm3uZu^m; zOz!!MXkg@F*}}IsW_!)_BND z-q8=MD{H=9kIveP?9onOXH4!P#%x|d&dtO*cB*lbWsw6QDSyHp4gKRbY5n=l?3Y;# z?FE9#hu~ai?H}L6Ig1j3T+DkO2aPF^?F99RB4T&?5#gdIa3v^Gl@d;-gzenlFHSl3 zZq{SZ|53~~2@IT4Iyf1SK@>XGVGK@*K#Ldw%jY&RJdj zYA|PHX44`SX)}iBV|yknFi)c56+Nfl7lNJYnB&_sAdneI_rBJkG7x<(rj16K9_=Wh zOCmux5G%9EkR+3V2^G5K8v9n{{bNhkIE^x$JKXdpq}?MdyASe8@ZC`RVxLjYi`3#$ zss>O{pyrg5eB=-kK@R+Nm@Gucx0Z+J^)oBnta+u{!aSSpuJv-k**YrY{evp1a>JRgH$)fF11M>H(3gEfTa$Fl zmm@A+s+Y`XFxB2t+g-qIEi^?T4ErfFP+2BB{4S>qQBv2;EdyMvL=Oc}Ruy{fNy&e| zFiDmushi=~D%N7(d>U^=|NlkmrC$GG!HVVLLN+CkXFzl#J{*3PcJ<8Vf}X@?S5v%q zZsB;{(?f9E*4=hdgW9D<;!}{X9KLw6@^$7m0N4D?6!)Vq>K`$Ml5(9xc6K>;+BVS5 z8`lT2ze_G(IbD!;IdVpp*vXFUN89S_2FS;rI z49mlJ1ZpG55NtZV?_jY)- z$%VO0SIq5HnOM$xxvo#lG_@71f4LQgY$37_OD7)l4 zyrcAx-Gemib%lr+EOV3U3$x3+`J`aXy_QLnYEag}G4RikLnQMx(*2VK7;3=BtX^`& zz4WZ$Vy23mAx6?y92{UeLZrH(wp+j~XhK)%Rqv1fZ%LS=A_R_5>XG@_}nTT%N` zc)G6e!oEy{X+EaxZ-o z=l==*h1`67C_`4SBlUKaL~4a;@fFuW4%b_AU?UJ|_2W#|+{9C)OAJ{kUbtZ5&Ah4P)d{iw#nx;>vSLcsl>CDf^^tOUBAU$RnlG-NHM3RZZgj!B! z{Lm!ojrEnVS-i-^uI1?CdWNnAE8wBnlIXs1KAX(+8bp^)MDY$1CnK0!E&TF z_iz&tVBv z3z<5T6BS)~%k<8Lal?<({0V;+k~O&?1YIXQ1j*OPi=tWPTm)*M7A1JlYR~esh*)lx z_@TRilRNWWsy!CR3S_3V0sK3@nk&Pvp6x4x5>$jpXLS=$kI_B=1Hm+_L&O*&3A7mQ zZ?%aq=BnQ-6P*Tf$ytHyA@Ji5i9of3WR9=6Ow|M549M%1DS||E99Z@r#(F=E+>_|& zMO#4<+e_^(;Zp-g+|fH9<}WltX0}*)lKXt!!=?!_w?;X)LFwa-j`BHxF_WXJ!f#1E#o6O) zPv*I035RH1LV*mRX)dQf-g@wlZBf;!bm@jg_ku1#IcA_Cv!M5lmK3ZvsUhJZblrI<^>xCp&n<@ zvwOP1=N&LlL)tcqnDK-JxbWw1jW%nq8P7y?FZpG2eg&&dRPdlU#xnF~*Y6o6Jvra5e-x0W zb$LDZ&7qZoO)LEN$G*K3?%Rr@7(q1pX+^z<5fi=dWBvx;x!rU44Y}%bnW^1l3570e z!Y}ScJ%2O(S<1&G#=bJ4JQ?#OJL||c>pltW$ONx+j@j35ge&YkD6Hc$qJ{-u87{mn zxJU65e~g`35g9ltHRd>z1PrdX&Ma8wT0YuQy|_`Wy?kM?sa3h#?~bq!xV#%&wzx`} zQV9>o*wUg-N8JIV9eBj{v7F$jtQQqrMevO;e5K4G&b zic5t09+h)s1e7Jl)2C3C2bLS!@Y*M-WBq8f2mvlg>> zHdl%&kGY}a+WxO!n2_RrqvjeTuSjyN91U(|PJE46K$fejIQxm4BQ#BYgr!s=gCnQ- zxbPshC}1=1v1|Sar?fso77A=;CkQ_V6KgX8xRg(+$6OPA%~qVpBQc6dIR(aSf;U6HyNey~Y)_2J~*uP2XsWs&He*r|Br zwtk07)g!TY;Uzs$9j6*ZD#d&Pv1%u$hZrS?c3s?DtrRS}T0NXCNgcmdF0LF|I-_^K z+i5q0Zd+-7y6tyb!ry1kL{6%laz=yI@x!HJP1{f!7b0#lMjaOTWd(=(i_{1O))DA1 z#-j5PBny)L5{IeD7s0;;CoCbn_k#PDU$a|mh8Z?b>k0LHROK3=e-h398P#duJ4XIL z5NiaDMvdYRhJPUXsdo^=;U3I=EI3QywTUDWV4b=8gy4IwC#${H{qSa>)VeV}ovRiZ zyER~xKaEvgT_)jvSM&t^Tz2id?+6E0UX{das_YU3$Tw_!x$H75Ip5U`V#S=P_l{#J zY6i5(Zc(Yk0vH?+m-H0X-3n;O&@2r@rDv~6x@)|KOlaC!0D;fhm z4mEohAyA{Wj0694@B|`Mk5xWAdMxAV#1-#Oy6Pbal|cIu!d2@)+hosE2ZsYv6B(o1 z`DQ5h)8csgsjNa?U&q=-=CluFXN52>Z2h$}aP5U1FTVjMr7mbVQgrxvyefT$Zz{rcAw#Ppg+|t?|ZeqJ=^o0>vxLZx4g7v zPs>i96=z|%f9^m#%)WzZh2=CJ^^Psaa!NtxV0K#DLI|6YD|4X z77m@}=j}-5xawNbdliC|EgfH!d%d-n@J--JLBuC9<7LDEP z%((0nn%KCtrBZ@5e#pc0M<|=$iOgk-tkFwv+A)@=q6VP-FQrJN-IXW8eQyS^;j1sQrF~ZK z%SYC@)R=+Lba z_e&7+$?U$4;DD` zfxmz2E}CYF_i)-zp0ydQHg~q6I`$t5a;n)*L%fq&dYgh18;*q;>m7^ zEn5Fr8gEucfP=TKo$%FF2~V6A6Ou-cxiFbSIo=T4#X4t)_ua0_n%vAvML6>BbD1T1aL|N^D&yRIBm*;TTXY+uR(~q~cJW1)F@B{QWP)n`v`B zc9}}XPxQ?m7n`CVn3hx5b7$#{sjc9{K)Vl_BP6rqJko=a+YP@B1*KDmz*`GsVcrmB zq5RF_gmI#!JZG7U{HZzlUT;>p@b%t;Xk*C?n{Ac%Tg*2qD8JMAL_37M?P0PNM~w(j zZ_}3}7xiu?$<(NTlOKz!I`ICuP=&dZ@3XpU$?58mkq}*9YCf-i2=7{!yO>613#XDZhzY z(?7mheX&^?$bq=3M^^Uf*M1cppE5t*WYm5vqf^)FoA};-l4amttV5GiX$ACkx1I=T zK76^)~XQXdJQ zd%W?D+dl=$k|}FCRtB(uHKQZ%$gkXviukF)kxZNagP1ihAFLeW|MnPraMd~6V!AFZ zVzIB(wXEn-HWNHuv4WN{jdM*cz5ywo68+UV^BCI?dPrHDR%`hOHi@oxaCY4HWFDsV zjA$Zl^%yfzDPf)q#XBT@@(~b9MCv`6 zLNIg|g3}pdkH#9HJT;N+oGct;y^7pNZ0`Cw7ePVr%(&9Rg{bffYP-`9C)PS*P z+RC7v6P1!r=_p%~DB#5TL^Y0WSNLMvji#+5x|KmPVF^AND;TrW1vL7fkVxBM#Q%y9 ziW3*jka{I?9xsBvE9{o@ll??Gxkho_M%{$*5bsmz;l3XCeY1QqpIns8Cu}pEJ`0YY zGUjw1FK_08*5@YY19=S*_$>&9WuNpJ%0)MNOM(c9r_{b=5qL z2iq!JGgCo+xiQX7oILrNtjo01xSKMfXd|zte@zy7m5vgjx=|eJQ|Az9H0ns`oU%}5 zDv+W0x6(V?@6^nu)nf25#gKt8WM zI9YLo`?#7>F|sd&3yPx}=s3HIATdvuT5lH?1ejLnOT2>;VQ>FA4^%&-I@2%mmmF{gzo?Q6A4WgT++OMNyyJr!>?i7J}bz~c?Pl%|{r2_x+9`@t;d+rOuzb9$IIc#6Gu5`ePt5w+< zTBE)JXX+)n?!U2C*5)6YMv`Ze-m29rLRkoP^30=?TGb!B9Z?aQ5m_~D1*pnFTB6f4 zXx2n{vqWuw$WF{hnkba;LIs(%Nubd0*-~CvqO8v;n&b=uvY3lE4s-y z#`G&kyo%d?){S^y5nb8R>u=lkd7RY&Z$T;XL011xp3Tap)AWbrAyw|Ex)Tsf9J;%4 zVwd?1e%-~4_z|tuY&)#rj{G{ju)C>|#rpNR@yRxL23?AUbhB4VNQm&EM&|dY*@i~w z;bA#EAup88!Zyql?dLteHwInJS24YP&oic0j!hYwJ)eu>ex=#Rs+OwPiQduH1pPMJ z-TALz6rwD7QQ9@MH49Dhev>>h3CfpHO0&GL9)o68de4yhA@io0!MYlbnly>Hr+L*9 z`V85?Dm9mcPEBeiegKUAV(EiZF^g_ep?F|sBf@YIp*_6SI`ZP1wh;kC?S6@NZ78B; zA8sroN(Lyj(FvDpIM}-)j%fld52d%}2sMLy;wg!tS4+y<_B$jBcZ~APFTq=rZZtb3 zQEI*LueHPjH8oFkDB2qlJG47ls+lc>caT*+Rb;f zfM7dnVLnkSVxeC*&zM9a0>d9{rhgReE__F@<2N?O=MZe2!hEJ50@?Og{P*JTo>e4> zZ_dY>Jl%`Q4{@DA5W5Ml)S^86T5U?!v?%abB5=vMZ0JEytbcyZ$5Dg%6WZ9owjBS> z<#w1~VV*WwgY%`Tb9GryngDw!jdu%}-c6L%SsLy(nXXZZTAu>x1PXP(kz2sZEI$y? zASEO=_$xoQJ2XKXS0~D7vR?pEqUF5C{dM~3u9Dw`ZNkZ!yk480_N$c+& znC%gCBf-|F#Oquj&_)ZEWjE>2;DJt{WytbfkrA{}e zg9jjqs;j(GF!SJl>zP|6(5!}!8I%(iNEn+|EH+p6r(p;jzvmEa3TyB3`TX#n;FlWy z_9f_|i%$OATZf42ej+#CBvSEPOWb7lHFI8x70>?vq(9kbKyITg7$NDUch>7r;43p@ z46Jq%GOx~W#dRc~;t6Th;7q$LsOV!i7vkTGgTE^kfegn%D7#t;HZw@8#)*9Nxmmxp zgLCs=&OoTYeV_eB?!`6h_C1R7e!0pH$UOZl$zeIWt3J4xRi!a4_hAc12w(7zw+I3u z<DDi<%^VMT%~?H1T8&% zvayJw*<4oW9^p+PxbYWPfdP6a10`1k9GDI5$`1DhH_~uY0hi~;9@3kmAU8@sf<$Tr zgo|D9fJZa-&O&oVwMNdABfYFP9W;U#%sYC%f?8*zsGBb5}`8?`P8N z5wjWfY$$D~*7Pc|3lq}PduY#8m!2abwK~Me76-uTRf}w^7SwNd-^lEuN`e={50FnQoACq?WZTjmcG5gcFf^L(fmY)d2r2p&0%xxXy9sqtXpTj7i6Qd{t5=9nFe5}-UJa; zpJXEQXuC}(f$;f>-0*N^O25RE+b`*H!Co$u@_-XOe+qdJT`$y$W{EN9Kfe@)Fl!krW>LAE{AvL;PM(lk2VU&syc%PRLBU?1F1X zHzX+#2px0yiAT^t{m;OR#&=wg4R|*JH4xN?1g$rr@}k3!lMhLd(M%M6rn;4Vv`Vd=(;C$i@Bo3EiF{lM`Z)Bp)A>KSPTovys2rURD+aWzuSfO!jd<7`E!Jm% z&=?XUj)vxYqHP|__;1AnabO9T6u;SCjJB)R)Ag%$WW?wU0-)snDTtg)yzcg(|F=-@ zD`V>`Qpg!h@~g_ahUFn@c7{5(1n%@WA}(nDj7j=aO)%N?0xn)-oh&Q%$n6n|CBW2k z>z$Kq<_$@*|0rVm5iZfZ&oxcvfe|uog1kKym)Sd*aG56wE_!+#33u;sHSHH6M3e9G zGG9%$G>#n88Yku@nch5&z7ET{)pI<|zN%DTrjg1+`H2|plM&V^0Q^~p{3yr%-Ga7R@~`kh{PND}mvIIrYoA3T0Xnx6 zQyx`;Pxh%l>*hn(lBm%?Ul!Kb)v^>tM~S&g4M)JTPwiJ^(-U&v^(_}m=4qLa%JAN^ zyGu&$%$P87=(u8-Xl;dg`HzCp_`;Z>8h$Y9xB>kj6Nd;|Y>Ol6qp*v(CiFs0IZy2F zA`=Gs@a$q!s0kk2uvA+N%)f-q!4^eH+-|n@@I}?u{jt~>RkphEqT6HOWMZV9RhhZW zpjyy>UlBjx5x<@Sm?pps&FG%!N9^<=&H0{aKOJ;#cD4tbyv;ziY|VlT4T3r8t zU@U6U-EvXs@i_ki2k>O$TG&Ht_(=?H{UMQ3^rvn-|Jr6c9rXs`hoK$R}PTrKR;NZWnH+sB%c18Yn>Ft)*t_=+peGPx8 zV2=NbE-WPLj-PQc39mA&p0w*lICEv-D z8wTMWvRUxL>Dn!^@Il29-h-({?M(P?f!e0AE1iTq%|G!lsShx6Km}VcIWNXo>LWXR-594%dT&w zd?oo$=OZ^BG7q`(i2^{%SS`duS>>C160;U~8CQu5U-d*wR$uJG3tO2zLpl^R>@%_s4dam*xv{FVjPzv9_L&J>$W8*7 zTQnn2%2d*DkSRq9dOjT$O`~{((^~QCVi|Z8Bq{Id`Ab^7eO7| zNd}fAS>$ZDz|(-Xx)kE{F|BkEX22~L?Ns+x1t!{c>UdeI8pWX zUVq!Cx3vg=gADEOQ}0}RO{yjP?{LxcT>t_P8A8i7hNf8gAT!wYq|b!OP<2xJKJg#W zX+*f#>yD`Ly1&Mj&tkNOyoU=yFC!|~61YHY((3`CaiWOZ*n_Cm$H^hIYK;iFT9Ntr zhrho#zkgfSq0zDT5N#toJy~XL4j;lbM3!7FffV;>lKT|AKUK5*d_iGL!?`4ZwZez) z^H(yzUwdOOZb%3zt*dqjG}+bq`1*3KRG!a0Oo_SUkCh?Tag%h7{A#>^_!Q%x z(hwEN6wu!rYKq{V-OF9z#}GOar|2kH>yc!!0%c?Dv~;+%uuRi1lp|}rupMq76tOA$ zwEwMrFomXg?WBdx-t0A>O z#9c(NqLwm}DSlkGjI_w=hftJQ4_6+jJ)r|!>JMN(-OJ@(q*?6F%V>#3i6MF$l{HM4co zo1MMO2fg_(wO^jps?3E-ljh>|VcODVANG@nLzOn7Vts0BfQBQK&1Km-YfshDwi%3O zYPwez^GEI!X%<3SmpD10H!XFvlo-d-g9A3Ze+tkP?8jEhR48|siVKD5wI~yI#8t|DtpC0z^J?z|8 zG2Uwg3U}aaNmpf{|6g-(77i>Xs~Z8wqno?Y=fl^(O|s8WadH-VcL!f4MZO5qIRfJf zs|%f{y=@>@|EDbUdOS!ow!)z^6aVkU2hZ0953T@pQj;v7Jd5~8`J0HgmlbElDKE>^ zMF`fB{-YmvtmEcFnuAIl!`g08LQ8f7`tsZF*k5FxecMFR&KM$d^pL^oN5jB;ZdcCj zuh;D#UEO)6J^^EGkomyk;ciYP!|P8mdW=Tho~Vl)9Az*=Z>UPs@7PAa>S3`;&~k9m^+Y_X9t#HnEdEA(0YG z5eB9dHIJeWR_e7sZ!ib$wZ-3gOqlM2(do(sE}Wd$s`^IE=U6`85w&$F-HM_ou8w1Q zzlp50CT0YK+62Q6*i$C$+(IVrw)kASdPDuqh?F8+Ax(jtQKmH%NF|f-;SIGK{LFbf zo_hht#_#`|Aeyk7`muKP{qOh(_uEle@u(^y`15+fAIF&YgPivkuXD0Hrp)fS_n?0- z67Cq1=^s?F9t2y)Zm)ql;ZjRR|-^hgt5qrBVSXL zfSF@6OVmidSfQBYW-QO{U&&>YBO+?cOOzYS2MF@bulXHZR`zlw6MoRQ^^>Z{|_B zSs3GY*Zm3g&J{Vl8R5xgnosU%vMD1(BAk2>_*zlrHCoI3;GY}jklRyk12VCr7r83; z)I)LY_T$e1VE-ab4A)p~RzW-9+)7iHPmr20))Li;TA){_dV$M}l5GlrR(x_PFbhRK zDaIw>#JnnxP~mdJ8i@RL?;iC@XBPUU^RY#<%&laLNE!X6hkK?T@RPP>$9Fe~N?wNi zpa8z&>ioze`b*Z`S#^d-2}QU&Z;X&(E;btv7_MUZGjO0Nt?BcD`U&Q$)~CbIw~iOy zj9uM>KlKJ7P6-v#&QIY*0J=DlzDqXEBl;u|%)2s!U|NhL@(quKqyFmIrr!s=>-C^B#p+QPPnK9EYNJ(z*WT?X$>sa7mL8d%9+YAL!4|b@@ zdiZC43&2x)8~dLT+I%yDR!Rb>Am>k1@fxwsyG=PlUJ*8)yG3Le%e|X#o4bwXklOz_ zxovv~{;})2RLvh9v*__UxByh{yS;$Te?YRh05kPNs2+a4@VM>&cI_S_8I_O5rL6* zp7X#n@xze~_$p65aBF3z2V?DUN_a>6PL{xBAe5HOHpWR?;p{LLOMb?U5UM|9`nbL~ zftj|D(5!EfkT`zXlVT?>q2md8(@7)a_n|cc1ka|E)p+Eaq0jBC#$lC}l|b2&m}21o zXv4sazB4cUvz%gr8{Hq5$;LEgK*Nn|OdVgVyeQMq!oh$sQ-@} zLR}g$W~BUE#imP|en1-4c^3TvP9E$Phcq|tVZ-|#b(D}z$CeDB1d}t>6{X?xXvss3 zW_8X45ELM<(i9k?&$(G`!%mYFSVQji;v_uXwDJ+FDH+Q5hzbK$E|r9&l`EnxmzG?l zIpCxblVx^7IPtlh>NRl`y$mPAvtfhyWit45KtSu7E){3wyKt|U5`r)JQ$QYJmqS7r z0STH_b`@$J4W?>4DhoCl=d}-3L^gT)`iD}`YuH3$e!nhq+i(X=&Hfhn8DF4?J%=JK z5-?IBHI7|a!vEa0e)Z?BB2FV={r@BFt)t>vvi4!z-Q9yFNN|?~OM+`~cY?bUg1ZF| z5ZqmYOK^8dfX3b3zeDWKJ2UsrZ>_Hvf6%MD;*OsSh@5lYw`4?On%@F6nwOE#* zI1Y5`#zidM+2Kpa>ETP$b1{6;^t6gxi-a463Y{6<K(CbQET#BZvSzhGb zx$8f*a*Y9aWxtx_gS!yho?J$pya@lc$>oX-If-7N&2h{%CMU(i@>PTvg(4+)=!>}6 z%~v?%N+-ebGrQs#FX(K38SqGL;hYFalFcP+W)=GwKRX%F4Ac zRl9EvUrn)p^Jcd_d)*;%b-L>ra`k5RL%?U_l=%#GBBlk&9jwSRg^cPTI*@xCGnV+dcrXH-&2w)6`D@`fL5Zi(bhAb8iu3VAvV*yQmXhp2XSrTFe>-9>VX;h7pcA;Z zz*;U`vRXC*=o_#4XZ6a74ZHCRsYPczZ7I!MEoQQguJ7wrdOX?kEYUgKFqUSS>L#go z@->R$$eqoU-8PHUl`mx)dYL0?O6Nx^wD;zOrYawa!45B+Yh()8$c87Kx=Ul3M1AKr zIC?R8qu;PvQ95uVq#@27-Wnyf+&8xrvhz#L*;L zzV@*zgnwC6NAzlF7l~*?3Y>!5O4&@hVDn!V4y`%46d^n$+IXs~LQ%m5|?TIIau{1&Hli}McGDXx6 zVgOec3daI1YB$-~BH`MOezx*gid~aK0xjxT+cnt9?|8NDH-8wOzr4b&iLWV~qEl)74`ojPaQj;Nls9{&DmwSD!PKD$$%c6{dlnSYso;c+8o}#2@ zNuo5)9>M&R{g_4G!XV%#&KTB{u~1Fj)cHPTF}CLAh{SO=@|!oRJ2V%Jj4PT}PCN~RsqnzA<}19PoU{D{S1_qDT|Gy!30J0d4*Sz8;NRi{ zwLOpYUAwt5R-dLOCYT($fbrSrO1XQ8BXZA?H93H$kIOVN4yC+C8@Z2mpGaqb6oq7T zOD#2&7s|$g-v4Pw`ZY1^YuX#{a5$%=gZlv}*72nbl$Dt#`UU=;!O9YFYKzcZVJZut z^vM+ckR1)7NIMxu*U)=l^GuW=Jr^=_DEk0&`LwNp(jh)P_Atb9EWBF3yU9;`K0Fwx zRPX0#AGKyuDeWhfBYJTS&yAmCFX?5Yeo~jB(E0UhgSxg*_PHE&yAUc+tA|~Rk=mM; zkTTBo>2t;U`}bVSS?1qy(YInN$ffx>_2lvlt)fS?8Op8l!%n=0Q<;cip}5g$kAu(8 zIC5W(d+nTyd`hNWBlyh`6BxF4BINK`bdiJk%a+xaN5gIq=ibKQ1K z;^)A*wDwCTJew|s?Kk);Dj(|&k5|6*oArO5ff60xG8~n#ZA@V{`y#6|SJ%y(?mtf8 zI!%6Hg;-1^N(u1DZZ}&Q>*r$%ON1A{_+l4mZb=99aoZho-!sSR4%OONVmi`fi@rUt z4$F?IQ_XI-yO*SXpT}gM0iYMf=b~#gW0Ceh1h>0lm`S}0?39HU-g)F+_ zBZ~%%);HOjsVDmJz``Bj85xB!lDM=P|16np^+IrIBB3JrA(hbd?e)?Io&*z+8p4aF z29glmZ3|~1@-Xx)&2cGM4dgakg{y~arw-w zd+jH?#p-_#J(m!M4ZRdDKY|igBGs`$Q{A%fp_(d702KyMG9inbyG&oz)WoIaZ(eGK zNczgHXk7z5%?5G<4RcCuBW~)MrOe;o#84_*eB^!i;V@)1anIgl44?xNud&H-9HP$O z<5&sTqP&w&Ld#xOWI}g5mD|XVurj00F)2)m;q|lQ+e)x)Hl-nQkhghRG0ji2&Yptu zRoTpxVZ_g%8pWP16kaqK$=)FhUVMgjs5BFS@!=Z84KN{SS+a+tGwi^X^{CM;q>7~0 zoD(Y#iO?r$mcJz_*G?AW3jHk1Fwbre(D2RcUerWoqI~TC#BT8^-huljs7H;Vb^m1_ zeEmZYJkXcmR@QCz-A%aO9*PpzcYC8_54oQ;cdwvW1#PH_jNEr6v);et^%2wtLm`kk zqK#+Q-bNPi=T=}=C$ap#Qsw;QYnWlx;ceAab|9>o%bR&w6Sn6KDGA5>7I!8){QMK}5kYNjacC533gz_0810@p{P^=o64~UT z=Mh!i05Nu(nc&qV4$s>VEQT`TJw4%@JBV0JW z!SI)xH-&O9$xPmU%}EjK5xQ|pe9cL=;@--RZ2hu7__1-tY;bZHz^jv*L?`T@=cy*M z_T1qsv>d?M#W#}ABhXk*M-swH&~E?!Qnbb0(cEs8GxW&mL5;i{*g4gi-|v`N&I%v7 z_c*GxUV7ca^OPYBXDDZvI@^+!+Aun zuc9zy0vAIrT-l=JT!6+1RgOfi^&!%DO)hy~-WEgSzfTG+&NbhfL^l3>ppc$d8q zK1b_HK3jBct+fks^F+p8%({Yqtu)ffMVGXkV%ACVnSOc6Pa8)+J_bW1Ofk1kzA|`q zkP+z{L0z4e`zVAxNmeX`h;)o}^=px;!TA*tIJ8Cl;%uqe4@BOIW$~fTK$;@%8%OS96c&CPWd~?SY>uAp4r31r-smvUr zkeD_yM`Eh(mqJtXWQnq=I%5Iwl{o!#h`JQSHgl$Wj`+6yE}`v1IYpy4iAdYzPSx$l zp1A#Tgma!*CEr3{h^uAU7ss3cTRUNNh|3P`)zrrCPi%tQS!~45(5Sjk+#=F3dk-0?M44mJ+u#K}v?yUyow zM^tCa%FMl#j@bz=@|h(CLC`QiGiKd6p%QP_JiB-RG^7lI-S`1q-dWPgnjN&%kkI@CwTSFHGo>V7GJxk93AO;N_ecB-vJ*u<5a8382-$b!dAO$ z=Rq6ZAc+R!>+2M`eg z3KW71uL^T6Od9NYdA@IXNTdHpx-^DJ6xu~EoeQxs@66GGhuR=s1R8c|EmnF@l!Uh% zK8^_4H8l{EyCdQ71P;ik?}_jg6XbZ={1JU!HYJtR4fg9jyYa#9B-8Gh>0?i=z%fY^s^vR=uGDEC=aAD+(h{T(fp&poOD1e* zFSBZdiv54vhk<7y3`@noeT)!8G zP`>DC)s%&KN|c0@&orxFRgRI1`k`2#CCoj(<;ol2VAk_g+o-4NA0snEQ((RL=D_Vf z<)ZKtzZm*ZPytuUa@`vw#LiUJ{C)JfY5vObglP2(c2g6oS*aU>PQz(5g7LmLDpSbZ z&tKzYnZ)2-v6^~s!z6}k6L@LHRe`39*Ma&!>w$dKmz2E>$hi@8=F5|sjsidU0M%Z+?Cs61y#w;j zm@IFwey*Y+wf$+#7q6>}A20>H?^D8W0S?v#muI>5 zGzsSLj@Pq}Jm}aQ?5`gTzhz4Tu~j`ZlQ3oPXkA|*%9t&OE|tRb(R~1c5j5aaDEy8+ z1`hRQu-?H^EdwqJsO{~Z@1)IE?xI$M-6udYuvZ93w#qF$jR5!ybH1!dt?9Wu-^|IO zRgl0xzOpmywtH?LO(H9T>`+y|l0t7wHESU!$>KnP{|Ibs%7}8Qzg9hHsS-H{=$9ex zovZj4no9sG!tj8=6SB>N%k&q`U+XosU{PaS2kzWB9!NxdQz?MvSowxPqX_b*DpVdCAJfMi$`VX>p+?x9ulrTQN(Dke0CQ9ZTfy9#I#?l};qX)jk=gKx z=(SKd6-^S;z2?pjChjW7E>o4Jx*~4o3}bQbXreIiX|}JF85f=6d~yAg12?#GU%?DgEdi=R3zCU|nP5-eu8mY{a8RZmQ+Aotcr zH7Cko5EfHecMC@e>JlI^&2r}noNDK&{5&kh&ocTio(kSuZM~W9d?(V}r`M`rx`YHu z(V{R1`6qi44eL(2fv1%~EuArrd?w_b;`3q{V^=$RcCoyKJVFI&C@hyHvHo&<9ZP*P z1ulASO+)$RsFQ+~O7-Oa=hXvmD+#qFQhCEO@nWKU z=?qhCDkLVynDTk7YUmx{alUO&dfc92MLgQp8D7%IYp^a%$%$GW7ggh>``T_%?ZTsG zwXjuXJZZwszR|W-kQqs!b^FdHZ;c82glcv|mBN0rd+JVnwQj(KE(JpkHb!|jR-bL| z5=)YQJfYcDg*Mm}=uy-Y$Iu*`tsuIi6W0yC1lVvlVvL*=xbM=CqFu!dpG#58Qz#Ga ztJ@Rh>(&NtlT&Dal#F9Cxpkth3sBnMC)7XJ$6Fs*-R?4czBfB`xm>euOLZlgvoUh@ zwn7O%i7nc_UP6S%PdqFT4iE~eeZjgZ=^NX|EcUQ<`!bVC&ZPIN8%%{yDJkFp2!ic_ z(}+%tNj97pc*9UHRi2}qfBV=0_;`JQx?81z!+L?+ZtG@8Z`Wbl5gVk-lJapQgyEa4#1PVrte27rsAVbKNroMBAb znxxtb3lJgKTD0POo7^#~6_Y!wJds(U>*XOe%afz|PHdeaQ*Ev0gv<5o*s_%dp4`zz zz`;GKS@bQS%H;7>_?J?BC1ZO1muHrbL3XN1sPaROdZjI(DGbKvi>o57e_=&q;K4{& zw-h>xGN4QJbUniKv%6)+*Nu+*m95wZ+^p9fKbuPe=Y_u(LRNa1eEt^HMbTuI6btlg z=J(4PrOrXIZy5NE7V^^2t#!-Wn zqQ~kYjc{yD*%$^GRE-IV&FXkW?uuo}n7J9lZ5M}0G9vv&f zYrD(yp^whz(Q~$vQge{nA?>oGOTf8*dh;jzj-JRHN}c&!N%9n|n?kwehF|SDD#hf? z%y3LE`2wlXu(-yJk$i-}j6p`vkz#OAEWpJC;VlxtW39k7ZV4h=s!no3v`Hb1JhtFa zzJvr`J)oM5%)9sid&{q|rcsiDw+fy59m^w9R3P~ShB`-7lShh8RgpHQdJ=aAmWl=A zLt3y|Jk|pm)H5y9%DH0g+g)%gHfbj7bP~qfswNxCoKHMwN$TU468OH2Y~(cK7_tHE z>JgpGrP5mv@H?0GHM8SHbnVOoiGw|`-kmLAur&ooD=4k;n%)s}5Rm4OcdsFsutMzv z4SEsyE=hSs0C`Je+WX4v^4b!S%4jeUQ#{hJzZ%eJfYs)4ApB^_O}0j;t{hp>6^lP0AVy^KpMDK3^u))m;L*HodX|y{Lx|;m&Va1 za?4yrjOPL#HVhl710m|Lr4H}Bfyg$RSP1Ab`HIh-q2h7M8pO6g(WSv>rJ>|}_A=Lb z%}g6oVfn?3YyZKr&_1@R4eLtH`lSkz*R$Pcy?NFb`2M;qG!t@0*WKYD*#<=GJzYll6BqA^reeqmP}!qER$J&8?U}>xL99{bBsV)~G+&@Q%?ot1^IXb{ybM z-$~*<6xi?1jSI+BdFpEO)ZhLAE6!`zZ^||&6kZ%?iyHGKeL2sUmo7je{8s4f#3$Op zC#M!d1=-d}4_F2)gsX7)fa`G#WJb~tvm6Y~V}B`-442(mcYl4px6^1YWXcBlbmea6 z4L4I=Vi-FpJINu@@pX6tIA_NP@;HMETAOU#E*_y@;hm%Pvl0+!YE5 zq@I7-s9zCQ=1%%A&|-6}ER^V#z<8hvEX!Tz<<59+#EE4>@uGvMjs^{s*DknVJlqIW z9BZ9b(4RZ%+Y9YEcDF#eJ3O&AK$Tsg0PP0}MfD9K;o|~{%wNvumns{Lv}x`YfB=BA z|45RG-$4jk>7e@tP5@UroKEQrylX^q!H2Mw=R|RxEuqMdZlE_omaV6V$ve&qT-y)K@yZy1l?4u)qCJX?bZTO_Q#-e0T+h@NhEOymJn9G~)LlvL)8Ksb5 zLD4XYdxeLUq?9X7EUsq}Y3jhd2dOi_8V-tN6&%@nldfjG;Wq&OUuNg=#JjV-HDJyF zx@bJ=l_OUN5Xey+&7c>CkC|0deU0Vk7?3b~XN_d+u7P*>Az8kyOR2!M*?E5$HbAI= z*>(C+A&oGow;R1>U#5?LC`U-fJ?qkzvGs09Wc{zz{;Naj&-nrxOFeG(0$G&%HyVX4 zoia(|n*!wq+@|G$*sDj(2JrE}fA-g#pGIJ2ZS^^*R@`UF34$gZ z!Y~=)LJFL5Gna^B74Px9(a#|Q3}?C+V)OM5sdQa9_*$?xoRDeuF!wi-y$t&>`%q_~G*G{8%x6hzpn^ z4$#NOM?N*(1f;&rT<BNgvU&x1V_nN`<3F#(%u6h$#g= zz`G7=p7ko!G4RmkhqeBnu7YZs&xxpm_lKYseJrVxDOPF*@_{WY6 z^%2nmvb$&0HrqV9<&6SOpcON%V{!_t$vH`N_&_xewWLZsg=}g^(@vprrtujs!A!1xiT)=@DYb|YY zonJ~$&H868?-2z2PrCP4ufA{Iq_G|8rlKN)a}| z5h6`1oruCE7~Clol1C6$VwQQhZ3-E2%#D#Dy8~T4+R*df+>qy=} z6hZlx8Eb|`#^HVb;-JfOuxoP4f4n`3(w)8leD<%8XEKspZ?k4O_+EdB=1E-6GWHHzb*l zS~q^=&j0Sl0vsMsPT{RfQbi6XT1)UCJ-Zu3U)EWYY3<(g;otGL9rW&Bgya!G*5DKg z9p++v{%2)b{xHmsLv9pJg_lCRyob@5dDj}nKV&XIl?EoppRvwsgJt4LWBtt}y;rIa zUw%j4Sd3ch@1NswR_$_xp_TK)CC^cMUC3Bd8kSdfe!ni}Y(wgR9s zFV@F=B1g5rvS-rQn@5Gq>bFC&<7k~X9s&afmr@OwrN(bqTohezv|!b~uQif$m0{!A zkd~P>Mw@FvU=<_mzAYen(%+p&8{LlWL-NvRnSIjz_XDP|KicJ2G{Ay|?h?o(qF77n zpTLbkIgW?0yvDEF)+cj%gytqwjXJq>7M%LXViWCs{?AYgYzjU}G!o4qS!hDVV&Hb)KBg)^r^}f4m&OmMzC3;f%B*QUe^OCK z&*;(N;`?Xeo&BEBBU7C|-ahgdXF@|>qb|>pezKYTcN6u?j}y`)0NU81EjO;xh`QQS zn4|e$zy2@wqr*U1>>iaX5o)3dBX6$P1=tDuWhjGif3;Di@h0x~1~z-HalogfVJbGD z8A(8m`0)QYoX0uA4_XQE*>xdm3usIAmZ~HYmaXDB1bO`ke1A-cotgDT;v>}|b7J_Q zosTvtOif_9JteTeAyfhZa1p;du{h#Hm6$tlZ|y|9NrC@u!4njG0p=u0p0>C!O``AX zk|Im-u(2n;=}{Cf7EF{u0Z^oRx%&dN#?m?kJp@bio<@li-`2INj<9Z-A4GCA>qZT>rk>|w z(s+u@P7M7Mbo)=k0R$31{C|Q7%Qc=ozz6l!`Qfhh#7aZhs>m_GieF{s0Ot+0OO!DIw`BB2vRkDW`4Z*s2E9 zy85a|aP&XN@Iy{N983(*Ed65`OdmV!KAt#i<_XMi2PD}Q@W|K|!?EsBN<_hZQdoum zm`DBk*udn`)Q46UR2%`Nt9djNr%y^Dq5BI=`>h>J|9fNsZ2XV3O~gZN3J#(}Q7Kft zA{)Ve$-%>9r1SGqpDT`*G+VcWT2VQ{Ucq`N;X)#p+AUQ5!?eUS^UMU3&qF?z_hSI* zB63d8X)?&a1n+(Z?YT-9kjo*(DC3~O!YINvZ$nrlL9Wt6XN$nTuD&ak3?t^?G5K@#R0IeA(CK6;vtcEH9;S6=}ik^W85tMHsX__TOjq z5w7xi?R9j2w)bt?WjaF%^^|r)QrwVZ%HR--;L*lpN~iJ+P2l$}oDF?|%pNmf9&#o& zfcWoHN^^D~8`lnP5%9R?I>_;-&P(~c@|E#1*q^Y~d3rc2y8Jq7w-F>;TKF&K{amiV z7W0&ZQwg51Tc3+Q#0#JB@xCjeMT|}E&mMc7HF1sR`%5$xdiU*l+mV2mkgN{G+JF!i z|L&16N_>@@n4#Y(_DNkWZSs`CzUHH8kzx}uWS=;?KuynDRr!kK^>3oNN540b+832)is2brjXUH%OA)M|Kwo* zJ{uw!aPk@<*gZ=&g3Pjh6OtZu-bWj59hP4UH%aj#q}#Ntd5F8Axn+yq;l$XG({x*^ z#P6nD0o}QLi1f0yh+HO5z0$zd*ST4_6)jQi@34AQ+JB&kKYY;oz=}m>E(4D!0I*!J z*R6=>9`;q;Z`QA)Ahj&SMGHkytyy_{ep<9D*kU^Z+AD@Kd4zzq#e}0l^4LR|$&-J; zJ?9z!y*QbT8I6z@6u+nCJ7NpZt;iW)S?V~zHOD#5gD5-@V0l5c@qQe&S zOG;vjSQLe=l%AFpmlS-W*G3DT+Zs#X{(BnyBTGP9!}?O6G}>0D!~~T#9>f|a_vM>K z(d=g6`$uI(!8{<1dEUc3nQe>&;lG%j(_bwc9#Mk|$*%%ddrxxZH18zjQ(@*wz~rtf zW&EP9z4jmM6izAyfMG1*9dL2ygztn=$2HCK{i;TNU1&+fw7wrKotU1D8sl?W$i!Tb zo74=rtRb7eBb)n>ZFa!|dngihBtAAEdj89V8xsLn%^uO$Q9)uVmDifn307eGfKcYx z85yP*zOyJko%W`%D&e?e)FEBL>q9Tr+hPkMNf@#3u#yCD27~Y#7Yrkp)Ek3bbb2C; zhA;lv&f*{zQ=`~^wk8-wt_8gB_3-NK=FR_3^gPBK|K|B)M*I0Hb5U zq$A`2to;;RO~t)c$v;oQ94hz&{-{^v5Qu`hz2{=i^CgIX0C#sHK6Hcx@@1hh&qS4T!0feWC3`a!3MO?2m_-BrinE}BxS@2#c$J(6hrbe^c>Teb$*}*_Iz}7 zh{p@^^!hVc#zL|h}CtK(B z?ms<=rP5Es@h0J-}uF9&rGjAIa@Vgp7^5R8w7bn}=)w(hg5pt^Lr zBqcjb{{I+=pE5pgqpZa3aB(Ks;RFGY&4?TQj*xYwIRWTT7h~{~LzEmTJEOs05DC!c z@@cNQ48kWN3Q};sW^MN=?MyX;{$~F zpOt*n#lgQIFC16kGne zY_kM=yM3MyLl7DRyENdiwO}r9z@2Wvu}U@vzWy1F0bAV@rj8W)jsplIB>7Qt*qXr1 zXS~+mXdMIJdjBs)p}tc+4q;tFk}Cs{7cxNv}p-2GbeCHFWi|X7+O`>o{w(^ zyZ?Gdle(J$d@x>7X-XiJ%cuo=`hdYJfH-pH0!k52<@^IrB@940rRgR(&whcptV^{G zlua5Kq~u3I|5XM4-=m^mIfi_9Xj^N~jn5(pw18!)yg{%M&|Mu$5vKz2|K-=q#sK$E z9*sBmBG`im41ixL?jU{VN2isaO$_>z73#9U0)}i^9{~B*X#f=Z38D3hj8Hh=5Te%4 zqk;b(BmCa^dPHzDlwbh(5$}wuOczGB8QQwnyfvz+b=&Lf;^MLug!OG8Yh{T06Caw7 ze}O(oF|&ZSJ;J%Ko-Eo!E8lOyL6~K@E$30f0T^&W3ZlUv%CqZP7dh)*u=LLPzmm%i z1IM}>Bs(Kv*pnJjGkZIG!Ln5qB^race)1P7d2DTgU)33^Csf2EeO8 zH7tRGb>N?N;{PY%`0EV-yh#|*B!-g3~{zA;`Mp&Httgg4AUhtRK^z0>xP`A#QherH5V}t-!LdVE(0MW;eD_$h4 z+gSrp7rO#`z1%|ejga3tMZoB`4F| zxy^^>pmQUTT?E89;}I^iW1jKKgaS#{r(?3SSlIkrJ_-Ic;cYrpc^Q{T*FIn1qm$M~S-l(MeIjN5a6BsKKY{`9r;B$imQXlbVB(^(vu8kKueOIl??5(|)C%RB| zrXn#FiJr>q0NZ-D%(sbVyC2fd<2MFf!fwVTKd)Ovww%-yr z3cE^|*qcXJ_n^VZZ_k18TGrXSf|Rx6EW6Y8j`xIVJc2qLI`EF+zej2=A_7&&Ku+J| zf|%~{FZ;b^2}{ zLf{JyV*hZnH(c0W?(j1;-*;~t*y427{OJ{kk3R`i&cuEn z?vhqEwGafhZSvKoX43!Hc!YD-#%D_Ce%+gb<#ojY^X*YpTMv#~SKNfWz`uzyVXetlG9UhF_pv12%S4euZm-`p!Y7aep2^#-{N5NL2G_PzKWY(48e7aP;0{S zlMD0luso>IrKWaD&+eMq9;9SRsFW66(ic}1!_J42|im{Bp{rc!QCyuBSqnd!%=Gx_v(g>;Qpdq@SCDF!vn9!PPQNc(%KnVN>% zi$32~vpjL)DZTOs6`BJh6_-fKYMH6TiRQ(J{zW|95UJ7XWc^zHD zoq{yL1p}3AIb$=A)FHJafOkFLb>21gKlJMqP0i&4?@ga7H>u|H;Xx*GEUv(2FDsCQ zey)hi(^6Z3hE;*QpuW_UB?&F5mZ>j{po@n#V}PPV71Qbsje(@kA1$hwI=r$#&->w z>3w&iBEbJ`j<*&9l_eiHe2>WzuTx=>*{Ro5rPP2=u-|B=iNT!cAR$r>x}%u zUb9$G)g=;x50G#^8XxLMQO^A%ny0AI^q0x$CuE{#)1vY3g6Gj)VqsrpEv`yYz zp@JV5JmgKG6&$GUOZHbNRmG=he~^UuZDz;f50~7z)?iqcU>5z<=r2k@y*_hu(K%+D>p+f^u%Oo4)=3>oROZMpH^C|bL#D0 zxZ1?`8niVee~WyvutmO{{AQH?^^f0<>Rnq%Bs!=SJCi0KZy3t>W4aCS+6RrVuOHsl zq?6Rnn1=YMO_Ald5^zK$t_`YOTVwBQ%Ds=qz5uM5{J~9Sfn2q2wsyzklp5HJelFUf zf1JeVnNhR5!91;uL;uGMYZm-*MEI}R|B`8b&f|R_Uj|hF|3nSklp;C`>sL&H9u=DP zV-El6(sY@=6v%_b_X)Y#ncql%hXMAuK?L{Cb2G=sc9;944{ctsRrb^fjt1m&>fW!e zVwjt(>9uC3!=Co_$+GAotV=PmkLRRkaK9hc;709Sv3-ZOCO$m1Qt0JL?#NyP$`IrL z#i+#Uj$SF;tp)vf(!ics3I<;aL6;1ehr?r)Tc?hA!qiY3Rn`&r#{TBvq2Tmd+`vx* ztPg8TpSL#BGg)C35NPx^K3OViISb%?jMLqpkmtLWe|kR-%lOhpIQ(uu;*$sLw?%=_ zHI>+mJ|y2xwP#2JKW_!7fkc10gt`-9!NY0F14@F5+HS;|6N@WGcYSz9jVGrT_sEC* zPM|1+|NT%*F_-Hyo^*+rTG%E(mG|eZM zZ=82V&<7H*gtaU=855#>bEYz979A&GjJvQ;({%u5&3mGaF4$bQFJFLKyqu$uqxp=_ z%_Ce=1;+;jt;C8<(JtZ#eM{1`mrLaybz4M)il2^_MY7?%8l-SBxxArW(At=IWS(XH zsiJp9&m;0wY|i@ht6XE96O$vc$%`vC9r1AizN)f z*;!34e0(jT&hkM|S45jJq|t>V+B81mJ>shwHysRV$5dZ)rX>FsRa>7_PQClEe&T@k zlowT1#`+pVTzuDKa^G?h%yYh<2f38rDPxlUw1(Wtw6rV`Z~Na1M?|f^r`?YuP)|A% z+A~k^kmg_%EJYhWuxxLcY7X|-7q{*m;7d^;Vjn-x;GF|EaG;3xfXI%aFxe9b4qs3f zu~pl%^$%f}!ISL`lWbM0?3YbY2wiM;C3;#?2USTURhc?1O_%U~wzKkR;Hl=zZNXnF znhO6hlPk(NI%8m3YUpRGWM_ZNx)vhnLE@IoYi(-!oaCmDy+(E5!t;)&*>PUfSw^+F zIKO>KyY}Gg!|V|?wbW+&*j1;qrxT?k={vCxgYFcX>(!V&0=in<3v1A7mpoAJ?Zc~$ zs&$S-5RKmyKMZSrfkQOX2*urzSuWAuZTCp~!lKKNoG!CiODuRZMlmVzE4W9`NS8>` z1A&HsFYTorlF;y>!N_UIzORQDj3-_0asX@xJ~Jjzy?%H1>E+f@aBb&u2< zw6A61ZppbGFWp{Q>h$^e^Ou=(S6t7-eAFe#HQX7U2$G;@j|Pi^!uW+S`c^<276Obs zS6FJ~X@zadEBWluG)d$zzxEVHs zJ~i8^!bq%3r3Spo)d+r*s}=kvN8|n2QTBZ<U zwwsN0P(3s>*MukB&D{BljyR?k|1m+m%qIe_#1ujNc*&-(Ft2Bba&HVc>s=dm&7Df| zF9{N+>?&YaY`b*b_nooUaXvHWj&RH`6{Z?#eUn)QebR37O}m}MxY^W)(f=t7gH0@~ zs7eAzQlwBQUQgtybe&20t5(1CsIS%@p=Ed zoG<6>vp?;8O0Fw+verFoX3ae_zgh9Zr@sSu=MF<8_Q&=LYc~=b?xC0gk2vi+V)MWI z=2v{({)T>jw4XYuQ2LSEGGCwHTNv5}Y)PHKu+}3izu~Z*Z(f$zliPSE`PUdmUMf^d zi;iG*$T`jn3r63kr&4wc0);m8QpiE-#bpb8y}W_%KX0C64G^ju;J*qm<`c@+^152W zW8Cwl)4f(|zoz}-Uc}AmbEks;QT63p1|0W7=^1Xu#5CNGIQhh+4MPj3PP(Z6X`!tw zNv$v)#az6C+wkzXFm=e!TeSALK%oXLASm#-@D_c}IsqF^b1Ei|A(2<1qg?^7 zfxBM<8fKRgKLolhd!W;X!~>5ywp@fZG?NyGT(pzvF$d$2+H`Bcokg?!REpG&?i>od z_BO0K@LTs;Z_vLtbskzobChs9W^;#E-kVKXdLo1~Gk8d~)gZ^x*yE+39W^VC>Qhd& z5&NhsV;5F~GQn{?$`Qw{{JVaEth6>*6qvIQlT~Z3&!4H@oC^#N5zkQ`%9jm;mQ14cvU;3}ny8D}^uC!zb5MZ!B zFAyL7=6WQ-k)Elv9Jbw4sN?M!uCR$NVxkvj_4E%rY+I|%5w-`VhW=yv{m$t!zaZbN zl6Skk-e2p_QiaNq=}v)&1~*Qp)Q{sT`eXN}tHG(iBrnWqja5j!LUZY@XA#*p$ds17 z*^@Q-*+ffXXHt2I{Z=fOPb(P(`_|>6ixsY1GAIqlMK@RkBG*M~tl1C}WbQ(8`vX~r zliJ%%+W7&(*zI2dM%sFqP-m8maV{4sk@H`*=NF>+zGuf&B<#LBC|Ehp({{4D<0J*? z?dXl4W6M>VL)o&qMEjapqASbm8LdFI#y`N;7x1sliwa}tj()?x)4nQ4n{5B|Vql(j z)A!x{&IyTbQ%`;GMOUJ@ zn6p+rC&{>XVayft&g4t#*La)8U1rMp317xs-^0~6%*lR+5rJ*TuSO_!gEQ^E0{Y^B zcg?1OJG$9@ku0WuD>cL&3}S>&;oljhp&yzXIlWNm+oU-Hy@%p(ti#-|Hohbuh1dpb zuhZ_ZN#u7 zE8<3cbyedK06Pz&o&&uI+D62l8KP6`+0G*ClM5o(t-5yaxX*c@&M{CGG=%{V z_?FJgrEfIpSvtlVyq=38jD_O;<0(3a3!ba~WKGJ!Q z;7EJ;r+cV`qf&yCP1|uH9gdP4-G-Q7BD7;}bmq4z-9TelHwbtKdY&rLH#W-aXT{g= zX)*`aJjO#t^2Ovb2c+=baRx$i>e5ytvBw#MIZ8uqAnzDVaGF_`1fWKSN(_ zOyCOCqbmS4A+%nm9R^iIDCWguy>@ffnC8@!ZgfZ7MKSB$AA@OU;>6B-#xMi$YaW@* z5(=FgH6_gSSKoeiPoJy`=G2w>cl{a-=~D@jZK{Sy9s1r2kg`oEhL5!ZooA0n*gpLDETDxZ?Hb62^%tPlty4u|dS zhBr0FG2*e|^K}|SAsYGUB-`Z5{h?~Ro@b1co94ENDap~_Gn;(_)YUNmV)93pIv?s7 z$TjrXUVE)x|4`RPD|9u?tUZE#L~@a>3J{UG6X>`zJU5mTTgx?xxJc%;1 zQ!EF6m$61glr;R^g6>Mv%$yNGCMLFCYW&76b_8Q6jS%FGC_+SYU>Mx_q-VpJoi58r8WceFMpAVqM|B%ZomzR^o0d2p;Cku_NJE zWS0IFj$;~4^OdA!=i})w4;^K5F;+}`C|84TEpVaxkcBSt^m3LF-FfS zg?)4s3%%&ks}0*5u>%fti#Jv-2&vE`u5dB=t_54-?g<*(7sb%dc?U`J`G*`PBh=Wp z*T7$sh&em3qhqgUj{Bc(8MH)d*mCW4IzuWdf9Fw-eE7cwYTH?bn0_Fvy7yj36uO+ zG<`m0AD(jD1FlxTFhgGA`D5$)nVD(xM<4V}`e({dg`tgtFI{a9V$AUNBZ8yPXHD-YZ zJl`yJj$!JcPmcQ8wJP;^An!s68`bY%O8qKhK4T*7$Rmc3zxK;0?j|kjb>;dw&*F2r zg*9}?_LKVkGeA;>M5lmASTU<;(4c^D#jVa9p^CK*x(8DQF4TgC+Zv*|3~-H~ft_ux zu!|ABd(3Jez0fz64V@6C+?|?5#&%pstY;lpugx`~gn`-gC=Gcq|GC*Z5LkxU>tZf! z-Z8r=nK=)|>Spa1S7?%J{$0MPqr?ED=Q;dc(}kLCVW1y;Xp$>ZrTOCqwlKjUYm+M+ z;31&$gkF_m4}q%W()|rs-93D0LW@bVt0C-J5(^{UAIc_loK>fuxiDHXqoNjiu)aM2 z6^kO0M!c=4;twCENd>Bnhgg$lf75)Ij=1vVIT7bUn@ix9^_zlsA(;BG`K|03-zMRs zwiR$}gKFQJ89O~sYQ%wn_PU2t-X0b_u_yO=zD=}y2I#rCIuSGoaPFkyqF6jX$>ytf z=_P4$0G?;XC5nU$;+iUm$9T5CB#$;EPlt)9xK$r=AIuZyoGlYlr#Dk{0Hd4&ysG$JOAw7#F^Jlzj zdV5t<)jmXt-G>;Lg9`V~@W{g*!$56~!Ux`fM3fx$?FaK@u66N|Hx1AEzH8c^UL#Z) zvlU3Q{GIg^TD08hyH!1DTtihN?r$Ki4ZM~JDHLO+2cRR2#`F`e4f>wQpZp0SoFs-c zW&k{&tEeFNJUi=VQZQ5oQz3w*)j%w@XNI0$02J>TsC<#&;`M;tv(;EAlPf4>^?as5 z{#Tc0sR90zFtVOv5l8pJ$?8kHWZ@ESdc`e|ys(Z{#I<=peo$LEymLZ|c{mIQW!y^} zIZzSD-+91?P$V?^q+c^7cWhAVMRlnum6|GVORT%s=7T`6yeII6oZIvxI#$o5IV`F7 zjhwE0JZ!#t*;VQnEs)Fq(Yiz|RMISpKOyvOZTe>%tJ;Ty!fQNp2wpQ}gR#&MPHKHH zSCa#eyH;!PVpDA!-nrV|Z4cwrgOR;61{;WA-yi-eLOTV+B#*drp08hQQ4ch&_h)X6 zY@XVwG6uBdI#QZ*uKt-5(VIgxfRitdLg3-=YXTV&%oPnc^Kka$>TZ~?*)!sOG~8F^$rC1gMgidzmq_XX<@SYL(F>#b8>?Snt!{4H5XtC+ER_%Ewl}nzWkVwuy@mL~?Vajhqh> z%aJ{LshvB2%U(|+T&8*%e z91{@{`vOx(hjwrp19%toXm)$|fTi?BC!jh?={Q;UnN# zjFRHi1o0x1C%5-a<;^=IO!mKR)b0ZH$%j_gy4p^@hXxeZ^031Nh}wjR(WF^_RxfRh zsS8865JIE2mjJT=6QaHcDqh<-aJ;DO#Ry(*dM>XUq$*Nh%{p=*dP+(jdv4pTEZh_+ zq%jmd+3(MnFd0-LiVUdmabMk)w?<9RR{5cp`E*KdKiJn0{_8NO=00(-X`*Nq%rptS zbvtz9Ti;^ep!O3YFt+8S3tr-wgD+p6K*hI$5LWawa@sRy}(nE=lyb-3^%Jb;PtXY zUD4FvOaQqh^s=1WTt?3ZBakJL36)QI!Zv=1kf4q0#B-PEbTgOT1m65b<7Y> z!jQTZefDWZw#FNj?N$}upi7q=7qj9pjiH(p&+N|j)V>)dYiU=pE3edb!rlzsSh+IYQFEh@?oO+KCZVd@JA^|WY%8+zT6N6( zZq{VU3K`px-#!-W;ph1K>{Yq*>=!|!w1`Ibn2uac*IDx#&9oJKH%z^0=H*IzY_vd? z`YUwaOr4&;-6d8b-8e(c#OrvG`Qpj8#akNdEWAT`G3u=O9Y44@Dn4hu1h4A6n!2vr zCokO*Uiei2ynk>_E!iby1^wzs?$yh{;>sQAs;umnW#d!9AKr63raXT=^((Hk?}Gm& zM%#zVM!sJy>ocm{5bBX5A4V}$}+L+=B%r}zsC5uL5j$$J|O zye3`VVEv`YxdUjA&`(h>Am zY}pm+l_1Z*|N4PGaw42PQmy5@#4YQwt#yOJ>?}kOo3NpurO3DYC9`wmpKhF-6RSR- zpLX`*MU&2H()j+##_sH{V71Zgz4TNJ+nKfatx;`nQUmh$Rk=8v(H-&0riEjwKeH)%br&kYcw-L&+X-vkzhO2JVKb5HXC)) ztk}z2d(pV?MU%wi@BT+u3Z7H=^a2l{dCEVutH5JZP;J4$$$rToos_0LGdWqxKbCv` z6KhMqS38Du<9!Z{{i^nI0&>>0!YUZNSG8XOACwk-(grR_q^~un<$I?jLtB52rR?EU zm-F*qW>nG6>CO&cQdOtuE(UA;NSsg?sNHY9up7Ll60#TgxZajm8&RO6$Ht4xf}~1N z+rGETD;_M4?POiTM5=a8VyA)^D;-gDF`UM7BB>a#doQDj7Da=6fc-Pq)}$h?<_uKp znR8twWRn9Q+)2gO14}~O2TEd&^00IV1+kVxm@PEKAf9>?%6hStr)eh+NiM^)&h_YG z)gt8zRr>)hyzk7Cv0XY&lrM&o^3%FL%$iayKFfd3Qrdpy@y2hu`X!m?aj6yx_vGEv z3|_g*JMF%XmT-OyU)SU^Y2FG}#M{t{uC&GXLu|z}z^c3>Owpy_@p!fzzY5}3A9_9< zN?6k5ZGyoM&Zp;M!*y7S1tKG{o z5w&xS@4TK#Rjd47Q4SWNfYc}5dbPDC*EWopt3T*O1hXz~YHat0iZ6c4e;4#^x5?jI z?O=d1xyIXs3(5Nuv@_xV6=L&4hRj332%CB7H%;Xg3O6g`LWH(-t3|hb_(90ffP;<= z#?vUSJnuVQ4=Ll_V|rVBB*k_A9AbA$x~9fY4pqF(%v_zHLiq4Gs`kMQkh-S%uJD&5 zu8fI7_5aeqGJ?ri;lS9t7L9!_N3oZ>}Htkloo+8K&h;nUWEqkhpZ{kM`r zNwTKPQmtBZ0dQbcF7s2Qmf@Mdh;ns&&9Rv`g)G?oD3evrXYt0c%m5oqms}@@A7F=}sVr1=)eyd;i$*qhk9q;?A)yC`ckqT&KmD_S;+4AM=LbbK9lHc~N+_fDhL?ZLT&+%gT1g6SXG+ zUv?XI=PavLa|3q9oZ%5w>7-c?G_8nX6@13pF-myUS2!$*!?Pn#|58#_3eWt`mk%AS z`bn3CG_7BCN#9nMoT=g0cd#?-oQyn?NFxSK-aGmzJsiEYWb~e&Cu6?I{`Ar&97ni= z)Ge>dfgz(Clw<0Ax6L)YgamA!!;*8oM!(foS6QT}*Ti*FHq=PpG}GbJnz8#^jY05~ zaiU=~%zjNk(8y4JDEIBlQ4(xvZN2jaAzfO{F!WAoWp>*6)8TLa^CxiXvzGd=JD5gs zUcVAE^npbB*7paD@Xl6b!&{B9ocnf_5>;Kfi!dP3PgGvMFb=$~!#OFnzM`6$_Y(Zo z_nc?Xxy7{OhrQ>kXgAlrF3+VOS%6R!4wwS2df7Im!RP3eN4NAlL4RQ2V&@kBd2(ikY0cy}|AWKfmsnLw!dHt&t*rvG5t+h6r!O_*nwZ;8 z$=sQfxVE-~JvVolGTzP(5zMk${?#3frM?H537yz2kex8F3CaoZ{#IujN#nanPmJcs z=6bDNtKS#K5h-5MXzKNv$kirtKc2b}xgYGa+;7QLdVSwnoc^6`rk>tU-VM{C0eSvH^-hQf=Bj*rp`ktaHf4Yk*khRb>awLCw7v<84y?A}lmbo9-v z$-)gRLZiBzXE2HZ=r;e)7mDAm1TDJ)@=G;JRSsNnP<{_-S0z}^snsUyOuBIa>Ck%a zW3OHuTcKbq>Ih$xwEbWgwGVTLfjN6ni*9!`=CU6cq+AVwT|y>TX>w*_akljmOzO4{ zk7Y`J#A8pC!U?;6dKPF`Oiz$rowAyKt_mEC$X`~f)DRs}II>!SOryR8?CS=44F>o& ztx8GlyLosS`dAyRmp!Oz;sx4O-PbG3FbZShq%O;-4cLoyggU%N%C9nK7s5sAjt{aH z!oGdvrq~w+6tW_dg_Y_LRke9o)eIf&wwFO@Rt5y-?SNqk3ssD%z6*Dte>-!x}BEDmXc0gb^A^4e8y%JRpi8*Sv%ieQb5W2(mc7%P}MN z)1Sb7O{$V(`!lmuk2(rqL~8n^S%;<6QOEdMf#)Fa z5RRhyZ~~CYyP-ilY|r=V-%35euzSQ?+e(JfI3L!Wn|DYrOD^`#-1)#ury0?4s&FgG zg)a7S>&zMYGvd(${laYXxi=#U`1#EHls9MrPWnf`t}ndMY6-ZgKT=xlH?F?AhtioAs#jPU9^lSv3Imu}DJ){IBShr- zI@VmyWXDq9e@q2}Vi6Xsduy~>qA#(w>&i%kJ359B_-c@t?;_&$U~@5FeQfZ-I@kvs z+}hFs%$(gGU2{~(C&4k|wKJWt^SsPiJfQfNvY_Zj$V@V!xnH;(?N3q(v=HiDpeXam z#hek!w2*~9Pt}%Bfyt+;0xt1Efz_Ged|Q0Z*Ck63lTsy@Mv|!US>i-bU)EZd^^;4np;1}c2Ej=ygvr1Qpb#*G^YhWjFnXva7TMXN*aBH!K1 za`M4gU(9ui#{QH~Gd$AvdlD%RzrfbynM{3EZLGd7g-7dsCY-cDMDPbag?iq5$pdq> zJ%8pkaNH4@6k5jwt3U>uAh|6*e|L_yI7XZl(!@BZV8ttZ^@=XvjGl0Ts2mnSu5Vdy z4s+h@WPqZudAR&YuiPnkFU+r96%CV&=pDl6Z<4zgC_*IF_%r9d7;$B~E~5NzArq7_ z(zfPM${gYhT|sHsqnE%(Eei~(vkG3B+B_gF)D6_Yhs_NZN*X4wrB^vWczp{svqv~0 z+#VVrMPcO03*PxHqno;W@hf6Mul&Z*p7FpMl;c|rKP9*r%GOLcxCw_ zQ>^3pgA88BoW%NTwrs^Igpss`pr%pB@6~P`J6B~v|rDfXcHti zmq&hWO7SA=U~H;)Rbc}nSgz)^u#Oy|RraT^otJCny->N_6+Z@>xmMY+rnCCUWCjqg z?0HkNnsRu^^;u2aSxsO7dZDL<=S34~gn=Q%*mtrioY{gSbLA|Xu@t}>5IV?#L`2`Q z{2VYTtb^nKGOO96V$XhsKzw&?zYcI7k-W8yh`|d5flzefM8?czAFaJi^5xV}b+h6F znPBEkt-el0`heM$g4|TQW3A9&yon^)SuA_5Ta z#NS>-0KHH;=V_r>`>iU~L0;;_*qcoo9BdBGbCfrN($xWjYNE4vh_)wsxxDLq5Ixk& zb!3`*zBIVAGo)|l(Pp!7UOcr6HrFJi6GTu=KEqMHNU9nOM6EfBZ0p>6+csQCOSQcb zP%D~cR0XleR14pUCNW|?>(x;qkA5MIYL?@GH#Qr-8`qyIuq;N7($QDB|^?fh)j0?ybrqokEL}U%XKL5wW3{Zy1Qqc`DLvQlK;dRkedY;CE-wXy5W@VpvB?LA1A#!PC0lTCb{6FXa zkRkDCK9Y&L(a@8Byrz4Td}e*bX1~mZMx6RHG}QM%QWyYfZ)~S>)VG=KP=fnDmjX1b zHXT_IvvRJ|rj|vthm4k(Sc^p#&#OJxuB5!31pzt3X$=UB0cw{tY>Rxw2ria_UG@<# zJeTsY0H!4c`9#cnV4K2g^|v-w;?b&RoWDlzKfU3hLB6X*J19p%Yf3eTvSlLz&AGBg zD{6aF#rIL8nXyk*UFKLTYxPu!@)(6FY@QHghK>mcRgD6Oj2=Ed8tJBbKBqAZk6epx7XRVDU!tA!K#fOiLJ=c^IoSPZ%jg2r$Px{vanV@OEB54U zwLZ90u*nmUR3Wp|m}Py+)<|ocJVB$BqD!VRcNZ=&%JZr8eeob(y^_>-_uj3d6)3Ij zzR%4*YPN6Et|O*F%__IJbYNvuS!2xfMhkVC4M29Kd(ohJTcGd?XL%XN^M(esL2Q}U z!M}C;X)3f@v_79T;)T_aAz(yJMjY@(-o5lU?;RdzEoaiDNDKB5?=clml5vbwrTfFFxt_jwc$eFw=M12!5ytR zr_wwxf(cH^aI;L>aLo{*DpT?{lpetYEpfo37yR;F2m$AQ0|ME#_|l+|VIfFyLEyg` z^2@#@w35f4FMnCNDObBJ>8*clrY&`L2Zi|Gv+7ZC`gGWhL$2EoYuJ+S)kn*aL(!=+ zyusB+#{Z@!je2DnZaK~8um7mPSd%(i8?$jke|}WZ!^7>mwRY#rvwQDUvfkSKQBk$Q zy!Vfu%6~2zdd`&O#5vl$?N*LMrsjS1?JBy4y)}B$7&?MlyoocZ6JI88WMG9YZ z;)~m)isy4L?OH?fs&~VEw8-R8<-fUb+KV|R=CXKlzSTrjS7JxGJ}RmkQgeVwLmoN5 zh}#^wPpG3-;zV8R-#P*HbAFBfoN=_aWl32+@z>4yuiD#3Qo4xC)YEf1yDXB+pnMO|EX`S zH?jfT((}hU=Ff%O2Xft4IIBkvsW}hbE@n3kFxW_B39v zA4e3@J1?xQ9J_Nofu+2gQ@U?M12NTzF~0=`(O!>=B{O+ft~`({Ft4|;FFzeE2re&w z*npXj?@xzW5rP~g#jA*0qEmn;n+`O3^`Esp#wr6~?e8;o2pY*{9vUQL0ox+dD6a~U zooA!=xnFs*XVLGZABtSbJkV`(^_tm((Enu$ovvCxTq|wo--UKJo9sC_XK#y@4TjW= zeXPr5eEQk0k|MVJmQm)(%bm2Duja*db=lQtPrL)g{}E}EU^nU)qA_u0kzAjfOS(hr zKXa}G{>&XQebWV+`F(AT?Nli;>8s*x?yCc>LEI1U@2l)Im286PExvZ@pFB+2UI=?C za^+XCYP60I4K5=SU%*-hBCB=oR>eL4X@8xE8X2(d75I*^{|VJ8|K1w)xc%rlz(V;i zy2-Xf;Xf!% zBqTTL%p^XuSoGeteYfdbcJ7^e&H;^dP<|FXe9!kSWP$0lSUsxJ`|6$BU@o<(CrO9D zJdc2&NE$uZ`$wH2jYfYRfsXuWKbT}C5oD+-(5||pMkY#kV<*1#x*P}B3euzR& zqrc2=l9Y3ux)9&k}!sQnmB(QT6eTAu=qWmu#pXTMn~)t&2u)zTSq+ zzpJp~M+$v6qlMNa0cFG5(sivu3n!mnu?#HI#=~3wZR#vE!2x?Y@=?MzZcM#v@* zJiT6!c#UY}W$ALZ2Xv~A>C>WQ@D^;*rQ-5fMq}zWZX+Qu^ge)^k+Jemxg zHL#}jGEjNHI2-%fcr(b5(#jqC}3-qFz4?WP+$$`MYUp)8{l9=>n1bbeTw424=!=O#)#`1SFxm}`IT zxH~DZHP(m~>)h2UIX-K7J)d?3&oyW+De}EAZRP&jrPg{xmum)>_tTfOZ;L&h%Xk;! zMX(?-GV}MTQhF|cKI!_sE=lWM>Rm|iMGjW__~+_BedC7fU8-9UG%?-ZpI(gTUw@SH zO7bz?pVV;meR9-ao*6G@g#UGz{*F-wO_T6zCNu?N?N1W<3p`0F`mCCjh&o#mo6XSu0;KpNxXae-iF?P=j4ny z&HpEH{U5UNuRZ$ziM##pLX-a&{PeBjIDI+V1Rs&ZDVZl@9n-XOf@8%}T91IMw~l}R z3-uc@JUiqxM)zMn&!7*b@ibVBPme|WQm%K#%Ft}p zM`#t5SKj?Cu`zP0F*XQLY-Ew&taD>2F1@~#@h_cUJ?)f~?_1)rVFx|YPVbCJ=&y%K zlJVYq#8Qq=X*8};>umL z4z0^;xIJq%>ZV&s;6d@v&1K)@x~}nU%WryRyP#S!xW2+D$ixQIf7b1Y$n}}VjLPmx zpvCOTM;;|Es4~Nd^uwIy<>>H_C0I$@Bj@q(-H|d6W%A~*T;tG89m~*$Uj4FwO`~n( zl6FRR1TG~Rm3>CGC3#RPp1QmpGP9%2T{xN0%(A8bAP%Axyu1h$SwV*ztLRE&hiP|V z-k4TxPupQ*V_T9MtSkj@snE=#RqUf@V(JVnzshUAo2ncBg;^m*%a{JPJ>b3y^UGkW z7_a9Ts9~Kvi)C$;L;aF-#9rpP%=^LX@du>wQ0SyC9C7`bH@#N?1-dMHuFR^L)wA%` zvpiu2dYCfehReoYu=^Jn`YOQzxR_YN1}(pbxvdgNPSS8 z=2^n?^!}1An9gXcf5*4swvK1Fgw+n0iKsHxJyckt_Sbg*`{K0Bj`F9!DCx({xaUyY z_0yePthq%sy;r$nPdB@oV z@D%#~r|Gg|8xnda{LRU>UWXbZQ{R)V>yd3nBW6;sQ;tl*&oe*hWB^P)hXh|6y}qM= z?OCFSVAMZ17HpqA^af7nF@A1d{24IX-oyx|lw z5-JVC5%BrWdoh|uMebDJpu_G0~!|fB_W8<8m;qWH=BG-116szSp9H2wZ2$nM(6$gutDhp@0k{^a3-anUJfDecTbE-9`5(JPe=x&dvQ z$=UQ713V@OkvP5mio->rIW@O$(n6LJC`oPT`o;2Cg&WD|)ZRB$0&+Q3^6iUWHi#U; zv0jb%4{{bQ&P6+^+@9P z9-2Hcey>kR{0G*X=Jvc#A*W6S)+S|dl6HorxPQoP8HrUhp&lmHW054&x#>YH$xkV)3osKyabbFU1+LOgk3^xdajYMRtF>>m5I&z5239Dnz3 zz1*H5pYqyad7sG=k?0fS&ihqmXGN-(dAsX~21V9=?xRGr&JwK;so^oumY0~EOxB79 zdr=^4_;lJNVA@~#tsW>gbUf&8@$#kRx3_5v&-E&&vn>tAOjDd`^*$MaFTWfe9fAXv2D_hm8Q(mgkde%~EUav6bD6O8$^AkZC3GYa;)ilFC(qri> zRA6>(u3*q-MLtaQ#<&^^hh6Eny8BmCpZv?bJDq>?c#}ked!JGJ^XnCRygLa`rv>Xs zF!|tN&L0fj=D+8nAp7sI-i-gR!1({zZ~u>a4bUce`Au}xDKMpwG&!`DGD}B$-MeLK KRCN;)^WOkXcjmhQ literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.9/original.prototxt b/cars/lr-investigations/exponential/1e-2/0.9/original.prototxt new file mode 100644 index 0000000..c9d0d1c --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.9/original.prototxt @@ -0,0 +1,388 @@ +name: "AlexNet" +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "train" + } + transform_param { + mirror: true + crop_size: 227 + } + data_param { + batch_size: 128 + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "val" + } + transform_param { + crop_size: 227 + } + data_param { + batch_size: 32 + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + stage: "val" + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" + exclude { + stage: "deploy" + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" + include { + stage: "deploy" + } +} diff --git a/cars/lr-investigations/exponential/1e-2/0.9/pred.csv b/cars/lr-investigations/exponential/1e-2/0.9/pred.csv new file mode 100644 index 0000000..e3178e9 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.9/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Dodge Caravan Minivan 1997 2.23% Chevrolet Express Cargo Van 2007 1.92% Audi 100 Sedan 1994 1.54% GMC Savana Van 2012 1.42% Hyundai Tucson SUV 2012 1.25% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Chevrolet Express Cargo Van 2007 3.17% Mercedes-Benz Sprinter Van 2012 2.96% Dodge Sprinter Cargo Van 2009 2.88% Honda Odyssey Minivan 2007 2.83% GMC Savana Van 2012 2.57% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Ram C/V Cargo Van Minivan 2012 4.89% MINI Cooper Roadster Convertible 2012 3.47% BMW 1 Series Convertible 2012 2.43% Audi A5 Coupe 2012 2.0% Mercedes-Benz S-Class Sedan 2012 1.94% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Mercedes-Benz 300-Class Convertible 1993 3.52% Hyundai Genesis Sedan 2012 3.45% Bugatti Veyron 16.4 Coupe 2009 2.85% Lamborghini Reventon Coupe 2008 2.63% Chrysler 300 SRT-8 2010 2.36% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 HUMMER H3T Crew Cab 2010 5.1% Jeep Wrangler SUV 2012 5.1% HUMMER H2 SUT Crew Cab 2009 4.87% AM General Hummer SUV 2000 3.93% Ford Ranger SuperCab 2011 3.14% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 3.98% Dodge Sprinter Cargo Van 2009 3.1% BMW X3 SUV 2012 2.63% Hyundai Tucson SUV 2012 1.8% BMW X5 SUV 2007 1.69% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Mercedes-Benz 300-Class Convertible 1993 2.33% Aston Martin V8 Vantage Coupe 2012 2.17% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.15% Bugatti Veyron 16.4 Coupe 2009 1.87% Audi V8 Sedan 1994 1.83% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Chevrolet TrailBlazer SS 2009 3.38% Chrysler 300 SRT-8 2010 2.44% BMW M6 Convertible 2010 2.33% Cadillac CTS-V Sedan 2012 1.96% Bentley Continental GT Coupe 2007 1.42% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Daewoo Nubira Wagon 2002 4.83% Chrysler Sebring Convertible 2010 3.37% Ford Focus Sedan 2007 3.29% Chevrolet Malibu Sedan 2007 3.08% Chevrolet Impala Sedan 2007 2.4% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 10.29% Bentley Arnage Sedan 2009 4.82% Jeep Patriot SUV 2012 4.72% AM General Hummer SUV 2000 2.37% HUMMER H3T Crew Cab 2010 2.36% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Ford E-Series Wagon Van 2012 6.13% Mercedes-Benz Sprinter Van 2012 4.1% Chrysler Town and Country Minivan 2012 3.28% Isuzu Ascender SUV 2008 2.71% Dodge Journey SUV 2012 2.52% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bugatti Veyron 16.4 Convertible 2009 4.25% Nissan Leaf Hatchback 2012 3.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.09% Daewoo Nubira Wagon 2002 2.93% Chrysler PT Cruiser Convertible 2008 2.91% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Plymouth Neon Coupe 1999 2.69% Daewoo Nubira Wagon 2002 2.47% Chevrolet Monte Carlo Coupe 2007 1.85% Chevrolet Malibu Sedan 2007 1.66% Lamborghini Reventon Coupe 2008 1.63% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Regular Cab 2012 3.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.86% Chevrolet Avalanche Crew Cab 2012 3.25% Ford F-150 Regular Cab 2012 3.13% Chevrolet Silverado 1500 Extended Cab 2012 3.12% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Daewoo Nubira Wagon 2002 3.46% Nissan Leaf Hatchback 2012 2.47% Hyundai Elantra Sedan 2007 2.08% Ford Focus Sedan 2007 2.06% Chevrolet Impala Sedan 2007 2.06% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford F-150 Regular Cab 2012 3.52% Ford Ranger SuperCab 2011 3.18% Jeep Grand Cherokee SUV 2012 3.0% Hyundai Santa Fe SUV 2012 2.84% GMC Terrain SUV 2012 2.82% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 AM General Hummer SUV 2000 6.73% Jeep Wrangler SUV 2012 4.32% Jeep Liberty SUV 2012 3.89% HUMMER H2 SUT Crew Cab 2009 3.35% Cadillac Escalade EXT Crew Cab 2007 3.17% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 BMW X5 SUV 2007 1.71% Buick Rainier SUV 2007 1.56% BMW X3 SUV 2012 1.5% Audi TT Hatchback 2011 1.41% Honda Accord Sedan 2012 1.39% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 4.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Acura TL Type-S 2008 3.62% Fisker Karma Sedan 2012 3.0% Aston Martin V8 Vantage Coupe 2012 2.74% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 Mercedes-Benz E-Class Sedan 2012 2.04% FIAT 500 Convertible 2012 1.73% Bugatti Veyron 16.4 Convertible 2009 1.68% smart fortwo Convertible 2012 1.38% Spyker C8 Coupe 2009 1.33% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.54% Jeep Grand Cherokee SUV 2012 2.39% Isuzu Ascender SUV 2008 2.16% Hyundai Santa Fe SUV 2012 2.01% Dodge Durango SUV 2007 1.97% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 1.73% Cadillac SRX SUV 2012 1.55% Bentley Mulsanne Sedan 2011 1.48% Bentley Continental GT Coupe 2007 1.47% Rolls-Royce Phantom Sedan 2012 1.42% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 3.67% Dodge Sprinter Cargo Van 2009 3.36% Mercedes-Benz Sprinter Van 2012 2.86% Lincoln Town Car Sedan 2011 2.05% Chevrolet Impala Sedan 2007 1.94% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 MINI Cooper Roadster Convertible 2012 4.13% BMW ActiveHybrid 5 Sedan 2012 2.39% Audi TT Hatchback 2011 2.23% Mercedes-Benz SL-Class Coupe 2009 2.17% Audi S5 Convertible 2012 2.08% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Chrysler Aspen SUV 2009 3.34% Isuzu Ascender SUV 2008 2.51% Dodge Durango SUV 2007 2.35% Ford F-150 Regular Cab 2012 2.24% Jeep Grand Cherokee SUV 2012 1.91% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Mercedes-Benz S-Class Sedan 2012 2.54% Dodge Challenger SRT8 2011 2.3% Bugatti Veyron 16.4 Convertible 2009 2.28% MINI Cooper Roadster Convertible 2012 2.27% Hyundai Azera Sedan 2012 1.36% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 Ford E-Series Wagon Van 2012 9.23% Isuzu Ascender SUV 2008 4.79% BMW X5 SUV 2007 4.67% BMW X3 SUV 2012 3.18% Hyundai Santa Fe SUV 2012 3.01% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari 458 Italia Convertible 2012 20.08% Chevrolet Corvette Convertible 2012 9.58% Lamborghini Aventador Coupe 2012 8.71% Ferrari California Convertible 2012 8.04% Chevrolet Cobalt SS 2010 7.22% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Ford F-450 Super Duty Crew Cab 2012 2.68% Dodge Ram Pickup 3500 Crew Cab 2010 2.6% Chevrolet Silverado 2500HD Regular Cab 2012 2.12% Ford Expedition EL SUV 2009 1.89% Audi S6 Sedan 2011 1.64% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 5.13% Rolls-Royce Phantom Sedan 2012 2.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.1% Ram C/V Cargo Van Minivan 2012 2.08% Mercedes-Benz S-Class Sedan 2012 1.78% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 4.15% Audi S6 Sedan 2011 3.13% BMW X3 SUV 2012 2.98% Audi TT Hatchback 2011 2.91% Audi R8 Coupe 2012 2.7% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Geo Metro Convertible 1993 5.33% Daewoo Nubira Wagon 2002 2.91% Mercedes-Benz 300-Class Convertible 1993 2.45% Spyker C8 Convertible 2009 2.29% Lamborghini Reventon Coupe 2008 2.2% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.54% GMC Canyon Extended Cab 2012 3.44% Dodge Ram Pickup 3500 Quad Cab 2009 3.14% BMW X6 SUV 2012 2.3% Chevrolet TrailBlazer SS 2009 2.27% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 6.6% Plymouth Neon Coupe 1999 4.37% Daewoo Nubira Wagon 2002 4.35% Hyundai Elantra Sedan 2007 3.83% Chevrolet Impala Sedan 2007 3.09% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet Express Cargo Van 2007 4.77% GMC Savana Van 2012 2.96% Dodge Caravan Minivan 1997 2.52% Audi 100 Wagon 1994 2.35% Chevrolet Express Van 2007 2.14% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.1% Chrysler 300 SRT-8 2010 1.95% Audi A5 Coupe 2012 1.9% Infiniti G Coupe IPL 2012 1.82% Chevrolet Silverado 1500 Regular Cab 2012 1.53% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Honda Odyssey Minivan 2007 3.6% Lincoln Town Car Sedan 2011 2.94% Ford Freestar Minivan 2007 2.35% Dodge Caravan Minivan 1997 2.33% Hyundai Elantra Sedan 2007 2.24% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Audi S6 Sedan 2011 5.47% Chrysler Aspen SUV 2009 4.54% Dodge Ram Pickup 3500 Crew Cab 2010 3.94% Ford E-Series Wagon Van 2012 3.44% Audi A5 Coupe 2012 3.22% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 HUMMER H3T Crew Cab 2010 8.84% Dodge Caliber Wagon 2007 5.45% BMW X6 SUV 2012 5.4% Jeep Wrangler SUV 2012 5.12% HUMMER H2 SUT Crew Cab 2009 3.65% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 smart fortwo Convertible 2012 2.31% Fisker Karma Sedan 2012 1.84% Spyker C8 Convertible 2009 1.72% Mercedes-Benz 300-Class Convertible 1993 1.71% Chrysler PT Cruiser Convertible 2008 1.69% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 3.47% Chrysler 300 SRT-8 2010 3.08% Chevrolet Corvette ZR1 2012 2.96% Infiniti G Coupe IPL 2012 2.39% Jaguar XK XKR 2012 2.17% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Ferrari California Convertible 2012 17.37% Lamborghini Aventador Coupe 2012 11.96% Ferrari 458 Italia Convertible 2012 11.61% Ferrari 458 Italia Coupe 2012 8.42% Chevrolet Corvette Convertible 2012 6.05% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 BMW M6 Convertible 2010 1.83% Rolls-Royce Ghost Sedan 2012 1.62% Rolls-Royce Phantom Sedan 2012 1.56% Bentley Continental GT Coupe 2007 1.49% Fisker Karma Sedan 2012 1.49% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 6.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.89% Chevrolet Silverado 1500 Regular Cab 2012 3.6% Chevrolet TrailBlazer SS 2009 2.67% Ford F-450 Super Duty Crew Cab 2012 2.44% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 5.54% Mercedes-Benz Sprinter Van 2012 3.71% Buick Enclave SUV 2012 2.91% Ford E-Series Wagon Van 2012 2.9% Honda Odyssey Minivan 2007 2.48% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 3.48% Chevrolet Corvette ZR1 2012 2.79% Porsche Panamera Sedan 2012 2.56% Aston Martin V8 Vantage Coupe 2012 1.66% Mercedes-Benz SL-Class Coupe 2009 1.39% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Hyundai Tucson SUV 2012 3.05% Dodge Caravan Minivan 1997 2.13% Ford Freestar Minivan 2007 1.93% Ford E-Series Wagon Van 2012 1.9% Ford F-150 Regular Cab 2007 1.76% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Audi TT Hatchback 2011 6.01% Mercedes-Benz S-Class Sedan 2012 3.47% BMW ActiveHybrid 5 Sedan 2012 3.4% Audi A5 Coupe 2012 2.3% Audi 100 Sedan 1994 2.14% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Audi TT RS Coupe 2012 7.01% Ferrari California Convertible 2012 4.89% Ferrari 458 Italia Coupe 2012 3.37% Chevrolet HHR SS 2010 2.81% Volvo C30 Hatchback 2012 2.8% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Mercedes-Benz Sprinter Van 2012 7.87% Dodge Sprinter Cargo Van 2009 4.85% Dodge Caravan Minivan 1997 3.08% GMC Savana Van 2012 2.53% Chevrolet Express Cargo Van 2007 2.46% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Mercedes-Benz Sprinter Van 2012 2.12% Honda Odyssey Minivan 2007 2.12% Ford E-Series Wagon Van 2012 1.69% Chevrolet Silverado 1500 Extended Cab 2012 1.53% Ford F-150 Regular Cab 2007 1.45% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 5.56% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.24% Spyker C8 Convertible 2009 4.99% Mercedes-Benz 300-Class Convertible 1993 4.22% Bugatti Veyron 16.4 Convertible 2009 3.35% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Mercedes-Benz Sprinter Van 2012 8.8% Dodge Sprinter Cargo Van 2009 4.65% Dodge Caravan Minivan 1997 2.73% GMC Savana Van 2012 1.75% Honda Odyssey Minivan 2007 1.52% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Chevrolet Express Cargo Van 2007 8.34% GMC Savana Van 2012 4.93% Audi V8 Sedan 1994 2.87% Chevrolet Express Van 2007 2.79% Audi 100 Wagon 1994 2.22% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Bentley Arnage Sedan 2009 4.19% Spyker C8 Convertible 2009 2.93% Jeep Patriot SUV 2012 2.93% Hyundai Azera Sedan 2012 2.69% FIAT 500 Abarth 2012 2.67% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 17.06% Chevrolet Express Van 2007 7.27% Chevrolet Express Cargo Van 2007 6.83% Hyundai Tucson SUV 2012 2.21% Dodge Dakota Club Cab 2007 2.05% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Chevrolet TrailBlazer SS 2009 2.53% Chrysler 300 SRT-8 2010 2.27% Chevrolet Silverado 1500 Regular Cab 2012 2.18% Hyundai Veracruz SUV 2012 1.47% Ford F-150 Regular Cab 2007 1.4% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Audi TT RS Coupe 2012 7.36% Dodge Magnum Wagon 2008 3.36% Chevrolet HHR SS 2010 3.15% Hyundai Accent Sedan 2012 3.0% Volkswagen Beetle Hatchback 2012 2.17% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Hyundai Elantra Sedan 2007 7.69% Honda Accord Coupe 2012 5.29% Hyundai Elantra Touring Hatchback 2012 4.19% Volkswagen Beetle Hatchback 2012 4.03% Hyundai Accent Sedan 2012 3.73% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.4% Mercedes-Benz S-Class Sedan 2012 2.57% Bentley Continental Supersports Conv. Convertible 2012 1.73% Maybach Landaulet Convertible 2012 1.7% Bugatti Veyron 16.4 Coupe 2009 1.68% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Mercedes-Benz Sprinter Van 2012 3.27% Chrysler PT Cruiser Convertible 2008 1.75% Volkswagen Golf Hatchback 2012 1.67% Lincoln Town Car Sedan 2011 1.66% Acura TSX Sedan 2012 1.57% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Audi TT RS Coupe 2012 9.68% Chevrolet HHR SS 2010 3.26% Hyundai Elantra Sedan 2007 2.84% Volkswagen Beetle Hatchback 2012 2.65% BMW 3 Series Sedan 2012 2.56% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 2.11% FIAT 500 Abarth 2012 2.06% Bentley Arnage Sedan 2009 1.7% Hyundai Genesis Sedan 2012 1.66% Bugatti Veyron 16.4 Coupe 2009 1.47% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 MINI Cooper Roadster Convertible 2012 5.9% Mercedes-Benz E-Class Sedan 2012 5.53% Fisker Karma Sedan 2012 3.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.49% Mercedes-Benz S-Class Sedan 2012 2.52% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Lamborghini Aventador Coupe 2012 5.85% Chevrolet Corvette Convertible 2012 5.79% Aston Martin Virage Coupe 2012 4.86% Volvo C30 Hatchback 2012 4.47% Geo Metro Convertible 1993 4.12% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Chevrolet Express Cargo Van 2007 2.64% Audi 100 Wagon 1994 1.84% Mercedes-Benz 300-Class Convertible 1993 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 1.66% Audi V8 Sedan 1994 1.63% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Mercedes-Benz 300-Class Convertible 1993 2.73% Dodge Caravan Minivan 1997 2.64% Lincoln Town Car Sedan 2011 2.07% Chevrolet Express Cargo Van 2007 1.81% Eagle Talon Hatchback 1998 1.52% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 HUMMER H2 SUT Crew Cab 2009 12.39% HUMMER H3T Crew Cab 2010 9.86% Jeep Wrangler SUV 2012 6.62% AM General Hummer SUV 2000 4.61% Dodge Ram Pickup 3500 Quad Cab 2009 2.8% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 MINI Cooper Roadster Convertible 2012 3.88% Audi R8 Coupe 2012 2.25% Audi S6 Sedan 2011 2.18% Mercedes-Benz E-Class Sedan 2012 1.68% Mercedes-Benz C-Class Sedan 2012 1.65% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 MINI Cooper Roadster Convertible 2012 7.53% Audi R8 Coupe 2012 4.06% Audi TT Hatchback 2011 3.68% Audi A5 Coupe 2012 3.57% Audi S6 Sedan 2011 2.9% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chevrolet TrailBlazer SS 2009 5.4% Chrysler 300 SRT-8 2010 4.66% Chevrolet Silverado 1500 Regular Cab 2012 3.76% Cadillac Escalade EXT Crew Cab 2007 3.6% Chevrolet Silverado 2500HD Regular Cab 2012 2.36% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Chevrolet TrailBlazer SS 2009 3.38% Chrysler 300 SRT-8 2010 2.93% BMW M6 Convertible 2010 2.22% Cadillac Escalade EXT Crew Cab 2007 2.19% Cadillac CTS-V Sedan 2012 1.98% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 3.57% Dodge Sprinter Cargo Van 2009 2.85% Chevrolet Express Van 2007 2.81% Chevrolet Express Cargo Van 2007 2.67% Ram C/V Cargo Van Minivan 2012 2.58% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 2.29% Bugatti Veyron 16.4 Convertible 2009 2.11% Daewoo Nubira Wagon 2002 2.03% Bugatti Veyron 16.4 Coupe 2009 1.74% Mitsubishi Lancer Sedan 2012 1.43% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford F-150 Regular Cab 2012 3.7% Hyundai Santa Fe SUV 2012 3.68% Isuzu Ascender SUV 2008 3.23% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.86% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Audi TT Hatchback 2011 4.6% Audi A5 Coupe 2012 3.1% Audi R8 Coupe 2012 2.27% Mercedes-Benz S-Class Sedan 2012 2.03% Audi 100 Sedan 1994 1.77% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 FIAT 500 Abarth 2012 4.43% Bentley Arnage Sedan 2009 3.99% Spyker C8 Convertible 2009 3.47% Rolls-Royce Phantom Sedan 2012 2.45% Bugatti Veyron 16.4 Coupe 2009 2.14% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 4.56% Dodge Charger Sedan 2012 3.9% Volvo C30 Hatchback 2012 3.74% BMW 1 Series Coupe 2012 3.39% Suzuki SX4 Hatchback 2012 3.04% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 8.42% Hyundai Elantra Sedan 2007 5.08% Ferrari 458 Italia Coupe 2012 4.07% Volkswagen Beetle Hatchback 2012 3.49% Ford Fiesta Sedan 2012 3.3% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Chevrolet Express Cargo Van 2007 3.6% Dodge Caravan Minivan 1997 2.92% Chevrolet Express Van 2007 1.93% Hyundai Tucson SUV 2012 1.93% Volkswagen Golf Hatchback 1991 1.86% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Nissan Leaf Hatchback 2012 3.66% Daewoo Nubira Wagon 2002 3.63% Lincoln Town Car Sedan 2011 3.19% Chrysler Sebring Convertible 2010 2.64% Hyundai Elantra Sedan 2007 2.41% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Audi S6 Sedan 2011 2.44% MINI Cooper Roadster Convertible 2012 2.12% Audi R8 Coupe 2012 1.7% Rolls-Royce Phantom Sedan 2012 1.5% Hyundai Genesis Sedan 2012 1.38% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chevrolet TrailBlazer SS 2009 5.47% Chrysler 300 SRT-8 2010 3.97% Chevrolet Silverado 1500 Regular Cab 2012 3.25% Chevrolet Silverado 2500HD Regular Cab 2012 2.35% BMW M6 Convertible 2010 1.83% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Lamborghini Reventon Coupe 2008 3.46% Spyker C8 Convertible 2009 3.18% Bugatti Veyron 16.4 Coupe 2009 2.4% Mercedes-Benz 300-Class Convertible 1993 2.01% Geo Metro Convertible 1993 1.91% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 Mercedes-Benz S-Class Sedan 2012 2.29% BMW M3 Coupe 2012 2.04% Ram C/V Cargo Van Minivan 2012 1.8% Mercedes-Benz Sprinter Van 2012 1.68% Bugatti Veyron 16.4 Convertible 2009 1.64% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 BMW X5 SUV 2007 2.86% Audi A5 Coupe 2012 2.22% Audi V8 Sedan 1994 2.16% Hyundai Tucson SUV 2012 2.03% Hyundai Santa Fe SUV 2012 1.91% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Lincoln Town Car Sedan 2011 2.18% Chevrolet Malibu Sedan 2007 2.14% Honda Odyssey Minivan 2007 2.08% Ford Freestar Minivan 2007 1.86% Dodge Caravan Minivan 1997 1.73% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 3.71% Audi TT Hatchback 2011 2.82% Mercedes-Benz SL-Class Coupe 2009 2.33% Porsche Panamera Sedan 2012 1.91% BMW 1 Series Convertible 2012 1.7% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 FIAT 500 Abarth 2012 5.72% Lamborghini Reventon Coupe 2008 4.67% Bugatti Veyron 16.4 Coupe 2009 3.6% Spyker C8 Convertible 2009 3.33% Chevrolet Corvette ZR1 2012 2.97% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Volvo 240 Sedan 1993 1.7% GMC Savana Van 2012 1.56% Dodge Caravan Minivan 1997 1.18% Volkswagen Golf Hatchback 1991 1.16% Lamborghini Reventon Coupe 2008 1.11% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 8.52% Ford GT Coupe 2006 5.09% Spyker C8 Coupe 2009 4.88% Spyker C8 Convertible 2009 4.52% Lamborghini Diablo Coupe 2001 3.9% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Ford Expedition EL SUV 2009 4.49% Jeep Liberty SUV 2012 3.28% Dodge Dakota Crew Cab 2010 3.02% AM General Hummer SUV 2000 2.74% Cadillac Escalade EXT Crew Cab 2007 2.49% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Chrysler 300 SRT-8 2010 1.92% Audi V8 Sedan 1994 1.58% Nissan 240SX Coupe 1998 1.38% Aston Martin V8 Vantage Coupe 2012 1.34% Lamborghini Reventon Coupe 2008 1.34% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Abarth 2012 7.23% Chevrolet TrailBlazer SS 2009 2.97% Lamborghini Reventon Coupe 2008 2.52% Cadillac CTS-V Sedan 2012 2.51% Bentley Arnage Sedan 2009 2.49% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 3.02% Volkswagen Golf Hatchback 1991 2.27% Lamborghini Reventon Coupe 2008 1.99% Chevrolet Corvette ZR1 2012 1.96% Bugatti Veyron 16.4 Coupe 2009 1.91% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet TrailBlazer SS 2009 6.14% Chrysler 300 SRT-8 2010 4.54% BMW M6 Convertible 2010 3.74% Chevrolet Silverado 1500 Regular Cab 2012 2.99% Chevrolet Silverado 2500HD Regular Cab 2012 2.69% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Chrysler Town and Country Minivan 2012 1.85% Mercedes-Benz Sprinter Van 2012 1.75% Ram C/V Cargo Van Minivan 2012 1.61% Audi A5 Coupe 2012 1.52% Volkswagen Golf Hatchback 2012 1.42% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette Convertible 2012 14.9% Hyundai Veloster Hatchback 2012 12.7% McLaren MP4-12C Coupe 2012 12.34% Acura Integra Type R 2001 11.28% Aston Martin Virage Coupe 2012 7.95% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Chrysler 300 SRT-8 2010 3.8% Chevrolet Silverado 2500HD Regular Cab 2012 3.27% Chevrolet TrailBlazer SS 2009 3.0% BMW M6 Convertible 2010 2.7% Chevrolet Silverado 1500 Regular Cab 2012 2.23% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.64% Mercedes-Benz S-Class Sedan 2012 2.61% BMW M3 Coupe 2012 1.79% Hyundai Azera Sedan 2012 1.65% Audi 100 Sedan 1994 1.43% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Regular Cab 2012 2.14% Chrysler 300 SRT-8 2010 1.97% Jeep Grand Cherokee SUV 2012 1.89% Cadillac Escalade EXT Crew Cab 2007 1.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW 1 Series Convertible 2012 3.0% BMW M3 Coupe 2012 2.88% Acura TL Sedan 2012 2.59% Volkswagen Beetle Hatchback 2012 2.56% Audi TT Hatchback 2011 2.35% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chrysler 300 SRT-8 2010 3.9% Chevrolet Silverado 2500HD Regular Cab 2012 2.85% BMW M6 Convertible 2010 2.69% Chevrolet TrailBlazer SS 2009 2.05% Rolls-Royce Ghost Sedan 2012 1.88% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Caliber Wagon 2007 5.01% Volkswagen Golf Hatchback 1991 4.66% Suzuki SX4 Hatchback 2012 3.39% Ford F-150 Regular Cab 2007 3.0% BMW X6 SUV 2012 2.87% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Mercedes-Benz 300-Class Convertible 1993 2.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.35% Acura TL Sedan 2012 2.15% Aston Martin V8 Vantage Coupe 2012 2.06% Acura TL Type-S 2008 2.0% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Infiniti G Coupe IPL 2012 2.57% Chevrolet Silverado 2500HD Regular Cab 2012 2.45% Porsche Panamera Sedan 2012 2.26% Jaguar XK XKR 2012 2.01% Chevrolet Corvette ZR1 2012 1.73% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 3.21% Aston Martin V8 Vantage Coupe 2012 2.17% Audi V8 Sedan 1994 1.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.84% Audi 100 Wagon 1994 1.67% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Audi TT Hatchback 2011 1.45% Audi V8 Sedan 1994 1.34% BMW ActiveHybrid 5 Sedan 2012 1.3% Bugatti Veyron 16.4 Coupe 2009 1.25% Chevrolet Silverado 2500HD Regular Cab 2012 1.2% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 2500HD Regular Cab 2012 2.02% Audi TT Hatchback 2011 1.67% Audi A5 Coupe 2012 1.66% Infiniti G Coupe IPL 2012 1.56% Audi V8 Sedan 1994 1.41% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 20.06% Mercedes-Benz S-Class Sedan 2012 3.81% BMW M3 Coupe 2012 3.04% Mercedes-Benz E-Class Sedan 2012 2.26% Hyundai Azera Sedan 2012 2.2% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 4.93% Chevrolet Cobalt SS 2010 4.18% Volkswagen Golf Hatchback 1991 3.87% Suzuki SX4 Hatchback 2012 3.3% Dodge Charger Sedan 2012 3.08% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 7.52% Lincoln Town Car Sedan 2011 7.24% Chevrolet Express Van 2007 3.9% Dodge Sprinter Cargo Van 2009 3.51% Plymouth Neon Coupe 1999 3.46% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 4.48% Mercedes-Benz S-Class Sedan 2012 2.69% Rolls-Royce Phantom Sedan 2012 2.48% Bentley Mulsanne Sedan 2011 2.26% Dodge Challenger SRT8 2011 2.0% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 9.38% Chevrolet Express Cargo Van 2007 5.59% Chevrolet Express Van 2007 5.3% Dodge Dakota Club Cab 2007 3.23% Chevrolet Silverado 1500 Extended Cab 2012 2.96% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 32.45% Acura Integra Type R 2001 19.23% McLaren MP4-12C Coupe 2012 10.86% Chevrolet Corvette Convertible 2012 7.27% Aston Martin Virage Coupe 2012 5.14% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Rolls-Royce Phantom Sedan 2012 2.26% Ram C/V Cargo Van Minivan 2012 2.24% Hyundai Genesis Sedan 2012 1.58% Hyundai Azera Sedan 2012 1.55% Suzuki SX4 Sedan 2012 1.43% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Ram C/V Cargo Van Minivan 2012 2.54% BMW ActiveHybrid 5 Sedan 2012 2.44% BMW 1 Series Convertible 2012 2.43% Acura TSX Sedan 2012 2.12% Acura TL Sedan 2012 1.98% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 2.7% Dodge Ram Pickup 3500 Crew Cab 2010 2.48% Hyundai Santa Fe SUV 2012 2.4% Isuzu Ascender SUV 2008 2.3% Jeep Grand Cherokee SUV 2012 2.21% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Daewoo Nubira Wagon 2002 4.16% Nissan Leaf Hatchback 2012 4.03% Lamborghini Reventon Coupe 2008 3.52% Maybach Landaulet Convertible 2012 2.65% FIAT 500 Convertible 2012 2.62% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Reventon Coupe 2008 3.78% Bugatti Veyron 16.4 Coupe 2009 3.27% Bentley Mulsanne Sedan 2011 2.72% Hyundai Genesis Sedan 2012 2.6% Spyker C8 Convertible 2009 2.17% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Nissan Leaf Hatchback 2012 7.23% FIAT 500 Convertible 2012 6.74% Daewoo Nubira Wagon 2002 6.63% Maybach Landaulet Convertible 2012 6.01% Plymouth Neon Coupe 1999 2.69% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Chevrolet TrailBlazer SS 2009 3.67% Chrysler 300 SRT-8 2010 3.15% Chevrolet Silverado 1500 Regular Cab 2012 3.14% Ford F-150 Regular Cab 2007 2.12% Hyundai Veracruz SUV 2012 1.84% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 76.2% Acura Integra Type R 2001 3.75% Geo Metro Convertible 1993 3.19% Lamborghini Diablo Coupe 2001 2.62% Spyker C8 Convertible 2009 1.47% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Acura TL Sedan 2012 2.23% BMW ActiveHybrid 5 Sedan 2012 1.84% Audi TT Hatchback 2011 1.68% BMW M5 Sedan 2010 1.47% Acura TL Type-S 2008 1.4% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Aston Martin V8 Vantage Coupe 2012 2.98% Lamborghini Reventon Coupe 2008 2.65% Chevrolet Corvette ZR1 2012 2.48% Bugatti Veyron 16.4 Coupe 2009 2.46% Nissan Juke Hatchback 2012 1.92% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 6.99% Ford Expedition EL SUV 2009 5.08% Bentley Arnage Sedan 2009 4.88% Hyundai Santa Fe SUV 2012 3.38% Ford E-Series Wagon Van 2012 2.97% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Chevrolet Express Van 2007 3.18% Ford Freestar Minivan 2007 2.98% Lincoln Town Car Sedan 2011 2.48% GMC Savana Van 2012 2.44% Dodge Caravan Minivan 1997 2.41% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Chevrolet Corvette ZR1 2012 3.0% Eagle Talon Hatchback 1998 2.67% Infiniti G Coupe IPL 2012 2.26% Audi V8 Sedan 1994 2.16% Chrysler 300 SRT-8 2010 1.98% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Nissan Leaf Hatchback 2012 5.61% Plymouth Neon Coupe 1999 5.12% Dodge Caravan Minivan 1997 4.32% Daewoo Nubira Wagon 2002 4.27% Lincoln Town Car Sedan 2011 4.1% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 2.69% Eagle Talon Hatchback 1998 2.08% Lamborghini Reventon Coupe 2008 1.92% Mercedes-Benz 300-Class Convertible 1993 1.78% Daewoo Nubira Wagon 2002 1.71% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 9.16% Bentley Arnage Sedan 2009 2.32% Hyundai Genesis Sedan 2012 2.28% Bugatti Veyron 16.4 Coupe 2009 1.98% Lamborghini Reventon Coupe 2008 1.91% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 76.12% Geo Metro Convertible 1993 4.8% Acura Integra Type R 2001 4.53% Lamborghini Diablo Coupe 2001 2.18% Chevrolet Corvette Convertible 2012 1.83% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Jeep Liberty SUV 2012 4.6% Cadillac Escalade EXT Crew Cab 2007 4.28% Ford Expedition EL SUV 2009 4.07% AM General Hummer SUV 2000 3.53% Ford F-450 Super Duty Crew Cab 2012 2.97% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 2.35% Chevrolet Express Van 2007 1.88% Chevrolet Express Cargo Van 2007 1.61% Chevrolet Malibu Sedan 2007 1.53% Lincoln Town Car Sedan 2011 1.46% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.31% Spyker C8 Coupe 2009 1.99% Spyker C8 Convertible 2009 1.92% Bugatti Veyron 16.4 Coupe 2009 1.72% Ford GT Coupe 2006 1.69% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 31.66% Aston Martin Virage Coupe 2012 12.49% McLaren MP4-12C Coupe 2012 12.01% Acura Integra Type R 2001 7.94% Lamborghini Diablo Coupe 2001 5.57% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Dodge Caravan Minivan 1997 1.79% Chevrolet Monte Carlo Coupe 2007 1.41% Plymouth Neon Coupe 1999 1.35% Lincoln Town Car Sedan 2011 1.27% Chevrolet Express Cargo Van 2007 1.26% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Audi V8 Sedan 1994 1.74% Audi 100 Wagon 1994 1.25% Eagle Talon Hatchback 1998 1.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.12% Chevrolet Express Cargo Van 2007 1.12% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Fisker Karma Sedan 2012 3.16% Mercedes-Benz 300-Class Convertible 1993 2.66% Acura ZDX Hatchback 2012 2.3% Bugatti Veyron 16.4 Coupe 2009 1.88% Aston Martin Virage Convertible 2012 1.83% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Volkswagen Golf Hatchback 1991 1.76% Audi V8 Sedan 1994 1.63% Volvo 240 Sedan 1993 1.54% Jeep Patriot SUV 2012 1.51% GMC Savana Van 2012 1.49% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 8.13% Bentley Arnage Sedan 2009 5.56% Cadillac Escalade EXT Crew Cab 2007 4.48% Jeep Liberty SUV 2012 4.37% Ford Expedition EL SUV 2009 4.29% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Dodge Caliber Wagon 2007 4.06% Hyundai Elantra Sedan 2007 3.08% Suzuki SX4 Hatchback 2012 2.68% Volvo C30 Hatchback 2012 2.46% Ford Fiesta Sedan 2012 2.42% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Ram C/V Cargo Van Minivan 2012 2.09% Chevrolet Malibu Hybrid Sedan 2010 1.74% Chrysler Sebring Convertible 2010 1.49% Lincoln Town Car Sedan 2011 1.45% Ford Focus Sedan 2007 1.44% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 4.26% BMW 1 Series Coupe 2012 3.57% Volvo C30 Hatchback 2012 2.72% Dodge Charger Sedan 2012 2.66% Dodge Charger SRT-8 2009 2.34% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 5.1% Chevrolet Avalanche Crew Cab 2012 4.84% Chevrolet Silverado 1500 Extended Cab 2012 4.44% GMC Terrain SUV 2012 3.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.58% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 FIAT 500 Abarth 2012 3.49% Bugatti Veyron 16.4 Coupe 2009 2.85% Spyker C8 Convertible 2009 2.37% Lamborghini Reventon Coupe 2008 2.11% Chrysler 300 SRT-8 2010 1.87% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Silverado 1500 Extended Cab 2012 4.78% Ford F-150 Regular Cab 2012 3.59% GMC Savana Van 2012 3.57% Chevrolet Avalanche Crew Cab 2012 3.31% Isuzu Ascender SUV 2008 3.14% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Audi TT RS Coupe 2012 4.97% Nissan 240SX Coupe 1998 3.57% Volkswagen Golf Hatchback 1991 3.01% Dodge Sprinter Cargo Van 2009 2.5% Dodge Magnum Wagon 2008 2.41% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Infiniti G Coupe IPL 2012 4.23% Chevrolet Corvette ZR1 2012 2.72% Chrysler 300 SRT-8 2010 2.42% Eagle Talon Hatchback 1998 2.28% Audi V8 Sedan 1994 2.16% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 BMW 1 Series Coupe 2012 4.05% Dodge Charger SRT-8 2009 3.81% Volvo C30 Hatchback 2012 3.78% Ferrari California Convertible 2012 3.6% Chevrolet HHR SS 2010 3.39% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Porsche Panamera Sedan 2012 2.04% Acura ZDX Hatchback 2012 2.0% Dodge Caravan Minivan 1997 1.66% Dodge Sprinter Cargo Van 2009 1.66% Bugatti Veyron 16.4 Convertible 2009 1.52% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Isuzu Ascender SUV 2008 3.78% Ford E-Series Wagon Van 2012 3.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.76% Ford F-150 Regular Cab 2012 2.66% Chevrolet Avalanche Crew Cab 2012 2.22% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chevrolet Avalanche Crew Cab 2012 3.01% Chevrolet Malibu Sedan 2007 2.42% Ford F-150 Regular Cab 2007 2.27% Chevrolet Silverado 1500 Regular Cab 2012 2.19% Honda Odyssey Minivan 2012 2.11% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 5.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.28% Rolls-Royce Phantom Sedan 2012 3.94% Maybach Landaulet Convertible 2012 3.72% Hyundai Genesis Sedan 2012 3.03% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Audi S6 Sedan 2011 1.21% Chevrolet Tahoe Hybrid SUV 2012 1.19% BMW ActiveHybrid 5 Sedan 2012 1.12% Audi A5 Coupe 2012 1.1% Chevrolet Silverado 1500 Extended Cab 2012 1.07% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Lamborghini Reventon Coupe 2008 5.28% Spyker C8 Convertible 2009 4.36% Bentley Mulsanne Sedan 2011 2.97% Bentley Arnage Sedan 2009 2.96% FIAT 500 Abarth 2012 2.8% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Fisker Karma Sedan 2012 1.89% BMW ActiveHybrid 5 Sedan 2012 1.82% Infiniti G Coupe IPL 2012 1.76% Mercedes-Benz S-Class Sedan 2012 1.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 6.52% Ford F-450 Super Duty Crew Cab 2012 5.89% Ford Expedition EL SUV 2009 5.67% Dodge Dakota Crew Cab 2010 2.91% Mercedes-Benz C-Class Sedan 2012 2.64% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Aston Martin Virage Coupe 2012 9.89% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.24% McLaren MP4-12C Coupe 2012 8.92% Chevrolet Corvette Convertible 2012 7.77% Lamborghini Diablo Coupe 2001 6.15% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Ferrari California Convertible 2012 11.64% Lamborghini Aventador Coupe 2012 8.57% Ferrari 458 Italia Convertible 2012 7.92% Ferrari 458 Italia Coupe 2012 6.75% Chevrolet Cobalt SS 2010 4.99% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Mercedes-Benz Sprinter Van 2012 3.68% Acura TSX Sedan 2012 3.03% Dodge Caravan Minivan 1997 2.96% Lincoln Town Car Sedan 2011 2.94% Dodge Sprinter Cargo Van 2009 2.9% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.14% Nissan Leaf Hatchback 2012 3.89% Maybach Landaulet Convertible 2012 3.08% Porsche Panamera Sedan 2012 2.83% Jaguar XK XKR 2012 2.38% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.01% Chevrolet TrailBlazer SS 2009 1.91% Audi S6 Sedan 2011 1.82% Ford Expedition EL SUV 2009 1.63% Dodge Durango SUV 2012 1.62% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 3.72% Chevrolet Silverado 1500 Extended Cab 2012 2.14% Chevrolet Express Van 2007 2.0% Dodge Dakota Club Cab 2007 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.78% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 2.24% Honda Accord Coupe 2012 1.93% Toyota Corolla Sedan 2012 1.71% Dodge Caliber Wagon 2007 1.7% Plymouth Neon Coupe 1999 1.7% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Rolls-Royce Phantom Sedan 2012 2.0% smart fortwo Convertible 2012 1.97% Chevrolet Sonic Sedan 2012 1.55% Spyker C8 Coupe 2009 1.32% Jeep Wrangler SUV 2012 1.28% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 9.28% Dodge Ram Pickup 3500 Quad Cab 2009 7.74% Ford Ranger SuperCab 2011 6.63% BMW X6 SUV 2012 5.76% GMC Canyon Extended Cab 2012 4.47% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Chrysler 300 SRT-8 2010 2.61% Hyundai Tucson SUV 2012 2.41% Chevrolet TrailBlazer SS 2009 2.31% Land Rover Range Rover SUV 2012 1.75% Ford F-150 Regular Cab 2007 1.74% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Volvo XC90 SUV 2007 3.1% BMW X6 SUV 2012 3.01% Dodge Ram Pickup 3500 Crew Cab 2010 2.74% Ford Ranger SuperCab 2011 2.64% Hyundai Santa Fe SUV 2012 2.56% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 BMW ActiveHybrid 5 Sedan 2012 3.46% Audi TT Hatchback 2011 3.29% Mercedes-Benz SL-Class Coupe 2009 3.13% Audi S5 Convertible 2012 2.43% Audi S5 Coupe 2012 2.22% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Ferrari 458 Italia Convertible 2012 10.35% Ferrari California Convertible 2012 7.9% Ferrari 458 Italia Coupe 2012 6.28% Audi TT RS Coupe 2012 6.2% Chevrolet HHR SS 2010 4.63% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Audi V8 Sedan 1994 3.32% BMW X5 SUV 2007 2.49% Toyota Sequoia SUV 2012 2.12% Audi 100 Sedan 1994 1.81% Chrysler 300 SRT-8 2010 1.73% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Mercedes-Benz Sprinter Van 2012 7.1% Dodge Sprinter Cargo Van 2009 4.39% Chrysler Town and Country Minivan 2012 2.32% Volkswagen Golf Hatchback 2012 2.28% Ram C/V Cargo Van Minivan 2012 2.11% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Audi V8 Sedan 1994 2.01% Bugatti Veyron 16.4 Coupe 2009 1.86% Mercedes-Benz 300-Class Convertible 1993 1.46% Lamborghini Reventon Coupe 2008 1.45% Audi 100 Sedan 1994 1.41% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Dodge Caliber Wagon 2007 6.51% GMC Savana Van 2012 2.73% Chevrolet Traverse SUV 2012 2.49% Chevrolet Silverado 1500 Regular Cab 2012 2.42% Buick Rainier SUV 2007 2.4% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Dodge Caravan Minivan 1997 3.61% Chevrolet Express Cargo Van 2007 3.47% Lincoln Town Car Sedan 2011 2.54% Chevrolet Express Van 2007 1.98% GMC Savana Van 2012 1.79% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Audi R8 Coupe 2012 3.58% Audi TT Hatchback 2011 3.34% Audi A5 Coupe 2012 3.29% BMW ActiveHybrid 5 Sedan 2012 3.01% Audi S5 Coupe 2012 2.39% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 64.43% Audi RS 4 Convertible 2008 11.78% Acura Integra Type R 2001 4.97% McLaren MP4-12C Coupe 2012 2.33% Ferrari 458 Italia Convertible 2012 2.25% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Ford Freestar Minivan 2007 2.3% Hyundai Tucson SUV 2012 2.1% Dodge Caravan Minivan 1997 1.88% Volkswagen Golf Hatchback 1991 1.8% Chevrolet Traverse SUV 2012 1.6% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 6.13% Chevrolet Silverado 1500 Regular Cab 2012 4.65% GMC Canyon Extended Cab 2012 4.23% Dodge Ram Pickup 3500 Quad Cab 2009 2.89% Dodge Caliber Wagon 2012 2.67% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Mercedes-Benz SL-Class Coupe 2009 2.9% Acura TL Type-S 2008 2.7% Audi S5 Convertible 2012 2.39% Mercedes-Benz E-Class Sedan 2012 2.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.3% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 BMW X3 SUV 2012 3.53% Mercedes-Benz C-Class Sedan 2012 2.42% MINI Cooper Roadster Convertible 2012 2.2% Audi S5 Coupe 2012 2.07% Infiniti G Coupe IPL 2012 2.06% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 BMW X3 SUV 2012 2.15% BMW X5 SUV 2007 1.83% Audi S5 Coupe 2012 1.72% Volvo XC90 SUV 2007 1.58% Buick Rainier SUV 2007 1.41% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Lincoln Town Car Sedan 2011 1.85% Jaguar XK XKR 2012 1.64% Ram C/V Cargo Van Minivan 2012 1.6% Nissan Leaf Hatchback 2012 1.52% Suzuki Aerio Sedan 2007 1.39% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 2.79% Chevrolet Malibu Hybrid Sedan 2010 2.31% Ford Focus Sedan 2007 2.31% Chevrolet Silverado 1500 Extended Cab 2012 2.3% Honda Odyssey Minivan 2012 1.76% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 3.67% Chevrolet Express Van 2007 3.6% Dodge Sprinter Cargo Van 2009 2.85% Chevrolet Avalanche Crew Cab 2012 2.79% Mercedes-Benz Sprinter Van 2012 2.62% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 28.79% Aston Martin Virage Coupe 2012 14.46% Chevrolet Corvette Convertible 2012 13.74% Lamborghini Aventador Coupe 2012 7.12% Ferrari 458 Italia Convertible 2012 3.98% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 4.19% Chevrolet Silverado 1500 Extended Cab 2012 3.38% Chevrolet Express Cargo Van 2007 3.25% Buick Rainier SUV 2007 2.51% Dodge Dakota Club Cab 2007 2.17% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 3.12% Chevrolet Express Cargo Van 2007 2.4% Chevrolet Impala Sedan 2007 2.11% Acura TSX Sedan 2012 1.93% Chrysler Sebring Convertible 2010 1.8% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.53% Honda Odyssey Minivan 2007 2.41% Mercedes-Benz Sprinter Van 2012 1.71% Chrysler Town and Country Minivan 2012 1.64% Hyundai Elantra Touring Hatchback 2012 1.56% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Geo Metro Convertible 1993 16.87% Plymouth Neon Coupe 1999 6.47% Nissan Leaf Hatchback 2012 6.34% Daewoo Nubira Wagon 2002 4.79% Dodge Caravan Minivan 1997 3.39% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Mercedes-Benz Sprinter Van 2012 2.97% BMW X3 SUV 2012 1.5% BMW ActiveHybrid 5 Sedan 2012 1.33% Mercedes-Benz SL-Class Coupe 2009 1.2% Hyundai Genesis Sedan 2012 1.19% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Dodge Caliber Wagon 2007 2.96% GMC Canyon Extended Cab 2012 2.39% Suzuki SX4 Hatchback 2012 2.16% BMW X6 SUV 2012 2.14% BMW 1 Series Coupe 2012 2.02% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Convertible 2012 11.92% Maybach Landaulet Convertible 2012 4.93% Nissan Leaf Hatchback 2012 4.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.32% Acura Integra Type R 2001 2.6% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Rolls-Royce Phantom Sedan 2012 2.13% BMW M6 Convertible 2010 1.87% Audi R8 Coupe 2012 1.76% Mercedes-Benz C-Class Sedan 2012 1.66% Rolls-Royce Ghost Sedan 2012 1.63% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 8.66% Maybach Landaulet Convertible 2012 7.24% Spyker C8 Coupe 2009 4.88% Bentley Continental Supersports Conv. Convertible 2012 4.09% Spyker C8 Convertible 2009 3.8% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Audi TT RS Coupe 2012 3.11% Lamborghini Aventador Coupe 2012 2.52% Volvo C30 Hatchback 2012 2.33% Ferrari California Convertible 2012 2.29% Ferrari 458 Italia Coupe 2012 2.27% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 1.3% Bugatti Veyron 16.4 Coupe 2009 1.22% Chrysler Sebring Convertible 2010 1.13% Chrysler 300 SRT-8 2010 1.1% Honda Odyssey Minivan 2007 1.1% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 MINI Cooper Roadster Convertible 2012 4.48% Mercedes-Benz E-Class Sedan 2012 3.08% BMW ActiveHybrid 5 Sedan 2012 2.87% Audi R8 Coupe 2012 2.47% Mercedes-Benz SL-Class Coupe 2009 2.27% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.85% Audi V8 Sedan 1994 2.59% Chrysler 300 SRT-8 2010 1.73% Audi R8 Coupe 2012 1.68% Audi S5 Coupe 2012 1.64% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 2.39% Buick Rainier SUV 2007 1.85% Dodge Caliber Wagon 2007 1.73% Ford Edge SUV 2012 1.65% Jeep Liberty SUV 2012 1.62% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 4.83% Porsche Panamera Sedan 2012 2.7% Fisker Karma Sedan 2012 2.52% Mercedes-Benz E-Class Sedan 2012 2.13% Mercedes-Benz 300-Class Convertible 1993 2.12% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 26.17% AM General Hummer SUV 2000 9.42% Lamborghini Diablo Coupe 2001 8.33% Spyker C8 Convertible 2009 3.08% Bugatti Veyron 16.4 Coupe 2009 2.97% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 36.38% Ferrari 458 Italia Convertible 2012 8.82% Audi RS 4 Convertible 2008 6.18% McLaren MP4-12C Coupe 2012 5.95% Acura Integra Type R 2001 5.5% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 31.53% Chevrolet Express Cargo Van 2007 26.84% Chevrolet Express Van 2007 9.38% Hyundai Tucson SUV 2012 2.78% Buick Rainier SUV 2007 2.08% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Aston Martin Virage Coupe 2012 1.53% BMW Z4 Convertible 2012 1.48% Hyundai Veloster Hatchback 2012 1.46% Chevrolet Corvette Convertible 2012 1.33% Bugatti Veyron 16.4 Coupe 2009 1.28% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 17.43% Ferrari 458 Italia Convertible 2012 14.51% Lamborghini Aventador Coupe 2012 11.34% Aston Martin Virage Coupe 2012 9.24% Ferrari 458 Italia Coupe 2012 6.71% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Audi TT RS Coupe 2012 5.62% Ferrari California Convertible 2012 5.09% Dodge Magnum Wagon 2008 4.8% Ferrari 458 Italia Coupe 2012 3.08% Nissan 240SX Coupe 1998 2.89% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Isuzu Ascender SUV 2008 1.55% Dodge Ram Pickup 3500 Crew Cab 2010 1.48% Chrysler Aspen SUV 2009 1.47% Dodge Caliber Wagon 2012 1.36% Jeep Grand Cherokee SUV 2012 1.32% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 16.43% Ferrari 458 Italia Convertible 2012 13.0% Lamborghini Aventador Coupe 2012 10.12% Geo Metro Convertible 1993 5.72% Dodge Charger Sedan 2012 5.53% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 3.36% Ram C/V Cargo Van Minivan 2012 2.61% Lincoln Town Car Sedan 2011 2.47% Chrysler Sebring Convertible 2010 2.19% Ford Freestar Minivan 2007 2.16% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 FIAT 500 Abarth 2012 8.51% Bentley Arnage Sedan 2009 7.97% Chevrolet TrailBlazer SS 2009 3.22% Jeep Patriot SUV 2012 3.17% Spyker C8 Convertible 2009 2.71% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 23.76% McLaren MP4-12C Coupe 2012 13.92% Lamborghini Diablo Coupe 2001 4.72% Acura Integra Type R 2001 4.67% BMW Z4 Convertible 2012 4.09% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Volkswagen Golf Hatchback 1991 3.7% Dodge Caliber Wagon 2007 2.86% HUMMER H3T Crew Cab 2010 2.63% BMW X6 SUV 2012 2.42% Ford Mustang Convertible 2007 2.13% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Spyker C8 Convertible 2009 4.37% Bentley Arnage Sedan 2009 4.13% Bugatti Veyron 16.4 Coupe 2009 3.18% Bentley Mulsanne Sedan 2011 2.89% Lamborghini Reventon Coupe 2008 2.84% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Dodge Sprinter Cargo Van 2009 2.23% Acura TL Sedan 2012 1.71% Chevrolet Corvette ZR1 2012 1.71% GMC Savana Van 2012 1.58% Dodge Caravan Minivan 1997 1.58% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 2.67% Chevrolet Avalanche Crew Cab 2012 2.16% Ford F-150 Regular Cab 2012 2.0% Isuzu Ascender SUV 2008 1.99% Ford E-Series Wagon Van 2012 1.86% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Chevrolet Express Cargo Van 2007 3.92% GMC Savana Van 2012 3.35% Chevrolet Express Van 2007 2.27% Dodge Dakota Club Cab 2007 2.14% Buick Rainier SUV 2007 2.14% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ferrari California Convertible 2012 3.28% BMW 1 Series Coupe 2012 3.15% Dodge Charger SRT-8 2009 3.14% Honda Accord Coupe 2012 3.14% Chevrolet Cobalt SS 2010 2.96% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 7.99% Dodge Ram Pickup 3500 Crew Cab 2010 5.6% Ford Edge SUV 2012 3.84% Ford Expedition EL SUV 2009 3.18% Mercedes-Benz C-Class Sedan 2012 3.12% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 Mercedes-Benz Sprinter Van 2012 8.7% Dodge Sprinter Cargo Van 2009 7.15% GMC Savana Van 2012 4.93% Chevrolet Express Cargo Van 2007 4.83% Volkswagen Golf Hatchback 2012 3.28% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Aston Martin Virage Coupe 2012 10.66% McLaren MP4-12C Coupe 2012 6.05% Lamborghini Aventador Coupe 2012 5.61% Chevrolet Corvette Convertible 2012 3.6% Dodge Charger Sedan 2012 3.14% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Mulsanne Sedan 2011 5.16% Bentley Arnage Sedan 2009 4.46% Jeep Compass SUV 2012 3.8% Mercedes-Benz C-Class Sedan 2012 3.33% Ford F-450 Super Duty Crew Cab 2012 3.1% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Geo Metro Convertible 1993 10.75% Nissan Leaf Hatchback 2012 5.47% FIAT 500 Convertible 2012 4.95% Maybach Landaulet Convertible 2012 4.5% Daewoo Nubira Wagon 2002 4.36% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Cobalt SS 2010 6.98% Dodge Charger Sedan 2012 4.51% Chevrolet Corvette Convertible 2012 4.09% Ford Mustang Convertible 2007 3.99% Ferrari 458 Italia Coupe 2012 3.58% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 MINI Cooper Roadster Convertible 2012 3.75% Audi A5 Coupe 2012 3.68% Audi TT Hatchback 2011 3.38% Audi R8 Coupe 2012 3.14% BMW ActiveHybrid 5 Sedan 2012 2.88% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Audi TT Hatchback 2011 2.62% MINI Cooper Roadster Convertible 2012 2.26% BMW ActiveHybrid 5 Sedan 2012 1.85% Audi R8 Coupe 2012 1.8% Audi A5 Coupe 2012 1.67% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 5.45% Hyundai Azera Sedan 2012 3.16% Dodge Challenger SRT8 2011 3.01% Mercedes-Benz S-Class Sedan 2012 2.27% Rolls-Royce Phantom Sedan 2012 2.17% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 2.88% Dodge Ram Pickup 3500 Crew Cab 2010 2.79% Chrysler 300 SRT-8 2010 2.68% Chevrolet TrailBlazer SS 2009 2.62% Chevrolet Silverado 1500 Regular Cab 2012 2.44% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Ford Expedition EL SUV 2009 4.31% Cadillac Escalade EXT Crew Cab 2007 3.64% Bentley Arnage Sedan 2009 3.41% Ford F-450 Super Duty Crew Cab 2012 3.23% AM General Hummer SUV 2000 3.14% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Ford E-Series Wagon Van 2012 3.93% Isuzu Ascender SUV 2008 2.56% Chevrolet Tahoe Hybrid SUV 2012 2.21% Jeep Liberty SUV 2012 2.1% Dodge Ram Pickup 3500 Crew Cab 2010 1.86% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Acura TL Sedan 2012 3.49% Audi TT Hatchback 2011 2.67% BMW ActiveHybrid 5 Sedan 2012 2.42% Acura TSX Sedan 2012 2.33% BMW M5 Sedan 2010 2.16% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Nissan Leaf Hatchback 2012 4.31% Daewoo Nubira Wagon 2002 2.85% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.83% Lincoln Town Car Sedan 2011 2.64% Acura TL Sedan 2012 2.14% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.49% Mercedes-Benz 300-Class Convertible 1993 1.46% Audi 100 Sedan 1994 1.37% Audi V8 Sedan 1994 1.34% Acura TL Sedan 2012 1.33% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 HUMMER H2 SUT Crew Cab 2009 4.98% Ford F-450 Super Duty Crew Cab 2012 4.59% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Ford Expedition EL SUV 2009 3.77% Dodge Dakota Crew Cab 2010 3.15% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 4.44% Lincoln Town Car Sedan 2011 3.93% Chevrolet Express Van 2007 3.54% GMC Savana Van 2012 3.34% Honda Odyssey Minivan 2007 2.95% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 2.19% Dodge Sprinter Cargo Van 2009 2.18% Mercedes-Benz Sprinter Van 2012 1.93% Ram C/V Cargo Van Minivan 2012 1.88% Porsche Panamera Sedan 2012 1.81% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 FIAT 500 Abarth 2012 12.45% Bentley Arnage Sedan 2009 8.48% AM General Hummer SUV 2000 7.15% Jeep Patriot SUV 2012 5.15% Spyker C8 Convertible 2009 2.95% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 FIAT 500 Abarth 2012 12.62% Spyker C8 Convertible 2009 6.12% Bentley Arnage Sedan 2009 6.05% Lamborghini Reventon Coupe 2008 3.14% Bugatti Veyron 16.4 Coupe 2009 2.76% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 MINI Cooper Roadster Convertible 2012 2.91% Fisker Karma Sedan 2012 2.89% BMW ActiveHybrid 5 Sedan 2012 2.47% Audi TT Hatchback 2011 2.46% Bugatti Veyron 16.4 Coupe 2009 1.97% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Dodge Sprinter Cargo Van 2009 6.19% Ram C/V Cargo Van Minivan 2012 5.63% Acura TSX Sedan 2012 4.01% Mercedes-Benz Sprinter Van 2012 4.0% BMW 1 Series Convertible 2012 3.63% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 HUMMER H3T Crew Cab 2010 21.95% Jeep Wrangler SUV 2012 8.94% HUMMER H2 SUT Crew Cab 2009 5.59% Dodge Ram Pickup 3500 Quad Cab 2009 5.17% AM General Hummer SUV 2000 3.77% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Hyundai Elantra Sedan 2007 6.93% Honda Accord Coupe 2012 5.58% Plymouth Neon Coupe 1999 3.84% Volkswagen Beetle Hatchback 2012 3.68% Toyota Corolla Sedan 2012 3.47% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 MINI Cooper Roadster Convertible 2012 8.55% Mercedes-Benz E-Class Sedan 2012 3.61% BMW ActiveHybrid 5 Sedan 2012 3.12% Mercedes-Benz SL-Class Coupe 2009 3.06% Audi TT Hatchback 2011 2.65% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 MINI Cooper Roadster Convertible 2012 1.73% Hyundai Genesis Sedan 2012 1.73% Volvo 240 Sedan 1993 1.65% Mercedes-Benz S-Class Sedan 2012 1.53% Bugatti Veyron 16.4 Convertible 2009 1.51% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 2.59% Porsche Panamera Sedan 2012 2.13% BMW 1 Series Convertible 2012 2.07% Ram C/V Cargo Van Minivan 2012 1.79% BMW M5 Sedan 2010 1.75% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 BMW X5 SUV 2007 7.99% Hyundai Santa Fe SUV 2012 6.35% Isuzu Ascender SUV 2008 4.86% Ford F-150 Regular Cab 2012 4.42% Ford E-Series Wagon Van 2012 4.36% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 31.76% Ferrari 458 Italia Convertible 2012 11.24% McLaren MP4-12C Coupe 2012 10.53% Lamborghini Aventador Coupe 2012 9.86% Lamborghini Diablo Coupe 2001 6.14% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Dodge Caravan Minivan 1997 3.48% Geo Metro Convertible 1993 2.99% Mercedes-Benz 300-Class Convertible 1993 2.81% Plymouth Neon Coupe 1999 2.18% Daewoo Nubira Wagon 2002 2.11% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 4.66% Mercedes-Benz S-Class Sedan 2012 2.18% Volkswagen Golf Hatchback 2012 1.9% Rolls-Royce Phantom Sedan 2012 1.86% Chrysler Town and Country Minivan 2012 1.8% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Audi TT RS Coupe 2012 9.41% Ferrari 458 Italia Convertible 2012 6.16% Nissan 240SX Coupe 1998 5.58% Toyota Corolla Sedan 2012 5.35% Dodge Magnum Wagon 2008 4.82% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Ram C/V Cargo Van Minivan 2012 4.34% Dodge Sprinter Cargo Van 2009 2.52% BMW 1 Series Convertible 2012 2.42% Mercedes-Benz Sprinter Van 2012 2.31% GMC Savana Van 2012 2.18% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Avalanche Crew Cab 2012 2.72% Chevrolet Silverado 1500 Extended Cab 2012 2.41% Ford E-Series Wagon Van 2012 2.05% Isuzu Ascender SUV 2008 1.94% Honda Odyssey Minivan 2007 1.7% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Honda Odyssey Minivan 2007 1.29% Infiniti G Coupe IPL 2012 1.19% Audi S6 Sedan 2011 1.14% Jaguar XK XKR 2012 1.08% Audi S5 Coupe 2012 1.05% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Isuzu Ascender SUV 2008 5.65% Ford F-150 Regular Cab 2012 5.16% Hyundai Santa Fe SUV 2012 4.63% Dodge Ram Pickup 3500 Crew Cab 2010 4.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.6% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 10.16% Mercedes-Benz S-Class Sedan 2012 2.85% Mercedes-Benz C-Class Sedan 2012 1.96% Hyundai Genesis Sedan 2012 1.82% Bentley Mulsanne Sedan 2011 1.81% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Geo Metro Convertible 1993 5.72% Mercedes-Benz 300-Class Convertible 1993 3.89% Nissan Leaf Hatchback 2012 3.87% Dodge Caravan Minivan 1997 2.87% Daewoo Nubira Wagon 2002 2.77% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 2500HD Regular Cab 2012 9.91% Chrysler 300 SRT-8 2010 4.92% Chevrolet TrailBlazer SS 2009 3.99% Chevrolet Silverado 1500 Regular Cab 2012 3.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.93% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 4.85% FIAT 500 Convertible 2012 4.34% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.93% Acura Integra Type R 2001 3.05% Fisker Karma Sedan 2012 2.1% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Eagle Talon Hatchback 1998 2.42% Chrysler 300 SRT-8 2010 2.4% Audi V8 Sedan 1994 1.73% Hyundai Veracruz SUV 2012 1.72% Chevrolet Silverado 2500HD Regular Cab 2012 1.68% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Ram C/V Cargo Van Minivan 2012 4.09% Mercedes-Benz S-Class Sedan 2012 3.14% BMW 1 Series Convertible 2012 1.77% MINI Cooper Roadster Convertible 2012 1.67% Volkswagen Golf Hatchback 2012 1.51% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Daewoo Nubira Wagon 2002 3.76% Nissan Leaf Hatchback 2012 2.97% Bugatti Veyron 16.4 Convertible 2009 2.9% Chrysler Sebring Convertible 2010 2.77% Chrysler PT Cruiser Convertible 2008 2.59% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.78% Hyundai Azera Sedan 2012 1.26% Chevrolet Sonic Sedan 2012 1.23% Hyundai Genesis Sedan 2012 1.15% smart fortwo Convertible 2012 1.14% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Lamborghini Reventon Coupe 2008 2.44% Mercedes-Benz 300-Class Convertible 1993 2.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.79% Dodge Caravan Minivan 1997 1.69% Tesla Model S Sedan 2012 1.69% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Fisker Karma Sedan 2012 2.13% Mercedes-Benz E-Class Sedan 2012 1.96% Spyker C8 Convertible 2009 1.73% Hyundai Genesis Sedan 2012 1.43% Mercedes-Benz 300-Class Convertible 1993 1.37% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Hyundai Azera Sedan 2012 5.73% Rolls-Royce Phantom Sedan 2012 3.14% MINI Cooper Roadster Convertible 2012 2.89% Dodge Challenger SRT8 2011 2.74% Hyundai Genesis Sedan 2012 2.42% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Chrysler Aspen SUV 2009 4.78% Hyundai Santa Fe SUV 2012 4.5% Ford E-Series Wagon Van 2012 4.37% Isuzu Ascender SUV 2008 3.84% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Sedan 2012 3.61% Maybach Landaulet Convertible 2012 2.61% Bugatti Veyron 16.4 Coupe 2009 2.25% BMW M6 Convertible 2010 2.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.2% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 MINI Cooper Roadster Convertible 2012 2.38% Bentley Mulsanne Sedan 2011 1.95% Hyundai Genesis Sedan 2012 1.8% Mercedes-Benz C-Class Sedan 2012 1.71% Hyundai Azera Sedan 2012 1.57% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 10.52% Dodge Caliber Wagon 2007 5.4% Suzuki SX4 Hatchback 2012 3.64% Volkswagen Golf Hatchback 1991 2.32% Dodge Caliber Wagon 2012 1.76% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 5.75% Ford Expedition EL SUV 2009 3.83% Ford F-450 Super Duty Crew Cab 2012 3.54% Dodge Ram Pickup 3500 Crew Cab 2010 3.44% Jeep Patriot SUV 2012 3.36% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Chrysler 300 SRT-8 2010 4.18% Chevrolet TrailBlazer SS 2009 3.35% Chevrolet Silverado 2500HD Regular Cab 2012 2.44% Rolls-Royce Ghost Sedan 2012 2.18% BMW M6 Convertible 2010 2.0% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Lamborghini Reventon Coupe 2008 2.67% Chrysler PT Cruiser Convertible 2008 2.33% Mercedes-Benz 300-Class Convertible 1993 2.06% Spyker C8 Convertible 2009 1.99% Volvo 240 Sedan 1993 1.85% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Ford E-Series Wagon Van 2012 3.93% Land Rover Range Rover SUV 2012 2.51% Jeep Patriot SUV 2012 2.49% BMW X5 SUV 2007 2.42% Isuzu Ascender SUV 2008 2.05% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Audi S6 Sedan 2011 2.18% Chevrolet Silverado 2500HD Regular Cab 2012 1.92% Audi R8 Coupe 2012 1.69% Mercedes-Benz C-Class Sedan 2012 1.68% Audi A5 Coupe 2012 1.39% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Ferrari 458 Italia Convertible 2012 7.92% Lamborghini Aventador Coupe 2012 7.85% Ferrari 458 Italia Coupe 2012 7.35% Ferrari California Convertible 2012 6.09% Volvo C30 Hatchback 2012 3.72% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.55% Lincoln Town Car Sedan 2011 2.44% Chevrolet Malibu Sedan 2007 1.68% Daewoo Nubira Wagon 2002 1.67% Ford Freestar Minivan 2007 1.67% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Jeep Liberty SUV 2012 2.41% Jeep Grand Cherokee SUV 2012 2.18% Ford E-Series Wagon Van 2012 2.05% GMC Yukon Hybrid SUV 2012 1.89% Hyundai Santa Fe SUV 2012 1.74% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 6.08% Dodge Ram Pickup 3500 Crew Cab 2010 5.67% Hyundai Santa Fe SUV 2012 5.1% Isuzu Ascender SUV 2008 5.08% Chrysler Aspen SUV 2009 4.25% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 4.6% Dodge Caravan Minivan 1997 4.14% Plymouth Neon Coupe 1999 3.57% Chevrolet Express Van 2007 2.6% Hyundai Tucson SUV 2012 2.41% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Ford F-450 Super Duty Crew Cab 2012 6.06% Dodge Ram Pickup 3500 Crew Cab 2010 4.1% Ford Expedition EL SUV 2009 3.45% Mercedes-Benz C-Class Sedan 2012 3.45% Bentley Arnage Sedan 2009 2.72% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Lamborghini Reventon Coupe 2008 1.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.64% Chrysler PT Cruiser Convertible 2008 1.4% Acura TL Type-S 2008 1.36% Bugatti Veyron 16.4 Coupe 2009 1.36% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Sprinter Cargo Van 2009 6.91% Mercedes-Benz Sprinter Van 2012 5.18% Volkswagen Golf Hatchback 2012 2.62% Suzuki Aerio Sedan 2007 2.08% Acura TSX Sedan 2012 2.03% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Dodge Caliber Wagon 2007 5.21% Suzuki SX4 Hatchback 2012 3.91% Dodge Charger Sedan 2012 3.75% Chevrolet Cobalt SS 2010 3.13% Ford Mustang Convertible 2007 2.98% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 5.55% Maybach Landaulet Convertible 2012 5.32% Geo Metro Convertible 1993 3.89% Mercedes-Benz 300-Class Convertible 1993 3.81% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.29% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 3.99% Hyundai Elantra Sedan 2007 3.51% Honda Accord Coupe 2012 3.16% Dodge Charger Sedan 2012 2.8% Ford Fiesta Sedan 2012 2.59% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Spyker C8 Convertible 2009 10.37% FIAT 500 Abarth 2012 10.21% Rolls-Royce Phantom Sedan 2012 5.85% Lamborghini Reventon Coupe 2008 4.6% Bentley Continental Supersports Conv. Convertible 2012 4.0% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Hyundai Azera Sedan 2012 3.39% Bentley Mulsanne Sedan 2011 2.85% Dodge Challenger SRT8 2011 2.66% MINI Cooper Roadster Convertible 2012 2.43% Jeep Patriot SUV 2012 2.28% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.69% Chevrolet TrailBlazer SS 2009 3.62% Land Rover Range Rover SUV 2012 2.4% Hyundai Santa Fe SUV 2012 2.15% GMC Yukon Hybrid SUV 2012 2.14% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 5.59% Chevrolet Express Van 2007 3.63% Chevrolet Malibu Sedan 2007 2.38% Chevrolet Avalanche Crew Cab 2012 2.26% Chevrolet Traverse SUV 2012 1.87% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 3.27% Acura TL Type-S 2008 2.62% BMW ActiveHybrid 5 Sedan 2012 2.27% Audi 100 Wagon 1994 2.25% Acura RL Sedan 2012 2.0% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 FIAT 500 Convertible 2012 17.99% Maybach Landaulet Convertible 2012 15.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.98% Nissan Leaf Hatchback 2012 4.01% Spyker C8 Coupe 2009 3.76% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Hyundai Santa Fe SUV 2012 3.03% Ford F-150 Regular Cab 2012 2.78% Jeep Grand Cherokee SUV 2012 2.27% Ford Ranger SuperCab 2011 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.1% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Acura TL Sedan 2012 2.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.01% Aston Martin V8 Vantage Coupe 2012 1.82% Lincoln Town Car Sedan 2011 1.62% Ram C/V Cargo Van Minivan 2012 1.56% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 smart fortwo Convertible 2012 2.98% FIAT 500 Abarth 2012 2.81% Dodge Caliber Wagon 2007 2.38% Hyundai Azera Sedan 2012 2.09% Nissan Juke Hatchback 2012 2.0% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 8.45% Hyundai Azera Sedan 2012 2.95% Hyundai Genesis Sedan 2012 2.22% smart fortwo Convertible 2012 2.21% Chevrolet Sonic Sedan 2012 1.91% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 BMW 1 Series Coupe 2012 3.79% Dodge Caliber Wagon 2007 3.6% Hyundai Veloster Hatchback 2012 3.13% Suzuki SX4 Hatchback 2012 2.9% Volvo C30 Hatchback 2012 2.65% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Silverado 1500 Extended Cab 2012 7.9% GMC Savana Van 2012 6.67% Chevrolet Avalanche Crew Cab 2012 4.21% Dodge Dakota Club Cab 2007 4.19% Ford F-150 Regular Cab 2012 4.05% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Cadillac Escalade EXT Crew Cab 2007 3.3% Jeep Grand Cherokee SUV 2012 2.61% HUMMER H2 SUT Crew Cab 2009 2.4% Isuzu Ascender SUV 2008 2.27% Dodge Durango SUV 2007 2.0% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 3.84% Isuzu Ascender SUV 2008 2.87% Ford E-Series Wagon Van 2012 2.77% Chevrolet Avalanche Crew Cab 2012 2.33% Chevrolet Silverado 1500 Extended Cab 2012 2.19% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette ZR1 2012 2.81% Aston Martin V8 Vantage Coupe 2012 2.58% Mercedes-Benz 300-Class Convertible 1993 1.88% Bentley Continental Supersports Conv. Convertible 2012 1.76% Hyundai Azera Sedan 2012 1.63% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Spyker C8 Convertible 2009 5.55% Bentley Mulsanne Sedan 2011 4.17% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.88% Fisker Karma Sedan 2012 3.12% Bugatti Veyron 16.4 Coupe 2009 3.01% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Lincoln Town Car Sedan 2011 1.64% Chevrolet Malibu Sedan 2007 1.51% Honda Accord Sedan 2012 1.35% Chrysler Sebring Convertible 2010 1.35% Dodge Dakota Club Cab 2007 1.27% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 19.72% Audi RS 4 Convertible 2008 17.2% Acura Integra Type R 2001 9.0% Hyundai Veloster Hatchback 2012 6.85% McLaren MP4-12C Coupe 2012 4.42% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Geo Metro Convertible 1993 4.81% Volkswagen Golf Hatchback 1991 4.08% Dodge Caliber Wagon 2007 2.97% Buick Verano Sedan 2012 2.68% Eagle Talon Hatchback 1998 2.65% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Ford E-Series Wagon Van 2012 3.38% Isuzu Ascender SUV 2008 2.43% Chevrolet Avalanche Crew Cab 2012 2.05% Jeep Grand Cherokee SUV 2012 2.01% Hyundai Santa Fe SUV 2012 1.88% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.07% Mercedes-Benz Sprinter Van 2012 2.86% Honda Odyssey Minivan 2007 2.74% Lincoln Town Car Sedan 2011 2.37% Acura TSX Sedan 2012 2.19% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 10.78% Fisker Karma Sedan 2012 6.48% FIAT 500 Convertible 2012 5.51% MINI Cooper Roadster Convertible 2012 4.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.6% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Chrysler 300 SRT-8 2010 3.53% Audi V8 Sedan 1994 2.7% Acura TL Sedan 2012 1.45% Nissan 240SX Coupe 1998 1.38% Dodge Durango SUV 2007 1.35% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 4.08% GMC Savana Van 2012 1.95% Volkswagen Golf Hatchback 2012 1.87% Hyundai Elantra Touring Hatchback 2012 1.75% Honda Odyssey Minivan 2007 1.6% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 7.68% Cadillac Escalade EXT Crew Cab 2007 4.81% Chrysler 300 SRT-8 2010 3.25% Chevrolet TrailBlazer SS 2009 2.72% Rolls-Royce Ghost Sedan 2012 2.27% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.39% Chevrolet Avalanche Crew Cab 2012 2.94% Dodge Ram Pickup 3500 Crew Cab 2010 2.45% GMC Terrain SUV 2012 2.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.15% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 4.37% FIAT 500 Convertible 2012 3.33% Mercedes-Benz S-Class Sedan 2012 2.87% smart fortwo Convertible 2012 2.59% MINI Cooper Roadster Convertible 2012 2.11% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 5.26% Audi V8 Sedan 1994 2.3% Chevrolet Silverado 1500 Regular Cab 2012 1.54% Audi R8 Coupe 2012 1.5% Infiniti G Coupe IPL 2012 1.49% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Chevrolet Sonic Sedan 2012 2.13% Rolls-Royce Phantom Sedan 2012 2.13% Jeep Wrangler SUV 2012 1.62% FIAT 500 Abarth 2012 1.62% AM General Hummer SUV 2000 1.61% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 BMW ActiveHybrid 5 Sedan 2012 1.92% BMW 1 Series Convertible 2012 1.54% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.51% Aston Martin V8 Vantage Coupe 2012 1.36% Ram C/V Cargo Van Minivan 2012 1.33% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Dodge Caliber Wagon 2007 6.02% Volkswagen Golf Hatchback 1991 2.15% Suzuki SX4 Hatchback 2012 1.9% Buick Verano Sedan 2012 1.88% Hyundai Accent Sedan 2012 1.88% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.05% Chevrolet Silverado 1500 Extended Cab 2012 2.27% Chevrolet Silverado 1500 Regular Cab 2012 1.69% Chevrolet Avalanche Crew Cab 2012 1.56% Ford F-150 Regular Cab 2012 1.44% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 1.95% Hyundai Sonata Sedan 2012 1.55% Dodge Caliber Wagon 2012 1.5% Nissan Juke Hatchback 2012 1.46% Dodge Dakota Club Cab 2007 1.26% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Aston Martin Virage Coupe 2012 18.3% McLaren MP4-12C Coupe 2012 10.45% Lamborghini Aventador Coupe 2012 5.51% Lamborghini Diablo Coupe 2001 4.27% Ferrari California Convertible 2012 4.2% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 9.2% Spyker C8 Convertible 2009 5.7% Maybach Landaulet Convertible 2012 5.62% Spyker C8 Coupe 2009 3.45% Bentley Continental Supersports Conv. Convertible 2012 3.23% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.42% Lamborghini Reventon Coupe 2008 2.05% Nissan Leaf Hatchback 2012 1.75% Audi S5 Convertible 2012 1.71% Chrysler PT Cruiser Convertible 2008 1.52% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.71% Dodge Ram Pickup 3500 Crew Cab 2010 2.5% Isuzu Ascender SUV 2008 2.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.24% Ford F-150 Regular Cab 2012 2.16% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 23.27% Ferrari California Convertible 2012 13.71% Lamborghini Aventador Coupe 2012 9.9% Ferrari 458 Italia Coupe 2012 8.03% Audi TT RS Coupe 2012 4.3% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 MINI Cooper Roadster Convertible 2012 2.07% BMW ActiveHybrid 5 Sedan 2012 1.99% Infiniti G Coupe IPL 2012 1.81% Audi R8 Coupe 2012 1.73% Mercedes-Benz SL-Class Coupe 2009 1.65% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 BMW X5 SUV 2007 4.78% Ford F-150 Regular Cab 2012 4.04% Isuzu Ascender SUV 2008 3.8% Hyundai Santa Fe SUV 2012 3.4% Ford E-Series Wagon Van 2012 2.93% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.18% Honda Accord Sedan 2012 1.16% Buick Rainier SUV 2007 1.08% Chevrolet Express Van 2007 1.07% Hyundai Tucson SUV 2012 1.06% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 FIAT 500 Abarth 2012 4.99% Ford GT Coupe 2006 2.73% AM General Hummer SUV 2000 2.38% Chevrolet Sonic Sedan 2012 2.36% Spyker C8 Coupe 2009 2.24% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 13.52% Nissan Leaf Hatchback 2012 4.17% Maybach Landaulet Convertible 2012 3.95% Bugatti Veyron 16.4 Convertible 2009 3.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.18% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 2.8% Fisker Karma Sedan 2012 2.56% Infiniti G Coupe IPL 2012 2.27% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.15% Audi R8 Coupe 2012 2.04% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.29% Fisker Karma Sedan 2012 1.82% BMW X3 SUV 2012 1.41% Acura ZDX Hatchback 2012 1.32% Honda Odyssey Minivan 2012 1.3% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Mercedes-Benz 300-Class Convertible 1993 3.13% Chevrolet Corvette ZR1 2012 2.57% Dodge Caravan Minivan 1997 2.52% Lamborghini Reventon Coupe 2008 2.39% Eagle Talon Hatchback 1998 2.04% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Chrysler 300 SRT-8 2010 3.94% BMW M6 Convertible 2010 2.95% Chevrolet TrailBlazer SS 2009 2.83% Bugatti Veyron 16.4 Coupe 2009 2.08% Mercedes-Benz 300-Class Convertible 1993 1.81% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Mercedes-Benz Sprinter Van 2012 2.83% Dodge Sprinter Cargo Van 2009 2.3% GMC Savana Van 2012 2.04% Honda Odyssey Minivan 2007 1.92% Audi A5 Coupe 2012 1.78% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Audi TT RS Coupe 2012 16.41% Ferrari California Convertible 2012 7.05% Ferrari 458 Italia Coupe 2012 6.14% Ferrari 458 Italia Convertible 2012 4.65% Chevrolet HHR SS 2010 3.83% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 BMW 3 Series Sedan 2012 4.38% Ferrari California Convertible 2012 4.09% Ferrari 458 Italia Convertible 2012 4.09% Audi TT RS Coupe 2012 3.95% Ferrari 458 Italia Coupe 2012 3.67% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Audi TT RS Coupe 2012 10.1% Ferrari California Convertible 2012 8.73% Ferrari 458 Italia Coupe 2012 5.18% Ferrari 458 Italia Convertible 2012 4.12% Chevrolet HHR SS 2010 4.05% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 9.35% Ford Expedition EL SUV 2009 5.5% Dodge Ram Pickup 3500 Crew Cab 2010 5.39% HUMMER H2 SUT Crew Cab 2009 3.41% Toyota 4Runner SUV 2012 3.07% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Buick Rainier SUV 2007 2.34% Dodge Caliber Wagon 2007 1.98% GMC Savana Van 2012 1.93% Jeep Liberty SUV 2012 1.72% Buick Enclave SUV 2012 1.71% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Bentley Arnage Sedan 2009 7.36% AM General Hummer SUV 2000 6.3% HUMMER H2 SUT Crew Cab 2009 5.09% Jeep Wrangler SUV 2012 2.83% FIAT 500 Abarth 2012 2.52% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 BMW ActiveHybrid 5 Sedan 2012 1.39% Mercedes-Benz SL-Class Coupe 2009 1.35% Audi S5 Coupe 2012 1.09% Audi V8 Sedan 1994 1.04% BMW X3 SUV 2012 1.02% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Daewoo Nubira Wagon 2002 2.93% FIAT 500 Convertible 2012 2.28% Nissan Leaf Hatchback 2012 2.27% Bugatti Veyron 16.4 Convertible 2009 1.79% Suzuki Aerio Sedan 2007 1.74% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Ferrari 458 Italia Convertible 2012 13.48% Ferrari California Convertible 2012 10.87% Chevrolet HHR SS 2010 9.79% Audi TT RS Coupe 2012 8.7% Dodge Magnum Wagon 2008 6.14% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Ferrari California Convertible 2012 5.9% Chevrolet HHR SS 2010 5.42% Honda Accord Coupe 2012 3.62% Dodge Charger SRT-8 2009 3.31% Toyota Corolla Sedan 2012 3.21% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Nissan Leaf Hatchback 2012 5.62% Daewoo Nubira Wagon 2002 5.19% Lincoln Town Car Sedan 2011 4.74% Hyundai Elantra Sedan 2007 4.22% Ford Focus Sedan 2007 3.37% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.89% Nissan Leaf Hatchback 2012 2.47% Maybach Landaulet Convertible 2012 2.11% Lamborghini Reventon Coupe 2008 1.84% Jaguar XK XKR 2012 1.7% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 FIAT 500 Convertible 2012 13.76% smart fortwo Convertible 2012 4.72% Maybach Landaulet Convertible 2012 4.34% Bentley Continental Supersports Conv. Convertible 2012 3.83% Spyker C8 Coupe 2009 3.65% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Aspen SUV 2009 1.56% Cadillac SRX SUV 2012 1.52% Chrysler 300 SRT-8 2010 1.45% Jeep Compass SUV 2012 1.39% Dodge Durango SUV 2007 1.3% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Mercedes-Benz Sprinter Van 2012 2.92% Audi 100 Sedan 1994 2.51% Bugatti Veyron 16.4 Convertible 2009 1.89% Dodge Caravan Minivan 1997 1.79% Tesla Model S Sedan 2012 1.78% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Rolls-Royce Phantom Sedan 2012 2.41% Chrysler Aspen SUV 2009 2.23% Isuzu Ascender SUV 2008 1.68% Rolls-Royce Ghost Sedan 2012 1.66% Dodge Challenger SRT8 2011 1.65% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 MINI Cooper Roadster Convertible 2012 3.07% Dodge Challenger SRT8 2011 2.38% BMW X3 SUV 2012 2.15% Mercedes-Benz Sprinter Van 2012 1.82% Audi S6 Sedan 2011 1.74% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Ford F-450 Super Duty Crew Cab 2012 2.34% Hyundai Santa Fe SUV 2012 1.98% Dodge Ram Pickup 3500 Crew Cab 2010 1.93% Chevrolet TrailBlazer SS 2009 1.84% Volvo XC90 SUV 2007 1.77% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 3.85% Chevrolet Silverado 1500 Regular Cab 2012 3.25% Ford Expedition EL SUV 2009 2.51% Dodge Ram Pickup 3500 Crew Cab 2010 2.31% Hyundai Veracruz SUV 2012 2.1% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 AM General Hummer SUV 2000 4.73% Cadillac Escalade EXT Crew Cab 2007 4.3% HUMMER H2 SUT Crew Cab 2009 3.56% Jeep Wrangler SUV 2012 3.54% Chevrolet TrailBlazer SS 2009 2.91% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Chrysler Aspen SUV 2009 1.5% Isuzu Ascender SUV 2008 1.47% Jeep Grand Cherokee SUV 2012 1.4% Hyundai Santa Fe SUV 2012 1.23% BMW X5 SUV 2007 1.15% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 2.34% Audi TT Hatchback 2011 1.9% Dodge Sprinter Cargo Van 2009 1.85% BMW 1 Series Convertible 2012 1.84% Ram C/V Cargo Van Minivan 2012 1.81% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Ford E-Series Wagon Van 2012 3.21% Audi S6 Sedan 2011 3.2% Dodge Challenger SRT8 2011 2.53% Chrysler Aspen SUV 2009 2.36% Rolls-Royce Phantom Sedan 2012 2.03% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Isuzu Ascender SUV 2008 2.65% Chrysler Aspen SUV 2009 2.5% Ford F-150 Regular Cab 2012 2.01% Jeep Grand Cherokee SUV 2012 1.88% Dodge Ram Pickup 3500 Crew Cab 2010 1.88% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 38.7% Audi RS 4 Convertible 2008 14.76% McLaren MP4-12C Coupe 2012 5.98% Acura Integra Type R 2001 4.92% Hyundai Veloster Hatchback 2012 2.82% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Audi S6 Sedan 2011 3.84% Ford E-Series Wagon Van 2012 2.98% Dodge Challenger SRT8 2011 2.19% Chrysler Aspen SUV 2009 2.19% Audi A5 Coupe 2012 2.1% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Geo Metro Convertible 1993 4.87% Nissan Leaf Hatchback 2012 4.09% Daewoo Nubira Wagon 2002 2.56% Plymouth Neon Coupe 1999 2.45% Dodge Caravan Minivan 1997 2.26% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 2.16% Ford Edge SUV 2012 1.85% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.81% Honda Odyssey Minivan 2012 1.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.62% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Dodge Sprinter Cargo Van 2009 3.59% Mercedes-Benz Sprinter Van 2012 3.56% Ram C/V Cargo Van Minivan 2012 2.52% Acura TSX Sedan 2012 2.27% Volkswagen Golf Hatchback 2012 1.84% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ferrari FF Coupe 2012 4.04% Honda Accord Coupe 2012 3.56% Hyundai Elantra Sedan 2007 2.84% Chevrolet Cobalt SS 2010 2.15% Chevrolet Monte Carlo Coupe 2007 1.88% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz 300-Class Convertible 1993 5.97% Fisker Karma Sedan 2012 4.53% Bugatti Veyron 16.4 Coupe 2009 2.45% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.38% Acura TL Type-S 2008 2.31% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Chrysler 300 SRT-8 2010 2.89% Chevrolet Silverado 2500HD Regular Cab 2012 2.33% Chevrolet TrailBlazer SS 2009 2.32% Chevrolet Silverado 1500 Regular Cab 2012 1.97% Ford F-150 Regular Cab 2007 1.96% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 10.33% Maybach Landaulet Convertible 2012 5.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Nissan Leaf Hatchback 2012 3.62% Bugatti Veyron 16.4 Convertible 2009 3.3% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 4.19% Suzuki SX4 Hatchback 2012 2.61% Nissan Juke Hatchback 2012 2.51% BMW X6 SUV 2012 2.26% Volkswagen Golf Hatchback 1991 2.15% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 19.5% Chevrolet Silverado 1500 Extended Cab 2012 5.53% Chevrolet Express Van 2007 5.22% Chevrolet Avalanche Crew Cab 2012 3.77% Chevrolet Express Cargo Van 2007 3.29% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Bentley Arnage Sedan 2009 3.45% Jeep Patriot SUV 2012 2.44% HUMMER H2 SUT Crew Cab 2009 2.24% Bentley Mulsanne Sedan 2011 2.19% AM General Hummer SUV 2000 1.82% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 2.14% Audi V8 Sedan 1994 1.79% Bugatti Veyron 16.4 Coupe 2009 1.58% Eagle Talon Hatchback 1998 1.43% Lamborghini Reventon Coupe 2008 1.39% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Plymouth Neon Coupe 1999 3.45% Nissan Leaf Hatchback 2012 3.2% Jaguar XK XKR 2012 2.39% Chevrolet Monte Carlo Coupe 2007 2.14% Lincoln Town Car Sedan 2011 2.09% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Chevrolet Corvette ZR1 2012 2.95% Porsche Panamera Sedan 2012 2.59% Infiniti G Coupe IPL 2012 2.27% Lamborghini Reventon Coupe 2008 2.05% Mercedes-Benz SL-Class Coupe 2009 1.79% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Jeep Wrangler SUV 2012 2.62% Jeep Liberty SUV 2012 2.52% Dodge Dakota Crew Cab 2010 2.04% Dodge Caliber Wagon 2012 1.72% Cadillac Escalade EXT Crew Cab 2007 1.71% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz SL-Class Coupe 2009 1.98% Fisker Karma Sedan 2012 1.75% Mercedes-Benz E-Class Sedan 2012 1.46% Bugatti Veyron 16.4 Convertible 2009 1.46% Acura TL Type-S 2008 1.37% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 HUMMER H2 SUT Crew Cab 2009 2.43% AM General Hummer SUV 2000 1.57% Cadillac Escalade EXT Crew Cab 2007 1.5% Bentley Arnage Sedan 2009 1.39% Chrysler 300 SRT-8 2010 1.38% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Lincoln Town Car Sedan 2011 5.53% Hyundai Elantra Sedan 2007 4.19% Daewoo Nubira Wagon 2002 3.67% Chevrolet Impala Sedan 2007 3.24% Dodge Caravan Minivan 1997 3.17% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.35% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.69% BMW ActiveHybrid 5 Sedan 2012 1.65% Jaguar XK XKR 2012 1.64% Infiniti G Coupe IPL 2012 1.58% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Ram C/V Cargo Van Minivan 2012 2.36% Audi A5 Coupe 2012 1.91% Audi S6 Sedan 2011 1.68% Audi R8 Coupe 2012 1.53% Audi TT Hatchback 2011 1.46% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 1.73% BMW ActiveHybrid 5 Sedan 2012 1.44% Honda Odyssey Minivan 2007 1.42% Infiniti G Coupe IPL 2012 1.38% Porsche Panamera Sedan 2012 1.3% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 1.53% GMC Yukon Hybrid SUV 2012 1.46% Land Rover LR2 SUV 2012 1.36% Ford Expedition EL SUV 2009 1.33% Dodge Durango SUV 2012 1.28% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 3.52% Bentley Arnage Sedan 2009 3.45% Bentley Mulsanne Sedan 2011 3.09% Mercedes-Benz C-Class Sedan 2012 2.76% Rolls-Royce Phantom Sedan 2012 2.73% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Porsche Panamera Sedan 2012 3.56% Toyota Camry Sedan 2012 2.4% Jaguar XK XKR 2012 2.27% BMW 1 Series Convertible 2012 1.99% Acura TL Sedan 2012 1.85% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 HUMMER H2 SUT Crew Cab 2009 5.68% Cadillac Escalade EXT Crew Cab 2007 3.96% AM General Hummer SUV 2000 3.87% Jeep Grand Cherokee SUV 2012 3.31% Jeep Wrangler SUV 2012 3.2% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Jeep Liberty SUV 2012 3.75% Jeep Wrangler SUV 2012 2.78% Dodge Dakota Crew Cab 2010 2.54% Dodge Ram Pickup 3500 Crew Cab 2010 2.5% Ford Expedition EL SUV 2009 2.33% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Dodge Sprinter Cargo Van 2009 5.57% Mercedes-Benz Sprinter Van 2012 2.88% GMC Savana Van 2012 2.73% Ram C/V Cargo Van Minivan 2012 2.64% BMW ActiveHybrid 5 Sedan 2012 2.28% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 BMW X5 SUV 2007 3.76% Toyota Sequoia SUV 2012 2.96% Isuzu Ascender SUV 2008 2.88% BMW X3 SUV 2012 2.87% Hyundai Santa Fe SUV 2012 2.86% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi R8 Coupe 2012 2.03% Audi A5 Coupe 2012 2.01% Audi TT Hatchback 2011 1.79% Audi V8 Sedan 1994 1.67% Audi TTS Coupe 2012 1.51% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Avalanche Crew Cab 2012 2.61% Lincoln Town Car Sedan 2011 2.11% Ford Freestar Minivan 2007 2.06% Chevrolet Traverse SUV 2012 1.72% Chevrolet Malibu Sedan 2007 1.68% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 2.47% Audi TT RS Coupe 2012 2.09% Mercedes-Benz 300-Class Convertible 1993 1.85% Nissan 240SX Coupe 1998 1.8% BMW 3 Series Sedan 2012 1.75% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Ford E-Series Wagon Van 2012 16.04% Isuzu Ascender SUV 2008 7.23% Chevrolet Tahoe Hybrid SUV 2012 3.94% Jeep Liberty SUV 2012 3.28% Chevrolet Silverado 1500 Extended Cab 2012 2.39% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 4.94% Honda Odyssey Minivan 2007 3.11% Chevrolet Express Van 2007 2.63% Dodge Sprinter Cargo Van 2009 2.32% Chevrolet Silverado 1500 Extended Cab 2012 2.26% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 FIAT 500 Abarth 2012 9.93% AM General Hummer SUV 2000 6.3% Bentley Arnage Sedan 2009 5.78% Jeep Patriot SUV 2012 5.13% Ford Expedition EL SUV 2009 2.82% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Chevrolet Express Cargo Van 2007 1.86% GMC Savana Van 2012 1.5% Chevrolet Express Van 2007 1.41% Lincoln Town Car Sedan 2011 1.37% Dodge Sprinter Cargo Van 2009 1.36% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Chevrolet TrailBlazer SS 2009 3.3% Bentley Arnage Sedan 2009 3.17% Ford F-450 Super Duty Crew Cab 2012 2.21% Land Rover Range Rover SUV 2012 2.07% Jeep Compass SUV 2012 2.06% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.69% Spyker C8 Coupe 2009 3.34% Maybach Landaulet Convertible 2012 3.02% Bentley Continental Supersports Conv. Convertible 2012 2.93% FIAT 500 Convertible 2012 2.71% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Audi TT RS Coupe 2012 6.33% Hyundai Elantra Sedan 2007 5.32% Dodge Magnum Wagon 2008 5.06% Chevrolet HHR SS 2010 3.12% Volkswagen Beetle Hatchback 2012 3.02% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Chevrolet TrailBlazer SS 2009 2.15% Ford F-150 Regular Cab 2007 2.05% Dodge Durango SUV 2007 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.59% Chevrolet Silverado 1500 Regular Cab 2012 1.37% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 2.14% Geo Metro Convertible 1993 2.09% Maybach Landaulet Convertible 2012 2.03% Nissan Leaf Hatchback 2012 1.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.95% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 24.93% McLaren MP4-12C Coupe 2012 18.17% Chevrolet Corvette Convertible 2012 12.42% Lamborghini Aventador Coupe 2012 11.42% Ferrari 458 Italia Convertible 2012 4.99% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 3.01% Chevrolet Avalanche Crew Cab 2012 2.08% Buick Enclave SUV 2012 1.88% Ford E-Series Wagon Van 2012 1.8% Chevrolet Silverado 1500 Extended Cab 2012 1.73% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Chevrolet TrailBlazer SS 2009 4.42% Bentley Arnage Sedan 2009 3.62% Jeep Compass SUV 2012 3.08% Cadillac Escalade EXT Crew Cab 2007 2.94% Land Rover Range Rover SUV 2012 2.63% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Hyundai Veloster Hatchback 2012 5.55% BMW 1 Series Coupe 2012 4.38% Bugatti Veyron 16.4 Coupe 2009 4.32% McLaren MP4-12C Coupe 2012 4.15% Audi RS 4 Convertible 2008 4.05% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 5.28% Jeep Wrangler SUV 2012 5.13% Jeep Liberty SUV 2012 3.97% HUMMER H2 SUT Crew Cab 2009 3.79% Jeep Grand Cherokee SUV 2012 3.09% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Ferrari 458 Italia Convertible 2012 6.07% Ferrari 458 Italia Coupe 2012 4.78% Ferrari California Convertible 2012 4.55% Chevrolet Cobalt SS 2010 3.42% Lamborghini Aventador Coupe 2012 3.05% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Lamborghini Reventon Coupe 2008 1.97% Bugatti Veyron 16.4 Coupe 2009 1.96% Mercedes-Benz 300-Class Convertible 1993 1.63% Aston Martin V8 Vantage Coupe 2012 1.57% Plymouth Neon Coupe 1999 1.44% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Geo Metro Convertible 1993 2.88% Nissan Leaf Hatchback 2012 2.4% Acura ZDX Hatchback 2012 2.38% Porsche Panamera Sedan 2012 1.91% Dodge Caravan Minivan 1997 1.88% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 4.64% BMW X3 SUV 2012 2.91% Isuzu Ascender SUV 2008 2.86% Mercedes-Benz Sprinter Van 2012 2.82% Dodge Challenger SRT8 2011 2.61% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Geo Metro Convertible 1993 4.79% Ferrari 458 Italia Coupe 2012 3.04% Ferrari 458 Italia Convertible 2012 2.83% Nissan Leaf Hatchback 2012 2.37% BMW 3 Series Sedan 2012 2.37% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Chevrolet Corvette ZR1 2012 4.15% Lamborghini Reventon Coupe 2008 3.57% FIAT 500 Abarth 2012 2.89% Bugatti Veyron 16.4 Coupe 2009 2.29% Mercedes-Benz 300-Class Convertible 1993 1.81% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 7.64% Mercedes-Benz SL-Class Coupe 2009 2.59% BMW X3 SUV 2012 2.09% Fisker Karma Sedan 2012 1.8% Dodge Ram Pickup 3500 Quad Cab 2009 1.62% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 3.08% Ford F-450 Super Duty Crew Cab 2012 2.08% Audi S6 Sedan 2011 2.01% BMW M6 Convertible 2010 1.98% Infiniti G Coupe IPL 2012 1.94% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 BMW X5 SUV 2007 3.97% Ford E-Series Wagon Van 2012 3.63% BMW X3 SUV 2012 2.62% Jeep Compass SUV 2012 2.03% Hyundai Santa Fe SUV 2012 1.86% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 MINI Cooper Roadster Convertible 2012 12.15% Rolls-Royce Phantom Sedan 2012 4.28% Mercedes-Benz S-Class Sedan 2012 4.21% smart fortwo Convertible 2012 3.88% Bugatti Veyron 16.4 Convertible 2009 3.54% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Rolls-Royce Phantom Sedan 2012 4.21% Ram C/V Cargo Van Minivan 2012 3.17% Audi S6 Sedan 2011 2.22% MINI Cooper Roadster Convertible 2012 2.1% Mercedes-Benz S-Class Sedan 2012 1.94% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Chevrolet TrailBlazer SS 2009 6.19% Chrysler 300 SRT-8 2010 2.65% Cadillac Escalade EXT Crew Cab 2007 2.16% Cadillac CTS-V Sedan 2012 2.08% Dodge Durango SUV 2012 1.84% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 2.44% Audi S5 Coupe 2012 2.23% Toyota 4Runner SUV 2012 2.17% Dodge Ram Pickup 3500 Crew Cab 2010 2.04% Mercedes-Benz C-Class Sedan 2012 2.01% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 MINI Cooper Roadster Convertible 2012 5.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.98% Mercedes-Benz S-Class Sedan 2012 2.83% BMW M3 Coupe 2012 2.62% BMW 1 Series Convertible 2012 2.45% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Bentley Arnage Sedan 2009 5.52% FIAT 500 Abarth 2012 4.45% Bentley Mulsanne Sedan 2011 3.39% Jeep Patriot SUV 2012 3.12% Jeep Compass SUV 2012 2.08% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 4.81% Chevrolet Express Cargo Van 2007 4.12% Chevrolet Express Van 2007 3.17% Dodge Caravan Minivan 1997 2.87% Chevrolet Traverse SUV 2012 2.27% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Corvette ZR1 2012 1.98% Ford F-150 Regular Cab 2007 1.91% Chevrolet TrailBlazer SS 2009 1.83% Chrysler 300 SRT-8 2010 1.79% Hyundai Veracruz SUV 2012 1.51% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Acura TL Sedan 2012 1.99% Porsche Panamera Sedan 2012 1.87% BMW ActiveHybrid 5 Sedan 2012 1.75% BMW M5 Sedan 2010 1.64% Jaguar XK XKR 2012 1.54% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Ferrari 458 Italia Convertible 2012 12.26% Ferrari California Convertible 2012 6.63% Ferrari 458 Italia Coupe 2012 6.35% Audi TT RS Coupe 2012 3.58% Chevrolet HHR SS 2010 3.34% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 2.21% Dodge Dakota Club Cab 2007 2.1% Buick Rainier SUV 2007 1.82% Volvo 240 Sedan 1993 1.5% Dodge Caliber Wagon 2012 1.47% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 HUMMER H3T Crew Cab 2010 2.25% Volkswagen Golf Hatchback 1991 2.16% HUMMER H2 SUT Crew Cab 2009 1.83% AM General Hummer SUV 2000 1.67% Spyker C8 Convertible 2009 1.65% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 5.03% Audi S6 Sedan 2011 2.9% Hyundai Genesis Sedan 2012 2.47% MINI Cooper Roadster Convertible 2012 2.07% Chrysler Aspen SUV 2009 1.9% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 2.91% Dodge Ram Pickup 3500 Quad Cab 2009 2.77% Ford F-450 Super Duty Crew Cab 2012 2.4% Chevrolet Tahoe Hybrid SUV 2012 2.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.25% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Avalanche Crew Cab 2012 3.1% Isuzu Ascender SUV 2008 2.03% Dodge Journey SUV 2012 1.94% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.94% Chevrolet Silverado 1500 Extended Cab 2012 1.91% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Chevrolet TrailBlazer SS 2009 2.35% Chrysler 300 SRT-8 2010 1.82% Jeep Liberty SUV 2012 1.68% Cadillac Escalade EXT Crew Cab 2007 1.67% Chevrolet Silverado 1500 Regular Cab 2012 1.61% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 10.3% Jeep Patriot SUV 2012 3.39% Rolls-Royce Ghost Sedan 2012 3.35% HUMMER H2 SUT Crew Cab 2009 2.91% Cadillac Escalade EXT Crew Cab 2007 2.9% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Silverado 2500HD Regular Cab 2012 4.0% GMC Savana Van 2012 3.28% Honda Accord Sedan 2012 2.32% Chevrolet Silverado 1500 Regular Cab 2012 2.14% Chevrolet Express Cargo Van 2007 2.07% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Chevrolet Express Cargo Van 2007 4.75% GMC Savana Van 2012 4.11% Chevrolet Express Van 2007 3.59% Dodge Caravan Minivan 1997 3.14% Lincoln Town Car Sedan 2011 2.23% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Spyker C8 Convertible 2009 2.85% Lamborghini Reventon Coupe 2008 2.65% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.26% Mercedes-Benz SL-Class Coupe 2009 2.15% Bentley Continental Supersports Conv. Convertible 2012 2.14% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Lamborghini Aventador Coupe 2012 6.08% Aston Martin Virage Coupe 2012 4.77% Ferrari California Convertible 2012 4.56% McLaren MP4-12C Coupe 2012 4.33% Ferrari 458 Italia Coupe 2012 3.84% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Mercedes-Benz Sprinter Van 2012 4.57% Dodge Sprinter Cargo Van 2009 2.88% GMC Savana Van 2012 2.49% Honda Odyssey Minivan 2007 2.24% Buick Rainier SUV 2007 1.73% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 37.72% Acura Integra Type R 2001 5.36% McLaren MP4-12C Coupe 2012 3.75% Chevrolet Cobalt SS 2010 3.09% Spyker C8 Convertible 2009 2.97% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 6.73% Chevrolet Express Van 2007 4.02% Chevrolet Malibu Sedan 2007 3.4% Honda Odyssey Minivan 2007 2.84% Ford Freestar Minivan 2007 2.47% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Dodge Caliber Wagon 2007 4.81% Hyundai Elantra Sedan 2007 3.9% Hyundai Accent Sedan 2012 3.72% BMW 1 Series Coupe 2012 3.03% Buick Verano Sedan 2012 2.54% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Acura TL Sedan 2012 2.63% Audi 100 Sedan 1994 2.5% Chrysler PT Cruiser Convertible 2008 2.31% Dodge Caravan Minivan 1997 2.24% Lincoln Town Car Sedan 2011 2.16% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 BMW X3 SUV 2012 1.52% Audi S5 Coupe 2012 1.47% Audi S6 Sedan 2011 1.4% Ford F-450 Super Duty Crew Cab 2012 1.4% Volvo XC90 SUV 2007 1.24% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 18.95% Jeep Wrangler SUV 2012 14.84% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.67% Hyundai Veloster Hatchback 2012 8.29% Audi RS 4 Convertible 2008 5.7% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Chevrolet Malibu Sedan 2007 3.11% Dodge Caravan Minivan 1997 3.09% Plymouth Neon Coupe 1999 2.78% Daewoo Nubira Wagon 2002 2.78% Chevrolet Impala Sedan 2007 2.62% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Lamborghini Reventon Coupe 2008 3.06% Mercedes-Benz 300-Class Convertible 1993 1.63% Volvo 240 Sedan 1993 1.59% Plymouth Neon Coupe 1999 1.52% Bugatti Veyron 16.4 Coupe 2009 1.33% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Corvette ZR1 2012 2.33% Infiniti G Coupe IPL 2012 1.81% Acura ZDX Hatchback 2012 1.78% Lamborghini Reventon Coupe 2008 1.51% Audi V8 Sedan 1994 1.5% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 3.31% Spyker C8 Convertible 2009 2.62% Bentley Arnage Sedan 2009 2.03% Rolls-Royce Phantom Sedan 2012 1.94% Acura RL Sedan 2012 1.81% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 18.14% Chevrolet Corvette Convertible 2012 14.29% Geo Metro Convertible 1993 14.1% Lamborghini Diablo Coupe 2001 9.22% McLaren MP4-12C Coupe 2012 7.77% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Ferrari California Convertible 2012 2.71% Audi TT RS Coupe 2012 2.58% Volvo C30 Hatchback 2012 2.46% Suzuki SX4 Hatchback 2012 2.31% Dodge Caliber Wagon 2007 2.22% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Fisker Karma Sedan 2012 2.0% Infiniti G Coupe IPL 2012 1.68% Mercedes-Benz SL-Class Coupe 2009 1.62% Acura TL Type-S 2008 1.55% BMW ActiveHybrid 5 Sedan 2012 1.46% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.42% Lincoln Town Car Sedan 2011 3.61% Acura TSX Sedan 2012 2.04% Toyota Corolla Sedan 2012 1.9% Volkswagen Golf Hatchback 2012 1.76% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Chrysler 300 SRT-8 2010 1.75% Lamborghini Reventon Coupe 2008 1.69% Bentley Continental GT Coupe 2007 1.5% Chevrolet TrailBlazer SS 2009 1.49% BMW M6 Convertible 2010 1.43% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Audi TT Hatchback 2011 2.26% BMW ActiveHybrid 5 Sedan 2012 2.14% BMW 1 Series Convertible 2012 2.14% Ram C/V Cargo Van Minivan 2012 1.9% Audi A5 Coupe 2012 1.79% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Mercedes-Benz SL-Class Coupe 2009 2.55% Porsche Panamera Sedan 2012 2.49% BMW ActiveHybrid 5 Sedan 2012 2.48% Audi TT Hatchback 2011 1.87% Mercedes-Benz E-Class Sedan 2012 1.82% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Caliber Wagon 2007 5.4% Hyundai Elantra Sedan 2007 2.66% Honda Accord Coupe 2012 2.54% Volkswagen Golf Hatchback 1991 2.34% Suzuki SX4 Hatchback 2012 2.28% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 21.01% Ferrari 458 Italia Convertible 2012 19.08% Ferrari 458 Italia Coupe 2012 6.15% Chevrolet Cobalt SS 2010 6.07% Ferrari FF Coupe 2012 5.69% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 4.58% Cadillac Escalade EXT Crew Cab 2007 3.6% Jeep Wrangler SUV 2012 2.6% Land Rover Range Rover SUV 2012 2.31% Jeep Compass SUV 2012 2.31% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Lamborghini Reventon Coupe 2008 4.7% Bugatti Veyron 16.4 Coupe 2009 4.55% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.29% Spyker C8 Convertible 2009 2.9% Aston Martin V8 Vantage Coupe 2012 2.41% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 7.9% GMC Savana Van 2012 5.51% Dodge Caravan Minivan 1997 3.46% Chevrolet Express Van 2007 2.87% Dodge Sprinter Cargo Van 2009 2.45% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 3.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.21% Chevrolet Silverado 1500 Regular Cab 2012 2.41% GMC Terrain SUV 2012 2.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.23% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Dodge Caravan Minivan 1997 3.94% Plymouth Neon Coupe 1999 2.78% Nissan Leaf Hatchback 2012 2.27% Daewoo Nubira Wagon 2002 2.25% Hyundai Elantra Sedan 2007 1.96% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Rolls-Royce Phantom Sedan 2012 5.08% Rolls-Royce Ghost Sedan 2012 3.22% Bentley Mulsanne Sedan 2011 2.93% Bentley Arnage Sedan 2009 2.83% BMW M6 Convertible 2010 2.58% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.84% Mazda Tribute SUV 2011 2.43% Jeep Liberty SUV 2012 1.94% Jeep Patriot SUV 2012 1.92% Ford E-Series Wagon Van 2012 1.89% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 BMW X6 SUV 2012 4.77% Dodge Caliber Wagon 2007 4.06% Volkswagen Golf Hatchback 1991 2.7% Dodge Ram Pickup 3500 Quad Cab 2009 1.88% Mazda Tribute SUV 2011 1.75% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Rolls-Royce Phantom Sedan 2012 2.7% Rolls-Royce Ghost Sedan 2012 2.62% Dodge Dakota Crew Cab 2010 2.3% Chrysler Aspen SUV 2009 1.85% Audi S6 Sedan 2011 1.82% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Ford Edge SUV 2012 4.5% Ford F-450 Super Duty Crew Cab 2012 4.23% Toyota 4Runner SUV 2012 3.91% Volvo XC90 SUV 2007 3.62% BMW X5 SUV 2007 3.58% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Hyundai Genesis Sedan 2012 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% Bentley Continental Flying Spur Sedan 2007 1.58% Infiniti G Coupe IPL 2012 1.5% Mercedes-Benz SL-Class Coupe 2009 1.49% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 2.1% Acura ZDX Hatchback 2012 1.91% Volkswagen Golf Hatchback 1991 1.86% Mercedes-Benz SL-Class Coupe 2009 1.8% smart fortwo Convertible 2012 1.77% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 4.26% Jeep Grand Cherokee SUV 2012 2.92% Chevrolet TrailBlazer SS 2009 2.47% Dodge Ram Pickup 3500 Crew Cab 2010 2.35% Dodge Durango SUV 2007 2.19% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Infiniti G Coupe IPL 2012 2.17% Chevrolet Corvette ZR1 2012 2.03% Chevrolet Silverado 2500HD Regular Cab 2012 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.9% Chrysler 300 SRT-8 2010 1.79% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Chevrolet Corvette ZR1 2012 4.9% Lamborghini Reventon Coupe 2008 4.09% Dodge Caravan Minivan 1997 4.05% Plymouth Neon Coupe 1999 3.69% Mercedes-Benz 300-Class Convertible 1993 3.5% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Hyundai Accent Sedan 2012 4.14% Hyundai Elantra Sedan 2007 4.14% Volkswagen Beetle Hatchback 2012 3.38% Hyundai Elantra Touring Hatchback 2012 3.19% Dodge Sprinter Cargo Van 2009 3.18% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 3.15% Hyundai Tucson SUV 2012 2.96% Chevrolet Traverse SUV 2012 2.53% Ford Ranger SuperCab 2011 2.08% Dodge Dakota Club Cab 2007 2.05% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-450 Super Duty Crew Cab 2012 4.74% Isuzu Ascender SUV 2008 3.96% Jeep Grand Cherokee SUV 2012 3.92% Dodge Ram Pickup 3500 Crew Cab 2010 3.89% Ford Expedition EL SUV 2009 3.62% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 MINI Cooper Roadster Convertible 2012 10.29% Mercedes-Benz S-Class Sedan 2012 3.12% BMW X3 SUV 2012 3.08% Audi TT Hatchback 2011 2.5% Mercedes-Benz Sprinter Van 2012 1.94% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Rolls-Royce Ghost Sedan 2012 2.63% Rolls-Royce Phantom Sedan 2012 2.39% Chrysler 300 SRT-8 2010 2.07% Hyundai Genesis Sedan 2012 1.68% Bentley Arnage Sedan 2009 1.64% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Cadillac Escalade EXT Crew Cab 2007 1.44% Chrysler 300 SRT-8 2010 1.42% Jeep Grand Cherokee SUV 2012 1.4% Dodge Durango SUV 2007 1.37% Chevrolet TrailBlazer SS 2009 1.3% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Reventon Coupe 2008 2.95% Hyundai Azera Sedan 2012 2.32% Chevrolet Corvette ZR1 2012 1.82% Spyker C8 Convertible 2009 1.81% Bentley Continental Flying Spur Sedan 2007 1.65% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 FIAT 500 Convertible 2012 4.89% Maybach Landaulet Convertible 2012 3.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.68% Bugatti Veyron 16.4 Convertible 2009 2.49% Mercedes-Benz S-Class Sedan 2012 2.41% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 2.38% BMW 1 Series Convertible 2012 2.12% Jaguar XK XKR 2012 2.06% Porsche Panamera Sedan 2012 1.96% Toyota Camry Sedan 2012 1.96% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Aston Martin V8 Vantage Coupe 2012 1.66% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.52% BMW M6 Convertible 2010 1.38% Bugatti Veyron 16.4 Coupe 2009 1.28% Chrysler 300 SRT-8 2010 1.27% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.09% Chevrolet Silverado 1500 Regular Cab 2012 1.92% Ford F-150 Regular Cab 2012 1.8% Dodge Dakota Club Cab 2007 1.68% Chevrolet Silverado 1500 Extended Cab 2012 1.67% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Fisker Karma Sedan 2012 3.71% Mercedes-Benz 300-Class Convertible 1993 2.87% Acura ZDX Hatchback 2012 2.52% Ford GT Coupe 2006 2.35% Mercedes-Benz E-Class Sedan 2012 2.0% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Jeep Wrangler SUV 2012 15.91% HUMMER H3T Crew Cab 2010 12.94% HUMMER H2 SUT Crew Cab 2009 10.17% Dodge Ram Pickup 3500 Quad Cab 2009 8.98% BMW X6 SUV 2012 4.98% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 2.79% Chevrolet TrailBlazer SS 2009 2.69% Chrysler 300 SRT-8 2010 2.16% FIAT 500 Abarth 2012 2.13% BMW M6 Convertible 2010 1.76% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Ferrari California Convertible 2012 10.03% Ferrari 458 Italia Coupe 2012 6.34% Ferrari 458 Italia Convertible 2012 4.45% Dodge Charger SRT-8 2009 3.98% Geo Metro Convertible 1993 3.88% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Plymouth Neon Coupe 1999 3.14% Daewoo Nubira Wagon 2002 2.18% Nissan Leaf Hatchback 2012 1.97% Ferrari FF Coupe 2012 1.68% Hyundai Elantra Sedan 2007 1.68% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 MINI Cooper Roadster Convertible 2012 2.61% Audi S6 Sedan 2011 2.49% BMW X3 SUV 2012 2.04% Mercedes-Benz C-Class Sedan 2012 1.76% Audi R8 Coupe 2012 1.63% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Hyundai Azera Sedan 2012 4.36% Bentley Arnage Sedan 2009 4.0% Bentley Mulsanne Sedan 2011 3.84% Jeep Compass SUV 2012 3.03% Spyker C8 Convertible 2009 2.61% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Chevrolet TrailBlazer SS 2009 3.6% Cadillac Escalade EXT Crew Cab 2007 3.28% Chrysler 300 SRT-8 2010 2.54% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.24% Chevrolet Silverado 1500 Regular Cab 2012 2.02% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Dodge Sprinter Cargo Van 2009 3.94% Acura TL Sedan 2012 2.32% Porsche Panamera Sedan 2012 2.3% Dodge Caravan Minivan 1997 2.1% Jaguar XK XKR 2012 2.09% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Hyundai Santa Fe SUV 2012 4.98% BMW X5 SUV 2007 4.8% Chrysler Aspen SUV 2009 4.06% Audi S6 Sedan 2011 3.33% Ford E-Series Wagon Van 2012 3.05% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 BMW X3 SUV 2012 3.25% Audi A5 Coupe 2012 2.99% Audi S5 Coupe 2012 2.86% Audi S6 Sedan 2011 2.76% Audi R8 Coupe 2012 2.61% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler Aspen SUV 2009 1.7% Isuzu Ascender SUV 2008 1.41% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% Dodge Durango SUV 2007 1.24% Dodge Ram Pickup 3500 Crew Cab 2010 1.22% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.91% Audi A5 Coupe 2012 1.73% BMW ActiveHybrid 5 Sedan 2012 1.71% Audi S5 Coupe 2012 1.65% Audi V8 Sedan 1994 1.64% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Aston Martin Virage Coupe 2012 16.56% Lamborghini Aventador Coupe 2012 11.79% Ferrari California Convertible 2012 9.26% McLaren MP4-12C Coupe 2012 8.63% Ferrari 458 Italia Convertible 2012 8.03% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Ford Fiesta Sedan 2012 3.45% Dodge Charger SRT-8 2009 3.33% Ferrari California Convertible 2012 3.31% Dodge Charger Sedan 2012 3.27% Ferrari 458 Italia Coupe 2012 3.23% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Chevrolet TrailBlazer SS 2009 6.45% Chevrolet Silverado 1500 Regular Cab 2012 5.8% Chrysler 300 SRT-8 2010 3.93% Chevrolet Silverado 2500HD Regular Cab 2012 3.18% Hyundai Veracruz SUV 2012 2.54% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Ford Fiesta Sedan 2012 5.9% Hyundai Elantra Sedan 2007 5.23% Honda Accord Coupe 2012 3.46% Suzuki SX4 Hatchback 2012 3.21% Volkswagen Beetle Hatchback 2012 2.85% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 AM General Hummer SUV 2000 6.31% Jeep Patriot SUV 2012 4.64% Bentley Arnage Sedan 2009 4.19% HUMMER H2 SUT Crew Cab 2009 3.08% Jeep Liberty SUV 2012 2.83% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Audi TT Hatchback 2011 2.25% Audi 100 Sedan 1994 2.15% Audi V8 Sedan 1994 2.0% Acura TL Sedan 2012 1.82% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Volvo C30 Hatchback 2012 4.72% Dodge Caliber Wagon 2007 4.25% HUMMER H3T Crew Cab 2010 3.06% Suzuki SX4 Hatchback 2012 3.05% Chevrolet HHR SS 2010 2.81% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mazda Tribute SUV 2011 4.03% Jeep Compass SUV 2012 2.93% Land Rover LR2 SUV 2012 2.42% smart fortwo Convertible 2012 2.41% Jeep Patriot SUV 2012 2.26% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Ford F-450 Super Duty Crew Cab 2012 2.79% Dodge Ram Pickup 3500 Crew Cab 2010 2.6% Ford Expedition EL SUV 2009 2.34% Chevrolet Silverado 2500HD Regular Cab 2012 1.99% Chrysler 300 SRT-8 2010 1.94% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.81% Ford F-450 Super Duty Crew Cab 2012 4.74% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.43% Hyundai Santa Fe SUV 2012 2.96% Toyota 4Runner SUV 2012 2.79% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 5.06% BMW X6 SUV 2012 4.18% Jeep Wrangler SUV 2012 2.71% Suzuki SX4 Hatchback 2012 2.4% Dodge Ram Pickup 3500 Quad Cab 2009 2.23% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 AM General Hummer SUV 2000 5.47% Cadillac Escalade EXT Crew Cab 2007 4.5% HUMMER H2 SUT Crew Cab 2009 3.66% Chevrolet TrailBlazer SS 2009 2.46% Ford Expedition EL SUV 2009 2.41% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Aston Martin Virage Coupe 2012 19.63% Lamborghini Diablo Coupe 2001 10.59% McLaren MP4-12C Coupe 2012 10.42% Lamborghini Aventador Coupe 2012 5.12% BMW Z4 Convertible 2012 4.49% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.95% Infiniti G Coupe IPL 2012 1.85% Porsche Panamera Sedan 2012 1.7% BMW ActiveHybrid 5 Sedan 2012 1.62% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.61% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Mercedes-Benz Sprinter Van 2012 4.46% Audi TT Hatchback 2011 3.17% Ram C/V Cargo Van Minivan 2012 2.98% Chrysler Town and Country Minivan 2012 2.83% Audi A5 Coupe 2012 2.7% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 FIAT 500 Convertible 2012 2.34% Bugatti Veyron 16.4 Convertible 2009 2.28% Bentley Continental Supersports Conv. Convertible 2012 1.9% Mercedes-Benz E-Class Sedan 2012 1.88% Nissan Leaf Hatchback 2012 1.79% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Dodge Caliber Wagon 2007 12.4% BMW X6 SUV 2012 6.18% Ford Ranger SuperCab 2011 4.17% Buick Rainier SUV 2007 3.42% Volkswagen Golf Hatchback 1991 3.06% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 2.83% GMC Savana Van 2012 2.01% Mercedes-Benz Sprinter Van 2012 1.78% Dodge Sprinter Cargo Van 2009 1.75% Honda Odyssey Minivan 2007 1.69% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Isuzu Ascender SUV 2008 8.52% Ford E-Series Wagon Van 2012 6.48% Ford Ranger SuperCab 2011 4.59% Jeep Grand Cherokee SUV 2012 4.24% HUMMER H2 SUT Crew Cab 2009 3.48% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Cadillac SRX SUV 2012 1.81% Chrysler 300 SRT-8 2010 1.31% Hyundai Genesis Sedan 2012 1.28% Bentley Continental GT Coupe 2007 1.28% BMW M6 Convertible 2010 1.28% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Ram C/V Cargo Van Minivan 2012 4.73% BMW 1 Series Convertible 2012 2.7% Toyota Camry Sedan 2012 2.35% Acura TSX Sedan 2012 1.97% BMW ActiveHybrid 5 Sedan 2012 1.82% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Chrysler PT Cruiser Convertible 2008 1.85% Mercedes-Benz Sprinter Van 2012 1.81% Suzuki SX4 Sedan 2012 1.56% Lamborghini Reventon Coupe 2008 1.55% Dodge Caravan Minivan 1997 1.52% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Chevrolet Silverado 1500 Extended Cab 2012 2.92% Ferrari FF Coupe 2012 1.65% Dodge Dakota Crew Cab 2010 1.52% Chevrolet Monte Carlo Coupe 2007 1.43% Chevrolet Silverado 1500 Regular Cab 2012 1.41% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 3.94% Chevrolet Avalanche Crew Cab 2012 2.42% Hyundai Tucson SUV 2012 2.02% Chevrolet Malibu Sedan 2007 1.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.75% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Ferrari 458 Italia Convertible 2012 6.7% Ferrari California Convertible 2012 6.05% Ferrari 458 Italia Coupe 2012 5.86% BMW 3 Series Sedan 2012 4.89% Volvo C30 Hatchback 2012 4.2% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 BMW 1 Series Coupe 2012 4.98% Dodge Caliber Wagon 2007 4.72% Suzuki SX4 Hatchback 2012 3.83% HUMMER H3T Crew Cab 2010 3.52% BMW X6 SUV 2012 3.03% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 BMW X5 SUV 2007 4.23% Hyundai Santa Fe SUV 2012 3.48% Audi A5 Coupe 2012 2.73% Toyota Sequoia SUV 2012 2.65% Ford E-Series Wagon Van 2012 2.5% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Ford F-450 Super Duty Crew Cab 2012 4.14% Dodge Ram Pickup 3500 Crew Cab 2010 3.72% Jeep Grand Cherokee SUV 2012 3.48% Ford Expedition EL SUV 2009 3.44% Jeep Liberty SUV 2012 3.3% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 4.38% Isuzu Ascender SUV 2008 2.95% Jeep Grand Cherokee SUV 2012 2.35% Jeep Wrangler SUV 2012 2.18% AM General Hummer SUV 2000 2.05% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Chrysler 300 SRT-8 2010 4.77% BMW M6 Convertible 2010 3.58% Chevrolet TrailBlazer SS 2009 3.22% Rolls-Royce Ghost Sedan 2012 2.6% Audi V8 Sedan 1994 2.21% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Chrysler Aspen SUV 2009 3.17% Ford E-Series Wagon Van 2012 2.76% Isuzu Ascender SUV 2008 2.07% Dodge Challenger SRT8 2011 1.69% Audi S6 Sedan 2011 1.63% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Dodge Caliber Wagon 2007 4.12% Plymouth Neon Coupe 1999 2.74% Hyundai Elantra Sedan 2007 2.22% BMW 1 Series Coupe 2012 2.17% Volvo C30 Hatchback 2012 1.89% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 3.17% Audi A5 Coupe 2012 2.26% Audi R8 Coupe 2012 2.19% BMW X3 SUV 2012 1.77% MINI Cooper Roadster Convertible 2012 1.74% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 BMW X6 SUV 2012 3.64% Ford Edge SUV 2012 3.22% Jeep Compass SUV 2012 2.46% Ford Ranger SuperCab 2011 2.46% Dodge Ram Pickup 3500 Quad Cab 2009 2.25% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 2500HD Regular Cab 2012 2.16% Chevrolet Silverado 1500 Regular Cab 2012 1.75% Chrysler 300 SRT-8 2010 1.53% Audi V8 Sedan 1994 1.52% Chevrolet Silverado 1500 Extended Cab 2012 1.4% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 6.61% BMW 1 Series Convertible 2012 3.33% MINI Cooper Roadster Convertible 2012 2.18% BMW ActiveHybrid 5 Sedan 2012 1.7% BMW M3 Coupe 2012 1.58% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.36% Acura TSX Sedan 2012 2.48% Audi TT Hatchback 2011 1.69% BMW 1 Series Convertible 2012 1.69% Chevrolet Malibu Hybrid Sedan 2010 1.61% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Honda Odyssey Minivan 2007 1.41% Porsche Panamera Sedan 2012 1.22% GMC Savana Van 2012 1.21% Toyota Camry Sedan 2012 1.2% Jaguar XK XKR 2012 1.13% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Chevrolet Corvette ZR1 2012 1.47% Infiniti G Coupe IPL 2012 1.35% Acura TL Type-S 2008 1.32% Hyundai Veracruz SUV 2012 1.32% Audi 100 Wagon 1994 1.29% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Isuzu Ascender SUV 2008 4.31% Ford E-Series Wagon Van 2012 4.24% BMW X5 SUV 2007 2.87% Hyundai Santa Fe SUV 2012 2.26% Chrysler Aspen SUV 2009 2.2% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Dodge Sprinter Cargo Van 2009 2.12% Chevrolet Express Cargo Van 2007 1.93% GMC Savana Van 2012 1.86% Honda Odyssey Minivan 2007 1.8% Lincoln Town Car Sedan 2011 1.7% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.89% Volkswagen Golf Hatchback 2012 2.26% Bugatti Veyron 16.4 Convertible 2009 2.15% Suzuki Aerio Sedan 2007 2.06% FIAT 500 Convertible 2012 2.03% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Audi A5 Coupe 2012 2.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.8% Audi S5 Coupe 2012 1.55% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.53% Infiniti G Coupe IPL 2012 1.29% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 BMW M6 Convertible 2010 2.81% Chrysler 300 SRT-8 2010 2.8% Chevrolet TrailBlazer SS 2009 2.53% Bentley Continental GT Coupe 2007 2.41% Rolls-Royce Phantom Sedan 2012 2.38% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Phantom Sedan 2012 4.12% Chrysler 300 SRT-8 2010 3.92% BMW M6 Convertible 2010 2.88% Bentley Continental GT Coupe 2007 2.5% Hyundai Genesis Sedan 2012 2.16% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Eagle Talon Hatchback 1998 2.02% Audi V8 Sedan 1994 1.84% Chevrolet Corvette ZR1 2012 1.7% Chrysler 300 SRT-8 2010 1.68% Lamborghini Reventon Coupe 2008 1.6% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Bentley Mulsanne Sedan 2011 3.77% MINI Cooper Roadster Convertible 2012 2.97% Hyundai Azera Sedan 2012 2.91% Jeep Compass SUV 2012 2.3% Cadillac SRX SUV 2012 2.26% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Ferrari 458 Italia Convertible 2012 11.57% Lamborghini Aventador Coupe 2012 9.18% Ferrari 458 Italia Coupe 2012 8.09% Aston Martin Virage Coupe 2012 7.06% Ferrari California Convertible 2012 6.34% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Caliber Wagon 2007 4.91% BMW 1 Series Coupe 2012 3.7% GMC Savana Van 2012 2.08% Dodge Dakota Club Cab 2007 2.04% Hyundai Veloster Hatchback 2012 2.0% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Rolls-Royce Ghost Sedan 2012 1.56% Chrysler 300 SRT-8 2010 1.55% Chevrolet TrailBlazer SS 2009 1.44% Cadillac Escalade EXT Crew Cab 2007 1.23% Jeep Grand Cherokee SUV 2012 1.17% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 4.61% Ford Expedition EL SUV 2009 3.07% Cadillac Escalade EXT Crew Cab 2007 2.79% Jeep Patriot SUV 2012 2.32% Ford F-450 Super Duty Crew Cab 2012 2.31% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 12.75% FIAT 500 Abarth 2012 5.25% Rolls-Royce Phantom Sedan 2012 3.88% Bentley Mulsanne Sedan 2011 3.62% Jeep Compass SUV 2012 2.93% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.98% Chevrolet Silverado 1500 Regular Cab 2012 2.91% Chrysler 300 SRT-8 2010 2.7% GMC Terrain SUV 2012 2.66% Ford F-150 Regular Cab 2007 2.22% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Monte Carlo Coupe 2007 1.92% Honda Accord Coupe 2012 1.82% Chevrolet Malibu Sedan 2007 1.68% Honda Odyssey Minivan 2007 1.64% Chevrolet Silverado 2500HD Regular Cab 2012 1.61% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 2.98% Fisker Karma Sedan 2012 2.89% Infiniti G Coupe IPL 2012 2.21% Chevrolet Corvette ZR1 2012 1.63% Bugatti Veyron 16.4 Coupe 2009 1.62% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 4.6% Dodge Caravan Minivan 1997 4.07% Chevrolet Express Van 2007 3.17% Chevrolet Express Cargo Van 2007 2.49% Plymouth Neon Coupe 1999 2.19% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Jeep Wrangler SUV 2012 15.66% HUMMER H3T Crew Cab 2010 9.12% HUMMER H2 SUT Crew Cab 2009 5.23% Aston Martin Virage Coupe 2012 3.81% Suzuki SX4 Hatchback 2012 3.03% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Spyker C8 Convertible 2009 5.16% Bentley Mulsanne Sedan 2011 4.14% Hyundai Genesis Sedan 2012 3.54% Mercedes-Benz 300-Class Convertible 1993 3.36% Lamborghini Reventon Coupe 2008 3.3% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 McLaren MP4-12C Coupe 2012 15.21% Lamborghini Diablo Coupe 2001 12.26% Acura Integra Type R 2001 10.79% Aston Martin Virage Coupe 2012 8.65% Chevrolet Corvette Convertible 2012 5.13% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Geo Metro Convertible 1993 16.61% Mercedes-Benz 300-Class Convertible 1993 4.28% Nissan Leaf Hatchback 2012 3.39% Plymouth Neon Coupe 1999 2.62% Chevrolet Corvette ZR1 2012 2.52% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Chevrolet Silverado 1500 Extended Cab 2012 1.88% Isuzu Ascender SUV 2008 1.49% Chevrolet Avalanche Crew Cab 2012 1.29% Dodge Dakota Crew Cab 2010 1.17% Dodge Dakota Club Cab 2007 1.14% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Daewoo Nubira Wagon 2002 2.6% Lincoln Town Car Sedan 2011 1.87% Nissan Leaf Hatchback 2012 1.85% Chrysler PT Cruiser Convertible 2008 1.82% Chrysler Sebring Convertible 2010 1.81% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 4.18% Mercedes-Benz 300-Class Convertible 1993 2.94% Acura ZDX Hatchback 2012 2.63% Acura TL Sedan 2012 2.56% Acura TL Type-S 2008 2.3% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 11.7% Isuzu Ascender SUV 2008 5.02% Mercedes-Benz Sprinter Van 2012 4.19% Jeep Liberty SUV 2012 2.47% BMW X5 SUV 2007 2.37% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Chevrolet TrailBlazer SS 2009 4.42% BMW M6 Convertible 2010 4.15% Chrysler 300 SRT-8 2010 3.98% Chevrolet Silverado 2500HD Regular Cab 2012 2.63% Chevrolet Silverado 1500 Regular Cab 2012 2.41% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 2.44% Chevrolet Tahoe Hybrid SUV 2012 2.11% Audi S6 Sedan 2011 2.03% Audi A5 Coupe 2012 1.86% Chevrolet Silverado 1500 Extended Cab 2012 1.83% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Lamborghini Reventon Coupe 2008 4.25% Mercedes-Benz 300-Class Convertible 1993 3.55% Bugatti Veyron 16.4 Coupe 2009 3.32% Spyker C8 Convertible 2009 2.54% Hyundai Genesis Sedan 2012 2.07% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Chrysler 300 SRT-8 2010 3.11% Cadillac Escalade EXT Crew Cab 2007 2.08% Chevrolet TrailBlazer SS 2009 1.87% Audi V8 Sedan 1994 1.56% Land Rover Range Rover SUV 2012 1.46% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Chrysler 300 SRT-8 2010 1.92% Chevrolet Silverado 1500 Regular Cab 2012 1.55% Chevrolet Monte Carlo Coupe 2007 1.47% Eagle Talon Hatchback 1998 1.46% Mercedes-Benz 300-Class Convertible 1993 1.31% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Rolls-Royce Phantom Sedan 2012 2.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.06% Lamborghini Reventon Coupe 2008 1.63% Aston Martin V8 Vantage Coupe 2012 1.5% Suzuki SX4 Sedan 2012 1.4% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Mercedes-Benz Sprinter Van 2012 3.82% Dodge Sprinter Cargo Van 2009 2.34% GMC Savana Van 2012 1.51% Suzuki Aerio Sedan 2007 1.45% Suzuki SX4 Sedan 2012 1.36% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 7.11% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.5% Ford F-150 Regular Cab 2012 5.47% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.66% Ford Ranger SuperCab 2011 3.74% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 13.27% Ferrari 458 Italia Convertible 2012 11.81% Audi TT RS Coupe 2012 8.88% Dodge Magnum Wagon 2008 8.21% Chevrolet HHR SS 2010 7.69% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Ferrari 458 Italia Coupe 2012 7.22% Ferrari 458 Italia Convertible 2012 6.28% Ford GT Coupe 2006 4.89% Chevrolet HHR SS 2010 3.88% Ferrari FF Coupe 2012 3.7% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 3.04% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.87% Lamborghini Reventon Coupe 2008 2.04% Nissan Leaf Hatchback 2012 1.98% Daewoo Nubira Wagon 2002 1.94% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 8.12% Dodge Sprinter Cargo Van 2009 5.81% Acura TSX Sedan 2012 3.52% Volkswagen Golf Hatchback 2012 3.15% BMW 1 Series Convertible 2012 2.86% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 FIAT 500 Convertible 2012 13.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.98% Maybach Landaulet Convertible 2012 5.73% Mercedes-Benz E-Class Sedan 2012 3.66% Fisker Karma Sedan 2012 3.12% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 4.91% Dodge Caliber Wagon 2007 4.81% HUMMER H3T Crew Cab 2010 4.58% Chevrolet Silverado 1500 Regular Cab 2012 4.47% Ford F-150 Regular Cab 2007 4.0% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Ford Expedition EL SUV 2009 1.54% Hyundai Genesis Sedan 2012 1.29% Rolls-Royce Phantom Sedan 2012 1.29% Dodge Ram Pickup 3500 Crew Cab 2010 1.19% Chrysler Aspen SUV 2009 1.16% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 BMW X3 SUV 2012 9.22% BMW X5 SUV 2007 5.7% Ford E-Series Wagon Van 2012 4.99% Mercedes-Benz Sprinter Van 2012 3.79% Toyota Sequoia SUV 2012 3.17% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Chevrolet Express Cargo Van 2007 2.84% Acura TL Type-S 2008 2.1% Acura TL Sedan 2012 1.9% Dodge Caravan Minivan 1997 1.78% Audi 100 Wagon 1994 1.69% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 2.45% Eagle Talon Hatchback 1998 1.95% Chevrolet Monte Carlo Coupe 2007 1.94% Aston Martin V8 Vantage Coupe 2012 1.5% Lamborghini Reventon Coupe 2008 1.46% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 McLaren MP4-12C Coupe 2012 21.75% Aston Martin Virage Coupe 2012 17.41% Lamborghini Diablo Coupe 2001 15.79% Acura Integra Type R 2001 6.3% BMW Z4 Convertible 2012 3.03% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Hyundai Elantra Sedan 2007 7.66% Dodge Caliber Wagon 2007 3.09% Dodge Sprinter Cargo Van 2009 2.76% Suzuki SX4 Hatchback 2012 2.66% Chevrolet Traverse SUV 2012 2.56% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.76% Daewoo Nubira Wagon 2002 2.62% Suzuki SX4 Sedan 2012 2.61% Bentley Continental Supersports Conv. Convertible 2012 2.36% Chrysler PT Cruiser Convertible 2008 2.04% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Monte Carlo Coupe 2007 2.19% Chevrolet Malibu Sedan 2007 1.92% Chrysler 300 SRT-8 2010 1.76% Lincoln Town Car Sedan 2011 1.67% Ford Freestar Minivan 2007 1.62% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.3% Mercedes-Benz S-Class Sedan 2012 1.89% Maybach Landaulet Convertible 2012 1.7% BMW M3 Coupe 2012 1.66% Bugatti Veyron 16.4 Convertible 2009 1.53% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Jeep Liberty SUV 2012 2.41% Cadillac Escalade EXT Crew Cab 2007 2.2% Ford Expedition EL SUV 2009 2.03% Chevrolet Avalanche Crew Cab 2012 2.0% Ford E-Series Wagon Van 2012 1.99% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 6.79% Mercedes-Benz S-Class Sedan 2012 4.22% BMW M3 Coupe 2012 2.54% Audi A5 Coupe 2012 2.47% Audi TT RS Coupe 2012 2.27% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Audi TT RS Coupe 2012 3.5% Ferrari 458 Italia Coupe 2012 3.28% Geo Metro Convertible 1993 2.93% BMW 3 Series Sedan 2012 2.75% Volvo C30 Hatchback 2012 2.7% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 3.38% Rolls-Royce Phantom Sedan 2012 2.37% Infiniti G Coupe IPL 2012 2.36% Hyundai Genesis Sedan 2012 2.29% Bentley Continental GT Coupe 2007 2.1% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler 300 SRT-8 2010 2.65% Rolls-Royce Ghost Sedan 2012 1.95% BMW M6 Convertible 2010 1.61% Audi V8 Sedan 1994 1.46% Eagle Talon Hatchback 1998 1.36% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Audi S6 Sedan 2011 2.05% MINI Cooper Roadster Convertible 2012 1.93% Hyundai Azera Sedan 2012 1.83% Audi R8 Coupe 2012 1.71% Cadillac SRX SUV 2012 1.62% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.88% Maybach Landaulet Convertible 2012 1.72% Spyker C8 Convertible 2009 1.53% Spyker C8 Coupe 2009 1.51% Bugatti Veyron 16.4 Coupe 2009 1.46% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Audi V8 Sedan 1994 1.61% Mercedes-Benz S-Class Sedan 2012 1.47% Acura RL Sedan 2012 1.3% Bentley Mulsanne Sedan 2011 1.29% Bentley Continental GT Coupe 2007 1.25% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 3.82% Chevrolet Express Van 2007 2.69% Plymouth Neon Coupe 1999 2.51% Lamborghini Reventon Coupe 2008 2.36% Daewoo Nubira Wagon 2002 2.23% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi A5 Coupe 2012 3.17% BMW X3 SUV 2012 2.49% Isuzu Ascender SUV 2008 2.13% Audi TT Hatchback 2011 2.07% Chrysler Town and Country Minivan 2012 2.06% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Bentley Arnage Sedan 2009 4.85% Ford Expedition EL SUV 2009 3.42% Jeep Compass SUV 2012 2.6% Jeep Patriot SUV 2012 2.33% Chevrolet TrailBlazer SS 2009 2.32% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Lamborghini Reventon Coupe 2008 2.36% Hyundai Tucson SUV 2012 1.81% Chrysler 300 SRT-8 2010 1.8% Cadillac SRX SUV 2012 1.68% Volvo 240 Sedan 1993 1.6% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Daewoo Nubira Wagon 2002 2.95% smart fortwo Convertible 2012 2.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.13% Lamborghini Reventon Coupe 2008 1.98% Chrysler PT Cruiser Convertible 2008 1.98% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.05% Chevrolet Silverado 1500 Extended Cab 2012 1.95% Audi A5 Coupe 2012 1.85% Chevrolet Silverado 1500 Regular Cab 2012 1.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Mercedes-Benz 300-Class Convertible 1993 6.73% Acura ZDX Hatchback 2012 3.04% Lamborghini Reventon Coupe 2008 3.02% Aston Martin V8 Vantage Coupe 2012 2.65% Audi 100 Wagon 1994 2.46% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 1.85% Rolls-Royce Phantom Sedan 2012 1.73% Hyundai Genesis Sedan 2012 1.39% Chrysler PT Cruiser Convertible 2008 1.27% Plymouth Neon Coupe 1999 1.22% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Bentley Continental Supersports Conv. Convertible 2012 3.8% Spyker C8 Convertible 2009 3.61% Maybach Landaulet Convertible 2012 2.97% Spyker C8 Coupe 2009 2.89% Mercedes-Benz SL-Class Coupe 2009 2.5% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Rolls-Royce Phantom Sedan 2012 2.58% Hyundai Genesis Sedan 2012 2.39% Ford Expedition EL SUV 2009 1.69% Audi S6 Sedan 2011 1.58% Nissan NV Passenger Van 2012 1.41% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 2.37% BMW M6 Convertible 2010 2.36% Bentley Continental GT Coupe 2007 2.28% Rolls-Royce Ghost Sedan 2012 2.28% Bugatti Veyron 16.4 Coupe 2009 2.28% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Hyundai Santa Fe SUV 2012 4.59% Ford F-450 Super Duty Crew Cab 2012 3.82% BMW X5 SUV 2007 3.11% Isuzu Ascender SUV 2008 2.82% Ford F-150 Regular Cab 2012 2.5% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Mercedes-Benz Sprinter Van 2012 9.52% GMC Savana Van 2012 6.73% Dodge Sprinter Cargo Van 2009 6.31% Chevrolet Express Van 2007 4.66% Volkswagen Golf Hatchback 2012 3.27% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Bentley Mulsanne Sedan 2011 4.67% Mercedes-Benz C-Class Sedan 2012 3.5% Bentley Arnage Sedan 2009 2.81% Rolls-Royce Ghost Sedan 2012 2.61% Jeep Compass SUV 2012 2.59% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Infiniti G Coupe IPL 2012 2.27% Jaguar XK XKR 2012 2.01% Chevrolet Corvette ZR1 2012 1.95% BMW M6 Convertible 2010 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 1.82% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 FIAT 500 Abarth 2012 8.3% Bentley Arnage Sedan 2009 5.38% Spyker C8 Convertible 2009 2.99% Jeep Patriot SUV 2012 2.85% Cadillac CTS-V Sedan 2012 2.5% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 3.56% Infiniti G Coupe IPL 2012 1.88% Audi V8 Sedan 1994 1.56% Chrysler 300 SRT-8 2010 1.46% Chevrolet Silverado 1500 Regular Cab 2012 1.34% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Isuzu Ascender SUV 2008 3.23% Chevrolet Avalanche Crew Cab 2012 3.23% Jeep Liberty SUV 2012 3.2% Jeep Grand Cherokee SUV 2012 2.83% Chevrolet Silverado 1500 Extended Cab 2012 2.57% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Volvo 240 Sedan 1993 2.15% Chrysler PT Cruiser Convertible 2008 1.72% Bugatti Veyron 16.4 Convertible 2009 1.66% Audi 100 Sedan 1994 1.42% Dodge Challenger SRT8 2011 1.36% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 1.97% Dodge Sprinter Cargo Van 2009 1.78% Honda Accord Sedan 2012 1.63% Honda Odyssey Minivan 2007 1.48% Porsche Panamera Sedan 2012 1.43% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Plymouth Neon Coupe 1999 2.61% Chevrolet Monte Carlo Coupe 2007 1.72% Daewoo Nubira Wagon 2002 1.55% Eagle Talon Hatchback 1998 1.54% Dodge Charger SRT-8 2009 1.54% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Hyundai Elantra Sedan 2007 8.36% Audi TT RS Coupe 2012 6.52% Volkswagen Beetle Hatchback 2012 5.61% Nissan 240SX Coupe 1998 4.1% Toyota Corolla Sedan 2012 3.95% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 AM General Hummer SUV 2000 6.67% Ford Expedition EL SUV 2009 5.88% HUMMER H2 SUT Crew Cab 2009 4.48% Jeep Liberty SUV 2012 3.86% Ford F-450 Super Duty Crew Cab 2012 3.37% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Magnum Wagon 2008 12.83% Audi TT RS Coupe 2012 4.15% Chevrolet HHR SS 2010 4.08% Nissan 240SX Coupe 1998 3.06% Hyundai Accent Sedan 2012 2.69% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Lamborghini Reventon Coupe 2008 6.31% Spyker C8 Convertible 2009 4.09% Bentley Continental Supersports Conv. Convertible 2012 2.81% FIAT 500 Abarth 2012 2.79% Bugatti Veyron 16.4 Convertible 2009 2.5% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 HUMMER H2 SUT Crew Cab 2009 6.14% AM General Hummer SUV 2000 4.21% Cadillac Escalade EXT Crew Cab 2007 4.02% HUMMER H3T Crew Cab 2010 2.32% Jeep Wrangler SUV 2012 2.05% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 BMW X5 SUV 2007 6.11% Ford E-Series Wagon Van 2012 5.93% Hyundai Santa Fe SUV 2012 3.9% Ford F-450 Super Duty Crew Cab 2012 3.57% Toyota 4Runner SUV 2012 3.31% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 8.18% Suzuki SX4 Hatchback 2012 3.6% Volkswagen Golf Hatchback 1991 2.75% Ford Ranger SuperCab 2011 2.58% BMW X6 SUV 2012 2.53% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Ford F-150 Regular Cab 2007 1.25% Volvo 240 Sedan 1993 1.17% HUMMER H2 SUT Crew Cab 2009 1.03% Aston Martin Virage Convertible 2012 1.02% Bentley Continental Flying Spur Sedan 2007 0.97% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bugatti Veyron 16.4 Coupe 2009 3.24% Geo Metro Convertible 1993 2.97% Mercedes-Benz 300-Class Convertible 1993 2.06% Ford GT Coupe 2006 1.87% Aston Martin V8 Vantage Coupe 2012 1.83% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Audi TT RS Coupe 2012 12.1% Geo Metro Convertible 1993 4.71% Volkswagen Beetle Hatchback 2012 3.93% Ferrari 458 Italia Coupe 2012 3.51% Nissan 240SX Coupe 1998 3.39% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 2.01% Audi A5 Coupe 2012 1.69% BMW ActiveHybrid 5 Sedan 2012 1.64% Audi TT Hatchback 2011 1.57% Audi S5 Coupe 2012 1.42% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 2.66% Hyundai Genesis Sedan 2012 2.06% Rolls-Royce Phantom Sedan 2012 1.83% Lamborghini Reventon Coupe 2008 1.79% Spyker C8 Convertible 2009 1.66% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 2.81% Chrysler 300 SRT-8 2010 2.81% Chevrolet Silverado 2500HD Regular Cab 2012 2.78% Audi V8 Sedan 1994 2.36% GMC Terrain SUV 2012 2.11% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Lamborghini Gallardo LP 570-4 Superleggera 2012 17.54% AM General Hummer SUV 2000 6.42% Chevrolet Corvette ZR1 2012 2.39% Acura Integra Type R 2001 2.12% Bugatti Veyron 16.4 Coupe 2009 2.02% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 5.79% Ford Expedition EL SUV 2009 4.29% Cadillac Escalade EXT Crew Cab 2007 3.68% Dodge Ram Pickup 3500 Crew Cab 2010 3.67% Hyundai Santa Fe SUV 2012 3.48% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Hyundai Elantra Sedan 2007 7.3% Honda Accord Coupe 2012 4.87% Plymouth Neon Coupe 1999 3.7% Volkswagen Beetle Hatchback 2012 3.67% Toyota Corolla Sedan 2012 3.46% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 2.92% Chevrolet Express Cargo Van 2007 2.42% Chevrolet Express Van 2007 1.62% Honda Accord Sedan 2012 1.57% Dodge Sprinter Cargo Van 2009 1.47% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caravan Minivan 1997 4.17% Plymouth Neon Coupe 1999 3.02% Ford Freestar Minivan 2007 2.9% Lincoln Town Car Sedan 2011 2.68% Hyundai Tucson SUV 2012 2.35% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Audi S6 Sedan 2011 2.09% MINI Cooper Roadster Convertible 2012 1.99% Audi R8 Coupe 2012 1.84% Mercedes-Benz C-Class Sedan 2012 1.48% Audi A5 Coupe 2012 1.42% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Lamborghini Reventon Coupe 2008 4.2% Dodge Caravan Minivan 1997 3.4% Chevrolet Corvette ZR1 2012 3.04% Mercedes-Benz 300-Class Convertible 1993 2.52% Audi 100 Wagon 1994 2.14% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 HUMMER H3T Crew Cab 2010 17.1% HUMMER H2 SUT Crew Cab 2009 13.81% Aston Martin Virage Coupe 2012 3.25% Jeep Wrangler SUV 2012 3.15% AM General Hummer SUV 2000 2.27% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Caliber Wagon 2007 2.24% Hyundai Elantra Sedan 2007 1.84% BMW 3 Series Sedan 2012 1.67% Volvo C30 Hatchback 2012 1.67% Suzuki SX4 Hatchback 2012 1.42% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Mercedes-Benz Sprinter Van 2012 1.97% GMC Savana Van 2012 1.85% BMW X5 SUV 2007 1.63% Dodge Sprinter Cargo Van 2009 1.54% Ford E-Series Wagon Van 2012 1.41% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 5.07% Chevrolet Avalanche Crew Cab 2012 3.1% Chevrolet Silverado 1500 Extended Cab 2012 2.61% Isuzu Ascender SUV 2008 2.51% Ford F-150 Regular Cab 2012 2.4% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 5.05% Mercedes-Benz C-Class Sedan 2012 5.03% Ford Expedition EL SUV 2009 4.33% Dodge Ram Pickup 3500 Crew Cab 2010 4.0% Toyota 4Runner SUV 2012 3.75% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Audi A5 Coupe 2012 2.96% Audi TT Hatchback 2011 2.88% Audi S6 Sedan 2011 2.31% Audi R8 Coupe 2012 1.72% BMW ActiveHybrid 5 Sedan 2012 1.37% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Dodge Caliber Wagon 2007 5.48% Suzuki SX4 Hatchback 2012 2.82% Volkswagen Beetle Hatchback 2012 2.35% Hyundai Elantra Sedan 2007 2.18% Audi TT RS Coupe 2012 2.07% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 36.37% Acura Integra Type R 2001 16.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.14% Chevrolet Corvette Convertible 2012 5.39% McLaren MP4-12C Coupe 2012 4.37% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Ram C/V Cargo Van Minivan 2012 3.83% BMW 1 Series Convertible 2012 2.23% FIAT 500 Convertible 2012 2.18% Toyota Camry Sedan 2012 2.1% Nissan Leaf Hatchback 2012 1.96% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.11% Chrysler 300 SRT-8 2010 2.38% Chevrolet Silverado 1500 Regular Cab 2012 2.36% Chevrolet Monte Carlo Coupe 2007 1.8% Chevrolet Malibu Sedan 2007 1.54% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 5.02% Suzuki SX4 Hatchback 2012 3.64% Volvo C30 Hatchback 2012 3.1% Dodge Charger Sedan 2012 2.99% BMW 1 Series Coupe 2012 2.59% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Audi S6 Sedan 2011 3.49% Ford E-Series Wagon Van 2012 3.12% BMW X3 SUV 2012 2.95% Audi A5 Coupe 2012 2.86% Chrysler Aspen SUV 2009 2.18% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 2.33% HUMMER H2 SUT Crew Cab 2009 1.88% Chrysler 300 SRT-8 2010 1.77% Chevrolet TrailBlazer SS 2009 1.63% HUMMER H3T Crew Cab 2010 1.57% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 13.81% Ferrari California Convertible 2012 12.19% Ferrari 458 Italia Coupe 2012 10.78% BMW M3 Coupe 2012 10.57% Ferrari FF Coupe 2012 4.09% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Chevrolet Avalanche Crew Cab 2012 4.61% Chevrolet Silverado 1500 Regular Cab 2012 4.19% Cadillac Escalade EXT Crew Cab 2007 4.06% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.15% Dodge Ram Pickup 3500 Crew Cab 2010 2.72% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Geo Metro Convertible 1993 11.45% Ferrari FF Coupe 2012 6.29% Chevrolet Corvette ZR1 2012 4.62% Plymouth Neon Coupe 1999 4.29% Nissan Leaf Hatchback 2012 4.26% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 9.24% Lamborghini Aventador Coupe 2012 5.04% Ford Mustang Convertible 2007 4.83% Ferrari California Convertible 2012 4.41% Chevrolet Cobalt SS 2010 4.2% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 smart fortwo Convertible 2012 4.07% Hyundai Azera Sedan 2012 2.47% Nissan NV Passenger Van 2012 1.91% Mazda Tribute SUV 2011 1.91% Volvo 240 Sedan 1993 1.86% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 2.8% Jeep Wrangler SUV 2012 2.75% AM General Hummer SUV 2000 1.99% HUMMER H2 SUT Crew Cab 2009 1.75% GMC Canyon Extended Cab 2012 1.56% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Chevrolet Silverado 1500 Regular Cab 2012 5.37% Chevrolet Silverado 1500 Extended Cab 2012 4.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.33% Ford Ranger SuperCab 2011 3.76% Dodge Ram Pickup 3500 Quad Cab 2009 3.56% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 3.9% Buick Rainier SUV 2007 2.2% Chevrolet Express Cargo Van 2007 1.84% Chevrolet Silverado 1500 Extended Cab 2012 1.64% GMC Terrain SUV 2012 1.35% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Mercedes-Benz E-Class Sedan 2012 4.5% Fisker Karma Sedan 2012 2.46% FIAT 500 Convertible 2012 2.35% Porsche Panamera Sedan 2012 2.05% Mercedes-Benz SL-Class Coupe 2009 1.94% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Mazda Tribute SUV 2011 2.28% HUMMER H2 SUT Crew Cab 2009 2.28% HUMMER H3T Crew Cab 2010 2.03% Jeep Compass SUV 2012 1.84% Jeep Patriot SUV 2012 1.82% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Honda Odyssey Minivan 2007 1.95% Ford Freestar Minivan 2007 1.48% Lincoln Town Car Sedan 2011 1.45% Honda Accord Sedan 2012 1.24% Chrysler PT Cruiser Convertible 2008 1.14% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Dodge Sprinter Cargo Van 2009 3.96% GMC Savana Van 2012 3.09% Ram C/V Cargo Van Minivan 2012 2.97% Chevrolet Express Cargo Van 2007 2.67% Chevrolet Express Van 2007 2.28% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 2.16% Chevrolet Monte Carlo Coupe 2007 1.89% GMC Savana Van 2012 1.77% Honda Odyssey Minivan 2007 1.64% Eagle Talon Hatchback 1998 1.64% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Audi 100 Sedan 1994 2.48% Daewoo Nubira Wagon 2002 2.43% Lincoln Town Car Sedan 2011 2.35% Chrysler Sebring Convertible 2010 2.02% Nissan Leaf Hatchback 2012 1.94% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 36.16% Acura Integra Type R 2001 19.45% Lamborghini Gallardo LP 570-4 Superleggera 2012 11.47% Chevrolet Cobalt SS 2010 5.88% AM General Hummer SUV 2000 5.6% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Honda Odyssey Minivan 2007 2.61% Lincoln Town Car Sedan 2011 2.59% Chevrolet Malibu Sedan 2007 2.41% Ford Freestar Minivan 2007 2.11% Chrysler Sebring Convertible 2010 1.89% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Ford E-Series Wagon Van 2012 3.71% Land Rover LR2 SUV 2012 2.68% Bentley Arnage Sedan 2009 2.64% Jeep Patriot SUV 2012 2.33% HUMMER H2 SUT Crew Cab 2009 2.16% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford E-Series Wagon Van 2012 2.45% Hyundai Santa Fe SUV 2012 2.44% Isuzu Ascender SUV 2008 2.42% BMW X5 SUV 2007 2.13% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.97% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.41% Aston Martin V8 Vantage Coupe 2012 2.34% BMW 1 Series Convertible 2012 2.3% Ram C/V Cargo Van Minivan 2012 1.91% BMW ActiveHybrid 5 Sedan 2012 1.84% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 McLaren MP4-12C Coupe 2012 3.72% Aston Martin Virage Coupe 2012 3.34% BMW 1 Series Coupe 2012 2.36% Hyundai Veloster Hatchback 2012 2.31% Ford GT Coupe 2006 1.93% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 FIAT 500 Abarth 2012 5.42% AM General Hummer SUV 2000 3.99% Bentley Arnage Sedan 2009 3.67% Jeep Patriot SUV 2012 2.41% HUMMER H2 SUT Crew Cab 2009 2.31% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 18.24% FIAT 500 Abarth 2012 5.89% Cadillac Escalade EXT Crew Cab 2007 3.17% Jeep Compass SUV 2012 3.16% Jeep Patriot SUV 2012 3.15% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Magnum Wagon 2008 12.83% Audi TT RS Coupe 2012 4.15% Chevrolet HHR SS 2010 4.08% Nissan 240SX Coupe 1998 3.06% Hyundai Accent Sedan 2012 2.69% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Ram C/V Cargo Van Minivan 2012 3.68% MINI Cooper Roadster Convertible 2012 2.83% BMW ActiveHybrid 5 Sedan 2012 2.62% BMW 1 Series Convertible 2012 1.97% Mercedes-Benz S-Class Sedan 2012 1.54% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 MINI Cooper Roadster Convertible 2012 4.0% BMW ActiveHybrid 5 Sedan 2012 3.42% Audi TT Hatchback 2011 2.96% Mercedes-Benz SL-Class Coupe 2009 2.93% BMW X3 SUV 2012 2.89% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 4.81% Dodge Caliber Wagon 2007 2.75% Ferrari FF Coupe 2012 2.27% Suzuki SX4 Hatchback 2012 1.75% BMW 3 Series Sedan 2012 1.72% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 8.9% Spyker C8 Convertible 2009 7.49% Mercedes-Benz 300-Class Convertible 1993 5.71% Mercedes-Benz E-Class Sedan 2012 4.35% Bugatti Veyron 16.4 Coupe 2009 3.68% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 HUMMER H2 SUT Crew Cab 2009 4.55% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Jeep Liberty SUV 2012 3.79% Ford E-Series Wagon Van 2012 3.79% Isuzu Ascender SUV 2008 3.78% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.06% Jeep Grand Cherokee SUV 2012 1.95% GMC Terrain SUV 2012 1.75% Hyundai Santa Fe SUV 2012 1.65% Dodge Durango SUV 2007 1.63% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Chevrolet Corvette ZR1 2012 2.04% Porsche Panamera Sedan 2012 2.04% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.57% Chevrolet Corvette Convertible 2012 1.38% Mercedes-Benz SL-Class Coupe 2009 1.27% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Jaguar XK XKR 2012 1.93% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.93% BMW 1 Series Convertible 2012 1.88% Aston Martin V8 Vantage Coupe 2012 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 1.76% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Mercedes-Benz C-Class Sedan 2012 2.72% Toyota 4Runner SUV 2012 2.1% BMW X3 SUV 2012 1.86% Audi S5 Coupe 2012 1.84% Ford F-450 Super Duty Crew Cab 2012 1.71% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Silverado 2500HD Regular Cab 2012 4.22% Audi R8 Coupe 2012 2.05% Audi A5 Coupe 2012 1.94% Infiniti G Coupe IPL 2012 1.89% Audi TT Hatchback 2011 1.82% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 BMW M3 Coupe 2012 6.36% Ferrari 458 Italia Coupe 2012 4.62% BMW 1 Series Coupe 2012 3.84% Chevrolet HHR SS 2010 3.75% Suzuki SX4 Hatchback 2012 3.56% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Dodge Caliber Wagon 2007 4.3% Hyundai Elantra Sedan 2007 3.74% Ford Freestar Minivan 2007 3.22% Buick Enclave SUV 2012 2.48% Chevrolet Traverse SUV 2012 2.17% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Chevrolet Express Cargo Van 2007 3.51% GMC Savana Van 2012 2.06% Chevrolet Traverse SUV 2012 1.88% Buick Rainier SUV 2007 1.69% Chevrolet Silverado 2500HD Regular Cab 2012 1.61% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 2.62% Mercedes-Benz C-Class Sedan 2012 1.55% Fisker Karma Sedan 2012 1.53% Bentley Mulsanne Sedan 2011 1.49% BMW M6 Convertible 2010 1.4% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Lincoln Town Car Sedan 2011 5.78% Ram C/V Cargo Van Minivan 2012 3.49% Chevrolet Express Van 2007 2.86% Acura TSX Sedan 2012 2.86% Dodge Sprinter Cargo Van 2009 2.77% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Hyundai Azera Sedan 2012 2.39% MINI Cooper Roadster Convertible 2012 2.1% BMW X3 SUV 2012 2.09% Cadillac SRX SUV 2012 1.88% Mercedes-Benz Sprinter Van 2012 1.8% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 BMW 1 Series Coupe 2012 17.06% Suzuki SX4 Hatchback 2012 6.88% Dodge Caliber Wagon 2007 4.07% Hyundai Veloster Hatchback 2012 3.0% Ford Fiesta Sedan 2012 2.69% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 7.76% Dodge Sprinter Cargo Van 2009 6.82% Mercedes-Benz Sprinter Van 2012 6.09% Chevrolet Express Van 2007 5.09% Chevrolet Traverse SUV 2012 4.56% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 McLaren MP4-12C Coupe 2012 8.78% Aston Martin Virage Coupe 2012 8.38% Hyundai Veloster Hatchback 2012 3.25% Aston Martin V8 Vantage Coupe 2012 2.67% Chevrolet Corvette Convertible 2012 2.54% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Dodge Caravan Minivan 1997 3.0% Eagle Talon Hatchback 1998 2.86% Plymouth Neon Coupe 1999 2.63% Lamborghini Reventon Coupe 2008 2.46% Chevrolet Corvette ZR1 2012 2.39% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Ford E-Series Wagon Van 2012 2.53% BMW X5 SUV 2007 2.08% Hyundai Santa Fe SUV 2012 1.91% Chrysler Aspen SUV 2009 1.73% Audi S6 Sedan 2011 1.73% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 3.27% Audi TT RS Coupe 2012 1.91% Hyundai Azera Sedan 2012 1.89% Aston Martin V8 Vantage Coupe 2012 1.78% Dodge Caliber Wagon 2007 1.7% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Chevrolet Cobalt SS 2010 4.0% Ferrari 458 Italia Coupe 2012 3.51% Toyota Corolla Sedan 2012 3.48% Ferrari California Convertible 2012 3.47% Honda Accord Coupe 2012 3.19% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 6.46% Ford F-150 Regular Cab 2012 5.0% Chevrolet Express Cargo Van 2007 4.01% Chevrolet Silverado 1500 Extended Cab 2012 3.78% GMC Terrain SUV 2012 3.35% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 8.11% Ford Expedition EL SUV 2009 5.59% Ford F-450 Super Duty Crew Cab 2012 4.37% Dodge Ram Pickup 3500 Crew Cab 2010 3.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.94% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Chevrolet HHR SS 2010 5.32% Ferrari California Convertible 2012 5.23% Ferrari 458 Italia Coupe 2012 4.83% BMW 3 Series Sedan 2012 4.15% Ferrari 458 Italia Convertible 2012 4.12% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Jaguar XK XKR 2012 1.55% Lamborghini Reventon Coupe 2008 1.36% Nissan 240SX Coupe 1998 1.35% Acura TL Type-S 2008 1.31% Chevrolet Corvette ZR1 2012 1.29% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.82% Maybach Landaulet Convertible 2012 2.9% Nissan Leaf Hatchback 2012 2.45% FIAT 500 Convertible 2012 2.14% Bugatti Veyron 16.4 Convertible 2009 1.88% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Lamborghini Reventon Coupe 2008 3.16% Audi V8 Sedan 1994 2.26% Acura ZDX Hatchback 2012 1.84% Bugatti Veyron 16.4 Coupe 2009 1.77% Chrysler 300 SRT-8 2010 1.66% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Chevrolet Silverado 1500 Extended Cab 2012 3.93% Chevrolet Avalanche Crew Cab 2012 3.87% Isuzu Ascender SUV 2008 3.65% Dodge Dakota Club Cab 2007 3.02% Ford F-150 Regular Cab 2012 2.95% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Hyundai Elantra Sedan 2007 5.11% Toyota Corolla Sedan 2012 4.14% Volkswagen Beetle Hatchback 2012 3.78% Honda Accord Coupe 2012 3.43% Audi TT RS Coupe 2012 3.02% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 6.49% Bugatti Veyron 16.4 Convertible 2009 5.39% Daewoo Nubira Wagon 2002 5.18% Nissan Leaf Hatchback 2012 4.24% Suzuki SX4 Sedan 2012 3.3% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Jaguar XK XKR 2012 1.98% Aston Martin V8 Vantage Coupe 2012 1.88% Chevrolet Monte Carlo Coupe 2007 1.8% BMW M6 Convertible 2010 1.79% Chrysler 300 SRT-8 2010 1.64% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet TrailBlazer SS 2009 2.17% Chrysler 300 SRT-8 2010 1.92% Cadillac CTS-V Sedan 2012 1.61% Bugatti Veyron 16.4 Coupe 2009 1.29% BMW M6 Convertible 2010 1.25% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Acura Integra Type R 2001 24.52% Lamborghini Diablo Coupe 2001 21.28% AM General Hummer SUV 2000 15.14% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.85% Chevrolet Corvette Convertible 2012 4.96% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Audi R8 Coupe 2012 2.39% Audi S5 Coupe 2012 2.17% Mercedes-Benz C-Class Sedan 2012 2.11% BMW X3 SUV 2012 2.05% Ford Edge SUV 2012 1.66% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Volvo 240 Sedan 1993 2.25% Bugatti Veyron 16.4 Coupe 2009 1.72% Mercedes-Benz 300-Class Convertible 1993 1.65% Audi V8 Sedan 1994 1.58% Bentley Mulsanne Sedan 2011 1.4% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 2.77% MINI Cooper Roadster Convertible 2012 2.5% Porsche Panamera Sedan 2012 2.04% Mercedes-Benz E-Class Sedan 2012 1.84% BMW M5 Sedan 2010 1.77% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 6.2% Volkswagen Beetle Hatchback 2012 3.9% Audi TT RS Coupe 2012 3.54% Ferrari 458 Italia Coupe 2012 3.29% Geo Metro Convertible 1993 3.03% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 BMW 6 Series Convertible 2007 1.29% Lincoln Town Car Sedan 2011 1.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.03% Ram C/V Cargo Van Minivan 2012 1.0% Eagle Talon Hatchback 1998 0.99% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Chevrolet Express Cargo Van 2007 4.3% GMC Savana Van 2012 3.94% Audi V8 Sedan 1994 3.01% Audi 100 Wagon 1994 2.54% Chevrolet Express Van 2007 2.2% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 BMW X5 SUV 2007 5.59% Ford E-Series Wagon Van 2012 4.27% Hyundai Santa Fe SUV 2012 3.67% Toyota Sequoia SUV 2012 3.6% Isuzu Ascender SUV 2008 2.78% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Ferrari 458 Italia Convertible 2012 6.02% Chevrolet Cobalt SS 2010 5.14% Lamborghini Aventador Coupe 2012 3.81% Aston Martin Virage Coupe 2012 3.64% Ferrari FF Coupe 2012 3.37% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz Sprinter Van 2012 6.42% Dodge Sprinter Cargo Van 2009 6.21% GMC Savana Van 2012 2.96% Dodge Caravan Minivan 1997 2.27% Honda Odyssey Minivan 2007 2.17% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Chevrolet Silverado 2500HD Regular Cab 2012 2.53% Infiniti G Coupe IPL 2012 2.19% Audi R8 Coupe 2012 1.87% Audi A5 Coupe 2012 1.62% Audi S5 Coupe 2012 1.58% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Nissan Leaf Hatchback 2012 3.79% Dodge Caravan Minivan 1997 3.37% Lincoln Town Car Sedan 2011 3.14% Geo Metro Convertible 1993 3.0% Daewoo Nubira Wagon 2002 2.13% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 McLaren MP4-12C Coupe 2012 13.97% Aston Martin Virage Coupe 2012 11.07% Ferrari FF Coupe 2012 9.28% Ferrari California Convertible 2012 8.37% BMW M3 Coupe 2012 7.7% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 8.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.71% Hyundai Veloster Hatchback 2012 2.32% Audi RS 4 Convertible 2008 2.22% Chevrolet Express Cargo Van 2007 1.96% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 12.93% Ford E-Series Wagon Van 2012 3.25% BMW X3 SUV 2012 2.99% Chrysler Town and Country Minivan 2012 1.96% Buick Rainier SUV 2007 1.79% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Spyker C8 Convertible 2009 3.39% Bugatti Veyron 16.4 Coupe 2009 3.3% Lamborghini Diablo Coupe 2001 2.33% Ford GT Coupe 2006 2.13% Dodge Charger SRT-8 2009 1.81% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 20.46% Ferrari 458 Italia Convertible 2012 9.71% Honda Accord Coupe 2012 4.88% BMW M3 Coupe 2012 4.45% Chevrolet Cobalt SS 2010 3.88% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.1% Maybach Landaulet Convertible 2012 4.75% FIAT 500 Convertible 2012 4.58% Acura Integra Type R 2001 3.78% Ford GT Coupe 2006 3.73% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Honda Accord Coupe 2012 2.98% Dodge Charger SRT-8 2009 2.94% Ford Fiesta Sedan 2012 2.92% Chevrolet Cobalt SS 2010 2.88% Dodge Magnum Wagon 2008 2.78% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 13.47% Spyker C8 Coupe 2009 5.21% Ford GT Coupe 2006 4.23% smart fortwo Convertible 2012 3.49% Ferrari 458 Italia Convertible 2012 3.48% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 2.07% Bugatti Veyron 16.4 Convertible 2009 1.74% Suzuki Aerio Sedan 2007 1.64% Dodge Sprinter Cargo Van 2009 1.57% Lamborghini Reventon Coupe 2008 1.37% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Acura ZDX Hatchback 2012 2.52% Acura TL Sedan 2012 2.32% Jaguar XK XKR 2012 2.3% BMW 1 Series Convertible 2012 2.3% Porsche Panamera Sedan 2012 2.22% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Mercedes-Benz Sprinter Van 2012 8.04% Ram C/V Cargo Van Minivan 2012 4.97% Volkswagen Golf Hatchback 2012 3.37% Honda Odyssey Minivan 2007 3.1% Dodge Sprinter Cargo Van 2009 2.94% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 10.42% Lamborghini Reventon Coupe 2008 3.68% Maybach Landaulet Convertible 2012 3.38% Bugatti Veyron 16.4 Coupe 2009 3.23% Chevrolet Corvette ZR1 2012 2.1% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Volvo C30 Hatchback 2012 2.86% Chevrolet HHR SS 2010 2.51% Ferrari 458 Italia Coupe 2012 2.37% BMW 3 Series Sedan 2012 2.08% Hyundai Elantra Sedan 2007 2.02% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 MINI Cooper Roadster Convertible 2012 3.59% Mercedes-Benz S-Class Sedan 2012 2.21% Audi S6 Sedan 2011 1.93% Rolls-Royce Phantom Sedan 2012 1.89% Ram C/V Cargo Van Minivan 2012 1.86% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.6% Mercedes-Benz S-Class Sedan 2012 2.41% Maybach Landaulet Convertible 2012 2.27% Bentley Continental Supersports Conv. Convertible 2012 2.21% Bugatti Veyron 16.4 Convertible 2009 2.13% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 BMW X3 SUV 2012 5.04% Ford E-Series Wagon Van 2012 4.68% Audi S6 Sedan 2011 4.13% MINI Cooper Roadster Convertible 2012 3.91% Audi R8 Coupe 2012 2.66% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 MINI Cooper Roadster Convertible 2012 5.62% Audi S5 Convertible 2012 2.68% BMW M3 Coupe 2012 2.65% Mercedes-Benz S-Class Sedan 2012 2.35% Mercedes-Benz SL-Class Coupe 2009 2.31% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Hyundai Santa Fe SUV 2012 3.87% GMC Terrain SUV 2012 2.93% Dodge Durango SUV 2007 2.66% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.47% Ford F-150 Regular Cab 2012 2.44% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 6.86% Bentley Arnage Sedan 2009 5.5% Jeep Patriot SUV 2012 5.22% HUMMER H2 SUT Crew Cab 2009 3.81% Cadillac Escalade EXT Crew Cab 2007 3.18% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 6.85% Audi A5 Coupe 2012 4.86% BMW X3 SUV 2012 4.82% Hyundai Santa Fe SUV 2012 3.6% Ford E-Series Wagon Van 2012 3.34% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Infiniti G Coupe IPL 2012 1.97% Audi TT Hatchback 2011 1.74% Audi S5 Coupe 2012 1.68% Audi S5 Convertible 2012 1.67% Chevrolet Corvette ZR1 2012 1.67% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 MINI Cooper Roadster Convertible 2012 2.54% Mercedes-Benz Sprinter Van 2012 1.98% BMW ActiveHybrid 5 Sedan 2012 1.87% BMW X3 SUV 2012 1.81% Audi TT Hatchback 2011 1.73% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Rolls-Royce Ghost Sedan 2012 2.82% BMW M6 Convertible 2010 2.74% Toyota 4Runner SUV 2012 2.49% Mercedes-Benz C-Class Sedan 2012 2.34% Bentley Arnage Sedan 2009 2.28% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 AM General Hummer SUV 2000 5.24% Jeep Wrangler SUV 2012 3.95% HUMMER H3T Crew Cab 2010 3.43% HUMMER H2 SUT Crew Cab 2009 2.95% Jeep Liberty SUV 2012 2.69% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Mercedes-Benz 300-Class Convertible 1993 2.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.38% Chrysler PT Cruiser Convertible 2008 2.03% Audi 100 Sedan 1994 1.85% Daewoo Nubira Wagon 2002 1.77% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Jeep Compass SUV 2012 3.11% Toyota Sequoia SUV 2012 2.86% BMW X5 SUV 2007 2.78% Hyundai Santa Fe SUV 2012 2.6% Land Rover Range Rover SUV 2012 2.35% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.71% Porsche Panamera Sedan 2012 1.68% Chevrolet Express Cargo Van 2007 1.61% Audi V8 Sedan 1994 1.53% Honda Accord Sedan 2012 1.53% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Aston Martin Virage Coupe 2012 4.02% Ferrari 458 Italia Coupe 2012 3.6% Volvo C30 Hatchback 2012 3.58% Ferrari California Convertible 2012 3.19% Ferrari 458 Italia Convertible 2012 2.95% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Convertible 2009 4.18% Mercedes-Benz S-Class Sedan 2012 3.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.92% FIAT 500 Convertible 2012 2.46% BMW M3 Coupe 2012 2.42% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 4.95% Dodge Caravan Minivan 1997 4.57% Chevrolet Express Van 2007 3.48% Hyundai Tucson SUV 2012 2.66% Chevrolet Express Cargo Van 2007 2.65% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Bentley Arnage Sedan 2009 7.09% Bentley Mulsanne Sedan 2011 3.57% Ford Expedition EL SUV 2009 3.44% Ford F-450 Super Duty Crew Cab 2012 3.4% Mercedes-Benz C-Class Sedan 2012 3.39% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari 458 Italia Convertible 2012 31.52% Ferrari 458 Italia Coupe 2012 15.77% Ferrari California Convertible 2012 6.24% Chevrolet HHR SS 2010 5.34% Geo Metro Convertible 1993 3.55% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Dodge Magnum Wagon 2008 10.94% Ferrari California Convertible 2012 9.98% Audi TT RS Coupe 2012 7.17% Chevrolet HHR SS 2010 4.94% Ferrari 458 Italia Coupe 2012 4.67% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 3.6% Chevrolet Express Van 2007 2.77% Chevrolet Avalanche Crew Cab 2012 2.62% Chevrolet Malibu Sedan 2007 2.61% Chevrolet Silverado 1500 Extended Cab 2012 2.25% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 BMW 1 Series Convertible 2012 1.59% Porsche Panamera Sedan 2012 1.56% Ram C/V Cargo Van Minivan 2012 1.55% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.47% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.35% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 3.69% GMC Savana Van 2012 3.29% Chevrolet Express Cargo Van 2007 2.62% BMW X5 SUV 2007 2.56% Chevrolet Traverse SUV 2012 2.36% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TT Hatchback 2011 2.5% BMW ActiveHybrid 5 Sedan 2012 2.21% Acura TL Sedan 2012 1.87% Acura ZDX Hatchback 2012 1.75% BMW M3 Coupe 2012 1.71% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Terrain SUV 2012 4.62% Dodge Dakota Club Cab 2007 4.22% Ford F-150 Regular Cab 2012 3.22% Ford F-150 Regular Cab 2007 2.81% Chevrolet Avalanche Crew Cab 2012 2.71% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Spyker C8 Convertible 2009 3.62% Bentley Arnage Sedan 2009 3.34% Rolls-Royce Phantom Sedan 2012 3.32% BMW M6 Convertible 2010 2.86% Bugatti Veyron 16.4 Coupe 2009 2.76% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Audi TT RS Coupe 2012 6.47% Geo Metro Convertible 1993 4.24% Ferrari 458 Italia Coupe 2012 3.6% Volkswagen Beetle Hatchback 2012 3.26% BMW 3 Series Sedan 2012 3.1% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler 300 SRT-8 2010 3.22% BMW M6 Convertible 2010 2.59% Rolls-Royce Phantom Sedan 2012 2.55% Bugatti Veyron 16.4 Coupe 2009 2.47% Hyundai Genesis Sedan 2012 2.38% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.25% Ford Freestar Minivan 2007 1.96% Honda Odyssey Minivan 2012 1.78% Chevrolet Malibu Sedan 2007 1.58% Honda Accord Coupe 2012 1.55% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Dodge Caliber Wagon 2007 4.5% Ford Ranger SuperCab 2011 2.41% Ford Freestar Minivan 2007 2.31% Chevrolet Traverse SUV 2012 2.21% Dodge Caliber Wagon 2012 2.06% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Chevrolet TrailBlazer SS 2009 4.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.26% Chrysler 300 SRT-8 2010 3.25% Chevrolet Silverado 2500HD Regular Cab 2012 3.15% Chevrolet Silverado 1500 Regular Cab 2012 3.08% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 HUMMER H2 SUT Crew Cab 2009 15.18% HUMMER H3T Crew Cab 2010 10.99% AM General Hummer SUV 2000 9.56% Aston Martin Virage Coupe 2012 9.15% McLaren MP4-12C Coupe 2012 4.5% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.77% BMW X5 SUV 2007 2.75% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.7% Hyundai Santa Fe SUV 2012 2.59% Ford F-150 Regular Cab 2012 2.24% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Ford Ranger SuperCab 2011 5.64% Buick Rainier SUV 2007 5.04% Hyundai Tucson SUV 2012 4.01% Dodge Caliber Wagon 2007 3.86% Chevrolet Traverse SUV 2012 3.63% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Chevrolet TrailBlazer SS 2009 4.02% Chevrolet Silverado 1500 Regular Cab 2012 2.75% Chrysler 300 SRT-8 2010 2.73% HUMMER H3T Crew Cab 2010 2.11% Dodge Ram Pickup 3500 Quad Cab 2009 1.82% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 HUMMER H2 SUT Crew Cab 2009 10.92% HUMMER H3T Crew Cab 2010 7.36% Jeep Wrangler SUV 2012 6.38% Volvo C30 Hatchback 2012 4.58% Dodge Caliber Wagon 2007 3.86% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Acura TL Type-S 2008 1.96% Porsche Panamera Sedan 2012 1.75% Acura ZDX Hatchback 2012 1.41% Jaguar XK XKR 2012 1.39% Chevrolet Corvette ZR1 2012 1.3% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 BMW X3 SUV 2012 1.87% Chrysler Aspen SUV 2009 1.61% Isuzu Ascender SUV 2008 1.48% Hyundai Genesis Sedan 2012 1.46% Mercedes-Benz S-Class Sedan 2012 1.44% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Isuzu Ascender SUV 2008 2.98% Dodge Ram Pickup 3500 Crew Cab 2010 2.68% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.35% Audi A5 Coupe 2012 2.02% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 FIAT 500 Convertible 2012 6.93% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.04% Bugatti Veyron 16.4 Convertible 2009 2.62% Nissan Leaf Hatchback 2012 2.46% Maybach Landaulet Convertible 2012 2.24% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Audi TT RS Coupe 2012 12.24% Ferrari 458 Italia Coupe 2012 5.24% Ferrari California Convertible 2012 4.93% Geo Metro Convertible 1993 3.92% Ferrari 458 Italia Convertible 2012 3.18% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Ford Expedition EL SUV 2009 2.59% Hyundai Genesis Sedan 2012 2.06% Dodge Ram Pickup 3500 Crew Cab 2010 2.06% Rolls-Royce Ghost Sedan 2012 1.92% Rolls-Royce Phantom Sedan 2012 1.78% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 3.54% Ford E-Series Wagon Van 2012 3.29% Isuzu Ascender SUV 2008 2.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.8% Dodge Ram Pickup 3500 Crew Cab 2010 2.78% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Chevrolet Monte Carlo Coupe 2007 1.52% Chevrolet Malibu Sedan 2007 1.34% Chevrolet Impala Sedan 2007 1.31% Lincoln Town Car Sedan 2011 1.19% Plymouth Neon Coupe 1999 1.17% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Aston Martin Virage Coupe 2012 14.96% Lamborghini Aventador Coupe 2012 9.04% Ferrari 458 Italia Convertible 2012 5.15% Chevrolet Corvette Convertible 2012 5.1% Volvo C30 Hatchback 2012 5.08% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 20.37% Aston Martin Virage Coupe 2012 17.35% Ferrari 458 Italia Convertible 2012 11.34% Ferrari California Convertible 2012 10.06% Lamborghini Aventador Coupe 2012 5.96% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 2.3% Hyundai Genesis Sedan 2012 2.07% Bentley Mulsanne Sedan 2011 2.01% Bugatti Veyron 16.4 Coupe 2009 1.86% Mercedes-Benz 300-Class Convertible 1993 1.62% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 3.37% Chevrolet TrailBlazer SS 2009 3.26% Dodge Ram Pickup 3500 Quad Cab 2009 3.12% Chevrolet Silverado 1500 Regular Cab 2012 2.99% Cadillac Escalade EXT Crew Cab 2007 2.64% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 3.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.79% Lamborghini Reventon Coupe 2008 2.66% Mercedes-Benz 300-Class Convertible 1993 2.48% Bugatti Veyron 16.4 Coupe 2009 1.99% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 BMW 1 Series Convertible 2012 2.74% Ram C/V Cargo Van Minivan 2012 2.51% Aston Martin V8 Vantage Coupe 2012 2.37% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.17% Jaguar XK XKR 2012 2.08% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 26.39% GMC Savana Van 2012 14.08% Chevrolet Express Van 2007 7.01% Dodge Sprinter Cargo Van 2009 4.19% Chevrolet Traverse SUV 2012 1.87% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 4.81% Acura TL Type-S 2008 2.68% Aston Martin V8 Vantage Coupe 2012 2.62% Fisker Karma Sedan 2012 2.39% Acura ZDX Hatchback 2012 2.37% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Dodge Caliber Wagon 2007 5.59% GMC Savana Van 2012 3.87% Chevrolet Silverado 1500 Regular Cab 2012 3.39% Chevrolet Silverado 1500 Extended Cab 2012 3.19% Dodge Caliber Wagon 2012 2.86% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Abarth 2012 6.03% Cadillac CTS-V Sedan 2012 2.57% Lamborghini Reventon Coupe 2008 2.46% Cadillac Escalade EXT Crew Cab 2007 2.43% Chrysler 300 SRT-8 2010 2.2% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Mercedes-Benz S-Class Sedan 2012 3.02% Bugatti Veyron 16.4 Convertible 2009 2.39% Chrysler PT Cruiser Convertible 2008 2.23% Acura TL Sedan 2012 2.15% Volkswagen Golf Hatchback 2012 1.89% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Rolls-Royce Phantom Sedan 2012 4.29% Hyundai Genesis Sedan 2012 1.89% Aston Martin Virage Convertible 2012 1.52% Maybach Landaulet Convertible 2012 1.52% Daewoo Nubira Wagon 2002 1.48% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Audi TT RS Coupe 2012 6.43% Chevrolet HHR SS 2010 5.34% Volkswagen Beetle Hatchback 2012 5.17% Toyota Corolla Sedan 2012 4.89% Ferrari California Convertible 2012 3.88% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Geo Metro Convertible 1993 10.54% Mercedes-Benz 300-Class Convertible 1993 4.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.26% Nissan Leaf Hatchback 2012 2.82% Daewoo Nubira Wagon 2002 2.29% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 18.96% Ferrari California Convertible 2012 7.81% Ferrari 458 Italia Convertible 2012 7.74% Chevrolet HHR SS 2010 6.78% Dodge Magnum Wagon 2008 5.1% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 15.94% Ferrari 458 Italia Convertible 2012 9.51% Ferrari 458 Italia Coupe 2012 8.53% Lamborghini Aventador Coupe 2012 6.48% Dodge Charger SRT-8 2009 4.72% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 6.62% Dodge Ram Pickup 3500 Crew Cab 2010 6.01% Ford F-450 Super Duty Crew Cab 2012 3.4% Jeep Liberty SUV 2012 3.23% Cadillac Escalade EXT Crew Cab 2007 2.47% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Bugatti Veyron 16.4 Convertible 2009 3.17% FIAT 500 Convertible 2012 3.16% Bentley Continental Supersports Conv. Convertible 2012 3.06% MINI Cooper Roadster Convertible 2012 2.84% smart fortwo Convertible 2012 2.62% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.0% Ram C/V Cargo Van Minivan 2012 1.98% Infiniti G Coupe IPL 2012 1.91% BMW 1 Series Convertible 2012 1.85% BMW ActiveHybrid 5 Sedan 2012 1.85% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Chevrolet Avalanche Crew Cab 2012 2.63% GMC Savana Van 2012 2.22% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Chevrolet Silverado 1500 Extended Cab 2012 1.81% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Audi V8 Sedan 1994 1.88% Chrysler 300 SRT-8 2010 1.87% Eagle Talon Hatchback 1998 1.7% Volkswagen Golf Hatchback 1991 1.61% GMC Savana Van 2012 1.59% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 3.78% smart fortwo Convertible 2012 3.55% Nissan Leaf Hatchback 2012 2.24% FIAT 500 Convertible 2012 2.17% Daewoo Nubira Wagon 2002 2.04% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Bentley Arnage Sedan 2009 3.54% Spyker C8 Convertible 2009 2.97% Bentley Mulsanne Sedan 2011 2.19% Hyundai Azera Sedan 2012 2.14% FIAT 500 Abarth 2012 1.98% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Ford Expedition EL SUV 2009 2.79% Cadillac Escalade EXT Crew Cab 2007 2.76% Jeep Patriot SUV 2012 2.72% Bentley Arnage Sedan 2009 2.45% Jeep Liberty SUV 2012 2.38% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Chevrolet Silverado 1500 Regular Cab 2012 3.95% Ford Ranger SuperCab 2011 3.32% Dodge Caliber Wagon 2007 2.99% Chevrolet Traverse SUV 2012 2.34% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.11% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Hyundai Tucson SUV 2012 3.48% Chevrolet Traverse SUV 2012 2.29% BMW X5 SUV 2007 2.25% Ford Freestar Minivan 2007 2.25% Buick Rainier SUV 2007 2.04% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Chrysler 300 SRT-8 2010 3.17% Chevrolet Silverado 1500 Regular Cab 2012 2.64% Chevrolet Avalanche Crew Cab 2012 2.2% Chevrolet TrailBlazer SS 2009 1.98% Cadillac Escalade EXT Crew Cab 2007 1.87% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Audi TT RS Coupe 2012 4.11% Volkswagen Beetle Hatchback 2012 3.91% Chevrolet Cobalt SS 2010 3.34% Ferrari 458 Italia Convertible 2012 3.17% Honda Accord Coupe 2012 2.85% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.43% Bentley Continental Supersports Conv. Convertible 2012 3.55% Maybach Landaulet Convertible 2012 2.93% Bugatti Veyron 16.4 Convertible 2009 2.31% Spyker C8 Coupe 2009 2.29% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 Mercedes-Benz 300-Class Convertible 1993 6.08% Fisker Karma Sedan 2012 6.06% Spyker C8 Convertible 2009 4.25% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.18% Aston Martin V8 Vantage Coupe 2012 3.76% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Chrysler 300 SRT-8 2010 2.93% Rolls-Royce Ghost Sedan 2012 1.79% Chevrolet TrailBlazer SS 2009 1.7% BMW M6 Convertible 2010 1.62% Land Rover Range Rover SUV 2012 1.56% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Express Cargo Van 2007 2.53% GMC Savana Van 2012 1.74% Lincoln Town Car Sedan 2011 1.73% Chevrolet Impala Sedan 2007 1.66% Mercedes-Benz 300-Class Convertible 1993 1.55% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Bentley Arnage Sedan 2009 4.73% Cadillac Escalade EXT Crew Cab 2007 3.8% Ford F-450 Super Duty Crew Cab 2012 3.75% Chevrolet TrailBlazer SS 2009 3.67% GMC Yukon Hybrid SUV 2012 3.14% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Jeep Patriot SUV 2012 2.43% AM General Hummer SUV 2000 2.36% Bentley Mulsanne Sedan 2011 2.33% HUMMER H2 SUT Crew Cab 2009 2.06% Dodge Ram Pickup 3500 Crew Cab 2010 2.03% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 16.88% Lamborghini Diablo Coupe 2001 16.47% Geo Metro Convertible 1993 12.31% McLaren MP4-12C Coupe 2012 9.47% Chevrolet Corvette Convertible 2012 7.18% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Dodge Sprinter Cargo Van 2009 5.37% Audi TT Hatchback 2011 3.29% Mercedes-Benz Sprinter Van 2012 2.88% Acura TL Sedan 2012 2.64% BMW ActiveHybrid 5 Sedan 2012 2.16% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Ferrari California Convertible 2012 6.21% Geo Metro Convertible 1993 4.81% Ferrari 458 Italia Coupe 2012 4.38% Volkswagen Beetle Hatchback 2012 4.06% Ferrari 458 Italia Convertible 2012 3.72% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 8.31% Ferrari 458 Italia Convertible 2012 5.49% Aston Martin Virage Coupe 2012 4.74% Ferrari 458 Italia Coupe 2012 4.01% McLaren MP4-12C Coupe 2012 3.59% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Ford E-Series Wagon Van 2012 2.85% Daewoo Nubira Wagon 2002 2.79% Chrysler PT Cruiser Convertible 2008 2.21% HUMMER H2 SUT Crew Cab 2009 2.03% Chrysler Sebring Convertible 2010 2.02% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Maybach Landaulet Convertible 2012 5.69% Lamborghini Reventon Coupe 2008 3.4% Ford GT Coupe 2006 3.17% Nissan Leaf Hatchback 2012 3.0% Bugatti Veyron 16.4 Coupe 2009 2.69% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 FIAT 500 Abarth 2012 4.86% Chevrolet TrailBlazer SS 2009 2.81% Cadillac Escalade EXT Crew Cab 2007 2.67% Bentley Arnage Sedan 2009 2.38% Chrysler 300 SRT-8 2010 1.95% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 HUMMER H3T Crew Cab 2010 3.92% Suzuki SX4 Hatchback 2012 3.4% Dodge Caliber Wagon 2007 3.1% Volkswagen Golf Hatchback 1991 3.02% Volvo C30 Hatchback 2012 2.97% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 17.71% Chevrolet Express Cargo Van 2007 8.72% Chevrolet Express Van 2007 5.36% Chevrolet Silverado 1500 Extended Cab 2012 1.98% Buick Enclave SUV 2012 1.85% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Porsche Panamera Sedan 2012 3.14% Chevrolet Corvette ZR1 2012 1.98% Dodge Sprinter Cargo Van 2009 1.93% Acura ZDX Hatchback 2012 1.88% Jaguar XK XKR 2012 1.62% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 BMW 3 Series Sedan 2012 4.34% Ferrari 458 Italia Convertible 2012 3.4% Toyota Corolla Sedan 2012 2.92% Chevrolet HHR SS 2010 2.76% Ferrari 458 Italia Coupe 2012 2.69% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Isuzu Ascender SUV 2008 7.7% Ford E-Series Wagon Van 2012 7.4% Chevrolet Avalanche Crew Cab 2012 4.25% Chevrolet Silverado 1500 Extended Cab 2012 4.02% Ford F-150 Regular Cab 2012 3.39% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 3.79% Volkswagen Golf Hatchback 1991 2.41% Chevrolet Silverado 1500 Regular Cab 2012 2.13% Hyundai Elantra Sedan 2007 2.03% Buick Verano Sedan 2012 1.93% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Mercedes-Benz Sprinter Van 2012 6.62% Ford E-Series Wagon Van 2012 6.61% BMW X3 SUV 2012 2.94% Isuzu Ascender SUV 2008 2.88% BMW X5 SUV 2007 2.64% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Land Rover Range Rover SUV 2012 4.77% Ford F-450 Super Duty Crew Cab 2012 4.64% Cadillac Escalade EXT Crew Cab 2007 4.22% Chevrolet TrailBlazer SS 2009 4.18% Jeep Compass SUV 2012 3.77% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Dodge Challenger SRT8 2011 3.42% MINI Cooper Roadster Convertible 2012 3.34% Mercedes-Benz S-Class Sedan 2012 2.15% Ford E-Series Wagon Van 2012 1.96% Mercedes-Benz Sprinter Van 2012 1.89% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 BMW X5 SUV 2007 2.74% Hyundai Santa Fe SUV 2012 2.57% Ford F-150 Regular Cab 2012 2.1% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.07% Toyota Sequoia SUV 2012 1.89% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 4.62% Ford F-150 Regular Cab 2012 3.23% Chevrolet Silverado 2500HD Regular Cab 2012 3.14% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.91% Chevrolet Silverado 1500 Regular Cab 2012 2.58% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Ford E-Series Wagon Van 2012 8.14% Isuzu Ascender SUV 2008 3.65% Chrysler Aspen SUV 2009 2.9% Hyundai Santa Fe SUV 2012 2.48% BMW X5 SUV 2007 2.47% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Rolls-Royce Phantom Sedan 2012 9.55% MINI Cooper Roadster Convertible 2012 3.44% Hyundai Genesis Sedan 2012 3.01% Audi S6 Sedan 2011 2.46% Hyundai Azera Sedan 2012 1.84% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Jeep Wrangler SUV 2012 12.62% HUMMER H2 SUT Crew Cab 2009 8.5% HUMMER H3T Crew Cab 2010 8.43% AM General Hummer SUV 2000 5.19% Dodge Caliber Wagon 2007 3.43% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.91% Aston Martin V8 Vantage Coupe 2012 2.14% Mercedes-Benz 300-Class Convertible 1993 1.59% Jaguar XK XKR 2012 1.51% Bugatti Veyron 16.4 Coupe 2009 1.4% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Bentley Arnage Sedan 2009 6.47% Rolls-Royce Phantom Sedan 2012 3.44% Chrysler 300 SRT-8 2010 3.4% Chevrolet TrailBlazer SS 2009 3.08% Cadillac Escalade EXT Crew Cab 2007 2.9% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 MINI Cooper Roadster Convertible 2012 7.67% Rolls-Royce Phantom Sedan 2012 3.87% Bentley Mulsanne Sedan 2011 3.61% Hyundai Genesis Sedan 2012 3.26% Mercedes-Benz C-Class Sedan 2012 2.65% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 3.38% Mercedes-Benz 300-Class Convertible 1993 3.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.01% Lamborghini Reventon Coupe 2008 3.01% Chevrolet Corvette ZR1 2012 2.29% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Chevrolet Traverse SUV 2012 2.29% Dodge Caliber Wagon 2007 1.99% Hyundai Tucson SUV 2012 1.95% Ford Ranger SuperCab 2011 1.94% Buick Enclave SUV 2012 1.79% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 8.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.82% Nissan Leaf Hatchback 2012 2.69% Lamborghini Reventon Coupe 2008 2.52% Bugatti Veyron 16.4 Coupe 2009 1.98% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.32% BMW 1 Series Convertible 2012 1.71% Suzuki Aerio Sedan 2007 1.66% Audi S5 Convertible 2012 1.62% Acura TSX Sedan 2012 1.62% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Audi S6 Sedan 2011 3.84% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Ford E-Series Wagon Van 2012 3.13% Chrysler Aspen SUV 2009 3.03% Ford F-450 Super Duty Crew Cab 2012 2.96% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 7.34% AM General Hummer SUV 2000 4.44% HUMMER H2 SUT Crew Cab 2009 3.68% Jeep Liberty SUV 2012 2.88% Ford Expedition EL SUV 2009 2.83% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 FIAT 500 Abarth 2012 8.67% Jeep Patriot SUV 2012 5.12% Jeep Wrangler SUV 2012 4.2% AM General Hummer SUV 2000 3.4% Bentley Arnage Sedan 2009 3.15% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Chevrolet Corvette ZR1 2012 3.76% Aston Martin V8 Vantage Coupe 2012 3.69% Jaguar XK XKR 2012 3.21% Porsche Panamera Sedan 2012 2.66% Mercedes-Benz 300-Class Convertible 1993 2.09% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Chevrolet Avalanche Crew Cab 2012 2.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.42% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.9% Chevrolet Silverado 2500HD Regular Cab 2012 1.89% Ford F-150 Regular Cab 2012 1.68% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Ferrari FF Coupe 2012 2.93% Jaguar XK XKR 2012 2.62% Aston Martin V8 Vantage Coupe 2012 1.94% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.77% Porsche Panamera Sedan 2012 1.61% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Honda Odyssey Minivan 2007 3.0% GMC Savana Van 2012 2.42% Dodge Sprinter Cargo Van 2009 2.4% Mercedes-Benz Sprinter Van 2012 2.26% Honda Accord Sedan 2012 1.67% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 3.38% Ford Ranger SuperCab 2011 2.8% Dodge Dakota Club Cab 2007 2.78% Chevrolet Silverado 1500 Regular Cab 2012 2.53% Ford F-150 Regular Cab 2012 2.49% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 4.26% Bugatti Veyron 16.4 Coupe 2009 2.92% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.47% Spyker C8 Coupe 2009 2.42% Ferrari FF Coupe 2012 1.92% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Lamborghini Reventon Coupe 2008 2.63% Bugatti Veyron 16.4 Coupe 2009 2.23% Plymouth Neon Coupe 1999 1.92% Eagle Talon Hatchback 1998 1.62% Daewoo Nubira Wagon 2002 1.43% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Dodge Magnum Wagon 2008 3.96% Chevrolet Cobalt SS 2010 3.14% Ferrari California Convertible 2012 2.45% Ferrari 458 Italia Coupe 2012 2.29% BMW 3 Series Sedan 2012 2.01% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 42.97% Acura Integra Type R 2001 14.2% Geo Metro Convertible 1993 9.9% Lamborghini Diablo Coupe 2001 5.83% Chevrolet Corvette Convertible 2012 3.74% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 4.34% Mercedes-Benz Sprinter Van 2012 3.66% Chevrolet Silverado 1500 Extended Cab 2012 3.23% Honda Odyssey Minivan 2007 2.92% Chevrolet Avalanche Crew Cab 2012 2.18% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Hyundai Elantra Sedan 2007 3.0% Dodge Caliber Wagon 2007 2.03% Ford F-150 Regular Cab 2007 1.85% Plymouth Neon Coupe 1999 1.83% Chevrolet Monte Carlo Coupe 2007 1.77% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 3.02% Aston Martin V8 Vantage Coupe 2012 2.65% Mercedes-Benz 300-Class Convertible 1993 2.25% Chevrolet Corvette ZR1 2012 2.24% Mercedes-Benz E-Class Sedan 2012 2.2% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 8.63% Rolls-Royce Phantom Sedan 2012 7.2% Hyundai Azera Sedan 2012 4.49% smart fortwo Convertible 2012 3.27% Dodge Challenger SRT8 2011 3.08% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Lincoln Town Car Sedan 2011 2.15% Dodge Caravan Minivan 1997 1.62% Chevrolet Monte Carlo Coupe 2007 1.51% Acura TL Sedan 2012 1.45% Chevrolet Impala Sedan 2007 1.41% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 3.69% Acura TSX Sedan 2012 2.33% Lincoln Town Car Sedan 2011 2.33% Volkswagen Golf Hatchback 2012 2.14% Suzuki Aerio Sedan 2007 1.93% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Jeep Wrangler SUV 2012 11.12% HUMMER H3T Crew Cab 2010 6.2% Dodge Caliber Wagon 2007 4.02% HUMMER H2 SUT Crew Cab 2009 3.92% Dodge Charger Sedan 2012 2.86% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Ferrari FF Coupe 2012 5.41% Toyota Camry Sedan 2012 2.95% Nissan Leaf Hatchback 2012 2.75% Jaguar XK XKR 2012 2.53% Suzuki Aerio Sedan 2007 2.3% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Ford Edge SUV 2012 1.41% Jeep Wrangler SUV 2012 1.41% Ford Ranger SuperCab 2011 1.34% Hyundai Tucson SUV 2012 1.31% Jeep Patriot SUV 2012 1.31% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Lamborghini Reventon Coupe 2008 1.9% Nissan Juke Hatchback 2012 1.56% Spyker C8 Convertible 2009 1.51% Tesla Model S Sedan 2012 1.48% Hyundai Azera Sedan 2012 1.39% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Ram C/V Cargo Van Minivan 2012 1.83% Lincoln Town Car Sedan 2011 1.43% Daewoo Nubira Wagon 2002 1.36% Chevrolet Malibu Sedan 2007 1.3% Mercedes-Benz S-Class Sedan 2012 1.29% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 3.56% Mercedes-Benz 300-Class Convertible 1993 3.33% Audi 100 Sedan 1994 2.81% Audi 100 Wagon 1994 2.39% Hyundai Tucson SUV 2012 1.94% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Cobalt SS 2010 4.67% Volkswagen Golf Hatchback 1991 2.98% Dodge Magnum Wagon 2008 2.68% Ford Mustang Convertible 2007 2.64% Ferrari California Convertible 2012 2.42% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Chevrolet Silverado 1500 Extended Cab 2012 3.68% GMC Savana Van 2012 3.5% Chevrolet Avalanche Crew Cab 2012 2.26% Dodge Ram Pickup 3500 Quad Cab 2009 2.03% Chevrolet Tahoe Hybrid SUV 2012 1.9% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Ford Expedition EL SUV 2009 3.41% Land Rover Range Rover SUV 2012 3.22% Bentley Arnage Sedan 2009 3.2% Jeep Patriot SUV 2012 2.69% Hyundai Genesis Sedan 2012 2.37% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 14.65% Chevrolet Cobalt SS 2010 4.95% Honda Accord Coupe 2012 3.93% Ferrari 458 Italia Convertible 2012 2.77% Chevrolet Camaro Convertible 2012 2.37% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Chrysler 300 SRT-8 2010 2.12% Chevrolet TrailBlazer SS 2009 1.6% Infiniti G Coupe IPL 2012 1.59% BMW M6 Convertible 2010 1.5% Eagle Talon Hatchback 1998 1.34% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Ram C/V Cargo Van Minivan 2012 8.49% BMW 1 Series Convertible 2012 2.66% Lincoln Town Car Sedan 2011 2.61% Toyota Camry Sedan 2012 2.37% Acura TSX Sedan 2012 2.14% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H2 SUT Crew Cab 2009 10.31% AM General Hummer SUV 2000 7.4% Jeep Wrangler SUV 2012 5.95% Jeep Patriot SUV 2012 2.59% HUMMER H3T Crew Cab 2010 2.47% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Reventon Coupe 2008 6.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.73% Spyker C8 Convertible 2009 4.56% Bugatti Veyron 16.4 Coupe 2009 4.19% Aston Martin V8 Vantage Coupe 2012 3.84% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Chrysler 300 SRT-8 2010 1.92% Ford F-150 Regular Cab 2007 1.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.36% Audi V8 Sedan 1994 1.32% Chevrolet Monte Carlo Coupe 2007 1.26% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.33% Bugatti Veyron 16.4 Convertible 2009 3.41% Acura TL Type-S 2008 2.83% Mercedes-Benz S-Class Sedan 2012 2.79% MINI Cooper Roadster Convertible 2012 2.74% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 12.62% Jeep Wrangler SUV 2012 8.88% HUMMER H3T Crew Cab 2010 8.15% AM General Hummer SUV 2000 6.15% Jeep Compass SUV 2012 2.22% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Honda Odyssey Minivan 2007 1.99% Hyundai Genesis Sedan 2012 1.52% Honda Odyssey Minivan 2012 1.32% Chevrolet Impala Sedan 2007 1.26% Fisker Karma Sedan 2012 1.22% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 17.42% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.75% Geo Metro Convertible 1993 9.71% Ferrari 458 Italia Convertible 2012 8.13% Acura Integra Type R 2001 7.26% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 12.16% Dodge Sprinter Cargo Van 2009 11.85% GMC Savana Van 2012 6.42% Chevrolet Express Cargo Van 2007 4.33% Dodge Caravan Minivan 1997 3.62% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 5.82% Hyundai Elantra Sedan 2007 3.14% Ford Freestar Minivan 2007 2.09% Suzuki SX4 Hatchback 2012 2.08% Dodge Journey SUV 2012 1.95% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Maybach Landaulet Convertible 2012 11.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.2% Bentley Continental Supersports Conv. Convertible 2012 3.86% Lamborghini Reventon Coupe 2008 3.42% Aston Martin V8 Vantage Coupe 2012 2.74% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Mercedes-Benz Sprinter Van 2012 8.3% Dodge Sprinter Cargo Van 2009 4.1% GMC Savana Van 2012 3.41% Ram C/V Cargo Van Minivan 2012 2.01% Volkswagen Golf Hatchback 2012 1.7% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 6.94% Bentley Arnage Sedan 2009 3.97% Rolls-Royce Ghost Sedan 2012 3.44% Ford F-450 Super Duty Crew Cab 2012 3.35% Ford Expedition EL SUV 2009 3.08% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.05% Land Rover Range Rover SUV 2012 1.81% Dodge Durango SUV 2007 1.76% Chrysler 300 SRT-8 2010 1.7% Chevrolet TrailBlazer SS 2009 1.66% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 27.65% Acura Integra Type R 2001 21.26% Aston Martin Virage Coupe 2012 6.47% Chevrolet Cobalt SS 2010 5.76% McLaren MP4-12C Coupe 2012 5.68% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.57% Isuzu Ascender SUV 2008 2.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.18% Dodge Ram Pickup 3500 Crew Cab 2010 2.14% Chevrolet Silverado 2500HD Regular Cab 2012 2.11% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Acura Integra Type R 2001 13.32% Aston Martin Virage Coupe 2012 10.76% Lamborghini Diablo Coupe 2001 10.67% Hyundai Veloster Hatchback 2012 8.32% Chevrolet Corvette Convertible 2012 7.85% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Ferrari California Convertible 2012 4.31% Ferrari 458 Italia Coupe 2012 3.44% BMW 1 Series Coupe 2012 3.21% Volvo C30 Hatchback 2012 3.15% Dodge Charger SRT-8 2009 3.14% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 8.5% Daewoo Nubira Wagon 2002 6.27% Nissan Leaf Hatchback 2012 5.54% Lincoln Town Car Sedan 2011 4.91% Plymouth Neon Coupe 1999 3.46% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 5.17% Chevrolet Express Cargo Van 2007 4.09% Chevrolet Express Van 2007 4.07% Dodge Caravan Minivan 1997 2.46% Dodge Sprinter Cargo Van 2009 2.11% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Volvo XC90 SUV 2007 2.24% BMW X3 SUV 2012 2.11% Audi S5 Coupe 2012 2.07% BMW X6 SUV 2012 2.06% Dodge Ram Pickup 3500 Quad Cab 2009 1.92% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Dodge Caravan Minivan 1997 2.81% Chevrolet Express Cargo Van 2007 2.34% Acura TL Sedan 2012 2.16% Acura ZDX Hatchback 2012 1.63% Lincoln Town Car Sedan 2011 1.54% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Rolls-Royce Phantom Sedan 2012 2.71% Hyundai Genesis Sedan 2012 2.26% Hyundai Azera Sedan 2012 2.01% Ford Expedition EL SUV 2009 1.46% Bentley Continental GT Coupe 2007 1.24% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 14.43% Dodge Caliber Wagon 2012 3.97% Suzuki SX4 Hatchback 2012 3.76% BMW 1 Series Coupe 2012 2.69% Ford Ranger SuperCab 2011 2.47% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 MINI Cooper Roadster Convertible 2012 3.0% BMW ActiveHybrid 5 Sedan 2012 2.99% Mercedes-Benz SL-Class Coupe 2009 2.34% Bugatti Veyron 16.4 Convertible 2009 2.27% Audi TT Hatchback 2011 2.16% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 HUMMER H3T Crew Cab 2010 1.69% Mazda Tribute SUV 2011 1.5% Acura ZDX Hatchback 2012 1.48% Volkswagen Golf Hatchback 1991 1.46% Dodge Ram Pickup 3500 Quad Cab 2009 1.39% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 3.33% Mercedes-Benz E-Class Sedan 2012 2.98% Audi S5 Convertible 2012 2.61% BMW ActiveHybrid 5 Sedan 2012 2.33% Mercedes-Benz S-Class Sedan 2012 2.2% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Hyundai Santa Fe SUV 2012 2.89% Volvo XC90 SUV 2007 2.31% BMW X5 SUV 2007 2.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.07% GMC Terrain SUV 2012 1.96% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 5.09% Dodge Sprinter Cargo Van 2009 3.41% Chevrolet Express Cargo Van 2007 3.08% GMC Savana Van 2012 2.99% Dodge Caravan Minivan 1997 2.67% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Volvo C30 Hatchback 2012 3.88% Audi TT RS Coupe 2012 3.62% Dodge Caliber Wagon 2007 3.55% Dodge Magnum Wagon 2008 3.13% BMW 3 Series Sedan 2012 3.13% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 2.53% smart fortwo Convertible 2012 1.85% Acura ZDX Hatchback 2012 1.51% Volkswagen Golf Hatchback 1991 1.45% Volvo 240 Sedan 1993 1.36% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 AM General Hummer SUV 2000 7.73% HUMMER H2 SUT Crew Cab 2009 7.22% Cadillac Escalade EXT Crew Cab 2007 5.29% Jeep Wrangler SUV 2012 4.68% Jeep Liberty SUV 2012 3.18% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 HUMMER H3T Crew Cab 2010 9.6% Jeep Wrangler SUV 2012 7.14% HUMMER H2 SUT Crew Cab 2009 6.78% BMW X6 SUV 2012 4.68% Suzuki SX4 Hatchback 2012 3.49% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 4.65% FIAT 500 Abarth 2012 1.99% Cadillac CTS-V Sedan 2012 1.63% Plymouth Neon Coupe 1999 1.57% Chevrolet Corvette ZR1 2012 1.56% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Rolls-Royce Phantom Sedan 2012 4.45% Bentley Continental GT Coupe 2007 3.3% BMW M6 Convertible 2010 2.87% Chrysler 300 SRT-8 2010 2.48% Hyundai Genesis Sedan 2012 2.47% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Chrysler Sebring Convertible 2010 2.83% Lincoln Town Car Sedan 2011 2.81% GMC Savana Van 2012 2.64% Chevrolet Malibu Sedan 2007 2.43% Chevrolet Malibu Hybrid Sedan 2010 2.32% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Chevrolet Corvette ZR1 2012 1.9% Infiniti G Coupe IPL 2012 1.66% Lamborghini Reventon Coupe 2008 1.62% BMW M6 Convertible 2010 1.47% Chevrolet Monte Carlo Coupe 2007 1.39% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Chevrolet Traverse SUV 2012 2.24% Chevrolet Silverado 1500 Regular Cab 2012 1.96% Volkswagen Golf Hatchback 1991 1.9% Dodge Caliber Wagon 2007 1.81% Ford Freestar Minivan 2007 1.73% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Daewoo Nubira Wagon 2002 3.73% Nissan Leaf Hatchback 2012 2.51% FIAT 500 Convertible 2012 2.1% Lincoln Town Car Sedan 2011 2.09% Chrysler Sebring Convertible 2010 2.01% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 5.51% Chevrolet Express Van 2007 4.0% Chevrolet Express Cargo Van 2007 2.96% Chevrolet Malibu Sedan 2007 2.39% Lincoln Town Car Sedan 2011 2.3% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Dodge Caliber Wagon 2007 7.02% Chevrolet Silverado 1500 Regular Cab 2012 3.63% Hyundai Elantra Sedan 2007 3.56% Honda Accord Coupe 2012 3.37% Dodge Caliber Wagon 2012 2.71% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 4.45% HUMMER H2 SUT Crew Cab 2009 3.17% Jeep Grand Cherokee SUV 2012 2.41% Dodge Durango SUV 2007 2.1% Chrysler 300 SRT-8 2010 2.08% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 BMW M6 Convertible 2010 1.86% Infiniti G Coupe IPL 2012 1.86% Chrysler 300 SRT-8 2010 1.78% Fisker Karma Sedan 2012 1.67% Rolls-Royce Ghost Sedan 2012 1.51% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Dodge Magnum Wagon 2008 3.28% Ford Mustang Convertible 2007 2.81% Dodge Charger Sedan 2012 2.53% Chevrolet Cobalt SS 2010 2.51% Chevrolet Corvette Convertible 2012 2.43% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Jaguar XK XKR 2012 3.21% Mercedes-Benz 300-Class Convertible 1993 2.97% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.65% Aston Martin V8 Vantage Coupe 2012 2.34% Nissan 240SX Coupe 1998 2.19% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.5% Chevrolet Silverado 1500 Regular Cab 2012 1.91% Infiniti G Coupe IPL 2012 1.78% BMW M6 Convertible 2010 1.74% Dodge Ram Pickup 3500 Quad Cab 2009 1.68% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 5.27% Lincoln Town Car Sedan 2011 3.58% Chevrolet Express Cargo Van 2007 3.03% Chevrolet Impala Sedan 2007 2.09% Audi 100 Sedan 1994 1.95% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.83% Chevrolet Malibu Hybrid Sedan 2010 1.22% Bugatti Veyron 16.4 Coupe 2009 1.04% Chevrolet Express Cargo Van 2007 1.01% Chevrolet Express Van 2007 1.01% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 2500HD Regular Cab 2012 3.62% Chevrolet Silverado 1500 Extended Cab 2012 1.79% Audi A5 Coupe 2012 1.75% Ford F-150 Regular Cab 2012 1.61% GMC Savana Van 2012 1.6% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Hyundai Santa Fe SUV 2012 2.75% BMW X5 SUV 2007 2.57% Jeep Compass SUV 2012 2.5% Volvo XC90 SUV 2007 2.24% Toyota 4Runner SUV 2012 2.17% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Chevrolet TrailBlazer SS 2009 3.4% Ford F-150 Regular Cab 2007 2.24% Chrysler 300 SRT-8 2010 2.13% Chevrolet Silverado 1500 Regular Cab 2012 2.01% Hyundai Veracruz SUV 2012 1.98% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.32% Porsche Panamera Sedan 2012 3.06% Geo Metro Convertible 1993 2.68% Jaguar XK XKR 2012 2.65% Chevrolet Corvette ZR1 2012 2.48% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Chevrolet TrailBlazer SS 2009 3.89% Bentley Arnage Sedan 2009 3.83% Ford Expedition EL SUV 2009 3.3% Rolls-Royce Phantom Sedan 2012 2.9% Cadillac CTS-V Sedan 2012 2.51% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Honda Odyssey Minivan 2007 1.63% GMC Savana Van 2012 1.5% Chevrolet Impala Sedan 2007 1.38% Chevrolet Malibu Sedan 2007 1.38% Daewoo Nubira Wagon 2002 1.35% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 6.67% Ferrari 458 Italia Convertible 2012 6.58% Ferrari California Convertible 2012 6.18% Chevrolet Corvette Convertible 2012 5.35% Ferrari 458 Italia Coupe 2012 4.81% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 37.89% Acura Integra Type R 2001 22.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.88% Geo Metro Convertible 1993 4.54% Chevrolet Corvette Convertible 2012 4.24% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 3.85% Aston Martin V8 Vantage Coupe 2012 3.26% Porsche Panamera Sedan 2012 3.07% Jaguar XK XKR 2012 2.57% Toyota Camry Sedan 2012 1.55% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Chevrolet TrailBlazer SS 2009 4.38% HUMMER H3T Crew Cab 2010 3.55% HUMMER H2 SUT Crew Cab 2009 2.81% Cadillac Escalade EXT Crew Cab 2007 2.35% AM General Hummer SUV 2000 2.25% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Hyundai Santa Fe SUV 2012 1.94% Jeep Grand Cherokee SUV 2012 1.77% Ford F-450 Super Duty Crew Cab 2012 1.69% Chrysler Aspen SUV 2009 1.68% Jeep Wrangler SUV 2012 1.68% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 smart fortwo Convertible 2012 3.85% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.04% Spyker C8 Convertible 2009 2.76% AM General Hummer SUV 2000 2.44% Fisker Karma Sedan 2012 2.43% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Acura Integra Type R 2001 3.8% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.0% Ford GT Coupe 2006 2.19% Spyker C8 Convertible 2009 2.15% Geo Metro Convertible 1993 2.04% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 3.67% Buick Rainier SUV 2007 2.31% Chevrolet Express Cargo Van 2007 1.55% Dodge Sprinter Cargo Van 2009 1.52% Hyundai Veracruz SUV 2012 1.43% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 smart fortwo Convertible 2012 2.99% Hyundai Azera Sedan 2012 2.71% Mercedes-Benz E-Class Sedan 2012 2.18% Rolls-Royce Phantom Sedan 2012 2.11% Dodge Challenger SRT8 2011 1.7% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 BMW X6 SUV 2012 8.54% Ford Edge SUV 2012 7.3% Dodge Ram Pickup 3500 Quad Cab 2009 5.34% Jeep Wrangler SUV 2012 5.29% Ford Ranger SuperCab 2011 4.8% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Hyundai Santa Fe SUV 2012 2.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.44% Chevrolet TrailBlazer SS 2009 2.38% GMC Terrain SUV 2012 2.33% Dodge Durango SUV 2012 2.28% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 3.52% Jeep Liberty SUV 2012 3.01% Jeep Wrangler SUV 2012 2.82% HUMMER H2 SUT Crew Cab 2009 2.56% Isuzu Ascender SUV 2008 2.54% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Hyundai Elantra Sedan 2007 2.96% Dodge Caliber Wagon 2007 2.89% Plymouth Neon Coupe 1999 2.68% Honda Accord Coupe 2012 2.11% Dodge Caliber Wagon 2012 1.97% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 6.55% Jeep Wrangler SUV 2012 4.6% BMW X6 SUV 2012 3.78% Chevrolet Silverado 1500 Regular Cab 2012 3.06% GMC Canyon Extended Cab 2012 2.89% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Chevrolet Silverado 2500HD Regular Cab 2012 1.5% Audi A5 Coupe 2012 1.41% Audi S6 Sedan 2011 1.15% Infiniti G Coupe IPL 2012 1.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.08% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Ferrari California Convertible 2012 9.79% Ferrari 458 Italia Convertible 2012 8.24% Geo Metro Convertible 1993 8.13% Ferrari 458 Italia Coupe 2012 6.25% Lamborghini Aventador Coupe 2012 5.07% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 26.89% Chevrolet Express Cargo Van 2007 11.18% Chevrolet Express Van 2007 9.77% Hyundai Tucson SUV 2012 2.58% Chevrolet Traverse SUV 2012 2.5% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Lamborghini Reventon Coupe 2008 4.71% Dodge Caravan Minivan 1997 2.27% Chrysler PT Cruiser Convertible 2008 2.02% Hyundai Tucson SUV 2012 1.84% Plymouth Neon Coupe 1999 1.8% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.5% Chevrolet Silverado 1500 Regular Cab 2012 1.7% Dodge Ram Pickup 3500 Crew Cab 2010 1.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.58% Dodge Ram Pickup 3500 Quad Cab 2009 1.35% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Cadillac Escalade EXT Crew Cab 2007 4.22% Chevrolet Avalanche Crew Cab 2012 3.98% Chevrolet Silverado 1500 Regular Cab 2012 2.81% Dodge Durango SUV 2007 2.54% Jeep Grand Cherokee SUV 2012 2.49% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 12.37% Ferrari 458 Italia Convertible 2012 12.34% BMW M3 Coupe 2012 12.26% Ferrari 458 Italia Coupe 2012 8.35% Lamborghini Aventador Coupe 2012 6.66% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Chevrolet Corvette ZR1 2012 1.26% GMC Yukon Hybrid SUV 2012 1.2% Audi S6 Sedan 2011 1.18% Bentley Continental Flying Spur Sedan 2007 1.17% Hyundai Genesis Sedan 2012 1.14% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Nissan Juke Hatchback 2012 3.15% Hyundai Tucson SUV 2012 2.35% Dodge Caravan Minivan 1997 2.15% Hyundai Azera Sedan 2012 2.08% Plymouth Neon Coupe 1999 2.03% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 4.32% Chevrolet Express Van 2007 2.89% Chevrolet Express Cargo Van 2007 2.22% Honda Odyssey Minivan 2007 1.94% Chevrolet Silverado 1500 Extended Cab 2012 1.51% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 3.76% Hyundai Elantra Sedan 2007 3.69% Dodge Caravan Minivan 1997 2.09% Ford Freestar Minivan 2007 1.95% Suzuki SX4 Hatchback 2012 1.89% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Rolls-Royce Phantom Sedan 2012 4.42% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.44% Hyundai Genesis Sedan 2012 2.04% Bentley Continental GT Coupe 2007 1.79% Audi S6 Sedan 2011 1.79% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Dodge Sprinter Cargo Van 2009 6.5% Dodge Caravan Minivan 1997 3.53% Acura ZDX Hatchback 2012 3.51% Acura TL Sedan 2012 3.42% Chevrolet Express Cargo Van 2007 2.28% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Ram C/V Cargo Van Minivan 2012 4.4% Mercedes-Benz Sprinter Van 2012 3.61% Volkswagen Golf Hatchback 2012 3.15% Nissan Leaf Hatchback 2012 2.98% Acura TSX Sedan 2012 2.27% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.08% Ford Expedition EL SUV 2009 2.82% Ford F-450 Super Duty Crew Cab 2012 2.72% Jeep Grand Cherokee SUV 2012 2.62% Cadillac Escalade EXT Crew Cab 2007 2.01% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Geo Metro Convertible 1993 4.33% Chevrolet Corvette ZR1 2012 3.76% Aston Martin V8 Vantage Coupe 2012 2.3% Mercedes-Benz 300-Class Convertible 1993 2.13% Eagle Talon Hatchback 1998 1.84% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 5.2% Hyundai Genesis Sedan 2012 4.2% Mercedes-Benz 300-Class Convertible 1993 4.08% Bentley Mulsanne Sedan 2011 3.3% Acura TL Type-S 2008 2.99% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Ram C/V Cargo Van Minivan 2012 3.61% Audi A5 Coupe 2012 2.33% Acura TSX Sedan 2012 2.03% Chevrolet Silverado 2500HD Regular Cab 2012 1.79% Audi TT Hatchback 2011 1.73% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Dodge Caliber Wagon 2007 4.78% Buick Rainier SUV 2007 2.44% BMW X6 SUV 2012 2.39% Ford Edge SUV 2012 2.35% Ford Ranger SuperCab 2011 2.28% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 4.72% Chrysler Town and Country Minivan 2012 3.11% Honda Odyssey Minivan 2007 2.11% Hyundai Elantra Touring Hatchback 2012 2.08% Volkswagen Golf Hatchback 2012 1.97% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 BMW X6 SUV 2012 9.36% Dodge Ram Pickup 3500 Quad Cab 2009 7.16% Jeep Wrangler SUV 2012 5.88% HUMMER H3T Crew Cab 2010 5.81% Ford Edge SUV 2012 5.15% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Audi TT Hatchback 2011 2.8% Mercedes-Benz S-Class Sedan 2012 2.32% BMW ActiveHybrid 5 Sedan 2012 2.13% Ram C/V Cargo Van Minivan 2012 1.95% Audi A5 Coupe 2012 1.84% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 FIAT 500 Abarth 2012 13.56% Spyker C8 Convertible 2009 9.97% Bentley Arnage Sedan 2009 9.42% AM General Hummer SUV 2000 8.85% HUMMER H2 SUT Crew Cab 2009 6.5% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 BMW M6 Convertible 2010 4.23% Chrysler 300 SRT-8 2010 3.53% Rolls-Royce Ghost Sedan 2012 3.18% Rolls-Royce Phantom Sedan 2012 3.15% Bentley Continental GT Coupe 2007 2.64% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 2.48% Geo Metro Convertible 1993 1.59% Acura Integra Type R 2001 1.57% Audi RS 4 Convertible 2008 1.54% Nissan Leaf Hatchback 2012 1.53% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Chevrolet Silverado 2500HD Regular Cab 2012 3.66% Audi A5 Coupe 2012 3.17% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.23% Dodge Ram Pickup 3500 Crew Cab 2010 2.09% Ford F-150 Regular Cab 2012 1.89% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 6.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.94% Audi S5 Convertible 2012 2.89% Mercedes-Benz E-Class Sedan 2012 2.65% Mercedes-Benz S-Class Sedan 2012 2.33% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 6.43% Cadillac Escalade EXT Crew Cab 2007 4.93% Jeep Patriot SUV 2012 4.67% Land Rover Range Rover SUV 2012 4.1% FIAT 500 Abarth 2012 3.16% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 4.77% BMW 1 Series Coupe 2012 3.28% Honda Accord Coupe 2012 3.17% Plymouth Neon Coupe 1999 3.04% Ferrari FF Coupe 2012 2.96% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Chevrolet Silverado 2500HD Regular Cab 2012 3.53% Ford Expedition EL SUV 2009 3.48% BMW M6 Convertible 2010 3.17% Chrysler 300 SRT-8 2010 3.03% Dodge Ram Pickup 3500 Crew Cab 2010 3.03% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 9.63% McLaren MP4-12C Coupe 2012 8.21% Chevrolet Corvette Convertible 2012 6.72% Audi RS 4 Convertible 2008 6.04% Geo Metro Convertible 1993 5.09% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Audi A5 Coupe 2012 2.21% Chevrolet Silverado 2500HD Regular Cab 2012 2.02% Chevrolet Silverado 1500 Extended Cab 2012 1.77% Chrysler Town and Country Minivan 2012 1.76% Dodge Journey SUV 2012 1.7% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Ferrari 458 Italia Coupe 2012 12.04% Ferrari 458 Italia Convertible 2012 10.41% Geo Metro Convertible 1993 5.82% BMW M3 Coupe 2012 5.41% Ferrari California Convertible 2012 5.16% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chrysler PT Cruiser Convertible 2008 1.52% Mercedes-Benz Sprinter Van 2012 1.28% Tesla Model S Sedan 2012 1.22% Audi 100 Sedan 1994 1.17% Acura TSX Sedan 2012 1.14% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 3.09% Spyker C8 Convertible 2009 2.86% Mercedes-Benz E-Class Sedan 2012 2.73% smart fortwo Convertible 2012 2.44% Bentley Mulsanne Sedan 2011 2.41% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chrysler 300 SRT-8 2010 5.12% Chevrolet TrailBlazer SS 2009 3.89% Chevrolet Silverado 1500 Regular Cab 2012 3.81% Chevrolet Silverado 2500HD Regular Cab 2012 2.35% Cadillac Escalade EXT Crew Cab 2007 1.9% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Acura TL Sedan 2012 2.22% Lincoln Town Car Sedan 2011 1.76% Jaguar XK XKR 2012 1.72% BMW ActiveHybrid 5 Sedan 2012 1.66% Acura ZDX Hatchback 2012 1.64% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Ram C/V Cargo Van Minivan 2012 3.29% Lincoln Town Car Sedan 2011 2.36% Acura TSX Sedan 2012 1.76% Volkswagen Golf Hatchback 2012 1.61% Chevrolet Malibu Hybrid Sedan 2010 1.52% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 MINI Cooper Roadster Convertible 2012 5.05% BMW X3 SUV 2012 2.55% Mercedes-Benz C-Class Sedan 2012 2.1% Mercedes-Benz S-Class Sedan 2012 2.07% Audi TT Hatchback 2011 1.84% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Dodge Magnum Wagon 2008 4.56% Chevrolet HHR SS 2010 3.81% Volvo C30 Hatchback 2012 2.8% Dodge Charger Sedan 2012 2.74% Dodge Charger SRT-8 2009 2.69% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.87% Mercedes-Benz 300-Class Convertible 1993 3.2% Acura TL Type-S 2008 2.68% Chrysler PT Cruiser Convertible 2008 2.66% Acura ZDX Hatchback 2012 2.44% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 8.03% AM General Hummer SUV 2000 5.38% Fisker Karma Sedan 2012 3.59% Spyker C8 Convertible 2009 3.47% smart fortwo Convertible 2012 3.01% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Ferrari 458 Italia Convertible 2012 11.96% Ferrari California Convertible 2012 8.95% Ferrari 458 Italia Coupe 2012 6.4% Lamborghini Aventador Coupe 2012 4.81% Chevrolet HHR SS 2010 4.61% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Lamborghini Reventon Coupe 2008 3.64% Mercedes-Benz 300-Class Convertible 1993 3.39% Spyker C8 Convertible 2009 2.51% Aston Martin V8 Vantage Coupe 2012 2.26% Chevrolet Corvette ZR1 2012 2.17% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Ford Ranger SuperCab 2011 11.07% Dodge Caliber Wagon 2007 7.94% BMW X6 SUV 2012 6.55% Dodge Ram Pickup 3500 Quad Cab 2009 5.66% Ford Edge SUV 2012 4.34% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 6.96% Aston Martin V8 Vantage Coupe 2012 5.24% Spyker C8 Convertible 2009 4.06% AM General Hummer SUV 2000 3.78% Chevrolet Corvette ZR1 2012 2.69% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Audi TT RS Coupe 2012 5.9% Hyundai Elantra Sedan 2007 5.59% Nissan 240SX Coupe 1998 3.75% Volkswagen Beetle Hatchback 2012 3.69% Toyota Corolla Sedan 2012 3.28% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 HUMMER H2 SUT Crew Cab 2009 4.46% HUMMER H3T Crew Cab 2010 3.95% Dodge Ram Pickup 3500 Quad Cab 2009 3.6% BMW X6 SUV 2012 3.29% Jeep Wrangler SUV 2012 2.48% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Aston Martin Virage Coupe 2012 7.84% McLaren MP4-12C Coupe 2012 5.72% Ferrari California Convertible 2012 4.37% Lamborghini Diablo Coupe 2001 4.1% Ferrari 458 Italia Convertible 2012 3.99% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 4.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.46% Chevrolet Silverado 1500 Extended Cab 2012 2.34% Dodge Ram Pickup 3500 Crew Cab 2010 2.11% Audi A5 Coupe 2012 2.1% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 BMW M6 Convertible 2010 3.76% Chrysler 300 SRT-8 2010 2.92% Chevrolet TrailBlazer SS 2009 2.9% Bentley Continental GT Coupe 2007 2.05% Cadillac CTS-V Sedan 2012 1.61% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Lamborghini Aventador Coupe 2012 26.69% Ferrari 458 Italia Convertible 2012 10.62% Aston Martin Virage Coupe 2012 9.7% Ferrari California Convertible 2012 7.14% Ferrari 458 Italia Coupe 2012 6.72% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 5.07% Chevrolet Silverado 1500 Regular Cab 2012 4.44% Chrysler 300 SRT-8 2010 2.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.16% Chevrolet Silverado 1500 Extended Cab 2012 2.12% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Challenger SRT8 2011 2.71% Hyundai Azera Sedan 2012 2.05% Hyundai Tucson SUV 2012 1.66% Suzuki SX4 Sedan 2012 1.61% Chrysler PT Cruiser Convertible 2008 1.58% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Dodge Caliber Wagon 2007 1.75% Volkswagen Golf Hatchback 1991 1.67% BMW X6 SUV 2012 1.52% Nissan 240SX Coupe 1998 1.39% Chevrolet Traverse SUV 2012 1.37% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.83% Chevrolet Avalanche Crew Cab 2012 1.82% Dodge Ram Pickup 3500 Crew Cab 2010 1.69% Isuzu Ascender SUV 2008 1.56% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Dodge Caliber Wagon 2007 2.58% Dodge Charger Sedan 2012 2.56% Honda Accord Coupe 2012 2.39% Dodge Charger SRT-8 2009 2.28% Chevrolet Cobalt SS 2010 2.24% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Lamborghini Reventon Coupe 2008 2.93% Audi V8 Sedan 1994 1.94% Bugatti Veyron 16.4 Coupe 2009 1.88% Acura ZDX Hatchback 2012 1.86% Mercedes-Benz 300-Class Convertible 1993 1.76% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 AM General Hummer SUV 2000 15.68% HUMMER H2 SUT Crew Cab 2009 9.78% Cadillac Escalade EXT Crew Cab 2007 4.62% Jeep Wrangler SUV 2012 4.03% Jeep Liberty SUV 2012 3.89% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Jeep Patriot SUV 2012 8.78% AM General Hummer SUV 2000 6.27% Jeep Liberty SUV 2012 3.64% Land Rover Range Rover SUV 2012 3.0% Bentley Mulsanne Sedan 2011 2.44% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Chevrolet TrailBlazer SS 2009 4.56% Chrysler 300 SRT-8 2010 3.51% Cadillac Escalade EXT Crew Cab 2007 2.0% Ford F-150 Regular Cab 2007 1.73% Cadillac CTS-V Sedan 2012 1.65% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Cadillac Escalade EXT Crew Cab 2007 5.8% Bentley Arnage Sedan 2009 3.33% Jeep Patriot SUV 2012 3.19% Ford Expedition EL SUV 2009 3.11% FIAT 500 Abarth 2012 2.93% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.7% Maybach Landaulet Convertible 2012 2.6% Lamborghini Reventon Coupe 2008 2.4% Bugatti Veyron 16.4 Coupe 2009 2.28% Ford GT Coupe 2006 1.75% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Mercedes-Benz Sprinter Van 2012 2.21% Ford E-Series Wagon Van 2012 2.12% Audi A5 Coupe 2012 2.05% Isuzu Ascender SUV 2008 1.86% BMW X3 SUV 2012 1.8% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 MINI Cooper Roadster Convertible 2012 3.51% Rolls-Royce Phantom Sedan 2012 2.23% Chrysler Aspen SUV 2009 2.14% Mercedes-Benz S-Class Sedan 2012 2.11% Audi S6 Sedan 2011 2.1% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Mercedes-Benz E-Class Sedan 2012 1.89% Bugatti Veyron 16.4 Convertible 2009 1.88% Bentley Continental Supersports Conv. Convertible 2012 1.78% Hyundai Genesis Sedan 2012 1.7% MINI Cooper Roadster Convertible 2012 1.67% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Mercedes-Benz Sprinter Van 2012 3.06% Dodge Sprinter Cargo Van 2009 2.6% GMC Savana Van 2012 2.52% Ford Fiesta Sedan 2012 1.24% Chevrolet Express Cargo Van 2007 1.22% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 6.88% Jeep Compass SUV 2012 4.36% Land Rover Range Rover SUV 2012 2.94% Bentley Mulsanne Sedan 2011 2.62% Ford F-450 Super Duty Crew Cab 2012 2.57% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Maybach Landaulet Convertible 2012 2.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.28% FIAT 500 Convertible 2012 1.86% Rolls-Royce Phantom Sedan 2012 1.69% Ford GT Coupe 2006 1.51% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Cadillac Escalade EXT Crew Cab 2007 2.24% Chrysler 300 SRT-8 2010 2.04% Cadillac CTS-V Sedan 2012 1.49% Lamborghini Reventon Coupe 2008 1.33% Jeep Patriot SUV 2012 1.32% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 3.38% BMW X6 SUV 2012 2.83% Dodge Ram Pickup 3500 Quad Cab 2009 2.36% Buick Rainier SUV 2007 1.94% Suzuki SX4 Hatchback 2012 1.72% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 BMW M6 Convertible 2010 3.89% Chevrolet Silverado 2500HD Regular Cab 2012 3.07% Infiniti G Coupe IPL 2012 2.67% Chrysler 300 SRT-8 2010 2.61% Audi S6 Sedan 2011 2.31% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Land Rover Range Rover SUV 2012 3.74% Ford F-450 Super Duty Crew Cab 2012 3.19% Toyota 4Runner SUV 2012 3.1% Hyundai Santa Fe SUV 2012 3.03% Chevrolet TrailBlazer SS 2009 2.87% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.08% Aston Martin V8 Vantage Coupe 2012 2.42% Maybach Landaulet Convertible 2012 2.09% Lamborghini Reventon Coupe 2008 2.05% Mercedes-Benz 300-Class Convertible 1993 2.04% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 14.84% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.82% Maybach Landaulet Convertible 2012 3.54% Bugatti Veyron 16.4 Convertible 2009 2.71% Mercedes-Benz E-Class Sedan 2012 2.61% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chrysler 300 SRT-8 2010 2.35% Chevrolet TrailBlazer SS 2009 2.16% BMW M6 Convertible 2010 2.05% Infiniti G Coupe IPL 2012 1.63% Chevrolet Silverado 2500HD Regular Cab 2012 1.62% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Dodge Caravan Minivan 1997 7.21% Daewoo Nubira Wagon 2002 3.17% Dodge Sprinter Cargo Van 2009 2.4% Plymouth Neon Coupe 1999 2.37% Lincoln Town Car Sedan 2011 2.19% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Audi TT Hatchback 2011 7.05% BMW ActiveHybrid 5 Sedan 2012 4.01% Audi A5 Coupe 2012 3.66% Dodge Sprinter Cargo Van 2009 3.26% Ram C/V Cargo Van Minivan 2012 3.25% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 McLaren MP4-12C Coupe 2012 12.41% Aston Martin Virage Coupe 2012 11.08% Ferrari 458 Italia Convertible 2012 10.25% Lamborghini Diablo Coupe 2001 6.71% Lamborghini Aventador Coupe 2012 6.67% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 2500HD Regular Cab 2012 5.3% Chrysler 300 SRT-8 2010 4.6% Chevrolet Silverado 1500 Regular Cab 2012 2.36% Chevrolet TrailBlazer SS 2009 2.28% Infiniti G Coupe IPL 2012 2.01% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Maybach Landaulet Convertible 2012 6.25% Nissan Leaf Hatchback 2012 3.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.28% Daewoo Nubira Wagon 2002 2.59% Plymouth Neon Coupe 1999 2.54% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Chevrolet TrailBlazer SS 2009 3.73% HUMMER H2 SUT Crew Cab 2009 2.87% BMW M6 Convertible 2010 2.77% Dodge Ram Pickup 3500 Quad Cab 2009 2.15% Chrysler 300 SRT-8 2010 2.05% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 3.27% Chevrolet Express Cargo Van 2007 3.13% Hyundai Tucson SUV 2012 2.53% Chevrolet Express Van 2007 2.42% Dodge Caravan Minivan 1997 2.14% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.22% BMW M3 Coupe 2012 1.7% Acura TL Sedan 2012 1.69% Audi TT Hatchback 2011 1.6% Acura TL Type-S 2008 1.46% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 6.04% Chevrolet Silverado 1500 Regular Cab 2012 4.61% BMW X6 SUV 2012 4.17% Ford Ranger SuperCab 2011 2.82% Dodge Ram Pickup 3500 Quad Cab 2009 2.4% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 13.67% MINI Cooper Roadster Convertible 2012 5.76% Audi A5 Coupe 2012 4.59% Chrysler Town and Country Minivan 2012 3.57% Audi TT Hatchback 2011 3.55% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 7.13% FIAT 500 Abarth 2012 6.42% Jeep Patriot SUV 2012 5.71% AM General Hummer SUV 2000 5.55% Bentley Arnage Sedan 2009 4.05% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 3.4% Chevrolet Monte Carlo Coupe 2007 2.63% Chrysler 300 SRT-8 2010 2.39% Eagle Talon Hatchback 1998 2.09% Chevrolet Malibu Sedan 2007 2.0% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 BMW M3 Coupe 2012 2.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.04% Volkswagen Beetle Hatchback 2012 1.97% Mercedes-Benz S-Class Sedan 2012 1.92% FIAT 500 Convertible 2012 1.91% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Mercedes-Benz Sprinter Van 2012 6.14% Ford E-Series Wagon Van 2012 5.14% BMW X3 SUV 2012 2.31% Isuzu Ascender SUV 2008 1.81% Chrysler Town and Country Minivan 2012 1.8% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Audi TT RS Coupe 2012 7.43% Hyundai Elantra Sedan 2007 4.25% Nissan 240SX Coupe 1998 3.35% Volkswagen Beetle Hatchback 2012 3.17% Hyundai Sonata Hybrid Sedan 2012 2.69% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Ford Expedition EL SUV 2009 3.11% Ford F-450 Super Duty Crew Cab 2012 2.89% BMW M6 Convertible 2010 2.65% Dodge Ram Pickup 3500 Crew Cab 2010 2.42% Chevrolet TrailBlazer SS 2009 2.03% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 HUMMER H3T Crew Cab 2010 2.12% Jeep Patriot SUV 2012 1.85% Jeep Wrangler SUV 2012 1.72% AM General Hummer SUV 2000 1.62% HUMMER H2 SUT Crew Cab 2009 1.3% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.57% Acura TL Type-S 2008 1.96% Mercedes-Benz SL-Class Coupe 2009 1.78% Audi S5 Convertible 2012 1.71% Hyundai Azera Sedan 2012 1.58% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Mercedes-Benz Sprinter Van 2012 2.27% BMW X5 SUV 2007 1.99% Buick Rainier SUV 2007 1.85% BMW X3 SUV 2012 1.81% Chevrolet Express Cargo Van 2007 1.49% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Hyundai Veloster Hatchback 2012 3.61% Aston Martin Virage Coupe 2012 3.4% HUMMER H3T Crew Cab 2010 3.1% Dodge Charger Sedan 2012 3.06% Dodge Charger SRT-8 2009 2.63% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Chevrolet Corvette Convertible 2012 5.27% Dodge Charger Sedan 2012 4.57% Suzuki SX4 Hatchback 2012 4.32% HUMMER H3T Crew Cab 2010 3.94% Jeep Wrangler SUV 2012 3.78% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 HUMMER H3T Crew Cab 2010 3.13% Dodge Caliber Wagon 2007 2.68% Jeep Wrangler SUV 2012 2.67% Dodge Ram Pickup 3500 Quad Cab 2009 2.67% Jeep Liberty SUV 2012 2.6% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Mulsanne Sedan 2011 5.7% Bentley Arnage Sedan 2009 3.09% Spyker C8 Convertible 2009 3.06% Rolls-Royce Phantom Sedan 2012 2.29% Jeep Patriot SUV 2012 2.28% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 2.49% Honda Accord Sedan 2012 2.06% Dodge Sprinter Cargo Van 2009 2.0% Chevrolet Express Van 2007 1.8% Chevrolet Express Cargo Van 2007 1.77% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Ram Pickup 3500 Crew Cab 2010 2.55% Isuzu Ascender SUV 2008 2.27% Chrysler Aspen SUV 2009 2.22% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.86% Hyundai Santa Fe SUV 2012 1.86% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.01% Mercedes-Benz 300-Class Convertible 1993 2.46% Aston Martin V8 Vantage Coupe 2012 2.13% Acura TL Sedan 2012 2.04% Jaguar XK XKR 2012 1.85% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.62% Nissan Leaf Hatchback 2012 3.21% Maybach Landaulet Convertible 2012 2.97% FIAT 500 Convertible 2012 2.9% Bugatti Veyron 16.4 Convertible 2009 2.74% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Fisker Karma Sedan 2012 5.6% Mercedes-Benz 300-Class Convertible 1993 5.48% Hyundai Genesis Sedan 2012 3.73% Infiniti G Coupe IPL 2012 2.69% Bugatti Veyron 16.4 Coupe 2009 2.61% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Ram C/V Cargo Van Minivan 2012 3.88% Volkswagen Golf Hatchback 2012 2.32% Acura TSX Sedan 2012 2.29% Honda Odyssey Minivan 2007 2.18% Chrysler Town and Country Minivan 2012 1.82% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Audi TT Hatchback 2011 1.44% Audi A5 Coupe 2012 1.37% Audi R8 Coupe 2012 1.3% Audi S6 Sedan 2011 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 1.98% Fisker Karma Sedan 2012 1.98% Mercedes-Benz S-Class Sedan 2012 1.84% FIAT 500 Convertible 2012 1.59% Maybach Landaulet Convertible 2012 1.56% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 40.25% HUMMER H2 SUT Crew Cab 2009 22.36% Jeep Wrangler SUV 2012 13.65% HUMMER H3T Crew Cab 2010 11.42% Hyundai Veloster Hatchback 2012 0.91% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 2.68% Chevrolet Express Cargo Van 2007 1.77% GMC Savana Van 2012 1.61% Honda Accord Sedan 2012 1.45% Infiniti G Coupe IPL 2012 1.39% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 17.72% Ferrari California Convertible 2012 15.78% Ferrari 458 Italia Coupe 2012 11.27% Lamborghini Aventador Coupe 2012 8.25% Chevrolet HHR SS 2010 6.9% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Ford Expedition EL SUV 2009 1.74% Cadillac Escalade EXT Crew Cab 2007 1.7% Rolls-Royce Phantom Sedan 2012 1.69% Isuzu Ascender SUV 2008 1.64% Dodge Ram Pickup 3500 Crew Cab 2010 1.62% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 FIAT 500 Convertible 2012 4.4% Geo Metro Convertible 1993 2.52% Suzuki Aerio Sedan 2007 2.18% BMW M3 Coupe 2012 2.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.07% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.96% Lamborghini Reventon Coupe 2008 1.76% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.6% Mercedes-Benz 300-Class Convertible 1993 1.5% BMW M6 Convertible 2010 1.41% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Jeep Liberty SUV 2012 4.41% Ford Expedition EL SUV 2009 4.08% Rolls-Royce Phantom Sedan 2012 3.85% Ford E-Series Wagon Van 2012 3.58% Hyundai Genesis Sedan 2012 2.83% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 5.54% GMC Savana Van 2012 3.4% Buick Rainier SUV 2007 2.03% Chevrolet Express Van 2007 1.6% Dodge Dakota Club Cab 2007 1.5% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Audi V8 Sedan 1994 2.33% BMW M3 Coupe 2012 2.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.13% MINI Cooper Roadster Convertible 2012 2.01% Acura RL Sedan 2012 1.85% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 MINI Cooper Roadster Convertible 2012 3.34% Audi R8 Coupe 2012 3.06% Audi S6 Sedan 2011 2.39% Audi A5 Coupe 2012 2.34% BMW X3 SUV 2012 2.32% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Mercedes-Benz Sprinter Van 2012 3.42% BMW X3 SUV 2012 2.7% Audi TT Hatchback 2011 2.42% Audi A5 Coupe 2012 2.17% Honda Odyssey Minivan 2007 1.84% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Nissan Leaf Hatchback 2012 6.71% Geo Metro Convertible 1993 5.49% Plymouth Neon Coupe 1999 5.31% Dodge Caravan Minivan 1997 3.57% Daewoo Nubira Wagon 2002 3.08% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Geo Metro Convertible 1993 13.27% Chevrolet Corvette ZR1 2012 6.59% Plymouth Neon Coupe 1999 3.69% Nissan Leaf Hatchback 2012 3.62% Eagle Talon Hatchback 1998 2.67% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Mercedes-Benz C-Class Sedan 2012 1.92% Audi R8 Coupe 2012 1.82% Ford F-450 Super Duty Crew Cab 2012 1.79% Dodge Ram Pickup 3500 Crew Cab 2010 1.69% Audi S6 Sedan 2011 1.66% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Lamborghini Aventador Coupe 2012 5.87% Aston Martin Virage Coupe 2012 4.92% Ferrari 458 Italia Convertible 2012 4.55% Chevrolet Corvette Convertible 2012 4.34% Chevrolet Cobalt SS 2010 4.17% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Patriot SUV 2012 3.14% Bentley Arnage Sedan 2009 2.43% Ford E-Series Wagon Van 2012 2.35% Dodge Challenger SRT8 2011 2.24% Land Rover Range Rover SUV 2012 2.04% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Chevrolet Silverado 1500 Extended Cab 2012 2.02% GMC Savana Van 2012 1.41% Chrysler Sebring Convertible 2010 1.4% Dodge Dakota Club Cab 2007 1.38% Chevrolet Malibu Sedan 2007 1.37% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 6.32% Geo Metro Convertible 1993 5.32% Daewoo Nubira Wagon 2002 5.02% FIAT 500 Convertible 2012 3.96% Plymouth Neon Coupe 1999 3.16% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 BMW X6 SUV 2012 4.26% Jeep Compass SUV 2012 3.03% Dodge Caliber Wagon 2007 2.76% Dodge Ram Pickup 3500 Quad Cab 2009 2.61% GMC Canyon Extended Cab 2012 2.59% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 BMW X3 SUV 2012 4.94% Ford E-Series Wagon Van 2012 4.33% Hyundai Azera Sedan 2012 3.71% Land Rover LR2 SUV 2012 3.27% MINI Cooper Roadster Convertible 2012 3.25% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 9.4% HUMMER H2 SUT Crew Cab 2009 8.68% Cadillac Escalade EXT Crew Cab 2007 7.37% AM General Hummer SUV 2000 6.55% Ford F-450 Super Duty Crew Cab 2012 5.13% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Rolls-Royce Phantom Sedan 2012 1.71% Cadillac Escalade EXT Crew Cab 2007 1.56% Dodge Journey SUV 2012 1.44% Chrysler Aspen SUV 2009 1.39% Hyundai Genesis Sedan 2012 1.36% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Bugatti Veyron 16.4 Convertible 2009 2.29% Mercedes-Benz S-Class Sedan 2012 1.93% Mercedes-Benz Sprinter Van 2012 1.66% FIAT 500 Convertible 2012 1.53% MINI Cooper Roadster Convertible 2012 1.45% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 2.55% Bentley Continental GT Coupe 2012 2.46% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.22% BMW Z4 Convertible 2012 2.13% Mercedes-Benz 300-Class Convertible 1993 2.04% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Regular Cab 2012 4.22% Ford Ranger SuperCab 2011 4.15% GMC Terrain SUV 2012 3.04% Chevrolet Traverse SUV 2012 2.8% Dodge Caliber Wagon 2007 2.58% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 3.98% GMC Savana Van 2012 3.83% Chevrolet Avalanche Crew Cab 2012 3.69% Ford Freestar Minivan 2007 3.37% GMC Terrain SUV 2012 3.29% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 8.97% Ferrari California Convertible 2012 8.04% Chevrolet Cobalt SS 2010 6.68% Ferrari 458 Italia Coupe 2012 6.32% Dodge Magnum Wagon 2008 4.44% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 3.43% Ford E-Series Wagon Van 2012 2.99% Chrysler Aspen SUV 2009 2.88% Isuzu Ascender SUV 2008 2.41% Ford F-450 Super Duty Crew Cab 2012 2.19% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Rolls-Royce Phantom Sedan 2012 7.5% Spyker C8 Convertible 2009 6.96% FIAT 500 Abarth 2012 5.17% Bentley Continental Supersports Conv. Convertible 2012 4.4% smart fortwo Convertible 2012 4.33% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Chevrolet Express Cargo Van 2007 3.06% Eagle Talon Hatchback 1998 2.78% GMC Savana Van 2012 2.35% Chevrolet Corvette ZR1 2012 2.29% Volkswagen Golf Hatchback 1991 2.27% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Chevrolet TrailBlazer SS 2009 2.78% Hyundai Veracruz SUV 2012 2.14% Chevrolet Silverado 1500 Regular Cab 2012 1.92% Dodge Durango SUV 2012 1.83% Ford Expedition EL SUV 2009 1.62% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Infiniti G Coupe IPL 2012 2.54% Chevrolet Silverado 2500HD Regular Cab 2012 2.05% Aston Martin V8 Vantage Coupe 2012 1.86% Porsche Panamera Sedan 2012 1.75% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.69% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 Rolls-Royce Phantom Sedan 2012 5.06% MINI Cooper Roadster Convertible 2012 4.18% Audi R8 Coupe 2012 2.77% Audi S6 Sedan 2011 2.75% Mercedes-Benz C-Class Sedan 2012 2.7% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 BMW X3 SUV 2012 4.3% Audi A5 Coupe 2012 3.29% Audi S5 Coupe 2012 2.49% Audi S6 Sedan 2011 2.39% Audi TT Hatchback 2011 2.32% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 MINI Cooper Roadster Convertible 2012 5.76% Mercedes-Benz E-Class Sedan 2012 4.35% Audi S5 Convertible 2012 2.66% BMW ActiveHybrid 5 Sedan 2012 2.59% Mercedes-Benz SL-Class Coupe 2009 2.47% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.12% Ford F-450 Super Duty Crew Cab 2012 4.11% Mercedes-Benz C-Class Sedan 2012 4.03% Ford Expedition EL SUV 2009 3.18% Toyota 4Runner SUV 2012 2.87% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Dodge Caravan Minivan 1997 5.62% Lamborghini Reventon Coupe 2008 4.07% Plymouth Neon Coupe 1999 3.78% Mercedes-Benz 300-Class Convertible 1993 3.21% Chevrolet Corvette ZR1 2012 2.34% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Chevrolet Express Cargo Van 2007 2.9% Audi V8 Sedan 1994 2.32% Audi 100 Wagon 1994 1.89% GMC Savana Van 2012 1.84% Chevrolet Silverado 2500HD Regular Cab 2012 1.48% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Maybach Landaulet Convertible 2012 3.93% Spyker C8 Convertible 2009 2.75% Lamborghini Reventon Coupe 2008 2.53% Ford GT Coupe 2006 2.52% Bugatti Veyron 16.4 Coupe 2009 2.32% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Dodge Ram Pickup 3500 Crew Cab 2010 4.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.2% Isuzu Ascender SUV 2008 3.6% Chevrolet Silverado 1500 Extended Cab 2012 3.54% Dodge Ram Pickup 3500 Quad Cab 2009 3.29% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 7.82% Dodge Caliber Wagon 2007 4.57% BMW 3 Series Sedan 2012 3.44% Volvo C30 Hatchback 2012 2.82% Suzuki SX4 Hatchback 2012 2.61% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 5.8% smart fortwo Convertible 2012 4.64% Bentley Mulsanne Sedan 2011 2.62% Spyker C8 Coupe 2009 2.28% Mercedes-Benz E-Class Sedan 2012 2.13% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Audi R8 Coupe 2012 2.3% Bentley Mulsanne Sedan 2011 2.15% Mercedes-Benz C-Class Sedan 2012 2.14% Audi S6 Sedan 2011 1.95% Chrysler Aspen SUV 2009 1.83% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Acura TL Sedan 2012 2.88% BMW ActiveHybrid 5 Sedan 2012 2.15% BMW M5 Sedan 2010 1.97% Jaguar XK XKR 2012 1.8% Acura ZDX Hatchback 2012 1.74% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.44% Land Rover Range Rover SUV 2012 1.82% Hyundai Tucson SUV 2012 1.72% GMC Yukon Hybrid SUV 2012 1.71% Cadillac SRX SUV 2012 1.69% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Spyker C8 Convertible 2009 2.43% Spyker C8 Coupe 2009 2.37% smart fortwo Convertible 2012 1.9% Bentley Continental Supersports Conv. Convertible 2012 1.71% Ford GT Coupe 2006 1.63% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Acura TL Sedan 2012 3.58% Dodge Caravan Minivan 1997 2.64% Chevrolet Express Cargo Van 2007 1.99% Lincoln Town Car Sedan 2011 1.86% Acura TSX Sedan 2012 1.81% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Volvo 240 Sedan 1993 3.63% Bugatti Veyron 16.4 Convertible 2009 2.94% smart fortwo Convertible 2012 2.13% Mazda Tribute SUV 2011 2.1% Fisker Karma Sedan 2012 1.62% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 GMC Savana Van 2012 8.22% Chevrolet Express Van 2007 5.07% Daewoo Nubira Wagon 2002 4.76% Mercedes-Benz Sprinter Van 2012 4.56% Ford Focus Sedan 2007 3.74% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 3.06% Chrysler Aspen SUV 2009 2.17% Jeep Patriot SUV 2012 1.92% Dodge Challenger SRT8 2011 1.91% Isuzu Ascender SUV 2008 1.86% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Audi V8 Sedan 1994 1.84% Chevrolet Silverado 2500HD Regular Cab 2012 1.73% Chrysler 300 SRT-8 2010 1.64% Rolls-Royce Ghost Sedan 2012 1.42% Audi S6 Sedan 2011 1.42% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TT Hatchback 2011 2.4% Audi R8 Coupe 2012 2.37% BMW ActiveHybrid 5 Sedan 2012 2.25% MINI Cooper Roadster Convertible 2012 2.0% Mercedes-Benz SL-Class Coupe 2009 1.66% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Jeep Grand Cherokee SUV 2012 1.69% Cadillac Escalade EXT Crew Cab 2007 1.52% Dodge Durango SUV 2007 1.33% Chrysler 300 SRT-8 2010 1.17% Isuzu Ascender SUV 2008 1.17% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 4.66% Hyundai Elantra Sedan 2007 4.04% Honda Accord Coupe 2012 2.56% BMW 1 Series Coupe 2012 2.53% Suzuki SX4 Hatchback 2012 2.46% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Chevrolet Cobalt SS 2010 3.1% BMW 1 Series Coupe 2012 2.98% Geo Metro Convertible 1993 2.95% Ferrari California Convertible 2012 2.51% Ferrari FF Coupe 2012 2.42% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 5.08% Mercedes-Benz E-Class Sedan 2012 4.82% BMW ActiveHybrid 5 Sedan 2012 3.06% Porsche Panamera Sedan 2012 2.58% Audi S5 Convertible 2012 2.3% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.7% MINI Cooper Roadster Convertible 2012 3.72% Mercedes-Benz S-Class Sedan 2012 2.44% Mercedes-Benz E-Class Sedan 2012 2.14% Maybach Landaulet Convertible 2012 2.0% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 FIAT 500 Convertible 2012 3.62% Maybach Landaulet Convertible 2012 2.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.47% Nissan Leaf Hatchback 2012 1.82% Jaguar XK XKR 2012 1.71% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 2.71% Bentley Mulsanne Sedan 2011 2.26% Bentley Arnage Sedan 2009 1.73% FIAT 500 Abarth 2012 1.71% Spyker C8 Convertible 2009 1.64% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Audi V8 Sedan 1994 2.7% Audi 100 Wagon 1994 2.38% Infiniti G Coupe IPL 2012 2.23% Chevrolet Silverado 2500HD Regular Cab 2012 2.1% Acura TL Sedan 2012 1.99% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 29.93% McLaren MP4-12C Coupe 2012 28.22% Chevrolet Corvette Convertible 2012 15.4% Lamborghini Diablo Coupe 2001 4.18% Lamborghini Aventador Coupe 2012 3.93% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.51% Isuzu Ascender SUV 2008 2.19% Honda Odyssey Minivan 2007 1.87% Ford E-Series Wagon Van 2012 1.87% Dodge Dakota Club Cab 2007 1.82% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Nissan 240SX Coupe 1998 4.04% BMW 3 Series Sedan 2012 3.94% Geo Metro Convertible 1993 3.93% Toyota Corolla Sedan 2012 3.86% Audi TT RS Coupe 2012 3.39% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Ford E-Series Wagon Van 2012 5.16% Isuzu Ascender SUV 2008 3.27% Mercedes-Benz Sprinter Van 2012 3.1% Chevrolet Avalanche Crew Cab 2012 2.75% Chevrolet Silverado 1500 Extended Cab 2012 2.58% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Chevrolet Monte Carlo Coupe 2007 2.46% Cadillac CTS-V Sedan 2012 2.38% Plymouth Neon Coupe 1999 2.33% Lamborghini Reventon Coupe 2008 2.27% Chrysler 300 SRT-8 2010 2.05% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Daewoo Nubira Wagon 2002 3.99% Dodge Caravan Minivan 1997 2.99% Lincoln Town Car Sedan 2011 2.6% Nissan Leaf Hatchback 2012 2.48% Geo Metro Convertible 1993 2.41% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Rolls-Royce Phantom Sedan 2012 21.93% smart fortwo Convertible 2012 15.95% Hyundai Azera Sedan 2012 5.01% Chevrolet Sonic Sedan 2012 4.13% Mercedes-Benz E-Class Sedan 2012 3.64% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Jeep Liberty SUV 2012 3.39% Jeep Patriot SUV 2012 2.21% AM General Hummer SUV 2000 2.14% Cadillac Escalade EXT Crew Cab 2007 1.89% HUMMER H3T Crew Cab 2010 1.84% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.22% Infiniti G Coupe IPL 2012 2.91% BMW M6 Convertible 2010 2.65% Chrysler 300 SRT-8 2010 1.81% Audi S6 Sedan 2011 1.77% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Ram C/V Cargo Van Minivan 2012 4.86% Mercedes-Benz S-Class Sedan 2012 2.8% Bugatti Veyron 16.4 Convertible 2009 2.34% Acura TSX Sedan 2012 2.08% Suzuki SX4 Sedan 2012 2.02% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Jeep Compass SUV 2012 2.67% Chrysler Aspen SUV 2009 2.52% BMW X5 SUV 2007 2.48% Toyota 4Runner SUV 2012 1.97% Bentley Arnage Sedan 2009 1.88% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 6.24% HUMMER H2 SUT Crew Cab 2009 3.11% Jeep Wrangler SUV 2012 2.25% Jeep Patriot SUV 2012 1.83% Spyker C8 Convertible 2009 1.47% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Dodge Durango SUV 2012 1.37% Chrysler 300 SRT-8 2010 1.36% Ford Freestar Minivan 2007 1.24% Hyundai Tucson SUV 2012 1.24% Ford F-150 Regular Cab 2007 1.17% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 2.43% GMC Savana Van 2012 1.96% Dodge Caravan Minivan 1997 1.86% Chevrolet Corvette ZR1 2012 1.79% Audi 100 Wagon 1994 1.68% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Lincoln Town Car Sedan 2011 1.6% Chevrolet Malibu Sedan 2007 1.26% Eagle Talon Hatchback 1998 1.21% Chevrolet Monte Carlo Coupe 2007 1.18% Honda Odyssey Minivan 2007 1.12% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 1.16% Porsche Panamera Sedan 2012 1.15% Mercedes-Benz SL-Class Coupe 2009 1.12% Ram C/V Cargo Van Minivan 2012 1.1% Acura TL Sedan 2012 1.03% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Dodge Sprinter Cargo Van 2009 14.43% GMC Savana Van 2012 8.92% Chevrolet Express Van 2007 8.79% Chevrolet Express Cargo Van 2007 5.89% Dodge Caravan Minivan 1997 5.34% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Geo Metro Convertible 1993 3.22% Daewoo Nubira Wagon 2002 2.38% Plymouth Neon Coupe 1999 2.34% Mercedes-Benz 300-Class Convertible 1993 2.32% Nissan Leaf Hatchback 2012 1.97% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Chevrolet Express Cargo Van 2007 2.16% Mercedes-Benz 300-Class Convertible 1993 1.9% Bugatti Veyron 16.4 Convertible 2009 1.72% Volkswagen Golf Hatchback 1991 1.64% Audi 100 Wagon 1994 1.6% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 5.22% Chevrolet Silverado 1500 Extended Cab 2012 4.72% Chevrolet Silverado 1500 Regular Cab 2012 4.5% Chevrolet Silverado 2500HD Regular Cab 2012 4.11% Chevrolet Avalanche Crew Cab 2012 3.85% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 BMW 1 Series Coupe 2012 6.76% Ferrari FF Coupe 2012 3.18% Dodge Caliber Wagon 2007 2.97% BMW M3 Coupe 2012 1.95% Honda Accord Coupe 2012 1.9% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Dodge Caravan Minivan 1997 8.12% Daewoo Nubira Wagon 2002 4.12% GMC Savana Van 2012 3.57% Chevrolet Express Cargo Van 2007 3.47% Hyundai Tucson SUV 2012 3.1% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 MINI Cooper Roadster Convertible 2012 2.62% Mercedes-Benz Sprinter Van 2012 2.45% BMW ActiveHybrid 5 Sedan 2012 2.41% Ram C/V Cargo Van Minivan 2012 2.17% BMW 1 Series Convertible 2012 2.07% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 3.72% Buick Enclave SUV 2012 1.96% Chevrolet Malibu Sedan 2007 1.88% Jeep Liberty SUV 2012 1.76% Daewoo Nubira Wagon 2002 1.76% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Mercedes-Benz SL-Class Coupe 2009 3.41% Lamborghini Reventon Coupe 2008 3.07% Mercedes-Benz 300-Class Convertible 1993 2.89% Spyker C8 Convertible 2009 2.88% Bentley Continental Supersports Conv. Convertible 2012 2.86% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Geo Metro Convertible 1993 13.88% Mercedes-Benz 300-Class Convertible 1993 4.82% Dodge Caravan Minivan 1997 4.38% Chevrolet Corvette ZR1 2012 3.69% Plymouth Neon Coupe 1999 3.31% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Rolls-Royce Ghost Sedan 2012 2.98% Bentley Mulsanne Sedan 2011 2.65% BMW M6 Convertible 2010 2.48% Hyundai Genesis Sedan 2012 2.39% Chrysler 300 SRT-8 2010 2.29% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.07% Audi 100 Sedan 1994 2.23% Audi V8 Sedan 1994 2.18% Bugatti Veyron 16.4 Coupe 2009 2.12% Bugatti Veyron 16.4 Convertible 2009 2.0% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Dodge Caravan Minivan 1997 3.17% GMC Savana Van 2012 2.84% Chevrolet Express Van 2007 2.79% Lincoln Town Car Sedan 2011 2.28% Daewoo Nubira Wagon 2002 2.01% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.59% Chevrolet Corvette ZR1 2012 1.54% Porsche Panamera Sedan 2012 1.27% BMW 6 Series Convertible 2007 1.15% Dodge Ram Pickup 3500 Quad Cab 2009 1.12% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Express Cargo Van 2007 4.78% Chevrolet Silverado 2500HD Regular Cab 2012 3.04% Dodge Sprinter Cargo Van 2009 2.56% GMC Savana Van 2012 2.34% Acura TL Sedan 2012 2.12% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Plymouth Neon Coupe 1999 1.65% Chevrolet Monte Carlo Coupe 2007 1.55% Lamborghini Reventon Coupe 2008 1.5% Eagle Talon Hatchback 1998 1.47% Bugatti Veyron 16.4 Coupe 2009 1.45% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Lamborghini Aventador Coupe 2012 16.39% Ferrari 458 Italia Coupe 2012 8.09% Ferrari 458 Italia Convertible 2012 6.65% McLaren MP4-12C Coupe 2012 6.22% Aston Martin Virage Coupe 2012 4.68% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 5.06% Ford F-450 Super Duty Crew Cab 2012 2.95% Dodge Ram Pickup 3500 Crew Cab 2010 2.58% Chevrolet Silverado 1500 Regular Cab 2012 2.55% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.41% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Lamborghini Reventon Coupe 2008 2.1% Bugatti Veyron 16.4 Coupe 2009 1.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.87% Maybach Landaulet Convertible 2012 1.57% Bentley Continental Flying Spur Sedan 2007 1.42% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 3.47% Hyundai Genesis Sedan 2012 3.21% BMW M6 Convertible 2010 3.03% Rolls-Royce Phantom Sedan 2012 2.38% Cadillac CTS-V Sedan 2012 2.34% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 12.24% Isuzu Ascender SUV 2008 6.85% Hyundai Santa Fe SUV 2012 3.96% Chrysler Aspen SUV 2009 3.83% Dodge Ram Pickup 3500 Crew Cab 2010 3.79% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 BMW 3 Series Sedan 2012 4.6% Ferrari 458 Italia Coupe 2012 4.01% Ford GT Coupe 2006 3.44% Ferrari 458 Italia Convertible 2012 3.44% Volvo C30 Hatchback 2012 3.01% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Bentley Arnage Sedan 2009 10.49% Land Rover Range Rover SUV 2012 4.02% Jeep Compass SUV 2012 3.74% Rolls-Royce Ghost Sedan 2012 3.49% Bentley Mulsanne Sedan 2011 3.13% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Lamborghini Reventon Coupe 2008 4.73% Spyker C8 Convertible 2009 2.69% Hyundai Azera Sedan 2012 2.6% Bentley Continental Flying Spur Sedan 2007 1.98% Bugatti Veyron 16.4 Coupe 2009 1.88% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Daewoo Nubira Wagon 2002 1.83% Volvo 240 Sedan 1993 1.72% Chrysler Sebring Convertible 2010 1.43% Chevrolet Impala Sedan 2007 1.41% Chevrolet Malibu Sedan 2007 1.34% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 MINI Cooper Roadster Convertible 2012 6.0% BMW ActiveHybrid 5 Sedan 2012 3.5% Ram C/V Cargo Van Minivan 2012 3.42% Audi TT Hatchback 2011 3.1% Audi A5 Coupe 2012 2.95% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 8.52% Chevrolet Express Cargo Van 2007 5.16% Chevrolet Express Van 2007 4.13% Buick Rainier SUV 2007 3.39% Chevrolet Silverado 1500 Extended Cab 2012 2.32% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Ram C/V Cargo Van Minivan 2012 3.74% BMW 1 Series Convertible 2012 3.47% BMW ActiveHybrid 5 Sedan 2012 2.26% Audi TT Hatchback 2011 2.08% Acura TSX Sedan 2012 1.95% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 FIAT 500 Abarth 2012 3.34% Chevrolet Corvette ZR1 2012 2.13% Spyker C8 Convertible 2009 2.11% Lamborghini Reventon Coupe 2008 1.96% Bentley Continental Flying Spur Sedan 2007 1.82% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Chrysler 300 SRT-8 2010 5.03% BMW M6 Convertible 2010 4.76% Chevrolet Silverado 2500HD Regular Cab 2012 4.13% Chevrolet TrailBlazer SS 2009 3.18% Infiniti G Coupe IPL 2012 2.42% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 AM General Hummer SUV 2000 3.64% Jeep Wrangler SUV 2012 2.35% Jeep Patriot SUV 2012 2.15% Spyker C8 Convertible 2009 2.08% smart fortwo Convertible 2012 1.82% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 4.67% Chevrolet Silverado 2500HD Regular Cab 2012 4.19% Chevrolet Silverado 1500 Extended Cab 2012 3.39% Chevrolet Avalanche Crew Cab 2012 3.27% GMC Savana Van 2012 2.98% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.52% BMW 1 Series Convertible 2012 3.33% MINI Cooper Roadster Convertible 2012 2.97% BMW ActiveHybrid 5 Sedan 2012 2.49% Audi TT Hatchback 2011 2.05% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Chevrolet TrailBlazer SS 2009 2.74% Bentley Arnage Sedan 2009 2.35% Ford Expedition EL SUV 2009 2.0% Cadillac Escalade EXT Crew Cab 2007 1.81% Ford Edge SUV 2012 1.59% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Ghost Sedan 2012 2.86% Bentley Mulsanne Sedan 2011 2.14% BMW M6 Convertible 2010 1.82% Mercedes-Benz C-Class Sedan 2012 1.58% Audi V8 Sedan 1994 1.47% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 4.17% MINI Cooper Roadster Convertible 2012 3.77% Ram C/V Cargo Van Minivan 2012 2.37% Dodge Sprinter Cargo Van 2009 2.11% Audi S5 Convertible 2012 1.83% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Aston Martin Virage Coupe 2012 10.47% McLaren MP4-12C Coupe 2012 5.82% Lamborghini Diablo Coupe 2001 5.18% BMW Z4 Convertible 2012 3.77% Lamborghini Aventador Coupe 2012 3.2% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Audi V8 Sedan 1994 1.93% Acura TL Sedan 2012 1.6% Acura TL Type-S 2008 1.57% Audi 100 Wagon 1994 1.42% Audi 100 Sedan 1994 1.41% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Hyundai Elantra Sedan 2007 4.18% Daewoo Nubira Wagon 2002 3.81% Chrysler Sebring Convertible 2010 3.8% Ford Focus Sedan 2007 3.36% Lincoln Town Car Sedan 2011 3.31% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Maybach Landaulet Convertible 2012 3.12% FIAT 500 Convertible 2012 2.23% Spyker C8 Coupe 2009 1.95% Ford GT Coupe 2006 1.83% Spyker C8 Convertible 2009 1.79% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 4.5% Cadillac Escalade EXT Crew Cab 2007 3.4% HUMMER H2 SUT Crew Cab 2009 3.06% Chevrolet TrailBlazer SS 2009 3.06% Chrysler 300 SRT-8 2010 2.94% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 1.98% Chevrolet Silverado 2500HD Regular Cab 2012 1.88% Chevrolet Malibu Sedan 2007 1.63% Ford F-150 Regular Cab 2012 1.62% GMC Savana Van 2012 1.52% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.63% Chevrolet TrailBlazer SS 2009 3.22% Chrysler 300 SRT-8 2010 3.01% GMC Terrain SUV 2012 2.52% Chevrolet Silverado 1500 Regular Cab 2012 2.39% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 BMW X3 SUV 2012 2.84% Toyota Sequoia SUV 2012 2.39% Mercedes-Benz C-Class Sedan 2012 2.24% Mazda Tribute SUV 2011 2.07% Acura ZDX Hatchback 2012 2.06% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Mercedes-Benz S-Class Sedan 2012 2.88% Bugatti Veyron 16.4 Convertible 2009 2.73% FIAT 500 Convertible 2012 1.64% BMW M3 Coupe 2012 1.64% Audi 100 Sedan 1994 1.64% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Dodge Caliber Wagon 2007 3.84% GMC Savana Van 2012 2.12% Jeep Wrangler SUV 2012 1.97% Suzuki SX4 Hatchback 2012 1.97% Dodge Caliber Wagon 2012 1.93% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.55% Aston Martin V8 Vantage Coupe 2012 2.19% Acura TL Sedan 2012 1.68% BMW M3 Coupe 2012 1.66% Aston Martin V8 Vantage Convertible 2012 1.65% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Elantra Sedan 2007 6.11% Ford Freestar Minivan 2007 4.5% Dodge Caliber Wagon 2007 3.57% Chevrolet Traverse SUV 2012 2.0% Dodge Journey SUV 2012 1.94% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Chevrolet Silverado 1500 Extended Cab 2012 2.56% Chevrolet Tahoe Hybrid SUV 2012 2.0% Dodge Ram Pickup 3500 Quad Cab 2009 1.8% Audi A5 Coupe 2012 1.8% GMC Acadia SUV 2012 1.7% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Express Cargo Van 2007 5.13% GMC Savana Van 2012 4.96% Chevrolet Express Van 2007 3.0% Dodge Dakota Club Cab 2007 2.13% Ford F-150 Regular Cab 2012 1.98% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.14% BMW 1 Series Convertible 2012 1.88% BMW ActiveHybrid 5 Sedan 2012 1.63% GMC Savana Van 2012 1.45% Chrysler Town and Country Minivan 2012 1.4% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ferrari California Convertible 2012 8.64% Aston Martin Virage Coupe 2012 6.94% Ferrari 458 Italia Convertible 2012 6.04% McLaren MP4-12C Coupe 2012 5.42% Lamborghini Aventador Coupe 2012 5.07% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.49% Maybach Landaulet Convertible 2012 2.33% FIAT 500 Convertible 2012 2.28% Fisker Karma Sedan 2012 2.15% Mercedes-Benz SL-Class Coupe 2009 1.86% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 4.47% Chevrolet Express Van 2007 4.16% Lincoln Town Car Sedan 2011 3.71% Ford Focus Sedan 2007 3.29% Hyundai Elantra Sedan 2007 2.92% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Arnage Sedan 2009 4.89% AM General Hummer SUV 2000 4.78% FIAT 500 Abarth 2012 4.23% Cadillac Escalade EXT Crew Cab 2007 4.1% Cadillac CTS-V Sedan 2012 2.92% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Dodge Caliber Wagon 2007 2.3% Volvo C30 Hatchback 2012 2.06% Audi TT RS Coupe 2012 1.85% BMW 3 Series Sedan 2012 1.58% Mitsubishi Lancer Sedan 2012 1.57% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Chevrolet Cobalt SS 2010 8.84% Hyundai Elantra Sedan 2007 4.63% Honda Accord Coupe 2012 4.29% Ferrari FF Coupe 2012 3.36% Hyundai Sonata Hybrid Sedan 2012 2.68% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 3.72% Chevrolet Cobalt SS 2010 2.96% Volkswagen Golf Hatchback 1991 2.79% Honda Accord Coupe 2012 2.55% Hyundai Sonata Hybrid Sedan 2012 2.44% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Mercedes-Benz S-Class Sedan 2012 2.75% MINI Cooper Roadster Convertible 2012 2.17% Mercedes-Benz SL-Class Coupe 2009 2.04% Bugatti Veyron 16.4 Convertible 2009 1.97% Fisker Karma Sedan 2012 1.87% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Mulsanne Sedan 2011 5.12% Volvo 240 Sedan 1993 2.63% Jeep Patriot SUV 2012 2.61% Bugatti Veyron 16.4 Coupe 2009 2.41% Audi V8 Sedan 1994 2.35% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 5.87% BMW X5 SUV 2007 5.15% Jeep Grand Cherokee SUV 2012 3.56% Ford E-Series Wagon Van 2012 3.26% Isuzu Ascender SUV 2008 3.15% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 HUMMER H3T Crew Cab 2010 9.37% HUMMER H2 SUT Crew Cab 2009 8.46% Jeep Wrangler SUV 2012 6.05% Dodge Charger Sedan 2012 4.97% Dodge Caliber Wagon 2007 3.18% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Ford Freestar Minivan 2007 2.1% Rolls-Royce Phantom Sedan 2012 1.79% Hyundai Tucson SUV 2012 1.59% Ford E-Series Wagon Van 2012 1.42% Honda Odyssey Minivan 2007 1.36% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Aston Martin V8 Vantage Coupe 2012 3.36% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.38% Infiniti G Coupe IPL 2012 2.38% Jaguar XK XKR 2012 2.11% Porsche Panamera Sedan 2012 2.11% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Porsche Panamera Sedan 2012 4.44% Acura TL Sedan 2012 2.79% Nissan Leaf Hatchback 2012 2.78% Toyota Camry Sedan 2012 2.71% Jaguar XK XKR 2012 2.52% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 12.26% Dodge Sprinter Cargo Van 2009 9.3% Chevrolet Express Cargo Van 2007 8.48% GMC Savana Van 2012 4.56% Dodge Caravan Minivan 1997 3.24% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 6.77% BMW M6 Convertible 2010 2.82% Chevrolet TrailBlazer SS 2009 2.65% Eagle Talon Hatchback 1998 2.41% Chevrolet Silverado 2500HD Regular Cab 2012 2.25% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 4.75% Dodge Sprinter Cargo Van 2009 3.38% Toyota Camry Sedan 2012 3.2% Plymouth Neon Coupe 1999 3.1% Hyundai Elantra Sedan 2007 2.82% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 12.11% Rolls-Royce Phantom Sedan 2012 3.69% Rolls-Royce Ghost Sedan 2012 2.79% Jeep Patriot SUV 2012 2.57% Jeep Compass SUV 2012 2.51% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 MINI Cooper Roadster Convertible 2012 4.57% Audi S5 Convertible 2012 4.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.61% BMW M3 Coupe 2012 3.25% Mercedes-Benz S-Class Sedan 2012 3.1% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 8.97% Aston Martin Virage Coupe 2012 8.96% Audi RS 4 Convertible 2008 7.79% Hyundai Veloster Hatchback 2012 5.58% BMW 1 Series Coupe 2012 3.37% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Jaguar XK XKR 2012 2.95% Ferrari FF Coupe 2012 2.34% Toyota Camry Sedan 2012 2.2% BMW 1 Series Convertible 2012 2.04% Porsche Panamera Sedan 2012 2.0% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Lincoln Town Car Sedan 2011 1.56% Dodge Caravan Minivan 1997 1.49% Audi 100 Sedan 1994 1.39% Audi V8 Sedan 1994 1.37% Chevrolet Express Cargo Van 2007 1.36% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Audi S6 Sedan 2011 1.86% Mercedes-Benz C-Class Sedan 2012 1.77% Audi R8 Coupe 2012 1.64% Bentley Mulsanne Sedan 2011 1.26% Rolls-Royce Phantom Sedan 2012 1.26% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet TrailBlazer SS 2009 5.25% Chrysler 300 SRT-8 2010 4.07% Chevrolet Silverado 1500 Regular Cab 2012 3.03% Chevrolet Silverado 2500HD Regular Cab 2012 2.6% Ford Expedition EL SUV 2009 2.58% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Acura TL Sedan 2012 2.15% Dodge Caravan Minivan 1997 2.14% Dodge Sprinter Cargo Van 2009 1.46% Lincoln Town Car Sedan 2011 1.42% Chevrolet Express Cargo Van 2007 1.41% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 8.85% Chevrolet Express Cargo Van 2007 5.2% Chevrolet Express Van 2007 4.26% Mercedes-Benz Sprinter Van 2012 3.1% Dodge Sprinter Cargo Van 2009 2.87% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Maybach Landaulet Convertible 2012 4.6% Mercedes-Benz 300-Class Convertible 1993 3.71% Bugatti Veyron 16.4 Coupe 2009 3.04% Ford GT Coupe 2006 2.49% Aston Martin V8 Vantage Coupe 2012 2.34% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.19% Bugatti Veyron 16.4 Coupe 2009 1.53% MINI Cooper Roadster Convertible 2012 1.4% Audi S5 Convertible 2012 1.39% Mercedes-Benz SL-Class Coupe 2009 1.26% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Lamborghini Reventon Coupe 2008 2.09% Cadillac Escalade EXT Crew Cab 2007 1.72% Plymouth Neon Coupe 1999 1.69% Cadillac CTS-V Sedan 2012 1.43% Daewoo Nubira Wagon 2002 1.4% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 MINI Cooper Roadster Convertible 2012 10.42% Hyundai Azera Sedan 2012 3.14% BMW X3 SUV 2012 2.97% Dodge Challenger SRT8 2011 2.74% Mercedes-Benz S-Class Sedan 2012 2.69% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 HUMMER H2 SUT Crew Cab 2009 37.94% AM General Hummer SUV 2000 19.04% Jeep Wrangler SUV 2012 16.57% HUMMER H3T Crew Cab 2010 13.69% Chevrolet Corvette Convertible 2012 0.9% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Chrysler 300 SRT-8 2010 2.41% Chevrolet Silverado 2500HD Regular Cab 2012 2.04% Chevrolet Silverado 1500 Regular Cab 2012 1.94% Ford F-150 Regular Cab 2007 1.92% Chevrolet Malibu Sedan 2007 1.67% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Spyker C8 Convertible 2009 5.14% Lamborghini Reventon Coupe 2008 3.47% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.77% Maybach Landaulet Convertible 2012 2.72% Bentley Continental Supersports Conv. Convertible 2012 2.29% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 AM General Hummer SUV 2000 41.13% HUMMER H2 SUT Crew Cab 2009 17.43% Jeep Patriot SUV 2012 5.05% Jeep Wrangler SUV 2012 4.21% Jeep Liberty SUV 2012 2.72% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Dodge Durango SUV 2012 1.67% Hyundai Genesis Sedan 2012 1.5% Mercedes-Benz C-Class Sedan 2012 1.47% Cadillac SRX SUV 2012 1.27% Chrysler Aspen SUV 2009 1.26% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 6.84% Chevrolet Express Cargo Van 2007 5.39% Mercedes-Benz Sprinter Van 2012 4.41% Dodge Sprinter Cargo Van 2009 2.67% Chevrolet Express Van 2007 2.13% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 44.4% McLaren MP4-12C Coupe 2012 14.31% Acura Integra Type R 2001 9.23% Audi RS 4 Convertible 2008 9.13% Aston Martin Virage Coupe 2012 3.76% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Dodge Caliber Wagon 2007 9.36% Suzuki SX4 Hatchback 2012 4.31% BMW X6 SUV 2012 4.17% Volkswagen Golf Hatchback 1991 3.07% BMW 1 Series Coupe 2012 2.85% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Rolls-Royce Phantom Sedan 2012 4.98% Hyundai Azera Sedan 2012 4.45% MINI Cooper Roadster Convertible 2012 3.79% Mercedes-Benz E-Class Sedan 2012 3.31% Spyker C8 Convertible 2009 2.56% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Jeep Wrangler SUV 2012 7.44% BMW X6 SUV 2012 6.25% Dodge Caliber Wagon 2007 5.13% HUMMER H2 SUT Crew Cab 2009 4.14% HUMMER H3T Crew Cab 2010 4.02% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 FIAT 500 Convertible 2012 4.21% Mercedes-Benz E-Class Sedan 2012 2.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.14% Audi S5 Convertible 2012 1.69% Maybach Landaulet Convertible 2012 1.54% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 6.7% GMC Canyon Extended Cab 2012 3.94% Dodge Caliber Wagon 2012 2.93% Chevrolet Silverado 1500 Regular Cab 2012 2.93% Dodge Dakota Crew Cab 2010 2.35% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Audi V8 Sedan 1994 1.85% Bentley Continental GT Coupe 2007 1.55% Rolls-Royce Ghost Sedan 2012 1.48% BMW M6 Convertible 2010 1.42% Chrysler 300 SRT-8 2010 1.37% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 5.93% Ferrari 458 Italia Coupe 2012 5.81% Dodge Charger SRT-8 2009 4.33% BMW M3 Coupe 2012 4.22% Ferrari 458 Italia Convertible 2012 3.48% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 3.61% Chevrolet Express Cargo Van 2007 3.48% Dodge Sprinter Cargo Van 2009 3.24% Ram C/V Cargo Van Minivan 2012 3.14% Mercedes-Benz Sprinter Van 2012 2.9% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 22.89% Aston Martin Virage Coupe 2012 11.98% Acura Integra Type R 2001 11.96% Geo Metro Convertible 1993 9.72% McLaren MP4-12C Coupe 2012 6.67% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 FIAT 500 Convertible 2012 9.62% Maybach Landaulet Convertible 2012 5.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.76% Bugatti Veyron 16.4 Convertible 2009 3.47% Nissan Leaf Hatchback 2012 3.04% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 31.88% Chevrolet Express Van 2007 7.12% Chevrolet Express Cargo Van 2007 6.61% Chevrolet Silverado 1500 Extended Cab 2012 2.89% Buick Rainier SUV 2007 2.76% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Dodge Caliber Wagon 2007 3.79% Chevrolet Silverado 1500 Regular Cab 2012 2.8% Dodge Ram Pickup 3500 Quad Cab 2009 2.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Ford Ranger SuperCab 2011 1.8% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Infiniti G Coupe IPL 2012 3.02% Eagle Talon Hatchback 1998 2.89% Chrysler 300 SRT-8 2010 2.85% BMW M6 Convertible 2010 2.75% Chevrolet Corvette ZR1 2012 2.68% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 MINI Cooper Roadster Convertible 2012 2.32% Mercedes-Benz S-Class Sedan 2012 2.2% Bentley Continental Supersports Conv. Convertible 2012 2.08% BMW M3 Coupe 2012 1.91% Rolls-Royce Phantom Sedan 2012 1.75% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 16.15% Acura Integra Type R 2001 12.79% AM General Hummer SUV 2000 7.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.74% Geo Metro Convertible 1993 5.24% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette Convertible 2012 20.99% Geo Metro Convertible 1993 14.23% Acura Integra Type R 2001 11.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.2% Lamborghini Diablo Coupe 2001 9.71% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 4.77% MINI Cooper Roadster Convertible 2012 2.91% Hyundai Genesis Sedan 2012 2.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.17% Bentley Continental Supersports Conv. Convertible 2012 1.87% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi TT RS Coupe 2012 8.52% Toyota Corolla Sedan 2012 4.56% Nissan 240SX Coupe 1998 4.2% Dodge Magnum Wagon 2008 4.04% Chevrolet HHR SS 2010 3.34% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 23.56% Acura Integra Type R 2001 12.22% Geo Metro Convertible 1993 6.75% Ferrari 458 Italia Convertible 2012 5.76% McLaren MP4-12C Coupe 2012 4.74% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Spyker C8 Convertible 2009 5.01% Lamborghini Reventon Coupe 2008 3.29% Hyundai Azera Sedan 2012 3.13% Bentley Continental Supersports Conv. Convertible 2012 2.77% Rolls-Royce Phantom Sedan 2012 2.74% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 3.34% Chevrolet Silverado 1500 Extended Cab 2012 1.88% Chevrolet Avalanche Crew Cab 2012 1.78% Chevrolet Express Van 2007 1.73% Buick Rainier SUV 2007 1.47% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Ferrari 458 Italia Convertible 2012 12.14% Ferrari 458 Italia Coupe 2012 9.76% Ferrari California Convertible 2012 7.03% BMW M3 Coupe 2012 5.92% Lamborghini Aventador Coupe 2012 5.37% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Jeep Patriot SUV 2012 2.82% Land Rover Range Rover SUV 2012 2.49% GMC Savana Van 2012 2.23% Volvo 240 Sedan 1993 2.08% Volkswagen Golf Hatchback 1991 1.84% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 4.11% Chevrolet Silverado 1500 Extended Cab 2012 3.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.74% Dodge Ram Pickup 3500 Quad Cab 2009 2.48% Chevrolet Tahoe Hybrid SUV 2012 2.12% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 HUMMER H2 SUT Crew Cab 2009 18.16% Jeep Wrangler SUV 2012 8.84% HUMMER H3T Crew Cab 2010 8.43% AM General Hummer SUV 2000 3.85% Dodge Charger Sedan 2012 2.99% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Spyker C8 Convertible 2009 5.3% FIAT 500 Abarth 2012 3.96% Lamborghini Reventon Coupe 2008 3.51% Bugatti Veyron 16.4 Coupe 2009 2.9% Jeep Patriot SUV 2012 2.6% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Porsche Panamera Sedan 2012 3.43% Acura TL Sedan 2012 2.99% BMW 1 Series Convertible 2012 2.9% Toyota Camry Sedan 2012 2.58% Acura ZDX Hatchback 2012 2.38% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Rolls-Royce Phantom Sedan 2012 8.74% Bentley Arnage Sedan 2009 3.02% Spyker C8 Convertible 2009 2.6% Bentley Continental GT Coupe 2007 2.2% Hyundai Genesis Sedan 2012 2.04% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 3.73% Porsche Panamera Sedan 2012 2.83% Nissan 240SX Coupe 1998 2.78% Jaguar XK XKR 2012 2.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.69% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Porsche Panamera Sedan 2012 3.98% Chevrolet Corvette ZR1 2012 3.93% Jaguar XK XKR 2012 2.81% Dodge Caravan Minivan 1997 2.64% Nissan Leaf Hatchback 2012 2.37% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 25.97% AM General Hummer SUV 2000 25.03% Jeep Wrangler SUV 2012 11.52% Audi RS 4 Convertible 2008 3.58% Hyundai Veloster Hatchback 2012 2.86% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Ferrari California Convertible 2012 8.49% Dodge Charger SRT-8 2009 6.29% Ferrari 458 Italia Coupe 2012 6.14% Ferrari 458 Italia Convertible 2012 5.94% Lamborghini Aventador Coupe 2012 5.35% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 6.36% HUMMER H2 SUT Crew Cab 2009 4.72% Bentley Arnage Sedan 2009 4.01% Ford Edge SUV 2012 3.84% BMW X5 SUV 2007 3.69% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 MINI Cooper Roadster Convertible 2012 4.69% Mercedes-Benz S-Class Sedan 2012 3.13% Bugatti Veyron 16.4 Convertible 2009 2.27% Mercedes-Benz E-Class Sedan 2012 2.19% Mercedes-Benz SL-Class Coupe 2009 2.16% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 13.48% Lincoln Town Car Sedan 2011 4.62% Nissan Leaf Hatchback 2012 4.52% Daewoo Nubira Wagon 2002 4.02% Plymouth Neon Coupe 1999 3.33% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Infiniti G Coupe IPL 2012 2.52% Chevrolet Corvette ZR1 2012 2.26% Porsche Panamera Sedan 2012 1.85% Jaguar XK XKR 2012 1.61% Chrysler 300 SRT-8 2010 1.35% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 MINI Cooper Roadster Convertible 2012 3.59% Mercedes-Benz S-Class Sedan 2012 3.53% Mercedes-Benz SL-Class Coupe 2009 3.49% Audi S5 Convertible 2012 2.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.15% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Mercedes-Benz E-Class Sedan 2012 2.79% MINI Cooper Roadster Convertible 2012 2.65% Audi S5 Convertible 2012 2.3% Mercedes-Benz SL-Class Coupe 2009 2.14% BMW ActiveHybrid 5 Sedan 2012 1.94% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Buick Rainier SUV 2007 2.28% BMW X6 SUV 2012 1.95% Ford Ranger SuperCab 2011 1.79% GMC Savana Van 2012 1.78% Chevrolet Silverado 1500 Regular Cab 2012 1.77% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 1.06% Chrysler PT Cruiser Convertible 2008 1.05% BMW 6 Series Convertible 2007 1.01% Hyundai Tucson SUV 2012 0.93% Mercedes-Benz SL-Class Coupe 2009 0.9% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 AM General Hummer SUV 2000 6.79% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.39% Jeep Wrangler SUV 2012 3.51% Chevrolet Corvette ZR1 2012 2.67% HUMMER H2 SUT Crew Cab 2009 2.59% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Plymouth Neon Coupe 1999 3.98% Chevrolet Monte Carlo Coupe 2007 2.6% Chevrolet Express Van 2007 2.58% GMC Savana Van 2012 2.52% Chevrolet Malibu Sedan 2007 2.38% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chrysler 300 SRT-8 2010 2.74% BMW M6 Convertible 2010 2.48% Chevrolet TrailBlazer SS 2009 2.05% Rolls-Royce Ghost Sedan 2012 1.94% Chevrolet Silverado 2500HD Regular Cab 2012 1.84% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Ram C/V Cargo Van Minivan 2012 5.77% Toyota Camry Sedan 2012 4.22% Acura TL Sedan 2012 3.29% BMW 1 Series Convertible 2012 2.71% Lincoln Town Car Sedan 2011 2.47% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 AM General Hummer SUV 2000 3.14% FIAT 500 Abarth 2012 2.98% Spyker C8 Convertible 2009 2.47% Bugatti Veyron 16.4 Coupe 2009 2.44% Jeep Patriot SUV 2012 2.28% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bentley Continental Supersports Conv. Convertible 2012 2.8% MINI Cooper Roadster Convertible 2012 2.75% smart fortwo Convertible 2012 2.52% Mercedes-Benz Sprinter Van 2012 2.49% Bugatti Veyron 16.4 Convertible 2009 2.48% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 6.62% HUMMER H3T Crew Cab 2010 6.45% Ford Expedition EL SUV 2009 5.68% HUMMER H2 SUT Crew Cab 2009 5.28% Ford Edge SUV 2012 4.68% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 Daewoo Nubira Wagon 2002 4.27% GMC Savana Van 2012 3.55% Chevrolet Malibu Sedan 2007 2.67% Dodge Caravan Minivan 1997 2.54% Ford Focus Sedan 2007 2.44% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.56% Chevrolet Avalanche Crew Cab 2012 2.46% Ford F-150 Regular Cab 2007 2.22% GMC Yukon Hybrid SUV 2012 1.91% Chrysler 300 SRT-8 2010 1.89% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Ford Ranger SuperCab 2011 7.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.68% Dodge Caliber Wagon 2007 3.67% Chevrolet Silverado 1500 Regular Cab 2012 3.66% Buick Rainier SUV 2007 3.17% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Chrysler 300 SRT-8 2010 1.68% Cadillac CTS-V Sedan 2012 1.48% FIAT 500 Abarth 2012 1.45% Cadillac Escalade EXT Crew Cab 2007 1.37% Lamborghini Reventon Coupe 2008 1.34% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Bentley Arnage Sedan 2009 2.51% Cadillac Escalade EXT Crew Cab 2007 2.01% Cadillac SRX SUV 2012 1.78% Rolls-Royce Phantom Sedan 2012 1.75% Land Rover Range Rover SUV 2012 1.52% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.54% Porsche Panamera Sedan 2012 1.51% Acura ZDX Hatchback 2012 1.35% Jaguar XK XKR 2012 1.23% Aston Martin V8 Vantage Coupe 2012 1.19% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 2.56% Mercedes-Benz 300-Class Convertible 1993 2.22% Audi 100 Wagon 1994 1.95% Chevrolet Express Cargo Van 2007 1.94% Volvo 240 Sedan 1993 1.69% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Chevrolet Silverado 2500HD Regular Cab 2012 2.88% Chevrolet Silverado 1500 Regular Cab 2012 2.49% Audi V8 Sedan 1994 1.84% Chevrolet Traverse SUV 2012 1.8% GMC Savana Van 2012 1.69% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 MINI Cooper Roadster Convertible 2012 5.59% Mercedes-Benz S-Class Sedan 2012 4.08% Rolls-Royce Phantom Sedan 2012 3.05% Bentley Continental Supersports Conv. Convertible 2012 2.29% BMW M3 Coupe 2012 2.19% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 33.88% Acura Integra Type R 2001 16.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 12.39% McLaren MP4-12C Coupe 2012 5.16% Audi RS 4 Convertible 2008 4.6% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Aston Martin V8 Vantage Coupe 2012 2.38% Geo Metro Convertible 1993 2.32% FIAT 500 Convertible 2012 2.2% Chevrolet Corvette ZR1 2012 2.15% Nissan Leaf Hatchback 2012 2.07% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 4.44% FIAT 500 Convertible 2012 3.64% Maybach Landaulet Convertible 2012 2.97% Mercedes-Benz S-Class Sedan 2012 2.25% smart fortwo Convertible 2012 2.08% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Dodge Sprinter Cargo Van 2009 4.45% Ram C/V Cargo Van Minivan 2012 4.16% Volkswagen Beetle Hatchback 2012 3.21% Volkswagen Golf Hatchback 2012 3.21% Hyundai Elantra Touring Hatchback 2012 2.53% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Jeep Grand Cherokee SUV 2012 2.36% Dodge Dakota Club Cab 2007 2.34% Ford F-150 Regular Cab 2012 2.25% Land Rover Range Rover SUV 2012 2.16% GMC Terrain SUV 2012 2.15% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Ford E-Series Wagon Van 2012 7.02% Jeep Liberty SUV 2012 5.56% Isuzu Ascender SUV 2008 3.31% Jeep Wrangler SUV 2012 2.39% Dodge Caliber Wagon 2012 2.23% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 2500HD Regular Cab 2012 3.31% Chevrolet Silverado 1500 Regular Cab 2012 2.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.9% Audi V8 Sedan 1994 1.8% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.74% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Hyundai Elantra Sedan 2007 6.06% Toyota Corolla Sedan 2012 2.38% Volkswagen Beetle Hatchback 2012 2.19% Hyundai Accent Sedan 2012 2.11% Honda Accord Coupe 2012 2.07% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 20.65% HUMMER H2 SUT Crew Cab 2009 19.74% Jeep Wrangler SUV 2012 16.32% AM General Hummer SUV 2000 6.41% Dodge Charger Sedan 2012 2.71% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Chevrolet TrailBlazer SS 2009 3.8% Chevrolet Corvette ZR1 2012 3.02% Chevrolet Silverado 1500 Regular Cab 2012 1.84% Chrysler 300 SRT-8 2010 1.84% Hyundai Veracruz SUV 2012 1.79% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 3.51% Chrysler 300 SRT-8 2010 3.37% Infiniti G Coupe IPL 2012 3.13% Chevrolet Silverado 2500HD Regular Cab 2012 2.73% Eagle Talon Hatchback 1998 2.27% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Bentley Arnage Sedan 2009 2.36% Rolls-Royce Ghost Sedan 2012 2.27% Cadillac Escalade EXT Crew Cab 2007 1.93% HUMMER H2 SUT Crew Cab 2009 1.77% Jeep Patriot SUV 2012 1.75% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ram C/V Cargo Van Minivan 2012 5.5% Acura TSX Sedan 2012 2.73% Volkswagen Golf Hatchback 2012 2.32% Mercedes-Benz Sprinter Van 2012 2.24% Lincoln Town Car Sedan 2011 2.17% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Lamborghini Diablo Coupe 2001 18.86% McLaren MP4-12C Coupe 2012 15.02% Aston Martin Virage Coupe 2012 7.89% Acura Integra Type R 2001 5.2% Ferrari 458 Italia Convertible 2012 4.64% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 BMW 1 Series Convertible 2012 3.11% Ram C/V Cargo Van Minivan 2012 2.85% Aston Martin V8 Vantage Coupe 2012 2.51% Jaguar XK XKR 2012 2.28% Aston Martin V8 Vantage Convertible 2012 2.15% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 AM General Hummer SUV 2000 9.46% Jeep Liberty SUV 2012 6.44% Jeep Patriot SUV 2012 4.18% HUMMER H2 SUT Crew Cab 2009 3.16% Jeep Wrangler SUV 2012 3.07% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Volvo C30 Hatchback 2012 4.24% Aston Martin Virage Coupe 2012 3.43% McLaren MP4-12C Coupe 2012 2.49% Spyker C8 Convertible 2009 2.27% Ferrari California Convertible 2012 2.24% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 MINI Cooper Roadster Convertible 2012 7.91% Mercedes-Benz E-Class Sedan 2012 2.95% Audi TT Hatchback 2011 2.87% BMW ActiveHybrid 5 Sedan 2012 2.83% Mercedes-Benz SL-Class Coupe 2009 2.8% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Chevrolet TrailBlazer SS 2009 4.65% Cadillac Escalade EXT Crew Cab 2007 3.56% Chrysler 300 SRT-8 2010 2.26% Dodge Durango SUV 2007 1.78% Dodge Ram Pickup 3500 Crew Cab 2010 1.71% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 53.43% Lamborghini Gallardo LP 570-4 Superleggera 2012 23.76% Jeep Wrangler SUV 2012 5.6% HUMMER H2 SUT Crew Cab 2009 3.56% HUMMER H3T Crew Cab 2010 1.2% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Dodge Dakota Club Cab 2007 2.43% Chevrolet Avalanche Crew Cab 2012 2.38% GMC Terrain SUV 2012 2.38% Ford F-150 Regular Cab 2007 1.95% Dodge Durango SUV 2007 1.84% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 6.96% Mercedes-Benz S-Class Sedan 2012 5.09% Maybach Landaulet Convertible 2012 2.87% MINI Cooper Roadster Convertible 2012 2.66% Bentley Continental Supersports Conv. Convertible 2012 2.53% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Chevrolet Corvette ZR1 2012 2.14% Infiniti G Coupe IPL 2012 1.84% Jaguar XK XKR 2012 1.77% Chevrolet Silverado 1500 Regular Cab 2012 1.6% Chevrolet Silverado 2500HD Regular Cab 2012 1.6% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 4.61% Mercedes-Benz C-Class Sedan 2012 3.31% Bentley Mulsanne Sedan 2011 2.89% Fisker Karma Sedan 2012 2.66% MINI Cooper Roadster Convertible 2012 2.38% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 MINI Cooper Roadster Convertible 2012 5.9% Audi S6 Sedan 2011 2.99% Dodge Challenger SRT8 2011 2.36% Audi A5 Coupe 2012 2.29% Audi R8 Coupe 2012 2.27% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Volvo 240 Sedan 1993 2.56% Chevrolet Express Cargo Van 2007 2.53% GMC Savana Van 2012 2.24% Hyundai Tucson SUV 2012 2.15% Dodge Caravan Minivan 1997 2.15% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Nissan Leaf Hatchback 2012 4.24% Bugatti Veyron 16.4 Convertible 2009 3.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.13% FIAT 500 Convertible 2012 3.06% Daewoo Nubira Wagon 2002 2.24% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 3.61% Hyundai Elantra Sedan 2007 3.52% Ferrari FF Coupe 2012 3.28% Honda Accord Coupe 2012 2.87% BMW 1 Series Coupe 2012 2.77% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 Aston Martin Virage Coupe 2012 6.5% Aston Martin V8 Vantage Coupe 2012 5.98% AM General Hummer SUV 2000 5.47% Chevrolet Corvette ZR1 2012 5.16% HUMMER H2 SUT Crew Cab 2009 3.84% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 23.5% Chevrolet Corvette ZR1 2012 4.57% Chevrolet Corvette Convertible 2012 2.36% Bentley Continental Supersports Conv. Convertible 2012 2.13% Aston Martin V8 Vantage Coupe 2012 2.03% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 8.77% Chrysler 300 SRT-8 2010 6.11% Ford Expedition EL SUV 2009 4.35% Chevrolet Silverado 1500 Regular Cab 2012 4.16% BMW M6 Convertible 2010 3.47% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Hyundai Santa Fe SUV 2012 5.11% BMW X5 SUV 2007 4.31% Ford F-150 Regular Cab 2012 4.25% Ford Ranger SuperCab 2011 3.62% Isuzu Ascender SUV 2008 3.41% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 HUMMER H2 SUT Crew Cab 2009 3.82% AM General Hummer SUV 2000 3.74% Chevrolet Corvette ZR1 2012 2.75% Jeep Wrangler SUV 2012 2.31% Bugatti Veyron 16.4 Coupe 2009 2.21% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Ford E-Series Wagon Van 2012 7.61% HUMMER H2 SUT Crew Cab 2009 5.2% BMW X5 SUV 2007 4.28% Jeep Liberty SUV 2012 3.37% Mazda Tribute SUV 2011 3.17% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 HUMMER H3T Crew Cab 2010 4.67% AM General Hummer SUV 2000 4.51% HUMMER H2 SUT Crew Cab 2009 4.11% Jeep Wrangler SUV 2012 3.04% Bentley Arnage Sedan 2009 2.64% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 3.03% Ford Freestar Minivan 2007 2.71% Ford E-Series Wagon Van 2012 2.32% Chevrolet Avalanche Crew Cab 2012 2.21% Buick Enclave SUV 2012 2.14% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 FIAT 500 Abarth 2012 14.61% Spyker C8 Convertible 2009 9.15% Bentley Arnage Sedan 2009 6.46% Jeep Patriot SUV 2012 2.9% Bugatti Veyron 16.4 Coupe 2009 2.79% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Audi S6 Sedan 2011 2.45% Dodge Ram Pickup 3500 Crew Cab 2010 2.36% Chrysler Aspen SUV 2009 2.31% Ford E-Series Wagon Van 2012 2.23% Ford Expedition EL SUV 2009 2.12% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Audi V8 Sedan 1994 1.08% Mercedes-Benz 300-Class Convertible 1993 1.07% Volkswagen Golf Hatchback 1991 1.06% Chevrolet Silverado 1500 Regular Cab 2012 1.06% Volvo 240 Sedan 1993 1.05% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Bentley Arnage Sedan 2009 1.48% GMC Yukon Hybrid SUV 2012 1.38% Land Rover LR2 SUV 2012 1.38% Rolls-Royce Phantom Sedan 2012 1.28% FIAT 500 Abarth 2012 1.26% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Lamborghini Aventador Coupe 2012 17.16% Ferrari 458 Italia Convertible 2012 14.86% Ferrari 458 Italia Coupe 2012 7.54% Aston Martin Virage Coupe 2012 5.93% Ferrari California Convertible 2012 5.62% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Daewoo Nubira Wagon 2002 5.0% Nissan Leaf Hatchback 2012 3.19% Hyundai Elantra Sedan 2007 2.53% Plymouth Neon Coupe 1999 2.39% FIAT 500 Convertible 2012 2.07% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Chevrolet Express Cargo Van 2007 2.76% Dodge Caravan Minivan 1997 1.56% Audi 100 Wagon 1994 1.53% Audi V8 Sedan 1994 1.53% Acura TL Type-S 2008 1.49% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 6.28% Lincoln Town Car Sedan 2011 3.56% Volkswagen Golf Hatchback 2012 3.4% Acura TSX Sedan 2012 3.1% Mercedes-Benz Sprinter Van 2012 3.05% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.07% Chevrolet Avalanche Crew Cab 2012 1.84% Hyundai Veracruz SUV 2012 1.78% Chevrolet Silverado 2500HD Regular Cab 2012 1.76% Chrysler 300 SRT-8 2010 1.73% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Sedan 2007 4.07% Hyundai Accent Sedan 2012 4.02% Audi TT RS Coupe 2012 3.48% Volkswagen Beetle Hatchback 2012 3.38% Dodge Magnum Wagon 2008 3.1% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 FIAT 500 Convertible 2012 3.56% Nissan Leaf Hatchback 2012 2.33% Mercedes-Benz S-Class Sedan 2012 2.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.15% Suzuki Aerio Sedan 2007 2.09% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Honda Accord Coupe 2012 1.38% Chevrolet Silverado 1500 Extended Cab 2012 1.35% Chevrolet Silverado 2500HD Regular Cab 2012 1.28% Dodge Caliber Wagon 2012 1.26% Chevrolet Silverado 1500 Regular Cab 2012 1.21% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 20.48% Lamborghini Diablo Coupe 2001 13.05% Geo Metro Convertible 1993 10.96% Acura Integra Type R 2001 9.09% Ferrari 458 Italia Convertible 2012 6.12% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.63% Dodge Durango SUV 2012 3.18% Chevrolet TrailBlazer SS 2009 3.12% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.96% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 39.45% Aston Martin Virage Coupe 2012 13.68% Chevrolet Corvette Convertible 2012 9.26% Hyundai Veloster Hatchback 2012 5.68% Audi RS 4 Convertible 2008 4.89% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Gallardo LP 570-4 Superleggera 2012 11.86% Audi RS 4 Convertible 2008 3.8% Lamborghini Reventon Coupe 2008 3.13% Bugatti Veyron 16.4 Coupe 2009 3.0% Spyker C8 Convertible 2009 2.5% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.75% Jaguar XK XKR 2012 2.31% Nissan Leaf Hatchback 2012 2.27% Porsche Panamera Sedan 2012 2.09% Acura TL Sedan 2012 1.9% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Dodge Caliber Wagon 2007 7.03% Suzuki SX4 Hatchback 2012 3.11% BMW X6 SUV 2012 2.9% Ford Ranger SuperCab 2011 2.86% Volkswagen Golf Hatchback 1991 2.8% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 Fisker Karma Sedan 2012 2.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.99% Mercedes-Benz 300-Class Convertible 1993 1.77% Mercedes-Benz S-Class Sedan 2012 1.73% Aston Martin V8 Vantage Coupe 2012 1.65% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 33.05% Ferrari California Convertible 2012 9.99% Ferrari 458 Italia Coupe 2012 9.29% Audi TT RS Coupe 2012 6.48% Chevrolet HHR SS 2010 4.97% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 McLaren MP4-12C Coupe 2012 9.02% Aston Martin Virage Coupe 2012 8.88% Chevrolet Corvette Convertible 2012 7.87% Hyundai Veloster Hatchback 2012 6.8% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.59% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Audi TT RS Coupe 2012 4.58% Dodge Magnum Wagon 2008 3.88% Dodge Caliber Wagon 2007 2.77% Nissan 240SX Coupe 1998 2.65% Chevrolet HHR SS 2010 2.14% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 2.92% Audi V8 Sedan 1994 2.69% Bugatti Veyron 16.4 Coupe 2009 2.64% Bentley Mulsanne Sedan 2011 2.2% Volvo 240 Sedan 1993 2.07% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Dodge Caravan Minivan 1997 4.48% Ford Freestar Minivan 2007 2.7% Plymouth Neon Coupe 1999 2.67% Lincoln Town Car Sedan 2011 2.2% Daewoo Nubira Wagon 2002 2.19% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.36% Hyundai Azera Sedan 2012 2.04% Bentley Continental Supersports Conv. Convertible 2012 1.75% BMW M3 Coupe 2012 1.64% Suzuki SX4 Sedan 2012 1.56% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Audi V8 Sedan 1994 2.36% Chevrolet Silverado 2500HD Regular Cab 2012 2.22% Infiniti G Coupe IPL 2012 1.75% Audi S5 Coupe 2012 1.69% Chrysler 300 SRT-8 2010 1.46% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 2.61% Mercedes-Benz Sprinter Van 2012 1.81% Mercedes-Benz S-Class Sedan 2012 1.78% Hyundai Azera Sedan 2012 1.7% BMW X3 SUV 2012 1.7% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Expedition EL SUV 2009 6.58% Dodge Ram Pickup 3500 Crew Cab 2010 5.24% Ford F-450 Super Duty Crew Cab 2012 4.21% Cadillac Escalade EXT Crew Cab 2007 3.22% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.09% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.13% BMW ActiveHybrid 5 Sedan 2012 1.8% BMW 1 Series Convertible 2012 1.74% Chrysler Town and Country Minivan 2012 1.67% Acura TSX Sedan 2012 1.38% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 4.19% HUMMER H3T Crew Cab 2010 3.32% Volkswagen Golf Hatchback 1991 2.86% BMW X6 SUV 2012 2.54% Chevrolet Silverado 1500 Regular Cab 2012 2.53% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Audi S6 Sedan 2011 3.23% Audi A5 Coupe 2012 3.06% Chevrolet Silverado 2500HD Regular Cab 2012 2.29% Dodge Journey SUV 2012 1.79% Chevrolet Silverado 1500 Extended Cab 2012 1.63% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Audi V8 Sedan 1994 1.37% Chevrolet Express Cargo Van 2007 1.31% Dodge Dakota Club Cab 2007 1.19% Lincoln Town Car Sedan 2011 1.17% Hyundai Tucson SUV 2012 1.06% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 FIAT 500 Convertible 2012 6.38% Nissan Leaf Hatchback 2012 5.04% Mercedes-Benz Sprinter Van 2012 4.4% Dodge Sprinter Cargo Van 2009 4.34% Volkswagen Golf Hatchback 2012 3.04% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 4.98% FIAT 500 Abarth 2012 4.72% Jeep Patriot SUV 2012 2.52% AM General Hummer SUV 2000 2.5% Cadillac Escalade EXT Crew Cab 2007 2.32% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari California Convertible 2012 5.16% Ferrari 458 Italia Convertible 2012 4.69% Ferrari 458 Italia Coupe 2012 4.64% Aston Martin Virage Coupe 2012 4.28% Volvo C30 Hatchback 2012 4.24% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 4.45% Chevrolet Corvette ZR1 2012 3.85% Porsche Panamera Sedan 2012 3.4% Acura Integra Type R 2001 2.58% Aston Martin V8 Vantage Coupe 2012 2.33% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Gallardo LP 570-4 Superleggera 2012 35.62% Spyker C8 Coupe 2009 3.63% Ford GT Coupe 2006 2.86% Spyker C8 Convertible 2009 2.82% Lamborghini Diablo Coupe 2001 2.61% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Dodge Caliber Wagon 2007 8.63% BMW 1 Series Coupe 2012 5.59% Suzuki SX4 Hatchback 2012 5.51% HUMMER H3T Crew Cab 2010 5.5% BMW X6 SUV 2012 5.1% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 5.01% Hyundai Elantra Sedan 2007 4.24% Suzuki SX4 Hatchback 2012 2.28% Dodge Journey SUV 2012 1.85% Volkswagen Beetle Hatchback 2012 1.78% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Porsche Panamera Sedan 2012 2.76% Nissan Leaf Hatchback 2012 2.69% Jaguar XK XKR 2012 2.2% Toyota Camry Sedan 2012 1.76% Suzuki Aerio Sedan 2007 1.69% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 3.37% Fisker Karma Sedan 2012 3.05% Acura TL Type-S 2008 2.81% Hyundai Genesis Sedan 2012 2.37% Mercedes-Benz S-Class Sedan 2012 2.36% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 BMW X3 SUV 2012 4.69% Bentley Mulsanne Sedan 2011 3.93% Mercedes-Benz C-Class Sedan 2012 3.87% Toyota 4Runner SUV 2012 3.04% Mazda Tribute SUV 2011 3.03% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 12.77% Lamborghini Aventador Coupe 2012 8.26% Ferrari California Convertible 2012 7.91% Ferrari 458 Italia Coupe 2012 5.96% Aston Martin Virage Coupe 2012 5.74% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.7% Chevrolet Silverado 1500 Regular Cab 2012 3.72% Chevrolet TrailBlazer SS 2009 3.32% Ford F-450 Super Duty Crew Cab 2012 3.15% Dodge Ram Pickup 3500 Quad Cab 2009 2.89% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Jeep Patriot SUV 2012 6.84% HUMMER H2 SUT Crew Cab 2009 6.11% Bentley Arnage Sedan 2009 6.07% AM General Hummer SUV 2000 6.05% Jeep Wrangler SUV 2012 3.85% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 MINI Cooper Roadster Convertible 2012 3.79% Mercedes-Benz S-Class Sedan 2012 2.52% Bugatti Veyron 16.4 Convertible 2009 2.37% Bentley Mulsanne Sedan 2011 2.17% Fisker Karma Sedan 2012 1.95% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 12.8% Chevrolet Express Cargo Van 2007 4.88% Chevrolet Express Van 2007 4.43% Chevrolet Silverado 1500 Extended Cab 2012 3.59% Buick Rainier SUV 2007 2.29% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.17% Chrysler 300 SRT-8 2010 1.14% Dodge Durango SUV 2007 1.12% Chrysler Aspen SUV 2009 1.1% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Bentley Arnage Sedan 2009 6.99% Bentley Mulsanne Sedan 2011 5.31% Hyundai Azera Sedan 2012 3.19% Mercedes-Benz C-Class Sedan 2012 3.07% MINI Cooper Roadster Convertible 2012 2.83% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Dodge Caliber Wagon 2007 2.24% Hyundai Elantra Sedan 2007 2.02% Hyundai Azera Sedan 2012 1.66% Nissan Juke Hatchback 2012 1.44% Buick Verano Sedan 2012 1.28% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 4.27% Dodge Ram Pickup 3500 Crew Cab 2010 3.66% Ford F-450 Super Duty Crew Cab 2012 3.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.7% Hyundai Santa Fe SUV 2012 2.62% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Dodge Caliber Wagon 2007 3.82% Volvo C30 Hatchback 2012 3.5% Suzuki SX4 Hatchback 2012 2.61% Jeep Wrangler SUV 2012 2.45% smart fortwo Convertible 2012 2.34% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.53% Maybach Landaulet Convertible 2012 5.35% Aston Martin V8 Vantage Coupe 2012 2.96% Bugatti Veyron 16.4 Coupe 2009 2.38% Ford GT Coupe 2006 1.81% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 19.68% Audi RS 4 Convertible 2008 14.72% Lamborghini Diablo Coupe 2001 11.55% Hyundai Veloster Hatchback 2012 5.87% Ford GT Coupe 2006 5.67% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 3.39% Chevrolet Silverado 1500 Extended Cab 2012 2.59% Chevrolet Tahoe Hybrid SUV 2012 2.57% Dodge Dakota Club Cab 2007 2.23% Audi V8 Sedan 1994 1.96% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Dodge Caravan Minivan 1997 3.13% Ford Freestar Minivan 2007 2.95% Volkswagen Golf Hatchback 2012 2.24% Ram C/V Cargo Van Minivan 2012 2.22% Mercedes-Benz Sprinter Van 2012 2.21% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 2500HD Regular Cab 2012 6.08% Audi R8 Coupe 2012 3.79% Chrysler 300 SRT-8 2010 3.54% BMW M6 Convertible 2010 3.32% Ford F-450 Super Duty Crew Cab 2012 3.27% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Ford E-Series Wagon Van 2012 4.12% Hyundai Azera Sedan 2012 2.97% Dodge Challenger SRT8 2011 2.96% Land Rover LR2 SUV 2012 2.06% Isuzu Ascender SUV 2008 1.91% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Chevrolet Cobalt SS 2010 7.29% Ferrari California Convertible 2012 6.65% Ferrari 458 Italia Coupe 2012 5.5% Dodge Charger SRT-8 2009 4.46% Dodge Magnum Wagon 2008 3.62% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 12.4% Ford Ranger SuperCab 2011 4.45% Jeep Wrangler SUV 2012 3.27% BMW X6 SUV 2012 3.18% Dodge Caliber Wagon 2012 2.92% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 AM General Hummer SUV 2000 5.81% HUMMER H2 SUT Crew Cab 2009 5.4% Bentley Arnage Sedan 2009 4.38% Jeep Wrangler SUV 2012 3.62% Jeep Patriot SUV 2012 3.41% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.37% Mercedes-Benz Sprinter Van 2012 1.82% Lincoln Town Car Sedan 2011 1.64% Volkswagen Golf Hatchback 2012 1.55% Acura TSX Sedan 2012 1.53% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 8.42% Chevrolet Traverse SUV 2012 4.58% Volkswagen Golf Hatchback 1991 4.05% Ford Ranger SuperCab 2011 4.04% Ford Freestar Minivan 2007 3.1% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Bentley Mulsanne Sedan 2011 1.84% Dodge Challenger SRT8 2011 1.78% Chrysler Aspen SUV 2009 1.75% Audi V8 Sedan 1994 1.6% Chrysler 300 SRT-8 2010 1.57% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Audi V8 Sedan 1994 3.47% Chevrolet Silverado 2500HD Regular Cab 2012 3.16% Infiniti G Coupe IPL 2012 2.06% Audi S5 Coupe 2012 1.73% Audi 100 Wagon 1994 1.72% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 9.25% Chevrolet TrailBlazer SS 2009 5.01% Dodge Ram Pickup 3500 Crew Cab 2010 4.3% Ford Expedition EL SUV 2009 4.06% Toyota 4Runner SUV 2012 3.11% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Ferrari 458 Italia Coupe 2012 6.46% Ferrari 458 Italia Convertible 2012 5.17% Geo Metro Convertible 1993 3.92% Volvo C30 Hatchback 2012 3.54% Ferrari California Convertible 2012 3.11% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 8.05% Lamborghini Aventador Coupe 2012 6.54% McLaren MP4-12C Coupe 2012 5.24% Volvo C30 Hatchback 2012 4.81% Ferrari California Convertible 2012 3.54% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 6.72% GMC Canyon Extended Cab 2012 4.96% Chevrolet Silverado 1500 Regular Cab 2012 4.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.83% Dodge Caliber Wagon 2007 2.81% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Infiniti G Coupe IPL 2012 1.75% Mercedes-Benz E-Class Sedan 2012 1.69% MINI Cooper Roadster Convertible 2012 1.66% BMW ActiveHybrid 5 Sedan 2012 1.6% Mercedes-Benz SL-Class Coupe 2009 1.57% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Phantom Sedan 2012 4.14% Mercedes-Benz E-Class Sedan 2012 3.57% Spyker C8 Convertible 2009 3.21% Bentley Continental Supersports Conv. Convertible 2012 2.88% Hyundai Genesis Sedan 2012 2.54% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 4.5% Dodge Ram Pickup 3500 Crew Cab 2010 4.27% Ford Expedition EL SUV 2009 3.65% Chevrolet Silverado 1500 Regular Cab 2012 3.46% Dodge Ram Pickup 3500 Quad Cab 2009 2.71% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 12.6% Ferrari 458 Italia Convertible 2012 10.23% Chevrolet HHR SS 2010 8.21% Lamborghini Aventador Coupe 2012 7.22% Ferrari 458 Italia Coupe 2012 7.08% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Chrysler 300 SRT-8 2010 6.0% Rolls-Royce Phantom Sedan 2012 3.78% BMW M6 Convertible 2010 3.17% Bentley Continental GT Coupe 2007 2.54% Chevrolet TrailBlazer SS 2009 2.19% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Sedan 2012 4.42% Bentley Arnage Sedan 2009 3.18% Hyundai Azera Sedan 2012 2.76% Cadillac SRX SUV 2012 2.62% Bentley Mulsanne Sedan 2011 2.3% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Chevrolet TrailBlazer SS 2009 4.64% Cadillac Escalade EXT Crew Cab 2007 2.66% Dodge Durango SUV 2012 2.08% Chrysler 300 SRT-8 2010 1.91% Ford F-450 Super Duty Crew Cab 2012 1.82% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Ram C/V Cargo Van Minivan 2012 5.07% Dodge Sprinter Cargo Van 2009 4.12% Mercedes-Benz Sprinter Van 2012 2.41% Acura TSX Sedan 2012 2.34% GMC Savana Van 2012 2.33% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 BMW X3 SUV 2012 3.09% Ford E-Series Wagon Van 2012 2.86% MINI Cooper Roadster Convertible 2012 2.31% Chrysler Aspen SUV 2009 2.0% Isuzu Ascender SUV 2008 1.89% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.8% Fisker Karma Sedan 2012 1.41% Hyundai Genesis Sedan 2012 1.41% Bentley Mulsanne Sedan 2011 1.38% Volvo 240 Sedan 1993 1.33% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Audi R8 Coupe 2012 2.15% Infiniti G Coupe IPL 2012 1.79% Mercedes-Benz C-Class Sedan 2012 1.71% MINI Cooper Roadster Convertible 2012 1.66% BMW M6 Convertible 2010 1.63% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Hyundai Azera Sedan 2012 2.11% Acura RL Sedan 2012 1.87% Audi V8 Sedan 1994 1.81% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% MINI Cooper Roadster Convertible 2012 1.62% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 7.89% Ferrari 458 Italia Convertible 2012 7.4% Ferrari FF Coupe 2012 5.73% Ferrari 458 Italia Coupe 2012 5.53% BMW 3 Series Sedan 2012 5.35% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Dodge Sprinter Cargo Van 2009 4.08% Acura TL Sedan 2012 2.06% Dodge Caravan Minivan 1997 2.02% Chevrolet Express Cargo Van 2007 2.01% Acura ZDX Hatchback 2012 1.97% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Geo Metro Convertible 1993 2.88% FIAT 500 Convertible 2012 2.87% Suzuki Aerio Sedan 2007 2.5% Daewoo Nubira Wagon 2002 2.47% Chrysler PT Cruiser Convertible 2008 2.27% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 HUMMER H2 SUT Crew Cab 2009 9.98% Bentley Arnage Sedan 2009 6.87% Cadillac Escalade EXT Crew Cab 2007 6.83% AM General Hummer SUV 2000 5.84% Jeep Wrangler SUV 2012 3.47% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chevrolet Monte Carlo Coupe 2007 2.32% Eagle Talon Hatchback 1998 1.8% Chevrolet Corvette ZR1 2012 1.67% Plymouth Neon Coupe 1999 1.56% Chevrolet Malibu Sedan 2007 1.43% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Geo Metro Convertible 1993 7.34% Audi TT RS Coupe 2012 3.64% Volvo C30 Hatchback 2012 2.56% Ferrari 458 Italia Coupe 2012 2.1% Chevrolet HHR SS 2010 1.94% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Hyundai Santa Fe SUV 2012 3.81% BMW X5 SUV 2007 3.5% Ford E-Series Wagon Van 2012 3.11% Ford F-450 Super Duty Crew Cab 2012 2.81% GMC Yukon Hybrid SUV 2012 2.72% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Mercedes-Benz S-Class Sedan 2012 4.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.63% MINI Cooper Roadster Convertible 2012 2.61% BMW M3 Coupe 2012 2.58% Bentley Continental Supersports Conv. Convertible 2012 1.59% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 BMW ActiveHybrid 5 Sedan 2012 7.53% Audi TT Hatchback 2011 6.77% Audi S5 Coupe 2012 3.53% Audi A5 Coupe 2012 3.27% Audi R8 Coupe 2012 2.71% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 FIAT 500 Abarth 2012 2.65% Nissan Juke Hatchback 2012 2.13% Dodge Caliber Wagon 2007 1.96% Suzuki SX4 Hatchback 2012 1.46% HUMMER H3T Crew Cab 2010 1.42% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 5.02% smart fortwo Convertible 2012 4.63% Mercedes-Benz S-Class Sedan 2012 4.43% MINI Cooper Roadster Convertible 2012 3.28% Mercedes-Benz E-Class Sedan 2012 2.36% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Audi TT Hatchback 2011 6.3% Audi A5 Coupe 2012 4.9% BMW ActiveHybrid 5 Sedan 2012 3.86% BMW X3 SUV 2012 2.95% MINI Cooper Roadster Convertible 2012 2.81% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Mercedes-Benz 300-Class Convertible 1993 1.38% Bugatti Veyron 16.4 Coupe 2009 1.24% Volvo 240 Sedan 1993 1.22% Lamborghini Reventon Coupe 2008 1.11% Daewoo Nubira Wagon 2002 1.09% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Lincoln Town Car Sedan 2011 1.78% Chrysler Sebring Convertible 2010 1.77% Ram C/V Cargo Van Minivan 2012 1.69% Chrysler PT Cruiser Convertible 2008 1.61% Daewoo Nubira Wagon 2002 1.49% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 15.91% Chevrolet Express Cargo Van 2007 9.53% Chevrolet Express Van 2007 5.49% Dodge Sprinter Cargo Van 2009 3.96% Chevrolet Traverse SUV 2012 2.29% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.2% Nissan Leaf Hatchback 2012 2.99% Daewoo Nubira Wagon 2002 2.42% Maybach Landaulet Convertible 2012 2.39% Plymouth Neon Coupe 1999 2.29% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 8.77% Chevrolet Corvette ZR1 2012 8.66% Chevrolet Corvette Convertible 2012 5.29% Aston Martin V8 Vantage Coupe 2012 4.49% Geo Metro Convertible 1993 3.22% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Hyundai Genesis Sedan 2012 3.8% Infiniti G Coupe IPL 2012 3.64% Chevrolet Corvette ZR1 2012 3.37% Bugatti Veyron 16.4 Coupe 2009 2.35% Bentley Mulsanne Sedan 2011 2.22% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Abarth 2012 3.06% Chevrolet TrailBlazer SS 2009 2.2% Bentley Arnage Sedan 2009 2.11% Chrysler 300 SRT-8 2010 2.03% HUMMER H2 SUT Crew Cab 2009 1.93% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Hyundai Elantra Sedan 2007 3.73% Lincoln Town Car Sedan 2011 3.29% Plymouth Neon Coupe 1999 2.62% Chevrolet Impala Sedan 2007 2.48% Ram C/V Cargo Van Minivan 2012 2.44% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Rolls-Royce Phantom Sedan 2012 3.35% Chrysler 300 SRT-8 2010 2.72% Lamborghini Reventon Coupe 2008 2.69% Bentley Arnage Sedan 2009 2.49% Bugatti Veyron 16.4 Coupe 2009 2.44% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Audi 100 Sedan 1994 3.02% Acura TL Sedan 2012 2.73% Dodge Caravan Minivan 1997 2.32% Audi V8 Sedan 1994 2.14% Mercedes-Benz 300-Class Convertible 1993 1.92% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Mercedes-Benz Sprinter Van 2012 8.42% GMC Savana Van 2012 7.52% Daewoo Nubira Wagon 2002 3.54% Chevrolet Express Van 2007 3.09% Volkswagen Golf Hatchback 2012 2.59% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Hyundai Elantra Sedan 2007 8.09% Dodge Caliber Wagon 2007 4.17% Plymouth Neon Coupe 1999 3.73% Honda Accord Coupe 2012 3.67% Ford Fiesta Sedan 2012 3.46% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Rolls-Royce Ghost Sedan 2012 2.97% Chrysler 300 SRT-8 2010 1.77% BMW M6 Convertible 2010 1.65% Mercedes-Benz C-Class Sedan 2012 1.52% Hyundai Genesis Sedan 2012 1.44% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Geo Metro Convertible 1993 6.93% Mercedes-Benz 300-Class Convertible 1993 4.05% Chevrolet Corvette ZR1 2012 3.99% Aston Martin V8 Vantage Coupe 2012 3.33% Plymouth Neon Coupe 1999 2.52% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 7.23% Ferrari 458 Italia Convertible 2012 6.78% Dodge Magnum Wagon 2008 4.25% Chevrolet Cobalt SS 2010 4.12% Ferrari 458 Italia Coupe 2012 3.69% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Mercedes-Benz C-Class Sedan 2012 1.95% Ford F-450 Super Duty Crew Cab 2012 1.89% Bentley Arnage Sedan 2009 1.85% Toyota 4Runner SUV 2012 1.83% Ford Edge SUV 2012 1.7% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Rolls-Royce Phantom Sedan 2012 3.49% smart fortwo Convertible 2012 2.83% Bentley Continental Supersports Conv. Convertible 2012 2.63% Bugatti Veyron 16.4 Convertible 2009 2.58% FIAT 500 Convertible 2012 2.41% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 BMW ActiveHybrid 5 Sedan 2012 3.06% Audi TT Hatchback 2011 2.94% Ram C/V Cargo Van Minivan 2012 2.44% Mercedes-Benz Sprinter Van 2012 2.36% MINI Cooper Roadster Convertible 2012 2.32% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 27.79% Nissan Leaf Hatchback 2012 5.33% Mercedes-Benz 300-Class Convertible 1993 3.84% Maybach Landaulet Convertible 2012 3.56% Jaguar XK XKR 2012 2.78% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.63% Ford F-150 Regular Cab 2007 2.55% Chevrolet TrailBlazer SS 2009 2.5% Chrysler 300 SRT-8 2010 2.31% Dodge Caliber Wagon 2007 1.96% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 16.63% Nissan Leaf Hatchback 2012 6.66% Bugatti Veyron 16.4 Convertible 2009 4.34% Maybach Landaulet Convertible 2012 3.82% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.37% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 MINI Cooper Roadster Convertible 2012 4.59% BMW X3 SUV 2012 2.39% Mercedes-Benz S-Class Sedan 2012 2.14% Dodge Challenger SRT8 2011 1.57% Audi S5 Coupe 2012 1.55% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Hyundai Santa Fe SUV 2012 2.97% BMW X5 SUV 2007 2.34% Ford E-Series Wagon Van 2012 2.32% Ford F-450 Super Duty Crew Cab 2012 2.25% Toyota Sequoia SUV 2012 1.92% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 2.1% Chrysler PT Cruiser Convertible 2008 1.75% Chevrolet Express Cargo Van 2007 1.38% Suzuki SX4 Sedan 2012 1.38% Tesla Model S Sedan 2012 1.32% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Tucson SUV 2012 2.91% Dodge Dakota Club Cab 2007 2.48% Chevrolet Express Cargo Van 2007 2.46% Chevrolet Traverse SUV 2012 2.4% Ford F-150 Regular Cab 2007 2.38% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Mercedes-Benz Sprinter Van 2012 6.11% Ram C/V Cargo Van Minivan 2012 3.84% Volkswagen Golf Hatchback 2012 3.33% Acura TSX Sedan 2012 3.17% Dodge Sprinter Cargo Van 2009 3.1% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Chevrolet TrailBlazer SS 2009 2.05% HUMMER H2 SUT Crew Cab 2009 1.93% HUMMER H3T Crew Cab 2010 1.73% Ford Edge SUV 2012 1.6% Jeep Wrangler SUV 2012 1.49% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 HUMMER H2 SUT Crew Cab 2009 2.64% HUMMER H3T Crew Cab 2010 2.52% Land Rover Range Rover SUV 2012 2.02% Jeep Patriot SUV 2012 1.84% Cadillac Escalade EXT Crew Cab 2007 1.71% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Dodge Sprinter Cargo Van 2009 3.96% GMC Savana Van 2012 3.25% Chevrolet Express Cargo Van 2007 3.0% Chevrolet Express Van 2007 1.98% Honda Odyssey Minivan 2007 1.96% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.19% Chevrolet Silverado 2500HD Regular Cab 2012 1.91% Ferrari FF Coupe 2012 1.63% Chevrolet Malibu Hybrid Sedan 2010 1.44% BMW M6 Convertible 2010 1.27% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 3.99% Chevrolet Silverado 1500 Extended Cab 2012 2.59% Chevrolet Silverado 2500HD Regular Cab 2012 2.47% Chevrolet Express Van 2007 2.47% Chevrolet Avalanche Crew Cab 2012 2.43% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Ram C/V Cargo Van Minivan 2012 4.61% Lincoln Town Car Sedan 2011 2.48% Daewoo Nubira Wagon 2002 2.0% Honda Odyssey Minivan 2007 1.9% Volkswagen Golf Hatchback 2012 1.73% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Rolls-Royce Phantom Sedan 2012 2.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.62% Hyundai Genesis Sedan 2012 1.56% Maybach Landaulet Convertible 2012 1.19% Aston Martin Virage Convertible 2012 1.16% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 13.38% Lamborghini Diablo Coupe 2001 4.38% Acura Integra Type R 2001 4.32% Spyker C8 Convertible 2009 2.83% Fisker Karma Sedan 2012 2.19% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Aston Martin Virage Coupe 2012 11.67% McLaren MP4-12C Coupe 2012 7.47% Acura Integra Type R 2001 6.77% Lamborghini Diablo Coupe 2001 5.98% Hyundai Veloster Hatchback 2012 4.79% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford E-Series Wagon Van 2012 5.05% Isuzu Ascender SUV 2008 4.91% Chevrolet Avalanche Crew Cab 2012 4.19% Jeep Grand Cherokee SUV 2012 2.67% Chrysler Aspen SUV 2009 2.23% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Expedition EL SUV 2009 1.95% Chevrolet Silverado 1500 Regular Cab 2012 1.64% Cadillac CTS-V Sedan 2012 1.6% Honda Odyssey Minivan 2012 1.55% Chrysler 300 SRT-8 2010 1.54% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Ferrari 458 Italia Convertible 2012 24.5% Lamborghini Aventador Coupe 2012 9.61% Aston Martin Virage Coupe 2012 8.91% Ferrari 458 Italia Coupe 2012 5.72% Lamborghini Diablo Coupe 2001 5.53% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Jaguar XK XKR 2012 2.74% BMW 1 Series Convertible 2012 2.38% Toyota Camry Sedan 2012 2.08% Porsche Panamera Sedan 2012 2.05% Aston Martin V8 Vantage Coupe 2012 2.04% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Geo Metro Convertible 1993 17.89% Nissan Leaf Hatchback 2012 16.03% Plymouth Neon Coupe 1999 6.51% Daewoo Nubira Wagon 2002 5.33% Dodge Caravan Minivan 1997 3.98% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 2500HD Regular Cab 2012 7.35% Chevrolet Silverado 1500 Regular Cab 2012 5.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.58% Chrysler 300 SRT-8 2010 3.34% Chevrolet Silverado 1500 Extended Cab 2012 2.94% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Hyundai Elantra Sedan 2007 4.55% Dodge Caliber Wagon 2007 2.64% Volvo C30 Hatchback 2012 1.96% Plymouth Neon Coupe 1999 1.85% Toyota Corolla Sedan 2012 1.81% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Chrysler 300 SRT-8 2010 2.24% Dodge Dakota Crew Cab 2010 1.73% BMW M6 Convertible 2010 1.6% Cadillac CTS-V Sedan 2012 1.44% Dodge Durango SUV 2012 1.37% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 22.02% Acura Integra Type R 2001 7.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.24% Spyker C8 Convertible 2009 4.05% Chevrolet Cobalt SS 2010 3.88% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 11.42% Ferrari 458 Italia Convertible 2012 7.15% Chevrolet HHR SS 2010 4.78% Spyker C8 Coupe 2009 4.66% Ford GT Coupe 2006 4.44% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Eagle Talon Hatchback 1998 1.95% Aston Martin V8 Vantage Coupe 2012 1.6% Bugatti Veyron 16.4 Coupe 2009 1.53% Chrysler 300 SRT-8 2010 1.48% BMW M6 Convertible 2010 1.39% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Plymouth Neon Coupe 1999 3.68% Hyundai Elantra Sedan 2007 3.56% Dodge Caravan Minivan 1997 2.87% BMW 3 Series Sedan 2012 2.6% Dodge Caliber Wagon 2007 2.47% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Grand Cherokee SUV 2012 2.62% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.5% Chevrolet Avalanche Crew Cab 2012 2.44% Ford F-150 Regular Cab 2012 2.34% Isuzu Ascender SUV 2008 2.31% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Spyker C8 Convertible 2009 4.23% Bentley Mulsanne Sedan 2011 3.01% Fisker Karma Sedan 2012 2.95% Mercedes-Benz 300-Class Convertible 1993 2.73% Chevrolet Corvette ZR1 2012 2.29% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 4.13% Hyundai Elantra Sedan 2007 2.99% Dodge Sprinter Cargo Van 2009 2.94% Ford Fiesta Sedan 2012 2.4% Volkswagen Beetle Hatchback 2012 2.35% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Aston Martin V8 Vantage Coupe 2012 3.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.7% Mercedes-Benz 300-Class Convertible 1993 2.56% Bugatti Veyron 16.4 Coupe 2009 1.84% Chevrolet Corvette ZR1 2012 1.8% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 1.64% Mercedes-Benz SL-Class Coupe 2009 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.5% Bentley Continental Supersports Conv. Convertible 2012 1.5% Mercedes-Benz S-Class Sedan 2012 1.46% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Ferrari 458 Italia Convertible 2012 13.99% Ferrari 458 Italia Coupe 2012 9.98% Geo Metro Convertible 1993 7.56% Lamborghini Aventador Coupe 2012 7.11% Volvo C30 Hatchback 2012 4.79% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Aston Martin V8 Vantage Coupe 2012 3.62% Nissan Juke Hatchback 2012 2.98% Mercedes-Benz 300-Class Convertible 1993 2.26% Nissan 240SX Coupe 1998 2.05% Chevrolet Corvette ZR1 2012 2.0% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 5.39% Ford Ranger SuperCab 2011 4.84% Dodge Caliber Wagon 2007 4.74% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.48% BMW X6 SUV 2012 4.06% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Audi A5 Coupe 2012 2.85% Chevrolet Silverado 1500 Extended Cab 2012 2.43% Chevrolet Tahoe Hybrid SUV 2012 2.35% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.33% Dodge Ram Pickup 3500 Quad Cab 2009 2.11% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.06% Isuzu Ascender SUV 2008 3.12% Chevrolet Silverado 1500 Extended Cab 2012 2.79% Audi A5 Coupe 2012 2.75% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.72% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Dodge Challenger SRT8 2011 2.81% Hyundai Azera Sedan 2012 2.7% Mercedes-Benz S-Class Sedan 2012 2.35% Rolls-Royce Phantom Sedan 2012 2.3% Bentley Mulsanne Sedan 2011 2.23% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Ford F-450 Super Duty Crew Cab 2012 5.03% Dodge Ram Pickup 3500 Crew Cab 2010 4.32% Ford Expedition EL SUV 2009 4.2% Dodge Ram Pickup 3500 Quad Cab 2009 4.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.6% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 3.35% Chevrolet Express Van 2007 2.72% Audi V8 Sedan 1994 2.17% Chevrolet Express Cargo Van 2007 2.14% Dodge Dakota Club Cab 2007 1.75% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 BMW X3 SUV 2012 4.41% Mercedes-Benz C-Class Sedan 2012 3.26% MINI Cooper Roadster Convertible 2012 3.16% Toyota Sequoia SUV 2012 1.9% Audi S5 Coupe 2012 1.83% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 20.03% Lamborghini Diablo Coupe 2001 15.68% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.29% Geo Metro Convertible 1993 7.23% Chevrolet Corvette Convertible 2012 6.84% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 FIAT 500 Abarth 2012 17.92% Spyker C8 Convertible 2009 5.45% Lamborghini Reventon Coupe 2008 5.39% Bentley Arnage Sedan 2009 3.46% Bugatti Veyron 16.4 Coupe 2009 3.26% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Chevrolet Silverado 2500HD Regular Cab 2012 3.12% Audi V8 Sedan 1994 1.73% Ford F-150 Regular Cab 2012 1.69% Audi A5 Coupe 2012 1.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.61% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 4.82% Chevrolet Express Van 2007 2.36% Audi V8 Sedan 1994 2.08% Chevrolet Tahoe Hybrid SUV 2012 2.02% Chevrolet Silverado 1500 Regular Cab 2012 1.89% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 5.23% Chrysler 300 SRT-8 2010 3.35% BMW M6 Convertible 2010 2.52% Cadillac CTS-V Sedan 2012 2.46% Cadillac Escalade EXT Crew Cab 2007 2.42% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 9.0% Ferrari California Convertible 2012 7.14% Ferrari 458 Italia Convertible 2012 5.36% BMW M3 Coupe 2012 4.95% Chevrolet HHR SS 2010 4.95% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 27.84% Ferrari 458 Italia Convertible 2012 13.8% BMW M3 Coupe 2012 6.09% Ferrari California Convertible 2012 5.29% Chevrolet Cobalt SS 2010 3.74% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 1.91% Chrysler 300 SRT-8 2010 1.8% Rolls-Royce Phantom Sedan 2012 1.58% Cadillac CTS-V Sedan 2012 1.51% Hyundai Genesis Sedan 2012 1.44% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 BMW M3 Coupe 2012 6.48% Ferrari FF Coupe 2012 6.21% BMW 1 Series Coupe 2012 5.9% Ferrari California Convertible 2012 4.95% Ferrari 458 Italia Convertible 2012 4.28% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Hyundai Tucson SUV 2012 1.75% Ford Freestar Minivan 2007 1.36% Dodge Caravan Minivan 1997 1.31% Volkswagen Golf Hatchback 1991 1.3% Chrysler 300 SRT-8 2010 1.21% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Convertible 2012 1.84% Mercedes-Benz 300-Class Convertible 1993 1.8% smart fortwo Convertible 2012 1.54% Spyker C8 Coupe 2009 1.45% Nissan Leaf Hatchback 2012 1.45% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Hyundai Elantra Sedan 2007 3.98% Nissan 240SX Coupe 1998 3.3% Volkswagen Beetle Hatchback 2012 2.38% Hyundai Sonata Hybrid Sedan 2012 2.25% Audi TT RS Coupe 2012 2.23% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Dodge Caravan Minivan 1997 2.75% Dodge Sprinter Cargo Van 2009 2.75% Acura TL Sedan 2012 2.24% Hyundai Tucson SUV 2012 2.09% Chevrolet Traverse SUV 2012 2.03% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 AM General Hummer SUV 2000 21.13% FIAT 500 Abarth 2012 7.5% Spyker C8 Convertible 2009 3.4% Bentley Arnage Sedan 2009 3.04% HUMMER H2 SUT Crew Cab 2009 3.01% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Chevrolet Silverado 1500 Regular Cab 2012 2.6% GMC Savana Van 2012 1.97% Chevrolet Avalanche Crew Cab 2012 1.88% Chevrolet Express Van 2007 1.64% Ford Ranger SuperCab 2011 1.63% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 FIAT 500 Abarth 2012 19.79% Jeep Wrangler SUV 2012 8.59% Bentley Arnage Sedan 2009 8.51% AM General Hummer SUV 2000 7.05% HUMMER H2 SUT Crew Cab 2009 6.71% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Chevrolet Corvette Convertible 2012 16.84% AM General Hummer SUV 2000 16.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 12.67% Hyundai Veloster Hatchback 2012 7.28% McLaren MP4-12C Coupe 2012 6.01% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Geo Metro Convertible 1993 4.48% Mercedes-Benz 300-Class Convertible 1993 3.12% Plymouth Neon Coupe 1999 2.96% Hyundai Elantra Sedan 2007 2.82% Dodge Caravan Minivan 1997 2.68% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 BMW M6 Convertible 2010 3.63% Chrysler 300 SRT-8 2010 3.44% Rolls-Royce Ghost Sedan 2012 3.05% Infiniti G Coupe IPL 2012 2.88% Bentley Continental GT Coupe 2007 2.72% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.47% Bentley Continental Supersports Conv. Convertible 2012 2.89% Rolls-Royce Phantom Sedan 2012 2.69% Mercedes-Benz S-Class Sedan 2012 2.55% Spyker C8 Coupe 2009 2.43% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Dodge Caliber Wagon 2007 5.38% Chevrolet Silverado 1500 Regular Cab 2012 3.55% Hyundai Elantra Sedan 2007 3.01% Honda Accord Coupe 2012 2.87% GMC Canyon Extended Cab 2012 2.7% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Dodge Ram Pickup 3500 Quad Cab 2009 1.37% Audi A5 Coupe 2012 1.34% BMW X3 SUV 2012 1.26% Audi S5 Coupe 2012 1.23% BMW ActiveHybrid 5 Sedan 2012 1.2% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Porsche Panamera Sedan 2012 1.85% Chevrolet Corvette ZR1 2012 1.78% Mercedes-Benz SL-Class Coupe 2009 1.76% Acura ZDX Hatchback 2012 1.57% GMC Savana Van 2012 1.49% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 MINI Cooper Roadster Convertible 2012 6.53% Ford E-Series Wagon Van 2012 4.75% Dodge Challenger SRT8 2011 3.99% Mercedes-Benz S-Class Sedan 2012 3.48% Hyundai Azera Sedan 2012 3.48% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Lamborghini Reventon Coupe 2008 4.13% Hyundai Azera Sedan 2012 3.68% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.45% Bugatti Veyron 16.4 Coupe 2009 3.13% Bugatti Veyron 16.4 Convertible 2009 2.84% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 2.52% Ford Expedition EL SUV 2009 2.21% Chevrolet Silverado 1500 Extended Cab 2012 1.97% Chevrolet Silverado 2500HD Regular Cab 2012 1.79% Hyundai Genesis Sedan 2012 1.67% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 BMW X3 SUV 2012 4.26% Audi TT Hatchback 2011 3.58% Audi A5 Coupe 2012 3.48% BMW ActiveHybrid 5 Sedan 2012 2.87% MINI Cooper Roadster Convertible 2012 2.56% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 BMW X3 SUV 2012 3.26% BMW X5 SUV 2007 2.78% Mazda Tribute SUV 2011 2.52% Ford E-Series Wagon Van 2012 2.37% Land Rover LR2 SUV 2012 2.31% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 BMW X5 SUV 2007 4.45% Jeep Compass SUV 2012 3.67% Hyundai Santa Fe SUV 2012 3.23% Land Rover Range Rover SUV 2012 2.68% Ford Edge SUV 2012 2.55% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Mercedes-Benz 300-Class Convertible 1993 3.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.29% Aston Martin V8 Vantage Coupe 2012 1.87% Plymouth Neon Coupe 1999 1.72% Lamborghini Reventon Coupe 2008 1.57% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 6.22% Dodge Sprinter Cargo Van 2009 3.08% Nissan Leaf Hatchback 2012 2.4% Daewoo Nubira Wagon 2002 2.17% Suzuki Aerio Sedan 2007 1.94% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Dodge Caliber Wagon 2007 3.76% smart fortwo Convertible 2012 3.25% Volvo C30 Hatchback 2012 2.85% Spyker C8 Coupe 2009 2.09% Daewoo Nubira Wagon 2002 1.98% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Jeep Grand Cherokee SUV 2012 1.96% Land Rover Range Rover SUV 2012 1.86% Rolls-Royce Ghost Sedan 2012 1.7% Volvo 240 Sedan 1993 1.65% Ford F-150 Regular Cab 2012 1.46% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Chevrolet Corvette ZR1 2012 5.97% Porsche Panamera Sedan 2012 2.57% Eagle Talon Hatchback 1998 2.49% Lamborghini Reventon Coupe 2008 2.46% Aston Martin V8 Vantage Coupe 2012 2.24% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Dodge Caliber Wagon 2007 2.2% Hyundai Elantra Sedan 2007 1.92% Chevrolet Monte Carlo Coupe 2007 1.51% Chevrolet Silverado 1500 Regular Cab 2012 1.49% Honda Accord Coupe 2012 1.46% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Daewoo Nubira Wagon 2002 3.46% Plymouth Neon Coupe 1999 2.88% Chevrolet Malibu Sedan 2007 2.43% Chevrolet Impala Sedan 2007 1.87% Dodge Caravan Minivan 1997 1.77% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.59% Lamborghini Reventon Coupe 2008 4.08% Aston Martin V8 Vantage Coupe 2012 3.72% Chevrolet Corvette ZR1 2012 3.64% Mercedes-Benz 300-Class Convertible 1993 3.29% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 3.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.74% Dodge Caravan Minivan 1997 2.68% Plymouth Neon Coupe 1999 2.48% Nissan Leaf Hatchback 2012 2.33% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Mercedes-Benz 300-Class Convertible 1993 3.98% Lamborghini Reventon Coupe 2008 2.38% Bugatti Veyron 16.4 Coupe 2009 2.36% Chrysler 300 SRT-8 2010 2.24% BMW M6 Convertible 2010 2.1% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 AM General Hummer SUV 2000 8.9% Bentley Mulsanne Sedan 2011 4.45% Spyker C8 Convertible 2009 4.2% Bentley Arnage Sedan 2009 3.78% Jeep Patriot SUV 2012 3.2% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Dodge Ram Pickup 3500 Crew Cab 2010 3.22% Mercedes-Benz C-Class Sedan 2012 2.85% Toyota 4Runner SUV 2012 2.76% Ford Expedition EL SUV 2009 2.57% Ford F-450 Super Duty Crew Cab 2012 2.32% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 3.13% Lincoln Town Car Sedan 2011 3.07% Acura TL Sedan 2012 2.15% Scion xD Hatchback 2012 2.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.86% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Bentley Arnage Sedan 2009 6.61% Jeep Patriot SUV 2012 3.72% FIAT 500 Abarth 2012 3.12% Jeep Compass SUV 2012 2.67% Land Rover LR2 SUV 2012 2.55% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Dodge Caliber Wagon 2007 6.76% Suzuki SX4 Hatchback 2012 2.83% BMW 1 Series Coupe 2012 2.46% Volkswagen Golf Hatchback 1991 2.35% Nissan Juke Hatchback 2012 2.04% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 15.57% Chevrolet Express Cargo Van 2007 10.96% GMC Savana Van 2012 10.03% Chevrolet Express Van 2007 4.62% Mercedes-Benz Sprinter Van 2012 4.12% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 3.6% BMW 1 Series Coupe 2012 3.21% Honda Accord Coupe 2012 2.14% Dodge Caliber Wagon 2007 1.77% Hyundai Elantra Sedan 2007 1.45% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Chevrolet Express Cargo Van 2007 7.82% GMC Savana Van 2012 5.64% Chevrolet Express Van 2007 4.4% Dodge Caravan Minivan 1997 2.14% Buick Rainier SUV 2007 2.14% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Rolls-Royce Phantom Sedan 2012 8.88% Chevrolet Sonic Sedan 2012 2.34% Bentley Arnage Sedan 2009 2.03% Hyundai Azera Sedan 2012 1.93% smart fortwo Convertible 2012 1.9% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Hyundai Elantra Sedan 2007 4.32% Dodge Caliber Wagon 2007 2.93% Suzuki SX4 Hatchback 2012 2.67% Dodge Charger Sedan 2012 2.38% Dodge Journey SUV 2012 2.26% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 MINI Cooper Roadster Convertible 2012 3.72% Mercedes-Benz S-Class Sedan 2012 2.07% Hyundai Azera Sedan 2012 2.01% Dodge Challenger SRT8 2011 1.93% Bentley Mulsanne Sedan 2011 1.84% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Lamborghini Aventador Coupe 2012 8.31% Ferrari California Convertible 2012 8.22% Ferrari 458 Italia Coupe 2012 6.5% Ferrari 458 Italia Convertible 2012 6.1% Volvo C30 Hatchback 2012 4.55% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 1.73% Hyundai Tucson SUV 2012 1.48% Ford F-150 Regular Cab 2007 1.43% Jeep Patriot SUV 2012 1.35% Land Rover Range Rover SUV 2012 1.34% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 MINI Cooper Roadster Convertible 2012 3.1% Mercedes-Benz C-Class Sedan 2012 2.38% Audi S6 Sedan 2011 2.19% Hyundai Genesis Sedan 2012 1.96% Bentley Mulsanne Sedan 2011 1.92% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Lamborghini Reventon Coupe 2008 2.21% Mercedes-Benz 300-Class Convertible 1993 2.13% Chevrolet Corvette ZR1 2012 1.98% Bugatti Veyron 16.4 Coupe 2009 1.8% Aston Martin V8 Vantage Coupe 2012 1.57% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 19.46% Ferrari 458 Italia Convertible 2012 10.39% Ferrari California Convertible 2012 7.74% Ferrari 458 Italia Coupe 2012 6.01% Chevrolet Corvette Convertible 2012 3.86% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 2.53% Chevrolet Silverado 2500HD Regular Cab 2012 2.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.91% Toyota 4Runner SUV 2012 1.86% Ford Edge SUV 2012 1.86% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 29.85% McLaren MP4-12C Coupe 2012 17.46% Lamborghini Aventador Coupe 2012 10.96% Chevrolet Corvette Convertible 2012 6.45% Ferrari California Convertible 2012 3.96% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 BMW 1 Series Coupe 2012 4.7% Dodge Caliber Wagon 2007 4.11% Honda Accord Coupe 2012 3.49% Hyundai Elantra Sedan 2007 2.95% Hyundai Accent Sedan 2012 2.74% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 2.8% Ram C/V Cargo Van Minivan 2012 2.58% Audi A5 Coupe 2012 2.51% Audi TT Hatchback 2011 2.17% BMW 1 Series Convertible 2012 1.89% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Dodge Sprinter Cargo Van 2009 6.42% Ram C/V Cargo Van Minivan 2012 5.66% Mercedes-Benz Sprinter Van 2012 5.17% Acura TSX Sedan 2012 3.26% Volkswagen Golf Hatchback 2012 3.16% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Dodge Caravan Minivan 1997 4.74% Mercedes-Benz Sprinter Van 2012 4.58% Dodge Sprinter Cargo Van 2009 2.73% Hyundai Tucson SUV 2012 2.58% Chevrolet Express Cargo Van 2007 2.45% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Ford E-Series Wagon Van 2012 5.67% Isuzu Ascender SUV 2008 3.86% Chrysler Aspen SUV 2009 2.19% Dodge Challenger SRT8 2011 2.15% Chevrolet Silverado 1500 Extended Cab 2012 1.9% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Ferrari 458 Italia Coupe 2012 4.71% Geo Metro Convertible 1993 4.35% Ferrari California Convertible 2012 4.2% Audi TT RS Coupe 2012 4.08% BMW M3 Coupe 2012 3.35% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 18.02% Dodge Sprinter Cargo Van 2009 9.36% GMC Savana Van 2012 9.24% Chevrolet Express Cargo Van 2007 4.33% Chevrolet Express Van 2007 2.54% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 MINI Cooper Roadster Convertible 2012 3.93% Mercedes-Benz S-Class Sedan 2012 3.35% Audi A5 Coupe 2012 2.93% BMW X3 SUV 2012 2.7% Audi S6 Sedan 2011 2.56% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Ford Freestar Minivan 2007 1.85% Chevrolet Malibu Sedan 2007 1.67% Chevrolet Express Van 2007 1.36% Buick Rainier SUV 2007 1.35% GMC Savana Van 2012 1.35% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 FIAT 500 Convertible 2012 2.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.57% Maybach Landaulet Convertible 2012 2.25% Ram C/V Cargo Van Minivan 2012 2.07% Lincoln Town Car Sedan 2011 2.04% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.85% Audi V8 Sedan 1994 3.01% Chrysler 300 SRT-8 2010 1.8% Audi S5 Coupe 2012 1.72% Infiniti G Coupe IPL 2012 1.65% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Rolls-Royce Phantom Sedan 2012 2.07% Cadillac Escalade EXT Crew Cab 2007 1.84% Chrysler Aspen SUV 2009 1.59% Hyundai Genesis Sedan 2012 1.58% Chrysler 300 SRT-8 2010 1.44% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Chevrolet Silverado 1500 Extended Cab 2012 4.03% Dodge Ram Pickup 3500 Crew Cab 2010 2.71% Dodge Dakota Crew Cab 2010 2.65% Dodge Ram Pickup 3500 Quad Cab 2009 2.58% GMC Canyon Extended Cab 2012 2.56% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 4.87% Cadillac Escalade EXT Crew Cab 2007 4.22% Bentley Arnage Sedan 2009 4.07% Land Rover Range Rover SUV 2012 3.08% Jeep Patriot SUV 2012 2.69% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 4.44% Dodge Ram Pickup 3500 Quad Cab 2009 4.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.0% Ford Edge SUV 2012 2.88% GMC Canyon Extended Cab 2012 2.7% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Ferrari 458 Italia Convertible 2012 26.66% Ferrari California Convertible 2012 15.84% Ferrari 458 Italia Coupe 2012 11.74% Audi TT RS Coupe 2012 8.03% Lamborghini Aventador Coupe 2012 6.79% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Hyundai Elantra Sedan 2007 3.82% Chevrolet Cobalt SS 2010 3.28% Dodge Magnum Wagon 2008 3.21% Honda Accord Coupe 2012 2.96% Chevrolet HHR SS 2010 2.59% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Lamborghini Reventon Coupe 2008 2.32% Chevrolet Corvette ZR1 2012 2.01% Jeep Patriot SUV 2012 1.57% Spyker C8 Convertible 2009 1.5% Land Rover Range Rover SUV 2012 1.48% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 BMW M6 Convertible 2010 2.54% Chrysler 300 SRT-8 2010 2.51% Chevrolet TrailBlazer SS 2009 1.79% Bentley Continental GT Coupe 2007 1.33% Mercedes-Benz C-Class Sedan 2012 1.32% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.79% Chevrolet Silverado 1500 Extended Cab 2012 1.66% Audi V8 Sedan 1994 1.45% Dodge Dakota Club Cab 2007 1.4% Dodge Ram Pickup 3500 Crew Cab 2010 1.3% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Rolls-Royce Phantom Sedan 2012 5.25% Chrysler 300 SRT-8 2010 3.77% BMW M6 Convertible 2010 3.1% Bentley Continental GT Coupe 2007 2.64% Hyundai Genesis Sedan 2012 2.42% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Express Cargo Van 2007 2.15% Dodge Caravan Minivan 1997 1.98% Mercedes-Benz 300-Class Convertible 1993 1.64% Acura TL Sedan 2012 1.57% Lincoln Town Car Sedan 2011 1.55% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Geo Metro Convertible 1993 6.26% Ferrari 458 Italia Convertible 2012 5.89% Ferrari 458 Italia Coupe 2012 4.13% Ford GT Coupe 2006 3.02% BMW 3 Series Sedan 2012 2.83% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Hyundai Elantra Sedan 2007 3.66% Volkswagen Beetle Hatchback 2012 3.32% Honda Accord Coupe 2012 3.0% Chevrolet Cobalt SS 2010 2.93% Hyundai Accent Sedan 2012 2.85% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Infiniti G Coupe IPL 2012 1.74% Bugatti Veyron 16.4 Coupe 2009 1.68% BMW M6 Convertible 2010 1.45% Aston Martin V8 Vantage Coupe 2012 1.44% Hyundai Genesis Sedan 2012 1.44% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 2.16% Maybach Landaulet Convertible 2012 2.09% Bugatti Veyron 16.4 Coupe 2009 1.96% Mercedes-Benz 300-Class Convertible 1993 1.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.85% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Aston Martin V8 Vantage Coupe 2012 2.49% Bugatti Veyron 16.4 Coupe 2009 2.28% Mercedes-Benz 300-Class Convertible 1993 2.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.11% Chrysler 300 SRT-8 2010 1.52% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Chrysler Sebring Convertible 2010 2.29% Chevrolet Malibu Sedan 2007 1.7% Daewoo Nubira Wagon 2002 1.69% Chevrolet Malibu Hybrid Sedan 2010 1.63% Lincoln Town Car Sedan 2011 1.57% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Rolls-Royce Phantom Sedan 2012 2.76% smart fortwo Convertible 2012 2.08% Hyundai Azera Sedan 2012 1.84% Mercedes-Benz E-Class Sedan 2012 1.77% Mercedes-Benz S-Class Sedan 2012 1.61% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 MINI Cooper Roadster Convertible 2012 6.19% Hyundai Azera Sedan 2012 3.17% Mercedes-Benz S-Class Sedan 2012 2.65% Rolls-Royce Phantom Sedan 2012 2.44% Mercedes-Benz E-Class Sedan 2012 2.25% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Chevrolet Corvette ZR1 2012 4.86% Aston Martin V8 Vantage Coupe 2012 2.53% Eagle Talon Hatchback 1998 2.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.12% Volkswagen Golf Hatchback 1991 2.04% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 McLaren MP4-12C Coupe 2012 9.93% Aston Martin Virage Coupe 2012 8.2% Volvo C30 Hatchback 2012 4.18% Hyundai Veloster Hatchback 2012 4.14% BMW 1 Series Coupe 2012 2.91% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 4.73% Chrysler 300 SRT-8 2010 4.38% BMW M6 Convertible 2010 3.16% Chevrolet Silverado 1500 Regular Cab 2012 2.75% Chevrolet Silverado 2500HD Regular Cab 2012 2.17% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.26% Nissan Leaf Hatchback 2012 1.79% Lamborghini Reventon Coupe 2008 1.74% Daewoo Nubira Wagon 2002 1.6% Maybach Landaulet Convertible 2012 1.58% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Mercedes-Benz Sprinter Van 2012 1.83% Ford E-Series Wagon Van 2012 1.66% Honda Odyssey Minivan 2007 1.56% Chrysler Aspen SUV 2009 1.37% Dodge Challenger SRT8 2011 1.3% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Bentley Arnage Sedan 2009 11.32% FIAT 500 Abarth 2012 7.33% Spyker C8 Convertible 2009 4.55% Jeep Compass SUV 2012 3.83% Bentley Mulsanne Sedan 2011 3.68% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 3.53% Ford Ranger SuperCab 2011 3.4% GMC Canyon Extended Cab 2012 3.1% Dodge Dakota Crew Cab 2010 2.96% Dodge Ram Pickup 3500 Quad Cab 2009 2.32% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Chevrolet Malibu Sedan 2007 4.17% GMC Savana Van 2012 3.86% Hyundai Tucson SUV 2012 3.72% Dodge Caravan Minivan 1997 3.48% Plymouth Neon Coupe 1999 3.45% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 AM General Hummer SUV 2000 21.72% McLaren MP4-12C Coupe 2012 11.6% Lamborghini Diablo Coupe 2001 10.82% Acura Integra Type R 2001 10.64% Chevrolet Corvette Convertible 2012 8.39% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Mercedes-Benz 300-Class Convertible 1993 4.11% Fisker Karma Sedan 2012 3.65% Bugatti Veyron 16.4 Coupe 2009 2.37% Acura TL Type-S 2008 2.36% Aston Martin V8 Vantage Coupe 2012 2.22% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 9.42% Dodge Caliber Wagon 2012 2.41% Hyundai Elantra Sedan 2007 2.02% Suzuki SX4 Hatchback 2012 1.96% BMW X6 SUV 2012 1.92% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 11.49% Dodge Sprinter Cargo Van 2009 8.85% Chevrolet Express Cargo Van 2007 2.75% Dodge Caravan Minivan 1997 2.67% GMC Savana Van 2012 2.2% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Dodge Caravan Minivan 1997 4.57% Plymouth Neon Coupe 1999 3.38% Mercedes-Benz 300-Class Convertible 1993 3.12% Lamborghini Reventon Coupe 2008 2.79% Daewoo Nubira Wagon 2002 2.68% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Acura Integra Type R 2001 11.68% Chevrolet Corvette Convertible 2012 10.59% Geo Metro Convertible 1993 9.45% McLaren MP4-12C Coupe 2012 7.01% Lamborghini Diablo Coupe 2001 6.11% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Mercedes-Benz S-Class Sedan 2012 3.38% Audi TT Hatchback 2011 3.32% MINI Cooper Roadster Convertible 2012 3.29% BMW ActiveHybrid 5 Sedan 2012 2.65% Mercedes-Benz SL-Class Coupe 2009 2.0% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Hyundai Azera Sedan 2012 2.16% Suzuki SX4 Sedan 2012 1.38% Ford Freestar Minivan 2007 1.36% Rolls-Royce Phantom Sedan 2012 1.29% Chrysler PT Cruiser Convertible 2008 1.19% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Geo Metro Convertible 1993 10.71% Ferrari 458 Italia Convertible 2012 5.24% Ferrari 458 Italia Coupe 2012 4.26% BMW M3 Coupe 2012 3.7% Hyundai Veloster Hatchback 2012 3.52% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Isuzu Ascender SUV 2008 3.4% Dodge Ram Pickup 3500 Crew Cab 2010 3.28% Audi S6 Sedan 2011 3.14% Chevrolet Tahoe Hybrid SUV 2012 2.86% Ford F-450 Super Duty Crew Cab 2012 2.77% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.11% Bentley Continental Supersports Conv. Convertible 2012 2.79% Maybach Landaulet Convertible 2012 2.54% smart fortwo Convertible 2012 1.97% Spyker C8 Coupe 2009 1.84% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 FIAT 500 Convertible 2012 5.57% Nissan Leaf Hatchback 2012 5.38% Bugatti Veyron 16.4 Convertible 2009 3.62% Acura Integra Type R 2001 2.46% Daewoo Nubira Wagon 2002 2.44% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 9.94% Chevrolet Express Cargo Van 2007 5.88% Dodge Sprinter Cargo Van 2009 3.93% Mercedes-Benz Sprinter Van 2012 3.19% Buick Rainier SUV 2007 2.59% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 5.37% Mercedes-Benz Sprinter Van 2012 3.8% Dodge Challenger SRT8 2011 3.08% Buick Enclave SUV 2012 1.82% Mazda Tribute SUV 2011 1.77% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Ram C/V Cargo Van Minivan 2012 2.96% Audi TT Hatchback 2011 2.89% Audi A5 Coupe 2012 2.7% Mercedes-Benz Sprinter Van 2012 2.39% Mercedes-Benz S-Class Sedan 2012 2.08% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Isuzu Ascender SUV 2008 2.41% Dodge Ram Pickup 3500 Crew Cab 2010 2.36% Chevrolet Avalanche Crew Cab 2012 2.36% Chevrolet Silverado 1500 Extended Cab 2012 2.15% Dodge Dakota Crew Cab 2010 2.12% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Rolls-Royce Phantom Sedan 2012 6.16% Hyundai Azera Sedan 2012 4.91% Bentley Arnage Sedan 2009 4.22% Spyker C8 Convertible 2009 4.01% Bentley Mulsanne Sedan 2011 2.58% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Fisker Karma Sedan 2012 2.81% FIAT 500 Convertible 2012 2.25% Mercedes-Benz E-Class Sedan 2012 2.15% Mercedes-Benz 300-Class Convertible 1993 1.85% Ford GT Coupe 2006 1.83% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 3.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.28% Mercedes-Benz S-Class Sedan 2012 2.82% Spyker C8 Coupe 2009 2.36% Bentley Continental Supersports Conv. Convertible 2012 2.31% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 3.3% Dodge Ram Pickup 3500 Crew Cab 2010 3.22% Chrysler Aspen SUV 2009 2.31% Ford Expedition EL SUV 2009 2.2% Isuzu Ascender SUV 2008 2.18% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 Audi V8 Sedan 1994 2.54% Audi 100 Wagon 1994 1.74% Audi S5 Coupe 2012 1.74% Chevrolet Silverado 2500HD Regular Cab 2012 1.5% Chevrolet Express Cargo Van 2007 1.42% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 11.32% Nissan Leaf Hatchback 2012 9.12% Hyundai Elantra Sedan 2007 4.51% Jaguar XK XKR 2012 2.62% Volkswagen Beetle Hatchback 2012 2.59% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Audi S6 Sedan 2011 2.96% Audi R8 Coupe 2012 2.9% Mercedes-Benz C-Class Sedan 2012 2.23% MINI Cooper Roadster Convertible 2012 2.08% Audi S5 Coupe 2012 1.92% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.83% Maybach Landaulet Convertible 2012 4.2% Bugatti Veyron 16.4 Convertible 2009 2.82% FIAT 500 Convertible 2012 2.53% Mercedes-Benz S-Class Sedan 2012 2.5% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Sprinter Cargo Van 2009 6.24% GMC Savana Van 2012 4.17% Mercedes-Benz Sprinter Van 2012 3.34% Ram C/V Cargo Van Minivan 2012 3.29% Honda Odyssey Minivan 2007 1.93% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.91% Chevrolet Silverado 1500 Regular Cab 2012 1.91% Chevrolet Silverado 1500 Extended Cab 2012 1.8% Ford F-150 Regular Cab 2012 1.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.74% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.26% Chevrolet Avalanche Crew Cab 2012 2.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.05% Chevrolet Silverado 1500 Regular Cab 2012 1.95% Ford F-150 Regular Cab 2012 1.77% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Jaguar XK XKR 2012 2.54% Porsche Panamera Sedan 2012 2.49% Chevrolet Corvette ZR1 2012 2.31% Aston Martin V8 Vantage Coupe 2012 2.26% Acura TL Sedan 2012 1.59% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Mercedes-Benz Sprinter Van 2012 3.71% GMC Savana Van 2012 3.42% Dodge Caravan Minivan 1997 3.05% Dodge Sprinter Cargo Van 2009 3.04% Chevrolet Express Cargo Van 2007 2.18% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Bentley Mulsanne Sedan 2011 2.68% Bentley Arnage Sedan 2009 2.5% Bugatti Veyron 16.4 Coupe 2009 2.32% Ford Expedition EL SUV 2009 2.25% Land Rover Range Rover SUV 2012 2.22% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Audi RS 4 Convertible 2008 6.9% Geo Metro Convertible 1993 6.49% Lamborghini Diablo Coupe 2001 5.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.42% Acura Integra Type R 2001 3.96% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 9.89% Dodge Ram Pickup 3500 Quad Cab 2009 8.07% BMW X6 SUV 2012 6.43% Ford Ranger SuperCab 2011 5.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.13% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Mercedes-Benz Sprinter Van 2012 2.04% Dodge Sprinter Cargo Van 2009 2.01% GMC Savana Van 2012 1.96% Ram C/V Cargo Van Minivan 2012 1.51% Honda Odyssey Minivan 2007 1.42% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Rolls-Royce Phantom Sedan 2012 2.71% Chrysler 300 SRT-8 2010 1.83% Bentley Continental GT Coupe 2007 1.68% Lamborghini Reventon Coupe 2008 1.6% BMW M6 Convertible 2010 1.53% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 5.65% smart fortwo Convertible 2012 4.1% Bugatti Veyron 16.4 Convertible 2009 3.52% Nissan Leaf Hatchback 2012 2.89% Bentley Continental Supersports Conv. Convertible 2012 2.61% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Audi A5 Coupe 2012 4.73% BMW X3 SUV 2012 3.22% Audi S5 Coupe 2012 2.72% Audi S6 Sedan 2011 2.29% Audi TT Hatchback 2011 2.22% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Rolls-Royce Ghost Sedan 2012 3.89% Bentley Mulsanne Sedan 2011 2.55% BMW M6 Convertible 2010 2.49% Mercedes-Benz C-Class Sedan 2012 2.27% Chrysler 300 SRT-8 2010 1.96% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Chevrolet Express Van 2007 2.86% GMC Savana Van 2012 2.7% Chevrolet Express Cargo Van 2007 1.79% Ford Freestar Minivan 2007 1.74% Chevrolet Impala Sedan 2007 1.72% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Chevrolet TrailBlazer SS 2009 2.65% Ford F-450 Super Duty Crew Cab 2012 2.53% Chevrolet Silverado 2500HD Regular Cab 2012 2.38% Dodge Ram Pickup 3500 Quad Cab 2009 2.28% Dodge Ram Pickup 3500 Crew Cab 2010 2.13% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 BMW M3 Coupe 2012 5.55% Ferrari 458 Italia Coupe 2012 5.02% Plymouth Neon Coupe 1999 4.67% Ferrari California Convertible 2012 3.81% Ferrari 458 Italia Convertible 2012 3.51% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Acura TL Sedan 2012 3.57% Acura ZDX Hatchback 2012 2.87% Porsche Panamera Sedan 2012 2.48% Volkswagen Beetle Hatchback 2012 2.14% Jaguar XK XKR 2012 2.11% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Jeep Wrangler SUV 2012 10.01% HUMMER H3T Crew Cab 2010 8.46% BMW X6 SUV 2012 7.91% HUMMER H2 SUT Crew Cab 2009 5.19% Dodge Caliber Wagon 2007 4.37% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 3.08% Rolls-Royce Phantom Sedan 2012 2.81% Bugatti Veyron 16.4 Coupe 2009 2.37% BMW M6 Convertible 2010 2.0% Bentley Continental GT Coupe 2007 1.96% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Porsche Panamera Sedan 2012 5.46% Chevrolet Corvette ZR1 2012 3.86% Jaguar XK XKR 2012 3.59% Suzuki Aerio Sedan 2007 2.71% Toyota Camry Sedan 2012 2.67% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Maybach Landaulet Convertible 2012 6.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.71% Bugatti Veyron 16.4 Convertible 2009 3.5% FIAT 500 Convertible 2012 3.47% Bentley Continental Supersports Conv. Convertible 2012 2.66% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Lincoln Town Car Sedan 2011 3.98% Chevrolet Impala Sedan 2007 2.22% Chrysler Sebring Convertible 2010 2.19% Ram C/V Cargo Van Minivan 2012 2.1% Daewoo Nubira Wagon 2002 2.06% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 3.58% Audi S6 Sedan 2011 2.64% MINI Cooper Roadster Convertible 2012 2.57% Audi R8 Coupe 2012 2.34% Hyundai Genesis Sedan 2012 2.18% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Chrysler 300 SRT-8 2010 2.55% Ford F-150 Regular Cab 2007 2.47% Cadillac Escalade EXT Crew Cab 2007 2.25% Chevrolet Avalanche Crew Cab 2012 2.03% Dodge Durango SUV 2007 1.83% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Land Rover Range Rover SUV 2012 2.76% Chrysler 300 SRT-8 2010 2.59% Chevrolet TrailBlazer SS 2009 2.55% Jeep Compass SUV 2012 2.51% Hyundai Santa Fe SUV 2012 2.37% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Porsche Panamera Sedan 2012 2.48% Infiniti G Coupe IPL 2012 2.23% Chevrolet Corvette ZR1 2012 2.02% Jaguar XK XKR 2012 1.64% BMW ActiveHybrid 5 Sedan 2012 1.52% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 13.66% Dodge Sprinter Cargo Van 2009 6.57% Chrysler Town and Country Minivan 2012 2.97% Acura TSX Sedan 2012 2.78% Ram C/V Cargo Van Minivan 2012 2.65% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Spyker C8 Convertible 2009 2.41% Hyundai Genesis Sedan 2012 2.41% Bentley Mulsanne Sedan 2011 2.21% Rolls-Royce Phantom Sedan 2012 2.17% Bugatti Veyron 16.4 Coupe 2009 2.01% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Audi TT Hatchback 2011 8.58% BMW ActiveHybrid 5 Sedan 2012 4.24% Audi A5 Coupe 2012 3.82% MINI Cooper Roadster Convertible 2012 3.31% BMW X3 SUV 2012 2.81% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 4.01% BMW X6 SUV 2012 3.62% HUMMER H3T Crew Cab 2010 3.09% Ford Edge SUV 2012 2.97% Dodge Caliber Wagon 2007 1.98% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Dodge Caliber Wagon 2007 4.76% Volkswagen Golf Hatchback 1991 2.94% BMW X6 SUV 2012 2.2% Suzuki SX4 Hatchback 2012 1.77% Nissan Juke Hatchback 2012 1.58% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 11.83% Nissan Leaf Hatchback 2012 7.02% Geo Metro Convertible 1993 3.7% Daewoo Nubira Wagon 2002 2.92% Maybach Landaulet Convertible 2012 2.82% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Dodge Challenger SRT8 2011 3.52% Rolls-Royce Phantom Sedan 2012 3.42% MINI Cooper Roadster Convertible 2012 1.9% Hyundai Genesis Sedan 2012 1.87% Hyundai Azera Sedan 2012 1.83% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 BMW X3 SUV 2012 3.75% Audi V8 Sedan 1994 2.4% Audi 100 Sedan 1994 2.4% Audi S5 Coupe 2012 2.39% Audi TT Hatchback 2011 2.24% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 BMW X3 SUV 2012 3.54% Audi S5 Coupe 2012 3.32% Audi TT Hatchback 2011 3.07% Mercedes-Benz SL-Class Coupe 2009 2.39% Audi A5 Coupe 2012 2.34% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Chrysler 300 SRT-8 2010 1.69% GMC Terrain SUV 2012 1.65% Chevrolet TrailBlazer SS 2009 1.55% Dodge Dakota Club Cab 2007 1.52% Volkswagen Golf Hatchback 1991 1.49% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Lincoln Town Car Sedan 2011 5.39% Chevrolet Express Van 2007 5.23% Chevrolet Express Cargo Van 2007 4.29% GMC Savana Van 2012 3.51% Dodge Caravan Minivan 1997 3.42% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 6.13% Chevrolet Silverado 1500 Regular Cab 2012 3.07% Dodge Charger Sedan 2012 2.35% Dodge Caliber Wagon 2012 2.31% HUMMER H3T Crew Cab 2010 2.18% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X5 SUV 2007 3.69% Ford E-Series Wagon Van 2012 2.5% Jeep Compass SUV 2012 2.46% Hyundai Santa Fe SUV 2012 2.33% Cadillac SRX SUV 2012 2.18% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Porsche Panamera Sedan 2012 3.51% Acura TL Sedan 2012 3.06% Jaguar XK XKR 2012 3.04% Acura ZDX Hatchback 2012 2.39% Dodge Caravan Minivan 1997 2.21% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Chrysler 300 SRT-8 2010 2.05% Chevrolet TrailBlazer SS 2009 1.93% Cadillac Escalade EXT Crew Cab 2007 1.86% Land Rover Range Rover SUV 2012 1.85% Jeep Grand Cherokee SUV 2012 1.82% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 5.93% Ferrari California Convertible 2012 5.93% BMW M3 Coupe 2012 5.41% Ferrari 458 Italia Convertible 2012 4.82% Chevrolet Corvette Convertible 2012 3.52% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 FIAT 500 Abarth 2012 10.34% Spyker C8 Convertible 2009 6.03% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.63% Lamborghini Reventon Coupe 2008 5.37% Bugatti Veyron 16.4 Coupe 2009 4.53% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Audi A5 Coupe 2012 1.88% Chevrolet Silverado 2500HD Regular Cab 2012 1.75% BMW X3 SUV 2012 1.74% Toyota Sequoia SUV 2012 1.67% Audi TT Hatchback 2011 1.55% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Ford F-150 Regular Cab 2007 2.28% Chrysler 300 SRT-8 2010 2.04% Chevrolet TrailBlazer SS 2009 1.8% Cadillac Escalade EXT Crew Cab 2007 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.53% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Ford E-Series Wagon Van 2012 5.82% Hyundai Santa Fe SUV 2012 5.65% BMW X5 SUV 2007 4.72% Isuzu Ascender SUV 2008 3.2% Chrysler Aspen SUV 2009 2.92% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Dodge Caliber Wagon 2007 5.99% Chevrolet Traverse SUV 2012 2.69% BMW X6 SUV 2012 2.68% Buick Rainier SUV 2007 2.56% BMW 1 Series Coupe 2012 2.45% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Geo Metro Convertible 1993 6.16% Nissan Leaf Hatchback 2012 5.78% Maybach Landaulet Convertible 2012 5.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.72% FIAT 500 Convertible 2012 4.58% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 3.84% Chevrolet Express Van 2007 2.85% Dodge Dakota Club Cab 2007 2.4% Audi V8 Sedan 1994 1.95% Hyundai Sonata Sedan 2012 1.76% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 McLaren MP4-12C Coupe 2012 17.78% Acura Integra Type R 2001 16.11% Chevrolet Corvette Convertible 2012 10.7% Lamborghini Diablo Coupe 2001 10.17% Aston Martin Virage Coupe 2012 8.75% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Bugatti Veyron 16.4 Convertible 2009 5.15% FIAT 500 Convertible 2012 4.89% Mercedes-Benz S-Class Sedan 2012 3.49% Fisker Karma Sedan 2012 2.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.49% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Mercedes-Benz C-Class Sedan 2012 2.7% Hyundai Genesis Sedan 2012 2.28% MINI Cooper Roadster Convertible 2012 2.0% Dodge Ram Pickup 3500 Crew Cab 2010 1.63% Audi S6 Sedan 2011 1.56% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 2.42% Suzuki Aerio Sedan 2007 2.28% Ram C/V Cargo Van Minivan 2012 1.98% Jaguar XK XKR 2012 1.97% BMW 1 Series Convertible 2012 1.79% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Chevrolet Silverado 2500HD Regular Cab 2012 2.49% Dodge Ram Pickup 3500 Quad Cab 2009 1.86% Audi S6 Sedan 2011 1.39% Audi A5 Coupe 2012 1.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 5.96% BMW 1 Series Coupe 2012 3.43% Volkswagen Golf Hatchback 1991 2.42% Buick Verano Sedan 2012 2.15% Hyundai Elantra Sedan 2007 1.91% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Fisker Karma Sedan 2012 4.74% Aston Martin V8 Vantage Coupe 2012 3.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.75% Mercedes-Benz 300-Class Convertible 1993 2.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.24% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-2/0.9/small.png b/cars/lr-investigations/exponential/1e-2/0.9/small.png new file mode 100644 index 0000000000000000000000000000000000000000..c1755422067fbcaeca795e8b5ddf967e3a841b07 GIT binary patch literal 99903 zcmdqJby!vH)-^6t(%sUfA}I)xA}uW?U7POiMp9ZzNHZesbDneF z6VG|C@B97n+t=l#Tit6f?t9HS#~fqKJ5WYS1O<^0@xg-!C}N_5?;bpWA$aiM;l?94 z;BRUVH79`IplsfWym?UA_jnC>17pB1$^YO%Nf^?FHZ1TS!BSM&=D`EhmYZKt9TwT3 z2M?~liV5<|J8EoB!@EY0oWk#F!o`EaVFURQyeT?`sja?bS6h00@taWGDz$%qIIF_{ zTG(vExWHby3I-Odt>6hEJb$kr3_R5%=Aj2-of_BNE6L*KkuCycD<3}2R;8%U*vuf& ztTZ^;^zA3_Kdu^mNk(z^TBmlnq{X;<$rdqnz81WF*=8VOGR>N?y|XP*XU4<@H}^_5 z;?k6l*nTPuB@I2jVk2`y|5*(UjTyHaTr z>TE*6Vek;`<57_}e%Y$ta^?JK#~t>*M*}Kj<#?wC8JR^UWn_3bLjy!IIjTZWPj6^y zDnB&S`P^kP(vFaj@W<3tzBnjSt=1YP%E?sKq-0i$xU!%ke=Dj@$11Po`3I?>{UI+{ z=70e`k!JyO&mW~yZ*@XMF0o?8t9R%9Nhw~vQjP^znU1r#3DTI2m%>IzN5{P|2rVR+ zTbhU=y|n4)QG$ev!NS6diiycW%w=T43#qZ}x2FOR4s6xjPnUQ1_690IgW`k#tW1dgtGPO3xO29D^*}1vjCM_C6Ui5K5caVD26;em>o~=^ixN`5* z?c1Wnms%|fpPZjlGB8L1-{$1xBq}c6GF4+Uzp;^LGI@D*+}MGq>6$8D=(gJof7bbd zK5rg37`2;v_+3!!O1hysx9}>bDn+L#m4>=+YaA{3f|xvzY_XW2;Fx3dh%vG2N62z_ zEa@+yyQk%{|MGaYh=jr6cwG$Ln^Pye8P@3=owReU%l(6OO^p_s6mqy(1Pzb6>Ohi= z!93)7cxqX>tF6-Wh>R0%Kis^#|3_CHb04nq0Vy&I`rYT^m!1d66e9#~*p+rv?hk#5 zdQI}lTT?kb|6@9PB4C-ssVI_JV`s{iT@x2n3Rz zmi9)yHaR)@X3+`?6gG-lzI~h9?&GMz`TqU;@R=4LAD_Aaji`h8#7i==rZun@r*$OV zm%2K&<)*!(qtOZw<~hpfc&!5?H#c`&OBaQmot?1+1|ebYM9mA`#aFbi2zc#%-x;+PivOw~-JYDtmc(Av3)f(p^-N_Vo9c%~_O55W3+^;ZHXCLYu3nvD0;A8I@XIF29UTUPeXh zQ*I_M9$ZL1L}l?>QZj@g;^{Bnw}t98eqGPIy2#Avjx|c*fJKUEC|t6lFcFo4tKsW( z^A06}BgpRm-rFl=Y@EvwA*QUX+}YDJOwA$*XVlfzm0egk$_9F?t(|H->E{QhE|4j9 z{&RVG4KsdlY%F`C@=H^fhTbq8CU#UM{nMudY#mVSOTKfB?A>jyv(~*@Zj~;mz6%_%2OO>kX zWCb z4+J_O7Zq)1by%v34o-~;lg1gVL&H^_XHS*0gnxETygfgA%OY*f@+l@JH<1DqvjhsS zG&3>+!sYW4N_I}p05yw{HA`m&9fT>K`V~Qj+479|sMc+AiRP99p#brF3|}MtV_+!E z2l=#96D|L(kwRnjR#EGQ$m+g2&Pow}cq$p`TAY8Jq58Jh1+iFDD}FVq zzMl#XtBJlyM^Z zQ};eRN?$jkuw;Kld;g&q-iFS!z5GNJ;ssYx_b@J2#+HdxK=uvi0>0sDS$i017{LpD z;Lcc`et{(7S%hLc%XfDzdp@%vU0q!PKUrW<&^xn@<>jv?ovcQ)1L-0gnDH#2PV|w= zfdT)Lz9{EbAXiju?asH@p~Sy58l;j);#7$3%vc-B(*5R(02a(FnYA>nu0W|&J+x|6 zs%Sj^J435$A_sa2u+cn~WHO!ZMhLZX!oqLwaRNUz!OxI2b^i25F~p@HnVI&6NT zWRv+!q_N=oV}QcVm?$G0?I2_=M_ZF6=F^<&)=~_j8lUdVGnxc9W(CHRF)_G6q6Z*RYG$TzY$vu;CMBd$tp%iLV^e0VT5}x9c9-ku zo;?Hdd|qCj-2KyOfyEbE%_~c5KFlTbQO(zgSf8rX6uyI)R;T1Wt-t(^g-e^6`l9P7 z^dUk`O^v9eO(?60Ae+W$4So8viK~jCvr(QvQ?~5U0PaNU7SXAur4?EneT@W&C^L%)^ws$7#ICy&ZjgtGkaKaD9J&f3SNOx7fuK z-Jl;oWJdauthfzOj(%kKBO)V%Jew&7#k52KpwSf)5TFGV9u|(M${WlvKRY6Y=hKV2EhmHH9UT`TXT-x;rS5M> zb0VBdD+e1IB733|k%8yuS=OVw)TOGT0w7x&Cun11W8mqCNJO^Y`pzbyFD3Qi zy7t4`#wOzP=Uj2nJ4HoYmKQJV0wtpORjjR9a`WS>hkL_T1ygE){+w=jYAm;(x&QST-{K+h&SJlXTVPnj6^Vv6={K$m zo=a4seowRA5ND_wp$|SlN zi5R0|#D%pXef#H?sXFvTOd>ro$Y0{ioe*6EgF`GoY zO?NC~N2y-7t)%ofuG}@-?`?%v_f+}A67Mf&?v>?Uxk(7sp zr#4zID*}@(7Rb`Z;*FIa@%DJQ&q}3haO=Ut3+AUp5WWW3L&=_)?I%o3;ZShFqO@Mb zup6SZ>=YEo z-?j$zSUz#EubtgHkdfL>*P6~;mnOsT%Io{>bA9?eEWXT3_-U+iN0DEBa+E+$2tYe_ z4RElpPhSTc9tv(bK+tbp9W8dR@Gg^Qy8`ay~_QJ{{Wokf3f6=&Uk+QObAqk zrTEZW8bBEU$rFm(^&phHrSDo491RDOk4N~qFCFl2+XICfg%6Q+S`PzJcho=P`%`05 z>SPkDaSn`^$9WNHp#v*2D48|mJ1ccwz+lJ9X~?Qi%10zenYoamO{+aUWyjHHk8>aXlo3kYrI&Y+y#tJJ*dy;sQF8z|czw2`&QVy_bgDgC4-Yc(TO8F`7V zPJe2PfXYhp<2Nud(P31Bw75H#7@*NYOdH^gbC zgwQ%8=gaoqx3hBJ+&sce#6-q6Y?14xw1j$1WNt%rujtM-Px4n^s6TucET@3kC0WZ} zK^u0LrP6dWZKV7P=Y22&G!6J>kJiIstmhWCG3&`N=)|x~0nSE!$R@VlmB3zUdz5-b z3V{cf#GGX8=<=mHv>;kYdrJT53mSjvQ8wsUD)&#VPNg19@p{rTtvp2qIn6VN|CLPGMXA-W)fhK6Q$3H0D6vhCQZsj0b1TpPWPp=!ElTllBTOPcGHkjhw#9ds>p zSa?LsV_Jue!6saM{LTkHLK#s_q26{GQFJcPfaH;k+;>~Kr5qhOfHqTRQlm<}7MUrI z78>42704hh08Gdzx@j?8U0sJSo0UDi@>?_}n61ZGyLWeM&~)FPU^`a3G$GArGuGp? zIaSS9lfRhc#fOlF^mv|F_WPf#Ca`cHt})alD+HX;Fr?oh?KItBem~t+Z!Cr;n^<1| z9wL^#rA;c;OLAp7DaOmp+v}TXZw)>Kf18F59o@*xB)Na&o|eGeKb%jRnE!24G~>aJ#M=}q6j%A!tT z;J2fM=lH$806OZJa-SDFdnEey8r49kr=Zb5S8pJlTa*}w)@3Bs&fXmnpb}+;6YCk_E+(yAc)PLf*6kQNmx^RVtw^lO2WVd zVmYgCdf|yNu;a;HZg91E_8XYRjqZGv?u|IJ3U2<9-<_u#7_ew(E@|2s+>wH>jtO}C z4X&W?DgvkVZ~o?QeScg@+2(^j4<_YU(~CN8*`XiFf_;-i&;s>5GVD6kQ}st{Dl3H? zdx(xsj`LrOGzZx{Ef(cJE%ytVlrmD!SsHsO@e%({*3$n9JUg!^%E9`m$Z)XSqcN9cOaS8F#oZd4giZY3jG^~YCj zs6aHPPmTQ__+%4DLd`B}{P=2reO|pob^e#|``P3Fh~N9Ztbe_4^0O-xcw~#~aVZs3 zcIYsN5M^eUToa4n@pQ}SP$2ViN{ zJPjC};Eec01t!8~TM`!w1@^s4vb(O?))Dbm9bT=>PbQb~`=TBWirin%-vAw!ASj{{ zCyt#)IQG0STMHuhRQl0coIrEDOA-F;(Y5({b&hr9*$~c7K-Ij9+QX^(?-Lr-hRDva z?2R@ra6L+^J8I?L3;l-_;m}qRbi<*nf!SCNLwk}xnJ5)%vxr->h)#a5kIiqs&7E{k ziJgQu7y!*WbckKuJR1@LQnoSSghzmis{a?O9cA#6 z1RXbY**xDF`ANzN6QasY^GaJv9ycoALTGJm4RlYsjq_vp-28stt{GLA%#5k4TD*Q~ zzP7E0&94O{;`m6e=aGF+9Mr&;=ZR4zTJ5Pm$dm#X^46lY;K&-oDUZ(#;~$X-{GVzY ztiB^+UrG3Qu~x>HTAnE%3!ad5ez0T4$gc>MK6$rgKGSmuEP@@BB^5XTL^J^5TU{o- z|3K}iWmZyX6dM<}%Cy*g+Wi(Ulr*$|o0qhI#+LKSrNuVmV$bzL{|Mjh=*M=PO(}0_ z4&CRl^&|%}^VOXQOXY{7nhhlV>PLKa%sVJO1Z*OW-8DV$R;258)KWemk-Tk}P8Ms6 z4s#FMxT=M9IkF;ra!YRvXt8Bu^4a6~;Nv-AbcB%>9Z76$>s64GY;&w+SoXv-J&fSz z1y>sUl;lCZzG}AZ;n2pfbbbWH=IREOT|AL5#*)+`^&(gJNuiBYI-QDC3Z2wk!gjq)U}??Y3lv6Ckl|DnTj+7ernI}iW9Qoko1CZP1RJd9 zwvd$(P>mJeVh;~`S2uE?vO~Uxy7IVMtr$5_7#m{qo^E5wvyaYy2;&}j&#cgxo{s17 z63gHt>d040+CWljtK>~m3H|XXcB_696VYGHVhdD|!mO;U8+O`ALqP%O+l}DC+qt-e z8}ZM92xs#PV&1=sM2JKeYZ^eiFa)-*$$3&&=OP0?MVkjqg5iWV7QzfwyS;2>&7V$q zr!<_)sjtUpLT7!k?+>%hnVv052%^iXmeLTreJE`6nLD*Y_z&=(;0CL*>wazlU>E`u zGV2RU1B$&MK{c0O6&!4~EK??#X@!>LpG}0TE)Uk&?G|3ya@Bo%x%RF$g533u!0n}2 z@li@^GBFK{x1OhJAT!xo4i-lhgMMP>C!KR&S**WhRg@6ut>P1~IW)WsE%bvi9TIt& z{^pWt>qHxTpHqAg@X90QW@8|$lwZE4CVcS{so+I7e=?=%{|)g4m&AYQ8vdYLjjoAb z>vy)G)YvZ*(%cFs1ye3vgq!T|Mb5yH9fA4e0Mxi5J4WDi21xs?qfyq?^h(W{iu40n zrEP&{meXzH98Q9-RdaAqdg?#L~(h&7rGZv?2*4kAlw6pi5*!`Ou2=I zMlvAJgoK3Tnjs-_Zubb*)BXhn0sYF(Sl-2Nvi&kEHOKiQgWX|!6~Zq5DcMxL_+(+W za9z?d`BlOh;dkTi1FpNmZ^)z-?v)7MK8V1_VwR8foZw+kn?D~nG z^*gMP=G9Z6z=AP=LGb)M_vOo~FR3*+R~jVX%=F8{^F1GS4^Ioa#t}B+HsQ8~M!YMf zSZApl1W*@_u8Qu{Q$lNjh>EJ{5vd&MDiO)iRk5+QmUDyAKPxFHd?+qvs;+$@We(f* zbYW))?eAp62MrBV>*G{^IfR}s)})8i|z)Z$a-f_7**{*!g_CzHhqm zVcO?2Tb+5GEuXhccGIiemsoz>y8 zxTE1^J=(~i37Efmz+5?9@iCLpoaV!b_{1gWoka%yTH)5}faeNuxi@PRdV- zv@-@J=NFV06;bU|(FzzD<$Qno=9bgDXN$#t_v4_NFaN0@hau)cW(j8=@{?{simmsA z6gs0YYM!!49XrCH;0*ncw|n;8Va7A_`_r=|bp=-WFAABQ9G(B`?)onaTj5se-on}v zyZDgMEaGt2$#=~rI@ z9*%w;4_xd?x_t+Z-;TGJmcqM7lN>gntoL; zpY)c`Hcj{1KaGLJEVfsfx4vRb_Q9!DoU@p{Mp>z|M18qA^`#H%cH?Acmq(w)2doBk zCPRMHUMR1?n-O6Va$|Pv2od)EA08bZ4^oqrv0^oz?>d|`9J#0ujWjY|u=joBl#9(~ z-|R}LUa4TCI*p^UimWf<;o$+OXfm<=+}vDrTwFK@hxV=lvR6VEmzVP^D_JI;Fl**w zlW;IFO%R9@BoZO=M?qcPV}5@A-9L2qh}JL?5|Z^Z>irwGJPHj3MPX}-pu=WV3oYb% z*-7c%S$6swt*`APrhumya^bc@m}$^yc9KdPjVeW9*;T*0VImBS<_A8oAWNECJ@s2l z3qWUk+Jct<2eF1mh5sj+6~9EU0^B&MnOAEXr}WYH!`905jR^+Xb@OY4-hvczTl;L1 zPeNZ%bB5u0?+^+>?Xh zpws((8E)b1AdCPHLzJKNZeIk*bjWnVy+R2)ma#0%>A%IcDS(H~0n+X)JCB)P_WK#K~r${A*V;^D!4FVkltveffoon+pzg&af#!}lt0EgQLf2E{q6|T$##3+n7oQ1byN3awBJ(b z2xZ`ye^}Qz=Qj1~m(&#NCXL{UaQ4}HyYbXfvzej!E4T>JyQ);X>PWS%>~ruwY1j%x z@pH$hP3QbqApb{xIL=&Qzmxg1p)d%w*763h^pt4qXo;H+EHoz)P4tUO-y}72HMcJ@ zJ^D{-IcaXMwvICX?bqBknv_NqjpX3YX13#&YjsFZN7A#L^tx@qtIo>C7mqNxNDzIH zZHK4ro8LRSOfb}MdL!0VO&=b#Lw>1RuI!)7DA{`z-ehf7Ub-`h*t?P*+EcTVoc9o= zP@`(fI@moc9h(~?#aH2Ju(s-Ba-9+mJ)B}&xk+U$!5&sEH{M@nv|Mqxy5g{}WNIqj zj(rFX5UgDKrdnwlUznQgJU3mmyP8Q{Iu7G^>M|c0NNIVNjjqOa$Z?4}x7A~@7mQaq zj%Z#000O?<-N~;(?%Q6DF7q4sKY1jg*LKJL3}#(4UHMO?6>mSc#5jjo&d!-E?6VTu~ zIyywANfTl5ooR8|X?t2C$3~1ty(JM9I~br8dn$X)1428JO1~~|AryagdM^BJD>%G- zp%02!3w`tJ0CPm-F%MxvtvUa(loWGj(NusYcZ%PZP&9Znv*PIkyAOL{m!R#qL+&sAcT&5u0l;TJc`GWC*f$OMjrTDe{{s1atRq+1DjY z_b)eTBv4W_W}TAOG(nnUMBa^p@HqKvjPj%LL6+L*MAuzcXy&fx!t!kL<5Kq*7k!9Q znGsg0v~ZYYL;vyh1^8&cU}Is@7>*Z?U^On=WRo+vS*o&{8)(UDCp+p)Vu3;X&D&_jXJsSR?8_Q;5yyUo)XJ(xnwnxi#iaZO2j8)>u>mqEV15vt ztSql?@R!;7gV@iod3vil-?}BDT^N;pZfI92xIYp5w?N_tGxH)01cAsR&go%t{hF;B zYZ_{mv}v;64>*+&{voq?c z!#(xt%a+MQF8Hea{O2Hj{dLTE8lUo|C6K(5(gq>R*WzNC3Nrx#AD~aqaNGa&3uw-b z08gTss*DVvQDY+niA~0Qs-7tba;D|tA|fCl0Juaz7A2>p6#=-!Bcf20nFV)MP*Q}-W7$KYC1lLX_vrAk_>jq|G9rZ)ye zjne@J*2x3+q&rI>kd^e4Yu0Qpe$_GK6Z2wsz@AfF9W0hy;aLS3bJ^>iE-zv%vkAo} zuF|CVOlR^W9NghPjQCbEXyO+$$s{M2LbSR=#AUl{>ScRbPFNT``R4`o0O1pX?twIw zCq2ZrnealJyPK6$DEu%%WBi!jm$S9vXPN)14myi^LNR7dl*R6q4Eo zS{tl;>I}r|=blztis^E^J@PeF>LY$oi5a5-$S3fUEu_-h$BKN>a#s0x4RhCdW}|w! zUeyxP;V>U@AX2P*jq0X9HwhR(f#qA@*pO9G3Cg7Di(xLPtW>PH_b>vkPZ>EmK$H)9 zK5$3r<<-RJr$`d@YRWAubBzj1)t4$nS2Q=y#ZW_86e4;HxAWgkn9V z8_r=Ymg>Das(3^5*wsRg?HjZDkxl=dNfK_Q`)l^`zs?b#0Q(C4KTi=M?u4KxH`T$@ zw*!54h^lvBPt?>*D6J*m9|JNQsPNt!eiV1(vpq|bdV{M|6(eV*eiC+QmAlJJcWidV z5?a57+?)<=`8ayzco@Q~xN@8uXw7FrUB_rjo53r9|6{Ok#QsV@AIDqV%`(9k2uj)-x|#yHm9w=Ah#BeSe3BZNX< z_0mnOE18;e*_Ti+$BallM6cvV8PchqZGAnzvh1~D&Pluy7W{+F{Qdc9RrS>#{fU6i zOZS7}m6Ox`lr@_^E1Ek$`ar}QB#;!XyJuWIMi_8Kv_!(1Snf-x^SgaN*;{1RZAVsL zeBoUz#u0UMWekw zd?Ou6rtlJD(MbHbGa%_cfF}UCh_mNN#k2jPbl$mD8 z#`Dq;oT1&Jl4EVfgXe;$BHFga?#2*AQ-CbgOJOLBzRL>P9Vbr$;PSEFfIToFmRiqA zc&=sZYE4T*-cSTkNRkPI#1lce|8e9@s&qDz+eIB z^JEK&U`*Ee^%ghA6cgTxuzGI)!|R@lEX0?{g6GFON{pq#Zf-n)n|J^i2mri`6B8;U zmB2^n99G6`F=2IPN?WjfqQAk0zs>a) zM^!~tes0b~_1ZsLRZ+)$P%Q(u3ZA#ptr5ue)rcNf7yXX&-FWh^7fNFp1>S0R^uD{> zR5)lj0z(-~2WVl`{SQU4@P3Zfi>V*vm~@Ak+$z&YaT$?|PTA_FYR&D+09|nV?1aHp z_Tq!{jlH0u=u#u4BFCbzBZ!{P_U>|qy8!nHSAgyTQB{v7$rcm{-ZxU9W}~iNOG+3v zS-DCASEhUCKFo;DxOcM*%r%igA1eQb4_$S85neZaZcA;S&gvJ1>+z6@%!Y(1lYbw# z8|ZxLwyha%B4MMGXOYbJaZ3!iUaTKGabv$bQwsF|J2t$;aEiLstsUU;JH|=Zb4YdC{ zM)x7H3RI#rJ}+4Sdx)g^&Af^-z?J0w$>EEFh&V{i(tF!NEb;P-pt%^a8VbQUF4iPS zcjQNXvy-gF<6~^K$huUFP=B2-3j2)y3oh|3dl)Thl^p)xxg< zr5i=S^m0J4&i!zsTKfX!%(PZqhoSk#TtL64x;tM%s-wRop)fmf#5W#DkyW>|mN=gDjode8&m`x52-nfrTOIhyJ|G|lg-2XDb0hgdi#};0)FCdPt zpG^KD`wD8)qpzrdIVv|YIMZYQVhDd`ztK{F@i5t*;+_d!VrM-aeSvt7QZ zPzWbGIrdSZXeD>C1>jzSu6s{O{ZI*Vzt1YV1|w;JAKZkumC536R{vGT?~h~NeB8$0-9Lqhg60WaSn@SsmPD>}jf5|_w5E@72g~1c3~+EaLm`BG?%eu4 zajD`Wkfn&`I6fYgSWiA0U}`Ln;V~Qnt7s{sfyT@pi@n13;Mes35S88Hw~owoAS$U@ z^g6@IbIsDzCq1gd3I0kg1=er9?03NwnOzW<_G+xk;+&CH`LJB{bIylRyrd}8WFfAq z3TKh8i)+u>p8T`wgbyOD!Zhs(=de>A3_Ltwb#9rQ1UN>F-Gg#t5vRG7~Raz`;HMMh{`mxBg;`?g7x-0^U z(&}yJ(|bj1_!?l9?+Yu>g>NuTed1mcFF?E5jh}GOoZ39M9!1_Py%} z4ay7Nn}&j1H$)%p%ob^YLe9>d0cU?&PL3F0bE&AP$h{{H6%`fz?hJNRd|`Kles6E@ zpYv8h_UcJfP*2Vu_V1RP?EM>8>+1H;Q0^G+Kx&A*>wWf$kgh(gFgT$eC%KVIJ>upc zVXtJ>>7o@M-W!PdAFQD<&`M$7k%p_Ei9Ym%|NV$Ub4gd*i*PX+iHXXL3_;+z8Xq6; z?Cb<^*He0Wlvl4_0e!)ZbN_a2nK1+oBe49(%+vN~lQ5ZKZAALpX8X>Grlw8#oO7si zM9*l%i0`=dLkD0o$xe6Pi1JWYX~P{Oc#@G@ES3|z*CUHhu)xiA9yiB)vgb>>fobWn zemSPu|1{us7cT{X;m4YsBp+~tVpUQFo$$9e{x(Qh6Sp);0N6_BM26d8p8$V@iH`i) z7+x6tXTKrcH@gY@9XeflSz3-?!gwb$x8N`xbmAB|95z0wD!dc5`ZE7O(L%Z4t_#a9 z3I-6QVl+?#DhTo>`g+8xYqs(wzke5f{*4ejXJ5!nBpAJ>lm~_xVENcYk8K*dr~`$6 z4P{vnwFjt2@YwKgt!wd3LCw(Dc zn2VKf*JKROq+$~%l^W4*x}fRkS_~dm!r0ITZ0&|=c-BNfi~GxdoL4C!LL$QdJ3oB< z&;Zz6dZi~F@uN53mNlJfLy0D zu-36bskL~7DbH@(Sl09rGop#ue~cY3l+Mb zGkBa@-+&r-k$$m%>-Syj{9XY#@|;*K!*9L#cjED%slbmDrG!@EE84vRoK0jvGwN#; zV1-O0*x!BuE7nOm_sVlzoRUS*nn{9BJC4)b*u2fJ=Z)P|Qms@i5;>$hT(2qa=2 zFbXINxl`l0^m)Za<|z#00QKhypt|+DE}vMvP1Mm4p?IMWwG8WT6R&Hh&|EK|eUJs= zdJ~Mh%g8jOuBAw8UJjc)+2*`tP=A=*??wXD3Cq6VmAS_8YXv)$UKGc@JiNW-8AgSg zvWp;BP^{j@{a3I7{b98`$>@|}f9va;xm@avEKrh)hxO^w6G!LjoJD|U7qa@gv5aOP z+p6Xb;0l?J0<&u@7TtMLg6k$~vDoY{K0P|CQf4*9TXcI z8xXxW!-@Y%oL8cvZD|Hb*E$->&l$68YPYfq6KNT|W$1?%K-~OWD!L;7;qZuoL$8_v zYNKH+JxndnG`qDbdUpMt2&@8ZwgsFHb%o>fShczZ<&kgy@M3 z>2Nl>XaN)4olG6nSd3qZ!7rY66QeFKY18TgKuUf6nS}>Q;f!U4ivC`LWMi`h-wC~b zJ%>1Tz@3qHg{qURR=nETjug}>a^;N2@3V^EBjDUY73ORtE<1N1?)C3q2gVjUB82rjJ-*4_G=7r4DOsfL{-GVG z9VuvN?2vJ5J-?Q$S-0FfLnugspLcMc!VsM}j7y11d*Dx`_wZBxrPr*YKFDX#fPXj& zARDcgmjGQUajTIib|!injCfuq%S@X4f;N6UUJ zZ;>}@VO`AeXWl#EMmNz+ZjJ2dp76dvz4IIQH%X(vdIE4@CKhJro+}lXVP~a#iygY{ z9|^$2jXepY4WNbSo;R#jW0;)aQox4-7^SkrU*0Id%2O=r)?35Ha?IqW-VAmMj$bwu zKS$9@w|{yn2hhGqXlNbz%4KsqJ4HY@nw|Y*q*6me0|2g3N5nkN<$$r{zUS!e(aJnM zJ$;PUbc0aX*-psBr3wHS8Xy!43k#rlH4P2P z0d>Ejp&{37dOH4H=QB*ID1M@NYJ%^}w`SX4ySp-f8XdkFga_a;FE8)e(E2 z3p~W#6OX}#pT4d59I#V6I!_LbH8^kq9men zgs%|gG?PbxnH+{lq^;%YujM~;nOAG;Ia>&1E?`hv6#%m4wY27!!lOoxVj+pPA?tIT zQR*=v1~w_c&>jC@8}9aWF-V~KkIp1!LvQ4gV-C>aCrC1zu}2`Ai%Nu}8{~0HR-!dx z487{;R`9A!VH_r`G}>f-Z2$goTJ^70M#HMx#pndp&k?epQ#E=E)LMjZ9}k|z(RJh0m&B1v z_Tf{=YMk0AzzkmCKInSxYBT!d&dtahcz9cSpXNqd8QHt$?Q8MZj86T!)v>o3^=)t8 zM!2P3&U)au@p)SoR|EWnyN*F9YI7ojdhF@r@7L7Vq%$*zl?<=&*jN#PGQLg?0AZ_R z0*A%OIC1%SRLRINF-+PTdmbJ$F4u5^NYR@5ZWuF#Wx|8v`2~28dx`{BS&q7Y=A|__`j8U98T}rxt3mNMrJSkE38^ zm9MZd0LDap`295Igv5BP&eo4*RYutGTF}whK@3Sgn$(~J^f8m zk;#$FD?G4rf$gq*#}smC?nc7FzEQNi3<1CoW6O$f9j9^nW^G$gd(O**?D&QzZl^Lyp5$} zPP8I(NjLVG{vg>7z91f`qO0}iz>q+okip{}+t`4z4!`+m)&5o=BwEU~Sc8R6K)=}@ zL1awW!}~M^Xs0}QR*LX{zL0>FPg6~qRt5USz+EiVYckz?(HMaK)D}CDoBP3W4{=zQ zIXB9&hSM_|p(+cxgIS_X-DQQWg$pYTj-4gT=VmUmHtZ>>{SVzWNF1+d4dyzm($R4? zgSFi?&X9MPXitHbb~6%lJoi`22h!YWs-?r9b?g}Pc&UACtS|1ruMqgYVfZPgeHiY& z#i8BdkgUbbG96p9S{V<<=Z!iKU(T`-5r{JamhbclV^xI-KUJ(jS=q_#8H1o6jqt5! z%XUDky*owSPi~xj!9EF%QaUL($S&sS)X^=0cxQY)IApL3d(}G`>`DzXjXvXYop1*La1;YvI zUXzDK928JR`>+7)(B`w_9un4gO2YLPEgQToN;_}Kg;)xDqtEJl>bLeeltjt}pVZ^H z1i06~ID*_4aX^%9@IObE2xa-GCv~spBdsdEiFU&zXXpHAd0Sx7sPm|?;n#aCQl5DE z$+bw0d@Y>magn==`T;FKu$JXJ8Y&Z^bOpR(2CH)+n-mx1%&M_Hx%oxIBIvAbR~7u@{%zdWyDRkG0wOzWopkNyOil<40x0tP{J>jx1wLJWNd z_hUw={S~yD!Q|TlwmEsF6D(5+){K2l^N-ce&niwf@I2Zy8%~gL>na}rHq$D1NYj6B zN%$9C$h{*W;H)HjZW}9r*dbtFwOeT+|$#$P2OE6OK4>!7rzj|xMSg` z#BcKwX`4TDJF#R+#HWe>ltfL)4+9$;lbm#+x3sh{n~Xj`IahrV1!4;RH-|;^8KewE z?CC=?M+89Z9f2v5r+J_ z%I)ooLp>aX$gVFTJ%DZ{cV~$Kjtsavh#`NQ9a(=6@=r7bLFgVcywDMmriuPzEsMi} z{!A_wEvn?Y6R||QDP?fxR&2JkOVjFJL747HjKV#k2n`Fc2GBjPbX%CopUDujzpR>@ z?cy5Q8?XmR#}f$b^_z9HcMJ%0b5F&t zd5T@DkH$zV7G(7A?f25_@)^}sqVZdJ_15o_I7c&vE_f(Z`VDWx;F{)AnoLE~O6pdwu_FdPmDNG+OdG8AD)AtKtBn ztLkZi^H%QEhpbAT4=MHMF90zeIp~1>pU4G|FZEvgeE8Q=-@ly|gdTWccb<4Ojx6n( z7`E=$uqQv=(hGfCYw=i6Er+5}Z>IA4S9puWU-tjx4pyD1g>7`cR&t!r!?UHo1wV&u zKyaeS;7Q|KS-$jv!B0N5jpf{?yYQ>-)3}!JlRJ?f_1G2K!>iugBC-PL%#)>B>2S61 zk0Yvzi5h8ygR?I3%o=B(_~GSA46GbMM&= z^*Of^EGXfpe9Ik7RDDjaCrP;is$(9u$knG};NFs)>* zPDX|`=QHIj08i<&^yko;JLf8QnoTw%ptc%%?%O)FP-lh8ObWftAa^_F4UICbVm&GcEdh;knJT1a(_BPFPyN%VG(~Za;p3F_i;7rM3a7~RDU%U z+@5t4PwO@v6od%)lh@bRhi^_EY3~}dUZRi?H&Qr08RaqYJQ2;GN$al?Qzi%mPI04n zHLEggU;Ze94*qJj>>7?>NgzbB<1^2hfMmR%5M?bIKK9MYOPi#nmlgOWXWWPMx9Z0h zxa2cr>|T+9>?BPmkfrY~po}8cJ~g`;RwlP2Aj(8dfOCuf;88 z7NDQF=8DQEYQE(t@j&|5_JuJ5QDN z&{uB+&a6VChf*|cUx>ds1jM26L5%4z<={U(1cc+DWzW43I7{czd|P^!1aA(=hnnCbDr3e)5DqhnVKERSTp+_o=e)Bkn^jh7wTK@DYZ{#Vyq0HX?uO=Rwq@BjcbBj+Cqz=Th zd=t~cLVH3lxtK0%)}B>cE>5yj6s0X5>>fng=3kjs+~&`L*9X8cl?yX2J9ejMkjAU8 zv*XH`xFJ)%<41ZYoU{Uvr7)i`RaGC`YmVX~xf+6)>=q{kAt?j)Cy}Q%OB7A>JZ&Z` zlq~LqFG;mE;1J}W-ycr(H!Xwfz4I=R=*QhYBBy2X3oQKR*44Iy*K z?9W4WlEYH%4->JTI(!NgpB^IP_-vSXt#x)+K94uh+GW6koWX{p)+oS zL(1JlNaD#Y!<6^nO>(C*D(+XI&oUdzNmaM4+rQ5QrLutc#?@z2T=)+vv7MEJly3<* z`trl%wJ}%sKbU@Cqqn-3FR&wx;!H6$_qo`aiJ#|-3#q$@7G2C3G~ZKkU#E6#f(evVV|lEd2R_2?hjd_f;-DnwzhX;lc;71g!D{=Eje{3X~%<6lT@Q zTgP80z}R~3_e88;MFn|oo=Zp*MM5%UL2zx>`yk<>e~Qr*h`#-^EI=7PU!u^F)k5Il`Gno-i`9uJSaK^EEYF#vVRJvW z6L8-dtVXHbUchu(S&JLW4Y2+)SNLXv8ZlNX1&8R388010L0O#d1GdcSz%=3m8OWiU zN;(Gd66H4i{%MVs&bQ13;5}95cnRJVE}-4hvPD^KYtBki*H z0#?n+eVKk(ZL=>g1oTk)mX({0rCQv!UF-qOGHDx|;??bB*Uc)`{f7SSmC&t&1cxJS zHYDK>B*nS{j-Hn6x{@BpYB9l+=<@bT z79FO-`Q(Xii$69P(7fFiN``>2UJkQ zWGD)dR53N4mJ^>sBQQ&nX4z%eS$4ja1G<;3r$d6r7M^*`2kyH;ZE9YkjA0r$4OC<) z>!DZ=-qW$Tyu!Zh{~#nY!dI~a3#k-7@W@0$-B}G)0o*6Qd1s!bceYj%yJU#F34w+S z=Q8X}6!go89o&i2%e>PhLAn~F#HvHt^ZCh?=>W@%m$zOaLgenTi0u!R-dUH$T?bk) zWzo`El_Bms5uj6r1F4-YJa3BeapyeksM~KQb+lGabN2FP$5f;mPLQ0MAHVU0x2aq;su20c z-~r7A%?=nz9!d|j5Z-VQu-g=?G#sL>Zma5U*USf_*hKdfE)}Zh$LBOCR73-jvC+0A zPiYVr^+oehw8s|`4eeEHeS#1CvP^QD=ElNu44_jTo?;Yb3^`0<&)nZ#@1F`+)JXm> z;`5L($e`zrL-qR8a`R!DlZV{6{f*lFt6=m?5-BzBu z>A*PA+E!@f+VKemy}=Wq*iB)GDPuj=v1fG_3>$WcKOs0dUa1jQ;@9S(<)Fo}mJk-& zJ{IeH4Pw$w@^lyX2*au$z`81CC|0f-N6zY%m%!N?&9Sc%pG}nQn_DT{PTE2I@lWD` zN&Q&~Q`X-<@yVXQVd};gj#LEXs+%m*#OU>m-&((WUa7|Mx$GWe4+PKcRCzb1Xlg zUT}|X4YTn&!~~JWguSX;o4$SRWzNCd_Mq{H8k-?MMbma_h#Fez$K6LOUDJqxML^~o-ck8gf?n@OC?8qV@u7(hx zx}J@UYhJY-T+_O2nx2uPt65lUHd;T*T75`s4TB#X?Mv7jl;tnKaqDn8-%7orYGe>G zuXtRe#}he5ju=6h6Kh}lm<&^@!i+hH;i1|_L2-7}LSw*qLW^Xq_JT+bn_uY`6oPJ` zZfnX>KXw!%y}4rJ(5cV{w$<>>`?l<=zF?DW2S4e7Etie1 z9&u7xV$bHnC0xz`N*tko<2nE^RP|{$XVmnJMG(Ci%ePic9Ul36@!MmYzDWKv-a?f& zUDm5xT7m~WN_5(N%O~~RI&rVFJ@?-AI~t4}^`RwScw<4XF}&_(^#MdQ#?ujFVY)qq zY}Kf5-+ymlK2`w~q40z|Q7v?i7_5QL28%0c7M19VGTH$a$XKZxTh+H&11IXL0yRhi zi2D1N!8KZB#q5{T0K3lT#!3?xos;yU8HsD>ocG8J%?F)Ny5kIfehRYsg$bSc87y(2 z_Q})e0@D!!|6=UhQ5*_pp1z-}EYXw<9rOn?u*q;+4vjtdm8=lW|{@y^Jf9*w{^t5IG2A2w3GtIu)XISMC{i$p+|MOR#BX7mp@;Z z(+3R0uFke@e>v7$2eTiWo=Z8tO(+s!o)bcMP8O=@nibI=F1|3uWv{KvdvNe#LkdUh z1m>z^&Aj<_|gX9-p@8Y99N?g$PX_JbzF+EbNczu8dSt(VA$4Q`i&1R_r6 zOQxf*N^i-VyGq|eBi$43a7e}rwAxQuzsjO~?qb4+Xm*}+?4_K_@{bYCgM+PI=i=6i zXZsjSV#xb`*;e}kodCxMca;<*A^KzV9m}@4ea=jSRa?a(x4m5)4X>_|V=$cS_c4Q5 z3;Ap8*Kg^}_Al(KQ6CjBsK6qo&ii^RH+*5+#(?61^)uqEd{@J*U z6`_pw=fzlKE!%Zo7+cp@c}!uYCM&7)L7vH^N0Vy zPDu;yS8{dgExrDT&k~vteMx4a19dGXnde7InRFL&^DmVb@J*;;>^sJ#Wu_BiNaHKF&kx|ryzu<8%)STKsB+lC zN((JkzsAnics-T6Sv=}@mZ~!*{R%OThog1$z`2KD^icuR2$b(5ze|1>_srT#5ZwKk zpYyCaV!rvfVenEu&SenRXv@GqobmuS4=f=k_PcP_S z;xAC7oARBe9%H%{E+HRq%8-Y@qhlF@_C$z;&vQo@NqnjQQu$`+*(%?PY;vmkXd#kf zhHTSl5gC5nZMFKS;}_KR<3|L|ZY@I%G&;7>-MS7N3KRJ97cIh`u91jBK_pmrMGoz& zxD+Q|(4H1g>VDj>fW�OM1fX!M)*F>9Rij&5g&f;sM6)aK+Hv&<{nWm z;l$DCC)yTCE({1JL=0Ky0j2O-@xGM9FfVE3%fm7Ae(Fp{w4X>nD?OSIR+ln4PSh7p zv5znvoj1B0rKUJ0ERUP=0{Ejor@L7Wlyms^|0pxw063IJ`oPx62R)j*|lRthrob`EAyp4q2U zm-%t*eTS(&8{CM)n6r|k(lH95Q{T57{3lpjDfXUmM3Dj1NGI6*Tv=R^XKf%^k(r;+ zLaVdHUo)kUQs$PoC-*UcvLL@fKC*(AhLer}bBVFFLyyMZyhfBiSy6`iK9$LLwl5_ZmihbW31ibLMhhU}+ zBiZlob()h6Ki1;^*5`u-%3?%%it{D@?#a3FxaDg)xLiGSj7YrxJ{5AZj_l#X#ikFMIa+qrAx_p{&vQ_BUW|m|;25Uco{scixmev`fHg{^U3TFY zyf)f#I-JuoPLZtXD5g52e2&Uc^UZ-uSJI34iNnJZZHQ#7QfxYErb<|q`o^|?1&F1d zuTQ3Y$pz+#QOP@!KB5l0V*)8>0_F3TqK3MV`^nXJR65GQ5z8`-~bFX*hgYX8Cx+C&l7Cn-63!I~!ULGBv|;w5z0VJ>xq&bN1X~ z&GO(nQadPNYNEzq>Sn5(Zp@{mSSl}B+yJ$QXkCD~< z@x0P*&iP5A@LcpA7<*Bjz3VU|-Pr-t{AtYRFBc!9bbnC@Um65_tu7uiJ5b9}vLNKI zdPv(r)1=l}LJjY(Eh39c?!2*fveBP&)B&$MoHs36zNb-mFqQ~ada5lE3J*iUnu7a zqTM5~Z>ZBBAb1=5i6%kM9u7UqF2BFKchJspnRPS6K}JX`wcb)I%&VDcoL9T<9Y=FL21~;JwyFIJ?Rd2j@Gplqyv`lx$>-yFPImIlk6QK* z&%U7S#I-Z2@GFjWZkb5UGNyQkH+E}f!rvk8(iwEB@SF*>pmALn7c5KX&*DD&RPWk8 zK3a|nNXqq54t0*2w~bZvO5*hperkNb9-tC#8;4?(2c6LMs=&Z|t_(5~O@o2cbumdE z9aW(Btm^|#31QN$6|@T{i|)6T-x2M3YKXQaa{?D&m^Xqx5I8aN1w=KPObK(-xK}V? z%$uY=ExaTwI^NECb$snc|mrG8r{3O1dE&Z+)lQsJw!1adtRtgNPJ_0>w?SP zV#?q7t;pn9WP;4l2$kWPg7fM47-IG{QNeZyD}X_}DpjUk1HquSI<$u7Y^B-iHp=B^ zE);d&oh3;%{?XA`SAy2>{u29qek~m73kTkOWS&6^XsUv12?r}j0_Sh^BYEx_p;!-% zPNbpiViNf^?)GPe`-ABnjJC-+2EFN~uV0Fx4irzMa}bG0o&Dk*nfY~Op|oXde2|cH zm+V2Fk9{Ai+JJZ5mPB%fbbxxY4?m5(eNc{hlmXyFu)e~!ki+6r5M+wIilrH2TU-fB zQASpEcB$OvT#~Oz$2QWXh6k0Higw(f^w1QTn3yc&GvXxHsAm2imB@ZLhPumJpL|r! zS01&chRP-EwiodBOcM&>p@EmUg|hpmahxP?h195!b=N)1KkJ)+T!AHIB=XQ#w4GML zfj!*yFcLakgw+;jzBx`;Yu}YeKmBl?BO1vTDx7qz2(IH$J$5(c?OsT*>w-pw(}C^k z+pgLkysDic5~Y`$`SP31n_ZzJJ}A@>k;h2HL?Yc@{Y34b+cqes@==RI=Sw2`B_(gj zp$_$RP%7VK+C56b?s#|ZXxJ8s@_;X@F~|*W)7x3L@c~6(VK3Sny0l>R6t#KRR_Eu- zFPi~5tHU-E4n!0P1|XgsdJzDA9SXezn?sD=segy3*wh+Nw1gq)!7vdT?wY>EFDZn^kP>r-lI@|RfNdL zuFF#!omN6@?Vcy&bW+Olkp&5>6P~?Fj^U36&Rt_9?D1#yi>`6LtW@%u;6d~aC9Hqzc?zYIPc#bGO-cHZ zfC8O|gL&!ZBm2G)+HM@`NY&TBnD|XyqtqwWVSHSZ64vvkvDsyP<0>Gud4FCiS=N42 zKy2o73;O*|DE&wXM{!PI&;8|y&C5?Va>Zt9qiIpop=P`c!k)W(Q+X|KD4_F8FN83i z-?ALV)XQZAbyH?lW{eu;-ykBzwkGijF2>6ArAepT_|;u5NGew6KP%FL1RjZ-NiDSj z+0$w6s4XItzMAc|JYXu0C1p|}MR26Qb6p79Bo5ZdYN zU%l*8LT{zf^}-;(^(S{LqBT^>L0|2MZjoIJmq3osjoqNKIi|V2?}U`pjVD;|{Q4c| zHX*Rm<@fEkX3BI@(nI-Sr&_o2o%Zp0YDkz8?}jvJ4>rWg{3xRGZT2)g7mG6!m=N5a zCxsPbQjzJa&C$ziuFq$G6KHaPh@v>3(jXfUQFiy-K6_$FRH{>X`7{&baet_gh9J|r z0MqE^aE`WMrGx5gM)XhDmNDUR=SK@`pIaPMyD?mM)N-yu&+~a( z;ae75GkR=RTJ;=PNxlt(Xd_N?4slL5*g}y|)R>E`9WrYXM3G|@{a@CYGStOCzT>Z( zmR3&<%P?p`FH`v0UQvwQ!~kPGY zn8$nUgH$`at-eU8RPu!>V1l?zRwTo!o^vaY8T>CrextlHNLH=+xH%d>&C}$mNykI? z)%TS&39ILEC0D7x9_VnLvV%ut5YN$xCkrLAGHRn09nTpT+ zYOr9TVT8=ptLd_|Eg{)XL_-71?l!JyGGphGVM@ZRY@lPH^qYrU8=;JjR+=@Yw-QdM zbb-@jhD~OgE9S3VjcAke1M8 zmu8@wf+m5NQihqC+`b45w&^d6m*sXSy;7#ypn?xtUCmTy{85Jip+H7#PL=eo(`fZcJ@k36Ks;S4 z$B8?Gw+r;WGk;WqM!satVRTBsnrHh+i^^m->E2hnhcY77HJ4Hyq4*P8v++cl5d~>s zpr>Zb!%Ngk5mm0gvD7zma;dwBp=z%*!np4s?8%J1H9z_b=?bul5Y(X@gBo{EY@Rh1 zimXY-*2%aeA5&;>tJeE5C(}2>S0}jK#g}d1ObY%S$z8O3|QAzVUp?$a>By)1e+rH3r5iY*PHkUBv1t zGTas^9yPZeI$V}08ZPFTJ0C5DB^5Z3g&*`q26hkMb5ff-)jDvL%X}fTq#~w zjnBlSmFeB>3K9J(%Mn|P9ZA$sBAk3F(VBu+5Sp|A4@Zj4ZI4MOV%NG#Z4FBFsB1_% z)QEwLBHGMvO@e3=%4=qO2;Oo9<>VxDdrRhXme19? zZK%|un5D)bMHzE_4~u0bV*}Au){5Uj0?)oj>txB*y7l+j2ul_#gP1{LUQR6MVWgy- zQKb1#7!F7?%^CeHU-N&PG@+SM4wYQQ9CC zzL1_$x+&Xer)RTG>2Lb-ZzY)9%jYr?W#;(R>MtZPC~4oNI-wwq()s|9kV8w4gc*u` z->v)21!G00yF=Qgmr&ds`n7fwPmds5ow)E*y|^t6)U{o~ZVQ3FU0F%5r#9Y!KFGJ| zQ+(DX4e6GQD49j^XI4EPAC!4n`S(XI*S>yn!fpfy*LeUU2p#Y|*p z#&GWAi}r^0Q1^|hw-6TZbN<}}p6+*ZP8Z!aRXTO>WWvUu)m3XlSbS6^Tl2|}VAS1E zc0~Rfs_gLjZlv%+-~3@~T&Q+D%)t{Q>GN({M_mPnR4F|?Y(6c#mMGG*g{X6b63InM zvfB8JxC|m`yxu8Cd^jPzTeCVrm_&yk2M@!DdzeKTI)5|5HJqm14U-qXG+oV|KM3WE zOb=txzD&LCFTF`FwF&laJQzjo0kUCCdB1vT2|Q&3>{gq1x@l#B>VWWpVc~tpxI#I3 z@E_ZrydP@o@4u*?DUJ~70|S^h>RqCF-)Q0Fg3t}++T4XBIW4f}Jr*8(RMN3)<}=d#|X_D!VEEs100-_~GPA+2T+c zeapzmy^^;n6JgcQ(~ z+KIDezfls^6u3@G)pS>aeY9}v5hcX?>$(UP?7MWP&Sgkn4P)+jv9$S?37t8OyZ~9n z$0(!GM;ug%9QJcRNK*d?VMTrk*|7M~(X3E06sR|P!erTT@b_v6Zh^+ItI*}90Rc)W zU1)Ryr31k4+s1wU8VOOslN@ib9Q*RL{CU|DYs4hg{Ha5tJ=F%iu`@<7P zL&^)!&Z`lss$4AD1@gs86941<8u{UTB)sUAbHTXb=$TFVE#;cr(N0eZ<8)q&l1Ka@ zlEvZ}(IGhGc|sEHhxYexgq!LZH`rg2LW;698`#sH8f)@Iihse=jdu7D61-uf9jPac z_wwwetWAXE=d7AB`aZip8i=#*P~TmgBPtB)4tpb9oUUNZ6QXd}z@+ogaLV{3ly<`a zlJ*4J-@vh@JS;nH#7(%XD7rTpLPeca_+O6V zOO9u2$vf1hUXoSCbzZ#o@L#|E?RKGnk#m5^$C8DJztU7DOkkG8wo=re|CbRJTb&5F z$AdJsUW+0vd(e~_B7G@zA+kT&Jh{2Gy6sJA>p=O zU%&$bA!%$sGXBW`G1TKo5yjXI9-KR}kx1{cO5c*04zu4cBN5j~0nOpW1q=^I#Rk`> zs6D$|lG}~-by+kj8mi-+>lqbr4-#miHEO8vrIQvc2J5-u4MurCtq9$4lpxI)IdPf0 z?}p#4x;l_nj(7HZX>!!iJ7jxD36O1_mr%dI1qb)~8<(ujmMF}jRh8YZ2&G&eBlDdk z2))|fJ9YlKMDIl@TF&v@uHkDV5r)1bjXAh(H5Eu^?B%eZ!P!m2#w;F(R=wNuS5*INA8Q0(CMwYFp9(@ zUomDh+h_UaCY~5?I&6?I8hL4saGk?)XpJJHRc~hOa!?;xx>9Cm8vgP_xwWtsArgUN z6*`~%c*N(Nw6lSRLpz_$aib|I9B1TgY>UR+l{laGiZ~c&?LjHte?CXiwKkep@IyM} z&|eqS_cOy*J;EtFDQGdis`7vdB$tqlxXUf=p4M(6c=nt%&CTsY^9@%BtPb3fH8|C~ zyVl33B!3{$*D5Gm!vwnm4tRtjn~VlBr5+Hm;f*9YXvJj)B8LblO{o$R5SR#oj^HQH=UzGDT0@AtNI#7MDnVH$xDmKLo_oYzKgNetSqsr{bM>xVz zWGHB!L)le>z=Vfw<$H<^2(Q6-#o17q@W!$3vFni=@nny1T|ulwVEg?SEr>avZ3ftB zFA*J9i%dmj=rngl>FhU851+hSWKjw4F%-Nd&CY6s+#jhR;|r^2ve0^vW+BAXik!j? zzRm)1#RJ&ZGWK7hzyzmc?PW(CdeOf+h?^tq?m@Dw`lM!fT+K%HZh_Gvi^8Y{ z{PG*VOl?*ByBMqTDgqOetQSs88YK(&lxJ6ZYwWTu!~aWd@%4v$c&)0VkzrW4oMvof z9sNEv`0eI&pEi&^paa^?a@GUFvE-hdr*z(CYYua{MSAh~+?RFo)ou}-W-%ma{l*El zlY{Vx-D?oUwFDu@LoGTSqc_|fbmz4^242@Ay@(O@Q${sm+O?q$fol+i^Ap3(sj!LE z{F8g)4x+c}nX?CIN0@~;Us2fG&m5z>4{`s0QkeUS|CYj(sDZP_OX{fX@u@tL)j0@D3t{i~BrgdZ|454RN27F! zHz%nC2QE6Xm@+ES1*0F{N5EA1dz^>@e1 zWOSnX0h>+joSc&Ioes3Ze^x*%dQR=R0Ft)TY?Pb*IiTRqZOX_iw7Yx%H8O0ogc2EaYjHhMtzqmL=zlWl zlR8nnuP0$*h}$VPmnVJ5)o*h#nV;D(N3*0q_@pg&Q@KZ3XEZS0q;cRyVy}oG-k-|0 zA8`KLwr#j05{+PPdS3xfnKTg?h>rSzk6@-dI9 z1d*kq4efj}yU4$JR396ZBJ{~0p4Tm|t=4~eoxA?o_!7ar_kKtFw#|pBFx=?^{eqnG zuvw|`w4AMu`6&99sQ-gj#v22BLEcQC#_Ok@<2}naFkg&S&QIt18?+R$!L%88Gkvmz z`9T=U9mT9iaQ~N4ff2zh;)IYX)NASL$p$DgI7`CO!SW7n1@P+?|K!KmL*!iPq9sGC zB8dK?{>W0bo@lrpLLiFVD$&fO>~q_ZT1b7#WE6O3+8HT842inv&8+cc_%qcK&ioN6 zrVhS;b;%YB*Gxwr(&BF|I$V`#f+^hZ1!jZk4(1iexlX<7mqY)z?SA0sHv;o7_Y>R8 zQ*8H$efxh^&CW|Y#65c2BNi$}ZjL+uA~-BhjrlHFm^f#+rR&OPpDxWRX7Y_Fme69K z7m}I{w?E;c@;;}$JXDf&aURqwVEd9r^B<<#lolySaf)VR~lSUKucTKIqp&nY9K|@nn zbWDV*AE(p$^lo7J&Q5i2{C$eCH4)!uyhNwd_had|XAHl!-_2#CO091K!j?W_{ESee zPl+SNnsi=f7Aqb!Nn(lDq}v?(%9V5;O`vXvt_uX zvJi#naA0+gLZi9{eP}oL2Gq6r1)hdtk~t(eakn3ASnW!Vs1?!py0Kb_d;N}oVe8kq z-LVu6|59M7XCi<3raRR+Q|wSy0#;$!UUxJF+XxB_6>Ogmd+fZx^KwZ5*JoXbisM_N zn%kJuZ5Z z)L&XAtALKo^bqoGJ~|W+AK$u{b7VQv^iN5~d)dg=ut*;HL)?cYz<`0;l{}&%bo#jX zwi$ddZAX#K@l`aqOwq(96xzRAFZ_e|u_{CUN8*qME&gY5z5lClZZeg?(>HPc-ps90w}j`HNjvSBau?bdGH@`|EP|PLVGD8lsrg+ znLF~#JlTCc$Ihi6P^$T2oo|!zl3)@-bT2!e#b>nbR&S!K{t#R1)=+g|M+9-g{aV9n zo?9*Ur&!8pj`arR0u0t~$0Tbw-)+KR%aq=23%QY2od(S)57x#z%ls%uJ!SoxR$}J9 zCuS}GZKPXdjeDPVUw4wOdFDrO|l28Y{y zL!H#`I<;sK1;d;0M;#J;i&Pnd!NQkJ4u1xdebdF7Ua7JxRIr7F7X>H)83~K%{ohN5g1~8N8a+t3;q5A z`aR2>MIP%YAfSdxxMj1B^NpE>LOWuVRb22@co;->?P16CyxZ@{(K%B6rya_Vmc&8d z^T38^GSRd`36!U&avtcbPyf|ahjY*NVJR9W9H#xDYyA27`Ph@v(s5(X;IP}R6f8uU zp#gxcdVB|FXO(bJSdyzw_6ayU0OD3j?(T1QU3n=ht06%r$sZ7G0jG$+d+pfnoMF4a z`}?~sBOB%Y?j2bD(B}vcilXX7y32$A;ng{}*KXG?&j7KWV1w|w@(%j+rDO5v! zKM1&CI>j)Sd$T5eD8+6k2g=*vT@<=EU8MbdpVgqYyUXQ1-+}!_tj;Q;<<;#P98pw) za7sj(*Yx}*#s+R%O}*hmdHImQgp9ELozwEBT4w%Y?9H>#c(%Rp(v}$p`yKnEAUsPn?3(IvMe+Y@gW!JIE?QGASXpq56g5tnZdFfeN}ke9;)sQ6I#!l&3e4VoT8 z^0$m7KBPUoU!rnDhHISsD#xp1;Kf^Z5yvWsOP3F&uldK0$kDz|>Q{w)4j7BH6B8!> z$Pu=GqIUs4|If($MG9lsvYeLU2*jI?ug8$JF2o3EYK?n8-U5<)5QP_i_AI;nV0U)_ zA$QqY{+R~Y`$X)9fp1~U%LY>=q*njGgziWC3;(e6grw^>lL^myO8@ox1Fz4LX!0YaC;xVgnHe^ibWSu<~zeoGk zv7>b5w+91aQzNHRq!{EOkT%%Ug+k|nmTT1zd7&2`Iyl)%0Q#KCno!SYibX4 zDXAI6QBJ2rdFfVONfeu>XV&zgk99s+G`fCfXoj47)`0V<2zws49;&rvj2>^Gv03C2 z#7x{KAu9fa^4#T6_1x$Z!kMF&RY505Lf|7YmwAon-CFKqV`<^`kCVNYdK|nsdFzOg zLpn*>0=7=uwZt6nj;cRHx*cB;IoS~r+YJ+%okh$3wsKdN=2M+k{mrkE?rpp|#_az{ z>gDW5O;GrY7dnp-`)|C^2U(yX7dfr|JF>qcqAzW-E|KtBR_hkn_LnLtqT#QoGxHl9`VS}>w%U8bqep{xfc z{8#Y1X>kZJein?ggmd~-XExm z;0TRBA9;#@f8<9k3q$wqeSLfY0&j0;N8t#qO8%vMtG;#D6UOQ~#~Qf@tLbF))_!1{ zQMgM@9hE!&$M>P5o)YHf?gRnE_(0S$MQRw7-A&2Nf+xvmJym>m4d8DxgO|a8C%w{El7q;!`%_0KieJ-qGHTz%U4?U`gN^7{hAte2hsO zV_$6;rBz7L&1E)t?bb;(Fh`lS)Oq*ySR-P(az#P(rbURnO>yw-Hh4J2hm2)e_Sns) zP6T(m5-rtEF5}W4P4tgpA>IW;5Mw&X1gFq^^7TXd~I|2M%w--n3pA9y`7k6tyTscQrkwtdI@@HZMNfF%EED3}!w zNWjt|YvPKf<7KQ^?r{v12uQ%Qn+L%22w-mm?P2g+q|W{p{b;n-rca>!ho;xR>dt*l zCz>MzJM=?gsvc@~$D;l}XT+>8E71WWXty(B+s^UN@A|z4c)HaroIc~8*9i<4f#t1k ze>`X*!*`XWd?L*4R%A+{uC8=l=VV#V-H#O)H%=5t6$IN^K$YR_AQ{{M=D1->Z%Lwp z=4m;`oK0{7SD|4GQT&Qvr)RN%lQ1)g_jG{Jyn5ZU6f2|dRh+GgI%S$?DH-)f|M_Nq zzfM|FBrrkt@UqAxKCib901F|WZgOmR?v5Wta0tHfdx-jng@xt%`w1ln zVDye?Dlz}8@{rKbUz~;?z)|omY^Eguv<}S&zDmXO*?$8Yz+k3)yB`Mrwbr?bz(Q{& z8s))kdA?{w7x;kVC8#S!lW4?d3Pb@7Y1%<|bNUtGp!f8*H@8hs_x1}ZVD@46)sxY# z;&X7cZ7Jv%#sEv?cx5b&jrxbgFrmt?nQVDij-6n?KM3b?ttEdhon2kAzb&09@Dc;< z1it?u2qjrzcK0Phz9GbA3|_P(TKzH|@CX#y;1#9U{(-2>?PQb=(Fbl-em$=WYwTvx zTm4RQ41jUv9FCap*a2D(p2j@J-+zX15wQTY?K)i6K;X9lDwGxrFa3GTTZ!^2SEk2x(vMla7C(&}b64U}&(nAchTo$Y6C(3Fd2m|#_o{}l45p+VqLcSxg!a=x zw(E8aosgJ)-P#zMr)PoS8&+3M6ggsYum8cJGo>82e4pFr_o5T-Rgs}v?il*@3up{Y z^gJ+gqGMvdWMn*#>$vC4_j{kbUYHtHN0FSr_elo&aeRp=wZB-N(fSa^p}G0d7uA~` zSmBhuPb5iW8C8AT^Bs#Gq*79_yT!-7w6mg@RCvlatBFF4U;qG7Q3Z@p?LQM}k^(1E zLiDC2_Ss1gFE@+s3IMrSC*EoMMGd~MJbb~fKX4%+{xMaFp2#*HtMfIxs;p)AHlM&B z9%5qP9C^6$DK0Kk#!%Y8Anh&8=jP@UgO4cRznaTPOM`!n{d?mn3aFTf&#(iOYaQx6 zZcw~`wg#hD2Aep;5wqpY4Rm%%FHvGc0LCblE-i8RpWND zYoR0l#OmwjcxG6&^iL@=e%F29Lo!-~q;qI403f+#m`Mu4%s3!8jz_;~QXH=e)%!QY zg5`^qvZtRisBf)Yl%rn=bWGpT8#RRmwjtx{px`& zcs(s21+MnyTkc>$#`OCs;Xp2Iea^O@PGnVG3W!f}gD5?dM8wM$%U z02e*hC$tSi?AsABueQbA@RZX>DL&GHj%f;eE&{otym~{-Q3gWVn>cA?BHksfK_2i4 z+iXyDF@!>xoWr;W5bsU?lA);Dwe192y4nNITULO_*}5 z12Dw1UL5Oo-pHKAhsUbS0n%yVH2kp>UFKSG-e$D&aE{2kp5iQ1Qi0Ck{{z2N`b@A| zw5PvczHDQArUiJDxJ(8hvPpc13zn6^OoL`WjB5`6G*E{tjz4cL;;S-%nI7DC?_#a^ zb;+~UK#8;`!R(_gIPmkP>vR(r7ztdZ4iLa9J`~UJe}e{hHJta2n850eWdh#aA-H?- zoGW;4a*Rn6o%J7NB(Y+F&HLEVhCF#Hk!1%dGykIv>7|3#k@u&8Z+wZsrlGa^=5-c@ z(0Rk2UAAknrkJtf=&e(y+4_?xtFcx|t!pWH0DC-8OEOH}sd!E3H*d%q9wxfqpMb^p zKF$22MCM4-=OzRxAbwflnPp;qTwupyE}LHEhELS?+L(comnatQep7LGyMdcwI6XhD zB0dh4ZN=I~gG0;+WkF9YR&ix2&er0+IiROd82n)!+q^dRjO->>YH>bBMZQ!!!sU9M zKJF+Rb={A5>L>1r`jBp2PK3jdv{C2egxa`?CoV40ek)UaIW50WfbBI!)#A+51(V}X z{FE7Je}?{|`_>%D_{_9rHZ+>#z*|h!-mRWbt)iZF z0Q*TTPOKXGV+2vj+dV+ol;W0>1386xk^3j?_&grC`Unkj>}5*KE$Fn(NLZ&?%^c5E zrfIUg zN~kR&xd|K;1|rSa2Gr+w3D$GE5x>JwPz~qqwLB2I)cNgCEim$jzqG)2?~-A2_mHLo zV8ac+b%&W1y&5AOppJEOIJ%|kDZ?l*oPR&B<0K!iri-7sAJN62Ub|ONr^FQCl-m;O z&vmU~e9*dFoVI^npP2CF2=Ny-{fDCLUx4dwCcX^NP>k=w`6(YdC@Hj%Wk2A&>SiZh zTbJXfLWz_807y;=z3|mEZw7jL>9V}IxVURyr$iWeo{V8vIF;CI*mDV6wJ4MSpLM2p zz(WjC`vwJa~mbwO-W0$!#YXth~ykf z3v2X@UF8Bn!SUnAlR`(W?Slg)^EHpa4Uv@&so#o7LxQ;fLJ_H{29$qi2%|8b;Tq`q zRj}N|BNr1eXxFMN>mnzx6Q56w3bGk1HUjUIadQr&vVOGp12MEHl7=3kCK8J&OBNfOYCfG?5}G%y~Omb1k0yg`{ADI2a>9jR_A z!bh+;#gVGe{Pi%LpLRE&&Ro14K= z8lpBIj?d0oKrt{9jxjJ9S&og4?gdUC`Ly`|ayP$`XW9utoYUV^2nq-c9mp(7%}Nj{ z{+2uk&+(cT{_EJwP5#@zA`mkytqRzz=wo`bA6FvtNAL4rc5-9~UhF*-__Uix9|VpI z2dhr1J^u$xy}7EKrT_ z?KD&}rj@>N+(iR=nlxaWj!x$MaV;L~@&LkCN+BYBF6QzgzK3?|U%;KN`3HZcSLP@C zy4dCYKV99+ezSWEhWLDX)cd8r+@1_kM^C*8wTdI}{9C0iT${62_~3|?UMYMzB@_BE zNyYqyS@wxR^jY7Z}tiDKG zV)l@QNIO>l)$|4p{@@(ooBua&Tc2f%-p;Z zxWFRl)a0ao%z>`1?$=AVK=I*Wm?m)3HUVZ)E=2Qg2v~!0okN^UQZ6tnPD)PxYHBB9 zDMC#JsHPGNJuAJ4l25pJQ*JQxQNiZu==#pf;eoLE_RR8Xr6lE?IcYtxVM^WV-VFIsFABq`+kWD73%g2-x|j_p;$tWO+CyOahE1>j2biZ+!9dtLYP%}KJ?m|-<;qs@9ONg zK4G10zaUhVW>wAE_2^ zXdOleWDx3B-6RzSD92OF-CiJ8_g%GfBx}As2mh?ULDc&$*-bvV z(0te}Y+G%_Vf*H|ujL*6;p0aJ!0G_OAThX^e&)76TlLS&S>|=0s(cfWb%53m9dKKA z;hm5AcQB*q?og<+^^60yC^~zMiE0apj(iI*$!(gPAz4ks{{n_3BRNjH&Jk_PAOPn` z1G+0VI@?b|4Ev^&EXpw{e)`&0jJ@+bdft%tFi?$^(UaPfbyj78hE*2JfEHnIcCr33 zziBUkEuKxajcB!(95O&YMER17d*CqqvHx0jT=RC{4VzzFbhJ%q58j5nVLTufb^wH? zT{A3-_Q?OackucAwEWZDT<1Bg#<=!B8`huk z{yoY)?TAjz%iK~Tq0#(L4u1d;D44bzx?wjdRk}!NNQ*yDvy&MbN=!*9+gnS*y7ui}- zc@yO#In^$_zFu&Ku`M+)0Kb= ziHeF+0c22sl^csW0)3HxH*ZpvJjUJ8hJE-Czl-@yh_?t6RT0tA>|oIe1&b3B*x|0Ez1(I;fvW-F`F z?DAiD$V(@+Q%UH1PDdxzS9jkmNjR$73{>`|N7m3qu!F~y%eEPDmzzxE7WGV%RDk0z z!Uh9_*;V=AuK7In;@Y3<7f~Jh73H^MhZT*VrP<}VSwt-!Umw$=18+`4#l6k(3LW3V z!P-CgV<(R;Ehp9=SvIT}pFXvhgjCSyNPI7JnQ<5Hix@F)FjzV?zx8G@mj*SO+DD+} z_VHhQ@GGA=3#pTSX7A!0DJBzs!1gb~keO;EGPuq&a^;EBiNqU92-;TXCk)|{uR8K1 zyiLBjL?$FLDVLMYI|Bxi6yoo`0SN>^DEQv=Vt)8IBaJQRmoO>Uq*9ySs&$%Xe`ySzkXqPP*Bj;M1}4hf|4o-)ue-L$ zMWmgMJKxxh#N|ivyO0wT2MiSVi8Fzwzr9ZkXnrbF)XFP#IenQuZD_E{aPbE}shud^ zo{E?O%^&jF=f%-)w*lqEH&M=IKOcun>{_v%Mag@HdNn!Rc1pf2Q~at4oDxQfh7tO{ z-vLLIr%zc2>}^WemBZ)1D#qj(yj+wVYy+4qUMt;bGmH{6;_pV1zc*MlS%q-trFQpD!oAcV1$&I~aS}o$*FixAT$H=i_cGNfQPb?+@ zQT46ng!NZq9sjv$ozqUf*Hl;62L?fwtNOfg1Y~06yxR` zEI`NiS?81l?0&i+cYJ`SLIM#ZV|j-bagS(Smw*#s^Hh#8@6mwv!u#@T00(4RLyn8?>YyQY62r35I>#w(C?8Mo&{|l~v0(BR0Fdfv5I>k01 z0DX9Tz5bk3lz3~A;9qgRJZtkF|JY-!+Xk_(U|YUznAtSx4~Sw0WZ-YmY;xHbbggI? z=4=|lWdHsMmUrM^6ko**F^d)aWSg|; z+Z^B^D!9@-`HZrz01ph{bi2IbW*y|)TE&&xO`ZuCp!&=@6vOYmp#mIe0!k33LL{L9 zcdZ#PgJRXl4E@e$8z*DnyUs2(O?I@5%Y?Q8)oh_~r-m!!|61Yu+9oiV==W3kU-Xl0 zC_PN~@Ez3^{q@{9u_rK}uT2dFVBFp_FXhKdDXA}N~XQ68-a|H zclv3bz89hKH(c0B^|wziXv^;KpYFo*q;gr5hiK8z&;sH8{k86mOY#Z|=bec0o)+qu z10nw-YkaD$%3g&FN`4zmEPM*!BsXPdW@1^1=qxo<=HS0G#~~t8UTAbPh&gypNm(W{ zDDnRN`=>NC1W@R$8jmpBl-6Ffp_~$2MQnJ8m%9cOv&y?(LFoA>fO7Ugy7IEB#^X-9 z^CV{YY>${w*Q9sE+}=hJBSS;-7@@S-#Yd^S8~NSVidOo@M`SeMLIl-Pc(2N0U-s(# z4U*-Pb>0ta)=hcsy;Vu*Z;d2aGJO_4Y|s+qqZ_{jup}BH57xG~OE0T(f`%mgmsX^_ zs{qg7FTghde0=Uu^xHTtlK&F->%tTX1YrfZqSlGDTa%}b;%C7qaiExb66E_M?9=^x zhQOJNyTCQ&i5flshGHy(Q;=we!E_o|lmF(N8_-uw!6h8srf0}iN6SfS+xuL~KJ>L1 zlxuhn{gZ4IBK+4!ew)a0e5QYbcCl$dM6WVG{Kg`;j`Brv>O{M~yqZyKvUeh3ZT+fe zm;k@MMdk8lXI^_MGL<>~oZ*^+numhAu(2}N_46h@i`XAk;eV63_K$K{F17!~N7<=r z18BSWyPd>)dgMzE4tXstLN)blhqZ27#CDvR%0fn|slgwsmb%)L@cEZ|mJ#+;7X|I@ zH?A&yIcF2*VLfsVSooiCjJR>sragqiyM9Nm#A9mhad0;2@UHJ#=MmVjl>0u7s91>| zfqX-}jpzuvWR#JyY8d26#!wr@d;FM--KFXO9UX}($mXj60-?qQo^jWlQT@0LNblg(?^Mco`;Dor z>pEeU(YjZ+*DD8TLK%Bz*$@h3&0?9UR~@Y=c0bKm06$_lbVSWNEh$PUJ@ccpO9Xumx6Lhv?PWWi+)lqW`BdWp_fev& zCrEj*Bz;pGmyuy=l=ofNST|xWT`YrFL;OcL?Ypul{YlSlY=k2xcZHQD-oMY){)Zk^ zKp*ZY#Jr1ujy(dO^8FWuNT3kp=HS46#;PG}YB%h{$aQAWX^;n8YJ!c$^06CbLq5iDo*w_FF$wS98y0!~3#_ zClh^&wkSzF?mKD19iR!|bfivD=o<@Hql)Fyl8t2dybRkW$FV%%zmD_d$@s0Xu&^P5 zp$&ks_CglEDEtu!{szG!qK$pi7Xc)0=bxX5Dfp~Ifl}4R#^&r)!MXtRrtAmM)BV?N z!Ww<6`&e&ZDJks{ox}t5l~>BjeekZWwm;mt`m#Faq zSA{ajfhg;fI+%Buwm&8&?ujXXd-MNaHLj9!Ztre` z*ZCiN&3NBBFdTXhoWj;mMBTJc0e3#2FCcGi!qZbH3~m3a`*tBnA6`x1Q_wvHr194! zXssim-^v&xDv)})8Be$I1(OADoWpORd2`xuGP?T~s)eQ0ljj~ao}-q03n6@T`D|jG zn#}^=eJ~HDJ8ljV6CcSeLNB7q6@i3&4#+$6SMWo@A1zCo86lz$@3JEO&+9+sPvHpg z(Pfyl#Dq&HzZ zQ(w|tgy>xTXnxXoRq$KSf}5{?ZTjA4&u>=vW?dnPvX84Tkm|i!Uu}06&P_6pZ`5Kx zUoutuyRk@X!wT~lzD7hptTJfC2jNW7RIDh$KV9q5^^S2GNJtTCOMxg)^RoyG3*ISf zKpmu6WlmCm#YS%ZuNeOSS>yUv(8~%@k*rfwvmI7iB+7BTIxx5n@pIe6HCl?dNSN(j2RZ+Dk9^^kd zBZeWdc1NXc$W5_BTKVasx zN4gB=>oTVMxdb3edAH7Z4$cqv%>&SWk^Q*ILhlUqe`x?;@^4jTr3Ug}D?f#j@mrfE zBKct+1RWGRN~piP+K*KAUrJSJZ2X@@9CUT`X2wN~`Oz!|fX|TGA_B+>Xs z7OL)10yh$lA|ocXa&BU7BO_J#vCS^eUWDRlq=~sOiFOk`yH%g!s066Su}nva`agq@jmE|k^Y#bYTfmo`U;sa%OVC(fSc@F>$|-jzvlt! zbYraSt&j#ex}RC9Zb?BhYW-pDHvcEausl-3^`Fl)P@hY{gSai6O&;H$H=Jv*iy5-K zG$ePOtN!&_$W_1M<6l(Oh1@CY_j9&}K8gPe>ih#A?t1&HnGG_FVZANgHnLym3Ic(E z;N<1C6n}j)XzGdWz?BnoYp}xLdh25CLUcB6W?+ED_?i7*U9!_W!7Gk=FRf&v(n7_% zN$;vV7mROn|2x;Ef+Oq8ce^StM_4YMrd&iFwmuQ)Q&;}_NYwYhIk}LF@Nksn6#Pm- zn{c<>QJ=!HBaoR<0ew0Tmi_K4`{4JXki?#uJG>OH-Qi*W(<$F(0e6Ca>3adl;>xd{ z#eSAiuDexb1pI2h`vIaEtmlxB?4o*kD#-j>*X!s$ zE`LqbLaCJh+yLq!b#fgjdA-DXAm%i(14~S+7^}YC(H0pn#27q=JL#VcXibsZdN0ON z6#6yU{i|3fyoy~pnFi@e{AMMy86erG)jn?F`0?Huh8OUDKH7oYY`RWsSnVa%cU1VcSqgxWRb8?iy;7ac_0n zDf}oz+b z=OuM~xD<)KzSO<~wQSjy3yFWXpkhv#!y2B$kQqahZX@u2^MU`bAg44g>Kf|^Arp(X zLp&Cy-n4Oh7~O=AU;oEE0vUc!B!eYY0KMbhq0QOc&LMrify8bH^B=9hwcf@>+*V>j zvas8O7<3$3*V{I+SBg{kyf+b|yJKyk+mUG5orc;RNDI66gbl~}st~&CrOhDqqn@`5 zWBpxhMDu zerenvTFHcZMS*SpMw``32Twn7Y2}!>80zX;=nHT-6@hgL4e#92bXDZ?Y#>=>#zj!;V;J98PLz^h^3;Tk??rit*o+?_&rp&^Qs)e{&=69EI_dXtQ-mmIlQj8Qp45WL zUC$Z=i@DSbsVNndaZ(g}zTbOoJe33EXLMBxIYzGfY~JHTa$>IO7bUC#j8=h8AMJGLxB8alcfx;8F#`x>`}#y5u<`$y{OUThDIQ(E2OB_?PN zA6Yj2PcPlB#=!mhfn{39`xp%pTWnqJ@^oirSw6?I=29iuE(Yg+ll9xr+l0r*M?_nw zwk*mC%$E}7S~V!S8#8~<_bQ;Db<4Z?s7&{pz(QT>T77Q&8<@P5WVUMwBDJNjG1>C` z8LJb40Pyxu>rFVT32q9^Vks@*sHj|o;bJuWY?3U={Ga8ssn4irIxWzPhogRPa{`oEroW5O;x1JJA^R&X^ zXZFza!6xscp!%=^RCQm?g!p2yj6LPh9ysja`MTo)6lXl3IZ${0DvjSW&7L(0rq~&r z?{!Hrrs}zw(b8|NbqLDi!=b1l$g!ypD?IsKV|F}nN%tn%ibP(g=&rNF>s>c~yXev; z{D)pZ7XNnwPrYS5$YCz5TNP{Sjs~xUrTnbdUPe1)a2q_zkoWB z)8{`zj<1Xc?43f4CHi4b7-LBykJwx>WCSRm|31KMnWFh}jwmRTt*^7e-?DPR|83EL z#9J)G`ULV%TbX^McccYDayFoy<2(y1obUHyL*u0!ypX~cH3-tK7cq#QKl&)V5+WN^ z^*MwIS>u!cC}NZk79@hsD|Y%lbIHn^6Sq%%{TG^9s1UNOg9pokFm^mXyHKqE0G%_# z2|1&JKqgjpbj<}9__d1aQ3*=KOS$n?5#9XJYBiBycOF=WYJG3tk6Te$d1yrIET^u= z7dGl3JeV5YokX6%iQ0bqYYnd4^zHWF{*+s0o2u_bNcK8G11o%wz79JTOwrRbnMkNe z;%@~xg>MtW_U(>x-~0%Ewd{eYhbv>D467%XgE~g}ZVVj~s6B@gCfq9h2yc{x1WzCj z7s&n~*;h^>kYzoXmsj2dS-#6a8H#3PBP8U8sr-vc<@pROL0>`a9AZ7$*MHGy6?)ll z8dcHFw?bGYv*ABx>5(Hrh~&S4X8N^%6bqlb@#3!QGuIrChert-j76faWnV(T_^6yG-2CTv|I$1bz)B&pm7y-S_I*nA5LnI5~}I= zA3B4W-`(BJFXDOmhmEjnqbdn(VkKT9m;6bz5H!UefJ_y<$^jGe=GJ1y zx_DQTheW$==o-M|33rH0xwkQYKG)BPXxNt=2^HP;vejV-=b&^NlC4~M8edNrU1xNr zp!7O1kYOCgM#tOm@Vs=(HC&pq`**>;zFWc6E!WDA3t7dxl+Yz(Zy5-O0M^odr!>WK z6+!DQU9XWDZX)*f7(Eu|;jd)BvEJfV?!`&wN79`LCwe& zWA8w}QsPCtSR3{mgBAf%u_dG{u~2yHIc2l}f%0Ti9?Gddw|TRp~U|<6R-Z zRxKq;@!eU<4S`8sZ!sG|qr`^t^*%Wlw0`OmJQEhTA)CfYmr@%aPh67=Vm!~UbFk?Z|t69zQb5jJ0 zyo^SVV4#8GbeaSuD*lhCA7~)6(yRSwu$R>5R!p2 zZ2dnv4w+V5GbkAdrD2YTzE*47i^jp%s}D!;(2SX95gnvS&5av!?GIyA6Fdc&R~|Bm zkdpM%%yV&z+spdXute*6%wmg0J#TDjPO4IDJ_tc8IRoFH-(EXl2G5TIe1;FlImBGX z@0=ZGHWIeFMIzxw@1{%~)I29(urmW}Cp-vcYC&Nzl=9;8lMD?a?p!?jf% zi461MgU#7&g+o7`r*4ShG3#{;j_S&pEKP__1g}GxK|2O$R?V;7?DcyI^pO?5AV9gj-q3*ph{7{AwckLh~%r z0{uB5$R7d0o%B0+HP$yf6-(%G8K%wVlhw=^#=0{exX78zy zmPKy*9g88~H+W%iq}|!s1Qu?X5AoJI>z4|Y7K2-Z?S+}!Q-?G&g*Y`=0nw^sp_8KQ zu(pw9r-i=eQ*PJg1R)|BmlXZ%E^Rl#vs-G9JHuyLcPwH3rsd<10J<1Lt|I~k6+3Li z-&tu+$=v+&doVm|69$39P+_!-Upi{yHe(4W$LzT?-)l{UU8kXi`;VMb#>{w)b}OK$ z>0&KJ=(6b4Db<kuvC3|=@l^kF(2N&9en4=uE{RlW=kFM`S1$b!J{`u zxiY%dvOU`z5C5W1#iDjp&`y0bf~8!IMOgs#z4Wgqz?)uJo2L_TC0ci1+E~p!9@$hl zcLQ7AauYnN1_0erQR4Og{AkW1#zeI_ZYVZ|L2q^^!D5SjywjJF(jqJ|m zYis2)4Fb6>@AuRCz41*-x!?mVY(0Cgwbw4M(wY~nmZZE{GM<7u3RyuaDH0AOFO%4- z9YEbe+B7v$kuj+0Xm=G{s>sn_5`16YeS`(!zoU+=T4iH!w3Y0?5l*N)EJI`b;YV1r{%W>y+bsc2n=@EwbtQ%Te69M$0(+s^EO#b+m5D|+fBo3A|&gXWh-xk z_q>6^fR9o^&o!mk{Bvu*Z{5A}GdX)tLG!uDmK=6deF zpp0?LGolc~bDpO8e1S1p{rz%1n5)A37vx>d)B(TxMjS#&O`X;8r0F1$>$YbGMUOZdp6h&iL- zI*Y2pgT+c-J59UCM(yGKr0Ui8wTRJ^;JG+iJ5Y@is$q&`&UXZW5uc#ozCoq#3(x=>_fgOa#-|P;x##;&jwv{I`}+2hu)Z%3^fPGJd-~9H`M&CXoX3yQgLJJ`c; z&?w&Y{=j*6CEl&=Wms@5bkcaAYSZeIOluc9{7mNDuQ*B|4%0X~_$u%ItVU(Q>`n`D z=Xm)mm$RSJbsh*=5(kg=)Q^BHeB4m*NQ zjXSUf@&O?emInI;4f)uBP5T$C$SIuJWSDDMVPmvqLq^m!{sMh!(BSu+YHqN-Z2)=u z7L;Wx{#b4&LJ{_;JPho~!WM2GJS@vQU}G4AAK$V$k4^y8`D$p@Mv#L@#u#@quYm2vHOyq%5W6H z=HG`wmet(wjjY6ZRghDY+IVS}rQkD84y>I8JSDfjOntK`G{BC(?WwMX5bq`}@oy{leGMrjhDLa_N<#&z&%a=d?v2 zegc%34~n-Qb|onzkffr|CwVRv1n4YL#ayM{iP6}G>aOC1nC=E?BpY{c%N=xf51^Dt zCI$gs>5eLw&;sOj{{gRwy8~;FRzQdP*VnoFz1IhRg=ZxvZu2iuRU3X%yu;RT!Nu(d z9IaDLP#(2sS(4prtY$(w3%8AQ{(!DC4M}sC4VSEy>{u{HRmI+lA3{LO0aH~mMWp`T zkEVUtyD%Ffm~K0ykuujX*K7z&w96E^x6X0=fccqa<$!*8i0EpLf|`KqUiCfh*6SE+K5+pbWHc7t^G_pLF-TrC0yI#wQAb4 znBq6sHd=k3>a)+A?hZo1Ub*?EllH=j5~W0~8bbASaqD6=)`?%x{B;7!E7bjofXBb* z1pN%-jzA%-I4PR#cI!%-3>Lf!I%z#P8AxKK!nf9;<>sX#3C(A9<=Fur8MhuN^l$8i zXsp1U;d*&b)%P+WRMAyX=Sx)21l#ZPMe2Yn($dfp`SUJ&rx^3f z@}0=!3GnL3X?={?&`+K^cF@e@rnGtY!~T}ZxxZH5UKqGt?0=LdU$kBHP02ws)Gs+z z0|Z2|jt>tOVrwAxq)3*{wS*H$Gr&9@>3Bu;cd+2CR;ut*FQ0A8a-VH#6`EHUpEV&lZnxyEhY>G=Kf7WoUKS1Z|v&;bJlJK?Ac0mP5Na*r)? z9bX+6R=wlmz%Z^io*A+3XI0%%hn2UZn?+Qg>cz-w^_d| zefyg6qv_fGYm3?qfS!LmpO{Tc#6> zW`Yohi{Oiw5 zxj3k5y0#x6qfyPi?}and3O==80z92lEhmY^Gk0{zqBSaSE@403g#3jZP695G?VX5+ zi|wHG_ucEq`DAV9Wx&ie!IWU6u)OVlUaIhol=m8;$|@^#Z>5D zbkBK44VazCy{OwkGnTj~H5Y^%L*{t6p5S3s%O}v#^<56qUO5d!A)DJ`=c!n!#{#g! z@d>)aC)+6Oj%cwc+hgRgkY1RSJncvFv3Fx2>OldJvV@vdRs~xo_PqBG@LbVy0}-D} zfC9S@tLisua#4#MmQ_p0dB9?(kTR9LsDROfp)>_uYF=1|f@K6WE1U93@^>97|GoWO z`|oVzHmszu$GO^W$t1sNq)j3iz^hA|X=!+#Eio)pc1!xYiRbh8Z<3y{&+;s?5a)l) zRzK|PKdHWI9LspJR7N78W+KqSDRLu>y4@$Zf_u!&`KiydyTRe_uYmukw>~X2tNMY@VBF8RPDY&|u|5MJHWVB5wdI4*dl zGKtkNUj~EosI?Vze&4guX25XCa^Rkd-=s(;@#Y}jS$$7}A8;0gfEA%RHzv<+vFs~)d)Z0UaU!iOb3dRz1T?z(%O&aw7KjtlF09>FD8I2w3DOVcZya( zu^0JY-)g)D$PH^14U{)?&%TD4AJa6(6{8tH?WuIruc3 zPTND&`6c`aeiI>jf1`}s_56e*G@B`ia+ZubTGKZ~{~onm$fXm!%KsM9s5KxUvu;VT454qV4}Mb3 z4S9Me{&79Ks~qG_GM$Jg-Xc+|@>Nr{*_jo5yIBn-rPFAvrsuz7D*S0~F<5_}I`-Xt zL93Dj5!a+P*0T?`h`#3^Wgqj|hQ{egh0M}} ztHU#~r%Pi$%{w-FV^4IutBW#;Jf)My%=TWBtuUmbb^D1I%Z$F(eTE{OLtBF~mQ%_1 zb=4k-kktBMeUyE}3NB@d9LBS{q5+mA!Yb7xefyy`6y*fMYq9Lx4z@_cVa@04E!Ta0 zqqxtLnRU?hwj{pGTe9hm+M7bRlVn8-KY!rTya})+#8n&SYYj3ppRbrUrsD;dT0Ccl ze5!&5M`m{RO&mT)AQ@bD{%lk?U=kLaD%u$ZBV>r1YCwCp!^x$q7EE4q=(c_l`jsXZ zE6lIvm^^^CA~bDY3ubR4lwkgsPQ>ZKL4g?|{XyMQR~?h9-FNAwhWNzQU1iP#3RGlA zAy?OxU*RA%U7(6dxtPe@>cI=ICaShw_^{Hi7r0j^_#%d>nH!_L@eA4@FOTwTlNP_g zZ{KF#Chd-e#E@pqqOsS_%H4~u=^~uu^Ix_H^{HO@>Jhp_WQc#kte3x-wdu4&{=7Wf zT{(e>Vv$v84Zx*^)2Gf6<1gS#K^*Ds%Q3ES(_*BLQG9DPYgapZ1(-5F%fnIvxAZc` zA#s(W%p%YYU=n$xNL+b4)~0hH6J2Sqm?_!S^9IPnh*k|Bc+c5y$?ZBng^IA!m;Wt( z3%^WoGWrO!-nYt)_3hmHU{}lYmje)>=0W)=gqGIJX(?df=k?wu)5&7F61_z`G;zfr zv3tbh`ntHWi3#{U!czQkdrwy8m;8IIwzxmSrxP>K3RJ!JtDCDfXsKUu-mU4=T@68* z>VyS1A#zvTC%TKK!3oQq#)qMJSun0}MZHkDc1c@N>2a*#j>259b}>j<$Y^A)n)Lx4 z^BbPj^(C{IxdpJB@^|LS_Q19I`^xJP_7+^}|JhNoPw8I^uN62_n^(NL+=>^~HNGtR zU{wQV)sU#O!fx0sh-0*GJ&J?Ln$GfA9ZMh06>*?p{Xl*b4sE3HbpI``Ym)TyP1gl% zECux4dWNUc2%`tK^OQE$a^evCS-6c9w&b6>*LIBixf<#d@jVI1)o{+R)qhMudk0b+3tERJlT30`I{g=X*_9W2CTnhM0inbXCS*bgZ48!|~So)@)DHUw@GVoIr zsZIW-nRD!%gDeLoODC%d#6MDKYJ3BGkbvW5BzV&8lvRC3r>D`}R^k-N-^1rB z@D08h181LcNCC#lyV!VV>jPdQZT!JG*31m)GS@Lvk?Y6o;b)J+{e!LvQ7wHwwSA-R z@Ww44C&dQ9mpSal)~a|-+U=1C@Xc~>PtQA@aJOpSK?uimdbX36a@2(k-DC>7E?=yD z^MinaRiT|{nNtX38^E-p5)iYp-54x)of@Q7h`{d||8i~>u9ByysQ3mDN_c{o5~E(8 zRGDq*&CAzR$gi*>(-F(QO7@R2*143Jn{c_FtM{Xj<6=GPQOx-gb_3ezHjLhkM0ZI1 zPEiD%v%aT5W1B2lMPt?kT2A0C-Sy14fFN%%$#?bSZjt+=PA4bbM-W}i?f|I!^G!AX zP6ik1Fm?t)Na?BiU5+FvH?WIXC9!S2b`+k5Kh6>W({STM=?Ht?PxX6a2~a-zeRjtw z^Qih7Jq&6VS@ou0*7ae+hPl)=gvqt&;Y8qKsg)M{5EhYrX%&UuP-33%U=^+x*f0>c zo(pz@>h5<|B(C%ZXqV+11UWtA*@jf&S8i%8Za%~e066ih^cRBuHiVCIqzVG%zCV-r zXbUi+&k(3JQ1Df$dUqLFC;y-EMCQWu)>vT@<%_l_fhE4=faD49mn$#%RtWh!x0^Q| zL|Oo?>i%Z+1xkU+*y;!c8oBv;5&j`1=tWlrXG`I{)jl5B?&hwIv)w(V5z)LA!7{gDE~46F$Xqq9u{4UGM>|v@;W2^Ms5xsL?B{6R0h}rKPZu<8^pNeO z-!W^z5(+)**9c@)j{E1Y9dCy_e|zVrQ{(&+On$0?H487b+XdHK-uY7TK%B)UF9Kb}Zy;_#B z?Rg?I@bBT3zm^(XolI^ zC|`@!sFVVrS**b~Gu(Z|EB=(EEozzaqtw7>o5idT%#MV?C3LN*+1m`6!X73NqY zh_$(ewmtcW03by`h32~gLp@0b3EeV$an^{E0`V|S1)~~t~5Tc`G!kZ^kZCS z`!6V$r`9&x6#1n8PRSssrr!8{i)0t6vvmmhL3?`|YyF99;O3~<&*%;q;^L9Z-5(f&!b2Kp^>X^Lmn{4_`b4|OY{Hs3=>Z= zg@CpQ;CB5@dgYh=bUfOQQ6wdHpEn+J%lBv8!eK9EXT<~#_K|fr`pAh$?RuNRltE^A z>D-XMJ3AHYCXq#*Gp8=y(%b;Htx`U^`3dM~&Tb_g9*g_PA=#iKgl>i}X-{C>5$@{fJ-@+T=>r40wGVk=4 zuvm!)v(F`m4mUe@Kiq-ky1#P)U!;(n`*L-Qh`VmVwCh9Fj+yinX64kj6GCl>*~2EL zkXP=B+wA!6bgwz6(I@+9J&3^n-Yd^XxKEqP=gf901#x?FMoFeCeA(J$WWY0!BmqO3 zLv=TgZ3wlvmky*q>5|uS^{t*kXufY89>coCev3cEexzgrD-@uDVQ-pjp|mBPFA`RL zI%{SsBT5)0|N8X)o)waW>jV*!?F^Gr^N4IpCT#{kh>lU_r1&hp$dEYK-BfVk6;l!0 zkjw4k&gg5-Zefh@^P)o~*^XO~jQ1xR>6>mEr>&2^)d%Y(z6t7c0HHc(0<>y0M%4%K z|3UNb4pg%E!OT5hH#Gf`HY*KLO3oqyA*yIfhD9rJ-K9_Ig4x_pZ%Mv%(w58)PokBz z9hPZ)Y2Hy>8U0zFg`lw`3zg*c9qOw`3$N^>3lfP&#oFUg4Y#cvu1Orbt~g)8XPC}< zVw82wP$l`X!FU~G!k}rZdrN!v-hNLPx^2Zw{J-||9}>fonU{PL&-Z-2BG^5`3ib2Y z@(wMt966eA`s?-AsAGyr9K4OJte9*1k3s(JH-BWx%~MUU9Xfozyf>Jt4DSf+n2`~KUjbKAXZ-PbSMQlij!XFm&nzP40>vgvIAZxh2H&9 zn4d<}nMUsY(go;xYq^7tEm4FaiEbjw?wFjVXSMh9d-A{4#Z}P7>y{^~Jd1ac8$5hW z!w7p^)X!4LFCmYrUecPXX&lBO16Vp=adn%fq(L##6`Jad(Td=U1kE;Tn zatA!44g=vF-oe>i&)pcpzOnZ$Wt^sRkR)$R%%l~zuGLBOulnhw;naPd#Fg^+^@CB4 zQ#p-v=#&vEAmH<;v1E}nPo>*2Qkd5$AWp4@Eyv(%VUIbm)hZapPK@b%sbBruoN9>}_L zZQ^MM!Fyv9!iH+7e21x$@B^u@aX;98z8N@n`O~3vh!w!q;Mjw@Rrd{j(b5%G<9O#c zK>bM6G4b|McXC6Pd#UDdEk4-Ju$#_#bd3H~H}S?l_=Fy{9(zaumN&Z_UH?;h@sk{! z_dZ)|7YM2p(UH6dHI^p1r4niKSj6!?F&Y(}fw91J`p{ZS1aKI#r*t4OPpm`{8rD%z zZ`^*yU`Yth`$|;n5xlJ(G8<(9@v1Xt1PMNE%5$)IELToDC}uR;A;ho!qp7to2yPN` zUd%7=ofd3QoSAh!FWxcjCyS2cMoxzQyX3IzONiVHB{j{ zHomeh25t}`+j1jR;&1V#nOnv59aZAix4RV>29UF8$`N88l*d=Yl$LA zgEWG4clT0|ke1R#OLupD*8=b7dG@{cv-keqcf4y1|8eL-uk*albIxPV`8!w<%5IU@ zO64%WfA;^tljJdAK(S0l8*PkNd~FxYwEyE4-gJj6maWNI!mcJ=Mv(!FB#dYq!=%>i zcebY`Rc+Y&ri`r3Nc8EP@U-ZZHEuBWQl7Wy!TsQ8gueUe-<^~=kV+>Z-|b7Yh)u~bdJbMIfVVj8+_Kmr^+80G1e z*p``JR@Rz;(^7hzQ*z(fR!Mym3hFEIX|7=4S6t#F5?Mv5Rrt!+z$*9!#m8f!j3}6i z7l@}v6R`?;`nI6#Gke#qI2G1A{4&043TeWSbIySqDx{3$1ZFN|emW9at>vqAhxM7> zykF?YpPnB!uM5Ba(5Ds(Op0D#sp#8%B8h9s_Ch55vB>t#l1xayh)8R2boYaX-`MYV zYAT!FNGp8F)HdY08#9eJPTd=g9qSMj^_r26UdYrcNZA%&PYu~+;k6i;XukJ#g01vT z8`PG38g=?YkZsMSb`%;#Jtwux=>UmsR{HX6lnl<{3ci8&IdN^Pkq&lwtj4PbOH!wi zL&$n{_(ABT?~Z@4B&Vg)%~MW7GwAh-{whUp(JM*&v|n@QbIB;1T4oGhf_>s{&ue2p zV$P+strBwglkC?x2y%2@yJ{wwav2v&*`EU=OcAy(bZ_)HC`K3qUnU)D7C|`}#2b+H zmy{Ol^9bRFu4|qf(K8!z#+SB?b}%8U>S`I%dITkFXhy$~EE&G>Ijq@9?K*`dLVci* zO%<$+)%e~Q#nYAq3Dhg`!GqzuXsh}OUN%{mi=df(jccE;($-qLoaq%Z6E5yZyK?pd zy+NNkA$$H?$#lD^zoEg&X(oY_zh{1uRCyN-7^r*L>bnPPy>}Hz%ksOP>K>PW<{gA6 z(QmGO%k4#R<5%dcZRDGtrpm84N1W4A)UllRHcD&BvkLQx)*7u+ceke{AD#TEbSlH3 z44aBe2p8TV6LRmfOcV@ejov<$q0@7Y(I33Z;+8f--2pHZJ}{zRY2zJR>&MOZT7-j< zK}Gc(Xsg@sqM~xC+_Iiu_lM$+b8UYx;n)kW+fFHP?%st6;={St!f&RXKrHJ)FUCoq zKf`J~eqlN#{#{I<2OS({h;Wk(ufGrP^raf|+Q>TSmXCt%$y$K{SNds=xsI5@ZP@-K zn)Jq|CW`mVK7)5l8U+5O?&AR&Jm1;A)7NQmAkDIG&KL0P`HpF@?3cik7MsDBqaDVg zy85FqhGCCZ8YvQ=oE~x`k@y}JJ=97bX)n!m%S~<;45u<8e*1F9FTUl;O4z+oW^8NZ~E$11kDaOF$uCKK{|y&CaI(}}m!p#kfY_7`wsa@rr# zRZTRp1$BG-nSX#VcDQmB(x)G{`T1wr5N_6x3$%+Wg}9JqxR8u}lmw1!kM#kMwt=NH z2A0B`<{f^Gz#5_hmCmN##}wvLr0rn}hvnA6QGzQvPh9Ay(i*B*^1KNM5Oo4q%p2@$Dv2vA1Y8$5?ZnoBn;Tz*zg!D=bRm~FpqRu%sGVfxcY5=4)3_+aa~ zA?;?B9S=&j1Mh8yg(r*Ln3PbY9@_CfovcMMdz!7Pe(*-W&;#Cb(L`E`V_N*{NVsPTq)+by`tUpX5+g#@qtgfkZD63^G4cY2gr3@4%N7! z81KMG*p;paolF^(Ah$C|(ho$pvVnDMz(7e8NPBIkq_wsd@w@7wLV#axH(VxSe1D%? ze@;puZ|oZZnMXY&h{={IU)Z+IEHPuTv~_NMG0bmT%}=76m*Ozf<*dI8atInJPVOV< z;COv`%b69r5J_!AOL~Y21@ZnkvK~`psTqc{-uDS6?PGe`nzb>LtJfkFIAE?a5xgpsgs`#2+ir>E-V|>y*h7HE_}LT?;i1#)jQX=G=Y@xiUwnUXwZ_RmPOdlmp>+n4zCUMr z!KkabIk-s7%WDQ%?)^d7F~yH;qdX0zTl{iEVF{z(3&w^&79EC(iHM3$?cZajN9nw9 zl9So%B~@;hUF~_)DpWw-nAdS0B(SjFR~n>)xl-l5^5cCitvDn|w;i?7RPd|fuL-Dt z@@2AlSO4#+u2(T9XUAVcHDk4ImRk{-bZn<1$o}v_9K+Cg`y@!rCf@V**pcyDkmMA- zIk#-<*T^)ff|Qpd)ykY%P2>erEcbRGo4`mS=A!(Qt^V6GFTXu-MU!W<41J9o ze-RDW6<=OjQgvkA^lWc2vhn-de0_ecetspIwM7OxI%!c+L}VU^iiTXl$RKo6w(3`p z^CmB=p|yPLWnjKlmz&%vPvpfLbrB1!=PqMMuJ)Gl3W!Yk22 zgRS=0JbO(%KLZS#_u_m}%VP22jAlzClE~ode9PTan3`mpb(^qXo}lmbwFmMJ4of>h zZ4*V&TKrfl`Z@@!UN$=k)}TEtT186h*SDIH<+drDL4A;P1}8x;ib7t9yx^*@+-1vA zw4|VdpNY|Xux+daJX#zUiHer!GDGJG~)hov=XBSv4|xbR7o{iu?h z&1N>r)2ERsgCqF3nuX-^+%Z?&+>EonOhxYoW+R~X%+|Z?9CzyLd>#FySq%QrVP^k` zvD$4#U+59ztyhyj3A3Lum0=3|wCN3&$xWLYkJc>c^?v3vEJ(O6`m~L0!--+ssoo?{ zrgw!n&@|Aq?|ykT-mn;_*kHdP-I7JhxOqy_#WebZfw30#X8awKk@xSZh=z>;Q3g;P z$Ktxf_D|lpqK7Mo5^04)L|Hi{`Wc$92dmqyyG_9UJ<@Lx*H(*CWM-4$*(dtWb8H46 zWS;<9LEp0fagA+2+thqAqNzJCP$uiB7Im0Nd?j-r-8;GPXwB%bQiYba;{*y!&;N2- zF^gIGAdC6s%a@CLew*$fuI`0<&vjd`b8`GS0mq`2X-TSB2LQp@Tg#5}_60Cx0N{dgu8*^N~!?7%yZ@|X$){8D^y3pMqjtTVvE!Nv;MBg&o zPV&|sFH7YeWBDC;ROFud{!GehX0xWN7xjD~jM$3Zt=pSC4F6B?{5sXUFPog1gt=db z==!T=o+g(Bc_5;jsnCWl+r%!>Ip-Ag39L0HqIWvp@~URMxen!_*e1Hqq^cXRey7pTi$& z(Yo+*QFSNhkTo1q8 z-KeO#jwU8|`cuG0v!V@8_{n+xb!1gZVO@F>M?sZFHlRbtBxSc|5J@Wb^2y8D?kDen znZkTdUTi)j9J-oM8=sGC{3>N&!O`jH+D5!h&vdt(Tr1|-kF(+>i(T8lvdnS!=0n@3;63jdLFBFM-p$Rqh(#kt<`+ujeWVBVo0 zWR?h`1FC||V{WC7Nvt*e&Ng+8r;Wyy(Bh0h4rhZ;A6vU0ltR~{SBLYAk6BJZ%7k$7 z3FEh4)serg2-deJAt$)JxG0^g2Zm^sM-LvL$ZA;(LRn~kw&`x_cTuPhEi1i}Jc@L9 zhvi5X!IKGwe$JF2f11kLRliJP?=+4m*rOIJGBV*YOPdI$cFvP3Q@4OT-fi zkvWY0FE3Q%!9?fHvj=UQ;Oye4n`r~)+jo+i6sI19%MRroti+ocr0qQMv?PY<>=NXi z-*=yR@$ZNhmy4V^tdV-VLdJzJ%mscx}J`gmMxW*&oKkQ59m$%@$&~&JWbO(UR&h)Atw`qIfH4rn2NIB&+c+ewhhsfidJ!FuArmLQDP*Md~up z)mygHAjUhfACZpO^-6zNaf!8E`S9r}n_|5p*8GQ4a56M-=Z7{}E3f%mB{jHM1YQ7h z!f+CU?~vX2=lF(foNLCgq2PDVh>syH_KhdUXxTM6LfXnmNJ!oQ*v+SnQL+{%=lhXP zOzejPtB_GePK-8QW^vEodaIw9lV>+rbS7^CCy;Iz(N9W#sZWpJg+;&PJO3yHFSQ0+cSx9-o(Dfu7PCjzoD5&j z8~XWjFL9*7RgJYilxp*|@M6Vj97fPXFAw`pHK{X!Ss9(ycyzD#x{~bybIQ^M4VE5ZD z1ekHx)H$KUX=x51=u)CL>paTcp=^}(br zjen`E7)A!}%|YKJBrP$s?n~jEZOl>SKR7AMeW)BIX_hfTUwTH_THXueGnla^E5`nf zAZ5Qh+xoJ}?b*SB-C)_LTEphwh1W;AQ9|Ej&D|y1!)l6yRg8PM=5Gcd_Kbne*x*!u zjyEV4`0Wq$n>&*}ISnpCNCOC}ar*_($I3S7;T~h8{!WdF$vm}pb{_C>D6~kQNH-Fy zsfHGbx*8(C_$u*?*P^YO@6dO%Dog?!ZX*b3`(n&1w1~7t*EBWa*XB%oA`V6?&ZY{0 z=Ok}lUw@s^W}x00fGRO2WkD+BsdOyf)d&(?*cm0}=^=p9su}%Q*pq$LB$B-lGo-%v zgH`WX=wa2;@_UWbpsz|$iXKv(gyHhI!?Gq@6vABQFcIz!3@JbE6e13B>#s5SeHC$-)%yg30ET z;P>B?@u0kotJyT$roTOe>pN&!nI{wbJ-vsLWnW2nko1+701Ux%9qQ_;{$5i9;p=OQ zw99FZYtK*T>jG)}{c1uDo~1XgSQ&>w-OU@d1cH-K@0c;^uKGX4<%C5624VQ<;3d32 z^pVO8o3PsS9x;{Lbr&fr*_cIFSAhUaa?c=hN!lkG-~@8iS$N%1IpXpLJ)2%rkLahz3p0XF4MM?rSU2hBgIj$ z6knv-k7k=d3`%8 zj|3E_P)+DRqj5@$v*L@M9xK9w>>52^KQI9{P4;pgCuTf$34IsoKPqryrJ6iNOYfdK zJn6^Qk>>g>o+ij%@yjy#r1h1WU8t- z$1m_wPqx9zvcgr|_^a01#!(>0jC?;ABLpTN=uaMc`y;F$H;+d@KdoY9Go@tPpxZ9m z)Sa)YFU4U2W^AK>L}5Q#bH#KT#S&{r14C3O6fOfr)-6n*A=WhS^u{ivIw8B8R8(^;a)oL869bV7BhCk z&Bkl^5ZKkS%tmBFAzSI3-iy1d=~jBn=qQELBa}ivuSuQkA%xG)S@ow~Y?Kv>GoO40 zRIK$Rr*3_ntX+0YjwE@V?*~|n*q?t{#PF$F)XJ<+b~)9$+kLXGWRiVD!`sMgX%n4` zH)OcLF;eY2Jqjq<91)q77N;uP+))%AYst`aOS-OtyiDr60DbO}?8jDY%bLc4 z;E*j1trB{}@MKXkOZ!jn_VASv{fi`NQ@(aUrl9k;lK~*XM9`G~$jxPUAStv?GXD$Y zQz&H41AfvkH{wwM+>Q>)k%)Y&7`6C&;`ULI%5qK@s-FHgsJGg}ffQc2WoK|_mU%qT zDde2O2om5c~~9KMsjO)MfLP%p!^eU+7ye?)O#!0SWM=hD(Ks| zuSs~WlQ`C{CYQvEmTA=6Z`~7)=i4ej<_OW6B3?F{v zvo*VB^6bfYFDYE@4{`1RLr;5WAHSSw5x?!(RmC9;(BQju5T+Yps`iZIk6Oh)EzeCMdaN?fZ{}ey724W7X-hA|Pd#$OciZ&Rf6OaEt?w z(b-l1wl?ojl}1h${%5~$IGVaT%dw^6HW(#hQEwVDFI$_yY;T>X%|2yHHzB=DcVDWVL(|xalhNkSzp68&LgDKAgd{ z{ua;`UAC6N$sh(aF^6*2?v7TJtSO2sD4@ewdk~1J=(|?_*kzm_?ZQ4M8a_nQdEKJd zt(xam53{o*F=&1|C%kXo&i2tL4>dGWJK4#^G_VSwVU3kTsCV;UFliAU2Ei>MYV`YSP*TVbT%l9dfn#jRfv!_z_%w4Z$Ed{Z& zqBWZ6W3@PM%e1&3_b`}q5Zl~AtROm7^_BX<(#=XLZMuo;?DJH!SAK$cI&@!-MiN_P z_j=WFQ=tUL-xCkkVl}RYX!pym(9yIsS(~rs$m<#u8NP1@n+CxUbYD9!Dy&lPns3bm{~!QO*G^Y9*w3gZ1M@o!#2lYCP0h4uh|6q!J3hz$onP%$|i$1Va9N9!PK%+;u`TH$Tu6tSy^7ySKtRV@!0lVUu;v;IfaqN`1jldKQ-zR> zs`^f@a&O>*>FT(HTUs*4hS;Nv|I~nu57~qJbLXp5casaRj)l^>h#{Ngom)rss;|Rv ztE6Y4e%Z%MA!_3}jhwgkzi;+@w`3pnlPb#^*lq%HqRHII1}=qJa^KOU_C`Q?2ht9s z6iJEsH*6ac5!~3cz>ViSa{cMT#MKr9YCa(a-=MW>&EEWa+(LV3TrRw0l zk^P0Z&Y6aQ%-48cz0WArZwk+2#KGt*6WjbHa{~$7N0Sky*IYizEI#H)*zQF9sOcFz z==d0+BlW^Dh|W>|)*l~yGz+|~>uDcJ(z2V%$4I$RVb*rh*$HB&uNe(cO8&~?;oR59 zc!V9$ZHwoZEF1f}K}GrL<(Nlm5u&=%gg>i}h?<&iq`BUy_KFR`Pkw}qX@NWraT7n; z_y^BktUsDx4T|Mh-FuODG1P9&bya)qVo#3u(`Cm~-en-}_Sn=MvIC@uDY3^|+~@Jj zFIz{wWxtx@V|8-pE#n_MZ^X3|j05-n!Ke(?bklFoK|#Japa48Qtxv+I;)+UK)C_<` z*RiTpuflAyk<$^-V|^$guZs4gt>;RaX~2bi-!SM2N8lXegyIvA>^1$cq`nc00jhe zmr|dz3eHdy(^wnKl@{FHMp?LLUXQePYi&@wtS=8vrwSUn39SPzUv@g@_n9NfHD{6S;)T zynY{$2eKSscVPqQd-bqP>7vLR-rUU07$A#1Wm&0_ag4d6>Xrthjaj!nUg3OwjeWOlYg=fcl%(bk$Ne zbE(m%sWx?YAYS#?){>F{%-W-^z3Vz%@y_kuu`Elm#%>ST|1E{Fw;l`rIU? zZ-^60Dl+fLU$6RW`0@HtDROg)HtpVEY3+#6#>oygpRHjO+p-VvoIVbX zVJfzxRi3ugS8$x*k$h_FeERs8U)sq!KUTwZ?!nt)e|+nVB!9@yW-uWdn6dWO9i|>+ zEyhioTpXP^pPiI1R_;x(%cQ?fNH+o(h~yBxGi*{JR+e$;eC+BEv2FJ;lsC++lEUff zr5HV&VWEoGw`rmgOco0R zaR?4TE6C31TQ%TN$$0(heKY;>k3Qq3*kqObR13BU;Y?DI2@!doetr}{nJ7-|utz=T zjJ$)ikADLc&DDn#9#|D;bQH&~$8V(*xPbEKhgV8nJ0Yr1H`!haXC4t?xjCul*+6o| ziZ9HE=mf}M0!_w+fx5j9m9p7zwzi=P=j`b!?&7;#!M$G&o8ZXl-a$r|@p^N%v9j?> zR#V>X92N%@i^;mr=2GuyyXL-q;Agjx9OHtkvkmlZX@-9612{Q?YyrzkLYEyDLRXEP z5Q-q5WcGRHDz249y{`F@Fy#3+lod`p;y_PZm4#&_jXE!lgR zLh?RKda{W$>@P8RM7{Tj7&~M;+I8DXbmdB5r*9Zyr|hNJrs$en?7Pg=(E>^C?3ntyS{Wh&$J zbkEBrV3A^}pR_v9P>jwj-nei$h}6=1Kd+Z?+}?E!s}sJ>i?b&k{%-e8i#qEDDf6z2Y^9qYsjHe5*y&0V*OFy`P-~Ct=ScGLk@m@QDSqq{53%`!L*O+Si|` z)xL*a@-`1v%o)sj_Eq+moZyQ&RAykL&ZXY2^1yO36%1b8X4Yl^^?8!)ry791wG~_c z`D+it`9jf5!*P(*#{@!IP+#q}o@X;%&cFu+fSphRoZ#LPLL-HT3y6mYN;1{{obE?*-_^mvs$E zqr9!pFL;@m6#-B)U~c6-mzQ6Bh|b;fT+-BOh|rJida10z)fZoXV!%r&WUh`JzirPa z{=kQn>3~~hyVRf=&vv2&u(wcu^@<9x-OJ*+a=iZvyFop1tO2~f?^Zpe@;7AdC;(g%TOPV(H(8_D66o1;`F-`bLVX9(gpbb0>CN`=p2h-Op=hnrSFZO{ks@ zY$Q>=xnbguJ!`;~BTtU_02jmQK}zGmQ<^%Hz!l z9aR?H!dUu(=WbWre95u;I8eRm1`Ev&&>TovuppkhhP))kHYR9xfHmP9(K_QcubLhw z6@i1#_&>3MA}7sk^f-sDBi%8e{reB7vKA*->p`1%MZvLqJbPCv)a_s2Fpdo(ukp#) z1NA)h$x?fQaIWYHYG6-ny)o)I_FKYk zTY*;>oQLe^G5L=s`?Uw}-jLgy>;FKOw*l=h>bO6QK1jA{;H#MFDW6}LQ&00{WLu}C z7*pgg#-T&7Zz`7F{>RkHB9~z&HS?00~89tFS1@3)^P7;FgWIJed{ zqz_%eV?*IfF|m#&!y5Ma&GD^(C71^DObtG)+pso`tl5*IjBrr_Q&x&*v2j#MP%*$$ z?a)&hTd3#?jhwiTx(ZK0JYP9qqYk5M6VD(e^!aF-Pbx7oAyJ?>a+b7)lZ?;kIl`9( zX^HN4lOS3Ln{#<<*~#x%-=MZp7NEzKfkuH)z|m(w)y9HlrF=Sc;Ma?hM#TqoSexPM zmkl~ZFQk|g!dGoLtcEFC!;5_wAQet5S{nVG1l_ZEBxduz>VL@ca5!9E9k7n$ZfEf# zu@*lvU_4}gpG8`&yMgf&JTiIWx?>P43X886w*rDBxK5ae7NVk|@ir}uPrpj(vT7fal88ou$SuUEqsjy8CP+X-iW}D-Qai%-wL{nz8oCcAv;E83yBmC2BFoPHru3P?2hB!#Qy$&kr9w$BlBlH4H;-sXI zj~|}^Ok%IorY|*8Uuhwq!?wY_FAcbRO)rLC);PJ0n?(;i0($w!+^)|BRCeeNrUj52 zUK0*mvpo`qTYHT>+!o~>3$yy`@%g=~G4Mqt!tjR+yTvp<3iW^~-tV1M@VBU$sC5_x zmXw;1Y$wHy1o5r&1tY+bf6QHV#3ytda`Jis-R)q1#8ps3gvA39H;^66@|6flxvF^R z`{DsFD|Y}lpOv>h%u>tsHA0JY3>o%!RjEG!wPL(;;-eSw$rz;U*QOpr+(zgeDskiO z0RiD8{A$2Een0LesaYI4q69fx)C91ofp3Cr^522u#-&GbaB<(E;?PkrF)08L_0Idl z#MAE3fy?smvD<)eWhZVI??-Sj71FG}$^L0PQRl|cwI@g(D^j?^j^A>=-zX=Mu15+35?=eJ#L`Jl< zN-u|WdIVA@i#Z@ix4_9LYp@R2Y@<%^F#|W+{F_?@d=aeaTw&1@2iTnkd~D=&?V>6D zBeC+BoN|^ZvZV2EV^`DAOm`3+qEMP5kpWtc18U0gGy&0G~m za}{f<9cfaft)r6+Yj~mEwZfjn82G5aNhad^vbM(oa1#HkH{@kBCE1}b4TOy_F2Bg& zKUr_dsg;_3mLi6bKnscRz6uscEXMtDaA*+%9&+rTDq!SM3PN|%n9KeJj0thCg!ya;&F?&A560SqQ#bq`50DU19!Q{%kcR)bFtG->~^!wZ< z=_@=&z9oJd3#SytA{TXJGgMkIWj4ro-q?DN<(bbfw*Z>7go zi2w+qjhU5I+o#7NmX`u35d$%9Rli!K0e^6>AwZ_O0NMhUNDZ4ED6aozC#Q^t!Qs|< z6va4A=a-X5`JY@Y$JK#1`ye@HiJcec%nS382d#>(mC!Ev1GhCtyD-Ci(4;TCl)I{6 z3M*j_vq94npeF>_*0g_YmKYn0-Rd|xItsj(VSwGVV|8^k>>h;H z+E!W&5CI1rEgc;dE$wsQ{cCaH;{i0ikPU}rMi?0V-6WAFO*;SMGetS&qPGS1P4M+s znA3PzSAM*ESld|_Mc>5oDZ37VgbD~On1J|iEVhR!$mr(X0_v%W)bF_?`;TMJ8#@W) zfsVIjM0nmAsMAddAse#i7uYIEzE5T+#$73mUAIK_#pWVu}x~dPM)1@TZoO8`F1sIav6cz2GR`bDG$vrWYrKG=X!vxCMDw?e|F ztPXP<*h74#;`sm7O+Zj^XXW|t{n*@8fCUXg!Ro3o=>RTMu2-E8&n4cPhd|{?H^r`H?U=)p^@6vGcxk`^$J7mH5-;b zIoRJHiMrb*fN8Y%oy95jUHjzqk}fY5l?3pk{(}rZrgny0fPp5s2-Ykw432Fj>-j;J zHBV8oCorE~oHkBf52?3NM{6%sjbCyI@Q+MwL6N39g>vW-to4FjQI7T|IJT-hB94ig)# zS(`?uSYVz9u4~D-diF?=4h7q z;lsmgK)1Hs^)*1n*DRs$O@!m(_lo7;{L5T_yj!RPEeJt zjKt!PdS*%IG=e7PX?a{i3@!~!^+%u+E^)Vlx`C*gi;($y{)>s^udHrq8NT~|zB@-C^`t=;k(|J3YiTbP79%_Zuim|o|55Mo{nIF|t* z7rfwWpI=}IYm{z_ zh=|YxqEBE_-Fwb`ZCD(Lq%g>Y2!QrXz|n0qPTZrvKJz|o%c zmy7EoQq%PS1VMk4NHh3=Hu#Ul8_4<7ptSvhN(18OFTldk)7Was#JE5)%mmn(T;R2E zUr#7#JX=?tkKha>w*&>WY@oBbk*U^FN!cUTB6uqyDh-pNv)x^vs?5M~<0hnY&9e9X z<@|^Y5CKN~dPsHbYW$0{tFHKqw#}|vz&OR-lRp5)kPCXh4-9+*gHZ1LD@gacZv!KY z3Q6huGLYIDh+4sEe|UWX?^jC7hqrGL$8A%Ro+}j@|gX%TkK8MsAAw2#xj&^r1hqUzNOK?0^ZLKIP@&IB6*|fy^>Cpr?4$TjTo&wum@M7t@j#n~V+e&iAZK||V&37ZB~Siq834B7HWJRu@Ma2#h>Wh=}A|3%&jp^9ouq5XhZKL5Dn;{l9+wct$wU+aNujB0R3 zG9b+WdXK;B1|a08u$IWHc+0xDaKy&O0#`R(P))9UA{8sEGVmV!H%{K(O+ca$^Up+D zui2e>qC_Vf5PJWS6AVmEV(6gdLGt_1jW^6{yJ`Mms1zA_5gD0u)9b7elH3DN?Bh`FdehoKTOm9m2Et$P4}oSA%hf0I^ae{7e6b=SdEjR7qy` zMi>g)@Wm3x#r3?q{pdhUEcU~9+)48bAuzKKe7c9r+iyO+Aom;FUX0f^R4vbe z9u!6^NNKRfQo5aN{Yv7tO#mK5Y-dy~pYjF@c|FbT8>T2H%PxAcT~5vHeZE-U%9UCV znSbO74Dxby|2KI8%!4WRY-DIiS=1lcL}#j9PXH73(aT@)e{>;X*3cJ>t6wb9E3#hE z)vyZmP7be+KI^&q851WiQyZ!TpvCF%6kT`h9U^xbxz0@mzJslzycoy*J@gG7g-YZi zRMa1lk@@?g5JZ|Ghz_Y@@KR0pmmhF6%FMrebNX+S3tPNYeaO@hi`$6=LH@-MgA8A0Gl{vMXK1APRpLG9u1zrg=)H z2I1LnLlzgpc^+%VwUV8!h|gck2eRHi+;YL`g9GBeVE3bb)rLZsb2ET)c zo`&z_-=C^ucAX~>vy!ruCH8AeCSATp8;%}}wFV51&URr?7`YxeIeR>EgtPK@<+r5$ zx=SzAsd^S<g~7{^UnmuksiD2{UH@Qh?&vx2_%Hp7Y>$TLUeNQpcjS|9{Pw)#c z6jOH~;~DTC^zf%8C}p?MpXmp5j|lP%$Ii^`b4~qde<{0gEG;dq@jvgmOR4HwTJ(XJ zS#~z?>dF_0KYF%g|3~}o-!BOco#<9fkpFY=zv%kQSIp0;dKaUaUc#I(RL4u zSiSSOB{vD^&Jp}ytt9_dh^Rafp(&64n-DS3!gs+=A`DD&p1(W@1uDVpnLz3AZZu_L(#{F>wMe({of=#ZN!g}@WSwzIR-o{ z{8c#P)8Twwg5Hb0IjP?jfO>lVXsd_bhfX$xk)srnSVu_@OJ*Hn{7i~Y(x4^D`+g-y zyK_dYmcQ4<2O!{W$Vo0_HbU$m{DL10ws(+;FtBw#SZGwmV}y8dcRQH*%y z_U=ow629e2Okj|_|Gj!<%%t`C>qov08>8I#!};uOLsj!q1)-Jm@bNYczG96raKA;g zaR=aa4g{-lH2xnuz0^d1GKw^VWG=+GxhSFS>c(e?Pzeu5(Pe&@FP){ljwuSQLsxy&v_ZdiByWG9fTg z8Y&!2Lu|&Wm``BGcdkTl@SRDM0g&w3n2mjS{EK;{;08ZETMJyJI$lU?1 zNDBMftH@xQZiy>>Auj1<83NcLlL|uD32B~2QD-=0hTRFc1P(xb~edRU#>+HyZWvaXbS7??qZ zWGH~@=})kCeBEUigdsnMHofNm;m^*}2Bf`da3tm^qo-i1TvE+-C}#Fz!N_t@^x7D*t4 zxE~w)*P5l~i(*3%;3tI=F2$EZla9V~^riU;c|3Lpn??cC_(ex-7I|KcV5W#6QBw-Cy`;-$S3-0E(D(rcJ}+pAUg5AGd;; zZ0FBrjqK&WvP2*+DJXcVki-UWVqyZ5DuB7qduwNyf;3fasSF&ke+qAUI<~2H*nhNg zQs9N0`d^9VeP(lXwI*L!AMo80&Vx%KrR{f8ro)fH`ALL0Bi;n5M^x0*#{f-6MdcB! zA9HuN99H3zkT?RI>X*9{>t&)9knPP_$;rv@1%u`P$xOLLE_-okq}8V5D{4M`wgV!< z*z@VoRnV#^hW?ol+nI|gEXW5wUPwXcZdcK?*l6WQfSy2#7d)s!eE;Cbe%|e~yCEkM zHli0CzziCqng}QKYxnY=ur15*?W=JL<$J+G@WY1>(Q$D>KYjpB2wQ3@DnL)JmscYY zN!|Ck9RmF)YO1Q42{R?Z1- zTZJ!8Qcbx_HP&7N4#g=6Ip>gIR?UvDV;+H_w;K0h15kSao@Ac+r6Zt7H5)<#*}dnGk&yx28BlA|g?#{%URnwYvE8Yk zKVJe5{I4ykFR;%1->G(ai<_4~%AnaHG3Ppt%&h@S7b$juTu%Z}n6ChXCqNGYPWjpT zwzjLY13c8&-p>(R%ZrQI_v`i_Olk* z4G+{2m6`|}S6f0rmhFh)jUArpcCKr~l-J_3s()#6MW(5C>i>T>=_&*a;`2SL0M66D zJW>nx0Wsj@SL;L1Yq$CHOo%)^{17JM1gn~|&2J+uV!SsU;3+LQ>N0h~z&k(?4b0j4 z|K)})YCgcOHHl4y?{7!{Y5MRX2^7QE1q2LgLlzCdIp-UwXuz(WA}hKV+N8RH5Es@ZKPm}*z~@NNVrXO0L# z`fnaw))6$4W?dGO-aog9_W&Dx-v0B-D{Y~Q3t{8KdYkuQL4sf)!~nF3glV)b{j&67 zniic~I7v@S(}b^E`oO?a;AgE3)MdAAj7=irN83J}5Wp!M_>A>C(E&d@v`1SOzG98e zcoDl+a=W^s^l|Bo&z^;6aH${!3riW4Iuh z%iI+>$>v#z(IkT9fTo~=w7xbsgaV->P{a~+&0^yeDE_bIBbrNDrC^{7K{)@xeN2;( zmLm?gi#jo8M6q!&b&@e&Cqq}Np{G&GCaM4n&3ws;XrvK?z-+-r0F^YzDpwr zVKsO&0S;fpQfQU7u&_`@Mg};r)c;#`WJ}E=(T@86uy#aX#+Tr73MV>*1Z0v-jVM1W z6@*QwsvjGYq4jUWUF9d9TzH8sm;gs2B-OGQpBwTk3Iu3+;TLF5Ko=Ib5ggzQ2SWgz z+EBRXcxUEyz!~?GLY|!>%ybujy5C7s!FYIPJrdK)A{S8NYiF;tx_q!14>&#z1D3$f z3gMis*%)^uZlKbdVgQxe`TAS9)HZnRS>)M9$OAGy8LAh_5z*OMssA5&Zxs|*^z{qk zE&+nO1Pu(GTU*VML|3dgo5`)>HfcZk3dDf@Tb0d_BlkN0-#9!FMQ(w_oL1)-VT z@RQ1(h}2CM0;oV#e^vFIMcJs{I97Bc+qMYCddXMC-wbK9iM|3>EipPEYnVcAp&jA3 zvA|&|^f&cUK}LjHY8c4s+z3xtWwnje7w8(5nNnStK&bpXVKEN@ZcOfdYQv*M|82VJ5cB)G#6Z@6E({da*G_|LyH5UNEE7 z9Q5s$M-VR@yU5iwV$rz0@|`7*2wd_|&QrOD>PX;)0@E-JuhE0ot9RE?NdUb_aKH22 zgRoB`S$DRc@E5+^9>9b2wKc1~kOii&g_4vMZVOh)eH&`rGgi3{2pKZQ4=#=YjT zs)u(kYFGdtp^l9ho+=qw^{#OYcg^G_cfG5G&{I(7(+zBZzfUVBppMbQH~f!Xq2y@3 z;|<}?Uw%(?6T&Cd(w6hX{q&aHD}-e)UE{rG1hv5kguq; zfC2%nukhxU&g%V~o=ZCLT}EEMZ-CUNjI?!fauVS6000gtoAAE->1HiTydMOkGjimG#OpZyBXoJ3eL4eKfvNY1UpW9kO3P$5*#YQtIdDa=fw*s zCB7a^Xbad+nJPQ(OEMHMh8QY=4qh)&x97vm4r^XF&dS3YvO3*)#9J$=~BFo%^sgfFdfe2XmExah)laT3!@Ts7YukAH2?g(IoML=mEJE z0$6iO+5uk#yw;imkHaB!CDP8N{;wDZ=(OeQFpgp1BI~-oTSN&{6qg?aGcG+SsXMJ_`}coUgM z-tK+7_`_-{lHl%7K<^z1@)`1$^m(`)5o=pi;I!va_hO0)usW%+BP@`4(YjSSa2r^HDr++9L>b+d( zbF_t?@w7f~${M6P| z@0Ui_FPK9>4M6)}9(F$mT{d28p3RHl4I|g2{Q9QCryepu_*8JSl7+u#0_MB6>D?PR z1TY(p8@qTBg4da5vg4o^AIW_6jB-P8Bpz`24||@Pxlj#wZ*2fC=S-9uInZl7eKB?N z>Xf_1r?T`_pySsM-RYF^cAOKBYa6eKZn*&m?K@4s=0*0{E!*h~Z2sL3s`3NWm4smF zG31@`_eb-6NhJaL*EUa0ghJDv>0K8=8W!m?plE!qW+;_ijW0B7GU^XSfdAwdTtw_e zQ_;RZ#YGcL?lay-{DtXca%I;s48vPrZyv*bX$y_7F`@!1kuu=9SDt)uskn~t+eIe) zIX-hQ%g5D3l*mBxdkjB{$9>VTK5Dsmqg{VnH(T?F5;qz9qJEq;YJmD-_Jez8%2**V z%eX$b?4jyk2f_C>kDgOPYec}W4aX7B)g(fiH_dLOh&OFmVH*kE9ZV^fqiZp40^!~ z{cX*1f3GFsuNpQO1seN8)dWjwacR5Za8oCuW&Mxl#{>5D!&%2YH{k5WU{-U>M8boH ziwXrB&5jrOx?Nl=U=ero(n)L}hwU?Y^}3sDQN!cpF?{mRBfZ#TS`>#m9%X4E)lqV@ zW9Vb!JQpuWi!Zh=itHU+JUq)geb2Sk6WaBWsaqe%3)n8ruTC{jx%CCFo!7oLs*XUcYh{K=e{v=owv? zKh<^rd}5oqgvXaT^;9zGuOYcm_0DYx^mZs%vpDf1QCX2=bYVwLw-gbg!Q;KgJ9ggx zwtcB`E_I?1 z?+LHgW{sCC0jfwGE(OQr1#&L0Y~1B|N3TnS%dtf0#AUHX!=>a;jKQ^~pru zU~{X5qo<8}9_+6nue95j2yctYt^TXGtHXxu#;V+H?21jFYdSTq@X~=!ve?H=;KQ$^ ztDhb9TBCD_{06Sc&XAIz&vCNF?_+ZkuZ`UBJ@E27b!8{^woT+rA@yX{V+iZHKP)t& zX3NYZKgbR#snLlITm%WcA98KJHm&cViL&HX=TsYqpUubr<-giEc2TmWX}Y%f@kGJp z1eD=OSa9#w)%3~!nhW4!#WY-Zpv3X+`Jj@0sp9ByF<8I_#Io0}nF-QCz^s=#Xw%QIT*^pYdc}B$)HH*S}$Q z|F@2C0G|2wR+l8CiKk%ut#&K;bJ$;rxN1(aIm3>2e^cza`kAMn?cyAjDHE8bB_iNu z4SamV8S6qRQPe>rEDQk{xr@|pc%pY)msg|M}V)qbgw-@9qgv&relH0)d zUm+n83vdiRvmN1gZiXYh40QtN8|DI`(LtF)dJ(@In2p@ao;m)RrC1#6EUk7{x%3{! zf+M#I4cXL<`OMjYLH;@h0v`;=m_lQL>?T>si_iko1xyX_!N%1jFhGbz%l*ZokHB9+ zp@msZyo3wY>)|Rx#e*+E1c?BgrX}m&wF5Pid#*v2vB2RB0)E`UhjvcTQnj89c&gF3 zKE-RIdf*g1u94h60WDC#YsUF{%sc?|1fT{AfxzncZzQ#ET-H$DdmnmJ4)p9vyFbJ3 zUI;&?Rl8>dOS_K+MJ74zo4n6>E}$C^Q2L&u9fbHgw$i_SS6_bTJxx-O1z9jQ;2EJd zUMzzNbU0vGpqi$+>$(bWOd6w$KGudtT*xR281jC1&LD;}jsDEB$T;VC-D$^N74n5F zV9rH-6T=GLys*ine5FFKQ(W+4|KF;3O}hU7gA9}Z8@=rHd7!=Oga3z={P!jK|Kb(- zf9zNgo1k9)15c7cL~c+%x3&pCZ!mnW?2_Wu`+o~jy7&p;QPx6L=o&ufFkwSsipu&q zLPPX2b^44!QT(36ihjzfaSg$CS{_aa-$fcvEA~idumbp;MJo5y@Bafx7xBE7)togu z`WbP;q*&fkT!bL(=Ad&MS0{OMy2@QUz#Vb83Mca1@dbMx>BxVHoR>qp{T~1xTC{Hr zJgfZGd27gSOoj2p9){>rQi{(B+JIU4^M~ zM3=}v@Dr?1ENulgq)$*ceSiK!xZLp7Iq=VSZe2zHWq;+{yL&@nxu%ZHf8c+HTQ zmcLQNh-8X6V$BjWM>!x0XI=Ru92H6e?)(q!lmNK2{2-9w;+EeHy+dk9c za-Ix*%~!YF3!&pVWCM#VO4nvhq!O0$Bg4z}9uZFXAcR)NBqVugu#cNgT%tr)8MksK zszYAYTWG!z8j{$V^qM!YhY%kOs)V6yI*XQQY;MSz_j zgCN3p`C7Im&6Qy6Xbr18;Aw{8KZ7*`rg^ocEd7lf@%&q7O0gsFh zMqgNUpoL$$HYXS0f`351q3q;`7kq98x6V`k6oM&-(k6dTCa3U)&W+-;PG64f0n;AA zDt5XKNTPC3A3XEQ*nt`vZGa=^vdpR%f{=|)2xqcRbtMZH0=KX7nip-!e3bwB6YYDU z9DNIB=}!ywAPs@r34t6w2`4;1awW0p+JAjas{(8awT9h=rskqHCO$FWXT^~UxtOOl z+QEeMYj|YN2n}gRhqy040ok*V_X(pfmx@;?|K1! zZjA%B7>C;|66@15hQKI0a?dBn4XirSjdFBKQ4b=zQBjdT$SVVPoOQw?cp?dBB0ppg z{m@7w;u-dT6LKm8T$M^g7VlzP8jsg6pVl4 z8NjwdngG|Sh{$VgV?QB+@`X#-z#mAf_Iz}I@Qvm_2lxyaos8)#o8GQfjEjD<#n6Vm z%T=qoj;>tnRm%8n?Rc$Jwg7s=@LQ#-(kVc2xSLD3#4rx3BY)9{GK%eJaCY&0;-)#1 z(+CIStsmABkgR}+3SzQR-az1t>fgT2paHhSrXGXx6jb``PIl7aDC01op^enfT9Uo@w&AAL@?=)?xm3Rxbs(T-W|^ zD1y-W8u?lF8pCV0HzAF3@mh(9v4p_$^h_uRp6F5Z51{Mhm6{)7Y?As5+T8C!hF~qF z7mbJE&3k9LC;WZMi`)Ryl6D}F25evUFo0z&j$@D|qm zOO%|A2fC*i+Z8>Y^N+3o)jqrxi@IloYx8sIzl_*Y5ZFMR6GLxS=fmM%=G5!WLevGR zU(rP9a0bO+G19WVMklp1*61;#zpU8`$vnAGc3u`O9wfsM^@B)4s#%S%w9x;N!~i=W za&`X@(e*?XFSu`qV=rCLmD~rF#=5H+_N-IH-4_~f`F)pK$n*~g%D51&L$wWOWi@8$ zxNr@G3#6!|LYEAWA~29mGcYwU(jw0h%b9Ejng47ED}N*)CMfS9{JVonTYv#_5E_x? zu>(Zvy&4^m`C*5QuhDjxMgn9P-b#JdQ|y%!ou2vqPnya5rCO9T{4@6@TM=&&ce=6p z+3LNi7UY(OV@prelQ7$jmFd!d922NG4o8tnG|13@Fg$gt|M=-oGgS%^5P!@^bKRo_ z4aCKEHHa;}$;7XOC&H}3j5bKA%s9(PQfH0thDZG9gmM&$W<)%}T9!+a_K#CqA^>|~ zouH%W&*i-q*_dcoDM!CQ!PkO4M!GD$bk6FWWP(#JDKV*i$hZI{1VcW-_0~_29O2w1 zU*N#1O$v)(FJ%4$`4>W*(3~2IL%|vypFC3exkP1-!1oK$zG5MYl&55}EbbE5KM`YS zvQ&~Dm;ar?F~BDNykkohG2Ur#}!*D%&n{@WiIKyB5hb|YRjXvP8x zBL#a&hEMB1NJno>uPP-?GZUC!9%NnfO4khPHMdsn?vdmXf9ieqe{yG&aXVz@XgG+a z$uVg4{(?-f1-=l63NpGF78fkZ;?`|>UnV$k-J(RjLSW$eK&Ho4cck?#SP?F0djgl2e< zT|RGb2>s!3&36=@>tL9jK=fSrGV<^{35GygEjfh;#XPfS`#-T9X$~M}#DxtzM17fj zXkt23gey{3c@hbSJDV!w8kfU>8`vv>U$UjoZDF_mQ%Q5>5RK4?zN%I?zy(Y7` zA+K*N$=0K|^6do~x0VW^?k3%l4Kt#>C7B?Nv>BKqZsv=2;1GMlMa3n-s~8WPAT5um z3|K;!SZnZ_VfcF_dz!!{qzHepS_nN{RNNmK6(+yi?5-du6=1MPXEZ^>$o!l z;wgK^E~A8 zSqVNxFVY$3k(%fdqQ58e6S(Qu(%caW>ea#p}Ljyw}p@N#JeBo{)~Wv|!k9_|=J?vcB@&3HM_BO9E2fU?&ij{PClz z25`#tWI}mnTLY*Iw>B60CL~O%9;M+3h!fCg$^;i9&%~EslhywmR$D%Jd)Bz4cjzY; zCmuOP=i}d`O%fJfeOLE5r0fnBki6cjC37ZSDNj6FPVLmlWF&_+^Ey4mQ%tn5vC)CT zR^`I9k2Vb8?+NI^*u>rRHVZ*=kJE_b3!pAomo{bTrC3+q60A44X1#qiPfypq(z~e5 zT4Kny&dr9)5xE*O|LE5};uRz;g@_7W?dlUL48c$H)%z^alU2DUgV@}hz6H59aEHzt9)~A z&1>kJu)#jm7HKV|EB%nofSFm2sS`iJl%i;W`Su;H)SGCOO2kUHasFMO9XU4k5vtff z)KsSr_sy#w<8nRejwfl$7oEG?tuC(RbPgq%scIz4zztC`FARzkQBFX&%eeL+QFe9a%-=rOj zg3tZ25pA*?7t16jUqGHwzI-nIrhZ2z)|U4?`O+LgJyS$5c4-$09dW=n3zEcQ^#su= zY(9GZO;qN^^Ua?%%&*^v9U7VB$LfhH)pYMRhmbYAo2In2wbOQ|k6cZUGN>~PDZ53w z@1NLWzw4Kd?=8C2U&ox(+*A)XpsAMFgxps$TeMd!M^<0W%WHcK5S2Y&BsNx9DOEHJ zH;v_XZpG-x-}oH(pV;}nBrt^1y+j_kJ29T0>{%^&!p(JV-#=A6Jxjn_w2zf~=p#ps z@83V#TKHuQbo5-gU73TtoGj%k1ydghJDykF zUPu_^h}bZCDT0#)z^DM3$6R-J6A;_eu6n7uRPP}nN}zm4>Rr1|=b*DOi@^7PxfuO* zYxY^EYC}#Bt3j1$(l4mf+Z|<>FlCg%CJ(z0bSCC-6sSq;)MR=1=0awTg3JF{k1tOx z=+O`K(p&P<)S{O42i?Y8Do6y1*qmT|&quPs>xuAq>6{l3&y(BW$x4ARH^hq(k}Ehs z0`5Ugm59(k0WZZYEX_DiX2LBdA1%sSG7kZA1#zJcV`#29`0T{aGtA!wZO_X^#X8{Z zs8nLhE}o{^W}G#aph?6CI+{aJJ?hT>p$ySI)4jj=UWJ5_hw010MnXYiaP7T?oXef1 z-nzDKIr1xCgsQ$jD0NVIlsAiVhX#b!bOnyuM=1t)L~iS+KX`)An{VM@;5QCRelYt5 z*-=M+9P~B3uvNgc*3@Z(A5Vn)pt)65#Io!;^F@IA=W4FGl5u&h?FEzt`U^(jDRR7}3x+*wT$#Ne=Emh@ zQWs)FjGg2HNqoP)e7i2JAi^e&?0Hv=hjlGp-&$|G5oUL)TLeP3%bllrXw*H}ZfB)Y?HAoi2V6YHG3@HxfU(o1E9AGCH_)|8b zP;f_x=)}H8N=698Zz9-1-?<$cy4$8CRw>JI1o>41+=cu?l0>qbI4#Q1c$=gq$a(oy zJ3mlSsJ>)4qRR8SlFJ&`_F8l0b}S@+aF>E9TzmC)$Ps+ixhcf7sh1xfJ?3j3ilh;B zrR?8y@Vaq#uscTB7PHV=Ls$}~DwTQ9S@D%tfo@odS*o<{72ix1MEoSC!@6|EOyA%9 z>*r;{`MTOR{%TWnfSkof?Ls(fmtT?ntj_ZMuC!1>(#u;q+9fQH+t^ zamlG!A4VK;(Im7)hO+EI%UJXE3@W7}8?3p+x#qH<6%=)3sFQOw%L+r@L-0dK-D)Tr zx=7uA4hBBXXK&=!ON`R)EA>oANq15DJU~7kAIYpN_8_tC1i}z~rs#Qt@d3gJ+Mkt$ zL$k71G%Xy4%|wXeJ&Y1GyrGE`w*(qVD263I4>wUjFMiqUWut}YwKu14^S7%a{7-Y^ zRVVX2v0u*yv*IzGLcba|I5A^w)O`}#D#6z~YkYi7`1G9ICy)vCj-D+IXkyd%K zT027-BvJc^PULzusL_5uypn7Cw^v#?KkyW*CCO9n&*4^C3uU)tT>4SasFtGYWSS+1 zkEb#lQeri#@bCfT#BnV3ZD4Jbs9cA?iQ_}#`e;}#?R&n!@=PLe700E_LI*K;qo?#a zqp3mK*eQVrg|yxuYl-{nD90vWBl#*7x;jTvb6Nv0)!1nFfBP(i@5&0z)h6AZUol9m z)2wA!YGu5h66{|?K}}i&w!T)z9TJZ7sDj=)U_= zFjOR+N0xcxq3m?&G(KmuiK?5ELSFv7Lh+6mLj1~&8A%^_7xSF-@`nPB9zN~aQXY*8 zV*<+g<8Fi3pvoPH$roS7B=~ThqN?a9s zdwQ8}Y)m=LCZ#d4!uV|I?=8Bf6{0Y+`RxC-?Z&NM+AjlqQOKnrz8DvC+vzj!*VzIq zCh8wx|C07g)4i7pMR6(ponOL$!OL61*V8bT3VKOFtZs5xq|H-^I+z}zn$i|IKM{Iy z$vl?XWU}x?Nmz4z*THMi^vvZ`Ysx&^sb`@N`T;SjH#cCs&qaN;4zdJs`31 z`9z@5xIWby_2Z2@&#u?+tNKg}FRY@R=BVa@;C;ZL8D)rq)=|HWJ9& zlpiA}d|y`#OOW4HCb4lUNTz_38jPH0mCrAiB@5WM0EkbiO~nm!Jn?w$pjpL+w+f(o zBSD5vHn{E@f3~*zMjMvl>=+|gUWVosNVNRTo33!a(?o?uZQ4PIA3PUW)u+Q-@?kXl zt5tt)P7L0_#8~i{M~3%tVttP07gT3nEr)u(?KXPUQGzY`R1fmX$0CwZn= zOXA_DlI8|B9(kIVPocZDmij&m5Xn{jx!-+hLYvIP|)q|dTH z5lgBNk7e+LC$8STtvurPC5KL7p%rgDN7JDE5BAK1|3PqpMf1EN*sxJi16}o zqUvR$LMK-YWp2{DNLK}Xa|;iyHe@vtdA{YI#s_BOt$$JOES2!0uCJ>oO}DyBV|;EM zt3x6VENM|ZR2EWSc^jFsW3S4E{xjxYF-;ui6CVXD1S4LkL?A3Dxm)uy-<)6FS7yimU-f+;`ywxB@?NREPeRXQb^&)MA>A1rldf8Y?6T!blHy%yr0h`QY+pUI8_mgNXK(%WSu0ewPv*gLQhg=I%|*eQaYAtI z4lbRtZF8hFX~=>zai&8@Hex_en|3&mZ!l_n{i?RadS8w4oY?-Mt>av3Xjf5faQG}J zss6!RrCeLLvv=U+hfnSme~S1~W6{$PSR#&8FiNa2^=d7vQl7+bov9ATI;t+?5`jbE zfzR;g+gh=9zgON1<}&#ZI`I7XZNc$}2*Jz#fx%P&4;Tj`u)GpnUteYc8hfFy$8&*|?rpl9$06|GS$z%1FeVg=3E+ScI{= zkX3co(x=FMt|+U4i3E@k(}-(&=yKyMeA9%lmaLprm!Yeli~RM@<=gvTHQ&A=Il7)+ z;=lW_)EdRLd1KcRUKJeMB6?hwREp$&ieE37|2rpOEY;^#t}|IBk3+HJBoY6;FkxU! zWYKS570!I^Z{|o-IZzop;*DL!ocI0iP5ek`@5E)lQzf0%A=d&i&C{b8rN{w?K0Vsr z+e5j5fHniI^?{>)FTZ1<+4hU2M7y>JAu%Pis|1;5ic@O^bMq{Ll@ci@+I7~(yq7o2 z^~}I}C?$?sWHxt@l)&ju9jn-@bZoNiQT!NEY~Xy2FqT%g)gC3(H%S=+vWn`qg?zUZ zZ7-l%#L*_;+@SB09=$UxkC)}MOBbR&eeWbomC|GUhSP-mbMW`BqrR>k_aqLLy4{LU3h2W%FV*kB;Lu)X6>sV0{RTrz|R#| zh+&Y`i_Ku0^FqOJVUsG22*=#`aAc#QN>u)PH?JEbXM8d%RBDB1GCK7iVnsk`g# zrRB@&c!5NSu~ij81$%5gK7R~p$jYzob}F}=J|No{o$3{ZgV}dvkWJ%Nz*6NQ+qPDS z{wm#%$?JOFLsu>~<1m=S`IVoP=<<*x36D$D#qnUo;n&q|VN?nKkjUNLv~=&~{HJ@a zcdIB7DHR5}|5ErGXtb|2r!DX5X3kq(Go*VtycIQ$@_ZA_(ENED1Cj`8i;_*(0j z9MfibL}N93yi{{7Mla?b-3bRD$r(h+O@X6=*-xpe_H*f-kFzNegodfk>{m3?2){uL z-+KXfzMl`eqS( zt`EJh?3Hgxh)>nb&i!|xb%j26>$h*a-i{P(qCG;UoTm}LJ zop;_pDtu-8&aR@4?%BQFKYG!$zAB&s)Pr@CVl3inDPTgK(^8?MS!`w(HkC24wG@B9 zBhSXjjN&nbhEKmQs?A9mO9oeLY%sUg2K$@)9i^`^HB%AgHvKC;(neI2kp!Wb~t@b7}u| z*Gc(KU!n9pq_mQE7QxMSqT8Q?K%;=uB~sno0W`~~N7U!2&g0(7wMSL>OkI;Sc>J$YQ* z_qt&w>mBoFV_{BpD2IjDPcaTyx(eZ@F*L?(>zR)c+N4(a5#+sFZ*T;r@=C*6%8JFl z!jq|34{_t3b4-b6BrxCgCswVeR3qTOxsA2Jb(^~1>Pb&8Df<;WkXo?dG#oND{wYgt z#nbtt?V!ep!Zf?D(?@y?pJfNUlS83myDpdFFj=yW((`pc!pbj%1GyoCqb(yc8)b?d zV5Fu$y=(LeFsjlq${O2Q&rR;EM@G7yt?Y4tCkhD{ymHmm%lsVF(K9aE{%94 zPF6NRs5I=h;0E0drN{D}MR^RrpoEZLTwyvXNlAC*+U<01d<4JI%UK)UZEGGYb-wXe zfuZ{2O%lUX>iC~I>1w=qJ62@s&FZEQ;ud=3vO6lY1ep#uPlG3Ko?;-@^-8|dV(%Tx$ui8%%ASx;W4jg8$_R@^=F>>~O2Ly# zh;PU&8OjlmcZbk=MVh`R=1GV`dmzymNJU9`nEBPq>T!;cPJ`WCw(Vm%3^#o)D$jP`TjTei9mo<72KoDflFf53vVTeU06R$`?#L65R>^Rd8<;up5RJ)n3~{ zqqXm%P!nlzMMyHFF(TcwyXBmapdgZN)>qOy_(f3INvL!hs#-ohUC!XpQ$bUpwn{He;&+z2#da16Ed$UIStwK4LsN{YRr5- zGv?Q*Sv#yJH9U1b{p04vC?hNag?tQ|RuN5ep`88WVgVcTXVZ-p)|L5Qalx_jMnVGg z)cIzu@$RKI&VCA6{C&)%B|cF_%z3CTe;wSNiL>OLETjy>#ykn_Q-g z9j4}z>NRY}N`nGv<4m6EZ2H{57Q8|7#6Cn+obh>`4|wl7bL!^pU4_iLoY^Mb&EyKD zw=31L-1oV1tF&$yb292^Lw`PtWL6)EG_)QV0^z&fR`@f=D?L!AD6b+L>LnJKZ09vTM|VXwpO zf{V&bqTdRe<|Q)wM|4;t470IFZ5&FS^W8z$hw9k(ff!0hA8I=_sT3)(lcUfxr?C0m zFnMz7Kl4sB+t3%Kd$}_}(jejyRh&IdYh_R?sKn5odc^wWtPa493Z-y2cToBHUnV&3XGsM zqYCdA(GwflKBYhH_2};)VL*Aw9T5-YbNTOkDbnYP9w@dfq`LN%$=1{mJD$cPnOm0K z#fP%!8osQANkSnjFJyiujF@1m^TlGDxe$7K_VQ|n5rz6Kl;#2Zd}f6O3P%C+y&|;F zl28yc@xr6KHe1+IEW$f&iNeC^+IbHmc0X+2P!@9U8YS$!bV#xLXmp9esl>SzZ13j9 z3kPcFUHMuMYhUL|K=x9zBM2wLG+V?mK}_WtWEf(Bf?(1zTpgplWf-BOoh8i9HOutv zuf)+=nxxk54Bo2k73@*wnr8L+nN^AJW`)mnA7p=E|n?fG9#L6I`Wh?&Yxm@R}v*Y zf<0ri5@F7G3AnOL&sR%6w%=ETlsIA*R3Oi3kHzTHjMb5WR!t^WGmeHN^m+kw{Yric zwVQJ=TXoR%5DGt6_?o#O>8vZ-VJrcbvI0iplga^u?_Spf92SPsjg)E8dipqMTeV;D z_VMF`-mGn_GZD$tv6@*_sOLh*N#Jn<*~+#POE-*hUJ$&J`KzNTZpcW)`YN%=cmi21 zjTCawSQN=oA_@!MF@X-5Z)j@-9~mP8)fX~7%se%J>tT2Mxd$I$sBsHR+wNzqT~L=u z|6+9gd(4RFYKD7dr?C zjxWv+?aDXA@>}vc3iV&`SSb_OrOEBhJ*M>wOv4wQv3eBIJuuvQbyEvs5y-I}kxZ4h zm9@zqaY{x6PU|poFsAFx-OUWe0lBd}nNf~o4BeZ*{yjwofbZ0vGRPI)Uf3VWjxPYI zU0}%{CAtV2uHed#A&Jb&BK@CRZsIFccK^e1z;7!P;(NWYionFO;jE>F@>2PM^Uh4d z8JhE32-N37@|uxThBT2tqu4Y*7!5^{>%Zgd)x6HPPuUTo=pLfVr)buU$8o-G9@?bp zCt|ViC|qG=g;$fuVp337kIqBb^z*Vwyo?QB~R3yZtjp6ulnzpQw>&vf6ip!Xbrd zkc^`{utM4?i`tNb52iXT0#547YF$|y!h^zw!by$<{j)YV_1dD_oEPp=fsTyO)I(We z4f{K|uW%s%7{2nsNKX_Z&jEb7FX|%5~(#&XaWj>Pn9tX!1PJn}*TB<8cPegcnu)){A3?7xe^6$(r^zH#i zqYg0_4HjdvCMcwex&qz{>TszpG75D@R!e-awb6PCr-(liTev?A%IiHnG?dm5a9QKb z;}m(a$oj-sv!ZLKf12BjIR8|#i-)j6UJgeQQfeCLIPq~|_5i?m>S&{VMVqwYmPXM3 z4H*-UXVOIUD+#9D7U(%5duVRj%(a+KdCeGKluvAIS*+?gif!6I?E9s`X;?vO^ywE!T9+TD&fPQ2 zWra>Uj2+GTVGi&>BN8qB%d1>84!9QbnXvQ>6sDvP>uToJ)^~SxkG)&2KT6nXXEvq) zsQ>R#e4IXE9h^V~g0aoQ|E>EzHS_7v{B~c#$MSj*35Crm00#e0PF_Z}!h2psxD)g9p{*w!OL@_1-VaM_6x7skYcJ0?@<>|yKpf!!LuH#kJc%m=5MfAN|9yHJ z&!h^_=U3K|*iLf}@z)+!Z%)q!NVjsM1lj0J;_K=->gwv&nSJiUrO6rEFQ;TRs{qfn zq z?DO(O9bb03UzoWGgdcts5rM>E(*2_RONMLJH5V-oh-V!I<_u(rdqYYZm1y9-kQW`F z;kJXn>~Yf0?X>r%KccxR{KJ8x0OfqyKiUorZ2{bM{!sx%&8yqfzh;8?3dH|ygP5;& zvA-?m-T(BemSq9XaP79AYXs*i4ueu6iLoX{Zb3{SWLs?9X!W{mq1HT=v4)^>C8M|P z$c?R?QHzHr4f5jan{Li?9_uXV-8btKM zW{S}y+zJUJsLmHqAdP*>jtiA3y*uK!bx8Tt>AdTpa<~b53{~fhat#}NaU1zT(%Uq!wmcJPCv~h9Un|scm~Y4CX3xsm zT(D&MVlMYb|9KBmepDXCfOX@K1HO0g%@qf&9JoAm$+X-i`h{roO3he<_Ijxm+cb1L zpkFuKCfy(}jbg@=gH+ESsoFO+a|5r_$EMTVX!)d*i20{PgAEC%R0DQ+`53&n_{U2O zSGsxqnM+o$RqCwllFhEQ-{2{G>j5SKS3t&;9we$J0%ZC>CoVa)0Sb=r=KjpK#UuiM z=#Hs|Km+}@nhLt$R1F}*n1pRtK_b3s}i=T z7-ClY;HsDSjzKNCdMf_+r;e$?Otg*z64Rg!hVN~vJm)iO)y|djJLRTM9WC*Nz%~y{ zHm^I_oOfiGdOmwi`K;;AQC~D%q}^?`KCknQul&~3zkJ_dvX?j19@G^9Ge6Q%H9GdO zzh6c*#S2XI5Ii%er3DpYOw1;)T`Cq&D+Y(zpW?*`Yr)`GBh&A^WUSMK7>SGPrdvvq z)VM;WF!RAEM)LU^n`#Oz&v3Zylmhus^o#3bQseA=2U0P*dC__H(FxJ; zGD-hKFw^-H7qT(dVuk#UO<}!`55l^j-?sSp=jd#e$G4c;I(`1Uk{ZD)DSPgxAa=92 z$EFw)TGuwIi|4U!R;+wTB!i+GL)KWXhHjGrV~-!Zc}e|<%*B~_x+M|5bHV!o0d}G$ z->nY9!Ga_K?KLQx(GZy$%yzC%R^_y=k)-RZmX#WWirLa{jiD>lwDE|FSY!Wt1;C|Khk0=Dp!>V zj^CAwM)!ALg;|k_>HDb@8U;kPSN6_=Obz{$@}DfsfYJj_?^K{g}mk9M=S z%KLNKb}v_lS5=Tf2Zf(=E4PU|mGaO12GvB@!j6HZZJ>M9<+ZtikSvAScN*u^{R<$+hvR?+ivVK_8Nxj{ps(zWd(L8Bwr@1G;73P-mMw8*4{ElQ+F0D zcCEvan~BIV4pu1|Z+@8Cy6g)cBlGJ-FW^*&J^PDVFBS~xta3R;!4T*&rcn)+%J|JP zVUFm8gPbzE&T|R@DJhK@JI$Ch*Y$ZUl-JJMBaq%HRt@7&YcC<^)@U^X_NUDdRTM;k zA;9iXWahhn6DQ#6ZFvqIw_wEf@yMs^4vak~cG#iGtPM6BzM(mncR4#dCfHb|nV&&PB9aUUY9+^4--D~q=nQ&)JMk>~4-LW&8w z!Ebk+=*oZR?G<}*w?}ZMsra}lh~yT=I;7%Ecnr~>Q~FxPx-Ai#mGIs?{@5?#FUU4_ zGeRZ(?drC>4eO?G1m4qD;~$1zQ(^ys&TF?cq&8PS)K(ulrr@&%N@!kjG~!urQ}{A$ z2keUygimc!quzGw^Mpf2ZQGtSpcw=;BfOKK9EQc^1jS^EicZ4XSY@=Xw8ai^ech zTP~jArCF=rlKK}N+2Q;{uxoy7J2o1(l|oLguZtdl`Sqe&@K4>uzyKi+{J)E;{|b@Q z`d?!2{tspA|6T_E|GQ&^ue4^VfW|`hZ15qqd~E4u_|7c+zAY1#l~C`rR>dr!Xf$Hi zED8AK?uKs^2XH)D>q!7K8m~AnF=~H*_3Y`x8^(CrCS!`4wIcQh&Z7C~@1T=pJ!Ebn zA8I7Db$_`28ExW+213EhPo5JDo@iE*WYWS+#l#1->fku#$5z5Eca;Bp8t-OP zXJWDeZEIfi$|t?p<6z1ukAD-nhh|W8kVFd`PoV<;Kpu)DiMvE^mhyDPKfg`^G;}Z! z$O2Tc+MUKWK6=8|ycUMDrY@$L$FcSAtws#*PYLu5qC8sFU0+qB<+uH@_d}(b9G+*Z zrrK3~TtmHHT1(U0L$D^3i3@SsqFvRwE=;C(D!xmgllJ3xAR;0sV*t3`EBPp^`1MF0 zi-7--0U7>{J`V|KUVVk-CnTBMuRu=` zMQ&Ea2`g;a4i)3xYrOHKJL0)dH?A(w_Gh2C9+=~DPWA8fz)7~lVnN=cVO!;5XPy1U z9HjF1YT_JAyR0orC%+!%DBiaVtf;Ez^99^<*jnP3O*Fy&p4rViKxR z)X>WhGP_GVG@TDM15B>?JVEKSULW;HrLEQ<;Yxijw$++wMs;QHZ`otoyB}_u<5-xH z@edqh8hfdLLyG!~x^{Ax(tH13on41J8|vHcQF@Al(-x^3C1^`S4r*Y&;s!TVhAv+nn~ z?`Qixa2v0TtK!!8-37HVW{Q)3Hjo+lvMTM_Jt3#OmI~fF3G%cng|EQzeKCvAGKlz` z@26qyD8*+jBXM$lI8XaCBuX<+Kw#K6sLS|cU)hm;biH^=2-u8X$_@c_9xA}e(*@kQ z2%F`?J0?S$%SQ!U%)z>A(ICM95wVD^uE!d$X>XIV5`DSjo)Y^U#S-H<7NFZ5BP2Qc zaL{P~Yk}>Yoyu~FJ!T{MeC9!lK$og>729|PdRxmrXgk9|PdaE$*$hK}t2pHTXUP_* zQptW3r7yS?0y3cw5^WzEB4sz%Q?ruQYj4Krve8ps`x|&V#W{jP=!hFopJoQxQRWYy z+cj044XVB96n1or@tRXv4~85tFJ_-F9pZ#8zTy!@X})R-nN2hXK|Tqw7yeGCl{*C> z{02-Gt{+uizw4o*=jZ3S?&>)xspw9l*^A!t4T%j|(Rh=WpP5XT3>|N*=uhqN&r~bn z4H7St`+*TIkwlJVkl#rWJ$6*NY>tYaUgmkOUq)Pr+X>9g-Ghnw=sb5de@O+SZdh*k z>#(oiNvLDs!!cM^)RS~3T$c^_JHDtnt{+djkMGoqt=p#>Eqv|4`b!7U@AaS`_|aB8 z+vQEl)?Vkwc1IsR0;v!*mG1i9E7Lvij~`yibY)Dlkp(?#5yzAR%CGaBrQWExB8`vN zoYwcls`?%EvOL3<+k^I68Ra8x9*4RlYF&&&f_&+_euaz5MPn-sEu%qAIu6r|wFb?Q zl^n@v8cwtaJp~Vx-Lxa;Fpg0!(dBv^wa6-DuH{IjzPtGw-MV%;Tfm; zPFi4gsN6QzWm{UtF=1bO?0C#z!j)0|_3X~~qg7}la{K)5kB2l|To~uhNzJ;O`^;ET ze_HHc*+>Ly`b%7K&g#uz3ymK5Dnd_tB(tRYLV8f&+mH|Lw^pb1tFM;V_e`uctq^G3 zHnA;Uh1(+@B!!9sa!!k=Ld+gNHVPu`-%oVpeW6=$`w4QAkX_96MWP?cx;R{X=X z;j-Yz6@LcyUBQS7s2K4>A3s)m#yje5b+FiMnYzjgnN_c7Z;8;+a-dcRl@>E`2L3JZ z0bHsV6+_fj#boMqnd)*{ORGPnp*Om(&D09(at6(3POB446q(Yyks@l0w5~3KJf8q( z?*-ixDjm2->|dNTUN(6B3T0oPQJPh_2AfD%j{I0n_{hKUTY^L{3WWUl4UHo^S%fmw z?Ha1iGMrnrz9W;5gmxS37HGUj_b2~+ zgU+?u=(Jklz!uy2nx=&sC_bwu@#4ikDNw7T(112!`DjnL1%WT|OjPAR7}1pn(rG{O zgqHEHa%99~F~W6{?8%6Y!lbyo|A>^0&1d6}$9E|`H9B1+$6uMf$3UO*ZaJU>+}56T zn{{A3T{>F#{fWfHQYbW;eN{tE?FLUBe_wCQGiiZ^suvsX(H%@PI9gA%7u7P@@l{M? zEJJfF?ar)E)L)l!C?sJ-R@(Tf>Kfhxm{i+mEAze2-l7k)1*)XG!GMk@j+g9Rf~J0v zIa#5XRv3cO-HG^3bD zj4?r9wZWxF1X1Q;@g=z_gK3aJ!bB!PU|eC?Y%2C;TZt*Wl^Ybm{Av&9jRHyHa?YVca7Ci77z5VzTD zJ~Gyg@OO#dp#pBuIo>ZGR3H2{0f4>Hoag)62o$ZPC3d`_S`_)Z+wvG5KY>xpoUwCy z^Y)+-k^Z!$fL?^R`NE{;^kI&43ZUiv75JV*1(J6(#4do9`-ue>H3uCxA5Kfzr&03Bwvgst7q=p z$_O-xmwsQ-_W?UsDnCleXfT3n@kFOzUdqm%sCp{bzZV7HD)A0iM2>AoUz>3rxqErt zbXOO)yOas?F?6Ufe39B$E8t`qfN1FX;`#TnKu(2#Ltx1obf&%Qbsm8bm4t|k)MC3s z*KQB3$8KlFM9Kl@MD+B9QZ9Sol+pAUT9tB2RtTd(?b%0V*nGQiN*PeP7lrGHHW#Rk zQ>s61G%CCfmw2XdAq*?fQ*tUF>++PMnhoO%bJv|T#B5G9ek|g(!4%Qj2RMr4LdQWqU8}?>1mOw-iM30As2xk^129L52ltTUR{abdV=f} z;do_|0$Q`Frh;tRyo8iptE6w*lABE30C)?Zpa0vAKheT*57RQw?x5D%^>!W6Tl$y7 zM#t}PhIoAd8zzq#y^JM`gU9Fk<8pdN#lOB`I$%iw%JSCkMA zmrz+4ncQ(tvBUJ!K*sX}9M3psRrFC>5#Ys+c}nJqCs0|&5i|P%1; z`2DqK?y!}`8ob>lG1TRXy?=gU`~B5W(FZQC_8XI$ueuc`qZ~_hluz%kC?ZhAr)?jq zfQ7YxTo#+11nz&o34*T$AA_wjwv70dvBURc>5{#utT;qsmib!gQ{?NLjsvwMb+P@L zW$!rIBR-I!dpR#o#UeS?pgF4g4PVJ=%ZA+3Avq;;YqG^$@2wxoXTaAty1xB@IsW;j zJU*4$cSJ-%JXG~k^T-mm{$hx%_zz1r`z-xZov2NhXxw!p)0xlSISlc*RiD{U4Hm&UgWR1Xb zFyPHj?F~$?bT>f49X#EMIZH*xWMbnpj_YSm&eQxcu%QQX+S25zCEPf~{NXaQG%ehC zDz9%0% data +I0408 19:15:21.070765 24089 net.cpp:380] train-data -> label +I0408 19:15:21.070775 24089 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 19:15:21.075762 24089 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 19:15:21.201184 24089 net.cpp:122] Setting up train-data +I0408 19:15:21.201207 24089 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 19:15:21.201213 24089 net.cpp:129] Top shape: 128 (128) +I0408 19:15:21.201216 24089 net.cpp:137] Memory required for data: 79149056 +I0408 19:15:21.201226 24089 layer_factory.hpp:77] Creating layer conv1 +I0408 19:15:21.201248 24089 net.cpp:84] Creating Layer conv1 +I0408 19:15:21.201253 24089 net.cpp:406] conv1 <- data +I0408 19:15:21.201267 24089 net.cpp:380] conv1 -> conv1 +I0408 19:15:21.809502 24089 net.cpp:122] Setting up conv1 +I0408 19:15:21.809525 24089 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 19:15:21.809528 24089 net.cpp:137] Memory required for data: 227833856 +I0408 19:15:21.809547 24089 layer_factory.hpp:77] Creating layer relu1 +I0408 19:15:21.809556 24089 net.cpp:84] Creating Layer relu1 +I0408 19:15:21.809561 24089 net.cpp:406] relu1 <- conv1 +I0408 19:15:21.809566 24089 net.cpp:367] relu1 -> conv1 (in-place) +I0408 19:15:21.809851 24089 net.cpp:122] Setting up relu1 +I0408 19:15:21.809859 24089 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 19:15:21.809862 24089 net.cpp:137] Memory required for data: 376518656 +I0408 19:15:21.809866 24089 layer_factory.hpp:77] Creating layer norm1 +I0408 19:15:21.809875 24089 net.cpp:84] Creating Layer norm1 +I0408 19:15:21.809880 24089 net.cpp:406] norm1 <- conv1 +I0408 19:15:21.809904 24089 net.cpp:380] norm1 -> norm1 +I0408 19:15:21.810354 24089 net.cpp:122] Setting up norm1 +I0408 19:15:21.810365 24089 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 19:15:21.810369 24089 net.cpp:137] Memory required for data: 525203456 +I0408 19:15:21.810372 24089 layer_factory.hpp:77] Creating layer pool1 +I0408 19:15:21.810380 24089 net.cpp:84] Creating Layer pool1 +I0408 19:15:21.810384 24089 net.cpp:406] pool1 <- norm1 +I0408 19:15:21.810389 24089 net.cpp:380] pool1 -> pool1 +I0408 19:15:21.810425 24089 net.cpp:122] Setting up pool1 +I0408 19:15:21.810431 24089 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 19:15:21.810434 24089 net.cpp:137] Memory required for data: 561035264 +I0408 19:15:21.810437 24089 layer_factory.hpp:77] Creating layer conv2 +I0408 19:15:21.810447 24089 net.cpp:84] Creating Layer conv2 +I0408 19:15:21.810451 24089 net.cpp:406] conv2 <- pool1 +I0408 19:15:21.810456 24089 net.cpp:380] conv2 -> conv2 +I0408 19:15:21.817020 24089 net.cpp:122] Setting up conv2 +I0408 19:15:21.817036 24089 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 19:15:21.817039 24089 net.cpp:137] Memory required for data: 656586752 +I0408 19:15:21.817049 24089 layer_factory.hpp:77] Creating layer relu2 +I0408 19:15:21.817057 24089 net.cpp:84] Creating Layer relu2 +I0408 19:15:21.817060 24089 net.cpp:406] relu2 <- conv2 +I0408 19:15:21.817066 24089 net.cpp:367] relu2 -> conv2 (in-place) +I0408 19:15:21.817484 24089 net.cpp:122] Setting up relu2 +I0408 19:15:21.817493 24089 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 19:15:21.817497 24089 net.cpp:137] Memory required for data: 752138240 +I0408 19:15:21.817500 24089 layer_factory.hpp:77] Creating layer norm2 +I0408 19:15:21.817508 24089 net.cpp:84] Creating Layer norm2 +I0408 19:15:21.817512 24089 net.cpp:406] norm2 <- conv2 +I0408 19:15:21.817517 24089 net.cpp:380] norm2 -> norm2 +I0408 19:15:21.817806 24089 net.cpp:122] Setting up norm2 +I0408 19:15:21.817813 24089 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 19:15:21.817817 24089 net.cpp:137] Memory required for data: 847689728 +I0408 19:15:21.817821 24089 layer_factory.hpp:77] Creating layer pool2 +I0408 19:15:21.817827 24089 net.cpp:84] Creating Layer pool2 +I0408 19:15:21.817831 24089 net.cpp:406] pool2 <- norm2 +I0408 19:15:21.817836 24089 net.cpp:380] pool2 -> pool2 +I0408 19:15:21.817862 24089 net.cpp:122] Setting up pool2 +I0408 19:15:21.817867 24089 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 19:15:21.817870 24089 net.cpp:137] Memory required for data: 869840896 +I0408 19:15:21.817873 24089 layer_factory.hpp:77] Creating layer conv3 +I0408 19:15:21.817883 24089 net.cpp:84] Creating Layer conv3 +I0408 19:15:21.817885 24089 net.cpp:406] conv3 <- pool2 +I0408 19:15:21.817890 24089 net.cpp:380] conv3 -> conv3 +I0408 19:15:21.830991 24089 net.cpp:122] Setting up conv3 +I0408 19:15:21.831007 24089 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:15:21.831012 24089 net.cpp:137] Memory required for data: 903067648 +I0408 19:15:21.831022 24089 layer_factory.hpp:77] Creating layer relu3 +I0408 19:15:21.831030 24089 net.cpp:84] Creating Layer relu3 +I0408 19:15:21.831034 24089 net.cpp:406] relu3 <- conv3 +I0408 19:15:21.831039 24089 net.cpp:367] relu3 -> conv3 (in-place) +I0408 19:15:21.831459 24089 net.cpp:122] Setting up relu3 +I0408 19:15:21.831470 24089 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:15:21.831473 24089 net.cpp:137] Memory required for data: 936294400 +I0408 19:15:21.831477 24089 layer_factory.hpp:77] Creating layer conv4 +I0408 19:15:21.831487 24089 net.cpp:84] Creating Layer conv4 +I0408 19:15:21.831491 24089 net.cpp:406] conv4 <- conv3 +I0408 19:15:21.831498 24089 net.cpp:380] conv4 -> conv4 +I0408 19:15:21.841739 24089 net.cpp:122] Setting up conv4 +I0408 19:15:21.841753 24089 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:15:21.841758 24089 net.cpp:137] Memory required for data: 969521152 +I0408 19:15:21.841765 24089 layer_factory.hpp:77] Creating layer relu4 +I0408 19:15:21.841773 24089 net.cpp:84] Creating Layer relu4 +I0408 19:15:21.841792 24089 net.cpp:406] relu4 <- conv4 +I0408 19:15:21.841800 24089 net.cpp:367] relu4 -> conv4 (in-place) +I0408 19:15:21.842154 24089 net.cpp:122] Setting up relu4 +I0408 19:15:21.842161 24089 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:15:21.842165 24089 net.cpp:137] Memory required for data: 1002747904 +I0408 19:15:21.842168 24089 layer_factory.hpp:77] Creating layer conv5 +I0408 19:15:21.842180 24089 net.cpp:84] Creating Layer conv5 +I0408 19:15:21.842183 24089 net.cpp:406] conv5 <- conv4 +I0408 19:15:21.842190 24089 net.cpp:380] conv5 -> conv5 +I0408 19:15:21.850508 24089 net.cpp:122] Setting up conv5 +I0408 19:15:21.850523 24089 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 19:15:21.850528 24089 net.cpp:137] Memory required for data: 1024899072 +I0408 19:15:21.850538 24089 layer_factory.hpp:77] Creating layer relu5 +I0408 19:15:21.850544 24089 net.cpp:84] Creating Layer relu5 +I0408 19:15:21.850549 24089 net.cpp:406] relu5 <- conv5 +I0408 19:15:21.850556 24089 net.cpp:367] relu5 -> conv5 (in-place) +I0408 19:15:21.851037 24089 net.cpp:122] Setting up relu5 +I0408 19:15:21.851047 24089 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 19:15:21.851049 24089 net.cpp:137] Memory required for data: 1047050240 +I0408 19:15:21.851053 24089 layer_factory.hpp:77] Creating layer pool5 +I0408 19:15:21.851060 24089 net.cpp:84] Creating Layer pool5 +I0408 19:15:21.851064 24089 net.cpp:406] pool5 <- conv5 +I0408 19:15:21.851069 24089 net.cpp:380] pool5 -> pool5 +I0408 19:15:21.851106 24089 net.cpp:122] Setting up pool5 +I0408 19:15:21.851112 24089 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 19:15:21.851115 24089 net.cpp:137] Memory required for data: 1051768832 +I0408 19:15:21.851119 24089 layer_factory.hpp:77] Creating layer fc6 +I0408 19:15:21.851127 24089 net.cpp:84] Creating Layer fc6 +I0408 19:15:21.851131 24089 net.cpp:406] fc6 <- pool5 +I0408 19:15:21.851137 24089 net.cpp:380] fc6 -> fc6 +I0408 19:15:22.205451 24089 net.cpp:122] Setting up fc6 +I0408 19:15:22.205472 24089 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:15:22.205476 24089 net.cpp:137] Memory required for data: 1053865984 +I0408 19:15:22.205485 24089 layer_factory.hpp:77] Creating layer relu6 +I0408 19:15:22.205493 24089 net.cpp:84] Creating Layer relu6 +I0408 19:15:22.205498 24089 net.cpp:406] relu6 <- fc6 +I0408 19:15:22.205504 24089 net.cpp:367] relu6 -> fc6 (in-place) +I0408 19:15:22.206142 24089 net.cpp:122] Setting up relu6 +I0408 19:15:22.206151 24089 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:15:22.206156 24089 net.cpp:137] Memory required for data: 1055963136 +I0408 19:15:22.206158 24089 layer_factory.hpp:77] Creating layer drop6 +I0408 19:15:22.206166 24089 net.cpp:84] Creating Layer drop6 +I0408 19:15:22.206171 24089 net.cpp:406] drop6 <- fc6 +I0408 19:15:22.206174 24089 net.cpp:367] drop6 -> fc6 (in-place) +I0408 19:15:22.206202 24089 net.cpp:122] Setting up drop6 +I0408 19:15:22.206207 24089 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:15:22.206210 24089 net.cpp:137] Memory required for data: 1058060288 +I0408 19:15:22.206214 24089 layer_factory.hpp:77] Creating layer fc7 +I0408 19:15:22.206220 24089 net.cpp:84] Creating Layer fc7 +I0408 19:15:22.206224 24089 net.cpp:406] fc7 <- fc6 +I0408 19:15:22.206229 24089 net.cpp:380] fc7 -> fc7 +I0408 19:15:22.364225 24089 net.cpp:122] Setting up fc7 +I0408 19:15:22.364245 24089 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:15:22.364248 24089 net.cpp:137] Memory required for data: 1060157440 +I0408 19:15:22.364259 24089 layer_factory.hpp:77] Creating layer relu7 +I0408 19:15:22.364269 24089 net.cpp:84] Creating Layer relu7 +I0408 19:15:22.364272 24089 net.cpp:406] relu7 <- fc7 +I0408 19:15:22.364279 24089 net.cpp:367] relu7 -> fc7 (in-place) +I0408 19:15:22.364893 24089 net.cpp:122] Setting up relu7 +I0408 19:15:22.364902 24089 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:15:22.364907 24089 net.cpp:137] Memory required for data: 1062254592 +I0408 19:15:22.364909 24089 layer_factory.hpp:77] Creating layer drop7 +I0408 19:15:22.364917 24089 net.cpp:84] Creating Layer drop7 +I0408 19:15:22.364938 24089 net.cpp:406] drop7 <- fc7 +I0408 19:15:22.364943 24089 net.cpp:367] drop7 -> fc7 (in-place) +I0408 19:15:22.364967 24089 net.cpp:122] Setting up drop7 +I0408 19:15:22.364972 24089 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:15:22.364975 24089 net.cpp:137] Memory required for data: 1064351744 +I0408 19:15:22.364979 24089 layer_factory.hpp:77] Creating layer fc8 +I0408 19:15:22.364986 24089 net.cpp:84] Creating Layer fc8 +I0408 19:15:22.364989 24089 net.cpp:406] fc8 <- fc7 +I0408 19:15:22.364995 24089 net.cpp:380] fc8 -> fc8 +I0408 19:15:22.372648 24089 net.cpp:122] Setting up fc8 +I0408 19:15:22.372659 24089 net.cpp:129] Top shape: 128 196 (25088) +I0408 19:15:22.372663 24089 net.cpp:137] Memory required for data: 1064452096 +I0408 19:15:22.372668 24089 layer_factory.hpp:77] Creating layer loss +I0408 19:15:22.372676 24089 net.cpp:84] Creating Layer loss +I0408 19:15:22.372680 24089 net.cpp:406] loss <- fc8 +I0408 19:15:22.372684 24089 net.cpp:406] loss <- label +I0408 19:15:22.372691 24089 net.cpp:380] loss -> loss +I0408 19:15:22.372699 24089 layer_factory.hpp:77] Creating layer loss +I0408 19:15:22.373327 24089 net.cpp:122] Setting up loss +I0408 19:15:22.373337 24089 net.cpp:129] Top shape: (1) +I0408 19:15:22.373339 24089 net.cpp:132] with loss weight 1 +I0408 19:15:22.373358 24089 net.cpp:137] Memory required for data: 1064452100 +I0408 19:15:22.373360 24089 net.cpp:198] loss needs backward computation. +I0408 19:15:22.373368 24089 net.cpp:198] fc8 needs backward computation. +I0408 19:15:22.373371 24089 net.cpp:198] drop7 needs backward computation. +I0408 19:15:22.373374 24089 net.cpp:198] relu7 needs backward computation. +I0408 19:15:22.373378 24089 net.cpp:198] fc7 needs backward computation. +I0408 19:15:22.373380 24089 net.cpp:198] drop6 needs backward computation. +I0408 19:15:22.373383 24089 net.cpp:198] relu6 needs backward computation. +I0408 19:15:22.373387 24089 net.cpp:198] fc6 needs backward computation. +I0408 19:15:22.373390 24089 net.cpp:198] pool5 needs backward computation. +I0408 19:15:22.373394 24089 net.cpp:198] relu5 needs backward computation. +I0408 19:15:22.373397 24089 net.cpp:198] conv5 needs backward computation. +I0408 19:15:22.373401 24089 net.cpp:198] relu4 needs backward computation. +I0408 19:15:22.373405 24089 net.cpp:198] conv4 needs backward computation. +I0408 19:15:22.373409 24089 net.cpp:198] relu3 needs backward computation. +I0408 19:15:22.373411 24089 net.cpp:198] conv3 needs backward computation. +I0408 19:15:22.373415 24089 net.cpp:198] pool2 needs backward computation. +I0408 19:15:22.373418 24089 net.cpp:198] norm2 needs backward computation. +I0408 19:15:22.373422 24089 net.cpp:198] relu2 needs backward computation. +I0408 19:15:22.373425 24089 net.cpp:198] conv2 needs backward computation. +I0408 19:15:22.373430 24089 net.cpp:198] pool1 needs backward computation. +I0408 19:15:22.373433 24089 net.cpp:198] norm1 needs backward computation. +I0408 19:15:22.373436 24089 net.cpp:198] relu1 needs backward computation. +I0408 19:15:22.373440 24089 net.cpp:198] conv1 needs backward computation. +I0408 19:15:22.373445 24089 net.cpp:200] train-data does not need backward computation. +I0408 19:15:22.373447 24089 net.cpp:242] This network produces output loss +I0408 19:15:22.373462 24089 net.cpp:255] Network initialization done. +I0408 19:15:22.373988 24089 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 19:15:22.374019 24089 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 19:15:22.374163 24089 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 19:15:22.374260 24089 layer_factory.hpp:77] Creating layer val-data +I0408 19:15:22.386791 24089 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0408 19:15:22.386950 24089 net.cpp:84] Creating Layer val-data +I0408 19:15:22.386960 24089 net.cpp:380] val-data -> data +I0408 19:15:22.386968 24089 net.cpp:380] val-data -> label +I0408 19:15:22.386976 24089 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 19:15:22.390853 24089 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 19:15:22.426885 24089 net.cpp:122] Setting up val-data +I0408 19:15:22.426904 24089 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 19:15:22.426910 24089 net.cpp:129] Top shape: 32 (32) +I0408 19:15:22.426913 24089 net.cpp:137] Memory required for data: 19787264 +I0408 19:15:22.426919 24089 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 19:15:22.426931 24089 net.cpp:84] Creating Layer label_val-data_1_split +I0408 19:15:22.426935 24089 net.cpp:406] label_val-data_1_split <- label +I0408 19:15:22.426942 24089 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 19:15:22.426950 24089 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 19:15:22.427016 24089 net.cpp:122] Setting up label_val-data_1_split +I0408 19:15:22.427021 24089 net.cpp:129] Top shape: 32 (32) +I0408 19:15:22.427026 24089 net.cpp:129] Top shape: 32 (32) +I0408 19:15:22.427028 24089 net.cpp:137] Memory required for data: 19787520 +I0408 19:15:22.427031 24089 layer_factory.hpp:77] Creating layer conv1 +I0408 19:15:22.427043 24089 net.cpp:84] Creating Layer conv1 +I0408 19:15:22.427047 24089 net.cpp:406] conv1 <- data +I0408 19:15:22.427052 24089 net.cpp:380] conv1 -> conv1 +I0408 19:15:22.428925 24089 net.cpp:122] Setting up conv1 +I0408 19:15:22.428936 24089 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 19:15:22.428939 24089 net.cpp:137] Memory required for data: 56958720 +I0408 19:15:22.428949 24089 layer_factory.hpp:77] Creating layer relu1 +I0408 19:15:22.428956 24089 net.cpp:84] Creating Layer relu1 +I0408 19:15:22.428959 24089 net.cpp:406] relu1 <- conv1 +I0408 19:15:22.428964 24089 net.cpp:367] relu1 -> conv1 (in-place) +I0408 19:15:22.429247 24089 net.cpp:122] Setting up relu1 +I0408 19:15:22.429255 24089 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 19:15:22.429258 24089 net.cpp:137] Memory required for data: 94129920 +I0408 19:15:22.429262 24089 layer_factory.hpp:77] Creating layer norm1 +I0408 19:15:22.429270 24089 net.cpp:84] Creating Layer norm1 +I0408 19:15:22.429273 24089 net.cpp:406] norm1 <- conv1 +I0408 19:15:22.429278 24089 net.cpp:380] norm1 -> norm1 +I0408 19:15:22.429728 24089 net.cpp:122] Setting up norm1 +I0408 19:15:22.429738 24089 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 19:15:22.429740 24089 net.cpp:137] Memory required for data: 131301120 +I0408 19:15:22.429744 24089 layer_factory.hpp:77] Creating layer pool1 +I0408 19:15:22.429750 24089 net.cpp:84] Creating Layer pool1 +I0408 19:15:22.429754 24089 net.cpp:406] pool1 <- norm1 +I0408 19:15:22.429759 24089 net.cpp:380] pool1 -> pool1 +I0408 19:15:22.429786 24089 net.cpp:122] Setting up pool1 +I0408 19:15:22.429791 24089 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 19:15:22.429795 24089 net.cpp:137] Memory required for data: 140259072 +I0408 19:15:22.429798 24089 layer_factory.hpp:77] Creating layer conv2 +I0408 19:15:22.429806 24089 net.cpp:84] Creating Layer conv2 +I0408 19:15:22.429809 24089 net.cpp:406] conv2 <- pool1 +I0408 19:15:22.429834 24089 net.cpp:380] conv2 -> conv2 +I0408 19:15:22.436936 24089 net.cpp:122] Setting up conv2 +I0408 19:15:22.436952 24089 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 19:15:22.436956 24089 net.cpp:137] Memory required for data: 164146944 +I0408 19:15:22.436965 24089 layer_factory.hpp:77] Creating layer relu2 +I0408 19:15:22.436972 24089 net.cpp:84] Creating Layer relu2 +I0408 19:15:22.436977 24089 net.cpp:406] relu2 <- conv2 +I0408 19:15:22.436982 24089 net.cpp:367] relu2 -> conv2 (in-place) +I0408 19:15:22.437507 24089 net.cpp:122] Setting up relu2 +I0408 19:15:22.437518 24089 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 19:15:22.437521 24089 net.cpp:137] Memory required for data: 188034816 +I0408 19:15:22.437525 24089 layer_factory.hpp:77] Creating layer norm2 +I0408 19:15:22.437534 24089 net.cpp:84] Creating Layer norm2 +I0408 19:15:22.437537 24089 net.cpp:406] norm2 <- conv2 +I0408 19:15:22.437544 24089 net.cpp:380] norm2 -> norm2 +I0408 19:15:22.438077 24089 net.cpp:122] Setting up norm2 +I0408 19:15:22.438088 24089 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 19:15:22.438091 24089 net.cpp:137] Memory required for data: 211922688 +I0408 19:15:22.438097 24089 layer_factory.hpp:77] Creating layer pool2 +I0408 19:15:22.438104 24089 net.cpp:84] Creating Layer pool2 +I0408 19:15:22.438108 24089 net.cpp:406] pool2 <- norm2 +I0408 19:15:22.438113 24089 net.cpp:380] pool2 -> pool2 +I0408 19:15:22.438144 24089 net.cpp:122] Setting up pool2 +I0408 19:15:22.438149 24089 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 19:15:22.438153 24089 net.cpp:137] Memory required for data: 217460480 +I0408 19:15:22.438155 24089 layer_factory.hpp:77] Creating layer conv3 +I0408 19:15:22.438164 24089 net.cpp:84] Creating Layer conv3 +I0408 19:15:22.438169 24089 net.cpp:406] conv3 <- pool2 +I0408 19:15:22.438174 24089 net.cpp:380] conv3 -> conv3 +I0408 19:15:22.449136 24089 net.cpp:122] Setting up conv3 +I0408 19:15:22.449154 24089 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:15:22.449158 24089 net.cpp:137] Memory required for data: 225767168 +I0408 19:15:22.449169 24089 layer_factory.hpp:77] Creating layer relu3 +I0408 19:15:22.449178 24089 net.cpp:84] Creating Layer relu3 +I0408 19:15:22.449182 24089 net.cpp:406] relu3 <- conv3 +I0408 19:15:22.449190 24089 net.cpp:367] relu3 -> conv3 (in-place) +I0408 19:15:22.449693 24089 net.cpp:122] Setting up relu3 +I0408 19:15:22.449702 24089 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:15:22.449707 24089 net.cpp:137] Memory required for data: 234073856 +I0408 19:15:22.449710 24089 layer_factory.hpp:77] Creating layer conv4 +I0408 19:15:22.449723 24089 net.cpp:84] Creating Layer conv4 +I0408 19:15:22.449726 24089 net.cpp:406] conv4 <- conv3 +I0408 19:15:22.449733 24089 net.cpp:380] conv4 -> conv4 +I0408 19:15:22.461220 24089 net.cpp:122] Setting up conv4 +I0408 19:15:22.461236 24089 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:15:22.461239 24089 net.cpp:137] Memory required for data: 242380544 +I0408 19:15:22.461247 24089 layer_factory.hpp:77] Creating layer relu4 +I0408 19:15:22.461256 24089 net.cpp:84] Creating Layer relu4 +I0408 19:15:22.461261 24089 net.cpp:406] relu4 <- conv4 +I0408 19:15:22.461266 24089 net.cpp:367] relu4 -> conv4 (in-place) +I0408 19:15:22.461611 24089 net.cpp:122] Setting up relu4 +I0408 19:15:22.461618 24089 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:15:22.461621 24089 net.cpp:137] Memory required for data: 250687232 +I0408 19:15:22.461625 24089 layer_factory.hpp:77] Creating layer conv5 +I0408 19:15:22.461635 24089 net.cpp:84] Creating Layer conv5 +I0408 19:15:22.461639 24089 net.cpp:406] conv5 <- conv4 +I0408 19:15:22.461645 24089 net.cpp:380] conv5 -> conv5 +I0408 19:15:22.471190 24089 net.cpp:122] Setting up conv5 +I0408 19:15:22.471206 24089 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 19:15:22.471210 24089 net.cpp:137] Memory required for data: 256225024 +I0408 19:15:22.471222 24089 layer_factory.hpp:77] Creating layer relu5 +I0408 19:15:22.471230 24089 net.cpp:84] Creating Layer relu5 +I0408 19:15:22.471235 24089 net.cpp:406] relu5 <- conv5 +I0408 19:15:22.471258 24089 net.cpp:367] relu5 -> conv5 (in-place) +I0408 19:15:22.471746 24089 net.cpp:122] Setting up relu5 +I0408 19:15:22.471755 24089 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 19:15:22.471760 24089 net.cpp:137] Memory required for data: 261762816 +I0408 19:15:22.471762 24089 layer_factory.hpp:77] Creating layer pool5 +I0408 19:15:22.471773 24089 net.cpp:84] Creating Layer pool5 +I0408 19:15:22.471777 24089 net.cpp:406] pool5 <- conv5 +I0408 19:15:22.471783 24089 net.cpp:380] pool5 -> pool5 +I0408 19:15:22.471820 24089 net.cpp:122] Setting up pool5 +I0408 19:15:22.471827 24089 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 19:15:22.471829 24089 net.cpp:137] Memory required for data: 262942464 +I0408 19:15:22.471832 24089 layer_factory.hpp:77] Creating layer fc6 +I0408 19:15:22.471840 24089 net.cpp:84] Creating Layer fc6 +I0408 19:15:22.471843 24089 net.cpp:406] fc6 <- pool5 +I0408 19:15:22.471849 24089 net.cpp:380] fc6 -> fc6 +I0408 19:15:22.829941 24089 net.cpp:122] Setting up fc6 +I0408 19:15:22.829972 24089 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:15:22.829977 24089 net.cpp:137] Memory required for data: 263466752 +I0408 19:15:22.829986 24089 layer_factory.hpp:77] Creating layer relu6 +I0408 19:15:22.829995 24089 net.cpp:84] Creating Layer relu6 +I0408 19:15:22.830000 24089 net.cpp:406] relu6 <- fc6 +I0408 19:15:22.830008 24089 net.cpp:367] relu6 -> fc6 (in-place) +I0408 19:15:22.830838 24089 net.cpp:122] Setting up relu6 +I0408 19:15:22.830848 24089 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:15:22.830852 24089 net.cpp:137] Memory required for data: 263991040 +I0408 19:15:22.830857 24089 layer_factory.hpp:77] Creating layer drop6 +I0408 19:15:22.830864 24089 net.cpp:84] Creating Layer drop6 +I0408 19:15:22.830868 24089 net.cpp:406] drop6 <- fc6 +I0408 19:15:22.830874 24089 net.cpp:367] drop6 -> fc6 (in-place) +I0408 19:15:22.830899 24089 net.cpp:122] Setting up drop6 +I0408 19:15:22.830904 24089 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:15:22.830907 24089 net.cpp:137] Memory required for data: 264515328 +I0408 19:15:22.830911 24089 layer_factory.hpp:77] Creating layer fc7 +I0408 19:15:22.830919 24089 net.cpp:84] Creating Layer fc7 +I0408 19:15:22.830921 24089 net.cpp:406] fc7 <- fc6 +I0408 19:15:22.830929 24089 net.cpp:380] fc7 -> fc7 +I0408 19:15:22.988240 24089 net.cpp:122] Setting up fc7 +I0408 19:15:22.988262 24089 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:15:22.988266 24089 net.cpp:137] Memory required for data: 265039616 +I0408 19:15:22.988274 24089 layer_factory.hpp:77] Creating layer relu7 +I0408 19:15:22.988283 24089 net.cpp:84] Creating Layer relu7 +I0408 19:15:22.988288 24089 net.cpp:406] relu7 <- fc7 +I0408 19:15:22.988294 24089 net.cpp:367] relu7 -> fc7 (in-place) +I0408 19:15:22.988726 24089 net.cpp:122] Setting up relu7 +I0408 19:15:22.988734 24089 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:15:22.988737 24089 net.cpp:137] Memory required for data: 265563904 +I0408 19:15:22.988741 24089 layer_factory.hpp:77] Creating layer drop7 +I0408 19:15:22.988749 24089 net.cpp:84] Creating Layer drop7 +I0408 19:15:22.988751 24089 net.cpp:406] drop7 <- fc7 +I0408 19:15:22.988757 24089 net.cpp:367] drop7 -> fc7 (in-place) +I0408 19:15:22.988781 24089 net.cpp:122] Setting up drop7 +I0408 19:15:22.988786 24089 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:15:22.988790 24089 net.cpp:137] Memory required for data: 266088192 +I0408 19:15:22.988793 24089 layer_factory.hpp:77] Creating layer fc8 +I0408 19:15:22.988801 24089 net.cpp:84] Creating Layer fc8 +I0408 19:15:22.988804 24089 net.cpp:406] fc8 <- fc7 +I0408 19:15:22.988811 24089 net.cpp:380] fc8 -> fc8 +I0408 19:15:22.996587 24089 net.cpp:122] Setting up fc8 +I0408 19:15:22.996596 24089 net.cpp:129] Top shape: 32 196 (6272) +I0408 19:15:22.996599 24089 net.cpp:137] Memory required for data: 266113280 +I0408 19:15:22.996605 24089 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 19:15:22.996613 24089 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 19:15:22.996616 24089 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 19:15:22.996639 24089 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 19:15:22.996646 24089 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 19:15:22.996678 24089 net.cpp:122] Setting up fc8_fc8_0_split +I0408 19:15:22.996682 24089 net.cpp:129] Top shape: 32 196 (6272) +I0408 19:15:22.996686 24089 net.cpp:129] Top shape: 32 196 (6272) +I0408 19:15:22.996690 24089 net.cpp:137] Memory required for data: 266163456 +I0408 19:15:22.996693 24089 layer_factory.hpp:77] Creating layer accuracy +I0408 19:15:22.996701 24089 net.cpp:84] Creating Layer accuracy +I0408 19:15:22.996706 24089 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 19:15:22.996709 24089 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 19:15:22.996714 24089 net.cpp:380] accuracy -> accuracy +I0408 19:15:22.996722 24089 net.cpp:122] Setting up accuracy +I0408 19:15:22.996726 24089 net.cpp:129] Top shape: (1) +I0408 19:15:22.996731 24089 net.cpp:137] Memory required for data: 266163460 +I0408 19:15:22.996733 24089 layer_factory.hpp:77] Creating layer loss +I0408 19:15:22.996739 24089 net.cpp:84] Creating Layer loss +I0408 19:15:22.996743 24089 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 19:15:22.996747 24089 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 19:15:22.996752 24089 net.cpp:380] loss -> loss +I0408 19:15:22.996759 24089 layer_factory.hpp:77] Creating layer loss +I0408 19:15:22.997354 24089 net.cpp:122] Setting up loss +I0408 19:15:22.997364 24089 net.cpp:129] Top shape: (1) +I0408 19:15:22.997367 24089 net.cpp:132] with loss weight 1 +I0408 19:15:22.997376 24089 net.cpp:137] Memory required for data: 266163464 +I0408 19:15:22.997380 24089 net.cpp:198] loss needs backward computation. +I0408 19:15:22.997385 24089 net.cpp:200] accuracy does not need backward computation. +I0408 19:15:22.997390 24089 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 19:15:22.997392 24089 net.cpp:198] fc8 needs backward computation. +I0408 19:15:22.997395 24089 net.cpp:198] drop7 needs backward computation. +I0408 19:15:22.997400 24089 net.cpp:198] relu7 needs backward computation. +I0408 19:15:22.997403 24089 net.cpp:198] fc7 needs backward computation. +I0408 19:15:22.997407 24089 net.cpp:198] drop6 needs backward computation. +I0408 19:15:22.997411 24089 net.cpp:198] relu6 needs backward computation. +I0408 19:15:22.997416 24089 net.cpp:198] fc6 needs backward computation. +I0408 19:15:22.997419 24089 net.cpp:198] pool5 needs backward computation. +I0408 19:15:22.997422 24089 net.cpp:198] relu5 needs backward computation. +I0408 19:15:22.997426 24089 net.cpp:198] conv5 needs backward computation. +I0408 19:15:22.997431 24089 net.cpp:198] relu4 needs backward computation. +I0408 19:15:22.997434 24089 net.cpp:198] conv4 needs backward computation. +I0408 19:15:22.997438 24089 net.cpp:198] relu3 needs backward computation. +I0408 19:15:22.997442 24089 net.cpp:198] conv3 needs backward computation. +I0408 19:15:22.997445 24089 net.cpp:198] pool2 needs backward computation. +I0408 19:15:22.997449 24089 net.cpp:198] norm2 needs backward computation. +I0408 19:15:22.997453 24089 net.cpp:198] relu2 needs backward computation. +I0408 19:15:22.997457 24089 net.cpp:198] conv2 needs backward computation. +I0408 19:15:22.997462 24089 net.cpp:198] pool1 needs backward computation. +I0408 19:15:22.997464 24089 net.cpp:198] norm1 needs backward computation. +I0408 19:15:22.997468 24089 net.cpp:198] relu1 needs backward computation. +I0408 19:15:22.997473 24089 net.cpp:198] conv1 needs backward computation. +I0408 19:15:22.997476 24089 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 19:15:22.997480 24089 net.cpp:200] val-data does not need backward computation. +I0408 19:15:22.997483 24089 net.cpp:242] This network produces output accuracy +I0408 19:15:22.997488 24089 net.cpp:242] This network produces output loss +I0408 19:15:22.997505 24089 net.cpp:255] Network initialization done. +I0408 19:15:22.997582 24089 solver.cpp:56] Solver scaffolding done. +I0408 19:15:22.998026 24089 caffe.cpp:248] Starting Optimization +I0408 19:15:22.998035 24089 solver.cpp:272] Solving +I0408 19:15:22.998047 24089 solver.cpp:273] Learning Rate Policy: exp +I0408 19:15:22.999326 24089 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 19:15:22.999336 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:15:23.088994 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:15:27.756264 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:15:27.801216 24089 solver.cpp:397] Test net output #0: accuracy = 0.00490196 +I0408 19:15:27.801265 24089 solver.cpp:397] Test net output #1: loss = 5.27881 (* 1 = 5.27881 loss) +I0408 19:15:27.897914 24089 solver.cpp:218] Iteration 0 (-4.97146e-30 iter/s, 4.89964s/12 iters), loss = 5.28028 +I0408 19:15:27.899425 24089 solver.cpp:237] Train net output #0: loss = 5.28028 (* 1 = 5.28028 loss) +I0408 19:15:27.899446 24089 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0408 19:15:31.787674 24089 solver.cpp:218] Iteration 12 (3.08635 iter/s, 3.88808s/12 iters), loss = 5.26641 +I0408 19:15:31.787722 24089 solver.cpp:237] Train net output #0: loss = 5.26641 (* 1 = 5.26641 loss) +I0408 19:15:31.787735 24089 sgd_solver.cpp:105] Iteration 12, lr = 0.0099087 +I0408 19:15:36.785838 24089 solver.cpp:218] Iteration 24 (2.401 iter/s, 4.99792s/12 iters), loss = 5.28024 +I0408 19:15:36.785888 24089 solver.cpp:237] Train net output #0: loss = 5.28024 (* 1 = 5.28024 loss) +I0408 19:15:36.785900 24089 sgd_solver.cpp:105] Iteration 24, lr = 0.00981824 +I0408 19:15:41.696559 24089 solver.cpp:218] Iteration 36 (2.44376 iter/s, 4.91047s/12 iters), loss = 5.31257 +I0408 19:15:41.696619 24089 solver.cpp:237] Train net output #0: loss = 5.31257 (* 1 = 5.31257 loss) +I0408 19:15:41.696632 24089 sgd_solver.cpp:105] Iteration 36, lr = 0.0097286 +I0408 19:15:46.878265 24089 solver.cpp:218] Iteration 48 (2.31595 iter/s, 5.18145s/12 iters), loss = 5.30435 +I0408 19:15:46.878314 24089 solver.cpp:237] Train net output #0: loss = 5.30435 (* 1 = 5.30435 loss) +I0408 19:15:46.878325 24089 sgd_solver.cpp:105] Iteration 48, lr = 0.00963978 +I0408 19:15:52.151235 24089 solver.cpp:218] Iteration 60 (2.27587 iter/s, 5.27271s/12 iters), loss = 5.28648 +I0408 19:15:52.151432 24089 solver.cpp:237] Train net output #0: loss = 5.28648 (* 1 = 5.28648 loss) +I0408 19:15:52.151441 24089 sgd_solver.cpp:105] Iteration 60, lr = 0.00955177 +I0408 19:15:57.197569 24089 solver.cpp:218] Iteration 72 (2.37815 iter/s, 5.04593s/12 iters), loss = 5.29779 +I0408 19:15:57.197611 24089 solver.cpp:237] Train net output #0: loss = 5.29779 (* 1 = 5.29779 loss) +I0408 19:15:57.197620 24089 sgd_solver.cpp:105] Iteration 72, lr = 0.00946457 +I0408 19:16:02.175309 24089 solver.cpp:218] Iteration 84 (2.41085 iter/s, 4.97749s/12 iters), loss = 5.28472 +I0408 19:16:02.175360 24089 solver.cpp:237] Train net output #0: loss = 5.28472 (* 1 = 5.28472 loss) +I0408 19:16:02.175371 24089 sgd_solver.cpp:105] Iteration 84, lr = 0.00937816 +I0408 19:16:07.143632 24089 solver.cpp:218] Iteration 96 (2.41542 iter/s, 4.96807s/12 iters), loss = 5.31077 +I0408 19:16:07.143680 24089 solver.cpp:237] Train net output #0: loss = 5.31077 (* 1 = 5.31077 loss) +I0408 19:16:07.143692 24089 sgd_solver.cpp:105] Iteration 96, lr = 0.00929254 +I0408 19:16:08.842464 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:16:09.154413 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 19:16:15.724547 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 19:16:21.561511 24089 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 19:16:21.561537 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:16:26.037396 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:16:26.114864 24089 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 19:16:26.114909 24089 solver.cpp:397] Test net output #1: loss = 5.28721 (* 1 = 5.28721 loss) +I0408 19:16:28.082687 24089 solver.cpp:218] Iteration 108 (0.573115 iter/s, 20.9382s/12 iters), loss = 5.30223 +I0408 19:16:28.082731 24089 solver.cpp:237] Train net output #0: loss = 5.30223 (* 1 = 5.30223 loss) +I0408 19:16:28.082738 24089 sgd_solver.cpp:105] Iteration 108, lr = 0.0092077 +I0408 19:16:33.110464 24089 solver.cpp:218] Iteration 120 (2.38686 iter/s, 5.02753s/12 iters), loss = 5.26665 +I0408 19:16:33.110514 24089 solver.cpp:237] Train net output #0: loss = 5.26665 (* 1 = 5.26665 loss) +I0408 19:16:33.110525 24089 sgd_solver.cpp:105] Iteration 120, lr = 0.00912364 +I0408 19:16:38.258983 24089 solver.cpp:218] Iteration 132 (2.33089 iter/s, 5.14825s/12 iters), loss = 5.22995 +I0408 19:16:38.259042 24089 solver.cpp:237] Train net output #0: loss = 5.22995 (* 1 = 5.22995 loss) +I0408 19:16:38.259052 24089 sgd_solver.cpp:105] Iteration 132, lr = 0.00904034 +I0408 19:16:43.314463 24089 solver.cpp:218] Iteration 144 (2.37379 iter/s, 5.05521s/12 iters), loss = 5.27497 +I0408 19:16:43.314518 24089 solver.cpp:237] Train net output #0: loss = 5.27497 (* 1 = 5.27497 loss) +I0408 19:16:43.314530 24089 sgd_solver.cpp:105] Iteration 144, lr = 0.00895781 +I0408 19:16:48.432961 24089 solver.cpp:218] Iteration 156 (2.34456 iter/s, 5.11823s/12 iters), loss = 5.22623 +I0408 19:16:48.433012 24089 solver.cpp:237] Train net output #0: loss = 5.22623 (* 1 = 5.22623 loss) +I0408 19:16:48.433023 24089 sgd_solver.cpp:105] Iteration 156, lr = 0.00887602 +I0408 19:16:53.613338 24089 solver.cpp:218] Iteration 168 (2.31655 iter/s, 5.18011s/12 iters), loss = 5.19044 +I0408 19:16:53.613391 24089 solver.cpp:237] Train net output #0: loss = 5.19044 (* 1 = 5.19044 loss) +I0408 19:16:53.613402 24089 sgd_solver.cpp:105] Iteration 168, lr = 0.00879499 +I0408 19:16:58.811728 24089 solver.cpp:218] Iteration 180 (2.30853 iter/s, 5.19812s/12 iters), loss = 5.16412 +I0408 19:16:58.811856 24089 solver.cpp:237] Train net output #0: loss = 5.16412 (* 1 = 5.16412 loss) +I0408 19:16:58.811869 24089 sgd_solver.cpp:105] Iteration 180, lr = 0.00871469 +I0408 19:17:04.096653 24089 solver.cpp:218] Iteration 192 (2.27076 iter/s, 5.28458s/12 iters), loss = 5.23211 +I0408 19:17:04.096707 24089 solver.cpp:237] Train net output #0: loss = 5.23211 (* 1 = 5.23211 loss) +I0408 19:17:04.096720 24089 sgd_solver.cpp:105] Iteration 192, lr = 0.00863513 +I0408 19:17:07.953171 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:17:08.642107 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 19:17:12.516311 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 19:17:17.897114 24089 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 19:17:17.897141 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:17:22.291452 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:17:22.416400 24089 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0408 19:17:22.416450 24089 solver.cpp:397] Test net output #1: loss = 5.18219 (* 1 = 5.18219 loss) +I0408 19:17:22.504179 24089 solver.cpp:218] Iteration 204 (0.651935 iter/s, 18.4068s/12 iters), loss = 5.10488 +I0408 19:17:22.504227 24089 solver.cpp:237] Train net output #0: loss = 5.10488 (* 1 = 5.10488 loss) +I0408 19:17:22.504238 24089 sgd_solver.cpp:105] Iteration 204, lr = 0.00855629 +I0408 19:17:26.887135 24089 solver.cpp:218] Iteration 216 (2.73802 iter/s, 4.38273s/12 iters), loss = 5.16266 +I0408 19:17:26.887187 24089 solver.cpp:237] Train net output #0: loss = 5.16266 (* 1 = 5.16266 loss) +I0408 19:17:26.887198 24089 sgd_solver.cpp:105] Iteration 216, lr = 0.00847818 +I0408 19:17:31.902388 24089 solver.cpp:218] Iteration 228 (2.39282 iter/s, 5.01499s/12 iters), loss = 5.19023 +I0408 19:17:31.902499 24089 solver.cpp:237] Train net output #0: loss = 5.19023 (* 1 = 5.19023 loss) +I0408 19:17:31.902511 24089 sgd_solver.cpp:105] Iteration 228, lr = 0.00840077 +I0408 19:17:37.008934 24089 solver.cpp:218] Iteration 240 (2.35007 iter/s, 5.10623s/12 iters), loss = 5.21561 +I0408 19:17:37.008976 24089 solver.cpp:237] Train net output #0: loss = 5.21561 (* 1 = 5.21561 loss) +I0408 19:17:37.008985 24089 sgd_solver.cpp:105] Iteration 240, lr = 0.00832408 +I0408 19:17:42.198540 24089 solver.cpp:218] Iteration 252 (2.31243 iter/s, 5.18935s/12 iters), loss = 5.12315 +I0408 19:17:42.198606 24089 solver.cpp:237] Train net output #0: loss = 5.12315 (* 1 = 5.12315 loss) +I0408 19:17:42.198619 24089 sgd_solver.cpp:105] Iteration 252, lr = 0.00824808 +I0408 19:17:47.377986 24089 solver.cpp:218] Iteration 264 (2.31697 iter/s, 5.17917s/12 iters), loss = 5.25404 +I0408 19:17:47.378029 24089 solver.cpp:237] Train net output #0: loss = 5.25404 (* 1 = 5.25404 loss) +I0408 19:17:47.378039 24089 sgd_solver.cpp:105] Iteration 264, lr = 0.00817278 +I0408 19:17:52.395941 24089 solver.cpp:218] Iteration 276 (2.39153 iter/s, 5.0177s/12 iters), loss = 5.19256 +I0408 19:17:52.395998 24089 solver.cpp:237] Train net output #0: loss = 5.19256 (* 1 = 5.19256 loss) +I0408 19:17:52.396009 24089 sgd_solver.cpp:105] Iteration 276, lr = 0.00809816 +I0408 19:17:57.369315 24089 solver.cpp:218] Iteration 288 (2.41298 iter/s, 4.97311s/12 iters), loss = 5.01488 +I0408 19:17:57.369372 24089 solver.cpp:237] Train net output #0: loss = 5.01488 (* 1 = 5.01488 loss) +I0408 19:17:57.369385 24089 sgd_solver.cpp:105] Iteration 288, lr = 0.00802423 +I0408 19:18:02.416805 24089 solver.cpp:218] Iteration 300 (2.37755 iter/s, 5.04722s/12 iters), loss = 5.15194 +I0408 19:18:02.416981 24089 solver.cpp:237] Train net output #0: loss = 5.15194 (* 1 = 5.15194 loss) +I0408 19:18:02.417001 24089 sgd_solver.cpp:105] Iteration 300, lr = 0.00795097 +I0408 19:18:03.393913 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:18:04.439229 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 19:18:07.475421 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 19:18:11.096918 24089 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 19:18:11.096940 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:18:15.500016 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:18:15.659584 24089 solver.cpp:397] Test net output #0: accuracy = 0.0116422 +I0408 19:18:15.659629 24089 solver.cpp:397] Test net output #1: loss = 5.12458 (* 1 = 5.12458 loss) +I0408 19:18:17.765314 24089 solver.cpp:218] Iteration 312 (0.781874 iter/s, 15.3477s/12 iters), loss = 5.07871 +I0408 19:18:17.765367 24089 solver.cpp:237] Train net output #0: loss = 5.07871 (* 1 = 5.07871 loss) +I0408 19:18:17.765378 24089 sgd_solver.cpp:105] Iteration 312, lr = 0.00787838 +I0408 19:18:23.210999 24089 solver.cpp:218] Iteration 324 (2.20369 iter/s, 5.44541s/12 iters), loss = 5.14515 +I0408 19:18:23.211046 24089 solver.cpp:237] Train net output #0: loss = 5.14515 (* 1 = 5.14515 loss) +I0408 19:18:23.211057 24089 sgd_solver.cpp:105] Iteration 324, lr = 0.00780645 +I0408 19:18:28.170593 24089 solver.cpp:218] Iteration 336 (2.41967 iter/s, 4.95934s/12 iters), loss = 5.08855 +I0408 19:18:28.170639 24089 solver.cpp:237] Train net output #0: loss = 5.08855 (* 1 = 5.08855 loss) +I0408 19:18:28.170650 24089 sgd_solver.cpp:105] Iteration 336, lr = 0.00773518 +I0408 19:18:33.131116 24089 solver.cpp:218] Iteration 348 (2.41922 iter/s, 4.96027s/12 iters), loss = 5.0465 +I0408 19:18:33.131228 24089 solver.cpp:237] Train net output #0: loss = 5.0465 (* 1 = 5.0465 loss) +I0408 19:18:33.131240 24089 sgd_solver.cpp:105] Iteration 348, lr = 0.00766456 +I0408 19:18:38.080601 24089 solver.cpp:218] Iteration 360 (2.42465 iter/s, 4.94917s/12 iters), loss = 5.12009 +I0408 19:18:38.080658 24089 solver.cpp:237] Train net output #0: loss = 5.12009 (* 1 = 5.12009 loss) +I0408 19:18:38.080672 24089 sgd_solver.cpp:105] Iteration 360, lr = 0.00759458 +I0408 19:18:43.013460 24089 solver.cpp:218] Iteration 372 (2.4328 iter/s, 4.9326s/12 iters), loss = 5.07306 +I0408 19:18:43.013517 24089 solver.cpp:237] Train net output #0: loss = 5.07306 (* 1 = 5.07306 loss) +I0408 19:18:43.013530 24089 sgd_solver.cpp:105] Iteration 372, lr = 0.00752525 +I0408 19:18:47.943061 24089 solver.cpp:218] Iteration 384 (2.4344 iter/s, 4.92934s/12 iters), loss = 5.05883 +I0408 19:18:47.943114 24089 solver.cpp:237] Train net output #0: loss = 5.05883 (* 1 = 5.05883 loss) +I0408 19:18:47.943126 24089 sgd_solver.cpp:105] Iteration 384, lr = 0.00745655 +I0408 19:18:53.047668 24089 solver.cpp:218] Iteration 396 (2.35094 iter/s, 5.10434s/12 iters), loss = 5.04293 +I0408 19:18:53.047720 24089 solver.cpp:237] Train net output #0: loss = 5.04293 (* 1 = 5.04293 loss) +I0408 19:18:53.047732 24089 sgd_solver.cpp:105] Iteration 396, lr = 0.00738847 +I0408 19:18:56.097242 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:18:57.502645 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 19:19:00.523654 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 19:19:02.862046 24089 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 19:19:02.862073 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:19:07.375543 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:19:07.579335 24089 solver.cpp:397] Test net output #0: accuracy = 0.0153186 +I0408 19:19:07.579386 24089 solver.cpp:397] Test net output #1: loss = 5.07051 (* 1 = 5.07051 loss) +I0408 19:19:07.669221 24089 solver.cpp:218] Iteration 408 (0.820741 iter/s, 14.6209s/12 iters), loss = 5.14621 +I0408 19:19:07.669276 24089 solver.cpp:237] Train net output #0: loss = 5.14621 (* 1 = 5.14621 loss) +I0408 19:19:07.669288 24089 sgd_solver.cpp:105] Iteration 408, lr = 0.00732101 +I0408 19:19:11.924588 24089 solver.cpp:218] Iteration 420 (2.82012 iter/s, 4.25513s/12 iters), loss = 5.11161 +I0408 19:19:11.924643 24089 solver.cpp:237] Train net output #0: loss = 5.11161 (* 1 = 5.11161 loss) +I0408 19:19:11.924654 24089 sgd_solver.cpp:105] Iteration 420, lr = 0.00725418 +I0408 19:19:16.876216 24089 solver.cpp:218] Iteration 432 (2.42358 iter/s, 4.95136s/12 iters), loss = 5.0595 +I0408 19:19:16.876266 24089 solver.cpp:237] Train net output #0: loss = 5.0595 (* 1 = 5.0595 loss) +I0408 19:19:16.876276 24089 sgd_solver.cpp:105] Iteration 432, lr = 0.00718795 +I0408 19:19:21.869189 24089 solver.cpp:218] Iteration 444 (2.4035 iter/s, 4.99271s/12 iters), loss = 4.97852 +I0408 19:19:21.869237 24089 solver.cpp:237] Train net output #0: loss = 4.97852 (* 1 = 4.97852 loss) +I0408 19:19:21.869248 24089 sgd_solver.cpp:105] Iteration 444, lr = 0.00712232 +I0408 19:19:27.107789 24089 solver.cpp:218] Iteration 456 (2.2908 iter/s, 5.23834s/12 iters), loss = 5.06481 +I0408 19:19:27.107841 24089 solver.cpp:237] Train net output #0: loss = 5.06481 (* 1 = 5.06481 loss) +I0408 19:19:27.107853 24089 sgd_solver.cpp:105] Iteration 456, lr = 0.0070573 +I0408 19:19:32.114553 24089 solver.cpp:218] Iteration 468 (2.39688 iter/s, 5.00651s/12 iters), loss = 5.08812 +I0408 19:19:32.114593 24089 solver.cpp:237] Train net output #0: loss = 5.08812 (* 1 = 5.08812 loss) +I0408 19:19:32.114601 24089 sgd_solver.cpp:105] Iteration 468, lr = 0.00699287 +I0408 19:19:37.164113 24089 solver.cpp:218] Iteration 480 (2.37656 iter/s, 5.04931s/12 iters), loss = 4.98205 +I0408 19:19:37.164172 24089 solver.cpp:237] Train net output #0: loss = 4.98205 (* 1 = 4.98205 loss) +I0408 19:19:37.164186 24089 sgd_solver.cpp:105] Iteration 480, lr = 0.00692902 +I0408 19:19:42.249579 24089 solver.cpp:218] Iteration 492 (2.35979 iter/s, 5.0852s/12 iters), loss = 5.05449 +I0408 19:19:42.250254 24089 solver.cpp:237] Train net output #0: loss = 5.05449 (* 1 = 5.05449 loss) +I0408 19:19:42.250267 24089 sgd_solver.cpp:105] Iteration 492, lr = 0.00686576 +I0408 19:19:47.672920 24089 solver.cpp:218] Iteration 504 (2.21302 iter/s, 5.42245s/12 iters), loss = 5.07559 +I0408 19:19:47.672974 24089 solver.cpp:237] Train net output #0: loss = 5.07559 (* 1 = 5.07559 loss) +I0408 19:19:47.672986 24089 sgd_solver.cpp:105] Iteration 504, lr = 0.00680308 +I0408 19:19:47.935786 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:19:49.713300 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 19:19:53.528614 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 19:19:55.857873 24089 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 19:19:55.857899 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:20:00.145318 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:20:00.386670 24089 solver.cpp:397] Test net output #0: accuracy = 0.0196078 +I0408 19:20:00.386723 24089 solver.cpp:397] Test net output #1: loss = 5.00933 (* 1 = 5.00933 loss) +I0408 19:20:02.080890 24089 solver.cpp:218] Iteration 516 (0.832908 iter/s, 14.4074s/12 iters), loss = 4.95652 +I0408 19:20:02.080946 24089 solver.cpp:237] Train net output #0: loss = 4.95652 (* 1 = 4.95652 loss) +I0408 19:20:02.080960 24089 sgd_solver.cpp:105] Iteration 516, lr = 0.00674097 +I0408 19:20:07.127363 24089 solver.cpp:218] Iteration 528 (2.37802 iter/s, 5.04621s/12 iters), loss = 5.04848 +I0408 19:20:07.127414 24089 solver.cpp:237] Train net output #0: loss = 5.04848 (* 1 = 5.04848 loss) +I0408 19:20:07.127426 24089 sgd_solver.cpp:105] Iteration 528, lr = 0.00667943 +I0408 19:20:12.361416 24089 solver.cpp:218] Iteration 540 (2.29279 iter/s, 5.23379s/12 iters), loss = 4.90376 +I0408 19:20:12.361563 24089 solver.cpp:237] Train net output #0: loss = 4.90376 (* 1 = 4.90376 loss) +I0408 19:20:12.361577 24089 sgd_solver.cpp:105] Iteration 540, lr = 0.00661845 +I0408 19:20:17.561383 24089 solver.cpp:218] Iteration 552 (2.30787 iter/s, 5.19961s/12 iters), loss = 5.02003 +I0408 19:20:17.561435 24089 solver.cpp:237] Train net output #0: loss = 5.02003 (* 1 = 5.02003 loss) +I0408 19:20:17.561448 24089 sgd_solver.cpp:105] Iteration 552, lr = 0.00655802 +I0408 19:20:22.610164 24089 solver.cpp:218] Iteration 564 (2.37693 iter/s, 5.04853s/12 iters), loss = 4.96203 +I0408 19:20:22.610205 24089 solver.cpp:237] Train net output #0: loss = 4.96203 (* 1 = 4.96203 loss) +I0408 19:20:22.610214 24089 sgd_solver.cpp:105] Iteration 564, lr = 0.00649815 +I0408 19:20:27.595731 24089 solver.cpp:218] Iteration 576 (2.40707 iter/s, 4.98531s/12 iters), loss = 5.01339 +I0408 19:20:27.595782 24089 solver.cpp:237] Train net output #0: loss = 5.01339 (* 1 = 5.01339 loss) +I0408 19:20:27.595793 24089 sgd_solver.cpp:105] Iteration 576, lr = 0.00643882 +I0408 19:20:32.582680 24089 solver.cpp:218] Iteration 588 (2.4064 iter/s, 4.98669s/12 iters), loss = 4.86009 +I0408 19:20:32.582731 24089 solver.cpp:237] Train net output #0: loss = 4.86009 (* 1 = 4.86009 loss) +I0408 19:20:32.582744 24089 sgd_solver.cpp:105] Iteration 588, lr = 0.00638004 +I0408 19:20:37.603024 24089 solver.cpp:218] Iteration 600 (2.3904 iter/s, 5.02009s/12 iters), loss = 4.95672 +I0408 19:20:37.603063 24089 solver.cpp:237] Train net output #0: loss = 4.95672 (* 1 = 4.95672 loss) +I0408 19:20:37.603072 24089 sgd_solver.cpp:105] Iteration 600, lr = 0.00632179 +I0408 19:20:39.987052 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:20:42.143146 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 19:20:46.044268 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 19:20:48.380628 24089 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 19:20:48.380653 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:20:52.770438 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:20:53.055976 24089 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0408 19:20:53.056026 24089 solver.cpp:397] Test net output #1: loss = 4.94694 (* 1 = 4.94694 loss) +I0408 19:20:53.146381 24089 solver.cpp:218] Iteration 612 (0.772066 iter/s, 15.5427s/12 iters), loss = 4.95521 +I0408 19:20:53.146422 24089 solver.cpp:237] Train net output #0: loss = 4.95521 (* 1 = 4.95521 loss) +I0408 19:20:53.146431 24089 sgd_solver.cpp:105] Iteration 612, lr = 0.00626407 +I0408 19:20:57.493937 24089 solver.cpp:218] Iteration 624 (2.76032 iter/s, 4.34732s/12 iters), loss = 4.82734 +I0408 19:20:57.494022 24089 solver.cpp:237] Train net output #0: loss = 4.82734 (* 1 = 4.82734 loss) +I0408 19:20:57.494037 24089 sgd_solver.cpp:105] Iteration 624, lr = 0.00620688 +I0408 19:21:02.586923 24089 solver.cpp:218] Iteration 636 (2.35632 iter/s, 5.09269s/12 iters), loss = 4.80673 +I0408 19:21:02.586977 24089 solver.cpp:237] Train net output #0: loss = 4.80673 (* 1 = 4.80673 loss) +I0408 19:21:02.586988 24089 sgd_solver.cpp:105] Iteration 636, lr = 0.00615022 +I0408 19:21:07.590579 24089 solver.cpp:218] Iteration 648 (2.39837 iter/s, 5.0034s/12 iters), loss = 5.05186 +I0408 19:21:07.590633 24089 solver.cpp:237] Train net output #0: loss = 5.05186 (* 1 = 5.05186 loss) +I0408 19:21:07.590646 24089 sgd_solver.cpp:105] Iteration 648, lr = 0.00609407 +I0408 19:21:12.648303 24089 solver.cpp:218] Iteration 660 (2.37273 iter/s, 5.05746s/12 iters), loss = 4.91693 +I0408 19:21:12.648352 24089 solver.cpp:237] Train net output #0: loss = 4.91693 (* 1 = 4.91693 loss) +I0408 19:21:12.648365 24089 sgd_solver.cpp:105] Iteration 660, lr = 0.00603843 +I0408 19:21:17.884096 24089 solver.cpp:218] Iteration 672 (2.29203 iter/s, 5.23553s/12 iters), loss = 4.83121 +I0408 19:21:17.884263 24089 solver.cpp:237] Train net output #0: loss = 4.83121 (* 1 = 4.83121 loss) +I0408 19:21:17.884277 24089 sgd_solver.cpp:105] Iteration 672, lr = 0.0059833 +I0408 19:21:22.853709 24089 solver.cpp:218] Iteration 684 (2.41485 iter/s, 4.96924s/12 iters), loss = 4.71762 +I0408 19:21:22.853760 24089 solver.cpp:237] Train net output #0: loss = 4.71762 (* 1 = 4.71762 loss) +I0408 19:21:22.853772 24089 sgd_solver.cpp:105] Iteration 684, lr = 0.00592868 +I0408 19:21:23.640645 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:21:27.928488 24089 solver.cpp:218] Iteration 696 (2.36476 iter/s, 5.07452s/12 iters), loss = 4.84972 +I0408 19:21:27.928540 24089 solver.cpp:237] Train net output #0: loss = 4.84972 (* 1 = 4.84972 loss) +I0408 19:21:27.928553 24089 sgd_solver.cpp:105] Iteration 696, lr = 0.00587455 +I0408 19:21:32.629107 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:21:33.011502 24089 solver.cpp:218] Iteration 708 (2.36093 iter/s, 5.08275s/12 iters), loss = 5.01574 +I0408 19:21:33.011555 24089 solver.cpp:237] Train net output #0: loss = 5.01574 (* 1 = 5.01574 loss) +I0408 19:21:33.011567 24089 sgd_solver.cpp:105] Iteration 708, lr = 0.00582092 +I0408 19:21:35.170742 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 19:21:38.178529 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 19:21:40.485639 24089 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 19:21:40.485661 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:21:44.684979 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:21:45.019920 24089 solver.cpp:397] Test net output #0: accuracy = 0.0330882 +I0408 19:21:45.019961 24089 solver.cpp:397] Test net output #1: loss = 4.89845 (* 1 = 4.89845 loss) +I0408 19:21:46.847424 24089 solver.cpp:218] Iteration 720 (0.867345 iter/s, 13.8353s/12 iters), loss = 5.04603 +I0408 19:21:46.847476 24089 solver.cpp:237] Train net output #0: loss = 5.04603 (* 1 = 5.04603 loss) +I0408 19:21:46.847487 24089 sgd_solver.cpp:105] Iteration 720, lr = 0.00576777 +I0408 19:21:51.945708 24089 solver.cpp:218] Iteration 732 (2.35385 iter/s, 5.09802s/12 iters), loss = 4.67162 +I0408 19:21:51.945785 24089 solver.cpp:237] Train net output #0: loss = 4.67162 (* 1 = 4.67162 loss) +I0408 19:21:51.945797 24089 sgd_solver.cpp:105] Iteration 732, lr = 0.00571511 +I0408 19:21:56.964843 24089 solver.cpp:218] Iteration 744 (2.39099 iter/s, 5.01885s/12 iters), loss = 4.91671 +I0408 19:21:56.964891 24089 solver.cpp:237] Train net output #0: loss = 4.91671 (* 1 = 4.91671 loss) +I0408 19:21:56.964903 24089 sgd_solver.cpp:105] Iteration 744, lr = 0.00566294 +I0408 19:22:01.983958 24089 solver.cpp:218] Iteration 756 (2.39098 iter/s, 5.01886s/12 iters), loss = 4.92781 +I0408 19:22:01.984012 24089 solver.cpp:237] Train net output #0: loss = 4.92781 (* 1 = 4.92781 loss) +I0408 19:22:01.984025 24089 sgd_solver.cpp:105] Iteration 756, lr = 0.00561124 +I0408 19:22:06.972288 24089 solver.cpp:218] Iteration 768 (2.40574 iter/s, 4.98807s/12 iters), loss = 4.82052 +I0408 19:22:06.972338 24089 solver.cpp:237] Train net output #0: loss = 4.82052 (* 1 = 4.82052 loss) +I0408 19:22:06.972352 24089 sgd_solver.cpp:105] Iteration 768, lr = 0.00556001 +I0408 19:22:12.020188 24089 solver.cpp:218] Iteration 780 (2.37735 iter/s, 5.04765s/12 iters), loss = 4.91372 +I0408 19:22:12.020229 24089 solver.cpp:237] Train net output #0: loss = 4.91372 (* 1 = 4.91372 loss) +I0408 19:22:12.020241 24089 sgd_solver.cpp:105] Iteration 780, lr = 0.00550925 +I0408 19:22:17.013586 24089 solver.cpp:218] Iteration 792 (2.40329 iter/s, 4.99315s/12 iters), loss = 4.71581 +I0408 19:22:17.013641 24089 solver.cpp:237] Train net output #0: loss = 4.71581 (* 1 = 4.71581 loss) +I0408 19:22:17.013653 24089 sgd_solver.cpp:105] Iteration 792, lr = 0.00545895 +I0408 19:22:22.011118 24089 solver.cpp:218] Iteration 804 (2.40131 iter/s, 4.99728s/12 iters), loss = 4.8382 +I0408 19:22:22.011250 24089 solver.cpp:237] Train net output #0: loss = 4.8382 (* 1 = 4.8382 loss) +I0408 19:22:22.011262 24089 sgd_solver.cpp:105] Iteration 804, lr = 0.00540911 +I0408 19:22:23.792789 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:22:26.611066 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 19:22:29.693037 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 19:22:32.036424 24089 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 19:22:32.036444 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:22:36.152765 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:22:36.509436 24089 solver.cpp:397] Test net output #0: accuracy = 0.0373775 +I0408 19:22:36.509474 24089 solver.cpp:397] Test net output #1: loss = 4.83871 (* 1 = 4.83871 loss) +I0408 19:22:36.599792 24089 solver.cpp:218] Iteration 816 (0.822596 iter/s, 14.588s/12 iters), loss = 4.9669 +I0408 19:22:36.599844 24089 solver.cpp:237] Train net output #0: loss = 4.9669 (* 1 = 4.9669 loss) +I0408 19:22:36.599855 24089 sgd_solver.cpp:105] Iteration 816, lr = 0.00535973 +I0408 19:22:40.936324 24089 solver.cpp:218] Iteration 828 (2.76734 iter/s, 4.3363s/12 iters), loss = 4.85917 +I0408 19:22:40.936374 24089 solver.cpp:237] Train net output #0: loss = 4.85917 (* 1 = 4.85917 loss) +I0408 19:22:40.936384 24089 sgd_solver.cpp:105] Iteration 828, lr = 0.00531079 +I0408 19:22:45.888515 24089 solver.cpp:218] Iteration 840 (2.42329 iter/s, 4.95194s/12 iters), loss = 4.60773 +I0408 19:22:45.888561 24089 solver.cpp:237] Train net output #0: loss = 4.60773 (* 1 = 4.60773 loss) +I0408 19:22:45.888571 24089 sgd_solver.cpp:105] Iteration 840, lr = 0.00526231 +I0408 19:22:50.892634 24089 solver.cpp:218] Iteration 852 (2.39814 iter/s, 5.00387s/12 iters), loss = 4.73936 +I0408 19:22:50.892674 24089 solver.cpp:237] Train net output #0: loss = 4.73936 (* 1 = 4.73936 loss) +I0408 19:22:50.892683 24089 sgd_solver.cpp:105] Iteration 852, lr = 0.00521426 +I0408 19:22:55.975689 24089 solver.cpp:218] Iteration 864 (2.3609 iter/s, 5.08281s/12 iters), loss = 4.67321 +I0408 19:22:55.975791 24089 solver.cpp:237] Train net output #0: loss = 4.67321 (* 1 = 4.67321 loss) +I0408 19:22:55.975805 24089 sgd_solver.cpp:105] Iteration 864, lr = 0.00516666 +I0408 19:23:00.931532 24089 solver.cpp:218] Iteration 876 (2.42153 iter/s, 4.95554s/12 iters), loss = 4.76463 +I0408 19:23:00.931581 24089 solver.cpp:237] Train net output #0: loss = 4.76463 (* 1 = 4.76463 loss) +I0408 19:23:00.931594 24089 sgd_solver.cpp:105] Iteration 876, lr = 0.00511949 +I0408 19:23:05.931704 24089 solver.cpp:218] Iteration 888 (2.40004 iter/s, 4.99992s/12 iters), loss = 4.73125 +I0408 19:23:05.931756 24089 solver.cpp:237] Train net output #0: loss = 4.73125 (* 1 = 4.73125 loss) +I0408 19:23:05.931768 24089 sgd_solver.cpp:105] Iteration 888, lr = 0.00507275 +I0408 19:23:11.189821 24089 solver.cpp:218] Iteration 900 (2.2823 iter/s, 5.25786s/12 iters), loss = 4.77704 +I0408 19:23:11.189860 24089 solver.cpp:237] Train net output #0: loss = 4.77704 (* 1 = 4.77704 loss) +I0408 19:23:11.189868 24089 sgd_solver.cpp:105] Iteration 900, lr = 0.00502644 +I0408 19:23:15.187570 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:23:16.409222 24089 solver.cpp:218] Iteration 912 (2.29922 iter/s, 5.21915s/12 iters), loss = 4.49605 +I0408 19:23:16.409262 24089 solver.cpp:237] Train net output #0: loss = 4.49605 (* 1 = 4.49605 loss) +I0408 19:23:16.409271 24089 sgd_solver.cpp:105] Iteration 912, lr = 0.00498055 +I0408 19:23:18.666958 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 19:23:21.980970 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 19:23:25.719521 24089 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 19:23:25.719544 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:23:29.692593 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:23:30.093892 24089 solver.cpp:397] Test net output #0: accuracy = 0.0453431 +I0408 19:23:30.093942 24089 solver.cpp:397] Test net output #1: loss = 4.71854 (* 1 = 4.71854 loss) +I0408 19:23:32.068384 24089 solver.cpp:218] Iteration 924 (0.766357 iter/s, 15.6585s/12 iters), loss = 4.7505 +I0408 19:23:32.068440 24089 solver.cpp:237] Train net output #0: loss = 4.7505 (* 1 = 4.7505 loss) +I0408 19:23:32.068452 24089 sgd_solver.cpp:105] Iteration 924, lr = 0.00493508 +I0408 19:23:37.213336 24089 solver.cpp:218] Iteration 936 (2.3325 iter/s, 5.14469s/12 iters), loss = 4.72084 +I0408 19:23:37.213387 24089 solver.cpp:237] Train net output #0: loss = 4.72084 (* 1 = 4.72084 loss) +I0408 19:23:37.213399 24089 sgd_solver.cpp:105] Iteration 936, lr = 0.00489002 +I0408 19:23:42.262279 24089 solver.cpp:218] Iteration 948 (2.37686 iter/s, 5.04869s/12 iters), loss = 4.60719 +I0408 19:23:42.262322 24089 solver.cpp:237] Train net output #0: loss = 4.60719 (* 1 = 4.60719 loss) +I0408 19:23:42.262332 24089 sgd_solver.cpp:105] Iteration 948, lr = 0.00484537 +I0408 19:23:47.328292 24089 solver.cpp:218] Iteration 960 (2.36884 iter/s, 5.06576s/12 iters), loss = 4.4955 +I0408 19:23:47.328338 24089 solver.cpp:237] Train net output #0: loss = 4.4955 (* 1 = 4.4955 loss) +I0408 19:23:47.328351 24089 sgd_solver.cpp:105] Iteration 960, lr = 0.00480114 +I0408 19:23:52.516429 24089 solver.cpp:218] Iteration 972 (2.31309 iter/s, 5.18788s/12 iters), loss = 4.60655 +I0408 19:23:52.516484 24089 solver.cpp:237] Train net output #0: loss = 4.60655 (* 1 = 4.60655 loss) +I0408 19:23:52.516499 24089 sgd_solver.cpp:105] Iteration 972, lr = 0.0047573 +I0408 19:23:57.772294 24089 solver.cpp:218] Iteration 984 (2.28328 iter/s, 5.25559s/12 iters), loss = 4.6091 +I0408 19:23:57.772349 24089 solver.cpp:237] Train net output #0: loss = 4.6091 (* 1 = 4.6091 loss) +I0408 19:23:57.772363 24089 sgd_solver.cpp:105] Iteration 984, lr = 0.00471387 +I0408 19:24:02.785161 24089 solver.cpp:218] Iteration 996 (2.39396 iter/s, 5.01261s/12 iters), loss = 4.45021 +I0408 19:24:02.785257 24089 solver.cpp:237] Train net output #0: loss = 4.45021 (* 1 = 4.45021 loss) +I0408 19:24:02.785269 24089 sgd_solver.cpp:105] Iteration 996, lr = 0.00467084 +I0408 19:24:08.150027 24089 solver.cpp:218] Iteration 1008 (2.23691 iter/s, 5.36455s/12 iters), loss = 4.60339 +I0408 19:24:08.150081 24089 solver.cpp:237] Train net output #0: loss = 4.60339 (* 1 = 4.60339 loss) +I0408 19:24:08.150094 24089 sgd_solver.cpp:105] Iteration 1008, lr = 0.00462819 +I0408 19:24:09.200393 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:24:12.935498 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 19:24:15.916707 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 19:24:18.265936 24089 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 19:24:18.265975 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:24:22.256204 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:24:22.690023 24089 solver.cpp:397] Test net output #0: accuracy = 0.0557598 +I0408 19:24:22.690069 24089 solver.cpp:397] Test net output #1: loss = 4.68301 (* 1 = 4.68301 loss) +I0408 19:24:22.780668 24089 solver.cpp:218] Iteration 1020 (0.820232 iter/s, 14.63s/12 iters), loss = 4.55897 +I0408 19:24:22.780721 24089 solver.cpp:237] Train net output #0: loss = 4.55897 (* 1 = 4.55897 loss) +I0408 19:24:22.780732 24089 sgd_solver.cpp:105] Iteration 1020, lr = 0.00458594 +I0408 19:24:27.087922 24089 solver.cpp:218] Iteration 1032 (2.78615 iter/s, 4.30702s/12 iters), loss = 4.43839 +I0408 19:24:27.087978 24089 solver.cpp:237] Train net output #0: loss = 4.43839 (* 1 = 4.43839 loss) +I0408 19:24:27.087990 24089 sgd_solver.cpp:105] Iteration 1032, lr = 0.00454407 +I0408 19:24:32.173647 24089 solver.cpp:218] Iteration 1044 (2.35967 iter/s, 5.08546s/12 iters), loss = 4.65555 +I0408 19:24:32.173686 24089 solver.cpp:237] Train net output #0: loss = 4.65555 (* 1 = 4.65555 loss) +I0408 19:24:32.173696 24089 sgd_solver.cpp:105] Iteration 1044, lr = 0.00450258 +I0408 19:24:37.428503 24089 solver.cpp:218] Iteration 1056 (2.28371 iter/s, 5.2546s/12 iters), loss = 4.64704 +I0408 19:24:37.428656 24089 solver.cpp:237] Train net output #0: loss = 4.64704 (* 1 = 4.64704 loss) +I0408 19:24:37.428670 24089 sgd_solver.cpp:105] Iteration 1056, lr = 0.00446148 +I0408 19:24:42.537652 24089 solver.cpp:218] Iteration 1068 (2.34889 iter/s, 5.10879s/12 iters), loss = 4.45738 +I0408 19:24:42.537698 24089 solver.cpp:237] Train net output #0: loss = 4.45738 (* 1 = 4.45738 loss) +I0408 19:24:42.537708 24089 sgd_solver.cpp:105] Iteration 1068, lr = 0.00442074 +I0408 19:24:47.664697 24089 solver.cpp:218] Iteration 1080 (2.34065 iter/s, 5.12679s/12 iters), loss = 4.57892 +I0408 19:24:47.664737 24089 solver.cpp:237] Train net output #0: loss = 4.57892 (* 1 = 4.57892 loss) +I0408 19:24:47.664745 24089 sgd_solver.cpp:105] Iteration 1080, lr = 0.00438038 +I0408 19:24:52.793577 24089 solver.cpp:218] Iteration 1092 (2.33981 iter/s, 5.12863s/12 iters), loss = 4.37931 +I0408 19:24:52.793622 24089 solver.cpp:237] Train net output #0: loss = 4.37931 (* 1 = 4.37931 loss) +I0408 19:24:52.793632 24089 sgd_solver.cpp:105] Iteration 1092, lr = 0.00434039 +I0408 19:24:57.888206 24089 solver.cpp:218] Iteration 1104 (2.35554 iter/s, 5.09437s/12 iters), loss = 4.43338 +I0408 19:24:57.888254 24089 solver.cpp:237] Train net output #0: loss = 4.43338 (* 1 = 4.43338 loss) +I0408 19:24:57.888264 24089 sgd_solver.cpp:105] Iteration 1104, lr = 0.00430077 +I0408 19:25:01.086907 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:25:02.923995 24089 solver.cpp:218] Iteration 1116 (2.38306 iter/s, 5.03554s/12 iters), loss = 4.4547 +I0408 19:25:02.924033 24089 solver.cpp:237] Train net output #0: loss = 4.4547 (* 1 = 4.4547 loss) +I0408 19:25:02.924042 24089 sgd_solver.cpp:105] Iteration 1116, lr = 0.0042615 +I0408 19:25:04.996286 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 19:25:07.981786 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 19:25:11.691094 24089 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 19:25:11.691123 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:25:15.698840 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:25:16.176882 24089 solver.cpp:397] Test net output #0: accuracy = 0.0680147 +I0408 19:25:16.176934 24089 solver.cpp:397] Test net output #1: loss = 4.5385 (* 1 = 4.5385 loss) +I0408 19:25:18.176021 24089 solver.cpp:218] Iteration 1128 (0.786814 iter/s, 15.2514s/12 iters), loss = 4.44791 +I0408 19:25:18.176077 24089 solver.cpp:237] Train net output #0: loss = 4.44791 (* 1 = 4.44791 loss) +I0408 19:25:18.176090 24089 sgd_solver.cpp:105] Iteration 1128, lr = 0.00422259 +I0408 19:25:23.238443 24089 solver.cpp:218] Iteration 1140 (2.37053 iter/s, 5.06216s/12 iters), loss = 4.38601 +I0408 19:25:23.238493 24089 solver.cpp:237] Train net output #0: loss = 4.38601 (* 1 = 4.38601 loss) +I0408 19:25:23.238504 24089 sgd_solver.cpp:105] Iteration 1140, lr = 0.00418404 +I0408 19:25:28.237423 24089 solver.cpp:218] Iteration 1152 (2.40061 iter/s, 4.99872s/12 iters), loss = 4.19942 +I0408 19:25:28.237474 24089 solver.cpp:237] Train net output #0: loss = 4.19942 (* 1 = 4.19942 loss) +I0408 19:25:28.237486 24089 sgd_solver.cpp:105] Iteration 1152, lr = 0.00414584 +I0408 19:25:33.247443 24089 solver.cpp:218] Iteration 1164 (2.39532 iter/s, 5.00976s/12 iters), loss = 4.44176 +I0408 19:25:33.247500 24089 solver.cpp:237] Train net output #0: loss = 4.44176 (* 1 = 4.44176 loss) +I0408 19:25:33.247512 24089 sgd_solver.cpp:105] Iteration 1164, lr = 0.00410799 +I0408 19:25:38.411689 24089 solver.cpp:218] Iteration 1176 (2.32379 iter/s, 5.16398s/12 iters), loss = 4.35917 +I0408 19:25:38.411831 24089 solver.cpp:237] Train net output #0: loss = 4.35917 (* 1 = 4.35917 loss) +I0408 19:25:38.411844 24089 sgd_solver.cpp:105] Iteration 1176, lr = 0.00407049 +I0408 19:25:43.547552 24089 solver.cpp:218] Iteration 1188 (2.33667 iter/s, 5.13551s/12 iters), loss = 4.41114 +I0408 19:25:43.547600 24089 solver.cpp:237] Train net output #0: loss = 4.41114 (* 1 = 4.41114 loss) +I0408 19:25:43.547612 24089 sgd_solver.cpp:105] Iteration 1188, lr = 0.00403333 +I0408 19:25:48.921396 24089 solver.cpp:218] Iteration 1200 (2.23315 iter/s, 5.37357s/12 iters), loss = 4.46144 +I0408 19:25:48.921447 24089 solver.cpp:237] Train net output #0: loss = 4.46144 (* 1 = 4.46144 loss) +I0408 19:25:48.921458 24089 sgd_solver.cpp:105] Iteration 1200, lr = 0.0039965 +I0408 19:25:54.042119 24089 solver.cpp:218] Iteration 1212 (2.34354 iter/s, 5.12046s/12 iters), loss = 4.3064 +I0408 19:25:54.042169 24089 solver.cpp:237] Train net output #0: loss = 4.3064 (* 1 = 4.3064 loss) +I0408 19:25:54.042183 24089 sgd_solver.cpp:105] Iteration 1212, lr = 0.00396002 +I0408 19:25:54.331248 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:25:58.885083 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 19:26:04.785014 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 19:26:09.198882 24089 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 19:26:09.198936 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:26:13.150615 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:26:13.662698 24089 solver.cpp:397] Test net output #0: accuracy = 0.0698529 +I0408 19:26:13.662744 24089 solver.cpp:397] Test net output #1: loss = 4.40628 (* 1 = 4.40628 loss) +I0408 19:26:13.753587 24089 solver.cpp:218] Iteration 1224 (0.608808 iter/s, 19.7106s/12 iters), loss = 4.32411 +I0408 19:26:13.753636 24089 solver.cpp:237] Train net output #0: loss = 4.32411 (* 1 = 4.32411 loss) +I0408 19:26:13.753648 24089 sgd_solver.cpp:105] Iteration 1224, lr = 0.00392386 +I0408 19:26:18.228060 24089 solver.cpp:218] Iteration 1236 (2.68202 iter/s, 4.47424s/12 iters), loss = 4.36253 +I0408 19:26:18.228102 24089 solver.cpp:237] Train net output #0: loss = 4.36253 (* 1 = 4.36253 loss) +I0408 19:26:18.228112 24089 sgd_solver.cpp:105] Iteration 1236, lr = 0.00388804 +I0408 19:26:23.295727 24089 solver.cpp:218] Iteration 1248 (2.36807 iter/s, 5.06741s/12 iters), loss = 3.99462 +I0408 19:26:23.295775 24089 solver.cpp:237] Train net output #0: loss = 3.99462 (* 1 = 3.99462 loss) +I0408 19:26:23.295786 24089 sgd_solver.cpp:105] Iteration 1248, lr = 0.00385254 +I0408 19:26:28.509104 24089 solver.cpp:218] Iteration 1260 (2.30189 iter/s, 5.21311s/12 iters), loss = 4.15796 +I0408 19:26:28.509153 24089 solver.cpp:237] Train net output #0: loss = 4.15796 (* 1 = 4.15796 loss) +I0408 19:26:28.509166 24089 sgd_solver.cpp:105] Iteration 1260, lr = 0.00381737 +I0408 19:26:33.547585 24089 solver.cpp:218] Iteration 1272 (2.38179 iter/s, 5.03822s/12 iters), loss = 4.09477 +I0408 19:26:33.547637 24089 solver.cpp:237] Train net output #0: loss = 4.09477 (* 1 = 4.09477 loss) +I0408 19:26:33.547652 24089 sgd_solver.cpp:105] Iteration 1272, lr = 0.00378252 +I0408 19:26:38.566187 24089 solver.cpp:218] Iteration 1284 (2.39123 iter/s, 5.01834s/12 iters), loss = 4.22349 +I0408 19:26:38.566249 24089 solver.cpp:237] Train net output #0: loss = 4.22349 (* 1 = 4.22349 loss) +I0408 19:26:38.566262 24089 sgd_solver.cpp:105] Iteration 1284, lr = 0.00374798 +I0408 19:26:43.646934 24089 solver.cpp:218] Iteration 1296 (2.36198 iter/s, 5.08048s/12 iters), loss = 4.07766 +I0408 19:26:43.647068 24089 solver.cpp:237] Train net output #0: loss = 4.07766 (* 1 = 4.07766 loss) +I0408 19:26:43.647079 24089 sgd_solver.cpp:105] Iteration 1296, lr = 0.00371377 +I0408 19:26:48.756096 24089 solver.cpp:218] Iteration 1308 (2.34888 iter/s, 5.10882s/12 iters), loss = 4.18603 +I0408 19:26:48.756145 24089 solver.cpp:237] Train net output #0: loss = 4.18603 (* 1 = 4.18603 loss) +I0408 19:26:48.756157 24089 sgd_solver.cpp:105] Iteration 1308, lr = 0.00367986 +I0408 19:26:51.269644 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:26:53.788262 24089 solver.cpp:218] Iteration 1320 (2.38478 iter/s, 5.0319s/12 iters), loss = 4.12164 +I0408 19:26:53.788313 24089 solver.cpp:237] Train net output #0: loss = 4.12164 (* 1 = 4.12164 loss) +I0408 19:26:53.788324 24089 sgd_solver.cpp:105] Iteration 1320, lr = 0.00364627 +I0408 19:26:55.908713 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 19:27:04.912583 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 19:27:09.026015 24089 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 19:27:09.026036 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:27:12.882294 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:27:13.441612 24089 solver.cpp:397] Test net output #0: accuracy = 0.0955882 +I0408 19:27:13.441661 24089 solver.cpp:397] Test net output #1: loss = 4.22232 (* 1 = 4.22232 loss) +I0408 19:27:15.201872 24089 solver.cpp:218] Iteration 1332 (0.560415 iter/s, 21.4127s/12 iters), loss = 4.03566 +I0408 19:27:15.202036 24089 solver.cpp:237] Train net output #0: loss = 4.03566 (* 1 = 4.03566 loss) +I0408 19:27:15.202049 24089 sgd_solver.cpp:105] Iteration 1332, lr = 0.00361298 +I0408 19:27:20.266357 24089 solver.cpp:218] Iteration 1344 (2.36962 iter/s, 5.06411s/12 iters), loss = 3.92754 +I0408 19:27:20.266413 24089 solver.cpp:237] Train net output #0: loss = 3.92754 (* 1 = 3.92754 loss) +I0408 19:27:20.266425 24089 sgd_solver.cpp:105] Iteration 1344, lr = 0.00357999 +I0408 19:27:25.370672 24089 solver.cpp:218] Iteration 1356 (2.35107 iter/s, 5.10405s/12 iters), loss = 4.15509 +I0408 19:27:25.370725 24089 solver.cpp:237] Train net output #0: loss = 4.15509 (* 1 = 4.15509 loss) +I0408 19:27:25.370738 24089 sgd_solver.cpp:105] Iteration 1356, lr = 0.00354731 +I0408 19:27:30.393905 24089 solver.cpp:218] Iteration 1368 (2.38902 iter/s, 5.02297s/12 iters), loss = 4.13027 +I0408 19:27:30.393977 24089 solver.cpp:237] Train net output #0: loss = 4.13027 (* 1 = 4.13027 loss) +I0408 19:27:30.393990 24089 sgd_solver.cpp:105] Iteration 1368, lr = 0.00351492 +I0408 19:27:31.597681 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:27:35.426046 24089 solver.cpp:218] Iteration 1380 (2.3848 iter/s, 5.03188s/12 iters), loss = 3.90029 +I0408 19:27:35.426100 24089 solver.cpp:237] Train net output #0: loss = 3.90029 (* 1 = 3.90029 loss) +I0408 19:27:35.426111 24089 sgd_solver.cpp:105] Iteration 1380, lr = 0.00348283 +I0408 19:27:40.382493 24089 solver.cpp:218] Iteration 1392 (2.42122 iter/s, 4.95619s/12 iters), loss = 4.25107 +I0408 19:27:40.382548 24089 solver.cpp:237] Train net output #0: loss = 4.25107 (* 1 = 4.25107 loss) +I0408 19:27:40.382560 24089 sgd_solver.cpp:105] Iteration 1392, lr = 0.00345103 +I0408 19:27:45.593571 24089 solver.cpp:218] Iteration 1404 (2.30291 iter/s, 5.21081s/12 iters), loss = 3.99142 +I0408 19:27:45.602041 24089 solver.cpp:237] Train net output #0: loss = 3.99142 (* 1 = 3.99142 loss) +I0408 19:27:45.602056 24089 sgd_solver.cpp:105] Iteration 1404, lr = 0.00341953 +I0408 19:27:50.389524 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:27:50.772974 24089 solver.cpp:218] Iteration 1416 (2.32076 iter/s, 5.17073s/12 iters), loss = 3.76617 +I0408 19:27:50.773013 24089 solver.cpp:237] Train net output #0: loss = 3.76617 (* 1 = 3.76617 loss) +I0408 19:27:50.773025 24089 sgd_solver.cpp:105] Iteration 1416, lr = 0.00338831 +I0408 19:27:55.551465 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 19:28:05.099488 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 19:28:08.939345 24089 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 19:28:08.939370 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:28:12.811841 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:28:13.403656 24089 solver.cpp:397] Test net output #0: accuracy = 0.106618 +I0408 19:28:13.403687 24089 solver.cpp:397] Test net output #1: loss = 4.11426 (* 1 = 4.11426 loss) +I0408 19:28:13.493889 24089 solver.cpp:218] Iteration 1428 (0.528169 iter/s, 22.72s/12 iters), loss = 3.98283 +I0408 19:28:13.493930 24089 solver.cpp:237] Train net output #0: loss = 3.98283 (* 1 = 3.98283 loss) +I0408 19:28:13.493939 24089 sgd_solver.cpp:105] Iteration 1428, lr = 0.00335737 +I0408 19:28:17.787312 24089 solver.cpp:218] Iteration 1440 (2.79512 iter/s, 4.29319s/12 iters), loss = 4.13513 +I0408 19:28:17.787452 24089 solver.cpp:237] Train net output #0: loss = 4.13513 (* 1 = 4.13513 loss) +I0408 19:28:17.787467 24089 sgd_solver.cpp:105] Iteration 1440, lr = 0.00332672 +I0408 19:28:22.808156 24089 solver.cpp:218] Iteration 1452 (2.3902 iter/s, 5.02049s/12 iters), loss = 4.10311 +I0408 19:28:22.808214 24089 solver.cpp:237] Train net output #0: loss = 4.10311 (* 1 = 4.10311 loss) +I0408 19:28:22.808226 24089 sgd_solver.cpp:105] Iteration 1452, lr = 0.00329635 +I0408 19:28:27.856626 24089 solver.cpp:218] Iteration 1464 (2.37708 iter/s, 5.04821s/12 iters), loss = 3.85101 +I0408 19:28:27.856669 24089 solver.cpp:237] Train net output #0: loss = 3.85101 (* 1 = 3.85101 loss) +I0408 19:28:27.856679 24089 sgd_solver.cpp:105] Iteration 1464, lr = 0.00326625 +I0408 19:28:33.177508 24089 solver.cpp:218] Iteration 1476 (2.25538 iter/s, 5.32062s/12 iters), loss = 4.07515 +I0408 19:28:33.177557 24089 solver.cpp:237] Train net output #0: loss = 4.07515 (* 1 = 4.07515 loss) +I0408 19:28:33.177567 24089 sgd_solver.cpp:105] Iteration 1476, lr = 0.00323643 +I0408 19:28:38.495095 24089 solver.cpp:218] Iteration 1488 (2.25678 iter/s, 5.31731s/12 iters), loss = 4.00241 +I0408 19:28:38.495144 24089 solver.cpp:237] Train net output #0: loss = 4.00241 (* 1 = 4.00241 loss) +I0408 19:28:38.495154 24089 sgd_solver.cpp:105] Iteration 1488, lr = 0.00320689 +I0408 19:28:43.501725 24089 solver.cpp:218] Iteration 1500 (2.39695 iter/s, 5.00637s/12 iters), loss = 3.70767 +I0408 19:28:43.501768 24089 solver.cpp:237] Train net output #0: loss = 3.70767 (* 1 = 3.70767 loss) +I0408 19:28:43.501776 24089 sgd_solver.cpp:105] Iteration 1500, lr = 0.00317761 +I0408 19:28:48.520893 24089 solver.cpp:218] Iteration 1512 (2.39095 iter/s, 5.01892s/12 iters), loss = 3.84629 +I0408 19:28:48.521103 24089 solver.cpp:237] Train net output #0: loss = 3.84629 (* 1 = 3.84629 loss) +I0408 19:28:48.521122 24089 sgd_solver.cpp:105] Iteration 1512, lr = 0.0031486 +I0408 19:28:50.278239 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:28:53.459111 24089 solver.cpp:218] Iteration 1524 (2.43022 iter/s, 4.93781s/12 iters), loss = 3.9745 +I0408 19:28:53.459161 24089 solver.cpp:237] Train net output #0: loss = 3.9745 (* 1 = 3.9745 loss) +I0408 19:28:53.459172 24089 sgd_solver.cpp:105] Iteration 1524, lr = 0.00311985 +I0408 19:28:55.503394 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 19:28:59.485546 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 19:29:04.299137 24089 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 19:29:04.299165 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:29:08.134639 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:29:08.781476 24089 solver.cpp:397] Test net output #0: accuracy = 0.119485 +I0408 19:29:08.781518 24089 solver.cpp:397] Test net output #1: loss = 4.07042 (* 1 = 4.07042 loss) +I0408 19:29:10.773254 24089 solver.cpp:218] Iteration 1536 (0.693104 iter/s, 17.3134s/12 iters), loss = 3.87379 +I0408 19:29:10.773305 24089 solver.cpp:237] Train net output #0: loss = 3.87379 (* 1 = 3.87379 loss) +I0408 19:29:10.773315 24089 sgd_solver.cpp:105] Iteration 1536, lr = 0.00309137 +I0408 19:29:15.828408 24089 solver.cpp:218] Iteration 1548 (2.37394 iter/s, 5.05489s/12 iters), loss = 3.60978 +I0408 19:29:15.828465 24089 solver.cpp:237] Train net output #0: loss = 3.60978 (* 1 = 3.60978 loss) +I0408 19:29:15.828480 24089 sgd_solver.cpp:105] Iteration 1548, lr = 0.00306314 +I0408 19:29:20.826721 24089 solver.cpp:218] Iteration 1560 (2.40094 iter/s, 4.99805s/12 iters), loss = 3.73384 +I0408 19:29:20.826860 24089 solver.cpp:237] Train net output #0: loss = 3.73384 (* 1 = 3.73384 loss) +I0408 19:29:20.826874 24089 sgd_solver.cpp:105] Iteration 1560, lr = 0.00303518 +I0408 19:29:25.870122 24089 solver.cpp:218] Iteration 1572 (2.37951 iter/s, 5.04306s/12 iters), loss = 3.78377 +I0408 19:29:25.870172 24089 solver.cpp:237] Train net output #0: loss = 3.78377 (* 1 = 3.78377 loss) +I0408 19:29:25.870184 24089 sgd_solver.cpp:105] Iteration 1572, lr = 0.00300747 +I0408 19:29:30.880743 24089 solver.cpp:218] Iteration 1584 (2.39504 iter/s, 5.01036s/12 iters), loss = 3.75512 +I0408 19:29:30.880798 24089 solver.cpp:237] Train net output #0: loss = 3.75512 (* 1 = 3.75512 loss) +I0408 19:29:30.880808 24089 sgd_solver.cpp:105] Iteration 1584, lr = 0.00298001 +I0408 19:29:35.932237 24089 solver.cpp:218] Iteration 1596 (2.37566 iter/s, 5.05123s/12 iters), loss = 3.7745 +I0408 19:29:35.932287 24089 solver.cpp:237] Train net output #0: loss = 3.7745 (* 1 = 3.7745 loss) +I0408 19:29:35.932298 24089 sgd_solver.cpp:105] Iteration 1596, lr = 0.0029528 +I0408 19:29:40.890053 24089 solver.cpp:218] Iteration 1608 (2.42055 iter/s, 4.95756s/12 iters), loss = 3.60839 +I0408 19:29:40.890101 24089 solver.cpp:237] Train net output #0: loss = 3.60839 (* 1 = 3.60839 loss) +I0408 19:29:40.890112 24089 sgd_solver.cpp:105] Iteration 1608, lr = 0.00292585 +I0408 19:29:44.888973 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:29:46.070161 24089 solver.cpp:218] Iteration 1620 (2.31667 iter/s, 5.17984s/12 iters), loss = 3.68995 +I0408 19:29:46.070209 24089 solver.cpp:237] Train net output #0: loss = 3.68995 (* 1 = 3.68995 loss) +I0408 19:29:46.070221 24089 sgd_solver.cpp:105] Iteration 1620, lr = 0.00289913 +I0408 19:29:51.185137 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 19:29:54.217519 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 19:29:56.547981 24089 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 19:29:56.548008 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:30:00.217686 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:30:00.890602 24089 solver.cpp:397] Test net output #0: accuracy = 0.139093 +I0408 19:30:00.890653 24089 solver.cpp:397] Test net output #1: loss = 3.92919 (* 1 = 3.92919 loss) +I0408 19:30:00.981276 24089 solver.cpp:218] Iteration 1632 (0.804803 iter/s, 14.9105s/12 iters), loss = 3.78324 +I0408 19:30:00.981326 24089 solver.cpp:237] Train net output #0: loss = 3.78324 (* 1 = 3.78324 loss) +I0408 19:30:00.981338 24089 sgd_solver.cpp:105] Iteration 1632, lr = 0.00287267 +I0408 19:30:05.410385 24089 solver.cpp:218] Iteration 1644 (2.7095 iter/s, 4.42887s/12 iters), loss = 3.71509 +I0408 19:30:05.410439 24089 solver.cpp:237] Train net output #0: loss = 3.71509 (* 1 = 3.71509 loss) +I0408 19:30:05.410451 24089 sgd_solver.cpp:105] Iteration 1644, lr = 0.00284644 +I0408 19:30:10.377435 24089 solver.cpp:218] Iteration 1656 (2.41604 iter/s, 4.96679s/12 iters), loss = 3.71454 +I0408 19:30:10.377475 24089 solver.cpp:237] Train net output #0: loss = 3.71454 (* 1 = 3.71454 loss) +I0408 19:30:10.377485 24089 sgd_solver.cpp:105] Iteration 1656, lr = 0.00282045 +I0408 19:30:15.428839 24089 solver.cpp:218] Iteration 1668 (2.37569 iter/s, 5.05116s/12 iters), loss = 3.33832 +I0408 19:30:15.428884 24089 solver.cpp:237] Train net output #0: loss = 3.33832 (* 1 = 3.33832 loss) +I0408 19:30:15.428892 24089 sgd_solver.cpp:105] Iteration 1668, lr = 0.0027947 +I0408 19:30:20.495229 24089 solver.cpp:218] Iteration 1680 (2.36867 iter/s, 5.06613s/12 iters), loss = 3.53534 +I0408 19:30:20.495281 24089 solver.cpp:237] Train net output #0: loss = 3.53534 (* 1 = 3.53534 loss) +I0408 19:30:20.495293 24089 sgd_solver.cpp:105] Iteration 1680, lr = 0.00276919 +I0408 19:30:25.497360 24089 solver.cpp:218] Iteration 1692 (2.3991 iter/s, 5.00187s/12 iters), loss = 3.78598 +I0408 19:30:25.497505 24089 solver.cpp:237] Train net output #0: loss = 3.78598 (* 1 = 3.78598 loss) +I0408 19:30:25.497519 24089 sgd_solver.cpp:105] Iteration 1692, lr = 0.00274391 +I0408 19:30:30.552228 24089 solver.cpp:218] Iteration 1704 (2.37411 iter/s, 5.05452s/12 iters), loss = 3.53889 +I0408 19:30:30.552279 24089 solver.cpp:237] Train net output #0: loss = 3.53889 (* 1 = 3.53889 loss) +I0408 19:30:30.552290 24089 sgd_solver.cpp:105] Iteration 1704, lr = 0.00271885 +I0408 19:30:35.741542 24089 solver.cpp:218] Iteration 1716 (2.31256 iter/s, 5.18905s/12 iters), loss = 3.59894 +I0408 19:30:35.741590 24089 solver.cpp:237] Train net output #0: loss = 3.59894 (* 1 = 3.59894 loss) +I0408 19:30:35.741601 24089 sgd_solver.cpp:105] Iteration 1716, lr = 0.00269403 +I0408 19:30:36.783825 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:30:40.824985 24089 solver.cpp:218] Iteration 1728 (2.36073 iter/s, 5.08318s/12 iters), loss = 3.44404 +I0408 19:30:40.825040 24089 solver.cpp:237] Train net output #0: loss = 3.44404 (* 1 = 3.44404 loss) +I0408 19:30:40.825053 24089 sgd_solver.cpp:105] Iteration 1728, lr = 0.00266944 +I0408 19:30:42.905468 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 19:30:45.882377 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 19:30:48.201429 24089 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 19:30:48.201457 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:30:51.908828 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:30:52.615005 24089 solver.cpp:397] Test net output #0: accuracy = 0.15625 +I0408 19:30:52.615052 24089 solver.cpp:397] Test net output #1: loss = 3.79385 (* 1 = 3.79385 loss) +I0408 19:30:54.506533 24089 solver.cpp:218] Iteration 1740 (0.877132 iter/s, 13.681s/12 iters), loss = 3.72068 +I0408 19:30:54.506580 24089 solver.cpp:237] Train net output #0: loss = 3.72068 (* 1 = 3.72068 loss) +I0408 19:30:54.506590 24089 sgd_solver.cpp:105] Iteration 1740, lr = 0.00264506 +I0408 19:30:59.883070 24089 solver.cpp:218] Iteration 1752 (2.23203 iter/s, 5.37627s/12 iters), loss = 3.52715 +I0408 19:30:59.883167 24089 solver.cpp:237] Train net output #0: loss = 3.52715 (* 1 = 3.52715 loss) +I0408 19:30:59.883177 24089 sgd_solver.cpp:105] Iteration 1752, lr = 0.00262092 +I0408 19:31:05.000717 24089 solver.cpp:218] Iteration 1764 (2.34497 iter/s, 5.11734s/12 iters), loss = 3.64149 +I0408 19:31:05.000774 24089 solver.cpp:237] Train net output #0: loss = 3.64149 (* 1 = 3.64149 loss) +I0408 19:31:05.000787 24089 sgd_solver.cpp:105] Iteration 1764, lr = 0.00259699 +I0408 19:31:10.052564 24089 solver.cpp:218] Iteration 1776 (2.37549 iter/s, 5.05158s/12 iters), loss = 3.60433 +I0408 19:31:10.052614 24089 solver.cpp:237] Train net output #0: loss = 3.60433 (* 1 = 3.60433 loss) +I0408 19:31:10.052625 24089 sgd_solver.cpp:105] Iteration 1776, lr = 0.00257328 +I0408 19:31:15.124085 24089 solver.cpp:218] Iteration 1788 (2.36627 iter/s, 5.07127s/12 iters), loss = 3.48771 +I0408 19:31:15.124126 24089 solver.cpp:237] Train net output #0: loss = 3.48771 (* 1 = 3.48771 loss) +I0408 19:31:15.124135 24089 sgd_solver.cpp:105] Iteration 1788, lr = 0.00254978 +I0408 19:31:20.114773 24089 solver.cpp:218] Iteration 1800 (2.4046 iter/s, 4.99044s/12 iters), loss = 3.42105 +I0408 19:31:20.114825 24089 solver.cpp:237] Train net output #0: loss = 3.42105 (* 1 = 3.42105 loss) +I0408 19:31:20.114837 24089 sgd_solver.cpp:105] Iteration 1800, lr = 0.00252651 +I0408 19:31:25.227375 24089 solver.cpp:218] Iteration 1812 (2.34727 iter/s, 5.11233s/12 iters), loss = 3.40818 +I0408 19:31:25.227433 24089 solver.cpp:237] Train net output #0: loss = 3.40818 (* 1 = 3.40818 loss) +I0408 19:31:25.227447 24089 sgd_solver.cpp:105] Iteration 1812, lr = 0.00250344 +I0408 19:31:28.341308 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:31:30.144134 24089 solver.cpp:218] Iteration 1824 (2.44076 iter/s, 4.9165s/12 iters), loss = 3.5842 +I0408 19:31:30.144261 24089 solver.cpp:237] Train net output #0: loss = 3.5842 (* 1 = 3.5842 loss) +I0408 19:31:30.144271 24089 sgd_solver.cpp:105] Iteration 1824, lr = 0.00248058 +I0408 19:31:34.758031 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 19:31:37.750628 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 19:31:40.077903 24089 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 19:31:40.077931 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:31:43.718295 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:31:44.472996 24089 solver.cpp:397] Test net output #0: accuracy = 0.175245 +I0408 19:31:44.473040 24089 solver.cpp:397] Test net output #1: loss = 3.70612 (* 1 = 3.70612 loss) +I0408 19:31:44.562377 24089 solver.cpp:218] Iteration 1836 (0.832319 iter/s, 14.4175s/12 iters), loss = 3.39251 +I0408 19:31:44.562417 24089 solver.cpp:237] Train net output #0: loss = 3.39251 (* 1 = 3.39251 loss) +I0408 19:31:44.562427 24089 sgd_solver.cpp:105] Iteration 1836, lr = 0.00245794 +I0408 19:31:48.657083 24089 solver.cpp:218] Iteration 1848 (2.93077 iter/s, 4.09449s/12 iters), loss = 3.50762 +I0408 19:31:48.657124 24089 solver.cpp:237] Train net output #0: loss = 3.50762 (* 1 = 3.50762 loss) +I0408 19:31:48.657135 24089 sgd_solver.cpp:105] Iteration 1848, lr = 0.0024355 +I0408 19:31:53.707346 24089 solver.cpp:218] Iteration 1860 (2.37623 iter/s, 5.05001s/12 iters), loss = 3.25525 +I0408 19:31:53.707386 24089 solver.cpp:237] Train net output #0: loss = 3.25525 (* 1 = 3.25525 loss) +I0408 19:31:53.707396 24089 sgd_solver.cpp:105] Iteration 1860, lr = 0.00241326 +I0408 19:31:58.704435 24089 solver.cpp:218] Iteration 1872 (2.40152 iter/s, 4.99684s/12 iters), loss = 3.53458 +I0408 19:31:58.704489 24089 solver.cpp:237] Train net output #0: loss = 3.53458 (* 1 = 3.53458 loss) +I0408 19:31:58.704502 24089 sgd_solver.cpp:105] Iteration 1872, lr = 0.00239123 +I0408 19:32:03.791783 24089 solver.cpp:218] Iteration 1884 (2.35892 iter/s, 5.08708s/12 iters), loss = 3.3548 +I0408 19:32:03.791877 24089 solver.cpp:237] Train net output #0: loss = 3.3548 (* 1 = 3.3548 loss) +I0408 19:32:03.791885 24089 sgd_solver.cpp:105] Iteration 1884, lr = 0.0023694 +I0408 19:32:08.847466 24089 solver.cpp:218] Iteration 1896 (2.37371 iter/s, 5.05538s/12 iters), loss = 3.37964 +I0408 19:32:08.847510 24089 solver.cpp:237] Train net output #0: loss = 3.37964 (* 1 = 3.37964 loss) +I0408 19:32:08.847519 24089 sgd_solver.cpp:105] Iteration 1896, lr = 0.00234777 +I0408 19:32:14.001121 24089 solver.cpp:218] Iteration 1908 (2.32856 iter/s, 5.15339s/12 iters), loss = 3.34802 +I0408 19:32:14.001174 24089 solver.cpp:237] Train net output #0: loss = 3.34802 (* 1 = 3.34802 loss) +I0408 19:32:14.001185 24089 sgd_solver.cpp:105] Iteration 1908, lr = 0.00232633 +I0408 19:32:19.477938 24089 solver.cpp:218] Iteration 1920 (2.19117 iter/s, 5.47653s/12 iters), loss = 3.09463 +I0408 19:32:19.478004 24089 solver.cpp:237] Train net output #0: loss = 3.09463 (* 1 = 3.09463 loss) +I0408 19:32:19.478016 24089 sgd_solver.cpp:105] Iteration 1920, lr = 0.00230509 +I0408 19:32:19.793190 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:32:24.671759 24089 solver.cpp:218] Iteration 1932 (2.31056 iter/s, 5.19354s/12 iters), loss = 3.16354 +I0408 19:32:24.671808 24089 solver.cpp:237] Train net output #0: loss = 3.16354 (* 1 = 3.16354 loss) +I0408 19:32:24.671819 24089 sgd_solver.cpp:105] Iteration 1932, lr = 0.00228405 +I0408 19:32:26.780346 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 19:32:29.871070 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 19:32:32.188815 24089 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 19:32:32.188840 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:32:35.841177 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:32:36.628324 24089 solver.cpp:397] Test net output #0: accuracy = 0.182598 +I0408 19:32:36.628366 24089 solver.cpp:397] Test net output #1: loss = 3.70224 (* 1 = 3.70224 loss) +I0408 19:32:38.434690 24089 solver.cpp:218] Iteration 1944 (0.871945 iter/s, 13.7623s/12 iters), loss = 3.18403 +I0408 19:32:38.434749 24089 solver.cpp:237] Train net output #0: loss = 3.18403 (* 1 = 3.18403 loss) +I0408 19:32:38.434760 24089 sgd_solver.cpp:105] Iteration 1944, lr = 0.00226319 +I0408 19:32:43.524328 24089 solver.cpp:218] Iteration 1956 (2.35786 iter/s, 5.08937s/12 iters), loss = 3.05817 +I0408 19:32:43.524377 24089 solver.cpp:237] Train net output #0: loss = 3.05817 (* 1 = 3.05817 loss) +I0408 19:32:43.524387 24089 sgd_solver.cpp:105] Iteration 1956, lr = 0.00224253 +I0408 19:32:48.596088 24089 solver.cpp:218] Iteration 1968 (2.36616 iter/s, 5.07151s/12 iters), loss = 3.23642 +I0408 19:32:48.596124 24089 solver.cpp:237] Train net output #0: loss = 3.23642 (* 1 = 3.23642 loss) +I0408 19:32:48.596133 24089 sgd_solver.cpp:105] Iteration 1968, lr = 0.00222206 +I0408 19:32:53.668648 24089 solver.cpp:218] Iteration 1980 (2.36578 iter/s, 5.07231s/12 iters), loss = 3.12755 +I0408 19:32:53.668694 24089 solver.cpp:237] Train net output #0: loss = 3.12755 (* 1 = 3.12755 loss) +I0408 19:32:53.668705 24089 sgd_solver.cpp:105] Iteration 1980, lr = 0.00220177 +I0408 19:32:58.838150 24089 solver.cpp:218] Iteration 1992 (2.32142 iter/s, 5.16924s/12 iters), loss = 3.23232 +I0408 19:32:58.838193 24089 solver.cpp:237] Train net output #0: loss = 3.23232 (* 1 = 3.23232 loss) +I0408 19:32:58.838204 24089 sgd_solver.cpp:105] Iteration 1992, lr = 0.00218167 +I0408 19:33:04.017292 24089 solver.cpp:218] Iteration 2004 (2.3171 iter/s, 5.17888s/12 iters), loss = 3.01446 +I0408 19:33:04.017343 24089 solver.cpp:237] Train net output #0: loss = 3.01446 (* 1 = 3.01446 loss) +I0408 19:33:04.017355 24089 sgd_solver.cpp:105] Iteration 2004, lr = 0.00216175 +I0408 19:33:09.203536 24089 solver.cpp:218] Iteration 2016 (2.31393 iter/s, 5.18598s/12 iters), loss = 3.17079 +I0408 19:33:09.203644 24089 solver.cpp:237] Train net output #0: loss = 3.17079 (* 1 = 3.17079 loss) +I0408 19:33:09.203656 24089 sgd_solver.cpp:105] Iteration 2016, lr = 0.00214202 +I0408 19:33:11.759953 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:33:14.230264 24089 solver.cpp:218] Iteration 2028 (2.38739 iter/s, 5.02641s/12 iters), loss = 2.87571 +I0408 19:33:14.230317 24089 solver.cpp:237] Train net output #0: loss = 2.87571 (* 1 = 2.87571 loss) +I0408 19:33:14.230329 24089 sgd_solver.cpp:105] Iteration 2028, lr = 0.00212246 +I0408 19:33:18.745189 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 19:33:21.961796 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 19:33:24.383798 24089 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 19:33:24.383826 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:33:28.030642 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:33:28.861929 24089 solver.cpp:397] Test net output #0: accuracy = 0.199142 +I0408 19:33:28.861989 24089 solver.cpp:397] Test net output #1: loss = 3.51351 (* 1 = 3.51351 loss) +I0408 19:33:28.952550 24089 solver.cpp:218] Iteration 2040 (0.815126 iter/s, 14.7216s/12 iters), loss = 3.05998 +I0408 19:33:28.952600 24089 solver.cpp:237] Train net output #0: loss = 3.05998 (* 1 = 3.05998 loss) +I0408 19:33:28.952610 24089 sgd_solver.cpp:105] Iteration 2040, lr = 0.00210308 +I0408 19:33:33.577210 24089 solver.cpp:218] Iteration 2052 (2.59492 iter/s, 4.62442s/12 iters), loss = 3.21749 +I0408 19:33:33.577250 24089 solver.cpp:237] Train net output #0: loss = 3.21749 (* 1 = 3.21749 loss) +I0408 19:33:33.577260 24089 sgd_solver.cpp:105] Iteration 2052, lr = 0.00208388 +I0408 19:33:35.384871 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:33:38.940394 24089 solver.cpp:218] Iteration 2064 (2.23759 iter/s, 5.36292s/12 iters), loss = 3.13494 +I0408 19:33:38.940452 24089 solver.cpp:237] Train net output #0: loss = 3.13494 (* 1 = 3.13494 loss) +I0408 19:33:38.940467 24089 sgd_solver.cpp:105] Iteration 2064, lr = 0.00206486 +I0408 19:33:44.100731 24089 solver.cpp:218] Iteration 2076 (2.32555 iter/s, 5.16007s/12 iters), loss = 3.17525 +I0408 19:33:44.100847 24089 solver.cpp:237] Train net output #0: loss = 3.17525 (* 1 = 3.17525 loss) +I0408 19:33:44.100857 24089 sgd_solver.cpp:105] Iteration 2076, lr = 0.00204601 +I0408 19:33:49.245246 24089 solver.cpp:218] Iteration 2088 (2.33273 iter/s, 5.14418s/12 iters), loss = 3.11623 +I0408 19:33:49.245304 24089 solver.cpp:237] Train net output #0: loss = 3.11623 (* 1 = 3.11623 loss) +I0408 19:33:49.245317 24089 sgd_solver.cpp:105] Iteration 2088, lr = 0.00202733 +I0408 19:33:54.302206 24089 solver.cpp:218] Iteration 2100 (2.37309 iter/s, 5.05669s/12 iters), loss = 2.78592 +I0408 19:33:54.302259 24089 solver.cpp:237] Train net output #0: loss = 2.78592 (* 1 = 2.78592 loss) +I0408 19:33:54.302270 24089 sgd_solver.cpp:105] Iteration 2100, lr = 0.00200882 +I0408 19:33:59.500845 24089 solver.cpp:218] Iteration 2112 (2.30841 iter/s, 5.19837s/12 iters), loss = 3.09561 +I0408 19:33:59.500888 24089 solver.cpp:237] Train net output #0: loss = 3.09561 (* 1 = 3.09561 loss) +I0408 19:33:59.500897 24089 sgd_solver.cpp:105] Iteration 2112, lr = 0.00199048 +I0408 19:34:05.110195 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:34:05.458765 24089 solver.cpp:218] Iteration 2124 (2.01423 iter/s, 5.95763s/12 iters), loss = 2.74712 +I0408 19:34:05.458814 24089 solver.cpp:237] Train net output #0: loss = 2.74712 (* 1 = 2.74712 loss) +I0408 19:34:05.458825 24089 sgd_solver.cpp:105] Iteration 2124, lr = 0.0019723 +I0408 19:34:10.634310 24089 solver.cpp:218] Iteration 2136 (2.31871 iter/s, 5.17528s/12 iters), loss = 2.6773 +I0408 19:34:10.634356 24089 solver.cpp:237] Train net output #0: loss = 2.6773 (* 1 = 2.6773 loss) +I0408 19:34:10.634366 24089 sgd_solver.cpp:105] Iteration 2136, lr = 0.0019543 +I0408 19:34:12.740267 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 19:34:15.755451 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 19:34:18.069737 24089 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 19:34:18.069766 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:34:21.694785 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:34:22.561172 24089 solver.cpp:397] Test net output #0: accuracy = 0.21875 +I0408 19:34:22.561223 24089 solver.cpp:397] Test net output #1: loss = 3.4064 (* 1 = 3.4064 loss) +I0408 19:34:24.436679 24089 solver.cpp:218] Iteration 2148 (0.869453 iter/s, 13.8018s/12 iters), loss = 2.94796 +I0408 19:34:24.436738 24089 solver.cpp:237] Train net output #0: loss = 2.94796 (* 1 = 2.94796 loss) +I0408 19:34:24.436748 24089 sgd_solver.cpp:105] Iteration 2148, lr = 0.00193646 +I0408 19:34:29.569011 24089 solver.cpp:218] Iteration 2160 (2.33824 iter/s, 5.13206s/12 iters), loss = 2.96478 +I0408 19:34:29.569068 24089 solver.cpp:237] Train net output #0: loss = 2.96478 (* 1 = 2.96478 loss) +I0408 19:34:29.569082 24089 sgd_solver.cpp:105] Iteration 2160, lr = 0.00191878 +I0408 19:34:34.500104 24089 solver.cpp:218] Iteration 2172 (2.43367 iter/s, 4.93083s/12 iters), loss = 2.82169 +I0408 19:34:34.500162 24089 solver.cpp:237] Train net output #0: loss = 2.82169 (* 1 = 2.82169 loss) +I0408 19:34:34.500175 24089 sgd_solver.cpp:105] Iteration 2172, lr = 0.00190126 +I0408 19:34:39.447224 24089 solver.cpp:218] Iteration 2184 (2.42578 iter/s, 4.94686s/12 iters), loss = 2.79969 +I0408 19:34:39.447280 24089 solver.cpp:237] Train net output #0: loss = 2.79969 (* 1 = 2.79969 loss) +I0408 19:34:39.447293 24089 sgd_solver.cpp:105] Iteration 2184, lr = 0.0018839 +I0408 19:34:44.385835 24089 solver.cpp:218] Iteration 2196 (2.42996 iter/s, 4.93835s/12 iters), loss = 2.94983 +I0408 19:34:44.385890 24089 solver.cpp:237] Train net output #0: loss = 2.94983 (* 1 = 2.94983 loss) +I0408 19:34:44.385903 24089 sgd_solver.cpp:105] Iteration 2196, lr = 0.0018667 +I0408 19:34:49.951651 24089 solver.cpp:218] Iteration 2208 (2.15613 iter/s, 5.56553s/12 iters), loss = 2.82566 +I0408 19:34:49.951790 24089 solver.cpp:237] Train net output #0: loss = 2.82566 (* 1 = 2.82566 loss) +I0408 19:34:49.951803 24089 sgd_solver.cpp:105] Iteration 2208, lr = 0.00184966 +I0408 19:34:55.343107 24089 solver.cpp:218] Iteration 2220 (2.22589 iter/s, 5.39109s/12 iters), loss = 2.68311 +I0408 19:34:55.343161 24089 solver.cpp:237] Train net output #0: loss = 2.68311 (* 1 = 2.68311 loss) +I0408 19:34:55.343173 24089 sgd_solver.cpp:105] Iteration 2220, lr = 0.00183277 +I0408 19:34:57.210664 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:35:00.466861 24089 solver.cpp:218] Iteration 2232 (2.34215 iter/s, 5.12349s/12 iters), loss = 2.90929 +I0408 19:35:00.466904 24089 solver.cpp:237] Train net output #0: loss = 2.90929 (* 1 = 2.90929 loss) +I0408 19:35:00.466914 24089 sgd_solver.cpp:105] Iteration 2232, lr = 0.00181604 +I0408 19:35:04.984097 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 19:35:08.041165 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 19:35:10.380364 24089 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 19:35:10.380391 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:35:13.953222 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:35:14.864256 24089 solver.cpp:397] Test net output #0: accuracy = 0.216299 +I0408 19:35:14.864302 24089 solver.cpp:397] Test net output #1: loss = 3.44187 (* 1 = 3.44187 loss) +I0408 19:35:14.956521 24089 solver.cpp:218] Iteration 2244 (0.828212 iter/s, 14.489s/12 iters), loss = 2.8449 +I0408 19:35:14.956569 24089 solver.cpp:237] Train net output #0: loss = 2.8449 (* 1 = 2.8449 loss) +I0408 19:35:14.956579 24089 sgd_solver.cpp:105] Iteration 2244, lr = 0.00179946 +I0408 19:35:19.424324 24089 solver.cpp:218] Iteration 2256 (2.68603 iter/s, 4.46757s/12 iters), loss = 2.6321 +I0408 19:35:19.424377 24089 solver.cpp:237] Train net output #0: loss = 2.6321 (* 1 = 2.6321 loss) +I0408 19:35:19.424389 24089 sgd_solver.cpp:105] Iteration 2256, lr = 0.00178303 +I0408 19:35:24.521554 24089 solver.cpp:218] Iteration 2268 (2.35434 iter/s, 5.09696s/12 iters), loss = 2.76162 +I0408 19:35:24.521636 24089 solver.cpp:237] Train net output #0: loss = 2.76162 (* 1 = 2.76162 loss) +I0408 19:35:24.521648 24089 sgd_solver.cpp:105] Iteration 2268, lr = 0.00176675 +I0408 19:35:29.682147 24089 solver.cpp:218] Iteration 2280 (2.32545 iter/s, 5.1603s/12 iters), loss = 2.62134 +I0408 19:35:29.682202 24089 solver.cpp:237] Train net output #0: loss = 2.62134 (* 1 = 2.62134 loss) +I0408 19:35:29.682215 24089 sgd_solver.cpp:105] Iteration 2280, lr = 0.00175062 +I0408 19:35:34.774904 24089 solver.cpp:218] Iteration 2292 (2.35641 iter/s, 5.09249s/12 iters), loss = 2.61866 +I0408 19:35:34.774960 24089 solver.cpp:237] Train net output #0: loss = 2.61866 (* 1 = 2.61866 loss) +I0408 19:35:34.774971 24089 sgd_solver.cpp:105] Iteration 2292, lr = 0.00173464 +I0408 19:35:40.038662 24089 solver.cpp:218] Iteration 2304 (2.27986 iter/s, 5.26348s/12 iters), loss = 2.63336 +I0408 19:35:40.038719 24089 solver.cpp:237] Train net output #0: loss = 2.63336 (* 1 = 2.63336 loss) +I0408 19:35:40.038733 24089 sgd_solver.cpp:105] Iteration 2304, lr = 0.0017188 +I0408 19:35:45.231511 24089 solver.cpp:218] Iteration 2316 (2.31099 iter/s, 5.19257s/12 iters), loss = 2.83091 +I0408 19:35:45.231564 24089 solver.cpp:237] Train net output #0: loss = 2.83091 (* 1 = 2.83091 loss) +I0408 19:35:45.231575 24089 sgd_solver.cpp:105] Iteration 2316, lr = 0.00170311 +I0408 19:35:49.441378 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:35:50.482309 24089 solver.cpp:218] Iteration 2328 (2.28549 iter/s, 5.25053s/12 iters), loss = 2.47673 +I0408 19:35:50.482362 24089 solver.cpp:237] Train net output #0: loss = 2.47673 (* 1 = 2.47673 loss) +I0408 19:35:50.482375 24089 sgd_solver.cpp:105] Iteration 2328, lr = 0.00168756 +I0408 19:35:55.518180 24089 solver.cpp:218] Iteration 2340 (2.38303 iter/s, 5.03561s/12 iters), loss = 2.54304 +I0408 19:35:55.518326 24089 solver.cpp:237] Train net output #0: loss = 2.54304 (* 1 = 2.54304 loss) +I0408 19:35:55.518338 24089 sgd_solver.cpp:105] Iteration 2340, lr = 0.00167215 +I0408 19:35:57.592650 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 19:36:02.616317 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 19:36:08.327879 24089 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 19:36:08.327903 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:36:11.945250 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:36:13.017241 24089 solver.cpp:397] Test net output #0: accuracy = 0.229167 +I0408 19:36:13.017293 24089 solver.cpp:397] Test net output #1: loss = 3.35271 (* 1 = 3.35271 loss) +I0408 19:36:15.033396 24089 solver.cpp:218] Iteration 2352 (0.614933 iter/s, 19.5143s/12 iters), loss = 2.74609 +I0408 19:36:15.033440 24089 solver.cpp:237] Train net output #0: loss = 2.74609 (* 1 = 2.74609 loss) +I0408 19:36:15.033449 24089 sgd_solver.cpp:105] Iteration 2352, lr = 0.00165689 +I0408 19:36:20.110697 24089 solver.cpp:218] Iteration 2364 (2.36358 iter/s, 5.07704s/12 iters), loss = 2.62052 +I0408 19:36:20.110757 24089 solver.cpp:237] Train net output #0: loss = 2.62052 (* 1 = 2.62052 loss) +I0408 19:36:20.110769 24089 sgd_solver.cpp:105] Iteration 2364, lr = 0.00164176 +I0408 19:36:25.384162 24089 solver.cpp:218] Iteration 2376 (2.27566 iter/s, 5.27318s/12 iters), loss = 2.45496 +I0408 19:36:25.384222 24089 solver.cpp:237] Train net output #0: loss = 2.45496 (* 1 = 2.45496 loss) +I0408 19:36:25.384233 24089 sgd_solver.cpp:105] Iteration 2376, lr = 0.00162677 +I0408 19:36:30.862879 24089 solver.cpp:218] Iteration 2388 (2.19041 iter/s, 5.47843s/12 iters), loss = 2.72483 +I0408 19:36:30.862987 24089 solver.cpp:237] Train net output #0: loss = 2.72483 (* 1 = 2.72483 loss) +I0408 19:36:30.862998 24089 sgd_solver.cpp:105] Iteration 2388, lr = 0.00161192 +I0408 19:36:36.196130 24089 solver.cpp:218] Iteration 2400 (2.25018 iter/s, 5.33292s/12 iters), loss = 2.56559 +I0408 19:36:36.196190 24089 solver.cpp:237] Train net output #0: loss = 2.56559 (* 1 = 2.56559 loss) +I0408 19:36:36.196204 24089 sgd_solver.cpp:105] Iteration 2400, lr = 0.0015972 +I0408 19:36:41.489760 24089 solver.cpp:218] Iteration 2412 (2.26699 iter/s, 5.29335s/12 iters), loss = 2.5823 +I0408 19:36:41.489811 24089 solver.cpp:237] Train net output #0: loss = 2.5823 (* 1 = 2.5823 loss) +I0408 19:36:41.489822 24089 sgd_solver.cpp:105] Iteration 2412, lr = 0.00158262 +I0408 19:36:46.606876 24089 solver.cpp:218] Iteration 2424 (2.34519 iter/s, 5.11686s/12 iters), loss = 2.68139 +I0408 19:36:46.606915 24089 solver.cpp:237] Train net output #0: loss = 2.68139 (* 1 = 2.68139 loss) +I0408 19:36:46.606925 24089 sgd_solver.cpp:105] Iteration 2424, lr = 0.00156817 +I0408 19:36:47.695052 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:36:51.802081 24089 solver.cpp:218] Iteration 2436 (2.30994 iter/s, 5.19495s/12 iters), loss = 2.34789 +I0408 19:36:51.802124 24089 solver.cpp:237] Train net output #0: loss = 2.34789 (* 1 = 2.34789 loss) +I0408 19:36:51.802134 24089 sgd_solver.cpp:105] Iteration 2436, lr = 0.00155386 +I0408 19:36:56.435851 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 19:37:00.201783 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 19:37:05.977731 24089 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 19:37:05.977821 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:37:09.470638 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:37:10.449647 24089 solver.cpp:397] Test net output #0: accuracy = 0.228554 +I0408 19:37:10.449687 24089 solver.cpp:397] Test net output #1: loss = 3.2978 (* 1 = 3.2978 loss) +I0408 19:37:10.540375 24089 solver.cpp:218] Iteration 2448 (0.640427 iter/s, 18.7375s/12 iters), loss = 2.50501 +I0408 19:37:10.540434 24089 solver.cpp:237] Train net output #0: loss = 2.50501 (* 1 = 2.50501 loss) +I0408 19:37:10.540446 24089 sgd_solver.cpp:105] Iteration 2448, lr = 0.00153967 +I0408 19:37:14.881989 24089 solver.cpp:218] Iteration 2460 (2.76412 iter/s, 4.34135s/12 iters), loss = 2.44545 +I0408 19:37:14.882041 24089 solver.cpp:237] Train net output #0: loss = 2.44545 (* 1 = 2.44545 loss) +I0408 19:37:14.882055 24089 sgd_solver.cpp:105] Iteration 2460, lr = 0.00152561 +I0408 19:37:19.786547 24089 solver.cpp:218] Iteration 2472 (2.44683 iter/s, 4.9043s/12 iters), loss = 2.5278 +I0408 19:37:19.786597 24089 solver.cpp:237] Train net output #0: loss = 2.5278 (* 1 = 2.5278 loss) +I0408 19:37:19.786609 24089 sgd_solver.cpp:105] Iteration 2472, lr = 0.00151168 +I0408 19:37:24.787505 24089 solver.cpp:218] Iteration 2484 (2.39966 iter/s, 5.0007s/12 iters), loss = 2.39701 +I0408 19:37:24.787555 24089 solver.cpp:237] Train net output #0: loss = 2.39701 (* 1 = 2.39701 loss) +I0408 19:37:24.787567 24089 sgd_solver.cpp:105] Iteration 2484, lr = 0.00149788 +I0408 19:37:29.765106 24089 solver.cpp:218] Iteration 2496 (2.41092 iter/s, 4.97734s/12 iters), loss = 2.4217 +I0408 19:37:29.765156 24089 solver.cpp:237] Train net output #0: loss = 2.4217 (* 1 = 2.4217 loss) +I0408 19:37:29.765168 24089 sgd_solver.cpp:105] Iteration 2496, lr = 0.00148421 +I0408 19:37:34.799120 24089 solver.cpp:218] Iteration 2508 (2.38391 iter/s, 5.03376s/12 iters), loss = 2.41125 +I0408 19:37:34.799176 24089 solver.cpp:237] Train net output #0: loss = 2.41125 (* 1 = 2.41125 loss) +I0408 19:37:34.799190 24089 sgd_solver.cpp:105] Iteration 2508, lr = 0.00147066 +I0408 19:37:39.948799 24089 solver.cpp:218] Iteration 2520 (2.33036 iter/s, 5.14941s/12 iters), loss = 2.43839 +I0408 19:37:39.948875 24089 solver.cpp:237] Train net output #0: loss = 2.43839 (* 1 = 2.43839 loss) +I0408 19:37:39.948887 24089 sgd_solver.cpp:105] Iteration 2520, lr = 0.00145723 +I0408 19:37:43.217691 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:37:45.022186 24089 solver.cpp:218] Iteration 2532 (2.36542 iter/s, 5.0731s/12 iters), loss = 2.5497 +I0408 19:37:45.022233 24089 solver.cpp:237] Train net output #0: loss = 2.5497 (* 1 = 2.5497 loss) +I0408 19:37:45.022249 24089 sgd_solver.cpp:105] Iteration 2532, lr = 0.00144393 +I0408 19:37:50.029991 24089 solver.cpp:218] Iteration 2544 (2.39638 iter/s, 5.00755s/12 iters), loss = 2.45954 +I0408 19:37:50.030037 24089 solver.cpp:237] Train net output #0: loss = 2.45954 (* 1 = 2.45954 loss) +I0408 19:37:50.030050 24089 sgd_solver.cpp:105] Iteration 2544, lr = 0.00143074 +I0408 19:37:52.126121 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 19:38:00.281797 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 19:38:02.586665 24089 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 19:38:02.586686 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:38:06.077737 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:38:07.121333 24089 solver.cpp:397] Test net output #0: accuracy = 0.260417 +I0408 19:38:07.121381 24089 solver.cpp:397] Test net output #1: loss = 3.27419 (* 1 = 3.27419 loss) +I0408 19:38:09.113493 24089 solver.cpp:218] Iteration 2556 (0.628842 iter/s, 19.0827s/12 iters), loss = 2.67602 +I0408 19:38:09.113550 24089 solver.cpp:237] Train net output #0: loss = 2.67602 (* 1 = 2.67602 loss) +I0408 19:38:09.113562 24089 sgd_solver.cpp:105] Iteration 2556, lr = 0.00141768 +I0408 19:38:14.579604 24089 solver.cpp:218] Iteration 2568 (2.19546 iter/s, 5.46583s/12 iters), loss = 2.34638 +I0408 19:38:14.579728 24089 solver.cpp:237] Train net output #0: loss = 2.34638 (* 1 = 2.34638 loss) +I0408 19:38:14.579739 24089 sgd_solver.cpp:105] Iteration 2568, lr = 0.00140474 +I0408 19:38:19.647068 24089 solver.cpp:218] Iteration 2580 (2.3682 iter/s, 5.06713s/12 iters), loss = 2.33799 +I0408 19:38:19.647114 24089 solver.cpp:237] Train net output #0: loss = 2.33799 (* 1 = 2.33799 loss) +I0408 19:38:19.647125 24089 sgd_solver.cpp:105] Iteration 2580, lr = 0.00139191 +I0408 19:38:24.710750 24089 solver.cpp:218] Iteration 2592 (2.36993 iter/s, 5.06343s/12 iters), loss = 2.45616 +I0408 19:38:24.710793 24089 solver.cpp:237] Train net output #0: loss = 2.45616 (* 1 = 2.45616 loss) +I0408 19:38:24.710803 24089 sgd_solver.cpp:105] Iteration 2592, lr = 0.00137921 +I0408 19:38:29.824019 24089 solver.cpp:218] Iteration 2604 (2.34695 iter/s, 5.11301s/12 iters), loss = 2.37526 +I0408 19:38:29.824064 24089 solver.cpp:237] Train net output #0: loss = 2.37526 (* 1 = 2.37526 loss) +I0408 19:38:29.824074 24089 sgd_solver.cpp:105] Iteration 2604, lr = 0.00136661 +I0408 19:38:34.900342 24089 solver.cpp:218] Iteration 2616 (2.36404 iter/s, 5.07606s/12 iters), loss = 2.27003 +I0408 19:38:34.900394 24089 solver.cpp:237] Train net output #0: loss = 2.27003 (* 1 = 2.27003 loss) +I0408 19:38:34.900408 24089 sgd_solver.cpp:105] Iteration 2616, lr = 0.00135414 +I0408 19:38:40.386482 24089 solver.cpp:218] Iteration 2628 (2.18744 iter/s, 5.48586s/12 iters), loss = 2.34325 +I0408 19:38:40.386534 24089 solver.cpp:237] Train net output #0: loss = 2.34325 (* 1 = 2.34325 loss) +I0408 19:38:40.386546 24089 sgd_solver.cpp:105] Iteration 2628, lr = 0.00134177 +I0408 19:38:40.824184 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:38:45.431221 24089 solver.cpp:218] Iteration 2640 (2.37884 iter/s, 5.04448s/12 iters), loss = 2.32897 +I0408 19:38:45.431331 24089 solver.cpp:237] Train net output #0: loss = 2.32897 (* 1 = 2.32897 loss) +I0408 19:38:45.431344 24089 sgd_solver.cpp:105] Iteration 2640, lr = 0.00132952 +I0408 19:38:49.977783 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 19:38:55.144100 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 19:38:58.703408 24089 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 19:38:58.703433 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:39:02.155573 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:39:03.234091 24089 solver.cpp:397] Test net output #0: accuracy = 0.28125 +I0408 19:39:03.234140 24089 solver.cpp:397] Test net output #1: loss = 3.11263 (* 1 = 3.11263 loss) +I0408 19:39:03.324770 24089 solver.cpp:218] Iteration 2652 (0.670663 iter/s, 17.8927s/12 iters), loss = 2.19484 +I0408 19:39:03.324842 24089 solver.cpp:237] Train net output #0: loss = 2.19484 (* 1 = 2.19484 loss) +I0408 19:39:03.324858 24089 sgd_solver.cpp:105] Iteration 2652, lr = 0.00131739 +I0408 19:39:07.669281 24089 solver.cpp:218] Iteration 2664 (2.76227 iter/s, 4.34426s/12 iters), loss = 1.98072 +I0408 19:39:07.669340 24089 solver.cpp:237] Train net output #0: loss = 1.98072 (* 1 = 1.98072 loss) +I0408 19:39:07.669355 24089 sgd_solver.cpp:105] Iteration 2664, lr = 0.00130536 +I0408 19:39:12.688424 24089 solver.cpp:218] Iteration 2676 (2.39097 iter/s, 5.01888s/12 iters), loss = 2.19884 +I0408 19:39:12.688465 24089 solver.cpp:237] Train net output #0: loss = 2.19884 (* 1 = 2.19884 loss) +I0408 19:39:12.688474 24089 sgd_solver.cpp:105] Iteration 2676, lr = 0.00129344 +I0408 19:39:17.737022 24089 solver.cpp:218] Iteration 2688 (2.37702 iter/s, 5.04833s/12 iters), loss = 2.29601 +I0408 19:39:17.737198 24089 solver.cpp:237] Train net output #0: loss = 2.29601 (* 1 = 2.29601 loss) +I0408 19:39:17.737213 24089 sgd_solver.cpp:105] Iteration 2688, lr = 0.00128163 +I0408 19:39:22.713023 24089 solver.cpp:218] Iteration 2700 (2.41176 iter/s, 4.97563s/12 iters), loss = 2.284 +I0408 19:39:22.713070 24089 solver.cpp:237] Train net output #0: loss = 2.284 (* 1 = 2.284 loss) +I0408 19:39:22.713081 24089 sgd_solver.cpp:105] Iteration 2700, lr = 0.00126993 +I0408 19:39:27.817061 24089 solver.cpp:218] Iteration 2712 (2.3512 iter/s, 5.10378s/12 iters), loss = 1.99849 +I0408 19:39:27.817113 24089 solver.cpp:237] Train net output #0: loss = 1.99849 (* 1 = 1.99849 loss) +I0408 19:39:27.817126 24089 sgd_solver.cpp:105] Iteration 2712, lr = 0.00125834 +I0408 19:39:32.890123 24089 solver.cpp:218] Iteration 2724 (2.36556 iter/s, 5.0728s/12 iters), loss = 2.16422 +I0408 19:39:32.890177 24089 solver.cpp:237] Train net output #0: loss = 2.16422 (* 1 = 2.16422 loss) +I0408 19:39:32.890190 24089 sgd_solver.cpp:105] Iteration 2724, lr = 0.00124685 +I0408 19:39:35.505673 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:39:38.011678 24089 solver.cpp:218] Iteration 2736 (2.34316 iter/s, 5.12129s/12 iters), loss = 1.98514 +I0408 19:39:38.011729 24089 solver.cpp:237] Train net output #0: loss = 1.98514 (* 1 = 1.98514 loss) +I0408 19:39:38.011741 24089 sgd_solver.cpp:105] Iteration 2736, lr = 0.00123547 +I0408 19:39:43.373759 24089 solver.cpp:218] Iteration 2748 (2.23805 iter/s, 5.36181s/12 iters), loss = 2.06012 +I0408 19:39:43.373800 24089 solver.cpp:237] Train net output #0: loss = 2.06012 (* 1 = 2.06012 loss) +I0408 19:39:43.373809 24089 sgd_solver.cpp:105] Iteration 2748, lr = 0.00122419 +I0408 19:39:45.406100 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 19:39:48.409859 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 19:39:50.698266 24089 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 19:39:50.698290 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:39:53.834296 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:39:54.070504 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:39:55.177124 24089 solver.cpp:397] Test net output #0: accuracy = 0.265931 +I0408 19:39:55.177173 24089 solver.cpp:397] Test net output #1: loss = 3.17677 (* 1 = 3.17677 loss) +I0408 19:39:57.142715 24089 solver.cpp:218] Iteration 2760 (0.871563 iter/s, 13.7684s/12 iters), loss = 2.09027 +I0408 19:39:57.142758 24089 solver.cpp:237] Train net output #0: loss = 2.09027 (* 1 = 2.09027 loss) +I0408 19:39:57.142771 24089 sgd_solver.cpp:105] Iteration 2760, lr = 0.00121301 +I0408 19:40:02.134843 24089 solver.cpp:218] Iteration 2772 (2.40391 iter/s, 4.99188s/12 iters), loss = 2.0458 +I0408 19:40:02.134891 24089 solver.cpp:237] Train net output #0: loss = 2.0458 (* 1 = 2.0458 loss) +I0408 19:40:02.134903 24089 sgd_solver.cpp:105] Iteration 2772, lr = 0.00120194 +I0408 19:40:07.118373 24089 solver.cpp:218] Iteration 2784 (2.40806 iter/s, 4.98327s/12 iters), loss = 2.29997 +I0408 19:40:07.118424 24089 solver.cpp:237] Train net output #0: loss = 2.29997 (* 1 = 2.29997 loss) +I0408 19:40:07.118438 24089 sgd_solver.cpp:105] Iteration 2784, lr = 0.00119096 +I0408 19:40:12.034081 24089 solver.cpp:218] Iteration 2796 (2.44128 iter/s, 4.91545s/12 iters), loss = 2.17715 +I0408 19:40:12.034140 24089 solver.cpp:237] Train net output #0: loss = 2.17715 (* 1 = 2.17715 loss) +I0408 19:40:12.034152 24089 sgd_solver.cpp:105] Iteration 2796, lr = 0.00118009 +I0408 19:40:16.993506 24089 solver.cpp:218] Iteration 2808 (2.41976 iter/s, 4.95916s/12 iters), loss = 1.86241 +I0408 19:40:16.993556 24089 solver.cpp:237] Train net output #0: loss = 1.86241 (* 1 = 1.86241 loss) +I0408 19:40:16.993567 24089 sgd_solver.cpp:105] Iteration 2808, lr = 0.00116932 +I0408 19:40:22.025635 24089 solver.cpp:218] Iteration 2820 (2.3848 iter/s, 5.03186s/12 iters), loss = 2.01586 +I0408 19:40:22.025797 24089 solver.cpp:237] Train net output #0: loss = 2.01586 (* 1 = 2.01586 loss) +I0408 19:40:22.025810 24089 sgd_solver.cpp:105] Iteration 2820, lr = 0.00115864 +I0408 19:40:26.768182 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:40:27.053912 24089 solver.cpp:218] Iteration 2832 (2.38668 iter/s, 5.02791s/12 iters), loss = 1.88047 +I0408 19:40:27.053951 24089 solver.cpp:237] Train net output #0: loss = 1.88047 (* 1 = 1.88047 loss) +I0408 19:40:27.053970 24089 sgd_solver.cpp:105] Iteration 2832, lr = 0.00114806 +I0408 19:40:32.145797 24089 solver.cpp:218] Iteration 2844 (2.35681 iter/s, 5.09163s/12 iters), loss = 1.95375 +I0408 19:40:32.145851 24089 solver.cpp:237] Train net output #0: loss = 1.95375 (* 1 = 1.95375 loss) +I0408 19:40:32.145864 24089 sgd_solver.cpp:105] Iteration 2844, lr = 0.00113758 +I0408 19:40:36.763096 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 19:40:40.706359 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 19:40:43.029090 24089 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 19:40:43.029117 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:40:46.587838 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:40:47.840199 24089 solver.cpp:397] Test net output #0: accuracy = 0.28125 +I0408 19:40:47.840229 24089 solver.cpp:397] Test net output #1: loss = 3.12121 (* 1 = 3.12121 loss) +I0408 19:40:47.930665 24089 solver.cpp:218] Iteration 2856 (0.760255 iter/s, 15.7842s/12 iters), loss = 2.03454 +I0408 19:40:47.930706 24089 solver.cpp:237] Train net output #0: loss = 2.03454 (* 1 = 2.03454 loss) +I0408 19:40:47.930716 24089 sgd_solver.cpp:105] Iteration 2856, lr = 0.00112719 +I0408 19:40:52.059336 24089 solver.cpp:218] Iteration 2868 (2.90666 iter/s, 4.12845s/12 iters), loss = 2.16742 +I0408 19:40:52.075729 24089 solver.cpp:237] Train net output #0: loss = 2.16742 (* 1 = 2.16742 loss) +I0408 19:40:52.075745 24089 sgd_solver.cpp:105] Iteration 2868, lr = 0.0011169 +I0408 19:40:57.095844 24089 solver.cpp:218] Iteration 2880 (2.39048 iter/s, 5.01992s/12 iters), loss = 1.94439 +I0408 19:40:57.095883 24089 solver.cpp:237] Train net output #0: loss = 1.94439 (* 1 = 1.94439 loss) +I0408 19:40:57.095891 24089 sgd_solver.cpp:105] Iteration 2880, lr = 0.00110671 +I0408 19:41:02.026809 24089 solver.cpp:218] Iteration 2892 (2.43372 iter/s, 4.93072s/12 iters), loss = 2.01897 +I0408 19:41:02.026860 24089 solver.cpp:237] Train net output #0: loss = 2.01897 (* 1 = 2.01897 loss) +I0408 19:41:02.026872 24089 sgd_solver.cpp:105] Iteration 2892, lr = 0.0010966 +I0408 19:41:07.122989 24089 solver.cpp:218] Iteration 2904 (2.35483 iter/s, 5.09592s/12 iters), loss = 2.07751 +I0408 19:41:07.123035 24089 solver.cpp:237] Train net output #0: loss = 2.07751 (* 1 = 2.07751 loss) +I0408 19:41:07.123047 24089 sgd_solver.cpp:105] Iteration 2904, lr = 0.00108659 +I0408 19:41:12.105720 24089 solver.cpp:218] Iteration 2916 (2.40844 iter/s, 4.98248s/12 iters), loss = 1.93 +I0408 19:41:12.105769 24089 solver.cpp:237] Train net output #0: loss = 1.93 (* 1 = 1.93 loss) +I0408 19:41:12.105780 24089 sgd_solver.cpp:105] Iteration 2916, lr = 0.00107667 +I0408 19:41:17.166412 24089 solver.cpp:218] Iteration 2928 (2.37134 iter/s, 5.06043s/12 iters), loss = 1.75799 +I0408 19:41:17.166466 24089 solver.cpp:237] Train net output #0: loss = 1.75799 (* 1 = 1.75799 loss) +I0408 19:41:17.166479 24089 sgd_solver.cpp:105] Iteration 2928, lr = 0.00106684 +I0408 19:41:18.995613 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:41:22.118007 24089 solver.cpp:218] Iteration 2940 (2.42359 iter/s, 4.95134s/12 iters), loss = 1.97134 +I0408 19:41:22.118165 24089 solver.cpp:237] Train net output #0: loss = 1.97134 (* 1 = 1.97134 loss) +I0408 19:41:22.118180 24089 sgd_solver.cpp:105] Iteration 2940, lr = 0.0010571 +I0408 19:41:27.131809 24089 solver.cpp:218] Iteration 2952 (2.39357 iter/s, 5.01343s/12 iters), loss = 2.01561 +I0408 19:41:27.131861 24089 solver.cpp:237] Train net output #0: loss = 2.01561 (* 1 = 2.01561 loss) +I0408 19:41:27.131872 24089 sgd_solver.cpp:105] Iteration 2952, lr = 0.00104745 +I0408 19:41:29.156438 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 19:41:32.189430 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 19:41:37.397634 24089 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 19:41:37.397656 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:41:40.682525 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:41:41.866353 24089 solver.cpp:397] Test net output #0: accuracy = 0.306373 +I0408 19:41:41.866400 24089 solver.cpp:397] Test net output #1: loss = 3.04877 (* 1 = 3.04877 loss) +I0408 19:41:43.924141 24089 solver.cpp:218] Iteration 2964 (0.714643 iter/s, 16.7916s/12 iters), loss = 1.91012 +I0408 19:41:43.924193 24089 solver.cpp:237] Train net output #0: loss = 1.91012 (* 1 = 1.91012 loss) +I0408 19:41:43.924206 24089 sgd_solver.cpp:105] Iteration 2964, lr = 0.00103789 +I0408 19:41:48.997004 24089 solver.cpp:218] Iteration 2976 (2.36565 iter/s, 5.0726s/12 iters), loss = 1.76819 +I0408 19:41:48.997051 24089 solver.cpp:237] Train net output #0: loss = 1.76819 (* 1 = 1.76819 loss) +I0408 19:41:48.997063 24089 sgd_solver.cpp:105] Iteration 2976, lr = 0.00102841 +I0408 19:41:54.075628 24089 solver.cpp:218] Iteration 2988 (2.36297 iter/s, 5.07837s/12 iters), loss = 1.85446 +I0408 19:41:54.076834 24089 solver.cpp:237] Train net output #0: loss = 1.85446 (* 1 = 1.85446 loss) +I0408 19:41:54.076845 24089 sgd_solver.cpp:105] Iteration 2988, lr = 0.00101902 +I0408 19:41:59.119843 24089 solver.cpp:218] Iteration 3000 (2.37963 iter/s, 5.0428s/12 iters), loss = 1.88412 +I0408 19:41:59.119884 24089 solver.cpp:237] Train net output #0: loss = 1.88412 (* 1 = 1.88412 loss) +I0408 19:41:59.119892 24089 sgd_solver.cpp:105] Iteration 3000, lr = 0.00100972 +I0408 19:42:04.149297 24089 solver.cpp:218] Iteration 3012 (2.38607 iter/s, 5.0292s/12 iters), loss = 1.70872 +I0408 19:42:04.149348 24089 solver.cpp:237] Train net output #0: loss = 1.70872 (* 1 = 1.70872 loss) +I0408 19:42:04.149358 24089 sgd_solver.cpp:105] Iteration 3012, lr = 0.0010005 +I0408 19:42:09.228453 24089 solver.cpp:218] Iteration 3024 (2.36272 iter/s, 5.0789s/12 iters), loss = 1.7763 +I0408 19:42:09.228502 24089 solver.cpp:237] Train net output #0: loss = 1.7763 (* 1 = 1.7763 loss) +I0408 19:42:09.228513 24089 sgd_solver.cpp:105] Iteration 3024, lr = 0.000991366 +I0408 19:42:13.161231 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:42:14.188645 24089 solver.cpp:218] Iteration 3036 (2.41939 iter/s, 4.95993s/12 iters), loss = 1.71266 +I0408 19:42:14.188691 24089 solver.cpp:237] Train net output #0: loss = 1.71266 (* 1 = 1.71266 loss) +I0408 19:42:14.188701 24089 sgd_solver.cpp:105] Iteration 3036, lr = 0.000982315 +I0408 19:42:19.148381 24089 solver.cpp:218] Iteration 3048 (2.41961 iter/s, 4.95948s/12 iters), loss = 1.91908 +I0408 19:42:19.148420 24089 solver.cpp:237] Train net output #0: loss = 1.91908 (* 1 = 1.91908 loss) +I0408 19:42:19.148429 24089 sgd_solver.cpp:105] Iteration 3048, lr = 0.000973347 +I0408 19:42:23.718416 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 19:42:26.720121 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 19:42:29.052969 24089 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 19:42:29.052994 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:42:32.543998 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:42:33.893123 24089 solver.cpp:397] Test net output #0: accuracy = 0.300245 +I0408 19:42:33.893173 24089 solver.cpp:397] Test net output #1: loss = 3.02415 (* 1 = 3.02415 loss) +I0408 19:42:33.983821 24089 solver.cpp:218] Iteration 3060 (0.808909 iter/s, 14.8348s/12 iters), loss = 2.02409 +I0408 19:42:33.983866 24089 solver.cpp:237] Train net output #0: loss = 2.02409 (* 1 = 2.02409 loss) +I0408 19:42:33.983877 24089 sgd_solver.cpp:105] Iteration 3060, lr = 0.000964461 +I0408 19:42:38.298139 24089 solver.cpp:218] Iteration 3072 (2.78159 iter/s, 4.31408s/12 iters), loss = 1.93012 +I0408 19:42:38.298202 24089 solver.cpp:237] Train net output #0: loss = 1.93012 (* 1 = 1.93012 loss) +I0408 19:42:38.298214 24089 sgd_solver.cpp:105] Iteration 3072, lr = 0.000955655 +I0408 19:42:43.245080 24089 solver.cpp:218] Iteration 3084 (2.42587 iter/s, 4.94667s/12 iters), loss = 1.82219 +I0408 19:42:43.245129 24089 solver.cpp:237] Train net output #0: loss = 1.82219 (* 1 = 1.82219 loss) +I0408 19:42:43.245142 24089 sgd_solver.cpp:105] Iteration 3084, lr = 0.000946931 +I0408 19:42:48.089638 24089 solver.cpp:218] Iteration 3096 (2.47713 iter/s, 4.84431s/12 iters), loss = 1.7231 +I0408 19:42:48.089675 24089 solver.cpp:237] Train net output #0: loss = 1.7231 (* 1 = 1.7231 loss) +I0408 19:42:48.089684 24089 sgd_solver.cpp:105] Iteration 3096, lr = 0.000938285 +I0408 19:42:52.992409 24089 solver.cpp:218] Iteration 3108 (2.44772 iter/s, 4.90253s/12 iters), loss = 1.76178 +I0408 19:42:52.992460 24089 solver.cpp:237] Train net output #0: loss = 1.76178 (* 1 = 1.76178 loss) +I0408 19:42:52.992471 24089 sgd_solver.cpp:105] Iteration 3108, lr = 0.000929719 +I0408 19:42:58.171236 24089 solver.cpp:218] Iteration 3120 (2.31725 iter/s, 5.17856s/12 iters), loss = 1.61228 +I0408 19:42:58.171340 24089 solver.cpp:237] Train net output #0: loss = 1.61228 (* 1 = 1.61228 loss) +I0408 19:42:58.171352 24089 sgd_solver.cpp:105] Iteration 3120, lr = 0.000921231 +I0408 19:43:03.228767 24089 solver.cpp:218] Iteration 3132 (2.37285 iter/s, 5.05722s/12 iters), loss = 1.83536 +I0408 19:43:03.228818 24089 solver.cpp:237] Train net output #0: loss = 1.83536 (* 1 = 1.83536 loss) +I0408 19:43:03.228832 24089 sgd_solver.cpp:105] Iteration 3132, lr = 0.00091282 +I0408 19:43:04.356145 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:43:08.275310 24089 solver.cpp:218] Iteration 3144 (2.37799 iter/s, 5.04628s/12 iters), loss = 1.67858 +I0408 19:43:08.275362 24089 solver.cpp:237] Train net output #0: loss = 1.67858 (* 1 = 1.67858 loss) +I0408 19:43:08.275373 24089 sgd_solver.cpp:105] Iteration 3144, lr = 0.000904487 +I0408 19:43:13.283239 24089 solver.cpp:218] Iteration 3156 (2.39632 iter/s, 5.00767s/12 iters), loss = 1.64357 +I0408 19:43:13.283293 24089 solver.cpp:237] Train net output #0: loss = 1.64357 (* 1 = 1.64357 loss) +I0408 19:43:13.283305 24089 sgd_solver.cpp:105] Iteration 3156, lr = 0.000896229 +I0408 19:43:15.261155 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 19:43:18.299664 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 19:43:21.616678 24089 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 19:43:21.616699 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:43:24.790585 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:43:26.057888 24089 solver.cpp:397] Test net output #0: accuracy = 0.303922 +I0408 19:43:26.057936 24089 solver.cpp:397] Test net output #1: loss = 2.99936 (* 1 = 2.99936 loss) +I0408 19:43:28.080896 24089 solver.cpp:218] Iteration 3168 (0.810975 iter/s, 14.797s/12 iters), loss = 1.48836 +I0408 19:43:28.080942 24089 solver.cpp:237] Train net output #0: loss = 1.48836 (* 1 = 1.48836 loss) +I0408 19:43:28.080950 24089 sgd_solver.cpp:105] Iteration 3168, lr = 0.000888047 +I0408 19:43:33.217847 24089 solver.cpp:218] Iteration 3180 (2.33614 iter/s, 5.13669s/12 iters), loss = 1.72616 +I0408 19:43:33.227231 24089 solver.cpp:237] Train net output #0: loss = 1.72616 (* 1 = 1.72616 loss) +I0408 19:43:33.227247 24089 sgd_solver.cpp:105] Iteration 3180, lr = 0.000879939 +I0408 19:43:38.190812 24089 solver.cpp:218] Iteration 3192 (2.41771 iter/s, 4.96338s/12 iters), loss = 1.6014 +I0408 19:43:38.190858 24089 solver.cpp:237] Train net output #0: loss = 1.6014 (* 1 = 1.6014 loss) +I0408 19:43:38.190866 24089 sgd_solver.cpp:105] Iteration 3192, lr = 0.000871905 +I0408 19:43:43.208600 24089 solver.cpp:218] Iteration 3204 (2.39162 iter/s, 5.01753s/12 iters), loss = 1.6305 +I0408 19:43:43.208647 24089 solver.cpp:237] Train net output #0: loss = 1.6305 (* 1 = 1.6305 loss) +I0408 19:43:43.208658 24089 sgd_solver.cpp:105] Iteration 3204, lr = 0.000863945 +I0408 19:43:48.213953 24089 solver.cpp:218] Iteration 3216 (2.39756 iter/s, 5.00509s/12 iters), loss = 1.73114 +I0408 19:43:48.214007 24089 solver.cpp:237] Train net output #0: loss = 1.73114 (* 1 = 1.73114 loss) +I0408 19:43:48.214018 24089 sgd_solver.cpp:105] Iteration 3216, lr = 0.000856058 +I0408 19:43:53.290969 24089 solver.cpp:218] Iteration 3228 (2.36372 iter/s, 5.07675s/12 iters), loss = 1.45067 +I0408 19:43:53.291009 24089 solver.cpp:237] Train net output #0: loss = 1.45067 (* 1 = 1.45067 loss) +I0408 19:43:53.291018 24089 sgd_solver.cpp:105] Iteration 3228, lr = 0.000848242 +I0408 19:43:56.594451 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:43:58.373275 24089 solver.cpp:218] Iteration 3240 (2.36125 iter/s, 5.08205s/12 iters), loss = 1.38132 +I0408 19:43:58.373327 24089 solver.cpp:237] Train net output #0: loss = 1.38132 (* 1 = 1.38132 loss) +I0408 19:43:58.373342 24089 sgd_solver.cpp:105] Iteration 3240, lr = 0.000840498 +I0408 19:44:03.462069 24089 solver.cpp:218] Iteration 3252 (2.35825 iter/s, 5.08852s/12 iters), loss = 1.50016 +I0408 19:44:03.462185 24089 solver.cpp:237] Train net output #0: loss = 1.50016 (* 1 = 1.50016 loss) +I0408 19:44:03.462199 24089 sgd_solver.cpp:105] Iteration 3252, lr = 0.000832824 +I0408 19:44:08.001503 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 19:44:12.390908 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 19:44:16.982146 24089 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 19:44:16.982172 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:44:20.146351 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:44:21.451205 24089 solver.cpp:397] Test net output #0: accuracy = 0.310662 +I0408 19:44:21.451248 24089 solver.cpp:397] Test net output #1: loss = 3.01218 (* 1 = 3.01218 loss) +I0408 19:44:21.541739 24089 solver.cpp:218] Iteration 3264 (0.66376 iter/s, 18.0788s/12 iters), loss = 1.48865 +I0408 19:44:21.541787 24089 solver.cpp:237] Train net output #0: loss = 1.48865 (* 1 = 1.48865 loss) +I0408 19:44:21.541797 24089 sgd_solver.cpp:105] Iteration 3264, lr = 0.000825221 +I0408 19:44:25.647933 24089 solver.cpp:218] Iteration 3276 (2.92257 iter/s, 4.10597s/12 iters), loss = 1.51191 +I0408 19:44:25.647985 24089 solver.cpp:237] Train net output #0: loss = 1.51191 (* 1 = 1.51191 loss) +I0408 19:44:25.647997 24089 sgd_solver.cpp:105] Iteration 3276, lr = 0.000817687 +I0408 19:44:30.699399 24089 solver.cpp:218] Iteration 3288 (2.37565 iter/s, 5.05126s/12 iters), loss = 1.37168 +I0408 19:44:30.699456 24089 solver.cpp:237] Train net output #0: loss = 1.37168 (* 1 = 1.37168 loss) +I0408 19:44:30.699470 24089 sgd_solver.cpp:105] Iteration 3288, lr = 0.000810221 +I0408 19:44:35.746068 24089 solver.cpp:218] Iteration 3300 (2.3779 iter/s, 5.04646s/12 iters), loss = 1.55934 +I0408 19:44:35.746170 24089 solver.cpp:237] Train net output #0: loss = 1.55934 (* 1 = 1.55934 loss) +I0408 19:44:35.746181 24089 sgd_solver.cpp:105] Iteration 3300, lr = 0.000802824 +I0408 19:44:40.801232 24089 solver.cpp:218] Iteration 3312 (2.37393 iter/s, 5.05491s/12 iters), loss = 1.45009 +I0408 19:44:40.801285 24089 solver.cpp:237] Train net output #0: loss = 1.45009 (* 1 = 1.45009 loss) +I0408 19:44:40.801297 24089 sgd_solver.cpp:105] Iteration 3312, lr = 0.000795495 +I0408 19:44:45.862556 24089 solver.cpp:218] Iteration 3324 (2.37102 iter/s, 5.06112s/12 iters), loss = 1.39154 +I0408 19:44:45.862604 24089 solver.cpp:237] Train net output #0: loss = 1.39154 (* 1 = 1.39154 loss) +I0408 19:44:45.862617 24089 sgd_solver.cpp:105] Iteration 3324, lr = 0.000788232 +I0408 19:44:50.859110 24089 solver.cpp:218] Iteration 3336 (2.40175 iter/s, 4.99636s/12 iters), loss = 1.38607 +I0408 19:44:50.859160 24089 solver.cpp:237] Train net output #0: loss = 1.38607 (* 1 = 1.38607 loss) +I0408 19:44:50.859174 24089 sgd_solver.cpp:105] Iteration 3336, lr = 0.000781036 +I0408 19:44:51.331241 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:44:55.910676 24089 solver.cpp:218] Iteration 3348 (2.3756 iter/s, 5.05136s/12 iters), loss = 1.42831 +I0408 19:44:55.910719 24089 solver.cpp:237] Train net output #0: loss = 1.42831 (* 1 = 1.42831 loss) +I0408 19:44:55.910728 24089 sgd_solver.cpp:105] Iteration 3348, lr = 0.000773905 +I0408 19:45:00.931226 24089 solver.cpp:218] Iteration 3360 (2.39027 iter/s, 5.02035s/12 iters), loss = 1.32563 +I0408 19:45:00.931277 24089 solver.cpp:237] Train net output #0: loss = 1.32563 (* 1 = 1.32563 loss) +I0408 19:45:00.931289 24089 sgd_solver.cpp:105] Iteration 3360, lr = 0.00076684 +I0408 19:45:02.943131 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 19:45:05.915226 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 19:45:08.238332 24089 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 19:45:08.238358 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:45:11.369204 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:45:12.708528 24089 solver.cpp:397] Test net output #0: accuracy = 0.321078 +I0408 19:45:12.708577 24089 solver.cpp:397] Test net output #1: loss = 3.02891 (* 1 = 3.02891 loss) +I0408 19:45:14.574200 24089 solver.cpp:218] Iteration 3372 (0.879602 iter/s, 13.6425s/12 iters), loss = 1.45326 +I0408 19:45:14.574244 24089 solver.cpp:237] Train net output #0: loss = 1.45326 (* 1 = 1.45326 loss) +I0408 19:45:14.574254 24089 sgd_solver.cpp:105] Iteration 3372, lr = 0.000759839 +I0408 19:45:19.690834 24089 solver.cpp:218] Iteration 3384 (2.34538 iter/s, 5.11643s/12 iters), loss = 1.24509 +I0408 19:45:19.690876 24089 solver.cpp:237] Train net output #0: loss = 1.24509 (* 1 = 1.24509 loss) +I0408 19:45:19.690884 24089 sgd_solver.cpp:105] Iteration 3384, lr = 0.000752902 +I0408 19:45:24.865444 24089 solver.cpp:218] Iteration 3396 (2.31911 iter/s, 5.1744s/12 iters), loss = 1.3036 +I0408 19:45:24.865502 24089 solver.cpp:237] Train net output #0: loss = 1.3036 (* 1 = 1.3036 loss) +I0408 19:45:24.865514 24089 sgd_solver.cpp:105] Iteration 3396, lr = 0.000746028 +I0408 19:45:29.943543 24089 solver.cpp:218] Iteration 3408 (2.36319 iter/s, 5.07789s/12 iters), loss = 1.48408 +I0408 19:45:29.943590 24089 solver.cpp:237] Train net output #0: loss = 1.48408 (* 1 = 1.48408 loss) +I0408 19:45:29.943601 24089 sgd_solver.cpp:105] Iteration 3408, lr = 0.000739217 +I0408 19:45:35.027890 24089 solver.cpp:218] Iteration 3420 (2.36028 iter/s, 5.08414s/12 iters), loss = 1.21141 +I0408 19:45:35.027945 24089 solver.cpp:237] Train net output #0: loss = 1.21141 (* 1 = 1.21141 loss) +I0408 19:45:35.027957 24089 sgd_solver.cpp:105] Iteration 3420, lr = 0.000732468 +I0408 19:45:40.153842 24089 solver.cpp:218] Iteration 3432 (2.34113 iter/s, 5.12574s/12 iters), loss = 1.29108 +I0408 19:45:40.153987 24089 solver.cpp:237] Train net output #0: loss = 1.29108 (* 1 = 1.29108 loss) +I0408 19:45:40.154003 24089 sgd_solver.cpp:105] Iteration 3432, lr = 0.000725781 +I0408 19:45:42.861776 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:45:45.374409 24089 solver.cpp:218] Iteration 3444 (2.29873 iter/s, 5.22027s/12 iters), loss = 1.22092 +I0408 19:45:45.374444 24089 solver.cpp:237] Train net output #0: loss = 1.22092 (* 1 = 1.22092 loss) +I0408 19:45:45.374452 24089 sgd_solver.cpp:105] Iteration 3444, lr = 0.000719154 +I0408 19:45:50.460261 24089 solver.cpp:218] Iteration 3456 (2.35958 iter/s, 5.08565s/12 iters), loss = 1.37511 +I0408 19:45:50.460307 24089 solver.cpp:237] Train net output #0: loss = 1.37511 (* 1 = 1.37511 loss) +I0408 19:45:50.460316 24089 sgd_solver.cpp:105] Iteration 3456, lr = 0.000712589 +I0408 19:45:54.936342 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 19:45:57.990262 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 19:46:00.302577 24089 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 19:46:00.302601 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:46:00.774849 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:46:03.405745 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:46:04.794842 24089 solver.cpp:397] Test net output #0: accuracy = 0.324142 +I0408 19:46:04.794890 24089 solver.cpp:397] Test net output #1: loss = 2.99392 (* 1 = 2.99392 loss) +I0408 19:46:04.882594 24089 solver.cpp:218] Iteration 3468 (0.83207 iter/s, 14.4219s/12 iters), loss = 1.53157 +I0408 19:46:04.882648 24089 solver.cpp:237] Train net output #0: loss = 1.53157 (* 1 = 1.53157 loss) +I0408 19:46:04.882660 24089 sgd_solver.cpp:105] Iteration 3468, lr = 0.000706083 +I0408 19:46:09.229130 24089 solver.cpp:218] Iteration 3480 (2.76094 iter/s, 4.34635s/12 iters), loss = 1.27788 +I0408 19:46:09.229169 24089 solver.cpp:237] Train net output #0: loss = 1.27788 (* 1 = 1.27788 loss) +I0408 19:46:09.229178 24089 sgd_solver.cpp:105] Iteration 3480, lr = 0.000699637 +I0408 19:46:14.240069 24089 solver.cpp:218] Iteration 3492 (2.39486 iter/s, 5.01074s/12 iters), loss = 1.503 +I0408 19:46:14.240170 24089 solver.cpp:237] Train net output #0: loss = 1.503 (* 1 = 1.503 loss) +I0408 19:46:14.240180 24089 sgd_solver.cpp:105] Iteration 3492, lr = 0.000693249 +I0408 19:46:19.290191 24089 solver.cpp:218] Iteration 3504 (2.3763 iter/s, 5.04986s/12 iters), loss = 1.52589 +I0408 19:46:19.290230 24089 solver.cpp:237] Train net output #0: loss = 1.52589 (* 1 = 1.52589 loss) +I0408 19:46:19.290239 24089 sgd_solver.cpp:105] Iteration 3504, lr = 0.00068692 +I0408 19:46:24.367692 24089 solver.cpp:218] Iteration 3516 (2.36346 iter/s, 5.07729s/12 iters), loss = 1.02418 +I0408 19:46:24.367746 24089 solver.cpp:237] Train net output #0: loss = 1.02418 (* 1 = 1.02418 loss) +I0408 19:46:24.367758 24089 sgd_solver.cpp:105] Iteration 3516, lr = 0.000680649 +I0408 19:46:29.404808 24089 solver.cpp:218] Iteration 3528 (2.38242 iter/s, 5.0369s/12 iters), loss = 1.21519 +I0408 19:46:29.404847 24089 solver.cpp:237] Train net output #0: loss = 1.21519 (* 1 = 1.21519 loss) +I0408 19:46:29.404857 24089 sgd_solver.cpp:105] Iteration 3528, lr = 0.000674435 +I0408 19:46:34.195770 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:46:34.456243 24089 solver.cpp:218] Iteration 3540 (2.37566 iter/s, 5.05123s/12 iters), loss = 1.01722 +I0408 19:46:34.456288 24089 solver.cpp:237] Train net output #0: loss = 1.01722 (* 1 = 1.01722 loss) +I0408 19:46:34.456300 24089 sgd_solver.cpp:105] Iteration 3540, lr = 0.000668277 +I0408 19:46:39.494688 24089 solver.cpp:218] Iteration 3552 (2.38179 iter/s, 5.03823s/12 iters), loss = 1.17601 +I0408 19:46:39.494735 24089 solver.cpp:237] Train net output #0: loss = 1.17601 (* 1 = 1.17601 loss) +I0408 19:46:39.494746 24089 sgd_solver.cpp:105] Iteration 3552, lr = 0.000662176 +I0408 19:46:44.679487 24089 solver.cpp:218] Iteration 3564 (2.31456 iter/s, 5.18458s/12 iters), loss = 1.47697 +I0408 19:46:44.679576 24089 solver.cpp:237] Train net output #0: loss = 1.47697 (* 1 = 1.47697 loss) +I0408 19:46:44.679586 24089 sgd_solver.cpp:105] Iteration 3564, lr = 0.00065613 +I0408 19:46:46.804589 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 19:46:49.893757 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 19:46:52.217408 24089 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 19:46:52.217435 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:46:55.279556 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:46:56.701148 24089 solver.cpp:397] Test net output #0: accuracy = 0.344363 +I0408 19:46:56.701193 24089 solver.cpp:397] Test net output #1: loss = 2.92831 (* 1 = 2.92831 loss) +I0408 19:46:58.561880 24089 solver.cpp:218] Iteration 3576 (0.864437 iter/s, 13.8819s/12 iters), loss = 1.25502 +I0408 19:46:58.561933 24089 solver.cpp:237] Train net output #0: loss = 1.25502 (* 1 = 1.25502 loss) +I0408 19:46:58.561944 24089 sgd_solver.cpp:105] Iteration 3576, lr = 0.00065014 +I0408 19:47:03.490233 24089 solver.cpp:218] Iteration 3588 (2.435 iter/s, 4.92814s/12 iters), loss = 1.03601 +I0408 19:47:03.490286 24089 solver.cpp:237] Train net output #0: loss = 1.03601 (* 1 = 1.03601 loss) +I0408 19:47:03.490298 24089 sgd_solver.cpp:105] Iteration 3588, lr = 0.000644205 +I0408 19:47:08.486198 24089 solver.cpp:218] Iteration 3600 (2.40204 iter/s, 4.99575s/12 iters), loss = 1.5788 +I0408 19:47:08.486239 24089 solver.cpp:237] Train net output #0: loss = 1.5788 (* 1 = 1.5788 loss) +I0408 19:47:08.486248 24089 sgd_solver.cpp:105] Iteration 3600, lr = 0.000638323 +I0408 19:47:13.486948 24089 solver.cpp:218] Iteration 3612 (2.39974 iter/s, 5.00054s/12 iters), loss = 1.06891 +I0408 19:47:13.487001 24089 solver.cpp:237] Train net output #0: loss = 1.06891 (* 1 = 1.06891 loss) +I0408 19:47:13.487015 24089 sgd_solver.cpp:105] Iteration 3612, lr = 0.000632495 +I0408 19:47:18.456791 24089 solver.cpp:218] Iteration 3624 (2.41467 iter/s, 4.96963s/12 iters), loss = 1.08919 +I0408 19:47:18.456938 24089 solver.cpp:237] Train net output #0: loss = 1.08919 (* 1 = 1.08919 loss) +I0408 19:47:18.456951 24089 sgd_solver.cpp:105] Iteration 3624, lr = 0.000626721 +I0408 19:47:23.507309 24089 solver.cpp:218] Iteration 3636 (2.37614 iter/s, 5.0502s/12 iters), loss = 1.27137 +I0408 19:47:23.507361 24089 solver.cpp:237] Train net output #0: loss = 1.27137 (* 1 = 1.27137 loss) +I0408 19:47:23.507372 24089 sgd_solver.cpp:105] Iteration 3636, lr = 0.000620999 +I0408 19:47:25.378716 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:47:28.493641 24089 solver.cpp:218] Iteration 3648 (2.40669 iter/s, 4.98611s/12 iters), loss = 1.01237 +I0408 19:47:28.493693 24089 solver.cpp:237] Train net output #0: loss = 1.01237 (* 1 = 1.01237 loss) +I0408 19:47:28.493705 24089 sgd_solver.cpp:105] Iteration 3648, lr = 0.00061533 +I0408 19:47:33.560441 24089 solver.cpp:218] Iteration 3660 (2.36846 iter/s, 5.06658s/12 iters), loss = 1.16566 +I0408 19:47:33.560487 24089 solver.cpp:237] Train net output #0: loss = 1.16566 (* 1 = 1.16566 loss) +I0408 19:47:33.560497 24089 sgd_solver.cpp:105] Iteration 3660, lr = 0.000609712 +I0408 19:47:38.071419 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 19:47:43.299964 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 19:47:45.626475 24089 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 19:47:45.626500 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:47:48.629101 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:47:50.099505 24089 solver.cpp:397] Test net output #0: accuracy = 0.355392 +I0408 19:47:50.099537 24089 solver.cpp:397] Test net output #1: loss = 2.88971 (* 1 = 2.88971 loss) +I0408 19:47:50.187016 24089 solver.cpp:218] Iteration 3672 (0.721761 iter/s, 16.626s/12 iters), loss = 0.988426 +I0408 19:47:50.187063 24089 solver.cpp:237] Train net output #0: loss = 0.988426 (* 1 = 0.988426 loss) +I0408 19:47:50.187072 24089 sgd_solver.cpp:105] Iteration 3672, lr = 0.000604145 +I0408 19:47:54.426443 24089 solver.cpp:218] Iteration 3684 (2.8307 iter/s, 4.23924s/12 iters), loss = 1.14736 +I0408 19:47:54.426491 24089 solver.cpp:237] Train net output #0: loss = 1.14736 (* 1 = 1.14736 loss) +I0408 19:47:54.426501 24089 sgd_solver.cpp:105] Iteration 3684, lr = 0.00059863 +I0408 19:47:59.490298 24089 solver.cpp:218] Iteration 3696 (2.36984 iter/s, 5.06364s/12 iters), loss = 1.08654 +I0408 19:47:59.490348 24089 solver.cpp:237] Train net output #0: loss = 1.08654 (* 1 = 1.08654 loss) +I0408 19:47:59.490360 24089 sgd_solver.cpp:105] Iteration 3696, lr = 0.000593164 +I0408 19:48:04.477684 24089 solver.cpp:218] Iteration 3708 (2.40617 iter/s, 4.98717s/12 iters), loss = 1.31181 +I0408 19:48:04.477727 24089 solver.cpp:237] Train net output #0: loss = 1.31181 (* 1 = 1.31181 loss) +I0408 19:48:04.477736 24089 sgd_solver.cpp:105] Iteration 3708, lr = 0.000587749 +I0408 19:48:09.512547 24089 solver.cpp:218] Iteration 3720 (2.38348 iter/s, 5.03465s/12 iters), loss = 1.06849 +I0408 19:48:09.512591 24089 solver.cpp:237] Train net output #0: loss = 1.06849 (* 1 = 1.06849 loss) +I0408 19:48:09.512600 24089 sgd_solver.cpp:105] Iteration 3720, lr = 0.000582383 +I0408 19:48:14.515637 24089 solver.cpp:218] Iteration 3732 (2.39862 iter/s, 5.00287s/12 iters), loss = 0.944358 +I0408 19:48:14.515683 24089 solver.cpp:237] Train net output #0: loss = 0.944358 (* 1 = 0.944358 loss) +I0408 19:48:14.515692 24089 sgd_solver.cpp:105] Iteration 3732, lr = 0.000577066 +I0408 19:48:18.565053 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:48:19.567050 24089 solver.cpp:218] Iteration 3744 (2.37568 iter/s, 5.05119s/12 iters), loss = 1.01755 +I0408 19:48:19.567200 24089 solver.cpp:237] Train net output #0: loss = 1.01755 (* 1 = 1.01755 loss) +I0408 19:48:19.567214 24089 sgd_solver.cpp:105] Iteration 3744, lr = 0.000571797 +I0408 19:48:24.637888 24089 solver.cpp:218] Iteration 3756 (2.36662 iter/s, 5.07052s/12 iters), loss = 1.02035 +I0408 19:48:24.637935 24089 solver.cpp:237] Train net output #0: loss = 1.02035 (* 1 = 1.02035 loss) +I0408 19:48:24.637946 24089 sgd_solver.cpp:105] Iteration 3756, lr = 0.000566577 +I0408 19:48:29.718415 24089 solver.cpp:218] Iteration 3768 (2.36206 iter/s, 5.08031s/12 iters), loss = 1.0757 +I0408 19:48:29.718466 24089 solver.cpp:237] Train net output #0: loss = 1.0757 (* 1 = 1.0757 loss) +I0408 19:48:29.718479 24089 sgd_solver.cpp:105] Iteration 3768, lr = 0.000561404 +I0408 19:48:31.753780 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 19:48:36.678586 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 19:48:42.477358 24089 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 19:48:42.477383 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:48:45.467730 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:48:46.997364 24089 solver.cpp:397] Test net output #0: accuracy = 0.356005 +I0408 19:48:46.997412 24089 solver.cpp:397] Test net output #1: loss = 2.89178 (* 1 = 2.89178 loss) +I0408 19:48:48.961024 24089 solver.cpp:218] Iteration 3780 (0.623638 iter/s, 19.2419s/12 iters), loss = 0.829235 +I0408 19:48:48.961091 24089 solver.cpp:237] Train net output #0: loss = 0.829235 (* 1 = 0.829235 loss) +I0408 19:48:48.961108 24089 sgd_solver.cpp:105] Iteration 3780, lr = 0.000556279 +I0408 19:48:54.281819 24089 solver.cpp:218] Iteration 3792 (2.25541 iter/s, 5.32055s/12 iters), loss = 0.967322 +I0408 19:48:54.281934 24089 solver.cpp:237] Train net output #0: loss = 0.967322 (* 1 = 0.967322 loss) +I0408 19:48:54.281947 24089 sgd_solver.cpp:105] Iteration 3792, lr = 0.0005512 +I0408 19:48:59.333061 24089 solver.cpp:218] Iteration 3804 (2.37579 iter/s, 5.05096s/12 iters), loss = 1.36097 +I0408 19:48:59.333109 24089 solver.cpp:237] Train net output #0: loss = 1.36097 (* 1 = 1.36097 loss) +I0408 19:48:59.333122 24089 sgd_solver.cpp:105] Iteration 3804, lr = 0.000546168 +I0408 19:49:04.450176 24089 solver.cpp:218] Iteration 3816 (2.34517 iter/s, 5.11689s/12 iters), loss = 1.06478 +I0408 19:49:04.450224 24089 solver.cpp:237] Train net output #0: loss = 1.06478 (* 1 = 1.06478 loss) +I0408 19:49:04.450235 24089 sgd_solver.cpp:105] Iteration 3816, lr = 0.000541182 +I0408 19:49:09.550988 24089 solver.cpp:218] Iteration 3828 (2.35267 iter/s, 5.10059s/12 iters), loss = 0.911845 +I0408 19:49:09.551044 24089 solver.cpp:237] Train net output #0: loss = 0.911845 (* 1 = 0.911845 loss) +I0408 19:49:09.551056 24089 sgd_solver.cpp:105] Iteration 3828, lr = 0.000536241 +I0408 19:49:14.625387 24089 solver.cpp:218] Iteration 3840 (2.36492 iter/s, 5.07416s/12 iters), loss = 1.1935 +I0408 19:49:14.625437 24089 solver.cpp:237] Train net output #0: loss = 1.1935 (* 1 = 1.1935 loss) +I0408 19:49:14.625449 24089 sgd_solver.cpp:105] Iteration 3840, lr = 0.000531345 +I0408 19:49:15.770598 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:49:19.660715 24089 solver.cpp:218] Iteration 3852 (2.38327 iter/s, 5.0351s/12 iters), loss = 1.02898 +I0408 19:49:19.660765 24089 solver.cpp:237] Train net output #0: loss = 1.02898 (* 1 = 1.02898 loss) +I0408 19:49:19.660778 24089 sgd_solver.cpp:105] Iteration 3852, lr = 0.000526494 +I0408 19:49:24.615404 24089 solver.cpp:218] Iteration 3864 (2.42206 iter/s, 4.95447s/12 iters), loss = 0.989692 +I0408 19:49:24.615566 24089 solver.cpp:237] Train net output #0: loss = 0.989692 (* 1 = 0.989692 loss) +I0408 19:49:24.615579 24089 sgd_solver.cpp:105] Iteration 3864, lr = 0.000521687 +I0408 19:49:29.189158 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 19:49:34.338287 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 19:49:40.107034 24089 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 19:49:40.107061 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:49:43.030696 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:49:44.578193 24089 solver.cpp:397] Test net output #0: accuracy = 0.360294 +I0408 19:49:44.578244 24089 solver.cpp:397] Test net output #1: loss = 2.90613 (* 1 = 2.90613 loss) +I0408 19:49:44.668902 24089 solver.cpp:218] Iteration 3876 (0.598424 iter/s, 20.0527s/12 iters), loss = 0.886521 +I0408 19:49:44.668952 24089 solver.cpp:237] Train net output #0: loss = 0.886521 (* 1 = 0.886521 loss) +I0408 19:49:44.668964 24089 sgd_solver.cpp:105] Iteration 3876, lr = 0.000516924 +I0408 19:49:49.155791 24089 solver.cpp:218] Iteration 3888 (2.67458 iter/s, 4.48668s/12 iters), loss = 1.04563 +I0408 19:49:49.155843 24089 solver.cpp:237] Train net output #0: loss = 1.04563 (* 1 = 1.04563 loss) +I0408 19:49:49.155855 24089 sgd_solver.cpp:105] Iteration 3888, lr = 0.000512205 +I0408 19:49:54.175837 24089 solver.cpp:218] Iteration 3900 (2.39052 iter/s, 5.01982s/12 iters), loss = 1.03882 +I0408 19:49:54.175880 24089 solver.cpp:237] Train net output #0: loss = 1.03882 (* 1 = 1.03882 loss) +I0408 19:49:54.175889 24089 sgd_solver.cpp:105] Iteration 3900, lr = 0.000507529 +I0408 19:49:59.231130 24089 solver.cpp:218] Iteration 3912 (2.37385 iter/s, 5.05507s/12 iters), loss = 0.879836 +I0408 19:49:59.231259 24089 solver.cpp:237] Train net output #0: loss = 0.879836 (* 1 = 0.879836 loss) +I0408 19:49:59.231273 24089 sgd_solver.cpp:105] Iteration 3912, lr = 0.000502895 +I0408 19:50:04.303176 24089 solver.cpp:218] Iteration 3924 (2.36605 iter/s, 5.07174s/12 iters), loss = 0.979702 +I0408 19:50:04.303225 24089 solver.cpp:237] Train net output #0: loss = 0.979702 (* 1 = 0.979702 loss) +I0408 19:50:04.303238 24089 sgd_solver.cpp:105] Iteration 3924, lr = 0.000498304 +I0408 19:50:09.304963 24089 solver.cpp:218] Iteration 3936 (2.39925 iter/s, 5.00156s/12 iters), loss = 0.77545 +I0408 19:50:09.305012 24089 solver.cpp:237] Train net output #0: loss = 0.77545 (* 1 = 0.77545 loss) +I0408 19:50:09.305024 24089 sgd_solver.cpp:105] Iteration 3936, lr = 0.000493755 +I0408 19:50:12.702337 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:50:14.357023 24089 solver.cpp:218] Iteration 3948 (2.37537 iter/s, 5.05183s/12 iters), loss = 1.04138 +I0408 19:50:14.357072 24089 solver.cpp:237] Train net output #0: loss = 1.04138 (* 1 = 1.04138 loss) +I0408 19:50:14.357084 24089 sgd_solver.cpp:105] Iteration 3948, lr = 0.000489247 +I0408 19:50:19.337921 24089 solver.cpp:218] Iteration 3960 (2.40931 iter/s, 4.98068s/12 iters), loss = 0.864222 +I0408 19:50:19.337983 24089 solver.cpp:237] Train net output #0: loss = 0.864222 (* 1 = 0.864222 loss) +I0408 19:50:19.337996 24089 sgd_solver.cpp:105] Iteration 3960, lr = 0.00048478 +I0408 19:50:24.409070 24089 solver.cpp:218] Iteration 3972 (2.36644 iter/s, 5.07091s/12 iters), loss = 1.11037 +I0408 19:50:24.409121 24089 solver.cpp:237] Train net output #0: loss = 1.11037 (* 1 = 1.11037 loss) +I0408 19:50:24.409132 24089 sgd_solver.cpp:105] Iteration 3972, lr = 0.000480354 +I0408 19:50:26.460273 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 19:50:32.847359 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 19:50:41.980146 24089 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 19:50:41.980170 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:50:44.857590 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:50:46.463346 24089 solver.cpp:397] Test net output #0: accuracy = 0.353554 +I0408 19:50:46.463394 24089 solver.cpp:397] Test net output #1: loss = 2.95623 (* 1 = 2.95623 loss) +I0408 19:50:48.360693 24089 solver.cpp:218] Iteration 3984 (0.501028 iter/s, 23.9508s/12 iters), loss = 0.848535 +I0408 19:50:48.360754 24089 solver.cpp:237] Train net output #0: loss = 0.848535 (* 1 = 0.848535 loss) +I0408 19:50:48.360769 24089 sgd_solver.cpp:105] Iteration 3984, lr = 0.000475969 +I0408 19:50:53.278964 24089 solver.cpp:218] Iteration 3996 (2.44 iter/s, 4.91804s/12 iters), loss = 0.776248 +I0408 19:50:53.279021 24089 solver.cpp:237] Train net output #0: loss = 0.776248 (* 1 = 0.776248 loss) +I0408 19:50:53.279034 24089 sgd_solver.cpp:105] Iteration 3996, lr = 0.000471623 +I0408 19:50:58.256978 24089 solver.cpp:218] Iteration 4008 (2.41071 iter/s, 4.97778s/12 iters), loss = 0.887154 +I0408 19:50:58.257021 24089 solver.cpp:237] Train net output #0: loss = 0.887154 (* 1 = 0.887154 loss) +I0408 19:50:58.257030 24089 sgd_solver.cpp:105] Iteration 4008, lr = 0.000467317 +I0408 19:51:03.295473 24089 solver.cpp:218] Iteration 4020 (2.38177 iter/s, 5.03827s/12 iters), loss = 0.729342 +I0408 19:51:03.295573 24089 solver.cpp:237] Train net output #0: loss = 0.729342 (* 1 = 0.729342 loss) +I0408 19:51:03.295584 24089 sgd_solver.cpp:105] Iteration 4020, lr = 0.000463051 +I0408 19:51:08.425900 24089 solver.cpp:218] Iteration 4032 (2.33911 iter/s, 5.13015s/12 iters), loss = 0.706442 +I0408 19:51:08.425945 24089 solver.cpp:237] Train net output #0: loss = 0.706442 (* 1 = 0.706442 loss) +I0408 19:51:08.425969 24089 sgd_solver.cpp:105] Iteration 4032, lr = 0.000458823 +I0408 19:51:13.475996 24089 solver.cpp:218] Iteration 4044 (2.3763 iter/s, 5.04987s/12 iters), loss = 1.00484 +I0408 19:51:13.476038 24089 solver.cpp:237] Train net output #0: loss = 1.00484 (* 1 = 1.00484 loss) +I0408 19:51:13.476048 24089 sgd_solver.cpp:105] Iteration 4044, lr = 0.000454634 +I0408 19:51:13.996997 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:51:18.517724 24089 solver.cpp:218] Iteration 4056 (2.38024 iter/s, 5.0415s/12 iters), loss = 0.916393 +I0408 19:51:18.517768 24089 solver.cpp:237] Train net output #0: loss = 0.916393 (* 1 = 0.916393 loss) +I0408 19:51:18.517778 24089 sgd_solver.cpp:105] Iteration 4056, lr = 0.000450484 +I0408 19:51:23.540439 24089 solver.cpp:218] Iteration 4068 (2.38925 iter/s, 5.02249s/12 iters), loss = 0.853268 +I0408 19:51:23.540482 24089 solver.cpp:237] Train net output #0: loss = 0.853268 (* 1 = 0.853268 loss) +I0408 19:51:23.540490 24089 sgd_solver.cpp:105] Iteration 4068, lr = 0.000446371 +I0408 19:51:28.100613 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 19:51:31.150862 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 19:51:35.932770 24089 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 19:51:35.932884 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:51:38.897940 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:51:40.515115 24089 solver.cpp:397] Test net output #0: accuracy = 0.359681 +I0408 19:51:40.515166 24089 solver.cpp:397] Test net output #1: loss = 2.94138 (* 1 = 2.94138 loss) +I0408 19:51:40.605695 24089 solver.cpp:218] Iteration 4080 (0.703209 iter/s, 17.0646s/12 iters), loss = 0.974843 +I0408 19:51:40.605749 24089 solver.cpp:237] Train net output #0: loss = 0.974843 (* 1 = 0.974843 loss) +I0408 19:51:40.605762 24089 sgd_solver.cpp:105] Iteration 4080, lr = 0.000442296 +I0408 19:51:44.892907 24089 solver.cpp:218] Iteration 4092 (2.79916 iter/s, 4.287s/12 iters), loss = 0.831614 +I0408 19:51:44.892961 24089 solver.cpp:237] Train net output #0: loss = 0.831614 (* 1 = 0.831614 loss) +I0408 19:51:44.892973 24089 sgd_solver.cpp:105] Iteration 4092, lr = 0.000438258 +I0408 19:51:49.968983 24089 solver.cpp:218] Iteration 4104 (2.36414 iter/s, 5.07584s/12 iters), loss = 0.885535 +I0408 19:51:49.969035 24089 solver.cpp:237] Train net output #0: loss = 0.885535 (* 1 = 0.885535 loss) +I0408 19:51:49.969046 24089 sgd_solver.cpp:105] Iteration 4104, lr = 0.000434256 +I0408 19:51:55.109022 24089 solver.cpp:218] Iteration 4116 (2.33472 iter/s, 5.13981s/12 iters), loss = 0.78438 +I0408 19:51:55.109066 24089 solver.cpp:237] Train net output #0: loss = 0.78438 (* 1 = 0.78438 loss) +I0408 19:51:55.109076 24089 sgd_solver.cpp:105] Iteration 4116, lr = 0.000430292 +I0408 19:52:00.061937 24089 solver.cpp:218] Iteration 4128 (2.42292 iter/s, 4.95269s/12 iters), loss = 0.812844 +I0408 19:52:00.061998 24089 solver.cpp:237] Train net output #0: loss = 0.812844 (* 1 = 0.812844 loss) +I0408 19:52:00.062011 24089 sgd_solver.cpp:105] Iteration 4128, lr = 0.000426363 +I0408 19:52:05.104036 24089 solver.cpp:218] Iteration 4140 (2.38008 iter/s, 5.04186s/12 iters), loss = 0.895193 +I0408 19:52:05.104084 24089 solver.cpp:237] Train net output #0: loss = 0.895193 (* 1 = 0.895193 loss) +I0408 19:52:05.104096 24089 sgd_solver.cpp:105] Iteration 4140, lr = 0.000422471 +I0408 19:52:07.975572 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:52:10.472788 24089 solver.cpp:218] Iteration 4152 (2.23526 iter/s, 5.36851s/12 iters), loss = 0.875935 +I0408 19:52:10.472842 24089 solver.cpp:237] Train net output #0: loss = 0.875935 (* 1 = 0.875935 loss) +I0408 19:52:10.472856 24089 sgd_solver.cpp:105] Iteration 4152, lr = 0.000418614 +I0408 19:52:12.128706 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:52:15.419054 24089 solver.cpp:218] Iteration 4164 (2.42619 iter/s, 4.94603s/12 iters), loss = 0.814054 +I0408 19:52:15.419121 24089 solver.cpp:237] Train net output #0: loss = 0.814054 (* 1 = 0.814054 loss) +I0408 19:52:15.419137 24089 sgd_solver.cpp:105] Iteration 4164, lr = 0.000414792 +I0408 19:52:20.432209 24089 solver.cpp:218] Iteration 4176 (2.39382 iter/s, 5.01291s/12 iters), loss = 0.940636 +I0408 19:52:20.432263 24089 solver.cpp:237] Train net output #0: loss = 0.940636 (* 1 = 0.940636 loss) +I0408 19:52:20.432276 24089 sgd_solver.cpp:105] Iteration 4176, lr = 0.000411005 +I0408 19:52:22.511003 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 19:52:27.776135 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 19:52:31.977494 24089 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 19:52:31.977524 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:52:34.855113 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:52:36.518201 24089 solver.cpp:397] Test net output #0: accuracy = 0.373774 +I0408 19:52:36.518252 24089 solver.cpp:397] Test net output #1: loss = 2.90657 (* 1 = 2.90657 loss) +I0408 19:52:38.636343 24089 solver.cpp:218] Iteration 4188 (0.659215 iter/s, 18.2035s/12 iters), loss = 0.90368 +I0408 19:52:38.636467 24089 solver.cpp:237] Train net output #0: loss = 0.90368 (* 1 = 0.90368 loss) +I0408 19:52:38.636477 24089 sgd_solver.cpp:105] Iteration 4188, lr = 0.000407253 +I0408 19:52:43.640154 24089 solver.cpp:218] Iteration 4200 (2.39832 iter/s, 5.0035s/12 iters), loss = 0.879181 +I0408 19:52:43.640208 24089 solver.cpp:237] Train net output #0: loss = 0.879181 (* 1 = 0.879181 loss) +I0408 19:52:43.640221 24089 sgd_solver.cpp:105] Iteration 4200, lr = 0.000403535 +I0408 19:52:48.709172 24089 solver.cpp:218] Iteration 4212 (2.36743 iter/s, 5.06878s/12 iters), loss = 0.75468 +I0408 19:52:48.709221 24089 solver.cpp:237] Train net output #0: loss = 0.75468 (* 1 = 0.75468 loss) +I0408 19:52:48.709233 24089 sgd_solver.cpp:105] Iteration 4212, lr = 0.00039985 +I0408 19:52:53.698792 24089 solver.cpp:218] Iteration 4224 (2.4051 iter/s, 4.98939s/12 iters), loss = 0.686508 +I0408 19:52:53.698834 24089 solver.cpp:237] Train net output #0: loss = 0.686508 (* 1 = 0.686508 loss) +I0408 19:52:53.698844 24089 sgd_solver.cpp:105] Iteration 4224, lr = 0.0003962 +I0408 19:52:58.776537 24089 solver.cpp:218] Iteration 4236 (2.36336 iter/s, 5.07751s/12 iters), loss = 0.736143 +I0408 19:52:58.776587 24089 solver.cpp:237] Train net output #0: loss = 0.736143 (* 1 = 0.736143 loss) +I0408 19:52:58.776597 24089 sgd_solver.cpp:105] Iteration 4236, lr = 0.000392583 +I0408 19:53:03.641685 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:53:03.870894 24089 solver.cpp:218] Iteration 4248 (2.35566 iter/s, 5.09412s/12 iters), loss = 0.854256 +I0408 19:53:03.870944 24089 solver.cpp:237] Train net output #0: loss = 0.854256 (* 1 = 0.854256 loss) +I0408 19:53:03.870955 24089 sgd_solver.cpp:105] Iteration 4248, lr = 0.000388999 +I0408 19:53:08.862648 24089 solver.cpp:218] Iteration 4260 (2.40408 iter/s, 4.99152s/12 iters), loss = 0.836308 +I0408 19:53:08.862725 24089 solver.cpp:237] Train net output #0: loss = 0.836308 (* 1 = 0.836308 loss) +I0408 19:53:08.862740 24089 sgd_solver.cpp:105] Iteration 4260, lr = 0.000385447 +I0408 19:53:13.796648 24089 solver.cpp:218] Iteration 4272 (2.43223 iter/s, 4.93374s/12 iters), loss = 0.837147 +I0408 19:53:13.796694 24089 solver.cpp:237] Train net output #0: loss = 0.837147 (* 1 = 0.837147 loss) +I0408 19:53:13.796705 24089 sgd_solver.cpp:105] Iteration 4272, lr = 0.000381928 +I0408 19:53:18.689942 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 19:53:23.068819 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 19:53:25.395825 24089 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 19:53:25.395853 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:53:28.166203 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:53:29.862298 24089 solver.cpp:397] Test net output #0: accuracy = 0.376838 +I0408 19:53:29.862349 24089 solver.cpp:397] Test net output #1: loss = 2.91594 (* 1 = 2.91594 loss) +I0408 19:53:29.952952 24089 solver.cpp:218] Iteration 4284 (0.742772 iter/s, 16.1557s/12 iters), loss = 0.855058 +I0408 19:53:29.953008 24089 solver.cpp:237] Train net output #0: loss = 0.855058 (* 1 = 0.855058 loss) +I0408 19:53:29.953019 24089 sgd_solver.cpp:105] Iteration 4284, lr = 0.000378441 +I0408 19:53:34.539718 24089 solver.cpp:218] Iteration 4296 (2.61635 iter/s, 4.58654s/12 iters), loss = 0.900933 +I0408 19:53:34.539762 24089 solver.cpp:237] Train net output #0: loss = 0.900933 (* 1 = 0.900933 loss) +I0408 19:53:34.539772 24089 sgd_solver.cpp:105] Iteration 4296, lr = 0.000374986 +I0408 19:53:39.765552 24089 solver.cpp:218] Iteration 4308 (2.29639 iter/s, 5.22559s/12 iters), loss = 0.915132 +I0408 19:53:39.765659 24089 solver.cpp:237] Train net output #0: loss = 0.915132 (* 1 = 0.915132 loss) +I0408 19:53:39.765672 24089 sgd_solver.cpp:105] Iteration 4308, lr = 0.000371563 +I0408 19:53:44.786072 24089 solver.cpp:218] Iteration 4320 (2.39033 iter/s, 5.02023s/12 iters), loss = 0.845165 +I0408 19:53:44.786125 24089 solver.cpp:237] Train net output #0: loss = 0.845165 (* 1 = 0.845165 loss) +I0408 19:53:44.786137 24089 sgd_solver.cpp:105] Iteration 4320, lr = 0.00036817 +I0408 19:53:49.868078 24089 solver.cpp:218] Iteration 4332 (2.36138 iter/s, 5.08177s/12 iters), loss = 0.595657 +I0408 19:53:49.868127 24089 solver.cpp:237] Train net output #0: loss = 0.595657 (* 1 = 0.595657 loss) +I0408 19:53:49.868140 24089 sgd_solver.cpp:105] Iteration 4332, lr = 0.000364809 +I0408 19:53:54.879910 24089 solver.cpp:218] Iteration 4344 (2.39445 iter/s, 5.0116s/12 iters), loss = 1.05033 +I0408 19:53:54.879959 24089 solver.cpp:237] Train net output #0: loss = 1.05033 (* 1 = 1.05033 loss) +I0408 19:53:54.879971 24089 sgd_solver.cpp:105] Iteration 4344, lr = 0.000361478 +I0408 19:53:56.795452 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:53:59.928306 24089 solver.cpp:218] Iteration 4356 (2.3771 iter/s, 5.04816s/12 iters), loss = 0.726241 +I0408 19:53:59.928359 24089 solver.cpp:237] Train net output #0: loss = 0.726241 (* 1 = 0.726241 loss) +I0408 19:53:59.928370 24089 sgd_solver.cpp:105] Iteration 4356, lr = 0.000358178 +I0408 19:54:04.996394 24089 solver.cpp:218] Iteration 4368 (2.36787 iter/s, 5.06785s/12 iters), loss = 0.771438 +I0408 19:54:04.996452 24089 solver.cpp:237] Train net output #0: loss = 0.771438 (* 1 = 0.771438 loss) +I0408 19:54:04.996465 24089 sgd_solver.cpp:105] Iteration 4368, lr = 0.000354908 +I0408 19:54:10.233413 24089 solver.cpp:218] Iteration 4380 (2.29149 iter/s, 5.23677s/12 iters), loss = 0.641464 +I0408 19:54:10.233558 24089 solver.cpp:237] Train net output #0: loss = 0.641464 (* 1 = 0.641464 loss) +I0408 19:54:10.233572 24089 sgd_solver.cpp:105] Iteration 4380, lr = 0.000351668 +I0408 19:54:12.289261 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 19:54:15.335263 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 19:54:17.662901 24089 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 19:54:17.662930 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:54:20.524401 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:54:22.268052 24089 solver.cpp:397] Test net output #0: accuracy = 0.373774 +I0408 19:54:22.268095 24089 solver.cpp:397] Test net output #1: loss = 2.95061 (* 1 = 2.95061 loss) +I0408 19:54:24.047399 24089 solver.cpp:218] Iteration 4392 (0.868725 iter/s, 13.8134s/12 iters), loss = 0.697688 +I0408 19:54:24.047444 24089 solver.cpp:237] Train net output #0: loss = 0.697688 (* 1 = 0.697688 loss) +I0408 19:54:24.047453 24089 sgd_solver.cpp:105] Iteration 4392, lr = 0.000348457 +I0408 19:54:29.052701 24089 solver.cpp:218] Iteration 4404 (2.39757 iter/s, 5.00506s/12 iters), loss = 0.78107 +I0408 19:54:29.052760 24089 solver.cpp:237] Train net output #0: loss = 0.78107 (* 1 = 0.78107 loss) +I0408 19:54:29.052774 24089 sgd_solver.cpp:105] Iteration 4404, lr = 0.000345276 +I0408 19:54:34.356935 24089 solver.cpp:218] Iteration 4416 (2.26245 iter/s, 5.30398s/12 iters), loss = 0.751669 +I0408 19:54:34.356983 24089 solver.cpp:237] Train net output #0: loss = 0.751669 (* 1 = 0.751669 loss) +I0408 19:54:34.356993 24089 sgd_solver.cpp:105] Iteration 4416, lr = 0.000342124 +I0408 19:54:39.387787 24089 solver.cpp:218] Iteration 4428 (2.38539 iter/s, 5.03062s/12 iters), loss = 0.726407 +I0408 19:54:39.387831 24089 solver.cpp:237] Train net output #0: loss = 0.726407 (* 1 = 0.726407 loss) +I0408 19:54:39.387840 24089 sgd_solver.cpp:105] Iteration 4428, lr = 0.000339 +I0408 19:54:44.441169 24089 solver.cpp:218] Iteration 4440 (2.37475 iter/s, 5.05315s/12 iters), loss = 0.700346 +I0408 19:54:44.441231 24089 solver.cpp:237] Train net output #0: loss = 0.700346 (* 1 = 0.700346 loss) +I0408 19:54:44.441241 24089 sgd_solver.cpp:105] Iteration 4440, lr = 0.000335905 +I0408 19:54:48.636658 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:54:49.685493 24089 solver.cpp:218] Iteration 4452 (2.2883 iter/s, 5.24407s/12 iters), loss = 0.664565 +I0408 19:54:49.685540 24089 solver.cpp:237] Train net output #0: loss = 0.664565 (* 1 = 0.664565 loss) +I0408 19:54:49.685550 24089 sgd_solver.cpp:105] Iteration 4452, lr = 0.000332839 +I0408 19:54:54.944571 24089 solver.cpp:218] Iteration 4464 (2.28187 iter/s, 5.25883s/12 iters), loss = 0.788414 +I0408 19:54:54.944614 24089 solver.cpp:237] Train net output #0: loss = 0.788414 (* 1 = 0.788414 loss) +I0408 19:54:54.944624 24089 sgd_solver.cpp:105] Iteration 4464, lr = 0.0003298 +I0408 19:54:59.938247 24089 solver.cpp:218] Iteration 4476 (2.40315 iter/s, 4.99344s/12 iters), loss = 0.805279 +I0408 19:54:59.938297 24089 solver.cpp:237] Train net output #0: loss = 0.805279 (* 1 = 0.805279 loss) +I0408 19:54:59.938309 24089 sgd_solver.cpp:105] Iteration 4476, lr = 0.000326789 +I0408 19:55:04.620388 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 19:55:07.704227 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 19:55:10.012348 24089 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 19:55:10.012373 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:55:12.686378 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:55:14.461318 24089 solver.cpp:397] Test net output #0: accuracy = 0.365809 +I0408 19:55:14.461436 24089 solver.cpp:397] Test net output #1: loss = 2.97764 (* 1 = 2.97764 loss) +I0408 19:55:14.551739 24089 solver.cpp:218] Iteration 4488 (0.821191 iter/s, 14.6129s/12 iters), loss = 0.734727 +I0408 19:55:14.551782 24089 solver.cpp:237] Train net output #0: loss = 0.734727 (* 1 = 0.734727 loss) +I0408 19:55:14.551791 24089 sgd_solver.cpp:105] Iteration 4488, lr = 0.000323805 +I0408 19:55:18.890751 24089 solver.cpp:218] Iteration 4500 (2.76574 iter/s, 4.3388s/12 iters), loss = 0.76671 +I0408 19:55:18.890803 24089 solver.cpp:237] Train net output #0: loss = 0.76671 (* 1 = 0.76671 loss) +I0408 19:55:18.890815 24089 sgd_solver.cpp:105] Iteration 4500, lr = 0.000320849 +I0408 19:55:24.028825 24089 solver.cpp:218] Iteration 4512 (2.33562 iter/s, 5.13783s/12 iters), loss = 0.462069 +I0408 19:55:24.028877 24089 solver.cpp:237] Train net output #0: loss = 0.462069 (* 1 = 0.462069 loss) +I0408 19:55:24.028889 24089 sgd_solver.cpp:105] Iteration 4512, lr = 0.00031792 +I0408 19:55:29.135233 24089 solver.cpp:218] Iteration 4524 (2.3501 iter/s, 5.10617s/12 iters), loss = 0.635967 +I0408 19:55:29.135277 24089 solver.cpp:237] Train net output #0: loss = 0.635967 (* 1 = 0.635967 loss) +I0408 19:55:29.135284 24089 sgd_solver.cpp:105] Iteration 4524, lr = 0.000315017 +I0408 19:55:34.190311 24089 solver.cpp:218] Iteration 4536 (2.37396 iter/s, 5.05485s/12 iters), loss = 0.752808 +I0408 19:55:34.190351 24089 solver.cpp:237] Train net output #0: loss = 0.752808 (* 1 = 0.752808 loss) +I0408 19:55:34.190359 24089 sgd_solver.cpp:105] Iteration 4536, lr = 0.000312141 +I0408 19:55:39.251941 24089 solver.cpp:218] Iteration 4548 (2.37089 iter/s, 5.0614s/12 iters), loss = 0.620436 +I0408 19:55:39.251991 24089 solver.cpp:237] Train net output #0: loss = 0.620436 (* 1 = 0.620436 loss) +I0408 19:55:39.252002 24089 sgd_solver.cpp:105] Iteration 4548, lr = 0.000309291 +I0408 19:55:40.532120 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:55:44.466665 24089 solver.cpp:218] Iteration 4560 (2.30129 iter/s, 5.21447s/12 iters), loss = 0.541682 +I0408 19:55:44.466796 24089 solver.cpp:237] Train net output #0: loss = 0.541682 (* 1 = 0.541682 loss) +I0408 19:55:44.466809 24089 sgd_solver.cpp:105] Iteration 4560, lr = 0.000306468 +I0408 19:55:49.547765 24089 solver.cpp:218] Iteration 4572 (2.36184 iter/s, 5.08078s/12 iters), loss = 0.6514 +I0408 19:55:49.547814 24089 solver.cpp:237] Train net output #0: loss = 0.6514 (* 1 = 0.6514 loss) +I0408 19:55:49.547827 24089 sgd_solver.cpp:105] Iteration 4572, lr = 0.00030367 +I0408 19:55:54.604722 24089 solver.cpp:218] Iteration 4584 (2.37308 iter/s, 5.05672s/12 iters), loss = 0.621551 +I0408 19:55:54.604773 24089 solver.cpp:237] Train net output #0: loss = 0.621551 (* 1 = 0.621551 loss) +I0408 19:55:54.604785 24089 sgd_solver.cpp:105] Iteration 4584, lr = 0.000300897 +I0408 19:55:56.635720 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 19:55:59.664165 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 19:56:02.006678 24089 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 19:56:02.006705 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:56:04.664822 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:56:06.487732 24089 solver.cpp:397] Test net output #0: accuracy = 0.36826 +I0408 19:56:06.487783 24089 solver.cpp:397] Test net output #1: loss = 2.96024 (* 1 = 2.96024 loss) +I0408 19:56:08.310065 24089 solver.cpp:218] Iteration 4596 (0.875606 iter/s, 13.7048s/12 iters), loss = 0.493538 +I0408 19:56:08.310129 24089 solver.cpp:237] Train net output #0: loss = 0.493538 (* 1 = 0.493538 loss) +I0408 19:56:08.310142 24089 sgd_solver.cpp:105] Iteration 4596, lr = 0.00029815 +I0408 19:56:13.248772 24089 solver.cpp:218] Iteration 4608 (2.42991 iter/s, 4.93846s/12 iters), loss = 0.672973 +I0408 19:56:13.248827 24089 solver.cpp:237] Train net output #0: loss = 0.672973 (* 1 = 0.672973 loss) +I0408 19:56:13.248840 24089 sgd_solver.cpp:105] Iteration 4608, lr = 0.000295428 +I0408 19:56:18.204015 24089 solver.cpp:218] Iteration 4620 (2.4218 iter/s, 4.955s/12 iters), loss = 0.562575 +I0408 19:56:18.204205 24089 solver.cpp:237] Train net output #0: loss = 0.562575 (* 1 = 0.562575 loss) +I0408 19:56:18.204226 24089 sgd_solver.cpp:105] Iteration 4620, lr = 0.000292731 +I0408 19:56:23.502914 24089 solver.cpp:218] Iteration 4632 (2.26478 iter/s, 5.29853s/12 iters), loss = 0.624379 +I0408 19:56:23.502954 24089 solver.cpp:237] Train net output #0: loss = 0.624379 (* 1 = 0.624379 loss) +I0408 19:56:23.502962 24089 sgd_solver.cpp:105] Iteration 4632, lr = 0.000290058 +I0408 19:56:28.843686 24089 solver.cpp:218] Iteration 4644 (2.24697 iter/s, 5.34053s/12 iters), loss = 0.449626 +I0408 19:56:28.843734 24089 solver.cpp:237] Train net output #0: loss = 0.449626 (* 1 = 0.449626 loss) +I0408 19:56:28.843746 24089 sgd_solver.cpp:105] Iteration 4644, lr = 0.00028741 +I0408 19:56:32.608307 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:56:34.346220 24089 solver.cpp:218] Iteration 4656 (2.18092 iter/s, 5.50227s/12 iters), loss = 0.670519 +I0408 19:56:34.346267 24089 solver.cpp:237] Train net output #0: loss = 0.670519 (* 1 = 0.670519 loss) +I0408 19:56:34.346278 24089 sgd_solver.cpp:105] Iteration 4656, lr = 0.000284786 +I0408 19:56:39.490777 24089 solver.cpp:218] Iteration 4668 (2.33267 iter/s, 5.14432s/12 iters), loss = 0.631989 +I0408 19:56:39.490823 24089 solver.cpp:237] Train net output #0: loss = 0.631989 (* 1 = 0.631989 loss) +I0408 19:56:39.490834 24089 sgd_solver.cpp:105] Iteration 4668, lr = 0.000282186 +I0408 19:56:44.567314 24089 solver.cpp:218] Iteration 4680 (2.36393 iter/s, 5.0763s/12 iters), loss = 0.468385 +I0408 19:56:44.567363 24089 solver.cpp:237] Train net output #0: loss = 0.468385 (* 1 = 0.468385 loss) +I0408 19:56:44.567371 24089 sgd_solver.cpp:105] Iteration 4680, lr = 0.00027961 +I0408 19:56:49.197664 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 19:56:54.081760 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 19:56:57.921494 24089 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 19:56:57.921519 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:57:00.674130 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:57:02.529644 24089 solver.cpp:397] Test net output #0: accuracy = 0.379902 +I0408 19:57:02.529693 24089 solver.cpp:397] Test net output #1: loss = 2.95119 (* 1 = 2.95119 loss) +I0408 19:57:02.620323 24089 solver.cpp:218] Iteration 4692 (0.664735 iter/s, 18.0523s/12 iters), loss = 0.797683 +I0408 19:57:02.620369 24089 solver.cpp:237] Train net output #0: loss = 0.797683 (* 1 = 0.797683 loss) +I0408 19:57:02.620380 24089 sgd_solver.cpp:105] Iteration 4692, lr = 0.000277057 +I0408 19:57:06.998030 24089 solver.cpp:218] Iteration 4704 (2.7413 iter/s, 4.37749s/12 iters), loss = 0.563672 +I0408 19:57:06.998085 24089 solver.cpp:237] Train net output #0: loss = 0.563672 (* 1 = 0.563672 loss) +I0408 19:57:06.998096 24089 sgd_solver.cpp:105] Iteration 4704, lr = 0.000274528 +I0408 19:57:12.057588 24089 solver.cpp:218] Iteration 4716 (2.37186 iter/s, 5.05931s/12 iters), loss = 0.598687 +I0408 19:57:12.057638 24089 solver.cpp:237] Train net output #0: loss = 0.598687 (* 1 = 0.598687 loss) +I0408 19:57:12.057651 24089 sgd_solver.cpp:105] Iteration 4716, lr = 0.000272021 +I0408 19:57:17.125281 24089 solver.cpp:218] Iteration 4728 (2.36805 iter/s, 5.06745s/12 iters), loss = 0.497211 +I0408 19:57:17.125335 24089 solver.cpp:237] Train net output #0: loss = 0.497211 (* 1 = 0.497211 loss) +I0408 19:57:17.125347 24089 sgd_solver.cpp:105] Iteration 4728, lr = 0.000269538 +I0408 19:57:22.220749 24089 solver.cpp:218] Iteration 4740 (2.35515 iter/s, 5.09522s/12 iters), loss = 0.729839 +I0408 19:57:22.220873 24089 solver.cpp:237] Train net output #0: loss = 0.729839 (* 1 = 0.729839 loss) +I0408 19:57:22.220887 24089 sgd_solver.cpp:105] Iteration 4740, lr = 0.000267077 +I0408 19:57:27.198060 24089 solver.cpp:218] Iteration 4752 (2.41109 iter/s, 4.977s/12 iters), loss = 0.659121 +I0408 19:57:27.198115 24089 solver.cpp:237] Train net output #0: loss = 0.659121 (* 1 = 0.659121 loss) +I0408 19:57:27.198127 24089 sgd_solver.cpp:105] Iteration 4752, lr = 0.000264639 +I0408 19:57:27.735671 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:57:32.247992 24089 solver.cpp:218] Iteration 4764 (2.37638 iter/s, 5.04969s/12 iters), loss = 0.686805 +I0408 19:57:32.248042 24089 solver.cpp:237] Train net output #0: loss = 0.686805 (* 1 = 0.686805 loss) +I0408 19:57:32.248054 24089 sgd_solver.cpp:105] Iteration 4764, lr = 0.000262223 +I0408 19:57:37.302393 24089 solver.cpp:218] Iteration 4776 (2.37428 iter/s, 5.05416s/12 iters), loss = 0.624456 +I0408 19:57:37.302448 24089 solver.cpp:237] Train net output #0: loss = 0.624456 (* 1 = 0.624456 loss) +I0408 19:57:37.302459 24089 sgd_solver.cpp:105] Iteration 4776, lr = 0.000259829 +I0408 19:57:42.364202 24089 solver.cpp:218] Iteration 4788 (2.37081 iter/s, 5.06156s/12 iters), loss = 0.76101 +I0408 19:57:42.364253 24089 solver.cpp:237] Train net output #0: loss = 0.76101 (* 1 = 0.76101 loss) +I0408 19:57:42.364264 24089 sgd_solver.cpp:105] Iteration 4788, lr = 0.000257457 +I0408 19:57:44.376642 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 19:57:49.571918 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 19:57:51.896627 24089 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 19:57:51.896654 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:57:54.424347 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:57:56.332674 24089 solver.cpp:397] Test net output #0: accuracy = 0.379289 +I0408 19:57:56.332724 24089 solver.cpp:397] Test net output #1: loss = 2.99402 (* 1 = 2.99402 loss) +I0408 19:57:58.251526 24089 solver.cpp:218] Iteration 4800 (0.755349 iter/s, 15.8867s/12 iters), loss = 0.640514 +I0408 19:57:58.251577 24089 solver.cpp:237] Train net output #0: loss = 0.640514 (* 1 = 0.640514 loss) +I0408 19:57:58.251590 24089 sgd_solver.cpp:105] Iteration 4800, lr = 0.000255106 +I0408 19:58:03.211521 24089 solver.cpp:218] Iteration 4812 (2.41947 iter/s, 4.95976s/12 iters), loss = 0.511422 +I0408 19:58:03.211563 24089 solver.cpp:237] Train net output #0: loss = 0.511422 (* 1 = 0.511422 loss) +I0408 19:58:03.211575 24089 sgd_solver.cpp:105] Iteration 4812, lr = 0.000252777 +I0408 19:58:08.458626 24089 solver.cpp:218] Iteration 4824 (2.28708 iter/s, 5.24686s/12 iters), loss = 0.73034 +I0408 19:58:08.458678 24089 solver.cpp:237] Train net output #0: loss = 0.73034 (* 1 = 0.73034 loss) +I0408 19:58:08.458691 24089 sgd_solver.cpp:105] Iteration 4824, lr = 0.000250469 +I0408 19:58:13.832437 24089 solver.cpp:218] Iteration 4836 (2.23316 iter/s, 5.37356s/12 iters), loss = 0.486358 +I0408 19:58:13.832487 24089 solver.cpp:237] Train net output #0: loss = 0.486358 (* 1 = 0.486358 loss) +I0408 19:58:13.832500 24089 sgd_solver.cpp:105] Iteration 4836, lr = 0.000248183 +I0408 19:58:15.900152 24089 blocking_queue.cpp:49] Waiting for data +I0408 19:58:18.889451 24089 solver.cpp:218] Iteration 4848 (2.37306 iter/s, 5.05677s/12 iters), loss = 0.469408 +I0408 19:58:18.889501 24089 solver.cpp:237] Train net output #0: loss = 0.469408 (* 1 = 0.469408 loss) +I0408 19:58:18.889513 24089 sgd_solver.cpp:105] Iteration 4848, lr = 0.000245917 +I0408 19:58:21.571985 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:58:23.981082 24089 solver.cpp:218] Iteration 4860 (2.35692 iter/s, 5.09139s/12 iters), loss = 0.524389 +I0408 19:58:23.981128 24089 solver.cpp:237] Train net output #0: loss = 0.524389 (* 1 = 0.524389 loss) +I0408 19:58:23.981137 24089 sgd_solver.cpp:105] Iteration 4860, lr = 0.000243672 +I0408 19:58:29.006829 24089 solver.cpp:218] Iteration 4872 (2.38782 iter/s, 5.02551s/12 iters), loss = 0.474421 +I0408 19:58:29.006964 24089 solver.cpp:237] Train net output #0: loss = 0.474421 (* 1 = 0.474421 loss) +I0408 19:58:29.006974 24089 sgd_solver.cpp:105] Iteration 4872, lr = 0.000241447 +I0408 19:58:34.338749 24089 solver.cpp:218] Iteration 4884 (2.25074 iter/s, 5.33158s/12 iters), loss = 0.570858 +I0408 19:58:34.338804 24089 solver.cpp:237] Train net output #0: loss = 0.570858 (* 1 = 0.570858 loss) +I0408 19:58:34.338814 24089 sgd_solver.cpp:105] Iteration 4884, lr = 0.000239243 +I0408 19:58:38.910750 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 19:58:42.778506 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 19:58:45.894853 24089 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 19:58:45.894878 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:58:48.480729 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:58:50.474071 24089 solver.cpp:397] Test net output #0: accuracy = 0.375613 +I0408 19:58:50.474109 24089 solver.cpp:397] Test net output #1: loss = 2.9871 (* 1 = 2.9871 loss) +I0408 19:58:50.564649 24089 solver.cpp:218] Iteration 4896 (0.739588 iter/s, 16.2253s/12 iters), loss = 0.657843 +I0408 19:58:50.564694 24089 solver.cpp:237] Train net output #0: loss = 0.657843 (* 1 = 0.657843 loss) +I0408 19:58:50.564704 24089 sgd_solver.cpp:105] Iteration 4896, lr = 0.000237058 +I0408 19:58:55.151072 24089 solver.cpp:218] Iteration 4908 (2.61655 iter/s, 4.5862s/12 iters), loss = 0.508736 +I0408 19:58:55.151115 24089 solver.cpp:237] Train net output #0: loss = 0.508736 (* 1 = 0.508736 loss) +I0408 19:58:55.151124 24089 sgd_solver.cpp:105] Iteration 4908, lr = 0.000234894 +I0408 19:59:00.305411 24089 solver.cpp:218] Iteration 4920 (2.32825 iter/s, 5.1541s/12 iters), loss = 0.53784 +I0408 19:59:00.305531 24089 solver.cpp:237] Train net output #0: loss = 0.53784 (* 1 = 0.53784 loss) +I0408 19:59:00.305544 24089 sgd_solver.cpp:105] Iteration 4920, lr = 0.00023275 +I0408 19:59:05.441224 24089 solver.cpp:218] Iteration 4932 (2.33668 iter/s, 5.1355s/12 iters), loss = 0.504109 +I0408 19:59:05.441275 24089 solver.cpp:237] Train net output #0: loss = 0.504109 (* 1 = 0.504109 loss) +I0408 19:59:05.441287 24089 sgd_solver.cpp:105] Iteration 4932, lr = 0.000230625 +I0408 19:59:10.420326 24089 solver.cpp:218] Iteration 4944 (2.41019 iter/s, 4.97886s/12 iters), loss = 0.628162 +I0408 19:59:10.420378 24089 solver.cpp:237] Train net output #0: loss = 0.628162 (* 1 = 0.628162 loss) +I0408 19:59:10.420389 24089 sgd_solver.cpp:105] Iteration 4944, lr = 0.000228519 +I0408 19:59:15.212296 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:59:15.416049 24089 solver.cpp:218] Iteration 4956 (2.40217 iter/s, 4.99548s/12 iters), loss = 0.501801 +I0408 19:59:15.416090 24089 solver.cpp:237] Train net output #0: loss = 0.501801 (* 1 = 0.501801 loss) +I0408 19:59:15.416100 24089 sgd_solver.cpp:105] Iteration 4956, lr = 0.000226433 +I0408 19:59:20.454931 24089 solver.cpp:218] Iteration 4968 (2.3816 iter/s, 5.03864s/12 iters), loss = 0.56314 +I0408 19:59:20.454985 24089 solver.cpp:237] Train net output #0: loss = 0.56314 (* 1 = 0.56314 loss) +I0408 19:59:20.454998 24089 sgd_solver.cpp:105] Iteration 4968, lr = 0.000224365 +I0408 19:59:25.644081 24089 solver.cpp:218] Iteration 4980 (2.31263 iter/s, 5.1889s/12 iters), loss = 0.510791 +I0408 19:59:25.644130 24089 solver.cpp:237] Train net output #0: loss = 0.510791 (* 1 = 0.510791 loss) +I0408 19:59:25.644142 24089 sgd_solver.cpp:105] Iteration 4980, lr = 0.000222317 +I0408 19:59:30.694044 24089 solver.cpp:218] Iteration 4992 (2.37637 iter/s, 5.04971s/12 iters), loss = 0.671683 +I0408 19:59:30.696604 24089 solver.cpp:237] Train net output #0: loss = 0.671683 (* 1 = 0.671683 loss) +I0408 19:59:30.696619 24089 sgd_solver.cpp:105] Iteration 4992, lr = 0.000220287 +I0408 19:59:32.750808 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 19:59:35.720232 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 19:59:38.044495 24089 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 19:59:38.044523 24089 net.cpp:676] Ignoring source layer train-data +I0408 19:59:40.538306 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:59:42.511658 24089 solver.cpp:397] Test net output #0: accuracy = 0.387868 +I0408 19:59:42.511710 24089 solver.cpp:397] Test net output #1: loss = 3.00751 (* 1 = 3.00751 loss) +I0408 19:59:44.488404 24089 solver.cpp:218] Iteration 5004 (0.870114 iter/s, 13.7913s/12 iters), loss = 0.482759 +I0408 19:59:44.488454 24089 solver.cpp:237] Train net output #0: loss = 0.482759 (* 1 = 0.482759 loss) +I0408 19:59:44.488466 24089 sgd_solver.cpp:105] Iteration 5004, lr = 0.000218276 +I0408 19:59:49.562685 24089 solver.cpp:218] Iteration 5016 (2.36498 iter/s, 5.07403s/12 iters), loss = 0.667622 +I0408 19:59:49.562732 24089 solver.cpp:237] Train net output #0: loss = 0.667622 (* 1 = 0.667622 loss) +I0408 19:59:49.562743 24089 sgd_solver.cpp:105] Iteration 5016, lr = 0.000216283 +I0408 19:59:54.653918 24089 solver.cpp:218] Iteration 5028 (2.3571 iter/s, 5.09099s/12 iters), loss = 0.414306 +I0408 19:59:54.653970 24089 solver.cpp:237] Train net output #0: loss = 0.414306 (* 1 = 0.414306 loss) +I0408 19:59:54.653980 24089 sgd_solver.cpp:105] Iteration 5028, lr = 0.000214309 +I0408 19:59:59.817983 24089 solver.cpp:218] Iteration 5040 (2.32386 iter/s, 5.16383s/12 iters), loss = 0.499038 +I0408 19:59:59.818029 24089 solver.cpp:237] Train net output #0: loss = 0.499038 (* 1 = 0.499038 loss) +I0408 19:59:59.818043 24089 sgd_solver.cpp:105] Iteration 5040, lr = 0.000212352 +I0408 20:00:05.212698 24089 solver.cpp:218] Iteration 5052 (2.2245 iter/s, 5.39446s/12 iters), loss = 0.558548 +I0408 20:00:05.212813 24089 solver.cpp:237] Train net output #0: loss = 0.558548 (* 1 = 0.558548 loss) +I0408 20:00:05.212827 24089 sgd_solver.cpp:105] Iteration 5052, lr = 0.000210414 +I0408 20:00:07.363214 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:00:10.601851 24089 solver.cpp:218] Iteration 5064 (2.22683 iter/s, 5.38883s/12 iters), loss = 0.502608 +I0408 20:00:10.601900 24089 solver.cpp:237] Train net output #0: loss = 0.502608 (* 1 = 0.502608 loss) +I0408 20:00:10.601912 24089 sgd_solver.cpp:105] Iteration 5064, lr = 0.000208493 +I0408 20:00:15.846912 24089 solver.cpp:218] Iteration 5076 (2.28798 iter/s, 5.2448s/12 iters), loss = 0.534155 +I0408 20:00:15.846957 24089 solver.cpp:237] Train net output #0: loss = 0.534155 (* 1 = 0.534155 loss) +I0408 20:00:15.846967 24089 sgd_solver.cpp:105] Iteration 5076, lr = 0.000206589 +I0408 20:00:21.201413 24089 solver.cpp:218] Iteration 5088 (2.24121 iter/s, 5.35425s/12 iters), loss = 0.639827 +I0408 20:00:21.201455 24089 solver.cpp:237] Train net output #0: loss = 0.639827 (* 1 = 0.639827 loss) +I0408 20:00:21.201463 24089 sgd_solver.cpp:105] Iteration 5088, lr = 0.000204703 +I0408 20:00:25.821593 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 20:00:28.816045 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 20:00:31.139433 24089 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 20:00:31.139459 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:00:33.587332 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:00:35.606271 24089 solver.cpp:397] Test net output #0: accuracy = 0.385417 +I0408 20:00:35.606426 24089 solver.cpp:397] Test net output #1: loss = 3.00362 (* 1 = 3.00362 loss) +I0408 20:00:35.697340 24089 solver.cpp:218] Iteration 5100 (0.827852 iter/s, 14.4953s/12 iters), loss = 0.482044 +I0408 20:00:35.697386 24089 solver.cpp:237] Train net output #0: loss = 0.482044 (* 1 = 0.482044 loss) +I0408 20:00:35.697394 24089 sgd_solver.cpp:105] Iteration 5100, lr = 0.000202834 +I0408 20:00:39.979691 24089 solver.cpp:218] Iteration 5112 (2.80234 iter/s, 4.28214s/12 iters), loss = 0.538747 +I0408 20:00:39.979737 24089 solver.cpp:237] Train net output #0: loss = 0.538747 (* 1 = 0.538747 loss) +I0408 20:00:39.979746 24089 sgd_solver.cpp:105] Iteration 5112, lr = 0.000200982 +I0408 20:00:44.985329 24089 solver.cpp:218] Iteration 5124 (2.39741 iter/s, 5.00539s/12 iters), loss = 0.467969 +I0408 20:00:44.985379 24089 solver.cpp:237] Train net output #0: loss = 0.467969 (* 1 = 0.467969 loss) +I0408 20:00:44.985390 24089 sgd_solver.cpp:105] Iteration 5124, lr = 0.000199147 +I0408 20:00:50.042901 24089 solver.cpp:218] Iteration 5136 (2.3728 iter/s, 5.05732s/12 iters), loss = 0.481282 +I0408 20:00:50.042955 24089 solver.cpp:237] Train net output #0: loss = 0.481282 (* 1 = 0.481282 loss) +I0408 20:00:50.042969 24089 sgd_solver.cpp:105] Iteration 5136, lr = 0.000197329 +I0408 20:00:55.178947 24089 solver.cpp:218] Iteration 5148 (2.33654 iter/s, 5.1358s/12 iters), loss = 0.476492 +I0408 20:00:55.178987 24089 solver.cpp:237] Train net output #0: loss = 0.476492 (* 1 = 0.476492 loss) +I0408 20:00:55.178997 24089 sgd_solver.cpp:105] Iteration 5148, lr = 0.000195528 +I0408 20:00:59.242978 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:01:00.193137 24089 solver.cpp:218] Iteration 5160 (2.39332 iter/s, 5.01395s/12 iters), loss = 0.523683 +I0408 20:01:00.193189 24089 solver.cpp:237] Train net output #0: loss = 0.523683 (* 1 = 0.523683 loss) +I0408 20:01:00.193200 24089 sgd_solver.cpp:105] Iteration 5160, lr = 0.000193742 +I0408 20:01:05.276633 24089 solver.cpp:218] Iteration 5172 (2.3607 iter/s, 5.08325s/12 iters), loss = 0.632144 +I0408 20:01:05.276677 24089 solver.cpp:237] Train net output #0: loss = 0.632144 (* 1 = 0.632144 loss) +I0408 20:01:05.276687 24089 sgd_solver.cpp:105] Iteration 5172, lr = 0.000191974 +I0408 20:01:10.301754 24089 solver.cpp:218] Iteration 5184 (2.38812 iter/s, 5.02488s/12 iters), loss = 0.521182 +I0408 20:01:10.301851 24089 solver.cpp:237] Train net output #0: loss = 0.521182 (* 1 = 0.521182 loss) +I0408 20:01:10.301862 24089 sgd_solver.cpp:105] Iteration 5184, lr = 0.000190221 +I0408 20:01:15.272729 24089 solver.cpp:218] Iteration 5196 (2.41415 iter/s, 4.97069s/12 iters), loss = 0.490814 +I0408 20:01:15.272773 24089 solver.cpp:237] Train net output #0: loss = 0.490814 (* 1 = 0.490814 loss) +I0408 20:01:15.272783 24089 sgd_solver.cpp:105] Iteration 5196, lr = 0.000188484 +I0408 20:01:17.347101 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 20:01:22.143410 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 20:01:25.375661 24089 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 20:01:25.375682 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:01:27.780788 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:01:30.013168 24089 solver.cpp:397] Test net output #0: accuracy = 0.392157 +I0408 20:01:30.013216 24089 solver.cpp:397] Test net output #1: loss = 2.99665 (* 1 = 2.99665 loss) +I0408 20:01:32.005431 24089 solver.cpp:218] Iteration 5208 (0.717187 iter/s, 16.732s/12 iters), loss = 0.537528 +I0408 20:01:32.005479 24089 solver.cpp:237] Train net output #0: loss = 0.537528 (* 1 = 0.537528 loss) +I0408 20:01:32.005491 24089 sgd_solver.cpp:105] Iteration 5208, lr = 0.000186764 +I0408 20:01:37.272027 24089 solver.cpp:218] Iteration 5220 (2.27862 iter/s, 5.26634s/12 iters), loss = 0.383017 +I0408 20:01:37.272079 24089 solver.cpp:237] Train net output #0: loss = 0.383017 (* 1 = 0.383017 loss) +I0408 20:01:37.272092 24089 sgd_solver.cpp:105] Iteration 5220, lr = 0.000185058 +I0408 20:01:42.557425 24089 solver.cpp:218] Iteration 5232 (2.27052 iter/s, 5.28514s/12 iters), loss = 0.627874 +I0408 20:01:42.557544 24089 solver.cpp:237] Train net output #0: loss = 0.627874 (* 1 = 0.627874 loss) +I0408 20:01:42.557554 24089 sgd_solver.cpp:105] Iteration 5232, lr = 0.000183369 +I0408 20:01:47.890931 24089 solver.cpp:218] Iteration 5244 (2.25007 iter/s, 5.33318s/12 iters), loss = 0.566053 +I0408 20:01:47.890985 24089 solver.cpp:237] Train net output #0: loss = 0.566053 (* 1 = 0.566053 loss) +I0408 20:01:47.890997 24089 sgd_solver.cpp:105] Iteration 5244, lr = 0.000181695 +I0408 20:01:53.364605 24089 solver.cpp:218] Iteration 5256 (2.19242 iter/s, 5.47341s/12 iters), loss = 0.6087 +I0408 20:01:53.364651 24089 solver.cpp:237] Train net output #0: loss = 0.6087 (* 1 = 0.6087 loss) +I0408 20:01:53.364661 24089 sgd_solver.cpp:105] Iteration 5256, lr = 0.000180036 +I0408 20:01:54.775655 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:01:58.730756 24089 solver.cpp:218] Iteration 5268 (2.23635 iter/s, 5.36589s/12 iters), loss = 0.446754 +I0408 20:01:58.730805 24089 solver.cpp:237] Train net output #0: loss = 0.446754 (* 1 = 0.446754 loss) +I0408 20:01:58.730818 24089 sgd_solver.cpp:105] Iteration 5268, lr = 0.000178392 +I0408 20:02:03.810338 24089 solver.cpp:218] Iteration 5280 (2.36251 iter/s, 5.07933s/12 iters), loss = 0.431902 +I0408 20:02:03.810386 24089 solver.cpp:237] Train net output #0: loss = 0.431902 (* 1 = 0.431902 loss) +I0408 20:02:03.810400 24089 sgd_solver.cpp:105] Iteration 5280, lr = 0.000176764 +I0408 20:02:08.843812 24089 solver.cpp:218] Iteration 5292 (2.38416 iter/s, 5.03323s/12 iters), loss = 0.483343 +I0408 20:02:08.843861 24089 solver.cpp:237] Train net output #0: loss = 0.483343 (* 1 = 0.483343 loss) +I0408 20:02:08.843873 24089 sgd_solver.cpp:105] Iteration 5292, lr = 0.00017515 +I0408 20:02:13.409787 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 20:02:18.385637 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 20:02:22.444713 24089 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 20:02:22.444741 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:02:24.893370 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:02:26.994400 24089 solver.cpp:397] Test net output #0: accuracy = 0.390931 +I0408 20:02:26.994451 24089 solver.cpp:397] Test net output #1: loss = 2.98836 (* 1 = 2.98836 loss) +I0408 20:02:27.085194 24089 solver.cpp:218] Iteration 5304 (0.657871 iter/s, 18.2407s/12 iters), loss = 0.615902 +I0408 20:02:27.085242 24089 solver.cpp:237] Train net output #0: loss = 0.615902 (* 1 = 0.615902 loss) +I0408 20:02:27.085253 24089 sgd_solver.cpp:105] Iteration 5304, lr = 0.000173551 +I0408 20:02:31.333823 24089 solver.cpp:218] Iteration 5316 (2.82458 iter/s, 4.24841s/12 iters), loss = 0.423897 +I0408 20:02:31.333874 24089 solver.cpp:237] Train net output #0: loss = 0.423897 (* 1 = 0.423897 loss) +I0408 20:02:31.333889 24089 sgd_solver.cpp:105] Iteration 5316, lr = 0.000171966 +I0408 20:02:36.278111 24089 solver.cpp:218] Iteration 5328 (2.42716 iter/s, 4.94404s/12 iters), loss = 0.420108 +I0408 20:02:36.278164 24089 solver.cpp:237] Train net output #0: loss = 0.420108 (* 1 = 0.420108 loss) +I0408 20:02:36.278177 24089 sgd_solver.cpp:105] Iteration 5328, lr = 0.000170396 +I0408 20:02:41.256765 24089 solver.cpp:218] Iteration 5340 (2.41041 iter/s, 4.97841s/12 iters), loss = 0.345634 +I0408 20:02:41.256815 24089 solver.cpp:237] Train net output #0: loss = 0.345634 (* 1 = 0.345634 loss) +I0408 20:02:41.256826 24089 sgd_solver.cpp:105] Iteration 5340, lr = 0.000168841 +I0408 20:02:46.178194 24089 solver.cpp:218] Iteration 5352 (2.43844 iter/s, 4.92119s/12 iters), loss = 0.565247 +I0408 20:02:46.178328 24089 solver.cpp:237] Train net output #0: loss = 0.565247 (* 1 = 0.565247 loss) +I0408 20:02:46.178341 24089 sgd_solver.cpp:105] Iteration 5352, lr = 0.000167299 +I0408 20:02:49.626449 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:02:51.204753 24089 solver.cpp:218] Iteration 5364 (2.38748 iter/s, 5.02623s/12 iters), loss = 0.50436 +I0408 20:02:51.204803 24089 solver.cpp:237] Train net output #0: loss = 0.50436 (* 1 = 0.50436 loss) +I0408 20:02:51.204815 24089 sgd_solver.cpp:105] Iteration 5364, lr = 0.000165772 +I0408 20:02:56.273859 24089 solver.cpp:218] Iteration 5376 (2.3674 iter/s, 5.06886s/12 iters), loss = 0.514933 +I0408 20:02:56.273911 24089 solver.cpp:237] Train net output #0: loss = 0.514933 (* 1 = 0.514933 loss) +I0408 20:02:56.273924 24089 sgd_solver.cpp:105] Iteration 5376, lr = 0.000164258 +I0408 20:03:01.304787 24089 solver.cpp:218] Iteration 5388 (2.38536 iter/s, 5.03068s/12 iters), loss = 0.554698 +I0408 20:03:01.304834 24089 solver.cpp:237] Train net output #0: loss = 0.554698 (* 1 = 0.554698 loss) +I0408 20:03:01.304847 24089 sgd_solver.cpp:105] Iteration 5388, lr = 0.000162759 +I0408 20:03:06.274335 24089 solver.cpp:218] Iteration 5400 (2.41483 iter/s, 4.9693s/12 iters), loss = 0.522291 +I0408 20:03:06.274394 24089 solver.cpp:237] Train net output #0: loss = 0.522291 (* 1 = 0.522291 loss) +I0408 20:03:06.274407 24089 sgd_solver.cpp:105] Iteration 5400, lr = 0.000161273 +I0408 20:03:08.405560 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 20:03:17.507158 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 20:03:24.782158 24089 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 20:03:24.782188 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:03:27.095893 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:03:29.232596 24089 solver.cpp:397] Test net output #0: accuracy = 0.400735 +I0408 20:03:29.232663 24089 solver.cpp:397] Test net output #1: loss = 3.01573 (* 1 = 3.01573 loss) +I0408 20:03:31.208348 24089 solver.cpp:218] Iteration 5412 (0.481289 iter/s, 24.933s/12 iters), loss = 0.403998 +I0408 20:03:31.208395 24089 solver.cpp:237] Train net output #0: loss = 0.403998 (* 1 = 0.403998 loss) +I0408 20:03:31.208405 24089 sgd_solver.cpp:105] Iteration 5412, lr = 0.0001598 +I0408 20:03:36.222807 24089 solver.cpp:218] Iteration 5424 (2.39319 iter/s, 5.01422s/12 iters), loss = 0.30746 +I0408 20:03:36.222854 24089 solver.cpp:237] Train net output #0: loss = 0.30746 (* 1 = 0.30746 loss) +I0408 20:03:36.222865 24089 sgd_solver.cpp:105] Iteration 5424, lr = 0.000158341 +I0408 20:03:41.504743 24089 solver.cpp:218] Iteration 5436 (2.27201 iter/s, 5.28168s/12 iters), loss = 0.550073 +I0408 20:03:41.504799 24089 solver.cpp:237] Train net output #0: loss = 0.550073 (* 1 = 0.550073 loss) +I0408 20:03:41.504812 24089 sgd_solver.cpp:105] Iteration 5436, lr = 0.000156896 +I0408 20:03:46.597661 24089 solver.cpp:218] Iteration 5448 (2.35633 iter/s, 5.09266s/12 iters), loss = 0.691411 +I0408 20:03:46.597713 24089 solver.cpp:237] Train net output #0: loss = 0.691411 (* 1 = 0.691411 loss) +I0408 20:03:46.597724 24089 sgd_solver.cpp:105] Iteration 5448, lr = 0.000155463 +I0408 20:03:51.762157 24089 solver.cpp:218] Iteration 5460 (2.32367 iter/s, 5.16424s/12 iters), loss = 0.485293 +I0408 20:03:51.762301 24089 solver.cpp:237] Train net output #0: loss = 0.485293 (* 1 = 0.485293 loss) +I0408 20:03:51.762315 24089 sgd_solver.cpp:105] Iteration 5460, lr = 0.000154044 +I0408 20:03:52.333559 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:03:56.857574 24089 solver.cpp:218] Iteration 5472 (2.35522 iter/s, 5.09508s/12 iters), loss = 0.459402 +I0408 20:03:56.857627 24089 solver.cpp:237] Train net output #0: loss = 0.459402 (* 1 = 0.459402 loss) +I0408 20:03:56.857640 24089 sgd_solver.cpp:105] Iteration 5472, lr = 0.000152638 +I0408 20:04:01.939119 24089 solver.cpp:218] Iteration 5484 (2.3616 iter/s, 5.08129s/12 iters), loss = 0.475237 +I0408 20:04:01.939170 24089 solver.cpp:237] Train net output #0: loss = 0.475237 (* 1 = 0.475237 loss) +I0408 20:04:01.939182 24089 sgd_solver.cpp:105] Iteration 5484, lr = 0.000151244 +I0408 20:04:06.902510 24089 solver.cpp:218] Iteration 5496 (2.41782 iter/s, 4.96314s/12 iters), loss = 0.492247 +I0408 20:04:06.902561 24089 solver.cpp:237] Train net output #0: loss = 0.492247 (* 1 = 0.492247 loss) +I0408 20:04:06.902573 24089 sgd_solver.cpp:105] Iteration 5496, lr = 0.000149863 +I0408 20:04:11.478586 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 20:04:14.618247 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 20:04:22.374714 24089 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 20:04:22.374775 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:04:24.979802 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:04:27.160219 24089 solver.cpp:397] Test net output #0: accuracy = 0.389093 +I0408 20:04:27.160271 24089 solver.cpp:397] Test net output #1: loss = 3.04701 (* 1 = 3.04701 loss) +I0408 20:04:27.248701 24089 solver.cpp:218] Iteration 5508 (0.589815 iter/s, 20.3454s/12 iters), loss = 0.518165 +I0408 20:04:27.248751 24089 solver.cpp:237] Train net output #0: loss = 0.518165 (* 1 = 0.518165 loss) +I0408 20:04:27.248762 24089 sgd_solver.cpp:105] Iteration 5508, lr = 0.000148495 +I0408 20:04:31.893131 24089 solver.cpp:218] Iteration 5520 (2.58387 iter/s, 4.64419s/12 iters), loss = 0.335659 +I0408 20:04:31.893183 24089 solver.cpp:237] Train net output #0: loss = 0.335659 (* 1 = 0.335659 loss) +I0408 20:04:31.893194 24089 sgd_solver.cpp:105] Iteration 5520, lr = 0.000147139 +I0408 20:04:34.542876 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:04:37.213496 24089 solver.cpp:218] Iteration 5532 (2.25559 iter/s, 5.32011s/12 iters), loss = 0.37572 +I0408 20:04:37.213534 24089 solver.cpp:237] Train net output #0: loss = 0.37572 (* 1 = 0.37572 loss) +I0408 20:04:37.213543 24089 sgd_solver.cpp:105] Iteration 5532, lr = 0.000145796 +I0408 20:04:42.233314 24089 solver.cpp:218] Iteration 5544 (2.39064 iter/s, 5.01957s/12 iters), loss = 0.37174 +I0408 20:04:42.233371 24089 solver.cpp:237] Train net output #0: loss = 0.37174 (* 1 = 0.37174 loss) +I0408 20:04:42.233382 24089 sgd_solver.cpp:105] Iteration 5544, lr = 0.000144465 +I0408 20:04:47.332633 24089 solver.cpp:218] Iteration 5556 (2.35338 iter/s, 5.09906s/12 iters), loss = 0.308358 +I0408 20:04:47.332687 24089 solver.cpp:237] Train net output #0: loss = 0.308358 (* 1 = 0.308358 loss) +I0408 20:04:47.332700 24089 sgd_solver.cpp:105] Iteration 5556, lr = 0.000143146 +I0408 20:04:50.071368 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:04:52.382709 24089 solver.cpp:218] Iteration 5568 (2.37632 iter/s, 5.04982s/12 iters), loss = 0.358886 +I0408 20:04:52.382797 24089 solver.cpp:237] Train net output #0: loss = 0.358886 (* 1 = 0.358886 loss) +I0408 20:04:52.382810 24089 sgd_solver.cpp:105] Iteration 5568, lr = 0.000141839 +I0408 20:04:57.456532 24089 solver.cpp:218] Iteration 5580 (2.36522 iter/s, 5.07353s/12 iters), loss = 0.398924 +I0408 20:04:57.456594 24089 solver.cpp:237] Train net output #0: loss = 0.398924 (* 1 = 0.398924 loss) +I0408 20:04:57.456607 24089 sgd_solver.cpp:105] Iteration 5580, lr = 0.000140544 +I0408 20:05:02.443974 24089 solver.cpp:218] Iteration 5592 (2.40617 iter/s, 4.98719s/12 iters), loss = 0.592646 +I0408 20:05:02.444025 24089 solver.cpp:237] Train net output #0: loss = 0.592646 (* 1 = 0.592646 loss) +I0408 20:05:02.444036 24089 sgd_solver.cpp:105] Iteration 5592, lr = 0.000139261 +I0408 20:05:07.479717 24089 solver.cpp:218] Iteration 5604 (2.38308 iter/s, 5.03549s/12 iters), loss = 0.518245 +I0408 20:05:07.479769 24089 solver.cpp:237] Train net output #0: loss = 0.518245 (* 1 = 0.518245 loss) +I0408 20:05:07.479781 24089 sgd_solver.cpp:105] Iteration 5604, lr = 0.00013799 +I0408 20:05:09.540709 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 20:05:14.890352 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 20:05:19.332346 24089 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 20:05:19.332373 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:05:21.604092 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:05:23.821542 24089 solver.cpp:397] Test net output #0: accuracy = 0.393382 +I0408 20:05:23.821705 24089 solver.cpp:397] Test net output #1: loss = 3.02971 (* 1 = 3.02971 loss) +I0408 20:05:25.716629 24089 solver.cpp:218] Iteration 5616 (0.658033 iter/s, 18.2362s/12 iters), loss = 0.442914 +I0408 20:05:25.716681 24089 solver.cpp:237] Train net output #0: loss = 0.442914 (* 1 = 0.442914 loss) +I0408 20:05:25.716696 24089 sgd_solver.cpp:105] Iteration 5616, lr = 0.00013673 +I0408 20:05:30.720069 24089 solver.cpp:218] Iteration 5628 (2.39847 iter/s, 5.00319s/12 iters), loss = 0.497014 +I0408 20:05:30.720126 24089 solver.cpp:237] Train net output #0: loss = 0.497014 (* 1 = 0.497014 loss) +I0408 20:05:30.720139 24089 sgd_solver.cpp:105] Iteration 5628, lr = 0.000135482 +I0408 20:05:35.743103 24089 solver.cpp:218] Iteration 5640 (2.38912 iter/s, 5.02278s/12 iters), loss = 0.570402 +I0408 20:05:35.743150 24089 solver.cpp:237] Train net output #0: loss = 0.570402 (* 1 = 0.570402 loss) +I0408 20:05:35.743161 24089 sgd_solver.cpp:105] Iteration 5640, lr = 0.000134245 +I0408 20:05:40.758438 24089 solver.cpp:218] Iteration 5652 (2.39278 iter/s, 5.01509s/12 iters), loss = 0.547592 +I0408 20:05:40.758488 24089 solver.cpp:237] Train net output #0: loss = 0.547592 (* 1 = 0.547592 loss) +I0408 20:05:40.758500 24089 sgd_solver.cpp:105] Iteration 5652, lr = 0.000133019 +I0408 20:05:45.854259 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:05:46.032697 24089 solver.cpp:218] Iteration 5664 (2.27531 iter/s, 5.274s/12 iters), loss = 0.539675 +I0408 20:05:46.032752 24089 solver.cpp:237] Train net output #0: loss = 0.539675 (* 1 = 0.539675 loss) +I0408 20:05:46.032763 24089 sgd_solver.cpp:105] Iteration 5664, lr = 0.000131805 +I0408 20:05:51.362011 24089 solver.cpp:218] Iteration 5676 (2.25181 iter/s, 5.32905s/12 iters), loss = 0.425043 +I0408 20:05:51.362058 24089 solver.cpp:237] Train net output #0: loss = 0.425043 (* 1 = 0.425043 loss) +I0408 20:05:51.362067 24089 sgd_solver.cpp:105] Iteration 5676, lr = 0.000130601 +I0408 20:05:56.407389 24089 solver.cpp:218] Iteration 5688 (2.37853 iter/s, 5.04512s/12 iters), loss = 0.401131 +I0408 20:05:56.407497 24089 solver.cpp:237] Train net output #0: loss = 0.401131 (* 1 = 0.401131 loss) +I0408 20:05:56.407508 24089 sgd_solver.cpp:105] Iteration 5688, lr = 0.000129409 +I0408 20:06:01.919746 24089 solver.cpp:218] Iteration 5700 (2.17706 iter/s, 5.51203s/12 iters), loss = 0.490994 +I0408 20:06:01.919797 24089 solver.cpp:237] Train net output #0: loss = 0.490994 (* 1 = 0.490994 loss) +I0408 20:06:01.919808 24089 sgd_solver.cpp:105] Iteration 5700, lr = 0.000128227 +I0408 20:06:06.868083 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 20:06:09.900023 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 20:06:12.231573 24089 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 20:06:12.231599 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:06:14.552124 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:06:16.802685 24089 solver.cpp:397] Test net output #0: accuracy = 0.393995 +I0408 20:06:16.802737 24089 solver.cpp:397] Test net output #1: loss = 3.01668 (* 1 = 3.01668 loss) +I0408 20:06:16.893322 24089 solver.cpp:218] Iteration 5712 (0.801445 iter/s, 14.973s/12 iters), loss = 0.432801 +I0408 20:06:16.893371 24089 solver.cpp:237] Train net output #0: loss = 0.432801 (* 1 = 0.432801 loss) +I0408 20:06:16.893383 24089 sgd_solver.cpp:105] Iteration 5712, lr = 0.000127057 +I0408 20:06:21.198844 24089 solver.cpp:218] Iteration 5724 (2.78726 iter/s, 4.30531s/12 iters), loss = 0.567526 +I0408 20:06:21.198880 24089 solver.cpp:237] Train net output #0: loss = 0.567526 (* 1 = 0.567526 loss) +I0408 20:06:21.198889 24089 sgd_solver.cpp:105] Iteration 5724, lr = 0.000125897 +I0408 20:06:26.257640 24089 solver.cpp:218] Iteration 5736 (2.37222 iter/s, 5.05856s/12 iters), loss = 0.399731 +I0408 20:06:26.257684 24089 solver.cpp:237] Train net output #0: loss = 0.399731 (* 1 = 0.399731 loss) +I0408 20:06:26.257695 24089 sgd_solver.cpp:105] Iteration 5736, lr = 0.000124747 +I0408 20:06:31.334419 24089 solver.cpp:218] Iteration 5748 (2.36382 iter/s, 5.07653s/12 iters), loss = 0.444542 +I0408 20:06:31.334569 24089 solver.cpp:237] Train net output #0: loss = 0.444542 (* 1 = 0.444542 loss) +I0408 20:06:31.334583 24089 sgd_solver.cpp:105] Iteration 5748, lr = 0.000123608 +I0408 20:06:36.372850 24089 solver.cpp:218] Iteration 5760 (2.38186 iter/s, 5.03808s/12 iters), loss = 0.519436 +I0408 20:06:36.372905 24089 solver.cpp:237] Train net output #0: loss = 0.519436 (* 1 = 0.519436 loss) +I0408 20:06:36.372915 24089 sgd_solver.cpp:105] Iteration 5760, lr = 0.00012248 +I0408 20:06:38.739538 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:06:41.766670 24089 solver.cpp:218] Iteration 5772 (2.22488 iter/s, 5.39355s/12 iters), loss = 0.490351 +I0408 20:06:41.766723 24089 solver.cpp:237] Train net output #0: loss = 0.490351 (* 1 = 0.490351 loss) +I0408 20:06:41.766736 24089 sgd_solver.cpp:105] Iteration 5772, lr = 0.000121362 +I0408 20:06:46.857355 24089 solver.cpp:218] Iteration 5784 (2.35736 iter/s, 5.09043s/12 iters), loss = 0.345262 +I0408 20:06:46.857409 24089 solver.cpp:237] Train net output #0: loss = 0.345262 (* 1 = 0.345262 loss) +I0408 20:06:46.857421 24089 sgd_solver.cpp:105] Iteration 5784, lr = 0.000120254 +I0408 20:06:51.858691 24089 solver.cpp:218] Iteration 5796 (2.39948 iter/s, 5.00108s/12 iters), loss = 0.364192 +I0408 20:06:51.858747 24089 solver.cpp:237] Train net output #0: loss = 0.364192 (* 1 = 0.364192 loss) +I0408 20:06:51.858758 24089 sgd_solver.cpp:105] Iteration 5796, lr = 0.000119156 +I0408 20:06:56.897454 24089 solver.cpp:218] Iteration 5808 (2.38166 iter/s, 5.0385s/12 iters), loss = 0.493167 +I0408 20:06:56.897501 24089 solver.cpp:237] Train net output #0: loss = 0.493167 (* 1 = 0.493167 loss) +I0408 20:06:56.897511 24089 sgd_solver.cpp:105] Iteration 5808, lr = 0.000118068 +I0408 20:06:59.130877 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 20:07:02.132638 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 20:07:04.559033 24089 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 20:07:04.559060 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:07:06.706756 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:07:09.122129 24089 solver.cpp:397] Test net output #0: accuracy = 0.39277 +I0408 20:07:09.122166 24089 solver.cpp:397] Test net output #1: loss = 3.03376 (* 1 = 3.03376 loss) +I0408 20:07:11.038540 24089 solver.cpp:218] Iteration 5820 (0.848626 iter/s, 14.1405s/12 iters), loss = 0.422298 +I0408 20:07:11.038589 24089 solver.cpp:237] Train net output #0: loss = 0.422298 (* 1 = 0.422298 loss) +I0408 20:07:11.038599 24089 sgd_solver.cpp:105] Iteration 5820, lr = 0.00011699 +I0408 20:07:16.066303 24089 solver.cpp:218] Iteration 5832 (2.38687 iter/s, 5.02751s/12 iters), loss = 0.256474 +I0408 20:07:16.066346 24089 solver.cpp:237] Train net output #0: loss = 0.256474 (* 1 = 0.256474 loss) +I0408 20:07:16.066354 24089 sgd_solver.cpp:105] Iteration 5832, lr = 0.000115922 +I0408 20:07:21.153993 24089 solver.cpp:218] Iteration 5844 (2.35876 iter/s, 5.08743s/12 iters), loss = 0.408685 +I0408 20:07:21.154045 24089 solver.cpp:237] Train net output #0: loss = 0.408685 (* 1 = 0.408685 loss) +I0408 20:07:21.154057 24089 sgd_solver.cpp:105] Iteration 5844, lr = 0.000114864 +I0408 20:07:26.225525 24089 solver.cpp:218] Iteration 5856 (2.36627 iter/s, 5.07128s/12 iters), loss = 0.323473 +I0408 20:07:26.225569 24089 solver.cpp:237] Train net output #0: loss = 0.323473 (* 1 = 0.323473 loss) +I0408 20:07:26.225577 24089 sgd_solver.cpp:105] Iteration 5856, lr = 0.000113815 +I0408 20:07:30.420146 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:07:31.232439 24089 solver.cpp:218] Iteration 5868 (2.3968 iter/s, 5.00667s/12 iters), loss = 0.466882 +I0408 20:07:31.232499 24089 solver.cpp:237] Train net output #0: loss = 0.466882 (* 1 = 0.466882 loss) +I0408 20:07:31.232513 24089 sgd_solver.cpp:105] Iteration 5868, lr = 0.000112776 +I0408 20:07:36.275570 24089 solver.cpp:218] Iteration 5880 (2.37959 iter/s, 5.04288s/12 iters), loss = 0.414638 +I0408 20:07:36.275708 24089 solver.cpp:237] Train net output #0: loss = 0.414638 (* 1 = 0.414638 loss) +I0408 20:07:36.275719 24089 sgd_solver.cpp:105] Iteration 5880, lr = 0.000111746 +I0408 20:07:41.355584 24089 solver.cpp:218] Iteration 5892 (2.36235 iter/s, 5.07968s/12 iters), loss = 0.518323 +I0408 20:07:41.355628 24089 solver.cpp:237] Train net output #0: loss = 0.518323 (* 1 = 0.518323 loss) +I0408 20:07:41.355638 24089 sgd_solver.cpp:105] Iteration 5892, lr = 0.000110726 +I0408 20:07:46.482060 24089 solver.cpp:218] Iteration 5904 (2.3409 iter/s, 5.12623s/12 iters), loss = 0.355609 +I0408 20:07:46.482111 24089 solver.cpp:237] Train net output #0: loss = 0.355609 (* 1 = 0.355609 loss) +I0408 20:07:46.482123 24089 sgd_solver.cpp:105] Iteration 5904, lr = 0.000109715 +I0408 20:07:51.073516 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 20:07:55.546170 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 20:07:59.478829 24089 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 20:07:59.478855 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:08:01.770323 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:08:04.144889 24089 solver.cpp:397] Test net output #0: accuracy = 0.40625 +I0408 20:08:04.144938 24089 solver.cpp:397] Test net output #1: loss = 3.03612 (* 1 = 3.03612 loss) +I0408 20:08:04.235339 24089 solver.cpp:218] Iteration 5916 (0.675959 iter/s, 17.7526s/12 iters), loss = 0.41571 +I0408 20:08:04.235395 24089 solver.cpp:237] Train net output #0: loss = 0.41571 (* 1 = 0.41571 loss) +I0408 20:08:04.235409 24089 sgd_solver.cpp:105] Iteration 5916, lr = 0.000108713 +I0408 20:08:08.491418 24089 solver.cpp:218] Iteration 5928 (2.81964 iter/s, 4.25586s/12 iters), loss = 0.580881 +I0408 20:08:08.491516 24089 solver.cpp:237] Train net output #0: loss = 0.580881 (* 1 = 0.580881 loss) +I0408 20:08:08.491528 24089 sgd_solver.cpp:105] Iteration 5928, lr = 0.000107721 +I0408 20:08:13.516726 24089 solver.cpp:218] Iteration 5940 (2.38805 iter/s, 5.02501s/12 iters), loss = 0.323765 +I0408 20:08:13.516779 24089 solver.cpp:237] Train net output #0: loss = 0.323765 (* 1 = 0.323765 loss) +I0408 20:08:13.516791 24089 sgd_solver.cpp:105] Iteration 5940, lr = 0.000106737 +I0408 20:08:18.413426 24089 solver.cpp:218] Iteration 5952 (2.45076 iter/s, 4.89645s/12 iters), loss = 0.427417 +I0408 20:08:18.413472 24089 solver.cpp:237] Train net output #0: loss = 0.427417 (* 1 = 0.427417 loss) +I0408 20:08:18.413481 24089 sgd_solver.cpp:105] Iteration 5952, lr = 0.000105763 +I0408 20:08:23.421540 24089 solver.cpp:218] Iteration 5964 (2.39623 iter/s, 5.00786s/12 iters), loss = 0.348156 +I0408 20:08:23.421594 24089 solver.cpp:237] Train net output #0: loss = 0.348156 (* 1 = 0.348156 loss) +I0408 20:08:23.421607 24089 sgd_solver.cpp:105] Iteration 5964, lr = 0.000104797 +I0408 20:08:24.779822 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:08:28.514204 24089 solver.cpp:218] Iteration 5976 (2.35645 iter/s, 5.09241s/12 iters), loss = 0.382097 +I0408 20:08:28.514247 24089 solver.cpp:237] Train net output #0: loss = 0.382097 (* 1 = 0.382097 loss) +I0408 20:08:28.514257 24089 sgd_solver.cpp:105] Iteration 5976, lr = 0.000103841 +I0408 20:08:33.496599 24089 solver.cpp:218] Iteration 5988 (2.4086 iter/s, 4.98215s/12 iters), loss = 0.468334 +I0408 20:08:33.496641 24089 solver.cpp:237] Train net output #0: loss = 0.468334 (* 1 = 0.468334 loss) +I0408 20:08:33.496651 24089 sgd_solver.cpp:105] Iteration 5988, lr = 0.000102893 +I0408 20:08:38.520365 24089 solver.cpp:218] Iteration 6000 (2.38876 iter/s, 5.02352s/12 iters), loss = 0.568841 +I0408 20:08:38.520512 24089 solver.cpp:237] Train net output #0: loss = 0.568841 (* 1 = 0.568841 loss) +I0408 20:08:38.520524 24089 sgd_solver.cpp:105] Iteration 6000, lr = 0.000101953 +I0408 20:08:43.592634 24089 solver.cpp:218] Iteration 6012 (2.36597 iter/s, 5.07192s/12 iters), loss = 0.422766 +I0408 20:08:43.592684 24089 solver.cpp:237] Train net output #0: loss = 0.422766 (* 1 = 0.422766 loss) +I0408 20:08:43.592694 24089 sgd_solver.cpp:105] Iteration 6012, lr = 0.000101022 +I0408 20:08:45.639159 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 20:08:48.642793 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 20:08:50.971931 24089 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 20:08:50.971958 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:08:53.266788 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:08:55.639921 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:08:55.639962 24089 solver.cpp:397] Test net output #1: loss = 3.03135 (* 1 = 3.03135 loss) +I0408 20:08:57.570294 24089 solver.cpp:218] Iteration 6024 (0.858549 iter/s, 13.9771s/12 iters), loss = 0.387164 +I0408 20:08:57.570353 24089 solver.cpp:237] Train net output #0: loss = 0.387164 (* 1 = 0.387164 loss) +I0408 20:08:57.570364 24089 sgd_solver.cpp:105] Iteration 6024, lr = 0.0001001 +I0408 20:09:02.619801 24089 solver.cpp:218] Iteration 6036 (2.37659 iter/s, 5.04925s/12 iters), loss = 0.477694 +I0408 20:09:02.619853 24089 solver.cpp:237] Train net output #0: loss = 0.477694 (* 1 = 0.477694 loss) +I0408 20:09:02.619863 24089 sgd_solver.cpp:105] Iteration 6036, lr = 9.91862e-05 +I0408 20:09:07.649731 24089 solver.cpp:218] Iteration 6048 (2.38584 iter/s, 5.02968s/12 iters), loss = 0.30477 +I0408 20:09:07.649788 24089 solver.cpp:237] Train net output #0: loss = 0.30477 (* 1 = 0.30477 loss) +I0408 20:09:07.649801 24089 sgd_solver.cpp:105] Iteration 6048, lr = 9.82807e-05 +I0408 20:09:12.709575 24089 solver.cpp:218] Iteration 6060 (2.37174 iter/s, 5.05959s/12 iters), loss = 0.372251 +I0408 20:09:12.709693 24089 solver.cpp:237] Train net output #0: loss = 0.372251 (* 1 = 0.372251 loss) +I0408 20:09:12.709707 24089 sgd_solver.cpp:105] Iteration 6060, lr = 9.73834e-05 +I0408 20:09:16.157907 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:09:17.728428 24089 solver.cpp:218] Iteration 6072 (2.39113 iter/s, 5.01854s/12 iters), loss = 0.492829 +I0408 20:09:17.728474 24089 solver.cpp:237] Train net output #0: loss = 0.492829 (* 1 = 0.492829 loss) +I0408 20:09:17.728485 24089 sgd_solver.cpp:105] Iteration 6072, lr = 9.64943e-05 +I0408 20:09:22.762195 24089 solver.cpp:218] Iteration 6084 (2.38402 iter/s, 5.03351s/12 iters), loss = 0.42713 +I0408 20:09:22.762250 24089 solver.cpp:237] Train net output #0: loss = 0.42713 (* 1 = 0.42713 loss) +I0408 20:09:22.762262 24089 sgd_solver.cpp:105] Iteration 6084, lr = 9.56134e-05 +I0408 20:09:28.038100 24089 solver.cpp:218] Iteration 6096 (2.2746 iter/s, 5.27565s/12 iters), loss = 0.397063 +I0408 20:09:28.038136 24089 solver.cpp:237] Train net output #0: loss = 0.397063 (* 1 = 0.397063 loss) +I0408 20:09:28.038146 24089 sgd_solver.cpp:105] Iteration 6096, lr = 9.47405e-05 +I0408 20:09:33.033380 24089 solver.cpp:218] Iteration 6108 (2.40239 iter/s, 4.99504s/12 iters), loss = 0.503687 +I0408 20:09:33.033432 24089 solver.cpp:237] Train net output #0: loss = 0.503687 (* 1 = 0.503687 loss) +I0408 20:09:33.033442 24089 sgd_solver.cpp:105] Iteration 6108, lr = 9.38755e-05 +I0408 20:09:37.712381 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 20:09:40.725184 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 20:09:43.051678 24089 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 20:09:43.051800 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:09:45.083055 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:09:47.501600 24089 solver.cpp:397] Test net output #0: accuracy = 0.40625 +I0408 20:09:47.501650 24089 solver.cpp:397] Test net output #1: loss = 3.05434 (* 1 = 3.05434 loss) +I0408 20:09:47.591555 24089 solver.cpp:218] Iteration 6120 (0.824313 iter/s, 14.5576s/12 iters), loss = 0.275401 +I0408 20:09:47.591611 24089 solver.cpp:237] Train net output #0: loss = 0.275401 (* 1 = 0.275401 loss) +I0408 20:09:47.591624 24089 sgd_solver.cpp:105] Iteration 6120, lr = 9.30184e-05 +I0408 20:09:51.844169 24089 solver.cpp:218] Iteration 6132 (2.82195 iter/s, 4.25239s/12 iters), loss = 0.42772 +I0408 20:09:51.844223 24089 solver.cpp:237] Train net output #0: loss = 0.42772 (* 1 = 0.42772 loss) +I0408 20:09:51.844236 24089 sgd_solver.cpp:105] Iteration 6132, lr = 9.21692e-05 +I0408 20:09:56.898135 24089 solver.cpp:218] Iteration 6144 (2.37449 iter/s, 5.05371s/12 iters), loss = 0.457337 +I0408 20:09:56.898187 24089 solver.cpp:237] Train net output #0: loss = 0.457337 (* 1 = 0.457337 loss) +I0408 20:09:56.898200 24089 sgd_solver.cpp:105] Iteration 6144, lr = 9.13277e-05 +I0408 20:10:01.946897 24089 solver.cpp:218] Iteration 6156 (2.37694 iter/s, 5.04851s/12 iters), loss = 0.398009 +I0408 20:10:01.946954 24089 solver.cpp:237] Train net output #0: loss = 0.398009 (* 1 = 0.398009 loss) +I0408 20:10:01.946966 24089 sgd_solver.cpp:105] Iteration 6156, lr = 9.04939e-05 +I0408 20:10:06.960867 24089 solver.cpp:218] Iteration 6168 (2.39344 iter/s, 5.01371s/12 iters), loss = 0.304904 +I0408 20:10:06.960919 24089 solver.cpp:237] Train net output #0: loss = 0.304904 (* 1 = 0.304904 loss) +I0408 20:10:06.960932 24089 sgd_solver.cpp:105] Iteration 6168, lr = 8.96678e-05 +I0408 20:10:07.571628 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:10:12.241925 24089 solver.cpp:218] Iteration 6180 (2.27239 iter/s, 5.28079s/12 iters), loss = 0.567073 +I0408 20:10:12.241984 24089 solver.cpp:237] Train net output #0: loss = 0.567073 (* 1 = 0.567073 loss) +I0408 20:10:12.241994 24089 sgd_solver.cpp:105] Iteration 6180, lr = 8.88491e-05 +I0408 20:10:17.699885 24089 solver.cpp:218] Iteration 6192 (2.19873 iter/s, 5.45768s/12 iters), loss = 0.342285 +I0408 20:10:17.700009 24089 solver.cpp:237] Train net output #0: loss = 0.342285 (* 1 = 0.342285 loss) +I0408 20:10:17.700023 24089 sgd_solver.cpp:105] Iteration 6192, lr = 8.80379e-05 +I0408 20:10:22.817728 24089 solver.cpp:218] Iteration 6204 (2.34489 iter/s, 5.11752s/12 iters), loss = 0.371871 +I0408 20:10:22.817776 24089 solver.cpp:237] Train net output #0: loss = 0.371871 (* 1 = 0.371871 loss) +I0408 20:10:22.817785 24089 sgd_solver.cpp:105] Iteration 6204, lr = 8.72342e-05 +I0408 20:10:28.118149 24089 solver.cpp:218] Iteration 6216 (2.26408 iter/s, 5.30016s/12 iters), loss = 0.541242 +I0408 20:10:28.118192 24089 solver.cpp:237] Train net output #0: loss = 0.541242 (* 1 = 0.541242 loss) +I0408 20:10:28.118201 24089 sgd_solver.cpp:105] Iteration 6216, lr = 8.64378e-05 +I0408 20:10:30.360321 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 20:10:33.460323 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 20:10:35.853016 24089 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 20:10:35.853042 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:10:37.830024 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:10:39.106298 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:10:40.280597 24089 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0408 20:10:40.280642 24089 solver.cpp:397] Test net output #1: loss = 3.05765 (* 1 = 3.05765 loss) +I0408 20:10:42.109434 24089 solver.cpp:218] Iteration 6228 (0.857712 iter/s, 13.9907s/12 iters), loss = 0.355131 +I0408 20:10:42.109503 24089 solver.cpp:237] Train net output #0: loss = 0.355131 (* 1 = 0.355131 loss) +I0408 20:10:42.109515 24089 sgd_solver.cpp:105] Iteration 6228, lr = 8.56486e-05 +I0408 20:10:47.049363 24089 solver.cpp:218] Iteration 6240 (2.42931 iter/s, 4.93967s/12 iters), loss = 0.357253 +I0408 20:10:47.049417 24089 solver.cpp:237] Train net output #0: loss = 0.357253 (* 1 = 0.357253 loss) +I0408 20:10:47.049428 24089 sgd_solver.cpp:105] Iteration 6240, lr = 8.48667e-05 +I0408 20:10:52.112144 24089 solver.cpp:218] Iteration 6252 (2.37036 iter/s, 5.06253s/12 iters), loss = 0.460792 +I0408 20:10:52.112262 24089 solver.cpp:237] Train net output #0: loss = 0.460792 (* 1 = 0.460792 loss) +I0408 20:10:52.112270 24089 sgd_solver.cpp:105] Iteration 6252, lr = 8.40918e-05 +I0408 20:10:57.292490 24089 solver.cpp:218] Iteration 6264 (2.3166 iter/s, 5.18002s/12 iters), loss = 0.264629 +I0408 20:10:57.292541 24089 solver.cpp:237] Train net output #0: loss = 0.264629 (* 1 = 0.264629 loss) +I0408 20:10:57.292551 24089 sgd_solver.cpp:105] Iteration 6264, lr = 8.33241e-05 +I0408 20:11:00.055133 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:11:02.380241 24089 solver.cpp:218] Iteration 6276 (2.35872 iter/s, 5.0875s/12 iters), loss = 0.449321 +I0408 20:11:02.380292 24089 solver.cpp:237] Train net output #0: loss = 0.449321 (* 1 = 0.449321 loss) +I0408 20:11:02.380306 24089 sgd_solver.cpp:105] Iteration 6276, lr = 8.25634e-05 +I0408 20:11:07.388883 24089 solver.cpp:218] Iteration 6288 (2.39598 iter/s, 5.00839s/12 iters), loss = 0.487852 +I0408 20:11:07.388929 24089 solver.cpp:237] Train net output #0: loss = 0.487852 (* 1 = 0.487852 loss) +I0408 20:11:07.388939 24089 sgd_solver.cpp:105] Iteration 6288, lr = 8.18096e-05 +I0408 20:11:12.426455 24089 solver.cpp:218] Iteration 6300 (2.38222 iter/s, 5.03733s/12 iters), loss = 0.527201 +I0408 20:11:12.426501 24089 solver.cpp:237] Train net output #0: loss = 0.527201 (* 1 = 0.527201 loss) +I0408 20:11:12.426510 24089 sgd_solver.cpp:105] Iteration 6300, lr = 8.10627e-05 +I0408 20:11:17.440009 24089 solver.cpp:218] Iteration 6312 (2.39363 iter/s, 5.01331s/12 iters), loss = 0.488427 +I0408 20:11:17.440053 24089 solver.cpp:237] Train net output #0: loss = 0.488427 (* 1 = 0.488427 loss) +I0408 20:11:17.440063 24089 sgd_solver.cpp:105] Iteration 6312, lr = 8.03226e-05 +I0408 20:11:22.055424 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 20:11:25.067900 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 20:11:27.400933 24089 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 20:11:27.400959 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:11:29.444474 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:11:32.176793 24089 solver.cpp:397] Test net output #0: accuracy = 0.401348 +I0408 20:11:32.176843 24089 solver.cpp:397] Test net output #1: loss = 3.05922 (* 1 = 3.05922 loss) +I0408 20:11:32.267216 24089 solver.cpp:218] Iteration 6324 (0.809357 iter/s, 14.8266s/12 iters), loss = 0.340395 +I0408 20:11:32.267261 24089 solver.cpp:237] Train net output #0: loss = 0.340395 (* 1 = 0.340395 loss) +I0408 20:11:32.267273 24089 sgd_solver.cpp:105] Iteration 6324, lr = 7.95893e-05 +I0408 20:11:36.807688 24089 solver.cpp:218] Iteration 6336 (2.64303 iter/s, 4.54025s/12 iters), loss = 0.388551 +I0408 20:11:36.807739 24089 solver.cpp:237] Train net output #0: loss = 0.388551 (* 1 = 0.388551 loss) +I0408 20:11:36.807751 24089 sgd_solver.cpp:105] Iteration 6336, lr = 7.88627e-05 +I0408 20:11:41.978102 24089 solver.cpp:218] Iteration 6348 (2.32101 iter/s, 5.17015s/12 iters), loss = 0.420344 +I0408 20:11:41.978157 24089 solver.cpp:237] Train net output #0: loss = 0.420344 (* 1 = 0.420344 loss) +I0408 20:11:41.978169 24089 sgd_solver.cpp:105] Iteration 6348, lr = 7.81427e-05 +I0408 20:11:47.201450 24089 solver.cpp:218] Iteration 6360 (2.29749 iter/s, 5.22309s/12 iters), loss = 0.402884 +I0408 20:11:47.201499 24089 solver.cpp:237] Train net output #0: loss = 0.402884 (* 1 = 0.402884 loss) +I0408 20:11:47.201510 24089 sgd_solver.cpp:105] Iteration 6360, lr = 7.74293e-05 +I0408 20:11:52.348199 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:11:52.484061 24089 solver.cpp:218] Iteration 6372 (2.27171 iter/s, 5.28236s/12 iters), loss = 0.340726 +I0408 20:11:52.484105 24089 solver.cpp:237] Train net output #0: loss = 0.340726 (* 1 = 0.340726 loss) +I0408 20:11:52.484114 24089 sgd_solver.cpp:105] Iteration 6372, lr = 7.67224e-05 +I0408 20:11:57.529757 24089 solver.cpp:218] Iteration 6384 (2.37838 iter/s, 5.04545s/12 iters), loss = 0.216984 +I0408 20:11:57.538028 24089 solver.cpp:237] Train net output #0: loss = 0.216984 (* 1 = 0.216984 loss) +I0408 20:11:57.538039 24089 sgd_solver.cpp:105] Iteration 6384, lr = 7.60219e-05 +I0408 20:12:02.439538 24089 solver.cpp:218] Iteration 6396 (2.44832 iter/s, 4.90132s/12 iters), loss = 0.343601 +I0408 20:12:02.439576 24089 solver.cpp:237] Train net output #0: loss = 0.343601 (* 1 = 0.343601 loss) +I0408 20:12:02.439586 24089 sgd_solver.cpp:105] Iteration 6396, lr = 7.53278e-05 +I0408 20:12:07.380308 24089 solver.cpp:218] Iteration 6408 (2.42889 iter/s, 4.94053s/12 iters), loss = 0.352612 +I0408 20:12:07.380348 24089 solver.cpp:237] Train net output #0: loss = 0.352612 (* 1 = 0.352612 loss) +I0408 20:12:07.380357 24089 sgd_solver.cpp:105] Iteration 6408, lr = 7.46401e-05 +I0408 20:12:12.359061 24089 solver.cpp:218] Iteration 6420 (2.41036 iter/s, 4.9785s/12 iters), loss = 0.412216 +I0408 20:12:12.359123 24089 solver.cpp:237] Train net output #0: loss = 0.412216 (* 1 = 0.412216 loss) +I0408 20:12:12.359143 24089 sgd_solver.cpp:105] Iteration 6420, lr = 7.39587e-05 +I0408 20:12:14.438386 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 20:12:17.485843 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 20:12:19.811168 24089 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 20:12:19.811194 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:12:21.751332 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:12:24.286478 24089 solver.cpp:397] Test net output #0: accuracy = 0.402574 +I0408 20:12:24.286530 24089 solver.cpp:397] Test net output #1: loss = 3.06787 (* 1 = 3.06787 loss) +I0408 20:12:26.180871 24089 solver.cpp:218] Iteration 6432 (0.86823 iter/s, 13.8212s/12 iters), loss = 0.276425 +I0408 20:12:26.180932 24089 solver.cpp:237] Train net output #0: loss = 0.276425 (* 1 = 0.276425 loss) +I0408 20:12:26.180944 24089 sgd_solver.cpp:105] Iteration 6432, lr = 7.32835e-05 +I0408 20:12:31.253635 24089 solver.cpp:218] Iteration 6444 (2.3657 iter/s, 5.0725s/12 iters), loss = 0.544725 +I0408 20:12:31.253711 24089 solver.cpp:237] Train net output #0: loss = 0.544725 (* 1 = 0.544725 loss) +I0408 20:12:31.253722 24089 sgd_solver.cpp:105] Iteration 6444, lr = 7.26144e-05 +I0408 20:12:36.322293 24089 solver.cpp:218] Iteration 6456 (2.36762 iter/s, 5.06838s/12 iters), loss = 0.317484 +I0408 20:12:36.322338 24089 solver.cpp:237] Train net output #0: loss = 0.317484 (* 1 = 0.317484 loss) +I0408 20:12:36.322350 24089 sgd_solver.cpp:105] Iteration 6456, lr = 7.19514e-05 +I0408 20:12:41.338905 24089 solver.cpp:218] Iteration 6468 (2.39217 iter/s, 5.01636s/12 iters), loss = 0.49256 +I0408 20:12:41.338958 24089 solver.cpp:237] Train net output #0: loss = 0.49256 (* 1 = 0.49256 loss) +I0408 20:12:41.338968 24089 sgd_solver.cpp:105] Iteration 6468, lr = 7.12945e-05 +I0408 20:12:43.356477 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:12:46.364246 24089 solver.cpp:218] Iteration 6480 (2.38802 iter/s, 5.02509s/12 iters), loss = 0.503905 +I0408 20:12:46.364292 24089 solver.cpp:237] Train net output #0: loss = 0.503905 (* 1 = 0.503905 loss) +I0408 20:12:46.364303 24089 sgd_solver.cpp:105] Iteration 6480, lr = 7.06436e-05 +I0408 20:12:51.456872 24089 solver.cpp:218] Iteration 6492 (2.35646 iter/s, 5.09237s/12 iters), loss = 0.255263 +I0408 20:12:51.456926 24089 solver.cpp:237] Train net output #0: loss = 0.255263 (* 1 = 0.255263 loss) +I0408 20:12:51.456938 24089 sgd_solver.cpp:105] Iteration 6492, lr = 6.99987e-05 +I0408 20:12:56.454474 24089 solver.cpp:218] Iteration 6504 (2.40128 iter/s, 4.99734s/12 iters), loss = 0.34623 +I0408 20:12:56.454524 24089 solver.cpp:237] Train net output #0: loss = 0.34623 (* 1 = 0.34623 loss) +I0408 20:12:56.454535 24089 sgd_solver.cpp:105] Iteration 6504, lr = 6.93596e-05 +I0408 20:13:01.487812 24089 solver.cpp:218] Iteration 6516 (2.38422 iter/s, 5.03309s/12 iters), loss = 0.329539 +I0408 20:13:01.492425 24089 solver.cpp:237] Train net output #0: loss = 0.329539 (* 1 = 0.329539 loss) +I0408 20:13:01.492439 24089 sgd_solver.cpp:105] Iteration 6516, lr = 6.87264e-05 +I0408 20:13:06.288422 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 20:13:09.317474 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 20:13:11.643573 24089 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 20:13:11.643599 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:13:13.544680 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:13:16.112627 24089 solver.cpp:397] Test net output #0: accuracy = 0.404412 +I0408 20:13:16.112676 24089 solver.cpp:397] Test net output #1: loss = 3.06488 (* 1 = 3.06488 loss) +I0408 20:13:16.203083 24089 solver.cpp:218] Iteration 6528 (0.815766 iter/s, 14.7101s/12 iters), loss = 0.310267 +I0408 20:13:16.203141 24089 solver.cpp:237] Train net output #0: loss = 0.310267 (* 1 = 0.310267 loss) +I0408 20:13:16.203155 24089 sgd_solver.cpp:105] Iteration 6528, lr = 6.80989e-05 +I0408 20:13:20.445979 24089 solver.cpp:218] Iteration 6540 (2.82842 iter/s, 4.24265s/12 iters), loss = 0.253882 +I0408 20:13:20.446024 24089 solver.cpp:237] Train net output #0: loss = 0.253882 (* 1 = 0.253882 loss) +I0408 20:13:20.446033 24089 sgd_solver.cpp:105] Iteration 6540, lr = 6.74772e-05 +I0408 20:13:25.521414 24089 solver.cpp:218] Iteration 6552 (2.36445 iter/s, 5.07518s/12 iters), loss = 0.322611 +I0408 20:13:25.521471 24089 solver.cpp:237] Train net output #0: loss = 0.322611 (* 1 = 0.322611 loss) +I0408 20:13:25.521482 24089 sgd_solver.cpp:105] Iteration 6552, lr = 6.68612e-05 +I0408 20:13:30.574968 24089 solver.cpp:218] Iteration 6564 (2.37469 iter/s, 5.0533s/12 iters), loss = 0.433307 +I0408 20:13:30.575016 24089 solver.cpp:237] Train net output #0: loss = 0.433307 (* 1 = 0.433307 loss) +I0408 20:13:30.575026 24089 sgd_solver.cpp:105] Iteration 6564, lr = 6.62507e-05 +I0408 20:13:34.904305 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:13:35.684521 24089 solver.cpp:218] Iteration 6576 (2.34866 iter/s, 5.1093s/12 iters), loss = 0.342512 +I0408 20:13:35.684563 24089 solver.cpp:237] Train net output #0: loss = 0.342512 (* 1 = 0.342512 loss) +I0408 20:13:35.684571 24089 sgd_solver.cpp:105] Iteration 6576, lr = 6.56459e-05 +I0408 20:13:40.679617 24089 solver.cpp:218] Iteration 6588 (2.40248 iter/s, 4.99485s/12 iters), loss = 0.415265 +I0408 20:13:40.679672 24089 solver.cpp:237] Train net output #0: loss = 0.415265 (* 1 = 0.415265 loss) +I0408 20:13:40.679682 24089 sgd_solver.cpp:105] Iteration 6588, lr = 6.50466e-05 +I0408 20:13:45.746318 24089 solver.cpp:218] Iteration 6600 (2.36853 iter/s, 5.06644s/12 iters), loss = 0.35581 +I0408 20:13:45.746382 24089 solver.cpp:237] Train net output #0: loss = 0.35581 (* 1 = 0.35581 loss) +I0408 20:13:45.746398 24089 sgd_solver.cpp:105] Iteration 6600, lr = 6.44527e-05 +I0408 20:13:50.811306 24089 solver.cpp:218] Iteration 6612 (2.36933 iter/s, 5.06472s/12 iters), loss = 0.415314 +I0408 20:13:50.811364 24089 solver.cpp:237] Train net output #0: loss = 0.415314 (* 1 = 0.415314 loss) +I0408 20:13:50.811378 24089 sgd_solver.cpp:105] Iteration 6612, lr = 6.38643e-05 +I0408 20:13:55.869004 24089 solver.cpp:218] Iteration 6624 (2.37275 iter/s, 5.05743s/12 iters), loss = 0.385638 +I0408 20:13:55.869056 24089 solver.cpp:237] Train net output #0: loss = 0.385638 (* 1 = 0.385638 loss) +I0408 20:13:55.869067 24089 sgd_solver.cpp:105] Iteration 6624, lr = 6.32812e-05 +I0408 20:13:57.912046 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 20:14:05.544066 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 20:14:12.525625 24089 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 20:14:12.525653 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:14:14.528043 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:14:17.134654 24089 solver.cpp:397] Test net output #0: accuracy = 0.409314 +I0408 20:14:17.134701 24089 solver.cpp:397] Test net output #1: loss = 3.05105 (* 1 = 3.05105 loss) +I0408 20:14:19.086601 24089 solver.cpp:218] Iteration 6636 (0.51687 iter/s, 23.2167s/12 iters), loss = 0.307692 +I0408 20:14:19.086650 24089 solver.cpp:237] Train net output #0: loss = 0.307692 (* 1 = 0.307692 loss) +I0408 20:14:19.086663 24089 sgd_solver.cpp:105] Iteration 6636, lr = 6.27035e-05 +I0408 20:14:24.164255 24089 solver.cpp:218] Iteration 6648 (2.36342 iter/s, 5.0774s/12 iters), loss = 0.410105 +I0408 20:14:24.164309 24089 solver.cpp:237] Train net output #0: loss = 0.410105 (* 1 = 0.410105 loss) +I0408 20:14:24.164320 24089 sgd_solver.cpp:105] Iteration 6648, lr = 6.2131e-05 +I0408 20:14:29.406565 24089 solver.cpp:218] Iteration 6660 (2.28918 iter/s, 5.24205s/12 iters), loss = 0.561088 +I0408 20:14:29.406617 24089 solver.cpp:237] Train net output #0: loss = 0.561088 (* 1 = 0.561088 loss) +I0408 20:14:29.406627 24089 sgd_solver.cpp:105] Iteration 6660, lr = 6.15638e-05 +I0408 20:14:34.474803 24089 solver.cpp:218] Iteration 6672 (2.36781 iter/s, 5.06797s/12 iters), loss = 0.457771 +I0408 20:14:34.474853 24089 solver.cpp:237] Train net output #0: loss = 0.457771 (* 1 = 0.457771 loss) +I0408 20:14:34.474862 24089 sgd_solver.cpp:105] Iteration 6672, lr = 6.10017e-05 +I0408 20:14:35.820344 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:14:39.473881 24089 solver.cpp:218] Iteration 6684 (2.40056 iter/s, 4.99883s/12 iters), loss = 0.286448 +I0408 20:14:39.473925 24089 solver.cpp:237] Train net output #0: loss = 0.286448 (* 1 = 0.286448 loss) +I0408 20:14:39.473934 24089 sgd_solver.cpp:105] Iteration 6684, lr = 6.04448e-05 +I0408 20:14:44.538472 24089 solver.cpp:218] Iteration 6696 (2.36951 iter/s, 5.06434s/12 iters), loss = 0.326474 +I0408 20:14:44.538516 24089 solver.cpp:237] Train net output #0: loss = 0.326474 (* 1 = 0.326474 loss) +I0408 20:14:44.538523 24089 sgd_solver.cpp:105] Iteration 6696, lr = 5.98929e-05 +I0408 20:14:49.696054 24089 solver.cpp:218] Iteration 6708 (2.32678 iter/s, 5.15733s/12 iters), loss = 0.257486 +I0408 20:14:49.696096 24089 solver.cpp:237] Train net output #0: loss = 0.257486 (* 1 = 0.257486 loss) +I0408 20:14:49.696105 24089 sgd_solver.cpp:105] Iteration 6708, lr = 5.93461e-05 +I0408 20:14:54.740221 24089 solver.cpp:218] Iteration 6720 (2.37911 iter/s, 5.04391s/12 iters), loss = 0.342484 +I0408 20:14:54.740278 24089 solver.cpp:237] Train net output #0: loss = 0.342484 (* 1 = 0.342484 loss) +I0408 20:14:54.740290 24089 sgd_solver.cpp:105] Iteration 6720, lr = 5.88043e-05 +I0408 20:14:59.316794 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 20:15:05.623214 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 20:15:08.135680 24089 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 20:15:08.135792 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:15:09.956867 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:15:12.604544 24089 solver.cpp:397] Test net output #0: accuracy = 0.401348 +I0408 20:15:12.604593 24089 solver.cpp:397] Test net output #1: loss = 3.07665 (* 1 = 3.07665 loss) +I0408 20:15:12.695180 24089 solver.cpp:218] Iteration 6732 (0.668367 iter/s, 17.9542s/12 iters), loss = 0.377429 +I0408 20:15:12.695231 24089 solver.cpp:237] Train net output #0: loss = 0.377429 (* 1 = 0.377429 loss) +I0408 20:15:12.695243 24089 sgd_solver.cpp:105] Iteration 6732, lr = 5.82674e-05 +I0408 20:15:17.051152 24089 solver.cpp:218] Iteration 6744 (2.75498 iter/s, 4.35575s/12 iters), loss = 0.369563 +I0408 20:15:17.051200 24089 solver.cpp:237] Train net output #0: loss = 0.369563 (* 1 = 0.369563 loss) +I0408 20:15:17.051213 24089 sgd_solver.cpp:105] Iteration 6744, lr = 5.77355e-05 +I0408 20:15:22.148836 24089 solver.cpp:218] Iteration 6756 (2.35413 iter/s, 5.09743s/12 iters), loss = 0.373281 +I0408 20:15:22.148888 24089 solver.cpp:237] Train net output #0: loss = 0.373281 (* 1 = 0.373281 loss) +I0408 20:15:22.148900 24089 sgd_solver.cpp:105] Iteration 6756, lr = 5.72084e-05 +I0408 20:15:27.244057 24089 solver.cpp:218] Iteration 6768 (2.35527 iter/s, 5.09496s/12 iters), loss = 0.329717 +I0408 20:15:27.244102 24089 solver.cpp:237] Train net output #0: loss = 0.329717 (* 1 = 0.329717 loss) +I0408 20:15:27.244110 24089 sgd_solver.cpp:105] Iteration 6768, lr = 5.66861e-05 +I0408 20:15:30.748664 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:15:32.214212 24089 solver.cpp:218] Iteration 6780 (2.41453 iter/s, 4.96991s/12 iters), loss = 0.253858 +I0408 20:15:32.214264 24089 solver.cpp:237] Train net output #0: loss = 0.253858 (* 1 = 0.253858 loss) +I0408 20:15:32.214277 24089 sgd_solver.cpp:105] Iteration 6780, lr = 5.61685e-05 +I0408 20:15:37.224669 24089 solver.cpp:218] Iteration 6792 (2.39511 iter/s, 5.0102s/12 iters), loss = 0.425104 +I0408 20:15:37.224725 24089 solver.cpp:237] Train net output #0: loss = 0.425104 (* 1 = 0.425104 loss) +I0408 20:15:37.224737 24089 sgd_solver.cpp:105] Iteration 6792, lr = 5.56557e-05 +I0408 20:15:42.287978 24089 solver.cpp:218] Iteration 6804 (2.37012 iter/s, 5.06304s/12 iters), loss = 0.2644 +I0408 20:15:42.288118 24089 solver.cpp:237] Train net output #0: loss = 0.2644 (* 1 = 0.2644 loss) +I0408 20:15:42.288132 24089 sgd_solver.cpp:105] Iteration 6804, lr = 5.51476e-05 +I0408 20:15:47.532917 24089 solver.cpp:218] Iteration 6816 (2.28807 iter/s, 5.2446s/12 iters), loss = 0.378662 +I0408 20:15:47.532964 24089 solver.cpp:237] Train net output #0: loss = 0.378662 (* 1 = 0.378662 loss) +I0408 20:15:47.532976 24089 sgd_solver.cpp:105] Iteration 6816, lr = 5.46441e-05 +I0408 20:15:52.807487 24089 solver.cpp:218] Iteration 6828 (2.27518 iter/s, 5.27431s/12 iters), loss = 0.307706 +I0408 20:15:52.807535 24089 solver.cpp:237] Train net output #0: loss = 0.307706 (* 1 = 0.307706 loss) +I0408 20:15:52.807547 24089 sgd_solver.cpp:105] Iteration 6828, lr = 5.41453e-05 +I0408 20:15:54.869664 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 20:15:59.948172 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 20:16:06.183141 24089 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 20:16:06.183167 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:16:08.074486 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:16:10.799319 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:16:10.799367 24089 solver.cpp:397] Test net output #1: loss = 3.07385 (* 1 = 3.07385 loss) +I0408 20:16:12.770074 24089 solver.cpp:218] Iteration 6840 (0.601149 iter/s, 19.9618s/12 iters), loss = 0.460304 +I0408 20:16:12.770227 24089 solver.cpp:237] Train net output #0: loss = 0.460304 (* 1 = 0.460304 loss) +I0408 20:16:12.770242 24089 sgd_solver.cpp:105] Iteration 6840, lr = 5.36509e-05 +I0408 20:16:17.837180 24089 solver.cpp:218] Iteration 6852 (2.36838 iter/s, 5.06675s/12 iters), loss = 0.415629 +I0408 20:16:17.837236 24089 solver.cpp:237] Train net output #0: loss = 0.415629 (* 1 = 0.415629 loss) +I0408 20:16:17.837249 24089 sgd_solver.cpp:105] Iteration 6852, lr = 5.31611e-05 +I0408 20:16:22.957598 24089 solver.cpp:218] Iteration 6864 (2.34368 iter/s, 5.12016s/12 iters), loss = 0.404407 +I0408 20:16:22.957644 24089 solver.cpp:237] Train net output #0: loss = 0.404407 (* 1 = 0.404407 loss) +I0408 20:16:22.957655 24089 sgd_solver.cpp:105] Iteration 6864, lr = 5.26758e-05 +I0408 20:16:28.040800 24089 solver.cpp:218] Iteration 6876 (2.36084 iter/s, 5.08295s/12 iters), loss = 0.424367 +I0408 20:16:28.040859 24089 solver.cpp:237] Train net output #0: loss = 0.424367 (* 1 = 0.424367 loss) +I0408 20:16:28.040872 24089 sgd_solver.cpp:105] Iteration 6876, lr = 5.21948e-05 +I0408 20:16:28.676178 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:16:33.118221 24089 solver.cpp:218] Iteration 6888 (2.36353 iter/s, 5.07714s/12 iters), loss = 0.417895 +I0408 20:16:33.118269 24089 solver.cpp:237] Train net output #0: loss = 0.417895 (* 1 = 0.417895 loss) +I0408 20:16:33.118281 24089 sgd_solver.cpp:105] Iteration 6888, lr = 5.17183e-05 +I0408 20:16:38.173763 24089 solver.cpp:218] Iteration 6900 (2.37375 iter/s, 5.05529s/12 iters), loss = 0.253832 +I0408 20:16:38.173818 24089 solver.cpp:237] Train net output #0: loss = 0.253832 (* 1 = 0.253832 loss) +I0408 20:16:38.173831 24089 sgd_solver.cpp:105] Iteration 6900, lr = 5.12461e-05 +I0408 20:16:43.275147 24089 solver.cpp:218] Iteration 6912 (2.35242 iter/s, 5.10113s/12 iters), loss = 0.364188 +I0408 20:16:43.275259 24089 solver.cpp:237] Train net output #0: loss = 0.364188 (* 1 = 0.364188 loss) +I0408 20:16:43.275271 24089 sgd_solver.cpp:105] Iteration 6912, lr = 5.07783e-05 +I0408 20:16:48.302485 24089 solver.cpp:218] Iteration 6924 (2.3871 iter/s, 5.02703s/12 iters), loss = 0.376103 +I0408 20:16:48.302534 24089 solver.cpp:237] Train net output #0: loss = 0.376103 (* 1 = 0.376103 loss) +I0408 20:16:48.302546 24089 sgd_solver.cpp:105] Iteration 6924, lr = 5.03147e-05 +I0408 20:16:52.892920 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 20:17:02.133842 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 20:17:05.942821 24089 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 20:17:05.942849 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:17:06.605757 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:17:07.695741 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:17:10.420220 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:17:10.420269 24089 solver.cpp:397] Test net output #1: loss = 3.06896 (* 1 = 3.06896 loss) +I0408 20:17:10.511050 24089 solver.cpp:218] Iteration 6936 (0.540354 iter/s, 22.2077s/12 iters), loss = 0.339857 +I0408 20:17:10.511107 24089 solver.cpp:237] Train net output #0: loss = 0.339857 (* 1 = 0.339857 loss) +I0408 20:17:10.511121 24089 sgd_solver.cpp:105] Iteration 6936, lr = 4.98553e-05 +I0408 20:17:14.923772 24089 solver.cpp:218] Iteration 6948 (2.71956 iter/s, 4.41248s/12 iters), loss = 0.372685 +I0408 20:17:14.923882 24089 solver.cpp:237] Train net output #0: loss = 0.372685 (* 1 = 0.372685 loss) +I0408 20:17:14.923897 24089 sgd_solver.cpp:105] Iteration 6948, lr = 4.94002e-05 +I0408 20:17:19.969386 24089 solver.cpp:218] Iteration 6960 (2.37845 iter/s, 5.0453s/12 iters), loss = 0.323268 +I0408 20:17:19.969432 24089 solver.cpp:237] Train net output #0: loss = 0.323268 (* 1 = 0.323268 loss) +I0408 20:17:19.969444 24089 sgd_solver.cpp:105] Iteration 6960, lr = 4.89492e-05 +I0408 20:17:25.005829 24089 solver.cpp:218] Iteration 6972 (2.38275 iter/s, 5.0362s/12 iters), loss = 0.237371 +I0408 20:17:25.005877 24089 solver.cpp:237] Train net output #0: loss = 0.237371 (* 1 = 0.237371 loss) +I0408 20:17:25.005888 24089 sgd_solver.cpp:105] Iteration 6972, lr = 4.85023e-05 +I0408 20:17:27.775157 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:17:30.030179 24089 solver.cpp:218] Iteration 6984 (2.38849 iter/s, 5.0241s/12 iters), loss = 0.286384 +I0408 20:17:30.030227 24089 solver.cpp:237] Train net output #0: loss = 0.286384 (* 1 = 0.286384 loss) +I0408 20:17:30.030239 24089 sgd_solver.cpp:105] Iteration 6984, lr = 4.80594e-05 +I0408 20:17:35.085040 24089 solver.cpp:218] Iteration 6996 (2.37407 iter/s, 5.05461s/12 iters), loss = 0.317308 +I0408 20:17:35.085088 24089 solver.cpp:237] Train net output #0: loss = 0.317308 (* 1 = 0.317308 loss) +I0408 20:17:35.085100 24089 sgd_solver.cpp:105] Iteration 6996, lr = 4.76207e-05 +I0408 20:17:39.960495 24089 solver.cpp:218] Iteration 7008 (2.46143 iter/s, 4.87521s/12 iters), loss = 0.407264 +I0408 20:17:39.960546 24089 solver.cpp:237] Train net output #0: loss = 0.407264 (* 1 = 0.407264 loss) +I0408 20:17:39.960558 24089 sgd_solver.cpp:105] Iteration 7008, lr = 4.71859e-05 +I0408 20:17:44.871451 24089 solver.cpp:218] Iteration 7020 (2.44364 iter/s, 4.91072s/12 iters), loss = 0.462106 +I0408 20:17:44.871490 24089 solver.cpp:237] Train net output #0: loss = 0.462106 (* 1 = 0.462106 loss) +I0408 20:17:44.871497 24089 sgd_solver.cpp:105] Iteration 7020, lr = 4.67551e-05 +I0408 20:17:49.832509 24089 solver.cpp:218] Iteration 7032 (2.41895 iter/s, 4.96082s/12 iters), loss = 0.363796 +I0408 20:17:49.832656 24089 solver.cpp:237] Train net output #0: loss = 0.363796 (* 1 = 0.363796 loss) +I0408 20:17:49.832669 24089 sgd_solver.cpp:105] Iteration 7032, lr = 4.63283e-05 +I0408 20:17:51.969117 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 20:17:54.962954 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 20:17:57.372670 24089 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 20:17:57.372696 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:17:59.086506 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:18:01.843154 24089 solver.cpp:397] Test net output #0: accuracy = 0.401348 +I0408 20:18:01.843189 24089 solver.cpp:397] Test net output #1: loss = 3.06595 (* 1 = 3.06595 loss) +I0408 20:18:03.674540 24089 solver.cpp:218] Iteration 7044 (0.866967 iter/s, 13.8414s/12 iters), loss = 0.201871 +I0408 20:18:03.674593 24089 solver.cpp:237] Train net output #0: loss = 0.201871 (* 1 = 0.201871 loss) +I0408 20:18:03.674604 24089 sgd_solver.cpp:105] Iteration 7044, lr = 4.59053e-05 +I0408 20:18:08.676111 24089 solver.cpp:218] Iteration 7056 (2.39937 iter/s, 5.00132s/12 iters), loss = 0.438437 +I0408 20:18:08.676154 24089 solver.cpp:237] Train net output #0: loss = 0.438437 (* 1 = 0.438437 loss) +I0408 20:18:08.676164 24089 sgd_solver.cpp:105] Iteration 7056, lr = 4.54862e-05 +I0408 20:18:13.766837 24089 solver.cpp:218] Iteration 7068 (2.35734 iter/s, 5.09048s/12 iters), loss = 0.3211 +I0408 20:18:13.766887 24089 solver.cpp:237] Train net output #0: loss = 0.3211 (* 1 = 0.3211 loss) +I0408 20:18:13.766898 24089 sgd_solver.cpp:105] Iteration 7068, lr = 4.50709e-05 +I0408 20:18:18.624680 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:18:18.734517 24089 solver.cpp:218] Iteration 7080 (2.41573 iter/s, 4.96743s/12 iters), loss = 0.255584 +I0408 20:18:18.734558 24089 solver.cpp:237] Train net output #0: loss = 0.255584 (* 1 = 0.255584 loss) +I0408 20:18:18.734570 24089 sgd_solver.cpp:105] Iteration 7080, lr = 4.46594e-05 +I0408 20:18:23.748251 24089 solver.cpp:218] Iteration 7092 (2.39354 iter/s, 5.01349s/12 iters), loss = 0.335515 +I0408 20:18:23.748349 24089 solver.cpp:237] Train net output #0: loss = 0.335515 (* 1 = 0.335515 loss) +I0408 20:18:23.748358 24089 sgd_solver.cpp:105] Iteration 7092, lr = 4.42517e-05 +I0408 20:18:28.756593 24089 solver.cpp:218] Iteration 7104 (2.39614 iter/s, 5.00805s/12 iters), loss = 0.439368 +I0408 20:18:28.756636 24089 solver.cpp:237] Train net output #0: loss = 0.439368 (* 1 = 0.439368 loss) +I0408 20:18:28.756644 24089 sgd_solver.cpp:105] Iteration 7104, lr = 4.38477e-05 +I0408 20:18:33.942895 24089 solver.cpp:218] Iteration 7116 (2.3139 iter/s, 5.18605s/12 iters), loss = 0.357005 +I0408 20:18:33.942936 24089 solver.cpp:237] Train net output #0: loss = 0.357005 (* 1 = 0.357005 loss) +I0408 20:18:33.942946 24089 sgd_solver.cpp:105] Iteration 7116, lr = 4.34474e-05 +I0408 20:18:39.081871 24089 solver.cpp:218] Iteration 7128 (2.33519 iter/s, 5.13878s/12 iters), loss = 0.314667 +I0408 20:18:39.081909 24089 solver.cpp:237] Train net output #0: loss = 0.314667 (* 1 = 0.314667 loss) +I0408 20:18:39.081918 24089 sgd_solver.cpp:105] Iteration 7128, lr = 4.30507e-05 +I0408 20:18:43.928603 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 20:18:46.933092 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 20:18:50.323629 24089 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 20:18:50.323660 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:18:51.990960 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:18:54.790813 24089 solver.cpp:397] Test net output #0: accuracy = 0.402574 +I0408 20:18:54.790966 24089 solver.cpp:397] Test net output #1: loss = 3.10049 (* 1 = 3.10049 loss) +I0408 20:18:54.881702 24089 solver.cpp:218] Iteration 7140 (0.759525 iter/s, 15.7993s/12 iters), loss = 0.28402 +I0408 20:18:54.881747 24089 solver.cpp:237] Train net output #0: loss = 0.28402 (* 1 = 0.28402 loss) +I0408 20:18:54.881757 24089 sgd_solver.cpp:105] Iteration 7140, lr = 4.26577e-05 +I0408 20:18:59.199811 24089 solver.cpp:218] Iteration 7152 (2.77911 iter/s, 4.31793s/12 iters), loss = 0.420613 +I0408 20:18:59.199858 24089 solver.cpp:237] Train net output #0: loss = 0.420613 (* 1 = 0.420613 loss) +I0408 20:18:59.199869 24089 sgd_solver.cpp:105] Iteration 7152, lr = 4.22682e-05 +I0408 20:19:04.270232 24089 solver.cpp:218] Iteration 7164 (2.36676 iter/s, 5.07022s/12 iters), loss = 0.295908 +I0408 20:19:04.270277 24089 solver.cpp:237] Train net output #0: loss = 0.295908 (* 1 = 0.295908 loss) +I0408 20:19:04.270288 24089 sgd_solver.cpp:105] Iteration 7164, lr = 4.18823e-05 +I0408 20:19:09.362915 24089 solver.cpp:218] Iteration 7176 (2.35642 iter/s, 5.09248s/12 iters), loss = 0.447234 +I0408 20:19:09.362987 24089 solver.cpp:237] Train net output #0: loss = 0.447234 (* 1 = 0.447234 loss) +I0408 20:19:09.363003 24089 sgd_solver.cpp:105] Iteration 7176, lr = 4.15e-05 +I0408 20:19:11.516093 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:19:14.425575 24089 solver.cpp:218] Iteration 7188 (2.3704 iter/s, 5.06244s/12 iters), loss = 0.269888 +I0408 20:19:14.425626 24089 solver.cpp:237] Train net output #0: loss = 0.269888 (* 1 = 0.269888 loss) +I0408 20:19:14.425638 24089 sgd_solver.cpp:105] Iteration 7188, lr = 4.11211e-05 +I0408 20:19:19.437248 24089 solver.cpp:218] Iteration 7200 (2.39451 iter/s, 5.01147s/12 iters), loss = 0.31275 +I0408 20:19:19.437288 24089 solver.cpp:237] Train net output #0: loss = 0.31275 (* 1 = 0.31275 loss) +I0408 20:19:19.437295 24089 sgd_solver.cpp:105] Iteration 7200, lr = 4.07457e-05 +I0408 20:19:24.439741 24089 solver.cpp:218] Iteration 7212 (2.3989 iter/s, 5.0023s/12 iters), loss = 0.189609 +I0408 20:19:24.439779 24089 solver.cpp:237] Train net output #0: loss = 0.189609 (* 1 = 0.189609 loss) +I0408 20:19:24.439787 24089 sgd_solver.cpp:105] Iteration 7212, lr = 4.03737e-05 +I0408 20:19:29.575256 24089 solver.cpp:218] Iteration 7224 (2.33676 iter/s, 5.13532s/12 iters), loss = 0.297432 +I0408 20:19:29.575373 24089 solver.cpp:237] Train net output #0: loss = 0.297432 (* 1 = 0.297432 loss) +I0408 20:19:29.575383 24089 sgd_solver.cpp:105] Iteration 7224, lr = 4.00051e-05 +I0408 20:19:34.645100 24089 solver.cpp:218] Iteration 7236 (2.36706 iter/s, 5.06958s/12 iters), loss = 0.274882 +I0408 20:19:34.645143 24089 solver.cpp:237] Train net output #0: loss = 0.274882 (* 1 = 0.274882 loss) +I0408 20:19:34.645153 24089 sgd_solver.cpp:105] Iteration 7236, lr = 3.96398e-05 +I0408 20:19:36.696877 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 20:19:39.729558 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 20:19:42.081403 24089 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 20:19:42.081429 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:19:43.693617 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:19:46.534852 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:19:46.534889 24089 solver.cpp:397] Test net output #1: loss = 3.08124 (* 1 = 3.08124 loss) +I0408 20:19:48.503823 24089 solver.cpp:218] Iteration 7248 (0.865909 iter/s, 13.8583s/12 iters), loss = 0.319137 +I0408 20:19:48.503871 24089 solver.cpp:237] Train net output #0: loss = 0.319137 (* 1 = 0.319137 loss) +I0408 20:19:48.503882 24089 sgd_solver.cpp:105] Iteration 7248, lr = 3.92779e-05 +I0408 20:19:53.984872 24089 solver.cpp:218] Iteration 7260 (2.18945 iter/s, 5.48083s/12 iters), loss = 0.36352 +I0408 20:19:53.984922 24089 solver.cpp:237] Train net output #0: loss = 0.36352 (* 1 = 0.36352 loss) +I0408 20:19:53.984935 24089 sgd_solver.cpp:105] Iteration 7260, lr = 3.89193e-05 +I0408 20:19:59.072316 24089 solver.cpp:218] Iteration 7272 (2.35885 iter/s, 5.08723s/12 iters), loss = 0.346935 +I0408 20:19:59.072366 24089 solver.cpp:237] Train net output #0: loss = 0.346935 (* 1 = 0.346935 loss) +I0408 20:19:59.072378 24089 sgd_solver.cpp:105] Iteration 7272, lr = 3.8564e-05 +I0408 20:20:03.346357 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:20:04.118069 24089 solver.cpp:218] Iteration 7284 (2.37833 iter/s, 5.04555s/12 iters), loss = 0.388394 +I0408 20:20:04.118104 24089 solver.cpp:237] Train net output #0: loss = 0.388394 (* 1 = 0.388394 loss) +I0408 20:20:04.118113 24089 sgd_solver.cpp:105] Iteration 7284, lr = 3.82119e-05 +I0408 20:20:09.141676 24089 solver.cpp:218] Iteration 7296 (2.38881 iter/s, 5.02341s/12 iters), loss = 0.361213 +I0408 20:20:09.141723 24089 solver.cpp:237] Train net output #0: loss = 0.361213 (* 1 = 0.361213 loss) +I0408 20:20:09.141736 24089 sgd_solver.cpp:105] Iteration 7296, lr = 3.78631e-05 +I0408 20:20:14.171909 24089 solver.cpp:218] Iteration 7308 (2.38567 iter/s, 5.03003s/12 iters), loss = 0.417412 +I0408 20:20:14.171957 24089 solver.cpp:237] Train net output #0: loss = 0.417412 (* 1 = 0.417412 loss) +I0408 20:20:14.171967 24089 sgd_solver.cpp:105] Iteration 7308, lr = 3.75174e-05 +I0408 20:20:19.237095 24089 solver.cpp:218] Iteration 7320 (2.36921 iter/s, 5.06498s/12 iters), loss = 0.395983 +I0408 20:20:19.237147 24089 solver.cpp:237] Train net output #0: loss = 0.395983 (* 1 = 0.395983 loss) +I0408 20:20:19.237159 24089 sgd_solver.cpp:105] Iteration 7320, lr = 3.71749e-05 +I0408 20:20:24.265015 24089 solver.cpp:218] Iteration 7332 (2.38677 iter/s, 5.02771s/12 iters), loss = 0.358749 +I0408 20:20:24.265067 24089 solver.cpp:237] Train net output #0: loss = 0.358749 (* 1 = 0.358749 loss) +I0408 20:20:24.265080 24089 sgd_solver.cpp:105] Iteration 7332, lr = 3.68355e-05 +I0408 20:20:28.705549 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 20:20:31.961050 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 20:20:34.260226 24089 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 20:20:34.260272 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:20:35.845691 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:20:38.857758 24089 solver.cpp:397] Test net output #0: accuracy = 0.403799 +I0408 20:20:38.857800 24089 solver.cpp:397] Test net output #1: loss = 3.09181 (* 1 = 3.09181 loss) +I0408 20:20:38.948468 24089 solver.cpp:218] Iteration 7344 (0.817275 iter/s, 14.6829s/12 iters), loss = 0.260758 +I0408 20:20:38.948516 24089 solver.cpp:237] Train net output #0: loss = 0.260758 (* 1 = 0.260758 loss) +I0408 20:20:38.948527 24089 sgd_solver.cpp:105] Iteration 7344, lr = 3.64992e-05 +I0408 20:20:43.140233 24089 solver.cpp:218] Iteration 7356 (2.86288 iter/s, 4.19158s/12 iters), loss = 0.47223 +I0408 20:20:43.140283 24089 solver.cpp:237] Train net output #0: loss = 0.47223 (* 1 = 0.47223 loss) +I0408 20:20:43.140296 24089 sgd_solver.cpp:105] Iteration 7356, lr = 3.61659e-05 +I0408 20:20:48.236290 24089 solver.cpp:218] Iteration 7368 (2.35486 iter/s, 5.09584s/12 iters), loss = 0.30373 +I0408 20:20:48.236341 24089 solver.cpp:237] Train net output #0: loss = 0.30373 (* 1 = 0.30373 loss) +I0408 20:20:48.236353 24089 sgd_solver.cpp:105] Iteration 7368, lr = 3.58357e-05 +I0408 20:20:53.489539 24089 solver.cpp:218] Iteration 7380 (2.2844 iter/s, 5.25303s/12 iters), loss = 0.333062 +I0408 20:20:53.489598 24089 solver.cpp:237] Train net output #0: loss = 0.333062 (* 1 = 0.333062 loss) +I0408 20:20:53.489612 24089 sgd_solver.cpp:105] Iteration 7380, lr = 3.55086e-05 +I0408 20:20:54.843888 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:20:58.530877 24089 solver.cpp:218] Iteration 7392 (2.38042 iter/s, 5.04112s/12 iters), loss = 0.351257 +I0408 20:20:58.530926 24089 solver.cpp:237] Train net output #0: loss = 0.351257 (* 1 = 0.351257 loss) +I0408 20:20:58.530938 24089 sgd_solver.cpp:105] Iteration 7392, lr = 3.51844e-05 +I0408 20:21:03.547785 24089 solver.cpp:218] Iteration 7404 (2.39201 iter/s, 5.0167s/12 iters), loss = 0.461401 +I0408 20:21:03.547834 24089 solver.cpp:237] Train net output #0: loss = 0.461401 (* 1 = 0.461401 loss) +I0408 20:21:03.547847 24089 sgd_solver.cpp:105] Iteration 7404, lr = 3.48632e-05 +I0408 20:21:08.561295 24089 solver.cpp:218] Iteration 7416 (2.39363 iter/s, 5.0133s/12 iters), loss = 0.361481 +I0408 20:21:08.561440 24089 solver.cpp:237] Train net output #0: loss = 0.361481 (* 1 = 0.361481 loss) +I0408 20:21:08.561455 24089 sgd_solver.cpp:105] Iteration 7416, lr = 3.45449e-05 +I0408 20:21:13.633247 24089 solver.cpp:218] Iteration 7428 (2.3661 iter/s, 5.07165s/12 iters), loss = 0.328436 +I0408 20:21:13.633291 24089 solver.cpp:237] Train net output #0: loss = 0.328436 (* 1 = 0.328436 loss) +I0408 20:21:13.633302 24089 sgd_solver.cpp:105] Iteration 7428, lr = 3.42295e-05 +I0408 20:21:18.554031 24089 solver.cpp:218] Iteration 7440 (2.43874 iter/s, 4.92058s/12 iters), loss = 0.330486 +I0408 20:21:18.554080 24089 solver.cpp:237] Train net output #0: loss = 0.330486 (* 1 = 0.330486 loss) +I0408 20:21:18.554093 24089 sgd_solver.cpp:105] Iteration 7440, lr = 3.3917e-05 +I0408 20:21:20.546089 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 20:21:25.852739 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 20:21:28.160148 24089 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 20:21:28.160171 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:21:29.705379 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:21:32.773200 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:21:32.773233 24089 solver.cpp:397] Test net output #1: loss = 3.09468 (* 1 = 3.09468 loss) +I0408 20:21:34.578727 24089 solver.cpp:218] Iteration 7452 (0.748869 iter/s, 16.0242s/12 iters), loss = 0.302833 +I0408 20:21:34.578770 24089 solver.cpp:237] Train net output #0: loss = 0.302833 (* 1 = 0.302833 loss) +I0408 20:21:34.578780 24089 sgd_solver.cpp:105] Iteration 7452, lr = 3.36073e-05 +I0408 20:21:39.637866 24089 solver.cpp:218] Iteration 7464 (2.37204 iter/s, 5.05893s/12 iters), loss = 0.311574 +I0408 20:21:39.637987 24089 solver.cpp:237] Train net output #0: loss = 0.311574 (* 1 = 0.311574 loss) +I0408 20:21:39.638001 24089 sgd_solver.cpp:105] Iteration 7464, lr = 3.33005e-05 +I0408 20:21:44.715281 24089 solver.cpp:218] Iteration 7476 (2.36354 iter/s, 5.07713s/12 iters), loss = 0.344117 +I0408 20:21:44.715319 24089 solver.cpp:237] Train net output #0: loss = 0.344117 (* 1 = 0.344117 loss) +I0408 20:21:44.715329 24089 sgd_solver.cpp:105] Iteration 7476, lr = 3.29965e-05 +I0408 20:21:48.220754 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:21:49.687641 24089 solver.cpp:218] Iteration 7488 (2.41344 iter/s, 4.97216s/12 iters), loss = 0.341364 +I0408 20:21:49.687686 24089 solver.cpp:237] Train net output #0: loss = 0.341364 (* 1 = 0.341364 loss) +I0408 20:21:49.687700 24089 sgd_solver.cpp:105] Iteration 7488, lr = 3.26952e-05 +I0408 20:21:54.734747 24089 solver.cpp:218] Iteration 7500 (2.3777 iter/s, 5.0469s/12 iters), loss = 0.45258 +I0408 20:21:54.734791 24089 solver.cpp:237] Train net output #0: loss = 0.45258 (* 1 = 0.45258 loss) +I0408 20:21:54.734802 24089 sgd_solver.cpp:105] Iteration 7500, lr = 3.23967e-05 +I0408 20:21:59.685658 24089 solver.cpp:218] Iteration 7512 (2.4239 iter/s, 4.95071s/12 iters), loss = 0.321114 +I0408 20:21:59.685705 24089 solver.cpp:237] Train net output #0: loss = 0.321114 (* 1 = 0.321114 loss) +I0408 20:21:59.685716 24089 sgd_solver.cpp:105] Iteration 7512, lr = 3.2101e-05 +I0408 20:22:04.828902 24089 solver.cpp:218] Iteration 7524 (2.33326 iter/s, 5.14303s/12 iters), loss = 0.344017 +I0408 20:22:04.828949 24089 solver.cpp:237] Train net output #0: loss = 0.344017 (* 1 = 0.344017 loss) +I0408 20:22:04.828961 24089 sgd_solver.cpp:105] Iteration 7524, lr = 3.18079e-05 +I0408 20:22:10.029839 24089 solver.cpp:218] Iteration 7536 (2.30737 iter/s, 5.20072s/12 iters), loss = 0.412006 +I0408 20:22:10.031857 24089 solver.cpp:237] Train net output #0: loss = 0.412006 (* 1 = 0.412006 loss) +I0408 20:22:10.031870 24089 sgd_solver.cpp:105] Iteration 7536, lr = 3.15175e-05 +I0408 20:22:14.621168 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 20:22:21.244417 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 20:22:23.563609 24089 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 20:22:23.563634 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:22:25.081797 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:22:28.038496 24089 solver.cpp:397] Test net output #0: accuracy = 0.410539 +I0408 20:22:28.038545 24089 solver.cpp:397] Test net output #1: loss = 3.08277 (* 1 = 3.08277 loss) +I0408 20:22:28.129115 24089 solver.cpp:218] Iteration 7548 (0.663105 iter/s, 18.0967s/12 iters), loss = 0.388744 +I0408 20:22:28.129168 24089 solver.cpp:237] Train net output #0: loss = 0.388744 (* 1 = 0.388744 loss) +I0408 20:22:28.129179 24089 sgd_solver.cpp:105] Iteration 7548, lr = 3.12297e-05 +I0408 20:22:32.593763 24089 solver.cpp:218] Iteration 7560 (2.68791 iter/s, 4.46444s/12 iters), loss = 0.224334 +I0408 20:22:32.593811 24089 solver.cpp:237] Train net output #0: loss = 0.224334 (* 1 = 0.224334 loss) +I0408 20:22:32.593822 24089 sgd_solver.cpp:105] Iteration 7560, lr = 3.09446e-05 +I0408 20:22:37.609860 24089 solver.cpp:218] Iteration 7572 (2.3924 iter/s, 5.01588s/12 iters), loss = 0.315179 +I0408 20:22:37.609896 24089 solver.cpp:237] Train net output #0: loss = 0.315179 (* 1 = 0.315179 loss) +I0408 20:22:37.609906 24089 sgd_solver.cpp:105] Iteration 7572, lr = 3.06621e-05 +I0408 20:22:42.579619 24089 solver.cpp:218] Iteration 7584 (2.4147 iter/s, 4.96956s/12 iters), loss = 0.489109 +I0408 20:22:42.579697 24089 solver.cpp:237] Train net output #0: loss = 0.489109 (* 1 = 0.489109 loss) +I0408 20:22:42.579711 24089 sgd_solver.cpp:105] Iteration 7584, lr = 3.03822e-05 +I0408 20:22:43.234117 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:22:47.650439 24089 solver.cpp:218] Iteration 7596 (2.36659 iter/s, 5.07058s/12 iters), loss = 0.443902 +I0408 20:22:47.650478 24089 solver.cpp:237] Train net output #0: loss = 0.443902 (* 1 = 0.443902 loss) +I0408 20:22:47.650486 24089 sgd_solver.cpp:105] Iteration 7596, lr = 3.01048e-05 +I0408 20:22:52.688869 24089 solver.cpp:218] Iteration 7608 (2.38179 iter/s, 5.03822s/12 iters), loss = 0.292065 +I0408 20:22:52.688908 24089 solver.cpp:237] Train net output #0: loss = 0.292065 (* 1 = 0.292065 loss) +I0408 20:22:52.688918 24089 sgd_solver.cpp:105] Iteration 7608, lr = 2.98299e-05 +I0408 20:22:57.703899 24089 solver.cpp:218] Iteration 7620 (2.39291 iter/s, 5.01482s/12 iters), loss = 0.30872 +I0408 20:22:57.703940 24089 solver.cpp:237] Train net output #0: loss = 0.30872 (* 1 = 0.30872 loss) +I0408 20:22:57.703948 24089 sgd_solver.cpp:105] Iteration 7620, lr = 2.95576e-05 +I0408 20:23:00.104404 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:23:02.632793 24089 solver.cpp:218] Iteration 7632 (2.43473 iter/s, 4.92869s/12 iters), loss = 0.459646 +I0408 20:23:02.632835 24089 solver.cpp:237] Train net output #0: loss = 0.459646 (* 1 = 0.459646 loss) +I0408 20:23:02.632845 24089 sgd_solver.cpp:105] Iteration 7632, lr = 2.92878e-05 +I0408 20:23:07.676234 24089 solver.cpp:218] Iteration 7644 (2.37943 iter/s, 5.04323s/12 iters), loss = 0.420999 +I0408 20:23:07.676282 24089 solver.cpp:237] Train net output #0: loss = 0.420999 (* 1 = 0.420999 loss) +I0408 20:23:07.676293 24089 sgd_solver.cpp:105] Iteration 7644, lr = 2.90204e-05 +I0408 20:23:09.676651 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 20:23:13.629426 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 20:23:18.186168 24089 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 20:23:18.186197 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:23:19.661175 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:23:22.661868 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:23:22.661918 24089 solver.cpp:397] Test net output #1: loss = 3.08993 (* 1 = 3.08993 loss) +I0408 20:23:24.642596 24089 solver.cpp:218] Iteration 7656 (0.707306 iter/s, 16.9658s/12 iters), loss = 0.420638 +I0408 20:23:24.642647 24089 solver.cpp:237] Train net output #0: loss = 0.420638 (* 1 = 0.420638 loss) +I0408 20:23:24.642660 24089 sgd_solver.cpp:105] Iteration 7656, lr = 2.87554e-05 +I0408 20:23:30.122412 24089 solver.cpp:218] Iteration 7668 (2.18995 iter/s, 5.47958s/12 iters), loss = 0.229606 +I0408 20:23:30.122464 24089 solver.cpp:237] Train net output #0: loss = 0.229606 (* 1 = 0.229606 loss) +I0408 20:23:30.122476 24089 sgd_solver.cpp:105] Iteration 7668, lr = 2.84929e-05 +I0408 20:23:35.345523 24089 solver.cpp:218] Iteration 7680 (2.29758 iter/s, 5.22288s/12 iters), loss = 0.444687 +I0408 20:23:35.345584 24089 solver.cpp:237] Train net output #0: loss = 0.444687 (* 1 = 0.444687 loss) +I0408 20:23:35.345597 24089 sgd_solver.cpp:105] Iteration 7680, lr = 2.82328e-05 +I0408 20:23:38.141757 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:23:40.422829 24089 solver.cpp:218] Iteration 7692 (2.36356 iter/s, 5.07708s/12 iters), loss = 0.436646 +I0408 20:23:40.422878 24089 solver.cpp:237] Train net output #0: loss = 0.436646 (* 1 = 0.436646 loss) +I0408 20:23:40.422888 24089 sgd_solver.cpp:105] Iteration 7692, lr = 2.7975e-05 +I0408 20:23:45.423436 24089 solver.cpp:218] Iteration 7704 (2.39981 iter/s, 5.00039s/12 iters), loss = 0.355224 +I0408 20:23:45.423528 24089 solver.cpp:237] Train net output #0: loss = 0.355224 (* 1 = 0.355224 loss) +I0408 20:23:45.423540 24089 sgd_solver.cpp:105] Iteration 7704, lr = 2.77196e-05 +I0408 20:23:50.532357 24089 solver.cpp:218] Iteration 7716 (2.34895 iter/s, 5.10866s/12 iters), loss = 0.343823 +I0408 20:23:50.532405 24089 solver.cpp:237] Train net output #0: loss = 0.343823 (* 1 = 0.343823 loss) +I0408 20:23:50.532418 24089 sgd_solver.cpp:105] Iteration 7716, lr = 2.74665e-05 +I0408 20:23:55.631242 24089 solver.cpp:218] Iteration 7728 (2.35356 iter/s, 5.09867s/12 iters), loss = 0.321659 +I0408 20:23:55.631290 24089 solver.cpp:237] Train net output #0: loss = 0.321659 (* 1 = 0.321659 loss) +I0408 20:23:55.631302 24089 sgd_solver.cpp:105] Iteration 7728, lr = 2.72158e-05 +I0408 20:24:00.754439 24089 solver.cpp:218] Iteration 7740 (2.34239 iter/s, 5.12298s/12 iters), loss = 0.351056 +I0408 20:24:00.754487 24089 solver.cpp:237] Train net output #0: loss = 0.351056 (* 1 = 0.351056 loss) +I0408 20:24:00.754498 24089 sgd_solver.cpp:105] Iteration 7740, lr = 2.69673e-05 +I0408 20:24:05.337672 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 20:24:08.402685 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 20:24:12.236836 24089 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 20:24:12.236865 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:24:13.674111 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:24:16.708606 24089 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0408 20:24:16.708753 24089 solver.cpp:397] Test net output #1: loss = 3.09899 (* 1 = 3.09899 loss) +I0408 20:24:16.799311 24089 solver.cpp:218] Iteration 7752 (0.747929 iter/s, 16.0443s/12 iters), loss = 0.339755 +I0408 20:24:16.799350 24089 solver.cpp:237] Train net output #0: loss = 0.339755 (* 1 = 0.339755 loss) +I0408 20:24:16.799360 24089 sgd_solver.cpp:105] Iteration 7752, lr = 2.67211e-05 +I0408 20:24:21.235414 24089 solver.cpp:218] Iteration 7764 (2.70519 iter/s, 4.43591s/12 iters), loss = 0.311485 +I0408 20:24:21.235455 24089 solver.cpp:237] Train net output #0: loss = 0.311485 (* 1 = 0.311485 loss) +I0408 20:24:21.235464 24089 sgd_solver.cpp:105] Iteration 7764, lr = 2.64771e-05 +I0408 20:24:26.290975 24089 solver.cpp:218] Iteration 7776 (2.37372 iter/s, 5.05535s/12 iters), loss = 0.333517 +I0408 20:24:26.291021 24089 solver.cpp:237] Train net output #0: loss = 0.333517 (* 1 = 0.333517 loss) +I0408 20:24:26.291033 24089 sgd_solver.cpp:105] Iteration 7776, lr = 2.62354e-05 +I0408 20:24:31.337899 24089 solver.cpp:218] Iteration 7788 (2.37779 iter/s, 5.04671s/12 iters), loss = 0.493011 +I0408 20:24:31.337944 24089 solver.cpp:237] Train net output #0: loss = 0.493011 (* 1 = 0.493011 loss) +I0408 20:24:31.337970 24089 sgd_solver.cpp:105] Iteration 7788, lr = 2.59959e-05 +I0408 20:24:31.348745 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:24:36.411813 24089 solver.cpp:218] Iteration 7800 (2.36514 iter/s, 5.0737s/12 iters), loss = 0.390123 +I0408 20:24:36.411861 24089 solver.cpp:237] Train net output #0: loss = 0.390123 (* 1 = 0.390123 loss) +I0408 20:24:36.411873 24089 sgd_solver.cpp:105] Iteration 7800, lr = 2.57585e-05 +I0408 20:24:41.434835 24089 solver.cpp:218] Iteration 7812 (2.38911 iter/s, 5.0228s/12 iters), loss = 0.312651 +I0408 20:24:41.434888 24089 solver.cpp:237] Train net output #0: loss = 0.312651 (* 1 = 0.312651 loss) +I0408 20:24:41.434900 24089 sgd_solver.cpp:105] Iteration 7812, lr = 2.55234e-05 +I0408 20:24:46.512573 24089 solver.cpp:218] Iteration 7824 (2.36336 iter/s, 5.07751s/12 iters), loss = 0.263145 +I0408 20:24:46.512620 24089 solver.cpp:237] Train net output #0: loss = 0.263145 (* 1 = 0.263145 loss) +I0408 20:24:46.512631 24089 sgd_solver.cpp:105] Iteration 7824, lr = 2.52904e-05 +I0408 20:24:51.563971 24089 solver.cpp:218] Iteration 7836 (2.37568 iter/s, 5.05118s/12 iters), loss = 0.34921 +I0408 20:24:51.564090 24089 solver.cpp:237] Train net output #0: loss = 0.34921 (* 1 = 0.34921 loss) +I0408 20:24:51.564103 24089 sgd_solver.cpp:105] Iteration 7836, lr = 2.50595e-05 +I0408 20:24:56.656316 24089 solver.cpp:218] Iteration 7848 (2.35661 iter/s, 5.09206s/12 iters), loss = 0.416455 +I0408 20:24:56.656363 24089 solver.cpp:237] Train net output #0: loss = 0.416455 (* 1 = 0.416455 loss) +I0408 20:24:56.656375 24089 sgd_solver.cpp:105] Iteration 7848, lr = 2.48307e-05 +I0408 20:24:58.680054 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 20:25:01.681448 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 20:25:04.009542 24089 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 20:25:04.009567 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:25:05.345465 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:25:08.581931 24089 solver.cpp:397] Test net output #0: accuracy = 0.401961 +I0408 20:25:08.581996 24089 solver.cpp:397] Test net output #1: loss = 3.10477 (* 1 = 3.10477 loss) +I0408 20:25:10.611115 24089 solver.cpp:218] Iteration 7860 (0.85995 iter/s, 13.9543s/12 iters), loss = 0.395553 +I0408 20:25:10.611168 24089 solver.cpp:237] Train net output #0: loss = 0.395553 (* 1 = 0.395553 loss) +I0408 20:25:10.611181 24089 sgd_solver.cpp:105] Iteration 7860, lr = 2.4604e-05 +I0408 20:25:15.892637 24089 solver.cpp:218] Iteration 7872 (2.27217 iter/s, 5.28129s/12 iters), loss = 0.292436 +I0408 20:25:15.892685 24089 solver.cpp:237] Train net output #0: loss = 0.292436 (* 1 = 0.292436 loss) +I0408 20:25:15.892697 24089 sgd_solver.cpp:105] Iteration 7872, lr = 2.43794e-05 +I0408 20:25:20.933316 24089 solver.cpp:218] Iteration 7884 (2.38073 iter/s, 5.04046s/12 iters), loss = 0.345813 +I0408 20:25:20.933370 24089 solver.cpp:237] Train net output #0: loss = 0.345813 (* 1 = 0.345813 loss) +I0408 20:25:20.933383 24089 sgd_solver.cpp:105] Iteration 7884, lr = 2.41568e-05 +I0408 20:25:23.104924 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:25:25.980353 24089 solver.cpp:218] Iteration 7896 (2.37774 iter/s, 5.04681s/12 iters), loss = 0.301041 +I0408 20:25:25.980402 24089 solver.cpp:237] Train net output #0: loss = 0.301041 (* 1 = 0.301041 loss) +I0408 20:25:25.980413 24089 sgd_solver.cpp:105] Iteration 7896, lr = 2.39362e-05 +I0408 20:25:31.070546 24089 solver.cpp:218] Iteration 7908 (2.35758 iter/s, 5.08997s/12 iters), loss = 0.22872 +I0408 20:25:31.070595 24089 solver.cpp:237] Train net output #0: loss = 0.22872 (* 1 = 0.22872 loss) +I0408 20:25:31.070607 24089 sgd_solver.cpp:105] Iteration 7908, lr = 2.37177e-05 +I0408 20:25:36.476752 24089 solver.cpp:218] Iteration 7920 (2.21977 iter/s, 5.40597s/12 iters), loss = 0.321484 +I0408 20:25:36.476804 24089 solver.cpp:237] Train net output #0: loss = 0.321484 (* 1 = 0.321484 loss) +I0408 20:25:36.476815 24089 sgd_solver.cpp:105] Iteration 7920, lr = 2.35012e-05 +I0408 20:25:41.608834 24089 solver.cpp:218] Iteration 7932 (2.33833 iter/s, 5.13186s/12 iters), loss = 0.338748 +I0408 20:25:41.608881 24089 solver.cpp:237] Train net output #0: loss = 0.338748 (* 1 = 0.338748 loss) +I0408 20:25:41.608892 24089 sgd_solver.cpp:105] Iteration 7932, lr = 2.32866e-05 +I0408 20:25:46.667270 24089 solver.cpp:218] Iteration 7944 (2.37238 iter/s, 5.05822s/12 iters), loss = 0.240832 +I0408 20:25:46.667333 24089 solver.cpp:237] Train net output #0: loss = 0.240832 (* 1 = 0.240832 loss) +I0408 20:25:46.667343 24089 sgd_solver.cpp:105] Iteration 7944, lr = 2.3074e-05 +I0408 20:25:51.265097 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 20:25:54.275995 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 20:25:58.425567 24089 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 20:25:58.425592 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:25:59.770459 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:26:02.885166 24089 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0408 20:26:02.885215 24089 solver.cpp:397] Test net output #1: loss = 3.09565 (* 1 = 3.09565 loss) +I0408 20:26:02.976138 24089 solver.cpp:218] Iteration 7956 (0.735823 iter/s, 16.3083s/12 iters), loss = 0.302112 +I0408 20:26:02.976213 24089 solver.cpp:237] Train net output #0: loss = 0.302112 (* 1 = 0.302112 loss) +I0408 20:26:02.976230 24089 sgd_solver.cpp:105] Iteration 7956, lr = 2.28633e-05 +I0408 20:26:07.454433 24089 solver.cpp:218] Iteration 7968 (2.67973 iter/s, 4.47807s/12 iters), loss = 0.342759 +I0408 20:26:07.454483 24089 solver.cpp:237] Train net output #0: loss = 0.342759 (* 1 = 0.342759 loss) +I0408 20:26:07.454496 24089 sgd_solver.cpp:105] Iteration 7968, lr = 2.26546e-05 +I0408 20:26:12.870913 24089 solver.cpp:218] Iteration 7980 (2.21556 iter/s, 5.41624s/12 iters), loss = 0.304769 +I0408 20:26:12.870960 24089 solver.cpp:237] Train net output #0: loss = 0.304769 (* 1 = 0.304769 loss) +I0408 20:26:12.870971 24089 sgd_solver.cpp:105] Iteration 7980, lr = 2.24478e-05 +I0408 20:26:17.145445 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:26:17.862663 24089 solver.cpp:218] Iteration 7992 (2.40407 iter/s, 4.99153s/12 iters), loss = 0.36628 +I0408 20:26:17.862710 24089 solver.cpp:237] Train net output #0: loss = 0.36628 (* 1 = 0.36628 loss) +I0408 20:26:17.862722 24089 sgd_solver.cpp:105] Iteration 7992, lr = 2.22428e-05 +I0408 20:26:22.982637 24089 solver.cpp:218] Iteration 8004 (2.34386 iter/s, 5.11975s/12 iters), loss = 0.386211 +I0408 20:26:22.982688 24089 solver.cpp:237] Train net output #0: loss = 0.386211 (* 1 = 0.386211 loss) +I0408 20:26:22.982702 24089 sgd_solver.cpp:105] Iteration 8004, lr = 2.20398e-05 +I0408 20:26:28.039880 24089 solver.cpp:218] Iteration 8016 (2.37294 iter/s, 5.05702s/12 iters), loss = 0.288338 +I0408 20:26:28.040001 24089 solver.cpp:237] Train net output #0: loss = 0.288338 (* 1 = 0.288338 loss) +I0408 20:26:28.040014 24089 sgd_solver.cpp:105] Iteration 8016, lr = 2.18386e-05 +I0408 20:26:33.072413 24089 solver.cpp:218] Iteration 8028 (2.38462 iter/s, 5.03224s/12 iters), loss = 0.272938 +I0408 20:26:33.072459 24089 solver.cpp:237] Train net output #0: loss = 0.272938 (* 1 = 0.272938 loss) +I0408 20:26:33.072470 24089 sgd_solver.cpp:105] Iteration 8028, lr = 2.16392e-05 +I0408 20:26:38.163383 24089 solver.cpp:218] Iteration 8040 (2.35722 iter/s, 5.09075s/12 iters), loss = 0.343503 +I0408 20:26:38.163432 24089 solver.cpp:237] Train net output #0: loss = 0.343503 (* 1 = 0.343503 loss) +I0408 20:26:38.163444 24089 sgd_solver.cpp:105] Iteration 8040, lr = 2.14416e-05 +I0408 20:26:43.167882 24089 solver.cpp:218] Iteration 8052 (2.39795 iter/s, 5.00428s/12 iters), loss = 0.284604 +I0408 20:26:43.167932 24089 solver.cpp:237] Train net output #0: loss = 0.284604 (* 1 = 0.284604 loss) +I0408 20:26:43.167944 24089 sgd_solver.cpp:105] Iteration 8052, lr = 2.12459e-05 +I0408 20:26:45.237569 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 20:26:54.234483 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 20:26:57.063915 24089 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 20:26:57.063941 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:26:58.364454 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:27:01.525678 24089 solver.cpp:397] Test net output #0: accuracy = 0.403186 +I0408 20:27:01.525722 24089 solver.cpp:397] Test net output #1: loss = 3.11695 (* 1 = 3.11695 loss) +I0408 20:27:03.251327 24089 solver.cpp:218] Iteration 8064 (0.597528 iter/s, 20.0827s/12 iters), loss = 0.296174 +I0408 20:27:03.251377 24089 solver.cpp:237] Train net output #0: loss = 0.296174 (* 1 = 0.296174 loss) +I0408 20:27:03.251389 24089 sgd_solver.cpp:105] Iteration 8064, lr = 2.10519e-05 +I0408 20:27:08.253839 24089 solver.cpp:218] Iteration 8076 (2.39891 iter/s, 5.00228s/12 iters), loss = 0.271698 +I0408 20:27:08.253877 24089 solver.cpp:237] Train net output #0: loss = 0.271698 (* 1 = 0.271698 loss) +I0408 20:27:08.253886 24089 sgd_solver.cpp:105] Iteration 8076, lr = 2.08597e-05 +I0408 20:27:13.309047 24089 solver.cpp:218] Iteration 8088 (2.37389 iter/s, 5.05499s/12 iters), loss = 0.239949 +I0408 20:27:13.309108 24089 solver.cpp:237] Train net output #0: loss = 0.239949 (* 1 = 0.239949 loss) +I0408 20:27:13.309126 24089 sgd_solver.cpp:105] Iteration 8088, lr = 2.06692e-05 +I0408 20:27:14.728574 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:27:18.342366 24089 solver.cpp:218] Iteration 8100 (2.38423 iter/s, 5.03308s/12 iters), loss = 0.412046 +I0408 20:27:18.342418 24089 solver.cpp:237] Train net output #0: loss = 0.412046 (* 1 = 0.412046 loss) +I0408 20:27:18.342430 24089 sgd_solver.cpp:105] Iteration 8100, lr = 2.04805e-05 +I0408 20:27:23.291790 24089 solver.cpp:218] Iteration 8112 (2.42463 iter/s, 4.9492s/12 iters), loss = 0.327668 +I0408 20:27:23.291827 24089 solver.cpp:237] Train net output #0: loss = 0.327668 (* 1 = 0.327668 loss) +I0408 20:27:23.291836 24089 sgd_solver.cpp:105] Iteration 8112, lr = 2.02936e-05 +I0408 20:27:28.353865 24089 solver.cpp:218] Iteration 8124 (2.37067 iter/s, 5.06185s/12 iters), loss = 0.260022 +I0408 20:27:28.353929 24089 solver.cpp:237] Train net output #0: loss = 0.260022 (* 1 = 0.260022 loss) +I0408 20:27:28.353946 24089 sgd_solver.cpp:105] Iteration 8124, lr = 2.01083e-05 +I0408 20:27:33.443217 24089 solver.cpp:218] Iteration 8136 (2.35797 iter/s, 5.08912s/12 iters), loss = 0.331456 +I0408 20:27:33.443334 24089 solver.cpp:237] Train net output #0: loss = 0.331456 (* 1 = 0.331456 loss) +I0408 20:27:33.443344 24089 sgd_solver.cpp:105] Iteration 8136, lr = 1.99247e-05 +I0408 20:27:38.522882 24089 solver.cpp:218] Iteration 8148 (2.3625 iter/s, 5.07937s/12 iters), loss = 0.360521 +I0408 20:27:38.522924 24089 solver.cpp:237] Train net output #0: loss = 0.360521 (* 1 = 0.360521 loss) +I0408 20:27:38.522933 24089 sgd_solver.cpp:105] Iteration 8148, lr = 1.97428e-05 +I0408 20:27:43.181744 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 20:27:46.218624 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 20:27:48.588582 24089 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 20:27:48.588608 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:27:49.857270 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:27:53.054836 24089 solver.cpp:397] Test net output #0: accuracy = 0.404412 +I0408 20:27:53.054884 24089 solver.cpp:397] Test net output #1: loss = 3.09344 (* 1 = 3.09344 loss) +I0408 20:27:53.145658 24089 solver.cpp:218] Iteration 8160 (0.820668 iter/s, 14.6222s/12 iters), loss = 0.345762 +I0408 20:27:53.145704 24089 solver.cpp:237] Train net output #0: loss = 0.345762 (* 1 = 0.345762 loss) +I0408 20:27:53.145714 24089 sgd_solver.cpp:105] Iteration 8160, lr = 1.95625e-05 +I0408 20:27:57.712585 24089 solver.cpp:218] Iteration 8172 (2.62771 iter/s, 4.56672s/12 iters), loss = 0.33809 +I0408 20:27:57.712632 24089 solver.cpp:237] Train net output #0: loss = 0.33809 (* 1 = 0.33809 loss) +I0408 20:27:57.712643 24089 sgd_solver.cpp:105] Iteration 8172, lr = 1.93839e-05 +I0408 20:28:02.842550 24089 solver.cpp:218] Iteration 8184 (2.3393 iter/s, 5.12974s/12 iters), loss = 0.40306 +I0408 20:28:02.842592 24089 solver.cpp:237] Train net output #0: loss = 0.40306 (* 1 = 0.40306 loss) +I0408 20:28:02.842600 24089 sgd_solver.cpp:105] Iteration 8184, lr = 1.9207e-05 +I0408 20:28:06.420159 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:28:07.870488 24089 solver.cpp:218] Iteration 8196 (2.38677 iter/s, 5.02772s/12 iters), loss = 0.363849 +I0408 20:28:07.870535 24089 solver.cpp:237] Train net output #0: loss = 0.363849 (* 1 = 0.363849 loss) +I0408 20:28:07.870546 24089 sgd_solver.cpp:105] Iteration 8196, lr = 1.90316e-05 +I0408 20:28:12.925359 24089 solver.cpp:218] Iteration 8208 (2.37406 iter/s, 5.05464s/12 iters), loss = 0.256096 +I0408 20:28:12.925438 24089 solver.cpp:237] Train net output #0: loss = 0.256096 (* 1 = 0.256096 loss) +I0408 20:28:12.925460 24089 sgd_solver.cpp:105] Iteration 8208, lr = 1.88579e-05 +I0408 20:28:17.882341 24089 solver.cpp:218] Iteration 8220 (2.42095 iter/s, 4.95674s/12 iters), loss = 0.413607 +I0408 20:28:17.882387 24089 solver.cpp:237] Train net output #0: loss = 0.413607 (* 1 = 0.413607 loss) +I0408 20:28:17.882398 24089 sgd_solver.cpp:105] Iteration 8220, lr = 1.86857e-05 +I0408 20:28:22.865561 24089 solver.cpp:218] Iteration 8232 (2.40819 iter/s, 4.98301s/12 iters), loss = 0.334379 +I0408 20:28:22.865594 24089 solver.cpp:237] Train net output #0: loss = 0.334379 (* 1 = 0.334379 loss) +I0408 20:28:22.865603 24089 sgd_solver.cpp:105] Iteration 8232, lr = 1.85151e-05 +I0408 20:28:27.951084 24089 solver.cpp:218] Iteration 8244 (2.35974 iter/s, 5.08531s/12 iters), loss = 0.301201 +I0408 20:28:27.951128 24089 solver.cpp:237] Train net output #0: loss = 0.301201 (* 1 = 0.301201 loss) +I0408 20:28:27.951139 24089 sgd_solver.cpp:105] Iteration 8244, lr = 1.83461e-05 +I0408 20:28:32.942615 24089 solver.cpp:218] Iteration 8256 (2.40418 iter/s, 4.99131s/12 iters), loss = 0.386108 +I0408 20:28:32.942667 24089 solver.cpp:237] Train net output #0: loss = 0.386108 (* 1 = 0.386108 loss) +I0408 20:28:32.942679 24089 sgd_solver.cpp:105] Iteration 8256, lr = 1.81786e-05 +I0408 20:28:35.237579 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 20:28:38.277284 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 20:28:40.605547 24089 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 20:28:40.605576 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:28:41.838624 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:28:45.067589 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:28:45.067633 24089 solver.cpp:397] Test net output #1: loss = 3.09727 (* 1 = 3.09727 loss) +I0408 20:28:47.058660 24089 solver.cpp:218] Iteration 8268 (0.850128 iter/s, 14.1155s/12 iters), loss = 0.305285 +I0408 20:28:47.058702 24089 solver.cpp:237] Train net output #0: loss = 0.305285 (* 1 = 0.305285 loss) +I0408 20:28:47.058712 24089 sgd_solver.cpp:105] Iteration 8268, lr = 1.80126e-05 +I0408 20:28:52.282333 24089 solver.cpp:218] Iteration 8280 (2.29733 iter/s, 5.22345s/12 iters), loss = 0.311071 +I0408 20:28:52.282368 24089 solver.cpp:237] Train net output #0: loss = 0.311071 (* 1 = 0.311071 loss) +I0408 20:28:52.282377 24089 sgd_solver.cpp:105] Iteration 8280, lr = 1.78482e-05 +I0408 20:28:57.418905 24089 solver.cpp:218] Iteration 8292 (2.33629 iter/s, 5.13635s/12 iters), loss = 0.396386 +I0408 20:28:57.418942 24089 solver.cpp:237] Train net output #0: loss = 0.396386 (* 1 = 0.396386 loss) +I0408 20:28:57.418951 24089 sgd_solver.cpp:105] Iteration 8292, lr = 1.76852e-05 +I0408 20:28:58.077143 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:29:02.452024 24089 solver.cpp:218] Iteration 8304 (2.38431 iter/s, 5.0329s/12 iters), loss = 0.479314 +I0408 20:29:02.452070 24089 solver.cpp:237] Train net output #0: loss = 0.479314 (* 1 = 0.479314 loss) +I0408 20:29:02.452082 24089 sgd_solver.cpp:105] Iteration 8304, lr = 1.75237e-05 +I0408 20:29:05.384861 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:29:08.534034 24089 solver.cpp:218] Iteration 8316 (1.97745 iter/s, 6.06843s/12 iters), loss = 0.329732 +I0408 20:29:08.546064 24089 solver.cpp:237] Train net output #0: loss = 0.329732 (* 1 = 0.329732 loss) +I0408 20:29:08.546083 24089 sgd_solver.cpp:105] Iteration 8316, lr = 1.73638e-05 +I0408 20:29:16.656889 24089 solver.cpp:218] Iteration 8328 (1.4819 iter/s, 8.09772s/12 iters), loss = 0.314435 +I0408 20:29:16.656949 24089 solver.cpp:237] Train net output #0: loss = 0.314435 (* 1 = 0.314435 loss) +I0408 20:29:16.656962 24089 sgd_solver.cpp:105] Iteration 8328, lr = 1.72052e-05 +I0408 20:29:24.263429 24089 solver.cpp:218] Iteration 8340 (1.57766 iter/s, 7.60621s/12 iters), loss = 0.319578 +I0408 20:29:24.274621 24089 solver.cpp:237] Train net output #0: loss = 0.319578 (* 1 = 0.319578 loss) +I0408 20:29:24.274646 24089 sgd_solver.cpp:105] Iteration 8340, lr = 1.70482e-05 +I0408 20:29:30.521816 24089 solver.cpp:218] Iteration 8352 (1.92093 iter/s, 6.24698s/12 iters), loss = 0.358542 +I0408 20:29:30.521876 24089 solver.cpp:237] Train net output #0: loss = 0.358542 (* 1 = 0.358542 loss) +I0408 20:29:30.521889 24089 sgd_solver.cpp:105] Iteration 8352, lr = 1.68925e-05 +I0408 20:29:36.234679 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 20:29:43.521189 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 20:29:46.238759 24089 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 20:29:46.238783 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:29:47.595075 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:29:51.641635 24089 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0408 20:29:51.641674 24089 solver.cpp:397] Test net output #1: loss = 3.10454 (* 1 = 3.10454 loss) +I0408 20:29:51.734724 24089 solver.cpp:218] Iteration 8364 (0.565714 iter/s, 21.2121s/12 iters), loss = 0.349417 +I0408 20:29:51.734782 24089 solver.cpp:237] Train net output #0: loss = 0.349417 (* 1 = 0.349417 loss) +I0408 20:29:51.734794 24089 sgd_solver.cpp:105] Iteration 8364, lr = 1.67383e-05 +I0408 20:29:56.503914 24089 solver.cpp:218] Iteration 8376 (2.51627 iter/s, 4.76895s/12 iters), loss = 0.29971 +I0408 20:29:56.503965 24089 solver.cpp:237] Train net output #0: loss = 0.29971 (* 1 = 0.29971 loss) +I0408 20:29:56.503975 24089 sgd_solver.cpp:105] Iteration 8376, lr = 1.65855e-05 +I0408 20:30:02.099287 24089 solver.cpp:218] Iteration 8388 (2.14473 iter/s, 5.59511s/12 iters), loss = 0.412796 +I0408 20:30:02.099341 24089 solver.cpp:237] Train net output #0: loss = 0.412796 (* 1 = 0.412796 loss) +I0408 20:30:02.099354 24089 sgd_solver.cpp:105] Iteration 8388, lr = 1.64341e-05 +I0408 20:30:05.474370 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:30:08.116763 24089 solver.cpp:218] Iteration 8400 (1.99428 iter/s, 6.01721s/12 iters), loss = 0.276235 +I0408 20:30:08.116808 24089 solver.cpp:237] Train net output #0: loss = 0.276235 (* 1 = 0.276235 loss) +I0408 20:30:08.116818 24089 sgd_solver.cpp:105] Iteration 8400, lr = 1.6284e-05 +I0408 20:30:14.711681 24089 solver.cpp:218] Iteration 8412 (1.81966 iter/s, 6.59463s/12 iters), loss = 0.316971 +I0408 20:30:14.721227 24089 solver.cpp:237] Train net output #0: loss = 0.316971 (* 1 = 0.316971 loss) +I0408 20:30:14.721246 24089 sgd_solver.cpp:105] Iteration 8412, lr = 1.61353e-05 +I0408 20:30:20.829602 24089 solver.cpp:218] Iteration 8424 (1.96458 iter/s, 6.10817s/12 iters), loss = 0.298713 +I0408 20:30:20.829658 24089 solver.cpp:237] Train net output #0: loss = 0.298713 (* 1 = 0.298713 loss) +I0408 20:30:20.829669 24089 sgd_solver.cpp:105] Iteration 8424, lr = 1.5988e-05 +I0408 20:30:26.859596 24089 solver.cpp:218] Iteration 8436 (1.99014 iter/s, 6.02972s/12 iters), loss = 0.259889 +I0408 20:30:26.859652 24089 solver.cpp:237] Train net output #0: loss = 0.259889 (* 1 = 0.259889 loss) +I0408 20:30:26.859663 24089 sgd_solver.cpp:105] Iteration 8436, lr = 1.58421e-05 +I0408 20:30:31.937880 24089 solver.cpp:218] Iteration 8448 (2.36311 iter/s, 5.07804s/12 iters), loss = 0.415561 +I0408 20:30:31.937927 24089 solver.cpp:237] Train net output #0: loss = 0.415561 (* 1 = 0.415561 loss) +I0408 20:30:31.937938 24089 sgd_solver.cpp:105] Iteration 8448, lr = 1.56974e-05 +I0408 20:30:37.008033 24089 solver.cpp:218] Iteration 8460 (2.3669 iter/s, 5.06993s/12 iters), loss = 0.316937 +I0408 20:30:37.008075 24089 solver.cpp:237] Train net output #0: loss = 0.316937 (* 1 = 0.316937 loss) +I0408 20:30:37.008085 24089 sgd_solver.cpp:105] Iteration 8460, lr = 1.55541e-05 +I0408 20:30:39.062742 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 20:30:42.067636 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 20:30:44.377175 24089 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 20:30:44.377205 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:30:45.827597 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:30:49.299598 24089 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0408 20:30:49.299646 24089 solver.cpp:397] Test net output #1: loss = 3.09836 (* 1 = 3.09836 loss) +I0408 20:30:51.241395 24089 solver.cpp:218] Iteration 8472 (0.843121 iter/s, 14.2328s/12 iters), loss = 0.431018 +I0408 20:30:51.241444 24089 solver.cpp:237] Train net output #0: loss = 0.431018 (* 1 = 0.431018 loss) +I0408 20:30:51.241456 24089 sgd_solver.cpp:105] Iteration 8472, lr = 1.54121e-05 +I0408 20:30:56.309363 24089 solver.cpp:218] Iteration 8484 (2.36792 iter/s, 5.06774s/12 iters), loss = 0.184015 +I0408 20:30:56.309413 24089 solver.cpp:237] Train net output #0: loss = 0.184015 (* 1 = 0.184015 loss) +I0408 20:30:56.309425 24089 sgd_solver.cpp:105] Iteration 8484, lr = 1.52714e-05 +I0408 20:31:01.327184 24089 solver.cpp:218] Iteration 8496 (2.39158 iter/s, 5.01759s/12 iters), loss = 0.405977 +I0408 20:31:01.327220 24089 solver.cpp:237] Train net output #0: loss = 0.405977 (* 1 = 0.405977 loss) +I0408 20:31:01.327229 24089 sgd_solver.cpp:105] Iteration 8496, lr = 1.5132e-05 +I0408 20:31:01.375710 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:31:06.393605 24089 solver.cpp:218] Iteration 8508 (2.36864 iter/s, 5.0662s/12 iters), loss = 0.356294 +I0408 20:31:06.393654 24089 solver.cpp:237] Train net output #0: loss = 0.356294 (* 1 = 0.356294 loss) +I0408 20:31:06.393666 24089 sgd_solver.cpp:105] Iteration 8508, lr = 1.49938e-05 +I0408 20:31:11.417325 24089 solver.cpp:218] Iteration 8520 (2.38878 iter/s, 5.02349s/12 iters), loss = 0.403776 +I0408 20:31:11.417359 24089 solver.cpp:237] Train net output #0: loss = 0.403776 (* 1 = 0.403776 loss) +I0408 20:31:11.417367 24089 sgd_solver.cpp:105] Iteration 8520, lr = 1.48569e-05 +I0408 20:31:16.446301 24089 solver.cpp:218] Iteration 8532 (2.38628 iter/s, 5.02876s/12 iters), loss = 0.368116 +I0408 20:31:16.446458 24089 solver.cpp:237] Train net output #0: loss = 0.368116 (* 1 = 0.368116 loss) +I0408 20:31:16.446473 24089 sgd_solver.cpp:105] Iteration 8532, lr = 1.47213e-05 +I0408 20:31:21.731366 24089 solver.cpp:218] Iteration 8544 (2.27069 iter/s, 5.28473s/12 iters), loss = 0.390978 +I0408 20:31:21.731405 24089 solver.cpp:237] Train net output #0: loss = 0.390978 (* 1 = 0.390978 loss) +I0408 20:31:21.731413 24089 sgd_solver.cpp:105] Iteration 8544, lr = 1.45869e-05 +I0408 20:31:27.128518 24089 solver.cpp:218] Iteration 8556 (2.22349 iter/s, 5.39692s/12 iters), loss = 0.424406 +I0408 20:31:27.128566 24089 solver.cpp:237] Train net output #0: loss = 0.424406 (* 1 = 0.424406 loss) +I0408 20:31:27.128576 24089 sgd_solver.cpp:105] Iteration 8556, lr = 1.44537e-05 +I0408 20:31:31.756179 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 20:31:34.776029 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 20:31:37.102600 24089 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 20:31:37.102628 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:31:38.206007 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:31:41.564558 24089 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0408 20:31:41.564604 24089 solver.cpp:397] Test net output #1: loss = 3.12085 (* 1 = 3.12085 loss) +I0408 20:31:41.654893 24089 solver.cpp:218] Iteration 8568 (0.826115 iter/s, 14.5258s/12 iters), loss = 0.300264 +I0408 20:31:41.654940 24089 solver.cpp:237] Train net output #0: loss = 0.300264 (* 1 = 0.300264 loss) +I0408 20:31:41.654951 24089 sgd_solver.cpp:105] Iteration 8568, lr = 1.43218e-05 +I0408 20:31:45.938238 24089 solver.cpp:218] Iteration 8580 (2.80168 iter/s, 4.28314s/12 iters), loss = 0.274257 +I0408 20:31:45.938287 24089 solver.cpp:237] Train net output #0: loss = 0.274257 (* 1 = 0.274257 loss) +I0408 20:31:45.938299 24089 sgd_solver.cpp:105] Iteration 8580, lr = 1.4191e-05 +I0408 20:31:50.973589 24089 solver.cpp:218] Iteration 8592 (2.38326 iter/s, 5.03512s/12 iters), loss = 0.321475 +I0408 20:31:50.973695 24089 solver.cpp:237] Train net output #0: loss = 0.321475 (* 1 = 0.321475 loss) +I0408 20:31:50.973711 24089 sgd_solver.cpp:105] Iteration 8592, lr = 1.40615e-05 +I0408 20:31:53.093410 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:31:55.854992 24089 solver.cpp:218] Iteration 8604 (2.45845 iter/s, 4.88113s/12 iters), loss = 0.317688 +I0408 20:31:55.855027 24089 solver.cpp:237] Train net output #0: loss = 0.317688 (* 1 = 0.317688 loss) +I0408 20:31:55.855036 24089 sgd_solver.cpp:105] Iteration 8604, lr = 1.39331e-05 +I0408 20:32:00.945716 24089 solver.cpp:218] Iteration 8616 (2.35733 iter/s, 5.0905s/12 iters), loss = 0.303468 +I0408 20:32:00.945765 24089 solver.cpp:237] Train net output #0: loss = 0.303468 (* 1 = 0.303468 loss) +I0408 20:32:00.945776 24089 sgd_solver.cpp:105] Iteration 8616, lr = 1.38059e-05 +I0408 20:32:06.012739 24089 solver.cpp:218] Iteration 8628 (2.36836 iter/s, 5.06679s/12 iters), loss = 0.259613 +I0408 20:32:06.012781 24089 solver.cpp:237] Train net output #0: loss = 0.259613 (* 1 = 0.259613 loss) +I0408 20:32:06.012792 24089 sgd_solver.cpp:105] Iteration 8628, lr = 1.36798e-05 +I0408 20:32:10.981421 24089 solver.cpp:218] Iteration 8640 (2.41524 iter/s, 4.96846s/12 iters), loss = 0.238156 +I0408 20:32:10.981465 24089 solver.cpp:237] Train net output #0: loss = 0.238156 (* 1 = 0.238156 loss) +I0408 20:32:10.981474 24089 sgd_solver.cpp:105] Iteration 8640, lr = 1.35549e-05 +I0408 20:32:16.065451 24089 solver.cpp:218] Iteration 8652 (2.36044 iter/s, 5.0838s/12 iters), loss = 0.344763 +I0408 20:32:16.065487 24089 solver.cpp:237] Train net output #0: loss = 0.344763 (* 1 = 0.344763 loss) +I0408 20:32:16.065495 24089 sgd_solver.cpp:105] Iteration 8652, lr = 1.34312e-05 +I0408 20:32:21.108518 24089 solver.cpp:218] Iteration 8664 (2.37961 iter/s, 5.04285s/12 iters), loss = 0.286029 +I0408 20:32:21.108669 24089 solver.cpp:237] Train net output #0: loss = 0.286029 (* 1 = 0.286029 loss) +I0408 20:32:21.108681 24089 sgd_solver.cpp:105] Iteration 8664, lr = 1.33086e-05 +I0408 20:32:23.154875 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 20:32:27.154454 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 20:32:29.486037 24089 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 20:32:29.486064 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:32:30.571038 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:32:33.964625 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:32:33.964675 24089 solver.cpp:397] Test net output #1: loss = 3.12397 (* 1 = 3.12397 loss) +I0408 20:32:35.790810 24089 solver.cpp:218] Iteration 8676 (0.817348 iter/s, 14.6816s/12 iters), loss = 0.320655 +I0408 20:32:35.790859 24089 solver.cpp:237] Train net output #0: loss = 0.320655 (* 1 = 0.320655 loss) +I0408 20:32:35.790870 24089 sgd_solver.cpp:105] Iteration 8676, lr = 1.31871e-05 +I0408 20:32:41.044543 24089 solver.cpp:218] Iteration 8688 (2.28419 iter/s, 5.25349s/12 iters), loss = 0.43117 +I0408 20:32:41.044589 24089 solver.cpp:237] Train net output #0: loss = 0.43117 (* 1 = 0.43117 loss) +I0408 20:32:41.044601 24089 sgd_solver.cpp:105] Iteration 8688, lr = 1.30667e-05 +I0408 20:32:45.381177 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:32:46.059818 24089 solver.cpp:218] Iteration 8700 (2.3928 iter/s, 5.01504s/12 iters), loss = 0.304549 +I0408 20:32:46.059865 24089 solver.cpp:237] Train net output #0: loss = 0.304549 (* 1 = 0.304549 loss) +I0408 20:32:46.059878 24089 sgd_solver.cpp:105] Iteration 8700, lr = 1.29474e-05 +I0408 20:32:51.064065 24089 solver.cpp:218] Iteration 8712 (2.39807 iter/s, 5.00402s/12 iters), loss = 0.347001 +I0408 20:32:51.064112 24089 solver.cpp:237] Train net output #0: loss = 0.347001 (* 1 = 0.347001 loss) +I0408 20:32:51.064123 24089 sgd_solver.cpp:105] Iteration 8712, lr = 1.28292e-05 +I0408 20:32:56.116452 24089 solver.cpp:218] Iteration 8724 (2.37522 iter/s, 5.05216s/12 iters), loss = 0.319649 +I0408 20:32:56.116586 24089 solver.cpp:237] Train net output #0: loss = 0.319649 (* 1 = 0.319649 loss) +I0408 20:32:56.116605 24089 sgd_solver.cpp:105] Iteration 8724, lr = 1.2712e-05 +I0408 20:33:01.120564 24089 solver.cpp:218] Iteration 8736 (2.39818 iter/s, 5.0038s/12 iters), loss = 0.312311 +I0408 20:33:01.120610 24089 solver.cpp:237] Train net output #0: loss = 0.312311 (* 1 = 0.312311 loss) +I0408 20:33:01.120621 24089 sgd_solver.cpp:105] Iteration 8736, lr = 1.2596e-05 +I0408 20:33:06.180764 24089 solver.cpp:218] Iteration 8748 (2.37156 iter/s, 5.05997s/12 iters), loss = 0.255662 +I0408 20:33:06.180814 24089 solver.cpp:237] Train net output #0: loss = 0.255662 (* 1 = 0.255662 loss) +I0408 20:33:06.180825 24089 sgd_solver.cpp:105] Iteration 8748, lr = 1.2481e-05 +I0408 20:33:11.148352 24089 solver.cpp:218] Iteration 8760 (2.41577 iter/s, 4.96736s/12 iters), loss = 0.367806 +I0408 20:33:11.148402 24089 solver.cpp:237] Train net output #0: loss = 0.367806 (* 1 = 0.367806 loss) +I0408 20:33:11.148413 24089 sgd_solver.cpp:105] Iteration 8760, lr = 1.2367e-05 +I0408 20:33:15.731343 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 20:33:20.136143 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 20:33:24.575641 24089 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 20:33:24.575667 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:33:25.607679 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:33:29.046432 24089 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0408 20:33:29.046597 24089 solver.cpp:397] Test net output #1: loss = 3.11971 (* 1 = 3.11971 loss) +I0408 20:33:29.136966 24089 solver.cpp:218] Iteration 8772 (0.667114 iter/s, 17.9879s/12 iters), loss = 0.330087 +I0408 20:33:29.137014 24089 solver.cpp:237] Train net output #0: loss = 0.330087 (* 1 = 0.330087 loss) +I0408 20:33:29.137027 24089 sgd_solver.cpp:105] Iteration 8772, lr = 1.22541e-05 +I0408 20:33:33.475448 24089 solver.cpp:218] Iteration 8784 (2.76608 iter/s, 4.33827s/12 iters), loss = 0.481881 +I0408 20:33:33.475498 24089 solver.cpp:237] Train net output #0: loss = 0.481881 (* 1 = 0.481881 loss) +I0408 20:33:33.475509 24089 sgd_solver.cpp:105] Iteration 8784, lr = 1.21422e-05 +I0408 20:33:38.517107 24089 solver.cpp:218] Iteration 8796 (2.38028 iter/s, 5.04142s/12 iters), loss = 0.295713 +I0408 20:33:38.517156 24089 solver.cpp:237] Train net output #0: loss = 0.295713 (* 1 = 0.295713 loss) +I0408 20:33:38.517168 24089 sgd_solver.cpp:105] Iteration 8796, lr = 1.20314e-05 +I0408 20:33:39.963757 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:33:43.481792 24089 solver.cpp:218] Iteration 8808 (2.41718 iter/s, 4.96445s/12 iters), loss = 0.279272 +I0408 20:33:43.481842 24089 solver.cpp:237] Train net output #0: loss = 0.279272 (* 1 = 0.279272 loss) +I0408 20:33:43.481853 24089 sgd_solver.cpp:105] Iteration 8808, lr = 1.19216e-05 +I0408 20:33:48.530773 24089 solver.cpp:218] Iteration 8820 (2.37683 iter/s, 5.04874s/12 iters), loss = 0.35465 +I0408 20:33:48.530827 24089 solver.cpp:237] Train net output #0: loss = 0.35465 (* 1 = 0.35465 loss) +I0408 20:33:48.530841 24089 sgd_solver.cpp:105] Iteration 8820, lr = 1.18127e-05 +I0408 20:33:53.689134 24089 solver.cpp:218] Iteration 8832 (2.32643 iter/s, 5.15812s/12 iters), loss = 0.389461 +I0408 20:33:53.689188 24089 solver.cpp:237] Train net output #0: loss = 0.389461 (* 1 = 0.389461 loss) +I0408 20:33:53.689200 24089 sgd_solver.cpp:105] Iteration 8832, lr = 1.17049e-05 +I0408 20:33:58.785354 24089 solver.cpp:218] Iteration 8844 (2.3548 iter/s, 5.09598s/12 iters), loss = 0.280406 +I0408 20:33:58.785406 24089 solver.cpp:237] Train net output #0: loss = 0.280406 (* 1 = 0.280406 loss) +I0408 20:33:58.785418 24089 sgd_solver.cpp:105] Iteration 8844, lr = 1.1598e-05 +I0408 20:34:03.944828 24089 solver.cpp:218] Iteration 8856 (2.32593 iter/s, 5.15923s/12 iters), loss = 0.30499 +I0408 20:34:03.948911 24089 solver.cpp:237] Train net output #0: loss = 0.30499 (* 1 = 0.30499 loss) +I0408 20:34:03.948925 24089 sgd_solver.cpp:105] Iteration 8856, lr = 1.14921e-05 +I0408 20:34:08.986014 24089 solver.cpp:218] Iteration 8868 (2.38241 iter/s, 5.03692s/12 iters), loss = 0.37346 +I0408 20:34:08.986063 24089 solver.cpp:237] Train net output #0: loss = 0.37346 (* 1 = 0.37346 loss) +I0408 20:34:08.986074 24089 sgd_solver.cpp:105] Iteration 8868, lr = 1.13872e-05 +I0408 20:34:11.028203 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 20:34:14.054392 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 20:34:16.394398 24089 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 20:34:16.394425 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:34:17.382221 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:34:20.872826 24089 solver.cpp:397] Test net output #0: accuracy = 0.408701 +I0408 20:34:20.872876 24089 solver.cpp:397] Test net output #1: loss = 3.0991 (* 1 = 3.0991 loss) +I0408 20:34:22.863144 24089 solver.cpp:218] Iteration 8880 (0.864765 iter/s, 13.8766s/12 iters), loss = 0.455693 +I0408 20:34:22.863194 24089 solver.cpp:237] Train net output #0: loss = 0.455693 (* 1 = 0.455693 loss) +I0408 20:34:22.863204 24089 sgd_solver.cpp:105] Iteration 8880, lr = 1.12832e-05 +I0408 20:34:28.070066 24089 solver.cpp:218] Iteration 8892 (2.30473 iter/s, 5.20668s/12 iters), loss = 0.25459 +I0408 20:34:28.070119 24089 solver.cpp:237] Train net output #0: loss = 0.25459 (* 1 = 0.25459 loss) +I0408 20:34:28.070132 24089 sgd_solver.cpp:105] Iteration 8892, lr = 1.11802e-05 +I0408 20:34:31.697373 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:34:33.118304 24089 solver.cpp:218] Iteration 8904 (2.37718 iter/s, 5.048s/12 iters), loss = 0.374339 +I0408 20:34:33.118350 24089 solver.cpp:237] Train net output #0: loss = 0.374339 (* 1 = 0.374339 loss) +I0408 20:34:33.118360 24089 sgd_solver.cpp:105] Iteration 8904, lr = 1.10781e-05 +I0408 20:34:38.172485 24089 solver.cpp:218] Iteration 8916 (2.37438 iter/s, 5.05394s/12 iters), loss = 0.377787 +I0408 20:34:38.172606 24089 solver.cpp:237] Train net output #0: loss = 0.377787 (* 1 = 0.377787 loss) +I0408 20:34:38.172618 24089 sgd_solver.cpp:105] Iteration 8916, lr = 1.0977e-05 +I0408 20:34:43.215612 24089 solver.cpp:218] Iteration 8928 (2.37962 iter/s, 5.04282s/12 iters), loss = 0.315514 +I0408 20:34:43.215675 24089 solver.cpp:237] Train net output #0: loss = 0.315514 (* 1 = 0.315514 loss) +I0408 20:34:43.215689 24089 sgd_solver.cpp:105] Iteration 8928, lr = 1.08768e-05 +I0408 20:34:48.137676 24089 solver.cpp:218] Iteration 8940 (2.43812 iter/s, 4.92182s/12 iters), loss = 0.542149 +I0408 20:34:48.137746 24089 solver.cpp:237] Train net output #0: loss = 0.542149 (* 1 = 0.542149 loss) +I0408 20:34:48.137761 24089 sgd_solver.cpp:105] Iteration 8940, lr = 1.07775e-05 +I0408 20:34:53.164674 24089 solver.cpp:218] Iteration 8952 (2.38723 iter/s, 5.02675s/12 iters), loss = 0.289193 +I0408 20:34:53.164721 24089 solver.cpp:237] Train net output #0: loss = 0.289193 (* 1 = 0.289193 loss) +I0408 20:34:53.164731 24089 sgd_solver.cpp:105] Iteration 8952, lr = 1.06791e-05 +I0408 20:34:58.253760 24089 solver.cpp:218] Iteration 8964 (2.3581 iter/s, 5.08885s/12 iters), loss = 0.383237 +I0408 20:34:58.253810 24089 solver.cpp:237] Train net output #0: loss = 0.383237 (* 1 = 0.383237 loss) +I0408 20:34:58.253823 24089 sgd_solver.cpp:105] Iteration 8964, lr = 1.05816e-05 +I0408 20:35:02.838477 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 20:35:05.856715 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 20:35:08.171591 24089 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 20:35:08.171617 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:35:09.132148 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:35:12.653434 24089 solver.cpp:397] Test net output #0: accuracy = 0.40625 +I0408 20:35:12.653482 24089 solver.cpp:397] Test net output #1: loss = 3.11217 (* 1 = 3.11217 loss) +I0408 20:35:12.744117 24089 solver.cpp:218] Iteration 8976 (0.828169 iter/s, 14.4898s/12 iters), loss = 0.251813 +I0408 20:35:12.744166 24089 solver.cpp:237] Train net output #0: loss = 0.251813 (* 1 = 0.251813 loss) +I0408 20:35:12.744177 24089 sgd_solver.cpp:105] Iteration 8976, lr = 1.0485e-05 +I0408 20:35:17.259361 24089 solver.cpp:218] Iteration 8988 (2.65779 iter/s, 4.51502s/12 iters), loss = 0.291965 +I0408 20:35:17.259413 24089 solver.cpp:237] Train net output #0: loss = 0.291965 (* 1 = 0.291965 loss) +I0408 20:35:17.259424 24089 sgd_solver.cpp:105] Iteration 8988, lr = 1.03893e-05 +I0408 20:35:20.558414 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:35:22.302762 24089 solver.cpp:218] Iteration 9000 (2.37946 iter/s, 5.04316s/12 iters), loss = 0.265885 +I0408 20:35:22.302816 24089 solver.cpp:237] Train net output #0: loss = 0.265885 (* 1 = 0.265885 loss) +I0408 20:35:22.302831 24089 sgd_solver.cpp:105] Iteration 9000, lr = 1.02944e-05 +I0408 20:35:22.996577 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:35:27.372272 24089 solver.cpp:218] Iteration 9012 (2.36721 iter/s, 5.06926s/12 iters), loss = 0.402672 +I0408 20:35:27.372325 24089 solver.cpp:237] Train net output #0: loss = 0.402672 (* 1 = 0.402672 loss) +I0408 20:35:27.372337 24089 sgd_solver.cpp:105] Iteration 9012, lr = 1.02004e-05 +I0408 20:35:32.542946 24089 solver.cpp:218] Iteration 9024 (2.32089 iter/s, 5.17043s/12 iters), loss = 0.278738 +I0408 20:35:32.542985 24089 solver.cpp:237] Train net output #0: loss = 0.278738 (* 1 = 0.278738 loss) +I0408 20:35:32.542994 24089 sgd_solver.cpp:105] Iteration 9024, lr = 1.01073e-05 +I0408 20:35:37.624684 24089 solver.cpp:218] Iteration 9036 (2.36151 iter/s, 5.0815s/12 iters), loss = 0.315887 +I0408 20:35:37.624733 24089 solver.cpp:237] Train net output #0: loss = 0.315887 (* 1 = 0.315887 loss) +I0408 20:35:37.624743 24089 sgd_solver.cpp:105] Iteration 9036, lr = 1.0015e-05 +I0408 20:35:42.663825 24089 solver.cpp:218] Iteration 9048 (2.38147 iter/s, 5.0389s/12 iters), loss = 0.301208 +I0408 20:35:42.663997 24089 solver.cpp:237] Train net output #0: loss = 0.301208 (* 1 = 0.301208 loss) +I0408 20:35:42.664012 24089 sgd_solver.cpp:105] Iteration 9048, lr = 9.92359e-06 +I0408 20:35:47.592643 24089 solver.cpp:218] Iteration 9060 (2.43483 iter/s, 4.92847s/12 iters), loss = 0.406042 +I0408 20:35:47.592680 24089 solver.cpp:237] Train net output #0: loss = 0.406042 (* 1 = 0.406042 loss) +I0408 20:35:47.592689 24089 sgd_solver.cpp:105] Iteration 9060, lr = 9.83299e-06 +I0408 20:35:52.681648 24089 solver.cpp:218] Iteration 9072 (2.35813 iter/s, 5.08878s/12 iters), loss = 0.347607 +I0408 20:35:52.681700 24089 solver.cpp:237] Train net output #0: loss = 0.347607 (* 1 = 0.347607 loss) +I0408 20:35:52.681713 24089 sgd_solver.cpp:105] Iteration 9072, lr = 9.74322e-06 +I0408 20:35:54.751953 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 20:35:57.779130 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 20:36:00.154979 24089 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 20:36:00.155004 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:36:01.135311 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:36:04.719017 24089 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0408 20:36:04.719064 24089 solver.cpp:397] Test net output #1: loss = 3.11459 (* 1 = 3.11459 loss) +I0408 20:36:06.637128 24089 solver.cpp:218] Iteration 9084 (0.859911 iter/s, 13.9549s/12 iters), loss = 0.331105 +I0408 20:36:06.637176 24089 solver.cpp:237] Train net output #0: loss = 0.331105 (* 1 = 0.331105 loss) +I0408 20:36:06.637187 24089 sgd_solver.cpp:105] Iteration 9084, lr = 9.65426e-06 +I0408 20:36:11.698050 24089 solver.cpp:218] Iteration 9096 (2.37122 iter/s, 5.06068s/12 iters), loss = 0.356943 +I0408 20:36:11.698117 24089 solver.cpp:237] Train net output #0: loss = 0.356943 (* 1 = 0.356943 loss) +I0408 20:36:11.698132 24089 sgd_solver.cpp:105] Iteration 9096, lr = 9.56612e-06 +I0408 20:36:14.715041 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:36:16.855455 24089 solver.cpp:218] Iteration 9108 (2.32686 iter/s, 5.15715s/12 iters), loss = 0.299606 +I0408 20:36:16.855497 24089 solver.cpp:237] Train net output #0: loss = 0.299606 (* 1 = 0.299606 loss) +I0408 20:36:16.855509 24089 sgd_solver.cpp:105] Iteration 9108, lr = 9.47879e-06 +I0408 20:36:22.024056 24089 solver.cpp:218] Iteration 9120 (2.32181 iter/s, 5.16837s/12 iters), loss = 0.31966 +I0408 20:36:22.024101 24089 solver.cpp:237] Train net output #0: loss = 0.31966 (* 1 = 0.31966 loss) +I0408 20:36:22.024113 24089 sgd_solver.cpp:105] Iteration 9120, lr = 9.39225e-06 +I0408 20:36:27.074609 24089 solver.cpp:218] Iteration 9132 (2.37609 iter/s, 5.05032s/12 iters), loss = 0.426572 +I0408 20:36:27.074662 24089 solver.cpp:237] Train net output #0: loss = 0.426572 (* 1 = 0.426572 loss) +I0408 20:36:27.074674 24089 sgd_solver.cpp:105] Iteration 9132, lr = 9.3065e-06 +I0408 20:36:32.172551 24089 solver.cpp:218] Iteration 9144 (2.354 iter/s, 5.0977s/12 iters), loss = 0.299381 +I0408 20:36:32.172600 24089 solver.cpp:237] Train net output #0: loss = 0.299381 (* 1 = 0.299381 loss) +I0408 20:36:32.172610 24089 sgd_solver.cpp:105] Iteration 9144, lr = 9.22153e-06 +I0408 20:36:37.254254 24089 solver.cpp:218] Iteration 9156 (2.36152 iter/s, 5.08147s/12 iters), loss = 0.487083 +I0408 20:36:37.254295 24089 solver.cpp:237] Train net output #0: loss = 0.487083 (* 1 = 0.487083 loss) +I0408 20:36:37.254303 24089 sgd_solver.cpp:105] Iteration 9156, lr = 9.13734e-06 +I0408 20:36:42.316856 24089 solver.cpp:218] Iteration 9168 (2.37043 iter/s, 5.06237s/12 iters), loss = 0.364496 +I0408 20:36:42.316903 24089 solver.cpp:237] Train net output #0: loss = 0.364496 (* 1 = 0.364496 loss) +I0408 20:36:42.316915 24089 sgd_solver.cpp:105] Iteration 9168, lr = 9.05392e-06 +I0408 20:36:47.191565 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 20:36:50.240387 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 20:36:52.548736 24089 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 20:36:52.548758 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:36:53.403076 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:36:57.214306 24089 solver.cpp:397] Test net output #0: accuracy = 0.409314 +I0408 20:36:57.214344 24089 solver.cpp:397] Test net output #1: loss = 3.10514 (* 1 = 3.10514 loss) +I0408 20:36:57.304672 24089 solver.cpp:218] Iteration 9180 (0.800681 iter/s, 14.9872s/12 iters), loss = 0.431158 +I0408 20:36:57.304708 24089 solver.cpp:237] Train net output #0: loss = 0.431158 (* 1 = 0.431158 loss) +I0408 20:36:57.304716 24089 sgd_solver.cpp:105] Iteration 9180, lr = 8.97126e-06 +I0408 20:37:01.669991 24089 solver.cpp:218] Iteration 9192 (2.74907 iter/s, 4.36511s/12 iters), loss = 0.305113 +I0408 20:37:01.670042 24089 solver.cpp:237] Train net output #0: loss = 0.305113 (* 1 = 0.305113 loss) +I0408 20:37:01.670054 24089 sgd_solver.cpp:105] Iteration 9192, lr = 8.88936e-06 +I0408 20:37:06.804121 24089 solver.cpp:218] Iteration 9204 (2.33741 iter/s, 5.13389s/12 iters), loss = 0.296701 +I0408 20:37:06.804168 24089 solver.cpp:237] Train net output #0: loss = 0.296701 (* 1 = 0.296701 loss) +I0408 20:37:06.804179 24089 sgd_solver.cpp:105] Iteration 9204, lr = 8.8082e-06 +I0408 20:37:06.885526 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:37:11.795725 24089 solver.cpp:218] Iteration 9216 (2.40415 iter/s, 4.99137s/12 iters), loss = 0.325411 +I0408 20:37:11.795773 24089 solver.cpp:237] Train net output #0: loss = 0.325411 (* 1 = 0.325411 loss) +I0408 20:37:11.795783 24089 sgd_solver.cpp:105] Iteration 9216, lr = 8.72778e-06 +I0408 20:37:16.818130 24089 solver.cpp:218] Iteration 9228 (2.38941 iter/s, 5.02217s/12 iters), loss = 0.259874 +I0408 20:37:16.818178 24089 solver.cpp:237] Train net output #0: loss = 0.259874 (* 1 = 0.259874 loss) +I0408 20:37:16.818190 24089 sgd_solver.cpp:105] Iteration 9228, lr = 8.6481e-06 +I0408 20:37:21.899276 24089 solver.cpp:218] Iteration 9240 (2.36178 iter/s, 5.08091s/12 iters), loss = 0.231672 +I0408 20:37:21.899384 24089 solver.cpp:237] Train net output #0: loss = 0.231672 (* 1 = 0.231672 loss) +I0408 20:37:21.899396 24089 sgd_solver.cpp:105] Iteration 9240, lr = 8.56915e-06 +I0408 20:37:26.898608 24089 solver.cpp:218] Iteration 9252 (2.40046 iter/s, 4.99904s/12 iters), loss = 0.404806 +I0408 20:37:26.898656 24089 solver.cpp:237] Train net output #0: loss = 0.404806 (* 1 = 0.404806 loss) +I0408 20:37:26.898667 24089 sgd_solver.cpp:105] Iteration 9252, lr = 8.49091e-06 +I0408 20:37:31.967854 24089 solver.cpp:218] Iteration 9264 (2.36733 iter/s, 5.06901s/12 iters), loss = 0.290335 +I0408 20:37:31.967901 24089 solver.cpp:237] Train net output #0: loss = 0.290335 (* 1 = 0.290335 loss) +I0408 20:37:31.967911 24089 sgd_solver.cpp:105] Iteration 9264, lr = 8.41339e-06 +I0408 20:37:37.035943 24089 solver.cpp:218] Iteration 9276 (2.36787 iter/s, 5.06785s/12 iters), loss = 0.363225 +I0408 20:37:37.035993 24089 solver.cpp:237] Train net output #0: loss = 0.363225 (* 1 = 0.363225 loss) +I0408 20:37:37.036005 24089 sgd_solver.cpp:105] Iteration 9276, lr = 8.33658e-06 +I0408 20:37:39.068886 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 20:37:42.121495 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 20:37:45.308863 24089 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 20:37:45.308892 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:37:46.187821 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:37:49.862159 24089 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0408 20:37:49.862208 24089 solver.cpp:397] Test net output #1: loss = 3.14059 (* 1 = 3.14059 loss) +I0408 20:37:51.809345 24089 solver.cpp:218] Iteration 9288 (0.812302 iter/s, 14.7728s/12 iters), loss = 0.353876 +I0408 20:37:51.809386 24089 solver.cpp:237] Train net output #0: loss = 0.353876 (* 1 = 0.353876 loss) +I0408 20:37:51.809396 24089 sgd_solver.cpp:105] Iteration 9288, lr = 8.26047e-06 +I0408 20:37:56.844813 24089 solver.cpp:218] Iteration 9300 (2.3832 iter/s, 5.03524s/12 iters), loss = 0.32502 +I0408 20:37:56.844933 24089 solver.cpp:237] Train net output #0: loss = 0.32502 (* 1 = 0.32502 loss) +I0408 20:37:56.844942 24089 sgd_solver.cpp:105] Iteration 9300, lr = 8.18505e-06 +I0408 20:37:59.071681 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:38:01.877398 24089 solver.cpp:218] Iteration 9312 (2.3846 iter/s, 5.03228s/12 iters), loss = 0.240362 +I0408 20:38:01.877442 24089 solver.cpp:237] Train net output #0: loss = 0.240362 (* 1 = 0.240362 loss) +I0408 20:38:01.877454 24089 sgd_solver.cpp:105] Iteration 9312, lr = 8.11033e-06 +I0408 20:38:06.922462 24089 solver.cpp:218] Iteration 9324 (2.37867 iter/s, 5.04483s/12 iters), loss = 0.317595 +I0408 20:38:06.922509 24089 solver.cpp:237] Train net output #0: loss = 0.317595 (* 1 = 0.317595 loss) +I0408 20:38:06.922521 24089 sgd_solver.cpp:105] Iteration 9324, lr = 8.03628e-06 +I0408 20:38:11.948108 24089 solver.cpp:218] Iteration 9336 (2.38787 iter/s, 5.02541s/12 iters), loss = 0.228093 +I0408 20:38:11.948158 24089 solver.cpp:237] Train net output #0: loss = 0.228093 (* 1 = 0.228093 loss) +I0408 20:38:11.948168 24089 sgd_solver.cpp:105] Iteration 9336, lr = 7.96291e-06 +I0408 20:38:16.917008 24089 solver.cpp:218] Iteration 9348 (2.41513 iter/s, 4.96867s/12 iters), loss = 0.367036 +I0408 20:38:16.917047 24089 solver.cpp:237] Train net output #0: loss = 0.367036 (* 1 = 0.367036 loss) +I0408 20:38:16.917054 24089 sgd_solver.cpp:105] Iteration 9348, lr = 7.89021e-06 +I0408 20:38:21.997951 24089 solver.cpp:218] Iteration 9360 (2.36187 iter/s, 5.08071s/12 iters), loss = 0.335677 +I0408 20:38:21.997997 24089 solver.cpp:237] Train net output #0: loss = 0.335677 (* 1 = 0.335677 loss) +I0408 20:38:21.998005 24089 sgd_solver.cpp:105] Iteration 9360, lr = 7.81818e-06 +I0408 20:38:26.936038 24089 solver.cpp:218] Iteration 9372 (2.43021 iter/s, 4.93785s/12 iters), loss = 0.383694 +I0408 20:38:26.936156 24089 solver.cpp:237] Train net output #0: loss = 0.383694 (* 1 = 0.383694 loss) +I0408 20:38:26.936169 24089 sgd_solver.cpp:105] Iteration 9372, lr = 7.7468e-06 +I0408 20:38:31.452205 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 20:38:34.443372 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 20:38:36.785174 24089 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 20:38:36.785199 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:38:37.652355 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:38:41.383574 24089 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0408 20:38:41.383621 24089 solver.cpp:397] Test net output #1: loss = 3.10734 (* 1 = 3.10734 loss) +I0408 20:38:41.473654 24089 solver.cpp:218] Iteration 9384 (0.825481 iter/s, 14.537s/12 iters), loss = 0.309343 +I0408 20:38:41.473701 24089 solver.cpp:237] Train net output #0: loss = 0.309343 (* 1 = 0.309343 loss) +I0408 20:38:41.473711 24089 sgd_solver.cpp:105] Iteration 9384, lr = 7.67608e-06 +I0408 20:38:45.686157 24089 solver.cpp:218] Iteration 9396 (2.8488 iter/s, 4.21229s/12 iters), loss = 0.205752 +I0408 20:38:45.686203 24089 solver.cpp:237] Train net output #0: loss = 0.205752 (* 1 = 0.205752 loss) +I0408 20:38:45.686215 24089 sgd_solver.cpp:105] Iteration 9396, lr = 7.606e-06 +I0408 20:38:50.052868 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:38:50.712862 24089 solver.cpp:218] Iteration 9408 (2.38736 iter/s, 5.02647s/12 iters), loss = 0.241455 +I0408 20:38:50.712905 24089 solver.cpp:237] Train net output #0: loss = 0.241455 (* 1 = 0.241455 loss) +I0408 20:38:50.712916 24089 sgd_solver.cpp:105] Iteration 9408, lr = 7.53655e-06 +I0408 20:38:55.675316 24089 solver.cpp:218] Iteration 9420 (2.41827 iter/s, 4.96222s/12 iters), loss = 0.21233 +I0408 20:38:55.675364 24089 solver.cpp:237] Train net output #0: loss = 0.21233 (* 1 = 0.21233 loss) +I0408 20:38:55.675375 24089 sgd_solver.cpp:105] Iteration 9420, lr = 7.46775e-06 +I0408 20:39:00.636857 24089 solver.cpp:218] Iteration 9432 (2.41872 iter/s, 4.96131s/12 iters), loss = 0.253315 +I0408 20:39:00.637001 24089 solver.cpp:237] Train net output #0: loss = 0.253315 (* 1 = 0.253315 loss) +I0408 20:39:00.637015 24089 sgd_solver.cpp:105] Iteration 9432, lr = 7.39957e-06 +I0408 20:39:05.646018 24089 solver.cpp:218] Iteration 9444 (2.39577 iter/s, 5.00883s/12 iters), loss = 0.212562 +I0408 20:39:05.646070 24089 solver.cpp:237] Train net output #0: loss = 0.212562 (* 1 = 0.212562 loss) +I0408 20:39:05.646082 24089 sgd_solver.cpp:105] Iteration 9444, lr = 7.33201e-06 +I0408 20:39:10.751062 24089 solver.cpp:218] Iteration 9456 (2.35073 iter/s, 5.1048s/12 iters), loss = 0.276356 +I0408 20:39:10.751111 24089 solver.cpp:237] Train net output #0: loss = 0.276356 (* 1 = 0.276356 loss) +I0408 20:39:10.751123 24089 sgd_solver.cpp:105] Iteration 9456, lr = 7.26507e-06 +I0408 20:39:15.918391 24089 solver.cpp:218] Iteration 9468 (2.32239 iter/s, 5.16709s/12 iters), loss = 0.307627 +I0408 20:39:15.918442 24089 solver.cpp:237] Train net output #0: loss = 0.307627 (* 1 = 0.307627 loss) +I0408 20:39:15.918452 24089 sgd_solver.cpp:105] Iteration 9468, lr = 7.19875e-06 +I0408 20:39:20.954255 24089 solver.cpp:218] Iteration 9480 (2.38302 iter/s, 5.03562s/12 iters), loss = 0.33277 +I0408 20:39:20.954301 24089 solver.cpp:237] Train net output #0: loss = 0.33277 (* 1 = 0.33277 loss) +I0408 20:39:20.954313 24089 sgd_solver.cpp:105] Iteration 9480, lr = 7.13302e-06 +I0408 20:39:23.015868 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 20:39:27.432268 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 20:39:29.772719 24089 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 20:39:29.772745 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:39:30.472626 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:39:34.333163 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:39:34.333282 24089 solver.cpp:397] Test net output #1: loss = 3.11626 (* 1 = 3.11626 loss) +I0408 20:39:36.274567 24089 solver.cpp:218] Iteration 9492 (0.783305 iter/s, 15.3197s/12 iters), loss = 0.288923 +I0408 20:39:36.274616 24089 solver.cpp:237] Train net output #0: loss = 0.288923 (* 1 = 0.288923 loss) +I0408 20:39:36.274627 24089 sgd_solver.cpp:105] Iteration 9492, lr = 7.0679e-06 +I0408 20:39:41.242666 24089 solver.cpp:218] Iteration 9504 (2.41552 iter/s, 4.96787s/12 iters), loss = 0.32058 +I0408 20:39:41.242702 24089 solver.cpp:237] Train net output #0: loss = 0.32058 (* 1 = 0.32058 loss) +I0408 20:39:41.242710 24089 sgd_solver.cpp:105] Iteration 9504, lr = 7.00337e-06 +I0408 20:39:42.740788 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:39:46.325156 24089 solver.cpp:218] Iteration 9516 (2.36116 iter/s, 5.08226s/12 iters), loss = 0.281908 +I0408 20:39:46.325206 24089 solver.cpp:237] Train net output #0: loss = 0.281908 (* 1 = 0.281908 loss) +I0408 20:39:46.325219 24089 sgd_solver.cpp:105] Iteration 9516, lr = 6.93943e-06 +I0408 20:39:51.319723 24089 solver.cpp:218] Iteration 9528 (2.40272 iter/s, 4.99433s/12 iters), loss = 0.245257 +I0408 20:39:51.319769 24089 solver.cpp:237] Train net output #0: loss = 0.245257 (* 1 = 0.245257 loss) +I0408 20:39:51.319780 24089 sgd_solver.cpp:105] Iteration 9528, lr = 6.87608e-06 +I0408 20:39:56.337924 24089 solver.cpp:218] Iteration 9540 (2.39141 iter/s, 5.01796s/12 iters), loss = 0.202212 +I0408 20:39:56.337983 24089 solver.cpp:237] Train net output #0: loss = 0.202212 (* 1 = 0.202212 loss) +I0408 20:39:56.337996 24089 sgd_solver.cpp:105] Iteration 9540, lr = 6.8133e-06 +I0408 20:40:01.292397 24089 solver.cpp:218] Iteration 9552 (2.42217 iter/s, 4.95423s/12 iters), loss = 0.359646 +I0408 20:40:01.292441 24089 solver.cpp:237] Train net output #0: loss = 0.359646 (* 1 = 0.359646 loss) +I0408 20:40:01.292452 24089 sgd_solver.cpp:105] Iteration 9552, lr = 6.7511e-06 +I0408 20:40:06.194723 24089 solver.cpp:218] Iteration 9564 (2.44793 iter/s, 4.9021s/12 iters), loss = 0.416725 +I0408 20:40:06.194871 24089 solver.cpp:237] Train net output #0: loss = 0.416725 (* 1 = 0.416725 loss) +I0408 20:40:06.194885 24089 sgd_solver.cpp:105] Iteration 9564, lr = 6.68946e-06 +I0408 20:40:11.200014 24089 solver.cpp:218] Iteration 9576 (2.39762 iter/s, 5.00496s/12 iters), loss = 0.361691 +I0408 20:40:11.200063 24089 solver.cpp:237] Train net output #0: loss = 0.361691 (* 1 = 0.361691 loss) +I0408 20:40:11.200075 24089 sgd_solver.cpp:105] Iteration 9576, lr = 6.62839e-06 +I0408 20:40:15.800580 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 20:40:18.902705 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 20:40:23.375048 24089 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 20:40:23.375077 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:40:24.073333 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:40:27.835654 24089 solver.cpp:397] Test net output #0: accuracy = 0.408701 +I0408 20:40:27.835701 24089 solver.cpp:397] Test net output #1: loss = 3.10754 (* 1 = 3.10754 loss) +I0408 20:40:27.926129 24089 solver.cpp:218] Iteration 9588 (0.717469 iter/s, 16.7255s/12 iters), loss = 0.293893 +I0408 20:40:27.926178 24089 solver.cpp:237] Train net output #0: loss = 0.293893 (* 1 = 0.293893 loss) +I0408 20:40:27.926189 24089 sgd_solver.cpp:105] Iteration 9588, lr = 6.56787e-06 +I0408 20:40:32.240937 24089 solver.cpp:218] Iteration 9600 (2.78126 iter/s, 4.31459s/12 iters), loss = 0.206092 +I0408 20:40:32.240983 24089 solver.cpp:237] Train net output #0: loss = 0.206092 (* 1 = 0.206092 loss) +I0408 20:40:32.240994 24089 sgd_solver.cpp:105] Iteration 9600, lr = 6.50791e-06 +I0408 20:40:35.861094 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:40:37.253904 24089 solver.cpp:218] Iteration 9612 (2.3939 iter/s, 5.01273s/12 iters), loss = 0.235499 +I0408 20:40:37.254034 24089 solver.cpp:237] Train net output #0: loss = 0.235499 (* 1 = 0.235499 loss) +I0408 20:40:37.254046 24089 sgd_solver.cpp:105] Iteration 9612, lr = 6.4485e-06 +I0408 20:40:42.287106 24089 solver.cpp:218] Iteration 9624 (2.38432 iter/s, 5.03288s/12 iters), loss = 0.258306 +I0408 20:40:42.287160 24089 solver.cpp:237] Train net output #0: loss = 0.258306 (* 1 = 0.258306 loss) +I0408 20:40:42.287173 24089 sgd_solver.cpp:105] Iteration 9624, lr = 6.38962e-06 +I0408 20:40:47.296988 24089 solver.cpp:218] Iteration 9636 (2.39538 iter/s, 5.00964s/12 iters), loss = 0.20493 +I0408 20:40:47.297035 24089 solver.cpp:237] Train net output #0: loss = 0.20493 (* 1 = 0.20493 loss) +I0408 20:40:47.297047 24089 sgd_solver.cpp:105] Iteration 9636, lr = 6.33129e-06 +I0408 20:40:52.375818 24089 solver.cpp:218] Iteration 9648 (2.36286 iter/s, 5.07859s/12 iters), loss = 0.381635 +I0408 20:40:52.375870 24089 solver.cpp:237] Train net output #0: loss = 0.381635 (* 1 = 0.381635 loss) +I0408 20:40:52.375882 24089 sgd_solver.cpp:105] Iteration 9648, lr = 6.27349e-06 +I0408 20:40:57.684422 24089 solver.cpp:218] Iteration 9660 (2.26059 iter/s, 5.30835s/12 iters), loss = 0.407065 +I0408 20:40:57.684468 24089 solver.cpp:237] Train net output #0: loss = 0.407065 (* 1 = 0.407065 loss) +I0408 20:40:57.684480 24089 sgd_solver.cpp:105] Iteration 9660, lr = 6.21621e-06 +I0408 20:41:02.636611 24089 solver.cpp:218] Iteration 9672 (2.42329 iter/s, 4.95195s/12 iters), loss = 0.351268 +I0408 20:41:02.636662 24089 solver.cpp:237] Train net output #0: loss = 0.351268 (* 1 = 0.351268 loss) +I0408 20:41:02.636672 24089 sgd_solver.cpp:105] Iteration 9672, lr = 6.15946e-06 +I0408 20:41:07.681910 24089 solver.cpp:218] Iteration 9684 (2.37856 iter/s, 5.04506s/12 iters), loss = 0.371846 +I0408 20:41:07.684231 24089 solver.cpp:237] Train net output #0: loss = 0.371846 (* 1 = 0.371846 loss) +I0408 20:41:07.684242 24089 sgd_solver.cpp:105] Iteration 9684, lr = 6.10322e-06 +I0408 20:41:09.728611 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 20:41:12.709007 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 20:41:15.069368 24089 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 20:41:15.069394 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:41:15.724781 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:41:18.626205 24089 blocking_queue.cpp:49] Waiting for data +I0408 20:41:19.636040 24089 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0408 20:41:19.636087 24089 solver.cpp:397] Test net output #1: loss = 3.11956 (* 1 = 3.11956 loss) +I0408 20:41:21.546341 24089 solver.cpp:218] Iteration 9696 (0.8657 iter/s, 13.8616s/12 iters), loss = 0.285007 +I0408 20:41:21.546392 24089 solver.cpp:237] Train net output #0: loss = 0.285007 (* 1 = 0.285007 loss) +I0408 20:41:21.546401 24089 sgd_solver.cpp:105] Iteration 9696, lr = 6.0475e-06 +I0408 20:41:26.555435 24089 solver.cpp:218] Iteration 9708 (2.39576 iter/s, 5.00885s/12 iters), loss = 0.486287 +I0408 20:41:26.555485 24089 solver.cpp:237] Train net output #0: loss = 0.486287 (* 1 = 0.486287 loss) +I0408 20:41:26.555497 24089 sgd_solver.cpp:105] Iteration 9708, lr = 5.99229e-06 +I0408 20:41:27.312391 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:41:31.535565 24089 solver.cpp:218] Iteration 9720 (2.40969 iter/s, 4.97989s/12 iters), loss = 0.566231 +I0408 20:41:31.535612 24089 solver.cpp:237] Train net output #0: loss = 0.566231 (* 1 = 0.566231 loss) +I0408 20:41:31.535624 24089 sgd_solver.cpp:105] Iteration 9720, lr = 5.93758e-06 +I0408 20:41:36.552125 24089 solver.cpp:218] Iteration 9732 (2.39219 iter/s, 5.01632s/12 iters), loss = 0.35903 +I0408 20:41:36.552163 24089 solver.cpp:237] Train net output #0: loss = 0.35903 (* 1 = 0.35903 loss) +I0408 20:41:36.552171 24089 sgd_solver.cpp:105] Iteration 9732, lr = 5.88337e-06 +I0408 20:41:41.522526 24089 solver.cpp:218] Iteration 9744 (2.4144 iter/s, 4.97017s/12 iters), loss = 0.285124 +I0408 20:41:41.522852 24089 solver.cpp:237] Train net output #0: loss = 0.285124 (* 1 = 0.285124 loss) +I0408 20:41:41.522863 24089 sgd_solver.cpp:105] Iteration 9744, lr = 5.82966e-06 +I0408 20:41:46.533521 24089 solver.cpp:218] Iteration 9756 (2.39498 iter/s, 5.01048s/12 iters), loss = 0.27897 +I0408 20:41:46.533569 24089 solver.cpp:237] Train net output #0: loss = 0.27897 (* 1 = 0.27897 loss) +I0408 20:41:46.533581 24089 sgd_solver.cpp:105] Iteration 9756, lr = 5.77644e-06 +I0408 20:41:51.559587 24089 solver.cpp:218] Iteration 9768 (2.38767 iter/s, 5.02583s/12 iters), loss = 0.302429 +I0408 20:41:51.559633 24089 solver.cpp:237] Train net output #0: loss = 0.302429 (* 1 = 0.302429 loss) +I0408 20:41:51.559643 24089 sgd_solver.cpp:105] Iteration 9768, lr = 5.7237e-06 +I0408 20:41:56.674387 24089 solver.cpp:218] Iteration 9780 (2.34624 iter/s, 5.11456s/12 iters), loss = 0.348312 +I0408 20:41:56.674432 24089 solver.cpp:237] Train net output #0: loss = 0.348312 (* 1 = 0.348312 loss) +I0408 20:41:56.674443 24089 sgd_solver.cpp:105] Iteration 9780, lr = 5.67144e-06 +I0408 20:42:01.530527 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 20:42:04.622107 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 20:42:07.023042 24089 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 20:42:07.023067 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:42:07.634322 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:42:11.483908 24089 solver.cpp:397] Test net output #0: accuracy = 0.408088 +I0408 20:42:11.483958 24089 solver.cpp:397] Test net output #1: loss = 3.09727 (* 1 = 3.09727 loss) +I0408 20:42:11.574838 24089 solver.cpp:218] Iteration 9792 (0.805377 iter/s, 14.8999s/12 iters), loss = 0.281198 +I0408 20:42:11.574988 24089 solver.cpp:237] Train net output #0: loss = 0.281198 (* 1 = 0.281198 loss) +I0408 20:42:11.575002 24089 sgd_solver.cpp:105] Iteration 9792, lr = 5.61967e-06 +I0408 20:42:16.074944 24089 solver.cpp:218] Iteration 9804 (2.66679 iter/s, 4.49979s/12 iters), loss = 0.268605 +I0408 20:42:16.074991 24089 solver.cpp:237] Train net output #0: loss = 0.268605 (* 1 = 0.268605 loss) +I0408 20:42:16.075002 24089 sgd_solver.cpp:105] Iteration 9804, lr = 5.56836e-06 +I0408 20:42:19.058141 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:42:21.094274 24089 solver.cpp:218] Iteration 9816 (2.39087 iter/s, 5.01909s/12 iters), loss = 0.260027 +I0408 20:42:21.094319 24089 solver.cpp:237] Train net output #0: loss = 0.260027 (* 1 = 0.260027 loss) +I0408 20:42:21.094331 24089 sgd_solver.cpp:105] Iteration 9816, lr = 5.51752e-06 +I0408 20:42:26.134236 24089 solver.cpp:218] Iteration 9828 (2.38108 iter/s, 5.03973s/12 iters), loss = 0.383308 +I0408 20:42:26.134284 24089 solver.cpp:237] Train net output #0: loss = 0.383308 (* 1 = 0.383308 loss) +I0408 20:42:26.134294 24089 sgd_solver.cpp:105] Iteration 9828, lr = 5.46715e-06 +I0408 20:42:31.088994 24089 solver.cpp:218] Iteration 9840 (2.42203 iter/s, 4.95452s/12 iters), loss = 0.254965 +I0408 20:42:31.089040 24089 solver.cpp:237] Train net output #0: loss = 0.254965 (* 1 = 0.254965 loss) +I0408 20:42:31.089052 24089 sgd_solver.cpp:105] Iteration 9840, lr = 5.41724e-06 +I0408 20:42:36.123314 24089 solver.cpp:218] Iteration 9852 (2.38375 iter/s, 5.03408s/12 iters), loss = 0.280969 +I0408 20:42:36.123369 24089 solver.cpp:237] Train net output #0: loss = 0.280969 (* 1 = 0.280969 loss) +I0408 20:42:36.123381 24089 sgd_solver.cpp:105] Iteration 9852, lr = 5.36778e-06 +I0408 20:42:41.217284 24089 solver.cpp:218] Iteration 9864 (2.35584 iter/s, 5.09372s/12 iters), loss = 0.303197 +I0408 20:42:41.217332 24089 solver.cpp:237] Train net output #0: loss = 0.303197 (* 1 = 0.303197 loss) +I0408 20:42:41.217344 24089 sgd_solver.cpp:105] Iteration 9864, lr = 5.31877e-06 +I0408 20:42:46.230377 24089 solver.cpp:218] Iteration 9876 (2.39385 iter/s, 5.01285s/12 iters), loss = 0.425078 +I0408 20:42:46.230512 24089 solver.cpp:237] Train net output #0: loss = 0.425078 (* 1 = 0.425078 loss) +I0408 20:42:46.230526 24089 sgd_solver.cpp:105] Iteration 9876, lr = 5.27021e-06 +I0408 20:42:51.221621 24089 solver.cpp:218] Iteration 9888 (2.40437 iter/s, 4.99092s/12 iters), loss = 0.433966 +I0408 20:42:51.221664 24089 solver.cpp:237] Train net output #0: loss = 0.433966 (* 1 = 0.433966 loss) +I0408 20:42:51.221675 24089 sgd_solver.cpp:105] Iteration 9888, lr = 5.2221e-06 +I0408 20:42:53.273005 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 20:42:57.124948 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 20:42:59.456171 24089 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 20:42:59.456207 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:43:00.033782 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:43:03.922662 24089 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0408 20:43:03.922710 24089 solver.cpp:397] Test net output #1: loss = 3.11461 (* 1 = 3.11461 loss) +I0408 20:43:05.946527 24089 solver.cpp:218] Iteration 9900 (0.814978 iter/s, 14.7243s/12 iters), loss = 0.187166 +I0408 20:43:05.946573 24089 solver.cpp:237] Train net output #0: loss = 0.187166 (* 1 = 0.187166 loss) +I0408 20:43:05.946583 24089 sgd_solver.cpp:105] Iteration 9900, lr = 5.17442e-06 +I0408 20:43:11.116533 24089 solver.cpp:218] Iteration 9912 (2.32119 iter/s, 5.16977s/12 iters), loss = 0.296571 +I0408 20:43:11.116570 24089 solver.cpp:237] Train net output #0: loss = 0.296571 (* 1 = 0.296571 loss) +I0408 20:43:11.116578 24089 sgd_solver.cpp:105] Iteration 9912, lr = 5.12718e-06 +I0408 20:43:11.214844 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:43:16.143625 24089 solver.cpp:218] Iteration 9924 (2.38718 iter/s, 5.02686s/12 iters), loss = 0.283496 +I0408 20:43:16.143673 24089 solver.cpp:237] Train net output #0: loss = 0.283496 (* 1 = 0.283496 loss) +I0408 20:43:16.143687 24089 sgd_solver.cpp:105] Iteration 9924, lr = 5.08037e-06 +I0408 20:43:21.184752 24089 solver.cpp:218] Iteration 9936 (2.38053 iter/s, 5.04089s/12 iters), loss = 0.279655 +I0408 20:43:21.184906 24089 solver.cpp:237] Train net output #0: loss = 0.279655 (* 1 = 0.279655 loss) +I0408 20:43:21.184919 24089 sgd_solver.cpp:105] Iteration 9936, lr = 5.03399e-06 +I0408 20:43:26.242224 24089 solver.cpp:218] Iteration 9948 (2.37289 iter/s, 5.05713s/12 iters), loss = 0.354058 +I0408 20:43:26.242281 24089 solver.cpp:237] Train net output #0: loss = 0.354058 (* 1 = 0.354058 loss) +I0408 20:43:26.242297 24089 sgd_solver.cpp:105] Iteration 9948, lr = 4.98803e-06 +I0408 20:43:31.302418 24089 solver.cpp:218] Iteration 9960 (2.37157 iter/s, 5.05995s/12 iters), loss = 0.324384 +I0408 20:43:31.302467 24089 solver.cpp:237] Train net output #0: loss = 0.324384 (* 1 = 0.324384 loss) +I0408 20:43:31.302479 24089 sgd_solver.cpp:105] Iteration 9960, lr = 4.94249e-06 +I0408 20:43:36.706219 24089 solver.cpp:218] Iteration 9972 (2.22076 iter/s, 5.40355s/12 iters), loss = 0.333115 +I0408 20:43:36.706265 24089 solver.cpp:237] Train net output #0: loss = 0.333115 (* 1 = 0.333115 loss) +I0408 20:43:36.706276 24089 sgd_solver.cpp:105] Iteration 9972, lr = 4.89737e-06 +I0408 20:43:41.806342 24089 solver.cpp:218] Iteration 9984 (2.353 iter/s, 5.09988s/12 iters), loss = 0.287031 +I0408 20:43:41.806389 24089 solver.cpp:237] Train net output #0: loss = 0.287031 (* 1 = 0.287031 loss) +I0408 20:43:41.806401 24089 sgd_solver.cpp:105] Iteration 9984, lr = 4.85265e-06 +I0408 20:43:46.298569 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 20:43:50.444722 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 20:43:53.123126 24089 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 20:43:53.123205 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:43:53.630410 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:43:57.563086 24089 solver.cpp:397] Test net output #0: accuracy = 0.406863 +I0408 20:43:57.563131 24089 solver.cpp:397] Test net output #1: loss = 3.09966 (* 1 = 3.09966 loss) +I0408 20:43:57.653789 24089 solver.cpp:218] Iteration 9996 (0.75725 iter/s, 15.8468s/12 iters), loss = 0.288441 +I0408 20:43:57.653833 24089 solver.cpp:237] Train net output #0: loss = 0.288441 (* 1 = 0.288441 loss) +I0408 20:43:57.653844 24089 sgd_solver.cpp:105] Iteration 9996, lr = 4.80835e-06 +I0408 20:44:01.892086 24089 solver.cpp:218] Iteration 10008 (2.83147 iter/s, 4.23809s/12 iters), loss = 0.355759 +I0408 20:44:01.892135 24089 solver.cpp:237] Train net output #0: loss = 0.355759 (* 1 = 0.355759 loss) +I0408 20:44:01.892148 24089 sgd_solver.cpp:105] Iteration 10008, lr = 4.76445e-06 +I0408 20:44:04.168670 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:44:07.099844 24089 solver.cpp:218] Iteration 10020 (2.30437 iter/s, 5.20751s/12 iters), loss = 0.234471 +I0408 20:44:07.099892 24089 solver.cpp:237] Train net output #0: loss = 0.234471 (* 1 = 0.234471 loss) +I0408 20:44:07.099905 24089 sgd_solver.cpp:105] Iteration 10020, lr = 4.72095e-06 +I0408 20:44:12.270006 24089 solver.cpp:218] Iteration 10032 (2.32112 iter/s, 5.16992s/12 iters), loss = 0.280258 +I0408 20:44:12.270053 24089 solver.cpp:237] Train net output #0: loss = 0.280258 (* 1 = 0.280258 loss) +I0408 20:44:12.270066 24089 sgd_solver.cpp:105] Iteration 10032, lr = 4.67785e-06 +I0408 20:44:17.244218 24089 solver.cpp:218] Iteration 10044 (2.41256 iter/s, 4.97397s/12 iters), loss = 0.316318 +I0408 20:44:17.244268 24089 solver.cpp:237] Train net output #0: loss = 0.316318 (* 1 = 0.316318 loss) +I0408 20:44:17.244279 24089 sgd_solver.cpp:105] Iteration 10044, lr = 4.63515e-06 +I0408 20:44:22.215355 24089 solver.cpp:218] Iteration 10056 (2.41405 iter/s, 4.97089s/12 iters), loss = 0.296885 +I0408 20:44:22.215409 24089 solver.cpp:237] Train net output #0: loss = 0.296885 (* 1 = 0.296885 loss) +I0408 20:44:22.215420 24089 sgd_solver.cpp:105] Iteration 10056, lr = 4.59283e-06 +I0408 20:44:27.288138 24089 solver.cpp:218] Iteration 10068 (2.36568 iter/s, 5.07254s/12 iters), loss = 0.465521 +I0408 20:44:27.290933 24089 solver.cpp:237] Train net output #0: loss = 0.465521 (* 1 = 0.465521 loss) +I0408 20:44:27.290946 24089 sgd_solver.cpp:105] Iteration 10068, lr = 4.5509e-06 +I0408 20:44:32.315232 24089 solver.cpp:218] Iteration 10080 (2.38848 iter/s, 5.02411s/12 iters), loss = 0.254874 +I0408 20:44:32.315291 24089 solver.cpp:237] Train net output #0: loss = 0.254874 (* 1 = 0.254874 loss) +I0408 20:44:32.315306 24089 sgd_solver.cpp:105] Iteration 10080, lr = 4.50935e-06 +I0408 20:44:37.315272 24089 solver.cpp:218] Iteration 10092 (2.4001 iter/s, 4.9998s/12 iters), loss = 0.29364 +I0408 20:44:37.315312 24089 solver.cpp:237] Train net output #0: loss = 0.29364 (* 1 = 0.29364 loss) +I0408 20:44:37.315322 24089 sgd_solver.cpp:105] Iteration 10092, lr = 4.46818e-06 +I0408 20:44:39.350106 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 20:44:42.986953 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 20:44:45.321874 24089 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 20:44:45.321902 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:44:45.798163 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:44:49.745297 24089 solver.cpp:397] Test net output #0: accuracy = 0.406863 +I0408 20:44:49.745347 24089 solver.cpp:397] Test net output #1: loss = 3.1171 (* 1 = 3.1171 loss) +I0408 20:44:51.732092 24089 solver.cpp:218] Iteration 10104 (0.832394 iter/s, 14.4162s/12 iters), loss = 0.234728 +I0408 20:44:51.732144 24089 solver.cpp:237] Train net output #0: loss = 0.234728 (* 1 = 0.234728 loss) +I0408 20:44:51.732156 24089 sgd_solver.cpp:105] Iteration 10104, lr = 4.42739e-06 +I0408 20:44:56.115034 24093 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:44:56.738155 24089 solver.cpp:218] Iteration 10116 (2.39721 iter/s, 5.00582s/12 iters), loss = 0.327497 +I0408 20:44:56.738202 24089 solver.cpp:237] Train net output #0: loss = 0.327497 (* 1 = 0.327497 loss) +I0408 20:44:56.738214 24089 sgd_solver.cpp:105] Iteration 10116, lr = 4.38696e-06 +I0408 20:45:01.701901 24089 solver.cpp:218] Iteration 10128 (2.41764 iter/s, 4.96351s/12 iters), loss = 0.308207 +I0408 20:45:01.702042 24089 solver.cpp:237] Train net output #0: loss = 0.308207 (* 1 = 0.308207 loss) +I0408 20:45:01.702054 24089 sgd_solver.cpp:105] Iteration 10128, lr = 4.34691e-06 +I0408 20:45:06.676088 24089 solver.cpp:218] Iteration 10140 (2.41262 iter/s, 4.97386s/12 iters), loss = 0.43384 +I0408 20:45:06.676138 24089 solver.cpp:237] Train net output #0: loss = 0.43384 (* 1 = 0.43384 loss) +I0408 20:45:06.676149 24089 sgd_solver.cpp:105] Iteration 10140, lr = 4.30723e-06 +I0408 20:45:11.698664 24089 solver.cpp:218] Iteration 10152 (2.38933 iter/s, 5.02234s/12 iters), loss = 0.22485 +I0408 20:45:11.698700 24089 solver.cpp:237] Train net output #0: loss = 0.22485 (* 1 = 0.22485 loss) +I0408 20:45:11.698709 24089 sgd_solver.cpp:105] Iteration 10152, lr = 4.2679e-06 +I0408 20:45:16.745738 24089 solver.cpp:218] Iteration 10164 (2.37773 iter/s, 5.04684s/12 iters), loss = 0.311649 +I0408 20:45:16.745784 24089 solver.cpp:237] Train net output #0: loss = 0.311649 (* 1 = 0.311649 loss) +I0408 20:45:16.745796 24089 sgd_solver.cpp:105] Iteration 10164, lr = 4.22894e-06 +I0408 20:45:21.758594 24089 solver.cpp:218] Iteration 10176 (2.39396 iter/s, 5.01261s/12 iters), loss = 0.223948 +I0408 20:45:21.758642 24089 solver.cpp:237] Train net output #0: loss = 0.223948 (* 1 = 0.223948 loss) +I0408 20:45:21.758654 24089 sgd_solver.cpp:105] Iteration 10176, lr = 4.19033e-06 +I0408 20:45:26.772998 24089 solver.cpp:218] Iteration 10188 (2.39322 iter/s, 5.01416s/12 iters), loss = 0.332837 +I0408 20:45:26.773048 24089 solver.cpp:237] Train net output #0: loss = 0.332837 (* 1 = 0.332837 loss) +I0408 20:45:26.773061 24089 sgd_solver.cpp:105] Iteration 10188, lr = 4.15207e-06 +I0408 20:45:31.342286 24089 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 20:45:34.355918 24089 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 20:45:36.720223 24089 solver.cpp:310] Iteration 10200, loss = 0.224724 +I0408 20:45:36.720255 24089 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 20:45:36.720263 24089 net.cpp:676] Ignoring source layer train-data +I0408 20:45:37.107928 24094 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:45:41.130990 24089 solver.cpp:397] Test net output #0: accuracy = 0.408088 +I0408 20:45:41.131038 24089 solver.cpp:397] Test net output #1: loss = 3.12549 (* 1 = 3.12549 loss) +I0408 20:45:41.131049 24089 solver.cpp:315] Optimization Done. +I0408 20:45:41.131057 24089 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.925/conf.csv b/cars/lr-investigations/exponential/1e-2/0.925/conf.csv new file mode 100644 index 0000000..0d6f754 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.925/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5833 +Acura RL Sedan 2012,0,3,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.375 +Acura TL Sedan 2012,0,0,5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Acura TL Type-S 2008,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura TSX Sedan 2012,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Acura Integra Type R 2001,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0.0909 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Audi TTS Coupe 2012,0,0,1,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,1,1,0,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.375 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +BMW M6 Convertible 2010,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Buick Verano Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3333 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Cadillac SRX SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Camaro Convertible 2012,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Chevrolet Avalanche Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Cobalt SS 2010,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Malibu Hybrid Sedan 2010,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Town and Country Minivan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,6,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4615 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.5 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.4286 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Challenger SRT8 2011,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.9 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Eagle Talon Hatchback 1998,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.2222 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0.1429 +Ford F-450 Super Duty Crew Cab 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.6 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Ford Edge SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,5,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3571 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Ford Focus Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.2308 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.3636 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8462 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4167 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4615 +HUMMER H3T Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.5556 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Hyundai Elantra Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,4,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.3636 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Land Rover LR2 SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.5 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4545 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2143 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +Porsche Panamera Sedan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Spyker C8 Coupe 2009,0,0,0,0,0,1,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,8,0,0,0,0,0,0,0,0,0,0,0.7273 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0.2857 +Toyota Corolla Sedan 2012,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0.3077 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0.1667 +Volkswagen Golf Hatchback 2012,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0.2308 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0.7143 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.0909 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0.5 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,8,0,0,0.6667 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0.5 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0.3077 diff --git a/cars/lr-investigations/exponential/1e-2/0.925/deploy.prototxt b/cars/lr-investigations/exponential/1e-2/0.925/deploy.prototxt new file mode 100644 index 0000000..d7f4b54 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.925/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.925/large.png b/cars/lr-investigations/exponential/1e-2/0.925/large.png new file mode 100644 index 0000000000000000000000000000000000000000..1a1e37ecae88801696567f23b12cdbc75b5c85bf GIT binary patch literal 105849 zcmafb1z1#F*S3m)2#82aDTsm+B3*-s2nd3NfOHOBk}?CRh)9D$hje!{bPY&L4ls0g z4mH4kMtI)$`~FXPxGpb-=Q(rEK5MVN_PXzNukHO(PLlBI&8rtKTp*N|da8Kg!e!8f z3s`hlaDe}^quF2y{JLnTDEZ_Z=6OBk{TVnfrUZTJCP2n!*6m!O~nK z5AAS~m>9O2ovmT7<)Eb?)-d`wSK%9jM8vmSmv0Du{1U`_;MN<*t;{o0Fh3*ZbrGBle^{Jy9BgL!av`Rbm28?F45Qp$UD&yYchA& z)!|AsHu+Pp(3$Gt9E80Gfqw*2%^UppqpukbSIULX1I{BoA;)QOdn2PUfeo%D4kO8H zRJAOD)f63_O%r2SQC?VibM5DZS4zET9qOV&Lme*h@1JhHc^iS)*(7#SGG7Xg zVo0Lr|1#=-?Rz?o8v#0@wh+^V!l7fsrDzMVXnHOJK=F=4>PuZyLLRC{cONq zx3d?Y{4@Ca--8dR{rlkY=}F0!DKr1K2mWtko!zX6{NJv%c|~!yAnLEHI@~^6N9hx4 zdp}Zj;ky6REB<2!z*la)^Ca@Q>PXQ4e|+ccs!RV}Y3jcJc5P`o{yz@!Iivjg>1X0T z8&>E`$$Y;*ZP8Dg8+}&)c z<_?hzXEpS9zudEObZjdgWVIGI2tQ|<9~Y5<@>ME)oxBP&op~i4$!GQXaa8yjKb{RO z)hs=2J=izXGj!a)Xw@Ph%J<%QKVSWGdc7&@X8e| z&YRK4#;+(Ab~#NSq8V`pu_hA7;8`^VBo7n)MU*eHxS2rl&U}goG4TeZ^@0lo*7f6f z=z$3e&eMKf@sg{N;mzCN_lEMdmkssT-F)cIzVP&WT5=uy0zu^a{9{@yP9!hi_i);9 z%1FXQot;aM?hVo1vb=X|>oqT5mh^c`E46qwd0w;)wPs^w6k3{S(9FN~h8$6{d${ZF zjo(Oqo-d~7tc(4#yxRZGvjIDVGEe?zZN7s44`<;2w>1r{|9=Z0|4d)M{=Z%OpP*n* z`QPz8<)QhvHH`_DwdZ+O)_thOP#MJ-x}wFR-V&*0vU@hDc^d`utMqH_8eUUPvQ0TB zTONpG%b#!TpdB2;HnXwSVzJ#{Z5DfU!Z{`A&s%pz;8&qy@^Xzsmisn1D7t&|Duiva zfjdH*(QpCWDA)~>$@NVK_+%n``^ec=Kur6oG+l=9YeB-T#QEFgSz{A4os#;C@~J)c zH*Q2(D%i3#K?@uHv%8rUs4ML4t$dv8$}<%a%9kZ<@JdY9xs}v@615WQc!(WhIq2QE zwDnR`{qTWCpXWIt{T*YZTw-P?KH_IDE5KXyhR5H|!) z-q;;PiAXr3dy>GhXO{mNEJ7X*ie12)q!y{CyA1X#hC_ihVoB8WLtSYvh$G2)Aeec` zjRs`}BE&AMe&UA8iQdRVxrKJB`jiU3e@&OcyOIx?`8s-=uL^|gN*``moE&;(#pADU zF2UiU=|?MgG2HwpnRwBjpdl>0V1Lxcwcsi_| zXi?}lB+sv^-)6r}#IkbY-;k(}-uKa-HGmf0!j*>>w^?{#Q;0m>3p=%ZYVsS7S9q2F zH+g=Jn)}DTV?il~jAWLrc7SFX9z5f4N+a_Oq&|%GdmkM!Nt9w=H)~)pwHo+@v@5{@3pRI^{;Tib zrz7HhnKIKd@0)2UNDk#YJ+6cC#bPUk>3;7Trf9BZ*V=RD&pf_u zuHm1o9W5T!rF5vweGxPhi&SdKC9bXG_XEi}#ep`Jf|finXed?o@$T;Y2m=|5^u}zd zg`{?~dEd|azeb1nP%-uS!<~u=AfZCad?3*q`vu zuJ8>1s=M2)bEr{6ANcW;-Sx3)e7g}PHN_9r@>=grAMhGXj#!X}h6qX?HFL1m=B-ed z{gbDs@BHF4H0kmqsu)M@070EwkS7#g82zrz*peuS(q4@W#J-9gLT+F&?XLt?TYWBA z6OT^TiMaGRrJ3DniG?*JPk#2oZDU9kBVzwhj5eaTQFS-Q>_1DOb3$>CKa<@7ZM%-luU(q3ory!ki9+90j;`rAm;4@xlgt>sPu;d}6nVs)E$z$qV{N{L z|73ryO{J-b7RLMc9M8+rPN{QEC(^$~#zL=dU#$bT;IL8Z#mP;RhkeTf-ty11J9J5{ zM7rO~npCDrF5&F0JI<9l3~}ig%p_|$UbZ(=q1PF8&8I!fIv1wW*?Agjaf)2!iRq3_ zIFoY*{YIi8(TpANH^&1>68AT+`sA{>(<%f<(XEYpI3HH+&xD8mxFyy3I;c9&PB)*%i6pZCmjWnp))wEMz>xY2v;aGU#vtmY@%M^qOlyxS|!cxmF| zri}KIkvXE=uVwIyt?Z{`8H>n*tVgPXC+34=BeVQGvK*Sel3PCCYE?gyUdkhQdNKw^$qRVkxRu6YA8l3w=qWkLwXdk$xX9TF9_n6T)AgzbCWY?JBaq z`UF~J!RWZc#;ZXENi=yh-;!23QC-mP=q^EeX0V|E&%pazaZa#LdyAt=52xPuYEAWcZ0PrG9$neg$} z^bGJD1p0O!OwpZ~y5L}<*lFQ3O%ZNM6-$(aot1ZQiFa93@TQRJh<|+Mp+aE-1r!e! zJaWL+Yk87i5POfv@kExA#Y^_}O|>H?wa#L~m6!+46{d6An5=>RIkMcL;9PQqIBsWn zD|l+8A^iocO-<8QbKZyzh}Z}bFHvIGA)dPGY!ET_QV#c#D4NNESjSpm(aD9}+rL^; zbCUc{;;~_I47%e1ZESMaye9k4NPP^UbXhcfJ&UyDaP`P2}{F@Vtrn z99Jhvp5G+;VZp8XwdA0v)sB6;J(GjWwXAK=wOoLD(WtIi{?v%&MD=@&<TaAKnE zmIqUMaqdu}>(21}5EZ=vcxZ}qGK@D4+iyLO)qxtCCf(C3I2)E?-pXCDGLXlKA`SV$ zoI?Tq%m){)`bgWsmian8;YC8ZV~+ljATJOu`-#z1|M)t4GJxMe!pP{AiP&odlpa(l zc22Y2)Ec9QVkL{4U7kqWr@jYZo#ICUy@0ReSsl_9h`O&hvbK%tq3}y~IENo~3~1*} zaY;!LD$h<%K}&a+8CRHlcQcBIM8>;)19@AQT*^zH7eV^|4lOu6F2w5GC*+hoa2>fS zEOb#E)f21aL*KX0WHGGt`I&>q&9GTPY zmv)GiH}?*wqA#-sGi<#W?%;-8y?cwq!@x%2OFFs8Qwa&8JV?E?)F?`08R>j&a{x_; zEf9Jk$suS^mwnN}g*?*Ny=ic5VEkYJJkfvBUfcHSeV@*?hRQY88lAfw@ZKcqc9o{H zoTunj8!6~lj?2Yx5{>fE+}|0jK}Oj^Z4i?s))S7-g+PS6sC+5&=85XZeenKW^i;<8 zz2y`d$Yn|wu!(%&I_GKTrC?cCC&}~t`QYwC)y%YthvmHx@PvAP*YM zB+$7HWa!P(ITrw{4td0dR%Rk20(Gj2iS?(LoW{U;f7+Oi)A$AxK%N1H8VrDbJ(?PS}DWM7Unj87t zs6k#InoF{=6H*^q%9Xi3A+F#}FSP0V&}iYAq2-W4z$cxX;%848&Rr*F{8S}EBp@`> zr_Q@}pWC2pq_Kw~4HrP{elAH`3hG_gV5(z!AyqpR1Cr8{>YDrA-&4no2o{SW2n&*) zS%hdA2g|$9>DgD5sLs#yJ`?M(BXoB)AIZr`=Q57xS6Oic-L6) zF{PjgOB!O%D70elNs2qojq^xS%+Lc&g3Wd{C#H^RBf~8BSp8K9Z%)+TmKPBFlzojP zw3N_RdKf?^fr@t;V2y!ycfLlQ5Rpm)xvBm?td$u(IY_@DcMHZ)`5xxtYhgr_snKP` z!N7xvCj51asoUa^Pqf~mb?;qybc}@l)LL6^X#<-hxBT~N#sjX$=Xp6m(R1E4-?B2~ z&hnzqFP?PDIew=FkqNp!S3gL7Fa?ANy%bBA`w#M=)n*w89ZZm#ZE_%?e>T-rHdtPX zH+f?-D2R7#MCZ#GIk5jeHH{N8zcU!jrnoVX;WCxF-9>fxA6KDe&nO41k1ciOuA4ar20bWBs}I3dtP9+ z$45v6r>07;`EwqF+09RpnLYo+o8m+>Te%Zl~ z!|$e6mFoAJZV)dPyI*X{YD%#3s!otQ@ak}KVF713;xpr(8|?w}_qIrKmq6I5tPxr! zl8?m{@cOOC3{at&om|74+ZM<=R!HPYYx_C{&l4!p;tp?^$KE#{DKlV5G_gy@Gp(eXbbH6}}>5m%k#y9=<_*Ylfi2S`rT4 zSsC1^>-|1hIY2J;oMfECVsTZ2WrJ|{wczgKb88W^$vjWjyzc1@$J8XTCwCBU8x6?I z)ntEQsBoCNpt(OO3nBe%N2j_d(t(gqJt6s`;qSrGaij*iGnpVWDh}&)1k0ZKf)_3? zUsBkcDQVi3m>H<`&qpN;Oq|zfBl_)7BerI5J|KMjk{@9;yg8QL=t#(0nw#J+sHG&e zq8_KYUq`F7S~L2k67>(=U4)BI&(pw`V*licrirFvG|9e15;I$5|3!QAnQRops^}bZ zBGbKcthL+6cM7xINw3;*JkGBcQL)nT=H!A83Tf5)D>I(QB?DDAp5`QYF_4C|RathG zEBGLEEL0sA#`3%oE*euUU-(@zdvg#bh}2xnAX&XD*wAJwZ>kmED(VMtdJLu1aU&LcEFx@_NXTj zN->_D`)jqP2{y)CR%%Uf5dA8|A@uGn5OXjdV)5;E}PLt;kBk}$yp!-r2Yy)N9M-&=o}*4KkiLi9NxNR-op-41)U%BQ?VEClyX`P zD(DuIr2#}3x|;qicH`zkry93*$LV#32FD; z|LFL~-PHFCpE+#3kakSmQN93z-8f3mLP;_I%gayHsagfw?!JkLSS8f>!s}d7u>6Z6 zd}Bg#s$80x?b->Y8}QEZ+@Q_Z=(&^=-QiJ7RO#PoULZBbjBr?P#bQ^pc4|DyDraGA zbhXS-bM#FKkj>YQOZL{>f^ZGls)5K7sFFs|BCIz zAHBTPl{IZDEV}nLYGl@MjaoBD%Fmo!(e+$#en?L{=gE+)ETv%oTSE)|i3D;C6k}f*?zc!P zTTo5*W@+OsMVNxecq!kC@f8q~0qm~$s5aX2=hcEW4mt6bRmPWm*}+u4N<%Rps-sbS zvSrY#tMhhVA~)A}hH_Tu&KZ%EpllB5G`82 z4J;R?yQ$F*)f8&TIDwnLL`8!iL?m(76N*^X5c>z@N@`Y3CYK(y)8{!j#fhBN^YeaI zDl={Kn)Nb6a?EQ!Q@o2?byeyJdv|+cEs5GLm@FX_2F%Ur%>}vfwsD9}Syu0JzTKAq zQ!kHBtxC95+6!Isk#XI#Id+LUURG7BG%68!-uGTB@=q!S3R9d}#qYVpfFxw4QXi*j z&k8%nVU1e2#jB046_%P57>;+tS8XrV=)Sq5dib{n=YlMqdl!kKdis_jA0iV!Esf=i z-qjMs1E50VTjDzm?52!2ddPK`RvCl=s^yS5{o3--pM(ch^Wf{uW`_1v4Hi9I2fBNA zhUb6duKNEPkNd{vAd!_2vE8TG0Iu?)TuCj)^TQ|Q|6M;wOI?$+02rQ!Auz@(#s+E|S0?TAcWBTLIITbgeBjGzuL10n7@fINt>-SU$Ujz#kf^@`kx z)kXyfJUiWq^QJHgAiu!+UM*u9Jpcw6yl#;wbSyTKnLNOf2wV?s0usvt$f|2(f7B&+ z>8ts>to7|ACo7|88ICeg&*zubapKH?_A9bhBrXDlR`R4=geN7`i#<^5betB}yD1G=2D@*<1t`DB0)Z6dTXsyoXQX@^bm ztbxT+9>@fX(`IsRiQ{_xIYt5AlwQ5gX-5DJ4V1{H#rZA7+k>K1Rt-|ir)OupEE z#1yQPm~>~b^4)>=4(Gwg?!DTf({l@q4S5J-69rw~7LxN%o>0F~V zOem?(%dBmUHUx!Spr*D$c-qjBQxk_{C(~4DHQ`EYp0RZ>!qNQuCvJ_)ESgpmY+{j9t*<9_RMuCoi_|Ap)0^QlVQ>$1kD8kSK1 z@Dw#NHv_}I5%~3HjPQbV;+;g@x=p;WVz-D&uWRIgH=@#n0Zy{;6$1M4C{!_^;0vg} z$tH;#%0qMHRV%9hj@IzjRDN0W&th?m0?|_8&i1ozr{AbWrm0%!cJ3QrDeE9innUwQ4=^$$M-1ntt?(^Sp;d>Aa^YSVL3MZ1t?lA*j};ya$xQ zwe$2>s7t5w`GS;Grfp`b!oA!0EQNZOS;F4Q5@ee=UZGViiTZ_Sjjp0UwzpC(_`U&z zk@xOe!xThp6K%5?KGUkKJ)dv<|9sCYN_f) zY(qJV1?{?Dj+Y+A8rdnmxMy!=26k!gw^P}*ClHysf-VIMk!Q7X!3_`hQe^TB2CTSR z8ToQ*XgH>@=%6R}ShYCqJk!K*U_`^7h#t?e~s=1w`AlJ1UA}fw=_1Y*m5T#r)*Ev`+LlCU3NHp5E0byM6{55nA4LabY0O`}L$s zvEp>;V%R7C{m)=<9|e_HZVsb$fETF^QGD!6RSkpeD8qUWO)ziJ-UhjcnkZAyf z`n#H6-NP+*nQxqTH`*J+C{hM%`C!_88-M`bgAY8&L()B94*B3E+J&lDQ15M6EmKb^ zE{2@$zfW;L0qRVj^?=&l0G)SCWkM@g_6+sdo7}3K0)*e=q_p=e>aI1}z58Vdxy)bQ z((M??@K<5&MGLFvUQe5j=yBy|A2J0r?JViGW>>DhfAmJ4C8jEqVwFmCjEX!?+)HBc z3p&J3{*g9lMx15M2y;ovNgQbr(J2mMwx+tK z8o?p%afqtoJ)Vw(Q(<~M7A6Id_%4KVIC7W%q%@f*dDQM|wr~}#isgu9z}v+T8c(_x z5M9*?b|v(WpLu@~zldE>b%--#dLf$wwN0kIm_aYvX)$1h^Z-P8Jco2F{uM`XaOv^Z zl7eU&sH$RHruRjrE)L%5EWE-4gusHAhq&)o+t{AK@K>}St0V8w#JWKdnSrVlm1b*a zGGQMAj1n=}k-(~lxpCDqqFBEGxs~qkR%r1OzKrbKWiN2G>^4un@MOl|9J?^zzgBEu z^SkCbd?;Q_sCc7&)OG#KhWBtL>oQm2 z+RK8O%rmJ``c;f%^ID>Tjr#KsNIPRFdgrJ19y;*ely{rKa`!ufoI&}fUU8Awjgg(ZOBp+Xt&whsdSiZNJ&(Z#zqqg6& z74ETi@=?INIL;dO%y}<9p}YJ;48y6ndI2Ui15Y^qq)Q1Ng&kG0= zjd9DA6;=>Xwz~tliwGL~_+UeO+vFF#?VxnL5`Vq9O)|H{Fz4+Er{&GCtb0(+;lKM7 zVDGzZ2(4^K_v5u_?AxKanL~wenz5*ADr*i1H4*gi9aUiYx(Rnys3FSe!5MlJtiTA` z6}|`5;@N@s2OMCUY=13preShW9mi|w?UGzb_NSIZa(?ox z&H{*6pcK~+aj!qM7+{p-uQEjC4-l(mb?}*B8I{EW>4%5X8@8Xv+(0*=tC`pHT-O{~ zM<;n#H?GpX#g_O-_ThE z)s<1r#rNv?45y4(UA^UHSL^ZD5UBpqEXav$9%%1@%NBk^(GzZ#cJLa~%?Kn+QyM}to zX7|+P{;}X&GM76eo`SY4Vc&)DsYyVEyJy`In3+=qX09Y=i0Y)gI0v!XIl1$e^6=;; zYdZo@r^_NB@gu*zdH5%awptVfTRmQswe#GirPb8gXu8tLpv61 z+K+Ff($KD+H1D5`v(SC9)r|`IVp9Be|9uRdX_n}F(G}`FnZ?QGFJ2EPKG{9ofIAGn ze(5Ks6~T~TDsm`wmIG*ZqzFuT=qnF8u<1>WfAE^9P;tr<#kG~N9QPgbh~1zW-2>qR zYAGV3suL19*MkQY`}H>ub^rM`Mlv1O%~={3y`#7HPO+LuNcCi>ZSS!nZ%p_WH*^CV zb+N`yhrI++MDo{H!rX&+C7?EoI%%-dCks)IyI|VlIDMZ@P8?us!8lS1mDVp$K6}07 znBw>>qwT>4gw_N=TJ=Yc>~sUtSB&(zO0O3hJ2Q(7ws!_<#~-T`-_r_=O}CT*8s&@7 z4tH^QySTPkUZvM51!^YrJKkBsb#tn{3JA@Q6iVbiY@N6@z_G_Byg2l{kWP*Fj1%}x z1xBM`*TlzSj05}G{~SN6=8Ya=89+fjSBjQ-T|PlNP1e-zHi09>IlVK=U&@wGHd5`m z^{EJ5oi$n!SA^0C^5z(al#758INh4B3WJi4s)JuTdD03bvQMJBzlhMjEZtYmq~z=s zk^3Fh?85|uwic)o;1?J_>DBy}{t}#gzW5lWW+<4V#^Fc(!TzvRt&WObxn2spJ{s8# za~0>#C6vQ;G}AARsa)c+RgC-^WxY;Hx(2%BsUi2Fx)e0Il>O{EO!eWsdv)D(pH4V@ z7C==4=GDAs&0_a;fF^~oH%)+^_$af?d71!WS4ib2YbbEico$>b+Np zw%^{ATse9GXlrTF8XfR#vfYGRy9{$xO@rF`H=JBug*u{a?sh=uWJh>scne(JXAV(} zy~2Mnr4$!449YbBn+LScrE-3&e>Z#0+UqdPHx_g z5)f)f2W1=<;i5N~hj=f*R7bo%?1U!RTjNhJUyYvGs0-v6tc>^z#s+x6H)%3^meb9_ zsL@+oDY~nT9uLaCB@sOu8bngo*Wotui-O7wx4#B$KYCCs7GDVsrS* z#Hw@8q5(l#eFx%CO;5g7IAzW1l)MQECl6)ek9Rl2ib;a@Ei8C>$$*|6{VyfyGSvb8 z8z}!`y?~uIiq>`Xw;yC0G}g#Ldetiao&e2Sc-@*ck{P?_*g6++GKY582Y1M}Asn)^yuYWW zt=C|uu{PYrUPKFUZaydM2RS0@cDZ)Nf7CFGJtiOrz2QW?p>O)AUG$hUTM)*3;`UM! zrdn2{=jm^Q320?+u^lhpX=0k(_)6ym6utK8W8o3e=F1{HSVG2smd##n0C={h`H)hV z3fe9`)6t=oy|Ff(w&Tt+p?3a3jNtItF5nyfuc+Ya5t-M9*rDMW#e+wi?dp|eyOjks z0h%HasG6W`@t4Z#9}la`#`foz=}*-N%3m8*CJbgN2^#EW-3J5Gnm&W!c&r)5?iH5$t?&_^zjUo zFlv|Aa?_YxH)w2%F5SwaZCCYA_`{_-cH=7vEFNQwcl^uXcK>(qUq zdyZBZfrEjc8`RJGZY*PP<)4sQ*cE)$pb~NOE!aWub)B}pq$;mN~FW%uC^*RwcWEQ$=qRiK_S{CqJz5tS4?(MKK z?;RL%lwvIEpM|Z_?w0x2Ug-oW?Ks1+uLV|#RL*AF=?=+`5{gQ`&q zKKXJgbEoX0-KJ~j?Z`kDE`&3--!D8pOBQxSKVZdYAYY;q7nc~cXQz@wg84JES!ES* ziz>2MdIXz00L?*QXPpCiewaODag}l;TiQe?u-ISeC-|MA<)~$G@D+B)Ok{}lE~+oV zln6HW(v_%0)>#+t*=$+xF#C%I-4m|tt+tkzMNidQ-z)63k$9qmhu0-U4EL~l*+=9iRZG=96s!$OuIPicud5jcr$Mn;>X z3@-ll-T%o#LA~o7@8fkhzYvxhqoEdKN*_M~s@ML4gN>~=)Tfh9U zcl0IQ#y5a9?Q?Qe6-)bl4Z~wfW`OFvv*a5@4 z>s;$Cv>t86!r)}Dt#~WsLwg)4n{IIo0zzgCy28i2T)cPIk>zU-9afYfXFbXKgcyjO z*Tu;|NzdyqF*r*2F=(ZK;kkcAL3bLAA`)p=Jhg!}fPq{7R| zY~}>-^V}`<^G-l5P;LLYifxx-Pxd|J7U!rd3wK)VM=$neFlu+sCn5WB=rb+ZSfYj9 zIREo*rJiQqS{P)hU}`jwwf|CC(F_H!VsrqOdvth6vgXTSZhtToKalGJH!F}og|vAd z82?pUqKpce%pRGv%%L8vwRrF=&Qzp8s}R&_!N}A)qCK*&PZ~;Y(6CL6O8xt)1VmcO z541KW2@2l$W{z*7{IS~dFl46u(w2>V1~)*V3eSB$bnQvkyJ{s;#P#WgCgtXyl;tpt zaIO+U=SaTVVBkSlzfap)vU^%bZ)67mx^k;#R{1-R1la>_vZu>V0C{}g_aAH6$bLe2OT({NqWr+YD&%He_z%bPSW0)J_tlC_O9a@573kUP z@Rd}<@{El)RA6)JC6MTU(nB^(64;;!9}lFM9nX4g-d1H{q#0iL?I{d*ndN>Sq|S2l zYXKvDM#(bgA>HdECg)FH%t%DfYFVOmS8tKh%6!+~`66IuiaJ>2T|N6WMi5l-;$K}b zqWgg2 zI1VK#Pp9M`naazT)igy3bY%&st>NuIS3Oa9V?D( z?TCbxLgV)fP90yl@;AOu3aFi{{ zO0j%|wVJBWZ8vWDEQ2Px@P&=RA8?z-U{(IzgN^ZR+>L|Dft5-xoWDl6-=I{6*5ky* zh-2hoDq}#WiAC|FYoQ@D^Gn1G&dFZUd%-Gv7Xj8S?~ZYbKolnbkFP-7St^;EYGtAh zDyY0re@Fyx7qRAr$42ekIR>q*flprQp2s?<+;r4d^@EwdLxiM2GHRZ)U(_2YQKNdX z6mDr#JM}H4x-O#!>qw*`zWJj7f^u(NRa!N=!jZstIR?T5RncbuHqt6GkmEO!5bpnxhRW}@aX1yf(w zUBB4CSia>)ht!*>h&*E6iK$J4;Xx5yTe%n*qrbd|#n1xT3r*_iKnhl8sBNh4#&(N* z4KJrqdU>QWNfK_tlnpC`mjv< zCeRN5D6VVhnCiB_TvBs)wGxT(G}rKYyqAeW2~ZMd+Pl$}D#zICO_WJc;JStiiuW2U zHBLZ2_&e2#aae_~f;ghiZcc^fngh$NDoqpjHFp}nY{L7FhV+(JyJWPUo)Eld7|_w1 z*)9f^0MudqJ&>PuHX5fOC*0q2fURLWBiUfn=&P+dtY?`~6H9}z5OOXDJ)hfCZD0Vk z8%qmwJJBupZd+CNZS7;H?HkS9bG=kfk_U zTA}K{^E~!{yj9+AtG`6jUi_$Jy8_#wliHl!BfQE@FvLPje+@x#?&4O^5W)#rW!x6GjZn<>bLHM6P`r-SHIBG3#6f3II%?#hlU?jcOJqJA?JDht*a!X z=w8N*il=RJ^+Q?vVTI0EF~?A?@83j6lsYAxRAAGEKFvVb}10*WbdaHwp-NnHg+8!yfI??x?% z<7B2XX5lOIQ^!Ba9sbi8I!$)@X7s18&r)%hnqv4EMkxYYs%6=o`p->pr}s>bT`Klg z?iYwUwL5af6uD4`%r0}oC!sZ~bvFvu_5mIXMv=>C@|_}d3pe^?$8w-KfG7%}$V*!r z^Ix)SYp%zirFBog|K{S8oe10(eT|se9E@G|j@-EDb|&KUpL`l&n%XRVP`$@F7iu{# zu!vvqJ+BoZcyee{>q6kZb`P>#gLL*2TAC{8i`8rI;6bJO{xz+Fc1XuKeNq89QjlHz zbNh#aCkrH`!*yO#pSQ%ao$-!GzpNEy!aEw$b2L=B=;E(bZ3gYI@=Mij`?$h@dIDG>uUaw#fvppx_Iu+vH+bd* z%5=YjwF`W_TC*FUFS?f)5H)gYP>F`WCBWc1?z`W!{4(xj+5lIuJGY>SH$Db3b^~Nc zM+-kL)A5%eZTf#nfaWRDHDy`=+jG>elE^33B$~6}`?_9^PlHM|Q5A;c*h!+iW8=7V z@1DL?wd3v3p3m#HiN{?_MC$@4FEl~Kk(+$s2IoCOfy}`?9K5S(+Txw;F3G&GcCpav zo4%tH8R>0~>MH|;^SS{LpwIcsYkFfx{+_l2XVY4le=xcy=KP>Zn?)e0{bI7KiPT8a zYt4SLKwubnxzO~RenhNKqrltJ-AqPX*(IE0$~QlW+uH^UECaVV)5k+%O2S^#uc6V` zidT?L+3lR~{#K}vkSMW2E{{&kd8R$c)1P90eW{7gb`TjqsaR;LJh03GAjV=AhspM% z{YECRuv0s4)c#yf_u+&zu;EDAn+@W53==+6FbxjhvE?_u{@{;?PGL^Yq5b@$g%;RJ z96P5tB9AzoR<120Gz?K&S4S*My+CRofA5EY2s_bg@$FYcfCg_z+doCjm%nL1M_LaL z$QPV7e6C{LBR8Nu4u*)v#88~pp$cjs6CMnH0M!i7_J`@eToN19$fuyFg50J%nXvu# zt(;3b_25sG4{*>H!XS8ItM(qyamX-07sEM3w`HVnQ7l5~0UYzfY3JwqBx-n`3Zr0t?IlR2 zS%4XE<_wx%LQq*&H zb?i}+xUfrduG*|pqQ|k3HsBKS(uHX`)Ris(F3ByAkYY+d?)*h0i_gWC;BPx!%|nU^ ztA&$GdquifvjX-DUUl;pWg+c&QhRDv6&wuyAfyDiXd_jv%gAT`H;vYc=%OwNQ-^KX zE=A6?ubk4~NiGm*SgV%$XdQ!>NVq#jH8~0*j(crA(%n17J>g;jXn#YF$D&8Evi1nc)J$%;AiA;H!ju0+&*W#3qJjkSDE}Y zl~NFu_U$i+fac}NqafSYCPh*)d+QIUpOG$AaipZBO+XKSI@t_tD`WU35yuO1=1w=O zs?g>YwyV^8ui!dyr=`Du6$mmp{dB*?m1Q@;GgIX>_+_K{OQ4?g@hAEG96HR~4Tis!slNjm42;;Qt)l z)!llFRy?M?;bZaYD+(-%s`nJx&-uPmBpdvI@I2F)BRED3uJpWq;Td?5k{8S9NGOrY z=WTr3bN1DIz6I6FcWvHm<_%w;9SV+=^OmIjSXa=8I3(V|(N+&cFPhk!2AfG9YR8aO zw5?!hEmemvVv5ikG4yC*#jlE-51h!4IoIe>+JL-RJNy5fYZf0N7I`~tTeTwU3PY&ToG0CD8SeOO>in?nsfzs=EjZR zeqJZAT6pWr^3DQaDx6+aw$ic1W?tTkjXhRU*UB^beNX7(--D9?l zA>6lE*zqtt=ot=(01j6K4tlf1iGii_xrs7k!5uIF5>+8;U5T{&=H4h1UV&zSsq)Mi z1%-SAM@0J!gjNJ>-HQpVox+`(pdyMq8gt)(KqGe27I1%+Na&1=E;(+S^|uOxm_XQ` zOrE8v9`oQzE)z@B^y@mff2jZbKKswM)X`Gzg&a`NpO|x~-;2Zzv&`)$Y=yNYp|3Vi zVpVJ>#S<959VU0s_}0#iC^RN%IuRaiI}SqJ;@hdfiv_#+sCK%M@u4b+b7Bt#$+b(a zf8~hv%YFgVmpLZa+*;si9txguyO4ez7W#*h3C5<~V)Ok!wYrVmR|S@&U=*2Xb8YR& z z;L|6cZhiGmW#n!Xpi$gwH?FSD&uU$+Bn`;0a-od%zmqlWWE zVC~V-Dj%01!>gBy??h#fvA{DOkK9*h3bdOP`~&k(#R3X1>`SBM3)aQ#FC0JGH=Zl5 z_~}Wsap0%(aPsK?(RJSORR8_|PeduHtdtQ#MwHDlD(R4wSu(Tt9+@Y5J4W_FAwtOB zdpovlj&(T3;o#Ww_dfNxuHW^&zJ0sh`p+#!s3u*ro6dfiN>G$uQRTCTKmf%hf`y6+4!`7i0*s- zaepUuKM0QD2bD>9Cfv?A%v_(p%UG z-d73~tiSnRh)djOgrhYA$F=plr!yhF#+u4*dLx4w@3ZEkJ>9&a%%!fSTdKF*g?MZzL2p_S+27Z_*ER{LK&mbekCDy1BjQ0JCB5pSgyLN@&2bg@)iEi$4m{P+2tSpvhM;F41jI2_WqRE1KbvXB@XEkP%esmo*@#x)zj6V zkj(wVrb`!c%2AG)u?Cls{k7$aTR(0~rSu$2hg^S5+{OIF7je%Iw?+=~f){;b>Gfs` zoE~k*&*9ePB*g;YzC`xB_9b;4Hzd$^J@h8|LOe#|&VtKsc#Ryrb?zS#FB7}>%j}cx zj#pEq(c%+y%?Ba(=7|-FatR&XQ;}txB%5-a9_x&ZpY;D&Rjb&d(mBrg@n=n}q&l+p zo-C!R^b`S&-nninlO(t7Q5q>lSbUkas#bJW6=NIu-E=u!iCQI2LO229V5aYgL%k zP~bo^$@C29@ou>;qn!U7i2{iMzIWi{QzaEwCw8=_y6-R{j<=j#ivpVO;8~!AssBnH4j;T!Zy-a zxLV259=BvmEY0=D#4Qd%`kny>&8@CxnvHJl9^oh=325fwL(Z9M^5HSX zii1(k|8wh&imvGw9m17$0RhvJtP9KmGadE!+5x90sCH*RqZ8`Sb z9DQHIKWhp0th`D##_|CW!QI_HS2WflJFD-&3_hy5J&M-y#f|d}exm<#04Uv91Bge) zHNV?jxVFT(3zf+1R^Nk_sk3IC{H^KOI=f#%ib`)(&7qgOg6-ak01C)l4TSEIcmPCj z8jv8K4)rTZ6xIKuK1vVnl@ETzlAxv&VH4<`lH7chgQVNV!)f|-3s?4=OI*T9sARKn9F@Sw#-$K?!=Kz9M(YBKs}C^zuxtY%PaF?o53zP)Nb(lFifJN z#nYC=L9WEWRz0vpZX0)on#?#61bTI_)BUc>(-t^jJQ@l9%TD~Z24{DKdoB;bil>$g zQZk}|3eqFOz4h_&%`0fmt0_%Cfm{6P`g$zRJh+WS!QZedaQSXCGz@5y7@bdU+}+mc zJ^LVt)3w%a#9P$2qNgYJO_$C^QT@wzs2ToQEtE(E08351rnkvi7QM`bl_}->V-J9Z zEnaX3cN_m{VC$GaT{^XSC6k49yw0;uz>|M%B+mql=P+goOddsGDt5+_FLH5jt#z?T)@@v=_cJUq40JMW zwx5=W4P*23(=77zUtML8f|iPy36*W+tV~vN^ljRfuTn6c^Izx+Su|@L0*!ZG7ToeC zmS*Vbqk<5>BIse~JJFr+=njCHNzxCW=9vvEZNcr}%;>u`+E(|!30+{+p2FhIq@><8 z(8uqZg-gIDsR3JOpZBvRg9F4J;G#GiVa}DfG?*_VXvr}i0O3BZ5L-K5i08Il0>4dy zYeZPP@v-O#-R>vxy1B@8H!xeli`WKsLP#gJt;8p9X09H1bVk+CF;EzwznB`n+;6hc z$ung-zy6;{Z(UB4$Py4h1hWAoPqjP49LAb4YH>|i331G++xoc=#}sN=++?544WV_+ zVtsMwT#`QlaDDr0J~LCPs2ef@xYlS5_JbcET^r&nKjIo9dSlBg=2{IA*o#dG!pHX? zVt89J!ukUNqsU}a{kedV|4iNlozOX6$=R3>Br*2=J~`$oVDda0nZZ?f;_2+z5TY1) zK!`Fe$~BJLs5_`2VHVXo2JJCkiGB_UF(Ul-n~nY$?VzSbLW9X;v*miYO<%Vc ze5mX?et~+NA^J~!HL6N_Fb_=X9kPIGJgl~hspLUw3iiiDK*Q>yMwKVC7k0vC0NWr2 zOiv<lWGTx-a(oEZtkntj9zgCUz<&W+$1{4n~J6 zwtya6@4lXNzmRLmkN$Pf9)a4xY47jd*m4O-+JVdIJX|8dN-9$VkufU~QYZj1Dv#QS zhsxtW>5;gr(!&Xj_wFN;lT=CEetOF{#hs~z4%p8ZJD?p#@!G~<$Dh`R7)!bLwM}S~ zeJkH<4lge3t~$S}p!~Qx){)+FMlZ~S+S5Cin5$ql#C00c-Mc3YE;! zjl*0?y}L`$xAC!HVwV2so8E5EU_yzVLMLZZU${u}1S3)Ce=bPApMZ{({=}$}Q1Nz@ zQ0}(UzUfFfO#BXp3o;h*Nw!+cM+qN1F<74-+muV2*DZd5J9}jiEk_@4H|=b|H?Eq# z$;OLNltApVPpMU2uL*TdZbyIXgQNT>Z!Fe(&@|3$@YJsD95QRJnjPi3_}Z&s9g$hXc9(OqxD%~AwekMs`x|@xi}vWo zF^JPxp54Xv!IaYXc!(Qys37;NimVyiv%#^c46ap>JvKAB$Z-9RJHg6uEvXI&#ShA@ z&K0#e;nknKT3fLo2J&&WCMu)$qjh(|`RX_G^*~;er!k2#i#cSvL?wl6kl5BFC-KK6 z5`_9fbWM&IKZ8Q)d~g@!#O~32&0dMB2nwiIF##Z|xbyh_Xd6XGd6O;+=tBB6KhvS+ zOoY+ulnK|mKN)@60v#{u&TD$FhwUd@hVt|cjhlm`0%ecg z_%TKb0ZT0XvbEfZ9y*OmR|epk>P&L)}NW|;ujfiGi zh6af)j6TrMds*_?*i?P2Y9e2-rfIm^YrS}O9%+!4Vkf{Qv0%>|I(AZv6h5)sGg+pb zj*&mESlZ|8$SQ0X=a*7H^3mx$E@7MN9CfFYSmZPwa5=5`*Dr$Ej|A zMMiFwK{xF({gj?$^-Z>#%z&Vvm1muxwx)Q+)PXgEQ*0OnxEG#AA6#$ukRX(>KD~{r zGyL>w84%B}s}p>tP`h~{u+_J}=u20)^-}y!e~(ud8o9n{fGGz{&K&f59`dcLfG!`G zuJ~d>sZcQ~_nzR4X=L#)sJfS72vutJHK%QysuSQDsN6CKy2Dij{FOrXM^W(^UizL6 zJDh3YhsewV2>g6yHdi8gF=l%gogGyJ8aoxk$+Tr;#VVo}W*S(45oM_Qf2^WGY1^rrET3+V`BFa`bm~ zL_#04aHi?;>`BM%99O(8rZXcZ*E(iDUA0)9)rsHG7aTuHPtOQC z1BSs}-g|ciUUc8Dx(jk6CWPMgaXjb?0-DI=27pbK!lHuEYg|B4w!K~SAfAxTUewKw z6t>?pX3XhxoxT|2eBc;%Y&&bL41gQ;Mt=@(d|$qH!MqL&bJ#-4C<3pyQ(_m|?*^20 z9zVgTck<`&!2M1a_QzB%%n{TN7}Lj@F)(*tn#s)aA~2j)%0bv$=reG|lW*A|s&{V` zd%7*e`p7f+psna}gw!mh=U|PL4OYR@6@w;>DZ~^MZt}zveH>cPTKwgl9Z-wUEm$ST z@NopdE#*{JVCsOPYpiSbjJsFn*8?VA`ljh{hu&Xj^Jjrf8P5Z%`mr53kQ=UG4Mezj z!IIs0sYy)Y?FYOB0?Rg>F0p0y6B9W`%^kNRT_%@iQ42#0ks1W{Y?As~>1;xspm_=z z8R@4b%069Pr9GWOzaHxH%6@6HTegUN(P=O%VQdWP9NT-=K-8_>zBfFQmZb57=VS?X z6X;rgMYbN}ij>sMbxC{8zW8)}QY=R^?a3b)!)G|)&y1ftnh$irY>E1FV=>Svw^?H_ z-Xesqp&z43(+N3nimAPBxk_8lj8doEt_0KhBQL9W6Ud+ffB1Nqm0+lZBVe^b^>`z4{tviPuj11xhmYn|K08R0e z!};;!IArDUdGmF8`wM(Bs)b(6Si*@|SMWA)=t{?=^KS^)f;-s`;iDy1Maz)jx`oy%};5mvd}?8Qtp_ z8N)xJpu_{Drzu}=@6@-!*t><21d ze5`2g`!4(?y4_6i&ZjQh5WsiqRH3^FAYaNda;YmUVXOVi)WH2VkwTU3s1~TcnR78j z^%sirWGsJOC7rmvHP9H?ZT!nGra7H_tXXDMS+vHXJB6W2)*DQmxZ@%_$iybzg-|)d zvPk4vCwauM(YPj!SwzJ5eaxAz=h@+HcBk#MsNsn^b+`Rfw^eFl(HV3&s02zjg0>{4 z#%ThFmP!#Csr#*5^4ksTC-VTYbM8bGal6wQ60@+WA>KOlZa;ZNvdcaz_6IxD=$DTaT(lG9R zg~YX@S`=^*PW3Qub#nS}MASA%Xeq1Shn1uF<34OJE1 z+*wRXwoFOx(b|gRrn0BKp!M8*f?4U7$%iF0G%Ns)$`!Sfs|hYuHX_R`AmW5_>m;`F z&W;!}WOfCJ7Aw%ttD782rf85r*3=eP%7$7uwAGRFuWUhYmJHiF(&|sh zST1-b!j|55&N^Q_R^NPQ#(uC9s%!LTt!OhR+=bE zTcX7axe(m!s;q^d9m+r#(Kk<03A(ycdy280!~{FCmE`iZW{X3%TM*gv3Pn=Cn5k4P zXCF3A*D;AhS`!VK^*sk2!L~r#w8HaRwDw?$2+Sy=i}@ap#azwa><8yfbYuhfBvP2I zu#;(QJO1FHTP9{Vpt2I%#?ZgVv8dBz!+nuYd!@6crTDX3UjdDKt0$3;n^|e@ST1^p zoIz#oo8Cjs#M_Klm?q*-fa8YSg3rwzGqo{zDN%#riuc?Eg>piaOaGGc^~A3aFz0YA z_Z1RMiZz?*M`6Dh4MxP$s~vut8)iOho+%W23_+hgY`VX_94^k9_X{KI0c|Z&93t;f z+cmZg7bkSNyRx$A0DA+Gcy#Ahrcp&kJBPof7)?W9v3OMpEWY z%P=6#t^H`F>#!QyQ9}^G$V71pR0XJZ3gSQRwt_iQt~CF?e{+xWMCM?MZ)CXy`*1?o zhEWz7nk=*WTvJ<}GNqg{Y-g;*vMI?Wu_rCpDeRB*gv`FPVQ$gCwlC%sV=-h2Fl1t_ z*ZpzcjJVFr@sgOOX}H0kT+Z-F5lSx8?QXJL7mM*Hzl&_uDUR15N9=r^mkoUNnycfk zJ7V0^4g8VaomO=(MSC^-cDO8yp?Z)O&zv?7yA*UMElk?f|?L_-a;!R?I!MbQd4PUsNhc2TJay!(jR?C;kd2Gr8e)>53fQ<0PZGj@#jhT z7;9oPFBZ(QS}Az~WfemBP{f3h*l9H|KFQ^SSiXwpqHgv@-n5J162Y)L5$GOkl709| zdT*#4=2BI=7)(omLHnSNj(o_eAwAKEX9VH?Rw--R9Z8^OEZO;*5mz||bKL$w8fd#? z6Ry>M8-f3vn5`+^rqiJL#IUwu$FrguiR11aTz+$YxV5O_udB%)SWv*hCCuga%UK7$z& zqUOfQA2YjF9J0ktz-lg!5EJ2_UApjZM+pIjS&hR7A$AvnAMg;V6z>YqA&ZmxdvP;H z{!m+p=-Jg>%y@!7^wG+h8^#l{{n-V)OCBeu=&D1Xw8TZ8F)@(*A*g^SgcffaumtTmrf) z5ScZ!6csB_n+5>{!J~8}k+PSNM_a_VhKMq?--A>Rqo}DYoPnlG)%5ca5;`{VI>6b- zl3~hU!Ug@&&RD{LJelv=H<`@%nrWA#CH@qG_1LwX9M%$NIO7fqG8X}OepdmkD1LS^ z?fZU34W&`+BCffGy;znq-oKzect72WI z+qm{!Q$AKhN@?Fr!YtAtR8qlMf^G<@s+9J+nEf5Q#mxJXi082uA+uF;v>*|WZIh__ zwZ3PF`~zb(SiBt_LUTJc@xvP>NidsEcXad#Q^~!|Y#%M3+tYH23Oz<`mofHu8adBG zt_;0>W^5#l_w1g|>%s>bEH%neef5zB_Gzr9oV;|IcR4upr0t#=M@mZsmgiV)Z(Soz zK50G!(1Y+e<+?nK_WnvevTB$3Uc=fchx_h;t6fuQ)*&)VheD9fA%k{=^Hd}APdAOR z3!s?Y^YMp{HwO5Optcp`7t(Zz6pEK>8r<{v07Fxt;^tjH>priK^O9T;jVHyYE=Aw% zcewHdQ;tV0`10+Jz6^&UE$j*BEg1uA@Ug{d({0y#Fyf|pPuszeO$GJnI9!uh?Oerq1sFBNt9EGTE>D$GU z?}>iQlu=sjT!#C@e-N7mC6<5&WYa~JX`&h=638tLsb!!&yOEb8z-~&N^2RR-E((|= z3;=mcEt~mg7nwe|O+(mvq0rCRE2Uk`AOy1*YiVwkeAQ8j^dCuxRP^&+;j~omr}f@_ z?a&Wr8(-ORxO&@?XxaUZ@%MPR@df#*mS#=r6(HvCT~D?XkuK*-`5Wuea-F`p2AVFL zG@QaaPlM*1G=mBu!O>*FwTtYm+N>4A6SWqW1xppIy7rG7D)y^kzdF$*fRUi*hsg^G zb>Ylgj2MyMS6;v9o2QZy_w?0SA}1Jh`hDK5^FSVLnJ9hY>_z84dBBP$TH7qd+%yxK zXi$SpyP!Q!wC-&;g^<2b$BV*j@2HyuwXc!vxFr@l6Q`ce%V2q*BUW{ z?z*eQg?gH{OB#>dG23B-o5ok92WjauwB7GNH;(;}rbN9o&v!G_Fz>6ACtJ@=vWdgx zrC$0&rv-WKICL7tINm2UJd9q_&$V2>YiO*E@zTpU{@FhQzfw$ z9EUyZmN!oAB=<;kWrSppkt@Yz06HuKkE&&OaRY0ewTS%zLDmUeW~8a$8~yrWN#|bQ zj>{AC<42&&uWr%=%hqU_gYn4X6*)CUb{Dv)k`3(daI-Ghvvr)xW1r5Wt}Q39p0+kH z?uc=>5wUH_6ctF-Q6}udGb0(hN3;vufhMR8_-p2Brj`g}xTwv#XR=1h(t4Th;yStz zo?^y~#3Xqn*3dYq$uKQ$B|hefX<_OQCV&1);eN1{JH97B4q@5Qe=H~>uwn`&=tNan zPVvx8taQFM`6P2&#rV5w7Q3h4zwdTE&vYMB{~E`xqKi5$-T4g>D5l#zmxI4-F{r%G z()$T{lI3R^I3MYB1JG7{e{peW&J2**b7+N;Q?o>lR*3ocTOwTHR9fgThO(L~WjJ;EIDby})&aKoSkU+Y-=OlWU#6!fcuN z2iv*OqK|plQ1GI)P@%zI?M=n|koVF`^2SV^<`l&q->2`5nOVji-`M=X#2aN8dz0;> zbVfhVzKLAo*7oyA#@A5euN?lJ`^jhZZq4Amr+{#>gw%cHD#$pnY2_lwqkcb#Ar3kgti)%0#)x zQC%dlPZ>LhaG}%#_?OavI~)6U4}d@lR6xJ@s!gmvi?j1EJ(he|W)Pcrhr2|`P@_ZA z>{pnQ@je)UB+n(rq&;OV8uU<;#xi+h60V(iah{9N7kX+1?cU2a!60smahPYSvQm zCXe$SSGfHC?7QQD#HUM9=^dZpFG8zSpPncGo280dz+_OvI@cqv^%dUb`M_vlij;~> zFtfgQ$e8(ML0bn{r{tTKr9^;2pGi4;bEpeJ+Km?eMi=ZQfsrwRt{J_(Z2J>9u- zzPphoxBU#E0dXA25GwI(;~-Z%=ufYRt5CAlCdY{0t82<|{j!0OtT|r_v1K^47A8bqE7VsxC`=z15uv8{h=+DPg zhZ=Xc1+*mSmBtNje2t^Fb$6w~Zf^Sg<4!Gwg($d8ALe5{?cn*=tl_^|TDbi&Y5TSo zQ&6q(1O4nOv(8+uDE>zP)wGrHTyIz@wz-4ES7hOv&0C;*g)@0>imgk7((!Mv7vj5) z=_oiZX}d6B&~P*=OlA`VNsZVv9=zS$k_Uo z(#tH6)8gLrTgi}HfNU{IAAp(L2AGL($a634g!LXJ&w!9=ML)&wbp>~2*=2cXO?3Yt zT6Jd-6Ka;R3FCm)-WhYOY2WP(`rPyKeYI1LM)*0@9E>Qyd}Frjb41rjGhCEP%TPJWH~1AOz#@+bRf zirt}{G}xy!IuUrp%Clde$GrI>XwGMBc|p&QJv+_0i|xb4N}k2BhF`H)K3`XaSbOrI@@X5V<~=T;Vytlm%ynG@;4_F-b04`a>wv~0 z(orWc%=UaYX)m*o^66EU60Z819S|rtX(ui%mN|r(RU-wgz8*C-i#nUpqFjtx=+Bg8 zoxmxrltx~9h-*I|{Aw9Xfv$Nb!x_Ay9KU8`eNPy`3ffX?9UdYh0R1O>FFJIq84ML5 zDSF~wLyNb!{!niW(O5HLpBSpOS?s({S87G$b`5VtXWo;}kDN;UP^}G)p<^!=>2PpJ zYsuC~OPaVj1VKhKaXsaY$-HatIGoXoCM=}>9=Vw3@}nK7%SaMmesRxH#~EoN<7DYV;(q)NiBAmLf#XUeGEc$A z1vC?f(txF24~VIBIjXrU?3qc6mq8f8qe~C`se|4@yB;E?tl7+MkutvX^iMB!(uKAqFFmXNrd$0e8PFZ3OPdY++CjoE&tpW{ z^7R3HL!AGFjdQ%Vk*`W_i#b7q6!DFz_(m@0$t2(;pvLr%e>2z~KY&i$ma`!#lxE0_ z?ChxdIqaV`pS{}|dCr34G_Em^@@O5w5ZnHa@NCCH>({=dMv^qxd36 zD=n{#K2yz@imV?8QZ=Q{`=;o*{~o6ghOn!RJvTdyY#x|Q-X6^f=a3x4R!^;mf$HSa^nuKkt)w(o`L z={zG4;a42{R83yqlNL65&R2tC--}&Hoamoxtx&j8MU%yDxZhSAj@?i6pRc;8IgvLQ z02+}=%r3LXM~_u@agAw&$i-t(_wJJ0RAQ}>83B6JR~BtQ4EYIX7qesp6RF8~WM7t#dDxSr0`}a^qhmU)g9#@b9^P*Hen+h4t`O@Y&FM)GWN}ee zynRosfLk*W973y1kW-Kz7^&Z}x}gZ|N)P<+kEZv*q1J3o_&thBg0~^}G_EfxQ#Pa*fI$UjjxH~S?t&nA zgkg3OccRMi%Co^^aR6Cf^fw^uQ=2ddP4^Qp9nUyChUa_8mBn*XxB<@Qgl|$tCl$lz z#%>;+#TE7wU3+P|HtKI(jYoMaj~DX>7t81>H;32dcz^A5Di^Rec=8mS?Y=Ley}*8y z)07~&(B9Q`NNgWT(+dCXs4qW#0>N0IYK`M`#cnBkti%rF{kY0dB9bb!dQGm*BUhtd z5JvtC5KUGmUg2?R(fTn{MR}zSfZGjSt=dI(#iYJ$h&w~y2DCrvlPzNXq;=sm)Rm=_ z(m?K#_c`q=lkVi3>`>&DjN^EDsK=;U|q+na71%B`sJl?IhnGewDDKYD7H(Am!Q{)$upd z($D7q*X$_9t`6M$q-D>ubVDNGE8x^Hx~^IOvcz>sPzF zhwj|8eaJhXyDV515rvpCaIQj#x)`uWQ$bS?A1PQ+xpm2x zdRAop z02btm?TEuKs_`gYL+~@-&o6uEsozDE=lYW--i}6j)B^JOgzdGCeqK#Rs1}09#Xv83 zTwrf%Zqj-zY58lh$B*ed3uHZEP~rQ_chrVnRy`CkF%JWMmpI?qne>Rmcyhou{IP^13v5nbVP57pt7GccWTaPlOZ~NtD zl{egcwM+jY2}(R6E^+8u;<5e>tQ7(%;rtvxsiC}6X~7q;J$kLFz4yE32)HFZ{chzE z?|kMsgQrls#%|CIrqYV_pXyma@9;D_+qgGav=rIT7`UhXee$WQU) ziO~q}DC6uVUTFo-Wed3y*;!>n^ON;24jFw}M=Q^ zr%C-!i$?uqY}2J1*g)V{oU)Sx6;|`_UvUIxtzoJPl1=?`lQMQlKtRQU>>)cB9mXqh zzQ{PQ29^&b_i?|1)V4-wT_hh}KeuVVT=FM5Gxr)hn};-Nbk6J{BA>Z{&W8Slp%cbS z53V@WB#c^doOW2gZLFz8XvTKUn8Tl>umSw4#I5fF9-SiI3X-_8HUb!PvcHU5ioxx7 z&~#7MTH5XcL4hCLN8gvkKJ{PtAL6(_wU?2C8{K(|FTHZ$czlB4k9V$&0W6r6$gQMg zLT(L?(>_Qa^cv{$oyEmB$UUN{c;z`Rn6s)w?P>C2kJlKHgrwJp;0Y=qd+6QH*2F(L zW`6lzFSy%|34?8$X<3roy#RhE}HN7Dp_r5ex#Zqp$p(aFI*e5 zPE#`qD)fEV_}^(XWgNct>Q2F1JXB49t?02Mpy)mnhi|MiOvNTUCwnStX|2dX7p@kr zPt}cCc}+5wMf}4-Qws!&FHuLv1?UgxCGoJtRXQlap8@!TTgdmfx|>TQNnpGRoING> zw&CVd|J8}&nt@IK$te2jRTYYKQ6fSe~yKkX0;>%ch~R~tWdzIFQT$JVT{ zc7~P`m_(+=;gI9;#ei$qr$J}peuEeTJ`O}PHARG(Dl~ZROm`fS>c@M2O0s-f+)L;5 zxNqXa!K1r>(MT6M8%27D!O@#|xLO8f^+^vCu-Qu`jm`ZE6bM(oMUQIfyk7lbfu1mF zV=({z_zC{b^%)IXxFEV!k{<2uId_Vt{fG_Z{|6Q7xB@)#8$G=@4k|r&+n2Lc>i~d~ zt}Wqz3cODNw%d=1wY|eFCU?#H8B%H4Yd;XmI!wR(*QXcS`z}}9jjqYKM0K_S!o_iv zob{J-I-J^e{HHwfAK`PJ6ZI}V<L(9vO4pkv*=X}6_$|3)m zH-J7{&q0N85-I^3>H;#y&APl_Wi3t2o~7P_#RK-nc(y?}8W8pY!Pj-wWq?^9X1HvnwVda`E~=WmC-oBORM zvT!#?k7E@soUdnJO2;dz=CN&szV<+LrSjdVdIl<*;i0gYg+<$5xP;zH<&n@y;p_rn zIY?NHjWW*35Z4L|y%3+VYylEX$p6)p{|^9R{p9DSu)$4cu8M*cUs*19eBs4_XOpm3 zA^xQ4EsbXw&en1<>v{c=tQlh(bi;?XU=r6@ZrNm7)x#}fCSG-`r&CT-_)=usr=ORA zkW!cWJtm#RIDh&vOWuF9>VxyvKsJp>f_;E{Fx+o8fNS~|8x9#uZ$CcMP%&nj~s>Dhfbb;j0Ph63Loh!EfMx{t&{K*T$kjNB{?g3OEWgQsrEyAu^RW41#EwPH*CIm zOaTAM_pMgAONVZF91vikhF~|E_g#6i1!SuZev`_bhzEj?XY5~_gw=hO2uPV4v4qOa zR^XX$Ej?ze94`|39-O1a!UUh`o~&Y}pSVG)>saazW$GvfldwzJ)pv0+SYsu5(C7v8bQI|m%Ze>Qb%e7z@hm0<{cRfL@tX1ykX7dX8P-%X zgg~WXqAr9at@74-1#o0qPvnmKU^0=*by85tvwycJ2iF4x+mJF6KRt=Ja^}{vQOcPqX*Q=Xe!2O&hQ|75oA6g&Fk_La=Unlh9NTo? zHUOfD%MS=uC+u)BwLI|gQ*3@@qTC**?eC14L&o-U=D7a-7d4{d`yTKoaGI&KG!UdG z6niXk-AJyyRZ?6Ypn$d|^h!G&u-#{>z4z^p4YISKwgv#%F5gMa{U=0M#5NFq#Ao7h zODTw}cimuG9)D{M6G5t-q#i=omzAPXBt?)*znLl+m+$h&BRll(hjk`or60Ue0=RX$ zBo*85H(&xKa05V7;4_8h%P&0B*}gvz3*koV2(O9a4w~TB>Yq#Y7L0#c-v03>0@lYp z+T0r=f`w2r5y3X#-SJK70huU?8?ce7UV&)<&<8AZ#TL)!egE=8e-n%zq~piMMe7~3 z){hakOKp)EzkQCBMf_ovs!{wg8T}}njjjaO-JJc5D9kUppeNxN~*D3-nGfdV^innayhx({i8GA%^-a&vIkXu?awXI{fX z%&3KHm3zHg#jkMi2<82|7nKas6$fw7xUBn;*yjgdsOg|O(=D5^tWQESO8H8E+M&#} zdz?)kYj(%|ePrN%{-u`F7TAT$Hfz1obyb7{1j+kkB-qn^sWb3nwKP3Nj z$^7@%aiPx5f@Zcy@kP7zgcnzB6r>4xxROJEeDMlm0!NfeMGf3TI#TK(`!5E zB{ug^+1__Jh6|2s4CGrQWE~~A)efvt{8r`sRDU`5L8%E;H32@ZDZO>u_2+HjZmbQ3zum4w3bpY4rZ>*4SRY_D1O%Bw__OIIrh(u<50oZ0vLvH13{@~;-2Ni2{PCjvk}ZHwmvWwa zU*iPDUOcC`gM!d=_dKOnDL<&^okjdXh^jh`s2t)}{AMntL_N3PXpn1n^^Ki7>s=aL z!pwiq3tDPiNl$CMgkqBKHQ-By)aupMjZugTG#h&Xw9#;|gdKNGl&mp3cCSAft%F|t z%LVJ7IB@=io?AKdx|fy0ox4?ZKLAP-X97o4Wm4T4cjAJNc7*l1Wh26jBN20B-$^@4 zWm*8dn9*Y7iP0FxXCcFp1jS7n!#@vB{uo%G9rp@>Wv8qghywM_Bsc&E1F65}v-FwX z>4CNw`tcmL_X2WpY4t`D3DGG~!JW(Mxxcs7mB!zvf{3Q$QXZj;1oZ?lwBv75UANH7 z0W`_m@y|EG80YXO`vG32W0eKGJ1sSb-%M%(zSh0ar}_I>`Nzk9%*P94g0uozw!O~u zUO4sj_UtUJ4QWs#XQZ3VHjn|aW8zd9-~Ef`KjsU!G4J8B*<3!uW_jGdJ~{w9_aI%e zK*OAtQ;W*ORTf96+BKbN1Z?6fKVvKUgxMPIeatPXiG3>7Pvmk*YK(9Y#DEn_ zpaYtnY5$VoN&6D(8j3WKcO|%cU@R0!6+Gg1?^EJkM>to+1|#kE9Y7{W_=88&=6JY$CD5-TH`u!zmHth?vQqODR{=v{fCQ%Z}(p{ge48H`vyH?)KtGj zPjY3{i?nou2zJ3akXcg4D<^aNr`@%IT8>+~eMbI_Lr_-MMq#XXoR~MF?^=k!k%tjw zb7{jQ{_{=v?)nkHARuVO1fikAz38p}*D+x`~=2z95YjZk3(|6toz|v&N6+g=HMsHVLDV1n9C#wfj4F5N#uj<>Om6_tsGwEaoQaW$j*3qXzV{#%v{qfcuPKeB-oOC+a0?9fR@Mz{fbI#pixsalKC2 zWssiF4#|cEEprhJxmU6pFI_wTD5KDxqF|@+bGeGuE%ldr-!&Natjs<{Y|eDiFzO^G zM$sE&J$c1c@Y1{8dTia2heQ|3`8>@#VB=FhN6HjC>cpbT!DsyxRA*gqVj@~EG&cq) zri8lazWZ>$x-^^;!`FXa&$^VUrl8KDj5yGILF=APVMZ9`WjzmF_X>9R;r9Qu(NH-R zLX5uy69hFse$m;LBf5ZF0T`eu2%EX^|@E z$qLs=E&nBjL#A6O58c;zw&7Tj9j`vseUDP%o2C*2N9XqSx?YFz*dp}$+-IWc7q1Gi zutFCdP36W&R9-POmZh+&U=v&U;ptEP=(?6ci>m{}Rb6O-sxB;te@MF6KHkkEnn{r~ z#mcf0*w`nmn9i&77e}Ejeh_P(kDad8-A&D465zjOWJJ?UwNnYx&@Btm%|pyU9OaZZ zlZO_?e8Y_n=F1I7ox(?JHl#G4Fex#wgsCHAqP+UL3@f+Cgjt6%6W&Z*h@(?k+?af> z%}tOb#L6vEd)4y&a;hc#S|H3c=pic8V9u)X5{l&t>@12b2$d3pm_uAverYz-ag$Tn zn^b&4+Ckxojf=u(WD!xftGF}g(LIvt)LIOdfi=%YixAyiMnq#D?L3XKYRW4DwS2QC zLm^Me=4u+oiG&p#6_63O3Vln4zue#IiXYJH*hBqeP#9B`VR6Sd?+KbI7};y#iO(@b zuQpQ1erY!Bz=`*Hkun)=}kOmxXl2WjJwjfBh8k?)G`R23$!iqgk}W=W;? zzqFt{AU7&UgcF?VJRTqc%;V0zc3Yfn~3F zQz_UFe7W`YltPVtF`#zP01jbS7K(B?F#;Y>Z@!RT@o+nY&gD^8@X@wlbrt*|(u12h zyQ+kFS>(vAS{q3zWz^oB_09SzvvPE}#7Y?lB%a*oo|CO^#|{l~*Io-~daSsIQ`pH5 zt0gjUkW#=I&$TPfB2x<@4aj?{!x(W}CWS2$3!qZQ> z2mIOj^7d~asmyGSZL^#9^++C!HC^-yyT-(DLSdPi^oyzF35hiOt>ujN_SOo~DVnsX z{?}2@6xKu$9b`M3nbQ?c{tnU9d>b<{s-!C)a~(i!o?~i=?K9*BOn1&im^GpU4<$aI ziu5}{>Qua&k0MhRZi2?enKwRY!L|>1I_`jLfQ^J!FA-D9{oLSCFNUWq9{VNVP?Y(bFTY^|+4Q zq}kal^2kSk+D4j%Goo`&?9HC5b;|iPbP-#AXm|@}Cb!qWf4W%>dm`(gDts+&f=;{7 z@j81Grcd^^O#KBC5Ul^|TDp8@D5WIlP=-vImmS|ZLi-;KyUBcsVy zCzS5)V&zkLs|+PWQb{I7bZy*SIG`lwAa0L7SGow>>jFI2+k0Nvd(m||+*jbDh{EV5 zb}>NORS;N)Sxx1iM@yi&DG3l!vkuV=WNCSzINm)5^{O5tUPIsM>?K}irvoyP*c5-O zABwH&T7Ox5w!b=%wx@g=>k}%f?lsyaZ`^ct$C2&z81|D_#rX3`%mp6j(fCaoPYAx& zn?56-eTS(sN8&a5rPHaqr&azrJ4d@fu#H%S-n>G^Ds%vTItx!-a2p9b;8|j=*m`Z zB&e0hqtM>t?UM}Jc@c(J_!FLfYDjYFhcOZ%u)aNO!E8ThAqog-NE-f(BE(m+oc>8G z5V*Bqd9P<<2tqERB={Z+$;-LI*Z!UTln{6Da0tT!n7AuNzal(UNiA^&oZnJef;v(T zpB~iYc=!Cfk76OOm{s_+u9s{Hhk^z)qS7PpUr~9uuH&5?V%D>~Y(RAx``XI+8TJux z>Lz(AsU@y4_ z-chwTO@j|nC1UgykwU>aQxk_DYdFgst-dCq-t&GvNJfbyPDIP+vAdCz+hR4Ozml}C zIa`8%(COot;big{Z)^~t&ycXODo=iZ9f0LXVM#t}^{tr`j69xF5s5(E;I(c=Wb+3{ z=^a9pLw_8UeBuq>v?tF$Z8(s7%^x3pZk~MOTq8hTv32{@icc$+8DanC)Y>j?FsGuM zxZ+^K<*J;0zAXq%kQ^bUcvL8kIPR*)&5vy6-tkL_b=%v z)<=;9v+?`uz3oobP&hw74shyUxnU$7Bo(TiUX#IjznQ{sJjlg84KJT!Z>z@@T>KnM zwLN;nzh|Dxxb*OOKkD0$R)dIpAEZZLhNC_t{FSCTh9jH)adTG+)my3_X$;PjST9&H zl}Br#fJ_k5fK1eDu^npc7vOE^6} z=H%*&SB8w=Nw+5K7p5Y_U`0*%SDMc7d1wT&Hx7^Pil}wB9{JeiG9%``y*HLuIdv90 zIhs9ch8l4jd{fwj$TM=UQ9u~&9YezZZP3x{ei0TPILpvv0Ssz!prij4D&v3_9o1EH zXsB(wyr-`I`g50+d$&+f!DwWfs=lzC@nwy_nR76_&-r92XRVu6e`-{9Igt(FxYd$k z76k<_UR4@$vG(;jsnV?q&)Wd!z=E$y;{6i!(s_J+oJ0+$2<~F=(HpO7jAwj>={=*2 zee-q>Wr~Rs4(@Aw}AnMEAQcISWrpAOmd%G zK?n?+w>ZOn%r%ao8X8p-DrRMfcwJK8$9Yq@tg)FJ=>@SUp`zu-TT9U246@iX=}B>- zm+)AK$b7fGAOLkuu^Oa=H}x{Rp^tNnk%p!RdDqDO!GlGOJO4Mo;X_ zskT>w3E3zL(!u*4Zh%GrNxbccx4g2`vvUt{vdWl0hvE|U3J_iu0vD`#f2l7{*-@-(~u>E{V)s*Y`n<^;Wl$gh<5aPp7@^of9?Rp4dwW|yN;*g1E;=8Imlzs!G5um zq&5?VJiwmnd@4Q)>dY8y1CGoQFe|^3%_r!tw9>o$GEw4BqA}k6B=gqCgyJD|PxosW zzue=@Jm&rrIc*1UaY?D8a~g0jg#7P}VhVXGd)+JtCCctt(^>%iA!ZS8ltiG~uD7#b z3l!-1F?iQ+w>6XQ))x%avro?z1fIV7er>i_TZt4+W=L6eI*f>w?oBWf%pwS|(B;Gd zF2T{8)%DGbs1u1ovU0|E&d}^ZE>CtrWxOHMyR~nLc(P9*jLW;W+uvaEiAY`o%i>H& z|AbGR56I4RZqQ*vbZyNs{GWau)3-!4l=}0sFD0Ins$`!56N8Fv;D9;8 z^u&oGl`jk6j}AI&6$jG|_+3Lf=9j!fGCIBt2`}72f~^y*%YkFVm{6!9iG5y&pq1l! zC(lVMxnWs2>r9Qd$oGUG%Q=JUaALaTXUtg(-5QLWA6`OTFPK;vwA+-Qc3Ja5hBuEK zWDxNRG;BteYlylU!alOgk!1Qe_c(=nJ0x(+Jnc~=MV$G~Sqoy5L&n7MHQliscS0{e zX!^33fIZsByVE8XZrf@sYnTFBK6c&@WNGLx6HIy^mIkm+?hKr%G+U*#DXBT)WOOYD zmNRp*-~EX9s5FoEqhN_>jbj*m1Ked+=Hdz5OY(wFWovuBfsY)CcP88iF6C+P9N`3D zf`RTNbjE?%Zf|e*hMfz+H!82K z3+Kk#NO7w-C+2x5!-yk9JCmn)Jm)!0^Fn{4!|r{KskIv* zARH%TEcDCsP$BpZB=~kE&!-EPGKfK_TEAbPXFoeS+@-+({Hm<|=B=ISCt5M82l_s9 zf!j;gmT07dmXS5)t)u%IJmnE#EALcfF%z&?6rjnF;0SXw{)pIob{Xn#Oe2{UnjldV%6<%>Cq4Tx>b;py1U|QS z#VyK2JD*q36$WuFk??({yf<`4SEICWqir!aD6ObqOh;Kxpo_(IdaW$x`CV#0lTrKAe66j+*T_)G2dr z{&Y36_OLjxzrWv*JoC`#+4|;1@vKG4zOlbpU7a_?FdvEna_XMTq z%3cePg+H|2ZQ{Pes-s(Mb(4U~k(rqLzBWaD&I?Z7LYm4u^A=Qd!>PD&4qj+Gr}@XL z8&2L}8ot;AV>q;g=yMB1U8qfcoWvkYJ^X54*J((${cAlea;4D%R}pEq1`@vgg}36P zG-xrd=bF6Xp&N7UXcWpWH71F)2#zRev*@H_pFDAVhU!72L_r{=K*OxT%$%UOc;W7? zF>J;tmsdnuK20+5RD#snl145m3Fo{uO5Jz>ZZ)fFK~@f}nv!c#f>9(_N{Z9R3e->B zhvMc-43@94(q?@p9ffBpU!^RlHJREF`KHj$V_>mVP5eh1YR*ItaKd0B#oV0UjdlKy zy-vkwd|0~>dBIVnuacj!DSCICedXpr>s3L}H9@Y1K#K37w|Q~5k1J<;K(p$`w;{Do zK7?_df03(8*l_CtZvz4x36Tr6{zH;~xE>=I;Qja>Bp9QViE^I9) zuZ6=|~o5@z5dPvF+uOj(UUOVjb zQNQh8kPjSGpRFWk-5i%SP2m{^1BnRmQ?UYj$8BuKXu-Jou*kP;R_ez}$xo2`I@a3< zg(*Pm&ONE@J?@do{{YVW@e-zTVG5Ylo*aZag}$64O_h3WT#W zl&6T1Eb`qJvYYAS_ra4g)PSuj%0k1oOFF;C&2{`Z|NMdai575}>_&;o0_gs)Dh!=* z1dy%OmJ{Re)n!Gd0_^ZFX|0Nh=WfF_!+6W|3ZOJ7D*O7gotaXrz#cfsB<6{ zV*LCgac65$OTvO*GQRTrN(0>+F;mJSe2_2mVCzUDZH}8zEfG_oC8{8S4zYJQUM!3U zGRs#`Sz{T}+RIHlTN~%g&o2Ah+Kj(UkK^RQh~i5F`IVx6Zn@wUjM@5yc+i!6i47WW za-DGvb`}t zx4}ZaaNiyyFzWlbdsjZ4>va;ebQk&1+54`l_y)3r#1*ZjK_gPXo;`VWBNiaW;095< z3cjqd_ZBuGCW1o3ErP*ElpQRf4{Yu!=FUEv8@ARw-6Q<$*(^Vu;I4qfrj}(p)|P`*Q`b@!)y#}vE$c>ijzYz9w4yF54a#*-@)juI6Lu%wr%*PrxX)p zj@iB2^UzzwZ21-e@`M=Q|9bJ^8-s~#&(53{Y&?S8~;J)BY4l9Te_NLgm!mUomQBd4IO9Q@Z@|FInqZO?B4KYe9}k1=v_ znfAUmI6*WgExD;FHV>xo(xL5=HH)SHaN^08D!DXb_A%3?wc+ix2Rl>o(<%q9Q)Me% z5(BK1ZiBq3bhSad@^Vmtuf53x*e7FWumrbsHpTXBzLo}txYbli&D1+{ftgz~L0Ar3 zXsj{JX)dJTaM0=>3H|+(;Kg@{lnOGtQN};s654*e;6cdD2>KZ=xDY_N0D)?FZl%zB zJJrP0jRA)j-|Tgzz-ni&3*~;A*neiwsAf`*0yE~5#+xkm^YGP2c+RJ4Efc=m`U>=u*Ne--vSj=pM`eqZETcm^g2OlO zpGdiRf8~eC(l!5&&{|B>K)8IhIx!mW$(H?&H9xjUKkH&L$H5xya#7jB#wZtw(6b|$ zES;+(I)&-GNaBO93s!`$jFUuBNzm8~X9a<;4qxf@wpjC#=2!<@&!&L~GWx6;jBO}h zHe7-MyxlrlHd^IyoAlbFh0L0o%)E8#xeEMON%-YbvelrSKC#rebX~0dXkBx>IIF|9 z++hL1z2C&bNRgcLd^L>VG)ef2EtGY(x8Q)vVms5abH07gGknQZMU3~cdQl0p37)48 zE!SPeW-N`r$l!XHc)8{YbZik!^$~_tV{S7<5rH5Kn5GUO?_kW}|eHD>}d-h+OzxV71j%{T;);kDu7%@r`cqZki?Pk&FgTxVS* zr(V-8^TtkjkCx;OCF^E*SqqD%?_#@eo6!avY0U0)8zX!>@XCb!CmH3;>FqtPnZ>#x za)ud z?Twl`>IX#w>Z(`;;`E1ov*lJ-#po1~pB4Lm=aHZ3kBE;?Ck#tz{RK|Px_u6KN5UtC z3_T}&J}N^96%fab@OB|Cn5un`nXS(2zZtxtQ zxbLqxhHp5le2I$h#kq9Mv?$4TBoxZCu?@BV7JGOkGOC17kZdH#rd`AaomW_n6w3#gNBky51z`7XB^TGOX8O!Y zT#&TbupXXFHWnosxjmo{+blHquD>zNfBXjF8BnyK`~PTXi%dF4qvmyDHmV}Q$7zE8 zCaWHyzIO#H;bzu*$##8)qSy9mGH07W5wQ_}nuGWHXzI=hE*O8sk7NpcQUJGLi z@x22HvWmd2Yq~EpHI(CtTnnZ)fHgqin&YTw3Le48n~BK;1Elh3`fzOH8wjRfqxK}L z6_07z)MGQgLRk9rJLUaT|4Q|{q1qW|zSxPJ21q-9Zfp%lPSqgrrd=$4{ZY+?76VBI zyz>iF3wr{@(}8vYo4ov7G9<5W%2F>PdCen))&K8h| zMf#7e`UE!m zkk^3xID!PW2NBRzxWT485Ic0KxD(%}7uw^_DNClisLUK>9+5BS%dOY3sUh!#K~7P}C&>Onx}t+<7dKPj3Ue#$l+XlPD}yei^07|hnqs{ zi1uQ0I4_*@iNskL1TTG{{<~`sgp1msd&Y%@?d$gO$%N2UowT|JhZtOpq?721j+;yT*Jw+M1tDOox|z0a9HjeZ_tMYu}%)r%mx?RsYgmQx=$Hh>m)lxaI3;_6AvP56Uhw@A`1fA zkzlU&aJ*6|MmcaWu$ot^iLjEr8vkZ&h5S!}iaLEnX>$CPic-O#;E*py^^&~d+t+a) zb?U$~639bN6@acOVa@ zXFo7Rh#hL3;tS&$>U^(D!3y#t=IJ>R8jqlht|I1hDyf#8*UzHlx>N!G83+I(yESC) z?xux5x%B!=B1@s1<3zt7k@k9*MYU`X)ZKgkC@>Ze%MBX31;&C=b{sXYEkN1QZKXL zt7KxUJr?_Ez-XZ)=zK#TH+{Eed6{xG8fIvS1dnqbAjfxLBgAy=<0l+hitpRX zJlwBUYd&L`>DJ#85K{9GyT6DWlD+wzh7$MR0H0Cmw)nMcwfLmf(5m)bsjHnI!eV_I z%Hey|AUJAF)My8p2y%4Bv(JOqyVb@*(ZwI>HmMeO^kmx>1uVxVxX0qN%inbivPN?# z=`xeyZ_*|PZ@iTp38|EC0)oCv)_!;9|J1#4$~B@ow?F+s^w)_MAA zIl}TTg2-DL9~UXJ{`%x-OuOS&{xue(Y-X)I&O$rI;BtN!`tjjKwGz3K?R)NH37q9? zzSNB;pTm-T^j|4lT9yRJ;VkO5N`QyiTX5TGIebV%MxNUdye@V0-sU3UA6g0#?lua- zvU5XjeyBl+h-K`SC&UvsUq!x#Kk>0OFowyJ8pG+-I$EQq%!Uxe6hBP*H zs9^B5rmLtchNQPuP{+>M{a^{xS}jAmBhkd?;FC|=hL28rp&W>_;PgJoe}ms=il#jr ziJaJ`Qx9l8qXS3f=dVw?{Vh*y60o=BD`F$jL)>tQKy?EN2xN4Ern(Ci>(;-%!kGxR z34)H7N-qdSQN2eTzLXXUq7e4#r+rm`Z@IGVrN>J4D;F7EoFJBV^xT&*&JEs;~(Hred; zI!{X)je~U%XqN!kacLQO!5h*6_Tx~Qrh)<>1^zEk073x4*-;;hTgV0VYTvmrJ$<}og3n})eBbIa~Tq}0MPdJo;vIbqoZCs4czE7&{U=i zU%AS(7d|AZ_hFI)*W3g{{|dgK3k4eoSxpDRrrF&*q0w~DURBnX0Jkl-^`}bP4SIYb z;R8|>3NE*Vw#GdB#T9v>LI&ft4<>y?4gRKBTr@(D;w2j(q-)3v(NBj@#)PtI_PPpuS35vc z+QbB$fq!wV(@MQiE*Ryq3FQAvRgq zA#}x7j|36xB3Sk-WB-rfZ_q+MDOUMXO!lx<9o&MbaDzA&gQQgI+&vjfsjmrD*CYz{@9A1V2@LVNj_RHj%LU7JRIY=Y zfF;^|dkWA+LMiNXn4kn~5ZOr8hl{R09wHm3?^JxGmZI0>V~aB&f5kX_%$Z&{6e`Md zzM6(y`QDVrUA~r$fo=;-Nr=T~2KQoaP$Ci2q}=je2tk(%N_)M+6Y^lQ1TQ9F#$kB) zE+jrW)-j{R+~>dRysr)yYYjiokGfqC<6^;i-19C~lDo=w5ZIskzXZ`wO0k$8D2~ug z3XXicYLtF+8fpqs!b(|3?}?~7jdng^t}MWq7xJq&3!`e%@;`dkv0%evQJA^W?syY9 z;d1$!^QU}lrx;3A{oE#AdF~(XM$iej+1a*LPelh4ehBt50oG?2Cf93v^lJ0A7`7~K8yKiN*XRe117LS!*V!St=nx_ry0apn2(dF@>f-f9&{Q z9osX``5)=RP99sz$B0D1U<9X@_)5A;fZ4=qnbGPI2D2a7o$Q; zbR$_(5M5m`cuMkQTyI|31_gxc4Xc@KHeHm|A0#bn1wKv@;1gUD5~lRhA^#GjwFPkP zjG;k$K?5)IXlY;CTs&y}y|5PaFyU@+aJ$(*vk7 zfDL0>bda6g8pajoi#^BdX#eirICScm>Y9;2{ z^&G2mi4#ru4AG7o5GCB^k4cV?iBmfp|M4njh6*ScijUXsuJIbs18(YcXBRE&KUzW-QabCt)J=u-W0y4tgt?3!`c zv#`$@hw+e8Z-$bHLWDm&VB~7$+jf%+xfzzm7OcYCd_}3$OCw2rVu-(#L<&1L@s8ov z7U^aJuP4O&+H<;{^+aCiA||Cbq1QF%ExCNcMRY6_|HE&YY3Cbsd#2KXlS0E-ru6kM zpqSQ@2BL7ii>dJY7chUwd3=}}n)i`;WbT1-UK!1A!lOLo{^0r8hUHldk;3aqVa4|V z@6_=+5=YqrRLj`YjnWC1CrxzV1~_i?zdEvyNeF%ESHWKIvtG-*YZHRs&yMeM5=A0? z`(z~h%uvIxrHW|T^2BbbDW6$(+j*nY7Q4VL?#@7~u@?JCcEUlcXISX(3o&`vZNfTm z+#n)u(5K_majwz?f0AnoB&XnS2hYK89j?%3e6a9rP&pA!eew!5yGPggvey39KsBQs zCuU@K;-gTYSycZo8jW#Bf-s=-gk7%%q-xSv+?gr}XOG`^vCQoArvUMu%pLmwX{v^q zDoXspGn{)bg1~s!mnAw%1f8&NRu=Yf^kHZLJ5sR79A8Rsrht~`0eab-clYac4!qzj8q{w1J&ZACgetftq zs6y1ZjM=M~5sJ`Hi`Mu;NS`U(!81P*ppVtn%boy+^Aram#^5DP=U_hr_4ID1+W(z2 zePlXB`tibs$OxesoE4rYn$lIj6~oJgCWv4L0)H9z@RjX67NM(m3xkoz`4{(p0tPhG zf{z!@|G7J07}I_kbkPES4V|&t^ugN0kqmZI zg@paUJoY7Rp!O@9(^uhd}jhp=xtd!qZt69E{dQ?+E>&*+?C@mX`)Z6BZrI{yIJ#B<;OeErNQfCXN9qUcth%8)nZL~KX+ zLH(`|74PIEOy+~u=#vl=y*39|Awo3)N1Eu%oTfND0+fFNJu5$vfkk#Rg0u$=|)5})E?Gjq@zOS1U;l@m@8d`BI}`zqI}03@`toQh3gX`ZWETvu@+7~Hv2(v?mj9T)__P5~K}XGF zsn%`X#L29!K0~%AYya{TEb`NT82Fh{$USlp7XDI5zSJ#e0cqFoNvY?t@mJs`a-jTL zaQm=lx4r%kTkS3LL;?=_%ahGMA#~$?J*$<1S8f~Q;;R#6qxD|9`|3o`2_e(eOS2LI zT&x6*xuErm_-~N+mwN$7yF3{I(E?I*k*FK!25b-3rzNhYd~T<}a>7BDbYO7j^HnK( zc24FVTKueiJw$xxo5&dsY;1_jJF%Xg@OjSQ}lQd>H@G9Wd^} zW-TEU!O9+G~9bM5Hbst)+~AEMDgdx zn!aF5G`JZD{r_x@bjRLzj+SnqOIX~9oAY9K((bfW5zRyvth0ccY|nPJlGZK%WS2@G z=nAf#Hbse)+8*!R$6iQPo-wZc9Vrk%c~wM6y7Nk0(gL~f zGqR?%ljF>0?n#u(_6v;;bg}jj5xO5i_pbJ9JBL*peQ2k>XwGH>+-p;-K{H=VE#?G? z2ymL-7WMM|3#_TbE!XU zkyQ&o*c85NkKK|jd2^T;m1q8-x15bbUuHi!$qDmX8nsg~;pIyzMFViWjg_qaIi-^i z>@S6#nma@Ag4PKG=Euv+u}$akG#uDJ@4xta2_Of@BN#0kxrNArjPm*L4eDL?5)%JI z*mhXC8A8m>%CAq%9Ti1Dld)3uFBFrsDBT;DAgb9%I9OJ1z6+k>M;TVLkefXzyXuh` zcv~YTzB(hdn`)Nl_b!RMrf%Ub>sbBiqLIU4cfjs~=ieXctF7xqUKp(X?tz5ZLnCuA zj8)D`RTP4>3?YDaN_hDj{}t5iwRIIJ}L%e1n@Y^282;kgbZzo)m$?JQbVmB#p1VG)gECA zL&>oCf4sSuqg$+hal6P2G0@N)%*)j@JM{8+=!FJC8*Nnx7Ned|GUVFzZ_ZkM6tX}J zyj~3ym^-O?GFYHcrkSIav}3#WjB*ftpX4U}$m9DS9_NbJsx#c*3~fNuKn)6CHrjz= z7BoFivnd!G^hieQ6L)hmaJTpr^bT$Lmx<-S=LSQUu!z#ieW<6iqS%)~wR;%E`UQ$~ zw^v6cNyLZzkUeH-RC z`+{1e% zR!MAg7aknlc!APmap?5G?ai9fbi{@A!Q~~BjiY1>IN&o~zT6kue9!euI3T~%n?4bQ zkaO4DR!y}ii5Om+vSSX&TBSV48t9a%c=;?Hs1HKMKuOMAG7(Bv+yB@lHSsUNR%vPQ z(mq)L_)pU0?Wb-#i&Hf2#_GJeGxz(~6WhmY-X? zOHII-VyNNzyR*GCFoB!5VdVxG@*L6V@9?Uatmdb(AwxiJOr(NhU2}mXDqTIYf3WceKWkOW~ ze?SL!>mNSI@D&cJG*tBf#Hl*!#pYFRz>I(8>~ibi#Dw_TrGql9jzAcx&Nq(}Ki83` zkY)LP*EMYypmV9Tc^ zIyj)IMiFj=Y_T!u0_myMdUD zleb*G63VuTZ5RbVEp?FYyFJ;0F&kYT-3-FNfX!!S1DSxJL^PC&xe>vM7Iachbp#(N zKVat5Sy}7+2Tu-9)$DTG1vmNaFNq!sE|vpkNt|1EgY!++(F9H8^Y9>_w zRDdckl?t8BNUPy|Dnvj^b9Z+1YKrV_*+c0trX^=^n0rLqmaU_UBgHqlB_Du}SJmiK z|1Qi&@oS)?-4OGiM<8tp9&-7X1*0cMuDbL`c2WdFytQ-9mxa=2=y*%m^299yGMGl9Q{Sje$xhxyb87LqJbpIl+toHBJ=y)^7%2Z> z@KO!#`rUailb6BId_OC)-<@8+E}b<|HkICmiqY zfd1XRyS8fN*JwWuZ3$y|!@$Q}xUgby?BqSkr;I5pf3Q4Hi(O z{Yp#@HLdh}T{ouO=3P8Ulsf3ZRB7tjSxXo{c+De>gGbkc^OQ@fpj_%(bgGiaHwTn= z(F#+71;|mTW0Qxf$$EyltLrNDr5^RtVj&Ee{%<#~gVB}-=W_uNUd-vjV;Mzd8t|{N z5~v>?R9Eh?_==+eJa-nQ)){+v9V7JtRUiy*LKOcL6RP+I*Tt|bHj@QqrOF&9l^31w z$5$v3*f;7@e!|pNPsaG+xoGi;_myF!)o(#r%hj76BC)fQa!$^Lpx77j z2IOO@+%+#!=h9fN+eYgr==@J;obn;q>I|fY`Oqp0fGI4ZlVzCLs&yPRQ^kx}Ez=Q` z4&wWAJ(}Y0gcv{-SCm@dxboz~`$Mqxv}*&sb}yerVkTsW%oA9N3S?6q^!1s(-lW(h zo05CzF`Ge@aYrrJ!^nHV20-$TSbm+haP$OZDY? z8ebTO{5YU{C{GcyV5#zvfJL1WwB6Vy4C*W@Do8c{EF?6gKyX3Rk&2Pk&T$gEHe6&$ zmDO3*w??R5p@boI5k2Zu8x)>XWNBsg?{(zY)Q`SpsWY#QLxLi$A=Z13rfw^?4BNTg%MY{(|@QFMU?jioPTolvU1adI3P z{b*siSJs&24lZ0bPL&~QYS0;eUUK#?s1dM0yP>mJ6FP_e%UpZT;|}cQ)*FE=Re=-_ zfg4eQb{&CVBe2HKxlmNtOSzEJ#)ik&6K140hPzy>c4Nh&5(948Eadzn3O&Ov3%Fj_ zb~o~G96zLK5croMX?OeoA=y~|X$i$~LJy!w=^Ns}d* zUU}l}D_^j`&g@R0Nq^njM3OTuK6z|ow?D4VT7HaCMZ9pE5zhD~>m>wo3_}E#iSfS| zA!4CllRVJnpy)Ko7evby^k;ibkf)d`G|_1j;J_eKrlF#Us4kQmdtR#O%Te}yr>T{< z^?T4M4~}`GuSfGxp4zaq&Igs#)F^d8@XTlMG;`mZX7&bS6a0N><$3H>+G%}SM=w)S z)AZ?u{P!?imYERt63bv<_2JFdY*qkmBs)@e@l3|#Y^YYLO4#cr9|MDnK@y<|x_E-d zuWB#*g;4VCrE)Q9C8AJR0oD7b`MUlYe^@IA<>c+TK>^yV>rjoJOm^~O|L3g=wHj7b zyXyuzv%Ie_Ar|PY+EFrgT|d0*ygZiul!;4NXAruX(Yt3ebOrZ88tMOIv7b}!Es*wn zai;XHa6tP{p`@J%-+JzdTnyRWu5AV=$>iQ$6T6Xk2BfH}`yF2m0DAfK4bfe=M*8HN zzYQ8b&kqa*W07;0nL{uhx^gz{qNWDdL%xV$mwR7EQ-ycxv6`Q1v*qmvddEE2pF+F;~lB31m&Pc^Grn6zT00&#S#ozYxyF^l%` zCD!JBA|F;FhX54@gd|7=J@_exJRDZnj|*YrfWrPLngpb+SQ1iBx0>7!Y4&WtFoM~7 z_VeKW3uQVLWE>{~73>cNf$56B-Gn96l#kaP*^PAmW5h8?Qz%Y=7oDj-ap2|sOIwoL zw76+X`&JYJ_?U^$7rxk(gUR|iP%-4xm~uOJT@l|l6^SOsJ;mbz>2hvP8D&j0E~I?y zSM-vjB8%(W-XmZwU+Yi6WHrEtw~ICQmH!eW{QArhn<<*~L(y{u@r-C9b{k?4jFb^y<*?^e2wfaf(%Sw7( z8h;yUU;7Hesr>EaL-#r%OfH#~WHmRz-@KpL6dV{l0^##}a^;T7vd}{1VfTtxu9j`1 z>`?zL_^HRKc!M@CFaSr~8#wkJwp8hYYWp=-z@y^teDC=x#>v(eT~~?myDR=$>PWfh z26~<4{9S-r8j0F!ww%B?y-G{f7R?PF5fkPe{!d=BfX#%_yc?9ns%kTR%V#zLv?i=; zX7B-+03L@7g|X{$L?&M+iL;OrG=o36IY)4LKkY4){o*fmJ0*CAu$o=eRZ(9w51XJU zWvX8^&6!-rp6D69eYn1MVSP86EW_gS%_>$z+FT3z{2t?Y;~kD6m|Y-(gJH0f3n?ZQ zF;x;nL}XBSKQ;kX9?U5)%gOluT=M?AOMPS}#s5d}@0GLwNcCZG4tLnxdC1xou|4W| zRLMY2g4O;`=%3@FmiLrc$(muwq({f8U+~}HnJ=AeY&@zRM)oVV4V^6*wKj77?uRm8 z{ILrNcLL~=4q_4?VyyLx`PVOjsqZ2~97D+Ra)fuMVtG-b+-x2kZqZy2oOpPT0u4d2 zX=B=m$sBZs(vOv#TOsHU1Tktzf76}+8Tp#nbTB@0TmIVb6BFda?C7ic_#z!PH|`~{ zvR9sf&@c#}b7)^Hvfj*9XD}2MU>* zN{Z2~7jd7%1-D}A2;oJ@KIgt^y#Hrtqn&OM~1UX!R77f?J#IzL^QY>Vgh}=qUZ)9p780xfQ-w^)yB2! zBL)$7BP;q{cuL#&ME$VG@Cyf5cWMl)S!+DMyI|>)Q(c-;nW_~siQjG+bMqS~+E8;g z2xpf?k~+~ti7tXROd%(7zo9Rf7MeUK>|+I?_fiUPf8HNbEo)stHQ`afi&lHo`Dokk z+?LR9QgjJN(Zec3t#^D8=Eqeb?>2xlH7O=F@mTHBN|}|=lE-2aP?E0SN&GIEy-JkD z$u%8Y;^if7D=I%j7vUaw{7IQRLy|N$&UUFY4`d>eW_JK4Ze6EFTswf|Da=E zZd6AB%geu{vuDM!_dPj+GI*!##z#vpq~qXOI&7gF#p)?yP0hZ5r&t^o-JI4qc`l7}6 z9lv&6hA`VtBhd|5=<0=Kn|9s)fa?Mql^| z5STvlBm%*xwPb53e?@~jA77#P*hk1~yL zcn(Ha5 zTy*%Ds_ljJXl#i}d`hc)WG>EZm2oI^QM}`vhgQvJy+iTsT<7`_>NKB^nzI0&N!@t- zg6^s$Mn|Zld&gTA&jYJJ!!~wYzd;^i`w4gp(iBKec%M^Mm|FpQ6i~xc_O1N47(R6u zOuZI3!iWnX)mD1l9D19pn4TJ`lhfJPAp z9Q`5fWcLed&XE2|Jh%|^4*1`mf=777^dc5(Iy><<=$1?hAkJQF4T7~7LtR>fQCET0 zHD{}4A^`~#*e^Uc(?KcG(v}lP5V7BOs=>L!cNB4c&oxd9l^)%QITpw-l$p8xSojmpqqwtt;sQ~qM%jZ>1&4{fGvUei$pt<<~|X;=KgPf<5K zIi6L_EP)}EeA3=6Extxf1xF{k4ubwS5z_dF2w6R6(%a*iX*F7L1{i=A84}<7)|gUp zV6RwCwn|W6WnOu0;#+MlhUEXF>#d`rY}>YP6)6#rMpC*21j(VK8IT60Q9??3=#rAI zp#*7$F6joPL+Kf$JBRM(J>j~a^?mRCUeBMd#ac4VdG5!)Z~JfC4x&h6V+RYB%PG=$ zGD#K1Xf4Z-?@!sB19tO)b2h?~FzwG}F>=)RJ#HsJmFy40s!2s{!*l?0^k4qe|MQ=B z_KAJrFM4PQLG2P@OVqz)PyrcB{Jtx+1$?d$Lnr&~!@mpw zfTxj^QSB}1gA_Fat_$tPH}(LysAl%<^KYOi&6fpDEdbLZz($}dKkg3md5J4P18k&N zj)*l&tfXR~!ML1_IH?+R{8J~?@993QUNpO!U6E~xdgAZu&&d&g)J)jA&0Zs!wnhuMAHs`Gt+SU80cjZj{k3PGKQL_?rekr+(?EQj! z!IXI1%D}JHy~ePUG`v|}weQ+#xQeyc z?udPzt{>~Bvi?*eW){NV-Jq_6G2tY$+aI(pTt9TW2$DDZ=M1U9zpF(Ok)@y29MBVF`gQCfPVt89lzlXww18e?zLK;JDwcV?dQ_jkoBiniM$T; zfxt7Tw(HDQ1Lg1Ond>j7_-W6a6K3#a#%VTu-1L|G82FELZ&P7}&#^cxlZF4qigEvd zEdLGtg*oagMjdi!~iF3nHY`$BmPRnTQ1Y8nAbcYh!#U6*fh@GlJc{TouU zrH_6!)}JhuiV8YG-89H~2Z*Q?K;@(M;w+6&Kqe9#6zo)wkwwtGl+@(XufKjJPtwcu z4sI`?aYB(Wqb~>jE}@Q?K?|P(zxb}-*RoE4&d1+NIz4}x@M&-!YV;(n9tpGf~It6}! z&vMjq`9^)gt(>&gh$-#N4fD=3!`^%I?~m%Y;OK2OG-WqMY(h6SY0@pAf_UaQ9SY|sh`v`wY=j(dV_GP2?!uxjQ@%8LT2Fh!Fps7`Nx zsPz2C_5^1Krh1HLClsRvk;ckbvLs= z!-2A~rnT`Z8u?dfHpPo8r8~;n^i&a1Cu_1t`lRm!XmYxA!@7mC3<7B#{OPYK$5#0W z)8Ecy$Uw_9W?~N)k_;2(kGYEW1}i8fp#OpD=7qExy?KPv?FN?7Zu9pb zu^e!)cXjg{e3=+@#)BS>sT4*}x0r})yT+LpP*V4rBu|eQ5H}z&BVUD#<2=1vg9Mx7 z`DKZ``z%J^wZ9UI5v0(zV(f6(uiJDSU;Z2VD0A3bW4YYhOmZ4+m`GeE3zTYVC zt@&`L=CAH>qHu!>$?%}J3eQ00=KT+8V*7b$$eXx6#k1~<-=3)yzahNw&Sw{0hm)Q< z=QA#=lfa)yg{f3^6UT$p>3!_JPoEudNm#B0JGTh)I$(0#+MxmdWq+V1Edn)Z4^|yc zT3{6_us%#r+`js`OK2_TKrQQo!JXCk_rLfG@4sfK(WLIr!qzY5R*R0OCi7o2flbbs z{MV1P*zmR?aY}kHz&BOB>v;eccvG`A8mMeRCx%0r7(;evpl_&+KFY%SfkvwUl@K{y z_3Hld=faWOBBz+aNQi#9tN!Kwark55L!_F5O-Jy#ZpXpcfm|Zl-HS%Xnk#=S?VzUm zPh0WL?p~~!s4&|5T7Y=@DTCLxoFf+L^B`11g^io(zHIs*noT|2u8KDIx>Z$n4;HIh z^Z#sT(e5B0>*{25JkYLHt|$Yr21vEf(`?8S0c0rb>2_|+^5Az_LP{?H0LqR*j?sd3>W|Ts*6aQ zeCS?XFS{%9RYXCtrA=Bo16AJw9xGc`Ryq{&CL{}|0Y_hOR(4qJmTY!t zMQO0!uJag$kQ1>&EoH}PCI3SCLfF_yoOppyRqHktQ_QEaM=r@gMuYADlJv0@7@BnB z%6=Cvv`dx&_qRlCf3@)kP)PP#mEgm>va|o%(`*2!*lh@BUUHb`+u#|)~smCKDxxO{}?`9zkVIfNGlCSeV1x_-+g3MSsUt(pyUYECS@uWaI_tn?ADR~P%VB}J#<9E_j&@H1| z%Ge}T&ufD4zyk7x>xZR8l$Yc?huB58Pm^bYOs(-F5T?o4b|)!9i_1T`LM8rLiS}yW zzna=LMtkMW+|?_ouJb`uh(}^}z2t9l<}p=21>K)n(KkKss%j2>7hh7H_j2GQlL2Wq z}h=Mg8vOo{Uht%{W@i*C<;DkI5sE)sesoU0n41ww=_lkbA(3U zG&y?FEgx8n``Sx_&YH4fLd>)H~wfJE|C1*-dh{SMx45xDG z7u~NWH~G_~*LFh4ccWS7K*^#6)_@aU6G&j>R&a=O-Y9+d?_-allVfm}Bv!9|KLOA) z8$moBL!;3nQO9{OA#VG#g9H3gT}CsdbafwlK5O`#*wTmr_;%S}ztGw3zAqESTZUbOE?;(LE|Clo*o9n=Zir;XB+}=0gL8NaSd>I(x}J>Zd~5#5 zIgoOQB?zpco+i~i#KpbDEsN65sc|qq0Ilogh2IhMO8;$oxjRT4h|QE9h|N8D>#Dk` z&wgIa%i?B&xwp;@aP)cuuioZ@N`lHN|H3&(KP79 zZjA(HOY37}J88OYQ`h=`v2+x0`+Q~u@%CUvyQ+UwgpXU018oN-OLEz-47@rP@9AAo zYQ{v&G>O@>-;qDFWI$BiNb_$+jMPv`PkyUdGE=JArW)VEsYhe1#ijwzyTlGK!FZ{4bEN6hyM| zb1&2GhIzTyR95%%350Ne)8-0@s$t^W67?%HqtDP-Ft65AdzD@|mkFd~sC*-Csflf; z8s^$){Q%hP#et?P6*xHS$WUX)V>b^^M<`t#w=AEYo2BVM_wQ8bcm+9KP1ZESbwRxU z(&+yw6-g~ddyx!3^R{6x0WiyjOa(Bbb9?-}uidYdEv<+0jZ~-qW>rM9Ftq650ew}7 zJa~U;4=~M-L(1O2i=fwu>dnhmud?!kO|g^%>mdzx7IkxZt=JR(QtK~mljk3;y|)O7 z*yCC8`Y?@lWBA5=@XeC{2zGm8l-WEr}5 zi@uCI#q2|kZRS*}qTqyF{Fevibu%F{J_pu5S5KbhxlRG54_mPl`Ze=k#oDC>dDp z)_B;Nhg^WFSuCAy8Ay-JS8a&an#)&HttwJg3oo-!dwA+n%-Gd2{+h2arla8W+LUFM ztdVT#{T3kVK0W<$MWQ{G9bdh* zYG|6Q!1vEP{UPnB$`_(1C*NJCu9gCF@^Awd1ZUU2d=d?ft;}VQLq4>k|+~C5Q8L6~~w*PbJf%VXeG2PA?9C7J#gfJ!|Ut zLYUInK}gLDBTs4DDb@Tsf~&}Gv1*#SS3G;$Zh9L%a;emIEpuOC37`RU0<7>-V*eWk z_-9htU`6A6UJAH4+yFb6_8g*eS2yjxD1Ar^uMkf!<%I)os`hM(M=TH}`fhu9FV(Rk zl@3iUUc%Y2Z%cX1ogGn&sHS9*!OZsaW2sS2GLg?*svXB=?Kc@T3&UlQ20=K2b~?=< zJRnZw*JyUahqgZbzdl=Wz$TLAzx_FP)un=ZibQ*EX}kB!i!K|NUO)mNuGxxJ`jUh^ z$?8Te|29$kx}~YQAR3nU^hury4Uv+>O9#AV<`}Ge@-V5*>b?fL$*VLp?x)d)7h-INhdtOfKtKf$Z^Iq6>vE4Xs$u`9eogUO+pOngPEF zAX}4y%qpYrH^C-i_vg%8buQQ0#EP_T!KkI|rAh$FT(}?UzA-g_-a8u%L)jp{Gh(=( zXPpn{C_Sf9mkqYVRW1xJ`h>oK?#>f4Kvds_WQlQaRajD0s&-^oeKk4B*Wt(_0jT%W zl{9@se}H5S3FyvSO3Xx8v1``{4^s8PQsNpiw3N&T^#ds&8rW(>Zn?QedGH8KsmVo> zjwd&(A}z53wEv2%V{(eXK!jodXu}$(dI=)SZWMn4lK0QbRt_R4gur!*A|3bt!fIlv z_`V%i;QD`J>-2-j`yQXWf5;bV-ijMxbki9a(|1#Y5Cg^2(Jo$zLp+{r-=iXNy8I@c%901 z9uj%B-qmGkVV*Kfta!wFN4n< zoVnipDaLkCYxcaPIl9zzexGTKL3Ax{Xp~?pCP!EQ0`pVR_1E_2EQ=6m4_C9y`TGhx zp4o;{nq&>uuMI@Y=NVkrc!zvD?X|D@pFC%2DuI9vTQ4zouDwOmDC$W8s+k?anXaTC zh3>7#ynMbl0<6(Z(}kJn!Q&|aXfKtecW?s%uyL%p!AW`@j#v{wTUF~`&k@?|`U?jv zC7+ZZppyJetYka{ako!K&Bh0Y-|T(7=|ZVHy7uY(TkX5p4&ZX9E{B2ivZ1T_b2Iy0 zVWVK$Y_WCeJ~8)%EY#_4uk`>(pQor7kah|ozPK&d>jApLUsb$~<(GTla?z3_OI2_L zJxuHp$-SSWP-P-NNiirk~>fe`!rzNB>b>KLU-rb_SBxlftcNqc;PfZ!OWtD%V z<5e&xxgI?K(dscWba%&`gMPyzQyRW#Nlz!h%4{YB_@tZz(Eij^r~AU>J<91sVLNfd zZfd9YEq0^cylU(E+CA&IVgm(h@dDk55|=5O{T17*&{T;5mo3}17+6@Sjr~}KobY-n z`Xa>0H7wS9@h!M~pdUzrUQ8%k&6>!-1hjcR`=)f|sTbpoxcp#)x|dWXMTt*S4gm%C zVu>V2pvZKfhCn8KrG$+Hth-k4`n zzHCU41wwTKAl#m_#GX7BB_mB~D78C^xD&e;*_WGQMSE*T+UT9%(Ihw6vG{kpaVz-) zJ;_p?m)Mmybo)b?)0fwec&baa0g&j|@(CgJ>84<6g}vh5^qIEW1PC+xnb~!s;QdOD zyUNnhdyPabtj!eu!mK^M5*W$>xTWGANueTIcmsv_4j$(873KK>9@kJQA;l{71-R8_ zww$*JO>Rgtu5y%)AAfgAOqgE_6}|ma?+wzPwP4Ws=S_EEo-MH$f|B74VU69TyU@5h zZ)vgn=LblOHX`Qcf}Gb`gI>a8Xs5djY139#;{)!rEPT9(lDAYPUR^ycG;n@bWTORfxHhQmF?+w5xMl(@as(G3PAq@!c1YkIDB=D z`kMD@pHjnAhN;+ZDXSzZ^*fkvC*n8gweg+xpS#%dwHJ6`>AbpH{lr%DJAR!*&7F_9 zSDp_rGXkkKa*3@2mz~SCS;3Doz-8TnAH>-qlG4@zbd2fx{QjX%&K_ok#$}ml{*dP1 z)P%hA5`v$U^4E!&=6?ST{GL*lff^?(%j9=yy*0*}_P0^IuwVUg@Td z*R3z7zy8NDO8`AumixQJakB{@ZR>xJkhIs_4b0Mz8v+yFZ*=X{RwL{!!>ovDqd`RnBq({}o)Ir-V`qU8;wwNF2u@HL$qRu>>@6O@Q@ zyBTqec5}E`0b|vQRk7W@ zc$!H1v-li}=3BsL$n;$_n^Kdkj4E{JxUT>pqVfV85Y;M@`gCIpK|n`OD?8(`Gx(wm z!0X;0=i{W=uMa25%_AgSQ|QA&$MCb@Y$c>T*n4!&ya;fq<= zGr&-Wa$H)|68J6-)DG`|{qPR(A|h9r>~>5|`$;x9c!!TAy$79|MA}=xjk$x`8M-Lqe#@ly`lU3NN^+ zS_!)Nr@YAiFwybVt%h5*RF=?Ev~l2w>47v@DCQ`4keMZ3kvvzoZ~+8UF8SvDm^9bQZ{Q=rdO7$o;0Gc_z)C?8?T$&R z8e~5DOWXc|8P|O1b2aOmNBG`U!AZ1lyDrFM+z$P}ec*;!9@edWAwc&HW&eUUUKAMq zwI~tT7y*op5z6M`NU019U~|CA6`oL)8*x$$1Y#wnB-QXJ$He^`ik|s!PSHS^vRw21 z^}%qfXO7;y`%DYR54GyDSyH%Y9W+|ZMaM=|Un16ASMX8WZsl!DT)DgiA$>Wxa@t(Tn=*v*^{oj>L zBMv8v53YckGw3QroCEX6b0XSQ%c~;oj%Q^~;Y?SY`f^Tw`mt|w#+4_~+O<7~Y)$zS zP0@51Eu7JH%&+8*8KrrRb(NID^QVwd*34;UcCw*jh)&V@hxoguTLEA#%IHr)jfwCP z8PZ<4s@mjxhD9K}PoYcj4EgHHVec6;b~zOS4?~uJ4(}{Fh$O>aVopAPxOjbVeeq2bVSg1gm}mR! zU|f1fhoZHp6qGq+cG3erE&EpFOwrb$zjHwm#*;$={<|9`l4j5{)zo;} z*BX6TjyDaOVpYq$4ZAHZ=`#o4Z?F#;PG2!^$*t@$9mcR)8Vs%3eB1S^cU*fSB`)V_ z+XKiR4*1HHBb2z1pi8Km#kM)zs!PqYtE@=*>XBJ8=E$Y0j2#xG z{30dkm9fILkWhPKx#Qd`6&-9iss*3Cl^VVe3t5 zL2Q36^kYJz`{d3V3nI9>yLsUvl-{~0{o&&j!W;=x>G4{+27rA5tl@*gZJMzV4rFq5+%lQ*Uf&dJbbbMXOWh?eI)9>agyOq%)U7N zvG261EOgL_)uFEzu~ z;QH&eD_YhC75r+lt%Sx|YtO7s>z|kz&I+A6)Z46-3k@qpQc>(1=e_|AW%Q^{k^3O$ zWLIi|)l`a}>ylF`@Zatiz3Jo5uQoswX7EG8r=wg!Th}{}YqM8atZ2nkKbWWT zLvy}#J4Y1}QgUW)=BUh5SWAk1=kUo%Z?SPvAy>5x z6V6i_ex@9$hkpk5*dEA6n23?+yl11)>43tRA8{@}t#4MOuuQ--EJ^p?zP|p&cXrl= z_3HNA=4|B#akjOZ>$;hx18@+ZNZsFuy+HR%`&(1`4!=x$@DgxCqr@t-rkS{}CdY9* zY@`07-WqsU-;i2HUOU@l$#rEaGADu55*kl9-&lTD5jHrCOQ+_Jss9-+1Dg^suxx%J z{i?^_z~gH$24=*i+f81UZHkisgw(Z8?kiy8#<7e-rfJosFZ~)gqJZpqLtc8I=@wtB zF_CZbElCRvMWzUZh0P{?mEnva;BN6;4~9AOnsleeeWXkj2s$`R){GezSPQ~!ml%@= zM*=wBLbCFwtcyw?EFk(n6Ir#x1jN~`@2#59fN?to zkrEk4=um?OSIfp|B|L_)t~!I;a*14?whnUrRe0qih1&X54+D`(haq*yXpvRV$BUCX zUWr^1Y@?Y|+_E&H0t1~~#mUEp3eO+H9kMXULf2`)pjdbAo_$r~X7tma`Jvn*IlP|= zXIsa5bI`xqRM)H@5XHN43@0S-hj2VMV(=B(z(7tg_~iA;VuCjfr|s6aeLJ z0__fW&eJ4+2ZagM=V+Q<0jsMfCw)npvd6LYyGu>{gRoa3yQbL7NLt;ok{744oua#+ z*|PQgkv3<3n_BDRf=-Hde*#$->v=^d)W+T2Ef1$M83ldUwLG;Pm?x8$i@N|;F;H*y zTgULtv175kFrnNEO}%w1Wml@9lXqrZ5^TiZZ=c2|qcLg@{z!mVPWIjW4E>WjwZCq_ zT$&ol8X8EyQ4m-`u)aI6gR)Fil8h_yMA^l{CM-RQ$-e`U?>_*5|kKjvCzr3nH3;!_VU9Firif- zz5q7ykA?@#8#FxYq@teRnAxvTBDsDFRz;HlMd(#0H~W|UV2;Np1ML%LTFq>QU) z%M!V?10e;ZP0mfnC0m>?qK>8OE|Hcr1UUadPHxP`FIadBj5Q;PBZ|*+Y5L0)zQt$=@Kt-Zse6$gj*E#Lk?v zn!|?7l6&Zu;=HeJ`8}Cj*(GrU=T!R=5G5InwgNVNi>C_IWI80T^Yb^opMl`w<6Rg* zH;daj`5+FFjq&wq=gq3uj@Pq*Y1g4RT4{Y8JU}$Dh;YMMA^FJqM5nw?cvda&Q0D|X z0DU~HriHKP(r%3<(K-M!-F9UA!N-6eXCtj!{DH7Aft5KeEpj61NyTkl?Pz#v*244v z`9sH{m`@sF?{d|Km+L%-$KdM%-tuCtoV}9|!9-A)qauL=)0iR?uPc%VmSZECk31>z zA=vx7CoO@0G`oF$PC>&9;dDO-e3h$-45XHdYI4vt9e3BzeQ3)hLH!~;1aQl+Ji#FV zo&kKo+w0(d(cwcmm*V$4tp{(!;@nG&YTKjWk*jjp2kNuiApsl`N02t8Ta6P?2%IL9Dk^STe-LFZ;agbUs zY%DZUsgG>J7qk4saC1sRZm<$Njei}^6pvfUx&>BmK_HXuyW7>#!@f`-=3p9;Y{ zldIm_2?YZ8HBp#Xf7d7pPQ1~JR0pxHZ3$))xL+s|UB7poL=$?Bm;0hbw8qYfKPB3D zHEe_2ZX1;-hBN9SnQ!m`@}fDt{xC|;1C6ns|M^eR@msoIz8{MNMXnr0EG^_1)0>5 zflUJ?;nXLVC$l&y?l7I|O}@EqrGjzmnKCM}npYFXgHKXy7sh*woHKhBmO7jLMtX7s zgI5(IZ{0-mQZJ6G8>Rcm1)0Fmfq?sf?_k%?`GPWCmt^Z_lzKXaksNQK|05eGSp$jo z5q7#rR-;9E=n-s)zzKUpJ#8!C4uu;LDp0_YpCGljWqY|ZhaH=~{>6-=fX>n%Mr@g* zU|6B6fqi|&puF1^#{|+D9L94@-|!Qf?5YpTW=*LU!MH|N-kc~omP}xBFD@d=Ru{^0 zDoToXZnB1lNyRv$mC!?haC{_LAJ?0MYQh`$M$oW`1)W!0U#c%8#G~cA?KQcL`$Gx{ zp;#(#B}*FTVj4B^2f&nAS7?tKBMFimMQnR){4<@c z7~Jd?J^;qb5d~ivjZothUVmJ|z3SUeJpwU#r@z$>y7bXvHW5&Jy^u4$@RELFx7O4s zt93*OlVD9cjRJ(COs`HK4+87GvU|kgb!$k&X{#j;dx)p;H(}%fNGsMKQKl#no7lZ{ zIk98dCbs#0fr5S}fdkRoSKX!7@I(k9r z1&x879KJDBp3VOe2Uyw_E0i~jsNVW2mjKh)JsFk{d_UGaRv#=jnvVF$cnBLimT}z9ndD#)X zTrk3HzyTSWh)*dU>m@ch&T5)E2MdF>SSm6@>}8>IzvbTS`yE^>p^9!Ko++|Yq%bbt zrBE9dLgMX)kRxj;YEPPY6`F>53F9RO58Jb@eUn9#(bb;mAN%u$Z0+~Hy=pKg=WusP z9%?46j1;d`VFWiM{t_Y2goHybfZ`dEuUBt(-2GarA>yRFr{^WPszXga^orzed-Vy02}1-Lt!Q}R7${&!-z=?{nvTA_*LeNiE&p~=i)IGr z=ZB^NTz9eIlu-p#k+DXr2ycJ#;3 z7Xx>|vvF(p2$6!t>|gH+(K0(N4(qyyUg(Nf5M{9e1?m-v9s_|=VD zy?*B^!tl-sLCR<*p33t{WK>&9Df+FxS;UcVsN|+$Q&fsTY_3tvLS3sduXd$`cmYRm zIdZS}XJU_vA)|sTqjRR#kBu+iwg8`27?54@g^gVESv5!w+Vbmr;&zgr1rQ&X@a;2x z8|M5(cuTm!;r{P8F#n(X_$!IVyH-j!6aliLh}{xyq`0yc%i@xsJYmG6r}gzL?tJl` zh%L-7(}O<*b)`blDR;8lZ||0gM*HuO6uFNY?O-52WXdKO$!Aq@HZ&A?X89E&mqN&H z;w2E{_pSodW4eact6x+^^)OJlo0=)6L7c#e^(pHQssLo z0$L_2X>-*hbqCkRy@1U=$@R&nnT%OdzD@Ng1G4hN7mmHoSGDI~?2d$uCL#pb2ZDrm zm&e?Iv}B4L4b*NAnbPX|dQ($ghb4&TMhH!{4Z=Cc_=O02fMcO*z{6%`W{I!#8%jO0 zhi$w40f#wjd9S7W9s(1tmn^%gF1RUH+g5)1&biB(pwF-N*q;H+v_9_9fa^vRq*XM| zn7M;xJp6em;LX0NqCDuS+vr4_)0#ZEDn1-zPrFR)sQxLc;$#^$w{8z`pIX)okOjVa z3Jgpamug@31$8D6jycW z&(l*IWVD$W-qji=@M~B7y-~_!j@nEJ4*BVlpHqmV8dw^FsSkrkcpA8Svu>XEDBmum z^VD=fh@o+HQPy*+yHX<_pCm?S)MdXy8ixw2arb$4yeQvO>Pjr6)QuWPrGvu07l(*l z;~g7^%>x#$413e07Aa_!8Uz+76NiiKb%7G?A4I{1E+yCG70y$D&^Jwi(X&em$)31@ z+OMizgMzi9YZB3AEQG5#GX*2z1@GDPRUoGF_(;!^_s3E_AuA^RH^v1VdvZ9KWutE- z*@2tLkB2=JLMFu_22QMBy0m-Z)h5!eCKfQtm0C}ml(ZHiwT2qD?W(P1YI4cMA(K7M zSsyAct%D-7u+&G68jF?YTcBdLHkm;ZhV26qIkPsx3n{V-u8=cY;OY#2r}PQ7zk$tu<@o&B1-9)Nx8Wz+9J%-Lk5qf8y6hAgzPH4 zgG>A)DV-(`-|a6!8d#TcsFtHYji6>tHvP2qucjlN_nF>%a+O!tFua6 zCb|(W4(q9PNZHaEhSo9_4OE&`^_Dm6-$eCeIgOA3lQ{g|ZhpaU1=d33Gi`#%UHUQ2 zERnCw*Mi60WOifU(1)Q2_5E^e(R|#q({6({r&5Z-jq9G~W2z3t&!B6-4*{2uoFS(BKqpzUl2v-9U8m~hU(@;?Yq6i-^nw0Ydki~zV8GVh^&GYe{5~gj}TWPDT(OM7o z#;(9;AJc>%`*QC4c59>X;#8BYCEjQX;e<5c5V9)sikr8|pb}b0fLlFB9)DMR!{Kg5 z7Mbp_8$lrpnheMaJJH(p1;lznnp2HS-%vcuCIT0bu$g>-C}WxA9S>&NmRxbTzbVFM z|5n!`=}}orDeiXsp=lZ<<{9Xc!17L3@Bj;_ zbWs8YhYwrXB~hbLlCt|%|4}~pe;&ziC99`k8f3hB36rImiMew)2 z_eB%QX*#k#e!$4^pMee7`56K+1pyyjYC9Ul6ET3UFYfP$zj`jZ%4Ivt4OqVKPd^Vj`o8GUd{)t%TS?0wK#TP#NllN*cv z{3%(M;$m#Q92d4 zqyL3z?k8Jov@bMZPc2n?Uv+YF(i~GC-bRFSYAvYpJ#I z%`;y-Qhq-zmm%|n+LKB$Gu6^yEj%)~;CPy}y5rL>o=YJq+*l2rHbrjk&+OK>7rOl- zL9+T5X;r0osRObVx2F3K%@moteQOcnmGh;if6)yzIqiHh@>xPL_G?@j@{ar^Nfwy~ z&HQTx94&{&AA@)Iz4v#~yh0zX`A@b*I>Qb(1{3UXex{3T|891NVQ7vsjd5f9a8}%R zKYpxe=_064TYDRPnvI`T) z$!wkFNg%fGM6veWXk@+4p{Ef1Vyxz1duh3d$%ZJns8gpC=SH$`#KlgyD%{16js> z4u74VLPZmKeyLq3VvW)LYYw-zy@G@jU(H1db38|uD2VDumRD_7e^o%cLnTmT&o zR-HBVXE@u&OeX(P-13Kd(&?rq<)etdl4$!94hCIjnSf7IA3 z$etfOWWBX84IQD^fW_+sSwYq~#J?R@dNwxAHJ`0H;5n`4m_IyS`-X^R6;;@F z5=(1RlDkjx4f=Y`1WQ!eZH3LoUN!gJX#vZEA7`GnwES%txviT0hzMG9ntSA;{CMY* zr0z=pMc;L2JYf6j)fOJ=oq66~+%~LGI{xud5x2B+ zRT)d_v$0`+T6{T6XZKL%uYME)oL4Q=$;G{#9q7d&k2m5N2{wiJ1@#RYb444*IIMx5 zqQ|(oltmfR@j==0mk44h#@b;%}`%@&wF=UNLnCU1qX=?N&}h%)u99vQIb&sx#55hw1>B*q=aMh5Bd zs|O4M0pLh#pElrD(=~jhKq6 zOy^ozACLw`$SEuctK0VD*ed-RM_jtZ9D~51^d5Z^L7vP__*K&fHc?gmgxunC^??*& z1n+T)tKpTgV2%6c@iYJKGF7_y8a~Z2X5lHglQJ}GU|r-C;IxO&w+kfPcWZIkm<;o+ z(ld_83ONt&2wAAoP)k86wo^PU7)0>=9_)P6Iq$FQJ1C@`PKpR}s5<`T)^CgGD_RCI z>i-A+zC&2z{?6ARH220Ot)&~aps=7NK*9OpO>&)#Bmu(i3qoEpuWZyTnAk{cK9T+E z*CHoWAqh1(6L!JizkAHSaR*(RW#wuo*ioepLM)K*iaxP!}ELl1De3?e(o5=w!Cm zbvSm+AD`0qDyd=u0rhH4zvFX1IBHAEz9&K2jj>2c#^Ypy2eh5HQ5V$HFb$2Vi#%)#9WcIv}$Q7#_zEs?~dO72a(WnVR z71x%C$1 zAmw?8a-&0|GY85v5BF#_{BkFfrm)W*p<@dI1DJ#{aPSv>Q9`vWD#B5VFL8wakd^r` z#G6ewv{l7;PUS?EP?;c+Z%!sO)8Y2OTSKKleZi6|S~4a}f!R6?Cbi@L`D7=67jdpj z!S`sjTW}{bc&Dhp&Cv!WD39KWb>vu|=faC7>&X~StsC7tibm|QYcPsrZZ8IU<2z{c z5^yE)LPPE^N|O|oOC!#>S%N3S*0SOofZn^2a-l*Gte#0jLD{DQIkPJLj?l`I!Duw1 zuwY3Jb$V)>r=u6zOA)It%t&$!zse_Jt}$n?fTcZD6!C5hOn`oD^=blyyWjl@CG6{? z^y=E36J)XSpM#$>v0qrN;WBUC+yC+R+(98M)#AXOxg${v3f|v-E2Q>iZ&PVHP9|2>Lfw4IshI7Y}j3+ky()g`B?hD zqcS2s=fc5x_%4#mki;_jDw^mXWAp=uo@fIhJAac(;iHa`DtCzU@akmbAg3j$a4_d^O_Ntz&@kMNR5fizA?3-WALOOn- zg$<|T(!5Sw|A(}<3<~4f*1aLPI|L^{a0~7hoZ#;6?(P;`gS!L??(R+q?(XjH@9@t) z`<#8M-g`gXDJrQUlbN2L?$xWi*ZMs@`8mwR(;IMy%xImQhW3bqI*~m~A?B&B6KGy9 z?g!7L2hWwOqJIc)C?Nu`-&pbaVT|~+n8@(>ey@_st9z%{sD0y4QXlhD=4#`PcW`MS z{_aR3)d^#W4}#H(vD7@eAyB^Ta$Wmf@zV-NasF-1!w)Zm%a#f`@;~3hWzl3h%2i16 zxnJM)7UgCxOq7$qN6Ho>tS+*3sGo62G*N#%iK5D#L)~_)EJsQq(8mYE4|d9gh21OQ zEOdAHoPnakDNJJPJ^eMVN9kDUi#xFP6D3@ylD@Yja;mAbM6ao=!r^){m)AlWq<@&Y zV#;djZ>qDry>lTrx9?7)UGDr7QXPFza%|6q3v*@)>sAwKbW0-8(vD`aQX_gI)<>M< zv!+&Y>8BM9T!fE==r%v^ECK$sZu&QZ6^&y8K3dYBBr$8u=@ z{Rn-ZOMO0PFk5)=()r~`M7tT$b`1S!N%F8~;vJ>Z52MuQvN;2Da(<49>9m)AI4jf}WAPGt@RmcURx@FiOk$ zK1Gj_dn2qC6XP=P^=hiMXBtsK@j0=N1>yPJoQc$Wc~vJ1O)yf~K9&}3Y+^x}Asvc~ zt>?`0cK~pqo8cv4i+JJ+iBGnID1aTm+bXyj$q5b-C*`rX>S|NKJ~+B5i(YH zEru>e({LZ5)w%nRg+ww5Z#jhZp5uwK7p-5PA=UT&nwu8Y+L`xW9|-E60Gg8sExgjT z!s+vUaSd_7-ui_?`Q|XH&U|gGK%NRXG5cWg&3Wb9_~s87SMzPuR##!31ZraZ>H=6{ zl4yxgI4rY$s?J}CpUMrrr{(5^HlF1^Ix1;R!)s=tPG(4>x!WA7({ZBy!Nw=e(#cS? z!aaJt=By}h%ht~xtwalZeT+B_g*q9;K*&H^sfz#psmMcv z=SkxQf3%m;yEY)OqUQ{W$=C61D>Ew&_qR^N4$BYgHaCgM>{Q0mBC`Y{di;_qO2b{; zS%qpE*QIfD)TQg8pv@i?W{X zu~VC?@0a;U=SW(;ynLg}s&{T+k*g(_UcC$5ZGc*&C`|V7(N-#SO=owav(-|jQ{xxL zp5Gpe=jye93E1Nh{7DS6L|J;0ft2%wV~o3{N)D;uir-2BY#gkYv&}{_EJp^tA5ZTk zmM1>i&}wT>Gt=<#yyJ6C#Mv#A8soxG0jtw_RJBq`dTADVva1&^F0&3 z$JuXk%VTp0Oh~SJux>=$+ErU8)!dG7;MJbub0KA*CP%nm(-pF(xSRahyNe^<)r74an^9j$` z!^u#N{&^(NcA2T+21GKNc9@279R% zkdarPnCvf-qQ5W#grw&NwV%VJ>S(l7QR;K4t}FAosO{}-9M;xK5Grh;b?x*^@z`3+ z37pIOI=td>Kydy|nZZmf$o0ppL4&zi?B+j#yMyA7n>J@lUZ{@55l9UUp=ce!Dzr+n z&;Ctj(h2e1o`3Q@+R1a%JF#A4TP8vR~s?->@;!7(_VZU(v00Nn*eh=cfa!_ zpl}g`dExNtiuk#;Q)`{c#hTEVdu4&8IH}&2Abv_7{Y5AWQ^pm{3Pmi^whTG?W&0;w ze(vl<#UZZq(hbh+34D3pSLPB`MNOYoFLz2*v5m_SQ@kUV4sR*2>0jAvY;pLTZJXX! zs2=8mecy!_V{Q_vi|A)`21zElDSnVm_o^za{;iM>FtEdv5l?p%D;IwMnSk8>SeR7BwX8q;zM}Y zDC**;Z?fCz)^{`{p34IoL$Op1lEPK4W6T^%AL=r%sXnuv@E9YkEV+d55$3}@h3O_I z2$q?XBUSVAEU99pJar3BalJ!?fGh#9mq|~PmXdP)jMQi)ERaZ*x$z2%YwE{0PNgKb zc|`vfi~I~~oWy~`+3jkFlS#ojX;7PepCryx`dnb+y|7(#dxC}jrB3rXRa~|WezNDH z`ldibGKYWqpEKseM`xoO zGTTzPlPWtxTKiM#26f-Z&2v3zYK$8Zc5(#MZtexh)Rx98-nZzGJZ!{A%&ho~qs1(@ zRSLzlGZd9;@x4B!*K3)%0|wn1!5uNn)*heJx=?o>yu-Uhcr&9mi86g`wWC{&zE4ED zdeH5rd&jA4MdN8sCdY-+;|vntq!EXG)gYFVm-Ww;Bw`Fm=F5~G`;;vB?1dZ;cxnWS z^COx7*ErY2WajwPlSY1q>M!YZOl|ZD`-X!~n8y3I1HoW_bs`@Z4~J_TTX??JnGaVp z;ECA|{KZ24x>M}(e%$nb{E`(92f`MbTr@OXW*0s^0s*B3Bq;7&lw+A(A-sIQm@7N0 zhMd|B@n|?v1Hvp(?d@$k_?wX|7cE3_)7iHoqiXKnfMwJ7CGNdkkZbK?)mmRy!g2F6 zyI3vt&u;TtmUZDz4-LVFjTuGC zPZ=!$JQn>xgcDy_w1r*6^ysOf+%2zSA|&{A&$QvlVGcqrLaQBZ1V9XCd=Ml5VLl=I zf`{3EHTg04 zX2Ec!ajT-TJp-Zp)m%km?RFK*pdbFf?Oyx@EBk4&+WJg}>`GvvkZaY`k<31f$09V3 z+K)cX_Y8Ks&v38@RyIe8!WTrgQK^FrN)!I&OLXm+iibe*KZJx|$jVU;t!x&PTp zMFYX_H%?`Mg2{qT$sc%Uv<76?TWN55zj#Wl&afh`9B~{{vlCWmSMVdWUCoQ8PY8%_ zq9KCXYu{LF!%Sr!q9Q9X`MWFx^2 z1-Ex%vtGaEhB2_`;n`jHUKaB}o%l_5A4_eM?9VwDCQvE`F53>$O7$5w2lRD8S6cVN#hXX`#l?$ryut2jE@USWR@2!Y~s1{bwM4re{$nb z?_=|4h73jtwnHxS;&G?iaA#$?qivj;U|4J z-oeLNVV?Beb%p#ruM%UlfQtv)cm8U@Sdtv zi!dm@-uo+LQ~HNZ#RZ_mH2N6|kZ>B3aYSeAkH?e)D1oi|QpN+^lhR_7Uni=5GEsGv zO<|q9DS}RpdPGBzUEsI~ePwu@8_l=nREB=^FUz23mUDfrcAaPfWCGG4g&9n9uLfbR zTwIvH7HportQ?z;N}@+ZT~1ruc~2#M4{b8ADiU8s(ZbuOGO~ygIZReMeb=r&WB*z1F)q@R zm}-}O{}3|y(vV!vz~8V4hxX5GYpTcMh$CZR&(|rU`tPO!JmoST@J%}(66DPANQ?Ws zMly4w3k-5ET-KB9$cI-xZh8iW5Nvq)65fEBG23U<`(0^od(tOTZ+-(D-z4$|q%loR zjb~18uc@$HM96}O`C>{;eS7Pdp(#AybeVUKh*IQohF~jruE}%GN||32h2LFP;_U2f zHL$D@-i-7?GMZWq8aJKRb4GeC1v$N4<@bbmSXfzH&FB$0qPyPa!HI*={uO!n)$rD( z;9j+4#`@D}3i1*vu98s9i{`B}l4D8vyGpa?Q%?5dms^XNs9eH5OPJ}^?7P|#Gd%(K zB6QZ0p1h3mX^f+;9Jtbxb%bTyCD;>2g{TMIMP1LgpQYey$j^ zPs26yf*tL$gJlO+K)P$K%ZvKyRZ{%>%05om?){Va`jvF&d75u@>W3P>`f~Ck|K@e& z^&ANP(eUa1cT9o-og^^((K?d(S=xt;vb>oW#qa@=_M}68}*%8iWHRMhy zjJ)?J@i}fDa~Rg+Sm9%ekSuTHRv^&s3kTVQvW!bY= zjM%-!kn=mzx_Ooo%{DIPYY^F5Gs4-$)Zv_p3=YVIiWGP847IpP4j=hOIy3XZyb(T> z0Ik0nqeK+hq76lB1vz`haI_WFwwoR2$8>2>o{1cEbdx#A$a@xE*IU%}7X}Din3Mr} zLYerKU8S&acWUWJ9c`8TPbf-~7@bdTI0gW|0L+TJjfE^7jp@*SBalq;&gEOP0uxelS{U%)dO z*Fzs?fm}v%l@YbM9}RtzhkKc^t2E6FheC zLMrSOXlRjGbm0RCqhGlynSlv(%NDm-NGeiO8J1>C1Q&u(ho`ytQk%Ehv#kl-@BJk; zy4w1}Jq$#tF}I9Hd90oU>V2>LH4^YPpMzH{jA^yOi$#B(pZr-J{5fW4bTp^t8W=Vj zcR#}j2FR>hKlgf(W!VQWa@Dv0CvD*AQa!a)vNjUR!x$|FiPA;iTdZoOc2;7JhyX;I!<%0@0j8*|t% zMd7`1rOLU0IfQ^LVSb=~14p!k2vdPLy@zUie#!pub6LC#fR6r4tT`G6_Z@ea3?KK6 zQgJ^XkAQS4+)GpjA`Ci?^u;qrnx631+COD>8%Xm{J+N5mFr37?bE&W)o%|$*c@-Fe z7LBMASU`o85fytqogH3ip8jZTAt+(F;G_AC&c;$tRBQh>E+_j#G`%JPy-^Pm~I@ooa*_8liQKipZ1fsHxIF{YfN7JpkviDp%FOT zWKzYcSNgD6dUmb5HfbGs%Q95oI_#amA{r}{WN}A<<*3joc4j+raVO)r?gQ{_3WN-* zua_JamznD7D)ESzk#zfFS2ckvqQa8KS}GyiUo$KkcdaqPer;7HPCU5-0P-)dRfxIN z-?fUAwp_FQIrEPd=N6hXLN507IYMXdh|N(_vtb)gIUQkF4imec_nJ4JxYEKO3AYn) z?XMupzeAJX)xYO2)uNw?yEq2${JcZqc!}GZomKLm9EkdU&D}xa&E+;q$Ks@=6)rb_+Gaporga*!G?3?3K zhc2z?k7u}Tn0L3taP;iyBI>}s(v}#5?9KM@710K5q$j*=_0u9Un9q6Y8g?nq7$y^%!c%Y zt^LT&Rvip^1EZ>w2P96(A^t-SJncPwM@S9`c<0Gs2DW#3(0z)d*M-t_w5@0)po4&e zaRvLZSa-_FuE-?p3~>P$G6qn);Uq4moK%^olX(?sC|@JpwM)`F}=dy6SGiII3$?j`YpK_&+e;&Eu7 zixs)FY#sjudjWwhNsY#Y_jWm|yZPorg2a9OC(jNYIsnfn7zm;y>X&P>hd7<6Rmw44 zq7+&QD59koh|BfeucGUHkf;B~gFtKlFhG+*tQ$7&pGPz2B|~y(IKWdGF7Gm$IrRTMjYT{^Q1&;XApCb^AQ|7W3Sh_9)d}$?AgyDdFwl zdl*hcYyxP^BI&VjDzvh|`Jd2u$CQFZs7i_;(qR@miifQRy2ngIIjiqk1I8y_74-iw$= zcW_inOO7SgDf@ zQ(-EAKlN%o@*5dbT5P9y9dlV86au2`E)<9*EA@@KCR2n@dWY_5@v z=hl@7c(|6g zBFO1WK2PRl9&1ZF(q6VhSv_yI38FAadq3z<%gH_fK&5WyZNr?qS-hjnFE>Nd-PX?d z6dkTSN6zAV<&oT?tL5LM*+=^TQr5?V^W<07^QapLv&oUpp|7)SktO^I%@ZP6kj?EB z1A6PyumIU28Q2g6xXb{Wfpt~qvgf6mkg_PRzj1(bz3_+{2D_vuIEkFT6vOljkODEy zuVwDt_zOb0ZCMMD>E;I&fjC&DBLbx1>COW)EqIDw8jpYoAkHY!kT)!`v~0}me2et> zMbj}}DmU*wn>8Wn`C`_tsTGT@xW}Dd@UbBPUKhIfadihLHHH)56a~rinKCMs>fXap z7f>EZ)1XskPbC6!vt+?4e2$ynvNJB5wL}AJLWwv`Yq@B$7H_5Zr$E8Vi^9jOoB8vl zWJ@AEv)r_hP+u%M+OgzHB7r0@915eYLJxKQ73!pQSQ*FP1qj21gE0I~LYUlh2uT_P z4{LB(o15-kWxukWTfojxZNKWSvYGTb?|P zXrzYv_n8SS`TmK7JAx_73kzPfS7;#arlWyBX17H(iA$cB+y)ZmWLr94LXs=HPfULj z=i-CtiQ6OL`$8EHN1uy~iY@1{I0Az%| zQ?9efL#5f-1Tu=&<^9|-cZ5rS1!9CLg5M{s-8%htlrUet>vFhwPUcL3? z%Q$-{&(X6vrD+Btad-Ru=8xht1FoC7>V89L;*$qh(!l7#q1|3>O*EZOdJyQs zr&udDYqO78B)Y!+igcr2lq*yyC8Y-!`0KtR8HjZ)5O>2dWvt~QOO5lDHiz9$p zZOMtX?UhY{5T8_l6-M(K|5X)pHgRznF8syK>3*NVJ|9CimI;VNj1uLJf~z<^rP{{Q zilNXqJ5-oPpzws1us6jWZ=(EZ$sc30HRGd9IXac7kq-CJo?YMEd>ZqF-n7Q1y$3E= z>&vxCCd;Svi9~YwDU|w0^FEnBUg30E_^QV>K|VSax!2@6^P|4IKR|pb{3E|{@3|6oC~3h@ASp9q(FhLe&_PxmtS&Jh+0q6a*kxsn z;gk@LUwrwqW@^>3MYK7BAuvUCdkdic!w|}Ii-Q;rE)XTa=)7&3lk??FLdoe$v0c5o zXjuYswpzAd4)nj7kuhZ|uW&HN7zdCw;wfKKGh+O?mM=InWvN~OG>Xj~y?fQ35bs7` za+{4V7DllsXt~*ZI0lq{Cvnbu`k25K1R2*E{ZdaXn@nS^kU?GX8q{NW&K$41Xx+d2 z5quc%d?m(J0O0_rc^=*1Rcp(9>x7BJQydfN*vr7zX4V-M>#Vj45gLY`VG3nd%6eGB z7!`;LL8#Cs?r-qnp)aioIovMw*+FG?H*2L(rCH@(G|6fGwC$Na2xo$TS;8`P#-;}K z{X4Z92#}(c&z!B^;bW^@moUS1EL+12OjS}e9SLMD?5fEZ>3~gxx5zlkh#{fQ<&JubSJ9E)v}j(@WUu7XVM>sqd-_m1<DYC$19$pT}?OKICvWMD**%hZ)+>SfPHceNIN~RQ)(W}WW>}2OtPm7 ziw{u>bdVL!90<5(5D1yyN&blf1m5g8c)quJS=sTyDVG9Vqk z2e)$#Z3Jf0-d0m1A)?=~o#5&uMKa^Ax-~NfWuk(UYA)vvN}E>%X0DfxS_COF$5|ju zjv1Hlaj{55l1?C`ZYf!2>r{wxxGd-{4-_LeQ~vOpXmCMb;%iPi0XPR21QW4Ya0b&fcIJG&gHmzdMP9)haYQuj4*}D zP2L?9ecb)Ws51%c13gBP{f#N0uF)ye<|nXIO8rcHWbVDvT+XxFn)}1IpN;bKiEW?m ze|W=J`Gp8^CDF0?+5SO_Kp-pB5)cO(JjsKI7hi`=F+*H@9c{}>A>qVQ$}wC{IvF?_ zkE=9kSb}N2q40E|}DDnX3j(y2->eAnB=gHR) zAW&@uh#v)>_VX+xWuz{9vi``O+IF5Ue@f9YWJ`-CufSqNw~3Z%_K;UE)(XZWs6G|3 z=l0g4jU^Ce5fY0#4Ky$JbkkspofW-Aj3((Fg6PA)(XeMfz8|EE@Wz{G6pa!`JVJPW z0SDC8Z6A|wM)QkqhMX|Qw~db;RoGzTv@(+n{sKV_v)wTOUV^jlAq23=hNH-~zUJg? z4zV#4AK)F!Ydf79c<%?y=mNZR{y-N^A#r>ulBF85&G6a3iS}-!O+;!G6PqLv2IgA5 z+nI;NK$W%d2a&0iz}z?PgbKW3B;v!Djh;t`S16U9qX{_=7^60%Y5QGrx#3m+#NcH{Oih)>g zuH?z2YrZ7Hry&lZ33>Fguaj!HMWO|R&H=;2wvo}tox#POE-Dm#0z0hyH+1|nQT!01 z?c1?hopeV%^^V-KMYZa#-m(<9ShY-WK&Z;Ur|B~8OS-H5UViR4qb2!m=X%Op!$>B& z7s?Cv@kAyd!oh*W2?&SWe2@b&OO!(odG-c7BP&1pg>caBax=3=yEO+4)6Au13xA|b zp)A;;MvHYFbS}!zKNZOr3q`OW_DsbmR7=_E_`tLZR=-p>`$4hV zy4oc|4)&kX03MK!U$h4SQjGdadcPKFu|ihd6h(_*C=kF*IIe>qbLbZ~CeWZqK8!(N zVH#D_9jKwR7JiKi`@DphD-c91{?nNq&>$yzpZI;RHZ|4y1<(fQW4c)Y{4`D7t;*Ws zT0Pi6mEjTSgmGdn4YAbd-Yd#U70dLf$!KTz4`V>H)DXo!Vk=;A)LI7`klaD9fc@=B zIA5b&ezj9yUS!P}XE30DaNT%qm92PrQubFmCpp1k|K3c+Vktoojm^Xz4x{qh0eI99 z&U=hM3Q9rF_oA$`ktP(v6bO6Hn3^v1vDaorc6H`94aG1qk3+GpsAw9&Cv$C@i+oV?1f_L`0P^fAjNN zFL+mbeA@%vEomhGU-$1ssK4Ixzl?jPEh~`;)XU64Rqd8*^3FCQ_$6Ni1e#k9x8d1{YPS1h9|`??{se#5Xwg ze=Np(NyzrP`=n~1)n;XJ-ypnOG1I9aTxPb%fg z0GM~&sYr?+Ya#u{{{Y_t>RP~kK3dQv9bM$v*%R)kjAYDF2&DvX{JWd=KYY{wIH}Yd z5OqIadg-if@V$x8ClwullJf1y0teug>720W6rc$u1q9iqdOURD%3n9by8h#3|Mv+% zswSbe)PbhC7mb&fENp`TJS|MB!HHOMLfJAj+l`UV7bf3ARuH7$5bmC!wccV9 zhtu8vXifdo>%R4_;}8}b-I8}Ew@Xx+x`NrB!dH4T+FDkq@B4)%@>YpZE}+5Yg+)iJ z;23=PXKMAoOYuJG0-`W|!_$mWh^>pzLVP{HNL*9`a0E4tCMk;HS+Gsc;fqqF0@Csa zJkxOn%J&89zdr{5^g3eWA}cswK0-*;Byp(z&o*jYV-S`p7B8b!ue+e4s5AYD_B){N z-cY@DP`Plwf-t8Oo%ie)!V-!9OF{hogQCSM;1P1<^$#3&_)%7fW5b56XZz=GUlWOW z&*0x*3hFL9bPn?sOyy~QJ*tRZ7WrCcVxe>B?2f#BTr|ruz|KPv5%%RjjOlw2;J+;^ za6;z6&bw*@Zkb+=j-;Rs5qwj6K zdCt|+iEpsq@IYvAU@bGC@Yd*)_GpO;eoAN@>}S)_)X{7r@A8 zzk#m5F7QXf8R;p+sd$$Xbmj*(I~|pv7{LDjfBx@_x<|6t$PP|NXFF=|MvGjFsMT@e<$jcW`4PfB0Qv_~Ub76-s{B2h7l{tA0UN{yf z82{Zmz9Ett^+}<9soewXT$kI&rv}3$bGpjYk*wo{i!meS{a+ki$xludkk$`c^$`WN z2~;P(uu{HpEPmmTLpb=`=g4sx1pmGl0}Ae6Zc@g(>**Kkk6qJzB`+eEfYVo}AhW6Y}O;X9g!p zPfA&=@L+FLG(8GiE@2$k4~~K}TjP+E|HIb?Iu4PMGpw`cwOAusp8IE&Wa6tBGkLAy zewHqWEv49mvUmnqyIG(AesoWA!0v7ygE$LO3d<`8bLa@CG!pTZqm$VJ64QjbYq}?f zXwJa;HeA|&*Cc#=CV+hD;$bMsJwBXVOl>kL=>93RdvF*h!X8NF(CPdiCh9*=WF#zO z6pjx zjPL($w#k-~n9iQ0`ld1q(gS1RHKkfX}s z3y|2~ryzM46mM8eaFh8L{VTxG8qb7zUs5_*2W5@hESG#M0wT!mRHHi|l6(%C{H$Vf z=I20t$kP0+bWtCr+YUB|q zzqj_dbV&k<_yXN#0K8n76Mk*|pXyoxfScVjClCyvY6ofHFF88kg3_opmg@W;f3Nxx zbnvd*CK&oumu`{h;g9EOsTJ2ANBBvil}d&WeJo8=6*Rfn@Qzd`Zhy{&;vA4DQ)=*2 zP42`Lr{9;HEz&-GiDvKB5{(0@ruKNR(l6L5W}}E+ok>TYbBV}cA=Nj?6|rolLi7@j zc8Q22g~dC^slG$8W4#XYG3F}NN*B^Xegdjd!IQNTc>Q_y0T=o3M>|h^LxxZoxG$Ay zEWgO~xin0?(aF@ZP%Hzk_ufuc;A}OO+{w=?ZoKC&ml7l3FDr`7$KsN<^YK18@OC{w_&|>CX!cRZ66Tm^7*D(nbHU3dh?%E$ z;tdry!Y#&J%tv9q$T~r54e{+81Cl)Sj7fuv_!SbW58)Ri`N3tOla=GQZmeHktms!n zKW>K~^H_cdz+~?rkX?b2A0y3s za`W?g*3La}xW5CY&D`3gZ%@_eF?K~qG-j ztzCp^Wkg~u6h73^q+_vrB>=l3a$d`Ut#IHUYm*}`%U^UaM z(JXmRC7|0C2=1k%rmqOYDjDUCXFZpzQ_Vkh;uCbL)Mj0vvP$5%XULIAyDQOK`#EwL zklN{&g`@>=?gHei83I)5T&Qn5=4I( z16L_kO!5Z9Z+8)(vnE5Ch1BZ&R2uYii?OcyP}lUDv;?y&ppL&xd6Z;^&>12{K=hIV zm4d3S+;6fK>&{2l_mZX0{A1U&U`Bxnw|^{O%LaL@&JnGz~H_pS?5N)@Oz_rB!b1$BZ94#P?(A>?nT^ zx!IviUf%EjIzD{7CnEmm$Sv*bg!hMkRENK`?|{HpESeY{DIq>dj9>N;)}#kxpJYLJwQ{@c)t-EIv64F z7c*;7)kProvpP}LBCfG_sqSAr=q8#bi3*(ic3Qk` zEuo;GSWcO~ym~59%G)ant)+l<7CacJ6bhDqy$nQJGyL^HmAhKJW#yG}7;`q6Se>Pi zLL$VfJqG>ka8%une7keVbi3+CSx2_Cc|*mOMc8}E3q(l6noEGE3*`maYLzum7olzgPdiwSoWRt*hzI?KU+F z`Go%|n2=CXi`eveA$ft$^RAU!sa}mxfs8x-jf9O)g%EMl@06RAE?iN2_v7k`b~8rW z3eDX_#lfK2VtKC_;)j3&otOuO-4Xv{xb2}i-k2wAEefN)2j>Tpth(X22P4+x%WaFZ zk*qblGQ~d>^=JRQ^Lxdx9e@$?Jv6vK5T1F@`LM9Qv`raGzuw5>7000Mapt!)tU+?} z+MLCfXKGRo)5f;gG^-=}EYjX7>Ci(()sHNuRm5HvPZ>#cp+B4(HXtPMTbNXE*SsY! zJ2)6g_jBk63x1JFzL_TWUd^VptQlg-+fxo%=^7En&@#iKZc@C>6 zniMvf)u&pW)G?9mqmlAhxDyEbC{=34(z5K}PsEm54jH zzSci?U1C>1m!NViEs%}99@%U+RHTtz{S1FTF3X#oaFHWz&>)^9fq>wd#65|D*4}fz z*T5?<^%Hu6Bc0SCO`^jP(~}N$yxAU_yyTE)arlYHw?q#Si`sN^_#pqL{i}6lnsRP5 zgGA$P9aCc|pSeTvb?!C3I`37XrHQX&3#Z9Jys6gdW;p42U3_JUJpXoA0vFHie4$~x z*k&b;fnD%#Wiu~m-TFmm3$c8X1=~uK!B5EIZS1CV*_*Uq+6KRxVBS6IU=iiz_7cH~ z@}k<~T-ruT8cWDDZE1BW5!QA)`}(kdOxa{!p6q62U;UDvfaxO1T&UIjME~gVk#It? z&zR!N*J7ckaI468wLYeu`C{*fMTGF33>o*G_$dzgR5q>G0~sHg-K5d$InuvYahML? zGh!UhCadzrIU=~_^jC<6W2sgOuC}eJZIz&!AZgui6dJ7p{M6#amJTQkOL!yS? z9`=*bw_S!7%CF*d#y_cyVQ{#gG6C(CNkyPS%ZD`VGR*QSb+T2Sa)>^*+Mh8+iCyPU zX4WUBtBSZYMU|0*tDqdOgnyZ!0yr>2HIV4Vl?Rb{?ibO9d44eMt%=tCJ+SC?rA0+3 z{37DU%g90;OXSaSOGd$Paq(+(;nZ~EHruV~raY9ft*k>sR`GFh1P4HNZX8oL&gU25 zYSTykCbQK#<5sbD#n;bG*1JxxX@8rDQ1L*gDCQ){0Pb1^_T`{PLleSJ!qqEj8vf08 zm$_)|q`Op&o!~G=w}+O7fyBt6gE%~J0sHYPiv}_4kZttzgyn99I0e^9_(IG0bXQ}H z(b(5awQBnf;wJrJ4Eb~>(c8CXo!61FhC!cFJm}d7NWvS*zfTVHi>A53@>q@S0P6aU z3NLk%NDO(_Wq`?sd1yB&YMzV*2j0#ij@i?(e-`s$a)xQg!$s5LE`*HD)f|2uhLPg| zi&Wm1Uo0F8neu+Ql{bDmFQ9N+akzRxa;E|7HF25Y2vUvFA=FAc9{$8P@n6Osc<7J) z1LmR5M>gKqlGdmFjDY&QIzeOx0fm$-9#ty~mFzc^RuPA^VeHS&IMGut7q4V31m;oM z*neVo;aGM3iNvH|IYQ?*T2pwbAA+#*`RKiM4VAloRNHq+RXfhgt1()HE;C#Of9i@6 zs?+-W)cwnzPN=>e=UN=H`F!v$q%t1=P8cF&Ki?2Y8HTsn4j^BloEI1V;c(LJ)(d_y z-PqhtkxnFfBt2zsC(LcHpz*ra)AkkYpw)5J`s*lF=4X`zx`ZjK6~-3B=HIlLrG)2NRY#s>rxbzeIed_}5pChXNx^aK>4;O`8Cxeg5ThT?i>;&-J-* zpJ|BFvR=w$_fIPkRvzsnTH8AP7j%NDrCHVZD)Z+`i$EooF=!=SC&MEuL%!T zIrb6-H0kx@?V^9*1C0=P4U`@pH(@T78S+2b*a(TD5|pkSt~%_Di6 zykp&1tr3;+rl_n<7;DWz5+cJg^u~3OvyEOWwpS4Tx)>lelts)o_JVY|YZJEJzEpDD zy4k9qqRp=L6GJ*Y(ggia47M}*F%3GX-IMES^qeje8T-Y8LL`Y=Bjw+a+*y1_PBt; z;dux~NyS6k_c=?_!zRtkr&Wt~A-A-?nQ*0i(krn`6Q{&!Zdycoe2V#ytX)l`->xYd6Bp)m1JJV;tV_Xd900m zeA`*97d|LR%U;SYO7Zt`($&h|j^UGE@eA_`O>!~U=39syj_ zggR87C@dDX+74ul+gfZZ-T2vqUf*X{G~Nau*RYy_t3|xri!fm3zz@(7)9VQk^W0^RFBYdMGqHs9X>pm=eAE2 zZkKg;R%M9eo!_bNnNuql3Dv24oi`s_=H^pLtjiLUqMjvo$4+At!)fg=H^rYEQxg$w zaJHuK^L$#*#ImnuC;jC$G{9wAnyQZ_-ZJj(i8&ZM9NRUOoPTKYyqM22|1)Cd+I4k8 zO;DKDe4M_8cJ2%V5oOTbm_(FE;TEt32So=u-|_B67GWY_I4`$er0U5AdD!SHM|DqI z>Lj#zCiTGx)xUy+#+cj^#%J+X3MT%h59ir|d=hyhRfQVieZ3;N+@DLD_lgqnkZDOj z<+ci-$a3+v9&n8$8eS-`nOvNrI%zwxuiDE^KjPi1U~zUm9PO?SVnz1<;{OTmCtal< zIv(1s+1--ImwF$rvDT1Xf&H_0&q?A^vehn=t>0IjhEwX@j2ujO6?=@gX^85CxQr#T z*^c!;F-brG(>W2)E;wc@I}48pNOMc>^Z172c+=%wW@`nUAfix6Db2O^I*E3d0T%nE zwO9MWC)W~$57c^~sft~M%n0Asku*eYLLBd0B*zK}mZHVh3V18%QLZUB$9jBsc&%Sl zqZ;s&bh2LRI_jpU2H;7?{oCdAqw!cPoF1F8=N3TVQKU5QPX!2t@4dTR!lPE)9ylK2 zveM`wI3TLbTvko3>qCy1V5WvX4pl|Y@t!oR%5;P~d7N@HMUZ<)8&eG4j7@QGdW5!+CV zFI})*$hgQu)R6@yjAmS!2eH5FmrvkbEQ@9$PI}w1(oX`t=}G5jZC|e&UKQINwp^Z7 zlGxsBnX>dOdII_=P${i1n{qTR%&Z;~T2t>f#P|CW4dj4tHgxL3x>v>?uN|ZS5@1L_ z3ZSJyUafjHxO+LYj=OfxBFgn-s4zxj6Ch>P`4|TfNnxd0@^5d|NAJuB88{QX>aIs` zBz&-m;6v@{Qd#NarAN*KO;KF&%)dfPm8g~BerznYB`Pui;|XFqu5GWs3Nyaf7~x*F zo#z(xPVqcCK1nEgU`zl05Q0mpiR+$0>flA{Z(w%?ZQx>`>v3>bby4P=8%l*rK z)9$=0^%jjb9f)VaQjPmbw*}ezZZzNVbc&2+-vrEAh1f*sYtw9a&{#3j%?`A+(0a5< z&#DCs5zm#Lt3v&A0v; z8O3F$SF^61DbvG#^4O6fK`>alD?FK(S*n7Jpf|Z)bi9J1Y8Y#O<@IP^JX;d;j(~mw1s8ZToMKJ6PA+0}LNMY2S_>H^bL_+`Kl1fG zb|&2xIKt`U#8CjJ>B=hnCEzNJD$*EhktAiwn}>}!?}+|aMOo!3Gr z%6%*;x)87V8^$nf+@|&{1TTL`6$X1hvN@!NoJQtLlaH)sZ|uU)A^d#7Wp*L3CabH! zNfVKFU#M~`n<|1}N-=AWp4$roMrJxbz+Ow~tD}*AyautN3s}Uhz~jY+^Uvn^eRtZ( zs%!ub8fDh!=Bx(Is|5*)IE@K9eao*49=)i=+3~wP;AX`vdqPmnVg^I*^p*hq44Z%d-ybS(c*_cx}b9XRjv*NN?Z zz-p6XRTu~Hs^4MxIJbDcyw4u^zk*?`-_H5rkUmAF*Pa=8pWC(2tq|TKKsyti``w%a zF0by}X**G=5ArdZAG(*2tu6lF(YH!>J%A$o(|nFhra;VxE(oB^Sp)*EK!QjYnsF@> z3OFfpvTPB;2Xzu5E{#ah03vAT1dN>}bqeUXY)lwkLg?g1DNBZz{yPi(I;Fqh{RpP3`~_XFPA&GC2uY~jyn~ejf>>TAUC-hrc+RmD>3-M3 z5FRoI_^K~aqR}ISNDGBb5sq1VyqFwMIUOA_T^TlaCXg*i5jWgUn%g$aFzyjO1xrPf zB!BATe*ES&bBxKn_cT*){#sJbg40y8BwXG+<74LrI9lID!0QB%r}@eAaYzMxA?hR< zWCGw99UIA(+>iDMI`fi56Lp51ZQx39qu-uUD_WMu{7FSR{q9SI~C;o z$Q{aCNpu6>;Ca#-_R1?G0IvCT{Z9jgeFLy%uFgJCp>z*{(;s>6j4Eh5Tr;i0@6WGjh4mXS8oE@G3OzO{=;fMD=eN()CxHxiRjg&KV$G^H8x}K9E0y92%J|1p!882B zKUq(ktIK73Po<6JJ{{k14*E;XEatsdGg^!)50)xI-(k={ic`6e2>rYoCnuE~MiWsa z>mK4g29nuneqMYWab)+bzF|~u+_*R<-2SE;#V2qNbRxW2>--e$yd^D|6OR4v;1q^D z8!VBxUStcrPEQefWLRe&VwD=Yx4|Z~IYDz^KatIL4V;@$76!P^ZawhpkNI`p(M42f zYhMs_=u{%ql8;(OT1+-O@rj9;p&W8qgTD@266NE=?z%{Zdy(fjR|z#TQl8Dw#zF@x z9kJBoE+>xeoH&8f$~@BS0gVEV4yL|bzeu))v>W5udY5|Z8}Z@8IgdLZ?{DY(ezy$0 z2xz5!=w2*#bHitXQxNQygL*Kc;lJP6WrhUcsFcIm_UIec5^Sec5|^4eZgm2Sfeuo*;WD%l&Xn3U&4Pcg8;anf8l3Ch5hl4VmLlQhHj z@{NPk_2(^)QPTx&?qgv`eth)U7?v-ZR13u_;o;4tlt?t&*+XRfxcS0obrLVyE{z>M za(HDWpLZ*Juc}PFk=(ph4ADi21rkqvTFJ3v$Hh$zLkD!>YM?9<6bS|K)I-OxWx5ja z88dB1Od-J0Qh&1aQ80BQ6o8(6aDk$3erJ%Q;rH0puc{+Z^g$sgPWDvVhsLE! z69oRrDYmmiAjDZl>UB) z->V|w1HYpU#Y^Yze`!2=x1EC*5vG62 zoigF(ZWpdt(T(4y1dpD}vY1*Y3po)Iethq}I|?;D@3Gd=R@^*-7iEiyt|O-lN7 zm&1-Mnx)D+n_+E-V^8?6o)*wgO0A^P|5_RV7w3z8R? zs{FO^KZ|)PBP(VU*tXH>-M;XCC^Mjc!)S<>Z%T)>j#u@X-5J}dtSETIp`!MB%~%Bb zsb8-kqt8MllHyoL&4ZlBmGSbfSZZHhDQ0a`2T@H!P_;hERoIpv-FaV|4Wc=I33wMJ zO-ANN26EER(bR15*FBj`z9IY>KOghwh=S7D#3Hjn>rQu1oz(2?Q|H$?Z@L=Lyh@g7 zse-e?XU`Eo;u*hklR=^kpLbVMHw`iMrt)^Bp0)}&{_akR3%2*)Qxt7cn+g<6N;VZL zwVx69PkL-56na!^cjHsfZ*qb8jg8#v_e9Eh`zzsrNerya0gGEqdizRwYyTuTUc)bE z-lK+GTH(LR&2YN4rJC+=ykMNcJ?*kJMBAgnq5G>RJS zC+kp_W#lj?fMEa+KIX%j*bKY|^?J;_9}*)NhTALnP0=XowA=XCUL**wssJQ*ID@0s znH-sq+0-utCsYq&?A83dC6C2O0UDb(>@8iWr#qgb-c>ARx}8j0P5BIRTvK$u9aY{1 z(2qn-$pt81J}|AHmrlL#q5J#s%oS!bZuTBRS6j?UsoDkOaQTh46!Nwjpg@EFIT3Q_V1Eod7GikPmc^#JzQ%uU$~dJ&+ct<8OnAJ&wmkSW%pkYb)TfYXN<}} z{`E+%p5*g6yeW8>=8c!q9f-yPxjH=nLEouHugQo1#M82r*z6Zy0lF#G@!ZFM!0t6{ zifxbKFIIZV6Q>$jp;#A^<__~2kmHM`P{%}B`QbtL|B)Lv!iZ|aWqfQ&y&r64=QJ+KIHvu+w&)yO+4jb$d0`*tQR1-(sJ=ZsD~$ zdQLXU&n|;?2HZlNZ>LhoimR)UsS`K25&6oeyK7zIQHE3LP_PJrc*^tY08a5aW5D!SD9KJwNb>s*&uSO5>bFv01XL^> zO68PZzrmmLXNUUtlxq}Fm$(+ZeKz=hj(?AQHcU)47#YDWJ*@!+$!b2l{`P5h0uu;- zv8wZQt7hyND<`!D3Tbt~+SHp1|BN(v_6T*UfgN^5MCJHT2NQ4e4-*ckP{H zhwCw3xwdy)%C48gpJbyn7B36IvA>J{(tF#RxA1=6xwMfN8T~bN=#Ni#yIpUx5X3Lj zherg9rzJ(e@Tlahd@8tc>cJt%_R(hlwB;mxpGk7eJD~>@M#`57EO=sDZXKI6B$new3MS? zP=nJD<{4b><*74oJ^fY)^p|NH%!wZAGiAa(XHb~5If$8pa_XzQ(v{HRTxWbAr?@^u zsX>&VppUYCq{uCVH5*Ft;a_@bz*$CKdgjK^rVlFbmpDQ(er>o1wk ztn}Zmz1kvJNG^n>b7%?f5bJXt3CnOcFZN_Ru4wN;n z2p*AnWWFf-V-OpYDuM6W<$0EUOSOQl&ooti0JMR5{apLgPfogBa#Aj=qBT51ThMs# zQw*8^H%@8dN(+d|*>39eHxut)r{x~zsSc~Da^f#W={&e^3cu+;m1o2X8vmIXbu3y4 z_nc%opJ>$fXamWaaiK(bnLCa5NM!}3w#NKOn756M==w~%n6I{_zeHO3o}F#fWiymu z#@F3fevbtWHfx6+|4F6II0~*LA?*Ou<}C2CGOL%e0N~HJ-K%V{A+u<62D2;T-!Zbk zaR)}pz~Fo&$JSRN@HAqXLZs%F0sRm?Ja7hP=piv-@6oK0{vreB219c4^a(&wjvnM9 zoN7a>s>Lbcu8U^PUu?6u<+=qh2^7VyCa!%}&e1P{s;y*FZoJFv^jLLz;IN<8v&KG0 z9VQQteiiT$BMlbvwBANYAdfVeKMgL!OS~stl)burAz}xEA7_h@Vdv7D3kD}BSZr;u zM>eQUgPuIt7Fr>FcE>%fa)8=F-wK*!x+1Cj+LDn)D>=dyS{w$A5`P;mP4)Fyh)sEj z?JNZu2p(&ER^MJ?^@RHTMYzhG@1h9piJA#JfUKqheeR;tPxm>aOM{pusReHG&UUGGNv_XGpt+{##Y^5fqm6_ zkg#pWYq;X+?lHJYaq=ufso^K)#o#9$bC(5*lh(Q#dph*vJtq9#ifSmbU+@|>561x* zsbP&>r3hC}!>BQ&i~jtx*ti3Dx3HX4`+>nhv7UZKJ-`tu#-TtrVy-bPDjz&2gI^n4 zqHJxhoAt7pIgHB3V=6)KTkC#|&2d07`G)wWO*#FzBo(6g(wAvMc=1jpYgyM@%X|c6 z-)x`^uim9?j@$m~W38y||E~Ls$F(WS>*#Sv z@il2YN(MM%Ask+#K|&Qq?ZV`kyMcV1rv0?m;T&~H|8nTCQi4nn9GTwK04zGoNb011!5yi8BMV5TJh1nIvv1k+o%%1cFDw=+4{Vej*FYRs8V@I z^Dt&l?RYUw#?t#_g17F|TER3CT%?`DH!L?MH4XZHj@jSgJR_QaH!nCuR7GP=Ksr2Y2IjsbrIp{d`J32IiUZ0lJ1a!CjwM*253 zVnO4iqXN~?@XRXzgWe#G`>l}$;z_|;VD8#t+Rg|Uz?QJ;Ss>qFj@8a(3;yJQqm_T> zmjpSs7|a1uRqB!xQu4az_w&cMPKvGbc3^HJvucTR3%|~dZi0ZHkvTw8Cg#;}!y`%! z2z3dc%*5ySOWN>`NmnkPBkpYS_ow7}}Hj&WWNo=9F3mzp>M%0AE?@l0gxGT61%E!ruhG*GUZ7f&lV5;Vi4Gtr`)b{QK zWhL^0sn+Kc7T4E=%=X~?ug<%Ix_`+S47sGDyXI3NG4d=-g^ z>wI5P^Q{4?itnw=)%50OLT~wd(H?VP&*%S^x7=J;kb!uc6JIVKMZng+`0ZBUzH@V> z?Dvqf+0V1^6O|l-qPn?gpsOXC7#DCg{$Sq9*eTZI;s?Im868!M{nz5~)dE=QsVVk9 z_h-aztOX=Ctab;@-E-%xy%8NfL?bU%&p`QAPcM=+VJ5@ua1|u41}<}0tNhY9SF+Rr ziBNB9!0m$Ha;hK9yv*ldpeit<13CmER_%FCuys~`C-swS zWJ=m5%-o_*O$#cJIb@3&!aY3^w*H=|N5B7I@fwCqteW;J22@9J$;^=C(dWoI)F3y< zCe)z72$`nE`vErSGwT*}CY{A1qin60UcgLAr(giN_yp|`n4mydWh}21!8{fO$Uwt2 za-T27oh?~Z&TEn8`L#N&lN=N}!dP)o0|5o!&wQCu=EWT7B55kEPD2^hVVThyL#<)p z2GnEG^}V0&3(#JIL472)ciM01Ix2WUvCSve8D|Mvd(}@?7FdGm2bFO|_}5F!BAM3r zWA{CI#kl#gsAZp2F50@V4aIubf>N}n3p*q3`HY>%j2U0{qHR6UBGb?#bOQEf@RY=b z5C7`OFZA}Peg>`X)1Z(F6$=wTNp{_@!$I$%?-+Dj*JuVp8PZK15m47ZXN;06mGP^> zMYSCqb(o{=fB?j{XZ^;q0#Vn-lAt8WzqsWoV*`98-aSQ+pBU`+d1hJC&4=ky1j1I8 zs82?MZB($%*rP8-!?YV;94U@D{a^UZF8f$#gU4jj`ZKfGh*PE-x7<!v3_fXlPR!4wug|lp zDK6B{reCRl!zk-Gx=>uiP{sx^SPsDYP8)cs2pU$L>9jPDxQ&Hqyt%LcDmZc{Yn25}H-A*0jx#+=tIR-2Zl*E3q~BC(JnMlc%;7nTfICmL z|0~M~qz8Cbz-8W(ootldq63KU@E%}Zq!vL!APA>Alp5z;n_y9`(IUuWMrO=Q9SV@& zf1#l#^`cF#*vuKdPA78TZfX3e>maw;H8#j)dHbI3_bo0G2>o;)y@n=dlbsJ@v4Kwl| z+qV`^t_=FB2?!pAup9oJW+->;`4Jt4@iR(ZWF!NE+5d)xFCf=4?4H zn$2w}fh+*|0d?tvsBoDOVaPNL&Ctt4k8G`c!ojR<>;;bSF5nM=`=F4V1-Rx4l~Rrf ztJ`fudV9jx(u&riTE7#UHNMT^{RO}%4JN8R^JpIo5FfkO=D);UsoWt3$RjBUqk&A- zPt&2Sl4T(bJ4044XOaBqyVPOqHXMhk2yV>DRO#r;(>Cd4WqM{@B_LIEi)|%E;~Xkk z$yXA${0u{E^;f?UB;pB2@|HaUBvdF9rz(sl?G2Q{Mp~VE(oRUgGT3dDz}(PMBk1if zf?_ZCG)TxDQCrJD5xN@{gc0u%XJ*GjoW_Wg=J7<$e!t}~BSG1-r~Zw{cBkQpi)IeR zhVz!ZMK!0(2mvxgz}3ckweH6v`Op;OtYorcw#!quOIbJhi0Yk}>7a0&cT5M$f)69$ z*0hFc@i9=q5FlG82rV-})oJ6xrf#~)bo63_ce)Lhz^7o~LVhyVF9dy6;hsrd7bfHF zd@Vdne1Q}9#{o(@4ubI=+sYrt*iFa}k*R|>nPe>6piq=e`|||V2{trSwkG5Wzoo1c z+6KR-T;GJu`uXhmEM`1FM9E!md&(CEUtt;ZCmg0u zNe@wNgoRiU-xG0)tu6A$Z2fu)Q5WXE3Dc}+O$<>mEQuq;`9ct7BB2Y*E9F{<^X7{u z?4Bs*xdR9)8=YgLIjilhsa+@=~v%+kIR zXZ}7LZu2oWVTJYFL$fp@#m}RyEFxtQ8CW0V>t4JJtX%3f1Rg3IduZeeCTewmyGys( zcD)25nsy+jkh}99IA$B~%ej|Tk<61mLlT@DdZV%_`S@xMh28ZaE^go2lSW&=#u?O6Bt|LZmX>)$1Hp}K{$ zMb1qAvl}rwddb>^?J{{p9REovT;|P<$I`!rVJ;z>Z*_XHT6K3&s;NWk-`qYl`F`%A zrKO0_ZdB#t~Qzle5GS?{;!ElA9usI5AAshZ)RK#D-@cqLGxTH*wb<%#&mLx>^G z3aKi^&+%Og*K21@xQh&|vhJs_e$oq(r&N2;~~eWxYF~+=n)v3c)KO5 zi0eW=5ly(~>sy@@msH%QU-NaE~1rJV?NU@}pm+lSE)8Ku(-pnf5S_r*JjjG6-G@N1bad><9Adl4%vkU-t?XM2Yhlz8qw~kg z&>7Pcug%`_kvs6h!;b-@td1^E&;?X(RlmlL$6M~}jdI4nrEsi$lAlZw>!0xa{MA@k z@454;dcZq}B<)Ed@iQw-BbPaGin5!|G9Q|TFM#faotj`6(RkXJuktcB%%2mX)q)3h zDPD$7*FG(+L3_>9IqkZyntY7>&Y8UHbI<);o5(+v|2I+f-$d2_2SnAszUu!ys6(vH z{p&OTZ#l5U;zh&Dc8K2AmSdgJtCcpPXMyLhof2mcAL{5uzJc&mMIJxTLE}$KxgbGEJ7K z*J=MMv@h_ty*2(iO?lc>aF8!PNWA;p`mJipM6N1q#qcQUi$RCx>M${^h%xOJwVhBP-r6Idsknv9JV}ht-g&%FU4P@ReKW&E> z87!O;ik)9#!xqea@;7&fTl{_VU50}w->I6(6%sekpzc4^Ve)v4$mG|K3l=W8Ht&?c zu5Qy6Do{?Bo>?g1&#KMW?vIho6_%gaOpi?LTlxcmfuE}Gya_bXbS?WsCR(@PxJDzj zQ3@M*U1T-D#9eIyj{L>bI7qpZ=1=yRR-LV!K*n?DwCwyU8-`MHF$PFFEd0 z<3|PHVa*zq=n3dO)QD~_(Dr4?+{JN<<38* zblI2{EmFGsQEirLWMoIwHEiJFxIF5Le7QGuZ0;Tf&7_-#gHukgs}wiANkQhq5}#M2 zm!TZos2Z9%-lJRN4@nnkcVZGMe)M8h0yEORtjY`l&g4Klglo@SKODVqKtoTq)rJPnTf-6bCpkt>z!Rcz3grD4(VPs0@T( zEv-!Uz>HmTi51&i570VWShC*!9=C*7^2k+z0S%g@6F z1=d5>8G44(fX1XSxSX^@aM9+$TL1!k{PeW|^!ckI_jh?A~O- z1$y??T+q$?jb`FX1F1UyV>v7_c@ly|#hm^xOT(yiFy69eSjcgVl>)X5^cmv0LTW>G zZSi{>t)c#ywMxhHZ&JKp7Yy|ciY=>LJ-u4{?pNxcT~)TjXG??fXUD2S!F8gPzUvrr z9=C!nE!|7A(*MUpiJ=M1+dB@E5P@k5Cxrx!slT%Rkr1j}4wI%41q?TDiZ`fn2<=F` r$EpAGv7r+4zhKD!he7k2@a_dE6IA!B{aTb1332G%Hqa{5K!*PZc)^lV literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.925/original.prototxt b/cars/lr-investigations/exponential/1e-2/0.925/original.prototxt new file mode 100644 index 0000000..c9d0d1c --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.925/original.prototxt @@ -0,0 +1,388 @@ +name: "AlexNet" +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "train" + } + transform_param { + mirror: true + crop_size: 227 + } + data_param { + batch_size: 128 + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "val" + } + transform_param { + crop_size: 227 + } + data_param { + batch_size: 32 + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + stage: "val" + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" + exclude { + stage: "deploy" + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" + include { + stage: "deploy" + } +} diff --git a/cars/lr-investigations/exponential/1e-2/0.925/pred.csv b/cars/lr-investigations/exponential/1e-2/0.925/pred.csv new file mode 100644 index 0000000..5c51d7f --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.925/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 26.46% Mazda Tribute SUV 2011 20.02% Jeep Compass SUV 2012 18.17% Volvo XC90 SUV 2007 14.75% BMW X5 SUV 2007 8.57% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Ram C/V Cargo Van Minivan 2012 11.75% Lincoln Town Car Sedan 2011 9.45% Acura ZDX Hatchback 2012 7.97% Chevrolet Malibu Sedan 2007 4.49% Audi V8 Sedan 1994 3.87% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Maybach Landaulet Convertible 2012 79.73% Toyota Corolla Sedan 2012 2.55% Buick Regal GS 2012 2.17% Chevrolet Malibu Hybrid Sedan 2010 2.09% Volvo C30 Hatchback 2012 1.45% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Scion xD Hatchback 2012 24.7% Chevrolet Impala Sedan 2007 21.58% Rolls-Royce Ghost Sedan 2012 9.97% Chrysler PT Cruiser Convertible 2008 6.6% Mazda Tribute SUV 2011 5.54% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Ford Mustang Convertible 2007 23.66% Toyota Camry Sedan 2012 21.37% Honda Accord Sedan 2012 9.02% Chevrolet Malibu Sedan 2007 6.74% Dodge Caliber Wagon 2012 4.91% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 63.49% Audi 100 Wagon 1994 16.84% Audi 100 Sedan 1994 15.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.37% Dodge Caravan Minivan 1997 0.3% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Audi R8 Coupe 2012 33.3% Audi TT Hatchback 2011 20.52% BMW Z4 Convertible 2012 17.47% BMW M3 Coupe 2012 8.79% Audi A5 Coupe 2012 2.13% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Mazda Tribute SUV 2011 45.41% GMC Terrain SUV 2012 20.98% BMW X5 SUV 2007 14.58% BMW X6 SUV 2012 5.03% Jeep Compass SUV 2012 4.2% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 80.37% HUMMER H2 SUT Crew Cab 2009 4.88% Nissan NV Passenger Van 2012 1.93% Mercedes-Benz SL-Class Coupe 2009 1.77% HUMMER H3T Crew Cab 2010 1.72% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 90.65% Cadillac CTS-V Sedan 2012 4.23% Bentley Arnage Sedan 2009 0.95% Mercedes-Benz SL-Class Coupe 2009 0.85% Bugatti Veyron 16.4 Coupe 2009 0.72% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Audi S4 Sedan 2012 44.49% Audi S4 Sedan 2007 26.78% Mitsubishi Lancer Sedan 2012 17.64% Audi S5 Coupe 2012 4.33% Acura RL Sedan 2012 1.74% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura ZDX Hatchback 2012 69.76% Volkswagen Golf Hatchback 2012 19.61% Acura TL Sedan 2012 7.44% Jaguar XK XKR 2012 0.59% Hyundai Azera Sedan 2012 0.43% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Ranger SuperCab 2011 73.74% Chevrolet Silverado 1500 Regular Cab 2012 14.11% Chevrolet Silverado 1500 Extended Cab 2012 5.12% Ford F-150 Regular Cab 2012 3.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.32% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Ford F-150 Regular Cab 2012 33.04% GMC Canyon Extended Cab 2012 12.58% Chrysler Aspen SUV 2009 10.21% Dodge Ram Pickup 3500 Quad Cab 2009 6.21% Buick Rainier SUV 2007 5.7% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 72.69% Audi 100 Sedan 1994 8.99% Ford F-150 Regular Cab 2007 5.58% Mercedes-Benz 300-Class Convertible 1993 3.71% Dodge Caravan Minivan 1997 2.18% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 93.09% Chevrolet Silverado 1500 Regular Cab 2012 6.76% Dodge Dakota Club Cab 2007 0.12% GMC Canyon Extended Cab 2012 0.02% Ford F-150 Regular Cab 2012 0.01% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 AM General Hummer SUV 2000 88.39% Ford Edge SUV 2012 6.5% Jeep Wrangler SUV 2012 1.75% Jeep Patriot SUV 2012 0.92% HUMMER H3T Crew Cab 2010 0.73% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Mazda Tribute SUV 2011 33.2% GMC Acadia SUV 2012 31.31% Chevrolet Traverse SUV 2012 12.02% Hyundai Veracruz SUV 2012 8.65% Dodge Journey SUV 2012 5.58% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Porsche Panamera Sedan 2012 36.08% Jaguar XK XKR 2012 32.86% Fisker Karma Sedan 2012 9.81% Audi S6 Sedan 2011 4.56% Bentley Continental GT Coupe 2012 3.51% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 98.03% Bugatti Veyron 16.4 Convertible 2009 0.57% Bentley Continental Supersports Conv. Convertible 2012 0.4% BMW M3 Coupe 2012 0.3% Ferrari 458 Italia Convertible 2012 0.15% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 97.06% Audi S4 Sedan 2012 1.92% Audi S5 Coupe 2012 0.93% Audi TTS Coupe 2012 0.06% Audi S4 Sedan 2007 0.01% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Hyundai Veracruz SUV 2012 9.27% Chrysler Crossfire Convertible 2008 6.13% Suzuki Kizashi Sedan 2012 5.99% Acura ZDX Hatchback 2012 4.23% Mercedes-Benz C-Class Sedan 2012 3.5% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 34.72% Chevrolet Impala Sedan 2007 15.09% Chevrolet Monte Carlo Coupe 2007 8.93% Honda Accord Sedan 2012 6.14% Plymouth Neon Coupe 1999 5.43% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Chrysler Town and Country Minivan 2012 52.6% Suzuki SX4 Sedan 2012 14.96% Honda Odyssey Minivan 2007 9.48% BMW X3 SUV 2012 7.47% Suzuki Aerio Sedan 2007 4.51% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 65.71% Audi TT Hatchback 2011 20.61% Audi S5 Convertible 2012 9.33% Audi S4 Sedan 2012 3.57% Audi S6 Sedan 2011 0.31% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 90.88% Mercedes-Benz 300-Class Convertible 1993 1.34% BMW X3 SUV 2012 1.16% Volvo XC90 SUV 2007 0.99% Volvo 240 Sedan 1993 0.86% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 94.11% Mazda Tribute SUV 2011 3.09% Buick Enclave SUV 2012 0.73% Infiniti QX56 SUV 2011 0.64% Toyota Sequoia SUV 2012 0.39% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 83.25% Audi TTS Coupe 2012 7.14% Aston Martin Virage Coupe 2012 5.11% McLaren MP4-12C Coupe 2012 2.68% Ford GT Coupe 2006 0.4% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 98.85% Honda Odyssey Minivan 2007 0.26% Chevrolet Malibu Sedan 2007 0.25% Mercedes-Benz 300-Class Convertible 1993 0.15% GMC Yukon Hybrid SUV 2012 0.12% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Chevrolet HHR SS 2010 94.81% Chrysler Town and Country Minivan 2012 2.27% Ram C/V Cargo Van Minivan 2012 1.76% Toyota Sequoia SUV 2012 0.45% Dodge Magnum Wagon 2008 0.28% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 85.49% Audi TT Hatchback 2011 10.8% Audi TT RS Coupe 2012 1.12% Audi A5 Coupe 2012 0.94% Audi S5 Convertible 2012 0.7% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 96.4% Buick Regal GS 2012 2.55% Cadillac CTS-V Sedan 2012 0.46% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.18% Bentley Continental Flying Spur Sedan 2007 0.11% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Ford F-450 Super Duty Crew Cab 2012 49.49% GMC Canyon Extended Cab 2012 39.85% Chevrolet Silverado 1500 Extended Cab 2012 3.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.72% Chevrolet Silverado 1500 Regular Cab 2012 2.65% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Chevrolet Malibu Sedan 2007 28.49% Honda Accord Sedan 2012 22.51% Dodge Caravan Minivan 1997 22.04% Plymouth Neon Coupe 1999 11.87% Chevrolet Impala Sedan 2007 5.76% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 81.76% Audi TT RS Coupe 2012 11.69% Mercedes-Benz SL-Class Coupe 2009 3.19% Bentley Continental GT Coupe 2012 2.09% Bugatti Veyron 16.4 Convertible 2009 0.49% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 65.76% Dodge Magnum Wagon 2008 14.38% Audi A5 Coupe 2012 5.46% Chrysler PT Cruiser Convertible 2008 2.94% Hyundai Santa Fe SUV 2012 1.89% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 39.02% Chrysler Aspen SUV 2009 35.94% Chevrolet Tahoe Hybrid SUV 2012 8.79% Ford Expedition EL SUV 2009 6.78% Honda Odyssey Minivan 2012 3.36% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 88.07% Chrysler Aspen SUV 2009 5.95% Dodge Durango SUV 2007 3.59% Dodge Magnum Wagon 2008 1.49% Volvo XC90 SUV 2007 0.23% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 92.85% Volvo 240 Sedan 1993 1.47% Dodge Ram Pickup 3500 Quad Cab 2009 1.4% Ford Ranger SuperCab 2011 1.16% Dodge Dakota Crew Cab 2010 0.89% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 52.4% Dodge Caliber Wagon 2007 18.46% Jeep Grand Cherokee SUV 2012 16.9% Chrysler PT Cruiser Convertible 2008 8.83% Volvo C30 Hatchback 2012 1.34% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Spyker C8 Convertible 2009 39.04% Infiniti G Coupe IPL 2012 23.72% BMW M6 Convertible 2010 23.1% Chrysler 300 SRT-8 2010 3.49% Ferrari FF Coupe 2012 1.82% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Aston Martin V8 Vantage Coupe 2012 43.3% Lamborghini Aventador Coupe 2012 42.99% Chevrolet Camaro Convertible 2012 5.62% Audi R8 Coupe 2012 4.55% Dodge Charger SRT-8 2009 1.2% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Hyundai Veloster Hatchback 2012 86.06% Spyker C8 Convertible 2009 4.48% Spyker C8 Coupe 2009 3.91% Fisker Karma Sedan 2012 1.64% Porsche Panamera Sedan 2012 1.07% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 GMC Acadia SUV 2012 20.18% Cadillac Escalade EXT Crew Cab 2007 19.62% Jeep Grand Cherokee SUV 2012 18.45% Dodge Dakota Crew Cab 2010 8.44% GMC Yukon Hybrid SUV 2012 8.18% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Nissan NV Passenger Van 2012 56.0% Chevrolet Tahoe Hybrid SUV 2012 38.11% Toyota Sequoia SUV 2012 1.37% Isuzu Ascender SUV 2008 0.87% Cadillac Escalade EXT Crew Cab 2007 0.46% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Chrysler Town and Country Minivan 2012 43.39% Volvo 240 Sedan 1993 7.13% Bentley Continental Supersports Conv. Convertible 2012 6.31% Nissan NV Passenger Van 2012 4.31% Dodge Caliber Wagon 2012 4.12% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 29.01% Dodge Caliber Wagon 2012 21.7% Dodge Journey SUV 2012 17.17% Hyundai Elantra Sedan 2007 14.73% Chevrolet Traverse SUV 2012 3.08% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Nissan 240SX Coupe 1998 61.84% Mercedes-Benz Sprinter Van 2012 22.43% Audi 100 Sedan 1994 8.19% Hyundai Elantra Touring Hatchback 2012 3.43% Volkswagen Golf Hatchback 2012 1.37% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Volvo C30 Hatchback 2012 41.78% Chevrolet Camaro Convertible 2012 13.51% Dodge Charger SRT-8 2009 11.17% BMW 3 Series Sedan 2012 8.59% Jaguar XK XKR 2012 4.56% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 76.75% Mitsubishi Lancer Sedan 2012 5.12% Hyundai Elantra Sedan 2007 4.09% Daewoo Nubira Wagon 2002 2.72% Honda Accord Sedan 2012 2.57% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Dodge Dakota Club Cab 2007 73.72% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 16.04% Jeep Patriot SUV 2012 4.59% Dodge Ram Pickup 3500 Crew Cab 2010 3.28% Chrysler Aspen SUV 2009 0.73% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 49.29% Lamborghini Reventon Coupe 2008 22.66% Bugatti Veyron 16.4 Convertible 2009 9.74% Spyker C8 Convertible 2009 7.67% Ford GT Coupe 2006 3.72% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 57.99% Dodge Ram Pickup 3500 Quad Cab 2009 39.76% Dodge Dakota Club Cab 2007 1.08% Ford Ranger SuperCab 2011 0.53% GMC Canyon Extended Cab 2012 0.47% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Porsche Panamera Sedan 2012 56.03% Lamborghini Reventon Coupe 2008 16.92% Audi R8 Coupe 2012 9.49% Mercedes-Benz SL-Class Coupe 2009 8.69% BMW 6 Series Convertible 2007 1.75% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Mercedes-Benz S-Class Sedan 2012 43.33% Dodge Durango SUV 2012 11.47% BMW X3 SUV 2012 9.97% BMW ActiveHybrid 5 Sedan 2012 9.19% Mercedes-Benz Sprinter Van 2012 5.88% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.4% Chevrolet Express Cargo Van 2007 0.59% Chevrolet Express Van 2007 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Volvo 240 Sedan 1993 31.05% GMC Savana Van 2012 27.33% Audi V8 Sedan 1994 10.6% Suzuki Aerio Sedan 2007 2.86% Buick Enclave SUV 2012 2.61% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 85.94% Dodge Magnum Wagon 2008 14.01% Dodge Journey SUV 2012 0.01% Nissan 240SX Coupe 1998 0.01% Scion xD Hatchback 2012 0.01% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 91.43% Audi S4 Sedan 2012 6.4% Ford Ranger SuperCab 2011 0.45% Buick Verano Sedan 2012 0.42% Volvo C30 Hatchback 2012 0.28% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 27.59% BMW M3 Coupe 2012 25.4% Suzuki Aerio Sedan 2007 17.88% Suzuki SX4 Sedan 2012 4.41% Mitsubishi Lancer Sedan 2012 4.38% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Aston Martin V8 Vantage Convertible 2012 63.11% Aston Martin Virage Convertible 2012 12.33% Mercedes-Benz SL-Class Coupe 2009 3.55% Spyker C8 Coupe 2009 3.19% MINI Cooper Roadster Convertible 2012 2.39% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Dodge Journey SUV 2012 30.49% Hyundai Sonata Hybrid Sedan 2012 27.25% Hyundai Sonata Sedan 2012 11.15% Dodge Caliber Wagon 2012 5.93% Chevrolet Malibu Hybrid Sedan 2010 3.85% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 30.91% Fisker Karma Sedan 2012 15.99% Audi R8 Coupe 2012 9.02% Mercedes-Benz SL-Class Coupe 2009 8.49% Aston Martin V8 Vantage Convertible 2012 7.51% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Aston Martin V8 Vantage Convertible 2012 63.6% Aston Martin V8 Vantage Coupe 2012 11.99% Aston Martin Virage Convertible 2012 9.19% Chevrolet Camaro Convertible 2012 6.7% BMW Z4 Convertible 2012 2.09% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 91.37% Hyundai Veloster Hatchback 2012 4.74% Scion xD Hatchback 2012 1.18% Bentley Continental GT Coupe 2012 0.74% Volvo C30 Hatchback 2012 0.61% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 BMW M5 Sedan 2010 36.6% Suzuki Aerio Sedan 2007 7.84% BMW M6 Convertible 2010 6.74% Honda Accord Sedan 2012 6.06% Porsche Panamera Sedan 2012 4.31% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Honda Accord Sedan 2012 49.26% Nissan Leaf Hatchback 2012 10.73% Daewoo Nubira Wagon 2002 5.46% Chevrolet Impala Sedan 2007 3.86% Chrysler Sebring Convertible 2010 3.11% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 Tesla Model S Sedan 2012 17.42% Ford Mustang Convertible 2007 16.44% Volvo C30 Hatchback 2012 15.45% Audi S4 Sedan 2007 13.85% Nissan Juke Hatchback 2012 12.18% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi S4 Sedan 2012 58.38% Audi S5 Coupe 2012 15.96% Audi S6 Sedan 2011 11.2% Audi RS 4 Convertible 2008 5.37% Audi A5 Coupe 2012 4.63% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 78.37% Dodge Magnum Wagon 2008 19.56% Dodge Journey SUV 2012 0.9% Chrysler Sebring Convertible 2010 0.66% Mercedes-Benz E-Class Sedan 2012 0.14% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 99.61% Ford Mustang Convertible 2007 0.25% Suzuki Kizashi Sedan 2012 0.05% Eagle Talon Hatchback 1998 0.02% Volkswagen Golf Hatchback 1991 0.02% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 93.72% Bentley Continental GT Coupe 2012 1.51% Infiniti G Coupe IPL 2012 0.87% Tesla Model S Sedan 2012 0.64% Audi R8 Coupe 2012 0.58% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 46.49% Audi 100 Wagon 1994 24.12% Hyundai Veracruz SUV 2012 20.3% Mercedes-Benz 300-Class Convertible 1993 1.37% BMW ActiveHybrid 5 Sedan 2012 1.21% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 53.3% Audi 100 Wagon 1994 21.43% Mercedes-Benz 300-Class Convertible 1993 9.29% Volkswagen Golf Hatchback 1991 4.06% Audi 100 Sedan 1994 2.57% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 55.84% Chevrolet Silverado 2500HD Regular Cab 2012 34.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.16% Chrysler Aspen SUV 2009 1.01% Ford Expedition EL SUV 2009 0.55% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 16.58% Toyota Sequoia SUV 2012 14.17% Mercedes-Benz SL-Class Coupe 2009 11.37% Mercedes-Benz Sprinter Van 2012 11.3% Hyundai Tucson SUV 2012 10.19% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Land Rover LR2 SUV 2012 24.34% Cadillac SRX SUV 2012 11.69% Dodge Durango SUV 2012 4.38% Acura RL Sedan 2012 3.29% Hyundai Tucson SUV 2012 2.97% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 58.58% Dodge Caliber Wagon 2012 29.35% Ford Focus Sedan 2007 1.66% Nissan Leaf Hatchback 2012 1.43% Chevrolet Monte Carlo Coupe 2007 1.29% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 60.81% Chevrolet Monte Carlo Coupe 2007 15.51% Plymouth Neon Coupe 1999 11.25% Chevrolet Impala Sedan 2007 7.21% Ford Focus Sedan 2007 2.29% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 98.79% Audi 100 Wagon 1994 1.05% Audi 100 Sedan 1994 0.15% Ford Mustang Convertible 2007 0.01% Audi V8 Sedan 1994 0.0% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Hyundai Elantra Sedan 2007 52.77% Chevrolet Malibu Sedan 2007 15.85% Lincoln Town Car Sedan 2011 5.9% Chrysler Sebring Convertible 2010 4.35% Honda Accord Sedan 2012 2.89% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 99.88% Bentley Continental GT Coupe 2007 0.07% Bentley Continental GT Coupe 2012 0.03% Bentley Continental Supersports Conv. Convertible 2012 0.02% Bentley Continental Flying Spur Sedan 2007 0.0% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Hyundai Veracruz SUV 2012 73.16% Buick Verano Sedan 2012 11.13% Honda Odyssey Minivan 2012 6.33% Scion xD Hatchback 2012 1.48% BMW X6 SUV 2012 1.47% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.93% Chevrolet Tahoe Hybrid SUV 2012 0.06% Ford F-150 Regular Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 92.94% BMW M3 Coupe 2012 3.65% BMW ActiveHybrid 5 Sedan 2012 3.16% Acura TL Type-S 2008 0.1% Mercedes-Benz C-Class Sedan 2012 0.02% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Cadillac SRX SUV 2012 38.7% Suzuki SX4 Hatchback 2012 32.46% Suzuki SX4 Sedan 2012 9.96% Hyundai Veracruz SUV 2012 7.76% BMW X3 SUV 2012 2.46% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 99.28% Chevrolet HHR SS 2010 0.15% GMC Terrain SUV 2012 0.07% Chrysler 300 SRT-8 2010 0.05% Acura TL Type-S 2008 0.04% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 BMW 1 Series Convertible 2012 31.52% BMW Z4 Convertible 2012 18.41% Audi TT RS Coupe 2012 17.77% Audi TT Hatchback 2011 12.13% Bugatti Veyron 16.4 Convertible 2009 7.08% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Bugatti Veyron 16.4 Coupe 2009 28.23% Bentley Arnage Sedan 2009 27.76% Nissan Juke Hatchback 2012 8.67% Lamborghini Reventon Coupe 2008 7.91% Bentley Continental GT Coupe 2012 4.55% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Maybach Landaulet Convertible 2012 46.3% Plymouth Neon Coupe 1999 19.83% Audi V8 Sedan 1994 13.5% Eagle Talon Hatchback 1998 2.57% Chrysler PT Cruiser Convertible 2008 2.56% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Ford GT Coupe 2006 78.79% Lamborghini Gallardo LP 570-4 Superleggera 2012 14.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.65% Dodge Challenger SRT8 2011 1.44% Lamborghini Diablo Coupe 2001 0.47% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Jeep Grand Cherokee SUV 2012 43.18% Jeep Patriot SUV 2012 28.92% Jeep Liberty SUV 2012 9.98% Dodge Durango SUV 2012 4.43% Ford Expedition EL SUV 2009 2.28% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 63.46% Audi S5 Coupe 2012 18.33% Audi S5 Convertible 2012 9.37% Audi RS 4 Convertible 2008 3.18% Audi S4 Sedan 2007 2.19% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Abarth 2012 62.56% Bugatti Veyron 16.4 Coupe 2009 31.64% Chevrolet Corvette ZR1 2012 3.87% Bentley Arnage Sedan 2009 1.24% Ford Mustang Convertible 2007 0.2% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Audi 100 Wagon 1994 70.98% Hyundai Sonata Sedan 2012 6.81% Honda Odyssey Minivan 2012 5.95% BMW M5 Sedan 2010 3.3% Audi S5 Coupe 2012 2.91% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 AM General Hummer SUV 2000 80.59% Chevrolet Silverado 2500HD Regular Cab 2012 7.46% Chevrolet Silverado 1500 Regular Cab 2012 5.19% HUMMER H2 SUT Crew Cab 2009 4.55% Jeep Patriot SUV 2012 0.83% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 98.45% Bentley Continental GT Coupe 2012 0.4% Suzuki Kizashi Sedan 2012 0.25% Bugatti Veyron 16.4 Convertible 2009 0.18% BMW ActiveHybrid 5 Sedan 2012 0.15% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 68.65% Bugatti Veyron 16.4 Coupe 2009 16.85% Chevrolet Corvette Convertible 2012 3.55% Chevrolet Corvette ZR1 2012 2.58% Aston Martin V8 Vantage Convertible 2012 2.32% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Chevrolet Camaro Convertible 2012 54.59% BMW M6 Convertible 2010 6.4% Eagle Talon Hatchback 1998 6.09% BMW 1 Series Convertible 2012 3.04% BMW 3 Series Wagon 2012 2.99% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chrysler Sebring Convertible 2010 99.71% Dodge Magnum Wagon 2008 0.11% Mercedes-Benz S-Class Sedan 2012 0.04% Chrysler Crossfire Convertible 2008 0.03% Ram C/V Cargo Van Minivan 2012 0.02% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Dakota Club Cab 2007 92.88% Dodge Ram Pickup 3500 Crew Cab 2010 4.9% Dodge Ram Pickup 3500 Quad Cab 2009 1.56% Dodge Dakota Crew Cab 2010 0.27% Isuzu Ascender SUV 2008 0.16% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW M5 Sedan 2010 45.56% BMW M3 Coupe 2012 42.26% BMW ActiveHybrid 5 Sedan 2012 10.33% Acura TL Type-S 2008 0.28% BMW 3 Series Wagon 2012 0.24% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Bentley Arnage Sedan 2009 19.08% Fisker Karma Sedan 2012 11.26% Tesla Model S Sedan 2012 9.74% Audi V8 Sedan 1994 9.1% Acura RL Sedan 2012 5.81% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 82.02% Chevrolet Silverado 1500 Regular Cab 2012 12.66% Ford F-150 Regular Cab 2007 2.62% Ford F-150 Regular Cab 2012 1.27% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.37% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 85.15% Acura TL Sedan 2012 5.49% Acura TL Type-S 2008 5.01% BMW 6 Series Convertible 2007 2.2% BMW M6 Convertible 2010 0.85% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 65.6% Daewoo Nubira Wagon 2002 20.29% Chevrolet Malibu Sedan 2007 3.59% Ford Mustang Convertible 2007 1.82% Audi 100 Wagon 1994 1.79% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 98.57% Audi 100 Sedan 1994 1.37% Audi 100 Wagon 1994 0.03% Chevrolet Express Van 2007 0.01% Chevrolet Express Cargo Van 2007 0.01% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 94.25% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.7% Aston Martin V8 Vantage Convertible 2012 0.31% Bentley Continental Supersports Conv. Convertible 2012 0.24% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.23% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 99.96% Ford Expedition EL SUV 2009 0.02% Dodge Durango SUV 2012 0.01% Dodge Durango SUV 2007 0.0% Dodge Journey SUV 2012 0.0% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.9% Bugatti Veyron 16.4 Convertible 2009 0.08% Audi TTS Coupe 2012 0.0% Infiniti G Coupe IPL 2012 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Dodge Sprinter Cargo Van 2009 61.13% Chevrolet Monte Carlo Coupe 2007 4.89% GMC Canyon Extended Cab 2012 4.85% GMC Acadia SUV 2012 2.36% Audi 100 Wagon 1994 1.92% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 49.56% Plymouth Neon Coupe 1999 30.26% Chevrolet Impala Sedan 2007 8.04% Daewoo Nubira Wagon 2002 5.67% Chevrolet Monte Carlo Coupe 2007 2.35% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 98.8% Bugatti Veyron 16.4 Convertible 2009 1.17% Bugatti Veyron 16.4 Coupe 2009 0.01% Bentley Continental Supersports Conv. Convertible 2012 0.01% Bentley Mulsanne Sedan 2011 0.0% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Acura ZDX Hatchback 2012 60.72% Hyundai Tucson SUV 2012 20.93% Chevrolet Traverse SUV 2012 5.4% Buick Enclave SUV 2012 2.36% Fisker Karma Sedan 2012 1.63% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Audi RS 4 Convertible 2008 38.44% Chevrolet Cobalt SS 2010 27.4% BMW Z4 Convertible 2012 10.98% Chevrolet Corvette Convertible 2012 6.63% Ferrari 458 Italia Convertible 2012 5.46% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Hyundai Genesis Sedan 2012 82.83% Honda Accord Sedan 2012 12.68% Honda Accord Coupe 2012 1.46% Hyundai Sonata Sedan 2012 0.97% Chrysler Crossfire Convertible 2008 0.51% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 74.0% Mercedes-Benz Sprinter Van 2012 24.94% Audi 100 Sedan 1994 0.54% Audi 100 Wagon 1994 0.27% Ram C/V Cargo Van Minivan 2012 0.1% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 69.58% Dodge Ram Pickup 3500 Crew Cab 2010 14.7% Ford F-150 Regular Cab 2012 11.33% Dodge Ram Pickup 3500 Quad Cab 2009 1.77% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.87% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Spyker C8 Convertible 2009 59.11% Spyker C8 Coupe 2009 5.54% Lamborghini Diablo Coupe 2001 5.51% FIAT 500 Convertible 2012 3.32% Lamborghini Reventon Coupe 2008 2.93% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Reventon Coupe 2008 99.72% Volkswagen Golf Hatchback 1991 0.05% Audi V8 Sedan 1994 0.04% Bentley Continental Flying Spur Sedan 2007 0.03% Acura Integra Type R 2001 0.02% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 11.26% BMW M3 Coupe 2012 7.76% Suzuki Kizashi Sedan 2012 6.51% Audi S6 Sedan 2011 6.19% Bentley Continental GT Coupe 2012 5.18% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 99.13% Chevrolet Impala Sedan 2007 0.73% Plymouth Neon Coupe 1999 0.04% Dodge Caravan Minivan 1997 0.04% Chevrolet Malibu Sedan 2007 0.02% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Hyundai Veloster Hatchback 2012 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Aston Martin V8 Vantage Convertible 2012 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 68.05% Audi V8 Sedan 1994 17.79% Audi R8 Coupe 2012 4.59% Ford Mustang Convertible 2007 2.18% Audi S4 Sedan 2007 2.05% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Audi R8 Coupe 2012 37.64% Bentley Arnage Sedan 2009 34.72% Nissan Juke Hatchback 2012 10.57% Bugatti Veyron 16.4 Coupe 2009 5.87% Ford GT Coupe 2006 1.67% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.98% Land Rover Range Rover SUV 2012 0.02% Land Rover LR2 SUV 2012 0.0% Ford Edge SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Lincoln Town Car Sedan 2011 37.03% Nissan NV Passenger Van 2012 21.79% Mazda Tribute SUV 2011 7.72% GMC Acadia SUV 2012 6.92% Buick Enclave SUV 2012 3.1% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Dodge Challenger SRT8 2011 68.96% Aston Martin Virage Convertible 2012 5.31% Aston Martin Virage Coupe 2012 2.84% Bentley Continental Flying Spur Sedan 2007 2.7% Spyker C8 Convertible 2009 2.55% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 99.74% Ford Fiesta Sedan 2012 0.2% Toyota Corolla Sedan 2012 0.05% Chevrolet Malibu Sedan 2007 0.01% Hyundai Tucson SUV 2012 0.0% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 34.82% Suzuki SX4 Sedan 2012 19.8% Chevrolet Impala Sedan 2007 12.99% Chevrolet Monte Carlo Coupe 2007 8.18% Scion xD Hatchback 2012 6.43% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 82.16% Audi TT RS Coupe 2012 3.91% Rolls-Royce Ghost Sedan 2012 3.41% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.96% Aston Martin V8 Vantage Convertible 2012 1.39% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.89% Scion xD Hatchback 2012 0.03% Geo Metro Convertible 1993 0.03% Acura Integra Type R 2001 0.01% Ford Fiesta Sedan 2012 0.01% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 30.7% Cadillac Escalade EXT Crew Cab 2007 25.69% GMC Yukon Hybrid SUV 2012 14.2% Dodge Durango SUV 2012 11.16% Ford Ranger SuperCab 2011 2.43% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 72.94% Chevrolet Silverado 1500 Extended Cab 2012 20.03% Chevrolet Avalanche Crew Cab 2012 3.23% Chevrolet Silverado 1500 Regular Cab 2012 1.6% GMC Canyon Extended Cab 2012 0.88% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 80.81% Dodge Caliber Wagon 2012 12.69% Dodge Dakota Crew Cab 2010 5.92% Ford Freestar Minivan 2007 0.44% Chrysler Aspen SUV 2009 0.08% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 88.55% Dodge Charger Sedan 2012 2.95% Ford Mustang Convertible 2007 1.99% Chevrolet Corvette Convertible 2012 1.96% BMW Z4 Convertible 2012 1.63% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 92.44% Honda Odyssey Minivan 2012 5.46% Honda Accord Sedan 2012 1.19% Dodge Caravan Minivan 1997 0.22% Chevrolet Malibu Sedan 2007 0.21% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Aston Martin V8 Vantage Convertible 2012 21.4% BMW M6 Convertible 2010 18.23% Bugatti Veyron 16.4 Convertible 2009 15.74% Rolls-Royce Phantom Drophead Coupe Convertible 2012 14.81% Jaguar XK XKR 2012 11.88% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Acura RL Sedan 2012 44.69% Plymouth Neon Coupe 1999 15.8% Acura ZDX Hatchback 2012 12.02% Audi S4 Sedan 2007 4.86% Bentley Continental GT Coupe 2007 3.95% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Fisker Karma Sedan 2012 21.72% Bugatti Veyron 16.4 Convertible 2009 14.23% Porsche Panamera Sedan 2012 9.15% Spyker C8 Convertible 2009 6.25% Bugatti Veyron 16.4 Coupe 2009 4.72% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 99.63% Jeep Wrangler SUV 2012 0.18% Dodge Ram Pickup 3500 Crew Cab 2010 0.09% HUMMER H2 SUT Crew Cab 2009 0.06% Ford Expedition EL SUV 2009 0.02% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Cadillac CTS-V Sedan 2012 16.32% Ferrari 458 Italia Coupe 2012 14.47% Ferrari California Convertible 2012 11.3% BMW Z4 Convertible 2012 9.44% Honda Accord Coupe 2012 9.16% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Jeep Grand Cherokee SUV 2012 82.99% Jeep Liberty SUV 2012 5.29% AM General Hummer SUV 2000 2.78% Jeep Wrangler SUV 2012 2.49% Bentley Arnage Sedan 2009 1.45% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 98.77% Dodge Caliber Wagon 2007 1.22% Dodge Caliber Wagon 2012 0.0% Dodge Dakota Club Cab 2007 0.0% Ford Ranger SuperCab 2011 0.0% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 45.69% GMC Terrain SUV 2012 31.71% Toyota Sequoia SUV 2012 12.5% Mazda Tribute SUV 2011 2.32% Jeep Compass SUV 2012 1.19% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Infiniti QX56 SUV 2011 85.37% BMW X6 SUV 2012 4.39% Acura ZDX Hatchback 2012 2.08% Buick Verano Sedan 2012 1.72% Fisker Karma Sedan 2012 1.41% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 41.48% GMC Savana Van 2012 36.05% Chevrolet Express Van 2007 22.47% Plymouth Neon Coupe 1999 0.0% Dodge Caravan Minivan 1997 0.0% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 99.01% Nissan Juke Hatchback 2012 0.3% Nissan 240SX Coupe 1998 0.19% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.08% Dodge Caliber Wagon 2007 0.07% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 83.08% Cadillac Escalade EXT Crew Cab 2007 11.93% Dodge Durango SUV 2007 2.61% Ford Expedition EL SUV 2009 0.34% Land Rover LR2 SUV 2012 0.3% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Plymouth Neon Coupe 1999 51.92% Geo Metro Convertible 1993 46.8% Eagle Talon Hatchback 1998 0.36% Nissan 240SX Coupe 1998 0.26% Ford Focus Sedan 2007 0.2% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 52.09% Geo Metro Convertible 1993 41.41% Volkswagen Golf Hatchback 1991 3.13% Chrysler Crossfire Convertible 2008 1.62% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.64% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 62.47% Hyundai Genesis Sedan 2012 7.44% Volvo XC90 SUV 2007 2.96% BMW 3 Series Sedan 2012 2.9% GMC Acadia SUV 2012 2.35% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Buick Verano Sedan 2012 61.9% Toyota Camry Sedan 2012 8.65% Hyundai Tucson SUV 2012 4.58% Dodge Magnum Wagon 2008 4.23% Honda Accord Coupe 2012 3.31% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Acura TL Type-S 2008 49.49% Hyundai Elantra Touring Hatchback 2012 16.05% Chrysler Town and Country Minivan 2012 12.09% Honda Odyssey Minivan 2007 11.22% Ram C/V Cargo Van Minivan 2012 3.31% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 31.82% Rolls-Royce Ghost Sedan 2012 19.31% Buick Regal GS 2012 14.28% Rolls-Royce Phantom Sedan 2012 10.71% Maybach Landaulet Convertible 2012 9.84% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Chevrolet Camaro Convertible 2012 55.04% Aston Martin Virage Convertible 2012 12.72% Cadillac CTS-V Sedan 2012 5.92% Audi TTS Coupe 2012 4.93% Aston Martin V8 Vantage Coupe 2012 4.39% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Infiniti G Coupe IPL 2012 56.46% BMW ActiveHybrid 5 Sedan 2012 14.14% Buick Verano Sedan 2012 12.32% Volkswagen Beetle Hatchback 2012 4.33% Porsche Panamera Sedan 2012 3.52% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Isuzu Ascender SUV 2008 37.0% Dodge Dakota Crew Cab 2010 14.24% Ford F-150 Regular Cab 2007 11.94% GMC Acadia SUV 2012 6.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.27% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Chevrolet Corvette Convertible 2012 38.83% Lamborghini Diablo Coupe 2001 29.76% McLaren MP4-12C Coupe 2012 9.82% Spyker C8 Coupe 2009 7.83% Aston Martin V8 Vantage Coupe 2012 5.88% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Chrysler PT Cruiser Convertible 2008 41.1% BMW 3 Series Wagon 2012 32.9% BMW 3 Series Sedan 2012 4.9% Hyundai Sonata Hybrid Sedan 2012 3.15% Dodge Challenger SRT8 2011 2.28% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 99.99% Honda Odyssey Minivan 2007 0.0% Acura TSX Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Acura TL Type-S 2008 0.0% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 96.03% Acura ZDX Hatchback 2012 1.03% Toyota Camry Sedan 2012 0.89% Bentley Mulsanne Sedan 2011 0.23% Ford Fiesta Sedan 2012 0.21% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 68.13% GMC Yukon Hybrid SUV 2012 11.29% Cadillac SRX SUV 2012 10.2% Dodge Durango SUV 2012 8.23% Toyota 4Runner SUV 2012 1.94% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 61.91% Audi V8 Sedan 1994 37.05% Dodge Ram Pickup 3500 Quad Cab 2009 0.39% Volkswagen Golf Hatchback 1991 0.14% Audi 100 Sedan 1994 0.14% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Dodge Charger Sedan 2012 50.68% Ferrari FF Coupe 2012 18.33% Nissan Juke Hatchback 2012 8.12% Chevrolet Sonic Sedan 2012 4.22% Chrysler 300 SRT-8 2010 3.95% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 88.85% Hyundai Sonata Sedan 2012 4.35% Hyundai Azera Sedan 2012 2.21% Mercedes-Benz C-Class Sedan 2012 1.77% Volkswagen Golf Hatchback 2012 1.0% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 25.32% Dodge Ram Pickup 3500 Crew Cab 2010 25.15% Toyota 4Runner SUV 2012 15.72% Chevrolet Silverado 1500 Regular Cab 2012 8.12% Cadillac Escalade EXT Crew Cab 2007 7.16% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 36.25% Chevrolet Express Cargo Van 2007 16.66% Ford F-150 Regular Cab 2007 15.59% Audi 100 Sedan 1994 10.06% Chevrolet Express Van 2007 8.86% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 83.61% Toyota Sequoia SUV 2012 5.98% Dodge Ram Pickup 3500 Crew Cab 2010 5.62% Ford Expedition EL SUV 2009 2.29% Dodge Ram Pickup 3500 Quad Cab 2009 1.35% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 BMW ActiveHybrid 5 Sedan 2012 38.17% Acura RL Sedan 2012 15.5% Porsche Panamera Sedan 2012 10.94% Acura TL Sedan 2012 9.85% Audi TT Hatchback 2011 9.72% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 80.2% Audi TT RS Coupe 2012 4.97% Audi TTS Coupe 2012 4.19% Ford GT Coupe 2006 2.03% Ferrari California Convertible 2012 2.0% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 96.76% Acura TL Sedan 2012 3.13% Acura RL Sedan 2012 0.07% Honda Accord Sedan 2012 0.01% Mercedes-Benz SL-Class Coupe 2009 0.01% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 82.24% Toyota Corolla Sedan 2012 9.09% Mercedes-Benz E-Class Sedan 2012 6.21% BMW M3 Coupe 2012 0.82% Hyundai Genesis Sedan 2012 0.72% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 98.72% Buick Verano Sedan 2012 0.37% Cadillac SRX SUV 2012 0.23% Bentley Continental GT Coupe 2007 0.12% Daewoo Nubira Wagon 2002 0.07% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 82.43% Mercedes-Benz 300-Class Convertible 1993 7.21% Nissan NV Passenger Van 2012 2.64% Jeep Compass SUV 2012 1.67% Dodge Caliber Wagon 2012 0.86% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 BMW 3 Series Wagon 2012 22.49% Hyundai Genesis Sedan 2012 19.0% Mercedes-Benz S-Class Sedan 2012 9.35% Chevrolet Cobalt SS 2010 5.12% Dodge Challenger SRT8 2011 4.81% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Audi S5 Coupe 2012 26.98% Toyota 4Runner SUV 2012 24.77% BMW X6 SUV 2012 13.22% Infiniti QX56 SUV 2011 7.63% Ram C/V Cargo Van Minivan 2012 6.15% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 85.14% Ferrari 458 Italia Convertible 2012 12.88% Audi RS 4 Convertible 2008 0.7% McLaren MP4-12C Coupe 2012 0.42% Spyker C8 Coupe 2009 0.4% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 82.15% Suzuki Aerio Sedan 2007 3.97% Buick Verano Sedan 2012 2.35% Volkswagen Beetle Hatchback 2012 1.7% Bentley Continental Flying Spur Sedan 2007 1.67% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 92.01% Volvo 240 Sedan 1993 7.05% Ram C/V Cargo Van Minivan 2012 0.32% Dodge Caliber Wagon 2007 0.2% Dodge Journey SUV 2012 0.12% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Fisker Karma Sedan 2012 41.56% Hyundai Veloster Hatchback 2012 15.31% BMW 6 Series Convertible 2007 12.64% Bentley Continental GT Coupe 2012 9.25% BMW Z4 Convertible 2012 6.11% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 36.37% Audi S5 Convertible 2012 27.77% Audi S5 Coupe 2012 22.14% Audi TT Hatchback 2011 3.84% Cadillac SRX SUV 2012 3.17% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 20.02% Acura TSX Sedan 2012 18.66% Honda Accord Sedan 2012 14.22% Hyundai Tucson SUV 2012 12.55% Hyundai Veracruz SUV 2012 7.8% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 BMW Z4 Convertible 2012 47.96% BMW 1 Series Convertible 2012 14.66% BMW 6 Series Convertible 2007 11.12% Bugatti Veyron 16.4 Convertible 2009 9.87% Audi TT RS Coupe 2012 7.27% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 Jaguar XK XKR 2012 44.61% BMW 3 Series Wagon 2012 24.17% Hyundai Elantra Sedan 2007 13.68% BMW ActiveHybrid 5 Sedan 2012 5.41% Audi S6 Sedan 2011 2.28% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 80.47% GMC Yukon Hybrid SUV 2012 14.33% Ford F-150 Regular Cab 2007 4.81% Chevrolet Avalanche Crew Cab 2012 0.12% Chevrolet Silverado 1500 Regular Cab 2012 0.07% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Aston Martin V8 Vantage Coupe 2012 54.82% Chevrolet Corvette Convertible 2012 29.56% Audi TTS Coupe 2012 5.71% McLaren MP4-12C Coupe 2012 2.8% Aston Martin Virage Coupe 2012 2.7% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.99% Ford F-150 Regular Cab 2007 0.01% Chevrolet Express Cargo Van 2007 0.0% GMC Savana Van 2012 0.0% Ford E-Series Wagon Van 2012 0.0% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 75.93% Ford F-150 Regular Cab 2007 5.93% GMC Terrain SUV 2012 2.86% Jeep Grand Cherokee SUV 2012 2.08% Dodge Caliber Wagon 2012 1.48% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 96.78% Bentley Continental GT Coupe 2007 1.26% Rolls-Royce Phantom Sedan 2012 1.01% Rolls-Royce Ghost Sedan 2012 0.65% Bentley Continental Flying Spur Sedan 2007 0.13% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Nissan Leaf Hatchback 2012 98.52% Ford Fiesta Sedan 2012 0.64% Hyundai Elantra Sedan 2007 0.24% Suzuki SX4 Sedan 2012 0.18% Daewoo Nubira Wagon 2002 0.14% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Acura ZDX Hatchback 2012 46.03% Infiniti QX56 SUV 2011 43.23% Chevrolet Traverse SUV 2012 2.73% Hyundai Elantra Touring Hatchback 2012 1.4% Hyundai Tucson SUV 2012 0.82% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Mazda Tribute SUV 2011 95.33% Suzuki SX4 Hatchback 2012 2.2% Buick Rainier SUV 2007 1.27% Daewoo Nubira Wagon 2002 0.36% Suzuki SX4 Sedan 2012 0.21% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Convertible 2012 51.54% Ferrari FF Coupe 2012 25.74% Fisker Karma Sedan 2012 6.2% BMW 6 Series Convertible 2007 1.94% MINI Cooper Roadster Convertible 2012 1.93% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 54.65% Chevrolet Silverado 1500 Extended Cab 2012 30.82% Chevrolet Silverado 1500 Regular Cab 2012 9.55% Chevrolet Silverado 2500HD Regular Cab 2012 4.79% Ford F-150 Regular Cab 2012 0.09% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 Spyker C8 Coupe 2009 99.05% FIAT 500 Convertible 2012 0.33% Spyker C8 Convertible 2009 0.27% Bugatti Veyron 16.4 Coupe 2009 0.11% smart fortwo Convertible 2012 0.09% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 41.04% Suzuki SX4 Hatchback 2012 38.4% Ram C/V Cargo Van Minivan 2012 4.61% Hyundai Tucson SUV 2012 2.4% Jeep Compass SUV 2012 1.67% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Hyundai Genesis Sedan 2012 80.42% Honda Accord Sedan 2012 7.77% Honda Accord Coupe 2012 6.19% Hyundai Sonata Sedan 2012 2.86% Chrysler Sebring Convertible 2010 0.85% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Buick Regal GS 2012 63.26% Hyundai Sonata Hybrid Sedan 2012 25.16% Hyundai Accent Sedan 2012 9.72% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.4% Tesla Model S Sedan 2012 0.18% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 91.76% Chevrolet Silverado 1500 Regular Cab 2012 5.5% Chevrolet Silverado 2500HD Regular Cab 2012 2.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.14% GMC Yukon Hybrid SUV 2012 0.09% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 BMW 3 Series Wagon 2012 40.84% BMW 3 Series Sedan 2012 22.28% Volvo C30 Hatchback 2012 8.22% BMW X6 SUV 2012 8.0% Hyundai Sonata Sedan 2012 4.07% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 88.53% Porsche Panamera Sedan 2012 9.03% Jaguar XK XKR 2012 2.29% Bentley Arnage Sedan 2009 0.11% Audi R8 Coupe 2012 0.02% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 58.62% Acura Integra Type R 2001 18.24% Lamborghini Diablo Coupe 2001 11.79% Ford Mustang Convertible 2007 3.4% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.49% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Acura Integra Type R 2001 96.42% Dodge Charger Sedan 2012 1.3% Lamborghini Diablo Coupe 2001 0.99% Audi RS 4 Convertible 2008 0.48% Geo Metro Convertible 1993 0.26% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 75.42% Chevrolet Express Cargo Van 2007 23.07% Chevrolet Express Van 2007 1.51% Audi V8 Sedan 1994 0.0% Audi 100 Wagon 1994 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Convertible 2009 66.42% Chevrolet Corvette Convertible 2012 17.18% Fisker Karma Sedan 2012 10.32% Chevrolet Corvette ZR1 2012 3.28% Volkswagen Beetle Hatchback 2012 1.02% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 62.87% Chevrolet Corvette Convertible 2012 10.52% Ferrari 458 Italia Coupe 2012 7.14% McLaren MP4-12C Coupe 2012 5.85% Dodge Charger SRT-8 2009 3.98% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Suzuki Kizashi Sedan 2012 30.47% BMW Z4 Convertible 2012 11.84% Audi TT RS Coupe 2012 10.24% Bentley Continental Supersports Conv. Convertible 2012 9.1% Cadillac CTS-V Sedan 2012 9.08% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 71.27% GMC Yukon Hybrid SUV 2012 24.94% Dodge Durango SUV 2012 2.12% Chevrolet Tahoe Hybrid SUV 2012 0.57% Toyota Sequoia SUV 2012 0.42% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 57.08% Dodge Charger Sedan 2012 22.03% Chevrolet Camaro Convertible 2012 5.4% Volvo C30 Hatchback 2012 2.79% BMW M3 Coupe 2012 2.48% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 92.98% Ford F-150 Regular Cab 2012 2.78% Ford F-450 Super Duty Crew Cab 2012 2.22% Dodge Ram Pickup 3500 Crew Cab 2010 0.63% Dodge Ram Pickup 3500 Quad Cab 2009 0.61% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 99.88% Chevrolet Avalanche Crew Cab 2012 0.06% Acura ZDX Hatchback 2012 0.02% Acura TL Sedan 2012 0.0% Dodge Durango SUV 2012 0.0% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 90.31% Hyundai Veloster Hatchback 2012 3.91% McLaren MP4-12C Coupe 2012 3.55% Aston Martin V8 Vantage Coupe 2012 0.86% Ferrari 458 Italia Coupe 2012 0.64% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Honda Accord Coupe 2012 55.77% Hyundai Tucson SUV 2012 20.58% Ford Fiesta Sedan 2012 5.12% Hyundai Sonata Hybrid Sedan 2012 3.73% Buick Verano Sedan 2012 2.46% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Aston Martin V8 Vantage Convertible 2012 23.63% Audi TTS Coupe 2012 23.32% Rolls-Royce Ghost Sedan 2012 22.53% Fisker Karma Sedan 2012 12.12% Lamborghini Reventon Coupe 2008 3.45% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Acura ZDX Hatchback 2012 20.31% Nissan Leaf Hatchback 2012 16.78% Volkswagen Beetle Hatchback 2012 11.22% Chevrolet Impala Sedan 2007 6.41% Suzuki SX4 Sedan 2012 5.65% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 76.69% Fisker Karma Sedan 2012 9.69% Mercedes-Benz SL-Class Coupe 2009 2.71% Dodge Challenger SRT8 2011 1.92% Lamborghini Aventador Coupe 2012 1.09% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Volkswagen Golf Hatchback 1991 55.27% Audi V8 Sedan 1994 16.4% Ford Mustang Convertible 2007 13.66% Acura Integra Type R 2001 5.53% GMC Savana Van 2012 2.34% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ford Fiesta Sedan 2012 95.68% Nissan Leaf Hatchback 2012 3.82% Volkswagen Beetle Hatchback 2012 0.24% Hyundai Elantra Touring Hatchback 2012 0.09% Scion xD Hatchback 2012 0.08% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 71.97% GMC Yukon Hybrid SUV 2012 14.06% Ford F-450 Super Duty Crew Cab 2012 3.72% Volvo XC90 SUV 2007 3.59% Jeep Compass SUV 2012 3.57% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 97.19% Chevrolet Express Van 2007 1.5% Chevrolet Express Cargo Van 2007 1.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Nissan Juke Hatchback 2012 0.01% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Volvo C30 Hatchback 2012 65.79% BMW 1 Series Coupe 2012 12.28% Dodge Charger SRT-8 2009 7.39% Bentley Continental GT Coupe 2012 5.07% Mitsubishi Lancer Sedan 2012 2.76% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford E-Series Wagon Van 2012 93.42% Ford F-150 Regular Cab 2012 5.06% Ford F-450 Super Duty Crew Cab 2012 0.69% Dodge Ram Pickup 3500 Crew Cab 2010 0.55% Ford Expedition EL SUV 2009 0.13% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Chrysler PT Cruiser Convertible 2008 97.62% smart fortwo Convertible 2012 0.67% Geo Metro Convertible 1993 0.56% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.46% Mercedes-Benz 300-Class Convertible 1993 0.32% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Canyon Extended Cab 2012 98.21% Chevrolet Silverado 1500 Extended Cab 2012 0.99% Ford F-150 Regular Cab 2007 0.75% Chevrolet Silverado 1500 Regular Cab 2012 0.03% Dodge Dakota Club Cab 2007 0.02% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi S6 Sedan 2011 48.53% Audi A5 Coupe 2012 31.19% Audi S4 Sedan 2012 14.44% Audi S5 Coupe 2012 4.23% BMW 3 Series Wagon 2012 0.55% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 66.22% Buick Regal GS 2012 16.86% Chrysler 300 SRT-8 2010 7.2% Dodge Magnum Wagon 2008 2.15% Chevrolet Malibu Hybrid Sedan 2010 1.85% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 20.62% Audi TT RS Coupe 2012 10.46% Dodge Challenger SRT8 2011 9.35% Lamborghini Aventador Coupe 2012 8.28% Aston Martin V8 Vantage Coupe 2012 7.79% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.72% Ford F-450 Super Duty Crew Cab 2012 0.17% Dodge Ram Pickup 3500 Quad Cab 2009 0.07% Dodge Dakota Crew Cab 2010 0.01% Ford F-150 Regular Cab 2012 0.01% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Audi TTS Coupe 2012 72.11% Audi TT RS Coupe 2012 6.52% Cadillac CTS-V Sedan 2012 4.31% BMW M6 Convertible 2010 2.79% Audi S4 Sedan 2012 2.32% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.99% Ford Freestar Minivan 2007 0.01% Land Rover LR2 SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% Buick Rainier SUV 2007 0.0% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 64.94% Lincoln Town Car Sedan 2011 10.36% GMC Acadia SUV 2012 6.09% Audi 100 Sedan 1994 5.98% Dodge Sprinter Cargo Van 2009 3.11% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 78.71% Hyundai Elantra Sedan 2007 5.55% Daewoo Nubira Wagon 2002 5.09% Honda Accord Sedan 2012 1.53% Ford Focus Sedan 2007 1.49% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 93.56% Eagle Talon Hatchback 1998 3.74% Ford Focus Sedan 2007 1.43% Nissan 240SX Coupe 1998 1.0% Daewoo Nubira Wagon 2002 0.07% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 65.65% Hyundai Genesis Sedan 2012 27.33% Ford Expedition EL SUV 2009 1.76% Mercedes-Benz S-Class Sedan 2012 1.47% Mercedes-Benz E-Class Sedan 2012 1.26% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 53.54% Chevrolet Malibu Sedan 2007 29.96% Honda Accord Sedan 2012 7.7% Dodge Caravan Minivan 1997 4.94% Chrysler Sebring Convertible 2010 1.46% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 99.21% Hyundai Sonata Hybrid Sedan 2012 0.18% Suzuki Kizashi Sedan 2012 0.12% Audi S4 Sedan 2007 0.08% BMW 1 Series Convertible 2012 0.05% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Infiniti QX56 SUV 2011 97.31% Dodge Durango SUV 2012 2.07% Ford Expedition EL SUV 2009 0.22% Chrysler Aspen SUV 2009 0.13% Dodge Durango SUV 2007 0.09% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Buick Regal GS 2012 36.19% Chevrolet Sonic Sedan 2012 30.01% Fisker Karma Sedan 2012 17.77% BMW M6 Convertible 2010 4.07% Acura TL Sedan 2012 3.16% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 34.51% Mercedes-Benz E-Class Sedan 2012 23.52% Hyundai Azera Sedan 2012 15.09% MINI Cooper Roadster Convertible 2012 7.63% Hyundai Sonata Sedan 2012 3.49% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 61.54% Cadillac CTS-V Sedan 2012 8.62% BMW M3 Coupe 2012 8.49% Toyota Corolla Sedan 2012 6.79% Acura Integra Type R 2001 3.44% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 HUMMER H3T Crew Cab 2010 96.77% Dodge Ram Pickup 3500 Quad Cab 2009 2.45% Jeep Patriot SUV 2012 0.33% Dodge Dakota Crew Cab 2010 0.16% Ford Ranger SuperCab 2011 0.14% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 99.28% Chrysler Crossfire Convertible 2008 0.38% Chrysler Sebring Convertible 2010 0.08% BMW Z4 Convertible 2012 0.07% Hyundai Elantra Sedan 2007 0.04% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 99.97% Dodge Sprinter Cargo Van 2009 0.02% GMC Savana Van 2012 0.0% Audi V8 Sedan 1994 0.0% Audi 100 Wagon 1994 0.0% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.74% Suzuki SX4 Sedan 2012 0.19% FIAT 500 Convertible 2012 0.05% Suzuki SX4 Hatchback 2012 0.01% MINI Cooper Roadster Convertible 2012 0.01% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 43.26% Rolls-Royce Phantom Sedan 2012 40.41% Bentley Mulsanne Sedan 2011 4.35% Audi R8 Coupe 2012 2.1% Chrysler 300 SRT-8 2010 1.82% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 49.48% Ford Ranger SuperCab 2011 12.0% HUMMER H3T Crew Cab 2010 9.54% Chevrolet Silverado 1500 Extended Cab 2012 8.35% Chevrolet Avalanche Crew Cab 2012 5.58% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 96.14% McLaren MP4-12C Coupe 2012 1.61% Lamborghini Diablo Coupe 2001 1.6% Dodge Charger Sedan 2012 0.27% Aston Martin V8 Vantage Coupe 2012 0.17% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 75.64% Mercedes-Benz 300-Class Convertible 1993 18.58% Audi 100 Wagon 1994 5.52% Audi V8 Sedan 1994 0.11% Dodge Caravan Minivan 1997 0.07% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Buick Enclave SUV 2012 26.98% Mazda Tribute SUV 2011 17.45% Land Rover Range Rover SUV 2012 7.88% Infiniti QX56 SUV 2011 7.72% Chrysler Town and Country Minivan 2012 7.57% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 63.04% BMW 3 Series Wagon 2012 23.66% Toyota Camry Sedan 2012 4.95% Hyundai Accent Sedan 2012 3.64% Eagle Talon Hatchback 1998 1.32% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 62.81% BMW ActiveHybrid 5 Sedan 2012 13.99% Acura TL Type-S 2008 9.24% Acura TSX Sedan 2012 7.74% BMW M3 Coupe 2012 3.6% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Mazda Tribute SUV 2011 57.7% Toyota Sequoia SUV 2012 27.12% Land Rover LR2 SUV 2012 5.13% Ram C/V Cargo Van Minivan 2012 2.77% Chevrolet Avalanche Crew Cab 2012 1.37% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 90.03% Mercedes-Benz E-Class Sedan 2012 2.48% Chevrolet Corvette ZR1 2012 1.03% Tesla Model S Sedan 2012 0.96% Fisker Karma Sedan 2012 0.79% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.77% Ford F-150 Regular Cab 2012 0.2% Ford E-Series Wagon Van 2012 0.01% GMC Yukon Hybrid SUV 2012 0.01% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Audi TTS Coupe 2012 0.0% Infiniti G Coupe IPL 2012 0.0% BMW Z4 Convertible 2012 0.0% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 96.75% Spyker C8 Convertible 2009 1.78% Lamborghini Aventador Coupe 2012 0.71% Aston Martin V8 Vantage Coupe 2012 0.44% Bugatti Veyron 16.4 Coupe 2009 0.15% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chrysler 300 SRT-8 2010 56.38% Buick Verano Sedan 2012 8.53% Audi S5 Coupe 2012 4.28% Audi A5 Coupe 2012 3.58% Audi 100 Wagon 1994 2.78% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 95.58% Bugatti Veyron 16.4 Coupe 2009 1.54% MINI Cooper Roadster Convertible 2012 0.84% BMW 6 Series Convertible 2007 0.34% McLaren MP4-12C Coupe 2012 0.34% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 90.55% Ford Ranger SuperCab 2011 4.8% Ford F-150 Regular Cab 2012 2.14% Chevrolet Avalanche Crew Cab 2012 0.71% Chevrolet Silverado 2500HD Regular Cab 2012 0.47% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 99.86% Bentley Continental GT Coupe 2007 0.06% Cadillac CTS-V Sedan 2012 0.03% Buick Verano Sedan 2012 0.02% Bentley Continental Flying Spur Sedan 2007 0.01% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 91.21% BMW 6 Series Convertible 2007 1.27% Suzuki Aerio Sedan 2007 1.24% Daewoo Nubira Wagon 2002 1.16% Hyundai Elantra Sedan 2007 1.14% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Dodge Challenger SRT8 2011 38.74% Audi R8 Coupe 2012 27.01% FIAT 500 Abarth 2012 9.17% Chevrolet Corvette ZR1 2012 4.87% Chrysler 300 SRT-8 2010 4.22% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 80.33% Suzuki Aerio Sedan 2007 6.27% Volkswagen Golf Hatchback 2012 5.28% Chevrolet Monte Carlo Coupe 2007 4.82% Chevrolet Malibu Sedan 2007 1.75% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Mercedes-Benz 300-Class Convertible 1993 11.22% Chevrolet Malibu Sedan 2007 9.4% Ford F-150 Regular Cab 2007 8.98% Hyundai Elantra Sedan 2007 7.26% Volkswagen Golf Hatchback 2012 5.89% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Audi 100 Sedan 1994 25.8% Dodge Dakota Crew Cab 2010 20.65% Ford Mustang Convertible 2007 17.58% Mercedes-Benz Sprinter Van 2012 8.06% GMC Canyon Extended Cab 2012 7.0% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% Dodge Dakota Crew Cab 2010 0.0% Mercedes-Benz Sprinter Van 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Volvo XC90 SUV 2007 0.0% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Aston Martin Virage Convertible 2012 35.68% Spyker C8 Convertible 2009 13.07% Chevrolet Camaro Convertible 2012 7.56% Mercedes-Benz 300-Class Convertible 1993 7.17% Chevrolet Monte Carlo Coupe 2007 3.95% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 69.05% Bentley Continental GT Coupe 2012 30.93% Bentley Continental Flying Spur Sedan 2007 0.02% Bentley Mulsanne Sedan 2011 0.0% MINI Cooper Roadster Convertible 2012 0.0% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 97.91% Honda Accord Coupe 2012 0.58% BMW 3 Series Sedan 2012 0.33% Audi 100 Sedan 1994 0.27% Mercedes-Benz SL-Class Coupe 2009 0.18% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.99% Jeep Patriot SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Buick Rainier SUV 2007 0.0% Jeep Grand Cherokee SUV 2012 0.0% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 97.79% BMW 6 Series Convertible 2007 2.03% Nissan 240SX Coupe 1998 0.08% Chevrolet Camaro Convertible 2012 0.05% Audi V8 Sedan 1994 0.02% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 smart fortwo Convertible 2012 21.92% Ford GT Coupe 2006 21.72% Volkswagen Golf Hatchback 2012 10.96% Suzuki Kizashi Sedan 2012 7.48% Chevrolet Corvette Convertible 2012 6.39% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Chrysler Aspen SUV 2009 43.78% Chevrolet Tahoe Hybrid SUV 2012 40.0% Dodge Ram Pickup 3500 Crew Cab 2010 8.19% Ford E-Series Wagon Van 2012 3.41% Ford F-150 Regular Cab 2012 1.33% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 83.62% Chevrolet Silverado 1500 Classic Extended Cab 2007 12.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.5% Chevrolet Silverado 2500HD Regular Cab 2012 1.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.29% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 BMW 3 Series Wagon 2012 47.33% Hyundai Elantra Sedan 2007 9.64% Hyundai Accent Sedan 2012 6.75% Ferrari 458 Italia Coupe 2012 4.08% Chevrolet Sonic Sedan 2012 3.71% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 93.85% Chevrolet Malibu Hybrid Sedan 2010 4.78% Hyundai Elantra Sedan 2007 0.36% Chrysler Sebring Convertible 2010 0.35% Hyundai Genesis Sedan 2012 0.14% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Ford Fiesta Sedan 2012 96.83% Hyundai Accent Sedan 2012 1.01% Suzuki Aerio Sedan 2007 0.57% smart fortwo Convertible 2012 0.34% Tesla Model S Sedan 2012 0.29% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.87% Ford F-150 Regular Cab 2012 0.12% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford Ranger SuperCab 2011 0.0% GMC Canyon Extended Cab 2012 0.0% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Dodge Caravan Minivan 1997 34.54% Chevrolet Express Van 2007 31.88% Acura Integra Type R 2001 12.03% Plymouth Neon Coupe 1999 7.21% Eagle Talon Hatchback 1998 4.22% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Mercedes-Benz C-Class Sedan 2012 31.25% Land Rover Range Rover SUV 2012 23.8% Toyota 4Runner SUV 2012 13.61% GMC Yukon Hybrid SUV 2012 8.76% Ford Expedition EL SUV 2009 6.79% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Acura TL Type-S 2008 32.43% Eagle Talon Hatchback 1998 24.78% Mitsubishi Lancer Sedan 2012 18.86% Infiniti G Coupe IPL 2012 12.39% Mercedes-Benz SL-Class Coupe 2009 3.67% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2007 61.18% Dodge Caravan Minivan 1997 18.82% Chevrolet Silverado 1500 Extended Cab 2012 11.63% Dodge Ram Pickup 3500 Quad Cab 2009 2.6% GMC Savana Van 2012 2.44% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 60.46% Chevrolet Silverado 1500 Extended Cab 2012 35.37% Ford F-150 Regular Cab 2007 2.91% Chevrolet Silverado 1500 Regular Cab 2012 0.42% Ford Ranger SuperCab 2011 0.37% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 BMW 6 Series Convertible 2007 18.3% Chevrolet Corvette Convertible 2012 18.29% Rolls-Royce Phantom Drophead Coupe Convertible 2012 13.53% Chrysler Crossfire Convertible 2008 6.55% Rolls-Royce Ghost Sedan 2012 6.48% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 27.14% Hyundai Elantra Sedan 2007 14.84% Ford Mustang Convertible 2007 11.22% Chevrolet Monte Carlo Coupe 2007 8.85% Honda Accord Coupe 2012 4.33% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Audi TT RS Coupe 2012 38.05% Lamborghini Reventon Coupe 2008 24.44% Dodge Challenger SRT8 2011 21.34% Ferrari 458 Italia Coupe 2012 5.47% Audi S5 Convertible 2012 2.59% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.97% Hyundai Azera Sedan 2012 0.02% Mercedes-Benz SL-Class Coupe 2009 0.0% Mitsubishi Lancer Sedan 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 57.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 17.62% Toyota Sequoia SUV 2012 6.75% GMC Yukon Hybrid SUV 2012 5.82% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.65% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 96.57% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.04% Chevrolet Avalanche Crew Cab 2012 0.66% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.59% Chevrolet Tahoe Hybrid SUV 2012 0.54% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 39.33% BMW 6 Series Convertible 2007 16.0% Audi TTS Coupe 2012 12.54% Infiniti G Coupe IPL 2012 11.93% BMW Z4 Convertible 2012 11.6% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 63.04% FIAT 500 Convertible 2012 34.7% Acura ZDX Hatchback 2012 1.63% Maybach Landaulet Convertible 2012 0.24% Daewoo Nubira Wagon 2002 0.07% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Hyundai Santa Fe SUV 2012 20.51% Dodge Durango SUV 2012 19.79% Ford Expedition EL SUV 2009 15.99% Volvo XC90 SUV 2007 11.99% Chevrolet Avalanche Crew Cab 2012 10.43% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 49.22% Chevrolet Avalanche Crew Cab 2012 46.26% Dodge Caravan Minivan 1997 1.77% Dodge Journey SUV 2012 0.82% Ford Freestar Minivan 2007 0.49% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Tesla Model S Sedan 2012 37.37% Cadillac CTS-V Sedan 2012 16.23% Volvo C30 Hatchback 2012 6.23% Mitsubishi Lancer Sedan 2012 4.71% Dodge Charger Sedan 2012 4.17% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 100.0% Rolls-Royce Ghost Sedan 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Dodge Challenger SRT8 2011 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 59.96% Mercedes-Benz C-Class Sedan 2012 23.41% Dodge Caliber Wagon 2012 4.43% Audi S4 Sedan 2007 3.41% BMW 1 Series Coupe 2012 3.38% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Buick Rainier SUV 2007 26.95% Dodge Dakota Club Cab 2007 18.5% Chrysler Sebring Convertible 2010 14.56% Chrysler PT Cruiser Convertible 2008 14.52% GMC Terrain SUV 2012 7.3% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Rolls-Royce Ghost Sedan 2012 28.53% Chrysler 300 SRT-8 2010 16.99% Chrysler Crossfire Convertible 2008 11.03% Honda Accord Coupe 2012 5.83% Audi S6 Sedan 2011 5.36% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 76.5% Chrysler PT Cruiser Convertible 2008 4.54% Dodge Durango SUV 2012 3.35% Ford Expedition EL SUV 2009 2.09% Hyundai Santa Fe SUV 2012 1.63% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Dodge Charger Sedan 2012 53.23% Audi S4 Sedan 2012 31.04% Hyundai Azera Sedan 2012 5.73% BMW M3 Coupe 2012 2.46% Chevrolet Corvette ZR1 2012 2.29% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Maybach Landaulet Convertible 2012 97.0% Bugatti Veyron 16.4 Convertible 2009 1.5% FIAT 500 Convertible 2012 1.2% Fisker Karma Sedan 2012 0.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.04% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 58.82% BMW M3 Coupe 2012 30.04% Acura Integra Type R 2001 2.67% Nissan 240SX Coupe 1998 1.66% Suzuki Kizashi Sedan 2012 1.64% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 99.07% BMW Z4 Convertible 2012 0.48% Bugatti Veyron 16.4 Coupe 2009 0.16% Ferrari 458 Italia Convertible 2012 0.09% Acura Integra Type R 2001 0.06% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Geo Metro Convertible 1993 33.23% Chevrolet Corvette Convertible 2012 14.95% Ford Mustang Convertible 2007 13.17% Chevrolet Monte Carlo Coupe 2007 9.02% Volkswagen Golf Hatchback 1991 8.64% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caliber Wagon 2012 16.17% Dodge Magnum Wagon 2008 12.34% Dodge Durango SUV 2012 9.91% Chrysler PT Cruiser Convertible 2008 9.73% Dodge Journey SUV 2012 9.42% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 25.33% Honda Accord Sedan 2012 23.43% Mercedes-Benz C-Class Sedan 2012 14.41% Acura TSX Sedan 2012 6.42% Chevrolet Camaro Convertible 2012 5.41% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 99.67% Mercedes-Benz S-Class Sedan 2012 0.24% Acura Integra Type R 2001 0.04% Hyundai Genesis Sedan 2012 0.01% Fisker Karma Sedan 2012 0.01% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 63.45% Audi 100 Wagon 1994 13.28% Toyota Sequoia SUV 2012 6.45% Chrysler Aspen SUV 2009 3.33% Audi 100 Sedan 1994 2.43% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 76.03% Volvo C30 Hatchback 2012 14.81% Suzuki SX4 Hatchback 2012 2.81% GMC Savana Van 2012 1.36% Honda Odyssey Minivan 2012 0.91% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 64.83% Fisker Karma Sedan 2012 16.9% BMW M5 Sedan 2010 3.11% Bentley Mulsanne Sedan 2011 2.7% BMW Z4 Convertible 2012 2.15% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 91.31% Ford F-150 Regular Cab 2012 3.92% Chevrolet Silverado 1500 Extended Cab 2012 1.1% GMC Terrain SUV 2012 0.98% Chevrolet Silverado 1500 Regular Cab 2012 0.52% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 59.56% Audi A5 Coupe 2012 19.6% Audi TT Hatchback 2011 6.07% Audi S5 Convertible 2012 4.58% Audi TT RS Coupe 2012 2.51% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 81.18% Chevrolet Silverado 1500 Regular Cab 2012 18.07% Dodge Dakota Club Cab 2007 0.47% Chevrolet Silverado 1500 Extended Cab 2012 0.2% GMC Canyon Extended Cab 2012 0.07% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.1% Ford E-Series Wagon Van 2012 0.4% Dodge Ram Pickup 3500 Crew Cab 2010 0.22% Dodge Ram Pickup 3500 Quad Cab 2009 0.17% Ford F-450 Super Duty Crew Cab 2012 0.07% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Cadillac CTS-V Sedan 2012 39.54% Bentley Mulsanne Sedan 2011 23.43% BMW ActiveHybrid 5 Sedan 2012 13.64% BMW 3 Series Wagon 2012 7.32% Dodge Charger Sedan 2012 2.88% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 95.34% Buick Regal GS 2012 3.3% Chevrolet HHR SS 2010 0.44% BMW 1 Series Coupe 2012 0.25% Jaguar XK XKR 2012 0.1% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 56.77% Chevrolet Silverado 1500 Regular Cab 2012 24.92% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 12.76% Chevrolet Silverado 1500 Extended Cab 2012 4.62% Dodge Ram Pickup 3500 Quad Cab 2009 0.63% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 89.67% Dodge Caliber Wagon 2007 9.49% BMW X6 SUV 2012 0.48% BMW X3 SUV 2012 0.27% Dodge Journey SUV 2012 0.05% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 98.98% Aston Martin Virage Coupe 2012 0.8% Lamborghini Diablo Coupe 2001 0.1% Hyundai Veloster Hatchback 2012 0.03% Bugatti Veyron 16.4 Coupe 2009 0.02% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Maybach Landaulet Convertible 2012 92.48% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.67% smart fortwo Convertible 2012 0.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.45% Hyundai Azera Sedan 2012 0.28% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Chevrolet Malibu Sedan 2007 23.27% Chevrolet Impala Sedan 2007 14.39% Hyundai Elantra Sedan 2007 13.09% Chevrolet Monte Carlo Coupe 2007 10.03% Volkswagen Golf Hatchback 2012 5.88% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.99% Dodge Caliber Wagon 2012 0.0% Dodge Journey SUV 2012 0.0% Infiniti QX56 SUV 2011 0.0% Dodge Magnum Wagon 2008 0.0% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 69.4% Ferrari California Convertible 2012 26.54% Ferrari 458 Italia Coupe 2012 2.2% Ford GT Coupe 2006 1.05% Chevrolet Corvette Convertible 2012 0.69% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 34.06% BMW M5 Sedan 2010 16.56% MINI Cooper Roadster Convertible 2012 11.83% Infiniti G Coupe IPL 2012 7.08% BMW ActiveHybrid 5 Sedan 2012 2.42% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 69.28% Chevrolet Express Cargo Van 2007 30.26% Chevrolet Express Van 2007 0.46% Ford Ranger SuperCab 2011 0.0% Audi 100 Sedan 1994 0.0% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 72.84% Mercedes-Benz 300-Class Convertible 1993 11.73% Ford Mustang Convertible 2007 8.37% Volkswagen Golf Hatchback 1991 3.36% Audi V8 Sedan 1994 1.7% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Nissan Juke Hatchback 2012 44.29% Hyundai Sonata Sedan 2012 27.71% BMW 3 Series Sedan 2012 8.99% Hyundai Elantra Sedan 2007 7.74% Suzuki SX4 Sedan 2012 2.93% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 35.79% Audi S5 Convertible 2012 33.13% Maybach Landaulet Convertible 2012 8.77% MINI Cooper Roadster Convertible 2012 6.35% Nissan Leaf Hatchback 2012 4.69% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Fisker Karma Sedan 2012 60.38% Audi TT Hatchback 2011 19.09% Audi R8 Coupe 2012 16.28% Tesla Model S Sedan 2012 1.59% Audi S5 Coupe 2012 1.22% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 98.72% Toyota Corolla Sedan 2012 0.95% Acura RL Sedan 2012 0.24% Acura ZDX Hatchback 2012 0.03% Hyundai Azera Sedan 2012 0.02% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.25% Lamborghini Aventador Coupe 2012 0.45% Eagle Talon Hatchback 1998 0.21% Ferrari 458 Italia Convertible 2012 0.04% Mitsubishi Lancer Sedan 2012 0.02% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Audi V8 Sedan 1994 48.93% Audi 100 Wagon 1994 41.05% Audi 100 Sedan 1994 4.45% Lincoln Town Car Sedan 2011 1.67% Nissan 240SX Coupe 1998 0.8% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Chrysler Town and Country Minivan 2012 55.58% Chrysler PT Cruiser Convertible 2008 11.32% Dodge Caliber Wagon 2012 11.01% Chevrolet Malibu Sedan 2007 7.24% Lincoln Town Car Sedan 2011 3.99% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 46.8% Chevrolet Corvette Convertible 2012 36.37% Audi S5 Convertible 2012 8.55% Ferrari 458 Italia Convertible 2012 5.77% Ford Fiesta Sedan 2012 0.87% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.85% Eagle Talon Hatchback 1998 0.03% Toyota Camry Sedan 2012 0.03% Honda Accord Coupe 2012 0.02% Ferrari 458 Italia Coupe 2012 0.02% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 70.25% Mercedes-Benz 300-Class Convertible 1993 22.66% Dodge Charger Sedan 2012 2.7% Audi 100 Sedan 1994 1.21% Honda Accord Coupe 2012 0.8% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 91.64% Dodge Ram Pickup 3500 Crew Cab 2010 8.11% Ford Expedition EL SUV 2009 0.25% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 60.46% BMW X3 SUV 2012 10.31% Jaguar XK XKR 2012 6.49% Dodge Caliber Wagon 2012 4.24% BMW 1 Series Coupe 2012 3.48% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Spyker C8 Convertible 2009 49.07% Ferrari 458 Italia Coupe 2012 18.06% Nissan Juke Hatchback 2012 15.0% Lamborghini Aventador Coupe 2012 3.48% HUMMER H2 SUT Crew Cab 2009 3.37% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Volkswagen Golf Hatchback 1991 16.66% Volvo 240 Sedan 1993 13.68% Nissan NV Passenger Van 2012 7.56% Mercedes-Benz 300-Class Convertible 1993 6.83% Audi 100 Wagon 1994 5.97% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Ford Focus Sedan 2007 72.85% Plymouth Neon Coupe 1999 23.9% Chevrolet Impala Sedan 2007 2.5% Chevrolet Monte Carlo Coupe 2007 0.22% Lincoln Town Car Sedan 2011 0.22% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 99.99% Chevrolet HHR SS 2010 0.01% Dodge Charger SRT-8 2009 0.0% Scion xD Hatchback 2012 0.0% Audi TT RS Coupe 2012 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 85.34% Volkswagen Beetle Hatchback 2012 3.26% Scion xD Hatchback 2012 2.21% Acura TSX Sedan 2012 1.88% Toyota Corolla Sedan 2012 1.39% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Jeep Patriot SUV 2012 43.12% Chrysler Aspen SUV 2009 40.26% Buick Rainier SUV 2007 8.01% Mazda Tribute SUV 2011 3.82% Ford Freestar Minivan 2007 2.57% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Jaguar XK XKR 2012 54.86% Lincoln Town Car Sedan 2011 14.53% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.91% Audi S4 Sedan 2007 3.96% Lamborghini Reventon Coupe 2008 3.85% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 79.08% Spyker C8 Convertible 2009 20.86% Fisker Karma Sedan 2012 0.03% Bugatti Veyron 16.4 Coupe 2009 0.01% Aston Martin Virage Convertible 2012 0.0% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 95.26% Ford Freestar Minivan 2007 1.67% Mazda Tribute SUV 2011 1.0% Dodge Caliber Wagon 2012 0.87% Buick Rainier SUV 2007 0.52% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 86.91% FIAT 500 Convertible 2012 9.08% Spyker C8 Coupe 2009 2.39% MINI Cooper Roadster Convertible 2012 0.32% Lamborghini Aventador Coupe 2012 0.23% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Infiniti QX56 SUV 2011 46.72% Toyota Sequoia SUV 2012 34.21% Dodge Durango SUV 2012 8.48% Mercedes-Benz C-Class Sedan 2012 2.12% Chrysler Aspen SUV 2009 2.09% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 92.72% Bentley Arnage Sedan 2009 3.33% Rolls-Royce Phantom Sedan 2012 1.76% Buick Enclave SUV 2012 0.59% Ford F-150 Regular Cab 2007 0.24% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 97.63% Toyota 4Runner SUV 2012 1.27% Cadillac SRX SUV 2012 0.29% Isuzu Ascender SUV 2008 0.18% GMC Yukon Hybrid SUV 2012 0.1% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 24.6% Ford F-450 Super Duty Crew Cab 2012 18.63% BMW 1 Series Convertible 2012 15.73% Ford Ranger SuperCab 2011 9.26% GMC Canyon Extended Cab 2012 8.06% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 64.07% Jeep Patriot SUV 2012 22.49% Isuzu Ascender SUV 2008 12.27% Chrysler Aspen SUV 2009 0.48% Ford E-Series Wagon Van 2012 0.16% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Dodge Durango SUV 2007 47.22% Mazda Tribute SUV 2011 15.5% Dodge Journey SUV 2012 13.05% Ford Freestar Minivan 2007 12.39% Chrysler Aspen SUV 2009 3.53% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 83.06% Bentley Continental GT Coupe 2012 7.01% Bentley Continental GT Coupe 2007 5.77% Buick Verano Sedan 2012 1.85% Bugatti Veyron 16.4 Convertible 2009 0.78% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Chrysler Aspen SUV 2009 73.33% Land Rover Range Rover SUV 2012 10.93% Infiniti QX56 SUV 2011 5.28% Chevrolet Tahoe Hybrid SUV 2012 3.63% Ford Expedition EL SUV 2009 2.8% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 81.47% Dodge Durango SUV 2012 13.91% Infiniti QX56 SUV 2011 1.23% BMW X6 SUV 2012 1.09% Chevrolet TrailBlazer SS 2009 0.98% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 74.97% Chevrolet Corvette Convertible 2012 12.24% Ferrari California Convertible 2012 9.87% Ferrari 458 Italia Convertible 2012 1.12% Audi RS 4 Convertible 2008 0.35% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 39.59% Mercedes-Benz S-Class Sedan 2012 19.3% Hyundai Genesis Sedan 2012 15.92% Mercedes-Benz E-Class Sedan 2012 7.61% Hyundai Azera Sedan 2012 2.95% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 99.84% Bugatti Veyron 16.4 Coupe 2009 0.07% McLaren MP4-12C Coupe 2012 0.05% Spyker C8 Convertible 2009 0.02% Aston Martin V8 Vantage Coupe 2012 0.0% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Nissan NV Passenger Van 2012 87.53% Dodge Ram Pickup 3500 Quad Cab 2009 3.91% Dodge Ram Pickup 3500 Crew Cab 2010 2.82% Ford F-150 Regular Cab 2007 2.73% Ford E-Series Wagon Van 2012 0.74% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Hyundai Veracruz SUV 2012 94.63% Lincoln Town Car Sedan 2011 2.9% Chevrolet Impala Sedan 2007 0.71% Chevrolet Traverse SUV 2012 0.64% Ford Focus Sedan 2007 0.24% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 88.6% Ram C/V Cargo Van Minivan 2012 6.72% Dodge Magnum Wagon 2008 0.59% Chevrolet TrailBlazer SS 2009 0.56% Volvo 240 Sedan 1993 0.51% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 80.03% Acura TL Type-S 2008 6.73% Porsche Panamera Sedan 2012 3.22% Chevrolet Camaro Convertible 2012 1.36% BMW ActiveHybrid 5 Sedan 2012 0.9% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Chevrolet Traverse SUV 2012 35.14% Hyundai Tucson SUV 2012 11.61% Chevrolet Avalanche Crew Cab 2012 10.33% Chevrolet TrailBlazer SS 2009 9.36% Hyundai Santa Fe SUV 2012 7.94% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 96.82% Rolls-Royce Ghost Sedan 2012 2.33% Rolls-Royce Phantom Sedan 2012 0.23% Jaguar XK XKR 2012 0.18% Chrysler Sebring Convertible 2010 0.14% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Audi S4 Sedan 2012 24.91% Toyota Camry Sedan 2012 10.69% BMW X6 SUV 2012 9.97% Honda Accord Coupe 2012 8.78% Acura RL Sedan 2012 6.23% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 83.14% Chevrolet Express Cargo Van 2007 16.78% Chevrolet Express Van 2007 0.08% Audi 100 Sedan 1994 0.0% Dodge Caravan Minivan 1997 0.0% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 GMC Acadia SUV 2012 44.08% Mazda Tribute SUV 2011 24.35% Nissan Juke Hatchback 2012 14.15% Cadillac SRX SUV 2012 2.4% Jeep Grand Cherokee SUV 2012 1.95% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 35.99% Lamborghini Aventador Coupe 2012 10.17% Bentley Continental Flying Spur Sedan 2007 4.72% Bentley Continental GT Coupe 2007 4.45% Nissan Juke Hatchback 2012 4.19% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Nissan Juke Hatchback 2012 14.57% Suzuki SX4 Hatchback 2012 14.43% Land Rover LR2 SUV 2012 9.74% Ford E-Series Wagon Van 2012 7.6% Jeep Patriot SUV 2012 3.71% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Chevrolet Silverado 2500HD Regular Cab 2012 25.61% Chrysler Town and Country Minivan 2012 15.1% Volkswagen Golf Hatchback 2012 7.21% Mercedes-Benz 300-Class Convertible 1993 5.23% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.72% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Jeep Liberty SUV 2012 69.02% Chevrolet Traverse SUV 2012 13.48% Dodge Caliber Wagon 2012 5.46% Jeep Patriot SUV 2012 2.3% BMW X3 SUV 2012 1.98% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Rolls-Royce Ghost Sedan 2012 53.04% Toyota Camry Sedan 2012 17.46% Dodge Charger SRT-8 2009 7.73% Hyundai Genesis Sedan 2012 2.93% BMW 3 Series Wagon 2012 2.47% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Nissan 240SX Coupe 1998 47.39% Lincoln Town Car Sedan 2011 24.22% Mercedes-Benz 300-Class Convertible 1993 20.25% Audi V8 Sedan 1994 1.94% Chrysler 300 SRT-8 2010 1.36% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Suzuki SX4 Hatchback 2012 50.62% Daewoo Nubira Wagon 2002 27.38% GMC Acadia SUV 2012 5.94% Hyundai Elantra Touring Hatchback 2012 5.39% Chevrolet Impala Sedan 2007 2.82% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 86.55% Audi R8 Coupe 2012 7.09% Lamborghini Aventador Coupe 2012 2.23% Tesla Model S Sedan 2012 0.76% BMW M3 Coupe 2012 0.55% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 46.42% Infiniti G Coupe IPL 2012 20.29% BMW M5 Sedan 2010 6.7% Audi S6 Sedan 2011 4.76% Cadillac CTS-V Sedan 2012 4.28% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Suzuki SX4 Sedan 2012 13.1% Fisker Karma Sedan 2012 8.09% BMW Z4 Convertible 2012 6.79% Volkswagen Beetle Hatchback 2012 5.13% Dodge Challenger SRT8 2011 4.99% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 93.01% Cadillac Escalade EXT Crew Cab 2007 3.72% Ford E-Series Wagon Van 2012 0.78% Nissan NV Passenger Van 2012 0.61% GMC Yukon Hybrid SUV 2012 0.49% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 40.46% Audi S6 Sedan 2011 17.78% Hyundai Genesis Sedan 2012 15.46% BMW 3 Series Wagon 2012 6.76% Mercedes-Benz S-Class Sedan 2012 5.97% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 BMW 6 Series Convertible 2007 72.34% BMW 1 Series Convertible 2012 9.97% Audi RS 4 Convertible 2008 7.15% Bugatti Veyron 16.4 Convertible 2009 3.92% Audi A5 Coupe 2012 2.44% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 97.38% Jeep Wrangler SUV 2012 2.61% BMW X5 SUV 2007 0.01% Jeep Grand Cherokee SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Ford Edge SUV 2012 45.68% BMW X6 SUV 2012 6.12% Dodge Charger Sedan 2012 5.85% Suzuki Kizashi Sedan 2012 5.85% BMW 1 Series Convertible 2012 4.92% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.04% Chevrolet Camaro Convertible 2012 0.61% Jaguar XK XKR 2012 0.1% Chevrolet Corvette Convertible 2012 0.09% Chevrolet Corvette ZR1 2012 0.05% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.81% BMW X6 SUV 2012 0.09% Jeep Grand Cherokee SUV 2012 0.03% Ford Ranger SuperCab 2011 0.03% Volvo XC90 SUV 2007 0.01% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 94.4% Audi S5 Coupe 2012 2.74% Audi S4 Sedan 2007 1.62% Audi S4 Sedan 2012 0.43% Audi S5 Convertible 2012 0.26% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 97.27% Jeep Compass SUV 2012 2.5% Dodge Durango SUV 2012 0.08% GMC Terrain SUV 2012 0.05% Mazda Tribute SUV 2011 0.04% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Nissan Leaf Hatchback 2012 64.27% Hyundai Accent Sedan 2012 10.53% Ford Fiesta Sedan 2012 8.99% Hyundai Elantra Sedan 2007 8.44% Hyundai Veloster Hatchback 2012 1.66% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 67.56% Ford Expedition EL SUV 2009 28.53% Chrysler Aspen SUV 2009 1.48% Hyundai Santa Fe SUV 2012 1.21% Land Rover LR2 SUV 2012 1.17% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 31.05% Honda Accord Sedan 2012 9.62% Chrysler Sebring Convertible 2010 7.05% Honda Odyssey Minivan 2007 5.82% Chevrolet Impala Sedan 2007 5.66% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 97.84% Toyota 4Runner SUV 2012 1.2% Mazda Tribute SUV 2011 0.35% Chevrolet TrailBlazer SS 2009 0.18% Jeep Compass SUV 2012 0.18% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Jeep Patriot SUV 2012 22.39% Dodge Dakota Club Cab 2007 13.58% Chrysler Aspen SUV 2009 9.53% Ford Ranger SuperCab 2011 8.53% Buick Rainier SUV 2007 8.05% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 34.28% Audi S5 Coupe 2012 30.28% Fisker Karma Sedan 2012 13.12% Audi TTS Coupe 2012 11.18% Audi R8 Coupe 2012 5.8% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 24.25% Fisker Karma Sedan 2012 11.77% smart fortwo Convertible 2012 7.62% Hyundai Tucson SUV 2012 6.72% MINI Cooper Roadster Convertible 2012 6.44% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 31.82% Chevrolet Cobalt SS 2010 19.79% Volkswagen Beetle Hatchback 2012 11.34% Ford Mustang Convertible 2007 10.79% Chevrolet Corvette Convertible 2012 3.58% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Scion xD Hatchback 2012 22.04% BMW M3 Coupe 2012 14.27% Nissan Juke Hatchback 2012 12.3% Audi S4 Sedan 2012 7.88% Honda Accord Sedan 2012 6.3% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 91.07% Daewoo Nubira Wagon 2002 3.82% Bentley Continental Flying Spur Sedan 2007 3.15% Nissan Leaf Hatchback 2012 0.3% Tesla Model S Sedan 2012 0.29% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.88% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.12% Ford GT Coupe 2006 0.0% Lamborghini Diablo Coupe 2001 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 95.72% Chevrolet Express Van 2007 2.22% Ford Freestar Minivan 2007 1.19% Honda Odyssey Minivan 2007 0.12% GMC Savana Van 2012 0.09% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Toyota Sequoia SUV 2012 53.02% Chevrolet TrailBlazer SS 2009 10.78% Cadillac SRX SUV 2012 10.44% Toyota 4Runner SUV 2012 5.58% BMW X6 SUV 2012 4.9% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 52.65% McLaren MP4-12C Coupe 2012 44.23% Bugatti Veyron 16.4 Coupe 2009 1.79% Spyker C8 Convertible 2009 0.51% Aston Martin Virage Coupe 2012 0.35% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 99.99% AM General Hummer SUV 2000 0.0% Jeep Patriot SUV 2012 0.0% GMC Terrain SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Ford Mustang Convertible 2007 27.01% Hyundai Sonata Sedan 2012 9.93% Chevrolet Sonic Sedan 2012 9.38% Dodge Journey SUV 2012 7.88% Chevrolet Cobalt SS 2010 4.11% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 97.4% Chrysler Sebring Convertible 2010 1.3% Bentley Continental Supersports Conv. Convertible 2012 0.37% Bentley Continental Flying Spur Sedan 2007 0.21% BMW M3 Coupe 2012 0.13% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Acura RL Sedan 2012 50.91% Honda Odyssey Minivan 2012 33.7% Honda Odyssey Minivan 2007 3.37% Chevrolet Malibu Hybrid Sedan 2010 2.84% Honda Accord Sedan 2012 1.07% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 98.81% Volkswagen Golf Hatchback 1991 0.56% BMW X5 SUV 2007 0.34% BMW X3 SUV 2012 0.12% Audi 100 Wagon 1994 0.04% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Volvo 240 Sedan 1993 43.55% BMW 3 Series Wagon 2012 11.62% Nissan Leaf Hatchback 2012 8.59% Suzuki SX4 Sedan 2012 6.82% Hyundai Sonata Sedan 2012 4.25% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Regular Cab 2012 60.57% Chevrolet Silverado 2500HD Regular Cab 2012 12.53% Ford F-150 Regular Cab 2007 7.95% Ford F-150 Regular Cab 2012 5.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.54% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 33.18% Porsche Panamera Sedan 2012 19.23% Audi TT Hatchback 2011 13.8% BMW ActiveHybrid 5 Sedan 2012 8.88% Audi R8 Coupe 2012 8.18% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Mercedes-Benz SL-Class Coupe 2009 33.57% Aston Martin Virage Convertible 2012 29.76% Porsche Panamera Sedan 2012 9.96% Mercedes-Benz 300-Class Convertible 1993 4.88% Fisker Karma Sedan 2012 4.42% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 98.47% BMW X5 SUV 2007 0.88% Jeep Grand Cherokee SUV 2012 0.16% Isuzu Ascender SUV 2008 0.15% Jeep Wrangler SUV 2012 0.1% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Mercedes-Benz E-Class Sedan 2012 19.02% Mercedes-Benz S-Class Sedan 2012 18.17% FIAT 500 Convertible 2012 8.12% smart fortwo Convertible 2012 7.97% Dodge Challenger SRT8 2011 5.58% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 23.2% Lamborghini Aventador Coupe 2012 17.96% McLaren MP4-12C Coupe 2012 16.03% BMW M3 Coupe 2012 12.61% Spyker C8 Coupe 2009 4.82% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Bentley Continental GT Coupe 2012 40.39% Dodge Charger SRT-8 2009 38.07% Audi S5 Coupe 2012 5.33% Dodge Challenger SRT8 2011 3.01% Ferrari 458 Italia Coupe 2012 2.66% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 83.58% Ford F-450 Super Duty Crew Cab 2012 4.0% Ford F-150 Regular Cab 2012 3.55% Volvo 240 Sedan 1993 2.23% Volvo XC90 SUV 2007 1.82% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 BMW M3 Coupe 2012 38.2% BMW 1 Series Convertible 2012 16.3% Mercedes-Benz E-Class Sedan 2012 10.64% Mercedes-Benz S-Class Sedan 2012 5.99% Acura Integra Type R 2001 3.54% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Buick Regal GS 2012 32.89% BMW ActiveHybrid 5 Sedan 2012 21.0% Cadillac CTS-V Sedan 2012 7.32% Dodge Challenger SRT8 2011 5.92% Fisker Karma Sedan 2012 5.76% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Audi TT RS Coupe 2012 63.65% Dodge Challenger SRT8 2011 15.28% Mercedes-Benz SL-Class Coupe 2009 12.16% Audi TT Hatchback 2011 2.45% Audi TTS Coupe 2012 1.43% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Scion xD Hatchback 2012 24.08% Honda Odyssey Minivan 2012 23.75% Chevrolet Cobalt SS 2010 8.25% Chevrolet Malibu Sedan 2007 5.01% Chevrolet Monte Carlo Coupe 2007 4.42% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Convertible 2012 49.7% Aston Martin V8 Vantage Coupe 2012 45.67% Ferrari California Convertible 2012 2.54% Jaguar XK XKR 2012 0.72% Audi TT RS Coupe 2012 0.37% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 87.27% BMW 3 Series Wagon 2012 12.59% Toyota Corolla Sedan 2012 0.04% Toyota Camry Sedan 2012 0.02% Dodge Charger SRT-8 2009 0.01% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 69.79% Chevrolet Express Van 2007 24.01% GMC Savana Van 2012 6.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.01% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 94.79% Jaguar XK XKR 2012 1.42% Bugatti Veyron 16.4 Coupe 2009 1.17% Bentley Continental GT Coupe 2007 0.66% Aston Martin V8 Vantage Convertible 2012 0.36% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 54.2% Rolls-Royce Phantom Drophead Coupe Convertible 2012 44.83% Rolls-Royce Ghost Sedan 2012 0.89% GMC Terrain SUV 2012 0.06% Chrysler 300 SRT-8 2010 0.01% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 96.26% Ford Ranger SuperCab 2011 3.23% Volvo XC90 SUV 2007 0.38% Audi V8 Sedan 1994 0.08% GMC Canyon Extended Cab 2012 0.02% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford E-Series Wagon Van 2012 54.5% Chevrolet Tahoe Hybrid SUV 2012 26.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 13.32% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.27% Chevrolet Silverado 1500 Extended Cab 2012 1.98% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Dodge Dakota Crew Cab 2010 70.26% Dodge Ram Pickup 3500 Quad Cab 2009 7.53% Dodge Ram Pickup 3500 Crew Cab 2010 6.81% Jeep Grand Cherokee SUV 2012 5.51% Isuzu Ascender SUV 2008 3.83% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Fisker Karma Sedan 2012 54.29% Bentley Mulsanne Sedan 2011 33.86% Aston Martin Virage Convertible 2012 3.62% Bentley Continental GT Coupe 2007 3.32% Tesla Model S Sedan 2012 1.51% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 72.21% Toyota Camry Sedan 2012 22.88% Chevrolet Camaro Convertible 2012 1.94% Chevrolet Impala Sedan 2007 1.34% Chevrolet Monte Carlo Coupe 2007 0.58% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 99.97% GMC Acadia SUV 2012 0.03% Buick Rainier SUV 2007 0.0% Cadillac SRX SUV 2012 0.0% Lincoln Town Car Sedan 2011 0.0% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 94.48% Lamborghini Aventador Coupe 2012 3.79% Bugatti Veyron 16.4 Convertible 2009 0.94% Bugatti Veyron 16.4 Coupe 2009 0.26% Mercedes-Benz SL-Class Coupe 2009 0.13% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 77.11% McLaren MP4-12C Coupe 2012 9.48% Spyker C8 Coupe 2009 8.68% Lamborghini Aventador Coupe 2012 3.38% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.44% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 BMW ActiveHybrid 5 Sedan 2012 19.19% Honda Odyssey Minivan 2007 18.32% Infiniti G Coupe IPL 2012 10.34% Mercedes-Benz E-Class Sedan 2012 9.12% BMW M3 Coupe 2012 8.01% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 92.83% Spyker C8 Convertible 2009 1.53% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.02% Ferrari 458 Italia Convertible 2012 0.71% Bugatti Veyron 16.4 Coupe 2009 0.7% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Buick Enclave SUV 2012 48.76% Chevrolet Traverse SUV 2012 21.23% Ford F-150 Regular Cab 2007 17.91% Chevrolet Malibu Sedan 2007 3.53% Hyundai Tucson SUV 2012 2.8% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 BMW 3 Series Sedan 2012 99.58% Mercedes-Benz C-Class Sedan 2012 0.06% Chevrolet Cobalt SS 2010 0.05% Chevrolet Camaro Convertible 2012 0.04% Dodge Caliber Wagon 2007 0.03% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Volkswagen Golf Hatchback 2012 19.7% Nissan Juke Hatchback 2012 13.67% Acura TSX Sedan 2012 8.11% Hyundai Genesis Sedan 2012 6.64% BMW 3 Series Sedan 2012 4.36% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 98.16% Bentley Continental GT Coupe 2007 1.02% Bentley Continental Flying Spur Sedan 2007 0.45% Bentley Continental GT Coupe 2012 0.34% Bentley Continental Supersports Conv. Convertible 2012 0.01% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Hyundai Veloster Hatchback 2012 39.72% AM General Hummer SUV 2000 20.93% Jeep Wrangler SUV 2012 9.83% Spyker C8 Coupe 2009 8.04% smart fortwo Convertible 2012 7.15% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 98.22% Lamborghini Aventador Coupe 2012 0.95% Aston Martin V8 Vantage Coupe 2012 0.23% Aston Martin V8 Vantage Convertible 2012 0.22% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.12% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 74.58% Volkswagen Golf Hatchback 2012 7.46% Hyundai Veracruz SUV 2012 4.21% Honda Accord Sedan 2012 3.5% Nissan Juke Hatchback 2012 2.1% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Chevrolet TrailBlazer SS 2009 36.81% Dodge Sprinter Cargo Van 2009 34.04% Cadillac SRX SUV 2012 9.79% Hyundai Tucson SUV 2012 4.64% Toyota 4Runner SUV 2012 4.47% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 99.85% Hyundai Sonata Sedan 2012 0.11% Acura RL Sedan 2012 0.02% Hyundai Genesis Sedan 2012 0.01% Honda Accord Sedan 2012 0.01% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 92.26% Chevrolet Cobalt SS 2010 6.49% Lamborghini Diablo Coupe 2001 0.59% Chevrolet Corvette Convertible 2012 0.13% Ferrari 458 Italia Convertible 2012 0.1% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Jeep Compass SUV 2012 29.72% Volvo C30 Hatchback 2012 20.12% Nissan Juke Hatchback 2012 15.65% Chevrolet HHR SS 2010 4.26% Suzuki SX4 Hatchback 2012 4.15% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 59.45% Chevrolet Silverado 1500 Regular Cab 2012 22.92% GMC Canyon Extended Cab 2012 6.51% GMC Yukon Hybrid SUV 2012 4.17% Ford F-150 Regular Cab 2012 2.54% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 40.33% Audi S4 Sedan 2012 35.82% Audi S5 Coupe 2012 18.24% Audi S5 Convertible 2012 1.66% Audi TTS Coupe 2012 1.34% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Yukon Hybrid SUV 2012 31.5% Cadillac Escalade EXT Crew Cab 2007 10.62% Ford F-150 Regular Cab 2007 9.94% Ford Ranger SuperCab 2011 9.86% GMC Canyon Extended Cab 2012 7.41% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Chevrolet Corvette Convertible 2012 28.55% BMW M6 Convertible 2010 16.57% Aston Martin V8 Vantage Coupe 2012 8.18% Jaguar XK XKR 2012 7.23% BMW 6 Series Convertible 2007 7.18% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 58.31% Honda Odyssey Minivan 2007 10.52% Acura ZDX Hatchback 2012 7.37% BMW X3 SUV 2012 6.63% BMW 3 Series Wagon 2012 4.74% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Hyundai Accent Sedan 2012 16.87% Ford Mustang Convertible 2007 13.78% Chevrolet Sonic Sedan 2012 10.03% Chrysler Crossfire Convertible 2008 7.57% Volvo C30 Hatchback 2012 4.54% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 84.19% Ferrari 458 Italia Convertible 2012 11.59% Chevrolet Corvette Convertible 2012 4.19% Ferrari 458 Italia Coupe 2012 0.02% Ferrari FF Coupe 2012 0.01% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 87.28% Audi S6 Sedan 2011 3.53% Audi S5 Coupe 2012 2.34% Audi S4 Sedan 2007 1.68% Audi A5 Coupe 2012 1.21% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 86.21% Lamborghini Aventador Coupe 2012 3.08% McLaren MP4-12C Coupe 2012 3.02% Lamborghini Diablo Coupe 2001 1.28% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.19% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 59.45% Chevrolet Express Cargo Van 2007 40.41% Chevrolet Express Van 2007 0.05% Ford F-150 Regular Cab 2012 0.04% Nissan NV Passenger Van 2012 0.02% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Ford Edge SUV 2012 24.96% Ford F-150 Regular Cab 2012 21.26% Toyota 4Runner SUV 2012 15.88% Ford F-450 Super Duty Crew Cab 2012 11.96% GMC Acadia SUV 2012 4.63% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Mitsubishi Lancer Sedan 2012 21.41% Ferrari FF Coupe 2012 16.88% Chevrolet Corvette ZR1 2012 14.34% Plymouth Neon Coupe 1999 12.75% Daewoo Nubira Wagon 2002 5.51% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Volvo 240 Sedan 1993 52.4% Dodge Dakota Crew Cab 2010 13.69% Ford Edge SUV 2012 6.34% Hyundai Veracruz SUV 2012 3.7% Jeep Compass SUV 2012 3.53% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 GMC Yukon Hybrid SUV 2012 54.64% Jeep Wrangler SUV 2012 24.52% Jeep Patriot SUV 2012 4.0% AM General Hummer SUV 2000 3.7% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.41% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Lincoln Town Car Sedan 2011 31.51% GMC Acadia SUV 2012 17.97% Ford Freestar Minivan 2007 15.57% Buick Rainier SUV 2007 10.18% Chevrolet Impala Sedan 2007 6.13% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo 240 Sedan 1993 53.03% Audi V8 Sedan 1994 25.08% Mercedes-Benz 300-Class Convertible 1993 9.74% Nissan 240SX Coupe 1998 6.49% Audi 100 Wagon 1994 2.74% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 BMW 3 Series Wagon 2012 69.98% Audi S5 Coupe 2012 8.17% Audi RS 4 Convertible 2008 4.29% Audi S6 Sedan 2011 3.97% BMW 3 Series Sedan 2012 2.35% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Audi S6 Sedan 2011 59.47% Audi TTS Coupe 2012 15.68% Audi TT Hatchback 2011 14.75% Audi RS 4 Convertible 2008 6.8% Audi R8 Coupe 2012 0.52% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 90.15% Mercedes-Benz Sprinter Van 2012 8.88% Audi V8 Sedan 1994 0.42% Audi 100 Wagon 1994 0.4% Dodge Sprinter Cargo Van 2009 0.1% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Dodge Durango SUV 2007 18.78% Bentley Arnage Sedan 2009 18.64% Volvo 240 Sedan 1993 15.01% BMW X5 SUV 2007 11.72% Ford Mustang Convertible 2007 7.12% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford Expedition EL SUV 2009 51.32% Dodge Ram Pickup 3500 Crew Cab 2010 38.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.19% Ford F-150 Regular Cab 2012 1.92% Hyundai Genesis Sedan 2012 1.38% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Ford GT Coupe 2006 36.29% Lamborghini Aventador Coupe 2012 23.86% Mercedes-Benz 300-Class Convertible 1993 11.28% Audi R8 Coupe 2012 7.03% Audi TTS Coupe 2012 3.72% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Buick Enclave SUV 2012 57.43% BMW 1 Series Coupe 2012 21.59% Ford Ranger SuperCab 2011 10.58% BMW 3 Series Wagon 2012 1.15% Toyota 4Runner SUV 2012 1.07% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 85.87% Jeep Wrangler SUV 2012 11.18% GMC Yukon Hybrid SUV 2012 2.82% GMC Acadia SUV 2012 0.04% Nissan NV Passenger Van 2012 0.03% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.29% Dodge Ram Pickup 3500 Crew Cab 2010 0.3% Dodge Dakota Club Cab 2007 0.21% Dodge Dakota Crew Cab 2010 0.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Audi TT Hatchback 2011 38.11% Audi S5 Coupe 2012 20.78% BMW 1 Series Convertible 2012 11.08% Audi TT RS Coupe 2012 10.6% Mercedes-Benz E-Class Sedan 2012 8.36% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 85.73% GMC Terrain SUV 2012 9.92% GMC Acadia SUV 2012 1.47% Chevrolet Malibu Sedan 2007 1.15% Chevrolet Silverado 1500 Regular Cab 2012 0.57% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura RL Sedan 2012 17.24% Hyundai Tucson SUV 2012 7.25% Bentley Continental GT Coupe 2007 5.25% Rolls-Royce Ghost Sedan 2012 4.42% BMW 6 Series Convertible 2007 4.29% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Hyundai Azera Sedan 2012 27.96% Ford Fiesta Sedan 2012 22.81% Bugatti Veyron 16.4 Convertible 2009 18.58% Scion xD Hatchback 2012 9.12% Nissan Leaf Hatchback 2012 3.07% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 58.04% Dodge Caliber Wagon 2012 34.44% Dodge Journey SUV 2012 2.41% Suzuki SX4 Hatchback 2012 0.97% Chrysler Crossfire Convertible 2008 0.91% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW 1 Series Convertible 2012 56.41% Audi TT RS Coupe 2012 19.25% Ford Fiesta Sedan 2012 10.2% Jaguar XK XKR 2012 3.28% Toyota Corolla Sedan 2012 1.64% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 27.25% Hyundai Accent Sedan 2012 19.42% Hyundai Sonata Sedan 2012 17.6% Scion xD Hatchback 2012 14.56% Hyundai Veloster Hatchback 2012 6.7% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Audi R8 Coupe 2012 36.9% Lamborghini Aventador Coupe 2012 14.08% Lamborghini Reventon Coupe 2008 5.67% Chrysler 300 SRT-8 2010 5.19% Mercedes-Benz SL-Class Coupe 2009 2.75% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Bugatti Veyron 16.4 Coupe 2009 70.58% FIAT 500 Abarth 2012 8.51% Bentley Continental GT Coupe 2012 6.81% Bentley Continental GT Coupe 2007 6.14% Mitsubishi Lancer Sedan 2012 2.59% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 58.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 13.69% Dodge Ram Pickup 3500 Quad Cab 2009 6.72% Ford F-150 Regular Cab 2012 5.96% GMC Canyon Extended Cab 2012 4.28% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Chevrolet Sonic Sedan 2012 29.73% Acura ZDX Hatchback 2012 23.04% Porsche Panamera Sedan 2012 10.73% Acura TL Sedan 2012 8.15% Chevrolet Corvette ZR1 2012 6.05% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Ford Focus Sedan 2007 49.87% Chevrolet Impala Sedan 2007 27.99% Plymouth Neon Coupe 1999 7.26% Daewoo Nubira Wagon 2002 5.23% Hyundai Elantra Touring Hatchback 2012 2.22% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Ram C/V Cargo Van Minivan 2012 43.05% Dodge Caliber Wagon 2012 14.56% Chrysler Town and Country Minivan 2012 11.67% Dodge Caliber Wagon 2007 10.83% Ford Freestar Minivan 2007 8.94% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 Audi S6 Sedan 2011 71.22% BMW 3 Series Sedan 2012 22.85% Mercedes-Benz C-Class Sedan 2012 1.55% BMW X3 SUV 2012 1.46% Audi S4 Sedan 2012 0.61% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 99.02% Acura ZDX Hatchback 2012 0.54% Hyundai Azera Sedan 2012 0.25% Acura TL Sedan 2012 0.09% Hyundai Tucson SUV 2012 0.03% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi TTS Coupe 2012 98.9% Honda Accord Coupe 2012 0.35% Audi A5 Coupe 2012 0.21% Chevrolet Malibu Hybrid Sedan 2010 0.11% Toyota Camry Sedan 2012 0.06% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Ford Focus Sedan 2007 51.82% Eagle Talon Hatchback 1998 19.1% Dodge Caravan Minivan 1997 8.63% Nissan 240SX Coupe 1998 4.73% Acura TL Sedan 2012 3.7% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 94.86% Hyundai Azera Sedan 2012 3.14% Mercedes-Benz S-Class Sedan 2012 0.83% Honda Accord Sedan 2012 0.18% Audi S6 Sedan 2011 0.15% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.83% Chevrolet Silverado 1500 Regular Cab 2012 0.06% GMC Yukon Hybrid SUV 2012 0.03% Volvo XC90 SUV 2007 0.02% Chrysler Aspen SUV 2009 0.01% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 99.18% Mercedes-Benz 300-Class Convertible 1993 0.34% Mercedes-Benz C-Class Sedan 2012 0.12% Daewoo Nubira Wagon 2002 0.1% Chrysler Crossfire Convertible 2008 0.09% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 46.49% Infiniti QX56 SUV 2011 34.75% Ford Expedition EL SUV 2009 9.67% Toyota 4Runner SUV 2012 2.81% Dodge Caliber Wagon 2012 2.56% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 89.53% BMW 1 Series Coupe 2012 9.79% Suzuki SX4 Hatchback 2012 0.35% BMW 3 Series Sedan 2012 0.16% BMW M3 Coupe 2012 0.05% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Bentley Continental Supersports Conv. Convertible 2012 87.78% Chevrolet Corvette ZR1 2012 4.6% Ferrari 458 Italia Convertible 2012 4.01% Ferrari California Convertible 2012 1.25% Ferrari 458 Italia Coupe 2012 0.64% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 BMW 6 Series Convertible 2007 94.99% BMW M6 Convertible 2010 2.45% Ford Mustang Convertible 2007 0.75% Chrysler 300 SRT-8 2010 0.39% Jaguar XK XKR 2012 0.21% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet HHR SS 2010 48.27% Dodge Magnum Wagon 2008 18.47% Scion xD Hatchback 2012 6.18% Ford Mustang Convertible 2007 5.83% Suzuki SX4 Hatchback 2012 4.07% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.86% Dodge Ram Pickup 3500 Crew Cab 2010 0.09% Jeep Liberty SUV 2012 0.02% Dodge Dakota Club Cab 2007 0.01% Chrysler 300 SRT-8 2010 0.0% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Chevrolet Camaro Convertible 2012 52.73% Audi S5 Coupe 2012 21.24% Infiniti G Coupe IPL 2012 5.25% Fisker Karma Sedan 2012 3.1% Chevrolet Corvette Convertible 2012 2.85% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Mitsubishi Lancer Sedan 2012 82.94% Chrysler 300 SRT-8 2010 3.09% Audi R8 Coupe 2012 3.0% Dodge Caliber Wagon 2012 2.69% Ford Edge SUV 2012 1.68% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Buick Enclave SUV 2012 37.17% Cadillac SRX SUV 2012 34.12% Mazda Tribute SUV 2011 5.3% BMW X3 SUV 2012 4.89% Rolls-Royce Ghost Sedan 2012 2.96% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 38.18% Hyundai Santa Fe SUV 2012 8.11% Chevrolet TrailBlazer SS 2009 6.83% Honda Accord Sedan 2012 4.75% BMW X3 SUV 2012 4.35% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 95.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.26% Volvo XC90 SUV 2007 1.2% Ford F-150 Regular Cab 2012 0.87% Chevrolet Silverado 1500 Regular Cab 2012 0.32% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 31.17% Nissan Juke Hatchback 2012 13.84% Suzuki SX4 Hatchback 2012 13.23% Volkswagen Golf Hatchback 1991 7.48% Volvo C30 Hatchback 2012 6.46% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Acura TL Type-S 2008 52.0% Jaguar XK XKR 2012 6.11% Dodge Charger Sedan 2012 5.05% Dodge Charger SRT-8 2009 4.75% Mercedes-Benz C-Class Sedan 2012 4.64% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 BMW M3 Coupe 2012 45.35% Aston Martin Virage Coupe 2012 27.71% Volvo C30 Hatchback 2012 21.14% Bentley Continental GT Coupe 2012 2.06% BMW 1 Series Coupe 2012 1.95% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 66.6% Audi A5 Coupe 2012 10.79% Audi S5 Coupe 2012 9.65% Buick Verano Sedan 2012 3.71% Hyundai Veloster Hatchback 2012 2.1% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT RS Coupe 2012 91.42% Audi TT Hatchback 2011 7.39% Audi TTS Coupe 2012 1.13% Audi A5 Coupe 2012 0.03% Audi R8 Coupe 2012 0.02% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Aston Martin Virage Convertible 2012 30.87% Audi S4 Sedan 2012 10.64% Audi S5 Convertible 2012 9.74% Spyker C8 Convertible 2009 8.16% Aston Martin V8 Vantage Convertible 2012 6.26% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 BMW X6 SUV 2012 53.64% Land Rover LR2 SUV 2012 13.11% Buick Enclave SUV 2012 4.55% Toyota 4Runner SUV 2012 3.96% GMC Canyon Extended Cab 2012 3.45% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Volvo 240 Sedan 1993 43.54% Chevrolet Silverado 1500 Extended Cab 2012 29.66% Lincoln Town Car Sedan 2011 9.95% Dodge Ram Pickup 3500 Quad Cab 2009 9.18% Ford F-150 Regular Cab 2007 4.17% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Jeep Liberty SUV 2012 56.49% Jeep Patriot SUV 2012 25.82% Jeep Wrangler SUV 2012 10.69% Isuzu Ascender SUV 2008 5.83% Buick Rainier SUV 2007 0.57% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 77.63% Buick Regal GS 2012 8.96% Bentley Continental GT Coupe 2007 3.18% Infiniti G Coupe IPL 2012 2.9% Suzuki Kizashi Sedan 2012 0.87% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 20.9% Mercedes-Benz C-Class Sedan 2012 20.6% Honda Accord Sedan 2012 15.41% Acura TSX Sedan 2012 10.2% Toyota Corolla Sedan 2012 6.41% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Bentley Continental GT Coupe 2007 32.81% Lamborghini Aventador Coupe 2012 19.37% Ford GT Coupe 2006 12.73% Bentley Continental Flying Spur Sedan 2007 10.94% Bugatti Veyron 16.4 Coupe 2009 8.09% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 39.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 22.07% GMC Canyon Extended Cab 2012 17.5% Dodge Dakota Club Cab 2007 7.66% Audi 100 Sedan 1994 4.63% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 98.05% Ford Focus Sedan 2007 0.71% Lincoln Town Car Sedan 2011 0.37% Buick Rainier SUV 2007 0.31% Chevrolet Traverse SUV 2012 0.18% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Chrysler PT Cruiser Convertible 2008 31.18% Volkswagen Golf Hatchback 1991 28.82% Volvo 240 Sedan 1993 12.48% Mercedes-Benz 300-Class Convertible 1993 8.81% Audi 100 Wagon 1994 3.74% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 51.42% Dodge Dakota Club Cab 2007 47.46% Chevrolet Avalanche Crew Cab 2012 0.65% Jeep Liberty SUV 2012 0.22% Volkswagen Golf Hatchback 1991 0.09% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Chevrolet Sonic Sedan 2012 89.24% Jeep Compass SUV 2012 2.03% Rolls-Royce Ghost Sedan 2012 1.31% BMW X6 SUV 2012 1.1% Nissan Juke Hatchback 2012 1.03% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 94.19% Jeep Grand Cherokee SUV 2012 5.81% Jeep Wrangler SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% Isuzu Ascender SUV 2008 0.0% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 92.01% Ford F-150 Regular Cab 2012 6.08% Dodge Ram Pickup 3500 Crew Cab 2010 0.49% Isuzu Ascender SUV 2008 0.35% Dodge Ram Pickup 3500 Quad Cab 2009 0.27% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 98.72% Hyundai Sonata Hybrid Sedan 2012 0.27% Ford Edge SUV 2012 0.26% Dodge Challenger SRT8 2011 0.08% Chrysler 300 SRT-8 2010 0.08% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Liberty SUV 2012 77.41% Jeep Grand Cherokee SUV 2012 21.67% Jeep Compass SUV 2012 0.62% Bentley Arnage Sedan 2009 0.23% Rolls-Royce Phantom Sedan 2012 0.03% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Hyundai Elantra Sedan 2007 34.66% Hyundai Sonata Sedan 2012 31.67% Hyundai Azera Sedan 2012 9.51% Ferrari FF Coupe 2012 5.79% Honda Accord Sedan 2012 2.65% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi A5 Coupe 2012 57.47% Audi S4 Sedan 2012 16.21% Audi S5 Coupe 2012 13.99% Audi RS 4 Convertible 2008 3.37% Audi S6 Sedan 2011 3.07% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Jeep Patriot SUV 2012 71.07% Jeep Compass SUV 2012 12.66% GMC Acadia SUV 2012 11.28% Jeep Grand Cherokee SUV 2012 4.78% Dodge Caliber Wagon 2007 0.07% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Honda Odyssey Minivan 2012 54.55% Cadillac CTS-V Sedan 2012 9.82% Dodge Magnum Wagon 2008 5.41% Honda Accord Sedan 2012 4.83% Hyundai Genesis Sedan 2012 3.86% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Chrysler Town and Country Minivan 2012 53.65% Honda Odyssey Minivan 2007 37.62% Chrysler PT Cruiser Convertible 2008 3.2% Ram C/V Cargo Van Minivan 2012 1.93% Ford Expedition EL SUV 2009 0.75% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 32.98% Toyota Camry Sedan 2012 22.4% Hyundai Sonata Sedan 2012 13.67% Chevrolet Malibu Hybrid Sedan 2010 11.57% Hyundai Azera Sedan 2012 8.39% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Mercedes-Benz 300-Class Convertible 1993 86.76% Lincoln Town Car Sedan 2011 7.7% Volvo 240 Sedan 1993 3.13% Audi 100 Wagon 1994 0.46% Volkswagen Golf Hatchback 1991 0.43% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Honda Odyssey Minivan 2007 59.82% Ford Freestar Minivan 2007 32.51% Chevrolet Malibu Sedan 2007 7.08% Chevrolet Traverse SUV 2012 0.26% Chrysler Town and Country Minivan 2012 0.09% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 GMC Acadia SUV 2012 57.77% Jeep Grand Cherokee SUV 2012 11.17% Mazda Tribute SUV 2011 10.75% Land Rover Range Rover SUV 2012 7.62% Nissan Juke Hatchback 2012 4.61% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 99.95% Hyundai Accent Sedan 2012 0.02% BMW 6 Series Convertible 2007 0.01% Acura TSX Sedan 2012 0.01% Toyota Corolla Sedan 2012 0.01% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Volkswagen Golf Hatchback 2012 46.76% Honda Accord Sedan 2012 18.37% Hyundai Elantra Touring Hatchback 2012 8.25% Suzuki SX4 Sedan 2012 4.73% Daewoo Nubira Wagon 2002 3.8% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Chevrolet Traverse SUV 2012 31.72% Hyundai Tucson SUV 2012 23.97% Toyota Camry Sedan 2012 20.67% Nissan Juke Hatchback 2012 9.58% Buick Verano Sedan 2012 5.01% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Aston Martin Virage Convertible 2012 72.19% Fisker Karma Sedan 2012 16.06% Spyker C8 Convertible 2009 5.17% Aston Martin V8 Vantage Coupe 2012 4.13% Jaguar XK XKR 2012 1.08% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Suzuki SX4 Sedan 2012 55.63% Bentley Continental GT Coupe 2007 15.21% Ford Mustang Convertible 2007 6.63% Chrysler 300 SRT-8 2010 4.71% Chevrolet Camaro Convertible 2012 4.06% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 30.52% Mercedes-Benz 300-Class Convertible 1993 15.19% Suzuki Kizashi Sedan 2012 10.03% Dodge Dakota Club Cab 2007 5.68% Chrysler 300 SRT-8 2010 4.73% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Cadillac SRX SUV 2012 25.49% Toyota Sequoia SUV 2012 21.48% BMW X3 SUV 2012 18.5% BMW X5 SUV 2007 7.54% Infiniti QX56 SUV 2011 5.41% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Aston Martin Virage Coupe 2012 74.24% Spyker C8 Convertible 2009 5.7% BMW M3 Coupe 2012 3.71% Hyundai Veloster Hatchback 2012 2.56% Chevrolet Sonic Sedan 2012 1.75% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Sedan 2012 49.88% Hyundai Azera Sedan 2012 21.84% Hyundai Sonata Hybrid Sedan 2012 13.07% Ford Edge SUV 2012 11.3% Mitsubishi Lancer Sedan 2012 1.06% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 93.49% Ford Edge SUV 2012 2.64% GMC Terrain SUV 2012 1.17% Ford F-150 Regular Cab 2012 0.73% Ford Ranger SuperCab 2011 0.56% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Cadillac SRX SUV 2012 27.83% Toyota 4Runner SUV 2012 21.46% Infiniti QX56 SUV 2011 14.56% Land Rover Range Rover SUV 2012 8.73% Dodge Durango SUV 2012 2.87% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Ford GT Coupe 2006 19.63% Chevrolet Camaro Convertible 2012 16.25% Jeep Patriot SUV 2012 10.85% Chrysler 300 SRT-8 2010 10.01% Nissan NV Passenger Van 2012 7.67% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Dodge Durango SUV 2007 38.85% Ford F-150 Regular Cab 2007 10.92% Chrysler Aspen SUV 2009 9.54% Toyota Sequoia SUV 2012 4.71% Cadillac Escalade EXT Crew Cab 2007 4.7% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 96.34% Ford F-150 Regular Cab 2007 1.16% Dodge Ram Pickup 3500 Crew Cab 2010 0.92% Dodge Durango SUV 2007 0.55% Dodge Dakota Crew Cab 2010 0.35% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 45.89% Infiniti QX56 SUV 2011 27.76% Hyundai Genesis Sedan 2012 7.58% Ford Expedition EL SUV 2009 5.81% Chrysler 300 SRT-8 2010 5.42% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Buick Enclave SUV 2012 33.32% Chevrolet Traverse SUV 2012 18.65% Hyundai Veracruz SUV 2012 12.2% Toyota Sequoia SUV 2012 11.92% BMW X5 SUV 2007 5.66% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 59.28% Aston Martin Virage Coupe 2012 37.0% Mitsubishi Lancer Sedan 2012 1.86% BMW 1 Series Coupe 2012 0.93% McLaren MP4-12C Coupe 2012 0.71% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Chevrolet Camaro Convertible 2012 31.98% Cadillac SRX SUV 2012 16.01% Infiniti QX56 SUV 2011 12.26% Hyundai Genesis Sedan 2012 6.8% Chrysler 300 SRT-8 2010 4.27% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Hyundai Veloster Hatchback 2012 52.19% BMW Z4 Convertible 2012 20.39% Aston Martin V8 Vantage Coupe 2012 5.41% Dodge Charger Sedan 2012 5.19% Ford Mustang Convertible 2007 4.0% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Chrysler Sebring Convertible 2010 63.05% Honda Accord Coupe 2012 31.07% Chrysler Crossfire Convertible 2008 1.86% Chrysler PT Cruiser Convertible 2008 0.83% Geo Metro Convertible 1993 0.72% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Audi 100 Wagon 1994 85.19% Volkswagen Golf Hatchback 1991 3.77% Suzuki SX4 Sedan 2012 3.5% BMW 3 Series Wagon 2012 2.28% FIAT 500 Abarth 2012 1.9% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 95.71% Bentley Continental GT Coupe 2007 4.28% Volkswagen Beetle Hatchback 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Cadillac CTS-V Sedan 2012 0.0% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.83% GMC Savana Van 2012 0.13% Chevrolet Express Van 2007 0.03% Audi 100 Wagon 1994 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Ford Ranger SuperCab 2011 0.0% Nissan NV Passenger Van 2012 0.0% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Spyker C8 Convertible 2009 79.49% Fisker Karma Sedan 2012 8.92% Infiniti G Coupe IPL 2012 2.08% Audi S5 Coupe 2012 2.06% Ferrari FF Coupe 2012 1.87% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 FIAT 500 Convertible 2012 61.23% Suzuki Kizashi Sedan 2012 22.68% Volvo C30 Hatchback 2012 3.32% Jaguar XK XKR 2012 2.2% Mercedes-Benz E-Class Sedan 2012 1.99% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Fisker Karma Sedan 2012 39.42% BMW M5 Sedan 2010 11.43% Hyundai Genesis Sedan 2012 8.95% Ford GT Coupe 2006 8.07% Bugatti Veyron 16.4 Coupe 2009 2.27% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Aston Martin V8 Vantage Convertible 2012 24.84% BMW Z4 Convertible 2012 24.59% Chevrolet Camaro Convertible 2012 24.09% Aston Martin V8 Vantage Coupe 2012 7.48% Audi S6 Sedan 2011 5.24% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Dodge Dakota Crew Cab 2010 92.67% Ford Freestar Minivan 2007 4.34% Chrysler Aspen SUV 2009 0.6% Lincoln Town Car Sedan 2011 0.58% Dodge Journey SUV 2012 0.39% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Bentley Continental Flying Spur Sedan 2007 33.68% Mercedes-Benz S-Class Sedan 2012 12.03% Hyundai Genesis Sedan 2012 7.13% Bentley Mulsanne Sedan 2011 6.53% Audi S4 Sedan 2007 5.51% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 92.01% Hyundai Elantra Touring Hatchback 2012 2.81% Audi S6 Sedan 2011 1.69% Mitsubishi Lancer Sedan 2012 0.61% Audi S5 Convertible 2012 0.6% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 97.46% Ford F-450 Super Duty Crew Cab 2012 0.65% Ford F-150 Regular Cab 2007 0.61% Chevrolet Silverado 1500 Regular Cab 2012 0.36% GMC Yukon Hybrid SUV 2012 0.29% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 93.6% Ferrari California Convertible 2012 6.23% Ferrari FF Coupe 2012 0.1% Ferrari 458 Italia Convertible 2012 0.06% Fisker Karma Sedan 2012 0.0% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Dodge Caliber Wagon 2012 36.81% GMC Acadia SUV 2012 13.2% Chevrolet Sonic Sedan 2012 9.31% Dodge Journey SUV 2012 5.8% Nissan Leaf Hatchback 2012 4.14% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 36.27% Spyker C8 Coupe 2009 22.44% smart fortwo Convertible 2012 15.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.76% Ford GT Coupe 2006 4.12% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 77.66% Honda Accord Coupe 2012 7.8% Chevrolet Malibu Hybrid Sedan 2010 6.79% Toyota Sequoia SUV 2012 3.64% Toyota Corolla Sedan 2012 2.41% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 51.41% Acura Integra Type R 2001 38.79% Fisker Karma Sedan 2012 2.23% Toyota Camry Sedan 2012 1.46% Aston Martin Virage Convertible 2012 1.17% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Chevrolet TrailBlazer SS 2009 63.39% Suzuki SX4 Hatchback 2012 8.86% Buick Verano Sedan 2012 6.81% BMW X6 SUV 2012 6.59% Hyundai Elantra Sedan 2007 3.64% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chrysler Town and Country Minivan 2012 29.24% Ford Freestar Minivan 2007 16.75% Buick Rainier SUV 2007 8.49% Dodge Caliber Wagon 2012 8.27% Chrysler PT Cruiser Convertible 2008 6.11% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Toyota Sequoia SUV 2012 33.6% Ford Focus Sedan 2007 15.13% Ram C/V Cargo Van Minivan 2012 6.81% Chrysler Town and Country Minivan 2012 5.58% Volkswagen Golf Hatchback 2012 5.49% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Ferrari FF Coupe 2012 47.58% Ford Mustang Convertible 2007 16.95% Aston Martin V8 Vantage Coupe 2012 3.41% Audi TT Hatchback 2011 3.22% Acura TL Sedan 2012 2.74% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Eagle Talon Hatchback 1998 12.21% Mercedes-Benz 300-Class Convertible 1993 9.83% Dodge Magnum Wagon 2008 9.48% Chevrolet Camaro Convertible 2012 8.88% Chrysler Crossfire Convertible 2008 8.32% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 McLaren MP4-12C Coupe 2012 44.94% Hyundai Veloster Hatchback 2012 25.63% Aston Martin Virage Coupe 2012 19.86% Spyker C8 Convertible 2009 8.28% Lamborghini Aventador Coupe 2012 0.54% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Audi S4 Sedan 2012 90.33% BMW 1 Series Coupe 2012 6.78% Hyundai Sonata Hybrid Sedan 2012 1.12% Audi TT RS Coupe 2012 1.02% Jaguar XK XKR 2012 0.27% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Tesla Model S Sedan 2012 29.87% Hyundai Azera Sedan 2012 13.64% Acura ZDX Hatchback 2012 8.14% Cadillac CTS-V Sedan 2012 7.46% Buick Regal GS 2012 7.0% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Ford Freestar Minivan 2007 94.15% Dodge Caliber Wagon 2012 2.88% Dodge Durango SUV 2007 0.76% Scion xD Hatchback 2012 0.44% Hyundai Elantra Sedan 2007 0.4% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 63.03% Ford GT Coupe 2006 34.92% Chevrolet Corvette ZR1 2012 0.9% Chevrolet Cobalt SS 2010 0.46% Lamborghini Aventador Coupe 2012 0.38% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Dodge Ram Pickup 3500 Crew Cab 2010 12.98% Jeep Patriot SUV 2012 12.34% Hyundai Veracruz SUV 2012 9.08% Volvo 240 Sedan 1993 7.89% Ford Edge SUV 2012 6.02% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Audi S5 Convertible 2012 46.72% Mercedes-Benz S-Class Sedan 2012 32.35% Audi A5 Coupe 2012 14.15% Audi S6 Sedan 2011 2.86% Audi S5 Coupe 2012 2.27% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 38.21% Chevrolet Sonic Sedan 2012 14.6% Acura ZDX Hatchback 2012 4.9% Bugatti Veyron 16.4 Coupe 2009 4.56% Volvo C30 Hatchback 2012 4.39% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Spyker C8 Convertible 2009 46.34% MINI Cooper Roadster Convertible 2012 13.2% Fisker Karma Sedan 2012 7.12% Ford GT Coupe 2006 6.04% Bentley Continental GT Coupe 2007 5.44% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Audi V8 Sedan 1994 20.61% Bentley Continental GT Coupe 2007 15.49% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.63% Volkswagen Golf Hatchback 1991 5.09% Aston Martin Virage Convertible 2012 4.81% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Ford GT Coupe 2006 61.42% Bentley Continental GT Coupe 2007 8.91% Audi S6 Sedan 2011 6.83% Chevrolet Corvette ZR1 2012 2.57% Lamborghini Aventador Coupe 2012 2.36% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Scion xD Hatchback 2012 34.99% Chevrolet Malibu Sedan 2007 18.79% Hyundai Sonata Hybrid Sedan 2012 14.76% Dodge Caliber Wagon 2012 11.06% Toyota Corolla Sedan 2012 7.87% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 54.72% Mitsubishi Lancer Sedan 2012 15.62% Hyundai Sonata Hybrid Sedan 2012 7.45% Acura TL Type-S 2008 6.35% Hyundai Accent Sedan 2012 5.63% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 23.04% Aston Martin V8 Vantage Convertible 2012 18.29% Aston Martin V8 Vantage Coupe 2012 17.57% BMW 6 Series Convertible 2007 17.48% Ferrari California Convertible 2012 11.2% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 98.56% Audi TT Hatchback 2011 1.43% Audi A5 Coupe 2012 0.0% Audi S4 Sedan 2012 0.0% Audi R8 Coupe 2012 0.0% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Isuzu Ascender SUV 2008 39.41% Jeep Liberty SUV 2012 31.7% Ford Freestar Minivan 2007 11.17% Dodge Durango SUV 2012 9.46% Dodge Ram Pickup 3500 Crew Cab 2010 2.78% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Buick Regal GS 2012 26.03% Rolls-Royce Ghost Sedan 2012 18.7% Mercedes-Benz 300-Class Convertible 1993 5.05% Bentley Continental Supersports Conv. Convertible 2012 4.67% BMW X5 SUV 2007 4.64% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Scion xD Hatchback 2012 47.53% smart fortwo Convertible 2012 19.21% Chevrolet Impala Sedan 2007 8.8% Suzuki SX4 Sedan 2012 6.79% Chevrolet Malibu Sedan 2007 5.32% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 93.28% Chevrolet Tahoe Hybrid SUV 2012 6.59% GMC Yukon Hybrid SUV 2012 0.11% Cadillac Escalade EXT Crew Cab 2007 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.01% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 16.92% Mazda Tribute SUV 2011 9.23% Volvo 240 Sedan 1993 5.97% Chrysler 300 SRT-8 2010 5.72% Chevrolet Malibu Sedan 2007 4.54% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Aston Martin Virage Convertible 2012 69.59% Lamborghini Reventon Coupe 2008 12.24% BMW 6 Series Convertible 2007 6.07% Tesla Model S Sedan 2012 2.44% Aston Martin V8 Vantage Convertible 2012 1.75% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Mercedes-Benz E-Class Sedan 2012 19.76% Mercedes-Benz C-Class Sedan 2012 14.13% BMW 6 Series Convertible 2007 12.1% Audi S5 Coupe 2012 9.14% Infiniti G Coupe IPL 2012 6.36% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Mazda Tribute SUV 2011 21.22% Ford F-150 Regular Cab 2007 15.4% Land Rover Range Rover SUV 2012 15.17% GMC Yukon Hybrid SUV 2012 15.16% Ford Freestar Minivan 2007 7.69% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 96.72% Ford Mustang Convertible 2007 1.14% Nissan 240SX Coupe 1998 0.82% Eagle Talon Hatchback 1998 0.41% Chevrolet Camaro Convertible 2012 0.36% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 85.33% Dodge Ram Pickup 3500 Crew Cab 2010 14.26% Dodge Dakota Club Cab 2007 0.3% Dodge Durango SUV 2007 0.06% Dodge Dakota Crew Cab 2010 0.04% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Ford Focus Sedan 2007 66.55% Daewoo Nubira Wagon 2002 31.54% Suzuki Aerio Sedan 2007 0.64% Plymouth Neon Coupe 1999 0.44% Hyundai Elantra Sedan 2007 0.3% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Land Rover Range Rover SUV 2012 18.78% Land Rover LR2 SUV 2012 14.4% Ford Expedition EL SUV 2009 8.78% Hyundai Azera Sedan 2012 7.16% Ford Edge SUV 2012 6.61% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Chevrolet Monte Carlo Coupe 2007 46.8% Honda Odyssey Minivan 2012 17.41% Suzuki Aerio Sedan 2007 3.97% Honda Odyssey Minivan 2007 3.47% Hyundai Veracruz SUV 2012 3.23% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 Spyker C8 Convertible 2009 17.57% smart fortwo Convertible 2012 9.25% Nissan Juke Hatchback 2012 9.07% FIAT 500 Abarth 2012 7.94% Acura ZDX Hatchback 2012 5.67% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 42.38% Mercedes-Benz SL-Class Coupe 2009 20.6% Suzuki Kizashi Sedan 2012 8.58% Cadillac CTS-V Sedan 2012 4.65% Audi S4 Sedan 2007 2.16% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 60.03% Ford Ranger SuperCab 2011 16.19% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.84% Dodge Ram Pickup 3500 Crew Cab 2010 3.81% Chevrolet Silverado 1500 Extended Cab 2012 2.94% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Audi TTS Coupe 2012 38.78% Audi S5 Convertible 2012 29.73% BMW 6 Series Convertible 2007 20.25% Audi S5 Coupe 2012 3.0% Audi A5 Coupe 2012 2.86% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 BMW M5 Sedan 2010 31.39% Acura TL Type-S 2008 16.28% Mitsubishi Lancer Sedan 2012 14.16% Audi S4 Sedan 2007 13.63% Infiniti G Coupe IPL 2012 4.31% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Audi V8 Sedan 1994 62.87% Ford GT Coupe 2006 12.74% Eagle Talon Hatchback 1998 9.14% Audi 100 Wagon 1994 6.47% Plymouth Neon Coupe 1999 2.07% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Toyota Corolla Sedan 2012 53.45% Cadillac CTS-V Sedan 2012 22.67% Hyundai Elantra Sedan 2007 9.66% Toyota Camry Sedan 2012 5.82% Acura TSX Sedan 2012 1.27% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 AM General Hummer SUV 2000 57.21% HUMMER H2 SUT Crew Cab 2009 35.1% HUMMER H3T Crew Cab 2010 4.31% Jeep Wrangler SUV 2012 2.11% Ford F-450 Super Duty Crew Cab 2012 0.49% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 95.24% Dodge Caliber Wagon 2012 2.92% Dodge Magnum Wagon 2008 1.42% Dodge Journey SUV 2012 0.22% Dodge Durango SUV 2012 0.15% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 98.21% Scion xD Hatchback 2012 1.18% Volkswagen Golf Hatchback 2012 0.09% Jeep Patriot SUV 2012 0.07% Dodge Challenger SRT8 2011 0.04% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 97.12% Aston Martin V8 Vantage Convertible 2012 1.32% Fisker Karma Sedan 2012 0.47% Cadillac CTS-V Sedan 2012 0.34% Audi TTS Coupe 2012 0.2% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota Sequoia SUV 2012 65.59% GMC Yukon Hybrid SUV 2012 16.27% Land Rover Range Rover SUV 2012 12.07% Cadillac SRX SUV 2012 2.3% Toyota 4Runner SUV 2012 1.08% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Ranger SuperCab 2011 56.76% Ford F-150 Regular Cab 2007 15.22% GMC Canyon Extended Cab 2012 7.39% Ford F-150 Regular Cab 2012 5.7% Chevrolet Avalanche Crew Cab 2012 4.16% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Suzuki SX4 Hatchback 2012 55.97% Dodge Journey SUV 2012 17.0% Nissan Juke Hatchback 2012 13.36% Chevrolet Malibu Sedan 2007 3.6% Dodge Caliber Wagon 2012 3.28% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 96.8% Bugatti Veyron 16.4 Convertible 2009 1.27% Aston Martin V8 Vantage Coupe 2012 0.38% Jaguar XK XKR 2012 0.29% Mercedes-Benz SL-Class Coupe 2009 0.28% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.96% Ford Focus Sedan 2007 0.02% Eagle Talon Hatchback 1998 0.01% Nissan 240SX Coupe 1998 0.0% Daewoo Nubira Wagon 2002 0.0% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 45.81% BMW X5 SUV 2007 45.46% Volvo XC90 SUV 2007 5.96% Hyundai Santa Fe SUV 2012 1.42% BMW X3 SUV 2012 0.9% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Dodge Charger SRT-8 2009 85.1% Nissan 240SX Coupe 1998 5.34% Chrysler Crossfire Convertible 2008 4.47% BMW 3 Series Wagon 2012 1.49% Chrysler Sebring Convertible 2010 1.12% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Malibu Sedan 2007 60.24% Hyundai Sonata Sedan 2012 35.65% Toyota Camry Sedan 2012 0.78% Honda Odyssey Minivan 2012 0.73% Honda Accord Coupe 2012 0.61% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 99.1% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.42% Hyundai Veloster Hatchback 2012 0.28% Plymouth Neon Coupe 1999 0.11% Acura Integra Type R 2001 0.03% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 92.83% Ford F-150 Regular Cab 2012 6.92% Ford E-Series Wagon Van 2012 0.15% Cadillac Escalade EXT Crew Cab 2007 0.03% Ford Ranger SuperCab 2011 0.03% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.94% Eagle Talon Hatchback 1998 0.02% Chevrolet Monte Carlo Coupe 2007 0.01% Ford Focus Sedan 2007 0.01% Chevrolet Impala Sedan 2007 0.01% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 93.22% Hyundai Elantra Touring Hatchback 2012 2.31% Ford Fiesta Sedan 2012 1.99% Aston Martin V8 Vantage Convertible 2012 0.9% Spyker C8 Coupe 2009 0.24% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 97.6% Ford Freestar Minivan 2007 2.25% Dodge Caliber Wagon 2012 0.08% Buick Rainier SUV 2007 0.03% Chevrolet Malibu Sedan 2007 0.01% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 28.5% Bentley Mulsanne Sedan 2011 22.87% Rolls-Royce Phantom Sedan 2012 12.55% Chrysler Town and Country Minivan 2012 11.11% Chrysler 300 SRT-8 2010 4.65% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 GMC Savana Van 2012 43.59% Chevrolet Express Van 2007 22.77% Chevrolet Express Cargo Van 2007 12.93% Dodge Caravan Minivan 1997 7.53% Ford Ranger SuperCab 2011 4.85% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 55.77% Jeep Compass SUV 2012 10.27% Dodge Caliber Wagon 2007 6.64% Chrysler PT Cruiser Convertible 2008 6.43% Dodge Magnum Wagon 2008 4.48% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Caliber Wagon 2012 64.38% Dodge Caliber Wagon 2007 9.63% Hyundai Elantra Sedan 2007 3.8% Chrysler 300 SRT-8 2010 3.41% Jeep Grand Cherokee SUV 2012 2.76% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Jaguar XK XKR 2012 27.4% Honda Accord Coupe 2012 9.45% Honda Accord Sedan 2012 7.96% Mercedes-Benz 300-Class Convertible 1993 7.64% BMW 3 Series Wagon 2012 4.57% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Jeep Wrangler SUV 2012 57.41% Nissan NV Passenger Van 2012 17.31% Jeep Patriot SUV 2012 12.48% Ford E-Series Wagon Van 2012 4.63% Dodge Ram Pickup 3500 Quad Cab 2009 4.19% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Ghost Sedan 2012 71.65% Cadillac CTS-V Sedan 2012 14.84% Chevrolet Camaro Convertible 2012 5.21% Rolls-Royce Phantom Sedan 2012 3.05% Bentley Mulsanne Sedan 2011 2.71% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Audi S6 Sedan 2011 29.9% Audi TT Hatchback 2011 27.06% Audi A5 Coupe 2012 17.37% Audi S4 Sedan 2012 7.18% BMW Z4 Convertible 2012 3.83% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 99.1% Chevrolet Camaro Convertible 2012 0.2% Dodge Charger Sedan 2012 0.14% Chevrolet Corvette Convertible 2012 0.11% Mercedes-Benz 300-Class Convertible 1993 0.1% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 99.76% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.12% Acura Integra Type R 2001 0.04% Ferrari 458 Italia Coupe 2012 0.02% AM General Hummer SUV 2000 0.01% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Dodge Caliber Wagon 2012 37.55% Daewoo Nubira Wagon 2002 20.19% FIAT 500 Convertible 2012 11.39% Chevrolet Impala Sedan 2007 4.17% Nissan Leaf Hatchback 2012 3.65% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 93.29% Chevrolet Traverse SUV 2012 5.8% Jeep Grand Cherokee SUV 2012 0.19% Dodge Durango SUV 2007 0.16% Toyota Sequoia SUV 2012 0.16% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 52.88% Chevrolet Silverado 1500 Extended Cab 2012 15.01% Dodge Dakota Club Cab 2007 11.55% Chevrolet Silverado 1500 Regular Cab 2012 8.84% Chevrolet Avalanche Crew Cab 2012 2.54% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 95.38% Cadillac SRX SUV 2012 1.4% Land Rover Range Rover SUV 2012 1.1% GMC Acadia SUV 2012 0.98% Toyota Sequoia SUV 2012 0.44% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Ford Ranger SuperCab 2011 21.18% Hyundai Veracruz SUV 2012 16.88% Chevrolet Silverado 1500 Regular Cab 2012 13.1% Chevrolet Avalanche Crew Cab 2012 5.59% Chevrolet Silverado 2500HD Regular Cab 2012 4.94% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 94.14% Ferrari FF Coupe 2012 4.49% Audi TT Hatchback 2011 0.97% Ferrari 458 Italia Coupe 2012 0.23% Volkswagen Beetle Hatchback 2012 0.07% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 62.02% GMC Canyon Extended Cab 2012 12.4% Dodge Ram Pickup 3500 Quad Cab 2009 9.32% Chevrolet Silverado 2500HD Regular Cab 2012 5.43% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.62% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 97.81% Aston Martin V8 Vantage Coupe 2012 1.17% Aston Martin V8 Vantage Convertible 2012 0.47% Chevrolet Corvette ZR1 2012 0.33% Porsche Panamera Sedan 2012 0.1% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 97.7% Chevrolet Camaro Convertible 2012 1.09% Ferrari California Convertible 2012 0.5% Ferrari 458 Italia Coupe 2012 0.37% Chevrolet Corvette ZR1 2012 0.22% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Daewoo Nubira Wagon 2002 48.29% Volkswagen Golf Hatchback 1991 12.82% Fisker Karma Sedan 2012 12.68% Suzuki SX4 Sedan 2012 9.73% Audi V8 Sedan 1994 4.51% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 79.81% Infiniti QX56 SUV 2011 7.86% Hyundai Veracruz SUV 2012 4.91% BMW X6 SUV 2012 4.76% Acura ZDX Hatchback 2012 0.48% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 BMW 1 Series Convertible 2012 90.68% BMW 1 Series Coupe 2012 6.06% BMW M5 Sedan 2010 0.9% Hyundai Sonata Hybrid Sedan 2012 0.7% Mercedes-Benz C-Class Sedan 2012 0.68% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Veracruz SUV 2012 49.01% Audi 100 Wagon 1994 20.17% Nissan Juke Hatchback 2012 15.01% Dodge Caliber Wagon 2012 3.15% Ford Fiesta Sedan 2012 2.74% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Bentley Continental Flying Spur Sedan 2007 36.17% Aston Martin Virage Convertible 2012 10.53% Fisker Karma Sedan 2012 10.13% Hyundai Genesis Sedan 2012 6.28% Volkswagen Golf Hatchback 2012 4.03% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Tesla Model S Sedan 2012 74.76% Hyundai Genesis Sedan 2012 9.38% Rolls-Royce Phantom Sedan 2012 4.36% Bentley Arnage Sedan 2009 1.57% Volvo 240 Sedan 1993 1.55% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 72.26% Toyota 4Runner SUV 2012 10.43% GMC Canyon Extended Cab 2012 4.66% Dodge Dakota Club Cab 2007 3.71% Dodge Ram Pickup 3500 Quad Cab 2009 2.82% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 72.76% Scion xD Hatchback 2012 25.99% Hyundai Accent Sedan 2012 0.35% Acura TSX Sedan 2012 0.15% Mitsubishi Lancer Sedan 2012 0.15% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Toyota Camry Sedan 2012 39.97% Chevrolet Malibu Sedan 2007 20.16% Chevrolet Malibu Hybrid Sedan 2010 7.1% Toyota Corolla Sedan 2012 6.97% Honda Odyssey Minivan 2012 6.89% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 81.24% FIAT 500 Convertible 2012 6.85% Chrysler PT Cruiser Convertible 2008 5.5% smart fortwo Convertible 2012 1.27% Chrysler Sebring Convertible 2010 1.07% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 69.32% Ferrari 458 Italia Coupe 2012 7.77% Acura Integra Type R 2001 6.64% Chevrolet Cobalt SS 2010 5.03% Dodge Charger Sedan 2012 4.63% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 60.71% Chevrolet Malibu Hybrid Sedan 2010 32.78% Hyundai Genesis Sedan 2012 2.16% Acura TL Sedan 2012 1.4% Hyundai Accent Sedan 2012 1.26% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Rolls-Royce Ghost Sedan 2012 36.23% Audi S4 Sedan 2007 26.54% BMW X3 SUV 2012 15.79% BMW 3 Series Wagon 2012 8.51% Audi S6 Sedan 2011 2.26% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 94.41% Land Rover LR2 SUV 2012 4.89% Hyundai Santa Fe SUV 2012 0.36% Toyota Sequoia SUV 2012 0.2% Chrysler PT Cruiser Convertible 2008 0.07% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 68.13% Aston Martin V8 Vantage Coupe 2012 10.62% Infiniti G Coupe IPL 2012 5.44% Ferrari FF Coupe 2012 3.72% Aston Martin Virage Convertible 2012 2.05% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Hyundai Sonata Sedan 2012 60.39% Acura RL Sedan 2012 17.91% Eagle Talon Hatchback 1998 5.06% BMW M5 Sedan 2010 3.07% Mitsubishi Lancer Sedan 2012 2.35% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 44.98% Bugatti Veyron 16.4 Coupe 2009 21.77% Spyker C8 Convertible 2009 17.41% BMW 6 Series Convertible 2007 8.31% BMW M6 Convertible 2010 1.13% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 42.08% Buick Regal GS 2012 23.31% Dodge Challenger SRT8 2011 20.88% Aston Martin V8 Vantage Coupe 2012 5.97% Dodge Charger Sedan 2012 1.59% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 95.24% Dodge Caliber Wagon 2012 2.92% Dodge Magnum Wagon 2008 1.42% Dodge Journey SUV 2012 0.22% Dodge Durango SUV 2012 0.15% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 69.59% Dodge Durango SUV 2012 5.3% BMW X3 SUV 2012 4.75% Toyota Sequoia SUV 2012 3.19% Bentley Mulsanne Sedan 2011 2.05% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 99.19% Honda Accord Sedan 2012 0.66% Cadillac SRX SUV 2012 0.05% Acura RL Sedan 2012 0.03% BMW X3 SUV 2012 0.03% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 91.42% Audi S4 Sedan 2012 3.05% Audi 100 Sedan 1994 1.66% Bentley Continental GT Coupe 2007 1.65% Hyundai Sonata Sedan 2012 0.36% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 31.12% Mercedes-Benz SL-Class Coupe 2009 18.84% Bugatti Veyron 16.4 Convertible 2009 13.46% Lamborghini Reventon Coupe 2008 7.38% Aston Martin Virage Convertible 2012 6.2% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Jeep Wrangler SUV 2012 65.27% AM General Hummer SUV 2000 15.13% Isuzu Ascender SUV 2008 13.13% Jeep Liberty SUV 2012 4.15% Jeep Patriot SUV 2012 1.13% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 93.95% Jeep Patriot SUV 2012 3.99% Ford F-150 Regular Cab 2007 1.09% Cadillac Escalade EXT Crew Cab 2007 0.28% Isuzu Ascender SUV 2008 0.24% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 24.27% Rolls-Royce Phantom Sedan 2012 9.63% Spyker C8 Convertible 2009 7.13% Volvo 240 Sedan 1993 6.55% Jaguar XK XKR 2012 6.29% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Acura RL Sedan 2012 54.83% Acura TSX Sedan 2012 15.46% Toyota Camry Sedan 2012 7.93% BMW 1 Series Convertible 2012 6.9% Toyota Corolla Sedan 2012 1.69% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 43.01% BMW 3 Series Wagon 2012 8.76% Cadillac SRX SUV 2012 8.71% Hyundai Veracruz SUV 2012 4.29% Bentley Continental Flying Spur Sedan 2007 3.53% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 88.32% Audi RS 4 Convertible 2008 1.46% Jaguar XK XKR 2012 1.15% Lamborghini Reventon Coupe 2008 1.09% Audi S6 Sedan 2011 0.99% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 97.15% Jaguar XK XKR 2012 2.02% Ferrari California Convertible 2012 0.23% Chevrolet Corvette Convertible 2012 0.21% Audi S5 Convertible 2012 0.11% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Ford Fiesta Sedan 2012 34.7% Suzuki SX4 Hatchback 2012 24.25% Acura ZDX Hatchback 2012 15.71% Acura TSX Sedan 2012 9.01% Hyundai Tucson SUV 2012 3.57% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 96.92% Fisker Karma Sedan 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.49% Audi R8 Coupe 2012 0.33% HUMMER H3T Crew Cab 2010 0.27% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 55.77% Rolls-Royce Phantom Sedan 2012 25.53% Acura RL Sedan 2012 2.95% Acura TL Sedan 2012 1.73% Cadillac SRX SUV 2012 1.48% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 58.24% Ford Freestar Minivan 2007 29.33% Lincoln Town Car Sedan 2011 5.73% Ram C/V Cargo Van Minivan 2012 4.44% Chevrolet Traverse SUV 2012 0.72% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 69.87% Audi V8 Sedan 1994 27.32% Audi R8 Coupe 2012 1.35% Volvo XC90 SUV 2007 0.4% Nissan 240SX Coupe 1998 0.28% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 GMC Canyon Extended Cab 2012 91.55% Chevrolet Silverado 1500 Extended Cab 2012 7.65% Dodge Dakota Club Cab 2007 0.4% Ford F-150 Regular Cab 2012 0.3% Dodge Ram Pickup 3500 Quad Cab 2009 0.04% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 93.91% Volvo 240 Sedan 1993 2.79% Chevrolet Silverado 1500 Extended Cab 2012 0.58% Audi V8 Sedan 1994 0.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.47% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette ZR1 2012 41.05% Hyundai Veloster Hatchback 2012 12.89% Audi R8 Coupe 2012 7.66% Aston Martin Virage Coupe 2012 4.19% Audi TTS Coupe 2012 3.74% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 45.36% Hyundai Genesis Sedan 2012 27.48% Acura TL Type-S 2008 12.24% Hyundai Sonata Sedan 2012 4.94% Audi R8 Coupe 2012 2.76% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Suzuki Kizashi Sedan 2012 62.17% BMW X3 SUV 2012 12.87% BMW M3 Coupe 2012 5.41% Mitsubishi Lancer Sedan 2012 2.16% Chrysler 300 SRT-8 2010 1.77% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Chevrolet Sonic Sedan 2012 44.45% BMW X6 SUV 2012 8.41% Volvo C30 Hatchback 2012 8.34% Hyundai Tucson SUV 2012 8.25% Nissan Juke Hatchback 2012 3.9% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 94.37% Plymouth Neon Coupe 1999 3.97% Toyota Corolla Sedan 2012 1.13% Ferrari 458 Italia Coupe 2012 0.3% Scion xD Hatchback 2012 0.13% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 BMW X5 SUV 2007 60.21% Hyundai Veracruz SUV 2012 11.54% Jeep Grand Cherokee SUV 2012 8.2% Chevrolet Traverse SUV 2012 5.88% Volvo XC90 SUV 2007 5.25% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.62% HUMMER H2 SUT Crew Cab 2009 0.35% HUMMER H3T Crew Cab 2010 0.03% Jeep Patriot SUV 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Wagon 2012 58.63% BMW 1 Series Coupe 2012 9.31% Toyota Corolla Sedan 2012 8.97% Chevrolet Sonic Sedan 2012 5.85% Chrysler PT Cruiser Convertible 2008 3.45% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Suzuki Kizashi Sedan 2012 43.7% Infiniti G Coupe IPL 2012 35.55% BMW M3 Coupe 2012 14.06% Audi S4 Sedan 2007 2.4% Jaguar XK XKR 2012 0.93% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Leaf Hatchback 2012 65.47% Nissan Juke Hatchback 2012 5.06% Suzuki Kizashi Sedan 2012 4.69% Chrysler 300 SRT-8 2010 4.66% Suzuki SX4 Sedan 2012 2.99% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Chevrolet Monte Carlo Coupe 2007 34.61% Eagle Talon Hatchback 1998 29.0% Nissan 240SX Coupe 1998 12.95% Chevrolet Impala Sedan 2007 4.94% Acura TL Sedan 2012 3.82% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.95% Chevrolet Avalanche Crew Cab 2012 0.02% Chrysler Aspen SUV 2009 0.01% Dodge Dakota Crew Cab 2010 0.01% Dodge Durango SUV 2012 0.0% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Honda Accord Coupe 2012 76.28% Dodge Charger Sedan 2012 13.05% BMW 3 Series Sedan 2012 5.73% Nissan 240SX Coupe 1998 1.38% Dodge Caliber Wagon 2007 0.81% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 96.97% Ford Focus Sedan 2007 2.86% Chevrolet Impala Sedan 2007 0.07% Chevrolet Malibu Sedan 2007 0.03% Daewoo Nubira Wagon 2002 0.02% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Infiniti G Coupe IPL 2012 40.99% BMW M5 Sedan 2010 14.26% BMW M3 Coupe 2012 8.25% BMW M6 Convertible 2010 7.14% Suzuki Kizashi Sedan 2012 6.01% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 41.95% Aston Martin V8 Vantage Coupe 2012 16.82% Chevrolet Corvette ZR1 2012 10.74% BMW M5 Sedan 2010 7.24% BMW M6 Convertible 2010 4.52% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 70.67% Acura Integra Type R 2001 25.51% AM General Hummer SUV 2000 2.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.5% Ford GT Coupe 2006 0.43% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Ford F-450 Super Duty Crew Cab 2012 39.06% Ford E-Series Wagon Van 2012 14.37% FIAT 500 Abarth 2012 12.04% Chrysler 300 SRT-8 2010 6.9% Dodge Ram Pickup 3500 Crew Cab 2010 6.6% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 18.53% Audi 100 Sedan 1994 17.15% Chrysler Crossfire Convertible 2008 14.42% Audi V8 Sedan 1994 10.51% Daewoo Nubira Wagon 2002 9.78% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Suzuki SX4 Sedan 2012 67.33% Suzuki Aerio Sedan 2007 23.43% Audi S4 Sedan 2007 4.94% Acura Integra Type R 2001 0.89% Chrysler Town and Country Minivan 2012 0.5% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 87.74% Ferrari 458 Italia Convertible 2012 5.98% Ferrari California Convertible 2012 4.96% McLaren MP4-12C Coupe 2012 0.41% Ferrari FF Coupe 2012 0.29% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Chevrolet Malibu Sedan 2007 24.32% Chrysler PT Cruiser Convertible 2008 20.97% GMC Terrain SUV 2012 14.07% Chevrolet Tahoe Hybrid SUV 2012 8.98% Ford F-150 Regular Cab 2012 7.0% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 HUMMER H3T Crew Cab 2010 37.9% HUMMER H2 SUT Crew Cab 2009 20.41% Audi V8 Sedan 1994 15.46% Eagle Talon Hatchback 1998 7.78% Acura ZDX Hatchback 2012 3.51% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 41.56% Chevrolet Silverado 1500 Extended Cab 2012 20.47% Ford F-450 Super Duty Crew Cab 2012 10.61% Chevrolet Tahoe Hybrid SUV 2012 9.34% GMC Yukon Hybrid SUV 2012 7.26% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Ferrari FF Coupe 2012 82.8% Dodge Caliber Wagon 2012 5.79% Suzuki SX4 Hatchback 2012 3.12% BMW 1 Series Coupe 2012 2.89% Ferrari 458 Italia Coupe 2012 0.54% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Jaguar XK XKR 2012 21.08% Suzuki SX4 Sedan 2012 20.66% Nissan Juke Hatchback 2012 13.37% Land Rover LR2 SUV 2012 11.2% Toyota Sequoia SUV 2012 5.48% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 47.09% Audi 100 Sedan 1994 41.99% Lincoln Town Car Sedan 2011 7.4% Audi 100 Wagon 1994 3.27% Mercedes-Benz 300-Class Convertible 1993 0.11% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 82.66% Jaguar XK XKR 2012 13.69% Porsche Panamera Sedan 2012 3.1% Chevrolet Cobalt SS 2010 0.14% Mitsubishi Lancer Sedan 2012 0.04% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 94.94% McLaren MP4-12C Coupe 2012 3.41% Ferrari California Convertible 2012 1.31% Lamborghini Aventador Coupe 2012 0.26% Aston Martin V8 Vantage Coupe 2012 0.05% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 59.1% Rolls-Royce Phantom Sedan 2012 26.56% AM General Hummer SUV 2000 4.3% GMC Savana Van 2012 2.0% Nissan NV Passenger Van 2012 1.75% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.86% Dodge Sprinter Cargo Van 2009 0.14% Ram C/V Cargo Van Minivan 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Honda Accord Sedan 2012 0.0% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 87.11% HUMMER H2 SUT Crew Cab 2009 5.84% HUMMER H3T Crew Cab 2010 5.57% Jeep Liberty SUV 2012 0.42% Chevrolet HHR SS 2010 0.23% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 73.13% Hyundai Veloster Hatchback 2012 14.14% BMW Z4 Convertible 2012 8.79% Audi TT Hatchback 2011 2.68% Jaguar XK XKR 2012 0.35% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 96.24% FIAT 500 Convertible 2012 3.26% Bugatti Veyron 16.4 Convertible 2009 0.32% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.03% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Audi 100 Wagon 1994 0.0% Ford F-150 Regular Cab 2012 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Dodge Caravan Minivan 1997 0.0% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 95.28% Lamborghini Aventador Coupe 2012 1.61% Spyker C8 Convertible 2009 0.67% Spyker C8 Coupe 2009 0.65% Ford GT Coupe 2006 0.26% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 93.13% Mercedes-Benz Sprinter Van 2012 6.87% Ram C/V Cargo Van Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% Audi 100 Sedan 1994 0.0% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 12.2% Dodge Sprinter Cargo Van 2009 8.92% Nissan Leaf Hatchback 2012 8.66% Nissan NV Passenger Van 2012 7.79% Acura RL Sedan 2012 7.13% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 70.59% Acura TL Sedan 2012 13.79% Acura ZDX Hatchback 2012 9.68% Toyota Camry Sedan 2012 2.64% Suzuki SX4 Sedan 2012 0.72% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 98.89% Bugatti Veyron 16.4 Convertible 2009 0.31% FIAT 500 Convertible 2012 0.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.12% Rolls-Royce Phantom Sedan 2012 0.09% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 80.34% Dodge Caliber Wagon 2007 15.05% Dodge Dakota Crew Cab 2010 2.67% Ford Freestar Minivan 2007 1.1% Dodge Journey SUV 2012 0.4% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 99.13% BMW 1 Series Convertible 2012 0.18% Acura RL Sedan 2012 0.1% Hyundai Sonata Sedan 2012 0.09% Mitsubishi Lancer Sedan 2012 0.07% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 71.32% Bugatti Veyron 16.4 Convertible 2009 10.25% Lamborghini Aventador Coupe 2012 2.38% Audi TT RS Coupe 2012 2.06% Chevrolet Corvette ZR1 2012 1.85% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 99.83% Audi A5 Coupe 2012 0.06% Audi S5 Coupe 2012 0.05% Audi S4 Sedan 2012 0.03% Audi S5 Convertible 2012 0.03% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi TT Hatchback 2011 31.34% Audi R8 Coupe 2012 23.24% Audi S5 Coupe 2012 9.44% Audi S5 Convertible 2012 9.22% Porsche Panamera Sedan 2012 4.42% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Hyundai Veracruz SUV 2012 24.52% Toyota 4Runner SUV 2012 23.16% Volvo XC90 SUV 2007 12.88% Mazda Tribute SUV 2011 10.12% Land Rover LR2 SUV 2012 8.24% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Aston Martin V8 Vantage Convertible 2012 49.25% Spyker C8 Convertible 2009 25.36% Ford GT Coupe 2006 21.69% Chrysler Sebring Convertible 2010 0.96% Aston Martin Virage Convertible 2012 0.57% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X6 SUV 2012 92.34% BMW X5 SUV 2007 4.77% GMC Terrain SUV 2012 0.74% BMW X3 SUV 2012 0.31% Dodge Durango SUV 2007 0.26% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Infiniti G Coupe IPL 2012 46.51% Bentley Continental Supersports Conv. Convertible 2012 10.27% Bentley Continental GT Coupe 2012 8.02% Aston Martin Virage Convertible 2012 5.3% Chrysler 300 SRT-8 2010 3.3% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Nissan Juke Hatchback 2012 32.91% Volvo C30 Hatchback 2012 15.06% Audi R8 Coupe 2012 9.34% BMW X6 SUV 2012 3.7% Dodge Challenger SRT8 2011 3.05% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Audi TTS Coupe 2012 49.56% Audi A5 Coupe 2012 15.65% Chevrolet Camaro Convertible 2012 14.31% Audi S5 Coupe 2012 7.08% Aston Martin Virage Convertible 2012 2.82% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Ford Edge SUV 2012 64.8% GMC Terrain SUV 2012 20.39% Ford Mustang Convertible 2007 1.89% Jeep Wrangler SUV 2012 1.53% Chevrolet Traverse SUV 2012 1.49% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 95.5% Bugatti Veyron 16.4 Convertible 2009 3.63% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.42% Spyker C8 Convertible 2009 0.28% Ford GT Coupe 2006 0.06% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Mazda Tribute SUV 2011 95.59% Buick Rainier SUV 2007 3.28% Land Rover Range Rover SUV 2012 0.92% Toyota 4Runner SUV 2012 0.06% Dodge Dakota Crew Cab 2010 0.05% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 70.09% Rolls-Royce Phantom Drophead Coupe Convertible 2012 15.88% Mercedes-Benz 300-Class Convertible 1993 4.79% Chevrolet Monte Carlo Coupe 2007 1.9% Chevrolet Camaro Convertible 2012 1.72% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 25.16% Chrysler PT Cruiser Convertible 2008 24.91% BMW 3 Series Wagon 2012 11.04% Volvo C30 Hatchback 2012 5.06% BMW Z4 Convertible 2012 5.04% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Aston Martin Virage Convertible 2012 26.15% Volkswagen Beetle Hatchback 2012 17.6% Maybach Landaulet Convertible 2012 17.52% Volkswagen Golf Hatchback 2012 11.35% Acura ZDX Hatchback 2012 9.6% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 31.0% Dodge Caravan Minivan 1997 22.18% Daewoo Nubira Wagon 2002 17.0% Ford Focus Sedan 2007 12.75% Audi 100 Sedan 1994 8.82% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 98.83% Dodge Durango SUV 2007 0.72% Dodge Dakota Crew Cab 2010 0.19% Dodge Ram Pickup 3500 Quad Cab 2009 0.14% Ford F-450 Super Duty Crew Cab 2012 0.05% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Charger SRT-8 2009 60.83% Dodge Charger Sedan 2012 21.5% Mercedes-Benz 300-Class Convertible 1993 10.59% Honda Accord Coupe 2012 2.89% Chevrolet Camaro Convertible 2012 2.08% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Ferrari 458 Italia Coupe 2012 49.71% Ferrari California Convertible 2012 25.54% Chevrolet Corvette ZR1 2012 4.82% Chevrolet Corvette Convertible 2012 4.21% Audi TTS Coupe 2012 2.38% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 58.67% Honda Odyssey Minivan 2007 9.46% Honda Odyssey Minivan 2012 7.93% Chevrolet Impala Sedan 2007 3.13% Buick Enclave SUV 2012 2.91% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 85.85% Audi R8 Coupe 2012 7.22% Buick Regal GS 2012 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.43% Porsche Panamera Sedan 2012 0.75% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Mercedes-Benz Sprinter Van 2012 33.16% Dodge Sprinter Cargo Van 2009 25.44% Audi 100 Wagon 1994 21.52% Chevrolet Express Cargo Van 2007 3.87% Nissan Juke Hatchback 2012 3.25% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz Sprinter Van 2012 57.75% Audi V8 Sedan 1994 24.05% Audi 100 Sedan 1994 5.39% Audi 100 Wagon 1994 5.32% Dodge Sprinter Cargo Van 2009 1.86% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Dodge Dakota Crew Cab 2010 12.95% Dodge Durango SUV 2007 10.97% Dodge Ram Pickup 3500 Quad Cab 2009 9.21% Volvo 240 Sedan 1993 8.61% Jeep Liberty SUV 2012 7.86% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Rolls-Royce Phantom Sedan 2012 39.7% Chevrolet TrailBlazer SS 2009 18.83% Dodge Durango SUV 2012 16.99% Ford Edge SUV 2012 4.06% BMW 1 Series Convertible 2012 3.16% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 90.36% Geo Metro Convertible 1993 7.94% Eagle Talon Hatchback 1998 1.24% Chevrolet Corvette Convertible 2012 0.34% Chrysler Crossfire Convertible 2008 0.07% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 40.95% Audi V8 Sedan 1994 36.93% Mercedes-Benz 300-Class Convertible 1993 12.87% Nissan 240SX Coupe 1998 3.29% Ford GT Coupe 2006 1.61% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Honda Accord Coupe 2012 15.97% BMW M5 Sedan 2010 13.92% Acura RL Sedan 2012 10.73% Scion xD Hatchback 2012 8.85% Acura TL Sedan 2012 6.83% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 100.0% Buick Rainier SUV 2007 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Isuzu Ascender SUV 2008 0.0% GMC Canyon Extended Cab 2012 0.0% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 28.47% Audi 100 Wagon 1994 23.84% GMC Canyon Extended Cab 2012 18.67% Ford Focus Sedan 2007 5.56% GMC Acadia SUV 2012 3.97% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Aston Martin Virage Coupe 2012 99.89% Chevrolet HHR SS 2010 0.02% Acura Integra Type R 2001 0.02% Dodge Charger Sedan 2012 0.01% BMW Z4 Convertible 2012 0.01% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Dodge Durango SUV 2007 74.42% Chrysler Aspen SUV 2009 7.68% Chevrolet Traverse SUV 2012 5.8% GMC Terrain SUV 2012 4.72% Toyota 4Runner SUV 2012 1.44% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 BMW X6 SUV 2012 99.97% GMC Acadia SUV 2012 0.01% BMW X3 SUV 2012 0.01% BMW X5 SUV 2007 0.0% Suzuki Kizashi Sedan 2012 0.0% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Jaguar XK XKR 2012 64.42% BMW 6 Series Convertible 2007 8.71% BMW M6 Convertible 2010 5.61% Audi S5 Coupe 2012 3.3% Bentley Continental GT Coupe 2012 2.97% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 95.84% Ferrari 458 Italia Convertible 2012 1.8% Ferrari California Convertible 2012 1.75% Chevrolet Corvette Convertible 2012 0.29% Volkswagen Beetle Hatchback 2012 0.28% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 87.73% Hyundai Elantra Touring Hatchback 2012 6.82% Fisker Karma Sedan 2012 1.49% Audi 100 Wagon 1994 0.93% Mercedes-Benz SL-Class Coupe 2009 0.51% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 60.5% Dodge Durango SUV 2012 14.06% Dodge Journey SUV 2012 11.83% Land Rover LR2 SUV 2012 4.05% Nissan Juke Hatchback 2012 0.91% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Magnum Wagon 2008 33.6% Cadillac Escalade EXT Crew Cab 2007 30.63% Dodge Durango SUV 2012 20.32% Toyota 4Runner SUV 2012 8.79% Dodge Caliber Wagon 2012 2.93% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 33.44% Buick Rainier SUV 2007 20.47% Suzuki SX4 Sedan 2012 19.42% Daewoo Nubira Wagon 2002 11.92% Suzuki Aerio Sedan 2007 3.17% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 97.6% Ferrari California Convertible 2012 1.32% Ferrari 458 Italia Convertible 2012 0.6% Fisker Karma Sedan 2012 0.16% Audi TT RS Coupe 2012 0.11% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 31.55% Chrysler Aspen SUV 2009 21.29% Isuzu Ascender SUV 2008 14.52% Dodge Durango SUV 2007 13.94% Jeep Patriot SUV 2012 7.51% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S5 Coupe 2012 25.78% BMW M5 Sedan 2010 21.2% BMW ActiveHybrid 5 Sedan 2012 9.94% BMW 3 Series Sedan 2012 9.33% Audi S6 Sedan 2011 9.12% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 40.45% Chrysler Sebring Convertible 2010 20.45% Mercedes-Benz 300-Class Convertible 1993 16.52% Ford Focus Sedan 2007 5.0% Chevrolet Impala Sedan 2007 4.4% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Audi S4 Sedan 2012 63.9% Volvo C30 Hatchback 2012 16.27% BMW 1 Series Coupe 2012 3.92% Audi TTS Coupe 2012 3.43% Bentley Continental GT Coupe 2012 3.02% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 75.69% Aston Martin Virage Coupe 2012 10.76% Lamborghini Diablo Coupe 2001 2.52% Ferrari 458 Italia Coupe 2012 2.21% Ferrari California Convertible 2012 2.04% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.59% Cadillac CTS-V Sedan 2012 0.35% Bugatti Veyron 16.4 Convertible 2009 0.04% Bentley Continental GT Coupe 2007 0.0% Suzuki Kizashi Sedan 2012 0.0% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 BMW 6 Series Convertible 2007 46.07% Nissan Juke Hatchback 2012 23.16% Audi R8 Coupe 2012 14.46% Jaguar XK XKR 2012 5.05% Chrysler 300 SRT-8 2010 3.61% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.76% Bugatti Veyron 16.4 Convertible 2009 0.03% Bentley Continental Flying Spur Sedan 2007 0.03% FIAT 500 Convertible 2012 0.02% Acura Integra Type R 2001 0.02% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 48.59% Jaguar XK XKR 2012 46.74% Aston Martin V8 Vantage Convertible 2012 2.94% Aston Martin Virage Convertible 2012 0.57% Infiniti G Coupe IPL 2012 0.46% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.76% GMC Savana Van 2012 0.24% Chevrolet Express Van 2007 0.0% Audi 100 Wagon 1994 0.0% Audi 100 Sedan 1994 0.0% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Chevrolet Impala Sedan 2007 71.84% Lincoln Town Car Sedan 2011 9.9% Chevrolet Monte Carlo Coupe 2007 2.45% Suzuki Aerio Sedan 2007 1.92% Acura TL Type-S 2008 1.06% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 30.88% Hyundai Elantra Sedan 2007 9.64% BMW X6 SUV 2012 9.38% Ford Fiesta Sedan 2012 9.19% Acura RL Sedan 2012 7.61% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Cadillac CTS-V Sedan 2012 49.01% Bentley Arnage Sedan 2009 23.96% Bentley Mulsanne Sedan 2011 8.9% FIAT 500 Abarth 2012 2.13% Land Rover Range Rover SUV 2012 1.96% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Nissan Leaf Hatchback 2012 36.08% Dodge Caravan Minivan 1997 22.87% Mercedes-Benz Sprinter Van 2012 15.3% Plymouth Neon Coupe 1999 14.13% FIAT 500 Convertible 2012 2.64% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 88.17% Eagle Talon Hatchback 1998 5.16% Nissan 240SX Coupe 1998 3.93% Aston Martin V8 Vantage Convertible 2012 0.58% Mitsubishi Lancer Sedan 2012 0.58% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Nissan 240SX Coupe 1998 22.42% Chevrolet Corvette Convertible 2012 15.17% FIAT 500 Convertible 2012 13.12% Bentley Continental Supersports Conv. Convertible 2012 9.58% Ford Fiesta Sedan 2012 6.2% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 26.71% Ford Focus Sedan 2007 14.85% Chrysler Sebring Convertible 2010 13.23% Honda Odyssey Minivan 2012 9.06% Honda Odyssey Minivan 2007 4.67% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 85.43% Chevrolet HHR SS 2010 14.48% Volvo C30 Hatchback 2012 0.02% Dodge Charger Sedan 2012 0.01% Dodge Charger SRT-8 2009 0.01% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 59.19% Ferrari 458 Italia Coupe 2012 15.34% Chevrolet Corvette ZR1 2012 6.94% Lamborghini Aventador Coupe 2012 5.97% Eagle Talon Hatchback 1998 5.33% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 74.47% Ford Ranger SuperCab 2011 12.87% Chevrolet Silverado 1500 Regular Cab 2012 3.78% Ford E-Series Wagon Van 2012 2.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.99% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Hyundai Sonata Sedan 2012 55.57% Acura RL Sedan 2012 17.95% Hyundai Azera Sedan 2012 11.2% Hyundai Accent Sedan 2012 9.75% Honda Accord Sedan 2012 2.59% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 99.01% Spyker C8 Coupe 2009 0.32% Rolls-Royce Phantom Sedan 2012 0.15% Chevrolet Corvette ZR1 2012 0.1% Rolls-Royce Ghost Sedan 2012 0.08% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Plymouth Neon Coupe 1999 57.35% Eagle Talon Hatchback 1998 12.77% Ford Focus Sedan 2007 5.81% Acura Integra Type R 2001 5.06% Audi V8 Sedan 1994 3.51% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 98.72% Ferrari FF Coupe 2012 0.28% Tesla Model S Sedan 2012 0.21% Ford Mustang Convertible 2007 0.21% Lamborghini Aventador Coupe 2012 0.17% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Lamborghini Reventon Coupe 2008 83.32% Lamborghini Aventador Coupe 2012 12.47% Spyker C8 Convertible 2009 1.8% McLaren MP4-12C Coupe 2012 1.52% Bugatti Veyron 16.4 Coupe 2009 0.72% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 95.38% Bugatti Veyron 16.4 Convertible 2009 4.27% Bugatti Veyron 16.4 Coupe 2009 0.15% Audi TTS Coupe 2012 0.07% Spyker C8 Coupe 2009 0.06% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Dodge Caliber Wagon 2012 28.36% Ford F-150 Regular Cab 2012 9.31% Volvo XC90 SUV 2007 8.43% Mercedes-Benz 300-Class Convertible 1993 5.56% GMC Terrain SUV 2012 5.46% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 79.76% Volvo XC90 SUV 2007 9.86% Mazda Tribute SUV 2011 3.33% Chevrolet Traverse SUV 2012 2.0% Ford Ranger SuperCab 2011 1.54% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Honda Accord Coupe 2012 42.82% Honda Accord Sedan 2012 36.64% Acura TSX Sedan 2012 8.72% Ford Fiesta Sedan 2012 2.93% Mitsubishi Lancer Sedan 2012 2.37% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 53.94% Dodge Durango SUV 2007 35.52% Dodge Dakota Crew Cab 2010 3.91% Dodge Caliber Wagon 2012 2.43% Cadillac Escalade EXT Crew Cab 2007 2.06% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Ferrari California Convertible 2012 68.66% Aston Martin V8 Vantage Coupe 2012 19.6% Bentley Continental GT Coupe 2007 3.43% Audi TT RS Coupe 2012 2.69% Ferrari FF Coupe 2012 2.47% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Spyker C8 Coupe 2009 47.25% Bugatti Veyron 16.4 Convertible 2009 16.21% Lamborghini Aventador Coupe 2012 7.9% Ford GT Coupe 2006 5.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.11% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 Lamborghini Diablo Coupe 2001 55.72% Ford F-150 Regular Cab 2007 15.66% AM General Hummer SUV 2000 13.69% Aston Martin V8 Vantage Coupe 2012 4.74% smart fortwo Convertible 2012 1.85% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 45.49% Honda Odyssey Minivan 2007 44.93% Honda Odyssey Minivan 2012 6.26% Scion xD Hatchback 2012 1.5% BMW X5 SUV 2007 0.69% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Dodge Magnum Wagon 2008 14.24% Chevrolet Cobalt SS 2010 10.43% Mitsubishi Lancer Sedan 2012 8.77% Audi S4 Sedan 2012 8.11% BMW 3 Series Wagon 2012 6.27% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 79.93% Acura TL Sedan 2012 13.11% Hyundai Tucson SUV 2012 3.39% Acura ZDX Hatchback 2012 1.44% BMW X6 SUV 2012 0.5% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Volvo XC90 SUV 2007 86.86% Cadillac Escalade EXT Crew Cab 2007 2.49% Chevrolet Tahoe Hybrid SUV 2012 2.32% Jeep Patriot SUV 2012 1.81% Isuzu Ascender SUV 2008 1.54% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 29.7% Lamborghini Diablo Coupe 2001 26.37% Dodge Charger Sedan 2012 9.92% Chevrolet Cobalt SS 2010 8.61% Audi RS 4 Convertible 2008 7.4% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 70.33% Acura TSX Sedan 2012 6.69% Acura RL Sedan 2012 5.66% BMW 1 Series Convertible 2012 2.63% Audi V8 Sedan 1994 1.72% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 34.71% Geo Metro Convertible 1993 22.76% Ford Focus Sedan 2007 9.79% Chevrolet Impala Sedan 2007 8.42% Chevrolet Malibu Sedan 2007 7.28% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Ferrari FF Coupe 2012 92.05% Lamborghini Aventador Coupe 2012 3.76% McLaren MP4-12C Coupe 2012 2.48% Ferrari 458 Italia Coupe 2012 0.71% Ford GT Coupe 2006 0.44% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 BMW X5 SUV 2007 96.24% Chrysler Town and Country Minivan 2012 1.48% BMW X3 SUV 2012 0.52% Audi 100 Wagon 1994 0.28% GMC Acadia SUV 2012 0.26% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Jeep Patriot SUV 2012 34.91% AM General Hummer SUV 2000 29.0% Jeep Wrangler SUV 2012 4.42% HUMMER H2 SUT Crew Cab 2009 3.35% Ford Expedition EL SUV 2009 3.34% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Audi 100 Wagon 1994 30.26% Cadillac CTS-V Sedan 2012 18.21% Daewoo Nubira Wagon 2002 17.42% Suzuki Aerio Sedan 2007 16.84% Ford F-150 Regular Cab 2007 6.91% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 87.51% Ford Mustang Convertible 2007 10.0% Dodge Challenger SRT8 2011 0.51% Geo Metro Convertible 1993 0.42% Audi 100 Wagon 1994 0.41% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 66.59% GMC Savana Van 2012 32.26% Nissan NV Passenger Van 2012 0.4% Chevrolet Express Van 2007 0.35% Ford F-150 Regular Cab 2012 0.15% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Ford Fiesta Sedan 2012 22.13% Buick Regal GS 2012 19.58% Acura Integra Type R 2001 15.3% Jaguar XK XKR 2012 13.84% Aston Martin V8 Vantage Convertible 2012 4.69% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Dodge Magnum Wagon 2008 41.89% Toyota Corolla Sedan 2012 10.57% Suzuki Aerio Sedan 2007 4.49% Chevrolet Cobalt SS 2010 4.26% Suzuki Kizashi Sedan 2012 4.21% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.71% Chevrolet Silverado 1500 Extended Cab 2012 0.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 47.5% Honda Accord Coupe 2012 18.88% Chevrolet Sonic Sedan 2012 7.3% Buick Verano Sedan 2012 6.15% Chevrolet Cobalt SS 2010 4.95% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Ford F-150 Regular Cab 2012 53.55% Chevrolet Silverado 1500 Extended Cab 2012 11.33% Ford Ranger SuperCab 2011 10.35% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.1% Ford E-Series Wagon Van 2012 5.85% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 94.79% Jeep Wrangler SUV 2012 5.2% GMC Terrain SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 BMW X3 SUV 2012 97.13% Bentley Continental Supersports Conv. Convertible 2012 0.51% BMW X6 SUV 2012 0.43% Dodge Challenger SRT8 2011 0.38% BMW X5 SUV 2007 0.34% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.61% Land Rover LR2 SUV 2012 0.39% Honda Odyssey Minivan 2007 0.0% Honda Odyssey Minivan 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 25.13% Toyota 4Runner SUV 2012 23.55% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 18.29% Chevrolet Silverado 1500 Regular Cab 2012 11.32% Ford F-150 Regular Cab 2012 6.48% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 47.12% Dodge Magnum Wagon 2008 41.52% BMW X3 SUV 2012 7.63% Chrysler PT Cruiser Convertible 2008 0.92% Mazda Tribute SUV 2011 0.76% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Nissan Leaf Hatchback 2012 81.73% Hyundai Elantra Sedan 2007 9.44% Suzuki Aerio Sedan 2007 1.13% Scion xD Hatchback 2012 0.69% Audi S6 Sedan 2011 0.67% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 83.6% Dodge Dakota Club Cab 2007 10.86% Dodge Caliber Wagon 2007 3.28% Dodge Caliber Wagon 2012 1.05% Jeep Patriot SUV 2012 0.6% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.11% Aston Martin V8 Vantage Coupe 2012 0.39% Aston Martin Virage Convertible 2012 0.19% Aston Martin V8 Vantage Convertible 2012 0.14% Jaguar XK XKR 2012 0.06% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 19.2% Jeep Wrangler SUV 2012 15.9% Cadillac Escalade EXT Crew Cab 2007 13.57% Toyota 4Runner SUV 2012 10.29% HUMMER H2 SUT Crew Cab 2009 7.86% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Infiniti G Coupe IPL 2012 20.58% BMW M3 Coupe 2012 11.3% Suzuki Kizashi Sedan 2012 11.07% BMW M6 Convertible 2010 10.86% BMW Z4 Convertible 2012 9.45% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 99.39% Bugatti Veyron 16.4 Convertible 2009 0.25% Spyker C8 Convertible 2009 0.12% Ford GT Coupe 2006 0.11% McLaren MP4-12C Coupe 2012 0.05% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Hatchback 2012 96.39% Nissan Juke Hatchback 2012 1.4% Buick Verano Sedan 2012 0.3% Suzuki SX4 Sedan 2012 0.21% Nissan Leaf Hatchback 2012 0.18% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Nissan 240SX Coupe 1998 49.73% Lincoln Town Car Sedan 2011 5.72% Eagle Talon Hatchback 1998 5.68% Mercedes-Benz 300-Class Convertible 1993 5.6% Chevrolet Monte Carlo Coupe 2007 5.34% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Ford F-150 Regular Cab 2007 44.6% Dodge Ram Pickup 3500 Quad Cab 2009 29.78% Chevrolet Silverado 1500 Extended Cab 2012 14.46% Lincoln Town Car Sedan 2011 4.43% Dodge Dakota Club Cab 2007 3.54% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Jeep Grand Cherokee SUV 2012 64.97% Dodge Durango SUV 2007 7.27% Dodge Durango SUV 2012 6.89% Toyota 4Runner SUV 2012 6.26% Volvo XC90 SUV 2007 4.87% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Jeep Wrangler SUV 2012 58.08% AM General Hummer SUV 2000 41.4% HUMMER H2 SUT Crew Cab 2009 0.42% HUMMER H3T Crew Cab 2010 0.07% Jeep Patriot SUV 2012 0.01% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Spyker C8 Coupe 2009 65.04% FIAT 500 Abarth 2012 7.47% Bugatti Veyron 16.4 Coupe 2009 6.71% Spyker C8 Convertible 2009 4.9% Dodge Charger Sedan 2012 4.03% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Chevrolet Corvette ZR1 2012 28.79% Bentley Continental Flying Spur Sedan 2007 13.87% Plymouth Neon Coupe 1999 12.25% Porsche Panamera Sedan 2012 6.57% Ferrari FF Coupe 2012 6.25% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Jeep Grand Cherokee SUV 2012 24.08% Buick Enclave SUV 2012 19.54% Chrysler PT Cruiser Convertible 2008 11.0% Toyota 4Runner SUV 2012 9.48% Jeep Compass SUV 2012 5.08% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Ferrari FF Coupe 2012 26.83% Volkswagen Golf Hatchback 2012 11.44% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.59% Maybach Landaulet Convertible 2012 6.23% Acura ZDX Hatchback 2012 5.0% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Honda Odyssey Minivan 2007 51.08% Chevrolet Impala Sedan 2007 30.51% Volvo XC90 SUV 2007 5.22% Hyundai Elantra Touring Hatchback 2012 3.62% Chevrolet Traverse SUV 2012 3.34% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 Volkswagen Golf Hatchback 1991 67.85% GMC Terrain SUV 2012 18.71% Dodge Dakota Club Cab 2007 2.57% Jeep Compass SUV 2012 2.37% Ford Mustang Convertible 2007 1.34% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Audi V8 Sedan 1994 72.27% FIAT 500 Abarth 2012 13.8% Audi S4 Sedan 2007 2.47% Dodge Charger Sedan 2012 1.77% Spyker C8 Coupe 2009 1.41% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 98.57% Eagle Talon Hatchback 1998 1.09% Ford Focus Sedan 2007 0.32% Nissan 240SX Coupe 1998 0.02% Daewoo Nubira Wagon 2002 0.0% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 BMW X6 SUV 2012 97.3% Nissan 240SX Coupe 1998 0.49% Hyundai Sonata Sedan 2012 0.34% BMW 3 Series Sedan 2012 0.33% Chevrolet Cobalt SS 2010 0.3% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 81.96% Chevrolet Corvette Convertible 2012 9.54% smart fortwo Convertible 2012 2.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.88% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.99% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 61.93% Chevrolet Silverado 1500 Extended Cab 2012 24.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.32% Dodge Dakota Club Cab 2007 4.87% Ford Ranger SuperCab 2011 1.56% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Dodge Durango SUV 2007 49.82% Dodge Caliber Wagon 2012 13.89% Dodge Dakota Crew Cab 2010 10.23% Dodge Caliber Wagon 2007 9.29% GMC Acadia SUV 2012 4.54% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Volvo 240 Sedan 1993 13.67% Land Rover LR2 SUV 2012 6.83% Ford GT Coupe 2006 6.59% Aston Martin V8 Vantage Coupe 2012 6.32% Bugatti Veyron 16.4 Coupe 2009 4.88% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Audi TT RS Coupe 2012 30.15% Audi R8 Coupe 2012 27.93% Audi S5 Convertible 2012 14.9% Audi S4 Sedan 2012 12.08% Audi S5 Coupe 2012 6.22% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Chevrolet Malibu Sedan 2007 40.56% Lincoln Town Car Sedan 2011 23.56% Dodge Magnum Wagon 2008 10.67% Ram C/V Cargo Van Minivan 2012 6.61% Chrysler Sebring Convertible 2010 5.57% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 22.85% Chrysler Sebring Convertible 2010 15.08% Chevrolet Malibu Sedan 2007 10.82% Mercedes-Benz 300-Class Convertible 1993 9.33% Acura TL Type-S 2008 8.82% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 62.55% GMC Canyon Extended Cab 2012 10.9% Dodge Ram Pickup 3500 Quad Cab 2009 8.6% HUMMER H3T Crew Cab 2010 8.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.75% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 56.41% Lincoln Town Car Sedan 2011 15.41% Acura Integra Type R 2001 5.52% Suzuki Aerio Sedan 2007 3.38% Lamborghini Reventon Coupe 2008 3.34% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 79.84% Chevrolet Sonic Sedan 2012 7.83% Ford Fiesta Sedan 2012 2.46% Dodge Charger SRT-8 2009 1.27% Aston Martin V8 Vantage Coupe 2012 1.1% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Spyker C8 Coupe 2009 48.16% Spyker C8 Convertible 2009 40.17% Aston Martin V8 Vantage Convertible 2012 3.47% Mercedes-Benz SL-Class Coupe 2009 1.92% Dodge Challenger SRT8 2011 1.81% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Chrysler Sebring Convertible 2010 35.89% Chevrolet Camaro Convertible 2012 12.45% Volkswagen Golf Hatchback 2012 12.37% Mercedes-Benz S-Class Sedan 2012 11.01% Honda Accord Sedan 2012 5.03% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Hyundai Tucson SUV 2012 23.65% Dodge Caravan Minivan 1997 15.45% Hyundai Veracruz SUV 2012 11.97% Suzuki Aerio Sedan 2007 9.57% Scion xD Hatchback 2012 8.88% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Volkswagen Golf Hatchback 1991 61.0% Dodge Sprinter Cargo Van 2009 13.61% Dodge Ram Pickup 3500 Quad Cab 2009 6.18% Chevrolet Cobalt SS 2010 4.84% GMC Savana Van 2012 4.2% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 49.54% Hyundai Elantra Touring Hatchback 2012 16.99% Mitsubishi Lancer Sedan 2012 13.88% Chrysler PT Cruiser Convertible 2008 4.58% Nissan Juke Hatchback 2012 4.35% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.94% Ford F-450 Super Duty Crew Cab 2012 0.03% Ford Expedition EL SUV 2009 0.02% Dodge Durango SUV 2007 0.01% Nissan NV Passenger Van 2012 0.0% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.15% Ferrari 458 Italia Coupe 2012 0.73% Chevrolet Cobalt SS 2010 0.1% BMW 1 Series Coupe 2012 0.01% Ferrari 458 Italia Convertible 2012 0.01% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Infiniti G Coupe IPL 2012 31.07% Bentley Continental GT Coupe 2007 22.74% BMW M5 Sedan 2010 7.67% Audi S6 Sedan 2011 5.81% Audi S4 Sedan 2007 5.02% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 45.8% Hyundai Sonata Sedan 2012 26.18% Acura TL Sedan 2012 8.11% Hyundai Accent Sedan 2012 5.93% Honda Odyssey Minivan 2012 5.02% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Ford Ranger SuperCab 2011 91.22% HUMMER H2 SUT Crew Cab 2009 5.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.44% HUMMER H3T Crew Cab 2010 0.57% Chevrolet Silverado 1500 Regular Cab 2012 0.49% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.94% Plymouth Neon Coupe 1999 0.01% Acura Integra Type R 2001 0.01% Lamborghini Diablo Coupe 2001 0.01% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.01% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Sonata Sedan 2012 98.22% Hyundai Elantra Sedan 2007 0.97% Toyota Camry Sedan 2012 0.34% Ford Fiesta Sedan 2012 0.17% Chevrolet Malibu Hybrid Sedan 2010 0.15% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.46% MINI Cooper Roadster Convertible 2012 0.28% Chevrolet Corvette ZR1 2012 0.26% Aston Martin V8 Vantage Convertible 2012 0.0% Jaguar XK XKR 2012 0.0% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H3T Crew Cab 2010 39.72% HUMMER H2 SUT Crew Cab 2009 38.12% Ford Expedition EL SUV 2009 6.58% Dodge Ram Pickup 3500 Crew Cab 2010 5.88% Dodge Durango SUV 2007 3.03% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Mazda Tribute SUV 2011 30.82% Dodge Caliber Wagon 2012 24.7% Chevrolet Impala Sedan 2007 19.04% Ford Focus Sedan 2007 12.33% Volvo XC90 SUV 2007 4.62% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 98.56% Dodge Charger Sedan 2012 0.58% Acura Integra Type R 2001 0.35% Audi RS 4 Convertible 2008 0.19% GMC Savana Van 2012 0.09% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.29% Dodge Sprinter Cargo Van 2009 0.71% Ram C/V Cargo Van Minivan 2012 0.0% Chevrolet Express Van 2007 0.0% Audi V8 Sedan 1994 0.0% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 83.35% Hyundai Azera Sedan 2012 6.16% Honda Odyssey Minivan 2012 5.13% Hyundai Sonata Sedan 2012 3.65% Dodge Journey SUV 2012 0.38% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 40.25% Mercedes-Benz 300-Class Convertible 1993 37.39% Aston Martin V8 Vantage Coupe 2012 4.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.11% Bentley Continental Supersports Conv. Convertible 2012 1.99% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 21.16% Chevrolet Impala Sedan 2007 15.46% Chrysler Sebring Convertible 2010 13.88% BMW 3 Series Wagon 2012 11.93% Chevrolet Malibu Sedan 2007 10.89% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Ghost Sedan 2012 77.18% Rolls-Royce Phantom Sedan 2012 19.66% Dodge Charger Sedan 2012 2.4% Dodge Durango SUV 2007 0.09% Jeep Liberty SUV 2012 0.09% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 47.57% Acura RL Sedan 2012 25.26% Nissan Juke Hatchback 2012 13.12% Hyundai Tucson SUV 2012 5.05% BMW M5 Sedan 2010 4.28% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 85.3% Chevrolet Cobalt SS 2010 11.01% Lamborghini Diablo Coupe 2001 2.46% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.93% Audi S4 Sedan 2012 0.08% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Yukon Hybrid SUV 2012 49.63% Chrysler Aspen SUV 2009 19.4% Buick Rainier SUV 2007 5.17% Cadillac Escalade EXT Crew Cab 2007 3.68% Toyota Sequoia SUV 2012 2.75% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 85.32% Ford Mustang Convertible 2007 5.95% Dodge Charger Sedan 2012 3.87% Acura Integra Type R 2001 2.02% Audi S4 Sedan 2012 1.1% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Honda Accord Coupe 2012 17.41% Dodge Charger Sedan 2012 14.51% Volvo C30 Hatchback 2012 5.25% Geo Metro Convertible 1993 4.7% Chrysler PT Cruiser Convertible 2008 4.64% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 62.14% Plymouth Neon Coupe 1999 15.54% Daewoo Nubira Wagon 2002 12.35% Ford Focus Sedan 2007 5.42% Nissan 240SX Coupe 1998 2.08% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Eagle Talon Hatchback 1998 15.38% Ford Mustang Convertible 2007 12.4% Chevrolet Monte Carlo Coupe 2007 5.83% Chrysler Sebring Convertible 2010 4.94% Chrysler PT Cruiser Convertible 2008 4.07% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 87.01% Audi V8 Sedan 1994 4.51% Audi 100 Sedan 1994 2.06% Mercedes-Benz 300-Class Convertible 1993 0.85% Hyundai Veracruz SUV 2012 0.74% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 65.5% Chevrolet Express Van 2007 33.52% GMC Savana Van 2012 0.89% Nissan NV Passenger Van 2012 0.05% Dodge Sprinter Cargo Van 2009 0.02% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Bentley Continental Supersports Conv. Convertible 2012 25.16% Audi V8 Sedan 1994 11.83% Nissan NV Passenger Van 2012 9.54% Chevrolet Camaro Convertible 2012 4.72% Ford GT Coupe 2006 3.05% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 84.27% GMC Canyon Extended Cab 2012 14.07% Chevrolet Avalanche Crew Cab 2012 0.3% Chevrolet Tahoe Hybrid SUV 2012 0.26% Dodge Ram Pickup 3500 Quad Cab 2009 0.17% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Ferrari 458 Italia Coupe 2012 26.32% Ferrari FF Coupe 2012 14.76% Aston Martin V8 Vantage Coupe 2012 8.51% Aston Martin Virage Convertible 2012 7.1% Eagle Talon Hatchback 1998 5.67% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 94.79% Volkswagen Golf Hatchback 1991 2.18% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.72% Audi 100 Sedan 1994 1.01% Audi 100 Wagon 1994 0.18% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Chevrolet Corvette Convertible 2012 61.76% MINI Cooper Roadster Convertible 2012 3.97% Aston Martin V8 Vantage Coupe 2012 3.26% Aston Martin Virage Convertible 2012 2.91% BMW ActiveHybrid 5 Sedan 2012 2.42% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Chrysler Aspen SUV 2009 60.47% Isuzu Ascender SUV 2008 13.06% Dodge Dakota Crew Cab 2010 8.54% Dodge Durango SUV 2007 3.98% Ford Expedition EL SUV 2009 2.35% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 90.18% Mercedes-Benz Sprinter Van 2012 9.79% Honda Accord Sedan 2012 0.02% Ram C/V Cargo Van Minivan 2012 0.0% Suzuki Aerio Sedan 2007 0.0% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 76.36% Dodge Dakota Club Cab 2007 19.09% Volkswagen Golf Hatchback 1991 3.59% Chevrolet Tahoe Hybrid SUV 2012 0.35% Audi 100 Wagon 1994 0.16% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 BMW 3 Series Wagon 2012 81.5% Mercedes-Benz C-Class Sedan 2012 5.23% Audi S5 Convertible 2012 3.82% Mercedes-Benz E-Class Sedan 2012 2.51% Tesla Model S Sedan 2012 1.62% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 HUMMER H2 SUT Crew Cab 2009 78.71% Volvo XC90 SUV 2007 9.37% Jeep Wrangler SUV 2012 4.91% Jeep Liberty SUV 2012 1.84% Toyota 4Runner SUV 2012 1.71% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Dodge Caliber Wagon 2007 47.22% Land Rover LR2 SUV 2012 17.55% BMW 1 Series Coupe 2012 14.26% Chevrolet HHR SS 2010 7.77% Volvo C30 Hatchback 2012 3.78% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 76.91% smart fortwo Convertible 2012 9.33% Bugatti Veyron 16.4 Coupe 2009 3.34% Audi S5 Convertible 2012 1.53% Audi RS 4 Convertible 2008 1.01% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 93.77% Dodge Charger Sedan 2012 2.17% Dodge Magnum Wagon 2008 1.33% Chrysler 300 SRT-8 2010 1.19% Dodge Challenger SRT8 2011 0.73% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 80.88% Chevrolet Avalanche Crew Cab 2012 6.89% Chevrolet Tahoe Hybrid SUV 2012 6.88% Dodge Durango SUV 2007 3.64% Jeep Liberty SUV 2012 0.94% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 41.57% Mercedes-Benz E-Class Sedan 2012 16.37% Hyundai Genesis Sedan 2012 11.99% Infiniti G Coupe IPL 2012 11.09% Mercedes-Benz S-Class Sedan 2012 4.15% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 54.65% GMC Terrain SUV 2012 35.86% Buick Regal GS 2012 2.26% BMW M6 Convertible 2010 2.14% Chevrolet Sonic Sedan 2012 1.57% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 31.72% Nissan Leaf Hatchback 2012 14.91% Maybach Landaulet Convertible 2012 12.34% Dodge Magnum Wagon 2008 6.26% Chrysler Sebring Convertible 2010 4.92% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 45.51% Hyundai Accent Sedan 2012 43.51% Toyota Camry Sedan 2012 4.57% Chevrolet Malibu Hybrid Sedan 2010 1.66% Scion xD Hatchback 2012 1.46% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.74% Chevrolet Silverado 1500 Regular Cab 2012 0.1% Honda Odyssey Minivan 2012 0.04% Hyundai Santa Fe SUV 2012 0.03% Ford Ranger SuperCab 2011 0.02% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 34.54% Dodge Ram Pickup 3500 Quad Cab 2009 24.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 14.35% Chevrolet Silverado 1500 Extended Cab 2012 10.1% Ford E-Series Wagon Van 2012 4.15% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Jaguar XK XKR 2012 26.02% Bugatti Veyron 16.4 Coupe 2009 19.67% Mitsubishi Lancer Sedan 2012 8.07% Acura ZDX Hatchback 2012 7.53% Aston Martin Virage Convertible 2012 4.76% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Canyon Extended Cab 2012 68.11% Ford F-150 Regular Cab 2007 28.89% Chevrolet Silverado 1500 Extended Cab 2012 2.78% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.18% Dodge Ram Pickup 3500 Quad Cab 2009 0.03% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz 300-Class Convertible 1993 39.97% BMW M6 Convertible 2010 30.41% Chevrolet Monte Carlo Coupe 2007 9.52% Chevrolet Impala Sedan 2007 4.84% Chrysler Sebring Convertible 2010 3.78% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 29.02% Volkswagen Golf Hatchback 2012 17.27% Buick Verano Sedan 2012 13.68% Acura RL Sedan 2012 5.1% BMW M5 Sedan 2010 3.48% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Acura TL Sedan 2012 33.97% Chevrolet Impala Sedan 2007 27.09% Hyundai Elantra Touring Hatchback 2012 9.24% Ford Focus Sedan 2007 6.11% Daewoo Nubira Wagon 2002 5.08% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 82.29% Infiniti QX56 SUV 2011 11.93% Mercedes-Benz S-Class Sedan 2012 1.33% Chevrolet Tahoe Hybrid SUV 2012 0.96% Mercedes-Benz C-Class Sedan 2012 0.64% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 99.32% Ford Ranger SuperCab 2011 0.19% Nissan NV Passenger Van 2012 0.17% Ford F-150 Regular Cab 2007 0.1% Mazda Tribute SUV 2011 0.05% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Scion xD Hatchback 2012 21.52% Mitsubishi Lancer Sedan 2012 16.24% Eagle Talon Hatchback 1998 14.1% Ford Fiesta Sedan 2012 5.74% Acura ZDX Hatchback 2012 5.6% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Audi 100 Wagon 1994 86.02% Suzuki SX4 Sedan 2012 2.24% Chrysler 300 SRT-8 2010 1.63% Plymouth Neon Coupe 1999 1.1% Daewoo Nubira Wagon 2002 0.96% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 71.45% Chevrolet Corvette Convertible 2012 18.74% Aston Martin V8 Vantage Coupe 2012 2.74% Ferrari California Convertible 2012 2.29% Porsche Panamera Sedan 2012 0.94% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 53.73% Spyker C8 Convertible 2009 37.67% Bugatti Veyron 16.4 Coupe 2009 4.35% Nissan Juke Hatchback 2012 1.14% Spyker C8 Coupe 2009 0.78% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 74.29% Chevrolet Malibu Hybrid Sedan 2010 17.85% Bentley Continental GT Coupe 2007 4.68% Chevrolet Sonic Sedan 2012 2.25% Volkswagen Golf Hatchback 2012 0.26% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.54% Dodge Charger SRT-8 2009 0.17% Ferrari FF Coupe 2012 0.16% Chevrolet Corvette Convertible 2012 0.04% Chevrolet Monte Carlo Coupe 2007 0.02% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Cobalt SS 2010 41.31% Lamborghini Diablo Coupe 2001 13.96% Chevrolet Corvette Convertible 2012 10.2% Ford Mustang Convertible 2007 9.35% Chrysler Crossfire Convertible 2008 6.26% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 65.35% Audi RS 4 Convertible 2008 6.64% Fisker Karma Sedan 2012 4.9% Audi TT Hatchback 2011 4.48% Porsche Panamera Sedan 2012 3.35% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 41.57% Mazda Tribute SUV 2011 24.65% Chevrolet TrailBlazer SS 2009 10.0% HUMMER H2 SUT Crew Cab 2009 4.97% HUMMER H3T Crew Cab 2010 3.48% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 99.88% Isuzu Ascender SUV 2008 0.06% Dodge Ram Pickup 3500 Crew Cab 2010 0.04% Dodge Ram Pickup 3500 Quad Cab 2009 0.02% Dodge Dakota Club Cab 2007 0.01% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Chrysler PT Cruiser Convertible 2008 19.55% Bentley Continental Flying Spur Sedan 2007 15.31% Acura ZDX Hatchback 2012 7.8% Bentley Continental GT Coupe 2012 5.0% Mercedes-Benz 300-Class Convertible 1993 3.59% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Chrysler Crossfire Convertible 2008 13.57% Dodge Charger SRT-8 2009 13.24% Chevrolet Sonic Sedan 2012 10.88% Mercedes-Benz S-Class Sedan 2012 10.18% BMW 6 Series Convertible 2007 5.3% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Buick Enclave SUV 2012 45.45% Honda Odyssey Minivan 2007 15.1% Toyota Sequoia SUV 2012 11.67% Dodge Durango SUV 2007 7.15% Infiniti QX56 SUV 2011 4.7% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 97.77% Land Rover Range Rover SUV 2012 1.25% Land Rover LR2 SUV 2012 0.46% GMC Terrain SUV 2012 0.19% Honda Odyssey Minivan 2012 0.1% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 AM General Hummer SUV 2000 38.13% Ford Ranger SuperCab 2011 25.48% Dodge Ram Pickup 3500 Quad Cab 2009 23.59% HUMMER H3T Crew Cab 2010 2.61% Ford Edge SUV 2012 2.33% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 78.02% Ford F-150 Regular Cab 2007 20.7% Dodge Ram Pickup 3500 Crew Cab 2010 0.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.23% Chevrolet Silverado 1500 Regular Cab 2012 0.14% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 54.65% Dodge Dakota Crew Cab 2010 14.69% Dodge Caliber Wagon 2012 7.83% Chrysler Aspen SUV 2009 5.92% Isuzu Ascender SUV 2008 5.63% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Chrysler Crossfire Convertible 2008 71.08% Hyundai Elantra Sedan 2007 15.66% Honda Accord Coupe 2012 6.71% Plymouth Neon Coupe 1999 1.73% Chevrolet Malibu Sedan 2007 1.01% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Dodge Ram Pickup 3500 Crew Cab 2010 47.45% Volvo XC90 SUV 2007 29.12% Dodge Ram Pickup 3500 Quad Cab 2009 12.23% Ford Expedition EL SUV 2009 4.32% Dodge Durango SUV 2012 1.45% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Rolls-Royce Phantom Drophead Coupe Convertible 2012 34.17% Bentley Arnage Sedan 2009 20.9% Rolls-Royce Ghost Sedan 2012 12.24% Rolls-Royce Phantom Sedan 2012 8.07% Bentley Mulsanne Sedan 2011 6.84% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 95.82% Dodge Dakota Crew Cab 2010 3.46% Dodge Dakota Club Cab 2007 0.26% Chevrolet Silverado 1500 Extended Cab 2012 0.18% GMC Canyon Extended Cab 2012 0.17% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 94.54% Chevrolet Express Cargo Van 2007 4.33% Chevrolet Express Van 2007 1.13% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Lamborghini Reventon Coupe 2008 60.01% Bugatti Veyron 16.4 Coupe 2009 22.92% Aston Martin Virage Convertible 2012 4.78% Spyker C8 Convertible 2009 3.79% Ford Fiesta Sedan 2012 1.98% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Chevrolet Sonic Sedan 2012 28.13% Dodge Caliber Wagon 2012 9.85% GMC Terrain SUV 2012 7.76% Dodge Journey SUV 2012 7.25% Rolls-Royce Ghost Sedan 2012 4.12% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 84.52% Jeep Compass SUV 2012 8.76% Dodge Dakota Crew Cab 2010 4.85% Dodge Dakota Club Cab 2007 1.09% Dodge Durango SUV 2007 0.33% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 BMW M3 Coupe 2012 95.68% Lamborghini Aventador Coupe 2012 2.27% Ferrari 458 Italia Convertible 2012 0.74% Ferrari California Convertible 2012 0.68% Ford GT Coupe 2006 0.21% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Lincoln Town Car Sedan 2011 19.13% Chrysler Sebring Convertible 2010 12.26% Mercedes-Benz S-Class Sedan 2012 7.77% Chrysler Crossfire Convertible 2008 7.44% Acura ZDX Hatchback 2012 4.21% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Suzuki SX4 Hatchback 2012 26.03% Hyundai Azera Sedan 2012 19.84% Ferrari 458 Italia Coupe 2012 19.82% Ferrari California Convertible 2012 12.3% Hyundai Tucson SUV 2012 2.96% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Chrysler Town and Country Minivan 2012 76.86% Ford Freestar Minivan 2007 22.81% Honda Odyssey Minivan 2007 0.25% Dodge Caravan Minivan 1997 0.04% Buick Rainier SUV 2007 0.02% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 32.38% Chevrolet Malibu Hybrid Sedan 2010 18.49% Audi S4 Sedan 2012 11.18% Audi S4 Sedan 2007 8.56% Chevrolet HHR SS 2010 7.25% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 95.88% Buick Regal GS 2012 1.5% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.07% Rolls-Royce Ghost Sedan 2012 0.85% Chevrolet Sonic Sedan 2012 0.11% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Acura TL Type-S 2008 77.0% Audi RS 4 Convertible 2008 3.6% FIAT 500 Convertible 2012 3.08% Audi TT Hatchback 2011 2.28% Volvo 240 Sedan 1993 1.81% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Nissan Leaf Hatchback 2012 87.25% Audi 100 Sedan 1994 3.19% Honda Accord Sedan 2012 1.17% Dodge Caravan Minivan 1997 1.1% Aston Martin V8 Vantage Coupe 2012 1.08% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 85.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.2% Chevrolet Silverado 2500HD Regular Cab 2012 3.77% Chevrolet Silverado 1500 Extended Cab 2012 1.35% Isuzu Ascender SUV 2008 0.01% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Bentley Continental GT Coupe 2007 73.99% Chevrolet Corvette ZR1 2012 14.27% Jaguar XK XKR 2012 7.68% Bugatti Veyron 16.4 Coupe 2009 1.32% Suzuki SX4 Sedan 2012 0.77% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 86.54% Hyundai Azera Sedan 2012 8.3% Mercedes-Benz S-Class Sedan 2012 1.47% Hyundai Genesis Sedan 2012 1.42% Mercedes-Benz C-Class Sedan 2012 0.92% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 24.89% Acura RL Sedan 2012 16.51% Acura TSX Sedan 2012 15.57% Audi S4 Sedan 2012 6.02% Toyota Camry Sedan 2012 4.35% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.8% Audi S6 Sedan 2011 0.08% Audi S4 Sedan 2012 0.06% Hyundai Genesis Sedan 2012 0.05% Mercedes-Benz E-Class Sedan 2012 0.0% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 99.04% Bentley Continental GT Coupe 2007 0.54% Buick Verano Sedan 2012 0.27% Volkswagen Beetle Hatchback 2012 0.06% Bentley Continental GT Coupe 2012 0.06% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Ford Edge SUV 2012 98.52% Hyundai Santa Fe SUV 2012 1.47% Honda Odyssey Minivan 2012 0.0% Land Rover LR2 SUV 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Aston Martin V8 Vantage Convertible 2012 54.64% Mercedes-Benz SL-Class Coupe 2009 11.26% Aston Martin V8 Vantage Coupe 2012 8.99% Jaguar XK XKR 2012 7.42% Infiniti G Coupe IPL 2012 4.05% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 99.19% Bentley Arnage Sedan 2009 0.32% FIAT 500 Abarth 2012 0.3% Spyker C8 Coupe 2009 0.12% Bugatti Veyron 16.4 Coupe 2009 0.01% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Audi S6 Sedan 2011 51.03% Chevrolet Camaro Convertible 2012 24.61% Audi S5 Coupe 2012 9.8% Audi TT Hatchback 2011 6.48% Audi S4 Sedan 2007 4.76% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 95.3% Ferrari California Convertible 2012 1.95% Ferrari 458 Italia Convertible 2012 0.85% Aston Martin V8 Vantage Coupe 2012 0.79% Aston Martin V8 Vantage Convertible 2012 0.38% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 63.46% BMW 6 Series Convertible 2007 24.6% BMW 3 Series Sedan 2012 6.19% Audi A5 Coupe 2012 1.51% Audi S5 Coupe 2012 1.31% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Suzuki Aerio Sedan 2007 76.77% Suzuki SX4 Sedan 2012 10.28% Mercedes-Benz Sprinter Van 2012 1.98% Ram C/V Cargo Van Minivan 2012 1.46% Daewoo Nubira Wagon 2002 1.39% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 92.89% Dodge Ram Pickup 3500 Crew Cab 2010 6.07% Ford Expedition EL SUV 2009 0.27% Infiniti QX56 SUV 2011 0.12% Cadillac Escalade EXT Crew Cab 2007 0.07% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Magnum Wagon 2008 55.36% Chevrolet HHR SS 2010 8.04% Plymouth Neon Coupe 1999 7.67% Chevrolet Monte Carlo Coupe 2007 3.93% Chevrolet Malibu Sedan 2007 2.33% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Audi S5 Coupe 2012 80.48% Fisker Karma Sedan 2012 11.64% Spyker C8 Convertible 2009 4.24% Chevrolet Camaro Convertible 2012 0.91% Audi R8 Coupe 2012 0.7% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 60.34% Aston Martin V8 Vantage Coupe 2012 24.73% BMW Z4 Convertible 2012 5.42% Ferrari 458 Italia Convertible 2012 3.37% Ferrari California Convertible 2012 2.17% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.96% Ford F-150 Regular Cab 2012 0.02% Ford F-150 Regular Cab 2007 0.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Dakota Club Cab 2007 0.0% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Geo Metro Convertible 1993 97.77% smart fortwo Convertible 2012 2.02% FIAT 500 Convertible 2012 0.21% Chevrolet Corvette Convertible 2012 0.0% Plymouth Neon Coupe 1999 0.0% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 88.55% Hyundai Tucson SUV 2012 11.06% Hyundai Veracruz SUV 2012 0.29% Hyundai Santa Fe SUV 2012 0.05% Chevrolet Malibu Sedan 2007 0.01% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 99.17% Bugatti Veyron 16.4 Coupe 2009 0.46% Spyker C8 Coupe 2009 0.34% Ford GT Coupe 2006 0.01% Lamborghini Reventon Coupe 2008 0.01% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Buick Verano Sedan 2012 36.83% Scion xD Hatchback 2012 17.28% Chrysler 300 SRT-8 2010 7.34% Honda Odyssey Minivan 2012 6.41% Chevrolet Sonic Sedan 2012 5.98% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 BMW 6 Series Convertible 2007 47.35% BMW 1 Series Convertible 2012 12.47% Hyundai Sonata Hybrid Sedan 2012 10.46% Audi TT RS Coupe 2012 7.94% Chevrolet Camaro Convertible 2012 5.96% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 63.34% Dodge Dakota Club Cab 2007 26.67% Dodge Durango SUV 2007 9.2% Audi 100 Sedan 1994 0.42% Dodge Caliber Wagon 2012 0.21% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Jeep Compass SUV 2012 64.08% Jeep Grand Cherokee SUV 2012 35.52% Jeep Patriot SUV 2012 0.16% Dodge Durango SUV 2007 0.06% BMW X3 SUV 2012 0.03% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 61.64% Hyundai Elantra Sedan 2007 19.86% Dodge Journey SUV 2012 11.38% Toyota Corolla Sedan 2012 1.0% Ford Fiesta Sedan 2012 0.43% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Jaguar XK XKR 2012 52.67% Aston Martin Virage Coupe 2012 16.52% Chevrolet Cobalt SS 2010 6.95% Volvo C30 Hatchback 2012 2.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.16% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 74.96% Mercedes-Benz C-Class Sedan 2012 18.21% Cadillac CTS-V Sedan 2012 3.39% Mercedes-Benz SL-Class Coupe 2009 0.65% Land Rover Range Rover SUV 2012 0.47% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 72.07% Bentley Continental GT Coupe 2012 18.44% Spyker C8 Coupe 2009 1.52% Dodge Challenger SRT8 2011 1.19% Suzuki Kizashi Sedan 2012 1.18% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 43.45% Infiniti G Coupe IPL 2012 15.35% Aston Martin Virage Convertible 2012 13.68% Chevrolet Corvette ZR1 2012 4.02% Ford GT Coupe 2006 2.59% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Ford Ranger SuperCab 2011 47.05% Chevrolet Silverado 1500 Classic Extended Cab 2007 15.85% Ford F-150 Regular Cab 2012 11.19% GMC Canyon Extended Cab 2012 7.92% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.54% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 51.9% Lamborghini Diablo Coupe 2001 27.41% Audi S4 Sedan 2012 12.59% Aston Martin V8 Vantage Coupe 2012 2.72% BMW Z4 Convertible 2012 2.26% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 53.9% Buick Regal GS 2012 30.05% Buick Verano Sedan 2012 4.92% Suzuki Kizashi Sedan 2012 3.32% Chevrolet Malibu Hybrid Sedan 2010 0.89% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 GMC Canyon Extended Cab 2012 30.76% Dodge Dakota Crew Cab 2010 15.3% Chevrolet Silverado 1500 Extended Cab 2012 10.43% Chevrolet Silverado 2500HD Regular Cab 2012 8.66% Isuzu Ascender SUV 2008 8.63% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Chrysler Crossfire Convertible 2008 66.45% Maybach Landaulet Convertible 2012 3.55% BMW 1 Series Convertible 2012 3.52% Ford Mustang Convertible 2007 2.46% BMW 6 Series Convertible 2007 2.33% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 50.91% Chevrolet Tahoe Hybrid SUV 2012 37.03% Mazda Tribute SUV 2011 1.86% GMC Yukon Hybrid SUV 2012 1.52% Cadillac SRX SUV 2012 1.36% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 BMW M6 Convertible 2010 77.85% Audi V8 Sedan 1994 6.22% Chevrolet TrailBlazer SS 2009 4.63% Chevrolet Camaro Convertible 2012 3.05% Eagle Talon Hatchback 1998 0.97% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 93.49% BMW M3 Coupe 2012 3.22% Audi S5 Convertible 2012 1.72% Audi TT Hatchback 2011 0.38% Audi TTS Coupe 2012 0.16% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 98.86% Dodge Caravan Minivan 1997 0.62% Chrysler Town and Country Minivan 2012 0.05% Ford Expedition EL SUV 2009 0.04% Honda Odyssey Minivan 2007 0.04% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 82.16% Chevrolet Tahoe Hybrid SUV 2012 13.78% Dodge Magnum Wagon 2008 2.68% GMC Yukon Hybrid SUV 2012 0.83% Toyota 4Runner SUV 2012 0.37% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Chevrolet Corvette Convertible 2012 17.54% Hyundai Sonata Sedan 2012 17.49% Audi TT Hatchback 2011 14.03% Chevrolet Camaro Convertible 2012 7.03% Ford Mustang Convertible 2007 5.22% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 22.05% Dodge Ram Pickup 3500 Crew Cab 2010 9.05% Dodge Durango SUV 2007 8.92% Jeep Patriot SUV 2012 8.54% Ford Ranger SuperCab 2011 7.94% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Hyundai Accent Sedan 2012 58.12% Toyota Corolla Sedan 2012 10.32% Hyundai Elantra Touring Hatchback 2012 9.38% Chevrolet Monte Carlo Coupe 2007 7.19% Volkswagen Golf Hatchback 2012 4.58% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 82.32% BMW 6 Series Convertible 2007 4.78% BMW X5 SUV 2007 4.67% BMW M6 Convertible 2010 4.62% Chevrolet Sonic Sedan 2012 0.87% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Dodge Caliber Wagon 2012 32.94% Ford Focus Sedan 2007 30.33% Dodge Caliber Wagon 2007 7.36% Jeep Grand Cherokee SUV 2012 5.73% Jeep Compass SUV 2012 4.6% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Dodge Challenger SRT8 2011 50.18% Rolls-Royce Phantom Sedan 2012 31.1% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.57% Jeep Liberty SUV 2012 4.08% Bentley Mulsanne Sedan 2011 1.37% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 BMW M5 Sedan 2010 37.31% Audi A5 Coupe 2012 18.87% Audi S5 Coupe 2012 11.84% Audi TTS Coupe 2012 7.36% BMW 3 Series Sedan 2012 4.65% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 81.3% Bentley Continental Flying Spur Sedan 2007 14.61% Bentley Continental GT Coupe 2007 1.93% FIAT 500 Abarth 2012 1.38% Cadillac CTS-V Sedan 2012 0.43% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 31.11% Acura Integra Type R 2001 18.66% Hyundai Elantra Sedan 2007 9.76% Hyundai Elantra Touring Hatchback 2012 8.0% Eagle Talon Hatchback 1998 6.93% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Audi TT Hatchback 2011 48.72% BMW ActiveHybrid 5 Sedan 2012 14.31% Audi S5 Coupe 2012 13.22% Audi TTS Coupe 2012 6.97% Audi S4 Sedan 2012 5.44% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 90.0% Audi S5 Coupe 2012 8.12% Audi S4 Sedan 2012 1.08% Dodge Magnum Wagon 2008 0.11% Audi TTS Coupe 2012 0.1% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 67.27% Nissan NV Passenger Van 2012 4.17% Land Rover LR2 SUV 2012 3.16% Mazda Tribute SUV 2011 2.98% Land Rover Range Rover SUV 2012 2.89% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 88.76% Honda Accord Coupe 2012 5.97% Ford Fiesta Sedan 2012 1.1% Ford Focus Sedan 2007 0.98% Chevrolet Impala Sedan 2007 0.77% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 90.13% Dodge Dakota Crew Cab 2010 3.38% Isuzu Ascender SUV 2008 2.47% HUMMER H2 SUT Crew Cab 2009 1.4% Ford F-450 Super Duty Crew Cab 2012 1.07% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Dodge Caliber Wagon 2012 39.11% Rolls-Royce Phantom Sedan 2012 23.58% Ford GT Coupe 2006 6.14% Jeep Patriot SUV 2012 2.46% Volvo C30 Hatchback 2012 1.88% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 79.04% Land Rover Range Rover SUV 2012 13.29% Isuzu Ascender SUV 2008 2.7% Chrysler Aspen SUV 2009 1.0% Buick Rainier SUV 2007 0.79% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Dakota Club Cab 2007 73.82% Dodge Ram Pickup 3500 Quad Cab 2009 24.58% Dodge Dakota Crew Cab 2010 0.77% Chevrolet Tahoe Hybrid SUV 2012 0.59% Jeep Grand Cherokee SUV 2012 0.06% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Ford E-Series Wagon Van 2012 39.18% Isuzu Ascender SUV 2008 17.72% Ford F-450 Super Duty Crew Cab 2012 5.55% Jeep Patriot SUV 2012 4.58% Ford F-150 Regular Cab 2012 4.41% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 97.79% GMC Canyon Extended Cab 2012 0.64% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.62% Land Rover Range Rover SUV 2012 0.31% Dodge Dakota Crew Cab 2010 0.21% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bentley Continental Supersports Conv. Convertible 2012 67.51% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.97% Lamborghini Reventon Coupe 2008 5.2% Aston Martin V8 Vantage Convertible 2012 4.91% Chevrolet Cobalt SS 2010 2.69% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Audi S5 Convertible 2012 0.0% Acura Integra Type R 2001 0.0% Toyota Corolla Sedan 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Audi 100 Sedan 1994 37.26% Buick Enclave SUV 2012 21.34% Audi 100 Wagon 1994 14.34% Daewoo Nubira Wagon 2002 6.83% Lincoln Town Car Sedan 2011 5.27% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 38.14% Tesla Model S Sedan 2012 31.74% Nissan Leaf Hatchback 2012 17.97% Plymouth Neon Coupe 1999 2.26% Suzuki SX4 Sedan 2012 1.43% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 96.96% Toyota Camry Sedan 2012 1.5% Toyota Corolla Sedan 2012 0.75% Acura TL Sedan 2012 0.67% Hyundai Accent Sedan 2012 0.04% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Hyundai Veloster Hatchback 2012 34.02% Spyker C8 Coupe 2009 16.17% Aston Martin Virage Coupe 2012 11.07% Dodge Charger Sedan 2012 8.93% Volvo C30 Hatchback 2012 8.37% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-150 Regular Cab 2007 45.82% Chevrolet Silverado 2500HD Regular Cab 2012 41.34% Dodge Ram Pickup 3500 Quad Cab 2009 7.69% Chevrolet Silverado 1500 Regular Cab 2012 2.2% Dodge Ram Pickup 3500 Crew Cab 2010 1.42% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Lamborghini Reventon Coupe 2008 96.86% Aston Martin Virage Convertible 2012 0.63% Mercedes-Benz 300-Class Convertible 1993 0.35% Hyundai Genesis Sedan 2012 0.32% Lamborghini Diablo Coupe 2001 0.22% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Porsche Panamera Sedan 2012 51.14% Nissan 240SX Coupe 1998 11.71% Acura ZDX Hatchback 2012 7.52% Hyundai Veracruz SUV 2012 6.13% BMW X6 SUV 2012 4.51% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 48.5% Hyundai Tucson SUV 2012 17.82% Chevrolet Traverse SUV 2012 13.91% Buick Enclave SUV 2012 4.71% Chevrolet Malibu Sedan 2007 3.98% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Hyundai Accent Sedan 2012 15.03% Dodge Magnum Wagon 2008 14.75% Acura RL Sedan 2012 8.96% Acura TSX Sedan 2012 6.36% Suzuki Aerio Sedan 2007 5.83% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 45.55% BMW 1 Series Coupe 2012 9.87% BMW 1 Series Convertible 2012 9.68% Suzuki SX4 Hatchback 2012 8.54% Ford GT Coupe 2006 7.45% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2012 52.49% Buick Regal GS 2012 18.45% BMW ActiveHybrid 5 Sedan 2012 12.22% Bentley Mulsanne Sedan 2011 8.04% Dodge Challenger SRT8 2011 3.54% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.82% GMC Yukon Hybrid SUV 2012 0.13% Chrysler 300 SRT-8 2010 0.01% Ford Ranger SuperCab 2011 0.01% Dodge Durango SUV 2007 0.01% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 30.0% Audi 100 Sedan 1994 16.04% Dodge Caravan Minivan 1997 11.11% Chevrolet Impala Sedan 2007 9.92% Daewoo Nubira Wagon 2002 5.63% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 43.49% Tesla Model S Sedan 2012 21.56% BMW 6 Series Convertible 2007 4.96% Fisker Karma Sedan 2012 4.13% Buick Regal GS 2012 3.67% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Suzuki SX4 Sedan 2012 49.66% Volkswagen Golf Hatchback 2012 13.4% Buick Verano Sedan 2012 9.9% Acura RL Sedan 2012 8.24% Honda Odyssey Minivan 2012 5.35% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 68.5% Toyota Camry Sedan 2012 19.59% Audi S4 Sedan 2012 3.31% Suzuki Kizashi Sedan 2012 1.65% BMW 1 Series Coupe 2012 1.09% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 55.44% Cadillac Escalade EXT Crew Cab 2007 18.44% Land Rover Range Rover SUV 2012 4.29% Ford F-150 Regular Cab 2012 3.24% Volvo XC90 SUV 2007 2.59% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 FIAT 500 Abarth 2012 84.54% Volkswagen Golf Hatchback 1991 1.91% Dodge Challenger SRT8 2011 1.76% Acura Integra Type R 2001 1.75% Audi V8 Sedan 1994 1.69% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 32.59% Mercedes-Benz E-Class Sedan 2012 15.9% Acura ZDX Hatchback 2012 12.02% Hyundai Veloster Hatchback 2012 6.46% Chevrolet Sonic Sedan 2012 3.45% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 BMW X5 SUV 2007 45.5% Hyundai Veracruz SUV 2012 36.81% Hyundai Santa Fe SUV 2012 3.01% Dodge Challenger SRT8 2011 2.23% Audi S6 Sedan 2011 1.64% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 99.93% HUMMER H2 SUT Crew Cab 2009 0.03% Volvo XC90 SUV 2007 0.02% Ford F-150 Regular Cab 2012 0.01% Ford F-450 Super Duty Crew Cab 2012 0.01% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 80.72% GMC Canyon Extended Cab 2012 14.0% Chevrolet Silverado 1500 Extended Cab 2012 1.94% GMC Savana Van 2012 1.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.11% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Ford Edge SUV 2012 62.97% Spyker C8 Coupe 2009 21.76% BMW 1 Series Coupe 2012 4.71% BMW X6 SUV 2012 3.14% BMW 1 Series Convertible 2012 1.69% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 87.67% Nissan NV Passenger Van 2012 6.05% Acura RL Sedan 2012 1.71% Ford F-450 Super Duty Crew Cab 2012 1.17% BMW 3 Series Sedan 2012 0.47% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Acura RL Sedan 2012 16.22% Mitsubishi Lancer Sedan 2012 12.13% Hyundai Elantra Sedan 2007 10.92% Chevrolet Malibu Hybrid Sedan 2010 10.08% Volkswagen Beetle Hatchback 2012 9.05% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 94.0% Dodge Dakota Club Cab 2007 3.65% Dodge Dakota Crew Cab 2010 1.2% Dodge Caliber Wagon 2012 1.06% Chrysler Aspen SUV 2009 0.05% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Chevrolet Cobalt SS 2010 45.0% Acura RL Sedan 2012 13.68% Acura TL Sedan 2012 11.47% Infiniti G Coupe IPL 2012 6.37% Acura TL Type-S 2008 4.91% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 24.47% McLaren MP4-12C Coupe 2012 19.85% MINI Cooper Roadster Convertible 2012 10.28% Chevrolet Camaro Convertible 2012 6.57% Audi S5 Convertible 2012 5.64% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 34.77% Aston Martin V8 Vantage Coupe 2012 11.78% Chevrolet Impala Sedan 2007 11.55% Fisker Karma Sedan 2012 8.29% Porsche Panamera Sedan 2012 8.2% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Porsche Panamera Sedan 2012 62.72% Buick Regal GS 2012 9.0% BMW M5 Sedan 2010 7.57% BMW ActiveHybrid 5 Sedan 2012 5.6% Honda Odyssey Minivan 2012 3.66% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz E-Class Sedan 2012 34.15% Infiniti G Coupe IPL 2012 24.8% Hyundai Azera Sedan 2012 21.6% Hyundai Genesis Sedan 2012 8.51% Cadillac CTS-V Sedan 2012 3.19% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 33.15% Mercedes-Benz SL-Class Coupe 2009 22.59% Bentley Continental GT Coupe 2007 17.4% Dodge Challenger SRT8 2011 14.91% Bentley Continental Flying Spur Sedan 2007 3.91% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.61% HUMMER H2 SUT Crew Cab 2009 0.33% Jeep Wrangler SUV 2012 0.06% HUMMER H3T Crew Cab 2010 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 62.93% Plymouth Neon Coupe 1999 34.99% Chevrolet Malibu Sedan 2007 0.71% Chevrolet Impala Sedan 2007 0.58% Suzuki Aerio Sedan 2007 0.29% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Coupe 2012 98.95% Ferrari 458 Italia Convertible 2012 0.94% Lamborghini Aventador Coupe 2012 0.06% Ferrari California Convertible 2012 0.04% Ford GT Coupe 2006 0.01% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 78.12% Chevrolet Silverado 1500 Extended Cab 2012 5.97% Dodge Ram Pickup 3500 Crew Cab 2010 5.63% Ford E-Series Wagon Van 2012 2.84% Isuzu Ascender SUV 2008 1.94% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Ford Focus Sedan 2007 68.77% Plymouth Neon Coupe 1999 10.23% Eagle Talon Hatchback 1998 5.04% Chevrolet Monte Carlo Coupe 2007 4.65% Nissan 240SX Coupe 1998 3.45% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bentley Mulsanne Sedan 2011 22.16% Dodge Charger SRT-8 2009 19.97% Bentley Continental GT Coupe 2007 11.01% Bentley Continental Flying Spur Sedan 2007 8.89% Rolls-Royce Ghost Sedan 2012 7.97% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Chevrolet Malibu Hybrid Sedan 2010 57.24% Hyundai Elantra Sedan 2007 17.78% Audi S4 Sedan 2007 4.21% FIAT 500 Convertible 2012 2.92% Chevrolet Sonic Sedan 2012 2.54% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.75% Chevrolet Express Van 2007 0.19% GMC Savana Van 2012 0.06% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Acura RL Sedan 2012 55.85% Lincoln Town Car Sedan 2011 12.21% Audi V8 Sedan 1994 6.23% Acura ZDX Hatchback 2012 4.27% Honda Accord Coupe 2012 3.36% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 60.54% BMW X3 SUV 2012 19.41% Hyundai Santa Fe SUV 2012 4.41% GMC Acadia SUV 2012 3.12% Toyota Sequoia SUV 2012 3.11% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 91.39% Suzuki SX4 Sedan 2012 4.11% Suzuki Aerio Sedan 2007 3.74% Ram C/V Cargo Van Minivan 2012 0.49% Cadillac Escalade EXT Crew Cab 2007 0.09% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Nissan Leaf Hatchback 2012 84.83% Daewoo Nubira Wagon 2002 4.76% Hyundai Elantra Touring Hatchback 2012 3.26% Chevrolet Monte Carlo Coupe 2007 2.11% Ford Fiesta Sedan 2012 1.12% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Suzuki SX4 Hatchback 2012 41.62% Ford Fiesta Sedan 2012 28.54% Chevrolet Corvette ZR1 2012 13.35% Jaguar XK XKR 2012 5.34% Suzuki SX4 Sedan 2012 3.57% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Jeep Compass SUV 2012 20.36% Volvo XC90 SUV 2007 14.6% Cadillac SRX SUV 2012 9.8% BMW X3 SUV 2012 8.47% Jeep Grand Cherokee SUV 2012 7.93% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 61.59% Ferrari 458 Italia Coupe 2012 8.33% Chevrolet Corvette ZR1 2012 6.97% Ferrari 458 Italia Convertible 2012 2.38% Ford GT Coupe 2006 2.25% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.99% Jeep Patriot SUV 2012 0.01% Jeep Grand Cherokee SUV 2012 0.0% Dodge Durango SUV 2007 0.0% Jeep Compass SUV 2012 0.0% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Dodge Dakota Crew Cab 2010 57.68% Chrysler Aspen SUV 2009 13.22% Dodge Durango SUV 2007 7.25% Toyota 4Runner SUV 2012 3.99% Dodge Ram Pickup 3500 Quad Cab 2009 3.92% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Chrysler Crossfire Convertible 2008 26.99% Chevrolet Corvette Convertible 2012 22.91% Nissan Leaf Hatchback 2012 19.99% Audi S5 Convertible 2012 16.8% Honda Accord Sedan 2012 4.42% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 45.93% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 24.16% Chevrolet Silverado 2500HD Regular Cab 2012 23.18% Ford Ranger SuperCab 2011 3.42% Chevrolet Silverado 1500 Regular Cab 2012 1.58% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 BMW X6 SUV 2012 45.04% Ford Edge SUV 2012 23.02% Hyundai Veloster Hatchback 2012 5.13% Volvo C30 Hatchback 2012 4.16% Toyota 4Runner SUV 2012 2.79% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 49.08% Jeep Compass SUV 2012 16.34% Jeep Liberty SUV 2012 13.26% Jeep Patriot SUV 2012 10.17% GMC Yukon Hybrid SUV 2012 4.34% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Land Rover Range Rover SUV 2012 39.88% Ford Ranger SuperCab 2011 11.25% Cadillac Escalade EXT Crew Cab 2007 9.72% Jeep Grand Cherokee SUV 2012 7.47% GMC Yukon Hybrid SUV 2012 5.5% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 BMW 1 Series Coupe 2012 46.48% Suzuki Kizashi Sedan 2012 23.81% Buick Regal GS 2012 20.41% BMW M3 Coupe 2012 4.96% Bentley Continental GT Coupe 2012 3.29% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 32.17% Acura ZDX Hatchback 2012 26.89% BMW X3 SUV 2012 6.94% Fisker Karma Sedan 2012 5.03% GMC Yukon Hybrid SUV 2012 3.74% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 84.22% Dodge Caliber Wagon 2007 6.44% Dodge Durango SUV 2007 3.96% GMC Terrain SUV 2012 2.2% Mazda Tribute SUV 2011 1.3% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 70.15% Chevrolet Silverado 1500 Regular Cab 2012 10.74% Ford F-150 Regular Cab 2012 9.79% GMC Terrain SUV 2012 5.66% Ford Edge SUV 2012 1.4% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 60.73% Chevrolet Camaro Convertible 2012 25.02% Ferrari 458 Italia Convertible 2012 8.16% Chevrolet Corvette Convertible 2012 2.91% Ferrari 458 Italia Coupe 2012 2.43% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 76.59% Dodge Durango SUV 2007 8.49% Ford F-150 Regular Cab 2012 6.05% Dodge Ram Pickup 3500 Quad Cab 2009 5.75% Ford F-150 Regular Cab 2007 2.37% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Hyundai Genesis Sedan 2012 54.13% Mercedes-Benz E-Class Sedan 2012 22.16% Hyundai Azera Sedan 2012 8.83% FIAT 500 Abarth 2012 5.92% BMW 3 Series Wagon 2012 1.93% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Chevrolet Corvette ZR1 2012 27.89% Audi R8 Coupe 2012 17.33% Mercedes-Benz SL-Class Coupe 2009 10.81% Rolls-Royce Phantom Sedan 2012 9.32% Audi TTS Coupe 2012 5.34% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 65.91% Ford Expedition EL SUV 2009 15.68% Chevrolet Avalanche Crew Cab 2012 5.73% Jeep Grand Cherokee SUV 2012 1.61% Dodge Journey SUV 2012 1.33% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 79.44% Audi 100 Sedan 1994 17.09% Audi 100 Wagon 1994 1.85% Ford Ranger SuperCab 2011 1.02% Volkswagen Golf Hatchback 1991 0.28% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.4% MINI Cooper Roadster Convertible 2012 0.24% Nissan Leaf Hatchback 2012 0.11% smart fortwo Convertible 2012 0.07% Audi S6 Sedan 2011 0.05% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 72.66% Audi S5 Coupe 2012 8.4% Infiniti QX56 SUV 2011 7.71% BMW X6 SUV 2012 3.18% BMW X3 SUV 2012 2.68% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Acura TL Type-S 2008 31.52% Mercedes-Benz E-Class Sedan 2012 9.99% Mercedes-Benz C-Class Sedan 2012 9.93% Audi S4 Sedan 2007 5.62% Bentley Continental Flying Spur Sedan 2007 5.05% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 GMC Terrain SUV 2012 82.53% Ford F-150 Regular Cab 2012 3.63% Dodge Ram Pickup 3500 Crew Cab 2010 3.0% Mercedes-Benz 300-Class Convertible 1993 2.32% Ford F-450 Super Duty Crew Cab 2012 2.22% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 90.97% Geo Metro Convertible 1993 3.86% Porsche Panamera Sedan 2012 2.2% Acura TL Type-S 2008 1.15% Audi S4 Sedan 2007 0.51% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Acura ZDX Hatchback 2012 98.42% Fisker Karma Sedan 2012 1.24% BMW ActiveHybrid 5 Sedan 2012 0.12% Porsche Panamera Sedan 2012 0.09% Volkswagen Beetle Hatchback 2012 0.03% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 29.67% Bentley Continental Supersports Conv. Convertible 2012 11.3% Bugatti Veyron 16.4 Convertible 2009 11.09% Maybach Landaulet Convertible 2012 9.46% Nissan NV Passenger Van 2012 3.65% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Audi 100 Wagon 1994 42.87% Acura TL Type-S 2008 17.2% BMW ActiveHybrid 5 Sedan 2012 12.08% BMW M5 Sedan 2010 5.15% Hyundai Elantra Sedan 2007 4.25% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 BMW 3 Series Sedan 2012 85.87% Audi TT RS Coupe 2012 10.9% Nissan 240SX Coupe 1998 1.14% Volvo C30 Hatchback 2012 0.36% Honda Accord Coupe 2012 0.22% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 99.99% Bugatti Veyron 16.4 Coupe 2009 0.01% Spyker C8 Coupe 2009 0.0% Lamborghini Reventon Coupe 2008 0.0% Chevrolet Corvette ZR1 2012 0.0% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 99.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.19% Jeep Patriot SUV 2012 0.07% Bentley Continental Supersports Conv. Convertible 2012 0.06% Bentley Continental GT Coupe 2007 0.06% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Bentley Continental Supersports Conv. Convertible 2012 66.24% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.69% Jaguar XK XKR 2012 5.17% BMW M6 Convertible 2010 4.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.94% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 75.69% Chevrolet Traverse SUV 2012 10.04% Cadillac SRX SUV 2012 5.53% Ford Fiesta Sedan 2012 4.93% Chrysler PT Cruiser Convertible 2008 1.16% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Jeep Patriot SUV 2012 55.18% Jeep Grand Cherokee SUV 2012 28.38% Volvo 240 Sedan 1993 6.76% Dodge Caliber Wagon 2012 1.78% Jeep Compass SUV 2012 1.38% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 91.62% Chevrolet Malibu Hybrid Sedan 2010 6.35% Acura TL Sedan 2012 0.91% Nissan 240SX Coupe 1998 0.33% Chrysler Sebring Convertible 2010 0.16% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Audi 100 Wagon 1994 87.98% Volkswagen Golf Hatchback 1991 6.35% Chevrolet Express Cargo Van 2007 2.21% Buick Rainier SUV 2007 0.62% Volvo XC90 SUV 2007 0.58% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Ford Focus Sedan 2007 72.07% Honda Odyssey Minivan 2007 8.07% Honda Accord Sedan 2012 4.85% Daewoo Nubira Wagon 2002 3.7% Volkswagen Golf Hatchback 1991 1.83% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 97.93% Rolls-Royce Phantom Sedan 2012 0.51% Bentley Arnage Sedan 2009 0.43% Chrysler 300 SRT-8 2010 0.22% Rolls-Royce Ghost Sedan 2012 0.15% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Audi V8 Sedan 1994 81.42% Nissan 240SX Coupe 1998 6.77% Honda Accord Coupe 2012 1.37% Eagle Talon Hatchback 1998 1.19% Mercedes-Benz SL-Class Coupe 2009 1.09% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Porsche Panamera Sedan 2012 40.26% Fisker Karma Sedan 2012 19.42% Mercedes-Benz 300-Class Convertible 1993 8.71% Acura TSX Sedan 2012 6.05% Chevrolet Corvette ZR1 2012 4.44% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 77.19% Audi V8 Sedan 1994 3.44% Ford Freestar Minivan 2007 2.61% Volkswagen Golf Hatchback 1991 2.47% Buick Rainier SUV 2007 2.47% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 67.81% Suzuki SX4 Hatchback 2012 18.48% Hyundai Sonata Hybrid Sedan 2012 4.43% Hyundai Accent Sedan 2012 2.96% BMW Z4 Convertible 2012 2.48% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 76.67% Ferrari FF Coupe 2012 5.71% Chevrolet Sonic Sedan 2012 5.41% BMW 1 Series Coupe 2012 2.25% Ford Fiesta Sedan 2012 1.67% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Mercedes-Benz E-Class Sedan 2012 56.03% Audi S5 Convertible 2012 35.03% Audi S5 Coupe 2012 8.69% Porsche Panamera Sedan 2012 0.06% Audi TT Hatchback 2011 0.04% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Jaguar XK XKR 2012 18.92% BMW M5 Sedan 2010 9.12% BMW 1 Series Convertible 2012 7.84% BMW M3 Coupe 2012 6.51% Cadillac CTS-V Sedan 2012 5.61% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Aston Martin V8 Vantage Convertible 2012 50.69% Ferrari FF Coupe 2012 33.12% Spyker C8 Coupe 2009 9.33% Fisker Karma Sedan 2012 2.72% Tesla Model S Sedan 2012 2.17% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Chrysler Crossfire Convertible 2008 14.84% Maybach Landaulet Convertible 2012 13.94% Chevrolet Cobalt SS 2010 13.41% Acura ZDX Hatchback 2012 9.88% Mercedes-Benz S-Class Sedan 2012 5.91% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Dodge Dakota Club Cab 2007 31.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 29.97% Dodge Ram Pickup 3500 Quad Cab 2009 21.28% Chevrolet Silverado 2500HD Regular Cab 2012 9.18% Chevrolet Silverado 1500 Extended Cab 2012 3.54% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.05% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.78% Aston Martin V8 Vantage Coupe 2012 0.07% Spyker C8 Coupe 2009 0.04% Ferrari 458 Italia Convertible 2012 0.03% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 92.81% Chevrolet Express Cargo Van 2007 4.55% Jeep Patriot SUV 2012 0.61% Nissan NV Passenger Van 2012 0.58% GMC Yukon Hybrid SUV 2012 0.45% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 97.41% Chevrolet Cobalt SS 2010 1.52% Acura RL Sedan 2012 0.24% Toyota Camry Sedan 2012 0.21% Hyundai Elantra Sedan 2007 0.17% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 96.91% Hyundai Tucson SUV 2012 1.55% Buick Enclave SUV 2012 0.9% Hyundai Veracruz SUV 2012 0.24% Nissan Juke Hatchback 2012 0.16% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Plymouth Neon Coupe 1999 44.63% Dodge Charger SRT-8 2009 17.23% Nissan 240SX Coupe 1998 11.87% Chevrolet Monte Carlo Coupe 2007 5.09% Chrysler 300 SRT-8 2010 4.1% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 82.58% Suzuki Aerio Sedan 2007 8.68% Acura RL Sedan 2012 3.47% Acura TSX Sedan 2012 3.0% Chevrolet Malibu Sedan 2007 1.37% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 smart fortwo Convertible 2012 54.44% Spyker C8 Convertible 2009 15.04% Aston Martin V8 Vantage Coupe 2012 11.76% Fisker Karma Sedan 2012 5.68% Mercedes-Benz E-Class Sedan 2012 3.53% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Dodge Caliber Wagon 2012 42.82% Dodge Caliber Wagon 2007 25.13% Dodge Durango SUV 2012 17.75% Chevrolet Avalanche Crew Cab 2012 5.52% Dodge Durango SUV 2007 2.27% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Audi S5 Coupe 2012 40.73% Porsche Panamera Sedan 2012 22.49% Tesla Model S Sedan 2012 6.15% Fisker Karma Sedan 2012 4.83% Rolls-Royce Ghost Sedan 2012 2.68% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Hyundai Genesis Sedan 2012 84.82% Hyundai Azera Sedan 2012 9.66% Hyundai Sonata Sedan 2012 2.38% Mercedes-Benz E-Class Sedan 2012 0.89% Mercedes-Benz S-Class Sedan 2012 0.73% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 96.49% Audi S4 Sedan 2007 2.02% Audi TT Hatchback 2011 0.51% Audi RS 4 Convertible 2008 0.4% Audi S5 Coupe 2012 0.38% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 97.65% Jeep Liberty SUV 2012 0.53% Jeep Wrangler SUV 2012 0.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.32% Chrysler 300 SRT-8 2010 0.3% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 97.32% Jeep Grand Cherokee SUV 2012 2.5% GMC Acadia SUV 2012 0.09% GMC Terrain SUV 2012 0.05% Mazda Tribute SUV 2011 0.02% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 39.97% Dodge Dakota Club Cab 2007 24.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 23.13% Chevrolet Silverado 2500HD Regular Cab 2012 8.13% Ford F-150 Regular Cab 2012 1.01% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 28.37% Volvo 240 Sedan 1993 26.21% Lincoln Town Car Sedan 2011 17.46% Mercedes-Benz 300-Class Convertible 1993 4.97% Dodge Dakota Crew Cab 2010 3.43% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 28.88% Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.7% Acura RL Sedan 2012 10.73% Mercedes-Benz 300-Class Convertible 1993 7.76% Rolls-Royce Phantom Sedan 2012 4.72% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 60.0% Chevrolet Express Cargo Van 2007 19.61% Chevrolet Express Van 2007 17.1% Chevrolet Silverado 2500HD Regular Cab 2012 1.15% Ford F-150 Regular Cab 2012 1.05% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 46.49% Chrysler Sebring Convertible 2010 16.32% Chevrolet Malibu Hybrid Sedan 2010 5.39% Aston Martin Virage Convertible 2012 4.92% Mitsubishi Lancer Sedan 2012 3.61% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Toyota Camry Sedan 2012 86.74% BMW M6 Convertible 2010 11.37% BMW 6 Series Convertible 2007 0.54% Audi S4 Sedan 2012 0.18% Chevrolet Camaro Convertible 2012 0.1% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 51.07% Buick Enclave SUV 2012 19.21% Lincoln Town Car Sedan 2011 18.99% Chevrolet Traverse SUV 2012 6.85% Volkswagen Golf Hatchback 1991 0.66% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Audi A5 Coupe 2012 33.0% BMW 1 Series Coupe 2012 20.57% Audi S4 Sedan 2012 12.08% Bentley Continental GT Coupe 2007 4.07% Audi TT Hatchback 2011 3.75% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 88.45% Daewoo Nubira Wagon 2002 2.35% Chevrolet Express Van 2007 2.2% Dodge Sprinter Cargo Van 2009 1.44% Audi 100 Sedan 1994 1.09% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Dodge Caliber Wagon 2012 62.43% BMW X3 SUV 2012 17.81% Ram C/V Cargo Van Minivan 2012 8.41% Volvo XC90 SUV 2007 2.94% Acura ZDX Hatchback 2012 1.52% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 95.28% Chevrolet Impala Sedan 2007 2.58% Buick Enclave SUV 2012 0.8% Chevrolet Malibu Sedan 2007 0.42% Chevrolet Monte Carlo Coupe 2007 0.33% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Bentley Continental Supersports Conv. Convertible 2012 53.98% Volkswagen Golf Hatchback 1991 14.71% Bugatti Veyron 16.4 Convertible 2009 9.85% Volvo 240 Sedan 1993 5.75% Suzuki Kizashi Sedan 2012 3.72% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Leaf Hatchback 2012 96.01% Nissan Juke Hatchback 2012 1.16% Geo Metro Convertible 1993 0.74% Volvo C30 Hatchback 2012 0.58% smart fortwo Convertible 2012 0.42% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 BMW M6 Convertible 2010 84.47% BMW M5 Sedan 2010 4.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.2% Audi S6 Sedan 2011 3.05% Audi S4 Sedan 2007 1.9% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 96.67% Bugatti Veyron 16.4 Convertible 2009 1.4% BMW M3 Coupe 2012 0.98% Acura Integra Type R 2001 0.66% BMW Z4 Convertible 2012 0.07% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 50.79% Suzuki SX4 Hatchback 2012 31.29% Chevrolet Impala Sedan 2007 8.39% Chevrolet Monte Carlo Coupe 2007 2.1% Suzuki Aerio Sedan 2007 1.52% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Honda Accord Sedan 2012 75.39% Acura ZDX Hatchback 2012 7.75% Acura RL Sedan 2012 5.24% Acura TSX Sedan 2012 3.83% Hyundai Sonata Sedan 2012 1.07% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 74.36% Chevrolet Silverado 1500 Regular Cab 2012 25.55% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.03% Chevrolet Silverado 1500 Extended Cab 2012 0.03% Dodge Dakota Club Cab 2007 0.03% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Scion xD Hatchback 2012 33.02% Honda Odyssey Minivan 2007 19.75% Toyota Corolla Sedan 2012 13.1% Chevrolet Monte Carlo Coupe 2007 8.45% Acura TSX Sedan 2012 8.27% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 36.51% Chevrolet HHR SS 2010 33.1% Lamborghini Aventador Coupe 2012 17.3% Aston Martin Virage Coupe 2012 8.07% BMW 3 Series Sedan 2012 0.86% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 12.89% Jeep Patriot SUV 2012 8.87% Ford E-Series Wagon Van 2012 6.81% GMC Yukon Hybrid SUV 2012 6.02% Isuzu Ascender SUV 2008 5.21% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 BMW M6 Convertible 2010 22.29% Tesla Model S Sedan 2012 18.95% Bentley Continental Flying Spur Sedan 2007 14.63% smart fortwo Convertible 2012 11.72% BMW 6 Series Convertible 2007 5.91% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 72.09% Audi R8 Coupe 2012 12.24% Mercedes-Benz 300-Class Convertible 1993 5.91% Chevrolet Camaro Convertible 2012 3.34% Spyker C8 Convertible 2009 1.76% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.78% Ford Ranger SuperCab 2011 0.21% Ford F-150 Regular Cab 2012 0.01% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 BMW 3 Series Sedan 2012 38.78% Buick Regal GS 2012 38.64% Dodge Challenger SRT8 2011 4.68% Audi R8 Coupe 2012 3.35% Mitsubishi Lancer Sedan 2012 2.61% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 30.28% Jeep Grand Cherokee SUV 2012 23.72% GMC Yukon Hybrid SUV 2012 9.95% Toyota Sequoia SUV 2012 7.89% Jeep Compass SUV 2012 4.98% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 91.9% Volkswagen Golf Hatchback 2012 4.1% Ford Fiesta Sedan 2012 1.9% Chevrolet Traverse SUV 2012 1.06% Chevrolet Impala Sedan 2007 0.38% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Chevrolet Cobalt SS 2010 53.92% Lamborghini Reventon Coupe 2008 19.09% BMW 6 Series Convertible 2007 6.87% BMW M6 Convertible 2010 5.67% Acura Integra Type R 2001 4.86% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Bentley Continental GT Coupe 2012 80.8% BMW M3 Coupe 2012 4.8% BMW M5 Sedan 2010 4.8% Cadillac CTS-V Sedan 2012 1.97% BMW 1 Series Coupe 2012 1.29% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Nissan NV Passenger Van 2012 43.73% Ford F-150 Regular Cab 2007 34.59% GMC Acadia SUV 2012 6.4% Buick Enclave SUV 2012 3.78% Jeep Patriot SUV 2012 3.64% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Infiniti G Coupe IPL 2012 64.17% Jaguar XK XKR 2012 29.65% Audi TT RS Coupe 2012 2.96% Aston Martin V8 Vantage Coupe 2012 0.85% BMW 1 Series Convertible 2012 0.56% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 27.95% Dodge Durango SUV 2007 16.27% HUMMER H2 SUT Crew Cab 2009 12.09% Suzuki SX4 Hatchback 2012 6.85% Jeep Compass SUV 2012 6.78% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Dodge Ram Pickup 3500 Quad Cab 2009 67.46% Chevrolet Silverado 2500HD Regular Cab 2012 14.04% Ford F-150 Regular Cab 2007 3.77% Buick Enclave SUV 2012 2.83% HUMMER H3T Crew Cab 2010 2.19% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Ford GT Coupe 2006 31.44% Mercedes-Benz S-Class Sedan 2012 13.36% Suzuki Kizashi Sedan 2012 9.48% Plymouth Neon Coupe 1999 7.3% Eagle Talon Hatchback 1998 7.23% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Audi S4 Sedan 2007 38.43% Audi S6 Sedan 2011 31.43% Acura TL Type-S 2008 4.1% Suzuki Kizashi Sedan 2012 3.8% Chrysler 300 SRT-8 2010 3.45% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 BMW 1 Series Coupe 2012 99.74% Audi S6 Sedan 2011 0.08% Suzuki SX4 Sedan 2012 0.05% Suzuki Kizashi Sedan 2012 0.03% BMW X3 SUV 2012 0.02% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Nissan Juke Hatchback 2012 17.65% Jeep Compass SUV 2012 13.27% GMC Terrain SUV 2012 9.58% Jeep Liberty SUV 2012 9.56% Lamborghini Aventador Coupe 2012 8.83% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Ford Mustang Convertible 2007 43.87% Ford GT Coupe 2006 31.96% Bentley Continental GT Coupe 2007 5.36% Chrysler Crossfire Convertible 2008 4.0% Chevrolet Corvette Convertible 2012 3.22% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 76.99% Dodge Sprinter Cargo Van 2009 22.99% Ram C/V Cargo Van Minivan 2012 0.02% Honda Accord Sedan 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo C30 Hatchback 2012 21.54% Mitsubishi Lancer Sedan 2012 19.09% BMW M5 Sedan 2010 13.05% Ferrari FF Coupe 2012 9.66% Spyker C8 Coupe 2009 8.76% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 57.67% Acura TSX Sedan 2012 38.54% Acura RL Sedan 2012 1.61% Ford Fiesta Sedan 2012 1.19% Chevrolet Impala Sedan 2007 0.71% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Suzuki SX4 Hatchback 2012 74.68% Ram C/V Cargo Van Minivan 2012 15.94% Chevrolet Malibu Sedan 2007 8.07% Volkswagen Golf Hatchback 2012 0.53% Daewoo Nubira Wagon 2002 0.41% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Volvo 240 Sedan 1993 33.48% BMW 3 Series Wagon 2012 24.87% BMW 3 Series Sedan 2012 3.98% Mercedes-Benz E-Class Sedan 2012 3.43% Volvo C30 Hatchback 2012 2.98% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Hyundai Genesis Sedan 2012 29.38% Chevrolet Malibu Hybrid Sedan 2010 17.85% BMW M5 Sedan 2010 8.43% Bentley Continental Flying Spur Sedan 2007 4.95% Buick Verano Sedan 2012 3.9% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 70.8% Ford F-150 Regular Cab 2007 9.0% Chevrolet Silverado 2500HD Regular Cab 2012 7.96% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.6% Chevrolet Avalanche Crew Cab 2012 1.99% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 78.91% Cadillac Escalade EXT Crew Cab 2007 16.57% Ford Ranger SuperCab 2011 1.22% Chevrolet Avalanche Crew Cab 2012 0.92% Ford F-450 Super Duty Crew Cab 2012 0.77% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.97% Toyota 4Runner SUV 2012 0.01% Cadillac SRX SUV 2012 0.01% Hyundai Veracruz SUV 2012 0.01% Buick Rainier SUV 2007 0.0% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Hyundai Veracruz SUV 2012 62.13% Hyundai Tucson SUV 2012 16.91% Buick Enclave SUV 2012 9.69% Hyundai Santa Fe SUV 2012 4.77% Honda Accord Sedan 2012 1.68% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 BMW 3 Series Sedan 2012 70.26% Dodge Charger SRT-8 2009 8.07% Tesla Model S Sedan 2012 7.41% Ferrari FF Coupe 2012 2.49% BMW M6 Convertible 2010 2.49% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 32.53% Lamborghini Aventador Coupe 2012 22.36% Lamborghini Reventon Coupe 2008 8.15% Bentley Continental Supersports Conv. Convertible 2012 6.25% Mercedes-Benz SL-Class Coupe 2009 6.04% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 92.22% Hyundai Sonata Hybrid Sedan 2012 3.64% Hyundai Tucson SUV 2012 1.72% Honda Odyssey Minivan 2012 1.6% Hyundai Accent Sedan 2012 0.38% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 87.94% Volvo XC90 SUV 2007 6.8% BMW X3 SUV 2012 1.85% GMC Acadia SUV 2012 0.85% Suzuki SX4 Hatchback 2012 0.5% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 76.61% Chevrolet Silverado 2500HD Regular Cab 2012 22.47% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.38% Chevrolet Silverado 1500 Extended Cab 2012 0.38% Dodge Ram Pickup 3500 Crew Cab 2010 0.07% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 74.6% Suzuki SX4 Sedan 2012 15.21% Honda Odyssey Minivan 2007 4.38% Suzuki Aerio Sedan 2007 3.12% Chrysler Town and Country Minivan 2012 2.35% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 99.86% Chrysler Crossfire Convertible 2008 0.04% Chevrolet Camaro Convertible 2012 0.03% Dodge Charger Sedan 2012 0.01% Dodge Caliber Wagon 2007 0.01% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 MINI Cooper Roadster Convertible 2012 22.17% Bugatti Veyron 16.4 Convertible 2009 17.74% Bentley Continental GT Coupe 2012 12.78% BMW 1 Series Convertible 2012 10.56% Suzuki SX4 Hatchback 2012 6.14% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Lincoln Town Car Sedan 2011 73.48% Honda Odyssey Minivan 2012 7.09% Chrysler 300 SRT-8 2010 6.31% BMW 3 Series Wagon 2012 2.4% Volvo 240 Sedan 1993 2.09% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 87.55% Cadillac CTS-V Sedan 2012 1.49% Audi TTS Coupe 2012 1.48% Aston Martin V8 Vantage Convertible 2012 1.37% Hyundai Genesis Sedan 2012 1.02% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Hyundai Sonata Hybrid Sedan 2012 75.26% BMW M5 Sedan 2010 11.44% Bentley Continental GT Coupe 2007 6.32% Mitsubishi Lancer Sedan 2012 1.79% Hyundai Azera Sedan 2012 1.35% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 99.3% Hyundai Sonata Hybrid Sedan 2012 0.29% Chevrolet Camaro Convertible 2012 0.17% BMW 1 Series Convertible 2012 0.07% Ferrari FF Coupe 2012 0.06% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 92.67% GMC Canyon Extended Cab 2012 7.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Ford Ranger SuperCab 2011 0.0% Volkswagen Golf Hatchback 1991 0.0% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 93.78% Hyundai Azera Sedan 2012 3.77% Spyker C8 Convertible 2009 2.03% Bugatti Veyron 16.4 Coupe 2009 0.05% Hyundai Veloster Hatchback 2012 0.05% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 50.92% Mercedes-Benz C-Class Sedan 2012 9.97% Suzuki SX4 Sedan 2012 9.45% BMW M3 Coupe 2012 9.39% Audi 100 Wagon 1994 4.41% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.97% Dodge Caliber Wagon 2012 0.01% Jeep Compass SUV 2012 0.01% Hyundai Tucson SUV 2012 0.01% BMW X3 SUV 2012 0.0% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 91.97% Cadillac CTS-V Sedan 2012 2.56% Ferrari FF Coupe 2012 0.76% Chevrolet Cobalt SS 2010 0.66% Audi TTS Coupe 2012 0.5% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 93.94% Honda Odyssey Minivan 2007 4.24% Dodge Durango SUV 2012 0.53% Hyundai Elantra Sedan 2007 0.23% Scion xD Hatchback 2012 0.17% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Aventador Coupe 2012 37.53% Lamborghini Reventon Coupe 2008 29.36% Bugatti Veyron 16.4 Coupe 2009 22.94% Aston Martin V8 Vantage Coupe 2012 6.05% Spyker C8 Coupe 2009 1.31% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 BMW 6 Series Convertible 2007 53.92% Bugatti Veyron 16.4 Convertible 2009 16.14% Audi RS 4 Convertible 2008 7.92% BMW M6 Convertible 2010 5.93% Chevrolet Corvette Convertible 2012 4.22% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 45.45% Chevrolet Silverado 2500HD Regular Cab 2012 24.5% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 23.06% Chevrolet Silverado 1500 Extended Cab 2012 1.51% Ford F-150 Regular Cab 2012 1.41% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 41.93% Lamborghini Aventador Coupe 2012 18.16% Eagle Talon Hatchback 1998 5.86% Ford GT Coupe 2006 5.51% BMW M6 Convertible 2010 5.47% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 98.71% Mitsubishi Lancer Sedan 2012 0.63% Hyundai Elantra Touring Hatchback 2012 0.3% Hyundai Sonata Hybrid Sedan 2012 0.06% Ferrari FF Coupe 2012 0.04% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 94.93% GMC Terrain SUV 2012 3.71% Rolls-Royce Ghost Sedan 2012 0.56% GMC Acadia SUV 2012 0.29% Chevrolet Sonic Sedan 2012 0.11% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 99.83% Audi 100 Sedan 1994 0.17% Audi 100 Wagon 1994 0.0% Lincoln Town Car Sedan 2011 0.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Dodge Charger Sedan 2012 34.76% Acura Integra Type R 2001 21.97% HUMMER H3T Crew Cab 2010 8.97% Lamborghini Diablo Coupe 2001 6.97% Chevrolet Silverado 1500 Regular Cab 2012 5.62% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Acura RL Sedan 2012 55.83% Toyota Camry Sedan 2012 12.47% Acura TSX Sedan 2012 11.06% Hyundai Accent Sedan 2012 5.42% BMW 1 Series Convertible 2012 3.21% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Dodge Caliber Wagon 2012 41.09% Hyundai Tucson SUV 2012 23.75% Chevrolet Traverse SUV 2012 23.25% Hyundai Sonata Hybrid Sedan 2012 3.07% Nissan Juke Hatchback 2012 3.07% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 BMW M5 Sedan 2010 29.68% Suzuki Kizashi Sedan 2012 24.63% Cadillac CTS-V Sedan 2012 15.62% FIAT 500 Abarth 2012 9.96% Chevrolet Corvette ZR1 2012 5.99% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Ford F-150 Regular Cab 2007 20.83% Jeep Patriot SUV 2012 14.36% GMC Acadia SUV 2012 13.71% Ford Freestar Minivan 2007 9.71% GMC Canyon Extended Cab 2012 5.59% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 78.95% Chevrolet Impala Sedan 2007 6.36% Plymouth Neon Coupe 1999 3.96% Ford Focus Sedan 2007 3.05% Chevrolet Monte Carlo Coupe 2007 2.74% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 46.09% Chevrolet Express Van 2007 23.5% Chevrolet Express Cargo Van 2007 17.9% Chevrolet Silverado 1500 Regular Cab 2012 8.73% Nissan NV Passenger Van 2012 1.52% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 85.67% Audi 100 Wagon 1994 9.68% Volvo 240 Sedan 1993 1.25% Volkswagen Golf Hatchback 1991 0.82% Audi V8 Sedan 1994 0.8% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 64.85% Bentley Continental Flying Spur Sedan 2007 4.69% Nissan Juke Hatchback 2012 3.44% Maybach Landaulet Convertible 2012 3.39% Lincoln Town Car Sedan 2011 3.31% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Plymouth Neon Coupe 1999 34.7% Volkswagen Golf Hatchback 2012 27.74% Daewoo Nubira Wagon 2002 19.61% Ford Focus Sedan 2007 11.85% Honda Odyssey Minivan 2012 1.87% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 94.21% Acura RL Sedan 2012 2.54% Bentley Continental Flying Spur Sedan 2007 0.69% Mercedes-Benz S-Class Sedan 2012 0.51% BMW X3 SUV 2012 0.46% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 58.95% McLaren MP4-12C Coupe 2012 40.74% HUMMER H2 SUT Crew Cab 2009 0.11% Spyker C8 Coupe 2009 0.08% Aston Martin Virage Coupe 2012 0.07% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Jaguar XK XKR 2012 46.39% Aston Martin Virage Convertible 2012 18.38% Eagle Talon Hatchback 1998 15.36% Chevrolet Corvette ZR1 2012 8.79% Aston Martin V8 Vantage Coupe 2012 5.78% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 57.99% Bentley Continental Supersports Conv. Convertible 2012 14.02% Mercedes-Benz 300-Class Convertible 1993 9.89% Maybach Landaulet Convertible 2012 9.58% Nissan NV Passenger Van 2012 1.32% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Jeep Grand Cherokee SUV 2012 69.85% MINI Cooper Roadster Convertible 2012 14.25% BMW Z4 Convertible 2012 10.31% Bentley Arnage Sedan 2009 3.5% Chrysler 300 SRT-8 2010 0.95% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 25.22% Dodge Durango SUV 2012 23.87% Dodge Magnum Wagon 2008 21.78% Dodge Caliber Wagon 2012 10.6% GMC Yukon Hybrid SUV 2012 3.59% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.63% Chevrolet Express Van 2007 0.3% GMC Savana Van 2012 0.07% Audi 100 Sedan 1994 0.0% Volvo 240 Sedan 1993 0.0% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 McLaren MP4-12C Coupe 2012 47.89% Bugatti Veyron 16.4 Coupe 2009 40.38% Lamborghini Diablo Coupe 2001 5.82% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.96% Chevrolet Corvette ZR1 2012 1.36% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 54.16% Ford Fiesta Sedan 2012 41.7% BMW X6 SUV 2012 1.86% Suzuki Kizashi Sedan 2012 0.66% Toyota Camry Sedan 2012 0.34% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Mercedes-Benz E-Class Sedan 2012 16.29% Suzuki Aerio Sedan 2007 11.66% Hyundai Azera Sedan 2012 11.52% Mercedes-Benz C-Class Sedan 2012 11.17% Mercedes-Benz S-Class Sedan 2012 7.26% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Hyundai Tucson SUV 2012 63.38% BMW X6 SUV 2012 23.64% Tesla Model S Sedan 2012 6.59% Chevrolet Traverse SUV 2012 2.41% Chevrolet Sonic Sedan 2012 0.83% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura Integra Type R 2001 36.39% Acura TL Sedan 2012 23.78% Suzuki Kizashi Sedan 2012 9.05% Dodge Challenger SRT8 2011 6.91% Acura ZDX Hatchback 2012 5.04% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 54.72% Jeep Grand Cherokee SUV 2012 28.53% Dodge Caliber Wagon 2007 16.45% Ford Mustang Convertible 2007 0.1% Dodge Journey SUV 2012 0.06% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Infiniti G Coupe IPL 2012 21.6% Audi S4 Sedan 2012 16.63% BMW 6 Series Convertible 2007 9.5% Audi A5 Coupe 2012 7.31% Audi TTS Coupe 2012 5.45% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 56.9% Ferrari California Convertible 2012 34.37% Ford GT Coupe 2006 7.03% Ferrari 458 Italia Convertible 2012 0.53% Lamborghini Aventador Coupe 2012 0.42% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 62.11% Toyota Camry Sedan 2012 6.92% Buick Verano Sedan 2012 5.85% Suzuki SX4 Sedan 2012 4.05% Chevrolet Malibu Sedan 2007 3.14% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 86.86% Lamborghini Diablo Coupe 2001 5.47% Chevrolet Corvette Convertible 2012 3.24% Ford Mustang Convertible 2007 1.91% BMW Z4 Convertible 2012 0.96% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Ford Focus Sedan 2007 28.84% Chevrolet Impala Sedan 2007 24.42% Lincoln Town Car Sedan 2011 14.32% Chrysler Sebring Convertible 2010 8.49% Mercedes-Benz 300-Class Convertible 1993 7.15% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 98.68% GMC Savana Van 2012 1.11% Chevrolet Express Cargo Van 2007 0.21% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Dodge Caravan Minivan 1997 0.0% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Dodge Caliber Wagon 2007 73.28% Dodge Journey SUV 2012 14.21% Toyota 4Runner SUV 2012 2.67% Buick Rainier SUV 2007 1.68% Chevrolet HHR SS 2010 1.52% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 82.18% Mercedes-Benz 300-Class Convertible 1993 7.49% Infiniti G Coupe IPL 2012 4.71% Bentley Continental Supersports Conv. Convertible 2012 1.24% BMW M3 Coupe 2012 0.99% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 43.24% Acura Integra Type R 2001 10.78% Fisker Karma Sedan 2012 5.8% Bentley Continental Flying Spur Sedan 2007 5.25% Aston Martin Virage Convertible 2012 4.57% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Ferrari 458 Italia Convertible 2012 40.15% Aston Martin Virage Coupe 2012 16.89% Spyker C8 Coupe 2009 8.8% Ferrari 458 Italia Coupe 2012 8.0% Spyker C8 Convertible 2009 2.48% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 36.44% Dodge Charger Sedan 2012 31.2% Lamborghini Diablo Coupe 2001 30.47% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.6% BMW Z4 Convertible 2012 0.39% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 89.22% Rolls-Royce Ghost Sedan 2012 4.44% Jeep Patriot SUV 2012 3.04% Bentley Mulsanne Sedan 2011 2.7% Chrysler 300 SRT-8 2010 0.4% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi TT Hatchback 2011 74.76% Audi TT RS Coupe 2012 18.93% Audi S4 Sedan 2012 3.78% Audi A5 Coupe 2012 1.71% Audi S5 Coupe 2012 0.55% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Audi RS 4 Convertible 2008 94.73% Ferrari 458 Italia Convertible 2012 2.42% BMW Z4 Convertible 2012 0.84% Aston Martin Virage Coupe 2012 0.8% Lamborghini Diablo Coupe 2001 0.24% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 25.7% Aston Martin V8 Vantage Coupe 2012 18.77% Ford GT Coupe 2006 14.75% Aston Martin Virage Convertible 2012 8.36% Fisker Karma Sedan 2012 6.33% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Ford Fiesta Sedan 2012 21.11% Toyota Corolla Sedan 2012 12.05% Hyundai Elantra Sedan 2007 11.48% Dodge Charger SRT-8 2009 11.42% Toyota Camry Sedan 2012 10.73% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 93.55% BMW 3 Series Sedan 2012 2.97% Hyundai Accent Sedan 2012 0.65% Ford GT Coupe 2006 0.34% Chevrolet Sonic Sedan 2012 0.31% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 99.25% Chevrolet Express Cargo Van 2007 0.28% Volkswagen Golf Hatchback 1991 0.26% GMC Savana Van 2012 0.13% Chevrolet Express Van 2007 0.03% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Isuzu Ascender SUV 2008 51.78% Dodge Ram Pickup 3500 Quad Cab 2009 17.06% Chevrolet Silverado 1500 Extended Cab 2012 10.32% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.35% Chevrolet Tahoe Hybrid SUV 2012 3.34% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 Ford F-150 Regular Cab 2007 32.16% Chevrolet Silverado 1500 Extended Cab 2012 30.57% GMC Canyon Extended Cab 2012 22.83% HUMMER H3T Crew Cab 2010 8.99% Dodge Ram Pickup 3500 Quad Cab 2009 3.45% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Jeep Patriot SUV 2012 94.93% Jeep Liberty SUV 2012 4.65% Jeep Wrangler SUV 2012 0.38% Jeep Grand Cherokee SUV 2012 0.03% Nissan NV Passenger Van 2012 0.0% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 82.99% BMW M6 Convertible 2010 11.7% Jaguar XK XKR 2012 0.99% BMW M5 Sedan 2010 0.95% Acura RL Sedan 2012 0.75% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Chevrolet Sonic Sedan 2012 19.87% Chevrolet Tahoe Hybrid SUV 2012 8.41% Rolls-Royce Ghost Sedan 2012 8.0% Chrysler 300 SRT-8 2010 6.8% Cadillac SRX SUV 2012 6.77% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 42.05% Mitsubishi Lancer Sedan 2012 20.99% FIAT 500 Convertible 2012 6.35% Acura TL Type-S 2008 5.23% Chevrolet Camaro Convertible 2012 4.68% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Corvette ZR1 2012 72.83% Jaguar XK XKR 2012 12.79% Aston Martin V8 Vantage Coupe 2012 6.25% Porsche Panamera Sedan 2012 2.3% Aston Martin Virage Coupe 2012 1.23% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.95% Jeep Wrangler SUV 2012 0.04% HUMMER H2 SUT Crew Cab 2009 0.01% smart fortwo Convertible 2012 0.0% Jeep Patriot SUV 2012 0.0% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 54.92% Dodge Caliber Wagon 2012 16.69% Chevrolet HHR SS 2010 10.75% Toyota Corolla Sedan 2012 3.79% Dodge Caliber Wagon 2007 2.11% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Jeep Liberty SUV 2012 38.52% Bentley Arnage Sedan 2009 33.05% Jeep Patriot SUV 2012 11.13% Ford Edge SUV 2012 6.06% Jeep Compass SUV 2012 4.65% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 37.74% Toyota Corolla Sedan 2012 14.49% Acura Integra Type R 2001 5.0% Acura TSX Sedan 2012 4.69% Acura ZDX Hatchback 2012 3.94% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Nissan Leaf Hatchback 2012 93.65% Ford Fiesta Sedan 2012 3.41% Daewoo Nubira Wagon 2002 1.09% Acura TL Sedan 2012 0.5% Volkswagen Beetle Hatchback 2012 0.43% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Hyundai Genesis Sedan 2012 25.16% Rolls-Royce Phantom Sedan 2012 18.54% Porsche Panamera Sedan 2012 10.69% Cadillac CTS-V Sedan 2012 9.86% Volvo 240 Sedan 1993 6.4% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 50.44% Audi 100 Sedan 1994 7.05% Mercedes-Benz S-Class Sedan 2012 6.78% smart fortwo Convertible 2012 6.04% Aston Martin V8 Vantage Coupe 2012 3.83% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 98.33% Suzuki Kizashi Sedan 2012 0.74% Toyota Camry Sedan 2012 0.44% Mercedes-Benz E-Class Sedan 2012 0.18% Acura TSX Sedan 2012 0.08% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Porsche Panamera Sedan 2012 49.85% Hyundai Veracruz SUV 2012 18.62% Ford Edge SUV 2012 7.37% Dodge Durango SUV 2012 6.71% GMC Acadia SUV 2012 2.71% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 56.71% Audi V8 Sedan 1994 13.21% Ford Mustang Convertible 2007 11.21% Nissan 240SX Coupe 1998 10.19% Volkswagen Golf Hatchback 1991 3.22% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Bugatti Veyron 16.4 Coupe 2009 36.05% Chevrolet Corvette ZR1 2012 33.04% Aston Martin Virage Coupe 2012 10.0% Spyker C8 Convertible 2009 4.46% Audi S5 Coupe 2012 2.69% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Toyota Corolla Sedan 2012 20.49% Hyundai Sonata Sedan 2012 12.76% Hyundai Tucson SUV 2012 10.11% Plymouth Neon Coupe 1999 9.48% Hyundai Elantra Sedan 2007 9.04% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 18.61% Hyundai Tucson SUV 2012 17.45% Dodge Caliber Wagon 2012 10.94% BMW X3 SUV 2012 9.79% Acura ZDX Hatchback 2012 4.71% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Mitsubishi Lancer Sedan 2012 23.3% Chevrolet Malibu Hybrid Sedan 2010 19.19% Chevrolet Camaro Convertible 2012 13.25% Toyota Camry Sedan 2012 9.62% Chevrolet Monte Carlo Coupe 2007 6.39% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 97.3% Bugatti Veyron 16.4 Coupe 2009 2.31% Nissan Juke Hatchback 2012 0.27% Mitsubishi Lancer Sedan 2012 0.02% Suzuki SX4 Hatchback 2012 0.02% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Convertible 2012 13.55% Aston Martin V8 Vantage Convertible 2012 11.91% Chevrolet Corvette ZR1 2012 9.55% Ferrari 458 Italia Convertible 2012 5.7% Ferrari California Convertible 2012 5.08% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 99.63% Ford Expedition EL SUV 2009 0.34% Ford F-450 Super Duty Crew Cab 2012 0.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Ford F-150 Regular Cab 2012 0.0% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 91.54% Chevrolet Express Van 2007 8.45% Daewoo Nubira Wagon 2002 0.0% Buick Rainier SUV 2007 0.0% Chevrolet Express Cargo Van 2007 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 27.1% Acura TL Type-S 2008 24.13% Land Rover LR2 SUV 2012 20.31% Hyundai Veracruz SUV 2012 7.85% Honda Odyssey Minivan 2012 6.66% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 99.93% BMW 1 Series Convertible 2012 0.02% Acura ZDX Hatchback 2012 0.01% Chevrolet Traverse SUV 2012 0.01% Chevrolet Sonic Sedan 2012 0.0% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Mercedes-Benz SL-Class Coupe 2009 17.75% BMW 1 Series Convertible 2012 14.81% BMW 6 Series Convertible 2007 11.58% FIAT 500 Abarth 2012 10.4% Mercedes-Benz C-Class Sedan 2012 8.52% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 50.54% Buick Enclave SUV 2012 16.15% Jeep Grand Cherokee SUV 2012 9.65% Bentley Continental Flying Spur Sedan 2007 6.43% Nissan Juke Hatchback 2012 2.61% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 22.67% Acura ZDX Hatchback 2012 17.18% Volkswagen Beetle Hatchback 2012 14.96% Suzuki Kizashi Sedan 2012 8.79% Infiniti QX56 SUV 2011 5.0% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 81.48% Audi 100 Sedan 1994 15.16% Audi 100 Wagon 1994 2.56% Volkswagen Golf Hatchback 1991 0.45% Ford Mustang Convertible 2007 0.14% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Scion xD Hatchback 2012 31.85% Chrysler 300 SRT-8 2010 12.57% Toyota 4Runner SUV 2012 9.6% Buick Rainier SUV 2007 8.22% Porsche Panamera Sedan 2012 6.55% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.91% Bentley Continental GT Coupe 2012 0.05% Cadillac CTS-V Sedan 2012 0.04% Rolls-Royce Ghost Sedan 2012 0.01% Hyundai Sonata Hybrid Sedan 2012 0.0% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 67.67% Lamborghini Diablo Coupe 2001 22.58% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.88% Aston Martin V8 Vantage Coupe 2012 2.3% AM General Hummer SUV 2000 1.94% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 32.37% Lincoln Town Car Sedan 2011 29.51% Volvo 240 Sedan 1993 8.57% Chrysler PT Cruiser Convertible 2008 3.49% Audi S4 Sedan 2007 2.83% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 89.3% Jeep Liberty SUV 2012 5.99% Mazda Tribute SUV 2011 1.8% Rolls-Royce Ghost Sedan 2012 1.17% Maybach Landaulet Convertible 2012 0.67% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 98.4% Buick Verano Sedan 2012 0.61% Audi S4 Sedan 2007 0.6% BMW M5 Sedan 2010 0.27% BMW 3 Series Wagon 2012 0.04% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Chrysler Aspen SUV 2009 39.58% Toyota Sequoia SUV 2012 17.51% BMW X5 SUV 2007 15.06% Chevrolet Tahoe Hybrid SUV 2012 5.7% GMC Terrain SUV 2012 2.78% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 59.63% GMC Yukon Hybrid SUV 2012 33.64% Jeep Liberty SUV 2012 2.23% Suzuki SX4 Hatchback 2012 1.19% Buick Rainier SUV 2007 1.05% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 72.65% Dodge Dakota Club Cab 2007 13.68% Dodge Ram Pickup 3500 Crew Cab 2010 8.88% Ford F-150 Regular Cab 2007 1.61% GMC Yukon Hybrid SUV 2012 0.53% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Dodge Caliber Wagon 2007 68.73% Dodge Journey SUV 2012 22.9% Hyundai Elantra Sedan 2007 3.44% Jeep Grand Cherokee SUV 2012 1.37% Dodge Caliber Wagon 2012 1.05% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 98.65% HUMMER H2 SUT Crew Cab 2009 1.33% AM General Hummer SUV 2000 0.01% Jeep Wrangler SUV 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Audi S5 Coupe 2012 30.58% Chevrolet Corvette ZR1 2012 23.16% Infiniti G Coupe IPL 2012 7.74% Spyker C8 Convertible 2009 6.81% Spyker C8 Coupe 2009 6.81% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 87.74% Audi S5 Convertible 2012 3.99% Infiniti G Coupe IPL 2012 2.33% Ford Mustang Convertible 2007 1.15% Mercedes-Benz 300-Class Convertible 1993 0.99% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 71.75% Mercedes-Benz 300-Class Convertible 1993 14.84% Chevrolet Camaro Convertible 2012 5.76% Chrysler Crossfire Convertible 2008 3.54% BMW M6 Convertible 2010 3.1% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 55.36% Chrysler Town and Country Minivan 2012 32.48% Honda Odyssey Minivan 2007 7.66% Chrysler Sebring Convertible 2010 1.42% Ram C/V Cargo Van Minivan 2012 0.9% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 75.16% Aston Martin Virage Coupe 2012 19.04% Aston Martin V8 Vantage Coupe 2012 2.3% McLaren MP4-12C Coupe 2012 1.35% Lamborghini Diablo Coupe 2001 1.22% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 52.28% Aston Martin V8 Vantage Convertible 2012 20.87% Lamborghini Aventador Coupe 2012 8.53% Aston Martin V8 Vantage Coupe 2012 6.24% McLaren MP4-12C Coupe 2012 5.54% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 37.19% Acura TL Sedan 2012 19.71% Bugatti Veyron 16.4 Coupe 2009 12.33% Mitsubishi Lancer Sedan 2012 6.57% Suzuki Kizashi Sedan 2012 4.79% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 81.53% Hyundai Veloster Hatchback 2012 8.02% Ford GT Coupe 2006 2.29% Hyundai Azera Sedan 2012 2.14% Volvo C30 Hatchback 2012 1.02% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 62.53% Porsche Panamera Sedan 2012 16.13% Honda Odyssey Minivan 2012 2.05% Dodge Magnum Wagon 2008 1.52% Bentley Mulsanne Sedan 2011 1.47% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Hyundai Elantra Touring Hatchback 2012 44.75% Volvo XC90 SUV 2007 39.06% Chrysler 300 SRT-8 2010 2.21% Dodge Durango SUV 2007 1.71% Volkswagen Golf Hatchback 1991 1.41% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% Jeep Wrangler SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% smart fortwo Convertible 2012 0.0% HUMMER H3T Crew Cab 2010 0.0% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 69.77% Chevrolet Monte Carlo Coupe 2007 21.87% Toyota Corolla Sedan 2012 4.04% Lincoln Town Car Sedan 2011 1.56% Chevrolet Impala Sedan 2007 0.97% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 83.04% Cadillac CTS-V Sedan 2012 11.12% Bentley Continental GT Coupe 2012 3.65% Buick Regal GS 2012 1.46% Maybach Landaulet Convertible 2012 0.18% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 BMW 3 Series Sedan 2012 33.0% Porsche Panamera Sedan 2012 11.29% BMW 3 Series Wagon 2012 10.72% Hyundai Genesis Sedan 2012 8.95% Jaguar XK XKR 2012 5.41% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 86.05% Mercedes-Benz C-Class Sedan 2012 10.11% Mercedes-Benz S-Class Sedan 2012 2.54% Hyundai Genesis Sedan 2012 1.29% Mercedes-Benz SL-Class Coupe 2009 0.01% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 100.0% Honda Accord Sedan 2012 0.0% Honda Odyssey Minivan 2007 0.0% Hyundai Azera Sedan 2012 0.0% Honda Accord Coupe 2012 0.0% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 86.0% Infiniti QX56 SUV 2011 4.69% Hyundai Veracruz SUV 2012 3.68% Nissan Juke Hatchback 2012 1.83% Toyota 4Runner SUV 2012 1.42% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 43.11% Bugatti Veyron 16.4 Coupe 2009 28.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 12.06% Nissan Leaf Hatchback 2012 7.72% McLaren MP4-12C Coupe 2012 3.73% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 76.58% Chevrolet Impala Sedan 2007 7.75% Toyota Corolla Sedan 2012 7.25% Ford Focus Sedan 2007 2.86% Hyundai Elantra Sedan 2007 2.43% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 AM General Hummer SUV 2000 89.85% Jeep Wrangler SUV 2012 5.2% HUMMER H2 SUT Crew Cab 2009 2.46% Lamborghini Diablo Coupe 2001 1.27% HUMMER H3T Crew Cab 2010 0.79% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.95% Aston Martin V8 Vantage Coupe 2012 0.04% Bentley Continental Supersports Conv. Convertible 2012 0.01% Chevrolet Corvette ZR1 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 94.43% Buick Verano Sedan 2012 3.49% Chrysler 300 SRT-8 2010 1.26% Hyundai Veracruz SUV 2012 0.29% GMC Acadia SUV 2012 0.24% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.53% Ford F-150 Regular Cab 2007 0.19% Chevrolet Silverado 1500 Regular Cab 2012 0.14% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.09% Chevrolet Silverado 2500HD Regular Cab 2012 0.01% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 40.1% Rolls-Royce Ghost Sedan 2012 34.23% Jaguar XK XKR 2012 6.08% Spyker C8 Coupe 2009 3.31% FIAT 500 Abarth 2012 2.47% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 94.39% Ford Edge SUV 2012 1.14% Ford Expedition EL SUV 2009 0.88% Ford F-450 Super Duty Crew Cab 2012 0.68% Toyota 4Runner SUV 2012 0.52% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Dodge Charger Sedan 2012 25.84% Jeep Compass SUV 2012 19.26% Acura ZDX Hatchback 2012 7.3% Dodge Durango SUV 2007 6.62% Dodge Durango SUV 2012 4.09% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Dodge Caliber Wagon 2012 77.12% Ram C/V Cargo Van Minivan 2012 3.23% Cadillac Escalade EXT Crew Cab 2007 2.76% Mazda Tribute SUV 2011 2.05% Buick Enclave SUV 2012 1.93% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 BMW 6 Series Convertible 2007 34.87% Mercedes-Benz E-Class Sedan 2012 11.85% Mercedes-Benz 300-Class Convertible 1993 9.37% BMW 3 Series Wagon 2012 6.3% Acura RL Sedan 2012 4.81% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 88.92% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.74% Chrysler Aspen SUV 2009 0.83% Chrysler Town and Country Minivan 2012 0.54% Chevrolet Silverado 1500 Extended Cab 2012 0.34% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 95.21% Plymouth Neon Coupe 1999 3.26% Eagle Talon Hatchback 1998 1.31% Audi V8 Sedan 1994 0.13% Chrysler Crossfire Convertible 2008 0.02% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 62.3% Jeep Grand Cherokee SUV 2012 25.16% HUMMER H2 SUT Crew Cab 2009 4.55% Ford F-150 Regular Cab 2007 1.99% AM General Hummer SUV 2000 1.62% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Jaguar XK XKR 2012 24.28% Spyker C8 Coupe 2009 16.77% Ford GT Coupe 2006 10.24% Eagle Talon Hatchback 1998 6.79% smart fortwo Convertible 2012 6.68% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz E-Class Sedan 2012 47.9% Hyundai Genesis Sedan 2012 21.52% Dodge Charger Sedan 2012 9.38% Dodge Challenger SRT8 2011 5.83% BMW 6 Series Convertible 2007 3.6% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Daewoo Nubira Wagon 2002 22.33% Audi 100 Wagon 1994 18.27% Ferrari FF Coupe 2012 12.71% Volkswagen Golf Hatchback 1991 12.03% Acura TL Type-S 2008 8.99% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 98.61% Ford Freestar Minivan 2007 1.25% Dodge Caravan Minivan 1997 0.11% Chrysler Town and Country Minivan 2012 0.02% Suzuki Aerio Sedan 2007 0.0% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Acura TL Sedan 2012 33.07% Audi TTS Coupe 2012 12.14% Fisker Karma Sedan 2012 9.36% BMW Z4 Convertible 2012 7.18% Bentley Continental GT Coupe 2007 6.3% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Ford Fiesta Sedan 2012 70.65% Hyundai Elantra Touring Hatchback 2012 29.21% Hyundai Accent Sedan 2012 0.11% Volkswagen Golf Hatchback 2012 0.01% Suzuki SX4 Hatchback 2012 0.0% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 66.92% Toyota Camry Sedan 2012 12.98% Hyundai Accent Sedan 2012 11.87% Toyota Corolla Sedan 2012 3.73% Jaguar XK XKR 2012 1.56% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Mazda Tribute SUV 2011 25.56% Daewoo Nubira Wagon 2002 14.53% Ford Freestar Minivan 2007 13.09% Hyundai Elantra Sedan 2007 9.74% Suzuki SX4 Hatchback 2012 6.76% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Acura Integra Type R 2001 49.49% Geo Metro Convertible 1993 17.28% Lamborghini Diablo Coupe 2001 14.6% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.55% Dodge Charger Sedan 2012 7.24% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 50.29% Chevrolet TrailBlazer SS 2009 21.16% Land Rover Range Rover SUV 2012 15.01% Honda Odyssey Minivan 2012 3.28% Ford Expedition EL SUV 2009 2.0% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 99.97% Lamborghini Diablo Coupe 2001 0.01% Lamborghini Aventador Coupe 2012 0.01% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% Aston Martin Virage Coupe 2012 0.0% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Dodge Challenger SRT8 2011 80.66% Hyundai Veloster Hatchback 2012 6.56% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.86% Plymouth Neon Coupe 1999 1.42% Mazda Tribute SUV 2011 1.34% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 BMW M3 Coupe 2012 17.84% Chevrolet Cobalt SS 2010 10.03% Jaguar XK XKR 2012 8.64% McLaren MP4-12C Coupe 2012 7.95% Ford GT Coupe 2006 7.49% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Buick Verano Sedan 2012 31.71% Ford Fiesta Sedan 2012 15.44% Hyundai Accent Sedan 2012 7.94% Hyundai Veloster Hatchback 2012 6.86% Toyota Corolla Sedan 2012 4.71% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 79.08% BMW 3 Series Wagon 2012 6.71% Cadillac SRX SUV 2012 2.48% Volvo 240 Sedan 1993 2.2% Audi S6 Sedan 2011 1.54% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 99.96% Ferrari California Convertible 2012 0.03% Ferrari 458 Italia Coupe 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% Audi S5 Convertible 2012 0.0% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Hyundai Veloster Hatchback 2012 52.2% Aston Martin Virage Coupe 2012 42.27% McLaren MP4-12C Coupe 2012 2.95% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.11% Dodge Charger Sedan 2012 0.28% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 BMW 3 Series Sedan 2012 59.36% Chrysler PT Cruiser Convertible 2008 14.06% Toyota Corolla Sedan 2012 6.86% Mitsubishi Lancer Sedan 2012 3.09% Daewoo Nubira Wagon 2002 2.47% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 42.23% Bugatti Veyron 16.4 Coupe 2009 18.42% Lamborghini Aventador Coupe 2012 14.99% Aston Martin V8 Vantage Convertible 2012 8.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.96% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 99.6% Ford Focus Sedan 2007 0.18% Hyundai Elantra Touring Hatchback 2012 0.13% Eagle Talon Hatchback 1998 0.05% Nissan 240SX Coupe 1998 0.02% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Infiniti QX56 SUV 2011 21.22% Mercedes-Benz E-Class Sedan 2012 15.95% Hyundai Azera Sedan 2012 10.69% Chevrolet Sonic Sedan 2012 8.31% Acura ZDX Hatchback 2012 6.11% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 95.77% GMC Yukon Hybrid SUV 2012 2.46% Dodge Ram Pickup 3500 Crew Cab 2010 0.94% Toyota Sequoia SUV 2012 0.32% Ford Expedition EL SUV 2009 0.31% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Ferrari FF Coupe 2012 77.5% Aston Martin Virage Convertible 2012 15.0% Tesla Model S Sedan 2012 3.7% Aston Martin V8 Vantage Coupe 2012 0.76% Nissan Leaf Hatchback 2012 0.68% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 64.15% Dodge Ram Pickup 3500 Crew Cab 2010 19.16% Dodge Ram Pickup 3500 Quad Cab 2009 15.06% HUMMER H3T Crew Cab 2010 0.86% HUMMER H2 SUT Crew Cab 2009 0.51% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 93.97% Chrysler Sebring Convertible 2010 2.66% Hyundai Azera Sedan 2012 0.94% Honda Accord Coupe 2012 0.7% Mercedes-Benz E-Class Sedan 2012 0.67% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 BMW X6 SUV 2012 93.12% Suzuki SX4 Hatchback 2012 2.1% Ford Edge SUV 2012 1.21% Buick Verano Sedan 2012 0.6% Chevrolet TrailBlazer SS 2009 0.31% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 100.0% Dodge Durango SUV 2012 0.0% BMW 1 Series Coupe 2012 0.0% Audi A5 Coupe 2012 0.0% Nissan Juke Hatchback 2012 0.0% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 41.23% Honda Odyssey Minivan 2007 32.37% Volkswagen Golf Hatchback 2012 5.04% Chevrolet Monte Carlo Coupe 2007 4.18% Honda Odyssey Minivan 2012 3.98% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 BMW 3 Series Wagon 2012 25.45% Porsche Panamera Sedan 2012 14.16% Hyundai Veracruz SUV 2012 9.51% Audi S4 Sedan 2007 9.11% Audi S4 Sedan 2012 8.93% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 BMW X5 SUV 2007 68.42% BMW 6 Series Convertible 2007 5.82% Audi RS 4 Convertible 2008 3.48% Rolls-Royce Phantom Sedan 2012 2.1% BMW M6 Convertible 2010 1.96% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari 458 Italia Coupe 2012 63.82% Spyker C8 Coupe 2009 9.93% Ferrari FF Coupe 2012 4.81% Ford GT Coupe 2006 4.76% Aston Martin V8 Vantage Convertible 2012 4.6% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Ford Fiesta Sedan 2012 33.79% Acura RL Sedan 2012 19.63% smart fortwo Convertible 2012 11.22% Acura ZDX Hatchback 2012 6.61% Suzuki Aerio Sedan 2007 5.33% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Diablo Coupe 2001 82.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.9% Chevrolet Corvette Convertible 2012 7.86% Acura Integra Type R 2001 0.32% Ford GT Coupe 2006 0.31% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Jeep Wrangler SUV 2012 59.35% HUMMER H2 SUT Crew Cab 2009 18.17% AM General Hummer SUV 2000 13.74% Dodge Ram Pickup 3500 Quad Cab 2009 4.44% HUMMER H3T Crew Cab 2010 3.85% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 BMW 3 Series Sedan 2012 99.41% BMW X6 SUV 2012 0.31% Suzuki Kizashi Sedan 2012 0.21% Volvo C30 Hatchback 2012 0.04% Jeep Grand Cherokee SUV 2012 0.01% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Hyundai Elantra Sedan 2007 41.24% Chevrolet Impala Sedan 2007 32.78% Acura TSX Sedan 2012 6.91% Ford Focus Sedan 2007 3.94% Chevrolet Malibu Sedan 2007 2.6% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 95.08% Mercedes-Benz C-Class Sedan 2012 2.39% Infiniti QX56 SUV 2011 0.82% Chevrolet Traverse SUV 2012 0.17% Maybach Landaulet Convertible 2012 0.15% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 56.93% GMC Yukon Hybrid SUV 2012 32.47% Volvo XC90 SUV 2007 2.67% Dodge Ram Pickup 3500 Quad Cab 2009 2.31% Chevrolet Silverado 1500 Extended Cab 2012 2.08% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 70.62% Chevrolet Corvette ZR1 2012 24.94% Ferrari California Convertible 2012 2.41% Chevrolet Corvette Convertible 2012 0.76% Ferrari 458 Italia Coupe 2012 0.7% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Hyundai Santa Fe SUV 2012 98.54% Ford Edge SUV 2012 1.19% Hyundai Sonata Sedan 2012 0.14% Honda Odyssey Minivan 2012 0.08% Chevrolet Traverse SUV 2012 0.01% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.85% HUMMER H2 SUT Crew Cab 2009 0.08% HUMMER H3T Crew Cab 2010 0.05% Jeep Wrangler SUV 2012 0.02% Jeep Patriot SUV 2012 0.0% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 59.79% Mazda Tribute SUV 2011 17.32% GMC Acadia SUV 2012 4.08% Chevrolet Traverse SUV 2012 3.68% Buick Rainier SUV 2007 1.79% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.9% Isuzu Ascender SUV 2008 0.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Ford F-450 Super Duty Crew Cab 2012 0.01% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 59.89% Dodge Durango SUV 2012 30.69% Mazda Tribute SUV 2011 3.27% Chevrolet Tahoe Hybrid SUV 2012 1.56% Chevrolet Avalanche Crew Cab 2012 1.02% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 91.53% Cadillac SRX SUV 2012 3.21% Buick Regal GS 2012 0.78% Acura RL Sedan 2012 0.76% Bentley Continental GT Coupe 2012 0.54% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Buick Regal GS 2012 97.06% Chrysler 300 SRT-8 2010 2.01% Suzuki Kizashi Sedan 2012 0.5% Hyundai Elantra Sedan 2007 0.18% Mitsubishi Lancer Sedan 2012 0.09% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 80.73% Jeep Wrangler SUV 2012 18.46% GMC Yukon Hybrid SUV 2012 0.39% Jeep Grand Cherokee SUV 2012 0.29% Jeep Compass SUV 2012 0.07% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 58.5% GMC Canyon Extended Cab 2012 23.21% Volvo 240 Sedan 1993 8.6% Volkswagen Golf Hatchback 1991 4.95% Mercedes-Benz 300-Class Convertible 1993 1.67% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 74.68% Bentley Continental GT Coupe 2007 8.28% Maybach Landaulet Convertible 2012 1.87% Jeep Patriot SUV 2012 1.5% Rolls-Royce Ghost Sedan 2012 1.41% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 80.76% Audi RS 4 Convertible 2008 13.18% Acura Integra Type R 2001 3.07% Ford GT Coupe 2006 0.61% Chevrolet Corvette ZR1 2012 0.44% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Chevrolet Tahoe Hybrid SUV 2012 46.31% Nissan NV Passenger Van 2012 24.46% Chevrolet Silverado 1500 Extended Cab 2012 14.14% Chevrolet Avalanche Crew Cab 2012 5.17% Volvo 240 Sedan 1993 2.71% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 97.15% BMW M3 Coupe 2012 1.5% Acura RL Sedan 2012 0.21% BMW Z4 Convertible 2012 0.18% Buick Regal GS 2012 0.15% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Rolls-Royce Phantom Sedan 2012 38.14% Chrysler 300 SRT-8 2010 13.18% Rolls-Royce Ghost Sedan 2012 13.15% BMW M6 Convertible 2010 4.41% BMW M5 Sedan 2010 3.23% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Hyundai Genesis Sedan 2012 71.55% BMW 6 Series Convertible 2007 22.86% Honda Accord Sedan 2012 1.77% Chrysler Crossfire Convertible 2008 1.14% Dodge Journey SUV 2012 0.43% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Ferrari 458 Italia Coupe 2012 59.82% Lamborghini Aventador Coupe 2012 18.42% Ferrari California Convertible 2012 14.81% Ford GT Coupe 2006 3.22% Ferrari 458 Italia Convertible 2012 1.87% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Mustang Convertible 2007 18.44% Dodge Charger Sedan 2012 16.37% Chevrolet Avalanche Crew Cab 2012 15.19% Hyundai Elantra Touring Hatchback 2012 13.03% Volkswagen Golf Hatchback 1991 5.99% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Bentley Arnage Sedan 2009 0.0% Jeep Patriot SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 98.38% Acura TSX Sedan 2012 0.83% Toyota Corolla Sedan 2012 0.77% Hyundai Sonata Sedan 2012 0.01% Mitsubishi Lancer Sedan 2012 0.0% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 54.37% Chevrolet Traverse SUV 2012 33.01% Ford Freestar Minivan 2007 6.79% Dodge Caliber Wagon 2007 1.86% Hyundai Tucson SUV 2012 1.14% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.97% Isuzu Ascender SUV 2008 0.01% Ford F-150 Regular Cab 2007 0.01% Lincoln Town Car Sedan 2011 0.0% Buick Enclave SUV 2012 0.0% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Chevrolet Camaro Convertible 2012 36.34% BMW M6 Convertible 2010 19.16% Chrysler 300 SRT-8 2010 8.98% Tesla Model S Sedan 2012 7.47% Audi TTS Coupe 2012 5.93% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 92.48% Ford Expedition EL SUV 2009 3.67% Ford F-150 Regular Cab 2012 1.35% Isuzu Ascender SUV 2008 0.76% Dodge Dakota Crew Cab 2010 0.63% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Buick Regal GS 2012 43.93% Chevrolet Sonic Sedan 2012 42.32% Hyundai Accent Sedan 2012 5.53% Volvo C30 Hatchback 2012 3.59% Dodge Charger SRT-8 2009 1.98% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Ferrari 458 Italia Convertible 2012 67.73% Ferrari FF Coupe 2012 8.52% Ferrari California Convertible 2012 5.71% Chevrolet Corvette Convertible 2012 2.09% Aston Martin V8 Vantage Convertible 2012 2.04% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 53.26% Dodge Ram Pickup 3500 Quad Cab 2009 29.82% GMC Canyon Extended Cab 2012 4.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.63% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Acura TL Sedan 2012 65.88% Hyundai Genesis Sedan 2012 5.03% Mercedes-Benz SL-Class Coupe 2009 4.8% BMW ActiveHybrid 5 Sedan 2012 3.39% Jaguar XK XKR 2012 2.21% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 59.09% Suzuki Aerio Sedan 2007 9.31% Suzuki SX4 Sedan 2012 5.25% FIAT 500 Convertible 2012 4.89% smart fortwo Convertible 2012 3.96% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 HUMMER H3T Crew Cab 2010 95.85% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.47% HUMMER H2 SUT Crew Cab 2009 0.38% Chevrolet Silverado 1500 Extended Cab 2012 0.06% Chevrolet Avalanche Crew Cab 2012 0.06% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 56.93% Ferrari 458 Italia Convertible 2012 42.95% McLaren MP4-12C Coupe 2012 0.04% Ferrari California Convertible 2012 0.03% Ferrari 458 Italia Coupe 2012 0.02% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Honda Odyssey Minivan 2012 62.74% Honda Odyssey Minivan 2007 30.7% Hyundai Sonata Sedan 2012 2.77% Hyundai Elantra Sedan 2007 1.82% Chevrolet Cobalt SS 2010 0.25% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Ford GT Coupe 2006 78.73% Bugatti Veyron 16.4 Coupe 2009 6.31% Spyker C8 Convertible 2009 5.85% Acura ZDX Hatchback 2012 1.98% Audi S5 Convertible 2012 0.99% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 99.94% Audi R8 Coupe 2012 0.05% Jaguar XK XKR 2012 0.01% Audi TTS Coupe 2012 0.0% Audi RS 4 Convertible 2008 0.0% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Acura RL Sedan 2012 37.14% BMW 1 Series Convertible 2012 26.14% BMW 1 Series Coupe 2012 17.28% Suzuki SX4 Sedan 2012 6.55% Buick Verano Sedan 2012 4.42% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 46.99% Ford Ranger SuperCab 2011 32.52% Chevrolet Silverado 1500 Extended Cab 2012 10.57% Chevrolet Silverado 1500 Regular Cab 2012 4.17% Chevrolet Silverado 2500HD Regular Cab 2012 2.45% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 34.94% Volkswagen Golf Hatchback 2012 16.88% Hyundai Santa Fe SUV 2012 10.92% Chevrolet Traverse SUV 2012 9.86% Infiniti QX56 SUV 2011 7.74% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Nissan Juke Hatchback 2012 13.07% Aston Martin V8 Vantage Convertible 2012 11.31% Chevrolet Cobalt SS 2010 9.89% Chrysler 300 SRT-8 2010 9.31% Acura TL Sedan 2012 8.67% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Dodge Challenger SRT8 2011 43.16% BMW M3 Coupe 2012 19.76% BMW ActiveHybrid 5 Sedan 2012 5.27% Buick Regal GS 2012 4.89% Infiniti G Coupe IPL 2012 2.87% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 89.95% Ferrari 458 Italia Convertible 2012 3.26% Bentley Continental GT Coupe 2007 2.92% Chevrolet Corvette ZR1 2012 1.1% Ford GT Coupe 2006 0.92% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 80.28% Dodge Sprinter Cargo Van 2009 7.29% Volkswagen Beetle Hatchback 2012 2.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.86% Volkswagen Golf Hatchback 2012 1.01% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 59.84% Scion xD Hatchback 2012 18.72% Geo Metro Convertible 1993 9.92% Chevrolet Malibu Sedan 2007 5.47% Suzuki Aerio Sedan 2007 2.54% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Spyker C8 Convertible 2009 16.39% BMW 3 Series Wagon 2012 10.66% smart fortwo Convertible 2012 8.25% Audi RS 4 Convertible 2008 7.54% Chevrolet Sonic Sedan 2012 7.06% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 38.54% Honda Odyssey Minivan 2007 33.12% Hyundai Elantra Sedan 2007 6.55% Chevrolet Monte Carlo Coupe 2007 5.26% Chevrolet Impala Sedan 2007 5.15% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 BMW M6 Convertible 2010 60.15% BMW 3 Series Sedan 2012 11.88% Chrysler Sebring Convertible 2010 8.96% Ford Mustang Convertible 2007 7.76% Geo Metro Convertible 1993 4.77% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 65.95% Land Rover LR2 SUV 2012 18.46% Ford Expedition EL SUV 2009 8.15% Hyundai Genesis Sedan 2012 2.74% Cadillac SRX SUV 2012 2.13% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Rolls-Royce Phantom Sedan 2012 40.95% Chevrolet HHR SS 2010 22.31% Mazda Tribute SUV 2011 11.09% Chrysler 300 SRT-8 2010 8.31% Acura TL Type-S 2008 8.02% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.9% Audi 100 Sedan 1994 0.08% Dodge Ram Pickup 3500 Crew Cab 2010 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% Volvo XC90 SUV 2007 0.01% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Suzuki SX4 Hatchback 2012 24.49% Hyundai Tucson SUV 2012 16.82% Nissan Juke Hatchback 2012 16.25% BMW X6 SUV 2012 14.54% Ferrari FF Coupe 2012 5.72% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 16.96% Suzuki SX4 Sedan 2012 16.76% Buick Verano Sedan 2012 9.83% Honda Odyssey Minivan 2012 5.45% Hyundai Sonata Sedan 2012 5.4% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 90.08% Audi S5 Coupe 2012 1.7% Fisker Karma Sedan 2012 1.15% Mercedes-Benz E-Class Sedan 2012 1.01% Audi S5 Convertible 2012 1.01% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 29.97% Ford F-150 Regular Cab 2012 24.55% Ford Expedition EL SUV 2009 17.41% Isuzu Ascender SUV 2008 12.65% Chevrolet Silverado 1500 Extended Cab 2012 5.86% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 85.14% Dodge Durango SUV 2012 9.58% Mazda Tribute SUV 2011 4.34% GMC Yukon Hybrid SUV 2012 0.53% Cadillac Escalade EXT Crew Cab 2007 0.11% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 92.55% Ford Ranger SuperCab 2011 4.66% Chevrolet Silverado 1500 Regular Cab 2012 1.14% HUMMER H3T Crew Cab 2010 0.7% Ford F-150 Regular Cab 2012 0.33% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Dodge Durango SUV 2012 25.51% Dodge Journey SUV 2012 20.94% Hyundai Genesis Sedan 2012 11.23% Hyundai Santa Fe SUV 2012 7.93% Toyota Camry Sedan 2012 6.36% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 97.43% Jaguar XK XKR 2012 1.16% Porsche Panamera Sedan 2012 0.82% Audi S4 Sedan 2007 0.14% Audi S5 Convertible 2012 0.11% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Porsche Panamera Sedan 2012 51.43% Buick Regal GS 2012 33.47% BMW 3 Series Sedan 2012 4.39% Audi TT Hatchback 2011 2.68% Acura TL Sedan 2012 1.69% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Bentley Arnage Sedan 2009 77.92% Rolls-Royce Phantom Sedan 2012 18.32% Chrysler 300 SRT-8 2010 1.24% FIAT 500 Abarth 2012 0.56% Bentley Continental Flying Spur Sedan 2007 0.45% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Hyundai Sonata Sedan 2012 64.93% Toyota Corolla Sedan 2012 15.29% Hyundai Azera Sedan 2012 10.63% Chrysler Sebring Convertible 2010 2.87% Volkswagen Beetle Hatchback 2012 1.9% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Rolls-Royce Ghost Sedan 2012 52.16% GMC Terrain SUV 2012 11.15% Dodge Magnum Wagon 2008 9.7% Mitsubishi Lancer Sedan 2012 7.56% Hyundai Sonata Hybrid Sedan 2012 4.77% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Honda Odyssey Minivan 2012 21.35% Acura TSX Sedan 2012 15.37% Infiniti QX56 SUV 2011 9.19% Maybach Landaulet Convertible 2012 7.78% Acura ZDX Hatchback 2012 5.94% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Jeep Patriot SUV 2012 73.39% Isuzu Ascender SUV 2008 10.81% Buick Enclave SUV 2012 3.32% Land Rover LR2 SUV 2012 3.26% Mazda Tribute SUV 2011 2.7% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Chevrolet Impala Sedan 2007 63.94% Hyundai Elantra Sedan 2007 15.54% Ford Focus Sedan 2007 8.48% Plymouth Neon Coupe 1999 2.46% Chevrolet Monte Carlo Coupe 2007 2.17% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Audi TT RS Coupe 2012 46.08% Audi R8 Coupe 2012 13.96% Mitsubishi Lancer Sedan 2012 7.86% Audi S6 Sedan 2011 6.18% Audi S4 Sedan 2007 4.64% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 96.54% Dodge Caravan Minivan 1997 2.61% Geo Metro Convertible 1993 0.21% Eagle Talon Hatchback 1998 0.17% Chevrolet Monte Carlo Coupe 2007 0.14% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 67.22% Ferrari 458 Italia Coupe 2012 22.11% Aston Martin Virage Coupe 2012 4.12% Ford GT Coupe 2006 2.41% Ferrari California Convertible 2012 1.97% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 93.14% Suzuki SX4 Hatchback 2012 3.56% Honda Odyssey Minivan 2007 0.89% Acura ZDX Hatchback 2012 0.63% Acura TSX Sedan 2012 0.47% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Spyker C8 Convertible 2009 45.85% Spyker C8 Coupe 2009 41.89% Bugatti Veyron 16.4 Coupe 2009 11.16% McLaren MP4-12C Coupe 2012 0.43% Lamborghini Aventador Coupe 2012 0.25% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Mercedes-Benz C-Class Sedan 2012 90.57% Mercedes-Benz S-Class Sedan 2012 2.28% Acura Integra Type R 2001 1.62% Mercedes-Benz E-Class Sedan 2012 1.23% BMW 1 Series Coupe 2012 1.11% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.99% Mercedes-Benz 300-Class Convertible 1993 0.01% Chrysler PT Cruiser Convertible 2008 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% Ford Focus Sedan 2007 0.0% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Ford Expedition EL SUV 2009 54.35% Chevrolet Avalanche Crew Cab 2012 26.38% Chevrolet Silverado 1500 Classic Extended Cab 2007 8.41% Chevrolet Silverado 1500 Regular Cab 2012 2.41% Buick Rainier SUV 2007 2.34% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.7% Ford Fiesta Sedan 2012 0.08% Volkswagen Beetle Hatchback 2012 0.06% Chevrolet Impala Sedan 2007 0.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.02% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.49% Hyundai Santa Fe SUV 2012 0.18% Audi S6 Sedan 2011 0.11% Dodge Challenger SRT8 2011 0.09% Audi A5 Coupe 2012 0.03% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 99.47% Mercedes-Benz C-Class Sedan 2012 0.28% Audi S4 Sedan 2007 0.12% Audi S5 Coupe 2012 0.02% Audi S4 Sedan 2012 0.02% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Chrysler Town and Country Minivan 2012 28.39% Cadillac Escalade EXT Crew Cab 2007 23.28% Chrysler PT Cruiser Convertible 2008 6.63% Suzuki SX4 Sedan 2012 6.51% Cadillac SRX SUV 2012 5.25% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Veloster Hatchback 2012 54.37% Hyundai Tucson SUV 2012 40.84% Hyundai Sonata Hybrid Sedan 2012 2.75% Mercedes-Benz SL-Class Coupe 2009 0.38% Hyundai Elantra Touring Hatchback 2012 0.35% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 67.67% Audi S5 Coupe 2012 13.49% Mitsubishi Lancer Sedan 2012 5.56% Audi S5 Convertible 2012 4.68% Audi S4 Sedan 2012 4.18% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 60.1% Bugatti Veyron 16.4 Coupe 2009 38.15% Suzuki Kizashi Sedan 2012 0.66% Jaguar XK XKR 2012 0.38% Chrysler 300 SRT-8 2010 0.24% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Ghost Sedan 2012 13.07% Spyker C8 Convertible 2009 7.72% Dodge Charger SRT-8 2009 5.83% Fisker Karma Sedan 2012 5.7% Ferrari California Convertible 2012 5.01% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Chevrolet Impala Sedan 2007 30.82% BMW 3 Series Wagon 2012 12.1% Chevrolet Malibu Sedan 2007 10.73% Toyota Camry Sedan 2012 10.41% Acura TSX Sedan 2012 8.76% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Tesla Model S Sedan 2012 28.96% BMW 6 Series Convertible 2007 28.39% Audi A5 Coupe 2012 16.99% BMW ActiveHybrid 5 Sedan 2012 5.14% Audi S5 Coupe 2012 4.54% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 53.86% Chevrolet Malibu Sedan 2007 31.47% Chevrolet Impala Sedan 2007 7.48% Chrysler Sebring Convertible 2010 3.98% Honda Odyssey Minivan 2012 0.94% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 64.26% Chevrolet Impala Sedan 2007 34.3% Chrysler Sebring Convertible 2010 0.63% Chevrolet Monte Carlo Coupe 2007 0.55% Chevrolet Malibu Hybrid Sedan 2010 0.11% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Aston Martin Virage Convertible 2012 49.47% Rolls-Royce Phantom Sedan 2012 6.35% Mercedes-Benz S-Class Sedan 2012 5.67% Bentley Continental Flying Spur Sedan 2007 4.53% Bentley Continental GT Coupe 2007 2.89% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Maybach Landaulet Convertible 2012 69.37% FIAT 500 Convertible 2012 9.94% Bugatti Veyron 16.4 Convertible 2009 7.81% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.67% smart fortwo Convertible 2012 1.67% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Spyker C8 Coupe 2009 38.48% Hyundai Veloster Hatchback 2012 23.15% Lamborghini Diablo Coupe 2001 10.62% Spyker C8 Convertible 2009 3.31% Aston Martin V8 Vantage Convertible 2012 3.26% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 78.51% Chevrolet Avalanche Crew Cab 2012 20.4% Chevrolet Silverado 1500 Extended Cab 2012 0.64% Isuzu Ascender SUV 2008 0.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.06% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 42.49% Chevrolet Silverado 1500 Regular Cab 2012 18.62% Chevrolet Silverado 1500 Extended Cab 2012 17.55% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 15.81% GMC Canyon Extended Cab 2012 4.9% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.34% McLaren MP4-12C Coupe 2012 0.17% Hyundai Veloster Hatchback 2012 0.16% Lamborghini Aventador Coupe 2012 0.14% Lamborghini Diablo Coupe 2001 0.07% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 31.01% Toyota Camry Sedan 2012 16.89% Mercedes-Benz E-Class Sedan 2012 16.29% Acura RL Sedan 2012 10.4% Honda Accord Sedan 2012 9.57% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 36.17% Nissan Leaf Hatchback 2012 25.06% Ford Focus Sedan 2007 16.04% Hyundai Elantra Touring Hatchback 2012 13.22% Daewoo Nubira Wagon 2002 5.25% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Audi 100 Wagon 1994 36.39% Chevrolet Silverado 1500 Classic Extended Cab 2007 31.28% Volkswagen Golf Hatchback 1991 9.08% Lincoln Town Car Sedan 2011 7.92% Audi V8 Sedan 1994 7.02% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Chevrolet Traverse SUV 2012 31.42% Suzuki SX4 Hatchback 2012 19.28% GMC Acadia SUV 2012 11.32% Nissan Juke Hatchback 2012 10.16% Dodge Caliber Wagon 2007 4.89% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Dodge Durango SUV 2012 90.91% Jeep Grand Cherokee SUV 2012 6.29% Scion xD Hatchback 2012 0.95% Nissan Juke Hatchback 2012 0.43% Dodge Caliber Wagon 2007 0.32% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 AM General Hummer SUV 2000 32.28% Aston Martin V8 Vantage Convertible 2012 17.91% Ford GT Coupe 2006 13.88% Lamborghini Diablo Coupe 2001 7.43% Maybach Landaulet Convertible 2012 4.29% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 74.36% Ferrari FF Coupe 2012 15.11% Ferrari 458 Italia Convertible 2012 7.3% Aston Martin V8 Vantage Coupe 2012 2.02% Aston Martin V8 Vantage Convertible 2012 0.7% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Acura TL Sedan 2012 48.36% Acura RL Sedan 2012 13.06% Cadillac CTS-V Sedan 2012 10.75% Cadillac SRX SUV 2012 6.35% Mercedes-Benz E-Class Sedan 2012 3.14% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 50.83% Chevrolet Corvette Convertible 2012 8.09% Ferrari California Convertible 2012 7.37% Ford GT Coupe 2006 4.93% Eagle Talon Hatchback 1998 3.57% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 95.25% Dodge Dakota Club Cab 2007 2.77% Jeep Grand Cherokee SUV 2012 1.27% Buick Rainier SUV 2007 0.21% Jeep Compass SUV 2012 0.19% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Porsche Panamera Sedan 2012 20.17% Chevrolet Corvette ZR1 2012 15.31% Toyota Camry Sedan 2012 13.94% Mercedes-Benz E-Class Sedan 2012 9.62% Fisker Karma Sedan 2012 7.6% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 83.14% Ferrari FF Coupe 2012 4.72% Dodge Caliber Wagon 2007 2.99% Chevrolet Cobalt SS 2010 2.95% BMW X6 SUV 2012 1.53% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Land Rover Range Rover SUV 2012 42.15% Land Rover LR2 SUV 2012 19.79% Cadillac SRX SUV 2012 4.55% BMW X3 SUV 2012 3.09% Rolls-Royce Ghost Sedan 2012 2.9% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Buick Regal GS 2012 50.6% BMW ActiveHybrid 5 Sedan 2012 16.22% Buick Verano Sedan 2012 16.22% Suzuki SX4 Sedan 2012 6.41% Acura RL Sedan 2012 3.74% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 BMW M3 Coupe 2012 33.64% Ferrari 458 Italia Coupe 2012 24.3% Eagle Talon Hatchback 1998 21.82% Chevrolet Corvette ZR1 2012 8.91% Ferrari 458 Italia Convertible 2012 3.62% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Nissan Juke Hatchback 2012 20.26% Suzuki SX4 Hatchback 2012 17.42% Volvo C30 Hatchback 2012 16.25% Dodge Caliber Wagon 2012 10.7% Buick Regal GS 2012 5.36% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 85.82% Ford F-150 Regular Cab 2012 12.74% Chevrolet Silverado 1500 Regular Cab 2012 0.59% Chevrolet Silverado 1500 Extended Cab 2012 0.3% Ford F-150 Regular Cab 2007 0.28% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 91.09% Suzuki Aerio Sedan 2007 8.09% Acura RL Sedan 2012 0.61% Toyota Corolla Sedan 2012 0.08% Suzuki SX4 Hatchback 2012 0.06% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 92.59% BMW X5 SUV 2007 7.31% BMW X3 SUV 2012 0.07% Jeep Compass SUV 2012 0.01% Dodge Caliber Wagon 2012 0.0% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.34% Mercedes-Benz SL-Class Coupe 2009 0.0% Nissan Juke Hatchback 2012 0.0% Spyker C8 Coupe 2009 0.0% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 42.61% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 19.64% Chevrolet Avalanche Crew Cab 2012 13.58% Toyota 4Runner SUV 2012 7.71% Chevrolet Silverado 1500 Extended Cab 2012 6.52% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Chevrolet Malibu Hybrid Sedan 2010 85.34% Hyundai Genesis Sedan 2012 7.73% Audi S6 Sedan 2011 2.51% Audi S4 Sedan 2007 0.42% Infiniti QX56 SUV 2011 0.37% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 23.06% Acura ZDX Hatchback 2012 19.06% Hyundai Azera Sedan 2012 14.92% Acura RL Sedan 2012 9.63% Toyota Corolla Sedan 2012 9.4% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 97.23% Chevrolet Cobalt SS 2010 0.84% Lamborghini Diablo Coupe 2001 0.56% BMW Z4 Convertible 2012 0.24% Ford Fiesta Sedan 2012 0.15% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Nissan Juke Hatchback 2012 41.88% Cadillac SRX SUV 2012 20.72% Hyundai Azera Sedan 2012 14.68% Acura RL Sedan 2012 5.19% Chevrolet Sonic Sedan 2012 4.68% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Chrysler Town and Country Minivan 2012 30.33% Lincoln Town Car Sedan 2011 10.32% Ford Freestar Minivan 2007 10.14% Chrysler PT Cruiser Convertible 2008 9.76% Chrysler Sebring Convertible 2010 9.11% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Volvo 240 Sedan 1993 61.44% Dodge Dakota Crew Cab 2010 13.63% Dodge Dakota Club Cab 2007 6.24% Chevrolet Tahoe Hybrid SUV 2012 3.49% Dodge Ram Pickup 3500 Quad Cab 2009 3.33% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 96.45% Land Rover LR2 SUV 2012 2.35% Chevrolet Tahoe Hybrid SUV 2012 0.51% Jeep Compass SUV 2012 0.13% Chevrolet Silverado 2500HD Regular Cab 2012 0.11% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 50.51% Ford GT Coupe 2006 26.6% Volkswagen Beetle Hatchback 2012 8.75% Chevrolet Corvette ZR1 2012 4.2% Ferrari California Convertible 2012 2.49% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.98% Ferrari 458 Italia Convertible 2012 0.02% BMW 3 Series Sedan 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% BMW 3 Series Wagon 2012 0.0% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 46.77% Mazda Tribute SUV 2011 15.68% Land Rover LR2 SUV 2012 6.23% Isuzu Ascender SUV 2008 5.68% Suzuki SX4 Hatchback 2012 3.34% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 98.09% Bentley Continental GT Coupe 2012 1.63% Buick Verano Sedan 2012 0.13% Buick Regal GS 2012 0.11% Suzuki Kizashi Sedan 2012 0.02% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 63.81% Bentley Continental Flying Spur Sedan 2007 4.97% Dodge Challenger SRT8 2011 4.7% Porsche Panamera Sedan 2012 4.34% Acura TL Sedan 2012 3.87% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 56.37% Jaguar XK XKR 2012 16.73% Aston Martin V8 Vantage Convertible 2012 13.11% Spyker C8 Coupe 2009 6.79% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.73% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo C30 Hatchback 2012 15.53% Hyundai Veloster Hatchback 2012 13.25% Nissan 240SX Coupe 1998 11.61% Ford GT Coupe 2006 8.35% Mitsubishi Lancer Sedan 2012 8.12% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 62.8% Dodge Caravan Minivan 1997 28.64% Hyundai Elantra Touring Hatchback 2012 7.93% Chevrolet Impala Sedan 2007 0.42% Eagle Talon Hatchback 1998 0.08% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Ford GT Coupe 2006 31.58% Suzuki SX4 Sedan 2012 19.53% Bugatti Veyron 16.4 Coupe 2009 12.3% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.55% Lamborghini Diablo Coupe 2001 5.43% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 56.68% Ford Focus Sedan 2007 24.97% Plymouth Neon Coupe 1999 10.26% Audi V8 Sedan 1994 2.78% Audi 100 Wagon 1994 2.49% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Audi S4 Sedan 2007 62.6% Mercedes-Benz E-Class Sedan 2012 27.32% FIAT 500 Abarth 2012 2.97% Audi RS 4 Convertible 2008 1.63% Audi S5 Coupe 2012 1.17% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Spyker C8 Coupe 2009 32.27% Lamborghini Gallardo LP 570-4 Superleggera 2012 28.06% Aston Martin V8 Vantage Coupe 2012 11.87% Hyundai Veloster Hatchback 2012 10.87% Dodge Charger Sedan 2012 4.26% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Chrysler Sebring Convertible 2010 35.56% Jaguar XK XKR 2012 25.1% Rolls-Royce Phantom Drophead Coupe Convertible 2012 12.34% Mitsubishi Lancer Sedan 2012 7.5% Chevrolet Monte Carlo Coupe 2007 3.92% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Chrysler 300 SRT-8 2010 44.76% Audi S4 Sedan 2007 23.39% Dodge Challenger SRT8 2011 19.27% Dodge Charger SRT-8 2009 9.37% Bentley Continental GT Coupe 2007 1.01% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 97.69% Bentley Continental Supersports Conv. Convertible 2012 1.47% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.78% Rolls-Royce Phantom Sedan 2012 0.05% Bentley Mulsanne Sedan 2011 0.01% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Freestar Minivan 2007 96.75% Jeep Patriot SUV 2012 1.02% Buick Rainier SUV 2007 0.76% Jeep Liberty SUV 2012 0.37% Chevrolet Express Van 2007 0.35% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Dodge Durango SUV 2012 62.82% Dodge Caliber Wagon 2012 24.61% BMW X3 SUV 2012 4.54% Dodge Charger Sedan 2012 1.26% BMW X6 SUV 2012 1.03% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 18.16% Mercedes-Benz SL-Class Coupe 2009 16.26% Bentley Continental Supersports Conv. Convertible 2012 14.12% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.3% MINI Cooper Roadster Convertible 2012 8.54% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 97.17% Suzuki SX4 Sedan 2012 0.98% Cadillac SRX SUV 2012 0.76% Chrysler Town and Country Minivan 2012 0.71% GMC Yukon Hybrid SUV 2012 0.15% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 99.78% Hyundai Genesis Sedan 2012 0.22% Hyundai Sonata Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 47.79% Jeep Wrangler SUV 2012 11.78% Ford F-150 Regular Cab 2012 6.53% Dodge Dakota Club Cab 2007 6.47% Chevrolet Silverado 1500 Extended Cab 2012 5.44% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 99.86% Suzuki SX4 Sedan 2012 0.09% Acura TSX Sedan 2012 0.05% Ford Fiesta Sedan 2012 0.0% Scion xD Hatchback 2012 0.0% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 61.66% BMW X3 SUV 2012 9.56% BMW X5 SUV 2007 7.42% Mercedes-Benz Sprinter Van 2012 3.25% Volvo XC90 SUV 2007 2.18% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 15.33% Dodge Ram Pickup 3500 Quad Cab 2009 14.91% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 14.39% Dodge Ram Pickup 3500 Crew Cab 2010 11.05% GMC Canyon Extended Cab 2012 9.09% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 79.36% Plymouth Neon Coupe 1999 8.33% Geo Metro Convertible 1993 5.05% Ford Freestar Minivan 2007 4.22% Daewoo Nubira Wagon 2002 1.69% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.8% Dodge Sprinter Cargo Van 2009 0.2% Audi V8 Sedan 1994 0.0% Chevrolet Express Cargo Van 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 60.88% Chevrolet Malibu Sedan 2007 20.98% Suzuki SX4 Sedan 2012 3.51% Scion xD Hatchback 2012 3.25% Suzuki SX4 Hatchback 2012 1.37% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Eagle Talon Hatchback 1998 94.9% Plymouth Neon Coupe 1999 2.21% Nissan 240SX Coupe 1998 2.19% Chevrolet Monte Carlo Coupe 2007 0.29% Acura TSX Sedan 2012 0.06% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Chevrolet Malibu Sedan 2007 20.23% Dodge Durango SUV 2007 17.7% Chevrolet Impala Sedan 2007 14.35% Infiniti QX56 SUV 2011 11.99% Aston Martin Virage Convertible 2012 5.72% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 82.34% Chevrolet TrailBlazer SS 2009 9.26% Dodge Dakota Crew Cab 2010 2.8% Hyundai Elantra Sedan 2007 2.65% Chrysler 300 SRT-8 2010 1.3% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 99.87% Acura TSX Sedan 2012 0.04% Suzuki Aerio Sedan 2007 0.04% Chevrolet Malibu Sedan 2007 0.02% Suzuki SX4 Hatchback 2012 0.01% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 36.28% Plymouth Neon Coupe 1999 19.98% Aston Martin V8 Vantage Convertible 2012 13.6% Eagle Talon Hatchback 1998 6.12% Chevrolet Monte Carlo Coupe 2007 5.05% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Plymouth Neon Coupe 1999 41.59% Lamborghini Reventon Coupe 2008 22.78% Scion xD Hatchback 2012 12.81% Eagle Talon Hatchback 1998 6.75% Chevrolet Sonic Sedan 2012 4.18% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Ford F-150 Regular Cab 2007 73.54% GMC Canyon Extended Cab 2012 5.11% Audi 100 Wagon 1994 3.8% Chevrolet Silverado 1500 Regular Cab 2012 3.71% Lincoln Town Car Sedan 2011 2.56% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Maybach Landaulet Convertible 2012 83.95% Bugatti Veyron 16.4 Convertible 2009 10.4% Mazda Tribute SUV 2011 1.44% Rolls-Royce Ghost Sedan 2012 1.18% smart fortwo Convertible 2012 0.64% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Jeep Liberty SUV 2012 88.7% Jeep Compass SUV 2012 3.96% Isuzu Ascender SUV 2008 1.27% Jeep Patriot SUV 2012 1.2% Dodge Ram Pickup 3500 Crew Cab 2010 1.11% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Suzuki SX4 Sedan 2012 13.88% Acura ZDX Hatchback 2012 9.95% Ram C/V Cargo Van Minivan 2012 9.38% Bentley Mulsanne Sedan 2011 8.39% Bentley Continental Flying Spur Sedan 2007 6.9% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Hyundai Tucson SUV 2012 53.01% Acura RL Sedan 2012 32.59% Bugatti Veyron 16.4 Coupe 2009 4.01% Mercedes-Benz SL-Class Coupe 2009 0.99% Jeep Compass SUV 2012 0.94% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Ford GT Coupe 2006 82.52% Hyundai Sonata Sedan 2012 12.38% Ferrari FF Coupe 2012 1.2% Audi 100 Wagon 1994 0.76% Ferrari 458 Italia Convertible 2012 0.52% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Audi V8 Sedan 1994 70.27% Audi R8 Coupe 2012 9.09% Audi 100 Sedan 1994 5.92% Audi RS 4 Convertible 2008 3.99% Audi TTS Coupe 2012 1.73% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 BMW 3 Series Sedan 2012 71.66% Ferrari FF Coupe 2012 23.55% Hyundai Sonata Sedan 2012 2.91% Hyundai Accent Sedan 2012 0.71% BMW 1 Series Coupe 2012 0.6% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 99.05% Dodge Caravan Minivan 1997 0.57% Daewoo Nubira Wagon 2002 0.28% Chrysler Town and Country Minivan 2012 0.02% Eagle Talon Hatchback 1998 0.02% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 83.92% Mercedes-Benz E-Class Sedan 2012 14.49% Mercedes-Benz S-Class Sedan 2012 0.92% Audi S6 Sedan 2011 0.55% Audi S4 Sedan 2007 0.04% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Ferrari California Convertible 2012 39.73% Aston Martin V8 Vantage Convertible 2012 14.58% Chevrolet Camaro Convertible 2012 10.97% Hyundai Elantra Touring Hatchback 2012 8.85% Ferrari 458 Italia Coupe 2012 6.35% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 55.32% Isuzu Ascender SUV 2008 9.1% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.21% Ford Expedition EL SUV 2009 6.28% Dodge Dakota Crew Cab 2010 4.68% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 98.74% Chevrolet Camaro Convertible 2012 1.18% Ford Mustang Convertible 2007 0.02% Dodge Charger Sedan 2012 0.01% BMW M3 Coupe 2012 0.01% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 82.19% Dodge Caliber Wagon 2012 4.46% Audi 100 Sedan 1994 1.36% Dodge Dakota Club Cab 2007 1.26% Chrysler PT Cruiser Convertible 2008 1.18% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 98.58% Chevrolet Tahoe Hybrid SUV 2012 0.96% Isuzu Ascender SUV 2008 0.19% Buick Rainier SUV 2007 0.12% GMC Yukon Hybrid SUV 2012 0.11% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 42.36% Eagle Talon Hatchback 1998 31.47% Audi 100 Wagon 1994 6.07% Audi V8 Sedan 1994 3.68% Lincoln Town Car Sedan 2011 3.54% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.96% Mercedes-Benz 300-Class Convertible 1993 0.04% Eagle Talon Hatchback 1998 0.0% Chevrolet Corvette Convertible 2012 0.0% Ford Mustang Convertible 2007 0.0% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Ford Fiesta Sedan 2012 34.05% Hyundai Veloster Hatchback 2012 21.02% Hyundai Tucson SUV 2012 9.8% Nissan Leaf Hatchback 2012 5.67% Honda Odyssey Minivan 2012 3.92% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.99% Lamborghini Aventador Coupe 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% Volvo C30 Hatchback 2012 0.0% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 66.37% Ford Freestar Minivan 2007 32.22% Dodge Caliber Wagon 2007 0.71% Buick Rainier SUV 2007 0.21% Ford Focus Sedan 2007 0.15% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2012 93.58% Suzuki Kizashi Sedan 2012 1.03% BMW 1 Series Convertible 2012 1.01% Bentley Continental GT Coupe 2007 0.79% Bentley Continental Supersports Conv. Convertible 2012 0.69% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Honda Accord Coupe 2012 33.08% Chrysler Sebring Convertible 2010 24.35% Chrysler Crossfire Convertible 2008 8.42% Chevrolet Malibu Sedan 2007 5.21% BMW 6 Series Convertible 2007 4.86% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.96% Dodge Sprinter Cargo Van 2009 0.02% Suzuki Aerio Sedan 2007 0.01% Mitsubishi Lancer Sedan 2012 0.0% Tesla Model S Sedan 2012 0.0% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 87.85% GMC Yukon Hybrid SUV 2012 7.12% Isuzu Ascender SUV 2008 3.19% Ford E-Series Wagon Van 2012 0.95% Chrysler Aspen SUV 2009 0.58% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Ford Fiesta Sedan 2012 68.81% Suzuki SX4 Hatchback 2012 7.48% Acura RL Sedan 2012 3.26% Hyundai Tucson SUV 2012 2.71% Audi S5 Convertible 2012 2.48% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 96.99% Mercedes-Benz Sprinter Van 2012 3.01% Chevrolet Traverse SUV 2012 0.0% Audi 100 Wagon 1994 0.0% Audi 100 Sedan 1994 0.0% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 MINI Cooper Roadster Convertible 2012 55.23% Chevrolet Sonic Sedan 2012 21.6% Dodge Journey SUV 2012 4.3% Buick Verano Sedan 2012 1.81% Hyundai Azera Sedan 2012 1.74% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 49.27% Hyundai Santa Fe SUV 2012 25.33% Dodge Caliber Wagon 2012 7.89% Dodge Journey SUV 2012 5.44% Honda Accord Sedan 2012 5.05% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 91.49% Toyota Camry Sedan 2012 8.11% Acura TSX Sedan 2012 0.12% Mitsubishi Lancer Sedan 2012 0.1% Hyundai Sonata Sedan 2012 0.1% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Acura ZDX Hatchback 2012 41.43% Infiniti QX56 SUV 2011 29.18% Audi 100 Wagon 1994 15.06% BMW X6 SUV 2012 4.2% Audi S5 Coupe 2012 3.52% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Chevrolet Sonic Sedan 2012 29.13% Daewoo Nubira Wagon 2002 23.61% Ferrari FF Coupe 2012 8.21% Suzuki SX4 Sedan 2012 7.18% Mitsubishi Lancer Sedan 2012 2.71% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Audi S6 Sedan 2011 97.07% Audi A5 Coupe 2012 1.34% Audi RS 4 Convertible 2008 0.51% Audi S5 Coupe 2012 0.5% Audi S4 Sedan 2012 0.43% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 58.35% HUMMER H3T Crew Cab 2010 41.63% AM General Hummer SUV 2000 0.01% Jeep Wrangler SUV 2012 0.01% Rolls-Royce Ghost Sedan 2012 0.0% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 95.38% Ford F-450 Super Duty Crew Cab 2012 1.96% Chevrolet Silverado 2500HD Regular Cab 2012 0.9% GMC Canyon Extended Cab 2012 0.53% Ford F-150 Regular Cab 2012 0.42% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 97.71% Ferrari 458 Italia Convertible 2012 1.65% Audi S5 Convertible 2012 0.35% BMW M3 Coupe 2012 0.22% Volvo C30 Hatchback 2012 0.03% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Toyota Corolla Sedan 2012 55.61% Eagle Talon Hatchback 1998 11.46% Chevrolet Monte Carlo Coupe 2007 7.58% Toyota Camry Sedan 2012 5.74% Hyundai Veloster Hatchback 2012 4.31% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Cadillac SRX SUV 2012 29.86% GMC Yukon Hybrid SUV 2012 8.33% Volkswagen Golf Hatchback 2012 7.0% Audi S5 Coupe 2012 5.89% Audi S5 Convertible 2012 4.98% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 98.67% Mercedes-Benz C-Class Sedan 2012 0.38% Audi RS 4 Convertible 2008 0.19% BMW X3 SUV 2012 0.15% Audi R8 Coupe 2012 0.09% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Hyundai Sonata Sedan 2012 98.12% Hyundai Azera Sedan 2012 0.71% Honda Odyssey Minivan 2012 0.32% Acura ZDX Hatchback 2012 0.28% Hyundai Veracruz SUV 2012 0.12% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 35.61% Audi V8 Sedan 1994 22.84% Audi 100 Wagon 1994 13.34% Audi 100 Sedan 1994 3.38% Hyundai Veracruz SUV 2012 2.76% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 32.91% Chevrolet Corvette ZR1 2012 17.05% Jaguar XK XKR 2012 14.76% Aston Martin V8 Vantage Convertible 2012 5.95% Plymouth Neon Coupe 1999 3.99% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 86.45% BMW 3 Series Sedan 2012 8.47% BMW 3 Series Wagon 2012 2.04% Dodge Magnum Wagon 2008 1.01% Nissan 240SX Coupe 1998 0.62% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Honda Accord Coupe 2012 20.12% Audi S4 Sedan 2012 12.7% Mitsubishi Lancer Sedan 2012 11.57% Suzuki Kizashi Sedan 2012 5.77% Hyundai Elantra Sedan 2007 4.68% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Chrysler Town and Country Minivan 2012 14.66% Bentley Continental Flying Spur Sedan 2007 8.6% Mercedes-Benz S-Class Sedan 2012 7.66% Fisker Karma Sedan 2012 5.77% Aston Martin Virage Convertible 2012 3.17% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 88.51% Bentley Continental GT Coupe 2007 2.66% Chevrolet Corvette ZR1 2012 2.03% Bugatti Veyron 16.4 Coupe 2009 1.85% Aston Martin Virage Convertible 2012 1.29% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Audi S4 Sedan 2012 12.69% Aston Martin V8 Vantage Coupe 2012 10.62% Chevrolet Corvette ZR1 2012 10.22% Audi R8 Coupe 2012 7.71% Nissan Juke Hatchback 2012 7.46% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 23.84% Chevrolet Impala Sedan 2007 14.87% Chrysler Sebring Convertible 2010 12.15% Rolls-Royce Phantom Sedan 2012 4.52% Dodge Journey SUV 2012 4.44% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Volkswagen Golf Hatchback 2012 51.67% Chrysler Crossfire Convertible 2008 24.29% Chevrolet Malibu Hybrid Sedan 2010 8.8% Ford Focus Sedan 2007 6.49% Acura TL Sedan 2012 2.18% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Audi S5 Convertible 2012 36.87% Audi S4 Sedan 2007 10.18% Audi S5 Coupe 2012 6.37% Mercedes-Benz S-Class Sedan 2012 5.85% Audi RS 4 Convertible 2008 4.7% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Hyundai Azera Sedan 2012 41.95% FIAT 500 Abarth 2012 27.52% Honda Odyssey Minivan 2012 11.01% Land Rover Range Rover SUV 2012 6.54% Eagle Talon Hatchback 1998 6.35% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 90.68% Dodge Caliber Wagon 2012 6.04% Land Rover LR2 SUV 2012 2.34% Jeep Wrangler SUV 2012 0.37% Dodge Caliber Wagon 2007 0.15% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 64.69% Ford F-150 Regular Cab 2007 26.8% Isuzu Ascender SUV 2008 1.21% Dodge Durango SUV 2007 1.11% Chevrolet Tahoe Hybrid SUV 2012 0.99% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Audi 100 Wagon 1994 28.95% Jaguar XK XKR 2012 9.6% Chrysler Aspen SUV 2009 9.51% Dodge Dakota Crew Cab 2010 7.3% Dodge Ram Pickup 3500 Quad Cab 2009 4.94% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 75.83% Hyundai Sonata Sedan 2012 11.12% Hyundai Accent Sedan 2012 8.21% Hyundai Genesis Sedan 2012 1.78% Acura TL Sedan 2012 1.06% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Hyundai Tucson SUV 2012 49.3% Dodge Journey SUV 2012 27.25% Jeep Compass SUV 2012 8.08% Dodge Durango SUV 2007 2.94% Rolls-Royce Phantom Sedan 2012 1.22% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 82.3% Dodge Ram Pickup 3500 Crew Cab 2010 12.71% Dodge Dakota Crew Cab 2010 3.75% Dodge Dakota Club Cab 2007 0.78% Dodge Durango SUV 2007 0.2% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo 240 Sedan 1993 47.35% Audi R8 Coupe 2012 12.54% Rolls-Royce Ghost Sedan 2012 7.71% Ford Mustang Convertible 2007 4.55% Aston Martin V8 Vantage Convertible 2012 3.26% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 89.08% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.13% McLaren MP4-12C Coupe 2012 1.31% Lamborghini Aventador Coupe 2012 0.49% Aston Martin V8 Vantage Coupe 2012 0.38% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 71.97% Chevrolet Corvette Ron Fellows Edition Z06 2007 10.27% Aston Martin V8 Vantage Convertible 2012 4.79% Audi R8 Coupe 2012 3.28% Lamborghini Reventon Coupe 2008 2.72% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 60.6% Dodge Caliber Wagon 2007 33.15% Dodge Durango SUV 2007 5.11% Dodge Dakota Crew Cab 2010 0.36% Dodge Journey SUV 2012 0.2% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 22.17% Chevrolet Silverado 2500HD Regular Cab 2012 17.31% Dodge Dakota Club Cab 2007 13.15% Dodge Dakota Crew Cab 2010 8.33% Ford Ranger SuperCab 2011 8.03% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 85.45% Lamborghini Reventon Coupe 2008 8.31% Porsche Panamera Sedan 2012 1.1% Chevrolet Cobalt SS 2010 0.84% Audi RS 4 Convertible 2008 0.57% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.99% Acura Integra Type R 2001 0.01% Ford Mustang Convertible 2007 0.0% Audi RS 4 Convertible 2008 0.0% Chevrolet Corvette Convertible 2012 0.0% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Suzuki Kizashi Sedan 2012 56.98% Buick Verano Sedan 2012 8.29% Infiniti G Coupe IPL 2012 6.25% BMW M5 Sedan 2010 5.0% Acura TL Sedan 2012 4.27% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Chrysler Sebring Convertible 2010 38.66% Hyundai Elantra Sedan 2007 21.58% Maybach Landaulet Convertible 2012 12.09% Buick Regal GS 2012 10.78% Ram C/V Cargo Van Minivan 2012 4.6% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Mitsubishi Lancer Sedan 2012 27.7% Hyundai Elantra Touring Hatchback 2012 23.48% Chevrolet Sonic Sedan 2012 10.66% Spyker C8 Coupe 2009 10.3% Suzuki Aerio Sedan 2007 8.95% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 98.02% Ford E-Series Wagon Van 2012 0.95% Ford F-150 Regular Cab 2012 0.45% Toyota Sequoia SUV 2012 0.29% Ford Ranger SuperCab 2011 0.16% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz C-Class Sedan 2012 44.5% Hyundai Genesis Sedan 2012 19.59% Acura TSX Sedan 2012 5.52% Acura TL Type-S 2008 2.91% Toyota Camry Sedan 2012 2.48% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 96.25% Aston Martin V8 Vantage Coupe 2012 1.1% Aston Martin Virage Convertible 2012 0.66% Lamborghini Reventon Coupe 2008 0.54% Bugatti Veyron 16.4 Convertible 2009 0.46% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 60.82% Chevrolet Express Cargo Van 2007 16.25% Ford F-150 Regular Cab 2012 5.07% Ford Ranger SuperCab 2011 4.66% Nissan NV Passenger Van 2012 2.71% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 74.81% Ford E-Series Wagon Van 2012 20.3% GMC Yukon Hybrid SUV 2012 4.84% Ford F-150 Regular Cab 2012 0.03% Dodge Dakota Club Cab 2007 0.01% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 86.66% Audi S5 Coupe 2012 13.18% Audi S4 Sedan 2007 0.04% Audi S6 Sedan 2011 0.04% BMW 3 Series Wagon 2012 0.03% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 85.93% Toyota 4Runner SUV 2012 4.82% Chrysler Town and Country Minivan 2012 4.79% Toyota Sequoia SUV 2012 2.4% Dodge Durango SUV 2012 0.39% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 54.79% Audi S5 Coupe 2012 7.15% Infiniti G Coupe IPL 2012 7.09% Audi RS 4 Convertible 2008 3.93% Audi S4 Sedan 2012 3.69% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Spyker C8 Coupe 2009 47.59% Bugatti Veyron 16.4 Convertible 2009 11.76% Spyker C8 Convertible 2009 9.03% Chevrolet Corvette ZR1 2012 9.01% Hyundai Azera Sedan 2012 2.32% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 66.22% Bugatti Veyron 16.4 Convertible 2009 31.3% Spyker C8 Convertible 2009 1.84% Ford GT Coupe 2006 0.33% Spyker C8 Coupe 2009 0.27% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 40.32% Lamborghini Aventador Coupe 2012 25.4% Bugatti Veyron 16.4 Convertible 2009 13.15% Audi TT RS Coupe 2012 3.63% BMW M6 Convertible 2010 3.5% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.77% Audi V8 Sedan 1994 0.11% Audi 100 Wagon 1994 0.06% Chevrolet Express Van 2007 0.03% Chevrolet Express Cargo Van 2007 0.01% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.96% Suzuki Kizashi Sedan 2012 0.04% Jaguar XK XKR 2012 0.0% Acura ZDX Hatchback 2012 0.0% Nissan Leaf Hatchback 2012 0.0% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 42.96% Spyker C8 Convertible 2009 17.35% Lamborghini Reventon Coupe 2008 17.23% Spyker C8 Coupe 2009 9.69% Audi TT RS Coupe 2012 3.04% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 BMW 6 Series Convertible 2007 41.02% Hyundai Azera Sedan 2012 18.3% Hyundai Genesis Sedan 2012 7.71% Hyundai Sonata Sedan 2012 5.19% Jaguar XK XKR 2012 4.39% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Daewoo Nubira Wagon 2002 16.39% Mercedes-Benz E-Class Sedan 2012 13.3% Acura ZDX Hatchback 2012 13.07% Volkswagen Beetle Hatchback 2012 9.26% BMW Z4 Convertible 2012 4.32% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Volvo XC90 SUV 2007 28.24% Chevrolet Traverse SUV 2012 14.19% Toyota Sequoia SUV 2012 10.58% Mazda Tribute SUV 2011 9.74% GMC Terrain SUV 2012 9.34% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 52.53% Audi S4 Sedan 2012 19.67% Cadillac CTS-V Sedan 2012 12.82% Audi S5 Coupe 2012 6.47% BMW 3 Series Wagon 2012 3.94% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Porsche Panamera Sedan 2012 92.45% Jaguar XK XKR 2012 4.15% Audi S6 Sedan 2011 0.87% Audi RS 4 Convertible 2008 0.36% Aston Martin Virage Convertible 2012 0.32% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Dodge Durango SUV 2007 37.36% Chevrolet Avalanche Crew Cab 2012 34.32% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.7% Chevrolet Silverado 1500 Extended Cab 2012 3.37% Chrysler Aspen SUV 2009 3.03% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 50.93% Infiniti QX56 SUV 2011 26.48% Land Rover Range Rover SUV 2012 14.94% Toyota 4Runner SUV 2012 1.73% Chevrolet TrailBlazer SS 2009 1.36% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Spyker C8 Convertible 2009 17.01% Lamborghini Gallardo LP 570-4 Superleggera 2012 15.92% Aston Martin V8 Vantage Coupe 2012 15.32% Spyker C8 Coupe 2009 11.31% Ford GT Coupe 2006 8.38% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 82.43% Dodge Durango SUV 2007 10.76% Dodge Caliber Wagon 2007 3.68% Ford Ranger SuperCab 2011 1.49% Dodge Dakota Club Cab 2007 0.44% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 50.89% Lincoln Town Car Sedan 2011 17.14% Chevrolet Malibu Sedan 2007 11.5% Dodge Journey SUV 2012 4.27% Chrysler Sebring Convertible 2010 4.16% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Plymouth Neon Coupe 1999 67.75% Chevrolet Express Van 2007 24.26% Chevrolet Corvette ZR1 2012 1.48% Audi V8 Sedan 1994 1.27% Audi 100 Sedan 1994 1.24% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Tesla Model S Sedan 2012 39.15% Bugatti Veyron 16.4 Convertible 2009 13.13% Lamborghini Aventador Coupe 2012 12.78% Fisker Karma Sedan 2012 7.45% Audi R8 Coupe 2012 4.9% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 84.12% Honda Odyssey Minivan 2012 14.85% Honda Odyssey Minivan 2007 0.66% Hyundai Santa Fe SUV 2012 0.32% Hyundai Veracruz SUV 2012 0.02% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Bentley Mulsanne Sedan 2011 26.76% Dodge Challenger SRT8 2011 25.66% Audi S5 Coupe 2012 17.39% Audi S4 Sedan 2007 6.13% Tesla Model S Sedan 2012 4.78% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.67% Ford Focus Sedan 2007 0.21% Chevrolet Traverse SUV 2012 0.03% Plymouth Neon Coupe 1999 0.03% Dodge Caravan Minivan 1997 0.02% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Acura ZDX Hatchback 2012 47.28% BMW X6 SUV 2012 18.12% Cadillac SRX SUV 2012 13.42% BMW X3 SUV 2012 4.49% Audi S6 Sedan 2011 1.71% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 BMW 1 Series Coupe 2012 34.71% Hyundai Veloster Hatchback 2012 27.76% Scion xD Hatchback 2012 11.77% Toyota Corolla Sedan 2012 10.78% Suzuki SX4 Hatchback 2012 4.41% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Buick Regal GS 2012 59.76% Buick Verano Sedan 2012 8.52% Volkswagen Beetle Hatchback 2012 5.89% Audi TT Hatchback 2011 4.59% Audi TT RS Coupe 2012 3.88% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 AM General Hummer SUV 2000 32.94% Audi R8 Coupe 2012 25.91% Ford Edge SUV 2012 19.39% Dodge Ram Pickup 3500 Quad Cab 2009 4.48% BMW X6 SUV 2012 4.4% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 31.79% Ford F-150 Regular Cab 2007 18.5% Mercedes-Benz 300-Class Convertible 1993 17.05% Audi 100 Wagon 1994 11.27% Volkswagen Golf Hatchback 1991 6.42% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Porsche Panamera Sedan 2012 41.6% Honda Accord Coupe 2012 9.56% Chevrolet Corvette ZR1 2012 6.63% Suzuki SX4 Hatchback 2012 6.36% Ferrari FF Coupe 2012 5.47% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 84.51% Isuzu Ascender SUV 2008 6.1% Chrysler Aspen SUV 2009 5.34% GMC Yukon Hybrid SUV 2012 1.82% Ford F-150 Regular Cab 2007 0.76% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 84.58% Scion xD Hatchback 2012 5.01% Toyota Camry Sedan 2012 3.12% Volkswagen Golf Hatchback 2012 2.29% Hyundai Accent Sedan 2012 2.05% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 83.39% Audi R8 Coupe 2012 6.94% Bugatti Veyron 16.4 Coupe 2009 2.54% Aston Martin V8 Vantage Coupe 2012 1.44% Lamborghini Aventador Coupe 2012 1.43% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 GMC Terrain SUV 2012 22.53% Chevrolet Avalanche Crew Cab 2012 12.7% Dodge Charger Sedan 2012 7.63% Dodge Magnum Wagon 2008 5.34% Isuzu Ascender SUV 2008 4.51% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 100.0% Honda Odyssey Minivan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% Hyundai Veracruz SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Bugatti Veyron 16.4 Convertible 2009 20.61% Porsche Panamera Sedan 2012 12.13% Acura ZDX Hatchback 2012 11.74% Hyundai Azera Sedan 2012 10.79% Buick Regal GS 2012 4.94% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.56% Dodge Sprinter Cargo Van 2009 0.32% Nissan NV Passenger Van 2012 0.06% Buick Rainier SUV 2007 0.02% Volkswagen Golf Hatchback 1991 0.01% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Aston Martin Virage Convertible 2012 19.48% Chrysler Crossfire Convertible 2008 12.17% Fisker Karma Sedan 2012 7.48% Bentley Arnage Sedan 2009 5.74% Hyundai Veracruz SUV 2012 5.07% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Honda Accord Sedan 2012 65.86% Volkswagen Golf Hatchback 1991 10.25% Mercedes-Benz Sprinter Van 2012 7.2% Chrysler Aspen SUV 2009 5.39% Audi 100 Sedan 1994 3.35% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 50.31% GMC Terrain SUV 2012 35.3% GMC Acadia SUV 2012 5.2% Dodge Caliber Wagon 2012 2.04% Jeep Compass SUV 2012 1.82% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Hyundai Sonata Hybrid Sedan 2012 52.0% Chevrolet Sonic Sedan 2012 10.0% Mitsubishi Lancer Sedan 2012 8.21% Hyundai Accent Sedan 2012 6.76% BMW Z4 Convertible 2012 3.35% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Jaguar XK XKR 2012 49.03% BMW 6 Series Convertible 2007 20.03% BMW M6 Convertible 2010 8.48% Spyker C8 Convertible 2009 3.99% Suzuki Kizashi Sedan 2012 3.03% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 BMW ActiveHybrid 5 Sedan 2012 55.93% BMW 3 Series Sedan 2012 14.55% Audi S6 Sedan 2011 6.68% Chevrolet Sonic Sedan 2012 3.37% BMW Z4 Convertible 2012 2.91% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 BMW X3 SUV 2012 26.73% Audi RS 4 Convertible 2008 15.55% HUMMER H2 SUT Crew Cab 2009 8.36% HUMMER H3T Crew Cab 2010 6.36% Nissan Juke Hatchback 2012 4.8% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Audi R8 Coupe 2012 48.61% Audi S5 Convertible 2012 26.11% Audi RS 4 Convertible 2008 6.47% Audi TT Hatchback 2011 4.73% Audi TTS Coupe 2012 3.88% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 69.29% BMW M5 Sedan 2010 10.25% Audi 100 Wagon 1994 2.32% Buick Regal GS 2012 2.27% Buick Verano Sedan 2012 2.04% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Jaguar XK XKR 2012 73.63% Audi S4 Sedan 2007 17.33% Suzuki Kizashi Sedan 2012 2.0% Toyota Camry Sedan 2012 1.35% Porsche Panamera Sedan 2012 0.82% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 80.29% Dodge Caliber Wagon 2007 16.84% BMW X6 SUV 2012 1.08% Ford Freestar Minivan 2007 0.47% Dodge Dakota Crew Cab 2010 0.3% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 22.93% BMW X5 SUV 2007 21.22% Buick Enclave SUV 2012 5.76% Acura ZDX Hatchback 2012 4.52% Volvo XC90 SUV 2007 2.95% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Jaguar XK XKR 2012 15.19% Aston Martin V8 Vantage Coupe 2012 8.18% Eagle Talon Hatchback 1998 7.69% Chevrolet Monte Carlo Coupe 2007 5.92% Chevrolet Cobalt SS 2010 5.39% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 BMW 6 Series Convertible 2007 23.27% Honda Accord Sedan 2012 19.93% Chrysler Crossfire Convertible 2008 10.0% Audi S4 Sedan 2012 7.41% Acura RL Sedan 2012 5.13% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 70.19% Scion xD Hatchback 2012 7.19% Buick Verano Sedan 2012 5.1% Ford Fiesta Sedan 2012 4.88% Toyota Corolla Sedan 2012 3.8% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 35.28% Ford GT Coupe 2006 31.2% AM General Hummer SUV 2000 11.01% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.45% Aston Martin V8 Vantage Coupe 2012 5.45% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 98.76% Acura RL Sedan 2012 0.73% Acura TSX Sedan 2012 0.23% Chevrolet Impala Sedan 2007 0.17% Honda Accord Sedan 2012 0.03% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 97.12% Ford Edge SUV 2012 0.48% Nissan 240SX Coupe 1998 0.42% Honda Odyssey Minivan 2012 0.27% Land Rover Range Rover SUV 2012 0.18% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.82% Cadillac Escalade EXT Crew Cab 2007 0.17% Cadillac SRX SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 BMW 1 Series Coupe 2012 90.31% Audi TT Hatchback 2011 5.26% Toyota Camry Sedan 2012 3.62% Ferrari FF Coupe 2012 0.36% Tesla Model S Sedan 2012 0.1% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Bugatti Veyron 16.4 Coupe 2009 58.25% Spyker C8 Convertible 2009 25.94% Chevrolet Corvette ZR1 2012 8.39% Lamborghini Reventon Coupe 2008 1.92% McLaren MP4-12C Coupe 2012 1.13% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 BMW 1 Series Coupe 2012 51.43% FIAT 500 Abarth 2012 20.17% Bugatti Veyron 16.4 Coupe 2009 17.26% Bentley Continental GT Coupe 2012 2.56% Ferrari FF Coupe 2012 1.58% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 31.13% McLaren MP4-12C Coupe 2012 26.68% Acura Integra Type R 2001 17.58% Hyundai Veloster Hatchback 2012 6.21% Lamborghini Diablo Coupe 2001 4.98% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Audi 100 Wagon 1994 25.64% Mercedes-Benz 300-Class Convertible 1993 16.51% Isuzu Ascender SUV 2008 12.38% Audi V8 Sedan 1994 11.87% Chevrolet Silverado 1500 Extended Cab 2012 10.61% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.5% Dodge Ram Pickup 3500 Quad Cab 2009 0.48% Ford Expedition EL SUV 2009 0.01% Cadillac Escalade EXT Crew Cab 2007 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 36.13% Chevrolet Malibu Sedan 2007 35.73% Chevrolet Impala Sedan 2007 16.69% Ford Focus Sedan 2007 6.72% Chevrolet Monte Carlo Coupe 2007 1.58% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Mazda Tribute SUV 2011 58.63% Chrysler Aspen SUV 2009 8.21% Chevrolet Tahoe Hybrid SUV 2012 4.89% Chevrolet TrailBlazer SS 2009 4.52% Toyota 4Runner SUV 2012 2.52% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Santa Fe SUV 2012 20.42% Buick Enclave SUV 2012 20.2% Chrysler Aspen SUV 2009 15.83% Volkswagen Golf Hatchback 1991 10.62% Audi V8 Sedan 1994 7.72% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Mercedes-Benz 300-Class Convertible 1993 30.93% Fisker Karma Sedan 2012 23.89% Rolls-Royce Phantom Drophead Coupe Convertible 2012 12.93% Porsche Panamera Sedan 2012 8.49% Chrysler 300 SRT-8 2010 5.64% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-2/0.925/small.png b/cars/lr-investigations/exponential/1e-2/0.925/small.png new file mode 100644 index 0000000000000000000000000000000000000000..d087068061bf71161da0595a75e4a6f54bf60af0 GIT binary patch literal 99210 zcmce;1yq&o)&(j^x3n}!NDGQIh_rNfmx45#ZloI|r4iY5cT0yL-Q8W%bzj1BzVFok zo&Wy#?lByW&EBxz{k+dwYpyxxdi~P5FR~xge)o|Ap7VM6xO3hkXvvtz)xy> zLbrhbAgpDD-#*IkC0GZZKpF8#@I87|6pDDM0}VWfw-8aWe)I^X`Su?~yE$0@(W9FT zQ2{=Ad(EwBSm&tWGuSP>!G@0wq`S{oCVQ0rjb zdzf@cQ1JcxcOkSV_YY8*QhG2CCE5MMnAQA>>fsd`-xuIF0(Xxg%`<<$6ID-4jgPW^ zE#sPd2LlD;{^jv2ve@j2b{9;JL@-!>_m2sFNCf^B-3$f}F_l-i)ypa*KLWQU50*iza&0FFxR-g4s%%x`PNJ8I#e%fmhX>E(|?|KqgFlb|>TH@Or zVzc|ky^uxyW|KaB!nFfYD=%Qdeto4ogXu!Fv*Ae8D^K!p=?Vy%;*X-u%moIvF+hot zmt46m0xcYn2xNvZ3r2YYn)TabwyuPRuX#hWVl8cfuW=)>Z=YHa;FwCC)eL{B&?&<@~E(m~H)Qq{ULWFz_4e-HZ+L zO>Kixyc(ln)H#ZIZ$(7l78Vw4kmEjo`4U)K`byn?-Wv`9VW3Q6r+SmY`R3}RdMU}- zZN_PrTjM}`8{J+)uw)t4_(O}@{#X$mgqKYsx8OtZh2Tc)OPQ z+bV2wO`YGp5htDR_l`{8;a)Rpj&G-F9as-n{^t^WK3Avdw&4A4;*Q~ZZp%7iU3fo!u}0{;%tr=3OBAbjg5OuOiaK>rc6&3@?=l){HHIp-SbK1jUvk^%0Wg3IWrUFrIz~jt3VzxG78EFi@v8#!BsgFH*ehYDI&+r3w!f5YUUOfn+e3Rv$C^g^#bjcDmZ?5#f{_ie#rEbw>MLY_LFtYLOpH5^&ufaLEtIG z(;(4F<`nJ3jt&tROga)mr7GK}(l4Z75C+PTo-6wT+fGC)1_F9hMAoQ^w-WI=0g~MA zxJO28U{m=lgr=sKsjyg4Gd09w3cIMX^^J2&)}f|fjUCg-uRV89ZN}jH*aX*o>)}uD zrh~5G6H#9IoZckSsJ+20xjO9{l;q3z5Q1bIm@ru2$*?1-;@+U1$g=Q|qj3GCCHdzJ z42tZ09dw;pB&L%;f2Nppyiz%7aJzBUAd_2y|EykPg&e68A;&kNxKpQ(e2ky_%tfQK zSzshA0l~^G>;j6A3yDU$B0MtEYiLLwh$-fmFT=ybQ^oY-k-8!xBV}Y{QcXHO1G#Ou zoP~v@+DAO{_{WbQ!xYRJ<>iWHrmpp0>YBk~tIJdE6Kd3hQ5TkaLCi*t%$2_&SXq;P-QDo-#m zznXMHi8d;#s%9Ubqr$=cEYnB7KpqJf2-B$r7KqW<38tiV~bVBd?kl`2#5 z1RJ}}-Ba+ZTw{m_=&Kw)7FMgfC$#nw(G^ii?}Y{3D2z`% z5edNNLPkcuU24!x@h)#11v}P#rn`H|YL~*Ka2D93o9~Dyi+z^l!!Eq0sMh9yRjm$A zNFez7?b`;h_;GRmK|x5s;_FLCCnN*~1R!Yef5XJY1efP!W%aY@$CsL$ndLKtQvtr64l6-Y_?Mn=H>Y;$c+ZAyXsU7!%W5bpDa zzz{VO%|qRi$+TyAM@edoGj8oT|J_@;P}>8@qreK2S4UnsbcL}7}LhZm5NLZTr?DFRtO zFd$nt>h`yg47(VQ~G8RyX^k@1%1oWY!v@|KIL$^mOb+B<_ z+G5lzqcEOXS)CaU?Gf263r9D-MK1B-)hws*zZA}l7uS(01FK;sO8Gj>VpcRFlU;Q& zxlOKKpsxkA4zV40Kz#3@S|z7=Wv)VD9UK;-ynKS6-n|`G@qyw6C3aFX%249c(h>;^ zivn;%dwRt6_4U`#<0!p~mzMP9<>lA#m@`sR-jtb2NCfAT4t{m9wzdZOi)ZEKDVTmq zPA)L%z=Zb{oy5k%TE}Cir=>+)Utg~lpajw{DJQ2|OvkHZe3W1!EO}*re?mAKOfqxs z7uL$T3>f!YC0vx75}Xpvtj)8KaPX`&UW$(~Mmg?9>>1`mY|#DG^F%PFevGa6!($50 z>Jkv#pwr|zZSO~#}CyI=SusBkRT_6M_>hv3vS%q9|4=Q2#871p|!=u^n5L5DRh>uSTZgy^|BJ$xVql`1PAVF z-`CG=(|C*vlv{cSd>IxN7g2lO@BJb(@&12Rc>o}iec@H(4ylsq`)dFpoUO(H1^Oa7 zyvX89faNwiD?8?v12$!w6))Tal*`{B<@4r?wHz1E6}K;<770uC`+}jUyT1*;QxTNF z{5X(_IFt>VOcuLU=Q=l|(lsFe0m-FFZZaK;!u}8)@W(!qL;=vG?z?9zgm7q;y@s&? z4jggmdMCb>M`A^KalRx_gjU7Zq9bwP4#lqrig+S=A`=i=TU%+U;BM2|*V~{5AP?o{ zwZW_#vsko5R~hZ-i~E zZB2P3?0j$EzC|M-$OXXUx~Ax)kB<-8^XDSB`_etHv{Zikh!_nm#iWz`w$}LLxi~uy z9f_@orU^Zj`{e7JV{6;GpTIK4pKkVyjxGoSI#49jo$&FdNakxAng9rB#13uoyBsGV zBm^Wli1o^@GN7J0FiVG(1BHxZi&a_pyc)nYR4-mgPZLi;V|H+CWjy42namepZ4t$5 z&8Z?Tj8(2s?-x?D+{m3FNm` zo7No7lHUboT2l7jk$sfk=yiawZeXP)DY_A7@1$l4hAB%Ou@?g2h+kUUFq_jla^+r@ zg8j;u-6t>h+|Jdlub(7q+tDXW-xuE_eROHughzDKGvMe-7PC;{fv^=1@6Uo>OgLgi z{JpF@g@iv^=LD(GKkl}syrnw(bnVX5&LGgigxW;ac=)SE>a|;D=tBWprEb}%P}DVC z7!>jAS73s-=Xer(QH+AOM70p^WTd;E4v+hl28MLLKO@#*_nDdDt6vOAG&bHb*Ckjg zlie1>4Gn?@rrg=41;t&eElqJRbPlN0>(uJDU?FqoqeIDrUnhMQQ{2QlTQ13S5t$85IJ{A7tYQ4h%D6B{xG7@# zvJI|RLxH(Z(9qlg6mfcfzJbR~0Yqk5UInY0hKiu4F0;t95`Fr-d%O)G%WTuX=dta{ ziUQyZdw6(kT$7x@m*_s>L{yF$<>G&PiwGQu4hY&yKJJzz8@C&**|!KL6?@uttI^VJV1 zMKOGT>eu?*tuyKKTKBnZ3#aqxAn!!s(M}m~)o%MXeyszx% z*qU#b>1ev^O@H>5#Yl(8=_pIWj?~?C=(9ZSD>LYcWinP%u-o$Rj;b!jHIa3%%wpT} zLP(IB;G+_dXrIX8F~OEb>vu`p_l0+Bd}+kv1uNM_dxfcDk|zf zagy8 zMESRGLZe|H2I{M-s({NG8X3th|IxQPGVo0lO?;vp+;O<0HpIdVekUb0O2JG`Pmer4 zK7PC9$IV4lmY@p^C;2xBNg2NAB*&p)1jZ?ka#8DD8VYxn4BsNo2mDBSdu{F+2J2rGC zexi+uCj~82lNj4Id>sS6ldHPRS9Y&W`Nze8j9*karaZ;5VVTl|6I_0y&K-aL{Gj^` z)9WsgfG6XbQ902)s`zW=&3u~RF%%fQv(8In9s5w|TGf%t6HgBCK60uC5T39#q}%CA z&y&Qm&x=h|6k5&=yKu05q^$hrFf}uReYH1mIf=4i43_yoQE`JACVlLI~WG zfaK(4wG@xx%H089IdjssDU_wr83`+5zK)M?EDvHZu{27SeEmi_NBpL#! zdA|8rTo#!a)pO^`RW`TfGvy*nXsdVD7JaNI+9Ne37Trb_bCLAPYj#JjIyySI0O7$9 zE_!u-B*$1R1T-!agJZW)GmIKQk=dqob!VGhH0YR-e0Xsg<*DTwcm4W*&L151V`7{l zW{Ebmm$g?mSs95@oR(T$E|m*)w0pGl zwrNn!c*pcQz@sLdKiZ%P;nz5O{`uO5_S(G1^ju@d0NZFIeI_S27pcZ}djMFvz9jAq z!4YtNzL2FQ)5ZoDm3~HVR&K8R15HsH5rJNI+ug!f-*>m!1qDi`v?rRyFt_b_{SLqh z0Zm8_z~tQHzvh(hq*h&pa6#yxsx%ZVri(}#A`CsEfo{Het5}w)v<${8OKsoB}>U!(QVMkT+R#g?RxTFNQCcTFFpW4#%Xy;c! zI_GfqFAZ2J1tbPCq7i5j_AiDTgfBUj7W%Y$+eQ7U<_GK;T0fX4`82p5DQ)FUXU>Y= zud9v43$O)TB8wGTNJybMpOTE6Z+cz+8{!6@>@9I-5zdcOiNUA`GkhBSgReI2tY=%N zwPx~u-xF9^F9hGP76dbHy-Eg%UDwsXj8(?wU_G;z(%28Npeed2H&W8`r$al0sIMkw zmgYGrIR$fRH8X$z{>Y*6XYsc~49t4kzq|DHY8bV{s-ElpP<p`gyX+)Hke>0&Vo z-z_tMYsZx?^s_-2V=4@>F-}iQ1D?7gwS6@Os2xdtee%Z$*kL@r>NQBuW2qiP-!TTw zcMbO~0|fc_@$glX#v6~^!5kwR%zC2GCi7Ok_F^cc0gwhMAyf{Tn%?dOu0hm~igbMZ zK`Cg61ZWgzSl7p@sDa{s@$P{kRd6{Kd2K!#_-KUa!9^~8-?PnqbxTkbq0Y~=uc6x) zv#Eu%nC}8t#@uk(e#c@YhxlsAR24qRp9NjIaG+0cnH~}$jXLG$XK+#Wn(k0k@F)eR z)~BY?nsxXOj+PudQdPuSHwP^5XvKF3rr<@kk8&06z^-P5=@M47XT zNp7b&d&i9Z6g8tGW`n}MNx5zjAVdA6++dsBQ1V0a%(s@7MP2Z34MioPKLG6v43J$r ztKG(LtFnK}eO11FNv-N6f(4*(Lw9N*ShvUdcrMf%v|DGmwmZnJqgq-) z*`Blt;~2>)TED`lDeDN*I6FE!`HYRTfutN47uV6z0i<~e7=zBvPB0h@poVvRd>+P= z@$q=TrHWpxtgHZRnyi{y&cth8UM(PPqeDfO)6>ul0Qf>t5qn^85J(8`#Kib*ZOb33 zL>((QEE#rO+tP3W<*4+HCMWtRX+Ay-wvX^pzc78Gg^k?8+qgW7&eLZW2Za_2n)dt8 zxtxZ{f5GoX36lYA_yX=xCRP2_z})g6W(yl7nE>(c3@*NlOw&S6()s$QWc=V~8J(XA zoJF{Y`yHF~G5F*Z6zo6VTig_PEl292P4~Iju5B);N`1ATS>qF_wG3c@2nMBs3vlzr z7(Qxwn(y_&Jw1PMdG1n>?L%DhL@L(_vf$>F!&Y%e9`um;xBGK2SjsU2$5hULwswR+ zQ=t4gqNxavc+f01n&>X)Be;e)*8$OFZ`BJW&dcy_)P96_Op1710ZY@pE&jTCNnrPI zep$`Ky@?jhajH(aXq)uXt>!u-a^I>GUx zQ_Ferm+S!st~{eZDO-Nhk%Hv_oj(# zfLgn~kz*h$I3PgxO%o(DZsc7X5775O5C4WE-)bA^@{^D-?{XT-T~P&?&JlPdB>59q zI|%4vNyeQFiPqXSme{q@3;wC|j9WoTLIv9~^i-6|-f>4joUNGHxvtK_#vX2m$NbZ~ zl{LB!Ryd{L+IKNi7x{afM@9}3>^!r_>^w6EOs?aj&ZECsrkR?{Cdj%E)jdH5FQsKw z(!}VI*Iz;jMhSwm%qK#Yqv0#&D)iiP9tsjSYz(im*P$q?9II5N3UO71%j~fs1oXcA zxtzV-VNErVQ2u&e`HlAfV_pG@Z)^ZDQ7EjG3z`f>JJ?Fk)a`VO8`fG#9on3+FQ#?! z%gl)I%JN@hO%F+^;+}1P`SK-4O#dAqRT@uTUOEH$L*x#?gGB&%ucD$N@(%#MXx8FA za2>duZfj?!`p0T;jIQVxudkjuAxQe31DF0vPVtxwfuw zZJ@sz>hfY!oq*7>mZ3~uQNssuwi=Ci#RY8Q9$dpp=4A95509NY?hc5rS$t1{oFAHh z!lozinIk_3cIJu$=2|l~d+O~oX=NF|n)+HqoCX)BUM&Zng&Uku+Svy5%sR{XjP7R- zjDXYp4l3c#FD2e))On3TZq5+G46l+KouQDNQF)rw zX|I@=!)YbR$ilcMt9r;a0xW|*-FaQ7AN_0`{Uo8>ha55TtC-dHInYe2GV?`DMa9Gb zfd5|g3jZl>c|sS@^*?%*oTw_$KFz%S$emE3LbQPHxC}n{Q>x z^e8uugMaS6|1h{CaelwVevU6;utdg{wjCHpJ1heceib(M#bPhx zjzD_X(wHkdJG+R41RxGlzkCVkD^GzgwKIi|o&6~m78U@dsh>ZWHdT|8O9w>C53^HK z>VQURY+|A?xw5)?E4|-??wuGj+0lQmKN0SA6-YJ~Ncp!m7QXoeeLnxa$Sd4Nj=)Fo zsHqlFXv2;ri&M~Vo2e4}>)ch#!_zNEPt~Ycc%R;gUt}`e7gHJYmJ~=rk`nZt zIt%jptIek!s`jsw-o^So@!ER%q?h<5u0N|}Q&l>wPKUcT)Y=D*Sea>Tk7_btp zyKPq}F(@_i!+|lb_VC0@t|cfwQwIA$1=M zSlu|WsM=887-&%BJMX?*+9@mOKRVfOZ=CaZ|Ni3}bsGXRT&Krr{Hi-dr2cpm{fS$% zVutJy^p<@eOhk%bh*p!2<`)zc+{RF+hJyn;&|S}M|6r@c`d#O|0CtV!Z)Fa89SBSG z!l>xz?7Hj6kdQX?aV-D>2E@G3(9mkvPA;IF{?^#pl1g9z75&3#GBYL>avAI+a%PbA z0!P`AewaC$CffzH0F)run&pUv#$l21!nNrjxZ85ucQmaqO*+vU`~OC570T5}+u02n zjVPE4o z6sBgct4hp$99CCd3baTihTdv-uT}NBbbFHVLIpAwLoFo=FTd&c{=5R}Y*2@agC$GuTM zk@8>%tolV-OG!D9QCjm$O;nq9Yr%xFh+ z1gx!*#UUQ2ZLX`4wRb^#vxx}Nj=U)DGKlKHXY9IHC(N&i9^kT{kQ%RhIe{*Ow08>C zinKQ%)opqNt4DT<=VR8>qc@IG72I57DiEdI>O~3f)mYF7KnyErHw|un`(ie*YZL8> z1Bic?U0h>0oPJrcF~zu*c4gaicMLigDm{+vV+_6REPN;00wMSk=^BxxcMPS_h}dg* zR>zx4^-49ol@Wwwve#BH&b8A8pi0JNp4_p@w=u6K6;!kwULBiXV>QY+PS#} z@Q4!r$;Yw9y}h}~-Y7&!^?#&;wG|gL-wR>GXZz~6O7Qr#h00Fh@7_Wu`y+c+v;aA2 zQ+RH_h6ZB`5#H01xilFzGiflxILpK}KE`05-W$FSBp+W%Cpa$`NujIy#g8oI-2=zA z$#e93#9_HJ&9w*`&;Dyqfy1MwKM)70Cf^p$TjFAQLH_Yk+A*FKa;uL|`U?9rZ^_o; z)}?L#!b}4?frV}BqJwKrC(s){z=P06fJGD(YQ~Lx6U&W)6C9}M0l_%wre#LQXX&sx z$&-lVMC8h8#dBC~U;w!sU+BlxyqyotZJh4W?D(xi)K z+v#$2i{mK>t9hs>M(OeQkasO*mUT{q=y&B6WR9*}NcEw#A!4O6LceU zekPO;y0}MUHRPvoo55dK!K-!%i^^9;FvUOrVfI zCMtkN-11;z7QVGWynbZ?i<{H&KqmBl{TEIrb}aHgkqJO;j*heaNG>EeX+$eOJhJG` zXgyrS>1NMOIP5stks9t2_Ts}=1Uk0diE4!1kFLTo;Pn6Khf4B_7-G34?vr-=hS>jG zCymO+$ji`S;YM1M@|4_S#hCcZ!@=aDYaFMRk#pjbGxXKb_r(e&iU?o+P6iN^sA8Rtpyxp$AF!xRcxf9k+>6JK)|`G0){D#A zD=3KPMZT~Ueww6uRl)#))9R?#k|G@xP;S(k$H0!t1M(WSRB*u}y4>OGxo{+6aJ(Sn zirf#%rn(m>`O}SHutpg8rs~csvAi8N-BkczTljPSx|Q*Y%M`DbkP?G0A~iAfGoAr> z7uD9HbN1G{92oh5Ta7$>Q6CV4dB&7%s-)_opt57u%mK3G4ZAGPmgf~bZPtbO)k)71*&VyN`%V>8<4xD z`V##xD5Vq)%oz(FmtZ-2mS^)$hi9M-m0K>h>0F-f-y%?+o561q{33qbRnOxv2nhkd z?(8hUXi#TjQ4F8`Viz)c611`M~w#A}0<) z5#Ns203#%zV?jbfqG4e{YiVf#ts@jPbXNJ%u^|FUj)=54%m@8wx~k822B2<$WGKs< za_Ypp7wlawCN3)VHMO-Cew^_npP-xA_&DLwuF%Qu zxJH@U1B2DyG{S%DpQ?3X2s?d+K2h_Ei4sCII9S9ge)z@v-bCe~GyA2Zw;F@w)YP3H zguE_rKr?`a;FpZp?8owC+B@M-;w5fd+n5(ZFi2;tVp%DcYY$36ajS~3=$kh3%;ma- zlLyy7=z<(h=(5b2#l^B^fO*sl5P;sjdpA^nqaV%Hb8o52sjt`k`K)Qx^3g3uxr=!P9xy4arkIiaHgigJ(a2N-qSvND^l*qxY_&_k$ zr4aIt)kCG#Z@^7iUGna=Vrk6{cJsC-EUtnb_Z#g{Npi@=VmcE4k{|1f`H7f@(m&CV zx|$R@`v2Oh*ZSdUt@uCPP?z<1ylJlWWZu5FA-q1 ze19aE$ZGIj4pK-d6FKy!Fnw@9IV_fdE#K4ckDHlZ=#yMKFC;U)w#v;eFabC3D%}v( zWXBt_-#0GdM~?DoZ76Zf>8-N9p9L*rdGE38T1p&?16(h`xYcH+9<0xT-C#(6Mzj!d z|7XGzU#<9W0cZASbDdA6bl;?KE0aP%!_y71T4mqEl>VlHKu?6?>905os8CP7>1r|mPdlyuMPcJlJb`C@W=>V zI;_#NBIb%YngR{g^@IfPmI&A8mp3}%Ew~!ir&i=@3rT|`Vfs1| zHlq0&x8Vy|6(ec@^EXg*8z*Z{B=b2x|DW|(w@zgi#OHn_yu?VsNHXonpDf zTk$fZ+UH^G)k900TJ>!pVh!IPPOmrPn`8d7$`O+DKdKzfns^|m^z<)gwGp}fi8Ax) zzhrKkx!Z#D+jBq(;Dza=O#R^A*E=)dP}K$7$a}~!a%<+lce|>WQGtK5HXgnzzV^5} z>Yo=I5#ksTj&O*OORcO_UWOtqA4vQfsaxTo%61u#^6sTSWW5Mq|6EeQ z7<+4|;IPM)PceH&MFpFc1yD`;Ha4+5#k-G4tFY7)K|?C%;EY4PzENS{g1;1M|F!iI z`PP_?hTotcmEJc@abN0~{rR9bp2X98 zJh$LA*z#dw)ovA}wOC!^e1ff=JS{z`9N0pPG0b$&Q^d8VKpw$uk3+mAV4Y)A=iE@8 z;#s%Vcznsa+5k2M|Lt!APU?-u4YcW zrlbTM3e-(aP1&ZfCty(kXRjZ<-_lFdmVtf_CmYy zk%n=v!&&qBWw{pu&kRqc*$}82sy5;ZVFMp!magz`lK7*vw6wWf?|;WI?LwI)wN5`QauM8^YQVZSv!{8H};PSmKf zqmIdO+vuzD_8&rEH!ueSU|>N#;E`^>-K;N#%)~DEU9G2U!k|ITt|I{Iv0iw@{ zJ5*@W?GJA<{TvmgGn%haJtSK~NaDJmklQ~#wYW+)Hp-J{XELtnTy%v9a;_ZzYhD!N zk00glzK^1dOWhy8&&iJI#XK%ZQb8f=zKjF(8+h`!R#oYg)~HlTw7MpI5ZUrMjhS z8C!uKC~)i(z5AXiQ`ZGhO7~UBDiwirrOnb+S;b^L0Knw|GoVK_ZDrz!se6{vRR}6=%6ix zFc2Pt5->==`Y=Eqgvavk-r;-~=5UCJ&9@jXE8}A32cIq9p$73xH%;TVx#32H6Z8eb zuW+Zc)S=|nnx*Lby;5=jg! zC+j|Bxi_uW3vGTWa4t)l@)n~Ymsm)ZK#Z!R)8OQ9 z7Ma8Ic6EWNr$Uoa1`T5d8aip>DxB$xqxFmv@jBR50+$frQ&yzR7gBeL2Qp^<(af=N zYhF@O$(krnP2~fiGzA5PF<|7)DJqh=cd!7~{y#e4rfVv$)Y9eJb!Ojv|UlBq^OV}$BN^+^n2eVs#Nm6O-bW- z{w&n_$l}RUMvxxAdC~xxH+8R74Yq1?kMe{F7 z?EN8GI{eEOAPPe<@Sk`FwhQX@!b^0M5?!tdy9_ZE)1|3sr}iK7&uc+4&LW&bnet2j zLO2z6&X>%)E>ga_M@YVrS+S#I;DhB?btBqE+dVxko2EwFzgbX_tMB%E1{g+T1omHw zw=+ac02CHa;!=s3IKFu4v-wP0ZlA|FV!Dbg1qwSUVV@jeh<1(e(axA^ox7#gX00(= zgYj8W7TZGsSDVD~S@LUBJiz@7Y%KKu(4%!5I1RD-LVlBu;{^ zWJFbVl+ir#kDPvxkaJaIzT9f`($^e1tav909 zQAuy0COtdHE|zO9!XQbAoh260o{Bx$RgqepZ=`>;^Y7cXl>*w|ZJW4L)W2!lj)C5j z{?2N>#G{i{CWbaj=dK-@>>Cy9r@X3c^>;e8y5NfxvCku|3j?|mtQoBaenLBWce_o( z$dt9^=LpWwygTPlq%wHDI}0S*plKN!{l%oVjwWU9sF-kmQgq@()G0SA^aMz_yVkwP zZ`iL zo_#ZW)?fV;dHsk-Sk3aBx%&(D_x5Jyy0RJJKT zMvmXNv`=<&73-eJ4j}l5prKyytOEFmUHcUw7U`>{~anG(-Ux}xfSx}g8=tX z2NiE>(@5MVm>&Ac^GRn~fI)ksH!ga*J@$nudwzGU;Rt5y!huJ~J27i^UDFPQM&Hm7 z7zE=7YQxjd6jW4zgXk@A#n8~u*`_AO#=thF{0Bi;vp(z?EsP|#)Ko^My(044ap$eG z%&{6UqI~%9p`*7Kut(={U-_&LX67_{W{yg*PJf+Umn2neC_{hA_@)1|7#}_+=M&{5 zUoH*X*GwZv({>X@7!4{?&?{Il((J z{tULMeX{MRKdY1u*OqN%52)Ur(bTcp=1Jx*a`@jb~0N7H^uFTFe2&uG#4-crWUJM=dK%zeZ-AY&FVGc32m7 z^}QIgEyd*AS-*lOtiz*-lr}F1NaByP?JSde`yFBAE#^`iHeW^1?K(K{9_}AB;p5bMJb5exwz6CJ$N5HyQ4~<(A134C zU^);YFv!Wtp@8fMfc3DQs8Yb@{M^&i6AUEYrWu*9VFwb=yI4@iWCDH#bd zk`dGC;KYk;CWoK;>daf{bbe~?x0SDVm~~_^H2LNUR@pS8O7j2fj&m@_=>v7(!i$@0 zmRMFnrBdByALPp2`U_PTnUm;>63Dp8X>&JuSy1inEr=BtZm9<;!D%&+#^%MC(s21y!SQ}yydgE)s;mX*I=1N??v%vDm!~+=-4hDC_T!CzU%88q z0WZDWLswC!Qh-eJH8TCGCeMD2A{!Xmt zFabzdfU_9Qh}OKYrKQQ@u9t8gZ^S?4YI0}RHZDtW2bF5x|`=-#w=^4P@ zk1KsfVUMGaxOK57TAw&1MUcN<2qYG>=v~yBpRsdogqCvkJ~O{b>2sK8mE;tzeAa}} zjt;lqbiPu8)k42$-W2P{v{6}IkEc}Y1l@LNgv8*y`Ic_FP=1)0=AR6BYp!Rn9IO9* z`%-`Cv#js=ALT#13uIrIms&Cf%uWYrwH8O@30!pQ(2#AY>%N`BVh6$(1D`H6F7{_X z=XG3XAc2mKsgilhlRZ!2g~5v>>TIu7iK|d)PVFz|iUx_j8bV#l1th$#49m+t(h{BS zKyXFvf2O(TsE)7!)Kg%64CcG_9_H4p($%^gb}H}JWZ9Fr=57aFP|y`WZlR@C19g^I z3$y;P5S^^Xhjvnv{D6Fj%5TaK$b=`(D~Hc#v~qvjpk{%5?kD<2Ru3Ir*Cq~yRw?NP zR3=L3P)2n9S(N~>!%8*OLh}*5wY3P5_sD_yWo;%k(?drk)gA{xnV{c;HizH&xps}V zcPH!XKK9{Hmm;>{&zd(g)_mzxgxg2#7v4GA-%Jlh$^U1XTx4_BZKLvG9w#ZXP!6KBfbcmzQ_AoQcUfUPl!e&o!R(cnk~7!I*B16~(^L@dWBvB&Ec6uuM8I<#2D2 z1}2h$8C)b>k~7p?%X7cyfR!b#-HB(lrylA%561jznhV=m({SbX4&TU)`Y0k@{a?w26=SXKifpHJnNb~MJcdkd(H z8~3`FOkX?T8c`$)A`Z+%r(8G?Wvcx6{fYhBf#vB*8P!@z9xZi2n~BLZm5np63G8d^ zZMpXLV_s}?jRWkR&>CXakh&*S!pXTCtr(k0jVIo-o4@~TTM8ryA27X)m6^masH_5> zmi>-gOZ%;W{aEg*D-#X3@j5Nys+e6Ho<^!iF~|)_Zn1l?T-GZuVWYWUy?Q-&%xK2D zR`X_SyhOOJ18;bE7&sR|NJAqLP}6B>X%zsqY^=ha;_x@~O}>2(O8=Sp-T^>qUUv4o zY2qawK3LRSeEfTKxH{RxMNJC_e`(cqJGvr z!Z|2Nx0md0+BNO=;Dt1ly_2IhpgYqZ-X7dL09;4DZd?i!jy7~I&kM4f6WsCy2dbTK zEguEBA`seW0;;}kgHS_hA-8=Y(u>RTS^S3$C znWU9=LW9Z;z$s>(EQv=kh?C%29DX1k@ZAqe zV{kyL;f!`>=2tmG9I44O!p&!$T%B3c>gu^xo?&+t;ich5`$ zj+j48l_?#(2xkF!?5TeaAjfa@e6FX!&B14Qmhgg)z-8s8u*Q8gyB%qo;Zh>x90+l)z#|R z%=sBTXa{ILpWHOqUv5t}%;r0b_0WK@1Mzw~e$IEi@*8k$=+}u#W~n?#`N<2 z>xt{bucg@rdudt?uE2m5930#md3j7{7ea?u{~dw84Y-w6|Hz;F(Y<2k5Z{I)Jysmi z)sv~>FzW{U$@ro8k7TSsIzw8B&*}lOCo>=9dWV4en}Fj$!dn+YKE&sR6<1w}k?2o~ z+C?W6L-i#d5uC%623d7S7K!<2q&?u95g;d52Lm3Rt%)+R7{}18cD7}OwKvi_fNG`e z+Hcjv?aFY=@%21qg1wyp?PWhFKtg#M}Q z;*Y@`_h*I`qXYF4wyCo@zEAOeXh6K9b5#*kCvViP(PXrGb$fZ54z~HCYFCec9p=G- zQ4B~T0L<4!6SQuS=O|-62FtGF9E>ukZQaO<%upwJWTeN{! zKG;TgdC*Gk=yBY;In1P7vAXV|REd{Z^*^SEjWxY@E4IETc9%#iOn#2duTOpA=3>HK zZ}yC2KNI8nt0BE#PlP!6Dpk(n0~+0k?fF|^p#ki?z&JNV_1|S7X68_B0VOZ?@)jt5KyK*$)s0aRVa+zoj(L9gmiRBk71C0 zX3Q*u_vRiuV9^+FgvIT$ryq2I8rIUI6~C4z?TH=G+_~tWxGt}n!REQb|A0aN&FFWa z*8M(nc6OHk!#I}L&Oy=&mCE!E_LULfxen9xmJ6bg{v)N?_lM2(k1nbl0 zPrM|J?KAxos^wU;Zkk#5{H~w4p0vjriKQlF(YL4+&n@iv&OMK$K6U|U;rWelrA_ob zU`hgx{y0^I7PlPv(wX6xJG{b2%HeF!wU8Uw$O4}gOP)YN!c zof;O)ps3GZff#>d&m*2p!pYCM`;)b@LoAh2xoBIv4%H(G7@d`FU5uym zvo$Jrb1n*PyHyn^5C7!=b{ErI!>G@n!9c0ZZEF(({dodg?`}GDMO5n_hOmPoiQPD70@*W$q*Jp){-XE|7jCI`&dmZsa$jz@=IFU5~*7~pJlX)SDreiWbIQ3l$ z?fIm>?fJN&`}`9X^-REg3u|bDN{stSd7UqQqgl1;W4EnV>*=V>DDe98xCbC}n$9bHp(1y3CygebA zE&R$(-~4#@_8{SVHs&=c;^RUqq;PO@HPplgaK+Jq#A?TNaQ( zD~NL%3U6zx|7#SySDX}3KjeIcH=dDzx*5ul-d-C0z|QUZ5Z`vTwq@zJPW)*R#(M*A zuKl|e@I}?S%7LIhI9^%58zfI_ZpYDb_PE%o>08_!H%cDfwJAfl_RVcWYA<$7luI=z zZfln6L!?<-3iJXzv4#srNr%tC@6kW*j$4u>e-CK^`RQq=PTr52-=;XZSrT3X&Ywij z!vul>h9>7JT;NQf3}_($!)Go*=2&~&k56YqYF`i5hz1FsFfCLS0rg`%6Q2gvZ_!<% zTcIQ9Kb(A#u-X&>|38Tx0A&mVPXl<6elB)fOY2ZZo7r{s;Y7M;Vi@Tfd=K=!IxSv> z#`@MX$mdDu=VtPvmdjwU)Fm?V53S3hiB*d?j(Rn}lJ)2fk$3vDw-z@Pz}Ph|);6a6b2?$K?Rc|-+Y%qD`i}mcVE=UpRpo?IjZ_`D z3OE)?Kv1yhPs8p`TP@XQQun82e4Qov2W9{KXfsn&Kj|0f;<#-0r{D_o-PuOK$qeC* z9*e0ZH8JEgrUiUO7)Rkenn|#BhaOaI$2)Xx+?6q};ovJ6VRkg8JvyZ6bdA>eaSlFD zvAkP8Cu1i4DK)!P>wZ##u-BdcZM*Fn^g|!&^!1f;SC0=^+9@-uydFYLY_ef{vIXpa zI!W!u56oa!fAjzN(&2~isJ79vq{d+N5$EV)n*yt@@q+x(`F8d!S!U@6Tj*OYTc%){ zbY8cF3xTO9)*tj^Hu6>vp}_HCI048>^pN#q;7BH?7ZD7T{ah;P6Nc!@i)LR$Dptvh zgc7zx+rH(!;dqn8A!4BeoJCpf1J)b4DaOI!J}YBjv0Kb4inZhGCdAKo-RE>Zvi9e2 z1xE7JUl9M{=gNO52SPqQ#?3DY=&vV*h0K+7$q1p_LRBeKcxp*JXE0 zxj;2M##uJW7gsi+#8W^y$wZ+v!Gz#}V0*o%e8l0>v2MTht9@?KAep`>&lx}eYE5-3 zZzkveVePG>qI}o=e-#8l8WfOjX$9#Plm;m&hmaEK7@DC}K%^CaNp}U5m zYZ&-Fqo2>&XYYN^_v}A@uElb>mJ3+VbI*O>*LA($ulFr{e1IWQe?F1~n46!*$#ja` z`XA30PrDe(zedi=sZ*W5N9a1n#zntJ=;0FHCpqK^Y`(Mg-lu?s<)w~JCYp}+NG)zL z`-YR3bzQu&w2Vr<6?WWf9<01mJSYwKuLvXB7eo@4=dHi>(RX@jmO7n?g284e1w19sP6XV(!ORo9iY@>J&3#m3&>M7FAHTFv!) ze_(x1bgn-N{{^}T`7KrbdzR#ap@Hm7Jos-mh`y^>9WKB?+KI686G(bighpp%Q{xAB zO_s^8Y6Ggcb%*aLs>wRFTX%!!g}&4jP2L%(#lQ=9_3QUERGeaOc~=%GNky1?l3u^? z-m;5aYW9NNvQdl*umnE1pRey<`e5MNQkE%=_IDisb_Xm9bRLtt7h7Ajki}yFpy2KlU5!md^!>(V43BTLgy{17AB$^pO^Lda~Kz6|!<{0{ixnKH5RC##CrZ1vbS}$}oO807R0*9-92xz%lh&E-kCxrS+EY z{>HuK#}+wrZ-?KfMGAd*CIDa9bJ19jldjUzpSUoX55-_xn#(<10<=~eiE(Iad}M~? zUsZ|ghN85ofaOM$Oi$(m)x?*WGof`1%A&=!-$8^^sBhj;8~E;i#Q|H_wP~iq8YrihA*jq7Dgc7h!d~>$Dn>vly9v~>ko;o+u&;weFExG5 zh4SYgy>gnl_tkgC_7n9Z5_G{=Nb6Z4c^A0HFQb_k#*J5;yH{KG$+4~kMtz<-Y4F*M z{}809j>6g!-Q4~+2IDBkC&%fR!`h|K0fOCj$EzY`ReNf0rr-UxgPlUs-Il=IyV~nh zDd^#d4et2HpXTbZAb_VlzR?d;y4nkyst&Cy-FW| z!Vk=NJKlBT0EK?AC*9T`{ETRMVvNwVaf)*P#wT>6z#J8u&;KLt^#wM=a*i4!J?{ai4 zoZ`__x{A-nsgY$bliy#PU(0`)pF0w~Iv6v4gxK~(3-NU(M*c&yru+UrVFmsF0SgV{ zPl#T4!1WNgA^N@{0zR}7?+!^q@KY4V-(*g8^pDH)9L@1r2w1#@b&#AbY=h&6k&`!i_q2`IkKNM03a9I?$&L6-ijX4rdfHruLDZ5QCVTc zjr||Z=HaY(2q|jb)Wg?hnWUweD|BoqVp$|Xh3=DEI$-X2ySmzQkbrmd6t*Xw$ztOB zDnB@iwzBTG(EaP@DeB^6q9(AZLtHvdt| z@7#(RmHcj1in{}DJX3fJ@6R9{=P`~#%#9ZPys@2kXA|(l`zrfyKks2yg!y3H=Xn+K z+i1n7NFt#0U2Li`-XI1uoC$$apz($k{!;Z5Q%6nFMwlxHI}dE4yUdio>{h^0ydAAH zn~3Zy8ghdA7x6XZ|No#?Yh)Y0RRZWtV8HV4$lO8zUWccq7YZ0A(X(2&oBzdA9>kqO zG1R2hn@yW+=i75lXGg$fMQ;b!m=TfFWJektXbxc}y?mP71&ck_IQ>rvt**fkSqBzh z(0?cG24@0QFAPGLJA<=jp*|xF(7SLU19~jr8O@lD;^CA-j`G#%=!vDXy=8E2SLa@| z-XrkMLg8Ip%yX|@A6+5G?MJ_BpcBPrk}vOu*!`a35@jE7Osdw)Z>3?`ugAs61&0%> z0b9rb&OiLZk#~53_qa#+Zu65%$*3qvn6L zM=U!dh-Od$UO0bD+GUpf_i$lSS~9n}`e zOe}qcbZlsn(mBxeio0d;fTjLla_KHohJTSu&t}dKQYjk$Q(Ic=v4gjG%m-m^zpuFY z)!Cej7^nY`#pKq=?NSRByNF5umbm-~XAYf}Mz>Q%*I5M27B?E?0WoNUnVhezgwfTa z1$c($KixK*zH$8D+s56FLPBgKP*U^)4tmq*+zaqsSU0;anJuZr_2#r0b8_ILcf5ga zQ`dQK)_N?AV!LwhrR`j&mzQeCPsh~?kV#lXLZpJ9;N0rGi$pGswRBGh3Kdjrl21AQ!)Z zGyZADZNbr=2fY08bF#Snu`zo9F;sNOBOW*jr!i&(x~^abxfL1G&m>UEhF^5%|4&ur zKM-mxDNp{T4L4L|ECs{}WE26NIAhRTHQGez8-CV0yTz|cb?GmjqgCezaXZu@f z`__I-q92DU32-jr4I{Rw0fM*JSEwb2!a}-$^YVuEhhwS_VUg8(@&0}pSF&^hT^wC4 zLGuzh%Dbq=L#dnu0_5A1TxxuTJ%s$)=-R=jbd?lE0CZR83OxKuypAys=ocHOuI)^*?ncAT&_{Bd|sW)2%5x{nIXsskjatKtj7NloapiAkhj zBk0(WY-fAsV9d7y`9eoGQ<;Vhege>~O1`-U6^fL1+jN%{*izZHnt(=T0E9_?q7kdkw?@#L&j+YXsTmJOP5)+pF^E24ooU3aJ%t5f8_$A8Kj0NhSzOx6 zKHk+!4Uj-ez;TB{I9cgJv3cq8dL)7`pGvT8QiE z&W<&t1`c|<7J;pHf1_NUn6x{$TTX5i)pyFoN=w*4>}8Z%?vq z7rE)=B~t;nd$6bRfR+qZuuG&Qxu4jo1Au~XIGr^@qn6OKt%_vX7zbm40}hq2gscH* zBto=}l8%#+5r?jGIl{qxoNG7=D9(B_mlp zaUPK#9{N3Q&P4%5c?mE;0mGef-suA(&4+*Z?eWrj89-daD#jwoowC2s?cFRySX~A# zUD0LVJTP9jyms8*3)AtR;;7AY&%0@6?#PUVWf+v7GGf_9|@q8k2C2+}UT};c;gOX!q8uQlsy$H}U z5SRJ1Fq(T}t_3NWc19A2F^r(S&w*s(4ZHgo%EIaod}0jdD3{2;Pd~+K6FA1Xe2zJ~yPi%6jvTE7F_8xpqILUmn? ze#y>DWkkF$ht+E#bm-U?QSShjQgBaXJ@wrz!SJ9J1H*bd0k@a%wjopb$~!N*b_M~8 ziDG=BxW{ymu+)hUsML6wkLi0=DMjlAL90b8uk5^k77L@_D8lc2lJPZ(!hPTh)x6>*tQv z0~NRi|BZJlmGJ>4Z#8~$sD~t`LyAPP9~r&6{*LP`j9hM$Liadw%y3$Iy&PVaP5D1< zAn)OQRS1Q|-Aq5Ee+ALKcDaxmlRl3vNXzkSed{N+iufvNE(&>wx>@Ptrd;M9=0leT zi1pj$K4~0}%qJH%3>2=|e8l@Gw>$R=G?I+x!Al1bIeCcyi*0;CnE9HCK`-Oh>4zk8&hjds1ydUXAUtah0F*$6#XF5yYs9BQB7sr=6jkgLoqxoyunUS%k!`T~}&OUN+- zoXfJA(M8q+cxswO@i_DVc7e?iH2tYFgs-9Znq&+-_SVuL(+Si?AT|#_Q^Rk0F8}GJ zx}$31;T5&OD(p*SC1H#e8=Xff`$&QD`Qkk?ZL%C0byWK5(US28wF}gw+w@zx%-qe;U6j9Biwx=YuZIY zHf$L48DX)b+J4no_E$TWzFF01i(n8E@8!ftac*~c$@TB3XAgfq92QVD$88ipmz*^3 z_5;Zt7U`GYdnBAQP4R>iPHj@zwf|Urh|V}prE`Zu_rT@hssG7}^9K2(`t4UU`0}zo zvM)4rzbS(bSMM3q>e)M=MXYNUw{a32J|J)*&ONML8QR#t~IqGSWH2VXEGSlO0>f+Rv>QEHQKG8uY3%{F`Lw%YGFRFj+wgV_# znL9;zL#|?cn0UyZ5bIukYkJ@@g?90C?;zaabGOtJxDuAWVGs0Y?qs1&@q5fytD&`c zQ0!yMcgn$_kDQUUnrZJ7Av_q(KQA~wMN&s5v|4TP!`FAMFFtPo`l?S>g!#>JnAQhR zW)f7i;y1epGQVWLojnXTl+?x`@O;Z*^UETAQ$;ckPbJe%jl%U-q2$$D0irLqXQ^n0 zpVp7;pG_ZX*$!fMbS)V>d1MY;$4bWM$I_!@avX9Tz;~Bi%m#EC9n9-%$_w(eB8BfY zQX;7Y7Gl`)#W>x!`1=$WnnzquF{U3Z&@iWB&Gk`d41iya3ZHqM)9P(4Dq+9oO+pNzRx`rYh^Nysz>Gn*zBddU5`R zaHNUV!yJ=HANowiZh-f?KJD%jBkq`heG2lwp+Mep^xBw)<0u6IYgNs&>3Hq@Kp4HmGU?} zMIT>hoWGs^&deFppUD-vSIz}E*0zBNg8E$&?Wo*eNSjmlhv^fbF72}k7o!ecs>YUR zjEJ_Kk}@X%H+PXgi(O5(@Qcn!JBZd(NqoCX|7~J5zkb*yAmhPKJp(;Dx^;P+(MYRs z#j5q$qM#(t=DAUjRLUM(1;o&;%87Nm%EF)o*xZ?k3o+SNt~k{5EF>C&Fj?#`j#z;r z0&AdD(0BbR#X}tB1cJ?gVi7H4KMG%BFeF$nTwoevsrK*~WW^vp0`+2tSkjzE2f^F) z`8QM>h*R;w_<-QcR2#7Wq>&xoYcEE9HwGN6*=XjEsexSBU#Xd)jHA3{u~@2_%53J< zVVpSQ3X(Yc<5`uC2%(4}4bt`F3umLbb)`6Pr?f=HqcM0Xmaa2M#F;`k*5^)))>58v z!>~YKmk6bl0_|;e^<9=hHbA9&?)jO8l22AHhD~(cEh>RK%^sy4pBQT)UaIo!fXXMu zVZdThDXyk-;3_dtU{c3opl?-a`gtL?yO_0t+Fk44KJo_xD~EB2AGNDA!vitthK6O7 z%zLai>$trExWx3bN*s4r3^RiwHF>_Zu>TtwRx;z27`Xy?KldS0u=F*)$k|OV#TW$ zL+F8yl*PbiWB#ki2??$=1>t>#OS?4+z%?|3Y9WeL^~1BGwNQUCYJ|4$w&90v#s6e7 z*#j-QU*xCY*(X=dI;*}|X_5;cH~s#6n`TQcoTS|Q3>i!)4x%Lym9tQF7;t9g>>SbS zs%6AD?Z*^0AM`lHK{cN`Y7a`r2Rg3Q+s#)K zu`W|aVqheES?D}KY@s_g{ax-q&GfhZjFm?GpQF`GWf3X2JrCH*=$X5W^QIp!*uoVn z^RwfdV`m&_aKHt_Yq8d`)3|Eo&PG_8rE|u&ZkDd0+bX;mLg$i-^gSuLLD@_Dl#zK& z&BOT0W6-dE>WNI|?%4UF2a9Nbm7hau8;#xz){tJ|;1~PUonuAlB_NH{}LUpb*4I zHa=Z4f?0tqQzw(dI8cl)-FGuNezY|5)MdV7sUqw+ft66*TW|GYRPv3&`RqJ-qwrd_ z;`Lj5pEoq>oOe05E*uDPusZL@7Or?7?ph#dCue1LX`Bh2PS#1UKjlR&18pVZk(>m1Y)02MN%j4}vLBo%X%F)dJE7bH~R$>sSOIqBXyN};4JiM0=PFVzU zQS#QB-}kHGJ|fa~OwB~oTY?_Df0AhOuTWmFKrRpVy&Oy%a0b;G`x&LQg+#RnN zoOLUA4f05rCD?@}VQQ7VDo6z!m;CUcTxoo}XW<)@d16hzZ+se)rx#1t9<#@yO21Uf z{!sv>#<2AlbN2%XwxZHWyShWpf{fe?%zm*8@h_9Ti$ZCaSnOgm0}o>(*)YBgRQm1; z+SEriXP6hn50v$7u7L)n(i?FTFUyf^pk*0DjO8GO((!nmN*{ysTBk;>Mr?COc=CMH z7d%b#_`q;)!S7Yy*-dungCc{07vGoaA%e63&w~Z>uOEF8leR3WfPN_vANsN_izRa4 z-L8}FKyM^*tm(u7PBq}{>6R-+AyrF*UR!r|u%5^d_%~J8cMcA(+ z5@hL39B~ncA2ZYWWE~@Z`cEmY?R~=7dYwURpwF%*3N!+pD-iKrraD;NB3lQ$ye5{HhD#b)JHtFC%95XE?pF>DT)} zGEe`;a+zIPZUSM^3)$6#W z2|MkDzSX^Jb>Os8_rW zUg_48cxo5LGV^RST>0AIniur;U~)5(W^$-Srcgs)jg0DkUR<*)R)c+r7Mt1?(|I5|=iEs4Q5 z$|~rV)*x9DiDj=Ty{=OE0glS98Q!1QEhA)NdQQ7B>TSSEzr7QmTq;LX>-~{)1?RiC zBH6HF<5leT7$3fsF17pn2Xfses&N8(g)|tb=S9yA*^2I}udFUt?oTjbFga<@|Ii+; zha(gDn#5u&5QU-FqOB#ps!(j7!)&3kQesMaB?6o&%Ynu50SBERFN$D_Lbzs~W~a3RX|_L3m!@ zea&gWKBzDfIQU6GSg0D45Y;2dqXp*@Bj{XTs$2cWPVy8~pi5in*Ab zE?eR}!+=TbnZmW~t|<*mkK*bay9`IdEIq%X`MHj~qQ9DRZs#!J)JOisvv>DlT8Zcj z_A6SbcVhHl*M4n4df-$xVW3{HcotRXogVf`F6PCh1=3LOHp@uJyWNwrpb_H(~`~% zTIfE<(KIx_apW<*jGd~j_>@7>c5TDQGw~Mp75Jo)3z?}bk<^wYx_`0V|;&!wmb}i+R2|zOh_|ank7EvAMS}Ei4cf88kwb*>NNt<>hrmpW0j`_x-2K?M< zWSG!%iI<-!8M~g3>RHTO7riF5D7Ip4H?Fqx^i`k^pSQGSr*JIrs{$vOhhtR0QcP@o z4hs!I>2WHa!RqPz-Z!x(fy^Z3EdUntO)-iMqpUxMZ9nFnCRQOylcP$mJBy)g_oEij zqhta)68~7_Ypb|08r)!nN53bde<5Ed!0AQafbhKRE-`vNIF(Bpx3$!Z15`i1l5xkK z`g0ey;@ZF-ygd!cOS)_wubZDSjqNY0jDI#dH_|#e>OZsJb;r)aRr>xUp^sjRH*(V( zuaL&KVA@S3%fyPU}e1cW^{_?E9|6$qr*7hqsB8e0;~cth2R&dElMWJ zoe!4KUYmLW?=kw9snlH~uXPVrv;(msRssn4s>FcSvU2ub&l7NUzwD)KG0+q&wCf+} zA*=}Bo$#+r!rO&yaaWLFI!0~I^W}WL5wgr)#GgQN*)39(gX!!%AC(@)Nx9Hv%g%tY zlq6MK{j47&!Iz=z5xR?h=Hq=RE?z2#8ap)7QD3vDugT7+D9w;foe}FKbE+0(34kdE zscCNSMc%PfGUBvJS;eU|6T-ytQg|xSb$5Y2l>Iv4L>+KpCSW>Ps zGZrtlF!%M90EqB9uV?&koQhd>PHySZt zMUc7BJmYfpV?z9+XBQGy%@e^m`zxV|wYL30FwNU=Q^S=mL`IGxNAu@ebL&RhV;cb- zgIjk&4BMouIOXE1vD}l%)oS|i&>Gk-;eokYTxXS2Y$kbvI4ga+-MzH)tOdv%gjFJ zi>F-4PfLx)T2wbG)aTp9vo*Agi0V7h>l<-mIGvx?@P#e9E$QFTkD60_)3!R z0HT&Xu}Zb)W#3QVcLtWnzuvqYwnRMY&GWOiX{Ed?>%RM4VM!8?<1;B@ zW{q}l@~wgnUI?p)$D6yyaH%>AD?E~hdb)~x#=-H5JP^3Y%(FW3F&!eY-bSjjs%7G2 z{meh=xPqe-j7rJciQAl6C$d&ja_nN(jJmFdst7~hFKnfGNkq1LyVB&fJQShNhKT7txFf#i6 zxAdnyb+{*OgtMl~itEQrAfyk_int$yJ8sRLL+|b%dv(J8u?HU7m6{+%ydJqZ^Pq7~ z4vRkq2X@Y$#{9vMqVfezPoj}~LOS6a8+x;+Vprkh1D?ce1fm-8Ua9EX*Ca4sH!l11 zDX_uWlE|~#k*=^8;jPVjE(Z#YzVsteI2)611j3`uSp%4{Vg;bU;U?p4)%9SW<{o!! zGcKihH^D=`g+~5!waSDGi}Z(O%qK75cE=Z=p|Quyd=KNA%MM9!*15;c{n@LP4aV9B zp4w1u)1_SH;Pxvxw(X<9_lcTu&82)>PAk&H?s zMMY)?*DptwYFcIr`er2@g6_1!74|BXr1*iM*&B6v=3Omj){(jT>`!mqC%F;rdsxc} zEb@-@K=7Z3m0DhU`7Mn7*1PERr;$^dn%sVGy3ZH5*x7O7jdvwo3IV|jy2}GLxXTgZ z2e~MNS7^|viwTlkpMwWz-X*dIVd&d%>$h4=mzKRdCDpcc(B-oO#f*Siis=n`x&(Fj zmSswZdPtvH@u?bMnQmD-a5A5drKvln-9fyF&2Z<_i_gwFIIbB1I&Xk?F9>$?sE+;6 zan_Sz=&enf+-_0xl-?={p>* z4A1=0HO>|0alXHOS!M?3!1i-N+ev?mp192zZ|9qQIVLo~;~RPTLdKFkxqM{=!_2?J zPXYs@l>nuExT|)Hpfoc^oW?DRt%xxBz+dSz%Txgi{X(cM#wyRy4?VA|VGR9)RmIGF zt2lU{ITc@m5l_(9t(vz2U%kXp`}bwAu@y^Mx<+eA^|5)%q^b3r->V?vt*;81bN1|} zE5CZ~t0)KI9=tPvw#O9wG!JiJCUIr%v9(JQ=yI#y`EIe5TkrB(cu{;7WIIc<%?4`fkVkH!BlI7Ze#n#a_>CHWymM-ZrP`X^qT9;-( zL=-g!V!gh|`I7>xXF|IaUmZL4ryVelcWSK{K!i_P4UKC1OcD~6d~=s%u&ejx`BYr} zLAG3FujSZyTnvE(cg|oe&})+Tv&8%f5LsziYsU z%i~uZhe`G|XXpW3vC8#0Y<@8>O?h-b#fmQ2(9+e%=3DDnykTS8ILOfHGJW~6r{hTK z*izk>^;}G&Lgt%kw!v)PX39-X2`apemy=K{H4%k&Z^g^Cu9bk;u~K|>$~rNhN=q(dA+aHl(Ke62_xMoSF6H?P0m);%$^IxsgP z;qx+>9^oyfYq@NBp{<`0Xt3MKm1sfEqcxF)X>EQ=(!qr>#V!qf^@TYwtE-nLp`Evx z630@ZrEdPyIlfxBh)(13Ld>p?q9V>yAgJBVHurEkHYd8~L+FEoR-ge>DyZ?}u=IkJ zKWUZ8(Q_c*zT7FGRv+or`aX2m@{y}Q`r;~GFJ{M{8$@$>Y){tWY5m+vk_iwE2*uLS zo3q^^9+A3Zd|ka7E3_rtwa0@qWuDj=w8M@93aea}drwnMdiZelPq__?z^;a@o~0ZZ zV0WAL6zp#94ljo($&bnhxw zcFo;h$pv3tFM+$BaW)4=#89&G4Z=TJKOWf|rBu&de#Ra)YP7Xm2ktV&j(ONU;@Y*v zTgJvrL|&95%7MEUzXhc zaXS5{743}%L#3^zK%U1MOwm^0WBjkhZ|-&H?QB=fpY@TcP)_q%Q-G7jAIDkXmi|h` z`&!^J%>y%$Ogpce7Lmp(jyY1rD(OdN*D`gXjD+)6wY>7g&t`*u;~Ynw_!dyYbEz-- z6MPB|z_mc=dPulF#JNJYX17e0o=?t$C(Q`e$Eg%&`J{pX ze?F|0?9_%>Im0`_oHrlqe{@+5;Y_kPx;Ect$FEfZZXBDt zoDidL<5PqPsaFy#?gZ1~(N~yPU&fpbWxE`C6;G#~fw82{@H72D215Z+UW;h7q}%1A?fNSeF%gcXLX6_Boa1K8_dtKHr%cegX2>&H#L>LlM1ZknLl zJWUNZxegK%XvhY_quPPkys?UHG)}QL5}0W8>It?kPy0@>?j`W2YS=9P$~KgG_FVCU z0i)9aFl2gw{9Pn(pW+avXx?^Z%udtj&%0}|vGfU|1cR0{zkIfEHgv#1^XYGEfPyFtdX zp`L%gvZtMXk=b(GUKs+B)YQ}*t$=~VaN--it2f0kKaZasPqDYrUrvAiwyCf>#oi>W9Ak46n$zk*BEYmhLh~8v-q`n&r3i)lQs0QF z%Xw4aa8#-LPu4|yV*sbqFW?d+N}{cB=|**RG42Hx=gFd*t6nt+tE3*kOAq9dcw^_? z1HH69NOSZ#+xJ-R5E55Ab_l~ub)ax*4Z!pQSZ1aG7nGXPD+5!~=YAuDRg;<%LOm8tpf<;!!ucm|Bn4nR^6j z!{M4datPhA=Y_$--(Pc6At;p^wmlgplfF^v{!oCeob}a z_jOl@hA`za%7E2z`76~J0cPnlOB?g7WR~L1-)k5V)CsMCp_6P?^FE*HzJ%e z3+`*{R#i*O4IZei$HTlAk|PvNjY}R8HqK%KfC`U^k6qRKJv8y(SY+R%T#)h`KlE6g z(cJ@jbc^WHRP2W9`$o8wI!vqkE-vDN)rN$~Yvm>zpu+iTWw zh9dTC{;1#NHpY`E#O0%V{JYp|MWs@^x;LY|b@PI+`x-u|Egb|CEF541W0@ad(L~41 z+B(ozR2?ddpMH`qZC(W5*Um4-dsafj%)9T}OLA^%2jcw;0LMKlpMSBk)7w1Y4H>WK zlW@B*+dDq^1=wE3ZIfiCtQXTpu0sPDFu_|1ga{U`j6%X&xt@^$j=0FaA=m|D1wB(DTAr&x?tXwwxCDS1@q3u<-r< zJo|Bxnvd`hJ6%9`Z80R*NXf+b;*oprgC}z%G?r|F#ve@wh#8LgOUlCxjUM1|-0^1O z2b?MnPD}HWvQ7!+WtH=cYCsL)o+5VZ#}BcS@&qpeMZvFokXszv9N_R2uIMOA{HMDs*KR%MRMfu7$-{h_Nsr$OUlK@00;IHs zfIx^rjC|(FF6);^`r!GNe7wA zi!?Bp@2+nBvZ4)8XI_fP04GK+{a-P!PxMb4{jMQE(vvx3&Oc`~gh!lE<)Hq>++d~U z-U7XPfIni84Wf1n?KW;@fW{Y6UKPqq2@C-4gAc%Jh{zqAyrOvycDPRRjfdU zuZ6J#Umg_tvceA1;PSwcPv#$iuCd(5|DM|D5fezxLf&>zO|i3@85i)x4{XN>9Jq3$ zEx*(Zm1=5ozPO+tuiWUY3J{q0Tp+9;)#FLt5dnC!Lkxu7kLYK-)=FwdnSo3KAZ}yy zj~82X1~4bc+0S~dIr_M6TUQ~LH16Q+X^1KB7Ujwh*BBp(0S_5%##3%4sqCSp=H>BA zH+sF&8U0n6Jd{I&IU=YLEuz?=Ci+n5DK z|F6Q_F$jhyt1p1MMFJ+h`xF#8Xp>(0$=8pb?4$q_unWpBq`3l6vdk;^{*1DsU-hoK*-%0PzYa+ftW(I%B z(Gcd7;{&k>w1Mc~GQo2X?Zpe&6JXfecQy20W-12@{f9)!|0H5?LD6ROZcNnRujCfM z2BlFO9<~__MEZ0+p|TbFwjP^c_?x$!gXEN3vgK`S+*Rn>FxW+BIOWLNi&t1fTY!`n z`DX&zmw&8&R_tL|W;}6An<5eK34)@EZSh%I@phd}fG{P-ttkFTx)25obEF6_I$h<% zb;fJYw+(-Y6yJAQZ|5Oy-=E)26qA8|e)Z{#LxCijp%O`g(BItH&WyilWTOHA9`~6U zHZ0~q7<@}3#y4)IzBw_Invpg&8u1@az{}&tL z`6fw1J4BYvNm+4=`!}=P-?v^eVGJ!9=UWX+Q##U!h1Z^%%^7ZkH}^=0i2QSM9-aYt zg+QM8!-onL1(ia6ApK{5?99wRpntZv|ALS`nsrEL9iD*0D$#4=Z-Ke6hb_;j=V+DwE6!+Ju}As=B%;; z!iq>qXGDa>=9#lu&nj`f{@-i9Bju3_kmCJsG2PyNJ^$>p#g9c{y;ZxY@jm@0W>_I^ z^x1|_ugc6fh`fN{Zj&aVGNb6n|9RotFkWCTjPnO?$K2)RCHtbYoEYEG3h&|DL&bsg zF0ZgI*T$ZR?=422Rp+?#gh%~51?dC7Nj~F0b5?!UJ+uCAL|`iV!Ee2^mpIhps`DUw z&9qZX1H>sbk7-3b)lSP&spXtlH5+$fKReZ}K4Y#W8enl~*N^nw6zpO`yS|C_-vdim zL&z00Gjw*@zd3o(bQ?V`qv3{O^G4#G3eMCi&L~D_sC; z|G#+2+g;8fyb6f#6gOkQ+%iw@=`(+6$Rk#lOi! zuN;*Xg+f_=!(y8*byC-9{^Vf8HAmlvh!(2*^WHZC$W@6{eDs)e&?E}<11F}DBhhAbhm5zH^0f;w)Pk9O{*YNAJ{LhVvr)-w)F!( zc}^y8JJ7g_Ln6J&VpELWT13N3WAlRKWa^BpEa0&H{1+u%^ohOHww~Pk>4`>rSOwhx z%lgk{sP_0clZ6X=LmxLBibHGhA}%@k)5njv0EUO`k0Cu5xJx9KJJ{PJA+))uzw$f9 ztlAh!|5uEVV@8x~~? zm0K|nsG?WMTq&Nct8umah#z?M6g)APu60~&d1)*+>RCFwQg=7;fJ?mO!isFi4uvz9 zH1E*ShSW9fZyaCxNIt&Q#*(&F-+RmVPe#@>5GU<*a<%a8%L&Ill{a$B5}^6^^x)g~ zl5gRre9W3WU3X=Zl)P&Cgr&~QxRt2fF29`d?Sw}1?bZXw`D^FV5;0?k=};*E<(q&@ zP|NYwv1fa;vwOW<25m3w`~}H;sj4b9#i3M%E;WNdEswMJQd*&WYt64 zT|isE6L;c}GDI{SezmrEK6P+KDye>+HvTk+b|B&Cg~o^vJgHZ6kC{Du1c*}v{)j6# zhv9IR2>;rT634-LeDT@T2ww(Mt%y6>980Ok)Jj);WM3#!D3xB6$VuZg(8A>}5gq zNZ82HGUGlFuR01~WnbLxXLKC3AFYVeEy zEq&g<^Lo?8z<6q(z93u<{R6mMssI5-q3@;`7s@TK!#|MX!IV55nDBoK%f6ubM_6{P zs`NK=jJ=Uy>E>^$A-0WE=+O?C2xxFAuW>wC2!&_VbC7>X;e z3H98#_uwvkeNWTUUkZ%gQWUzOu71;~k;KFF!QPgIG$kqSsX}#^^mE4IV=9noK)J5} zy+*8;S6F(y)~AFepz4zW+1;B+Wv~U?&U`LmO+fpH-Q#mtCN0E}*%Dm&u@=W}cp0Ei zS+RF$i`abJLsx@g?aJdvzg450dW8i*lo5XL_2qC*Kz8l&obc&p!-JV?qX@WqhtUd& z)0?)uiL`eBZf7ztBt#{~USpG$K8KEoB$rc6MiiQvWJj0X2w!$xMvlq5W7wpP-G(c` z=+Cz*ZH3JHO{~YRA%ywJA|7FpHCIDqeZgJ$9{jLrfDQv6+%!ljJ;UuUWYv({?0cb! z9MEWUG+7#Jii$nzBAC3WxDtlmbZskX%CPbON_wQ21oAwQfn2%Qv{>fAy(zAX;!gd4 z@|hSj3<_nP4+Q%l#>H_~AokloCmY;5QZbT`41F~XMSD(sujI(fadZ{4709P^3vm@n zP$@IKH|YEpst)~0?FZS!7Q(P?iyF5B!z&3L_qCeNFhN5EX)_o;r-3LJ+%PP)hKkjR zS=x#(O_7MHX=vw_!~+OaaxueAs<` zI*8hvJd~_E*7krwSZgtW&M3j3&STfe4GE{Mq| z?F;3%NE7jRV(e&6wtP_Y2gCa-#1e{V0NW1h?8j*4w=UV{G`G7tP}g zmEa5P@S8pelgmzoVvmbLnrUC)NWrj0nRqu}`72<3)bH7m$tq^DooLO3B224L$#}N3P<&U3 z>Y)<>+Q(gxSH@<354eKNC^tUU^wQdrI7~LI^L=%8%P27PgJ17pw4cQIE$8`7#+!Cd z@Y?xp!KJ0YLS#EWJCx(M4TTJvsaNP$P1j&eG9pSuF3cAm!g}<>?QWb^zz?19zFXYz z_-N<9UWDMMlDai~WoAPPJ5|6xDzcGO_>4%yI|B82{hEUi@O2JAQR2H(SVvM1C~T1W zhhPI|W`4rC21WAZSNj}}m%mPyb#0|uBZ_`a?UPT5)& zK_e^rR;`N;=Z!6p`WI^&$dbGSsLbBv)QMRF_ujFTofK2rRO7X?p9owHhBG@K9dPVt zOD7~XX5>a;T`On>n;w~38wh~g!0D_ujsejV05*WX6` zd+g?IIwV|rbenKt-pm^d^v1D1eE~HNocz)dg;F{(v1?*vV{QWVK=pv~!eqecxThzKv=xe$--=mTF&CJ%zHo)%S5fIz+6h@onr%l_?eE)V=cWg6 zPN^NNV85iBe0@My*1-UIeX55Qot75)`7;?{2~5e*PZDxyuK{m64m~5!1;?1reZ0r{ z=yltjPqY#S6VzENo8#ESp6fDK~hmzU^HW2p=PANJbQPOTwjkfl=jx7RkJ!&1sE z#rte#gKdYd1*~=q^FLl^bBAHrHfotWvdv=z<0GaU)}aHc(^-D`zArd=u_<>N?5Xw; zmx{WRnA5um{&z3N(ii7F~BsOSs$raYf z59a~B!FI+Pj^_a%%Sul! zlhkNRso`E-?m3}uyV&NYKFrnwQT2Q z4aK^-uqFcPUSQZc!01t6(BjiV3HhjD((^>tS9VDE2y98eK?qz#%<_ZpT9hNct#E7_ zQwLX&JA^Q!w)cCqjS|)b%+5G$W}BI4x!(zjnEg5hjokO^gV`@UTu_3Yss##BNqw+e z$ycx1yL$^_Cq^gPJ6`RFrDs>WUX^HO!+Y+&B6^u!;Cos#wXbX$mh2V`mw-a%KT_FB zov~cJi`@u4Nq8V8O86uwT4Lxgak)qd0P*q`9hr^oR`CAF_#d;?NG zev584?PYH74-vk9OCEAL3pKtF?2tQYmLR8%-0YZwRD12MY^Ci-s_!&X0BB*x^THA0 z1@DbCBmO`03oFkTGN}p<7rj?v9FAZtIM{<32woIgaAcw3GNa+ zNN^`;g1fs0x8NEixCD0!2=49{+}-V+%J+5O?tb^acYoAKWsDlssdM&Td#yR=T62zP z(4F5xjcx!s+rnRz@D~@t&alz^Nj>o~LJ@ z7#6lEHVV`Dh8QXzQ^#2ng!dF}uk6u}mk@GWb5S^0`5%6R4hJ|h1h5Jm&W~Ld5R}ns zef6}cpZf*Wzl~@ijGZ|&3_Fb^w9*BnE)ix|(%>T%~;InJu z+0j=mxPYL0Xa7)ciOHZeS4ts2VO&88YvXKW62KRqNJ!RHH;<57%MqL3&FU_Kpg8et zK(>KISl?G|?fhfK(!1QIMK!=)LBb?PQul?k5hl${9vq3l)rsdf=>65xD{$cc0SY40 zxaEhR-Xsti&|q#%;YDeL+y=khhyJYDB_Ev(?cjMYUFkF!5q>|9F;Wx#S`gQ3BkJ(# zD7X@y;&^#j-%qvXwbP^(yU4fP-!i3=;a^v2mN;qEwpdyWhHo1swo6o4O-q+Jpc8C> zD7+-Gf7kI^F71?+;s5Je0MNH!GL(U-6Kk$l^ zkVykAX~697eGMYz*^9R)(;u!1f1{s$dw{{1@WF_GZ1M>v2j>TO2 z1*Gl5=HjCoL3rn>84mLJ{Ntk^4$eV*$%_mNP`uo%=v)(5$B7ozBWKazVBS(Rg;yJW zkA=?j2)XMA18CC?vg--pb``oq`O&uLx-th={Q}P{og4qhw;rjK1WWpY)qeC-X3Q6- zu=fk|qa0AqBno%eKXni}XA!3>e`U=NDR~Bue!jPWcTL%k#P7ISju5=9}xbAh}=70CVvj=~x3@ z=cX7CyH?s>czhuya0aoy5z2^lQqdw48Lqn|?VCEeT{)QO)LD@0tu{`^JqbO$j2L+7 z5ZqFW?w|z??`j5O!&;GA4h8HE@MJi~Ov$ zT0YnrUjZ|=UH9yh#TR)YVFz2VcW&vB5y`{Sf^VExJ{`LTv3H%NJ|jwzagey0%CXaP zK%+^f=V8mn^=F1G@_rOP#Fqhsz0vGf88FC)n*_6tml9GxM%-Oz(G?Pis(D|G_G6@N z%+~igp{<;^^H?+Yj7W3kYr;la-9q4ujwwdRek?r62g`o@4^3;DJjff0I6~%FDo4nk7iA2n>QkMf?_bl z#$i5E&Pbv!#Zi7jb3*%vKAChS`n6vE0#7}uTYYRe%ktH&?oE;<`EOU(gnk#VWXr7G z=BveIKBR;+WVPq=OF28b^(;w^-^C(mSbkMEWWZjYd=O+?nw=*_oE zPa{rN{LvMI0xB)+hqv3tCr;It`k2dI8pe_APo=v?_VqLUoNMFThwZS*$X?6-;7pD= z95(4x>5BH1t0tjXbZG%3c~~afb<^76C^@_x`ZF&5!OhyJm6?;7Nq8^cE1_?1+H-kh zdVs@hSn5W*uk1xetV9qx!c#MDk}0tV_x5iaY8jEEe%Lb2?{s|iN3iar+m+i6fhf1G z3Bs)#Y|)z{N@=m&(yJm)XwhwSf+O347HvUGF>oQ?gEro}*Z~=K#gFQ(iD%sDcEo!W z65qW};PkusuXq{|hIK76OV|70pDPeSPe%La^(b(Wk#(8Ro+O+ncuEPra(r+NJ9LjWZ_C`Jf=BEvp+K5mj5WL0Hbx2x&V1A7YJ2W{ z74>E&ocF9j_gdg&f$6Y;ZZXCwm1X7WF~#uS?XDj6B9CF%QwSfm7lH+Y$0gjoe|JUx z&C+HceFAuxn@hSYI0b>)mB*Q`E(2ift8HJv8_kEiJDW%J=Hx~aEt%`}S>NyVX8nqb zk+B6WMp}%n(nOOXI<8O7C>2L4IyRy_V3OBL&Bp0Y@rTDGEOP>v3)}-uC7rr8qZ!N} z&TxBu)OmJ?`)-Y#{eGie?Ot^b!w6J3iWzSO`15^t*4<~2KQL-(K&^j&r3JRjH}XO+ zLqb})(>ecTc{V905NSxvD@AdWVu`7sst+VFktnhD!r1ivI6J^FCK0Vv&&h{<+oW5+ zZMnu`;~5xk(prgcq(+033)h`jj(u&LJUPM$rm<4G*a#exu+IXpW_3VMj+k4&wXY}D zmG+AayARdxYa`->V>X&^wlW*X`@W@G`lBq6zi<9bd}94P?R6lV(faf${V^n;vNJB% zrA+SWjm`8UkS12@ZDjhQk7_OQp`@2xTLal6`zpa)DmK3V-UuNUZcW>i9Z)s- z;v%7b-E6Bo?q8M7h#b&YwPS3yy1&-$J3!wiA>VMP%&hWwiWL=(CFB87#HVW-X^E+g zmyNfgSJL@Y27ilsBN&EL_EV<{=TZt3i}OBK;HnDko2RxDZj8B>lgzBi{hR}VRa3Ae zrWCxUg&=C>{(#Bc*4W6CWADfENV~ej+`(Mn=<(lpC+XTR;4g6oLKW;0*zf(mA+ZX- z;JA@;Ep#@wc#?d0Tu)E+Esf-id*FIhICe;STtf}}tHVstTH5(V->efZr9WC9k)E!B?zdvFe;ltDE37E%iVT7yp->-u8$&}TKa##=cD=q~ z*8GUn+^;v{D^#tY5(7@N=bc^jI2eQS4szLI<3x&(OSH_ijfnk;Bf_1`?*S?wN|Irn9>PrJD-ji^9ZQeQ?rWxYDB?M$w?LK+Vb7{#A$>bl)>V4L!?eLeb2198CwsP3-d8$rj455yG%K<9jZ-q-7 zu~8ykTd|6IM+6IP)cy=eKe(ug;(fCQRe#3!fBP6&`Ad8lTEt6`Dk}JKJGQ-nek_JO z6ZK8*!S@HCXQ~n;h*;=AL0NC=EurbvvvJv?VR9m;8z-!9D5arF7~by++7q+y_VvWY zD3-}uOedq2`>5lX2Mosn`H@qxIz7dHvR zA|tyaIC;{-lsmc_Y)FrE^tTj0_i*D9D1QceH@<2{_C-B@J#^ofD?P$r!b%K34C&~k zx;d8b4vfMXd;O%&HZpV}lzk;mviVyefZ$U4Tvjv#RrkIq93OHD{Q+lw1il`2vx zuZwbwl=l2e*`Pf_Pc+^sE)N<+1S?5gSbq{4wxWgv*Sq9RxG}pTTn#!7A^7a!Wf*-J z?!n|A0nDTsH5#4&SWnOU1@%U*O`a1~kk4p2ur@~c^djHvhydlS?_0tAvTiV#!^Hx% zFJg^=GPY@BhDeaDXLn?X3idOhCRMC*Rwu9ia^mG4U49+lX6zHCJQpDu( z;M<%}H&fw*7dz#N#H6%3cZPjhA$SjCk{p%RB|+H>GE``L_(POHto{9U>V#BhC$a0; zln9m8N^qFoJI2^0JN6V7PsasH)KJ@>WmPeNw~@^%7~1jR?v96&E60S}?Scj{t_tYw zm2{C2cQhktV53xlHkvP|*NMJd$>-54Z*sr3ipQX&q3KENYra26bYlS$?uJrTfv`}~TdsNrw00eXvDfo!M=n}a?KLIw-M%WH zmR}z$$+w1?n3>O@G4ug~&$adSPBTT)kAPWC_e+5ND#`@RKnnB~?xz{XWyl9LknIl# zCWmrGJ*KZs)BGnvN-VwQs)kEE1 zsLlW+-69~gbL=KnP*wdAsq>b5!Kjj6$c}ySg3hL^XBZY)WZGeX6;>YpWdOZe!x8T) z!uq!Jv>-oF3sh#@-5n1ZzK@mUq3q@JBlmc|_u9a%%YiFnHPjy`*^0%+05bj(ki48z zueWf5q_i}|bkizkD)QP6u@mT6odRn1yawWI#wvVdjV+-o#kAVI2Os zyUVFVs=IThE8X&~AvgJa$SGQRk)oc&45AG>gM8cm_aoc&h5nS)}K~hDJ6P;(fid93YI81E1=a%E&A3(>~`JuW)7&u{vWsg&v`^Xfp3qj{|j zsK1#sEKCxef3U>EQ@+ii``CI^c|BP2nAmDQ{UtHhHsy;{AiceuAh-d+uRNl z61nVCYI2|6UWL1B^0DCk*nHo^#tPg0hb7>KX8$nA?iSb279TMHUSIZ+5~cg;){ggi z#5KR9Z6PdO*SKZg+*&J*<-|G8l_VF8+0)BR(%i!2Zlr&sx95z$d?}Sii9Snv@_Vj+J+Km3@){@zM-`pE! zdk5mOeNlENLjT(+E2t}rX15|>y)*2qW;3nQL~>GcQdwrX>V1vpKS-YLH?B*gq;wsg|Z z3d|`SJoEZ^CYL}d+c?1n4G*l@8Lo_TKvqTMi}+e`|8nt+!R7ZtgxP(pE&u6`EWc3B zG{Yr7`Jv~kKI5q8OPldbAFJ-F=yCIBLbQVgliI_sC2jX~&%LI*^NnO~=v;*6cs3$D z2Nv@-PL+{3pE0#$*lVU^1oZks8uAb%(`M9zhbe74EKGzno5*DTWoi(-%Oic2Q6|3z zHS^<2qcEV+tF__VCj94psa6PcqbA}*yA516|ef?m9+Cif8*ub8*kW2adIedLchZL5scQD}X`5@H`wAUd-YHd&l z+OTj=9El9!_B6bJUG`)Ui6o8Bv9N61iNcssQ!3A7T^QL?ryhOvGdC})#Gv0FrD5adB}3Y#bcNu##^n zDWL#{zhsu_(bA%<-){0j_4~4!fK)dg8Cg_zHbqNt2{1z|=dQMT(khFQNDH?;`EG0X zP?Fgn4(;@Q8|)2&j=Dl1jbyc_DL}@EN+}+PjB$;(0aNoE->bf*qf_!sO+Pd#L}u>;bT7&)Tie_F{6;m^)$b@l zpnW_Iz@-9dcXt=~ti9`!5NTHy3|0;C`u#Lz>^*y2m4POEk2X}Kn>@1&mJ?x#Ggmb9 zT>+iXXo_8qoK%+nWth+|7F*1!R(DT}KI)lZ15)n?ww0<|-qn@{cFWgNgx411Xrkq( zV9P>qAX5?>jNGl@YNPeg@tF7-^~0{jxjRZI90fvBdysh>f?Nx6(jy-8g~6i<=uUQ$ z7$W8A0sO?pCauz5X(@?VeE_;XOA`jkzk17ZrtJu#)o;<+pweQg|tvn)Q z?0xMsVSeyKUGQnNwae9wZCzi@l!6&T9241OZ+S82KX4vM{_a}_)PBH_+Mj@5C2)sw z+?_uTkpJp_5S{hTm9>luezla(Nq?~~12#8>me8ixLyANgc2VF&^-Ui%hIc0RzetS` zzFVpCMXKAwM@u*Kt$NBMcH(h(S4=&tT+gMt+ydA8VG0e@t*xTeJ%)_+=p*>_LbkCJ zl_HI6>EU`#trDVq<_S`N{En5xFj)mmpQmixUu+1e8SbOfs?0k%vAJB#(0TYxOKHW4 z*!0|FfI9qYT*ZW=g=I zu)cZylqsZ$V{aqr1JL7*W2{ng(SSe@4jz7&-w3{;IkpuI2}u|b9xcnLM#EVI1_lC? zYW>^V+JOK6cJ$wt%oZmjBXfL+y##(x_*>v7Dhu-db{S@ar23=*Vx=qVD;B@b1+5ep zX40|4?te6?+sl8bI*=Edzi<2`@#BH>MI~;);+c2`X3mD|=k+*K0AvnV!j9$hkg`D>c1SI&hY^{Yp&nOT#?%;p2cWMmdW;{=>t&lWqt7h9$Sh zjv+9eDb(9AAAfEzY0l%sI`|v}Jy14dZ6}fdqU6(4su7kJ@p^PVH!t-7eu?D~eh8y9 z-Tdsf7#AL8RJ+FWBpPq!gF#B`gzZ=um|ZXBnD<#@br=nNA~QGxk-W?^GkSl9lS@3M z-%>t#RTfcl=(p`HyeC&Bzg%zf>PH%8X>DrJ(1!BOE>eAo5%Zlin_7F2yzdh6lF{s@4uSj7>8${LcN%g=JMaP; zjxu`o5k@}A!H*co1+M$E;TClD_Vx-H7-U<;!~fw{L1i zhfX;c%nG{M#6hKkFe8x&p%^3Gb)k75Dj?%jia+0^*bOH!J9+q65dIvpMcP5*BT9pPZ`%=lJkU@(duUk5qrikT! zp(4uh0rf5@BkZ9sYOSaBI_n@@!lxJK0tFJVCqGutiAA^`4~q>-u*KZBzjBzm9~A2R zIJnsG(%x;yGXngJG^0x_BBL`v#*zO<13~whO2%?Uz|!ZGprAH2TLlnVnW2=+PM}Gg znSxPHFrd31$8L-lkt}Ypb}->klcCeDoWY!6kKzw|?%-iPXu)-U*x>>sns)(|{@-$= zBN?AZwM9N{?~LVeIqYCkym_;BIE3q-0n94PXoq|)@cOer|0J;8>p7k(-ul3Pt+pON zKiRH}n{?7{d(nK~b86N!6gwWVzeH*9Eg9aF$ltT@#D+eXo`dXTLgj+w>V_aJzx*^4 z#1KOxYMp!Jvs#_!nJQx!Yq+=t4$#sxS(|2&SYms4xc8N`gcI`AzY^tp!r`hi1*k2yB>m*VKi3|#(QR}n)Og)7{^asg)DXJrX(!hMOMjW{lz9U9T2<)~JORT93dt*lH}+2INT ztTQGbLFRpXAGw`238>AbspPs{7`P{JmAItgO*VJ0_tV>>6ffv_RvaLzu-uaN+SoBZ=*^cH}YV#y&q9 z$iLEf9M#}2pTKen?>{Cd17$5%#Y-;Mq)a2wsEu(nA z?{cbcZf*|P-0y)d6kwl62y?(0l9H5{pJAvZDkqMNswGh#g${&A zQn7+XHWl_UOPHrUGXHJ`9+jf_6vdcfKUMyn9$shUSt}xZe0|IqhdYCX-{F6!a=Mo>Eg+l>oVVB>uCRmUfZ%Y`0IRmX%ohNX=5$! zbXzN*y))Lbtc?KOTAwv%cJptpZK&uuB)#QQ;vijH;BV$7#4ZCVJg_r8EIA4=o%Q0S zV>b@klTjGrHfjiXol1bPEFMna3nYhocp+YjB$ui>o)mr;3FfJ1I!rNKnyS7GO;NU9 zfh`)~{5mLk4EQHYK7r=$*}?%MadfCHug__xoCmZ%hX>`AtDSb9X;lUc>^r;{tLsXWCE{p#3RNTD#w#p44I93F_$QcPaD^6 zKHrBB6;8cCLwmnH%szM1#{|lPGiS?C5X^E5XCW%o@h9%g8beR{J70 z$(YW=j2xxI_p1G==6HEv&nKWXuyIpUd*y}0@rFkQv!w$5uK@U+1b9^eqzCsGCr`NG z-!eWRM3{YnNhTsMS0b(h3Y5kTxo9v9me(+5BKV?0&})$K%IS#i~5&a0`w z^PL`wA21ZPy;Srm$5@Td&a$^bQnxPViN7&;N`wg#!K6LK~t@{Hh0EMO4h>bQ^QPX?^(u-?) zt$e`5OlmQtgx|z5I162%{%NCZXX59U+}+;bojvQMtqs0Sy$~nrTpRRrD$L8nY2Gw0 zTb`31GG9b=C{S9d^L(-kG4rY{1TvwZs3Zl-7%`_O+hKCJyJSLtCFi4_V5yp8)&w=> z-@v}zOyM2K`Vk%4*64|GSP+d1x%Vq zqA8sLS7;F{89<&Yu`Z4D%{#<7!Nm;ldC}Rj5nvaZ5ynygilH41##LAKXm=s zM2e5!*H^P;fHNP0;n>(1DvgT*U_1?cD>;6d-2q_N#ZO2hxx$*Y%H3>r@~UAPP)yqc zU4fIg?HWSu*v0ro=S{asAzhAkr(2&+Ef)5>4X+Fgf+oz4iRW%*%T$%U38g#wtrsa1(5j?3e#^;-u0{itrT9DJW`c?422s8@4_tv$(B zJZgU;6p1&s!dI=Z_q@fE7S%-oV@V74udy!%DAv{p2D>OW`u9~Dx~H{&@mV}a)&h-D zz!$p?7YlsFEPqo!bZi)Yd}Mkg>51=hXt7!-d~+Vzw)W1t%3(XDqy;?Y3EqCrpLhI5 zI!(-on*RMyUbEvOb91CSsQ$pWH9M{y(S{yovJ|#i?8xiRl2PxCfXB~{s52E=mUKQz zF82?= zD9!sCy$kQJc?GE}`WTyeovGKatk)VHoK#1tCMj0wo008RTKMhoZ=d6dDplcF@ za!@)nj`FIqssc3!%REtwnE!{tR*7*hVB5Vj`yXYI!Lo2ZLNr{67vpr2T7E4%2c>N` z4(F|x-}AW_hHg{r1u1^n&5NXS0h@Dc08D{l(}O=^71-XPyCkLofe=qmPiYt!rv4ng z|Azf6b(d2{!6Nxd{TuYt^wwPVL&CRj0f5ONaPpE2><2YFTX!r{q1Ys%zuPb_g*WM< zP^~d5M(3+mgdiW>nsvWqb9eOBj478(_;9p}8wnYh>`j%V#=E{gu`d8QZ6_lFj}yx^ zxV zpbE=}&O4G}PaRwA<%mYKB%9*p^;OwxGI>b2nU0H%WygKBClG`|R<^R+apP)|-Cd+T z_&|f8dq|FD=m~g=QB>A#6s1sxzGk`k^q}RE>w&&p%7xaoljS7n(XMcjd<7z}h%@8W z)MAI?{I(Pcx=uGkz}RAh4$?N-l8Vkl^S&E%Wdv3*1;tsxTcsZbV87y?2+rk#6^+cY zB>Nti)u+uO7_phzv2I5ryvjj*b3zg=PJB_V-zrp}@XRnnwEKKHyq`RP&_fwQG%zrr z@~B&xz%YkxE;nP?)fNtn+wDZD-$Kc{7PA-@4A@A&S3&AK{h2<-pgog5aszh*e*G-0 zZ>p_p$LS?7uEp-%Y>sU3#(#=~J%h4=_n*ZKS3O8FyZaBw($M=xD``yh=!Fpl|D1^vZ7I-}0@8%RIdhA`*`FIgznEFf8OBCai z;Z#+IM76IB1`iruvN6Wt67O>u*5R5gyuCG3ypt06@SRg32eU>ExJ8Bgzd%Zum@7*k0CpUl(&nrdvMY55I9gx} z17+G@B^fY`?7zcYN@w#qp)~||gRTHzd7GVzoOmOy4Qj!A42}0YzYmMru6QS4I|gJ^ z@87>KIy~GAj5|mWqBO$WV=yZL8r`Pq^78V4itEE2CmWkmT`w)*Z(d|wRaFHf%%O1Y zxz^|B=fGP{O--WMxKwW9=(PWWTU?fGJRo^)si+)s#ihiOO@$mt+TyE@l+d*Fl8w#i z&8uKL#~fEP2H)9kLN3U5pX7in)=CJ59G4&qa~!)<*n;)8TOb|n}bMyK5mHtNjp(V`3MYqBBy|& z1L9c%v`H_S&VMRqGiHlE|w6>$=2h(crgF3e_@$qT%Yt{f1 zjdZ%Q>&Yo+X4o}sd8Q=-dYZ;9<;hdLP@vqR;XM~I5>47|h1I*rwl+baO?7Qws|l4V zQRtl>0JrV|t)Wj1XD^XL`^Y0osMrTLXX6c%N;cQmbM91!TQ&$Se>Z*)j5S}XU_So= ztHDH0F7$VLUOxV{U~}N+rTRUdLf!&CAI9Pd%1PZJc*xu=L0l3n1cRuz0{d|D;$#dB zEFT3c6YdEpADV@|{f0e#wXl7g>XI_IGe|z5)6^U4LHqp;Q854q-dD|9*d_pqpG50C znFALL_?C(Kf^FEcPV!x{f-QGtaVzfLlRqhvU+U=J!jM1WJf?gfc?-_;hUsvJZdcse zMmiZJfxS;gmRh(jG{%Ii0WnLdeN6By=#L?^Zm+OPOrFx{`u ztjd5kt~Nb>&GaH^`vl?LPgNxIBwW`kTebX1jM~qz%nm`zYkqKV%APtrt%9g&-o6zU z7KZL07`P-=a)~CplW|jj%nBn<%AP) zS1zJK+`6854X@=B1L3!>o}Qe70xM&rEtSt1fA3Wud;|@-|9P(xt4k*l{ddqPWUp2i zWr-{|v8_$nGcp%vG{tC6Cm4e()E%ZQDa_U)j}VvB&?)&a4(8y1x`&D2$HS0Sh(F3^ z7cg@!l(oh7ApCGb%34Y{(9ae)ets_;2-nPms9s%#EOSgydfgBgT;d20fBM<@ zL5xASqe`e9VaaCnwX$_R*7^?%69u?Y$0Vy)yr8)uW%YE8g1S8(W$mDxytE<-$YU>+ zp+lzq^+|W?#{Jwg4ky~82~>{>j7X&EGfD{viw!}Co2S~{iCVPR9a-=E8-GD{C3 zBBtO)F^|Y646`pjf4jk`8-|2RU#$+{T-~!jFJ-OssR>yO;KU;x?D5<3P8^l&7njVh zsF%?PJ-SNHFz3-AEY$%&n^aD)WcqVo9Ow-fm-=y`?K5bXhPF^@HL0qN;9NjAO3iy% zMDq$-`|4~@bCbGFH#4|cSIb|tt0qpMR_*^4WOCY_MGJiW{QQ(xoOZ|GAHOa}`yYXo zCgDI*`-)#>H=NB17GKq{esbi}T!WpiWja6Oi4Pk9=KduH;U7}>H9Un&l10!zkQrNI9YG1zU)9%#x z!d2~;Mv?n!tkjc$5hFO5{{&z1({=K?D5eR_x!ySUk-4lw*I`hcRaoWt(zaMyU&I59 zheOWg>^E;o>nRmQl|cSr9aCz#5$=LI$fNwK$yiRSfj>H5qWc0MOXHi)qUBcNAc;tL zKJ6fJxih=pqGR-G$HOgfgi%yZddtJxDGeQt9)W$>e7ux=+wqg`HIwyfUm6_I6+0H& zmL(H}-EN~z|CJ&zMsD-v91bfJ2-XaL3=RketuAYX+2{Z$@P;cQ2I;TmmXh^jr2Fe* zwJ1D>!$+X#OT@6b+y=XjREPSA0CODy`dUF(mlvbs*Av#)h>}!O;qcuhB=58hHMMAO#xC(mCXEyqjc z-p=21x=9)&V$o(;#mw_%cbx%_VbK6UKWU_ql|cDN#1sM{Nj`jdFD)HvRU@?71$K7A zTK}mAo317Qo9mxpW-6$Mku-8AdVb$a;sUj&Dlwv?*&cDNQ7J94MW-$d-<|>llDM?| zQn;T-G0FEIOmuqbb+ii5*6x{_nOS}vJvBZ)9-Wp}0-TAtxs*QpDZU;xuPUDr`M**L(u z+1CL5?i%P>jZ3A@)~Zi#K5X6fKkXaBIR)Q}GA~&LYvI{1zrlwwxRN7%9B1Z_z5ax!EV*B+93}PNTyK(3RX!Qb}0O zm;z_X&FM7^B+$V5Ll$SRlBVfp@Or?U2*1o9XX3&YndwR@Ei+s8e3UwvkqFo#2i9~A zYZy_+cXe7=fB6s30&@+f+*6NEtvP<*lGPO)$_bO4Oz6prO8T6Sq_!N>09Qw=YRNF^ z?jzHE`6~w)38K1BEp_w{{hm7;`Vmqr4kZ^C0dV30%SxEBJl9%OLn<5(=bt`cvy?oXV||i&w0H1++qt9|DlVs1!Nk3ba3z9eS?O_hzaw$$PO%psBhEFeIoRBgVq-FFAze!^;ku$p=D-F)@KIiePLhUPaAPFb>7`E zX#fFO=XdO%2Ve#ixH0S;-Y9(DtS1MbR|Ru?5~*R5=`O-jD2*Sk1lB#*eK|)ac#C~L zRrw^vP;0CxICa8T<(cKm5~}~wXJ!B~>B^^JN%}7YA|B_L^!YGJ zKmn$APSoHc(i^fnyvOHLDl1n`LZ*`0&_F$c#~tyylWD;`9f&kVRaJG5--sQU3F-LU zrwI@{f8pB@hUZV_N7`ofx#vG=od2O_AdS9BS+@BdaXzSl#FS}*K=ew5(7)><$|1)w zR#?NsgD*6+q_mklkLKCMOpiUebJ?_z+vQ*%jmxH5_PB6Av|ixFiTPvx&41JnRnRgC z1&V;jrt*r3sVRUP;{GQ*@n6c6GJ7h;^Ams=fUtBa<=`Qb^K2OMeUSc$NlRylrQklA z-G%$n>z2)4dfqusS^`iP4>eb*h!o+Q3rMc8;R+ejbS_z;AGK5&{NuzJ!CGzF%DIK| zvvRo&eVaY9z>R$xE$^+mBcT+NM|3?-a#LwK_aDM!<165Ee08)60WEw$2q_qI0!cY~ zCBgLWE>`q5lSA|1m_%r$Bj~%#@6KE-Cm3%2uigj2?UXiBCg*%89~MsHF9ZERJIcO> zlJ{y-w1(g!Sgt{8@kZF$2r(%W7yLQJM~@!OSKw-&Xxd(Mzu-Why+Etjbbri_Cddx?b-xrlNU zCFaJjKY?HRoKC5cM5z;NI5RV&c3jiVTU@uk9F@M2&Fo<#`but3>HgYS>FIUa?Qy09 z%FWrd6u}~ca-AlblpQeW?6sJTwv|LFNNGBW7jWK(E}Ib~2khG7AE z=9&qS!{djZ4Mi?7^S)!2J$;3J1fk0gH|dMWN$ZNZyNqPR_5lL&D_%4L9;G&+vc=~< zx90c?ojTd;4`ku{ax8ZXA-n>T?Ugl6lUEzQiY~x>8;iZ_Y zI@DIiqE?+xpk969@L${;Dk`l)*z5gFqjW+I`DyX_X^H8Nie;Q>(Z(1ZCE7dM>dr0y zKpf+7a`Wnq&Ae~!Q}S;n4;~?hMa|MYz_{)%^h*bOkQfpEy|-Dhl>cLIGnNw<%>6I- z_I%1SbZXle8sd5x?9l^>3-~676R0O9LT3Biay;Yy-rkyWNIkugPdDp@o{lIk&GD*! zy?uR(o?5^_65#aC^=4yZ19Wa50g>??2QRM{kbp{J%HDAZ3hDuG0mR_HV`KqK!LRdg z3c)9vdXAl#?zGHns^=`%qN_l_MhW_I?wbMH4@wuvhqC3|N2n3=7N{W;ff+P=Nyv?O z>Z(~be--d8{r>c1o7mu_GoQ{)Q zW@jg^05oB8S<;|8Z-$VVM?>WK3mBIS)>Obk03q$uQQhekY}wt*q%#09S6^pA=d#SW zW$EsV)nr7XS#;3!UV?eL+(dZDaL4R2o|Z%MIIbh9Ke^RA*&9ioZM#R8N$ILaqh{yW+u1zn#Q> zROMJWio1UQ_3HAm!zlSb5OrgBd9^`TGc1$EXE?mN(|8-mT4ixL(GMr#RjupAZi-c& z>kSbcX@A=`2(K%EMl*vnM}Y{X=3#_@TA-1goz3ieW(0?bxX;fJOlcmDemcXTWUPXl z@#KY*ar^z&H*hLB(5<*kulArlqjLyoy#|=#sX7v#Bwwt`j0@|PR`y%YULr3quOe&r zi=FR4e)#{bXIzgOU!$Lg@8`R&J5D4Y(9?H*{xzR@X8oq}?)V(>ukvLplTJP+D+v{#jw=&X|Aji4U|E=8t|kZcgJ`j_CwAp-Ifc0l;Ls>;%KEP+XUjcElxtJrEM% zpK9ae!FURVVjggd{5oHx9gH1&b#**SJURV7xUnq`f3xCU_Rl+UctdTnZMJa0?jdU# zSQiv#gn)wp7#5@6gI=dmxorX$iRPF7Q7pXrrLRt8pi}t2QONA6QK{_)J)c{IRsRW+ zIKm9#ZG3x*0SK?#cLQNP7eW%xTMTntF4eN}#nmkMyvm;xWM9aUO+H)>OGJ^Xcxq|v zdL_fNFa3iyHbO}JFWUHz#N-cH)9dz6P!ks)zZh~0wPV1(Ma!$dV-ga6tn7yC2z@sr z{e7W3#_sg4f)Yie(bC$%Vga51-_*A$#`m=P3jn}qu+!z{UqbF*d2{3P5*K%upJ70$ zN+xjWPz3<5&uJbn;}an)Uh9vNWLDAFHFXF&L8Kt+3z^ zkT#;&LuwP%^=l>{XA>A)o-A?|QbwKd51>U0J}Ve2UD!0Y#9N{o-t~K@?hpBwJ?~oR zzjqMa2mA3Z-nj6T!YD|jtpdbvkCsxIU+bW=h>}Nf%Inf1^ zB^GNSH7pH_$qgn884c-}nYBSUau;IngI}Px+&BCqu6xlEP9X9yLTy;OT42BCRoDbm&UM&~BNAL{*0F)pmatrvvq+Y&V8Rf}6WzZ~~c6 z>42}Jj1O%~5Wig(p+Yp+@6)fZSOna5x%1TfQh&oUvuSrL<9*nHDB?~N46B)XR-;;I z*Zm_JQ≤0}+4wDK1UbKFS8>THdFmt9{q1vnsL%sF|!kXW{+TVX>AGuArdcR2{!t z^(l9Gk1#N%Z*PH7CnXa#A?<$w0MEI8;judbRK#1y4xPeDw$Sd6*IVO=3=l}Tm+j&4 z5sQQbO>bojB*3To`*!_se=d;+Ob_V6+Bud09!HrN_c9>}s)K;l#5rl*F7|urftRCae@(DW0y^=fbJ>SijPBz81 zE15$LWVW8kRvhy-I0N=XA>bKd)qFXmE{Hy_U&{(kyr~k^u%3 z_dZ-Z?i{8x$|YF7nlQ zU(&;;o<1JHP3JMB7XLjdDp5|C{V`MY(MH({RGqK93-X~hx&#Dxa zS1)&4ek`oWx3gP61mUY$y#F~IH#)Y0U)6J^yl{13O51yesDUu1{C9|(YhFa%nEywJ zquluyWz4^*=&r%OumIXZ2aI>#M&yLSVXnf6@{!iv#N5K_GZXPcri=0RCHR0 z7K^tH7g@RqUl#$d_r&=-*u z44{TU3Jg%bRAcFr$Cfj8AALB7q5DIjdRB&aUV}?!dbC9MG|~zp-3v&UgfwE% zozhYQN=kPl-CYVuw{$BhrF3_9*Am~gdOvl)&&>C}JHw2_>L=5Q#!nhl9X!8(Z+6^+{hxEFP?lAT$3;6vF zr~Jq8N{`@s3E&EE5gR=oSsO)MCPT~{*Q7I*ttw?#48-gG4F)8eKu#>e<%s#ojGqU$ z7%~Hsrfv_B-tSK@7OdmgeMPTnI>x$EikdD!baBB3Ynjc@nSKxrzkD62zpypvoreeR zn!j7f5KVboMwk*bl~RR5eeL_x@T|^& zbX*3UPQVt~n8aU|->6X|h2QxkYAyz<(YKanJ%20T{D0fOF|g>sc^!W+)-?M-L_}=;+ii!JnOO$xP5*Uk2b)9wM-F$`jkf&OqNecY z9ISq`Z~iX?_2%2YPfbIZ}{23iIW$ZuyZ-0jM0@*YNbyubE< zG4P6Dx|b+WSY^Oj$)S>Oqc%FBAG9!t{<1vgo`+iq&Jk@H?ⅅ$vt9x{zRnonacqD z%vUFtmqI5jbV6q|1+S^s@^ZtxiQ(7w24 zbc>1)aewur%x?cdePmA$vBE5`j*$v*0U5G@xL{6Pb+vULjMk5{O8p- zSwaGaXr7YuKLT%ch0-2>=1Q3*pJGQILzO(<)vGNQ{n4>!g17xIcc#V<1ZoQ_wb_#1 zcH0J*wPGI}9}X2yosltg%qI}FG{9E1k+)#ut=YpSYE?^#M*MN=Q|Z|HCQD{T0s7!w zEwZUlC2syCRtf^~Oq>0qb;`RdQ=;qB?<%pX-ME2_7tkwx1(~j4o^XVn0lZqx{n6#%pNP`k2|mB$F|kN#5;^H))Rmei;w@crQnY(R`;@} zyMB+GR%aS496(-IsD9Odyp$-g)H21-*fS|;Iu~mM>OHRh{`+WYaog^GuKrxtcKMqu zxe_VZU%>hw#{+Z!@EvX@VHG~fvGrXHnY$WGQdgRnp{?CfG++&*v%jU6PY+$tulxo- zdRCay9$LtC{`sJ6+sMM;!7nFXHgx|NCF3v0kTAERy#m}BdY;msenV==j;fI-@v@*h z;~-Jh)hIXP6_%Ux2T6nFt?}^%K>H?@RvFmt04ujTz-azYbr1XPG1)WtwJST%tm+kGTz>IP-J);PxzO5XsI3|))t&UJ(Dk|Z0^Hq6Dveu8xRy89#Cop zl|5URbC1Kx2jcUnQ(0Uu!dPTgeJ#? zHKybfd?K%V2N7KJ`8J(-|v6VwybV`mLgipS1J2^1CJsN8h1>nj+#}hA@yvF0n4?w~TydnQC&aDFD%AfB7fp;xr3(et+mKp~B9pOR0;DSQQBr6k7 zMu*uQyWQijqW{4DE0QsPEG;i9s;F??|586d_Q+SgggAuFGR+TkPTMP5WLm*_@MkH% ze3A74nnBP^3w%z_03P?PjgnsKLoKe2mZMW{!pnski5Zic9fLJ%Kcw10N1Njj_n-;fxz1dX{T)PY(gf{zkqrVacAh zQ!Bcq&jcQAz8S`OIaIK9D*am~f}%LSC19g>Ci8fM@;DIOX0I6vZ1tW#Gujskwk4p2 z9N|p#(-pjWXT%QM%b!jem_Urz+dm}jxk?+N619s+u!pFmMXU124%spjO zfs&JqZ8@=xGF8$hmmA|Pg*g=SR^6|T!f%{z5|~q=8F3N-o0x}P9Y(NvBC+`$cGKcB z{r)R!Ak*NQ>4OlC%1Q~<*D&ly&J{47i*h)SAYOMyYGYOZz*UM{N;y51FPEDu$FVA% zE77XDfkI_n3Kx$;_n`_lv-&R;C7-fhS|RMcjt=Hkf3Hl-#^!WO(0FDSUl4n^6kL3j z#*IxvaXeBp;F}(p=7t3>l+T@@^Y=Qm%@@^hXQI4*)JH`%x$a@ScA+ERulJCjhN+fc z1^+DB+(}10ua(w4!EA?n*d?BDGWN4BE}p4Bxu4gV_mRz$a4iD@W%uVN6G@*exwaBL zyianrv?J@^qGnGX9Vi~LHm$xkuinnq;xt@Put~D4qn9T5BG`A_3n zjA~(`1-n~bZy8B;h-a8C93`l4tLcbb>w1AQx49Os#*d<4_~Yhp3db*jbj-Jl`=}o%U~_7uKJ^rJHZ{VgU@PSKLZa6 zO8!2)YYl=yr@#LGN0T?5WN24dC=_~`-}d%&pNlLk@p>gLx}ZMbj-QcD$iIsArJR^2 zFvZ>kt3>^_`fQBY5kmy)tHs57$s|^Re1hAjhKZKkseP7UR&qixH)Ku#E6UPVr15-O z4s3~KYqqAoF1-6-UDNmd;Pgsx=0Gmmax~JI$WCt0p9MLv{D~RC4{$PJ!d@w@8=zeb zhGb!GEo7Nk^SK!8y-np}ehFi6rpN&$1Jb}j?`)M}IfLdarh{!yZ>xPoUEwANQ7Q*q z>vg(?=o)V>as*Znvf4{tl!rmd`B^QcpgDVHPrsbg+x3JmlM>;^?cjtq%bZr@p|V`i zx29nWDLI~(DnTN2SV1E!b|~HgxhJL0r8G$lRK1V4j*q0)@d-f%$6zsm_Y@4;9V{bHDf+%s#`^Bl-*-A~rC@^{713NImkF7+aj`&wyKEnNy+jx*pf1P;Nno|96 zT@YQSQD;pi3BXD>(DOo6=a>JWiw3eC)dXBl^0uabpv-(qn8YRs+X~;NKkdjz%sQF- zB48n*ez8r9p(JFmz4zUGI*tYTMdw{g)|sM^z~T~zPyy;8r+&*-)%=JOmijY9ZB$XY z9b%tpISMa&@8yiklF7 zA{G?<>7dnGZhR_U97X)sw%f2MFFo4oQ?bA=wSQzzi>iT z;x080e+50$ghqZ*kqlYG#(j;xzNj{tE-uKRk{FLezfhgLSP% zL@p6&I~`6-w?rBzBczGyIN(5^|02=m4o_pI^X?%ydF{%Vi#MHBS;6lU(W5%n^9cVU zc~IqH+cj^Zsl=n5!{fpA=}YPg*oPD{$#uW;?_w?KsXOY87cysPpDwIf1OU;(bg1CW ztp|F#R&$4&?{_b~Xhx~U_7Z9fXj1PZYHop%?x7Z}V6`-7>;0ZbK@{ z=nC(HplHH67_w_Vk9)91s{d<%k+~_0E>Vv~0Hc?kxcuy#`d^JXMG~qWf(&x>>q7bi z4ZVf!7C<&5f{c{)hYXJxyxbead&LZFub%G)LR?kq?qMoTDWc4UV-qAS$HXRUVybtX zj%j@Xd(<~={+)HNps+*xxlKJI&Sh>*^g+2!&yS=m7l3}z7X;%E>hhqYd5VykVihN` z7$D~#P-dL#b&l7r7vbH<*JovkazpoY5%}l~3(=XJy=1vN~!NgQ+fqQq?@h+qrzVqIa6*%5`W4DR+-CF>=wVqC4 zYV!oQ#wP3ApybS@R}S!SDd!&3-bzCEDSpwAf?`$joqlTJ~Q4!QPEi)08EaNB>kvjk;AA z0Bs&K8pz>MQy0tw8T{`8r(5I2Qpi=>h=Q(av}6#mpS|oKpsZmaO<-H-5rYW2;1FWo z2fMbXyYLIKcf(=TUGeW2V6BCis(->FHJhU-d943Nfj}?X+s5}M0s(BKG#%Y%J&Wk6 zFwGM~ara;vBO>p8&!C;a6Q8~VLlcG(*97|*FO|Mk2UuCC-2B+aVjdzM;Ccrw7N zrC6(P)SLdv{STFbl;wsh+Jftvd-Wu1{-g@+#AaTeMekS=oI9 z1A~L}^KsW6DOdpRzp^D*mjVLsCfMWD+lxmr7V%Mw3X)NmC8OLhI4Js`@1a(wqCYDT zYuDd=QK#XORKu8QLxhzoT^m826Ku6NMxRQ&r(k65Qs1`t!d^1dmXcxJ6Nz2oY`~VPd3p3 zkL^MV=Ib}&#a=$ZCxcnjn4 DDtkmYd-$VB3sDVlBbCA=Ly+WEcr+a?57Sy3T5e- z53{WR1xNa)>IVx6{;ujQFlXx1fay*L+gplOqHX>qV3-7jyG{U`7vBf;Bqh;@>R+Z#W)3$Y@&hwP;?KzotD5zy6Y}+1oCy-b# z9=GV9Q^iw)^#td?v`zCyk??VKGeV4UioZ1;x^!JQYn=WBH`v+JM&BZqUN3`khhh0V z9rS&ylcYQn?0QUi7ula+8@bL}fx+mO5EbG3syEWJjBx(Tc;D;VH*OT5j=*q3V^bZH z9l|UB-U%61KFUi%UWn#{}x8wJ>N=e~2`!H8qZhmdZ&Gg6a-;5?lz4phgUi<9sU_EPMlvI}gY?{ll1 zb%t8MqbIY74^O5Q!{eN{&U-gRO2V<;g#ry%gZ&UuLqoW>wx{EmlFKdjOGvirrLR6G@d;9a* zil3dOUb|QH`^MVc8MdhG%f<_1kW46{ohM1cUuG@p!heRAKslE74|!~sKWBG6!RGBG zVnhFE5*feb!(*Dw;F`mljX671!y81;)_}mlZwWQB{3YNT|E-m%zH!$n6?-qCX6kr} z=di<#NT3!;8P4TS?fa|HuFP^&Rn2C{NBOVJ)3lS#(X!|t^~9yi;Ndx}2n%|}t#j1J z+N#=W`6e5E(6?#kH9Qqx1plU_nBr)#BorC!sJH@gGVj?T=xa%m>5{P+6`0)M#6rhj_On?f7JmL(oEI~921O!C)B^m;qb(}(Mc zWpJq+wINfMp`s$=h!@KpI$nm8Q#z0H=;_5YB2#b^b#)1A4qTasoF9X&a6avWyIaec z*GfZ#(SE@P1QnNj^RK^pE@as;yR&uSPIGzW2xEuU35}#dNU0 z&%3Sm9@njJM#uFj7^_VE@Ik*2mhtuz3Yt%{#YyXwMTX z$qViiZv?J7%60DJWca@_#a5T5ks~9_LBJeH6*`&dN58ZgCTG?l2=a7`DP~lVadvxA zn2s%9BIzY#sascJIWE?OTr}G(ulkaKMWk7}J}9VY1YD)%L21URL6xaS@`=WcUwF4o zJ;+T_aL9{(gw(n!Fe!gU)i`9EWlz0iUr@hGHl?OE1=tf;I6s4QVxysm$K0D#t0^x_ z1MiEKHRXc{JCwzlMUF&QTdQkOz_?*lvHcOEdw~o@B*jx&=-4#-qUBOPe9Qi-=2{m{ z<48;Hjg8j7@+=wI{QH|f*ROJWUNpf)xZgBbKBZUg-HlaaSLi1vK$<}A3Xr0QcviKigMoyyRYA1?# zHiHOU^z*Rj4Y{rJ*GtPSgzD5Gz%G<_(6zeeAYde2-JU$0PSx`bvKdX<(A?Zr!>q4G z^KZa9#XMgvM8C2)!QsQO*^SLPh1}2Lu@|;JfIOpl+-?8UUUp2EJ7uBuSF*mSR|X)- zSs_6RR0(*Ucl@Z1txMbT0T~gz*a>QRNjPF;ePS)KPO(SfXBl1TZaY)ZfuF_odr&9$ z)67Oal~>o+>qb?(0|QO3*f+~5>@hTq+^q1RueRbXY|k%?Rj12X*D0w5929!>28hPW zlCY!8(lEc5E;{~K&yY;q|+ z!yUrDe2b=0`+6T}gYfn;ykCs-p*;>dRNiK`mvC}I*h{OrH_lC!DVk0|Ol%GYu)XCi z8?E*Fiu`cptNonki31e!x4q5p9uxV#m(N>Tj*FKd_Gk-6vDONPXG(HcXfPs%s5u*O{zbLNoA3j-o24kO&oh( zVm~b|DmHT{w(I3{@z|MQ@6M^o@^`jThnElIapd~fF*QIR0_)VWEDYIFWZ?3+?U zat6pjPh)Tu`rfliRIftM+AR?I9ZTMYAeyFBnQ|#CT!TT%ps7EI2rRIT?w{t&2;Kb; z6WsGG??2$~C-T*~J0+aweP&gqqr`c~t|YldjfVrOjvJS$DA9%kh`e;o4&6*h>Q{o1Hg1wg#V;Gik7`%Bun__v-Y`|5qk`h zz>hgcB(Nb2y#-aJOlWf_?VW6EX_9NXxy2`Rx;kp<2oR_8o2`SW)-TmEqEbp8-?f6)alsV>(YISE#?CchFyJWK&2{CqQVmdy<*s)Q<-*;%G9_w$f~ zLZmbT8d%JP#E?HpIgZ3`uu=9%*c8iamK7Q+c#gq(q&Bh2a%^Sa|Whm z8TG*Xpc=JRf&QJx(5uQrefDZsu??aTC^&S6|Mr8uIqazY~f|U$zBEbu+hv%-KOly>_e*Xx_PQxbtv*P$# zcM4tYa(uQ9s~6@Dvv%0r87m7mrZpv*&)eCOsom;cq(NZo&2}2rVjqS4ZlMnbHOwPr$GzK_ZeuPUP>vh>*e0=) z?J3gVKq4tS1gvR}~;LgW)t(QRiH6c_p7+`_8s((b}{sl^u#8tokLyIbnTkJ;A62;D)2I7@%rRQ&juk`&YLB%Nc z2Yl6+6s1UPR*HFPtI;urZX8n_iwQSTBK>*SJ<9Ap5xnVJd)DUW_qc#|PlecypHGc@ z7N$R-vM8awN11(R1?q+GdDW~@^=3Hjy)4DBs8eSz_c!*pdERp5Y28?SBA7tNq&vrI zJ9m`nT=O?IoLXRYVLPbc@QN0zW#W8s4aK^wH;xwYtZ7Mjqxtk%QoZLcNefjEVfUoO zUGE2vuF~CL$X7vVQe5KsFaFa?ml48jNw04nA0{(7pWb+$#8Vyi5PM;GX!ck4JB2gd#LaA+G7J~*;A{q4dVzZewW_rl$P6H`pPdrW#R zN+|Zz^8%r(Dku>OXWDBLy$Mw+NDhT>9;#pYso z`s3DKwTwl}>8w$x<^kD|o%Vb=*_aR}#T=g)vhl5(xn8Qnn

N3M9!d45rArCyF9g zjA6TE_7Atbgr`3pw^*TUtnsx*E2Juwyaiizm#nnZv>McM8@NjQ(WIJZF$d?v<$V|D z%ym@QAteGtx6NxEz182S@iitq+nrTo4odrb%d7nLf$b^DsK15iY+Vu8SG7w zjTd~Ul|v%u=YZTfe=oF2ZQuIM1rXhXz4rmEvAcVh77U83ohjp~ei?T>_%^J2Lp&or z?lcGc(l56jDOl%es4C{=vA=R$^d@6phpbmZh?fVrETlYt#99!wPfG{~P6InrePe-& ztrUaE(-L`ly9_bhdvmwV$4PpeqBVmF)-K~pA8c!t>D^64$aHP#x?8mv?+IS+zD&Kk zh)BG?K))%lb7iS7++`-zuNvAHKs%g~raAnf{pfHXwkhcr{-za(C;T_s~CYD{ym;Uidl6 zKYjB`dKR0UM5;MJ<`sdh=|xUPb;0{2c*;xCcZi#K4FOAq({df3x8*ydN$3{#L`INk z09mp6wJ}@!`E>mIZk6+Vjsesl`99)BPR$%lmzlWihe86pA_-p1c6me_qpC*N0(8Rl z+OzND#g;@`X1oMK;g_?!)EAQWc?(;AFm!J3LH4bW&$UPs>8WKG71*MnBKsop?Wr>j+AnVe9MRV=Q@;U6+G5pBW7R1y%e*`4?ey$`X$JouAgc zbSGYC`Qz1VIZwtpV-ye5mHEro+)asDop5_s#u1s=UpVf84cnSalZeYn}5JEDtd6^UdEw425z{zwddGf6QGGdzR+ zME)`LSJb~@*tKX3S5Aq9hC5jssXK{AyPKZ+Q74gij}_3)&WI3AYY4oLKF4@PAw?0} zo@y9hudlv&=BkfM!F*{)8sNZdr}B;)rM=}Hi;Cmet20dH?Q)$cq<31C$2Ox&SflWW zXb;^#47YC$ed58jj-+Lg9R-mIGDNpB5B2^&q?DgxNgzc zELb+1cerKzm6i*#R~N@xa=%!{je2^ok7B+ioOkPKq9H})sS8TkpU~L}k4$LU!{erU}ATUT6wCCa+uL?oSLvn>E zOtRI}n1t?m>+>3W7gKsap2kcF3MV_5y^}4Gi)LC`x4^hB|C9>dO4}}asyY~CJy-St z26%9o54BqTr@ot90YDS;50~HVzeA5DP3}x;gud19WD*TJ415c0Z04W)CU{XcG-3{d zfucb~l6rohLa&yzO!!0F{RGES5{n(5{j@c_NU4VubN6${js<8mmubbD`U};=#n!{& zYwu!CHFA3m!htM7+A1}(TE}^%7waM;B+~~H5=%?VNf>G0GqCqHgNqr3ZDMxS;YGZf z#QjAHv$|vlHXv(~DH}{!FuqP{QczOks=8ijPAg}HW?m&;eZasG4UaKfUMKd=J_?pf zK)f0bYdb2$B4uu%MjV9oL5vw*_;Fb0KfzAdP4l%moJik-CeYHBB*1mIRyZfL9ofZa zINHtLT5<|IltWf1)-i2eQT5)<>i7+30HFOP<9K(`eMh60!G%a^N{uVHS@MoVBHK<4 zjM&jkONSwWg_&kDR0J-1Db?k_fU)ov54|zTG=KL zsFZ4RtF6Kx`T?|v1KNUCk9=D71*^cl>9*m})pd-E8-608l(f)RtiIUtV#{779f!U&gbh>w%t5|C*$evZvXsx1*({zlx_;uj7;CCAMq3PWD*@^w2grdc#)c;YDNf`mmKmr}jPf z@a%eEfi5aGp=4)x$a1G z>9o2oW6#^->g08JbFL=IVO(&Tba&fhhVYHIR7lc2d@Z{4rmH5*oqR+ZSVp9U z2=P;zEc5nb=Le7&cRR_Yu0b8h13`vrF5!zxXBjCu45EowffqD_-7=w!PnjOMr7u?V ze`8UG7P?W}=H99=o3bGG+mt^b{6!-ptDZ248{w8@K#Dkk$i57HxzHpMram2gCx!x@ z{f1!kMrOBdGy7G7z^*jWgmh+6IYhw`lu5TAmF=+MvDYU+DF?P&jEK6Lw;}VKArdAi z6EPl5`!T1CrU8ZeF|lH?+MHNPEF8P}PPsWsv?4**bCU>>;kOQBA8T!-L}tzFD}trk zZ|v%ZTk};IG_PMBo0`#Xe&-6EcYMmz4m!rFtvy7Sm)(Ps-8-S6y6WBXtECH}%PzgG zF8hPqYCVJ9L_RMf$ZPEO=?x0EZR&glVw7q~CgsekNo2#@y$=9g1$3r*THSn<%yBVW zCZ!xN%27i2cD@!jhD?Wzt7hdhD9f$rIrdU#|5?D&@__qxVw zGJ@>_JM!A1F%OKbnL+)>_XUwPxDr*STa@=Wo9}Y@vPCXX4S#ZLB0qfoLBdO_^DTJU^5foxx>K!eT)TRvA_nZ1yj5+Ne_e)5lZld9x4DteO>bF!)7`+3^* z5c`+7(m#}l&~UMm?yv@~9R*(spRnxdMhAGhp9+AYsCd)rqnwH$73HVrB221vN(}Q( zZFVBd(RU@Cex5g(CR4TOkMHF-8qhe-7;6R?ii%0#s+(%>mPR1e?bulgUgW0)>j(ID ztb%+)#Y59yr}U#}kMAXsQFi$tkzQ+uh8uPEy0S9rPe8dXN{7Mxrjw zeUo9+Oo%JJyr#B&dx(KIVoc%+3bmVU>44;ZYj%f@B!8%D5QP;ehH5-KWSLOSsv_Y; zwBKM>(}ZHk)olnGi$d1Y1Tsqs1na409)zcp(-6gpS&T^yDR7)#et{cQft zROgY?M@dHwZ!^|g<61lt1CaHM2-ka`sRpPHaNRZwn=`~AS!Z7bH@;%5@5X#Y!jM6- zO?Qv^hIZB4*epIWhvDc@uVhg9l1-bo;{Cn4xi|~Xx;1+TS(s(P`cj<6x?Tpa*yF*( z1+9WE!but?W)d1R2;kk=-JlQvb#Q3YOWwSv0QRJ6*%I`2dFkN5gNuu6y_RH3&0KUV z5IbTG(v%%jRTegL&g&eH*Qh8wE~w-L51(U_O??&kSR93UpH?%G%PuTr*Z&kV6CEc( zzt3mizK}IZmBUfn(e0>*9%MNoD42wqdgTMMA!7yh%L6A{q$>{20gz0Y3+QJ3>Rdx7 zA2qVN{oDfyhLn)(qeEQBLK_;uoM_WTVg66KJ&R( z!Q3jmaRgesDjr~EM@OR*bX!#5)~NY`UwT`xhdzCLe)#NTiY6wHZ-f8R*)VDzr8lG} z2FYDV9C2hp5kUvn$o9oc1kRKdwdG}biigF*w^^epBlh2s>2Zp9GrpHo-dHh>Pjy^4 zcFYSQ!(&T6^3A#YCs>j-rS=ZGLnL$X@%P)>b?**=Ql2 z@Kp#jmGha&WOrRh(%On|DgS`0EHP`4-z%rSFHDtToxT%F}(c2@8Q9LjDjA%bWDKNZ} zZ>4tP;HM^IX&`3zBMnk8k&aaSNF{U&KYUT>+XzSf*)5liypX#`FF>(?xP;Mc2`CX% z_k1vyU3G3EhE+2~Jxu5uHUr^x_?KWT5HJtz#cEuiW{b{nkF~r27sW44&r{nnKHVB<_f-09+5MChTo5KtsXq>|?F5AKSpjvWwZT`GjH% zC4B7iH-_*79xge+Nfen~l%m5tSaxm}yq$Bera5KjNhYO|d71qdu;Yb7hoq8dv6AnvQ6C+UD z<%|jw9b{(>$2(F zv6rhMkTS>YdypbmNTQH0?=DRnPM<`yq;ab(fh%R|SeYXA<(;%HPTlY}8mC%ZMi^ee-tcdFhk55A`Ww0&z?Dc+yC z(fX~u-CWlLFS3;mYsPwH%T$+boMx9m3b z)jO<8h))?r9wXLOe^a#&`glWAwsCdEb=f<6bDR!+p^95h&t=(MYaA_g-+Vte!$YZ# zNlsw*NmH&d-|k0z#>r1Yno9aw@zfBse2AM)Or3iF)TSXRD%UH=R}peyDPj<`dok7f z+`=t2=s%u+*zw|?K6_IglB2xTC6G(WQ*dTO?>M^4MB;Wn>v#_vyVDQNKH=WX`Jqc= zlS_l;sQqTG?!|bYffJJf$=+T2iuIcUB8QIn>?G)}^K^4W4KA<2W#X!knp zTWiukVxF{%)0WmwHZRVe1Z&3ojv;k@REr?uzgn+bA@$8kT=pX+h;<(w*?!oYDI;zj zu?D?Rzrb-liezGWTyAncYf-X>Xui-QkZCoBdq70g14$&O?m=2b;CdLA6@#N(&m}a3dGfolA0om@2)U`3$KtbHsk?nxt4DC-I^V(6O z$w(uDW(9{r-Egx}?vt{PkdK)l{?eOrU&-K^33)AbugW_#?6jyPdO#-D*RSL?$t&B9 z3?Y*w32}^5O}^c24G7(_z`-|8nxN;EZ7;ejd3hA>?qU_j^r1QGYK4rsla`HEzu~)W z@nYxUV=iHprJ;JgW)Kitynq4{`NT0r6<0EaNpA0>7M;W2#Y;ciP}SjyD7FLErr{qu zrgPN9_jn@9rR2hftc_?WVS(0I;kJxnv(=S;6>ItwIZ=B)B-Fs0a6H!xA3xhIM@BJW zm9$tAI4V=`w0B9A&d3{__)H>-wZ4p+b83mj<8;5HB1ytJY+>qrqfcP*V=f(drOFuQ z?RAkHA^U+1M-5dzD4jMSR^-PKbpE|tH%)~cxo+DEk8CMoE{ZJ5=sJb=!KyP&eLgKo z^!ziEPzh`d=#R%-FYUWxDqrPsD2sP?!lkJurdl19WAA|CIQ~l!RWw-E1O57g;bNY=KzPWXF%a#sU*>SmkG9GN~~JZ zY&niAcHC!2qsZ4+#4Y<2fl)Zga zw&p21l+yZ&7Y?X_9BAQN1QFftGCi{JY(JBHAh*83X`M~+#?V7T(SySjB;nhBu#n6~ zqyPj&6<)Csv72*NdXCYr4g0(hs#Fm_&kiCG>K}TIrIm?_sFo;4zZxK(9v<@Yu}%;? zR$1n@BFKUjSf4yj2!bwzBotU4eVh4pit@011H4le3WXr*9j(hR{hU$S(a0f)X*Eu@ zTVTT^08uks47tE!m>0}o+XzUL)k9>HM{aJQ;7craf}@d8S^KDfP1d1?wZ5v7fB9 zGgO1$4k5i#=_y>qGuJ#^?4$S~mfLfnxq=d-~XAyQaV$ zH$ts>rohJgKr<=sC(>UzPcTR1pPV_JFK2$4qRI-t^FwY~SSwJgCtE%p#+GT;tO;<- z!-kV-{ai#7)IEM4LOrsM*g7=RHNj~qrt$C!BL@6|@ zxf(#6=EJ{mBNCzhksh_nuK-eZWaSBSoNdES(b3POus?$P2dpu5v34idk&l&{zhZgX zkSq0tCs4(%&htut6qUXsxsq9q<94>>C|G7sDfox&Ijv*QYfQ$krg}G6PUiOyI_p~P zmc3q7_OD`ZCu{*3$1pshJu(=9=_NLNDkmT$k3u(_|9d3k^Rdg}eD^5ODvCP%sd=%Q zo^LKX`$$q>ES|^Rc^abnzRe~+KqVz|B{rl)1auCGE3fr`p#1{)1KN!?Thm*!Y{-|s zxiVf0C!~R`POop}ote*EX{8B0+$DLxf<~L(92RM@7WtQ{4JI#)bi__=WbKM>R=sbU ztw|VO7R?CP8u6h3*$xt<&l8`u^&VmOd|KR+48OPm(5l+EDvq<}m%!9gFiA2$&!Nc@ zqQPZFY)QJ$um3FlJNQ8=4kI$v8{suEc=i&Q?1v7sKMRg&8*yZ6J1)CG0TU#dL+%qV zgy2{Pecv5MS;!VnQ+?BoI!NKOz78P&w>mH*bT4%_5*--@GsEP);sT_e>bNzffSD(h zMX2mswv`a0Gb_<=$1p4+Ob#;*E%p3K*_I~dvU2A2`Z(hzBa$(7m<;qaX9p%b;9CAuJ~>f46fOP4P*q5C|B?~d@}6`AFqup z$n_2LQ8uBkrz@`D)T_KHywDnh{G8umU^h#muS{mhxTlG zD1PKEp{4&WCi| z^9>x_|7B>$|5B5S>WkhrRFC6DKo5se4;OKY7|-^T?X8Gl5icpE1!xOL{dKRYy>)d~AvFbs+Q{no9SEsOd84j5Iq75okunf#DO3{I0lWtxCIF#gwVVzfcxrw+;7zDOtdS`^T0)x1scMxpmdt{6N)a=5H@v$cygcf@i9# zCFR@%960nF>M0vQSmlX>SnXEoNC?64=@Y%!#Rowr{qMQ0(9Q+jXoh%F1lwru{rzz( z2g+U|H4z-6ajsp@g{0OOZ1C&1TKm@4^@o=Nr@yeofeAcTz$-)#dBBZugGZ_5x7!7P zsL^0_N`ikj><5L|CdW0%w;t~{RydIc`qSx50Ch z;p4f62I2Khm<4AA>3>}7|2Ee=M>ZJJAk%p26-PHJid z{0geVAwNkBPO6Nj>J5IY)FZZ#7UIqOWgJi8{wdPK06lbVD7W=@HqovUmt3+Qe|<1O z*)j`QXnC(Owa;`@?mZ3ysR`g_dH!!En0_xG)NXy5t9W?i!H>bgZ$NNj<(q0aP`DJ) zBZ66i;OT*XAaP*$l@k^9;uisU-V=H9iZOVutFEnThP_ba*7~9~wsNc0sU6kVe=<4d zcN4M}mEngGO?G;e?UH4p5=-rycPK6$@H&CXIb^v)aKKMano|SkdHsOU-rs}k&j*f7 zOSAhmLTI=>=NGLv0O6fxn!7R!_fQ74&a^?+vN{(0TJFhIRZ4F}S2CYILA0ZHc%*2l zN1m{Gd?L(n^$}xiFpU*>R58Ej$%TpW9~}RZS@B>;d-q9;2nrSLVP&5(_AK z9N`Oa0;&j)D2ho;3>p-Jrp#b|=jc%3tBou^=uV{# zD3xu)K667CJC%cP*7}kNdEO<0iM%e*-5NzTwE&A!fMQS;Hl7SgGwOBZBe_>z!t?$c8hxr)M+m`kMK9|x z2nm^{JAXkBE!M760>6DIF}D=fTal{`8t_`39QCp-%X?noRa92~YI1dKszE6fae6u3 zpAQUjdoFK@*5=AJOqctAW`I?kaOABmUudON85UW6tP zG&a70B^%zaD}v+->|ve_Z2M1O0h^feoWtLNn`9ou=3=wu(ceyURdbd)m#@cFtbcya z$n)j((NLDKK*RLrvtU|U;4_6i@+5(_C9H%$M=cL7u^}xZ zZpp{u>EDli*UPMgEQYcrT|$aF4ae;!YSQUfO?q6w6h)U1!H(HW?{)0KgMw(x-_cjt zj}B{3`mNgn{~Uq**6P7N>%WCAe}1#)vfnbFiNnThu(8E$$dPl+_YeO+^4>D2uBd4f z4IU&A+$}&L1b5d2cXyWr3370kAi*WLySqCCIXJ=Hg1hTMW|O>M&8?~Vs_wm2^J~^0 zpo+bh_3rM~tNVEv6+l#chpmF99c3MDtvK(5PYT?)h)VQoaJ#FV=Nm?pOP*6N8OLzd zBsxWMPJlWq*_3Hy%lno2gH5%gRnJG4xhIsUpx&AzJ&=<}Ea>WKrN)MEj1NuaMzbtv zd6gj@lv4C$3?%u=PWg0b9xmobdx7p-^z<_>Jl2^}Xs3p5b7nvcm0Y+nlhqbG?+oNn z7|rO(sJ|oL0MM}j*$@E)*C6h);S4AaYD?@yuDl=kF~OxKPM!FefB$Vxr)Ta8$i{S? z0%|eP?T;W0GnrvK$R8>B_@Hj~k1Xsxz{{a<^&7l@tD}DO&fhy0i~m(lR^a?2JN;BI z-Ftp`kRfk7D4ZU=k&+q{ssRC2#ICwuTPyb%rXO*Yd6oWx-iQO(uUPf4`F1$eJ;CoQ z2$Lm7k*~dL!i;h4>JXZMN!hV`6+ZL$?jT39@Wd_k>+5p^snzc;($Oil>{B8Q(#!2F$ajd5${&a=Y zjxw<1Lj$f^GgSizf%*3LHwJl5a zf)Q`Vm`2gqy?0zjubA{W*`hBxGZTmY=0sw@S_Esep8GV%UWf;dtMgr4^XaS+YODYAXkyGP8! znS+B)JVinPoJUbR7ZX-esor(tN}xI{d7%^@jkT(ly5udJ_O;Ox8$w+^du-hlak|!! zGr-kAY(EZxjn(Byfd$ex8u+)@?s{1(twu|RH@~5?AB;NPq|%v;R=Q?;%RQk(fsD{-+R9n@wso_uh7~^p^F}OG68ExIleH-q%A4*tHda9A4cp16_9uB z>^a{s!wQe)JTNtWVzS$L@mV=($l9MHFCgmgAkf2r|KCZ0eYo7DeMIDRq`_cv0o@TvkKAaJ)z`T#)7xchp z02KH2_%aw%?4!`r(j;>YI3*`9pR2sFLKaEYW4JU!&?f`4o>bgw62nvzal(S71?qWN zx{eH7{WnJHzY5iagez@Q#A9C1fNlbJLi3qVvKJXzHx1*%V>jk>1os|{$ktoj4=8ot z?M%fGgY!_YE#1;|*Y-c`w9eUgfBx00<%%`eFtX`Z#x~YO0x*@nkF}51L){{uUM&sE zPp(OR8PQ(_g2u|Q)=yvKA?Y}ep=uGdrB`Yg|HqyVF=w!4E^ZG*NB)_CZS6&%f*6R+ zSM`-hiq$l^(iuzFb4%lm^=J0n?MvE?rxhR`Ypp8pxU=r-w_7cE)#e*;6d(8Yozr%f zwu{_Jm?|(W?ogPD_Yh8wN9=yRNqXc7HZdkxDy92mSFFz_x7`Bb#^a!FuKZ||bHq@RYgF96% z{_9#4s>XJCj~x0Y2W|LxL8&d{7BsXNjViyC8c`3=!A<}? zuYAZcO$2n|@LrZ4yxVZsMDYus&SD^(^DwhOP0>MaQlf8N{~s#=tuLD+{DmGgTWv%& zyU(={5gqS^VbX?{--wxDXev{X(b9T(Has%@{%s|PbUc>{xg{bK&y4OLFn(|y9MQ`l zmtQC#fMWfA(HWk$7YO1_=)Ze=)D=T#vL{OgFg0Br`T^hiLA#!%lL(!W`MeqZi!(m` z_rXHlMqJEdOjdv^l^9fYnAI{>$>q{D8<_0fUGpui%Q4U!01l%Y2oMufegS+QRq7 ztS*=bo9v})-T$l)D6VkaWeyGz;O@dP^z)KccPo?|#tU*)LN`h~a%7Zg)VF7!+BDsD zn^ywJqAYLfj4Cg)b?DlLb<iz!nuUt~nHm}pa+H5wu;>-d+m_oHq8|5gfh z{y~ufvz7hz|H4uG-@fC26}rEl!~f}T1eoN1|Mj`3;$L#GkGE6gap~wpbW?5TSblls z=7c&?@q#7@v^rT7TDD*L{H}?RJ=wy-(qbbd_x>YI0e(m{ZU-1IF z`qH#W0o_H;?@i6{cu%xkEthG-lnqVs`$Hxs4}ybQWPhi`Cp<_qyz}Q-vJFGNp@Y9m z_vsTo9KdIxprREv<|QwrfS?cSbgGEvy}HoEApKFg%JEsvYOV&Z1NWQo^*SAvI>}50 zhkl`ry2E*-n2arMPvDKvSY_e9(06(obmAWTe`I!lsY-}oS|X3dwx49Mt%Aq2g5Crq z&1ttHoHF<&*hG6J)Iodrqi+%i3Z2;Al25rf1gg7o6^Dsu%9}qJuKh@4_IS+$f4d*~ zUrRv*M6hBh^003iC`dE%4}ZxgX%=4cpxk10Evl!Zl^FOpoCv!>j)D?0&JNvQoifaj zS`&8^1JwXa*pEEmOl>fOMZBnr0amtO_EbGx_v;(9*^?JaPoNcdWr`r%u6@C8*GLGJ zSGEVTSQSp#KRaED15iA_pdS@}F$JgV*FyH5OAL;Pa?F3hoR9Ju=07692*d@M06LDU9b3d~(T8y=HlY*8 zGJvx@$vvdf_yqlshK-~TblskFdd3^(o4dg!>uWJq)Zz#IPC;W9qIz zUPD2Lu}0`4oQ7bi&_kB`dk^-C&ida>ELs480aLo130ttJSuKZME?NC_Jqb#Pq-)~J zO>f(rpLMxrm?j-}@uz@SN5GdmapZ}W_$Q=w8;Pj4;%FF36vn8wur0KqQDY#6j@x=x{rrV12S*LKD^M+Km{BDeptUV` ziMAP&xF;@h53bQ;LG+F0i0-I<^3${PamIh|96#&Jgk~QC*wb&>rJ+#*B<8e&S1&A} z5vv_U{E%1rMAIK1(a0$ap#|EhfKBqtuI{7yiE{a-r++uv;(d2;Avzubx5|j^KcUKg z;YzRmN#7p@uxkQ!%i#bO$JNJCSD?=G1j7Y_Hzpvyjv4hPBU9!o$`tnsf9`805*tb= zQQ*2__c&*1g;&78&yEkU1?Pps%b#7I8;CXHTajCi&e^!mug`z|KF&(~&4^Ke65Lam zzTS8lj#hOhMC;+#@Qa$ML|8a53Y8p>gqz5?C8GE4an#)Ch2jEeXaK`x#E+0c+S0j3 zLg^T%KR~q;O+}$dMzDd*p$$Cx`|D7lFPRx$4MnxB7@X~~-$}g~6|6ISbaxk7(fo~X z40R1@ok-`)u3JDBk;-<8&!J3ZH*9S||At!%_!GpS>QC8#@GbMg?eiZm16Z*qkM+t8 zK3U7%FECJ9SnkoyysG?4NJ^)Wl~qMG&HPo>6qPuDR<6{y<~Ms|$%^zp z0-=vFtY&K~K>g^QjTAo#UZA3;YK%(E2#)0N{!Sd^wA)rE83UfH)If>A3j;)Vy=RoV zcq0DaOQyI0*(*6aPA0wuS36b`SL*c{JDkXIIlG{Y60W>aB!AjQUbyE!ICI_Jxure$ zcu2oeax=4av=zRR)u!qr3`g*8cxThPmkS_P1O@i){zn3%`2pBk)jJE%^ue07;klJG zl~-%6=#DTbf+zQyaCq&jPyAA}I@DpMYFm*ZIm^>#KsnmwE>Up*nvlccZ^gK(!`)f* zEMgHmksVB?@&m3q*}ub`S^+?c%0>a!Z{4qE-VSoBriy@}| zWYRq?6cJgdBA5)w_6l1`^H*_y;p^NM6&}~Sh2892^u}$4u@67eG3M3xHkrIcJ_)MQ z?fbKt7|YCO!PN}wI9~BDVpm5DtZ7Q6<*K4ba&is{p*`AuTlg#$+p8CNtB2_2w}eOG zW$xE&-hwur4TSYwLj|y>4894@RcAE96%15`m#bmRREt;QE$@W`(8np5SS)g-us-KIhYmYN~@Ot>OD*lPf(YKTLL#D_PH}V*ENu7AaYD@Slq=i?2m$T6N zry9xRgx7*EV%HqBI0h!1407)NYw!*ln%0;|AotE53F~gI-xK7~J^WbL34g+6bkf!3 zW@ov5zZ81W$k-Fo{L-pOivr#m3j@^u!cY;M01{v_8UGI1OBvqwgDCB907ONjLn$Fa z{ez!~^LlNxxDP6CR6Xw-h}6=Kk1f_QX#`Xn{H~hr`F-wjEK}Yrmc#i;?#(})vK%DlBoBo=@XJB+>sjl%sTT5E_3D3l4HHVf~JF80X9$t`{*+P8vo$k$ji z?hCI@so(uGU0EecxLE1mwz(n!ZzHJ%60(kO$*|o+EzWtqBiyZLAqW0>KwrKj0b-8m zN*DEO1=bye0Ar7r0m5~{R@Y+1TLEHJ0J&DFqh{U6&zPwRY$9{at*M%QdT~AZABkWm zeR*~LvjqO}JrnjS@1`NwW6u{I&LYNo93rtl*KK{q8O28HgC**bJ#%vrG(|K;7jy0o zjB1BEz9;qGK@?l!m*P|J@9-)6$%bf5;JY(N{g)Vu{^`nr@_5iXGrg4)+T#~E8m?}Ki{tu#t$Q(in}AdZRr(pwazL+eo+R_Q3+ zl>2@N>KS-WAT3;+`tq14%soEO@Fol6k@oa{dc$_%$D0xj^bFz(XcWQ2Tc{xEWdywB z662tVUBVf4IHLTk^gy9ip*nqN+%#yOERc{nECjB^^KVa6950yNM6GF+#E~9N!f`E! zq{~%2!Azqr#{gtf$53rq6<#M7vpul7dfI9?78hj9G4Y3nc+ zU597?xUNx+#w2sdf$k+x2jYXhgD>jzhoyP3qmdE(zo|pAoUCFyiP- zUATt6SJd(jD0IOuSfXG3lN&b4o+a9mnEFMbQS-3#rv1HK)fS)9(ANkv1%IjN=!KOb z)EgamT|~Q*DN`k1!fNW-xt&bfiB+)L0&471@2`QeKm-D@7F4NlIC|~&bfb7Wm>K}f z9SVSfWdL4zcev!P;wiJ@Yvgc(RcQ92~7Trt&83mCTy-i~48XG&-q zO4gTl_^5k737Q?|Xv%R5*Dw+}Nfv;k6=+`r?{u`qrw}f$@=G zg4Z{xCQI?+j_@(lgXjIAGj={^WThw1{he*w);X_;>s9%y`X~M`yEhcBc~;;b8?!O9 zo8|^BGaqQ_?KPW*qL0jtk=goBe99`UR%&6^TyAsb~+K0FWTb=HgNFdooT)mTMS=-Z@fZNv-YD)idXK{{j#5OQ2g zdyhGIp=x??Y}wJb%=x!^ecso&p8I|i<@C7qBJdvj@8%g4zK~M>>?%fiYYmxlKWqp$ zzgw>K^jbWLyw|GtP3;zd+$^A7d$f8^?NmQM#snQXS2TGV86Vg{+8b7>^<#sBBg(+k zf)O?Msd?HCbbuO|LTW;yb3i@zNl)|pT>~O>!yAM0S^=ODCB6pe5f}=DNDW?ntdk{p z8}M<%ZB|QdTnUTlgF+nLi=(0BTu|IqYmM)39q-F$l4&h}oO{UKT;P`UNl#Jls-AA_ zi={~vbq$?KQ4m1X>1ueXc!h#u+yN^b!G3oq>AjdhAJ;-w2hCg$m9s2>&o!v4qWubd zwzG&=?_05vIm^)*ClqPDrpYhFMsn>eyXjKxsULyX#7gV@{Q#7EC~-9#Cs64rSbri4 zzY2VLQ!bHmZdf~){NfF}8i1uOj2m1~{!Yq?vr8rtRZM_B)g|7c)zS7jPhzEtl(Ayi zLF-R7041ZtpM_=?e&qYABhY(g<_kEBn1+V7FfK(H8Vw^js`ZUE^C?sPkcNw^>s~xJ z`+}OMXnt4VeNge&xRK~~YT`xIZ=!~FSp+oNlJKV%NQL^~eSC_m=)}G0r_aszXp44ZL!ss`B>7!gpg5YM|F-^k4vL;9R z7WA*PKRsuDB2TwNq~LvIsSR=%sCjDKpKqGFt>xRxk0LtwhD6O^6d>=qGI?+f@0+qL z2M?6ZnTi?1Oc(3>RN=kt4e4+PtF2RXjl9?CAXb(QTm0et+tyPz8=LM`M>Qkwi%2Tx zAJYd;bd@{GDHeI$wY`Tj)de~hIJ`*CuK<>dmWZT5qDmMQrogT8$6@Nj#B-lDb_v60* zl_E4xJy`^u;TKx`%fQ<`;j#|q)4G&2^05g4oK4g`>r7q#U5<9n>EpMh7=?eMAMilP zMv=JJ6kDU-30Lot8(G_VHm!bzo$XZ(_(}x|em;LjJfDYmw6QYd2YF}f*$~Xn|8M#T%kaD z%;C*;{>0?wjLMR}gu)GOLG%BmTK@|7JG_y)T~-vy$( z@Rmz3-(Q9*K>m7(h1M@&HUfG(hyYL@jnFPJ)H_~%U(mlOK@w=V+|5+wO)1ArV(jKD zf}n4Sk^lFQKVAiX=|U5Lh4xyk$K{5EMg!n{+z27j&TEBdG-BmvTvn~e5giqrav?`y zK!#%R+V|FH+p4oD^ES`ITp9i$`w-yxvW6zwTpS6o;{ox-4FDkb-FYGq_n51DrkSX| z*$8?AM=L1m=^Gdr^{QJ_w51qa1d|Pzb&Kc_v{wkuP*g#_zmJ6y&%Q`XMZOA1@qJwM zZPVB0Vjrg;L%bd)66ihX3PuLyHL!ZmesI)Dr7QyKTOaTQd(thzan(k8-*) z)<#5Di|lMfXbf1&H?SB_?;nnwy;U1x_H&;LFk?<1QqFADO`nY%K=l#T3jrOr$i zMQm}jc@@bL=X~faMC_DcuNzb4=Cx>TBC5DPGO{f2+^dye=i}8UIhaq+P!j+{^2z1e zGM?xTSi>FbGOCv>6Ds#X4_hhG&ei3UfmDfLh83s7FiBG70ba{h&-O^Y1ir7UdLvtn zLrvt~=6RCo4)bW1nqySYp6Am7vwQwVQ`m|ELp!$z1L-(@nH}VHC+<6-zT^^+`1#CE z>XhqIZ2rx_(_&RVa=mX6RYloYjd#6AgohrJuUE-THIXH=N*s9~WL{8wEGY1f@*Q`C zfNR$3&>)3tMrd)ErJ#DLWJbgJq7A>{aVSb5pGX?$Owyt}|GG(v^?YKGReNRrqMos7 zDLUY zZMKL%x`W7s^IbqINhnx%*XAU~kT2T2VFVnocdPQfA=+lUSlN1JDy^!f+Oz{%{lqjS z?^d@^e71P~D_@+!R)|dm8j$Y+9Uu(yPCTYFf(TS6@Yla6+YgBit;`@pGwpLfQ7R?Nzs!t!UxC%cvFz zq#*?x65E{32${*Iy{%rI;tcN~!Q({6OTl=!b>jF^$YZm)RK;$1jW}0$X)7@sb^U(8 zf?=lw*5yz(&YuG`19=fEE}X}_ovb|)xTy}n5#*P%_&i!|$8Y6;w;b7~MHAMmNf+A$QiRu#NaT69QAMY{&& zw1v&;l9*JF3T8AVADTW2f$o&V^&FlaH4e@nk2*Y){GydFTWP(uv{krs-+zeo801OI zNV{lZOtOWEVv?*-uz69C_jO0^$*1G$`+l4~0Soz&sOtx2%aMxsy!Ln@$1V7ygm)Qo zxJvi}o^!1l$i2l68n~p_O_$gtS+opF+zqtbeLA#97AzCfI<$0R9VVXZbe8lj|5)0TD*eQub`6#}^0`PCfU&dCBIMMqjsN)F*o4xpt5rr;!dOP(Siom`#IVo>4>~o5YBC9*FtWg-{L%1y~zUP|XSU(;rxstNJk&xlosb(<7K|#IvRu$DU^P@PM z-k0=6HNOTt!cVhU_zC1TlhgtmEd6WYjN7>z+g~MlsO%vTX}zUCaxS$<$(^4G1)=yX zV(y~HMv6LO^HXMY&61>Ru5u5ICVSMxJ|vi}Ol)c=yA6?f?L?I9eb<^9>Dc<#%x=-Z z)=NU`JZ`Ef8^a*Wa0Gcjq%=N;68gEh(tb-v@nDI7cm8l%k?Aomp^l=+>_;8;q$Gpr_NYa3IkFtt?`QaPMC6!!H zxU%xQ2modRk@C-N+_;4R0k|z^{8082G6oZExoX=)NN$(4?Fga2YpnRL^P~x#|AzaB zFp8<|FI#w#!*aT^6_kKm-Wsb^4 z<9TTM=@Ah${m^$RUT(u}Ah0JyqO0-zUg3uDVh=&xKTO{sT#^jtq0U)Sf}@49pK=V~ zE(O}Y|I7ZjTR%fA7Esw9NN$UzsNu<+FQ}Ib{ZTky8Rw^LV5H6=uyH0{I!$xXLs7h5p`)T#*9iYkd0V zO5E)2dT7I|F}XB6A3iPHYh9sVCLrBrW}?Ns_o}`LI51ff$WUK<4Nf?iH#jcN0+`?X z3ksYMp^dw+JaqP7+EG-wT*K0(^P)GDxB`~%5$VMtQ(OgZAkeScrFVQiPoVWxiubJ7 zhS4AWNGI|PXPl=TsBPOOQD|Y`=@L^m8o=UDQAQeBkva=QBZ7GS(Azd07O5UaI;MZM z9Tdv_82+^<*_T6)JC@{QGos>ZNYNEyTrjq=`xWFRRpEGH~c{_CC^0e)e&W%Lcw?^?ny z4_K##MQ4~bi^7(tQr3~tU~(zT?@g;P-}+fHd~DxXw7KAW&p8uytWJKvnXZLM;4O2D zB>vWH%*(M+^B+n9%VhN;vB`gOhnY%i}`k`+dyK=2ef7nB1#x!z?g} zv#W?G#6|jKLuahGmDaQ9D&DR{i#Kfe^jL>6;2vWoqgLk599Xm%u{X+#99h>sJS$$5 z;Y1-PBcL_+3*yF&KuMlD$fkER+I2?f_Cm!Ogdcpmxy-rNkuN{}_qudk2=LR#g>0MA zxyIKZyPu4ehODWt#F$yEu$Z(|@$%Sx*-2StD-LSWt?XAZo!HY^wlOg`m<0?Is}9Ga zm91SiV!K@~CdEALE8(7y?wBb8{~WubdOYWwc(`A~qWs8)>+ZtbsocvEEiB~zE;>@i zGfn9mx>IfQ>&q4Qi*U2qzR)Pm0^W_q568~EZj1B8NqqJ+-ft`K+HK*v9;#NjWLV}5 z&qpk@3iDHZKJ0ZC{@v*GWn&9s!Z-C3OyW4Bm(*66Sm!rbRC zvvakS$e`aM;7664p&Hv^JAwRP(#Gk_STK%c&;Y7r2wkZqMBk632y0B2|lp zeVa{Hh7<;-UU@Ae1xLi00`>iN+zqBVp6J`xUK;`Ku+=HAaNYFd$XSB~7Q>&+PTdS+ zA6jpEnbRz^T-}kpZXem rnF^O8HF?$1Zu<#xF~?xwm}62Sb$Nc)tx1L}?RtM|)a z;L*Y)5itDty`sy%x<{r9yN-}QT*r3bHY?8t*vgU+N0Kh__2LN{uKbJ;Qk^G7%`}iE z9@T9uRrZ;W#W<~betKgp_qQV;k^d9Fq#uH~b5a+KWek~LtweCo&w$RkBq1Y~C??Gj z;(Akd(&$`H%8(^eLbI| zUI)ju9&WySZ^2(XK_hl#-ya@hSKFY_Rt1pl)c44-Fm~svPPnc)(|UEp-+fEw3EU8P ziKsim0E4M|7is*H0XdxX;I5$ajBy$n{h=o?;uR6{@EIx*XOc0A1oHPTUxY1+{UN=% zX2R!Y>qtG;0X$@H&@2%ODG#1 z;`h(tI_-aY0aF|%?$F-RfXI%JY`0f^Vl%@mRVl;B56Zhx2_Z6MLBr` z7D2HV^$@TItLPG3t`Z$@-@6+5g@Kqpyh-F6158H(TsD*#yn}~_aoM384L`0%PUMC!DT;65{SWpfHdc#bI8M2Bg)g zDvHYei225olu0I&Q?h?aMrnYQn>bftbGiQZ_~i$SDCcP{M{Ru}0p@4&L-(0XK^Jl()A&39tW#Im51cb26Y%ypK}- zA*|(-AAEJ2|Mc=^xSuXWR4A;v41T#Io8;rq;N>Pa@yX8GvvRjYK@8MsbeP}SBNUL| zR5;jS)Duow5Zm6FZj~J?6AE!SlE4#y{b51CYEL7ELLAm}OD?A6mn<)V7hy9>6l9|Z z26qC-dPN5SdCxL5%+B^Sayt>e0QDf#clgSFQL@eOXBah|#xm|^bhyQzSe)R6wwqqX z2k}QmA`5|nd^O`J2}CZ~cX4|7OLh^-CUiju)Zr|Bj!`%$q+Ziu`;3tr6zphX&FU{Y z<6&UwN1w+M&1yNu1j`@fv9E^$Msmlx)!yy?>VsaTPNRLmSq6{(;~`(cLRi;_=c7mj z+sjMWwEYZNwryE_|EbMSTzz4k?Z#%a5&Zig8T!*Qdk!t*DrUhc<%OfG}b%}*4Ctm-4(u5LlK zF>|0xwriqjHL@LM21BmCa3YIgaLG;F4eCxKJO$XpavA*rvP1H49BPcm)^8QZ%;Qyf zwz7Tx)|f&5gWU?(z%A-0epxMyX<~t*(QZRAY3i@&fU5ls2qDbm-DD?jT<1;)e7gfo zg2zXA;qY_|fe^*?O0uDxf<#?BlW#J#;eb1D>doha+i1b3pwlP#A*u?4 z!_(z$@5%Ae1pTjfFuVd$%$OhB+4$L#@G#|?2HrI?aEyf+(PvQd*BLa}U~3l~tE8+C(hA~o@P zBT*ZyPdk8d%I#X7gFz2UqI^y1pD5KnoMI6%jvku%-C_AG)r!^6jK!wScA#)`@Rsme zjg%z;=e_xqfFzUDwKDCkz1+}K(t+9i?=F8Pk6p4JX(5@Bpo310)&+fh@TXD82Ccqa zDtF|2c-SEN0ENl zF_uU+L&H(5s>Ay{igqJXB$9QQ-|3CVfOH}bJREhxH+W5J$D8vRDw^t!LLdD-!=43(bkm$1T3=n}%w-otOuP_~O;QG)@^7 zXtrf?sE-F9L?)7@w$Gz74pdy3L?7EtE7uODC}9wkFE;^JQt$v~!jrNrY2mZ_p+AGP z>&>z&Y7R=geL6f45!v035~p8)f$Pf*W-0eg&iL8ch1g~oCewkP2+>uIp@)jGnfUSP z(|RmeIewPt7yQl2HMM3x7c81t{@Sr?Ec2IF{QgP|ueOSaCjx{S+B^81II`7VEA1V5 zAYA|1`q;NB-FsGA-0Cz7c&3&rY&bg1Ki_C!?AR4ksvAHmC&_2?$X6s%_y(Gi~?GU-WS^_$F`g zFd4&IPnpz(MX6y-oJ+=28IWHH@9RWchjsAgJdGwo%EcE53aKSCg^%r}$!sO}H#3)| zP)k5MeFxDj+J3p`i$7;nqHFtO09O{5GSS6(!GxmUuqxv7M6e-X`KDesCen8fcP7I^ z9UV-F$PB7L44V7MTErHxHy+JoD+O$Ro+T;ee=5<8^F&b5ypFqXpV5gZf?a2+$T0Y+ zS>@E2hkbG+5cs?_X;Lc{<@q`YHk`7NOc;Kzp2igKN*+kuucC?|3*q zl%k&=N$-d`Cw9TH_LD95LPxKCzgnhZqV)|k$YmdGQ0jZP;RZ6$bGL-Lb9c>v*?&YW zX3-j?8_<`Gji=)OU_JOHC*bGjKgc}`!Gdi*{?>8{NS3i5Uy%iNO#@ATJn)=Cvj#r8_OKw3>`m}MK zRPvPzVFNg2S5N{;$nc14QzcUBAfYWMW+=$~lTS^d?a&{us6i z20RS1O85h|?fNd>vRd2bR|CXfHe3of6iOl_kGjm*hq6bUS*A!P3n<+kt&<1QwuM(C~IUpl`SsQW`=m4cntSwwP;7N}5VMl(iDVYaN z!sXnu^P=d)X~J!7=|_ZPl3NNaLQH;&KY2v7FgkTf?N9^QCz?#q225unMBWE%*?^Fr2Ez;M}=H+U2zHslU&_whz&rJyVBb)H<9kb z2Q;W`ytkR5?Ybo3H2n}J(hRo0NB1=`_`)Xng|`?+ug*T@*UVL%EJ)8n9cbWzyX)y( zKMHdcB~ll!reNDjPl1eeWwYGCl9@8_4sqYKCbTjoJtxjUq zyplD?_#Q{LNdI9Y?1RehaU=rOW2+wTDN^S1YF>^_05OxZhzC{|8-@0h2s||3rFa`g z&sM10Zz2BROyDRE|-*x#YV){f|?6Z)fQA(`&K*79( znnEHR9Ourz<}fD~tHg)<;(#4dYUdLC$j7Up2{8NSm(6G8Y`Y7<*mYWT4t zTjA^+0mF-zc-XGaV{f>87_Ru>vEPyVBeh56tHUQo7f&#j!J9}$-I?&qbHG6RHWQ-! zKnOe=XL>nqetHZCs**duJ0OyW0D%|uDDjPdsZ@&3moF8T;)3_ldO5%?H#sy=-5DF@ z)|W4vVtY8p%y&I!%oAX=h1+opw^{I%;C+_>{8?09j#|<2)NFSwm&_(vphV|!yB_pX z%o?4L5cC~(E9K{rI(rcD)ihDgwhh_U_l z9Z;ZIWzYqkCRKI0U|F#aJmj*Q736@_J2>Wb%}Pl{wLbRzFy@HVJ0VW$`5mYjg^}kw zgB6P;DO2W^(2Wodm@@{3t)}2hZ8&yY15n&}Jl*ZQ)VTt$2$|gLiTkL2y5fGahZT~i z|G2NN(eA7z3M0|JzdC7M$nX$mc?38XUP) zF5j~a@CLQu9U_VMgB|cMl>o!!l5O`JnvWm50VX~N+TMv}=T&RizIvP0a%CE|iOET3 z(6)@#N~>mp0$tm~`H;(Iw7Bi=Z*rNm1xF&znH@JVld-_RmzRM2OuSst{%zTXFX8fk zP4R!0erCUfMgO(W0WTF5e_IHU1c%6y%RMWl^qx@~I*%GHOb8PP57p->V4)k9)mux_tONRz@uM*5^niHtf4 zw}zPvPGo!1t+%g+SvwCmQ|eq>R`uXKdH}idcW$Q2&VIH9>uOl5c2uZ|_6oC23z*B? zIX-(ly+a_5B_6j*;nC{-`IS8{cL(daqCwi~G+h5!zt}waBTvAZaJO8iXEje(4AeOeK#c&hHBy$hE31l!nLsidFaZNP=PH)!U zW%_fu9PYMdu~6k%f>_!eKOf#FMKrKV^O>3ZU z=gs6=UeDevPu?}7vfI|1!w+Zr-lrKm*KF~){Gs&NB46gTq39%hMJtfOf2cn*bu~}MC^voAG}1&TJc^-ox)&9vX|YaaWC9+;~NUOF#xP^gc(9Q3-8F9)hF3@*Zy+Yt5ukI2JMDOym00V|H6} z1_Q#Y&@9n!KWkc#&?k!f@Lmc&SroBbrzrw@8%3WS^2<8fQNz&RC;+z$Z$7#Ckm3Kd zKCu~M zr^zbL5zdS!1D!B@=LzMgYCa+5vsWX7A5g@S4D561kmllgY(Pp#gZ=X1u8X=PjhyP8 zjukb^zoSjRIpcdyB|z%mf=X$`_Rf)h+Nf^rOdV=mZsix-MGMbp}QBF|eiW^DJWYgk1xodY<&+txSzWPaqw zE0wLm5w5t)&8IN~9#*NTV6$h*XIz+R?TZ$a=1))fx=uXKj+HliSI)jADXAAmAA?`P zFx-dbbhaMlcY5Y&ZeIiC%AaIOaPepN&Z7FBH4jqFO5Sf2~$bzLOBAGf=Hhyjb<@!>>leYU!F zEmhlTJ&d`*QYi$fp3$Q{2+~GBFrC-u=+up>0zKf};qNw#vNX6i$HQzpiimq%G?Pmi zK4kQ^hQ~kOi|+E7yN<`=sk{yn*rSA}P)>+V%*M)8Pzdv@;~%rewZw|DNxzf3hJNX~ zndNu7w-UCKB%Ij?bimF!ZgjESIXpj$@CzHR+kg`qJz5^+<1H7$r2 z37wN47u$kaQ1p7p%E_9&t9(iEyJ>aDKI^$->`uKdHjT$FLoQXyYR=<@wX-j;v-cO9 ziDi}W>>w6qASHzR%@EIHn&CCeCIh2zSIJ`*^qk*5uDUZ(XroCkH>ub-L>EnL2-2(Z z=+8!}z4};X6i0ghnf{g|E#*p^r{Lgfwpj5jxHVy+03xMe(~1-NXzdRnjZsa`cz<8~ zCuzr-)Ow18>RI83>W%r{V3C8oLWW&KM)}*I!Kkv8ll76Ar+|*<_CMPtKFDTkxZ!>CmZf}e59Zv1UR6Wo4FV49>w@7IwBhQw=(cEcJ z1KSe`@OK3lR`BG|x=Bw)Jt|S89@HD8v=CY1uo?J&d^2iZvdCD@PY8;RR}QEuhqkh_ z>5g}lt8IJ#l^DDHWk~_7mN*IT&L0kGe)9}g?w<6i7Is_Gi&I`rQ5NmlR-J>8<$e!2 z0b};~ypqA56%3OCvz*N^%sat^qoK1weq+Te4~A5E)xgG_MmWpkfzPUg7FM=4!h6O= zg$W&ysuty~Ur;-33{&k2sLq92VAVX@S^2zo7vL+rlp4LQfWd-lK9l-*G8;Rb5G(8~ zc*kKS+zK&M4~7uhX(z_bcU}h;CM(LpT93rt^Y1ZK<(n!6yxvGH^=g2;^Lfgv7W7qx zpSvu$_z2flvYv%37xjL;EB$mF(|J>Enj$hrYeFwK0pzy1R6y0ocP$qcwV1ne(^evt z^O`Q6-mF$ErfM9~2oDfGmRiaJ)a^LUl@^E!wROdlCk+J034BM39IdJ0Z0d-~C&TJH z*|e;*dcKxM*dg|*{q7W>*ob(}%PVnAXs8vY{^H1JT69Tw^3mO-Y+SpUNblkI{YPcXE!qm>C#lDVbt}xyboExb zEB)SuBe!My%BcgTJ-BH%UFI9o71g*ho?exUn8_5klzTmafwC2A?~~KJ_U+Y@6ZhZk zs1*kZkYU&|i?ox~x)R+J*`RLiQ(wK4a?%j;(wHO=HF~+TO7aTsfv;s;+Yby zRt3dvOO>mwxrQ1-Lc~1P5K~2~5krem^H4*Jq9RISRxTle-j-{+u1YJWme!Q2D8e=7 z#$E4+x8ASs`~hd3wa#AW?C*Df*51>Hz-QLOv#Ob-oer8a6|*zUxwT0siCeMu>FX*T zyjk-jxVaQc=X2#Rj-&;2%H&r>ULD8IW7Jl@q;GHDW)=Oh>rKMyN5|fN9LeQam_mWv z4hQ3k^j;TxLEUyh-E$o?3zsfY6M{m4<%Tvxc}fi}X5 zG31)8iX+*aji1FgTUJP@H?`=%JlkoeNmmuYB?Z%9m$Rtps)rCHHq-6}@v%m^K1#ge z)nCG+lBEJm@xpCd?Z2!&lM5q6J>^9g+%4P}Sv%s-P57$4(v4=HTN~I>i0)W5bzC)& zNU>?Beo1np-sjb|z(JBFCMzq1&8zpx$RpU1Wr1D;#D6u)DCoN;4W?u9X9uRI{pUtwB zL2Z)8r#bF9;0^Sq*l*0{y@w2sv{+9TkH>@P ze$?9P794ngNS9p|^Q)+j`l1&bSd45oQ()~REMFm}#3h@Ujb>&@iNH9=EH^Ax>#E?l znRLIpPl;noP1%!7lb8{gXL*IGO@|_ZVm4Raog{DKn`olg5$`lfvhoEfAmK9|@KCg= zVIxK=Zw~c7agr;o(aWdOEFBZ3`%+=s`ZBVa{a|kygn+P8aS%l{abHD3C%a=be&hQU zSvNt_tnx|7u)$r)C5IG4<&+oG`S?zJFg&mTP{Y4A3<}jaH5X`NLz`=p*-aS6(?D2II$eOu*-z9CK=b7SVUxk441^sO@kzBitX?L8(F`v$h z(9VRi{6`};0}G|oD<|rncUe-N28YWp{VoKppH2F3qrQ7V>CN77m$l(3-=aD=UVgl` z=Ml=LF<2_45YxEeuF^RhT@~poO=H; zQcjmHax%12;dJuAA1^+j#7E2wx5;deATR%Q4W@!+?Z=h3Wu9%c%J4P_ro441eX>#+ zek6{>gf!Fv!IUWecm}cDmZG;@2MoL2aij9g;t`NbaITu7it%|RqHW}yeeQwVAVRfr|bJ+ zSS~B*T{#><1^CLi^wi8SKEL?CCp_#z>OV=acpT!>N8-q<`(Y8kOFG-2lQl5>Mj=0lKx%`Tc59c;~l797bRx%$@{r z65c2v4;Wvc`q!CTzS$IwdcENiD-d_25WyC9G$;!1a+0ga#E|wNB+7cAT2m>P)6jnh zhZ+S_#EfyC&by!7GL;c82kx+`f>Q<8ZLcD@(_7Gx0mI*&nAiI+M+Ztt+<-q8*`CRW z@LUkoCV5t6>==^5pu5`vkbG5jqc4YVkxHPY(AI3gBCk|8nVhu`^kE{a2X>knZQqCw zzb5>dt6RB`eqO7bYk_W@BaT_QfOyRG3l9!6bU5(}(k{x%S)6dbF-%~lI=pw5^9VKC zb{kP8XUTGi_Q}AF&i$Byh>4Z4mKu&;>nj9+8U4;x zVteIyv`u^TjrVF&gEG*J3#SZ^I0#xI_L7z zu`>pH^P1fs0><~ie-)y6{okqPW6^!N^}F9HW<#z{yCRbj~z!VZ8%Oe*H{E^t*NF7Et`vb9bvMoR zN$*ufHqWkCv7PlL1H>1U_wwtqNfPW?c5>pYq8|fPssl9yrzNLk1x(4L@)S_#Wr%z< zWEoeqZK^+D5|6%+a=|!@hCr*!#Vwl1_XWIZT;%Q4@nwrU7s>1@aUE4&z}o4ht_{Tc zJrN1w$Md&L@@_HB{^WZk?dp=~SmZq6(BAZ(z>hN*RE9{W#*Is!B-Lp;yj-n{juDZd zFA;W^>Q3lNDsr*X-ZkLyww+>R4m~-i)c)+2-C=#=wYI?z=a2A+)6gv+RXP;gb&6Yz z$0vOXI~QW?4Pxhl_@I7jCX9@U@B#t<5N-2W6h4k$%H|0wqyX$Y4UIkr`6lP9$4&aR z{&B4FFHiUYr}2gR-x^}f#y3;c8tE2EM2Y8aef_7iuR8Cx0E8Mw#&4PvJ^?*IS* literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.925/solver.prototxt b/cars/lr-investigations/exponential/1e-2/0.925/solver.prototxt new file mode 100644 index 0000000..40106f3 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.925/solver.prototxt @@ -0,0 +1,14 @@ +test_iter: 51 +test_interval: 102 +base_lr: 0.00999999977648 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.999235987663 +momentum: 0.899999976158 +weight_decay: 9.99999974738e-05 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +net: "train_val.prototxt" +solver_type: SGD diff --git a/cars/lr-investigations/exponential/1e-2/0.925/train_val.prototxt b/cars/lr-investigations/exponential/1e-2/0.925/train_val.prototxt new file mode 100644 index 0000000..eadc289 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.925/train_val.prototxt @@ -0,0 +1,382 @@ +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TRAIN + } + transform_param { + mirror: true + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" + batch_size: 128 + backend: LMDB + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TEST + } + transform_param { + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" + batch_size: 32 + backend: LMDB + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + phase: TEST + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.95/caffe_output.log b/cars/lr-investigations/exponential/1e-2/0.95/caffe_output.log new file mode 100644 index 0000000..0b95abc --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.95/caffe_output.log @@ -0,0 +1,4566 @@ +I0407 21:56:14.818867 23658 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-215613-3028/solver.prototxt +I0407 21:56:14.820785 23658 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 21:56:14.820801 23658 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 21:56:14.820948 23658 caffe.cpp:218] Using GPUs 0 +I0407 21:56:14.850378 23658 caffe.cpp:223] GPU 0: GeForce GTX 1080 Ti +I0407 21:56:15.147306 23658 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.99949723 +momentum: 0.9 +weight_decay: 0.0001 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 0 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 21:56:15.148005 23658 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 21:56:15.148581 23658 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 21:56:15.148598 23658 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 21:56:15.148742 23658 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 21:56:15.148841 23658 layer_factory.hpp:77] Creating layer train-data +I0407 21:56:15.286978 23658 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db +I0407 21:56:15.335000 23658 net.cpp:84] Creating Layer train-data +I0407 21:56:15.335022 23658 net.cpp:380] train-data -> data +I0407 21:56:15.335050 23658 net.cpp:380] train-data -> label +I0407 21:56:15.335064 23658 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0407 21:56:15.341223 23658 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 21:56:15.478703 23658 net.cpp:122] Setting up train-data +I0407 21:56:15.478729 23658 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 21:56:15.478734 23658 net.cpp:129] Top shape: 128 (128) +I0407 21:56:15.478739 23658 net.cpp:137] Memory required for data: 79149056 +I0407 21:56:15.478749 23658 layer_factory.hpp:77] Creating layer conv1 +I0407 21:56:15.478770 23658 net.cpp:84] Creating Layer conv1 +I0407 21:56:15.478776 23658 net.cpp:406] conv1 <- data +I0407 21:56:15.478788 23658 net.cpp:380] conv1 -> conv1 +I0407 21:56:16.039898 23658 net.cpp:122] Setting up conv1 +I0407 21:56:16.039919 23658 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:56:16.039923 23658 net.cpp:137] Memory required for data: 227833856 +I0407 21:56:16.039942 23658 layer_factory.hpp:77] Creating layer relu1 +I0407 21:56:16.039952 23658 net.cpp:84] Creating Layer relu1 +I0407 21:56:16.039958 23658 net.cpp:406] relu1 <- conv1 +I0407 21:56:16.039963 23658 net.cpp:367] relu1 -> conv1 (in-place) +I0407 21:56:16.040243 23658 net.cpp:122] Setting up relu1 +I0407 21:56:16.040251 23658 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:56:16.040256 23658 net.cpp:137] Memory required for data: 376518656 +I0407 21:56:16.040259 23658 layer_factory.hpp:77] Creating layer norm1 +I0407 21:56:16.040267 23658 net.cpp:84] Creating Layer norm1 +I0407 21:56:16.040271 23658 net.cpp:406] norm1 <- conv1 +I0407 21:56:16.040295 23658 net.cpp:380] norm1 -> norm1 +I0407 21:56:16.040741 23658 net.cpp:122] Setting up norm1 +I0407 21:56:16.040751 23658 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:56:16.040755 23658 net.cpp:137] Memory required for data: 525203456 +I0407 21:56:16.040758 23658 layer_factory.hpp:77] Creating layer pool1 +I0407 21:56:16.040766 23658 net.cpp:84] Creating Layer pool1 +I0407 21:56:16.040769 23658 net.cpp:406] pool1 <- norm1 +I0407 21:56:16.040774 23658 net.cpp:380] pool1 -> pool1 +I0407 21:56:16.040809 23658 net.cpp:122] Setting up pool1 +I0407 21:56:16.040815 23658 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 21:56:16.040818 23658 net.cpp:137] Memory required for data: 561035264 +I0407 21:56:16.040822 23658 layer_factory.hpp:77] Creating layer conv2 +I0407 21:56:16.040832 23658 net.cpp:84] Creating Layer conv2 +I0407 21:56:16.040835 23658 net.cpp:406] conv2 <- pool1 +I0407 21:56:16.040841 23658 net.cpp:380] conv2 -> conv2 +I0407 21:56:16.047812 23658 net.cpp:122] Setting up conv2 +I0407 21:56:16.047828 23658 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:56:16.047832 23658 net.cpp:137] Memory required for data: 656586752 +I0407 21:56:16.047840 23658 layer_factory.hpp:77] Creating layer relu2 +I0407 21:56:16.047847 23658 net.cpp:84] Creating Layer relu2 +I0407 21:56:16.047850 23658 net.cpp:406] relu2 <- conv2 +I0407 21:56:16.047855 23658 net.cpp:367] relu2 -> conv2 (in-place) +I0407 21:56:16.048348 23658 net.cpp:122] Setting up relu2 +I0407 21:56:16.048358 23658 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:56:16.048362 23658 net.cpp:137] Memory required for data: 752138240 +I0407 21:56:16.048364 23658 layer_factory.hpp:77] Creating layer norm2 +I0407 21:56:16.048372 23658 net.cpp:84] Creating Layer norm2 +I0407 21:56:16.048375 23658 net.cpp:406] norm2 <- conv2 +I0407 21:56:16.048382 23658 net.cpp:380] norm2 -> norm2 +I0407 21:56:16.048732 23658 net.cpp:122] Setting up norm2 +I0407 21:56:16.048741 23658 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:56:16.048744 23658 net.cpp:137] Memory required for data: 847689728 +I0407 21:56:16.048748 23658 layer_factory.hpp:77] Creating layer pool2 +I0407 21:56:16.048755 23658 net.cpp:84] Creating Layer pool2 +I0407 21:56:16.048759 23658 net.cpp:406] pool2 <- norm2 +I0407 21:56:16.048764 23658 net.cpp:380] pool2 -> pool2 +I0407 21:56:16.048794 23658 net.cpp:122] Setting up pool2 +I0407 21:56:16.048800 23658 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:56:16.048804 23658 net.cpp:137] Memory required for data: 869840896 +I0407 21:56:16.048806 23658 layer_factory.hpp:77] Creating layer conv3 +I0407 21:56:16.048815 23658 net.cpp:84] Creating Layer conv3 +I0407 21:56:16.048818 23658 net.cpp:406] conv3 <- pool2 +I0407 21:56:16.048825 23658 net.cpp:380] conv3 -> conv3 +I0407 21:56:16.058775 23658 net.cpp:122] Setting up conv3 +I0407 21:56:16.058785 23658 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:16.058789 23658 net.cpp:137] Memory required for data: 903067648 +I0407 21:56:16.058796 23658 layer_factory.hpp:77] Creating layer relu3 +I0407 21:56:16.058802 23658 net.cpp:84] Creating Layer relu3 +I0407 21:56:16.058806 23658 net.cpp:406] relu3 <- conv3 +I0407 21:56:16.058815 23658 net.cpp:367] relu3 -> conv3 (in-place) +I0407 21:56:16.059304 23658 net.cpp:122] Setting up relu3 +I0407 21:56:16.059314 23658 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:16.059317 23658 net.cpp:137] Memory required for data: 936294400 +I0407 21:56:16.059320 23658 layer_factory.hpp:77] Creating layer conv4 +I0407 21:56:16.059330 23658 net.cpp:84] Creating Layer conv4 +I0407 21:56:16.059334 23658 net.cpp:406] conv4 <- conv3 +I0407 21:56:16.059340 23658 net.cpp:380] conv4 -> conv4 +I0407 21:56:16.069701 23658 net.cpp:122] Setting up conv4 +I0407 21:56:16.069713 23658 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:16.069717 23658 net.cpp:137] Memory required for data: 969521152 +I0407 21:56:16.069725 23658 layer_factory.hpp:77] Creating layer relu4 +I0407 21:56:16.069730 23658 net.cpp:84] Creating Layer relu4 +I0407 21:56:16.069751 23658 net.cpp:406] relu4 <- conv4 +I0407 21:56:16.069757 23658 net.cpp:367] relu4 -> conv4 (in-place) +I0407 21:56:16.070102 23658 net.cpp:122] Setting up relu4 +I0407 21:56:16.070111 23658 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:16.070116 23658 net.cpp:137] Memory required for data: 1002747904 +I0407 21:56:16.070119 23658 layer_factory.hpp:77] Creating layer conv5 +I0407 21:56:16.070128 23658 net.cpp:84] Creating Layer conv5 +I0407 21:56:16.070132 23658 net.cpp:406] conv5 <- conv4 +I0407 21:56:16.070137 23658 net.cpp:380] conv5 -> conv5 +I0407 21:56:16.078464 23658 net.cpp:122] Setting up conv5 +I0407 21:56:16.078475 23658 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:56:16.078480 23658 net.cpp:137] Memory required for data: 1024899072 +I0407 21:56:16.078488 23658 layer_factory.hpp:77] Creating layer relu5 +I0407 21:56:16.078495 23658 net.cpp:84] Creating Layer relu5 +I0407 21:56:16.078498 23658 net.cpp:406] relu5 <- conv5 +I0407 21:56:16.078505 23658 net.cpp:367] relu5 -> conv5 (in-place) +I0407 21:56:16.078990 23658 net.cpp:122] Setting up relu5 +I0407 21:56:16.078999 23658 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:56:16.079003 23658 net.cpp:137] Memory required for data: 1047050240 +I0407 21:56:16.079007 23658 layer_factory.hpp:77] Creating layer pool5 +I0407 21:56:16.079015 23658 net.cpp:84] Creating Layer pool5 +I0407 21:56:16.079018 23658 net.cpp:406] pool5 <- conv5 +I0407 21:56:16.079023 23658 net.cpp:380] pool5 -> pool5 +I0407 21:56:16.079061 23658 net.cpp:122] Setting up pool5 +I0407 21:56:16.079066 23658 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 21:56:16.079068 23658 net.cpp:137] Memory required for data: 1051768832 +I0407 21:56:16.079072 23658 layer_factory.hpp:77] Creating layer fc6 +I0407 21:56:16.079082 23658 net.cpp:84] Creating Layer fc6 +I0407 21:56:16.079084 23658 net.cpp:406] fc6 <- pool5 +I0407 21:56:16.079089 23658 net.cpp:380] fc6 -> fc6 +I0407 21:56:16.430938 23658 net.cpp:122] Setting up fc6 +I0407 21:56:16.430956 23658 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:16.430960 23658 net.cpp:137] Memory required for data: 1053865984 +I0407 21:56:16.430969 23658 layer_factory.hpp:77] Creating layer relu6 +I0407 21:56:16.430979 23658 net.cpp:84] Creating Layer relu6 +I0407 21:56:16.430984 23658 net.cpp:406] relu6 <- fc6 +I0407 21:56:16.430990 23658 net.cpp:367] relu6 -> fc6 (in-place) +I0407 21:56:16.431602 23658 net.cpp:122] Setting up relu6 +I0407 21:56:16.431612 23658 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:16.431614 23658 net.cpp:137] Memory required for data: 1055963136 +I0407 21:56:16.431618 23658 layer_factory.hpp:77] Creating layer drop6 +I0407 21:56:16.431625 23658 net.cpp:84] Creating Layer drop6 +I0407 21:56:16.431629 23658 net.cpp:406] drop6 <- fc6 +I0407 21:56:16.431635 23658 net.cpp:367] drop6 -> fc6 (in-place) +I0407 21:56:16.431661 23658 net.cpp:122] Setting up drop6 +I0407 21:56:16.431666 23658 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:16.431669 23658 net.cpp:137] Memory required for data: 1058060288 +I0407 21:56:16.431672 23658 layer_factory.hpp:77] Creating layer fc7 +I0407 21:56:16.431681 23658 net.cpp:84] Creating Layer fc7 +I0407 21:56:16.431685 23658 net.cpp:406] fc7 <- fc6 +I0407 21:56:16.431691 23658 net.cpp:380] fc7 -> fc7 +I0407 21:56:16.588145 23658 net.cpp:122] Setting up fc7 +I0407 21:56:16.588163 23658 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:16.588167 23658 net.cpp:137] Memory required for data: 1060157440 +I0407 21:56:16.588176 23658 layer_factory.hpp:77] Creating layer relu7 +I0407 21:56:16.588186 23658 net.cpp:84] Creating Layer relu7 +I0407 21:56:16.588191 23658 net.cpp:406] relu7 <- fc7 +I0407 21:56:16.588196 23658 net.cpp:367] relu7 -> fc7 (in-place) +I0407 21:56:16.588814 23658 net.cpp:122] Setting up relu7 +I0407 21:56:16.588824 23658 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:16.588827 23658 net.cpp:137] Memory required for data: 1062254592 +I0407 21:56:16.588830 23658 layer_factory.hpp:77] Creating layer drop7 +I0407 21:56:16.588837 23658 net.cpp:84] Creating Layer drop7 +I0407 21:56:16.588860 23658 net.cpp:406] drop7 <- fc7 +I0407 21:56:16.588865 23658 net.cpp:367] drop7 -> fc7 (in-place) +I0407 21:56:16.588889 23658 net.cpp:122] Setting up drop7 +I0407 21:56:16.588896 23658 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:16.588898 23658 net.cpp:137] Memory required for data: 1064351744 +I0407 21:56:16.588901 23658 layer_factory.hpp:77] Creating layer fc8 +I0407 21:56:16.588908 23658 net.cpp:84] Creating Layer fc8 +I0407 21:56:16.588912 23658 net.cpp:406] fc8 <- fc7 +I0407 21:56:16.588917 23658 net.cpp:380] fc8 -> fc8 +I0407 21:56:16.596531 23658 net.cpp:122] Setting up fc8 +I0407 21:56:16.596540 23658 net.cpp:129] Top shape: 128 196 (25088) +I0407 21:56:16.596544 23658 net.cpp:137] Memory required for data: 1064452096 +I0407 21:56:16.596549 23658 layer_factory.hpp:77] Creating layer loss +I0407 21:56:16.596556 23658 net.cpp:84] Creating Layer loss +I0407 21:56:16.596560 23658 net.cpp:406] loss <- fc8 +I0407 21:56:16.596565 23658 net.cpp:406] loss <- label +I0407 21:56:16.596571 23658 net.cpp:380] loss -> loss +I0407 21:56:16.596580 23658 layer_factory.hpp:77] Creating layer loss +I0407 21:56:16.597169 23658 net.cpp:122] Setting up loss +I0407 21:56:16.597178 23658 net.cpp:129] Top shape: (1) +I0407 21:56:16.597182 23658 net.cpp:132] with loss weight 1 +I0407 21:56:16.597199 23658 net.cpp:137] Memory required for data: 1064452100 +I0407 21:56:16.597203 23658 net.cpp:198] loss needs backward computation. +I0407 21:56:16.597209 23658 net.cpp:198] fc8 needs backward computation. +I0407 21:56:16.597213 23658 net.cpp:198] drop7 needs backward computation. +I0407 21:56:16.597216 23658 net.cpp:198] relu7 needs backward computation. +I0407 21:56:16.597220 23658 net.cpp:198] fc7 needs backward computation. +I0407 21:56:16.597224 23658 net.cpp:198] drop6 needs backward computation. +I0407 21:56:16.597229 23658 net.cpp:198] relu6 needs backward computation. +I0407 21:56:16.597231 23658 net.cpp:198] fc6 needs backward computation. +I0407 21:56:16.597235 23658 net.cpp:198] pool5 needs backward computation. +I0407 21:56:16.597239 23658 net.cpp:198] relu5 needs backward computation. +I0407 21:56:16.597242 23658 net.cpp:198] conv5 needs backward computation. +I0407 21:56:16.597245 23658 net.cpp:198] relu4 needs backward computation. +I0407 21:56:16.597249 23658 net.cpp:198] conv4 needs backward computation. +I0407 21:56:16.597252 23658 net.cpp:198] relu3 needs backward computation. +I0407 21:56:16.597256 23658 net.cpp:198] conv3 needs backward computation. +I0407 21:56:16.597259 23658 net.cpp:198] pool2 needs backward computation. +I0407 21:56:16.597263 23658 net.cpp:198] norm2 needs backward computation. +I0407 21:56:16.597266 23658 net.cpp:198] relu2 needs backward computation. +I0407 21:56:16.597270 23658 net.cpp:198] conv2 needs backward computation. +I0407 21:56:16.597273 23658 net.cpp:198] pool1 needs backward computation. +I0407 21:56:16.597277 23658 net.cpp:198] norm1 needs backward computation. +I0407 21:56:16.597280 23658 net.cpp:198] relu1 needs backward computation. +I0407 21:56:16.597283 23658 net.cpp:198] conv1 needs backward computation. +I0407 21:56:16.597287 23658 net.cpp:200] train-data does not need backward computation. +I0407 21:56:16.597291 23658 net.cpp:242] This network produces output loss +I0407 21:56:16.597306 23658 net.cpp:255] Network initialization done. +I0407 21:56:16.597772 23658 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 21:56:16.597805 23658 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 21:56:16.597949 23658 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 21:56:16.598053 23658 layer_factory.hpp:77] Creating layer val-data +I0407 21:56:16.601140 23658 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0407 21:56:16.601651 23658 net.cpp:84] Creating Layer val-data +I0407 21:56:16.601660 23658 net.cpp:380] val-data -> data +I0407 21:56:16.601670 23658 net.cpp:380] val-data -> label +I0407 21:56:16.601675 23658 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0407 21:56:16.605679 23658 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 21:56:16.635514 23658 net.cpp:122] Setting up val-data +I0407 21:56:16.635531 23658 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 21:56:16.635535 23658 net.cpp:129] Top shape: 32 (32) +I0407 21:56:16.635540 23658 net.cpp:137] Memory required for data: 19787264 +I0407 21:56:16.635546 23658 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 21:56:16.635558 23658 net.cpp:84] Creating Layer label_val-data_1_split +I0407 21:56:16.635562 23658 net.cpp:406] label_val-data_1_split <- label +I0407 21:56:16.635569 23658 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 21:56:16.635578 23658 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 21:56:16.635619 23658 net.cpp:122] Setting up label_val-data_1_split +I0407 21:56:16.635624 23658 net.cpp:129] Top shape: 32 (32) +I0407 21:56:16.635628 23658 net.cpp:129] Top shape: 32 (32) +I0407 21:56:16.635632 23658 net.cpp:137] Memory required for data: 19787520 +I0407 21:56:16.635634 23658 layer_factory.hpp:77] Creating layer conv1 +I0407 21:56:16.635645 23658 net.cpp:84] Creating Layer conv1 +I0407 21:56:16.635648 23658 net.cpp:406] conv1 <- data +I0407 21:56:16.635653 23658 net.cpp:380] conv1 -> conv1 +I0407 21:56:16.637728 23658 net.cpp:122] Setting up conv1 +I0407 21:56:16.637738 23658 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:56:16.637742 23658 net.cpp:137] Memory required for data: 56958720 +I0407 21:56:16.637753 23658 layer_factory.hpp:77] Creating layer relu1 +I0407 21:56:16.637758 23658 net.cpp:84] Creating Layer relu1 +I0407 21:56:16.637763 23658 net.cpp:406] relu1 <- conv1 +I0407 21:56:16.637768 23658 net.cpp:367] relu1 -> conv1 (in-place) +I0407 21:56:16.638139 23658 net.cpp:122] Setting up relu1 +I0407 21:56:16.638147 23658 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:56:16.638150 23658 net.cpp:137] Memory required for data: 94129920 +I0407 21:56:16.638154 23658 layer_factory.hpp:77] Creating layer norm1 +I0407 21:56:16.638162 23658 net.cpp:84] Creating Layer norm1 +I0407 21:56:16.638166 23658 net.cpp:406] norm1 <- conv1 +I0407 21:56:16.638171 23658 net.cpp:380] norm1 -> norm1 +I0407 21:56:16.638648 23658 net.cpp:122] Setting up norm1 +I0407 21:56:16.638656 23658 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:56:16.638660 23658 net.cpp:137] Memory required for data: 131301120 +I0407 21:56:16.638664 23658 layer_factory.hpp:77] Creating layer pool1 +I0407 21:56:16.638670 23658 net.cpp:84] Creating Layer pool1 +I0407 21:56:16.638674 23658 net.cpp:406] pool1 <- norm1 +I0407 21:56:16.638679 23658 net.cpp:380] pool1 -> pool1 +I0407 21:56:16.638706 23658 net.cpp:122] Setting up pool1 +I0407 21:56:16.638711 23658 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 21:56:16.638715 23658 net.cpp:137] Memory required for data: 140259072 +I0407 21:56:16.638718 23658 layer_factory.hpp:77] Creating layer conv2 +I0407 21:56:16.638725 23658 net.cpp:84] Creating Layer conv2 +I0407 21:56:16.638729 23658 net.cpp:406] conv2 <- pool1 +I0407 21:56:16.638752 23658 net.cpp:380] conv2 -> conv2 +I0407 21:56:16.647732 23658 net.cpp:122] Setting up conv2 +I0407 21:56:16.647744 23658 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:56:16.647748 23658 net.cpp:137] Memory required for data: 164146944 +I0407 21:56:16.647758 23658 layer_factory.hpp:77] Creating layer relu2 +I0407 21:56:16.647764 23658 net.cpp:84] Creating Layer relu2 +I0407 21:56:16.647768 23658 net.cpp:406] relu2 <- conv2 +I0407 21:56:16.647774 23658 net.cpp:367] relu2 -> conv2 (in-place) +I0407 21:56:16.648277 23658 net.cpp:122] Setting up relu2 +I0407 21:56:16.648285 23658 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:56:16.648288 23658 net.cpp:137] Memory required for data: 188034816 +I0407 21:56:16.648293 23658 layer_factory.hpp:77] Creating layer norm2 +I0407 21:56:16.648301 23658 net.cpp:84] Creating Layer norm2 +I0407 21:56:16.648305 23658 net.cpp:406] norm2 <- conv2 +I0407 21:56:16.648311 23658 net.cpp:380] norm2 -> norm2 +I0407 21:56:16.648834 23658 net.cpp:122] Setting up norm2 +I0407 21:56:16.648844 23658 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:56:16.648847 23658 net.cpp:137] Memory required for data: 211922688 +I0407 21:56:16.648851 23658 layer_factory.hpp:77] Creating layer pool2 +I0407 21:56:16.648859 23658 net.cpp:84] Creating Layer pool2 +I0407 21:56:16.648862 23658 net.cpp:406] pool2 <- norm2 +I0407 21:56:16.648867 23658 net.cpp:380] pool2 -> pool2 +I0407 21:56:16.648897 23658 net.cpp:122] Setting up pool2 +I0407 21:56:16.648902 23658 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:56:16.648905 23658 net.cpp:137] Memory required for data: 217460480 +I0407 21:56:16.648908 23658 layer_factory.hpp:77] Creating layer conv3 +I0407 21:56:16.648917 23658 net.cpp:84] Creating Layer conv3 +I0407 21:56:16.648921 23658 net.cpp:406] conv3 <- pool2 +I0407 21:56:16.648927 23658 net.cpp:380] conv3 -> conv3 +I0407 21:56:16.660539 23658 net.cpp:122] Setting up conv3 +I0407 21:56:16.660554 23658 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:16.660557 23658 net.cpp:137] Memory required for data: 225767168 +I0407 21:56:16.660567 23658 layer_factory.hpp:77] Creating layer relu3 +I0407 21:56:16.660575 23658 net.cpp:84] Creating Layer relu3 +I0407 21:56:16.660579 23658 net.cpp:406] relu3 <- conv3 +I0407 21:56:16.660584 23658 net.cpp:367] relu3 -> conv3 (in-place) +I0407 21:56:16.661128 23658 net.cpp:122] Setting up relu3 +I0407 21:56:16.661136 23658 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:16.661139 23658 net.cpp:137] Memory required for data: 234073856 +I0407 21:56:16.661144 23658 layer_factory.hpp:77] Creating layer conv4 +I0407 21:56:16.661154 23658 net.cpp:84] Creating Layer conv4 +I0407 21:56:16.661159 23658 net.cpp:406] conv4 <- conv3 +I0407 21:56:16.661165 23658 net.cpp:380] conv4 -> conv4 +I0407 21:56:16.670584 23658 net.cpp:122] Setting up conv4 +I0407 21:56:16.670596 23658 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:16.670599 23658 net.cpp:137] Memory required for data: 242380544 +I0407 21:56:16.670606 23658 layer_factory.hpp:77] Creating layer relu4 +I0407 21:56:16.670614 23658 net.cpp:84] Creating Layer relu4 +I0407 21:56:16.670617 23658 net.cpp:406] relu4 <- conv4 +I0407 21:56:16.670622 23658 net.cpp:367] relu4 -> conv4 (in-place) +I0407 21:56:16.670964 23658 net.cpp:122] Setting up relu4 +I0407 21:56:16.670971 23658 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:16.670975 23658 net.cpp:137] Memory required for data: 250687232 +I0407 21:56:16.670979 23658 layer_factory.hpp:77] Creating layer conv5 +I0407 21:56:16.670987 23658 net.cpp:84] Creating Layer conv5 +I0407 21:56:16.670991 23658 net.cpp:406] conv5 <- conv4 +I0407 21:56:16.670998 23658 net.cpp:380] conv5 -> conv5 +I0407 21:56:16.679507 23658 net.cpp:122] Setting up conv5 +I0407 21:56:16.679519 23658 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:56:16.679522 23658 net.cpp:137] Memory required for data: 256225024 +I0407 21:56:16.679534 23658 layer_factory.hpp:77] Creating layer relu5 +I0407 21:56:16.679541 23658 net.cpp:84] Creating Layer relu5 +I0407 21:56:16.679545 23658 net.cpp:406] relu5 <- conv5 +I0407 21:56:16.679567 23658 net.cpp:367] relu5 -> conv5 (in-place) +I0407 21:56:16.680061 23658 net.cpp:122] Setting up relu5 +I0407 21:56:16.680070 23658 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:56:16.680074 23658 net.cpp:137] Memory required for data: 261762816 +I0407 21:56:16.680078 23658 layer_factory.hpp:77] Creating layer pool5 +I0407 21:56:16.680088 23658 net.cpp:84] Creating Layer pool5 +I0407 21:56:16.680091 23658 net.cpp:406] pool5 <- conv5 +I0407 21:56:16.680097 23658 net.cpp:380] pool5 -> pool5 +I0407 21:56:16.680135 23658 net.cpp:122] Setting up pool5 +I0407 21:56:16.680140 23658 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 21:56:16.680145 23658 net.cpp:137] Memory required for data: 262942464 +I0407 21:56:16.680147 23658 layer_factory.hpp:77] Creating layer fc6 +I0407 21:56:16.680155 23658 net.cpp:84] Creating Layer fc6 +I0407 21:56:16.680158 23658 net.cpp:406] fc6 <- pool5 +I0407 21:56:16.680163 23658 net.cpp:380] fc6 -> fc6 +I0407 21:56:17.032145 23658 net.cpp:122] Setting up fc6 +I0407 21:56:17.032163 23658 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:17.032167 23658 net.cpp:137] Memory required for data: 263466752 +I0407 21:56:17.032177 23658 layer_factory.hpp:77] Creating layer relu6 +I0407 21:56:17.032186 23658 net.cpp:84] Creating Layer relu6 +I0407 21:56:17.032191 23658 net.cpp:406] relu6 <- fc6 +I0407 21:56:17.032197 23658 net.cpp:367] relu6 -> fc6 (in-place) +I0407 21:56:17.033046 23658 net.cpp:122] Setting up relu6 +I0407 21:56:17.033054 23658 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:17.033058 23658 net.cpp:137] Memory required for data: 263991040 +I0407 21:56:17.033061 23658 layer_factory.hpp:77] Creating layer drop6 +I0407 21:56:17.033071 23658 net.cpp:84] Creating Layer drop6 +I0407 21:56:17.033074 23658 net.cpp:406] drop6 <- fc6 +I0407 21:56:17.033079 23658 net.cpp:367] drop6 -> fc6 (in-place) +I0407 21:56:17.033105 23658 net.cpp:122] Setting up drop6 +I0407 21:56:17.033110 23658 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:17.033113 23658 net.cpp:137] Memory required for data: 264515328 +I0407 21:56:17.033116 23658 layer_factory.hpp:77] Creating layer fc7 +I0407 21:56:17.033123 23658 net.cpp:84] Creating Layer fc7 +I0407 21:56:17.033126 23658 net.cpp:406] fc7 <- fc6 +I0407 21:56:17.033133 23658 net.cpp:380] fc7 -> fc7 +I0407 21:56:17.189707 23658 net.cpp:122] Setting up fc7 +I0407 21:56:17.189728 23658 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:17.189731 23658 net.cpp:137] Memory required for data: 265039616 +I0407 21:56:17.189741 23658 layer_factory.hpp:77] Creating layer relu7 +I0407 21:56:17.189749 23658 net.cpp:84] Creating Layer relu7 +I0407 21:56:17.189754 23658 net.cpp:406] relu7 <- fc7 +I0407 21:56:17.189759 23658 net.cpp:367] relu7 -> fc7 (in-place) +I0407 21:56:17.190194 23658 net.cpp:122] Setting up relu7 +I0407 21:56:17.190202 23658 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:17.190205 23658 net.cpp:137] Memory required for data: 265563904 +I0407 21:56:17.190209 23658 layer_factory.hpp:77] Creating layer drop7 +I0407 21:56:17.190215 23658 net.cpp:84] Creating Layer drop7 +I0407 21:56:17.190219 23658 net.cpp:406] drop7 <- fc7 +I0407 21:56:17.190225 23658 net.cpp:367] drop7 -> fc7 (in-place) +I0407 21:56:17.190248 23658 net.cpp:122] Setting up drop7 +I0407 21:56:17.190254 23658 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:17.190258 23658 net.cpp:137] Memory required for data: 266088192 +I0407 21:56:17.190260 23658 layer_factory.hpp:77] Creating layer fc8 +I0407 21:56:17.190268 23658 net.cpp:84] Creating Layer fc8 +I0407 21:56:17.190271 23658 net.cpp:406] fc8 <- fc7 +I0407 21:56:17.190277 23658 net.cpp:380] fc8 -> fc8 +I0407 21:56:17.197948 23658 net.cpp:122] Setting up fc8 +I0407 21:56:17.197964 23658 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:56:17.197968 23658 net.cpp:137] Memory required for data: 266113280 +I0407 21:56:17.197973 23658 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 21:56:17.197980 23658 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 21:56:17.197983 23658 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 21:56:17.198009 23658 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 21:56:17.198015 23658 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 21:56:17.198045 23658 net.cpp:122] Setting up fc8_fc8_0_split +I0407 21:56:17.198050 23658 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:56:17.198055 23658 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:56:17.198057 23658 net.cpp:137] Memory required for data: 266163456 +I0407 21:56:17.198060 23658 layer_factory.hpp:77] Creating layer accuracy +I0407 21:56:17.198068 23658 net.cpp:84] Creating Layer accuracy +I0407 21:56:17.198071 23658 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 21:56:17.198076 23658 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 21:56:17.198081 23658 net.cpp:380] accuracy -> accuracy +I0407 21:56:17.198088 23658 net.cpp:122] Setting up accuracy +I0407 21:56:17.198091 23658 net.cpp:129] Top shape: (1) +I0407 21:56:17.198094 23658 net.cpp:137] Memory required for data: 266163460 +I0407 21:56:17.198097 23658 layer_factory.hpp:77] Creating layer loss +I0407 21:56:17.198103 23658 net.cpp:84] Creating Layer loss +I0407 21:56:17.198107 23658 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 21:56:17.198110 23658 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 21:56:17.198114 23658 net.cpp:380] loss -> loss +I0407 21:56:17.198120 23658 layer_factory.hpp:77] Creating layer loss +I0407 21:56:17.198716 23658 net.cpp:122] Setting up loss +I0407 21:56:17.198724 23658 net.cpp:129] Top shape: (1) +I0407 21:56:17.198729 23658 net.cpp:132] with loss weight 1 +I0407 21:56:17.198738 23658 net.cpp:137] Memory required for data: 266163464 +I0407 21:56:17.198742 23658 net.cpp:198] loss needs backward computation. +I0407 21:56:17.198747 23658 net.cpp:200] accuracy does not need backward computation. +I0407 21:56:17.198751 23658 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 21:56:17.198755 23658 net.cpp:198] fc8 needs backward computation. +I0407 21:56:17.198757 23658 net.cpp:198] drop7 needs backward computation. +I0407 21:56:17.198760 23658 net.cpp:198] relu7 needs backward computation. +I0407 21:56:17.198763 23658 net.cpp:198] fc7 needs backward computation. +I0407 21:56:17.198767 23658 net.cpp:198] drop6 needs backward computation. +I0407 21:56:17.198770 23658 net.cpp:198] relu6 needs backward computation. +I0407 21:56:17.198773 23658 net.cpp:198] fc6 needs backward computation. +I0407 21:56:17.198777 23658 net.cpp:198] pool5 needs backward computation. +I0407 21:56:17.198781 23658 net.cpp:198] relu5 needs backward computation. +I0407 21:56:17.198784 23658 net.cpp:198] conv5 needs backward computation. +I0407 21:56:17.198788 23658 net.cpp:198] relu4 needs backward computation. +I0407 21:56:17.198791 23658 net.cpp:198] conv4 needs backward computation. +I0407 21:56:17.198794 23658 net.cpp:198] relu3 needs backward computation. +I0407 21:56:17.198798 23658 net.cpp:198] conv3 needs backward computation. +I0407 21:56:17.198801 23658 net.cpp:198] pool2 needs backward computation. +I0407 21:56:17.198805 23658 net.cpp:198] norm2 needs backward computation. +I0407 21:56:17.198808 23658 net.cpp:198] relu2 needs backward computation. +I0407 21:56:17.198812 23658 net.cpp:198] conv2 needs backward computation. +I0407 21:56:17.198815 23658 net.cpp:198] pool1 needs backward computation. +I0407 21:56:17.198818 23658 net.cpp:198] norm1 needs backward computation. +I0407 21:56:17.198822 23658 net.cpp:198] relu1 needs backward computation. +I0407 21:56:17.198825 23658 net.cpp:198] conv1 needs backward computation. +I0407 21:56:17.198829 23658 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 21:56:17.198832 23658 net.cpp:200] val-data does not need backward computation. +I0407 21:56:17.198837 23658 net.cpp:242] This network produces output accuracy +I0407 21:56:17.198839 23658 net.cpp:242] This network produces output loss +I0407 21:56:17.198856 23658 net.cpp:255] Network initialization done. +I0407 21:56:17.198947 23658 solver.cpp:56] Solver scaffolding done. +I0407 21:56:17.199371 23658 caffe.cpp:248] Starting Optimization +I0407 21:56:17.199379 23658 solver.cpp:272] Solving +I0407 21:56:17.199391 23658 solver.cpp:273] Learning Rate Policy: exp +I0407 21:56:17.200747 23658 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 21:56:17.200757 23658 net.cpp:676] Ignoring source layer train-data +I0407 21:56:17.311674 23658 blocking_queue.cpp:49] Waiting for data +I0407 21:56:21.612509 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:56:21.657120 23658 solver.cpp:397] Test net output #0: accuracy = 0.00367647 +I0407 21:56:21.657166 23658 solver.cpp:397] Test net output #1: loss = 5.27933 (* 1 = 5.27933 loss) +I0407 21:56:21.754987 23658 solver.cpp:218] Iteration 0 (-5.34664e-30 iter/s, 4.55541s/12 iters), loss = 5.28167 +I0407 21:56:21.756503 23658 solver.cpp:237] Train net output #0: loss = 5.28167 (* 1 = 5.28167 loss) +I0407 21:56:21.756520 23658 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 21:56:25.883499 23658 solver.cpp:218] Iteration 12 (2.90779 iter/s, 4.12684s/12 iters), loss = 5.29463 +I0407 21:56:25.883543 23658 solver.cpp:237] Train net output #0: loss = 5.29463 (* 1 = 5.29463 loss) +I0407 21:56:25.883553 23658 sgd_solver.cpp:105] Iteration 12, lr = 0.00993983 +I0407 21:56:30.904953 23658 solver.cpp:218] Iteration 24 (2.38985 iter/s, 5.02123s/12 iters), loss = 5.28869 +I0407 21:56:30.904994 23658 solver.cpp:237] Train net output #0: loss = 5.28869 (* 1 = 5.28869 loss) +I0407 21:56:30.905005 23658 sgd_solver.cpp:105] Iteration 24, lr = 0.00988003 +I0407 21:56:35.908035 23658 solver.cpp:218] Iteration 36 (2.39863 iter/s, 5.00286s/12 iters), loss = 5.30106 +I0407 21:56:35.908077 23658 solver.cpp:237] Train net output #0: loss = 5.30106 (* 1 = 5.30106 loss) +I0407 21:56:35.908089 23658 sgd_solver.cpp:105] Iteration 36, lr = 0.00982059 +I0407 21:56:41.244961 23658 solver.cpp:218] Iteration 48 (2.24858 iter/s, 5.33669s/12 iters), loss = 5.31373 +I0407 21:56:41.245005 23658 solver.cpp:237] Train net output #0: loss = 5.31373 (* 1 = 5.31373 loss) +I0407 21:56:41.245018 23658 sgd_solver.cpp:105] Iteration 48, lr = 0.0097615 +I0407 21:56:46.558019 23658 solver.cpp:218] Iteration 60 (2.25869 iter/s, 5.31283s/12 iters), loss = 5.29973 +I0407 21:56:46.558207 23658 solver.cpp:237] Train net output #0: loss = 5.29973 (* 1 = 5.29973 loss) +I0407 21:56:46.558218 23658 sgd_solver.cpp:105] Iteration 60, lr = 0.00970277 +I0407 21:56:51.924973 23658 solver.cpp:218] Iteration 72 (2.23606 iter/s, 5.36657s/12 iters), loss = 5.29145 +I0407 21:56:51.925020 23658 solver.cpp:237] Train net output #0: loss = 5.29145 (* 1 = 5.29145 loss) +I0407 21:56:51.925032 23658 sgd_solver.cpp:105] Iteration 72, lr = 0.00964439 +I0407 21:56:57.374503 23658 solver.cpp:218] Iteration 84 (2.20212 iter/s, 5.44929s/12 iters), loss = 5.29258 +I0407 21:56:57.374541 23658 solver.cpp:237] Train net output #0: loss = 5.29258 (* 1 = 5.29258 loss) +I0407 21:56:57.374550 23658 sgd_solver.cpp:105] Iteration 84, lr = 0.00958637 +I0407 21:57:02.519932 23658 solver.cpp:218] Iteration 96 (2.33227 iter/s, 5.1452s/12 iters), loss = 5.31723 +I0407 21:57:02.519979 23658 solver.cpp:237] Train net output #0: loss = 5.31723 (* 1 = 5.31723 loss) +I0407 21:57:02.519990 23658 sgd_solver.cpp:105] Iteration 96, lr = 0.00952869 +I0407 21:57:04.302155 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:04.612977 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 21:57:07.643770 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 21:57:09.942056 23658 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 21:57:09.942075 23658 net.cpp:676] Ignoring source layer train-data +I0407 21:57:14.542642 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:14.619271 23658 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0407 21:57:14.619318 23658 solver.cpp:397] Test net output #1: loss = 5.2893 (* 1 = 5.2893 loss) +I0407 21:57:16.597142 23658 solver.cpp:218] Iteration 108 (0.852474 iter/s, 14.0767s/12 iters), loss = 5.31168 +I0407 21:57:16.598039 23658 solver.cpp:237] Train net output #0: loss = 5.31168 (* 1 = 5.31168 loss) +I0407 21:57:16.598053 23658 sgd_solver.cpp:105] Iteration 108, lr = 0.00947136 +I0407 21:57:21.621028 23658 solver.cpp:218] Iteration 120 (2.3891 iter/s, 5.02281s/12 iters), loss = 5.28125 +I0407 21:57:21.621071 23658 solver.cpp:237] Train net output #0: loss = 5.28125 (* 1 = 5.28125 loss) +I0407 21:57:21.621080 23658 sgd_solver.cpp:105] Iteration 120, lr = 0.00941438 +I0407 21:57:26.626212 23658 solver.cpp:218] Iteration 132 (2.39762 iter/s, 5.00495s/12 iters), loss = 5.2403 +I0407 21:57:26.626262 23658 solver.cpp:237] Train net output #0: loss = 5.2403 (* 1 = 5.2403 loss) +I0407 21:57:26.626276 23658 sgd_solver.cpp:105] Iteration 132, lr = 0.00935774 +I0407 21:57:31.621738 23658 solver.cpp:218] Iteration 144 (2.40226 iter/s, 4.99529s/12 iters), loss = 5.30658 +I0407 21:57:31.621793 23658 solver.cpp:237] Train net output #0: loss = 5.30658 (* 1 = 5.30658 loss) +I0407 21:57:31.621805 23658 sgd_solver.cpp:105] Iteration 144, lr = 0.00930144 +I0407 21:57:36.769577 23658 solver.cpp:218] Iteration 156 (2.33118 iter/s, 5.1476s/12 iters), loss = 5.23766 +I0407 21:57:36.769623 23658 solver.cpp:237] Train net output #0: loss = 5.23766 (* 1 = 5.23766 loss) +I0407 21:57:36.769635 23658 sgd_solver.cpp:105] Iteration 156, lr = 0.00924547 +I0407 21:57:41.731873 23658 solver.cpp:218] Iteration 168 (2.41835 iter/s, 4.96206s/12 iters), loss = 5.23451 +I0407 21:57:41.731926 23658 solver.cpp:237] Train net output #0: loss = 5.23451 (* 1 = 5.23451 loss) +I0407 21:57:41.731940 23658 sgd_solver.cpp:105] Iteration 168, lr = 0.00918985 +I0407 21:57:46.713500 23658 solver.cpp:218] Iteration 180 (2.40897 iter/s, 4.98139s/12 iters), loss = 5.16472 +I0407 21:57:46.713577 23658 solver.cpp:237] Train net output #0: loss = 5.16472 (* 1 = 5.16472 loss) +I0407 21:57:46.713587 23658 sgd_solver.cpp:105] Iteration 180, lr = 0.00913456 +I0407 21:57:51.697314 23658 solver.cpp:218] Iteration 192 (2.40792 iter/s, 4.98355s/12 iters), loss = 5.22671 +I0407 21:57:51.697361 23658 solver.cpp:237] Train net output #0: loss = 5.22671 (* 1 = 5.22671 loss) +I0407 21:57:51.697373 23658 sgd_solver.cpp:105] Iteration 192, lr = 0.0090796 +I0407 21:57:55.525914 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:56.210467 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 21:57:59.216727 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 21:58:03.150154 23658 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 21:58:03.150179 23658 net.cpp:676] Ignoring source layer train-data +I0407 21:58:07.488489 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:58:07.611182 23658 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0407 21:58:07.611223 23658 solver.cpp:397] Test net output #1: loss = 5.19461 (* 1 = 5.19461 loss) +I0407 21:58:07.700997 23658 solver.cpp:218] Iteration 204 (0.749856 iter/s, 16.0031s/12 iters), loss = 5.1174 +I0407 21:58:07.701050 23658 solver.cpp:237] Train net output #0: loss = 5.1174 (* 1 = 5.1174 loss) +I0407 21:58:07.701059 23658 sgd_solver.cpp:105] Iteration 204, lr = 0.00902497 +I0407 21:58:12.137787 23658 solver.cpp:218] Iteration 216 (2.70479 iter/s, 4.43658s/12 iters), loss = 5.14829 +I0407 21:58:12.137825 23658 solver.cpp:237] Train net output #0: loss = 5.14829 (* 1 = 5.14829 loss) +I0407 21:58:12.137832 23658 sgd_solver.cpp:105] Iteration 216, lr = 0.00897067 +I0407 21:58:17.128638 23658 solver.cpp:218] Iteration 228 (2.40451 iter/s, 4.99063s/12 iters), loss = 5.1989 +I0407 21:58:17.128758 23658 solver.cpp:237] Train net output #0: loss = 5.1989 (* 1 = 5.1989 loss) +I0407 21:58:17.128772 23658 sgd_solver.cpp:105] Iteration 228, lr = 0.0089167 +I0407 21:58:22.032639 23658 solver.cpp:218] Iteration 240 (2.44713 iter/s, 4.90371s/12 iters), loss = 5.19757 +I0407 21:58:22.032677 23658 solver.cpp:237] Train net output #0: loss = 5.19757 (* 1 = 5.19757 loss) +I0407 21:58:22.032685 23658 sgd_solver.cpp:105] Iteration 240, lr = 0.00886305 +I0407 21:58:27.039263 23658 solver.cpp:218] Iteration 252 (2.39693 iter/s, 5.00639s/12 iters), loss = 5.15089 +I0407 21:58:27.039319 23658 solver.cpp:237] Train net output #0: loss = 5.15089 (* 1 = 5.15089 loss) +I0407 21:58:27.039330 23658 sgd_solver.cpp:105] Iteration 252, lr = 0.00880973 +I0407 21:58:31.999867 23658 solver.cpp:218] Iteration 264 (2.41918 iter/s, 4.96037s/12 iters), loss = 5.23863 +I0407 21:58:31.999913 23658 solver.cpp:237] Train net output #0: loss = 5.23863 (* 1 = 5.23863 loss) +I0407 21:58:31.999922 23658 sgd_solver.cpp:105] Iteration 264, lr = 0.00875672 +I0407 21:58:36.972963 23658 solver.cpp:218] Iteration 276 (2.41309 iter/s, 4.97287s/12 iters), loss = 5.1736 +I0407 21:58:36.973016 23658 solver.cpp:237] Train net output #0: loss = 5.1736 (* 1 = 5.1736 loss) +I0407 21:58:36.973026 23658 sgd_solver.cpp:105] Iteration 276, lr = 0.00870404 +I0407 21:58:41.883184 23658 solver.cpp:218] Iteration 288 (2.444 iter/s, 4.90999s/12 iters), loss = 5.05561 +I0407 21:58:41.883231 23658 solver.cpp:237] Train net output #0: loss = 5.05561 (* 1 = 5.05561 loss) +I0407 21:58:41.883241 23658 sgd_solver.cpp:105] Iteration 288, lr = 0.00865167 +I0407 21:58:47.029734 23658 solver.cpp:218] Iteration 300 (2.33177 iter/s, 5.14631s/12 iters), loss = 5.16688 +I0407 21:58:47.029778 23658 solver.cpp:237] Train net output #0: loss = 5.16688 (* 1 = 5.16688 loss) +I0407 21:58:47.029788 23658 sgd_solver.cpp:105] Iteration 300, lr = 0.00859962 +I0407 21:58:48.008745 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:58:49.046669 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 21:58:51.993199 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 21:58:56.141083 23658 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 21:58:56.141108 23658 net.cpp:676] Ignoring source layer train-data +I0407 21:59:00.536193 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:00.701720 23658 solver.cpp:397] Test net output #0: accuracy = 0.0116422 +I0407 21:59:00.701763 23658 solver.cpp:397] Test net output #1: loss = 5.13218 (* 1 = 5.13218 loss) +I0407 21:59:02.693909 23658 solver.cpp:218] Iteration 312 (0.766108 iter/s, 15.6636s/12 iters), loss = 5.11227 +I0407 21:59:02.693950 23658 solver.cpp:237] Train net output #0: loss = 5.11227 (* 1 = 5.11227 loss) +I0407 21:59:02.693971 23658 sgd_solver.cpp:105] Iteration 312, lr = 0.00854788 +I0407 21:59:07.819352 23658 solver.cpp:218] Iteration 324 (2.34139 iter/s, 5.12517s/12 iters), loss = 5.15344 +I0407 21:59:07.819393 23658 solver.cpp:237] Train net output #0: loss = 5.15344 (* 1 = 5.15344 loss) +I0407 21:59:07.819402 23658 sgd_solver.cpp:105] Iteration 324, lr = 0.00849645 +I0407 21:59:13.018746 23658 solver.cpp:218] Iteration 336 (2.30806 iter/s, 5.19917s/12 iters), loss = 5.07645 +I0407 21:59:13.018784 23658 solver.cpp:237] Train net output #0: loss = 5.07645 (* 1 = 5.07645 loss) +I0407 21:59:13.018793 23658 sgd_solver.cpp:105] Iteration 336, lr = 0.00844533 +I0407 21:59:18.041833 23658 solver.cpp:218] Iteration 348 (2.38908 iter/s, 5.02286s/12 iters), loss = 5.06271 +I0407 21:59:18.041942 23658 solver.cpp:237] Train net output #0: loss = 5.06271 (* 1 = 5.06271 loss) +I0407 21:59:18.041970 23658 sgd_solver.cpp:105] Iteration 348, lr = 0.00839452 +I0407 21:59:22.988317 23658 solver.cpp:218] Iteration 360 (2.4261 iter/s, 4.9462s/12 iters), loss = 5.13908 +I0407 21:59:22.988359 23658 solver.cpp:237] Train net output #0: loss = 5.13908 (* 1 = 5.13908 loss) +I0407 21:59:22.988369 23658 sgd_solver.cpp:105] Iteration 360, lr = 0.00834401 +I0407 21:59:28.002351 23658 solver.cpp:218] Iteration 372 (2.39339 iter/s, 5.01381s/12 iters), loss = 5.10989 +I0407 21:59:28.002391 23658 solver.cpp:237] Train net output #0: loss = 5.10989 (* 1 = 5.10989 loss) +I0407 21:59:28.002400 23658 sgd_solver.cpp:105] Iteration 372, lr = 0.00829381 +I0407 21:59:33.004834 23658 solver.cpp:218] Iteration 384 (2.39891 iter/s, 5.00226s/12 iters), loss = 5.11957 +I0407 21:59:33.004875 23658 solver.cpp:237] Train net output #0: loss = 5.11957 (* 1 = 5.11957 loss) +I0407 21:59:33.004884 23658 sgd_solver.cpp:105] Iteration 384, lr = 0.00824391 +I0407 21:59:38.040099 23658 solver.cpp:218] Iteration 396 (2.38329 iter/s, 5.03505s/12 iters), loss = 5.01952 +I0407 21:59:38.040136 23658 solver.cpp:237] Train net output #0: loss = 5.01952 (* 1 = 5.01952 loss) +I0407 21:59:38.040148 23658 sgd_solver.cpp:105] Iteration 396, lr = 0.00819431 +I0407 21:59:41.164405 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:42.585028 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 21:59:47.037541 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 21:59:50.787129 23658 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 21:59:50.787242 23658 net.cpp:676] Ignoring source layer train-data +I0407 21:59:55.110311 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:55.321326 23658 solver.cpp:397] Test net output #0: accuracy = 0.0140931 +I0407 21:59:55.321375 23658 solver.cpp:397] Test net output #1: loss = 5.09326 (* 1 = 5.09326 loss) +I0407 21:59:55.411715 23658 solver.cpp:218] Iteration 408 (0.690807 iter/s, 17.371s/12 iters), loss = 5.15603 +I0407 21:59:55.411767 23658 solver.cpp:237] Train net output #0: loss = 5.15603 (* 1 = 5.15603 loss) +I0407 21:59:55.411777 23658 sgd_solver.cpp:105] Iteration 408, lr = 0.00814501 +I0407 21:59:59.775023 23658 solver.cpp:218] Iteration 420 (2.75034 iter/s, 4.3631s/12 iters), loss = 5.13169 +I0407 21:59:59.775074 23658 solver.cpp:237] Train net output #0: loss = 5.13169 (* 1 = 5.13169 loss) +I0407 21:59:59.775086 23658 sgd_solver.cpp:105] Iteration 420, lr = 0.008096 +I0407 22:00:04.775350 23658 solver.cpp:218] Iteration 432 (2.39995 iter/s, 5.00011s/12 iters), loss = 5.08883 +I0407 22:00:04.775390 23658 solver.cpp:237] Train net output #0: loss = 5.08883 (* 1 = 5.08883 loss) +I0407 22:00:04.775399 23658 sgd_solver.cpp:105] Iteration 432, lr = 0.00804729 +I0407 22:00:09.710961 23658 solver.cpp:218] Iteration 444 (2.43142 iter/s, 4.93539s/12 iters), loss = 4.99804 +I0407 22:00:09.711004 23658 solver.cpp:237] Train net output #0: loss = 4.99804 (* 1 = 4.99804 loss) +I0407 22:00:09.711014 23658 sgd_solver.cpp:105] Iteration 444, lr = 0.00799888 +I0407 22:00:14.656476 23658 solver.cpp:218] Iteration 456 (2.42655 iter/s, 4.94529s/12 iters), loss = 5.11806 +I0407 22:00:14.656520 23658 solver.cpp:237] Train net output #0: loss = 5.11806 (* 1 = 5.11806 loss) +I0407 22:00:14.656529 23658 sgd_solver.cpp:105] Iteration 456, lr = 0.00795075 +I0407 22:00:19.624858 23658 solver.cpp:218] Iteration 468 (2.41538 iter/s, 4.96816s/12 iters), loss = 5.07001 +I0407 22:00:19.624905 23658 solver.cpp:237] Train net output #0: loss = 5.07001 (* 1 = 5.07001 loss) +I0407 22:00:19.624914 23658 sgd_solver.cpp:105] Iteration 468, lr = 0.00790292 +I0407 22:00:24.698158 23658 solver.cpp:218] Iteration 480 (2.36543 iter/s, 5.07306s/12 iters), loss = 5.00541 +I0407 22:00:24.698251 23658 solver.cpp:237] Train net output #0: loss = 5.00541 (* 1 = 5.00541 loss) +I0407 22:00:24.698262 23658 sgd_solver.cpp:105] Iteration 480, lr = 0.00785537 +I0407 22:00:29.805646 23658 solver.cpp:218] Iteration 492 (2.34962 iter/s, 5.10722s/12 iters), loss = 5.02332 +I0407 22:00:29.805694 23658 solver.cpp:237] Train net output #0: loss = 5.02332 (* 1 = 5.02332 loss) +I0407 22:00:29.805706 23658 sgd_solver.cpp:105] Iteration 492, lr = 0.00780811 +I0407 22:00:34.763063 23658 solver.cpp:218] Iteration 504 (2.42072 iter/s, 4.95719s/12 iters), loss = 5.09284 +I0407 22:00:34.763108 23658 solver.cpp:237] Train net output #0: loss = 5.09284 (* 1 = 5.09284 loss) +I0407 22:00:34.763118 23658 sgd_solver.cpp:105] Iteration 504, lr = 0.00776113 +I0407 22:00:35.009732 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:36.789564 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 22:00:39.793076 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 22:00:46.117362 23658 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 22:00:46.117383 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:00:50.402443 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:50.647295 23658 solver.cpp:397] Test net output #0: accuracy = 0.0202206 +I0407 22:00:50.647343 23658 solver.cpp:397] Test net output #1: loss = 5.0267 (* 1 = 5.0267 loss) +I0407 22:00:52.626185 23658 solver.cpp:218] Iteration 516 (0.671799 iter/s, 17.8625s/12 iters), loss = 4.93263 +I0407 22:00:52.626255 23658 solver.cpp:237] Train net output #0: loss = 4.93263 (* 1 = 4.93263 loss) +I0407 22:00:52.626272 23658 sgd_solver.cpp:105] Iteration 516, lr = 0.00771443 +I0407 22:00:57.628576 23658 solver.cpp:218] Iteration 528 (2.39897 iter/s, 5.00214s/12 iters), loss = 5.06861 +I0407 22:00:57.628734 23658 solver.cpp:237] Train net output #0: loss = 5.06861 (* 1 = 5.06861 loss) +I0407 22:00:57.628755 23658 sgd_solver.cpp:105] Iteration 528, lr = 0.00766802 +I0407 22:01:02.628998 23658 solver.cpp:218] Iteration 540 (2.39995 iter/s, 5.0001s/12 iters), loss = 4.94024 +I0407 22:01:02.629036 23658 solver.cpp:237] Train net output #0: loss = 4.94024 (* 1 = 4.94024 loss) +I0407 22:01:02.629045 23658 sgd_solver.cpp:105] Iteration 540, lr = 0.00762188 +I0407 22:01:07.674553 23658 solver.cpp:218] Iteration 552 (2.37843 iter/s, 5.04534s/12 iters), loss = 5.02246 +I0407 22:01:07.674593 23658 solver.cpp:237] Train net output #0: loss = 5.02246 (* 1 = 5.02246 loss) +I0407 22:01:07.674602 23658 sgd_solver.cpp:105] Iteration 552, lr = 0.00757603 +I0407 22:01:12.650161 23658 solver.cpp:218] Iteration 564 (2.41187 iter/s, 4.9754s/12 iters), loss = 4.95741 +I0407 22:01:12.650210 23658 solver.cpp:237] Train net output #0: loss = 4.95741 (* 1 = 4.95741 loss) +I0407 22:01:12.650221 23658 sgd_solver.cpp:105] Iteration 564, lr = 0.00753045 +I0407 22:01:17.694591 23658 solver.cpp:218] Iteration 576 (2.37897 iter/s, 5.04421s/12 iters), loss = 4.99298 +I0407 22:01:17.694636 23658 solver.cpp:237] Train net output #0: loss = 4.99298 (* 1 = 4.99298 loss) +I0407 22:01:17.694648 23658 sgd_solver.cpp:105] Iteration 576, lr = 0.00748514 +I0407 22:01:22.672519 23658 solver.cpp:218] Iteration 588 (2.41074 iter/s, 4.97771s/12 iters), loss = 4.8668 +I0407 22:01:22.672562 23658 solver.cpp:237] Train net output #0: loss = 4.8668 (* 1 = 4.8668 loss) +I0407 22:01:22.672572 23658 sgd_solver.cpp:105] Iteration 588, lr = 0.0074401 +I0407 22:01:27.692523 23658 solver.cpp:218] Iteration 600 (2.39054 iter/s, 5.01979s/12 iters), loss = 4.98392 +I0407 22:01:27.692646 23658 solver.cpp:237] Train net output #0: loss = 4.98392 (* 1 = 4.98392 loss) +I0407 22:01:27.692658 23658 sgd_solver.cpp:105] Iteration 600, lr = 0.00739534 +I0407 22:01:30.071053 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:32.224128 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 22:01:35.327822 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 22:01:38.933147 23658 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 22:01:38.933173 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:01:43.109758 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:43.394475 23658 solver.cpp:397] Test net output #0: accuracy = 0.0257353 +I0407 22:01:43.394526 23658 solver.cpp:397] Test net output #1: loss = 4.98536 (* 1 = 4.98536 loss) +I0407 22:01:43.483292 23658 solver.cpp:218] Iteration 612 (0.759967 iter/s, 15.7902s/12 iters), loss = 4.92865 +I0407 22:01:43.483343 23658 solver.cpp:237] Train net output #0: loss = 4.92865 (* 1 = 4.92865 loss) +I0407 22:01:43.483355 23658 sgd_solver.cpp:105] Iteration 612, lr = 0.00735085 +I0407 22:01:47.838567 23658 solver.cpp:218] Iteration 624 (2.7554 iter/s, 4.35508s/12 iters), loss = 4.91757 +I0407 22:01:47.838611 23658 solver.cpp:237] Train net output #0: loss = 4.91757 (* 1 = 4.91757 loss) +I0407 22:01:47.838624 23658 sgd_solver.cpp:105] Iteration 624, lr = 0.00730662 +I0407 22:01:52.842234 23658 solver.cpp:218] Iteration 636 (2.39834 iter/s, 5.00346s/12 iters), loss = 4.80932 +I0407 22:01:52.842286 23658 solver.cpp:237] Train net output #0: loss = 4.80932 (* 1 = 4.80932 loss) +I0407 22:01:52.842298 23658 sgd_solver.cpp:105] Iteration 636, lr = 0.00726266 +I0407 22:01:57.766403 23658 solver.cpp:218] Iteration 648 (2.43707 iter/s, 4.92395s/12 iters), loss = 5.04729 +I0407 22:01:57.766535 23658 solver.cpp:237] Train net output #0: loss = 5.04729 (* 1 = 5.04729 loss) +I0407 22:01:57.766549 23658 sgd_solver.cpp:105] Iteration 648, lr = 0.00721896 +I0407 22:02:02.743408 23658 solver.cpp:218] Iteration 660 (2.41123 iter/s, 4.97671s/12 iters), loss = 4.93925 +I0407 22:02:02.743458 23658 solver.cpp:237] Train net output #0: loss = 4.93925 (* 1 = 4.93925 loss) +I0407 22:02:02.743468 23658 sgd_solver.cpp:105] Iteration 660, lr = 0.00717553 +I0407 22:02:07.773912 23658 solver.cpp:218] Iteration 672 (2.38555 iter/s, 5.03029s/12 iters), loss = 4.92814 +I0407 22:02:07.773972 23658 solver.cpp:237] Train net output #0: loss = 4.92814 (* 1 = 4.92814 loss) +I0407 22:02:07.773984 23658 sgd_solver.cpp:105] Iteration 672, lr = 0.00713236 +I0407 22:02:12.772812 23658 solver.cpp:218] Iteration 684 (2.40063 iter/s, 4.99869s/12 iters), loss = 4.73744 +I0407 22:02:12.772850 23658 solver.cpp:237] Train net output #0: loss = 4.73744 (* 1 = 4.73744 loss) +I0407 22:02:12.772859 23658 sgd_solver.cpp:105] Iteration 684, lr = 0.00708945 +I0407 22:02:13.556880 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:02:17.769249 23658 solver.cpp:218] Iteration 696 (2.40181 iter/s, 4.99623s/12 iters), loss = 4.82502 +I0407 22:02:17.769306 23658 solver.cpp:237] Train net output #0: loss = 4.82502 (* 1 = 4.82502 loss) +I0407 22:02:17.769320 23658 sgd_solver.cpp:105] Iteration 696, lr = 0.00704679 +I0407 22:02:22.427212 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:02:22.804361 23658 solver.cpp:218] Iteration 708 (2.38337 iter/s, 5.03489s/12 iters), loss = 4.97044 +I0407 22:02:22.804404 23658 solver.cpp:237] Train net output #0: loss = 4.97044 (* 1 = 4.97044 loss) +I0407 22:02:22.804414 23658 sgd_solver.cpp:105] Iteration 708, lr = 0.0070044 +I0407 22:02:24.842067 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 22:02:27.809306 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 22:02:31.764813 23658 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 22:02:31.764838 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:02:35.933660 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:02:36.254046 23658 solver.cpp:397] Test net output #0: accuracy = 0.033701 +I0407 22:02:36.254096 23658 solver.cpp:397] Test net output #1: loss = 4.89371 (* 1 = 4.89371 loss) +I0407 22:02:38.244551 23658 solver.cpp:218] Iteration 720 (0.777219 iter/s, 15.4397s/12 iters), loss = 5.04468 +I0407 22:02:38.244606 23658 solver.cpp:237] Train net output #0: loss = 5.04468 (* 1 = 5.04468 loss) +I0407 22:02:38.244617 23658 sgd_solver.cpp:105] Iteration 720, lr = 0.00696225 +I0407 22:02:43.505234 23658 solver.cpp:218] Iteration 732 (2.28117 iter/s, 5.26046s/12 iters), loss = 4.65762 +I0407 22:02:43.505283 23658 solver.cpp:237] Train net output #0: loss = 4.65762 (* 1 = 4.65762 loss) +I0407 22:02:43.505295 23658 sgd_solver.cpp:105] Iteration 732, lr = 0.00692036 +I0407 22:02:48.611716 23658 solver.cpp:218] Iteration 744 (2.35005 iter/s, 5.10627s/12 iters), loss = 4.91566 +I0407 22:02:48.611768 23658 solver.cpp:237] Train net output #0: loss = 4.91566 (* 1 = 4.91566 loss) +I0407 22:02:48.611780 23658 sgd_solver.cpp:105] Iteration 744, lr = 0.00687873 +I0407 22:02:53.788892 23658 solver.cpp:218] Iteration 756 (2.31797 iter/s, 5.17695s/12 iters), loss = 4.93049 +I0407 22:02:53.788944 23658 solver.cpp:237] Train net output #0: loss = 4.93049 (* 1 = 4.93049 loss) +I0407 22:02:53.788955 23658 sgd_solver.cpp:105] Iteration 756, lr = 0.00683734 +I0407 22:02:58.713932 23658 solver.cpp:218] Iteration 768 (2.43663 iter/s, 4.92483s/12 iters), loss = 4.83981 +I0407 22:02:58.714044 23658 solver.cpp:237] Train net output #0: loss = 4.83981 (* 1 = 4.83981 loss) +I0407 22:02:58.714053 23658 sgd_solver.cpp:105] Iteration 768, lr = 0.0067962 +I0407 22:03:03.740406 23658 solver.cpp:218] Iteration 780 (2.38749 iter/s, 5.0262s/12 iters), loss = 4.88295 +I0407 22:03:03.740453 23658 solver.cpp:237] Train net output #0: loss = 4.88295 (* 1 = 4.88295 loss) +I0407 22:03:03.740464 23658 sgd_solver.cpp:105] Iteration 780, lr = 0.00675532 +I0407 22:03:08.767128 23658 solver.cpp:218] Iteration 792 (2.38734 iter/s, 5.02651s/12 iters), loss = 4.69713 +I0407 22:03:08.767174 23658 solver.cpp:237] Train net output #0: loss = 4.69713 (* 1 = 4.69713 loss) +I0407 22:03:08.767185 23658 sgd_solver.cpp:105] Iteration 792, lr = 0.00671467 +I0407 22:03:13.786796 23658 solver.cpp:218] Iteration 804 (2.39069 iter/s, 5.01946s/12 iters), loss = 4.73543 +I0407 22:03:13.786842 23658 solver.cpp:237] Train net output #0: loss = 4.73543 (* 1 = 4.73543 loss) +I0407 22:03:13.786854 23658 sgd_solver.cpp:105] Iteration 804, lr = 0.00667427 +I0407 22:03:15.539912 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:03:18.292135 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 22:03:21.902838 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 22:03:25.559152 23658 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 22:03:25.559177 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:03:29.711670 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:03:30.066711 23658 solver.cpp:397] Test net output #0: accuracy = 0.0398284 +I0407 22:03:30.066759 23658 solver.cpp:397] Test net output #1: loss = 4.81729 (* 1 = 4.81729 loss) +I0407 22:03:30.156936 23658 solver.cpp:218] Iteration 816 (0.733066 iter/s, 16.3696s/12 iters), loss = 4.86118 +I0407 22:03:30.156986 23658 solver.cpp:237] Train net output #0: loss = 4.86118 (* 1 = 4.86118 loss) +I0407 22:03:30.156997 23658 sgd_solver.cpp:105] Iteration 816, lr = 0.00663412 +I0407 22:03:34.631054 23658 solver.cpp:218] Iteration 828 (2.68221 iter/s, 4.47392s/12 iters), loss = 4.88271 +I0407 22:03:34.631103 23658 solver.cpp:237] Train net output #0: loss = 4.88271 (* 1 = 4.88271 loss) +I0407 22:03:34.631115 23658 sgd_solver.cpp:105] Iteration 828, lr = 0.0065942 +I0407 22:03:39.634269 23658 solver.cpp:218] Iteration 840 (2.39855 iter/s, 5.00301s/12 iters), loss = 4.51513 +I0407 22:03:39.634307 23658 solver.cpp:237] Train net output #0: loss = 4.51513 (* 1 = 4.51513 loss) +I0407 22:03:39.634316 23658 sgd_solver.cpp:105] Iteration 840, lr = 0.00655453 +I0407 22:03:44.602349 23658 solver.cpp:218] Iteration 852 (2.41552 iter/s, 4.96788s/12 iters), loss = 4.71625 +I0407 22:03:44.602397 23658 solver.cpp:237] Train net output #0: loss = 4.71625 (* 1 = 4.71625 loss) +I0407 22:03:44.602408 23658 sgd_solver.cpp:105] Iteration 852, lr = 0.00651509 +I0407 22:03:49.592067 23658 solver.cpp:218] Iteration 864 (2.40504 iter/s, 4.98952s/12 iters), loss = 4.6272 +I0407 22:03:49.592103 23658 solver.cpp:237] Train net output #0: loss = 4.6272 (* 1 = 4.6272 loss) +I0407 22:03:49.592113 23658 sgd_solver.cpp:105] Iteration 864, lr = 0.00647589 +I0407 22:03:54.580976 23658 solver.cpp:218] Iteration 876 (2.40543 iter/s, 4.98871s/12 iters), loss = 4.63453 +I0407 22:03:54.581020 23658 solver.cpp:237] Train net output #0: loss = 4.63453 (* 1 = 4.63453 loss) +I0407 22:03:54.581029 23658 sgd_solver.cpp:105] Iteration 876, lr = 0.00643693 +I0407 22:03:59.629570 23658 solver.cpp:218] Iteration 888 (2.37699 iter/s, 5.04839s/12 iters), loss = 4.73374 +I0407 22:03:59.629611 23658 solver.cpp:237] Train net output #0: loss = 4.73374 (* 1 = 4.73374 loss) +I0407 22:03:59.629621 23658 sgd_solver.cpp:105] Iteration 888, lr = 0.0063982 +I0407 22:04:04.589849 23658 solver.cpp:218] Iteration 900 (2.41932 iter/s, 4.96008s/12 iters), loss = 4.76228 +I0407 22:04:04.589998 23658 solver.cpp:237] Train net output #0: loss = 4.76228 (* 1 = 4.76228 loss) +I0407 22:04:04.590013 23658 sgd_solver.cpp:105] Iteration 900, lr = 0.00635971 +I0407 22:04:08.538455 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:04:09.642346 23658 solver.cpp:218] Iteration 912 (2.37521 iter/s, 5.05219s/12 iters), loss = 4.36852 +I0407 22:04:09.642387 23658 solver.cpp:237] Train net output #0: loss = 4.36852 (* 1 = 4.36852 loss) +I0407 22:04:09.642396 23658 sgd_solver.cpp:105] Iteration 912, lr = 0.00632145 +I0407 22:04:11.659884 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 22:04:14.934913 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 22:04:18.587085 23658 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 22:04:18.587114 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:04:22.644552 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:04:23.046438 23658 solver.cpp:397] Test net output #0: accuracy = 0.0514706 +I0407 22:04:23.046487 23658 solver.cpp:397] Test net output #1: loss = 4.64799 (* 1 = 4.64799 loss) +I0407 22:04:24.985219 23658 solver.cpp:218] Iteration 924 (0.782148 iter/s, 15.3424s/12 iters), loss = 4.63565 +I0407 22:04:24.985263 23658 solver.cpp:237] Train net output #0: loss = 4.63565 (* 1 = 4.63565 loss) +I0407 22:04:24.985273 23658 sgd_solver.cpp:105] Iteration 924, lr = 0.00628341 +I0407 22:04:29.975080 23658 solver.cpp:218] Iteration 936 (2.40498 iter/s, 4.98965s/12 iters), loss = 4.53507 +I0407 22:04:29.975121 23658 solver.cpp:237] Train net output #0: loss = 4.53507 (* 1 = 4.53507 loss) +I0407 22:04:29.975131 23658 sgd_solver.cpp:105] Iteration 936, lr = 0.00624561 +I0407 22:04:34.993301 23658 solver.cpp:218] Iteration 948 (2.39138 iter/s, 5.01802s/12 iters), loss = 4.56456 +I0407 22:04:34.993399 23658 solver.cpp:237] Train net output #0: loss = 4.56456 (* 1 = 4.56456 loss) +I0407 22:04:34.993408 23658 sgd_solver.cpp:105] Iteration 948, lr = 0.00620803 +I0407 22:04:40.058162 23658 solver.cpp:218] Iteration 960 (2.36939 iter/s, 5.0646s/12 iters), loss = 4.50858 +I0407 22:04:40.058213 23658 solver.cpp:237] Train net output #0: loss = 4.50858 (* 1 = 4.50858 loss) +I0407 22:04:40.058225 23658 sgd_solver.cpp:105] Iteration 960, lr = 0.00617068 +I0407 22:04:45.064702 23658 solver.cpp:218] Iteration 972 (2.39697 iter/s, 5.00633s/12 iters), loss = 4.61284 +I0407 22:04:45.064743 23658 solver.cpp:237] Train net output #0: loss = 4.61284 (* 1 = 4.61284 loss) +I0407 22:04:45.064754 23658 sgd_solver.cpp:105] Iteration 972, lr = 0.00613355 +I0407 22:04:50.032152 23658 solver.cpp:218] Iteration 984 (2.41582 iter/s, 4.96725s/12 iters), loss = 4.44683 +I0407 22:04:50.032193 23658 solver.cpp:237] Train net output #0: loss = 4.44683 (* 1 = 4.44683 loss) +I0407 22:04:50.032203 23658 sgd_solver.cpp:105] Iteration 984, lr = 0.00609665 +I0407 22:04:55.037765 23658 solver.cpp:218] Iteration 996 (2.3974 iter/s, 5.00542s/12 iters), loss = 4.38344 +I0407 22:04:55.037792 23658 solver.cpp:237] Train net output #0: loss = 4.38344 (* 1 = 4.38344 loss) +I0407 22:04:55.037801 23658 sgd_solver.cpp:105] Iteration 996, lr = 0.00605997 +I0407 22:05:00.073243 23658 solver.cpp:218] Iteration 1008 (2.38318 iter/s, 5.03529s/12 iters), loss = 4.51121 +I0407 22:05:00.073299 23658 solver.cpp:237] Train net output #0: loss = 4.51121 (* 1 = 4.51121 loss) +I0407 22:05:00.073312 23658 sgd_solver.cpp:105] Iteration 1008, lr = 0.00602351 +I0407 22:05:01.102970 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:04.656044 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 22:05:07.628787 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 22:05:11.650130 23658 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 22:05:11.650151 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:05:15.684088 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:16.115527 23658 solver.cpp:397] Test net output #0: accuracy = 0.0502451 +I0407 22:05:16.115576 23658 solver.cpp:397] Test net output #1: loss = 4.56858 (* 1 = 4.56858 loss) +I0407 22:05:16.204557 23658 solver.cpp:218] Iteration 1020 (0.743919 iter/s, 16.1308s/12 iters), loss = 4.46301 +I0407 22:05:16.204613 23658 solver.cpp:237] Train net output #0: loss = 4.46301 (* 1 = 4.46301 loss) +I0407 22:05:16.204625 23658 sgd_solver.cpp:105] Iteration 1020, lr = 0.00598727 +I0407 22:05:20.430318 23658 solver.cpp:218] Iteration 1032 (2.83985 iter/s, 4.22557s/12 iters), loss = 4.48578 +I0407 22:05:20.430361 23658 solver.cpp:237] Train net output #0: loss = 4.48578 (* 1 = 4.48578 loss) +I0407 22:05:20.430372 23658 sgd_solver.cpp:105] Iteration 1032, lr = 0.00595125 +I0407 22:05:25.389348 23658 solver.cpp:218] Iteration 1044 (2.41993 iter/s, 4.95883s/12 iters), loss = 4.45094 +I0407 22:05:25.389396 23658 solver.cpp:237] Train net output #0: loss = 4.45094 (* 1 = 4.45094 loss) +I0407 22:05:25.389408 23658 sgd_solver.cpp:105] Iteration 1044, lr = 0.00591544 +I0407 22:05:30.271538 23658 solver.cpp:218] Iteration 1056 (2.45801 iter/s, 4.88199s/12 iters), loss = 4.49522 +I0407 22:05:30.271589 23658 solver.cpp:237] Train net output #0: loss = 4.49522 (* 1 = 4.49522 loss) +I0407 22:05:30.271600 23658 sgd_solver.cpp:105] Iteration 1056, lr = 0.00587985 +I0407 22:05:35.189267 23658 solver.cpp:218] Iteration 1068 (2.44025 iter/s, 4.91753s/12 iters), loss = 4.45647 +I0407 22:05:35.189306 23658 solver.cpp:237] Train net output #0: loss = 4.45647 (* 1 = 4.45647 loss) +I0407 22:05:35.189316 23658 sgd_solver.cpp:105] Iteration 1068, lr = 0.00584448 +I0407 22:05:40.181001 23658 solver.cpp:218] Iteration 1080 (2.40407 iter/s, 4.99154s/12 iters), loss = 4.48553 +I0407 22:05:40.181114 23658 solver.cpp:237] Train net output #0: loss = 4.48553 (* 1 = 4.48553 loss) +I0407 22:05:40.181128 23658 sgd_solver.cpp:105] Iteration 1080, lr = 0.00580931 +I0407 22:05:45.237828 23658 solver.cpp:218] Iteration 1092 (2.37315 iter/s, 5.05656s/12 iters), loss = 4.45088 +I0407 22:05:45.237869 23658 solver.cpp:237] Train net output #0: loss = 4.45088 (* 1 = 4.45088 loss) +I0407 22:05:45.237877 23658 sgd_solver.cpp:105] Iteration 1092, lr = 0.00577436 +I0407 22:05:50.300782 23658 solver.cpp:218] Iteration 1104 (2.37025 iter/s, 5.06275s/12 iters), loss = 4.43736 +I0407 22:05:50.300830 23658 solver.cpp:237] Train net output #0: loss = 4.43736 (* 1 = 4.43736 loss) +I0407 22:05:50.300843 23658 sgd_solver.cpp:105] Iteration 1104, lr = 0.00573962 +I0407 22:05:53.419754 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:55.252365 23658 solver.cpp:218] Iteration 1116 (2.42358 iter/s, 4.95136s/12 iters), loss = 4.33475 +I0407 22:05:55.252434 23658 solver.cpp:237] Train net output #0: loss = 4.33475 (* 1 = 4.33475 loss) +I0407 22:05:55.252450 23658 sgd_solver.cpp:105] Iteration 1116, lr = 0.00570509 +I0407 22:05:57.328768 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 22:06:00.357661 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 22:06:04.678937 23658 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 22:06:04.678966 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:06:08.758729 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:06:09.235770 23658 solver.cpp:397] Test net output #0: accuracy = 0.0680147 +I0407 22:06:09.235818 23658 solver.cpp:397] Test net output #1: loss = 4.40931 (* 1 = 4.40931 loss) +I0407 22:06:11.325748 23658 solver.cpp:218] Iteration 1128 (0.7466 iter/s, 16.0729s/12 iters), loss = 4.37737 +I0407 22:06:11.325898 23658 solver.cpp:237] Train net output #0: loss = 4.37737 (* 1 = 4.37737 loss) +I0407 22:06:11.325912 23658 sgd_solver.cpp:105] Iteration 1128, lr = 0.00567076 +I0407 22:06:16.471463 23658 solver.cpp:218] Iteration 1140 (2.33217 iter/s, 5.14541s/12 iters), loss = 4.3523 +I0407 22:06:16.471513 23658 solver.cpp:237] Train net output #0: loss = 4.3523 (* 1 = 4.3523 loss) +I0407 22:06:16.471524 23658 sgd_solver.cpp:105] Iteration 1140, lr = 0.00563664 +I0407 22:06:21.432719 23658 solver.cpp:218] Iteration 1152 (2.41884 iter/s, 4.96105s/12 iters), loss = 4.08633 +I0407 22:06:21.432772 23658 solver.cpp:237] Train net output #0: loss = 4.08633 (* 1 = 4.08633 loss) +I0407 22:06:21.432787 23658 sgd_solver.cpp:105] Iteration 1152, lr = 0.00560273 +I0407 22:06:26.431815 23658 solver.cpp:218] Iteration 1164 (2.40053 iter/s, 4.99889s/12 iters), loss = 4.26338 +I0407 22:06:26.431867 23658 solver.cpp:237] Train net output #0: loss = 4.26338 (* 1 = 4.26338 loss) +I0407 22:06:26.431879 23658 sgd_solver.cpp:105] Iteration 1164, lr = 0.00556902 +I0407 22:06:31.391988 23658 solver.cpp:218] Iteration 1176 (2.41937 iter/s, 4.95997s/12 iters), loss = 4.46624 +I0407 22:06:31.392031 23658 solver.cpp:237] Train net output #0: loss = 4.46624 (* 1 = 4.46624 loss) +I0407 22:06:31.392041 23658 sgd_solver.cpp:105] Iteration 1176, lr = 0.00553551 +I0407 22:06:36.398425 23658 solver.cpp:218] Iteration 1188 (2.39701 iter/s, 5.00624s/12 iters), loss = 4.21252 +I0407 22:06:36.398466 23658 solver.cpp:237] Train net output #0: loss = 4.21252 (* 1 = 4.21252 loss) +I0407 22:06:36.398476 23658 sgd_solver.cpp:105] Iteration 1188, lr = 0.00550221 +I0407 22:06:41.361780 23658 solver.cpp:218] Iteration 1200 (2.41781 iter/s, 4.96316s/12 iters), loss = 4.33594 +I0407 22:06:41.361878 23658 solver.cpp:237] Train net output #0: loss = 4.33594 (* 1 = 4.33594 loss) +I0407 22:06:41.361888 23658 sgd_solver.cpp:105] Iteration 1200, lr = 0.00546911 +I0407 22:06:46.420290 23658 solver.cpp:218] Iteration 1212 (2.37236 iter/s, 5.05826s/12 iters), loss = 4.19442 +I0407 22:06:46.420344 23658 solver.cpp:237] Train net output #0: loss = 4.19442 (* 1 = 4.19442 loss) +I0407 22:06:46.420357 23658 sgd_solver.cpp:105] Iteration 1212, lr = 0.0054362 +I0407 22:06:46.697670 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:06:50.993616 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 22:06:55.445021 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 22:06:59.078864 23658 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 22:06:59.078891 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:07:02.930621 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:03.441896 23658 solver.cpp:397] Test net output #0: accuracy = 0.09375 +I0407 22:07:03.441947 23658 solver.cpp:397] Test net output #1: loss = 4.22089 (* 1 = 4.22089 loss) +I0407 22:07:03.533143 23658 solver.cpp:218] Iteration 1224 (0.70125 iter/s, 17.1123s/12 iters), loss = 4.30145 +I0407 22:07:03.533206 23658 solver.cpp:237] Train net output #0: loss = 4.30145 (* 1 = 4.30145 loss) +I0407 22:07:03.533219 23658 sgd_solver.cpp:105] Iteration 1224, lr = 0.00540349 +I0407 22:07:07.869566 23658 solver.cpp:218] Iteration 1236 (2.76738 iter/s, 4.33624s/12 iters), loss = 4.27533 +I0407 22:07:07.869611 23658 solver.cpp:237] Train net output #0: loss = 4.27533 (* 1 = 4.27533 loss) +I0407 22:07:07.869623 23658 sgd_solver.cpp:105] Iteration 1236, lr = 0.00537098 +I0407 22:07:12.947743 23658 solver.cpp:218] Iteration 1248 (2.36314 iter/s, 5.07798s/12 iters), loss = 4.03808 +I0407 22:07:12.947839 23658 solver.cpp:237] Train net output #0: loss = 4.03808 (* 1 = 4.03808 loss) +I0407 22:07:12.947847 23658 sgd_solver.cpp:105] Iteration 1248, lr = 0.00533867 +I0407 22:07:18.008111 23658 solver.cpp:218] Iteration 1260 (2.37148 iter/s, 5.06012s/12 iters), loss = 4.01404 +I0407 22:07:18.008159 23658 solver.cpp:237] Train net output #0: loss = 4.01404 (* 1 = 4.01404 loss) +I0407 22:07:18.008172 23658 sgd_solver.cpp:105] Iteration 1260, lr = 0.00530655 +I0407 22:07:22.999441 23658 solver.cpp:218] Iteration 1272 (2.40426 iter/s, 4.99113s/12 iters), loss = 4.08594 +I0407 22:07:22.999495 23658 solver.cpp:237] Train net output #0: loss = 4.08594 (* 1 = 4.08594 loss) +I0407 22:07:22.999506 23658 sgd_solver.cpp:105] Iteration 1272, lr = 0.00527462 +I0407 22:07:28.051103 23658 solver.cpp:218] Iteration 1284 (2.37555 iter/s, 5.05146s/12 iters), loss = 4.14272 +I0407 22:07:28.051154 23658 solver.cpp:237] Train net output #0: loss = 4.14272 (* 1 = 4.14272 loss) +I0407 22:07:28.051168 23658 sgd_solver.cpp:105] Iteration 1284, lr = 0.00524289 +I0407 22:07:33.072410 23658 solver.cpp:218] Iteration 1296 (2.38991 iter/s, 5.02111s/12 iters), loss = 3.99218 +I0407 22:07:33.072449 23658 solver.cpp:237] Train net output #0: loss = 3.99218 (* 1 = 3.99218 loss) +I0407 22:07:33.072459 23658 sgd_solver.cpp:105] Iteration 1296, lr = 0.00521134 +I0407 22:07:38.094815 23658 solver.cpp:218] Iteration 1308 (2.38938 iter/s, 5.02221s/12 iters), loss = 4.17023 +I0407 22:07:38.094852 23658 solver.cpp:237] Train net output #0: loss = 4.17023 (* 1 = 4.17023 loss) +I0407 22:07:38.094861 23658 sgd_solver.cpp:105] Iteration 1308, lr = 0.00517999 +I0407 22:07:40.653422 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:43.160701 23658 solver.cpp:218] Iteration 1320 (2.36887 iter/s, 5.0657s/12 iters), loss = 3.99938 +I0407 22:07:43.160823 23658 solver.cpp:237] Train net output #0: loss = 3.99938 (* 1 = 3.99938 loss) +I0407 22:07:43.160832 23658 sgd_solver.cpp:105] Iteration 1320, lr = 0.00514882 +I0407 22:07:45.188753 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 22:07:48.090613 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 22:07:51.864159 23658 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 22:07:51.864184 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:07:55.847965 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:56.418989 23658 solver.cpp:397] Test net output #0: accuracy = 0.109069 +I0407 22:07:56.419039 23658 solver.cpp:397] Test net output #1: loss = 4.05931 (* 1 = 4.05931 loss) +I0407 22:07:58.370270 23658 solver.cpp:218] Iteration 1332 (0.789006 iter/s, 15.209s/12 iters), loss = 3.887 +I0407 22:07:58.370326 23658 solver.cpp:237] Train net output #0: loss = 3.887 (* 1 = 3.887 loss) +I0407 22:07:58.370337 23658 sgd_solver.cpp:105] Iteration 1332, lr = 0.00511784 +I0407 22:08:03.432709 23658 solver.cpp:218] Iteration 1344 (2.37049 iter/s, 5.06224s/12 iters), loss = 3.99908 +I0407 22:08:03.432749 23658 solver.cpp:237] Train net output #0: loss = 3.99908 (* 1 = 3.99908 loss) +I0407 22:08:03.432758 23658 sgd_solver.cpp:105] Iteration 1344, lr = 0.00508705 +I0407 22:08:08.539952 23658 solver.cpp:218] Iteration 1356 (2.34969 iter/s, 5.10705s/12 iters), loss = 3.87883 +I0407 22:08:08.539996 23658 solver.cpp:237] Train net output #0: loss = 3.87883 (* 1 = 3.87883 loss) +I0407 22:08:08.540007 23658 sgd_solver.cpp:105] Iteration 1356, lr = 0.00505645 +I0407 22:08:13.642187 23658 solver.cpp:218] Iteration 1368 (2.352 iter/s, 5.10204s/12 iters), loss = 3.87851 +I0407 22:08:13.642285 23658 solver.cpp:237] Train net output #0: loss = 3.87851 (* 1 = 3.87851 loss) +I0407 22:08:13.642295 23658 sgd_solver.cpp:105] Iteration 1368, lr = 0.00502602 +I0407 22:08:14.832660 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:08:18.821796 23658 solver.cpp:218] Iteration 1380 (2.31689 iter/s, 5.17936s/12 iters), loss = 3.68622 +I0407 22:08:18.821846 23658 solver.cpp:237] Train net output #0: loss = 3.68622 (* 1 = 3.68622 loss) +I0407 22:08:18.821857 23658 sgd_solver.cpp:105] Iteration 1380, lr = 0.00499579 +I0407 22:08:24.107370 23658 solver.cpp:218] Iteration 1392 (2.27042 iter/s, 5.28537s/12 iters), loss = 4.03061 +I0407 22:08:24.107407 23658 solver.cpp:237] Train net output #0: loss = 4.03061 (* 1 = 4.03061 loss) +I0407 22:08:24.107417 23658 sgd_solver.cpp:105] Iteration 1392, lr = 0.00496573 +I0407 22:08:29.298645 23658 solver.cpp:218] Iteration 1404 (2.31165 iter/s, 5.19109s/12 iters), loss = 3.89543 +I0407 22:08:29.298678 23658 solver.cpp:237] Train net output #0: loss = 3.89543 (* 1 = 3.89543 loss) +I0407 22:08:29.298686 23658 sgd_solver.cpp:105] Iteration 1404, lr = 0.00493585 +I0407 22:08:34.157896 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:08:34.513057 23658 solver.cpp:218] Iteration 1416 (2.3014 iter/s, 5.21422s/12 iters), loss = 3.54477 +I0407 22:08:34.513101 23658 solver.cpp:237] Train net output #0: loss = 3.54477 (* 1 = 3.54477 loss) +I0407 22:08:34.513110 23658 sgd_solver.cpp:105] Iteration 1416, lr = 0.00490616 +I0407 22:08:39.199371 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 22:08:44.813252 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 22:08:54.058524 23658 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 22:08:54.058552 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:08:57.889451 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:08:58.480067 23658 solver.cpp:397] Test net output #0: accuracy = 0.132353 +I0407 22:08:58.480103 23658 solver.cpp:397] Test net output #1: loss = 3.94971 (* 1 = 3.94971 loss) +I0407 22:08:58.569941 23658 solver.cpp:218] Iteration 1428 (0.498833 iter/s, 24.0562s/12 iters), loss = 3.87759 +I0407 22:08:58.570008 23658 solver.cpp:237] Train net output #0: loss = 3.87759 (* 1 = 3.87759 loss) +I0407 22:08:58.570019 23658 sgd_solver.cpp:105] Iteration 1428, lr = 0.00487664 +I0407 22:09:02.794122 23658 solver.cpp:218] Iteration 1440 (2.84092 iter/s, 4.22399s/12 iters), loss = 3.81331 +I0407 22:09:02.794167 23658 solver.cpp:237] Train net output #0: loss = 3.81331 (* 1 = 3.81331 loss) +I0407 22:09:02.794176 23658 sgd_solver.cpp:105] Iteration 1440, lr = 0.0048473 +I0407 22:09:07.954813 23658 solver.cpp:218] Iteration 1452 (2.32536 iter/s, 5.16049s/12 iters), loss = 3.86491 +I0407 22:09:07.954864 23658 solver.cpp:237] Train net output #0: loss = 3.86491 (* 1 = 3.86491 loss) +I0407 22:09:07.954876 23658 sgd_solver.cpp:105] Iteration 1452, lr = 0.00481813 +I0407 22:09:13.054376 23658 solver.cpp:218] Iteration 1464 (2.35324 iter/s, 5.09936s/12 iters), loss = 3.7091 +I0407 22:09:13.054425 23658 solver.cpp:237] Train net output #0: loss = 3.7091 (* 1 = 3.7091 loss) +I0407 22:09:13.054435 23658 sgd_solver.cpp:105] Iteration 1464, lr = 0.00478914 +I0407 22:09:18.356504 23658 solver.cpp:218] Iteration 1476 (2.26333 iter/s, 5.30192s/12 iters), loss = 3.82671 +I0407 22:09:18.356612 23658 solver.cpp:237] Train net output #0: loss = 3.82671 (* 1 = 3.82671 loss) +I0407 22:09:18.356624 23658 sgd_solver.cpp:105] Iteration 1476, lr = 0.00476033 +I0407 22:09:23.408531 23658 solver.cpp:218] Iteration 1488 (2.37541 iter/s, 5.05177s/12 iters), loss = 3.96829 +I0407 22:09:23.408581 23658 solver.cpp:237] Train net output #0: loss = 3.96829 (* 1 = 3.96829 loss) +I0407 22:09:23.408591 23658 sgd_solver.cpp:105] Iteration 1488, lr = 0.00473169 +I0407 22:09:28.493912 23658 solver.cpp:218] Iteration 1500 (2.3598 iter/s, 5.08518s/12 iters), loss = 3.41325 +I0407 22:09:28.493966 23658 solver.cpp:237] Train net output #0: loss = 3.41325 (* 1 = 3.41325 loss) +I0407 22:09:28.493978 23658 sgd_solver.cpp:105] Iteration 1500, lr = 0.00470322 +I0407 22:09:33.711055 23658 solver.cpp:218] Iteration 1512 (2.3002 iter/s, 5.21694s/12 iters), loss = 3.5976 +I0407 22:09:33.711109 23658 solver.cpp:237] Train net output #0: loss = 3.5976 (* 1 = 3.5976 loss) +I0407 22:09:33.711122 23658 sgd_solver.cpp:105] Iteration 1512, lr = 0.00467492 +I0407 22:09:35.437111 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:38.689633 23658 solver.cpp:218] Iteration 1524 (2.41042 iter/s, 4.97838s/12 iters), loss = 3.60055 +I0407 22:09:38.689680 23658 solver.cpp:237] Train net output #0: loss = 3.60055 (* 1 = 3.60055 loss) +I0407 22:09:38.689692 23658 sgd_solver.cpp:105] Iteration 1524, lr = 0.0046468 +I0407 22:09:40.709339 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 22:09:45.363226 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 22:09:49.959441 23658 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 22:09:49.959550 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:09:53.790311 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:54.430336 23658 solver.cpp:397] Test net output #0: accuracy = 0.147059 +I0407 22:09:54.430385 23658 solver.cpp:397] Test net output #1: loss = 3.78874 (* 1 = 3.78874 loss) +I0407 22:09:56.321274 23658 solver.cpp:218] Iteration 1536 (0.680616 iter/s, 17.6311s/12 iters), loss = 3.792 +I0407 22:09:56.321324 23658 solver.cpp:237] Train net output #0: loss = 3.792 (* 1 = 3.792 loss) +I0407 22:09:56.321336 23658 sgd_solver.cpp:105] Iteration 1536, lr = 0.00461884 +I0407 22:10:01.239022 23658 solver.cpp:218] Iteration 1548 (2.44024 iter/s, 4.91755s/12 iters), loss = 3.53265 +I0407 22:10:01.239068 23658 solver.cpp:237] Train net output #0: loss = 3.53265 (* 1 = 3.53265 loss) +I0407 22:10:01.239079 23658 sgd_solver.cpp:105] Iteration 1548, lr = 0.00459105 +I0407 22:10:06.446835 23658 solver.cpp:218] Iteration 1560 (2.30432 iter/s, 5.20761s/12 iters), loss = 3.61234 +I0407 22:10:06.446877 23658 solver.cpp:237] Train net output #0: loss = 3.61234 (* 1 = 3.61234 loss) +I0407 22:10:06.446887 23658 sgd_solver.cpp:105] Iteration 1560, lr = 0.00456343 +I0407 22:10:11.554706 23658 solver.cpp:218] Iteration 1572 (2.34941 iter/s, 5.10767s/12 iters), loss = 3.54255 +I0407 22:10:11.554752 23658 solver.cpp:237] Train net output #0: loss = 3.54255 (* 1 = 3.54255 loss) +I0407 22:10:11.554764 23658 sgd_solver.cpp:105] Iteration 1572, lr = 0.00453597 +I0407 22:10:16.570509 23658 solver.cpp:218] Iteration 1584 (2.39253 iter/s, 5.01561s/12 iters), loss = 3.52339 +I0407 22:10:16.570559 23658 solver.cpp:237] Train net output #0: loss = 3.52339 (* 1 = 3.52339 loss) +I0407 22:10:16.570572 23658 sgd_solver.cpp:105] Iteration 1584, lr = 0.00450868 +I0407 22:10:21.650574 23658 solver.cpp:218] Iteration 1596 (2.36227 iter/s, 5.07987s/12 iters), loss = 3.62598 +I0407 22:10:21.650683 23658 solver.cpp:237] Train net output #0: loss = 3.62598 (* 1 = 3.62598 loss) +I0407 22:10:21.650696 23658 sgd_solver.cpp:105] Iteration 1596, lr = 0.00448155 +I0407 22:10:26.634160 23658 solver.cpp:218] Iteration 1608 (2.40803 iter/s, 4.98333s/12 iters), loss = 3.58414 +I0407 22:10:26.634205 23658 solver.cpp:237] Train net output #0: loss = 3.58414 (* 1 = 3.58414 loss) +I0407 22:10:26.634217 23658 sgd_solver.cpp:105] Iteration 1608, lr = 0.00445459 +I0407 22:10:30.567617 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:10:31.674639 23658 solver.cpp:218] Iteration 1620 (2.38082 iter/s, 5.04029s/12 iters), loss = 3.52847 +I0407 22:10:31.674682 23658 solver.cpp:237] Train net output #0: loss = 3.52847 (* 1 = 3.52847 loss) +I0407 22:10:31.674692 23658 sgd_solver.cpp:105] Iteration 1620, lr = 0.00442779 +I0407 22:10:36.253988 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 22:10:40.593981 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 22:10:45.945791 23658 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 22:10:45.945817 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:10:49.723503 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:10:50.394446 23658 solver.cpp:397] Test net output #0: accuracy = 0.158701 +I0407 22:10:50.394495 23658 solver.cpp:397] Test net output #1: loss = 3.70495 (* 1 = 3.70495 loss) +I0407 22:10:50.485751 23658 solver.cpp:218] Iteration 1632 (0.63794 iter/s, 18.8105s/12 iters), loss = 3.50309 +I0407 22:10:50.485805 23658 solver.cpp:237] Train net output #0: loss = 3.50309 (* 1 = 3.50309 loss) +I0407 22:10:50.485816 23658 sgd_solver.cpp:105] Iteration 1632, lr = 0.00440115 +I0407 22:10:54.820793 23658 solver.cpp:218] Iteration 1644 (2.76826 iter/s, 4.33486s/12 iters), loss = 3.50135 +I0407 22:10:54.820945 23658 solver.cpp:237] Train net output #0: loss = 3.50135 (* 1 = 3.50135 loss) +I0407 22:10:54.820960 23658 sgd_solver.cpp:105] Iteration 1644, lr = 0.00437467 +I0407 22:10:59.731822 23658 solver.cpp:218] Iteration 1656 (2.44363 iter/s, 4.91073s/12 iters), loss = 3.57644 +I0407 22:10:59.731860 23658 solver.cpp:237] Train net output #0: loss = 3.57644 (* 1 = 3.57644 loss) +I0407 22:10:59.731869 23658 sgd_solver.cpp:105] Iteration 1656, lr = 0.00434835 +I0407 22:11:04.743325 23658 solver.cpp:218] Iteration 1668 (2.39458 iter/s, 5.01131s/12 iters), loss = 3.24523 +I0407 22:11:04.743366 23658 solver.cpp:237] Train net output #0: loss = 3.24523 (* 1 = 3.24523 loss) +I0407 22:11:04.743376 23658 sgd_solver.cpp:105] Iteration 1668, lr = 0.00432219 +I0407 22:11:10.065778 23658 solver.cpp:218] Iteration 1680 (2.25469 iter/s, 5.32225s/12 iters), loss = 3.20501 +I0407 22:11:10.065820 23658 solver.cpp:237] Train net output #0: loss = 3.20501 (* 1 = 3.20501 loss) +I0407 22:11:10.065829 23658 sgd_solver.cpp:105] Iteration 1680, lr = 0.00429618 +I0407 22:11:15.114310 23658 solver.cpp:218] Iteration 1692 (2.37702 iter/s, 5.04834s/12 iters), loss = 3.3108 +I0407 22:11:15.114352 23658 solver.cpp:237] Train net output #0: loss = 3.3108 (* 1 = 3.3108 loss) +I0407 22:11:15.114369 23658 sgd_solver.cpp:105] Iteration 1692, lr = 0.00427034 +I0407 22:11:20.094427 23658 solver.cpp:218] Iteration 1704 (2.40968 iter/s, 4.97992s/12 iters), loss = 3.13584 +I0407 22:11:20.094482 23658 solver.cpp:237] Train net output #0: loss = 3.13584 (* 1 = 3.13584 loss) +I0407 22:11:20.094496 23658 sgd_solver.cpp:105] Iteration 1704, lr = 0.00424464 +I0407 22:11:25.172861 23658 solver.cpp:218] Iteration 1716 (2.36303 iter/s, 5.07822s/12 iters), loss = 3.14752 +I0407 22:11:25.172952 23658 solver.cpp:237] Train net output #0: loss = 3.14752 (* 1 = 3.14752 loss) +I0407 22:11:25.172966 23658 sgd_solver.cpp:105] Iteration 1716, lr = 0.00421911 +I0407 22:11:26.219415 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:11:30.121184 23658 solver.cpp:218] Iteration 1728 (2.42518 iter/s, 4.94809s/12 iters), loss = 3.37614 +I0407 22:11:30.121229 23658 solver.cpp:237] Train net output #0: loss = 3.37614 (* 1 = 3.37614 loss) +I0407 22:11:30.121238 23658 sgd_solver.cpp:105] Iteration 1728, lr = 0.00419372 +I0407 22:11:32.122963 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 22:11:40.210388 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 22:11:45.546757 23658 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 22:11:45.546780 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:11:49.351768 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:11:50.058010 23658 solver.cpp:397] Test net output #0: accuracy = 0.178309 +I0407 22:11:50.058053 23658 solver.cpp:397] Test net output #1: loss = 3.54509 (* 1 = 3.54509 loss) +I0407 22:11:52.031565 23658 solver.cpp:218] Iteration 1740 (0.547702 iter/s, 21.9097s/12 iters), loss = 3.25214 +I0407 22:11:52.031620 23658 solver.cpp:237] Train net output #0: loss = 3.25214 (* 1 = 3.25214 loss) +I0407 22:11:52.031632 23658 sgd_solver.cpp:105] Iteration 1740, lr = 0.00416849 +I0407 22:11:56.951653 23658 solver.cpp:218] Iteration 1752 (2.43908 iter/s, 4.91988s/12 iters), loss = 3.09006 +I0407 22:11:56.951804 23658 solver.cpp:237] Train net output #0: loss = 3.09006 (* 1 = 3.09006 loss) +I0407 22:11:56.951817 23658 sgd_solver.cpp:105] Iteration 1752, lr = 0.00414341 +I0407 22:12:02.280371 23658 solver.cpp:218] Iteration 1764 (2.25208 iter/s, 5.32841s/12 iters), loss = 3.15292 +I0407 22:12:02.280417 23658 solver.cpp:237] Train net output #0: loss = 3.15292 (* 1 = 3.15292 loss) +I0407 22:12:02.280426 23658 sgd_solver.cpp:105] Iteration 1764, lr = 0.00411848 +I0407 22:12:07.399678 23658 solver.cpp:218] Iteration 1776 (2.34416 iter/s, 5.1191s/12 iters), loss = 3.17101 +I0407 22:12:07.399729 23658 solver.cpp:237] Train net output #0: loss = 3.17101 (* 1 = 3.17101 loss) +I0407 22:12:07.399741 23658 sgd_solver.cpp:105] Iteration 1776, lr = 0.0040937 +I0407 22:12:12.581218 23658 solver.cpp:218] Iteration 1788 (2.31601 iter/s, 5.18133s/12 iters), loss = 3.11783 +I0407 22:12:12.581265 23658 solver.cpp:237] Train net output #0: loss = 3.11783 (* 1 = 3.11783 loss) +I0407 22:12:12.581274 23658 sgd_solver.cpp:105] Iteration 1788, lr = 0.00406907 +I0407 22:12:17.734747 23658 solver.cpp:218] Iteration 1800 (2.32859 iter/s, 5.15333s/12 iters), loss = 3.35998 +I0407 22:12:17.734794 23658 solver.cpp:237] Train net output #0: loss = 3.35998 (* 1 = 3.35998 loss) +I0407 22:12:17.734804 23658 sgd_solver.cpp:105] Iteration 1800, lr = 0.00404459 +I0407 22:12:23.168864 23658 solver.cpp:218] Iteration 1812 (2.20836 iter/s, 5.43391s/12 iters), loss = 3.05119 +I0407 22:12:23.168917 23658 solver.cpp:237] Train net output #0: loss = 3.05119 (* 1 = 3.05119 loss) +I0407 22:12:23.168929 23658 sgd_solver.cpp:105] Iteration 1812, lr = 0.00402026 +I0407 22:12:26.418990 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:12:28.277216 23658 solver.cpp:218] Iteration 1824 (2.34919 iter/s, 5.10814s/12 iters), loss = 3.35333 +I0407 22:12:28.277386 23658 solver.cpp:237] Train net output #0: loss = 3.35333 (* 1 = 3.35333 loss) +I0407 22:12:28.277403 23658 sgd_solver.cpp:105] Iteration 1824, lr = 0.00399607 +I0407 22:12:32.826615 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 22:12:36.892258 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 22:12:40.547667 23658 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 22:12:40.547693 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:12:44.265767 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:12:45.018170 23658 solver.cpp:397] Test net output #0: accuracy = 0.211397 +I0407 22:12:45.018213 23658 solver.cpp:397] Test net output #1: loss = 3.35078 (* 1 = 3.35078 loss) +I0407 22:12:45.109756 23658 solver.cpp:218] Iteration 1836 (0.712932 iter/s, 16.8319s/12 iters), loss = 2.98844 +I0407 22:12:45.109799 23658 solver.cpp:237] Train net output #0: loss = 2.98844 (* 1 = 2.98844 loss) +I0407 22:12:45.109808 23658 sgd_solver.cpp:105] Iteration 1836, lr = 0.00397203 +I0407 22:12:49.642694 23658 solver.cpp:218] Iteration 1848 (2.6474 iter/s, 4.53276s/12 iters), loss = 3.18605 +I0407 22:12:49.642737 23658 solver.cpp:237] Train net output #0: loss = 3.18605 (* 1 = 3.18605 loss) +I0407 22:12:49.642746 23658 sgd_solver.cpp:105] Iteration 1848, lr = 0.00394813 +I0407 22:12:54.820659 23658 solver.cpp:218] Iteration 1860 (2.3176 iter/s, 5.17777s/12 iters), loss = 3.04395 +I0407 22:12:54.820698 23658 solver.cpp:237] Train net output #0: loss = 3.04395 (* 1 = 3.04395 loss) +I0407 22:12:54.820706 23658 sgd_solver.cpp:105] Iteration 1860, lr = 0.00392437 +I0407 22:12:59.835944 23658 solver.cpp:218] Iteration 1872 (2.39278 iter/s, 5.01509s/12 iters), loss = 2.91361 +I0407 22:12:59.836016 23658 solver.cpp:237] Train net output #0: loss = 2.91361 (* 1 = 2.91361 loss) +I0407 22:12:59.836026 23658 sgd_solver.cpp:105] Iteration 1872, lr = 0.00390076 +I0407 22:13:05.127149 23658 solver.cpp:218] Iteration 1884 (2.26801 iter/s, 5.29098s/12 iters), loss = 3.06357 +I0407 22:13:05.127188 23658 solver.cpp:237] Train net output #0: loss = 3.06357 (* 1 = 3.06357 loss) +I0407 22:13:05.127197 23658 sgd_solver.cpp:105] Iteration 1884, lr = 0.00387729 +I0407 22:13:10.535004 23658 solver.cpp:218] Iteration 1896 (2.21908 iter/s, 5.40765s/12 iters), loss = 3.23004 +I0407 22:13:10.535059 23658 solver.cpp:237] Train net output #0: loss = 3.23004 (* 1 = 3.23004 loss) +I0407 22:13:10.535071 23658 sgd_solver.cpp:105] Iteration 1896, lr = 0.00385397 +I0407 22:13:15.585530 23658 solver.cpp:218] Iteration 1908 (2.37609 iter/s, 5.05031s/12 iters), loss = 2.77661 +I0407 22:13:15.585592 23658 solver.cpp:237] Train net output #0: loss = 2.77661 (* 1 = 2.77661 loss) +I0407 22:13:15.585606 23658 sgd_solver.cpp:105] Iteration 1908, lr = 0.00383078 +I0407 22:13:20.612288 23658 solver.cpp:218] Iteration 1920 (2.38732 iter/s, 5.02655s/12 iters), loss = 2.81363 +I0407 22:13:20.612335 23658 solver.cpp:237] Train net output #0: loss = 2.81363 (* 1 = 2.81363 loss) +I0407 22:13:20.612345 23658 sgd_solver.cpp:105] Iteration 1920, lr = 0.00380773 +I0407 22:13:20.930200 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:13:25.690280 23658 solver.cpp:218] Iteration 1932 (2.36323 iter/s, 5.07779s/12 iters), loss = 2.90215 +I0407 22:13:25.690320 23658 solver.cpp:237] Train net output #0: loss = 2.90215 (* 1 = 2.90215 loss) +I0407 22:13:25.690333 23658 sgd_solver.cpp:105] Iteration 1932, lr = 0.00378482 +I0407 22:13:27.893110 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 22:13:31.446300 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 22:13:36.997288 23658 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 22:13:36.997308 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:13:40.754230 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:13:41.542335 23658 solver.cpp:397] Test net output #0: accuracy = 0.186275 +I0407 22:13:41.542384 23658 solver.cpp:397] Test net output #1: loss = 3.51667 (* 1 = 3.51667 loss) +I0407 22:13:43.471565 23658 solver.cpp:218] Iteration 1944 (0.674887 iter/s, 17.7807s/12 iters), loss = 3.03137 +I0407 22:13:43.471613 23658 solver.cpp:237] Train net output #0: loss = 3.03137 (* 1 = 3.03137 loss) +I0407 22:13:43.471624 23658 sgd_solver.cpp:105] Iteration 1944, lr = 0.00376205 +I0407 22:13:48.477319 23658 solver.cpp:218] Iteration 1956 (2.39734 iter/s, 5.00555s/12 iters), loss = 3.17206 +I0407 22:13:48.477367 23658 solver.cpp:237] Train net output #0: loss = 3.17206 (* 1 = 3.17206 loss) +I0407 22:13:48.477380 23658 sgd_solver.cpp:105] Iteration 1956, lr = 0.00373941 +I0407 22:13:53.713256 23658 solver.cpp:218] Iteration 1968 (2.29194 iter/s, 5.23573s/12 iters), loss = 2.94786 +I0407 22:13:53.713306 23658 solver.cpp:237] Train net output #0: loss = 2.94786 (* 1 = 2.94786 loss) +I0407 22:13:53.713318 23658 sgd_solver.cpp:105] Iteration 1968, lr = 0.00371692 +I0407 22:13:58.792980 23658 solver.cpp:218] Iteration 1980 (2.36243 iter/s, 5.07952s/12 iters), loss = 3.08748 +I0407 22:13:58.793035 23658 solver.cpp:237] Train net output #0: loss = 3.08748 (* 1 = 3.08748 loss) +I0407 22:13:58.793046 23658 sgd_solver.cpp:105] Iteration 1980, lr = 0.00369455 +I0407 22:14:03.796803 23658 solver.cpp:218] Iteration 1992 (2.39826 iter/s, 5.00362s/12 iters), loss = 2.99717 +I0407 22:14:03.797117 23658 solver.cpp:237] Train net output #0: loss = 2.99717 (* 1 = 2.99717 loss) +I0407 22:14:03.797130 23658 sgd_solver.cpp:105] Iteration 1992, lr = 0.00367233 +I0407 22:14:09.171367 23658 solver.cpp:218] Iteration 2004 (2.23294 iter/s, 5.37409s/12 iters), loss = 2.6945 +I0407 22:14:09.171425 23658 solver.cpp:237] Train net output #0: loss = 2.6945 (* 1 = 2.6945 loss) +I0407 22:14:09.171438 23658 sgd_solver.cpp:105] Iteration 2004, lr = 0.00365023 +I0407 22:14:14.375093 23658 solver.cpp:218] Iteration 2016 (2.30614 iter/s, 5.20351s/12 iters), loss = 2.70136 +I0407 22:14:14.375145 23658 solver.cpp:237] Train net output #0: loss = 2.70136 (* 1 = 2.70136 loss) +I0407 22:14:14.375159 23658 sgd_solver.cpp:105] Iteration 2016, lr = 0.00362827 +I0407 22:14:16.880827 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:19.273763 23658 solver.cpp:218] Iteration 2028 (2.44974 iter/s, 4.89847s/12 iters), loss = 2.52627 +I0407 22:14:19.273816 23658 solver.cpp:237] Train net output #0: loss = 2.52627 (* 1 = 2.52627 loss) +I0407 22:14:19.273828 23658 sgd_solver.cpp:105] Iteration 2028, lr = 0.00360644 +I0407 22:14:24.013873 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 22:14:26.990922 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 22:14:31.185530 23658 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 22:14:31.185557 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:14:34.860611 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:35.691886 23658 solver.cpp:397] Test net output #0: accuracy = 0.221201 +I0407 22:14:35.691936 23658 solver.cpp:397] Test net output #1: loss = 3.356 (* 1 = 3.356 loss) +I0407 22:14:35.781811 23658 solver.cpp:218] Iteration 2040 (0.726941 iter/s, 16.5075s/12 iters), loss = 2.94853 +I0407 22:14:35.781862 23658 solver.cpp:237] Train net output #0: loss = 2.94853 (* 1 = 2.94853 loss) +I0407 22:14:35.781874 23658 sgd_solver.cpp:105] Iteration 2040, lr = 0.00358474 +I0407 22:14:40.370425 23658 solver.cpp:218] Iteration 2052 (2.61528 iter/s, 4.58842s/12 iters), loss = 2.81711 +I0407 22:14:40.370477 23658 solver.cpp:237] Train net output #0: loss = 2.81711 (* 1 = 2.81711 loss) +I0407 22:14:40.370489 23658 sgd_solver.cpp:105] Iteration 2052, lr = 0.00356317 +I0407 22:14:41.999569 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:14:45.428355 23658 solver.cpp:218] Iteration 2064 (2.37261 iter/s, 5.05773s/12 iters), loss = 2.75406 +I0407 22:14:45.428404 23658 solver.cpp:237] Train net output #0: loss = 2.75406 (* 1 = 2.75406 loss) +I0407 22:14:45.428416 23658 sgd_solver.cpp:105] Iteration 2064, lr = 0.00354174 +I0407 22:14:50.451388 23658 solver.cpp:218] Iteration 2076 (2.38909 iter/s, 5.02283s/12 iters), loss = 2.98742 +I0407 22:14:50.451437 23658 solver.cpp:237] Train net output #0: loss = 2.98742 (* 1 = 2.98742 loss) +I0407 22:14:50.451447 23658 sgd_solver.cpp:105] Iteration 2076, lr = 0.00352043 +I0407 22:14:55.530783 23658 solver.cpp:218] Iteration 2088 (2.36258 iter/s, 5.07919s/12 iters), loss = 2.85451 +I0407 22:14:55.530833 23658 solver.cpp:237] Train net output #0: loss = 2.85451 (* 1 = 2.85451 loss) +I0407 22:14:55.530844 23658 sgd_solver.cpp:105] Iteration 2088, lr = 0.00349925 +I0407 22:15:00.626231 23658 solver.cpp:218] Iteration 2100 (2.35514 iter/s, 5.09524s/12 iters), loss = 2.65079 +I0407 22:15:00.626283 23658 solver.cpp:237] Train net output #0: loss = 2.65079 (* 1 = 2.65079 loss) +I0407 22:15:00.626294 23658 sgd_solver.cpp:105] Iteration 2100, lr = 0.00347819 +I0407 22:15:05.598467 23658 solver.cpp:218] Iteration 2112 (2.4135 iter/s, 4.97204s/12 iters), loss = 2.69092 +I0407 22:15:05.598562 23658 solver.cpp:237] Train net output #0: loss = 2.69092 (* 1 = 2.69092 loss) +I0407 22:15:05.598572 23658 sgd_solver.cpp:105] Iteration 2112, lr = 0.00345727 +I0407 22:15:10.355234 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:15:10.674075 23658 solver.cpp:218] Iteration 2124 (2.36436 iter/s, 5.07536s/12 iters), loss = 2.37749 +I0407 22:15:10.674121 23658 solver.cpp:237] Train net output #0: loss = 2.37749 (* 1 = 2.37749 loss) +I0407 22:15:10.674134 23658 sgd_solver.cpp:105] Iteration 2124, lr = 0.00343646 +I0407 22:15:15.795900 23658 solver.cpp:218] Iteration 2136 (2.34301 iter/s, 5.12162s/12 iters), loss = 2.39148 +I0407 22:15:15.795955 23658 solver.cpp:237] Train net output #0: loss = 2.39148 (* 1 = 2.39148 loss) +I0407 22:15:15.795966 23658 sgd_solver.cpp:105] Iteration 2136, lr = 0.00341579 +I0407 22:15:17.843277 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 22:15:21.064445 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 22:15:25.040437 23658 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 22:15:25.040465 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:15:28.818465 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:15:29.686596 23658 solver.cpp:397] Test net output #0: accuracy = 0.249387 +I0407 22:15:29.686643 23658 solver.cpp:397] Test net output #1: loss = 3.16686 (* 1 = 3.16686 loss) +I0407 22:15:31.624492 23658 solver.cpp:218] Iteration 2148 (0.758146 iter/s, 15.8281s/12 iters), loss = 2.41204 +I0407 22:15:31.624541 23658 solver.cpp:237] Train net output #0: loss = 2.41204 (* 1 = 2.41204 loss) +I0407 22:15:31.624553 23658 sgd_solver.cpp:105] Iteration 2148, lr = 0.00339524 +I0407 22:15:37.091483 23658 solver.cpp:218] Iteration 2160 (2.19508 iter/s, 5.46678s/12 iters), loss = 2.71098 +I0407 22:15:37.091641 23658 solver.cpp:237] Train net output #0: loss = 2.71098 (* 1 = 2.71098 loss) +I0407 22:15:37.091655 23658 sgd_solver.cpp:105] Iteration 2160, lr = 0.00337481 +I0407 22:15:42.389088 23658 solver.cpp:218] Iteration 2172 (2.26531 iter/s, 5.2973s/12 iters), loss = 2.58455 +I0407 22:15:42.389130 23658 solver.cpp:237] Train net output #0: loss = 2.58455 (* 1 = 2.58455 loss) +I0407 22:15:42.389140 23658 sgd_solver.cpp:105] Iteration 2172, lr = 0.00335451 +I0407 22:15:47.505869 23658 solver.cpp:218] Iteration 2184 (2.34531 iter/s, 5.11658s/12 iters), loss = 2.69314 +I0407 22:15:47.505914 23658 solver.cpp:237] Train net output #0: loss = 2.69314 (* 1 = 2.69314 loss) +I0407 22:15:47.505923 23658 sgd_solver.cpp:105] Iteration 2184, lr = 0.00333432 +I0407 22:15:52.495985 23658 solver.cpp:218] Iteration 2196 (2.40485 iter/s, 4.98992s/12 iters), loss = 2.23057 +I0407 22:15:52.496031 23658 solver.cpp:237] Train net output #0: loss = 2.23057 (* 1 = 2.23057 loss) +I0407 22:15:52.496042 23658 sgd_solver.cpp:105] Iteration 2196, lr = 0.00331426 +I0407 22:15:57.636763 23658 solver.cpp:218] Iteration 2208 (2.33437 iter/s, 5.14058s/12 iters), loss = 2.45949 +I0407 22:15:57.636812 23658 solver.cpp:237] Train net output #0: loss = 2.45949 (* 1 = 2.45949 loss) +I0407 22:15:57.636823 23658 sgd_solver.cpp:105] Iteration 2208, lr = 0.00329432 +I0407 22:16:02.699399 23658 solver.cpp:218] Iteration 2220 (2.3704 iter/s, 5.06243s/12 iters), loss = 2.25176 +I0407 22:16:02.699453 23658 solver.cpp:237] Train net output #0: loss = 2.25176 (* 1 = 2.25176 loss) +I0407 22:16:02.699465 23658 sgd_solver.cpp:105] Iteration 2220, lr = 0.0032745 +I0407 22:16:04.510694 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:07.751854 23658 solver.cpp:218] Iteration 2232 (2.37518 iter/s, 5.05225s/12 iters), loss = 2.54045 +I0407 22:16:07.751969 23658 solver.cpp:237] Train net output #0: loss = 2.54045 (* 1 = 2.54045 loss) +I0407 22:16:07.751982 23658 sgd_solver.cpp:105] Iteration 2232, lr = 0.0032548 +I0407 22:16:12.363276 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 22:16:15.360484 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 22:16:19.233168 23658 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 22:16:19.233194 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:16:22.959378 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:23.867028 23658 solver.cpp:397] Test net output #0: accuracy = 0.270221 +I0407 22:16:23.867071 23658 solver.cpp:397] Test net output #1: loss = 3.11187 (* 1 = 3.11187 loss) +I0407 22:16:23.956692 23658 solver.cpp:218] Iteration 2244 (0.740546 iter/s, 16.2043s/12 iters), loss = 2.55322 +I0407 22:16:23.956740 23658 solver.cpp:237] Train net output #0: loss = 2.55322 (* 1 = 2.55322 loss) +I0407 22:16:23.956750 23658 sgd_solver.cpp:105] Iteration 2244, lr = 0.00323522 +I0407 22:16:28.514657 23658 solver.cpp:218] Iteration 2256 (2.63286 iter/s, 4.55778s/12 iters), loss = 2.10078 +I0407 22:16:28.514694 23658 solver.cpp:237] Train net output #0: loss = 2.10078 (* 1 = 2.10078 loss) +I0407 22:16:28.514703 23658 sgd_solver.cpp:105] Iteration 2256, lr = 0.00321575 +I0407 22:16:33.633316 23658 solver.cpp:218] Iteration 2268 (2.34445 iter/s, 5.11846s/12 iters), loss = 2.18172 +I0407 22:16:33.633370 23658 solver.cpp:237] Train net output #0: loss = 2.18172 (* 1 = 2.18172 loss) +I0407 22:16:33.633383 23658 sgd_solver.cpp:105] Iteration 2268, lr = 0.00319641 +I0407 22:16:39.123153 23658 solver.cpp:218] Iteration 2280 (2.18594 iter/s, 5.48962s/12 iters), loss = 2.51494 +I0407 22:16:39.123286 23658 solver.cpp:237] Train net output #0: loss = 2.51494 (* 1 = 2.51494 loss) +I0407 22:16:39.123297 23658 sgd_solver.cpp:105] Iteration 2280, lr = 0.00317717 +I0407 22:16:44.342958 23658 solver.cpp:218] Iteration 2292 (2.29906 iter/s, 5.21952s/12 iters), loss = 2.23681 +I0407 22:16:44.343009 23658 solver.cpp:237] Train net output #0: loss = 2.23681 (* 1 = 2.23681 loss) +I0407 22:16:44.343021 23658 sgd_solver.cpp:105] Iteration 2292, lr = 0.00315806 +I0407 22:16:49.370311 23658 solver.cpp:218] Iteration 2304 (2.38704 iter/s, 5.02714s/12 iters), loss = 2.5956 +I0407 22:16:49.370363 23658 solver.cpp:237] Train net output #0: loss = 2.5956 (* 1 = 2.5956 loss) +I0407 22:16:49.370375 23658 sgd_solver.cpp:105] Iteration 2304, lr = 0.00313906 +I0407 22:16:54.445823 23658 solver.cpp:218] Iteration 2316 (2.36439 iter/s, 5.0753s/12 iters), loss = 2.23811 +I0407 22:16:54.445879 23658 solver.cpp:237] Train net output #0: loss = 2.23811 (* 1 = 2.23811 loss) +I0407 22:16:54.445891 23658 sgd_solver.cpp:105] Iteration 2316, lr = 0.00312017 +I0407 22:16:58.686165 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:59.839104 23658 solver.cpp:218] Iteration 2328 (2.22508 iter/s, 5.39307s/12 iters), loss = 2.16299 +I0407 22:16:59.839155 23658 solver.cpp:237] Train net output #0: loss = 2.16299 (* 1 = 2.16299 loss) +I0407 22:16:59.839167 23658 sgd_solver.cpp:105] Iteration 2328, lr = 0.0031014 +I0407 22:17:04.868944 23658 solver.cpp:218] Iteration 2340 (2.38586 iter/s, 5.02963s/12 iters), loss = 2.21376 +I0407 22:17:04.869009 23658 solver.cpp:237] Train net output #0: loss = 2.21376 (* 1 = 2.21376 loss) +I0407 22:17:04.869019 23658 sgd_solver.cpp:105] Iteration 2340, lr = 0.00308274 +I0407 22:17:06.946502 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 22:17:09.945047 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 22:17:15.802922 23658 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 22:17:15.802950 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:17:19.399264 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:17:20.452450 23658 solver.cpp:397] Test net output #0: accuracy = 0.284926 +I0407 22:17:20.452497 23658 solver.cpp:397] Test net output #1: loss = 3.09356 (* 1 = 3.09356 loss) +I0407 22:17:22.304685 23658 solver.cpp:218] Iteration 2352 (0.688263 iter/s, 17.4352s/12 iters), loss = 2.60025 +I0407 22:17:22.304738 23658 solver.cpp:237] Train net output #0: loss = 2.60025 (* 1 = 2.60025 loss) +I0407 22:17:22.304750 23658 sgd_solver.cpp:105] Iteration 2352, lr = 0.00306419 +I0407 22:17:27.793293 23658 solver.cpp:218] Iteration 2364 (2.18644 iter/s, 5.48838s/12 iters), loss = 2.13675 +I0407 22:17:27.793337 23658 solver.cpp:237] Train net output #0: loss = 2.13675 (* 1 = 2.13675 loss) +I0407 22:17:27.793346 23658 sgd_solver.cpp:105] Iteration 2364, lr = 0.00304576 +I0407 22:17:33.179270 23658 solver.cpp:218] Iteration 2376 (2.22809 iter/s, 5.38577s/12 iters), loss = 2.272 +I0407 22:17:33.179316 23658 solver.cpp:237] Train net output #0: loss = 2.272 (* 1 = 2.272 loss) +I0407 22:17:33.179327 23658 sgd_solver.cpp:105] Iteration 2376, lr = 0.00302743 +I0407 22:17:38.183535 23658 solver.cpp:218] Iteration 2388 (2.39805 iter/s, 5.00407s/12 iters), loss = 2.28976 +I0407 22:17:38.183583 23658 solver.cpp:237] Train net output #0: loss = 2.28976 (* 1 = 2.28976 loss) +I0407 22:17:38.183593 23658 sgd_solver.cpp:105] Iteration 2388, lr = 0.00300922 +I0407 22:17:43.276288 23658 solver.cpp:218] Iteration 2400 (2.35638 iter/s, 5.09255s/12 iters), loss = 2.07661 +I0407 22:17:43.276371 23658 solver.cpp:237] Train net output #0: loss = 2.07661 (* 1 = 2.07661 loss) +I0407 22:17:43.276383 23658 sgd_solver.cpp:105] Iteration 2400, lr = 0.00299111 +I0407 22:17:48.351199 23658 solver.cpp:218] Iteration 2412 (2.36468 iter/s, 5.07468s/12 iters), loss = 1.85269 +I0407 22:17:48.351245 23658 solver.cpp:237] Train net output #0: loss = 1.85269 (* 1 = 1.85269 loss) +I0407 22:17:48.351256 23658 sgd_solver.cpp:105] Iteration 2412, lr = 0.00297312 +I0407 22:17:53.355829 23658 solver.cpp:218] Iteration 2424 (2.39788 iter/s, 5.00443s/12 iters), loss = 2.36893 +I0407 22:17:53.355882 23658 solver.cpp:237] Train net output #0: loss = 2.36893 (* 1 = 2.36893 loss) +I0407 22:17:53.355895 23658 sgd_solver.cpp:105] Iteration 2424, lr = 0.00295523 +I0407 22:17:54.462464 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:17:58.638635 23658 solver.cpp:218] Iteration 2436 (2.27161 iter/s, 5.2826s/12 iters), loss = 1.99456 +I0407 22:17:58.638680 23658 solver.cpp:237] Train net output #0: loss = 1.99456 (* 1 = 1.99456 loss) +I0407 22:17:58.638691 23658 sgd_solver.cpp:105] Iteration 2436, lr = 0.00293745 +I0407 22:18:03.260253 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 22:18:06.246667 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 22:18:08.876212 23658 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 22:18:08.876240 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:18:12.544010 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:13.533869 23658 solver.cpp:397] Test net output #0: accuracy = 0.313113 +I0407 22:18:13.533969 23658 solver.cpp:397] Test net output #1: loss = 2.86234 (* 1 = 2.86234 loss) +I0407 22:18:13.623483 23658 solver.cpp:218] Iteration 2448 (0.800834 iter/s, 14.9844s/12 iters), loss = 1.94349 +I0407 22:18:13.623522 23658 solver.cpp:237] Train net output #0: loss = 1.94349 (* 1 = 1.94349 loss) +I0407 22:18:13.623531 23658 sgd_solver.cpp:105] Iteration 2448, lr = 0.00291977 +I0407 22:18:17.826157 23658 solver.cpp:218] Iteration 2460 (2.85544 iter/s, 4.2025s/12 iters), loss = 1.96095 +I0407 22:18:17.826197 23658 solver.cpp:237] Train net output #0: loss = 1.96095 (* 1 = 1.96095 loss) +I0407 22:18:17.826210 23658 sgd_solver.cpp:105] Iteration 2460, lr = 0.00290221 +I0407 22:18:22.841697 23658 solver.cpp:218] Iteration 2472 (2.39266 iter/s, 5.01534s/12 iters), loss = 2.18395 +I0407 22:18:22.841756 23658 solver.cpp:237] Train net output #0: loss = 2.18395 (* 1 = 2.18395 loss) +I0407 22:18:22.841769 23658 sgd_solver.cpp:105] Iteration 2472, lr = 0.00288475 +I0407 22:18:27.944669 23658 solver.cpp:218] Iteration 2484 (2.35167 iter/s, 5.10275s/12 iters), loss = 2.16185 +I0407 22:18:27.944725 23658 solver.cpp:237] Train net output #0: loss = 2.16185 (* 1 = 2.16185 loss) +I0407 22:18:27.944737 23658 sgd_solver.cpp:105] Iteration 2484, lr = 0.00286739 +I0407 22:18:32.986683 23658 solver.cpp:218] Iteration 2496 (2.3801 iter/s, 5.0418s/12 iters), loss = 1.86661 +I0407 22:18:32.986734 23658 solver.cpp:237] Train net output #0: loss = 1.86661 (* 1 = 1.86661 loss) +I0407 22:18:32.986745 23658 sgd_solver.cpp:105] Iteration 2496, lr = 0.00285014 +I0407 22:18:38.236222 23658 solver.cpp:218] Iteration 2508 (2.28601 iter/s, 5.24933s/12 iters), loss = 2.08623 +I0407 22:18:38.236258 23658 solver.cpp:237] Train net output #0: loss = 2.08623 (* 1 = 2.08623 loss) +I0407 22:18:38.236266 23658 sgd_solver.cpp:105] Iteration 2508, lr = 0.00283299 +I0407 22:18:43.466745 23658 solver.cpp:218] Iteration 2520 (2.29431 iter/s, 5.23033s/12 iters), loss = 2.11124 +I0407 22:18:43.466789 23658 solver.cpp:237] Train net output #0: loss = 2.11124 (* 1 = 2.11124 loss) +I0407 22:18:43.466797 23658 sgd_solver.cpp:105] Iteration 2520, lr = 0.00281595 +I0407 22:18:46.644359 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:48.497932 23658 solver.cpp:218] Iteration 2532 (2.38522 iter/s, 5.03098s/12 iters), loss = 1.95612 +I0407 22:18:48.497998 23658 solver.cpp:237] Train net output #0: loss = 1.95612 (* 1 = 1.95612 loss) +I0407 22:18:48.498010 23658 sgd_solver.cpp:105] Iteration 2532, lr = 0.002799 +I0407 22:18:53.551767 23658 solver.cpp:218] Iteration 2544 (2.37454 iter/s, 5.05361s/12 iters), loss = 2.24017 +I0407 22:18:53.551820 23658 solver.cpp:237] Train net output #0: loss = 2.24017 (* 1 = 2.24017 loss) +I0407 22:18:53.551829 23658 sgd_solver.cpp:105] Iteration 2544, lr = 0.00278216 +I0407 22:18:55.549971 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 22:19:03.713392 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 22:19:09.657776 23658 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 22:19:09.657799 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:19:13.140507 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:19:14.162055 23658 solver.cpp:397] Test net output #0: accuracy = 0.295343 +I0407 22:19:14.162102 23658 solver.cpp:397] Test net output #1: loss = 3.04009 (* 1 = 3.04009 loss) +I0407 22:19:16.050213 23658 solver.cpp:218] Iteration 2556 (0.533386 iter/s, 22.4978s/12 iters), loss = 2.19576 +I0407 22:19:16.050263 23658 solver.cpp:237] Train net output #0: loss = 2.19576 (* 1 = 2.19576 loss) +I0407 22:19:16.050276 23658 sgd_solver.cpp:105] Iteration 2556, lr = 0.00276542 +I0407 22:19:21.041620 23658 solver.cpp:218] Iteration 2568 (2.40423 iter/s, 4.99121s/12 iters), loss = 2.06314 +I0407 22:19:21.041749 23658 solver.cpp:237] Train net output #0: loss = 2.06314 (* 1 = 2.06314 loss) +I0407 22:19:21.041762 23658 sgd_solver.cpp:105] Iteration 2568, lr = 0.00274879 +I0407 22:19:25.991027 23658 solver.cpp:218] Iteration 2580 (2.42466 iter/s, 4.94914s/12 iters), loss = 1.74344 +I0407 22:19:25.991062 23658 solver.cpp:237] Train net output #0: loss = 1.74344 (* 1 = 1.74344 loss) +I0407 22:19:25.991070 23658 sgd_solver.cpp:105] Iteration 2580, lr = 0.00273225 +I0407 22:19:31.024690 23658 solver.cpp:218] Iteration 2592 (2.38404 iter/s, 5.03347s/12 iters), loss = 2.08537 +I0407 22:19:31.024736 23658 solver.cpp:237] Train net output #0: loss = 2.08537 (* 1 = 2.08537 loss) +I0407 22:19:31.024745 23658 sgd_solver.cpp:105] Iteration 2592, lr = 0.00271581 +I0407 22:19:36.044401 23658 solver.cpp:218] Iteration 2604 (2.39067 iter/s, 5.01951s/12 iters), loss = 2.27447 +I0407 22:19:36.044452 23658 solver.cpp:237] Train net output #0: loss = 2.27447 (* 1 = 2.27447 loss) +I0407 22:19:36.044464 23658 sgd_solver.cpp:105] Iteration 2604, lr = 0.00269947 +I0407 22:19:41.008072 23658 solver.cpp:218] Iteration 2616 (2.41766 iter/s, 4.96347s/12 iters), loss = 1.84834 +I0407 22:19:41.008118 23658 solver.cpp:237] Train net output #0: loss = 1.84834 (* 1 = 1.84834 loss) +I0407 22:19:41.008127 23658 sgd_solver.cpp:105] Iteration 2616, lr = 0.00268323 +I0407 22:19:46.046770 23658 solver.cpp:218] Iteration 2628 (2.38166 iter/s, 5.03849s/12 iters), loss = 1.72607 +I0407 22:19:46.046820 23658 solver.cpp:237] Train net output #0: loss = 1.72607 (* 1 = 1.72607 loss) +I0407 22:19:46.046831 23658 sgd_solver.cpp:105] Iteration 2628, lr = 0.00266708 +I0407 22:19:46.454402 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:19:51.072139 23658 solver.cpp:218] Iteration 2640 (2.38798 iter/s, 5.02516s/12 iters), loss = 1.93122 +I0407 22:19:51.072232 23658 solver.cpp:237] Train net output #0: loss = 1.93122 (* 1 = 1.93122 loss) +I0407 22:19:51.072245 23658 sgd_solver.cpp:105] Iteration 2640, lr = 0.00265104 +I0407 22:19:55.700464 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 22:20:02.429522 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 22:20:08.796378 23658 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 22:20:08.796408 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:20:12.202407 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:20:13.275928 23658 solver.cpp:397] Test net output #0: accuracy = 0.286152 +I0407 22:20:13.275971 23658 solver.cpp:397] Test net output #1: loss = 2.99151 (* 1 = 2.99151 loss) +I0407 22:20:13.365639 23658 solver.cpp:218] Iteration 2652 (0.538291 iter/s, 22.2928s/12 iters), loss = 2.02292 +I0407 22:20:13.365689 23658 solver.cpp:237] Train net output #0: loss = 2.02292 (* 1 = 2.02292 loss) +I0407 22:20:13.365700 23658 sgd_solver.cpp:105] Iteration 2652, lr = 0.00263509 +I0407 22:20:17.620568 23658 solver.cpp:218] Iteration 2664 (2.82038 iter/s, 4.25475s/12 iters), loss = 1.9119 +I0407 22:20:17.620611 23658 solver.cpp:237] Train net output #0: loss = 1.9119 (* 1 = 1.9119 loss) +I0407 22:20:17.620621 23658 sgd_solver.cpp:105] Iteration 2664, lr = 0.00261923 +I0407 22:20:22.650288 23658 solver.cpp:218] Iteration 2676 (2.38591 iter/s, 5.02952s/12 iters), loss = 2.00074 +I0407 22:20:22.650408 23658 solver.cpp:237] Train net output #0: loss = 2.00074 (* 1 = 2.00074 loss) +I0407 22:20:22.650420 23658 sgd_solver.cpp:105] Iteration 2676, lr = 0.00260348 +I0407 22:20:27.714514 23658 solver.cpp:218] Iteration 2688 (2.36969 iter/s, 5.06395s/12 iters), loss = 1.90665 +I0407 22:20:27.714570 23658 solver.cpp:237] Train net output #0: loss = 1.90665 (* 1 = 1.90665 loss) +I0407 22:20:27.714581 23658 sgd_solver.cpp:105] Iteration 2688, lr = 0.00258781 +I0407 22:20:32.698004 23658 solver.cpp:218] Iteration 2700 (2.40805 iter/s, 4.98328s/12 iters), loss = 1.73931 +I0407 22:20:32.698060 23658 solver.cpp:237] Train net output #0: loss = 1.73931 (* 1 = 1.73931 loss) +I0407 22:20:32.698071 23658 sgd_solver.cpp:105] Iteration 2700, lr = 0.00257224 +I0407 22:20:37.774145 23658 solver.cpp:218] Iteration 2712 (2.3641 iter/s, 5.07593s/12 iters), loss = 1.66005 +I0407 22:20:37.774196 23658 solver.cpp:237] Train net output #0: loss = 1.66005 (* 1 = 1.66005 loss) +I0407 22:20:37.774206 23658 sgd_solver.cpp:105] Iteration 2712, lr = 0.00255677 +I0407 22:20:43.162134 23658 solver.cpp:218] Iteration 2724 (2.22726 iter/s, 5.38778s/12 iters), loss = 1.79456 +I0407 22:20:43.162192 23658 solver.cpp:237] Train net output #0: loss = 1.79456 (* 1 = 1.79456 loss) +I0407 22:20:43.162204 23658 sgd_solver.cpp:105] Iteration 2724, lr = 0.00254138 +I0407 22:20:45.960361 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:20:48.354010 23658 solver.cpp:218] Iteration 2736 (2.31142 iter/s, 5.19162s/12 iters), loss = 1.34168 +I0407 22:20:48.354070 23658 solver.cpp:237] Train net output #0: loss = 1.34168 (* 1 = 1.34168 loss) +I0407 22:20:48.354081 23658 sgd_solver.cpp:105] Iteration 2736, lr = 0.00252609 +I0407 22:20:53.313024 23658 solver.cpp:218] Iteration 2748 (2.41994 iter/s, 4.95881s/12 iters), loss = 1.90733 +I0407 22:20:53.313151 23658 solver.cpp:237] Train net output #0: loss = 1.90733 (* 1 = 1.90733 loss) +I0407 22:20:53.313164 23658 sgd_solver.cpp:105] Iteration 2748, lr = 0.00251089 +I0407 22:20:55.337056 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 22:20:58.334477 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 22:21:02.552350 23658 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 22:21:02.552378 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:21:05.752173 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:21:05.987808 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:07.090592 23658 solver.cpp:397] Test net output #0: accuracy = 0.304534 +I0407 22:21:07.090641 23658 solver.cpp:397] Test net output #1: loss = 2.9341 (* 1 = 2.9341 loss) +I0407 22:21:09.055037 23658 solver.cpp:218] Iteration 2760 (0.762319 iter/s, 15.7414s/12 iters), loss = 1.59913 +I0407 22:21:09.055094 23658 solver.cpp:237] Train net output #0: loss = 1.59913 (* 1 = 1.59913 loss) +I0407 22:21:09.055106 23658 sgd_solver.cpp:105] Iteration 2760, lr = 0.00249579 +I0407 22:21:14.374470 23658 solver.cpp:218] Iteration 2772 (2.25597 iter/s, 5.31922s/12 iters), loss = 1.66782 +I0407 22:21:14.374526 23658 solver.cpp:237] Train net output #0: loss = 1.66782 (* 1 = 1.66782 loss) +I0407 22:21:14.374536 23658 sgd_solver.cpp:105] Iteration 2772, lr = 0.00248077 +I0407 22:21:19.410341 23658 solver.cpp:218] Iteration 2784 (2.38301 iter/s, 5.03565s/12 iters), loss = 1.73388 +I0407 22:21:19.410395 23658 solver.cpp:237] Train net output #0: loss = 1.73388 (* 1 = 1.73388 loss) +I0407 22:21:19.410408 23658 sgd_solver.cpp:105] Iteration 2784, lr = 0.00246585 +I0407 22:21:24.462633 23658 solver.cpp:218] Iteration 2796 (2.37526 iter/s, 5.05209s/12 iters), loss = 1.80646 +I0407 22:21:24.462782 23658 solver.cpp:237] Train net output #0: loss = 1.80646 (* 1 = 1.80646 loss) +I0407 22:21:24.462795 23658 sgd_solver.cpp:105] Iteration 2796, lr = 0.00245101 +I0407 22:21:29.534557 23658 solver.cpp:218] Iteration 2808 (2.3661 iter/s, 5.07163s/12 iters), loss = 1.54151 +I0407 22:21:29.534600 23658 solver.cpp:237] Train net output #0: loss = 1.54151 (* 1 = 1.54151 loss) +I0407 22:21:29.534610 23658 sgd_solver.cpp:105] Iteration 2808, lr = 0.00243626 +I0407 22:21:34.500860 23658 solver.cpp:218] Iteration 2820 (2.41638 iter/s, 4.96611s/12 iters), loss = 1.69056 +I0407 22:21:34.500910 23658 solver.cpp:237] Train net output #0: loss = 1.69056 (* 1 = 1.69056 loss) +I0407 22:21:34.500921 23658 sgd_solver.cpp:105] Iteration 2820, lr = 0.00242161 +I0407 22:21:39.219699 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:39.514008 23658 solver.cpp:218] Iteration 2832 (2.3938 iter/s, 5.01295s/12 iters), loss = 1.43708 +I0407 22:21:39.514060 23658 solver.cpp:237] Train net output #0: loss = 1.43708 (* 1 = 1.43708 loss) +I0407 22:21:39.514070 23658 sgd_solver.cpp:105] Iteration 2832, lr = 0.00240704 +I0407 22:21:44.500180 23658 solver.cpp:218] Iteration 2844 (2.40675 iter/s, 4.98598s/12 iters), loss = 1.58996 +I0407 22:21:44.500226 23658 solver.cpp:237] Train net output #0: loss = 1.58996 (* 1 = 1.58996 loss) +I0407 22:21:44.500236 23658 sgd_solver.cpp:105] Iteration 2844, lr = 0.00239255 +I0407 22:21:49.231595 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 22:21:52.233029 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 22:21:56.233881 23658 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 22:21:56.233984 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:21:59.661813 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:00.827299 23658 solver.cpp:397] Test net output #0: accuracy = 0.331495 +I0407 22:22:00.827347 23658 solver.cpp:397] Test net output #1: loss = 2.83709 (* 1 = 2.83709 loss) +I0407 22:22:00.917309 23658 solver.cpp:218] Iteration 2856 (0.730967 iter/s, 16.4166s/12 iters), loss = 1.69363 +I0407 22:22:00.917357 23658 solver.cpp:237] Train net output #0: loss = 1.69363 (* 1 = 1.69363 loss) +I0407 22:22:00.917368 23658 sgd_solver.cpp:105] Iteration 2856, lr = 0.00237816 +I0407 22:22:05.457159 23658 solver.cpp:218] Iteration 2868 (2.64337 iter/s, 4.53966s/12 iters), loss = 1.56888 +I0407 22:22:05.457208 23658 solver.cpp:237] Train net output #0: loss = 1.56888 (* 1 = 1.56888 loss) +I0407 22:22:05.457218 23658 sgd_solver.cpp:105] Iteration 2868, lr = 0.00236385 +I0407 22:22:10.695458 23658 solver.cpp:218] Iteration 2880 (2.29091 iter/s, 5.23809s/12 iters), loss = 1.72476 +I0407 22:22:10.695509 23658 solver.cpp:237] Train net output #0: loss = 1.72476 (* 1 = 1.72476 loss) +I0407 22:22:10.695520 23658 sgd_solver.cpp:105] Iteration 2880, lr = 0.00234963 +I0407 22:22:15.697032 23658 solver.cpp:218] Iteration 2892 (2.39934 iter/s, 5.00138s/12 iters), loss = 1.6191 +I0407 22:22:15.697075 23658 solver.cpp:237] Train net output #0: loss = 1.6191 (* 1 = 1.6191 loss) +I0407 22:22:15.697084 23658 sgd_solver.cpp:105] Iteration 2892, lr = 0.00233549 +I0407 22:22:20.751025 23658 solver.cpp:218] Iteration 2904 (2.37446 iter/s, 5.05379s/12 iters), loss = 1.37775 +I0407 22:22:20.751075 23658 solver.cpp:237] Train net output #0: loss = 1.37775 (* 1 = 1.37775 loss) +I0407 22:22:20.751086 23658 sgd_solver.cpp:105] Iteration 2904, lr = 0.00232144 +I0407 22:22:25.955000 23658 solver.cpp:218] Iteration 2916 (2.30602 iter/s, 5.20378s/12 iters), loss = 1.65431 +I0407 22:22:25.955039 23658 solver.cpp:237] Train net output #0: loss = 1.65431 (* 1 = 1.65431 loss) +I0407 22:22:25.955047 23658 sgd_solver.cpp:105] Iteration 2916, lr = 0.00230747 +I0407 22:22:31.267976 23658 solver.cpp:218] Iteration 2928 (2.25871 iter/s, 5.31277s/12 iters), loss = 1.49149 +I0407 22:22:31.268131 23658 solver.cpp:237] Train net output #0: loss = 1.49149 (* 1 = 1.49149 loss) +I0407 22:22:31.268146 23658 sgd_solver.cpp:105] Iteration 2928, lr = 0.00229359 +I0407 22:22:33.155620 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:36.427320 23658 solver.cpp:218] Iteration 2940 (2.32601 iter/s, 5.15904s/12 iters), loss = 1.53297 +I0407 22:22:36.427366 23658 solver.cpp:237] Train net output #0: loss = 1.53297 (* 1 = 1.53297 loss) +I0407 22:22:36.427379 23658 sgd_solver.cpp:105] Iteration 2940, lr = 0.00227979 +I0407 22:22:41.502167 23658 solver.cpp:218] Iteration 2952 (2.3647 iter/s, 5.07465s/12 iters), loss = 1.5305 +I0407 22:22:41.502219 23658 solver.cpp:237] Train net output #0: loss = 1.5305 (* 1 = 1.5305 loss) +I0407 22:22:41.502231 23658 sgd_solver.cpp:105] Iteration 2952, lr = 0.00226607 +I0407 22:22:43.522541 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 22:22:46.508049 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 22:22:50.865176 23658 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 22:22:50.865204 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:22:54.138290 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:55.321141 23658 solver.cpp:397] Test net output #0: accuracy = 0.351103 +I0407 22:22:55.321174 23658 solver.cpp:397] Test net output #1: loss = 2.82224 (* 1 = 2.82224 loss) +I0407 22:22:57.229967 23658 solver.cpp:218] Iteration 2964 (0.763005 iter/s, 15.7273s/12 iters), loss = 1.33498 +I0407 22:22:57.230022 23658 solver.cpp:237] Train net output #0: loss = 1.33498 (* 1 = 1.33498 loss) +I0407 22:22:57.230033 23658 sgd_solver.cpp:105] Iteration 2964, lr = 0.00225244 +I0407 22:23:02.276973 23658 solver.cpp:218] Iteration 2976 (2.37775 iter/s, 5.0468s/12 iters), loss = 1.4481 +I0407 22:23:02.277076 23658 solver.cpp:237] Train net output #0: loss = 1.4481 (* 1 = 1.4481 loss) +I0407 22:23:02.277087 23658 sgd_solver.cpp:105] Iteration 2976, lr = 0.00223889 +I0407 22:23:07.551044 23658 solver.cpp:218] Iteration 2988 (2.27539 iter/s, 5.27381s/12 iters), loss = 1.28397 +I0407 22:23:07.551087 23658 solver.cpp:237] Train net output #0: loss = 1.28397 (* 1 = 1.28397 loss) +I0407 22:23:07.551096 23658 sgd_solver.cpp:105] Iteration 2988, lr = 0.00222542 +I0407 22:23:12.858328 23658 solver.cpp:218] Iteration 3000 (2.26113 iter/s, 5.30708s/12 iters), loss = 1.28128 +I0407 22:23:12.858371 23658 solver.cpp:237] Train net output #0: loss = 1.28128 (* 1 = 1.28128 loss) +I0407 22:23:12.858381 23658 sgd_solver.cpp:105] Iteration 3000, lr = 0.00221203 +I0407 22:23:17.906955 23658 solver.cpp:218] Iteration 3012 (2.37698 iter/s, 5.04843s/12 iters), loss = 1.37962 +I0407 22:23:17.907001 23658 solver.cpp:237] Train net output #0: loss = 1.37962 (* 1 = 1.37962 loss) +I0407 22:23:17.907009 23658 sgd_solver.cpp:105] Iteration 3012, lr = 0.00219872 +I0407 22:23:22.956055 23658 solver.cpp:218] Iteration 3024 (2.37676 iter/s, 5.04889s/12 iters), loss = 1.16523 +I0407 22:23:22.956111 23658 solver.cpp:237] Train net output #0: loss = 1.16523 (* 1 = 1.16523 loss) +I0407 22:23:22.956122 23658 sgd_solver.cpp:105] Iteration 3024, lr = 0.00218549 +I0407 22:23:27.057636 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:28.180729 23658 solver.cpp:218] Iteration 3036 (2.29689 iter/s, 5.22446s/12 iters), loss = 1.13257 +I0407 22:23:28.180778 23658 solver.cpp:237] Train net output #0: loss = 1.13257 (* 1 = 1.13257 loss) +I0407 22:23:28.180789 23658 sgd_solver.cpp:105] Iteration 3036, lr = 0.00217234 +I0407 22:23:33.236052 23658 solver.cpp:218] Iteration 3048 (2.37383 iter/s, 5.05512s/12 iters), loss = 1.34675 +I0407 22:23:33.236141 23658 solver.cpp:237] Train net output #0: loss = 1.34675 (* 1 = 1.34675 loss) +I0407 22:23:33.236155 23658 sgd_solver.cpp:105] Iteration 3048, lr = 0.00215927 +I0407 22:23:37.907096 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 22:23:43.130698 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 22:23:47.175909 23658 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 22:23:47.175941 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:23:50.415601 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:51.631989 23658 solver.cpp:397] Test net output #0: accuracy = 0.374387 +I0407 22:23:51.632042 23658 solver.cpp:397] Test net output #1: loss = 2.72128 (* 1 = 2.72128 loss) +I0407 22:23:51.723829 23658 solver.cpp:218] Iteration 3060 (0.649099 iter/s, 18.4872s/12 iters), loss = 1.55039 +I0407 22:23:51.723884 23658 solver.cpp:237] Train net output #0: loss = 1.55039 (* 1 = 1.55039 loss) +I0407 22:23:51.723896 23658 sgd_solver.cpp:105] Iteration 3060, lr = 0.00214628 +I0407 22:23:56.018882 23658 solver.cpp:218] Iteration 3072 (2.79404 iter/s, 4.29486s/12 iters), loss = 1.31633 +I0407 22:23:56.018934 23658 solver.cpp:237] Train net output #0: loss = 1.31633 (* 1 = 1.31633 loss) +I0407 22:23:56.018946 23658 sgd_solver.cpp:105] Iteration 3072, lr = 0.00213337 +I0407 22:24:01.098693 23658 solver.cpp:218] Iteration 3084 (2.36239 iter/s, 5.07961s/12 iters), loss = 1.26818 +I0407 22:24:01.098737 23658 solver.cpp:237] Train net output #0: loss = 1.26818 (* 1 = 1.26818 loss) +I0407 22:24:01.098747 23658 sgd_solver.cpp:105] Iteration 3084, lr = 0.00212053 +I0407 22:24:06.072656 23658 solver.cpp:218] Iteration 3096 (2.41266 iter/s, 4.97377s/12 iters), loss = 1.38897 +I0407 22:24:06.072765 23658 solver.cpp:237] Train net output #0: loss = 1.38897 (* 1 = 1.38897 loss) +I0407 22:24:06.072775 23658 sgd_solver.cpp:105] Iteration 3096, lr = 0.00210777 +I0407 22:24:11.156318 23658 solver.cpp:218] Iteration 3108 (2.36063 iter/s, 5.0834s/12 iters), loss = 1.4278 +I0407 22:24:11.156364 23658 solver.cpp:237] Train net output #0: loss = 1.4278 (* 1 = 1.4278 loss) +I0407 22:24:11.156373 23658 sgd_solver.cpp:105] Iteration 3108, lr = 0.00209509 +I0407 22:24:16.251176 23658 solver.cpp:218] Iteration 3120 (2.35541 iter/s, 5.09466s/12 iters), loss = 0.960389 +I0407 22:24:16.251216 23658 solver.cpp:237] Train net output #0: loss = 0.960389 (* 1 = 0.960389 loss) +I0407 22:24:16.251226 23658 sgd_solver.cpp:105] Iteration 3120, lr = 0.00208249 +I0407 22:24:21.291874 23658 solver.cpp:218] Iteration 3132 (2.38071 iter/s, 5.0405s/12 iters), loss = 1.30706 +I0407 22:24:21.291922 23658 solver.cpp:237] Train net output #0: loss = 1.30706 (* 1 = 1.30706 loss) +I0407 22:24:21.291934 23658 sgd_solver.cpp:105] Iteration 3132, lr = 0.00206996 +I0407 22:24:22.430096 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:26.373459 23658 solver.cpp:218] Iteration 3144 (2.36156 iter/s, 5.08139s/12 iters), loss = 1.2783 +I0407 22:24:26.373507 23658 solver.cpp:237] Train net output #0: loss = 1.2783 (* 1 = 1.2783 loss) +I0407 22:24:26.373519 23658 sgd_solver.cpp:105] Iteration 3144, lr = 0.0020575 +I0407 22:24:31.589241 23658 solver.cpp:218] Iteration 3156 (2.3008 iter/s, 5.21558s/12 iters), loss = 1.22227 +I0407 22:24:31.589296 23658 solver.cpp:237] Train net output #0: loss = 1.22227 (* 1 = 1.22227 loss) +I0407 22:24:31.589308 23658 sgd_solver.cpp:105] Iteration 3156, lr = 0.00204513 +I0407 22:24:33.683979 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 22:24:37.330821 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 22:24:41.561900 23658 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 22:24:41.561935 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:24:44.757019 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:46.020704 23658 solver.cpp:397] Test net output #0: accuracy = 0.376838 +I0407 22:24:46.020748 23658 solver.cpp:397] Test net output #1: loss = 2.71405 (* 1 = 2.71405 loss) +I0407 22:24:47.830296 23658 solver.cpp:218] Iteration 3168 (0.738891 iter/s, 16.2405s/12 iters), loss = 1.04579 +I0407 22:24:47.830344 23658 solver.cpp:237] Train net output #0: loss = 1.04579 (* 1 = 1.04579 loss) +I0407 22:24:47.830355 23658 sgd_solver.cpp:105] Iteration 3168, lr = 0.00203282 +I0407 22:24:52.735471 23658 solver.cpp:218] Iteration 3180 (2.44649 iter/s, 4.90498s/12 iters), loss = 1.40631 +I0407 22:24:52.735522 23658 solver.cpp:237] Train net output #0: loss = 1.40631 (* 1 = 1.40631 loss) +I0407 22:24:52.735534 23658 sgd_solver.cpp:105] Iteration 3180, lr = 0.00202059 +I0407 22:24:57.641902 23658 solver.cpp:218] Iteration 3192 (2.44587 iter/s, 4.90623s/12 iters), loss = 1.1699 +I0407 22:24:57.641983 23658 solver.cpp:237] Train net output #0: loss = 1.1699 (* 1 = 1.1699 loss) +I0407 22:24:57.641996 23658 sgd_solver.cpp:105] Iteration 3192, lr = 0.00200843 +I0407 22:25:02.548805 23658 solver.cpp:218] Iteration 3204 (2.44564 iter/s, 4.90669s/12 iters), loss = 1.09262 +I0407 22:25:02.548852 23658 solver.cpp:237] Train net output #0: loss = 1.09262 (* 1 = 1.09262 loss) +I0407 22:25:02.548864 23658 sgd_solver.cpp:105] Iteration 3204, lr = 0.00199635 +I0407 22:25:07.644799 23658 solver.cpp:218] Iteration 3216 (2.35488 iter/s, 5.0958s/12 iters), loss = 1.02426 +I0407 22:25:07.644919 23658 solver.cpp:237] Train net output #0: loss = 1.02426 (* 1 = 1.02426 loss) +I0407 22:25:07.644928 23658 sgd_solver.cpp:105] Iteration 3216, lr = 0.00198434 +I0407 22:25:12.796139 23658 solver.cpp:218] Iteration 3228 (2.32962 iter/s, 5.15106s/12 iters), loss = 1.12601 +I0407 22:25:12.796185 23658 solver.cpp:237] Train net output #0: loss = 1.12601 (* 1 = 1.12601 loss) +I0407 22:25:12.796195 23658 sgd_solver.cpp:105] Iteration 3228, lr = 0.0019724 +I0407 22:25:16.113531 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:17.912806 23658 solver.cpp:218] Iteration 3240 (2.34537 iter/s, 5.11646s/12 iters), loss = 1.13277 +I0407 22:25:17.912856 23658 solver.cpp:237] Train net output #0: loss = 1.13277 (* 1 = 1.13277 loss) +I0407 22:25:17.912868 23658 sgd_solver.cpp:105] Iteration 3240, lr = 0.00196053 +I0407 22:25:23.018383 23658 solver.cpp:218] Iteration 3252 (2.35046 iter/s, 5.10538s/12 iters), loss = 1.12714 +I0407 22:25:23.018421 23658 solver.cpp:237] Train net output #0: loss = 1.12714 (* 1 = 1.12714 loss) +I0407 22:25:23.018429 23658 sgd_solver.cpp:105] Iteration 3252, lr = 0.00194874 +I0407 22:25:27.519277 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 22:25:30.510411 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 22:25:32.904186 23658 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 22:25:32.904211 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:25:36.053087 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:37.354856 23658 solver.cpp:397] Test net output #0: accuracy = 0.36152 +I0407 22:25:37.354897 23658 solver.cpp:397] Test net output #1: loss = 2.79964 (* 1 = 2.79964 loss) +I0407 22:25:37.444770 23658 solver.cpp:218] Iteration 3264 (0.831835 iter/s, 14.4259s/12 iters), loss = 1.30755 +I0407 22:25:37.444813 23658 solver.cpp:237] Train net output #0: loss = 1.30755 (* 1 = 1.30755 loss) +I0407 22:25:37.444823 23658 sgd_solver.cpp:105] Iteration 3264, lr = 0.00193701 +I0407 22:25:41.942919 23658 solver.cpp:218] Iteration 3276 (2.66787 iter/s, 4.49797s/12 iters), loss = 1.12744 +I0407 22:25:41.943020 23658 solver.cpp:237] Train net output #0: loss = 1.12744 (* 1 = 1.12744 loss) +I0407 22:25:41.943033 23658 sgd_solver.cpp:105] Iteration 3276, lr = 0.00192536 +I0407 22:25:47.458626 23658 solver.cpp:218] Iteration 3288 (2.17571 iter/s, 5.51545s/12 iters), loss = 1.10149 +I0407 22:25:47.458671 23658 solver.cpp:237] Train net output #0: loss = 1.10149 (* 1 = 1.10149 loss) +I0407 22:25:47.458683 23658 sgd_solver.cpp:105] Iteration 3288, lr = 0.00191377 +I0407 22:25:52.545912 23658 solver.cpp:218] Iteration 3300 (2.35891 iter/s, 5.08709s/12 iters), loss = 1.17736 +I0407 22:25:52.545966 23658 solver.cpp:237] Train net output #0: loss = 1.17736 (* 1 = 1.17736 loss) +I0407 22:25:52.545979 23658 sgd_solver.cpp:105] Iteration 3300, lr = 0.00190226 +I0407 22:25:57.590603 23658 solver.cpp:218] Iteration 3312 (2.37883 iter/s, 5.0445s/12 iters), loss = 1.14221 +I0407 22:25:57.590646 23658 solver.cpp:237] Train net output #0: loss = 1.14221 (* 1 = 1.14221 loss) +I0407 22:25:57.590656 23658 sgd_solver.cpp:105] Iteration 3312, lr = 0.00189082 +I0407 22:26:02.719067 23658 solver.cpp:218] Iteration 3324 (2.33997 iter/s, 5.12827s/12 iters), loss = 1.06927 +I0407 22:26:02.719115 23658 solver.cpp:237] Train net output #0: loss = 1.06927 (* 1 = 1.06927 loss) +I0407 22:26:02.719127 23658 sgd_solver.cpp:105] Iteration 3324, lr = 0.00187944 +I0407 22:26:07.714398 23658 solver.cpp:218] Iteration 3336 (2.40234 iter/s, 4.99513s/12 iters), loss = 0.979076 +I0407 22:26:07.714443 23658 solver.cpp:237] Train net output #0: loss = 0.979076 (* 1 = 0.979076 loss) +I0407 22:26:07.714454 23658 sgd_solver.cpp:105] Iteration 3336, lr = 0.00186813 +I0407 22:26:08.189025 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:12.853439 23658 solver.cpp:218] Iteration 3348 (2.33516 iter/s, 5.13884s/12 iters), loss = 1.19921 +I0407 22:26:12.853549 23658 solver.cpp:237] Train net output #0: loss = 1.19921 (* 1 = 1.19921 loss) +I0407 22:26:12.853561 23658 sgd_solver.cpp:105] Iteration 3348, lr = 0.00185689 +I0407 22:26:17.932590 23658 solver.cpp:218] Iteration 3360 (2.36272 iter/s, 5.07889s/12 iters), loss = 0.922437 +I0407 22:26:17.932644 23658 solver.cpp:237] Train net output #0: loss = 0.922437 (* 1 = 0.922437 loss) +I0407 22:26:17.932657 23658 sgd_solver.cpp:105] Iteration 3360, lr = 0.00184572 +I0407 22:26:19.992660 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 22:26:24.783304 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 22:26:27.106307 23658 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 22:26:27.106333 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:26:30.225020 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:31.560129 23658 solver.cpp:397] Test net output #0: accuracy = 0.382966 +I0407 22:26:31.560174 23658 solver.cpp:397] Test net output #1: loss = 2.89178 (* 1 = 2.89178 loss) +I0407 22:26:33.452411 23658 solver.cpp:218] Iteration 3372 (0.773229 iter/s, 15.5193s/12 iters), loss = 1.07396 +I0407 22:26:33.452458 23658 solver.cpp:237] Train net output #0: loss = 1.07396 (* 1 = 1.07396 loss) +I0407 22:26:33.452469 23658 sgd_solver.cpp:105] Iteration 3372, lr = 0.00183461 +I0407 22:26:38.697657 23658 solver.cpp:218] Iteration 3384 (2.28787 iter/s, 5.24504s/12 iters), loss = 1.20514 +I0407 22:26:38.697700 23658 solver.cpp:237] Train net output #0: loss = 1.20514 (* 1 = 1.20514 loss) +I0407 22:26:38.697710 23658 sgd_solver.cpp:105] Iteration 3384, lr = 0.00182358 +I0407 22:26:44.223600 23658 solver.cpp:218] Iteration 3396 (2.17166 iter/s, 5.52573s/12 iters), loss = 0.996732 +I0407 22:26:44.223709 23658 solver.cpp:237] Train net output #0: loss = 0.996732 (* 1 = 0.996732 loss) +I0407 22:26:44.223719 23658 sgd_solver.cpp:105] Iteration 3396, lr = 0.00181261 +I0407 22:26:49.611057 23658 solver.cpp:218] Iteration 3408 (2.22751 iter/s, 5.38719s/12 iters), loss = 0.932191 +I0407 22:26:49.611104 23658 solver.cpp:237] Train net output #0: loss = 0.932191 (* 1 = 0.932191 loss) +I0407 22:26:49.611119 23658 sgd_solver.cpp:105] Iteration 3408, lr = 0.0018017 +I0407 22:26:54.632354 23658 solver.cpp:218] Iteration 3420 (2.38991 iter/s, 5.02111s/12 iters), loss = 0.762816 +I0407 22:26:54.632395 23658 solver.cpp:237] Train net output #0: loss = 0.762816 (* 1 = 0.762816 loss) +I0407 22:26:54.632403 23658 sgd_solver.cpp:105] Iteration 3420, lr = 0.00179086 +I0407 22:26:59.718024 23658 solver.cpp:218] Iteration 3432 (2.35966 iter/s, 5.08547s/12 iters), loss = 1.00516 +I0407 22:26:59.718083 23658 solver.cpp:237] Train net output #0: loss = 1.00516 (* 1 = 1.00516 loss) +I0407 22:26:59.718096 23658 sgd_solver.cpp:105] Iteration 3432, lr = 0.00178008 +I0407 22:27:02.347563 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:04.859578 23658 solver.cpp:218] Iteration 3444 (2.33402 iter/s, 5.14134s/12 iters), loss = 0.867781 +I0407 22:27:04.859616 23658 solver.cpp:237] Train net output #0: loss = 0.867781 (* 1 = 0.867781 loss) +I0407 22:27:04.859623 23658 sgd_solver.cpp:105] Iteration 3444, lr = 0.00176937 +I0407 22:27:10.382817 23658 solver.cpp:218] Iteration 3456 (2.17272 iter/s, 5.52303s/12 iters), loss = 1.12063 +I0407 22:27:10.382858 23658 solver.cpp:237] Train net output #0: loss = 1.12063 (* 1 = 1.12063 loss) +I0407 22:27:10.382867 23658 sgd_solver.cpp:105] Iteration 3456, lr = 0.00175873 +I0407 22:27:15.230576 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 22:27:18.922621 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 22:27:21.222724 23658 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 22:27:21.222745 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:27:21.623875 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:27:24.332721 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:25.716195 23658 solver.cpp:397] Test net output #0: accuracy = 0.382966 +I0407 22:27:25.716233 23658 solver.cpp:397] Test net output #1: loss = 2.85833 (* 1 = 2.85833 loss) +I0407 22:27:25.806107 23658 solver.cpp:218] Iteration 3468 (0.778069 iter/s, 15.4228s/12 iters), loss = 0.92381 +I0407 22:27:25.806150 23658 solver.cpp:237] Train net output #0: loss = 0.92381 (* 1 = 0.92381 loss) +I0407 22:27:25.806161 23658 sgd_solver.cpp:105] Iteration 3468, lr = 0.00174815 +I0407 22:27:30.362571 23658 solver.cpp:218] Iteration 3480 (2.63373 iter/s, 4.55627s/12 iters), loss = 0.902301 +I0407 22:27:30.362634 23658 solver.cpp:237] Train net output #0: loss = 0.902301 (* 1 = 0.902301 loss) +I0407 22:27:30.362648 23658 sgd_solver.cpp:105] Iteration 3480, lr = 0.00173763 +I0407 22:27:35.392189 23658 solver.cpp:218] Iteration 3492 (2.38597 iter/s, 5.0294s/12 iters), loss = 1.15804 +I0407 22:27:35.392233 23658 solver.cpp:237] Train net output #0: loss = 1.15804 (* 1 = 1.15804 loss) +I0407 22:27:35.392243 23658 sgd_solver.cpp:105] Iteration 3492, lr = 0.00172718 +I0407 22:27:40.638020 23658 solver.cpp:218] Iteration 3504 (2.28762 iter/s, 5.24563s/12 iters), loss = 0.978999 +I0407 22:27:40.638060 23658 solver.cpp:237] Train net output #0: loss = 0.978999 (* 1 = 0.978999 loss) +I0407 22:27:40.638068 23658 sgd_solver.cpp:105] Iteration 3504, lr = 0.00171678 +I0407 22:27:45.783761 23658 solver.cpp:218] Iteration 3516 (2.33211 iter/s, 5.14555s/12 iters), loss = 0.885437 +I0407 22:27:45.783859 23658 solver.cpp:237] Train net output #0: loss = 0.885437 (* 1 = 0.885437 loss) +I0407 22:27:45.783875 23658 sgd_solver.cpp:105] Iteration 3516, lr = 0.00170646 +I0407 22:27:50.754099 23658 solver.cpp:218] Iteration 3528 (2.41444 iter/s, 4.9701s/12 iters), loss = 1.20985 +I0407 22:27:50.754137 23658 solver.cpp:237] Train net output #0: loss = 1.20985 (* 1 = 1.20985 loss) +I0407 22:27:50.754145 23658 sgd_solver.cpp:105] Iteration 3528, lr = 0.00169619 +I0407 22:27:55.568579 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:55.826701 23658 solver.cpp:218] Iteration 3540 (2.36574 iter/s, 5.07241s/12 iters), loss = 0.944812 +I0407 22:27:55.826747 23658 solver.cpp:237] Train net output #0: loss = 0.944812 (* 1 = 0.944812 loss) +I0407 22:27:55.826758 23658 sgd_solver.cpp:105] Iteration 3540, lr = 0.00168598 +I0407 22:28:00.908396 23658 solver.cpp:218] Iteration 3552 (2.36151 iter/s, 5.08149s/12 iters), loss = 0.734945 +I0407 22:28:00.908450 23658 solver.cpp:237] Train net output #0: loss = 0.734945 (* 1 = 0.734945 loss) +I0407 22:28:00.908461 23658 sgd_solver.cpp:105] Iteration 3552, lr = 0.00167584 +I0407 22:28:06.047791 23658 solver.cpp:218] Iteration 3564 (2.335 iter/s, 5.13918s/12 iters), loss = 1.02239 +I0407 22:28:06.047843 23658 solver.cpp:237] Train net output #0: loss = 1.02239 (* 1 = 1.02239 loss) +I0407 22:28:06.047854 23658 sgd_solver.cpp:105] Iteration 3564, lr = 0.00166576 +I0407 22:28:08.315905 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 22:28:11.288923 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 22:28:13.626044 23658 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 22:28:13.626070 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:28:16.674789 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:18.090198 23658 solver.cpp:397] Test net output #0: accuracy = 0.375 +I0407 22:28:18.090245 23658 solver.cpp:397] Test net output #1: loss = 2.98615 (* 1 = 2.98615 loss) +I0407 22:28:19.974246 23658 solver.cpp:218] Iteration 3576 (0.861697 iter/s, 13.926s/12 iters), loss = 0.803345 +I0407 22:28:19.974308 23658 solver.cpp:237] Train net output #0: loss = 0.803345 (* 1 = 0.803345 loss) +I0407 22:28:19.974320 23658 sgd_solver.cpp:105] Iteration 3576, lr = 0.00165573 +I0407 22:28:25.058709 23658 solver.cpp:218] Iteration 3588 (2.36023 iter/s, 5.08425s/12 iters), loss = 0.873794 +I0407 22:28:25.058756 23658 solver.cpp:237] Train net output #0: loss = 0.873794 (* 1 = 0.873794 loss) +I0407 22:28:25.058765 23658 sgd_solver.cpp:105] Iteration 3588, lr = 0.00164577 +I0407 22:28:30.109939 23658 solver.cpp:218] Iteration 3600 (2.37575 iter/s, 5.05103s/12 iters), loss = 0.841895 +I0407 22:28:30.109998 23658 solver.cpp:237] Train net output #0: loss = 0.841895 (* 1 = 0.841895 loss) +I0407 22:28:30.110006 23658 sgd_solver.cpp:105] Iteration 3600, lr = 0.00163587 +I0407 22:28:35.198238 23658 solver.cpp:218] Iteration 3612 (2.35845 iter/s, 5.08808s/12 iters), loss = 0.789527 +I0407 22:28:35.198292 23658 solver.cpp:237] Train net output #0: loss = 0.789527 (* 1 = 0.789527 loss) +I0407 22:28:35.198304 23658 sgd_solver.cpp:105] Iteration 3612, lr = 0.00162603 +I0407 22:28:40.297262 23658 solver.cpp:218] Iteration 3624 (2.35349 iter/s, 5.09881s/12 iters), loss = 0.988111 +I0407 22:28:40.297319 23658 solver.cpp:237] Train net output #0: loss = 0.988111 (* 1 = 0.988111 loss) +I0407 22:28:40.297333 23658 sgd_solver.cpp:105] Iteration 3624, lr = 0.00161625 +I0407 22:28:45.421586 23658 solver.cpp:218] Iteration 3636 (2.34187 iter/s, 5.1241s/12 iters), loss = 0.793983 +I0407 22:28:45.421650 23658 solver.cpp:237] Train net output #0: loss = 0.793983 (* 1 = 0.793983 loss) +I0407 22:28:45.421664 23658 sgd_solver.cpp:105] Iteration 3636, lr = 0.00160652 +I0407 22:28:47.367951 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:50.523576 23658 solver.cpp:218] Iteration 3648 (2.35212 iter/s, 5.10178s/12 iters), loss = 0.861682 +I0407 22:28:50.523622 23658 solver.cpp:237] Train net output #0: loss = 0.861682 (* 1 = 0.861682 loss) +I0407 22:28:50.523633 23658 sgd_solver.cpp:105] Iteration 3648, lr = 0.00159686 +I0407 22:28:55.707315 23658 solver.cpp:218] Iteration 3660 (2.31502 iter/s, 5.18354s/12 iters), loss = 0.740375 +I0407 22:28:55.707368 23658 solver.cpp:237] Train net output #0: loss = 0.740375 (* 1 = 0.740375 loss) +I0407 22:28:55.707381 23658 sgd_solver.cpp:105] Iteration 3660, lr = 0.00158725 +I0407 22:29:00.526810 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 22:29:03.612466 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 22:29:08.160240 23658 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 22:29:08.160267 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:29:11.028280 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:12.489084 23658 solver.cpp:397] Test net output #0: accuracy = 0.376226 +I0407 22:29:12.489131 23658 solver.cpp:397] Test net output #1: loss = 2.81976 (* 1 = 2.81976 loss) +I0407 22:29:12.579313 23658 solver.cpp:218] Iteration 3672 (0.71126 iter/s, 16.8715s/12 iters), loss = 0.582268 +I0407 22:29:12.579365 23658 solver.cpp:237] Train net output #0: loss = 0.582268 (* 1 = 0.582268 loss) +I0407 22:29:12.579376 23658 sgd_solver.cpp:105] Iteration 3672, lr = 0.0015777 +I0407 22:29:17.107937 23658 solver.cpp:218] Iteration 3684 (2.64993 iter/s, 4.52843s/12 iters), loss = 0.60012 +I0407 22:29:17.107995 23658 solver.cpp:237] Train net output #0: loss = 0.60012 (* 1 = 0.60012 loss) +I0407 22:29:17.108009 23658 sgd_solver.cpp:105] Iteration 3684, lr = 0.00156821 +I0407 22:29:22.137634 23658 solver.cpp:218] Iteration 3696 (2.38593 iter/s, 5.02949s/12 iters), loss = 0.63189 +I0407 22:29:22.137794 23658 solver.cpp:237] Train net output #0: loss = 0.63189 (* 1 = 0.63189 loss) +I0407 22:29:22.137809 23658 sgd_solver.cpp:105] Iteration 3696, lr = 0.00155877 +I0407 22:29:27.238559 23658 solver.cpp:218] Iteration 3708 (2.35266 iter/s, 5.10061s/12 iters), loss = 0.631278 +I0407 22:29:27.238615 23658 solver.cpp:237] Train net output #0: loss = 0.631278 (* 1 = 0.631278 loss) +I0407 22:29:27.238626 23658 sgd_solver.cpp:105] Iteration 3708, lr = 0.00154939 +I0407 22:29:32.343158 23658 solver.cpp:218] Iteration 3720 (2.35092 iter/s, 5.10439s/12 iters), loss = 0.735278 +I0407 22:29:32.343219 23658 solver.cpp:237] Train net output #0: loss = 0.735278 (* 1 = 0.735278 loss) +I0407 22:29:32.343230 23658 sgd_solver.cpp:105] Iteration 3720, lr = 0.00154007 +I0407 22:29:37.311733 23658 solver.cpp:218] Iteration 3732 (2.41528 iter/s, 4.96837s/12 iters), loss = 0.721195 +I0407 22:29:37.311786 23658 solver.cpp:237] Train net output #0: loss = 0.721195 (* 1 = 0.721195 loss) +I0407 22:29:37.311798 23658 sgd_solver.cpp:105] Iteration 3732, lr = 0.0015308 +I0407 22:29:41.391850 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:42.421900 23658 solver.cpp:218] Iteration 3744 (2.34836 iter/s, 5.10996s/12 iters), loss = 0.67952 +I0407 22:29:42.421947 23658 solver.cpp:237] Train net output #0: loss = 0.67952 (* 1 = 0.67952 loss) +I0407 22:29:42.421972 23658 sgd_solver.cpp:105] Iteration 3744, lr = 0.00152159 +I0407 22:29:47.670145 23658 solver.cpp:218] Iteration 3756 (2.28657 iter/s, 5.24804s/12 iters), loss = 1.06768 +I0407 22:29:47.670202 23658 solver.cpp:237] Train net output #0: loss = 1.06768 (* 1 = 1.06768 loss) +I0407 22:29:47.670217 23658 sgd_solver.cpp:105] Iteration 3756, lr = 0.00151244 +I0407 22:29:52.666932 23658 solver.cpp:218] Iteration 3768 (2.40163 iter/s, 4.9966s/12 iters), loss = 0.799213 +I0407 22:29:52.667019 23658 solver.cpp:237] Train net output #0: loss = 0.799213 (* 1 = 0.799213 loss) +I0407 22:29:52.667029 23658 sgd_solver.cpp:105] Iteration 3768, lr = 0.00150334 +I0407 22:29:54.715265 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 22:29:57.849793 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 22:30:00.157434 23658 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 22:30:00.157461 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:30:03.121271 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:04.617857 23658 solver.cpp:397] Test net output #0: accuracy = 0.384804 +I0407 22:30:04.617903 23658 solver.cpp:397] Test net output #1: loss = 2.9464 (* 1 = 2.9464 loss) +I0407 22:30:06.562811 23658 solver.cpp:218] Iteration 3780 (0.863595 iter/s, 13.8954s/12 iters), loss = 0.592728 +I0407 22:30:06.562856 23658 solver.cpp:237] Train net output #0: loss = 0.592728 (* 1 = 0.592728 loss) +I0407 22:30:06.562865 23658 sgd_solver.cpp:105] Iteration 3780, lr = 0.0014943 +I0407 22:30:11.765815 23658 solver.cpp:218] Iteration 3792 (2.30645 iter/s, 5.20281s/12 iters), loss = 0.777628 +I0407 22:30:11.765851 23658 solver.cpp:237] Train net output #0: loss = 0.777628 (* 1 = 0.777628 loss) +I0407 22:30:11.765859 23658 sgd_solver.cpp:105] Iteration 3792, lr = 0.0014853 +I0407 22:30:16.831830 23658 solver.cpp:218] Iteration 3804 (2.36882 iter/s, 5.06582s/12 iters), loss = 0.61143 +I0407 22:30:16.831881 23658 solver.cpp:237] Train net output #0: loss = 0.61143 (* 1 = 0.61143 loss) +I0407 22:30:16.831892 23658 sgd_solver.cpp:105] Iteration 3804, lr = 0.00147637 +I0407 22:30:22.215030 23658 solver.cpp:218] Iteration 3816 (2.22924 iter/s, 5.38299s/12 iters), loss = 0.505105 +I0407 22:30:22.215070 23658 solver.cpp:237] Train net output #0: loss = 0.505105 (* 1 = 0.505105 loss) +I0407 22:30:22.215080 23658 sgd_solver.cpp:105] Iteration 3816, lr = 0.00146749 +I0407 22:30:27.182874 23658 solver.cpp:218] Iteration 3828 (2.41563 iter/s, 4.96765s/12 iters), loss = 0.642768 +I0407 22:30:27.183037 23658 solver.cpp:237] Train net output #0: loss = 0.642768 (* 1 = 0.642768 loss) +I0407 22:30:27.183050 23658 sgd_solver.cpp:105] Iteration 3828, lr = 0.00145866 +I0407 22:30:32.140244 23658 solver.cpp:218] Iteration 3840 (2.42079 iter/s, 4.95706s/12 iters), loss = 0.773939 +I0407 22:30:32.140287 23658 solver.cpp:237] Train net output #0: loss = 0.773939 (* 1 = 0.773939 loss) +I0407 22:30:32.140298 23658 sgd_solver.cpp:105] Iteration 3840, lr = 0.00144988 +I0407 22:30:33.309535 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:37.226792 23658 solver.cpp:218] Iteration 3852 (2.35926 iter/s, 5.08635s/12 iters), loss = 0.773017 +I0407 22:30:37.226840 23658 solver.cpp:237] Train net output #0: loss = 0.773017 (* 1 = 0.773017 loss) +I0407 22:30:37.226851 23658 sgd_solver.cpp:105] Iteration 3852, lr = 0.00144116 +I0407 22:30:42.178675 23658 solver.cpp:218] Iteration 3864 (2.42342 iter/s, 4.95169s/12 iters), loss = 0.623881 +I0407 22:30:42.178721 23658 solver.cpp:237] Train net output #0: loss = 0.623881 (* 1 = 0.623881 loss) +I0407 22:30:42.178731 23658 sgd_solver.cpp:105] Iteration 3864, lr = 0.00143249 +I0407 22:30:46.790475 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 22:30:56.061347 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 22:31:01.544062 23658 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 22:31:01.544107 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:31:04.622212 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:06.164816 23658 solver.cpp:397] Test net output #0: accuracy = 0.401961 +I0407 22:31:06.164860 23658 solver.cpp:397] Test net output #1: loss = 2.88263 (* 1 = 2.88263 loss) +I0407 22:31:06.254825 23658 solver.cpp:218] Iteration 3876 (0.498434 iter/s, 24.0754s/12 iters), loss = 0.81046 +I0407 22:31:06.254871 23658 solver.cpp:237] Train net output #0: loss = 0.81046 (* 1 = 0.81046 loss) +I0407 22:31:06.254881 23658 sgd_solver.cpp:105] Iteration 3876, lr = 0.00142387 +I0407 22:31:10.402854 23658 solver.cpp:218] Iteration 3888 (2.89307 iter/s, 4.14785s/12 iters), loss = 0.586513 +I0407 22:31:10.402904 23658 solver.cpp:237] Train net output #0: loss = 0.586513 (* 1 = 0.586513 loss) +I0407 22:31:10.402913 23658 sgd_solver.cpp:105] Iteration 3888, lr = 0.0014153 +I0407 22:31:15.359091 23658 solver.cpp:218] Iteration 3900 (2.42129 iter/s, 4.95603s/12 iters), loss = 0.687142 +I0407 22:31:15.359148 23658 solver.cpp:237] Train net output #0: loss = 0.687142 (* 1 = 0.687142 loss) +I0407 22:31:15.359160 23658 sgd_solver.cpp:105] Iteration 3900, lr = 0.00140679 +I0407 22:31:20.723448 23658 solver.cpp:218] Iteration 3912 (2.23708 iter/s, 5.36414s/12 iters), loss = 0.432994 +I0407 22:31:20.723495 23658 solver.cpp:237] Train net output #0: loss = 0.432994 (* 1 = 0.432994 loss) +I0407 22:31:20.723505 23658 sgd_solver.cpp:105] Iteration 3912, lr = 0.00139832 +I0407 22:31:25.966109 23658 solver.cpp:218] Iteration 3924 (2.289 iter/s, 5.24246s/12 iters), loss = 0.729379 +I0407 22:31:25.966158 23658 solver.cpp:237] Train net output #0: loss = 0.729379 (* 1 = 0.729379 loss) +I0407 22:31:25.966171 23658 sgd_solver.cpp:105] Iteration 3924, lr = 0.00138991 +I0407 22:31:31.067795 23658 solver.cpp:218] Iteration 3936 (2.35226 iter/s, 5.10148s/12 iters), loss = 0.480929 +I0407 22:31:31.067847 23658 solver.cpp:237] Train net output #0: loss = 0.480929 (* 1 = 0.480929 loss) +I0407 22:31:31.067858 23658 sgd_solver.cpp:105] Iteration 3936, lr = 0.00138155 +I0407 22:31:34.443061 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:36.088274 23658 solver.cpp:218] Iteration 3948 (2.39031 iter/s, 5.02028s/12 iters), loss = 0.665896 +I0407 22:31:36.088316 23658 solver.cpp:237] Train net output #0: loss = 0.665896 (* 1 = 0.665896 loss) +I0407 22:31:36.088325 23658 sgd_solver.cpp:105] Iteration 3948, lr = 0.00137323 +I0407 22:31:41.500622 23658 solver.cpp:218] Iteration 3960 (2.21724 iter/s, 5.41214s/12 iters), loss = 0.65301 +I0407 22:31:41.500674 23658 solver.cpp:237] Train net output #0: loss = 0.65301 (* 1 = 0.65301 loss) +I0407 22:31:41.500685 23658 sgd_solver.cpp:105] Iteration 3960, lr = 0.00136497 +I0407 22:31:46.961918 23658 solver.cpp:218] Iteration 3972 (2.19737 iter/s, 5.46108s/12 iters), loss = 0.45248 +I0407 22:31:46.961978 23658 solver.cpp:237] Train net output #0: loss = 0.45248 (* 1 = 0.45248 loss) +I0407 22:31:46.961989 23658 sgd_solver.cpp:105] Iteration 3972, lr = 0.00135676 +I0407 22:31:49.201900 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 22:31:52.753657 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 22:31:55.994015 23658 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 22:31:55.994040 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:31:58.977638 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:00.558877 23658 solver.cpp:397] Test net output #0: accuracy = 0.415441 +I0407 22:32:00.558921 23658 solver.cpp:397] Test net output #1: loss = 2.86347 (* 1 = 2.86347 loss) +I0407 22:32:02.506012 23658 solver.cpp:218] Iteration 3984 (0.772022 iter/s, 15.5436s/12 iters), loss = 0.547557 +I0407 22:32:02.506067 23658 solver.cpp:237] Train net output #0: loss = 0.547557 (* 1 = 0.547557 loss) +I0407 22:32:02.506079 23658 sgd_solver.cpp:105] Iteration 3984, lr = 0.0013486 +I0407 22:32:07.695894 23658 solver.cpp:218] Iteration 3996 (2.31229 iter/s, 5.18967s/12 iters), loss = 0.698489 +I0407 22:32:07.695988 23658 solver.cpp:237] Train net output #0: loss = 0.698489 (* 1 = 0.698489 loss) +I0407 22:32:07.696000 23658 sgd_solver.cpp:105] Iteration 3996, lr = 0.00134048 +I0407 22:32:12.785970 23658 solver.cpp:218] Iteration 4008 (2.35765 iter/s, 5.08982s/12 iters), loss = 0.561124 +I0407 22:32:12.786017 23658 solver.cpp:237] Train net output #0: loss = 0.561124 (* 1 = 0.561124 loss) +I0407 22:32:12.786028 23658 sgd_solver.cpp:105] Iteration 4008, lr = 0.00133242 +I0407 22:32:17.766463 23658 solver.cpp:218] Iteration 4020 (2.4095 iter/s, 4.98029s/12 iters), loss = 0.543541 +I0407 22:32:17.766520 23658 solver.cpp:237] Train net output #0: loss = 0.543541 (* 1 = 0.543541 loss) +I0407 22:32:17.766532 23658 sgd_solver.cpp:105] Iteration 4020, lr = 0.0013244 +I0407 22:32:22.787937 23658 solver.cpp:218] Iteration 4032 (2.38983 iter/s, 5.02127s/12 iters), loss = 0.641222 +I0407 22:32:22.787977 23658 solver.cpp:237] Train net output #0: loss = 0.641222 (* 1 = 0.641222 loss) +I0407 22:32:22.787987 23658 sgd_solver.cpp:105] Iteration 4032, lr = 0.00131643 +I0407 22:32:27.793534 23658 solver.cpp:218] Iteration 4044 (2.39741 iter/s, 5.0054s/12 iters), loss = 0.776499 +I0407 22:32:27.793581 23658 solver.cpp:237] Train net output #0: loss = 0.776499 (* 1 = 0.776499 loss) +I0407 22:32:27.793592 23658 sgd_solver.cpp:105] Iteration 4044, lr = 0.00130851 +I0407 22:32:28.252048 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:32.767149 23658 solver.cpp:218] Iteration 4056 (2.41283 iter/s, 4.97342s/12 iters), loss = 0.621319 +I0407 22:32:32.767194 23658 solver.cpp:237] Train net output #0: loss = 0.621319 (* 1 = 0.621319 loss) +I0407 22:32:32.767206 23658 sgd_solver.cpp:105] Iteration 4056, lr = 0.00130064 +I0407 22:32:37.857038 23658 solver.cpp:218] Iteration 4068 (2.35771 iter/s, 5.08969s/12 iters), loss = 0.41954 +I0407 22:32:37.857141 23658 solver.cpp:237] Train net output #0: loss = 0.41954 (* 1 = 0.41954 loss) +I0407 22:32:37.857153 23658 sgd_solver.cpp:105] Iteration 4068, lr = 0.00129281 +I0407 22:32:42.438256 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 22:32:50.610743 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 22:32:57.410164 23658 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 22:32:57.410187 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:33:00.263828 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:01.880654 23658 solver.cpp:397] Test net output #0: accuracy = 0.411765 +I0407 22:33:01.880688 23658 solver.cpp:397] Test net output #1: loss = 2.83054 (* 1 = 2.83054 loss) +I0407 22:33:01.970508 23658 solver.cpp:218] Iteration 4080 (0.497663 iter/s, 24.1127s/12 iters), loss = 0.706302 +I0407 22:33:01.970571 23658 solver.cpp:237] Train net output #0: loss = 0.706302 (* 1 = 0.706302 loss) +I0407 22:33:01.970583 23658 sgd_solver.cpp:105] Iteration 4080, lr = 0.00128504 +I0407 22:33:06.267707 23658 solver.cpp:218] Iteration 4092 (2.79264 iter/s, 4.29701s/12 iters), loss = 0.553371 +I0407 22:33:06.267755 23658 solver.cpp:237] Train net output #0: loss = 0.553371 (* 1 = 0.553371 loss) +I0407 22:33:06.267763 23658 sgd_solver.cpp:105] Iteration 4092, lr = 0.00127731 +I0407 22:33:11.284090 23658 solver.cpp:218] Iteration 4104 (2.39226 iter/s, 5.01618s/12 iters), loss = 0.490302 +I0407 22:33:11.284219 23658 solver.cpp:237] Train net output #0: loss = 0.490302 (* 1 = 0.490302 loss) +I0407 22:33:11.284232 23658 sgd_solver.cpp:105] Iteration 4104, lr = 0.00126962 +I0407 22:33:16.390496 23658 solver.cpp:218] Iteration 4116 (2.35012 iter/s, 5.10612s/12 iters), loss = 0.581225 +I0407 22:33:16.390552 23658 solver.cpp:237] Train net output #0: loss = 0.581225 (* 1 = 0.581225 loss) +I0407 22:33:16.390564 23658 sgd_solver.cpp:105] Iteration 4116, lr = 0.00126198 +I0407 22:33:21.467563 23658 solver.cpp:218] Iteration 4128 (2.36367 iter/s, 5.07685s/12 iters), loss = 0.521602 +I0407 22:33:21.467614 23658 solver.cpp:237] Train net output #0: loss = 0.521602 (* 1 = 0.521602 loss) +I0407 22:33:21.467625 23658 sgd_solver.cpp:105] Iteration 4128, lr = 0.00125439 +I0407 22:33:26.603859 23658 solver.cpp:218] Iteration 4140 (2.33641 iter/s, 5.13609s/12 iters), loss = 0.55494 +I0407 22:33:26.603907 23658 solver.cpp:237] Train net output #0: loss = 0.55494 (* 1 = 0.55494 loss) +I0407 22:33:26.603917 23658 sgd_solver.cpp:105] Iteration 4140, lr = 0.00124684 +I0407 22:33:29.349941 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:31.764324 23658 solver.cpp:218] Iteration 4152 (2.32546 iter/s, 5.16026s/12 iters), loss = 0.46207 +I0407 22:33:31.764367 23658 solver.cpp:237] Train net output #0: loss = 0.46207 (* 1 = 0.46207 loss) +I0407 22:33:31.764377 23658 sgd_solver.cpp:105] Iteration 4152, lr = 0.00123934 +I0407 22:33:33.612926 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:33:37.262693 23658 solver.cpp:218] Iteration 4164 (2.18255 iter/s, 5.49816s/12 iters), loss = 0.40637 +I0407 22:33:37.262743 23658 solver.cpp:237] Train net output #0: loss = 0.40637 (* 1 = 0.40637 loss) +I0407 22:33:37.262753 23658 sgd_solver.cpp:105] Iteration 4164, lr = 0.00123188 +I0407 22:33:42.346683 23658 solver.cpp:218] Iteration 4176 (2.36045 iter/s, 5.08379s/12 iters), loss = 0.398952 +I0407 22:33:42.346788 23658 solver.cpp:237] Train net output #0: loss = 0.398952 (* 1 = 0.398952 loss) +I0407 22:33:42.346801 23658 sgd_solver.cpp:105] Iteration 4176, lr = 0.00122447 +I0407 22:33:44.431506 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 22:33:50.610946 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 22:33:52.931489 23658 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 22:33:52.931515 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:33:55.839237 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:57.542817 23658 solver.cpp:397] Test net output #0: accuracy = 0.410539 +I0407 22:33:57.542865 23658 solver.cpp:397] Test net output #1: loss = 2.82982 (* 1 = 2.82982 loss) +I0407 22:33:59.548213 23658 solver.cpp:218] Iteration 4188 (0.697636 iter/s, 17.2009s/12 iters), loss = 0.528226 +I0407 22:33:59.548271 23658 solver.cpp:237] Train net output #0: loss = 0.528226 (* 1 = 0.528226 loss) +I0407 22:33:59.548285 23658 sgd_solver.cpp:105] Iteration 4188, lr = 0.0012171 +I0407 22:34:04.580412 23658 solver.cpp:218] Iteration 4200 (2.38474 iter/s, 5.03199s/12 iters), loss = 0.536757 +I0407 22:34:04.580466 23658 solver.cpp:237] Train net output #0: loss = 0.536757 (* 1 = 0.536757 loss) +I0407 22:34:04.580478 23658 sgd_solver.cpp:105] Iteration 4200, lr = 0.00120978 +I0407 22:34:09.621177 23658 solver.cpp:218] Iteration 4212 (2.38069 iter/s, 5.04056s/12 iters), loss = 0.448351 +I0407 22:34:09.621219 23658 solver.cpp:237] Train net output #0: loss = 0.448351 (* 1 = 0.448351 loss) +I0407 22:34:09.621229 23658 sgd_solver.cpp:105] Iteration 4212, lr = 0.0012025 +I0407 22:34:14.607090 23658 solver.cpp:218] Iteration 4224 (2.40688 iter/s, 4.98572s/12 iters), loss = 0.400102 +I0407 22:34:14.607239 23658 solver.cpp:237] Train net output #0: loss = 0.400102 (* 1 = 0.400102 loss) +I0407 22:34:14.607252 23658 sgd_solver.cpp:105] Iteration 4224, lr = 0.00119527 +I0407 22:34:19.703588 23658 solver.cpp:218] Iteration 4236 (2.3547 iter/s, 5.0962s/12 iters), loss = 0.439365 +I0407 22:34:19.703644 23658 solver.cpp:237] Train net output #0: loss = 0.439365 (* 1 = 0.439365 loss) +I0407 22:34:19.703655 23658 sgd_solver.cpp:105] Iteration 4236, lr = 0.00118808 +I0407 22:34:24.799356 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:25.027779 23658 solver.cpp:218] Iteration 4248 (2.25395 iter/s, 5.32398s/12 iters), loss = 0.44588 +I0407 22:34:25.027829 23658 solver.cpp:237] Train net output #0: loss = 0.44588 (* 1 = 0.44588 loss) +I0407 22:34:25.027842 23658 sgd_solver.cpp:105] Iteration 4248, lr = 0.00118093 +I0407 22:34:30.173043 23658 solver.cpp:218] Iteration 4260 (2.33234 iter/s, 5.14506s/12 iters), loss = 0.482049 +I0407 22:34:30.173094 23658 solver.cpp:237] Train net output #0: loss = 0.482049 (* 1 = 0.482049 loss) +I0407 22:34:30.173107 23658 sgd_solver.cpp:105] Iteration 4260, lr = 0.00117382 +I0407 22:34:35.213008 23658 solver.cpp:218] Iteration 4272 (2.38107 iter/s, 5.03976s/12 iters), loss = 0.359172 +I0407 22:34:35.213061 23658 solver.cpp:237] Train net output #0: loss = 0.359172 (* 1 = 0.359172 loss) +I0407 22:34:35.213073 23658 sgd_solver.cpp:105] Iteration 4272, lr = 0.00116676 +I0407 22:34:39.781561 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 22:34:44.727285 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 22:34:47.048655 23658 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 22:34:47.048681 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:34:49.819789 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:51.515367 23658 solver.cpp:397] Test net output #0: accuracy = 0.396446 +I0407 22:34:51.515413 23658 solver.cpp:397] Test net output #1: loss = 2.94097 (* 1 = 2.94097 loss) +I0407 22:34:51.604840 23658 solver.cpp:218] Iteration 4284 (0.732095 iter/s, 16.3913s/12 iters), loss = 0.491227 +I0407 22:34:51.604895 23658 solver.cpp:237] Train net output #0: loss = 0.491227 (* 1 = 0.491227 loss) +I0407 22:34:51.604907 23658 sgd_solver.cpp:105] Iteration 4284, lr = 0.00115974 +I0407 22:34:56.034611 23658 solver.cpp:218] Iteration 4296 (2.70906 iter/s, 4.42958s/12 iters), loss = 0.555745 +I0407 22:34:56.034651 23658 solver.cpp:237] Train net output #0: loss = 0.555745 (* 1 = 0.555745 loss) +I0407 22:34:56.034660 23658 sgd_solver.cpp:105] Iteration 4296, lr = 0.00115276 +I0407 22:35:01.038780 23658 solver.cpp:218] Iteration 4308 (2.3981 iter/s, 5.00396s/12 iters), loss = 0.51115 +I0407 22:35:01.038839 23658 solver.cpp:237] Train net output #0: loss = 0.51115 (* 1 = 0.51115 loss) +I0407 22:35:01.038856 23658 sgd_solver.cpp:105] Iteration 4308, lr = 0.00114583 +I0407 22:35:06.099911 23658 solver.cpp:218] Iteration 4320 (2.37111 iter/s, 5.06092s/12 iters), loss = 0.58762 +I0407 22:35:06.099961 23658 solver.cpp:237] Train net output #0: loss = 0.58762 (* 1 = 0.58762 loss) +I0407 22:35:06.099970 23658 sgd_solver.cpp:105] Iteration 4320, lr = 0.00113893 +I0407 22:35:11.105022 23658 solver.cpp:218] Iteration 4332 (2.39765 iter/s, 5.00491s/12 iters), loss = 0.47499 +I0407 22:35:11.105074 23658 solver.cpp:237] Train net output #0: loss = 0.47499 (* 1 = 0.47499 loss) +I0407 22:35:11.105085 23658 sgd_solver.cpp:105] Iteration 4332, lr = 0.00113208 +I0407 22:35:16.349197 23658 solver.cpp:218] Iteration 4344 (2.28835 iter/s, 5.24396s/12 iters), loss = 0.507954 +I0407 22:35:16.349359 23658 solver.cpp:237] Train net output #0: loss = 0.507954 (* 1 = 0.507954 loss) +I0407 22:35:16.349371 23658 sgd_solver.cpp:105] Iteration 4344, lr = 0.00112527 +I0407 22:35:18.257565 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:21.334157 23658 solver.cpp:218] Iteration 4356 (2.40739 iter/s, 4.98466s/12 iters), loss = 0.555196 +I0407 22:35:21.334208 23658 solver.cpp:237] Train net output #0: loss = 0.555196 (* 1 = 0.555196 loss) +I0407 22:35:21.334220 23658 sgd_solver.cpp:105] Iteration 4356, lr = 0.0011185 +I0407 22:35:26.765030 23658 solver.cpp:218] Iteration 4368 (2.20968 iter/s, 5.43066s/12 iters), loss = 0.398083 +I0407 22:35:26.765081 23658 solver.cpp:237] Train net output #0: loss = 0.398083 (* 1 = 0.398083 loss) +I0407 22:35:26.765094 23658 sgd_solver.cpp:105] Iteration 4368, lr = 0.00111177 +I0407 22:35:32.106539 23658 solver.cpp:218] Iteration 4380 (2.24664 iter/s, 5.3413s/12 iters), loss = 0.38768 +I0407 22:35:32.106582 23658 solver.cpp:237] Train net output #0: loss = 0.38768 (* 1 = 0.38768 loss) +I0407 22:35:32.106591 23658 sgd_solver.cpp:105] Iteration 4380, lr = 0.00110508 +I0407 22:35:34.142153 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 22:35:37.712852 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 22:35:42.085156 23658 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 22:35:42.085182 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:35:44.805367 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:46.546698 23658 solver.cpp:397] Test net output #0: accuracy = 0.416054 +I0407 22:35:46.546782 23658 solver.cpp:397] Test net output #1: loss = 2.93972 (* 1 = 2.93972 loss) +I0407 22:35:48.557973 23658 solver.cpp:218] Iteration 4392 (0.729443 iter/s, 16.4509s/12 iters), loss = 0.320887 +I0407 22:35:48.558029 23658 solver.cpp:237] Train net output #0: loss = 0.320887 (* 1 = 0.320887 loss) +I0407 22:35:48.558041 23658 sgd_solver.cpp:105] Iteration 4392, lr = 0.00109843 +I0407 22:35:54.000376 23658 solver.cpp:218] Iteration 4404 (2.205 iter/s, 5.44218s/12 iters), loss = 0.709004 +I0407 22:35:54.000425 23658 solver.cpp:237] Train net output #0: loss = 0.709004 (* 1 = 0.709004 loss) +I0407 22:35:54.000435 23658 sgd_solver.cpp:105] Iteration 4404, lr = 0.00109182 +I0407 22:35:58.941228 23658 solver.cpp:218] Iteration 4416 (2.42883 iter/s, 4.94065s/12 iters), loss = 0.396492 +I0407 22:35:58.941277 23658 solver.cpp:237] Train net output #0: loss = 0.396492 (* 1 = 0.396492 loss) +I0407 22:35:58.941287 23658 sgd_solver.cpp:105] Iteration 4416, lr = 0.00108526 +I0407 22:36:04.243683 23658 solver.cpp:218] Iteration 4428 (2.26319 iter/s, 5.30225s/12 iters), loss = 0.482165 +I0407 22:36:04.243734 23658 solver.cpp:237] Train net output #0: loss = 0.482165 (* 1 = 0.482165 loss) +I0407 22:36:04.243746 23658 sgd_solver.cpp:105] Iteration 4428, lr = 0.00107873 +I0407 22:36:09.691860 23658 solver.cpp:218] Iteration 4440 (2.20266 iter/s, 5.44796s/12 iters), loss = 0.422821 +I0407 22:36:09.691917 23658 solver.cpp:237] Train net output #0: loss = 0.422821 (* 1 = 0.422821 loss) +I0407 22:36:09.691931 23658 sgd_solver.cpp:105] Iteration 4440, lr = 0.00107224 +I0407 22:36:14.162056 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:15.207532 23658 solver.cpp:218] Iteration 4452 (2.1757 iter/s, 5.51546s/12 iters), loss = 0.4029 +I0407 22:36:15.207577 23658 solver.cpp:237] Train net output #0: loss = 0.4029 (* 1 = 0.4029 loss) +I0407 22:36:15.207588 23658 sgd_solver.cpp:105] Iteration 4452, lr = 0.00106579 +I0407 22:36:20.455044 23658 solver.cpp:218] Iteration 4464 (2.28689 iter/s, 5.24731s/12 iters), loss = 0.424219 +I0407 22:36:20.455179 23658 solver.cpp:237] Train net output #0: loss = 0.424219 (* 1 = 0.424219 loss) +I0407 22:36:20.455191 23658 sgd_solver.cpp:105] Iteration 4464, lr = 0.00105937 +I0407 22:36:25.512013 23658 solver.cpp:218] Iteration 4476 (2.3731 iter/s, 5.05668s/12 iters), loss = 0.378003 +I0407 22:36:25.512066 23658 solver.cpp:237] Train net output #0: loss = 0.378003 (* 1 = 0.378003 loss) +I0407 22:36:25.512079 23658 sgd_solver.cpp:105] Iteration 4476, lr = 0.001053 +I0407 22:36:30.028048 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 22:36:35.392657 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 22:36:39.054323 23658 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 22:36:39.054349 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:36:41.899628 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:43.673177 23658 solver.cpp:397] Test net output #0: accuracy = 0.427696 +I0407 22:36:43.673226 23658 solver.cpp:397] Test net output #1: loss = 2.85058 (* 1 = 2.85058 loss) +I0407 22:36:43.763094 23658 solver.cpp:218] Iteration 4488 (0.657516 iter/s, 18.2505s/12 iters), loss = 0.428872 +I0407 22:36:43.763145 23658 solver.cpp:237] Train net output #0: loss = 0.428872 (* 1 = 0.428872 loss) +I0407 22:36:43.763156 23658 sgd_solver.cpp:105] Iteration 4488, lr = 0.00104666 +I0407 22:36:48.365494 23658 solver.cpp:218] Iteration 4500 (2.60744 iter/s, 4.60221s/12 iters), loss = 0.357409 +I0407 22:36:48.365540 23658 solver.cpp:237] Train net output #0: loss = 0.357409 (* 1 = 0.357409 loss) +I0407 22:36:48.365551 23658 sgd_solver.cpp:105] Iteration 4500, lr = 0.00104037 +I0407 22:36:53.727511 23658 solver.cpp:218] Iteration 4512 (2.23805 iter/s, 5.36181s/12 iters), loss = 0.472927 +I0407 22:36:53.727593 23658 solver.cpp:237] Train net output #0: loss = 0.472927 (* 1 = 0.472927 loss) +I0407 22:36:53.727605 23658 sgd_solver.cpp:105] Iteration 4512, lr = 0.00103411 +I0407 22:36:58.804021 23658 solver.cpp:218] Iteration 4524 (2.36394 iter/s, 5.07628s/12 iters), loss = 0.331355 +I0407 22:36:58.804071 23658 solver.cpp:237] Train net output #0: loss = 0.331355 (* 1 = 0.331355 loss) +I0407 22:36:58.804081 23658 sgd_solver.cpp:105] Iteration 4524, lr = 0.00102789 +I0407 22:37:04.202272 23658 solver.cpp:218] Iteration 4536 (2.22303 iter/s, 5.39803s/12 iters), loss = 0.492545 +I0407 22:37:04.202328 23658 solver.cpp:237] Train net output #0: loss = 0.492545 (* 1 = 0.492545 loss) +I0407 22:37:04.202342 23658 sgd_solver.cpp:105] Iteration 4536, lr = 0.0010217 +I0407 22:37:09.535827 23658 solver.cpp:218] Iteration 4548 (2.25 iter/s, 5.33334s/12 iters), loss = 0.373843 +I0407 22:37:09.535879 23658 solver.cpp:237] Train net output #0: loss = 0.373843 (* 1 = 0.373843 loss) +I0407 22:37:09.535890 23658 sgd_solver.cpp:105] Iteration 4548, lr = 0.00101555 +I0407 22:37:10.813951 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:14.544878 23658 solver.cpp:218] Iteration 4560 (2.39576 iter/s, 5.00885s/12 iters), loss = 0.263424 +I0407 22:37:14.544915 23658 solver.cpp:237] Train net output #0: loss = 0.263424 (* 1 = 0.263424 loss) +I0407 22:37:14.544924 23658 sgd_solver.cpp:105] Iteration 4560, lr = 0.00100944 +I0407 22:37:19.556798 23658 solver.cpp:218] Iteration 4572 (2.39438 iter/s, 5.01173s/12 iters), loss = 0.269 +I0407 22:37:19.556847 23658 solver.cpp:237] Train net output #0: loss = 0.269 (* 1 = 0.269 loss) +I0407 22:37:19.556859 23658 sgd_solver.cpp:105] Iteration 4572, lr = 0.00100337 +I0407 22:37:24.660380 23658 solver.cpp:218] Iteration 4584 (2.35138 iter/s, 5.10338s/12 iters), loss = 0.259278 +I0407 22:37:24.660512 23658 solver.cpp:237] Train net output #0: loss = 0.259278 (* 1 = 0.259278 loss) +I0407 22:37:24.660521 23658 sgd_solver.cpp:105] Iteration 4584, lr = 0.000997334 +I0407 22:37:26.735352 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 22:37:31.601213 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 22:37:33.892510 23658 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 22:37:33.892534 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:37:36.536810 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:38.374548 23658 solver.cpp:397] Test net output #0: accuracy = 0.442402 +I0407 22:37:38.374588 23658 solver.cpp:397] Test net output #1: loss = 2.79271 (* 1 = 2.79271 loss) +I0407 22:37:40.386569 23658 solver.cpp:218] Iteration 4596 (0.763087 iter/s, 15.7256s/12 iters), loss = 0.454347 +I0407 22:37:40.386621 23658 solver.cpp:237] Train net output #0: loss = 0.454347 (* 1 = 0.454347 loss) +I0407 22:37:40.386632 23658 sgd_solver.cpp:105] Iteration 4596, lr = 0.000991333 +I0407 22:37:45.523067 23658 solver.cpp:218] Iteration 4608 (2.33632 iter/s, 5.13629s/12 iters), loss = 0.285565 +I0407 22:37:45.523115 23658 solver.cpp:237] Train net output #0: loss = 0.285565 (* 1 = 0.285565 loss) +I0407 22:37:45.523128 23658 sgd_solver.cpp:105] Iteration 4608, lr = 0.000985369 +I0407 22:37:50.978689 23658 solver.cpp:218] Iteration 4620 (2.19965 iter/s, 5.4554s/12 iters), loss = 0.331494 +I0407 22:37:50.978741 23658 solver.cpp:237] Train net output #0: loss = 0.331494 (* 1 = 0.331494 loss) +I0407 22:37:50.978754 23658 sgd_solver.cpp:105] Iteration 4620, lr = 0.00097944 +I0407 22:37:56.060544 23658 solver.cpp:218] Iteration 4632 (2.36144 iter/s, 5.08165s/12 iters), loss = 0.346593 +I0407 22:37:56.060685 23658 solver.cpp:237] Train net output #0: loss = 0.346593 (* 1 = 0.346593 loss) +I0407 22:37:56.060695 23658 sgd_solver.cpp:105] Iteration 4632, lr = 0.000973547 +I0407 22:38:01.067050 23658 solver.cpp:218] Iteration 4644 (2.39702 iter/s, 5.00621s/12 iters), loss = 0.270603 +I0407 22:38:01.067095 23658 solver.cpp:237] Train net output #0: loss = 0.270603 (* 1 = 0.270603 loss) +I0407 22:38:01.067104 23658 sgd_solver.cpp:105] Iteration 4644, lr = 0.00096769 +I0407 22:38:04.543627 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:06.148249 23658 solver.cpp:218] Iteration 4656 (2.36174 iter/s, 5.081s/12 iters), loss = 0.303603 +I0407 22:38:06.148293 23658 solver.cpp:237] Train net output #0: loss = 0.303603 (* 1 = 0.303603 loss) +I0407 22:38:06.148301 23658 sgd_solver.cpp:105] Iteration 4656, lr = 0.000961868 +I0407 22:38:11.087777 23658 solver.cpp:218] Iteration 4668 (2.42947 iter/s, 4.93934s/12 iters), loss = 0.321612 +I0407 22:38:11.087811 23658 solver.cpp:237] Train net output #0: loss = 0.321612 (* 1 = 0.321612 loss) +I0407 22:38:11.087819 23658 sgd_solver.cpp:105] Iteration 4668, lr = 0.000956081 +I0407 22:38:16.155599 23658 solver.cpp:218] Iteration 4680 (2.36797 iter/s, 5.06763s/12 iters), loss = 0.383198 +I0407 22:38:16.155654 23658 solver.cpp:237] Train net output #0: loss = 0.383198 (* 1 = 0.383198 loss) +I0407 22:38:16.155665 23658 sgd_solver.cpp:105] Iteration 4680, lr = 0.000950328 +I0407 22:38:20.794570 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 22:38:24.238317 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 22:38:26.532279 23658 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 22:38:26.532356 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:38:29.086401 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:30.943329 23658 solver.cpp:397] Test net output #0: accuracy = 0.414828 +I0407 22:38:30.943370 23658 solver.cpp:397] Test net output #1: loss = 2.93357 (* 1 = 2.93357 loss) +I0407 22:38:31.031733 23658 solver.cpp:218] Iteration 4692 (0.806687 iter/s, 14.8757s/12 iters), loss = 0.299609 +I0407 22:38:31.031790 23658 solver.cpp:237] Train net output #0: loss = 0.299609 (* 1 = 0.299609 loss) +I0407 22:38:31.031803 23658 sgd_solver.cpp:105] Iteration 4692, lr = 0.000944611 +I0407 22:38:35.714795 23658 solver.cpp:218] Iteration 4704 (2.56253 iter/s, 4.68286s/12 iters), loss = 0.452487 +I0407 22:38:35.714838 23658 solver.cpp:237] Train net output #0: loss = 0.452487 (* 1 = 0.452487 loss) +I0407 22:38:35.714848 23658 sgd_solver.cpp:105] Iteration 4704, lr = 0.000938927 +I0407 22:38:40.818501 23658 solver.cpp:218] Iteration 4716 (2.35133 iter/s, 5.1035s/12 iters), loss = 0.189177 +I0407 22:38:40.818557 23658 solver.cpp:237] Train net output #0: loss = 0.189177 (* 1 = 0.189177 loss) +I0407 22:38:40.818569 23658 sgd_solver.cpp:105] Iteration 4716, lr = 0.000933278 +I0407 22:38:45.910877 23658 solver.cpp:218] Iteration 4728 (2.35656 iter/s, 5.09217s/12 iters), loss = 0.242785 +I0407 22:38:45.910918 23658 solver.cpp:237] Train net output #0: loss = 0.242785 (* 1 = 0.242785 loss) +I0407 22:38:45.910928 23658 sgd_solver.cpp:105] Iteration 4728, lr = 0.000927663 +I0407 22:38:50.884999 23658 solver.cpp:218] Iteration 4740 (2.41258 iter/s, 4.97393s/12 iters), loss = 0.424864 +I0407 22:38:50.885036 23658 solver.cpp:237] Train net output #0: loss = 0.424864 (* 1 = 0.424864 loss) +I0407 22:38:50.885044 23658 sgd_solver.cpp:105] Iteration 4740, lr = 0.000922082 +I0407 22:38:55.902343 23658 solver.cpp:218] Iteration 4752 (2.39179 iter/s, 5.01715s/12 iters), loss = 0.306852 +I0407 22:38:55.902386 23658 solver.cpp:237] Train net output #0: loss = 0.306852 (* 1 = 0.306852 loss) +I0407 22:38:55.902395 23658 sgd_solver.cpp:105] Iteration 4752, lr = 0.000916534 +I0407 22:38:56.432286 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:00.951529 23658 solver.cpp:218] Iteration 4764 (2.37671 iter/s, 5.04899s/12 iters), loss = 0.166773 +I0407 22:39:00.951684 23658 solver.cpp:237] Train net output #0: loss = 0.166773 (* 1 = 0.166773 loss) +I0407 22:39:00.951699 23658 sgd_solver.cpp:105] Iteration 4764, lr = 0.00091102 +I0407 22:39:05.919925 23658 solver.cpp:218] Iteration 4776 (2.41541 iter/s, 4.9681s/12 iters), loss = 0.351015 +I0407 22:39:05.919961 23658 solver.cpp:237] Train net output #0: loss = 0.351015 (* 1 = 0.351015 loss) +I0407 22:39:05.919970 23658 sgd_solver.cpp:105] Iteration 4776, lr = 0.000905539 +I0407 22:39:10.909673 23658 solver.cpp:218] Iteration 4788 (2.40502 iter/s, 4.98956s/12 iters), loss = 0.302413 +I0407 22:39:10.909724 23658 solver.cpp:237] Train net output #0: loss = 0.302413 (* 1 = 0.302413 loss) +I0407 22:39:10.909735 23658 sgd_solver.cpp:105] Iteration 4788, lr = 0.00090009 +I0407 22:39:12.908574 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 22:39:17.728950 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 22:39:20.282302 23658 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 22:39:20.282326 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:39:22.896729 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:24.945480 23658 solver.cpp:397] Test net output #0: accuracy = 0.4375 +I0407 22:39:24.945539 23658 solver.cpp:397] Test net output #1: loss = 2.82992 (* 1 = 2.82992 loss) +I0407 22:39:26.849089 23658 solver.cpp:218] Iteration 4800 (0.752875 iter/s, 15.9389s/12 iters), loss = 0.242088 +I0407 22:39:26.849150 23658 solver.cpp:237] Train net output #0: loss = 0.242088 (* 1 = 0.242088 loss) +I0407 22:39:26.849162 23658 sgd_solver.cpp:105] Iteration 4800, lr = 0.000894675 +I0407 22:39:31.928020 23658 solver.cpp:218] Iteration 4812 (2.3628 iter/s, 5.07872s/12 iters), loss = 0.367405 +I0407 22:39:31.928109 23658 solver.cpp:237] Train net output #0: loss = 0.367405 (* 1 = 0.367405 loss) +I0407 22:39:31.928118 23658 sgd_solver.cpp:105] Iteration 4812, lr = 0.000889292 +I0407 22:39:36.951612 23658 solver.cpp:218] Iteration 4824 (2.38884 iter/s, 5.02335s/12 iters), loss = 0.446036 +I0407 22:39:36.951661 23658 solver.cpp:237] Train net output #0: loss = 0.446036 (* 1 = 0.446036 loss) +I0407 22:39:36.951673 23658 sgd_solver.cpp:105] Iteration 4824, lr = 0.000883942 +I0407 22:39:42.028242 23658 solver.cpp:218] Iteration 4836 (2.36387 iter/s, 5.07643s/12 iters), loss = 0.276827 +I0407 22:39:42.028295 23658 solver.cpp:237] Train net output #0: loss = 0.276827 (* 1 = 0.276827 loss) +I0407 22:39:42.028307 23658 sgd_solver.cpp:105] Iteration 4836, lr = 0.000878624 +I0407 22:39:44.087556 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:39:47.131705 23658 solver.cpp:218] Iteration 4848 (2.35144 iter/s, 5.10326s/12 iters), loss = 0.257661 +I0407 22:39:47.131758 23658 solver.cpp:237] Train net output #0: loss = 0.257661 (* 1 = 0.257661 loss) +I0407 22:39:47.131770 23658 sgd_solver.cpp:105] Iteration 4848, lr = 0.000873337 +I0407 22:39:49.945928 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:52.504880 23658 solver.cpp:218] Iteration 4860 (2.23341 iter/s, 5.37294s/12 iters), loss = 0.265841 +I0407 22:39:52.504935 23658 solver.cpp:237] Train net output #0: loss = 0.265841 (* 1 = 0.265841 loss) +I0407 22:39:52.504948 23658 sgd_solver.cpp:105] Iteration 4860, lr = 0.000868083 +I0407 22:39:57.914659 23658 solver.cpp:218] Iteration 4872 (2.21829 iter/s, 5.40957s/12 iters), loss = 0.305404 +I0407 22:39:57.914705 23658 solver.cpp:237] Train net output #0: loss = 0.305404 (* 1 = 0.305404 loss) +I0407 22:39:57.914717 23658 sgd_solver.cpp:105] Iteration 4872, lr = 0.00086286 +I0407 22:40:02.905511 23658 solver.cpp:218] Iteration 4884 (2.40449 iter/s, 4.99066s/12 iters), loss = 0.365549 +I0407 22:40:02.905645 23658 solver.cpp:237] Train net output #0: loss = 0.365549 (* 1 = 0.365549 loss) +I0407 22:40:02.905658 23658 sgd_solver.cpp:105] Iteration 4884, lr = 0.000857669 +I0407 22:40:07.380452 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 22:40:10.374425 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 22:40:12.694830 23658 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 22:40:12.694857 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:40:15.106031 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:17.078802 23658 solver.cpp:397] Test net output #0: accuracy = 0.447304 +I0407 22:40:17.078846 23658 solver.cpp:397] Test net output #1: loss = 2.79971 (* 1 = 2.79971 loss) +I0407 22:40:17.169173 23658 solver.cpp:218] Iteration 4896 (0.841331 iter/s, 14.2631s/12 iters), loss = 0.380151 +I0407 22:40:17.169229 23658 solver.cpp:237] Train net output #0: loss = 0.380151 (* 1 = 0.380151 loss) +I0407 22:40:17.169241 23658 sgd_solver.cpp:105] Iteration 4896, lr = 0.000852508 +I0407 22:40:21.407991 23658 solver.cpp:218] Iteration 4908 (2.8311 iter/s, 4.23863s/12 iters), loss = 0.21897 +I0407 22:40:21.408041 23658 solver.cpp:237] Train net output #0: loss = 0.21897 (* 1 = 0.21897 loss) +I0407 22:40:21.408052 23658 sgd_solver.cpp:105] Iteration 4908, lr = 0.000847379 +I0407 22:40:26.466325 23658 solver.cpp:218] Iteration 4920 (2.37242 iter/s, 5.05814s/12 iters), loss = 0.411734 +I0407 22:40:26.466364 23658 solver.cpp:237] Train net output #0: loss = 0.411734 (* 1 = 0.411734 loss) +I0407 22:40:26.466373 23658 sgd_solver.cpp:105] Iteration 4920, lr = 0.000842281 +I0407 22:40:31.781360 23658 solver.cpp:218] Iteration 4932 (2.25783 iter/s, 5.31483s/12 iters), loss = 0.187095 +I0407 22:40:31.781409 23658 solver.cpp:237] Train net output #0: loss = 0.187095 (* 1 = 0.187095 loss) +I0407 22:40:31.781419 23658 sgd_solver.cpp:105] Iteration 4932, lr = 0.000837213 +I0407 22:40:37.296279 23658 solver.cpp:218] Iteration 4944 (2.176 iter/s, 5.5147s/12 iters), loss = 0.182339 +I0407 22:40:37.296396 23658 solver.cpp:237] Train net output #0: loss = 0.182339 (* 1 = 0.182339 loss) +I0407 22:40:37.296406 23658 sgd_solver.cpp:105] Iteration 4944, lr = 0.000832176 +I0407 22:40:42.559383 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:42.773602 23658 solver.cpp:218] Iteration 4956 (2.19096 iter/s, 5.47704s/12 iters), loss = 0.293428 +I0407 22:40:42.773646 23658 solver.cpp:237] Train net output #0: loss = 0.293428 (* 1 = 0.293428 loss) +I0407 22:40:42.773656 23658 sgd_solver.cpp:105] Iteration 4956, lr = 0.000827169 +I0407 22:40:48.276533 23658 solver.cpp:218] Iteration 4968 (2.18074 iter/s, 5.50272s/12 iters), loss = 0.292365 +I0407 22:40:48.276580 23658 solver.cpp:237] Train net output #0: loss = 0.292365 (* 1 = 0.292365 loss) +I0407 22:40:48.276588 23658 sgd_solver.cpp:105] Iteration 4968, lr = 0.000822193 +I0407 22:40:53.247265 23658 solver.cpp:218] Iteration 4980 (2.41421 iter/s, 4.97058s/12 iters), loss = 0.301567 +I0407 22:40:53.247301 23658 solver.cpp:237] Train net output #0: loss = 0.301567 (* 1 = 0.301567 loss) +I0407 22:40:53.247310 23658 sgd_solver.cpp:105] Iteration 4980, lr = 0.000817246 +I0407 22:40:58.255373 23658 solver.cpp:218] Iteration 4992 (2.39619 iter/s, 5.00796s/12 iters), loss = 0.28762 +I0407 22:40:58.255420 23658 solver.cpp:237] Train net output #0: loss = 0.28762 (* 1 = 0.28762 loss) +I0407 22:40:58.255432 23658 sgd_solver.cpp:105] Iteration 4992, lr = 0.000812329 +I0407 22:41:00.333714 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 22:41:06.421864 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 22:41:08.803550 23658 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 22:41:08.803647 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:41:11.313899 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:13.321270 23658 solver.cpp:397] Test net output #0: accuracy = 0.44424 +I0407 22:41:13.321328 23658 solver.cpp:397] Test net output #1: loss = 2.85055 (* 1 = 2.85055 loss) +I0407 22:41:15.305155 23658 solver.cpp:218] Iteration 5004 (0.703837 iter/s, 17.0494s/12 iters), loss = 0.192464 +I0407 22:41:15.305193 23658 solver.cpp:237] Train net output #0: loss = 0.192464 (* 1 = 0.192464 loss) +I0407 22:41:15.305202 23658 sgd_solver.cpp:105] Iteration 5004, lr = 0.000807442 +I0407 22:41:20.793009 23658 solver.cpp:218] Iteration 5016 (2.18671 iter/s, 5.4877s/12 iters), loss = 0.320128 +I0407 22:41:20.793053 23658 solver.cpp:237] Train net output #0: loss = 0.320128 (* 1 = 0.320128 loss) +I0407 22:41:20.793063 23658 sgd_solver.cpp:105] Iteration 5016, lr = 0.000802584 +I0407 22:41:26.018764 23658 solver.cpp:218] Iteration 5028 (2.29639 iter/s, 5.2256s/12 iters), loss = 0.240269 +I0407 22:41:26.018800 23658 solver.cpp:237] Train net output #0: loss = 0.240269 (* 1 = 0.240269 loss) +I0407 22:41:26.018808 23658 sgd_solver.cpp:105] Iteration 5028, lr = 0.000797755 +I0407 22:41:31.166968 23658 solver.cpp:218] Iteration 5040 (2.33097 iter/s, 5.14806s/12 iters), loss = 0.253748 +I0407 22:41:31.167006 23658 solver.cpp:237] Train net output #0: loss = 0.253748 (* 1 = 0.253748 loss) +I0407 22:41:31.167013 23658 sgd_solver.cpp:105] Iteration 5040, lr = 0.000792955 +I0407 22:41:36.484494 23658 solver.cpp:218] Iteration 5052 (2.25675 iter/s, 5.31737s/12 iters), loss = 0.44678 +I0407 22:41:36.484546 23658 solver.cpp:237] Train net output #0: loss = 0.44678 (* 1 = 0.44678 loss) +I0407 22:41:36.484557 23658 sgd_solver.cpp:105] Iteration 5052, lr = 0.000788184 +I0407 22:41:38.448698 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:41.580106 23658 solver.cpp:218] Iteration 5064 (2.35505 iter/s, 5.09544s/12 iters), loss = 0.298712 +I0407 22:41:41.580229 23658 solver.cpp:237] Train net output #0: loss = 0.298712 (* 1 = 0.298712 loss) +I0407 22:41:41.580241 23658 sgd_solver.cpp:105] Iteration 5064, lr = 0.000783442 +I0407 22:41:46.678710 23658 solver.cpp:218] Iteration 5076 (2.35369 iter/s, 5.09837s/12 iters), loss = 0.275158 +I0407 22:41:46.678761 23658 solver.cpp:237] Train net output #0: loss = 0.275158 (* 1 = 0.275158 loss) +I0407 22:41:46.678769 23658 sgd_solver.cpp:105] Iteration 5076, lr = 0.000778729 +I0407 22:41:51.690019 23658 solver.cpp:218] Iteration 5088 (2.39466 iter/s, 5.01114s/12 iters), loss = 0.238343 +I0407 22:41:51.690078 23658 solver.cpp:237] Train net output #0: loss = 0.238343 (* 1 = 0.238343 loss) +I0407 22:41:51.690089 23658 sgd_solver.cpp:105] Iteration 5088, lr = 0.000774043 +I0407 22:41:56.309063 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 22:41:59.332015 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 22:42:02.260311 23658 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 22:42:02.260336 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:42:04.727643 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:06.780551 23658 solver.cpp:397] Test net output #0: accuracy = 0.45527 +I0407 22:42:06.780589 23658 solver.cpp:397] Test net output #1: loss = 2.80846 (* 1 = 2.80846 loss) +I0407 22:42:06.871902 23658 solver.cpp:218] Iteration 5100 (0.790435 iter/s, 15.1815s/12 iters), loss = 0.233456 +I0407 22:42:06.871945 23658 solver.cpp:237] Train net output #0: loss = 0.233456 (* 1 = 0.233456 loss) +I0407 22:42:06.871954 23658 sgd_solver.cpp:105] Iteration 5100, lr = 0.000769386 +I0407 22:42:11.559782 23658 solver.cpp:218] Iteration 5112 (2.55988 iter/s, 4.68773s/12 iters), loss = 0.241637 +I0407 22:42:11.559829 23658 solver.cpp:237] Train net output #0: loss = 0.241637 (* 1 = 0.241637 loss) +I0407 22:42:11.559840 23658 sgd_solver.cpp:105] Iteration 5112, lr = 0.000764757 +I0407 22:42:16.524116 23658 solver.cpp:218] Iteration 5124 (2.41732 iter/s, 4.96418s/12 iters), loss = 0.290617 +I0407 22:42:16.524247 23658 solver.cpp:237] Train net output #0: loss = 0.290617 (* 1 = 0.290617 loss) +I0407 22:42:16.524257 23658 sgd_solver.cpp:105] Iteration 5124, lr = 0.000760156 +I0407 22:42:21.577255 23658 solver.cpp:218] Iteration 5136 (2.37488 iter/s, 5.05289s/12 iters), loss = 0.302569 +I0407 22:42:21.577327 23658 solver.cpp:237] Train net output #0: loss = 0.302569 (* 1 = 0.302569 loss) +I0407 22:42:21.577344 23658 sgd_solver.cpp:105] Iteration 5136, lr = 0.000755583 +I0407 22:42:26.686076 23658 solver.cpp:218] Iteration 5148 (2.34896 iter/s, 5.10864s/12 iters), loss = 0.274944 +I0407 22:42:26.686125 23658 solver.cpp:237] Train net output #0: loss = 0.274944 (* 1 = 0.274944 loss) +I0407 22:42:26.686134 23658 sgd_solver.cpp:105] Iteration 5148, lr = 0.000751037 +I0407 22:42:30.809767 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:31.745239 23658 solver.cpp:218] Iteration 5160 (2.37201 iter/s, 5.059s/12 iters), loss = 0.347141 +I0407 22:42:31.745290 23658 solver.cpp:237] Train net output #0: loss = 0.347141 (* 1 = 0.347141 loss) +I0407 22:42:31.745301 23658 sgd_solver.cpp:105] Iteration 5160, lr = 0.000746518 +I0407 22:42:36.773475 23658 solver.cpp:218] Iteration 5172 (2.3866 iter/s, 5.02807s/12 iters), loss = 0.276413 +I0407 22:42:36.773526 23658 solver.cpp:237] Train net output #0: loss = 0.276413 (* 1 = 0.276413 loss) +I0407 22:42:36.773537 23658 sgd_solver.cpp:105] Iteration 5172, lr = 0.000742026 +I0407 22:42:41.827001 23658 solver.cpp:218] Iteration 5184 (2.37466 iter/s, 5.05337s/12 iters), loss = 0.207325 +I0407 22:42:41.827037 23658 solver.cpp:237] Train net output #0: loss = 0.207325 (* 1 = 0.207325 loss) +I0407 22:42:41.827045 23658 sgd_solver.cpp:105] Iteration 5184, lr = 0.000737562 +I0407 22:42:47.071915 23658 solver.cpp:218] Iteration 5196 (2.288 iter/s, 5.24476s/12 iters), loss = 0.327488 +I0407 22:42:47.071980 23658 solver.cpp:237] Train net output #0: loss = 0.327488 (* 1 = 0.327488 loss) +I0407 22:42:47.071988 23658 sgd_solver.cpp:105] Iteration 5196, lr = 0.000733124 +I0407 22:42:49.239662 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 22:42:53.224855 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 22:42:57.604454 23658 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 22:42:57.604482 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:42:59.926640 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:02.030046 23658 solver.cpp:397] Test net output #0: accuracy = 0.457108 +I0407 22:43:02.030107 23658 solver.cpp:397] Test net output #1: loss = 2.82088 (* 1 = 2.82088 loss) +I0407 22:43:04.026002 23658 solver.cpp:218] Iteration 5208 (0.707811 iter/s, 16.9537s/12 iters), loss = 0.236805 +I0407 22:43:04.026058 23658 solver.cpp:237] Train net output #0: loss = 0.236805 (* 1 = 0.236805 loss) +I0407 22:43:04.026072 23658 sgd_solver.cpp:105] Iteration 5208, lr = 0.000728714 +I0407 22:43:09.262470 23658 solver.cpp:218] Iteration 5220 (2.2917 iter/s, 5.23629s/12 iters), loss = 0.137685 +I0407 22:43:09.262518 23658 solver.cpp:237] Train net output #0: loss = 0.137685 (* 1 = 0.137685 loss) +I0407 22:43:09.262528 23658 sgd_solver.cpp:105] Iteration 5220, lr = 0.000724329 +I0407 22:43:14.300503 23658 solver.cpp:218] Iteration 5232 (2.38196 iter/s, 5.03786s/12 iters), loss = 0.287232 +I0407 22:43:14.300557 23658 solver.cpp:237] Train net output #0: loss = 0.287232 (* 1 = 0.287232 loss) +I0407 22:43:14.300570 23658 sgd_solver.cpp:105] Iteration 5232, lr = 0.000719971 +I0407 22:43:19.321316 23658 solver.cpp:218] Iteration 5244 (2.39013 iter/s, 5.02064s/12 iters), loss = 0.26275 +I0407 22:43:19.326078 23658 solver.cpp:237] Train net output #0: loss = 0.26275 (* 1 = 0.26275 loss) +I0407 22:43:19.326094 23658 sgd_solver.cpp:105] Iteration 5244, lr = 0.00071564 +I0407 22:43:24.385284 23658 solver.cpp:218] Iteration 5256 (2.37196 iter/s, 5.0591s/12 iters), loss = 0.149091 +I0407 22:43:24.385326 23658 solver.cpp:237] Train net output #0: loss = 0.149091 (* 1 = 0.149091 loss) +I0407 22:43:24.385337 23658 sgd_solver.cpp:105] Iteration 5256, lr = 0.000711334 +I0407 22:43:25.691946 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:29.371491 23658 solver.cpp:218] Iteration 5268 (2.40672 iter/s, 4.98605s/12 iters), loss = 0.245643 +I0407 22:43:29.371541 23658 solver.cpp:237] Train net output #0: loss = 0.245643 (* 1 = 0.245643 loss) +I0407 22:43:29.371551 23658 sgd_solver.cpp:105] Iteration 5268, lr = 0.000707054 +I0407 22:43:34.456437 23658 solver.cpp:218] Iteration 5280 (2.35998 iter/s, 5.08478s/12 iters), loss = 0.141819 +I0407 22:43:34.456486 23658 solver.cpp:237] Train net output #0: loss = 0.141819 (* 1 = 0.141819 loss) +I0407 22:43:34.456498 23658 sgd_solver.cpp:105] Iteration 5280, lr = 0.0007028 +I0407 22:43:39.647720 23658 solver.cpp:218] Iteration 5292 (2.31164 iter/s, 5.19111s/12 iters), loss = 0.282649 +I0407 22:43:39.647780 23658 solver.cpp:237] Train net output #0: loss = 0.282649 (* 1 = 0.282649 loss) +I0407 22:43:39.647794 23658 sgd_solver.cpp:105] Iteration 5292, lr = 0.000698572 +I0407 22:43:44.640650 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 22:43:47.630509 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 22:43:51.710681 23658 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 22:43:51.710764 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:43:54.027323 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:56.127189 23658 solver.cpp:397] Test net output #0: accuracy = 0.462623 +I0407 22:43:56.127224 23658 solver.cpp:397] Test net output #1: loss = 2.8589 (* 1 = 2.8589 loss) +I0407 22:43:56.216949 23658 solver.cpp:218] Iteration 5304 (0.724252 iter/s, 16.5688s/12 iters), loss = 0.269012 +I0407 22:43:56.217010 23658 solver.cpp:237] Train net output #0: loss = 0.269012 (* 1 = 0.269012 loss) +I0407 22:43:56.217021 23658 sgd_solver.cpp:105] Iteration 5304, lr = 0.000694369 +I0407 22:44:00.597326 23658 solver.cpp:218] Iteration 5316 (2.73959 iter/s, 4.38021s/12 iters), loss = 0.247563 +I0407 22:44:00.597378 23658 solver.cpp:237] Train net output #0: loss = 0.247563 (* 1 = 0.247563 loss) +I0407 22:44:00.597390 23658 sgd_solver.cpp:105] Iteration 5316, lr = 0.000690191 +I0407 22:44:05.562294 23658 solver.cpp:218] Iteration 5328 (2.41702 iter/s, 4.9648s/12 iters), loss = 0.258182 +I0407 22:44:05.562347 23658 solver.cpp:237] Train net output #0: loss = 0.258182 (* 1 = 0.258182 loss) +I0407 22:44:05.562359 23658 sgd_solver.cpp:105] Iteration 5328, lr = 0.000686039 +I0407 22:44:10.527662 23658 solver.cpp:218] Iteration 5340 (2.41682 iter/s, 4.9652s/12 iters), loss = 0.258953 +I0407 22:44:10.527706 23658 solver.cpp:237] Train net output #0: loss = 0.258953 (* 1 = 0.258953 loss) +I0407 22:44:10.527716 23658 sgd_solver.cpp:105] Iteration 5340, lr = 0.000681911 +I0407 22:44:15.595139 23658 solver.cpp:218] Iteration 5352 (2.36812 iter/s, 5.06732s/12 iters), loss = 0.102175 +I0407 22:44:15.595180 23658 solver.cpp:237] Train net output #0: loss = 0.102175 (* 1 = 0.102175 loss) +I0407 22:44:15.595188 23658 sgd_solver.cpp:105] Iteration 5352, lr = 0.000677808 +I0407 22:44:19.011919 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:20.593376 23658 solver.cpp:218] Iteration 5364 (2.40092 iter/s, 4.99808s/12 iters), loss = 0.184955 +I0407 22:44:20.593425 23658 solver.cpp:237] Train net output #0: loss = 0.184955 (* 1 = 0.184955 loss) +I0407 22:44:20.593436 23658 sgd_solver.cpp:105] Iteration 5364, lr = 0.00067373 +I0407 22:44:25.614413 23658 solver.cpp:218] Iteration 5376 (2.39002 iter/s, 5.02087s/12 iters), loss = 0.241906 +I0407 22:44:25.614560 23658 solver.cpp:237] Train net output #0: loss = 0.241906 (* 1 = 0.241906 loss) +I0407 22:44:25.614574 23658 sgd_solver.cpp:105] Iteration 5376, lr = 0.000669677 +I0407 22:44:30.558761 23658 solver.cpp:218] Iteration 5388 (2.42714 iter/s, 4.94409s/12 iters), loss = 0.22331 +I0407 22:44:30.558809 23658 solver.cpp:237] Train net output #0: loss = 0.22331 (* 1 = 0.22331 loss) +I0407 22:44:30.558820 23658 sgd_solver.cpp:105] Iteration 5388, lr = 0.000665648 +I0407 22:44:35.447010 23658 solver.cpp:218] Iteration 5400 (2.45495 iter/s, 4.88807s/12 iters), loss = 0.274406 +I0407 22:44:35.447073 23658 solver.cpp:237] Train net output #0: loss = 0.274406 (* 1 = 0.274406 loss) +I0407 22:44:35.447088 23658 sgd_solver.cpp:105] Iteration 5400, lr = 0.000661643 +I0407 22:44:37.460047 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 22:44:42.600806 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 22:44:46.240329 23658 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 22:44:46.240355 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:44:48.612088 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:50.755702 23658 solver.cpp:397] Test net output #0: accuracy = 0.454657 +I0407 22:44:50.755744 23658 solver.cpp:397] Test net output #1: loss = 2.83763 (* 1 = 2.83763 loss) +I0407 22:44:52.588553 23658 solver.cpp:218] Iteration 5412 (0.700072 iter/s, 17.1411s/12 iters), loss = 0.239368 +I0407 22:44:52.588600 23658 solver.cpp:237] Train net output #0: loss = 0.239368 (* 1 = 0.239368 loss) +I0407 22:44:52.588608 23658 sgd_solver.cpp:105] Iteration 5412, lr = 0.000657662 +I0407 22:44:57.985549 23658 solver.cpp:218] Iteration 5424 (2.22353 iter/s, 5.39682s/12 iters), loss = 0.28074 +I0407 22:44:57.985689 23658 solver.cpp:237] Train net output #0: loss = 0.28074 (* 1 = 0.28074 loss) +I0407 22:44:57.985702 23658 sgd_solver.cpp:105] Iteration 5424, lr = 0.000653705 +I0407 22:45:03.473733 23658 solver.cpp:218] Iteration 5436 (2.18662 iter/s, 5.48792s/12 iters), loss = 0.243391 +I0407 22:45:03.473788 23658 solver.cpp:237] Train net output #0: loss = 0.243391 (* 1 = 0.243391 loss) +I0407 22:45:03.473800 23658 sgd_solver.cpp:105] Iteration 5436, lr = 0.000649772 +I0407 22:45:08.839787 23658 solver.cpp:218] Iteration 5448 (2.23636 iter/s, 5.36587s/12 iters), loss = 0.168493 +I0407 22:45:08.839830 23658 solver.cpp:237] Train net output #0: loss = 0.168493 (* 1 = 0.168493 loss) +I0407 22:45:08.839841 23658 sgd_solver.cpp:105] Iteration 5448, lr = 0.000645863 +I0407 22:45:13.899132 23658 solver.cpp:218] Iteration 5460 (2.37193 iter/s, 5.05918s/12 iters), loss = 0.331645 +I0407 22:45:13.899180 23658 solver.cpp:237] Train net output #0: loss = 0.331645 (* 1 = 0.331645 loss) +I0407 22:45:13.899191 23658 sgd_solver.cpp:105] Iteration 5460, lr = 0.000641977 +I0407 22:45:14.482702 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:18.914413 23658 solver.cpp:218] Iteration 5472 (2.39277 iter/s, 5.01511s/12 iters), loss = 0.131346 +I0407 22:45:18.914467 23658 solver.cpp:237] Train net output #0: loss = 0.131346 (* 1 = 0.131346 loss) +I0407 22:45:18.914480 23658 sgd_solver.cpp:105] Iteration 5472, lr = 0.000638114 +I0407 22:45:23.999537 23658 solver.cpp:218] Iteration 5484 (2.35991 iter/s, 5.08495s/12 iters), loss = 0.233256 +I0407 22:45:23.999596 23658 solver.cpp:237] Train net output #0: loss = 0.233256 (* 1 = 0.233256 loss) +I0407 22:45:23.999608 23658 sgd_solver.cpp:105] Iteration 5484, lr = 0.000634275 +I0407 22:45:28.990649 23658 solver.cpp:218] Iteration 5496 (2.40436 iter/s, 4.99093s/12 iters), loss = 0.278678 +I0407 22:45:28.991412 23658 solver.cpp:237] Train net output #0: loss = 0.278678 (* 1 = 0.278678 loss) +I0407 22:45:28.991427 23658 sgd_solver.cpp:105] Iteration 5496, lr = 0.000630459 +I0407 22:45:33.624861 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 22:45:39.996842 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 22:45:48.455921 23658 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 22:45:48.455947 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:45:50.680488 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:52.896551 23658 solver.cpp:397] Test net output #0: accuracy = 0.464461 +I0407 22:45:52.896598 23658 solver.cpp:397] Test net output #1: loss = 2.85654 (* 1 = 2.85654 loss) +I0407 22:45:52.984787 23658 solver.cpp:218] Iteration 5508 (0.500149 iter/s, 23.9928s/12 iters), loss = 0.229737 +I0407 22:45:52.984841 23658 solver.cpp:237] Train net output #0: loss = 0.229737 (* 1 = 0.229737 loss) +I0407 22:45:52.984853 23658 sgd_solver.cpp:105] Iteration 5508, lr = 0.000626666 +I0407 22:45:57.548825 23658 solver.cpp:218] Iteration 5520 (2.62935 iter/s, 4.56386s/12 iters), loss = 0.124731 +I0407 22:45:57.548877 23658 solver.cpp:237] Train net output #0: loss = 0.124731 (* 1 = 0.124731 loss) +I0407 22:45:57.548887 23658 sgd_solver.cpp:105] Iteration 5520, lr = 0.000622895 +I0407 22:46:00.175102 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:46:02.754909 23658 solver.cpp:218] Iteration 5532 (2.30508 iter/s, 5.2059s/12 iters), loss = 0.227452 +I0407 22:46:02.754962 23658 solver.cpp:237] Train net output #0: loss = 0.227452 (* 1 = 0.227452 loss) +I0407 22:46:02.754974 23658 sgd_solver.cpp:105] Iteration 5532, lr = 0.000619148 +I0407 22:46:07.780815 23658 solver.cpp:218] Iteration 5544 (2.38771 iter/s, 5.02573s/12 iters), loss = 0.135937 +I0407 22:46:07.780858 23658 solver.cpp:237] Train net output #0: loss = 0.135937 (* 1 = 0.135937 loss) +I0407 22:46:07.780869 23658 sgd_solver.cpp:105] Iteration 5544, lr = 0.000615423 +I0407 22:46:12.861415 23658 solver.cpp:218] Iteration 5556 (2.362 iter/s, 5.08043s/12 iters), loss = 0.196917 +I0407 22:46:12.861459 23658 solver.cpp:237] Train net output #0: loss = 0.196917 (* 1 = 0.196917 loss) +I0407 22:46:12.861466 23658 sgd_solver.cpp:105] Iteration 5556, lr = 0.00061172 +I0407 22:46:15.566936 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:17.841627 23658 solver.cpp:218] Iteration 5568 (2.40962 iter/s, 4.98004s/12 iters), loss = 0.12634 +I0407 22:46:17.841676 23658 solver.cpp:237] Train net output #0: loss = 0.12634 (* 1 = 0.12634 loss) +I0407 22:46:17.841686 23658 sgd_solver.cpp:105] Iteration 5568, lr = 0.000608039 +I0407 22:46:22.786825 23658 solver.cpp:218] Iteration 5580 (2.42668 iter/s, 4.94503s/12 iters), loss = 0.272837 +I0407 22:46:22.786864 23658 solver.cpp:237] Train net output #0: loss = 0.272837 (* 1 = 0.272837 loss) +I0407 22:46:22.786872 23658 sgd_solver.cpp:105] Iteration 5580, lr = 0.000604381 +I0407 22:46:27.984082 23658 solver.cpp:218] Iteration 5592 (2.30899 iter/s, 5.19709s/12 iters), loss = 0.227827 +I0407 22:46:27.984127 23658 solver.cpp:237] Train net output #0: loss = 0.227827 (* 1 = 0.227827 loss) +I0407 22:46:27.984136 23658 sgd_solver.cpp:105] Iteration 5592, lr = 0.000600745 +I0407 22:46:33.203874 23658 solver.cpp:218] Iteration 5604 (2.29902 iter/s, 5.21962s/12 iters), loss = 0.260015 +I0407 22:46:33.205432 23658 solver.cpp:237] Train net output #0: loss = 0.260015 (* 1 = 0.260015 loss) +I0407 22:46:33.205441 23658 sgd_solver.cpp:105] Iteration 5604, lr = 0.000597131 +I0407 22:46:35.409943 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 22:46:43.852805 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 22:46:50.428211 23658 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 22:46:50.428238 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:46:52.679517 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:54.889487 23658 solver.cpp:397] Test net output #0: accuracy = 0.463848 +I0407 22:46:54.889525 23658 solver.cpp:397] Test net output #1: loss = 2.82352 (* 1 = 2.82352 loss) +I0407 22:46:56.831243 23658 solver.cpp:218] Iteration 5616 (0.507931 iter/s, 23.6253s/12 iters), loss = 0.236887 +I0407 22:46:56.831284 23658 solver.cpp:237] Train net output #0: loss = 0.236887 (* 1 = 0.236887 loss) +I0407 22:46:56.831295 23658 sgd_solver.cpp:105] Iteration 5616, lr = 0.000593538 +I0407 22:47:01.938655 23658 solver.cpp:218] Iteration 5628 (2.3496 iter/s, 5.10724s/12 iters), loss = 0.10937 +I0407 22:47:01.938709 23658 solver.cpp:237] Train net output #0: loss = 0.10937 (* 1 = 0.10937 loss) +I0407 22:47:01.938721 23658 sgd_solver.cpp:105] Iteration 5628, lr = 0.000589967 +I0407 22:47:07.030802 23658 solver.cpp:218] Iteration 5640 (2.35665 iter/s, 5.09197s/12 iters), loss = 0.183273 +I0407 22:47:07.033156 23658 solver.cpp:237] Train net output #0: loss = 0.183273 (* 1 = 0.183273 loss) +I0407 22:47:07.033169 23658 sgd_solver.cpp:105] Iteration 5640, lr = 0.000586417 +I0407 22:47:12.369890 23658 solver.cpp:218] Iteration 5652 (2.24862 iter/s, 5.33661s/12 iters), loss = 0.230319 +I0407 22:47:12.369936 23658 solver.cpp:237] Train net output #0: loss = 0.230319 (* 1 = 0.230319 loss) +I0407 22:47:12.369947 23658 sgd_solver.cpp:105] Iteration 5652, lr = 0.000582889 +I0407 22:47:17.283643 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:17.458901 23658 solver.cpp:218] Iteration 5664 (2.3581 iter/s, 5.08884s/12 iters), loss = 0.125466 +I0407 22:47:17.458946 23658 solver.cpp:237] Train net output #0: loss = 0.125466 (* 1 = 0.125466 loss) +I0407 22:47:17.458958 23658 sgd_solver.cpp:105] Iteration 5664, lr = 0.000579382 +I0407 22:47:22.611167 23658 solver.cpp:218] Iteration 5676 (2.32915 iter/s, 5.15209s/12 iters), loss = 0.0776306 +I0407 22:47:22.611222 23658 solver.cpp:237] Train net output #0: loss = 0.0776306 (* 1 = 0.0776306 loss) +I0407 22:47:22.611234 23658 sgd_solver.cpp:105] Iteration 5676, lr = 0.000575896 +I0407 22:47:27.651955 23658 solver.cpp:218] Iteration 5688 (2.38067 iter/s, 5.04061s/12 iters), loss = 0.149579 +I0407 22:47:27.652005 23658 solver.cpp:237] Train net output #0: loss = 0.149579 (* 1 = 0.149579 loss) +I0407 22:47:27.652017 23658 sgd_solver.cpp:105] Iteration 5688, lr = 0.000572431 +I0407 22:47:32.609920 23658 solver.cpp:218] Iteration 5700 (2.42043 iter/s, 4.95779s/12 iters), loss = 0.216524 +I0407 22:47:32.609975 23658 solver.cpp:237] Train net output #0: loss = 0.216524 (* 1 = 0.216524 loss) +I0407 22:47:32.609987 23658 sgd_solver.cpp:105] Iteration 5700, lr = 0.000568987 +I0407 22:47:37.379639 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 22:47:42.406903 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 22:47:46.473488 23658 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 22:47:46.473515 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:47:48.683017 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:50.928994 23658 solver.cpp:397] Test net output #0: accuracy = 0.467524 +I0407 22:47:50.929042 23658 solver.cpp:397] Test net output #1: loss = 2.82519 (* 1 = 2.82519 loss) +I0407 22:47:51.017302 23658 solver.cpp:218] Iteration 5712 (0.65193 iter/s, 18.4069s/12 iters), loss = 0.239691 +I0407 22:47:51.017359 23658 solver.cpp:237] Train net output #0: loss = 0.239691 (* 1 = 0.239691 loss) +I0407 22:47:51.017371 23658 sgd_solver.cpp:105] Iteration 5712, lr = 0.000565564 +I0407 22:47:55.423511 23658 solver.cpp:218] Iteration 5724 (2.72354 iter/s, 4.40604s/12 iters), loss = 0.115356 +I0407 22:47:55.423549 23658 solver.cpp:237] Train net output #0: loss = 0.115356 (* 1 = 0.115356 loss) +I0407 22:47:55.423558 23658 sgd_solver.cpp:105] Iteration 5724, lr = 0.000562161 +I0407 22:48:00.547721 23658 solver.cpp:218] Iteration 5736 (2.3419 iter/s, 5.12404s/12 iters), loss = 0.252541 +I0407 22:48:00.547765 23658 solver.cpp:237] Train net output #0: loss = 0.252541 (* 1 = 0.252541 loss) +I0407 22:48:00.547775 23658 sgd_solver.cpp:105] Iteration 5736, lr = 0.000558779 +I0407 22:48:05.752431 23658 solver.cpp:218] Iteration 5748 (2.30568 iter/s, 5.20453s/12 iters), loss = 0.173083 +I0407 22:48:05.752482 23658 solver.cpp:237] Train net output #0: loss = 0.173083 (* 1 = 0.173083 loss) +I0407 22:48:05.752492 23658 sgd_solver.cpp:105] Iteration 5748, lr = 0.000555417 +I0407 22:48:10.773434 23658 solver.cpp:218] Iteration 5760 (2.39004 iter/s, 5.02083s/12 iters), loss = 0.163008 +I0407 22:48:10.773528 23658 solver.cpp:237] Train net output #0: loss = 0.163008 (* 1 = 0.163008 loss) +I0407 22:48:10.773538 23658 sgd_solver.cpp:105] Iteration 5760, lr = 0.000552075 +I0407 22:48:12.788720 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:15.811466 23658 solver.cpp:218] Iteration 5772 (2.38199 iter/s, 5.03781s/12 iters), loss = 0.144025 +I0407 22:48:15.811518 23658 solver.cpp:237] Train net output #0: loss = 0.144025 (* 1 = 0.144025 loss) +I0407 22:48:15.811532 23658 sgd_solver.cpp:105] Iteration 5772, lr = 0.000548754 +I0407 22:48:20.903669 23658 solver.cpp:218] Iteration 5784 (2.35663 iter/s, 5.09202s/12 iters), loss = 0.109654 +I0407 22:48:20.903724 23658 solver.cpp:237] Train net output #0: loss = 0.109654 (* 1 = 0.109654 loss) +I0407 22:48:20.903736 23658 sgd_solver.cpp:105] Iteration 5784, lr = 0.000545452 +I0407 22:48:25.940420 23658 solver.cpp:218] Iteration 5796 (2.38257 iter/s, 5.03657s/12 iters), loss = 0.135694 +I0407 22:48:25.940466 23658 solver.cpp:237] Train net output #0: loss = 0.135694 (* 1 = 0.135694 loss) +I0407 22:48:25.940475 23658 sgd_solver.cpp:105] Iteration 5796, lr = 0.000542171 +I0407 22:48:31.011667 23658 solver.cpp:218] Iteration 5808 (2.36636 iter/s, 5.07107s/12 iters), loss = 0.260098 +I0407 22:48:31.011704 23658 solver.cpp:237] Train net output #0: loss = 0.260098 (* 1 = 0.260098 loss) +I0407 22:48:31.011713 23658 sgd_solver.cpp:105] Iteration 5808, lr = 0.000538909 +I0407 22:48:33.066530 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 22:48:37.476292 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 22:48:43.252740 23658 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 22:48:43.252799 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:48:45.426223 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:47.818207 23658 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 22:48:47.818255 23658 solver.cpp:397] Test net output #1: loss = 2.82589 (* 1 = 2.82589 loss) +I0407 22:48:49.800307 23658 solver.cpp:218] Iteration 5820 (0.6387 iter/s, 18.7882s/12 iters), loss = 0.180145 +I0407 22:48:49.800359 23658 solver.cpp:237] Train net output #0: loss = 0.180145 (* 1 = 0.180145 loss) +I0407 22:48:49.800369 23658 sgd_solver.cpp:105] Iteration 5820, lr = 0.000535666 +I0407 22:48:55.186270 23658 solver.cpp:218] Iteration 5832 (2.22809 iter/s, 5.38577s/12 iters), loss = 0.139782 +I0407 22:48:55.186316 23658 solver.cpp:237] Train net output #0: loss = 0.139782 (* 1 = 0.139782 loss) +I0407 22:48:55.186324 23658 sgd_solver.cpp:105] Iteration 5832, lr = 0.000532443 +I0407 22:49:00.238931 23658 solver.cpp:218] Iteration 5844 (2.37507 iter/s, 5.05248s/12 iters), loss = 0.148065 +I0407 22:49:00.238981 23658 solver.cpp:237] Train net output #0: loss = 0.148065 (* 1 = 0.148065 loss) +I0407 22:49:00.238991 23658 sgd_solver.cpp:105] Iteration 5844, lr = 0.00052924 +I0407 22:49:05.197379 23658 solver.cpp:218] Iteration 5856 (2.4202 iter/s, 4.95827s/12 iters), loss = 0.13525 +I0407 22:49:05.197428 23658 solver.cpp:237] Train net output #0: loss = 0.13525 (* 1 = 0.13525 loss) +I0407 22:49:05.197440 23658 sgd_solver.cpp:105] Iteration 5856, lr = 0.000526056 +I0407 22:49:09.358745 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:10.179901 23658 solver.cpp:218] Iteration 5868 (2.4085 iter/s, 4.98235s/12 iters), loss = 0.202327 +I0407 22:49:10.179939 23658 solver.cpp:237] Train net output #0: loss = 0.202327 (* 1 = 0.202327 loss) +I0407 22:49:10.179946 23658 sgd_solver.cpp:105] Iteration 5868, lr = 0.000522891 +I0407 22:49:15.382401 23658 solver.cpp:218] Iteration 5880 (2.30666 iter/s, 5.20232s/12 iters), loss = 0.161201 +I0407 22:49:15.382555 23658 solver.cpp:237] Train net output #0: loss = 0.161201 (* 1 = 0.161201 loss) +I0407 22:49:15.382568 23658 sgd_solver.cpp:105] Iteration 5880, lr = 0.000519745 +I0407 22:49:20.465617 23658 solver.cpp:218] Iteration 5892 (2.36084 iter/s, 5.08293s/12 iters), loss = 0.0944153 +I0407 22:49:20.465664 23658 solver.cpp:237] Train net output #0: loss = 0.0944153 (* 1 = 0.0944153 loss) +I0407 22:49:20.465673 23658 sgd_solver.cpp:105] Iteration 5892, lr = 0.000516618 +I0407 22:49:25.458277 23658 solver.cpp:218] Iteration 5904 (2.40361 iter/s, 4.99248s/12 iters), loss = 0.193957 +I0407 22:49:25.458336 23658 solver.cpp:237] Train net output #0: loss = 0.193957 (* 1 = 0.193957 loss) +I0407 22:49:25.458348 23658 sgd_solver.cpp:105] Iteration 5904, lr = 0.000513509 +I0407 22:49:29.998762 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 22:49:43.204836 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 22:49:45.654322 23658 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 22:49:45.654379 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:49:47.776165 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:50.103958 23658 solver.cpp:397] Test net output #0: accuracy = 0.469976 +I0407 22:49:50.104007 23658 solver.cpp:397] Test net output #1: loss = 2.92417 (* 1 = 2.92417 loss) +I0407 22:49:50.194134 23658 solver.cpp:218] Iteration 5916 (0.485139 iter/s, 24.7352s/12 iters), loss = 0.148163 +I0407 22:49:50.194198 23658 solver.cpp:237] Train net output #0: loss = 0.148163 (* 1 = 0.148163 loss) +I0407 22:49:50.194211 23658 sgd_solver.cpp:105] Iteration 5916, lr = 0.00051042 +I0407 22:49:54.391207 23658 solver.cpp:218] Iteration 5928 (2.85926 iter/s, 4.1969s/12 iters), loss = 0.181704 +I0407 22:49:54.391258 23658 solver.cpp:237] Train net output #0: loss = 0.181704 (* 1 = 0.181704 loss) +I0407 22:49:54.391273 23658 sgd_solver.cpp:105] Iteration 5928, lr = 0.000507349 +I0407 22:49:59.331038 23658 solver.cpp:218] Iteration 5940 (2.42932 iter/s, 4.93965s/12 iters), loss = 0.16875 +I0407 22:49:59.331089 23658 solver.cpp:237] Train net output #0: loss = 0.16875 (* 1 = 0.16875 loss) +I0407 22:49:59.331101 23658 sgd_solver.cpp:105] Iteration 5940, lr = 0.000504296 +I0407 22:50:04.565052 23658 solver.cpp:218] Iteration 5952 (2.29278 iter/s, 5.23383s/12 iters), loss = 0.117238 +I0407 22:50:04.565100 23658 solver.cpp:237] Train net output #0: loss = 0.117238 (* 1 = 0.117238 loss) +I0407 22:50:04.565112 23658 sgd_solver.cpp:105] Iteration 5952, lr = 0.000501262 +I0407 22:50:09.963673 23658 solver.cpp:218] Iteration 5964 (2.22287 iter/s, 5.39843s/12 iters), loss = 0.103714 +I0407 22:50:09.963739 23658 solver.cpp:237] Train net output #0: loss = 0.103714 (* 1 = 0.103714 loss) +I0407 22:50:09.963755 23658 sgd_solver.cpp:105] Iteration 5964, lr = 0.000498246 +I0407 22:50:11.280565 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:15.036267 23658 solver.cpp:218] Iteration 5976 (2.36574 iter/s, 5.0724s/12 iters), loss = 0.118248 +I0407 22:50:15.036321 23658 solver.cpp:237] Train net output #0: loss = 0.118248 (* 1 = 0.118248 loss) +I0407 22:50:15.036334 23658 sgd_solver.cpp:105] Iteration 5976, lr = 0.000495249 +I0407 22:50:20.068478 23658 solver.cpp:218] Iteration 5988 (2.38472 iter/s, 5.03203s/12 iters), loss = 0.231606 +I0407 22:50:20.068598 23658 solver.cpp:237] Train net output #0: loss = 0.231606 (* 1 = 0.231606 loss) +I0407 22:50:20.068612 23658 sgd_solver.cpp:105] Iteration 5988, lr = 0.000492269 +I0407 22:50:25.324697 23658 solver.cpp:218] Iteration 6000 (2.28312 iter/s, 5.25596s/12 iters), loss = 0.190104 +I0407 22:50:25.324739 23658 solver.cpp:237] Train net output #0: loss = 0.190104 (* 1 = 0.190104 loss) +I0407 22:50:25.324750 23658 sgd_solver.cpp:105] Iteration 6000, lr = 0.000489307 +I0407 22:50:30.809828 23658 solver.cpp:218] Iteration 6012 (2.18781 iter/s, 5.48494s/12 iters), loss = 0.202393 +I0407 22:50:30.809885 23658 solver.cpp:237] Train net output #0: loss = 0.202393 (* 1 = 0.202393 loss) +I0407 22:50:30.809897 23658 sgd_solver.cpp:105] Iteration 6012, lr = 0.000486363 +I0407 22:50:33.025585 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 22:50:37.349707 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 22:50:39.864594 23658 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 22:50:39.864622 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:50:41.946364 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:44.318621 23658 solver.cpp:397] Test net output #0: accuracy = 0.46875 +I0407 22:50:44.318670 23658 solver.cpp:397] Test net output #1: loss = 2.91645 (* 1 = 2.91645 loss) +I0407 22:50:46.233080 23658 solver.cpp:218] Iteration 6024 (0.778068 iter/s, 15.4228s/12 iters), loss = 0.232355 +I0407 22:50:46.233117 23658 solver.cpp:237] Train net output #0: loss = 0.232355 (* 1 = 0.232355 loss) +I0407 22:50:46.233126 23658 sgd_solver.cpp:105] Iteration 6024, lr = 0.000483437 +I0407 22:50:51.241343 23658 solver.cpp:218] Iteration 6036 (2.39612 iter/s, 5.00809s/12 iters), loss = 0.118573 +I0407 22:50:51.241428 23658 solver.cpp:237] Train net output #0: loss = 0.118573 (* 1 = 0.118573 loss) +I0407 22:50:51.241442 23658 sgd_solver.cpp:105] Iteration 6036, lr = 0.000480529 +I0407 22:50:56.259533 23658 solver.cpp:218] Iteration 6048 (2.3914 iter/s, 5.01797s/12 iters), loss = 0.305105 +I0407 22:50:56.259585 23658 solver.cpp:237] Train net output #0: loss = 0.305105 (* 1 = 0.305105 loss) +I0407 22:50:56.259598 23658 sgd_solver.cpp:105] Iteration 6048, lr = 0.000477637 +I0407 22:51:01.342455 23658 solver.cpp:218] Iteration 6060 (2.36093 iter/s, 5.08274s/12 iters), loss = 0.260453 +I0407 22:51:01.342502 23658 solver.cpp:237] Train net output #0: loss = 0.260453 (* 1 = 0.260453 loss) +I0407 22:51:01.342512 23658 sgd_solver.cpp:105] Iteration 6060, lr = 0.000474764 +I0407 22:51:04.913633 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:06.608927 23658 solver.cpp:218] Iteration 6072 (2.27864 iter/s, 5.26629s/12 iters), loss = 0.168777 +I0407 22:51:06.608973 23658 solver.cpp:237] Train net output #0: loss = 0.168777 (* 1 = 0.168777 loss) +I0407 22:51:06.608983 23658 sgd_solver.cpp:105] Iteration 6072, lr = 0.000471907 +I0407 22:51:12.117947 23658 solver.cpp:218] Iteration 6084 (2.17832 iter/s, 5.50883s/12 iters), loss = 0.150543 +I0407 22:51:12.118013 23658 solver.cpp:237] Train net output #0: loss = 0.150543 (* 1 = 0.150543 loss) +I0407 22:51:12.118023 23658 sgd_solver.cpp:105] Iteration 6084, lr = 0.000469068 +I0407 22:51:17.413862 23658 solver.cpp:218] Iteration 6096 (2.26599 iter/s, 5.29571s/12 iters), loss = 0.140573 +I0407 22:51:17.413903 23658 solver.cpp:237] Train net output #0: loss = 0.140573 (* 1 = 0.140573 loss) +I0407 22:51:17.413913 23658 sgd_solver.cpp:105] Iteration 6096, lr = 0.000466246 +I0407 22:51:22.803470 23658 solver.cpp:218] Iteration 6108 (2.22658 iter/s, 5.38943s/12 iters), loss = 0.147364 +I0407 22:51:22.803598 23658 solver.cpp:237] Train net output #0: loss = 0.147364 (* 1 = 0.147364 loss) +I0407 22:51:22.803608 23658 sgd_solver.cpp:105] Iteration 6108, lr = 0.000463441 +I0407 22:51:27.726651 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 22:51:32.073107 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 22:51:34.390409 23658 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 22:51:34.390432 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:51:36.435153 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:38.838932 23658 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0407 22:51:38.838974 23658 solver.cpp:397] Test net output #1: loss = 2.90857 (* 1 = 2.90857 loss) +I0407 22:51:38.928575 23658 solver.cpp:218] Iteration 6120 (0.744205 iter/s, 16.1246s/12 iters), loss = 0.116583 +I0407 22:51:38.928622 23658 solver.cpp:237] Train net output #0: loss = 0.116583 (* 1 = 0.116583 loss) +I0407 22:51:38.928633 23658 sgd_solver.cpp:105] Iteration 6120, lr = 0.000460652 +I0407 22:51:43.425611 23658 solver.cpp:218] Iteration 6132 (2.66852 iter/s, 4.49687s/12 iters), loss = 0.164433 +I0407 22:51:43.425654 23658 solver.cpp:237] Train net output #0: loss = 0.164433 (* 1 = 0.164433 loss) +I0407 22:51:43.425666 23658 sgd_solver.cpp:105] Iteration 6132, lr = 0.000457881 +I0407 22:51:48.766088 23658 solver.cpp:218] Iteration 6144 (2.24707 iter/s, 5.34029s/12 iters), loss = 0.164568 +I0407 22:51:48.766134 23658 solver.cpp:237] Train net output #0: loss = 0.164568 (* 1 = 0.164568 loss) +I0407 22:51:48.766146 23658 sgd_solver.cpp:105] Iteration 6144, lr = 0.000455126 +I0407 22:51:54.271432 23658 solver.cpp:218] Iteration 6156 (2.17978 iter/s, 5.50515s/12 iters), loss = 0.136408 +I0407 22:51:54.271534 23658 solver.cpp:237] Train net output #0: loss = 0.136408 (* 1 = 0.136408 loss) +I0407 22:51:54.271545 23658 sgd_solver.cpp:105] Iteration 6156, lr = 0.000452388 +I0407 22:51:59.485309 23658 solver.cpp:218] Iteration 6168 (2.30166 iter/s, 5.21363s/12 iters), loss = 0.151472 +I0407 22:51:59.485365 23658 solver.cpp:237] Train net output #0: loss = 0.151472 (* 1 = 0.151472 loss) +I0407 22:51:59.485378 23658 sgd_solver.cpp:105] Iteration 6168, lr = 0.000449666 +I0407 22:52:00.066196 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:04.544394 23658 solver.cpp:218] Iteration 6180 (2.37206 iter/s, 5.05889s/12 iters), loss = 0.0772352 +I0407 22:52:04.544452 23658 solver.cpp:237] Train net output #0: loss = 0.0772352 (* 1 = 0.0772352 loss) +I0407 22:52:04.544464 23658 sgd_solver.cpp:105] Iteration 6180, lr = 0.000446961 +I0407 22:52:09.759500 23658 solver.cpp:218] Iteration 6192 (2.3011 iter/s, 5.21491s/12 iters), loss = 0.127883 +I0407 22:52:09.759552 23658 solver.cpp:237] Train net output #0: loss = 0.127883 (* 1 = 0.127883 loss) +I0407 22:52:09.759562 23658 sgd_solver.cpp:105] Iteration 6192, lr = 0.000444271 +I0407 22:52:14.834566 23658 solver.cpp:218] Iteration 6204 (2.36459 iter/s, 5.07488s/12 iters), loss = 0.156161 +I0407 22:52:14.834612 23658 solver.cpp:237] Train net output #0: loss = 0.156161 (* 1 = 0.156161 loss) +I0407 22:52:14.834622 23658 sgd_solver.cpp:105] Iteration 6204, lr = 0.000441598 +I0407 22:52:19.891002 23658 solver.cpp:218] Iteration 6216 (2.3733 iter/s, 5.05625s/12 iters), loss = 0.0709236 +I0407 22:52:19.891057 23658 solver.cpp:237] Train net output #0: loss = 0.0709236 (* 1 = 0.0709236 loss) +I0407 22:52:19.891068 23658 sgd_solver.cpp:105] Iteration 6216, lr = 0.000438941 +I0407 22:52:21.973939 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 22:52:25.108553 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 22:52:27.433667 23658 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 22:52:27.433693 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:52:29.461642 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:30.737794 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:52:31.912230 23658 solver.cpp:397] Test net output #0: accuracy = 0.469976 +I0407 22:52:31.912276 23658 solver.cpp:397] Test net output #1: loss = 2.93547 (* 1 = 2.93547 loss) +I0407 22:52:33.896035 23658 solver.cpp:218] Iteration 6228 (0.85686 iter/s, 14.0046s/12 iters), loss = 0.105902 +I0407 22:52:33.896082 23658 solver.cpp:237] Train net output #0: loss = 0.105902 (* 1 = 0.105902 loss) +I0407 22:52:33.896095 23658 sgd_solver.cpp:105] Iteration 6228, lr = 0.000436301 +I0407 22:52:38.832087 23658 solver.cpp:218] Iteration 6240 (2.43118 iter/s, 4.93587s/12 iters), loss = 0.168541 +I0407 22:52:38.832134 23658 solver.cpp:237] Train net output #0: loss = 0.168541 (* 1 = 0.168541 loss) +I0407 22:52:38.832145 23658 sgd_solver.cpp:105] Iteration 6240, lr = 0.000433676 +I0407 22:52:43.874765 23658 solver.cpp:218] Iteration 6252 (2.37977 iter/s, 5.0425s/12 iters), loss = 0.143938 +I0407 22:52:43.874811 23658 solver.cpp:237] Train net output #0: loss = 0.143938 (* 1 = 0.143938 loss) +I0407 22:52:43.874822 23658 sgd_solver.cpp:105] Iteration 6252, lr = 0.000431066 +I0407 22:52:48.901515 23658 solver.cpp:218] Iteration 6264 (2.38731 iter/s, 5.02657s/12 iters), loss = 0.0733281 +I0407 22:52:48.901561 23658 solver.cpp:237] Train net output #0: loss = 0.0733281 (* 1 = 0.0733281 loss) +I0407 22:52:48.901572 23658 sgd_solver.cpp:105] Iteration 6264, lr = 0.000428473 +I0407 22:52:51.680802 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:53.947953 23658 solver.cpp:218] Iteration 6276 (2.378 iter/s, 5.04625s/12 iters), loss = 0.229044 +I0407 22:52:53.948004 23658 solver.cpp:237] Train net output #0: loss = 0.229044 (* 1 = 0.229044 loss) +I0407 22:52:53.948015 23658 sgd_solver.cpp:105] Iteration 6276, lr = 0.000425895 +I0407 22:52:58.974638 23658 solver.cpp:218] Iteration 6288 (2.38735 iter/s, 5.0265s/12 iters), loss = 0.139464 +I0407 22:52:58.974754 23658 solver.cpp:237] Train net output #0: loss = 0.139464 (* 1 = 0.139464 loss) +I0407 22:52:58.974766 23658 sgd_solver.cpp:105] Iteration 6288, lr = 0.000423333 +I0407 22:53:04.068778 23658 solver.cpp:218] Iteration 6300 (2.35576 iter/s, 5.09389s/12 iters), loss = 0.0997628 +I0407 22:53:04.068837 23658 solver.cpp:237] Train net output #0: loss = 0.0997628 (* 1 = 0.0997628 loss) +I0407 22:53:04.068850 23658 sgd_solver.cpp:105] Iteration 6300, lr = 0.000420786 +I0407 22:53:09.365583 23658 solver.cpp:218] Iteration 6312 (2.2656 iter/s, 5.2966s/12 iters), loss = 0.222729 +I0407 22:53:09.365643 23658 solver.cpp:237] Train net output #0: loss = 0.222729 (* 1 = 0.222729 loss) +I0407 22:53:09.365655 23658 sgd_solver.cpp:105] Iteration 6312, lr = 0.000418254 +I0407 22:53:14.006820 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 22:53:17.008460 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 22:53:19.335592 23658 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 22:53:19.335620 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:53:21.183696 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:23.666383 23658 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 22:53:23.666427 23658 solver.cpp:397] Test net output #1: loss = 2.91687 (* 1 = 2.91687 loss) +I0407 22:53:23.756353 23658 solver.cpp:218] Iteration 6324 (0.833892 iter/s, 14.3904s/12 iters), loss = 0.0756657 +I0407 22:53:23.756402 23658 solver.cpp:237] Train net output #0: loss = 0.0756657 (* 1 = 0.0756657 loss) +I0407 22:53:23.756412 23658 sgd_solver.cpp:105] Iteration 6324, lr = 0.000415737 +I0407 22:53:28.251780 23658 solver.cpp:218] Iteration 6336 (2.66948 iter/s, 4.49525s/12 iters), loss = 0.187569 +I0407 22:53:28.251828 23658 solver.cpp:237] Train net output #0: loss = 0.187569 (* 1 = 0.187569 loss) +I0407 22:53:28.251840 23658 sgd_solver.cpp:105] Iteration 6336, lr = 0.000413236 +I0407 22:53:33.340049 23658 solver.cpp:218] Iteration 6348 (2.35845 iter/s, 5.08808s/12 iters), loss = 0.201658 +I0407 22:53:33.340696 23658 solver.cpp:237] Train net output #0: loss = 0.201658 (* 1 = 0.201658 loss) +I0407 22:53:33.340709 23658 sgd_solver.cpp:105] Iteration 6348, lr = 0.00041075 +I0407 22:53:38.454289 23658 solver.cpp:218] Iteration 6360 (2.34675 iter/s, 5.11346s/12 iters), loss = 0.102891 +I0407 22:53:38.454340 23658 solver.cpp:237] Train net output #0: loss = 0.102891 (* 1 = 0.102891 loss) +I0407 22:53:38.454352 23658 sgd_solver.cpp:105] Iteration 6360, lr = 0.000408279 +I0407 22:53:43.403048 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:43.541630 23658 solver.cpp:218] Iteration 6372 (2.35888 iter/s, 5.08715s/12 iters), loss = 0.0900903 +I0407 22:53:43.541674 23658 solver.cpp:237] Train net output #0: loss = 0.0900903 (* 1 = 0.0900903 loss) +I0407 22:53:43.541685 23658 sgd_solver.cpp:105] Iteration 6372, lr = 0.000405822 +I0407 22:53:48.532577 23658 solver.cpp:218] Iteration 6384 (2.40444 iter/s, 4.99077s/12 iters), loss = 0.167363 +I0407 22:53:48.532627 23658 solver.cpp:237] Train net output #0: loss = 0.167363 (* 1 = 0.167363 loss) +I0407 22:53:48.532639 23658 sgd_solver.cpp:105] Iteration 6384, lr = 0.000403381 +I0407 22:53:53.818768 23658 solver.cpp:218] Iteration 6396 (2.27015 iter/s, 5.286s/12 iters), loss = 0.154022 +I0407 22:53:53.818825 23658 solver.cpp:237] Train net output #0: loss = 0.154022 (* 1 = 0.154022 loss) +I0407 22:53:53.818836 23658 sgd_solver.cpp:105] Iteration 6396, lr = 0.000400954 +I0407 22:53:58.888779 23658 solver.cpp:218] Iteration 6408 (2.36695 iter/s, 5.06982s/12 iters), loss = 0.175277 +I0407 22:53:58.888839 23658 solver.cpp:237] Train net output #0: loss = 0.175277 (* 1 = 0.175277 loss) +I0407 22:53:58.888852 23658 sgd_solver.cpp:105] Iteration 6408, lr = 0.000398541 +I0407 22:54:03.961639 23658 solver.cpp:218] Iteration 6420 (2.36562 iter/s, 5.07266s/12 iters), loss = 0.18549 +I0407 22:54:03.961763 23658 solver.cpp:237] Train net output #0: loss = 0.18549 (* 1 = 0.18549 loss) +I0407 22:54:03.961776 23658 sgd_solver.cpp:105] Iteration 6420, lr = 0.000396143 +I0407 22:54:05.966331 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 22:54:08.975930 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 22:54:11.370385 23658 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 22:54:11.370412 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:54:13.318766 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:15.849411 23658 solver.cpp:397] Test net output #0: accuracy = 0.458946 +I0407 22:54:15.849453 23658 solver.cpp:397] Test net output #1: loss = 2.94986 (* 1 = 2.94986 loss) +I0407 22:54:17.732954 23658 solver.cpp:218] Iteration 6432 (0.871406 iter/s, 13.7708s/12 iters), loss = 0.277526 +I0407 22:54:17.732995 23658 solver.cpp:237] Train net output #0: loss = 0.277526 (* 1 = 0.277526 loss) +I0407 22:54:17.733004 23658 sgd_solver.cpp:105] Iteration 6432, lr = 0.00039376 +I0407 22:54:22.724603 23658 solver.cpp:218] Iteration 6444 (2.4041 iter/s, 4.99147s/12 iters), loss = 0.134337 +I0407 22:54:22.724653 23658 solver.cpp:237] Train net output #0: loss = 0.134337 (* 1 = 0.134337 loss) +I0407 22:54:22.724663 23658 sgd_solver.cpp:105] Iteration 6444, lr = 0.000391391 +I0407 22:54:27.830104 23658 solver.cpp:218] Iteration 6456 (2.35049 iter/s, 5.10531s/12 iters), loss = 0.168408 +I0407 22:54:27.830160 23658 solver.cpp:237] Train net output #0: loss = 0.168408 (* 1 = 0.168408 loss) +I0407 22:54:27.830170 23658 sgd_solver.cpp:105] Iteration 6456, lr = 0.000389036 +I0407 22:54:32.889971 23658 solver.cpp:218] Iteration 6468 (2.3717 iter/s, 5.05966s/12 iters), loss = 0.19071 +I0407 22:54:32.890019 23658 solver.cpp:237] Train net output #0: loss = 0.19071 (* 1 = 0.19071 loss) +I0407 22:54:32.890044 23658 sgd_solver.cpp:105] Iteration 6468, lr = 0.000386695 +I0407 22:54:34.822772 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:37.799440 23658 solver.cpp:218] Iteration 6480 (2.44435 iter/s, 4.90929s/12 iters), loss = 0.179855 +I0407 22:54:37.799494 23658 solver.cpp:237] Train net output #0: loss = 0.179855 (* 1 = 0.179855 loss) +I0407 22:54:37.799505 23658 sgd_solver.cpp:105] Iteration 6480, lr = 0.000384369 +I0407 22:54:42.870666 23658 solver.cpp:218] Iteration 6492 (2.36638 iter/s, 5.07103s/12 iters), loss = 0.144678 +I0407 22:54:42.870718 23658 solver.cpp:237] Train net output #0: loss = 0.144678 (* 1 = 0.144678 loss) +I0407 22:54:42.870731 23658 sgd_solver.cpp:105] Iteration 6492, lr = 0.000382056 +I0407 22:54:48.251566 23658 solver.cpp:218] Iteration 6504 (2.23019 iter/s, 5.3807s/12 iters), loss = 0.0971562 +I0407 22:54:48.251616 23658 solver.cpp:237] Train net output #0: loss = 0.0971562 (* 1 = 0.0971562 loss) +I0407 22:54:48.251626 23658 sgd_solver.cpp:105] Iteration 6504, lr = 0.000379758 +I0407 22:54:53.304571 23658 solver.cpp:218] Iteration 6516 (2.37491 iter/s, 5.05282s/12 iters), loss = 0.181617 +I0407 22:54:53.304620 23658 solver.cpp:237] Train net output #0: loss = 0.181617 (* 1 = 0.181617 loss) +I0407 22:54:53.304630 23658 sgd_solver.cpp:105] Iteration 6516, lr = 0.000377473 +I0407 22:54:57.796066 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 22:55:00.829362 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 22:55:03.152021 23658 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 22:55:03.152050 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:55:05.039978 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:07.604879 23658 solver.cpp:397] Test net output #0: accuracy = 0.479167 +I0407 22:55:07.604921 23658 solver.cpp:397] Test net output #1: loss = 2.94633 (* 1 = 2.94633 loss) +I0407 22:55:07.694816 23658 solver.cpp:218] Iteration 6528 (0.833922 iter/s, 14.3898s/12 iters), loss = 0.1272 +I0407 22:55:07.694865 23658 solver.cpp:237] Train net output #0: loss = 0.1272 (* 1 = 0.1272 loss) +I0407 22:55:07.694876 23658 sgd_solver.cpp:105] Iteration 6528, lr = 0.000375202 +I0407 22:55:12.104833 23658 solver.cpp:218] Iteration 6540 (2.72119 iter/s, 4.40984s/12 iters), loss = 0.190708 +I0407 22:55:12.104890 23658 solver.cpp:237] Train net output #0: loss = 0.190708 (* 1 = 0.190708 loss) +I0407 22:55:12.104902 23658 sgd_solver.cpp:105] Iteration 6540, lr = 0.000372944 +I0407 22:55:17.217516 23658 solver.cpp:218] Iteration 6552 (2.34719 iter/s, 5.11249s/12 iters), loss = 0.105185 +I0407 22:55:17.217563 23658 solver.cpp:237] Train net output #0: loss = 0.105185 (* 1 = 0.105185 loss) +I0407 22:55:17.217576 23658 sgd_solver.cpp:105] Iteration 6552, lr = 0.000370701 +I0407 22:55:22.183614 23658 solver.cpp:218] Iteration 6564 (2.41647 iter/s, 4.96591s/12 iters), loss = 0.141539 +I0407 22:55:22.183670 23658 solver.cpp:237] Train net output #0: loss = 0.141539 (* 1 = 0.141539 loss) +I0407 22:55:22.183682 23658 sgd_solver.cpp:105] Iteration 6564, lr = 0.00036847 +I0407 22:55:26.621564 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:27.461864 23658 solver.cpp:218] Iteration 6576 (2.27357 iter/s, 5.27805s/12 iters), loss = 0.130467 +I0407 22:55:27.461923 23658 solver.cpp:237] Train net output #0: loss = 0.130467 (* 1 = 0.130467 loss) +I0407 22:55:27.461936 23658 sgd_solver.cpp:105] Iteration 6576, lr = 0.000366253 +I0407 22:55:32.890795 23658 solver.cpp:218] Iteration 6588 (2.21046 iter/s, 5.42872s/12 iters), loss = 0.193296 +I0407 22:55:32.890847 23658 solver.cpp:237] Train net output #0: loss = 0.193296 (* 1 = 0.193296 loss) +I0407 22:55:32.890858 23658 sgd_solver.cpp:105] Iteration 6588, lr = 0.00036405 +I0407 22:55:37.896981 23658 solver.cpp:218] Iteration 6600 (2.39713 iter/s, 5.00599s/12 iters), loss = 0.146028 +I0407 22:55:37.897150 23658 solver.cpp:237] Train net output #0: loss = 0.146028 (* 1 = 0.146028 loss) +I0407 22:55:37.897163 23658 sgd_solver.cpp:105] Iteration 6600, lr = 0.000361859 +I0407 22:55:42.957118 23658 solver.cpp:218] Iteration 6612 (2.37162 iter/s, 5.05983s/12 iters), loss = 0.111545 +I0407 22:55:42.957173 23658 solver.cpp:237] Train net output #0: loss = 0.111545 (* 1 = 0.111545 loss) +I0407 22:55:42.957185 23658 sgd_solver.cpp:105] Iteration 6612, lr = 0.000359682 +I0407 22:55:48.021888 23658 solver.cpp:218] Iteration 6624 (2.3694 iter/s, 5.06458s/12 iters), loss = 0.166012 +I0407 22:55:48.021930 23658 solver.cpp:237] Train net output #0: loss = 0.166012 (* 1 = 0.166012 loss) +I0407 22:55:48.021939 23658 sgd_solver.cpp:105] Iteration 6624, lr = 0.000357518 +I0407 22:55:50.123558 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 22:55:53.140337 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 22:55:55.446597 23658 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 22:55:55.446619 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:55:57.294013 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:59.944679 23658 solver.cpp:397] Test net output #0: accuracy = 0.47549 +I0407 22:55:59.944727 23658 solver.cpp:397] Test net output #1: loss = 2.93767 (* 1 = 2.93767 loss) +I0407 22:56:01.758285 23658 solver.cpp:218] Iteration 6636 (0.873617 iter/s, 13.736s/12 iters), loss = 0.0892733 +I0407 22:56:01.758345 23658 solver.cpp:237] Train net output #0: loss = 0.0892733 (* 1 = 0.0892733 loss) +I0407 22:56:01.758358 23658 sgd_solver.cpp:105] Iteration 6636, lr = 0.000355367 +I0407 22:56:06.707355 23658 solver.cpp:218] Iteration 6648 (2.42479 iter/s, 4.94888s/12 iters), loss = 0.0918662 +I0407 22:56:06.707401 23658 solver.cpp:237] Train net output #0: loss = 0.0918662 (* 1 = 0.0918662 loss) +I0407 22:56:06.707412 23658 sgd_solver.cpp:105] Iteration 6648, lr = 0.000353229 +I0407 22:56:11.648226 23658 solver.cpp:218] Iteration 6660 (2.42881 iter/s, 4.94069s/12 iters), loss = 0.135083 +I0407 22:56:11.648342 23658 solver.cpp:237] Train net output #0: loss = 0.135083 (* 1 = 0.135083 loss) +I0407 22:56:11.648355 23658 sgd_solver.cpp:105] Iteration 6660, lr = 0.000351104 +I0407 22:56:16.636440 23658 solver.cpp:218] Iteration 6672 (2.40579 iter/s, 4.98796s/12 iters), loss = 0.146716 +I0407 22:56:16.636503 23658 solver.cpp:237] Train net output #0: loss = 0.146716 (* 1 = 0.146716 loss) +I0407 22:56:16.636515 23658 sgd_solver.cpp:105] Iteration 6672, lr = 0.000348991 +I0407 22:56:17.997088 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:21.629021 23658 solver.cpp:218] Iteration 6684 (2.40367 iter/s, 4.99237s/12 iters), loss = 0.164745 +I0407 22:56:21.629070 23658 solver.cpp:237] Train net output #0: loss = 0.164745 (* 1 = 0.164745 loss) +I0407 22:56:21.629081 23658 sgd_solver.cpp:105] Iteration 6684, lr = 0.000346892 +I0407 22:56:26.550963 23658 solver.cpp:218] Iteration 6696 (2.43815 iter/s, 4.92176s/12 iters), loss = 0.110977 +I0407 22:56:26.551019 23658 solver.cpp:237] Train net output #0: loss = 0.110977 (* 1 = 0.110977 loss) +I0407 22:56:26.551030 23658 sgd_solver.cpp:105] Iteration 6696, lr = 0.000344805 +I0407 22:56:31.474812 23658 solver.cpp:218] Iteration 6708 (2.43721 iter/s, 4.92366s/12 iters), loss = 0.120452 +I0407 22:56:31.474874 23658 solver.cpp:237] Train net output #0: loss = 0.120452 (* 1 = 0.120452 loss) +I0407 22:56:31.474885 23658 sgd_solver.cpp:105] Iteration 6708, lr = 0.00034273 +I0407 22:56:36.412052 23658 solver.cpp:218] Iteration 6720 (2.4306 iter/s, 4.93705s/12 iters), loss = 0.0926198 +I0407 22:56:36.412102 23658 solver.cpp:237] Train net output #0: loss = 0.0926198 (* 1 = 0.0926198 loss) +I0407 22:56:36.412111 23658 sgd_solver.cpp:105] Iteration 6720, lr = 0.000340668 +I0407 22:56:41.187801 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 22:56:45.034296 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 22:56:47.409235 23658 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 22:56:47.409261 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:56:49.236665 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:51.876185 23658 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 22:56:51.876233 23658 solver.cpp:397] Test net output #1: loss = 2.95746 (* 1 = 2.95746 loss) +I0407 22:56:51.966320 23658 solver.cpp:218] Iteration 6732 (0.771515 iter/s, 15.5538s/12 iters), loss = 0.0977402 +I0407 22:56:51.966377 23658 solver.cpp:237] Train net output #0: loss = 0.0977402 (* 1 = 0.0977402 loss) +I0407 22:56:51.966388 23658 sgd_solver.cpp:105] Iteration 6732, lr = 0.000338618 +I0407 22:56:56.236688 23658 solver.cpp:218] Iteration 6744 (2.81018 iter/s, 4.27019s/12 iters), loss = 0.134969 +I0407 22:56:56.236743 23658 solver.cpp:237] Train net output #0: loss = 0.134969 (* 1 = 0.134969 loss) +I0407 22:56:56.236755 23658 sgd_solver.cpp:105] Iteration 6744, lr = 0.000336581 +I0407 22:57:01.399124 23658 solver.cpp:218] Iteration 6756 (2.32457 iter/s, 5.16224s/12 iters), loss = 0.0867761 +I0407 22:57:01.399168 23658 solver.cpp:237] Train net output #0: loss = 0.0867762 (* 1 = 0.0867762 loss) +I0407 22:57:01.399178 23658 sgd_solver.cpp:105] Iteration 6756, lr = 0.000334556 +I0407 22:57:06.730008 23658 solver.cpp:218] Iteration 6768 (2.25111 iter/s, 5.3307s/12 iters), loss = 0.100448 +I0407 22:57:06.730046 23658 solver.cpp:237] Train net output #0: loss = 0.100448 (* 1 = 0.100448 loss) +I0407 22:57:06.730054 23658 sgd_solver.cpp:105] Iteration 6768, lr = 0.000332543 +I0407 22:57:10.472992 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:11.997654 23658 solver.cpp:218] Iteration 6780 (2.27814 iter/s, 5.26746s/12 iters), loss = 0.0777793 +I0407 22:57:11.997712 23658 solver.cpp:237] Train net output #0: loss = 0.0777793 (* 1 = 0.0777793 loss) +I0407 22:57:11.997725 23658 sgd_solver.cpp:105] Iteration 6780, lr = 0.000330543 +I0407 22:57:17.140367 23658 solver.cpp:218] Iteration 6792 (2.33349 iter/s, 5.14251s/12 iters), loss = 0.074442 +I0407 22:57:17.140486 23658 solver.cpp:237] Train net output #0: loss = 0.074442 (* 1 = 0.074442 loss) +I0407 22:57:17.140498 23658 sgd_solver.cpp:105] Iteration 6792, lr = 0.000328554 +I0407 22:57:22.420397 23658 solver.cpp:218] Iteration 6804 (2.27283 iter/s, 5.27977s/12 iters), loss = 0.195858 +I0407 22:57:22.420451 23658 solver.cpp:237] Train net output #0: loss = 0.195858 (* 1 = 0.195858 loss) +I0407 22:57:22.420464 23658 sgd_solver.cpp:105] Iteration 6804, lr = 0.000326577 +I0407 22:57:27.395496 23658 solver.cpp:218] Iteration 6816 (2.4121 iter/s, 4.97491s/12 iters), loss = 0.0917436 +I0407 22:57:27.395541 23658 solver.cpp:237] Train net output #0: loss = 0.0917436 (* 1 = 0.0917436 loss) +I0407 22:57:27.395552 23658 sgd_solver.cpp:105] Iteration 6816, lr = 0.000324612 +I0407 22:57:32.728801 23658 solver.cpp:218] Iteration 6828 (2.25009 iter/s, 5.33312s/12 iters), loss = 0.125472 +I0407 22:57:32.728852 23658 solver.cpp:237] Train net output #0: loss = 0.125472 (* 1 = 0.125472 loss) +I0407 22:57:32.728864 23658 sgd_solver.cpp:105] Iteration 6828, lr = 0.000322659 +I0407 22:57:34.793535 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 22:57:37.812307 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 22:57:40.115597 23658 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 22:57:40.115622 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:57:41.910128 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:44.588627 23658 solver.cpp:397] Test net output #0: accuracy = 0.474877 +I0407 22:57:44.588685 23658 solver.cpp:397] Test net output #1: loss = 2.97056 (* 1 = 2.97056 loss) +I0407 22:57:46.427314 23658 solver.cpp:218] Iteration 6840 (0.876034 iter/s, 13.6981s/12 iters), loss = 0.0641453 +I0407 22:57:46.427373 23658 solver.cpp:237] Train net output #0: loss = 0.0641453 (* 1 = 0.0641453 loss) +I0407 22:57:46.427386 23658 sgd_solver.cpp:105] Iteration 6840, lr = 0.000320718 +I0407 22:57:51.571274 23658 solver.cpp:218] Iteration 6852 (2.33293 iter/s, 5.14376s/12 iters), loss = 0.168877 +I0407 22:57:51.571422 23658 solver.cpp:237] Train net output #0: loss = 0.168877 (* 1 = 0.168877 loss) +I0407 22:57:51.571436 23658 sgd_solver.cpp:105] Iteration 6852, lr = 0.000318788 +I0407 22:57:56.960984 23658 solver.cpp:218] Iteration 6864 (2.22659 iter/s, 5.38942s/12 iters), loss = 0.237774 +I0407 22:57:56.961037 23658 solver.cpp:237] Train net output #0: loss = 0.237775 (* 1 = 0.237775 loss) +I0407 22:57:56.961050 23658 sgd_solver.cpp:105] Iteration 6864, lr = 0.00031687 +I0407 22:58:02.049196 23658 solver.cpp:218] Iteration 6876 (2.35848 iter/s, 5.08802s/12 iters), loss = 0.201018 +I0407 22:58:02.049233 23658 solver.cpp:237] Train net output #0: loss = 0.201018 (* 1 = 0.201018 loss) +I0407 22:58:02.049242 23658 sgd_solver.cpp:105] Iteration 6876, lr = 0.000314964 +I0407 22:58:02.674787 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:07.227226 23658 solver.cpp:218] Iteration 6888 (2.31757 iter/s, 5.17785s/12 iters), loss = 0.105328 +I0407 22:58:07.227273 23658 solver.cpp:237] Train net output #0: loss = 0.105328 (* 1 = 0.105328 loss) +I0407 22:58:07.227285 23658 sgd_solver.cpp:105] Iteration 6888, lr = 0.000313069 +I0407 22:58:12.403596 23658 solver.cpp:218] Iteration 6900 (2.31831 iter/s, 5.17618s/12 iters), loss = 0.102642 +I0407 22:58:12.403640 23658 solver.cpp:237] Train net output #0: loss = 0.102642 (* 1 = 0.102642 loss) +I0407 22:58:12.403650 23658 sgd_solver.cpp:105] Iteration 6900, lr = 0.000311185 +I0407 22:58:17.434913 23658 solver.cpp:218] Iteration 6912 (2.38515 iter/s, 5.03113s/12 iters), loss = 0.195884 +I0407 22:58:17.434960 23658 solver.cpp:237] Train net output #0: loss = 0.195884 (* 1 = 0.195884 loss) +I0407 22:58:17.434970 23658 sgd_solver.cpp:105] Iteration 6912, lr = 0.000309313 +I0407 22:58:23.508448 23658 solver.cpp:218] Iteration 6924 (1.97585 iter/s, 6.07332s/12 iters), loss = 0.116529 +I0407 22:58:23.508538 23658 solver.cpp:237] Train net output #0: loss = 0.116529 (* 1 = 0.116529 loss) +I0407 22:58:23.508550 23658 sgd_solver.cpp:105] Iteration 6924, lr = 0.000307452 +I0407 22:58:28.314054 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 22:58:31.361588 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 22:58:33.663158 23658 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 22:58:33.663179 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:58:34.325130 23658 blocking_queue.cpp:49] Waiting for data +I0407 22:58:35.413128 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:38.132195 23658 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 22:58:38.132242 23658 solver.cpp:397] Test net output #1: loss = 2.96581 (* 1 = 2.96581 loss) +I0407 22:58:38.221520 23658 solver.cpp:218] Iteration 6936 (0.815628 iter/s, 14.7126s/12 iters), loss = 0.110489 +I0407 22:58:38.221577 23658 solver.cpp:237] Train net output #0: loss = 0.110489 (* 1 = 0.110489 loss) +I0407 22:58:38.221591 23658 sgd_solver.cpp:105] Iteration 6936, lr = 0.000305602 +I0407 22:58:42.795821 23658 solver.cpp:218] Iteration 6948 (2.62346 iter/s, 4.57411s/12 iters), loss = 0.0503204 +I0407 22:58:42.795876 23658 solver.cpp:237] Train net output #0: loss = 0.0503204 (* 1 = 0.0503204 loss) +I0407 22:58:42.795888 23658 sgd_solver.cpp:105] Iteration 6948, lr = 0.000303764 +I0407 22:58:48.290052 23658 solver.cpp:218] Iteration 6960 (2.18419 iter/s, 5.49403s/12 iters), loss = 0.0653407 +I0407 22:58:48.290099 23658 solver.cpp:237] Train net output #0: loss = 0.0653407 (* 1 = 0.0653407 loss) +I0407 22:58:48.290110 23658 sgd_solver.cpp:105] Iteration 6960, lr = 0.000301936 +I0407 22:58:53.689285 23658 solver.cpp:218] Iteration 6972 (2.22262 iter/s, 5.39904s/12 iters), loss = 0.0830429 +I0407 22:58:53.689393 23658 solver.cpp:237] Train net output #0: loss = 0.0830429 (* 1 = 0.0830429 loss) +I0407 22:58:53.689405 23658 sgd_solver.cpp:105] Iteration 6972, lr = 0.000300119 +I0407 22:58:56.501032 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:58.923115 23658 solver.cpp:218] Iteration 6984 (2.29289 iter/s, 5.23357s/12 iters), loss = 0.100422 +I0407 22:58:58.923173 23658 solver.cpp:237] Train net output #0: loss = 0.100422 (* 1 = 0.100422 loss) +I0407 22:58:58.923185 23658 sgd_solver.cpp:105] Iteration 6984, lr = 0.000298314 +I0407 22:59:04.249872 23658 solver.cpp:218] Iteration 6996 (2.25286 iter/s, 5.32655s/12 iters), loss = 0.0733542 +I0407 22:59:04.249922 23658 solver.cpp:237] Train net output #0: loss = 0.0733542 (* 1 = 0.0733542 loss) +I0407 22:59:04.249934 23658 sgd_solver.cpp:105] Iteration 6996, lr = 0.000296519 +I0407 22:59:09.491739 23658 solver.cpp:218] Iteration 7008 (2.28935 iter/s, 5.24167s/12 iters), loss = 0.108713 +I0407 22:59:09.491788 23658 solver.cpp:237] Train net output #0: loss = 0.108713 (* 1 = 0.108713 loss) +I0407 22:59:09.491798 23658 sgd_solver.cpp:105] Iteration 7008, lr = 0.000294735 +I0407 22:59:14.711629 23658 solver.cpp:218] Iteration 7020 (2.29898 iter/s, 5.2197s/12 iters), loss = 0.111664 +I0407 22:59:14.711664 23658 solver.cpp:237] Train net output #0: loss = 0.111664 (* 1 = 0.111664 loss) +I0407 22:59:14.711673 23658 sgd_solver.cpp:105] Iteration 7020, lr = 0.000292962 +I0407 22:59:20.054555 23658 solver.cpp:218] Iteration 7032 (2.24604 iter/s, 5.34274s/12 iters), loss = 0.156644 +I0407 22:59:20.054605 23658 solver.cpp:237] Train net output #0: loss = 0.156644 (* 1 = 0.156644 loss) +I0407 22:59:20.054617 23658 sgd_solver.cpp:105] Iteration 7032, lr = 0.000291199 +I0407 22:59:22.085160 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 22:59:25.121834 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 22:59:29.755162 23658 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 22:59:29.755187 23658 net.cpp:676] Ignoring source layer train-data +I0407 22:59:31.469687 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:34.280216 23658 solver.cpp:397] Test net output #0: accuracy = 0.480392 +I0407 22:59:34.280261 23658 solver.cpp:397] Test net output #1: loss = 2.95632 (* 1 = 2.95632 loss) +I0407 22:59:36.154707 23658 solver.cpp:218] Iteration 7044 (0.745356 iter/s, 16.0997s/12 iters), loss = 0.106163 +I0407 22:59:36.154765 23658 solver.cpp:237] Train net output #0: loss = 0.106163 (* 1 = 0.106163 loss) +I0407 22:59:36.154778 23658 sgd_solver.cpp:105] Iteration 7044, lr = 0.000289447 +I0407 22:59:41.649610 23658 solver.cpp:218] Iteration 7056 (2.18393 iter/s, 5.49469s/12 iters), loss = 0.0897238 +I0407 22:59:41.649665 23658 solver.cpp:237] Train net output #0: loss = 0.0897238 (* 1 = 0.0897238 loss) +I0407 22:59:41.649678 23658 sgd_solver.cpp:105] Iteration 7056, lr = 0.000287705 +I0407 22:59:47.163839 23658 solver.cpp:218] Iteration 7068 (2.17627 iter/s, 5.51403s/12 iters), loss = 0.0998114 +I0407 22:59:47.163884 23658 solver.cpp:237] Train net output #0: loss = 0.0998115 (* 1 = 0.0998115 loss) +I0407 22:59:47.163893 23658 sgd_solver.cpp:105] Iteration 7068, lr = 0.000285974 +I0407 22:59:52.176900 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:52.293093 23658 solver.cpp:218] Iteration 7080 (2.33961 iter/s, 5.12906s/12 iters), loss = 0.17194 +I0407 22:59:52.293141 23658 solver.cpp:237] Train net output #0: loss = 0.17194 (* 1 = 0.17194 loss) +I0407 22:59:52.293150 23658 sgd_solver.cpp:105] Iteration 7080, lr = 0.000284254 +I0407 22:59:57.284062 23658 solver.cpp:218] Iteration 7092 (2.40443 iter/s, 4.99078s/12 iters), loss = 0.0709675 +I0407 22:59:57.284162 23658 solver.cpp:237] Train net output #0: loss = 0.0709675 (* 1 = 0.0709675 loss) +I0407 22:59:57.284173 23658 sgd_solver.cpp:105] Iteration 7092, lr = 0.000282544 +I0407 23:00:02.406162 23658 solver.cpp:218] Iteration 7104 (2.3429 iter/s, 5.12186s/12 iters), loss = 0.243561 +I0407 23:00:02.406217 23658 solver.cpp:237] Train net output #0: loss = 0.243561 (* 1 = 0.243561 loss) +I0407 23:00:02.406234 23658 sgd_solver.cpp:105] Iteration 7104, lr = 0.000280844 +I0407 23:00:07.497326 23658 solver.cpp:218] Iteration 7116 (2.35711 iter/s, 5.09097s/12 iters), loss = 0.0887128 +I0407 23:00:07.497371 23658 solver.cpp:237] Train net output #0: loss = 0.0887128 (* 1 = 0.0887128 loss) +I0407 23:00:07.497382 23658 sgd_solver.cpp:105] Iteration 7116, lr = 0.000279154 +I0407 23:00:12.905799 23658 solver.cpp:218] Iteration 7128 (2.21882 iter/s, 5.40828s/12 iters), loss = 0.156025 +I0407 23:00:12.905848 23658 solver.cpp:237] Train net output #0: loss = 0.156025 (* 1 = 0.156025 loss) +I0407 23:00:12.905858 23658 sgd_solver.cpp:105] Iteration 7128, lr = 0.000277474 +I0407 23:00:17.404613 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 23:00:22.499866 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 23:00:27.230654 23658 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 23:00:27.230681 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:00:28.838858 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:31.642607 23658 solver.cpp:397] Test net output #0: accuracy = 0.473652 +I0407 23:00:31.642648 23658 solver.cpp:397] Test net output #1: loss = 2.97864 (* 1 = 2.97864 loss) +I0407 23:00:31.732426 23658 solver.cpp:218] Iteration 7140 (0.637413 iter/s, 18.8261s/12 iters), loss = 0.167394 +I0407 23:00:31.732477 23658 solver.cpp:237] Train net output #0: loss = 0.167394 (* 1 = 0.167394 loss) +I0407 23:00:31.732489 23658 sgd_solver.cpp:105] Iteration 7140, lr = 0.000275805 +I0407 23:00:36.019650 23658 solver.cpp:218] Iteration 7152 (2.79913 iter/s, 4.28705s/12 iters), loss = 0.100882 +I0407 23:00:36.019695 23658 solver.cpp:237] Train net output #0: loss = 0.100882 (* 1 = 0.100882 loss) +I0407 23:00:36.019704 23658 sgd_solver.cpp:105] Iteration 7152, lr = 0.000274146 +I0407 23:00:41.058126 23658 solver.cpp:218] Iteration 7164 (2.38176 iter/s, 5.03829s/12 iters), loss = 0.139174 +I0407 23:00:41.058171 23658 solver.cpp:237] Train net output #0: loss = 0.139174 (* 1 = 0.139174 loss) +I0407 23:00:41.058179 23658 sgd_solver.cpp:105] Iteration 7164, lr = 0.000272496 +I0407 23:00:46.100646 23658 solver.cpp:218] Iteration 7176 (2.37985 iter/s, 5.04234s/12 iters), loss = 0.106097 +I0407 23:00:46.100688 23658 solver.cpp:237] Train net output #0: loss = 0.106097 (* 1 = 0.106097 loss) +I0407 23:00:46.100697 23658 sgd_solver.cpp:105] Iteration 7176, lr = 0.000270857 +I0407 23:00:48.326004 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:51.350713 23658 solver.cpp:218] Iteration 7188 (2.28577 iter/s, 5.24988s/12 iters), loss = 0.0883517 +I0407 23:00:51.350755 23658 solver.cpp:237] Train net output #0: loss = 0.0883518 (* 1 = 0.0883518 loss) +I0407 23:00:51.350765 23658 sgd_solver.cpp:105] Iteration 7188, lr = 0.000269227 +I0407 23:00:56.495860 23658 solver.cpp:218] Iteration 7200 (2.33239 iter/s, 5.14493s/12 iters), loss = 0.144174 +I0407 23:00:56.495923 23658 solver.cpp:237] Train net output #0: loss = 0.144174 (* 1 = 0.144174 loss) +I0407 23:00:56.495935 23658 sgd_solver.cpp:105] Iteration 7200, lr = 0.000267607 +I0407 23:01:01.565259 23658 solver.cpp:218] Iteration 7212 (2.36724 iter/s, 5.0692s/12 iters), loss = 0.160434 +I0407 23:01:01.565346 23658 solver.cpp:237] Train net output #0: loss = 0.160434 (* 1 = 0.160434 loss) +I0407 23:01:01.565356 23658 sgd_solver.cpp:105] Iteration 7212, lr = 0.000265997 +I0407 23:01:06.495339 23658 solver.cpp:218] Iteration 7224 (2.43415 iter/s, 4.92986s/12 iters), loss = 0.0447144 +I0407 23:01:06.495380 23658 solver.cpp:237] Train net output #0: loss = 0.0447144 (* 1 = 0.0447144 loss) +I0407 23:01:06.495388 23658 sgd_solver.cpp:105] Iteration 7224, lr = 0.000264397 +I0407 23:01:11.560415 23658 solver.cpp:218] Iteration 7236 (2.36925 iter/s, 5.06489s/12 iters), loss = 0.0833848 +I0407 23:01:11.560472 23658 solver.cpp:237] Train net output #0: loss = 0.0833849 (* 1 = 0.0833849 loss) +I0407 23:01:11.560484 23658 sgd_solver.cpp:105] Iteration 7236, lr = 0.000262806 +I0407 23:01:13.582358 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 23:01:17.480618 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 23:01:27.973316 23658 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 23:01:27.973342 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:01:29.598968 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:32.434489 23658 solver.cpp:397] Test net output #0: accuracy = 0.479167 +I0407 23:01:32.434655 23658 solver.cpp:397] Test net output #1: loss = 2.91277 (* 1 = 2.91277 loss) +I0407 23:01:34.370110 23658 solver.cpp:218] Iteration 7248 (0.526107 iter/s, 22.809s/12 iters), loss = 0.182471 +I0407 23:01:34.370167 23658 solver.cpp:237] Train net output #0: loss = 0.182471 (* 1 = 0.182471 loss) +I0407 23:01:34.370179 23658 sgd_solver.cpp:105] Iteration 7248, lr = 0.000261225 +I0407 23:01:39.579602 23658 solver.cpp:218] Iteration 7260 (2.30358 iter/s, 5.20929s/12 iters), loss = 0.0917557 +I0407 23:01:39.579650 23658 solver.cpp:237] Train net output #0: loss = 0.0917557 (* 1 = 0.0917557 loss) +I0407 23:01:39.579663 23658 sgd_solver.cpp:105] Iteration 7260, lr = 0.000259653 +I0407 23:01:44.649989 23658 solver.cpp:218] Iteration 7272 (2.36678 iter/s, 5.07019s/12 iters), loss = 0.174988 +I0407 23:01:44.650036 23658 solver.cpp:237] Train net output #0: loss = 0.174988 (* 1 = 0.174988 loss) +I0407 23:01:44.650050 23658 sgd_solver.cpp:105] Iteration 7272, lr = 0.000258091 +I0407 23:01:49.091666 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:49.846108 23658 solver.cpp:218] Iteration 7284 (2.3095 iter/s, 5.19593s/12 iters), loss = 0.05976 +I0407 23:01:49.846159 23658 solver.cpp:237] Train net output #0: loss = 0.05976 (* 1 = 0.05976 loss) +I0407 23:01:49.846169 23658 sgd_solver.cpp:105] Iteration 7284, lr = 0.000256538 +I0407 23:01:54.872402 23658 solver.cpp:218] Iteration 7296 (2.38754 iter/s, 5.0261s/12 iters), loss = 0.0562884 +I0407 23:01:54.872452 23658 solver.cpp:237] Train net output #0: loss = 0.0562884 (* 1 = 0.0562884 loss) +I0407 23:01:54.872463 23658 sgd_solver.cpp:105] Iteration 7296, lr = 0.000254995 +I0407 23:01:59.940162 23658 solver.cpp:218] Iteration 7308 (2.368 iter/s, 5.06757s/12 iters), loss = 0.0864673 +I0407 23:01:59.940208 23658 solver.cpp:237] Train net output #0: loss = 0.0864673 (* 1 = 0.0864673 loss) +I0407 23:01:59.940218 23658 sgd_solver.cpp:105] Iteration 7308, lr = 0.000253461 +I0407 23:02:04.916954 23658 solver.cpp:218] Iteration 7320 (2.41128 iter/s, 4.9766s/12 iters), loss = 0.118437 +I0407 23:02:04.917080 23658 solver.cpp:237] Train net output #0: loss = 0.118437 (* 1 = 0.118437 loss) +I0407 23:02:04.917093 23658 sgd_solver.cpp:105] Iteration 7320, lr = 0.000251936 +I0407 23:02:10.256116 23658 solver.cpp:218] Iteration 7332 (2.24766 iter/s, 5.33888s/12 iters), loss = 0.0638622 +I0407 23:02:10.256172 23658 solver.cpp:237] Train net output #0: loss = 0.0638623 (* 1 = 0.0638623 loss) +I0407 23:02:10.256186 23658 sgd_solver.cpp:105] Iteration 7332, lr = 0.00025042 +I0407 23:02:15.183997 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 23:02:20.066071 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 23:02:22.388823 23658 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 23:02:22.388851 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:02:23.945222 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:26.878917 23658 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 23:02:26.878966 23658 solver.cpp:397] Test net output #1: loss = 2.93096 (* 1 = 2.93096 loss) +I0407 23:02:26.967674 23658 solver.cpp:218] Iteration 7344 (0.718087 iter/s, 16.7111s/12 iters), loss = 0.17402 +I0407 23:02:26.967725 23658 solver.cpp:237] Train net output #0: loss = 0.17402 (* 1 = 0.17402 loss) +I0407 23:02:26.967736 23658 sgd_solver.cpp:105] Iteration 7344, lr = 0.000248913 +I0407 23:02:32.372045 23658 solver.cpp:218] Iteration 7356 (2.22051 iter/s, 5.40417s/12 iters), loss = 0.0623237 +I0407 23:02:32.372093 23658 solver.cpp:237] Train net output #0: loss = 0.0623237 (* 1 = 0.0623237 loss) +I0407 23:02:32.372105 23658 sgd_solver.cpp:105] Iteration 7356, lr = 0.000247416 +I0407 23:02:37.441933 23658 solver.cpp:218] Iteration 7368 (2.36701 iter/s, 5.0697s/12 iters), loss = 0.057331 +I0407 23:02:37.442116 23658 solver.cpp:237] Train net output #0: loss = 0.0573311 (* 1 = 0.0573311 loss) +I0407 23:02:37.442129 23658 sgd_solver.cpp:105] Iteration 7368, lr = 0.000245927 +I0407 23:02:42.316103 23658 solver.cpp:218] Iteration 7380 (2.46212 iter/s, 4.87385s/12 iters), loss = 0.0728637 +I0407 23:02:42.316165 23658 solver.cpp:237] Train net output #0: loss = 0.0728637 (* 1 = 0.0728637 loss) +I0407 23:02:42.316177 23658 sgd_solver.cpp:105] Iteration 7380, lr = 0.000244447 +I0407 23:02:43.704057 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:47.341558 23658 solver.cpp:218] Iteration 7392 (2.38794 iter/s, 5.02525s/12 iters), loss = 0.0720368 +I0407 23:02:47.341609 23658 solver.cpp:237] Train net output #0: loss = 0.0720368 (* 1 = 0.0720368 loss) +I0407 23:02:47.341619 23658 sgd_solver.cpp:105] Iteration 7392, lr = 0.000242977 +I0407 23:02:53.117383 23658 solver.cpp:218] Iteration 7404 (2.0777 iter/s, 5.77561s/12 iters), loss = 0.0752433 +I0407 23:02:53.117439 23658 solver.cpp:237] Train net output #0: loss = 0.0752433 (* 1 = 0.0752433 loss) +I0407 23:02:53.117451 23658 sgd_solver.cpp:105] Iteration 7404, lr = 0.000241515 +I0407 23:02:58.238808 23658 solver.cpp:218] Iteration 7416 (2.34319 iter/s, 5.12122s/12 iters), loss = 0.0921694 +I0407 23:02:58.238867 23658 solver.cpp:237] Train net output #0: loss = 0.0921695 (* 1 = 0.0921695 loss) +I0407 23:02:58.238881 23658 sgd_solver.cpp:105] Iteration 7416, lr = 0.000240062 +I0407 23:03:03.302428 23658 solver.cpp:218] Iteration 7428 (2.36994 iter/s, 5.06342s/12 iters), loss = 0.107353 +I0407 23:03:03.302484 23658 solver.cpp:237] Train net output #0: loss = 0.107353 (* 1 = 0.107353 loss) +I0407 23:03:03.302496 23658 sgd_solver.cpp:105] Iteration 7428, lr = 0.000238617 +I0407 23:03:08.239969 23658 solver.cpp:218] Iteration 7440 (2.43045 iter/s, 4.93735s/12 iters), loss = 0.0486377 +I0407 23:03:08.240094 23658 solver.cpp:237] Train net output #0: loss = 0.0486377 (* 1 = 0.0486377 loss) +I0407 23:03:08.240108 23658 sgd_solver.cpp:105] Iteration 7440, lr = 0.000237182 +I0407 23:03:10.297883 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 23:03:17.030905 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 23:03:20.709458 23658 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 23:03:20.709478 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:03:22.220444 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:25.186322 23658 solver.cpp:397] Test net output #0: accuracy = 0.481618 +I0407 23:03:25.186357 23658 solver.cpp:397] Test net output #1: loss = 2.98223 (* 1 = 2.98223 loss) +I0407 23:03:26.942320 23658 solver.cpp:218] Iteration 7452 (0.641652 iter/s, 18.7017s/12 iters), loss = 0.0332496 +I0407 23:03:26.942375 23658 solver.cpp:237] Train net output #0: loss = 0.0332496 (* 1 = 0.0332496 loss) +I0407 23:03:26.942389 23658 sgd_solver.cpp:105] Iteration 7452, lr = 0.000235755 +I0407 23:03:32.070647 23658 solver.cpp:218] Iteration 7464 (2.34003 iter/s, 5.12813s/12 iters), loss = 0.143431 +I0407 23:03:32.070694 23658 solver.cpp:237] Train net output #0: loss = 0.143431 (* 1 = 0.143431 loss) +I0407 23:03:32.070706 23658 sgd_solver.cpp:105] Iteration 7464, lr = 0.000234336 +I0407 23:03:37.127053 23658 solver.cpp:218] Iteration 7476 (2.37331 iter/s, 5.05622s/12 iters), loss = 0.0983412 +I0407 23:03:37.127086 23658 solver.cpp:237] Train net output #0: loss = 0.0983412 (* 1 = 0.0983412 loss) +I0407 23:03:37.127094 23658 sgd_solver.cpp:105] Iteration 7476, lr = 0.000232926 +I0407 23:03:40.734661 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:42.237146 23658 solver.cpp:218] Iteration 7488 (2.34838 iter/s, 5.10992s/12 iters), loss = 0.0854501 +I0407 23:03:42.237192 23658 solver.cpp:237] Train net output #0: loss = 0.0854501 (* 1 = 0.0854501 loss) +I0407 23:03:42.237203 23658 sgd_solver.cpp:105] Iteration 7488, lr = 0.000231525 +I0407 23:03:47.904810 23658 solver.cpp:218] Iteration 7500 (2.11735 iter/s, 5.66746s/12 iters), loss = 0.142692 +I0407 23:03:47.904858 23658 solver.cpp:237] Train net output #0: loss = 0.142693 (* 1 = 0.142693 loss) +I0407 23:03:47.904870 23658 sgd_solver.cpp:105] Iteration 7500, lr = 0.000230132 +I0407 23:03:54.066709 23658 solver.cpp:218] Iteration 7512 (1.94752 iter/s, 6.16168s/12 iters), loss = 0.0691698 +I0407 23:03:54.066758 23658 solver.cpp:237] Train net output #0: loss = 0.0691699 (* 1 = 0.0691699 loss) +I0407 23:03:54.066771 23658 sgd_solver.cpp:105] Iteration 7512, lr = 0.000228747 +I0407 23:03:59.138702 23658 solver.cpp:218] Iteration 7524 (2.36602 iter/s, 5.07181s/12 iters), loss = 0.12232 +I0407 23:03:59.138741 23658 solver.cpp:237] Train net output #0: loss = 0.12232 (* 1 = 0.12232 loss) +I0407 23:03:59.138748 23658 sgd_solver.cpp:105] Iteration 7524, lr = 0.000227371 +I0407 23:04:04.142521 23658 solver.cpp:218] Iteration 7536 (2.39825 iter/s, 5.00364s/12 iters), loss = 0.0922359 +I0407 23:04:04.142561 23658 solver.cpp:237] Train net output #0: loss = 0.092236 (* 1 = 0.092236 loss) +I0407 23:04:04.142570 23658 sgd_solver.cpp:105] Iteration 7536, lr = 0.000226003 +I0407 23:04:08.949262 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 23:04:14.641355 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 23:04:20.256991 23658 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 23:04:20.257019 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:04:21.764540 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:24.778334 23658 solver.cpp:397] Test net output #0: accuracy = 0.481005 +I0407 23:04:24.778383 23658 solver.cpp:397] Test net output #1: loss = 2.96675 (* 1 = 2.96675 loss) +I0407 23:04:24.868115 23658 solver.cpp:218] Iteration 7548 (0.579011 iter/s, 20.725s/12 iters), loss = 0.0887877 +I0407 23:04:24.868165 23658 solver.cpp:237] Train net output #0: loss = 0.0887877 (* 1 = 0.0887877 loss) +I0407 23:04:24.868178 23658 sgd_solver.cpp:105] Iteration 7548, lr = 0.000224643 +I0407 23:04:29.151932 23658 solver.cpp:218] Iteration 7560 (2.80136 iter/s, 4.28364s/12 iters), loss = 0.0996464 +I0407 23:04:29.151989 23658 solver.cpp:237] Train net output #0: loss = 0.0996464 (* 1 = 0.0996464 loss) +I0407 23:04:29.152002 23658 sgd_solver.cpp:105] Iteration 7560, lr = 0.000223292 +I0407 23:04:34.189029 23658 solver.cpp:218] Iteration 7572 (2.38242 iter/s, 5.0369s/12 iters), loss = 0.10105 +I0407 23:04:34.189072 23658 solver.cpp:237] Train net output #0: loss = 0.10105 (* 1 = 0.10105 loss) +I0407 23:04:34.189082 23658 sgd_solver.cpp:105] Iteration 7572, lr = 0.000221948 +I0407 23:04:39.132908 23658 solver.cpp:218] Iteration 7584 (2.42734 iter/s, 4.94369s/12 iters), loss = 0.0949946 +I0407 23:04:39.132958 23658 solver.cpp:237] Train net output #0: loss = 0.0949946 (* 1 = 0.0949946 loss) +I0407 23:04:39.132970 23658 sgd_solver.cpp:105] Iteration 7584, lr = 0.000220613 +I0407 23:04:39.772029 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:44.076503 23658 solver.cpp:218] Iteration 7596 (2.42748 iter/s, 4.9434s/12 iters), loss = 0.0972363 +I0407 23:04:44.076556 23658 solver.cpp:237] Train net output #0: loss = 0.0972364 (* 1 = 0.0972364 loss) +I0407 23:04:44.076570 23658 sgd_solver.cpp:105] Iteration 7596, lr = 0.000219286 +I0407 23:04:49.170413 23658 solver.cpp:218] Iteration 7608 (2.35585 iter/s, 5.09371s/12 iters), loss = 0.111801 +I0407 23:04:49.170545 23658 solver.cpp:237] Train net output #0: loss = 0.111801 (* 1 = 0.111801 loss) +I0407 23:04:49.170557 23658 sgd_solver.cpp:105] Iteration 7608, lr = 0.000217966 +I0407 23:04:54.370066 23658 solver.cpp:218] Iteration 7620 (2.30797 iter/s, 5.19938s/12 iters), loss = 0.236859 +I0407 23:04:54.370105 23658 solver.cpp:237] Train net output #0: loss = 0.236859 (* 1 = 0.236859 loss) +I0407 23:04:54.370115 23658 sgd_solver.cpp:105] Iteration 7620, lr = 0.000216655 +I0407 23:04:56.850453 23658 blocking_queue.cpp:49] Waiting for data +I0407 23:04:59.444947 23658 solver.cpp:218] Iteration 7632 (2.36467 iter/s, 5.07469s/12 iters), loss = 0.20092 +I0407 23:04:59.445006 23658 solver.cpp:237] Train net output #0: loss = 0.20092 (* 1 = 0.20092 loss) +I0407 23:04:59.445019 23658 sgd_solver.cpp:105] Iteration 7632, lr = 0.000215352 +I0407 23:05:04.478513 23658 solver.cpp:218] Iteration 7644 (2.38409 iter/s, 5.03337s/12 iters), loss = 0.0865669 +I0407 23:05:04.478554 23658 solver.cpp:237] Train net output #0: loss = 0.0865669 (* 1 = 0.0865669 loss) +I0407 23:05:04.478561 23658 sgd_solver.cpp:105] Iteration 7644, lr = 0.000214056 +I0407 23:05:06.495913 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 23:05:10.131467 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 23:05:12.453495 23658 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 23:05:12.453519 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:05:13.881911 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:16.895069 23658 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 23:05:16.895118 23658 solver.cpp:397] Test net output #1: loss = 2.98842 (* 1 = 2.98842 loss) +I0407 23:05:19.301681 23658 solver.cpp:218] Iteration 7656 (0.809567 iter/s, 14.8227s/12 iters), loss = 0.18578 +I0407 23:05:19.301795 23658 solver.cpp:237] Train net output #0: loss = 0.18578 (* 1 = 0.18578 loss) +I0407 23:05:19.301808 23658 sgd_solver.cpp:105] Iteration 7656, lr = 0.000212768 +I0407 23:05:24.504083 23658 solver.cpp:218] Iteration 7668 (2.30674 iter/s, 5.20214s/12 iters), loss = 0.14691 +I0407 23:05:24.504145 23658 solver.cpp:237] Train net output #0: loss = 0.146911 (* 1 = 0.146911 loss) +I0407 23:05:24.504158 23658 sgd_solver.cpp:105] Iteration 7668, lr = 0.000211488 +I0407 23:05:29.703516 23658 solver.cpp:218] Iteration 7680 (2.30804 iter/s, 5.19923s/12 iters), loss = 0.171029 +I0407 23:05:29.703567 23658 solver.cpp:237] Train net output #0: loss = 0.171029 (* 1 = 0.171029 loss) +I0407 23:05:29.703579 23658 sgd_solver.cpp:105] Iteration 7680, lr = 0.000210215 +I0407 23:05:32.665733 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:35.071952 23658 solver.cpp:218] Iteration 7692 (2.23537 iter/s, 5.36824s/12 iters), loss = 0.139277 +I0407 23:05:35.071990 23658 solver.cpp:237] Train net output #0: loss = 0.139277 (* 1 = 0.139277 loss) +I0407 23:05:35.071998 23658 sgd_solver.cpp:105] Iteration 7692, lr = 0.000208951 +I0407 23:05:40.162941 23658 solver.cpp:218] Iteration 7704 (2.35719 iter/s, 5.0908s/12 iters), loss = 0.180461 +I0407 23:05:40.162989 23658 solver.cpp:237] Train net output #0: loss = 0.180461 (* 1 = 0.180461 loss) +I0407 23:05:40.163002 23658 sgd_solver.cpp:105] Iteration 7704, lr = 0.000207693 +I0407 23:05:45.336839 23658 solver.cpp:218] Iteration 7716 (2.31942 iter/s, 5.17371s/12 iters), loss = 0.0722346 +I0407 23:05:45.336885 23658 solver.cpp:237] Train net output #0: loss = 0.0722346 (* 1 = 0.0722346 loss) +I0407 23:05:45.336896 23658 sgd_solver.cpp:105] Iteration 7716, lr = 0.000206444 +I0407 23:05:50.525393 23658 solver.cpp:218] Iteration 7728 (2.31287 iter/s, 5.18836s/12 iters), loss = 0.122753 +I0407 23:05:50.525506 23658 solver.cpp:237] Train net output #0: loss = 0.122753 (* 1 = 0.122753 loss) +I0407 23:05:50.525521 23658 sgd_solver.cpp:105] Iteration 7728, lr = 0.000205202 +I0407 23:05:55.548486 23658 solver.cpp:218] Iteration 7740 (2.38909 iter/s, 5.02284s/12 iters), loss = 0.107859 +I0407 23:05:55.548537 23658 solver.cpp:237] Train net output #0: loss = 0.107859 (* 1 = 0.107859 loss) +I0407 23:05:55.548549 23658 sgd_solver.cpp:105] Iteration 7740, lr = 0.000203967 +I0407 23:06:00.237042 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 23:06:03.264693 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 23:06:05.567394 23658 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 23:06:05.567417 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:06:07.003819 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:10.088554 23658 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 23:06:10.088604 23658 solver.cpp:397] Test net output #1: loss = 2.99023 (* 1 = 2.99023 loss) +I0407 23:06:10.176849 23658 solver.cpp:218] Iteration 7752 (0.820349 iter/s, 14.6279s/12 iters), loss = 0.101801 +I0407 23:06:10.176905 23658 solver.cpp:237] Train net output #0: loss = 0.101801 (* 1 = 0.101801 loss) +I0407 23:06:10.176918 23658 sgd_solver.cpp:105] Iteration 7752, lr = 0.00020274 +I0407 23:06:14.520227 23658 solver.cpp:218] Iteration 7764 (2.76294 iter/s, 4.3432s/12 iters), loss = 0.0961305 +I0407 23:06:14.520277 23658 solver.cpp:237] Train net output #0: loss = 0.0961306 (* 1 = 0.0961306 loss) +I0407 23:06:14.520288 23658 sgd_solver.cpp:105] Iteration 7764, lr = 0.00020152 +I0407 23:06:19.530659 23658 solver.cpp:218] Iteration 7776 (2.3951 iter/s, 5.01024s/12 iters), loss = 0.0941074 +I0407 23:06:19.530717 23658 solver.cpp:237] Train net output #0: loss = 0.0941074 (* 1 = 0.0941074 loss) +I0407 23:06:19.530731 23658 sgd_solver.cpp:105] Iteration 7776, lr = 0.000200308 +I0407 23:06:24.654036 23658 solver.cpp:218] Iteration 7788 (2.3423 iter/s, 5.12317s/12 iters), loss = 0.0491404 +I0407 23:06:24.654160 23658 solver.cpp:237] Train net output #0: loss = 0.0491404 (* 1 = 0.0491404 loss) +I0407 23:06:24.654173 23658 sgd_solver.cpp:105] Iteration 7788, lr = 0.000199103 +I0407 23:06:24.665452 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:29.899627 23658 solver.cpp:218] Iteration 7800 (2.28775 iter/s, 5.24532s/12 iters), loss = 0.0766859 +I0407 23:06:29.899674 23658 solver.cpp:237] Train net output #0: loss = 0.076686 (* 1 = 0.076686 loss) +I0407 23:06:29.899683 23658 sgd_solver.cpp:105] Iteration 7800, lr = 0.000197905 +I0407 23:06:34.993803 23658 solver.cpp:218] Iteration 7812 (2.35572 iter/s, 5.09399s/12 iters), loss = 0.136923 +I0407 23:06:34.993845 23658 solver.cpp:237] Train net output #0: loss = 0.136923 (* 1 = 0.136923 loss) +I0407 23:06:34.993855 23658 sgd_solver.cpp:105] Iteration 7812, lr = 0.000196714 +I0407 23:06:39.990420 23658 solver.cpp:218] Iteration 7824 (2.40171 iter/s, 4.99643s/12 iters), loss = 0.0439479 +I0407 23:06:39.990471 23658 solver.cpp:237] Train net output #0: loss = 0.043948 (* 1 = 0.043948 loss) +I0407 23:06:39.990483 23658 sgd_solver.cpp:105] Iteration 7824, lr = 0.000195531 +I0407 23:06:45.088812 23658 solver.cpp:218] Iteration 7836 (2.35377 iter/s, 5.0982s/12 iters), loss = 0.159331 +I0407 23:06:45.088865 23658 solver.cpp:237] Train net output #0: loss = 0.159331 (* 1 = 0.159331 loss) +I0407 23:06:45.088876 23658 sgd_solver.cpp:105] Iteration 7836, lr = 0.000194354 +I0407 23:06:50.175081 23658 solver.cpp:218] Iteration 7848 (2.35938 iter/s, 5.08608s/12 iters), loss = 0.074174 +I0407 23:06:50.175122 23658 solver.cpp:237] Train net output #0: loss = 0.074174 (* 1 = 0.074174 loss) +I0407 23:06:50.175132 23658 sgd_solver.cpp:105] Iteration 7848, lr = 0.000193185 +I0407 23:06:52.211426 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 23:06:55.360672 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 23:06:57.686070 23658 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 23:06:57.686096 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:06:59.091428 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:02.174026 23658 solver.cpp:397] Test net output #0: accuracy = 0.476716 +I0407 23:07:02.174078 23658 solver.cpp:397] Test net output #1: loss = 3.00697 (* 1 = 3.00697 loss) +I0407 23:07:04.179872 23658 solver.cpp:218] Iteration 7860 (0.856875 iter/s, 14.0044s/12 iters), loss = 0.147833 +I0407 23:07:04.179937 23658 solver.cpp:237] Train net output #0: loss = 0.147833 (* 1 = 0.147833 loss) +I0407 23:07:04.179950 23658 sgd_solver.cpp:105] Iteration 7860, lr = 0.000192022 +I0407 23:07:09.391360 23658 solver.cpp:218] Iteration 7872 (2.3027 iter/s, 5.21128s/12 iters), loss = 0.142282 +I0407 23:07:09.391400 23658 solver.cpp:237] Train net output #0: loss = 0.142282 (* 1 = 0.142282 loss) +I0407 23:07:09.391410 23658 sgd_solver.cpp:105] Iteration 7872, lr = 0.000190867 +I0407 23:07:14.843119 23658 solver.cpp:218] Iteration 7884 (2.2012 iter/s, 5.45157s/12 iters), loss = 0.0910908 +I0407 23:07:14.843161 23658 solver.cpp:237] Train net output #0: loss = 0.0910909 (* 1 = 0.0910909 loss) +I0407 23:07:14.843170 23658 sgd_solver.cpp:105] Iteration 7884, lr = 0.000189719 +I0407 23:07:17.068084 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:19.927327 23658 solver.cpp:218] Iteration 7896 (2.36034 iter/s, 5.08401s/12 iters), loss = 0.10941 +I0407 23:07:19.927382 23658 solver.cpp:237] Train net output #0: loss = 0.10941 (* 1 = 0.10941 loss) +I0407 23:07:19.927394 23658 sgd_solver.cpp:105] Iteration 7896, lr = 0.000188577 +I0407 23:07:25.038230 23658 solver.cpp:218] Iteration 7908 (2.34801 iter/s, 5.1107s/12 iters), loss = 0.0564959 +I0407 23:07:25.038282 23658 solver.cpp:237] Train net output #0: loss = 0.0564959 (* 1 = 0.0564959 loss) +I0407 23:07:25.038295 23658 sgd_solver.cpp:105] Iteration 7908, lr = 0.000187443 +I0407 23:07:30.337399 23658 solver.cpp:218] Iteration 7920 (2.26459 iter/s, 5.29897s/12 iters), loss = 0.144215 +I0407 23:07:30.337478 23658 solver.cpp:237] Train net output #0: loss = 0.144215 (* 1 = 0.144215 loss) +I0407 23:07:30.337489 23658 sgd_solver.cpp:105] Iteration 7920, lr = 0.000186315 +I0407 23:07:35.335846 23658 solver.cpp:218] Iteration 7932 (2.40085 iter/s, 4.99822s/12 iters), loss = 0.0690946 +I0407 23:07:35.335893 23658 solver.cpp:237] Train net output #0: loss = 0.0690946 (* 1 = 0.0690946 loss) +I0407 23:07:35.335902 23658 sgd_solver.cpp:105] Iteration 7932, lr = 0.000185194 +I0407 23:07:40.624472 23658 solver.cpp:218] Iteration 7944 (2.2691 iter/s, 5.28843s/12 iters), loss = 0.0778103 +I0407 23:07:40.624521 23658 solver.cpp:237] Train net output #0: loss = 0.0778103 (* 1 = 0.0778103 loss) +I0407 23:07:40.624531 23658 sgd_solver.cpp:105] Iteration 7944, lr = 0.00018408 +I0407 23:07:45.583061 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 23:07:48.571655 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 23:07:50.880486 23658 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 23:07:50.880511 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:07:52.238337 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:55.352056 23658 solver.cpp:397] Test net output #0: accuracy = 0.484681 +I0407 23:07:55.352104 23658 solver.cpp:397] Test net output #1: loss = 2.98466 (* 1 = 2.98466 loss) +I0407 23:07:55.442127 23658 solver.cpp:218] Iteration 7956 (0.809869 iter/s, 14.8172s/12 iters), loss = 0.119609 +I0407 23:07:55.442183 23658 solver.cpp:237] Train net output #0: loss = 0.119609 (* 1 = 0.119609 loss) +I0407 23:07:55.442193 23658 sgd_solver.cpp:105] Iteration 7956, lr = 0.000182972 +I0407 23:07:59.882524 23658 solver.cpp:218] Iteration 7968 (2.70257 iter/s, 4.44022s/12 iters), loss = 0.0809751 +I0407 23:07:59.882570 23658 solver.cpp:237] Train net output #0: loss = 0.0809751 (* 1 = 0.0809751 loss) +I0407 23:07:59.882582 23658 sgd_solver.cpp:105] Iteration 7968, lr = 0.000181871 +I0407 23:08:05.192750 23658 solver.cpp:218] Iteration 7980 (2.25987 iter/s, 5.31003s/12 iters), loss = 0.124834 +I0407 23:08:05.192898 23658 solver.cpp:237] Train net output #0: loss = 0.124834 (* 1 = 0.124834 loss) +I0407 23:08:05.192911 23658 sgd_solver.cpp:105] Iteration 7980, lr = 0.000180777 +I0407 23:08:09.555169 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:10.282719 23658 solver.cpp:218] Iteration 7992 (2.35771 iter/s, 5.08968s/12 iters), loss = 0.156162 +I0407 23:08:10.282771 23658 solver.cpp:237] Train net output #0: loss = 0.156162 (* 1 = 0.156162 loss) +I0407 23:08:10.282783 23658 sgd_solver.cpp:105] Iteration 7992, lr = 0.00017969 +I0407 23:08:15.240320 23658 solver.cpp:218] Iteration 8004 (2.42062 iter/s, 4.9574s/12 iters), loss = 0.102888 +I0407 23:08:15.240375 23658 solver.cpp:237] Train net output #0: loss = 0.102888 (* 1 = 0.102888 loss) +I0407 23:08:15.240387 23658 sgd_solver.cpp:105] Iteration 8004, lr = 0.000178608 +I0407 23:08:20.303894 23658 solver.cpp:218] Iteration 8016 (2.36996 iter/s, 5.06338s/12 iters), loss = 0.205399 +I0407 23:08:20.303937 23658 solver.cpp:237] Train net output #0: loss = 0.205399 (* 1 = 0.205399 loss) +I0407 23:08:20.303947 23658 sgd_solver.cpp:105] Iteration 8016, lr = 0.000177534 +I0407 23:08:25.402464 23658 solver.cpp:218] Iteration 8028 (2.35369 iter/s, 5.09838s/12 iters), loss = 0.144024 +I0407 23:08:25.402518 23658 solver.cpp:237] Train net output #0: loss = 0.144024 (* 1 = 0.144024 loss) +I0407 23:08:25.402530 23658 sgd_solver.cpp:105] Iteration 8028, lr = 0.000176466 +I0407 23:08:30.925287 23658 solver.cpp:218] Iteration 8040 (2.17288 iter/s, 5.52262s/12 iters), loss = 0.0518308 +I0407 23:08:30.925328 23658 solver.cpp:237] Train net output #0: loss = 0.0518308 (* 1 = 0.0518308 loss) +I0407 23:08:30.925338 23658 sgd_solver.cpp:105] Iteration 8040, lr = 0.000175404 +I0407 23:08:36.014071 23658 solver.cpp:218] Iteration 8052 (2.35821 iter/s, 5.0886s/12 iters), loss = 0.0476075 +I0407 23:08:36.014175 23658 solver.cpp:237] Train net output #0: loss = 0.0476075 (* 1 = 0.0476075 loss) +I0407 23:08:36.014186 23658 sgd_solver.cpp:105] Iteration 8052, lr = 0.000174349 +I0407 23:08:38.083344 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 23:08:41.122290 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 23:08:43.422046 23658 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 23:08:43.422063 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:08:44.826764 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:47.985778 23658 solver.cpp:397] Test net output #0: accuracy = 0.487745 +I0407 23:08:47.985827 23658 solver.cpp:397] Test net output #1: loss = 2.99357 (* 1 = 2.99357 loss) +I0407 23:08:49.997900 23658 solver.cpp:218] Iteration 8064 (0.858163 iter/s, 13.9834s/12 iters), loss = 0.0862874 +I0407 23:08:49.997951 23658 solver.cpp:237] Train net output #0: loss = 0.0862874 (* 1 = 0.0862874 loss) +I0407 23:08:49.997973 23658 sgd_solver.cpp:105] Iteration 8064, lr = 0.0001733 +I0407 23:08:55.309353 23658 solver.cpp:218] Iteration 8076 (2.25935 iter/s, 5.31126s/12 iters), loss = 0.0857287 +I0407 23:08:55.309402 23658 solver.cpp:237] Train net output #0: loss = 0.0857288 (* 1 = 0.0857288 loss) +I0407 23:08:55.309412 23658 sgd_solver.cpp:105] Iteration 8076, lr = 0.000172257 +I0407 23:09:00.376777 23658 solver.cpp:218] Iteration 8088 (2.36816 iter/s, 5.06723s/12 iters), loss = 0.0803614 +I0407 23:09:00.376832 23658 solver.cpp:237] Train net output #0: loss = 0.0803614 (* 1 = 0.0803614 loss) +I0407 23:09:00.376844 23658 sgd_solver.cpp:105] Iteration 8088, lr = 0.000171221 +I0407 23:09:01.892781 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:05.845358 23658 solver.cpp:218] Iteration 8100 (2.19444 iter/s, 5.46837s/12 iters), loss = 0.0800746 +I0407 23:09:05.845412 23658 solver.cpp:237] Train net output #0: loss = 0.0800747 (* 1 = 0.0800747 loss) +I0407 23:09:05.845423 23658 sgd_solver.cpp:105] Iteration 8100, lr = 0.00017019 +I0407 23:09:10.909065 23658 solver.cpp:218] Iteration 8112 (2.3699 iter/s, 5.0635s/12 iters), loss = 0.0645936 +I0407 23:09:10.909269 23658 solver.cpp:237] Train net output #0: loss = 0.0645936 (* 1 = 0.0645936 loss) +I0407 23:09:10.909282 23658 sgd_solver.cpp:105] Iteration 8112, lr = 0.000169167 +I0407 23:09:15.873139 23658 solver.cpp:218] Iteration 8124 (2.41753 iter/s, 4.96374s/12 iters), loss = 0.0581823 +I0407 23:09:15.873178 23658 solver.cpp:237] Train net output #0: loss = 0.0581823 (* 1 = 0.0581823 loss) +I0407 23:09:15.873188 23658 sgd_solver.cpp:105] Iteration 8124, lr = 0.000168149 +I0407 23:09:21.329893 23658 solver.cpp:218] Iteration 8136 (2.19919 iter/s, 5.45656s/12 iters), loss = 0.152789 +I0407 23:09:21.329938 23658 solver.cpp:237] Train net output #0: loss = 0.152789 (* 1 = 0.152789 loss) +I0407 23:09:21.329949 23658 sgd_solver.cpp:105] Iteration 8136, lr = 0.000167137 +I0407 23:09:26.507745 23658 solver.cpp:218] Iteration 8148 (2.31765 iter/s, 5.17766s/12 iters), loss = 0.0649766 +I0407 23:09:26.507798 23658 solver.cpp:237] Train net output #0: loss = 0.0649767 (* 1 = 0.0649767 loss) +I0407 23:09:26.507810 23658 sgd_solver.cpp:105] Iteration 8148, lr = 0.000166131 +I0407 23:09:31.093259 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 23:09:34.136351 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 23:09:36.485550 23658 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 23:09:36.485575 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:09:37.738803 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:40.929994 23658 solver.cpp:397] Test net output #0: accuracy = 0.488971 +I0407 23:09:40.930119 23658 solver.cpp:397] Test net output #1: loss = 2.96994 (* 1 = 2.96994 loss) +I0407 23:09:41.020310 23658 solver.cpp:218] Iteration 8160 (0.826895 iter/s, 14.5121s/12 iters), loss = 0.122802 +I0407 23:09:41.020362 23658 solver.cpp:237] Train net output #0: loss = 0.122802 (* 1 = 0.122802 loss) +I0407 23:09:41.020375 23658 sgd_solver.cpp:105] Iteration 8160, lr = 0.000165132 +I0407 23:09:45.359293 23658 solver.cpp:218] Iteration 8172 (2.76574 iter/s, 4.33881s/12 iters), loss = 0.120194 +I0407 23:09:45.359344 23658 solver.cpp:237] Train net output #0: loss = 0.120194 (* 1 = 0.120194 loss) +I0407 23:09:45.359356 23658 sgd_solver.cpp:105] Iteration 8172, lr = 0.000164138 +I0407 23:09:50.743710 23658 solver.cpp:218] Iteration 8184 (2.22874 iter/s, 5.38422s/12 iters), loss = 0.154351 +I0407 23:09:50.743762 23658 solver.cpp:237] Train net output #0: loss = 0.154351 (* 1 = 0.154351 loss) +I0407 23:09:50.743777 23658 sgd_solver.cpp:105] Iteration 8184, lr = 0.000163151 +I0407 23:09:55.037801 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:56.492063 23658 solver.cpp:218] Iteration 8196 (2.08763 iter/s, 5.74814s/12 iters), loss = 0.0702209 +I0407 23:09:56.492111 23658 solver.cpp:237] Train net output #0: loss = 0.0702209 (* 1 = 0.0702209 loss) +I0407 23:09:56.492125 23658 sgd_solver.cpp:105] Iteration 8196, lr = 0.000162169 +I0407 23:10:01.716084 23658 solver.cpp:218] Iteration 8208 (2.29717 iter/s, 5.22382s/12 iters), loss = 0.0740044 +I0407 23:10:01.716140 23658 solver.cpp:237] Train net output #0: loss = 0.0740045 (* 1 = 0.0740045 loss) +I0407 23:10:01.716152 23658 sgd_solver.cpp:105] Iteration 8208, lr = 0.000161194 +I0407 23:10:07.157681 23658 solver.cpp:218] Iteration 8220 (2.20532 iter/s, 5.44139s/12 iters), loss = 0.0970673 +I0407 23:10:07.157734 23658 solver.cpp:237] Train net output #0: loss = 0.0970674 (* 1 = 0.0970674 loss) +I0407 23:10:07.157747 23658 sgd_solver.cpp:105] Iteration 8220, lr = 0.000160224 +I0407 23:10:12.185969 23658 solver.cpp:218] Iteration 8232 (2.3866 iter/s, 5.02808s/12 iters), loss = 0.0951295 +I0407 23:10:12.186080 23658 solver.cpp:237] Train net output #0: loss = 0.0951295 (* 1 = 0.0951295 loss) +I0407 23:10:12.186094 23658 sgd_solver.cpp:105] Iteration 8232, lr = 0.00015926 +I0407 23:10:17.242383 23658 solver.cpp:218] Iteration 8244 (2.37334 iter/s, 5.05617s/12 iters), loss = 0.0456155 +I0407 23:10:17.242434 23658 solver.cpp:237] Train net output #0: loss = 0.0456155 (* 1 = 0.0456155 loss) +I0407 23:10:17.242447 23658 sgd_solver.cpp:105] Iteration 8244, lr = 0.000158302 +I0407 23:10:22.195281 23658 solver.cpp:218] Iteration 8256 (2.42292 iter/s, 4.9527s/12 iters), loss = 0.0615929 +I0407 23:10:22.195335 23658 solver.cpp:237] Train net output #0: loss = 0.0615929 (* 1 = 0.0615929 loss) +I0407 23:10:22.195346 23658 sgd_solver.cpp:105] Iteration 8256, lr = 0.000157349 +I0407 23:10:24.195086 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 23:10:27.274753 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 23:10:29.580018 23658 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 23:10:29.580041 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:10:30.880961 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:34.112869 23658 solver.cpp:397] Test net output #0: accuracy = 0.484069 +I0407 23:10:34.112905 23658 solver.cpp:397] Test net output #1: loss = 2.97997 (* 1 = 2.97997 loss) +I0407 23:10:35.926798 23658 solver.cpp:218] Iteration 8268 (0.873929 iter/s, 13.7311s/12 iters), loss = 0.0881153 +I0407 23:10:35.926847 23658 solver.cpp:237] Train net output #0: loss = 0.0881153 (* 1 = 0.0881153 loss) +I0407 23:10:35.926859 23658 sgd_solver.cpp:105] Iteration 8268, lr = 0.000156402 +I0407 23:10:40.976547 23658 solver.cpp:218] Iteration 8280 (2.37645 iter/s, 5.04955s/12 iters), loss = 0.16291 +I0407 23:10:40.976598 23658 solver.cpp:237] Train net output #0: loss = 0.16291 (* 1 = 0.16291 loss) +I0407 23:10:40.976610 23658 sgd_solver.cpp:105] Iteration 8280, lr = 0.000155461 +I0407 23:10:46.090864 23658 solver.cpp:218] Iteration 8292 (2.34645 iter/s, 5.11412s/12 iters), loss = 0.0607589 +I0407 23:10:46.090988 23658 solver.cpp:237] Train net output #0: loss = 0.0607589 (* 1 = 0.0607589 loss) +I0407 23:10:46.091002 23658 sgd_solver.cpp:105] Iteration 8292, lr = 0.000154526 +I0407 23:10:46.724232 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:51.111474 23658 solver.cpp:218] Iteration 8304 (2.39028 iter/s, 5.02034s/12 iters), loss = 0.0886923 +I0407 23:10:51.111527 23658 solver.cpp:237] Train net output #0: loss = 0.0886924 (* 1 = 0.0886924 loss) +I0407 23:10:51.111539 23658 sgd_solver.cpp:105] Iteration 8304, lr = 0.000153596 +I0407 23:10:54.076601 23658 blocking_queue.cpp:49] Waiting for data +I0407 23:10:56.239717 23658 solver.cpp:218] Iteration 8316 (2.34007 iter/s, 5.12805s/12 iters), loss = 0.0827017 +I0407 23:10:56.239764 23658 solver.cpp:237] Train net output #0: loss = 0.0827018 (* 1 = 0.0827018 loss) +I0407 23:10:56.239776 23658 sgd_solver.cpp:105] Iteration 8316, lr = 0.000152672 +I0407 23:11:01.417102 23658 solver.cpp:218] Iteration 8328 (2.31786 iter/s, 5.17719s/12 iters), loss = 0.0540971 +I0407 23:11:01.417153 23658 solver.cpp:237] Train net output #0: loss = 0.0540971 (* 1 = 0.0540971 loss) +I0407 23:11:01.417165 23658 sgd_solver.cpp:105] Iteration 8328, lr = 0.000151754 +I0407 23:11:06.535833 23658 solver.cpp:218] Iteration 8340 (2.34442 iter/s, 5.11853s/12 iters), loss = 0.076166 +I0407 23:11:06.535883 23658 solver.cpp:237] Train net output #0: loss = 0.0761661 (* 1 = 0.0761661 loss) +I0407 23:11:06.535894 23658 sgd_solver.cpp:105] Iteration 8340, lr = 0.000150841 +I0407 23:11:11.573184 23658 solver.cpp:218] Iteration 8352 (2.38229 iter/s, 5.03716s/12 iters), loss = 0.0970472 +I0407 23:11:11.573223 23658 solver.cpp:237] Train net output #0: loss = 0.0970473 (* 1 = 0.0970473 loss) +I0407 23:11:11.573233 23658 sgd_solver.cpp:105] Iteration 8352, lr = 0.000149933 +I0407 23:11:16.104439 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 23:11:19.160089 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 23:11:22.003818 23658 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 23:11:22.003844 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:11:23.175403 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:26.636945 23658 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 23:11:26.636986 23658 solver.cpp:397] Test net output #1: loss = 2.97895 (* 1 = 2.97895 loss) +I0407 23:11:26.726868 23658 solver.cpp:218] Iteration 8364 (0.79191 iter/s, 15.1532s/12 iters), loss = 0.139137 +I0407 23:11:26.726907 23658 solver.cpp:237] Train net output #0: loss = 0.139137 (* 1 = 0.139137 loss) +I0407 23:11:26.726917 23658 sgd_solver.cpp:105] Iteration 8364, lr = 0.000149031 +I0407 23:11:31.041757 23658 solver.cpp:218] Iteration 8376 (2.78118 iter/s, 4.31472s/12 iters), loss = 0.130051 +I0407 23:11:31.041815 23658 solver.cpp:237] Train net output #0: loss = 0.130051 (* 1 = 0.130051 loss) +I0407 23:11:31.041829 23658 sgd_solver.cpp:105] Iteration 8376, lr = 0.000148134 +I0407 23:11:36.287863 23658 solver.cpp:218] Iteration 8388 (2.2875 iter/s, 5.24589s/12 iters), loss = 0.0902788 +I0407 23:11:36.287914 23658 solver.cpp:237] Train net output #0: loss = 0.0902789 (* 1 = 0.0902789 loss) +I0407 23:11:36.287925 23658 sgd_solver.cpp:105] Iteration 8388, lr = 0.000147243 +I0407 23:11:39.150211 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:41.418339 23658 solver.cpp:218] Iteration 8400 (2.33906 iter/s, 5.13028s/12 iters), loss = 0.0979695 +I0407 23:11:41.418395 23658 solver.cpp:237] Train net output #0: loss = 0.0979696 (* 1 = 0.0979696 loss) +I0407 23:11:41.418409 23658 sgd_solver.cpp:105] Iteration 8400, lr = 0.000146357 +I0407 23:11:46.397714 23658 solver.cpp:218] Iteration 8412 (2.41004 iter/s, 4.97918s/12 iters), loss = 0.0510425 +I0407 23:11:46.397886 23658 solver.cpp:237] Train net output #0: loss = 0.0510425 (* 1 = 0.0510425 loss) +I0407 23:11:46.397899 23658 sgd_solver.cpp:105] Iteration 8412, lr = 0.000145477 +I0407 23:11:51.436177 23658 solver.cpp:218] Iteration 8424 (2.38183 iter/s, 5.03815s/12 iters), loss = 0.0345978 +I0407 23:11:51.436233 23658 solver.cpp:237] Train net output #0: loss = 0.0345979 (* 1 = 0.0345979 loss) +I0407 23:11:51.436246 23658 sgd_solver.cpp:105] Iteration 8424, lr = 0.000144601 +I0407 23:11:56.408666 23658 solver.cpp:218] Iteration 8436 (2.41338 iter/s, 4.97228s/12 iters), loss = 0.0716307 +I0407 23:11:56.408716 23658 solver.cpp:237] Train net output #0: loss = 0.0716307 (* 1 = 0.0716307 loss) +I0407 23:11:56.408726 23658 sgd_solver.cpp:105] Iteration 8436, lr = 0.000143731 +I0407 23:12:01.414889 23658 solver.cpp:218] Iteration 8448 (2.39711 iter/s, 5.00602s/12 iters), loss = 0.134223 +I0407 23:12:01.414947 23658 solver.cpp:237] Train net output #0: loss = 0.134223 (* 1 = 0.134223 loss) +I0407 23:12:01.414959 23658 sgd_solver.cpp:105] Iteration 8448, lr = 0.000142867 +I0407 23:12:06.438376 23658 solver.cpp:218] Iteration 8460 (2.38888 iter/s, 5.02328s/12 iters), loss = 0.118504 +I0407 23:12:06.438426 23658 solver.cpp:237] Train net output #0: loss = 0.118504 (* 1 = 0.118504 loss) +I0407 23:12:06.438437 23658 sgd_solver.cpp:105] Iteration 8460, lr = 0.000142007 +I0407 23:12:08.483472 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 23:12:11.547940 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 23:12:13.856323 23658 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 23:12:13.856348 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:12:15.010732 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:18.405818 23658 solver.cpp:397] Test net output #0: accuracy = 0.490809 +I0407 23:12:18.405943 23658 solver.cpp:397] Test net output #1: loss = 2.97696 (* 1 = 2.97696 loss) +I0407 23:12:20.331063 23658 solver.cpp:218] Iteration 8472 (0.86379 iter/s, 13.8923s/12 iters), loss = 0.119788 +I0407 23:12:20.331117 23658 solver.cpp:237] Train net output #0: loss = 0.119788 (* 1 = 0.119788 loss) +I0407 23:12:20.331130 23658 sgd_solver.cpp:105] Iteration 8472, lr = 0.000141153 +I0407 23:12:25.699828 23658 solver.cpp:218] Iteration 8484 (2.23524 iter/s, 5.36856s/12 iters), loss = 0.0678663 +I0407 23:12:25.699888 23658 solver.cpp:237] Train net output #0: loss = 0.0678664 (* 1 = 0.0678664 loss) +I0407 23:12:25.699900 23658 sgd_solver.cpp:105] Iteration 8484, lr = 0.000140303 +I0407 23:12:30.783330 23658 solver.cpp:218] Iteration 8496 (2.36067 iter/s, 5.0833s/12 iters), loss = 0.0732774 +I0407 23:12:30.783380 23658 solver.cpp:237] Train net output #0: loss = 0.0732775 (* 1 = 0.0732775 loss) +I0407 23:12:30.783392 23658 sgd_solver.cpp:105] Iteration 8496, lr = 0.000139459 +I0407 23:12:30.839684 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:36.298722 23658 solver.cpp:218] Iteration 8508 (2.17581 iter/s, 5.51518s/12 iters), loss = 0.179829 +I0407 23:12:36.298787 23658 solver.cpp:237] Train net output #0: loss = 0.179829 (* 1 = 0.179829 loss) +I0407 23:12:36.298801 23658 sgd_solver.cpp:105] Iteration 8508, lr = 0.00013862 +I0407 23:12:41.784648 23658 solver.cpp:218] Iteration 8520 (2.1875 iter/s, 5.48571s/12 iters), loss = 0.0982298 +I0407 23:12:41.784693 23658 solver.cpp:237] Train net output #0: loss = 0.0982299 (* 1 = 0.0982299 loss) +I0407 23:12:41.784703 23658 sgd_solver.cpp:105] Iteration 8520, lr = 0.000137786 +I0407 23:12:47.277981 23658 solver.cpp:218] Iteration 8532 (2.18455 iter/s, 5.49311s/12 iters), loss = 0.110036 +I0407 23:12:47.278023 23658 solver.cpp:237] Train net output #0: loss = 0.110036 (* 1 = 0.110036 loss) +I0407 23:12:47.278031 23658 sgd_solver.cpp:105] Iteration 8532, lr = 0.000136957 +I0407 23:12:52.782968 23658 solver.cpp:218] Iteration 8544 (2.17992 iter/s, 5.50479s/12 iters), loss = 0.138173 +I0407 23:12:52.783120 23658 solver.cpp:237] Train net output #0: loss = 0.138173 (* 1 = 0.138173 loss) +I0407 23:12:52.783135 23658 sgd_solver.cpp:105] Iteration 8544, lr = 0.000136133 +I0407 23:12:58.313342 23658 solver.cpp:218] Iteration 8556 (2.16996 iter/s, 5.53006s/12 iters), loss = 0.109757 +I0407 23:12:58.313395 23658 solver.cpp:237] Train net output #0: loss = 0.109757 (* 1 = 0.109757 loss) +I0407 23:12:58.313405 23658 sgd_solver.cpp:105] Iteration 8556, lr = 0.000135314 +I0407 23:13:03.364833 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 23:13:06.456645 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 23:13:09.070894 23658 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 23:13:09.070922 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:13:10.181951 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:13.599331 23658 solver.cpp:397] Test net output #0: accuracy = 0.491422 +I0407 23:13:13.599381 23658 solver.cpp:397] Test net output #1: loss = 2.97028 (* 1 = 2.97028 loss) +I0407 23:13:13.689271 23658 solver.cpp:218] Iteration 8568 (0.780464 iter/s, 15.3755s/12 iters), loss = 0.172414 +I0407 23:13:13.689325 23658 solver.cpp:237] Train net output #0: loss = 0.172414 (* 1 = 0.172414 loss) +I0407 23:13:13.689337 23658 sgd_solver.cpp:105] Iteration 8568, lr = 0.0001345 +I0407 23:13:18.237753 23658 solver.cpp:218] Iteration 8580 (2.63835 iter/s, 4.5483s/12 iters), loss = 0.106188 +I0407 23:13:18.237795 23658 solver.cpp:237] Train net output #0: loss = 0.106188 (* 1 = 0.106188 loss) +I0407 23:13:18.237807 23658 sgd_solver.cpp:105] Iteration 8580, lr = 0.000133691 +I0407 23:13:23.545989 23658 solver.cpp:218] Iteration 8592 (2.26072 iter/s, 5.30804s/12 iters), loss = 0.0717305 +I0407 23:13:23.546100 23658 solver.cpp:237] Train net output #0: loss = 0.0717306 (* 1 = 0.0717306 loss) +I0407 23:13:23.546115 23658 sgd_solver.cpp:105] Iteration 8592, lr = 0.000132887 +I0407 23:13:25.733004 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:28.546495 23658 solver.cpp:218] Iteration 8604 (2.39988 iter/s, 5.00026s/12 iters), loss = 0.129351 +I0407 23:13:28.546542 23658 solver.cpp:237] Train net output #0: loss = 0.129352 (* 1 = 0.129352 loss) +I0407 23:13:28.546555 23658 sgd_solver.cpp:105] Iteration 8604, lr = 0.000132087 +I0407 23:13:33.500239 23658 solver.cpp:218] Iteration 8616 (2.4225 iter/s, 4.95355s/12 iters), loss = 0.141187 +I0407 23:13:33.500286 23658 solver.cpp:237] Train net output #0: loss = 0.141187 (* 1 = 0.141187 loss) +I0407 23:13:33.500296 23658 sgd_solver.cpp:105] Iteration 8616, lr = 0.000131292 +I0407 23:13:38.438139 23658 solver.cpp:218] Iteration 8628 (2.43028 iter/s, 4.9377s/12 iters), loss = 0.113983 +I0407 23:13:38.438195 23658 solver.cpp:237] Train net output #0: loss = 0.113983 (* 1 = 0.113983 loss) +I0407 23:13:38.438207 23658 sgd_solver.cpp:105] Iteration 8628, lr = 0.000130502 +I0407 23:13:43.510450 23658 solver.cpp:218] Iteration 8640 (2.36588 iter/s, 5.07211s/12 iters), loss = 0.0945002 +I0407 23:13:43.510506 23658 solver.cpp:237] Train net output #0: loss = 0.0945003 (* 1 = 0.0945003 loss) +I0407 23:13:43.510520 23658 sgd_solver.cpp:105] Iteration 8640, lr = 0.000129717 +I0407 23:13:48.657310 23658 solver.cpp:218] Iteration 8652 (2.33161 iter/s, 5.14665s/12 iters), loss = 0.037269 +I0407 23:13:48.657361 23658 solver.cpp:237] Train net output #0: loss = 0.0372691 (* 1 = 0.0372691 loss) +I0407 23:13:48.657373 23658 sgd_solver.cpp:105] Iteration 8652, lr = 0.000128937 +I0407 23:13:53.977741 23658 solver.cpp:218] Iteration 8664 (2.25554 iter/s, 5.32024s/12 iters), loss = 0.12678 +I0407 23:13:53.977836 23658 solver.cpp:237] Train net output #0: loss = 0.12678 (* 1 = 0.12678 loss) +I0407 23:13:53.977846 23658 sgd_solver.cpp:105] Iteration 8664, lr = 0.000128161 +I0407 23:13:56.010040 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 23:13:59.004115 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 23:14:01.283382 23658 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 23:14:01.283402 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:14:02.357695 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:05.760881 23658 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 23:14:05.760931 23658 solver.cpp:397] Test net output #1: loss = 2.96648 (* 1 = 2.96648 loss) +I0407 23:14:07.764302 23658 solver.cpp:218] Iteration 8676 (0.870442 iter/s, 13.7861s/12 iters), loss = 0.065185 +I0407 23:14:07.764348 23658 solver.cpp:237] Train net output #0: loss = 0.0651851 (* 1 = 0.0651851 loss) +I0407 23:14:07.764358 23658 sgd_solver.cpp:105] Iteration 8676, lr = 0.00012739 +I0407 23:14:12.947108 23658 solver.cpp:218] Iteration 8688 (2.31544 iter/s, 5.18261s/12 iters), loss = 0.126905 +I0407 23:14:12.947154 23658 solver.cpp:237] Train net output #0: loss = 0.126906 (* 1 = 0.126906 loss) +I0407 23:14:12.947165 23658 sgd_solver.cpp:105] Iteration 8688, lr = 0.000126623 +I0407 23:14:17.349833 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:18.056866 23658 solver.cpp:218] Iteration 8700 (2.34853 iter/s, 5.10957s/12 iters), loss = 0.212586 +I0407 23:14:18.056913 23658 solver.cpp:237] Train net output #0: loss = 0.212586 (* 1 = 0.212586 loss) +I0407 23:14:18.056926 23658 sgd_solver.cpp:105] Iteration 8700, lr = 0.000125862 +I0407 23:14:23.212977 23658 solver.cpp:218] Iteration 8712 (2.32742 iter/s, 5.15592s/12 iters), loss = 0.102977 +I0407 23:14:23.213021 23658 solver.cpp:237] Train net output #0: loss = 0.102977 (* 1 = 0.102977 loss) +I0407 23:14:23.213032 23658 sgd_solver.cpp:105] Iteration 8712, lr = 0.000125104 +I0407 23:14:28.299252 23658 solver.cpp:218] Iteration 8724 (2.35938 iter/s, 5.08608s/12 iters), loss = 0.0601144 +I0407 23:14:28.299357 23658 solver.cpp:237] Train net output #0: loss = 0.0601145 (* 1 = 0.0601145 loss) +I0407 23:14:28.299374 23658 sgd_solver.cpp:105] Iteration 8724, lr = 0.000124352 +I0407 23:14:33.223244 23658 solver.cpp:218] Iteration 8736 (2.43717 iter/s, 4.92375s/12 iters), loss = 0.100859 +I0407 23:14:33.223292 23658 solver.cpp:237] Train net output #0: loss = 0.100859 (* 1 = 0.100859 loss) +I0407 23:14:33.223304 23658 sgd_solver.cpp:105] Iteration 8736, lr = 0.000123604 +I0407 23:14:38.420050 23658 solver.cpp:218] Iteration 8748 (2.3092 iter/s, 5.19661s/12 iters), loss = 0.0412937 +I0407 23:14:38.420099 23658 solver.cpp:237] Train net output #0: loss = 0.0412938 (* 1 = 0.0412938 loss) +I0407 23:14:38.420109 23658 sgd_solver.cpp:105] Iteration 8748, lr = 0.00012286 +I0407 23:14:43.715389 23658 solver.cpp:218] Iteration 8760 (2.26623 iter/s, 5.29515s/12 iters), loss = 0.0391437 +I0407 23:14:43.715421 23658 solver.cpp:237] Train net output #0: loss = 0.0391437 (* 1 = 0.0391437 loss) +I0407 23:14:43.715430 23658 sgd_solver.cpp:105] Iteration 8760, lr = 0.000122121 +I0407 23:14:48.262804 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 23:14:51.282788 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 23:14:53.625941 23658 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 23:14:53.625982 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:14:54.662228 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:58.109817 23658 solver.cpp:397] Test net output #0: accuracy = 0.490809 +I0407 23:14:58.109845 23658 solver.cpp:397] Test net output #1: loss = 2.98252 (* 1 = 2.98252 loss) +I0407 23:14:58.199580 23658 solver.cpp:218] Iteration 8772 (0.828514 iter/s, 14.4838s/12 iters), loss = 0.0250738 +I0407 23:14:58.199640 23658 solver.cpp:237] Train net output #0: loss = 0.0250739 (* 1 = 0.0250739 loss) +I0407 23:14:58.199651 23658 sgd_solver.cpp:105] Iteration 8772, lr = 0.000121386 +I0407 23:15:02.765581 23658 solver.cpp:218] Iteration 8784 (2.62822 iter/s, 4.56583s/12 iters), loss = 0.0569003 +I0407 23:15:02.765727 23658 solver.cpp:237] Train net output #0: loss = 0.0569004 (* 1 = 0.0569004 loss) +I0407 23:15:02.765738 23658 sgd_solver.cpp:105] Iteration 8784, lr = 0.000120656 +I0407 23:15:07.865921 23658 solver.cpp:218] Iteration 8796 (2.35291 iter/s, 5.10007s/12 iters), loss = 0.0860678 +I0407 23:15:07.865978 23658 solver.cpp:237] Train net output #0: loss = 0.0860678 (* 1 = 0.0860678 loss) +I0407 23:15:07.865990 23658 sgd_solver.cpp:105] Iteration 8796, lr = 0.00011993 +I0407 23:15:09.313858 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:12.920220 23658 solver.cpp:218] Iteration 8808 (2.3743 iter/s, 5.05412s/12 iters), loss = 0.0742808 +I0407 23:15:12.920264 23658 solver.cpp:237] Train net output #0: loss = 0.0742809 (* 1 = 0.0742809 loss) +I0407 23:15:12.920274 23658 sgd_solver.cpp:105] Iteration 8808, lr = 0.000119208 +I0407 23:15:17.968926 23658 solver.cpp:218] Iteration 8820 (2.37693 iter/s, 5.04853s/12 iters), loss = 0.0387864 +I0407 23:15:17.968979 23658 solver.cpp:237] Train net output #0: loss = 0.0387864 (* 1 = 0.0387864 loss) +I0407 23:15:17.968991 23658 sgd_solver.cpp:105] Iteration 8820, lr = 0.000118491 +I0407 23:15:23.292675 23658 solver.cpp:218] Iteration 8832 (2.25413 iter/s, 5.32356s/12 iters), loss = 0.0408638 +I0407 23:15:23.292721 23658 solver.cpp:237] Train net output #0: loss = 0.0408638 (* 1 = 0.0408638 loss) +I0407 23:15:23.292733 23658 sgd_solver.cpp:105] Iteration 8832, lr = 0.000117778 +I0407 23:15:28.394454 23658 solver.cpp:218] Iteration 8844 (2.3522 iter/s, 5.1016s/12 iters), loss = 0.0652438 +I0407 23:15:28.394501 23658 solver.cpp:237] Train net output #0: loss = 0.0652438 (* 1 = 0.0652438 loss) +I0407 23:15:28.394513 23658 sgd_solver.cpp:105] Iteration 8844, lr = 0.000117069 +I0407 23:15:33.487416 23658 solver.cpp:218] Iteration 8856 (2.35627 iter/s, 5.09279s/12 iters), loss = 0.0568283 +I0407 23:15:33.487831 23658 solver.cpp:237] Train net output #0: loss = 0.0568283 (* 1 = 0.0568283 loss) +I0407 23:15:33.487846 23658 sgd_solver.cpp:105] Iteration 8856, lr = 0.000116365 +I0407 23:15:38.757771 23658 solver.cpp:218] Iteration 8868 (2.27712 iter/s, 5.26982s/12 iters), loss = 0.0252308 +I0407 23:15:38.757809 23658 solver.cpp:237] Train net output #0: loss = 0.0252309 (* 1 = 0.0252309 loss) +I0407 23:15:38.757818 23658 sgd_solver.cpp:105] Iteration 8868, lr = 0.000115665 +I0407 23:15:40.937789 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 23:15:43.929462 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 23:15:46.228240 23658 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 23:15:46.228261 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:15:47.223577 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:50.693606 23658 solver.cpp:397] Test net output #0: accuracy = 0.492034 +I0407 23:15:50.693662 23658 solver.cpp:397] Test net output #1: loss = 2.96265 (* 1 = 2.96265 loss) +I0407 23:15:52.458043 23658 solver.cpp:218] Iteration 8880 (0.875918 iter/s, 13.6999s/12 iters), loss = 0.154737 +I0407 23:15:52.458086 23658 solver.cpp:237] Train net output #0: loss = 0.154737 (* 1 = 0.154737 loss) +I0407 23:15:52.458096 23658 sgd_solver.cpp:105] Iteration 8880, lr = 0.000114969 +I0407 23:15:57.502781 23658 solver.cpp:218] Iteration 8892 (2.3788 iter/s, 5.04457s/12 iters), loss = 0.070788 +I0407 23:15:57.502825 23658 solver.cpp:237] Train net output #0: loss = 0.070788 (* 1 = 0.070788 loss) +I0407 23:15:57.502835 23658 sgd_solver.cpp:105] Iteration 8892, lr = 0.000114277 +I0407 23:16:01.173982 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:02.611413 23658 solver.cpp:218] Iteration 8904 (2.34905 iter/s, 5.10845s/12 iters), loss = 0.05441 +I0407 23:16:02.611460 23658 solver.cpp:237] Train net output #0: loss = 0.0544101 (* 1 = 0.0544101 loss) +I0407 23:16:02.611470 23658 sgd_solver.cpp:105] Iteration 8904, lr = 0.00011359 +I0407 23:16:07.676704 23658 solver.cpp:218] Iteration 8916 (2.36914 iter/s, 5.06512s/12 iters), loss = 0.0739151 +I0407 23:16:07.676841 23658 solver.cpp:237] Train net output #0: loss = 0.0739151 (* 1 = 0.0739151 loss) +I0407 23:16:07.676853 23658 sgd_solver.cpp:105] Iteration 8916, lr = 0.000112906 +I0407 23:16:12.682675 23658 solver.cpp:218] Iteration 8928 (2.39726 iter/s, 5.00571s/12 iters), loss = 0.052469 +I0407 23:16:12.682724 23658 solver.cpp:237] Train net output #0: loss = 0.052469 (* 1 = 0.052469 loss) +I0407 23:16:12.682734 23658 sgd_solver.cpp:105] Iteration 8928, lr = 0.000112227 +I0407 23:16:17.578809 23658 solver.cpp:218] Iteration 8940 (2.451 iter/s, 4.89595s/12 iters), loss = 0.170249 +I0407 23:16:17.578872 23658 solver.cpp:237] Train net output #0: loss = 0.170249 (* 1 = 0.170249 loss) +I0407 23:16:17.578887 23658 sgd_solver.cpp:105] Iteration 8940, lr = 0.000111552 +I0407 23:16:22.595192 23658 solver.cpp:218] Iteration 8952 (2.39225 iter/s, 5.01619s/12 iters), loss = 0.0946961 +I0407 23:16:22.595245 23658 solver.cpp:237] Train net output #0: loss = 0.0946961 (* 1 = 0.0946961 loss) +I0407 23:16:22.595257 23658 sgd_solver.cpp:105] Iteration 8952, lr = 0.000110881 +I0407 23:16:27.602393 23658 solver.cpp:218] Iteration 8964 (2.39664 iter/s, 5.00702s/12 iters), loss = 0.0546663 +I0407 23:16:27.602468 23658 solver.cpp:237] Train net output #0: loss = 0.0546664 (* 1 = 0.0546664 loss) +I0407 23:16:27.602494 23658 sgd_solver.cpp:105] Iteration 8964, lr = 0.000110214 +I0407 23:16:32.209003 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 23:16:35.223116 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 23:16:37.529839 23658 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 23:16:37.529862 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:16:38.689884 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:42.192572 23658 solver.cpp:397] Test net output #0: accuracy = 0.48652 +I0407 23:16:42.192622 23658 solver.cpp:397] Test net output #1: loss = 2.98666 (* 1 = 2.98666 loss) +I0407 23:16:42.282737 23658 solver.cpp:218] Iteration 8976 (0.817443 iter/s, 14.6799s/12 iters), loss = 0.102669 +I0407 23:16:42.282789 23658 solver.cpp:237] Train net output #0: loss = 0.102669 (* 1 = 0.102669 loss) +I0407 23:16:42.282801 23658 sgd_solver.cpp:105] Iteration 8976, lr = 0.00010955 +I0407 23:16:46.615456 23658 solver.cpp:218] Iteration 8988 (2.76973 iter/s, 4.33255s/12 iters), loss = 0.0577148 +I0407 23:16:46.615502 23658 solver.cpp:237] Train net output #0: loss = 0.0577148 (* 1 = 0.0577148 loss) +I0407 23:16:46.615511 23658 sgd_solver.cpp:105] Iteration 8988, lr = 0.000108891 +I0407 23:16:49.923959 23658 blocking_queue.cpp:49] Waiting for data +I0407 23:16:51.660457 23658 solver.cpp:218] Iteration 9000 (2.37868 iter/s, 5.04483s/12 iters), loss = 0.197473 +I0407 23:16:51.660499 23658 solver.cpp:237] Train net output #0: loss = 0.197473 (* 1 = 0.197473 loss) +I0407 23:16:51.660509 23658 sgd_solver.cpp:105] Iteration 9000, lr = 0.000108236 +I0407 23:16:52.363377 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:56.693222 23658 solver.cpp:218] Iteration 9012 (2.38446 iter/s, 5.03259s/12 iters), loss = 0.109252 +I0407 23:16:56.693267 23658 solver.cpp:237] Train net output #0: loss = 0.109252 (* 1 = 0.109252 loss) +I0407 23:16:56.693280 23658 sgd_solver.cpp:105] Iteration 9012, lr = 0.000107585 +I0407 23:17:01.769585 23658 solver.cpp:218] Iteration 9024 (2.36398 iter/s, 5.07619s/12 iters), loss = 0.0783496 +I0407 23:17:01.769631 23658 solver.cpp:237] Train net output #0: loss = 0.0783497 (* 1 = 0.0783497 loss) +I0407 23:17:01.769642 23658 sgd_solver.cpp:105] Iteration 9024, lr = 0.000106938 +I0407 23:17:06.814214 23658 solver.cpp:218] Iteration 9036 (2.37885 iter/s, 5.04445s/12 iters), loss = 0.0696063 +I0407 23:17:06.814270 23658 solver.cpp:237] Train net output #0: loss = 0.0696064 (* 1 = 0.0696064 loss) +I0407 23:17:06.814285 23658 sgd_solver.cpp:105] Iteration 9036, lr = 0.000106294 +I0407 23:17:11.786197 23658 solver.cpp:218] Iteration 9048 (2.41361 iter/s, 4.9718s/12 iters), loss = 0.0762541 +I0407 23:17:11.786371 23658 solver.cpp:237] Train net output #0: loss = 0.0762541 (* 1 = 0.0762541 loss) +I0407 23:17:11.786386 23658 sgd_solver.cpp:105] Iteration 9048, lr = 0.000105655 +I0407 23:17:16.837764 23658 solver.cpp:218] Iteration 9060 (2.37564 iter/s, 5.05126s/12 iters), loss = 0.0391058 +I0407 23:17:16.837821 23658 solver.cpp:237] Train net output #0: loss = 0.0391059 (* 1 = 0.0391059 loss) +I0407 23:17:16.837834 23658 sgd_solver.cpp:105] Iteration 9060, lr = 0.000105019 +I0407 23:17:22.180604 23658 solver.cpp:218] Iteration 9072 (2.24608 iter/s, 5.34265s/12 iters), loss = 0.1517 +I0407 23:17:22.180644 23658 solver.cpp:237] Train net output #0: loss = 0.1517 (* 1 = 0.1517 loss) +I0407 23:17:22.180652 23658 sgd_solver.cpp:105] Iteration 9072, lr = 0.000104387 +I0407 23:17:24.253350 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 23:17:27.284204 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 23:17:30.715631 23658 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 23:17:30.715657 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:17:31.620471 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:35.171219 23658 solver.cpp:397] Test net output #0: accuracy = 0.484069 +I0407 23:17:35.171267 23658 solver.cpp:397] Test net output #1: loss = 2.9953 (* 1 = 2.9953 loss) +I0407 23:17:37.041491 23658 solver.cpp:218] Iteration 9084 (0.807511 iter/s, 14.8605s/12 iters), loss = 0.0411978 +I0407 23:17:37.041543 23658 solver.cpp:237] Train net output #0: loss = 0.0411978 (* 1 = 0.0411978 loss) +I0407 23:17:37.041555 23658 sgd_solver.cpp:105] Iteration 9084, lr = 0.000103759 +I0407 23:17:42.059316 23658 solver.cpp:218] Iteration 9096 (2.39156 iter/s, 5.01764s/12 iters), loss = 0.139389 +I0407 23:17:42.059460 23658 solver.cpp:237] Train net output #0: loss = 0.139389 (* 1 = 0.139389 loss) +I0407 23:17:42.059476 23658 sgd_solver.cpp:105] Iteration 9096, lr = 0.000103135 +I0407 23:17:45.015262 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:47.095773 23658 solver.cpp:218] Iteration 9108 (2.38276 iter/s, 5.03618s/12 iters), loss = 0.138633 +I0407 23:17:47.095820 23658 solver.cpp:237] Train net output #0: loss = 0.138633 (* 1 = 0.138633 loss) +I0407 23:17:47.095829 23658 sgd_solver.cpp:105] Iteration 9108, lr = 0.000102514 +I0407 23:17:52.166580 23658 solver.cpp:218] Iteration 9120 (2.36657 iter/s, 5.07063s/12 iters), loss = 0.0754545 +I0407 23:17:52.166626 23658 solver.cpp:237] Train net output #0: loss = 0.0754545 (* 1 = 0.0754545 loss) +I0407 23:17:52.166636 23658 sgd_solver.cpp:105] Iteration 9120, lr = 0.000101898 +I0407 23:17:57.225154 23658 solver.cpp:218] Iteration 9132 (2.37229 iter/s, 5.0584s/12 iters), loss = 0.0756677 +I0407 23:17:57.225205 23658 solver.cpp:237] Train net output #0: loss = 0.0756677 (* 1 = 0.0756677 loss) +I0407 23:17:57.225217 23658 sgd_solver.cpp:105] Iteration 9132, lr = 0.000101285 +I0407 23:18:02.139369 23658 solver.cpp:218] Iteration 9144 (2.44198 iter/s, 4.91404s/12 iters), loss = 0.162325 +I0407 23:18:02.139417 23658 solver.cpp:237] Train net output #0: loss = 0.162325 (* 1 = 0.162325 loss) +I0407 23:18:02.139429 23658 sgd_solver.cpp:105] Iteration 9144, lr = 0.000100675 +I0407 23:18:07.100436 23658 solver.cpp:218] Iteration 9156 (2.41892 iter/s, 4.96089s/12 iters), loss = 0.0853219 +I0407 23:18:07.100493 23658 solver.cpp:237] Train net output #0: loss = 0.0853219 (* 1 = 0.0853219 loss) +I0407 23:18:07.100505 23658 sgd_solver.cpp:105] Iteration 9156, lr = 0.000100069 +I0407 23:18:12.353137 23658 solver.cpp:218] Iteration 9168 (2.28462 iter/s, 5.25251s/12 iters), loss = 0.118906 +I0407 23:18:12.353272 23658 solver.cpp:237] Train net output #0: loss = 0.118906 (* 1 = 0.118906 loss) +I0407 23:18:12.353286 23658 sgd_solver.cpp:105] Iteration 9168, lr = 9.94674e-05 +I0407 23:18:16.919407 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 23:18:20.120551 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 23:18:22.449116 23658 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 23:18:22.449142 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:18:23.314800 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:26.929522 23658 solver.cpp:397] Test net output #0: accuracy = 0.490809 +I0407 23:18:26.929564 23658 solver.cpp:397] Test net output #1: loss = 2.97748 (* 1 = 2.97748 loss) +I0407 23:18:27.019423 23658 solver.cpp:218] Iteration 9180 (0.818231 iter/s, 14.6658s/12 iters), loss = 0.136178 +I0407 23:18:27.019479 23658 solver.cpp:237] Train net output #0: loss = 0.136178 (* 1 = 0.136178 loss) +I0407 23:18:27.019492 23658 sgd_solver.cpp:105] Iteration 9180, lr = 9.8869e-05 +I0407 23:18:31.545289 23658 solver.cpp:218] Iteration 9192 (2.65153 iter/s, 4.52569s/12 iters), loss = 0.100535 +I0407 23:18:31.545341 23658 solver.cpp:237] Train net output #0: loss = 0.100535 (* 1 = 0.100535 loss) +I0407 23:18:31.545353 23658 sgd_solver.cpp:105] Iteration 9192, lr = 9.82741e-05 +I0407 23:18:36.754489 23658 solver.cpp:218] Iteration 9204 (2.3037 iter/s, 5.20901s/12 iters), loss = 0.108197 +I0407 23:18:36.754544 23658 solver.cpp:237] Train net output #0: loss = 0.108197 (* 1 = 0.108197 loss) +I0407 23:18:36.754556 23658 sgd_solver.cpp:105] Iteration 9204, lr = 9.76829e-05 +I0407 23:18:36.835402 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:41.638859 23658 solver.cpp:218] Iteration 9216 (2.45691 iter/s, 4.88418s/12 iters), loss = 0.108776 +I0407 23:18:41.638919 23658 solver.cpp:237] Train net output #0: loss = 0.108776 (* 1 = 0.108776 loss) +I0407 23:18:41.638931 23658 sgd_solver.cpp:105] Iteration 9216, lr = 9.70951e-05 +I0407 23:18:46.712083 23658 solver.cpp:218] Iteration 9228 (2.36545 iter/s, 5.07303s/12 iters), loss = 0.125991 +I0407 23:18:46.712210 23658 solver.cpp:237] Train net output #0: loss = 0.125991 (* 1 = 0.125991 loss) +I0407 23:18:46.712224 23658 sgd_solver.cpp:105] Iteration 9228, lr = 9.6511e-05 +I0407 23:18:51.726989 23658 solver.cpp:218] Iteration 9240 (2.39299 iter/s, 5.01465s/12 iters), loss = 0.0762056 +I0407 23:18:51.727038 23658 solver.cpp:237] Train net output #0: loss = 0.0762056 (* 1 = 0.0762056 loss) +I0407 23:18:51.727049 23658 sgd_solver.cpp:105] Iteration 9240, lr = 9.59303e-05 +I0407 23:18:56.794301 23658 solver.cpp:218] Iteration 9252 (2.36821 iter/s, 5.06713s/12 iters), loss = 0.176687 +I0407 23:18:56.794358 23658 solver.cpp:237] Train net output #0: loss = 0.176687 (* 1 = 0.176687 loss) +I0407 23:18:56.794368 23658 sgd_solver.cpp:105] Iteration 9252, lr = 9.53531e-05 +I0407 23:19:01.999450 23658 solver.cpp:218] Iteration 9264 (2.30549 iter/s, 5.20496s/12 iters), loss = 0.179639 +I0407 23:19:01.999500 23658 solver.cpp:237] Train net output #0: loss = 0.179639 (* 1 = 0.179639 loss) +I0407 23:19:01.999511 23658 sgd_solver.cpp:105] Iteration 9264, lr = 9.47794e-05 +I0407 23:19:07.443614 23658 solver.cpp:218] Iteration 9276 (2.20427 iter/s, 5.44397s/12 iters), loss = 0.0591326 +I0407 23:19:07.443675 23658 solver.cpp:237] Train net output #0: loss = 0.0591326 (* 1 = 0.0591326 loss) +I0407 23:19:07.443686 23658 sgd_solver.cpp:105] Iteration 9276, lr = 9.42092e-05 +I0407 23:19:09.513382 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 23:19:12.563014 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 23:19:14.840690 23658 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 23:19:14.840711 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:19:15.638623 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:19.279659 23658 solver.cpp:397] Test net output #0: accuracy = 0.48223 +I0407 23:19:19.279834 23658 solver.cpp:397] Test net output #1: loss = 3.00258 (* 1 = 3.00258 loss) +I0407 23:19:21.175913 23658 solver.cpp:218] Iteration 9288 (0.873877 iter/s, 13.7319s/12 iters), loss = 0.0422532 +I0407 23:19:21.175957 23658 solver.cpp:237] Train net output #0: loss = 0.0422532 (* 1 = 0.0422532 loss) +I0407 23:19:21.175966 23658 sgd_solver.cpp:105] Iteration 9288, lr = 9.36424e-05 +I0407 23:19:26.186883 23658 solver.cpp:218] Iteration 9300 (2.39483 iter/s, 5.01079s/12 iters), loss = 0.0443386 +I0407 23:19:26.186929 23658 solver.cpp:237] Train net output #0: loss = 0.0443387 (* 1 = 0.0443387 loss) +I0407 23:19:26.186939 23658 sgd_solver.cpp:105] Iteration 9300, lr = 9.3079e-05 +I0407 23:19:28.438971 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:31.277834 23658 solver.cpp:218] Iteration 9312 (2.35721 iter/s, 5.09076s/12 iters), loss = 0.0411394 +I0407 23:19:31.277889 23658 solver.cpp:237] Train net output #0: loss = 0.0411394 (* 1 = 0.0411394 loss) +I0407 23:19:31.277900 23658 sgd_solver.cpp:105] Iteration 9312, lr = 9.2519e-05 +I0407 23:19:36.394057 23658 solver.cpp:218] Iteration 9324 (2.34557 iter/s, 5.11603s/12 iters), loss = 0.0833225 +I0407 23:19:36.394106 23658 solver.cpp:237] Train net output #0: loss = 0.0833225 (* 1 = 0.0833225 loss) +I0407 23:19:36.394119 23658 sgd_solver.cpp:105] Iteration 9324, lr = 9.19623e-05 +I0407 23:19:41.453544 23658 solver.cpp:218] Iteration 9336 (2.37187 iter/s, 5.0593s/12 iters), loss = 0.102274 +I0407 23:19:41.453598 23658 solver.cpp:237] Train net output #0: loss = 0.102274 (* 1 = 0.102274 loss) +I0407 23:19:41.453609 23658 sgd_solver.cpp:105] Iteration 9336, lr = 9.1409e-05 +I0407 23:19:46.477358 23658 solver.cpp:218] Iteration 9348 (2.38871 iter/s, 5.02363s/12 iters), loss = 0.0943032 +I0407 23:19:46.477413 23658 solver.cpp:237] Train net output #0: loss = 0.0943032 (* 1 = 0.0943032 loss) +I0407 23:19:46.477425 23658 sgd_solver.cpp:105] Iteration 9348, lr = 9.08591e-05 +I0407 23:19:51.567665 23658 solver.cpp:218] Iteration 9360 (2.35751 iter/s, 5.09012s/12 iters), loss = 0.0941433 +I0407 23:19:51.568298 23658 solver.cpp:237] Train net output #0: loss = 0.0941433 (* 1 = 0.0941433 loss) +I0407 23:19:51.568307 23658 sgd_solver.cpp:105] Iteration 9360, lr = 9.03124e-05 +I0407 23:19:56.477094 23658 solver.cpp:218] Iteration 9372 (2.44466 iter/s, 4.90866s/12 iters), loss = 0.100873 +I0407 23:19:56.477151 23658 solver.cpp:237] Train net output #0: loss = 0.100873 (* 1 = 0.100873 loss) +I0407 23:19:56.477164 23658 sgd_solver.cpp:105] Iteration 9372, lr = 8.9769e-05 +I0407 23:20:01.293978 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 23:20:04.759145 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 23:20:07.085791 23658 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 23:20:07.085819 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:20:07.869733 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:11.548672 23658 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 23:20:11.548717 23658 solver.cpp:397] Test net output #1: loss = 2.97417 (* 1 = 2.97417 loss) +I0407 23:20:11.638638 23658 solver.cpp:218] Iteration 9384 (0.791499 iter/s, 15.1611s/12 iters), loss = 0.0345529 +I0407 23:20:11.638687 23658 solver.cpp:237] Train net output #0: loss = 0.0345529 (* 1 = 0.0345529 loss) +I0407 23:20:11.638696 23658 sgd_solver.cpp:105] Iteration 9384, lr = 8.92289e-05 +I0407 23:20:16.070377 23658 solver.cpp:218] Iteration 9396 (2.70784 iter/s, 4.43157s/12 iters), loss = 0.0501502 +I0407 23:20:16.070426 23658 solver.cpp:237] Train net output #0: loss = 0.0501502 (* 1 = 0.0501502 loss) +I0407 23:20:16.070437 23658 sgd_solver.cpp:105] Iteration 9396, lr = 8.86921e-05 +I0407 23:20:20.426419 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:21.086344 23658 solver.cpp:218] Iteration 9408 (2.39245 iter/s, 5.01578s/12 iters), loss = 0.120144 +I0407 23:20:21.086400 23658 solver.cpp:237] Train net output #0: loss = 0.120144 (* 1 = 0.120144 loss) +I0407 23:20:21.086412 23658 sgd_solver.cpp:105] Iteration 9408, lr = 8.81585e-05 +I0407 23:20:26.675194 23658 solver.cpp:218] Iteration 9420 (2.14721 iter/s, 5.58865s/12 iters), loss = 0.120644 +I0407 23:20:26.675343 23658 solver.cpp:237] Train net output #0: loss = 0.120644 (* 1 = 0.120644 loss) +I0407 23:20:26.675355 23658 sgd_solver.cpp:105] Iteration 9420, lr = 8.76281e-05 +I0407 23:20:31.906070 23658 solver.cpp:218] Iteration 9432 (2.2942 iter/s, 5.23059s/12 iters), loss = 0.101484 +I0407 23:20:31.906126 23658 solver.cpp:237] Train net output #0: loss = 0.101484 (* 1 = 0.101484 loss) +I0407 23:20:31.906138 23658 sgd_solver.cpp:105] Iteration 9432, lr = 8.71009e-05 +I0407 23:20:36.790120 23658 solver.cpp:218] Iteration 9444 (2.45707 iter/s, 4.88387s/12 iters), loss = 0.0590823 +I0407 23:20:36.790161 23658 solver.cpp:237] Train net output #0: loss = 0.0590823 (* 1 = 0.0590823 loss) +I0407 23:20:36.790172 23658 sgd_solver.cpp:105] Iteration 9444, lr = 8.65768e-05 +I0407 23:20:41.753046 23658 solver.cpp:218] Iteration 9456 (2.41801 iter/s, 4.96275s/12 iters), loss = 0.0700587 +I0407 23:20:41.753096 23658 solver.cpp:237] Train net output #0: loss = 0.0700587 (* 1 = 0.0700587 loss) +I0407 23:20:41.753108 23658 sgd_solver.cpp:105] Iteration 9456, lr = 8.60559e-05 +I0407 23:20:46.855223 23658 solver.cpp:218] Iteration 9468 (2.35202 iter/s, 5.10199s/12 iters), loss = 0.0676 +I0407 23:20:46.855281 23658 solver.cpp:237] Train net output #0: loss = 0.0676001 (* 1 = 0.0676001 loss) +I0407 23:20:46.855295 23658 sgd_solver.cpp:105] Iteration 9468, lr = 8.55382e-05 +I0407 23:20:51.886482 23658 solver.cpp:218] Iteration 9480 (2.38518 iter/s, 5.03107s/12 iters), loss = 0.0663443 +I0407 23:20:51.886533 23658 solver.cpp:237] Train net output #0: loss = 0.0663443 (* 1 = 0.0663443 loss) +I0407 23:20:51.886545 23658 sgd_solver.cpp:105] Iteration 9480, lr = 8.50235e-05 +I0407 23:20:53.969728 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 23:20:57.963230 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 23:21:00.279475 23658 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 23:21:00.279498 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:21:01.011775 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:04.740023 23658 solver.cpp:397] Test net output #0: accuracy = 0.490196 +I0407 23:21:04.740065 23658 solver.cpp:397] Test net output #1: loss = 2.98626 (* 1 = 2.98626 loss) +I0407 23:21:06.742406 23658 solver.cpp:218] Iteration 9492 (0.807782 iter/s, 14.8555s/12 iters), loss = 0.0613918 +I0407 23:21:06.742453 23658 solver.cpp:237] Train net output #0: loss = 0.0613919 (* 1 = 0.0613919 loss) +I0407 23:21:06.742461 23658 sgd_solver.cpp:105] Iteration 9492, lr = 8.4512e-05 +I0407 23:21:12.009310 23658 solver.cpp:218] Iteration 9504 (2.27846 iter/s, 5.26671s/12 iters), loss = 0.0688908 +I0407 23:21:12.009373 23658 solver.cpp:237] Train net output #0: loss = 0.0688908 (* 1 = 0.0688908 loss) +I0407 23:21:12.009387 23658 sgd_solver.cpp:105] Iteration 9504, lr = 8.40035e-05 +I0407 23:21:13.494917 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:17.143267 23658 solver.cpp:218] Iteration 9516 (2.33747 iter/s, 5.13375s/12 iters), loss = 0.0593819 +I0407 23:21:17.143314 23658 solver.cpp:237] Train net output #0: loss = 0.0593819 (* 1 = 0.0593819 loss) +I0407 23:21:17.143322 23658 sgd_solver.cpp:105] Iteration 9516, lr = 8.34981e-05 +I0407 23:21:22.227447 23658 solver.cpp:218] Iteration 9528 (2.36035 iter/s, 5.084s/12 iters), loss = 0.179031 +I0407 23:21:22.227484 23658 solver.cpp:237] Train net output #0: loss = 0.179031 (* 1 = 0.179031 loss) +I0407 23:21:22.227494 23658 sgd_solver.cpp:105] Iteration 9528, lr = 8.29957e-05 +I0407 23:21:27.101469 23658 solver.cpp:218] Iteration 9540 (2.46212 iter/s, 4.87385s/12 iters), loss = 0.065546 +I0407 23:21:27.101518 23658 solver.cpp:237] Train net output #0: loss = 0.0655461 (* 1 = 0.0655461 loss) +I0407 23:21:27.101528 23658 sgd_solver.cpp:105] Iteration 9540, lr = 8.24964e-05 +I0407 23:21:32.161073 23658 solver.cpp:218] Iteration 9552 (2.37181 iter/s, 5.05942s/12 iters), loss = 0.0933294 +I0407 23:21:32.161201 23658 solver.cpp:237] Train net output #0: loss = 0.0933294 (* 1 = 0.0933294 loss) +I0407 23:21:32.161209 23658 sgd_solver.cpp:105] Iteration 9552, lr = 8.2e-05 +I0407 23:21:37.187176 23658 solver.cpp:218] Iteration 9564 (2.38766 iter/s, 5.02585s/12 iters), loss = 0.0853141 +I0407 23:21:37.187213 23658 solver.cpp:237] Train net output #0: loss = 0.0853141 (* 1 = 0.0853141 loss) +I0407 23:21:37.187224 23658 sgd_solver.cpp:105] Iteration 9564, lr = 8.15067e-05 +I0407 23:21:42.116263 23658 solver.cpp:218] Iteration 9576 (2.43461 iter/s, 4.92892s/12 iters), loss = 0.0550664 +I0407 23:21:42.116309 23658 solver.cpp:237] Train net output #0: loss = 0.0550664 (* 1 = 0.0550664 loss) +I0407 23:21:42.116318 23658 sgd_solver.cpp:105] Iteration 9576, lr = 8.10163e-05 +I0407 23:21:46.673946 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 23:21:51.781594 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 23:21:56.157230 23658 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 23:21:56.157258 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:21:56.831820 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:00.590629 23658 solver.cpp:397] Test net output #0: accuracy = 0.488358 +I0407 23:22:00.590662 23658 solver.cpp:397] Test net output #1: loss = 2.97741 (* 1 = 2.97741 loss) +I0407 23:22:00.680474 23658 solver.cpp:218] Iteration 9588 (0.646423 iter/s, 18.5637s/12 iters), loss = 0.0479756 +I0407 23:22:00.680516 23658 solver.cpp:237] Train net output #0: loss = 0.0479756 (* 1 = 0.0479756 loss) +I0407 23:22:00.680526 23658 sgd_solver.cpp:105] Iteration 9588, lr = 8.05289e-05 +I0407 23:22:05.270686 23658 solver.cpp:218] Iteration 9600 (2.61436 iter/s, 4.59004s/12 iters), loss = 0.169117 +I0407 23:22:05.270821 23658 solver.cpp:237] Train net output #0: loss = 0.169117 (* 1 = 0.169117 loss) +I0407 23:22:05.270838 23658 sgd_solver.cpp:105] Iteration 9600, lr = 8.00444e-05 +I0407 23:22:09.086169 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:10.512769 23658 solver.cpp:218] Iteration 9612 (2.28928 iter/s, 5.24181s/12 iters), loss = 0.17104 +I0407 23:22:10.512818 23658 solver.cpp:237] Train net output #0: loss = 0.17104 (* 1 = 0.17104 loss) +I0407 23:22:10.512830 23658 sgd_solver.cpp:105] Iteration 9612, lr = 7.95628e-05 +I0407 23:22:15.597138 23658 solver.cpp:218] Iteration 9624 (2.36026 iter/s, 5.08418s/12 iters), loss = 0.0628442 +I0407 23:22:15.597196 23658 solver.cpp:237] Train net output #0: loss = 0.0628442 (* 1 = 0.0628442 loss) +I0407 23:22:15.597208 23658 sgd_solver.cpp:105] Iteration 9624, lr = 7.90841e-05 +I0407 23:22:20.594271 23658 solver.cpp:218] Iteration 9636 (2.40147 iter/s, 4.99694s/12 iters), loss = 0.0852135 +I0407 23:22:20.594311 23658 solver.cpp:237] Train net output #0: loss = 0.0852135 (* 1 = 0.0852135 loss) +I0407 23:22:20.594321 23658 sgd_solver.cpp:105] Iteration 9636, lr = 7.86083e-05 +I0407 23:22:25.596952 23658 solver.cpp:218] Iteration 9648 (2.3988 iter/s, 5.0025s/12 iters), loss = 0.107699 +I0407 23:22:25.597000 23658 solver.cpp:237] Train net output #0: loss = 0.107699 (* 1 = 0.107699 loss) +I0407 23:22:25.597012 23658 sgd_solver.cpp:105] Iteration 9648, lr = 7.81353e-05 +I0407 23:22:30.970685 23658 solver.cpp:218] Iteration 9660 (2.23317 iter/s, 5.37353s/12 iters), loss = 0.0396048 +I0407 23:22:30.970746 23658 solver.cpp:237] Train net output #0: loss = 0.0396048 (* 1 = 0.0396048 loss) +I0407 23:22:30.970760 23658 sgd_solver.cpp:105] Iteration 9660, lr = 7.76652e-05 +I0407 23:22:36.477967 23658 solver.cpp:218] Iteration 9672 (2.17902 iter/s, 5.50706s/12 iters), loss = 0.124343 +I0407 23:22:36.478108 23658 solver.cpp:237] Train net output #0: loss = 0.124343 (* 1 = 0.124343 loss) +I0407 23:22:36.478121 23658 sgd_solver.cpp:105] Iteration 9672, lr = 7.71979e-05 +I0407 23:22:41.586356 23658 solver.cpp:218] Iteration 9684 (2.3492 iter/s, 5.10811s/12 iters), loss = 0.071571 +I0407 23:22:41.586398 23658 solver.cpp:237] Train net output #0: loss = 0.071571 (* 1 = 0.071571 loss) +I0407 23:22:41.586408 23658 sgd_solver.cpp:105] Iteration 9684, lr = 7.67335e-05 +I0407 23:22:43.576489 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 23:22:50.781416 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 23:22:53.170661 23658 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 23:22:53.170686 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:22:53.731813 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:56.554117 23658 blocking_queue.cpp:49] Waiting for data +I0407 23:22:57.539556 23658 solver.cpp:397] Test net output #0: accuracy = 0.485907 +I0407 23:22:57.539603 23658 solver.cpp:397] Test net output #1: loss = 2.99631 (* 1 = 2.99631 loss) +I0407 23:22:59.568857 23658 solver.cpp:218] Iteration 9696 (0.667334 iter/s, 17.982s/12 iters), loss = 0.0563227 +I0407 23:22:59.568914 23658 solver.cpp:237] Train net output #0: loss = 0.0563228 (* 1 = 0.0563228 loss) +I0407 23:22:59.568926 23658 sgd_solver.cpp:105] Iteration 9696, lr = 7.62718e-05 +I0407 23:23:04.673573 23658 solver.cpp:218] Iteration 9708 (2.35086 iter/s, 5.10453s/12 iters), loss = 0.0849874 +I0407 23:23:04.673620 23658 solver.cpp:237] Train net output #0: loss = 0.0849874 (* 1 = 0.0849874 loss) +I0407 23:23:04.673632 23658 sgd_solver.cpp:105] Iteration 9708, lr = 7.58129e-05 +I0407 23:23:05.401655 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:09.660599 23658 solver.cpp:218] Iteration 9720 (2.40633 iter/s, 4.98685s/12 iters), loss = 0.0360097 +I0407 23:23:09.660698 23658 solver.cpp:237] Train net output #0: loss = 0.0360097 (* 1 = 0.0360097 loss) +I0407 23:23:09.660707 23658 sgd_solver.cpp:105] Iteration 9720, lr = 7.53568e-05 +I0407 23:23:14.627135 23658 solver.cpp:218] Iteration 9732 (2.41629 iter/s, 4.9663s/12 iters), loss = 0.0663851 +I0407 23:23:14.627188 23658 solver.cpp:237] Train net output #0: loss = 0.0663851 (* 1 = 0.0663851 loss) +I0407 23:23:14.627202 23658 sgd_solver.cpp:105] Iteration 9732, lr = 7.49034e-05 +I0407 23:23:19.551302 23658 solver.cpp:218] Iteration 9744 (2.43705 iter/s, 4.92398s/12 iters), loss = 0.114896 +I0407 23:23:19.551349 23658 solver.cpp:237] Train net output #0: loss = 0.114896 (* 1 = 0.114896 loss) +I0407 23:23:19.551359 23658 sgd_solver.cpp:105] Iteration 9744, lr = 7.44527e-05 +I0407 23:23:24.912461 23658 solver.cpp:218] Iteration 9756 (2.2384 iter/s, 5.36096s/12 iters), loss = 0.0598078 +I0407 23:23:24.912514 23658 solver.cpp:237] Train net output #0: loss = 0.0598078 (* 1 = 0.0598078 loss) +I0407 23:23:24.912528 23658 sgd_solver.cpp:105] Iteration 9756, lr = 7.40048e-05 +I0407 23:23:30.035187 23658 solver.cpp:218] Iteration 9768 (2.34259 iter/s, 5.12253s/12 iters), loss = 0.0675789 +I0407 23:23:30.035243 23658 solver.cpp:237] Train net output #0: loss = 0.067579 (* 1 = 0.067579 loss) +I0407 23:23:30.035255 23658 sgd_solver.cpp:105] Iteration 9768, lr = 7.35595e-05 +I0407 23:23:35.170714 23658 solver.cpp:218] Iteration 9780 (2.33675 iter/s, 5.13533s/12 iters), loss = 0.164363 +I0407 23:23:35.170769 23658 solver.cpp:237] Train net output #0: loss = 0.164363 (* 1 = 0.164363 loss) +I0407 23:23:35.170783 23658 sgd_solver.cpp:105] Iteration 9780, lr = 7.3117e-05 +I0407 23:23:39.661855 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 23:23:46.685636 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 23:23:49.017634 23658 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 23:23:49.017663 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:23:49.596513 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:53.474704 23658 solver.cpp:397] Test net output #0: accuracy = 0.492034 +I0407 23:23:53.474743 23658 solver.cpp:397] Test net output #1: loss = 2.97823 (* 1 = 2.97823 loss) +I0407 23:23:53.564714 23658 solver.cpp:218] Iteration 9792 (0.652405 iter/s, 18.3935s/12 iters), loss = 0.0472157 +I0407 23:23:53.564759 23658 solver.cpp:237] Train net output #0: loss = 0.0472157 (* 1 = 0.0472157 loss) +I0407 23:23:53.564770 23658 sgd_solver.cpp:105] Iteration 9792, lr = 7.26771e-05 +I0407 23:23:57.725642 23658 solver.cpp:218] Iteration 9804 (2.88408 iter/s, 4.16077s/12 iters), loss = 0.121566 +I0407 23:23:57.725690 23658 solver.cpp:237] Train net output #0: loss = 0.121566 (* 1 = 0.121566 loss) +I0407 23:23:57.725703 23658 sgd_solver.cpp:105] Iteration 9804, lr = 7.22398e-05 +I0407 23:24:00.663808 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:02.744961 23658 solver.cpp:218] Iteration 9816 (2.39085 iter/s, 5.01913s/12 iters), loss = 0.162177 +I0407 23:24:02.745009 23658 solver.cpp:237] Train net output #0: loss = 0.162177 (* 1 = 0.162177 loss) +I0407 23:24:02.745020 23658 sgd_solver.cpp:105] Iteration 9816, lr = 7.18052e-05 +I0407 23:24:07.759477 23658 solver.cpp:218] Iteration 9828 (2.39314 iter/s, 5.01433s/12 iters), loss = 0.0779073 +I0407 23:24:07.759526 23658 solver.cpp:237] Train net output #0: loss = 0.0779073 (* 1 = 0.0779073 loss) +I0407 23:24:07.759538 23658 sgd_solver.cpp:105] Iteration 9828, lr = 7.13731e-05 +I0407 23:24:12.769650 23658 solver.cpp:218] Iteration 9840 (2.39521 iter/s, 5.00999s/12 iters), loss = 0.0437443 +I0407 23:24:12.769752 23658 solver.cpp:237] Train net output #0: loss = 0.0437443 (* 1 = 0.0437443 loss) +I0407 23:24:12.769765 23658 sgd_solver.cpp:105] Iteration 9840, lr = 7.09437e-05 +I0407 23:24:18.145030 23658 solver.cpp:218] Iteration 9852 (2.2325 iter/s, 5.37514s/12 iters), loss = 0.062932 +I0407 23:24:18.145076 23658 solver.cpp:237] Train net output #0: loss = 0.0629321 (* 1 = 0.0629321 loss) +I0407 23:24:18.145087 23658 sgd_solver.cpp:105] Iteration 9852, lr = 7.05169e-05 +I0407 23:24:23.315790 23658 solver.cpp:218] Iteration 9864 (2.32082 iter/s, 5.17058s/12 iters), loss = 0.0940818 +I0407 23:24:23.315834 23658 solver.cpp:237] Train net output #0: loss = 0.0940819 (* 1 = 0.0940819 loss) +I0407 23:24:23.315843 23658 sgd_solver.cpp:105] Iteration 9864, lr = 7.00926e-05 +I0407 23:24:28.542821 23658 solver.cpp:218] Iteration 9876 (2.29584 iter/s, 5.22684s/12 iters), loss = 0.059732 +I0407 23:24:28.542876 23658 solver.cpp:237] Train net output #0: loss = 0.059732 (* 1 = 0.059732 loss) +I0407 23:24:28.542888 23658 sgd_solver.cpp:105] Iteration 9876, lr = 6.96709e-05 +I0407 23:24:33.894675 23658 solver.cpp:218] Iteration 9888 (2.2423 iter/s, 5.35166s/12 iters), loss = 0.127023 +I0407 23:24:33.894721 23658 solver.cpp:237] Train net output #0: loss = 0.127023 (* 1 = 0.127023 loss) +I0407 23:24:33.894731 23658 sgd_solver.cpp:105] Iteration 9888, lr = 6.92517e-05 +I0407 23:24:35.949992 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 23:24:40.367731 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 23:24:43.419723 23658 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 23:24:43.419836 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:24:43.990350 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:47.886138 23658 solver.cpp:397] Test net output #0: accuracy = 0.492647 +I0407 23:24:47.886188 23658 solver.cpp:397] Test net output #1: loss = 2.98411 (* 1 = 2.98411 loss) +I0407 23:24:49.844064 23658 solver.cpp:218] Iteration 9900 (0.752401 iter/s, 15.9489s/12 iters), loss = 0.0604213 +I0407 23:24:49.844108 23658 solver.cpp:237] Train net output #0: loss = 0.0604214 (* 1 = 0.0604214 loss) +I0407 23:24:49.844118 23658 sgd_solver.cpp:105] Iteration 9900, lr = 6.88351e-05 +I0407 23:24:54.882699 23658 solver.cpp:218] Iteration 9912 (2.38169 iter/s, 5.03845s/12 iters), loss = 0.107191 +I0407 23:24:54.882750 23658 solver.cpp:237] Train net output #0: loss = 0.107191 (* 1 = 0.107191 loss) +I0407 23:24:54.882761 23658 sgd_solver.cpp:105] Iteration 9912, lr = 6.84209e-05 +I0407 23:24:54.981345 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:59.919576 23658 solver.cpp:218] Iteration 9924 (2.38252 iter/s, 5.03668s/12 iters), loss = 0.151432 +I0407 23:24:59.919623 23658 solver.cpp:237] Train net output #0: loss = 0.151432 (* 1 = 0.151432 loss) +I0407 23:24:59.919632 23658 sgd_solver.cpp:105] Iteration 9924, lr = 6.80093e-05 +I0407 23:25:05.204583 23658 solver.cpp:218] Iteration 9936 (2.27066 iter/s, 5.28481s/12 iters), loss = 0.10367 +I0407 23:25:05.204633 23658 solver.cpp:237] Train net output #0: loss = 0.10367 (* 1 = 0.10367 loss) +I0407 23:25:05.204644 23658 sgd_solver.cpp:105] Iteration 9936, lr = 6.76001e-05 +I0407 23:25:10.837251 23658 solver.cpp:218] Iteration 9948 (2.13051 iter/s, 5.63247s/12 iters), loss = 0.0252709 +I0407 23:25:10.837303 23658 solver.cpp:237] Train net output #0: loss = 0.025271 (* 1 = 0.025271 loss) +I0407 23:25:10.837316 23658 sgd_solver.cpp:105] Iteration 9948, lr = 6.71934e-05 +I0407 23:25:15.918323 23658 solver.cpp:218] Iteration 9960 (2.36179 iter/s, 5.08088s/12 iters), loss = 0.0586257 +I0407 23:25:15.918449 23658 solver.cpp:237] Train net output #0: loss = 0.0586257 (* 1 = 0.0586257 loss) +I0407 23:25:15.918462 23658 sgd_solver.cpp:105] Iteration 9960, lr = 6.67891e-05 +I0407 23:25:20.965523 23658 solver.cpp:218] Iteration 9972 (2.37768 iter/s, 5.04694s/12 iters), loss = 0.0755563 +I0407 23:25:20.965575 23658 solver.cpp:237] Train net output #0: loss = 0.0755563 (* 1 = 0.0755563 loss) +I0407 23:25:20.965587 23658 sgd_solver.cpp:105] Iteration 9972, lr = 6.63873e-05 +I0407 23:25:26.004890 23658 solver.cpp:218] Iteration 9984 (2.38134 iter/s, 5.03917s/12 iters), loss = 0.0532398 +I0407 23:25:26.004947 23658 solver.cpp:237] Train net output #0: loss = 0.0532398 (* 1 = 0.0532398 loss) +I0407 23:25:26.004959 23658 sgd_solver.cpp:105] Iteration 9984, lr = 6.59878e-05 +I0407 23:25:30.578784 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 23:25:35.828521 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 23:25:39.485366 23658 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 23:25:39.485388 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:25:40.036351 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:44.021855 23658 solver.cpp:397] Test net output #0: accuracy = 0.493873 +I0407 23:25:44.021904 23658 solver.cpp:397] Test net output #1: loss = 2.96517 (* 1 = 2.96517 loss) +I0407 23:25:44.111928 23658 solver.cpp:218] Iteration 9996 (0.662745 iter/s, 18.1065s/12 iters), loss = 0.0379793 +I0407 23:25:44.111981 23658 solver.cpp:237] Train net output #0: loss = 0.0379793 (* 1 = 0.0379793 loss) +I0407 23:25:44.111994 23658 sgd_solver.cpp:105] Iteration 9996, lr = 6.55908e-05 +I0407 23:25:48.727607 23658 solver.cpp:218] Iteration 10008 (2.59994 iter/s, 4.61549s/12 iters), loss = 0.0965735 +I0407 23:25:48.727758 23658 solver.cpp:237] Train net output #0: loss = 0.0965736 (* 1 = 0.0965736 loss) +I0407 23:25:48.727771 23658 sgd_solver.cpp:105] Iteration 10008, lr = 6.51962e-05 +I0407 23:25:51.172360 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:53.997164 23658 solver.cpp:218] Iteration 10020 (2.27736 iter/s, 5.26926s/12 iters), loss = 0.103447 +I0407 23:25:53.997220 23658 solver.cpp:237] Train net output #0: loss = 0.103447 (* 1 = 0.103447 loss) +I0407 23:25:53.997231 23658 sgd_solver.cpp:105] Iteration 10020, lr = 6.48039e-05 +I0407 23:25:59.037148 23658 solver.cpp:218] Iteration 10032 (2.38105 iter/s, 5.03979s/12 iters), loss = 0.0525122 +I0407 23:25:59.037199 23658 solver.cpp:237] Train net output #0: loss = 0.0525123 (* 1 = 0.0525123 loss) +I0407 23:25:59.037211 23658 sgd_solver.cpp:105] Iteration 10032, lr = 6.4414e-05 +I0407 23:26:04.106729 23658 solver.cpp:218] Iteration 10044 (2.36715 iter/s, 5.06939s/12 iters), loss = 0.069367 +I0407 23:26:04.106781 23658 solver.cpp:237] Train net output #0: loss = 0.0693671 (* 1 = 0.0693671 loss) +I0407 23:26:04.106793 23658 sgd_solver.cpp:105] Iteration 10044, lr = 6.40265e-05 +I0407 23:26:09.348652 23658 solver.cpp:218] Iteration 10056 (2.28932 iter/s, 5.24173s/12 iters), loss = 0.159502 +I0407 23:26:09.348697 23658 solver.cpp:237] Train net output #0: loss = 0.159502 (* 1 = 0.159502 loss) +I0407 23:26:09.348706 23658 sgd_solver.cpp:105] Iteration 10056, lr = 6.36413e-05 +I0407 23:26:14.715824 23658 solver.cpp:218] Iteration 10068 (2.23589 iter/s, 5.36698s/12 iters), loss = 0.0595826 +I0407 23:26:14.715860 23658 solver.cpp:237] Train net output #0: loss = 0.0595826 (* 1 = 0.0595826 loss) +I0407 23:26:14.715868 23658 sgd_solver.cpp:105] Iteration 10068, lr = 6.32584e-05 +I0407 23:26:19.699077 23658 solver.cpp:218] Iteration 10080 (2.40815 iter/s, 4.98308s/12 iters), loss = 0.164047 +I0407 23:26:19.700314 23658 solver.cpp:237] Train net output #0: loss = 0.164047 (* 1 = 0.164047 loss) +I0407 23:26:19.700323 23658 sgd_solver.cpp:105] Iteration 10080, lr = 6.28778e-05 +I0407 23:26:24.859580 23658 solver.cpp:218] Iteration 10092 (2.32598 iter/s, 5.15913s/12 iters), loss = 0.0601272 +I0407 23:26:24.859623 23658 solver.cpp:237] Train net output #0: loss = 0.0601273 (* 1 = 0.0601273 loss) +I0407 23:26:24.859632 23658 sgd_solver.cpp:105] Iteration 10092, lr = 6.24995e-05 +I0407 23:26:27.046738 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 23:26:31.428833 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 23:26:36.810941 23658 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 23:26:36.810968 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:26:37.296437 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:41.342926 23658 solver.cpp:397] Test net output #0: accuracy = 0.491422 +I0407 23:26:41.342974 23658 solver.cpp:397] Test net output #1: loss = 2.9879 (* 1 = 2.9879 loss) +I0407 23:26:43.343636 23658 solver.cpp:218] Iteration 10104 (0.649226 iter/s, 18.4835s/12 iters), loss = 0.111633 +I0407 23:26:43.343681 23658 solver.cpp:237] Train net output #0: loss = 0.111633 (* 1 = 0.111633 loss) +I0407 23:26:43.343690 23658 sgd_solver.cpp:105] Iteration 10104, lr = 6.21235e-05 +I0407 23:26:48.117869 23662 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:48.778158 23658 solver.cpp:218] Iteration 10116 (2.20819 iter/s, 5.43433s/12 iters), loss = 0.0462122 +I0407 23:26:48.778205 23658 solver.cpp:237] Train net output #0: loss = 0.0462122 (* 1 = 0.0462122 loss) +I0407 23:26:48.778218 23658 sgd_solver.cpp:105] Iteration 10116, lr = 6.17497e-05 +I0407 23:26:53.860597 23658 solver.cpp:218] Iteration 10128 (2.36116 iter/s, 5.08225s/12 iters), loss = 0.0882787 +I0407 23:26:53.860730 23658 solver.cpp:237] Train net output #0: loss = 0.0882788 (* 1 = 0.0882788 loss) +I0407 23:26:53.860739 23658 sgd_solver.cpp:105] Iteration 10128, lr = 6.13782e-05 +I0407 23:26:58.957541 23658 solver.cpp:218] Iteration 10140 (2.35448 iter/s, 5.09667s/12 iters), loss = 0.124868 +I0407 23:26:58.957588 23658 solver.cpp:237] Train net output #0: loss = 0.124868 (* 1 = 0.124868 loss) +I0407 23:26:58.957599 23658 sgd_solver.cpp:105] Iteration 10140, lr = 6.10089e-05 +I0407 23:27:03.900596 23658 solver.cpp:218] Iteration 10152 (2.42774 iter/s, 4.94287s/12 iters), loss = 0.0364071 +I0407 23:27:03.900646 23658 solver.cpp:237] Train net output #0: loss = 0.0364072 (* 1 = 0.0364072 loss) +I0407 23:27:03.900658 23658 sgd_solver.cpp:105] Iteration 10152, lr = 6.06418e-05 +I0407 23:27:08.988173 23658 solver.cpp:218] Iteration 10164 (2.35877 iter/s, 5.08739s/12 iters), loss = 0.0601882 +I0407 23:27:08.988224 23658 solver.cpp:237] Train net output #0: loss = 0.0601882 (* 1 = 0.0601882 loss) +I0407 23:27:08.988235 23658 sgd_solver.cpp:105] Iteration 10164, lr = 6.0277e-05 +I0407 23:27:14.053594 23658 solver.cpp:218] Iteration 10176 (2.36909 iter/s, 5.06523s/12 iters), loss = 0.0416632 +I0407 23:27:14.053643 23658 solver.cpp:237] Train net output #0: loss = 0.0416632 (* 1 = 0.0416632 loss) +I0407 23:27:14.053654 23658 sgd_solver.cpp:105] Iteration 10176, lr = 5.99143e-05 +I0407 23:27:19.147051 23658 solver.cpp:218] Iteration 10188 (2.35605 iter/s, 5.09327s/12 iters), loss = 0.0777601 +I0407 23:27:19.147096 23658 solver.cpp:237] Train net output #0: loss = 0.0777602 (* 1 = 0.0777602 loss) +I0407 23:27:19.147107 23658 sgd_solver.cpp:105] Iteration 10188, lr = 5.95538e-05 +I0407 23:27:24.171682 23658 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 23:27:39.183360 23658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 23:27:43.705667 23658 solver.cpp:310] Iteration 10200, loss = 0.0584653 +I0407 23:27:43.705690 23658 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 23:27:43.705695 23658 net.cpp:676] Ignoring source layer train-data +I0407 23:27:44.141790 23663 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:48.127856 23658 solver.cpp:397] Test net output #0: accuracy = 0.488358 +I0407 23:27:48.127903 23658 solver.cpp:397] Test net output #1: loss = 2.98682 (* 1 = 2.98682 loss) +I0407 23:27:48.127915 23658 solver.cpp:315] Optimization Done. +I0407 23:27:48.127923 23658 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.95/conf.csv b/cars/lr-investigations/exponential/1e-2/0.95/conf.csv new file mode 100644 index 0000000..060a8c5 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.95/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Acura RL Sedan 2012,0,2,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0.25 +Acura TL Sedan 2012,0,1,4,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Acura TL Type-S 2008,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Acura TSX Sedan 2012,0,1,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0.2857 +Acura Integra Type R 2001,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,1,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,1,0,3,0,0,0,0,3,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.25 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.4545 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1667 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Buick Regal GS 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0.2 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0.4444 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Cadillac SRX SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0.125 +Chevrolet Cobalt SS 2010,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5455 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Daewoo Nubira Wagon 2002,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6923 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4286 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,3,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Fisker Karma Sedan 2012,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1429 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.5556 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Ford Edge SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8889 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7273 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6923 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5833 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5385 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5556 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.7143 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.5 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0.5714 +Hyundai Elantra Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5556 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.25 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.6 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0.4545 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.25 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Nissan NV Passenger Van 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3571 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.0833 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Spyker C8 Coupe 2009,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Suzuki Aerio Sedan 2007,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,3,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0.3 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0.5 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,10,0,0,0,0,0,0,0,0,0,0,0.9091 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0.5714 +Toyota Corolla Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0.1538 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,7,0,0,0,0,0,0,0,0.5833 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0.3846 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0.7143 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0.3636 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,8,0,0,0.6667 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0.625 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,10,0.7692 diff --git a/cars/lr-investigations/exponential/1e-2/0.95/large.png b/cars/lr-investigations/exponential/1e-2/0.95/large.png new file mode 100644 index 0000000000000000000000000000000000000000..f3a4a9da22ecfe19b75681d677e68b7ae1451bd1 GIT binary patch literal 104428 zcmdqJbyQUC*FLTw@CXVI-5@2>(hVxYfPzSOmvqUDw19xrP|_tKDc#c2Qc8Ej2n^jY z!0(LW8{b#>{QqMum!s=&=A8T9aqVkg`wn>d0(2LX4D-f~8+T=-pDNzCaZCEf4OFUs z(1HKK#^Nji{<`U?2zqj(pqF9=_{S}?$8wKv+$avkLKvU{|GsS}t>Fk<+Kl{jv)wk^ z_{NQkPcly*E5Ff&Phsd23>~0v*$znmtgF2Dp5P|#r_o{vXW)CCloR;3Qaaju2OBeH zp5T`RESQ0Y5-8d4Uz?}i`ll{Zs^mftvQgwqZ}p^vk!GeZh96=o(G?@dWwt3g0)xDL z|NAE!FQ^zq`}-&DEL!NRf4I_mfJCpmnDg_d?ANZG?gWb6yfEvhxpmn=Xn2=bGNX}_ z49)n9;fyPBI?m_FTG4#Jb7AkYc3f+Fw7RuDTUQI`5jZP(2UFq6i%b^%%dhz`6%<{(4 zG^2PhsX6IJKpJYnBQC4ahr&*bd+YD;UleUVj`uh}HWQ|0>wZMd{k{Fp9w(~%|M(bg z9F~|!G3E{~^dfl`MCF^{#bX;M7bZ`fH5Q(XyxHrYFCnWhMknOO&x~h$F4u*&+-j@@ zWwX>1u?;$J4YMB?x5uVJrzkU>Qm^RMJ;F{bk#^UIQn29wZ zT7B&pEbU*q?2L&Mh+<}yszux|5fWA@c#^DP|6cx5Ds$HvPt52`<(>roKBzR-UtS)$ z4*%$Ty-Ty$n5@3?fny)vz@mTp`$u`D_|X%ER`#L)vrCs7_V`9Z8Qz~K7|n?KV@MIm zuL-1#*#F*Fop2A4OBqWVwQ+7XlgaR>rPG0o-YTzd6;so949#{bg_|7#fl z+r0M{4KI)xEIs^xZ1wUg6!m+TH%ogK`k$_?3cCAyH*g69Yep|^16Ku)HSDEwu|&!L z_O$)UTXX zTM2}feNnE5xt_E3dKU`4gt-r{Gld5bw20s`QUT9FGH!R!H2Pr)4m{kiER?#9;IzuK z`w>q?=*#2wYxen3HA`3q+c`lBww2-$JZz7ryAk!L($72imz$I}&t!%caVMikjGFrM zYcv1PEBr+KA=oV88Ci1!b4u_#kxY*^!==k{0t}k{(4uE<)hQe|UiW>+)2&h`;j(b7 zi?Hc~Cju)V2mGyW^*dHJ9E48->6eaEo?ZGEl}hyKiUXeyJt3XD7b#5+K6PU=qdyUd zODgMLYl2FI*lnY5@A}gR&_7#A_$iT4+QrC@`CyND#fPavCa;@728hicw_7=AmbfR< zGg{R%M4IpC6W+dVJC_P%SX}N_oJl5Diaxg_Gnyr_B@GE)UpRN?$WPtzy~c6h0=xLf zxC6QVlV?7dsTuu1`(Hk(?DpTbk^TRh7=dSec3_1lv8xmO6AG6Un6T&-Z&Yvli2qm% zr|wqh6;G+g1O+3gVj2XeC~T?rW1MG(w77c0pJ80LO;HZS3EXf662Nhm?9{nx0j*H@)GLij=H#l6EH33ameh2=EjpKixr?1ID)*7YOjhaE)MWW+ z5#6iXA&9l4_InpWW4^J>q#b=WcRY0?POFBB&E?!2*EkP?e|u`S!z^C|#z%z#RsCit zMdgF}?aqs1T)hQbW!uAtxfL!$6bqKUTsW@Fg=40mGV$viH(MDkVs)MBu~j+RR_pS; z`v$1@YJd|NmeoMs3K#lwU@AXJS$q0QC*k=~K zcqElE9`tDSAJ?83Z-tcuLqX*gaB(;x?>RzX5jKogGJX$on%Xh;nqY^Eyk=AXc-QFP z$fDk02<%j$(8Zf{;N0NKQ2r_AF}l=UvY-!99s`BOm?!#+%CMcm@ZMK})ysNu-o-vr zf}0v*D!KRblV&!8-@&1;iq`H^43}V236!FGXjV~05`C6%`;2ogwD8bj=%A9&K($S|2+0j(~J^Gbbf^|;%=ZO0`?#l z@%Vanv>m}&mAmg5UYW<{W-lBzctUuD$2T7j@n~PoPwle%D!RQcUbPrvzAXJaguVV~ z7t`^s{w_IRx0r>y2!L(y;(=hjq0hk`rurggOgR^&69Xm|w0e7JU1QFaea1_NrQp$Y z!SMTlsQ`<7-KLCItnaWNGH(zQo?C5&&%?jGPItE*`N+w=Jwr{rP}xcjc#pa5m06mj z|4uhvTv27Jg#S25()P}ab?9@=s@BK^F;pZ%qsAJh?Ce=DO3ZmJDowk+mUj2W$##df zeF#&;(R@Y1x~IE+!q!e`(Dv5IuKl*9()N!0b9mv6`q=7msP-Ie@#@U|Yr93cQK?6% z=sEULzcBJkEi7)l(ND7;jYo!UI6_UV_>tmU_8!ZGbiF|OuENKpXzla%m|ExSn&i*1N0lcigUcoAIdPXaIVkU^E zSsOUoGSs_?Z%Y-k#6Ly~qZQAp7mV=^++|FaGNdpSf1T?Za2ZBWSUS&MOSX{GOJ-}a z-K2~kY_W`?gyLh{1auRQ+&sSB%LpoP4$7rv5Boh!puukrE(2{mAPfpaayUWTP+LX(4Oi*9+we#nU zTH5;TcGbM+K(XNfyKB_wC(UcnC;gK?_lEBjpJ39us@&YYefieWlk|hhPzwyvkkJg2 z>cGOCzb&b#8Q>Sl%Li>GHK=R+bHwIZz)ONp0$nih%{@sGQhW0c@Cd*hK3 zts6g5H(OZHn}aLWdwafXITj3}ayjNn;!GWB=Cmj6bp7f-$^lp>Mb*NmWXEH7f3zMx zbl{_cB?_j9h(U5fIKafYJS5bL6u6lJwD3)uP@D@3_US}8du8~7m)|w%0;n(oQ|)`6 z%4(G0j@9h06MlT5h|;^-PcWr9*rozvSU4ZRd3^9?APMBn%m@YE=tsrAgDVmJ=YJ~i z83{`TC-`%i7I3xG=yex|QjlDi=JdTXVy9EcG#5Ljll(8p-;jtktUS0QT0@6zt=pwN zQ&(3ih<;Sew_>7fyGt=|abZv>=w{&i;k#1svHK^=OT4b2VF26)Z^39ChzA>;nnTor zTF|E+V0_pp>X>EU(}7jFxx5IkjQc4cH7DA`UwYE!R=80PO^Cm@V7u^-JqpRhktrgR zv9CI>6aTR=x7ovKq!sO+VR&@_14<7$&7hTiy%@vAk==FDhezGmRR^(r2i-#_(}n8~ z2Kg(gd>m(-ac}Q?@YGDa>zZ)>7tGecXYBN%#&4+j)fBcXI)$qpYOU*j_ zvHls$oALHV>$}vYbjLL(2Pdvw#}jH)UJ~(xkJ94<4*nF!W7(`|c0xL7q zVRYiNr46cMd4$)ZFV?URTuk1qx|IXLOGkb2)~0Ymk(O^gaj~T?+Um~ z!r9|)AN@Qe?C7%a)9JElr5WQe95)e9)k|j#OVPq89*X{`nP8T*Kzlk}uytEblGjRZ zq6j~xp7XB%oj84{0~P!eHE}{_p#%LT5QMAWV={?c_UF@^s-nYyQ4ZfJHmDgGEQo(= z>J-r}fNq0p@@PbNw0sd8K0S?FUzLj$lC4Ywx~!mc0NNB9#e046%4D)mK2k)dcG@00MwFdET$lwPtOOVab5-;rUPd3r`99(!o5D0~|RwhX*0JXwE# zE|Y!g6{ui#SN>ev98|EiTQXQ|1iF&%`Mt<|i=UycrhXj?y{(_>G!4G4x6h9SeTiG( zTqo0i+y>r_-DB3Mw~rxp{W2m-S<`PLq5X^U4#K95BNbWJBh zsc__5U}!v+qMuEyg&ojRMrKOk?f;d+mB)%6DSm@mXi+yz4G=d>yL$uc1q*BA{k~ab zy8NI^vtq*`rdPTU&o(Xy?zXTEx`8n5fI}v$#?N^|ibiM1rQoK`N zLHo?b%ae}nofs40EQngx>x%f7H?ioERGis?0iW#|NKoxt3XxOZxI$AV>zF=>eN%)R zQYpx;Swng35zD}TESOsQID=GXzao^TcpJ9WYTFdg=E`rmKKYrbS7308CM%LV+EM<3 zitT%a0WWubi9CxV72B0KER^(?awCciS-+SEi4wx&Xvz9lVXjO+rTLCXbkS{8ZMVqE zr)JP};KfAjPLwQTTp^)Wk=3pXqWVDIs%y;8 z*|K6>ubAJK#n7DS`DNKWrc#R{<3eUSdvmXtTUzQx`3Otw91J|oohJcx5OX=fbfjX3 ztQmA@bKQz#DQJR9;^?=}pUTmVOx0)#Q~S8JjKl}*ms7Qw;G@sNIbM8?!Y^pCr=|+E z=Jbr!6SrQu@3?2xb%#JNE#$fclcJYtpiHj>`pRF-fsk+!X3Qa3NqAR(-W0~o36PQ^ zd*3AvSe2a-SsUGBAr`moP2E~LHj6!6D@gr?^Pb}eCzQ7(qqWc%Jb5zJnaLqjb;}dg zN_&f%TlZizZuxASw%PLvAsik+nci;stwfNum9A**x`vJ3+0EWtqG6&EsNNo z?~Up81W?Ua4hA`q1m=p|sFw2*A*e-;v8 zaG`~qaFST-60?f;qAhJL_dEtnI>z3xA~f<9SW@|R+%=>vj?vvX1xKUSH=y_@t{sI~ zNluEx*JbhSw>6_YZH=7M{c*)4Z{BuO1w38Ql-b(Uki!3B^?;EBXQI?0yl&$TT)Kuz zFY!!gHr?v9c>ygnD{Sgc@sh~WepOdUb+Kj_6i9(P^ zV+b|E1e(&TZbHpOe(kc=>R3I?PJ>K|?xk*a-@%2*$<5B-E+A@l4o@JR)mje&WHfz& zqRak;V|Yz9j*x0K%64(RsMbYWYl}X_qnN0f1t`%nG=7{w?SuiLb#DIZW> zE6URKr-e_$QpWDosOqk|ah?9FXNI}FfoKt1wwq?F5}@U(Fd6@YXqK8#WYD$?jmAgA z^V}EWN!&~^MBH@ETqOy3B5!p}j8TnQo+Q{m@d;30PkCFliZvTF(hyh#HLS2cr zG6(`-qonr1p|thGcN}{XoOT9%b;9e%rpQK>;d6*Ac}x`thGaTl>2QK$z31hd9F=NG)oD6)?a zr8uq=d?D|68huISQNB{YCwK$?t(QBC=gdya=|IQwD&o<& zgdKOfovW6Cnlbat9f(c!lB ziHlXu3HUOOz19aXulGcBlqHB=urQ9mwhyINsz52m=IOynzcB_wOz<9 zT6jRRldAL#4ezSRcK;<`aJQ)PjnI_Yex=O)Blz$?z(QraW*|NL_pZGA(43Hvo*2|P z+`wL`kcUGpt7XuuX7h~)_O+pg2+UeXT2l#m*B29%VY*3Ea9%m8L}$NeuGR;=EDo_n zSi>l86u<|_nr&@o{bYC8yc z=vCYXD&3Cy_UYdBVFJBwZR@s@misx!uDuVowsTi)gUr=DO#3d2`jTwc!-2%d4mZd+ zZIYRw@7LpMdYl!6C*I@2z-^_(PR*qLe7w)Cze0+}mawMS{D1%2&qrTTI&c0=30?;; zMmR#u5+41Kh%Z1-=~_6$w)DHub%+)0n;`t6&B)o{OSw*cy)g^k*kAwN0o8WUEj-wx1IXMm#?MsD{{!|${T@mDx~Y09K2>rmcliNe!{}_q z+fA(1IdKGL9B?*{8eA~jDLVc4GA zWZ`sNQss_LPjsz~W1t!%8=aVKJG-@=s;bLTmOF;I2F`Ep;+~dTFESApofs@lPrDA9 z0@;sY8*zvQ6t`|v)1RHj+LB!PYB?!E2#?Rxi6J$iRTJ8-jvJPv5lo_>NyxL{(AM-b zY~BU;tLfHX(Egd>LN5iZ9wgpn#F5GmFhHhNyGE0;)P*Goak{;Q;%S^5<%_QqWzOh~D;X z7A>I0_rW9>ja57VC4jK-`hyhC>YhnVsQN@&*W^3dO{gdbiRC6n@w=rRnn zlHnJ+{ZkZ@JuP)+fs?}E;pF-E9n;n^6SqW3ONNt{6Wf8*w)tLW^t}l=WDIoqrv1;T zeF;+f2$bFE6xSv1IlZe}{?*DarT~@zZ*7q0^&uIjNvD*s!@A%hT732Jd&~DnNg%UR`mb{q)yP}bRUogJ5SS6BOd;m*U0k4GYv2DXtBzxQN zyPc&bL4Ob##(hYD?9YiJgJyVo!L)=f3VL;@oRBjsI#CsW$DNF*0TVvfFl9v_@dO_| zV(W*(``;9LB}bOaxA*fwMjJ&+Jqo>|O?5I)d)w0IW^^cP+=A@S4o4Q6(Wu8km{<2A zX?q%3!*9Ei3%$;ESI#iZ*t|bWdRSbK?=DTM^W89h!_-v9xdrf*{p}PMBoU;WA2?x~ zA$|U4(Ttz3^kwGfc<=B5srllS&@l|G;p-~jPYI7d9)(XHxH(!SPEz8?mfh7FU^HNj zNV@pO2*j71FDm#*=9%iVMiRa7xRz``m#~9-*{qT9Wyj=OIzM_AiaUHK;eN`e*-t^_ zsCDQGe)*;vFM^7tolWm0<}Kl2(MJvDGnSXqsU0~NEjOXzrHH!hNCYuDA4_hA^jxVL zc*g6a>x25-uI&~kO`ZRnE(grD=Za!L-7Irgq=doasL%eWAqa;XBp52Kenw~JGm$;C zaJV$zZ_D0Xmm=3Z#_^&ptPgh23{vm@K_|Bh^}6T>e(AF+kY}mn$eNSb<6dMrmJd`u zH@OB1pQz{=A?iHt*N?v;UM|oJKFnlqr=;#F+mySkF#+=aN$bB~>NA~_a+hOc#t5pl zT<`G#of?uY(j5o`-F*-4-1`mht1N;z4QxI-a$d=@8=>D6Yhb;Vdn zx0ZcM=sp^RhP*6)MuBauils)K6g+(BVO`*Qe`bI<=E4?pn7-DxD&A9=+L77@ zu4zL2Pl#5~*vJy}c^9~pn;y9hmzF5T-Hfd1P!W@WYw*xH$cUkz{A$ z-^Jryxa%b-kKzEN068v}-?(ITzL4gxsz~&nME+ns)NE;OncHnmS@?+)Dis6yG8=eX zO@BMO^+4@qS+P>pUxfomp@=f8?o2q!@mpJ%@oZ1$^WxWM*p9j^7ys0H?5w>H2xx*P zQf>)f^r#D?(q%%68s4XcT*Y4lI)_w4b6v(x=mAmv{T|`XA5|DTyQo@cm`o9ukU5H& zHSD_>p`a!Gdk(9ZgxTGVkS`PAYhf<_qqvgfS8V`N#c?|LwU=z=dq$=p5qsGqT38;R zS^N)FQR+s6yExoN;Utl-Km^v5!r(Hx{;&V9X6TO`<$y_CFZ$b&0v+dY-OC3xEv9{n z2tBRX{oOOY zaX(7%BBuBZKzw3|yio@UFYKDM3_4TgED8@F8oe$8(NUi7Hx z=pmBNRxt!-bZ>_z`;or6;SRqO0Z2lenDMimYz&dCUc8Jw_?EW&Yc9NnpbaHF@`dK1 z%@?4P65TBrBQ2vTp>E;{6MDVa-RC2lWt);F0aqH;Hytl}r>FQCKws9YXWiFs#r){? z5dq}jy(i{(S9-;D3B%DM1Ft3i$F|B`eY%5pWA>~9UdUO-rza8v&ZRjKz7*5RFx@`m zpD0qvAHW2)66w{>@88k_x(ZZ>?tBx8N@IpG7Jn7@_}oa*W4^m2#VmDla?jX4gh0Y? zuYz$7pfKbbxg`mdS(zd}{3@^k`JJUm{L;u zI?mDVJNDD69&dL!5H~Ep2GadMY>qnt=)sp4o0BAvWQT{VszH@%Pq$d9NV|9<-T;-{ z4{e!O4{@h7$35;p-as7L0+bbcUZpXxIzS`*s@HzIGnV1R!KFlxmfr8xM%?i3LtlK= zbF*J0j#a-V72JH-V(HW?MA#7?*9=o3UwU9`(?oCP$N@CqpU5KavyLD8#5v)?vwTx0 zF#S`Mwu_&a|2_UZI%W&wp?+WN3eGkU_A;t9;o+(%l|`KDYD)aTo&2mac`&D^Ud#8Y zom`80+rOLM{>bRCn|6EXl&I2ukCBSJp)oON>+AFXg1+Y2_qe6A(~eDt$%IR+yo~#v zMtp3mM#g>dN_Mwm;V`u`wc4Fsyvgk!vb&=`W=>D?=^;5U6x}`xW}RK_M?l1ld!!4n>^yNN`PAwn?w~ zMbTC7j*PwcHw5!Vb6e2F>Q+@k+lw*y8*wfKsgS8;gKcd#H$B3BJ3POe6Fg$j(Pyp? zF3TA|ksP!>C_Rg6toW>bndxbn$&n8zQ0Iv6=CsBMHV?sBCmVh^LfoC=kI}dKUfve& zlWGQOanCB}Z_i?fV_s}%F1s7%eg>KD+iuN%!04$qa~-x3PCIM5GLisc+hb)aGnsOI zeb#Siih)NL6%X{re=)wIp<_%Zfi`uVi~As0i>nu^4b(}cbmP=;#r*%SWB!Lc6sc5; z3S4%2;tGAgKT)bs8LxFiqrxCdkmK1p^Zt5=3V-p|Jl18NG&l5mchFS;7a6cE*B!d$ z$}n3XZ)z~`qSCWt+bwlkMwGP=sFZ=}o^v}5q3^uZ=O z)B-&%2HnIQ32iREPeIj0_&<{Ot_^o5-|ReeuQMwpqY*yM6m`iIWl`S=I}CrhhC|PD zbo0FS>EHwpN*Dj)7|6@kMiiYgVYtlf5^W44<(p<_ApU(cf6ygV! z*d_dl!H7hutyWW-X7Nt3*?H)t-cgwdNSb(BrMz88u|kQk+?tDxEgsM&t{0*o$zNt4 z>ePiq2)2!!wH~vYC}i+l=}AayG6b3|7RcaB7r8c{Rr8{8@Kl}$Bsil6?32o;oIIQw z$ZN1!c+2`zxAm0`A1FjIW+8$A%M&rB>L4q98 z3-JM9amoC~+&B=Kr{ z+ijarsfxW2J%-%BoDuW*;iW4i++f%6Dj~j{0J9TF zsaYAv)fulI5pjq`(Z{w_cMr54Wx*6hMn1~Ta>h0)Sh6{1x-k_=6HjzJ@y#{@pD zm=6)Oja^G_zt7s(S}4y8!n_*30(qu-C{;#I*g*$kMXo)Z7bWU=#MA@yJ=X?On!2kUkgua0AId}fGbOAukfo|d?4cu-{ti-~$wSgXMuob&% z5ic$-&34YD@NDib&E)m`!1vG{yE@oGic=ld{uk;Zc>(@{)D})jBy&kdL|TTljCi)t zxkB_~5~7{*=3{E)i~dAv3P8e|o%l)>C{!?)XLRt@oa(;?H|U&3Xi*gRO_3bgjpVFP zT}oZjp8Q(<2<*|7pn*kr3V2r+95}p+&3y?SiY3!`j*!4Imvfi=cx~JzvW6e z7;4j6z=cMF^LP?(q;QM`FBly&QC+D9LV0s2O&DK^xbN{vQmdIbSIs#LV*2oX`iig)sNVow>z0|imRyOO zvq48!Yso|sWy2oz9N1)KC-~?O=z(=J)CzXt-qGFT$N_Km^wbPQd{zYjZ0v3qn6CK8 z$Y^r;gxIs>dE-YWKL0)c@h9!q_ji5dM?XC?tt59&;6fP4lJ=9w3gNjwY^|&3LNme$ zdE$3QxCH2ul-Wg(S}72SJ{Pma_RmpT03nTRcQD@XhDdoB7Ya`~@3hhtEYGMH<^0sU zj3l2}j9z2jPZA-iGfCt_#YthM1MSvJKaStkJ8roQ6XGX;IH&q+U-Q{R&wR@2iSuO} zf$8ALcsCm;LF3<%P7sez*eC7-YoMe!_@STkX1A0;d!Q?M!vwwm+X@#sQY=lo9;VI0 zG>uHxbGa@49?WL8A~t;$4a6Q!G`h#9gs1;pVYUEsq$Pxp-~;-*r?0|tA|Iyf>G4!# zxvoJMm%-}2fSoP%13j@ZKqVle-2jL-I(FJ=II`+V*+HLRt6-HaK7X<)0j%Kb@7+*%& zEr@w8SS#3ezQX=0Z~DOgXr4czI6Fm|TKwSRN3eKe zJ&L2MtpqHSmvgowdYSBZXjn&-o zJ)x}tg>lp;f60lF6oo46`*%s@E#+Ah8FZ=rLxV+S*Jp%J%)vSJRc6nR z=1R>9X!QKf&(9~vf2!9I+x&cZht0CAWiNO|Ivd7bx=qi}GN!Q9_+sww!zwokD;`A% zrQK#f9!-AvX>V485_b)YElf5x(raC#CMlf1v?cWUOrl?@ZmeIhFEO3i{hP<-4U$&< zT&Dtd3)>iDm+3%7m9P{^AplcanRhB-$_5|6F{`Tkx#Qt^s)i!V`P0k6wO?gEzAdqT zPN_WQL4!DV8#L!8s~@HOIr#a0f#8=~8!i>TE4I7)-p6@D>3$H+Qk?N;(*6nEe|P~I z1myH%5kE7v5E%Xn^l4!l5Z#qCZ{Wq{_Hr_E%mibVx|k3rj-MzS!)zrLgASAQw2sHO zK7i4c-Tvp4%%5Q{pSPHmJ+^H>33y14azycA3qDasoDbimETKq;znef%#g;hiZf|_x z(Vk``odUV}>j?JO4$;M7U>aw=ws=R(z7f12mE@~)UY?x-A@Zm_Q8<0|7C}YV*3+!V z!naTq?eq|k3S|TBW9r`>o?HJ{kw0WB|pOwNvM6+ zpu!y#94lkrbe&>hg}Y2PDeZSHl$%P=a3p|;9dA4{s~y_zH(DsSFl^`3*4^@Rg{A18 zQ4Lbc>3t=_V4gWaQB)bGjKD}4yNMKT#2ng$cv8=_RnO0Gdu7P^SY)fVCZQ>|&Jbu= z_Bu*=Odg$u2wZgSZf_0xhbP5YQ(f3>Xgcn_OHnhv5@5Vc#iFnCKjN&45v3_PIeg^> zC}_R{T9I)Uw5}-^fgMN7gtU&do}jHC;?#5XdYjy#l!HZI1YN%N{g(LtZ2U?J%uoG* zhfM-%TVaPDz0xTtis5|4c=($Cl6dTbdlt3#JAuQMZ~|(}UL1le9|Spk6lLnaXdPD# zCIDn^Gf?dw%P)7WPpJC;^)Ju1ZX2PTXiKDia78LYHiGbS2Z2%=no-rb6W69fJ`vu0 zz&^+R+;Q1P#$ z5fwg7(FnTlvO9KPXP4Q!6-eKkJ^Wgx)~=V)~lP z#NoYPnafofW1%tC4Wn6;fG$;E-=w(KHu=4YKiI_ZUNPo$t&9!7}Uo zPsNg~XVML?F7AK=Qt=mCk2##KLMe<{?sn<`R2~4&k%Dm6x4!r-)l-i9m1C2I=|k%) zh=IKe6~!v&bN#Dhl)7=bZx;DE>QpG zh#rOZH*pFw9;7|&!BqF-E<1cV>2b84U0);YP)UuMvO9R}FvR`FvRCUs^iMDNSD7pF zTKWL<9?;0G=o=U-*9Bd;UHD8>RGnfVcG&^8sawqBQL4NnS^H zy;P3!$L{pywOAhlSg-0@ly9{|6Wt1L7U0(F+igs?A2r>0gLNO09U>fXc6N5Vjg}~{ zi#y6s{CP$0Y$lykt==DQJu2I-+V&?8kBTw5OjBur?~pFCGe}bnbgRGw77I`cN9{U> z0SeJ3ZW)pF)w1SnZcwWEer9Zm3uZyG9WNKySifzYbTquQxnAw~>)-J#(78gQ!Kf_k zPBu(+3rAp>toTim)~I?lQ`w^uHkJ|S6W+Y(JL!EC)`1MA{M~I#M)FOB_yvvIM$mRh zSAFTGipRAC=8AG5o*C5n*p*-PY_Ts2ym-5|ucF%=kBTyFMz5GUpKe>(iC>g1(K*`_RMf3Rl*&DVK$5#Qx>b}Kf7xWv> zb-u+MwFLCv6`GJ4HDyzXs!$hPC5Wy?s!Slmk@0Bfs5o?C2O5)ZUY@xu(x=B+aej$3 z0HthAcXm9S3-H0jH6>K-tzVqvrzpJNJ2 z*m-wl;JLgX0_YFgX%wm=WeJC)wb9knrE)rstZeJ0O6o5A4@%6G$-la!y3Xcr-{;T`+;5x(QILXvBtfjnp!Eer)IX-1G zY}56%@8UCm`+^olsLvWj@ZS0g39sh|=gXO-Z#YOO!K~@O=v{HMfNWF58ouwxo7b2^ z{gb7{<@tTT(1f7Ab4}mmP{do7>3AEc!+8qT1?T4O_~((ZB(+C#49~7l)jPm?K@wbO z+U?{l8RPiqbo0W6hVZ`UdhCl50|334h4FP~Hz04^+Jjt-a>pbdnvY{lkvp|V!`a?= zo}V6s|Gb)oCz5_2_&q~4EsmAeR_(w%q`@ySIR3HLnajilx-c+A+A+F(z`Feg2HCIb zqL_(2L+65+#dH2He^!2ndMD}W!f_#NaLlk#w2Jf@C`K!a^ zGNZNKjGrft{jbXUFXy68rrvXmpS0}L{9 z+V=1vg;XF~Zpfy!$J$7?cb97=SV|00Wk;F(rD!dg&D*si$Ff&c&{=S~O4LlaEi0rQ zwLw(BH{JI-_kOnKf4qiNap;C+)t_O^bZZ**p$yyfJb{_=CWTX{XXQ6C^_>T^)l4q& z&z;Gceois~73d9kmS2tu_kTsg2Yz*T_mHTUV;Tmukj1Foc7{C( zxZq2JxCikZXzBgytq$)mQqA+Cv)rg?%c z8)7>)Jb6?<75YCJ5DPQMxq8+SrxORa)rRZ>oz6j~hxf>X z__Ks!vY=0?WjRL>EJ_c-FF)ETPJd`X3D|9NWO?2@@m|@LGj{j!=B7$YV&%tN0tI{I zgp(|_8y-@Y0#FB%0Oq+pLN(Bqyw1ix%#thsQX;nxo%m`RMlp6IEh`=O7AF5@I#FJe zvygm!9a%|(b-(`1ylK(m?5gBf}Ig;QO?QQ8I2-z~{-rDM{n>sX~CT5a$JZDMy zrh)8`C*RDB4IChIdw80Ik~t$l-5p9@vAIwiLi!KH7B}~wZ$|!$K4frL^AOl_z4dl4 zAi&>HnxOmS>gYP;w6D;ajYo|I!*}f4;B(Nfx6cy2JydC;M=|}=t~96zbm3-PNTfGF zCb!-(ROa&2S>TGT%OHivW&FFx2h{MV+55BVvvG}gA`+yCd6Eo%@mUEDs`rp>SM=uL zXw2y3Wj6upN7UpU(s3mcgl%5mX^yK7?%FNfw%&eyQSjz8m(I=w)>d`6cTjZ^jNQ@K z2bpfpgI0l;ZmqlEFYEcAcTwmi?KAJ}V0kvAm1R$Vg=&Z7@|C1}U(JWfzWnF6l4_95 zgAsjvB%GWP(w-HB70=R7*_m3%8$-TSiV>h;I&dq7g6wE^0}va?`%mmYKS!SC@Q?0$ zI>OIexzV+_QN9Zk{4HHERM65dRicvY0=2#$RC`91vNXMchUHHn%ihmlgXFi5nCngC zg=^KCaAtl6Cu2b8-2D<3s4XuVz2*8JM*o7751ttx%YJ7L15S6DMO1WVzT9bi>N>*S zWfz7V2af7PktuAlxw*I~BYit1f-dy#_HwKM^(dA^7EBtAr7CR+I9TH4k1xt2vcdfA z$N{b5hy5u}MO@BPt5)9m0AUX=S0%u);3!PHA=mly!x5+IUJAX0eX_(pRc`3ufTxHx zH0E{Ht+Vm{=6#(4eps{8l%dSyE9e@4!Zo_%b|1}1t16PQJQVH-ySX z6*t#{_zQo|B_88aYwZod2Zyub>uI_w+1hcsJd4y0*AIhdIGu-#l|u`m!K|QwGY9YDzr<|f-GTs zZL`Yo6%JY*Te;Rwxc0(E%;eF0OxTV_B&LEpZQ#>j4pVuKh!L{}8|Z1oW?wtq02QZE zoR?zWGdAuQ!OvSfT@dZTCSaN24c0#ZGcBrtfp2;zJ}fYj$9A7tj;nxVh;dxY1g=;o z%JMp4#yfH3K!khOXu8eW)g_Q%3D8X?oYURSCDu;@;?o z^4pZFPK~6UW}|tjUwD3c4``rL8xT(SAuzfQU@P9bY0piGG^_lU0h_F``7=2dmt z@0-^RE+Lgf99aGGPopOg5$8cGoOm16;wjwEtxhW7K?QfejOU?Qh7I0ObNccv7$i$+ z0QFA#`u7oVK{UgDN|Xn= zMHOT1ZsIxmjj(409f7i4#Z%Q_Murz>?&IE&ntGx5jg3zQ}%xJTR@rv2@ox6^#m!K7N< z{r7%hd@y-^!_A?EJfkPyZVl!tcGa61vm;iYa0fj#{V+Lv#^?I`G^STGzge1p2_Fa2 z0@@Jmw0UWRX&D_;

GCn>a9MhEuvsVcy%$P8L*NGmI3M#_d|xXlude-)~i%xtnbW zla%WdL|bVX_WtG{I(~IEP1eI|*|vaBD675uY)`j1YWKCsmf7VSH`Xa{z)~Z{ z#7Mg;IY4K*`-gA`CGC=R+box)u!NK#P?l)mZoL2wH3wo;?AedDzw+Kl;huuZm=OIT zAX}$^<&T*{=f{nnxW?T|2~AnBVX-=LxXB&Vb1V+??8)Vmh#F;HPL1doCERlrMz&If z(_R^6+5JVDg*1>rt`))lLRTfFy;n0Ceu9T(pS6adZ$~XsyYx+M6RklErF3Tgl+_ic zwtv79pd~?`Xr%+_pW>Fd%K;jQa6~kV()&mq(itMoU$!X|M8*csHtw}_1uA~PYApdt zp&Qj-jyU^u+LB5;lyW`WA)JBF_Wa8rJW%PwfDnJ1Q#;jSFrq^jLI!k|mt734@N70c zYDi-SQR}E0k<}kx`6Pqr(0pDTourGn4=v4BpQ+;M}+d z)0#R}KD4m3H>BF*bBc~`022f#E}Q>@{n_BxsuWU>ft`CQy0sk#XHD!}c2+VUuZbsI zGzFJ)ck>2fgE2?`?+ISNm?*9?=NN(~D5BC&Vg{;4Fhb%2NLh@t$VYM&Hv|=9-;LhV zcI#+0MNA_OyTgBhi0l%it>tn#NuS%DVAgV*#BrC1N*|09b=B3oJSU<$;rdQut|uyU zpk{}TI*#)Q2uYEuvRo4vim!|QD%JhP;;3X|cOs9JfU-_}b^=1rGKrPyiK=j5cb7O@ z+uhB+hwby2y&rWIMN0?o&!mJxmg|iQ6*aE*AZ9vp$nxlqddh)8Wv;*9LWW9tPA@h-vDWiGH(N|gqP|Yg&FM>`e1J|H(6=v8I zKJ-QTg<72E!05PKQl<1zUbH?^+2qdj0M)i@rV>_b9X;`K%<#(az${U!W?f1*NA$G9 zWP`6=+IQ2!aYAPOSFMG|ST1xMz@}Uwnx5Ln>6e^`vh$y4mBl_*L$ik9ZIX<9iN^wEc{``X^pX{K2QY4*~20LK@U3vxicx!!NL&dy_lyJnmxcPc;sU2Xk) z3oEcYfzvB0(t$H(l0!C^P4(9bv|Skn$E`JvOb^H=_qS)3ML5NVk3FeZl|%Sp$%1(m z^9$mt@kR!iU5_ddazIv2vAk#zPdG1D%VGVSu?QD&bu?z5iygT={xw2Q2QbYFq-6HG zX0L5D2ZDup3Jjph*m9F=z)=n@xBx-0HhqeJajx&@*t)Kw7^X**UzuK47x{(4tWJOw z;?C7Yu~aLN+p5;A(Pc|$9*6~itP%7B5e zIaqQUSI6kmuxh1=Z8Ia5c+*)VpoLcc@;9@gBq7Z(Tx_ZDJsVWNb7w-90GMt#{alX^ z653SZN!f);PC_XKj4k8s(cyJ-oYCwhBg<+&=uuLwK$`Epc&%3X#PhGGunZ%#J zPyj^~(9FGp9fnWSGeWH1jc{xlOvA!x@WX(qq_!u~bF3ux@uESpBaj+DxFKC%f<{bV z$!|dkFd7_vYTgTEq%_L0X>2|ZB?{c8R$N>+cB9Q&rGa?h)RPPW+6ogi7bGR|s&sg3 zSGufV3^<)=M{?`iZ8gKrXodsKU;Ku`aWtn;D}mD@o5|}8N@-vXALMmYM(CY8%cRPw zKX3kCDxBtYmTT$;46}ASKMwq+|1$J(woa=xYXV8a`>I%hfim8uE&`G5Q~c4Wnl2Hk zQ~$qUtQoIxr1Ybffrm7Z)qhsA7p3tS%|0hPhmf~osxKVJ5!g7Q19@RjIlxl*ZEwe^lVcjCCRri z#>09h;aT9+`2WFp$nUqkb8y&7&uzIV_i_-RSf&>hL&LyTCucvg^ zPKMzByyB>te1k(=RNJ?%qgZ7f=QYOE^xQU(WtceVz-c1E2sl<{d-8VQT)xuGlZkQb zVlhY2jkA4S?VWvws`d5>yIvS<)@z2U5ukn!)P5^x%)@8{y2)08%Dhs9U^qsBi8uje zB1k4h!(>Cz9bj6)^oXj@5SGEhaQ!|nUahYcgLhdX-nfI1M^`}SmH`|Cl4OxV7bQDv zG=q8grPle!GYFLOb$`tuj0~&by{pH1?p-rQfL~Moe?$iLs0==XxEsN^DTO$u!J0;x z3>(1_?wh&`bHEXp3VRJR{oP!#8~GLsz_A^6tB&FeDZ!M0F#M)q&2F)1m*u=>kx6Kh zIVL@-t|R~U##ko1*q7e?_a6NGs3UcUS)|l)+88*=L!I5v0z%oQgnk|*t_!R-rysb8 zQ4Z}r;NHzps(T?&)!Xz+Cy%#c$*S3CfQlO}ihaLkb~^bm&GgBf7U8coQaDyR-^^0t zbh!0!w4122F&j7XJEY?g512Zb1UOvunQmg)Kk}ZH-;;0FO$5;RNw>RG6WOH$==wg#DZFHh)ZOop2U_9<#pn z9GBzjx&JVKJuBZki%KCYp_g(A1t!=GOpln=oUB|f} z`zc&o_|PWfZ>Us=PCaLaU{b(N9c%N>Pv0AlR-okX_Q^<*B2*S*W-v$JJ@yXu8!Y^j zd`VJIuKez^h+<-};6R4ndz4^Lz)_}}r^&$ZSdl)}SC3R~a> zEBiuhL;mMn!}EDfKwWe*MXA;D2{rz?2gmW{K3Gafq3YLn-J1PcSiHDDn7{eZAtO7$ zx&7_44QzHJ`}Z&>M_aaGN1o&S4>i+d=QhEz|-T7NR)oM0m_rJVh`ETIGoxxDv-+Yjax1{BDK!td+Dt}1R{kLQs z3rMpq%1WQvx}AqL!#aE9$x)ItK#|E}2PTlkc;q(2v|zO-KkDw+iE|cOXhbU*cmdad z8U4P#|F2*58?g<^`ytm_-E8hsO!yORu|Ln6x1)4SKMuic^3U!GJSGB1(Q^0W+AYsF z7)zzSj#g5}Ds>IUw3Ekps)RdC0eXfx&)q5d?>)xoe_m8+;$IsHNtuCIAt)&;ukkKJ`$e|QLNn*1qGvb7&xCh_ zCtW0y3UC)Z-ub-x#A#pd$)!GUzI&y5|L3v!`9A?HUE53SEKoxRW=3y=I~QL`+&`I= zvz;z^Y|?@oy=EBek&H1Swg#A4&a*JpZ?oB2CfY1ed_sCoLXlk z#kc9z0k3PT!lJ63k2F+{4x=Y&;i4qdw}Em zG3(jRt;*Sk(RM1}!|xTdJ0gT&D#TAH4|mAuo$CE%8W^kAyqUP|jRpa88IO^ssl}R8 zN}yCIqW5RpJR;xt$|d2Y|nVI;8A}QlZl6tCB7#DyB8a%fLy0Z9;B+rWM zbDsVaGn)rL&kWmElABH%Qbf~uw+$@h=C>19X4_PuM>>J0ya9j-rQB>ph?RN%%i|e| za;N^NLpkOPluP^ZtXLpB^v2e3_WsWU?@#ICvpJ3l3xY!PV%dsfSKU@yS7Ix7`Dpge z`Knh6=c%lNhWyDL6#v0p1qIcfk>#B2fAqJV;k+;ELnwT?ZgBJIyk2`y%ArW*b?7Y$ zSqbv4gr7C2|ChgewMrg>JY&I*22L@@9bC1adS0*MM?}%v6!oI(`J(;->%%9pTa#T@ zeeLl?dN}0JFp#hc&9~n-{?v6ly3@N{W+*`aOzvSG0L^Ky1G)=60Z6Z>O~Q{zD+>o8 z=1=`Bc3;6qy3}5KVE1AU$iwkkmX#^%*IsCll_2hRS&$d0Ti!cBR2LAyfh+{B|E3$> zgY}}$oCjGL*h*OO>AziO;{L?VgW6RwE=C%ByKgxSO?V2cyF_>*nMttT)l1YVm!Eh~ zA|de3>kmWYJ{gqEBG=yuZ{inZXqLwQbb8CF&Su@f=ug$^lB}pokmVE^GNj9+dcE@a zt8ovAD#sQX`fI{?u~W}}R($anV4~<#Yy56+XRkI&dBnP-U4gkFV=-pzqZatU#PrV?3PTogK;xfsCW?4+(qtv3N4%m=WV0 z_Ah|EZf`puIU|l)FPhb9-hjqIvooAYH@pyo$R6i<%O6d{oefx`o0wjrdLDiBuUT_I zVTY+S>axms!cw{vCF%eKU?Nw?9P4g5ak|G(tR1k0>>w$aYAd@p!S3~Oh#;!Fj* zZ3L5~hf0;t{8OEG#6L6XXkSg}GCK1~)r`K-V#l{U<@JF1Fgo|+@5zeNngi4_64CJH z;BZmno36@f)Z9)Qe9*uhX98B+r34aTw~+MB*}CdriPQ@wdRN~ox6y?*qqH$QEby{l zY8M$5hd}gp_#5{BIJ(1JehAGrBDViNWMa6v4O>z)xNM0Xax4Jt%Mr{D)biu3Ge zRQVfB1o3|8IxhY!y$|iZD&PG5N6CrPQi$0l)0O=G!md{q8P6_m-Q-_fSkVH*nTp^ky)W)=Tx(JK zolQ3>Y%t-?ZEwBb(5;b-Gx8ifnGHKl>T=d^eY_FN8XveA)33HzLmXY`)Gj+~1Xl4^ zr3es2UtbJt1%I96oNw)nxCOgd&QQI6kPw{+r>~j?N>xXkJzm&+c!Nfvj$* zd8iDBD=q+mW;+J!`>wudXR>23PH&Rt%WQqeB?fc7*k-qY5?@UHQ?|IdlGkY8=RH2a zYrRv|aH9Rz&n+|VUi*b0uj;pi<0n~|tksiVE0Ii8r)cN>99R&~V_VlpeM#zY^?diKn~quJA>}l?YmNlhSsbD6c3v?ZS-aEj6Of$D~f!9T<>M z!RQ2$e6Vj8&{#vZq}FF3%;LbJ<%xl4>f11`7bOAHxM6r!e%VY_&vYEqtlF@O?JKq( zMy|Dpcj~*-wMFtppWi(=7xD#T8|}v})x{PtGL80AOem zR(IrY%1BRo5C+Mq@I+U(Iod z-`%|-5AXW@vA2hbobG&U=JWRBuvmesMteH4F8WPCBhRlz z>{Vp(((|%Q{5mejv=^`qVCQmL8*adOPf-Zc=v zuyB98#@uZ+Wc#{EUVzDBey45<+3U3;)ED!(VI~uzH~Yj@)cuE?TnyUuGjXtEEC925|y~-JOrm__Rj1KX=uQ6f>apuf@idKI9-uc(albFIDffN_>9w zXBWwJ&^wU&$`IPhGl{ODS5=5Q;F0Q?^=_K|N|chXyb8WVHb72fa>y zIffLilXHCiw?@96+V*)oZH{e!1Og64nlNgCdsNABxEEL7q905DMm$XVB##||PkwzE5vc5ytVE?==yGROWh}U-Z>jjnmUZ9uS027>?20i|>@=r@;37$onr)tNczo%>cQ>n z*L>~%!|z|SRXkL8Aa~`t9#x;#!zv5Gx<_d*_seDaXon z(1le072jOk9QF~=0SlF?zSGWsa88oX_RT5qQx^R+&h8B|-M@ID@T78^Me_WiAs=YU zo!NBK#jbjHM4%Kdz`0No)HFq9NR)))JNT;&4EO+5+^!=fkK)*nfL;98G`nAq#psR$ zJo?M*GmWj~4kA`(%Q{?<{PZD0<3O0JDjN}AI-bGZ66WtP^mP5XzS|Y(?;*6M5SlH4 zGv$%;@Ujtg>Uns`U#k`Z)~F)u<#xqz$c>f|ppgx6p?iF`Fm-)m1D zdC#PDk*=OAVg!{vGE#JLE-wW=a3}4QyrU>WkTjnYor0vo1yLXT?F!Nz!lYcZ$%%=x zHJ{a~y$)HzB->3zS=4fSlY!mI1-sH=gmo@F&3e%nsJfsbZ>NI_|G(2^+a{qGSp#K? zZn4tQe-wWs9;An-UTpJHObfcunXK8S%OD2Z=za5UB+mAd-kawyNv z`Fi)<-CGCz0fCYppuJcX#RWX(vd>nYZ2nUEkmvf3ljkHturYc2=)UfiutDhEU3o9B ztrSmBe20C-pw~k_hk#L;4d(joayB|l$dmTx{|1aG0e_c21uW4m%^zVJURULHnaayT z)t*S(Moq3sHhT3Tk}D;1xqPH~B#@yNde>(;n2X;7QWIG+z@g-a6w6w?J!ss-91rQZ zl>OsI6(rtvS?oJH+XFTll((_B!S&}lysCcS#M5sL7=ax0rS5jkv*fNxvIg|6q(tUt zx^vaJwLGdbe{Lz?+JOHCKDR0M-I;H&AK3uL36EBr*w>lzE(!!jEc9H1zXa>C(Cr7X zDF&gBBC^wh#4|Q44u16T+C$z}rF}pP%0IdMB|l+}l|ASzM@xJhA5yZkHg9%hr>qL} zfa@42w;S6G_F+lRKf`)}kt{g3O)AauPm5M!`5Ui#Ugz~|OH7cChugI6NKh_6_jT4{ zFx5U>pwmE3gv^I#E6aFv%~?f%L?9B~4zDC^2_WSO7RZymYKg&n@5G^t2NCx-RoPaz zz6uUNm!r{@^8r6|9gM!gHihtW|5o!ujmh!k) zhWGFCMAADhV=tMCn=Jg7RME%77MW1`*G?S4GOJrg8svH`35g6d*~SAX*U^5?0mAg@ zfK?n71Hoc-Qvu=(q- zRiNFnHx;{R!lRIbu4T9EYLCV>90dA1arIjR{r$th;CB}9@=FZ9H^1$r1J5j;9S#8T zlx^&`N6)iw+X2ui4xJDhO6wBjCNkH>55uOO`vNus&BPyCS`jBOd4H{dKtc$ zHu%@1m#uFoUDEXPt8Yf71;Rwk$QD{ibLs|3<8z>P}LshRJ=HWdsI z!wUSDetOma?7hmZt}`a%37|U)V7Ij|SgcMlxH#LWOx!jZR6USyQJK>l1`FR< zV3PE{{99th_E9tC&rLa;lF*XDCoxXe<2xmJ7z#2lxyL%;gGq8 zAu>2py-10p9h9ypy+Tl5Du#yT=Q(x`s?H!Jsc)Qi7cW?@o*s5lUNX3Cg=EVYdCY$Y z2fSL&otQI*7uR11rMQV!*9AkYZ6_Lk_ym+`!BY)krm|bHu@f&&f9vHSmvY0H6ilLp z6bquV+Z=_(yb0pRSBcl_y-#+Btg>u}sxS7olVGOvzpcJx+LC_vOW~R58J-#Adpbgq zujY0Zb<7Axa`3iU!l&jJ-#T~>Qgm)2-z=;WEBec721vFSDBN3`TI0bqq*w{m6qX#l z&g|;Jo&CXvu4IGUtBK))ck0_d2o1pn+Is5Q+gV-~*NC*e@?QmS{HRy>ZXcOqjKiMo zQ+kW@tlC&i>-b7_rE(F_Dn&l z<8wcXB-gb%ovQBQC%#R?X41ppA-Ux!_i#q9y%udW;xUx*2`jA7@ONdzfu;h4>NnC@ ze|o&fA?7Tk6}tR0&%&jiaG;Ap60ZA{_l>fAa3b>aH(dH@I{ZM5X*t);HHfp6|T_4vL)xqqwx4&0_*`qT9$*!#t#(b zPbZ+p$yGTXB>{cUE%%d*=VJxhyV<0~MUH}d5L^{^CT_aZkE5b)Q5X|IP?K-hq zViT*Juo8B0{Z(W}SH=+u)Q(upRpH_}1cHAtcuI*geRUt!!XYIxAO8*bC>#(lI5q8`g$>IA= zsom||vP8&(vhSq9L|Sfywi)bvj|S5{lI@CD)2abz$6ZhHpMc2;XF^`7*G+z1bDxHX zuE1;%W7O`WvqSY#ONN&ZlW!Y(lm$B$pW1baoNlFc25-uIv4_8O3?RBX)w(@GF-#Dm z7=!)=Vs$P39k@zt0TxvcQ_1r)V1`P;?5NQ{4H}bDces9NEUi>58V`?W|-KYIkBi?M4#3@8gLB-L8SSgI} z-~c~}6*626e7x%j^08t}fBO+JerNuh3k1)eMufYs8D?)q`kqzY+R@?fi^JnzvpXuC z&xf=hp-R1b`ia1NNmDKo?Z50LVrxjK|L0kdtXzCL5eDN(AXDtl5+w-x#pf>`P-(GF zjnn$jr=jHdi(W*E6%J%&0E3A~? zy`M*pX0AE*9b`s0?~j-J-0`8WHO2G z+A}~2C5jp*v}!*A%%X-fqrDgRBX&Hu!XPzvPY(J##P8ax32-=J_m*Rz#;Qnlg&$~g zA}kj4Q5MoUaj_>NrL#~P6sIVBX@hLcI&k`aRGzf?*Ukb@`6_vJ6`w79R}7?CTd4TY*Tdi0QRR_y5`*%yPKL;~hDynC-!&a-#q7O@S^I`TnF3)x9zk(qc069*S9|(YE6J1@nVS~|?^3EKfyp?#6;-R$-vp9C z#h5_?o@{O*fOZuhRw#aWuwLO#KVz>H%YJaIL|WxVE}U=&_Ud8%Ggg`NBzbYp)w4I% z(ERY>NcC9G&jpwsM%U3tvx@_`7Rudir(M@H(810@P z1_engd!6?fY&7>N`RF)v6@6k4!=O}A3%Iy~Q*{jgy|k!!+1s)cF=#ozkMKrqzu4=9 zZ8^CkyI)plVBYUKYfR~Hf$gANKOiWOAfj!0*Ve~89Dc-{)DIc=7|vb}#wRvK(>hVo zZpx029Bo+^y@vrE1C^|X!T3aN_l!9^QcgTJ?iAAnsw48yFV60~@DNd)9v1jH|8>m3 z)_)~c3Ng|lanP~&m5g+b+He9ORVAd7>l#)w>jxIoQY=x1XucRA#ExGxzU=I6KJ14r z7aUFDru?qOBFo25P@j-u;aA_D6=?QzHLlk8gE#3QC&1-K1)Z_e5+EO!K8ca8(th!{+=IAq_!Pqy;&4*4v%@t^r# z!t>eHHmx}$6-*lUcQ>(Fj2c#Xr`%55AKd!*RDbyC1`bH1rkV(G*H)umjW=mtC3IN; zqc{5B17AL;tWgl{yyZX*H#QtJ7+hV_h-5m%YSfv(idFLx+|*@y_EPy`UvY8RY|bXN z7K}KKKtoPB8L;pp~-)5eNm02qiMtG6Sd-jw-E<&JWsYx@Ee# z+cB{MC4n2pNyL(0ru9PwD?WaZ@Uv);c@+7?-!I$YpwT}S#Z zZ_+e~dqnBIxZEkm8{CS&&OL*asv9tS{dibiprx;VPHGMWw1Mf2X~eipc|bS_4!TY{ zUD;*zTj`is5C<8<_>QsI>-bN(L>?EOk zHviNb@?qs0cG({EFV1(5;X2WDoj!q%WY>N#pQ*}I={g5zv9#Fs=h=!_d9TUrT;f-3 zmUSR>j>H0LGG*|zt!h7VPJHP$sb^oPJO z&(WzlMr<=M?bG~_|Fk3{%mq!I$(8hE|CU^km%HJ^fH$8zZnkvk>;wP!{gOrC0%VND z(GG?=SjS_qFbT=VH^<6_ug%ppN!e5^!Rc|2?*ZG$Z2o-twlQ8w53GF(K^k@C+00Bz zX}SFTAH@-S+i&wD)4!Ho&x8CeM2?(j0;2Kb?{@sA-U3y< z-gumlR)IPA`vrYABv4N>B#<24S$|r^KR&xw88NEzc6&aOs#@w(^Vb23=Jts-usJR2 z>hybU8Eic^az~S^_>6m&Xn33!^-39hK&uMQ^6#Tf)ZWQ3u9j3EIE(A*oEB8}U!LYY zp*_=7vHaELa$#3mz}}%{8=&jh>@)rijEY3d4GJKDyls%04E5ke`gxGYItj_ok+m>g zFr$u{I0cX(K9cH6vgKh6)SNT7-BbK>kIw(2MIg1#V0QMu+3q%wEre6j{t^ z?kn`UBL0@AwoQNF$FB?Y_1wP8;&8i<64!pRv}e??zuY(X>w9C{t_&c{NeBrtfD22m z)hZqIC5!BJ+hXF%=X{&LpLmPh#jYEGCDoIjmF5`R*0~lRvEJFVdZRcxuC8A?OeJSq z&{CKLXo$%oX)Ds*t=t|6XktUvJ7lpIhY{_F3;*j+r#q7`=0_~gMgsLo`S;-4aR51! z`Sv5N&1%1LYm4IJ%Ub!iS8%b=@$Fq6yGc@49Y7u@i0exi(d@dCO>o8-*#gSvAYpHA_M1VFTab z<7bIS$crP>H-GL2E<3EDVGZ)A4%Fzo`PIyZK3s4J$w5Tpux{mDG!tqZMa|?VyEkBV z^7GdU|6(O(TSHX!d>@(^8Kf7snM>8?jwXO*_Po0)yVW{^uupKP0))+|f5RVc!a2`K7*u@L1+=*vlE_ z4hyFfVQ918@SNG7p5Y8%wW6#@k&=f3^9Tw(Pq)0`a6cN6>ffE-=dyNnBNh^QBnHe$ zj09d!McPW$ZN?&;L7&{>TVa+0b#t|9rMtt3dx_hB4@Ynd064oJ3!dM7ie$bZRLH$pxhDY=WZW;UwwNvV83xXT<{3jQgHS-j2 zKA-(MvdcCgsW>Y5jZdil53*Ns!NMjT#XPZn->?~)9Rz!2z--VhgRigGS(yT~=}Z|u z?Fa>G&G-4{=f@@B()6Q+ByMntM!M%9IWerIrW*3pQI5)1YgVmH(FytHd@c2zvsu8r zqBOSyNt(isktt3J>}aqb(tr>5{oFhC-Xb|BYP4^b+MUhCwup_6ctMU1XnnoSXj}HvR6ZJ` z_kMf05iv0@o6p{V7y_s8I?LD3QLI-EEEteflEQ2`r9C)#%lE(%1gH9&$dLUHxrw`8 zET3G&%(qbAQ6z_f#{sF{LE{;ItXJ7UXmK?a$oV94(8H0`}rQ#Lz}Vo-1Q{_!n-+tVCR?2q}vxnpwl zF0h*EAl$MxCjMg|Vi-JAzmdW;>C9^x2MpssyS=qI?t0q?}2>ih5yDKLgE^P@QVxE$Kn;>F3j=UPF*A&cHRvHys9 zE5i+vm(dr)M!j{;KQ43*e-*ls$oF!kbtF_h=@fL6u4@XK-r1n!)bXV0AtDi zes7{qt;=s%5yyNkhe2H%!iT21-d@--o$r#3LlQt9f?8I!#EYJ%%h0JRlp4sTB*JKE zVx4-;n5#$LkGME)x2)Bed01qOL5yq0{aLpg?EHdWO_(3S`-vbzDIBKO@lTOw+vJsK zdjE!(U?X*cF^3e)x=;$5XVR`=vL$*UI=+*{~qJ6 z&h=0QKpSKnMjrBEqNCo9x}}8w%6GptvEb3~yv8%4um}y5Gzsx~=ipuxJkvalE5)Ms zGX8wCj4uss-&nrHM+#cEl!Pky)GHGIxuB5P{2TNs2XoLag1%yli||#`_E2c@x^0GC z*_aJW3HJ-BUG?7d=FQICnrlY}qJ$1Uq;P96)`#|6px>%BSGsn~+RH+!3-Zg>ymd&Q zE%hoY7CRhZ2T!)}KmL(N zhYa;3(EimM$Zb`+pMSlETYnV*n`EnJ(o}Ib0q9!YB8M}w4fNq~bQ z)^U}uQyNPq&go!PS_N}DzmCann{#;(GK6W|ZZb(z<_~a9puNlpIBfWys{|#w8EW4cA+^Z`!{%WWUqoV7i5`}Eo<_C4fx}8 zOl9hY@W5r;x}L)yjWg01aBccij;(R{5ywEYt+3#iZsCzfz&mwCCcmXG-J`*@Ssrx4 zuOclqYDFaUOKvtG|Hs^O4Etjdg3cD2*P?U|n{*teZHabIAbGT!3d|dw`DKlV_Ia0| z+X&UJkAG>Ys!z%3^!Z~?Natj97SWH>mG zFolsv%&^Q_ttoL(1s7D`o6*1=^kD2#Y!O<2ay3nFmwVXpZ7D>UQE0AKLju8_W_7%YW`^8p{9vE6@b@{#~6YWp4ANx)%>;wV;&^7zZI%B&-mbi4D9F$ZV-?gq7S#^PY@Pgj^Mu%GeaKsad&)R&AC{#oJ~G)o~1JO?X2tmJkps*GHwk1 zm9FYw+?ETQ$uL~N1Rhfn&&bliWI zo*i^9!Y1#~uYM*7?S~NcND&m6eHhQKT}+fb^J-;(#!lYDw(jt0#BJEgt|XbD%XwQ=_=69m zFc`a35XqGMeUiy1a6ywh^R6Z3tpD1T6!+ajGSx3U5?6dOx%C}6XLqu8u%8j#&XNCb z_M3G6RNs`r@DEbcsflrd@;I;kjMt4q8)=WVuH2T0gjxzIgcE*iRo>Ja2J_M=T9QI; zNGQR@&nFB^CqLX5oMmm1Km)mFgQ#evG6p$%iLi`E*MeA`&y)PKjGSZLMeZCC&M@#j zmOmaa1e2tER@b`^yLZn~gn~~Ajo<13gHwX8(=jl_)gJs1yZlu6aeS1b)kRAHrKabz zs=I^k{jH2(-x!xUi!t&fU_C;SS`lmM-eiZhpJC=5x1&HG%-4Oxb3JflEUmrVfh2$P zLOgBgYOq}?j8?XN3u4yR0<8bz7n~DpZ&<|K`g_7TA+c|kg9%q z#}9zD!F{R}V;?56)f#(;Is6ttwJ3ohHcZ#2edgBLF(*RWHu$O0+6QgI#fqz)&t~Kh z*R-urron9C5{`E%YA_d5q>#RO1W!#pGo@#U(ad6yPzsD)j8hpn4ko^5x8Q0%&7d?q}NPO6T)k~>8vEyvJWhhI~U zN33ipht0E>9PdNd6c^BIkE>ln2tE2!Mj1AqyA^6E=&kNdl|8+_G=R5=l()F4zL@T+ z|A+20Kyt+K7&k#`?JgO0LZrW`vhpqE|PdbWbP~`9AU7 zk!o{-P0E-xAkw1r6dQLWjKh8Ij@LIa%Ws(nW;;ApTzyI7JR>R*arffCO7{OG3%AUD z!O`);7N@f3^;sSM=|h*u^=w`m3o5cdJB>|T#WHh092b-#XlI;fXqNA^Fu^T#Y4C}< zj;NBh2^f`-K+!JDrq~zahRdH;#Yu%;YbqNyTA#e1R-dpywVE_0oSgT)`?7EsiwGW| z^^iMoZ!4H1%FGg-Ji;ZFIM<<7Lpo@kiYsci%ef-+7uTN5$BzLZW^d>T0f+E+|Kb6y zJw)O1?l>1@syaQy4m?MQJmRBRijOW?_=OlgK7Uj(+cMg63$_)sT zkEy1=WivhdxIWL%szkU#U6HkJ>toX^r+gJ()C0-xxrV-!AaakHm0g{x_CC}K*8Lwv zg|`cX`qSyfNf$7V@l%0Mf<@5Y(PYpL(bx9`nCL>ixkPVi*wWI7bosBJmV!Ju*)Gqw z8>7Oap55`IQ`9gM14a#NmGmwDdVSlL1O&5*6cQM#P^j3obGe}6gV4Jc`u@sQY+`Y% zTi4AxuYPFg(W3UBHxdauc9vKl)OVj!p=bs)Mw^>24f&y@7Hs=EDpsRxcl&OJ<`u;y zKyPa$DUGT5SBeRnIEXy=0mz(fzwr_nFhBO$|K+o0EozRd`yYbsQ1g3x?*#y`dA!(( z(5@zHNiwVR`3S3JA2tkkZ?!Y(&Cek2XuVeoJR}b=|3QGbFt|g6!1`LDG)HUu1ovu` zp4&h67E5TsRD$_G6|5+k^)I8NR3^%{JZgL6%qA-PKWp`->o<~eqoQ;e8_Vu^Y9HEY zgO~@6!P;;!Ha;Hs0%U9{0)eNUlJ7!CxR2kKhpeufE9A?Kzc?)it1V@ubuD6#A=w<- z-+r2&g|y%azDitoG!8d_`%`KECF6)pq*{l(Ngp6YwgZX8eOypdh-73EvJfkBp|Cuc z*gH5bz}M-5jvV@qT(TaJ~KU z>6LZ>w?C4S|LdHmXLjKGw{Pd7a_Z#zW;Hl>7@C^G$}TsRu-V%h(BB!MknmWsaT=BP zTF+FnDy|;M?YV#bdx08HHSy(2VzR~g!wupuU)mC{U~iRnywzi_6I?wS*wNtT(NVI4 z8Cb{SJO#uemV81l3K$;eRJSxce>}v!XwN+v`XtBDKF?8yC<~8W#Vhx<W>PMjSu_nM|%v2wh7ari;Xx+UvN+sT- zM*z$En^Uh;2PuYhw;cj#&nS|-_9M6@VmrhT3cQre4|gOp^F-(JS|ICZsr!HX?s*_+Z5FBoqClIL-d)m5!y)=5YD+pcRX50Cc?u|(rTD7OFQfTtNbzQI;mw;ptqs)AUo(-1ry~=) zZ8&BZ5HDDNcU{u!a+&7SG?r37GB)mXx|$Gt}md+_w#frTAmdFYO&ofMTLeT&zFJrsqT zp&@GIbG{3^sgmLPN2=RhM6sb8zIVrt-}-Io2c#&v55*~sY4g`hlojka*$K=ovQiw> zHzWSJV`O-)Dm~RmH`cZk;~YwpQ#tI>_z&dqq_HjWc+Bj!U936T@Jn!U|f9ZB8-OR?i)83m&4-Jm5(Q?U15#c2F>L-#nS*7;X;`ONP9#l5eg zFs!V5k#!ai{j;nXO;L65OL#U0*%VgoR?nMIpYIpaC9tD$t61%WM62M?0*E-B;vLHy z5#or1s~%0$$BQU0?8ehvmShf^*#Va2H$icsgywtm51P$oqb zN8@*R{NH1mYN^>Io__8uMXd)`LyheRnzAg@#Fr9qm#5n@Et7-(>u2@=Z2+B%w-s=J z9seq{Bspv`N{*^odTi_VkU^{0K~Y2W4Vvvuq_?<$xZJ3h0!YitPXLST z`|Y^4n=rm(@TOmOv}-|Fc3**&C~0BAIfwBZ@n_(`!oOD>Tpmf8`(`UI#<_8FAS#d? z1LTb%PY8<6yMXeDAe8na5%m-3|IOtqHSl|8$_jqJj(J$FC0i{ z>KpRnkjS^SaGafpJYdbj*E=cXHZpe)9dcR=&Eu2`ffT_KM9fk^t8x z*YG$@0q;m}pBILs>hQ)K5thwSF6q;2bjd^2fIeIsd|`Mcj>6*Y^4%`sdR(jnu{oC` z=>zj=D2Q(**ICUHGb)`#T$%)*-yQvOCR`j`pasr<$8_iWlOfCUXSV%A_R8{w=N+bd z2s#b}!@}LNvV;%Sev4b%KPt@M)-&9EjOrE&uq4J?g&K!gzD0&YKz{%3$_HbOw*l?v z&63nT&%+nhPJ)kjNw1U*@)!Vj^H6uI#nz+6ty{0VoNr2@3OB%3RmN%nTU*o(VL6@K zHM=c%0L<00Ekw(0|1+(BNW4kH9?UMsOXbI8ME~sl(`}T&F@2yYqC74%k_NbM_*zO| z-t{y3K#R6*Ge*g9`F}NT@dUQ~WsjqcFQkNt8^1MDMFluu=VD`z8V@gl0ZZKnTP4Eb zrsA5z$!}rc+`7r~?aE})Vc}VidD}J%6j2FV9gWtduhLvZPSfLE^5`ytS^XmK*gy+# zJlv+v$5DCLOM&{PRk z-(nttA zO^2Jyj9QFSfBb#z&Gg8~oe(W8c>uf5;r#VbwA@aQbnpDGTj5VmExD?^jf-5eOd(F$ zG24rsc0J>Q5zmviP~$`&yq$ls%=YBMObT`8X=GcmI=CcL$k~eENuD#P*kSqfrrK)7 z#rU!qzj^66{-w#C{oW1(U#y%5I9er+GqNJ3Tg6&JgJ#HBFN99RQ^S7^YrKa5A>aJn ztvHik@x!yK2D<)nF1?PRRRdVN=(2>s*uHz8W0lg$5R6+V!_XCyQK~$#Hf2)wp7d+t z_AwU!^M6ktN{!YL+91}ti-dBrFFFeW@MQS8EeQjRNX$Fc%=XOM-@)@)<-5*N?O?`C zJPeP4Zzm?xtF3P7Vza}<^NFj@NSlEHnc=Dx%^XjKitmGcEb*0JRvSQl{TcBCy5n*f ztVzyt%)>9z9Kb8))GwuomYtM8;SOKyQA@)j0Pe6@g+oL(?duea?|V(Xy~qrzmZgd8 zyT|d_AURfw#CITc(z!%Ii#I_K_@3E-X3vk= zrKjmOcVMdQfC}s2RqVaG4o7`p_a6mDCzgIZqnFc)Bi!#0D)b`d??29%X);PwRO3L} zZuM-#U3hAfkQ>d|B8s{0>yYQXZ}n(4YIjmbv*?$I+q>+yL*uF5*IT=l)Go^}7Mn2J zA6LqO9DU9%oag`}3&GxhGybDnM6Y!!fsrt0<3b@4=kD&OMz^`*8FeXX*Mo0MiyFV^ zUh*pZ zfn^5iSxHo<*j5D};Wg3XzUho{1BR`OpE*sZ#rZ1$@W$HyMT8RUm6u&vcVoZhk@L+CP3vVwV|C1ldF*B48eiIS|$uxxMernIf`U!lwDvngQ_x`Z>#R1({ZmKm&! zfsGa&(;f7?iA|xNO|vuuCdgazRdu}9tM(l3ZN?a9y)X`(I2kqCqy7h~8&^%Rzk8Y? zUtAV@WRzsdHg(;4y7KJV%c_^_0kkAQ&&XR2(43i7gmoikp z*8$1~nv2^KE|?ZW0X|C5#aD(WQr|W$i>Nno%6i)~ERSD>fB?zw-jv<0ATf{o1gO6B=Vqfcthe{d>l5>C;CBeQ)-OhGHVXB<-l3wK>Ccim>+k7_B^9cHSf zehqFr~#ne=8;LbV2fQvn+FS!}jg-@XZ6WQU`DbM#M>UW~*ima`;T=jU*8dXp&5 zDm*HnJzJKC0|A2{hvpIW?fyD^K1uqh-+xK1Evg-TTGm`ya2@`jczy z4;IkKGpri#5+IST@lo%7bS8sVn=dNc07BSEum*#pm+&ht?H?T4wmvDV_ zmT02lZMrq_FNnq+7}HSXs5EG3z68f@&% z+tRCcG>+=&S}Q&oG^)-Bx=n6LV2&?p`=Q-t7#fk=Gz-4fg!D|jq1&`9iXX8>Mo?m! zFI41ZgShE&%}nX(^>sx9LL%O^3+vxFp_nxDd zXa9g7yzky?uUTV`HRiE7XWGcOVu9=P*p`8_{Q(lIQ(@`VdSXy{q6e#_O_R;qEX+$o zjqCO9{o;Vnw{G;DtjA@q1<1y&Ll6@eAIb(jX_}E5)F0q2dXsrIHwKX@dM#$y-Su6F z`+1BHbR4zMIzR#k;19}60I^53=N4d#kyGJx2eUBhtOvx;Wip2wCPtfugo_4i2AncH z28u<`NWSf-$y9-J6*WNKb_iL3&GfAOYM=)Kb{L$Rt}2vy?StJK8!I~BefLzb&>#=G z5Iz|zThn)g7-L@n zQPGdhB1{T|6p6d6VxAouQ6|Nh$dB6Ei5#|Nq}0X_9CbnX-lCF7ciPg~agDVllG~d_ zC_E&}(RQDoE7Nh8h2rDqD4n0Z`6!zor0hm2M2!o0L18D^1_!nQ4To&@IBVh{F-1vh zT$dg*MrXK+0m~K#`ZA9-?J|@PH)7@$}=&)AsMBiel6Sk9;!T#oQHdF~21oi{Hl#S+j(g0u_gxnV=WXqVD%Vcn~;~@UL#-_*N z&5uGd>?P#$NFK1(jJsWxj+EJNgdme)fWbi!hJEbYBwYha#BumY2yw`7N+zyg_2cSI z*0Z+E%tKf@YdhVFXYA>+F3C~`3waBN-ZB_*ZphcZlN(EhnTLkR=GiCcUYaENshMcc zYcS+O)M15*OI-};eQR1k)9!rPuX|5UHxZok^5{_$B$Bsi*Fpa6gA3&CA_}M#miH}l zN;^uIe=(xX8yKuZ@b~4puAM|>Pj=Td>pJhoFTgoVB(Y3jqHurQ?k|B?K-=sY{!-i| zmF|v6XCp8)#t7E4!x7QwGm8mgm6bKh9k}l%sM3kzaN82pMX@hEKpNEuc?l4VPTP6c z^;5>BLH+JvlP)2}NN#YO4+QVqu3URn6gLK&b&_T~A59lfZ9#t&G6l#$!A-zP20+Fw zp(QsFXC;J~^7~1ALj3d29tm$uz7f`#-SHLqc&4Mf+sbueI&S1s1~2W)bxExtTK_J~ zxxM|GS7o?CO2_H-V*LdS`&U%R_4R{O( z=us|w{qm=_cp!twdqzN=!e`yD&l^$XS>2)TQAp!KZw}7#(yF?re{Q+SoOHvd2!3Iv z{)qZf5(O)2%`J{e*q1s?|3kS532M{TI~21A3yR0#Xu!7Zx7>_L-N841t+?>YloZrl%INXR=vyn6``|grix1m250<;Qq z-fBIP5!CZ+yRG7dnJ$gJ8(T`fm)CGF8o%kc&JC$s0&?%b9(8lB!k0G##4z(quw5LP z4hJ2yCMhmnZ0LPxms?uX041A4!ZLeyB+lc1K;i(e(fd;Gy5CL+(Yd%`7DdA(di*Z= z;PA?St|w~n?}h!b#*g}nz*`lb7*6%G_R_(K_I#O&@_5L-GhzN}eN(yGbg?}M7@{y8 zmM;h>hU|YZp$e%f(#K`WlGO)l=0C=Kc=%6&qyDu64=+ zA8+A0@6D*^%E1#l0z?EWw-O`Qf;+?lmVshgi2vHb0Hpw!pvoV`+n)iFWG2TzJ0E|0 z9n_~>iBUeXCyoYe>Pn%v1vkM~F4wJeo4_Dk_LvnkOdAFr5^8WmH=LM{QU%aHQ+%*% z`VgA)NDWr64~O+Y4`*O94}-3|fs~%T+>l1E?FKK_ZWTR|3?RpGYdfv?4j%P6<@g?D z2iuXluSMhd%4a<9$YDzLC;Tz>Pgu;7>2h+|tR>x&_9AL$cmC>f@N07^Ff1f#<2xWC z+^6(y2Agal>>NT_RYzPuZX#kd%WPnT8^oJfEhb*a`9|~ zO{=0lA~1V4(+nBaFpJ|#*|`*}tQu0;bD1K18;laMoKi334;w$YDVvh6f^;&zxwt$% zT%<^I{>r`nqL`GM1)7FspWlZV&Eh;DqLitA>84M`q`R9>A}CF* ze;aFRGw3pd|8UDzV(rBl9BG1*P>KD~lFZ_+7^EIBpJQ_Seo_kv zMH07ZAU*0vo*%tk^znUTT%|u9W-KPTxf}8+V^)u`WfszTpEDg2bwzs*`#l!}lJzcQ z+;o1G_OzfqG%O0nXrR4k@dIRFJtP(vSXVD}a1He41a6Wf`aHglE^FL@&rATy zSLTi@!%b_VCTfcoRo)1?0V$}P=2?u#wis!mvhd3{iW*-0PCiHdj%G?X~3?JWWaltB>eZA_fL_j2# zJ!veJxQMeVh{@_E&SU|5CPY{0dCbTzJYe=c>d=c^U@ngEhc~z&!UxFX#EoGFFAt_< zO9Ma)d`u|uVEqWBc~Da>kUHc9=-q+^nvzs6n8hq3 zWTS{etTL6===!^pIzBEGJQ=yvG$1|$W%^-fyq#9JRU8^=0*Xw%_sQOgp#5!s;(qCi zQ@&`&ZS_v^x%fg5b`^a8x0@nQGr((_9Es+O3iQxUp^xjN&Z|a%%_>SHYx|P8(L6Yf?z~Z$Ej;V zpXMXn{2<9U+p@wi$)a~=0l&Bme4u7+7ttQ(QdGK!?TP30o(KG*rF~}YI%mp7|9PVS z_d}X_Q+Io|MN)U?1&xYhE02(3i;#JGn3<%HghOrr5WIW#z6p+OEB$cH3zQ8RzpIS1 z^8B6dMjU#eC=8C~EvgK6c}O)@K%~J`MpVvg8uyBzRr+!9*`9$fBDkn>GX%-gS1~!&_1{oyvsZ zX!}nDHFpy(=bI?V6BA{iFW(FSoss{@t z0nMFtr5ABJawcjfFbel()xOfv6SNhOG}RvJrjb9g^8b(={~@9Nm>rzQdM<__&d$f@ zJ~6IZ8DL=QcW`&)67e1Ml8Ir!J-h-s>*PFj{UVFpXbw5gA7i4b0oXxy%JXx^p|NFHEes6Ova%=pk?H<7wD3a<;kLeGJl8J7$zY?otzXQ7h1)moT#{ICa5frWYg95)^n~?2 zzdB@0#0w*5W@I9%?nW8j`;fBn;1O}Nt-xJ_yT5EMMV z&Wm(z_JljS&=y~UUd!t9V;K^v_387nKSuao0EX9!xI6yyA_{~>^`}t~ zuA)~!sADPGzQxs8A8FDMP#eun!p2W>G$z|ZogWFR7neE-3DI*QSZzrN1C-JB<$3f$emTbC-}r${6Wd!O9b?jF~&sR6wWV&j4<#-6vDp1aF-3skLvYr zsH5qE;e+!%CyR`X>HG!?xxy2>#aQDt6b!0`nYsFTC}cX`K;w-t1?j>YRpR#Xbbybm zZ0j5m)i2K-k`8UYB+`L7JdXvn9`t(?oHRpIH00dGxIc}|&%Jq+N)_nN`>?r?+l2baPc?VWoAdM6UDyCN|bLC38)oY4yiW=J$;t2^8Csrxql}Flm@bolS z4~d@{aqEdqEFu~iP|>||b%QK1_bFPD&gZfiNd)Pc$HCKbtVl1tDVIO=7pYtCYTDz? z_2&(-KeGg6WYcs40ky0ftXEndwQ}OEUxhsG6Cs|CHKCI7)T55WupdN~eGI5DL3?rj zitnvuJ6!iUMkH3jOx@(EM^uuVG-!j5E)XBJ=)^K{R8)F`iEwnq#o`+S+tGuEhxtSV zne~gwf3D+$_7Lpd+-i4Eh=uZCNXhwkNnr_Nz)eY{>5gLs@&ZHDTfRZTwqxYW%^Gk* z6H2LjE|^Ppq-zc`2$3n5b)Nb|b0b?3`Gr|Z?YIp-fCH)}ST1bG8};K zOm0cd;F{u^rgX%N69Z7(^%@s?A`$^&HqAua=dYfOffMJ&oWeGFHL}yqMVnxyu^%4onb4}GQKE1SGwSN9o zZGh5g>}9fvlaIk|T2NN@Rj1rjlds5q_Xt>SPfDC{Le&UrjL6+~nr1eb#6wWX(C=W5TftI2sVeOsnQ!MbG(e3B& zAH+l7tCfmYy87UI5tZ28a5D`xth|fmdpV88p09haa!{2W)=MtayH*(ON2Wi6NDvgD znUtb}jogq!P8~y6L>Hsb;mxO(4CDUr^v&!uhdZ+Qo+*0PNp_qLEMx@~kOGqE28hieokOvlj^r@9I$ z-PL^6Z%zZz4fR}H5|2LuuZ_b_KD*9HoI9Nm{M=;N)sUx|z~SJw3z>brG1z5bnC0%B z)`k<)s|+@p$3+e!|M8%2%Um6UT2>b6K}mP|x#GHRP~$SKV!Bm(ex(T=7wq@3WVMwp z)~mbd4>hm+c22ZLNk$pY55S}E2(E}b8(8R|)&pOAxm4NU9Xeqy<7=n{);RGjkZq=YkLIb1e0s@HR$}@~nPUi=ILKXiaWmrKygrd#ARv!VOZ*h7{|F z!?iV0{lLMns|N4l#C)iRcIWEi=0(?0w@KM3){h+mVLu2iSwpaCgFAFbJO5a&qA34x zb~I$OF_Tzt7Iz#@IZ|10grGn3cO;jyo*1;Jq3&-Uh-dkqiln)Da^ zPuE$So=Hq2MrX1`ym7t=i`f9bYJWNeTD~X6 zF$mrIb-v^oO|G4MBvkj63sD-`0yjU)<^5RyMn~r;+1e%0eg^{WO1roTeKt8A^sh^IW=6E*)XbS^1^K>^hbQKOXt_fy82uYvR|^5 z>-z;A(uc5DmR1v)yuWi_-1x3cwE&A?7$x=r*>=yR;n!YJQlQoz)i#e-YCFT~V(9Y{myv zt>KT>sUdx@!|)Bx4@Q_cC7rv}LPKsb@#op^6+Cl=iOAE7kZxtA$u#m`;9yfJ44X4S zRwL>%qc7XdR3aJLaqa8PL5lR7<7TID9HMi9WjoU6g4Daj00Cawn}CNWZ^u&@WvrLS zf;)u%VEX%SQKypfTI{2s2+*{hum%fLPwr1y&xjE)}a>|unYP3-}-u;ZVmSh&{U`p{RT!sEFl;A?aO_@!WXhd5;i{s$t{6|J) zh-9@jsADl}Pn}^YP==yS^NlL6zj-&3Udtc$mhX$j#EA;(EG`!c!FgLaBmy||Coi*J z&YL(5%hTl>1a^%i;?|F~U3HFw`l4n_9#SOBYPzF7&O%`dm!r8d--e? z@PTqKIFW-+zPj1b9`4P9Sna`*HPY!14y96tmFuJ)O_1NQ^)aCZe7yZ@?V*<)6O9rw zy=m(6aQYcnokiWssFdI)Q?Z_QUP3F&iWE!h$j3F~rhG(9ocai(cl!sQqZ{$05i+W} zutT=*lLt)i&v+UoEVlAMwNhIvk);3I(JCTj6;AmhQ_w5kt;O5tTE6z8H}qTC+05{* zU>qnMK4Hv|kD}k`31}M^j7LokenS_1RD6=A|vP#J5DKn?oeqBo`;XA+?7} z+x=tM<#-w5#)TPgzo&S|b;C5yh7+rP++LVi>d;l27sNbE78mHnLA5-dCMdee!kthC z!B-v-?B1)j)6`7aP?6QEzOKbhomwr2BodDA4HV_RzMB?*M+-#+{lXbDr#Sar%61iX z4ACeHdzgXN_|2|U^-lb(ugfKi18QC#(*l$;bgUCEZ(AIBxyM}xM{pFIzAa^NN^~BE zP^tdOVt*9=y~S7wbHe6ZK*FixxHs8;X*r-m#h}fv&)47=>~X;OP{TV@k8ydeS$CkS zveFZSCH!`^?!d!3X^a+)%<)ei%y+Zo&G;Q#!f*jKbtH9>3id_^ZgXaQ5=|tPU#q(^ zm`J<-_k*+gz8bLWBKi{Nm0{qs<%{8mj-LNa4Te#ERk^_ZjlIxBHCLY{7$szvtz;Ys zx@$6Z*XfPJLs{(82q>(#-HU+G*etbVB9$|wg}@7Qh@ zy?L+A^_Ox&q377!5PrNTxau@3?tW}Cessl)FjH zVBf-fy&tB)FE{k-wPJk6Qgd>V7!9Z}+R+%FD0t>vJMeCU`CZU)w?6v(O+@tfg+YT{ z7P_9Rreqb$uaY({1pmkVj!{8g7O{Zj~lInjhNJcT;Es7urjWujWg5u0A+A01^xB4~y6a_h*c z-RTQ+DRXB9gv{nyIMCS6+*0_ltv{Uqt6uvFR6M1zfejy9Abpiqt-8d3XvifI1LwWo zA0JOJEkmU93}N|(edpC}NYpy7O@ChYR}CA^a{|!bJWj0i)czgJ(JC^0-wQ(FC+4y2 zWris4r>~s29d2ASkzJWX;-}Ra|5c10%2F0Pd zMhiWrtMM|7R(8IN4V9c0rrC8Lm6?o5^xB`RFOq5AUVkp)l4*Etv9?i1{y5Sm?QLNw zg)qej;UyNWkI(Kn;@)+5fJ62j$9Ex9V?AaApPqTG?~6ZMlpS^D%ac!y+`>;Xbw<*i zzPw0yV@jKVC=wXx+_MFB+7||Qc6#(?>A!J+UnLq*!6CV@0^++15S9&mFmJNTIu-`b zV;#fi%l8ozcX72yh8$In(|BBAyzYE=Qb1vzg|bY&q{;Bk+^AN!!J+*q&z)aaB#63a zdvii+l7JoIPdgK%4yrrDzWAH)snEvIG4^vqa_YWqIqFPfCn67t`ty99fQbXaE17nA z%`8CWtWy0f!_|F+aeNS;D5p@m)(eJt6qBQ4pY|yH$-Wwsbz{jo zbE|-Ib8O|r)x}eTfEqVfRICMDtc{ADbqHAUV?Y|`AHd=-2pTBNpM}YDzJo=MvVhl&PAH+Ve@bGI{&X6GZIGhbh(qx0@&^pP zpF8GL$Y1$Ramu%p*y-*p6aF$%kBQ3Ol}TqQc-r_d-EI%~_;lx4l{|b0=>T7BQjL}S zg^y0k-OoX8WwR3JE`HJ4)8z;8pFdww&_rGslH&H&=^8>!rzZG%GoIm5li5D}`Cs zx_>g^N8qJ^qftcO<*t}c*nQc>#ZAoMb*{pMTDblE>^KV-DN#3ydWddIUE=1$n#s8P zX?(3xjRvJyMwI3ASw-;t`>{JTvqxCEjyt9Ehtsv``xQuNau}YjzEd9`jhB}evuPzU zKMm1y%IbPqZd%gIqtMih$rcHY=gw@=@;;^8as3l%=N~Np@6!K+A7A!$lpJn8QNH5I zwv*pL12bo60{V?!p=+am9#^e2#(3SW&dWP_^8?ie1dERJbuFNm@}H3R-@pF=OsGS% zXcx06Jaq9wX+6pn2gaDDOAo++)GX~fd2SBn;Y}qtbqrNe$GD8B)*(5q{6lxIN~)V) zqkM4%BNDp}*yTChd<;2rCe04_V|9&!Kl%eO^VYqA6GbqRADX=s9DV3zzcd{dl-HC8 zLNZWNM;(G{C626;tBll&tqfm_jGsvuDZKCtm>GNTYN&_DxTOa``0p9|Ys1{*ysiQU z|52>`{PX`y7Qjgz1+Xk<*Y3zY>@ALtPwkZRD8?qO6FPU>wYbO4kTlaTWT@B&EX_?d zU8HQW+i_eN&dJufx4`qh9q4sNg83gNBRz+BZ^mu6Kk5f-sJAPhYNM;&%JV!N3nkv( z;4>fs=NLpT_D7G zABbW*h^BkY5_i`9&516xysJ)<_A&hF8m4!ZLMH8GTIU7>`P!%!!Lb5Xk%x|2ggXDe zo^||{DAWnio}QT2RVo;s-9|4uI$2fj&G zB0Wz}4qV=_T(-O+8n6ja`$^w>!>POy%H$1RU5j)w?Y^iv;tUsQ<%7@t^O`g1@}fpkyt&MW|U9 z%T5M!amFmUG;mF93zcEKK5ua4iS-M4Q1bNNu}|CHe^SHrflPAo&Z}-W%xf}N;ib~X z9Q|VqCZU%3+hXJp+z8?DrXVY}!C!NTnHM@A_42+#y99bzmBrj52>3ey{=CUCHrZ<@ zIH+1YV~pnBTHQ|AIxmt;>OmA8{V`8Jv_{fcX8bf5>CbNyfU_U1Qyk&k1lrAAN)LN8#^~Fc5p7 z@3IJ0Xy4d>2NA13%{0rD$x%|F6#EfT8A&1bZh$v%{dc!b@#$Pibg&ux`KP5 zj-kW=>u~c@>y-5Cm6wa#lr<0Sw;}|th;OFq5BD|{(WWC}M%2ZZD2n8_pS)W5Pq~K( z?f07z4+uHnT^ABiXUH8E;x;*_OyhxH08WlW{jta~(53gQkp*y4F8IarpY-=O|E))J3wCa%DH!yMTR%O#8ezX~zF( z(Xk1^ll=ezGiSJs8K#Mx=bp!L>`*i;a>_C(;7?)tID(ZstaULI&@r@4MMWu>|@6C1-t| zHqP_*PCoI4y_W6E&J4NdG&PkHmT%k)Y2H|Q#!}SiLm#HUT!USThP3}6Q4-F*zp}5k zvhQ&+LLYE=T|@3*v5M!ytix<~fIKJ+ZkJr; znYCe?K=&{*rC2+ksgKR!Dd#yywaAai*opqv>NnMN0F841?g#bmo$ZEwF~D2c4O7Zs zGro!U;4}ckHwQ=BhXnHe%ROwZBYMz%B5$nWEh_VonIw$gc=rgeQ`uE zWTP;s3B$td=npBx^QS#;Q%HE>TG7MIqjHummr%93m6$BX%#i0U%dzpE#A8A}ST;ew znLU3l)`}d{-(pI5_oNXe=oU>cA4jM%5>=_$y4gDF&{*JYDHu{Wr4zSA^dT9h6ewYQ zcDPKR{gjnbRnj0dgRlE54QCN>3Rr~GBvcG)ZUVtisE{o9H zaBM8*VAjO+F3pv1*u_%~od|(L#?Gta;n(s#Uy~FHl!)X&$i?! zS}&AGsw5o&5H*YdE5B;LrGZ&_CrJ0YY$H>QpXx9U@we{iM}L_(?Ur11r^yWcJy;+gRzL-+ z^u5w+93WF!dJi3H$2hdXM3kFRTe37&dI1)Udl>nwrMACP;23j;ujf2V^-Z7{po3PA)b-|R#V#;FG|BcN4&ueLFcR=DQtD<- zrQ=0Ps3NdoXF~rg=?5CvkJve?m-L-S@d4Pq1MXLbIre8zGwSd*_8p$BS7kCCyZo{& z)AL~z3B1EpVML<9j_=PF=9@Uw%XhUEwetG&-tv8MaPQPiG zZs|J0sv51|w^<=};k$B`BWqQRge>iJ+i$V>eeHMrj^zgMhuX$OIzH@6Y&VuEqo(@r z567LCI7cA?=2_F0A!gGpr+)EFQFahIJe%q2j-d8iFc@S3f|EtTm&v!Ks23q$^#nQC ztpV6T|7TkN$`TWogoMXY`u5Z)5ifTHitRvosbkointfTm{OzhFC!wT9Q3UB*im&`v z`2LUj^3@YOAWyCx-48v;uRI^rHb)g=Bm5U$!e#IY?FoSv)uw*qzC??N{8wf+n zc=%x2M#;l*NQT;w;4_-7;B*CVnXHZX#VK`D`Nl_IrrH&gYYH%o;+1JAnR7Ba{#s-7 zDFEH#14oE8fkv75pj7NZjhfEwglHZ7{zD5u6k214j)n1*DuOyU1K+lRsyk!F#B+uQ z4*Q3w4dKP$X`+H%NBZiqD~m-g1+I^a)7RmwpUCzK(H*2-F8{8Tqy#P=x(Ow` zA=LLOz$U|;1q;ZBqr~9!63Zdmz5u3)!ywd zbcPP!k68e!iAk_7CF8r120?a&z44jAwD@MbY$HX}`E->suip|$o*al99AjyHe1?{2 zU6!Mese^N!ULMPb>KYA;vKBx-aAMgSAlW&FPbDi)NWU64Da_DFioxEVVPXZ*6X~1i z0ua{;UUB`bu!P|>K4s_-o^}_Reb2KAbTLUw;zCV$YJ>AhWSxY;VhMD3j5`Q}f$)e) z7U`6jk{?dn*12!HcACtGCA`j0((Fd37QR%`{Z|?OOyP39$9~smsV%XO2!MaHiCv?x zIiL}+w8AOF2<2Xt0FH#cL#xsHD)0jc1{3n8YUi8qBut;TfRt$WuEFQk_SMXIi4c?D z(mj+?#X<{k7x3qO;>!viQ^LA*T>Bof9zyp9#D)p%%j4%-C#We7$|)N+o&57*>8Zf@ z&YBuvLPaAC(ua;7)4adjM|x<&neg|CeXJ@t;k`S!I(KPx`ovr=h-^-~D zb2f3@3E7>qA3E)V{%uzbV+u+n+sA8jav0&UNC|#bDUxwOmuMLx{bR!dU)!iE(K*#T zYvUgc5J8t#cy#wPzyOR^L5KdJEFLb?|Isk=nr&9hb{C4#2uHZD+91a5`%mTo*z5a! zsyH2F;O~hKmJ4rCyvGss$SbQ9<0Xej00>H{+O>Gwd^$0;V>(wadJ6B9oI}B++l^-N ziLrgkjWOErQtAP~jQHt-yneY{eS}Z3poz6QO@Q4ufCh3L+_pqHnLO@_eSL2!-h@~_ zU@AXhj~$z*-wS??&^PVqktX3pz~@64S={pWzcFqpbs4>Sn~~!@{JS1 zo`mSYLFk1?$W?zBFMBkcyaSa=W-Gz&YHDVGj zXI%i>T0C>xh$7~@2*~NAH}#W5q$Xw{23S@b6Gg6d&x|t}MTB3j$IC2RYpdukw{yB# zteU*xG9q?MD3=77zK<)Amj25L(;Fe^BOwnG7+OcMJM4~fj_Z!6h+-o=GzTlaS$zX= zLulIjP>QbrLOw!z#4(?Bn6%^2{SZ$=wz~eO_oWv@0BC1A zUpBc7LRLjVCJ&tE{dVL2>&&MU%|$8JQIE}}%wkEo!dS-TK*t zZ9I0S(~XO#6$cvyvZg>Urqn=cV$Z!d%3nNAZJ~*!h%>inTMVEX^8C-{Xn=1^V2Jitf^d_MERLH3;yHz*S&qEIB5(4GJGuy#O`?@}D*Xbslhs#Q^66 zC7$az#v~i}l_|meNTuhN;eDy%r|EV+&?q97vGxdgMA8nY^az7Rk~fD5RGwhQo=h>TPU(yDeTm zv-x_@K)aOS@mQL?Fkp0E^;Y2Evl|~+s*L`A$+dHad&@WpK$$ckjU3E8?mw89}l>k znUf%84Gk+T{d(_?MAbP%n@WAMZHM&f6ZZSsr8 z9?xSy0VFC;@1g9AYF7fg_N?w!+J@_*UuMFN_L{WfC{P8lRG!)PP*8qQ6r9lQ0wDWg zrzNSHwKhYgX3~wcf?k$`j&XA-z7rugpixS7@!L@I7u>5_rTbFGt*%`7Ky7s68^`6^ zV)pXdLTA20htT$LKwLUd29C#60T^1|K{%BkdH89s>BOpU?z>M!0B6;MaJ``2HF=P+ zvtnGI!hh0>)F2;++WDLipveCDYo(#nOx|Y(C{+G{?rp3|~MaPOj5iZ|f zk%-n(fYcR}8JZtcuiLpsD0}|L<&r;H@0SQ!-VZg$Retz-+)kr|$@w5U@@^0=46pM` z;*GrKYYB;#$a{nMuw=;`T|BnW_LLbqfGfDRK=-0E^vlx|d-M)jbH9zxkBESPKpT^I z=jI{uXzFc+>NwVs)SWM0XAx#v1a(oNbE_XlvjTH3aiOT;I6!Ru@#r>}e?d$EcII;Z zNj;t5Tnpfm?)*Vi?q~Z%0-B^~`1eOZ$NUwS;%Vh;*i;pY$i+WCAi#0i7;f4F9sAXB zq3&$3RWr4)uh0b#N0~#Y*s)^1cXM9-wC->?mz5)1N+uH?kw6-L`xMaUq1`?P^3GJ7 zGBpY_T39KELjF8D!GzA83h(a}5G*>j^^Dc`wI(Z`EC zl7%6Q`#WEhLz314%LX9W^XrQ511OP?*O~Vc-M!dW#e&5(den`6x)cDJd<1XVk=?ML z;`I#yh^PyjT><#I+jpA;w6g(wMrg~40w@11Z*_Mgw7~jmntNwk&T%JlN(?3@DXS{$ zW^P5?$W1P{;qQWI5GXh@E7$)*Ab+GuKX$4($~{V0fQw-Pt+%SE7-o zgYh$*B*2jOY_d$h9G*I5EwN7A-s#Q4Gz$t$WSv9Zzb>QVMqV!|IGmzOY z=D|*C^H9YD9Lj*Wu?Oc_C=OW@T<6mo$*)_ylAPxNzBg`isJm!aduZpgN>&UjfNZn} zH-29(emteadA@bj@-8;d_U?^&9l z(>e)CRKZ50u?gz=LmGW=H*l#6km zsk1|tlAO4Jx8lFfnqq#3qrhAqVKp=wQ*adWc-qmIj;tc%OU(W zg;=jA&;D9u__9F#^-f-pqf?SqGB-u9$$;bAi{>VLwr7rIc;lZjZDy~KTvefUo@wfd zc7?}w6}nmb^EFb3d8@V$4a1je71H%kuRC5_-8A1d!p7U_=Wr0a@+A6Mt0=I>_!0TD zH;3}eyk&S}qaiy!*u5mCvK%QWKQ<3oekX7o=AQ{$Z!?y7Yp5jXo7OYF4V}GAQj1xO zjXC`vJqFvCHD#QFr-+o2a5#UN3T6jSeoSXY1Huc-a*jHP#_II!C z@qsoQb8x=AWKc-HJi*>JI}iN8_{;=tNRdQd-b(44i_y1gCj)ZhJ!fktIIC6@A|HNZ zasYrWxrw>Eahso+RVlw$cWQ{`lEto)k6TANe^sod4Ok1&bU8NAg#*g!1eXx*b=#wS z-nXz?%e|m4CjL|sw;^Vna|mQnW3K-7_7pFfxJ>tgU9&J%3*kyv&NhwS09HZ8TSCD9`2f?aJK%iF4}qraTsqENH*nI|$0dXLqgS;09>50$K$ zZ%6<_RR|JoG>x+T;Khc*^eMe2Ki%*up11=FTLs}qE4ufUvFw|~XZ(_l$WI9%ni|>- zNez%*#6JfQ5QKzn_e3*ifoTH_Vor~)HiS=idF5M$XjV*PX1rZ`r!iXT0GaN3(b3EP zqto;&qYj)$etUPjRnc4De`7&bxR90n9TyB*ATVpgsk-m;C|L7|EmAi`Do#+q;U5T< znc$!0$3O?*+X>CL+$Ldca3x~uJwy>bnVDKAFXAr4Po$oG9EEwIEMTOrxNwnfqb3U6ey?&2i&q%x~N~&Mj)6J%-XK#gM^Y9Wuma3rPjsC|#A2e$lKLS*`pPXHr*MJ-94{1M z>mSFlh^b#tG(+z$B98H3mX`+UI3Ia zGa2OZ<=;}2&(KGE^ME#gtO+m>Q3`%sPViv_H%7SyEnG&1Qt`Hdb4j>$-S1#yWmef( z?xwSh_Oe-aJHJ=bQ0+-nFS_EL4&uKF25YJaMrSQg7f};XvY>$)d0vNfDBFXs80F{r z8C!%hIl<_uuD-Ae*}fLM1oo#dl!w`8@8Fbf10(~*9p7nATxr$?ePZw}UfGd*#U;^k zkM&Jdw+7Jf-=||Uf|Y+g@LfOGsYBHNgx!{AYwr_zEo$$EyMRJh_)(cey*$s#67e`e zz@Oq<7mJ9Au%*KA8Q=W6pcS0Oy>;EgI4#gL?O;jKS4}Z9a7`$1-d%qFQC`-(nx-(& zx=q60S5*JG(0mWacNAl2zYGbL$qCrl$Z!#*Cgn*YSW1Q0=B*jpxn0;KjL~uAKVFys zaDEOr&LV@~UV(gi-ZY+oW}u7{fk{hm&0S0moWVYvbiPKY)pvGPMhN6{5s_Jqceic1 z<=eM7a*0n zIxi0};lu*~V7-;2oS7s#7 z5;UFxM>FMD(mej{2CyC}EWRdj3sM%ve=ig?vzi!hE*hrYUj(Lw5@ElM1gvl zPTUOA4=bprZbBbn;x0XFGTFHG{Fh{*Gqi1#aMhxa+w0L1R4xe0L;xTfXC_WJ*>#Q{ z++mwWya7I2ZO?wk$3II+Q0+Mid3~q9U^9t&F*kbCpq(+5Wo!SPg0F zlyK${*Jm8z!8!F3#1-n-`O*)Rb*i2F|LfYn^(<}8BLm0C?^2|fTK7#oLTmoK(gx<2 zjjPvfBTn>7makAwR;W=tSRJFXl=WHa9f9NziuBoZA=zvg5FXmI`NifY&^ha{r`k*S zR;G)X-hFwlJDun#te<&H?6T!N9#)%YTj&4sFdl7vm$?KqnLlj3 zmRaL9A)OMAG+Yo%cP1M~9LDcPY~pp#3+f8OdxdU6kW$~jj$vo`!Asj;quLQ9l5z6C zuDCy-Z}rlm?8<5zyC;QM#9+~g@{XS}*6q92id&?-gJu$->I74+!MV<&;vhckasA63 zAA>c&>6H_iIi>2p ztN7o)`XZ<*s5A#69xN^MMWXI}v^&*IijwM21Vfj-#9=!YnzB&b>R8!Mz>>K!Q*ymy z*)3)}H3RJGNB)?#9;S=NcU7vmO|4x0$gS4?|J>&Mv)2-IS&V{7r?FVKMX1)=QqKKk2^B#({+LZ1pTpi2WT|I!WSlK#t)tXn~ z19?a^%9vEac=Czs!58Fic4?>5)wiBb@-f}?v#$06F&nvp^CKh3@mk?v^-=DmMeiWfz5EzS&;%tzIRC-Im*0ES679iXdyN-GzZW$I7JW3>mt4H%CrGFcq$=oR z-b8O0sWd6I{WMi9Vo19*%OI?SFMSI7w?pnnYfU>f(R~#3*RP)S9S9@8jVz3)cYeCp zYcNogd+4}%EclN6GF2pu6MPGUWS<2HYDvFLljdg#-B`It4ww<>CQ(3x=8U*^3YNpX z6n81bPTJda(#ovGmrDt6s=xisdwi=oe!i6;4e-8~m#NX+^3Z#j+YjV+&_;P%v|nd? z0m6R{u48k>02Jw?7u)XAekg5W6ua1F``mB@k!_|g@?g<8w4w4mAtyl%mrmq(DmPYqG2xw(FZ6849Ule5$!a4@L&e<%e zq5pa<)7PU$X?nd{91-kxV}3v<5v1(D3=X=Hxd%~FcN+v9)2xOzrQ3vQ0ZaC^P0=`gdh+WN^CaQlaye`<7#>;OYLl=H!8>?e0qh+a9WP4We`gX-?PC4`Ij zEw+EbaXFUDK^Iopcz)&Es~||IkyDI2r9bLFt1cFl4~Y7T8-tXLb(Q8? z9x%R!1(>Vur`{l2YTr?I&@~O}#UvMT28ZjN`%P)VX7p7VR@(>9Y!%RA=o9^b*JCM& zi#plDtaQ2`BxCe-N5uDiJTypAN590{Xf4+5P2<E8c-5;G-?V(5*ATy}yB|$qm`eFJKz9zMX>LRX7;dBnad@CcbYak? zL=Ez$JNxJ7-pH#MPrIfO!X&|d`YK&w~F_9;?y`X63n7@-#I=`Rw`~!#! zc%+YxN!-`IM@x^O=-*#|a{wCM?h7hxRNNawoWZk!@b63g`_d|xqv2?ML!Z9<+sTP2 z5A6-$4!H&r4UwBoK%!9!&q>XDZ$WCnm4v5tl2>V{crR_;ju_C>xE1tqt%?0cFe3S< zl;moQ#Nqo-Tz!V^M<@`>Pj?GC(v{;yot~LfQc|w-QusdxM+FFcpv`?6=tJJk!`P;E zM~y*;m|1rS%;Mq0u+beEAU+;WC;1vnV)sP;Wp$JOzn)8oq7veExSFf>)zgPL!tED& zi1S3U+=9|e1KSYVmn;vTe;ti6EHBm}op37tg3oMYz|<3J8W`Cf)7$?&J5jgg-vn2; zXi-UbF^S&XJsGdJ6GUbn7`E`S=JUb3FhQeY5#zM>QQh)R|@;3LCQpx5OsgKRaIM3NgnmU+x)cTN=j7fHATZ~h-gz!Nq9 z%r^(V4b9>LzUT9I0(+WOC_ajrB%z@R{pV-gLf8B?9Slao(8o3|D0alNQ!hPxhxu2F zjwwY_rS6^r6uSX(BUHw%wz!8o~ z72l$WdLOJGKpirm(Y(?0aoN5ZL+D<`R5Cp=A7Tf!KKraLZJa3&@8->-L`yY5JvUy} zl#z8w`%L-((`eDJ7Ozj@Fx~;_FumkG$fK-9~m^HdoRi7=~g}8PyJ4`|SW${FM=iN%B!7MA1%gSg}97Q0zYbmM9z*Z6u!t zgc;P#vmx{;)4_2PZfo_%Yr{WScdk6CR|_Y7v-Mw>=y&|Mc~5N~Bj3q4Q7Nu8Xc?E{ zc|AclbC`Gt=SA#b^X-m*1EP04Qa3wVWR0fA^zm2=(t z%3NnEFZQy1*T0F^Z>@VOf9NRHj{BcT@=ZF1=@cqjrEfnANvazM&&OTGWTAx{O~y;I zt20j;eVH1zf0`a39ADm^cIEznhzm6uU(Km77)ZBx1a8oy*VyFj?br7?K$zhF{5etJ zmk05&v+@j>>}x36XHlfMByAgNvi>mG5JmILMs1OA7s0z0kw(rv@ ziXZ3awyz}Io%4B&6_OBImVP5!afvCWH|+2RcwJC>aN{fANR>9dv;^{x&x!8eiOtFm z9mAIZ*eN+?^Dd{H@YW9~iV%sZ_(CG!n@i1UvadlTRTBonUXQn#j28Z%|3AO0HJkEF z7474kSUcw(xFHHqVdY-XS8gdRsq2y=z;uFMoV5SQ`615TRfqjKkvM%e*%vBOSsEA( zGBkvfk*j_nMs-elNrirCYm^-|>L;L&RR7JrackWGXsc2rgZ*Pkvf5m>fM+ zeS-z*Ul&BIwgMbc)TunDqZ}m0EKC7P!-pv>zla%lZ;y|spC1fZ1r1X<%031@pWrRq zrKfMKk~CFA$#|OxaBxeh^)X3;bc86Up0@0ilxbx{##cyoe{z4l6z^-*7`({^>@q7V zj%194PRw_4M&+{iz=Fl!J&{;#ST%W{=y;9u*ymUXS8vui%KQrTQB&{qgsN4Iq9jD1NK&P|K&wU11h2o(xw#mC zqzSr~SY9kdBt*(@3N%+n)u&+0ScCU2PrtM6_mI)=pI)RwVoRiPs3>xaSSk921T}NB z#l3B=?G)PouEj$@KY6C-D+=!ijlb#Q!}=g!cqBx4B<1M9psL=26WhEMmb>4&P&wWP zMlD*ajPpO^G(tx4wm8l!GpG*di9 zwp!egfK2qmxK3AW3F@+Fy}wzzc_fA)ZpC{+gZNF8rva~YE0YF$#H25c!xsAY1w#E+Jcrdg)>l;i~ zNf@WO*6Px>&BN#0A+EtI{VDS!z9zT4Imy6m{k4%7rKVdoj7mebmAYvZMRmk$rWOiW z#O}#ZDoJ7je5ZfNDiCB{P{2Cb9gAE(6K#%q8bigBbRNxr zQgc5{&e5+XeaYUY7b@nK7`kAr<~V)Rt6{pJ-DJn1Go3BFeX!AHF*ik$LB%td!*dH^ zA{M!$;myI0Y;!AFtG@=bJAp({ioM<_qHGssM2U)d9JN)wo06NsOFhh)rzv)<1CA76 z0?FZPxD#hJ7wz;Z(BYd=|C8*W_IOSiX_DjsV*^npgF(OVcIka?&y7_u9(`i;um7z@ zx?;R26CX_e>4zW&Dquu0Xcz5Bkm7`>uh)VY+VH?gE-^zPVKAAiBQ^`#_?`E3NOwVz{B30A zWEGW!*E;RlTQs}ZB=l=xU+>rPq#g^^)n4%Tx#NBGdLc6&kXiv!A56rJ>z@4mEch!< z&>i{LIX2sq=r7;csL7vwXgHaLGI{7W*O0ue5fZ!~{FhD0MHn-)NqC_eg z;^_5`j0Tt>0UDw*nXUk!d*YgRgE{lb!FE^`yx@sbuR&UGiO!5zZDP76f47zR! zRAU-}yfKW~$Q`)at6P*rnU3;ipL1_)Tds>z+|Uf8<3A^=dI?p1z1Z+$-#dHSgX6}; z;{{$;AXA8v3gyS{Yh%-M87WDf^lZiT6qicuoh|Ii2IKY4SqL*ER+_V6OVXYyrMySr zTr>8k$Xr)#tkj494`(W>{_V_Ru44HmZAdPJf=O)3#KC(aoW7U)iACnE`&}L5+xn_e zMI!AIdG9c*Ilk)7{P9><0&x!>*h;(V;Vm^qkmR(7i|{3LzbF#j&rH^VUzkn9f~QB7 zt)_YL`lupz_!}bE35HH~o%*y2Ou}O%<=VyM74_3iYUC~NaYeyN{AP0h~ zR^XJLbL*i`0}`yi)l3$$C<3c2b~AyPHzhPqX+w$*`V46yf7|SO)&}3=y3Yg=(p;wg z;7W;JmO%XnxRlCgAq3eLq3~<|R|W}!&U0)sVUO`1Gi%SG0AAn|Xk0<-kwn;KZxGL3 z?1!2y-SnQv{uk zc)+{!;Z};YBN;RAb8Hc3G*D&-))rFp9q{nvtGw7e)bY_hkxcO4Y%Alkw-??dL=-k@ zaBp9pOo7vAlgh6{Svp7O89?@K=swk9Wu8D<^S4(yKlD}jKcZq{*706@vE@v$Kml+S zFGMSjIEKh6evAG3h;Oojnx=xkOr{?0@CFheTt63RHs>dLM@1@O@KvwAc1|!&9+j{= z+G2NhuV&d&=)@A}B`RVJIV?n2WT$yooVpa6?AIAY&8v1p8%bC|NrgSBw1-1k5Rg$P z(-0XhY@Diy)Bv^5v$uwRs{6ufhfc&x($ z<7iN}gVk)S*BCK7C+e8lzok->v0pr~#@N5c*dEI8ri!gHRi!|F%d{`JDm*hX*0&Zx z@46)rkv~;bXT&38ctAPM5OK_R5`fDnhwFIlVYG!K;A|~OOS=i3a2S> zT_7QE`_TwOICIjxDK=vQWH|Btvnj61S`zYdVccZtPiKy$W5%#m@&yy_dRiF=ryMc= z*?Iw3x#I-;(Ad^(1N6+z%SoB7NoX{=Mdh~2(u@>s;in!%hfN1QeEsv;wEgLDJ|~# zhiTyI-l=37k+zg;m?x&pH0T&S97hnn!C}V~@jt%~cTiZQxJG3}2TQ10b5Et=EPh zcmRl<{S75U;3p|Ny>X3_Lz|D^4XD%30Lr-*LEeFfHOXPaUc$F&AD>N|HPrvbCRPsf zP9aKSBu4} zJ)?lIyZ2ENmL->g8RCo13yrvO;-7a2Q&HIk=83c0TBH`hKQtr&^i9f4N^cOovNbVx zLLi=&qhgkE2zhZUU$o)uK=%c;qC>V(kv-juQge$FX?C{%2b!l6+Wjyu_Hnl*-;~0{38p|}0^e2T|XD<`nsKCLBy6 zEhllUDy1IBS3yJP@ug*PY6w!1?WP~LbQ{z@xBTtn&4P-nC%9ZYa4dtRUTMbFnBJgT z!P7&#fSC3oq6xNNcIM!(oo5PK%)#p+fyTRrlQp>@*x9~#=n~KICbL$TSIGmZ7RxAd zyp?hgFA8f5xv@#@RNiUIzLC+Jb`Vr|;7jocg%~vf!Nc>&n$OR1f+dGvd?cW+{ID1$ zdtr-CvZ2-5S!?!GJh68ZN+Il1r(+r6{*2do@naneVJOAmFnn}sZ8&J{$x@T^Y<_-Vczi3Fo-50o$dA9koFOHOa zU^>@6A0HimoW5}!P$my%!BH6c558wyp06XEL#PVYTH$jx(A&UmVIYz!SI8zlf%FYiFr|Jbgnid*=ct`oz0NCrBY0yaie*)4i6yq11;Qm*RtW*P5EMQr03Rxv zCk75(D<_W)gr)&SGj7KxTzpo&AJUpj@U9xdX3p$)sS@;LUoalbGRNvR|Z z_u|8{+Eji`GAZ0;04DYJ80!gZ-uzziAvPqosOjHaibI?xWW_GjYZ_ckx2EsB=ZGL0 zI(fXPrrLfUUv8xGY9xu^Yc=_we4sW9XW{m|YDyrHQY@UTln<3ZWOUmP*XfaT=OU1N zd1kQZ30)f6^qZ1Uly>?^xFTIp>8iiuEjtc*ENAMNr-#aw5|cY+swh=kH`P7y2w}IY zUWz7IyIe=FKlG?I$07}qX>@fNS|8%HmkjgS3i2fW^m4(Ixg>6S>(EMci;N88pL-lp z?8a_B>KPG2QkA=l6YcAe&iQ~=2+>c6v@BdYoU4wE7{X-+$E)+4FjSI3HsmEDOD#mJ zTKE_rI`41d9W)b|>llc{KfA=OJtm3&=E|*+2}QT8{*W*Rt%ebkDD&V|6cVbwOF$oH zpv>38>0+0az}0;aYNMkgz?NgwZ*NW<%8ywgyO=AYPkuu3i$m3rXi0cpjOl(Y#6ag3 zBa8Re@Jqfv{ci3+9!So-oA7t;<`&#}-{UCvL{;XVm_T;dcOmqc{M<_s<>gd$c^VXL z)?(#aZru$pe($EHWOJjf)9dW+BvM>1F}>0Wb`=}s`hn52mvQgV4R+Td7rLp02~^xX zzqAff?3%eK+MA+7dlLMX%d>3sKUq_i;0E(!a?q_I4PL*EWP1bewaH$U_)O=9&vSN&{D7Jz9 z_!azyH$lNtXh7pjB7GH4!|S}ebfqBhlzzg(RZ{Y)GQ(>C{+RUp%oQ81B@m zjg#yY78s#S0_hl>2wl(WyWAPwJ9tu}bN^&LZo{~5L*GSNF0kK2O)fl}d3d5*PU41_AI>VGv1@0F$_Gj?=&wbJ7Bv$A7Zzh z%fV$TZZxs))deUDuQMWkBi71)dAO0|s-Ni<$xnFz{R2m1mm~&#K_caFXHZKSkR!-- zbhnEuRWRE89?OlekQ=Z{e1rsVG8X8G|HgMPNW33jfjDX3HU={k^8#vS1dT}0$bY?K zRragpRIG1T<4E|I1xf8^ai8RA(6EYxlF+k4*8s9;BMWPr*>Q|MuM@cFW6R zeN~BT5NI%g0;_L!Thggv`L*NzXP66A(CN2#U~{87OP+Erw|5{Gq6I@|Soso>DFqPN49Yf;12*=1w}U=RTvmy4OofvN`#XE_r{Rv&N=ZCVHxGPR zp3Ul4zD>%Xeo^7MYx-qFI26UhR5Mn72Gb?-gO4@pyvP8H^pu);=vY?SyfZr8?R`6g zzMx9Ot&twhr!J*E-9$_bpBo9IeGA|qE?pxp7uiis`P8&XLjDx)r zJuPSPm8;nLyQZDSbdoDDXF%|-no@9i_vb5N9|3@xYB=NOH+t9I`n|CZZ)zj>ZO)&hq8MMZeQ{ zx2Tt0*?o1upZW9ypwZ3&k)m3kTYigbXYDi32d>1H1lt`x08T=nn(szItbeJp#9S@< z*)rYtrFx28d#+zwlj?vIF$`ZXF@fCwzj5YUIA0VzZ4=R1 z-h+se`+4(t+*jBRcS&Ub`kv<_JO2PC5;3u(0nXQSmZQQHienSBHxuh*yk7A|qCVCxI zlTs~roP&QPO-spemo9&GDbTk;H_Q!+56R))`U7MGC#LE@tZCfqIkC;KyuX9YVvhfY zP!Le`*7=qu$XEKN&G>EN!2pr%H8+mJ!mG1kRa28F^5LJ{aXOcn0hMhe0yYhVT?c<^ zWK~jeb_>J29>KMP0zj1)fxGzg@q2bBVy!0B$640W<81{J*XH>CYpYg%5+HVjjG&SM|{kk|b`n~)+@cx1E`(%3yrGoVxyVz3T+ zL(7@`s;<;J<1YXwF+Nm=kKM?enFMsZRwRyLr=gNhV#!l?C^RZ7u4U_;*>pPXy?e)a zgDr{L@vceA%xN~pP++=4CyXL6b_<7hXy&*Fy<%wqP~R#Cxe-c0zCfq(K=(BE91;H&r*NpzD^OhImisqAlPqcGk(cL!qEuf>l*!$Fk(Io@ae z64uA0LW5d1x71@9&D3~Lt)WS*WJERJFIP!k;h#^*{#^K|C6Nf4@egwI$_1Ttk{9}k^tdUY6nN{MvU|EG-yo_;m9iHRu?_e|FZdUB8g1LN19nsUU95vo%v-0%6c?LgPxu(FjpBhk_t@ ziUSY+Hz3}aAW2lI%u|v>Fb@5~+52Ta^=*Ir(gX2I5?N*(LlV>PgvZ@a%R{brCEn}I zZ+;NZYo!(|LThJA6R}>8%A|qKZSd`!G60O9V;X)La5^|^W4ViV6JRXcgi0L9Z- zyG;ofIMW8PweO@zT;yFFaO%s{XIhJ{4FmWFIzr+xk5ea1V8&02PW#0IqmrNTcww+& z*5a=@pEiCTh)4BmVMsr{fJ!U#ab)o#qAf07tkxpr)W*~rN_G0Q^&EmEutsiD8uV*| zramkiY0n9ok)g|e+L}2+*R4+&z^mD$JYB7+Fhdn1Riwv=?pbKJXm#W=45+L&U+%+ znxRmUViGQL+Yfc{xRKdU+T|%_P!@ZeKx#yya|9F9=Iu&nsHZH0fhF<%=lm}?{c2S% z!n<5FALKh<#4x0NY`DZql+LuZ7F?^35tpusk&t=aDSTLCkL;x8NK>ND0_Ga<%6YpN zPFjh33z_i72iQnP;j`k3;=H873FfK7yB45ev-RHbfJ{9)1Fc_D*6TrB^MypxqW+gM z8;R%_)}&(nI^j;!ZK%0E>0?MBQZX;?QIA!w%}nUq0fU#Q-|>r0v!d8_cjYw$CJS7? zsq{ZV%uwRdw4L3XBYRf%JVj;$B!JJ=6gLob%!|Nar*nhG`p1r z_3NWXgbo7-xYJ`wsR?xKJc>IUC2&-;8mB6@oN#0 z$@RUnXNB__@;g_k_hI@w(9e-*l^@b<%*|MP*5XbzkHEF8dJYYPFrAzxLKqrjrwq!qhL^B|s zzVL7Tz6S`Iz34qn=fQ49CoJONW|whJqapQsia;v}gu7vNA{ca_U^D4uOMj`TeQ z+larO@5OA$#{%B*4k{~i?)3CetW=(LXe*JUA0in8a(>y!X}y7Utj=Bz9aaRY*P2xk zhSy#yv-9*J>3DO){O8Fl72|eKyXxdvfKY{QE$HVtd;ITrb6c~IJV)Qsh~r4zfeGB7 zVYy!oe>+R+!x5qUC{KOf?aL&psdvd?7@X`i^wjrf=#iC#$Bt61yj>R{V?ZV>UhXrn zS#@9XklRSJQqule@hBsg{EQHK+!PC8pQg@I_G0p>l|v2OBMl!ArxN#Etcv5{^+QZ% ztz?Wp=WSl%5F0sg55-e4#j`UOT{OyL4E10ycw!9dMA@89Dxmd`HxHQ9#q;3La9Z;6 z3h|(%rak)%q=N-*LVX(FHHCK3lfU{!zcuD@#YnGhJu1hdVHOXcpvjp1Hgx9gJiZ(} zpWa&uA$U3L?gjJQL4E5j2ECC3CgnqE5cH3|X9@E>Ib7Q7I2tp~?l^RN?*Fj?zLXi% z^nWHh#34EpO~nCq9-lspbD4X8Gym*Qd$Mnk+3PYiC!%0VY3m!@d3HCs3Ue9N+xF7e z%OAm+`pFNBty{l*@yC<<0i18WTI(onD*KVOK+%hzKr2T7Gs()c;b)A*yQ&HxEs`@= z*O<5FcKHTp^$}3)V`6(VMr%jh*XLMF_!?xgWs28nZm943>6@#HAnDGZ{pt{jAuLT4NC5nVn=|5aoY&CJ)xFf^qhO|?XgCScPw ziq0CuiERG~GUbvK92FgMx;An5yVV?2E_1(2Y_kb5DTmiZsDg>BvCz3L2O-fpZ+%V>KJ1Wep86M6EPqn;FHo4_PD-Ae)tkKNM zxnhIySg_Qp!+^?;91ut4J6f*>pO04`0NG0~xuhiTwXMjKBcM%SwW|SUZW?I0iQ!;MV(2_O3#-p3uWM<18B4ehgTmmnPGSRE9q^`2++5 ztA0$Q?KKE4!Xiz~K+FEg@F1~)TunmisGiYo_w#P!LrLnsgQu>?f=mHh?haFBOFxXN zQu@wGxxcueysc5}csuW~pRMnDeZcAderB$}@8gq3XvNIAuAk3%iDj%OVpz*E5Lsex zSJ>4`6h+K>)WetRCAg%`{6?K4t&* z4_3L-iABu2JX71~r7@`8Xo%A}H-Z<8l1`MAij!HqdNYu3((c~VlnPamzaKN^JzZX%QAR3+*}|KB0KI$>d6)qLc;5gjTr4@;py+$ z0XQ5m9Ef}H{^Z4ZvApr0nD1Q>Rr6E^^*V}730rnNX?*cE$VJ23St+Wq>Tfld(d*{% z*`c82?qei?#dCS1(RBLpG08whPdzztK`YaWU{DvCgGbNQo9BD}0=7Re3`-4RSfOm~ z$@s`gAYJeCy&K~JbL8!)Xr>${EX5ms8ogSC#+p}tc|zfJlo=-xSORZTndh-PwKk2; z=`Il0fAiXk9{vm8L0JHY_RWR%;F9uHWLeq`Mljdb8*?ev4P~aleCf7hc0@jwxgLN5 zVFr;Km$N={N+3AJS5E%Sn}p^m+WY+_SpGF%)AxcEmJQyy>@Nh;t*gy1<}qGIJse_F zG1M3;_Ii-Dv+TglWTQu9u-xvZ7SJd^Ib(V0j<-K4#FsI5e?E~S@_KjqV$H?-%*71R z$W3iuD(}xoVx?J!t)?}dnc2}a?v#>1lUAZx7JTdH8|OoJuYC3R>z2Bs=n^?7LBO{t zC9Xftdf>Ht+cYoeb>* z_Y&8y-gAmA&!=PX+m|Uwh}5%VgL2*UHpvU8uPoY9T~Glvimfq}>+GgInZYDy{tgwi z-U?-m+5JG@2#Jy96xg)&uq6=WC5yGDu2<>Z?@ppt^vK;z?yJMthWSL& zM=93sYRfWk9BB4(~siZ+m`^jGjYUd}T|Gv&#nk9@TpioLcoyyO@uxF>vaHhxM( zY6?YtK=dbrG;!K!#G~cB%_ShRWj#_Kpk*SJz9s!(qD(V;G1OwJV80EY{q6cYSv;@R zxk7i1`q4|*G5oC6pT%qgM%SLc1O-K2{>gc^Q<7MYZGM+^A4>b0Z95eu6mcYm6fw6q zR9{1J9fdWh@ZC^r23dQlxa4FCzPh~8x>uJ@Vf8qfKRh{o#w30ew`QY=*7Ra89CRdF zo)fzvtJWn-hab;&a|!B@%^EOaZok@bcWob+QxUl=p7{zbT)2FP7}4p@?b=*VeJc6f zzp6uU+e38RhjFTuk!vTX>@KuKmX+A|lEQbi-~Ac#^2G8Tm_2|vQ@Eflg@SZHfG zMU0*UJ>L_KXgy>wV$;*%yS1L+UDpgMki#-y!wbW(-NtOD8gL?2zw79A$J8;-n%TQ! zraAHhh(7*n_)(A|`ib!x?k1Rox8@Ni*s?#49T}Z=Gi$3K7fr_O68E_v#AG$d#f3iAyCnv{s%!0+X-rXxO00p3TT zXPL9?Af}dNtUwDtR}7jyB@JG*O?!aF$Knue(lN?8$du?#(yR*ecvfdi0Z^?to?biv6*WG42n0gVhH`w2;_+f_?~(P}PD4 z$WtR}-^=f{J78;qh^Sn4`6x{AY4h?tJEBBIo3I!%va(n_t6fP=yKaffP8~I`S-%n* z`yH3jNT79XCl}^F|Da6GBS@7GzLd3aY$rW>s1PTz(b^X2jWQapC?)ee$D$8$!OY?PQk|dv0uHZmo9o>c(Ecfe5|D@lyy5i1*pX`z3+~>;jKOXZA;WX z*{1mshF=({qGr8j66t6)Dz9Uq1npWAY2U;Y>#}82?FU}i1hmwIv3Xwyah@$@07m{9 z4<+9LF}puKp(=fF=Rj8|&1Gf7si*W@;uG=|cGN#j#%S+v^bAh7Cc;nQ9DKGb(@Oh= zG-0KocAqHeWLU-R>T;c;#jl}W+=ld~lerq@PNZ27+8x%SZp*&vrZ#Ci${vSJ@sU0W zyvP=#lBgy%SsjW9^F zFTXi-cy6)V5bnh<5mlIec$IcD>^e4;R`i0y7o@)_dM=+?S zL+@%(xr~`EHmp#q)L>V52I#iNPSc*C-TbCkMc1doU#6UI>iDt8w7(xUtKwJRQmmPa zlvZ6BOISy!Izn^4BUu_jNVl`yua3RK{A0kYrd+oF>lCAhfIrs_=kaSGBf>VXE3+QG z!t#l2nIC8q-c{|kW^Jn(0Kq>?`DFNc_v#gRCT1&k@8~)g)A*F=RBB9on*70bx$QBA zjte`<5e!nZPJe*VIrKa-^SAuKaIM=!WR}58l3^oarrVGrb?wRJ5t{VjIfoRxS3~58 znmGSibev_UbQ6QUw=t*woTk?$)6H;P{`$q`L&mCuubk2}NgUG@WNZXC>}qn&pCpbb z?|zzVk8Znht9jw0(X^dqmeDm>;D|B!bXZ~Lst4VZ-3WQLcrq}Y8v1%f+*<@XLBkX7 z<@z*~63O~%jrn#SA89|5uUuGCSNq{F%ee|N7jJ%CppRdf8C-$HrhZ#o7+#`qF*yi# z&_6tF0mGp;RUX1 z7X98j$AFFdu9mR)WwK)wrCbtM_>6bd;$LI?pn2`jd(^nzcG}zXOvp4{x2@OFB=gYf zkSmPs+TvpA3PEaLTx9?56*>vRyD!O9@1^50<7I3xR%?j1V5)`g5r6ho4$^Hwd4qcT z)vTc8cgp(>afusxHfi!Ix-d_8y_1F`%cMkIpFMSneVK-0ruTM$jW}t+;mu*)MsEn_ zP1v2Agk_Y~EdC&tAwt`A0gPP&xT z@|H?Hm&XVQOwZR|mfOm`u_ofwv0B)qp+QPbC(eqilek>SURlNQVSUq>cAa$hdqbX+ zlM2>iWq7WEUchd9Pfd~(j;OaZ3!XeWvn00S=4zB0^*4nkGG%(yWZ62_l-&wajX%Vn{u_{H2Cv^3?ZRIjefAZGzGcoCrDcUuGDj~<@ zgmO603sv{9?6SUy*9~||9T+vUNAu@k0}O@qPpeY-8TW3fzI%K3zNG#PyhRVv&%7)5 zRYtSUVDinR>@%t4k+`3wAthpN4g7_Y=83;bJK@juZURoPn;nF%iZls=3;0Bz5}t$` zL{4y@duKa|2Djh}^{KIuHO%b`=$^l*OMFGfE7Vr1^!pXe>9BXbVBZGjEfm?MKN_VR zvwM03>&!n%osZ8qiYeu1Y6N z&PHK++T-nwuMgOyuMhAE!QwA+p!f0X@08bJR_}=lIDo9^FiEcTsb++CLvP7B5qI2b zfQXp@CVE<_A^&(YX%go?lVzBDE*Mvh)wM2L01*i+-#K`kA>YI?Nyk|QAL;)RcETL} zaNa)nD`g0=3o}}0+T=o6^C(`RQxrMh;Ea%d9He(aPmxmc8SNr13^`*aur`R`Eb0++ zLNwkk@_nX=E}d{So8XlF=QKQ-yEJTj+kG77e9Is?c1$L`SNEL6Mqa{Y&TzMdV^>Br zSX^u&gP9_}to{{ssjh@!i^>&;QJoQO41s3QO5I>%pL`gY74k~?lv;SK8WmCm^)JWr z;Si@nZgh}CcQzt!J`+v0m%)+1o+n&2k)En(j6PJPrX6Y2MTWJHXb+mDZ{l4tA0EW7 zqJe#JF*U1~oYy(@C_qYo>m)qa-*~KhiG6Q#?{H5RhE(()XhC2aQ(Vy4hXHL@F)BV$ z>wG2D;>f;SBJ#8(CVxGe#OI#%@0b}X6~9xM<9A89RpXNoO1u>lG0pg`=F!cjX#Jgb zN;Z8%fgoqnk_7pYrO#!R<0bsspq1`aNcKQQ4E z6*s02yqn*}fn7$Pl-R)Z&qnd++#r?Zg8`JSHyoCl#c|i37ci-mi#}-eY|Zt=fW@UY z3?^)xE~%e#5CA@_p7h;&(3FQ@e601&$bcK{00UvE>&zP93o(1WIoFIjvAO(}QgSf_ z%ngly>>0KIQIS=+`NWZFiG(Q-bbboFd1M=yI ziGUC$!2kEq3#O@Rm$A+3Rj z6mjfHJTj3oi?*4AwDGuMsQxmxTSHIJudh_Nclno75_%Oguml35fYhy{DL`JWC?1YC zcf~VHnsoJ~8`$Am=KGa;da$S&)rvx(m%C8&@sEAE(I>!un{4r=r;v^L=6CF@gJ4p! zr}QHu2Gnw8`I7f9mW+~}3wWu9jcKOBRBB$(43lv~^$yq=iahj5{d!IV0C`^ z3RJ)wrcPCyc43!cZd9+|OM0xi4V7IA%eoTet`h~$i3tpv^SJk`pSO%#Eu$xp=aE8i z=6LyQo=f}d6Qs$Ou7FB-EGpeDm@_d)XmY|8)rOgj;0M{*Zeq%QgBkD>bVccragk80 z!4J0gu>K4rfQ(XV*z4^?Ub!eE^pRopN`drjTyUv4H8JTZuWcA zs80-P`-98Xqikqmv-;1U)oyFzk-Kd5gi+eejHm%e=>?RR=Du}?W)DWSGzXkD6>UEK zC5^AJJmWJji@6J&7Z=oJwo7!Vq>|bkvW!H8Xd3o^=ERXw(+(SoW8P%j|7vLFS*`Gt z-okxVGq155!iO1P43{X;q&n(IEgq5YXD#S-(Q5PyYQLFJPg+5?KXqb$)05rKz_nB) zOCkA%FC|*nEGv?VSzyYo(%bonT}!yP2jbD1s1!LZBztd=%3xBEkABx>;b_bYD|76l z!iL}MRd2&nKS8o+`gNO903x6_mgj7sCFZX@RfyyKo~TtS@;dI3#J;qdjpr_wlRcGH zIf=ivwZ0UomRp)gu)n^(ok9F>nzGUqX>(q`phXCggW%A)UKBdePJN!}WE8$(hQ050 zIo$8>;{d(0#UhTLjsR6&6mhsGUSnFkkH+VaF6LmkTYRE~cWsz_f)7JaEJ!m^=t*Ug z4-2ey+!q=!@aX+ALcXC6FVLc>pcLya-af0s6UzU9=je5!rt)1x(*ewMg}{NxbHx|n5x4$F7R48#oeG*(VBes*FZM}2f{*j(R!O#9{eHNb$=4w_!Rw0j zxou!@^)nVzCfPzHH=EYTp-HBmIKm3KG!#Q#xr$L84H2&=6eVjJE>|`EVkbH}C9H&u zz_PT%x=`ZeLhl-Rh9OMs#bFzpqMMc48j1!_B?=k0@m)?Uu+@%4voTNt+1%$^&FLlToLu#Aqjd zJ@brd%2}%rF;AEd)@NyQw&?g>zE|~Kuc){Eo-9QG%4IJ~dzXR$QqbI2;U7ybK#ASw zLY2wM0*S7&Q{{!x8Sk?t7oNT2iB>E*EW4KUZXd+Y`P`1-Laq= z(^3YLfV_8ov*_NgsfN7N2X&imlYBtR8d`<}(%mV+Pv45Ok|RB0pF7P0b;rNtbzs*Y z`1vS+#+mzPig}^f>>V(x2wv>^oC8PcL=?baO+$2hc&%goMpT=_EeJP*c?-W!p@k;) z>qK1u*&-KDKCY2+kavd`Cz(^ev$H&%((m=d{lmm$U2_WD^K}hf$GziWn^!{y57k2X zp-^;KYvwkB`bv>i!byhGp#J$m-O@A1{u3UN`Yf;2N-|M{sGi4Q!)v-U$q28MWP-iA zqaO^`%$JA<&*q~xagD3Yh~QQ$BVy_poGR*QZ}#0*6wUjWi~&qSQ1=_<-xmkZG`>ug z7tr;6>)k27j}f8~m;pUJRyu^ds00$)Bix%uY?4dnyNT0u+z(qzgw{v8PDo&sITsKco>4yTtz<5jgv(BiHuB~NI2iJ4` z7NsK6`I{2O^i%8oO`{Tqny<|lw0X0ISBTiTCu*PFSAp~_LDA(o+!T-x{1Fi33^D&* zoJk0mFn=LKsg(Q{h+iZAlG_1^J-Ij3VmVHaN$Krn97I#TGZopBRf5j+T@f^Co4VPsrG@_h_!JA&cO>wGLZ7+CYI~m2F=BN<`mUi zGdY@F)4(%PuOE}fPJR0ct#lrs%85q$Dd(qkX5iqIgWPKzerM|4(8r(IP@WZ^VNYDj zLre&xd|go8d*8=kT#nimLfwMc!PDGU3&AL9nT?qfU&5A!C{R~RIN@F|g92Rj>Gi@* z>&MYVm!jy+%F$M0$DTvZ(mp0)r4^69eBQt`$A)_L4O5*uiuk3l4}O&3!`@>t?T@VE zCH&y?Uv!#7ZGAYYpC?fYygsn@H^xk86(3|Ql}DRQWk%nU0y<=6kgpB8RDYK2weDKo zaUV{As8!6Qo0msxuz0e554s{c(hcM(mN|@e@lD8IQ&Y;XUtT|0vx!|nWE}ktCA>3P zr#-qNJ%>`6@rO@=}#joI|JP5=@MJnIrxV<@}2b(3bu(z^f0M;~1{&Cpj z+x-ZpFd%pSLktN#j5I>mqM=T#>_5-1r+TJU0T7)V% zJ)oD}=9?(#Zjn}k`fthWgPNY`!V7_v$IcyGtJRV*3g-P(XP(HG~VTS855uBM*T{gs?!-eVv8cdf*RjR5(J zbeJ|*N4MYzy6rjhJ}&jAx>Tc{bV(debDGk*v9lpG@-72yMmAA4PTZy z^^GiP^g@WD_KM#9Gia~t(ZlOchja_U1Kd8~WJN$U;5c)+cfDhpM`JwihwdTnTGxA} zpQ)mE)EReQT0h+$W3MQ@%qAm+NziaP7}H~SM8&W9W}I=2mzc{*X0O?Lka0DHEsfmA zdD5TGxE9-O;C;MUjfN&4{-?+7RHLQzW{=%qwFA2UC`s!!xmRsJE^@9e| zzZ6=Cp=btZ8sh7po{?oR;(GLIvT+Su;WX6fBrQrOr_*p{%wydUE@cphY(+(295}vh z<*-67F`T;7A1XT$(^_^PyxfLGehRH!xcruRB>G_7!5LY{4QsO2sN-VO6n1W~-o6UA zTEKqLy|?ugIq1qBZp)nHEUkpU3n_7f{UCjeGEMp%BbtUax%1 zrk9d=3;#WdSG?3t!XW&=5fczMwJvsLxt5<^A4akP6;r=B-7W;GB1>>7%V*jgOb_aO z;fz3XBjJ20kG+$Uz93%_peX1yllVQdRhQxL77=QozF32i$aSazRZDyzBOA3Rr`Ssyx5&373j&A|K(Aa5%j1dLzK(mz+o{xluWDIA%9;54O5tiut`47+MmE`N zVU0qfl40r3A8V&>?pWlF&im&8G`SiN?cF!}&Xr&RG7dKf=1@RLHwD)L<`Z23B46A& z-#sleGK^uoHPls#BdwnL34OOy=vT(MQgDZh$?gLQJhbCCIs+rp0zu2^OR|4!A4*1Lt}hYdF(K-xkxIXqLcN)d!XPt++W* zgZMu&grZT!w=`a_-nlX~r)XXYYfp7&>`Ce`Ef!5|XYPN+O;o_;1SN-b0hR6t*68y? znhPHma0Y!Kv9`7Q%;A>u3e8VP@Z*v(J{-)hBgXB=*)+Uo8Un6(JHzPUxDxDChkM^h z)YIQt>{l{x5*=TVsISn44hvnC+WB84EfsQK^>mciqp7kK3X7ltpw%Ain%w<|H8J|L z-;ELmwO;Xl#c|NX@I)FVAa^drEzmdeel|4|*@J8Vma>;`gtt0ngdftH;Y-&0@aX|R zG*vlFVgAHN6$txz?OY9Y#P(kbtK$BZWbHU>Yl1&z|Ao>ca?l)JhE&3fJiqcJj#vF^ zKm&P%tPJt()&FDCkVs&vy|dy_akSAZcG>ipRzPs+N2=h_xHBAfAxd}UE} z%Esg9_Ohg9X#Xp9jmU>Iz6v!=O(;*iAc1)8BmiN_pt{3Xy@~kB6{%o3S*}3@kZik~ za3>@jz?&k+T)F2dCqOD7|9NdQnV_;CHlQU(^-BS$$nm-#tgjh>YP8Qgo7W@zr1H5H zhZwiwY6=M8aLT_oSGblnmYnHu9IV^rIbOC?XSY(HXb>BodgD8T$VLhCKA@1pQ-0sC za$@A;XG%O)@k2yjZKKtFWN!2128@D27;=S66&Mwix{YHQ>q-i@_+T)y;(s~LU<@?4sV zl%p@&&|Tqk=W)itXCppN!omDev2RpFZg#3H#WpPNEEG1XpC|4oK$eUq{R}M4Ns@cj z!eMfh!@r(E)%)MDx;2}67>wSxE;_)hQa6m{&4;}f4)Gl=9{Y4ejm7Lay|!~1nH_sZ zotThl$|LTZ#e@#aLPAlpjw~3xN6Lk!255nTjWKhDIK>3`F9ZSq3|}SvX+tA^BS-hW z8pPc-QE}itbyFB@<`yB;Bqug;zv6Y?`vHf*S2uxD;L7f-;{Nw$uGRHCmr1U1a@pY0 zqJ#K+Jw40Es~Ngr3{Vr5o5$HQE1WnErF2LOgWkIuTit;##Bod;%MBST$%HuWH+t z_TR+4aBH@!K(Qy-Y*tS#vk6;ldj8vv$q}~lzLRSR>lMJRNo+bO9~2w;!G^`WPF~2X zQXZX-*T`E;RORzG5#j|aN3>Q#-}Y6;?QrX)WwhXPh)%=RK3$3H9#tPC%QOC>g7=~{ zE=-4N%$EPQMZy?l-aY{V0;Kavd6SzEb#zCAkd)F&8OMQ=ZnZ^Je)66Oss7y zwz&`Y*`Z&D*3g&4ItdYAQm1}3DzV~;^=U1q`dqi8`5a1k4&)8hg-;lZw|Hz*+!7|z z@D0hCmD>LK3_@vQVM?&qG$9hN)!<6L2(jKEaVmWBIMnA%uUG+Z7zK-jHP~{MC8d%a zPc4o*$60>+`pi!VC^fX3JbDJ|T5U3r9oR{Bx|K2$=;b-$hcoM<{Iq~BYJ-q77RK~$ z1Q%ny>N(0MeVj8BPe~G4(}2!82vVm!8atJg7Q#Vbx4O?E5Kc)eSbvg zk|di*E8Snob3*ZhOA1#lQyXnv(OB(ef5k6)0i9U~lG%Fg2IDmK1%~ibyrvr;gIAbgSj?>DD4S>hfzm^9D)^L*&-B zpQfMoJ5#gy1VaAk)!Jox4t=LbbJRN91$3dJWb5EB9u@|LbR#E=tO+q)6Foc}Caf~H zeMxAblS?pG0eC4j6sX|#Zd$H;Kk|Xxf zW**Lwzbx;SE*6LFEwWz0-KL^~gqugu8}AhQPqDA|HYF?Qz%W{lGDEu8rC^fxikeA$ z>IZBaB?eV-B_^DJlo@7o5iOecLAuZOjnt205HcX#WN^~fr+ZC3@RBzhB;krXBBr!* zm0PjP*pFF;yQ|q|G+0eXEMa6Qx~S|DRXk1lJFN=AL+TtR?7IqY)u)>oyC**qMy-t0 z%c)~b6o!B~m2cE!SK$qhgZ#+Jn+)>%InEVcgH~9Rr&8elxM-B+Um+%s%i)NdU$hF* zBv{p~mA23(cIUkk7M$X1%b^4RV4Lsq$%%u(>)=_=EfHhc6QJn6aXL?(E7q5+B z6l^U-f~rXVK)GdfWTJbyabtNrdiB~*JdqDkd2aRn?;f0=Ks+rjyS}gR2#4Ns4^=;= z?n~OiC?!rVa5eS9=`y0>P0*wTku%Q4t)|_S8YSg7JhRdjMj$hsRtWN|pH-KNO1?D5 z>aq`ew)6pqELE7z`2z^3#h4n;d`FnXMIAC}(omo-vJWr;$(0Sl#4`+d$y&1n4DU7_ z_GgLn+5DReUF~&7a&ux|EN*;_0^t*BGUvL@T4ri-+=k_zt+p&IrD%1(gj+O~o$)Vw zTO(^4N$-N(69E%O%gT)_7vAWZc+n@jH6aq!sRzxM-ruL%@CxkP zkmzA!p%@m~eX8iC!kUjVedJ=CF?jWG80LsVDCP0o;MVxwvfy2wwZdn*49$%In&rAuAwUm)QbG9pJL)U zNqdr^ZY*nA=VrG76M`WdB+P^Q)Pw_5R86{l`}Nr^^F={fG-$+^2ufpwz2E6iKqAE& zPN#hl2kFB^iSb}4GUttVHuSpU7ptt+P~8>iudDOy|D@D>rFJ!#$P{Vkb(#BNXDwS7 z|MkZ1>lHV*mEvf)UDYf+uT?owvT7(}@AN!r)ajmfiJeH&49*d2msvBa&7HHt-tvaS zg_h^cX4yn=j1X}5y-D6!+d=r}EYU>0$n;C7`yj*p#2;W$-RKt}c6H~BguGB@>J6$8|n^S29=)8*9~C7M9>!BDHG?^%0o%EILpZc|=Xfw(peSNcQ)n^UZl?x<-t8LzJS=M?V9A#ik-pnn(7% zUguO776l@MJH8(6nHu<0*rePIh@_wV!5{H5ypk6HtD0y0UJ!3Gm7N8Rpr2g;xxJ{_ z2GWbYi&j(4#90c?RKb_Ffi<7DiLjAdQvx5q?aqZ}fjZ!6EFtzQ-o9+L#Rf=RT2d>h zgMP+4yUTTWf77St4fVpA25kZ!O9xH`lXvhkvh!teG|bsO{-$fcmS0&6ik{SrF>`9b zmHehgOJ#0md1$g5KiJE#W--+AqYoCFLaIlDzCn_3U;!S$c?(O7y_O9a6+rZr5-pOmL6JF*-e4K20Yzl3ntV!Rn5cUkvs34$@DdO)PhJCVi&c5+h)(#^G zd1l?C7?EdG7W5I=iXl~O;VW^FcuZ@&h{#cKa<16BJ34%aC&!=sT^|zdwC4mMJo`E5 zw2=(1efV|9HiSW=@P($YVkvy3$8%PC!037mXnO6V&)guB2v{?}Al{fLaWu{3izvBL_%l>9C2| z$0aw-g2%xKq+%$Q5VLGYo4haEMjq?}0CQz$M(MziA35JLo-@dQH$HU9R{DD0A0@wh zF`#130?@jKFe!ad(Z|N=&%KuL{d9xi5`!XNn_#vPLO$QT&x{v4uzp{i=~@Q|*&f{~ zM6Eko$Cg;@>C~QuHCl8>Cw(1Nd){EAww5oS%Vce?m>!-Vy_NPx$_wu6_I;N>---6z zQd=nJXNfKKzOo>9ks48_!(rYo3(FEiKL-qX13(>Fv0TtlZJepe;emZCHbs2TVPQR~ zIxk>MAnNSI3K2gKn+vXMXxPqH&exJ3Cx;gY>6zJmx9_Su!&vBJ7h>}A_kYo%ra@C$ z(ZIgI%1>l8+|U#Y^QLi(tUJy0(PQ;U=0&$iYCP<(CZrdW!QT6UhWH%8bOZ@;s;JaXDPC^P8DT247 ziX-3s@(I|lp`xqa!d7UJ(=Gmu>0j-bhkE5c?>T?AxUQt3RMX%&cmtoByvZ&(^6neq z`hde|la61x3s^S&%BZ(anLd|MaGhbbi3UL6D(h1e z!I3Z@0jgo}>~FT&ZI{w{!Wi;eVM9n3$*Ot#hTmzBm}}lw-?j1Qz3h#UKDWEI;YIhb z@7t%lzd3DC1JMZ+vz_7vmhii(8CPu&T46pqm*I@;W&6R2R_T;-V|w*{m+w&xmJr*X ze-_QJ;l&qY-fdB{xF(l6#veFfki4=e)x5riD<)Nz&~H&jpQXk)#GNBlkw~MT0`%fD zJ-BK5@oXJS+LL6ir+vZ^`^Lp`Z9Zk!se0ZL|CUkxZ?AYIYfj#0bZru|$x}VlL+jU& z0R2oJro-`1Ssw;VBmD}nF&TAUp494GD%U9UWnLOkP)(rh>xW4g4Rw^TdW}^WqMnOE z8&VjlOnFD)8D=j!^mKU0XwZ3vYHDr6K~EbxK~Hxo>8o8~NSJr#Yz3?<;dQReMW&HM z&qFu;a1(DZ+;>r?fmKKgDbM7%)aM`zvaWD(e)MeFHOU0fkU@wZv+%~F%JK6Cjw{sa6fv^>fTpGI}s8=aWH(D2Nz^4j6QCNg%c- z8N)_XRTZDcX)e-Cd&>b1`$+Xcwf++M83bK?h`a+Oj3EvkA{+R0`!4jHty7v=I!l?& zyeb%n=Ja4dSxpHL0i@8=N7GOM8Mddht7NmOj9BH5^zngHm<8CpUt5CH300K-?@s9- z??iEww>+>|D>T|6pqt>yEX|~a`L~`*sddJF<@@f4Y;l@5`AEW);V?PjX4+(ka#H^9 z^~`(NyIerez(HOU@&N+y|Kl|LE)r>90m@-+mVz(=bP*gswuQgIvbI}N!jXQnkDB{h zN<%fc%xDmq7~@W$v`LN2#?(A!xkqpusJ8qQy3gw&T_u2wG$=+`qDhFpG}~8Av$yalqxLu$h;g-CCGR;Sp9=GDznghL*~m2pyZvS zdr{5w`WJxtX-aeV-5FUsUfMoT8afJ#Q5o8)Wzfpjbby=!Y7VO6pbw1t zT@L!vSMAH#r2)zwe+gH`b`Ww=XoKheh6kgNZG&kDtB0@Q@wj_!*Ep>_E3{?ZbSlwP zQVni3A70K>%qV26_^Fx@>?3SI8%N`G+3~h_Jz%~1;STZQ;ue<*VoT`aBp+eaj84y2 zmS*N@gMJw4};9CrGn+nP5U@g-D5v7ohCX_(%Yzo z)>>V}k>C>6l`XVt52x{ys1<2K-gBw#P}sW1t=E>BxHr(@i#Y6V@p)NVSup@-a2gwccPAS^z( zek=OHV(!#U`S2m5P8i^o%!#{jN!+Io%3mUZK*>_t*6t^E&2+H0wxu8P; zw%hu_uh(1R2~V1T{8C0x7B*`zh*QtMs+$aqKodDB6IX1(A+h`=20eGacQ9`PL2r@Gvc(na9g{~}ZAvbe4EIY}60 zX~Ll^bXh>rf`LEMA4Qg5f>ufBfcx%tuhR2ROq%{v#O231>Xg5-q`+Y;r=;XIQrP(| z(!ij}t$Vi0WSGGwface2ZZyLuE*XrOdQSyolK;0t=)Y;Ez~i7IrZawFhgcv@vxhrn zOv*Igy|nUppr*;Yr&c3=e@Sz|VH%Z|8r4Qnb25@Qc0a~jeoP}RnJpikWg?~^X%XL! zF-hisC;?&{mHYSQlG5r-x0nZ!uWQpmu5j;`8qk(u62`Ca4-LadtA8fT1N@zS{+qu4 ze?GGFaWF7BF?n;z{Bw7}!>MjZ?#l_W0@)sUrhSM(MBx7+0Q*0Zunl42s$uFey2k$y z@_=i3^CEE;i2eQ<88LuJBi)z80Fp>uICA@!9uSr1ll_8i}XJ=IDL8Eh_ASr%gk0_O}l@ zbcV{$l(2>cD0K;)q2n8!Zj|`YN~L6b;#`vYA2O%A^K&GJj;!)o#T`-kJ_O?WE1h=q z5_C;%)QeP#+c|AEof35s%mUD4SD<={5V)Fz$a5H)NscG0v#97npavi}nYPjk<2}C< zC18?e>Y>O`^NM;G1wE@erN$(?#JHU_##|flAaijeGb0T=Bp6GC1^za{WJw94L^|@y z)`1U=_4c&Ryz@WV^j`3Qs=y4j{pZ!*@`gm_wFnV7a8B=6?hA4uB&$_3DB9; z+(`<4*tUHj%3rzWL_6WOI_HLu`7Ydj{K++{4bh13CmrdRHu@uV(d5q&TKdT<<0>yw z%L-`pxql^LL6@x7t{}3T*97Z#k)JUmTU|RR##n#jkr$sKvFhW6VfikGu3(h|!Iy*1IVc$insm&Wxy^>j7JG2^oUJbK_k@go!*5~}l_zDy4`s3{AA1Q% zKGxoT?n*Xs$@$5CEElozBBFh4%I_CqcRel9!<@^V1MP;r7MxiGM|y3X#*CjIq&X%Z zeXbypvZL1Ss4F40u?^XA0c=;`_RJW`=@-n%I*s!i4JA24r{y=&VvN8)GF;cCKW|uQ z=QN%L|30H0A+AwcuC4z9T*Qfx)?K4qg23DzPUV0Ej-M8!J>Fw@OU8Gi zc)-=UXRa-vBqTOVm3kL{0`^DfjRP1mrF4-LI$?`eY&zz6ImjPqTh zM0&jgXv!(y88`R4E0P61STm8%Q7a23%N0t;N?oz5DgXYhj#}B1rRRup8{~Tfs0GtF z^mKHWFGAyh=NkrB?DDo~$`ClR$t&g8Fu=s5NgEcZaiN_|?kLowK_rZilhc4#I?+e@ zFoSm+0qI#*m$ietyLwI19*PP&=nrPS1}=;vCu52zF_X{olOQt>dtuHV8f@C)J$-gL zoV}#YJ4dqhX*99juq^M=k%hHClAyRX%T4L_K~LWe$&To%@Q||;0%~V&0s6o#iIX+C z^@CC!drt$Q$t(KPYcF5yUf@GNn-~|9|>-T-4t#`sAs9Ule8RaJRHEpyo{8I)eGvOrGNZ^MP@|*f)L` zng!1_k_P=_^pF5O7~n~F$j}qQ4eumf+Uz-sk&{u|Si{b&C{K%=zlil+il5g9Wtqyr zRm5Q@Q2+vJIo{Lc=}SQ&w*&#QTacKViR17TP0rVLh~@*5%pl72g4Nu3&w~DWdFelO zt9w7~ukC(UPf3a(o2lvP-&C}I8--WiJ-;@NkS+Lo^P~cR))WAC$h=9MJ(r*d^_wNS zNtEomeyHy)pfoTKKHrbDubmXnE2!=6>)t65yH+^UB?Z{AKMzAhp;|=qCDec0=Oz#x z2k^+@sWI8Qn4g~CGse!-&^gN`}UQ5*(Uqs`PT)wxcuAZ zH$%`aI(>EkHMsLzk#rAJ0g_CcKB}BBIypUqc)UCm6)fR|;a*psKD?B5m;FG6f<*iL zmt_=+OMNPu*Fkc|0bLGjnUJ&yrysvXfosyva{MLgi2{r*@L>OBpX}DsA?n#L;`TYa zCa*X2B0^N{g!y)aIZuhA-*?DA-?(qNyb-*^$;`P($W5qGW=2oxp#b3n*!{-@Kaj+?yypWY=Kh4erEk5&YY=AXCyeIvpD z-!CTnQNCn8ud@8W-5oXaaorMO&RC0R79b%`a>s&f?% zM5GztTq{5qMZtB8ZUzmD8ftVk7zOz5@ zhK5?^$ftbWIC?oX;3sxxu{Aa|c>Y#SwTH#Z_5d>ZCQ|`6ocJPfBCnoZ9)q)BV3(L_ z({du(+wOrxU}~J*#vz0Cn}ERhOeU4I61cwuLbbDV*1w1&WLR)grV*w_QE zU|wyrZOq=|c#wHBQs9Nz`ry%EB*I~;@&$g*layy)=CsKTMX6N8`>Hp8cs3vsoOMO( zXNUgL{G+0hQQyS)^7nYrDW2zw{oy-q>;qBpQmhZhdNmtLo z@Q)@VRSr$}S5p#-_cv!t&{(K$J+}&|6OH*o(M~YB?QTZYGEULDL7R^)k$6CDL+yxm z&JdA(*ZA;z(L=q}_pZHoLQUfxh5G63#&>yqNj1-|#DJgq+9AwIk(#?IG3Rb^gDNYS zT+&@)ag^VZ)y=vW_wo*P>b)I?Id!!}<$W8WAD=N|SENyc*_b%w0Uq7oLy-+r28Tt% zi2Awu2Oh8X>Z`+|SbAuKjN#%+R*$CVT+~Qfyr1AaL&F^MDS4t|EVeS=U?E&NjQt+6 zvFRpfuGQpnULPuU0I?@~Q<}ZJqXyy9n`UiQEGW>HalKLGZ2DYx7+t4i_c&6LY+LZ( zq;!TGjbx0bcG0>r+j-Z+|pFD2yFHU2@#2fzc@r}IU7vm3T zOa6Nu<4>0qwwE988(rjM^Gtsgtu_;}$;jQJp5(ixXa^;x@@g_+$eCJ8RmE+>;s^z} z@~X4cwv^JD`S6x36Nn6oKL2NkEX&?e$QnD4S|$8o_oIN`P6$bHpE>c}dt4ta&kS2V z`6A~tVJ32q|M(?x5fKZ;H`?-$m34@T`vnY=TGXD_UoTtqX*?KdA)G2ypu(Y8y+Qlv z>P3Om5KTULbL#@#jvbOKVn0OW{^MXJC(VDI%&Gk=P5;uxozUr?SW~Ak#_)oEFV?Wz zGU6_0h-oN6TAMw3i98K*+CegxYZ&NZF`wF~Htr@url;s1>b0jpfq0h}k>P0Hg-oyVJ$mX<0$5`Xd*9}TQt zDeejJSc2x4;InqtAe%{>nPQ~9VkXw;Mi~15R=%$D#-i$pSw`$_LauYcS`;-q_iKZU2pNjBiNj25(WwR_2^k zF8v%dXR}a!QiR>T@;%-Ve)!Sr_EX#tn!PQETfYh7G-55RKg|adwieqQqg<^ zKEP*x4bj-p-fr6S_U2SCv4DY7HYI1-FKzyF6?n)vjn-q_6Ad`bkBwSN^=|UMS}Aw; znRgj?nYVs1kFLj${SiCxP2)#&*@i z8SrZLMm6A5KL&?ie2@@hwdCwdVffcC#1j8K&H7YaH}A^L;qHyKP8NJl=#vBvCSR7~)wyvow41I^lj z*<*z8&!~CYQ6w2g5 z=;29tY4>k?ao@ZH&U7Hx`Ft_u+F_bCzHp^z20SUwm42Clbf3mvuI{~qPy4n#j0nNW zwtZsBqg-IF6pyN&H~{rcp#^IV$9>G7F!da9NzM>4C@@o=Pz0ZHoeq!xdmk>WU*3O+ zC9_TvZuD%O%oJiwe*lKVI4xv8-zG-`27?^7y9q3MOP$srXt`?i(DEb%Zx=517Ei~| zObu6slZDLeDY%Q7D#m%#oA-gQE$I2eKT7Ao1g86I5aeaYvqeg{1##(SH<;K3H!VeP zz%`a+a5?3Anbh@k8IC`!KQ_2}f!LK^cAG74W>B0DR+3X5z<2I+O{C>2lof5dOUA@R zozd}!EaH&Heb&)vma$K9ixqyHCiFN>)ohHNHM+MtCJngTh4x%Z2~2w`L>dUv_3A|p zp2+v+SLLb>oDG=yu6mQU&N_McHe65sx47|!3>imG?$VzB_m88VM6qbns}-D6B_6+4 z1X%FBI2JAnL(#DRjOhJ$>eJDKc(p5!?=MwU7EpLZmo@ez%CW%{>CPAP_bYn&f$=>R zCTc5c?9Y_$l`efQ^1{WD)cJvDFHZ zqFPSBU2lUxGx61@4OQDxi~~%Z^8ZaTfJ?J}&YB>6pWuDIkxqFOXOg;Zt5>h_jA`03 zy?5=VF5}_7A3b(iSzKoG!YiF9EW@9X@P`S^n~gPkHNPsu5c)^A2NS|$>BA#a^AQCr zn^d|-`w>Ow-n4GD1U>VN*8&qxQjv9JQ~ns%$@<%^pEJ;dUz(SOmu&Q`5ns4}Ir+di z%*q4%M=)`u%I&)hGzIFNzsP~0GeF+3I7)wU9=o;-MiDJ~9Y}%3qkZ1o z%1hct!6L4nrp)fk6v9q24fDtrdo#(Vt6KMg@4`ufD}DdmwqJHIX7OCVUlulYU-EA& zDWYM@gi^i#^EH}A<1E!Oi>|+u9a0!k; zxA(ABeN^9a!iIe3#u8(4cAi$~5Xxh#h(F1Bvsri~?`NG`(Gc(_FBjS=OiX&7sTO1O zh3s46u6%s{MB+fWF0<)egqgYhzTmB(%P_$r>vKv)w@-CsCKUg8hejgciq_hA`^6t= z*$*9}1NON+TrQq^ob~B0oum1rE$V9KbP@#7xkspUzi5A!@{|%2X#t8p-DGujbS})t zg4pdGM5YWY|8lz9v+1elIe&47e_+(t%StZaxrt_QmRAauZ$xX%tAVOxC-n%6*kycw zYn|@hurcV2C|k&HEEBYCb8fh*Cb1I8=_D3PJLI>^AniA(L6z|JY*pw_%Rzi%9AcU@ zIpRhmBCQCCwWGgq%sB{3I}j`tLXo0xt20VvE>{eC83F@mCf-Hd*_@`OS&Pxan??q+ z{6>e+*}D^|fazZUe!!gh%dw5XtQNl_quXawe~7NIE>H__#gATGny4Iv*gyleiYbY9 z7tD9A&)n|s<6}yp_3uU$2jiO~gzwXX{q#hdLOUHa)<&wuW76^J&?uZ!lxky^+9hy3#1zOroq~sAJWNN2=`|(bAitNtW?1$sRB_N7#3?4-!p}vv96-3#p|? z%PaxnNJ8r`!$awWNm3KMB=tIfNOpYGJ9m^^(+m*bP3$Wjj%E#4+#^onJK#q6t*S0`1&K?+0bPS8(1np>op0z$%S<1MJ#{3$u0!ESR(WHi7q0j;2_v6efaaJ6c z58wZE^A4Zf0+R}HO03TUlM3SG^hHR47qh;KQh^jbO`+TD$2K~97xqKd9p0Nk4 z9{J@qHfnmW@q6iNP~phbuENZl&7o8id+T5W=L@ZD|2Z>1_j(Kk$VIvWeV@`5d z)fy}uCBc$dkszzRju|lp+D;HL5J{}?MKy_fr_`&w1`xfAU|eY4D<~pv1&FDO6|q@r zA8RPbA^H2Ppy>V}yIqkB#1tajd8JFt6s^{W=TNiqKxJ<`8fix(O6a2qem)6Qd6HiK z$2}yM431TN@+W%ZC04OVAY@{tH1q7^&7PRV9V8~;EV-n|`k0cY%R@oEm)(G~1%76| zIUKiqZtD|)n1pip5MaCPWg8uMtwiH)k6n+$4Gi3NcIOA%EF=xMJXK)%r8bPXGuCmp zYTo0O75$>F4cJAnK;N>0bdS!7H%%_C8RyV1yWS`TQx>AbX?#PS>y|^er{wZ;GZ`FF z5MYLxgN`BoEM?MND5mzz&hC}t3=WbP@p@B+pY+Uoan_g;wZgEdrklv}?0{or7`1!V zu$^rU=@4Q}j4T$IP==MTK~XsGrnY;5J^5s*Je~=f-ZWj?d8ClB%^3F%92-JuNWfF0Ob0$rAIJfFu7p8;?8aG z-Muj1Iabj`XdoDUh^@VZtRqx^f5akPG()HSU}ad$rM2*LU8VhLB$#4o*KW!mFGU|K z`w0ie{&%*v(tsw`uDw-^7nifW)y!F(R>Pf-b*%4WBbyz;9%uxg#o!DZqXyBm0;YSM>B?$R8P7j3AD1 z_k@Kf@?#-W==Rf4Chzmq4{}h?h=6de9|6&4fuA0u>%LJS0`;(}-UJ2Ym9BXx#Sn$3 zJMk7wMQ1-KHoB;77zc8lNBF2H%2H8l)9|Qc?J_B;L;0RgShw*f9Ghop`!JS#$$~`~ zOtfra3(S(G2$_}G5Fl5WVIEqs1pe9kR2UWF`6zBeg3I;U@Ut(}BLc2J;gdenxY&y| zk*vx~*xBf`KXvqGM^(Z|`na)Yjbt0}4*R~!ZlmxO%(0&{X^7hwL!Gr@HX4fb0lwt9 z&9MBdFqVeiW{L(53d%+)N(OOqx;=YF>>wh;=h}|-#C(%1;*S3F49_()yb!?j0V4pP zdk$$*U)=8P;Iv8=kzUiLi%sH7-9HWWQ9JOlH_v&rf2K1ZEM9)%P4Itlt0JzBDO4AT z;7G}!2zpNuP{7IEe_lc!w1l6Zd+^Jp*rv2}Jq`F(Bz2h%%ab=8#eP4- z?K`>F%W_F>av{+m@piOHO)X#k-tl95%R&frL&$H5=&a+W7W3P)H|LJR7g5$+<-OLw z@v`1eRJ4i-216w}YZ9$~MAz3KmFEV;f&TRsSsEd38K2g~JegT8=YVBniu}Ro67!okogrtKhbC4~xdV9HLKY zPTb$*nZb>?aamt=y<3R31lBtQc9F;PkY8DeP&zk^@z|@JnK&GRy3dUsG**Z3SYD$< zFx>sAVttbgxG)&;9jf{>Zn`qUZM=TAH~q;4k;z0Z2WVVAw5a+9+vk|KEuU2ozC7(y zrv5gVGtOQ$TrTzDZ{kX9YSauWt^1mIZ{2|vfQ`1VK@8}#Tbv8itW&Gf40T)20?;OD z+D#^3ibJXE=+F(nyEc>;rxY6ns-Ua~lyMt0buE8^UqUOUqU_o@$wn8q+vDRgW$Bm= zvczb|=W;N#pTC;?Lk2cdo1oKwzxqOjKpKgssBJfy4C@x{ee9DUY=5M0JA~$CWEP4X zFPIZs9Rr@fdCt)qVa1cB;x2pO2dE@q?9HHh){>}lau`PLp-xTv}>#MskQ$t zn6iG>Lz(y8=!CW5P`m#pQ4NB>5iEB*Ff8P7EIH5CAH7R~#f*AgEbG{;N8E+Pu+)~= zNGw{F@127_A*Ao2G?k>*lj*HFxHCP|Y(BkY=YBYBzfY>`73yBKQUtZvz1kn;*}kKv zD#T89Y)8Q?TK!suB~16?yffOO1CO{B1r^7-4EZ(Bn;}kiBGlF%r?O9xQ6%rg9D@5M z_tL(|bszuoEfWQA2SNU>AOW+ov3EgOl|GJge97XLUjmx7L1a&#t04ZSH?ndwFtajC1G3)Yw@gL zBtd$~*pLUdiQol*Z9F^GLkxC%|3v^gdGkW7$Ah+WBKv_Vs+GnT7Xt;$Ewy~Mz>@^) zKGAOiiKw6|{k`Io8PM1{e-s@FT$Idy`SWc~XfkVGE-!KiauB+%`qVlVy<;E7(leN5 z=M42zB8MMuuV$5=jbQayk47E*N{Q-K&%qS_dvgqwe{ZkI_MJbSprxRR19ilMlV;v2mMlvlz3S8d-J)YRAYE4_!HAkqVb?!`p}aqT5_N*1!a^W=+7uh3OCBDEg#p3 zY4*|-8{&lO0(V`C6cv1)lxTkIR=dqGL+31#eZRCO+6N6ER(xOdxD2jHIzFSmTgm+R zJ@ZJ=vj9sy*q2Ft(vOvY!Ul5vk_AKO{+VDRIOHNQ4+pRhbmCm zQUg9&@Pw)YJm1~rqy#m%=$Y~{(~1I39%Lu>0?8Q?ZlJ?-i>9w$WRUIdkdPGCm`~6% z93n*DVBD$E`v_dNt}0HI=b+~S!F(>cs=tszfB0F-5|BTV{`tHHVY1vvKbmGE zlWNkT+S@@adexYxu<&p=FWDe4m37w`wngb<&P(v1&yU#q%eB0-r0a&o9PHhlVpq+0 z%$}EdV~XANXQ#iu`W)W^Yi9p^=F|%t&n^W0KLhzUz*0mV2gUev#w6VoBT*;)clhMt za-9vy-D_tvE7sp=HT#+KF0?9gdPcm`F6yqbsyUPO@9K}o#fEo3Xx1*jKAh}_{r>04 zyM>0#kM@~T4v{y<;lqaL-M6n2g2xIZQpx2|&ZtDKW$8P_^fF@PWxx|&gg_ZyWGERqm_gX31+#hq^STE{5H6fNe zy%Num8y-rxecY^Rure$5;)Qd*X}Eau=Ym&qfRl%R3%?R~8;g#=%a@}=hQ(N$#bZjO z4Qr$i8NNvx5C2JCE{-Y5-OB14D|&KESZo4iEQT}cs7#s-StOGlQcq=_=^+|y{p&Mxy-a9dR6cEQz&8f133pP1?uV1|`*DhE-OfK8CReisezq-d*op*tIv-G= zG=PP8+bb?9iu?1!$_=TKkN~l;quZ?&?D^#)IqxRpE>SwskppJ5X-1}?-Qvmf6exXC zOw48VeQ4uLIad~(>5)L<9ViNWO@}~zt_fqV=ibozbEG>gUDHGuCP_Ku-14{h01&faIo zDbW;BzSiC0_VKuHtv~XnF8H~m_`Y*z(4seN8EKr8*pQdzjjBW*USx`lub)Sem!%oJ{>oi(EbWx;Wlt;n zx-XWo7*@3q?$Lf?3N5#>6Vzh*31VB*Xydi#2y2o^FD#Lea<0zsuT<~gj!Fj2&|0eL zI>v%XE1VW!c;wRKIXe2Arc#tnl%0$f1Onqnkf`xvb{XyI@S`8PkIQ#BUm@d@V|^)aj3wToPTHtqRz z8#rX?Nok}bjM9s!cTZW811%gUocfhAPRugubUWev*5=v+Kv-lyorb~dB%_?i`NdX6 z{i$+F>Y%tSGW9-hzTB@nt16G_5^nrlTedU5LJ>ERe9RR%1WaJL3dzCA*#YRSF0IW5 zADGQ@6DyBaSa`5a-tR9dq$z)!W-I;Y$&p!oG!ra~1UvH5>H}kAn{SO6LfQg#Ys-n{ zL4kS?A=fKt=K!$JHadZoD3P+ zgNiiZ6cqeLZ5;MtWly za)B#fCgsTQOYi!6@>B8SPr_8Vstz$NDOXAU=(d-K_>)cs+|SXX zB+ie-H$v}YZG_oXg2-Q@$4!i1e9h4=N$?8Sq>BggKMIW~T@ z71UQ-{kH<3#cS892EP)VM=J+>BDvr%SR?lvRB9ZIo=~D{I z1a?pHcy~Ek0U!LLyJ8w@RE&mrhEGL8lHYZ{|*7%Ly99C{RADBs3bmkNBzW72IB;k&f|h1PYE z;{_h@Sa3Gz!k=D-laM!pctP;Deb0w3GL9AAQGwtu^Wu`BD!DTpD`}D+1j0UDdX4Bv z;162`D-CBmU%lD14|;@Lh;via*G`H9-gq!4?C9W40g$d!H{G5g=>E`;(#=KzEJti+3EPtYNxkvC^@YbaJ3LkyTaes zaopJ?R>61tG@Wu}>9j4l^#0sKjuz}K8@z`Pq3TN&c9yYE_Cu%3y6$IBj_R7|OiLvx<7gCKXnRyGbY7MVv08LftlJZJ z;UnB3XY*kP`Z*G=x#TNqb=J~qZd8bj#W6tO4U>s(ES>Wxw4jYNU9F7A=yKURNnN;> zl?p4DUJ;sMLuuJge422b02*wKS%m zaZjUdGADI-?qN~kzV2Tm^QA7_-@Y!F6k}sxu$2L8h_Kpw_x^WZVQK-FZC`dWeOUm= zdj`V@>`N0^S`8pKUXr?lQ6WKFiVtU_E;+x_I?hbLh%fn-eszHwQaeAaChMvmz%}z6 z{NN|-690oC_H|W-uAq^+qIfouzK*-JTIkZ#ZH>OzJ?FEU5p*xz#4{Vk;L}h5w(rU0 zPr4v>Pz$w;547APK}nt(e>IIKjlWX_O2cCX2w@Lj%z@;s{%L6axX*w}9K9uBA3sW6 zWLO%o>UO~Ph2Ui9$tOFwP z#7o$S#%XqL=7<*P%ytuv28r)}<9tjbvVg}M2Ipk3Z%*vo6p zzL`jBe#EZ;AqO4?F1;zjLl>@4@vq_Qv)NUYXf|=v=eslC+WoOXh#fHRT0N2{1j$BM z1{h#XXia!oD-nd<|Hy@rt!0806j%EH>Zv*q|6-O&oQD-+4 zzSdQL%ZX#YN8qOB@7qljuwEZbPl6Ra?0-4;sF;55BY8-ox>S~)46A8jZ(bD8T?^L9 zJCR7PNPkzj&xscuba0z34p#Up@LN;}kA%+^DuLY*Sf?B$(vj~h@&Nw(e8tFri5^SJ zk0=-&hJQ1fU8h~sA>$o_nS!uOrYJk-#I&HAdkYhZ+2ZJ{2-}96CV1Ttc(Wq|Mz)=n z2Frq#Vck@iA^6iM$ZyC;+gnj%ITx77VNgP6Fp^0L!Fe~Bv;M2j8yJ*k4UC80SB3jd zPvR$+!Xl#9O^G;adAvjdnLHMMFIO|ciZ*@yu4BAn^T>XyOI|}TQfZ%VlS(FM`dg6K zlq3y7BMI*Ph3AEn-Nur84x(|2ID7265H)?O-tJltKY+QLTk)acD=vSy=UWBVJJHCI zc|eK%gH5t(6#tEU#dj<3OWywSuXgAmlBc3nvS2_)WXF zI}VXV5~aj#<-M>Da0*q`6!a_&c5JiT84!Eg34XqE0=ID}_O*Kdi}@uWCr^m6H^GJ&t7h4l@jcHh|z=m0aA;mYg2peoOv}w6ShPurd zzxqY3nh$Zucc1J_not4zJ|5e6sS{hqvpi1=CpgBMilbF>d!)atY^JQ=6gxzP>juKsAdP%CW{ND z#s;S-+IrCLlUj22-O@1_3>4i^0HN;+i-A_DQS~EJ=w0 zRa^;v!8!Xoh*Mgjuc(!$2XHlx;|&$QSl@TS(>aisu}qe;hfZK0c9(TTT|rlMM_YmC zUpeg|LS&_ODZA3$VAcqQ7Kw(_^X z`!eaa2<-|cx_}K+@0G{Q0sWT3TKEnkdVk|pkHZ!DHrWZC$79vz)iqf1$<)@~8t(5B z`{UGARsbvuaCy;+5D@QMgyvO|)5S&95@@&uPi&u^qKmH2x4IlR0D!D`N%rcl-@$zT zgS<9iT|PciCoGd@%hl88Q@`*oJ_xq#H_o=Samd@v;>XecCnPre_%P`y>1_Foh)%ds zFt*&I^bd`(w;JAeaCfqkpH$hoW_nVK_;nnRW|8(+NszJQxQ3^KA|D$f0JGzwUqt-@ zbZ>VDrIwV+-`me6DY)`M=m=hpo1%hYk_#P&{Uhes{71aLK)V9lDmHIZM;yigkc=uq zc))}gf`6ZBt~!)=tt%*DGh#g_amlNi%Ah2+_z>Br8abzQEs;rBds@yieZV`3OObX{%vZtif8!3~DrIiFG6h5V4VX-scqM(n% zzKlT%Z^hH9>iLdeK8fwTyTNBzgeNDDE?$7MM_-#HMMX9ej&`K22Rc$uYq$-HeVtFy zNVrA?6LgCLpxVUpsc<6hv>bCAM=_D?NUKg0t)=oQI(;c9w7}0wHCx0Qx8W9 zPOjd#C|)enuI*|KJZCtH-oR z8@n*c3&lgRyahLGfo&7>EsMuOV+Ak0x9d1>bBVkV^df&z{k=xxuUAZ7*hT(<^fC5l zz!D?Sb~yBS@O{6i7y0Fa5utuFYj=UAFg>OG`0gd}fB)6uIjm0FyGU3e^AY31qF8!q{BC=^HbL5}`_qLH$H?_HVCEsq<=vrvS2%Iy2 zfrG!Aeo9%Kb42-YgPba+GIeuM+c@Mr-qihynkjETk0_c0bz~?2s0;`HSBg=rCbYTO4 zmNX85r(B%bG zB3#QdEPf2XUzM@_VM;O57utcSQ9gLP<{rN zd#SZvWTGk)qNf_-DB+?_6{}y1b^`&SdY=-PpHu{|LH90EiHe%s+ubv zSTu+RELJowr2E*tH<&ZU81Nh_o0Ve(Ljk=GJEBar19R6EgTmTbYAaGU*Ke11gAH%g zt`Z<%>gzA@evy}MsTjDPMy>F*)9&*UIXGg5YS;43yh7LgcMx`x`SIINm#XP+e1p3Z zDT-9DDA6p@ehaR*G#FWzI*Ic5($U)^WbX^IR{fQQ4bmiEpj?iiH_^9X6jX3!63aiwNLI+ zJ?v*suPDznkkY@>H65lTxWw@7A6}NJjVx?djx{fdf=aE4Gw#F}>^Q{YXyRoOiQ^~3 zyi?5)@tL3ax<&I%RR=%K`aXtlbEmxjfk;+01*-d^HTlmtdjcf$Cz{A@NGj^}dU`Ue z|C8h#wmm>HI#5;e*vPcOZaG8p^vZAUl!Egvggm(An`s}y@@SKrnHMCjfh1uh`hM3A zKr=R$rT(FKF%TvY@%_%T$qt*Tit?}b7w0wMp8|*9H$~;VT%}+SY3eGsvHme9xJKci zqC~Tuz~|DHXFJuFxy9Z6vUyfD8}C!uMT{d&GE9Xg6}8&;UPNX@UCE-lCJJ;*o~HS} z@B&E&xsQ9$s|uuBYzyZrtIpiQVMI_B03*zGmB5*pg9Ep36Ty0!>27Y3viYSl3;Y^( zs7Faa@2_U;#OssGbB!h^q2;R{HD|GJ4gCWlA7g$s<^4y$(OW4gLKfGgCow#O9NM%1~t6~Wt` znL{KIro_(eDRXZ`md2FlhTZ)=SD`-)KP!_Xoe_C)Wqy89&HNwJBf$Lsv-9FV|M>sD zr{n+b$&t}LMx;`EWBCBgnV}Th)H4!7^tLwJZBqHe*R3}WybgZusV|#6BF&n0d_P8J z;T}l$-8@?|BUQ5vba?dCx0+=~W9$tED>AmCNjiYhognGJSUBYQ+iN}MSwr2f4~0gK zAZ`{FM7;nz^LN8j7>mU-^>uISlkpyRk=m}9K)eyheLEo+{%tJD3kb7Z^vL{#lxnQe zgP}qEgTJvos*s|3t%=9g8On%XX4qrDt2$NIt6e z9A?t$CyR+XILuw(wd@;hFodi}I;5^cxZR@D-KS8e>Fbe~wEGpp&?FoFYN)pJpdvh> zt@xPaSvXq(AJdcC1_?o*7Tzih2JR27UxB>GDebIpp=Xb6F!r*yzk?)tQSBV=1szc- zojm4>b9=l+hipNQ2Ag&xWU*x{Y+?)C&F!+YYY&kvQ6_wrBTakz%GG1I6JL19fF^C- zuF9g4b!fr9lJ0km#c8_<__OkE!1lZfVAx-3X0qv6`DxCkY=7FhyA?b4ykpC7nEjsn zlns%+txZ38fcnM$+#uU$h3pK66PW5}WM!K+eOOqq{WWcyUfS*%YG4+W)YX^qPP(G(@p zF5&Ru^^_oL#Y(oVPIsA5u7m5N%XYvRKqh=&+eG*K@pR0+n&EK8*s7J&M&pl z)?tvbSmT$7CK8V zMM@?3PxIdqfthp%6)F*66vQlk8clagwP%OK-V?2>#7K;20{c!W-j(j2Mx+yWP z3AmpnvqCYT&WPY4URq!N8R`ujZi(k3Vgt5DUTl{+F&Dj_Ylu{bN%D0X} zW=*a8koP-4_{*3syfr!15~cLnyK;)AKuI9SmDq$oc2`pc#;M5n+9gCyU<3bLtCaUi z^J+M3_#sL^9Ufiz;M3mIm0gy)kf^fg*2i-qdkS={)8#Rv*Aj3;jMLE2%7m U1V(GjTq0fi+9q068ji640&qA~mjD0& literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.95/pred.csv b/cars/lr-investigations/exponential/1e-2/0.95/pred.csv new file mode 100644 index 0000000..983fd84 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.95/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 82.21% Chevrolet Avalanche Crew Cab 2012 7.27% Mazda Tribute SUV 2011 3.97% Dodge Caliber Wagon 2012 2.48% Dodge Durango SUV 2012 1.94% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Audi S5 Coupe 2012 17.67% Honda Accord Sedan 2012 12.54% Ford Edge SUV 2012 8.11% Audi A5 Coupe 2012 6.17% Scion xD Hatchback 2012 4.08% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Volvo C30 Hatchback 2012 15.52% Ford Fiesta Sedan 2012 12.25% Mercedes-Benz C-Class Sedan 2012 9.19% Toyota Corolla Sedan 2012 8.37% Hyundai Elantra Touring Hatchback 2012 7.42% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Chevrolet Traverse SUV 2012 69.49% Scion xD Hatchback 2012 12.28% Hyundai Tucson SUV 2012 3.74% Suzuki SX4 Sedan 2012 3.46% GMC Acadia SUV 2012 2.48% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Rolls-Royce Ghost Sedan 2012 37.86% Chevrolet Sonic Sedan 2012 28.52% Chrysler 300 SRT-8 2010 10.21% GMC Terrain SUV 2012 4.37% Honda Accord Sedan 2012 3.3% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 94.49% Audi 100 Sedan 1994 4.68% Volkswagen Golf Hatchback 1991 0.51% Audi 100 Wagon 1994 0.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Audi TT Hatchback 2011 35.32% BMW Z4 Convertible 2012 25.33% Ford Mustang Convertible 2007 10.87% BMW M3 Coupe 2012 7.85% Audi TTS Coupe 2012 3.83% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Dodge Caliber Wagon 2012 54.58% BMW X5 SUV 2007 37.77% BMW X6 SUV 2012 3.89% Chrysler PT Cruiser Convertible 2008 3.02% Mazda Tribute SUV 2011 0.42% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 21.19% HUMMER H3T Crew Cab 2010 10.64% Dodge Durango SUV 2007 5.71% Chevrolet Express Van 2007 5.24% GMC Savana Van 2012 4.74% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.52% Spyker C8 Convertible 2009 0.16% Chevrolet Corvette ZR1 2012 0.1% Mercedes-Benz SL-Class Coupe 2009 0.07% Bugatti Veyron 16.4 Coupe 2009 0.06% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Audi S4 Sedan 2007 39.49% Audi S5 Coupe 2012 20.72% Audi S4 Sedan 2012 14.21% Mitsubishi Lancer Sedan 2012 9.89% Audi S6 Sedan 2011 4.37% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TL Sedan 2012 59.51% Acura ZDX Hatchback 2012 14.68% Aston Martin Virage Convertible 2012 4.85% Acura Integra Type R 2001 4.27% Nissan 240SX Coupe 1998 2.92% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 74.73% Ford Ranger SuperCab 2011 22.66% Chevrolet Silverado 1500 Extended Cab 2012 1.83% Chevrolet Silverado 2500HD Regular Cab 2012 0.37% Chevrolet Express Van 2007 0.08% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 43.32% Dodge Durango SUV 2007 35.41% Buick Rainier SUV 2007 7.7% Chevrolet Traverse SUV 2012 3.58% Hyundai Santa Fe SUV 2012 3.44% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Honda Accord Sedan 2012 67.64% Ford Focus Sedan 2007 24.07% Lincoln Town Car Sedan 2011 2.06% Plymouth Neon Coupe 1999 1.43% Hyundai Elantra Sedan 2007 1.35% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 71.78% Chevrolet Silverado 1500 Regular Cab 2012 28.19% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.03% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Ford Edge SUV 2012 62.7% Dodge Ram Pickup 3500 Crew Cab 2010 17.46% Dodge Ram Pickup 3500 Quad Cab 2009 14.48% Ford F-450 Super Duty Crew Cab 2012 1.57% Chevrolet Silverado 2500HD Regular Cab 2012 1.41% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 64.5% Volkswagen Golf Hatchback 2012 10.68% Hyundai Tucson SUV 2012 8.88% Nissan Juke Hatchback 2012 5.48% Hyundai Veracruz SUV 2012 4.83% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 BMW 1 Series Convertible 2012 55.06% Chevrolet Corvette ZR1 2012 24.91% Audi S5 Convertible 2012 11.56% Porsche Panamera Sedan 2012 3.39% Chevrolet Camaro Convertible 2012 1.15% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.98% Bentley Continental Supersports Conv. Convertible 2012 0.01% Mercedes-Benz SL-Class Coupe 2009 0.0% Maybach Landaulet Convertible 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 99.65% Audi S4 Sedan 2012 0.22% Audi S5 Coupe 2012 0.14% Audi S5 Convertible 2012 0.0% Audi S4 Sedan 2007 0.0% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Chevrolet TrailBlazer SS 2009 32.13% Land Rover Range Rover SUV 2012 16.05% Volvo XC90 SUV 2007 7.87% Mercedes-Benz C-Class Sedan 2012 3.2% Dodge Dakota Crew Cab 2010 2.91% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 97.82% Dodge Caravan Minivan 1997 1.46% Chevrolet Malibu Sedan 2007 0.48% Chevrolet Monte Carlo Coupe 2007 0.11% Plymouth Neon Coupe 1999 0.02% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 BMW 3 Series Wagon 2012 87.63% Suzuki Aerio Sedan 2007 4.89% Audi S4 Sedan 2007 3.61% Chrysler Town and Country Minivan 2012 0.95% Suzuki SX4 Sedan 2012 0.91% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 98.12% Audi S4 Sedan 2012 1.38% Audi S5 Convertible 2012 0.46% Audi RS 4 Convertible 2008 0.02% Audi S5 Coupe 2012 0.02% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Bentley Arnage Sedan 2009 88.14% BMW 3 Series Wagon 2012 6.43% BMW X3 SUV 2012 4.51% Volvo XC90 SUV 2007 0.32% Chrysler Town and Country Minivan 2012 0.25% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.74% Buick Enclave SUV 2012 0.24% Volvo XC90 SUV 2007 0.01% Mazda Tribute SUV 2011 0.0% Cadillac SRX SUV 2012 0.0% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 98.56% McLaren MP4-12C Coupe 2012 0.51% BMW 1 Series Coupe 2012 0.3% Ford GT Coupe 2006 0.25% Audi S4 Sedan 2007 0.15% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 93.03% Cadillac SRX SUV 2012 2.58% Dodge Magnum Wagon 2008 2.54% Cadillac Escalade EXT Crew Cab 2007 0.97% Volvo XC90 SUV 2007 0.54% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Hyundai Elantra Touring Hatchback 2012 98.51% Toyota Sequoia SUV 2012 0.58% Chevrolet HHR SS 2010 0.5% Daewoo Nubira Wagon 2002 0.36% Mazda Tribute SUV 2011 0.01% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 54.54% Audi TT Hatchback 2011 41.85% Tesla Model S Sedan 2012 2.43% Audi S6 Sedan 2011 0.52% Audi S4 Sedan 2012 0.44% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 99.99% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Mulsanne Sedan 2011 0.0% Ford Mustang Convertible 2007 0.0% Cadillac CTS-V Sedan 2012 0.0% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 74.71% Chevrolet Silverado 1500 Extended Cab 2012 19.74% Chevrolet Silverado 1500 Regular Cab 2012 2.82% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.02% Isuzu Ascender SUV 2008 0.6% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Hyundai Elantra Sedan 2007 78.43% Chevrolet Malibu Sedan 2007 6.91% Dodge Caravan Minivan 1997 4.95% Chevrolet Impala Sedan 2007 4.79% Geo Metro Convertible 1993 3.43% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 58.12% Lamborghini Aventador Coupe 2012 24.59% Lamborghini Reventon Coupe 2008 16.72% Spyker C8 Coupe 2009 0.3% Bugatti Veyron 16.4 Convertible 2009 0.15% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.79% Hyundai Santa Fe SUV 2012 0.14% Chrysler Aspen SUV 2009 0.01% Audi A5 Coupe 2012 0.01% Honda Accord Coupe 2012 0.01% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Chevrolet Avalanche Crew Cab 2012 30.76% GMC Terrain SUV 2012 26.99% Honda Odyssey Minivan 2007 8.44% Lincoln Town Car Sedan 2011 8.37% Honda Odyssey Minivan 2012 5.55% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.96% Chevrolet Avalanche Crew Cab 2012 0.02% Dodge Magnum Wagon 2008 0.01% Dodge Durango SUV 2007 0.01% Cadillac Escalade EXT Crew Cab 2007 0.0% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 98.22% Ford Ranger SuperCab 2011 0.99% Dodge Dakota Crew Cab 2010 0.59% GMC Canyon Extended Cab 2012 0.08% Volvo 240 Sedan 1993 0.06% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 Dodge Caliber Wagon 2007 45.44% BMW 3 Series Sedan 2012 37.22% Volvo C30 Hatchback 2012 9.33% BMW X6 SUV 2012 6.74% Jeep Grand Cherokee SUV 2012 1.2% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 96.45% Ford GT Coupe 2006 2.01% Spyker C8 Convertible 2009 0.45% Bentley Continental GT Coupe 2007 0.27% Aston Martin V8 Vantage Convertible 2012 0.23% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Lamborghini Aventador Coupe 2012 54.61% Aston Martin V8 Vantage Coupe 2012 19.53% Chevrolet Camaro Convertible 2012 12.11% Ferrari California Convertible 2012 7.55% Audi R8 Coupe 2012 3.54% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Spyker C8 Convertible 2009 26.29% Dodge Challenger SRT8 2011 17.5% Bentley Continental Flying Spur Sedan 2007 12.54% Volkswagen Beetle Hatchback 2012 9.24% Porsche Panamera Sedan 2012 8.3% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Dodge Dakota Crew Cab 2010 22.8% GMC Canyon Extended Cab 2012 22.29% Isuzu Ascender SUV 2008 10.93% Cadillac Escalade EXT Crew Cab 2007 7.96% Dodge Ram Pickup 3500 Quad Cab 2009 6.57% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Ford Expedition EL SUV 2009 16.82% Toyota Sequoia SUV 2012 16.39% Isuzu Ascender SUV 2008 15.79% Ford E-Series Wagon Van 2012 10.84% Chevrolet Express Van 2007 10.29% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 76.19% Bentley Mulsanne Sedan 2011 12.73% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.42% Hyundai Veloster Hatchback 2012 2.61% Volvo 240 Sedan 1993 1.02% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 73.07% Dodge Caliber Wagon 2012 24.84% Dodge Dakota Club Cab 2007 1.51% Dodge Caliber Wagon 2007 0.24% Hyundai Elantra Sedan 2007 0.12% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Hyundai Elantra Touring Hatchback 2012 23.41% Daewoo Nubira Wagon 2002 18.95% Volkswagen Golf Hatchback 2012 18.63% Audi 100 Sedan 1994 12.03% Dodge Caravan Minivan 1997 11.76% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 52.84% Jaguar XK XKR 2012 12.22% Chrysler Crossfire Convertible 2008 10.8% Honda Accord Coupe 2012 5.77% Audi S5 Convertible 2012 4.46% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 84.74% Volkswagen Golf Hatchback 2012 13.1% Hyundai Sonata Sedan 2012 0.79% Chevrolet Impala Sedan 2007 0.61% Chevrolet Malibu Hybrid Sedan 2010 0.2% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 75.9% Chevrolet Silverado 1500 Extended Cab 2012 11.18% Chevrolet Avalanche Crew Cab 2012 7.36% Dodge Dakota Club Cab 2007 3.69% GMC Terrain SUV 2012 1.1% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 21.2% Lamborghini Reventon Coupe 2008 21.01% Spyker C8 Convertible 2009 20.27% Bugatti Veyron 16.4 Convertible 2009 14.76% smart fortwo Convertible 2012 13.08% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 86.11% Dodge Ram Pickup 3500 Quad Cab 2009 10.21% Dodge Dakota Club Cab 2007 2.65% Chevrolet Silverado 2500HD Regular Cab 2012 0.47% GMC Canyon Extended Cab 2012 0.17% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Lamborghini Reventon Coupe 2008 47.03% Acura TL Type-S 2008 23.87% Porsche Panamera Sedan 2012 22.13% Infiniti G Coupe IPL 2012 3.26% BMW 6 Series Convertible 2007 1.19% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Buick Verano Sedan 2012 25.05% Chrysler Town and Country Minivan 2012 13.97% Nissan Juke Hatchback 2012 10.72% Jeep Compass SUV 2012 9.02% BMW X3 SUV 2012 6.63% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 65.43% Chevrolet Express Cargo Van 2007 34.04% Chevrolet Express Van 2007 0.53% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 57.94% Audi V8 Sedan 1994 10.91% Chevrolet Express Van 2007 8.55% Audi 100 Sedan 1994 6.38% Ford Ranger SuperCab 2011 5.4% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 99.41% Dodge Magnum Wagon 2008 0.59% Dodge Charger SRT-8 2009 0.0% Volvo C30 Hatchback 2012 0.0% Dodge Journey SUV 2012 0.0% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 99.29% Audi S5 Coupe 2012 0.38% Volvo C30 Hatchback 2012 0.2% Dodge Charger Sedan 2012 0.09% Audi A5 Coupe 2012 0.02% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 85.53% Suzuki Aerio Sedan 2007 6.41% Mitsubishi Lancer Sedan 2012 2.38% BMW M3 Coupe 2012 1.41% Volvo C30 Hatchback 2012 0.58% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 42.39% Aston Martin V8 Vantage Convertible 2012 13.85% Aston Martin Virage Convertible 2012 11.6% Ferrari FF Coupe 2012 8.66% Fisker Karma Sedan 2012 7.46% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Audi S4 Sedan 2012 87.86% Chevrolet Malibu Hybrid Sedan 2010 7.12% Chevrolet Cobalt SS 2010 1.99% Audi S4 Sedan 2007 1.9% Dodge Journey SUV 2012 0.7% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 30.76% Aston Martin V8 Vantage Coupe 2012 29.96% Audi R8 Coupe 2012 17.18% Fisker Karma Sedan 2012 10.38% Aston Martin V8 Vantage Convertible 2012 2.94% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Ferrari 458 Italia Coupe 2012 67.59% Aston Martin V8 Vantage Convertible 2012 13.47% Chevrolet Corvette Ron Fellows Edition Z06 2007 10.15% Aston Martin V8 Vantage Coupe 2012 5.53% Aston Martin Virage Coupe 2012 1.25% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 95.58% Aston Martin V8 Vantage Coupe 2012 1.72% McLaren MP4-12C Coupe 2012 0.93% Spyker C8 Coupe 2009 0.28% BMW M3 Coupe 2012 0.26% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Suzuki Aerio Sedan 2007 87.55% Chevrolet Monte Carlo Coupe 2007 2.5% Honda Accord Sedan 2012 1.88% Aston Martin Virage Coupe 2012 1.77% Ford Mustang Convertible 2007 0.91% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Daewoo Nubira Wagon 2002 71.49% Nissan Leaf Hatchback 2012 12.29% Suzuki Aerio Sedan 2007 6.45% Chevrolet Impala Sedan 2007 3.36% Suzuki SX4 Sedan 2012 2.07% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 Nissan Juke Hatchback 2012 81.71% BMW 3 Series Wagon 2012 7.6% Hyundai Genesis Sedan 2012 1.83% Volvo C30 Hatchback 2012 1.81% Chevrolet Sonic Sedan 2012 1.34% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi S6 Sedan 2011 99.16% Audi S4 Sedan 2007 0.18% Audi S4 Sedan 2012 0.16% BMW 1 Series Convertible 2012 0.13% Infiniti G Coupe IPL 2012 0.12% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Dodge Magnum Wagon 2008 53.98% Dodge Durango SUV 2012 39.97% Dodge Journey SUV 2012 1.63% Mercedes-Benz E-Class Sedan 2012 1.59% Hyundai Genesis Sedan 2012 0.88% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 99.99% Ford Mustang Convertible 2007 0.0% Volvo 240 Sedan 1993 0.0% Volkswagen Golf Hatchback 1991 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 70.03% Tesla Model S Sedan 2012 8.84% Spyker C8 Convertible 2009 5.18% Audi R8 Coupe 2012 3.28% Bentley Continental GT Coupe 2012 2.18% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Chevrolet Traverse SUV 2012 45.7% Honda Odyssey Minivan 2007 39.49% Hyundai Veracruz SUV 2012 10.88% Hyundai Tucson SUV 2012 1.65% Acura ZDX Hatchback 2012 1.02% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 98.33% Audi 100 Wagon 1994 1.11% Audi V8 Sedan 1994 0.23% Chrysler Aspen SUV 2009 0.08% Eagle Talon Hatchback 1998 0.03% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 94.06% Chevrolet Silverado 2500HD Regular Cab 2012 4.48% Chevrolet Silverado 1500 Regular Cab 2012 1.06% Chevrolet Silverado 1500 Extended Cab 2012 0.35% GMC Canyon Extended Cab 2012 0.03% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Toyota Sequoia SUV 2012 44.58% Hyundai Santa Fe SUV 2012 29.37% Hyundai Genesis Sedan 2012 16.27% Dodge Journey SUV 2012 2.61% Ford Fiesta Sedan 2012 2.11% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 54.74% Hyundai Genesis Sedan 2012 8.41% Land Rover LR2 SUV 2012 6.75% Buick Verano Sedan 2012 4.72% Nissan Juke Hatchback 2012 4.33% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 53.57% Dodge Caliber Wagon 2012 41.1% Dodge Charger Sedan 2012 2.11% Hyundai Elantra Touring Hatchback 2012 1.44% Volvo C30 Hatchback 2012 0.89% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 99.9% Chevrolet Monte Carlo Coupe 2007 0.05% Chevrolet Cobalt SS 2010 0.04% Plymouth Neon Coupe 1999 0.0% Chevrolet Impala Sedan 2007 0.0% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 99.98% Audi 100 Wagon 1994 0.02% Audi 100 Sedan 1994 0.0% Dodge Magnum Wagon 2008 0.0% Audi V8 Sedan 1994 0.0% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Hyundai Elantra Sedan 2007 75.2% Honda Accord Sedan 2012 9.16% Chrysler Sebring Convertible 2010 6.29% Chrysler Aspen SUV 2009 1.78% Honda Odyssey Minivan 2007 1.59% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 100.0% Bentley Continental GT Coupe 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Bentley Continental GT Coupe 2007 0.0% Cadillac CTS-V Sedan 2012 0.0% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Honda Odyssey Minivan 2012 42.21% Hyundai Veracruz SUV 2012 24.3% Buick Verano Sedan 2012 20.22% Scion xD Hatchback 2012 6.76% Ford Fiesta Sedan 2012 1.27% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ram C/V Cargo Van Minivan 2012 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Jeep Wrangler SUV 2012 0.0% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW M3 Coupe 2012 82.52% BMW M5 Sedan 2010 17.22% Suzuki Kizashi Sedan 2012 0.09% Acura TL Type-S 2008 0.05% Jaguar XK XKR 2012 0.04% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 99.99% Suzuki SX4 Sedan 2012 0.0% Cadillac SRX SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% Suzuki Aerio Sedan 2007 0.0% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 43.32% Chevrolet HHR SS 2010 18.84% Chevrolet Sonic Sedan 2012 11.89% Mitsubishi Lancer Sedan 2012 5.91% BMW 3 Series Wagon 2012 2.52% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 78.36% Audi TT Hatchback 2011 12.54% Toyota Camry Sedan 2012 5.98% BMW Z4 Convertible 2012 1.36% Chevrolet Camaro Convertible 2012 0.44% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Bugatti Veyron 16.4 Coupe 2009 36.73% Lamborghini Reventon Coupe 2008 16.22% Audi R8 Coupe 2012 12.97% Bentley Arnage Sedan 2009 10.2% Chevrolet Corvette ZR1 2012 6.6% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Audi V8 Sedan 1994 86.03% Plymouth Neon Coupe 1999 3.0% Eagle Talon Hatchback 1998 2.41% Ford Mustang Convertible 2007 1.82% Acura Integra Type R 2001 1.73% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Ford GT Coupe 2006 86.57% Lamborghini Diablo Coupe 2001 12.84% Spyker C8 Convertible 2009 0.22% Volvo 240 Sedan 1993 0.18% Mercedes-Benz 300-Class Convertible 1993 0.1% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Jeep Patriot SUV 2012 27.27% Cadillac Escalade EXT Crew Cab 2007 15.48% Chevrolet Avalanche Crew Cab 2012 14.73% Isuzu Ascender SUV 2008 10.91% Dodge Dakota Crew Cab 2010 9.95% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Audi S5 Convertible 2012 88.42% Audi S5 Coupe 2012 6.35% Audi A5 Coupe 2012 3.38% Audi S4 Sedan 2012 0.88% Audi RS 4 Convertible 2008 0.87% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 47.6% Bugatti Veyron 16.4 Coupe 2009 26.17% Volkswagen Golf Hatchback 1991 11.54% Ford Mustang Convertible 2007 6.46% Audi V8 Sedan 1994 2.17% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Audi 100 Wagon 1994 98.03% Chevrolet Express Van 2007 0.42% Audi 100 Sedan 1994 0.24% Audi S5 Coupe 2012 0.22% BMW M5 Sedan 2010 0.12% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Hyundai Veracruz SUV 2012 28.0% Chevrolet TrailBlazer SS 2009 21.43% Bentley Continental Flying Spur Sedan 2007 15.19% Dodge Ram Pickup 3500 Quad Cab 2009 12.86% Chrysler 300 SRT-8 2010 4.88% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.99% Suzuki Kizashi Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Infiniti G Coupe IPL 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 85.76% Chevrolet Corvette Convertible 2012 4.82% Acura Integra Type R 2001 4.39% Aston Martin V8 Vantage Coupe 2012 2.11% Chevrolet Corvette ZR1 2012 0.95% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Eagle Talon Hatchback 1998 40.24% Chevrolet Camaro Convertible 2012 37.72% Mercedes-Benz 300-Class Convertible 1993 8.5% Audi RS 4 Convertible 2008 5.25% BMW M6 Convertible 2010 4.93% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chrysler Sebring Convertible 2010 97.04% Mercedes-Benz S-Class Sedan 2012 1.75% Ford Mustang Convertible 2007 0.31% Chevrolet Camaro Convertible 2012 0.27% Nissan Juke Hatchback 2012 0.16% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.96% Dodge Ram Pickup 3500 Crew Cab 2010 0.03% Dodge Dakota Club Cab 2007 0.01% GMC Canyon Extended Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW M3 Coupe 2012 70.17% BMW M5 Sedan 2010 29.33% BMW ActiveHybrid 5 Sedan 2012 0.11% Audi S4 Sedan 2007 0.11% BMW 3 Series Wagon 2012 0.07% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Audi 100 Wagon 1994 32.1% Honda Accord Coupe 2012 9.3% Hyundai Veracruz SUV 2012 8.84% Audi TT Hatchback 2011 8.32% Daewoo Nubira Wagon 2002 6.35% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 97.49% Chevrolet Silverado 1500 Regular Cab 2012 1.62% Ford F-150 Regular Cab 2012 0.52% GMC Canyon Extended Cab 2012 0.31% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.04% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 93.3% Acura TL Type-S 2008 6.31% BMW M5 Sedan 2010 0.16% BMW M6 Convertible 2010 0.05% Acura TL Sedan 2012 0.04% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 63.53% Daewoo Nubira Wagon 2002 14.18% Audi 100 Wagon 1994 9.99% Audi S4 Sedan 2007 4.34% BMW 3 Series Wagon 2012 2.62% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.97% Audi 100 Sedan 1994 0.03% Audi 100 Wagon 1994 0.0% Volkswagen Golf Hatchback 1991 0.0% Plymouth Neon Coupe 1999 0.0% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 81.9% Chevrolet Corvette Ron Fellows Edition Z06 2007 17.9% McLaren MP4-12C Coupe 2012 0.15% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.02% Aston Martin V8 Vantage Convertible 2012 0.01% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 100.0% GMC Canyon Extended Cab 2012 0.0% Dodge Durango SUV 2007 0.0% Toyota Sequoia SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.95% Bugatti Veyron 16.4 Convertible 2009 0.05% Bugatti Veyron 16.4 Coupe 2009 0.0% Cadillac CTS-V Sedan 2012 0.0% Lamborghini Reventon Coupe 2008 0.0% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Dodge Dakota Club Cab 2007 39.23% Ford F-150 Regular Cab 2007 25.71% Chevrolet Silverado 1500 Regular Cab 2012 10.31% Audi 100 Wagon 1994 6.15% Volkswagen Golf Hatchback 1991 5.11% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 54.56% Ford Focus Sedan 2007 34.95% Daewoo Nubira Wagon 2002 9.49% Chevrolet Impala Sedan 2007 0.52% Hyundai Elantra Touring Hatchback 2012 0.16% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% smart fortwo Convertible 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Hyundai Azera Sedan 2012 0.0% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 87.23% Chevrolet Traverse SUV 2012 7.37% Audi 100 Wagon 1994 1.52% Hyundai Veracruz SUV 2012 1.35% Buick Enclave SUV 2012 0.31% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Chevrolet Cobalt SS 2010 64.75% Acura Integra Type R 2001 31.49% Lamborghini Diablo Coupe 2001 1.53% Chevrolet Corvette Convertible 2012 0.91% Dodge Charger Sedan 2012 0.29% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 70.14% Hyundai Genesis Sedan 2012 29.82% Honda Accord Sedan 2012 0.03% Hyundai Santa Fe SUV 2012 0.0% Toyota Corolla Sedan 2012 0.0% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 93.05% Mercedes-Benz Sprinter Van 2012 6.88% Audi 100 Sedan 1994 0.04% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% Audi 100 Wagon 1994 0.01% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 98.09% Ford F-450 Super Duty Crew Cab 2012 1.18% Ford Expedition EL SUV 2009 0.55% Ford F-150 Regular Cab 2007 0.05% Ford E-Series Wagon Van 2012 0.03% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 32.23% Acura ZDX Hatchback 2012 10.4% Fisker Karma Sedan 2012 5.12% Audi S5 Convertible 2012 4.5% Volkswagen Golf Hatchback 2012 4.48% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 99.82% Lamborghini Reventon Coupe 2008 0.15% Spyker C8 Convertible 2009 0.01% Lamborghini Diablo Coupe 2001 0.0% Infiniti G Coupe IPL 2012 0.0% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Buick Verano Sedan 2012 30.93% Dodge Charger SRT-8 2009 22.82% Dodge Challenger SRT8 2011 11.76% Mercedes-Benz S-Class Sedan 2012 8.28% BMW M3 Coupe 2012 3.02% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 99.92% Plymouth Neon Coupe 1999 0.07% Chevrolet Malibu Sedan 2007 0.01% Audi 100 Sedan 1994 0.0% Audi V8 Sedan 1994 0.0% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Lamborghini Reventon Coupe 2008 0.0% Hyundai Veloster Hatchback 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 47.06% Ford Mustang Convertible 2007 21.03% Audi V8 Sedan 1994 15.42% Mercedes-Benz 300-Class Convertible 1993 4.77% Audi R8 Coupe 2012 3.05% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Audi R8 Coupe 2012 58.86% Bentley Arnage Sedan 2009 19.99% Nissan Juke Hatchback 2012 13.24% Bugatti Veyron 16.4 Coupe 2009 2.96% Chevrolet Corvette ZR1 2012 2.67% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.83% Land Rover Range Rover SUV 2012 0.12% Ford Edge SUV 2012 0.02% Ford F-150 Regular Cab 2012 0.01% Toyota Sequoia SUV 2012 0.01% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Ram C/V Cargo Van Minivan 2012 79.09% Nissan NV Passenger Van 2012 6.99% Lincoln Town Car Sedan 2011 4.75% GMC Yukon Hybrid SUV 2012 2.6% Buick Enclave SUV 2012 1.62% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 44.04% Dodge Challenger SRT8 2011 27.88% Acura Integra Type R 2001 15.39% Bentley Continental GT Coupe 2007 7.12% Suzuki Kizashi Sedan 2012 2.34% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 99.97% Ford Fiesta Sedan 2012 0.02% Hyundai Sonata Hybrid Sedan 2012 0.01% Toyota Corolla Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Impala Sedan 2007 79.81% Eagle Talon Hatchback 1998 9.37% Plymouth Neon Coupe 1999 8.02% Ford Focus Sedan 2007 1.41% Daewoo Nubira Wagon 2002 0.4% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 73.74% Lamborghini Aventador Coupe 2012 25.91% Audi TT RS Coupe 2012 0.33% Mercedes-Benz SL-Class Coupe 2009 0.01% Aston Martin V8 Vantage Coupe 2012 0.0% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 82.58% Acura Integra Type R 2001 15.87% Ford Fiesta Sedan 2012 0.74% FIAT 500 Convertible 2012 0.13% Chrysler PT Cruiser Convertible 2008 0.12% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 95.81% Jeep Patriot SUV 2012 1.66% Cadillac Escalade EXT Crew Cab 2007 1.61% GMC Yukon Hybrid SUV 2012 0.26% Nissan NV Passenger Van 2012 0.22% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 80.44% Chevrolet Silverado 1500 Extended Cab 2012 18.37% Chevrolet Silverado 1500 Regular Cab 2012 0.99% Chevrolet Avalanche Crew Cab 2012 0.08% Chevrolet Silverado 2500HD Regular Cab 2012 0.04% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 98.95% Dodge Caliber Wagon 2012 1.05% Chrysler Sebring Convertible 2010 0.0% Dodge Dakota Crew Cab 2010 0.0% Ford Freestar Minivan 2007 0.0% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.63% Dodge Charger Sedan 2012 0.26% Chevrolet Cobalt SS 2010 0.05% Lamborghini Diablo Coupe 2001 0.03% Ford Mustang Convertible 2007 0.02% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 94.71% Honda Odyssey Minivan 2012 5.09% Honda Accord Sedan 2012 0.12% Chevrolet Malibu Sedan 2007 0.07% Hyundai Veracruz SUV 2012 0.0% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Aston Martin V8 Vantage Convertible 2012 40.38% Infiniti G Coupe IPL 2012 31.84% BMW M6 Convertible 2010 13.93% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.73% BMW 6 Series Convertible 2007 2.82% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Chevrolet Corvette ZR1 2012 35.27% Audi RS 4 Convertible 2008 24.5% Chevrolet Camaro Convertible 2012 15.3% BMW Z4 Convertible 2012 13.35% Fisker Karma Sedan 2012 2.73% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Fisker Karma Sedan 2012 77.57% Hyundai Azera Sedan 2012 6.47% Spyker C8 Convertible 2009 6.03% Bugatti Veyron 16.4 Coupe 2009 2.84% Lamborghini Reventon Coupe 2008 1.8% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 43.72% Jeep Wrangler SUV 2012 34.75% Dodge Ram Pickup 3500 Crew Cab 2010 14.01% Ford Ranger SuperCab 2011 1.86% Ford Expedition EL SUV 2009 1.75% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 37.05% Cadillac CTS-V Sedan 2012 29.47% Dodge Journey SUV 2012 12.97% Suzuki SX4 Hatchback 2012 6.48% Dodge Caliber Wagon 2007 3.97% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Buick Enclave SUV 2012 45.85% Bentley Arnage Sedan 2009 19.62% Nissan NV Passenger Van 2012 11.82% Chrysler 300 SRT-8 2010 6.77% Jeep Grand Cherokee SUV 2012 6.32% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 100.0% Dodge Dakota Club Cab 2007 0.0% Dodge Caliber Wagon 2007 0.0% Dodge Charger Sedan 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Toyota Sequoia SUV 2012 72.87% Jeep Grand Cherokee SUV 2012 26.11% GMC Terrain SUV 2012 0.67% Cadillac Escalade EXT Crew Cab 2007 0.12% Chevrolet Tahoe Hybrid SUV 2012 0.08% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Buick Verano Sedan 2012 31.59% Ford Expedition EL SUV 2009 19.98% FIAT 500 Abarth 2012 16.53% Infiniti QX56 SUV 2011 14.09% Dodge Durango SUV 2012 6.64% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 74.91% GMC Savana Van 2012 13.72% Chevrolet Express Van 2007 11.37% Audi 100 Wagon 1994 0.0% Buick Rainier SUV 2007 0.0% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 99.98% Audi 100 Sedan 1994 0.01% Mercedes-Benz Sprinter Van 2012 0.01% Volkswagen Golf Hatchback 1991 0.0% Audi V8 Sedan 1994 0.0% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.98% Chevrolet Silverado 2500HD Regular Cab 2012 0.01% Chevrolet Tahoe Hybrid SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.82% Plymouth Neon Coupe 1999 0.1% Acura Integra Type R 2001 0.04% Ford Focus Sedan 2007 0.03% Daewoo Nubira Wagon 2002 0.01% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 67.33% Chevrolet Silverado 1500 Regular Cab 2012 22.46% Volkswagen Golf Hatchback 1991 3.44% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.81% Geo Metro Convertible 1993 1.25% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 72.46% Lincoln Town Car Sedan 2011 10.86% Mercedes-Benz 300-Class Convertible 1993 6.47% Audi V8 Sedan 1994 3.53% BMW M5 Sedan 2010 1.58% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 29.51% Ford Mustang Convertible 2007 27.95% Buick Verano Sedan 2012 12.8% Chrysler PT Cruiser Convertible 2008 4.79% Hyundai Tucson SUV 2012 4.63% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Hyundai Elantra Touring Hatchback 2012 85.23% Honda Odyssey Minivan 2007 10.4% Suzuki Aerio Sedan 2007 1.55% Chrysler Town and Country Minivan 2012 0.66% Land Rover Range Rover SUV 2012 0.52% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 51.28% Buick Regal GS 2012 28.71% Rolls-Royce Ghost Sedan 2012 12.38% Rolls-Royce Phantom Sedan 2012 2.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.9% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 87.69% Cadillac CTS-V Sedan 2012 2.72% Audi TTS Coupe 2012 1.66% Acura ZDX Hatchback 2012 1.34% Nissan Juke Hatchback 2012 0.99% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Acura TL Sedan 2012 51.02% Infiniti G Coupe IPL 2012 22.53% Buick Verano Sedan 2012 10.73% Acura TSX Sedan 2012 6.96% Buick Regal GS 2012 3.86% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Expedition EL SUV 2009 55.18% Land Rover LR2 SUV 2012 16.9% GMC Acadia SUV 2012 7.51% Toyota 4Runner SUV 2012 6.34% Toyota Sequoia SUV 2012 4.36% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 McLaren MP4-12C Coupe 2012 70.01% Lamborghini Diablo Coupe 2001 27.12% Aston Martin Virage Coupe 2012 2.82% Hyundai Veloster Hatchback 2012 0.03% Audi TTS Coupe 2012 0.01% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 BMW 3 Series Sedan 2012 44.81% BMW 1 Series Coupe 2012 19.67% Ford Mustang Convertible 2007 17.97% Dodge Charger SRT-8 2009 7.61% Dodge Challenger SRT8 2011 1.74% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 99.97% Acura TL Type-S 2008 0.03% Hyundai Azera Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 97.12% Hyundai Sonata Sedan 2012 0.68% BMW Z4 Convertible 2012 0.48% Audi TT Hatchback 2011 0.39% Volkswagen Beetle Hatchback 2012 0.16% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Durango SUV 2012 92.03% Cadillac SRX SUV 2012 6.34% GMC Yukon Hybrid SUV 2012 0.83% Chevrolet Traverse SUV 2012 0.42% Cadillac Escalade EXT Crew Cab 2007 0.29% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Audi V8 Sedan 1994 93.08% Dodge Ram Pickup 3500 Crew Cab 2010 2.36% Bentley Mulsanne Sedan 2011 1.18% Audi 100 Sedan 1994 0.63% Mercedes-Benz 300-Class Convertible 1993 0.51% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 MINI Cooper Roadster Convertible 2012 92.46% Nissan Juke Hatchback 2012 2.08% Cadillac CTS-V Sedan 2012 1.67% Dodge Charger Sedan 2012 1.41% GMC Canyon Extended Cab 2012 0.43% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 99.89% Mercedes-Benz C-Class Sedan 2012 0.11% Hyundai Sonata Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 42.05% Ford F-150 Regular Cab 2012 37.64% Toyota 4Runner SUV 2012 19.44% Dodge Ram Pickup 3500 Quad Cab 2009 0.25% Jeep Wrangler SUV 2012 0.21% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Ford F-150 Regular Cab 2007 68.68% Ford Ranger SuperCab 2011 12.01% Audi 100 Sedan 1994 10.68% Volkswagen Golf Hatchback 1991 3.63% Audi 100 Wagon 1994 2.14% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 55.93% Toyota Sequoia SUV 2012 36.99% Ford Expedition EL SUV 2009 2.86% GMC Canyon Extended Cab 2012 2.42% Ford F-150 Regular Cab 2012 0.89% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Porsche Panamera Sedan 2012 21.06% Audi R8 Coupe 2012 19.24% Audi S5 Convertible 2012 17.0% Audi RS 4 Convertible 2008 10.37% Audi TT Hatchback 2011 7.52% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 96.23% Ford GT Coupe 2006 2.97% Bentley Continental GT Coupe 2012 0.47% Chevrolet Corvette Convertible 2012 0.17% Audi TT RS Coupe 2012 0.05% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 92.19% Honda Accord Sedan 2012 7.74% Mercedes-Benz C-Class Sedan 2012 0.06% Acura TL Sedan 2012 0.01% Honda Odyssey Minivan 2012 0.01% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Mercedes-Benz E-Class Sedan 2012 37.52% BMW M3 Coupe 2012 29.37% BMW ActiveHybrid 5 Sedan 2012 26.83% Audi S6 Sedan 2011 4.28% BMW 3 Series Wagon 2012 0.72% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 72.62% Bentley Continental GT Coupe 2007 11.17% Buick Verano Sedan 2012 9.27% Nissan Juke Hatchback 2012 1.94% Suzuki Kizashi Sedan 2012 1.55% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 97.38% Jeep Compass SUV 2012 1.4% Nissan NV Passenger Van 2012 0.47% Bentley Arnage Sedan 2009 0.3% Volvo 240 Sedan 1993 0.17% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Hyundai Elantra Touring Hatchback 2012 31.86% Hyundai Genesis Sedan 2012 23.27% Toyota Corolla Sedan 2012 19.7% Honda Accord Sedan 2012 13.54% Mercedes-Benz C-Class Sedan 2012 2.46% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 BMW X3 SUV 2012 45.5% BMW ActiveHybrid 5 Sedan 2012 16.46% Volkswagen Golf Hatchback 2012 9.6% Audi S5 Coupe 2012 4.33% Land Rover LR2 SUV 2012 3.56% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 86.17% Ferrari 458 Italia Coupe 2012 12.73% Lamborghini Diablo Coupe 2001 0.67% Chevrolet Corvette Convertible 2012 0.28% Aston Martin V8 Vantage Convertible 2012 0.07% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 BMW M5 Sedan 2010 66.34% Chevrolet Malibu Hybrid Sedan 2010 12.08% Honda Accord Sedan 2012 9.43% Volkswagen Beetle Hatchback 2012 4.44% Buick Verano Sedan 2012 3.61% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 99.96% BMW 3 Series Sedan 2012 0.03% Volvo 240 Sedan 1993 0.01% Dodge Caliber Wagon 2007 0.0% BMW 3 Series Wagon 2012 0.0% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Fisker Karma Sedan 2012 31.21% Tesla Model S Sedan 2012 18.81% Bentley Continental GT Coupe 2012 15.52% Infiniti G Coupe IPL 2012 12.87% Bentley Continental Flying Spur Sedan 2007 10.95% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 97.02% Cadillac SRX SUV 2012 1.32% Audi S5 Coupe 2012 0.88% Hyundai Tucson SUV 2012 0.34% Audi S5 Convertible 2012 0.33% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 69.41% Honda Accord Sedan 2012 28.4% Chevrolet Impala Sedan 2007 1.39% Chevrolet Malibu Sedan 2007 0.5% Hyundai Veracruz SUV 2012 0.05% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 65.68% BMW Z4 Convertible 2012 20.32% Chevrolet Camaro Convertible 2012 6.87% BMW 6 Series Convertible 2007 4.78% Audi A5 Coupe 2012 0.62% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Wagon 2012 54.94% BMW ActiveHybrid 5 Sedan 2012 25.0% Hyundai Sonata Sedan 2012 5.1% Chevrolet Sonic Sedan 2012 1.88% Buick Verano Sedan 2012 1.63% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 43.06% Ford F-150 Regular Cab 2007 37.62% GMC Yukon Hybrid SUV 2012 19.19% Chevrolet Silverado 1500 Regular Cab 2012 0.04% Dodge Dakota Club Cab 2007 0.04% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 99.73% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.14% Chevrolet Corvette Convertible 2012 0.08% Aston Martin V8 Vantage Coupe 2012 0.04% Audi TTS Coupe 2012 0.01% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford F-150 Regular Cab 2007 0.0% Ford F-150 Regular Cab 2012 0.0% Buick Enclave SUV 2012 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 95.54% Ford F-150 Regular Cab 2007 1.13% Chevrolet Monte Carlo Coupe 2007 0.86% Ford Focus Sedan 2007 0.63% Dodge Caliber Wagon 2012 0.5% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 83.97% Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.02% Chrysler 300 SRT-8 2010 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 85.76% Nissan Leaf Hatchback 2012 14.15% Hyundai Elantra Sedan 2007 0.09% Hyundai Sonata Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 99.96% Honda Odyssey Minivan 2012 0.02% Acura ZDX Hatchback 2012 0.01% Hyundai Sonata Sedan 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 90.72% Daewoo Nubira Wagon 2002 4.7% Scion xD Hatchback 2012 2.6% Mazda Tribute SUV 2011 0.89% Suzuki SX4 Hatchback 2012 0.73% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Convertible 2012 89.62% Ferrari 458 Italia Coupe 2012 4.12% Aston Martin V8 Vantage Coupe 2012 1.78% Fisker Karma Sedan 2012 0.87% Ferrari FF Coupe 2012 0.86% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Regular Cab 2012 42.18% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 37.29% Chevrolet Silverado 1500 Extended Cab 2012 10.41% Chevrolet Silverado 2500HD Regular Cab 2012 10.11% GMC Yukon Hybrid SUV 2012 0.0% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 93.07% FIAT 500 Convertible 2012 5.84% Spyker C8 Coupe 2009 0.9% Ferrari 458 Italia Convertible 2012 0.08% Nissan Juke Hatchback 2012 0.03% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 98.75% GMC Acadia SUV 2012 0.51% Jeep Grand Cherokee SUV 2012 0.25% Suzuki SX4 Hatchback 2012 0.21% Hyundai Tucson SUV 2012 0.08% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Toyota Camry Sedan 2012 33.78% Chrysler Sebring Convertible 2010 33.64% Honda Accord Coupe 2012 12.14% Toyota Corolla Sedan 2012 6.88% Honda Accord Sedan 2012 6.47% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 77.34% Buick Regal GS 2012 22.48% Hyundai Accent Sedan 2012 0.1% Tesla Model S Sedan 2012 0.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.01% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 60.82% Chevrolet Silverado 1500 Regular Cab 2012 38.36% Chevrolet Silverado 2500HD Regular Cab 2012 0.75% GMC Yukon Hybrid SUV 2012 0.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.03% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 BMW X6 SUV 2012 60.96% BMW 3 Series Sedan 2012 26.49% BMW 1 Series Convertible 2012 3.75% Ford GT Coupe 2006 1.97% Jaguar XK XKR 2012 1.45% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 97.22% Porsche Panamera Sedan 2012 2.5% Lamborghini Reventon Coupe 2008 0.15% Bentley Continental Flying Spur Sedan 2007 0.04% Jaguar XK XKR 2012 0.03% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 88.0% Lamborghini Diablo Coupe 2001 5.5% Chevrolet Cobalt SS 2010 1.92% Chrysler PT Cruiser Convertible 2008 1.56% Jeep Wrangler SUV 2012 1.03% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Acura Integra Type R 2001 99.13% BMW Z4 Convertible 2012 0.43% Spyker C8 Coupe 2009 0.18% Ford Mustang Convertible 2007 0.05% Ferrari 458 Italia Convertible 2012 0.05% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 89.88% Chevrolet Express Cargo Van 2007 6.65% Chevrolet Express Van 2007 3.47% Buick Enclave SUV 2012 0.0% Volvo 240 Sedan 1993 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Hyundai Azera Sedan 2012 58.06% Fisker Karma Sedan 2012 6.79% Toyota Camry Sedan 2012 5.27% Volkswagen Beetle Hatchback 2012 4.2% BMW ActiveHybrid 5 Sedan 2012 3.09% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 84.28% Acura Integra Type R 2001 7.81% BMW 3 Series Sedan 2012 4.97% Ferrari 458 Italia Convertible 2012 0.79% Ford Mustang Convertible 2007 0.68% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 97.45% Bentley Continental GT Coupe 2012 2.16% Lamborghini Aventador Coupe 2012 0.21% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.05% Bugatti Veyron 16.4 Coupe 2009 0.04% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.25% GMC Yukon Hybrid SUV 2012 0.73% Chevrolet Tahoe Hybrid SUV 2012 0.01% Chrysler Town and Country Minivan 2012 0.0% Dodge Caliber Wagon 2012 0.0% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 99.8% Spyker C8 Convertible 2009 0.06% BMW M3 Coupe 2012 0.05% Dodge Charger Sedan 2012 0.04% BMW Z4 Convertible 2012 0.02% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 62.7% Ford F-150 Regular Cab 2012 20.71% Nissan NV Passenger Van 2012 14.92% Ford F-450 Super Duty Crew Cab 2012 1.5% Ford Expedition EL SUV 2009 0.12% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 84.62% Chevrolet Avalanche Crew Cab 2012 8.7% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.77% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.55% Chevrolet Silverado 1500 Regular Cab 2012 1.29% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.73% McLaren MP4-12C Coupe 2012 0.26% Aston Martin V8 Vantage Coupe 2012 0.01% Aston Martin V8 Vantage Convertible 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 47.25% Hyundai Sonata Hybrid Sedan 2012 36.48% Honda Accord Coupe 2012 14.21% Hyundai Accent Sedan 2012 0.82% Hyundai Sonata Sedan 2012 0.81% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 31.74% Rolls-Royce Phantom Drophead Coupe Convertible 2012 24.23% Fisker Karma Sedan 2012 18.37% Aston Martin V8 Vantage Convertible 2012 6.13% Chevrolet Camaro Convertible 2012 4.98% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Chevrolet Impala Sedan 2007 55.72% Dodge Magnum Wagon 2008 11.22% Chevrolet Monte Carlo Coupe 2007 8.44% Chevrolet Malibu Sedan 2007 5.99% Buick Verano Sedan 2012 3.23% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 86.95% BMW M3 Coupe 2012 5.71% Dodge Challenger SRT8 2011 1.28% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.94% Bentley Continental GT Coupe 2007 0.81% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Audi V8 Sedan 1994 61.76% BMW X5 SUV 2007 16.79% Ford Mustang Convertible 2007 7.21% BMW M5 Sedan 2010 3.51% BMW X6 SUV 2012 2.88% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ford Fiesta Sedan 2012 93.95% Scion xD Hatchback 2012 6.05% Toyota Corolla Sedan 2012 0.0% Hyundai Accent Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 95.43% Ford Ranger SuperCab 2011 3.27% Volvo XC90 SUV 2007 1.18% Jeep Compass SUV 2012 0.05% Dodge Ram Pickup 3500 Quad Cab 2009 0.03% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.34% Chevrolet Express Van 2007 0.53% Chevrolet Express Cargo Van 2007 0.13% Nissan Juke Hatchback 2012 0.0% Mercedes-Benz Sprinter Van 2012 0.0% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Volvo C30 Hatchback 2012 44.85% BMW 1 Series Coupe 2012 44.16% Aston Martin Virage Coupe 2012 3.96% Mitsubishi Lancer Sedan 2012 3.35% Dodge Charger SRT-8 2009 1.98% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-150 Regular Cab 2012 83.84% Ford F-450 Super Duty Crew Cab 2012 13.37% Ford Edge SUV 2012 1.08% Ford Expedition EL SUV 2009 0.66% Infiniti QX56 SUV 2011 0.52% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% FIAT 500 Convertible 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Geo Metro Convertible 1993 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Canyon Extended Cab 2012 65.85% Chevrolet Silverado 1500 Extended Cab 2012 16.95% Chevrolet Silverado 1500 Regular Cab 2012 16.81% Ford F-150 Regular Cab 2007 0.35% Ford Ranger SuperCab 2011 0.01% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi S6 Sedan 2011 98.78% Audi S4 Sedan 2012 0.84% Audi A5 Coupe 2012 0.38% Audi S5 Coupe 2012 0.01% Audi TT Hatchback 2011 0.0% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 74.44% Rolls-Royce Phantom Sedan 2012 20.01% Buick Regal GS 2012 4.28% Rolls-Royce Ghost Sedan 2012 0.93% BMW M5 Sedan 2010 0.1% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 39.79% Lamborghini Aventador Coupe 2012 24.97% Bugatti Veyron 16.4 Convertible 2009 9.92% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.18% Audi TT RS Coupe 2012 3.38% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.62% Ford F-450 Super Duty Crew Cab 2012 0.22% Dodge Ram Pickup 3500 Quad Cab 2009 0.15% Ford F-150 Regular Cab 2012 0.0% Ford E-Series Wagon Van 2012 0.0% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Audi TTS Coupe 2012 98.02% Audi A5 Coupe 2012 1.47% Audi S4 Sedan 2007 0.15% Audi S5 Convertible 2012 0.15% Audi S5 Coupe 2012 0.06% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 100.0% Land Rover LR2 SUV 2012 0.0% Buick Rainier SUV 2007 0.0% Toyota 4Runner SUV 2012 0.0% Land Rover Range Rover SUV 2012 0.0% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 56.18% Audi 100 Sedan 1994 24.27% GMC Acadia SUV 2012 16.52% Audi 100 Wagon 1994 1.7% Lincoln Town Car Sedan 2011 0.52% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Daewoo Nubira Wagon 2002 46.05% Ford Focus Sedan 2007 34.15% Volkswagen Golf Hatchback 2012 5.81% Hyundai Elantra Sedan 2007 2.42% Ram C/V Cargo Van Minivan 2012 1.85% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 99.67% Eagle Talon Hatchback 1998 0.2% Nissan 240SX Coupe 1998 0.14% Ford Focus Sedan 2007 0.0% Lincoln Town Car Sedan 2011 0.0% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Hyundai Genesis Sedan 2012 85.08% Mercedes-Benz C-Class Sedan 2012 7.75% Mercedes-Benz S-Class Sedan 2012 4.08% Mercedes-Benz E-Class Sedan 2012 1.22% Dodge Durango SUV 2012 1.06% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Chevrolet Malibu Sedan 2007 62.45% Chevrolet Impala Sedan 2007 34.13% Honda Accord Sedan 2012 1.85% Honda Odyssey Minivan 2007 0.83% Acura TSX Sedan 2012 0.45% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 98.69% BMW M3 Coupe 2012 0.68% Audi S4 Sedan 2007 0.4% FIAT 500 Convertible 2012 0.06% Suzuki Kizashi Sedan 2012 0.05% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 88.75% Cadillac Escalade EXT Crew Cab 2007 7.1% Infiniti QX56 SUV 2011 2.09% Dodge Durango SUV 2007 1.57% Jeep Grand Cherokee SUV 2012 0.4% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Buick Regal GS 2012 68.63% Chevrolet Sonic Sedan 2012 30.49% Bugatti Veyron 16.4 Convertible 2009 0.24% Audi TT RS Coupe 2012 0.13% Bugatti Veyron 16.4 Coupe 2009 0.12% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 33.7% Hyundai Azera Sedan 2012 24.69% Mercedes-Benz E-Class Sedan 2012 19.29% Hyundai Sonata Sedan 2012 5.95% Chevrolet Malibu Hybrid Sedan 2010 3.0% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 52.31% BMW 1 Series Convertible 2012 5.95% Suzuki Aerio Sedan 2007 5.34% Toyota Corolla Sedan 2012 5.02% Acura Integra Type R 2001 4.19% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Jeep Patriot SUV 2012 99.94% Dodge Ram Pickup 3500 Quad Cab 2009 0.03% Ford Ranger SuperCab 2011 0.01% Dodge Dakota Crew Cab 2010 0.01% HUMMER H3T Crew Cab 2010 0.01% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 100.0% Nissan 240SX Coupe 1998 0.0% Chevrolet Camaro Convertible 2012 0.0% Volkswagen Golf Hatchback 2012 0.0% Chevrolet Impala Sedan 2007 0.0% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 99.98% Audi V8 Sedan 1994 0.01% Dodge Sprinter Cargo Van 2009 0.01% Audi 100 Wagon 1994 0.0% Acura TL Type-S 2008 0.0% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% FIAT 500 Convertible 2012 0.0% Suzuki SX4 Sedan 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Audi R8 Coupe 2012 71.76% Rolls-Royce Phantom Sedan 2012 19.81% Audi S6 Sedan 2011 1.94% Audi TTS Coupe 2012 1.9% Mercedes-Benz Sprinter Van 2012 1.46% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 28.74% Chevrolet Silverado 1500 Extended Cab 2012 15.19% Chevrolet Tahoe Hybrid SUV 2012 11.49% Isuzu Ascender SUV 2008 9.87% Dodge Dakota Crew Cab 2010 7.57% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Aston Martin V8 Vantage Coupe 2012 0.0% BMW M3 Coupe 2012 0.0% Audi TTS Coupe 2012 0.0% Dodge Challenger SRT8 2011 0.0% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 77.31% Audi 100 Wagon 1994 22.66% Mercedes-Benz 300-Class Convertible 1993 0.01% Audi V8 Sedan 1994 0.0% Chevrolet Express Cargo Van 2007 0.0% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 97.22% Buick Enclave SUV 2012 2.44% Mazda Tribute SUV 2011 0.2% Ford Expedition EL SUV 2009 0.04% Toyota Sequoia SUV 2012 0.02% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 BMW 3 Series Wagon 2012 57.59% Toyota Corolla Sedan 2012 34.4% Hyundai Accent Sedan 2012 4.11% Acura Integra Type R 2001 2.6% Hyundai Sonata Sedan 2012 0.52% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 78.08% Acura TL Type-S 2008 11.58% Acura TSX Sedan 2012 8.09% Toyota Corolla Sedan 2012 1.14% Suzuki Aerio Sedan 2007 0.59% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Hyundai Santa Fe SUV 2012 28.67% Chevrolet Traverse SUV 2012 20.2% Jeep Grand Cherokee SUV 2012 10.73% Toyota Sequoia SUV 2012 5.52% Land Rover LR2 SUV 2012 4.9% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 96.17% Tesla Model S Sedan 2012 1.49% Ferrari FF Coupe 2012 0.79% Chevrolet Corvette ZR1 2012 0.69% Audi R8 Coupe 2012 0.34% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.94% Ford F-150 Regular Cab 2012 0.06% Toyota Sequoia SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% Ford E-Series Wagon Van 2012 0.0% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 94.74% Infiniti G Coupe IPL 2012 2.75% Hyundai Azera Sedan 2012 0.86% Bugatti Veyron 16.4 Convertible 2009 0.76% Audi TT Hatchback 2011 0.3% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 99.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.21% McLaren MP4-12C Coupe 2012 0.2% Lamborghini Aventador Coupe 2012 0.1% Ferrari California Convertible 2012 0.03% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chrysler 300 SRT-8 2010 92.7% Infiniti G Coupe IPL 2012 0.86% Lamborghini Reventon Coupe 2008 0.83% Audi S5 Coupe 2012 0.69% Hyundai Veracruz SUV 2012 0.65% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 61.95% Lamborghini Reventon Coupe 2008 13.77% Mercedes-Benz Sprinter Van 2012 9.46% MINI Cooper Roadster Convertible 2012 4.92% Fisker Karma Sedan 2012 4.38% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 98.19% Chevrolet Silverado 1500 Extended Cab 2012 0.93% Dodge Ram Pickup 3500 Quad Cab 2009 0.29% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.28% HUMMER H3T Crew Cab 2010 0.09% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 99.88% Bentley Continental GT Coupe 2007 0.07% Buick Verano Sedan 2012 0.03% Bentley Continental Flying Spur Sedan 2007 0.02% Bentley Mulsanne Sedan 2011 0.0% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 97.19% Ram C/V Cargo Van Minivan 2012 1.34% Hyundai Elantra Sedan 2007 0.88% Lincoln Town Car Sedan 2011 0.15% Suzuki Aerio Sedan 2007 0.13% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Bentley Mulsanne Sedan 2011 78.37% Bentley Continental GT Coupe 2007 11.35% Rolls-Royce Phantom Sedan 2012 2.65% BMW ActiveHybrid 5 Sedan 2012 1.35% Audi R8 Coupe 2012 1.33% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 32.81% Nissan 240SX Coupe 1998 26.32% Ford Focus Sedan 2007 23.18% Plymouth Neon Coupe 1999 7.3% Suzuki Aerio Sedan 2007 4.26% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Ford F-150 Regular Cab 2007 58.34% Cadillac SRX SUV 2012 30.13% BMW X3 SUV 2012 2.49% Nissan Juke Hatchback 2012 1.84% Honda Odyssey Minivan 2012 1.45% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Audi V8 Sedan 1994 71.86% Audi S6 Sedan 2011 5.17% Ford Mustang Convertible 2007 5.12% Mercedes-Benz S-Class Sedan 2012 3.87% Volvo 240 Sedan 1993 3.26% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.99% Ford Freestar Minivan 2007 0.01% Dodge Dakota Crew Cab 2010 0.0% Ford E-Series Wagon Van 2012 0.0% Mercedes-Benz Sprinter Van 2012 0.0% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Aston Martin Virage Convertible 2012 31.28% Bugatti Veyron 16.4 Coupe 2009 19.96% Aston Martin V8 Vantage Coupe 2012 17.13% Spyker C8 Convertible 2009 7.09% Bentley Mulsanne Sedan 2011 4.44% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 93.22% Bentley Continental GT Coupe 2012 6.78% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Mulsanne Sedan 2011 0.0% Aston Martin Virage Convertible 2012 0.0% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 98.91% BMW X6 SUV 2012 0.61% BMW 3 Series Sedan 2012 0.22% Bentley Continental GT Coupe 2007 0.17% Chevrolet Corvette ZR1 2012 0.03% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Buick Enclave SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% GMC Acadia SUV 2012 0.0% Buick Rainier SUV 2007 0.0% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 100.0% BMW X5 SUV 2007 0.0% Audi V8 Sedan 1994 0.0% Nissan 240SX Coupe 1998 0.0% Audi 100 Wagon 1994 0.0% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Acura ZDX Hatchback 2012 53.31% Chevrolet Malibu Hybrid Sedan 2010 16.04% Hyundai Sonata Hybrid Sedan 2012 9.85% smart fortwo Convertible 2012 8.31% Acura TL Sedan 2012 2.26% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 97.77% Chevrolet Tahoe Hybrid SUV 2012 1.01% Ford Expedition EL SUV 2009 0.71% Chrysler Aspen SUV 2009 0.35% Toyota 4Runner SUV 2012 0.11% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 90.76% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.25% GMC Yukon Hybrid SUV 2012 0.43% GMC Canyon Extended Cab 2012 0.32% Chevrolet Silverado 2500HD Regular Cab 2012 0.16% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Chevrolet Sonic Sedan 2012 56.77% Hyundai Sonata Hybrid Sedan 2012 7.94% Hyundai Elantra Sedan 2007 7.69% Hyundai Accent Sedan 2012 7.11% Hyundai Sonata Sedan 2012 3.66% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 98.74% Chevrolet Malibu Hybrid Sedan 2010 0.52% Hyundai Elantra Sedan 2007 0.44% Honda Odyssey Minivan 2007 0.11% Honda Odyssey Minivan 2012 0.11% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Ford Fiesta Sedan 2012 88.67% Hyundai Tucson SUV 2012 8.04% smart fortwo Convertible 2012 2.49% Volkswagen Golf Hatchback 2012 0.48% Hyundai Veloster Hatchback 2012 0.13% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Ford F-150 Regular Cab 2012 0.0% Isuzu Ascender SUV 2008 0.0% Nissan NV Passenger Van 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Chevrolet Monte Carlo Coupe 2007 20.36% Plymouth Neon Coupe 1999 18.61% Nissan 240SX Coupe 1998 8.24% Acura Integra Type R 2001 6.66% Dodge Caravan Minivan 1997 5.37% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 96.75% Ford Expedition EL SUV 2009 1.69% Infiniti QX56 SUV 2011 0.44% Volvo XC90 SUV 2007 0.33% Chrysler Town and Country Minivan 2012 0.18% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 28.31% Acura TL Type-S 2008 22.35% Toyota Camry Sedan 2012 15.15% Mitsubishi Lancer Sedan 2012 14.1% Infiniti G Coupe IPL 2012 7.78% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2007 93.47% Chevrolet Silverado 1500 Regular Cab 2012 1.62% Mercedes-Benz 300-Class Convertible 1993 0.97% Chevrolet Silverado 1500 Extended Cab 2012 0.86% Chevrolet Express Cargo Van 2007 0.77% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 69.43% Chevrolet Silverado 1500 Extended Cab 2012 18.37% Ford F-150 Regular Cab 2012 6.42% Dodge Dakota Club Cab 2007 2.79% GMC Canyon Extended Cab 2012 2.21% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 33.08% Chevrolet Corvette Convertible 2012 27.38% BMW 6 Series Convertible 2007 16.24% Bentley Continental GT Coupe 2007 13.34% Fisker Karma Sedan 2012 3.04% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 41.58% Dodge Caliber Wagon 2012 24.16% Hyundai Elantra Sedan 2007 15.41% Ford Mustang Convertible 2007 6.95% Lincoln Town Car Sedan 2011 4.45% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Spyker C8 Convertible 2009 48.71% Audi S5 Convertible 2012 18.69% Audi TT RS Coupe 2012 17.98% Spyker C8 Coupe 2009 5.6% Ferrari 458 Italia Coupe 2012 3.77% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Cadillac CTS-V Sedan 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Cadillac SRX SUV 2012 0.0% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 48.64% Cadillac Escalade EXT Crew Cab 2007 19.27% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.34% Chevrolet Tahoe Hybrid SUV 2012 8.82% Chevrolet Avalanche Crew Cab 2012 7.02% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.98% Chevrolet Tahoe Hybrid SUV 2012 0.01% Chevrolet Avalanche Crew Cab 2012 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Chrysler Aspen SUV 2009 0.0% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 53.0% Audi TTS Coupe 2012 44.46% Audi R8 Coupe 2012 0.55% BMW Z4 Convertible 2012 0.32% Ferrari FF Coupe 2012 0.27% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 92.38% Bentley Continental Flying Spur Sedan 2007 5.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.82% Daewoo Nubira Wagon 2002 0.52% Buick Verano Sedan 2012 0.21% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Durango SUV 2012 34.21% Chevrolet Avalanche Crew Cab 2012 23.64% Chevrolet Traverse SUV 2012 6.49% Chevrolet TrailBlazer SS 2009 5.7% Land Rover Range Rover SUV 2012 4.76% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 100.0% Chevrolet Avalanche Crew Cab 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Dodge Journey SUV 2012 0.0% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Hyundai Accent Sedan 2012 41.81% Nissan Juke Hatchback 2012 34.96% Toyota Camry Sedan 2012 7.16% Volvo C30 Hatchback 2012 5.52% Buick Verano Sedan 2012 3.42% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 100.0% Rolls-Royce Ghost Sedan 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Infiniti QX56 SUV 2011 0.0% Chrysler 300 SRT-8 2010 0.0% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 88.36% Dodge Caliber Wagon 2012 10.53% Audi S4 Sedan 2007 0.42% Chrysler PT Cruiser Convertible 2008 0.26% Chevrolet Sonic Sedan 2012 0.1% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chrysler Sebring Convertible 2010 74.35% Chrysler PT Cruiser Convertible 2008 3.92% Dodge Caliber Wagon 2012 3.81% Mercedes-Benz 300-Class Convertible 1993 3.21% Chrysler Town and Country Minivan 2012 2.71% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Chrysler Crossfire Convertible 2008 90.73% Mercedes-Benz E-Class Sedan 2012 4.9% Chrysler Sebring Convertible 2010 1.64% Hyundai Elantra Touring Hatchback 2012 0.68% Mercedes-Benz C-Class Sedan 2012 0.37% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.53% Hyundai Santa Fe SUV 2012 0.39% Land Rover LR2 SUV 2012 0.03% Ford Expedition EL SUV 2009 0.02% Toyota 4Runner SUV 2012 0.01% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Dodge Charger Sedan 2012 64.87% Hyundai Azera Sedan 2012 34.06% BMW M3 Coupe 2012 0.61% Audi S4 Sedan 2012 0.18% Spyker C8 Coupe 2009 0.13% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 FIAT 500 Convertible 2012 57.15% Bugatti Veyron 16.4 Convertible 2009 42.58% Maybach Landaulet Convertible 2012 0.1% smart fortwo Convertible 2012 0.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.04% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 98.31% BMW M3 Coupe 2012 1.63% Nissan 240SX Coupe 1998 0.03% BMW 1 Series Coupe 2012 0.01% Mercedes-Benz SL-Class Coupe 2009 0.01% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 98.69% Dodge Charger Sedan 2012 0.34% Audi S4 Sedan 2012 0.18% BMW Z4 Convertible 2012 0.15% Chevrolet Cobalt SS 2010 0.13% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Geo Metro Convertible 1993 40.4% Mercedes-Benz 300-Class Convertible 1993 33.56% Ford Mustang Convertible 2007 12.91% Audi 100 Wagon 1994 8.87% Chevrolet Silverado 1500 Regular Cab 2012 3.71% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 90.25% Land Rover LR2 SUV 2012 8.67% Dodge Caliber Wagon 2012 0.34% Dodge Journey SUV 2012 0.31% Chrysler Sebring Convertible 2010 0.21% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 BMW 3 Series Wagon 2012 49.18% Chevrolet Malibu Hybrid Sedan 2010 31.35% Acura TSX Sedan 2012 5.9% Audi A5 Coupe 2012 2.72% Mercedes-Benz C-Class Sedan 2012 2.7% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 94.51% Acura Integra Type R 2001 2.73% Mercedes-Benz E-Class Sedan 2012 2.24% BMW Z4 Convertible 2012 0.48% Audi S4 Sedan 2007 0.02% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.71% Dodge Durango SUV 2007 0.16% Chrysler Aspen SUV 2009 0.06% Ford F-150 Regular Cab 2007 0.02% Audi 100 Sedan 1994 0.01% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 92.74% Nissan NV Passenger Van 2012 5.02% Suzuki SX4 Hatchback 2012 0.55% Chrysler Town and Country Minivan 2012 0.48% GMC Savana Van 2012 0.21% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 99.5% Bentley Continental Flying Spur Sedan 2007 0.31% Bentley Continental GT Coupe 2012 0.18% Fisker Karma Sedan 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 26.43% Chevrolet Avalanche Crew Cab 2012 26.14% Jeep Wrangler SUV 2012 26.1% Dodge Ram Pickup 3500 Quad Cab 2009 9.27% Chevrolet Silverado 1500 Extended Cab 2012 3.15% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 54.18% Audi TT Hatchback 2011 29.0% Audi S4 Sedan 2012 8.63% Audi A5 Coupe 2012 4.18% Audi S5 Coupe 2012 1.56% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 98.25% Dodge Dakota Club Cab 2007 1.39% Chevrolet Silverado 1500 Regular Cab 2012 0.35% Chevrolet Silverado 1500 Extended Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.99% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% Jeep Wrangler SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% Dodge Durango SUV 2007 0.0% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Bentley Mulsanne Sedan 2011 67.04% Dodge Charger Sedan 2012 14.99% Chrysler 300 SRT-8 2010 9.39% BMW ActiveHybrid 5 Sedan 2012 2.96% BMW Z4 Convertible 2012 1.65% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 95.28% Buick Regal GS 2012 2.73% Toyota Camry Sedan 2012 0.86% Chevrolet HHR SS 2010 0.56% Mitsubishi Lancer Sedan 2012 0.11% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 57.59% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 26.91% Chevrolet Silverado 1500 Regular Cab 2012 10.02% Chevrolet Silverado 2500HD Regular Cab 2012 4.92% Dodge Dakota Crew Cab 2010 0.26% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 99.99% Dodge Caliber Wagon 2007 0.01% Dodge Journey SUV 2012 0.0% Dodge Charger Sedan 2012 0.0% Dodge Magnum Wagon 2008 0.0% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Aston Martin Virage Coupe 2012 94.93% McLaren MP4-12C Coupe 2012 3.78% Dodge Charger Sedan 2012 0.56% Bentley Continental GT Coupe 2012 0.25% Hyundai Veloster Hatchback 2012 0.1% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Maybach Landaulet Convertible 2012 56.67% smart fortwo Convertible 2012 8.6% Chevrolet Monte Carlo Coupe 2007 6.7% Chevrolet Impala Sedan 2007 6.29% Chevrolet Malibu Sedan 2007 3.38% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 58.36% Toyota Camry Sedan 2012 25.7% Acura TL Type-S 2008 8.3% Mitsubishi Lancer Sedan 2012 3.59% Chevrolet Malibu Sedan 2007 1.34% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.99% Dodge Caliber Wagon 2012 0.01% Dodge Durango SUV 2007 0.0% Jeep Grand Cherokee SUV 2012 0.0% Infiniti QX56 SUV 2011 0.0% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 52.59% Ferrari 458 Italia Coupe 2012 40.38% Ferrari California Convertible 2012 6.15% Ford GT Coupe 2006 0.79% Bentley Continental Supersports Conv. Convertible 2012 0.04% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 71.56% Audi S5 Convertible 2012 7.49% Audi RS 4 Convertible 2008 4.88% Audi TTS Coupe 2012 4.08% Bugatti Veyron 16.4 Coupe 2009 3.39% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 91.55% Chevrolet Express Van 2007 7.78% Chevrolet Express Cargo Van 2007 0.67% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Volvo XC90 SUV 2007 0.0% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.73% Ford Mustang Convertible 2007 0.16% Volkswagen Golf Hatchback 1991 0.07% Audi V8 Sedan 1994 0.02% Mercedes-Benz 300-Class Convertible 1993 0.01% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Ford GT Coupe 2006 33.45% Nissan Juke Hatchback 2012 21.88% Lamborghini Aventador Coupe 2012 13.95% Ferrari 458 Italia Coupe 2012 11.55% Nissan Leaf Hatchback 2012 4.82% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Maybach Landaulet Convertible 2012 52.68% Chrysler Crossfire Convertible 2008 41.58% Mercedes-Benz E-Class Sedan 2012 3.11% Audi S5 Convertible 2012 0.87% Nissan Leaf Hatchback 2012 0.64% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 98.74% Fisker Karma Sedan 2012 1.24% Audi TT Hatchback 2011 0.02% Tesla Model S Sedan 2012 0.0% Porsche Panamera Sedan 2012 0.0% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 100.0% Acura RL Sedan 2012 0.0% Acura ZDX Hatchback 2012 0.0% Honda Odyssey Minivan 2012 0.0% Toyota Camry Sedan 2012 0.0% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 100.0% Lamborghini Aventador Coupe 2012 0.0% Eagle Talon Hatchback 1998 0.0% Audi R8 Coupe 2012 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Audi V8 Sedan 1994 91.16% Audi 100 Wagon 1994 8.52% Hyundai Sonata Sedan 2012 0.1% Audi 100 Sedan 1994 0.04% Mercedes-Benz SL-Class Coupe 2009 0.03% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caliber Wagon 2012 53.99% Ram C/V Cargo Van Minivan 2012 38.39% Chevrolet Impala Sedan 2007 2.17% Chrysler PT Cruiser Convertible 2008 1.98% Ford Freestar Minivan 2007 1.32% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 47.03% Chevrolet Corvette Convertible 2012 27.81% Audi S5 Convertible 2012 12.65% Ferrari 458 Italia Convertible 2012 11.94% Ferrari FF Coupe 2012 0.19% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.95% Toyota Camry Sedan 2012 0.05% Toyota Corolla Sedan 2012 0.0% Chevrolet Impala Sedan 2007 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 95.4% Dodge Charger SRT-8 2009 1.75% Audi 100 Sedan 1994 0.96% Volkswagen Golf Hatchback 1991 0.46% Audi V8 Sedan 1994 0.27% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 98.92% Ford Expedition EL SUV 2009 0.95% Dodge Ram Pickup 3500 Crew Cab 2010 0.13% Ford F-150 Regular Cab 2012 0.0% Infiniti QX56 SUV 2011 0.0% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 72.93% BMW X3 SUV 2012 21.39% BMW X6 SUV 2012 1.78% GMC Acadia SUV 2012 1.43% Dodge Journey SUV 2012 0.94% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 98.81% HUMMER H2 SUT Crew Cab 2009 0.41% Lamborghini Diablo Coupe 2001 0.18% Jeep Wrangler SUV 2012 0.13% Ferrari 458 Italia Coupe 2012 0.09% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 90.98% Volkswagen Golf Hatchback 1991 4.93% Volvo XC90 SUV 2007 0.82% Audi 100 Wagon 1994 0.52% Buick Rainier SUV 2007 0.37% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 91.73% Ford Focus Sedan 2007 8.21% Chevrolet Impala Sedan 2007 0.05% Daewoo Nubira Wagon 2002 0.01% Eagle Talon Hatchback 1998 0.0% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 100.0% Chevrolet HHR SS 2010 0.0% Dodge Charger Sedan 2012 0.0% Dodge Charger SRT-8 2009 0.0% Toyota Corolla Sedan 2012 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 46.17% Acura TSX Sedan 2012 16.06% Scion xD Hatchback 2012 10.82% Chevrolet Monte Carlo Coupe 2007 6.5% Hyundai Elantra Sedan 2007 4.54% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 99.19% Ford Ranger SuperCab 2011 0.25% Toyota Sequoia SUV 2012 0.22% Buick Rainier SUV 2007 0.1% Mazda Tribute SUV 2011 0.09% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Rolls-Royce Phantom Drophead Coupe Convertible 2012 43.32% Lincoln Town Car Sedan 2011 12.91% MINI Cooper Roadster Convertible 2012 10.09% Chevrolet Monte Carlo Coupe 2007 8.15% Chevrolet Impala Sedan 2007 7.54% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 99.99% Spyker C8 Convertible 2009 0.01% Fisker Karma Sedan 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Aston Martin Virage Convertible 2012 0.0% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 86.22% Dodge Caliber Wagon 2012 11.99% Dodge Durango SUV 2007 1.1% Dodge Magnum Wagon 2008 0.3% Chevrolet Tahoe Hybrid SUV 2012 0.18% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.8% MINI Cooper Roadster Convertible 2012 0.14% Audi RS 4 Convertible 2008 0.03% FIAT 500 Convertible 2012 0.01% Chrysler PT Cruiser Convertible 2008 0.01% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Infiniti QX56 SUV 2011 0.0% Hyundai Santa Fe SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% Toyota 4Runner SUV 2012 0.0% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Audi V8 Sedan 1994 44.37% Volvo 240 Sedan 1993 27.58% Bentley Arnage Sedan 2009 13.58% GMC Acadia SUV 2012 12.47% Audi 100 Sedan 1994 1.64% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 99.7% Toyota 4Runner SUV 2012 0.29% GMC Yukon Hybrid SUV 2012 0.01% Cadillac Escalade EXT Crew Cab 2007 0.0% Dodge Dakota Crew Cab 2010 0.0% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 BMW 1 Series Convertible 2012 50.49% Ford Mustang Convertible 2007 26.54% Ford Ranger SuperCab 2011 16.6% Dodge Ram Pickup 3500 Quad Cab 2009 1.65% GMC Savana Van 2012 1.06% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Patriot SUV 2012 74.53% Jeep Liberty SUV 2012 25.18% Isuzu Ascender SUV 2008 0.16% Jeep Wrangler SUV 2012 0.1% Ford E-Series Wagon Van 2012 0.01% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 58.86% Dodge Durango SUV 2007 8.56% Mazda Tribute SUV 2011 7.56% Ford Freestar Minivan 2007 5.12% Chrysler Aspen SUV 2009 4.99% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 34.5% Bentley Continental GT Coupe 2007 33.29% Bentley Continental GT Coupe 2012 31.64% Bentley Mulsanne Sedan 2011 0.49% Bugatti Veyron 16.4 Convertible 2009 0.03% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Ford Expedition EL SUV 2009 51.18% Land Rover Range Rover SUV 2012 46.35% Infiniti QX56 SUV 2011 0.74% Toyota 4Runner SUV 2012 0.49% Land Rover LR2 SUV 2012 0.47% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 83.26% Dodge Durango SUV 2012 11.54% Dodge Journey SUV 2012 2.38% Cadillac SRX SUV 2012 1.17% Dodge Caliber Wagon 2012 1.07% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 64.5% McLaren MP4-12C Coupe 2012 30.2% Chevrolet Corvette Convertible 2012 5.05% Audi RS 4 Convertible 2008 0.12% Ford GT Coupe 2006 0.1% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 64.55% Hyundai Genesis Sedan 2012 31.81% Mercedes-Benz S-Class Sedan 2012 2.37% Mercedes-Benz E-Class Sedan 2012 0.8% Hyundai Azera Sedan 2012 0.13% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 99.45% Porsche Panamera Sedan 2012 0.46% Bentley Continental GT Coupe 2007 0.08% Bugatti Veyron 16.4 Coupe 2009 0.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.0% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Nissan NV Passenger Van 2012 82.92% Ford F-150 Regular Cab 2007 12.56% Dodge Ram Pickup 3500 Quad Cab 2009 4.08% Ford F-150 Regular Cab 2012 0.41% Dodge Ram Pickup 3500 Crew Cab 2010 0.01% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Hyundai Veracruz SUV 2012 84.41% Ford Edge SUV 2012 9.47% Chevrolet Impala Sedan 2007 3.33% Nissan Juke Hatchback 2012 0.88% BMW X5 SUV 2007 0.58% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.37% Ram C/V Cargo Van Minivan 2012 0.53% Dodge Caravan Minivan 1997 0.05% Audi 100 Wagon 1994 0.04% Chrysler Town and Country Minivan 2012 0.0% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 98.56% Porsche Panamera Sedan 2012 0.57% Ford Mustang Convertible 2007 0.51% Chevrolet Corvette ZR1 2012 0.08% Cadillac CTS-V Sedan 2012 0.06% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.71% Chevrolet Traverse SUV 2012 0.17% Hyundai Veracruz SUV 2012 0.1% Hyundai Tucson SUV 2012 0.01% Ford Edge SUV 2012 0.01% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 99.87% Rolls-Royce Phantom Sedan 2012 0.08% Dodge Challenger SRT8 2011 0.03% Chrysler 300 SRT-8 2010 0.01% Rolls-Royce Ghost Sedan 2012 0.01% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 85.65% Audi S4 Sedan 2012 8.54% Acura RL Sedan 2012 2.43% Chevrolet Sonic Sedan 2012 1.08% Chrysler Crossfire Convertible 2008 0.9% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.83% Chevrolet Express Cargo Van 2007 1.17% Chevrolet Express Van 2007 0.0% Audi 100 Sedan 1994 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Mazda Tribute SUV 2011 37.85% Nissan Juke Hatchback 2012 26.83% GMC Acadia SUV 2012 21.62% Cadillac SRX SUV 2012 4.44% Land Rover LR2 SUV 2012 3.45% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Scion xD Hatchback 2012 46.76% Bentley Continental GT Coupe 2007 20.25% Nissan Juke Hatchback 2012 6.81% Lamborghini Reventon Coupe 2008 4.42% Bentley Continental Flying Spur Sedan 2007 3.73% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Suzuki SX4 Hatchback 2012 19.58% Scion xD Hatchback 2012 17.46% Dodge Caliber Wagon 2012 9.14% Chrysler Town and Country Minivan 2012 8.94% Suzuki SX4 Sedan 2012 6.36% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Jeep Wrangler SUV 2012 46.25% Ford GT Coupe 2006 22.5% AM General Hummer SUV 2000 12.26% Chevrolet Silverado 2500HD Regular Cab 2012 9.44% Land Rover LR2 SUV 2012 1.62% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 43.72% Chrysler 300 SRT-8 2010 30.61% Dodge Durango SUV 2012 4.89% Rolls-Royce Ghost Sedan 2012 3.84% Bentley Mulsanne Sedan 2011 2.91% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Toyota Camry Sedan 2012 66.79% Acura RL Sedan 2012 14.51% Hyundai Genesis Sedan 2012 14.51% Infiniti G Coupe IPL 2012 0.97% Hyundai Azera Sedan 2012 0.76% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Mercedes-Benz 300-Class Convertible 1993 76.05% Audi V8 Sedan 1994 19.01% Eagle Talon Hatchback 1998 1.67% Lincoln Town Car Sedan 2011 1.56% Nissan 240SX Coupe 1998 0.88% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Suzuki SX4 Hatchback 2012 95.84% GMC Acadia SUV 2012 2.36% Daewoo Nubira Wagon 2002 1.16% Hyundai Elantra Touring Hatchback 2012 0.43% Volvo C30 Hatchback 2012 0.04% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 99.68% Lamborghini Aventador Coupe 2012 0.21% Audi R8 Coupe 2012 0.05% Chevrolet Camaro Convertible 2012 0.01% Spyker C8 Coupe 2009 0.01% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 52.56% Suzuki Kizashi Sedan 2012 26.61% Infiniti G Coupe IPL 2012 3.37% Buick Regal GS 2012 3.2% Mercedes-Benz E-Class Sedan 2012 2.93% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 BMW Z4 Convertible 2012 49.68% BMW ActiveHybrid 5 Sedan 2012 44.76% Ford Mustang Convertible 2007 2.18% Audi S5 Coupe 2012 0.63% BMW X3 SUV 2012 0.59% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.67% Chrysler Town and Country Minivan 2012 0.18% Volvo XC90 SUV 2007 0.06% GMC Yukon Hybrid SUV 2012 0.03% Ford Ranger SuperCab 2011 0.01% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 65.59% Mercedes-Benz E-Class Sedan 2012 26.68% Hyundai Genesis Sedan 2012 4.25% Mercedes-Benz C-Class Sedan 2012 2.71% Audi S6 Sedan 2011 0.54% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Volvo C30 Hatchback 2012 50.12% Tesla Model S Sedan 2012 24.49% Audi TT RS Coupe 2012 8.54% Audi TTS Coupe 2012 5.59% Bugatti Veyron 16.4 Coupe 2009 1.87% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Jeep Wrangler SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Ford Edge SUV 2012 92.19% Jaguar XK XKR 2012 4.24% Rolls-Royce Phantom Sedan 2012 0.66% Buick Regal GS 2012 0.4% Hyundai Sonata Hybrid Sedan 2012 0.39% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 93.24% Chevrolet Camaro Convertible 2012 3.16% Chevrolet Corvette ZR1 2012 1.62% Chevrolet Corvette Convertible 2012 1.61% Porsche Panamera Sedan 2012 0.18% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Ford Ranger SuperCab 2011 0.0% Buick Enclave SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% Cadillac SRX SUV 2012 0.0% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 92.72% Audi S4 Sedan 2007 6.96% Audi S5 Coupe 2012 0.3% Audi S5 Convertible 2012 0.01% Audi S4 Sedan 2012 0.01% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 97.51% Jeep Compass SUV 2012 2.38% Dodge Durango SUV 2012 0.07% GMC Terrain SUV 2012 0.02% Chevrolet Avalanche Crew Cab 2012 0.02% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 48.36% Hyundai Accent Sedan 2012 42.36% Toyota Corolla Sedan 2012 3.9% Hyundai Veloster Hatchback 2012 3.34% Buick Verano Sedan 2012 0.7% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Ford Expedition EL SUV 2009 0.0% Hyundai Santa Fe SUV 2012 0.0% Chrysler Aspen SUV 2009 0.0% Toyota 4Runner SUV 2012 0.0% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 34.54% Chevrolet Impala Sedan 2007 33.11% Chevrolet Monte Carlo Coupe 2007 12.83% Acura TSX Sedan 2012 3.96% Honda Accord Sedan 2012 3.38% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 98.33% Chevrolet Avalanche Crew Cab 2012 0.76% Chevrolet TrailBlazer SS 2009 0.45% Infiniti QX56 SUV 2011 0.11% Cadillac Escalade EXT Crew Cab 2007 0.07% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 50.1% Dodge Durango SUV 2007 32.76% Toyota 4Runner SUV 2012 3.8% Ford Ranger SuperCab 2011 3.49% Buick Rainier SUV 2007 3.31% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Audi S5 Coupe 2012 81.99% Audi RS 4 Convertible 2008 8.91% Audi TTS Coupe 2012 3.43% Tesla Model S Sedan 2012 1.54% Audi R8 Coupe 2012 0.9% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 37.2% smart fortwo Convertible 2012 26.94% Ford GT Coupe 2006 15.0% Bugatti Veyron 16.4 Convertible 2009 8.89% Spyker C8 Convertible 2009 3.5% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Volkswagen Beetle Hatchback 2012 29.66% Suzuki Kizashi Sedan 2012 21.54% Chevrolet Cobalt SS 2010 13.33% Ford Mustang Convertible 2007 9.55% Chevrolet Camaro Convertible 2012 9.04% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Honda Odyssey Minivan 2012 53.43% Scion xD Hatchback 2012 21.82% BMW X6 SUV 2012 7.42% Honda Accord Sedan 2012 6.07% GMC Terrain SUV 2012 5.52% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.93% Daewoo Nubira Wagon 2002 0.02% Bentley Continental Flying Spur Sedan 2007 0.01% Rolls-Royce Phantom Sedan 2012 0.01% Nissan Leaf Hatchback 2012 0.01% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 100.0% Lamborghini Aventador Coupe 2012 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% Ford GT Coupe 2006 0.0% BMW M3 Coupe 2012 0.0% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 100.0% Chevrolet Express Van 2007 0.0% Ford Freestar Minivan 2007 0.0% Audi 100 Sedan 1994 0.0% Lincoln Town Car Sedan 2011 0.0% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Cadillac SRX SUV 2012 80.88% GMC Yukon Hybrid SUV 2012 4.14% Cadillac Escalade EXT Crew Cab 2007 3.73% Chevrolet TrailBlazer SS 2009 2.64% Jeep Compass SUV 2012 1.98% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.42% Lamborghini Aventador Coupe 2012 0.58% Aston Martin Virage Coupe 2012 0.0% Spyker C8 Coupe 2009 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 99.34% AM General Hummer SUV 2000 0.66% HUMMER H2 SUT Crew Cab 2009 0.0% Jeep Patriot SUV 2012 0.0% GMC Terrain SUV 2012 0.0% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 84.28% BMW X6 SUV 2012 7.93% Ford Mustang Convertible 2007 3.3% BMW 1 Series Convertible 2012 1.36% BMW 3 Series Sedan 2012 1.01% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 97.64% Bentley Continental Flying Spur Sedan 2007 0.79% Chrysler 300 SRT-8 2010 0.37% Maybach Landaulet Convertible 2012 0.31% Ford Mustang Convertible 2007 0.18% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Acura RL Sedan 2012 73.72% Toyota Camry Sedan 2012 9.15% Acura TSX Sedan 2012 6.46% Hyundai Accent Sedan 2012 1.97% Acura ZDX Hatchback 2012 1.45% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 90.29% Volkswagen Golf Hatchback 1991 9.22% Audi 100 Wagon 1994 0.38% Mercedes-Benz 300-Class Convertible 1993 0.07% Lincoln Town Car Sedan 2011 0.01% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Hyundai Sonata Sedan 2012 36.65% Scion xD Hatchback 2012 24.83% Eagle Talon Hatchback 1998 11.19% smart fortwo Convertible 2012 8.74% Ford GT Coupe 2006 4.71% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Ford Ranger SuperCab 2011 43.78% Chevrolet Silverado 1500 Regular Cab 2012 35.56% Ford F-150 Regular Cab 2007 7.59% GMC Savana Van 2012 2.98% Chevrolet Avalanche Crew Cab 2012 2.5% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Audi R8 Coupe 2012 98.72% Audi TTS Coupe 2012 0.65% Audi S5 Coupe 2012 0.54% Mercedes-Benz SL-Class Coupe 2009 0.02% Porsche Panamera Sedan 2012 0.02% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Honda Accord Sedan 2012 31.31% Chevrolet Malibu Sedan 2007 24.17% Mercedes-Benz E-Class Sedan 2012 7.47% Hyundai Genesis Sedan 2012 7.07% Mercedes-Benz C-Class Sedan 2012 3.1% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% BMW X5 SUV 2007 0.0% Volvo XC90 SUV 2007 0.0% GMC Acadia SUV 2012 0.0% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Chrysler Sebring Convertible 2010 60.08% Audi 100 Sedan 1994 18.21% Maybach Landaulet Convertible 2012 9.56% Volkswagen Golf Hatchback 2012 2.66% Daewoo Nubira Wagon 2002 1.61% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 McLaren MP4-12C Coupe 2012 89.88% Lamborghini Aventador Coupe 2012 6.39% Bentley Continental Supersports Conv. Convertible 2012 1.63% Spyker C8 Coupe 2009 0.79% Ferrari 458 Italia Convertible 2012 0.66% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 82.84% Audi TTS Coupe 2012 3.45% BMW 3 Series Sedan 2012 3.31% Audi S5 Coupe 2012 2.27% Aston Martin V8 Vantage Convertible 2012 2.03% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 75.6% Ford F-450 Super Duty Crew Cab 2012 13.42% Dodge Ram Pickup 3500 Crew Cab 2010 9.07% Toyota 4Runner SUV 2012 0.76% Isuzu Ascender SUV 2008 0.76% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 BMW 1 Series Convertible 2012 47.44% Lincoln Town Car Sedan 2011 20.83% Mercedes-Benz C-Class Sedan 2012 6.46% Suzuki Aerio Sedan 2007 4.24% FIAT 500 Convertible 2012 3.37% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 74.81% Buick Regal GS 2012 17.37% Audi S4 Sedan 2007 1.79% Dodge Challenger SRT8 2011 1.43% Chevrolet Sonic Sedan 2012 0.85% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.96% Cadillac CTS-V Sedan 2012 0.02% Audi TT RS Coupe 2012 0.01% Lamborghini Aventador Coupe 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Scion xD Hatchback 2012 66.51% Chevrolet Malibu Hybrid Sedan 2010 14.55% Chevrolet Cobalt SS 2010 12.91% Suzuki Kizashi Sedan 2012 1.52% Hyundai Elantra Sedan 2007 0.74% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Convertible 2012 88.86% Aston Martin V8 Vantage Coupe 2012 11.11% BMW M6 Convertible 2010 0.01% Aston Martin Virage Coupe 2012 0.01% Aston Martin Virage Convertible 2012 0.01% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 99.83% BMW 3 Series Wagon 2012 0.17% Dodge Charger SRT-8 2009 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Volvo C30 Hatchback 2012 0.0% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 87.88% Chevrolet Express Van 2007 12.1% GMC Savana Van 2012 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Dodge Caravan Minivan 1997 0.0% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 99.41% Jaguar XK XKR 2012 0.26% Aston Martin V8 Vantage Convertible 2012 0.11% Bugatti Veyron 16.4 Coupe 2009 0.06% Aston Martin V8 Vantage Coupe 2012 0.03% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 99.96% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.03% Rolls-Royce Ghost Sedan 2012 0.0% Chrysler 300 SRT-8 2010 0.0% Maybach Landaulet Convertible 2012 0.0% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Volvo XC90 SUV 2007 0.0% Ford Ranger SuperCab 2011 0.0% Buick Enclave SUV 2012 0.0% Audi V8 Sedan 1994 0.0% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 73.77% Ford E-Series Wagon Van 2012 7.86% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.85% Chevrolet Silverado 1500 Extended Cab 2012 4.21% Buick Rainier SUV 2007 3.76% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 86.07% Dodge Ram Pickup 3500 Crew Cab 2010 12.29% Dodge Dakota Crew Cab 2010 1.07% Ford Ranger SuperCab 2011 0.39% Chevrolet Silverado 1500 Regular Cab 2012 0.08% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 88.71% Fisker Karma Sedan 2012 8.21% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.98% Rolls-Royce Phantom Sedan 2012 0.74% Tesla Model S Sedan 2012 0.6% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 91.68% Toyota Camry Sedan 2012 7.55% Audi S5 Coupe 2012 0.15% Hyundai Veloster Hatchback 2012 0.13% Acura ZDX Hatchback 2012 0.12% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 99.99% GMC Acadia SUV 2012 0.01% Cadillac SRX SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.94% Lamborghini Aventador Coupe 2012 0.05% Bugatti Veyron 16.4 Coupe 2009 0.01% Fisker Karma Sedan 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 46.76% Bugatti Veyron 16.4 Coupe 2009 20.83% Chevrolet Corvette ZR1 2012 10.27% Bentley Continental Supersports Conv. Convertible 2012 6.3% Eagle Talon Hatchback 1998 5.14% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Audi S6 Sedan 2011 8.71% Hyundai Sonata Sedan 2012 7.39% BMW ActiveHybrid 5 Sedan 2012 6.3% BMW M3 Coupe 2012 5.86% Hyundai Genesis Sedan 2012 5.7% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 99.28% Lamborghini Reventon Coupe 2008 0.23% McLaren MP4-12C Coupe 2012 0.19% Bugatti Veyron 16.4 Coupe 2009 0.12% Spyker C8 Convertible 2009 0.07% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 99.25% Lincoln Town Car Sedan 2011 0.34% Buick Enclave SUV 2012 0.28% Chevrolet Impala Sedan 2007 0.05% Hyundai Tucson SUV 2012 0.05% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Mercedes-Benz C-Class Sedan 2012 77.0% Honda Accord Coupe 2012 15.41% Chevrolet Camaro Convertible 2012 2.3% BMW 3 Series Sedan 2012 2.13% Audi S4 Sedan 2012 0.92% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Toyota Camry Sedan 2012 39.44% Hyundai Genesis Sedan 2012 23.93% Volkswagen Golf Hatchback 2012 23.61% Toyota Corolla Sedan 2012 6.17% Chevrolet Malibu Sedan 2007 1.6% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 88.69% Bentley Continental GT Coupe 2007 7.62% Bentley Continental Flying Spur Sedan 2007 3.52% Bentley Arnage Sedan 2009 0.16% Bentley Continental GT Coupe 2012 0.01% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 96.12% smart fortwo Convertible 2012 2.5% AM General Hummer SUV 2000 1.19% Nissan NV Passenger Van 2012 0.08% Spyker C8 Convertible 2009 0.04% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.09% Aston Martin V8 Vantage Coupe 2012 0.64% Lamborghini Aventador Coupe 2012 0.17% Audi R8 Coupe 2012 0.07% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.02% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 74.86% Acura ZDX Hatchback 2012 8.12% Volkswagen Golf Hatchback 2012 5.1% Aston Martin Virage Convertible 2012 4.54% Hyundai Veloster Hatchback 2012 1.97% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 99.93% Mercedes-Benz Sprinter Van 2012 0.03% Hyundai Genesis Sedan 2012 0.02% Hyundai Sonata Sedan 2012 0.01% Nissan 240SX Coupe 1998 0.0% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 98.91% Honda Accord Sedan 2012 0.96% Honda Odyssey Minivan 2012 0.05% Hyundai Sonata Sedan 2012 0.02% Hyundai Genesis Sedan 2012 0.02% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.99% Lamborghini Diablo Coupe 2001 0.01% Plymouth Neon Coupe 1999 0.0% Geo Metro Convertible 1993 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Nissan Juke Hatchback 2012 82.67% Suzuki Kizashi Sedan 2012 5.71% Volvo C30 Hatchback 2012 3.28% Suzuki SX4 Hatchback 2012 2.1% Buick Enclave SUV 2012 2.06% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Yukon Hybrid SUV 2012 98.61% Chevrolet Silverado 1500 Regular Cab 2012 0.48% Chevrolet Silverado 1500 Extended Cab 2012 0.48% Ford F-150 Regular Cab 2007 0.27% AM General Hummer SUV 2000 0.08% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 62.4% Audi TTS Coupe 2012 19.02% Audi A5 Coupe 2012 14.36% Audi S5 Coupe 2012 1.84% Audi S4 Sedan 2007 1.62% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Chrysler Aspen SUV 2009 42.84% Volvo XC90 SUV 2007 16.17% GMC Yukon Hybrid SUV 2012 11.4% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.7% Cadillac Escalade EXT Crew Cab 2007 5.62% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 99.06% Bentley Continental GT Coupe 2007 0.39% BMW Z4 Convertible 2012 0.33% BMW 6 Series Convertible 2007 0.14% BMW 1 Series Convertible 2012 0.03% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 49.87% Land Rover Range Rover SUV 2012 25.24% BMW X6 SUV 2012 7.13% Acura ZDX Hatchback 2012 4.8% Audi 100 Wagon 1994 3.78% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Chevrolet Sonic Sedan 2012 52.92% Hyundai Accent Sedan 2012 38.35% Dodge Journey SUV 2012 1.59% Volvo C30 Hatchback 2012 1.56% Cadillac CTS-V Sedan 2012 1.53% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 72.5% Chevrolet Corvette Convertible 2012 22.79% Ferrari 458 Italia Convertible 2012 4.62% Ferrari 458 Italia Coupe 2012 0.08% Aston Martin V8 Vantage Convertible 2012 0.0% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 99.85% Rolls-Royce Phantom Sedan 2012 0.15% Audi S4 Sedan 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Audi S5 Coupe 2012 0.0% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Lamborghini Reventon Coupe 2008 18.77% Lamborghini Aventador Coupe 2012 15.56% Bugatti Veyron 16.4 Coupe 2009 10.77% Spyker C8 Coupe 2009 9.71% McLaren MP4-12C Coupe 2012 8.99% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.91% Chevrolet Express Cargo Van 2007 0.79% Chevrolet Express Van 2007 0.3% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Nissan NV Passenger Van 2012 0.0% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 67.47% Ford F-450 Super Duty Crew Cab 2012 25.17% GMC Canyon Extended Cab 2012 4.29% Ford Ranger SuperCab 2011 2.22% Dodge Ram Pickup 3500 Crew Cab 2010 0.2% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Bentley Continental Supersports Conv. Convertible 2012 37.87% Bentley Continental GT Coupe 2012 8.25% Mitsubishi Lancer Sedan 2012 6.73% Ferrari FF Coupe 2012 5.54% Aston Martin Virage Coupe 2012 5.43% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 46.16% Isuzu Ascender SUV 2008 37.05% Jeep Patriot SUV 2012 7.53% Jeep Compass SUV 2012 4.32% Volvo 240 Sedan 1993 3.72% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 97.64% AM General Hummer SUV 2000 1.28% GMC Yukon Hybrid SUV 2012 0.6% Jeep Patriot SUV 2012 0.17% Ford F-150 Regular Cab 2007 0.14% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 GMC Acadia SUV 2012 87.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.63% Hyundai Veracruz SUV 2012 2.0% Chevrolet Traverse SUV 2012 1.27% Hyundai Santa Fe SUV 2012 1.2% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Nissan 240SX Coupe 1998 70.28% Volvo 240 Sedan 1993 21.62% Audi V8 Sedan 1994 7.53% Audi 100 Wagon 1994 0.22% Mercedes-Benz 300-Class Convertible 1993 0.22% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz C-Class Sedan 2012 54.29% Honda Accord Sedan 2012 21.96% Mercedes-Benz S-Class Sedan 2012 16.83% Hyundai Azera Sedan 2012 3.11% Mercedes-Benz E-Class Sedan 2012 0.56% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Audi S6 Sedan 2011 63.74% Audi R8 Coupe 2012 17.33% Audi TTS Coupe 2012 6.43% Audi TT Hatchback 2011 4.68% Eagle Talon Hatchback 1998 2.54% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 97.55% Mercedes-Benz Sprinter Van 2012 2.16% Audi 100 Wagon 1994 0.11% Audi V8 Sedan 1994 0.06% Mercedes-Benz 300-Class Convertible 1993 0.06% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 92.65% Jeep Patriot SUV 2012 4.13% Jeep Liberty SUV 2012 1.7% Volvo 240 Sedan 1993 0.99% Volkswagen Golf Hatchback 1991 0.33% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Hyundai Genesis Sedan 2012 42.71% Dodge Ram Pickup 3500 Crew Cab 2010 40.36% Ford Expedition EL SUV 2009 9.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% Mercedes-Benz C-Class Sedan 2012 1.21% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Rolls-Royce Phantom Drophead Coupe Convertible 2012 29.94% Eagle Talon Hatchback 1998 19.05% Bentley Continental Flying Spur Sedan 2007 13.68% Chevrolet Corvette ZR1 2012 13.2% Aston Martin V8 Vantage Coupe 2012 7.25% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Honda Odyssey Minivan 2012 81.53% Chrysler Town and Country Minivan 2012 3.55% Buick Verano Sedan 2012 3.35% Buick Enclave SUV 2012 2.2% Scion xD Hatchback 2012 1.93% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.47% Jeep Wrangler SUV 2012 0.53% GMC Yukon Hybrid SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% Jeep Compass SUV 2012 0.0% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.72% Dodge Dakota Club Cab 2007 0.28% Dodge Dakota Crew Cab 2010 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% GMC Canyon Extended Cab 2012 0.0% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Audi S5 Convertible 2012 70.74% Audi TT Hatchback 2011 11.57% Audi TT RS Coupe 2012 10.88% Audi S5 Coupe 2012 6.03% Audi TTS Coupe 2012 0.52% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 49.77% GMC Terrain SUV 2012 49.7% Toyota 4Runner SUV 2012 0.39% Land Rover LR2 SUV 2012 0.04% Dodge Durango SUV 2012 0.03% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura RL Sedan 2012 30.44% Chevrolet Malibu Hybrid Sedan 2010 15.47% Honda Accord Coupe 2012 7.38% BMW M5 Sedan 2010 7.24% Acura TL Sedan 2012 5.84% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Hyundai Azera Sedan 2012 56.05% Bugatti Veyron 16.4 Convertible 2009 42.97% Bugatti Veyron 16.4 Coupe 2009 0.28% Scion xD Hatchback 2012 0.23% Acura ZDX Hatchback 2012 0.18% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 BMW X3 SUV 2012 44.6% Chrysler PT Cruiser Convertible 2008 15.93% Suzuki SX4 Sedan 2012 12.15% Suzuki SX4 Hatchback 2012 9.2% Scion xD Hatchback 2012 5.41% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW 1 Series Convertible 2012 60.9% Jaguar XK XKR 2012 35.26% Audi TT RS Coupe 2012 2.03% Infiniti G Coupe IPL 2012 0.75% BMW 6 Series Convertible 2007 0.17% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 92.8% Hyundai Accent Sedan 2012 2.21% Acura TL Sedan 2012 2.14% Ford Fiesta Sedan 2012 0.45% Hyundai Veloster Hatchback 2012 0.43% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 27.96% Lamborghini Reventon Coupe 2008 19.59% Acura TL Type-S 2008 10.18% Aston Martin V8 Vantage Coupe 2012 9.58% Mercedes-Benz SL-Class Coupe 2009 9.54% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Dodge Charger Sedan 2012 51.71% BMW Z4 Convertible 2012 13.1% Chrysler 300 SRT-8 2010 8.83% Bentley Continental GT Coupe 2012 8.61% Bugatti Veyron 16.4 Coupe 2009 6.54% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 28.92% Chevrolet Silverado 1500 Extended Cab 2012 24.79% GMC Canyon Extended Cab 2012 21.66% Jeep Wrangler SUV 2012 14.0% Ford F-150 Regular Cab 2012 3.75% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Buick Verano Sedan 2012 54.27% Acura ZDX Hatchback 2012 27.24% Audi S5 Coupe 2012 2.97% Chevrolet Monte Carlo Coupe 2007 2.91% Acura RL Sedan 2012 2.7% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Ford Focus Sedan 2007 63.65% Plymouth Neon Coupe 1999 35.48% Chevrolet Impala Sedan 2007 0.57% Geo Metro Convertible 1993 0.13% Daewoo Nubira Wagon 2002 0.1% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 95.75% Dodge Caliber Wagon 2007 2.98% Ram C/V Cargo Van Minivan 2012 0.96% Chrysler Town and Country Minivan 2012 0.19% Ford Freestar Minivan 2007 0.07% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 Audi S6 Sedan 2011 77.39% BMW 3 Series Sedan 2012 19.45% Audi S5 Coupe 2012 1.15% Audi S4 Sedan 2012 0.78% Audi A5 Coupe 2012 0.69% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 100.0% Acura TSX Sedan 2012 0.0% Acura TL Sedan 2012 0.0% Suzuki SX4 Sedan 2012 0.0% Acura ZDX Hatchback 2012 0.0% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi TTS Coupe 2012 99.99% Audi A5 Coupe 2012 0.01% Audi S4 Sedan 2012 0.0% Audi R8 Coupe 2012 0.0% Audi S6 Sedan 2011 0.0% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Dodge Caravan Minivan 1997 48.64% Eagle Talon Hatchback 1998 32.18% Nissan Juke Hatchback 2012 8.62% Ford Focus Sedan 2007 2.73% Porsche Panamera Sedan 2012 1.44% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 91.62% Honda Accord Sedan 2012 5.71% Mercedes-Benz S-Class Sedan 2012 0.99% Hyundai Santa Fe SUV 2012 0.59% Hyundai Azera Sedan 2012 0.34% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 100.0% GMC Yukon Hybrid SUV 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 91.86% Mercedes-Benz E-Class Sedan 2012 5.92% Mercedes-Benz 300-Class Convertible 1993 1.16% Chrysler Crossfire Convertible 2008 0.78% Mercedes-Benz C-Class Sedan 2012 0.26% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 98.47% Ford Expedition EL SUV 2009 0.83% Chevrolet Traverse SUV 2012 0.3% Volvo XC90 SUV 2007 0.11% Ford Edge SUV 2012 0.09% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 99.79% BMW 1 Series Coupe 2012 0.13% BMW M3 Coupe 2012 0.08% Chevrolet HHR SS 2010 0.0% Dodge Charger SRT-8 2009 0.0% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Bentley Continental Supersports Conv. Convertible 2012 38.61% Ferrari 458 Italia Convertible 2012 14.29% Chevrolet Corvette ZR1 2012 10.83% Geo Metro Convertible 1993 8.12% Eagle Talon Hatchback 1998 6.32% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Jaguar XK XKR 2012 36.38% BMW M6 Convertible 2010 34.67% Bentley Continental Supersports Conv. Convertible 2012 8.56% BMW 6 Series Convertible 2007 6.31% Lamborghini Aventador Coupe 2012 5.94% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet HHR SS 2010 81.16% Dodge Magnum Wagon 2008 18.29% Dodge Journey SUV 2012 0.18% Scion xD Hatchback 2012 0.13% Dodge Charger Sedan 2012 0.03% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Dodge Ram Pickup 3500 Crew Cab 2010 52.85% Dodge Durango SUV 2007 21.26% Rolls-Royce Phantom Sedan 2012 19.51% Chrysler 300 SRT-8 2010 3.85% Dodge Ram Pickup 3500 Quad Cab 2009 1.63% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Audi S5 Coupe 2012 55.41% Chevrolet Camaro Convertible 2012 18.1% Ferrari FF Coupe 2012 5.91% Bugatti Veyron 16.4 Coupe 2009 4.23% Fisker Karma Sedan 2012 2.17% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Mitsubishi Lancer Sedan 2012 98.06% Chrysler 300 SRT-8 2010 0.67% Ford Edge SUV 2012 0.51% GMC Terrain SUV 2012 0.25% BMW X6 SUV 2012 0.11% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mazda Tribute SUV 2011 61.36% Cadillac SRX SUV 2012 30.04% BMW X6 SUV 2012 2.0% Buick Enclave SUV 2012 1.74% BMW X5 SUV 2007 1.32% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 94.3% Toyota Sequoia SUV 2012 3.13% Ford Expedition EL SUV 2009 1.19% Mercedes-Benz C-Class Sedan 2012 0.39% Ford Edge SUV 2012 0.17% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 99.13% Chevrolet Express Van 2007 0.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.16% GMC Savana Van 2012 0.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 77.99% Suzuki SX4 Hatchback 2012 3.61% Dodge Caliber Wagon 2012 2.62% smart fortwo Convertible 2012 2.22% Volvo C30 Hatchback 2012 2.1% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Acura TL Type-S 2008 68.71% BMW M6 Convertible 2010 21.54% Audi TTS Coupe 2012 3.78% Audi S4 Sedan 2007 1.27% Aston Martin V8 Vantage Coupe 2012 1.21% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 BMW M3 Coupe 2012 99.9% Volvo C30 Hatchback 2012 0.08% Dodge Charger SRT-8 2009 0.01% Aston Martin Virage Coupe 2012 0.0% Chevrolet Cobalt SS 2010 0.0% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 98.97% Audi A5 Coupe 2012 0.67% Audi S5 Coupe 2012 0.24% BMW X6 SUV 2012 0.03% Buick Verano Sedan 2012 0.02% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 92.55% Audi TT RS Coupe 2012 4.92% Audi TTS Coupe 2012 2.51% Audi A5 Coupe 2012 0.01% Audi S4 Sedan 2012 0.0% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 59.78% Spyker C8 Convertible 2009 17.89% Tesla Model S Sedan 2012 8.0% Fisker Karma Sedan 2012 6.46% Bugatti Veyron 16.4 Convertible 2009 2.77% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Volvo XC90 SUV 2007 24.12% Buick Enclave SUV 2012 19.94% Buick Rainier SUV 2007 13.81% Jeep Patriot SUV 2012 11.29% Chevrolet TrailBlazer SS 2009 7.53% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Lincoln Town Car Sedan 2011 68.29% Chevrolet Silverado 1500 Extended Cab 2012 6.47% Suzuki Aerio Sedan 2007 6.41% Honda Accord Sedan 2012 3.31% Chevrolet Impala Sedan 2007 2.53% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 77.78% Jeep Liberty SUV 2012 22.18% Jeep Wrangler SUV 2012 0.02% GMC Acadia SUV 2012 0.01% Isuzu Ascender SUV 2008 0.01% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.75% Buick Regal GS 2012 0.14% Fisker Karma Sedan 2012 0.06% Audi TT Hatchback 2011 0.01% Infiniti G Coupe IPL 2012 0.01% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 61.85% Cadillac CTS-V Sedan 2012 8.96% Honda Accord Sedan 2012 7.04% Mercedes-Benz C-Class Sedan 2012 6.09% Toyota Corolla Sedan 2012 4.77% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 67.92% Spyker C8 Convertible 2009 28.64% Bentley Continental Flying Spur Sedan 2007 0.77% Spyker C8 Coupe 2009 0.77% Porsche Panamera Sedan 2012 0.58% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Canyon Extended Cab 2012 81.5% Dodge Ram Pickup 3500 Quad Cab 2009 16.26% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% Ford Ranger SuperCab 2011 0.42% Dodge Dakota Club Cab 2007 0.22% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.95% Lincoln Town Car Sedan 2011 0.05% Dodge Caravan Minivan 1997 0.0% Chrysler Town and Country Minivan 2012 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Ford GT Coupe 2006 47.3% Lamborghini Aventador Coupe 2012 34.66% Volvo 240 Sedan 1993 4.1% Volkswagen Golf Hatchback 1991 3.56% Mercedes-Benz 300-Class Convertible 1993 3.36% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 68.66% Dodge Dakota Club Cab 2007 29.21% Buick Rainier SUV 2007 0.56% Jeep Patriot SUV 2012 0.46% Jeep Liberty SUV 2012 0.26% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Toyota 4Runner SUV 2012 40.98% Jeep Compass SUV 2012 32.38% Land Rover LR2 SUV 2012 7.74% GMC Terrain SUV 2012 6.38% Jeep Grand Cherokee SUV 2012 2.29% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% Isuzu Ascender SUV 2008 0.0% Jeep Liberty SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 94.08% Dodge Ram Pickup 3500 Quad Cab 2009 5.15% Ford E-Series Wagon Van 2012 0.36% Dodge Ram Pickup 3500 Crew Cab 2010 0.19% HUMMER H2 SUT Crew Cab 2009 0.09% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 100.0% Acura TSX Sedan 2012 0.0% Acura RL Sedan 2012 0.0% Buick Verano Sedan 2012 0.0% Buick Regal GS 2012 0.0% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.64% Jeep Compass SUV 2012 0.36% Jeep Liberty SUV 2012 0.0% BMW X6 SUV 2012 0.0% BMW X5 SUV 2007 0.0% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Hyundai Elantra Sedan 2007 98.66% Hyundai Azera Sedan 2012 0.69% Hyundai Sonata Hybrid Sedan 2012 0.26% Acura TL Type-S 2008 0.17% Chevrolet Impala Sedan 2007 0.05% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S5 Coupe 2012 86.22% Audi S4 Sedan 2012 6.26% Audi A5 Coupe 2012 3.28% BMW X3 SUV 2012 1.24% Audi S5 Convertible 2012 1.09% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Jeep Patriot SUV 2012 79.11% Dodge Caliber Wagon 2007 17.56% Jeep Compass SUV 2012 1.82% Jeep Grand Cherokee SUV 2012 0.83% GMC Acadia SUV 2012 0.45% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 65.89% BMW 3 Series Wagon 2012 10.65% Bentley Continental Flying Spur Sedan 2007 10.0% Chevrolet Malibu Sedan 2007 4.67% Chevrolet Impala Sedan 2007 2.18% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Chrysler Town and Country Minivan 2012 89.16% Dodge Caliber Wagon 2012 3.56% Hyundai Elantra Touring Hatchback 2012 2.5% Suzuki SX4 Hatchback 2012 2.2% Chrysler PT Cruiser Convertible 2008 0.72% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Toyota Camry Sedan 2012 62.84% Toyota Corolla Sedan 2012 28.95% Hyundai Azera Sedan 2012 4.35% Hyundai Sonata Sedan 2012 1.52% Acura RL Sedan 2012 0.79% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Mercedes-Benz 300-Class Convertible 1993 85.34% Lincoln Town Car Sedan 2011 7.11% Volvo 240 Sedan 1993 6.75% Volkswagen Golf Hatchback 1991 0.28% Audi 100 Wagon 1994 0.21% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 100.0% Dodge Caravan Minivan 1997 0.0% Buick Rainier SUV 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 97.43% Land Rover LR2 SUV 2012 1.26% Chevrolet Traverse SUV 2012 0.41% GMC Terrain SUV 2012 0.39% Dodge Journey SUV 2012 0.12% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 100.0% Chevrolet Sonic Sedan 2012 0.0% Audi A5 Coupe 2012 0.0% Audi S5 Convertible 2012 0.0% Hyundai Accent Sedan 2012 0.0% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Suzuki Kizashi Sedan 2012 82.92% Chevrolet Malibu Hybrid Sedan 2010 4.85% Mercedes-Benz S-Class Sedan 2012 4.06% Mercedes-Benz E-Class Sedan 2012 1.7% Buick Verano Sedan 2012 1.47% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Chevrolet Traverse SUV 2012 98.12% Hyundai Veracruz SUV 2012 1.07% Nissan Juke Hatchback 2012 0.73% Hyundai Tucson SUV 2012 0.05% Land Rover LR2 SUV 2012 0.01% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Spyker C8 Convertible 2009 48.7% Aston Martin V8 Vantage Convertible 2012 27.19% Fisker Karma Sedan 2012 12.93% Aston Martin Virage Convertible 2012 6.38% Aston Martin V8 Vantage Coupe 2012 2.52% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Bentley Continental GT Coupe 2007 97.83% Suzuki SX4 Sedan 2012 1.11% Nissan 240SX Coupe 1998 0.71% Bentley Continental Flying Spur Sedan 2007 0.09% Hyundai Veloster Hatchback 2012 0.04% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Mercedes-Benz 300-Class Convertible 1993 44.13% GMC Savana Van 2012 10.1% Ford GT Coupe 2006 9.67% Ford Mustang Convertible 2007 9.23% Audi V8 Sedan 1994 7.96% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Cadillac SRX SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% Dodge Durango SUV 2012 0.0% Infiniti QX56 SUV 2011 0.0% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Aston Martin Virage Coupe 2012 51.79% Lamborghini Aventador Coupe 2012 30.06% McLaren MP4-12C Coupe 2012 11.25% Ferrari 458 Italia Coupe 2012 3.35% Dodge Charger SRT-8 2009 1.61% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 93.76% Mitsubishi Lancer Sedan 2012 5.66% Hyundai Sonata Sedan 2012 0.32% Hyundai Azera Sedan 2012 0.11% Toyota Camry Sedan 2012 0.03% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 91.04% Ford Expedition EL SUV 2009 6.7% GMC Terrain SUV 2012 1.29% Mazda Tribute SUV 2011 0.53% Toyota 4Runner SUV 2012 0.33% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 95.82% Cadillac SRX SUV 2012 1.65% Ford Edge SUV 2012 1.52% Chevrolet Traverse SUV 2012 0.3% Cadillac CTS-V Sedan 2012 0.2% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 FIAT 500 Abarth 2012 74.29% Nissan NV Passenger Van 2012 13.66% Chevrolet Camaro Convertible 2012 7.43% Rolls-Royce Phantom Sedan 2012 2.36% Jeep Liberty SUV 2012 0.59% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Toyota Sequoia SUV 2012 61.26% Cadillac Escalade EXT Crew Cab 2007 28.05% Dodge Durango SUV 2007 7.1% Dodge Ram Pickup 3500 Crew Cab 2010 1.59% Jeep Patriot SUV 2012 0.47% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 76.0% Dodge Ram Pickup 3500 Crew Cab 2010 23.15% Dodge Dakota Crew Cab 2010 0.39% Chevrolet Silverado 2500HD Regular Cab 2012 0.15% GMC Canyon Extended Cab 2012 0.09% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Infiniti QX56 SUV 2011 60.87% Mercedes-Benz E-Class Sedan 2012 18.89% Dodge Charger Sedan 2012 12.54% Land Rover Range Rover SUV 2012 3.14% Hyundai Azera Sedan 2012 0.84% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 55.18% Toyota Sequoia SUV 2012 22.09% Buick Enclave SUV 2012 15.85% Mazda Tribute SUV 2011 1.78% BMW X5 SUV 2007 1.05% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Mitsubishi Lancer Sedan 2012 83.63% Hyundai Veloster Hatchback 2012 10.68% McLaren MP4-12C Coupe 2012 4.7% Bentley Continental GT Coupe 2012 0.68% Audi TTS Coupe 2012 0.11% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 93.15% Audi S5 Convertible 2012 1.93% Audi TTS Coupe 2012 1.19% Mercedes-Benz E-Class Sedan 2012 1.07% Audi S5 Coupe 2012 0.69% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 67.67% Hyundai Veloster Hatchback 2012 30.12% Spyker C8 Coupe 2009 0.75% BMW M3 Coupe 2012 0.28% Aston Martin V8 Vantage Convertible 2012 0.28% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Geo Metro Convertible 1993 68.47% Honda Accord Coupe 2012 18.13% BMW 1 Series Convertible 2012 3.44% Chevrolet Corvette Convertible 2012 3.25% Chrysler Sebring Convertible 2010 1.91% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Audi 100 Wagon 1994 93.45% Volkswagen Golf Hatchback 1991 5.17% Daewoo Nubira Wagon 2002 0.81% Chevrolet Express Van 2007 0.26% Volvo 240 Sedan 1993 0.09% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 97.69% Bentley Continental GT Coupe 2007 2.31% Volkswagen Beetle Hatchback 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Spyker C8 Convertible 2009 0.0% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.93% GMC Savana Van 2012 0.06% Mercedes-Benz 300-Class Convertible 1993 0.0% Chevrolet Express Van 2007 0.0% Ford F-150 Regular Cab 2007 0.0% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% GMC Savana Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Spyker C8 Convertible 2009 22.85% Buick Verano Sedan 2012 18.28% Infiniti G Coupe IPL 2012 17.11% Spyker C8 Coupe 2009 9.26% Fisker Karma Sedan 2012 5.77% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 FIAT 500 Convertible 2012 51.08% Suzuki Kizashi Sedan 2012 31.08% Volvo C30 Hatchback 2012 5.94% Dodge Caliber Wagon 2012 3.75% Nissan Leaf Hatchback 2012 3.28% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 94.22% Fisker Karma Sedan 2012 3.29% Acura ZDX Hatchback 2012 0.99% BMW ActiveHybrid 5 Sedan 2012 0.41% BMW 6 Series Convertible 2007 0.19% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 BMW 6 Series Convertible 2007 33.92% Audi TT Hatchback 2011 12.28% BMW Z4 Convertible 2012 11.58% Aston Martin V8 Vantage Coupe 2012 10.42% BMW M6 Convertible 2010 9.41% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Dodge Dakota Crew Cab 2010 93.48% Ford Freestar Minivan 2007 4.5% Dodge Dakota Club Cab 2007 0.72% Buick Rainier SUV 2007 0.15% Audi 100 Sedan 1994 0.14% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Mercedes-Benz S-Class Sedan 2012 49.8% Chevrolet HHR SS 2010 21.52% Bentley Continental Flying Spur Sedan 2007 8.68% Dodge Magnum Wagon 2008 5.73% Volkswagen Beetle Hatchback 2012 2.47% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.77% Suzuki SX4 Hatchback 2012 0.19% Suzuki SX4 Sedan 2012 0.02% Ford Fiesta Sedan 2012 0.01% Chevrolet Sonic Sedan 2012 0.01% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 88.08% Ford F-150 Regular Cab 2007 11.89% GMC Yukon Hybrid SUV 2012 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.01% Nissan NV Passenger Van 2012 0.0% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 56.4% Ferrari California Convertible 2012 42.08% Ferrari 458 Italia Convertible 2012 1.42% Volkswagen Beetle Hatchback 2012 0.07% Chevrolet Corvette Convertible 2012 0.01% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Suzuki SX4 Sedan 2012 27.35% Scion xD Hatchback 2012 23.02% Suzuki SX4 Hatchback 2012 13.96% Nissan Leaf Hatchback 2012 8.19% Chevrolet Sonic Sedan 2012 3.94% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 86.99% Scion xD Hatchback 2012 7.56% Nissan Leaf Hatchback 2012 1.87% Nissan Juke Hatchback 2012 1.81% Bugatti Veyron 16.4 Convertible 2009 0.52% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Malibu Hybrid Sedan 2010 49.26% Ford Edge SUV 2012 23.71% Honda Odyssey Minivan 2012 15.37% Dodge Journey SUV 2012 3.31% Chevrolet Traverse SUV 2012 1.01% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 98.9% Acura Integra Type R 2001 0.69% Aston Martin Virage Coupe 2012 0.33% Aston Martin Virage Convertible 2012 0.02% Aston Martin V8 Vantage Convertible 2012 0.01% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Chevrolet TrailBlazer SS 2009 98.32% Hyundai Tucson SUV 2012 0.39% Jeep Compass SUV 2012 0.36% Buick Verano Sedan 2012 0.27% Chevrolet Cobalt SS 2010 0.26% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chrysler PT Cruiser Convertible 2008 38.25% Chrysler Aspen SUV 2009 30.74% Chrysler Town and Country Minivan 2012 17.18% Dodge Caliber Wagon 2012 10.83% Dodge Durango SUV 2007 0.64% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Mercedes-Benz C-Class Sedan 2012 14.47% Suzuki SX4 Sedan 2012 14.44% Ford Focus Sedan 2007 13.18% Mazda Tribute SUV 2011 6.4% Toyota Corolla Sedan 2012 5.79% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Aston Martin Virage Convertible 2012 87.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.43% Aston Martin V8 Vantage Coupe 2012 2.67% Fisker Karma Sedan 2012 1.53% Volkswagen Beetle Hatchback 2012 1.07% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chevrolet Camaro Convertible 2012 36.69% BMW 6 Series Convertible 2007 25.1% Honda Accord Coupe 2012 7.21% Mercedes-Benz 300-Class Convertible 1993 6.63% Chrysler Crossfire Convertible 2008 6.0% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Hyundai Veloster Hatchback 2012 64.49% Aston Martin Virage Coupe 2012 7.55% McLaren MP4-12C Coupe 2012 7.02% BMW M3 Coupe 2012 6.2% Lamborghini Aventador Coupe 2012 4.33% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 BMW M3 Coupe 2012 55.9% Audi S4 Sedan 2012 24.63% BMW 1 Series Coupe 2012 10.92% BMW 3 Series Sedan 2012 5.72% Volkswagen Beetle Hatchback 2012 1.39% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Acura TL Sedan 2012 92.34% Acura TSX Sedan 2012 3.44% Porsche Panamera Sedan 2012 1.66% Toyota Camry Sedan 2012 0.53% Nissan Leaf Hatchback 2012 0.42% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Ford Freestar Minivan 2007 72.76% Chrysler Town and Country Minivan 2012 22.09% Dodge Caliber Wagon 2012 2.05% Honda Odyssey Minivan 2007 1.48% Chevrolet Malibu Sedan 2007 0.58% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.89% Ford GT Coupe 2006 0.11% Lamborghini Aventador Coupe 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Buick Verano Sedan 2012 15.13% Volkswagen Golf Hatchback 2012 14.26% Dodge Durango SUV 2012 13.47% Honda Odyssey Minivan 2012 5.46% Hyundai Veracruz SUV 2012 5.19% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Audi A5 Coupe 2012 80.56% Mercedes-Benz S-Class Sedan 2012 11.67% Audi TTS Coupe 2012 2.86% Audi S6 Sedan 2011 2.81% Audi S5 Coupe 2012 1.67% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 40.86% Acura RL Sedan 2012 40.77% BMW X6 SUV 2012 6.23% Buick Verano Sedan 2012 2.76% Chevrolet Sonic Sedan 2012 2.11% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Spyker C8 Convertible 2009 47.18% Ford GT Coupe 2006 28.71% MINI Cooper Roadster Convertible 2012 16.28% Bugatti Veyron 16.4 Coupe 2009 1.9% Audi TTS Coupe 2012 0.84% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 68.98% Bentley Arnage Sedan 2009 16.48% Volvo 240 Sedan 1993 4.02% Volkswagen Golf Hatchback 1991 2.93% Audi V8 Sedan 1994 1.92% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Nissan Juke Hatchback 2012 43.49% Audi S6 Sedan 2011 18.03% Porsche Panamera Sedan 2012 13.34% Ford GT Coupe 2006 5.46% BMW M6 Convertible 2010 2.73% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Malibu Hybrid Sedan 2010 42.02% Chevrolet Impala Sedan 2007 23.92% Chrysler PT Cruiser Convertible 2008 10.39% Chevrolet Monte Carlo Coupe 2007 9.78% Chrysler Sebring Convertible 2010 3.27% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 92.29% Toyota Camry Sedan 2012 7.62% Toyota Corolla Sedan 2012 0.04% Hyundai Accent Sedan 2012 0.03% Hyundai Azera Sedan 2012 0.01% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 70.37% BMW 6 Series Convertible 2007 24.36% Chevrolet Camaro Convertible 2012 2.36% Eagle Talon Hatchback 1998 0.74% Chrysler Crossfire Convertible 2008 0.68% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 100.0% Audi TT Hatchback 2011 0.0% Audi R8 Coupe 2012 0.0% Audi S4 Sedan 2012 0.0% Audi S6 Sedan 2011 0.0% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Dodge Durango SUV 2012 86.47% Jeep Liberty SUV 2012 4.89% Ford Expedition EL SUV 2009 3.58% FIAT 500 Abarth 2012 2.48% Jeep Patriot SUV 2012 0.79% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 83.59% Rolls-Royce Phantom Sedan 2012 15.59% Chrysler 300 SRT-8 2010 0.26% GMC Terrain SUV 2012 0.22% Jeep Grand Cherokee SUV 2012 0.14% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Daewoo Nubira Wagon 2002 44.96% Scion xD Hatchback 2012 27.39% Suzuki SX4 Sedan 2012 10.05% Chevrolet Malibu Sedan 2007 9.2% Chevrolet Impala Sedan 2007 6.6% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Tahoe Hybrid SUV 2012 57.24% Chevrolet Avalanche Crew Cab 2012 35.47% GMC Yukon Hybrid SUV 2012 6.95% Chevrolet Silverado 1500 Extended Cab 2012 0.33% Cadillac Escalade EXT Crew Cab 2007 0.0% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Mazda Tribute SUV 2011 41.85% GMC Terrain SUV 2012 19.18% Chevrolet HHR SS 2010 7.48% Dodge Magnum Wagon 2008 5.65% BMW X3 SUV 2012 3.73% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Aston Martin Virage Convertible 2012 98.09% Lamborghini Reventon Coupe 2008 0.65% Fisker Karma Sedan 2012 0.42% Spyker C8 Coupe 2009 0.36% Aston Martin V8 Vantage Coupe 2012 0.28% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Lamborghini Gallardo LP 570-4 Superleggera 2012 27.29% Lamborghini Reventon Coupe 2008 15.79% BMW 6 Series Convertible 2007 13.31% BMW M6 Convertible 2010 6.84% Infiniti G Coupe IPL 2012 5.39% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Acadia SUV 2012 99.97% Suzuki SX4 Hatchback 2012 0.02% Jeep Patriot SUV 2012 0.01% Ford F-150 Regular Cab 2007 0.0% Mazda Tribute SUV 2011 0.0% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 99.2% Eagle Talon Hatchback 1998 0.18% Dodge Challenger SRT8 2011 0.18% Chevrolet Camaro Convertible 2012 0.18% Bentley Continental GT Coupe 2007 0.12% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 57.33% Dodge Ram Pickup 3500 Crew Cab 2010 42.43% Dodge Dakota Crew Cab 2010 0.24% Dodge Durango SUV 2007 0.0% Dodge Dakota Club Cab 2007 0.0% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Ford Focus Sedan 2007 71.12% Daewoo Nubira Wagon 2002 26.33% Plymouth Neon Coupe 1999 2.12% Suzuki Aerio Sedan 2007 0.32% Hyundai Elantra Touring Hatchback 2012 0.05% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 34.22% Ford Expedition EL SUV 2009 20.79% Chrysler Aspen SUV 2009 12.27% Land Rover LR2 SUV 2012 10.33% Ford Edge SUV 2012 8.52% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Hyundai Veracruz SUV 2012 21.31% Acura ZDX Hatchback 2012 12.59% Honda Odyssey Minivan 2012 12.35% BMW X5 SUV 2007 9.2% Scion xD Hatchback 2012 8.53% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 HUMMER H2 SUT Crew Cab 2009 36.02% Ford F-450 Super Duty Crew Cab 2012 22.46% HUMMER H3T Crew Cab 2010 12.67% Nissan Juke Hatchback 2012 6.13% Spyker C8 Convertible 2009 3.49% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Audi RS 4 Convertible 2008 27.76% Cadillac CTS-V Sedan 2012 15.67% Audi S6 Sedan 2011 6.31% Audi TTS Coupe 2012 6.23% Hyundai Genesis Sedan 2012 5.3% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 50.4% GMC Yukon Hybrid SUV 2012 32.17% Dodge Dakota Club Cab 2007 7.91% Ford F-150 Regular Cab 2012 4.51% Nissan NV Passenger Van 2012 1.13% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 68.77% Audi S4 Sedan 2012 16.05% Audi TTS Coupe 2012 5.78% Audi S4 Sedan 2007 4.44% Audi S5 Convertible 2012 3.75% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 BMW M5 Sedan 2010 69.47% BMW M6 Convertible 2010 22.14% BMW M3 Coupe 2012 2.44% BMW 6 Series Convertible 2007 1.23% Audi S4 Sedan 2007 0.99% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Audi V8 Sedan 1994 94.12% Audi 100 Wagon 1994 2.05% Audi 100 Sedan 1994 1.37% Daewoo Nubira Wagon 2002 0.96% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.33% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Hyundai Elantra Sedan 2007 67.84% Audi TT RS Coupe 2012 7.5% Acura TSX Sedan 2012 4.41% Buick Regal GS 2012 2.87% Hyundai Accent Sedan 2012 2.84% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 58.99% HUMMER H2 SUT Crew Cab 2009 38.48% AM General Hummer SUV 2000 1.4% Ford F-450 Super Duty Crew Cab 2012 1.01% Land Rover LR2 SUV 2012 0.06% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Dakota Crew Cab 2010 91.18% Dodge Caliber Wagon 2007 5.71% Dodge Caliber Wagon 2012 1.81% Dodge Charger Sedan 2012 1.07% Dodge Durango SUV 2012 0.09% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 99.84% Scion xD Hatchback 2012 0.13% Mazda Tribute SUV 2011 0.03% Land Rover LR2 SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Fisker Karma Sedan 2012 39.79% Audi TTS Coupe 2012 27.32% Aston Martin V8 Vantage Coupe 2012 21.26% Aston Martin V8 Vantage Convertible 2012 6.78% Volkswagen Beetle Hatchback 2012 1.78% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 62.15% Cadillac SRX SUV 2012 34.15% Toyota 4Runner SUV 2012 1.56% Land Rover LR2 SUV 2012 0.79% Ford Expedition EL SUV 2009 0.65% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 58.88% Chevrolet Silverado 1500 Extended Cab 2012 29.33% Dodge Dakota Club Cab 2007 6.28% GMC Canyon Extended Cab 2012 2.32% Chevrolet Tahoe Hybrid SUV 2012 0.95% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 78.5% Scion xD Hatchback 2012 5.65% Suzuki SX4 Sedan 2012 3.96% Hyundai Sonata Hybrid Sedan 2012 2.99% Hyundai Tucson SUV 2012 1.68% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.99% Aston Martin V8 Vantage Convertible 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Ford GT Coupe 2006 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 88.42% Eagle Talon Hatchback 1998 5.95% Plymouth Neon Coupe 1999 2.91% Ford Focus Sedan 2007 2.5% Nissan 240SX Coupe 1998 0.09% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 87.04% BMW X5 SUV 2007 12.95% BMW X3 SUV 2012 0.0% Volvo XC90 SUV 2007 0.0% Jeep Grand Cherokee SUV 2012 0.0% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 65.15% Hyundai Genesis Sedan 2012 17.59% Mercedes-Benz S-Class Sedan 2012 8.43% Dodge Charger SRT-8 2009 6.3% Mercedes-Benz 300-Class Convertible 1993 0.9% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Honda Odyssey Minivan 2012 67.85% Hyundai Elantra Sedan 2007 23.06% Chevrolet Malibu Sedan 2007 7.42% Honda Accord Sedan 2012 1.04% Hyundai Sonata Sedan 2012 0.4% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 99.52% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.1% Hyundai Veloster Hatchback 2012 0.1% Dodge Charger SRT-8 2009 0.07% Nissan 240SX Coupe 1998 0.05% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 83.52% Ford F-450 Super Duty Crew Cab 2012 16.48% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford Expedition EL SUV 2009 0.0% GMC Canyon Extended Cab 2012 0.0% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.99% Dodge Caravan Minivan 1997 0.0% Eagle Talon Hatchback 1998 0.0% Chevrolet Impala Sedan 2007 0.0% Geo Metro Convertible 1993 0.0% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 100.0% Hyundai Tucson SUV 2012 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Spyker C8 Coupe 2009 0.0% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 99.62% Ford Freestar Minivan 2007 0.36% Dodge Caravan Minivan 1997 0.01% Chrysler Sebring Convertible 2010 0.0% Chrysler Aspen SUV 2009 0.0% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Bentley Mulsanne Sedan 2011 34.38% Jeep Grand Cherokee SUV 2012 17.03% Lincoln Town Car Sedan 2011 8.48% Bentley Continental GT Coupe 2007 5.34% Bentley Arnage Sedan 2009 5.08% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Chevrolet Express Van 2007 63.42% GMC Savana Van 2012 23.87% Dodge Caravan Minivan 1997 4.96% Chevrolet Express Cargo Van 2007 2.03% Ford Ranger SuperCab 2011 1.99% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 78.77% Volvo C30 Hatchback 2012 4.33% Chevrolet HHR SS 2010 4.08% Dodge Caliber Wagon 2007 3.49% Chrysler PT Cruiser Convertible 2008 2.93% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 BMW M6 Convertible 2010 95.13% Buick Regal GS 2012 2.11% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.84% Jaguar XK XKR 2012 0.45% Bentley Continental Supersports Conv. Convertible 2012 0.34% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Suzuki Kizashi Sedan 2012 43.31% BMW M5 Sedan 2010 11.31% Mercedes-Benz 300-Class Convertible 1993 10.74% Jaguar XK XKR 2012 8.53% Chevrolet Corvette Convertible 2012 7.04% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.24% Dodge Ram Pickup 3500 Quad Cab 2009 0.41% Jeep Wrangler SUV 2012 0.24% Ford E-Series Wagon Van 2012 0.08% AM General Hummer SUV 2000 0.01% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 BMW M6 Convertible 2010 44.69% Audi R8 Coupe 2012 22.93% Audi TTS Coupe 2012 19.2% BMW 3 Series Sedan 2012 7.84% Rolls-Royce Phantom Sedan 2012 3.87% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 77.64% Volkswagen Golf Hatchback 2012 7.85% Mercedes-Benz S-Class Sedan 2012 2.13% Mercedes-Benz Sprinter Van 2012 1.66% Audi S6 Sedan 2011 1.54% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 99.88% Chevrolet Camaro Convertible 2012 0.07% Eagle Talon Hatchback 1998 0.02% Ferrari California Convertible 2012 0.02% Mercedes-Benz 300-Class Convertible 1993 0.01% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 67.68% Acura Integra Type R 2001 21.76% AM General Hummer SUV 2000 2.81% Chevrolet Corvette Convertible 2012 2.07% Dodge Charger Sedan 2012 1.79% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Volvo 240 Sedan 1993 58.7% Daewoo Nubira Wagon 2002 25.03% Suzuki Aerio Sedan 2007 7.95% Dodge Caliber Wagon 2012 3.87% BMW 3 Series Wagon 2012 2.0% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 99.77% Buick Rainier SUV 2007 0.2% Chevrolet Traverse SUV 2012 0.01% Dodge Durango SUV 2007 0.01% Jeep Grand Cherokee SUV 2012 0.0% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 87.33% Chevrolet Silverado 1500 Regular Cab 2012 5.57% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.11% Dodge Dakota Club Cab 2007 0.67% Dodge Dakota Crew Cab 2010 0.53% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 100.0% Land Rover Range Rover SUV 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Dodge Durango SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Lamborghini Aventador Coupe 2012 66.11% Chrysler 300 SRT-8 2010 6.43% Dodge Charger SRT-8 2009 3.83% Nissan 240SX Coupe 1998 3.14% Bugatti Veyron 16.4 Coupe 2009 1.74% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 99.82% Ferrari 458 Italia Coupe 2012 0.18% Ferrari FF Coupe 2012 0.0% Ferrari 458 Italia Convertible 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 33.92% GMC Canyon Extended Cab 2012 29.82% Ford F-150 Regular Cab 2007 18.17% HUMMER H3T Crew Cab 2010 12.21% Dodge Ram Pickup 3500 Crew Cab 2010 2.7% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 98.34% Acura TL Type-S 2008 0.9% Aston Martin V8 Vantage Coupe 2012 0.65% Aston Martin V8 Vantage Convertible 2012 0.05% Porsche Panamera Sedan 2012 0.03% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 98.03% Chevrolet Camaro Convertible 2012 1.72% Ford F-150 Regular Cab 2007 0.09% Ferrari California Convertible 2012 0.07% Chevrolet Corvette ZR1 2012 0.07% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Jeep Grand Cherokee SUV 2012 97.04% Suzuki SX4 Sedan 2012 0.86% Cadillac SRX SUV 2012 0.72% Hyundai Tucson SUV 2012 0.47% BMW X6 SUV 2012 0.28% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 94.83% Honda Odyssey Minivan 2012 1.39% Hyundai Veracruz SUV 2012 1.32% Nissan Juke Hatchback 2012 0.99% Acura RL Sedan 2012 0.37% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 BMW 1 Series Convertible 2012 98.95% Buick Verano Sedan 2012 0.71% Honda Accord Coupe 2012 0.14% BMW 1 Series Coupe 2012 0.08% Chevrolet Cobalt SS 2010 0.06% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Ford Focus Sedan 2007 73.35% Hyundai Elantra Touring Hatchback 2012 15.55% Chevrolet Malibu Sedan 2007 3.43% BMW X5 SUV 2007 2.72% Ford Fiesta Sedan 2012 1.2% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Aston Martin Virage Convertible 2012 96.73% Fisker Karma Sedan 2012 0.93% Ferrari California Convertible 2012 0.31% BMW M6 Convertible 2010 0.31% Lamborghini Reventon Coupe 2008 0.31% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Volvo C30 Hatchback 2012 24.43% Audi TTS Coupe 2012 17.61% Nissan Juke Hatchback 2012 16.44% Hyundai Genesis Sedan 2012 15.59% Chevrolet Sonic Sedan 2012 5.72% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.99% Dodge Durango SUV 2007 0.0% Rolls-Royce Ghost Sedan 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 98.55% Scion xD Hatchback 2012 1.42% Suzuki Aerio Sedan 2007 0.01% Hyundai Tucson SUV 2012 0.01% Acura ZDX Hatchback 2012 0.0% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Hyundai Elantra Sedan 2007 68.21% Chevrolet Monte Carlo Coupe 2007 10.6% Chevrolet Malibu Sedan 2007 4.29% Dodge Magnum Wagon 2008 4.21% Honda Accord Sedan 2012 4.0% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler Sebring Convertible 2010 37.55% Rolls-Royce Phantom Drophead Coupe Convertible 2012 30.03% smart fortwo Convertible 2012 13.1% Chrysler Crossfire Convertible 2008 6.03% MINI Cooper Roadster Convertible 2012 2.61% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Coupe 2012 43.42% Chevrolet Corvette Convertible 2012 32.78% Lamborghini Diablo Coupe 2001 11.84% Aston Martin V8 Vantage Coupe 2012 4.89% Aston Martin V8 Vantage Convertible 2012 2.99% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 99.48% Toyota Camry Sedan 2012 0.35% Hyundai Sonata Hybrid Sedan 2012 0.11% Chevrolet Malibu Hybrid Sedan 2010 0.02% Hyundai Azera Sedan 2012 0.02% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 45.11% Rolls-Royce Ghost Sedan 2012 15.78% Audi S4 Sedan 2007 15.72% BMW 3 Series Sedan 2012 9.52% BMW 3 Series Wagon 2012 4.49% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.66% Land Rover LR2 SUV 2012 0.2% Toyota Sequoia SUV 2012 0.07% Hyundai Santa Fe SUV 2012 0.07% Toyota 4Runner SUV 2012 0.01% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 92.03% Chevrolet Camaro Convertible 2012 3.23% Aston Martin Virage Convertible 2012 2.08% Aston Martin V8 Vantage Coupe 2012 1.62% BMW M6 Convertible 2010 0.56% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Hyundai Sonata Sedan 2012 52.69% Eagle Talon Hatchback 1998 22.64% FIAT 500 Abarth 2012 8.27% Ferrari FF Coupe 2012 3.41% Mitsubishi Lancer Sedan 2012 2.33% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 88.75% Lamborghini Reventon Coupe 2008 3.58% Spyker C8 Convertible 2009 1.89% Audi R8 Coupe 2012 1.17% Aston Martin V8 Vantage Convertible 2012 1.0% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 59.85% Aston Martin V8 Vantage Coupe 2012 8.75% Dodge Challenger SRT8 2011 7.87% Audi S4 Sedan 2007 3.88% Audi TTS Coupe 2012 2.95% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Dakota Crew Cab 2010 91.18% Dodge Caliber Wagon 2007 5.71% Dodge Caliber Wagon 2012 1.81% Dodge Charger Sedan 2012 1.07% Dodge Durango SUV 2012 0.09% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 99.38% Chevrolet Malibu Hybrid Sedan 2010 0.2% Dodge Durango SUV 2012 0.08% Maybach Landaulet Convertible 2012 0.07% BMW X3 SUV 2012 0.06% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 99.95% Honda Accord Sedan 2012 0.05% Acura RL Sedan 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% Dodge Durango SUV 2012 0.0% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 99.98% BMW X6 SUV 2012 0.01% Bentley Continental GT Coupe 2007 0.01% Mitsubishi Lancer Sedan 2012 0.0% Audi S4 Sedan 2012 0.0% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Bentley Mulsanne Sedan 2011 50.19% Fisker Karma Sedan 2012 12.59% Ford GT Coupe 2006 7.3% Rolls-Royce Ghost Sedan 2012 5.96% Bentley Arnage Sedan 2009 5.04% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 AM General Hummer SUV 2000 99.98% HUMMER H2 SUT Crew Cab 2009 0.01% Jeep Wrangler SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% HUMMER H3T Crew Cab 2010 0.0% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.97% Jeep Wrangler SUV 2012 0.03% Jeep Patriot SUV 2012 0.0% Ford F-150 Regular Cab 2007 0.0% HUMMER H3T Crew Cab 2010 0.0% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Hyundai Veloster Hatchback 2012 67.77% Mercedes-Benz SL-Class Coupe 2009 9.98% Volvo 240 Sedan 1993 3.75% Lamborghini Reventon Coupe 2008 2.61% Mitsubishi Lancer Sedan 2012 2.12% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Toyota Camry Sedan 2012 59.93% Acura TSX Sedan 2012 37.82% Toyota Corolla Sedan 2012 1.54% Buick Verano Sedan 2012 0.24% Acura RL Sedan 2012 0.1% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Acura RL Sedan 2012 37.21% Honda Odyssey Minivan 2012 26.99% Honda Accord Sedan 2012 8.16% Hyundai Veracruz SUV 2012 4.9% Acura TL Sedan 2012 3.69% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.9% Bentley Continental Supersports Conv. Convertible 2012 0.02% Audi R8 Coupe 2012 0.02% Lamborghini Reventon Coupe 2008 0.01% BMW ActiveHybrid 5 Sedan 2012 0.01% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 75.09% Ferrari California Convertible 2012 23.99% Aston Martin V8 Vantage Convertible 2012 0.88% Chevrolet Corvette Convertible 2012 0.01% Jaguar XK XKR 2012 0.01% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Ford Fiesta Sedan 2012 76.99% Hyundai Tucson SUV 2012 22.25% Chevrolet Traverse SUV 2012 0.27% Scion xD Hatchback 2012 0.15% Hyundai Veracruz SUV 2012 0.11% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 HUMMER H2 SUT Crew Cab 2009 52.71% HUMMER H3T Crew Cab 2010 23.71% McLaren MP4-12C Coupe 2012 4.1% Mitsubishi Lancer Sedan 2012 2.16% Audi TTS Coupe 2012 2.0% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Rolls-Royce Phantom Sedan 2012 32.36% Rolls-Royce Ghost Sedan 2012 28.5% Land Rover Range Rover SUV 2012 23.28% BMW ActiveHybrid 5 Sedan 2012 3.78% Infiniti QX56 SUV 2011 2.54% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 68.24% Ford Freestar Minivan 2007 23.16% Ram C/V Cargo Van Minivan 2012 7.45% Lincoln Town Car Sedan 2011 0.78% Chevrolet Traverse SUV 2012 0.1% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 81.75% Audi V8 Sedan 1994 18.22% Volvo 240 Sedan 1993 0.03% Volkswagen Golf Hatchback 1991 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 GMC Canyon Extended Cab 2012 70.73% Ford F-150 Regular Cab 2012 24.12% Chevrolet Silverado 1500 Extended Cab 2012 3.34% Dodge Dakota Club Cab 2007 1.71% Chevrolet Silverado 1500 Regular Cab 2012 0.08% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 56.99% Dodge Ram Pickup 3500 Quad Cab 2009 10.69% BMW ActiveHybrid 5 Sedan 2012 6.6% Audi 100 Sedan 1994 6.0% BMW 3 Series Sedan 2012 5.61% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 92.38% Porsche Panamera Sedan 2012 2.24% Audi R8 Coupe 2012 1.6% Chevrolet Corvette ZR1 2012 1.16% Hyundai Azera Sedan 2012 0.58% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Mitsubishi Lancer Sedan 2012 58.5% Acura TL Type-S 2008 41.18% Eagle Talon Hatchback 1998 0.23% Audi R8 Coupe 2012 0.03% Dodge Caravan Minivan 1997 0.02% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 74.48% BMW M5 Sedan 2010 13.71% Audi S4 Sedan 2007 4.17% Acura RL Sedan 2012 2.07% BMW 1 Series Convertible 2012 1.17% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 43.0% BMW X6 SUV 2012 26.51% Chevrolet Sonic Sedan 2012 13.02% Hyundai Tucson SUV 2012 5.91% Acura RL Sedan 2012 4.6% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 94.8% Ferrari 458 Italia Coupe 2012 2.62% Toyota Corolla Sedan 2012 2.52% Ferrari California Convertible 2012 0.03% Toyota Camry Sedan 2012 0.01% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 Hyundai Veracruz SUV 2012 43.33% GMC Acadia SUV 2012 30.07% BMW X5 SUV 2007 12.88% Volvo XC90 SUV 2007 5.2% Buick Enclave SUV 2012 3.86% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 84.39% HUMMER H2 SUT Crew Cab 2009 8.59% HUMMER H3T Crew Cab 2010 7.02% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 45.44% Chevrolet Sonic Sedan 2012 45.38% Dodge Journey SUV 2012 2.66% Volkswagen Beetle Hatchback 2012 1.5% Toyota Corolla Sedan 2012 1.27% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Suzuki Kizashi Sedan 2012 89.84% Infiniti G Coupe IPL 2012 6.06% Jaguar XK XKR 2012 2.05% BMW M3 Coupe 2012 1.27% Chevrolet Cobalt SS 2010 0.34% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Leaf Hatchback 2012 63.19% Suzuki SX4 Sedan 2012 13.04% Scion xD Hatchback 2012 2.91% Nissan Juke Hatchback 2012 2.26% BMW 3 Series Wagon 2012 2.24% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Nissan 240SX Coupe 1998 37.88% Chevrolet Monte Carlo Coupe 2007 15.29% Chevrolet Cobalt SS 2010 10.87% Ford Edge SUV 2012 9.64% Eagle Talon Hatchback 1998 8.66% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.68% Chrysler Aspen SUV 2009 0.31% Dodge Dakota Crew Cab 2010 0.0% Dodge Caliber Wagon 2012 0.0% Dodge Dakota Club Cab 2007 0.0% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 85.35% BMW 3 Series Sedan 2012 9.02% Ford Focus Sedan 2007 1.26% Chevrolet Monte Carlo Coupe 2007 0.66% Eagle Talon Hatchback 1998 0.61% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.98% Acura TL Sedan 2012 0.01% Ford Focus Sedan 2007 0.01% Toyota Camry Sedan 2012 0.0% Chevrolet Impala Sedan 2007 0.0% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Infiniti G Coupe IPL 2012 51.93% Acura TL Sedan 2012 16.57% Hyundai Sonata Hybrid Sedan 2012 6.19% Acura RL Sedan 2012 5.12% Hyundai Azera Sedan 2012 3.84% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 99.43% Aston Martin V8 Vantage Convertible 2012 0.25% Ferrari FF Coupe 2012 0.13% Bugatti Veyron 16.4 Coupe 2009 0.08% Audi R8 Coupe 2012 0.03% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 99.93% Ferrari 458 Italia Coupe 2012 0.03% Acura Integra Type R 2001 0.02% Ford GT Coupe 2006 0.01% Ferrari 458 Italia Convertible 2012 0.0% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Audi R8 Coupe 2012 63.69% Lamborghini Gallardo LP 570-4 Superleggera 2012 26.47% FIAT 500 Abarth 2012 5.52% Lamborghini Reventon Coupe 2008 3.0% Chrysler 300 SRT-8 2010 0.41% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 56.03% Plymouth Neon Coupe 1999 34.2% Daewoo Nubira Wagon 2002 4.61% Eagle Talon Hatchback 1998 3.25% Ford Focus Sedan 2007 0.54% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 63.26% Audi S4 Sedan 2007 21.04% BMW 3 Series Wagon 2012 4.19% Acura Integra Type R 2001 2.76% Daewoo Nubira Wagon 2002 2.24% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 99.76% Ferrari 458 Italia Convertible 2012 0.18% Tesla Model S Sedan 2012 0.03% Ferrari California Convertible 2012 0.02% Lamborghini Aventador Coupe 2012 0.0% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Toyota 4Runner SUV 2012 29.57% BMW X3 SUV 2012 24.72% Land Rover LR2 SUV 2012 20.1% Dodge Durango SUV 2012 11.79% GMC Terrain SUV 2012 3.07% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Land Rover Range Rover SUV 2012 56.47% Audi V8 Sedan 1994 24.84% Hyundai Veracruz SUV 2012 4.42% Buick Enclave SUV 2012 3.45% Acura ZDX Hatchback 2012 2.09% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 89.1% Ford E-Series Wagon Van 2012 10.06% Chevrolet Silverado 1500 Extended Cab 2012 0.31% Ford Ranger SuperCab 2011 0.28% Chevrolet Tahoe Hybrid SUV 2012 0.06% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Suzuki SX4 Hatchback 2012 71.25% Dodge Caliber Wagon 2012 6.38% Ford Mustang Convertible 2007 4.84% Ferrari FF Coupe 2012 4.09% BMW X6 SUV 2012 3.74% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Acura TL Sedan 2012 33.07% Jaguar XK XKR 2012 12.71% Aston Martin Virage Convertible 2012 9.48% Chevrolet Impala Sedan 2007 9.22% Acura ZDX Hatchback 2012 6.66% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 84.43% Daewoo Nubira Wagon 2002 5.6% Lincoln Town Car Sedan 2011 4.75% Audi 100 Sedan 1994 2.43% Audi V8 Sedan 1994 1.48% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 92.59% Jaguar XK XKR 2012 6.04% McLaren MP4-12C Coupe 2012 0.28% Mitsubishi Lancer Sedan 2012 0.24% Ferrari 458 Italia Coupe 2012 0.13% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.97% Aston Martin V8 Vantage Coupe 2012 0.03% Ferrari California Convertible 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Bentley Continental GT Coupe 2007 0.0% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Ford GT Coupe 2006 40.13% Lamborghini Diablo Coupe 2001 34.5% AM General Hummer SUV 2000 8.12% Bugatti Veyron 16.4 Convertible 2009 3.86% Land Rover LR2 SUV 2012 3.74% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Chevrolet Express Van 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% Buick Rainier SUV 2007 0.0% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 67.49% HUMMER H2 SUT Crew Cab 2009 9.32% Lamborghini Reventon Coupe 2008 4.44% McLaren MP4-12C Coupe 2012 3.24% HUMMER H3T Crew Cab 2010 2.79% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 88.66% Toyota Camry Sedan 2012 7.4% Hyundai Sonata Hybrid Sedan 2012 1.46% Buick Regal GS 2012 0.81% Hyundai Accent Sedan 2012 0.47% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 96.78% FIAT 500 Convertible 2012 2.85% Spyker C8 Convertible 2009 0.22% Bugatti Veyron 16.4 Convertible 2009 0.11% McLaren MP4-12C Coupe 2012 0.01% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Ford F-150 Regular Cab 2012 0.0% Suzuki Aerio Sedan 2007 0.0% Dodge Caravan Minivan 1997 0.0% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 98.17% Lamborghini Aventador Coupe 2012 1.08% Spyker C8 Convertible 2009 0.59% Ferrari 458 Italia Coupe 2012 0.04% Lamborghini Diablo Coupe 2001 0.04% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 94.63% Mercedes-Benz Sprinter Van 2012 5.37% Dodge Caravan Minivan 1997 0.0% Chevrolet Traverse SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 97.74% Chevrolet Express Cargo Van 2007 0.74% Mercedes-Benz Sprinter Van 2012 0.33% Ram C/V Cargo Van Minivan 2012 0.24% Chevrolet Traverse SUV 2012 0.19% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Ford Fiesta Sedan 2012 36.88% Hyundai Accent Sedan 2012 26.31% Toyota Corolla Sedan 2012 17.28% Toyota Camry Sedan 2012 13.79% Hyundai Azera Sedan 2012 1.85% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.98% Bugatti Veyron 16.4 Convertible 2009 0.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.0% Lamborghini Reventon Coupe 2008 0.0% smart fortwo Convertible 2012 0.0% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 51.45% Dodge Caliber Wagon 2012 23.81% Mercedes-Benz 300-Class Convertible 1993 12.03% Dodge Journey SUV 2012 10.63% Nissan Juke Hatchback 2012 0.51% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 99.99% Acura TL Sedan 2012 0.01% Hyundai Sonata Sedan 2012 0.0% Acura RL Sedan 2012 0.0% Toyota Camry Sedan 2012 0.0% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Audi TT RS Coupe 2012 46.05% Bugatti Veyron 16.4 Coupe 2009 21.04% Bugatti Veyron 16.4 Convertible 2009 10.82% Hyundai Veloster Hatchback 2012 6.41% Lamborghini Aventador Coupe 2012 4.28% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 100.0% Audi S4 Sedan 2012 0.0% Audi S4 Sedan 2007 0.0% Audi S5 Coupe 2012 0.0% Audi A5 Coupe 2012 0.0% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi S6 Sedan 2011 19.86% Audi TT Hatchback 2011 18.39% Audi R8 Coupe 2012 17.32% Rolls-Royce Ghost Sedan 2012 8.99% Audi A5 Coupe 2012 5.81% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 88.46% Chevrolet Tahoe Hybrid SUV 2012 5.55% Chevrolet Malibu Sedan 2007 3.4% Hyundai Veracruz SUV 2012 0.51% Chevrolet TrailBlazer SS 2009 0.42% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Aston Martin V8 Vantage Convertible 2012 99.76% Aston Martin V8 Vantage Coupe 2012 0.08% Spyker C8 Convertible 2009 0.03% Ferrari California Convertible 2012 0.03% Ferrari FF Coupe 2012 0.03% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 90.18% BMW X6 SUV 2012 5.39% Dodge Durango SUV 2007 3.1% Mercedes-Benz Sprinter Van 2012 0.49% Toyota Sequoia SUV 2012 0.36% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Audi R8 Coupe 2012 50.34% Lamborghini Reventon Coupe 2008 26.02% Infiniti G Coupe IPL 2012 8.25% Bentley Continental Supersports Conv. Convertible 2012 8.25% Bentley Continental GT Coupe 2012 2.48% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Volvo C30 Hatchback 2012 30.57% Hyundai Veracruz SUV 2012 16.85% Nissan Juke Hatchback 2012 12.61% Ford Fiesta Sedan 2012 6.22% Hyundai Tucson SUV 2012 6.18% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 68.2% Tesla Model S Sedan 2012 8.93% Audi S5 Coupe 2012 7.99% Audi TTS Coupe 2012 6.36% Aston Martin Virage Convertible 2012 3.96% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Regular Cab 2012 25.72% Ford F-150 Regular Cab 2012 25.62% Ford Ranger SuperCab 2011 20.41% Ford F-450 Super Duty Crew Cab 2012 13.79% GMC Terrain SUV 2012 7.9% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 99.65% Bugatti Veyron 16.4 Convertible 2009 0.32% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.01% Mercedes-Benz 300-Class Convertible 1993 0.01% Ford GT Coupe 2006 0.01% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Volkswagen Golf Hatchback 1991 46.8% Audi 100 Wagon 1994 12.18% Buick Rainier SUV 2007 11.48% Volvo 240 Sedan 1993 9.15% Audi 100 Sedan 1994 6.14% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Mercedes-Benz 300-Class Convertible 1993 33.44% Chevrolet Silverado 1500 Regular Cab 2012 19.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 18.4% Chevrolet Corvette Convertible 2012 17.24% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.1% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 89.73% Volvo C30 Hatchback 2012 2.78% BMW Z4 Convertible 2012 1.93% BMW 3 Series Wagon 2012 1.16% Ford Mustang Convertible 2007 1.08% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 89.87% Nissan Leaf Hatchback 2012 5.35% Chevrolet Malibu Hybrid Sedan 2010 2.88% Mercedes-Benz S-Class Sedan 2012 0.67% Honda Accord Sedan 2012 0.28% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 71.64% Lincoln Town Car Sedan 2011 9.76% Mercedes-Benz 300-Class Convertible 1993 5.95% Dodge Caravan Minivan 1997 5.45% Audi 100 Sedan 1994 2.97% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 74.61% Dodge Dakota Crew Cab 2010 17.07% Dodge Ram Pickup 3500 Quad Cab 2009 7.36% HUMMER H2 SUT Crew Cab 2009 0.63% Dodge Dakota Club Cab 2007 0.13% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari 458 Italia Coupe 2012 43.13% Dodge Charger SRT-8 2009 21.01% Ferrari California Convertible 2012 16.17% Dodge Charger Sedan 2012 7.87% Ferrari 458 Italia Convertible 2012 3.15% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Ferrari 458 Italia Coupe 2012 91.53% Ferrari California Convertible 2012 3.21% Ferrari FF Coupe 2012 0.75% Porsche Panamera Sedan 2012 0.71% Ferrari 458 Italia Convertible 2012 0.67% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 83.98% Hyundai Elantra Touring Hatchback 2012 5.44% Honda Odyssey Minivan 2012 3.01% Honda Odyssey Minivan 2007 2.48% Daewoo Nubira Wagon 2002 2.29% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.98% Aston Martin V8 Vantage Coupe 2012 0.01% Audi R8 Coupe 2012 0.0% Buick Regal GS 2012 0.0% Audi TT RS Coupe 2012 0.0% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Acura ZDX Hatchback 2012 31.94% Honda Accord Sedan 2012 16.85% Nissan Juke Hatchback 2012 15.0% Dodge Sprinter Cargo Van 2009 12.33% Daewoo Nubira Wagon 2002 6.59% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 72.64% Mercedes-Benz Sprinter Van 2012 14.04% Mercedes-Benz S-Class Sedan 2012 4.96% Audi V8 Sedan 1994 3.24% BMW 3 Series Sedan 2012 1.71% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Volkswagen Golf Hatchback 1991 42.42% Dodge Dakota Crew Cab 2010 12.61% Buick Rainier SUV 2007 9.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.45% Dodge Durango SUV 2007 4.59% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Bugatti Veyron 16.4 Coupe 2009 27.49% Audi TTS Coupe 2012 19.18% Rolls-Royce Phantom Sedan 2012 11.11% Dodge Charger SRT-8 2009 8.6% Porsche Panamera Sedan 2012 6.23% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Eagle Talon Hatchback 1998 93.41% Mercedes-Benz 300-Class Convertible 1993 3.37% Geo Metro Convertible 1993 3.22% Chevrolet Corvette Convertible 2012 0.0% Ford Mustang Convertible 2007 0.0% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Audi V8 Sedan 1994 74.39% Volvo 240 Sedan 1993 10.75% Bentley Arnage Sedan 2009 4.65% Mercedes-Benz 300-Class Convertible 1993 2.77% Volkswagen Golf Hatchback 1991 2.49% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 BMW M5 Sedan 2010 31.67% Acura TL Sedan 2012 27.55% Honda Accord Coupe 2012 9.57% Acura RL Sedan 2012 6.23% Audi S4 Sedan 2007 3.82% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 100.0% Isuzu Ascender SUV 2008 0.0% Ford F-150 Regular Cab 2007 0.0% Dodge Caravan Minivan 1997 0.0% Buick Rainier SUV 2007 0.0% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 48.57% Audi 100 Sedan 1994 36.16% Ford Focus Sedan 2007 9.8% Ford Ranger SuperCab 2011 1.73% Lincoln Town Car Sedan 2011 0.81% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Aston Martin Virage Coupe 2012 31.66% Ford GT Coupe 2006 30.4% Spyker C8 Convertible 2009 6.71% Bentley Continental GT Coupe 2012 6.56% BMW M3 Coupe 2012 4.44% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Chevrolet Avalanche Crew Cab 2012 87.48% Chevrolet Traverse SUV 2012 9.76% Dodge Durango SUV 2007 1.41% GMC Terrain SUV 2012 0.37% Chevrolet TrailBlazer SS 2009 0.32% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 93.7% BMW X6 SUV 2012 4.88% Bentley Continental Flying Spur Sedan 2007 0.45% BMW X5 SUV 2007 0.37% Bentley Continental GT Coupe 2007 0.15% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Porsche Panamera Sedan 2012 38.72% BMW 3 Series Sedan 2012 31.67% Chevrolet Corvette ZR1 2012 8.79% FIAT 500 Abarth 2012 3.34% Audi S4 Sedan 2007 1.7% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 90.29% Ferrari California Convertible 2012 8.97% Ferrari 458 Italia Convertible 2012 0.44% Chevrolet Corvette Convertible 2012 0.29% Chevrolet Camaro Convertible 2012 0.01% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Buick Rainier SUV 2007 15.53% Hyundai Veracruz SUV 2012 13.16% Volkswagen Golf Hatchback 1991 12.37% Chrysler Aspen SUV 2009 12.17% Hyundai Santa Fe SUV 2012 7.36% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 64.21% Land Rover LR2 SUV 2012 19.42% Honda Accord Sedan 2012 5.74% Hyundai Genesis Sedan 2012 2.65% Dodge Journey SUV 2012 1.52% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Magnum Wagon 2008 44.76% Cadillac Escalade EXT Crew Cab 2007 36.66% Chevrolet Tahoe Hybrid SUV 2012 9.98% Chevrolet HHR SS 2010 3.76% Chrysler Aspen SUV 2009 2.37% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 99.8% Dodge Magnum Wagon 2008 0.13% MINI Cooper Roadster Convertible 2012 0.02% Suzuki SX4 Sedan 2012 0.01% Cadillac Escalade EXT Crew Cab 2007 0.01% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 96.95% Ferrari California Convertible 2012 2.25% Ferrari 458 Italia Convertible 2012 0.55% Fisker Karma Sedan 2012 0.16% Aston Martin Virage Convertible 2012 0.04% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 64.26% Dodge Durango SUV 2007 35.59% Isuzu Ascender SUV 2008 0.05% Jeep Patriot SUV 2012 0.04% Jeep Liberty SUV 2012 0.04% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 47.97% BMW ActiveHybrid 5 Sedan 2012 32.17% BMW 3 Series Wagon 2012 12.35% BMW 3 Series Sedan 2012 4.8% BMW Z4 Convertible 2012 1.13% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 95.66% Mercedes-Benz 300-Class Convertible 1993 3.81% Chrysler Sebring Convertible 2010 0.08% Chevrolet Monte Carlo Coupe 2007 0.07% Chrysler PT Cruiser Convertible 2008 0.05% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Audi S4 Sedan 2012 97.3% Audi TT RS Coupe 2012 1.53% Audi TTS Coupe 2012 0.99% Mitsubishi Lancer Sedan 2012 0.08% Hyundai Veloster Hatchback 2012 0.05% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 97.34% HUMMER H3T Crew Cab 2010 1.18% Chevrolet Corvette Convertible 2012 0.67% Lamborghini Diablo Coupe 2001 0.53% Lamborghini Aventador Coupe 2012 0.2% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% BMW Z4 Convertible 2012 0.0% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Chrysler 300 SRT-8 2010 81.97% Audi R8 Coupe 2012 5.01% Chevrolet Corvette ZR1 2012 3.37% Mercedes-Benz C-Class Sedan 2012 2.13% Hyundai Elantra Touring Hatchback 2012 1.36% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.99% Bentley Continental Flying Spur Sedan 2007 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 97.94% Aston Martin V8 Vantage Coupe 2012 1.25% Aston Martin Virage Convertible 2012 0.65% Aston Martin V8 Vantage Convertible 2012 0.09% BMW M6 Convertible 2010 0.05% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.42% GMC Savana Van 2012 0.57% Chevrolet Express Van 2007 0.02% Ford Ranger SuperCab 2011 0.0% Audi 100 Wagon 1994 0.0% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Honda Odyssey Minivan 2007 73.3% Honda Odyssey Minivan 2012 10.89% Chevrolet Cobalt SS 2010 5.95% Chevrolet Monte Carlo Coupe 2007 1.89% Toyota Camry Sedan 2012 1.19% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 98.13% Hyundai Tucson SUV 2012 0.85% Dodge Caliber Wagon 2007 0.47% Jeep Grand Cherokee SUV 2012 0.26% Dodge Caliber Wagon 2012 0.15% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Bentley Arnage Sedan 2009 65.16% Land Rover Range Rover SUV 2012 29.78% Jeep Patriot SUV 2012 2.12% Rolls-Royce Phantom Sedan 2012 1.03% FIAT 500 Abarth 2012 0.52% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 99.71% Plymouth Neon Coupe 1999 0.29% Hyundai Elantra Touring Hatchback 2012 0.0% Dodge Sprinter Cargo Van 2009 0.0% Hyundai Tucson SUV 2012 0.0% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 60.63% Nissan 240SX Coupe 1998 16.73% Audi R8 Coupe 2012 12.14% Aston Martin V8 Vantage Convertible 2012 8.0% Volvo 240 Sedan 1993 1.67% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Audi TT RS Coupe 2012 62.97% Scion xD Hatchback 2012 23.7% Dodge Charger Sedan 2012 5.33% Nissan 240SX Coupe 1998 1.98% FIAT 500 Convertible 2012 1.59% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Bugatti Veyron 16.4 Coupe 2009 63.49% Porsche Panamera Sedan 2012 17.44% Nissan Leaf Hatchback 2012 6.48% Bentley Continental GT Coupe 2007 3.3% Audi S6 Sedan 2011 2.34% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 99.54% Chevrolet HHR SS 2010 0.43% Dodge Charger SRT-8 2009 0.03% Dodge Charger Sedan 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 28.07% Ferrari California Convertible 2012 27.9% Dodge Charger SRT-8 2009 23.38% Chevrolet Corvette ZR1 2012 15.44% Ferrari 458 Italia Convertible 2012 3.67% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.86% Land Rover Range Rover SUV 2012 0.09% Ford F-450 Super Duty Crew Cab 2012 0.01% Ford Ranger SuperCab 2011 0.01% Dodge Ram Pickup 3500 Crew Cab 2010 0.01% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Hyundai Sonata Sedan 2012 83.46% Hyundai Azera Sedan 2012 7.25% Hyundai Accent Sedan 2012 5.37% Honda Accord Sedan 2012 2.51% Hyundai Genesis Sedan 2012 0.99% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 95.39% HUMMER H3T Crew Cab 2010 1.86% Jaguar XK XKR 2012 0.29% Ford F-150 Regular Cab 2012 0.27% Dodge Caliber Wagon 2012 0.21% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Plymouth Neon Coupe 1999 24.03% Audi V8 Sedan 1994 18.33% Volkswagen Golf Hatchback 1991 16.51% Volvo 240 Sedan 1993 13.81% Mercedes-Benz 300-Class Convertible 1993 12.48% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 85.25% Ferrari 458 Italia Coupe 2012 7.76% Bugatti Veyron 16.4 Coupe 2009 5.92% Lamborghini Aventador Coupe 2012 0.39% Ford GT Coupe 2006 0.22% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Lamborghini Reventon Coupe 2008 90.5% McLaren MP4-12C Coupe 2012 9.02% Lamborghini Aventador Coupe 2012 0.33% Ferrari 458 Italia Coupe 2012 0.04% Spyker C8 Convertible 2009 0.03% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Audi TTS Coupe 2012 73.78% Audi R8 Coupe 2012 25.49% Lamborghini Reventon Coupe 2008 0.25% Mitsubishi Lancer Sedan 2012 0.16% Tesla Model S Sedan 2012 0.13% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Dodge Caliber Wagon 2012 87.35% BMW X3 SUV 2012 1.83% Dodge Magnum Wagon 2008 1.6% Dodge Durango SUV 2007 1.47% Dodge Dakota Club Cab 2007 1.05% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 99.94% Volvo 240 Sedan 1993 0.04% Ford Ranger SuperCab 2011 0.01% Volvo XC90 SUV 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 96.45% Hyundai Genesis Sedan 2012 1.95% Honda Accord Coupe 2012 1.52% Acura TL Type-S 2008 0.02% Honda Odyssey Minivan 2012 0.02% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2007 84.87% Dodge Dakota Club Cab 2007 11.12% Dodge Caliber Wagon 2012 2.52% Cadillac Escalade EXT Crew Cab 2007 0.99% Dodge Ram Pickup 3500 Quad Cab 2009 0.2% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 47.21% Aston Martin V8 Vantage Convertible 2012 27.81% Ferrari California Convertible 2012 19.57% Ferrari FF Coupe 2012 3.38% Ferrari 458 Italia Coupe 2012 1.52% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Bugatti Veyron 16.4 Convertible 2009 32.05% Spyker C8 Coupe 2009 30.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 28.26% Ford GT Coupe 2006 9.06% Bugatti Veyron 16.4 Coupe 2009 0.16% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 33.58% Mercedes-Benz 300-Class Convertible 1993 32.5% Ford F-150 Regular Cab 2007 19.36% Eagle Talon Hatchback 1998 3.16% Volvo 240 Sedan 1993 1.37% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 98.55% Scion xD Hatchback 2012 0.61% Land Rover LR2 SUV 2012 0.2% Honda Odyssey Minivan 2012 0.2% Honda Odyssey Minivan 2007 0.16% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 68.05% Mitsubishi Lancer Sedan 2012 19.5% Audi S4 Sedan 2007 3.47% Hyundai Accent Sedan 2012 1.32% Toyota Camry Sedan 2012 1.06% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 94.18% Hyundai Tucson SUV 2012 5.27% Acura ZDX Hatchback 2012 0.42% Hyundai Veracruz SUV 2012 0.07% Volkswagen Golf Hatchback 2012 0.02% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Canyon Extended Cab 2012 29.02% Ford Ranger SuperCab 2011 24.14% Dodge Ram Pickup 3500 Crew Cab 2010 21.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.37% Isuzu Ascender SUV 2008 4.15% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 53.69% Aston Martin V8 Vantage Coupe 2012 23.13% Lamborghini Diablo Coupe 2001 7.48% Dodge Challenger SRT8 2011 3.27% Dodge Charger Sedan 2012 2.63% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Hyundai Tucson SUV 2012 57.45% Acura ZDX Hatchback 2012 27.22% BMW X6 SUV 2012 5.38% Hyundai Veracruz SUV 2012 2.97% BMW X3 SUV 2012 2.78% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 71.15% Mercedes-Benz 300-Class Convertible 1993 13.23% Chevrolet Impala Sedan 2007 6.63% Nissan 240SX Coupe 1998 3.92% Geo Metro Convertible 1993 2.59% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 72.79% Ferrari FF Coupe 2012 11.27% Bugatti Veyron 16.4 Coupe 2009 10.49% Lamborghini Aventador Coupe 2012 2.88% Aston Martin Virage Coupe 2012 2.18% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Volvo XC90 SUV 2007 39.92% Daewoo Nubira Wagon 2002 25.4% Jeep Liberty SUV 2012 4.81% GMC Acadia SUV 2012 4.35% Buick Enclave SUV 2012 3.95% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 15.75% Lamborghini Aventador Coupe 2012 9.68% Ford GT Coupe 2006 9.46% Lamborghini Diablo Coupe 2001 9.4% Lamborghini Reventon Coupe 2008 6.19% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Mazda Tribute SUV 2011 34.28% Cadillac CTS-V Sedan 2012 29.4% HUMMER H2 SUT Crew Cab 2009 16.89% Ford F-450 Super Duty Crew Cab 2012 6.54% Ford F-150 Regular Cab 2007 5.76% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 97.99% Ford Mustang Convertible 2007 1.68% Audi 100 Wagon 1994 0.28% Mercedes-Benz 300-Class Convertible 1993 0.02% BMW X5 SUV 2007 0.01% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 92.78% Chevrolet Express Cargo Van 2007 5.06% Chevrolet Express Van 2007 2.07% Ford F-150 Regular Cab 2012 0.03% Ford Ranger SuperCab 2011 0.02% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Toyota Corolla Sedan 2012 29.94% Jaguar XK XKR 2012 26.13% Audi TT RS Coupe 2012 17.65% Ford Fiesta Sedan 2012 6.71% Honda Accord Coupe 2012 5.58% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Toyota Corolla Sedan 2012 93.25% Acura RL Sedan 2012 1.53% Hyundai Accent Sedan 2012 0.72% Toyota Camry Sedan 2012 0.68% Buick Verano Sedan 2012 0.62% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.95% Chevrolet Silverado 2500HD Regular Cab 2012 0.04% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Honda Accord Coupe 2012 32.18% Hyundai Sonata Hybrid Sedan 2012 19.46% Buick Verano Sedan 2012 9.42% Honda Odyssey Minivan 2012 6.33% Dodge Charger Sedan 2012 6.04% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 93.62% GMC Canyon Extended Cab 2012 3.02% Dodge Dakota Club Cab 2007 1.29% Ford F-150 Regular Cab 2012 0.9% Ford E-Series Wagon Van 2012 0.61% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 100.0% Jeep Liberty SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% Jeep Compass SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 BMW X3 SUV 2012 85.22% Nissan NV Passenger Van 2012 13.32% BMW X5 SUV 2007 0.69% Jeep Compass SUV 2012 0.5% Ford E-Series Wagon Van 2012 0.09% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Honda Odyssey Minivan 2007 0.0% Land Rover LR2 SUV 2012 0.0% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Toyota 4Runner SUV 2012 53.54% Chevrolet Avalanche Crew Cab 2012 18.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.2% Chevrolet Tahoe Hybrid SUV 2012 3.32% GMC Terrain SUV 2012 2.17% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Dodge Durango SUV 2007 0.0% BMW X3 SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% Dodge Magnum Wagon 2008 0.0% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Hyundai Veracruz SUV 2012 69.73% Land Rover Range Rover SUV 2012 18.96% Hyundai Elantra Sedan 2007 7.79% Land Rover LR2 SUV 2012 0.69% Volkswagen Golf Hatchback 2012 0.36% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Club Cab 2007 79.19% Dodge Caliber Wagon 2007 19.09% Dodge Dakota Crew Cab 2010 1.35% Land Rover LR2 SUV 2012 0.21% Dodge Caliber Wagon 2012 0.12% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.84% Aston Martin Virage Convertible 2012 0.1% Chevrolet Corvette ZR1 2012 0.04% Jaguar XK XKR 2012 0.02% Aston Martin V8 Vantage Convertible 2012 0.0% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 71.13% Chevrolet Avalanche Crew Cab 2012 12.62% Isuzu Ascender SUV 2008 6.17% Cadillac Escalade EXT Crew Cab 2007 4.92% Dodge Dakota Crew Cab 2010 1.44% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Infiniti G Coupe IPL 2012 35.93% Mercedes-Benz SL-Class Coupe 2009 13.72% Audi TTS Coupe 2012 9.58% Acura TL Type-S 2008 6.5% Mercedes-Benz C-Class Sedan 2012 6.04% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 64.92% Bugatti Veyron 16.4 Convertible 2009 17.89% Lamborghini Aventador Coupe 2012 15.71% Audi TT RS Coupe 2012 0.83% McLaren MP4-12C Coupe 2012 0.23% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Nissan Juke Hatchback 2012 76.37% Suzuki SX4 Hatchback 2012 18.2% Daewoo Nubira Wagon 2002 2.57% Buick Enclave SUV 2012 0.64% Suzuki Kizashi Sedan 2012 0.59% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Nissan 240SX Coupe 1998 63.05% Chrysler Crossfire Convertible 2008 9.62% Lincoln Town Car Sedan 2011 8.03% Chevrolet Cobalt SS 2010 3.75% Volvo 240 Sedan 1993 3.54% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 79.77% Chevrolet Silverado 2500HD Regular Cab 2012 8.67% Dodge Dakota Club Cab 2007 6.81% Ford F-150 Regular Cab 2007 1.6% Chevrolet Silverado 1500 Regular Cab 2012 1.52% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 98.03% Jeep Grand Cherokee SUV 2012 0.66% Chrysler Town and Country Minivan 2012 0.29% Cadillac Escalade EXT Crew Cab 2007 0.25% GMC Canyon Extended Cab 2012 0.23% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 96.6% AM General Hummer SUV 2000 3.35% Jeep Wrangler SUV 2012 0.03% HUMMER H3T Crew Cab 2010 0.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 47.43% Jeep Wrangler SUV 2012 13.59% AM General Hummer SUV 2000 12.19% FIAT 500 Abarth 2012 11.96% Jeep Patriot SUV 2012 7.42% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 38.66% Mercedes-Benz SL-Class Coupe 2009 34.4% Daewoo Nubira Wagon 2002 15.07% Chevrolet Corvette ZR1 2012 2.74% Hyundai Elantra Touring Hatchback 2012 1.73% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Jeep Grand Cherokee SUV 2012 89.48% Chrysler Aspen SUV 2009 2.54% Toyota Sequoia SUV 2012 1.67% Toyota 4Runner SUV 2012 1.42% Dodge Dakota Crew Cab 2010 0.85% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 27.98% Buick Verano Sedan 2012 9.95% Ferrari FF Coupe 2012 8.71% Maybach Landaulet Convertible 2012 5.9% Toyota Camry Sedan 2012 3.95% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Hyundai Veracruz SUV 2012 70.41% Volvo XC90 SUV 2007 14.28% Chevrolet Traverse SUV 2012 6.59% Honda Odyssey Minivan 2007 3.78% Chevrolet Impala Sedan 2007 3.1% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Jeep Compass SUV 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Dodge Durango SUV 2007 0.0% BMW X5 SUV 2007 0.0% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 FIAT 500 Abarth 2012 49.98% Spyker C8 Convertible 2009 22.42% Ford GT Coupe 2006 22.07% Bugatti Veyron 16.4 Coupe 2009 3.61% Mercedes-Benz SL-Class Coupe 2009 0.61% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 99.0% Eagle Talon Hatchback 1998 0.95% Ford Focus Sedan 2007 0.05% Audi V8 Sedan 1994 0.0% Daewoo Nubira Wagon 2002 0.0% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 BMW X6 SUV 2012 85.4% Ford Mustang Convertible 2007 6.68% Nissan 240SX Coupe 1998 1.18% Chevrolet Cobalt SS 2010 1.11% Honda Accord Coupe 2012 0.91% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.95% Chrysler PT Cruiser Convertible 2008 0.02% smart fortwo Convertible 2012 0.02% Daewoo Nubira Wagon 2002 0.01% Plymouth Neon Coupe 1999 0.0% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 59.04% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 23.98% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.7% Chevrolet Silverado 1500 Extended Cab 2012 4.37% Ford F-450 Super Duty Crew Cab 2012 3.27% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 GMC Acadia SUV 2012 80.7% Dodge Caliber Wagon 2007 14.84% Cadillac SRX SUV 2012 1.96% Chevrolet Traverse SUV 2012 1.27% Dodge Caliber Wagon 2012 0.51% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Aston Martin Virage Coupe 2012 68.13% Aston Martin V8 Vantage Coupe 2012 7.32% HUMMER H3T Crew Cab 2010 3.09% McLaren MP4-12C Coupe 2012 3.07% Volvo 240 Sedan 1993 2.4% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 45.84% Audi TT RS Coupe 2012 44.56% Bugatti Veyron 16.4 Coupe 2009 9.48% Bugatti Veyron 16.4 Convertible 2009 0.07% Lamborghini Aventador Coupe 2012 0.02% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Lincoln Town Car Sedan 2011 57.63% Chevrolet Monte Carlo Coupe 2007 30.42% Chevrolet Malibu Sedan 2007 4.28% Chevrolet Impala Sedan 2007 2.52% GMC Terrain SUV 2012 1.68% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Mercedes-Benz 300-Class Convertible 1993 68.69% BMW 6 Series Convertible 2007 14.39% Chevrolet Monte Carlo Coupe 2007 10.96% Lincoln Town Car Sedan 2011 4.71% Chevrolet Impala Sedan 2007 0.46% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 63.97% Ford F-150 Regular Cab 2012 29.48% Dodge Ram Pickup 3500 Quad Cab 2009 5.85% Dodge Dakota Club Cab 2007 0.25% HUMMER H3T Crew Cab 2010 0.15% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2007 63.78% Ford GT Coupe 2006 15.94% Bentley Continental Supersports Conv. Convertible 2012 12.7% Bentley Continental GT Coupe 2012 3.82% Jaguar XK XKR 2012 1.01% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 95.29% Chevrolet Sonic Sedan 2012 1.91% Toyota Corolla Sedan 2012 1.69% Chevrolet HHR SS 2010 0.24% Chevrolet TrailBlazer SS 2009 0.12% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Spyker C8 Coupe 2009 99.13% Spyker C8 Convertible 2009 0.63% Volvo C30 Hatchback 2012 0.14% Dodge Challenger SRT8 2011 0.03% smart fortwo Convertible 2012 0.02% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Dodge Charger SRT-8 2009 29.79% Dodge Journey SUV 2012 24.22% Chevrolet Camaro Convertible 2012 13.5% Dodge Durango SUV 2012 7.96% Chrysler Sebring Convertible 2010 5.37% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Hyundai Veracruz SUV 2012 62.14% Suzuki Aerio Sedan 2007 23.95% Acura ZDX Hatchback 2012 4.32% Hyundai Tucson SUV 2012 2.9% Dodge Caravan Minivan 1997 1.51% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 98.81% GMC Savana Van 2012 0.34% Volkswagen Golf Hatchback 1991 0.34% Chevrolet Express Van 2007 0.31% Dodge Ram Pickup 3500 Quad Cab 2009 0.1% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 98.91% Dodge Caliber Wagon 2007 1.03% Chrysler PT Cruiser Convertible 2008 0.05% Mazda Tribute SUV 2011 0.0% Nissan Leaf Hatchback 2012 0.0% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Nissan NV Passenger Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Ford Expedition EL SUV 2009 0.0% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.33% BMW 1 Series Coupe 2012 0.39% Hyundai Sonata Sedan 2012 0.23% Ferrari 458 Italia Coupe 2012 0.04% Audi S4 Sedan 2012 0.0% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 33.05% Bentley Continental GT Coupe 2007 23.82% BMW M5 Sedan 2010 14.57% Audi S6 Sedan 2011 7.07% Hyundai Veloster Hatchback 2012 5.57% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Toyota Camry Sedan 2012 68.6% Acura TSX Sedan 2012 16.55% Acura TL Sedan 2012 5.93% Hyundai Sonata Sedan 2012 5.2% Chevrolet Malibu Hybrid Sedan 2010 2.68% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 74.95% HUMMER H2 SUT Crew Cab 2009 8.44% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.13% Volvo XC90 SUV 2007 2.98% GMC Yukon Hybrid SUV 2012 1.76% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Acura Integra Type R 2001 0.0% Hyundai Veloster Hatchback 2012 0.0% Dodge Challenger SRT8 2011 0.0% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Sonata Sedan 2012 98.22% Hyundai Elantra Sedan 2007 1.77% Toyota Camry Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.28% Chevrolet Corvette ZR1 2012 0.47% MINI Cooper Roadster Convertible 2012 0.24% Chevrolet Corvette Convertible 2012 0.01% Bentley Continental Supersports Conv. Convertible 2012 0.0% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 91.32% Dodge Ram Pickup 3500 Quad Cab 2009 5.52% HUMMER H3T Crew Cab 2010 1.97% Ford F-450 Super Duty Crew Cab 2012 0.71% HUMMER H2 SUT Crew Cab 2009 0.34% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Chevrolet Impala Sedan 2007 65.07% Dodge Caliber Wagon 2012 14.19% Suzuki SX4 Hatchback 2012 6.72% Volvo XC90 SUV 2007 6.05% Chevrolet Traverse SUV 2012 5.42% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 99.9% Ford GT Coupe 2006 0.03% Dodge Charger Sedan 2012 0.02% Dodge Challenger SRT8 2011 0.02% Chrysler Crossfire Convertible 2008 0.01% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.63% Dodge Sprinter Cargo Van 2009 0.37% Volkswagen Golf Hatchback 1991 0.0% Chevrolet Express Van 2007 0.0% Audi V8 Sedan 1994 0.0% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 100.0% Chrysler Sebring Convertible 2010 0.0% Hyundai Azera Sedan 2012 0.0% Chevrolet Malibu Hybrid Sedan 2010 0.0% Acura TL Type-S 2008 0.0% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 55.02% Rolls-Royce Phantom Drophead Coupe Convertible 2012 31.81% Aston Martin V8 Vantage Coupe 2012 8.16% Mercedes-Benz 300-Class Convertible 1993 2.67% Lamborghini Reventon Coupe 2008 0.93% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Toyota Camry Sedan 2012 50.22% Chevrolet Malibu Hybrid Sedan 2010 8.65% Acura TSX Sedan 2012 8.23% BMW 1 Series Convertible 2012 4.43% Hyundai Elantra Sedan 2007 4.41% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 91.93% Rolls-Royce Ghost Sedan 2012 4.95% Dodge Charger Sedan 2012 1.46% AM General Hummer SUV 2000 0.43% Jeep Patriot SUV 2012 0.37% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 BMW M5 Sedan 2010 82.54% Audi S5 Coupe 2012 4.58% Acura RL Sedan 2012 2.46% Chevrolet Sonic Sedan 2012 1.88% Dodge Charger Sedan 2012 1.84% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 56.67% Acura Integra Type R 2001 42.81% Chevrolet Camaro Convertible 2012 0.31% Chevrolet Cobalt SS 2010 0.09% Geo Metro Convertible 1993 0.08% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Cadillac SRX SUV 2012 26.26% BMW X3 SUV 2012 19.54% Chevrolet Traverse SUV 2012 15.62% Toyota Sequoia SUV 2012 9.42% Dodge Caliber Wagon 2012 4.3% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 99.86% Audi S4 Sedan 2007 0.1% Dodge Charger Sedan 2012 0.02% Audi S4 Sedan 2012 0.0% BMW M3 Coupe 2012 0.0% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Scion xD Hatchback 2012 11.8% Dodge Caliber Wagon 2012 7.83% Volkswagen Golf Hatchback 1991 7.23% Dodge Magnum Wagon 2008 6.83% BMW 1 Series Coupe 2012 6.68% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Chevrolet Monte Carlo Coupe 2007 83.66% Chevrolet Impala Sedan 2007 15.34% Volkswagen Golf Hatchback 2012 0.43% Plymouth Neon Coupe 1999 0.23% Daewoo Nubira Wagon 2002 0.18% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Plymouth Neon Coupe 1999 28.84% Eagle Talon Hatchback 1998 17.86% Chevrolet Impala Sedan 2007 13.27% Ford Freestar Minivan 2007 9.79% Chevrolet Malibu Sedan 2007 3.46% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 96.99% Audi 100 Sedan 1994 2.14% Volkswagen Golf Hatchback 1991 0.8% Audi V8 Sedan 1994 0.05% Plymouth Neon Coupe 1999 0.01% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 75.33% Chevrolet Express Cargo Van 2007 24.42% GMC Savana Van 2012 0.25% Dodge Sprinter Cargo Van 2009 0.0% Chevrolet Traverse SUV 2012 0.0% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Bentley Continental Supersports Conv. Convertible 2012 45.48% BMW Z4 Convertible 2012 19.89% Bentley Mulsanne Sedan 2011 12.47% Fisker Karma Sedan 2012 5.78% Ford Mustang Convertible 2007 4.61% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 99.78% Chevrolet Avalanche Crew Cab 2012 0.14% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.03% GMC Yukon Hybrid SUV 2012 0.02% Dodge Dakota Club Cab 2007 0.01% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 BMW 6 Series Convertible 2007 56.06% Aston Martin Virage Coupe 2012 22.64% Bentley Continental GT Coupe 2012 4.14% Aston Martin V8 Vantage Convertible 2012 3.57% Aston Martin Virage Convertible 2012 3.56% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.98% Audi 100 Sedan 1994 0.01% Audi 100 Wagon 1994 0.01% Volkswagen Golf Hatchback 1991 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 BMW Z4 Convertible 2012 68.24% Chevrolet Corvette Convertible 2012 13.15% Audi TT Hatchback 2011 5.98% Audi TT RS Coupe 2012 4.32% Mitsubishi Lancer Sedan 2012 1.47% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 47.9% Isuzu Ascender SUV 2008 21.29% Chrysler Aspen SUV 2009 18.78% Ford F-150 Regular Cab 2012 2.5% Dodge Dakota Club Cab 2007 2.12% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 73.88% Dodge Sprinter Cargo Van 2009 25.93% Honda Accord Sedan 2012 0.12% Suzuki Aerio Sedan 2007 0.01% Acura TL Type-S 2008 0.01% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.75% Chevrolet Express Van 2007 0.14% Volkswagen Golf Hatchback 1991 0.05% Buick Rainier SUV 2007 0.02% Ford E-Series Wagon Van 2012 0.02% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Cadillac CTS-V Sedan 2012 95.99% BMW 3 Series Sedan 2012 1.6% Buick Regal GS 2012 1.17% Mercedes-Benz C-Class Sedan 2012 0.66% BMW 1 Series Coupe 2012 0.15% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 93.68% Land Rover LR2 SUV 2012 3.54% Toyota 4Runner SUV 2012 1.87% BMW X3 SUV 2012 0.22% Jeep Liberty SUV 2012 0.18% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 96.18% Volvo C30 Hatchback 2012 1.6% Hyundai Veloster Hatchback 2012 0.7% McLaren MP4-12C Coupe 2012 0.46% Bentley Continental GT Coupe 2012 0.16% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 smart fortwo Convertible 2012 46.42% Bugatti Veyron 16.4 Coupe 2009 17.88% Spyker C8 Convertible 2009 15.06% Ford GT Coupe 2006 7.83% Audi RS 4 Convertible 2008 2.14% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 91.99% Buick Regal GS 2012 4.12% Dodge Challenger SRT8 2011 2.7% Chrysler 300 SRT-8 2010 0.94% Dodge Charger Sedan 2012 0.19% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.32% Ford F-150 Regular Cab 2007 0.34% Nissan NV Passenger Van 2012 0.32% Dodge Dakota Club Cab 2007 0.01% Ram C/V Cargo Van Minivan 2012 0.01% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 82.72% Mercedes-Benz E-Class Sedan 2012 5.08% Mercedes-Benz S-Class Sedan 2012 3.5% Bentley Mulsanne Sedan 2011 2.18% Suzuki Kizashi Sedan 2012 1.82% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 88.88% BMW M5 Sedan 2010 8.76% Jeep Compass SUV 2012 0.43% Chrysler 300 SRT-8 2010 0.31% BMW X5 SUV 2007 0.31% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Aston Martin V8 Vantage Coupe 2012 25.62% Chevrolet Corvette Ron Fellows Edition Z06 2007 16.43% Acura TL Type-S 2008 11.29% Dodge Challenger SRT8 2011 10.69% Rolls-Royce Phantom Sedan 2012 7.21% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 78.66% Hyundai Accent Sedan 2012 21.34% Scion xD Hatchback 2012 0.0% Hyundai Tucson SUV 2012 0.0% Toyota Corolla Sedan 2012 0.0% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Honda Odyssey Minivan 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Dakota Club Cab 2007 82.83% Isuzu Ascender SUV 2008 10.16% Chevrolet Silverado 1500 Extended Cab 2012 2.33% Dodge Dakota Crew Cab 2010 1.97% Ford E-Series Wagon Van 2012 1.03% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Jaguar XK XKR 2012 51.52% Fisker Karma Sedan 2012 19.84% Hyundai Azera Sedan 2012 17.44% Chevrolet Sonic Sedan 2012 2.78% Acura ZDX Hatchback 2012 2.26% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Canyon Extended Cab 2012 80.25% Ford F-150 Regular Cab 2007 15.03% Chevrolet Silverado 1500 Extended Cab 2012 4.44% Dodge Dakota Club Cab 2007 0.11% Dodge Ram Pickup 3500 Quad Cab 2009 0.1% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Rolls-Royce Phantom Drophead Coupe Convertible 2012 35.39% Mercedes-Benz 300-Class Convertible 1993 34.67% Chevrolet Monte Carlo Coupe 2007 13.17% BMW M6 Convertible 2010 2.54% Acura TSX Sedan 2012 2.42% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 82.77% Land Rover LR2 SUV 2012 9.49% Scion xD Hatchback 2012 1.89% Cadillac SRX SUV 2012 1.09% Acura RL Sedan 2012 0.87% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 30.93% Scion xD Hatchback 2012 27.6% Acura TSX Sedan 2012 25.9% Hyundai Accent Sedan 2012 4.33% Toyota Camry Sedan 2012 4.11% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Infiniti QX56 SUV 2011 74.07% Dodge Journey SUV 2012 19.18% Dodge Durango SUV 2012 1.91% Toyota Sequoia SUV 2012 1.28% Dodge Dakota Crew Cab 2010 1.09% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 99.77% Audi 100 Wagon 1994 0.06% Volvo 240 Sedan 1993 0.05% Ford Ranger SuperCab 2011 0.05% Buick Rainier SUV 2007 0.03% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Tesla Model S Sedan 2012 42.82% Eagle Talon Hatchback 1998 35.39% Audi TTS Coupe 2012 5.57% Acura ZDX Hatchback 2012 5.14% Mitsubishi Lancer Sedan 2012 3.5% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 GMC Canyon Extended Cab 2012 27.73% Audi 100 Wagon 1994 20.86% Ford F-150 Regular Cab 2007 16.7% Dodge Ram Pickup 3500 Quad Cab 2009 10.53% Ford F-450 Super Duty Crew Cab 2012 5.11% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 91.11% Chevrolet Corvette Convertible 2012 6.79% Audi S5 Convertible 2012 1.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.26% Spyker C8 Convertible 2009 0.13% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 96.53% Spyker C8 Convertible 2009 1.67% Spyker C8 Coupe 2009 0.66% Nissan Juke Hatchback 2012 0.55% Jeep Patriot SUV 2012 0.27% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Chevrolet Sonic Sedan 2012 59.45% Chevrolet Malibu Hybrid Sedan 2010 18.01% Bentley Continental GT Coupe 2007 11.94% Bentley Continental Flying Spur Sedan 2007 4.4% Tesla Model S Sedan 2012 3.49% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 100.0% Dodge Charger SRT-8 2009 0.0% Chevrolet Corvette Convertible 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Corvette Convertible 2012 82.58% Chevrolet Camaro Convertible 2012 4.95% Chevrolet Cobalt SS 2010 3.3% Chrysler Crossfire Convertible 2008 2.32% Acura Integra Type R 2001 1.74% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 99.34% Chevrolet Corvette Convertible 2012 0.23% Volkswagen Golf Hatchback 2012 0.07% Porsche Panamera Sedan 2012 0.06% Bugatti Veyron 16.4 Coupe 2009 0.06% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 67.14% HUMMER H2 SUT Crew Cab 2009 21.61% Toyota 4Runner SUV 2012 6.78% Chevrolet TrailBlazer SS 2009 0.8% Mazda Tribute SUV 2011 0.68% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 100.0% Isuzu Ascender SUV 2008 0.0% Dodge Dakota Club Cab 2007 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz E-Class Sedan 2012 33.37% Acura RL Sedan 2012 13.98% Hyundai Azera Sedan 2012 11.08% Mitsubishi Lancer Sedan 2012 6.32% Honda Accord Sedan 2012 5.23% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 66.62% Suzuki Aerio Sedan 2007 10.04% Acura Integra Type R 2001 9.07% Nissan 240SX Coupe 1998 2.36% Mitsubishi Lancer Sedan 2012 1.48% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Dodge Durango SUV 2007 30.04% Buick Enclave SUV 2012 21.53% Toyota Sequoia SUV 2012 15.91% Hyundai Veracruz SUV 2012 12.55% Jeep Liberty SUV 2012 4.78% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.31% Land Rover LR2 SUV 2012 0.68% Honda Odyssey Minivan 2012 0.01% Land Rover Range Rover SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Ranger SuperCab 2011 36.96% Ford Expedition EL SUV 2009 32.23% Ford F-450 Super Duty Crew Cab 2012 7.32% Ford F-150 Regular Cab 2012 4.36% Ford Edge SUV 2012 4.3% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 96.82% Ford F-150 Regular Cab 2007 3.18% GMC Canyon Extended Cab 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 67.49% Dodge Dakota Club Cab 2007 22.43% Ram C/V Cargo Van Minivan 2012 5.24% Dodge Dakota Crew Cab 2010 4.49% Dodge Durango SUV 2012 0.1% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Ford Mustang Convertible 2007 88.68% Honda Accord Coupe 2012 3.91% Hyundai Accent Sedan 2012 3.79% Acura RL Sedan 2012 1.38% Chevrolet Sonic Sedan 2012 0.59% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Dodge Caliber Wagon 2012 59.48% Dodge Caliber Wagon 2007 26.84% Dodge Durango SUV 2012 6.12% Volvo XC90 SUV 2007 1.6% Dodge Ram Pickup 3500 Crew Cab 2010 1.42% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 95.77% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.01% Bentley Continental Flying Spur Sedan 2007 0.08% Bentley Continental GT Coupe 2012 0.07% BMW ActiveHybrid 5 Sedan 2012 0.02% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 99.92% Chevrolet Silverado 1500 Extended Cab 2012 0.05% Dodge Dakota Crew Cab 2010 0.01% Dodge Dakota Club Cab 2007 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.01% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 97.08% Chevrolet Express Cargo Van 2007 1.6% Chevrolet Express Van 2007 1.32% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Volvo 240 Sedan 1993 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Aston Martin V8 Vantage Convertible 2012 84.16% Audi R8 Coupe 2012 4.77% Audi TTS Coupe 2012 3.65% Lamborghini Reventon Coupe 2008 3.32% Aston Martin V8 Vantage Coupe 2012 2.48% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 49.44% Chevrolet Sonic Sedan 2012 14.91% Dodge Caliber Wagon 2012 14.69% Dodge Charger Sedan 2012 6.68% BMW X3 SUV 2012 5.29% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 91.96% Dodge Dakota Crew Cab 2010 6.34% Jeep Compass SUV 2012 1.24% Rolls-Royce Ghost Sedan 2012 0.2% Chevrolet Avalanche Crew Cab 2012 0.19% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 89.79% Ferrari 458 Italia Convertible 2012 8.09% Chevrolet Corvette Convertible 2012 1.07% Lamborghini Aventador Coupe 2012 0.66% Ferrari 458 Italia Coupe 2012 0.32% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Infiniti QX56 SUV 2011 32.15% Acura ZDX Hatchback 2012 29.38% Volkswagen Beetle Hatchback 2012 9.59% Chrysler Crossfire Convertible 2008 8.56% Mercedes-Benz E-Class Sedan 2012 5.29% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Ferrari California Convertible 2012 44.55% Ferrari 458 Italia Convertible 2012 24.23% Ferrari 458 Italia Coupe 2012 10.11% Honda Accord Coupe 2012 7.96% Ferrari FF Coupe 2012 3.84% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 95.78% Chrysler Town and Country Minivan 2012 2.79% Ram C/V Cargo Van Minivan 2012 1.38% Dodge Caravan Minivan 1997 0.03% Nissan NV Passenger Van 2012 0.01% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Chevrolet Cobalt SS 2010 25.94% Nissan 240SX Coupe 1998 17.82% Dodge Magnum Wagon 2008 10.99% Chevrolet Malibu Hybrid Sedan 2010 9.69% Audi S4 Sedan 2007 7.74% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.93% Buick Regal GS 2012 0.05% Ford Edge SUV 2012 0.01% Chevrolet Sonic Sedan 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Bentley Continental Flying Spur Sedan 2007 29.51% Ford Mustang Convertible 2007 26.75% Chevrolet Corvette ZR1 2012 24.51% Volkswagen Beetle Hatchback 2012 3.59% Chrysler Crossfire Convertible 2008 2.92% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 99.08% Dodge Sprinter Cargo Van 2009 0.41% Audi 100 Sedan 1994 0.29% Volkswagen Beetle Hatchback 2012 0.18% Nissan Leaf Hatchback 2012 0.01% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 75.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 18.52% Chevrolet Silverado 1500 Extended Cab 2012 6.07% Chevrolet Silverado 2500HD Regular Cab 2012 0.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Bentley Continental GT Coupe 2007 47.25% BMW X6 SUV 2012 11.1% Chevrolet Corvette ZR1 2012 10.1% Porsche Panamera Sedan 2012 5.6% Buick Verano Sedan 2012 4.9% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 85.46% Mercedes-Benz C-Class Sedan 2012 9.63% Mercedes-Benz S-Class Sedan 2012 2.82% Cadillac CTS-V Sedan 2012 1.12% Bugatti Veyron 16.4 Convertible 2009 0.31% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 BMW 1 Series Coupe 2012 35.35% Acura TSX Sedan 2012 19.12% Acura RL Sedan 2012 14.08% Suzuki SX4 Sedan 2012 8.27% BMW 1 Series Convertible 2012 7.61% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.92% Hyundai Azera Sedan 2012 0.07% Acura TL Type-S 2008 0.0% Toyota Camry Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 93.78% Bentley Continental GT Coupe 2007 6.06% Bentley Continental GT Coupe 2012 0.1% Buick Verano Sedan 2012 0.04% Volkswagen Beetle Hatchback 2012 0.02% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Ford Edge SUV 2012 71.41% Honda Odyssey Minivan 2012 27.25% Hyundai Santa Fe SUV 2012 0.61% Hyundai Sonata Sedan 2012 0.37% Ford Expedition EL SUV 2009 0.26% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Aston Martin Virage Convertible 2012 11.8% Fisker Karma Sedan 2012 8.55% Nissan Juke Hatchback 2012 6.55% Mercedes-Benz SL-Class Coupe 2009 5.95% Jaguar XK XKR 2012 4.65% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 99.91% FIAT 500 Abarth 2012 0.08% Spyker C8 Coupe 2009 0.01% Bentley Arnage Sedan 2009 0.0% Lamborghini Reventon Coupe 2008 0.0% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Audi S6 Sedan 2011 86.52% Audi S5 Coupe 2012 4.5% Fisker Karma Sedan 2012 2.0% Chevrolet Camaro Convertible 2012 1.68% Bentley Continental GT Coupe 2007 1.31% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 92.87% Ferrari 458 Italia Coupe 2012 6.33% Ferrari 458 Italia Convertible 2012 0.64% Ferrari California Convertible 2012 0.07% McLaren MP4-12C Coupe 2012 0.06% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 54.62% BMW 6 Series Convertible 2007 15.63% BMW M5 Sedan 2010 6.22% BMW 1 Series Convertible 2012 5.85% Dodge Durango SUV 2012 5.71% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Suzuki SX4 Sedan 2012 74.77% Chrysler Town and Country Minivan 2012 14.4% BMW X3 SUV 2012 4.68% Dodge Magnum Wagon 2008 2.55% Cadillac SRX SUV 2012 1.16% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 50.04% Dodge Ram Pickup 3500 Crew Cab 2010 42.59% Cadillac Escalade EXT Crew Cab 2007 3.88% Ford E-Series Wagon Van 2012 2.11% Nissan NV Passenger Van 2012 0.65% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 63.52% Ford GT Coupe 2006 6.35% Nissan Leaf Hatchback 2012 4.57% Chevrolet Sonic Sedan 2012 4.35% Hyundai Accent Sedan 2012 4.27% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Spyker C8 Convertible 2009 26.07% Audi S5 Coupe 2012 16.66% Fisker Karma Sedan 2012 14.81% Infiniti G Coupe IPL 2012 8.91% BMW M6 Convertible 2010 8.63% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 100.0% Lamborghini Diablo Coupe 2001 0.0% BMW Z4 Convertible 2012 0.0% Spyker C8 Coupe 2009 0.0% McLaren MP4-12C Coupe 2012 0.0% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford F-150 Regular Cab 2007 0.0% Jeep Patriot SUV 2012 0.0% GMC Acadia SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.96% FIAT 500 Convertible 2012 0.04% Geo Metro Convertible 1993 0.0% Suzuki SX4 Hatchback 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 96.1% Hyundai Tucson SUV 2012 3.87% Hyundai Veracruz SUV 2012 0.02% Toyota 4Runner SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 97.17% Spyker C8 Coupe 2009 1.88% Ferrari California Convertible 2012 0.32% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.29% Dodge Challenger SRT8 2011 0.14% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Scion xD Hatchback 2012 23.63% Chevrolet Impala Sedan 2007 19.14% Chrysler 300 SRT-8 2010 17.71% Chevrolet Malibu Sedan 2007 14.88% Chevrolet Monte Carlo Coupe 2007 6.18% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Audi A5 Coupe 2012 19.48% Audi S5 Coupe 2012 18.04% BMW 1 Series Convertible 2012 15.48% Toyota Camry Sedan 2012 7.97% Jaguar XK XKR 2012 7.3% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 99.76% Dodge Dakota Club Cab 2007 0.21% Dodge Durango SUV 2007 0.03% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Chrysler Aspen SUV 2009 0.0% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 98.8% Jeep Compass SUV 2012 1.2% Jeep Patriot SUV 2012 0.0% BMW X5 SUV 2007 0.0% Jeep Wrangler SUV 2012 0.0% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 42.41% Hyundai Elantra Sedan 2007 28.52% Chevrolet Impala Sedan 2007 4.27% Buick Verano Sedan 2012 3.69% Suzuki SX4 Hatchback 2012 3.53% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Scion xD Hatchback 2012 63.13% Nissan Juke Hatchback 2012 8.56% Hyundai Veloster Hatchback 2012 8.5% Volkswagen Golf Hatchback 2012 4.55% Ford Fiesta Sedan 2012 4.11% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 BMW 6 Series Convertible 2007 42.71% Mercedes-Benz E-Class Sedan 2012 24.09% Audi S5 Convertible 2012 7.04% Mercedes-Benz SL-Class Coupe 2009 6.64% Mercedes-Benz C-Class Sedan 2012 5.95% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2012 79.51% Bentley Continental GT Coupe 2007 8.97% Suzuki Kizashi Sedan 2012 8.48% Buick Verano Sedan 2012 1.13% Buick Regal GS 2012 0.72% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 93.85% Bentley Continental GT Coupe 2012 2.01% Cadillac CTS-V Sedan 2012 1.9% Bentley Continental Flying Spur Sedan 2007 1.22% Suzuki Kizashi Sedan 2012 0.59% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 40.51% GMC Canyon Extended Cab 2012 39.34% Ford E-Series Wagon Van 2012 10.52% Ford F-150 Regular Cab 2012 7.53% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.02% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 36.7% Spyker C8 Coupe 2009 20.13% Lamborghini Diablo Coupe 2001 9.36% BMW Z4 Convertible 2012 7.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.08% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 99.77% Suzuki Kizashi Sedan 2012 0.22% Bentley Continental GT Coupe 2012 0.01% Bentley Continental GT Coupe 2007 0.0% Ford GT Coupe 2006 0.0% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 87.22% Dodge Dakota Crew Cab 2010 11.16% Dodge Ram Pickup 3500 Quad Cab 2009 1.58% Dodge Ram Pickup 3500 Crew Cab 2010 0.02% Dodge Durango SUV 2007 0.01% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Chevrolet Camaro Convertible 2012 44.17% BMW Z4 Convertible 2012 25.63% Chrysler Crossfire Convertible 2008 13.62% Acura Integra Type R 2001 5.99% Chevrolet Sonic Sedan 2012 2.6% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Tahoe Hybrid SUV 2012 91.59% Cadillac Escalade EXT Crew Cab 2007 6.83% Chevrolet Avalanche Crew Cab 2012 1.37% Isuzu Ascender SUV 2008 0.11% GMC Yukon Hybrid SUV 2012 0.08% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Chevrolet Camaro Convertible 2012 52.91% BMW M6 Convertible 2010 45.76% Jaguar XK XKR 2012 0.31% Aston Martin Virage Convertible 2012 0.2% Fisker Karma Sedan 2012 0.16% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 99.91% BMW M3 Coupe 2012 0.07% Audi TT Hatchback 2011 0.01% Mitsubishi Lancer Sedan 2012 0.0% Audi TTS Coupe 2012 0.0% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.99% Dodge Caravan Minivan 1997 0.01% Chevrolet Malibu Sedan 2007 0.0% Chevrolet TrailBlazer SS 2009 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 94.9% Chevrolet Tahoe Hybrid SUV 2012 4.05% GMC Yukon Hybrid SUV 2012 0.77% Isuzu Ascender SUV 2008 0.2% Chevrolet Avalanche Crew Cab 2012 0.04% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Chevrolet Corvette Convertible 2012 44.23% Nissan 240SX Coupe 1998 20.19% Honda Accord Coupe 2012 11.4% Chevrolet Camaro Convertible 2012 5.59% Eagle Talon Hatchback 1998 4.12% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 47.38% Dodge Durango SUV 2007 33.54% GMC Canyon Extended Cab 2012 3.44% GMC Acadia SUV 2012 2.16% Dodge Ram Pickup 3500 Quad Cab 2009 1.71% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 97.24% Ford Focus Sedan 2007 0.87% Hyundai Accent Sedan 2012 0.67% Toyota Corolla Sedan 2012 0.39% Volkswagen Golf Hatchback 2012 0.36% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 83.93% BMW M6 Convertible 2010 10.9% BMW X5 SUV 2007 4.29% BMW Z4 Convertible 2012 0.35% BMW X3 SUV 2012 0.3% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Chrysler PT Cruiser Convertible 2008 30.33% Chrysler Aspen SUV 2009 21.34% Ford Focus Sedan 2007 9.77% Chevrolet Malibu Sedan 2007 6.29% Volvo XC90 SUV 2007 5.63% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Bentley Mulsanne Sedan 2011 92.82% Rolls-Royce Phantom Sedan 2012 6.36% Cadillac CTS-V Sedan 2012 0.4% Maybach Landaulet Convertible 2012 0.17% Bentley Continental Flying Spur Sedan 2007 0.08% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 BMW 3 Series Sedan 2012 42.3% Audi S5 Coupe 2012 18.95% Audi TTS Coupe 2012 13.87% BMW M5 Sedan 2010 12.7% BMW 6 Series Convertible 2007 4.39% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 99.94% Volkswagen Golf Hatchback 1991 0.06% Bentley Continental Flying Spur Sedan 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% Bentley Continental GT Coupe 2007 0.0% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Acura Integra Type R 2001 98.0% Dodge Charger SRT-8 2009 0.72% Chevrolet Cobalt SS 2010 0.52% Bugatti Veyron 16.4 Coupe 2009 0.19% Plymouth Neon Coupe 1999 0.13% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Audi S4 Sedan 2012 24.77% Mitsubishi Lancer Sedan 2012 22.17% Acura TSX Sedan 2012 10.17% Acura TL Sedan 2012 8.89% BMW Z4 Convertible 2012 6.49% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 99.51% Audi S5 Coupe 2012 0.39% Audi S4 Sedan 2012 0.07% Audi S4 Sedan 2007 0.01% Audi S6 Sedan 2011 0.01% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 77.08% Land Rover LR2 SUV 2012 15.63% Ram C/V Cargo Van Minivan 2012 1.5% Dodge Durango SUV 2007 1.38% Chrysler Aspen SUV 2009 1.19% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 70.18% Honda Accord Coupe 2012 28.73% Hyundai Veracruz SUV 2012 0.3% Volkswagen Golf Hatchback 2012 0.27% Ford Fiesta Sedan 2012 0.13% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.56% Dodge Ram Pickup 3500 Quad Cab 2009 0.26% Ford E-Series Wagon Van 2012 0.09% Ford F-450 Super Duty Crew Cab 2012 0.06% Ford F-150 Regular Cab 2012 0.01% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 93.0% Chrysler 300 SRT-8 2010 2.91% Rolls-Royce Ghost Sedan 2012 2.48% BMW X6 SUV 2012 0.44% Ford Mustang Convertible 2007 0.36% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.75% Buick Rainier SUV 2007 0.12% Jeep Patriot SUV 2012 0.07% Isuzu Ascender SUV 2008 0.05% Audi 100 Wagon 1994 0.0% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 82.85% Dodge Dakota Club Cab 2007 16.36% GMC Canyon Extended Cab 2012 0.71% Jeep Liberty SUV 2012 0.04% Dodge Dakota Crew Cab 2010 0.01% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 GMC Yukon Hybrid SUV 2012 51.25% Cadillac Escalade EXT Crew Cab 2007 23.03% GMC Acadia SUV 2012 12.42% Cadillac SRX SUV 2012 3.45% Volvo XC90 SUV 2007 2.84% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 99.78% Buick Rainier SUV 2007 0.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% Volvo XC90 SUV 2007 0.01% Volkswagen Golf Hatchback 1991 0.0% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Cobalt SS 2010 30.26% Chevrolet Corvette Ron Fellows Edition Z06 2007 10.22% Suzuki Kizashi Sedan 2012 9.52% Honda Accord Sedan 2012 8.19% Mitsubishi Lancer Sedan 2012 3.28% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Suzuki SX4 Sedan 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Suzuki Kizashi Sedan 2012 0.0% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 65.74% Audi 100 Sedan 1994 24.77% Volvo 240 Sedan 1993 3.53% Audi V8 Sedan 1994 2.23% Plymouth Neon Coupe 1999 1.5% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Tesla Model S Sedan 2012 74.94% Lamborghini Reventon Coupe 2008 25.02% Scion xD Hatchback 2012 0.01% Porsche Panamera Sedan 2012 0.01% Audi S4 Sedan 2012 0.0% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 98.63% Chevrolet Malibu Sedan 2007 0.69% Toyota Camry Sedan 2012 0.39% Acura TL Sedan 2012 0.26% Hyundai Accent Sedan 2012 0.01% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 53.65% Hyundai Veloster Hatchback 2012 35.27% Lamborghini Diablo Coupe 2001 6.7% Mitsubishi Lancer Sedan 2012 2.32% Spyker C8 Convertible 2009 0.58% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 84.87% Dodge Ram Pickup 3500 Crew Cab 2010 9.14% Ford F-150 Regular Cab 2007 2.48% Audi 100 Sedan 1994 1.6% Audi V8 Sedan 1994 0.47% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Lamborghini Reventon Coupe 2008 87.89% Daewoo Nubira Wagon 2002 6.9% Audi 100 Wagon 1994 1.16% Nissan 240SX Coupe 1998 0.6% Audi V8 Sedan 1994 0.58% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Audi 100 Wagon 1994 91.12% Hyundai Veracruz SUV 2012 1.97% Eagle Talon Hatchback 1998 1.67% Hyundai Santa Fe SUV 2012 1.15% Acura ZDX Hatchback 2012 0.86% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 46.78% Chevrolet Impala Sedan 2007 26.25% Nissan Juke Hatchback 2012 14.71% Chevrolet Malibu Sedan 2007 7.23% Chevrolet Traverse SUV 2012 4.15% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 66.0% Toyota Camry Sedan 2012 20.87% Acura RL Sedan 2012 5.04% Chevrolet Impala Sedan 2007 4.43% Chevrolet Malibu Hybrid Sedan 2010 1.49% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2012 60.35% BMW X6 SUV 2012 29.88% Suzuki SX4 Hatchback 2012 4.75% Dodge Caliber Wagon 2007 2.16% BMW 1 Series Coupe 2012 0.63% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 99.66% Bentley Continental GT Coupe 2012 0.14% Bentley Mulsanne Sedan 2011 0.12% Maybach Landaulet Convertible 2012 0.04% Buick Regal GS 2012 0.02% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.21% GMC Yukon Hybrid SUV 2012 0.79% Cadillac SRX SUV 2012 0.0% GMC Terrain SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Nissan 240SX Coupe 1998 90.32% Plymouth Neon Coupe 1999 5.5% Acura Integra Type R 2001 1.07% Chevrolet Monte Carlo Coupe 2007 1.01% Mercedes-Benz 300-Class Convertible 1993 0.66% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Tesla Model S Sedan 2012 56.82% BMW 1 Series Convertible 2012 30.37% Audi TT Hatchback 2011 2.1% BMW 6 Series Convertible 2007 1.62% Audi S6 Sedan 2011 1.27% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Suzuki SX4 Sedan 2012 47.26% Toyota Camry Sedan 2012 10.44% Volkswagen Golf Hatchback 2012 8.42% Acura TSX Sedan 2012 6.45% BMW M5 Sedan 2010 4.78% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 62.39% Hyundai Elantra Sedan 2007 12.49% Audi S4 Sedan 2012 8.5% Toyota Camry Sedan 2012 7.19% Toyota Corolla Sedan 2012 4.03% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 89.43% Ford F-450 Super Duty Crew Cab 2012 6.46% GMC Yukon Hybrid SUV 2012 2.38% Cadillac SRX SUV 2012 0.78% Ford Expedition EL SUV 2009 0.72% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 39.94% HUMMER H3T Crew Cab 2010 10.24% FIAT 500 Abarth 2012 6.1% Bugatti Veyron 16.4 Coupe 2009 5.54% McLaren MP4-12C Coupe 2012 4.77% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Infiniti QX56 SUV 2011 87.09% Honda Odyssey Minivan 2007 3.0% Honda Odyssey Minivan 2012 2.91% Ford Edge SUV 2012 1.57% Mercedes-Benz E-Class Sedan 2012 1.49% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Hyundai Santa Fe SUV 2012 50.61% Hyundai Veracruz SUV 2012 20.57% Honda Odyssey Minivan 2012 17.66% Volkswagen Golf Hatchback 2012 4.11% Land Rover LR2 SUV 2012 2.02% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 98.81% Volvo XC90 SUV 2007 1.15% Ford F-150 Regular Cab 2012 0.02% HUMMER H2 SUT Crew Cab 2009 0.01% Ford F-450 Super Duty Crew Cab 2012 0.0% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 90.26% GMC Canyon Extended Cab 2012 5.22% Chevrolet Silverado 1500 Extended Cab 2012 2.09% Dodge Dakota Club Cab 2007 0.87% GMC Savana Van 2012 0.71% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 BMW 1 Series Convertible 2012 72.41% Spyker C8 Coupe 2009 11.89% Dodge Charger Sedan 2012 7.55% Volvo C30 Hatchback 2012 3.43% BMW X6 SUV 2012 1.06% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 99.6% Infiniti G Coupe IPL 2012 0.11% Mercedes-Benz C-Class Sedan 2012 0.09% BMW 6 Series Convertible 2007 0.06% FIAT 500 Abarth 2012 0.04% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Hyundai Elantra Sedan 2007 57.52% Chevrolet Malibu Hybrid Sedan 2010 18.1% Ford Focus Sedan 2007 5.72% Honda Accord Sedan 2012 5.18% Hyundai Sonata Sedan 2012 4.78% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.82% Chrysler Aspen SUV 2009 0.09% Dodge Caliber Wagon 2012 0.05% Dodge Dakota Club Cab 2007 0.03% Dodge Dakota Crew Cab 2010 0.01% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Chevrolet Cobalt SS 2010 74.42% Infiniti G Coupe IPL 2012 10.59% Toyota Camry Sedan 2012 5.01% Chevrolet Malibu Hybrid Sedan 2010 3.53% Acura RL Sedan 2012 1.71% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 26.41% Mercedes-Benz S-Class Sedan 2012 12.69% Chrysler Crossfire Convertible 2008 6.94% Ford Mustang Convertible 2007 6.19% BMW M3 Coupe 2012 5.08% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Honda Odyssey Minivan 2012 21.47% Acura TL Sedan 2012 14.03% Toyota Camry Sedan 2012 7.43% Hyundai Genesis Sedan 2012 5.91% Land Rover LR2 SUV 2012 5.87% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 50.63% Volkswagen Golf Hatchback 2012 18.24% Infiniti QX56 SUV 2011 12.96% Hyundai Sonata Sedan 2012 6.69% Porsche Panamera Sedan 2012 3.17% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 85.98% Infiniti G Coupe IPL 2012 4.86% Hyundai Sonata Sedan 2012 3.46% Hyundai Azera Sedan 2012 2.37% Jaguar XK XKR 2012 0.54% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Ford GT Coupe 2006 56.01% Bugatti Veyron 16.4 Coupe 2009 13.86% Chrysler 300 SRT-8 2010 13.02% Bentley Continental GT Coupe 2007 7.53% Spyker C8 Convertible 2009 4.61% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.05% HUMMER H2 SUT Crew Cab 2009 0.91% HUMMER H3T Crew Cab 2010 0.04% Jeep Wrangler SUV 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 98.0% Plymouth Neon Coupe 1999 0.81% Chevrolet Impala Sedan 2007 0.41% Suzuki Aerio Sedan 2007 0.32% Daewoo Nubira Wagon 2002 0.32% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Coupe 2012 90.52% Ferrari 458 Italia Convertible 2012 9.45% Lamborghini Aventador Coupe 2012 0.03% Ferrari California Convertible 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Isuzu Ascender SUV 2008 29.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 28.43% Chrysler Aspen SUV 2009 24.47% Jeep Liberty SUV 2012 5.81% Volvo XC90 SUV 2007 4.51% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Ford Focus Sedan 2007 74.19% Chevrolet Monte Carlo Coupe 2007 12.21% Chrysler Sebring Convertible 2010 5.92% Chrysler Crossfire Convertible 2008 1.38% Nissan 240SX Coupe 1998 1.34% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bentley Continental GT Coupe 2007 57.47% Bentley Continental Flying Spur Sedan 2007 18.42% Cadillac CTS-V Sedan 2012 13.89% Bentley Mulsanne Sedan 2011 6.89% Mercedes-Benz S-Class Sedan 2012 0.62% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 FIAT 500 Convertible 2012 69.85% Chrysler Crossfire Convertible 2008 28.18% MINI Cooper Roadster Convertible 2012 0.97% smart fortwo Convertible 2012 0.31% Ferrari 458 Italia Convertible 2012 0.17% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.75% Chevrolet Express Van 2007 0.12% GMC Savana Van 2012 0.11% Chevrolet Silverado 1500 Regular Cab 2012 0.01% Nissan NV Passenger Van 2012 0.0% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Acura RL Sedan 2012 89.32% Chrysler Crossfire Convertible 2008 4.03% Chevrolet Cobalt SS 2010 1.83% Chrysler Sebring Convertible 2010 1.71% Chevrolet Malibu Hybrid Sedan 2010 0.78% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 56.62% Jeep Compass SUV 2012 27.15% Cadillac SRX SUV 2012 7.6% Dodge Caliber Wagon 2012 5.49% Chrysler Town and Country Minivan 2012 1.4% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 48.92% Suzuki Aerio Sedan 2007 32.79% Suzuki SX4 Sedan 2012 17.25% BMW X3 SUV 2012 0.49% Ford Freestar Minivan 2007 0.11% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Daewoo Nubira Wagon 2002 95.76% Plymouth Neon Coupe 1999 2.99% Ford Focus Sedan 2007 1.02% Eagle Talon Hatchback 1998 0.1% Nissan 240SX Coupe 1998 0.05% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 98.06% Chevrolet Corvette ZR1 2012 1.19% Jaguar XK XKR 2012 0.18% Suzuki SX4 Hatchback 2012 0.14% Volkswagen Beetle Hatchback 2012 0.1% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 26.14% Volvo XC90 SUV 2007 16.17% Jeep Compass SUV 2012 16.0% Cadillac SRX SUV 2012 12.66% Dodge Durango SUV 2012 9.68% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 95.19% Hyundai Sonata Sedan 2012 2.41% BMW 1 Series Coupe 2012 0.45% Ferrari 458 Italia Coupe 2012 0.37% Hyundai Sonata Hybrid Sedan 2012 0.32% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Ford F-150 Regular Cab 2012 54.17% Dodge Dakota Crew Cab 2010 32.64% Dodge Dakota Club Cab 2007 3.66% Chrysler Aspen SUV 2009 3.42% Ford F-150 Regular Cab 2007 2.15% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 84.22% Chevrolet Corvette Convertible 2012 6.02% Nissan Juke Hatchback 2012 3.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.79% Chrysler Crossfire Convertible 2008 1.02% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.88% Chevrolet Silverado 2500HD Regular Cab 2012 0.11% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 72.47% MINI Cooper Roadster Convertible 2012 10.59% Toyota 4Runner SUV 2012 8.23% FIAT 500 Convertible 2012 2.43% Chevrolet Sonic Sedan 2012 1.3% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Jeep Compass SUV 2012 84.72% Jeep Liberty SUV 2012 11.87% Jeep Patriot SUV 2012 2.22% Jeep Grand Cherokee SUV 2012 0.99% Bentley Arnage Sedan 2009 0.19% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Land Rover Range Rover SUV 2012 14.23% Land Rover LR2 SUV 2012 9.76% Chrysler Aspen SUV 2009 6.83% Hyundai Santa Fe SUV 2012 6.6% Hyundai Genesis Sedan 2012 5.63% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 BMW 1 Series Coupe 2012 91.92% Buick Regal GS 2012 7.48% Buick Verano Sedan 2012 0.32% Suzuki Kizashi Sedan 2012 0.19% BMW X3 SUV 2012 0.05% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 25.87% Chevrolet Corvette ZR1 2012 18.32% Land Rover LR2 SUV 2012 6.22% Honda Odyssey Minivan 2012 4.98% Porsche Panamera Sedan 2012 4.58% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 99.1% Dodge Dakota Club Cab 2007 0.57% Dodge Durango SUV 2007 0.18% Chevrolet Avalanche Crew Cab 2012 0.11% Dodge Ram Pickup 3500 Quad Cab 2009 0.02% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 98.3% Ford F-150 Regular Cab 2012 1.21% Chrysler Aspen SUV 2009 0.07% Chevrolet Avalanche Crew Cab 2012 0.07% Hyundai Santa Fe SUV 2012 0.07% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 92.72% Chevrolet Corvette Convertible 2012 6.33% Chevrolet Camaro Convertible 2012 0.67% Ferrari 458 Italia Coupe 2012 0.16% Ferrari 458 Italia Convertible 2012 0.06% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 96.9% Dodge Ram Pickup 3500 Quad Cab 2009 2.42% Dodge Durango SUV 2007 0.67% GMC Canyon Extended Cab 2012 0.02% Chrysler 300 SRT-8 2010 0.0% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Suzuki SX4 Sedan 2012 40.33% Mercedes-Benz E-Class Sedan 2012 13.82% Nissan Leaf Hatchback 2012 8.16% Hyundai Genesis Sedan 2012 6.58% Chevrolet Sonic Sedan 2012 5.36% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Lamborghini Reventon Coupe 2008 36.51% Mercedes-Benz SL-Class Coupe 2009 14.18% Rolls-Royce Phantom Sedan 2012 11.92% Audi R8 Coupe 2012 6.76% HUMMER H3T Crew Cab 2010 5.0% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 93.3% Chevrolet Avalanche Crew Cab 2012 5.8% Ford Expedition EL SUV 2009 0.75% Hyundai Santa Fe SUV 2012 0.08% Chevrolet Tahoe Hybrid SUV 2012 0.02% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Volvo 240 Sedan 1993 51.45% Audi 100 Sedan 1994 13.87% Audi V8 Sedan 1994 11.54% Lincoln Town Car Sedan 2011 9.44% Ford Ranger SuperCab 2011 4.31% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.99% MINI Cooper Roadster Convertible 2012 0.0% smart fortwo Convertible 2012 0.0% Nissan Leaf Hatchback 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 93.61% Dodge Charger Sedan 2012 1.43% Audi S5 Coupe 2012 0.97% BMW X6 SUV 2012 0.93% Audi TT Hatchback 2011 0.76% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Chevrolet Cobalt SS 2010 36.37% Mercedes-Benz E-Class Sedan 2012 12.57% Mercedes-Benz C-Class Sedan 2012 6.7% Toyota Camry Sedan 2012 5.47% Nissan 240SX Coupe 1998 4.66% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Ford F-150 Regular Cab 2012 42.49% GMC Terrain SUV 2012 35.31% Dodge Durango SUV 2007 4.05% Volvo XC90 SUV 2007 2.66% Dodge Dakota Club Cab 2007 2.66% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 84.96% Porsche Panamera Sedan 2012 10.5% Acura TL Type-S 2008 3.89% Audi S4 Sedan 2007 0.26% Audi RS 4 Convertible 2008 0.18% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Acura ZDX Hatchback 2012 98.64% Fisker Karma Sedan 2012 0.47% Volkswagen Golf Hatchback 2012 0.21% Audi 100 Wagon 1994 0.16% Suzuki SX4 Sedan 2012 0.12% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Maybach Landaulet Convertible 2012 14.91% Dodge Challenger SRT8 2011 12.7% Bentley Continental Supersports Conv. Convertible 2012 8.23% Bentley Mulsanne Sedan 2011 7.94% Bugatti Veyron 16.4 Convertible 2009 4.95% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 98.1% Audi 100 Wagon 1994 1.02% Infiniti G Coupe IPL 2012 0.39% Chrysler Sebring Convertible 2010 0.19% BMW M6 Convertible 2010 0.09% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Chevrolet HHR SS 2010 74.0% BMW 3 Series Sedan 2012 24.97% Nissan 240SX Coupe 1998 0.23% Volvo C30 Hatchback 2012 0.18% Honda Accord Coupe 2012 0.18% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 100.0% Spyker C8 Coupe 2009 0.0% Lamborghini Reventon Coupe 2008 0.0% Chevrolet Corvette ZR1 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 99.8% Chrysler 300 SRT-8 2010 0.09% Bentley Continental GT Coupe 2007 0.04% Ford Mustang Convertible 2007 0.03% Bentley Continental Flying Spur Sedan 2007 0.03% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Buick Regal GS 2012 30.7% McLaren MP4-12C Coupe 2012 8.43% Lamborghini Reventon Coupe 2008 8.35% Bentley Continental Supersports Conv. Convertible 2012 8.14% Aston Martin V8 Vantage Coupe 2012 6.7% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 59.25% Chevrolet Traverse SUV 2012 39.72% Hyundai Veracruz SUV 2012 0.44% Ford Fiesta Sedan 2012 0.21% Hyundai Santa Fe SUV 2012 0.19% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Jeep Patriot SUV 2012 79.22% Volvo 240 Sedan 1993 14.66% Audi 100 Wagon 1994 1.33% Nissan Leaf Hatchback 2012 1.15% Ford F-150 Regular Cab 2007 0.74% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.99% Ford Fiesta Sedan 2012 0.01% Toyota Camry Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Land Rover Range Rover SUV 2012 34.58% Chevrolet TrailBlazer SS 2009 23.34% Chevrolet Tahoe Hybrid SUV 2012 8.61% Buick Rainier SUV 2007 8.46% Chevrolet Silverado 1500 Extended Cab 2012 5.57% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Honda Odyssey Minivan 2007 63.77% Honda Accord Sedan 2012 21.11% Ford Focus Sedan 2007 7.74% Volkswagen Golf Hatchback 2012 2.18% BMW 3 Series Wagon 2012 1.58% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 93.16% Mercedes-Benz 300-Class Convertible 1993 5.67% Audi V8 Sedan 1994 0.91% Rolls-Royce Phantom Sedan 2012 0.15% Chrysler 300 SRT-8 2010 0.09% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Aston Martin Virage Convertible 2012 38.96% Porsche Panamera Sedan 2012 30.94% Audi R8 Coupe 2012 15.24% Nissan 240SX Coupe 1998 3.25% Ferrari FF Coupe 2012 2.81% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Bentley Arnage Sedan 2009 81.31% Porsche Panamera Sedan 2012 14.21% Bentley Continental Flying Spur Sedan 2007 1.72% FIAT 500 Abarth 2012 1.16% BMW 3 Series Wagon 2012 0.42% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 94.64% Plymouth Neon Coupe 1999 2.83% Audi V8 Sedan 1994 1.36% Lincoln Town Car Sedan 2011 0.35% Mercedes-Benz 300-Class Convertible 1993 0.25% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 97.22% Hyundai Accent Sedan 2012 1.49% Hyundai Tucson SUV 2012 0.85% Hyundai Veloster Hatchback 2012 0.19% Honda Accord Coupe 2012 0.11% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 97.67% Chevrolet Sonic Sedan 2012 2.11% Suzuki SX4 Sedan 2012 0.11% Suzuki Aerio Sedan 2007 0.02% Volvo C30 Hatchback 2012 0.01% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Mercedes-Benz E-Class Sedan 2012 87.43% Audi S4 Sedan 2007 6.19% Audi S5 Convertible 2012 4.57% Audi S5 Coupe 2012 1.09% Mercedes-Benz S-Class Sedan 2012 0.65% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Acura Integra Type R 2001 15.95% Chevrolet Cobalt SS 2010 12.38% Mercedes-Benz S-Class Sedan 2012 12.29% Hyundai Genesis Sedan 2012 11.12% Mercedes-Benz C-Class Sedan 2012 8.3% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Aston Martin V8 Vantage Convertible 2012 99.82% Fisker Karma Sedan 2012 0.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.07% Spyker C8 Coupe 2009 0.02% Aston Martin Virage Convertible 2012 0.01% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 69.03% Hyundai Veracruz SUV 2012 16.68% Daewoo Nubira Wagon 2002 3.91% Chevrolet Malibu Hybrid Sedan 2010 2.11% Chevrolet Monte Carlo Coupe 2007 2.1% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 85.84% Chevrolet Silverado 2500HD Regular Cab 2012 6.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.91% Dodge Dakota Club Cab 2007 2.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.24% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 79.44% Aston Martin V8 Vantage Coupe 2012 11.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.33% Ferrari 458 Italia Convertible 2012 1.53% Lamborghini Aventador Coupe 2012 0.04% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 91.6% Chevrolet Express Cargo Van 2007 4.38% Ford Ranger SuperCab 2011 1.52% Nissan NV Passenger Van 2012 0.68% Volvo 240 Sedan 1993 0.34% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 95.29% Chevrolet Cobalt SS 2010 4.35% Toyota Camry Sedan 2012 0.3% Hyundai Elantra Sedan 2007 0.02% Hyundai Sonata Sedan 2012 0.01% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 99.97% Hyundai Tucson SUV 2012 0.01% Buick Enclave SUV 2012 0.01% Hyundai Veracruz SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Dodge Charger SRT-8 2009 89.41% Acura TL Sedan 2012 5.47% Chevrolet TrailBlazer SS 2009 1.58% Chevrolet Monte Carlo Coupe 2007 0.81% Porsche Panamera Sedan 2012 0.65% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Chevrolet Malibu Sedan 2007 53.55% Suzuki SX4 Sedan 2012 45.96% Suzuki SX4 Hatchback 2012 0.29% Suzuki Aerio Sedan 2007 0.08% Hyundai Elantra Sedan 2007 0.07% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 smart fortwo Convertible 2012 98.66% Mercedes-Benz E-Class Sedan 2012 0.61% Volkswagen Beetle Hatchback 2012 0.37% Bugatti Veyron 16.4 Convertible 2009 0.13% Volkswagen Golf Hatchback 2012 0.05% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Chevrolet Avalanche Crew Cab 2012 99.16% Dodge Durango SUV 2012 0.58% Ford Freestar Minivan 2007 0.15% Chevrolet Tahoe Hybrid SUV 2012 0.05% Dodge Durango SUV 2007 0.04% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Lamborghini Reventon Coupe 2008 20.49% Cadillac CTS-V Sedan 2012 19.08% Ferrari FF Coupe 2012 18.18% Audi TTS Coupe 2012 15.65% Tesla Model S Sedan 2012 7.41% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 68.05% Hyundai Sonata Sedan 2012 30.28% Cadillac SRX SUV 2012 0.71% Honda Odyssey Minivan 2007 0.68% Chrysler Crossfire Convertible 2008 0.1% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 93.12% Audi S5 Coupe 2012 3.26% Audi S4 Sedan 2007 3.14% Audi A5 Coupe 2012 0.28% Audi TT Hatchback 2011 0.1% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.04% Jeep Wrangler SUV 2012 0.03% HUMMER H2 SUT Crew Cab 2009 0.0% Jeep Patriot SUV 2012 0.0% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 99.99% Jeep Grand Cherokee SUV 2012 0.01% GMC Terrain SUV 2012 0.0% Dodge Caliber Wagon 2012 0.0% BMW X3 SUV 2012 0.0% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2007 55.5% Dodge Dakota Club Cab 2007 17.34% GMC Yukon Hybrid SUV 2012 16.33% Ford F-150 Regular Cab 2012 7.73% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.9% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Lincoln Town Car Sedan 2011 43.9% Volvo 240 Sedan 1993 31.56% Dodge Caravan Minivan 1997 8.82% Audi 100 Sedan 1994 3.14% Mercedes-Benz 300-Class Convertible 1993 2.78% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 BMW 6 Series Convertible 2007 19.82% BMW M6 Convertible 2010 9.37% BMW ActiveHybrid 5 Sedan 2012 8.3% BMW Z4 Convertible 2012 7.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.09% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 62.84% GMC Savana Van 2012 26.87% Chevrolet Express Cargo Van 2007 6.57% Chevrolet Silverado 2500HD Regular Cab 2012 3.16% Dodge Caravan Minivan 1997 0.38% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 99.08% Chevrolet Impala Sedan 2007 0.44% Mitsubishi Lancer Sedan 2012 0.29% Chevrolet Malibu Hybrid Sedan 2010 0.11% Chevrolet Camaro Convertible 2012 0.03% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Toyota Camry Sedan 2012 49.73% Acura Integra Type R 2001 24.18% BMW M6 Convertible 2010 10.11% Hyundai Sonata Hybrid Sedan 2012 6.17% Suzuki Kizashi Sedan 2012 3.75% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Buick Enclave SUV 2012 86.45% Hyundai Tucson SUV 2012 8.74% Chevrolet Traverse SUV 2012 3.87% Lincoln Town Car Sedan 2011 0.35% Ford Focus Sedan 2007 0.12% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Chevrolet Camaro Convertible 2012 34.03% Audi A5 Coupe 2012 29.91% BMW Z4 Convertible 2012 12.84% Eagle Talon Hatchback 1998 4.86% Audi S4 Sedan 2012 4.65% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 84.2% Acura Integra Type R 2001 14.1% Volvo 240 Sedan 1993 0.99% Hyundai Elantra Touring Hatchback 2012 0.32% Daewoo Nubira Wagon 2002 0.13% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Ram C/V Cargo Van Minivan 2012 50.21% Hyundai Veracruz SUV 2012 22.33% BMW X3 SUV 2012 13.78% Audi 100 Sedan 1994 4.96% Hyundai Santa Fe SUV 2012 3.16% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 100.0% Chevrolet Monte Carlo Coupe 2007 0.0% Ford Freestar Minivan 2007 0.0% Chevrolet Malibu Sedan 2007 0.0% Chevrolet Impala Sedan 2007 0.0% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Bentley Continental Supersports Conv. Convertible 2012 60.8% Bugatti Veyron 16.4 Coupe 2009 16.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 11.66% Lamborghini Reventon Coupe 2008 2.61% Bentley Mulsanne Sedan 2011 1.58% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Leaf Hatchback 2012 60.89% smart fortwo Convertible 2012 37.67% Nissan Juke Hatchback 2012 1.26% Geo Metro Convertible 1993 0.17% Daewoo Nubira Wagon 2002 0.01% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 BMW M5 Sedan 2010 70.22% BMW M6 Convertible 2010 23.87% Buick Regal GS 2012 3.31% Audi S4 Sedan 2007 1.56% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.25% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 98.45% BMW Z4 Convertible 2012 0.89% BMW M3 Coupe 2012 0.25% Bugatti Veyron 16.4 Convertible 2009 0.18% Mercedes-Benz 300-Class Convertible 1993 0.13% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Chevrolet Impala Sedan 2007 88.43% Chevrolet Malibu Sedan 2007 11.51% Suzuki SX4 Hatchback 2012 0.03% Chevrolet Monte Carlo Coupe 2007 0.02% Dodge Caliber Wagon 2012 0.01% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Acura RL Sedan 2012 76.79% Acura TSX Sedan 2012 20.69% Acura TL Sedan 2012 1.72% Acura TL Type-S 2008 0.31% Honda Accord Sedan 2012 0.27% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 60.67% Chevrolet Silverado 1500 Regular Cab 2012 39.21% Chevrolet Silverado 1500 Extended Cab 2012 0.11% Dodge Dakota Club Cab 2007 0.0% Lincoln Town Car Sedan 2011 0.0% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Chevrolet Malibu Sedan 2007 29.11% Hyundai Elantra Sedan 2007 26.25% Toyota Corolla Sedan 2012 25.9% Toyota Camry Sedan 2012 10.94% Chevrolet Impala Sedan 2007 3.24% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Chevrolet HHR SS 2010 97.04% Dodge Charger SRT-8 2009 2.06% Volvo C30 Hatchback 2012 0.72% Suzuki SX4 Hatchback 2012 0.13% Mitsubishi Lancer Sedan 2012 0.02% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Volvo 240 Sedan 1993 35.42% Dodge Ram Pickup 3500 Quad Cab 2009 20.69% Ford Ranger SuperCab 2011 14.51% Dodge Dakota Club Cab 2007 5.17% Isuzu Ascender SUV 2008 2.64% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Spyker C8 Convertible 2009 25.93% Aston Martin Virage Convertible 2012 17.86% BMW M6 Convertible 2010 16.88% BMW 6 Series Convertible 2007 10.46% Aston Martin V8 Vantage Convertible 2012 7.16% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 92.3% Audi R8 Coupe 2012 4.33% Ford Mustang Convertible 2007 2.26% Eagle Talon Hatchback 1998 0.43% Bentley Continental GT Coupe 2007 0.17% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.75% Ford Ranger SuperCab 2011 0.22% Chrysler Aspen SUV 2009 0.02% Ford F-150 Regular Cab 2007 0.01% Isuzu Ascender SUV 2008 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Buick Regal GS 2012 98.6% Volvo C30 Hatchback 2012 0.57% Mitsubishi Lancer Sedan 2012 0.52% Audi S6 Sedan 2011 0.12% BMW 3 Series Sedan 2012 0.05% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Ford Expedition EL SUV 2009 38.51% Jeep Liberty SUV 2012 22.65% Volvo XC90 SUV 2007 21.82% Cadillac Escalade EXT Crew Cab 2007 4.48% Ford Ranger SuperCab 2011 2.75% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 96.67% Volkswagen Golf Hatchback 2012 2.69% Hyundai Veracruz SUV 2012 0.4% Ford Fiesta Sedan 2012 0.18% Chevrolet Traverse SUV 2012 0.04% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 BMW M6 Convertible 2010 43.71% Chevrolet Cobalt SS 2010 17.03% Suzuki Kizashi Sedan 2012 12.9% Hyundai Sonata Hybrid Sedan 2012 5.39% Nissan 240SX Coupe 1998 5.35% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Bentley Continental GT Coupe 2012 82.08% Audi TT RS Coupe 2012 4.4% Buick Regal GS 2012 3.28% BMW M5 Sedan 2010 2.35% BMW 1 Series Convertible 2012 1.85% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Volvo 240 Sedan 1993 80.87% Jeep Patriot SUV 2012 9.81% Dodge Dakota Club Cab 2007 3.31% Volkswagen Golf Hatchback 1991 1.98% Nissan NV Passenger Van 2012 1.53% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Jaguar XK XKR 2012 56.91% Acura TL Sedan 2012 15.18% Infiniti G Coupe IPL 2012 10.82% Aston Martin Virage Convertible 2012 6.64% Aston Martin V8 Vantage Coupe 2012 5.85% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 44.2% Dodge Durango SUV 2007 25.41% Dodge Ram Pickup 3500 Quad Cab 2009 19.58% Jeep Liberty SUV 2012 5.86% Buick Rainier SUV 2007 1.38% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Audi 100 Sedan 1994 64.8% Chevrolet Silverado 2500HD Regular Cab 2012 22.98% Dodge Ram Pickup 3500 Quad Cab 2009 5.05% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.85% Audi V8 Sedan 1994 1.28% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 71.43% Mercedes-Benz C-Class Sedan 2012 25.28% Suzuki Kizashi Sedan 2012 0.89% Audi S6 Sedan 2011 0.88% Hyundai Elantra Touring Hatchback 2012 0.37% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 43.87% Audi A5 Coupe 2012 29.74% Audi S6 Sedan 2011 3.09% Audi S4 Sedan 2012 2.62% Audi S4 Sedan 2007 2.62% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 46.29% BMW X3 SUV 2012 43.85% Buick Verano Sedan 2012 4.71% Mercedes-Benz S-Class Sedan 2012 1.88% Audi S6 Sedan 2011 0.95% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Lamborghini Aventador Coupe 2012 43.12% Ferrari FF Coupe 2012 12.11% Jeep Liberty SUV 2012 5.82% Hyundai Sonata Sedan 2012 5.19% FIAT 500 Abarth 2012 5.12% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Bentley Continental GT Coupe 2007 88.54% Chrysler Crossfire Convertible 2008 4.51% Ford Mustang Convertible 2007 2.18% Fisker Karma Sedan 2012 2.08% Chevrolet Corvette Convertible 2012 0.63% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 55.81% Mercedes-Benz Sprinter Van 2012 44.19% Ram C/V Cargo Van Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Hyundai Elantra Sedan 2007 27.27% Dodge Caliber Wagon 2007 27.08% Hyundai Sonata Sedan 2012 14.6% Chevrolet Sonic Sedan 2012 6.18% BMW M5 Sedan 2010 5.34% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 89.06% Acura TL Sedan 2012 10.74% Acura RL Sedan 2012 0.19% Chevrolet Impala Sedan 2007 0.01% Chevrolet Malibu Sedan 2007 0.0% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Suzuki SX4 Hatchback 2012 64.23% Ram C/V Cargo Van Minivan 2012 22.36% Hyundai Santa Fe SUV 2012 9.62% Chevrolet Malibu Sedan 2007 1.2% Volkswagen Golf Hatchback 2012 0.62% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 BMW 3 Series Wagon 2012 37.37% Volvo 240 Sedan 1993 16.14% Bentley Arnage Sedan 2009 10.59% BMW 3 Series Sedan 2012 5.63% Ford Mustang Convertible 2007 4.11% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Audi S4 Sedan 2007 10.85% BMW M5 Sedan 2010 9.87% Chevrolet Malibu Hybrid Sedan 2010 8.57% Audi S6 Sedan 2011 6.09% Buick Verano Sedan 2012 5.49% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.76% Chevrolet Silverado 2500HD Regular Cab 2012 0.15% Chevrolet Silverado 1500 Regular Cab 2012 0.04% GMC Canyon Extended Cab 2012 0.02% Ford F-150 Regular Cab 2007 0.02% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.16% Ford Ranger SuperCab 2011 0.55% Cadillac Escalade EXT Crew Cab 2007 0.14% Jeep Patriot SUV 2012 0.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.94% Chrysler Aspen SUV 2009 0.06% Hyundai Santa Fe SUV 2012 0.0% Mazda Tribute SUV 2011 0.0% Hyundai Veracruz SUV 2012 0.0% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 99.04% Hyundai Santa Fe SUV 2012 0.81% Hyundai Elantra Touring Hatchback 2012 0.1% Hyundai Veracruz SUV 2012 0.02% Chevrolet Traverse SUV 2012 0.01% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Tesla Model S Sedan 2012 54.51% Hyundai Accent Sedan 2012 36.15% Suzuki SX4 Hatchback 2012 5.78% BMW 3 Series Sedan 2012 0.99% Audi S5 Convertible 2012 0.79% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Camaro Convertible 2012 15.62% Chevrolet Corvette Ron Fellows Edition Z06 2007 15.06% Audi TT RS Coupe 2012 13.78% Bentley Continental Supersports Conv. Convertible 2012 11.3% Mercedes-Benz SL-Class Coupe 2009 9.68% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 53.81% Hyundai Accent Sedan 2012 42.45% Hyundai Sonata Hybrid Sedan 2012 3.3% Hyundai Tucson SUV 2012 0.4% Toyota Camry Sedan 2012 0.02% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.98% Volvo XC90 SUV 2007 0.01% Buick Rainier SUV 2007 0.0% Toyota 4Runner SUV 2012 0.0% Dodge Dakota Club Cab 2007 0.0% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 70.88% Chevrolet Silverado 1500 Regular Cab 2012 28.53% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.5% Chevrolet Silverado 1500 Extended Cab 2012 0.07% GMC Canyon Extended Cab 2012 0.01% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Suzuki SX4 Sedan 2012 98.61% Acura RL Sedan 2012 1.27% Chrysler Town and Country Minivan 2012 0.06% Honda Odyssey Minivan 2007 0.05% Suzuki Aerio Sedan 2007 0.01% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 69.7% Dodge Magnum Wagon 2008 11.08% Dodge Caliber Wagon 2007 5.54% BMW 1 Series Convertible 2012 5.17% BMW X3 SUV 2012 1.69% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Suzuki Kizashi Sedan 2012 40.32% Cadillac CTS-V Sedan 2012 31.55% Bentley Continental GT Coupe 2012 7.06% Volkswagen Golf Hatchback 2012 3.88% MINI Cooper Roadster Convertible 2012 3.3% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 54.08% BMW 3 Series Wagon 2012 23.41% Chevrolet Monte Carlo Coupe 2007 15.26% Lincoln Town Car Sedan 2011 1.4% Hyundai Tucson SUV 2012 1.05% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.58% Mercedes-Benz S-Class Sedan 2012 0.26% Mercedes-Benz E-Class Sedan 2012 0.05% Chrysler Crossfire Convertible 2008 0.05% Audi TTS Coupe 2012 0.04% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 51.61% Ferrari FF Coupe 2012 26.24% Aston Martin Virage Coupe 2012 9.6% Aston Martin V8 Vantage Coupe 2012 5.56% Jaguar XK XKR 2012 3.75% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 99.98% BMW M6 Convertible 2010 0.01% BMW 1 Series Convertible 2012 0.0% Ferrari California Convertible 2012 0.0% BMW Z4 Convertible 2012 0.0% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 81.21% GMC Canyon Extended Cab 2012 18.65% Dodge Dakota Club Cab 2007 0.14% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 97.07% Hyundai Azera Sedan 2012 1.44% Spyker C8 Convertible 2009 1.11% Aston Martin Virage Convertible 2012 0.33% Aston Martin Virage Coupe 2012 0.02% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Chrysler Crossfire Convertible 2008 84.31% Volkswagen Golf Hatchback 1991 7.44% Hyundai Veracruz SUV 2012 2.27% Mercedes-Benz C-Class Sedan 2012 1.81% Mercedes-Benz S-Class Sedan 2012 0.74% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.98% Hyundai Tucson SUV 2012 0.02% Hyundai Veracruz SUV 2012 0.0% BMW X5 SUV 2007 0.0% Ford Fiesta Sedan 2012 0.0% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Bentley Continental GT Coupe 2012 49.45% Audi TTS Coupe 2012 16.0% Ferrari California Convertible 2012 11.2% Audi R8 Coupe 2012 8.2% Ferrari 458 Italia Coupe 2012 5.58% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 88.21% Honda Odyssey Minivan 2007 11.78% Hyundai Elantra Sedan 2007 0.0% Toyota Corolla Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 82.23% Lamborghini Aventador Coupe 2012 16.5% Bugatti Veyron 16.4 Coupe 2009 1.22% Bugatti Veyron 16.4 Convertible 2009 0.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.01% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Audi RS 4 Convertible 2008 89.34% Bugatti Veyron 16.4 Convertible 2009 6.97% BMW ActiveHybrid 5 Sedan 2012 0.81% BMW 6 Series Convertible 2007 0.62% BMW 1 Series Convertible 2012 0.48% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 98.12% Chevrolet Avalanche Crew Cab 2012 1.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.23% Chevrolet Silverado 1500 Regular Cab 2012 0.13% HUMMER H3T Crew Cab 2010 0.05% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Ford GT Coupe 2006 36.66% Chrysler 300 SRT-8 2010 32.67% Chevrolet Camaro Convertible 2012 9.74% Mercedes-Benz 300-Class Convertible 1993 9.66% Nissan 240SX Coupe 1998 2.36% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 97.66% Chevrolet Sonic Sedan 2012 0.68% Hyundai Accent Sedan 2012 0.61% Mitsubishi Lancer Sedan 2012 0.61% Hyundai Sonata Hybrid Sedan 2012 0.29% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 100.0% GMC Acadia SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% GMC Terrain SUV 2012 0.0% Dodge Magnum Wagon 2008 0.0% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 100.0% Audi 100 Sedan 1994 0.0% Plymouth Neon Coupe 1999 0.0% Volkswagen Golf Hatchback 1991 0.0% Bentley Arnage Sedan 2009 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Diablo Coupe 2001 66.69% McLaren MP4-12C Coupe 2012 24.92% HUMMER H3T Crew Cab 2010 4.67% Ferrari California Convertible 2012 0.75% Dodge Charger SRT-8 2009 0.66% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Toyota Camry Sedan 2012 82.99% Acura TSX Sedan 2012 15.25% Acura TL Sedan 2012 0.99% Toyota Corolla Sedan 2012 0.32% Jaguar XK XKR 2012 0.15% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 81.19% Chevrolet Traverse SUV 2012 18.45% Scion xD Hatchback 2012 0.11% Hyundai Santa Fe SUV 2012 0.09% Mazda Tribute SUV 2011 0.07% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Chevrolet Corvette ZR1 2012 48.52% Suzuki Kizashi Sedan 2012 30.3% Cadillac CTS-V Sedan 2012 11.0% FIAT 500 Abarth 2012 7.25% Bentley Continental GT Coupe 2012 0.83% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Dodge Caravan Minivan 1997 33.21% Ford F-150 Regular Cab 2007 15.48% GMC Canyon Extended Cab 2012 13.44% Ford Freestar Minivan 2007 11.94% Chevrolet TrailBlazer SS 2009 6.36% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 99.98% Plymouth Neon Coupe 1999 0.02% Ford Focus Sedan 2007 0.0% Acura Integra Type R 2001 0.0% Volkswagen Golf Hatchback 2012 0.0% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 71.42% GMC Savana Van 2012 24.65% Chevrolet Express Van 2007 3.74% Ford F-150 Regular Cab 2007 0.07% Nissan NV Passenger Van 2012 0.02% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 96.04% Audi V8 Sedan 1994 1.85% Audi 100 Wagon 1994 1.29% Ford Mustang Convertible 2007 0.27% Volvo 240 Sedan 1993 0.14% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Nissan Juke Hatchback 2012 54.88% Buick Enclave SUV 2012 41.35% GMC Acadia SUV 2012 2.68% Chevrolet Traverse SUV 2012 0.33% Cadillac SRX SUV 2012 0.27% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 92.44% Volkswagen Golf Hatchback 2012 3.61% Ford Focus Sedan 2007 2.25% Plymouth Neon Coupe 1999 1.46% Daewoo Nubira Wagon 2002 0.23% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 100.0% GMC Acadia SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% Acura RL Sedan 2012 0.0% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 HUMMER H3T Crew Cab 2010 60.51% HUMMER H2 SUT Crew Cab 2009 15.75% McLaren MP4-12C Coupe 2012 12.32% Hyundai Veloster Hatchback 2012 10.71% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.52% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Eagle Talon Hatchback 1998 91.25% Aston Martin V8 Vantage Convertible 2012 3.29% Aston Martin Virage Convertible 2012 2.82% Aston Martin V8 Vantage Coupe 2012 1.05% Audi R8 Coupe 2012 0.65% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 AM General Hummer SUV 2000 8.89% Chevrolet Sonic Sedan 2012 7.09% Chevrolet Cobalt SS 2010 5.92% Ford F-150 Regular Cab 2007 5.49% Chevrolet Malibu Sedan 2007 5.32% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Jeep Grand Cherokee SUV 2012 93.1% Volkswagen Beetle Hatchback 2012 4.91% BMW Z4 Convertible 2012 0.82% Volkswagen Golf Hatchback 1991 0.82% Daewoo Nubira Wagon 2002 0.12% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Dodge Caliber Wagon 2012 24.2% Volvo XC90 SUV 2007 20.4% Isuzu Ascender SUV 2008 14.81% Dodge Magnum Wagon 2008 5.24% BMW X3 SUV 2012 4.94% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 98.68% Chevrolet Express Van 2007 1.07% GMC Savana Van 2012 0.25% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Audi 100 Sedan 1994 0.0% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 McLaren MP4-12C Coupe 2012 68.89% Lamborghini Diablo Coupe 2001 28.41% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.32% Bugatti Veyron 16.4 Coupe 2009 1.18% Aston Martin V8 Vantage Coupe 2012 0.09% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Mitsubishi Lancer Sedan 2012 76.54% Chevrolet Cobalt SS 2010 5.98% Ford Fiesta Sedan 2012 4.11% Hyundai Elantra Sedan 2007 2.52% Dodge Caliber Wagon 2007 2.27% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Suzuki Aerio Sedan 2007 66.81% Cadillac SRX SUV 2012 5.3% Mercedes-Benz E-Class Sedan 2012 3.88% Audi S5 Coupe 2012 3.5% Mercedes-Benz S-Class Sedan 2012 2.84% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Hyundai Tucson SUV 2012 96.71% Chevrolet Traverse SUV 2012 2.08% Ford Fiesta Sedan 2012 1.07% Nissan Juke Hatchback 2012 0.07% BMW X6 SUV 2012 0.02% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 99.92% Acura TSX Sedan 2012 0.06% Acura ZDX Hatchback 2012 0.01% Toyota Camry Sedan 2012 0.0% Acura Integra Type R 2001 0.0% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 99.36% Dodge Caliber Wagon 2012 0.35% Jeep Grand Cherokee SUV 2012 0.16% Dodge Journey SUV 2012 0.09% Chevrolet Traverse SUV 2012 0.02% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 31.32% Infiniti G Coupe IPL 2012 17.02% Tesla Model S Sedan 2012 12.76% BMW 6 Series Convertible 2007 9.22% Audi A5 Coupe 2012 4.1% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 91.97% Ferrari 458 Italia Coupe 2012 4.88% Ferrari FF Coupe 2012 0.71% Chevrolet Corvette Convertible 2012 0.53% Ferrari 458 Italia Convertible 2012 0.36% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 70.25% Acura TSX Sedan 2012 16.09% Toyota Camry Sedan 2012 13.13% Acura ZDX Hatchback 2012 0.27% Suzuki SX4 Sedan 2012 0.06% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 98.3% Chevrolet Corvette Convertible 2012 1.23% BMW Z4 Convertible 2012 0.16% Lamborghini Diablo Coupe 2001 0.1% Ferrari 458 Italia Convertible 2012 0.04% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Hyundai Elantra Sedan 2007 35.2% Honda Accord Sedan 2012 30.31% Chevrolet Impala Sedan 2007 16.2% Ford Focus Sedan 2007 9.32% Chrysler Sebring Convertible 2010 4.84% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 99.81% Chevrolet Express Cargo Van 2007 0.19% GMC Savana Van 2012 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Dodge Sprinter Cargo Van 2009 0.0% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Dodge Caliber Wagon 2007 74.97% Dodge Caliber Wagon 2012 10.28% Chevrolet TrailBlazer SS 2009 6.98% Ford Freestar Minivan 2007 4.33% Dodge Dakota Crew Cab 2010 1.33% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 99.76% BMW 6 Series Convertible 2007 0.1% Infiniti G Coupe IPL 2012 0.07% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.03% Mercedes-Benz 300-Class Convertible 1993 0.01% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 92.19% Ferrari FF Coupe 2012 4.7% Fisker Karma Sedan 2012 0.99% Aston Martin V8 Vantage Convertible 2012 0.93% Aston Martin V8 Vantage Coupe 2012 0.43% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Audi TTS Coupe 2012 31.57% Spyker C8 Coupe 2009 14.61% Spyker C8 Convertible 2009 10.56% Chevrolet Sonic Sedan 2012 9.65% Dodge Charger Sedan 2012 6.56% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 52.55% Lamborghini Diablo Coupe 2001 27.38% Dodge Charger Sedan 2012 18.08% Chevrolet Camaro Convertible 2012 1.43% BMW Z4 Convertible 2012 0.17% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 99.15% Chrysler 300 SRT-8 2010 0.3% Rolls-Royce Ghost Sedan 2012 0.28% Bentley Mulsanne Sedan 2011 0.21% Maybach Landaulet Convertible 2012 0.03% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi A5 Coupe 2012 39.88% Audi TT Hatchback 2011 28.77% Audi S4 Sedan 2012 20.49% Mitsubishi Lancer Sedan 2012 6.65% Audi TT RS Coupe 2012 2.69% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Audi RS 4 Convertible 2008 43.36% Aston Martin Virage Coupe 2012 27.89% Lamborghini Diablo Coupe 2001 10.13% Dodge Challenger SRT8 2011 8.74% Dodge Charger Sedan 2012 5.01% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 71.77% BMW 6 Series Convertible 2007 14.17% Aston Martin V8 Vantage Coupe 2012 5.94% Aston Martin Virage Convertible 2012 4.43% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.95% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Dodge Charger SRT-8 2009 67.64% Chevrolet Malibu Sedan 2007 17.55% Hyundai Elantra Sedan 2007 5.03% Chevrolet Cobalt SS 2010 2.36% Chrysler Sebring Convertible 2010 2.2% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 99.98% BMW 3 Series Sedan 2012 0.01% Chevrolet Sonic Sedan 2012 0.01% BMW M3 Coupe 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 71.79% Chevrolet Express Cargo Van 2007 27.12% GMC Savana Van 2012 0.44% Daewoo Nubira Wagon 2002 0.37% Volkswagen Golf Hatchback 1991 0.13% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Ford Ranger SuperCab 2011 24.56% Dodge Dakota Club Cab 2007 24.51% Chevrolet Silverado 1500 Extended Cab 2012 14.99% HUMMER H3T Crew Cab 2010 10.53% Dodge Ram Pickup 3500 Quad Cab 2009 9.27% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Canyon Extended Cab 2012 47.98% Chevrolet Silverado 1500 Extended Cab 2012 32.76% Dodge Dakota Club Cab 2007 7.95% Ford F-150 Regular Cab 2007 2.86% Jeep Wrangler SUV 2012 2.72% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 88.04% Jeep Patriot SUV 2012 11.96% Jeep Wrangler SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 98.56% BMW M6 Convertible 2010 0.56% BMW M5 Sedan 2010 0.21% BMW ActiveHybrid 5 Sedan 2012 0.13% Buick Regal GS 2012 0.09% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Chevrolet Tahoe Hybrid SUV 2012 41.46% Chevrolet Monte Carlo Coupe 2007 21.22% Chevrolet Silverado 1500 Regular Cab 2012 8.72% Chevrolet Avalanche Crew Cab 2012 5.27% BMW X5 SUV 2007 3.25% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Ford GT Coupe 2006 48.27% Chevrolet Corvette Convertible 2012 25.36% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.92% McLaren MP4-12C Coupe 2012 4.29% Mitsubishi Lancer Sedan 2012 2.45% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Jaguar XK XKR 2012 68.1% Aston Martin V8 Vantage Coupe 2012 19.43% Chevrolet Corvette ZR1 2012 7.22% Aston Martin Virage Coupe 2012 3.02% Aston Martin Virage Convertible 2012 0.99% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.94% Jeep Wrangler SUV 2012 0.06% Jeep Patriot SUV 2012 0.0% HUMMER H3T Crew Cab 2010 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 57.65% Dodge Journey SUV 2012 16.16% Dodge Caliber Wagon 2012 9.16% Toyota Corolla Sedan 2012 6.58% Dodge Charger Sedan 2012 3.34% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 BMW 3 Series Sedan 2012 47.51% Jeep Liberty SUV 2012 7.03% Audi S6 Sedan 2011 5.88% Ford GT Coupe 2006 4.57% Spyker C8 Coupe 2009 4.36% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Hyundai Azera Sedan 2012 66.68% Hyundai Sonata Sedan 2012 29.53% Hyundai Accent Sedan 2012 1.63% Toyota Camry Sedan 2012 0.87% Acura TL Sedan 2012 0.48% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 99.88% Ford Focus Sedan 2007 0.05% Chevrolet Impala Sedan 2007 0.03% Plymouth Neon Coupe 1999 0.02% Nissan Leaf Hatchback 2012 0.01% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Audi R8 Coupe 2012 51.87% Rolls-Royce Phantom Sedan 2012 29.82% Lamborghini Reventon Coupe 2008 9.01% Bentley Continental Supersports Conv. Convertible 2012 5.26% Rolls-Royce Ghost Sedan 2012 1.54% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 51.39% Chrysler PT Cruiser Convertible 2008 30.16% MINI Cooper Roadster Convertible 2012 5.34% smart fortwo Convertible 2012 4.01% Chevrolet Corvette ZR1 2012 1.96% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 96.78% Hyundai Genesis Sedan 2012 2.91% Mercedes-Benz S-Class Sedan 2012 0.12% Mercedes-Benz C-Class Sedan 2012 0.05% Mercedes-Benz E-Class Sedan 2012 0.03% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 GMC Yukon Hybrid SUV 2012 32.48% Chevrolet Avalanche Crew Cab 2012 30.87% Nissan Juke Hatchback 2012 10.3% Ford Edge SUV 2012 5.54% Chevrolet Corvette ZR1 2012 3.34% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 96.66% Volkswagen Golf Hatchback 1991 0.85% Hyundai Elantra Touring Hatchback 2012 0.77% Audi 100 Sedan 1994 0.51% Plymouth Neon Coupe 1999 0.42% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Bugatti Veyron 16.4 Coupe 2009 17.31% AM General Hummer SUV 2000 15.67% Jaguar XK XKR 2012 15.0% Chevrolet Corvette ZR1 2012 11.03% Porsche Panamera Sedan 2012 8.51% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Plymouth Neon Coupe 1999 73.25% Eagle Talon Hatchback 1998 6.6% Hyundai Tucson SUV 2012 3.79% Ford Freestar Minivan 2007 3.46% Nissan 240SX Coupe 1998 2.73% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Eagle Talon Hatchback 1998 57.75% Ford Mustang Convertible 2007 27.25% Honda Accord Coupe 2012 4.4% Acura TSX Sedan 2012 2.75% Audi A5 Coupe 2012 1.65% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Toyota Camry Sedan 2012 83.24% Toyota Corolla Sedan 2012 10.62% Chevrolet Camaro Convertible 2012 2.35% Aston Martin Virage Convertible 2012 1.02% Hyundai Sonata Hybrid Sedan 2012 0.6% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.99% Nissan Juke Hatchback 2012 0.0% Ferrari FF Coupe 2012 0.0% Jeep Liberty SUV 2012 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 41.28% Chevrolet Corvette ZR1 2012 21.98% Chevrolet Corvette Convertible 2012 13.15% Acura Integra Type R 2001 3.1% Nissan Leaf Hatchback 2012 2.87% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.32% Ford F-150 Regular Cab 2012 0.58% Dodge Ram Pickup 3500 Crew Cab 2010 0.08% Ford F-450 Super Duty Crew Cab 2012 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.53% Chevrolet Express Van 2007 0.47% Chevrolet Express Cargo Van 2007 0.0% Daewoo Nubira Wagon 2002 0.0% Jeep Patriot SUV 2012 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 94.02% Hyundai Santa Fe SUV 2012 3.89% Honda Odyssey Minivan 2012 1.13% Land Rover LR2 SUV 2012 0.36% Ford Fiesta Sedan 2012 0.23% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 100.0% BMW 1 Series Convertible 2012 0.0% Dodge Caliber Wagon 2007 0.0% Ford Mustang Convertible 2007 0.0% BMW X5 SUV 2007 0.0% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 72.41% Mercedes-Benz SL-Class Coupe 2009 6.02% Hyundai Genesis Sedan 2012 4.3% BMW M6 Convertible 2010 3.74% Audi R8 Coupe 2012 2.5% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 97.44% Jeep Compass SUV 2012 0.73% Jeep Grand Cherokee SUV 2012 0.63% Nissan Juke Hatchback 2012 0.37% Cadillac CTS-V Sedan 2012 0.35% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 43.42% Buick Verano Sedan 2012 29.11% Hyundai Azera Sedan 2012 14.6% Acura ZDX Hatchback 2012 3.96% Toyota Camry Sedan 2012 2.39% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.7% Audi 100 Sedan 1994 0.13% Audi 100 Wagon 1994 0.06% Ford Mustang Convertible 2007 0.02% Plymouth Neon Coupe 1999 0.02% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 GMC Yukon Hybrid SUV 2012 45.99% Chrysler 300 SRT-8 2010 23.98% Scion xD Hatchback 2012 8.01% Chevrolet Malibu Sedan 2007 5.92% Bentley Continental GT Coupe 2007 4.25% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.99% Cadillac CTS-V Sedan 2012 0.01% Dodge Challenger SRT8 2011 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 42.89% Acura Integra Type R 2001 31.59% Aston Martin V8 Vantage Convertible 2012 7.69% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.54% Bugatti Veyron 16.4 Coupe 2009 2.21% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 96.03% Acura Integra Type R 2001 2.29% Suzuki Kizashi Sedan 2012 0.3% Aston Martin Virage Coupe 2012 0.23% Volvo 240 Sedan 1993 0.18% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Jeep Liberty SUV 2012 43.39% Rolls-Royce Phantom Sedan 2012 42.4% Rolls-Royce Ghost Sedan 2012 11.92% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.61% Bentley Mulsanne Sedan 2011 0.24% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 99.45% Audi S4 Sedan 2007 0.44% Buick Verano Sedan 2012 0.03% BMW 3 Series Wagon 2012 0.02% Audi S5 Coupe 2012 0.02% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Chevrolet Traverse SUV 2012 37.74% Hyundai Tucson SUV 2012 8.17% GMC Terrain SUV 2012 6.09% Chrysler Aspen SUV 2009 5.12% Land Rover Range Rover SUV 2012 4.4% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 77.7% GMC Yukon Hybrid SUV 2012 22.14% GMC Acadia SUV 2012 0.07% Dodge Caliber Wagon 2012 0.04% Ford F-150 Regular Cab 2007 0.01% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 73.57% Dodge Ram Pickup 3500 Crew Cab 2010 26.03% Dodge Dakota Club Cab 2007 0.23% GMC Savana Van 2012 0.08% Audi V8 Sedan 1994 0.03% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Dodge Caliber Wagon 2007 84.46% Dodge Dakota Crew Cab 2010 4.58% Dodge Journey SUV 2012 4.22% Ford Ranger SuperCab 2011 2.65% Mercedes-Benz C-Class Sedan 2012 1.32% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 98.34% HUMMER H2 SUT Crew Cab 2009 1.66% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Hyundai Veloster Hatchback 2012 30.96% Cadillac CTS-V Sedan 2012 14.75% Suzuki Kizashi Sedan 2012 14.26% Audi S5 Coupe 2012 6.2% Bentley Continental GT Coupe 2007 5.98% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 98.64% BMW 6 Series Convertible 2007 0.76% Infiniti G Coupe IPL 2012 0.46% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.05% Spyker C8 Convertible 2009 0.03% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Honda Accord Coupe 2012 83.5% Chevrolet Camaro Convertible 2012 5.18% Chrysler Crossfire Convertible 2008 4.4% Mercedes-Benz 300-Class Convertible 1993 2.16% Jaguar XK XKR 2012 0.86% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.97% Chrysler Town and Country Minivan 2012 0.01% Buick Rainier SUV 2007 0.01% Daewoo Nubira Wagon 2002 0.01% Land Rover Range Rover SUV 2012 0.0% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 99.88% Lamborghini Diablo Coupe 2001 0.12% Spyker C8 Coupe 2009 0.0% McLaren MP4-12C Coupe 2012 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 71.76% Chevrolet Corvette Ron Fellows Edition Z06 2007 19.43% McLaren MP4-12C Coupe 2012 7.61% Aston Martin V8 Vantage Convertible 2012 0.96% Aston Martin V8 Vantage Coupe 2012 0.23% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Toyota Camry Sedan 2012 27.49% Acura TL Sedan 2012 17.38% Scion xD Hatchback 2012 14.38% Buick Verano Sedan 2012 8.33% Bugatti Veyron 16.4 Convertible 2009 5.94% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 59.28% Jaguar XK XKR 2012 11.16% Dodge Charger Sedan 2012 9.09% Ferrari 458 Italia Convertible 2012 4.85% Chevrolet Corvette ZR1 2012 2.26% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 99.94% Bentley Arnage Sedan 2009 0.01% Rolls-Royce Phantom Sedan 2012 0.01% BMW ActiveHybrid 5 Sedan 2012 0.01% Bentley Continental Flying Spur Sedan 2007 0.01% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 97.93% Bentley Arnage Sedan 2009 1.18% BMW 3 Series Wagon 2012 0.38% Volvo C30 Hatchback 2012 0.21% GMC Canyon Extended Cab 2012 0.1% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% Jeep Wrangler SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Jeep Patriot SUV 2012 0.0% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 99.84% Chevrolet Monte Carlo Coupe 2007 0.15% Chevrolet Impala Sedan 2007 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Lincoln Town Car Sedan 2011 0.0% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 92.54% Bentley Continental GT Coupe 2012 2.79% Cadillac CTS-V Sedan 2012 1.49% Bentley Continental Flying Spur Sedan 2007 1.25% Bentley Mulsanne Sedan 2011 1.02% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Porsche Panamera Sedan 2012 53.78% Hyundai Sonata Sedan 2012 15.55% Jaguar XK XKR 2012 8.78% Honda Odyssey Minivan 2012 5.81% Ferrari FF Coupe 2012 4.27% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 100.0% Mercedes-Benz E-Class Sedan 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Hyundai Genesis Sedan 2012 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 100.0% Honda Accord Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% Honda Odyssey Minivan 2007 0.0% Honda Odyssey Minivan 2012 0.0% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 86.54% Infiniti QX56 SUV 2011 10.41% Land Rover Range Rover SUV 2012 0.77% Hyundai Tucson SUV 2012 0.72% Hyundai Veracruz SUV 2012 0.69% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 35.03% BMW 6 Series Convertible 2007 30.15% Bugatti Veyron 16.4 Convertible 2009 12.65% McLaren MP4-12C Coupe 2012 9.23% Nissan 240SX Coupe 1998 4.11% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 98.06% Hyundai Elantra Sedan 2007 0.79% Ford Focus Sedan 2007 0.76% Dodge Charger SRT-8 2009 0.16% Chevrolet Impala Sedan 2007 0.12% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 HUMMER H3T Crew Cab 2010 95.2% Jeep Wrangler SUV 2012 4.33% GMC Savana Van 2012 0.13% Ford F-150 Regular Cab 2007 0.12% HUMMER H2 SUT Crew Cab 2009 0.05% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Lamborghini Reventon Coupe 2008 0.0% Acura Integra Type R 2001 0.0% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 99.08% Bentley Continental Flying Spur Sedan 2007 0.84% Volkswagen Golf Hatchback 1991 0.03% Buick Verano Sedan 2012 0.01% Ford Mustang Convertible 2007 0.01% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.1% Ford F-150 Regular Cab 2007 0.87% GMC Yukon Hybrid SUV 2012 0.01% Dodge Dakota Club Cab 2007 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 52.29% Audi RS 4 Convertible 2008 13.93% Rolls-Royce Ghost Sedan 2012 11.52% Fisker Karma Sedan 2012 8.56% Chevrolet Camaro Convertible 2012 4.97% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 97.92% Toyota 4Runner SUV 2012 0.6% Ford Expedition EL SUV 2009 0.59% Mazda Tribute SUV 2011 0.29% Toyota Sequoia SUV 2012 0.22% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Chevrolet Sonic Sedan 2012 26.72% BMW X6 SUV 2012 20.96% Acura ZDX Hatchback 2012 18.73% Ford Edge SUV 2012 4.85% Hyundai Tucson SUV 2012 3.99% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Dodge Caliber Wagon 2012 75.63% Scion xD Hatchback 2012 13.15% Nissan Leaf Hatchback 2012 3.39% Dodge Caliber Wagon 2007 3.09% Suzuki SX4 Hatchback 2012 1.93% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Audi TTS Coupe 2012 52.99% BMW 3 Series Sedan 2012 27.05% Chevrolet Sonic Sedan 2012 6.04% BMW 3 Series Wagon 2012 2.3% BMW 6 Series Convertible 2007 1.53% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 96.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.49% Chevrolet Silverado 1500 Extended Cab 2012 0.3% Dodge Ram Pickup 3500 Crew Cab 2010 0.05% Lincoln Town Car Sedan 2011 0.03% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 70.36% Plymouth Neon Coupe 1999 29.18% Eagle Talon Hatchback 1998 0.44% Honda Accord Coupe 2012 0.01% Ford Focus Sedan 2007 0.01% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 97.27% HUMMER H2 SUT Crew Cab 2009 2.49% Jeep Grand Cherokee SUV 2012 0.07% Ford F-450 Super Duty Crew Cab 2012 0.06% Buick Enclave SUV 2012 0.03% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Spyker C8 Coupe 2009 52.94% Ferrari California Convertible 2012 18.02% Chevrolet Corvette ZR1 2012 8.19% Bentley Continental Supersports Conv. Convertible 2012 4.52% Jaguar XK XKR 2012 4.46% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 92.54% BMW 3 Series Sedan 2012 4.95% BMW ActiveHybrid 5 Sedan 2012 1.35% Hyundai Genesis Sedan 2012 0.86% Mercedes-Benz E-Class Sedan 2012 0.2% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 78.53% Dodge Sprinter Cargo Van 2009 16.55% Volkswagen Golf Hatchback 1991 3.58% Audi V8 Sedan 1994 0.99% Audi 100 Sedan 1994 0.34% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 99.99% Chrysler Town and Country Minivan 2012 0.0% Ford Freestar Minivan 2007 0.0% Dodge Caravan Minivan 1997 0.0% Lincoln Town Car Sedan 2011 0.0% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Audi RS 4 Convertible 2008 49.01% BMW 6 Series Convertible 2007 28.78% Audi TTS Coupe 2012 4.91% BMW 1 Series Convertible 2012 4.27% Bentley Continental GT Coupe 2012 2.39% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Ford Fiesta Sedan 2012 71.64% Hyundai Elantra Touring Hatchback 2012 28.22% Hyundai Accent Sedan 2012 0.14% Mitsubishi Lancer Sedan 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Jaguar XK XKR 2012 40.51% Acura TL Sedan 2012 22.38% Toyota Camry Sedan 2012 12.27% Acura TL Type-S 2008 11.73% Acura TSX Sedan 2012 5.84% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 98.06% Daewoo Nubira Wagon 2002 0.83% Mazda Tribute SUV 2011 0.27% Buick Rainier SUV 2007 0.23% Volvo 240 Sedan 1993 0.14% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Acura Integra Type R 2001 76.33% Ferrari 458 Italia Convertible 2012 6.76% Lamborghini Diablo Coupe 2001 4.07% Spyker C8 Coupe 2009 2.61% Ferrari California Convertible 2012 2.52% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 90.74% Ford Expedition EL SUV 2009 1.56% Dodge Journey SUV 2012 1.14% Toyota 4Runner SUV 2012 0.94% Buick Rainier SUV 2007 0.72% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 99.31% Aston Martin Virage Coupe 2012 0.33% Lamborghini Aventador Coupe 2012 0.09% Hyundai Veloster Hatchback 2012 0.07% Audi TTS Coupe 2012 0.07% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.37% Dodge Challenger SRT8 2011 0.6% Hyundai Veloster Hatchback 2012 0.02% Ford GT Coupe 2006 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Dodge Challenger SRT8 2011 44.83% Jaguar XK XKR 2012 15.8% Chevrolet Cobalt SS 2010 7.54% Acura RL Sedan 2012 6.75% BMW 1 Series Convertible 2012 3.33% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Toyota Corolla Sedan 2012 46.02% Mitsubishi Lancer Sedan 2012 32.07% Hyundai Accent Sedan 2012 10.69% Jaguar XK XKR 2012 2.25% Buick Regal GS 2012 1.54% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 74.13% BMW X3 SUV 2012 12.39% Volvo 240 Sedan 1993 4.7% BMW 3 Series Wagon 2012 3.7% Audi 100 Wagon 1994 1.41% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 100.0% Ferrari California Convertible 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 McLaren MP4-12C Coupe 2012 97.8% Hyundai Veloster Hatchback 2012 1.3% Aston Martin Virage Coupe 2012 0.51% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.36% HUMMER H3T Crew Cab 2010 0.02% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Chrysler PT Cruiser Convertible 2008 38.78% Toyota Corolla Sedan 2012 15.74% Mitsubishi Lancer Sedan 2012 7.35% Mercedes-Benz E-Class Sedan 2012 5.93% Toyota Camry Sedan 2012 5.25% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 83.97% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.04% Bugatti Veyron 16.4 Convertible 2009 6.59% Aston Martin V8 Vantage Coupe 2012 0.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.63% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 99.99% Eagle Talon Hatchback 1998 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Dodge Caravan Minivan 1997 0.0% Ford Focus Sedan 2007 0.0% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Infiniti QX56 SUV 2011 99.07% Chevrolet Sonic Sedan 2012 0.24% Hyundai Azera Sedan 2012 0.15% Honda Odyssey Minivan 2012 0.13% Ford Edge SUV 2012 0.12% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.62% Ford Expedition EL SUV 2009 0.23% GMC Yukon Hybrid SUV 2012 0.06% Land Rover Range Rover SUV 2012 0.06% Toyota Sequoia SUV 2012 0.01% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Volkswagen Beetle Hatchback 2012 97.47% Porsche Panamera Sedan 2012 1.29% Aston Martin Virage Convertible 2012 0.41% Tesla Model S Sedan 2012 0.2% Ferrari FF Coupe 2012 0.12% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.99% Ford F-150 Regular Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% GMC Canyon Extended Cab 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 97.38% Mercedes-Benz E-Class Sedan 2012 1.31% Hyundai Azera Sedan 2012 0.32% Hyundai Sonata Sedan 2012 0.25% Mercedes-Benz S-Class Sedan 2012 0.14% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 GMC Acadia SUV 2012 90.0% BMW X6 SUV 2012 3.4% Chevrolet Traverse SUV 2012 2.29% Dodge Caliber Wagon 2007 1.2% Nissan Juke Hatchback 2012 0.92% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 100.0% Audi A5 Coupe 2012 0.0% Honda Accord Coupe 2012 0.0% Dodge Durango SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 83.59% Chevrolet Monte Carlo Coupe 2007 16.25% Hyundai Elantra Sedan 2007 0.08% Chevrolet Impala Sedan 2007 0.03% Chevrolet Malibu Hybrid Sedan 2010 0.02% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 BMW 3 Series Wagon 2012 41.49% Audi S4 Sedan 2012 13.63% Honda Odyssey Minivan 2012 8.9% Porsche Panamera Sedan 2012 8.24% Suzuki SX4 Sedan 2012 7.89% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 75.57% BMW Z4 Convertible 2012 7.2% Audi S5 Convertible 2012 2.85% Rolls-Royce Ghost Sedan 2012 2.2% Mercedes-Benz E-Class Sedan 2012 2.03% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari 458 Italia Coupe 2012 83.92% Aston Martin V8 Vantage Convertible 2012 6.37% Aston Martin V8 Vantage Coupe 2012 4.29% Ferrari California Convertible 2012 2.06% Spyker C8 Coupe 2009 0.93% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 41.41% Ford Fiesta Sedan 2012 31.28% smart fortwo Convertible 2012 9.88% Toyota Camry Sedan 2012 6.12% Volkswagen Golf Hatchback 2012 3.06% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Diablo Coupe 2001 86.62% Ford GT Coupe 2006 4.92% Chevrolet Corvette Convertible 2012 3.09% Spyker C8 Coupe 2009 0.85% Dodge Charger Sedan 2012 0.78% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Jeep Wrangler SUV 2012 97.83% HUMMER H2 SUT Crew Cab 2009 1.55% AM General Hummer SUV 2000 0.3% HUMMER H3T Crew Cab 2010 0.15% Dodge Ram Pickup 3500 Quad Cab 2009 0.12% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 BMW 3 Series Sedan 2012 99.73% Suzuki Kizashi Sedan 2012 0.13% Jeep Grand Cherokee SUV 2012 0.04% Audi S6 Sedan 2011 0.04% BMW M3 Coupe 2012 0.03% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Bentley Continental Flying Spur Sedan 2007 89.75% Chevrolet Impala Sedan 2007 3.79% Acura TSX Sedan 2012 2.8% Hyundai Elantra Sedan 2007 0.84% Bentley Continental GT Coupe 2007 0.54% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 98.67% BMW X3 SUV 2012 0.39% Bentley Continental Flying Spur Sedan 2007 0.22% Bentley Mulsanne Sedan 2011 0.17% Infiniti QX56 SUV 2011 0.14% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 HUMMER H3T Crew Cab 2010 90.42% Dodge Ram Pickup 3500 Quad Cab 2009 2.67% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.7% Jeep Patriot SUV 2012 1.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.39% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette ZR1 2012 69.45% Ferrari 458 Italia Convertible 2012 15.29% Ferrari FF Coupe 2012 7.09% Ferrari 458 Italia Coupe 2012 4.8% Ferrari California Convertible 2012 1.93% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 86.34% Hyundai Sonata Sedan 2012 10.21% Hyundai Santa Fe SUV 2012 1.62% Honda Odyssey Minivan 2012 0.96% Honda Accord Sedan 2012 0.83% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.58% HUMMER H3T Crew Cab 2010 0.33% HUMMER H2 SUT Crew Cab 2009 0.09% Jeep Wrangler SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 47.43% Cadillac SRX SUV 2012 33.62% Hyundai Veracruz SUV 2012 7.5% Chevrolet Traverse SUV 2012 4.66% Buick Rainier SUV 2007 2.47% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.74% GMC Savana Van 2012 0.19% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.02% Chevrolet Express Van 2007 0.0% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 98.26% Dodge Journey SUV 2012 1.51% Dodge Durango SUV 2012 0.15% Hyundai Santa Fe SUV 2012 0.06% Ford Expedition EL SUV 2009 0.01% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 99.96% Suzuki SX4 Hatchback 2012 0.01% BMW X5 SUV 2007 0.01% Audi S5 Convertible 2012 0.01% Suzuki SX4 Sedan 2012 0.01% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.21% Chrysler 300 SRT-8 2010 0.7% Volvo C30 Hatchback 2012 0.03% Dodge Challenger SRT8 2011 0.02% Dodge Magnum Wagon 2008 0.02% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.94% Jeep Wrangler SUV 2012 0.03% Jeep Grand Cherokee SUV 2012 0.02% Jeep Liberty SUV 2012 0.01% Isuzu Ascender SUV 2008 0.0% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 89.97% GMC Canyon Extended Cab 2012 10.01% Chevrolet Silverado 1500 Regular Cab 2012 0.01% Ford F-150 Regular Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 MINI Cooper Roadster Convertible 2012 72.68% Bentley Continental Supersports Conv. Convertible 2012 7.38% Bentley Arnage Sedan 2009 5.64% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.04% Bentley Mulsanne Sedan 2011 3.23% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 86.6% Chevrolet Corvette ZR1 2012 5.71% Audi RS 4 Convertible 2008 2.25% Acura Integra Type R 2001 1.6% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.36% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Nissan NV Passenger Van 2012 49.13% Jeep Patriot SUV 2012 15.15% Chevrolet Avalanche Crew Cab 2012 9.38% Isuzu Ascender SUV 2008 7.36% Dodge Ram Pickup 3500 Quad Cab 2009 4.07% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 99.89% Buick Regal GS 2012 0.03% Jeep Grand Cherokee SUV 2012 0.01% Chevrolet Sonic Sedan 2012 0.01% BMW 1 Series Coupe 2012 0.01% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Rolls-Royce Ghost Sedan 2012 51.42% Bentley Arnage Sedan 2009 24.01% Rolls-Royce Phantom Sedan 2012 12.84% Chrysler 300 SRT-8 2010 3.06% Mercedes-Benz 300-Class Convertible 1993 2.46% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 BMW 6 Series Convertible 2007 59.96% Hyundai Genesis Sedan 2012 28.99% Acura RL Sedan 2012 6.93% Acura TSX Sedan 2012 3.28% Honda Accord Sedan 2012 0.41% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Lamborghini Aventador Coupe 2012 65.61% Aston Martin V8 Vantage Coupe 2012 14.12% Ferrari 458 Italia Coupe 2012 3.48% Aston Martin V8 Vantage Convertible 2012 3.44% Chevrolet Corvette Convertible 2012 2.7% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 89.4% Chevrolet Avalanche Crew Cab 2012 7.02% Dodge Caliber Wagon 2007 2.61% Ford F-150 Regular Cab 2007 0.24% Ford F-150 Regular Cab 2012 0.18% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.85% Jeep Patriot SUV 2012 0.15% Bentley Arnage Sedan 2009 0.0% Jeep Compass SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 98.93% Toyota Corolla Sedan 2012 1.07% Acura TSX Sedan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% Honda Accord Coupe 2012 0.0% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 56.76% Chevrolet Traverse SUV 2012 42.45% Hyundai Tucson SUV 2012 0.77% GMC Acadia SUV 2012 0.01% Hyundai Veracruz SUV 2012 0.0% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Audi 100 Sedan 1994 0.0% Isuzu Ascender SUV 2008 0.0% Lincoln Town Car Sedan 2011 0.0% Audi V8 Sedan 1994 0.0% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Fisker Karma Sedan 2012 46.54% BMW M6 Convertible 2010 16.55% Audi R8 Coupe 2012 11.88% Chevrolet Camaro Convertible 2012 5.9% Tesla Model S Sedan 2012 5.63% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 93.92% Ford F-150 Regular Cab 2012 1.74% Cadillac Escalade EXT Crew Cab 2007 1.09% GMC Acadia SUV 2012 0.91% Toyota Sequoia SUV 2012 0.79% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Buick Regal GS 2012 98.88% Buick Verano Sedan 2012 0.89% Chevrolet Sonic Sedan 2012 0.12% Hyundai Accent Sedan 2012 0.08% Dodge Charger Sedan 2012 0.01% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Aston Martin V8 Vantage Convertible 2012 26.3% Ferrari 458 Italia Convertible 2012 12.04% Aston Martin Virage Coupe 2012 10.41% Dodge Charger Sedan 2012 9.88% Aston Martin Virage Convertible 2012 8.79% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 79.91% Chevrolet Silverado 1500 Regular Cab 2012 5.99% Dodge Ram Pickup 3500 Quad Cab 2009 4.99% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.19% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.16% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Hyundai Azera Sedan 2012 59.41% Hyundai Genesis Sedan 2012 14.9% Hyundai Sonata Sedan 2012 13.69% Toyota Camry Sedan 2012 3.68% Honda Accord Sedan 2012 3.26% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Maybach Landaulet Convertible 2012 38.55% Suzuki Aerio Sedan 2007 23.71% Chrysler Crossfire Convertible 2008 15.12% FIAT 500 Convertible 2012 6.55% Nissan Leaf Hatchback 2012 2.71% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 59.34% HUMMER H3T Crew Cab 2010 18.85% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.5% Chevrolet Silverado 1500 Extended Cab 2012 5.89% Chevrolet Avalanche Crew Cab 2012 3.06% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 99.97% Ferrari 458 Italia Convertible 2012 0.01% Ford GT Coupe 2006 0.01% Bugatti Veyron 16.4 Coupe 2009 0.0% Audi TT RS Coupe 2012 0.0% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Honda Odyssey Minivan 2012 91.98% Hyundai Sonata Sedan 2012 2.07% Hyundai Tucson SUV 2012 1.84% Lamborghini Reventon Coupe 2008 1.02% Chevrolet Malibu Hybrid Sedan 2010 0.5% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Chevrolet Camaro Convertible 2012 33.64% Ford GT Coupe 2006 24.76% BMW X3 SUV 2012 9.24% Mercedes-Benz E-Class Sedan 2012 7.15% Chrysler Crossfire Convertible 2008 6.84% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 99.79% Audi R8 Coupe 2012 0.13% Infiniti G Coupe IPL 2012 0.06% Audi TTS Coupe 2012 0.01% BMW M6 Convertible 2010 0.01% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Suzuki SX4 Sedan 2012 62.9% Acura RL Sedan 2012 15.97% Buick Verano Sedan 2012 13.75% Ram C/V Cargo Van Minivan 2012 2.06% BMW 1 Series Convertible 2012 2.03% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 98.58% Ford E-Series Wagon Van 2012 0.73% Dodge Dakota Club Cab 2007 0.21% Nissan NV Passenger Van 2012 0.1% Dodge Ram Pickup 3500 Quad Cab 2009 0.08% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Hyundai Santa Fe SUV 2012 48.28% Chevrolet Traverse SUV 2012 28.89% Acura ZDX Hatchback 2012 7.77% Dodge Durango SUV 2012 3.19% Hyundai Veracruz SUV 2012 3.16% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 56.25% Acura RL Sedan 2012 11.04% Chevrolet Impala Sedan 2007 6.69% Honda Odyssey Minivan 2012 3.21% Chevrolet Malibu Hybrid Sedan 2010 2.65% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 BMW M3 Coupe 2012 79.39% BMW M5 Sedan 2010 16.11% Acura TL Type-S 2008 3.2% BMW ActiveHybrid 5 Sedan 2012 0.34% Acura RL Sedan 2012 0.16% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 90.02% Ferrari FF Coupe 2012 5.73% Ferrari 458 Italia Coupe 2012 1.39% Ferrari 458 Italia Convertible 2012 0.9% BMW Z4 Convertible 2012 0.58% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 99.02% Chevrolet Impala Sedan 2007 0.5% Chrysler Town and Country Minivan 2012 0.21% Volkswagen Beetle Hatchback 2012 0.13% Chevrolet Malibu Hybrid Sedan 2010 0.05% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Sedan 2012 80.65% Suzuki SX4 Hatchback 2012 19.1% Scion xD Hatchback 2012 0.15% Chevrolet Impala Sedan 2007 0.05% Chevrolet Malibu Sedan 2007 0.03% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Rolls-Royce Phantom Sedan 2012 17.78% Spyker C8 Convertible 2009 14.02% Bentley Arnage Sedan 2009 13.21% BMW 3 Series Sedan 2012 11.39% Audi TTS Coupe 2012 8.48% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Hyundai Elantra Sedan 2007 52.92% Chevrolet Malibu Sedan 2007 28.42% Chevrolet Impala Sedan 2007 13.17% Honda Odyssey Minivan 2007 2.29% Chevrolet Monte Carlo Coupe 2007 1.53% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Chrysler Sebring Convertible 2010 43.05% Ford Mustang Convertible 2007 25.58% BMW M6 Convertible 2010 20.84% Dodge Caliber Wagon 2012 1.79% Nissan 240SX Coupe 1998 1.73% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 97.66% Land Rover LR2 SUV 2012 1.2% Hyundai Genesis Sedan 2012 0.56% Chrysler Town and Country Minivan 2012 0.19% Volvo XC90 SUV 2007 0.11% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Chevrolet HHR SS 2010 44.33% Dodge Magnum Wagon 2008 43.55% Chrysler 300 SRT-8 2010 7.41% Rolls-Royce Phantom Sedan 2012 2.18% Daewoo Nubira Wagon 2002 0.7% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.3% Audi 100 Sedan 1994 0.37% Dodge Ram Pickup 3500 Crew Cab 2010 0.23% Volkswagen Golf Hatchback 1991 0.02% Audi 100 Wagon 1994 0.02% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Hyundai Tucson SUV 2012 51.48% Nissan Juke Hatchback 2012 28.02% BMW X6 SUV 2012 6.89% Ferrari FF Coupe 2012 3.25% FIAT 500 Abarth 2012 2.19% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 67.56% Honda Odyssey Minivan 2012 15.18% Hyundai Sonata Sedan 2012 5.2% Hyundai Elantra Sedan 2007 4.87% Hyundai Genesis Sedan 2012 2.31% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 67.53% Mercedes-Benz C-Class Sedan 2012 12.97% BMW M5 Sedan 2010 12.33% Honda Accord Sedan 2012 2.9% Acura TL Type-S 2008 1.64% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 57.95% Ford Expedition EL SUV 2009 41.71% Chrysler Aspen SUV 2009 0.11% Chrysler PT Cruiser Convertible 2008 0.1% Toyota 4Runner SUV 2012 0.04% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Toyota 4Runner SUV 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% Dodge Durango SUV 2012 0.0% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 91.97% Ford Ranger SuperCab 2011 6.47% HUMMER H3T Crew Cab 2010 0.76% Chevrolet Avalanche Crew Cab 2012 0.28% Chevrolet Silverado 1500 Regular Cab 2012 0.14% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 44.7% Hyundai Santa Fe SUV 2012 22.74% Toyota Camry Sedan 2012 11.15% Hyundai Sonata Sedan 2012 6.51% Chrysler PT Cruiser Convertible 2008 3.1% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Aston Martin Virage Coupe 2012 52.41% Chevrolet Corvette ZR1 2012 46.87% Jaguar XK XKR 2012 0.34% Nissan Leaf Hatchback 2012 0.18% Aston Martin V8 Vantage Coupe 2012 0.1% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Buick Regal GS 2012 85.57% Chrysler 300 SRT-8 2010 8.92% Bugatti Veyron 16.4 Coupe 2009 2.76% Cadillac CTS-V Sedan 2012 0.66% Rolls-Royce Ghost Sedan 2012 0.45% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 85.88% Bentley Arnage Sedan 2009 12.86% Rolls-Royce Ghost Sedan 2012 0.43% Jeep Liberty SUV 2012 0.38% Bentley Mulsanne Sedan 2011 0.22% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Buick Verano Sedan 2012 71.86% Toyota Corolla Sedan 2012 12.51% Volkswagen Beetle Hatchback 2012 5.52% Toyota Camry Sedan 2012 3.78% Jaguar XK XKR 2012 1.67% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Mitsubishi Lancer Sedan 2012 55.83% Buick Regal GS 2012 42.21% Chevrolet Sonic Sedan 2012 0.5% Rolls-Royce Ghost Sedan 2012 0.45% GMC Terrain SUV 2012 0.27% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Audi S5 Coupe 2012 91.57% BMW M3 Coupe 2012 0.91% Porsche Panamera Sedan 2012 0.87% Mercedes-Benz E-Class Sedan 2012 0.86% BMW M5 Sedan 2010 0.79% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Jeep Patriot SUV 2012 86.89% Chevrolet Express Van 2007 7.45% Jeep Wrangler SUV 2012 1.28% Isuzu Ascender SUV 2008 1.14% Chrysler Aspen SUV 2009 1.13% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Hyundai Elantra Sedan 2007 95.04% Dodge Caliber Wagon 2007 3.74% Chevrolet Malibu Sedan 2007 0.81% Ford Focus Sedan 2007 0.11% Suzuki SX4 Hatchback 2012 0.1% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Audi R8 Coupe 2012 93.01% Audi TT RS Coupe 2012 4.43% Bentley Continental Supersports Conv. Convertible 2012 2.18% Audi S6 Sedan 2011 0.06% Bugatti Veyron 16.4 Coupe 2009 0.05% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 66.17% Dodge Caravan Minivan 1997 33.34% Daewoo Nubira Wagon 2002 0.2% Audi 100 Wagon 1994 0.06% Geo Metro Convertible 1993 0.05% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ford GT Coupe 2006 99.39% Chevrolet Corvette ZR1 2012 0.44% Ferrari 458 Italia Coupe 2012 0.15% Lamborghini Aventador Coupe 2012 0.01% Ferrari California Convertible 2012 0.0% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 99.98% Scion xD Hatchback 2012 0.01% Toyota Corolla Sedan 2012 0.01% Toyota Camry Sedan 2012 0.0% Honda Odyssey Minivan 2007 0.0% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 99.58% Spyker C8 Convertible 2009 0.41% Bugatti Veyron 16.4 Coupe 2009 0.0% Lamborghini Aventador Coupe 2012 0.0% Fisker Karma Sedan 2012 0.0% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Mercedes-Benz S-Class Sedan 2012 25.66% Daewoo Nubira Wagon 2002 23.09% Suzuki Aerio Sedan 2007 13.2% Mercedes-Benz C-Class Sedan 2012 8.37% Acura Integra Type R 2001 7.47% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Chrysler PT Cruiser Convertible 2008 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Chrysler Sebring Convertible 2010 0.0% Dodge Caravan Minivan 1997 0.0% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Ford Freestar Minivan 2007 90.39% Chevrolet Avalanche Crew Cab 2012 9.4% Ford Expedition EL SUV 2009 0.12% Chevrolet Tahoe Hybrid SUV 2012 0.08% Land Rover Range Rover SUV 2012 0.01% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 98.93% FIAT 500 Convertible 2012 0.78% Nissan 240SX Coupe 1998 0.09% Hyundai Elantra Touring Hatchback 2012 0.07% Acura Integra Type R 2001 0.04% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 98.86% Hyundai Azera Sedan 2012 0.82% Hyundai Accent Sedan 2012 0.21% Ford Fiesta Sedan 2012 0.05% Hyundai Sonata Sedan 2012 0.02% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 100.0% Audi S4 Sedan 2007 0.0% Audi S5 Coupe 2012 0.0% BMW 3 Series Sedan 2012 0.0% Audi RS 4 Convertible 2008 0.0% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Dodge Magnum Wagon 2008 78.75% Chrysler Town and Country Minivan 2012 16.98% Chrysler Sebring Convertible 2010 2.06% Lincoln Town Car Sedan 2011 0.65% Cadillac Escalade EXT Crew Cab 2007 0.35% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Tucson SUV 2012 76.83% Hyundai Sonata Hybrid Sedan 2012 19.11% Hyundai Veloster Hatchback 2012 1.34% Acura TL Sedan 2012 0.92% Chevrolet Malibu Hybrid Sedan 2010 0.66% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 72.38% Audi S4 Sedan 2012 12.76% Audi S5 Convertible 2012 7.22% Audi A5 Coupe 2012 5.4% Audi TT Hatchback 2011 2.18% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 99.61% Buick Regal GS 2012 0.09% Ford Edge SUV 2012 0.06% Dodge Charger Sedan 2012 0.05% Bugatti Veyron 16.4 Coupe 2009 0.04% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Ghost Sedan 2012 40.16% Rolls-Royce Phantom Sedan 2012 31.69% Rolls-Royce Phantom Drophead Coupe Convertible 2012 12.14% BMW M5 Sedan 2010 2.97% Dodge Charger SRT-8 2009 1.55% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Chevrolet Impala Sedan 2007 77.92% Ford Focus Sedan 2007 9.99% Lincoln Town Car Sedan 2011 6.71% Chevrolet Monte Carlo Coupe 2007 2.02% Toyota Camry Sedan 2012 1.64% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Tesla Model S Sedan 2012 62.82% Hyundai Sonata Hybrid Sedan 2012 10.33% BMW ActiveHybrid 5 Sedan 2012 8.47% Honda Accord Coupe 2012 7.35% Audi S4 Sedan 2012 6.12% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 99.91% Ford Freestar Minivan 2007 0.02% Plymouth Neon Coupe 1999 0.02% Chevrolet Malibu Sedan 2007 0.01% Nissan 240SX Coupe 1998 0.01% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 99.95% Chevrolet Impala Sedan 2007 0.05% Chevrolet Monte Carlo Coupe 2007 0.0% Hyundai Elantra Sedan 2007 0.0% Lincoln Town Car Sedan 2011 0.0% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Mercedes-Benz S-Class Sedan 2012 39.35% Maybach Landaulet Convertible 2012 31.6% Rolls-Royce Phantom Sedan 2012 7.86% Hyundai Genesis Sedan 2012 4.27% Cadillac CTS-V Sedan 2012 3.55% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.17% Bugatti Veyron 16.4 Convertible 2009 0.29% smart fortwo Convertible 2012 0.18% Audi S5 Convertible 2012 0.12% Chrysler PT Cruiser Convertible 2008 0.08% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 59.5% Lamborghini Diablo Coupe 2001 27.51% Hyundai Veloster Hatchback 2012 3.75% Spyker C8 Coupe 2009 1.94% Chevrolet Corvette Convertible 2012 1.4% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 89.34% Chevrolet Tahoe Hybrid SUV 2012 10.65% Chevrolet Silverado 1500 Extended Cab 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Dodge Dakota Club Cab 2007 0.0% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 79.62% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.38% Chevrolet Silverado 1500 Regular Cab 2012 6.8% GMC Canyon Extended Cab 2012 4.79% Chevrolet Silverado 2500HD Regular Cab 2012 0.38% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Spyker C8 Convertible 2009 0.0% Lamborghini Diablo Coupe 2001 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Spyker C8 Coupe 2009 0.0% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Toyota Camry Sedan 2012 66.47% Acura TSX Sedan 2012 31.54% Honda Accord Sedan 2012 0.69% Toyota Corolla Sedan 2012 0.46% Acura RL Sedan 2012 0.21% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 99.54% Dodge Caravan Minivan 1997 0.34% Daewoo Nubira Wagon 2002 0.05% Nissan Leaf Hatchback 2012 0.03% Chevrolet Impala Sedan 2007 0.02% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 80.64% Lincoln Town Car Sedan 2011 6.85% Volkswagen Golf Hatchback 1991 3.86% BMW 3 Series Sedan 2012 1.83% Audi 100 Sedan 1994 1.64% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 96.75% Buick Enclave SUV 2012 1.8% Suzuki SX4 Hatchback 2012 1.39% Cadillac SRX SUV 2012 0.03% Nissan Juke Hatchback 2012 0.02% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Scion xD Hatchback 2012 40.77% BMW X6 SUV 2012 16.98% Suzuki Kizashi Sedan 2012 13.48% Dodge Durango SUV 2012 9.94% Jeep Grand Cherokee SUV 2012 6.58% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Ford GT Coupe 2006 33.12% Bentley Mulsanne Sedan 2011 13.06% Rolls-Royce Phantom Drophead Coupe Convertible 2012 10.79% BMW 6 Series Convertible 2007 4.74% Maybach Landaulet Convertible 2012 4.61% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 63.66% Ferrari 458 Italia Coupe 2012 36.18% Ferrari FF Coupe 2012 0.06% Aston Martin V8 Vantage Convertible 2012 0.06% Ferrari California Convertible 2012 0.03% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Cadillac CTS-V Sedan 2012 24.57% Hyundai Veracruz SUV 2012 22.11% Acura TL Sedan 2012 13.49% Acura ZDX Hatchback 2012 3.95% Fisker Karma Sedan 2012 3.2% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Eagle Talon Hatchback 1998 17.9% Bentley Continental GT Coupe 2007 10.86% Ferrari FF Coupe 2012 7.86% Ford GT Coupe 2006 7.59% Jaguar XK XKR 2012 5.74% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 100.0% Jeep Liberty SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% Volvo 240 Sedan 1993 0.0% Jeep Compass SUV 2012 0.0% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Corvette ZR1 2012 79.28% Ford Mustang Convertible 2007 6.86% Chevrolet Corvette Convertible 2012 3.83% Audi S5 Convertible 2012 1.63% Chevrolet Camaro Convertible 2012 1.37% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 83.36% Dodge Caliber Wagon 2007 13.65% Chevrolet Cobalt SS 2010 1.34% Nissan Juke Hatchback 2012 0.5% Eagle Talon Hatchback 1998 0.29% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Chrysler PT Cruiser Convertible 2008 42.43% MINI Cooper Roadster Convertible 2012 13.18% Land Rover Range Rover SUV 2012 11.68% GMC Yukon Hybrid SUV 2012 8.96% Chrysler Crossfire Convertible 2008 4.88% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Sedan 2012 82.45% Suzuki Kizashi Sedan 2012 14.94% Cadillac CTS-V Sedan 2012 1.57% Buick Verano Sedan 2012 0.4% Buick Regal GS 2012 0.18% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Ferrari 458 Italia Coupe 2012 59.94% BMW M3 Coupe 2012 26.5% Chevrolet Camaro Convertible 2012 5.19% Chevrolet Corvette Convertible 2012 3.99% Chevrolet Corvette ZR1 2012 2.44% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Nissan Juke Hatchback 2012 96.71% Suzuki SX4 Hatchback 2012 2.1% Hyundai Tucson SUV 2012 0.27% Ford Fiesta Sedan 2012 0.22% Hyundai Accent Sedan 2012 0.13% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 100.0% AM General Hummer SUV 2000 0.0% Ford F-150 Regular Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Suzuki Aerio Sedan 2007 83.29% Suzuki SX4 Sedan 2012 16.7% Acura TSX Sedan 2012 0.01% Suzuki SX4 Hatchback 2012 0.0% Acura RL Sedan 2012 0.0% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 99.97% BMW X5 SUV 2007 0.03% Jeep Grand Cherokee SUV 2012 0.0% BMW X3 SUV 2012 0.0% Jeep Compass SUV 2012 0.0% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Spyker C8 Coupe 2009 0.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 92.51% Chevrolet Silverado 1500 Extended Cab 2012 3.85% Chevrolet Silverado 1500 Regular Cab 2012 1.49% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.99% Chevrolet Avalanche Crew Cab 2012 0.66% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 56.82% Mercedes-Benz E-Class Sedan 2012 35.86% Hyundai Genesis Sedan 2012 2.14% Audi S4 Sedan 2007 1.64% Infiniti G Coupe IPL 2012 1.6% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Toyota Camry Sedan 2012 67.31% Acura TSX Sedan 2012 32.32% Acura ZDX Hatchback 2012 0.16% Acura TL Sedan 2012 0.08% Chevrolet Malibu Sedan 2007 0.05% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 97.72% Aston Martin V8 Vantage Coupe 2012 1.98% Aston Martin V8 Vantage Convertible 2012 0.11% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.07% Chevrolet Corvette Convertible 2012 0.02% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Buick Verano Sedan 2012 70.94% Nissan Juke Hatchback 2012 10.55% Scion xD Hatchback 2012 5.06% GMC Terrain SUV 2012 4.18% Acura RL Sedan 2012 3.3% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 67.77% Lincoln Town Car Sedan 2011 23.14% Audi 100 Sedan 1994 2.63% Ford Freestar Minivan 2007 1.19% Mercedes-Benz 300-Class Convertible 1993 1.08% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Daewoo Nubira Wagon 2002 70.01% Buick Enclave SUV 2012 15.24% Audi 100 Wagon 1994 7.21% Volvo 240 Sedan 1993 5.78% Volkswagen Golf Hatchback 1991 0.48% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 53.55% Chevrolet Tahoe Hybrid SUV 2012 23.18% Land Rover LR2 SUV 2012 14.44% Land Rover Range Rover SUV 2012 2.04% Hyundai Veracruz SUV 2012 1.33% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 95.91% Ford GT Coupe 2006 2.74% Chevrolet Corvette ZR1 2012 0.86% Suzuki Kizashi Sedan 2012 0.25% Ferrari 458 Italia Coupe 2012 0.19% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.4% BMW 3 Series Sedan 2012 0.6% Hyundai Elantra Sedan 2007 0.0% BMW 3 Series Wagon 2012 0.0% Ferrari 458 Italia Convertible 2012 0.0% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Chrysler Aspen SUV 2009 36.49% Cadillac Escalade EXT Crew Cab 2007 25.73% Toyota Sequoia SUV 2012 18.1% Jeep Grand Cherokee SUV 2012 9.1% Dodge Durango SUV 2007 4.61% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 99.97% Bentley Continental GT Coupe 2012 0.03% Bentley Continental Flying Spur Sedan 2007 0.0% Suzuki Kizashi Sedan 2012 0.0% Buick Verano Sedan 2012 0.0% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 49.6% Porsche Panamera Sedan 2012 21.95% Aston Martin Virage Convertible 2012 5.64% Audi R8 Coupe 2012 3.83% Honda Accord Coupe 2012 2.73% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Jaguar XK XKR 2012 99.4% Aston Martin Virage Convertible 2012 0.23% Suzuki Kizashi Sedan 2012 0.15% Chevrolet Corvette ZR1 2012 0.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.04% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Nissan 240SX Coupe 1998 99.07% Eagle Talon Hatchback 1998 0.24% Plymouth Neon Coupe 1999 0.19% Daewoo Nubira Wagon 2002 0.15% Audi 100 Wagon 1994 0.11% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 64.39% Chevrolet Sonic Sedan 2012 25.35% Hyundai Elantra Touring Hatchback 2012 5.02% Chevrolet Impala Sedan 2007 2.7% Scion xD Hatchback 2012 2.27% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Suzuki SX4 Sedan 2012 81.27% Scion xD Hatchback 2012 4.54% Suzuki SX4 Hatchback 2012 4.18% Dodge Journey SUV 2012 3.87% BMW X3 SUV 2012 1.81% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 91.05% Chevrolet Express Van 2007 5.22% GMC Savana Van 2012 2.83% Audi V8 Sedan 1994 0.64% Volkswagen Golf Hatchback 1991 0.08% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Audi S5 Coupe 2012 72.48% Audi S4 Sedan 2007 11.2% Jaguar XK XKR 2012 7.56% BMW 6 Series Convertible 2007 3.21% BMW M5 Sedan 2010 1.65% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Dodge Charger Sedan 2012 56.07% Lamborghini Gallardo LP 570-4 Superleggera 2012 21.56% Spyker C8 Coupe 2009 6.42% Lamborghini Diablo Coupe 2001 3.08% Chevrolet Corvette Convertible 2012 2.96% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Jaguar XK XKR 2012 83.65% Chevrolet Monte Carlo Coupe 2007 9.3% BMW M6 Convertible 2010 1.52% Honda Accord Coupe 2012 1.24% Chevrolet Corvette Convertible 2012 0.96% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Chrysler 300 SRT-8 2010 93.35% Dodge Challenger SRT8 2011 5.49% Volvo 240 Sedan 1993 0.4% Dodge Charger SRT-8 2009 0.38% BMW M5 Sedan 2010 0.3% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 84.93% Maybach Landaulet Convertible 2012 11.14% Rolls-Royce Phantom Sedan 2012 3.03% Bentley Continental Flying Spur Sedan 2007 0.43% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.37% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Freestar Minivan 2007 99.3% Nissan NV Passenger Van 2012 0.36% Chrysler Town and Country Minivan 2012 0.09% Dodge Durango SUV 2007 0.07% Ram C/V Cargo Van Minivan 2012 0.06% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 94.05% Dodge Durango SUV 2012 1.28% Ford Edge SUV 2012 1.22% Mazda Tribute SUV 2011 0.85% Chevrolet Traverse SUV 2012 0.65% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Mercedes-Benz SL-Class Coupe 2009 38.98% Bugatti Veyron 16.4 Convertible 2009 24.35% Buick Regal GS 2012 9.37% Acura Integra Type R 2001 4.64% Dodge Challenger SRT8 2011 3.88% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.72% Cadillac SRX SUV 2012 0.22% GMC Yukon Hybrid SUV 2012 0.04% Chrysler Town and Country Minivan 2012 0.02% Suzuki SX4 Sedan 2012 0.0% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 100.0% Hyundai Genesis Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Infiniti G Coupe IPL 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 68.18% Chevrolet Silverado 1500 Extended Cab 2012 7.45% Dodge Ram Pickup 3500 Quad Cab 2009 6.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.82% GMC Canyon Extended Cab 2012 4.76% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 99.72% Suzuki SX4 Sedan 2012 0.28% Suzuki Aerio Sedan 2007 0.0% Scion xD Hatchback 2012 0.0% Acura TSX Sedan 2012 0.0% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 91.48% Cadillac SRX SUV 2012 1.37% Hyundai Veracruz SUV 2012 1.26% GMC Canyon Extended Cab 2012 0.95% Mazda Tribute SUV 2011 0.9% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 31.73% Dodge Ram Pickup 3500 Quad Cab 2009 25.88% Jeep Wrangler SUV 2012 12.22% GMC Canyon Extended Cab 2012 11.7% Dodge Dakota Crew Cab 2010 8.65% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Ford Freestar Minivan 2007 94.28% Dodge Caravan Minivan 1997 5.67% Geo Metro Convertible 1993 0.03% Lincoln Town Car Sedan 2011 0.02% Chevrolet Impala Sedan 2007 0.0% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.95% Dodge Sprinter Cargo Van 2009 0.05% Ram C/V Cargo Van Minivan 2012 0.0% Audi 100 Sedan 1994 0.0% Audi V8 Sedan 1994 0.0% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 93.95% Chevrolet Malibu Sedan 2007 2.82% Hyundai Tucson SUV 2012 0.74% Fisker Karma Sedan 2012 0.58% Buick Verano Sedan 2012 0.33% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 59.68% Eagle Talon Hatchback 1998 20.48% Nissan 240SX Coupe 1998 19.39% Ford Focus Sedan 2007 0.39% Chrysler Crossfire Convertible 2008 0.03% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Hyundai Sonata Sedan 2012 14.47% Infiniti QX56 SUV 2011 12.22% Volkswagen Golf Hatchback 2012 10.76% Hyundai Veloster Hatchback 2012 8.81% Volkswagen Beetle Hatchback 2012 7.53% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.59% Dodge Dakota Crew Cab 2010 0.18% Chevrolet TrailBlazer SS 2009 0.15% Hyundai Elantra Sedan 2007 0.06% Dodge Caliber Wagon 2007 0.0% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 99.94% Suzuki Aerio Sedan 2007 0.05% Suzuki SX4 Hatchback 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 89.43% Lamborghini Aventador Coupe 2012 7.63% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.23% Aston Martin V8 Vantage Convertible 2012 0.67% Lamborghini Reventon Coupe 2008 0.31% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Scion xD Hatchback 2012 67.13% Hyundai Tucson SUV 2012 12.96% Eagle Talon Hatchback 1998 10.25% Chevrolet Sonic Sedan 2012 4.93% Plymouth Neon Coupe 1999 2.01% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Ford Freestar Minivan 2007 48.64% Lincoln Town Car Sedan 2011 22.06% Ford F-150 Regular Cab 2007 21.04% Audi 100 Wagon 1994 3.41% Chevrolet Impala Sedan 2007 0.97% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 88.35% Maybach Landaulet Convertible 2012 7.97% Mazda Tribute SUV 2011 1.71% Bugatti Veyron 16.4 Convertible 2009 0.81% Rolls-Royce Phantom Sedan 2012 0.31% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Jeep Liberty SUV 2012 89.91% Jeep Grand Cherokee SUV 2012 4.12% HUMMER H2 SUT Crew Cab 2009 2.05% Dodge Ram Pickup 3500 Crew Cab 2010 1.7% Rolls-Royce Phantom Sedan 2012 0.46% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Jeep Grand Cherokee SUV 2012 24.4% Nissan Juke Hatchback 2012 16.85% Bentley Continental Flying Spur Sedan 2007 16.44% BMW X5 SUV 2007 12.57% Suzuki SX4 Sedan 2012 6.64% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Ford Fiesta Sedan 2012 79.37% Hyundai Azera Sedan 2012 11.36% Hyundai Tucson SUV 2012 4.29% Chevrolet Sonic Sedan 2012 1.4% smart fortwo Convertible 2012 0.97% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Ford GT Coupe 2006 77.32% Chevrolet Corvette ZR1 2012 19.46% Ferrari California Convertible 2012 0.88% Jaguar XK XKR 2012 0.55% Eagle Talon Hatchback 1998 0.27% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Audi TTS Coupe 2012 36.47% Chevrolet Silverado 2500HD Regular Cab 2012 21.46% Tesla Model S Sedan 2012 10.74% Audi V8 Sedan 1994 7.86% Ferrari FF Coupe 2012 4.52% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 BMW 3 Series Sedan 2012 84.86% Ferrari FF Coupe 2012 10.89% BMW 3 Series Wagon 2012 1.29% Chevrolet Sonic Sedan 2012 0.83% Suzuki SX4 Sedan 2012 0.29% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 99.09% Daewoo Nubira Wagon 2002 0.4% Plymouth Neon Coupe 1999 0.3% Volkswagen Golf Hatchback 1991 0.08% Suzuki Aerio Sedan 2007 0.04% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 91.68% Mercedes-Benz E-Class Sedan 2012 8.2% Mercedes-Benz S-Class Sedan 2012 0.1% Audi S6 Sedan 2011 0.01% Cadillac CTS-V Sedan 2012 0.01% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Eagle Talon Hatchback 1998 75.21% Nissan 240SX Coupe 1998 20.49% Honda Accord Coupe 2012 1.82% Ford Mustang Convertible 2007 1.08% Plymouth Neon Coupe 1999 0.97% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 88.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.52% GMC Yukon Hybrid SUV 2012 3.59% Chevrolet Silverado 1500 Extended Cab 2012 0.67% Toyota 4Runner SUV 2012 0.29% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 92.38% Chevrolet Camaro Convertible 2012 6.77% BMW Z4 Convertible 2012 0.28% Chevrolet Corvette Convertible 2012 0.17% Ford Mustang Convertible 2007 0.05% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.7% Dodge Caliber Wagon 2012 0.14% Volvo 240 Sedan 1993 0.07% Dodge Durango SUV 2007 0.02% Dodge Dakota Club Cab 2007 0.01% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 99.28% Isuzu Ascender SUV 2008 0.36% GMC Yukon Hybrid SUV 2012 0.29% Chevrolet Tahoe Hybrid SUV 2012 0.06% Jeep Wrangler SUV 2012 0.01% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Chevrolet Corvette ZR1 2012 57.17% Eagle Talon Hatchback 1998 12.49% Ford GT Coupe 2006 8.66% Plymouth Neon Coupe 1999 5.89% FIAT 500 Abarth 2012 4.97% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.99% Mercedes-Benz 300-Class Convertible 1993 0.01% Ford Mustang Convertible 2007 0.0% Eagle Talon Hatchback 1998 0.0% Volkswagen Golf Hatchback 1991 0.0% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Infiniti QX56 SUV 2011 34.77% Honda Odyssey Minivan 2012 22.99% Chevrolet Malibu Hybrid Sedan 2010 9.15% Honda Accord Sedan 2012 7.87% Ford Fiesta Sedan 2012 6.47% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.99% McLaren MP4-12C Coupe 2012 0.01% Aston Martin V8 Vantage Coupe 2012 0.0% Audi TTS Coupe 2012 0.0% Bentley Continental GT Coupe 2012 0.0% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 97.67% Ford Freestar Minivan 2007 1.26% Hyundai Santa Fe SUV 2012 0.34% Audi 100 Sedan 1994 0.34% Plymouth Neon Coupe 1999 0.2% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Mulsanne Sedan 2011 31.21% Bentley Continental Supersports Conv. Convertible 2012 17.2% Bentley Continental GT Coupe 2012 10.5% Bentley Continental Flying Spur Sedan 2007 6.72% Bentley Continental GT Coupe 2007 5.04% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 92.79% Chrysler Sebring Convertible 2010 5.67% Chevrolet Camaro Convertible 2012 0.91% Chrysler PT Cruiser Convertible 2008 0.28% Mercedes-Benz 300-Class Convertible 1993 0.06% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Audi V8 Sedan 1994 0.0% BMW X5 SUV 2007 0.0% Audi 100 Sedan 1994 0.0% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 85.87% Chevrolet Tahoe Hybrid SUV 2012 12.88% Isuzu Ascender SUV 2008 0.96% Jeep Patriot SUV 2012 0.12% Chevrolet Silverado 1500 Extended Cab 2012 0.06% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 BMW X6 SUV 2012 31.03% Dodge Caliber Wagon 2007 21.83% Chevrolet Sonic Sedan 2012 10.9% Suzuki SX4 Hatchback 2012 9.49% Hyundai Tucson SUV 2012 5.34% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 93.07% Mercedes-Benz Sprinter Van 2012 6.93% Chevrolet Traverse SUV 2012 0.0% Dodge Caravan Minivan 1997 0.0% Chrysler Aspen SUV 2009 0.0% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Suzuki Kizashi Sedan 2012 24.33% Buick Verano Sedan 2012 14.78% Cadillac SRX SUV 2012 9.37% MINI Cooper Roadster Convertible 2012 8.85% Hyundai Azera Sedan 2012 7.28% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.47% Dodge Caliber Wagon 2012 0.2% Chevrolet Avalanche Crew Cab 2012 0.14% Dodge Journey SUV 2012 0.07% Chevrolet TrailBlazer SS 2009 0.05% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 64.71% Toyota Camry Sedan 2012 35.29% Hyundai Accent Sedan 2012 0.0% Acura TSX Sedan 2012 0.0% Nissan 240SX Coupe 1998 0.0% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Acura ZDX Hatchback 2012 62.62% Audi S5 Coupe 2012 23.5% Audi 100 Wagon 1994 13.07% Fisker Karma Sedan 2012 0.18% Buick Enclave SUV 2012 0.18% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Daewoo Nubira Wagon 2002 27.43% Volvo C30 Hatchback 2012 11.11% Ford Fiesta Sedan 2012 7.75% Volkswagen Golf Hatchback 1991 5.26% Chevrolet Sonic Sedan 2012 5.01% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Audi S6 Sedan 2011 94.53% Audi S4 Sedan 2012 3.18% Audi S5 Coupe 2012 1.22% Audi A5 Coupe 2012 0.71% Audi RS 4 Convertible 2008 0.17% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 84.22% HUMMER H3T Crew Cab 2010 15.77% Jeep Grand Cherokee SUV 2012 0.01% Jeep Compass SUV 2012 0.0% AM General Hummer SUV 2000 0.0% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 87.9% Ford F-150 Regular Cab 2012 4.37% GMC Canyon Extended Cab 2012 2.82% Ford F-150 Regular Cab 2007 2.62% Ford F-450 Super Duty Crew Cab 2012 1.37% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 100.0% Lamborghini Aventador Coupe 2012 0.0% Audi TT Hatchback 2011 0.0% Audi TTS Coupe 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Toyota Corolla Sedan 2012 77.91% Hyundai Sonata Hybrid Sedan 2012 8.51% Hyundai Accent Sedan 2012 4.01% Toyota Camry Sedan 2012 2.4% Ford Fiesta Sedan 2012 1.75% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Chrysler PT Cruiser Convertible 2008 10.63% Mercedes-Benz E-Class Sedan 2012 10.01% Cadillac SRX SUV 2012 9.72% Bentley Arnage Sedan 2009 8.12% BMW X3 SUV 2012 4.67% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 96.5% Audi R8 Coupe 2012 2.23% Ferrari FF Coupe 2012 0.43% Bugatti Veyron 16.4 Coupe 2009 0.25% Mercedes-Benz SL-Class Coupe 2009 0.18% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Hyundai Sonata Sedan 2012 66.64% Chevrolet Traverse SUV 2012 25.64% Hyundai Santa Fe SUV 2012 3.17% Hyundai Veracruz SUV 2012 2.76% Hyundai Tucson SUV 2012 1.72% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 47.51% Audi V8 Sedan 1994 27.59% Bentley Arnage Sedan 2009 16.33% Volvo 240 Sedan 1993 5.2% Mercedes-Benz 300-Class Convertible 1993 0.83% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin Virage Convertible 2012 32.13% Aston Martin V8 Vantage Coupe 2012 20.76% Rolls-Royce Phantom Drophead Coupe Convertible 2012 18.37% Eagle Talon Hatchback 1998 16.89% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.41% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 87.88% BMW 3 Series Sedan 2012 7.97% Ferrari 458 Italia Coupe 2012 2.2% Ferrari FF Coupe 2012 1.53% Nissan 240SX Coupe 1998 0.33% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 63.12% Audi A5 Coupe 2012 30.47% Mitsubishi Lancer Sedan 2012 2.14% Audi S6 Sedan 2011 1.42% BMW 3 Series Sedan 2012 0.62% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Lincoln Town Car Sedan 2011 27.77% Chevrolet Malibu Sedan 2007 17.52% Mercedes-Benz S-Class Sedan 2012 10.51% Chrysler Sebring Convertible 2010 9.03% Hyundai Elantra Sedan 2007 7.94% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 91.35% Chevrolet Corvette ZR1 2012 8.12% Bentley Continental GT Coupe 2007 0.28% Bentley Continental Flying Spur Sedan 2007 0.12% Bugatti Veyron 16.4 Coupe 2009 0.08% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Bentley Continental Supersports Conv. Convertible 2012 33.32% Nissan Juke Hatchback 2012 8.43% Audi R8 Coupe 2012 8.03% Fisker Karma Sedan 2012 7.9% Aston Martin V8 Vantage Convertible 2012 6.82% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Nissan Leaf Hatchback 2012 72.09% Chevrolet Sonic Sedan 2012 15.37% Suzuki SX4 Sedan 2012 4.08% Chevrolet Malibu Hybrid Sedan 2010 2.41% Honda Odyssey Minivan 2012 1.12% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Hyundai Elantra Sedan 2007 40.43% Chrysler Crossfire Convertible 2008 19.91% Acura TSX Sedan 2012 16.92% BMW 6 Series Convertible 2007 4.99% Chevrolet Malibu Hybrid Sedan 2010 4.33% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 BMW M3 Coupe 2012 43.82% Bentley Continental GT Coupe 2012 11.72% BMW Z4 Convertible 2012 10.06% BMW M6 Convertible 2010 9.29% BMW M5 Sedan 2010 7.7% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Acura ZDX Hatchback 2012 51.0% Hyundai Azera Sedan 2012 36.79% Hyundai Sonata Sedan 2012 3.23% Honda Odyssey Minivan 2012 2.2% Eagle Talon Hatchback 1998 1.39% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Nissan NV Passenger Van 2012 66.51% Dodge Caliber Wagon 2007 14.16% Dodge Dakota Club Cab 2007 8.95% Suzuki SX4 Hatchback 2012 3.25% Land Rover LR2 SUV 2012 1.49% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 85.31% Ford F-150 Regular Cab 2007 7.22% Dodge Durango SUV 2007 2.72% Chevrolet Tahoe Hybrid SUV 2012 1.56% Chrysler 300 SRT-8 2010 1.49% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Rolls-Royce Phantom Sedan 2012 65.02% Chrysler Aspen SUV 2009 25.9% GMC Canyon Extended Cab 2012 1.35% Dodge Ram Pickup 3500 Crew Cab 2010 1.0% Ford E-Series Wagon Van 2012 0.91% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 99.6% Hyundai Sonata Hybrid Sedan 2012 0.26% Hyundai Sonata Sedan 2012 0.12% Toyota Camry Sedan 2012 0.01% Acura TL Sedan 2012 0.0% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Hyundai Tucson SUV 2012 64.69% Hyundai Azera Sedan 2012 12.26% Dodge Durango SUV 2012 6.9% Buick Regal GS 2012 1.69% Hyundai Genesis Sedan 2012 1.65% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 87.87% Dodge Dakota Club Cab 2007 6.52% Dodge Durango SUV 2007 3.11% Dodge Dakota Crew Cab 2010 1.47% Dodge Ram Pickup 3500 Crew Cab 2010 0.61% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Audi R8 Coupe 2012 62.8% Rolls-Royce Ghost Sedan 2012 27.14% Volvo 240 Sedan 1993 3.0% Audi V8 Sedan 1994 2.0% Ford Mustang Convertible 2007 1.04% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 95.09% Aston Martin V8 Vantage Convertible 2012 1.56% Lamborghini Aventador Coupe 2012 0.83% Spyker C8 Coupe 2009 0.79% McLaren MP4-12C Coupe 2012 0.46% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 96.55% Aston Martin Virage Coupe 2012 1.15% Lamborghini Reventon Coupe 2008 0.99% Chevrolet Camaro Convertible 2012 0.35% Bentley Continental Supersports Conv. Convertible 2012 0.2% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 54.85% Dodge Caliber Wagon 2007 45.11% Dodge Charger Sedan 2012 0.04% Dodge Journey SUV 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 95.17% Chevrolet Silverado 1500 Extended Cab 2012 2.48% Chevrolet Avalanche Crew Cab 2012 0.79% Chevrolet Silverado 1500 Regular Cab 2012 0.6% GMC Terrain SUV 2012 0.35% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 48.79% Bugatti Veyron 16.4 Coupe 2009 21.62% Lamborghini Reventon Coupe 2008 10.12% Aston Martin V8 Vantage Coupe 2012 8.66% Lamborghini Aventador Coupe 2012 6.08% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Plymouth Neon Coupe 1999 0.0% Eagle Talon Hatchback 1998 0.0% Acura Integra Type R 2001 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Buick Verano Sedan 2012 32.4% Suzuki Kizashi Sedan 2012 19.7% Audi S4 Sedan 2012 14.73% Acura TL Sedan 2012 10.6% Scion xD Hatchback 2012 2.42% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Chrysler Sebring Convertible 2010 92.58% Hyundai Elantra Sedan 2007 3.49% Maybach Landaulet Convertible 2012 1.93% Ram C/V Cargo Van Minivan 2012 1.42% Lincoln Town Car Sedan 2011 0.29% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 88.3% Mitsubishi Lancer Sedan 2012 8.62% Chevrolet Sonic Sedan 2012 0.98% Volvo C30 Hatchback 2012 0.92% Spyker C8 Coupe 2009 0.42% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.8% Ford E-Series Wagon Van 2012 0.08% Toyota Sequoia SUV 2012 0.04% Land Rover LR2 SUV 2012 0.02% Chrysler Aspen SUV 2009 0.01% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz C-Class Sedan 2012 40.32% Acura TL Type-S 2008 31.66% Toyota Camry Sedan 2012 8.24% BMW 6 Series Convertible 2007 5.52% Hyundai Genesis Sedan 2012 4.52% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 98.52% Aston Martin V8 Vantage Coupe 2012 0.58% McLaren MP4-12C Coupe 2012 0.39% Aston Martin Virage Convertible 2012 0.17% Lamborghini Reventon Coupe 2008 0.16% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 68.47% Ford F-150 Regular Cab 2012 22.58% Chevrolet Express Van 2007 5.58% Chevrolet Silverado 2500HD Regular Cab 2012 1.62% GMC Savana Van 2012 0.7% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 99.8% Audi S5 Coupe 2012 0.13% Audi S4 Sedan 2007 0.05% Audi S4 Sedan 2012 0.01% Audi S6 Sedan 2011 0.01% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 70.25% Dodge Ram Pickup 3500 Crew Cab 2010 17.73% Ford Expedition EL SUV 2009 11.38% Toyota Sequoia SUV 2012 0.18% Ford F-150 Regular Cab 2012 0.17% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 94.98% Audi TTS Coupe 2012 2.22% Audi A5 Coupe 2012 1.05% Audi S6 Sedan 2011 0.64% Audi S4 Sedan 2012 0.36% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 10.26% Aston Martin Virage Coupe 2012 8.22% Aston Martin Virage Convertible 2012 7.67% Maybach Landaulet Convertible 2012 7.3% Infiniti QX56 SUV 2011 7.09% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 66.79% Bugatti Veyron 16.4 Convertible 2009 33.11% smart fortwo Convertible 2012 0.06% Ford GT Coupe 2006 0.01% Mercedes-Benz SL-Class Coupe 2009 0.01% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 88.02% Lamborghini Aventador Coupe 2012 7.43% Bugatti Veyron 16.4 Convertible 2009 1.64% Audi TT RS Coupe 2012 1.45% Bentley Continental Supersports Conv. Convertible 2012 0.45% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.99% Audi 100 Sedan 1994 0.0% Audi 100 Wagon 1994 0.0% Chevrolet Express Van 2007 0.0% Audi V8 Sedan 1994 0.0% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Suzuki Kizashi Sedan 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% Chevrolet Corvette ZR1 2012 0.0% Hyundai Elantra Sedan 2007 0.0% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Lamborghini Reventon Coupe 2008 25.05% Spyker C8 Convertible 2009 22.84% Bentley Continental GT Coupe 2012 13.71% Spyker C8 Coupe 2009 10.78% Lamborghini Aventador Coupe 2012 6.05% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 100.0% Hyundai Sonata Sedan 2012 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Genesis Sedan 2012 0.0% Infiniti G Coupe IPL 2012 0.0% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Volkswagen Golf Hatchback 2012 25.36% FIAT 500 Convertible 2012 18.37% BMW ActiveHybrid 5 Sedan 2012 12.5% Mercedes-Benz E-Class Sedan 2012 9.84% Volkswagen Beetle Hatchback 2012 6.01% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Volvo XC90 SUV 2007 93.65% Chevrolet Traverse SUV 2012 4.73% Toyota Sequoia SUV 2012 0.53% Mazda Tribute SUV 2011 0.35% Jeep Grand Cherokee SUV 2012 0.26% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 54.62% Toyota Corolla Sedan 2012 29.7% Audi S4 Sedan 2012 2.52% Audi S5 Coupe 2012 2.34% Hyundai Azera Sedan 2012 2.22% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Jaguar XK XKR 2012 50.51% Chevrolet Corvette ZR1 2012 27.02% BMW ActiveHybrid 5 Sedan 2012 4.9% Porsche Panamera Sedan 2012 3.57% Audi TT Hatchback 2011 3.23% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chrysler Aspen SUV 2009 30.17% Dodge Dakota Club Cab 2007 18.95% Chevrolet Silverado 1500 Extended Cab 2012 10.9% Chevrolet Avalanche Crew Cab 2012 8.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.01% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Jeep Patriot SUV 2012 70.38% Infiniti QX56 SUV 2011 10.33% Buick Enclave SUV 2012 4.06% Ford Expedition EL SUV 2009 3.75% HUMMER H3T Crew Cab 2010 2.98% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 60.89% Spyker C8 Convertible 2009 33.87% Aston Martin Virage Coupe 2012 4.31% Ford GT Coupe 2006 0.25% Spyker C8 Coupe 2009 0.24% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 99.22% Dodge Charger Sedan 2012 0.7% Dodge Charger SRT-8 2009 0.03% Dodge Dakota Club Cab 2007 0.03% Dodge Durango SUV 2007 0.02% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 97.86% Dodge Journey SUV 2012 0.67% Dodge Caliber Wagon 2007 0.46% Chevrolet Malibu Sedan 2007 0.44% Lincoln Town Car Sedan 2011 0.13% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 82.86% Plymouth Neon Coupe 1999 12.72% Chevrolet Express Cargo Van 2007 2.98% Audi V8 Sedan 1994 0.66% GMC Savana Van 2012 0.47% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Audi S5 Coupe 2012 45.36% Bentley Continental Supersports Conv. Convertible 2012 17.48% Tesla Model S Sedan 2012 11.72% Fisker Karma Sedan 2012 5.4% Audi S6 Sedan 2011 4.47% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.99% Land Rover LR2 SUV 2012 0.01% Honda Odyssey Minivan 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Audi RS 4 Convertible 2008 29.43% Audi S6 Sedan 2011 24.75% Audi TT Hatchback 2011 15.03% Audi S4 Sedan 2007 13.3% Audi A5 Coupe 2012 4.03% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.99% Dodge Caravan Minivan 1997 0.0% Chevrolet Malibu Sedan 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Chevrolet Impala Sedan 2007 0.0% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Cadillac SRX SUV 2012 23.49% Audi S5 Coupe 2012 14.8% Suzuki SX4 Hatchback 2012 9.16% BMW X6 SUV 2012 6.89% Dodge Caliber Wagon 2012 5.78% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 76.61% BMW M3 Coupe 2012 14.42% BMW 1 Series Coupe 2012 6.27% Volvo C30 Hatchback 2012 0.81% Toyota Corolla Sedan 2012 0.45% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 36.98% Buick Regal GS 2012 29.11% Chevrolet Sonic Sedan 2012 7.26% Volvo C30 Hatchback 2012 5.52% Hyundai Sonata Sedan 2012 5.04% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 AM General Hummer SUV 2000 68.66% Mitsubishi Lancer Sedan 2012 8.61% Dodge Ram Pickup 3500 Quad Cab 2009 5.36% Jeep Wrangler SUV 2012 4.65% HUMMER H3T Crew Cab 2010 4.4% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 33.05% Audi V8 Sedan 1994 24.98% Mercedes-Benz 300-Class Convertible 1993 23.49% Volkswagen Golf Hatchback 1991 10.0% Nissan 240SX Coupe 1998 2.47% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Chevrolet Corvette ZR1 2012 54.01% Volkswagen Beetle Hatchback 2012 16.12% Acura ZDX Hatchback 2012 4.09% Ford Fiesta Sedan 2012 3.45% Audi TT Hatchback 2011 3.01% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 52.65% Dodge Dakota Club Cab 2007 27.88% Chevrolet Tahoe Hybrid SUV 2012 16.65% Isuzu Ascender SUV 2008 1.95% Dodge Durango SUV 2007 0.27% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 98.3% Hyundai Accent Sedan 2012 1.18% Toyota Camry Sedan 2012 0.46% Mitsubishi Lancer Sedan 2012 0.02% Hyundai Genesis Sedan 2012 0.02% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 38.77% Bentley Mulsanne Sedan 2011 17.21% Chevrolet Camaro Convertible 2012 13.44% Bentley Continental GT Coupe 2012 10.49% Chrysler 300 SRT-8 2010 6.83% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Dodge Dakota Club Cab 2007 43.11% Dodge Dakota Crew Cab 2010 31.5% Dodge Caliber Wagon 2012 8.1% Mercedes-Benz 300-Class Convertible 1993 7.45% Dodge Charger Sedan 2012 3.86% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 100.0% Honda Odyssey Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% Ford Edge SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 BMW ActiveHybrid 5 Sedan 2012 32.1% Buick Regal GS 2012 26.81% Fisker Karma Sedan 2012 12.61% Hyundai Azera Sedan 2012 9.47% Audi TT Hatchback 2011 9.17% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Buick Rainier SUV 2007 0.0% Dodge Durango SUV 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 68.51% Fisker Karma Sedan 2012 15.43% Aston Martin Virage Convertible 2012 5.47% BMW ActiveHybrid 5 Sedan 2012 2.25% BMW 3 Series Sedan 2012 1.49% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Mercedes-Benz Sprinter Van 2012 84.04% Buick Rainier SUV 2007 10.73% Hyundai Elantra Touring Hatchback 2012 3.0% Dodge Sprinter Cargo Van 2009 0.64% Chrysler Aspen SUV 2009 0.38% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 85.48% Dodge Durango SUV 2007 10.56% Toyota 4Runner SUV 2012 2.99% Mazda Tribute SUV 2011 0.69% Ford Expedition EL SUV 2009 0.07% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 97.0% Chevrolet Impala Sedan 2007 1.04% Toyota Camry Sedan 2012 0.6% Acura TL Sedan 2012 0.51% Chevrolet Malibu Hybrid Sedan 2010 0.27% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Impala Sedan 2007 23.61% Suzuki Kizashi Sedan 2012 20.47% Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.33% Hyundai Elantra Sedan 2007 9.24% Chevrolet Monte Carlo Coupe 2007 8.08% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Bentley Arnage Sedan 2009 87.82% Jeep Grand Cherokee SUV 2012 2.28% Dodge Charger SRT-8 2009 1.99% BMW ActiveHybrid 5 Sedan 2012 1.82% BMW 3 Series Wagon 2012 1.13% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Chrysler 300 SRT-8 2010 26.7% BMW X3 SUV 2012 8.98% BMW X6 SUV 2012 8.25% Audi R8 Coupe 2012 5.96% Ford Mustang Convertible 2007 4.91% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Audi A5 Coupe 2012 44.87% Audi S5 Coupe 2012 17.75% Audi TT Hatchback 2011 12.75% Audi S5 Convertible 2012 8.6% Mercedes-Benz SL-Class Coupe 2009 7.5% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 70.24% Honda Accord Sedan 2012 6.69% BMW M5 Sedan 2010 5.83% Honda Odyssey Minivan 2007 4.62% Land Rover Range Rover SUV 2012 3.88% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Toyota Corolla Sedan 2012 52.75% Suzuki Kizashi Sedan 2012 9.37% Toyota Camry Sedan 2012 7.91% Buick Verano Sedan 2012 7.4% Jaguar XK XKR 2012 5.58% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 97.27% Dodge Caliber Wagon 2012 2.58% Ford Freestar Minivan 2007 0.14% Chrysler Sebring Convertible 2010 0.0% Chevrolet Traverse SUV 2012 0.0% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 53.38% BMW X5 SUV 2007 45.77% Audi S5 Coupe 2012 0.23% Acura ZDX Hatchback 2012 0.16% Hyundai Tucson SUV 2012 0.07% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Jaguar XK XKR 2012 29.9% Volkswagen Golf Hatchback 2012 8.61% Bugatti Veyron 16.4 Coupe 2009 3.67% Chevrolet Monte Carlo Coupe 2007 3.65% Chevrolet Corvette ZR1 2012 2.87% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 45.75% Audi A5 Coupe 2012 30.69% BMW 6 Series Convertible 2007 12.79% Audi TT Hatchback 2011 2.05% Mitsubishi Lancer Sedan 2012 1.83% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 96.74% Chevrolet Corvette Convertible 2012 0.66% Chevrolet Cobalt SS 2010 0.55% Toyota Camry Sedan 2012 0.52% Scion xD Hatchback 2012 0.48% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Mazda Tribute SUV 2011 37.5% Chevrolet Sonic Sedan 2012 22.66% BMW 6 Series Convertible 2007 12.91% Buick Regal GS 2012 3.9% Suzuki SX4 Sedan 2012 2.55% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura RL Sedan 2012 96.09% Acura TL Sedan 2012 3.87% Acura TSX Sedan 2012 0.03% Chevrolet Impala Sedan 2007 0.01% Honda Odyssey Minivan 2012 0.0% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 79.86% Nissan 240SX Coupe 1998 14.59% Eagle Talon Hatchback 1998 3.21% Chevrolet Camaro Convertible 2012 1.24% Honda Accord Coupe 2012 0.56% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Ford Freestar Minivan 2007 0.0% Volvo XC90 SUV 2007 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 87.15% Tesla Model S Sedan 2012 7.07% Audi S4 Sedan 2012 2.22% BMW 1 Series Coupe 2012 1.37% Acura TSX Sedan 2012 1.14% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Nissan Juke Hatchback 2012 89.78% Chevrolet Corvette ZR1 2012 3.83% Suzuki Kizashi Sedan 2012 2.28% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.95% Jaguar XK XKR 2012 0.73% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 86.9% Audi R8 Coupe 2012 5.12% FIAT 500 Abarth 2012 3.79% Ford Mustang Convertible 2007 1.42% Audi V8 Sedan 1994 1.31% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 86.0% Ferrari 458 Italia Coupe 2012 4.31% Aston Martin V8 Vantage Coupe 2012 2.54% Spyker C8 Coupe 2009 2.46% Acura Integra Type R 2001 1.71% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Mercedes-Benz Sprinter Van 2012 41.63% Audi 100 Sedan 1994 10.96% Mercedes-Benz 300-Class Convertible 1993 8.74% Audi 100 Wagon 1994 8.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.42% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.76% Dodge Ram Pickup 3500 Quad Cab 2009 0.24% HUMMER H2 SUT Crew Cab 2009 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Ford Expedition EL SUV 2009 0.0% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 99.31% Chevrolet Malibu Sedan 2007 0.52% Ram C/V Cargo Van Minivan 2012 0.09% Chevrolet Monte Carlo Coupe 2007 0.03% Chevrolet Impala Sedan 2007 0.03% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 52.73% Volvo XC90 SUV 2007 17.07% Mercedes-Benz 300-Class Convertible 1993 12.59% Chevrolet Silverado 1500 Regular Cab 2012 3.42% Dodge Dakota Club Cab 2007 3.4% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Santa Fe SUV 2012 32.04% Chevrolet Traverse SUV 2012 25.98% Ford Ranger SuperCab 2011 11.77% Audi V8 Sedan 1994 5.43% Volvo XC90 SUV 2007 3.18% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Fisker Karma Sedan 2012 81.49% Porsche Panamera Sedan 2012 14.19% Audi R8 Coupe 2012 1.97% Chevrolet Corvette ZR1 2012 0.43% Aston Martin Virage Convertible 2012 0.28% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-2/0.95/small.png b/cars/lr-investigations/exponential/1e-2/0.95/small.png new file mode 100644 index 0000000000000000000000000000000000000000..162bf288ab75b1fd57e19190d7be707eb7f8f8f1 GIT binary patch literal 101948 zcmcG01z42py0!{Z5(0uW(kjx@rGkW%beEKLcS#6HhcGB9A)N}+-KlhU4&4p^JAmu# zz0Z!d_xbl+*Sc_KeK0fM`{aG!&-3B6q%ax^0m_XVH_${y1Z8gAfTy@| zqb%FAEUbIC$K<7-qI-shdLSo7KlBcL9vb<4;lj1cnZC5NlpVSCME|_XEw^HEOiZN9 zb!Wml{vdYIVSaIO(9`egksjpGPq52`dG!cetJq5ryndK^)*_K#J-FwnwTcI=D3{;F zxlnfOctRj<9b$||P%#zgZpCQcuTmzw=U2a_%Ze}~MJWk)4We&nUT>aJ^8XcW37NlC?P{2n{YdThf ziHJecP`VhOW!&=E%B)>ad*r)enNRk|n3#Z+6iVB5A79@UmBKm<{?m7Ks>M??0SrP~ zT8X(-w3S;;gdEE$5f*!#uB1%3Q@uOpTd`}y91LwOeb$(w^F^BN2 zydZwo@^Dl8tWBqv-Hd3{34M&N1n>UfeZQdkCniig!X?qHL*p~ST_1j%Vp8!8{ZME* zNtWiIC~eSU^K+VSJdcrANc(F2={-3qOlIciQ^^fG@U<~o?~@_BI_*JI!HqsS*idvA z5)@45Z&eWvCaU#-L+mSESy{<4Zbi}4(=&2)*qErCUh7mUC-(RE?>nBKn$l7iPzcS9 z{%-pAZThHfd!JQ!dtyn6()Ws1Jh zwl`UuSqULUUTCkN#Ie_P+%M45Rp&#pHvU;g_k5+g%2>-hh$}TepAmuFggg$}?%^s$ z-1O4YTk!OO7l)xL0{JR74o>4UZ?u$p+C_Re%z=oTKHur!F!!~qYx#Nx^&Zsmg|DjQ zVyxf7G}YdQbI!kY=V$jJ>gG1ofGDSiB(342>tbG$k1wvazthAWSrRoLH1&sf$%b?& zuAQtt<$b#CCmd~Pz@fY(=fg300&4!Lzj0(iQ~z2d=to^wNOm&CO6!PJ^RZN6{9NF} zCr{)!rCL$H!Nk?-f`bk)geQ`6EY=;$OMEk?}IV&dY0qM{#i$+G6= z=QE0P($jyk>arS6uCAJ>lV`~(C}b9QcG`aPB`orX?@lqjgMwm%rc6gc0hf`HQ6{MH zN>uc@zW!JGu>K+Qx9+Gycdvq)bj%yZ-{EfLo)_kIcr zZQSxIyhaA=M%#J2E}bye<8^#94ACU&*7Uity}iBuBHi1f=k`lK$#&Pr2`453i$z37>biZOKnO>K;WO4_yG7`XoF2-VJ%hI;5reu#}va&j`hU%m(GOo}P^DJ3U& z4-S(p6g@At992+B3IVUD7*%k{7epfwO^6552|NNq=89MOGx#F3{h{BnUE+_h{GXgA zIK=<{X?FIr>f#{Bi;m*nySGG8s3IhUAR{Yl`yu;dc(`Xrhd4O*g2|ufc)t@w5?iAd z{B^b}dW1mn$5(aie>Ff^7`uvJrQ3@2M56+nNF=34D&>ujXOLEvU`n|$mNAlWL5Xnb z*595Ve!B7Vi@?%&IeSGVzVQ#QIUZzW<1r~{R09p zNl1dG-#_i1c^ma>RclbvEvM^#1*Orn}nM%i{S0 z+N8^?>nW5KH<^abaa~e5jPsrcTS*-gl*l!w>s24cqQ}la@74=j~$^(|CVc~bdxRS#@6f7wc?YR(hh1A zB3^#l+__KW&LUk%rF<>6o+HA8s6rs^-q9zcSAfKj88j1U=@Rky(xy|iwza*mvMQtx zi|py`4U3BUDyGYd-$6x9os^OyI2bCwy}d0rsvsu^OyKi(b340Y5KSJ_(#nr6EG$3? z3jc(=tFz%1Aj}4n;f007=G0`@T9%1l-x0gz@LHszxmy8@jgKw_l8?xD3xip=&Y~H9 z7Y_RB%y?g-)U@!~h&s>mZ_dt~IHHTB>k-#vd-ERe6%9q?-`C+hZW^4Q5)sWi-x6{t5Hc{z0mQCsyph5vS(w! z{S_=_Q7olbx1J5Vf6AU0dC|yQzeXn7M~NR9TV7RF1+%o)3v^;G?}hQOauEfpV2hRWB%vC+V zIV!~45zSgKTGhU(*3`c(sC|6Sk8wvNFktqa;QB-qpq{mURneA5PqII_SJ9V*#=KLV z8Ppn%+gksz9{UuoJs&BA>o#L}lw@sEDXqmCrTTSsDHydBZmoRMrI~~M8XCuR%urL3 zqVj}?K*=JGmkIxlZMayo8G&qZZcV&AiRb;k^?%F6bsf|GM7&eC)6RjXjJ4+IyG<^r z*^rlMD=PlzCURN@2CAUVTV-Ws5lP7bszMnjC$65J9-9x@)Lx|x4T2v(egwAtN<$;w zXw=^y1r!$%`<-1~;L2BedZ|XEV`FOIwXmsA-%X!C_W&7CPgnN=E2})HJs&-K)Y8$> zM^#90g0>c-T=hrD`|Id_mD|aUWHpMyA9y^W5oLs28y!JmILJ5f?+P!NmD|I-{hfVA z1;W!snICi7ySlpC(kVX=zaZwaL8^2<@cF^6vt}0>OG8FRhJ=njz^Z$D* z&hhZ@fF4iL-+gZC#mn}`H$)Zs?iDx&SF*Ba6MJyDcsPG2W>X((c7}SL@CTc<1PM>9 znl;q6=O9XP;Q?#6eK(KnUzVH|J>{ud=RQL*LRX%oT3KpwD%|faIFHDt;iN#hb4R`l zyD(}lFtj))BjXpSJX(!ktEgm(>EeK(_phTLq8Fy=Y96Ue*7+{-(M>nrh^hPgXjAg< ztKGMG?e38%bW8UZ78Zua#%7D@rta?Aq@<=UV<}4@SbzBN;o+l4;0+@yDtP*fad2>e zt5dJV#Kq-^=|;A-z3MLp-5hw0yq3jq)YJ18u$1OSEJ zsTU@j%BOfgMVXG9))J<4d~F@g0~K%J8>_shZg!LBZ>S>itmAm2y210+at;;l80@KB z*XtGAid_oG{+-Pxlu!NG7b&#kXB}sm7;4j(HShxSe{~mqI&5dJZW`|9@sNeMdlG6) z+`8a1uV;TMR$Vu@=6vIMb0vy{rT+U*(nbw?Ps zXncSteCMaRVYpkdvle3#+CBKHcj58f{gHp(WH|J^5(iDJt`#ShWoad`yAa1Q@2#*%zz@( zC}axKZT?~;_bfd-w|3e}fAoOz$rIE{r@bB!N(2SHokDp*jK51vjHaon3638b1x3bm zWvw%Wtz3jr0>NIFPMP+}m5GAz-(PICM&+CjD$eB>8~sK85v@Z3W^2A}`wAlw6NUvg0+~6<#VfYI#eRBhSno=c4rx!~a!)9A^#94dKka^T8qw4jCJg$Nnn`yLsb`$k>Q4p;%XbKm4-E zS^}TbDrID1fSBb$fe<80TL6nuj~Oq}qOLTXZF>jmA%>u)$#9n}m&l1~pj$meYQfF( zW0p+*LJ#W_VUiR_o(jC6`@5Pd^Ez%V1{Z4h|@SepNe)+?94@GqF+n>8F@Ztv4D7+Ec#c^FgEbcP^Sj1DPAD(`X}CGAm>;YHQ_3}$4_j+ zb5q|w{6Fut)`XPXNBsV$*OEZc`P)`&b(NixZqHM((v)itoe6j6B zDLoNWzlvo^=mtG6Rz+{%?jFdL(i}I2$d-~*ucS53A?|D4#!XDvs(>i+&%V9A&og!E zpBqx^hpsCq&T(!ry;U|hktv#a$vI(1oIG4>SBHtt1_BxAacI zkAd12QTMeLV{l{6a84{QAO{rZl@639Vl}p;>b|YW5tc`)klFcc$X-@i)nDTf+QSi_ zJ&;yfA4rZwfv!^UI_XhucAn)#d2z_%_JbLxm-Gzv zPW-4}QAYXR(!rM<3?M(%rI5-WAr#N!dO68w;g3ye7Sxy9IS#Bs}%JaV;P-quD=$V?t#LY)+%dykZjSz(pfz^|}9-L*8GGa6+nE1`S1 zxS6puSKW`QtSl_>hYu!x|1JkH0>gr;v>b0iO&E`!_3Sa`uQ^`XHo(1r>n0IB2>_s&pvQX8m7l= zL|bX-ubacU$rInCaP2p=r=gx}<8SU8<4LIR_LCFka%78LyQ*nGt)Ju^#{F1t4YG5n z!({Hxulf@X+tqC7lt`bPAT-=rPhJn?jFi9n1D?#4g8b2)-^`v&DF~By6wJ-o( zr)d()Hsj0E&l{(X10uTXoZb*?cdx>c7iWQYX4Nm&h9+m&liibPx$ggGUa0n?|7lUY zO=F6wfPetzy?ZGDC=8FzEh)j9o}NZRddstjTZ9VhfZ?O~`1qiwR4byl#PDSWg@iKg z?DPg5f}#087V<4ixu&7~QOU`4`VKTYA$&#;pS0X39cRK}@!6~0&_`_wXIby*F4<%z zmHNv2fz!OZ7P_H0yDw$le3aGQoX2;FGcmFibySA_NX*DF8YIitn++#_z%`m$KT4`;n!|j?=$rpS{?V zjx#(2vnXvzMtG5BTYrC)sQxx=(#+Eky1?Ge_o z58_OLqmIRZ=&!P-ZzuFbJ~#MxO!IO~cottsG^lQJu1_jeufVAlEGVe$59pQb^{QfC zXz=8oPeJYCIK%$)l>MgxwY#O9LvK!*Xtle4xnMeD6>GghL=%a1QR7e;=fKw-V<9G; zaiJhIop$DRHac~thb3)-I*r~kUd{rmg#N>3(^GGBUD zskd5ZsOQ2c3@=RO>(#LPQ!UeT40%S~g`^RxCU%PGuTwHBh8HGDBbiw)pAD1Cp+(W6 ziB3rHt0+e`o-#A`pwHWQA9W{#Dc&z8FZ|?iAdU9uiB*+8?lphCJ?2-GuYQ4na%-!Z6d{XcCBG*>aC!xD&tHht?_Z!x1LDr^SM2I z{9G=bzl-qK#u8R=8sE5wFyB~i@XKd?T!#nef)HpH4(rP)b8)nRw$p~%B z<1XfeYdX=&s}{+qnDK(~)Ts`i!+w+T)ur5FU%!Q_RY`u-~Z5`v)vgicJ2eU;&#B zpJs0YUK;a{iyH5t+vmatA{@?-cBm@0#tF-GE3>noP}0zVF6|L7FR`JaAxPm7wQ6tP zkiUBM3J@Gr3=C35rY~Q<2dI$fiN1jWxH7e{P^QS#%q$nY_GeN&Jn=VLN#b{I(;n%p zk_phBSzA*9^NY=5zUz`JvtA2a;`e~R;&4UQvMF?8b9X)$yrxOehb zLKo?Hv(OW~w<~BZCLL!j>OXnen63c0QuM}9mLdZvWh^Pb`1|?2b`LM2{P3AFIox`1 z@Q0b0x)JYxfpi(y;~9(xxQ3`bm!mt+Aq9z)BhiX|uHyWNf7QDKZHFTg1wCn59Disy zHWQ^Cf2Op@BPLmk&ep*PUxfqRZeKE;?O?=y!LKNVB0p=YPA$CCw2ZWJ24?!@R9 z7TmAw#=P3#W_M`=u{#g$p4Q23&VC{7d*VM>T1ZeW1N zyt(kSa74u&)@L8BJ0wq~LDl9VbF+;d_ie9S&#&wb0!52V^GkSbn~O45uSi7UFVLTi z>PByMCWKsVO#Uq5nX#z;FnpPXB0PU?tQ+pS@E%_ zri@MKOBr^(o4QV`Hm=vz==g1bq6ExRcv)^72^8!vJi;U3!i+rW`q|B~b;~H|;>vu} zowXS~P3#vr1*A1BFx#y1ggQMQ;SCs<90}5Gp0amS9NbMyy@C;JX~6eg>mtAnBKyTF zN8TP@A;vgi{$T_ir~wqUwtRFZ%k2+0r=uCQJpuYA6hacjq|>wnAeP6EQDoC3Uy6wM z0jF$eXh<*KJ2)7;Bruy^l6dEh9phq>9~6IZhFk*W;dq;1kW#O+uF@|ot}M2Hv|7;Gm^qY`n(`?#{Dz1Eg4+A{#80^ETxY3zHPkjCV^%%yC(D?LbNZmz;#+{kqxD*%AMf`&$J zE{0XyTkBFzB`-@qYe}4Ye*k`h13UZMnf%-{?L@KT7vzD#1UYT2MXU~5^>EOVNB=o} zpter0$NJBC)Zt%&S@o`t;3gfzu$0 z$*1fH*?rBR;c}ybp9Lmf_h5gkb=7Y)PG6Yk%#rOF;h@=;B9DdE$OBTSQJ1q~-WVv) zvN^-f@OkgbpH1JkhEv&=tCu*o3>2>ewGdj~IcJF~Rochq@s?%t(>SxJ#KK3glZ|1e zFP>QS(>$Bh|G3I88ab_ZKE0{brgOO2jPctRO~qr_ByLmk@S2q^Q=h#u016>Dv?wY% z@6v|?;!SladNp1vK?WXGmb32$twVMAl)FnfSW@-ur{rnB5ERA=w#~t-1LaOGnSuMo zAve$Y)2P{fb1AkgIKu6k5rCmCBZx#ch zhffHpH)hWNVn;^ZK9FFv++@_i9j;WCwK6lLnrv5~x7dB$GB>-(dB=MFiw|<;{~w`& z;EH%t5%RbEx7${%cj`WR&qv(9iP6buAlA?{Yc>qs>4J}5e!LTAafR8LVf)=(Es&0B z=T{1D*w}}LXDo<(4#LE^G<{Ef#0BFXV<3kiUXU=bp5A0+;wfbwp_%n+y?r0I*xqN#&R+pFwK z8@liX8twUx$ff%|Qq{K{I9K%4jwT`GNYBV<3}=1MK~E`JX{MB?tz_Lw5bHL!oVnU% zJgO=CTi!*47no>gy&R2KaW>i;y0aLtIZbRp-qOuOZ0$~8Ust5sUl2M^aKU#niHF1b zYVhf<+y2S#T9bN-?BPPfjg-aZ@JG}s^aRi&mp%NlllD_7kmTTB0I7hxuhpcQ+GH=a%S&v3X z%UmaP;r2)Qfhi1QW{Y0hN737hdmOJBZ+g{@+j}}6f99l4-vcSI&ubM>uJ3?O>=59` zfJz2Ep^>V&x#aP;0Qg>A3*muq!UtCt_gDFSxj*YZplbm?g^P!mer0vP8l6o%RcUZalT{??4mS_K0NHq3|u$oI<d~ zi(Qfl@$nqv>$)l#T6d{RiSeXEmYQA4Gt<6*6dfVr+N_cv^YktLRTG3qcc_gE0X4x1>7FyVQKI0hVSL zOyYNQzMHy>RWhf0^=l4G<4@$|oxeQUc$KKYhIkv)*HeVsa0(`;qLCST`x}#aB)TCK z!oi98`FG{zzWrD|-9b66+YV-$dmH-NZ=^76>aOAWM42pw@ zrIN2tmOj_|jlqv$VPrczsd8+mx3bP}Jk(LBiwA;|eM*zsdl)xAn2r`thq#~WBx4wr zlDWRv3*+7!H1GSkC*0T_VS|k1=ZH3X$KUpY3i*Gj&l?1_@R3M~_07=DdowXHAGz2_ zvW$%jMhtOZ{w4k*si1%h1SvgBUMgl2-sel0Q+%b98{Nb{jrT)p68*{qS%m%R1tsL8 zx%T&Yk@8yX`ZnJlrH?-)iM0w8W0<+SNVYZqTT7A{wQ`@t50cA^ zql38H$6E7FqxNvn)3QXb3Hfl(5N<1`fOnV0hk&1`wfx2XcQ5j!3Q}J$lwJ2h!hL(5 zm`+h%)>>Ni0zzj3gn>F3s(sBc7sBxFH=nVN)R)}kg_Ze-r}4{5?t^lBi|;8; zmJK{+>s>ADTlxHu*zEh$A9LP}JfTU~v7Eer@TH!;Uℑ}0E0yI)tpFi2xz3*rN@hRXw1JFREdLd$D!oTCKBe$5PeWX;K zb62Bk-j86Pqb;*jkYBo1dWm?5FhYlV_H#tubB7xThGyu0sUFnbu+Y>zXb(%*qdc1Y zBH;V8+}_;5*?#!6W9`-d9|2)r%>IDxs1!p7-)D?BK$mP*!?Bo3oP#77dIqw6pH|o8 z;Akwx4r2+i$u?1zZd~7?A6yp!d&&ge*FUS z!e}E*$L(>%8m@i^v=Wx{3EP}6-M7X zqP-Fm1Hq4+g?WA~(mMJoSI>`#?Q30%X(M@LbumCzzH)LcMo+HPYdA(`TqdZkUZ5{w zU3`UKf>c`PzolFQ-weVigh&C3d;1Gm7-p-jL--YcTP-hWgVpOE!8tEeBpx=m zZ$eluJU@BqlXG#X^!F27oayao_Fa2u5d+AaVoNwPAywKQ(8JBJ$Ea(T)Fgbf+7%Ax z0h{~GQacRx?jJgjVt)H{5h?f$Spq&64r=k}L^0|`I=)`J&mTS_c%#>xMl59MY^CL0 zcz;%*{$bqlALu25fW9*lsHyvlU5|HxwxUQnSx9?zr~t%P0)96hp+LMZe<)WjWs_eN z^U6~3-vsIiqX|HB%d)%JLrU>^Po2_diBIgO;z%c?o98tCMiH^T{-y}1Zu^TTCQje} zPKQ8JDDx*25zp6vvIxrD)WFplXn`W+edIg+m5F^BYxAJ5dRBz>$Ke%1X2bwHCZ+*H zeL;nZ=W_Ccbj^PJk4Tt!-}G5Z8)BX_>|FeD2E4F4%H^>6V1I2iP3-G4e$v<>8ad*@ zz5#OHgLhoGRTEW*XWo-5Ses)5i}`sK=aV$O=VvGVUaOXKEtr66Ov=oB1&WZiwl=xZ zfj<K=nT|R;0=-i`W%6(cj;nY5G5w%xjUD%P%(Y_>YYBSH>LYB>E&S%E<3q2tQ$R zl2FF%cBU22r{ff^ugCvQyJn^?rf-$XoRF>`P7)2+#mqlG=|5balKM^in}SLlD$|6z zlo6t<-_U)W-j%OWZ?T1ZKTGFRn`?a;;bwCR|4ilTfgJHw3K|By0#wFl@6P+Y5C~V- zSt;ttD+0;#GS{)S&8_X5fslFPu6n}BN)LXQEyS^-;kaX*tI|T3=CADBwxY6val|k{ z%3h4M2c`G5`Y5AxXIa9)boHl;{?v8j-KAf6Ec$_fZB0r_VzhqZnUYX309Q>^{~+>pX)KWb|hUo84%t|K;#}o%1=Te6bM8g zml{5pupY$apD^4r(_FlgG71f1Mhq)nv_gW)VvlS6d{`&| zQnM#5peH}35Oi6>wV1&Sd$yu7tz3^__9Spn7)@f8TblIhc895hGG21|Qu|__K;O@v zsL1F9A1ynDL7MTxPWl6vU9@|T%a5DL<_zX)d~;Un(5in}d@0zqkvZSP!TEAUn->8B z@-iaJtE=aX{10zF4u^;i;Iy2I3N@Hw3HT@McKue)p~W%h(4?869`UIDiYHdFAnBmiAmV1%8UTNRM^K)91>YHe+8 zi>Cb2)1asL_U+psZA68IdGz(k!NwC(QXa6d$O26lsOR}%!PQD5Gi*UWLnzVwff=Da z;Y8Ug9gp++x6N=@J~Y~D^$&GDFKn-+$NRtq%Tfy92&CRDo2cz_z}h5eN#<7+cd_#r zF6zt3!o>zAn&wmOUKt%KnenWI0`;t9cPALGD!UJRHv;~|G`?HK^Q40EwzI}98$|Bl z=|s09Dfj-y&uhGW;d9{oqN2y7ug7)ZqVT&rUX=_u41E0lofKE=_I~=}wbo8OJ&F4= zBuv-)>eP870~t}sGfg5=!}a%?^6CMB<3ThR_&wH0^nT^fAn$yu-IPde`ICi1nxdI> z0IG%i_xhs~Fo^W|`$pn(FL1@o;$qqe8ylMf2wk3DUh<>+%e}%tcOVo*@V-E&8GyTn zr-xg3OmDn_SB(@-hJLp}!R=J{NLx5yrM1G|T=M#sKU3fk&FYGIF@)0Lv?)z#lf3&J zmiR$T^wFq!g#btLS;$VWg`E%UQ z9))La(d6br6PY9=&a`!z?-K=ZG5SRjc{CE$gE;zr$mX8ZkhFsmgrLlDR|091X(L`_ z!cT0n>|Q{XiZ{sI@>iiy`rBM?Gjz~EyD^XW6L||zi1j@p=5e@tvcJ}wdTg~Hm00#w z0YY$W;v5Eq2h0z#WKX2}sipwzIg>+dJ`F<XS|soSy9ckT7717*?rJ#IFQWdSv;03;YK#FWn|Lh<-bkdfta#c5$EC1Y#(6t`U(%(7` za^Cv^QvT`+A=e3u@uJ(jtL7KfJdTl5>&cBB_$%$F&TEJuM4i|RlYU!q!t-{MD2o^* z!`dGmttOL@X0}l?!4r{zB-mY(m4xt|5iXC=c4a-*-;hQK+;m0tUx=(YVIWW>++CNI zyv(B#7C&6mB3dz4Yf*IOhNb2cmSBinJYtz*l31Qf>u15QLG9Ce6&Hkdjnlu*vzVL* zp}4|dDZhNkrU+l=zMPeTiQ?v?4hu@)dr6MOAB|1JjW1O z%5ME-3-x~+zf3jUGr$jLh(9 zsH+)bd-B8t!9Aqz0c~g4((+t)`>6y1gOf^Kk}HbwzD-u3@Ix-L+tkDU@55VNfj`5e zoU~Ec5*5BSiQH-z(iburEk?^y$myXvAi`I`7hNe~-a(%!yD)2thnp`$XnN3er}+To zMVH2~M$WpTfW8S?WZdsFV^|rQB3r8$B@6wHA%T%EP%Jy^0s)=o!Dvi0zLHsBPIn>_}JVpvNcniuQYO8Em=Am8#q32%|g_XB7y97xFqbTc%4E zKRUlw(+FIedK>tGAQ^husHI!$FxI)nwi}74{AfA6AQxwnR#|8_6!Tc%g?>v;Bq zrC>tkM&-kP#OgZrgz@*96&H8ZcBWZdxMS1eS33TjOs~g0^fGu|3j8CD8HT+shvyWx z#lv{PsGHjFTBCjrQOy&%Tp|7JslsYzBlO5@|9z?*safdF&chX5?<1jt`Pvz)dB)%Tgi~ z@Gf#JwPK>dm_hS>x8&=ddJYiwf+V{r`^^H7;F^W^1{Bj}qGh;;Z%@!&=QIF!^PBs( z2l8kd7*aG&lb5n?IFl$MPHMCemY!izO_eTi@$>vQEIS4`RIb!N$_F-FO=cp#361m| z^yiILy|$*Vt^&tzEE=@bp|MxAXbFp-`kyYJx9R=*|7F>5HQ4#PAaGii8O6iH_XH?) z`Ygq57R=Yo0>s?y{IMYoV}jsQ{1e#J?fdXcPebMs3gcEujlTn%hE zo{Qbb2j*wF5bP7!@A2O1cs@4~w>T5^JnzjORhH%ORJ&XpWwBa?HWRuc5nKCJ$I*8K z96<8}o)(NB@vMT7cWM0NLD7lNOE&sW?h>0Ue0)ex3u74MiLozhZD|2mrDL->^?Y^o zhZJOFfHe)R!IHN#r$%ffT#YCf$@5tg7o zTTz)hXV?&Sv@NB#C0Slx77-Kcr7HZ4x`2g^EiEIH1o{<6N5@Q4+Q*LpcPjCpmfL#$49& zk;d>L_PU!X_pw6fU{MXNa-P;`mFe%+6Kpp~!fktGRjt$16sUxX!uOJR5bxq_dz{d6 z;hTHS7|umanJKqC@73YhFUZp>N3>WK8XSgGiRHt@-vSEZ@KND6Uhiv~G5o0h?9bl2 zZIe+oOP=+5#2!D>2)Y=Uo`F)&>IIp~%~)Le9Nhf3qgS1#Z(0fd+z_h1r*5IopB?wR zN@&uss(B#S14&w8nN#Ot{f(yF$M?%J#O9M;4%6k;Npm92M{7a9(T_n1Xupnw{=_0*xMwrbMZJu45jQ3fbH6X~_ zWY%12if_|(?b~Yk2XpC7J6Mm6i2o33{n`1gzDI!YC*v$VL)_)P`7)kqD$c4Eg!Y&&Q>3x=jsUgd}~} zU1+W^tWWpBAPq*wre2b1zK=WSyDYF0_15J=N0Wzj_K~{L(#}|Sf$OB5x{>OCt+D)H z8Di1msAP5*b5rOQy-S6wO>1RRA-QW`@t?{KAcSRH6%8RFA%EHN)c*~mR!c%CO~`5P zKCa7=WgUO?sj^`{lt$WeNF6Pf3 z=9rvFy8qkF*`J(xh26Wk`P&@?nh-kIPTX&^`1p7q!YYMlJVY@ba1D*wCg*>@D`n#N z;yM%9Qo&*l(_$*YN-<7iN|ITbTfQdaxy^Bc4YJbF+AEXsa`|g`y$k_n=0j6UBpgQ^ z)-hi*p(+)TQE9=%)cY}h0a7JOkazqp=ZJCxa@TWa(u>Vn@V2k&eKDH7k+E$ub}ZwG z3+&p>T;&$eWjBQLYBZn@i(ldn4WRt}ma2HXPEVTx@sq`Li@?~wcpMiF8Cj6|+N)-I zYHFdPoa*Xopa2s+K__U4bIV@1f>4Uh@JW>^z*dPO(*!lTG_7ttglAIl~hR=t8r(! z2rxfz%@W)Hzk-YG2EE~Xe^nP5A%^juS{_eLl)-0@REUxGa~>R8Tk5ZVf|fKLZhQ?f zuS;M%M`qBg^sdx%{+&_{8noc0xj(VynsKcYK3e}_t?D!)1Al~Yv*`6rzsOO=nXt|f zt%Z?KLm#U}tHEam53Y}6@E!ZxGT$cWn4I;h-0H|kk$0f+2cIEYeKrj0?05y1j^l(Y ztc1uCrsL`xd%?|MXHi;)4(D$$KCbtO=HR7YHK)8gV3JeTM)HE=L?@7h*O3gUBB_+h zEHmg?C*#9;p}(TfP7bmVhi6;DD8R}SL3#Oc`p3FKg@w%hKn4t>mcX_G@17nR;5mH* z1DXE-7vV?*=f1sdWebLYyytaIhTU&AQT1mUyR7BnJagfHGMSzL#^=_2Z!3B5Zo6Es zNm|oL?#{&z3}tuU#?2l|ojgskRQg%HRrA8F3s)<5R@Z_D_f4T&JXh3jrfTut)Jo1R zEOg`Ir-9L~7dr<-t|i)@Vq3Ewq+trtU&Vq(W2^CZCSyXZCpi>(7b>|iG&hb^_*FG8 z-SzWwA`0=$QBd)a@LhtlH*f|d~pHsM>LgL|4{T<~U{Jlo!1u(WNs z009p_O$s5Y*z%~POr2HZ)iLrS&w1(AVn`Xn!@S&tp&ohJ?toRe;ga>_mCeoxa~rh$ z9EX_96Ss?lGM`JsQDH#j%!6z1%5Yb8-i9kmcYQWEf3+XV5j%AVKbqGb%?dAYX>2Y? zgST2+Nn0#9O`hYZWf-M{fGDk9&{Rit;<>Btan;ma5*J!*DVNi@#|c9_f`=y#6J~GU zc7Hi;`Nm%5498luo|cn$Y!`XeTO}#9ch=%|yiha2isDYaVbO)J-PIQ2RsJh&k;!to_=n>9yG9Z&{0jkzY_bZ=~w%}a)H4Cb~-x( zCxrbzs_v>$0|d6QqjiJs?#mk0)*!)kAOHNYncvCf^knj4AkU@<;m&bhGivj;dmKxW zHdgz3XZzb&71y!7^fAnUzG<-E!puPIVfga*i(56ztVgs4$(pAeCU3PTkdWU#Q7(kP zqQ9xGXQ<}89=i^@sU7zzmi7G<8;td5kqVS)-q5cO@HWTZG~N1>ko{jIYAa)AYy+P8aV^j&gZ)1qyM%LNV8fFWb4_S5Y}3=# z1|>ko(_HFv$8M7o%`Fsi#@k%Hz3cZ@aI(bmScJ6t8l22^h9?(fUoO~tc^cRL4snpQ zz9#?-eE0j(gSsqNvZIMaPy)Xv4Y7%I!|l_{yu0o{x{sVrW`ehD+u1ZaTrgoUme~3p z^0LmZjcx5q8It=Hm!_rMBtYKg zx=1N5E*kf!yG!Y(R_*w@5R#QF@nSAH!or&$DO;7fTqj5u!Z4Z8JwojH3 z0V?Bl^N!T#kQ17Tyx{TD*>BvNTT-N1v&gR0T51WFhf+=Ma>}QZM;E?Zu1zafGVLNG zo<*)In+V(oh8g$2ny7z)7)9$0-KJpgTPyj6W>fnK)0Jsz3jw(|URuJtK zBSjV^1n(t)ff0OZC8cz$_|VJ6Sf&y|C*wNld;haGt19$gs_@%I%id9H`D@f|%wzf8 zjUXNJ!cltX24y`9OvV}N4Z4MyBu3x6#O=<`6HfF2@b z>@s8zDtm}yD|jt3PVJ%_nnc{fMx26;at@ls29j_oHh?KFrG2v~E<0PJNmOl11{+|DE3(f^3M(B{X*fcJzcD8+@>OH}8tZ)0o z>F}VYrxy(DZ@wC!ZFy+qc8lZ^P=|ijUBqaXa2oWD9F4F8<5hxj&3ZZ^^_=yc_^31c zioN-Z&p6Q`g9!ut9B=YR^y;S>Vphz59Susj_Y2oB_+DU5-`v}gip6)P?&3TrvQ;xa zrDhxI6G5(v&9Y73^tIj;%c^)s0hlcv&dFx|ZBeq%kfMx7 zD~7vg1jNPfcDHL#Uz}~Z!5G^*TjZS=El-e|*YRLuD@Wws9iAl%bH?D5UPj<%EH;8c z<~o+;?({45Jd~dDZUG64P0g3-@Nh0$+PmvQk{9#M`Ko%CpcCb2mSi;Jb4XeI<^z5n zi(ibh>F4_FnrlM=wDH4!tK=+`&ulEdf8Lwg%#TN#j-{O`3mYUx<0uKQz&uD$`GMVR zt(qWU=fL*rBy#52ZEWgcvfr~1ew4ISw2fD@5bSV{y1a&ye?1GqKGK~N^m`b>tcgt7 z`0tmx2nOMWHJ!N;K}M~U888jN6@d=<^sXRlGJ=E+t01XhEiL-W89KSAizO4j{aPv~KkLMY&?5XiIb~GY` z`N0W=nAIoKlj7xY14rMTU1@=GjEwZJDEI7zzYKtBbTDmxHUIuUw4hqnm9**) zB0uD^c2<@;E<;3T^o6MZ1{dcvdU_r;U38>GK?{u86n-!prn3AcBWNqp>nk)HzvBZy zBGqmJ&urhWddNXnO$s)7&>exp6HV7UW0DG*?4%?@y+P zisE4##MHY83Wcs#E2-TvXAk?wyK@ZJgM|iks%t-Wyt6=Ko})0x;`@#apj+ah&R#@V zLMT`*j40@HINc~_u~_7!$y@}8)bv6IP2$&6jy@vG1gg^#l4fo3T|D(|lYvlWa0bHy z`YYFy5l*@Wf%r-cVoVEE4>bEhV$MWsl9gVIcC^_7r=qD(h~K00b6KK7SX15ZKG)MQrAMJAYrYStb}A4tb$V zI;H*^7O|3YC2nDX+7`9s`y?F0j?qj7OhdcIP^g%?4C_nFbez+U8GWG2Q1FTS? z&)g3YKK(E_JKjDiuWH9Oh+kkZwbnk-lr)R0Z8X%ET<(8PH*d}%(^*t}2~DVLnD8iw zO-;w{8L>62MlSFmbHk8=p3UicChafC9n^y78tzIt;^#DCmh{5jPi$c;7pIT&*^_@Zm8mTIPK?& zsEv=n%Bx}+jU;f4w*6p5RFj>DM-9kCE;m+zJ(tWdg7`@{$1x+e%6?q6%55tB>%1BIXXRP+kTNOuk+W-Ez7u(gJ*n5}X>vH8$2 z_10KlXmzq$legiKtCaKyx|b5BXy;L4(ys5j*uk(@#+)_?9N}Jshr9XkzJH6;chLKn^K}LakkOFXUoR? zKhEAWs>!eI_LU+22TspXYhsefD_w80VaCdMGy__+SO*5p5nnr;F9e_z!924a~>djFC<`{qIv2Bi9Kd$AwFjqcS17JZPE z-}32|a*r0o>p`2B$NY0gj4=5C$V`Giit`xCT|f{r`~ZT{y}AWwpMdjCNh9~?iT|2# zifMiKX!cV(s9o9_0fZnux&@}llbP?9DuD2F(pNaUMzcHE5$-nGJ?yp}KF*PI|H=5j zHvCmF5SgQ$Wph8>-$&D%6SnM>VYs08W7`4yg7WWc@V`u$OTt`@hcXV4|6~&)f8|N* zTNP~NNdL9DG{%&-_lL@OQHXQ@XOI2g^M(?Tg4n~{0AdP;TmW09pr9~XS6NvJ-05im zu*_tgZk9ao_v8P0@r3dLahX#N+fv9=>-GJHo4V@=niA^S?wEgE8$c%RNric{=SL=l zotpJ>trJM~uM4x`9i%h;tgxl3ShRMVS6uf$d*}b`SmVx+`9D@qyFNPD1lTA5tOj5S zCHs$KEg+uNO~=~!y7FD1#bxoBRZLVN*%yJiBv&72P{*kgh6(_IGZd+AfU+X7RcV_;|WSz8x`=iSFe z(tqEZ92~@dzy5zYHW%5(Gsbu-r_nIDm`1UtA41Wc)KM>JxGr>lg-{11Ql~bK?%` z(R65EJ%!=J|3TmR-ngv!GVA{nZ8KkLGoiHeUvr7V&mbn7fuqcYv$*lazx&2Q*XK&> zZW^zP$)6STWm>b}eF+8#91h8_C+A6ME3LMBOvSRf-gB`Y9!gb{af_7+oxAB?UZ&yy zS{;6X4ZjxB;l%ZuiPP?%pD|19`=n)91X)Zwf_ByND0X7Qh@6}?LcKu#Q~bNE+-{tc z!1SlTQEGjfd^Rccd}$JeFXOj2Q@8$Yuc@24dq*%L4uE2U=h?=uRPQJ=1i`^pcn|f}ZSNDuvxP^6s}@lw{o;FUMm^dwt=f z2xtmGE>cP+B#rw&5o3?hw5GqO(T!g;yob`H|HQVKM2yC7Jn^IaS-mR%nV450qM-lX zt@7UY-~4xfWa<+R0ho9{}{Ig zC>->L|9!sp-1yg?vkb73|M7*!jQwFObRQb0prRTFuxbC$YyjM>th;%a@J&;iqqPZ| zsz@v9{2Gr_HJPK||B&|_zadu;5v5kpnTU?Rwo4b*c7$)$2FwfR{rp2eNKNXGxB8lVl3Y%BV523rL-|b{uw4JtnIj5Qcrp_4*v$4}Z(r zALSz3U>zo1+4ie!YG(Kr!FQrBu(vR9v97J|G_aW?+^0bus+b0HU%a2oKTq~rW6thA z^IJqo07r30XzA$RHypO7?NjIp|FKxtCLag3g!J8hrJ^!cClD~+g4Y!S0?~gR3pR{jzU~Qg6<8jeRXU!+7SNMaVnA z0HV6m>(}hX#gl@SZ=rhsW6)~d5A**(;h{n$piLjeEaYg>=S$Fr?cpimfKksT#9>w7 z(eExhXREAw;1ejont)N|*1dqbO);k8UBuKsCl98oLE5 z{hU5%%_nBwM(7 zhDYUd@$eK!@7353dqy=|r@mhba67Ta@kUTak8uy+&b9>o{|u`)j>K~HMv{N}F}XAT z^-GOn-^j_&U5mNyY{L!1nizon%EirH1gX!dAV}1C@lH<~-ydI?+xC{4s(6*@Q{vrr zDh11)B!PyLh0mkX&#Pt_U7LdAb)-pov;3<7Ry6=7m@BKFdC?UbP7eC&*mVogQoj?k z`Uica<$co{gx5I6B6_Y$=iN+0o7c| zT+TY&Hhrc4UhK_4D@BfrB04s3<8=FM8V@u?&PYdr z+v`1E6~vb;kpKX}cj0wl5eI2S1Tix*d`9t3M^zIc^1A!wuP-3tDe3Y7jpg=*jddo6 z0{+c1fi1Zi#L%z6HaQy>$*t3zx7*i18__KCHAf0oleM;p*qUInZSn? zV>Y2e!{T0JWu^r*=DMk(s^ck3m+99t{!FqS&&N}AwtP7Z%xdt1Yt}y4E zr>KrYP(hacBtW8b-&s9=GoB4@By#Y@aq6=wskBzE(!@b@1Cw*H9V+$w+3!4*L}vy9 zEt+G7c&c>~*g5En5UGm%mQOneEuDYjhDBUYWC_p520o5tbVAg5$wnB-w5~|RT*D4L zqQ>5aTZWxJVJo^v#+%yt`DJsdsy+4*m6oRP_Y+%_Ga$wD8c64)J-+-k5L;cZ!i+vg z4ZH8V_c5N-c?l~||Ji%C(XNh(BsKp2D?!&gFl0)h8Js*F%a@+Mt+GQ8BQBRZWdJ+) zWpLBG@6a6=Q+e2-na@oxY)4!@ixyu4wmWjQ-#I8E&X(&_zn3E~ErD$A?om}>RXO=L z^RpFh>w7lEZGSGP4@6dfNSzrwUiuDaRsP*A@&7u$DTMt_M*ChmJ$(bX%g(!8y^8vu z=(D^CH70$8X&o@0jcqw;e*kOE?gm0Ro(Aqof%z@K`1Q@Yy%secO94@P439!_mIxLQ z)TSS;@Obg>^pw`y6A1y2{|9*G%aql@7K?}_3lvo~nSoBbLM*$p= zgt_sH9nHn6Tc7~m5toQ=(Ythd1ITn3s6wTyMJnkyGzcMo@CCb`AW+J$@ z(lass#I32di$+|pGZfxvV=cJYOX=5LAHba7$D=1c4a}6?)I5}%X}mH3n`S|#SjuH1 zfwK@btJC?7tCp)2DSw`Fxl@xvgpo_6zB%@)Sa6hADW^o;tV~NSOUjjV=+n^4FG?YV zyvOCR%a-e&^Syqmoi(_o{N{3iM{J(Lb@C}}!|~<`k)_%-XoD!G;ZL8|tKHtw_wIBH zLUvcG$wBqrP4C5J#tMTnF8Z}#t{&Rh`;LJBXal&W4Kel0UpZZzMknp6R zYWxkamP%Xgs(WIMPCJJ; zjqtQickHbHcBGHUfvRlM1z>+XzVIDb9BC=oc+vSC;NSo-9d$!;HH>BP*GBwid`6r< zH*|@0=8tgQ&Qy7K_EmNRpv9)hS=T+3X-YVRr`>eR-5}A~hCU1wUoh-rvF@IGO7ytg zjM&(~$NGSC!_Q0Hs+IgNRL84}JX)i5?)-8#2NrX+;j+!mYxXtkrfqpf5z%zHf0Mu4 z(^>s*?gMJzVUK+&V`F{5t*d#Pjh~I&!_fCQyK!l-9|7Yz4dg1E_hHo~QBZ1*5w&`P zDgEKQ)7##%f7avBe%W5R0e=-i`mrte6M@n0ObC&}@!sps5}6B&mB0zh!TZ*+e4*g* z@W=9D9|DQ#5hp{f*@WAh1c9l{jJTuQynPvML5aQNJw=^V~Bt34hUYy_^ zC2X|?4dOMt9aKFe>RBz5*QICxYkqZMb!ELP>~80uwbuZc{39qob~JxHE^b4LrEK4#$;@=;NWmw^4&0}qbZUK}j5 zbiYT(z^aqxYJi@PBfyHx;tb5um6VRIobGa^$XmV(m5HuO0ux<}#(&`kWMNJgEno61 z+@l?jo}>ZMlPm_ASBW-3@4C{H3sHmRS0b0J8-6sZ&_UgZD5EZ1ya!&dz%xqm zmf4!_0f@fm#^z_N#oDCR(rcbC%s_1E9nqg3ADeZ4yj92hw=tXW5m)Fd@{gXePBFI^5;GQVsVhUqCVlC>4V@LDpYWpeo?Z+v3e6J(C zjHKXySCKcs)fU;?oXQfaPeZs#JEVT|?sm5-do@4T{Z}tda`96#HFm8%N8XByty$P# z57qJjK~+DUW_55qSIUyT_n_Xhnt3|IKzC1H&0`9+6sv{NWQit`3Le_h46L!8nj|r& znJuelgk>1*;iXgCCveFt_%pi_!-@`s)HB@!;OCO3iHQA&Q;)2-?Qxk#K77WUCGk}# z^Yo{W*Yq8An&P?{F|)77RV&XmczrLY4>u@7WJE9Z@~c0&|61IgCA%t#W@a#z;NwaY zV!n+$;K+q=v)1S-=@mQi{#TF7c8a4N_aJ8*0o1y?So_c!KqAPuD!jOM_Y_zMc$cq) z+kHQkzv4R0Dy7=N{;dWveY|Xn`yF_)814Y21F7_ZL<`z7j3y3MlSsE^s;HiDd}si# zIwlSkzYzbdE^W#j48Zmed)nF#$46gm{&$ZE&dym={jz{Sft^G6tLiC9cX78HbOC!J zdkg^+++|95Fz7K3#%Xjj2deK&fh@7oM+UXit*PYSt#6x{gQKbAI5(CVVsC^Jiea%> z^xxszHzT6LOrpyDri+=barb7vEw`Dy)%mf#dX8Qp^6?6k`LdB4PxY+z!#bzyt&a!T z-(&FH0I2`FaKTzCdkIpXLJ;w6#f#N=J`kqM>$g{uGAd5XgfUW4O+Cioly(UbKX5kY z;AE>=ZFC6f8DAq|C41)2I<%7HA1Ho!AU!!6;_coK9%}^N1kZ5N)f;_HP~SeYaVCmw z4A#hK+1M<|9cQau^PG{G6Y-VbePH|?FC*F2lRT4Cxv$NJVPrUpXh8{6K3dk7q9y^rqL@Et7p}vWJ6J-{n079V!!2k)Mjtdm;N)t~t8qF+D>R5(R3wJb?QISyKDT>zsJ4K`Bl}+>84$QV?C`k6t4PQ5`JJ$1X64*@;(+w21hyHboWzN#B4p2stMdF#og4S% z9K5(AExo9c)ala*5yB%ww$QOY=veHE*_=GHeqfDzecZMYU1%KodQt90h1eOcZ0Lud zKsCYgvFg561N_(s9{QAZEq%dNRrtM#%WR#2MnOO3a4W>uIunU?>YzBam)+i zvOu^7bBbFj!y3s;#qYhiHMXe$le-bOotYwq*CM(ZqyjNcPRA3{Q?XOVAix8^YG4cw zWhd+7(gwl>CoU5=HwL16eYd}I-F~;ae@2>UZQSwG)!hG2`Q@wj@)yHO*tjBpkNR%k zv~qvTq?bvLPUra@AG@+Zss+7-Jk&kdyQ;&x|v!opa}+dy<51J znLU^^b1?lY+T*KH!s&HFyvm2KXV2yZY6;5>6@|oq#}fK?D(8Pu$Q*LBygz}v_6x+8 z3X>L=V=M2?Zl6;&hrTPRUG~7;TKCUt{AzM_hN(`MJvF+)<}OK%|VkqyI{%XC9Wq+J>kHNaUOxt-4~( z^_g|nA-D1=Qu5^&r<=#C%+1I86aZ$5#z|cuTibB0x@`fbwp$966`SSNF9TuN`p!n+ zO-dt!UjcV=TkptIPu9R3(AMMuT=c*^sb?pT8I(Ygmwq<|35gdzG+lz_gR>KkXUACW<*zlHDyP0WD zWdOtQqa@rbu^=<4kW-r0Gt>Rqk!X75E9X>^``hffa#t;Rg5wd@;R8POfSqQ9TWl@M z#1a?6E=H9>>(^by))hA&jgZ)H#z;Z!7BVRMiH*A-2K#iyuq#PSh>kIL^5>|-S@qhe zNxx#Y43I^fS?S8&!Kr&^gg1zkAa0dQ9npJX1;^t7lk{h3!)H4yV zi_;W(F}-DLcRIKDEOl=p+Mz3)2N>gls3t~~X>}A0r|lsa4$3>6B&xUWLI)%cp^aba zsMI_)Y?mD3D5FVMm(m12{_WgiZc9+8P@f5e%$~*IBx!k%NMCg_Cu*N(98EsDD|}lw z>!4=xP51mn*+6mWw6c7|mBc2@;axHB&};aEW184l>(_MTjf&i|aH>-%WX8GXN&1~E zPi^Bt)UDJmwhTt%_1#ya2F%S`oEens{*O8Vgxbg%1ZqYbQY*3kR&F;DS=W&F*rN6{ zrCuMhI!RUWN)wEAe>SPM-L4;`NR(O8=l_hk2PtHH0N!csYSkmcr>x4qT6PvH8Si=_ zl1jbO&?At~rL8B!-N1S3Wep`+-|E>HACEjD`ylWBc91vbe}IxD|$$^xM-RRZx>8rj!i0B6i_}v} z!<-b9(4|AMnA2JR7WuKXDER=IqZ9Fo?@bz) zwRk0j>l{!I92*#kJI3{C^##{mun5e2YnTZ#BD&g_KRZ1UPh--XLFb-olKc@@AmAc7 zovg1Y3JN7`S)t09ooj}-h9g3wxpVpht8o(Q$=XsF-KGf3sbGKA)! ziie$4i=pvX?wvS<>DA0tF?jhyB&Tc0Qe?wxEQJFoM{In+eVrGxuL{*N&q!X7)=<`! zGW?)Qsc+MTWXF@}1R^^i_>JMp&k=+}{Q>Qlr-Ht3XatMN6g8@bpjESa=xdtY*aLf& z9qKdV_^n2EJTu=YSzd_-rnXz*22rciGh5z6n7&k; z=Dna_vWDnyq#tKfL)%~i^xs~Z$1iPtzCECM^UcOh-(lZfqQ*zh*R(?v z_u3b{y13e?5-~%Ptjltq$%-bn#!mgSrO`GYf;dyyxlRiRBW>!!$)|0)K3RQMV@H1` zLz@}7=6|SJuNqEf22b)-|FN#i6g$0$D`UzCl~bNkmy)pQ2y^^0*Hy#2r~M8ac|UwM zYyUh)46l>}FRj8mFb|)3m{_Nx{@^L3%Zbu>2Inm8^dQ>MhJZm;J}Ra_0}gGID8;7kXew&>_`#vc5OdbdJyEy&~ z%@7i~aajU%T~OJ=2ETH-KdbbUpfFzH=m8_7DtM1nCJiQkD@nf^LVCoCW3Kxi6@+Q^ zhePd}r$};*VjAh(Bkr6uY8nTdKeT;U&xrW}4CWKq^nas3two3{pBXq@>U~d@XC$ReO z;_>JpBJc=^3Z+3?8o01}*jvfODAE+q%8_=`C(chIVi3MMUFGwmlD#tVZe|Tu8_1e|KnS* zk=uU7C_kP|scF5=&7cBp`!gcNg6GzMNS}TRG7k+BmT-ny(#4+U?|n|EQlYr1#uz}y zT9AHknRxeS`uGBN;pNi#JFB;<+$$8#_@M)b{*WROpt3?kQ?so%RSe5Rm9!c4C!BGU z7U)Y{%uicqby@n(;yxgSpR6zfgEZm;IP#yC zDhH+0HMGZNA_ecwWu=L(5f=4HgYid{Y9#BJ?hz^Xb<*TwmH2*?Rg?Q3WAVY1NfZ_d ztyf3h-6B_OKxr-S?%xzD+3uN+3u+5FrYkH;Spd|ng$YPj8B|?4-?!gP?BFeBbbj55 zCs=of&0-ikGebEPmuR0(Q|QKB{f24yDc0UzSQ!`6b;>5^z}w&T_h#2aOsNv+9*tzm?V zD@}6h&Og_>z3LLCPp2E~avJk73v795hH=5v#es!uy;)d0|HD2&bdbH3Li!Jo-j__64tJbTmNZ2MJM3`wlfp`VO zK36u2Z>%GAr^EcF*}m?gzx{-u4hu-(09Roy*0F%M=GVAajqr35quz)cfZ7}C&Mv;T z+C}?)-ea(ugI(BXP8H-)ZsW}$DNb-tz^`ME*OUv4DQ8=Vn;!0@4&Qv#y++n+Vc)Xz z=BL?W^7ylm?RB!?BAoy@MaOyE8w4%QbOeZ48~M}uT%4EwS3(@8I#7@JB$;7VmNI&C zur13`&6NOAD zwIR&St699K-JALSNX_P|Eq+ft~{YB)5S^2f5^FUI7i`MOYnO+y>zlGw*_dHm)2 zaqmlYlWX@W_cQvQjE}BlfjyQ0^ogNeK)H8wL)NHx%Vw6*rj)4XWGq*j?du@^!lQ@lx zU-DQ^> zj=eX+pUs~WznOo`wRv4Z|L(nXQZRa&^tkY2Te-Ga@_`1;kib*}d4;nCM2|#@cUgMv zH;19ExKFnMdSl@gMF?J%iV|R$2Fdkv&3zMb%}M*n22BD(NlxcmseC*Sa?}gjd$2ZL z;%r@_G7ojzNKTovs)i1*D}Uus{LlL+fm2DYUs+}>GFUb43 zZUiRoxl)W&XB%ANV?4xiY^R0#g2G-+U&<7i5u1%PA)cu(yF8XpxVFC7FHdg!=)RZY zT(cdjs9RteUDG37Frkf?-TG54qiHO)*8%g4D00B#2WXpm^3Tw0&Xu1?>>^KgZIi;j zyk^ka-n^o5dlSpU`&`#EGdodKU5yBXLyVMroyf{3CVcC15rU`XwxG*TdOAB5?mBn< zuV5H#=7;zKi|8PBictHc7+{isVwSd3xfDU&`nuIH)m!#ud8ueUf^ z9_0)M%Fmnx`d(fxVAo07NQ{fwWf&W5%?+SCwgEwba?$ey-$2&8{LouA8M}T`J4Hop zltZ9^H)pi!@tib73;g+}us?@n{9 zOh%RId(>fXR2*BE0PE}vA*l?13VVVHup(}(yPsWjF;@i6`v#~Uco|K}zRicC4`X0% zFKsq{6-Sp3k;woIwxbvHd zMg_I=`TV7aNw^g@zcPRSj+H(dW7 zwD?BK(u26XTe#BnYRZ5o8#o!wFHiAns}OBoN%4ffF6Vz9gNq@fyCoyN#3h=-Px@U` zDQAEA-cpNDa6PM@#A{9L-H)AMp@fG$uhZY2DvL zZ3xV;Ngy6u_HdK2l;87bYY}uC%LRmDyZ%Sg{C-~V?+r1gTo>=T(uew!vNYU!B(D$- zenb9-Ds}h_8`pNc+;QX45Ph#Ly~XC{hw4LND{A4f6Dh8>{aLL(1@O%ec%4zilyqsq zw7R%yqOkQ@(si_T^Gzn7eOvb3=mJ0a+1(EVfiv~hv!Bb-4{`DOeLE&V}KaT>a24TA8l{jjPqD-Q>>IS5~oUuton-G$gB02T@C#3q&W}7>@Pu4 z+e`QkLR{e9cn)F~81HB!x#V$6C8~uJa-_6Y`SS3e)B91S6SNNmDo_w`%I(OrPs#-6 z`EUT2m+NO>4plo3I-R56b)U&4xvJ|Az#7J)Yy{+>nx`wyAnh8@$x1LOKernvP#;`t zPA1OF8eE#3ytQAoVj{_#5#N@`)#$nPgUg)tP0;4#s9UvZlD(u6V@Jbiay{#N)jeV`2EpEO zumb?#P(fFi0J<#-QL0NLJEnp%{(uuEihfqMWd|}qp*=bcrRHDkfPwkLqU=p?ujn$S znD<-XzIZR+KkK-tC$h-5J@SNB`G09>FuDmN06K`Bna5R9X@ZiDTnDC!ofkTVf}E@@ zdC&@~^# zAYv?S&n#4=LWe}Ee?7m6Vb>L$O?+f~!>SF_h-IEKybSu3O7LXE?)CfkZScobY9t4J zukp3M*10Xi9>1}wlX`W6Ea9EodL1z0uFez63F1Ny8|aV7+4Oq5Ju~Bhk}m5MlBfLT zZ%%ZMZ|gftfEvJP+&iZ!NB`fbb-pfUSl8*`NP+3& z7DmX*qy@_bbB%}I)$g-ueb{3@9oJUuRIn0#0QNi$v`+oRsrz1RJSeON%{d;fy?NbU z1e451jYo=4C=||MBI({M_v#E>H4q&AbQQ20Rn{#ngAU-XPRCr*HwMjznq&P+le0HQqTaITd@1m0o8=zN_rs9uz)!>d*xE@fP zel!=Z8*~jq^NE%yVj{y2uHW$RUf>8IUrca;o0B|U>L%$iZy0`!9CP+O4cz02t;0W= zqv{w47%WXbl5T&S1IN$7THO3p-B+=!qZly}D4PC61BKHONq#^sTZWsCXQI$$9CsZD z@fyUNQHsh`{l4s1>f@*eH%GDl#*)*si|Jb%=zMd>mBKJ5^=3(9pRPJq^AP$~k-6V+ zCRjyCf9iQu-LRCHiA*Mh`9RR|o3tV^8`It(GP+ge_!n@C#sOF8jr%U|xNlyccOX8< z=fiaQk=6}+cISQX-bOQyV$Et9=7ey8Cz^fysMUz-&v4l7rp zz^oI$(QL2Sw#2Pam*YparxF$CYtmlfqe^v&kY1fwfmIh)7>Z$}t94T-{c6Z^z@4}& z4ZT%k(>NlT`igBTypdB&)LIxjQbnkX#|m2N$_OMC^sk+2KYPxrB(HS8q&&TDhfSg0 z3g$5}^sH)M!qQWlCFSJC3Wb+3@3it?e4;|YB`-jVDB(j(OV4@5Hr*A?`B6Enq(231 zB;rDJ@n?<;m7|&8SgD~OO2xENp}k9S z2L`ruU;rj5+G%G^#05v}A6>|o zI}YUBI>?zOnXS^dGO=f$kVodYuUZ^xOm)Jw`NL$4*)Ab4i0LPsJqp z22L&3ZY=M<98cdxhBLfE;W^meUryr5UHjx=SFzd8eFN#x9q@Y!8&*WYFxmA-lWI+m) zV(P}}(6*3C2BOH^2T3u88;V=#^((O6RJMivBaw$7B#-_V| znmRcs!bx{kqvgI*5HXKjkQ8sf9<-2q;JwxEGMgBKwQZ;jl}_Moh%TZ;D=HqLQ|uZbj-iX=_B9BysHoFP*x@PEd&^1^@+6W;I7&@1fP5HIpzJ z!um;38qwrXt`trs_SLyeG258NpM7~zIg|S|yLI{@%I+Wb zt}x({6*#J!MkDs{P>x&iHWk7rGw?|V(Mn~%Z#N^ay|esmN>QkhAhgfu-= zQrX$66bQ^kX~o7lL+^tCmATRX^mwTpN#4NAxYH(eb|5U&ck=#mxlmP;GLuA`_9Wf- z#kOkYnY5+j0YQ?B)INt#W4!ZS<1sd0k{M|Ab`_ULLRhpi(QyUCPC8`2J@zex?t@WI z)DJQJU^$n%{6r>t^iWTQH5)&{8^eAiHJ1_RDuU39se}Id2noaY_O~Wd^A0G>ddse` z2r;dz_UuKt#ezu6PgzYi%oZ=AK+XvL4!c%$mn7{oq8oHqqvUU$MEie*sM#_;QuBzy zl=DDwS}|3)=up6`e8uqIS}UrhL0- zNfj!I0b=8K`+bb9j4VmHMC$m*BR9(%cYMm@WMl4aO16>ke9N_JMNs#NozCk5sm*rO zT(j~;rSJSiM^M3QOcUo)KKcu=Zbl14?GbmLlKs z$FiB4KmGbllYW9eHBeBK(dMjCtn2sn&`q_@id1Xk2x}~~vs;!~whPw$o3s?g6C za21;YUgf)r_D`*VM}OiIR}12fnC5o)P9r(zL&;*nSa#>(@8&^E*w{Q?c*z%$Ds2s0 zfrcrX{Tclo)gqDIL^E(y7m#Y>XRL5T^Yt3YY4%ExjC>ylvn6LG?&oblbCRoo@99&m-@GFAK8WR z(`pDq6^d3v&^Ktk6b}#7qdxz5aqxSh3(}i$!_pn?s5H!G{EKPTgyqdeAy> zl3D&ZlWd17w~53*Ka{TDni=I}dLKzR9YC?F5~^(b3DbX5yrcD1$WvZ~4dqw;NTtlJ z(m9v1Cb3k?9l^MqhW)#9T+LhS+*Yw`B$2>1(lx@JB4J0#gTseIiCNQI>cr{5<(MZq z&&+Q6CL)gjMZ>1$i}(ASdC>2^@cg*#{!=?q;Y6jCfhul01ky32*T?O*6?vnLTEtSj zTdW!J!Ik6HdMt9xpVj)Y>WDDpv|E#Ioi_t>?BNz8)vkIaN8Clb7Z$#hAMIFH;22qR zezW6Tq4%wYZx-60X>>{c^819-M7R16(D!iY&4h?&f_&Gv`?_ z0i7)+8k4i+nYtrl6?DMz*v>ry++lZlAc!Z;KD$$h>^MGf1D+dvhW?vLsf zwf+jC^pibnvi1VlXE~LrBvq=j2dnZh&vbM?CgZhnyHMy$(2oqi3uJ@MmOy8X#npr> zA`0JlcB7+`|M)Fs>ggVkLLDW)qsg{`m}>K4{AIwC|#Gs8-oL(F!1&zhLg4&Y9ALKR>Ify4~VUnHn|V~rVT{NrpSs%n<7 ztTV4rF_D{Ml!jF3v$sR)#`~OFu<1Cg+?D?aDa9$%I>YVmy})QGapNQdjfL(5qRfJQ zO-$9pPJUV$AThbNHkM&fTv*s@>e~DsXlk>>+=fU*KjzNxSVy2ZO~uXsr18)#r$8xPrj#mzo*%nGuo?)Bk}%FOE3kh~YgEuRn;iGDmlJ@E|KNnKxm zUlL>7$`3Bk5l_}>fK2Y($hrZU!l=QZjORC{h@M>t7TKS|iCdXL`~!iM4=sXF-f^{m zG6Qw&IHT~IxOU~ci`u+R zg~k~x(Y88seIXff$+~t=9$&U{R^R4ED?wjzuGL_^31>yPyvZ}7A62r-L^D7*MO^F; zuRvQe(xUt0{Mh0!t0BShN~}LI{P;_7KGCBzLJMonXnvX43{9>ej;X?Kr*P1vU7_3%;A+$XK(Pvq|9$Zg8`4E_+U`0vU znchYK`X(8VcTTanN#(XwUN)VYtQboEaM=YZHX-^Vi9<3TwZ7N!#o$UVoMsXFcA11}koP_GBB2*3$A>cu><}&=_*C((! z`?KDt7SH@B^T6#HYJ~t&@S*%^(iFzvtB0Mrt*(Yk*vF33HbID1{2iY0H?*vTiJxo<;5#6MwVU zXQXN_aO1aD3v*;s#+dBuX4t;e{MxDhAw`RArfK3ty2H}Q)>YQE2|d6NYOV|X!%(^9 z9gs77Fv+~WE%}g*LFeoTeAwgio8{0;ti8joP^k6<&9Lu{9ql?@#1ZiU^@zrbnKH{^e5dQt<`TU(qu3Gx}gzc*y90BPk zJ0vb2;t~Cv!$%B2E!dFfGIK51)@?OEEjDFx(SC3$^+MBS4S#5(hia&zN{)5WCmGT6 z*OB4IItH;{5*=AmXF7J)y*hRdE3S!qFNJo~g?f*hLy0+5$}Da_y=+)Q$+_ExJ)_sG zrUQy*2By}18@z1V1w@yV1GSw9%`f}72v0}Rkd9PpfrFhtu#&@5I7XL9w5moigjyMX z(d;>|wFVlj{wc=EHPAlRj3X{N&h!u}XK=AvZ6}zJQqJ#{31JttG0(5;fu|kq_9sDO z8|Cg++x2!t$a4bvm{f(r>?QJ@D*$IMmRNJ)i{j37>WZW>e#%}gZ2hq>A?3kCXv7mM zUpebR1;79gc9<^SF8StZ)t)M`AK0Ufcj|l9bUJY2xmr*R^eJm!@_R2Cye)_2U6TFf zFcI7(7S0|ZyxZhHgQucVr8hC7Uw4#%cwk6@dU~@WtoN(0^SR^7SZ2pgH9vv-Ot)bi z-eCdNco{m`Ylcql)*m-xFrO*lo>$r@!Z=#<$%b==2aiW7%}48czE=`m81StOq)|0~ z$VOnVKIi_!ruBUXdinRW`Abyrvw^hEelDsuXZw|m-45$!tEOLN4IeZNUl19_@#6bU zyY@uRbU@(aRxsM0&s=+!Z&?TQC#FJr`(woql&Ec$l~-k2DB(Fu9^xdaN^GPD*0)+h zw+aDWd4mWGKekNNdLidN&)Hfek&(Aep?W{UqMUn>4l569b0S_@_dGMs zTqx#7H8lv5#WCx0?Q-=nFj?Oa>fvQb*Zh@TYC#0dWfK_3n-+D6bONYA2} zv>f6x&dp2ixHpr0UTsXI%1`_8jah}1!a6Xm&uH$rfb;kek~^7fQ*XQZsU|4em1q{a zumP*NaSQ3<9p`(Yz6E~2^A2|c$&67#jw9S3Eq?5+L=qV5EV2RW*&2| zOct&mWq+J1CiElxn9(Ytpx4T<-}JsoB!KY-h{;qy2TIgzQ>0J zYVmPsldSa&E#=1hh>}NbzQykaAm`%06O_`OqV5kLgLlSmX%6vrF~pF`>0svrq6K61U8OrpK+6+w*BEF8p==seG%7 ze3Aslyok)Nqx4e8r%>3s#$&%?ckmnZ=KM%&v-?0R`HVhPsp|q4-K2Ar2IX>xtgKW1 z5ob+vTm;)OU=*Kwzm2^hhPz*_56cM^#G()ZkxJ!Up7GlpjKYC&HV$ZV4;%G}{2K2q z`2%-|`VC#KSoTvorloT#oPACE9f$+cN$frsa_%!r-K!*H*8PK;_d(C+R-zOe^mUEA zU&I=7iat@)c!O5oq#>3NKEG+XV~toA?PA7rh>TFwx>Hy~DxL zkV2`1TDFw!^C#YmZah8uTt@6!eEa5_Rm#Mv_6HXe9Rmwh2sK-KGgtp-x;>f^7=h^3 z=~z<2n4iXVJ!+k)pkF_Cm-3>Wmh&?jT%Td@{FYj@+FP6cbzjmbTK=`ya8uDCmtN-9 z(VV?H^J?6#kgq z_b!)EP_Ig?OgB90(#ZLm_1lr!fum%Dty40p2To;KVtpckArC2n6{bh+ZlhXDa8TTH zXwxz~=ok#zNn}Woup1OWe|>gXo_4^%r!lwq>8_X3O*_$Vi3m!X8fv)u9E}9(hGfIk z$_raNv%OEg)4wU{;0kk9uvDn4MXK{kwA&abLj2|*ag}QYDL#OiqLpO~}-#1y$4|&CB{U&zisVo|1D_<+F-Dr~7 zl=Jd8TmYY}b;gWT@)^T~NQpm6=kL6i zD~hpSw5+U2!w6}t3nH%y#w_qTP%mWz(m+dYhduSdO8R|P#w|w^Sy6b^dc0HbJ3xna z)1-e!wEVjRAETptmEE~N-XqQ|CyR>p`UC6>-ZO5oKm6dG!Hydr3qg{Zj`#nCeFHde z%*?vxej;{Z;#X($-WQwItQ%CfACdkq#=bJFsMoRP@w5 zMx$lg8^zl;-eYcFk3ykcQt|8XCn2? z2HAFu=`fqt_H89yL4(5rH76_!{Kg&+({D+$H!;N?ES83llh@=f%3Nt5+`+IPhds0t zDEiKzcCv=0b*5G_YVtQ%;_}>>5Jmc~NqxzZ1?*@y-Qy}Y`d~>VjYiy7lM=-yEw%is z7m=VYc!^qbjUmDH?r^IS97JXd)HuiseAJP$^4hc& z;Vj`M;GVRk`|jQ1A_ujk*uBKnDNO4#oXh!ZX1!dgEoW^JQVkY2vVPpueOQM&lsbYo zzUq7f3*ktpG$#r(ehe@=#&S<*97rQIqID^lC8qn;&B0*;WTq2m(U{j6u8|xi{4ogH zPe|tOsryeB9%0@Zdjvq?*^yF3cPpGDiu2g9^I0I(h1@psbb0X!*|yEDrGCree82CA zKrlhS^f5enQ+641hd$~h;XZG{UMVNHzM;>F?q5sWz5JNQHjgaz;nj~Nw@Z0pu8%jFrj*~f{Gg9E1T`^BaPq&f4WhmhD z94ZCRB>Kux@So)B+&f0X+r7U5Kt9`GxEXCBH5a~EIr!Z9vjjaLE_nz^I zN8fH~9%Yh-;0F;Z;}%E6lRjPDsi}5@t|2QbJ|-_6?Z!#kHd~^oMB~=wSPuFW=GWGC zu{51}A*YT;WA6og#o55wJdCY_*?${5r1t1En^C#O?Tn~fKKOA;&&4+*jnrTf7)J4} zS2t?Hm2V!4NBF~r43PwF{y53{)fBwh!Gtg9huE8P%x^EyhveV0=~0df$OKWa3G>mm zBXF~>MC0brud7(K*WY+0z)*lR+IqfTA^$YqZ88DX4Flb3i14Hms zZo`KR_j%8C(`_+Sia&S$p9=Yn(@sWJw~5j*V|7Lq;UwxE>#DkA5|7!Bj7F zMt5z;KsifXgY$XlH*ZHZgcs6Q?Y8I9Q1uH42??RUGE~S?`Ee4L7j>i>-&_q@TwX3> zXICWwhJ%KdWzjDorE5k^RrwtoQ`JqMs!~|~{p(M^lu#DuYaBp!XsMSgugR`=8|*yYUXoo5=%CoxV=3{Dj78Y{FpvN%f`+PJ!|r@r%FJUz z!oruIS5DJ519tI*2b2(+D_BsX}Nc z)fQ+Zhm(IpXvl$^Op^C*)2?G#`(No^F=HNbB7O_#bKI*gm)4d>&mvxWR`!uQ!kq zo7J?@g!HIU$JTtf<5|6#7~Y@{2mjssiAziv1!mw1G9REX!4|B*r7H{8`@$r<85`|W>^$Rq`yyz7lTM6Kn>n~(nQhf zkf=8FI)MNXmkany5*$PA?Tcd6QQbJ=#d$|Xnla16&bcL^WwqQTdU7q(I+K4#^k~Y3 zlHlA1-at_#DJ3N=E*=a>(S!0l;F4H4#!5K$&BS+_f~<^#vf#rz5@QyIN3UkWCksn_FE)k;`Ey5Q1UP78UU2S8 z?0T7FL&gJ)N5dIqzyf1rX;G8TyGGs2tjK)9&+nW6&Lq>{JTNZLII1-ZcGiSe zf7KTB{wCKwkGzliF?hZdb$AvZE_#W5ehWe*|}csGRy_Br~-1IvEuLZK7Z;E!+%46nZ? zHhx|BfPNGff-EXkf6sH?OT2XW!W!ZyPG{!51GvOb8PJkirKdcIlkV6nS8lg?4t;%{A z(PNnPbiBW}HvlUn$YKrhh}SMc^YY zCZMEw1>!0udGVcu*0!f%`=TfQ#x^Th29t7_+pDQKZF(C_zGT_)_K?eTj08~Bzq!3F z`Vk)f-_3(nHyVW!@c(HZT#K?|W6B1cp-Cc=h!~0fz%8+ee7?0O{qRUV8WuJT{DT2ilwh#y~>-PUTA{!`tEtE`lvT zcU)08xTe9#H)uo8&>S5LdM-H|hXf%|=qVrbA_#ehhI)I|9OnjAG}*>)yvx*=qvyqb zN#@Xj2+cCMI}e$#V9z+P9%rJD0c$sJ+j%&)tC)dQSj#2K&Lh@T*jHx4p=vc01_&!(L$Ua~!XfYh&gO(J_y*6?MUw}7JJ zks9K8blJ0AR4LyI%=;IWQ{({K4qyK%iNd(2Lf z>?j`$$BmLa~Qp%L=(;syRQ1(yu?%?f8O?3t6lnWnn3 zgu+;nPv@k7^(XjpQe1=e+-U-?bJ-$SiLbh`S>H3xz4}PwYkqhaO^C(wJ<}q02Q1c_ z;Y^TSLd-12^ZqKkepY;4%KY{1ckyzqhOhmaN=iz1ivul*nz?WHVa)N=_KA2GS!X26 zK#sg^e0`pNcrl@~4SO6MZnbz84RmN>QNgJpusgI}=PK;%0nzcn()08+`VJ9R0{y{D z0YxYf7#cq;JIEus*DpSn#{-I<0Rd1`YcaMAL-@1D>%c>ojYO&D zIsx}A`HU1U6m6oOGULxWk_`F|$}1jPUh(D{gD#7uo z)p;NSBHoE8XfvprBeEny1Vd|E-Rbq5svWDXqEX$^Yw*PzNQQgX)rW$x5L`N{^VDcP zKE3y>Iv+oN;jL3sn@;ZRLjvse8iogJ2=FN!^1po}d)r@}$B;|~I9`~UnH7r~TVU^h zb)s{=wY(JYWZ(8IM5a}*;Gs!PRH=%EC8t0m#jJzcS7GnJ!^QQFXJu72!z$f%`01(Y z2YcFmc1J0_Dd4i!`Q?+2u-4B-%)5>iNoz{hS?4^YP+pmtg?0Nwp8of87E*bX9aGzM zjm&OZ!eU|i}Gvfk6@fiq=t^P`G@ZL`RQ|IfQW7w z;zFxb0NrVzj4R}ZmIK3znyj&$jR{L$3V}WxvW#=7bePQJepN;IDneUW>*KE@h*v6o zKW^q}JzkrHBdEOZs`pCJ?LM9hysXX=CX`o#mi;c{$P&}LcH2K9X+2}+T*R5;@C+FcsYD3eft-Y@1HYsYSVqLbE1c2Vee5E7Ti;K3 zVSrhqSkZ_G6xj#bDXNyEXe9E;?tnMbGbHxLMmZZ+KXq(Il-~&b_st#O)l>Ax1myJ3UaTiXp?oA*ulgo4#0liS3EX}aT%*8f-ux>qo+u_ z%Zd1N+K@G1>Cr#iqq-F?cIf9yE+{0#=y~@U3aU`1y}v;x113QS<)KxgX?ERLM+Zhb zt+;kSu{|s(Xl!SCVL>CjzCCaTyshOM>ts2RID2x#$S-V+&-K#xH4;Xl{cPaa+>nc} zV4*IRbXL3J*}x#b6-7`Tt+dbgh6lux3EnR^@4DtL!5DghR9xK*U(?gmds>r|Yv^sw z{Jgop-*;F5CIzg5#`w&}NPrtqg`43wkkH$v7DeK4H&swV;izU948CFXbvY;2@S0%de> z-oWv=tJ|YTxi&fi}PYtIO2(;2Ejv#!bf^?<;n>d2$ z6v2sqzsdfy+XB3f>Y+Yf>s3VBW0LuIWWeCOi!fPon$TY7$xM#FWC z1&iYne>ka40e9==L3!QHZX#;ZTb?$E<6($tbJU%x zMDUdd$UaF(2^3skI9HoNlf6*Z+u!XL1!ff!;T7Iaes+sFZ_nxqzd|O`!@3a`aK5jc z5^opsdkd=g=w3ZWxlt|GAkBv$xVRLbW4)D#^Oz20)vGq=DvV4(ySZ<4 zRMaSc0G$7-pDrLXQ$F1|#vEH`1+}ypo&BN!uax`=+LTXEsQ`Qg0z9^S#w#b~^My!+ zJNqy9IP>q}e=?9=297zA+Gf9Jc3z%W2BCR!aq&A(>#b$U^6@lBNY;o_M^xf%ShjL` zb@gJ_s5ZGs+odW#8>906!-{GM zueORJFg4o1TJKW#CK&g+>cj;L$2euB72v>y>kls%a&3r&i z&+hU?%!C|qC8)n+UOiK7pXlCn!O(3u;K>>_WzE7ZczjBHuK)_>dpPS=EN+;_Q;)O) z^ou{EI>arxz{7CJ~Cb4RF#fyxOLv-!z$@Z&LP6*Tw~=Y z^47rBf}3FjTz9&py;cX03#~L(7$yJ$yRDE@SuhadoEL)54W)h!R<~Ud6a$0-R%cjD z_SI${#Nc*u#J67l!_iX?hP8LA-5Ndu6I1w9_+H?)gQM+_-VmsV6HgKJ?4xR+ZsstI zperdvx@vTTw`3Iivs$w17x>w$o-Ll)Bb7q;u-9Zc=%=l#Q6h^FP+jA?b zfayFF-t2N_HRAw;Q@9W@lJzCY?^U@yGmiVnn&%DZU}o=QUMWQ6qoJeA1;#WzI6dO@ zoPWR~KyFA*_2H1KR4*c^d0WF{62Sm+vm_12VT6dKk_ISP6SGwYjMj_nQx4($Ix|X2pAJ$^I~+9n?Ok^QAW~6--9w z@+-z9cKy2N>WJYgeTlF40gSa8Y5RfP-U38)hOvp9U$!XYC17ZixcV{^V+fx$?3b5;oNIX^$2*qL5h>W};|_kP?t2VFBNmw>GdQbfCS zc`|N6oObUBTC+jo{!Y(4Yd=Oeg?ll&fg-d~v&kMgwt<_Q`=TM3o$wdFpx7f#i z(1??8=xXjpS};V9=Ap~24*^~-mOoljIULnpf4562941Z?xWY5^_M@Yy+^k!ZtVvH5 zbrs;Bv};e1f=m_oGj@!JlCs;FUtIMCk$AZ7^t+`t`ouu2)+V?6YWX}s*)xB2 zthNw%Cl2+o&{w(o6stF%>!;^JcpC6d3r|ue-Ew2M%_1vQ5wW5cjrkK*ss_)wE2}%n z%;N8Fx=8tR=5=-o5^%f7UiL{rLqh{c(Q{pA`FkB54R{ z9P&rY7Tx<<)h(9Bu=>@nPxO=t9pVB1JJ3M{D`VsO-@h*FY*tdqz& z-vJmUih!`Q9k%`3cO}D5jR!_XrgwgT2K+1?V-CK{z@8*4YqBvl zsP>P}b~8)}2|@6*uBmR6<*8E!JOYvznwzRh6D7OvNJB`42Z)79yg_Q&;WLFZA>}Hr{vB{+=FA3U?>mANVaSJ05BYpmjKOr4U_HFBPli;< z8T1ZQVSQ9&SnVk$y@qWnirA#T|F+Uy!Yo$ky=a5%O)ug+6rQzR{dydpO9sT{xJ&5lxU2o#keb~iB}_{s?Ehvuy1%CoJOgbhq% zaW@&(1JlulSjymSI}JGZ>=*SI)u)W5+gR1RECM|u z(beD9CMNBzRz0V|K%1ew1l8=sS;-Ca#>TLEkX(d!+gS1zZ1yR9&(z#O#?lS;&1@M= z*@3#%11|ACD(!Db50~&NE}@=fPSnEBF)h5G3(b>yM@LbCn%LHPC-Q?z^q(-6=aKer zVeInsRF2&6$FwHfXV&UzWRxEVWRwoKz@X$Bwn0XAVKpQ?XnrzDY!Kp`!%lc1V}#%X z4Tg&oL?sJ^>V1-%%ONErScrPpk)^4MrCXG_+!vgEs@P`t*?6Nf6Ck zgE8*wHP4V4M937)*{!lQ?*3P-iL*z`V)xyB0@1Z{$m}HfT)jF)oS-Uo5)1gsgsse_ zRQmC&_KX)OqLsGV=e@y+wO}6}baZbu4@s8=8s_7+_{Vvt?6PirHVn{ta(z<0Aj%&x z>ILst%*CEw>&`?L8*GKP;q~%tjy~R|n~xE(Z6sDDLhf)|r@E8wy&~BbYER6}0m;WZ z8i7)XqN-|;KP)OJg=A&%d)Fq&ec0mBIKH-0a&6-p**Up?x7z!q{fEtz4nO_)OaK}c>SHi0!9L$N#%he)qr*46f-C&MkX~k9^EF5JUecHW^00B z+dtSIT!*9d_DBlmNSw_plQ(w~JEbHq59;>zwy^x@p+R(h05D0B)zmBnnyk0Ksbgh;)Q z0hnW(hKC(h@nWtr&TJd87l*E*TqYQUkhsNb{08qNFM{Nexs)HFXU|LaOzGTVZ+fj) zGda}nc}NU{+=Oshy58uyK4&IWL=z&K@WCwBVV>+~w~oQr-gcBnV?*%lQ*gvB;R<*v z^|AuhB|0{CAmAtpgtOS&;Xczf9g{j$?zyOz?;({6)^A=>9Z^5APw<>^x)datSzsg4sX*5$WZik$UF!4Go_V`IfA& z;TxkcBcAe(EJqpb(4#oL)JHeSNp09TZsl$Y=L`GoT-dn1Ov{64VI#2 z?ZT$h41z{{U5L&UOHo-`S~|H;AKPFaD_d(kd=kKiy7miuX8&-*9d^B`EhDFn>q~cC zn0=ze*4tA7TqT=wf%vC0nN+H%RFv~B=|Q90lN?2 zjdXKkddl+iakg1wNVob+i2;6Pg~cYkO1!;9==F zufH^=)Tf^43paBLm_8h%UO}Kwa@OmU=X{_Rr;R*bl75bBYixu$er(ienQ-B=?C%|- z-mu-nv|!xev#>j2<|F0Z@Nug{jw1q)m-5Fi@4{N+esOzdk6XXvXk9DaG}dl32dZ)) zz#suOKXR$DOGvI?jCu+l<}LcMf8SMwANci5Ey^q__~5TRA>-ah6r+>y6ri1JFJ*<- zj?)FBRzM?M;T-xftX3P%uarU8E$&H7Rpv@SbHBWJoN$0Yj8M$EmVHFT5VZ-P#i;j> zgnN~5>#|i=;U@j$jL)$vN}~-%C{FTiNg%bB6FqKZ{}jgrlB*{O-)Ui2MkfUB8P;ADn$;FaghHhz9>1! z4gWOEulK)}3r;r%qB?hWFCPW~v%tT{BMjh<$AQAprs0%B%gQxTPmk2SZ$7KWxs?+a zd-eM|+1kB@3}@k5%{OdVF4h<)9ZKyp*O20allUpjM2r!pZ_XI7fdG?}Lv=LE{@a?Q z`_ppJ#t2l8MH@XS7nern!kPU-`|D)UZ8ktU2guP_SXg(9#zsa(=uDwdqlVV!XJ?ae z$?yM5V_a`->i%*#oT{4-uX%yFbb_^-hSzQ+&NX|JcEU}e1j{9yR8ckkH0$h^V?}c6UB()p}iU2QZTeY}y0f*0$0Y{8KfK8~y%c%)FBTjbzqZy_0u-aGrZ-wB}7mkAr`(5#> z!yBoGzW}>32D4uj08}1M$n|=oCtRUr`n2yOx!ppM(CU_+yCfdYuX^&=6{UmxO48xe z#T`+V*1Izb_s5Gq)y40cPbI&dek}jB?=n@{wIt-e@?liS)b!0anal_upRdjyvJ*gR z-*wnOT(SiVO%dI89?KE{iuu#CvtK(On0}qo(VG)_dwY9Y1N~bWkR}Xz!a8nFH-J}; z#co|VjDSP_vd>bJ?K=+)Ig4kxYH$h`<8JQV3{<0D**w2?Zc)Jv=;IG&ufy^|a|y_;1zIOB1L8G=UJHCJ?rSD0z5hM&)H@ zF%P3+iL%>7$p9|*5am}m@l;+G5-*mE}Nk`L%D z?Top(4N?{op5&xJV>F4OM7TNn%BNJq3(wMQR_nfAJ`pkD9e;uDoNoR7rv+b=u5)*f zimy(F9N}=%pidwQnD;_L8DUsU2)0w zgly&=Ep2y)KP+%2in6jKfVG6bdw_<(Br0k%7!jN9^BviYgp7=+pr9X6p3BS2N2R5ex>*TDs7m3!%BiC% zu|R9Gt6Tm-CCaR=m6+|;PRJbC&WW;H?r82T5v1Zh!0wcm+mB*`+eAVEb~?4<8_#Cy z|L*O_8=TcMqj{Uz`tz^iFLv9&(vp70jRqt zClx^+D@4g}|2g#e(=y0OLX#zQ&#(g=NYEs_!w(vm<4iKCd_kY`$*&IdLc#(XAZ>G9FM1xc|;3z;YP zJKt`BPeH{vHRwIc5z%81H2kUm13{RbGetnSY`-+x6Rj8m-d<{Bfn~5jy;@@(u!~Sa zt#{bAyZaQ>$i1{=8+fH%mbmW3>gn9Q;|wv?BNt_`S!aI@QGN??Vxolo^10vi83Zw( zx4BDyd3iE4dL0GksxRJpVSHeb%@;~+Kw)oIaomdn`$#!T0yJgl=&Z2*=qbB_<`nVHw7zNJtf?>JLZ}ey$9v*0~ zU&F}A$N;b0=^s2Roo`|`4deWZ@b9Qnv_Sc0mTN<0|Q)gpmR|P_8YisM> zqreg7MMt1@fSL^o|+y{K>d~$h;KgE_DR4)m*^mJvQ?p=#A%D_p%ai*zdFZX6s;Yz(fIkI5$ zpbm|~lt07ZxCY}{Hda?NZSL&kR?El3QclFh#qBz1Xla2G%>C7&5J1S=i&mo$jsFwW zf#C8NvgfYB_L-`Bn#ZGltrmq<2H*pEc}Lwt)gpsRuKyBC4or!dyxoXR>Z!8=7vxw? zPtB_RC9sv7d6ud+*X4>$N}Bvhpo<59$YGA`*lIBLSywY`+?v!iDKs=xNKOv2pRuSP zgwZ#=r=NLx?4tz54JM#!l9!Xq9<@?dP5`2z*a=W#(~rs%r3}TVq=e+=7iD1{)B2L{@9KK6N@y-sjPOjhUKvjFm*`v&CCSy%iJ@BADLp{%efA5ww5SbS%yPzg z5F{XMhzI)O@fh`?sH9VX@#D8DgI@i`db{Eo5d^0a5zlDrdq&Xs%6TI=Xb&q(B$cXf z6!Dqcxqc74;xWya?`j)-{|WLS_E$C@z4vMkcG!>Le@;(Xjz>R5fRJUNII)6C>GNP} z`%i2-8YqC*kB=)xt&W#l05*ix-?1K105k~S|M~+k-gFcL%vpEmChV^=hbCIwogb&Z zxp6&pxOa}d@o>9mNyC|{_I{S67SUh#A*$~>$9&jxMTBW}P7OF#Uowf!j~d^nn=pp?tIGGya3l&M%@v<&x* zbM0ErAEc39t;Pcb5nHYTn#z#nP(|?zUr^C5DC8#Elm}<}xIQM3X}7#z#||_gN+1t``Q zHwBO$m(vx#AhoJd@^4PDhjI9omLvYEEdrM{`lsDpHI)ZNI2YrvcO=_IMoE_^m`+Zz zpSAxRQj;8BVa~R@qA1FIEVK$JHD2lXTK62{#pjP5?edGHjoU=bFQQ#dDni2kD2Zqo z7#N7k%#0iukN^Vb+qZAWcYZXg-(Qm_&equwhlJu5GN*c&|2ypRG8Nq3|N2P^)a1;} zwTORv`&YHWpm8C@s_Obhy-s~Dt_Vfn&`2MPie%tU*mhHDD5C};8E7qPZT<(;ToF&$ z5ALO!#hLQk8#aOqbC&}S4i`f6Ioyh$%!w|F0Fk1l}gkq1S787)TJx6I^Hifw}nLU-AvrZSjIn>eN0)UU_ft?r`YqW z*;;i+mc(WVm)W^c+@OywN^F?1Ne^PpDxAsOQUWITpim19`H! z-Wc0Daw(t%I^q4KhCPDaoM6*to;_%_6bp*p>(d)2#U zyRQ%b4!;u=rdq0V+f}?(2#4X>AfjUxdn1k>eS++Y4SJ7hl)6yhU7FeO3za$W@4~u& zh=-oKY;D!IJkX`7T)lZJ{V|zaQCQrwu`)kOF9#S#pdJ!zk$|pHgiTKvt{Z>n`2Mtp zjgrn>6mL+23H-^4c}tE+W+8lgU~(VJ@^?nkVz2Vxk%2N1K~_V~;JAM1MqS^jTW6+l zz`X^^N8USmNGUa-Sjpn6w;fy5$+vM7B-kS{FpoxDPf=|itl1`U;C}JJ(B97|yy6DCovB_pFm8X!g5{~STU z;iui=*0Gdc<)jjoMh)0bpIl$7kQ>6Nh4e4Nz`%5lj>?3`;8HLy`9i{?5fC5&{SvE$ zv3abc5H=}1Ee|jn+fN*#hNs<1CZnJb&fIBCdFD<8=v!;5uHq3^7?LfE)RnEqyg4=c zj7=*NL(4V4<)jjTngwr++4N?`wKEKbU$?|nP$&Y8(~90f%-eb`BCtf=yE3Ps_UVy;*Zyk$@~Ezuv~rR zs>1hK8Z09fskC_<$6-R7oDL#_Z*Z4QIKqBbp=riqf~!5G#P_?5Pui;u7m@gZgvI?E z1K%L^$YG*T5UPgKOl*zka~KV4KkDt?~BGa)Ea{NYMZlvehX8bV>$SWWaIwtKn#^JLe zFUP%_`_lyFhn9RiC(B1cRy?!S{&wUQNbd#s2c9lCrfyo;5m!x5U&5IBGqH%h**)CV z@RD5ERpK3_t}W^d|B6JTg=L_{Bt7k5z99L6&S59Cmm&0quHx5<4Q)SebY^D74mYWT z_y}C`0w4_y!k(L9{+bbf{Hsr=FbNoX84+r>TJLrmmeII=>thA}a1lh#u>z)Cdr`k8 zCZeOFvVfu@F76ctHFZe_;--}xGS}5yh5C4wk8C@iFo?sT)CJDQf%)q*=~DA0$T?>-NJeK`9S~jR~>;~TRso0>VH12zMKcosqlWaD}bjM zC|ZDD;UETgZN%QY)rkdPOV};;pR+)j^@ZEh_Z%R{aE^FMv8Eh%R-vDqvRG%rdlLyx zlUkQifez6e0f@7Gml6m*&U8>Q%L@9lYCF8HGLdSk=-+t(gPmUxt8_acfRl)UN{9iI-TQ+? zvo;ym6Lj5d;p+CHidcUQI&DuF{r0a2!E`y<}U$)SFRz9_!Gz|{$g(m@#rY5w#jdk8y*hMr>(6G zkCgfUjz!-T$}uT~&LD3_QB+<4jZuXTQzj5uO+uog&^$Bt*U!`T?P^6{#&wYBbY!8y z#`JH@i+!ExAiOl84zy7pZV}O*(#Zp z#!KaP08Lit2&&Mw)t>oQBQuo>P~dqNn^ACBgpfa5R>KRvvzWYN@Krl`@qWh(1?qIB z(Q?*eJ<%K0tR0f6-vryLN>euSz8~P6}YeAR>f0KB!uY`yUM4 zlsB8~Q7Ldn&i((VN&62SL8YogP8uOD zQ;w!x@;ttAhb8FGgy^_eHn8&gz!Yc=8;p9fkTX3r?j}w?lk9yH8c-@+e)!YNPB-|Y zV+8H8p_VAlBrgt0x2GBP6%~!wN#a!iVB0ZfG^Xe|zy*aEh`{k&(bet46+v5nDDWLz zX71r4g%=j%&zTMpIfwvdezLtiPAdj7fW=#XnF>3UoG+3#xY&SzL->WaSVlNpQ5&h* zoza$JVb}c@lFb8E^EMhiAn9{D<8ttDt%PBN{e-rnGNTDN=((bq(^+uPBWDbJjNHvD z&obc6hmti7tznFjgXKNVkN?m{{{sVI&1yt&c}5_SNjLd?4n`LVEf|RRNT+YFD8rMS z9~FYPlF!APO7IVugM=TzJb@>^Xt=z(QYJV2kh~(` u6cGW&OD4Ds?*Cz(T8m_Nr zc78Y?F9TiC2jd}}Fk(J!fa`%t{i(YznjGjpK-0YaypAB#p$fI&B#~#SQQ_^t_TnVl z?a*BkKR>^*ngY3>K0{NW?r2L^9K3RaYvb}%n!g7a#cg*!gZs-UrI-J7bM6j=kBA++ zy}2O){Jt|XGC*C}&Q8H-S(E#YOyHz4V9br`Y)Gf(+*eC8!;n1qFDhoeb(V2#t+lOf zB|v@i@bvs^Kw3W~W*;yjg`pq8QSuhHa z5ruSW4g6lJOceN6=dL5QIAOMLh$NT3>BlPh=+ziX}0SN)~!Ay(#L()f26B;X*UFp<2okDQS-WH z@{p#4r=GA|8oR;?LsKx;hbQXB9CVlhLu+$+N0e5B#3m&NDXf)VgMgderI@=vz@=HN zetF2%No@a;GN&6&8OX4!9F`bBJmX@U(!Y4d^g<&cIJP=a(M+2xK!oaKEgp9a5BZ!1 zY@fPhnZLw_=v^SRygipwpm#MQ?k+7XicOM-z)*H2#t9;+zC54kshEB%C-{~B-WZ~@ zx6rqIACFr6T>%n;+yHc9@j|@3Ci6rBK3Glq8>>#(BjR+Rt@XLF| z9=;n8XWTe($ybMQ#HD4}2NI&A2aF!G!xJ4@yJ4`3i%`y#7ZemcIU1t;dp_j;vWpON zP67DY1DGUmYe*y+lNW%UotxV#g39E-*Y4F#)+7pI5Rw3v@OVdgE)F5-`V9^qetf5a zj(44Xb=~Z#g zKq8jefYoqwBGpzip?Hk_X{)M=1LRT?R6C|Rpt%18%!EMyi>Te;gd4<=$*tSB$b`1W zc{z=22&{g9e*1zB$p9%5f*y81OA^)Bl7F|KMTS@LML0>I8 zuG@%&EX{hEm4UXM$$Ecypjh5Z05Bjgqzh~z3hU0&1aBuE&%J{H7t^gJ%=3 z7x?Ko)j+$F_Q=2j77pY>Yi-%ssP64(2IFJP-4=~X-{U)DITk%_I^I!-IqadZSH?oIvh0Zm5s7Ua^q0?i@L7tQee7C*Y!e&q*jTYt;1RNO#X8c=$Wz(> zlSRcqr%OVQ?6RZ3G1K^|bwkD)xzKz{MM=wl=n+|E?q;=)r&x*DSrjyNmlN#* z!ExjwVeNV1v5JxEv;hCM(qIR*SYQ|nW3{=}a};J7TP=`)8hKHpJfY6Y!=DU%w^utZ2XcqOXJ<4|yX<&kdhxBWf^N z>H)XoDf^@1UGQQfn)Y5y2dcA`mnxp~HP8!i`lpz$PH_1=M?fvJ{0+dYC}?*? zMgdfw78(Gg(|?gd;WC%t0d$K~V&GoHCx`LDy-0*`hZh_vqlnY+s{)L3?`7E>y|baGh^VdnhX6qRx3~C)9-V9nMy$$EBx-*VnVhB`(nC zO1!838~5}3Jx8*Hp9xc)tE($;M-%=tsSSV1XJ&$)LAHtn^gJStDmP*x8#`fM*QvG5 zDGtr@UVJ*($3p&Wux+Q(sH>P{4nD~CA#GzLbdq2S!a7;6pSgRnNI zRi$QR)n5UcQEnSan%yI{cPR~3^I|gq$R#I=jgyUs0`;}zE2Kq2@mJ#^%~#MDDunj= zlD!%c<`0#WsIZ{~qFY-*J2E;H^RZ{O^<%sLN{OxzXpP9_bpnslJ*y|$`9D_%FadIhY#@t%H=I-o zi})p+5ekMV)&aOgItB0D5$V)eSSYv~QuklXQC2ZyL}cWj7r!Ua(a?MbKUKylIyxzC z3=Sud;{gmxr^Ymv?wHSt_Mcd&;EheN|6k-#sfvG+Lq$>lCpi=}Fc@~+|7tok^V%3- zXP5K*wL;K(C_2)8z)=#_51i3Gu+jU%YS+fDyF@(vnqc~!=X>gJ%8Fe9Xsv#M1p}OE zrWtVWC;jhB+&;L^lc`Hh&NDij|02Cp14ChOZyR!4qwOa$iU(IQ8x5MW!p?cC1gJ#p z$m5b{&hIiLf{nO*+=!CzDqZPotnUBEu%TZ~ufb^xkIKQ-#bwul=33hxxg1|pbh@#l zqXQUfp1&}s>@#h74C=Z|N#)$=|A5CLqrhHUc`Sz?&4-+b(nf@vWqEkW@j7q=dPq7~ zab(jEtuO}*-#C@MR15J^;8h?xdW7g|iGbGWDNtR0yQbV`;w(aG9A}CR2Yu;1Dh+c) z9Yx1O13DH5=-n$koi5i36(w@*{#~LMQ)vHE@{Q`~_2Y^FfV-om_%S%F6P{Hj|LW#_ znA5YV?k1&3(>H{h2fAD>i=9Z3Ryfk8x1SnTOchFMc#BV6B|d}Jar-E1!Kbe2uywAWXkRS;A;I*K#s1Dyei4nT@f)cG9*Mb^o9+(oI{*7+_F z>i56zHMP(cSHDti0iYx1Cp{<%^YllY)qLKMD}<;Itplc^|A(=&42!yJyFLOE1_-Dq z(jg*^(hMLVEnU(`N{4g{(hS`xpma(%(o!NNIW!0i&Ctxd!OQ!;o;#lB{otV=Jb;6l z+5hug>$lb>BUQQG*Jft!@DfB9R+()>|M-+;3R_`YFkxA7x^GYO!4MC8mc@XM#KPk| zOihD|U?DZyQt6`w-3CEXEmz!_*>7VW?as*4hs=f3A08rK`(UbAsBAg7(a_MGOsS|o z;+5!fyD~aiebkJiq}TryqR`~5{+)GVl~(;@YFLY);<&Ki!Yl@K!a)o|?K-9DGL?F0 z5WhTu7w)r&+>_DABK9fa*Dv|&Puba26cjHGYIBZOyeSXTpDsaYVdmv#*G)Og6fZvW zBwCT8JT3PRfWu4=J7A%#vO1H+gMTtoUFQG9CQvoG4ZTdSk)2hFRd{XvU=(}aAu>Ta zcn8G%)ySw&l!2Ch`yu9jC6%XEL`a(B#AbSUTSAyyYLN?xhJ!;Tf7Q|wv?oiUr|Znf zzyNF^pE5Fp(k2TEn4&8RV*WU%F#)|axcdK^jnb^M1ZmNRci9%?LWB=Ly#8sBRKRA& zuHwPf!;x!93rszEF~C6{9XI7=a=Txfo%_V2BGX8?nyaut+y}rSvZFnKfAY~2*h#t7s3|6jebSeu| zIa3A|@sI{mg7QuA$vDQb-wPo6vxs;WUBpZvJvapHn!7}Jva<3 zt-nRXzSw)gw2LD9{(E;emp`jY^B@v69=V}pkbP@m8}3~Uit)G4 zPRiCyWUR=8i=z+U8JwzuZ)j1ZOxY8Le>gh{W7G)hJXnV|LN?;gcvmi{U$I!D( zF6-e7mDVoO{vKApF>chW4^ZD75LR~Bm0D#^O2K!(^X2QHs}^Vq|7R|#foZw(rJ((X zK`76|2eyfW4hHLSd3v3(CtH80G_Z*N0n1RR-WnDvLT^H13FgJ$(!_cgb}z_P1^Kaq zXA|j9#RD()Nd|1@!dFD!(V{XLbd2G#zkFs_Mu^xewdg4+h0-*vtS&RFQO6|DO~Qd? zR$pJgUlSU#A>?YO5eURY{;CGoJ@JhEkpC1$`n`RE^xsu3b;7e`EgHIr+Qf%eP<=!E zbrA-;F@GMBjQ9^pv2S5{elHIsPKQ!?Mf|QW4V-gm>oC*(~mX z7Q9e(+Sf5hA(NX&IURtm%QGD0{Yi-AGOk{;HwW|K$y9CKo>)@8ILj;2%`VL{d)40~ z&(&~vnV|Ps#~6$Fci{s_iNiAzulrYM(O?3%vOGUyu%pRduBT9f^Xxo75|H)9sK8X1 zAP^;$3JsDp;W&2|uh>YkjA`4A;~8NymB6_qWRzu3UkxMOX66*mA>dI=nK9a?>r1i| zJk8=-Lt{fMpLDWjC77E+G~|CF7m5K0_*DzzV4YPtc*CTU|Acz~oI-uIL)_Z9%SMt# zo*`^|n;iZ4;fNB>{TThdnUk@eAXu5Tl5+0@JiGvc0;u^};v97`)|KvcljVWDKRV@S zNra;5*cBY2OX%eF?UbZzx`4-?xF6NQN{)mUunQnwCR6`#bp{t}%`AGqe%Y?M_@eUL z`}e5lFN@^=U}h7WqT+qFd@Ha0gG$YG&Z*c(Wk^i5lrt|jvFKp0*GGT(*p!V7Ler9! z=2iizF1cS*SX2b$u*%=j(e6QJ)B6&d|LPF8*!!$^T_%ut$;2b*{!ZoFNb|+kN|3*~ zZ`3C*JZ$;r$mA&v!uZCh!cj(?*@T#N?r-w0^Tgbg!0dO$Uo{d)Q2i^G6xRDUWfX%M zccp5EZAr>028`h}$LCcg=vAYyIV$4=CLaxp=zYWiXj3Vr++6nlE_WzN$7#*%yt z_+MC(=&2>y*_M~<@``(WM)|B69An1O2(2~hT$wb{MG$*^A^8sDXjs;iF00%anc5$P zk;?O2y21;_hMNKI(R@;@0S~J7m=JWTt&sAF28&QDF#)dUQaBe(_(~Ja$|tHd0(dB z*GGAozh=m`aj%`oUNdSym9CR&c#+b6U7u=uB!zYX91g5c${%fVFF3g!jw!Ny^u#^5 z*FR1=!tx$(w2qP~9*Uu zLXI3%_47>c8Y?q;WsiJ?R%(h*_JZ?(m(06w-6|oUXK1#}BBdOY=D3@4MXgof@Xy_; z_{5loR-Af+x*q#%=UK@frqtJO+MU-}$xujVfH#jvJ!c3iruaFIsSCzqkIEUbB`+tz z#iy5>1@%hZBC(eLAsj7F-ancr;23M$;=It=7V!mfMw=jOD+<`Nb#B>Sgu6>B;+rxg z_>9W%D#Dluze@*(pA#&AF%!JQ$}@H zI>Jo6AFJlF9c2Q;2k&72MQ;$1e>Z)uyZB$AtGyg|?u6_%1Qf8L@UVf-8`KM0BTAhKL&PblsS1(c*8k|!0Lo6I(`+6;Ts7u6sgb(NS63u-L51pdRM$I&XKrBLS1Zx=2F4=LMkP?59K=mB=7v+y@TLUv zU5mG+4}XZc0lT&zfZEZHf+nk=^Zn%CKF`@i>;q*wj{1WuZ=WazJ~=(y@0<@7(>vKg z`~z4dO&;BD;9ka5Iw2vU zednU!0lT73UEkpCdH8%Dy|<^>TgMt9b~%4pa_dnA-LLGXUR``N_mrJH`ec&%>p44e z7o%@Go1K%X9VJ9iOQGU{rlobn&sRrm>|zJz5ZgI%&1d%MYnLamy*W5FARg~T7H`xv z@#2UC+(dQ?qSu6^#bIvp+L>g6w%5B!^>~OVwa0J=&00pr$?gN0%U`_`V0%T1W|#7b zaNeyK5{bZD)4!waW3v@ax{H0=pTe{M;9ytZUSsT4^;?l=zhXug-Qton&ElR0d6N-x z_r40871wQkKJwOcal;sXEX$U*7y^1D#_UqdIkVN4VvfdTltZHmB)vxMN4qL{q9u7Pxdxq_5QK(YDZ)W;nIbZ0v}-)sHGUGKeRu1339+ASCBb zxDuY>avf`@yLv9TXE;0okY?ry(NZh*orvufiiVW>Y?Oh*ncS-OCT0?!rc@6;?MB;3 zBG$&`y=e0hI|j>1{^YYQb|>8tBff)khp7{7N+x%khScmU)2$W<*>WPbGh8VZ41DQf8M>DYo5~wP|Ospg=Zl+&A!H;mv z6h?;AW&!g@6N9JqL~GsimwKvH>Ak!v}$kh@Y}Gdg3}&KO9%BS|J&<;~jRf-Q;?= zS8;A9MLs|C%s-EG+jfe{fUHsnFTJGA`Fcd=C&ql1zdYGX**XY)XmJkOyY$(8p!;7u zS!-|rT?ULfpt6z2|FmQ;Hxs3g6FzZuQJCE&czG{|cc#u?;OCjHjeQ~!NcZo{p-M1(ZO9($R{GLvjJ+goVVd0iz1v_FCRy91B2;@xvLxo2G%e`*Dh=pHO0K0x zI*@(k#L3gh+JcyKip!g|T#vQL(y{1o>5z`;9r@?;;gByw5 z-th47>ffTim(1y(jpE<(Eq{})Rj8Gp@BRp>OhUlzrpKCv;QnpXNul_uDT4oLeSnLZ zr0=22G}Lkn*foF%#I`l(?kn>?$a_~+>V=+R&8b~&N)PdYq0SG~4O3-D=F(M?vBz(} zX^)sT{>3!GX}hyxFB869pgBS6uP(FKK*|2yXTaA3`D>w|mKvd9lYMiU@Exv=lJ5MS z@XaYz5cux#wEh!M;t(mu$tx9-4CvP4f)FburTBrl7Hf?F>N<6Cftjv2N>PF--N7aP zFh!bVVzO%vZzRw{GHo1=eQBp(P(4vca5~zrmeIJDwA7=Bdf| z@Bu~QE$i^IkDGbsIUu(Myd5Q6wTj%gV(hzN(HSM>LI+opC6!HnM1h0>PwvA;>p39? zwGseZBv5;QqDF~6>0#OdwFC1>g4#TC0#*LDrm73P?lQ0r7DDjJ8?S|RSeziJ!@%|`KA_<%=U}5?&v>RBWp`p#K zbmCVTMgDC=NM339xI9H<4a@#gEwHK(>!P^TI~{x^Q=^5-%r1Vq*P(N%MSt2dS@ ziDoI@$N}69IDS8!^InJ`GDuIahB@IOsMrs$+avzox!O=}?r^$SdR77dj$Z3!JvUa=ZQS zHgB5`*={9ktQU5V4@~T(8SwuB8-Eq_laN5!5Br)24%32Q%V|(YtN4(Q4p5U}qG?Vw z=9^D1l@oZSTZ4sc8abG6i|dO0`LFW2S%wHQ#@5}?x}CGclp}tKY^Z}p;KNd6V z6F!E;7R%ST?2F|rl^9dXkQGD&1A$zVC*y= z87=or%Ja#7`7m|v)0_Js`@*bB)pyt$%a^==M8sEO`s`v4&T+Psg5K*2SG^ni4!%ah z*7QHhul`mp(CL+tpY<8EDAGv)94Rm`P+Uq%5om=#9e%rx;c6Q<;HS~#+?@Q{v`zAl zTXfHd|3r|ijj!U?7g7(@Qms|7YhaG42tuG)CEr%!uBOo1em>jYW+75!-R&e5J~vs; zcQQ2kPGCOh5S zj$?0L)!P0z-!3w+*fWD1qDhjA@V}Wf39>q z(?)a4(iGiEVCWH@%&z3~OZ$LJ-3a-hFUS}2B>&xn^=z(Q^98)aHIk5W*?sm0r#F2p=+VI0uOJwt zrc~5=6VtUzz$?bC4W0b({>?(XNU^)UVd)K;b5QQ>X+#EU&WMNzOnGZOtE!m#pH>SyOx8^CyB@3Jq9KC1GmGBsf=G*^kY$s zuzxMxjU+Cp|H?LzU_X9M2!@9jYt9oD4)cD=ERRwY@8zO)wjVI~3Qvdt_F#tITfW!2LLj zAlFh!JHAq^>tgpGZSf@U_3~V9#a0)){`@l!qA(Fat~te>tm=JGpsuC(7rkSKQ^U;i zw5CO(pyA={2PUGp#Rp1{RB=$`nW0mPtbk5r?3h)|Qfh6jCp%Kx zy8GtY2@;`pycM66O?6^d@7Yt<$duv7@n9+3kVNBN{A1Z)zS8u%7bIoGs z`!Usi3W5DA=vp9BlSjqMY`}rby8M=gEmT*3`32vub7E?A8EfSdX-gXBMqDw2O}N@+ z`B2UvWhTqbB=aa`qr#4FxW?m;D>fE+3|S~I`kd7&Od!i+DtgImWb1^WHj0yE%dYE+ z)ikVl<;PPfNQ?aT0?eo)7IXV^4S2H_8$=QlT3*wb!8?G5IcN;0j(g_+u#R>kq8@-A z8=gV?z`m;sWL;O^PN30s9_`}444>y=0vVhz&&;Vd0{lGc&xNNjJnjmx@3Wl(Y)R)&dH}dZeo3oX z5dfS0A8hyF*r|45ighjzbE?#wpz&hbc17E1P8>WXuDZ3{#Uw|>-J6VfnydiHfcuCI z2S69iHLcdl`-10KfnD?r?I5q?Qb!+oNz@}8L*@3mEv0`O!I!)8RpsUHnLdV3agiwU znb0OkUz^XOR@5?sDil(T)4>=as1Ke3kOdB((nam{+qALMOe$hCR=|V zAg}hVsYjRqUWB8#r!zR%#Q`4EvQZ{u;`Ff>~92d68 zKCN|%jBb^obMrh+fQ8&rMoo}b{3~fm_>>7I`8UAW)``Pm*$P=~GfFnrYwe+J#5P=y5U zy;Sb+Ev1cm!HgI0(L_X>QMo^QB2d27e{$`*PI1S17mvOZK$0_$W2w5@{IvtK*(e=;PTUr9Mt9%#(`6cfLvz;{t&`b>p-W01h4qrUbU^3=xv zG8{W<-q#tMEHv`vprr$nlar?c>D-KG#nPvOZ>5Kqr68h}l;#4rDsxG< zJ+nz1H%$D(@jt3cS4QKzbN3%_deJt){9qer+Ta;QlH|b2FJFXi#N@VVEUkTlW~mVy z&?b;z5C=X0JpM8dLIQ+_iFFk}r)=D@D?e2FqSt|hLIAk+y{DebRi0Nd6VhBzO_ZZ# z+}+w~ON%bg8?CX*1@j@E0<{BkcCZ(XscO#aN)2lr+?iilE7LwLPTA!WEISfOLepv;{p z=pZI8_vVTj{)gCa8C?)^kQ z9{2EKAMsCfxiWDxq&Au-&lH*c6owI>!t&RF$FUt|=a--Ao^-+I`wRuvIx*JEn0hy)$`5^Po^>LlcqG$l{ zT;ULAeyscM9a=jL&N~#T$0`34P@WCq2Ja}Ue7?}B7!#{CaQe6*SNBL;>J^dCj) zmW>J%hR89VKHlH@*klT+GFmBZ_MvX#Lyo7FunpS0^u2(fS$71?;3H-oh{OSLls=KIW@{pKuXJ}=;dRf=9BU`nx`j9r%#y8ujdT`| zA+VqnVTvUm?+LPgMjD5%jYprDw2BdH%kjy!RDr|ArTctXXm*Cf+Pl(`S~QOQ-}ze!^#@%$nTSWCuw6!B61F8WGFbYgIJ1sdzhljTF(fb>{i%CxwFc>rhUQ{O06vuZ3rkrt&1y_@+z>OYIKSph4e2)+AQNSW`U;*-L6M;m&Iijj9|C0+p&xM z)JRKj0xpH{5vt2oagXezDDc+A$&f8s2*RYeCfbhUYRPXHZhDQm9WL}CMeBioP|wb) zs)iD7wZy5Fs0g}Vf19{depU?cZrB_B&kJ7Sh0F?eO8JdC4x3kcUIyraLANLUFy35Q ztlSB;*#i|wwRyQd!YukGIcwv!@ZpZ7H}TJYslEN|(oeKhjWGn;N62nEh`;F%i$bhf zn1PmjF}=W2-b^c8feI?r)#dfT*9)g>7K8EAc!n|1f#!*uzL%JB#pBCu{&zD$**6zv z?*PtzbSMuOfy**JT%cCmzANEBD8stugIcWoNJ^NQCUJ{QDSm2ut|gIM`GE#(Dr*=3a`z3K2A zoex73eKRE0aoFz3oKJSQ{^(c-y5w4oOxAPJZ6h7mV%_WJ^5iGbP638NXSOQ6;fTuGd^Ral5VcThRF0OeegD{ zqM2iKU-p_ct>JbI^IV*sJA}9|@tVV+Pl~zw z!wap>3#N@W!zHD`u5q2Z(lftsLJX}q1*hH_XL|}=iu@~YGnU9c@8Bu{UWG7c>fKN3 z&C3n`Hq#nSbHB(KmN>|2OsHLW#C@Gx;sf->7|L!+mKd2e&Qv0R=%ZF=kv3>!*BZR{ zSQlu4?Z%GDz5^Ai;+zXjar&fRwAI2iW~AEeCwxlLMR14>ou8>Xv04(Q<|-=K14Zc! zW*aO27>th~S!haz55sUMlqaG0KSUv$MxpLRZEC=2>%V@ZKyrR0m2G$TdeMomHx|La zaEw2GewJPSt6rhjoz^&7(1&N}foKyzRvl=#)%QJnqF6v%pY>(CkNlfhm+ZZNHb?>Zu^-e~ z*&J=_fo|!TSkRSm)p`no855Y?wsT#ZPP0)O-ppI_Xb!%zD3@}zY2Z~xcyEYDHR7+c z-o~~5s$Lz)S5~mJ%@s1b)&bs)n9+B_ITIDLz4ZjA`S-Vd5adaA)k;=9MSi^Hn0@N{ zRCW3-*AK#6#Zv=b5{}CTJVt8Bx*1~|4buS6PY>CWxWQ{(-ut#}5Nwz7zgLsk_4jCH z8b*lV^-E&)f=jM|R=Q!U^={IvvN82loiHCJc2REoRjAmY<}lp(pMAp6GRsvE)l08b zb$RgfG->U*V(CPrw8(IOyG4(GX73>IMP3?K?A8A`cR5+OvM<^$Oc$Zm`p1tqc;C34 z&|^Q@oZ(XFwam5dSE`l zn{lb67W#v?kl_Ss)eqDBMTC{t%Hv1el1*2Ww_eMoYj-cY=cxp`jM^6R4W=6DdDcOz7B6?{hyT=cZ?J z)`Q%4PlXl;7eVsA-)DMA_))zQ)s4@3S$vH4bu78Ey2Hn{5mk+kpPq&5i`nTwI|KZi zTE+*?e3!7t*FeRIsTKIujM{MBR68J?jYw^dWSK48^Kvx42CiEWvl}5Cw>cYc{@U8H zjtDjV4wV?o!@!e2<#SQGDrWmm64Zr zBjI_8zv=j42XjJv{XVAV&RTJR$G+H^9WXI3`Z(%qrym86Ept}8W|rP}k0>I$7oL1C zQs9LL>}KjY_M|QE80|sL2Yk>O$4EcXq$B@2rjek1Br7B6nfC2^n0$eB?+=19K$Ql} z?>;r}qif5AZMMa|zU?Us5-{r^;-p!upg}G5DP;JbV5lSms5fpdA`7kDhT~`+F<7_T z&iX#`+EKk0SC7@^mfk2xz@xNohI};5xbkUk2~%_Xmi5$YQ!jPXKc!j`Kr|^ER|Rqt z*Kr+lnW$}RLT5|7yZAND(HMBF7auQr?}Vm3Qy!R?v-xmwxXwV$>9dGnL6o8dGn0P! zB8nKS71eR@i5{!|HD+m$wXpb!apx;hrf&h&ppURpzP?>F@{L6*p(Gy~NTB{(EEQpQ zCf8#hZ7*yLh}IhIuStT9Q6JXhYnqWXC+^;rEk%f@E=gHRYv&n9-csh*u=L0tx6OO?X#UysXFUGfo@sp>$_ZQl`zfosSc( zwkfi^g>9D4C7((yg&vbxb#Q|>X}l_@?y>0P8fpI-qVolaQJykFksc&{k<5$&$fEcu zGSycPy*zbzmer0`xH0w?9eMXJ<7dxelvNfg4U@LlWT8<|j1%XNu2c>S<&Fub!TUAu z3_3kJx8!>+B^+=`kBD{2!t}dgw#(>U!&qzU8CAeA7vP(EVo0tv9%F7VvdorVG>eU) z9slZZty4jJq|G*gK!1tyMf*Bx`3EaS5a_xUZ@K{zT5DdL{O3+>0@g%q7xt;7C|vGN z3wD@JT-en=%`Hv5HoiOU)e>y~A{pB5`ap#@LNACLQg3&@sP9a-K}T2I<_pqo1=$Px zyBQ#jUFtCguIMv;cHeEZx_8UAw=LrH8Og*KFrUpIHi*9F7huMnvg_D!;Z<`zO7q;b zZeW}_quKj8RxzCF)6S)?k{f4{a;i|@$9jj3?o<^%V7=VMzpWJImX(FdTwtL$^O&IF zZk%^;8uI19A$gtXZZi6Vf@9OY^^hh`G7gY%c?2fArA4d`Kf;Q8p_Q`{-ySp-qigeD zcjCL@bcmnc+_i71TJlMoAJozHbIUl$Nt688W)1D&vX9@ZCjfK2oV+qJr|U8lSDXNK zgbW95{HhKTkwrq05)B)YM~9rTH||%Z@t}Y7=Fh_f-JpSiXbd&H7soqBBc`O>yKI{g zTh_ZxW4godtytkY`4N$Z64K7oRF=9ZRCi-0oku0_ zsaK>QVdevf7<=O9t9w~E<~`FA3;xCIzO5>q{`pU1($eQ&ZHq(jmXFg)1M?hkZ^y_H zG)t*o;`^VQh;6>4l?lbIE@JtGOOk|nY1F@9Tv4X+8>sdx59iC0o?}5sj8*#GuU-Le~s~jjAR=}%m(E#Q=x~@I>cXczsX8C z=o@`RHtmgyYz(WndyfOvcyHvgQNhq`dzYu3Xvx;f(f%YMIE=@Xq}nYe{V$EvmC+3m zN#5dSDgpf)L5~^*E@y;wzr3eC=aK4{w`s7wZp!sT165hsXSd@Ws)$M`1E10&U)m== zzPb?x8w6w|B_v+h+LnRI8Udg5zuFGDJ!aFF|Jf4xPJ7pyUX1?2VN@=epYPTeFd5UU zzWNF)v;$;q`^A1rg{YP~{Tx`f>?4qg zrhKJ@h^=efMtk40n-)yruAdtuuWm~?O&fzgVZFR4EtL0US<)7wy|*mtPB=mUvuu4i zfP7;YX2#qoJJ32Vi_B8>A*x#CojP(rWkZlCZ;g({jNXRd1Fs&J20!KuAEDX=rjy={ zJ4n8gUl!!&1P9k0e2FoqJ~2ic@na?LU|DPMStImCPiu=qL}I}1!2s5RgF+;@90@hG z)||MXc>E}tAarTrm-h!kXxnJ}%IdX%Cg_vaa?l5Pe0sA(B&RrUYb?Zv>pYjMVA_Z} zgQ2)U6y&2F$QU{bw=90xNe{dH`WEPPTHEck4$j7lSBm=!=oQoy%lNdsPkOC~c(I*m zFK|Izq%MZK^fS7Y$3&^l7N)T$J8OIy*HW`e4?em|Ji7tCh_r(&H=8M)mC+ zbfCDykQYVS6!@}*}JuwVlE+)tN72UvBB`xZ2U*5YwM3f4Ph?C;v-qMHHQW$cbS5KJY zvL8`EaKTJEhGZ;ux1;KJaY;d-*oid2Dh=rCsRVd(GZf>9B?2$T!d&`qcT?Gpol4+1 z(pMPox*zW2^6uL1Nw?vexVTjQAh=f0{Tn(aUx2^zZulX*pm+#DsaVIuT+k zs~sUH5HAD=VH<;-XmVj5>*0RfS~9|XKa#TL{eAX{QPKV~&*vZ;&-0-R+>yKijoQzo zFb>`D0cN3pRZ&vN@e0nDT=VcE$n2h^COSZo}za(4F6?X3e z&z)AIU^^D-OsOZ9kC;3S(X>zLgptp+pkZA$(9BPjX_X{g>QJ#lN#}3%;`aE)4m{&R zny&Tf6bdP=sUDDXn-i=RUL!wW`_=>6Zp*va0o8LYVV<3<*I{!2PZjTB8YV-iT1@1x z>qI{x|!cYbc^u9oo- zYg22GA4S{&M>*A5&jN|A=71(|oou~qJApDQ<6c8`9Z_TLV57>G(yd1X`Gwo`=q zY_B80aUMDBQ*4WFJ_FPQ-bX||uStU~RO)DQ+->p)b2t*Z`ucAFl_(e%=dDDrl5g6; zjT_V%pbf-ahuG=rb;n)uAzLYDBz|eQn){UDhjo=i$9OpmV=4ks6+1VjgvCrB6rERx_(;? zBxDD7${yI4+v&A@pkk%uyA#)-DG<0jGKf~Xni1im@%~<%87_mpz&)J(gSH5s7Icl> z?`v*>@6OAgK(^kaKcUW@EQN2Mc&_~z+vRi( z(wO}No9>W@*GOEXLK%=fcSUe37a8AL;7`?VAE#CLn|9X8knve@S@P9*unnt6R?GJH z@b1E=vvp0<1V_vsV&4}hZ=O(A#L(So&jgDNwG-u7IfO7QxVc&Tnp%~G zmwF$*dc{*=2F>{_Lj3m^q-k$${9-|Q8%FINqnl(e6TjE#Yj)_rGlA4TpVibFYdU|V zVpZBizXDAVwuU7vFFrj1+tc=L?FqL@YKtUpZ= zU+vqom*V09`~&v(IV&|dLEtW^Uo3=MwMdlwxE$y`0gD|cYOpu6(qdYTCki=Kbm4`oD|jfO;#5!vyvs(& zJr$$BWqAV2-`us2M|howBGTc#I2M-uPETbH)?As4>Jj0~e1b-gj|~L!)6qXpyUD4) z{$K_>x;?o^#Lq<8LWKRiyJ_#^ysf)%VEG4PAKTcCT|+o*m4RTlr)$(*?4DI>{ImN& z8&qoW>$Xp^&ryR}us1gCyy)uNddzd%h(pAIy6}4=r!RW_?hUDfwkCvaR9AnzY~_oJehOpK?y1-9BZ*j(xB%!A$LPztfg4VvtjY4fmw%BHBC*eO}+ z*M{;5Q^xBa$gy!ifE$qTsYm0p){@sH_&_3r?KVu!(`R zz0KQE7P|}2fqH*M@R!#G9|ly)?c!eJE9i%+s9r;^nJs#o;0VAmJ9Mg00BC$b0VF+% z{(>=;z8op&8?_a`5;3SgU!9Bp8hZ>watgBz&~I%b5wjYHA6KRZ=RoK8oi=0QHr_`U zf}ee4^UTVTcKL%IWS9f1_GASl5ip&~?}X~`;p$(}FD?xlWn8Xw#!9j=QgM~HxSKJ` zBPZFJyKiB16FzUHBq}hBm#9wBkKe>1W}i_%7ld_F;2wO%y0Q8yg>U173GOJUc>q1; zX&wyoY87`3r=jjn>v016(>ST5q+LuU=s}Au;-ujl5t=Av*I^N^13aWi$GpASSoAJY zh9i|U0ayNN=NmF1Y{tgE8~fp!gk@$1We6+fF@2bMyOatxouOF3!60fbn2r>3w^SlL z&AM0g8l-aSnm8%zPUjBI^~bun;1t?IWI&6i~bsO5~dEQV%jwBM!{o{*LkoJ4g683b6?ln2OR{Z={xmCk=AK*};rHtBcPjsmB`*I?nY#KQz+QwHeSiSI$D zls?PXmlJ*Mr|VJ^j@yb8j(H~{b8ShXLHD`oCP>yS;0K>sEyEVyKX9q6yzvmU(qa-9 zM719Sn7?FC85BErjRu=J&hJ<;Os<-Jz&O!`yFa@#yKtuXu6ve=W=ZoU>9?Xl(sb1T zwJ+?rVm(h;YpqJOjml%GO`>kW9maJINvXQ&L)~uOjv_(XEum|IhG6}$TG=}4a11TN{~ri2d7IZpiELFj8*4P++M`V*9?OHXOxTQ70yx2g~Ig)IHfY55!xZwAf zN2!WRvh+-;t;8Lzj^?_^Np?YIcjGu$b!ZnGk1zTZ_ff3u+_p9DZ|eLy(ne064IP*j zGu04kADoD~L(RI~v+58K2JdZSk8<=cpL$C*TVH`Y71miF%uyEF?nv4PhZduZcMDom zvoMLe_9PsGuGdKud{O)`?BW>QUsEjbyMo_UyH*m_v@k^H@|yijcMwk;m7mpWNw^z!t) zVi(SvESg+J%$tK3A!V+gidyu%PX<2V%Uc`zKUfu^xWjWdx@mbSUGy!u@a&ysNeWEUVW>yLELscG%kW;YL ziopzNj_u!go)gsJ#+nESd$+d7QdtiSB&BP`Ro1;-Y_y4SU>w~HkLSoDjGcDMn6bP; zcg=ll*MQhT;rdI5*XL%VCL>>}H~U~EqA}t3BbyzHMxb>Qk_;8pzjhzMT|eHp6TQ66 zMYC;*aI3P|dnqm-8l!jtg5$TjqOn0W-a@*MNKndokAK)TOG^(rR@KQ8Js*!fuD#x8 zpcj&ciAhFBu0LL{pBB}Co}T{Z&d$zB1%0qSXu{O0D|tKgSkt=Y`u0JE;*!7mMrIiQ z*Al%}7E`4m{9y?eJ=aY<^tZT9Ww-0-7WI}t$__!@cRxYWW-sjg7M2w;-r{o8xO}*M z>^qTo07X9@R>jxb6fix#^SHa$;M$BDvk7i7=wULsxo>;EWxYq|!^*%XCp-LB>)V%D zbfLxMFMJQ!v+C=K(>zY-Izk`$FF@@sX1AV#Xp=YX+J<$wfAm%VGPJv?wY*a$KNV88 z8jg9NmrRj96nm<^#DVYvPCmZ!kjiCYB%d}n^#l5orsL&D$xicut1z9sw+{>sl9c5_ z!coW=hDe(W9IyFaKOukqUDXw?@`v*F#?x)YJfwu77exoXK<$Ch;;XLrQTv@3hdmZWDh+>h{mf42>B0$Sb3 z-F>l}ocnUzjHca9gCyCc{uPsZr3$X%aW(H2U%*|D-of?Gn_yP0j&Ge$WWvEM&Mi6v zT#ecaYS?!rm2r;~-}(seQ$4ZwN$(r{sjo7x3UA?iQ77hX!ue$U(=*W75BbUdw)@b* zN1M$v(m?TjBJ#p0sgWupw;nQ8x;igkJ=HS!czncqbT)N#=Ie$tU_ZK2l`yz-`D@Awc0qb`QgBoTb%c8?LQqf`em+^&C5T{#_NgA$h%8z+ceaTn_p)d?TEFS%3L82_fPu*j~?oUXa*gYW6B&a zGK-uh?sfRCV9Z1YTYa_yr+7eN(883a5UZrL9*Dl~fxi~O zrzx#=*09Dta48pZXC@;(c5@r4bLmS?+A3o+F~!7M0%|u%q;hDC=a*J}&mcO`$-p#6 zQn{_?$`;gLcYd5kO=jyQBgof7qGPqRv)>sr))eW~efE&+NYu=aB>#cu%odL6>bgj= z>j@Y$31JtCx^#5pxgKw$%r5&z`lPlp@K#QZY=OPAvY#XI`Wf6Z2zkSr>0=)Nrmg~zf&$z+;r>%FptloNJy98rTPtA0A(MTyMREe&pgZJ6K$~ic4sJY_esM z?5Un<%TB#T*PH>sv4tB#m2l+3h8|8&8wbY&3ebyhP{kJ1(j6s7mGX>76ZVnZnK^Pe z4VI|%GGgt??FcOt*5Xm-xAduXZ}|GH(hZ7~Ho_NVq1+dB+V>#9iz_?7(5bRa@gQCv zRtycoL|!-~HKJuwDBxxH_Lru_6JX8`N~wE<*(edIH45l7bvOw+sFaHRObX~{1WR;d9LxOp z7Pw+}Hk&r|Q0k^P^JXDH@z>L?HD0(bpyB~v-~|r9-YTBqqkuc^9VnSb_5p(Ez?XHU zN|TXf>%H0e@;Tj|!Pk86E&^PRIj1T<)NkBLuyKp`C|`obK}W*yh7Y!+#5j50W^E9u z*-t7JoSx>M2>)O{9C-I2z~t#TVpFX(EM_;HcFY@Mt5u%^VVSm{uyILfsTE^2;2a>Z z>Hi*!?{%o?LPh7jEl!OE?b*AV)`)IGT~1T&s!@LPiI<dNpN?E5Zv9}o!}4%F2VKS?sjl_ zo8-HF`}KIQ`%mvN82mZs?AoP zAuw18jgB9ywa0_~ouI-VD^wde#4bo3l=o1mjuqypEGs^+T0>fdj1&|i{p1rPjFPZ^ zDL7gMxuFhVucU>GVMw;bJ5p~cU0K|@jK8U+JGw37l5QFAH=)9#XLdeTfmXq5MSPNPd#-Jt$p)Z#pH-r-QSQMc@GYGJ7-DfZDPxob{qv^ zLLOGb)}H?(;nsL;ZIK9Y4v*hEP+jGAX+iurQK+KTI$AY)ipV8h-1K#rp@$7-1xDUd!QkOv2;*cn~_a&<%T}cEa06E)Ow7fd!H1 zvfR>l0E{sJR7w_6q3STkeppSp8+yPQ0j)!Ux)r{aAG6GHJ#aGzXb}Lb*D&9F6Zwhe zyBFN0l6Y0uy=X+@QFy4~QE-WNRB8xAYsOK8lM|v8tQP{(tGon5Qn1}u^2^MfZ$&k5 zQn1X&A$F2eaZ}S6PGKsndhi>oQ(b|G@EbZ{8N+6h*dZ)o_%t*hxa>1GJF)@ke0#%oNyjulnh zFok5<M!fS@guh0jo;H~|Z zcx7C&mC)i_JR$0;yi5$rRfsAs7GdfxF`n?T*pjg#E5-Wq_7sJz6vX}%2MyA4fxwAZ z1293I)-UZyk#=t|McQOTKwv2p9G{U+bCe@tEv~@QjVu9NjA`6idgg*1yTVl<$*o|tz$v!Yh+gW z?%l9Yn%2Vhx=}^fNILr@m&Y%ZR>ElN=8L&ceXP-K9OO5F1a*6dk0bA22_F`?Up804 z2Y9nv^W95xN}7TJ@iYnf!K&`|UrnnG2>rgwc1gt!&&J07h#JGIAQs+(&G$US7q%$P zWE@l@k(Q&N-KsdX7W3>!QcUrqkBSo7sMTW3Ch`!M)n&;^;qA-1q@H$V=GtXwUg;A&oPWv zW>NK-N1M#;0|k$IT3~G=L91IQ8b5dA4pH}l($aVw`b-)A>@v4L_$#L{z_kANX#as{ z@wXeOvsWmE;vqEodlbX$q3*=0&PUj*3~1AGPC!7$>A>@tdSmsqBm$_LQ=youde`RG zN(s*~XPK&9$}mCDex#MQ{}sSLi$=jK=CJP2IUi4riT?TaD$?@428$G>MaioP2@sf_ zllPFz2B7v)bDfo(Jbb03{aHY|8Q=Yt@fEkyG!o!GIH?vAOvoQbrXd8dL1eK>A92Lx+?unIuw&B&A2 z3gmwAyj>4*udQ0LZdC;M;O-p9c~K_x0|;$mWu9k&|@ z%Py;4d$Sei-Hu$i;fYv^%nrsX?ttMi3c{Qg#6U+)>#IXLfnV=hKrN)x_7N*y`!j4jg z1)3{=jT&ArC&h_5#-8$!BIEscoYkLb3xxy_hARPm8@vECxhrvA?O-?9*JEfOf6nR# z6G&CO+9QB@qa`z`X7h$43Qx3GuN8LiMr&6nwc-!t_<0u8IGY+Co!J zhCGMs3a(4jLZV+em;YIZCU9`--x$yu=m4&Te^;@_YgLHdd_(anjx!`%_X!a zTp`vAaX8ea&ho6aidk?yZb9Ci1?L|zr&IyzuBDQd8%NJw9wCR#GcsKNu=_agB;6pe_nMS&xyW-DTUQ{-GdkFudf5+MdlV3 zMX{24;^3zph#KDLwroz1LzrS2N6T<>nUBM7kVdU)-Au4n;M^BAeD>bE6E%Xy0@u==g^a850`(dn=IikVvHwlmE* z>+0PM8m0Ntml9)|OEcspvsNh=`QNQDE1-5tq%j|_DDSrDb;`6_FqCFk2DG!<=lh*H zrFjGy+k_tsl;{*b5jePiv$s~v8!wxAioaP-taUJ~ZhoC~rdHvst1O#_IjYyUa#!>6 zXyh|i(eK*%S#TNmQ|?GcneT)OpaPsbK3K(heT%_o06wqhl4h(t*T={@2%om$?wEHchu(5Vmo;zL=zPLrFkJ(c;mj?>XSl}G*Q zF^V6hg|>5YD4Qc6Jb!T@SbuOtiDtudHmoqoB6Opmr8e2l#qD0wVcZEUush&Z{D6_ zGn$N08)r3PoUsz!Qb{bpHQ1p|@Z8_L(2X2g@X~+DVE&Jcn{$-`Q#c|2waBNm)vkL2 zw%u98#i#WW7(bJnkKG>D!?-A&C_-kuc&IOh*ACytzK(3QG1t+D6iG2WM84G>d_#Ud} z`cK=}C_Z_5iym&Jiny-WRB3;KGFG*Whf0;*=oFk$37xW<*qe_@(fR`J&*YdgX<^_o z7ai5Sy{rLYff+htKloxaCx};8Une@dSc$DTN-m>0RRo`3%N zLqzr}2BKFk6_3D$vC9%YZ^3xcujX$hdgafqnCALybswr@0mGjhUmLFh#mw%8?bdu9 zqbq-uZC$ko{b2)0wm__u-A2buwnv}e?arDaRbT*%KoL>gb+)c%t=b5F~-*>0{ z@FVp0l(;-8JnU#H3Ts9%_LGqi`_aX}(=Z*jj%aIM=aVanKJx3^tFe z&9HVFay$^O!y4sqRsqIHYh>Otwv~Vx<{cO_1{_bU~8>?kR+2_TQc4 z-D033esTeRIY;hRXFMr>zm|3!aCy8(@!VznN#LE#bgMnxnfVozqoi^Q{;TGOWvwq& z8e~s}CC;s0KOJ=3AYgfUnV`d*d0fMA&se7>`Irm8MhB1cQmIYfV7Tty1p&mO3||1YEI-(t!_YHF?t)&J@gE`GQ~v@sxgq*rzWdX@TA zlYd#|z3#{`AraOg#$T@iHtpQXS9w@6vRd%Ez(|j~Qy@9aaJ|9p#-gn_KzABsva+{$ z^QGE*A|TlcGaAqjbw#WO9KpL<3tUu;$O8OnY$MDaFM=Qf@ak?aMWKeR-wu~qlNiCx3cs&d{2!$5CO5x=XBJ<=zz-r<;)e|}Fg3a;TwBKA{xTN& zYqwsB0~@FqR&5=%fIBsH!@8|ZoMWGbKf7BC$w7((TPMJXbD3T>DS&@HDv-l>)qz+X z4!NiWsVxIE3SD%9+RU%g&Q4yMh_jN=wZ|4>_rJ>7hB7MCEk`f$ty_xhS2{>C-A zd_=v|CUEo)XddGN<+_epF;K=s3WCCc+g>Ez=jwt{y$XWV62v2IrdXQ4+pH5peie79 zROP-hRyyhYBhA2#MAx=rE?a}#Vd!B~&^Rp_!tF=blrrg1pP$!z=)f-&VrZseaHGE0 zt3l_jNh|lRvMv9c^4TUzzmBv8y$Nqn?^Qo8e`46)TL7Pzo?(XR)g(sx{(r(S6TJUn zh5+*F^`pS`zqQU+Q~qD0#s5o&|9|nPm#sKT6)V=1?RX;-H8(z|oFB|h5d+*}{~>~u zkjNkoKx3-)@?qNXa^^2B{Sw(;dicR90^f?Rr3ZgK6do_Irai=1?q!pejSLnbUn*mM zebvBqpa&FlW2TpdSx=WPHLA|7N(EK)iQYwp3GHnPqf$$Ri;nC~v6k9Y{{`yGdudei2QjIe!wZ`^%ixHF!W%^nuhr>*jw-s zAU65f{#Q>Ia1nqWl5I@xg{o%mxgg1;*zdA9uMe*tVQ=WxuF9Bf=$%-Y}5H{A%m}uidOz*uVnV&-J!_E^||oE zr^`_@A1`W7Kc^TFsoRTR9qt!-gF`x-LY^C7Sw&Fz;Ycdb5e1SZQ2Q3j>w9L!;6DN#+1%BL|?7q#ia!(Cp#mYHn=N8jqIz zGD4a@*_=BQ6px4m^%MPU)+(*~noiUqh)PHlQQ}p!vDHC+m>~LZQ5IhUxE}=-0Q5}k zOi4~_LG4U5^lRmp00G0OxGY$-tL)8*LCCZgA6I?9vce%h5_ND^XbGCy%wJw+z{hYQ zN=3^LT8C+*U2kmWw-3;b1hr~G2tYY^k+TpIb$HBZ&CD@ZXBpJ=00>B^0GM2xrjGmM zw)|9>zY~P!qz6Dp%48S4WKiThV^RYGB)4rZ83HZVuw0#|3?N!l<3q&!F#=jq`U0!r zlBX@u`+_4iPXA*R9su8d!*}AQt#R!mp^c$o-W~0=O0dwvl2*On?G^m+;|yi5Mp4c9)dmnCVYHNFZ#D zs+mdvp~0{K+A>Eac>1GU4A!2B^#^CwTi4sYR!WMOULC0MjS1wx_MYn;2!PkLDA3Fg zR(jlxez_9%`sHmO=zrlnJ6nQ^@;yE~YSgzGPA0d{-yDIkIPinB{1*kNEWK*pKre`r z`h}TP(aC%4cI3J4O+l;Qew_%wAObZW^3xKOAStBto+%*i3rR%$vn-V_uU`uS*xGE5 z)9_;eyx^(F?bfF=UqRU8c8rpTI54Zn)@@(2$}StrKR-Gh2AIl+O~7|mdTny&o8r1r z_jX0U5%AbnKBBwF{Bm91eSZX|so;RbazcV9%7>xcqJe?J_~*zgU-gmre4a>jm`QcZ z(xRvn4cPF2p3GVy*o6QTIvO%-VzM$mZ&h+ER?qdt%C??(PkE0s-B^C*4SKNlYGP^pyGA8`$VM#Q{jGyYfZ|D&1MDy-4=7Ew{4>eQhI3j-IQI{$x9a5ckg{ojieIH2A0g5)&Y7f-nRc zLP1O3KRv!MR|VK!3S~E-6j#}ohuEMM`E0$@>mUdiWp-2Yg2N zt80M3@w6E~Xg+Lt19XsaPXTM^~G4_aOXyzSs1+{;l zEJ!XUWh8g|{)sc^1{!b%|Md)dK(Lt0MNuGb_`-`}^Bnt~yZ{`44nP;=S=?@4np}i! zRWe*UZiQ)l-eSIg|A-KFuEc?Mp(LxYkza`P9Q!T1P{X=*DS6b3vZdW6?-ig&y+pJTEOurO6Ux;9| zv&*r=LEhaIJK+3F3j6L|=I%J99x_kh6gVrlxuRQOgU)px)>CjDBE5icX;=e@~a|-Zfa=e-5;@CuyJ|18!7daWUk2k2~j&fxwhx0>w3yTNl zg_I`ZOaav?)~p|%8_rFI5>*p-_3sKxiAwspP1h}$SZsEeplsv>hTtUss}E)Yj_dOq zI;JYg6f1q{A&2vPDVGTZ50cijnJU(L%mjxI?1?xcQ!Rfc_HaQdqGkl;$7JKXN_P2;GG9_*?Djd zmE!-IUk>ZTN-$km&P_rxf0$z5t-g88Vi9OVWo(!_cexP?PC(dA(K?H)kB{z>7)v1_ zU=sdnU&YC8Mb#G+)pLusiH1#7lvJ}`GwUot(4X=5NphJ0-bW6J`ufK8eZ$lKlTB>! zb+zxC$A`_PPlM^_?yW_1hxF&&3nS9bm-#-JLdI32B%23I2WA53(?)dddOerb`%h?eq!Z| zK*Il#j5gZ>&EFS+WAXeJ4Q=9&@|<2sU!oL8V`+Y(BBP>vdrpC9)sO6TQCK3ZavuxI zw@7MBwUrlA&=G&ebGnOKYVbG}Ig7uQN-CN}bXdop{6yDh-p3nEEUlCJ4Y*UiWj6tidS$PvLX7G01|T$G8+BUEb;G5|sW-}hksqydm)2Dm zV0%InNWCr2Y@7ytAHv{!bN*>Cgva$fd+^x6RE8o~EYA@SgHMXOoyeGx(wEg~S{*dA zB}IkJH7U9Kqn7zfRaIRk-g=wN^7-f8@l^kHpd$o49O4924)T??02}^jbE<=RnS;HG zFr$5{HQcn}Rx4HiL4>#7$^accoyt-%9YN`aUBf;dBqZdO%RswvNt4EJc1PD@c}mGd zRm+66im&_z)VA8$&)hkFIkT!y{Qas#m%;VP4(fqsCGg4E*%J7`UHyj zRVVDdt1h0MD3`ttvxz+I-hM<+Pb^R$q8x1TjG~fI_ycipzP^dZPo~N2aSw`J{dv7A z)DXWa>`|fr@@~ka_B}bIwD!ZUOysysJIaC&AR)hWlJ7O6h6{>4*qxHg2z#hAKfZFVs8#feCEz= z1ll77R<}>f3N|0tX?$oc`k#kS%O8)=jMSd#WbY2M!+EP@?S)P?xHUXxN^c503@10s zCcprz$^@#qTLYR;%{E4QvuVbkJaVzK))^NQG1KIg6B|C39Hu{8Fx_|3D|gcUF)kMu zvTa(AnRiK**7!d79Vxeppa_%8=h54}W$BjO`K&ESll#4WnQ(<^Ohug!QRzaT=>qIo zJ!=mr!kDmgnj4y*q?gX2PJTwmeuHBpDC04IOE`qQ`Qw6F*|T}RE!M(b)b^&g)yc?s zqF2)08Oy?+)wXSeCsM1FVpzWa+-y5(N99Mob_$PuF0z6`SaN>S;AWf?%RrXylCIss z5N&&w>VDGIb^$ZEt5T5EkAc^Gi)Ui6Tt2#tT37d@ZT$w#wc&hK(avaR@~XETb=J%X zD?1pGyDry!AACD;-VTqbaysZDKc*w8A?dE)!Fv z()~l9aO`*vJtZe4-&F;2dHF59TkaNP^Sth}sLf?0`H%*hTEVqtbSVYPI!E*+y{ot$MU{xo zk|%45xV(~DQZ`{NgIo72`}9Rll7Q)N{mffqo>UcEv2fFGt{m`~%FSk`(B6Wr=9yiB zVyIPj1I3&xQ^1lZ3}l7}O{$?6H(P879*ZWPb)8+Gh}Xs&1wntgVBR`>)4OYyb@SP0 zD>^kj?AKS;GCwqWz*WZ|H$<&mHwDE%WUZ)1OOua+VY_6 z7QBmm^=P$j2i)gtPt2)|7u-Nh5nNrxq<+YRuXRw~k!P&n%Chr;Ai|AqG=&A;fjWHF zFU)U4?V-r^p{%LqVZ>U0-Ss!D={otU5xUKbkI#dR($}z4BpF| zT9qz$O3J0aI@-z7ZXGt$aaRG1duUxQSL>rn8_R_9Bn!#ZB()mm#(H@L5-Sn$_B=5G z3GPV!q^D67wU8LyyJn9a0+$RIJrcbkJNPhPO(FpuDdKu26Ry51W9c+ef(3q1HY}Jl zqvv#*gx2f3h!L5tUgtwXfR%_ILO{l;R3-7BG3oBnfQMB*)HI@%*?!y5Nb<7*v-=xe zLt{z7qP1mXV_F&-tP?JufJ}R#T&?=chZjPfgKrHhlm7QDavU7$IW;ACieRlj^V${O zS;GTjlb zMcY_{TfzM7f@Hd&tGw_c0cX5!lf|FVd@vBP+|h8P)|87HbW&I4OjbjWdf8ZpP3Bm5wv&F`Ds< z2~rK8=xJ0T zyGv+#5mFNcM=CxtoG2Y)b@|F#v5;eVK% z6rp>L)P$)$`9`d0BU9%MC+8>$`KBF?Z-57X5?l8^p*3!*y{)oC9;99NFqk{P9*uCR;?E}Q~Ei|fEvOKjmDxAbbcp;ByH<0VP%IopLHk*vF~A8v=FdSDljwN*|+3tzf>;s@#j*q zMdDFVdRd$z9Z^sRT98qTAC(Qgh^8CXY)M!YD8U~o{PM5Outhm7Mv;7%wLe>P$k#D3 zjw{S@Gn!J6bh`L;&#rzp)bf$`|FjbQ#-InYq5RzeQ;I@MU+8BN$9RpM*hg6*7cT{E zh{0sC>=q9 z_jPB+Na+1YV`!NLkc@+@EV>?3b_wY){-vc=RyLEMxo!b|@(N7!JajZ+I)kWY7N;xq zFZ;W!*i77deJc(g;ICAZ1O||}O%kiQA2F}6@6z~^H>Mv~-Img_W0q?Y66w%A_fBg> zOtVGcC}g@M6L(8B?7x;d?N^eD!oUeFW4dTXnR~}z3AVHj7BE+cA`3cxFXjyJ&{sK( z5k-YSOm(Hu1-K8K!0_WB>L6y85hvNWsa0BW_Y^sY*$t z51hlG{t~JN>y*5Pti#t~{cf~UbU{_do{t|LDcdb>G9GqHn@y+^yk(JuZV&CT_56|9 z@$lO_$Ytlc^ZC`ys#OcBQUXHxI`z~B?bSQBS?>%&%H*;s zN)Y*&2@iAf^yxR4z*Osrwu30IM21i?h)i)L3~(g;J$cfOI+sP(aClrBa1V|i0n zj}vM*efPGQ+Md<*#8>W41nhR`KW+DkZWwR%L$`-`9DGWi{f?f>)L;nqZ3hL2nF+JZ zq&pRqBOiBKAK4k`;YW)g&`GV|Y+q_BYgVeF;i`Wk!mklr;Jo21Vz(-j^LQ(losjm(&S)@qu3J6qi^eHR zt|G%7N_|s@iVRZQ&M~LnWPS2Zf8>Hd6zK2jhYb zDB{Fs@~hVsw9&Lg!icIrWGw-sCEF!kI5^oD-nNW zgu;m5VhN>{T3an%-UD z=fyIZ@!Oa3(PR`_C-4tBJGCWxTRT-nJFZ-2XBfng3Nu7Qll#hdf7A5Yb^RI`bqtD(@4x@n)|MUi*<$jA*B|=WY;uI-)M*jvH6JC z!#?k*fmmwb)b!10zu^P>k@@5I^&ZG-w}pyZ^Vrf}Ah0#EXVcFzQGmd0tKgs1TAsjO zZ8q#s_w=xL0kQgfd91#`f1x#jgx&A6y=t1(ej`W*W)V-PT;VqqZvmY9=t zQ-n%T?qiwR*8V(|QpFzlBat&%6We z?xLZg!!DKEQSI_Y&qDkr*69vmfAA!xi00qA;P$jjT3z**(#G@Z!j#r$}cx+qHI|W^lI|Ut) zXTY=i$2Dl(+RjU+`Kw%T?0sO9PIow1o_9R)mGFkMPS`&gczlSo z#$+@1lh;B>FfD|&ktqPRmxUPcDUQ;xvkrX4el7hv_PpNyU0~Kude@Gyw^<{D$*+L( zTmKSQ<47jeuR zKAwE5%o4Txi`N|u5OVVimvmH%9PMly`eYL#*DSOO$4XkNvzp^Mi)Y9 zCJYff5!pVg;qx&z#d*G8u}sDso<;fFIcR_VeXwu}UCl-O%w&#g#jvv%rm_PXjSFG@ z1zy}KWH5|Qou*9FcdBs{(c2-53iflmLxH1jDIt%IxIlHx13mBj%4^E@G#n@HU*B@& zwSVp@4f$>tS(}l7Vh|D4TA#56lN}@3T5TVKK0#3Z>kaV%9S<~c zWI7)O%^IwLOl+60$)c=HkfcuC2bnj<0L8v(x?47ksi76K?v#OM$#jQ+8DklppA((FEMzC161V!k%)8(@9oSi5koBBR3&Lr8&%F

ishu&!t87dYD@_eojnRGIU&_&L&@YhIPa~$)+Hp*bI2| zcANV5t;PwhUgy@W-}n)r}YbGB!y+@UmY|C;Bb+cZoVI$9l@e@DT{~FV`4>d z6m1bwXu(J>pA0mm-y^9Y4yLgbJogdi|Dkn*m6Lz5c+Sul2t#gmubodJb;wFp7>@gi z=x-aR#qQPTR*oIj`J)8U4c?;Y!y&$<0wF83jRNk}D2~nHHauD0?aoo*OQI8h<9PSq$aVYJ}*+Y12jaJWrg- z$gR_1@Rxdn5$AUymfdH~)=m=eVN4Om`a@k|N4~e#(tP-;r@Q9(04W5dO>Y!Z|I6bd zq9?m0S>#gL`SQmQ+au5Z8WskUH>>UZM5{0N3V|((j4d}3&B)eU1f8LpMN`iia3*KW zQKS96#Vr4p^YqJW!Ta-3h~K2Rl^ZmV&!0u>7AvAF5lGZJV$J;*wSBa>l7UWU&(+l6 z%jtfqslfprBWpa{%e=09eg&$#H0XCL!p;y&LQH){zmpUy>2a?vd<0maR$IQI2csac zG-KhiT)sT+2cC?rllTQGuC`z{eTeK`f{}AX-7wYJ4X_G+i`2hZHQqbqfv$l3Y8NUm zK&NtGwe)zFBt}cF+)O_q!AH})X5OU2g_?&T`4U?b)!4jr@JP&rQ90k>BP51$f{x`| zG@mFi4ib*^xMBAfj~{1a*t-+UlfiqTsO7rpp@2ES`?uhrY^X~zKF^IYpY4*3cO$w? zzBP4Trg=PZnCq5{E0S0*umR<^dj4$$fM4S+&tt2%wk0wJ#@QF~4NOq-fS)-icT+`? zJriwF8o)uGI=NwbBO0Ko;{@eQ+*w@o60eD{63u>>mX+BZRfixDDalIa%0txQ1ev(X z`}UGr`ar<)`?;{U18PCiA-FL*I|N!pllfYJWM@CDY=FL0WM$A^A`&+E+bqwr%Txq^ z2L0=NfB|f(MEi^~Qu-o7{1FTtyx)*9{TtFdFIF1^^| zNe$2#T}c>CLnoM8&Ppr2Gq$d6{C-dKU`t#0Tf#{5NG5Ko;i-uJeECH%9}3!wlHGmz zbyFS>@7}8>0X<3hqx8#Fm~GEQ(#lbaTu2P5Ki+s0k=si|559(8xjC=iSc&d~E|fHv z-a94&!08oarNOkLdSS4br^>;ZmrU--ifq0A(j}VjQnYQQyGp0$)4CO-b|=wkSH;6qX7~DalrAp6&vJSpuhp70Ben>uH#(exLXw+^!9?dFp9f+w*gCk>O04klA*WB2!vVr3QyUZw$6> zo=@jmwrB*g-|_qKSoQl5)@)wZY1lrW$C7*x4_cRD!?BRqYXGUbicxGDp6b zQ_iBvSq^0T`vglGar1RiyN(CodK)tx_33y+Nl17%n zchvb8aoC4dGc$Q<;A3vCc5AtX0wQku6qMv5FVlZNTzYhW~B&Ssm zRi!g}?Kiy#Ja`^+C6+|oc8x`FEU3PAFA|z3wn%E-IpHLfI3S-k1{Mh~QVD+e+>q+c zr%wChHyN1&+62SaS>e)gRE;QIv=0-Rbm_Aisch!ZL~7$NJCAVg%E~r`LM}QuyPdCeFXZu|WO@%f3ldD=;Z8aQ4DgINGrH-n><~=th zEE%H|1uWTAwY&JxcGtcfs8(FJXh4DXb+~i*z;LUlOW_9+E>|KJZ0`t^otNd%eTyA4 zQmfVca=ND9C!D<7IE5%=U_n8h5FrI|HEzA%s8dV2Dknf$At<9iUD524{3gyW#N1ro z>NZfHf1wMC(L_eyyX{-n7St$VheK^^cwqptZ*E>Mc2YJ4m%E=%suUe9+7*U|{;Vs} zPoAFL>W^k}o*u)9FqZlN`^mVEW)-DqD4quLm?_=tLd#+J%r~h-wzmvmVO(-aq22vW zvS>E1^4FEz!U~wdv&-X+W*1Nws8ip!|9;aQm>Ihk08Qw4CQ6BG8yjlP0|qv$TqZv_ zS;KgBpqr%F^!4_Bw1)2uDTw=ZCwckBZW(mGB))r=rZoOD+=*15mB8{s8=&lfhDXk* znDh(Jt<7wh4JE`3gE5biR+BG#zR8r4M@UhW=xZI&I4$F*D)kZO9m0d6R&IY8KJ>kR)6!qOSxTLIY8BV|DpEYNqMz;x^5wZLpgdLb?RCes}KV3UV4!kWlHN z{znE_IOu_&SU)TxdW23b|XcqKsSblN#E5Vg5^76r`8$>&)m8vJ3@_GP5Wo z2F>TvI`i0Q2tu<~6@8X{r=nesR{b;049&qy5N{T&3brV^GVG0UbmJN7uZsWrJ<>b>jt0BD`VzeTVIaL4tZ|UCCiYJtNkrHC5bok@7- z)DcUf?i9dBG(BmjFfdue$T(zLm~VFgzEUlye0P|TXcajZL($D7t^7wV*1_DxRKx@> z%w4XQ8N}f}B}z|=!An(1z58ZAfv-%jGWpw`0k6N~lyO_@PC{*Bq6&ICLq+M-HY*jG zgw`x&@}A7emdnN-?-xWWogte90t7Mt20kN(?hPJ#BZk9v(*BlZoM=tGqR}^hFdLBg zZfO|P%!@BO9xL4zrQsGa<24UgYfKJWDJsUdTt-Fx+a@WkbL42J@;nHQ3ZHw7Bzzpy z_dcpyX$mti$v1277v2`U{q;Mq@}=(ytUF!X8l}=Ap-0Ds?@a|I5nPO+z9&OJkIMB9 zhqD`=FFXuNN=Z`-5YJu8`6?$Xu~i|AtwC}*#oi)DnxF?KG!SHNGZ0RJd628jgh**b ziXBiJ|4mlaF8;^jeW9k4=s`>T<4UYoR1}fl8}O=z(OerJ;(1cwzZV&!pP%Qg)XCxc2WRXSi8?|Dy#@l!@LDMaC# z`5C(zrPqF`Wt(Nk_|C<%uJirjlB^hJUEgz_!{z1LYCVFb_*wLPo5}0%fDRk~6o1+T z?d;gZkdWUH6Rxp|RB|-z5uZJhbg&8zuIGp+3Cdf_qP_q{pXNgon>Nxe7}^Xx%PJe| zI{v&Dw3_t`$@FeAdpY?)@FQgUPP_22@Gz=7^qI_rY+WHzQ-KZ!78Q%EXqaRtOxj!U@PEy=e}hl5fU1 z_HL5z`b~A2o zwDF@WM2BTU^DTe07*K8Ll{pion_6)ckItTjG1RI1$rBZ@VKd1n`%WVPK0BHT{`Ypn zF;LlFX0xn6S#->zvq`z0%cv)dor^Y+Z>b(=Q4bE?>$~J`lqh$zEnLVw{N5evjgI<9 z@gvJ?i3})`ReN9M5w8}8-2tdlAf86EKT~~~uQ7oc8X7t~svA!wxJWR3I?#%q z`epbuW0*p4QDD*^xn9woYT6OhkwUfB><>|D>`S?`}H(BqZ0DL%SGLb8( z-R4>|NNQMIR@Ni@aw)u-6GHS$-^H$v+OQOW`YQR{tK}CJnXI(AQ6+iqM{uu*sHtIO zdS1xJiFaIFX1x%^#Khc=xpbJ=4-!nv%y26lV z@rSW_xxH@cjL4IY+8Br-rwZ}>ZC;nt(11zodFBTU!5siM*L+=IBM|b$ao8Q>Y~Dh! zpST`jAMdhmGI_i`2L?dP!h$+3{37stPW&>l70s;I;s^&k>+jCz!_Ezl)rZVMO2gZO zvMLsb9R*W!bK|>s&pnsoFP|2!t0aG5rEp$w616^sm@U1SE*f664-ClENj(*m zT|$i$J~3x2vL3z$hOgICB;)`2cCd!@gA(o{zC>@7RqxZBFW-PQR(@m-t6dOo6QWk5 zxlv`ctUHG()+nKWCtj*!1|qcO~6_9R8Y*I4+rY{5l%{q2axLn%rvNw4#Ps(sJ% zT{Zb7Yf--d;p&!7)2c_}w{e|aziT!J*$vlAynk{K+=QO>amL8P}FzwZLlh>6R*LYh&(i`EcE1 zy!JRE$aTdoy|GB|t8!GnS*3aue5S)gX{$-x98x>Q?%Ul}2B#zAoG;tSW=s4TGsG>O zAJ*=E*{DOrMa7#JHURI9%PH1+mp00stVvN{p}u7Jdt<%XXEp48Dnsq45{&N{N^VJI?&tkV@O8o4b#Hj_6m7;T{rFemjqs z&e-2+J+ZH35!jANn`}Hja48=)i8DK7Z_&#bD+1;^A>`73xMuJ$c;({uA>U_}pr2~E zaku>9T+ioBZ)eO6n01toQn$)>pRib%A!^J&_A<#yFGd=_Py2R&`;eAaZSBRhxY$Sr z+G?Pul@gkaW*PkY1>yf`@4DZb%DT1UAR~wjMIs_yr6U4{4x&^=R3s33hlvCk=>ZW$ z0R^QgH4p?vNT>k}(ou$9B0V8AAtXW)g0u)2xQF?k=ey7SZT^6Je%|LfyR5a>d)~d* zyWAc5$RKsw=?ub>?(p^mcb4ZkXFo25tTJO&{+GOAT8f8Y2z93@Wz+f9BX~4IIsH~< z=k)k(OI1>4+|4oX-fteWChPIt%r?QT@Jxk}tZrFiYO7KiFzL6)!Xmk<-7U;`1hH!g z{$dqYP+TiEK*rj|{2nzSc}^RccacNm*$5E6cp>;4Qi&u^tJ$CL4B^0ofSCIX9~`JQ ztfL?~rrtP0AJZVjl_Y^>%2G=bQ8mmN;$4)IqeQLDM#D+33Rgc4AwAd4R}fUs^orEH zC*)_kpx(2oaQ<&%Y&QN{7dg4LW@yobkhJl{`@~xK=K7aUL5$PflRtR#_M~dzQAYU^ zE-qYk1p%D+hA3aidaYj)HUc_x^)>guUDnVc+ z59uTGIg>=kv^ZV_zO0{j{eoXRTFZ-W-m%TB36A=_Pf?f&K+ppDKmudFKx|bQB;j*g z>qazx{gp^Mk~yX;K<<4qxViU0ot>(!n#-3#c9X@|v#&Y)`2HisQc{_-!MVQXeARc| z^-J%yUYWUZ+&9)d0(|sAu+RK?k@D3Y&WkCJOf^4GWF!aE^9Jn2cFWHTmf5x!?_Al* zY<))_8I%)NM7>U0x^?ciI{f*bMWN07Iu1wm(bSI~qGnwz{+T}f!+O-Cp8LbK@>owd z(#YSpe*b-bzC8*zk5G>(de=FoFyFvffg5RT0>T37`5Lt&dYTnQ2I>33`5Ia4({+iJ z--MnMmLFy1c+(;=BUszqPpy|Ar%;z7`d6&T({b&&x30VXy{yYRVGf$n@n-tF64PoGd0;71)3F(c=Dzy0ZQ!Gc1AV=M(5l3v%ff6Z zSBdVLatI^~-xD}#>-%K8QUovo+N#bIDo->Z)RiD0FkYNXIs&tOh61&-ujS{x9!F1Y zk@FJrK;grb(chOXYomOD#2=h6!&ZKE0GLVnlEYL8`v*_J>%kN=&7fZ7_8}eUqHO=$1OImXxZB142t?| zYneKLsRl6+?TuF76e!kr@*4t}5 zEKA;23v29oXVs9I;}>W!Tm#?xVk14(kMH1A!-EXw0Uf)|I1@ACI!95$bRTodbCmIu zVuEEsacr|Je^46)SeLYrR)0gV{+la@uDjGcul=?Q*i?sTd^0YxYmdHxj;t~%{}XsRIxYsfe*?w6wA4AvBNO|EOQ|QId%Q)$_mS$UV_)*6FtU}y8mGYZYQ;8 zPhE_16Lq4Va>dGQV2}LPO!!gBw||p6v$aqCDF5)*p?CrR&YP%iopSVC%*UJ8Dqg0; z%N?;IK;c$O$d%~R-~s1^@$zRU{kOQVI{{%H%RD0Hs`hMI0W@AeC02Gqs-(;7Zk1Ee z>UT4X=$50kuFzNhaTlKgNbQhRmR`@_JqO=$IcjT|6%TzqF5!{IGQQtJ!c`+jL<_AU> zxt%JzS`f*;odFNJx(FxV>nJ?g153LF9CRh;jn4fE87gzp29;3x8|F*n#G--DT|9A{MTBmJW6)zaG`Y7l#W%ltzdJ9u zyt0LwS|S)SS#uCMIIQgM?$e5=>OEKf0II%%W$ar3CP@@=39~2zQ!fXyX^~Cf1$m@) z=H`BhCj+^<7hUlzK`nKA_c&bFOAVOLe*pAZ?)x^JKMJ+Yql<-bTTG9zA*=EnyO+wa zAh*cNRqUeaeV^l$@*WeLspHMaT2W?Yec?WDFRio`v2hNcn6}{qPDfQs^^zqo^ES;z zh=V^iu4l~LZyQl1MHmxfGg7FMOBZ%T%di?2kZauaQck(~upq7t=W>MBv4#_6*b7u=cyuV3n>@$X>aMUB;32((Y5iQcA_v`u2e;N4kzvw2WvMtQipJiLtZR=S$C9cU`9>3*f4)WOQcB#% z1>83F8XnBe>5-c~0-_)MC|k~cjpNNonnZiv%~!8+x$a=80%8{tjqaQPM?Q&gRUwA>Hyr@5ckknVOGKM*e*JLfHceWwqsN)K%bXIM9?N`2!0{I3 zFj{vL?zY^{myfLXAB=s5s~fO>?OqyamBCu+sUpp6KT?|VXlrxKcq52#S@?pZ9+U}#pwoIn&i`TiLfsSXtFlm`Jp z+5!V}b?h(Nljms3?6uGXUFDKKTv)-~D%MY{t-dHt)=c}iM# zLvoD`F;CL8@1lDvVg-mj(=x0JGW^IhJV5n$(K*Gd84ah;?0yw~BmS6IakFiUqKz5{ zfh4(L*`u97PQ_B*C|J7xdHq_^?sZi6wJiFbft;+O%#2dn`nLDk5m3V^yX;iC0~LwR z)!GMt<4w8gJ%+<3K?gKtozuwm#Ok01N5z=GweQb8!Q|@r?U{??h@M!T!4Eh3EEaAw zM@oZ4y;QFPYk4mzJ>Q`Ls43-o{xeSc#I{|aPUC%>B}tlWdtZY8iX6jIKCzhdx^*nA zJ)=;*I!aSmTQ^W=^=lT{jhYPAJGhhhQDSyAxnG)LmC^v(K&PyxJO0(@@Ubq#(5wUH}*s&12pSsYK#115$s z*fp`OaylQ|vERB|&%ZkN+vrvYx-5RRh`&hyJlSJczc-ih3A%$r{Qj61dhFM9VRzWW zRg8Pcu(`8O5b}aal+QK?nbB)XxjpH=B?B%e7S`M*HZ4yTTXA0AwN!m>pbjuyhvFGU zq85)7z)Nq6YTPt&ZEuo^A==RTg`<|p{3iqV^uw)67XBEAIAe87YOoW+3Dt6tGS#C>v>ZA?dUUEy)KMk`|ew#RFpTxB=<}0kpC4W1h9T!Ib-C24uF5<{Lpv12`SBGAB1hKwaAkYugP{PcqO})TOUd7fnPTh^fJ7Eh~-V@cauq+x~ zU{;UnfRP@VspzqSNcpj?;gtjJO}@0R6SmK$4OhGTE>&EcI=S&iw70MVy3?X`z9l`S z?*sUa`0T5h0RPYNOFYhv@_!GR+d^^*_V+ zh19IQuILGD+JjbmisIa*;1(yY28n}76v-vo%8b~r1g#lwqYa97{_~faO&P_dDwm>Iy;ul^T}g>Ha8q0HU$pEr`SL+`jFEV#*Xr1KjKY#6;= zp|zER&d)Qjq43_oeEzrli}`>=(+e^Y<3Je0~G zpc8O1d%oI)vwM2hAm`DX_FGCGS*5Hyh+E?hqt1r2{iYO}ZrYV-WouA2mrxa}ji)#i z-733RqWkjp$=D#XI$ju_fc3}wH18#fDQ4+@fJ3->#tb;nDW!VU>x<#wnpsWSOsT@C zZ>-T~4uDU^{&D!D7I=7PJg0pR^pg;6c3^@%Q*XdN0>}G!e%l>{YTN0{-+}058cQ>| zmdy`7gS{BNMnjeU&?b*!%=e1+MsJMu!eEdNzmAN(^N6q1!81n_RcUKG)6o40(HfRe z@NhyTEo!Iob*_(c_kP1NYVC290^G^ z@7#P5*G?--{lUsvskP47295q`S1g2nGkG0Wuv&G!2=m+^_zy=H;_5_kk@|^jnS;l3 zm+?={S1Kj!p{#4d>9$(8WYFO)2l<$5%O@cG(HCKNW-=tcQco!h$n#aivO7Zvf4VMf zc$cMTKZC5)5`WGF!)GrPq^5WI#q>YXfP^9y-yzMl~^|Z~l+O&gy8#kuudy;tjF_>tYXp3+Y-vhJU z)-$X_Lv(#^1Az@{j}4PulWa2Z(T-1coo~CN{f`Ceh;gY3pf4@C?Xi5{&3i*m;Jn=! zWu4}aV?4Q5?$a=`nor99;-ojiP6zMGB|U1{G#XnlWJeXop`proGp z36dOHeIPzgm7)4xohl-K91mF; zdcwKQD&ti5#V-#*6coF~u;4%=r(@)QSJG?;c90}gnx{r(Og|Fusl z)Z{PzP#sT2IM)W&N0RH}i|6rjhg5b?*h)~fiqx?lrLOqS+3D`qQ>Xk*1Ferv?39j} zv(doay@kmvkEvu0A@8bSBu7n~jTEg{4xY{EI5PQ)qLZh4YX7`QFDLEJPJf-0p1C~# zaC_$iK%t1NTL>=S*A&IEm3Z>EyFOK}q`hu9QFy7!L()UCtgi!C0PmXW7H_}DEOuwC zqabU7nE~zbeHA^^ROAEw8HMQ={>+Lm@l3TphW+*p!p6vMd;NukP5tB2&!1O<4iS{J zgrX@$kWcd9hbN)VE9PUeR-K4E{)pqo@jy+1YY_0nELI4amdINL@7}l>;o@9ASI>{z z!V+eg6*8DqHe9VnqOUtM!M=hadXNtc<0iMQyJFx$rZ0zd5e<+q`!7EcI{KgFdH@^$ nADaJvTl|YNf&Vs^nLjuhc1%6>VPtgC5#X^fu`;f_<`(-u!RP(R literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.98/caffe_output.log b/cars/lr-investigations/exponential/1e-2/0.98/caffe_output.log new file mode 100644 index 0000000..5c39825 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.98/caffe_output.log @@ -0,0 +1,4566 @@ +I0407 21:57:10.735216 23786 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-215708-5173/solver.prototxt +I0407 21:57:10.735435 23786 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 21:57:10.735445 23786 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 21:57:10.735538 23786 caffe.cpp:218] Using GPUs 2 +I0407 21:57:10.759138 23786 caffe.cpp:223] GPU 2: GeForce GTX 1080 Ti +I0407 21:57:11.043913 23786 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "exp" +gamma: 0.99980193 +momentum: 0.9 +weight_decay: 0.0001 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 2 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 21:57:11.044699 23786 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 21:57:11.045265 23786 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 21:57:11.045280 23786 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 21:57:11.045420 23786 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 21:57:11.045507 23786 layer_factory.hpp:77] Creating layer train-data +I0407 21:57:11.046988 23786 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/train_db +I0407 21:57:11.047194 23786 net.cpp:84] Creating Layer train-data +I0407 21:57:11.047204 23786 net.cpp:380] train-data -> data +I0407 21:57:11.047224 23786 net.cpp:380] train-data -> label +I0407 21:57:11.047233 23786 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0407 21:57:11.051882 23786 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 21:57:11.172987 23786 net.cpp:122] Setting up train-data +I0407 21:57:11.173010 23786 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 21:57:11.173017 23786 net.cpp:129] Top shape: 128 (128) +I0407 21:57:11.173019 23786 net.cpp:137] Memory required for data: 79149056 +I0407 21:57:11.173028 23786 layer_factory.hpp:77] Creating layer conv1 +I0407 21:57:11.173050 23786 net.cpp:84] Creating Layer conv1 +I0407 21:57:11.173056 23786 net.cpp:406] conv1 <- data +I0407 21:57:11.173069 23786 net.cpp:380] conv1 -> conv1 +I0407 21:57:11.735087 23786 net.cpp:122] Setting up conv1 +I0407 21:57:11.735110 23786 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:57:11.735113 23786 net.cpp:137] Memory required for data: 227833856 +I0407 21:57:11.735132 23786 layer_factory.hpp:77] Creating layer relu1 +I0407 21:57:11.735143 23786 net.cpp:84] Creating Layer relu1 +I0407 21:57:11.735147 23786 net.cpp:406] relu1 <- conv1 +I0407 21:57:11.735153 23786 net.cpp:367] relu1 -> conv1 (in-place) +I0407 21:57:11.735436 23786 net.cpp:122] Setting up relu1 +I0407 21:57:11.735445 23786 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:57:11.735448 23786 net.cpp:137] Memory required for data: 376518656 +I0407 21:57:11.735451 23786 layer_factory.hpp:77] Creating layer norm1 +I0407 21:57:11.735461 23786 net.cpp:84] Creating Layer norm1 +I0407 21:57:11.735464 23786 net.cpp:406] norm1 <- conv1 +I0407 21:57:11.735491 23786 net.cpp:380] norm1 -> norm1 +I0407 21:57:11.735924 23786 net.cpp:122] Setting up norm1 +I0407 21:57:11.735934 23786 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:57:11.735939 23786 net.cpp:137] Memory required for data: 525203456 +I0407 21:57:11.735941 23786 layer_factory.hpp:77] Creating layer pool1 +I0407 21:57:11.735949 23786 net.cpp:84] Creating Layer pool1 +I0407 21:57:11.735952 23786 net.cpp:406] pool1 <- norm1 +I0407 21:57:11.735957 23786 net.cpp:380] pool1 -> pool1 +I0407 21:57:11.735992 23786 net.cpp:122] Setting up pool1 +I0407 21:57:11.735999 23786 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 21:57:11.736002 23786 net.cpp:137] Memory required for data: 561035264 +I0407 21:57:11.736006 23786 layer_factory.hpp:77] Creating layer conv2 +I0407 21:57:11.736016 23786 net.cpp:84] Creating Layer conv2 +I0407 21:57:11.736018 23786 net.cpp:406] conv2 <- pool1 +I0407 21:57:11.736023 23786 net.cpp:380] conv2 -> conv2 +I0407 21:57:11.742552 23786 net.cpp:122] Setting up conv2 +I0407 21:57:11.742565 23786 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:57:11.742568 23786 net.cpp:137] Memory required for data: 656586752 +I0407 21:57:11.742578 23786 layer_factory.hpp:77] Creating layer relu2 +I0407 21:57:11.742585 23786 net.cpp:84] Creating Layer relu2 +I0407 21:57:11.742588 23786 net.cpp:406] relu2 <- conv2 +I0407 21:57:11.742594 23786 net.cpp:367] relu2 -> conv2 (in-place) +I0407 21:57:11.743084 23786 net.cpp:122] Setting up relu2 +I0407 21:57:11.743094 23786 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:57:11.743098 23786 net.cpp:137] Memory required for data: 752138240 +I0407 21:57:11.743101 23786 layer_factory.hpp:77] Creating layer norm2 +I0407 21:57:11.743109 23786 net.cpp:84] Creating Layer norm2 +I0407 21:57:11.743113 23786 net.cpp:406] norm2 <- conv2 +I0407 21:57:11.743119 23786 net.cpp:380] norm2 -> norm2 +I0407 21:57:11.743461 23786 net.cpp:122] Setting up norm2 +I0407 21:57:11.743469 23786 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:57:11.743472 23786 net.cpp:137] Memory required for data: 847689728 +I0407 21:57:11.743475 23786 layer_factory.hpp:77] Creating layer pool2 +I0407 21:57:11.743484 23786 net.cpp:84] Creating Layer pool2 +I0407 21:57:11.743487 23786 net.cpp:406] pool2 <- norm2 +I0407 21:57:11.743492 23786 net.cpp:380] pool2 -> pool2 +I0407 21:57:11.743521 23786 net.cpp:122] Setting up pool2 +I0407 21:57:11.743527 23786 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:57:11.743530 23786 net.cpp:137] Memory required for data: 869840896 +I0407 21:57:11.743533 23786 layer_factory.hpp:77] Creating layer conv3 +I0407 21:57:11.743542 23786 net.cpp:84] Creating Layer conv3 +I0407 21:57:11.743546 23786 net.cpp:406] conv3 <- pool2 +I0407 21:57:11.743552 23786 net.cpp:380] conv3 -> conv3 +I0407 21:57:11.754475 23786 net.cpp:122] Setting up conv3 +I0407 21:57:11.754489 23786 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:57:11.754493 23786 net.cpp:137] Memory required for data: 903067648 +I0407 21:57:11.754503 23786 layer_factory.hpp:77] Creating layer relu3 +I0407 21:57:11.754511 23786 net.cpp:84] Creating Layer relu3 +I0407 21:57:11.754514 23786 net.cpp:406] relu3 <- conv3 +I0407 21:57:11.754521 23786 net.cpp:367] relu3 -> conv3 (in-place) +I0407 21:57:11.754999 23786 net.cpp:122] Setting up relu3 +I0407 21:57:11.755009 23786 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:57:11.755012 23786 net.cpp:137] Memory required for data: 936294400 +I0407 21:57:11.755015 23786 layer_factory.hpp:77] Creating layer conv4 +I0407 21:57:11.755026 23786 net.cpp:84] Creating Layer conv4 +I0407 21:57:11.755029 23786 net.cpp:406] conv4 <- conv3 +I0407 21:57:11.755036 23786 net.cpp:380] conv4 -> conv4 +I0407 21:57:11.765352 23786 net.cpp:122] Setting up conv4 +I0407 21:57:11.765367 23786 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:57:11.765370 23786 net.cpp:137] Memory required for data: 969521152 +I0407 21:57:11.765377 23786 layer_factory.hpp:77] Creating layer relu4 +I0407 21:57:11.765385 23786 net.cpp:84] Creating Layer relu4 +I0407 21:57:11.765406 23786 net.cpp:406] relu4 <- conv4 +I0407 21:57:11.765413 23786 net.cpp:367] relu4 -> conv4 (in-place) +I0407 21:57:11.765744 23786 net.cpp:122] Setting up relu4 +I0407 21:57:11.765754 23786 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:57:11.765758 23786 net.cpp:137] Memory required for data: 1002747904 +I0407 21:57:11.765761 23786 layer_factory.hpp:77] Creating layer conv5 +I0407 21:57:11.765771 23786 net.cpp:84] Creating Layer conv5 +I0407 21:57:11.765775 23786 net.cpp:406] conv5 <- conv4 +I0407 21:57:11.765784 23786 net.cpp:380] conv5 -> conv5 +I0407 21:57:11.774065 23786 net.cpp:122] Setting up conv5 +I0407 21:57:11.774078 23786 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:57:11.774082 23786 net.cpp:137] Memory required for data: 1024899072 +I0407 21:57:11.774093 23786 layer_factory.hpp:77] Creating layer relu5 +I0407 21:57:11.774099 23786 net.cpp:84] Creating Layer relu5 +I0407 21:57:11.774103 23786 net.cpp:406] relu5 <- conv5 +I0407 21:57:11.774108 23786 net.cpp:367] relu5 -> conv5 (in-place) +I0407 21:57:11.774588 23786 net.cpp:122] Setting up relu5 +I0407 21:57:11.774597 23786 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:57:11.774600 23786 net.cpp:137] Memory required for data: 1047050240 +I0407 21:57:11.774605 23786 layer_factory.hpp:77] Creating layer pool5 +I0407 21:57:11.774611 23786 net.cpp:84] Creating Layer pool5 +I0407 21:57:11.774614 23786 net.cpp:406] pool5 <- conv5 +I0407 21:57:11.774621 23786 net.cpp:380] pool5 -> pool5 +I0407 21:57:11.774657 23786 net.cpp:122] Setting up pool5 +I0407 21:57:11.774663 23786 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 21:57:11.774667 23786 net.cpp:137] Memory required for data: 1051768832 +I0407 21:57:11.774672 23786 layer_factory.hpp:77] Creating layer fc6 +I0407 21:57:11.774682 23786 net.cpp:84] Creating Layer fc6 +I0407 21:57:11.774685 23786 net.cpp:406] fc6 <- pool5 +I0407 21:57:11.774691 23786 net.cpp:380] fc6 -> fc6 +I0407 21:57:12.129509 23786 net.cpp:122] Setting up fc6 +I0407 21:57:12.129531 23786 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:57:12.129535 23786 net.cpp:137] Memory required for data: 1053865984 +I0407 21:57:12.129544 23786 layer_factory.hpp:77] Creating layer relu6 +I0407 21:57:12.129554 23786 net.cpp:84] Creating Layer relu6 +I0407 21:57:12.129557 23786 net.cpp:406] relu6 <- fc6 +I0407 21:57:12.129565 23786 net.cpp:367] relu6 -> fc6 (in-place) +I0407 21:57:12.130213 23786 net.cpp:122] Setting up relu6 +I0407 21:57:12.130223 23786 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:57:12.130226 23786 net.cpp:137] Memory required for data: 1055963136 +I0407 21:57:12.130230 23786 layer_factory.hpp:77] Creating layer drop6 +I0407 21:57:12.130237 23786 net.cpp:84] Creating Layer drop6 +I0407 21:57:12.130240 23786 net.cpp:406] drop6 <- fc6 +I0407 21:57:12.130246 23786 net.cpp:367] drop6 -> fc6 (in-place) +I0407 21:57:12.130273 23786 net.cpp:122] Setting up drop6 +I0407 21:57:12.130278 23786 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:57:12.130281 23786 net.cpp:137] Memory required for data: 1058060288 +I0407 21:57:12.130285 23786 layer_factory.hpp:77] Creating layer fc7 +I0407 21:57:12.130293 23786 net.cpp:84] Creating Layer fc7 +I0407 21:57:12.130296 23786 net.cpp:406] fc7 <- fc6 +I0407 21:57:12.130302 23786 net.cpp:380] fc7 -> fc7 +I0407 21:57:12.286841 23786 net.cpp:122] Setting up fc7 +I0407 21:57:12.286862 23786 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:57:12.286866 23786 net.cpp:137] Memory required for data: 1060157440 +I0407 21:57:12.286875 23786 layer_factory.hpp:77] Creating layer relu7 +I0407 21:57:12.286885 23786 net.cpp:84] Creating Layer relu7 +I0407 21:57:12.286888 23786 net.cpp:406] relu7 <- fc7 +I0407 21:57:12.286897 23786 net.cpp:367] relu7 -> fc7 (in-place) +I0407 21:57:12.287520 23786 net.cpp:122] Setting up relu7 +I0407 21:57:12.287529 23786 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:57:12.287533 23786 net.cpp:137] Memory required for data: 1062254592 +I0407 21:57:12.287536 23786 layer_factory.hpp:77] Creating layer drop7 +I0407 21:57:12.287544 23786 net.cpp:84] Creating Layer drop7 +I0407 21:57:12.287564 23786 net.cpp:406] drop7 <- fc7 +I0407 21:57:12.287570 23786 net.cpp:367] drop7 -> fc7 (in-place) +I0407 21:57:12.287597 23786 net.cpp:122] Setting up drop7 +I0407 21:57:12.287602 23786 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:57:12.287606 23786 net.cpp:137] Memory required for data: 1064351744 +I0407 21:57:12.287608 23786 layer_factory.hpp:77] Creating layer fc8 +I0407 21:57:12.287616 23786 net.cpp:84] Creating Layer fc8 +I0407 21:57:12.287618 23786 net.cpp:406] fc8 <- fc7 +I0407 21:57:12.287624 23786 net.cpp:380] fc8 -> fc8 +I0407 21:57:12.295269 23786 net.cpp:122] Setting up fc8 +I0407 21:57:12.295279 23786 net.cpp:129] Top shape: 128 196 (25088) +I0407 21:57:12.295282 23786 net.cpp:137] Memory required for data: 1064452096 +I0407 21:57:12.295290 23786 layer_factory.hpp:77] Creating layer loss +I0407 21:57:12.295296 23786 net.cpp:84] Creating Layer loss +I0407 21:57:12.295300 23786 net.cpp:406] loss <- fc8 +I0407 21:57:12.295305 23786 net.cpp:406] loss <- label +I0407 21:57:12.295312 23786 net.cpp:380] loss -> loss +I0407 21:57:12.295321 23786 layer_factory.hpp:77] Creating layer loss +I0407 21:57:12.297945 23786 net.cpp:122] Setting up loss +I0407 21:57:12.297968 23786 net.cpp:129] Top shape: (1) +I0407 21:57:12.297972 23786 net.cpp:132] with loss weight 1 +I0407 21:57:12.297989 23786 net.cpp:137] Memory required for data: 1064452100 +I0407 21:57:12.297993 23786 net.cpp:198] loss needs backward computation. +I0407 21:57:12.298000 23786 net.cpp:198] fc8 needs backward computation. +I0407 21:57:12.298003 23786 net.cpp:198] drop7 needs backward computation. +I0407 21:57:12.298007 23786 net.cpp:198] relu7 needs backward computation. +I0407 21:57:12.298010 23786 net.cpp:198] fc7 needs backward computation. +I0407 21:57:12.298013 23786 net.cpp:198] drop6 needs backward computation. +I0407 21:57:12.298017 23786 net.cpp:198] relu6 needs backward computation. +I0407 21:57:12.298020 23786 net.cpp:198] fc6 needs backward computation. +I0407 21:57:12.298024 23786 net.cpp:198] pool5 needs backward computation. +I0407 21:57:12.298027 23786 net.cpp:198] relu5 needs backward computation. +I0407 21:57:12.298032 23786 net.cpp:198] conv5 needs backward computation. +I0407 21:57:12.298035 23786 net.cpp:198] relu4 needs backward computation. +I0407 21:57:12.298038 23786 net.cpp:198] conv4 needs backward computation. +I0407 21:57:12.298043 23786 net.cpp:198] relu3 needs backward computation. +I0407 21:57:12.298045 23786 net.cpp:198] conv3 needs backward computation. +I0407 21:57:12.298049 23786 net.cpp:198] pool2 needs backward computation. +I0407 21:57:12.298053 23786 net.cpp:198] norm2 needs backward computation. +I0407 21:57:12.298058 23786 net.cpp:198] relu2 needs backward computation. +I0407 21:57:12.298061 23786 net.cpp:198] conv2 needs backward computation. +I0407 21:57:12.298064 23786 net.cpp:198] pool1 needs backward computation. +I0407 21:57:12.298069 23786 net.cpp:198] norm1 needs backward computation. +I0407 21:57:12.298071 23786 net.cpp:198] relu1 needs backward computation. +I0407 21:57:12.298075 23786 net.cpp:198] conv1 needs backward computation. +I0407 21:57:12.298079 23786 net.cpp:200] train-data does not need backward computation. +I0407 21:57:12.298082 23786 net.cpp:242] This network produces output loss +I0407 21:57:12.298095 23786 net.cpp:255] Network initialization done. +I0407 21:57:12.298581 23786 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 21:57:12.298612 23786 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 21:57:12.298751 23786 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 21:57:12.298852 23786 layer_factory.hpp:77] Creating layer val-data +I0407 21:57:12.300251 23786 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0407 21:57:12.300458 23786 net.cpp:84] Creating Layer val-data +I0407 21:57:12.300467 23786 net.cpp:380] val-data -> data +I0407 21:57:12.300474 23786 net.cpp:380] val-data -> label +I0407 21:57:12.300482 23786 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0407 21:57:12.304298 23786 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 21:57:12.342031 23786 net.cpp:122] Setting up val-data +I0407 21:57:12.342051 23786 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 21:57:12.342056 23786 net.cpp:129] Top shape: 32 (32) +I0407 21:57:12.342059 23786 net.cpp:137] Memory required for data: 19787264 +I0407 21:57:12.342065 23786 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 21:57:12.342077 23786 net.cpp:84] Creating Layer label_val-data_1_split +I0407 21:57:12.342082 23786 net.cpp:406] label_val-data_1_split <- label +I0407 21:57:12.342088 23786 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 21:57:12.342097 23786 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 21:57:12.342151 23786 net.cpp:122] Setting up label_val-data_1_split +I0407 21:57:12.342157 23786 net.cpp:129] Top shape: 32 (32) +I0407 21:57:12.342160 23786 net.cpp:129] Top shape: 32 (32) +I0407 21:57:12.342164 23786 net.cpp:137] Memory required for data: 19787520 +I0407 21:57:12.342167 23786 layer_factory.hpp:77] Creating layer conv1 +I0407 21:57:12.342178 23786 net.cpp:84] Creating Layer conv1 +I0407 21:57:12.342183 23786 net.cpp:406] conv1 <- data +I0407 21:57:12.342188 23786 net.cpp:380] conv1 -> conv1 +I0407 21:57:12.351552 23786 net.cpp:122] Setting up conv1 +I0407 21:57:12.351564 23786 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:57:12.351567 23786 net.cpp:137] Memory required for data: 56958720 +I0407 21:57:12.351578 23786 layer_factory.hpp:77] Creating layer relu1 +I0407 21:57:12.351585 23786 net.cpp:84] Creating Layer relu1 +I0407 21:57:12.351588 23786 net.cpp:406] relu1 <- conv1 +I0407 21:57:12.351593 23786 net.cpp:367] relu1 -> conv1 (in-place) +I0407 21:57:12.351884 23786 net.cpp:122] Setting up relu1 +I0407 21:57:12.351892 23786 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:57:12.351895 23786 net.cpp:137] Memory required for data: 94129920 +I0407 21:57:12.351899 23786 layer_factory.hpp:77] Creating layer norm1 +I0407 21:57:12.351907 23786 net.cpp:84] Creating Layer norm1 +I0407 21:57:12.351910 23786 net.cpp:406] norm1 <- conv1 +I0407 21:57:12.351917 23786 net.cpp:380] norm1 -> norm1 +I0407 21:57:12.354193 23786 net.cpp:122] Setting up norm1 +I0407 21:57:12.354203 23786 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:57:12.354207 23786 net.cpp:137] Memory required for data: 131301120 +I0407 21:57:12.354210 23786 layer_factory.hpp:77] Creating layer pool1 +I0407 21:57:12.354218 23786 net.cpp:84] Creating Layer pool1 +I0407 21:57:12.354220 23786 net.cpp:406] pool1 <- norm1 +I0407 21:57:12.354225 23786 net.cpp:380] pool1 -> pool1 +I0407 21:57:12.354254 23786 net.cpp:122] Setting up pool1 +I0407 21:57:12.354259 23786 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 21:57:12.354261 23786 net.cpp:137] Memory required for data: 140259072 +I0407 21:57:12.354264 23786 layer_factory.hpp:77] Creating layer conv2 +I0407 21:57:12.354272 23786 net.cpp:84] Creating Layer conv2 +I0407 21:57:12.354276 23786 net.cpp:406] conv2 <- pool1 +I0407 21:57:12.354300 23786 net.cpp:380] conv2 -> conv2 +I0407 21:57:12.361344 23786 net.cpp:122] Setting up conv2 +I0407 21:57:12.361358 23786 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:57:12.361362 23786 net.cpp:137] Memory required for data: 164146944 +I0407 21:57:12.361372 23786 layer_factory.hpp:77] Creating layer relu2 +I0407 21:57:12.361382 23786 net.cpp:84] Creating Layer relu2 +I0407 21:57:12.361384 23786 net.cpp:406] relu2 <- conv2 +I0407 21:57:12.361390 23786 net.cpp:367] relu2 -> conv2 (in-place) +I0407 21:57:12.361881 23786 net.cpp:122] Setting up relu2 +I0407 21:57:12.361891 23786 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:57:12.361894 23786 net.cpp:137] Memory required for data: 188034816 +I0407 21:57:12.361898 23786 layer_factory.hpp:77] Creating layer norm2 +I0407 21:57:12.361907 23786 net.cpp:84] Creating Layer norm2 +I0407 21:57:12.361912 23786 net.cpp:406] norm2 <- conv2 +I0407 21:57:12.361917 23786 net.cpp:380] norm2 -> norm2 +I0407 21:57:12.362430 23786 net.cpp:122] Setting up norm2 +I0407 21:57:12.362440 23786 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:57:12.362443 23786 net.cpp:137] Memory required for data: 211922688 +I0407 21:57:12.362447 23786 layer_factory.hpp:77] Creating layer pool2 +I0407 21:57:12.362454 23786 net.cpp:84] Creating Layer pool2 +I0407 21:57:12.362458 23786 net.cpp:406] pool2 <- norm2 +I0407 21:57:12.362463 23786 net.cpp:380] pool2 -> pool2 +I0407 21:57:12.362494 23786 net.cpp:122] Setting up pool2 +I0407 21:57:12.362499 23786 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:57:12.362502 23786 net.cpp:137] Memory required for data: 217460480 +I0407 21:57:12.362505 23786 layer_factory.hpp:77] Creating layer conv3 +I0407 21:57:12.362515 23786 net.cpp:84] Creating Layer conv3 +I0407 21:57:12.362519 23786 net.cpp:406] conv3 <- pool2 +I0407 21:57:12.362524 23786 net.cpp:380] conv3 -> conv3 +I0407 21:57:12.375360 23786 net.cpp:122] Setting up conv3 +I0407 21:57:12.375380 23786 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:57:12.375382 23786 net.cpp:137] Memory required for data: 225767168 +I0407 21:57:12.375396 23786 layer_factory.hpp:77] Creating layer relu3 +I0407 21:57:12.375403 23786 net.cpp:84] Creating Layer relu3 +I0407 21:57:12.375407 23786 net.cpp:406] relu3 <- conv3 +I0407 21:57:12.375416 23786 net.cpp:367] relu3 -> conv3 (in-place) +I0407 21:57:12.375917 23786 net.cpp:122] Setting up relu3 +I0407 21:57:12.375927 23786 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:57:12.375931 23786 net.cpp:137] Memory required for data: 234073856 +I0407 21:57:12.375934 23786 layer_factory.hpp:77] Creating layer conv4 +I0407 21:57:12.375946 23786 net.cpp:84] Creating Layer conv4 +I0407 21:57:12.375950 23786 net.cpp:406] conv4 <- conv3 +I0407 21:57:12.375957 23786 net.cpp:380] conv4 -> conv4 +I0407 21:57:12.385342 23786 net.cpp:122] Setting up conv4 +I0407 21:57:12.385355 23786 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:57:12.385358 23786 net.cpp:137] Memory required for data: 242380544 +I0407 21:57:12.385366 23786 layer_factory.hpp:77] Creating layer relu4 +I0407 21:57:12.385377 23786 net.cpp:84] Creating Layer relu4 +I0407 21:57:12.385381 23786 net.cpp:406] relu4 <- conv4 +I0407 21:57:12.385386 23786 net.cpp:367] relu4 -> conv4 (in-place) +I0407 21:57:12.385726 23786 net.cpp:122] Setting up relu4 +I0407 21:57:12.385733 23786 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:57:12.385737 23786 net.cpp:137] Memory required for data: 250687232 +I0407 21:57:12.385740 23786 layer_factory.hpp:77] Creating layer conv5 +I0407 21:57:12.385751 23786 net.cpp:84] Creating Layer conv5 +I0407 21:57:12.385754 23786 net.cpp:406] conv5 <- conv4 +I0407 21:57:12.385761 23786 net.cpp:380] conv5 -> conv5 +I0407 21:57:12.395800 23786 net.cpp:122] Setting up conv5 +I0407 21:57:12.395818 23786 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:57:12.395821 23786 net.cpp:137] Memory required for data: 256225024 +I0407 21:57:12.395834 23786 layer_factory.hpp:77] Creating layer relu5 +I0407 21:57:12.395843 23786 net.cpp:84] Creating Layer relu5 +I0407 21:57:12.395846 23786 net.cpp:406] relu5 <- conv5 +I0407 21:57:12.395869 23786 net.cpp:367] relu5 -> conv5 (in-place) +I0407 21:57:12.396355 23786 net.cpp:122] Setting up relu5 +I0407 21:57:12.396366 23786 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:57:12.396369 23786 net.cpp:137] Memory required for data: 261762816 +I0407 21:57:12.396373 23786 layer_factory.hpp:77] Creating layer pool5 +I0407 21:57:12.396382 23786 net.cpp:84] Creating Layer pool5 +I0407 21:57:12.396386 23786 net.cpp:406] pool5 <- conv5 +I0407 21:57:12.396391 23786 net.cpp:380] pool5 -> pool5 +I0407 21:57:12.396430 23786 net.cpp:122] Setting up pool5 +I0407 21:57:12.396436 23786 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 21:57:12.396440 23786 net.cpp:137] Memory required for data: 262942464 +I0407 21:57:12.396442 23786 layer_factory.hpp:77] Creating layer fc6 +I0407 21:57:12.396450 23786 net.cpp:84] Creating Layer fc6 +I0407 21:57:12.396452 23786 net.cpp:406] fc6 <- pool5 +I0407 21:57:12.396458 23786 net.cpp:380] fc6 -> fc6 +I0407 21:57:12.749406 23786 net.cpp:122] Setting up fc6 +I0407 21:57:12.749428 23786 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:57:12.749431 23786 net.cpp:137] Memory required for data: 263466752 +I0407 21:57:12.749440 23786 layer_factory.hpp:77] Creating layer relu6 +I0407 21:57:12.749449 23786 net.cpp:84] Creating Layer relu6 +I0407 21:57:12.749452 23786 net.cpp:406] relu6 <- fc6 +I0407 21:57:12.749459 23786 net.cpp:367] relu6 -> fc6 (in-place) +I0407 21:57:12.750288 23786 net.cpp:122] Setting up relu6 +I0407 21:57:12.750299 23786 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:57:12.750306 23786 net.cpp:137] Memory required for data: 263991040 +I0407 21:57:12.750310 23786 layer_factory.hpp:77] Creating layer drop6 +I0407 21:57:12.750317 23786 net.cpp:84] Creating Layer drop6 +I0407 21:57:12.750321 23786 net.cpp:406] drop6 <- fc6 +I0407 21:57:12.750326 23786 net.cpp:367] drop6 -> fc6 (in-place) +I0407 21:57:12.750353 23786 net.cpp:122] Setting up drop6 +I0407 21:57:12.750360 23786 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:57:12.750362 23786 net.cpp:137] Memory required for data: 264515328 +I0407 21:57:12.750365 23786 layer_factory.hpp:77] Creating layer fc7 +I0407 21:57:12.750373 23786 net.cpp:84] Creating Layer fc7 +I0407 21:57:12.750376 23786 net.cpp:406] fc7 <- fc6 +I0407 21:57:12.750381 23786 net.cpp:380] fc7 -> fc7 +I0407 21:57:12.906975 23786 net.cpp:122] Setting up fc7 +I0407 21:57:12.906996 23786 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:57:12.907001 23786 net.cpp:137] Memory required for data: 265039616 +I0407 21:57:12.907011 23786 layer_factory.hpp:77] Creating layer relu7 +I0407 21:57:12.907021 23786 net.cpp:84] Creating Layer relu7 +I0407 21:57:12.907025 23786 net.cpp:406] relu7 <- fc7 +I0407 21:57:12.907032 23786 net.cpp:367] relu7 -> fc7 (in-place) +I0407 21:57:12.907456 23786 net.cpp:122] Setting up relu7 +I0407 21:57:12.907464 23786 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:57:12.907467 23786 net.cpp:137] Memory required for data: 265563904 +I0407 21:57:12.907471 23786 layer_factory.hpp:77] Creating layer drop7 +I0407 21:57:12.907478 23786 net.cpp:84] Creating Layer drop7 +I0407 21:57:12.907481 23786 net.cpp:406] drop7 <- fc7 +I0407 21:57:12.907486 23786 net.cpp:367] drop7 -> fc7 (in-place) +I0407 21:57:12.907510 23786 net.cpp:122] Setting up drop7 +I0407 21:57:12.907516 23786 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:57:12.907518 23786 net.cpp:137] Memory required for data: 266088192 +I0407 21:57:12.907521 23786 layer_factory.hpp:77] Creating layer fc8 +I0407 21:57:12.907527 23786 net.cpp:84] Creating Layer fc8 +I0407 21:57:12.907532 23786 net.cpp:406] fc8 <- fc7 +I0407 21:57:12.907537 23786 net.cpp:380] fc8 -> fc8 +I0407 21:57:12.915232 23786 net.cpp:122] Setting up fc8 +I0407 21:57:12.915243 23786 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:57:12.915246 23786 net.cpp:137] Memory required for data: 266113280 +I0407 21:57:12.915252 23786 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 21:57:12.915261 23786 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 21:57:12.915264 23786 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 21:57:12.915287 23786 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 21:57:12.915293 23786 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 21:57:12.915326 23786 net.cpp:122] Setting up fc8_fc8_0_split +I0407 21:57:12.915331 23786 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:57:12.915334 23786 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:57:12.915338 23786 net.cpp:137] Memory required for data: 266163456 +I0407 21:57:12.915340 23786 layer_factory.hpp:77] Creating layer accuracy +I0407 21:57:12.915347 23786 net.cpp:84] Creating Layer accuracy +I0407 21:57:12.915350 23786 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 21:57:12.915354 23786 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 21:57:12.915360 23786 net.cpp:380] accuracy -> accuracy +I0407 21:57:12.915367 23786 net.cpp:122] Setting up accuracy +I0407 21:57:12.915371 23786 net.cpp:129] Top shape: (1) +I0407 21:57:12.915374 23786 net.cpp:137] Memory required for data: 266163460 +I0407 21:57:12.915377 23786 layer_factory.hpp:77] Creating layer loss +I0407 21:57:12.915382 23786 net.cpp:84] Creating Layer loss +I0407 21:57:12.915385 23786 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 21:57:12.915390 23786 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 21:57:12.915393 23786 net.cpp:380] loss -> loss +I0407 21:57:12.915400 23786 layer_factory.hpp:77] Creating layer loss +I0407 21:57:12.915999 23786 net.cpp:122] Setting up loss +I0407 21:57:12.916008 23786 net.cpp:129] Top shape: (1) +I0407 21:57:12.916011 23786 net.cpp:132] with loss weight 1 +I0407 21:57:12.916021 23786 net.cpp:137] Memory required for data: 266163464 +I0407 21:57:12.916025 23786 net.cpp:198] loss needs backward computation. +I0407 21:57:12.916029 23786 net.cpp:200] accuracy does not need backward computation. +I0407 21:57:12.916033 23786 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 21:57:12.916036 23786 net.cpp:198] fc8 needs backward computation. +I0407 21:57:12.916040 23786 net.cpp:198] drop7 needs backward computation. +I0407 21:57:12.916043 23786 net.cpp:198] relu7 needs backward computation. +I0407 21:57:12.916046 23786 net.cpp:198] fc7 needs backward computation. +I0407 21:57:12.916049 23786 net.cpp:198] drop6 needs backward computation. +I0407 21:57:12.916052 23786 net.cpp:198] relu6 needs backward computation. +I0407 21:57:12.916055 23786 net.cpp:198] fc6 needs backward computation. +I0407 21:57:12.916059 23786 net.cpp:198] pool5 needs backward computation. +I0407 21:57:12.916062 23786 net.cpp:198] relu5 needs backward computation. +I0407 21:57:12.916066 23786 net.cpp:198] conv5 needs backward computation. +I0407 21:57:12.916069 23786 net.cpp:198] relu4 needs backward computation. +I0407 21:57:12.916072 23786 net.cpp:198] conv4 needs backward computation. +I0407 21:57:12.916076 23786 net.cpp:198] relu3 needs backward computation. +I0407 21:57:12.916079 23786 net.cpp:198] conv3 needs backward computation. +I0407 21:57:12.916083 23786 net.cpp:198] pool2 needs backward computation. +I0407 21:57:12.916086 23786 net.cpp:198] norm2 needs backward computation. +I0407 21:57:12.916092 23786 net.cpp:198] relu2 needs backward computation. +I0407 21:57:12.916095 23786 net.cpp:198] conv2 needs backward computation. +I0407 21:57:12.916098 23786 net.cpp:198] pool1 needs backward computation. +I0407 21:57:12.916102 23786 net.cpp:198] norm1 needs backward computation. +I0407 21:57:12.916105 23786 net.cpp:198] relu1 needs backward computation. +I0407 21:57:12.916108 23786 net.cpp:198] conv1 needs backward computation. +I0407 21:57:12.916112 23786 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 21:57:12.916116 23786 net.cpp:200] val-data does not need backward computation. +I0407 21:57:12.916119 23786 net.cpp:242] This network produces output accuracy +I0407 21:57:12.916122 23786 net.cpp:242] This network produces output loss +I0407 21:57:12.916138 23786 net.cpp:255] Network initialization done. +I0407 21:57:12.916213 23786 solver.cpp:56] Solver scaffolding done. +I0407 21:57:12.916633 23786 caffe.cpp:248] Starting Optimization +I0407 21:57:12.916641 23786 solver.cpp:272] Solving +I0407 21:57:12.916653 23786 solver.cpp:273] Learning Rate Policy: exp +I0407 21:57:12.917930 23786 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 21:57:12.917940 23786 net.cpp:676] Ignoring source layer train-data +I0407 21:57:12.998108 23786 blocking_queue.cpp:49] Waiting for data +I0407 21:57:17.171612 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:17.216266 23786 solver.cpp:397] Test net output #0: accuracy = 0.0067402 +I0407 21:57:17.216310 23786 solver.cpp:397] Test net output #1: loss = 5.28092 (* 1 = 5.28092 loss) +I0407 21:57:17.309770 23786 solver.cpp:218] Iteration 0 (-4.62836e-21 iter/s, 4.39293s/12 iters), loss = 5.26969 +I0407 21:57:17.311295 23786 solver.cpp:237] Train net output #0: loss = 5.26969 (* 1 = 5.26969 loss) +I0407 21:57:17.311321 23786 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 21:57:21.164052 23786 solver.cpp:218] Iteration 12 (3.11477 iter/s, 3.85261s/12 iters), loss = 5.285 +I0407 21:57:21.164098 23786 solver.cpp:237] Train net output #0: loss = 5.285 (* 1 = 5.285 loss) +I0407 21:57:21.164108 23786 sgd_solver.cpp:105] Iteration 12, lr = 0.00997626 +I0407 21:57:26.109633 23786 solver.cpp:218] Iteration 24 (2.42652 iter/s, 4.94536s/12 iters), loss = 5.28623 +I0407 21:57:26.109680 23786 solver.cpp:237] Train net output #0: loss = 5.28623 (* 1 = 5.28623 loss) +I0407 21:57:26.109692 23786 sgd_solver.cpp:105] Iteration 24, lr = 0.00995257 +I0407 21:57:31.061951 23786 solver.cpp:218] Iteration 36 (2.42322 iter/s, 4.95209s/12 iters), loss = 5.28625 +I0407 21:57:31.062019 23786 solver.cpp:237] Train net output #0: loss = 5.28625 (* 1 = 5.28625 loss) +I0407 21:57:31.062031 23786 sgd_solver.cpp:105] Iteration 36, lr = 0.00992894 +I0407 21:57:36.014266 23786 solver.cpp:218] Iteration 48 (2.42323 iter/s, 4.95207s/12 iters), loss = 5.31085 +I0407 21:57:36.014308 23786 solver.cpp:237] Train net output #0: loss = 5.31085 (* 1 = 5.31085 loss) +I0407 21:57:36.014318 23786 sgd_solver.cpp:105] Iteration 48, lr = 0.00990537 +I0407 21:57:40.990445 23786 solver.cpp:218] Iteration 60 (2.4116 iter/s, 4.97595s/12 iters), loss = 5.29938 +I0407 21:57:40.990597 23786 solver.cpp:237] Train net output #0: loss = 5.29938 (* 1 = 5.29938 loss) +I0407 21:57:40.990607 23786 sgd_solver.cpp:105] Iteration 60, lr = 0.00988185 +I0407 21:57:46.154282 23786 solver.cpp:218] Iteration 72 (2.32401 iter/s, 5.16349s/12 iters), loss = 5.30157 +I0407 21:57:46.154331 23786 solver.cpp:237] Train net output #0: loss = 5.30157 (* 1 = 5.30157 loss) +I0407 21:57:46.154342 23786 sgd_solver.cpp:105] Iteration 72, lr = 0.00985839 +I0407 21:57:51.230226 23786 solver.cpp:218] Iteration 84 (2.3642 iter/s, 5.07571s/12 iters), loss = 5.2995 +I0407 21:57:51.230263 23786 solver.cpp:237] Train net output #0: loss = 5.2995 (* 1 = 5.2995 loss) +I0407 21:57:51.230271 23786 sgd_solver.cpp:105] Iteration 84, lr = 0.00983498 +I0407 21:57:56.274119 23786 solver.cpp:218] Iteration 96 (2.37923 iter/s, 5.04366s/12 iters), loss = 5.30115 +I0407 21:57:56.274173 23786 solver.cpp:237] Train net output #0: loss = 5.30115 (* 1 = 5.30115 loss) +I0407 21:57:56.274184 23786 sgd_solver.cpp:105] Iteration 96, lr = 0.00981163 +I0407 21:57:57.974885 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:58.330736 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 21:58:02.954924 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 21:58:05.413211 23786 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 21:58:05.413239 23786 net.cpp:676] Ignoring source layer train-data +I0407 21:58:09.790474 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:58:09.867182 23786 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0407 21:58:09.867230 23786 solver.cpp:397] Test net output #1: loss = 5.28752 (* 1 = 5.28752 loss) +I0407 21:58:11.778731 23786 solver.cpp:218] Iteration 108 (0.773994 iter/s, 15.504s/12 iters), loss = 5.30233 +I0407 21:58:11.778874 23786 solver.cpp:237] Train net output #0: loss = 5.30233 (* 1 = 5.30233 loss) +I0407 21:58:11.778884 23786 sgd_solver.cpp:105] Iteration 108, lr = 0.00978834 +I0407 21:58:16.777827 23786 solver.cpp:218] Iteration 120 (2.4006 iter/s, 4.99876s/12 iters), loss = 5.28138 +I0407 21:58:16.777874 23786 solver.cpp:237] Train net output #0: loss = 5.28138 (* 1 = 5.28138 loss) +I0407 21:58:16.777884 23786 sgd_solver.cpp:105] Iteration 120, lr = 0.0097651 +I0407 21:58:21.750842 23786 solver.cpp:218] Iteration 132 (2.41314 iter/s, 4.97277s/12 iters), loss = 5.22866 +I0407 21:58:21.750895 23786 solver.cpp:237] Train net output #0: loss = 5.22866 (* 1 = 5.22866 loss) +I0407 21:58:21.750908 23786 sgd_solver.cpp:105] Iteration 132, lr = 0.00974192 +I0407 21:58:26.789739 23786 solver.cpp:218] Iteration 144 (2.38159 iter/s, 5.03865s/12 iters), loss = 5.2508 +I0407 21:58:26.789793 23786 solver.cpp:237] Train net output #0: loss = 5.2508 (* 1 = 5.2508 loss) +I0407 21:58:26.789804 23786 sgd_solver.cpp:105] Iteration 144, lr = 0.00971879 +I0407 21:58:31.786334 23786 solver.cpp:218] Iteration 156 (2.40175 iter/s, 4.99635s/12 iters), loss = 5.2075 +I0407 21:58:31.786386 23786 solver.cpp:237] Train net output #0: loss = 5.2075 (* 1 = 5.2075 loss) +I0407 21:58:31.786398 23786 sgd_solver.cpp:105] Iteration 156, lr = 0.00969571 +I0407 21:58:36.899528 23786 solver.cpp:218] Iteration 168 (2.34698 iter/s, 5.11295s/12 iters), loss = 5.17844 +I0407 21:58:36.899574 23786 solver.cpp:237] Train net output #0: loss = 5.17844 (* 1 = 5.17844 loss) +I0407 21:58:36.899585 23786 sgd_solver.cpp:105] Iteration 168, lr = 0.00967269 +I0407 21:58:41.862717 23786 solver.cpp:218] Iteration 180 (2.41792 iter/s, 4.96295s/12 iters), loss = 5.15494 +I0407 21:58:41.862828 23786 solver.cpp:237] Train net output #0: loss = 5.15494 (* 1 = 5.15494 loss) +I0407 21:58:41.862840 23786 sgd_solver.cpp:105] Iteration 180, lr = 0.00964973 +I0407 21:58:46.881815 23786 solver.cpp:218] Iteration 192 (2.39101 iter/s, 5.0188s/12 iters), loss = 5.23253 +I0407 21:58:46.881858 23786 solver.cpp:237] Train net output #0: loss = 5.23253 (* 1 = 5.23253 loss) +I0407 21:58:46.881866 23786 sgd_solver.cpp:105] Iteration 192, lr = 0.00962682 +I0407 21:58:50.760908 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:58:51.430778 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 21:58:56.297650 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 21:58:58.660204 23786 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 21:58:58.660230 23786 net.cpp:676] Ignoring source layer train-data +I0407 21:59:02.904619 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:03.027354 23786 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0407 21:59:03.027403 23786 solver.cpp:397] Test net output #1: loss = 5.19032 (* 1 = 5.19032 loss) +I0407 21:59:03.117746 23786 solver.cpp:218] Iteration 204 (0.739131 iter/s, 16.2353s/12 iters), loss = 5.1147 +I0407 21:59:03.117791 23786 solver.cpp:237] Train net output #0: loss = 5.1147 (* 1 = 5.1147 loss) +I0407 21:59:03.117802 23786 sgd_solver.cpp:105] Iteration 204, lr = 0.00960396 +I0407 21:59:07.556345 23786 solver.cpp:218] Iteration 216 (2.70369 iter/s, 4.43838s/12 iters), loss = 5.1619 +I0407 21:59:07.556396 23786 solver.cpp:237] Train net output #0: loss = 5.1619 (* 1 = 5.1619 loss) +I0407 21:59:07.556411 23786 sgd_solver.cpp:105] Iteration 216, lr = 0.00958116 +I0407 21:59:12.698700 23786 solver.cpp:218] Iteration 228 (2.33368 iter/s, 5.1421s/12 iters), loss = 5.21299 +I0407 21:59:12.699113 23786 solver.cpp:237] Train net output #0: loss = 5.21299 (* 1 = 5.21299 loss) +I0407 21:59:12.699126 23786 sgd_solver.cpp:105] Iteration 228, lr = 0.00955841 +I0407 21:59:17.838418 23786 solver.cpp:218] Iteration 240 (2.33504 iter/s, 5.1391s/12 iters), loss = 5.21317 +I0407 21:59:17.838466 23786 solver.cpp:237] Train net output #0: loss = 5.21317 (* 1 = 5.21317 loss) +I0407 21:59:17.838479 23786 sgd_solver.cpp:105] Iteration 240, lr = 0.00953572 +I0407 21:59:22.809782 23786 solver.cpp:218] Iteration 252 (2.41394 iter/s, 4.97112s/12 iters), loss = 5.1421 +I0407 21:59:22.809839 23786 solver.cpp:237] Train net output #0: loss = 5.1421 (* 1 = 5.1421 loss) +I0407 21:59:22.809850 23786 sgd_solver.cpp:105] Iteration 252, lr = 0.00951308 +I0407 21:59:27.692989 23786 solver.cpp:218] Iteration 264 (2.45753 iter/s, 4.88296s/12 iters), loss = 5.24515 +I0407 21:59:27.693040 23786 solver.cpp:237] Train net output #0: loss = 5.24515 (* 1 = 5.24515 loss) +I0407 21:59:27.693051 23786 sgd_solver.cpp:105] Iteration 264, lr = 0.00949049 +I0407 21:59:32.683490 23786 solver.cpp:218] Iteration 276 (2.40469 iter/s, 4.99025s/12 iters), loss = 5.20089 +I0407 21:59:32.683542 23786 solver.cpp:237] Train net output #0: loss = 5.20089 (* 1 = 5.20089 loss) +I0407 21:59:32.683554 23786 sgd_solver.cpp:105] Iteration 276, lr = 0.00946796 +I0407 21:59:37.681524 23786 solver.cpp:218] Iteration 288 (2.40106 iter/s, 4.99779s/12 iters), loss = 5.05728 +I0407 21:59:37.681574 23786 solver.cpp:237] Train net output #0: loss = 5.05728 (* 1 = 5.05728 loss) +I0407 21:59:37.681587 23786 sgd_solver.cpp:105] Iteration 288, lr = 0.00944548 +I0407 21:59:42.633805 23786 solver.cpp:218] Iteration 300 (2.42325 iter/s, 4.95203s/12 iters), loss = 5.17046 +I0407 21:59:42.633857 23786 solver.cpp:237] Train net output #0: loss = 5.17046 (* 1 = 5.17046 loss) +I0407 21:59:42.633872 23786 sgd_solver.cpp:105] Iteration 300, lr = 0.00942305 +I0407 21:59:43.614239 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:44.661106 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 21:59:49.054514 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 21:59:52.161093 23786 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 21:59:52.161118 23786 net.cpp:676] Ignoring source layer train-data +I0407 21:59:56.461123 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:56.618803 23786 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0407 21:59:56.618847 23786 solver.cpp:397] Test net output #1: loss = 5.14575 (* 1 = 5.14575 loss) +I0407 21:59:58.614198 23786 solver.cpp:218] Iteration 312 (0.750951 iter/s, 15.9797s/12 iters), loss = 5.11878 +I0407 21:59:58.614249 23786 solver.cpp:237] Train net output #0: loss = 5.11878 (* 1 = 5.11878 loss) +I0407 21:59:58.614259 23786 sgd_solver.cpp:105] Iteration 312, lr = 0.00940068 +I0407 22:00:03.626704 23786 solver.cpp:218] Iteration 324 (2.39414 iter/s, 5.01224s/12 iters), loss = 5.18526 +I0407 22:00:03.626763 23786 solver.cpp:237] Train net output #0: loss = 5.18526 (* 1 = 5.18526 loss) +I0407 22:00:03.626775 23786 sgd_solver.cpp:105] Iteration 324, lr = 0.00937836 +I0407 22:00:08.608970 23786 solver.cpp:218] Iteration 336 (2.40867 iter/s, 4.98201s/12 iters), loss = 5.12804 +I0407 22:00:08.609019 23786 solver.cpp:237] Train net output #0: loss = 5.12804 (* 1 = 5.12804 loss) +I0407 22:00:08.609030 23786 sgd_solver.cpp:105] Iteration 336, lr = 0.0093561 +I0407 22:00:13.633162 23786 solver.cpp:218] Iteration 348 (2.38857 iter/s, 5.02394s/12 iters), loss = 5.11052 +I0407 22:00:13.633280 23786 solver.cpp:237] Train net output #0: loss = 5.11052 (* 1 = 5.11052 loss) +I0407 22:00:13.633293 23786 sgd_solver.cpp:105] Iteration 348, lr = 0.00933388 +I0407 22:00:19.042721 23786 solver.cpp:218] Iteration 360 (2.21843 iter/s, 5.40923s/12 iters), loss = 5.13288 +I0407 22:00:19.042769 23786 solver.cpp:237] Train net output #0: loss = 5.13288 (* 1 = 5.13288 loss) +I0407 22:00:19.042781 23786 sgd_solver.cpp:105] Iteration 360, lr = 0.00931172 +I0407 22:00:24.218478 23786 solver.cpp:218] Iteration 372 (2.31862 iter/s, 5.1755s/12 iters), loss = 5.07423 +I0407 22:00:24.218528 23786 solver.cpp:237] Train net output #0: loss = 5.07423 (* 1 = 5.07423 loss) +I0407 22:00:24.218539 23786 sgd_solver.cpp:105] Iteration 372, lr = 0.00928961 +I0407 22:00:29.294888 23786 solver.cpp:218] Iteration 384 (2.36399 iter/s, 5.07616s/12 iters), loss = 5.09914 +I0407 22:00:29.294930 23786 solver.cpp:237] Train net output #0: loss = 5.09914 (* 1 = 5.09914 loss) +I0407 22:00:29.294940 23786 sgd_solver.cpp:105] Iteration 384, lr = 0.00926756 +I0407 22:00:34.327682 23786 solver.cpp:218] Iteration 396 (2.38448 iter/s, 5.03254s/12 iters), loss = 5.05916 +I0407 22:00:34.327735 23786 solver.cpp:237] Train net output #0: loss = 5.05916 (* 1 = 5.05916 loss) +I0407 22:00:34.327749 23786 sgd_solver.cpp:105] Iteration 396, lr = 0.00924556 +I0407 22:00:37.433374 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:38.847077 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 22:00:45.801074 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 22:00:48.255690 23786 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 22:00:48.255715 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:00:52.511749 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:52.715163 23786 solver.cpp:397] Test net output #0: accuracy = 0.0116422 +I0407 22:00:52.715206 23786 solver.cpp:397] Test net output #1: loss = 5.08693 (* 1 = 5.08693 loss) +I0407 22:00:52.805446 23786 solver.cpp:218] Iteration 408 (0.649456 iter/s, 18.477s/12 iters), loss = 5.17479 +I0407 22:00:52.805495 23786 solver.cpp:237] Train net output #0: loss = 5.17479 (* 1 = 5.17479 loss) +I0407 22:00:52.805505 23786 sgd_solver.cpp:105] Iteration 408, lr = 0.00922361 +I0407 22:00:57.074424 23786 solver.cpp:218] Iteration 420 (2.81113 iter/s, 4.26875s/12 iters), loss = 5.12759 +I0407 22:00:57.074481 23786 solver.cpp:237] Train net output #0: loss = 5.12759 (* 1 = 5.12759 loss) +I0407 22:00:57.074493 23786 sgd_solver.cpp:105] Iteration 420, lr = 0.00920171 +I0407 22:01:02.101024 23786 solver.cpp:218] Iteration 432 (2.38742 iter/s, 5.02634s/12 iters), loss = 5.10383 +I0407 22:01:02.101073 23786 solver.cpp:237] Train net output #0: loss = 5.10383 (* 1 = 5.10383 loss) +I0407 22:01:02.101083 23786 sgd_solver.cpp:105] Iteration 432, lr = 0.00917986 +I0407 22:01:07.119766 23786 solver.cpp:218] Iteration 444 (2.39116 iter/s, 5.01849s/12 iters), loss = 5.02432 +I0407 22:01:07.119818 23786 solver.cpp:237] Train net output #0: loss = 5.02432 (* 1 = 5.02432 loss) +I0407 22:01:07.119830 23786 sgd_solver.cpp:105] Iteration 444, lr = 0.00915807 +I0407 22:01:12.043486 23786 solver.cpp:218] Iteration 456 (2.4373 iter/s, 4.92347s/12 iters), loss = 5.08182 +I0407 22:01:12.043529 23786 solver.cpp:237] Train net output #0: loss = 5.08182 (* 1 = 5.08182 loss) +I0407 22:01:12.043538 23786 sgd_solver.cpp:105] Iteration 456, lr = 0.00913632 +I0407 22:01:17.008610 23786 solver.cpp:218] Iteration 468 (2.41698 iter/s, 4.96488s/12 iters), loss = 5.08558 +I0407 22:01:17.008730 23786 solver.cpp:237] Train net output #0: loss = 5.08558 (* 1 = 5.08558 loss) +I0407 22:01:17.008744 23786 sgd_solver.cpp:105] Iteration 468, lr = 0.00911463 +I0407 22:01:21.989580 23786 solver.cpp:218] Iteration 480 (2.40932 iter/s, 4.98065s/12 iters), loss = 5.02689 +I0407 22:01:21.989631 23786 solver.cpp:237] Train net output #0: loss = 5.02689 (* 1 = 5.02689 loss) +I0407 22:01:21.989643 23786 sgd_solver.cpp:105] Iteration 480, lr = 0.00909299 +I0407 22:01:26.939354 23786 solver.cpp:218] Iteration 492 (2.42448 iter/s, 4.94952s/12 iters), loss = 5.08482 +I0407 22:01:26.939410 23786 solver.cpp:237] Train net output #0: loss = 5.08482 (* 1 = 5.08482 loss) +I0407 22:01:26.939424 23786 sgd_solver.cpp:105] Iteration 492, lr = 0.0090714 +I0407 22:01:31.928067 23786 solver.cpp:218] Iteration 504 (2.40555 iter/s, 4.98846s/12 iters), loss = 5.07716 +I0407 22:01:31.928120 23786 solver.cpp:237] Train net output #0: loss = 5.07716 (* 1 = 5.07716 loss) +I0407 22:01:31.928133 23786 sgd_solver.cpp:105] Iteration 504, lr = 0.00904986 +I0407 22:01:32.186854 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:33.966305 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 22:01:38.446934 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 22:01:40.915146 23786 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 22:01:40.915174 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:01:45.152642 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:45.390079 23786 solver.cpp:397] Test net output #0: accuracy = 0.0177696 +I0407 22:01:45.390130 23786 solver.cpp:397] Test net output #1: loss = 5.01703 (* 1 = 5.01703 loss) +I0407 22:01:47.358633 23786 solver.cpp:218] Iteration 516 (0.77771 iter/s, 15.4299s/12 iters), loss = 4.97138 +I0407 22:01:47.358763 23786 solver.cpp:237] Train net output #0: loss = 4.97138 (* 1 = 4.97138 loss) +I0407 22:01:47.358776 23786 sgd_solver.cpp:105] Iteration 516, lr = 0.00902838 +I0407 22:01:52.513558 23786 solver.cpp:218] Iteration 528 (2.32802 iter/s, 5.15459s/12 iters), loss = 5.0967 +I0407 22:01:52.513612 23786 solver.cpp:237] Train net output #0: loss = 5.0967 (* 1 = 5.0967 loss) +I0407 22:01:52.513623 23786 sgd_solver.cpp:105] Iteration 528, lr = 0.00900694 +I0407 22:01:57.499770 23786 solver.cpp:218] Iteration 540 (2.40676 iter/s, 4.98596s/12 iters), loss = 4.9917 +I0407 22:01:57.499825 23786 solver.cpp:237] Train net output #0: loss = 4.9917 (* 1 = 4.9917 loss) +I0407 22:01:57.499837 23786 sgd_solver.cpp:105] Iteration 540, lr = 0.00898556 +I0407 22:02:02.467315 23786 solver.cpp:218] Iteration 552 (2.4158 iter/s, 4.96729s/12 iters), loss = 5.07477 +I0407 22:02:02.467365 23786 solver.cpp:237] Train net output #0: loss = 5.07477 (* 1 = 5.07477 loss) +I0407 22:02:02.467376 23786 sgd_solver.cpp:105] Iteration 552, lr = 0.00896423 +I0407 22:02:07.447882 23786 solver.cpp:218] Iteration 564 (2.40949 iter/s, 4.98031s/12 iters), loss = 5.05443 +I0407 22:02:07.447938 23786 solver.cpp:237] Train net output #0: loss = 5.05443 (* 1 = 5.05443 loss) +I0407 22:02:07.447952 23786 sgd_solver.cpp:105] Iteration 564, lr = 0.00894294 +I0407 22:02:12.402930 23786 solver.cpp:218] Iteration 576 (2.4219 iter/s, 4.95479s/12 iters), loss = 5.0256 +I0407 22:02:12.402976 23786 solver.cpp:237] Train net output #0: loss = 5.0256 (* 1 = 5.0256 loss) +I0407 22:02:12.402984 23786 sgd_solver.cpp:105] Iteration 576, lr = 0.00892171 +I0407 22:02:17.337378 23786 solver.cpp:218] Iteration 588 (2.432 iter/s, 4.93421s/12 iters), loss = 4.83006 +I0407 22:02:17.337421 23786 solver.cpp:237] Train net output #0: loss = 4.83006 (* 1 = 4.83006 loss) +I0407 22:02:17.337431 23786 sgd_solver.cpp:105] Iteration 588, lr = 0.00890053 +I0407 22:02:22.328317 23786 solver.cpp:218] Iteration 600 (2.40448 iter/s, 4.99069s/12 iters), loss = 4.94521 +I0407 22:02:22.334092 23786 solver.cpp:237] Train net output #0: loss = 4.94521 (* 1 = 4.94521 loss) +I0407 22:02:22.334105 23786 sgd_solver.cpp:105] Iteration 600, lr = 0.0088794 +I0407 22:02:24.726886 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:02:26.942292 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 22:02:31.528257 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 22:02:33.929131 23786 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 22:02:33.929149 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:02:38.113078 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:02:38.403872 23786 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0407 22:02:38.403920 23786 solver.cpp:397] Test net output #1: loss = 4.94814 (* 1 = 4.94814 loss) +I0407 22:02:38.494159 23786 solver.cpp:218] Iteration 612 (0.7426 iter/s, 16.1594s/12 iters), loss = 4.91401 +I0407 22:02:38.494211 23786 solver.cpp:237] Train net output #0: loss = 4.91401 (* 1 = 4.91401 loss) +I0407 22:02:38.494222 23786 sgd_solver.cpp:105] Iteration 612, lr = 0.00885831 +I0407 22:02:42.574988 23786 solver.cpp:218] Iteration 624 (2.94074 iter/s, 4.08061s/12 iters), loss = 4.93826 +I0407 22:02:42.575028 23786 solver.cpp:237] Train net output #0: loss = 4.93826 (* 1 = 4.93826 loss) +I0407 22:02:42.575037 23786 sgd_solver.cpp:105] Iteration 624, lr = 0.00883728 +I0407 22:02:47.604393 23786 solver.cpp:218] Iteration 636 (2.38609 iter/s, 5.02916s/12 iters), loss = 4.81943 +I0407 22:02:47.604446 23786 solver.cpp:237] Train net output #0: loss = 4.81943 (* 1 = 4.81943 loss) +I0407 22:02:47.604458 23786 sgd_solver.cpp:105] Iteration 636, lr = 0.0088163 +I0407 22:02:52.527210 23786 solver.cpp:218] Iteration 648 (2.43775 iter/s, 4.92257s/12 iters), loss = 5.14521 +I0407 22:02:52.527371 23786 solver.cpp:237] Train net output #0: loss = 5.14521 (* 1 = 5.14521 loss) +I0407 22:02:52.527386 23786 sgd_solver.cpp:105] Iteration 648, lr = 0.00879537 +I0407 22:02:57.518513 23786 solver.cpp:218] Iteration 660 (2.40435 iter/s, 4.99095s/12 iters), loss = 4.91396 +I0407 22:02:57.518548 23786 solver.cpp:237] Train net output #0: loss = 4.91396 (* 1 = 4.91396 loss) +I0407 22:02:57.518556 23786 sgd_solver.cpp:105] Iteration 660, lr = 0.00877449 +I0407 22:03:02.518375 23786 solver.cpp:218] Iteration 672 (2.40018 iter/s, 4.99962s/12 iters), loss = 4.80341 +I0407 22:03:02.518425 23786 solver.cpp:237] Train net output #0: loss = 4.80341 (* 1 = 4.80341 loss) +I0407 22:03:02.518438 23786 sgd_solver.cpp:105] Iteration 672, lr = 0.00875366 +I0407 22:03:07.545032 23786 solver.cpp:218] Iteration 684 (2.38739 iter/s, 5.02641s/12 iters), loss = 4.76741 +I0407 22:03:07.545080 23786 solver.cpp:237] Train net output #0: loss = 4.76741 (* 1 = 4.76741 loss) +I0407 22:03:07.545094 23786 sgd_solver.cpp:105] Iteration 684, lr = 0.00873287 +I0407 22:03:08.335371 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:03:12.567891 23786 solver.cpp:218] Iteration 696 (2.38919 iter/s, 5.02261s/12 iters), loss = 4.80741 +I0407 22:03:12.567929 23786 solver.cpp:237] Train net output #0: loss = 4.80741 (* 1 = 4.80741 loss) +I0407 22:03:12.567937 23786 sgd_solver.cpp:105] Iteration 696, lr = 0.00871214 +I0407 22:03:17.188654 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:03:17.567215 23786 solver.cpp:218] Iteration 708 (2.40044 iter/s, 4.99908s/12 iters), loss = 4.93981 +I0407 22:03:17.567262 23786 solver.cpp:237] Train net output #0: loss = 4.93981 (* 1 = 4.93981 loss) +I0407 22:03:17.567273 23786 sgd_solver.cpp:105] Iteration 708, lr = 0.00869145 +I0407 22:03:19.601186 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 22:03:24.025552 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 22:03:27.038689 23786 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 22:03:27.038712 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:03:31.218884 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:03:31.538316 23786 solver.cpp:397] Test net output #0: accuracy = 0.026348 +I0407 22:03:31.538367 23786 solver.cpp:397] Test net output #1: loss = 4.88911 (* 1 = 4.88911 loss) +I0407 22:03:33.369169 23786 solver.cpp:218] Iteration 720 (0.759431 iter/s, 15.8013s/12 iters), loss = 4.98636 +I0407 22:03:33.369220 23786 solver.cpp:237] Train net output #0: loss = 4.98636 (* 1 = 4.98636 loss) +I0407 22:03:33.369230 23786 sgd_solver.cpp:105] Iteration 720, lr = 0.00867082 +I0407 22:03:38.329799 23786 solver.cpp:218] Iteration 732 (2.41917 iter/s, 4.96038s/12 iters), loss = 4.65325 +I0407 22:03:38.329855 23786 solver.cpp:237] Train net output #0: loss = 4.65325 (* 1 = 4.65325 loss) +I0407 22:03:38.329869 23786 sgd_solver.cpp:105] Iteration 732, lr = 0.00865023 +I0407 22:03:43.406389 23786 solver.cpp:218] Iteration 744 (2.36391 iter/s, 5.07633s/12 iters), loss = 4.83219 +I0407 22:03:43.406433 23786 solver.cpp:237] Train net output #0: loss = 4.83219 (* 1 = 4.83219 loss) +I0407 22:03:43.406442 23786 sgd_solver.cpp:105] Iteration 744, lr = 0.0086297 +I0407 22:03:48.441167 23786 solver.cpp:218] Iteration 756 (2.38354 iter/s, 5.03453s/12 iters), loss = 4.93418 +I0407 22:03:48.441198 23786 solver.cpp:237] Train net output #0: loss = 4.93418 (* 1 = 4.93418 loss) +I0407 22:03:48.441206 23786 sgd_solver.cpp:105] Iteration 756, lr = 0.00860921 +I0407 22:03:53.639137 23786 solver.cpp:218] Iteration 768 (2.3087 iter/s, 5.19773s/12 iters), loss = 4.83564 +I0407 22:03:53.639183 23786 solver.cpp:237] Train net output #0: loss = 4.83564 (* 1 = 4.83564 loss) +I0407 22:03:53.639191 23786 sgd_solver.cpp:105] Iteration 768, lr = 0.00858877 +I0407 22:03:58.708933 23786 solver.cpp:218] Iteration 780 (2.36707 iter/s, 5.06955s/12 iters), loss = 4.82131 +I0407 22:03:58.709028 23786 solver.cpp:237] Train net output #0: loss = 4.82131 (* 1 = 4.82131 loss) +I0407 22:03:58.709038 23786 sgd_solver.cpp:105] Iteration 780, lr = 0.00856838 +I0407 22:04:03.692999 23786 solver.cpp:218] Iteration 792 (2.40782 iter/s, 4.98377s/12 iters), loss = 4.60851 +I0407 22:04:03.693048 23786 solver.cpp:237] Train net output #0: loss = 4.60851 (* 1 = 4.60851 loss) +I0407 22:04:03.693060 23786 sgd_solver.cpp:105] Iteration 792, lr = 0.00854803 +I0407 22:04:08.738476 23786 solver.cpp:218] Iteration 804 (2.37849 iter/s, 5.04522s/12 iters), loss = 4.78767 +I0407 22:04:08.738523 23786 solver.cpp:237] Train net output #0: loss = 4.78767 (* 1 = 4.78767 loss) +I0407 22:04:08.738534 23786 sgd_solver.cpp:105] Iteration 804, lr = 0.00852774 +I0407 22:04:10.497442 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:04:13.266017 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 22:04:17.740857 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 22:04:20.472980 23786 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 22:04:20.473009 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:04:24.552724 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:04:24.908135 23786 solver.cpp:397] Test net output #0: accuracy = 0.0373775 +I0407 22:04:24.908185 23786 solver.cpp:397] Test net output #1: loss = 4.79045 (* 1 = 4.79045 loss) +I0407 22:04:24.997232 23786 solver.cpp:218] Iteration 816 (0.738094 iter/s, 16.2581s/12 iters), loss = 4.86711 +I0407 22:04:24.997275 23786 solver.cpp:237] Train net output #0: loss = 4.86711 (* 1 = 4.86711 loss) +I0407 22:04:24.997285 23786 sgd_solver.cpp:105] Iteration 816, lr = 0.00850749 +I0407 22:04:29.482549 23786 solver.cpp:218] Iteration 828 (2.67553 iter/s, 4.48509s/12 iters), loss = 4.9208 +I0407 22:04:29.482623 23786 solver.cpp:237] Train net output #0: loss = 4.9208 (* 1 = 4.9208 loss) +I0407 22:04:29.482635 23786 sgd_solver.cpp:105] Iteration 828, lr = 0.00848729 +I0407 22:04:34.504164 23786 solver.cpp:218] Iteration 840 (2.3898 iter/s, 5.02134s/12 iters), loss = 4.63075 +I0407 22:04:34.504210 23786 solver.cpp:237] Train net output #0: loss = 4.63075 (* 1 = 4.63075 loss) +I0407 22:04:34.504220 23786 sgd_solver.cpp:105] Iteration 840, lr = 0.00846714 +I0407 22:04:39.465803 23786 solver.cpp:218] Iteration 852 (2.41868 iter/s, 4.96139s/12 iters), loss = 4.66689 +I0407 22:04:39.465853 23786 solver.cpp:237] Train net output #0: loss = 4.66689 (* 1 = 4.66689 loss) +I0407 22:04:39.465864 23786 sgd_solver.cpp:105] Iteration 852, lr = 0.00844704 +I0407 22:04:44.786305 23786 solver.cpp:218] Iteration 864 (2.25554 iter/s, 5.32024s/12 iters), loss = 4.78565 +I0407 22:04:44.786350 23786 solver.cpp:237] Train net output #0: loss = 4.78565 (* 1 = 4.78565 loss) +I0407 22:04:44.786358 23786 sgd_solver.cpp:105] Iteration 864, lr = 0.00842698 +I0407 22:04:49.988498 23786 solver.cpp:218] Iteration 876 (2.30683 iter/s, 5.20194s/12 iters), loss = 4.6657 +I0407 22:04:49.988548 23786 solver.cpp:237] Train net output #0: loss = 4.6657 (* 1 = 4.6657 loss) +I0407 22:04:49.988560 23786 sgd_solver.cpp:105] Iteration 876, lr = 0.00840698 +I0407 22:04:55.023824 23786 solver.cpp:218] Iteration 888 (2.38328 iter/s, 5.03507s/12 iters), loss = 4.57777 +I0407 22:04:55.023870 23786 solver.cpp:237] Train net output #0: loss = 4.57777 (* 1 = 4.57777 loss) +I0407 22:04:55.023882 23786 sgd_solver.cpp:105] Iteration 888, lr = 0.00838702 +I0407 22:05:00.032831 23786 solver.cpp:218] Iteration 900 (2.3958 iter/s, 5.00876s/12 iters), loss = 4.75789 +I0407 22:05:00.039546 23786 solver.cpp:237] Train net output #0: loss = 4.75789 (* 1 = 4.75789 loss) +I0407 22:05:00.039561 23786 sgd_solver.cpp:105] Iteration 900, lr = 0.0083671 +I0407 22:05:03.880371 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:04.977473 23786 solver.cpp:218] Iteration 912 (2.43027 iter/s, 4.93773s/12 iters), loss = 4.45025 +I0407 22:05:04.977527 23786 solver.cpp:237] Train net output #0: loss = 4.45025 (* 1 = 4.45025 loss) +I0407 22:05:04.977540 23786 sgd_solver.cpp:105] Iteration 912, lr = 0.00834724 +I0407 22:05:06.969918 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 22:05:11.578759 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 22:05:14.039439 23786 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 22:05:14.039465 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:05:18.128844 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:18.530596 23786 solver.cpp:397] Test net output #0: accuracy = 0.0422794 +I0407 22:05:18.530644 23786 solver.cpp:397] Test net output #1: loss = 4.71643 (* 1 = 4.71643 loss) +I0407 22:05:20.380957 23786 solver.cpp:218] Iteration 924 (0.779077 iter/s, 15.4028s/12 iters), loss = 4.70984 +I0407 22:05:20.381008 23786 solver.cpp:237] Train net output #0: loss = 4.70984 (* 1 = 4.70984 loss) +I0407 22:05:20.381022 23786 sgd_solver.cpp:105] Iteration 924, lr = 0.00832742 +I0407 22:05:25.249915 23786 solver.cpp:218] Iteration 936 (2.46472 iter/s, 4.8687s/12 iters), loss = 4.6436 +I0407 22:05:25.249984 23786 solver.cpp:237] Train net output #0: loss = 4.6436 (* 1 = 4.6436 loss) +I0407 22:05:25.249994 23786 sgd_solver.cpp:105] Iteration 936, lr = 0.00830765 +I0407 22:05:30.245698 23786 solver.cpp:218] Iteration 948 (2.40215 iter/s, 4.99552s/12 iters), loss = 4.60979 +I0407 22:05:30.245802 23786 solver.cpp:237] Train net output #0: loss = 4.60979 (* 1 = 4.60979 loss) +I0407 22:05:30.245815 23786 sgd_solver.cpp:105] Iteration 948, lr = 0.00828793 +I0407 22:05:35.412772 23786 solver.cpp:218] Iteration 960 (2.32254 iter/s, 5.16676s/12 iters), loss = 4.46683 +I0407 22:05:35.412822 23786 solver.cpp:237] Train net output #0: loss = 4.46683 (* 1 = 4.46683 loss) +I0407 22:05:35.412832 23786 sgd_solver.cpp:105] Iteration 960, lr = 0.00826825 +I0407 22:05:40.428813 23786 solver.cpp:218] Iteration 972 (2.39244 iter/s, 5.01579s/12 iters), loss = 4.46815 +I0407 22:05:40.428866 23786 solver.cpp:237] Train net output #0: loss = 4.46815 (* 1 = 4.46815 loss) +I0407 22:05:40.428879 23786 sgd_solver.cpp:105] Iteration 972, lr = 0.00824862 +I0407 22:05:45.346576 23786 solver.cpp:218] Iteration 984 (2.44026 iter/s, 4.91751s/12 iters), loss = 4.55572 +I0407 22:05:45.346626 23786 solver.cpp:237] Train net output #0: loss = 4.55572 (* 1 = 4.55572 loss) +I0407 22:05:45.346637 23786 sgd_solver.cpp:105] Iteration 984, lr = 0.00822903 +I0407 22:05:50.331773 23786 solver.cpp:218] Iteration 996 (2.40725 iter/s, 4.98494s/12 iters), loss = 4.42718 +I0407 22:05:50.331821 23786 solver.cpp:237] Train net output #0: loss = 4.42718 (* 1 = 4.42718 loss) +I0407 22:05:50.331832 23786 sgd_solver.cpp:105] Iteration 996, lr = 0.0082095 +I0407 22:05:55.375566 23786 solver.cpp:218] Iteration 1008 (2.37928 iter/s, 5.04354s/12 iters), loss = 4.58713 +I0407 22:05:55.375612 23786 solver.cpp:237] Train net output #0: loss = 4.58713 (* 1 = 4.58713 loss) +I0407 22:05:55.375622 23786 sgd_solver.cpp:105] Iteration 1008, lr = 0.00819001 +I0407 22:05:56.388527 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:59.903537 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 22:06:04.986636 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 22:06:07.384584 23786 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 22:06:07.384610 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:06:11.569427 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:06:12.002043 23786 solver.cpp:397] Test net output #0: accuracy = 0.0637255 +I0407 22:06:12.002094 23786 solver.cpp:397] Test net output #1: loss = 4.51722 (* 1 = 4.51722 loss) +I0407 22:06:12.092571 23786 solver.cpp:218] Iteration 1020 (0.717862 iter/s, 16.7163s/12 iters), loss = 4.39112 +I0407 22:06:12.092623 23786 solver.cpp:237] Train net output #0: loss = 4.39112 (* 1 = 4.39112 loss) +I0407 22:06:12.092635 23786 sgd_solver.cpp:105] Iteration 1020, lr = 0.00817056 +I0407 22:06:16.386524 23786 solver.cpp:218] Iteration 1032 (2.79478 iter/s, 4.29373s/12 iters), loss = 4.57326 +I0407 22:06:16.386567 23786 solver.cpp:237] Train net output #0: loss = 4.57326 (* 1 = 4.57326 loss) +I0407 22:06:16.386579 23786 sgd_solver.cpp:105] Iteration 1032, lr = 0.00815116 +I0407 22:06:21.425432 23786 solver.cpp:218] Iteration 1044 (2.38159 iter/s, 5.03866s/12 iters), loss = 4.43434 +I0407 22:06:21.425488 23786 solver.cpp:237] Train net output #0: loss = 4.43434 (* 1 = 4.43434 loss) +I0407 22:06:21.425504 23786 sgd_solver.cpp:105] Iteration 1044, lr = 0.00813181 +I0407 22:06:26.474509 23786 solver.cpp:218] Iteration 1056 (2.37679 iter/s, 5.04882s/12 iters), loss = 4.63738 +I0407 22:06:26.474558 23786 solver.cpp:237] Train net output #0: loss = 4.63738 (* 1 = 4.63738 loss) +I0407 22:06:26.474570 23786 sgd_solver.cpp:105] Iteration 1056, lr = 0.0081125 +I0407 22:06:31.527307 23786 solver.cpp:218] Iteration 1068 (2.37504 iter/s, 5.05255s/12 iters), loss = 4.48874 +I0407 22:06:31.527354 23786 solver.cpp:237] Train net output #0: loss = 4.48874 (* 1 = 4.48874 loss) +I0407 22:06:31.527366 23786 sgd_solver.cpp:105] Iteration 1068, lr = 0.00809324 +I0407 22:06:36.556944 23786 solver.cpp:218] Iteration 1080 (2.38598 iter/s, 5.02938s/12 iters), loss = 4.32402 +I0407 22:06:36.557063 23786 solver.cpp:237] Train net output #0: loss = 4.32402 (* 1 = 4.32402 loss) +I0407 22:06:36.557077 23786 sgd_solver.cpp:105] Iteration 1080, lr = 0.00807403 +I0407 22:06:41.550909 23786 solver.cpp:218] Iteration 1092 (2.40305 iter/s, 4.99365s/12 iters), loss = 4.31233 +I0407 22:06:41.550963 23786 solver.cpp:237] Train net output #0: loss = 4.31233 (* 1 = 4.31233 loss) +I0407 22:06:41.550974 23786 sgd_solver.cpp:105] Iteration 1092, lr = 0.00805486 +I0407 22:06:46.660732 23786 solver.cpp:218] Iteration 1104 (2.34854 iter/s, 5.10956s/12 iters), loss = 4.41867 +I0407 22:06:46.660773 23786 solver.cpp:237] Train net output #0: loss = 4.41867 (* 1 = 4.41867 loss) +I0407 22:06:46.660784 23786 sgd_solver.cpp:105] Iteration 1104, lr = 0.00803573 +I0407 22:06:49.839078 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:06:51.678217 23786 solver.cpp:218] Iteration 1116 (2.39175 iter/s, 5.01725s/12 iters), loss = 4.44577 +I0407 22:06:51.678261 23786 solver.cpp:237] Train net output #0: loss = 4.44577 (* 1 = 4.44577 loss) +I0407 22:06:51.678270 23786 sgd_solver.cpp:105] Iteration 1116, lr = 0.00801666 +I0407 22:06:53.838060 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 22:06:58.304719 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 22:07:00.971707 23786 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 22:07:00.971733 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:07:04.961481 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:05.438030 23786 solver.cpp:397] Test net output #0: accuracy = 0.0643382 +I0407 22:07:05.438078 23786 solver.cpp:397] Test net output #1: loss = 4.47461 (* 1 = 4.47461 loss) +I0407 22:07:07.332715 23786 solver.cpp:218] Iteration 1128 (0.766584 iter/s, 15.6539s/12 iters), loss = 4.36107 +I0407 22:07:07.332837 23786 solver.cpp:237] Train net output #0: loss = 4.36107 (* 1 = 4.36107 loss) +I0407 22:07:07.332850 23786 sgd_solver.cpp:105] Iteration 1128, lr = 0.00799762 +I0407 22:07:12.308935 23786 solver.cpp:218] Iteration 1140 (2.41162 iter/s, 4.9759s/12 iters), loss = 4.37779 +I0407 22:07:12.308984 23786 solver.cpp:237] Train net output #0: loss = 4.37779 (* 1 = 4.37779 loss) +I0407 22:07:12.308995 23786 sgd_solver.cpp:105] Iteration 1140, lr = 0.00797863 +I0407 22:07:17.320884 23786 solver.cpp:218] Iteration 1152 (2.3944 iter/s, 5.0117s/12 iters), loss = 4.0005 +I0407 22:07:17.320927 23786 solver.cpp:237] Train net output #0: loss = 4.0005 (* 1 = 4.0005 loss) +I0407 22:07:17.320937 23786 sgd_solver.cpp:105] Iteration 1152, lr = 0.00795969 +I0407 22:07:22.362607 23786 solver.cpp:218] Iteration 1164 (2.38025 iter/s, 5.04148s/12 iters), loss = 4.23513 +I0407 22:07:22.362653 23786 solver.cpp:237] Train net output #0: loss = 4.23513 (* 1 = 4.23513 loss) +I0407 22:07:22.362663 23786 sgd_solver.cpp:105] Iteration 1164, lr = 0.00794079 +I0407 22:07:27.381852 23786 solver.cpp:218] Iteration 1176 (2.39092 iter/s, 5.01899s/12 iters), loss = 4.26021 +I0407 22:07:27.381904 23786 solver.cpp:237] Train net output #0: loss = 4.26021 (* 1 = 4.26021 loss) +I0407 22:07:27.381915 23786 sgd_solver.cpp:105] Iteration 1176, lr = 0.00792194 +I0407 22:07:32.455646 23786 solver.cpp:218] Iteration 1188 (2.36521 iter/s, 5.07354s/12 iters), loss = 4.22197 +I0407 22:07:32.455698 23786 solver.cpp:237] Train net output #0: loss = 4.22197 (* 1 = 4.22197 loss) +I0407 22:07:32.455711 23786 sgd_solver.cpp:105] Iteration 1188, lr = 0.00790313 +I0407 22:07:37.463416 23786 solver.cpp:218] Iteration 1200 (2.3964 iter/s, 5.00752s/12 iters), loss = 4.29932 +I0407 22:07:37.463536 23786 solver.cpp:237] Train net output #0: loss = 4.29932 (* 1 = 4.29932 loss) +I0407 22:07:37.463549 23786 sgd_solver.cpp:105] Iteration 1200, lr = 0.00788437 +I0407 22:07:42.541688 23786 solver.cpp:218] Iteration 1212 (2.36316 iter/s, 5.07795s/12 iters), loss = 4.2286 +I0407 22:07:42.541746 23786 solver.cpp:237] Train net output #0: loss = 4.2286 (* 1 = 4.2286 loss) +I0407 22:07:42.541759 23786 sgd_solver.cpp:105] Iteration 1212, lr = 0.00786565 +I0407 22:07:42.819404 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:47.136945 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 22:07:51.537206 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 22:07:53.952566 23786 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 22:07:53.952590 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:07:57.905442 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:58.417202 23786 solver.cpp:397] Test net output #0: accuracy = 0.0925245 +I0407 22:07:58.417250 23786 solver.cpp:397] Test net output #1: loss = 4.26147 (* 1 = 4.26147 loss) +I0407 22:07:58.507645 23786 solver.cpp:218] Iteration 1224 (0.751631 iter/s, 15.9653s/12 iters), loss = 4.16606 +I0407 22:07:58.507695 23786 solver.cpp:237] Train net output #0: loss = 4.16606 (* 1 = 4.16606 loss) +I0407 22:07:58.507706 23786 sgd_solver.cpp:105] Iteration 1224, lr = 0.00784697 +I0407 22:08:02.755447 23786 solver.cpp:218] Iteration 1236 (2.82514 iter/s, 4.24758s/12 iters), loss = 4.20163 +I0407 22:08:02.755494 23786 solver.cpp:237] Train net output #0: loss = 4.20163 (* 1 = 4.20163 loss) +I0407 22:08:02.755506 23786 sgd_solver.cpp:105] Iteration 1236, lr = 0.00782834 +I0407 22:08:07.743600 23786 solver.cpp:218] Iteration 1248 (2.40582 iter/s, 4.98791s/12 iters), loss = 4.03646 +I0407 22:08:07.743705 23786 solver.cpp:237] Train net output #0: loss = 4.03646 (* 1 = 4.03646 loss) +I0407 22:08:07.743716 23786 sgd_solver.cpp:105] Iteration 1248, lr = 0.00780976 +I0407 22:08:12.732645 23786 solver.cpp:218] Iteration 1260 (2.40542 iter/s, 4.98874s/12 iters), loss = 4.16232 +I0407 22:08:12.732688 23786 solver.cpp:237] Train net output #0: loss = 4.16232 (* 1 = 4.16232 loss) +I0407 22:08:12.732699 23786 sgd_solver.cpp:105] Iteration 1260, lr = 0.00779122 +I0407 22:08:17.744504 23786 solver.cpp:218] Iteration 1272 (2.39444 iter/s, 5.01161s/12 iters), loss = 3.96348 +I0407 22:08:17.744555 23786 solver.cpp:237] Train net output #0: loss = 3.96348 (* 1 = 3.96348 loss) +I0407 22:08:17.744567 23786 sgd_solver.cpp:105] Iteration 1272, lr = 0.00777272 +I0407 22:08:22.808351 23786 solver.cpp:218] Iteration 1284 (2.36986 iter/s, 5.06359s/12 iters), loss = 4.09983 +I0407 22:08:22.808396 23786 solver.cpp:237] Train net output #0: loss = 4.09983 (* 1 = 4.09983 loss) +I0407 22:08:22.808406 23786 sgd_solver.cpp:105] Iteration 1284, lr = 0.00775426 +I0407 22:08:27.696879 23786 solver.cpp:218] Iteration 1296 (2.45485 iter/s, 4.88828s/12 iters), loss = 3.76088 +I0407 22:08:27.696934 23786 solver.cpp:237] Train net output #0: loss = 3.76088 (* 1 = 3.76088 loss) +I0407 22:08:27.696945 23786 sgd_solver.cpp:105] Iteration 1296, lr = 0.00773585 +I0407 22:08:32.680559 23786 solver.cpp:218] Iteration 1308 (2.40798 iter/s, 4.98343s/12 iters), loss = 4.17589 +I0407 22:08:32.680601 23786 solver.cpp:237] Train net output #0: loss = 4.17589 (* 1 = 4.17589 loss) +I0407 22:08:32.680610 23786 sgd_solver.cpp:105] Iteration 1308, lr = 0.00771749 +I0407 22:08:35.157514 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:08:37.633042 23786 solver.cpp:218] Iteration 1320 (2.42315 iter/s, 4.95224s/12 iters), loss = 3.97701 +I0407 22:08:37.633085 23786 solver.cpp:237] Train net output #0: loss = 3.97701 (* 1 = 3.97701 loss) +I0407 22:08:37.633093 23786 sgd_solver.cpp:105] Iteration 1320, lr = 0.00769916 +I0407 22:08:39.668781 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 22:08:45.674626 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 22:08:54.434347 23786 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 22:08:54.434372 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:08:58.344992 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:08:58.901587 23786 solver.cpp:397] Test net output #0: accuracy = 0.10723 +I0407 22:08:58.901643 23786 solver.cpp:397] Test net output #1: loss = 4.04921 (* 1 = 4.04921 loss) +I0407 22:09:00.905838 23786 solver.cpp:218] Iteration 1332 (0.515644 iter/s, 23.2719s/12 iters), loss = 3.71774 +I0407 22:09:00.905905 23786 solver.cpp:237] Train net output #0: loss = 3.71774 (* 1 = 3.71774 loss) +I0407 22:09:00.905927 23786 sgd_solver.cpp:105] Iteration 1332, lr = 0.00768088 +I0407 22:09:05.964581 23786 solver.cpp:218] Iteration 1344 (2.37225 iter/s, 5.05848s/12 iters), loss = 3.9405 +I0407 22:09:05.964620 23786 solver.cpp:237] Train net output #0: loss = 3.9405 (* 1 = 3.9405 loss) +I0407 22:09:05.964629 23786 sgd_solver.cpp:105] Iteration 1344, lr = 0.00766265 +I0407 22:09:10.988162 23786 solver.cpp:218] Iteration 1356 (2.38885 iter/s, 5.02334s/12 iters), loss = 4.00653 +I0407 22:09:10.988286 23786 solver.cpp:237] Train net output #0: loss = 4.00653 (* 1 = 4.00653 loss) +I0407 22:09:10.988299 23786 sgd_solver.cpp:105] Iteration 1356, lr = 0.00764446 +I0407 22:09:15.996645 23786 solver.cpp:218] Iteration 1368 (2.39609 iter/s, 5.00816s/12 iters), loss = 3.88637 +I0407 22:09:15.996699 23786 solver.cpp:237] Train net output #0: loss = 3.88637 (* 1 = 3.88637 loss) +I0407 22:09:15.996711 23786 sgd_solver.cpp:105] Iteration 1368, lr = 0.00762631 +I0407 22:09:17.202152 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:09:21.008925 23786 solver.cpp:218] Iteration 1380 (2.39424 iter/s, 5.01202s/12 iters), loss = 3.82025 +I0407 22:09:21.008977 23786 solver.cpp:237] Train net output #0: loss = 3.82025 (* 1 = 3.82025 loss) +I0407 22:09:21.008989 23786 sgd_solver.cpp:105] Iteration 1380, lr = 0.0076082 +I0407 22:09:26.027150 23786 solver.cpp:218] Iteration 1392 (2.39141 iter/s, 5.01797s/12 iters), loss = 3.98652 +I0407 22:09:26.027199 23786 solver.cpp:237] Train net output #0: loss = 3.98652 (* 1 = 3.98652 loss) +I0407 22:09:26.027209 23786 sgd_solver.cpp:105] Iteration 1392, lr = 0.00759014 +I0407 22:09:31.050176 23786 solver.cpp:218] Iteration 1404 (2.38912 iter/s, 5.02277s/12 iters), loss = 3.91484 +I0407 22:09:31.050228 23786 solver.cpp:237] Train net output #0: loss = 3.91484 (* 1 = 3.91484 loss) +I0407 22:09:31.050241 23786 sgd_solver.cpp:105] Iteration 1404, lr = 0.00757212 +I0407 22:09:35.659397 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:36.009871 23786 solver.cpp:218] Iteration 1416 (2.41963 iter/s, 4.95944s/12 iters), loss = 3.59869 +I0407 22:09:36.009922 23786 solver.cpp:237] Train net output #0: loss = 3.59869 (* 1 = 3.59869 loss) +I0407 22:09:36.009933 23786 sgd_solver.cpp:105] Iteration 1416, lr = 0.00755414 +I0407 22:09:40.511319 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 22:09:44.834292 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 22:09:48.953255 23786 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 22:09:48.953281 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:09:52.813295 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:53.404350 23786 solver.cpp:397] Test net output #0: accuracy = 0.127451 +I0407 22:09:53.404398 23786 solver.cpp:397] Test net output #1: loss = 3.92408 (* 1 = 3.92408 loss) +I0407 22:09:53.494649 23786 solver.cpp:218] Iteration 1428 (0.68634 iter/s, 17.4841s/12 iters), loss = 3.6912 +I0407 22:09:53.494699 23786 solver.cpp:237] Train net output #0: loss = 3.6912 (* 1 = 3.6912 loss) +I0407 22:09:53.494710 23786 sgd_solver.cpp:105] Iteration 1428, lr = 0.0075362 +I0407 22:09:58.027424 23786 solver.cpp:218] Iteration 1440 (2.64752 iter/s, 4.53254s/12 iters), loss = 3.78989 +I0407 22:09:58.027474 23786 solver.cpp:237] Train net output #0: loss = 3.78989 (* 1 = 3.78989 loss) +I0407 22:09:58.027487 23786 sgd_solver.cpp:105] Iteration 1440, lr = 0.00751831 +I0407 22:10:02.929898 23786 solver.cpp:218] Iteration 1452 (2.44787 iter/s, 4.90222s/12 iters), loss = 4.12109 +I0407 22:10:02.929949 23786 solver.cpp:237] Train net output #0: loss = 4.12109 (* 1 = 4.12109 loss) +I0407 22:10:02.929973 23786 sgd_solver.cpp:105] Iteration 1452, lr = 0.00750046 +I0407 22:10:07.964593 23786 solver.cpp:218] Iteration 1464 (2.38358 iter/s, 5.03444s/12 iters), loss = 3.68653 +I0407 22:10:07.964648 23786 solver.cpp:237] Train net output #0: loss = 3.68653 (* 1 = 3.68653 loss) +I0407 22:10:07.964661 23786 sgd_solver.cpp:105] Iteration 1464, lr = 0.00748265 +I0407 22:10:12.919658 23786 solver.cpp:218] Iteration 1476 (2.42189 iter/s, 4.95481s/12 iters), loss = 3.8036 +I0407 22:10:12.919713 23786 solver.cpp:237] Train net output #0: loss = 3.8036 (* 1 = 3.8036 loss) +I0407 22:10:12.919725 23786 sgd_solver.cpp:105] Iteration 1476, lr = 0.00746489 +I0407 22:10:17.907408 23786 solver.cpp:218] Iteration 1488 (2.40602 iter/s, 4.9875s/12 iters), loss = 3.8072 +I0407 22:10:17.907536 23786 solver.cpp:237] Train net output #0: loss = 3.8072 (* 1 = 3.8072 loss) +I0407 22:10:17.907547 23786 sgd_solver.cpp:105] Iteration 1488, lr = 0.00744716 +I0407 22:10:22.928998 23786 solver.cpp:218] Iteration 1500 (2.38984 iter/s, 5.02126s/12 iters), loss = 3.43024 +I0407 22:10:22.929055 23786 solver.cpp:237] Train net output #0: loss = 3.43024 (* 1 = 3.43024 loss) +I0407 22:10:22.929067 23786 sgd_solver.cpp:105] Iteration 1500, lr = 0.00742948 +I0407 22:10:28.064054 23786 solver.cpp:218] Iteration 1512 (2.337 iter/s, 5.13479s/12 iters), loss = 3.54963 +I0407 22:10:28.064105 23786 solver.cpp:237] Train net output #0: loss = 3.54963 (* 1 = 3.54963 loss) +I0407 22:10:28.064116 23786 sgd_solver.cpp:105] Iteration 1512, lr = 0.00741184 +I0407 22:10:29.979087 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:10:33.367986 23786 solver.cpp:218] Iteration 1524 (2.26258 iter/s, 5.30367s/12 iters), loss = 3.60958 +I0407 22:10:33.368037 23786 solver.cpp:237] Train net output #0: loss = 3.60958 (* 1 = 3.60958 loss) +I0407 22:10:33.368048 23786 sgd_solver.cpp:105] Iteration 1524, lr = 0.00739425 +I0407 22:10:35.420003 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 22:10:39.479702 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 22:10:43.942764 23786 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 22:10:43.942788 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:10:47.777356 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:10:48.413146 23786 solver.cpp:397] Test net output #0: accuracy = 0.137868 +I0407 22:10:48.413319 23786 solver.cpp:397] Test net output #1: loss = 3.82993 (* 1 = 3.82993 loss) +I0407 22:10:50.310361 23786 solver.cpp:218] Iteration 1536 (0.708313 iter/s, 16.9417s/12 iters), loss = 3.42288 +I0407 22:10:50.310411 23786 solver.cpp:237] Train net output #0: loss = 3.42288 (* 1 = 3.42288 loss) +I0407 22:10:50.310432 23786 sgd_solver.cpp:105] Iteration 1536, lr = 0.00737669 +I0407 22:10:55.335743 23786 solver.cpp:218] Iteration 1548 (2.388 iter/s, 5.02513s/12 iters), loss = 3.14231 +I0407 22:10:55.335799 23786 solver.cpp:237] Train net output #0: loss = 3.14231 (* 1 = 3.14231 loss) +I0407 22:10:55.335811 23786 sgd_solver.cpp:105] Iteration 1548, lr = 0.00735918 +I0407 22:11:00.316884 23786 solver.cpp:218] Iteration 1560 (2.40921 iter/s, 4.98088s/12 iters), loss = 3.65536 +I0407 22:11:00.316941 23786 solver.cpp:237] Train net output #0: loss = 3.65536 (* 1 = 3.65536 loss) +I0407 22:11:00.316953 23786 sgd_solver.cpp:105] Iteration 1560, lr = 0.00734171 +I0407 22:11:05.340257 23786 solver.cpp:218] Iteration 1572 (2.38896 iter/s, 5.02311s/12 iters), loss = 3.67146 +I0407 22:11:05.340312 23786 solver.cpp:237] Train net output #0: loss = 3.67146 (* 1 = 3.67146 loss) +I0407 22:11:05.340324 23786 sgd_solver.cpp:105] Iteration 1572, lr = 0.00732427 +I0407 22:11:10.380863 23786 solver.cpp:218] Iteration 1584 (2.38079 iter/s, 5.04035s/12 iters), loss = 3.41612 +I0407 22:11:10.380911 23786 solver.cpp:237] Train net output #0: loss = 3.41612 (* 1 = 3.41612 loss) +I0407 22:11:10.380920 23786 sgd_solver.cpp:105] Iteration 1584, lr = 0.00730688 +I0407 22:11:15.378047 23786 solver.cpp:218] Iteration 1596 (2.40147 iter/s, 4.99693s/12 iters), loss = 3.66298 +I0407 22:11:15.378104 23786 solver.cpp:237] Train net output #0: loss = 3.66298 (* 1 = 3.66298 loss) +I0407 22:11:15.378118 23786 sgd_solver.cpp:105] Iteration 1596, lr = 0.00728954 +I0407 22:11:20.295327 23786 solver.cpp:218] Iteration 1608 (2.4405 iter/s, 4.91702s/12 iters), loss = 3.50817 +I0407 22:11:20.295456 23786 solver.cpp:237] Train net output #0: loss = 3.50817 (* 1 = 3.50817 loss) +I0407 22:11:20.295469 23786 sgd_solver.cpp:105] Iteration 1608, lr = 0.00727223 +I0407 22:11:24.202977 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:11:25.298388 23786 solver.cpp:218] Iteration 1620 (2.39869 iter/s, 5.00273s/12 iters), loss = 3.3837 +I0407 22:11:25.298434 23786 solver.cpp:237] Train net output #0: loss = 3.3837 (* 1 = 3.3837 loss) +I0407 22:11:25.298444 23786 sgd_solver.cpp:105] Iteration 1620, lr = 0.00725496 +I0407 22:11:29.847472 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 22:11:32.901878 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 22:11:42.485123 23786 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 22:11:42.485157 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:11:46.397130 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:11:47.066624 23786 solver.cpp:397] Test net output #0: accuracy = 0.146446 +I0407 22:11:47.066659 23786 solver.cpp:397] Test net output #1: loss = 3.80548 (* 1 = 3.80548 loss) +I0407 22:11:47.156975 23786 solver.cpp:218] Iteration 1632 (0.549006 iter/s, 21.8577s/12 iters), loss = 3.4954 +I0407 22:11:47.157028 23786 solver.cpp:237] Train net output #0: loss = 3.4954 (* 1 = 3.4954 loss) +I0407 22:11:47.157039 23786 sgd_solver.cpp:105] Iteration 1632, lr = 0.00723774 +I0407 22:11:51.699971 23786 solver.cpp:218] Iteration 1644 (2.64157 iter/s, 4.54276s/12 iters), loss = 3.52577 +I0407 22:11:51.700124 23786 solver.cpp:237] Train net output #0: loss = 3.52577 (* 1 = 3.52577 loss) +I0407 22:11:51.700137 23786 sgd_solver.cpp:105] Iteration 1644, lr = 0.00722056 +I0407 22:11:56.685653 23786 solver.cpp:218] Iteration 1656 (2.40707 iter/s, 4.98532s/12 iters), loss = 3.54936 +I0407 22:11:56.685710 23786 solver.cpp:237] Train net output #0: loss = 3.54936 (* 1 = 3.54936 loss) +I0407 22:11:56.685722 23786 sgd_solver.cpp:105] Iteration 1656, lr = 0.00720341 +I0407 22:12:01.694958 23786 solver.cpp:218] Iteration 1668 (2.39566 iter/s, 5.00905s/12 iters), loss = 3.06731 +I0407 22:12:01.694998 23786 solver.cpp:237] Train net output #0: loss = 3.06731 (* 1 = 3.06731 loss) +I0407 22:12:01.695008 23786 sgd_solver.cpp:105] Iteration 1668, lr = 0.00718631 +I0407 22:12:06.659729 23786 solver.cpp:218] Iteration 1680 (2.41715 iter/s, 4.96453s/12 iters), loss = 3.52589 +I0407 22:12:06.659773 23786 solver.cpp:237] Train net output #0: loss = 3.52589 (* 1 = 3.52589 loss) +I0407 22:12:06.659783 23786 sgd_solver.cpp:105] Iteration 1680, lr = 0.00716925 +I0407 22:12:11.747195 23786 solver.cpp:218] Iteration 1692 (2.35885 iter/s, 5.08722s/12 iters), loss = 3.32482 +I0407 22:12:11.747232 23786 solver.cpp:237] Train net output #0: loss = 3.32482 (* 1 = 3.32482 loss) +I0407 22:12:11.747241 23786 sgd_solver.cpp:105] Iteration 1692, lr = 0.00715223 +I0407 22:12:16.683559 23786 solver.cpp:218] Iteration 1704 (2.43106 iter/s, 4.93612s/12 iters), loss = 3.25334 +I0407 22:12:16.683614 23786 solver.cpp:237] Train net output #0: loss = 3.25334 (* 1 = 3.25334 loss) +I0407 22:12:16.683624 23786 sgd_solver.cpp:105] Iteration 1704, lr = 0.00713525 +I0407 22:12:21.742493 23786 solver.cpp:218] Iteration 1716 (2.37216 iter/s, 5.05867s/12 iters), loss = 3.50259 +I0407 22:12:21.742619 23786 solver.cpp:237] Train net output #0: loss = 3.50259 (* 1 = 3.50259 loss) +I0407 22:12:21.742632 23786 sgd_solver.cpp:105] Iteration 1716, lr = 0.00711831 +I0407 22:12:22.811646 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:12:26.797976 23786 solver.cpp:218] Iteration 1728 (2.37383 iter/s, 5.05513s/12 iters), loss = 3.21193 +I0407 22:12:26.798030 23786 solver.cpp:237] Train net output #0: loss = 3.21193 (* 1 = 3.21193 loss) +I0407 22:12:26.798041 23786 sgd_solver.cpp:105] Iteration 1728, lr = 0.00710141 +I0407 22:12:28.851555 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 22:12:31.814559 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 22:12:34.716533 23786 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 22:12:34.716558 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:12:38.442822 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:12:39.148358 23786 solver.cpp:397] Test net output #0: accuracy = 0.168505 +I0407 22:12:39.148407 23786 solver.cpp:397] Test net output #1: loss = 3.68098 (* 1 = 3.68098 loss) +I0407 22:12:40.984836 23786 solver.cpp:218] Iteration 1740 (0.845889 iter/s, 14.1863s/12 iters), loss = 3.28576 +I0407 22:12:40.984894 23786 solver.cpp:237] Train net output #0: loss = 3.28576 (* 1 = 3.28576 loss) +I0407 22:12:40.984905 23786 sgd_solver.cpp:105] Iteration 1740, lr = 0.00708455 +I0407 22:12:45.933521 23786 solver.cpp:218] Iteration 1752 (2.42501 iter/s, 4.94843s/12 iters), loss = 3.27274 +I0407 22:12:45.933558 23786 solver.cpp:237] Train net output #0: loss = 3.27274 (* 1 = 3.27274 loss) +I0407 22:12:45.933568 23786 sgd_solver.cpp:105] Iteration 1752, lr = 0.00706773 +I0407 22:12:51.143165 23786 solver.cpp:218] Iteration 1764 (2.30353 iter/s, 5.2094s/12 iters), loss = 3.32463 +I0407 22:12:51.143209 23786 solver.cpp:237] Train net output #0: loss = 3.32463 (* 1 = 3.32463 loss) +I0407 22:12:51.143219 23786 sgd_solver.cpp:105] Iteration 1764, lr = 0.00705094 +I0407 22:12:56.206302 23786 solver.cpp:218] Iteration 1776 (2.37019 iter/s, 5.06289s/12 iters), loss = 3.39274 +I0407 22:12:56.206454 23786 solver.cpp:237] Train net output #0: loss = 3.39274 (* 1 = 3.39274 loss) +I0407 22:12:56.206467 23786 sgd_solver.cpp:105] Iteration 1776, lr = 0.0070342 +I0407 22:13:01.165419 23786 solver.cpp:218] Iteration 1788 (2.41996 iter/s, 4.95877s/12 iters), loss = 3.04741 +I0407 22:13:01.165477 23786 solver.cpp:237] Train net output #0: loss = 3.04741 (* 1 = 3.04741 loss) +I0407 22:13:01.165489 23786 sgd_solver.cpp:105] Iteration 1788, lr = 0.0070175 +I0407 22:13:06.176265 23786 solver.cpp:218] Iteration 1800 (2.39493 iter/s, 5.01058s/12 iters), loss = 3.09956 +I0407 22:13:06.176317 23786 solver.cpp:237] Train net output #0: loss = 3.09956 (* 1 = 3.09956 loss) +I0407 22:13:06.176329 23786 sgd_solver.cpp:105] Iteration 1800, lr = 0.00700084 +I0407 22:13:11.161154 23786 solver.cpp:218] Iteration 1812 (2.4074 iter/s, 4.98463s/12 iters), loss = 3.27701 +I0407 22:13:11.161201 23786 solver.cpp:237] Train net output #0: loss = 3.27701 (* 1 = 3.27701 loss) +I0407 22:13:11.161213 23786 sgd_solver.cpp:105] Iteration 1812, lr = 0.00698422 +I0407 22:13:14.368165 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:13:16.172940 23786 solver.cpp:218] Iteration 1824 (2.39448 iter/s, 5.01154s/12 iters), loss = 3.51384 +I0407 22:13:16.172993 23786 solver.cpp:237] Train net output #0: loss = 3.51384 (* 1 = 3.51384 loss) +I0407 22:13:16.173005 23786 sgd_solver.cpp:105] Iteration 1824, lr = 0.00696764 +I0407 22:13:20.725888 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 22:13:23.778801 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 22:13:26.124943 23786 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 22:13:26.124967 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:13:29.846311 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:13:30.595918 23786 solver.cpp:397] Test net output #0: accuracy = 0.208333 +I0407 22:13:30.595963 23786 solver.cpp:397] Test net output #1: loss = 3.52489 (* 1 = 3.52489 loss) +I0407 22:13:30.686331 23786 solver.cpp:218] Iteration 1836 (0.826858 iter/s, 14.5128s/12 iters), loss = 3.36993 +I0407 22:13:30.686370 23786 solver.cpp:237] Train net output #0: loss = 3.36993 (* 1 = 3.36993 loss) +I0407 22:13:30.686381 23786 sgd_solver.cpp:105] Iteration 1836, lr = 0.0069511 +I0407 22:13:34.762360 23786 solver.cpp:218] Iteration 1848 (2.9442 iter/s, 4.07582s/12 iters), loss = 3.12182 +I0407 22:13:34.762406 23786 solver.cpp:237] Train net output #0: loss = 3.12182 (* 1 = 3.12182 loss) +I0407 22:13:34.762418 23786 sgd_solver.cpp:105] Iteration 1848, lr = 0.00693459 +I0407 22:13:39.710197 23786 solver.cpp:218] Iteration 1860 (2.42542 iter/s, 4.94759s/12 iters), loss = 3.03385 +I0407 22:13:39.710244 23786 solver.cpp:237] Train net output #0: loss = 3.03385 (* 1 = 3.03385 loss) +I0407 22:13:39.710256 23786 sgd_solver.cpp:105] Iteration 1860, lr = 0.00691813 +I0407 22:13:44.778959 23786 solver.cpp:218] Iteration 1872 (2.36756 iter/s, 5.06851s/12 iters), loss = 3.05061 +I0407 22:13:44.779002 23786 solver.cpp:237] Train net output #0: loss = 3.05061 (* 1 = 3.05061 loss) +I0407 22:13:44.779012 23786 sgd_solver.cpp:105] Iteration 1872, lr = 0.0069017 +I0407 22:13:49.793876 23786 solver.cpp:218] Iteration 1884 (2.39298 iter/s, 5.01467s/12 iters), loss = 3.16207 +I0407 22:13:49.793915 23786 solver.cpp:237] Train net output #0: loss = 3.16207 (* 1 = 3.16207 loss) +I0407 22:13:49.793923 23786 sgd_solver.cpp:105] Iteration 1884, lr = 0.00688532 +I0407 22:13:54.801506 23786 solver.cpp:218] Iteration 1896 (2.39646 iter/s, 5.00739s/12 iters), loss = 3.21068 +I0407 22:13:54.801550 23786 solver.cpp:237] Train net output #0: loss = 3.21068 (* 1 = 3.21068 loss) +I0407 22:13:54.801559 23786 sgd_solver.cpp:105] Iteration 1896, lr = 0.00686897 +I0407 22:13:59.754452 23786 solver.cpp:218] Iteration 1908 (2.42292 iter/s, 4.95269s/12 iters), loss = 3.10468 +I0407 22:13:59.754504 23786 solver.cpp:237] Train net output #0: loss = 3.10468 (* 1 = 3.10468 loss) +I0407 22:13:59.754515 23786 sgd_solver.cpp:105] Iteration 1908, lr = 0.00685266 +I0407 22:14:04.774567 23786 solver.cpp:218] Iteration 1920 (2.39051 iter/s, 5.01986s/12 iters), loss = 3.00013 +I0407 22:14:04.774677 23786 solver.cpp:237] Train net output #0: loss = 3.00013 (* 1 = 3.00013 loss) +I0407 22:14:04.774688 23786 sgd_solver.cpp:105] Iteration 1920, lr = 0.00683639 +I0407 22:14:05.081162 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:09.743053 23786 solver.cpp:218] Iteration 1932 (2.41537 iter/s, 4.96818s/12 iters), loss = 2.96929 +I0407 22:14:09.743096 23786 solver.cpp:237] Train net output #0: loss = 2.96929 (* 1 = 2.96929 loss) +I0407 22:14:09.743105 23786 sgd_solver.cpp:105] Iteration 1932, lr = 0.00682016 +I0407 22:14:11.776726 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 22:14:14.747722 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 22:14:17.089128 23786 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 22:14:17.089148 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:14:20.761945 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:21.546911 23786 solver.cpp:397] Test net output #0: accuracy = 0.204044 +I0407 22:14:21.546957 23786 solver.cpp:397] Test net output #1: loss = 3.46448 (* 1 = 3.46448 loss) +I0407 22:14:23.418092 23786 solver.cpp:218] Iteration 1944 (0.877548 iter/s, 13.6745s/12 iters), loss = 2.95765 +I0407 22:14:23.418133 23786 solver.cpp:237] Train net output #0: loss = 2.95765 (* 1 = 2.95765 loss) +I0407 22:14:23.418140 23786 sgd_solver.cpp:105] Iteration 1944, lr = 0.00680397 +I0407 22:14:28.409921 23786 solver.cpp:218] Iteration 1956 (2.40405 iter/s, 4.99159s/12 iters), loss = 3.17178 +I0407 22:14:28.409976 23786 solver.cpp:237] Train net output #0: loss = 3.17178 (* 1 = 3.17178 loss) +I0407 22:14:28.409988 23786 sgd_solver.cpp:105] Iteration 1956, lr = 0.00678782 +I0407 22:14:33.353783 23786 solver.cpp:218] Iteration 1968 (2.42738 iter/s, 4.94361s/12 iters), loss = 3.4126 +I0407 22:14:33.353826 23786 solver.cpp:237] Train net output #0: loss = 3.4126 (* 1 = 3.4126 loss) +I0407 22:14:33.353837 23786 sgd_solver.cpp:105] Iteration 1968, lr = 0.0067717 +I0407 22:14:38.718143 23786 solver.cpp:218] Iteration 1980 (2.2371 iter/s, 5.3641s/12 iters), loss = 2.9535 +I0407 22:14:38.718231 23786 solver.cpp:237] Train net output #0: loss = 2.9535 (* 1 = 2.9535 loss) +I0407 22:14:38.718243 23786 sgd_solver.cpp:105] Iteration 1980, lr = 0.00675562 +I0407 22:14:44.154052 23786 solver.cpp:218] Iteration 1992 (2.20767 iter/s, 5.4356s/12 iters), loss = 2.97601 +I0407 22:14:44.154093 23786 solver.cpp:237] Train net output #0: loss = 2.97601 (* 1 = 2.97601 loss) +I0407 22:14:44.154100 23786 sgd_solver.cpp:105] Iteration 1992, lr = 0.00673958 +I0407 22:14:49.119464 23786 solver.cpp:218] Iteration 2004 (2.41684 iter/s, 4.96517s/12 iters), loss = 2.44536 +I0407 22:14:49.119514 23786 solver.cpp:237] Train net output #0: loss = 2.44536 (* 1 = 2.44536 loss) +I0407 22:14:49.119526 23786 sgd_solver.cpp:105] Iteration 2004, lr = 0.00672358 +I0407 22:14:54.208185 23786 solver.cpp:218] Iteration 2016 (2.35827 iter/s, 5.08847s/12 iters), loss = 2.97795 +I0407 22:14:54.208233 23786 solver.cpp:237] Train net output #0: loss = 2.97795 (* 1 = 2.97795 loss) +I0407 22:14:54.208245 23786 sgd_solver.cpp:105] Iteration 2016, lr = 0.00670762 +I0407 22:14:56.746433 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:59.200103 23786 solver.cpp:218] Iteration 2028 (2.40401 iter/s, 4.99167s/12 iters), loss = 3.10528 +I0407 22:14:59.200158 23786 solver.cpp:237] Train net output #0: loss = 3.10528 (* 1 = 3.10528 loss) +I0407 22:14:59.200170 23786 sgd_solver.cpp:105] Iteration 2028, lr = 0.00669169 +I0407 22:15:03.780416 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 22:15:06.804522 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 22:15:10.697381 23786 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 22:15:10.697468 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:15:14.264284 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:15:15.093636 23786 solver.cpp:397] Test net output #0: accuracy = 0.213848 +I0407 22:15:15.093673 23786 solver.cpp:397] Test net output #1: loss = 3.40777 (* 1 = 3.40777 loss) +I0407 22:15:15.183887 23786 solver.cpp:218] Iteration 2040 (0.750792 iter/s, 15.9831s/12 iters), loss = 3.02911 +I0407 22:15:15.183929 23786 solver.cpp:237] Train net output #0: loss = 3.02911 (* 1 = 3.02911 loss) +I0407 22:15:15.183938 23786 sgd_solver.cpp:105] Iteration 2040, lr = 0.00667581 +I0407 22:15:19.581112 23786 solver.cpp:218] Iteration 2052 (2.72913 iter/s, 4.39701s/12 iters), loss = 2.77079 +I0407 22:15:19.581156 23786 solver.cpp:237] Train net output #0: loss = 2.77079 (* 1 = 2.77079 loss) +I0407 22:15:19.581164 23786 sgd_solver.cpp:105] Iteration 2052, lr = 0.00665996 +I0407 22:15:21.209437 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:15:24.546878 23786 solver.cpp:218] Iteration 2064 (2.41666 iter/s, 4.96552s/12 iters), loss = 2.91579 +I0407 22:15:24.546929 23786 solver.cpp:237] Train net output #0: loss = 2.91579 (* 1 = 2.91579 loss) +I0407 22:15:24.546941 23786 sgd_solver.cpp:105] Iteration 2064, lr = 0.00664414 +I0407 22:15:29.953049 23786 solver.cpp:218] Iteration 2076 (2.2198 iter/s, 5.4059s/12 iters), loss = 2.95067 +I0407 22:15:29.953095 23786 solver.cpp:237] Train net output #0: loss = 2.95067 (* 1 = 2.95067 loss) +I0407 22:15:29.953105 23786 sgd_solver.cpp:105] Iteration 2076, lr = 0.00662837 +I0407 22:15:34.997943 23786 solver.cpp:218] Iteration 2088 (2.37876 iter/s, 5.04464s/12 iters), loss = 2.78684 +I0407 22:15:34.998005 23786 solver.cpp:237] Train net output #0: loss = 2.78684 (* 1 = 2.78684 loss) +I0407 22:15:34.998016 23786 sgd_solver.cpp:105] Iteration 2088, lr = 0.00661263 +I0407 22:15:39.908658 23786 solver.cpp:218] Iteration 2100 (2.44376 iter/s, 4.91046s/12 iters), loss = 2.76463 +I0407 22:15:39.908707 23786 solver.cpp:237] Train net output #0: loss = 2.76463 (* 1 = 2.76463 loss) +I0407 22:15:39.908720 23786 sgd_solver.cpp:105] Iteration 2100, lr = 0.00659693 +I0407 22:15:44.934485 23786 solver.cpp:218] Iteration 2112 (2.38779 iter/s, 5.02557s/12 iters), loss = 2.97765 +I0407 22:15:44.934595 23786 solver.cpp:237] Train net output #0: loss = 2.97765 (* 1 = 2.97765 loss) +I0407 22:15:44.934607 23786 sgd_solver.cpp:105] Iteration 2112, lr = 0.00658127 +I0407 22:15:49.532140 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:15:49.849052 23786 solver.cpp:218] Iteration 2124 (2.44187 iter/s, 4.91426s/12 iters), loss = 2.314 +I0407 22:15:49.849107 23786 solver.cpp:237] Train net output #0: loss = 2.314 (* 1 = 2.314 loss) +I0407 22:15:49.849119 23786 sgd_solver.cpp:105] Iteration 2124, lr = 0.00656564 +I0407 22:15:54.792508 23786 solver.cpp:218] Iteration 2136 (2.42757 iter/s, 4.94321s/12 iters), loss = 2.54644 +I0407 22:15:54.792551 23786 solver.cpp:237] Train net output #0: loss = 2.54644 (* 1 = 2.54644 loss) +I0407 22:15:54.792562 23786 sgd_solver.cpp:105] Iteration 2136, lr = 0.00655006 +I0407 22:15:56.809203 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 22:15:59.821826 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 22:16:02.201578 23786 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 22:16:02.201604 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:16:05.855003 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:06.739576 23786 solver.cpp:397] Test net output #0: accuracy = 0.238971 +I0407 22:16:06.739626 23786 solver.cpp:397] Test net output #1: loss = 3.2057 (* 1 = 3.2057 loss) +I0407 22:16:08.692209 23786 solver.cpp:218] Iteration 2148 (0.863364 iter/s, 13.8991s/12 iters), loss = 2.62362 +I0407 22:16:08.692266 23786 solver.cpp:237] Train net output #0: loss = 2.62362 (* 1 = 2.62362 loss) +I0407 22:16:08.692278 23786 sgd_solver.cpp:105] Iteration 2148, lr = 0.00653451 +I0407 22:16:14.130918 23786 solver.cpp:218] Iteration 2160 (2.20652 iter/s, 5.43844s/12 iters), loss = 2.91224 +I0407 22:16:14.130964 23786 solver.cpp:237] Train net output #0: loss = 2.91224 (* 1 = 2.91224 loss) +I0407 22:16:14.130975 23786 sgd_solver.cpp:105] Iteration 2160, lr = 0.00651899 +I0407 22:16:19.242683 23786 solver.cpp:218] Iteration 2172 (2.34764 iter/s, 5.11152s/12 iters), loss = 2.84007 +I0407 22:16:19.242817 23786 solver.cpp:237] Train net output #0: loss = 2.84007 (* 1 = 2.84007 loss) +I0407 22:16:19.242830 23786 sgd_solver.cpp:105] Iteration 2172, lr = 0.00650351 +I0407 22:16:24.300310 23786 solver.cpp:218] Iteration 2184 (2.37281 iter/s, 5.05729s/12 iters), loss = 2.86887 +I0407 22:16:24.300364 23786 solver.cpp:237] Train net output #0: loss = 2.86887 (* 1 = 2.86887 loss) +I0407 22:16:24.300375 23786 sgd_solver.cpp:105] Iteration 2184, lr = 0.00648807 +I0407 22:16:29.426024 23786 solver.cpp:218] Iteration 2196 (2.34126 iter/s, 5.12546s/12 iters), loss = 2.65682 +I0407 22:16:29.426070 23786 solver.cpp:237] Train net output #0: loss = 2.65682 (* 1 = 2.65682 loss) +I0407 22:16:29.426082 23786 sgd_solver.cpp:105] Iteration 2196, lr = 0.00647267 +I0407 22:16:34.394238 23786 solver.cpp:218] Iteration 2208 (2.41548 iter/s, 4.96796s/12 iters), loss = 2.32587 +I0407 22:16:34.394292 23786 solver.cpp:237] Train net output #0: loss = 2.32587 (* 1 = 2.32587 loss) +I0407 22:16:34.394304 23786 sgd_solver.cpp:105] Iteration 2208, lr = 0.0064573 +I0407 22:16:39.457151 23786 solver.cpp:218] Iteration 2220 (2.3703 iter/s, 5.06265s/12 iters), loss = 2.23747 +I0407 22:16:39.457202 23786 solver.cpp:237] Train net output #0: loss = 2.23747 (* 1 = 2.23747 loss) +I0407 22:16:39.457216 23786 sgd_solver.cpp:105] Iteration 2220, lr = 0.00644197 +I0407 22:16:41.292692 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:44.526929 23786 solver.cpp:218] Iteration 2232 (2.36709 iter/s, 5.06952s/12 iters), loss = 2.6102 +I0407 22:16:44.526975 23786 solver.cpp:237] Train net output #0: loss = 2.6102 (* 1 = 2.6102 loss) +I0407 22:16:44.526984 23786 sgd_solver.cpp:105] Iteration 2232, lr = 0.00642668 +I0407 22:16:49.095949 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 22:16:52.106859 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 22:16:54.448370 23786 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 22:16:54.448390 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:16:57.985795 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:58.912636 23786 solver.cpp:397] Test net output #0: accuracy = 0.246324 +I0407 22:16:58.912686 23786 solver.cpp:397] Test net output #1: loss = 3.22827 (* 1 = 3.22827 loss) +I0407 22:16:59.003309 23786 solver.cpp:218] Iteration 2244 (0.828971 iter/s, 14.4758s/12 iters), loss = 2.56211 +I0407 22:16:59.003360 23786 solver.cpp:237] Train net output #0: loss = 2.56211 (* 1 = 2.56211 loss) +I0407 22:16:59.003371 23786 sgd_solver.cpp:105] Iteration 2244, lr = 0.00641142 +I0407 22:17:03.172950 23786 solver.cpp:218] Iteration 2256 (2.8781 iter/s, 4.16942s/12 iters), loss = 2.26549 +I0407 22:17:03.172996 23786 solver.cpp:237] Train net output #0: loss = 2.26549 (* 1 = 2.26549 loss) +I0407 22:17:03.173007 23786 sgd_solver.cpp:105] Iteration 2256, lr = 0.0063962 +I0407 22:17:08.166457 23786 solver.cpp:218] Iteration 2268 (2.40324 iter/s, 4.99326s/12 iters), loss = 2.79132 +I0407 22:17:08.166507 23786 solver.cpp:237] Train net output #0: loss = 2.79132 (* 1 = 2.79132 loss) +I0407 22:17:08.166520 23786 sgd_solver.cpp:105] Iteration 2268, lr = 0.00638101 +I0407 22:17:13.233510 23786 solver.cpp:218] Iteration 2280 (2.36836 iter/s, 5.0668s/12 iters), loss = 2.60719 +I0407 22:17:13.233553 23786 solver.cpp:237] Train net output #0: loss = 2.60719 (* 1 = 2.60719 loss) +I0407 22:17:13.233564 23786 sgd_solver.cpp:105] Iteration 2280, lr = 0.00636586 +I0407 22:17:18.278384 23786 solver.cpp:218] Iteration 2292 (2.37877 iter/s, 5.04463s/12 iters), loss = 2.64403 +I0407 22:17:18.278435 23786 solver.cpp:237] Train net output #0: loss = 2.64403 (* 1 = 2.64403 loss) +I0407 22:17:18.278446 23786 sgd_solver.cpp:105] Iteration 2292, lr = 0.00635075 +I0407 22:17:23.285670 23786 solver.cpp:218] Iteration 2304 (2.39663 iter/s, 5.00703s/12 iters), loss = 2.41741 +I0407 22:17:23.285811 23786 solver.cpp:237] Train net output #0: loss = 2.41741 (* 1 = 2.41741 loss) +I0407 22:17:23.285825 23786 sgd_solver.cpp:105] Iteration 2304, lr = 0.00633567 +I0407 22:17:28.313928 23786 solver.cpp:218] Iteration 2316 (2.38667 iter/s, 5.02792s/12 iters), loss = 2.38152 +I0407 22:17:28.313988 23786 solver.cpp:237] Train net output #0: loss = 2.38152 (* 1 = 2.38152 loss) +I0407 22:17:28.314000 23786 sgd_solver.cpp:105] Iteration 2316, lr = 0.00632063 +I0407 22:17:32.563562 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:17:33.614035 23786 solver.cpp:218] Iteration 2328 (2.26422 iter/s, 5.29984s/12 iters), loss = 2.26613 +I0407 22:17:33.614070 23786 solver.cpp:237] Train net output #0: loss = 2.26613 (* 1 = 2.26613 loss) +I0407 22:17:33.614078 23786 sgd_solver.cpp:105] Iteration 2328, lr = 0.00630562 +I0407 22:17:38.603598 23786 solver.cpp:218] Iteration 2340 (2.40514 iter/s, 4.98932s/12 iters), loss = 2.32617 +I0407 22:17:38.603646 23786 solver.cpp:237] Train net output #0: loss = 2.32617 (* 1 = 2.32617 loss) +I0407 22:17:38.603658 23786 sgd_solver.cpp:105] Iteration 2340, lr = 0.00629065 +I0407 22:17:40.634774 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 22:17:43.705533 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 22:17:46.055186 23786 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 22:17:46.055215 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:17:49.654634 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:17:50.631373 23786 solver.cpp:397] Test net output #0: accuracy = 0.251838 +I0407 22:17:50.631423 23786 solver.cpp:397] Test net output #1: loss = 3.20574 (* 1 = 3.20574 loss) +I0407 22:17:52.608881 23786 solver.cpp:218] Iteration 2352 (0.856856 iter/s, 14.0047s/12 iters), loss = 2.52396 +I0407 22:17:52.608939 23786 solver.cpp:237] Train net output #0: loss = 2.52396 (* 1 = 2.52396 loss) +I0407 22:17:52.608952 23786 sgd_solver.cpp:105] Iteration 2352, lr = 0.00627571 +I0407 22:17:57.791523 23786 solver.cpp:218] Iteration 2364 (2.31554 iter/s, 5.18238s/12 iters), loss = 2.30235 +I0407 22:17:57.791623 23786 solver.cpp:237] Train net output #0: loss = 2.30235 (* 1 = 2.30235 loss) +I0407 22:17:57.791635 23786 sgd_solver.cpp:105] Iteration 2364, lr = 0.00626081 +I0407 22:18:02.793870 23786 solver.cpp:218] Iteration 2376 (2.39902 iter/s, 5.00205s/12 iters), loss = 2.46126 +I0407 22:18:02.793910 23786 solver.cpp:237] Train net output #0: loss = 2.46126 (* 1 = 2.46126 loss) +I0407 22:18:02.793920 23786 sgd_solver.cpp:105] Iteration 2376, lr = 0.00624595 +I0407 22:18:07.806998 23786 solver.cpp:218] Iteration 2388 (2.39383 iter/s, 5.01288s/12 iters), loss = 2.27926 +I0407 22:18:07.807049 23786 solver.cpp:237] Train net output #0: loss = 2.27926 (* 1 = 2.27926 loss) +I0407 22:18:07.807061 23786 sgd_solver.cpp:105] Iteration 2388, lr = 0.00623112 +I0407 22:18:12.802353 23786 solver.cpp:218] Iteration 2400 (2.40235 iter/s, 4.9951s/12 iters), loss = 2.25576 +I0407 22:18:12.802402 23786 solver.cpp:237] Train net output #0: loss = 2.25576 (* 1 = 2.25576 loss) +I0407 22:18:12.802413 23786 sgd_solver.cpp:105] Iteration 2400, lr = 0.00621633 +I0407 22:18:18.119491 23786 solver.cpp:218] Iteration 2412 (2.25697 iter/s, 5.31687s/12 iters), loss = 2.11736 +I0407 22:18:18.119541 23786 solver.cpp:237] Train net output #0: loss = 2.11736 (* 1 = 2.11736 loss) +I0407 22:18:18.119551 23786 sgd_solver.cpp:105] Iteration 2412, lr = 0.00620157 +I0407 22:18:23.205686 23786 solver.cpp:218] Iteration 2424 (2.35945 iter/s, 5.08594s/12 iters), loss = 2.89624 +I0407 22:18:23.205737 23786 solver.cpp:237] Train net output #0: loss = 2.89624 (* 1 = 2.89624 loss) +I0407 22:18:23.205751 23786 sgd_solver.cpp:105] Iteration 2424, lr = 0.00618684 +I0407 22:18:24.288250 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:28.223862 23786 solver.cpp:218] Iteration 2436 (2.39143 iter/s, 5.01792s/12 iters), loss = 2.31408 +I0407 22:18:28.224005 23786 solver.cpp:237] Train net output #0: loss = 2.31408 (* 1 = 2.31408 loss) +I0407 22:18:28.224020 23786 sgd_solver.cpp:105] Iteration 2436, lr = 0.00617215 +I0407 22:18:32.796243 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 22:18:35.817720 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 22:18:38.160315 23786 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 22:18:38.160337 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:18:41.626766 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:42.603940 23786 solver.cpp:397] Test net output #0: accuracy = 0.270833 +I0407 22:18:42.603989 23786 solver.cpp:397] Test net output #1: loss = 3.1296 (* 1 = 3.1296 loss) +I0407 22:18:42.694262 23786 solver.cpp:218] Iteration 2448 (0.829319 iter/s, 14.4697s/12 iters), loss = 2.35579 +I0407 22:18:42.694310 23786 solver.cpp:237] Train net output #0: loss = 2.35579 (* 1 = 2.35579 loss) +I0407 22:18:42.694322 23786 sgd_solver.cpp:105] Iteration 2448, lr = 0.0061575 +I0407 22:18:47.175499 23786 solver.cpp:218] Iteration 2460 (2.67797 iter/s, 4.48101s/12 iters), loss = 2.22091 +I0407 22:18:47.175542 23786 solver.cpp:237] Train net output #0: loss = 2.22091 (* 1 = 2.22091 loss) +I0407 22:18:47.175552 23786 sgd_solver.cpp:105] Iteration 2460, lr = 0.00614288 +I0407 22:18:52.239382 23786 solver.cpp:218] Iteration 2472 (2.36984 iter/s, 5.06363s/12 iters), loss = 2.6131 +I0407 22:18:52.239432 23786 solver.cpp:237] Train net output #0: loss = 2.6131 (* 1 = 2.6131 loss) +I0407 22:18:52.239444 23786 sgd_solver.cpp:105] Iteration 2472, lr = 0.0061283 +I0407 22:18:57.271944 23786 solver.cpp:218] Iteration 2484 (2.38459 iter/s, 5.03231s/12 iters), loss = 2.04543 +I0407 22:18:57.271989 23786 solver.cpp:237] Train net output #0: loss = 2.04543 (* 1 = 2.04543 loss) +I0407 22:18:57.272001 23786 sgd_solver.cpp:105] Iteration 2484, lr = 0.00611375 +I0407 22:19:02.291832 23786 solver.cpp:218] Iteration 2496 (2.39061 iter/s, 5.01964s/12 iters), loss = 2.23335 +I0407 22:19:02.291949 23786 solver.cpp:237] Train net output #0: loss = 2.23335 (* 1 = 2.23335 loss) +I0407 22:19:02.291961 23786 sgd_solver.cpp:105] Iteration 2496, lr = 0.00609923 +I0407 22:19:07.331224 23786 solver.cpp:218] Iteration 2508 (2.38139 iter/s, 5.03908s/12 iters), loss = 2.28499 +I0407 22:19:07.331280 23786 solver.cpp:237] Train net output #0: loss = 2.28499 (* 1 = 2.28499 loss) +I0407 22:19:07.331292 23786 sgd_solver.cpp:105] Iteration 2508, lr = 0.00608475 +I0407 22:19:12.345852 23786 solver.cpp:218] Iteration 2520 (2.39313 iter/s, 5.01436s/12 iters), loss = 2.14608 +I0407 22:19:12.345922 23786 solver.cpp:237] Train net output #0: loss = 2.14608 (* 1 = 2.14608 loss) +I0407 22:19:12.345938 23786 sgd_solver.cpp:105] Iteration 2520, lr = 0.0060703 +I0407 22:19:15.496039 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:19:17.294132 23786 solver.cpp:218] Iteration 2532 (2.42521 iter/s, 4.94802s/12 iters), loss = 2.25322 +I0407 22:19:17.294181 23786 solver.cpp:237] Train net output #0: loss = 2.25322 (* 1 = 2.25322 loss) +I0407 22:19:17.294193 23786 sgd_solver.cpp:105] Iteration 2532, lr = 0.00605589 +I0407 22:19:22.285506 23786 solver.cpp:218] Iteration 2544 (2.40427 iter/s, 4.99112s/12 iters), loss = 2.11183 +I0407 22:19:22.285552 23786 solver.cpp:237] Train net output #0: loss = 2.11183 (* 1 = 2.11183 loss) +I0407 22:19:22.285562 23786 sgd_solver.cpp:105] Iteration 2544, lr = 0.00604151 +I0407 22:19:24.310542 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 22:19:27.601095 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 22:19:30.203064 23786 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 22:19:30.203089 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:19:33.636179 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:19:34.660713 23786 solver.cpp:397] Test net output #0: accuracy = 0.289216 +I0407 22:19:34.660763 23786 solver.cpp:397] Test net output #1: loss = 3.08766 (* 1 = 3.08766 loss) +I0407 22:19:36.582262 23786 solver.cpp:218] Iteration 2556 (0.839387 iter/s, 14.2962s/12 iters), loss = 1.96606 +I0407 22:19:36.582319 23786 solver.cpp:237] Train net output #0: loss = 1.96606 (* 1 = 1.96606 loss) +I0407 22:19:36.582329 23786 sgd_solver.cpp:105] Iteration 2556, lr = 0.00602717 +I0407 22:19:41.603415 23786 solver.cpp:218] Iteration 2568 (2.39001 iter/s, 5.02089s/12 iters), loss = 2.23486 +I0407 22:19:41.603467 23786 solver.cpp:237] Train net output #0: loss = 2.23486 (* 1 = 2.23486 loss) +I0407 22:19:41.603479 23786 sgd_solver.cpp:105] Iteration 2568, lr = 0.00601286 +I0407 22:19:46.616623 23786 solver.cpp:218] Iteration 2580 (2.3938 iter/s, 5.01295s/12 iters), loss = 2.29068 +I0407 22:19:46.616675 23786 solver.cpp:237] Train net output #0: loss = 2.29068 (* 1 = 2.29068 loss) +I0407 22:19:46.616686 23786 sgd_solver.cpp:105] Iteration 2580, lr = 0.00599858 +I0407 22:19:51.609766 23786 solver.cpp:218] Iteration 2592 (2.40342 iter/s, 4.99289s/12 iters), loss = 2.2896 +I0407 22:19:51.609820 23786 solver.cpp:237] Train net output #0: loss = 2.2896 (* 1 = 2.2896 loss) +I0407 22:19:51.609833 23786 sgd_solver.cpp:105] Iteration 2592, lr = 0.00598434 +I0407 22:19:56.620728 23786 solver.cpp:218] Iteration 2604 (2.39487 iter/s, 5.0107s/12 iters), loss = 2.28675 +I0407 22:19:56.620779 23786 solver.cpp:237] Train net output #0: loss = 2.28675 (* 1 = 2.28675 loss) +I0407 22:19:56.620791 23786 sgd_solver.cpp:105] Iteration 2604, lr = 0.00597013 +I0407 22:20:01.618072 23786 solver.cpp:218] Iteration 2616 (2.4014 iter/s, 4.99708s/12 iters), loss = 2.31409 +I0407 22:20:01.618126 23786 solver.cpp:237] Train net output #0: loss = 2.31409 (* 1 = 2.31409 loss) +I0407 22:20:01.618137 23786 sgd_solver.cpp:105] Iteration 2616, lr = 0.00595596 +I0407 22:20:06.643050 23786 solver.cpp:218] Iteration 2628 (2.38819 iter/s, 5.02472s/12 iters), loss = 2.19057 +I0407 22:20:06.643163 23786 solver.cpp:237] Train net output #0: loss = 2.19057 (* 1 = 2.19057 loss) +I0407 22:20:06.643177 23786 sgd_solver.cpp:105] Iteration 2628, lr = 0.00594182 +I0407 22:20:07.079221 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:20:11.633111 23786 solver.cpp:218] Iteration 2640 (2.40493 iter/s, 4.98975s/12 iters), loss = 2.23186 +I0407 22:20:11.633158 23786 solver.cpp:237] Train net output #0: loss = 2.23186 (* 1 = 2.23186 loss) +I0407 22:20:11.633170 23786 sgd_solver.cpp:105] Iteration 2640, lr = 0.00592771 +I0407 22:20:16.147248 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 22:20:19.918929 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 22:20:22.472033 23786 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 22:20:22.472059 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:20:25.875156 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:20:26.933539 23786 solver.cpp:397] Test net output #0: accuracy = 0.299632 +I0407 22:20:26.933589 23786 solver.cpp:397] Test net output #1: loss = 2.98718 (* 1 = 2.98718 loss) +I0407 22:20:27.024276 23786 solver.cpp:218] Iteration 2652 (0.779701 iter/s, 15.3905s/12 iters), loss = 1.94744 +I0407 22:20:27.024327 23786 solver.cpp:237] Train net output #0: loss = 1.94744 (* 1 = 1.94744 loss) +I0407 22:20:27.024338 23786 sgd_solver.cpp:105] Iteration 2652, lr = 0.00591364 +I0407 22:20:31.322180 23786 solver.cpp:218] Iteration 2664 (2.79221 iter/s, 4.29768s/12 iters), loss = 1.6359 +I0407 22:20:31.322225 23786 solver.cpp:237] Train net output #0: loss = 1.6359 (* 1 = 1.6359 loss) +I0407 22:20:31.322237 23786 sgd_solver.cpp:105] Iteration 2664, lr = 0.0058996 +I0407 22:20:36.363906 23786 solver.cpp:218] Iteration 2676 (2.38026 iter/s, 5.04148s/12 iters), loss = 2.46829 +I0407 22:20:36.363955 23786 solver.cpp:237] Train net output #0: loss = 2.46829 (* 1 = 2.46829 loss) +I0407 22:20:36.363966 23786 sgd_solver.cpp:105] Iteration 2676, lr = 0.00588559 +I0407 22:20:41.371440 23786 solver.cpp:218] Iteration 2688 (2.39651 iter/s, 5.00729s/12 iters), loss = 2.23773 +I0407 22:20:41.371587 23786 solver.cpp:237] Train net output #0: loss = 2.23773 (* 1 = 2.23773 loss) +I0407 22:20:41.371601 23786 sgd_solver.cpp:105] Iteration 2688, lr = 0.00587162 +I0407 22:20:46.396862 23786 solver.cpp:218] Iteration 2700 (2.38803 iter/s, 5.02507s/12 iters), loss = 1.85497 +I0407 22:20:46.396909 23786 solver.cpp:237] Train net output #0: loss = 1.85497 (* 1 = 1.85497 loss) +I0407 22:20:46.396920 23786 sgd_solver.cpp:105] Iteration 2700, lr = 0.00585768 +I0407 22:20:51.435124 23786 solver.cpp:218] Iteration 2712 (2.38189 iter/s, 5.03801s/12 iters), loss = 1.69422 +I0407 22:20:51.435174 23786 solver.cpp:237] Train net output #0: loss = 1.69422 (* 1 = 1.69422 loss) +I0407 22:20:51.435189 23786 sgd_solver.cpp:105] Iteration 2712, lr = 0.00584377 +I0407 22:20:56.464674 23786 solver.cpp:218] Iteration 2724 (2.38602 iter/s, 5.0293s/12 iters), loss = 2.09234 +I0407 22:20:56.464727 23786 solver.cpp:237] Train net output #0: loss = 2.09234 (* 1 = 2.09234 loss) +I0407 22:20:56.464740 23786 sgd_solver.cpp:105] Iteration 2724, lr = 0.0058299 +I0407 22:20:59.019459 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:01.386299 23786 solver.cpp:218] Iteration 2736 (2.43834 iter/s, 4.92138s/12 iters), loss = 1.66432 +I0407 22:21:01.386345 23786 solver.cpp:237] Train net output #0: loss = 1.66432 (* 1 = 1.66432 loss) +I0407 22:21:01.386358 23786 sgd_solver.cpp:105] Iteration 2736, lr = 0.00581605 +I0407 22:21:06.362334 23786 solver.cpp:218] Iteration 2748 (2.41168 iter/s, 4.97579s/12 iters), loss = 1.93644 +I0407 22:21:06.362385 23786 solver.cpp:237] Train net output #0: loss = 1.93644 (* 1 = 1.93644 loss) +I0407 22:21:06.362397 23786 sgd_solver.cpp:105] Iteration 2748, lr = 0.00580225 +I0407 22:21:08.390717 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 22:21:11.359598 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 22:21:15.911720 23786 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 22:21:15.911770 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:21:18.993575 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:21:19.229204 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:20.332118 23786 solver.cpp:397] Test net output #0: accuracy = 0.302696 +I0407 22:21:20.332165 23786 solver.cpp:397] Test net output #1: loss = 2.98269 (* 1 = 2.98269 loss) +I0407 22:21:22.306663 23786 solver.cpp:218] Iteration 2760 (0.75265 iter/s, 15.9437s/12 iters), loss = 1.94218 +I0407 22:21:22.306717 23786 solver.cpp:237] Train net output #0: loss = 1.94218 (* 1 = 1.94218 loss) +I0407 22:21:22.306730 23786 sgd_solver.cpp:105] Iteration 2760, lr = 0.00578847 +I0407 22:21:27.428356 23786 solver.cpp:218] Iteration 2772 (2.34309 iter/s, 5.12144s/12 iters), loss = 1.86153 +I0407 22:21:27.428402 23786 solver.cpp:237] Train net output #0: loss = 1.86153 (* 1 = 1.86153 loss) +I0407 22:21:27.428413 23786 sgd_solver.cpp:105] Iteration 2772, lr = 0.00577473 +I0407 22:21:32.485831 23786 solver.cpp:218] Iteration 2784 (2.37285 iter/s, 5.05722s/12 iters), loss = 1.87422 +I0407 22:21:32.485882 23786 solver.cpp:237] Train net output #0: loss = 1.87422 (* 1 = 1.87422 loss) +I0407 22:21:32.485893 23786 sgd_solver.cpp:105] Iteration 2784, lr = 0.00576102 +I0407 22:21:37.441350 23786 solver.cpp:218] Iteration 2796 (2.42167 iter/s, 4.95527s/12 iters), loss = 1.92075 +I0407 22:21:37.441403 23786 solver.cpp:237] Train net output #0: loss = 1.92075 (* 1 = 1.92075 loss) +I0407 22:21:37.441414 23786 sgd_solver.cpp:105] Iteration 2796, lr = 0.00574734 +I0407 22:21:42.444578 23786 solver.cpp:218] Iteration 2808 (2.39857 iter/s, 5.00297s/12 iters), loss = 1.85987 +I0407 22:21:42.444624 23786 solver.cpp:237] Train net output #0: loss = 1.85987 (* 1 = 1.85987 loss) +I0407 22:21:42.444634 23786 sgd_solver.cpp:105] Iteration 2808, lr = 0.00573369 +I0407 22:21:47.697191 23786 solver.cpp:218] Iteration 2820 (2.28469 iter/s, 5.25236s/12 iters), loss = 1.83578 +I0407 22:21:47.697317 23786 solver.cpp:237] Train net output #0: loss = 1.83578 (* 1 = 1.83578 loss) +I0407 22:21:47.697326 23786 sgd_solver.cpp:105] Iteration 2820, lr = 0.00572008 +I0407 22:21:52.506183 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:52.794461 23786 solver.cpp:218] Iteration 2832 (2.35436 iter/s, 5.09693s/12 iters), loss = 1.72473 +I0407 22:21:52.794524 23786 solver.cpp:237] Train net output #0: loss = 1.72473 (* 1 = 1.72473 loss) +I0407 22:21:52.794535 23786 sgd_solver.cpp:105] Iteration 2832, lr = 0.0057065 +I0407 22:21:57.737391 23786 solver.cpp:218] Iteration 2844 (2.42784 iter/s, 4.94266s/12 iters), loss = 1.73962 +I0407 22:21:57.737440 23786 solver.cpp:237] Train net output #0: loss = 1.73962 (* 1 = 1.73962 loss) +I0407 22:21:57.737452 23786 sgd_solver.cpp:105] Iteration 2844, lr = 0.00569295 +I0407 22:22:02.284938 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 22:22:05.478108 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 22:22:07.809429 23786 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 22:22:07.809448 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:22:11.140444 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:12.278561 23786 solver.cpp:397] Test net output #0: accuracy = 0.330882 +I0407 22:22:12.278597 23786 solver.cpp:397] Test net output #1: loss = 2.87671 (* 1 = 2.87671 loss) +I0407 22:22:12.368808 23786 solver.cpp:218] Iteration 2856 (0.820188 iter/s, 14.6308s/12 iters), loss = 1.70605 +I0407 22:22:12.368854 23786 solver.cpp:237] Train net output #0: loss = 1.70605 (* 1 = 1.70605 loss) +I0407 22:22:12.368863 23786 sgd_solver.cpp:105] Iteration 2856, lr = 0.00567944 +I0407 22:22:16.676709 23786 solver.cpp:218] Iteration 2868 (2.78572 iter/s, 4.30768s/12 iters), loss = 1.84663 +I0407 22:22:16.676764 23786 solver.cpp:237] Train net output #0: loss = 1.84663 (* 1 = 1.84663 loss) +I0407 22:22:16.676775 23786 sgd_solver.cpp:105] Iteration 2868, lr = 0.00566595 +I0407 22:22:21.663561 23786 solver.cpp:218] Iteration 2880 (2.40645 iter/s, 4.9866s/12 iters), loss = 1.76085 +I0407 22:22:21.663684 23786 solver.cpp:237] Train net output #0: loss = 1.76085 (* 1 = 1.76085 loss) +I0407 22:22:21.663697 23786 sgd_solver.cpp:105] Iteration 2880, lr = 0.0056525 +I0407 22:22:26.622707 23786 solver.cpp:218] Iteration 2892 (2.41993 iter/s, 4.95882s/12 iters), loss = 1.80832 +I0407 22:22:26.622758 23786 solver.cpp:237] Train net output #0: loss = 1.80832 (* 1 = 1.80832 loss) +I0407 22:22:26.622771 23786 sgd_solver.cpp:105] Iteration 2892, lr = 0.00563908 +I0407 22:22:31.628664 23786 solver.cpp:218] Iteration 2904 (2.39727 iter/s, 5.0057s/12 iters), loss = 1.61032 +I0407 22:22:31.628713 23786 solver.cpp:237] Train net output #0: loss = 1.61032 (* 1 = 1.61032 loss) +I0407 22:22:31.628726 23786 sgd_solver.cpp:105] Iteration 2904, lr = 0.00562569 +I0407 22:22:36.489336 23786 solver.cpp:218] Iteration 2916 (2.46892 iter/s, 4.86042s/12 iters), loss = 1.2726 +I0407 22:22:36.489385 23786 solver.cpp:237] Train net output #0: loss = 1.2726 (* 1 = 1.2726 loss) +I0407 22:22:36.489398 23786 sgd_solver.cpp:105] Iteration 2916, lr = 0.00561233 +I0407 22:22:41.893026 23786 solver.cpp:218] Iteration 2928 (2.22081 iter/s, 5.40342s/12 iters), loss = 1.40001 +I0407 22:22:41.893065 23786 solver.cpp:237] Train net output #0: loss = 1.40001 (* 1 = 1.40001 loss) +I0407 22:22:41.893074 23786 sgd_solver.cpp:105] Iteration 2928, lr = 0.00559901 +I0407 22:22:43.731510 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:46.939532 23786 solver.cpp:218] Iteration 2940 (2.378 iter/s, 5.04626s/12 iters), loss = 1.66061 +I0407 22:22:46.939577 23786 solver.cpp:237] Train net output #0: loss = 1.66061 (* 1 = 1.66061 loss) +I0407 22:22:46.939589 23786 sgd_solver.cpp:105] Iteration 2940, lr = 0.00558572 +I0407 22:22:51.923045 23786 solver.cpp:218] Iteration 2952 (2.40806 iter/s, 4.98327s/12 iters), loss = 1.55676 +I0407 22:22:51.923182 23786 solver.cpp:237] Train net output #0: loss = 1.55676 (* 1 = 1.55676 loss) +I0407 22:22:51.923195 23786 sgd_solver.cpp:105] Iteration 2952, lr = 0.00557245 +I0407 22:22:53.957988 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 22:22:57.000087 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 22:22:59.383311 23786 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 22:22:59.383337 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:23:02.703924 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:03.889230 23786 solver.cpp:397] Test net output #0: accuracy = 0.314338 +I0407 22:23:03.889276 23786 solver.cpp:397] Test net output #1: loss = 2.95102 (* 1 = 2.95102 loss) +I0407 22:23:05.777850 23786 solver.cpp:218] Iteration 2964 (0.866168 iter/s, 13.8541s/12 iters), loss = 1.39215 +I0407 22:23:05.777904 23786 solver.cpp:237] Train net output #0: loss = 1.39215 (* 1 = 1.39215 loss) +I0407 22:23:05.777915 23786 sgd_solver.cpp:105] Iteration 2964, lr = 0.00555922 +I0407 22:23:10.761034 23786 solver.cpp:218] Iteration 2976 (2.40822 iter/s, 4.98293s/12 iters), loss = 1.74234 +I0407 22:23:10.761078 23786 solver.cpp:237] Train net output #0: loss = 1.74234 (* 1 = 1.74234 loss) +I0407 22:23:10.761090 23786 sgd_solver.cpp:105] Iteration 2976, lr = 0.00554603 +I0407 22:23:15.801018 23786 solver.cpp:218] Iteration 2988 (2.38108 iter/s, 5.03974s/12 iters), loss = 1.52541 +I0407 22:23:15.801065 23786 solver.cpp:237] Train net output #0: loss = 1.52541 (* 1 = 1.52541 loss) +I0407 22:23:15.801077 23786 sgd_solver.cpp:105] Iteration 2988, lr = 0.00553286 +I0407 22:23:20.775919 23786 solver.cpp:218] Iteration 3000 (2.41223 iter/s, 4.97465s/12 iters), loss = 1.79622 +I0407 22:23:20.775966 23786 solver.cpp:237] Train net output #0: loss = 1.79622 (* 1 = 1.79622 loss) +I0407 22:23:20.775976 23786 sgd_solver.cpp:105] Iteration 3000, lr = 0.00551972 +I0407 22:23:25.816920 23786 solver.cpp:218] Iteration 3012 (2.3806 iter/s, 5.04075s/12 iters), loss = 1.64049 +I0407 22:23:25.817059 23786 solver.cpp:237] Train net output #0: loss = 1.64049 (* 1 = 1.64049 loss) +I0407 22:23:25.817073 23786 sgd_solver.cpp:105] Iteration 3012, lr = 0.00550662 +I0407 22:23:30.841251 23786 solver.cpp:218] Iteration 3024 (2.38854 iter/s, 5.02399s/12 iters), loss = 1.38112 +I0407 22:23:30.841307 23786 solver.cpp:237] Train net output #0: loss = 1.38112 (* 1 = 1.38112 loss) +I0407 22:23:30.841320 23786 sgd_solver.cpp:105] Iteration 3024, lr = 0.00549354 +I0407 22:23:34.835944 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:35.848598 23786 solver.cpp:218] Iteration 3036 (2.3966 iter/s, 5.0071s/12 iters), loss = 1.3198 +I0407 22:23:35.848623 23786 solver.cpp:237] Train net output #0: loss = 1.3198 (* 1 = 1.3198 loss) +I0407 22:23:35.848629 23786 sgd_solver.cpp:105] Iteration 3036, lr = 0.0054805 +I0407 22:23:40.731626 23786 solver.cpp:218] Iteration 3048 (2.45761 iter/s, 4.8828s/12 iters), loss = 1.60489 +I0407 22:23:40.731673 23786 solver.cpp:237] Train net output #0: loss = 1.60489 (* 1 = 1.60489 loss) +I0407 22:23:40.731683 23786 sgd_solver.cpp:105] Iteration 3048, lr = 0.00546749 +I0407 22:23:45.229415 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 22:23:50.645068 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 22:23:52.999791 23786 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 22:23:52.999817 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:23:56.246289 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:57.466305 23786 solver.cpp:397] Test net output #0: accuracy = 0.332721 +I0407 22:23:57.466349 23786 solver.cpp:397] Test net output #1: loss = 2.8977 (* 1 = 2.8977 loss) +I0407 22:23:57.556514 23786 solver.cpp:218] Iteration 3060 (0.713259 iter/s, 16.8242s/12 iters), loss = 1.67968 +I0407 22:23:57.556562 23786 solver.cpp:237] Train net output #0: loss = 1.67968 (* 1 = 1.67968 loss) +I0407 22:23:57.556571 23786 sgd_solver.cpp:105] Iteration 3060, lr = 0.00545451 +I0407 22:24:01.758291 23786 solver.cpp:218] Iteration 3072 (2.85608 iter/s, 4.20156s/12 iters), loss = 1.57291 +I0407 22:24:01.758335 23786 solver.cpp:237] Train net output #0: loss = 1.57291 (* 1 = 1.57291 loss) +I0407 22:24:01.758343 23786 sgd_solver.cpp:105] Iteration 3072, lr = 0.00544156 +I0407 22:24:06.763878 23786 solver.cpp:218] Iteration 3084 (2.39744 iter/s, 5.00533s/12 iters), loss = 1.57087 +I0407 22:24:06.763942 23786 solver.cpp:237] Train net output #0: loss = 1.57087 (* 1 = 1.57087 loss) +I0407 22:24:06.763954 23786 sgd_solver.cpp:105] Iteration 3084, lr = 0.00542864 +I0407 22:24:11.687475 23786 solver.cpp:218] Iteration 3096 (2.43737 iter/s, 4.92334s/12 iters), loss = 1.70846 +I0407 22:24:11.687527 23786 solver.cpp:237] Train net output #0: loss = 1.70846 (* 1 = 1.70846 loss) +I0407 22:24:11.687539 23786 sgd_solver.cpp:105] Iteration 3096, lr = 0.00541575 +I0407 22:24:16.775094 23786 solver.cpp:218] Iteration 3108 (2.35879 iter/s, 5.08736s/12 iters), loss = 1.44649 +I0407 22:24:16.775146 23786 solver.cpp:237] Train net output #0: loss = 1.44649 (* 1 = 1.44649 loss) +I0407 22:24:16.775158 23786 sgd_solver.cpp:105] Iteration 3108, lr = 0.00540289 +I0407 22:24:21.765367 23786 solver.cpp:218] Iteration 3120 (2.4048 iter/s, 4.99001s/12 iters), loss = 1.29728 +I0407 22:24:21.765416 23786 solver.cpp:237] Train net output #0: loss = 1.29728 (* 1 = 1.29728 loss) +I0407 22:24:21.765426 23786 sgd_solver.cpp:105] Iteration 3120, lr = 0.00539006 +I0407 22:24:26.794677 23786 solver.cpp:218] Iteration 3132 (2.38613 iter/s, 5.02906s/12 iters), loss = 1.65432 +I0407 22:24:26.794786 23786 solver.cpp:237] Train net output #0: loss = 1.65432 (* 1 = 1.65432 loss) +I0407 22:24:26.794798 23786 sgd_solver.cpp:105] Iteration 3132, lr = 0.00537727 +I0407 22:24:27.885380 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:31.948537 23786 solver.cpp:218] Iteration 3144 (2.3285 iter/s, 5.15354s/12 iters), loss = 1.45986 +I0407 22:24:31.948602 23786 solver.cpp:237] Train net output #0: loss = 1.45986 (* 1 = 1.45986 loss) +I0407 22:24:31.948618 23786 sgd_solver.cpp:105] Iteration 3144, lr = 0.0053645 +I0407 22:24:37.116210 23786 solver.cpp:218] Iteration 3156 (2.32225 iter/s, 5.1674s/12 iters), loss = 1.49139 +I0407 22:24:37.116266 23786 solver.cpp:237] Train net output #0: loss = 1.49139 (* 1 = 1.49139 loss) +I0407 22:24:37.116277 23786 sgd_solver.cpp:105] Iteration 3156, lr = 0.00535176 +I0407 22:24:39.090816 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 22:24:44.173547 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 22:24:52.536219 23786 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 22:24:52.536243 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:24:55.729477 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:57.306542 23786 solver.cpp:397] Test net output #0: accuracy = 0.338235 +I0407 22:24:57.306663 23786 solver.cpp:397] Test net output #1: loss = 2.95308 (* 1 = 2.95308 loss) +I0407 22:24:59.289577 23786 solver.cpp:218] Iteration 3168 (0.541212 iter/s, 22.1725s/12 iters), loss = 1.38883 +I0407 22:24:59.289633 23786 solver.cpp:237] Train net output #0: loss = 1.38883 (* 1 = 1.38883 loss) +I0407 22:24:59.289645 23786 sgd_solver.cpp:105] Iteration 3168, lr = 0.00533906 +I0407 22:25:04.478989 23786 solver.cpp:218] Iteration 3180 (2.31252 iter/s, 5.18915s/12 iters), loss = 1.59795 +I0407 22:25:04.479033 23786 solver.cpp:237] Train net output #0: loss = 1.59795 (* 1 = 1.59795 loss) +I0407 22:25:04.479043 23786 sgd_solver.cpp:105] Iteration 3180, lr = 0.00532638 +I0407 22:25:09.392254 23786 solver.cpp:218] Iteration 3192 (2.44249 iter/s, 4.91301s/12 iters), loss = 1.60008 +I0407 22:25:09.392308 23786 solver.cpp:237] Train net output #0: loss = 1.60008 (* 1 = 1.60008 loss) +I0407 22:25:09.392320 23786 sgd_solver.cpp:105] Iteration 3192, lr = 0.00531374 +I0407 22:25:14.848547 23786 solver.cpp:218] Iteration 3204 (2.1994 iter/s, 5.45602s/12 iters), loss = 1.25398 +I0407 22:25:14.848584 23786 solver.cpp:237] Train net output #0: loss = 1.25398 (* 1 = 1.25398 loss) +I0407 22:25:14.848592 23786 sgd_solver.cpp:105] Iteration 3204, lr = 0.00530112 +I0407 22:25:20.055507 23786 solver.cpp:218] Iteration 3216 (2.30472 iter/s, 5.20671s/12 iters), loss = 1.64318 +I0407 22:25:20.055546 23786 solver.cpp:237] Train net output #0: loss = 1.64318 (* 1 = 1.64318 loss) +I0407 22:25:20.055554 23786 sgd_solver.cpp:105] Iteration 3216, lr = 0.00528853 +I0407 22:25:25.034214 23786 solver.cpp:218] Iteration 3228 (2.41038 iter/s, 4.97847s/12 iters), loss = 1.10427 +I0407 22:25:25.034256 23786 solver.cpp:237] Train net output #0: loss = 1.10427 (* 1 = 1.10427 loss) +I0407 22:25:25.034267 23786 sgd_solver.cpp:105] Iteration 3228, lr = 0.00527598 +I0407 22:25:28.298452 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:30.058349 23786 solver.cpp:218] Iteration 3240 (2.38859 iter/s, 5.02389s/12 iters), loss = 1.57003 +I0407 22:25:30.058390 23786 solver.cpp:237] Train net output #0: loss = 1.57003 (* 1 = 1.57003 loss) +I0407 22:25:30.058399 23786 sgd_solver.cpp:105] Iteration 3240, lr = 0.00526345 +I0407 22:25:35.142012 23786 solver.cpp:218] Iteration 3252 (2.36062 iter/s, 5.08342s/12 iters), loss = 1.432 +I0407 22:25:35.142055 23786 solver.cpp:237] Train net output #0: loss = 1.432 (* 1 = 1.432 loss) +I0407 22:25:35.142062 23786 sgd_solver.cpp:105] Iteration 3252, lr = 0.00525095 +I0407 22:25:39.621052 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 22:25:50.506619 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 22:25:58.630817 23786 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 22:25:58.630905 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:26:01.828766 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:03.129272 23786 solver.cpp:397] Test net output #0: accuracy = 0.335172 +I0407 22:26:03.129320 23786 solver.cpp:397] Test net output #1: loss = 3.0182 (* 1 = 3.0182 loss) +I0407 22:26:03.219322 23786 solver.cpp:218] Iteration 3264 (0.427409 iter/s, 28.0762s/12 iters), loss = 1.9348 +I0407 22:26:03.219368 23786 solver.cpp:237] Train net output #0: loss = 1.9348 (* 1 = 1.9348 loss) +I0407 22:26:03.219378 23786 sgd_solver.cpp:105] Iteration 3264, lr = 0.00523849 +I0407 22:26:07.644290 23786 solver.cpp:218] Iteration 3276 (2.71203 iter/s, 4.42474s/12 iters), loss = 1.07453 +I0407 22:26:07.644330 23786 solver.cpp:237] Train net output #0: loss = 1.07453 (* 1 = 1.07453 loss) +I0407 22:26:07.644337 23786 sgd_solver.cpp:105] Iteration 3276, lr = 0.00522605 +I0407 22:26:12.644838 23786 solver.cpp:218] Iteration 3288 (2.39986 iter/s, 5.0003s/12 iters), loss = 1.22623 +I0407 22:26:12.644892 23786 solver.cpp:237] Train net output #0: loss = 1.22623 (* 1 = 1.22623 loss) +I0407 22:26:12.644903 23786 sgd_solver.cpp:105] Iteration 3288, lr = 0.00521364 +I0407 22:26:17.675402 23786 solver.cpp:218] Iteration 3300 (2.38554 iter/s, 5.0303s/12 iters), loss = 1.40001 +I0407 22:26:17.675457 23786 solver.cpp:237] Train net output #0: loss = 1.40001 (* 1 = 1.40001 loss) +I0407 22:26:17.675468 23786 sgd_solver.cpp:105] Iteration 3300, lr = 0.00520126 +I0407 22:26:22.692915 23786 solver.cpp:218] Iteration 3312 (2.39174 iter/s, 5.01726s/12 iters), loss = 1.36009 +I0407 22:26:22.692951 23786 solver.cpp:237] Train net output #0: loss = 1.36009 (* 1 = 1.36009 loss) +I0407 22:26:22.692960 23786 sgd_solver.cpp:105] Iteration 3312, lr = 0.00518892 +I0407 22:26:27.750413 23786 solver.cpp:218] Iteration 3324 (2.37283 iter/s, 5.05725s/12 iters), loss = 1.31729 +I0407 22:26:27.750468 23786 solver.cpp:237] Train net output #0: loss = 1.31729 (* 1 = 1.31729 loss) +I0407 22:26:27.750480 23786 sgd_solver.cpp:105] Iteration 3324, lr = 0.0051766 +I0407 22:26:32.747468 23786 solver.cpp:218] Iteration 3336 (2.40154 iter/s, 4.99679s/12 iters), loss = 1.20299 +I0407 22:26:32.749729 23786 solver.cpp:237] Train net output #0: loss = 1.20299 (* 1 = 1.20299 loss) +I0407 22:26:32.749742 23786 sgd_solver.cpp:105] Iteration 3336, lr = 0.00516431 +I0407 22:26:33.206367 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:37.691644 23786 solver.cpp:218] Iteration 3348 (2.4283 iter/s, 4.94172s/12 iters), loss = 1.19659 +I0407 22:26:37.691686 23786 solver.cpp:237] Train net output #0: loss = 1.19659 (* 1 = 1.19659 loss) +I0407 22:26:37.691695 23786 sgd_solver.cpp:105] Iteration 3348, lr = 0.00515204 +I0407 22:26:42.683236 23786 solver.cpp:218] Iteration 3360 (2.40416 iter/s, 4.99135s/12 iters), loss = 1.22172 +I0407 22:26:42.683274 23786 solver.cpp:237] Train net output #0: loss = 1.22172 (* 1 = 1.22172 loss) +I0407 22:26:42.683284 23786 sgd_solver.cpp:105] Iteration 3360, lr = 0.00513981 +I0407 22:26:44.715384 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 22:26:51.999701 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 22:26:57.639256 23786 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 22:26:57.639282 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:27:00.761194 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:02.096426 23786 solver.cpp:397] Test net output #0: accuracy = 0.344976 +I0407 22:27:02.096474 23786 solver.cpp:397] Test net output #1: loss = 2.97151 (* 1 = 2.97151 loss) +I0407 22:27:04.058073 23786 solver.cpp:218] Iteration 3372 (0.561431 iter/s, 21.374s/12 iters), loss = 1.19853 +I0407 22:27:04.058193 23786 solver.cpp:237] Train net output #0: loss = 1.19853 (* 1 = 1.19853 loss) +I0407 22:27:04.058207 23786 sgd_solver.cpp:105] Iteration 3372, lr = 0.00512761 +I0407 22:27:09.110440 23786 solver.cpp:218] Iteration 3384 (2.37527 iter/s, 5.05205s/12 iters), loss = 1.4441 +I0407 22:27:09.110483 23786 solver.cpp:237] Train net output #0: loss = 1.4441 (* 1 = 1.4441 loss) +I0407 22:27:09.110492 23786 sgd_solver.cpp:105] Iteration 3384, lr = 0.00511544 +I0407 22:27:14.096335 23786 solver.cpp:218] Iteration 3396 (2.40691 iter/s, 4.98564s/12 iters), loss = 1.33914 +I0407 22:27:14.096386 23786 solver.cpp:237] Train net output #0: loss = 1.33914 (* 1 = 1.33914 loss) +I0407 22:27:14.096398 23786 sgd_solver.cpp:105] Iteration 3396, lr = 0.00510329 +I0407 22:27:19.162248 23786 solver.cpp:218] Iteration 3408 (2.3689 iter/s, 5.06565s/12 iters), loss = 0.990169 +I0407 22:27:19.162307 23786 solver.cpp:237] Train net output #0: loss = 0.990169 (* 1 = 0.990169 loss) +I0407 22:27:19.162319 23786 sgd_solver.cpp:105] Iteration 3408, lr = 0.00509117 +I0407 22:27:24.218364 23786 solver.cpp:218] Iteration 3420 (2.37349 iter/s, 5.05585s/12 iters), loss = 1.00088 +I0407 22:27:24.218430 23786 solver.cpp:237] Train net output #0: loss = 1.00088 (* 1 = 1.00088 loss) +I0407 22:27:24.218443 23786 sgd_solver.cpp:105] Iteration 3420, lr = 0.00507909 +I0407 22:27:29.395608 23786 solver.cpp:218] Iteration 3432 (2.31796 iter/s, 5.17697s/12 iters), loss = 1.28398 +I0407 22:27:29.395651 23786 solver.cpp:237] Train net output #0: loss = 1.28398 (* 1 = 1.28398 loss) +I0407 22:27:29.395660 23786 sgd_solver.cpp:105] Iteration 3432, lr = 0.00506703 +I0407 22:27:32.042295 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:34.441042 23786 solver.cpp:218] Iteration 3444 (2.37851 iter/s, 5.04518s/12 iters), loss = 1.08431 +I0407 22:27:34.441181 23786 solver.cpp:237] Train net output #0: loss = 1.08431 (* 1 = 1.08431 loss) +I0407 22:27:34.441193 23786 sgd_solver.cpp:105] Iteration 3444, lr = 0.005055 +I0407 22:27:39.422899 23786 solver.cpp:218] Iteration 3456 (2.40891 iter/s, 4.98151s/12 iters), loss = 1.33381 +I0407 22:27:39.422950 23786 solver.cpp:237] Train net output #0: loss = 1.33381 (* 1 = 1.33381 loss) +I0407 22:27:39.422962 23786 sgd_solver.cpp:105] Iteration 3456, lr = 0.005043 +I0407 22:27:43.959215 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 22:27:50.247548 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 22:27:59.095103 23786 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 22:27:59.095126 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:27:59.519770 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:28:02.159092 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:03.728499 23786 solver.cpp:397] Test net output #0: accuracy = 0.348652 +I0407 22:28:03.728549 23786 solver.cpp:397] Test net output #1: loss = 2.9753 (* 1 = 2.9753 loss) +I0407 22:28:03.816519 23786 solver.cpp:218] Iteration 3468 (0.491952 iter/s, 24.3926s/12 iters), loss = 1.18401 +I0407 22:28:03.816570 23786 solver.cpp:237] Train net output #0: loss = 1.18401 (* 1 = 1.18401 loss) +I0407 22:28:03.816581 23786 sgd_solver.cpp:105] Iteration 3468, lr = 0.00503102 +I0407 22:28:08.070992 23786 solver.cpp:218] Iteration 3480 (2.82071 iter/s, 4.25425s/12 iters), loss = 1.28341 +I0407 22:28:08.071091 23786 solver.cpp:237] Train net output #0: loss = 1.28341 (* 1 = 1.28341 loss) +I0407 22:28:08.071100 23786 sgd_solver.cpp:105] Iteration 3480, lr = 0.00501908 +I0407 22:28:13.175129 23786 solver.cpp:218] Iteration 3492 (2.35118 iter/s, 5.10383s/12 iters), loss = 1.08258 +I0407 22:28:13.175179 23786 solver.cpp:237] Train net output #0: loss = 1.08258 (* 1 = 1.08258 loss) +I0407 22:28:13.175190 23786 sgd_solver.cpp:105] Iteration 3492, lr = 0.00500716 +I0407 22:28:18.153678 23786 solver.cpp:218] Iteration 3504 (2.41046 iter/s, 4.97829s/12 iters), loss = 0.924982 +I0407 22:28:18.153718 23786 solver.cpp:237] Train net output #0: loss = 0.924982 (* 1 = 0.924982 loss) +I0407 22:28:18.153726 23786 sgd_solver.cpp:105] Iteration 3504, lr = 0.00499527 +I0407 22:28:23.110113 23786 solver.cpp:218] Iteration 3516 (2.42121 iter/s, 4.95619s/12 iters), loss = 1.13295 +I0407 22:28:23.110160 23786 solver.cpp:237] Train net output #0: loss = 1.13295 (* 1 = 1.13295 loss) +I0407 22:28:23.110169 23786 sgd_solver.cpp:105] Iteration 3516, lr = 0.00498341 +I0407 22:28:28.061218 23786 solver.cpp:218] Iteration 3528 (2.42382 iter/s, 4.95085s/12 iters), loss = 1.1707 +I0407 22:28:28.061264 23786 solver.cpp:237] Train net output #0: loss = 1.1707 (* 1 = 1.1707 loss) +I0407 22:28:28.061275 23786 sgd_solver.cpp:105] Iteration 3528, lr = 0.00497158 +I0407 22:28:32.811656 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:33.067605 23786 solver.cpp:218] Iteration 3540 (2.39706 iter/s, 5.00614s/12 iters), loss = 1.20268 +I0407 22:28:33.067651 23786 solver.cpp:237] Train net output #0: loss = 1.20268 (* 1 = 1.20268 loss) +I0407 22:28:33.067662 23786 sgd_solver.cpp:105] Iteration 3540, lr = 0.00495978 +I0407 22:28:38.085572 23786 solver.cpp:218] Iteration 3552 (2.39152 iter/s, 5.01772s/12 iters), loss = 1.44138 +I0407 22:28:38.085685 23786 solver.cpp:237] Train net output #0: loss = 1.44138 (* 1 = 1.44138 loss) +I0407 22:28:38.085696 23786 sgd_solver.cpp:105] Iteration 3552, lr = 0.004948 +I0407 22:28:43.148345 23786 solver.cpp:218] Iteration 3564 (2.37039 iter/s, 5.06245s/12 iters), loss = 1.1153 +I0407 22:28:43.148396 23786 solver.cpp:237] Train net output #0: loss = 1.1153 (* 1 = 1.1153 loss) +I0407 22:28:43.148407 23786 sgd_solver.cpp:105] Iteration 3564, lr = 0.00493626 +I0407 22:28:45.188354 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 22:28:54.321137 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 22:28:58.541893 23786 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 22:28:58.541920 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:29:01.585872 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:03.000080 23786 solver.cpp:397] Test net output #0: accuracy = 0.354779 +I0407 22:29:03.000128 23786 solver.cpp:397] Test net output #1: loss = 2.97542 (* 1 = 2.97542 loss) +I0407 22:29:04.875346 23786 solver.cpp:218] Iteration 3576 (0.552331 iter/s, 21.7261s/12 iters), loss = 1.14259 +I0407 22:29:04.875381 23786 solver.cpp:237] Train net output #0: loss = 1.14259 (* 1 = 1.14259 loss) +I0407 22:29:04.875389 23786 sgd_solver.cpp:105] Iteration 3576, lr = 0.00492454 +I0407 22:29:10.045711 23786 solver.cpp:218] Iteration 3588 (2.32103 iter/s, 5.17011s/12 iters), loss = 0.966099 +I0407 22:29:10.045823 23786 solver.cpp:237] Train net output #0: loss = 0.966099 (* 1 = 0.966099 loss) +I0407 22:29:10.045835 23786 sgd_solver.cpp:105] Iteration 3588, lr = 0.00491284 +I0407 22:29:14.991523 23786 solver.cpp:218] Iteration 3600 (2.42645 iter/s, 4.9455s/12 iters), loss = 1.14531 +I0407 22:29:14.991564 23786 solver.cpp:237] Train net output #0: loss = 1.14531 (* 1 = 1.14531 loss) +I0407 22:29:14.991575 23786 sgd_solver.cpp:105] Iteration 3600, lr = 0.00490118 +I0407 22:29:19.918082 23786 solver.cpp:218] Iteration 3612 (2.43589 iter/s, 4.92632s/12 iters), loss = 1.30254 +I0407 22:29:19.918125 23786 solver.cpp:237] Train net output #0: loss = 1.30254 (* 1 = 1.30254 loss) +I0407 22:29:19.918136 23786 sgd_solver.cpp:105] Iteration 3612, lr = 0.00488954 +I0407 22:29:24.856940 23786 solver.cpp:218] Iteration 3624 (2.42983 iter/s, 4.93862s/12 iters), loss = 0.983823 +I0407 22:29:24.856976 23786 solver.cpp:237] Train net output #0: loss = 0.983823 (* 1 = 0.983823 loss) +I0407 22:29:24.856986 23786 sgd_solver.cpp:105] Iteration 3624, lr = 0.00487793 +I0407 22:29:29.897631 23786 solver.cpp:218] Iteration 3636 (2.38074 iter/s, 5.04045s/12 iters), loss = 1.19004 +I0407 22:29:29.897671 23786 solver.cpp:237] Train net output #0: loss = 1.19004 (* 1 = 1.19004 loss) +I0407 22:29:29.897680 23786 sgd_solver.cpp:105] Iteration 3636, lr = 0.00486635 +I0407 22:29:31.791455 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:34.951503 23786 solver.cpp:218] Iteration 3648 (2.37453 iter/s, 5.05362s/12 iters), loss = 1.11081 +I0407 22:29:34.951547 23786 solver.cpp:237] Train net output #0: loss = 1.11081 (* 1 = 1.11081 loss) +I0407 22:29:34.951557 23786 sgd_solver.cpp:105] Iteration 3648, lr = 0.0048548 +I0407 22:29:39.999878 23786 solver.cpp:218] Iteration 3660 (2.37712 iter/s, 5.04812s/12 iters), loss = 0.982054 +I0407 22:29:39.999933 23786 solver.cpp:237] Train net output #0: loss = 0.982054 (* 1 = 0.982054 loss) +I0407 22:29:39.999944 23786 sgd_solver.cpp:105] Iteration 3660, lr = 0.00484327 +I0407 22:29:44.530807 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 22:29:49.722811 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 22:29:53.856683 23786 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 22:29:53.856709 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:29:56.835296 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:58.295435 23786 solver.cpp:397] Test net output #0: accuracy = 0.341299 +I0407 22:29:58.295485 23786 solver.cpp:397] Test net output #1: loss = 3.1136 (* 1 = 3.1136 loss) +I0407 22:29:58.385907 23786 solver.cpp:218] Iteration 3672 (0.652697 iter/s, 18.3853s/12 iters), loss = 1.12993 +I0407 22:29:58.385974 23786 solver.cpp:237] Train net output #0: loss = 1.12993 (* 1 = 1.12993 loss) +I0407 22:29:58.385985 23786 sgd_solver.cpp:105] Iteration 3672, lr = 0.00483177 +I0407 22:30:02.567023 23786 solver.cpp:218] Iteration 3684 (2.8702 iter/s, 4.18089s/12 iters), loss = 1.11092 +I0407 22:30:02.567062 23786 solver.cpp:237] Train net output #0: loss = 1.11092 (* 1 = 1.11092 loss) +I0407 22:30:02.567071 23786 sgd_solver.cpp:105] Iteration 3684, lr = 0.0048203 +I0407 22:30:07.617255 23786 solver.cpp:218] Iteration 3696 (2.37625 iter/s, 5.04998s/12 iters), loss = 1.0133 +I0407 22:30:07.617311 23786 solver.cpp:237] Train net output #0: loss = 1.0133 (* 1 = 1.0133 loss) +I0407 22:30:07.617322 23786 sgd_solver.cpp:105] Iteration 3696, lr = 0.00480886 +I0407 22:30:12.630187 23786 solver.cpp:218] Iteration 3708 (2.39393 iter/s, 5.01267s/12 iters), loss = 0.865666 +I0407 22:30:12.630228 23786 solver.cpp:237] Train net output #0: loss = 0.865666 (* 1 = 0.865666 loss) +I0407 22:30:12.630237 23786 sgd_solver.cpp:105] Iteration 3708, lr = 0.00479744 +I0407 22:30:17.649497 23786 solver.cpp:218] Iteration 3720 (2.39088 iter/s, 5.01906s/12 iters), loss = 1.16554 +I0407 22:30:17.649610 23786 solver.cpp:237] Train net output #0: loss = 1.16554 (* 1 = 1.16554 loss) +I0407 22:30:17.649619 23786 sgd_solver.cpp:105] Iteration 3720, lr = 0.00478605 +I0407 22:30:22.575590 23786 solver.cpp:218] Iteration 3732 (2.43616 iter/s, 4.92578s/12 iters), loss = 0.807386 +I0407 22:30:22.575628 23786 solver.cpp:237] Train net output #0: loss = 0.807386 (* 1 = 0.807386 loss) +I0407 22:30:22.575637 23786 sgd_solver.cpp:105] Iteration 3732, lr = 0.00477469 +I0407 22:30:26.572033 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:27.576781 23786 solver.cpp:218] Iteration 3744 (2.39954 iter/s, 5.00095s/12 iters), loss = 0.833553 +I0407 22:30:27.576825 23786 solver.cpp:237] Train net output #0: loss = 0.833553 (* 1 = 0.833553 loss) +I0407 22:30:27.576833 23786 sgd_solver.cpp:105] Iteration 3744, lr = 0.00476335 +I0407 22:30:32.613603 23786 solver.cpp:218] Iteration 3756 (2.38257 iter/s, 5.03657s/12 iters), loss = 1.52465 +I0407 22:30:32.613648 23786 solver.cpp:237] Train net output #0: loss = 1.52465 (* 1 = 1.52465 loss) +I0407 22:30:32.613658 23786 sgd_solver.cpp:105] Iteration 3756, lr = 0.00475204 +I0407 22:30:37.604068 23786 solver.cpp:218] Iteration 3768 (2.4047 iter/s, 4.99022s/12 iters), loss = 1.17562 +I0407 22:30:37.604104 23786 solver.cpp:237] Train net output #0: loss = 1.17562 (* 1 = 1.17562 loss) +I0407 22:30:37.604112 23786 sgd_solver.cpp:105] Iteration 3768, lr = 0.00474076 +I0407 22:30:39.624366 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 22:30:43.048578 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 22:30:49.777815 23786 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 22:30:49.777875 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:30:52.748401 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:54.244020 23786 solver.cpp:397] Test net output #0: accuracy = 0.365809 +I0407 22:30:54.244065 23786 solver.cpp:397] Test net output #1: loss = 3.05828 (* 1 = 3.05828 loss) +I0407 22:30:56.219189 23786 solver.cpp:218] Iteration 3780 (0.644664 iter/s, 18.6144s/12 iters), loss = 0.862802 +I0407 22:30:56.219242 23786 solver.cpp:237] Train net output #0: loss = 0.862802 (* 1 = 0.862802 loss) +I0407 22:30:56.219254 23786 sgd_solver.cpp:105] Iteration 3780, lr = 0.00472951 +I0407 22:31:01.290887 23786 solver.cpp:218] Iteration 3792 (2.36619 iter/s, 5.07143s/12 iters), loss = 1.045 +I0407 22:31:01.290938 23786 solver.cpp:237] Train net output #0: loss = 1.045 (* 1 = 1.045 loss) +I0407 22:31:01.290949 23786 sgd_solver.cpp:105] Iteration 3792, lr = 0.00471828 +I0407 22:31:06.392674 23786 solver.cpp:218] Iteration 3804 (2.35224 iter/s, 5.10153s/12 iters), loss = 0.803693 +I0407 22:31:06.392719 23786 solver.cpp:237] Train net output #0: loss = 0.803693 (* 1 = 0.803693 loss) +I0407 22:31:06.392730 23786 sgd_solver.cpp:105] Iteration 3804, lr = 0.00470707 +I0407 22:31:11.382164 23786 solver.cpp:218] Iteration 3816 (2.40518 iter/s, 4.98924s/12 iters), loss = 0.977566 +I0407 22:31:11.382207 23786 solver.cpp:237] Train net output #0: loss = 0.977566 (* 1 = 0.977566 loss) +I0407 22:31:11.382216 23786 sgd_solver.cpp:105] Iteration 3816, lr = 0.0046959 +I0407 22:31:16.372416 23786 solver.cpp:218] Iteration 3828 (2.40481 iter/s, 4.99s/12 iters), loss = 0.774383 +I0407 22:31:16.372469 23786 solver.cpp:237] Train net output #0: loss = 0.774383 (* 1 = 0.774383 loss) +I0407 22:31:16.372481 23786 sgd_solver.cpp:105] Iteration 3828, lr = 0.00468475 +I0407 22:31:21.388900 23786 solver.cpp:218] Iteration 3840 (2.39224 iter/s, 5.01623s/12 iters), loss = 0.865984 +I0407 22:31:21.389041 23786 solver.cpp:237] Train net output #0: loss = 0.865984 (* 1 = 0.865984 loss) +I0407 22:31:21.389055 23786 sgd_solver.cpp:105] Iteration 3840, lr = 0.00467363 +I0407 22:31:22.543745 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:26.395478 23786 solver.cpp:218] Iteration 3852 (2.39701 iter/s, 5.00624s/12 iters), loss = 1.01542 +I0407 22:31:26.395519 23786 solver.cpp:237] Train net output #0: loss = 1.01542 (* 1 = 1.01542 loss) +I0407 22:31:26.395529 23786 sgd_solver.cpp:105] Iteration 3852, lr = 0.00466253 +I0407 22:31:31.345722 23786 solver.cpp:218] Iteration 3864 (2.42424 iter/s, 4.95s/12 iters), loss = 1.01451 +I0407 22:31:31.345767 23786 solver.cpp:237] Train net output #0: loss = 1.01451 (* 1 = 1.01451 loss) +I0407 22:31:31.345777 23786 sgd_solver.cpp:105] Iteration 3864, lr = 0.00465146 +I0407 22:31:35.844511 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 22:31:38.792176 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 22:31:41.113641 23786 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 22:31:41.113663 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:31:44.031685 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:45.575882 23786 solver.cpp:397] Test net output #0: accuracy = 0.379902 +I0407 22:31:45.575927 23786 solver.cpp:397] Test net output #1: loss = 3.12065 (* 1 = 3.12065 loss) +I0407 22:31:45.666146 23786 solver.cpp:218] Iteration 3876 (0.838 iter/s, 14.3198s/12 iters), loss = 0.794036 +I0407 22:31:45.666191 23786 solver.cpp:237] Train net output #0: loss = 0.794036 (* 1 = 0.794036 loss) +I0407 22:31:45.666203 23786 sgd_solver.cpp:105] Iteration 3876, lr = 0.00464042 +I0407 22:31:50.069154 23786 solver.cpp:218] Iteration 3888 (2.72555 iter/s, 4.40278s/12 iters), loss = 0.827676 +I0407 22:31:50.069197 23786 solver.cpp:237] Train net output #0: loss = 0.827676 (* 1 = 0.827676 loss) +I0407 22:31:50.069206 23786 sgd_solver.cpp:105] Iteration 3888, lr = 0.0046294 +I0407 22:31:55.140393 23786 solver.cpp:218] Iteration 3900 (2.3664 iter/s, 5.07099s/12 iters), loss = 1.03842 +I0407 22:31:55.140466 23786 solver.cpp:237] Train net output #0: loss = 1.03842 (* 1 = 1.03842 loss) +I0407 22:31:55.140477 23786 sgd_solver.cpp:105] Iteration 3900, lr = 0.00461841 +I0407 22:32:00.291898 23786 solver.cpp:218] Iteration 3912 (2.32954 iter/s, 5.15122s/12 iters), loss = 0.820157 +I0407 22:32:00.291945 23786 solver.cpp:237] Train net output #0: loss = 0.820157 (* 1 = 0.820157 loss) +I0407 22:32:00.291956 23786 sgd_solver.cpp:105] Iteration 3912, lr = 0.00460744 +I0407 22:32:05.328194 23786 solver.cpp:218] Iteration 3924 (2.38282 iter/s, 5.03604s/12 iters), loss = 0.848589 +I0407 22:32:05.328250 23786 solver.cpp:237] Train net output #0: loss = 0.848589 (* 1 = 0.848589 loss) +I0407 22:32:05.328263 23786 sgd_solver.cpp:105] Iteration 3924, lr = 0.0045965 +I0407 22:32:10.321604 23786 solver.cpp:218] Iteration 3936 (2.40329 iter/s, 4.99315s/12 iters), loss = 0.955236 +I0407 22:32:10.321662 23786 solver.cpp:237] Train net output #0: loss = 0.955236 (* 1 = 0.955236 loss) +I0407 22:32:10.321676 23786 sgd_solver.cpp:105] Iteration 3936, lr = 0.00458559 +I0407 22:32:13.782855 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:15.407641 23786 solver.cpp:218] Iteration 3948 (2.35952 iter/s, 5.08577s/12 iters), loss = 0.922596 +I0407 22:32:15.407696 23786 solver.cpp:237] Train net output #0: loss = 0.922596 (* 1 = 0.922596 loss) +I0407 22:32:15.407708 23786 sgd_solver.cpp:105] Iteration 3948, lr = 0.0045747 +I0407 22:32:20.380019 23786 solver.cpp:218] Iteration 3960 (2.41346 iter/s, 4.97212s/12 iters), loss = 0.88975 +I0407 22:32:20.380077 23786 solver.cpp:237] Train net output #0: loss = 0.88975 (* 1 = 0.88975 loss) +I0407 22:32:20.380090 23786 sgd_solver.cpp:105] Iteration 3960, lr = 0.00456384 +I0407 22:32:25.399309 23786 solver.cpp:218] Iteration 3972 (2.3909 iter/s, 5.01903s/12 iters), loss = 0.851757 +I0407 22:32:25.399451 23786 solver.cpp:237] Train net output #0: loss = 0.851757 (* 1 = 0.851757 loss) +I0407 22:32:25.399462 23786 sgd_solver.cpp:105] Iteration 3972, lr = 0.00455301 +I0407 22:32:27.469128 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 22:32:30.494884 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 22:32:33.763046 23786 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 22:32:33.763068 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:32:36.640990 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:38.220383 23786 solver.cpp:397] Test net output #0: accuracy = 0.378676 +I0407 22:32:38.220435 23786 solver.cpp:397] Test net output #1: loss = 2.90056 (* 1 = 2.90056 loss) +I0407 22:32:40.153388 23786 solver.cpp:218] Iteration 3984 (0.813374 iter/s, 14.7534s/12 iters), loss = 0.56384 +I0407 22:32:40.153450 23786 solver.cpp:237] Train net output #0: loss = 0.56384 (* 1 = 0.56384 loss) +I0407 22:32:40.153463 23786 sgd_solver.cpp:105] Iteration 3984, lr = 0.0045422 +I0407 22:32:45.122879 23786 solver.cpp:218] Iteration 3996 (2.41486 iter/s, 4.96923s/12 iters), loss = 0.947323 +I0407 22:32:45.122921 23786 solver.cpp:237] Train net output #0: loss = 0.947323 (* 1 = 0.947323 loss) +I0407 22:32:45.122931 23786 sgd_solver.cpp:105] Iteration 3996, lr = 0.00453141 +I0407 22:32:50.095343 23786 solver.cpp:218] Iteration 4008 (2.41341 iter/s, 4.97222s/12 iters), loss = 0.702867 +I0407 22:32:50.095391 23786 solver.cpp:237] Train net output #0: loss = 0.702867 (* 1 = 0.702867 loss) +I0407 22:32:50.095404 23786 sgd_solver.cpp:105] Iteration 4008, lr = 0.00452066 +I0407 22:32:55.072191 23786 solver.cpp:218] Iteration 4020 (2.41128 iter/s, 4.9766s/12 iters), loss = 1.06368 +I0407 22:32:55.072227 23786 solver.cpp:237] Train net output #0: loss = 1.06368 (* 1 = 1.06368 loss) +I0407 22:32:55.072234 23786 sgd_solver.cpp:105] Iteration 4020, lr = 0.00450992 +I0407 22:33:00.097689 23786 solver.cpp:218] Iteration 4032 (2.38794 iter/s, 5.02526s/12 iters), loss = 0.758531 +I0407 22:33:00.097785 23786 solver.cpp:237] Train net output #0: loss = 0.758531 (* 1 = 0.758531 loss) +I0407 22:33:00.097796 23786 sgd_solver.cpp:105] Iteration 4032, lr = 0.00449921 +I0407 22:33:05.102020 23786 solver.cpp:218] Iteration 4044 (2.39806 iter/s, 5.00404s/12 iters), loss = 1.0208 +I0407 22:33:05.102066 23786 solver.cpp:237] Train net output #0: loss = 1.0208 (* 1 = 1.0208 loss) +I0407 22:33:05.102074 23786 sgd_solver.cpp:105] Iteration 4044, lr = 0.00448853 +I0407 22:33:05.604923 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:10.279312 23786 solver.cpp:218] Iteration 4056 (2.31793 iter/s, 5.17704s/12 iters), loss = 1.10276 +I0407 22:33:10.279357 23786 solver.cpp:237] Train net output #0: loss = 1.10276 (* 1 = 1.10276 loss) +I0407 22:33:10.279369 23786 sgd_solver.cpp:105] Iteration 4056, lr = 0.00447788 +I0407 22:33:15.267858 23786 solver.cpp:218] Iteration 4068 (2.40563 iter/s, 4.9883s/12 iters), loss = 0.563861 +I0407 22:33:15.267901 23786 solver.cpp:237] Train net output #0: loss = 0.563861 (* 1 = 0.563861 loss) +I0407 22:33:15.267911 23786 sgd_solver.cpp:105] Iteration 4068, lr = 0.00446724 +I0407 22:33:19.796198 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 22:33:24.117591 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 22:33:27.937404 23786 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 22:33:27.937427 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:33:30.783013 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:32.396829 23786 solver.cpp:397] Test net output #0: accuracy = 0.386029 +I0407 22:33:32.396863 23786 solver.cpp:397] Test net output #1: loss = 2.88132 (* 1 = 2.88132 loss) +I0407 22:33:32.487373 23786 solver.cpp:218] Iteration 4080 (0.696913 iter/s, 17.2188s/12 iters), loss = 0.836421 +I0407 22:33:32.487428 23786 solver.cpp:237] Train net output #0: loss = 0.836421 (* 1 = 0.836421 loss) +I0407 22:33:32.487439 23786 sgd_solver.cpp:105] Iteration 4080, lr = 0.00445664 +I0407 22:33:36.765480 23786 solver.cpp:218] Iteration 4092 (2.80513 iter/s, 4.27788s/12 iters), loss = 0.630575 +I0407 22:33:36.765528 23786 solver.cpp:237] Train net output #0: loss = 0.630575 (* 1 = 0.630575 loss) +I0407 22:33:36.765540 23786 sgd_solver.cpp:105] Iteration 4092, lr = 0.00444606 +I0407 22:33:41.756985 23786 solver.cpp:218] Iteration 4104 (2.40421 iter/s, 4.99125s/12 iters), loss = 0.932496 +I0407 22:33:41.757040 23786 solver.cpp:237] Train net output #0: loss = 0.932496 (* 1 = 0.932496 loss) +I0407 22:33:41.757051 23786 sgd_solver.cpp:105] Iteration 4104, lr = 0.0044355 +I0407 22:33:46.780858 23786 solver.cpp:218] Iteration 4116 (2.38872 iter/s, 5.02361s/12 iters), loss = 0.776246 +I0407 22:33:46.780910 23786 solver.cpp:237] Train net output #0: loss = 0.776246 (* 1 = 0.776246 loss) +I0407 22:33:46.780921 23786 sgd_solver.cpp:105] Iteration 4116, lr = 0.00442497 +I0407 22:33:51.797734 23786 solver.cpp:218] Iteration 4128 (2.39205 iter/s, 5.01662s/12 iters), loss = 0.681962 +I0407 22:33:51.797780 23786 solver.cpp:237] Train net output #0: loss = 0.681962 (* 1 = 0.681962 loss) +I0407 22:33:51.797791 23786 sgd_solver.cpp:105] Iteration 4128, lr = 0.00441447 +I0407 22:33:56.801311 23786 solver.cpp:218] Iteration 4140 (2.3984 iter/s, 5.00333s/12 iters), loss = 0.957284 +I0407 22:33:56.801357 23786 solver.cpp:237] Train net output #0: loss = 0.957284 (* 1 = 0.957284 loss) +I0407 22:33:56.801367 23786 sgd_solver.cpp:105] Iteration 4140, lr = 0.00440398 +I0407 22:33:59.461721 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:01.785373 23786 solver.cpp:218] Iteration 4152 (2.4078 iter/s, 4.98381s/12 iters), loss = 0.647308 +I0407 22:34:01.785495 23786 solver.cpp:237] Train net output #0: loss = 0.647308 (* 1 = 0.647308 loss) +I0407 22:34:01.785509 23786 sgd_solver.cpp:105] Iteration 4152, lr = 0.00439353 +I0407 22:34:03.406999 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:34:06.759488 23786 solver.cpp:218] Iteration 4164 (2.41265 iter/s, 4.97379s/12 iters), loss = 0.746029 +I0407 22:34:06.759546 23786 solver.cpp:237] Train net output #0: loss = 0.746029 (* 1 = 0.746029 loss) +I0407 22:34:06.759558 23786 sgd_solver.cpp:105] Iteration 4164, lr = 0.0043831 +I0407 22:34:11.756919 23786 solver.cpp:218] Iteration 4176 (2.40136 iter/s, 4.99717s/12 iters), loss = 0.411008 +I0407 22:34:11.756966 23786 solver.cpp:237] Train net output #0: loss = 0.411009 (* 1 = 0.411009 loss) +I0407 22:34:11.756978 23786 sgd_solver.cpp:105] Iteration 4176, lr = 0.00437269 +I0407 22:34:13.827636 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 22:34:19.849334 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 22:34:22.351763 23786 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 22:34:22.351791 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:34:25.112744 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:26.773773 23786 solver.cpp:397] Test net output #0: accuracy = 0.39951 +I0407 22:34:26.773825 23786 solver.cpp:397] Test net output #1: loss = 2.87522 (* 1 = 2.87522 loss) +I0407 22:34:28.545310 23786 solver.cpp:218] Iteration 4188 (0.714809 iter/s, 16.7877s/12 iters), loss = 0.648772 +I0407 22:34:28.545359 23786 solver.cpp:237] Train net output #0: loss = 0.648772 (* 1 = 0.648772 loss) +I0407 22:34:28.545370 23786 sgd_solver.cpp:105] Iteration 4188, lr = 0.00436231 +I0407 22:34:33.647094 23786 solver.cpp:218] Iteration 4200 (2.35224 iter/s, 5.10152s/12 iters), loss = 0.726325 +I0407 22:34:33.647279 23786 solver.cpp:237] Train net output #0: loss = 0.726325 (* 1 = 0.726325 loss) +I0407 22:34:33.647296 23786 sgd_solver.cpp:105] Iteration 4200, lr = 0.00435195 +I0407 22:34:38.653324 23786 solver.cpp:218] Iteration 4212 (2.3972 iter/s, 5.00585s/12 iters), loss = 0.816091 +I0407 22:34:38.653378 23786 solver.cpp:237] Train net output #0: loss = 0.816091 (* 1 = 0.816091 loss) +I0407 22:34:38.653388 23786 sgd_solver.cpp:105] Iteration 4212, lr = 0.00434162 +I0407 22:34:43.609602 23786 solver.cpp:218] Iteration 4224 (2.4213 iter/s, 4.95603s/12 iters), loss = 0.746407 +I0407 22:34:43.609652 23786 solver.cpp:237] Train net output #0: loss = 0.746407 (* 1 = 0.746407 loss) +I0407 22:34:43.609665 23786 sgd_solver.cpp:105] Iteration 4224, lr = 0.00433131 +I0407 22:34:48.532611 23786 solver.cpp:218] Iteration 4236 (2.43766 iter/s, 4.92276s/12 iters), loss = 0.697341 +I0407 22:34:48.532657 23786 solver.cpp:237] Train net output #0: loss = 0.697341 (* 1 = 0.697341 loss) +I0407 22:34:48.532666 23786 sgd_solver.cpp:105] Iteration 4236, lr = 0.00432103 +I0407 22:34:53.328816 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:53.554416 23786 solver.cpp:218] Iteration 4248 (2.3897 iter/s, 5.02155s/12 iters), loss = 0.519999 +I0407 22:34:53.554461 23786 solver.cpp:237] Train net output #0: loss = 0.519999 (* 1 = 0.519999 loss) +I0407 22:34:53.554471 23786 sgd_solver.cpp:105] Iteration 4248, lr = 0.00431077 +I0407 22:34:58.583685 23786 solver.cpp:218] Iteration 4260 (2.38615 iter/s, 5.02902s/12 iters), loss = 0.686671 +I0407 22:34:58.583729 23786 solver.cpp:237] Train net output #0: loss = 0.686671 (* 1 = 0.686671 loss) +I0407 22:34:58.583739 23786 sgd_solver.cpp:105] Iteration 4260, lr = 0.00430053 +I0407 22:35:03.655778 23786 solver.cpp:218] Iteration 4272 (2.366 iter/s, 5.07184s/12 iters), loss = 0.642659 +I0407 22:35:03.655892 23786 solver.cpp:237] Train net output #0: loss = 0.642659 (* 1 = 0.642659 loss) +I0407 22:35:03.655902 23786 sgd_solver.cpp:105] Iteration 4272, lr = 0.00429032 +I0407 22:35:08.274174 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 22:35:11.276196 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 22:35:13.608983 23786 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 22:35:13.609005 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:35:16.391898 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:18.132418 23786 solver.cpp:397] Test net output #0: accuracy = 0.375 +I0407 22:35:18.132459 23786 solver.cpp:397] Test net output #1: loss = 3.03983 (* 1 = 3.03983 loss) +I0407 22:35:18.219740 23786 solver.cpp:218] Iteration 4284 (0.82399 iter/s, 14.5633s/12 iters), loss = 0.743086 +I0407 22:35:18.219789 23786 solver.cpp:237] Train net output #0: loss = 0.743086 (* 1 = 0.743086 loss) +I0407 22:35:18.219800 23786 sgd_solver.cpp:105] Iteration 4284, lr = 0.00428014 +I0407 22:35:22.360910 23786 solver.cpp:218] Iteration 4296 (2.8979 iter/s, 4.14094s/12 iters), loss = 0.814984 +I0407 22:35:22.360985 23786 solver.cpp:237] Train net output #0: loss = 0.814984 (* 1 = 0.814984 loss) +I0407 22:35:22.361001 23786 sgd_solver.cpp:105] Iteration 4296, lr = 0.00426998 +I0407 22:35:27.335366 23786 solver.cpp:218] Iteration 4308 (2.41245 iter/s, 4.97419s/12 iters), loss = 0.891729 +I0407 22:35:27.335445 23786 solver.cpp:237] Train net output #0: loss = 0.891729 (* 1 = 0.891729 loss) +I0407 22:35:27.335458 23786 sgd_solver.cpp:105] Iteration 4308, lr = 0.00425984 +I0407 22:35:32.408706 23786 solver.cpp:218] Iteration 4320 (2.36544 iter/s, 5.07306s/12 iters), loss = 0.84953 +I0407 22:35:32.408754 23786 solver.cpp:237] Train net output #0: loss = 0.84953 (* 1 = 0.84953 loss) +I0407 22:35:32.408766 23786 sgd_solver.cpp:105] Iteration 4320, lr = 0.00424972 +I0407 22:35:37.448949 23786 solver.cpp:218] Iteration 4332 (2.38096 iter/s, 5.03999s/12 iters), loss = 0.768716 +I0407 22:35:37.449107 23786 solver.cpp:237] Train net output #0: loss = 0.768716 (* 1 = 0.768716 loss) +I0407 22:35:37.449121 23786 sgd_solver.cpp:105] Iteration 4332, lr = 0.00423964 +I0407 22:35:42.408643 23786 solver.cpp:218] Iteration 4344 (2.41968 iter/s, 4.95934s/12 iters), loss = 0.755062 +I0407 22:35:42.408696 23786 solver.cpp:237] Train net output #0: loss = 0.755062 (* 1 = 0.755062 loss) +I0407 22:35:42.408710 23786 sgd_solver.cpp:105] Iteration 4344, lr = 0.00422957 +I0407 22:35:44.331359 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:47.496548 23786 solver.cpp:218] Iteration 4356 (2.35865 iter/s, 5.08765s/12 iters), loss = 0.661121 +I0407 22:35:47.496590 23786 solver.cpp:237] Train net output #0: loss = 0.661121 (* 1 = 0.661121 loss) +I0407 22:35:47.496600 23786 sgd_solver.cpp:105] Iteration 4356, lr = 0.00421953 +I0407 22:35:52.604607 23786 solver.cpp:218] Iteration 4368 (2.34935 iter/s, 5.10781s/12 iters), loss = 1.12514 +I0407 22:35:52.604655 23786 solver.cpp:237] Train net output #0: loss = 1.12514 (* 1 = 1.12514 loss) +I0407 22:35:52.604665 23786 sgd_solver.cpp:105] Iteration 4368, lr = 0.00420951 +I0407 22:35:57.646783 23786 solver.cpp:218] Iteration 4380 (2.38004 iter/s, 5.04193s/12 iters), loss = 0.791053 +I0407 22:35:57.646833 23786 solver.cpp:237] Train net output #0: loss = 0.791053 (* 1 = 0.791053 loss) +I0407 22:35:57.646845 23786 sgd_solver.cpp:105] Iteration 4380, lr = 0.00419952 +I0407 22:35:59.718138 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 22:36:03.556582 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 22:36:05.909346 23786 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 22:36:05.909369 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:36:08.496829 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:10.237447 23786 solver.cpp:397] Test net output #0: accuracy = 0.370098 +I0407 22:36:10.237495 23786 solver.cpp:397] Test net output #1: loss = 3.00913 (* 1 = 3.00913 loss) +I0407 22:36:12.219413 23786 solver.cpp:218] Iteration 4392 (0.823496 iter/s, 14.572s/12 iters), loss = 0.922555 +I0407 22:36:12.219475 23786 solver.cpp:237] Train net output #0: loss = 0.922555 (* 1 = 0.922555 loss) +I0407 22:36:12.219488 23786 sgd_solver.cpp:105] Iteration 4392, lr = 0.00418954 +I0407 22:36:17.218415 23786 solver.cpp:218] Iteration 4404 (2.40061 iter/s, 4.99874s/12 iters), loss = 0.71291 +I0407 22:36:17.218467 23786 solver.cpp:237] Train net output #0: loss = 0.71291 (* 1 = 0.71291 loss) +I0407 22:36:17.218480 23786 sgd_solver.cpp:105] Iteration 4404, lr = 0.0041796 +I0407 22:36:22.072865 23786 solver.cpp:218] Iteration 4416 (2.47208 iter/s, 4.8542s/12 iters), loss = 0.701738 +I0407 22:36:22.072906 23786 solver.cpp:237] Train net output #0: loss = 0.701738 (* 1 = 0.701738 loss) +I0407 22:36:22.072916 23786 sgd_solver.cpp:105] Iteration 4416, lr = 0.00416967 +I0407 22:36:27.038736 23786 solver.cpp:218] Iteration 4428 (2.41662 iter/s, 4.96562s/12 iters), loss = 0.556038 +I0407 22:36:27.038789 23786 solver.cpp:237] Train net output #0: loss = 0.556038 (* 1 = 0.556038 loss) +I0407 22:36:27.038800 23786 sgd_solver.cpp:105] Iteration 4428, lr = 0.00415977 +I0407 22:36:32.063313 23786 solver.cpp:218] Iteration 4440 (2.38838 iter/s, 5.02432s/12 iters), loss = 0.533995 +I0407 22:36:32.063361 23786 solver.cpp:237] Train net output #0: loss = 0.533995 (* 1 = 0.533995 loss) +I0407 22:36:32.063372 23786 sgd_solver.cpp:105] Iteration 4440, lr = 0.0041499 +I0407 22:36:36.161763 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:37.093755 23786 solver.cpp:218] Iteration 4452 (2.3856 iter/s, 5.03019s/12 iters), loss = 0.743115 +I0407 22:36:37.093802 23786 solver.cpp:237] Train net output #0: loss = 0.743115 (* 1 = 0.743115 loss) +I0407 22:36:37.093814 23786 sgd_solver.cpp:105] Iteration 4452, lr = 0.00414005 +I0407 22:36:42.099432 23786 solver.cpp:218] Iteration 4464 (2.3974 iter/s, 5.00542s/12 iters), loss = 0.482209 +I0407 22:36:42.099581 23786 solver.cpp:237] Train net output #0: loss = 0.482209 (* 1 = 0.482209 loss) +I0407 22:36:42.099596 23786 sgd_solver.cpp:105] Iteration 4464, lr = 0.00413022 +I0407 22:36:47.139400 23786 solver.cpp:218] Iteration 4476 (2.38113 iter/s, 5.03961s/12 iters), loss = 0.841128 +I0407 22:36:47.139457 23786 solver.cpp:237] Train net output #0: loss = 0.841128 (* 1 = 0.841128 loss) +I0407 22:36:47.139470 23786 sgd_solver.cpp:105] Iteration 4476, lr = 0.00412041 +I0407 22:36:51.710969 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 22:36:54.747612 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 22:36:57.089025 23786 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 22:36:57.089051 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:36:59.761639 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:01.536106 23786 solver.cpp:397] Test net output #0: accuracy = 0.379289 +I0407 22:37:01.536151 23786 solver.cpp:397] Test net output #1: loss = 3.11404 (* 1 = 3.11404 loss) +I0407 22:37:01.626569 23786 solver.cpp:218] Iteration 4488 (0.828355 iter/s, 14.4865s/12 iters), loss = 0.654706 +I0407 22:37:01.626646 23786 solver.cpp:237] Train net output #0: loss = 0.654706 (* 1 = 0.654706 loss) +I0407 22:37:01.626662 23786 sgd_solver.cpp:105] Iteration 4488, lr = 0.00411063 +I0407 22:37:06.018442 23786 solver.cpp:218] Iteration 4500 (2.73248 iter/s, 4.39162s/12 iters), loss = 0.649758 +I0407 22:37:06.018491 23786 solver.cpp:237] Train net output #0: loss = 0.649758 (* 1 = 0.649758 loss) +I0407 22:37:06.018502 23786 sgd_solver.cpp:105] Iteration 4500, lr = 0.00410087 +I0407 22:37:11.009665 23786 solver.cpp:218] Iteration 4512 (2.40434 iter/s, 4.99097s/12 iters), loss = 0.660611 +I0407 22:37:11.009716 23786 solver.cpp:237] Train net output #0: loss = 0.660611 (* 1 = 0.660611 loss) +I0407 22:37:11.009727 23786 sgd_solver.cpp:105] Iteration 4512, lr = 0.00409113 +I0407 22:37:16.005364 23786 solver.cpp:218] Iteration 4524 (2.40219 iter/s, 4.99545s/12 iters), loss = 0.652941 +I0407 22:37:16.005483 23786 solver.cpp:237] Train net output #0: loss = 0.652941 (* 1 = 0.652941 loss) +I0407 22:37:16.005496 23786 sgd_solver.cpp:105] Iteration 4524, lr = 0.00408142 +I0407 22:37:20.989064 23786 solver.cpp:218] Iteration 4536 (2.408 iter/s, 4.98338s/12 iters), loss = 0.670905 +I0407 22:37:20.989120 23786 solver.cpp:237] Train net output #0: loss = 0.670905 (* 1 = 0.670905 loss) +I0407 22:37:20.989131 23786 sgd_solver.cpp:105] Iteration 4536, lr = 0.00407173 +I0407 22:37:25.982414 23786 solver.cpp:218] Iteration 4548 (2.40332 iter/s, 4.9931s/12 iters), loss = 0.531072 +I0407 22:37:25.982467 23786 solver.cpp:237] Train net output #0: loss = 0.531072 (* 1 = 0.531072 loss) +I0407 22:37:25.982478 23786 sgd_solver.cpp:105] Iteration 4548, lr = 0.00406206 +I0407 22:37:27.272552 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:30.993816 23786 solver.cpp:218] Iteration 4560 (2.39466 iter/s, 5.01115s/12 iters), loss = 0.486539 +I0407 22:37:30.993857 23786 solver.cpp:237] Train net output #0: loss = 0.486539 (* 1 = 0.486539 loss) +I0407 22:37:30.993867 23786 sgd_solver.cpp:105] Iteration 4560, lr = 0.00405242 +I0407 22:37:36.035434 23786 solver.cpp:218] Iteration 4572 (2.38031 iter/s, 5.04137s/12 iters), loss = 0.579188 +I0407 22:37:36.035487 23786 solver.cpp:237] Train net output #0: loss = 0.579188 (* 1 = 0.579188 loss) +I0407 22:37:36.035501 23786 sgd_solver.cpp:105] Iteration 4572, lr = 0.0040428 +I0407 22:37:41.069164 23786 solver.cpp:218] Iteration 4584 (2.38404 iter/s, 5.03347s/12 iters), loss = 0.704574 +I0407 22:37:41.069214 23786 solver.cpp:237] Train net output #0: loss = 0.704574 (* 1 = 0.704574 loss) +I0407 22:37:41.069226 23786 sgd_solver.cpp:105] Iteration 4584, lr = 0.0040332 +I0407 22:37:43.091444 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 22:37:46.092744 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 22:37:48.411613 23786 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 22:37:48.411636 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:37:51.014487 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:52.832618 23786 solver.cpp:397] Test net output #0: accuracy = 0.398284 +I0407 22:37:52.832662 23786 solver.cpp:397] Test net output #1: loss = 3.04374 (* 1 = 3.04374 loss) +I0407 22:37:54.666486 23786 solver.cpp:218] Iteration 4596 (0.882565 iter/s, 13.5967s/12 iters), loss = 0.455723 +I0407 22:37:54.666530 23786 solver.cpp:237] Train net output #0: loss = 0.455723 (* 1 = 0.455723 loss) +I0407 22:37:54.666539 23786 sgd_solver.cpp:105] Iteration 4596, lr = 0.00402362 +I0407 22:37:59.744009 23786 solver.cpp:218] Iteration 4608 (2.36348 iter/s, 5.07727s/12 iters), loss = 0.675087 +I0407 22:37:59.744058 23786 solver.cpp:237] Train net output #0: loss = 0.675087 (* 1 = 0.675087 loss) +I0407 22:37:59.744069 23786 sgd_solver.cpp:105] Iteration 4608, lr = 0.00401407 +I0407 22:38:04.806753 23786 solver.cpp:218] Iteration 4620 (2.37038 iter/s, 5.06249s/12 iters), loss = 0.515827 +I0407 22:38:04.806797 23786 solver.cpp:237] Train net output #0: loss = 0.515827 (* 1 = 0.515827 loss) +I0407 22:38:04.806805 23786 sgd_solver.cpp:105] Iteration 4620, lr = 0.00400454 +I0407 22:38:09.811759 23786 solver.cpp:218] Iteration 4632 (2.39772 iter/s, 5.00476s/12 iters), loss = 0.303703 +I0407 22:38:09.811797 23786 solver.cpp:237] Train net output #0: loss = 0.303703 (* 1 = 0.303703 loss) +I0407 22:38:09.811805 23786 sgd_solver.cpp:105] Iteration 4632, lr = 0.00399503 +I0407 22:38:14.838251 23786 solver.cpp:218] Iteration 4644 (2.38747 iter/s, 5.02625s/12 iters), loss = 0.599754 +I0407 22:38:14.838299 23786 solver.cpp:237] Train net output #0: loss = 0.599754 (* 1 = 0.599754 loss) +I0407 22:38:14.838311 23786 sgd_solver.cpp:105] Iteration 4644, lr = 0.00398555 +I0407 22:38:18.235862 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:19.857266 23786 solver.cpp:218] Iteration 4656 (2.39103 iter/s, 5.01876s/12 iters), loss = 0.595569 +I0407 22:38:19.857321 23786 solver.cpp:237] Train net output #0: loss = 0.595569 (* 1 = 0.595569 loss) +I0407 22:38:19.857333 23786 sgd_solver.cpp:105] Iteration 4656, lr = 0.00397608 +I0407 22:38:24.936928 23786 solver.cpp:218] Iteration 4668 (2.36248 iter/s, 5.0794s/12 iters), loss = 0.287285 +I0407 22:38:24.936965 23786 solver.cpp:237] Train net output #0: loss = 0.287285 (* 1 = 0.287285 loss) +I0407 22:38:24.936973 23786 sgd_solver.cpp:105] Iteration 4668, lr = 0.00396664 +I0407 22:38:29.957217 23786 solver.cpp:218] Iteration 4680 (2.39042 iter/s, 5.02005s/12 iters), loss = 0.666821 +I0407 22:38:29.957262 23786 solver.cpp:237] Train net output #0: loss = 0.666821 (* 1 = 0.666821 loss) +I0407 22:38:29.957273 23786 sgd_solver.cpp:105] Iteration 4680, lr = 0.00395723 +I0407 22:38:34.558321 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 22:38:37.559087 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 22:38:39.895747 23786 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 22:38:39.895772 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:38:42.512558 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:44.366744 23786 solver.cpp:397] Test net output #0: accuracy = 0.408701 +I0407 22:38:44.366792 23786 solver.cpp:397] Test net output #1: loss = 2.9903 (* 1 = 2.9903 loss) +I0407 22:38:44.457352 23786 solver.cpp:218] Iteration 4692 (0.827613 iter/s, 14.4995s/12 iters), loss = 0.444426 +I0407 22:38:44.457402 23786 solver.cpp:237] Train net output #0: loss = 0.444426 (* 1 = 0.444426 loss) +I0407 22:38:44.457413 23786 sgd_solver.cpp:105] Iteration 4692, lr = 0.00394783 +I0407 22:38:48.778302 23786 solver.cpp:218] Iteration 4704 (2.77731 iter/s, 4.32072s/12 iters), loss = 0.504064 +I0407 22:38:48.778443 23786 solver.cpp:237] Train net output #0: loss = 0.504064 (* 1 = 0.504064 loss) +I0407 22:38:48.778456 23786 sgd_solver.cpp:105] Iteration 4704, lr = 0.00393846 +I0407 22:38:53.761157 23786 solver.cpp:218] Iteration 4716 (2.40842 iter/s, 4.98251s/12 iters), loss = 0.492578 +I0407 22:38:53.761209 23786 solver.cpp:237] Train net output #0: loss = 0.492578 (* 1 = 0.492578 loss) +I0407 22:38:53.761221 23786 sgd_solver.cpp:105] Iteration 4716, lr = 0.00392911 +I0407 22:38:58.792034 23786 solver.cpp:218] Iteration 4728 (2.38539 iter/s, 5.03062s/12 iters), loss = 0.544483 +I0407 22:38:58.792088 23786 solver.cpp:237] Train net output #0: loss = 0.544483 (* 1 = 0.544483 loss) +I0407 22:38:58.792100 23786 sgd_solver.cpp:105] Iteration 4728, lr = 0.00391978 +I0407 22:39:03.782603 23786 solver.cpp:218] Iteration 4740 (2.40466 iter/s, 4.99032s/12 iters), loss = 0.416758 +I0407 22:39:03.782653 23786 solver.cpp:237] Train net output #0: loss = 0.416758 (* 1 = 0.416758 loss) +I0407 22:39:03.782666 23786 sgd_solver.cpp:105] Iteration 4740, lr = 0.00391047 +I0407 22:39:08.845571 23786 solver.cpp:218] Iteration 4752 (2.37027 iter/s, 5.06271s/12 iters), loss = 0.605776 +I0407 22:39:08.845621 23786 solver.cpp:237] Train net output #0: loss = 0.605776 (* 1 = 0.605776 loss) +I0407 22:39:08.845633 23786 sgd_solver.cpp:105] Iteration 4752, lr = 0.00390119 +I0407 22:39:09.380149 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:13.896893 23786 solver.cpp:218] Iteration 4764 (2.37573 iter/s, 5.05107s/12 iters), loss = 0.565699 +I0407 22:39:13.896931 23786 solver.cpp:237] Train net output #0: loss = 0.565699 (* 1 = 0.565699 loss) +I0407 22:39:13.896939 23786 sgd_solver.cpp:105] Iteration 4764, lr = 0.00389193 +I0407 22:39:18.899143 23786 solver.cpp:218] Iteration 4776 (2.39904 iter/s, 5.00201s/12 iters), loss = 0.56513 +I0407 22:39:18.899902 23786 solver.cpp:237] Train net output #0: loss = 0.56513 (* 1 = 0.56513 loss) +I0407 22:39:18.899919 23786 sgd_solver.cpp:105] Iteration 4776, lr = 0.00388269 +I0407 22:39:23.890069 23786 solver.cpp:218] Iteration 4788 (2.40482 iter/s, 4.98997s/12 iters), loss = 0.470389 +I0407 22:39:23.890121 23786 solver.cpp:237] Train net output #0: loss = 0.470389 (* 1 = 0.470389 loss) +I0407 22:39:23.890134 23786 sgd_solver.cpp:105] Iteration 4788, lr = 0.00387347 +I0407 22:39:25.815119 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 22:39:28.786489 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 22:39:31.124635 23786 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 22:39:31.124661 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:39:33.696200 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:35.596021 23786 solver.cpp:397] Test net output #0: accuracy = 0.404412 +I0407 22:39:35.596066 23786 solver.cpp:397] Test net output #1: loss = 3.17949 (* 1 = 3.17949 loss) +I0407 22:39:37.505702 23786 solver.cpp:218] Iteration 4800 (0.881378 iter/s, 13.615s/12 iters), loss = 0.32927 +I0407 22:39:37.505754 23786 solver.cpp:237] Train net output #0: loss = 0.32927 (* 1 = 0.32927 loss) +I0407 22:39:37.505765 23786 sgd_solver.cpp:105] Iteration 4800, lr = 0.00386427 +I0407 22:39:42.466650 23786 solver.cpp:218] Iteration 4812 (2.41902 iter/s, 4.9607s/12 iters), loss = 0.518115 +I0407 22:39:42.466698 23786 solver.cpp:237] Train net output #0: loss = 0.518115 (* 1 = 0.518115 loss) +I0407 22:39:42.466711 23786 sgd_solver.cpp:105] Iteration 4812, lr = 0.0038551 +I0407 22:39:47.419968 23786 solver.cpp:218] Iteration 4824 (2.42274 iter/s, 4.95307s/12 iters), loss = 0.489183 +I0407 22:39:47.420019 23786 solver.cpp:237] Train net output #0: loss = 0.489183 (* 1 = 0.489183 loss) +I0407 22:39:47.420032 23786 sgd_solver.cpp:105] Iteration 4824, lr = 0.00384594 +I0407 22:39:52.456001 23786 solver.cpp:218] Iteration 4836 (2.38295 iter/s, 5.03578s/12 iters), loss = 0.438593 +I0407 22:39:52.456203 23786 solver.cpp:237] Train net output #0: loss = 0.438593 (* 1 = 0.438593 loss) +I0407 22:39:52.456218 23786 sgd_solver.cpp:105] Iteration 4836, lr = 0.00383681 +I0407 22:39:54.460741 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:39:57.472014 23786 solver.cpp:218] Iteration 4848 (2.39253 iter/s, 5.01561s/12 iters), loss = 0.383921 +I0407 22:39:57.472061 23786 solver.cpp:237] Train net output #0: loss = 0.383921 (* 1 = 0.383921 loss) +I0407 22:39:57.472074 23786 sgd_solver.cpp:105] Iteration 4848, lr = 0.0038277 +I0407 22:40:00.131880 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:02.495301 23786 solver.cpp:218] Iteration 4860 (2.38899 iter/s, 5.02304s/12 iters), loss = 0.336425 +I0407 22:40:02.495345 23786 solver.cpp:237] Train net output #0: loss = 0.336425 (* 1 = 0.336425 loss) +I0407 22:40:02.495357 23786 sgd_solver.cpp:105] Iteration 4860, lr = 0.00381862 +I0407 22:40:07.516229 23786 solver.cpp:218] Iteration 4872 (2.39012 iter/s, 5.02068s/12 iters), loss = 0.567864 +I0407 22:40:07.516286 23786 solver.cpp:237] Train net output #0: loss = 0.567864 (* 1 = 0.567864 loss) +I0407 22:40:07.516299 23786 sgd_solver.cpp:105] Iteration 4872, lr = 0.00380955 +I0407 22:40:12.593318 23786 solver.cpp:218] Iteration 4884 (2.36368 iter/s, 5.07683s/12 iters), loss = 0.587739 +I0407 22:40:12.593364 23786 solver.cpp:237] Train net output #0: loss = 0.587739 (* 1 = 0.587739 loss) +I0407 22:40:12.593374 23786 sgd_solver.cpp:105] Iteration 4884, lr = 0.0038005 +I0407 22:40:17.073735 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 22:40:20.454618 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 22:40:22.812961 23786 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 22:40:22.813019 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:40:25.357517 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:27.294402 23786 solver.cpp:397] Test net output #0: accuracy = 0.411765 +I0407 22:40:27.294437 23786 solver.cpp:397] Test net output #1: loss = 2.97131 (* 1 = 2.97131 loss) +I0407 22:40:27.384871 23786 solver.cpp:218] Iteration 4896 (0.811308 iter/s, 14.7909s/12 iters), loss = 0.483745 +I0407 22:40:27.384920 23786 solver.cpp:237] Train net output #0: loss = 0.483745 (* 1 = 0.483745 loss) +I0407 22:40:27.384929 23786 sgd_solver.cpp:105] Iteration 4896, lr = 0.00379148 +I0407 22:40:31.705962 23786 solver.cpp:218] Iteration 4908 (2.77723 iter/s, 4.32086s/12 iters), loss = 0.332571 +I0407 22:40:31.706001 23786 solver.cpp:237] Train net output #0: loss = 0.332571 (* 1 = 0.332571 loss) +I0407 22:40:31.706010 23786 sgd_solver.cpp:105] Iteration 4908, lr = 0.00378248 +I0407 22:40:36.750516 23786 solver.cpp:218] Iteration 4920 (2.37892 iter/s, 5.04431s/12 iters), loss = 0.379004 +I0407 22:40:36.750568 23786 solver.cpp:237] Train net output #0: loss = 0.379004 (* 1 = 0.379004 loss) +I0407 22:40:36.750581 23786 sgd_solver.cpp:105] Iteration 4920, lr = 0.0037735 +I0407 22:40:41.771111 23786 solver.cpp:218] Iteration 4932 (2.39028 iter/s, 5.02034s/12 iters), loss = 0.499475 +I0407 22:40:41.771150 23786 solver.cpp:237] Train net output #0: loss = 0.499475 (* 1 = 0.499475 loss) +I0407 22:40:41.771160 23786 sgd_solver.cpp:105] Iteration 4932, lr = 0.00376454 +I0407 22:40:46.780078 23786 solver.cpp:218] Iteration 4944 (2.39582 iter/s, 5.00872s/12 iters), loss = 0.340478 +I0407 22:40:46.780120 23786 solver.cpp:237] Train net output #0: loss = 0.340478 (* 1 = 0.340478 loss) +I0407 22:40:46.780130 23786 sgd_solver.cpp:105] Iteration 4944, lr = 0.0037556 +I0407 22:40:51.632272 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:51.827090 23786 solver.cpp:218] Iteration 4956 (2.37775 iter/s, 5.0468s/12 iters), loss = 0.300313 +I0407 22:40:51.827128 23786 solver.cpp:237] Train net output #0: loss = 0.300313 (* 1 = 0.300313 loss) +I0407 22:40:51.827137 23786 sgd_solver.cpp:105] Iteration 4956, lr = 0.00374669 +I0407 22:40:56.870841 23786 solver.cpp:218] Iteration 4968 (2.37927 iter/s, 5.04356s/12 iters), loss = 0.519535 +I0407 22:40:56.870959 23786 solver.cpp:237] Train net output #0: loss = 0.519535 (* 1 = 0.519535 loss) +I0407 22:40:56.870970 23786 sgd_solver.cpp:105] Iteration 4968, lr = 0.00373779 +I0407 22:41:01.877494 23786 solver.cpp:218] Iteration 4980 (2.39694 iter/s, 5.00638s/12 iters), loss = 0.439982 +I0407 22:41:01.877540 23786 solver.cpp:237] Train net output #0: loss = 0.439982 (* 1 = 0.439982 loss) +I0407 22:41:01.877552 23786 sgd_solver.cpp:105] Iteration 4980, lr = 0.00372892 +I0407 22:41:06.866528 23786 solver.cpp:218] Iteration 4992 (2.40537 iter/s, 4.98883s/12 iters), loss = 0.487323 +I0407 22:41:06.866575 23786 solver.cpp:237] Train net output #0: loss = 0.487323 (* 1 = 0.487323 loss) +I0407 22:41:06.866585 23786 sgd_solver.cpp:105] Iteration 4992, lr = 0.00372006 +I0407 22:41:08.932389 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 22:41:11.903189 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 22:41:14.255546 23786 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 22:41:14.255570 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:41:16.748610 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:18.722795 23786 solver.cpp:397] Test net output #0: accuracy = 0.41299 +I0407 22:41:18.722843 23786 solver.cpp:397] Test net output #1: loss = 2.95678 (* 1 = 2.95678 loss) +I0407 22:41:20.614871 23786 solver.cpp:218] Iteration 5004 (0.872862 iter/s, 13.7479s/12 iters), loss = 0.437807 +I0407 22:41:20.614928 23786 solver.cpp:237] Train net output #0: loss = 0.437807 (* 1 = 0.437807 loss) +I0407 22:41:20.614938 23786 sgd_solver.cpp:105] Iteration 5004, lr = 0.00371123 +I0407 22:41:25.615036 23786 solver.cpp:218] Iteration 5016 (2.40002 iter/s, 4.99995s/12 iters), loss = 0.383132 +I0407 22:41:25.615084 23786 solver.cpp:237] Train net output #0: loss = 0.383132 (* 1 = 0.383132 loss) +I0407 22:41:25.615097 23786 sgd_solver.cpp:105] Iteration 5016, lr = 0.00370242 +I0407 22:41:30.587568 23786 solver.cpp:218] Iteration 5028 (2.41336 iter/s, 4.97232s/12 iters), loss = 0.227125 +I0407 22:41:30.587680 23786 solver.cpp:237] Train net output #0: loss = 0.227125 (* 1 = 0.227125 loss) +I0407 22:41:30.587693 23786 sgd_solver.cpp:105] Iteration 5028, lr = 0.00369363 +I0407 22:41:35.606679 23786 solver.cpp:218] Iteration 5040 (2.39099 iter/s, 5.01885s/12 iters), loss = 0.475247 +I0407 22:41:35.606720 23786 solver.cpp:237] Train net output #0: loss = 0.475247 (* 1 = 0.475247 loss) +I0407 22:41:35.606729 23786 sgd_solver.cpp:105] Iteration 5040, lr = 0.00368486 +I0407 22:41:40.634793 23786 solver.cpp:218] Iteration 5052 (2.38668 iter/s, 5.02791s/12 iters), loss = 0.263422 +I0407 22:41:40.634840 23786 solver.cpp:237] Train net output #0: loss = 0.263422 (* 1 = 0.263422 loss) +I0407 22:41:40.634847 23786 sgd_solver.cpp:105] Iteration 5052, lr = 0.00367611 +I0407 22:41:42.510499 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:45.580257 23786 solver.cpp:218] Iteration 5064 (2.42657 iter/s, 4.94526s/12 iters), loss = 0.459144 +I0407 22:41:45.580296 23786 solver.cpp:237] Train net output #0: loss = 0.459144 (* 1 = 0.459144 loss) +I0407 22:41:45.580303 23786 sgd_solver.cpp:105] Iteration 5064, lr = 0.00366738 +I0407 22:41:50.620499 23786 solver.cpp:218] Iteration 5076 (2.38093 iter/s, 5.04004s/12 iters), loss = 0.456521 +I0407 22:41:50.620543 23786 solver.cpp:237] Train net output #0: loss = 0.456521 (* 1 = 0.456521 loss) +I0407 22:41:50.620551 23786 sgd_solver.cpp:105] Iteration 5076, lr = 0.00365868 +I0407 22:41:55.658320 23786 solver.cpp:218] Iteration 5088 (2.38208 iter/s, 5.03761s/12 iters), loss = 0.24009 +I0407 22:41:55.658371 23786 solver.cpp:237] Train net output #0: loss = 0.24009 (* 1 = 0.24009 loss) +I0407 22:41:55.658382 23786 sgd_solver.cpp:105] Iteration 5088, lr = 0.00364999 +I0407 22:42:00.242302 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 22:42:03.966805 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 22:42:06.390105 23786 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 22:42:06.390130 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:42:08.834010 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:10.849380 23786 solver.cpp:397] Test net output #0: accuracy = 0.421569 +I0407 22:42:10.849427 23786 solver.cpp:397] Test net output #1: loss = 2.94256 (* 1 = 2.94256 loss) +I0407 22:42:10.940100 23786 solver.cpp:218] Iteration 5100 (0.785276 iter/s, 15.2813s/12 iters), loss = 0.432484 +I0407 22:42:10.940152 23786 solver.cpp:237] Train net output #0: loss = 0.432484 (* 1 = 0.432484 loss) +I0407 22:42:10.940165 23786 sgd_solver.cpp:105] Iteration 5100, lr = 0.00364132 +I0407 22:42:15.368552 23786 solver.cpp:218] Iteration 5112 (2.70987 iter/s, 4.42826s/12 iters), loss = 0.392673 +I0407 22:42:15.368594 23786 solver.cpp:237] Train net output #0: loss = 0.392673 (* 1 = 0.392673 loss) +I0407 22:42:15.368603 23786 sgd_solver.cpp:105] Iteration 5112, lr = 0.00363268 +I0407 22:42:20.264739 23786 solver.cpp:218] Iteration 5124 (2.45099 iter/s, 4.89598s/12 iters), loss = 0.451638 +I0407 22:42:20.264787 23786 solver.cpp:237] Train net output #0: loss = 0.451638 (* 1 = 0.451638 loss) +I0407 22:42:20.264798 23786 sgd_solver.cpp:105] Iteration 5124, lr = 0.00362405 +I0407 22:42:25.326031 23786 solver.cpp:218] Iteration 5136 (2.37104 iter/s, 5.06108s/12 iters), loss = 0.393915 +I0407 22:42:25.326081 23786 solver.cpp:237] Train net output #0: loss = 0.393915 (* 1 = 0.393915 loss) +I0407 22:42:25.326093 23786 sgd_solver.cpp:105] Iteration 5136, lr = 0.00361545 +I0407 22:42:30.359479 23786 solver.cpp:218] Iteration 5148 (2.38415 iter/s, 5.03324s/12 iters), loss = 0.232418 +I0407 22:42:30.359529 23786 solver.cpp:237] Train net output #0: loss = 0.232418 (* 1 = 0.232418 loss) +I0407 22:42:30.359541 23786 sgd_solver.cpp:105] Iteration 5148, lr = 0.00360687 +I0407 22:42:34.444291 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:35.387178 23786 solver.cpp:218] Iteration 5160 (2.38688 iter/s, 5.02749s/12 iters), loss = 0.294822 +I0407 22:42:35.387226 23786 solver.cpp:237] Train net output #0: loss = 0.294822 (* 1 = 0.294822 loss) +I0407 22:42:35.387238 23786 sgd_solver.cpp:105] Iteration 5160, lr = 0.0035983 +I0407 22:42:40.370056 23786 solver.cpp:218] Iteration 5172 (2.40835 iter/s, 4.98267s/12 iters), loss = 0.383978 +I0407 22:42:40.370105 23786 solver.cpp:237] Train net output #0: loss = 0.383978 (* 1 = 0.383978 loss) +I0407 22:42:40.370116 23786 sgd_solver.cpp:105] Iteration 5172, lr = 0.00358976 +I0407 22:42:45.600499 23786 solver.cpp:218] Iteration 5184 (2.29436 iter/s, 5.23022s/12 iters), loss = 0.361516 +I0407 22:42:45.600550 23786 solver.cpp:237] Train net output #0: loss = 0.361516 (* 1 = 0.361516 loss) +I0407 22:42:45.600562 23786 sgd_solver.cpp:105] Iteration 5184, lr = 0.00358124 +I0407 22:42:50.769207 23786 solver.cpp:218] Iteration 5196 (2.32176 iter/s, 5.16849s/12 iters), loss = 0.338206 +I0407 22:42:50.769253 23786 solver.cpp:237] Train net output #0: loss = 0.338206 (* 1 = 0.338206 loss) +I0407 22:42:50.769265 23786 sgd_solver.cpp:105] Iteration 5196, lr = 0.00357273 +I0407 22:42:52.844197 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 22:42:57.888837 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 22:43:00.232962 23786 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 22:43:00.232987 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:43:02.654225 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:04.704663 23786 solver.cpp:397] Test net output #0: accuracy = 0.409926 +I0407 22:43:04.704820 23786 solver.cpp:397] Test net output #1: loss = 3.0635 (* 1 = 3.0635 loss) +I0407 22:43:06.581480 23786 solver.cpp:218] Iteration 5208 (0.75893 iter/s, 15.8117s/12 iters), loss = 0.367467 +I0407 22:43:06.581537 23786 solver.cpp:237] Train net output #0: loss = 0.367467 (* 1 = 0.367467 loss) +I0407 22:43:06.581548 23786 sgd_solver.cpp:105] Iteration 5208, lr = 0.00356425 +I0407 22:43:11.604475 23786 solver.cpp:218] Iteration 5220 (2.38912 iter/s, 5.02277s/12 iters), loss = 0.367943 +I0407 22:43:11.604534 23786 solver.cpp:237] Train net output #0: loss = 0.367943 (* 1 = 0.367943 loss) +I0407 22:43:11.604547 23786 sgd_solver.cpp:105] Iteration 5220, lr = 0.00355579 +I0407 22:43:16.611799 23786 solver.cpp:218] Iteration 5232 (2.3966 iter/s, 5.00709s/12 iters), loss = 0.242785 +I0407 22:43:16.611860 23786 solver.cpp:237] Train net output #0: loss = 0.242785 (* 1 = 0.242785 loss) +I0407 22:43:16.611871 23786 sgd_solver.cpp:105] Iteration 5232, lr = 0.00354735 +I0407 22:43:21.640728 23786 solver.cpp:218] Iteration 5244 (2.3863 iter/s, 5.0287s/12 iters), loss = 0.415682 +I0407 22:43:21.640775 23786 solver.cpp:237] Train net output #0: loss = 0.415682 (* 1 = 0.415682 loss) +I0407 22:43:21.640784 23786 sgd_solver.cpp:105] Iteration 5244, lr = 0.00353892 +I0407 22:43:26.684150 23786 solver.cpp:218] Iteration 5256 (2.37944 iter/s, 5.0432s/12 iters), loss = 0.391381 +I0407 22:43:26.684199 23786 solver.cpp:237] Train net output #0: loss = 0.391381 (* 1 = 0.391381 loss) +I0407 22:43:26.684208 23786 sgd_solver.cpp:105] Iteration 5256, lr = 0.00353052 +I0407 22:43:28.061580 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:31.767421 23786 solver.cpp:218] Iteration 5268 (2.36079 iter/s, 5.08305s/12 iters), loss = 0.262516 +I0407 22:43:31.767462 23786 solver.cpp:237] Train net output #0: loss = 0.262516 (* 1 = 0.262516 loss) +I0407 22:43:31.767472 23786 sgd_solver.cpp:105] Iteration 5268, lr = 0.00352214 +I0407 22:43:36.916347 23786 solver.cpp:218] Iteration 5280 (2.33068 iter/s, 5.14871s/12 iters), loss = 0.291853 +I0407 22:43:36.916460 23786 solver.cpp:237] Train net output #0: loss = 0.291853 (* 1 = 0.291853 loss) +I0407 22:43:36.916474 23786 sgd_solver.cpp:105] Iteration 5280, lr = 0.00351378 +I0407 22:43:42.265377 23786 solver.cpp:218] Iteration 5292 (2.24352 iter/s, 5.34874s/12 iters), loss = 0.445046 +I0407 22:43:42.265431 23786 solver.cpp:237] Train net output #0: loss = 0.445046 (* 1 = 0.445046 loss) +I0407 22:43:42.265444 23786 sgd_solver.cpp:105] Iteration 5292, lr = 0.00350544 +I0407 22:43:46.826391 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 22:43:51.648360 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 22:43:54.010548 23786 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 22:43:54.010574 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:43:56.387531 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:58.524823 23786 solver.cpp:397] Test net output #0: accuracy = 0.436887 +I0407 22:43:58.524873 23786 solver.cpp:397] Test net output #1: loss = 3.03093 (* 1 = 3.03093 loss) +I0407 22:43:58.615126 23786 solver.cpp:218] Iteration 5304 (0.733982 iter/s, 16.3492s/12 iters), loss = 0.231029 +I0407 22:43:58.615175 23786 solver.cpp:237] Train net output #0: loss = 0.231029 (* 1 = 0.231029 loss) +I0407 22:43:58.615186 23786 sgd_solver.cpp:105] Iteration 5304, lr = 0.00349711 +I0407 22:44:03.153569 23786 solver.cpp:218] Iteration 5316 (2.6442 iter/s, 4.53824s/12 iters), loss = 0.346941 +I0407 22:44:03.153622 23786 solver.cpp:237] Train net output #0: loss = 0.346941 (* 1 = 0.346941 loss) +I0407 22:44:03.153635 23786 sgd_solver.cpp:105] Iteration 5316, lr = 0.00348881 +I0407 22:44:08.498425 23786 solver.cpp:218] Iteration 5328 (2.24525 iter/s, 5.34462s/12 iters), loss = 0.434307 +I0407 22:44:08.498950 23786 solver.cpp:237] Train net output #0: loss = 0.434307 (* 1 = 0.434307 loss) +I0407 22:44:08.498962 23786 sgd_solver.cpp:105] Iteration 5328, lr = 0.00348053 +I0407 22:44:13.422240 23786 solver.cpp:218] Iteration 5340 (2.43748 iter/s, 4.92312s/12 iters), loss = 0.347822 +I0407 22:44:13.422291 23786 solver.cpp:237] Train net output #0: loss = 0.347822 (* 1 = 0.347822 loss) +I0407 22:44:13.422303 23786 sgd_solver.cpp:105] Iteration 5340, lr = 0.00347226 +I0407 22:44:18.465260 23786 solver.cpp:218] Iteration 5352 (2.37963 iter/s, 5.0428s/12 iters), loss = 0.330027 +I0407 22:44:18.465308 23786 solver.cpp:237] Train net output #0: loss = 0.330027 (* 1 = 0.330027 loss) +I0407 22:44:18.465320 23786 sgd_solver.cpp:105] Iteration 5352, lr = 0.00346402 +I0407 22:44:21.866725 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:23.455282 23786 solver.cpp:218] Iteration 5364 (2.40491 iter/s, 4.9898s/12 iters), loss = 0.30671 +I0407 22:44:23.455338 23786 solver.cpp:237] Train net output #0: loss = 0.30671 (* 1 = 0.30671 loss) +I0407 22:44:23.455350 23786 sgd_solver.cpp:105] Iteration 5364, lr = 0.0034558 +I0407 22:44:28.442404 23786 solver.cpp:218] Iteration 5376 (2.40631 iter/s, 4.9869s/12 iters), loss = 0.260262 +I0407 22:44:28.442456 23786 solver.cpp:237] Train net output #0: loss = 0.260262 (* 1 = 0.260262 loss) +I0407 22:44:28.442466 23786 sgd_solver.cpp:105] Iteration 5376, lr = 0.00344759 +I0407 22:44:33.516377 23786 solver.cpp:218] Iteration 5388 (2.36511 iter/s, 5.07375s/12 iters), loss = 0.201169 +I0407 22:44:33.516424 23786 solver.cpp:237] Train net output #0: loss = 0.201169 (* 1 = 0.201169 loss) +I0407 22:44:33.516435 23786 sgd_solver.cpp:105] Iteration 5388, lr = 0.00343941 +I0407 22:44:38.480903 23786 solver.cpp:218] Iteration 5400 (2.41726 iter/s, 4.9643s/12 iters), loss = 0.369425 +I0407 22:44:38.480958 23786 solver.cpp:237] Train net output #0: loss = 0.369425 (* 1 = 0.369425 loss) +I0407 22:44:38.480971 23786 sgd_solver.cpp:105] Iteration 5400, lr = 0.00343124 +I0407 22:44:40.520848 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 22:44:44.894268 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 22:44:47.810058 23786 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 22:44:47.810081 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:44:50.142096 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:52.277055 23786 solver.cpp:397] Test net output #0: accuracy = 0.416054 +I0407 22:44:52.277104 23786 solver.cpp:397] Test net output #1: loss = 3.11033 (* 1 = 3.11033 loss) +I0407 22:44:53.941588 23786 solver.cpp:218] Iteration 5412 (0.77619 iter/s, 15.4601s/12 iters), loss = 0.454454 +I0407 22:44:53.941640 23786 solver.cpp:237] Train net output #0: loss = 0.454454 (* 1 = 0.454454 loss) +I0407 22:44:53.941653 23786 sgd_solver.cpp:105] Iteration 5412, lr = 0.00342309 +I0407 22:44:58.919137 23786 solver.cpp:218] Iteration 5424 (2.41093 iter/s, 4.97732s/12 iters), loss = 0.270656 +I0407 22:44:58.919183 23786 solver.cpp:237] Train net output #0: loss = 0.270656 (* 1 = 0.270656 loss) +I0407 22:44:58.919191 23786 sgd_solver.cpp:105] Iteration 5424, lr = 0.00341497 +I0407 22:45:04.004236 23786 solver.cpp:218] Iteration 5436 (2.35994 iter/s, 5.08488s/12 iters), loss = 0.195779 +I0407 22:45:04.004287 23786 solver.cpp:237] Train net output #0: loss = 0.195779 (* 1 = 0.195779 loss) +I0407 22:45:04.004297 23786 sgd_solver.cpp:105] Iteration 5436, lr = 0.00340686 +I0407 22:45:09.094003 23786 solver.cpp:218] Iteration 5448 (2.35779 iter/s, 5.08951s/12 iters), loss = 0.329875 +I0407 22:45:09.094069 23786 solver.cpp:237] Train net output #0: loss = 0.329875 (* 1 = 0.329875 loss) +I0407 22:45:09.094085 23786 sgd_solver.cpp:105] Iteration 5448, lr = 0.00339877 +I0407 22:45:14.167307 23786 solver.cpp:218] Iteration 5460 (2.36543 iter/s, 5.07307s/12 iters), loss = 0.198689 +I0407 22:45:14.167415 23786 solver.cpp:237] Train net output #0: loss = 0.198689 (* 1 = 0.198689 loss) +I0407 22:45:14.167424 23786 sgd_solver.cpp:105] Iteration 5460, lr = 0.0033907 +I0407 22:45:14.732215 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:19.248375 23786 solver.cpp:218] Iteration 5472 (2.36184 iter/s, 5.08078s/12 iters), loss = 0.413382 +I0407 22:45:19.248415 23786 solver.cpp:237] Train net output #0: loss = 0.413382 (* 1 = 0.413382 loss) +I0407 22:45:19.248425 23786 sgd_solver.cpp:105] Iteration 5472, lr = 0.00338265 +I0407 22:45:24.269073 23786 solver.cpp:218] Iteration 5484 (2.39021 iter/s, 5.02048s/12 iters), loss = 0.279463 +I0407 22:45:24.269134 23786 solver.cpp:237] Train net output #0: loss = 0.279463 (* 1 = 0.279463 loss) +I0407 22:45:24.269145 23786 sgd_solver.cpp:105] Iteration 5484, lr = 0.00337462 +I0407 22:45:29.338563 23786 solver.cpp:218] Iteration 5496 (2.36721 iter/s, 5.06925s/12 iters), loss = 0.362206 +I0407 22:45:29.338615 23786 solver.cpp:237] Train net output #0: loss = 0.362206 (* 1 = 0.362206 loss) +I0407 22:45:29.338629 23786 sgd_solver.cpp:105] Iteration 5496, lr = 0.00336661 +I0407 22:45:33.913225 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 22:45:40.532992 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 22:45:48.735991 23786 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 22:45:48.736085 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:45:51.013602 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:53.191154 23786 solver.cpp:397] Test net output #0: accuracy = 0.434436 +I0407 22:45:53.191184 23786 solver.cpp:397] Test net output #1: loss = 2.97191 (* 1 = 2.97191 loss) +I0407 22:45:53.278543 23786 solver.cpp:218] Iteration 5508 (0.501271 iter/s, 23.9391s/12 iters), loss = 0.470912 +I0407 22:45:53.278589 23786 solver.cpp:237] Train net output #0: loss = 0.470912 (* 1 = 0.470912 loss) +I0407 22:45:53.278597 23786 sgd_solver.cpp:105] Iteration 5508, lr = 0.00335861 +I0407 22:45:57.854691 23786 solver.cpp:218] Iteration 5520 (2.62241 iter/s, 4.57594s/12 iters), loss = 0.356867 +I0407 22:45:57.854735 23786 solver.cpp:237] Train net output #0: loss = 0.356867 (* 1 = 0.356867 loss) +I0407 22:45:57.854744 23786 sgd_solver.cpp:105] Iteration 5520, lr = 0.00335064 +I0407 22:46:00.508745 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:46:03.287376 23786 solver.cpp:218] Iteration 5532 (2.20895 iter/s, 5.43245s/12 iters), loss = 0.324591 +I0407 22:46:03.287431 23786 solver.cpp:237] Train net output #0: loss = 0.324591 (* 1 = 0.324591 loss) +I0407 22:46:03.287446 23786 sgd_solver.cpp:105] Iteration 5532, lr = 0.00334268 +I0407 22:46:08.237555 23786 solver.cpp:218] Iteration 5544 (2.42426 iter/s, 4.94995s/12 iters), loss = 0.218017 +I0407 22:46:08.237596 23786 solver.cpp:237] Train net output #0: loss = 0.218017 (* 1 = 0.218017 loss) +I0407 22:46:08.237605 23786 sgd_solver.cpp:105] Iteration 5544, lr = 0.00333475 +I0407 22:46:13.231190 23786 solver.cpp:218] Iteration 5556 (2.40316 iter/s, 4.99342s/12 iters), loss = 0.227316 +I0407 22:46:13.231228 23786 solver.cpp:237] Train net output #0: loss = 0.227316 (* 1 = 0.227316 loss) +I0407 22:46:13.231236 23786 sgd_solver.cpp:105] Iteration 5556, lr = 0.00332683 +I0407 22:46:15.935838 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:18.217677 23786 solver.cpp:218] Iteration 5568 (2.40661 iter/s, 4.98627s/12 iters), loss = 0.212149 +I0407 22:46:18.217725 23786 solver.cpp:237] Train net output #0: loss = 0.212149 (* 1 = 0.212149 loss) +I0407 22:46:18.217736 23786 sgd_solver.cpp:105] Iteration 5568, lr = 0.00331893 +I0407 22:46:23.301559 23786 solver.cpp:218] Iteration 5580 (2.36051 iter/s, 5.08365s/12 iters), loss = 0.175144 +I0407 22:46:23.301651 23786 solver.cpp:237] Train net output #0: loss = 0.175144 (* 1 = 0.175144 loss) +I0407 22:46:23.301661 23786 sgd_solver.cpp:105] Iteration 5580, lr = 0.00331105 +I0407 22:46:28.255414 23786 solver.cpp:218] Iteration 5592 (2.42249 iter/s, 4.95359s/12 iters), loss = 0.13916 +I0407 22:46:28.255457 23786 solver.cpp:237] Train net output #0: loss = 0.13916 (* 1 = 0.13916 loss) +I0407 22:46:28.255466 23786 sgd_solver.cpp:105] Iteration 5592, lr = 0.00330319 +I0407 22:46:33.349767 23786 solver.cpp:218] Iteration 5604 (2.35566 iter/s, 5.09412s/12 iters), loss = 0.227095 +I0407 22:46:33.349822 23786 solver.cpp:237] Train net output #0: loss = 0.227095 (* 1 = 0.227095 loss) +I0407 22:46:33.349834 23786 sgd_solver.cpp:105] Iteration 5604, lr = 0.00329535 +I0407 22:46:35.383452 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 22:46:43.840509 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 22:46:50.433051 23786 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 22:46:50.433073 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:46:52.665812 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:54.878347 23786 solver.cpp:397] Test net output #0: accuracy = 0.444853 +I0407 22:46:54.878492 23786 solver.cpp:397] Test net output #1: loss = 2.94146 (* 1 = 2.94146 loss) +I0407 22:46:56.812650 23786 solver.cpp:218] Iteration 5616 (0.511464 iter/s, 23.462s/12 iters), loss = 0.238328 +I0407 22:46:56.812690 23786 solver.cpp:237] Train net output #0: loss = 0.238328 (* 1 = 0.238328 loss) +I0407 22:46:56.812700 23786 sgd_solver.cpp:105] Iteration 5616, lr = 0.00328752 +I0407 22:47:01.880149 23786 solver.cpp:218] Iteration 5628 (2.36814 iter/s, 5.06728s/12 iters), loss = 0.170592 +I0407 22:47:01.880199 23786 solver.cpp:237] Train net output #0: loss = 0.170592 (* 1 = 0.170592 loss) +I0407 22:47:01.880211 23786 sgd_solver.cpp:105] Iteration 5628, lr = 0.00327972 +I0407 22:47:06.978168 23786 solver.cpp:218] Iteration 5640 (2.35396 iter/s, 5.09779s/12 iters), loss = 0.255004 +I0407 22:47:06.978217 23786 solver.cpp:237] Train net output #0: loss = 0.255004 (* 1 = 0.255004 loss) +I0407 22:47:06.978229 23786 sgd_solver.cpp:105] Iteration 5640, lr = 0.00327193 +I0407 22:47:11.967916 23786 solver.cpp:218] Iteration 5652 (2.40504 iter/s, 4.98952s/12 iters), loss = 0.369527 +I0407 22:47:11.967972 23786 solver.cpp:237] Train net output #0: loss = 0.369527 (* 1 = 0.369527 loss) +I0407 22:47:11.967988 23786 sgd_solver.cpp:105] Iteration 5652, lr = 0.00326416 +I0407 22:47:16.926261 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:17.095221 23786 solver.cpp:218] Iteration 5664 (2.34052 iter/s, 5.12707s/12 iters), loss = 0.577704 +I0407 22:47:17.095278 23786 solver.cpp:237] Train net output #0: loss = 0.577704 (* 1 = 0.577704 loss) +I0407 22:47:17.095289 23786 sgd_solver.cpp:105] Iteration 5664, lr = 0.00325641 +I0407 22:47:22.279165 23786 solver.cpp:218] Iteration 5676 (2.31495 iter/s, 5.1837s/12 iters), loss = 0.234215 +I0407 22:47:22.279215 23786 solver.cpp:237] Train net output #0: loss = 0.234215 (* 1 = 0.234215 loss) +I0407 22:47:22.279227 23786 sgd_solver.cpp:105] Iteration 5676, lr = 0.00324868 +I0407 22:47:27.313743 23786 solver.cpp:218] Iteration 5688 (2.38363 iter/s, 5.03434s/12 iters), loss = 0.442588 +I0407 22:47:27.313838 23786 solver.cpp:237] Train net output #0: loss = 0.442588 (* 1 = 0.442588 loss) +I0407 22:47:27.313850 23786 sgd_solver.cpp:105] Iteration 5688, lr = 0.00324097 +I0407 22:47:32.307945 23786 solver.cpp:218] Iteration 5700 (2.40292 iter/s, 4.99393s/12 iters), loss = 0.418562 +I0407 22:47:32.307999 23786 solver.cpp:237] Train net output #0: loss = 0.418562 (* 1 = 0.418562 loss) +I0407 22:47:32.308012 23786 sgd_solver.cpp:105] Iteration 5700, lr = 0.00323328 +I0407 22:47:36.803056 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 22:47:42.019439 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 22:47:46.244719 23786 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 22:47:46.244745 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:47:48.454926 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:50.699306 23786 solver.cpp:397] Test net output #0: accuracy = 0.439338 +I0407 22:47:50.699353 23786 solver.cpp:397] Test net output #1: loss = 3.00069 (* 1 = 3.00069 loss) +I0407 22:47:50.789748 23786 solver.cpp:218] Iteration 5712 (0.649311 iter/s, 18.4811s/12 iters), loss = 0.300264 +I0407 22:47:50.789796 23786 solver.cpp:237] Train net output #0: loss = 0.300264 (* 1 = 0.300264 loss) +I0407 22:47:50.789808 23786 sgd_solver.cpp:105] Iteration 5712, lr = 0.0032256 +I0407 22:47:55.087165 23786 solver.cpp:218] Iteration 5724 (2.79251 iter/s, 4.29721s/12 iters), loss = 0.331538 +I0407 22:47:55.087215 23786 solver.cpp:237] Train net output #0: loss = 0.331538 (* 1 = 0.331538 loss) +I0407 22:47:55.087226 23786 sgd_solver.cpp:105] Iteration 5724, lr = 0.00321794 +I0407 22:48:00.116868 23786 solver.cpp:218] Iteration 5736 (2.38593 iter/s, 5.02948s/12 iters), loss = 0.375355 +I0407 22:48:00.117020 23786 solver.cpp:237] Train net output #0: loss = 0.375355 (* 1 = 0.375355 loss) +I0407 22:48:00.117033 23786 sgd_solver.cpp:105] Iteration 5736, lr = 0.0032103 +I0407 22:48:05.197739 23786 solver.cpp:218] Iteration 5748 (2.36195 iter/s, 5.08054s/12 iters), loss = 0.131449 +I0407 22:48:05.197786 23786 solver.cpp:237] Train net output #0: loss = 0.131449 (* 1 = 0.131449 loss) +I0407 22:48:05.197795 23786 sgd_solver.cpp:105] Iteration 5748, lr = 0.00320268 +I0407 22:48:10.249994 23786 solver.cpp:218] Iteration 5760 (2.37529 iter/s, 5.05201s/12 iters), loss = 0.13245 +I0407 22:48:10.250037 23786 solver.cpp:237] Train net output #0: loss = 0.13245 (* 1 = 0.13245 loss) +I0407 22:48:10.250047 23786 sgd_solver.cpp:105] Iteration 5760, lr = 0.00319508 +I0407 22:48:12.229066 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:15.169935 23786 solver.cpp:218] Iteration 5772 (2.43916 iter/s, 4.91972s/12 iters), loss = 0.175376 +I0407 22:48:15.169996 23786 solver.cpp:237] Train net output #0: loss = 0.175376 (* 1 = 0.175376 loss) +I0407 22:48:15.170007 23786 sgd_solver.cpp:105] Iteration 5772, lr = 0.00318749 +I0407 22:48:20.217797 23786 solver.cpp:218] Iteration 5784 (2.37736 iter/s, 5.04762s/12 iters), loss = 0.194023 +I0407 22:48:20.217849 23786 solver.cpp:237] Train net output #0: loss = 0.194023 (* 1 = 0.194023 loss) +I0407 22:48:20.217862 23786 sgd_solver.cpp:105] Iteration 5784, lr = 0.00317992 +I0407 22:48:25.408090 23786 solver.cpp:218] Iteration 5796 (2.31211 iter/s, 5.19006s/12 iters), loss = 0.27372 +I0407 22:48:25.408134 23786 solver.cpp:237] Train net output #0: loss = 0.27372 (* 1 = 0.27372 loss) +I0407 22:48:25.408145 23786 sgd_solver.cpp:105] Iteration 5796, lr = 0.00317237 +I0407 22:48:30.389796 23786 solver.cpp:218] Iteration 5808 (2.40892 iter/s, 4.98148s/12 iters), loss = 0.18596 +I0407 22:48:30.392045 23786 solver.cpp:237] Train net output #0: loss = 0.18596 (* 1 = 0.18596 loss) +I0407 22:48:30.392056 23786 sgd_solver.cpp:105] Iteration 5808, lr = 0.00316484 +I0407 22:48:32.398917 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 22:48:36.707526 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 22:48:42.363101 23786 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 22:48:42.363130 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:48:44.548305 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:46.838603 23786 solver.cpp:397] Test net output #0: accuracy = 0.430147 +I0407 22:48:46.838650 23786 solver.cpp:397] Test net output #1: loss = 2.99732 (* 1 = 2.99732 loss) +I0407 22:48:48.690062 23786 solver.cpp:218] Iteration 5820 (0.655831 iter/s, 18.2974s/12 iters), loss = 0.340563 +I0407 22:48:48.690110 23786 solver.cpp:237] Train net output #0: loss = 0.340563 (* 1 = 0.340563 loss) +I0407 22:48:48.690121 23786 sgd_solver.cpp:105] Iteration 5820, lr = 0.00315733 +I0407 22:48:53.683199 23786 solver.cpp:218] Iteration 5832 (2.40341 iter/s, 4.99291s/12 iters), loss = 0.27843 +I0407 22:48:53.683243 23786 solver.cpp:237] Train net output #0: loss = 0.27843 (* 1 = 0.27843 loss) +I0407 22:48:53.683252 23786 sgd_solver.cpp:105] Iteration 5832, lr = 0.00314983 +I0407 22:48:58.864848 23786 solver.cpp:218] Iteration 5844 (2.31597 iter/s, 5.18142s/12 iters), loss = 0.212924 +I0407 22:48:58.864889 23786 solver.cpp:237] Train net output #0: loss = 0.212924 (* 1 = 0.212924 loss) +I0407 22:48:58.864898 23786 sgd_solver.cpp:105] Iteration 5844, lr = 0.00314235 +I0407 22:49:03.851554 23786 solver.cpp:218] Iteration 5856 (2.4065 iter/s, 4.98649s/12 iters), loss = 0.107316 +I0407 22:49:03.851668 23786 solver.cpp:237] Train net output #0: loss = 0.107316 (* 1 = 0.107316 loss) +I0407 22:49:03.851680 23786 sgd_solver.cpp:105] Iteration 5856, lr = 0.00313489 +I0407 22:49:08.075227 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:08.889889 23786 solver.cpp:218] Iteration 5868 (2.38188 iter/s, 5.03804s/12 iters), loss = 0.262342 +I0407 22:49:08.889938 23786 solver.cpp:237] Train net output #0: loss = 0.262342 (* 1 = 0.262342 loss) +I0407 22:49:08.889950 23786 sgd_solver.cpp:105] Iteration 5868, lr = 0.00312745 +I0407 22:49:13.892757 23786 solver.cpp:218] Iteration 5880 (2.39874 iter/s, 5.00264s/12 iters), loss = 0.244992 +I0407 22:49:13.892805 23786 solver.cpp:237] Train net output #0: loss = 0.244992 (* 1 = 0.244992 loss) +I0407 22:49:13.892814 23786 sgd_solver.cpp:105] Iteration 5880, lr = 0.00312002 +I0407 22:49:18.912770 23786 solver.cpp:218] Iteration 5892 (2.39054 iter/s, 5.01978s/12 iters), loss = 0.313053 +I0407 22:49:18.912828 23786 solver.cpp:237] Train net output #0: loss = 0.313053 (* 1 = 0.313053 loss) +I0407 22:49:18.912840 23786 sgd_solver.cpp:105] Iteration 5892, lr = 0.00311262 +I0407 22:49:23.934962 23786 solver.cpp:218] Iteration 5904 (2.38951 iter/s, 5.02195s/12 iters), loss = 0.299528 +I0407 22:49:23.935009 23786 solver.cpp:237] Train net output #0: loss = 0.299528 (* 1 = 0.299528 loss) +I0407 22:49:23.935017 23786 sgd_solver.cpp:105] Iteration 5904, lr = 0.00310523 +I0407 22:49:28.536491 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 22:49:36.343336 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 22:49:43.611732 23786 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 22:49:43.611758 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:49:45.780320 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:48.107733 23786 solver.cpp:397] Test net output #0: accuracy = 0.441176 +I0407 22:49:48.107772 23786 solver.cpp:397] Test net output #1: loss = 2.96435 (* 1 = 2.96435 loss) +I0407 22:49:48.198079 23786 solver.cpp:218] Iteration 5916 (0.494596 iter/s, 24.2622s/12 iters), loss = 0.304816 +I0407 22:49:48.198132 23786 solver.cpp:237] Train net output #0: loss = 0.304816 (* 1 = 0.304816 loss) +I0407 22:49:48.198144 23786 sgd_solver.cpp:105] Iteration 5916, lr = 0.00309785 +I0407 22:49:52.779342 23786 solver.cpp:218] Iteration 5928 (2.61949 iter/s, 4.58104s/12 iters), loss = 0.284551 +I0407 22:49:52.779388 23786 solver.cpp:237] Train net output #0: loss = 0.284551 (* 1 = 0.284551 loss) +I0407 22:49:52.779397 23786 sgd_solver.cpp:105] Iteration 5928, lr = 0.0030905 +I0407 22:49:57.727557 23786 solver.cpp:218] Iteration 5940 (2.42523 iter/s, 4.94799s/12 iters), loss = 0.28898 +I0407 22:49:57.727603 23786 solver.cpp:237] Train net output #0: loss = 0.28898 (* 1 = 0.28898 loss) +I0407 22:49:57.727614 23786 sgd_solver.cpp:105] Iteration 5940, lr = 0.00308316 +I0407 22:50:02.751587 23786 solver.cpp:218] Iteration 5952 (2.38863 iter/s, 5.02381s/12 iters), loss = 0.247142 +I0407 22:50:02.751623 23786 solver.cpp:237] Train net output #0: loss = 0.247142 (* 1 = 0.247142 loss) +I0407 22:50:02.751631 23786 sgd_solver.cpp:105] Iteration 5952, lr = 0.00307584 +I0407 22:50:07.786753 23786 solver.cpp:218] Iteration 5964 (2.38334 iter/s, 5.03495s/12 iters), loss = 0.258398 +I0407 22:50:07.786852 23786 solver.cpp:237] Train net output #0: loss = 0.258398 (* 1 = 0.258398 loss) +I0407 22:50:07.786861 23786 sgd_solver.cpp:105] Iteration 5964, lr = 0.00306854 +I0407 22:50:09.115720 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:12.744454 23786 solver.cpp:218] Iteration 5976 (2.42062 iter/s, 4.95742s/12 iters), loss = 0.228116 +I0407 22:50:12.744516 23786 solver.cpp:237] Train net output #0: loss = 0.228116 (* 1 = 0.228116 loss) +I0407 22:50:12.744529 23786 sgd_solver.cpp:105] Iteration 5976, lr = 0.00306125 +I0407 22:50:17.663283 23786 solver.cpp:218] Iteration 5988 (2.43972 iter/s, 4.91859s/12 iters), loss = 0.157074 +I0407 22:50:17.663336 23786 solver.cpp:237] Train net output #0: loss = 0.157074 (* 1 = 0.157074 loss) +I0407 22:50:17.663347 23786 sgd_solver.cpp:105] Iteration 5988, lr = 0.00305398 +I0407 22:50:22.762147 23786 solver.cpp:218] Iteration 6000 (2.35358 iter/s, 5.09862s/12 iters), loss = 0.241336 +I0407 22:50:22.762202 23786 solver.cpp:237] Train net output #0: loss = 0.241336 (* 1 = 0.241336 loss) +I0407 22:50:22.762213 23786 sgd_solver.cpp:105] Iteration 6000, lr = 0.00304673 +I0407 22:50:28.065346 23786 solver.cpp:218] Iteration 6012 (2.26289 iter/s, 5.30295s/12 iters), loss = 0.0959809 +I0407 22:50:28.065397 23786 solver.cpp:237] Train net output #0: loss = 0.0959809 (* 1 = 0.0959809 loss) +I0407 22:50:28.065407 23786 sgd_solver.cpp:105] Iteration 6012, lr = 0.0030395 +I0407 22:50:30.289665 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 22:50:34.213047 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 22:50:37.962131 23786 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 22:50:37.962239 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:50:40.053292 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:42.556452 23786 solver.cpp:397] Test net output #0: accuracy = 0.431373 +I0407 22:50:42.556501 23786 solver.cpp:397] Test net output #1: loss = 2.9474 (* 1 = 2.9474 loss) +I0407 22:50:44.543725 23786 solver.cpp:218] Iteration 6024 (0.728254 iter/s, 16.4778s/12 iters), loss = 0.242946 +I0407 22:50:44.543763 23786 solver.cpp:237] Train net output #0: loss = 0.242946 (* 1 = 0.242946 loss) +I0407 22:50:44.543771 23786 sgd_solver.cpp:105] Iteration 6024, lr = 0.00303228 +I0407 22:50:49.489986 23786 solver.cpp:218] Iteration 6036 (2.42618 iter/s, 4.94604s/12 iters), loss = 0.1766 +I0407 22:50:49.490041 23786 solver.cpp:237] Train net output #0: loss = 0.1766 (* 1 = 0.1766 loss) +I0407 22:50:49.490056 23786 sgd_solver.cpp:105] Iteration 6036, lr = 0.00302508 +I0407 22:50:54.523847 23786 solver.cpp:218] Iteration 6048 (2.38397 iter/s, 5.03362s/12 iters), loss = 0.161271 +I0407 22:50:54.523886 23786 solver.cpp:237] Train net output #0: loss = 0.161271 (* 1 = 0.161271 loss) +I0407 22:50:54.523895 23786 sgd_solver.cpp:105] Iteration 6048, lr = 0.0030179 +I0407 22:50:59.489274 23786 solver.cpp:218] Iteration 6060 (2.41682 iter/s, 4.9652s/12 iters), loss = 0.18846 +I0407 22:50:59.489315 23786 solver.cpp:237] Train net output #0: loss = 0.18846 (* 1 = 0.18846 loss) +I0407 22:50:59.489324 23786 sgd_solver.cpp:105] Iteration 6060, lr = 0.00301074 +I0407 22:51:02.985208 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:04.529136 23786 solver.cpp:218] Iteration 6072 (2.38113 iter/s, 5.03963s/12 iters), loss = 0.18868 +I0407 22:51:04.529183 23786 solver.cpp:237] Train net output #0: loss = 0.188681 (* 1 = 0.188681 loss) +I0407 22:51:04.529191 23786 sgd_solver.cpp:105] Iteration 6072, lr = 0.00300359 +I0407 22:51:09.549374 23786 solver.cpp:218] Iteration 6084 (2.39044 iter/s, 5.02s/12 iters), loss = 0.164883 +I0407 22:51:09.549504 23786 solver.cpp:237] Train net output #0: loss = 0.164883 (* 1 = 0.164883 loss) +I0407 22:51:09.549517 23786 sgd_solver.cpp:105] Iteration 6084, lr = 0.00299646 +I0407 22:51:14.590144 23786 solver.cpp:218] Iteration 6096 (2.38074 iter/s, 5.04045s/12 iters), loss = 0.227613 +I0407 22:51:14.590193 23786 solver.cpp:237] Train net output #0: loss = 0.227613 (* 1 = 0.227613 loss) +I0407 22:51:14.590204 23786 sgd_solver.cpp:105] Iteration 6096, lr = 0.00298934 +I0407 22:51:19.488011 23786 solver.cpp:218] Iteration 6108 (2.45016 iter/s, 4.89763s/12 iters), loss = 0.292132 +I0407 22:51:19.488065 23786 solver.cpp:237] Train net output #0: loss = 0.292132 (* 1 = 0.292132 loss) +I0407 22:51:19.488075 23786 sgd_solver.cpp:105] Iteration 6108, lr = 0.00298225 +I0407 22:51:24.307509 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 22:51:27.339484 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 22:51:30.973052 23786 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 22:51:30.973083 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:51:33.013167 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:35.417788 23786 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 22:51:35.417836 23786 solver.cpp:397] Test net output #1: loss = 2.97471 (* 1 = 2.97471 loss) +I0407 22:51:35.508311 23786 solver.cpp:218] Iteration 6120 (0.749079 iter/s, 16.0197s/12 iters), loss = 0.114227 +I0407 22:51:35.508363 23786 solver.cpp:237] Train net output #0: loss = 0.114227 (* 1 = 0.114227 loss) +I0407 22:51:35.508375 23786 sgd_solver.cpp:105] Iteration 6120, lr = 0.00297517 +I0407 22:51:40.047092 23786 solver.cpp:218] Iteration 6132 (2.64401 iter/s, 4.53855s/12 iters), loss = 0.166179 +I0407 22:51:40.047231 23786 solver.cpp:237] Train net output #0: loss = 0.166179 (* 1 = 0.166179 loss) +I0407 22:51:40.047241 23786 sgd_solver.cpp:105] Iteration 6132, lr = 0.0029681 +I0407 22:51:45.115546 23786 solver.cpp:218] Iteration 6144 (2.36774 iter/s, 5.06813s/12 iters), loss = 0.187151 +I0407 22:51:45.115581 23786 solver.cpp:237] Train net output #0: loss = 0.187151 (* 1 = 0.187151 loss) +I0407 22:51:45.115589 23786 sgd_solver.cpp:105] Iteration 6144, lr = 0.00296105 +I0407 22:51:50.146524 23786 solver.cpp:218] Iteration 6156 (2.38533 iter/s, 5.03076s/12 iters), loss = 0.14319 +I0407 22:51:50.146561 23786 solver.cpp:237] Train net output #0: loss = 0.14319 (* 1 = 0.14319 loss) +I0407 22:51:50.146569 23786 sgd_solver.cpp:105] Iteration 6156, lr = 0.00295402 +I0407 22:51:55.151940 23786 solver.cpp:218] Iteration 6168 (2.39751 iter/s, 5.00519s/12 iters), loss = 0.247055 +I0407 22:51:55.151983 23786 solver.cpp:237] Train net output #0: loss = 0.247055 (* 1 = 0.247055 loss) +I0407 22:51:55.151993 23786 sgd_solver.cpp:105] Iteration 6168, lr = 0.00294701 +I0407 22:51:55.745390 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:00.107668 23786 solver.cpp:218] Iteration 6180 (2.42155 iter/s, 4.9555s/12 iters), loss = 0.215211 +I0407 22:52:00.107712 23786 solver.cpp:237] Train net output #0: loss = 0.215211 (* 1 = 0.215211 loss) +I0407 22:52:00.107722 23786 sgd_solver.cpp:105] Iteration 6180, lr = 0.00294001 +I0407 22:52:05.085769 23786 solver.cpp:218] Iteration 6192 (2.41067 iter/s, 4.97787s/12 iters), loss = 0.152034 +I0407 22:52:05.085834 23786 solver.cpp:237] Train net output #0: loss = 0.152034 (* 1 = 0.152034 loss) +I0407 22:52:05.085850 23786 sgd_solver.cpp:105] Iteration 6192, lr = 0.00293303 +I0407 22:52:10.117997 23786 solver.cpp:218] Iteration 6204 (2.38475 iter/s, 5.03198s/12 iters), loss = 0.169281 +I0407 22:52:10.118129 23786 solver.cpp:237] Train net output #0: loss = 0.169281 (* 1 = 0.169281 loss) +I0407 22:52:10.118144 23786 sgd_solver.cpp:105] Iteration 6204, lr = 0.00292607 +I0407 22:52:15.134825 23786 solver.cpp:218] Iteration 6216 (2.3921 iter/s, 5.01651s/12 iters), loss = 0.3291 +I0407 22:52:15.134872 23786 solver.cpp:237] Train net output #0: loss = 0.3291 (* 1 = 0.3291 loss) +I0407 22:52:15.134881 23786 sgd_solver.cpp:105] Iteration 6216, lr = 0.00291912 +I0407 22:52:17.225737 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 22:52:20.256229 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 22:52:22.668920 23786 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 22:52:22.668947 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:52:24.589836 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:25.877772 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:52:27.074112 23786 solver.cpp:397] Test net output #0: accuracy = 0.450368 +I0407 22:52:27.074162 23786 solver.cpp:397] Test net output #1: loss = 2.98558 (* 1 = 2.98558 loss) +I0407 22:52:28.949106 23786 solver.cpp:218] Iteration 6228 (0.8687 iter/s, 13.8137s/12 iters), loss = 0.212001 +I0407 22:52:28.949151 23786 solver.cpp:237] Train net output #0: loss = 0.212001 (* 1 = 0.212001 loss) +I0407 22:52:28.949162 23786 sgd_solver.cpp:105] Iteration 6228, lr = 0.00291219 +I0407 22:52:33.939798 23786 solver.cpp:218] Iteration 6240 (2.40459 iter/s, 4.99046s/12 iters), loss = 0.25004 +I0407 22:52:33.939848 23786 solver.cpp:237] Train net output #0: loss = 0.25004 (* 1 = 0.25004 loss) +I0407 22:52:33.939859 23786 sgd_solver.cpp:105] Iteration 6240, lr = 0.00290528 +I0407 22:52:38.943711 23786 solver.cpp:218] Iteration 6252 (2.39824 iter/s, 5.00368s/12 iters), loss = 0.148102 +I0407 22:52:38.943763 23786 solver.cpp:237] Train net output #0: loss = 0.148102 (* 1 = 0.148102 loss) +I0407 22:52:38.943774 23786 sgd_solver.cpp:105] Iteration 6252, lr = 0.00289838 +I0407 22:52:43.976541 23786 solver.cpp:218] Iteration 6264 (2.38446 iter/s, 5.03259s/12 iters), loss = 0.108369 +I0407 22:52:43.977706 23786 solver.cpp:237] Train net output #0: loss = 0.108369 (* 1 = 0.108369 loss) +I0407 22:52:43.977720 23786 sgd_solver.cpp:105] Iteration 6264, lr = 0.0028915 +I0407 22:52:46.728814 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:48.967319 23786 solver.cpp:218] Iteration 6276 (2.40509 iter/s, 4.98943s/12 iters), loss = 0.157652 +I0407 22:52:48.967371 23786 solver.cpp:237] Train net output #0: loss = 0.157652 (* 1 = 0.157652 loss) +I0407 22:52:48.967383 23786 sgd_solver.cpp:105] Iteration 6276, lr = 0.00288463 +I0407 22:52:54.011905 23786 solver.cpp:218] Iteration 6288 (2.3789 iter/s, 5.04435s/12 iters), loss = 0.297536 +I0407 22:52:54.011950 23786 solver.cpp:237] Train net output #0: loss = 0.297536 (* 1 = 0.297536 loss) +I0407 22:52:54.011961 23786 sgd_solver.cpp:105] Iteration 6288, lr = 0.00287779 +I0407 22:52:59.062534 23786 solver.cpp:218] Iteration 6300 (2.37605 iter/s, 5.05039s/12 iters), loss = 0.135169 +I0407 22:52:59.062587 23786 solver.cpp:237] Train net output #0: loss = 0.135169 (* 1 = 0.135169 loss) +I0407 22:52:59.062599 23786 sgd_solver.cpp:105] Iteration 6300, lr = 0.00287095 +I0407 22:53:04.162941 23786 solver.cpp:218] Iteration 6312 (2.35286 iter/s, 5.10017s/12 iters), loss = 0.205765 +I0407 22:53:04.162984 23786 solver.cpp:237] Train net output #0: loss = 0.205765 (* 1 = 0.205765 loss) +I0407 22:53:04.162995 23786 sgd_solver.cpp:105] Iteration 6312, lr = 0.00286414 +I0407 22:53:08.897125 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 22:53:11.925988 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 22:53:14.313591 23786 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 22:53:14.313666 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:53:16.306453 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:18.789036 23786 solver.cpp:397] Test net output #0: accuracy = 0.439338 +I0407 22:53:18.789074 23786 solver.cpp:397] Test net output #1: loss = 3.09817 (* 1 = 3.09817 loss) +I0407 22:53:18.879416 23786 solver.cpp:218] Iteration 6324 (0.815444 iter/s, 14.7159s/12 iters), loss = 0.162368 +I0407 22:53:18.879470 23786 solver.cpp:237] Train net output #0: loss = 0.162368 (* 1 = 0.162368 loss) +I0407 22:53:18.879482 23786 sgd_solver.cpp:105] Iteration 6324, lr = 0.00285734 +I0407 22:53:23.319573 23786 solver.cpp:218] Iteration 6336 (2.70274 iter/s, 4.43994s/12 iters), loss = 0.14092 +I0407 22:53:23.319619 23786 solver.cpp:237] Train net output #0: loss = 0.14092 (* 1 = 0.14092 loss) +I0407 22:53:23.319629 23786 sgd_solver.cpp:105] Iteration 6336, lr = 0.00285055 +I0407 22:53:28.343070 23786 solver.cpp:218] Iteration 6348 (2.38889 iter/s, 5.02326s/12 iters), loss = 0.0645294 +I0407 22:53:28.343124 23786 solver.cpp:237] Train net output #0: loss = 0.0645295 (* 1 = 0.0645295 loss) +I0407 22:53:28.343135 23786 sgd_solver.cpp:105] Iteration 6348, lr = 0.00284379 +I0407 22:53:33.318972 23786 solver.cpp:218] Iteration 6360 (2.41174 iter/s, 4.97566s/12 iters), loss = 0.0650425 +I0407 22:53:33.319028 23786 solver.cpp:237] Train net output #0: loss = 0.0650425 (* 1 = 0.0650425 loss) +I0407 22:53:33.319044 23786 sgd_solver.cpp:105] Iteration 6360, lr = 0.00283703 +I0407 22:53:38.165267 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:38.300779 23786 solver.cpp:218] Iteration 6372 (2.40888 iter/s, 4.98157s/12 iters), loss = 0.236628 +I0407 22:53:38.300828 23786 solver.cpp:237] Train net output #0: loss = 0.236628 (* 1 = 0.236628 loss) +I0407 22:53:38.300840 23786 sgd_solver.cpp:105] Iteration 6372, lr = 0.0028303 +I0407 22:53:43.276052 23786 solver.cpp:218] Iteration 6384 (2.41204 iter/s, 4.97504s/12 iters), loss = 0.269293 +I0407 22:53:43.276096 23786 solver.cpp:237] Train net output #0: loss = 0.269293 (* 1 = 0.269293 loss) +I0407 22:53:43.276106 23786 sgd_solver.cpp:105] Iteration 6384, lr = 0.00282358 +I0407 22:53:48.284698 23786 solver.cpp:218] Iteration 6396 (2.39597 iter/s, 5.00841s/12 iters), loss = 0.139214 +I0407 22:53:48.284824 23786 solver.cpp:237] Train net output #0: loss = 0.139214 (* 1 = 0.139214 loss) +I0407 22:53:48.284837 23786 sgd_solver.cpp:105] Iteration 6396, lr = 0.00281687 +I0407 22:53:53.320942 23786 solver.cpp:218] Iteration 6408 (2.38288 iter/s, 5.03593s/12 iters), loss = 0.173014 +I0407 22:53:53.320994 23786 solver.cpp:237] Train net output #0: loss = 0.173014 (* 1 = 0.173014 loss) +I0407 22:53:53.321007 23786 sgd_solver.cpp:105] Iteration 6408, lr = 0.00281019 +I0407 22:53:58.321507 23786 solver.cpp:218] Iteration 6420 (2.39984 iter/s, 5.00033s/12 iters), loss = 0.216799 +I0407 22:53:58.321550 23786 solver.cpp:237] Train net output #0: loss = 0.216799 (* 1 = 0.216799 loss) +I0407 22:53:58.321559 23786 sgd_solver.cpp:105] Iteration 6420, lr = 0.00280351 +I0407 22:54:00.387920 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 22:54:03.360134 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 22:54:05.725570 23786 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 22:54:05.725594 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:54:07.578488 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:10.141681 23786 solver.cpp:397] Test net output #0: accuracy = 0.452206 +I0407 22:54:10.141731 23786 solver.cpp:397] Test net output #1: loss = 2.97769 (* 1 = 2.97769 loss) +I0407 22:54:12.020927 23786 solver.cpp:218] Iteration 6432 (0.875984 iter/s, 13.6989s/12 iters), loss = 0.20708 +I0407 22:54:12.020967 23786 solver.cpp:237] Train net output #0: loss = 0.207081 (* 1 = 0.207081 loss) +I0407 22:54:12.020975 23786 sgd_solver.cpp:105] Iteration 6432, lr = 0.00279686 +I0407 22:54:17.008441 23786 solver.cpp:218] Iteration 6444 (2.40612 iter/s, 4.98728s/12 iters), loss = 0.167214 +I0407 22:54:17.008486 23786 solver.cpp:237] Train net output #0: loss = 0.167214 (* 1 = 0.167214 loss) +I0407 22:54:17.008494 23786 sgd_solver.cpp:105] Iteration 6444, lr = 0.00279022 +I0407 22:54:21.973574 23786 solver.cpp:218] Iteration 6456 (2.41697 iter/s, 4.9649s/12 iters), loss = 0.149551 +I0407 22:54:21.973667 23786 solver.cpp:237] Train net output #0: loss = 0.149551 (* 1 = 0.149551 loss) +I0407 22:54:21.973678 23786 sgd_solver.cpp:105] Iteration 6456, lr = 0.00278359 +I0407 22:54:27.035630 23786 solver.cpp:218] Iteration 6468 (2.37071 iter/s, 5.06178s/12 iters), loss = 0.30495 +I0407 22:54:27.035672 23786 solver.cpp:237] Train net output #0: loss = 0.30495 (* 1 = 0.30495 loss) +I0407 22:54:27.035681 23786 sgd_solver.cpp:105] Iteration 6468, lr = 0.00277698 +I0407 22:54:29.040892 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:32.039465 23786 solver.cpp:218] Iteration 6480 (2.39827 iter/s, 5.0036s/12 iters), loss = 0.112137 +I0407 22:54:32.039510 23786 solver.cpp:237] Train net output #0: loss = 0.112137 (* 1 = 0.112137 loss) +I0407 22:54:32.039521 23786 sgd_solver.cpp:105] Iteration 6480, lr = 0.00277039 +I0407 22:54:37.028136 23786 solver.cpp:218] Iteration 6492 (2.40556 iter/s, 4.98844s/12 iters), loss = 0.12046 +I0407 22:54:37.028182 23786 solver.cpp:237] Train net output #0: loss = 0.12046 (* 1 = 0.12046 loss) +I0407 22:54:37.028192 23786 sgd_solver.cpp:105] Iteration 6492, lr = 0.00276381 +I0407 22:54:42.112272 23786 solver.cpp:218] Iteration 6504 (2.36039 iter/s, 5.0839s/12 iters), loss = 0.199035 +I0407 22:54:42.112319 23786 solver.cpp:237] Train net output #0: loss = 0.199035 (* 1 = 0.199035 loss) +I0407 22:54:42.112330 23786 sgd_solver.cpp:105] Iteration 6504, lr = 0.00275725 +I0407 22:54:47.065011 23786 solver.cpp:218] Iteration 6516 (2.42302 iter/s, 4.9525s/12 iters), loss = 0.261211 +I0407 22:54:47.065058 23786 solver.cpp:237] Train net output #0: loss = 0.261211 (* 1 = 0.261211 loss) +I0407 22:54:47.065069 23786 sgd_solver.cpp:105] Iteration 6516, lr = 0.00275071 +I0407 22:54:51.602185 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 22:54:54.668568 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 22:54:57.021531 23786 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 22:54:57.021557 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:54:59.028692 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:01.674794 23786 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 22:55:01.674831 23786 solver.cpp:397] Test net output #1: loss = 3.09426 (* 1 = 3.09426 loss) +I0407 22:55:01.765153 23786 solver.cpp:218] Iteration 6528 (0.816351 iter/s, 14.6996s/12 iters), loss = 0.0863287 +I0407 22:55:01.765195 23786 solver.cpp:237] Train net output #0: loss = 0.0863287 (* 1 = 0.0863287 loss) +I0407 22:55:01.765204 23786 sgd_solver.cpp:105] Iteration 6528, lr = 0.00274418 +I0407 22:55:05.973502 23786 solver.cpp:218] Iteration 6540 (2.85161 iter/s, 4.20814s/12 iters), loss = 0.23206 +I0407 22:55:05.973558 23786 solver.cpp:237] Train net output #0: loss = 0.23206 (* 1 = 0.23206 loss) +I0407 22:55:05.973570 23786 sgd_solver.cpp:105] Iteration 6540, lr = 0.00273766 +I0407 22:55:10.971215 23786 solver.cpp:218] Iteration 6552 (2.40122 iter/s, 4.99747s/12 iters), loss = 0.0788796 +I0407 22:55:10.971261 23786 solver.cpp:237] Train net output #0: loss = 0.0788797 (* 1 = 0.0788797 loss) +I0407 22:55:10.971271 23786 sgd_solver.cpp:105] Iteration 6552, lr = 0.00273116 +I0407 22:55:16.023867 23786 solver.cpp:218] Iteration 6564 (2.3751 iter/s, 5.05242s/12 iters), loss = 0.127893 +I0407 22:55:16.023912 23786 solver.cpp:237] Train net output #0: loss = 0.127893 (* 1 = 0.127893 loss) +I0407 22:55:16.023923 23786 sgd_solver.cpp:105] Iteration 6564, lr = 0.00272468 +I0407 22:55:20.249663 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:21.021298 23786 solver.cpp:218] Iteration 6576 (2.40135 iter/s, 4.99719s/12 iters), loss = 0.175262 +I0407 22:55:21.021351 23786 solver.cpp:237] Train net output #0: loss = 0.175262 (* 1 = 0.175262 loss) +I0407 22:55:21.021365 23786 sgd_solver.cpp:105] Iteration 6576, lr = 0.00271821 +I0407 22:55:26.040127 23786 solver.cpp:218] Iteration 6588 (2.39111 iter/s, 5.01858s/12 iters), loss = 0.110305 +I0407 22:55:26.040235 23786 solver.cpp:237] Train net output #0: loss = 0.110305 (* 1 = 0.110305 loss) +I0407 22:55:26.040248 23786 sgd_solver.cpp:105] Iteration 6588, lr = 0.00271175 +I0407 22:55:31.045064 23786 solver.cpp:218] Iteration 6600 (2.39777 iter/s, 5.00464s/12 iters), loss = 0.159141 +I0407 22:55:31.045106 23786 solver.cpp:237] Train net output #0: loss = 0.159141 (* 1 = 0.159141 loss) +I0407 22:55:31.045116 23786 sgd_solver.cpp:105] Iteration 6600, lr = 0.00270532 +I0407 22:55:36.031340 23786 solver.cpp:218] Iteration 6612 (2.40672 iter/s, 4.98604s/12 iters), loss = 0.116861 +I0407 22:55:36.031399 23786 solver.cpp:237] Train net output #0: loss = 0.116861 (* 1 = 0.116861 loss) +I0407 22:55:36.031409 23786 sgd_solver.cpp:105] Iteration 6612, lr = 0.00269889 +I0407 22:55:41.060386 23786 solver.cpp:218] Iteration 6624 (2.38626 iter/s, 5.02879s/12 iters), loss = 0.163788 +I0407 22:55:41.060441 23786 solver.cpp:237] Train net output #0: loss = 0.163788 (* 1 = 0.163788 loss) +I0407 22:55:41.060453 23786 sgd_solver.cpp:105] Iteration 6624, lr = 0.00269248 +I0407 22:55:43.129411 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 22:55:46.138078 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 22:55:48.779675 23786 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 22:55:48.779700 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:55:50.526979 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:53.163180 23786 solver.cpp:397] Test net output #0: accuracy = 0.435049 +I0407 22:55:53.163218 23786 solver.cpp:397] Test net output #1: loss = 3.15203 (* 1 = 3.15203 loss) +I0407 22:55:54.941105 23786 solver.cpp:218] Iteration 6636 (0.864543 iter/s, 13.8802s/12 iters), loss = 0.101059 +I0407 22:55:54.941152 23786 solver.cpp:237] Train net output #0: loss = 0.101059 (* 1 = 0.101059 loss) +I0407 22:55:54.941164 23786 sgd_solver.cpp:105] Iteration 6636, lr = 0.00268609 +I0407 22:56:00.371206 23786 solver.cpp:218] Iteration 6648 (2.21001 iter/s, 5.42984s/12 iters), loss = 0.145408 +I0407 22:56:00.371330 23786 solver.cpp:237] Train net output #0: loss = 0.145408 (* 1 = 0.145408 loss) +I0407 22:56:00.371341 23786 sgd_solver.cpp:105] Iteration 6648, lr = 0.00267971 +I0407 22:56:05.441936 23786 solver.cpp:218] Iteration 6660 (2.36667 iter/s, 5.07042s/12 iters), loss = 0.198716 +I0407 22:56:05.442003 23786 solver.cpp:237] Train net output #0: loss = 0.198716 (* 1 = 0.198716 loss) +I0407 22:56:05.442013 23786 sgd_solver.cpp:105] Iteration 6660, lr = 0.00267335 +I0407 22:56:10.460510 23786 solver.cpp:218] Iteration 6672 (2.39124 iter/s, 5.01832s/12 iters), loss = 0.189719 +I0407 22:56:10.460551 23786 solver.cpp:237] Train net output #0: loss = 0.189719 (* 1 = 0.189719 loss) +I0407 22:56:10.460561 23786 sgd_solver.cpp:105] Iteration 6672, lr = 0.00266701 +I0407 22:56:11.836225 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:15.479275 23786 solver.cpp:218] Iteration 6684 (2.39114 iter/s, 5.01853s/12 iters), loss = 0.227195 +I0407 22:56:15.479324 23786 solver.cpp:237] Train net output #0: loss = 0.227195 (* 1 = 0.227195 loss) +I0407 22:56:15.479336 23786 sgd_solver.cpp:105] Iteration 6684, lr = 0.00266067 +I0407 22:56:20.471449 23786 solver.cpp:218] Iteration 6696 (2.40388 iter/s, 4.99193s/12 iters), loss = 0.16329 +I0407 22:56:20.471509 23786 solver.cpp:237] Train net output #0: loss = 0.16329 (* 1 = 0.16329 loss) +I0407 22:56:20.471524 23786 sgd_solver.cpp:105] Iteration 6696, lr = 0.00265436 +I0407 22:56:25.464450 23786 solver.cpp:218] Iteration 6708 (2.40349 iter/s, 4.99275s/12 iters), loss = 0.214309 +I0407 22:56:25.464498 23786 solver.cpp:237] Train net output #0: loss = 0.214309 (* 1 = 0.214309 loss) +I0407 22:56:25.464505 23786 sgd_solver.cpp:105] Iteration 6708, lr = 0.00264805 +I0407 22:56:30.454418 23786 solver.cpp:218] Iteration 6720 (2.40494 iter/s, 4.98972s/12 iters), loss = 0.152251 +I0407 22:56:30.454511 23786 solver.cpp:237] Train net output #0: loss = 0.152251 (* 1 = 0.152251 loss) +I0407 22:56:30.454524 23786 sgd_solver.cpp:105] Iteration 6720, lr = 0.00264177 +I0407 22:56:34.982784 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 22:56:38.005532 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 22:56:41.485460 23786 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 22:56:41.485483 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:56:43.279168 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:45.958766 23786 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 22:56:45.958815 23786 solver.cpp:397] Test net output #1: loss = 2.96989 (* 1 = 2.96989 loss) +I0407 22:56:46.049288 23786 solver.cpp:218] Iteration 6732 (0.769516 iter/s, 15.5942s/12 iters), loss = 0.185235 +I0407 22:56:46.049341 23786 solver.cpp:237] Train net output #0: loss = 0.185235 (* 1 = 0.185235 loss) +I0407 22:56:46.049353 23786 sgd_solver.cpp:105] Iteration 6732, lr = 0.0026355 +I0407 22:56:50.233386 23786 solver.cpp:218] Iteration 6744 (2.86815 iter/s, 4.18388s/12 iters), loss = 0.0716578 +I0407 22:56:50.233441 23786 solver.cpp:237] Train net output #0: loss = 0.0716579 (* 1 = 0.0716579 loss) +I0407 22:56:50.233453 23786 sgd_solver.cpp:105] Iteration 6744, lr = 0.00262924 +I0407 22:56:55.189455 23786 solver.cpp:218] Iteration 6756 (2.42139 iter/s, 4.95583s/12 iters), loss = 0.101265 +I0407 22:56:55.189502 23786 solver.cpp:237] Train net output #0: loss = 0.101265 (* 1 = 0.101265 loss) +I0407 22:56:55.189512 23786 sgd_solver.cpp:105] Iteration 6756, lr = 0.002623 +I0407 22:57:00.311442 23786 solver.cpp:218] Iteration 6768 (2.34295 iter/s, 5.12174s/12 iters), loss = 0.248837 +I0407 22:57:00.311501 23786 solver.cpp:237] Train net output #0: loss = 0.248837 (* 1 = 0.248837 loss) +I0407 22:57:00.311512 23786 sgd_solver.cpp:105] Iteration 6768, lr = 0.00261677 +I0407 22:57:04.015543 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:05.527361 23786 solver.cpp:218] Iteration 6780 (2.30076 iter/s, 5.21566s/12 iters), loss = 0.100067 +I0407 22:57:05.527417 23786 solver.cpp:237] Train net output #0: loss = 0.100067 (* 1 = 0.100067 loss) +I0407 22:57:05.527429 23786 sgd_solver.cpp:105] Iteration 6780, lr = 0.00261056 +I0407 22:57:10.553010 23786 solver.cpp:218] Iteration 6792 (2.38787 iter/s, 5.0254s/12 iters), loss = 0.100327 +I0407 22:57:10.553068 23786 solver.cpp:237] Train net output #0: loss = 0.100327 (* 1 = 0.100327 loss) +I0407 22:57:10.553081 23786 sgd_solver.cpp:105] Iteration 6792, lr = 0.00260436 +I0407 22:57:15.661290 23786 solver.cpp:218] Iteration 6804 (2.34924 iter/s, 5.10803s/12 iters), loss = 0.145547 +I0407 22:57:15.661339 23786 solver.cpp:237] Train net output #0: loss = 0.145547 (* 1 = 0.145547 loss) +I0407 22:57:15.661350 23786 sgd_solver.cpp:105] Iteration 6804, lr = 0.00259817 +I0407 22:57:20.687438 23786 solver.cpp:218] Iteration 6816 (2.38763 iter/s, 5.02591s/12 iters), loss = 0.138192 +I0407 22:57:20.687484 23786 solver.cpp:237] Train net output #0: loss = 0.138192 (* 1 = 0.138192 loss) +I0407 22:57:20.687494 23786 sgd_solver.cpp:105] Iteration 6816, lr = 0.00259201 +I0407 22:57:25.683928 23786 solver.cpp:218] Iteration 6828 (2.4018 iter/s, 4.99626s/12 iters), loss = 0.217061 +I0407 22:57:25.683971 23786 solver.cpp:237] Train net output #0: loss = 0.217061 (* 1 = 0.217061 loss) +I0407 22:57:25.683982 23786 sgd_solver.cpp:105] Iteration 6828, lr = 0.00258585 +I0407 22:57:27.739457 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 22:57:30.763326 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 22:57:33.113302 23786 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 22:57:33.113327 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:57:34.924044 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:37.762921 23786 solver.cpp:397] Test net output #0: accuracy = 0.44424 +I0407 22:57:37.762955 23786 solver.cpp:397] Test net output #1: loss = 2.96009 (* 1 = 2.96009 loss) +I0407 22:57:39.604588 23786 solver.cpp:218] Iteration 6840 (0.862062 iter/s, 13.9201s/12 iters), loss = 0.16302 +I0407 22:57:39.604638 23786 solver.cpp:237] Train net output #0: loss = 0.16302 (* 1 = 0.16302 loss) +I0407 22:57:39.604650 23786 sgd_solver.cpp:105] Iteration 6840, lr = 0.00257971 +I0407 22:57:44.548219 23786 solver.cpp:218] Iteration 6852 (2.42748 iter/s, 4.94339s/12 iters), loss = 0.0761299 +I0407 22:57:44.548274 23786 solver.cpp:237] Train net output #0: loss = 0.07613 (* 1 = 0.07613 loss) +I0407 22:57:44.548285 23786 sgd_solver.cpp:105] Iteration 6852, lr = 0.00257359 +I0407 22:57:49.580677 23786 solver.cpp:218] Iteration 6864 (2.38464 iter/s, 5.03221s/12 iters), loss = 0.166731 +I0407 22:57:49.580727 23786 solver.cpp:237] Train net output #0: loss = 0.166731 (* 1 = 0.166731 loss) +I0407 22:57:49.580739 23786 sgd_solver.cpp:105] Iteration 6864, lr = 0.00256748 +I0407 22:57:54.584998 23786 solver.cpp:218] Iteration 6876 (2.39804 iter/s, 5.00408s/12 iters), loss = 0.14154 +I0407 22:57:54.585052 23786 solver.cpp:237] Train net output #0: loss = 0.14154 (* 1 = 0.14154 loss) +I0407 22:57:54.585063 23786 sgd_solver.cpp:105] Iteration 6876, lr = 0.00256138 +I0407 22:57:55.221452 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:59.579232 23786 solver.cpp:218] Iteration 6888 (2.40289 iter/s, 4.99399s/12 iters), loss = 0.0820344 +I0407 22:57:59.579282 23786 solver.cpp:237] Train net output #0: loss = 0.0820345 (* 1 = 0.0820345 loss) +I0407 22:57:59.579295 23786 sgd_solver.cpp:105] Iteration 6888, lr = 0.0025553 +I0407 22:58:04.596721 23786 solver.cpp:218] Iteration 6900 (2.39175 iter/s, 5.01725s/12 iters), loss = 0.156944 +I0407 22:58:04.596767 23786 solver.cpp:237] Train net output #0: loss = 0.156945 (* 1 = 0.156945 loss) +I0407 22:58:04.596778 23786 sgd_solver.cpp:105] Iteration 6900, lr = 0.00254923 +I0407 22:58:09.629266 23786 solver.cpp:218] Iteration 6912 (2.38459 iter/s, 5.03231s/12 iters), loss = 0.196859 +I0407 22:58:09.629384 23786 solver.cpp:237] Train net output #0: loss = 0.196859 (* 1 = 0.196859 loss) +I0407 22:58:09.629398 23786 sgd_solver.cpp:105] Iteration 6912, lr = 0.00254318 +I0407 22:58:14.762174 23786 solver.cpp:218] Iteration 6924 (2.338 iter/s, 5.1326s/12 iters), loss = 0.19987 +I0407 22:58:14.762223 23786 solver.cpp:237] Train net output #0: loss = 0.19987 (* 1 = 0.19987 loss) +I0407 22:58:14.762235 23786 sgd_solver.cpp:105] Iteration 6924, lr = 0.00253714 +I0407 22:58:19.290196 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 22:58:22.351583 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 22:58:24.673264 23786 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 22:58:24.673290 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:58:25.332048 23786 blocking_queue.cpp:49] Waiting for data +I0407 22:58:26.411609 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:29.133358 23786 solver.cpp:397] Test net output #0: accuracy = 0.459559 +I0407 22:58:29.133404 23786 solver.cpp:397] Test net output #1: loss = 2.9066 (* 1 = 2.9066 loss) +I0407 22:58:29.223870 23786 solver.cpp:218] Iteration 6936 (0.829812 iter/s, 14.4611s/12 iters), loss = 0.132892 +I0407 22:58:29.223922 23786 solver.cpp:237] Train net output #0: loss = 0.132892 (* 1 = 0.132892 loss) +I0407 22:58:29.223932 23786 sgd_solver.cpp:105] Iteration 6936, lr = 0.00253112 +I0407 22:58:33.688163 23786 solver.cpp:218] Iteration 6948 (2.68813 iter/s, 4.46407s/12 iters), loss = 0.165575 +I0407 22:58:33.688200 23786 solver.cpp:237] Train net output #0: loss = 0.165575 (* 1 = 0.165575 loss) +I0407 22:58:33.688210 23786 sgd_solver.cpp:105] Iteration 6948, lr = 0.00252511 +I0407 22:58:38.727716 23786 solver.cpp:218] Iteration 6960 (2.38128 iter/s, 5.03932s/12 iters), loss = 0.0482876 +I0407 22:58:38.727767 23786 solver.cpp:237] Train net output #0: loss = 0.0482877 (* 1 = 0.0482877 loss) +I0407 22:58:38.727778 23786 sgd_solver.cpp:105] Iteration 6960, lr = 0.00251911 +I0407 22:58:43.749274 23786 solver.cpp:218] Iteration 6972 (2.38981 iter/s, 5.02132s/12 iters), loss = 0.134746 +I0407 22:58:43.749354 23786 solver.cpp:237] Train net output #0: loss = 0.134746 (* 1 = 0.134746 loss) +I0407 22:58:43.749366 23786 sgd_solver.cpp:105] Iteration 6972, lr = 0.00251313 +I0407 22:58:46.506603 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:48.709292 23786 solver.cpp:218] Iteration 6984 (2.41948 iter/s, 4.95975s/12 iters), loss = 0.0610355 +I0407 22:58:48.709344 23786 solver.cpp:237] Train net output #0: loss = 0.0610356 (* 1 = 0.0610356 loss) +I0407 22:58:48.709355 23786 sgd_solver.cpp:105] Iteration 6984, lr = 0.00250717 +I0407 22:58:53.681404 23786 solver.cpp:218] Iteration 6996 (2.41358 iter/s, 4.97188s/12 iters), loss = 0.126529 +I0407 22:58:53.681440 23786 solver.cpp:237] Train net output #0: loss = 0.126529 (* 1 = 0.126529 loss) +I0407 22:58:53.681449 23786 sgd_solver.cpp:105] Iteration 6996, lr = 0.00250121 +I0407 22:58:58.679124 23786 solver.cpp:218] Iteration 7008 (2.4012 iter/s, 4.9975s/12 iters), loss = 0.0701569 +I0407 22:58:58.679162 23786 solver.cpp:237] Train net output #0: loss = 0.0701569 (* 1 = 0.0701569 loss) +I0407 22:58:58.679169 23786 sgd_solver.cpp:105] Iteration 7008, lr = 0.00249528 +I0407 22:59:03.986665 23786 solver.cpp:218] Iteration 7020 (2.26104 iter/s, 5.3073s/12 iters), loss = 0.0977354 +I0407 22:59:03.986704 23786 solver.cpp:237] Train net output #0: loss = 0.0977355 (* 1 = 0.0977355 loss) +I0407 22:59:03.986712 23786 sgd_solver.cpp:105] Iteration 7020, lr = 0.00248935 +I0407 22:59:08.972335 23786 solver.cpp:218] Iteration 7032 (2.40701 iter/s, 4.98544s/12 iters), loss = 0.220389 +I0407 22:59:08.972384 23786 solver.cpp:237] Train net output #0: loss = 0.220389 (* 1 = 0.220389 loss) +I0407 22:59:08.972396 23786 sgd_solver.cpp:105] Iteration 7032, lr = 0.00248344 +I0407 22:59:11.005770 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 22:59:14.014173 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 22:59:16.387068 23786 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 22:59:16.387092 23786 net.cpp:676] Ignoring source layer train-data +I0407 22:59:18.092808 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:20.846922 23786 solver.cpp:397] Test net output #0: accuracy = 0.449755 +I0407 22:59:20.846974 23786 solver.cpp:397] Test net output #1: loss = 3.01329 (* 1 = 3.01329 loss) +I0407 22:59:22.815457 23786 solver.cpp:218] Iteration 7044 (0.866892 iter/s, 13.8426s/12 iters), loss = 0.180819 +I0407 22:59:22.815513 23786 solver.cpp:237] Train net output #0: loss = 0.180819 (* 1 = 0.180819 loss) +I0407 22:59:22.815526 23786 sgd_solver.cpp:105] Iteration 7044, lr = 0.00247755 +I0407 22:59:28.006579 23786 solver.cpp:218] Iteration 7056 (2.31175 iter/s, 5.19087s/12 iters), loss = 0.137352 +I0407 22:59:28.006626 23786 solver.cpp:237] Train net output #0: loss = 0.137352 (* 1 = 0.137352 loss) +I0407 22:59:28.006639 23786 sgd_solver.cpp:105] Iteration 7056, lr = 0.00247166 +I0407 22:59:33.017645 23786 solver.cpp:218] Iteration 7068 (2.39481 iter/s, 5.01083s/12 iters), loss = 0.156065 +I0407 22:59:33.017693 23786 solver.cpp:237] Train net output #0: loss = 0.156065 (* 1 = 0.156065 loss) +I0407 22:59:33.017704 23786 sgd_solver.cpp:105] Iteration 7068, lr = 0.0024658 +I0407 22:59:37.880590 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:37.988649 23786 solver.cpp:218] Iteration 7080 (2.41412 iter/s, 4.97076s/12 iters), loss = 0.110478 +I0407 22:59:37.988703 23786 solver.cpp:237] Train net output #0: loss = 0.110478 (* 1 = 0.110478 loss) +I0407 22:59:37.988714 23786 sgd_solver.cpp:105] Iteration 7080, lr = 0.00245994 +I0407 22:59:42.961490 23786 solver.cpp:218] Iteration 7092 (2.41323 iter/s, 4.9726s/12 iters), loss = 0.265474 +I0407 22:59:42.961540 23786 solver.cpp:237] Train net output #0: loss = 0.265474 (* 1 = 0.265474 loss) +I0407 22:59:42.961552 23786 sgd_solver.cpp:105] Iteration 7092, lr = 0.0024541 +I0407 22:59:47.903909 23786 solver.cpp:218] Iteration 7104 (2.42808 iter/s, 4.94218s/12 iters), loss = 0.106027 +I0407 22:59:47.903985 23786 solver.cpp:237] Train net output #0: loss = 0.106027 (* 1 = 0.106027 loss) +I0407 22:59:47.903993 23786 sgd_solver.cpp:105] Iteration 7104, lr = 0.00244827 +I0407 22:59:52.864929 23786 solver.cpp:218] Iteration 7116 (2.41899 iter/s, 4.96075s/12 iters), loss = 0.0588091 +I0407 22:59:52.864975 23786 solver.cpp:237] Train net output #0: loss = 0.0588092 (* 1 = 0.0588092 loss) +I0407 22:59:52.864984 23786 sgd_solver.cpp:105] Iteration 7116, lr = 0.00244246 +I0407 22:59:57.811072 23786 solver.cpp:218] Iteration 7128 (2.42625 iter/s, 4.9459s/12 iters), loss = 0.110317 +I0407 22:59:57.811128 23786 solver.cpp:237] Train net output #0: loss = 0.110317 (* 1 = 0.110317 loss) +I0407 22:59:57.811139 23786 sgd_solver.cpp:105] Iteration 7128, lr = 0.00243666 +I0407 23:00:02.364420 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 23:00:05.995540 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 23:00:08.329098 23786 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 23:00:08.329123 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:00:10.197171 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:13.053690 23786 solver.cpp:397] Test net output #0: accuracy = 0.462623 +I0407 23:00:13.053721 23786 solver.cpp:397] Test net output #1: loss = 3.0051 (* 1 = 3.0051 loss) +I0407 23:00:13.144186 23786 solver.cpp:218] Iteration 7140 (0.782651 iter/s, 15.3325s/12 iters), loss = 0.104364 +I0407 23:00:13.144229 23786 solver.cpp:237] Train net output #0: loss = 0.104364 (* 1 = 0.104364 loss) +I0407 23:00:13.144239 23786 sgd_solver.cpp:105] Iteration 7140, lr = 0.00243088 +I0407 23:00:17.471807 23786 solver.cpp:218] Iteration 7152 (2.77302 iter/s, 4.32741s/12 iters), loss = 0.103066 +I0407 23:00:17.471861 23786 solver.cpp:237] Train net output #0: loss = 0.103066 (* 1 = 0.103066 loss) +I0407 23:00:17.471874 23786 sgd_solver.cpp:105] Iteration 7152, lr = 0.00242511 +I0407 23:00:22.541200 23786 solver.cpp:218] Iteration 7164 (2.36726 iter/s, 5.06914s/12 iters), loss = 0.0678474 +I0407 23:00:22.541355 23786 solver.cpp:237] Train net output #0: loss = 0.0678475 (* 1 = 0.0678475 loss) +I0407 23:00:22.541369 23786 sgd_solver.cpp:105] Iteration 7164, lr = 0.00241935 +I0407 23:00:27.595892 23786 solver.cpp:218] Iteration 7176 (2.3742 iter/s, 5.05434s/12 iters), loss = 0.0582692 +I0407 23:00:27.595947 23786 solver.cpp:237] Train net output #0: loss = 0.0582693 (* 1 = 0.0582693 loss) +I0407 23:00:27.595958 23786 sgd_solver.cpp:105] Iteration 7176, lr = 0.0024136 +I0407 23:00:29.723589 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:32.727880 23786 solver.cpp:218] Iteration 7188 (2.33839 iter/s, 5.13173s/12 iters), loss = 0.12393 +I0407 23:00:32.727922 23786 solver.cpp:237] Train net output #0: loss = 0.12393 (* 1 = 0.12393 loss) +I0407 23:00:32.727931 23786 sgd_solver.cpp:105] Iteration 7188, lr = 0.00240787 +I0407 23:00:37.776789 23786 solver.cpp:218] Iteration 7200 (2.37686 iter/s, 5.04867s/12 iters), loss = 0.109886 +I0407 23:00:37.776835 23786 solver.cpp:237] Train net output #0: loss = 0.109886 (* 1 = 0.109886 loss) +I0407 23:00:37.776844 23786 sgd_solver.cpp:105] Iteration 7200, lr = 0.00240216 +I0407 23:00:42.754686 23786 solver.cpp:218] Iteration 7212 (2.41077 iter/s, 4.97766s/12 iters), loss = 0.0672098 +I0407 23:00:42.754725 23786 solver.cpp:237] Train net output #0: loss = 0.0672098 (* 1 = 0.0672098 loss) +I0407 23:00:42.754734 23786 sgd_solver.cpp:105] Iteration 7212, lr = 0.00239645 +I0407 23:00:47.711858 23786 solver.cpp:218] Iteration 7224 (2.42085 iter/s, 4.95694s/12 iters), loss = 0.12557 +I0407 23:00:47.711902 23786 solver.cpp:237] Train net output #0: loss = 0.12557 (* 1 = 0.12557 loss) +I0407 23:00:47.711911 23786 sgd_solver.cpp:105] Iteration 7224, lr = 0.00239076 +I0407 23:00:52.690565 23786 solver.cpp:218] Iteration 7236 (2.41038 iter/s, 4.97847s/12 iters), loss = 0.0592966 +I0407 23:00:52.690634 23786 solver.cpp:237] Train net output #0: loss = 0.0592967 (* 1 = 0.0592967 loss) +I0407 23:00:52.690644 23786 sgd_solver.cpp:105] Iteration 7236, lr = 0.00238509 +I0407 23:00:54.714810 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 23:00:59.126363 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 23:01:01.761849 23786 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 23:01:01.761874 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:01:03.361807 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:06.197710 23786 solver.cpp:397] Test net output #0: accuracy = 0.461397 +I0407 23:01:06.197759 23786 solver.cpp:397] Test net output #1: loss = 3.00566 (* 1 = 3.00566 loss) +I0407 23:01:08.064388 23786 solver.cpp:218] Iteration 7248 (0.78058 iter/s, 15.3732s/12 iters), loss = 0.0478527 +I0407 23:01:08.064443 23786 solver.cpp:237] Train net output #0: loss = 0.0478528 (* 1 = 0.0478528 loss) +I0407 23:01:08.064456 23786 sgd_solver.cpp:105] Iteration 7248, lr = 0.00237942 +I0407 23:01:12.999972 23786 solver.cpp:218] Iteration 7260 (2.43144 iter/s, 4.93534s/12 iters), loss = 0.177072 +I0407 23:01:13.000023 23786 solver.cpp:237] Train net output #0: loss = 0.177072 (* 1 = 0.177072 loss) +I0407 23:01:13.000036 23786 sgd_solver.cpp:105] Iteration 7260, lr = 0.00237378 +I0407 23:01:18.043381 23786 solver.cpp:218] Iteration 7272 (2.37946 iter/s, 5.04316s/12 iters), loss = 0.036117 +I0407 23:01:18.043426 23786 solver.cpp:237] Train net output #0: loss = 0.0361171 (* 1 = 0.0361171 loss) +I0407 23:01:18.043437 23786 sgd_solver.cpp:105] Iteration 7272, lr = 0.00236814 +I0407 23:01:22.289388 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:23.035050 23786 solver.cpp:218] Iteration 7284 (2.40412 iter/s, 4.99143s/12 iters), loss = 0.0680884 +I0407 23:01:23.035167 23786 solver.cpp:237] Train net output #0: loss = 0.0680884 (* 1 = 0.0680884 loss) +I0407 23:01:23.035182 23786 sgd_solver.cpp:105] Iteration 7284, lr = 0.00236252 +I0407 23:01:28.076217 23786 solver.cpp:218] Iteration 7296 (2.38055 iter/s, 5.04086s/12 iters), loss = 0.0856699 +I0407 23:01:28.076265 23786 solver.cpp:237] Train net output #0: loss = 0.08567 (* 1 = 0.08567 loss) +I0407 23:01:28.076277 23786 sgd_solver.cpp:105] Iteration 7296, lr = 0.00235691 +I0407 23:01:33.079592 23786 solver.cpp:218] Iteration 7308 (2.3985 iter/s, 5.00313s/12 iters), loss = 0.101446 +I0407 23:01:33.079643 23786 solver.cpp:237] Train net output #0: loss = 0.101446 (* 1 = 0.101446 loss) +I0407 23:01:33.079653 23786 sgd_solver.cpp:105] Iteration 7308, lr = 0.00235131 +I0407 23:01:37.982128 23786 solver.cpp:218] Iteration 7320 (2.44783 iter/s, 4.9023s/12 iters), loss = 0.15954 +I0407 23:01:37.982180 23786 solver.cpp:237] Train net output #0: loss = 0.15954 (* 1 = 0.15954 loss) +I0407 23:01:37.982192 23786 sgd_solver.cpp:105] Iteration 7320, lr = 0.00234573 +I0407 23:01:43.028255 23786 solver.cpp:218] Iteration 7332 (2.37818 iter/s, 5.04588s/12 iters), loss = 0.0580539 +I0407 23:01:43.028304 23786 solver.cpp:237] Train net output #0: loss = 0.058054 (* 1 = 0.058054 loss) +I0407 23:01:43.028316 23786 sgd_solver.cpp:105] Iteration 7332, lr = 0.00234016 +I0407 23:01:47.486697 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 23:01:51.899489 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 23:01:55.521261 23786 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 23:01:55.521338 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:01:57.106703 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:59.979573 23786 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 23:01:59.979610 23786 solver.cpp:397] Test net output #1: loss = 2.9982 (* 1 = 2.9982 loss) +I0407 23:02:00.070053 23786 solver.cpp:218] Iteration 7344 (0.704179 iter/s, 17.0411s/12 iters), loss = 0.137525 +I0407 23:02:00.070111 23786 solver.cpp:237] Train net output #0: loss = 0.137525 (* 1 = 0.137525 loss) +I0407 23:02:00.070137 23786 sgd_solver.cpp:105] Iteration 7344, lr = 0.0023346 +I0407 23:02:04.308187 23786 solver.cpp:218] Iteration 7356 (2.83159 iter/s, 4.23791s/12 iters), loss = 0.0820013 +I0407 23:02:04.308240 23786 solver.cpp:237] Train net output #0: loss = 0.0820014 (* 1 = 0.0820014 loss) +I0407 23:02:04.308252 23786 sgd_solver.cpp:105] Iteration 7356, lr = 0.00232906 +I0407 23:02:09.361662 23786 solver.cpp:218] Iteration 7368 (2.37472 iter/s, 5.05323s/12 iters), loss = 0.177371 +I0407 23:02:09.361714 23786 solver.cpp:237] Train net output #0: loss = 0.177372 (* 1 = 0.177372 loss) +I0407 23:02:09.361726 23786 sgd_solver.cpp:105] Iteration 7368, lr = 0.00232353 +I0407 23:02:14.287832 23786 solver.cpp:218] Iteration 7380 (2.43609 iter/s, 4.92593s/12 iters), loss = 0.0574903 +I0407 23:02:14.287894 23786 solver.cpp:237] Train net output #0: loss = 0.0574905 (* 1 = 0.0574905 loss) +I0407 23:02:14.287909 23786 sgd_solver.cpp:105] Iteration 7380, lr = 0.00231802 +I0407 23:02:15.684121 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:19.274369 23786 solver.cpp:218] Iteration 7392 (2.4066 iter/s, 4.98629s/12 iters), loss = 0.2235 +I0407 23:02:19.274412 23786 solver.cpp:237] Train net output #0: loss = 0.2235 (* 1 = 0.2235 loss) +I0407 23:02:19.274425 23786 sgd_solver.cpp:105] Iteration 7392, lr = 0.00231251 +I0407 23:02:24.361943 23786 solver.cpp:218] Iteration 7404 (2.3588 iter/s, 5.08733s/12 iters), loss = 0.212021 +I0407 23:02:24.362010 23786 solver.cpp:237] Train net output #0: loss = 0.212021 (* 1 = 0.212021 loss) +I0407 23:02:24.362022 23786 sgd_solver.cpp:105] Iteration 7404, lr = 0.00230702 +I0407 23:02:29.453903 23786 solver.cpp:218] Iteration 7416 (2.35678 iter/s, 5.0917s/12 iters), loss = 0.112222 +I0407 23:02:29.454031 23786 solver.cpp:237] Train net output #0: loss = 0.112222 (* 1 = 0.112222 loss) +I0407 23:02:29.454041 23786 sgd_solver.cpp:105] Iteration 7416, lr = 0.00230154 +I0407 23:02:34.453446 23786 solver.cpp:218] Iteration 7428 (2.40037 iter/s, 4.99922s/12 iters), loss = 0.0900844 +I0407 23:02:34.453486 23786 solver.cpp:237] Train net output #0: loss = 0.0900846 (* 1 = 0.0900846 loss) +I0407 23:02:34.453495 23786 sgd_solver.cpp:105] Iteration 7428, lr = 0.00229608 +I0407 23:02:39.430649 23786 solver.cpp:218] Iteration 7440 (2.4111 iter/s, 4.97697s/12 iters), loss = 0.0910138 +I0407 23:02:39.430693 23786 solver.cpp:237] Train net output #0: loss = 0.091014 (* 1 = 0.091014 loss) +I0407 23:02:39.430703 23786 sgd_solver.cpp:105] Iteration 7440, lr = 0.00229063 +I0407 23:02:41.447898 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 23:02:45.029601 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 23:02:48.761011 23786 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 23:02:48.761037 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:02:50.305464 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:53.220661 23786 solver.cpp:397] Test net output #0: accuracy = 0.465074 +I0407 23:02:53.220708 23786 solver.cpp:397] Test net output #1: loss = 2.9697 (* 1 = 2.9697 loss) +I0407 23:02:55.149724 23786 solver.cpp:218] Iteration 7452 (0.763434 iter/s, 15.7184s/12 iters), loss = 0.04283 +I0407 23:02:55.149785 23786 solver.cpp:237] Train net output #0: loss = 0.0428301 (* 1 = 0.0428301 loss) +I0407 23:02:55.149797 23786 sgd_solver.cpp:105] Iteration 7452, lr = 0.00228519 +I0407 23:03:00.193130 23786 solver.cpp:218] Iteration 7464 (2.37946 iter/s, 5.04315s/12 iters), loss = 0.10269 +I0407 23:03:00.193243 23786 solver.cpp:237] Train net output #0: loss = 0.10269 (* 1 = 0.10269 loss) +I0407 23:03:00.193256 23786 sgd_solver.cpp:105] Iteration 7464, lr = 0.00227976 +I0407 23:03:05.271297 23786 solver.cpp:218] Iteration 7476 (2.3632 iter/s, 5.07786s/12 iters), loss = 0.13362 +I0407 23:03:05.271349 23786 solver.cpp:237] Train net output #0: loss = 0.133621 (* 1 = 0.133621 loss) +I0407 23:03:05.271360 23786 sgd_solver.cpp:105] Iteration 7476, lr = 0.00227435 +I0407 23:03:08.984493 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:10.582455 23786 solver.cpp:218] Iteration 7488 (2.2595 iter/s, 5.3109s/12 iters), loss = 0.0829625 +I0407 23:03:10.582512 23786 solver.cpp:237] Train net output #0: loss = 0.0829626 (* 1 = 0.0829626 loss) +I0407 23:03:10.582525 23786 sgd_solver.cpp:105] Iteration 7488, lr = 0.00226895 +I0407 23:03:15.635769 23786 solver.cpp:218] Iteration 7500 (2.3748 iter/s, 5.05307s/12 iters), loss = 0.0776388 +I0407 23:03:15.635818 23786 solver.cpp:237] Train net output #0: loss = 0.077639 (* 1 = 0.077639 loss) +I0407 23:03:15.635830 23786 sgd_solver.cpp:105] Iteration 7500, lr = 0.00226357 +I0407 23:03:20.563467 23786 solver.cpp:218] Iteration 7512 (2.43533 iter/s, 4.92746s/12 iters), loss = 0.057944 +I0407 23:03:20.563516 23786 solver.cpp:237] Train net output #0: loss = 0.0579442 (* 1 = 0.0579442 loss) +I0407 23:03:20.563529 23786 sgd_solver.cpp:105] Iteration 7512, lr = 0.00225819 +I0407 23:03:25.529968 23786 solver.cpp:218] Iteration 7524 (2.41631 iter/s, 4.96624s/12 iters), loss = 0.0926276 +I0407 23:03:25.530019 23786 solver.cpp:237] Train net output #0: loss = 0.0926277 (* 1 = 0.0926277 loss) +I0407 23:03:25.530030 23786 sgd_solver.cpp:105] Iteration 7524, lr = 0.00225283 +I0407 23:03:30.484802 23786 solver.cpp:218] Iteration 7536 (2.422 iter/s, 4.95459s/12 iters), loss = 0.147195 +I0407 23:03:30.484925 23786 solver.cpp:237] Train net output #0: loss = 0.147195 (* 1 = 0.147195 loss) +I0407 23:03:30.484935 23786 sgd_solver.cpp:105] Iteration 7536, lr = 0.00224748 +I0407 23:03:35.019520 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 23:03:38.047660 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 23:03:41.589444 23786 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 23:03:41.589470 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:03:43.069969 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:46.140987 23786 solver.cpp:397] Test net output #0: accuracy = 0.462623 +I0407 23:03:46.141036 23786 solver.cpp:397] Test net output #1: loss = 3.01884 (* 1 = 3.01884 loss) +I0407 23:03:46.231729 23786 solver.cpp:218] Iteration 7548 (0.762088 iter/s, 15.7462s/12 iters), loss = 0.0613358 +I0407 23:03:46.231784 23786 solver.cpp:237] Train net output #0: loss = 0.061336 (* 1 = 0.061336 loss) +I0407 23:03:46.231796 23786 sgd_solver.cpp:105] Iteration 7548, lr = 0.00224215 +I0407 23:03:51.968514 23786 solver.cpp:218] Iteration 7560 (2.09186 iter/s, 5.73651s/12 iters), loss = 0.0994754 +I0407 23:03:51.968554 23786 solver.cpp:237] Train net output #0: loss = 0.0994756 (* 1 = 0.0994756 loss) +I0407 23:03:51.968564 23786 sgd_solver.cpp:105] Iteration 7560, lr = 0.00223682 +I0407 23:03:57.064978 23786 solver.cpp:218] Iteration 7572 (2.35469 iter/s, 5.09622s/12 iters), loss = 0.126155 +I0407 23:03:57.065050 23786 solver.cpp:237] Train net output #0: loss = 0.126156 (* 1 = 0.126156 loss) +I0407 23:03:57.065070 23786 sgd_solver.cpp:105] Iteration 7572, lr = 0.00223151 +I0407 23:04:02.011515 23786 solver.cpp:218] Iteration 7584 (2.42606 iter/s, 4.94628s/12 iters), loss = 0.0940135 +I0407 23:04:02.011605 23786 solver.cpp:237] Train net output #0: loss = 0.0940137 (* 1 = 0.0940137 loss) +I0407 23:04:02.011618 23786 sgd_solver.cpp:105] Iteration 7584, lr = 0.00222621 +I0407 23:04:02.670442 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:07.035936 23786 solver.cpp:218] Iteration 7596 (2.38847 iter/s, 5.02414s/12 iters), loss = 0.0834689 +I0407 23:04:07.035981 23786 solver.cpp:237] Train net output #0: loss = 0.083469 (* 1 = 0.083469 loss) +I0407 23:04:07.035990 23786 sgd_solver.cpp:105] Iteration 7596, lr = 0.00222093 +I0407 23:04:12.008446 23786 solver.cpp:218] Iteration 7608 (2.41338 iter/s, 4.97227s/12 iters), loss = 0.180898 +I0407 23:04:12.008495 23786 solver.cpp:237] Train net output #0: loss = 0.180898 (* 1 = 0.180898 loss) +I0407 23:04:12.008507 23786 sgd_solver.cpp:105] Iteration 7608, lr = 0.00221565 +I0407 23:04:17.013600 23786 solver.cpp:218] Iteration 7620 (2.39764 iter/s, 5.00491s/12 iters), loss = 0.156067 +I0407 23:04:17.013654 23786 solver.cpp:237] Train net output #0: loss = 0.156068 (* 1 = 0.156068 loss) +I0407 23:04:17.013665 23786 sgd_solver.cpp:105] Iteration 7620, lr = 0.00221039 +I0407 23:04:19.433697 23786 blocking_queue.cpp:49] Waiting for data +I0407 23:04:21.999495 23786 solver.cpp:218] Iteration 7632 (2.40691 iter/s, 4.98565s/12 iters), loss = 0.202356 +I0407 23:04:21.999537 23786 solver.cpp:237] Train net output #0: loss = 0.202356 (* 1 = 0.202356 loss) +I0407 23:04:21.999547 23786 sgd_solver.cpp:105] Iteration 7632, lr = 0.00220515 +I0407 23:04:26.928501 23786 solver.cpp:218] Iteration 7644 (2.43468 iter/s, 4.92877s/12 iters), loss = 0.0505629 +I0407 23:04:26.928553 23786 solver.cpp:237] Train net output #0: loss = 0.0505631 (* 1 = 0.0505631 loss) +I0407 23:04:26.928566 23786 sgd_solver.cpp:105] Iteration 7644, lr = 0.00219991 +I0407 23:04:28.890797 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 23:04:31.913082 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 23:04:34.960990 23786 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 23:04:34.961081 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:04:36.316846 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:39.332157 23786 solver.cpp:397] Test net output #0: accuracy = 0.463235 +I0407 23:04:39.332204 23786 solver.cpp:397] Test net output #1: loss = 3.04653 (* 1 = 3.04653 loss) +I0407 23:04:41.131639 23786 solver.cpp:218] Iteration 7656 (0.844918 iter/s, 14.2026s/12 iters), loss = 0.0854038 +I0407 23:04:41.131690 23786 solver.cpp:237] Train net output #0: loss = 0.085404 (* 1 = 0.085404 loss) +I0407 23:04:41.131701 23786 sgd_solver.cpp:105] Iteration 7656, lr = 0.00219469 +I0407 23:04:46.417718 23786 solver.cpp:218] Iteration 7668 (2.27023 iter/s, 5.28582s/12 iters), loss = 0.156152 +I0407 23:04:46.417773 23786 solver.cpp:237] Train net output #0: loss = 0.156153 (* 1 = 0.156153 loss) +I0407 23:04:46.417784 23786 sgd_solver.cpp:105] Iteration 7668, lr = 0.00218948 +I0407 23:04:51.443449 23786 solver.cpp:218] Iteration 7680 (2.38783 iter/s, 5.02549s/12 iters), loss = 0.12484 +I0407 23:04:51.443490 23786 solver.cpp:237] Train net output #0: loss = 0.12484 (* 1 = 0.12484 loss) +I0407 23:04:51.443498 23786 sgd_solver.cpp:105] Iteration 7680, lr = 0.00218428 +I0407 23:04:54.246709 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:56.436872 23786 solver.cpp:218] Iteration 7692 (2.40327 iter/s, 4.99319s/12 iters), loss = 0.10184 +I0407 23:04:56.436923 23786 solver.cpp:237] Train net output #0: loss = 0.10184 (* 1 = 0.10184 loss) +I0407 23:04:56.436933 23786 sgd_solver.cpp:105] Iteration 7692, lr = 0.00217909 +I0407 23:05:01.382987 23786 solver.cpp:218] Iteration 7704 (2.42627 iter/s, 4.94587s/12 iters), loss = 0.0581643 +I0407 23:05:01.383044 23786 solver.cpp:237] Train net output #0: loss = 0.0581644 (* 1 = 0.0581644 loss) +I0407 23:05:01.383056 23786 sgd_solver.cpp:105] Iteration 7704, lr = 0.00217392 +I0407 23:05:06.401013 23786 solver.cpp:218] Iteration 7716 (2.3915 iter/s, 5.01777s/12 iters), loss = 0.135237 +I0407 23:05:06.401132 23786 solver.cpp:237] Train net output #0: loss = 0.135237 (* 1 = 0.135237 loss) +I0407 23:05:06.401146 23786 sgd_solver.cpp:105] Iteration 7716, lr = 0.00216876 +I0407 23:05:11.500403 23786 solver.cpp:218] Iteration 7728 (2.35337 iter/s, 5.09908s/12 iters), loss = 0.0175289 +I0407 23:05:11.500448 23786 solver.cpp:237] Train net output #0: loss = 0.017529 (* 1 = 0.017529 loss) +I0407 23:05:11.500460 23786 sgd_solver.cpp:105] Iteration 7728, lr = 0.00216361 +I0407 23:05:16.698844 23786 solver.cpp:218] Iteration 7740 (2.30849 iter/s, 5.19819s/12 iters), loss = 0.038866 +I0407 23:05:16.698899 23786 solver.cpp:237] Train net output #0: loss = 0.0388662 (* 1 = 0.0388662 loss) +I0407 23:05:16.698911 23786 sgd_solver.cpp:105] Iteration 7740, lr = 0.00215847 +I0407 23:05:21.283567 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 23:05:24.387950 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 23:05:26.758157 23786 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 23:05:26.758186 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:05:28.132673 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:31.298779 23786 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0407 23:05:31.298823 23786 solver.cpp:397] Test net output #1: loss = 3.01908 (* 1 = 3.01908 loss) +I0407 23:05:31.389252 23786 solver.cpp:218] Iteration 7752 (0.816893 iter/s, 14.6898s/12 iters), loss = 0.0741829 +I0407 23:05:31.389297 23786 solver.cpp:237] Train net output #0: loss = 0.0741831 (* 1 = 0.0741831 loss) +I0407 23:05:31.389305 23786 sgd_solver.cpp:105] Iteration 7752, lr = 0.00215335 +I0407 23:05:35.720168 23786 solver.cpp:218] Iteration 7764 (2.77092 iter/s, 4.33069s/12 iters), loss = 0.135566 +I0407 23:05:35.720221 23786 solver.cpp:237] Train net output #0: loss = 0.135567 (* 1 = 0.135567 loss) +I0407 23:05:35.720232 23786 sgd_solver.cpp:105] Iteration 7764, lr = 0.00214823 +I0407 23:05:40.644587 23786 solver.cpp:218] Iteration 7776 (2.43696 iter/s, 4.92418s/12 iters), loss = 0.0798801 +I0407 23:05:40.644695 23786 solver.cpp:237] Train net output #0: loss = 0.0798802 (* 1 = 0.0798802 loss) +I0407 23:05:40.644706 23786 sgd_solver.cpp:105] Iteration 7776, lr = 0.00214313 +I0407 23:05:45.616199 23786 solver.cpp:218] Iteration 7788 (2.41385 iter/s, 4.97131s/12 iters), loss = 0.117167 +I0407 23:05:45.616243 23786 solver.cpp:237] Train net output #0: loss = 0.117168 (* 1 = 0.117168 loss) +I0407 23:05:45.616253 23786 sgd_solver.cpp:105] Iteration 7788, lr = 0.00213805 +I0407 23:05:45.627126 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:50.559919 23786 solver.cpp:218] Iteration 7800 (2.42744 iter/s, 4.94348s/12 iters), loss = 0.0571776 +I0407 23:05:50.559970 23786 solver.cpp:237] Train net output #0: loss = 0.0571778 (* 1 = 0.0571778 loss) +I0407 23:05:50.559983 23786 sgd_solver.cpp:105] Iteration 7800, lr = 0.00213297 +I0407 23:05:55.507699 23786 solver.cpp:218] Iteration 7812 (2.42545 iter/s, 4.94753s/12 iters), loss = 0.129094 +I0407 23:05:55.507762 23786 solver.cpp:237] Train net output #0: loss = 0.129095 (* 1 = 0.129095 loss) +I0407 23:05:55.507779 23786 sgd_solver.cpp:105] Iteration 7812, lr = 0.00212791 +I0407 23:06:00.526316 23786 solver.cpp:218] Iteration 7824 (2.39122 iter/s, 5.01835s/12 iters), loss = 0.0481721 +I0407 23:06:00.526367 23786 solver.cpp:237] Train net output #0: loss = 0.0481723 (* 1 = 0.0481723 loss) +I0407 23:06:00.526377 23786 sgd_solver.cpp:105] Iteration 7824, lr = 0.00212285 +I0407 23:06:05.536206 23786 solver.cpp:218] Iteration 7836 (2.39538 iter/s, 5.00964s/12 iters), loss = 0.0669065 +I0407 23:06:05.536255 23786 solver.cpp:237] Train net output #0: loss = 0.0669067 (* 1 = 0.0669067 loss) +I0407 23:06:05.536267 23786 sgd_solver.cpp:105] Iteration 7836, lr = 0.00211781 +I0407 23:06:10.532240 23786 solver.cpp:218] Iteration 7848 (2.40202 iter/s, 4.99579s/12 iters), loss = 0.0796827 +I0407 23:06:10.532287 23786 solver.cpp:237] Train net output #0: loss = 0.0796829 (* 1 = 0.0796829 loss) +I0407 23:06:10.532296 23786 sgd_solver.cpp:105] Iteration 7848, lr = 0.00211279 +I0407 23:06:12.554494 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 23:06:15.601795 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 23:06:17.958840 23786 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 23:06:17.958865 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:06:19.346017 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:22.425025 23786 solver.cpp:397] Test net output #0: accuracy = 0.476103 +I0407 23:06:22.425076 23786 solver.cpp:397] Test net output #1: loss = 3.02976 (* 1 = 3.02976 loss) +I0407 23:06:24.384517 23786 solver.cpp:218] Iteration 7860 (0.866319 iter/s, 13.8517s/12 iters), loss = 0.0511009 +I0407 23:06:24.384568 23786 solver.cpp:237] Train net output #0: loss = 0.0511011 (* 1 = 0.0511011 loss) +I0407 23:06:24.384582 23786 sgd_solver.cpp:105] Iteration 7860, lr = 0.00210777 +I0407 23:06:29.388316 23786 solver.cpp:218] Iteration 7872 (2.39829 iter/s, 5.00356s/12 iters), loss = 0.112509 +I0407 23:06:29.388367 23786 solver.cpp:237] Train net output #0: loss = 0.112509 (* 1 = 0.112509 loss) +I0407 23:06:29.388378 23786 sgd_solver.cpp:105] Iteration 7872, lr = 0.00210277 +I0407 23:06:34.423266 23786 solver.cpp:218] Iteration 7884 (2.38345 iter/s, 5.03471s/12 iters), loss = 0.134869 +I0407 23:06:34.423305 23786 solver.cpp:237] Train net output #0: loss = 0.13487 (* 1 = 0.13487 loss) +I0407 23:06:34.423313 23786 sgd_solver.cpp:105] Iteration 7884, lr = 0.00209777 +I0407 23:06:36.551326 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:39.421352 23786 solver.cpp:218] Iteration 7896 (2.40103 iter/s, 4.99785s/12 iters), loss = 0.0397129 +I0407 23:06:39.421396 23786 solver.cpp:237] Train net output #0: loss = 0.039713 (* 1 = 0.039713 loss) +I0407 23:06:39.421406 23786 sgd_solver.cpp:105] Iteration 7896, lr = 0.00209279 +I0407 23:06:44.449458 23786 solver.cpp:218] Iteration 7908 (2.3867 iter/s, 5.02787s/12 iters), loss = 0.075802 +I0407 23:06:44.449568 23786 solver.cpp:237] Train net output #0: loss = 0.0758021 (* 1 = 0.0758021 loss) +I0407 23:06:44.449579 23786 sgd_solver.cpp:105] Iteration 7908, lr = 0.00208782 +I0407 23:06:49.462486 23786 solver.cpp:218] Iteration 7920 (2.39391 iter/s, 5.01272s/12 iters), loss = 0.0660952 +I0407 23:06:49.462538 23786 solver.cpp:237] Train net output #0: loss = 0.0660954 (* 1 = 0.0660954 loss) +I0407 23:06:49.462549 23786 sgd_solver.cpp:105] Iteration 7920, lr = 0.00208287 +I0407 23:06:54.493662 23786 solver.cpp:218] Iteration 7932 (2.38524 iter/s, 5.03093s/12 iters), loss = 0.0231361 +I0407 23:06:54.493701 23786 solver.cpp:237] Train net output #0: loss = 0.0231362 (* 1 = 0.0231362 loss) +I0407 23:06:54.493710 23786 sgd_solver.cpp:105] Iteration 7932, lr = 0.00207792 +I0407 23:06:59.467634 23786 solver.cpp:218] Iteration 7944 (2.41267 iter/s, 4.97374s/12 iters), loss = 0.0294433 +I0407 23:06:59.467676 23786 solver.cpp:237] Train net output #0: loss = 0.0294435 (* 1 = 0.0294435 loss) +I0407 23:06:59.467685 23786 sgd_solver.cpp:105] Iteration 7944, lr = 0.00207299 +I0407 23:07:03.947093 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 23:07:06.968271 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 23:07:12.177807 23786 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 23:07:12.177832 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:07:13.497696 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:16.610317 23786 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0407 23:07:16.610427 23786 solver.cpp:397] Test net output #1: loss = 2.95305 (* 1 = 2.95305 loss) +I0407 23:07:16.700850 23786 solver.cpp:218] Iteration 7956 (0.696358 iter/s, 17.2325s/12 iters), loss = 0.0720906 +I0407 23:07:16.700903 23786 solver.cpp:237] Train net output #0: loss = 0.0720907 (* 1 = 0.0720907 loss) +I0407 23:07:16.700914 23786 sgd_solver.cpp:105] Iteration 7956, lr = 0.00206807 +I0407 23:07:21.006965 23786 solver.cpp:218] Iteration 7968 (2.78688 iter/s, 4.30588s/12 iters), loss = 0.144183 +I0407 23:07:21.007025 23786 solver.cpp:237] Train net output #0: loss = 0.144183 (* 1 = 0.144183 loss) +I0407 23:07:21.007040 23786 sgd_solver.cpp:105] Iteration 7968, lr = 0.00206316 +I0407 23:07:26.048583 23786 solver.cpp:218] Iteration 7980 (2.38031 iter/s, 5.04136s/12 iters), loss = 0.124807 +I0407 23:07:26.048635 23786 solver.cpp:237] Train net output #0: loss = 0.124808 (* 1 = 0.124808 loss) +I0407 23:07:26.048648 23786 sgd_solver.cpp:105] Iteration 7980, lr = 0.00205826 +I0407 23:07:30.291893 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:31.004992 23786 solver.cpp:218] Iteration 7992 (2.42123 iter/s, 4.95616s/12 iters), loss = 0.0731233 +I0407 23:07:31.005046 23786 solver.cpp:237] Train net output #0: loss = 0.0731235 (* 1 = 0.0731235 loss) +I0407 23:07:31.005059 23786 sgd_solver.cpp:105] Iteration 7992, lr = 0.00205337 +I0407 23:07:36.045912 23786 solver.cpp:218] Iteration 8004 (2.38063 iter/s, 5.04067s/12 iters), loss = 0.0405763 +I0407 23:07:36.045974 23786 solver.cpp:237] Train net output #0: loss = 0.0405765 (* 1 = 0.0405765 loss) +I0407 23:07:36.045985 23786 sgd_solver.cpp:105] Iteration 8004, lr = 0.0020485 +I0407 23:07:41.056453 23786 solver.cpp:218] Iteration 8016 (2.39507 iter/s, 5.0103s/12 iters), loss = 0.0364289 +I0407 23:07:41.056504 23786 solver.cpp:237] Train net output #0: loss = 0.036429 (* 1 = 0.036429 loss) +I0407 23:07:41.056516 23786 sgd_solver.cpp:105] Iteration 8016, lr = 0.00204363 +I0407 23:07:46.107975 23786 solver.cpp:218] Iteration 8028 (2.37564 iter/s, 5.05127s/12 iters), loss = 0.162087 +I0407 23:07:46.108036 23786 solver.cpp:237] Train net output #0: loss = 0.162087 (* 1 = 0.162087 loss) +I0407 23:07:46.108052 23786 sgd_solver.cpp:105] Iteration 8028, lr = 0.00203878 +I0407 23:07:51.137735 23786 solver.cpp:218] Iteration 8040 (2.38592 iter/s, 5.02951s/12 iters), loss = 0.107175 +I0407 23:07:51.137831 23786 solver.cpp:237] Train net output #0: loss = 0.107175 (* 1 = 0.107175 loss) +I0407 23:07:51.137840 23786 sgd_solver.cpp:105] Iteration 8040, lr = 0.00203394 +I0407 23:07:56.092780 23786 solver.cpp:218] Iteration 8052 (2.42191 iter/s, 4.95476s/12 iters), loss = 0.0598387 +I0407 23:07:56.092823 23786 solver.cpp:237] Train net output #0: loss = 0.0598388 (* 1 = 0.0598388 loss) +I0407 23:07:56.092831 23786 sgd_solver.cpp:105] Iteration 8052, lr = 0.00202911 +I0407 23:07:58.174610 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 23:08:01.246942 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 23:08:03.593370 23786 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 23:08:03.593394 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:08:04.924484 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:08.125042 23786 solver.cpp:397] Test net output #0: accuracy = 0.460172 +I0407 23:08:08.125093 23786 solver.cpp:397] Test net output #1: loss = 2.98389 (* 1 = 2.98389 loss) +I0407 23:08:10.064025 23786 solver.cpp:218] Iteration 8064 (0.858942 iter/s, 13.9707s/12 iters), loss = 0.0732686 +I0407 23:08:10.064085 23786 solver.cpp:237] Train net output #0: loss = 0.0732687 (* 1 = 0.0732687 loss) +I0407 23:08:10.064097 23786 sgd_solver.cpp:105] Iteration 8064, lr = 0.00202429 +I0407 23:08:15.095636 23786 solver.cpp:218] Iteration 8076 (2.38504 iter/s, 5.03136s/12 iters), loss = 0.0147406 +I0407 23:08:15.095679 23786 solver.cpp:237] Train net output #0: loss = 0.0147408 (* 1 = 0.0147408 loss) +I0407 23:08:15.095688 23786 sgd_solver.cpp:105] Iteration 8076, lr = 0.00201949 +I0407 23:08:20.104813 23786 solver.cpp:218] Iteration 8088 (2.39572 iter/s, 5.00894s/12 iters), loss = 0.0939019 +I0407 23:08:20.104863 23786 solver.cpp:237] Train net output #0: loss = 0.0939021 (* 1 = 0.0939021 loss) +I0407 23:08:20.104876 23786 sgd_solver.cpp:105] Iteration 8088, lr = 0.00201469 +I0407 23:08:21.538627 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:25.113745 23786 solver.cpp:218] Iteration 8100 (2.39584 iter/s, 5.00868s/12 iters), loss = 0.176753 +I0407 23:08:25.113795 23786 solver.cpp:237] Train net output #0: loss = 0.176753 (* 1 = 0.176753 loss) +I0407 23:08:25.113808 23786 sgd_solver.cpp:105] Iteration 8100, lr = 0.00200991 +I0407 23:08:30.191721 23786 solver.cpp:218] Iteration 8112 (2.36326 iter/s, 5.07773s/12 iters), loss = 0.112055 +I0407 23:08:30.191777 23786 solver.cpp:237] Train net output #0: loss = 0.112055 (* 1 = 0.112055 loss) +I0407 23:08:30.191790 23786 sgd_solver.cpp:105] Iteration 8112, lr = 0.00200514 +I0407 23:08:35.259537 23786 solver.cpp:218] Iteration 8124 (2.368 iter/s, 5.06756s/12 iters), loss = 0.0771859 +I0407 23:08:35.259594 23786 solver.cpp:237] Train net output #0: loss = 0.077186 (* 1 = 0.077186 loss) +I0407 23:08:35.259606 23786 sgd_solver.cpp:105] Iteration 8124, lr = 0.00200038 +I0407 23:08:40.219954 23786 solver.cpp:218] Iteration 8136 (2.41927 iter/s, 4.96017s/12 iters), loss = 0.0916076 +I0407 23:08:40.220005 23786 solver.cpp:237] Train net output #0: loss = 0.0916077 (* 1 = 0.0916077 loss) +I0407 23:08:40.220018 23786 sgd_solver.cpp:105] Iteration 8136, lr = 0.00199563 +I0407 23:08:45.605523 23786 solver.cpp:218] Iteration 8148 (2.22828 iter/s, 5.38531s/12 iters), loss = 0.0765005 +I0407 23:08:45.605572 23786 solver.cpp:237] Train net output #0: loss = 0.0765006 (* 1 = 0.0765006 loss) +I0407 23:08:45.605584 23786 sgd_solver.cpp:105] Iteration 8148, lr = 0.00199089 +I0407 23:08:50.127701 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 23:08:53.156394 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 23:08:55.511211 23786 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 23:08:55.511237 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:08:56.771638 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:59.965298 23786 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0407 23:08:59.965339 23786 solver.cpp:397] Test net output #1: loss = 3.02506 (* 1 = 3.02506 loss) +I0407 23:09:00.056043 23786 solver.cpp:218] Iteration 8160 (0.830454 iter/s, 14.4499s/12 iters), loss = 0.0469779 +I0407 23:09:00.056097 23786 solver.cpp:237] Train net output #0: loss = 0.0469781 (* 1 = 0.0469781 loss) +I0407 23:09:00.056108 23786 sgd_solver.cpp:105] Iteration 8160, lr = 0.00198616 +I0407 23:09:04.391115 23786 solver.cpp:218] Iteration 8172 (2.76826 iter/s, 4.33485s/12 iters), loss = 0.101601 +I0407 23:09:04.391165 23786 solver.cpp:237] Train net output #0: loss = 0.101601 (* 1 = 0.101601 loss) +I0407 23:09:04.391176 23786 sgd_solver.cpp:105] Iteration 8172, lr = 0.00198145 +I0407 23:09:09.325672 23786 solver.cpp:218] Iteration 8184 (2.43195 iter/s, 4.93431s/12 iters), loss = 0.0917129 +I0407 23:09:09.325729 23786 solver.cpp:237] Train net output #0: loss = 0.091713 (* 1 = 0.091713 loss) +I0407 23:09:09.325743 23786 sgd_solver.cpp:105] Iteration 8184, lr = 0.00197674 +I0407 23:09:12.969789 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:14.458024 23786 solver.cpp:218] Iteration 8196 (2.33822 iter/s, 5.1321s/12 iters), loss = 0.0526849 +I0407 23:09:14.458063 23786 solver.cpp:237] Train net output #0: loss = 0.052685 (* 1 = 0.052685 loss) +I0407 23:09:14.458072 23786 sgd_solver.cpp:105] Iteration 8196, lr = 0.00197205 +I0407 23:09:19.605715 23786 solver.cpp:218] Iteration 8208 (2.33125 iter/s, 5.14745s/12 iters), loss = 0.190342 +I0407 23:09:19.605773 23786 solver.cpp:237] Train net output #0: loss = 0.190342 (* 1 = 0.190342 loss) +I0407 23:09:19.605788 23786 sgd_solver.cpp:105] Iteration 8208, lr = 0.00196737 +I0407 23:09:24.614164 23786 solver.cpp:218] Iteration 8220 (2.39607 iter/s, 5.0082s/12 iters), loss = 0.0532692 +I0407 23:09:24.614280 23786 solver.cpp:237] Train net output #0: loss = 0.0532694 (* 1 = 0.0532694 loss) +I0407 23:09:24.614293 23786 sgd_solver.cpp:105] Iteration 8220, lr = 0.0019627 +I0407 23:09:29.509528 23786 solver.cpp:218] Iteration 8232 (2.45145 iter/s, 4.89506s/12 iters), loss = 0.0909055 +I0407 23:09:29.509582 23786 solver.cpp:237] Train net output #0: loss = 0.0909057 (* 1 = 0.0909057 loss) +I0407 23:09:29.509593 23786 sgd_solver.cpp:105] Iteration 8232, lr = 0.00195804 +I0407 23:09:34.680223 23786 solver.cpp:218] Iteration 8244 (2.32088 iter/s, 5.17044s/12 iters), loss = 0.169029 +I0407 23:09:34.680274 23786 solver.cpp:237] Train net output #0: loss = 0.169029 (* 1 = 0.169029 loss) +I0407 23:09:34.680286 23786 sgd_solver.cpp:105] Iteration 8244, lr = 0.00195339 +I0407 23:09:39.757432 23786 solver.cpp:218] Iteration 8256 (2.36362 iter/s, 5.07696s/12 iters), loss = 0.137329 +I0407 23:09:39.757483 23786 solver.cpp:237] Train net output #0: loss = 0.13733 (* 1 = 0.13733 loss) +I0407 23:09:39.757496 23786 sgd_solver.cpp:105] Iteration 8256, lr = 0.00194875 +I0407 23:09:41.802250 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 23:09:44.843052 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 23:09:47.176573 23786 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 23:09:47.176594 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:09:48.412714 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:51.638690 23786 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0407 23:09:51.638736 23786 solver.cpp:397] Test net output #1: loss = 3.01956 (* 1 = 3.01956 loss) +I0407 23:09:53.981945 23786 solver.cpp:218] Iteration 8268 (0.843648 iter/s, 14.2239s/12 iters), loss = 0.0348047 +I0407 23:09:53.981998 23786 solver.cpp:237] Train net output #0: loss = 0.0348049 (* 1 = 0.0348049 loss) +I0407 23:09:53.982007 23786 sgd_solver.cpp:105] Iteration 8268, lr = 0.00194412 +I0407 23:09:59.061518 23786 solver.cpp:218] Iteration 8280 (2.36252 iter/s, 5.07932s/12 iters), loss = 0.0504242 +I0407 23:09:59.061666 23786 solver.cpp:237] Train net output #0: loss = 0.0504244 (* 1 = 0.0504244 loss) +I0407 23:09:59.061678 23786 sgd_solver.cpp:105] Iteration 8280, lr = 0.00193951 +I0407 23:10:04.089823 23786 solver.cpp:218] Iteration 8292 (2.38665 iter/s, 5.02796s/12 iters), loss = 0.0271725 +I0407 23:10:04.089875 23786 solver.cpp:237] Train net output #0: loss = 0.0271726 (* 1 = 0.0271726 loss) +I0407 23:10:04.089888 23786 sgd_solver.cpp:105] Iteration 8292, lr = 0.0019349 +I0407 23:10:04.745869 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:09.121661 23786 solver.cpp:218] Iteration 8304 (2.38493 iter/s, 5.03159s/12 iters), loss = 0.109613 +I0407 23:10:09.121718 23786 solver.cpp:237] Train net output #0: loss = 0.109613 (* 1 = 0.109613 loss) +I0407 23:10:09.121731 23786 sgd_solver.cpp:105] Iteration 8304, lr = 0.00193031 +I0407 23:10:11.980727 23786 blocking_queue.cpp:49] Waiting for data +I0407 23:10:14.143061 23786 solver.cpp:218] Iteration 8316 (2.38989 iter/s, 5.02115s/12 iters), loss = 0.112262 +I0407 23:10:14.143117 23786 solver.cpp:237] Train net output #0: loss = 0.112262 (* 1 = 0.112262 loss) +I0407 23:10:14.143129 23786 sgd_solver.cpp:105] Iteration 8316, lr = 0.00192573 +I0407 23:10:19.114912 23786 solver.cpp:218] Iteration 8328 (2.41371 iter/s, 4.9716s/12 iters), loss = 0.0435615 +I0407 23:10:19.114965 23786 solver.cpp:237] Train net output #0: loss = 0.0435617 (* 1 = 0.0435617 loss) +I0407 23:10:19.114979 23786 sgd_solver.cpp:105] Iteration 8328, lr = 0.00192115 +I0407 23:10:24.144338 23786 solver.cpp:218] Iteration 8340 (2.38607 iter/s, 5.02918s/12 iters), loss = 0.0579193 +I0407 23:10:24.144392 23786 solver.cpp:237] Train net output #0: loss = 0.0579194 (* 1 = 0.0579194 loss) +I0407 23:10:24.144403 23786 sgd_solver.cpp:105] Iteration 8340, lr = 0.00191659 +I0407 23:10:29.314118 23786 solver.cpp:218] Iteration 8352 (2.3213 iter/s, 5.16953s/12 iters), loss = 0.0836607 +I0407 23:10:29.314193 23786 solver.cpp:237] Train net output #0: loss = 0.0836608 (* 1 = 0.0836608 loss) +I0407 23:10:29.314204 23786 sgd_solver.cpp:105] Iteration 8352, lr = 0.00191204 +I0407 23:10:33.837107 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 23:10:36.824503 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 23:10:41.356307 23786 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 23:10:41.356333 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:10:42.575553 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:45.916880 23786 solver.cpp:397] Test net output #0: accuracy = 0.471814 +I0407 23:10:45.916930 23786 solver.cpp:397] Test net output #1: loss = 3.03023 (* 1 = 3.03023 loss) +I0407 23:10:46.007091 23786 solver.cpp:218] Iteration 8364 (0.718895 iter/s, 16.6923s/12 iters), loss = 0.0830032 +I0407 23:10:46.007139 23786 solver.cpp:237] Train net output #0: loss = 0.0830034 (* 1 = 0.0830034 loss) +I0407 23:10:46.007150 23786 sgd_solver.cpp:105] Iteration 8364, lr = 0.0019075 +I0407 23:10:50.549192 23786 solver.cpp:218] Iteration 8376 (2.64208 iter/s, 4.54187s/12 iters), loss = 0.111311 +I0407 23:10:50.549253 23786 solver.cpp:237] Train net output #0: loss = 0.111311 (* 1 = 0.111311 loss) +I0407 23:10:50.549265 23786 sgd_solver.cpp:105] Iteration 8376, lr = 0.00190297 +I0407 23:10:55.762755 23786 solver.cpp:218] Iteration 8388 (2.3018 iter/s, 5.2133s/12 iters), loss = 0.033634 +I0407 23:10:55.762807 23786 solver.cpp:237] Train net output #0: loss = 0.0336341 (* 1 = 0.0336341 loss) +I0407 23:10:55.762820 23786 sgd_solver.cpp:105] Iteration 8388, lr = 0.00189846 +I0407 23:10:58.563585 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:00.759855 23786 solver.cpp:218] Iteration 8400 (2.40151 iter/s, 4.99685s/12 iters), loss = 0.0726618 +I0407 23:11:00.760015 23786 solver.cpp:237] Train net output #0: loss = 0.0726619 (* 1 = 0.0726619 loss) +I0407 23:11:00.760028 23786 sgd_solver.cpp:105] Iteration 8400, lr = 0.00189395 +I0407 23:11:05.718497 23786 solver.cpp:218] Iteration 8412 (2.42019 iter/s, 4.95829s/12 iters), loss = 0.0654102 +I0407 23:11:05.718559 23786 solver.cpp:237] Train net output #0: loss = 0.0654103 (* 1 = 0.0654103 loss) +I0407 23:11:05.718575 23786 sgd_solver.cpp:105] Iteration 8412, lr = 0.00188945 +I0407 23:11:10.733080 23786 solver.cpp:218] Iteration 8424 (2.39314 iter/s, 5.01433s/12 iters), loss = 0.045665 +I0407 23:11:10.733126 23786 solver.cpp:237] Train net output #0: loss = 0.0456651 (* 1 = 0.0456651 loss) +I0407 23:11:10.733136 23786 sgd_solver.cpp:105] Iteration 8424, lr = 0.00188497 +I0407 23:11:15.644408 23786 solver.cpp:218] Iteration 8436 (2.44345 iter/s, 4.91109s/12 iters), loss = 0.0787578 +I0407 23:11:15.644446 23786 solver.cpp:237] Train net output #0: loss = 0.0787579 (* 1 = 0.0787579 loss) +I0407 23:11:15.644455 23786 sgd_solver.cpp:105] Iteration 8436, lr = 0.00188049 +I0407 23:11:20.583562 23786 solver.cpp:218] Iteration 8448 (2.42968 iter/s, 4.93892s/12 iters), loss = 0.0820342 +I0407 23:11:20.583626 23786 solver.cpp:237] Train net output #0: loss = 0.0820343 (* 1 = 0.0820343 loss) +I0407 23:11:20.583642 23786 sgd_solver.cpp:105] Iteration 8448, lr = 0.00187603 +I0407 23:11:25.555577 23786 solver.cpp:218] Iteration 8460 (2.41363 iter/s, 4.97176s/12 iters), loss = 0.0764879 +I0407 23:11:25.555625 23786 solver.cpp:237] Train net output #0: loss = 0.076488 (* 1 = 0.076488 loss) +I0407 23:11:25.555635 23786 sgd_solver.cpp:105] Iteration 8460, lr = 0.00187157 +I0407 23:11:27.552412 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 23:11:30.681320 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 23:11:35.146824 23786 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 23:11:35.146901 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:11:36.460242 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:39.784153 23786 solver.cpp:397] Test net output #0: accuracy = 0.46875 +I0407 23:11:39.784204 23786 solver.cpp:397] Test net output #1: loss = 3.07416 (* 1 = 3.07416 loss) +I0407 23:11:41.744192 23786 solver.cpp:218] Iteration 8472 (0.741291 iter/s, 16.188s/12 iters), loss = 0.0837416 +I0407 23:11:41.744241 23786 solver.cpp:237] Train net output #0: loss = 0.0837418 (* 1 = 0.0837418 loss) +I0407 23:11:41.744254 23786 sgd_solver.cpp:105] Iteration 8472, lr = 0.00186713 +I0407 23:11:46.767227 23786 solver.cpp:218] Iteration 8484 (2.38911 iter/s, 5.02279s/12 iters), loss = 0.0312469 +I0407 23:11:46.767277 23786 solver.cpp:237] Train net output #0: loss = 0.0312471 (* 1 = 0.0312471 loss) +I0407 23:11:46.767287 23786 sgd_solver.cpp:105] Iteration 8484, lr = 0.0018627 +I0407 23:11:51.715688 23786 solver.cpp:218] Iteration 8496 (2.42512 iter/s, 4.94822s/12 iters), loss = 0.134373 +I0407 23:11:51.715742 23786 solver.cpp:237] Train net output #0: loss = 0.134373 (* 1 = 0.134373 loss) +I0407 23:11:51.715755 23786 sgd_solver.cpp:105] Iteration 8496, lr = 0.00185827 +I0407 23:11:51.755924 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:56.741840 23786 solver.cpp:218] Iteration 8508 (2.38763 iter/s, 5.0259s/12 iters), loss = 0.12533 +I0407 23:11:56.741894 23786 solver.cpp:237] Train net output #0: loss = 0.125331 (* 1 = 0.125331 loss) +I0407 23:11:56.741906 23786 sgd_solver.cpp:105] Iteration 8508, lr = 0.00185386 +I0407 23:12:01.708078 23786 solver.cpp:218] Iteration 8520 (2.41644 iter/s, 4.96598s/12 iters), loss = 0.0678763 +I0407 23:12:01.708135 23786 solver.cpp:237] Train net output #0: loss = 0.0678765 (* 1 = 0.0678765 loss) +I0407 23:12:01.708148 23786 sgd_solver.cpp:105] Iteration 8520, lr = 0.00184946 +I0407 23:12:06.657886 23786 solver.cpp:218] Iteration 8532 (2.42446 iter/s, 4.94956s/12 iters), loss = 0.075806 +I0407 23:12:06.658027 23786 solver.cpp:237] Train net output #0: loss = 0.0758062 (* 1 = 0.0758062 loss) +I0407 23:12:06.658038 23786 sgd_solver.cpp:105] Iteration 8532, lr = 0.00184507 +I0407 23:12:11.615595 23786 solver.cpp:218] Iteration 8544 (2.42064 iter/s, 4.95737s/12 iters), loss = 0.0261039 +I0407 23:12:11.615653 23786 solver.cpp:237] Train net output #0: loss = 0.0261041 (* 1 = 0.0261041 loss) +I0407 23:12:11.615666 23786 sgd_solver.cpp:105] Iteration 8544, lr = 0.00184069 +I0407 23:12:16.583074 23786 solver.cpp:218] Iteration 8556 (2.41584 iter/s, 4.96723s/12 iters), loss = 0.112195 +I0407 23:12:16.583127 23786 solver.cpp:237] Train net output #0: loss = 0.112195 (* 1 = 0.112195 loss) +I0407 23:12:16.583137 23786 sgd_solver.cpp:105] Iteration 8556, lr = 0.00183632 +I0407 23:12:21.100375 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 23:12:25.640908 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 23:12:30.024261 23786 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 23:12:30.024286 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:12:31.083864 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:34.447189 23786 solver.cpp:397] Test net output #0: accuracy = 0.481618 +I0407 23:12:34.447227 23786 solver.cpp:397] Test net output #1: loss = 2.95079 (* 1 = 2.95079 loss) +I0407 23:12:34.537830 23786 solver.cpp:218] Iteration 8568 (0.668374 iter/s, 17.954s/12 iters), loss = 0.121213 +I0407 23:12:34.537892 23786 solver.cpp:237] Train net output #0: loss = 0.121213 (* 1 = 0.121213 loss) +I0407 23:12:34.537905 23786 sgd_solver.cpp:105] Iteration 8568, lr = 0.00183196 +I0407 23:12:38.675033 23786 solver.cpp:218] Iteration 8580 (2.90067 iter/s, 4.13698s/12 iters), loss = 0.113817 +I0407 23:12:38.675194 23786 solver.cpp:237] Train net output #0: loss = 0.113817 (* 1 = 0.113817 loss) +I0407 23:12:38.675215 23786 sgd_solver.cpp:105] Iteration 8580, lr = 0.00182761 +I0407 23:12:43.513271 23786 solver.cpp:218] Iteration 8592 (2.48041 iter/s, 4.8379s/12 iters), loss = 0.0408626 +I0407 23:12:43.513329 23786 solver.cpp:237] Train net output #0: loss = 0.0408627 (* 1 = 0.0408627 loss) +I0407 23:12:43.513340 23786 sgd_solver.cpp:105] Iteration 8592, lr = 0.00182327 +I0407 23:12:45.674094 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:48.525142 23786 solver.cpp:218] Iteration 8604 (2.39444 iter/s, 5.01162s/12 iters), loss = 0.0327141 +I0407 23:12:48.525197 23786 solver.cpp:237] Train net output #0: loss = 0.0327143 (* 1 = 0.0327143 loss) +I0407 23:12:48.525208 23786 sgd_solver.cpp:105] Iteration 8604, lr = 0.00181894 +I0407 23:12:53.465626 23786 solver.cpp:218] Iteration 8616 (2.42903 iter/s, 4.94024s/12 iters), loss = 0.0329985 +I0407 23:12:53.465672 23786 solver.cpp:237] Train net output #0: loss = 0.0329987 (* 1 = 0.0329987 loss) +I0407 23:12:53.465683 23786 sgd_solver.cpp:105] Iteration 8616, lr = 0.00181462 +I0407 23:12:58.447520 23786 solver.cpp:218] Iteration 8628 (2.40884 iter/s, 4.98165s/12 iters), loss = 0.0309739 +I0407 23:12:58.447576 23786 solver.cpp:237] Train net output #0: loss = 0.0309741 (* 1 = 0.0309741 loss) +I0407 23:12:58.447588 23786 sgd_solver.cpp:105] Iteration 8628, lr = 0.00181031 +I0407 23:13:03.371004 23786 solver.cpp:218] Iteration 8640 (2.43742 iter/s, 4.92324s/12 iters), loss = 0.118257 +I0407 23:13:03.371050 23786 solver.cpp:237] Train net output #0: loss = 0.118258 (* 1 = 0.118258 loss) +I0407 23:13:03.371060 23786 sgd_solver.cpp:105] Iteration 8640, lr = 0.00180602 +I0407 23:13:08.398655 23786 solver.cpp:218] Iteration 8652 (2.38691 iter/s, 5.02741s/12 iters), loss = 0.0340344 +I0407 23:13:08.398703 23786 solver.cpp:237] Train net output #0: loss = 0.0340346 (* 1 = 0.0340346 loss) +I0407 23:13:08.398715 23786 sgd_solver.cpp:105] Iteration 8652, lr = 0.00180173 +I0407 23:13:13.421402 23786 solver.cpp:218] Iteration 8664 (2.38925 iter/s, 5.02251s/12 iters), loss = 0.112662 +I0407 23:13:13.421547 23786 solver.cpp:237] Train net output #0: loss = 0.112662 (* 1 = 0.112662 loss) +I0407 23:13:13.421558 23786 sgd_solver.cpp:105] Iteration 8664, lr = 0.00179745 +I0407 23:13:15.467777 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 23:13:20.513571 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 23:13:24.780870 23786 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 23:13:24.780895 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:13:25.816272 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:29.215651 23786 solver.cpp:397] Test net output #0: accuracy = 0.48223 +I0407 23:13:29.215701 23786 solver.cpp:397] Test net output #1: loss = 2.97374 (* 1 = 2.97374 loss) +I0407 23:13:31.205190 23786 solver.cpp:218] Iteration 8676 (0.674803 iter/s, 17.783s/12 iters), loss = 0.0681168 +I0407 23:13:31.205247 23786 solver.cpp:237] Train net output #0: loss = 0.068117 (* 1 = 0.068117 loss) +I0407 23:13:31.205260 23786 sgd_solver.cpp:105] Iteration 8676, lr = 0.00179318 +I0407 23:13:36.202606 23786 solver.cpp:218] Iteration 8688 (2.40136 iter/s, 4.99717s/12 iters), loss = 0.0608193 +I0407 23:13:36.202646 23786 solver.cpp:237] Train net output #0: loss = 0.0608195 (* 1 = 0.0608195 loss) +I0407 23:13:36.202654 23786 sgd_solver.cpp:105] Iteration 8688, lr = 0.00178893 +I0407 23:13:40.526487 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:41.215632 23786 solver.cpp:218] Iteration 8700 (2.39388 iter/s, 5.01279s/12 iters), loss = 0.0810621 +I0407 23:13:41.215677 23786 solver.cpp:237] Train net output #0: loss = 0.0810623 (* 1 = 0.0810623 loss) +I0407 23:13:41.215687 23786 sgd_solver.cpp:105] Iteration 8700, lr = 0.00178468 +I0407 23:13:46.248016 23786 solver.cpp:218] Iteration 8712 (2.38467 iter/s, 5.03214s/12 iters), loss = 0.0391005 +I0407 23:13:46.248116 23786 solver.cpp:237] Train net output #0: loss = 0.0391007 (* 1 = 0.0391007 loss) +I0407 23:13:46.248129 23786 sgd_solver.cpp:105] Iteration 8712, lr = 0.00178044 +I0407 23:13:51.191830 23786 solver.cpp:218] Iteration 8724 (2.42742 iter/s, 4.94353s/12 iters), loss = 0.0145154 +I0407 23:13:51.191871 23786 solver.cpp:237] Train net output #0: loss = 0.0145156 (* 1 = 0.0145156 loss) +I0407 23:13:51.191879 23786 sgd_solver.cpp:105] Iteration 8724, lr = 0.00177621 +I0407 23:13:56.169142 23786 solver.cpp:218] Iteration 8736 (2.41106 iter/s, 4.97706s/12 iters), loss = 0.0844706 +I0407 23:13:56.169204 23786 solver.cpp:237] Train net output #0: loss = 0.0844708 (* 1 = 0.0844708 loss) +I0407 23:13:56.169217 23786 sgd_solver.cpp:105] Iteration 8736, lr = 0.001772 +I0407 23:14:01.188956 23786 solver.cpp:218] Iteration 8748 (2.39065 iter/s, 5.01956s/12 iters), loss = 0.0307924 +I0407 23:14:01.188994 23786 solver.cpp:237] Train net output #0: loss = 0.0307926 (* 1 = 0.0307926 loss) +I0407 23:14:01.189003 23786 sgd_solver.cpp:105] Iteration 8748, lr = 0.00176779 +I0407 23:14:06.231263 23786 solver.cpp:218] Iteration 8760 (2.37997 iter/s, 5.04207s/12 iters), loss = 0.0829647 +I0407 23:14:06.231309 23786 solver.cpp:237] Train net output #0: loss = 0.0829649 (* 1 = 0.0829649 loss) +I0407 23:14:06.231320 23786 sgd_solver.cpp:105] Iteration 8760, lr = 0.00176359 +I0407 23:14:10.751255 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 23:14:15.164624 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 23:14:19.604331 23786 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 23:14:19.604429 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:14:20.652177 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:24.172699 23786 solver.cpp:397] Test net output #0: accuracy = 0.476716 +I0407 23:14:24.172749 23786 solver.cpp:397] Test net output #1: loss = 3.03251 (* 1 = 3.03251 loss) +I0407 23:14:24.263005 23786 solver.cpp:218] Iteration 8772 (0.66552 iter/s, 18.031s/12 iters), loss = 0.0789544 +I0407 23:14:24.263060 23786 solver.cpp:237] Train net output #0: loss = 0.0789546 (* 1 = 0.0789546 loss) +I0407 23:14:24.263072 23786 sgd_solver.cpp:105] Iteration 8772, lr = 0.00175941 +I0407 23:14:28.511617 23786 solver.cpp:218] Iteration 8784 (2.8246 iter/s, 4.24839s/12 iters), loss = 0.0495634 +I0407 23:14:28.511662 23786 solver.cpp:237] Train net output #0: loss = 0.0495636 (* 1 = 0.0495636 loss) +I0407 23:14:28.511672 23786 sgd_solver.cpp:105] Iteration 8784, lr = 0.00175523 +I0407 23:14:33.663159 23786 solver.cpp:218] Iteration 8796 (2.32951 iter/s, 5.1513s/12 iters), loss = 0.0283489 +I0407 23:14:33.663197 23786 solver.cpp:237] Train net output #0: loss = 0.0283491 (* 1 = 0.0283491 loss) +I0407 23:14:33.663206 23786 sgd_solver.cpp:105] Iteration 8796, lr = 0.00175106 +I0407 23:14:35.108836 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:38.665611 23786 solver.cpp:218] Iteration 8808 (2.39894 iter/s, 5.00222s/12 iters), loss = 0.091734 +I0407 23:14:38.665655 23786 solver.cpp:237] Train net output #0: loss = 0.0917342 (* 1 = 0.0917342 loss) +I0407 23:14:38.665664 23786 sgd_solver.cpp:105] Iteration 8808, lr = 0.0017469 +I0407 23:14:43.680650 23786 solver.cpp:218] Iteration 8820 (2.39292 iter/s, 5.0148s/12 iters), loss = 0.0610799 +I0407 23:14:43.680696 23786 solver.cpp:237] Train net output #0: loss = 0.0610801 (* 1 = 0.0610801 loss) +I0407 23:14:43.680706 23786 sgd_solver.cpp:105] Iteration 8820, lr = 0.00174276 +I0407 23:14:48.646586 23786 solver.cpp:218] Iteration 8832 (2.41658 iter/s, 4.96569s/12 iters), loss = 0.0319397 +I0407 23:14:48.646643 23786 solver.cpp:237] Train net output #0: loss = 0.0319399 (* 1 = 0.0319399 loss) +I0407 23:14:48.646656 23786 sgd_solver.cpp:105] Iteration 8832, lr = 0.00173862 +I0407 23:14:53.582111 23786 solver.cpp:218] Iteration 8844 (2.43148 iter/s, 4.93527s/12 iters), loss = 0.0598838 +I0407 23:14:53.582221 23786 solver.cpp:237] Train net output #0: loss = 0.059884 (* 1 = 0.059884 loss) +I0407 23:14:53.582232 23786 sgd_solver.cpp:105] Iteration 8844, lr = 0.00173449 +I0407 23:14:58.699007 23786 solver.cpp:218] Iteration 8856 (2.34531 iter/s, 5.1166s/12 iters), loss = 0.0271336 +I0407 23:14:58.699043 23786 solver.cpp:237] Train net output #0: loss = 0.0271338 (* 1 = 0.0271338 loss) +I0407 23:14:58.699051 23786 sgd_solver.cpp:105] Iteration 8856, lr = 0.00173037 +I0407 23:15:03.639824 23786 solver.cpp:218] Iteration 8868 (2.42885 iter/s, 4.9406s/12 iters), loss = 0.0376984 +I0407 23:15:03.639874 23786 solver.cpp:237] Train net output #0: loss = 0.0376986 (* 1 = 0.0376986 loss) +I0407 23:15:03.639885 23786 sgd_solver.cpp:105] Iteration 8868, lr = 0.00172626 +I0407 23:15:05.699306 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 23:15:10.131206 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 23:15:12.889550 23786 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 23:15:12.889576 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:15:13.932337 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:17.461472 23786 solver.cpp:397] Test net output #0: accuracy = 0.476103 +I0407 23:15:17.461522 23786 solver.cpp:397] Test net output #1: loss = 3.03448 (* 1 = 3.03448 loss) +I0407 23:15:19.446913 23786 solver.cpp:218] Iteration 8880 (0.759181 iter/s, 15.8065s/12 iters), loss = 0.0511819 +I0407 23:15:19.446965 23786 solver.cpp:237] Train net output #0: loss = 0.0511821 (* 1 = 0.0511821 loss) +I0407 23:15:19.446977 23786 sgd_solver.cpp:105] Iteration 8880, lr = 0.00172217 +I0407 23:15:24.645831 23786 solver.cpp:218] Iteration 8892 (2.30828 iter/s, 5.19868s/12 iters), loss = 0.12491 +I0407 23:15:24.645952 23786 solver.cpp:237] Train net output #0: loss = 0.12491 (* 1 = 0.12491 loss) +I0407 23:15:24.645977 23786 sgd_solver.cpp:105] Iteration 8892, lr = 0.00171808 +I0407 23:15:28.270771 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:29.701251 23786 solver.cpp:218] Iteration 8904 (2.37383 iter/s, 5.05512s/12 iters), loss = 0.0616742 +I0407 23:15:29.701300 23786 solver.cpp:237] Train net output #0: loss = 0.0616744 (* 1 = 0.0616744 loss) +I0407 23:15:29.701313 23786 sgd_solver.cpp:105] Iteration 8904, lr = 0.001714 +I0407 23:15:34.787668 23786 solver.cpp:218] Iteration 8916 (2.35933 iter/s, 5.08619s/12 iters), loss = 0.0609168 +I0407 23:15:34.787709 23786 solver.cpp:237] Train net output #0: loss = 0.060917 (* 1 = 0.060917 loss) +I0407 23:15:34.787720 23786 sgd_solver.cpp:105] Iteration 8916, lr = 0.00170993 +I0407 23:15:39.818651 23786 solver.cpp:218] Iteration 8928 (2.38533 iter/s, 5.03076s/12 iters), loss = 0.0917748 +I0407 23:15:39.818699 23786 solver.cpp:237] Train net output #0: loss = 0.091775 (* 1 = 0.091775 loss) +I0407 23:15:39.818708 23786 sgd_solver.cpp:105] Iteration 8928, lr = 0.00170587 +I0407 23:15:44.801308 23786 solver.cpp:218] Iteration 8940 (2.40846 iter/s, 4.98243s/12 iters), loss = 0.0846166 +I0407 23:15:44.801360 23786 solver.cpp:237] Train net output #0: loss = 0.0846168 (* 1 = 0.0846168 loss) +I0407 23:15:44.801371 23786 sgd_solver.cpp:105] Iteration 8940, lr = 0.00170182 +I0407 23:15:49.821405 23786 solver.cpp:218] Iteration 8952 (2.3905 iter/s, 5.01987s/12 iters), loss = 0.0880661 +I0407 23:15:49.821449 23786 solver.cpp:237] Train net output #0: loss = 0.0880663 (* 1 = 0.0880663 loss) +I0407 23:15:49.821458 23786 sgd_solver.cpp:105] Iteration 8952, lr = 0.00169778 +I0407 23:15:55.144845 23786 solver.cpp:218] Iteration 8964 (2.25428 iter/s, 5.3232s/12 iters), loss = 0.101465 +I0407 23:15:55.144948 23786 solver.cpp:237] Train net output #0: loss = 0.101465 (* 1 = 0.101465 loss) +I0407 23:15:55.144958 23786 sgd_solver.cpp:105] Iteration 8964, lr = 0.00169375 +I0407 23:16:00.071803 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 23:16:03.108942 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 23:16:07.487059 23786 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 23:16:07.487087 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:16:08.455698 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:12.031952 23786 solver.cpp:397] Test net output #0: accuracy = 0.476716 +I0407 23:16:12.032006 23786 solver.cpp:397] Test net output #1: loss = 3.01772 (* 1 = 3.01772 loss) +I0407 23:16:12.122455 23786 solver.cpp:218] Iteration 8976 (0.706842 iter/s, 16.9769s/12 iters), loss = 0.0393326 +I0407 23:16:12.122511 23786 solver.cpp:237] Train net output #0: loss = 0.0393328 (* 1 = 0.0393328 loss) +I0407 23:16:12.122521 23786 sgd_solver.cpp:105] Iteration 8976, lr = 0.00168973 +I0407 23:16:16.657207 23786 solver.cpp:218] Iteration 8988 (2.64636 iter/s, 4.53453s/12 iters), loss = 0.0354934 +I0407 23:16:16.657260 23786 solver.cpp:237] Train net output #0: loss = 0.0354936 (* 1 = 0.0354936 loss) +I0407 23:16:16.657272 23786 sgd_solver.cpp:105] Iteration 8988, lr = 0.00168571 +I0407 23:16:20.002768 23786 blocking_queue.cpp:49] Waiting for data +I0407 23:16:21.734225 23786 solver.cpp:218] Iteration 9000 (2.3637 iter/s, 5.07678s/12 iters), loss = 0.0993475 +I0407 23:16:21.734282 23786 solver.cpp:237] Train net output #0: loss = 0.0993477 (* 1 = 0.0993477 loss) +I0407 23:16:21.734297 23786 sgd_solver.cpp:105] Iteration 9000, lr = 0.00168171 +I0407 23:16:22.416592 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:26.618599 23786 solver.cpp:218] Iteration 9012 (2.45693 iter/s, 4.88414s/12 iters), loss = 0.043253 +I0407 23:16:26.618714 23786 solver.cpp:237] Train net output #0: loss = 0.0432532 (* 1 = 0.0432532 loss) +I0407 23:16:26.618726 23786 sgd_solver.cpp:105] Iteration 9012, lr = 0.00167772 +I0407 23:16:31.798619 23786 solver.cpp:218] Iteration 9024 (2.31673 iter/s, 5.17972s/12 iters), loss = 0.0229933 +I0407 23:16:31.798669 23786 solver.cpp:237] Train net output #0: loss = 0.0229935 (* 1 = 0.0229935 loss) +I0407 23:16:31.798681 23786 sgd_solver.cpp:105] Iteration 9024, lr = 0.00167374 +I0407 23:16:36.779296 23786 solver.cpp:218] Iteration 9036 (2.40943 iter/s, 4.98044s/12 iters), loss = 0.0601841 +I0407 23:16:36.779350 23786 solver.cpp:237] Train net output #0: loss = 0.0601843 (* 1 = 0.0601843 loss) +I0407 23:16:36.779362 23786 sgd_solver.cpp:105] Iteration 9036, lr = 0.00166976 +I0407 23:16:42.086050 23786 solver.cpp:218] Iteration 9048 (2.26137 iter/s, 5.30651s/12 iters), loss = 0.0668225 +I0407 23:16:42.086107 23786 solver.cpp:237] Train net output #0: loss = 0.0668226 (* 1 = 0.0668226 loss) +I0407 23:16:42.086120 23786 sgd_solver.cpp:105] Iteration 9048, lr = 0.0016658 +I0407 23:16:47.135948 23786 solver.cpp:218] Iteration 9060 (2.3764 iter/s, 5.04966s/12 iters), loss = 0.066477 +I0407 23:16:47.135998 23786 solver.cpp:237] Train net output #0: loss = 0.0664772 (* 1 = 0.0664772 loss) +I0407 23:16:47.136006 23786 sgd_solver.cpp:105] Iteration 9060, lr = 0.00166184 +I0407 23:16:52.174733 23786 solver.cpp:218] Iteration 9072 (2.38164 iter/s, 5.03855s/12 iters), loss = 0.0235407 +I0407 23:16:52.174787 23786 solver.cpp:237] Train net output #0: loss = 0.0235408 (* 1 = 0.0235408 loss) +I0407 23:16:52.174798 23786 sgd_solver.cpp:105] Iteration 9072, lr = 0.0016579 +I0407 23:16:54.407371 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 23:16:58.433879 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 23:17:05.897682 23786 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 23:17:05.897709 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:17:06.774968 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:10.322696 23786 solver.cpp:397] Test net output #0: accuracy = 0.46875 +I0407 23:17:10.322746 23786 solver.cpp:397] Test net output #1: loss = 2.99928 (* 1 = 2.99928 loss) +I0407 23:17:12.330888 23786 solver.cpp:218] Iteration 9084 (0.595374 iter/s, 20.1554s/12 iters), loss = 0.0564629 +I0407 23:17:12.330943 23786 solver.cpp:237] Train net output #0: loss = 0.0564631 (* 1 = 0.0564631 loss) +I0407 23:17:12.330955 23786 sgd_solver.cpp:105] Iteration 9084, lr = 0.00165396 +I0407 23:17:17.428413 23786 solver.cpp:218] Iteration 9096 (2.35419 iter/s, 5.09728s/12 iters), loss = 0.0561882 +I0407 23:17:17.428468 23786 solver.cpp:237] Train net output #0: loss = 0.0561883 (* 1 = 0.0561883 loss) +I0407 23:17:17.428479 23786 sgd_solver.cpp:105] Iteration 9096, lr = 0.00165003 +I0407 23:17:20.362422 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:22.598161 23786 solver.cpp:218] Iteration 9108 (2.3213 iter/s, 5.16951s/12 iters), loss = 0.0665953 +I0407 23:17:22.598208 23786 solver.cpp:237] Train net output #0: loss = 0.0665955 (* 1 = 0.0665955 loss) +I0407 23:17:22.598219 23786 sgd_solver.cpp:105] Iteration 9108, lr = 0.00164612 +I0407 23:17:27.731422 23786 solver.cpp:218] Iteration 9120 (2.3378 iter/s, 5.13303s/12 iters), loss = 0.0890782 +I0407 23:17:27.731457 23786 solver.cpp:237] Train net output #0: loss = 0.0890784 (* 1 = 0.0890784 loss) +I0407 23:17:27.731467 23786 sgd_solver.cpp:105] Iteration 9120, lr = 0.00164221 +I0407 23:17:32.763545 23786 solver.cpp:218] Iteration 9132 (2.38478 iter/s, 5.0319s/12 iters), loss = 0.0580016 +I0407 23:17:32.763671 23786 solver.cpp:237] Train net output #0: loss = 0.0580018 (* 1 = 0.0580018 loss) +I0407 23:17:32.763682 23786 sgd_solver.cpp:105] Iteration 9132, lr = 0.00163831 +I0407 23:17:37.835616 23786 solver.cpp:218] Iteration 9144 (2.36604 iter/s, 5.07176s/12 iters), loss = 0.0480955 +I0407 23:17:37.835656 23786 solver.cpp:237] Train net output #0: loss = 0.0480957 (* 1 = 0.0480957 loss) +I0407 23:17:37.835664 23786 sgd_solver.cpp:105] Iteration 9144, lr = 0.00163442 +I0407 23:17:42.836169 23786 solver.cpp:218] Iteration 9156 (2.39984 iter/s, 5.00033s/12 iters), loss = 0.0647233 +I0407 23:17:42.836218 23786 solver.cpp:237] Train net output #0: loss = 0.0647235 (* 1 = 0.0647235 loss) +I0407 23:17:42.836230 23786 sgd_solver.cpp:105] Iteration 9156, lr = 0.00163054 +I0407 23:17:47.797474 23786 solver.cpp:218] Iteration 9168 (2.41883 iter/s, 4.96107s/12 iters), loss = 0.00797513 +I0407 23:17:47.797523 23786 solver.cpp:237] Train net output #0: loss = 0.00797531 (* 1 = 0.00797531 loss) +I0407 23:17:47.797533 23786 sgd_solver.cpp:105] Iteration 9168, lr = 0.00162667 +I0407 23:17:52.364565 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 23:17:58.577481 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 23:18:02.890267 23786 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 23:18:02.890321 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:18:03.852694 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:07.431414 23786 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0407 23:18:07.431466 23786 solver.cpp:397] Test net output #1: loss = 3.0275 (* 1 = 3.0275 loss) +I0407 23:18:07.521260 23786 solver.cpp:218] Iteration 9180 (0.608425 iter/s, 19.7231s/12 iters), loss = 0.00710707 +I0407 23:18:07.521311 23786 solver.cpp:237] Train net output #0: loss = 0.00710725 (* 1 = 0.00710725 loss) +I0407 23:18:07.521322 23786 sgd_solver.cpp:105] Iteration 9180, lr = 0.00162281 +I0407 23:18:11.735988 23786 solver.cpp:218] Iteration 9192 (2.8473 iter/s, 4.21452s/12 iters), loss = 0.0589528 +I0407 23:18:11.736040 23786 solver.cpp:237] Train net output #0: loss = 0.058953 (* 1 = 0.058953 loss) +I0407 23:18:11.736052 23786 sgd_solver.cpp:105] Iteration 9192, lr = 0.00161895 +I0407 23:18:16.736765 23786 solver.cpp:218] Iteration 9204 (2.39974 iter/s, 5.00054s/12 iters), loss = 0.0550607 +I0407 23:18:16.736824 23786 solver.cpp:237] Train net output #0: loss = 0.0550609 (* 1 = 0.0550609 loss) +I0407 23:18:16.736836 23786 sgd_solver.cpp:105] Iteration 9204, lr = 0.00161511 +I0407 23:18:16.804267 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:21.983191 23786 solver.cpp:218] Iteration 9216 (2.28738 iter/s, 5.24618s/12 iters), loss = 0.0114857 +I0407 23:18:21.983238 23786 solver.cpp:237] Train net output #0: loss = 0.0114858 (* 1 = 0.0114858 loss) +I0407 23:18:21.983250 23786 sgd_solver.cpp:105] Iteration 9216, lr = 0.00161128 +I0407 23:18:26.917898 23786 solver.cpp:218] Iteration 9228 (2.43187 iter/s, 4.93448s/12 iters), loss = 0.0565749 +I0407 23:18:26.917943 23786 solver.cpp:237] Train net output #0: loss = 0.0565751 (* 1 = 0.0565751 loss) +I0407 23:18:26.917963 23786 sgd_solver.cpp:105] Iteration 9228, lr = 0.00160745 +I0407 23:18:31.936357 23786 solver.cpp:218] Iteration 9240 (2.39128 iter/s, 5.01823s/12 iters), loss = 0.0439734 +I0407 23:18:31.936398 23786 solver.cpp:237] Train net output #0: loss = 0.0439736 (* 1 = 0.0439736 loss) +I0407 23:18:31.936405 23786 sgd_solver.cpp:105] Iteration 9240, lr = 0.00160363 +I0407 23:18:36.907912 23786 solver.cpp:218] Iteration 9252 (2.41384 iter/s, 4.97133s/12 iters), loss = 0.18674 +I0407 23:18:36.907996 23786 solver.cpp:237] Train net output #0: loss = 0.18674 (* 1 = 0.18674 loss) +I0407 23:18:36.908004 23786 sgd_solver.cpp:105] Iteration 9252, lr = 0.00159983 +I0407 23:18:41.927894 23786 solver.cpp:218] Iteration 9264 (2.39058 iter/s, 5.01971s/12 iters), loss = 0.0237374 +I0407 23:18:41.927947 23786 solver.cpp:237] Train net output #0: loss = 0.0237376 (* 1 = 0.0237376 loss) +I0407 23:18:41.927959 23786 sgd_solver.cpp:105] Iteration 9264, lr = 0.00159603 +I0407 23:18:46.917551 23786 solver.cpp:218] Iteration 9276 (2.40509 iter/s, 4.98942s/12 iters), loss = 0.109494 +I0407 23:18:46.917601 23786 solver.cpp:237] Train net output #0: loss = 0.109494 (* 1 = 0.109494 loss) +I0407 23:18:46.917613 23786 sgd_solver.cpp:105] Iteration 9276, lr = 0.00159224 +I0407 23:18:48.963891 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 23:18:56.658710 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 23:19:01.052493 23786 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 23:19:01.052515 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:19:01.876592 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:05.523558 23786 solver.cpp:397] Test net output #0: accuracy = 0.469976 +I0407 23:19:05.523607 23786 solver.cpp:397] Test net output #1: loss = 3.05014 (* 1 = 3.05014 loss) +I0407 23:19:07.376605 23786 solver.cpp:218] Iteration 9288 (0.58656 iter/s, 20.4583s/12 iters), loss = 0.0660421 +I0407 23:19:07.376763 23786 solver.cpp:237] Train net output #0: loss = 0.0660422 (* 1 = 0.0660422 loss) +I0407 23:19:07.376777 23786 sgd_solver.cpp:105] Iteration 9288, lr = 0.00158846 +I0407 23:19:12.410107 23786 solver.cpp:218] Iteration 9300 (2.38419 iter/s, 5.03315s/12 iters), loss = 0.00841654 +I0407 23:19:12.410181 23786 solver.cpp:237] Train net output #0: loss = 0.00841672 (* 1 = 0.00841672 loss) +I0407 23:19:12.410193 23786 sgd_solver.cpp:105] Iteration 9300, lr = 0.00158469 +I0407 23:19:14.607805 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:17.411666 23786 solver.cpp:218] Iteration 9312 (2.39937 iter/s, 5.0013s/12 iters), loss = 0.0508454 +I0407 23:19:17.411718 23786 solver.cpp:237] Train net output #0: loss = 0.0508456 (* 1 = 0.0508456 loss) +I0407 23:19:17.411731 23786 sgd_solver.cpp:105] Iteration 9312, lr = 0.00158092 +I0407 23:19:22.408860 23786 solver.cpp:218] Iteration 9324 (2.40146 iter/s, 4.99696s/12 iters), loss = 0.0687293 +I0407 23:19:22.408910 23786 solver.cpp:237] Train net output #0: loss = 0.0687295 (* 1 = 0.0687295 loss) +I0407 23:19:22.408921 23786 sgd_solver.cpp:105] Iteration 9324, lr = 0.00157717 +I0407 23:19:27.589913 23786 solver.cpp:218] Iteration 9336 (2.31624 iter/s, 5.18081s/12 iters), loss = 0.0642737 +I0407 23:19:27.589982 23786 solver.cpp:237] Train net output #0: loss = 0.0642739 (* 1 = 0.0642739 loss) +I0407 23:19:27.589996 23786 sgd_solver.cpp:105] Iteration 9336, lr = 0.00157343 +I0407 23:19:32.694542 23786 solver.cpp:218] Iteration 9348 (2.35093 iter/s, 5.10437s/12 iters), loss = 0.0571295 +I0407 23:19:32.694589 23786 solver.cpp:237] Train net output #0: loss = 0.0571297 (* 1 = 0.0571297 loss) +I0407 23:19:32.694602 23786 sgd_solver.cpp:105] Iteration 9348, lr = 0.00156969 +I0407 23:19:37.673467 23786 solver.cpp:218] Iteration 9360 (2.41027 iter/s, 4.97869s/12 iters), loss = 0.0295548 +I0407 23:19:37.673600 23786 solver.cpp:237] Train net output #0: loss = 0.029555 (* 1 = 0.029555 loss) +I0407 23:19:37.673614 23786 sgd_solver.cpp:105] Iteration 9360, lr = 0.00156596 +I0407 23:19:42.559970 23786 solver.cpp:218] Iteration 9372 (2.4559 iter/s, 4.88619s/12 iters), loss = 0.0497869 +I0407 23:19:42.560022 23786 solver.cpp:237] Train net output #0: loss = 0.0497871 (* 1 = 0.0497871 loss) +I0407 23:19:42.560034 23786 sgd_solver.cpp:105] Iteration 9372, lr = 0.00156225 +I0407 23:19:47.074153 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 23:19:52.649349 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 23:19:55.017803 23786 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 23:19:55.017825 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:19:55.803300 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:59.507655 23786 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0407 23:19:59.507707 23786 solver.cpp:397] Test net output #1: loss = 3.06762 (* 1 = 3.06762 loss) +I0407 23:19:59.598067 23786 solver.cpp:218] Iteration 9384 (0.704331 iter/s, 17.0374s/12 iters), loss = 0.00589711 +I0407 23:19:59.598119 23786 solver.cpp:237] Train net output #0: loss = 0.00589731 (* 1 = 0.00589731 loss) +I0407 23:19:59.598130 23786 sgd_solver.cpp:105] Iteration 9384, lr = 0.00155854 +I0407 23:20:03.871946 23786 solver.cpp:218] Iteration 9396 (2.8079 iter/s, 4.27366s/12 iters), loss = 0.030176 +I0407 23:20:03.871994 23786 solver.cpp:237] Train net output #0: loss = 0.0301762 (* 1 = 0.0301762 loss) +I0407 23:20:03.872005 23786 sgd_solver.cpp:105] Iteration 9396, lr = 0.00155484 +I0407 23:20:08.243733 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:08.891870 23786 solver.cpp:218] Iteration 9408 (2.39059 iter/s, 5.01969s/12 iters), loss = 0.076337 +I0407 23:20:08.891907 23786 solver.cpp:237] Train net output #0: loss = 0.0763372 (* 1 = 0.0763372 loss) +I0407 23:20:08.891914 23786 sgd_solver.cpp:105] Iteration 9408, lr = 0.00155114 +I0407 23:20:13.892400 23786 solver.cpp:218] Iteration 9420 (2.39986 iter/s, 5.0003s/12 iters), loss = 0.0660374 +I0407 23:20:13.892452 23786 solver.cpp:237] Train net output #0: loss = 0.0660376 (* 1 = 0.0660376 loss) +I0407 23:20:13.892463 23786 sgd_solver.cpp:105] Iteration 9420, lr = 0.00154746 +I0407 23:20:18.902987 23786 solver.cpp:218] Iteration 9432 (2.39504 iter/s, 5.01035s/12 iters), loss = 0.019246 +I0407 23:20:18.903031 23786 solver.cpp:237] Train net output #0: loss = 0.0192462 (* 1 = 0.0192462 loss) +I0407 23:20:18.903040 23786 sgd_solver.cpp:105] Iteration 9432, lr = 0.00154379 +I0407 23:20:23.904330 23786 solver.cpp:218] Iteration 9444 (2.39947 iter/s, 5.00111s/12 iters), loss = 0.0253571 +I0407 23:20:23.904381 23786 solver.cpp:237] Train net output #0: loss = 0.0253573 (* 1 = 0.0253573 loss) +I0407 23:20:23.904392 23786 sgd_solver.cpp:105] Iteration 9444, lr = 0.00154012 +I0407 23:20:28.943707 23786 solver.cpp:218] Iteration 9456 (2.38136 iter/s, 5.03914s/12 iters), loss = 0.0259331 +I0407 23:20:28.943758 23786 solver.cpp:237] Train net output #0: loss = 0.0259333 (* 1 = 0.0259333 loss) +I0407 23:20:28.943768 23786 sgd_solver.cpp:105] Iteration 9456, lr = 0.00153647 +I0407 23:20:33.919207 23786 solver.cpp:218] Iteration 9468 (2.41193 iter/s, 4.97526s/12 iters), loss = 0.0232112 +I0407 23:20:33.919255 23786 solver.cpp:237] Train net output #0: loss = 0.0232114 (* 1 = 0.0232114 loss) +I0407 23:20:33.919267 23786 sgd_solver.cpp:105] Iteration 9468, lr = 0.00153282 +I0407 23:20:38.860340 23786 solver.cpp:218] Iteration 9480 (2.42871 iter/s, 4.9409s/12 iters), loss = 0.00806433 +I0407 23:20:38.860411 23786 solver.cpp:237] Train net output #0: loss = 0.00806454 (* 1 = 0.00806454 loss) +I0407 23:20:38.860421 23786 sgd_solver.cpp:105] Iteration 9480, lr = 0.00152918 +I0407 23:20:40.872074 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 23:20:46.625573 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 23:20:48.971268 23786 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 23:20:48.971293 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:20:49.710083 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:53.450549 23786 solver.cpp:397] Test net output #0: accuracy = 0.464461 +I0407 23:20:53.450600 23786 solver.cpp:397] Test net output #1: loss = 3.09166 (* 1 = 3.09166 loss) +I0407 23:20:55.281978 23786 solver.cpp:218] Iteration 9492 (0.730773 iter/s, 16.421s/12 iters), loss = 0.0182254 +I0407 23:20:55.282032 23786 solver.cpp:237] Train net output #0: loss = 0.0182257 (* 1 = 0.0182257 loss) +I0407 23:20:55.282047 23786 sgd_solver.cpp:105] Iteration 9492, lr = 0.00152555 +I0407 23:21:00.253764 23786 solver.cpp:218] Iteration 9504 (2.41374 iter/s, 4.97154s/12 iters), loss = 0.1448 +I0407 23:21:00.253829 23786 solver.cpp:237] Train net output #0: loss = 0.144801 (* 1 = 0.144801 loss) +I0407 23:21:00.253844 23786 sgd_solver.cpp:105] Iteration 9504, lr = 0.00152193 +I0407 23:21:01.687011 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:05.162953 23786 solver.cpp:218] Iteration 9516 (2.44452 iter/s, 4.90895s/12 iters), loss = 0.0981091 +I0407 23:21:05.162995 23786 solver.cpp:237] Train net output #0: loss = 0.0981093 (* 1 = 0.0981093 loss) +I0407 23:21:05.163004 23786 sgd_solver.cpp:105] Iteration 9516, lr = 0.00151831 +I0407 23:21:10.188647 23786 solver.cpp:218] Iteration 9528 (2.38784 iter/s, 5.02545s/12 iters), loss = 0.0345067 +I0407 23:21:10.188799 23786 solver.cpp:237] Train net output #0: loss = 0.0345069 (* 1 = 0.0345069 loss) +I0407 23:21:10.188813 23786 sgd_solver.cpp:105] Iteration 9528, lr = 0.00151471 +I0407 23:21:15.204798 23786 solver.cpp:218] Iteration 9540 (2.39243 iter/s, 5.01581s/12 iters), loss = 0.0364461 +I0407 23:21:15.204849 23786 solver.cpp:237] Train net output #0: loss = 0.0364463 (* 1 = 0.0364463 loss) +I0407 23:21:15.204857 23786 sgd_solver.cpp:105] Iteration 9540, lr = 0.00151111 +I0407 23:21:20.181571 23786 solver.cpp:218] Iteration 9552 (2.41132 iter/s, 4.97654s/12 iters), loss = 0.121811 +I0407 23:21:20.181619 23786 solver.cpp:237] Train net output #0: loss = 0.121811 (* 1 = 0.121811 loss) +I0407 23:21:20.181630 23786 sgd_solver.cpp:105] Iteration 9552, lr = 0.00150752 +I0407 23:21:25.180847 23786 solver.cpp:218] Iteration 9564 (2.40046 iter/s, 4.99904s/12 iters), loss = 0.0737299 +I0407 23:21:25.180899 23786 solver.cpp:237] Train net output #0: loss = 0.0737301 (* 1 = 0.0737301 loss) +I0407 23:21:25.180909 23786 sgd_solver.cpp:105] Iteration 9564, lr = 0.00150395 +I0407 23:21:30.208212 23786 solver.cpp:218] Iteration 9576 (2.38705 iter/s, 5.02712s/12 iters), loss = 0.0323457 +I0407 23:21:30.208268 23786 solver.cpp:237] Train net output #0: loss = 0.0323459 (* 1 = 0.0323459 loss) +I0407 23:21:30.208281 23786 sgd_solver.cpp:105] Iteration 9576, lr = 0.00150037 +I0407 23:21:34.753091 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 23:21:38.589056 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 23:21:40.921509 23786 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 23:21:40.921586 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:21:41.530304 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:45.618882 23786 solver.cpp:397] Test net output #0: accuracy = 0.471814 +I0407 23:21:45.618919 23786 solver.cpp:397] Test net output #1: loss = 3.01219 (* 1 = 3.01219 loss) +I0407 23:21:45.709249 23786 solver.cpp:218] Iteration 9588 (0.774172 iter/s, 15.5004s/12 iters), loss = 0.0619807 +I0407 23:21:45.709300 23786 solver.cpp:237] Train net output #0: loss = 0.0619809 (* 1 = 0.0619809 loss) +I0407 23:21:45.709311 23786 sgd_solver.cpp:105] Iteration 9588, lr = 0.00149681 +I0407 23:21:49.904670 23786 solver.cpp:218] Iteration 9600 (2.8604 iter/s, 4.19521s/12 iters), loss = 0.0627065 +I0407 23:21:49.904712 23786 solver.cpp:237] Train net output #0: loss = 0.0627067 (* 1 = 0.0627067 loss) +I0407 23:21:49.904723 23786 sgd_solver.cpp:105] Iteration 9600, lr = 0.00149326 +I0407 23:21:53.629240 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:55.131994 23786 solver.cpp:218] Iteration 9612 (2.29573 iter/s, 5.22709s/12 iters), loss = 0.0739237 +I0407 23:21:55.132033 23786 solver.cpp:237] Train net output #0: loss = 0.0739239 (* 1 = 0.0739239 loss) +I0407 23:21:55.132043 23786 sgd_solver.cpp:105] Iteration 9612, lr = 0.00148971 +I0407 23:22:01.256683 23786 solver.cpp:218] Iteration 9624 (1.95937 iter/s, 6.12442s/12 iters), loss = 0.0706213 +I0407 23:22:01.256736 23786 solver.cpp:237] Train net output #0: loss = 0.0706215 (* 1 = 0.0706215 loss) +I0407 23:22:01.256748 23786 sgd_solver.cpp:105] Iteration 9624, lr = 0.00148618 +I0407 23:22:06.240947 23786 solver.cpp:218] Iteration 9636 (2.40769 iter/s, 4.98402s/12 iters), loss = 0.040021 +I0407 23:22:06.241003 23786 solver.cpp:237] Train net output #0: loss = 0.0400212 (* 1 = 0.0400212 loss) +I0407 23:22:06.241014 23786 sgd_solver.cpp:105] Iteration 9636, lr = 0.00148265 +I0407 23:22:11.200628 23786 solver.cpp:218] Iteration 9648 (2.41963 iter/s, 4.95944s/12 iters), loss = 0.10424 +I0407 23:22:11.200763 23786 solver.cpp:237] Train net output #0: loss = 0.10424 (* 1 = 0.10424 loss) +I0407 23:22:11.200773 23786 sgd_solver.cpp:105] Iteration 9648, lr = 0.00147913 +I0407 23:22:16.134793 23786 solver.cpp:218] Iteration 9660 (2.43218 iter/s, 4.93384s/12 iters), loss = 0.0851205 +I0407 23:22:16.134853 23786 solver.cpp:237] Train net output #0: loss = 0.0851207 (* 1 = 0.0851207 loss) +I0407 23:22:16.134869 23786 sgd_solver.cpp:105] Iteration 9660, lr = 0.00147562 +I0407 23:22:21.083770 23786 solver.cpp:218] Iteration 9672 (2.42486 iter/s, 4.94873s/12 iters), loss = 0.0521771 +I0407 23:22:21.083822 23786 solver.cpp:237] Train net output #0: loss = 0.0521772 (* 1 = 0.0521772 loss) +I0407 23:22:21.083834 23786 sgd_solver.cpp:105] Iteration 9672, lr = 0.00147211 +I0407 23:22:26.036587 23786 solver.cpp:218] Iteration 9684 (2.42298 iter/s, 4.95258s/12 iters), loss = 0.0618399 +I0407 23:22:26.036638 23786 solver.cpp:237] Train net output #0: loss = 0.0618401 (* 1 = 0.0618401 loss) +I0407 23:22:26.036651 23786 sgd_solver.cpp:105] Iteration 9684, lr = 0.00146862 +I0407 23:22:28.010965 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 23:22:31.040753 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 23:22:33.376638 23786 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 23:22:33.376662 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:22:34.056412 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:36.991679 23786 blocking_queue.cpp:49] Waiting for data +I0407 23:22:37.977398 23786 solver.cpp:397] Test net output #0: accuracy = 0.476103 +I0407 23:22:37.977447 23786 solver.cpp:397] Test net output #1: loss = 3.05562 (* 1 = 3.05562 loss) +I0407 23:22:39.901827 23786 solver.cpp:218] Iteration 9696 (0.865508 iter/s, 13.8647s/12 iters), loss = 0.0274092 +I0407 23:22:39.901883 23786 solver.cpp:237] Train net output #0: loss = 0.0274094 (* 1 = 0.0274094 loss) +I0407 23:22:39.901895 23786 sgd_solver.cpp:105] Iteration 9696, lr = 0.00146513 +I0407 23:22:44.977461 23786 solver.cpp:218] Iteration 9708 (2.36435 iter/s, 5.07539s/12 iters), loss = 0.0368073 +I0407 23:22:44.977550 23786 solver.cpp:237] Train net output #0: loss = 0.0368075 (* 1 = 0.0368075 loss) +I0407 23:22:44.977560 23786 sgd_solver.cpp:105] Iteration 9708, lr = 0.00146165 +I0407 23:22:45.799695 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:50.187520 23786 solver.cpp:218] Iteration 9720 (2.30336 iter/s, 5.20977s/12 iters), loss = 0.0200309 +I0407 23:22:50.187566 23786 solver.cpp:237] Train net output #0: loss = 0.0200311 (* 1 = 0.0200311 loss) +I0407 23:22:50.187578 23786 sgd_solver.cpp:105] Iteration 9720, lr = 0.00145818 +I0407 23:22:55.127455 23786 solver.cpp:218] Iteration 9732 (2.42929 iter/s, 4.93971s/12 iters), loss = 0.00442111 +I0407 23:22:55.127498 23786 solver.cpp:237] Train net output #0: loss = 0.00442129 (* 1 = 0.00442129 loss) +I0407 23:22:55.127507 23786 sgd_solver.cpp:105] Iteration 9732, lr = 0.00145472 +I0407 23:23:00.071887 23786 solver.cpp:218] Iteration 9744 (2.42709 iter/s, 4.9442s/12 iters), loss = 0.0894206 +I0407 23:23:00.071941 23786 solver.cpp:237] Train net output #0: loss = 0.0894208 (* 1 = 0.0894208 loss) +I0407 23:23:00.071954 23786 sgd_solver.cpp:105] Iteration 9744, lr = 0.00145127 +I0407 23:23:05.087275 23786 solver.cpp:218] Iteration 9756 (2.39275 iter/s, 5.01515s/12 iters), loss = 0.104585 +I0407 23:23:05.087322 23786 solver.cpp:237] Train net output #0: loss = 0.104585 (* 1 = 0.104585 loss) +I0407 23:23:05.087332 23786 sgd_solver.cpp:105] Iteration 9756, lr = 0.00144782 +I0407 23:23:10.085965 23786 solver.cpp:218] Iteration 9768 (2.40075 iter/s, 4.99844s/12 iters), loss = 0.0412836 +I0407 23:23:10.086012 23786 solver.cpp:237] Train net output #0: loss = 0.0412838 (* 1 = 0.0412838 loss) +I0407 23:23:10.086024 23786 sgd_solver.cpp:105] Iteration 9768, lr = 0.00144438 +I0407 23:23:15.046928 23786 solver.cpp:218] Iteration 9780 (2.419 iter/s, 4.96073s/12 iters), loss = 0.0893865 +I0407 23:23:15.047588 23786 solver.cpp:237] Train net output #0: loss = 0.0893866 (* 1 = 0.0893866 loss) +I0407 23:23:15.047600 23786 sgd_solver.cpp:105] Iteration 9780, lr = 0.00144095 +I0407 23:23:19.565877 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 23:23:22.644822 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 23:23:24.958001 23786 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 23:23:24.958024 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:23:25.570833 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:29.420158 23786 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0407 23:23:29.420210 23786 solver.cpp:397] Test net output #1: loss = 3.07937 (* 1 = 3.07937 loss) +I0407 23:23:29.510701 23786 solver.cpp:218] Iteration 9792 (0.829727 iter/s, 14.4626s/12 iters), loss = 0.0375454 +I0407 23:23:29.510756 23786 solver.cpp:237] Train net output #0: loss = 0.0375456 (* 1 = 0.0375456 loss) +I0407 23:23:29.510766 23786 sgd_solver.cpp:105] Iteration 9792, lr = 0.00143753 +I0407 23:23:33.677040 23786 solver.cpp:218] Iteration 9804 (2.88038 iter/s, 4.16612s/12 iters), loss = 0.0633918 +I0407 23:23:33.677098 23786 solver.cpp:237] Train net output #0: loss = 0.063392 (* 1 = 0.063392 loss) +I0407 23:23:33.677109 23786 sgd_solver.cpp:105] Iteration 9804, lr = 0.00143412 +I0407 23:23:36.553321 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:38.556485 23786 solver.cpp:218] Iteration 9816 (2.45942 iter/s, 4.87921s/12 iters), loss = 0.101593 +I0407 23:23:38.556532 23786 solver.cpp:237] Train net output #0: loss = 0.101593 (* 1 = 0.101593 loss) +I0407 23:23:38.556545 23786 sgd_solver.cpp:105] Iteration 9816, lr = 0.00143072 +I0407 23:23:43.620677 23786 solver.cpp:218] Iteration 9828 (2.36969 iter/s, 5.06396s/12 iters), loss = 0.0149628 +I0407 23:23:43.620728 23786 solver.cpp:237] Train net output #0: loss = 0.014963 (* 1 = 0.014963 loss) +I0407 23:23:43.620740 23786 sgd_solver.cpp:105] Iteration 9828, lr = 0.00142732 +I0407 23:23:48.599651 23786 solver.cpp:218] Iteration 9840 (2.41025 iter/s, 4.97874s/12 iters), loss = 0.0429989 +I0407 23:23:48.599763 23786 solver.cpp:237] Train net output #0: loss = 0.0429991 (* 1 = 0.0429991 loss) +I0407 23:23:48.599777 23786 sgd_solver.cpp:105] Iteration 9840, lr = 0.00142393 +I0407 23:23:53.618072 23786 solver.cpp:218] Iteration 9852 (2.39134 iter/s, 5.01811s/12 iters), loss = 0.0568741 +I0407 23:23:53.618129 23786 solver.cpp:237] Train net output #0: loss = 0.0568742 (* 1 = 0.0568742 loss) +I0407 23:23:53.618139 23786 sgd_solver.cpp:105] Iteration 9852, lr = 0.00142055 +I0407 23:23:58.639493 23786 solver.cpp:218] Iteration 9864 (2.38988 iter/s, 5.02117s/12 iters), loss = 0.0621194 +I0407 23:23:58.639547 23786 solver.cpp:237] Train net output #0: loss = 0.0621196 (* 1 = 0.0621196 loss) +I0407 23:23:58.639560 23786 sgd_solver.cpp:105] Iteration 9864, lr = 0.00141718 +I0407 23:24:03.592722 23786 solver.cpp:218] Iteration 9876 (2.42278 iter/s, 4.95299s/12 iters), loss = 0.0491972 +I0407 23:24:03.592774 23786 solver.cpp:237] Train net output #0: loss = 0.0491974 (* 1 = 0.0491974 loss) +I0407 23:24:03.592785 23786 sgd_solver.cpp:105] Iteration 9876, lr = 0.00141381 +I0407 23:24:08.583839 23786 solver.cpp:218] Iteration 9888 (2.40439 iter/s, 4.99088s/12 iters), loss = 0.0255384 +I0407 23:24:08.583887 23786 solver.cpp:237] Train net output #0: loss = 0.0255386 (* 1 = 0.0255386 loss) +I0407 23:24:08.583899 23786 sgd_solver.cpp:105] Iteration 9888, lr = 0.00141045 +I0407 23:24:10.599865 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 23:24:13.667948 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 23:24:16.024147 23786 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 23:24:16.024173 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:24:16.589170 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:20.604460 23786 solver.cpp:397] Test net output #0: accuracy = 0.473652 +I0407 23:24:20.604569 23786 solver.cpp:397] Test net output #1: loss = 3.05929 (* 1 = 3.05929 loss) +I0407 23:24:22.604619 23786 solver.cpp:218] Iteration 9900 (0.855907 iter/s, 14.0202s/12 iters), loss = 0.0645013 +I0407 23:24:22.604667 23786 solver.cpp:237] Train net output #0: loss = 0.0645014 (* 1 = 0.0645014 loss) +I0407 23:24:22.604676 23786 sgd_solver.cpp:105] Iteration 9900, lr = 0.00140711 +I0407 23:24:27.557482 23786 solver.cpp:218] Iteration 9912 (2.42295 iter/s, 4.95263s/12 iters), loss = 0.0251535 +I0407 23:24:27.557523 23786 solver.cpp:237] Train net output #0: loss = 0.0251537 (* 1 = 0.0251537 loss) +I0407 23:24:27.557529 23786 sgd_solver.cpp:105] Iteration 9912, lr = 0.00140377 +I0407 23:24:27.670001 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:32.580133 23786 solver.cpp:218] Iteration 9924 (2.38929 iter/s, 5.02242s/12 iters), loss = 0.0122061 +I0407 23:24:32.580183 23786 solver.cpp:237] Train net output #0: loss = 0.0122063 (* 1 = 0.0122063 loss) +I0407 23:24:32.580193 23786 sgd_solver.cpp:105] Iteration 9924, lr = 0.00140043 +I0407 23:24:37.615869 23786 solver.cpp:218] Iteration 9936 (2.38308 iter/s, 5.0355s/12 iters), loss = 0.0131364 +I0407 23:24:37.615913 23786 solver.cpp:237] Train net output #0: loss = 0.0131365 (* 1 = 0.0131365 loss) +I0407 23:24:37.615924 23786 sgd_solver.cpp:105] Iteration 9936, lr = 0.00139711 +I0407 23:24:42.975760 23786 solver.cpp:218] Iteration 9948 (2.23895 iter/s, 5.35965s/12 iters), loss = 0.0439087 +I0407 23:24:42.975805 23786 solver.cpp:237] Train net output #0: loss = 0.0439088 (* 1 = 0.0439088 loss) +I0407 23:24:42.975814 23786 sgd_solver.cpp:105] Iteration 9948, lr = 0.00139379 +I0407 23:24:48.138116 23786 solver.cpp:218] Iteration 9960 (2.32463 iter/s, 5.16212s/12 iters), loss = 0.0375198 +I0407 23:24:48.138168 23786 solver.cpp:237] Train net output #0: loss = 0.03752 (* 1 = 0.03752 loss) +I0407 23:24:48.138180 23786 sgd_solver.cpp:105] Iteration 9960, lr = 0.00139048 +I0407 23:24:53.087661 23786 solver.cpp:218] Iteration 9972 (2.42458 iter/s, 4.9493s/12 iters), loss = 0.104722 +I0407 23:24:53.087761 23786 solver.cpp:237] Train net output #0: loss = 0.104722 (* 1 = 0.104722 loss) +I0407 23:24:53.087774 23786 sgd_solver.cpp:105] Iteration 9972, lr = 0.00138718 +I0407 23:24:58.092892 23786 solver.cpp:218] Iteration 9984 (2.39763 iter/s, 5.00495s/12 iters), loss = 0.074819 +I0407 23:24:58.092948 23786 solver.cpp:237] Train net output #0: loss = 0.0748191 (* 1 = 0.0748191 loss) +I0407 23:24:58.092962 23786 sgd_solver.cpp:105] Iteration 9984, lr = 0.00138389 +I0407 23:25:02.647833 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 23:25:05.770200 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 23:25:08.161667 23786 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 23:25:08.161691 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:25:08.680920 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:12.628417 23786 solver.cpp:397] Test net output #0: accuracy = 0.477328 +I0407 23:25:12.628468 23786 solver.cpp:397] Test net output #1: loss = 3.06332 (* 1 = 3.06332 loss) +I0407 23:25:12.719103 23786 solver.cpp:218] Iteration 9996 (0.820478 iter/s, 14.6256s/12 iters), loss = 0.0407598 +I0407 23:25:12.719173 23786 solver.cpp:237] Train net output #0: loss = 0.04076 (* 1 = 0.04076 loss) +I0407 23:25:12.719188 23786 sgd_solver.cpp:105] Iteration 9996, lr = 0.0013806 +I0407 23:25:16.949831 23786 solver.cpp:218] Iteration 10008 (2.83654 iter/s, 4.2305s/12 iters), loss = 0.0182405 +I0407 23:25:16.949867 23786 solver.cpp:237] Train net output #0: loss = 0.0182407 (* 1 = 0.0182407 loss) +I0407 23:25:16.949875 23786 sgd_solver.cpp:105] Iteration 10008, lr = 0.00137732 +I0407 23:25:19.244535 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:22.043745 23786 solver.cpp:218] Iteration 10020 (2.35586 iter/s, 5.09368s/12 iters), loss = 0.0417817 +I0407 23:25:22.043797 23786 solver.cpp:237] Train net output #0: loss = 0.0417819 (* 1 = 0.0417819 loss) +I0407 23:25:22.043809 23786 sgd_solver.cpp:105] Iteration 10020, lr = 0.00137405 +I0407 23:25:27.087867 23786 solver.cpp:218] Iteration 10032 (2.37912 iter/s, 5.04388s/12 iters), loss = 0.0381572 +I0407 23:25:27.088002 23786 solver.cpp:237] Train net output #0: loss = 0.0381574 (* 1 = 0.0381574 loss) +I0407 23:25:27.088016 23786 sgd_solver.cpp:105] Iteration 10032, lr = 0.00137079 +I0407 23:25:32.130515 23786 solver.cpp:218] Iteration 10044 (2.37985 iter/s, 5.04233s/12 iters), loss = 0.0355136 +I0407 23:25:32.130564 23786 solver.cpp:237] Train net output #0: loss = 0.0355137 (* 1 = 0.0355137 loss) +I0407 23:25:32.130576 23786 sgd_solver.cpp:105] Iteration 10044, lr = 0.00136754 +I0407 23:25:37.393008 23786 solver.cpp:218] Iteration 10056 (2.2804 iter/s, 5.26224s/12 iters), loss = 0.0439784 +I0407 23:25:37.393057 23786 solver.cpp:237] Train net output #0: loss = 0.0439786 (* 1 = 0.0439786 loss) +I0407 23:25:37.393070 23786 sgd_solver.cpp:105] Iteration 10056, lr = 0.00136429 +I0407 23:25:42.565167 23786 solver.cpp:218] Iteration 10068 (2.32023 iter/s, 5.17191s/12 iters), loss = 0.0520763 +I0407 23:25:42.565217 23786 solver.cpp:237] Train net output #0: loss = 0.0520764 (* 1 = 0.0520764 loss) +I0407 23:25:42.565228 23786 sgd_solver.cpp:105] Iteration 10068, lr = 0.00136105 +I0407 23:25:47.623212 23786 solver.cpp:218] Iteration 10080 (2.37257 iter/s, 5.0578s/12 iters), loss = 0.0414033 +I0407 23:25:47.623262 23786 solver.cpp:237] Train net output #0: loss = 0.0414035 (* 1 = 0.0414035 loss) +I0407 23:25:47.623275 23786 sgd_solver.cpp:105] Iteration 10080, lr = 0.00135782 +I0407 23:25:52.672320 23786 solver.cpp:218] Iteration 10092 (2.37677 iter/s, 5.04887s/12 iters), loss = 0.0730482 +I0407 23:25:52.672369 23786 solver.cpp:237] Train net output #0: loss = 0.0730483 (* 1 = 0.0730483 loss) +I0407 23:25:52.672381 23786 sgd_solver.cpp:105] Iteration 10092, lr = 0.0013546 +I0407 23:25:54.717206 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 23:25:57.720764 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 23:26:00.074630 23786 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 23:26:00.074651 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:26:00.469350 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:04.601624 23786 solver.cpp:397] Test net output #0: accuracy = 0.473039 +I0407 23:26:04.601680 23786 solver.cpp:397] Test net output #1: loss = 3.07493 (* 1 = 3.07493 loss) +I0407 23:26:06.597090 23786 solver.cpp:218] Iteration 10104 (0.861808 iter/s, 13.9242s/12 iters), loss = 0.0113856 +I0407 23:26:06.597148 23786 solver.cpp:237] Train net output #0: loss = 0.0113858 (* 1 = 0.0113858 loss) +I0407 23:26:06.597162 23786 sgd_solver.cpp:105] Iteration 10104, lr = 0.00135138 +I0407 23:26:11.195871 23790 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:11.815743 23786 solver.cpp:218] Iteration 10116 (2.29956 iter/s, 5.2184s/12 iters), loss = 0.027047 +I0407 23:26:11.815804 23786 solver.cpp:237] Train net output #0: loss = 0.0270472 (* 1 = 0.0270472 loss) +I0407 23:26:11.815821 23786 sgd_solver.cpp:105] Iteration 10116, lr = 0.00134817 +I0407 23:26:16.798259 23786 solver.cpp:218] Iteration 10128 (2.40854 iter/s, 4.98227s/12 iters), loss = 0.04582 +I0407 23:26:16.798316 23786 solver.cpp:237] Train net output #0: loss = 0.0458202 (* 1 = 0.0458202 loss) +I0407 23:26:16.798326 23786 sgd_solver.cpp:105] Iteration 10128, lr = 0.00134497 +I0407 23:26:21.752782 23786 solver.cpp:218] Iteration 10140 (2.42215 iter/s, 4.95428s/12 iters), loss = 0.0288894 +I0407 23:26:21.752837 23786 solver.cpp:237] Train net output #0: loss = 0.0288896 (* 1 = 0.0288896 loss) +I0407 23:26:21.752851 23786 sgd_solver.cpp:105] Iteration 10140, lr = 0.00134178 +I0407 23:26:26.797040 23786 solver.cpp:218] Iteration 10152 (2.37906 iter/s, 5.04401s/12 iters), loss = 0.0433446 +I0407 23:26:26.797094 23786 solver.cpp:237] Train net output #0: loss = 0.0433448 (* 1 = 0.0433448 loss) +I0407 23:26:26.797106 23786 sgd_solver.cpp:105] Iteration 10152, lr = 0.00133859 +I0407 23:26:31.740223 23786 solver.cpp:218] Iteration 10164 (2.42771 iter/s, 4.94293s/12 iters), loss = 0.02869 +I0407 23:26:31.740377 23786 solver.cpp:237] Train net output #0: loss = 0.0286902 (* 1 = 0.0286902 loss) +I0407 23:26:31.740391 23786 sgd_solver.cpp:105] Iteration 10164, lr = 0.00133541 +I0407 23:26:36.754335 23786 solver.cpp:218] Iteration 10176 (2.39341 iter/s, 5.01377s/12 iters), loss = 0.0355027 +I0407 23:26:36.754386 23786 solver.cpp:237] Train net output #0: loss = 0.0355028 (* 1 = 0.0355028 loss) +I0407 23:26:36.754398 23786 sgd_solver.cpp:105] Iteration 10176, lr = 0.00133224 +I0407 23:26:41.814975 23786 solver.cpp:218] Iteration 10188 (2.37136 iter/s, 5.06039s/12 iters), loss = 0.0236604 +I0407 23:26:41.815028 23786 solver.cpp:237] Train net output #0: loss = 0.0236606 (* 1 = 0.0236606 loss) +I0407 23:26:41.815040 23786 sgd_solver.cpp:105] Iteration 10188, lr = 0.00132908 +I0407 23:26:46.352147 23786 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 23:26:49.347038 23786 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 23:26:51.733753 23786 solver.cpp:310] Iteration 10200, loss = 0.0267311 +I0407 23:26:51.733783 23786 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 23:26:51.733791 23786 net.cpp:676] Ignoring source layer train-data +I0407 23:26:52.107110 23791 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:56.267374 23786 solver.cpp:397] Test net output #0: accuracy = 0.476103 +I0407 23:26:56.267414 23786 solver.cpp:397] Test net output #1: loss = 3.04432 (* 1 = 3.04432 loss) +I0407 23:26:56.267423 23786 solver.cpp:315] Optimization Done. +I0407 23:26:56.267429 23786 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.98/conf.csv b/cars/lr-investigations/exponential/1e-2/0.98/conf.csv new file mode 100644 index 0000000..9469d56 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.98/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.4167 +Acura RL Sedan 2012,1,3,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Acura TL Sedan 2012,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6 +Acura TL Type-S 2008,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura TSX Sedan 2012,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Acura Integra Type R 2001,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4167 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0.1818 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW X6 SUV 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,6,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Buick Regal GS 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,6,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5455 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.4 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.6 +Chevrolet Camaro Convertible 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.1111 +Chevrolet Sonic Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Cobalt SS 2010,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.4286 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.125 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4444 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.8571 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.375 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Magnum Wagon 2008,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,2,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0.1429 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.9 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Ford Edge SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.5714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,6,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.3077 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8462 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.4167 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4615 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Honda Accord Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6667 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.3333 +Infiniti G Coupe IPL 2012,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7273 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0.3636 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.6667 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Porsche Panamera Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1429 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.2857 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0.2 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0.3846 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0.9091 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0.2857 +Toyota Corolla Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0.3077 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,6,0,0,0,0,0,0,0,0.5 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0.4615 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0.2857 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0.2727 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0.6667 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0.75 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0.75 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0.6154 diff --git a/cars/lr-investigations/exponential/1e-2/0.98/large.png b/cars/lr-investigations/exponential/1e-2/0.98/large.png new file mode 100644 index 0000000000000000000000000000000000000000..7170d1557bff14d480a26c24bbc2d68919dcafc0 GIT binary patch literal 110028 zcmeFZcTkhGLGpdunjkuIPjAiW6~P?0K#NRuut^e#n0QRy`xA{_*zNbkK!4M>wt z2p#E3=n0+kAh>_u-dp_sJ#*$TCL5z0tEeR=NO zMagsLaBf|~1OA1h(0CO1&w2ZoQcuq1cF`;Xf4OMeLY;@@0V?))$Pxn zyViL8=RC|h!|>d>qg0uvkCmNukYo6-l~pi!tJWW{lgKXAP((0FE3ybYZPMZT5MT}; z*vd0s!6j8J$gU|Xd8X1d{s?(dG3=V`YJ`%x>Nr8Q2crHiBeOj3Z>qeiG zsf}){=EWu~Z-_j4dh(-;+dRxpeDb3h(b#b5^mp3OPkU}RdHd)d{2HDQhZ+VwD`M_z zVSvZki=q_@n70bJo}516PVu!FpPipabdY=CkjEY!@7|zS^Pac-ifs`}oOKb)rV3-mv~<|*?=3DG(?Kq;|s16XB0 z+FRZ<%N^G!}( zDmngfpJNS|U8ZGji~wzTPuHO!Wgn_F?9(@+vOYV?)7DVG-#_iPOVPmO49xFkVa z^?dm+y88Ww^~0_aC&%{tkiWzF$Ck*xAAe4S?(EOKx|x(=05kaO34p`gx=FzF$4HF; zb5n$c!2XxDoEpw!u3TC1)BpK#IV<7+e~4pY{J&2UFGQ~}@xr3aK4H1RX`s4p;UMbI z9#z)E59Y6`kRqM4Pu2N9LIPm3Y!u#M4&RDwyUO42%1MbzZk7ll!vp%Ubl^6eCF%4lQGi{2d1p6t10`YkFrY(aO@kL1L~8Iz~k@PV(8j`z6MlItkt z`IRU-C=2HMNwW9lTD==D((fbXqdIQs0zv(Otdfw zQQS=}QguO5%C_-)ABz{Gf()jeN#k0disOHv-@&J~zk8o%?K|JY^#PKvmSdhEc*V9eTB91PN%h%k z*hnl^_Qt;gWoAbvA8a41nLS>JKvr$t!ny_#wGwP!e)!-kwGYo^)9)g34?Uv)gk+N~M~P!j#tQQWdGUfTGwkMx5NVx#z=8f;;g*|}qb_g9U8Oqg~#%)B; zs-@~iq-|^%GdP;_?3OMCT?;m!{*~MLGet#vkMjHH4)&-5Gtq<{y}P|x!46&9VbP)& zA!S?jp$Y7(zutmI6|Tz%iz z8*O22@ty&U$?i|w;@nqlw|CbOVFivELXkf=#rv#(%~Y6ou6ZVMw&X`DbqM@CNMsj~ zAZE}Mx_e?cnO8@@an;kONI^@>G*;wW-iWAxwU;cMjKzw=G(yt*ly@6iSD5gpnmFW< ziuEm>8s2fJn$VKN`;=0iUUN5k%G>O;#HNU<*Bh^N$d2ik+97v%-F(OFz3IXO&y1)N zG4G?V+*s!}>%RxdS^$Dyjg1~#nTg#N>11383TgQsD9WByX6X(p zD}~4IF+lnrF)NGlEY*Z?em=11f`~>}ksCk6-gpkdFu$?TYEN(=MD`D(6>ptsj%qHH z*^TAQV1sNF_xk?zFKSh3CL_5NlFv(mU-hLK@Qer@Md+#|@0i^#MYcIQxjq_fsUNOF zN&nile^E2L>?hw!zY#u4w!Z$uX(&9;6Kz-WJn?gnm-GAM{EbQdS7DN@B7fyZ#HgfTlr9=*J#0r0u#iwd74W zRkcH_A66|tSguIqS{oX`_&r1l=lsVx|3`(rAfi9P7u!bhD^hHC3?*L|9W*uTOck85 znbk`=kAQ4uiLLFIwIjnCBYm4xtr>FX6742kA0*8UKAnrvYlXY{?T|uT62T5PYzJ&n z+#a3R-k67Z1@4uUl${o%Dp#9p5^`H#-Mnl&XD_CwGvWxj$d{o)3um`>I^+=?jjvgh@?qAFpZPS{x8x(?M4 zHWA18vlC$f7fG^qW6bapzkZ3GBOY`+w1U^4ed0-{qe7BKFU_WvQg_0HF3Rgc)w~NT zUAb!h3Me;d*g@mWjMvg2eKS7hE*#`E{95g zIevs#K+|Uf#iB-ojDZCwt=_!g9g$j{@-B;`x5_rWgFk0*)~4vqZMJcgYJ>EBTin&|GTvU>3WiNh-Yppuvw0V?vr_h|#s~`fz=Ga)Myz2@yNP=|7PYc1 zKgV|h+3_dnKdjKStChkMl+{!34ubTWl@af$#}oanKU+L{o=ab(X4yzf-{FL*(GMi@ zOx!r^C6e34$Q|qJG;$>aeGTb!J;RvIUYqY14_}`Q^7-dk{=sWWN_~^WbYq%> z+z6y)O{YL2Js_}KQmasu6`)sdg+yg z_l8fCa*e@mV?TqOI#3+BNdXTL-FQ*N36d%lhzp9N9Sg0QHTh-4|AEtr*{t|2?pko& zJE97c7i{hm6SMGgUIMH~O4G&?*bRFLs%{^h`gN*S>$n8=Hoo3PK-E1F` zOU>DGOzjvQu{9#>(|2`)D^2;4FMp!Dx&ezIuvdoRff1GO`Ji`BGC^`fJ{QS*x}0?a z`Ua6)&6F5;fGBD#jB3Z#Z><>!RPfeUZY=v1{(kbW0;y1mPXUig8LUqU8(x>+&a^B@ zBy#0prey~0;P_N?;T*Ya2tGXMd>OQFa~_;CsxKMdis>SnLv&y3j!g?M<*&P(CGany z+p5G|>Uf3-sY>gBec(sfngj}`Vf}{Gn(W8fShkIt$@#Lv{m%RHJrSJW5I}Y`DfL+# zg_hH1^ys_3s3Q(5s$$|%Jwm|kYrDR1@;lGQJ|c>9yLZ?#q>cCB6V^dG2|P`9fK)$y z@m5s7TKaeJt2>Z@NDZ#UQL!h1E#ld-E3TT{yDPuV&D)e zU+R$+_>km#!uGD%2#8HirOS9P>{8vvM7eqvQt_WX4;Q(lY<bgH?W1=RGZOP{^ zU|(k9*vWl$N;-W4h5>zppJ|WfvA3EwCfJK0dx+?01MI2yXWY6U^y$N0nahsdWG=1) zwzR7qxS+6C?1KsK)l(&@iZPah6rE1cr&eJ5?dj4KNd$#r&LK2IaV);HNKlYSgclog z;AYWd=)}+rl`!8(UorV7)}WTkf*Wp}J~by}k0M^(&TkAIH9yi}v`)=#5@GQ$fct1K z440GBJx7Ni;~r}5w%j+I2NG}}lvoW*u~8vZC7k5gVmcfXA2ON^Zf!R+?5a{B{${+> ziN*H6^_|M5WA9*Z(2S7GcHQPHI`tmbkj!FMLIS4L+isA%pTDj=N(alBs4_b@NoRCc z75@C9>QLmdt|a!ltuh|0s|*y*OP%AsoC3xZt=GdU&@{*~m#_9+LM%#_*{WM4YcnVu z6!9O#_y*K#|I&7m_Q{2Yb%7^{>0wt2tYW5l2r-UmeteNUvw zzZ%R`JH_Y34E*b$6_%>B@`+kA3(-H@y2n?TzDc{SobOoOlW+bZX8K^%L7TPqeSGY2 zjccJ;fsVk_Q^?7_&>Qd8wFOnDM?^EX~FV_7xuUx2|&%7<7Kj}xqdbJzYxf$@M*>xd1j>vId+5(>Sy`z9R| zd=m$8j6h~dI4-_#oIFrPf-ISEGtWR6OmEf(~^%QCXrVC=im?7NQLGg4bVN}c1$B_bUd zpttK7EHZK`9kT~*1S5W`SU6f$S?$w5*bQ3*v%&BK{%JurDlx4pa~zf9th@#MM^E%O zuv3AE^V_Mf3y0()+d3^mhJ%k9p3Nt|J96J*p35Bvi;BfpaC|u2 z1!Tvo`Ct*OXC7R(Hn-km(q~3Cy?hijO!e(ShAI28bGz1V(!5=b+b1&<=9e!#P9`5; zpV^21Mu*9i16};lAypTwL#vT^tjj3N3;bttnC`e|7s#Q}hf@^S@waa!J;V&pLWdJ(cc+eaua(6%vGXH!M*g ztOCY z=3br9b6-h*?hI6qbOu<;_to3l`^eT|bKnt+=q3J*Aq$wlf~z&g=w91;a24wC{n>ED zZ!ttXn!pf#kPP(_J__AHCA33nng%;`lbw>Z2eAoIa{WagZLsbq)tLbf?aEX?aXGGX|Kci>KvOhN*Y^7@< z6|`SqmIZflG@2U*{n5QY@TT9X*{8{#?v_};E~PWgjVa0zqyiI(xBNH~@9MI8XU(Y} zb40{F(ASB|JIuduAbjzt;%n3X9e1LO{{q2Y-Td|rNRr=|*dZP6`mWhR9C9P7So^UH z0YuTJ6t|qPk6Xp>0%bHA_gXC1+(t8yNzXfwWJPzAp{NFnA^1N3@~Znm%8!`DwBD5< zcskuB9dm`o6ACEW1(7^CYIPd<*J==hyk*^51#kuk9@| z1WMWt(bKq38?oggOcMf#xg~Cl%xy&Qkws9q#q4%yS_vwL@u*AlmEzNw9J;}3A>awP z`$7&t+X^x(^|;_LQscc8oTk?~cy;4##as6xyI_kyIMofnfxdXg^tUvz?dtD%rUTIx z`XGlOX24c0of}7z(dOVX{#3RS5{GN_W%Men?@(L7uUL&-C03UP4!D?b6MY-=T{f?h*~^i>H;>AS|sUA4Df#StVD zZGyu+9{5)U~INVQ%^b2G>tAdpugfPn)h16C5e>{=by3 z-seCW?@HUNelxVF+}kS7K~tU?Ze_N?CFRRSeIG&ZolB7f^>T)2GQuP@FL z$1s~RL?ooTQD{*dXdjX^fYD3}6U_Z?zUz$Df4KlRAUA)IgFBJdXdYqAZ52U4&bb64 zx_+e)>-S=1c+(%}lEH}i&L8~K09e>jdhh?DT#_tuYR|ncVbZ!${#J|G2XP#FyCKE- zDKfpK;Ma%iyT^GZbby5W@?r-3(6o4A^^RFF6;zO-)>Jf)>)+4z3jOq|6Fs|;1_uCo zgVMK<<=4hbDjDHJ6aWZ4OngL}c5pyOcZ9MXJv_L#A#_?+k^$wr$|pg_+i^Bb(pNq1 zYakCIiwJ8Gu3@_cV+7ED`7aQ16sM^2TrNn3-q%>h+*oVvkEtHjz_dohYBr+1hf<$W zoHkOCD%((y-N2Sp8RRthq<#$+FYGq{jNKYb)K|E`f<@TZ z{+{8tvye+>Msaj54cD|HyShpsJB0x9jGh%_f|%>tYh`s&6|rABGY+%WTpiRK{XNnr zs+$1d#lPd<6o6FZ;+q~+QDiIZ?K*M}XNhIM({*&6`)LthB>+?f3?c_|zh?VeMnK=T z-=exPH!x?uMZKjcjgZcjci-wS)B zr^^J>xK1DLPuq*%=^=T76oEjIf$s}r< zX_SvyG?M)INe!?G2HpFYYCV1E@PD+m7eTxSB_`W*LXbJ=>))1ZokuOiWneR6s+Ns1 z3Wx9Lux^&6c5+6(+Ub8AL#kC${-OYlI6Q<|#Fj35hbdVy4IZ}!j$IzJ#|n~;#p6dM zux$?Wq9awDnP;sb7yI+bpo3duvu+1n9_|0{S4Z-K0F!? zKmT=Rt-2V6X(e-!>uK(q_!|j;ZQ$x|NNb`QFH7CI-W4lIm+p&+uys%GFjhmGp|owc zU;f(*F)09u)eN}Ht6IHC_(VAqfudm@ieYZ}Ijvf=_R2sxg&b&wNhR zzKe+#3Plh9q^o!WWvLwA(fljqdrVYNk=rW2Ni$fO3wJ?pzZO-s7_r0{A-&#Yv#zp?dGf~>az?9R=(dco_h1pdwu{x#>&)o=*R_jkjI>bA ze)*@qEhQbO9O`~9n6l%UhmPvz40mT`G2MLWUsv}aR#4)3W3~{X48<3Esp{!N`R!$->dOj`F`s8TDm-Y%uBp)togWHG3XZVx;__tWBS<; zV-(QA?v~59w?^pkjtKp+&U*h-0255Eadg0LRV027ulJ!r#(SQvqh{)cIynuu=Bc+2wIC zHA$@GUyno*M%-NC*of`c%ody&1VL=KaVBor_not+nOLpjN}Lm?B49EK`MbOQhJBw9 z?{vSr=Ga|yq*bI6i+v4g(fMVueA&ZFzNyLj399lLGAALETPpZ84B-K@bH+$Oi1hpE zb?QlJ<^*Nwez0Zkj}?M2i-WE)R!Cm~xXvZTx~IBSki_Un@vgGKS%ZgLH`P*;^hH)8 zJ{_n=nnGa4;3@?E4-=xAOKm{xY+?Y+V=Ijo?4|RPl~{rhz4n=~_F3O% zCX`Zw5JV8gTPB7{m^($~_{qxwz~XRIL>dEI1nBRvm7e#K>hmj1%UtNRHtFY-f%eGg zQ-X)JR8UZ~X}3~E*r%J7ah#z=={aNVYQPXg+C&&PMeGQ75m8~mc~b8zvH~2FPkXTp zTWQCMAmLKP=Kvyf>{JN(TKBo#;Ku3cFdOKbXM&qIS zcN4y5TkiEs8ceo5_*ng+aqU;tM%s^# zY9jE&-vCi^=#zju&0(3n5@q)f_D~aC4n4bHR7~+eYoO1T!?Q@4$E@8};yc%G)Lk2( z_V6wrLC2Lgl|ME7^$SWVjDcV6K3Mkp|~ zqco*3a9S$KC@6!xP<&d=vqJW#-XnFJHCKtb_21Yioue!~Id_?ME(_=m@EO48zMx{o z^4=^nyl)^Q$4L_$z?3xGdnQPfM44fN%#AV6tE5u>&vdYeyaws^sij`4~@iwz4QU_zznxi}ERkse$J&&W{TOOv?9xC_a4rIo^Dx@k2HG{kp+@6JQrd?R8V5ll`t(&hdFg~^@y<2g1P5PKBmt%6xizpR>@PBd@vIgqYN zpl2r`)hLHmTcL>SNpq>KF*$kq%A(Bory^5b7S+#*a>x9_ixSkHVyYo~6D&Q}qA=Fm(x- z{Z1!Jm56r_ZrOA^4$fyc$fLYp2;#+u5`wO-Xu~}wCc_v&8|jnB^O00-PX0Xu3MjuO zEA5#g4e};tRq1th=%>`?niV@JaGl|R3~n{`*C7*@>*gJ$04hOOf4=k) zJ2Wr+V+YE+$0w*ndwJUQ5%YHl^e4Y5<6=~@=wN)IW7`DR>DkaP+UrVo3Z3uf-BY&v zmox(^KM2$1!DIAFwPWs7@Do=(b!@Nn-^NZcC%MIAUey_cYBdkyAvh5?&&&+~KlMld zM+cFxO4~A!9q8jI?U+VCT=4ZTuP*rxOfm;WG}c(g=TS!{BvN&*mPR>Cgh0WgsDJ!PbN!ibaI8rJq_gXb z8IA3giZL9uxn_1|+G#qkg11frg=I8Gm>KH*Uo`Vr=A_m$*WY#yz3qg!YR(_BTtMw@c#oo_BN@Q`jO(2OFXqopywVa9cCI@qRm46 zAzHQ_lZe&!Ltr}Qs!$?`6P+1W8&>*o5UqIo?4s(JuHL-lY+=UezES7uZkP)q0%CT3 zqGn^9Q2BU0_*t0Vkm+A3%*Q0^7Zp8aZaCkqr2?ICNuXln$El-b=~?HLml*RcK~Co% zr%Yu<+uvua4uQQFmw1xif3AWuXR6yQ1f`BxGhIr@+$ZxsGcp1-9IM*M_*(QBj+q*? zu`8Pf@`;nf^csn#+@qIr)cdZ)fv4drH8`vHdIXLd?F2C`^$^eAmboggW>{5<$bLmh zKGTYIhmIH`;m>eV^jMj)BWvYq%au`%eYVcC$>Yx0!dgtWT&X`${-<;tRs~M*BODOC zwzE}rGk)BCKzqeP|1Y;rMn4jvBLc=VIm<(jg3W9(S3_$`i1b|tRy#AT^WD2$Mg`u| z)oSHmqjmyE=g=sLo^2QnmsBnZ)(BESFnF8PZ8`6=b3kG9-Hnz?i7@ChK{&Nm(rJ78 zbSnQ??NqeTbaoAEEKTW=0&w_FN6cV%PwLwbaO@k)1VgO!nI#(F3ip;O-z@55WxLE9 z%!VPBfbsuAqAzV1a(%(F_7@Rq7>O)h75#}5A&K|q^}zoS}R75#i2nY5wiaxP^lPWPO;M~z%qt}wyiLolhtQ2+_Y!k-$ViI zg%)doSvS_cJIveQD{#4{r_k})SCpK%#vqNofaNk>QE*cxJH)1Kx#*`uzZx)2iXi@{ zLUJF_Lc>Wm)DkYwFL+XofTpAxM=qC_w>Qt3Oyw$cmOem7JtUeqDj}{avIEr1#`I5( zm<0AY>CgKl_-))_WVgSj4{$uno`PG}JCA4hawl;vg8JB{dXUc5OicJh?zJ=!fi1_7 zeSmTr4iWcqDb6*=0=kR9{rj==HhHA$ZzdAeeuwTUjcTH?UB_fkAr$~&c%n!#76P+k z9<0%X+5$1Qys}OoGRR@iL6QOt_we|~(sF~%n4@NX`2F3L0FvKk3(R}piq^jS7tWgqU2l_iIAp6kj?`=bo@3JtO*XU^ z8nMV4I3j*~_^?QUbj8fM7T6Ntk3lK^Rhx<6_61I z&LSZ|`Y?z`jdAzK*ME;t0Hsn;;_j+Je}*Dv@EmWt0Vedli5U@ghybNAGG^!JO`NH0 zhoLbnCF*cJ$6V{d2u|zfgM|$zg#96D+d&I~Csn>+hFvQ1a)rSjCS_69K12v;&0D23+2a{ zc$A2Yv0%+0x0n03xmG^D#oVhdb#eul;vU4F*rJO3X_i*g7Ajw#oqu zIvk~H)q>E41i6s_L(M02cD6?y#Ljjjx)|OMsMdSsx-v!$e}}?=dXiOH@Am8=xI8o~ zUsdC{F_HlA%US?1?_V5?of-=Bm(its9KE& zbH;BJZaE*FW=<7(vh?H5f7bvHJZcR6*5Fq>vnCiQIDAZmOVM>L9yQt7s0}G;$F;(4OV(E1H=Gjk6T5!R=AUl(!1v1B5KterS4;oQ}!HDNz$q($iHoumyqsJJgpjJn1FmARf(%mWH) zr%K!qn;Fk_yVRG{u(|l}iZVmd_CQY$j00(<(X-?4$#Zh3K$2&cD6hQDYGuikY(?mt zOqAQvWaupKMaS+dIUyHmj*75r(j5<}YNIUrO*cg8gwtb%>X^c_dSAd_|7}0+VwR0} zn7h*+cXA%+3u}&>7cMD7`+DhGyl-{f?O#nt-q1)73+uKru({9J$y_Tr^8*u*ACm{x zw!4&sVSad-iNy9KRYYoVOA5ev$Q`_~7Rzqvhh zV#gTHk1$1UlERCYcs9R5xT)r36^Q9cV&o-DgzZNaPF4<+Sv`SfK)5pmme|#4T^Q31 zu1UCZ@;KJJ3mn?QUuFNO6mUhcfhc(=t@3JM|hL|he^KdD4A83AsH@?!^6 zy6PvLlezM!1eo!m$JXH0qAlduI8O9pTkFRB)ZmJBb6Hm19|pLhQ43JM#DifoQ*IhF zb2o?zq;`5s(FKqljFlJ-(_RQ)a~O494Y63xPTTm)wSRRY_m=no+cy2|Wv;LQ@WoL8 zRic#Vpv8WiVScKV$x1v|jABT>?ixM&-ld70!)xYFIVFjT-2ZxF#>-~_HK(+MqL1l5A!{c8_^lk& zv2vcl&~i>~I%SQ1dq?j-l8h-biSUdm-hN3VlSw|B_p5Cp@hSLu8YuJC*@gkYwzBn_ z5othM30_v;Sv7rt?y+9O&P^sTuD=z$CVX?gj;9Y97~Pd9Qf|v`i0%|W3L)fj=uRDu zohO&Quw~UteGs!Ho(OjPnPN+1kB)C%c|Dcpy)cr`#Sij0x~GykIiA$n z9@wn^3SXO0KWa8+1E_V}ys%-h$0uoYmiE{yjNohK<{MuRJ|jUh`E!n(x~k9VB<0j! zWBN)BZ@KLqDjB|vj0-V$(eXT=gBOKTn|Jq4>B`s3uPq>I&vz9|d?cfG(yQ2D z7_?}AWQ9HyZxZIq^gmiY^l)~ZECMetj%SGEF1X|Bh%Gwo??QDI%UrY}fmy008jgAU zXOv3-eGjMtQeVIX6bOIuE0a0J^~%e@l#RSWI`?Wi=(S$_E-tI^?ldIaShS4JC$P!*Z6>e@l4UqBIc6G3tqZdC*#-w z@Lipr?u5=EOh|V}DcF_9(RlugrDse=^z}e*bH}KSX`jdVLiG5ElvcNrb+*y<1NIDZ zCBl`&9np~?Q)}xJqtAQ*tnDe{uFp0&IChs9DU^<}jV7^=(cLCub`sB7+EZv|@edzK z@OqzvA7kWhy>}?^{M*SVS?7-n(?Cbqi~yk-P%>S6f*84G@=mwi#Y>&Jty>V4?=_EcW*-2NxHX;egIGm;`zcMs1o z?~SvPncYD}+{=?SW95+F4Ldn4G)pZ|0{huvb&}%QF&-(zjOa-u6@8j*4={$L`7S>H z_SRuM3zL2A-==&F>FI2;%T8DwcR$JA(ZVx0`;R(9ja;57O@4}@n6J$cPEEVd`(^da z22*yn+>`qEZbAkz{qla@M870BZ#00D{Hwv7ooVS(+&!ZtC9^@amiehllh=PEPK8M4 z{e_A#TeGq>lbBDh0i?%lfV^xmvvp(7b{Vq4)wjv$ZxM{H6I^Lo7E2vTNpAZT6SKzO z`6(t`^ugtHcN@dt4U(ms*)Kxrtq9c4lt}1T=~)9Fmv=h%peV=iJQ)4?u1LBcsRPAep<#b%Kt9# z%R*qZR6~W3?<`|6Q-?*@N~97F();DM9rzEm${InJGGZ-;qrJHkIZLH*MKYTe9lHk# zbfl`(&K}A|b+6>_MTB(Ei{ClKWO#K!?%>vChbAz7_hQ>kw%)^gRmODVS+COhMqnB$T<%zm3$16U(X?PA$n zdw~57(D=?0pzp4CY^DPK&X)rxjdZFSMT+q(6C2J~g5;9V#^8>F!EeS+x^;(fU}#vp zImX`ZVD3Tnq;E?pNC;rSbakxGGugtEBBL+J?4sXP*G@V>1cZMm;i-`Quj>~8O6D=A zKsojPL^%Qta1SAG>pI%&_`!R;%tD@O?PPsV0#+tG&SwzujSqUbn*q|?{dcH6mQwiq z*7vtk#SQiHX28^)!Vr;A13b0!2XD{qcI*$HTBW0e05~-mQIz^`eaUt%**f2@5UH(Q zdsP%M^TL-e#}cbmmp!bHy%HG_9vDW?@qMxT&=810{>Q_m-rUHTgC1T#!l21C1shQSs4=7f;_NfU5EdZWbNdJ+;krg%=q@?e+f0 zHH^jL*>&=7YcCFg?d3e0*iPi=5gY|1gN2B!J zdgCo`!F9#|3V41`ZYv{>^ukIVpko9peSmFa_kev$qF+L>OmtB`3Uj#*-DG+;i24N} z1USwkTf7r>{T{CnJ^3+03OVKWOW+)vDOt{p?J^z!J4{vcv{s^`osn5}laXeAg3B%A zQOnqwp1i|1L;?9`?R44WrS=mO1@2gvhr61K*~({(IRLH<&}PHuJrzWKf*XY)!n5v> zuE-!;Q;eaI%I^yrhUud=Y(2`IT8H#TxmJ9aTrckDf7{P8p@ohaxo97=gEjM@(zo*P z>>8VdUez>*+*_MX#Ad@kzh_Q6^nRw3XjF<@vEjMXx^A5>m20FK$-pc4bzbK383L2# z#F^JPNK+o2#x}0F9^bq$1Qt$@H{U;u((Bq$V>VcqpWUOXr6HA!qyKf|`_&CkIoR+H z)cf1rRK~3ueB}HC`f#6=Z#CW-4=>&KxhR*xtQ)m zfZf5Pt6wH=UVL62_PPOAa#madsGeR9-34nZZw$N;)nqVL zpKAt*Sw6Hvx-n(KRACg~bSI~D=~}k$%-CYPoo3c1=*ki)=|nvKc4rQNd;=RY3bzgH z*qjC>k9G{!_HpGqCw(XvR=Va)X0__Y6l?dqK6^Guiv>y7*B&zTW;gHO>XhX}7mCVr zI@7f&#i&Hlv!1-hz%xDsM`w8Gr>MFood6l3DB^>Ey7z%rG!N5ZPgyYBC#J52-TBuX z{Kg$%L9o8=+5yGgL?Jj5KW26QVim<%M^xrD5uypNiKaeJkh)ogi0$Nld*nztE4LFR zJ0qWRdH1oblIjZny*;vdU)hL2wM**7j=pf&`lh~Ka>?ps8O092&`a4YU*YDlUj;Ih z#w@Qahuv|5anPCnxfki>Yzo(t2n~rP;Tn(uXRStl*PF}g0Gm%pz&rF^DTB;q^gR-| zOV*%s^*6zUhATAQGHlb`+KvlGj@@>(wZ6unpbaq){j)NT66TFFk=oxAAJ&&ci<;xH zfz8W~F#`0ljz%*9WgZAY!j`_|gsRLSi{;yM3R%SOm8_pC;)Z;z{JMO{dHGkF%}|(A zG|B)5@{#lp&bQfka`nLQUc&x?jNv>O(VhE>Qd#xP`<8H{N=<6U><>Ox;zEE?XV`LQ z;?a0nXX~}vocmj5y#y3*YR?7Fh!{*eZ51qbQ~w`l~mjy zZs$@tp^6crHZ9(}@Q>CqvI(LjpX+RIIg3kq{JwQ!&7Sq}RmlM0mR~E&u5ye! z!+^ zwbDz(I?;;i2J_Z`85{%4NvwYRAy1l{n8X z?)II4HV=78tAue`;nTJQpuv+mL{!YI#izfK%vrMPQ-SMD7QEomV+c73RU1Lr2F?zZ^i?9&M_~O1W?0#^A!%) z%4wz3<|tzcm~kfOCObVuBWmA|vC&GEW*K8;yF-F%9677MU-h9y3h2>RIcEb0Kl=+6 z)gnabU@+9t^*!6gyHym(c_Z`=6JkIR(MuXt|3$#_CszT(XG={V-Jt`s?w7@X55_=P zVF*Z`xn^aE#msNWY^V(NODwOg6R~w1u6S7UBTW3)nr#+!PKI=W$Ml)Z(Y5Wb#}GBs z*9gCf6{+AQG)WzBkHRIm&|9#W;L3MMh}V_Q*9-OH^6w3oCX@=;&0|5&dYb+^O8ZTw z%4KzWcx_2x8j&aP0i<35rnWMQ;n!@;Q&l2KqHI-;nbD+$YI$(nJ>rKaq?(*nSK0yL`Kz^b4@)K!n9uc6d1l~)bD!zmLm}eB16hF+pHlf<{Hp*y)ilwI zOt@nyVL|xBQFB0nZ*PcZf*818B>JEcL25k^0}S_&I`s`kKl9#-@nylUE>`ueZNwy^ z)C0&J5C3xQ$#HK9cx%#(ZJ>+Qc_xyQ8`DU-&`&Qq(Qo5?Lj_8!#&9PcJV+Lej8<&PujiSRCQW=$DWa7DYvJ|RQyk;%;`m!AiS|p1iPI&Uk0U^H?KC*4(o@PXzCnjn1Fd?sxr| zZrKtv8{0YGZ!0Q=Y`tHt(ArB_#f6+DEw0I%W6!g;F_O5piA=X$qo9}pA~sx8%g%M6IBRvVp)B99odlo>KHKGVwy%!` zKjZkjoB@ixxsU2g(Zufi{<3eroPa;W9{~D*!SP)Z@YM!4beqD#yE{OQ;nwrb)YA2B zV}Y~Th;A3`@C52DNSJ0+Lj|S^SxpN- zma&9&vB`d$w-$lU)yIi0Bt69A3TNEvg^}AO+=)zxNW2;^V|>xTz)CHz=UXCr=7XxP zCF@yVlKq_Rr(#dC@DI6Op~?fH@pt;JLQhAvmr>ZQeQMEfvRvj`-y4P2y? z>P`Hbe-$%_t1$BoK&7Gd*ax*@D-by$^DD>TPTbGki!^=fH(iB)Dap|bj9Ea>D4qH%?UVb@=MkWx zW^K-v$x=^6PKN!$`d|`jc+KmQ%z=iroDf*EHb<$kmb#F-v(Y#kCSz%O2Do|C=D=yt zgIm~$PgHX)8W;(y|Mz=KS=I2CxvZkPr~MkJ{?MT3re$hiDS_PAcL;GFHb7l!)lLg zz0`79NClP*8;d+12149x@d4t=p8C_Tvo)zJaA2;_4H$=_H#b1{uLbTc+)tzb@&8bD zp3!i%al3z_MG2xsh+e|zhA7d3=)FgYmeCWUg;67-L>r@b(M1VSgHfW69z^ufM(?Bd zvpvsw*LlweUo2~3&))m~-`9OzzpDk7t~)ZY){$~$7!~sG8Ugl@JV_cK2S8=+2TP~@ zJ38+JG4|w!J+jv zMUwtXDOkO2-`->lbN#F5y>9gQ;Y&3!y)(+u5!PjuR+xlWp%p&i@$7fPl+$*W)6DKw z7Sm|)Gx9W=BPSH8OU6}b!&zF3gBr0aB|bi1zNgZPszxcRWX3j$gaR_o{82rOqFoMacLT4tP3E67OYTNH#hC z^vp)PyZ*AHww%lIeAVdr?NDzeZu+H-LSgkFfNR+Hg*6Y%s#mjf4a+^jP4-;2WMSdD z1$L^ai8pLeKiB6`fZ5IFE3kM6ICZPuk&mPwjz&Gp7}AIzC`;j|F6+?XV6Yzc@tcG% z#?XqFn+hE{)3>NNe#ON8l07DA|2fv3<1kqGs^JYgUaRQiH9tR+n9TP)0m_%Z0t{Dx z>{VBMVtPnO`Xk_&#R{+OPiv9&_>jT6c0G2B=7;3X8%P%ia%fQGa-{pgkwNDJ>DLDv z0o=voFE3%Xa1M z>AHRgzus26yN%>U&n$QP2Ts5gHqOM;S(QY;x#%9Xaq+Yv02mPmVp;uF}@Mq%&$8| zSDu|+pJ@8g1Rzq?`tpf?XV`l5W|lmh@zBsk$ae{FIt&;l9S|RF%+}gY!`}8&81IVq z>}k?t@}0GwsfDesu1pK*kKBpKS6iili><9U6L%Y$tc+{64?CWhzma!VJy5ur&^4{3 z%o-F}?d&gB_gpIdX54DN&(Q`?KLD={Nv)ezmq(3}ufEL)u9kWJq(@WoFR+Yrg#zP@ zdHQWyFR#tJi1X%yGgsJ~QJVPu;qSM?tq%fCZ)XDXl*7Y|x#E_>qsVE(|12_!^#B1L zI_eQ$Hp>6|5gsJ=)b`vhUAtq??=<5=C-?fGl6u}4ji#y}4qp4QCxb%=OGj;m71EMt zUF4FY{;5(QdciH$s}Y0V0DsPP@JwcZ$*X_xq<(vKwGLx#xfS$bn0*g2f3QsdSQ1(Z z6-2N~1in5Wu$ezdLDo5IXd>Vi#I_$g`AW ze7~MP%H*JSzb8~?|1_p`u)&_I{{h3r3bP(Qc~#;YuI2{}mpg)Y%ABq5SBTGw5qB$i zCM2EOdYwc5;LmoE`r`7H{7_Gky!5lv@u6dh<-!h^_Qhz@p28>%s=BX6Q-O^7I0G-T z74cB%eCQG$Sa8DS92twWMc@EKvNIvuE`A)+Fz?`BYbwoihSPWR|0L6oq28*Q4sM?7 zxhJ_yh5#>lKm?dY@tz)25*)Q=8%{P~Hz$(M-e0LMSlOcf6|5u^?oKK_aYQe^_SIdW zYERjtY=-Q~$y)*bP%ZC097%!0dt*d7RXoG5fGcFTiX*x|o7F(ynty8zV`0^M{{3ck z^Ez~ZaSmhO{62c7GQ?2%VzMJYa`UF;O$*me3o`7MB> zx?KJ5o-qu8Sip*^%Dvc-+6NrEV-zFpyTMI8)|X{qPCJ zEUBttPwpslo&;7119eZN`)rFS1Ju>`a8Y!*qgwjq8eZnkl;zwLPbFYyHc$*#3DgAk znSJ$%GitzePc>XjlUE6eY%0lr%XqaSTg~_m({x(mV6<~dZ}teS@f2jzU+1_U7PJlo z--J8RG1w!2P`YOSo^I5BAJd)uIPc7=UG4MUCDs{0@-g~Pr(91Hj91#1OO)pWXad`< zhNI#-Aaigl{nWd0*f{J@mG6q_?dtWx(pTz(gDFPV^REzJ5etRgVC_`K`+#?cpudh+ z2)6>*Z+G}#?{z$rs*nW^N~E=}XAwkK-Je7Wx0w%5+Us2x*Ql-Mc0Jc;%J>U2#BsGA zc(?n711bVv;*HP>dvFGV&P?Lkq8*#!>dm5e*hNLsqpPd4WNTmkLWz2Q8#~111MLi4a35kZ{O~Q z0UqEF)#aP2tie9x!A9~rxn13D`faQ3>*f+3 z{n`nI6&+*SePA0ks5~hoEeXiDDZnv>!x^8R4)&AQ{&Z5nZiEzeW;jE=xT-zo_l@i~ zt&>huypbg5ANHL>D8`l3Da}l9w|0M2!5$D+x^w$+^}Fk|HraTDUkaXoic3-eG$yci zVxwm3i5}O}tHx>J(0JfQS)kEz#oS)LInh=u)U>-r&7uIOPu&$*ykp2-P>{Ht_}ziX zoN4@&CqaPN4G2WBwzV2Tihlzf;1rpQ=Od$l$~-%BYyL+IpPqoi>}82E*Vgh2J`trW z;r8wMz(3bNoA%}&yZwH6WpR2d?#arK@?JXSP-pF$pSX3F?&f6(%N`AAzty;w zk-V76v%QEaOThFk7-<(ZHW9{Cs+f#B+n}hj>NeZ>C;Qd#Fq-2_gOM68uzJk^BGDtn zJv&b^BA2YIr#GJKtpjVyhtq1Uh(CUN_cuet`2n}xBLaGbMHT5u-j^+>6TY@jctdQM z^!(Aj(%U;71An(j$w3Yf1<`(~5X+Fc&0El7C-$ z{o2jw@Aq)U(2%h*Lm^;VYg(QHWDT(6%Pdy36DZQbvfvw6Gapw)9~c{Ij$vS|;*D;R zOq6wiEIbPcJep7%G(gAUNM*;Y<@t6 z)|XcpXR5!$lKrCq-_t_;O7`}|*jE1^{y}}WsZiFu==_EG%Q=+o6R`_>z`u0%ZqDT{ zul19ErNuwQdaBQ!qt+WzTz!qIHSr(WRZhJ0(=qiMe( z(G3|9Phs~{33*t#u&L_TO%43v7a=rKpqUpm;xx7;NQp?4U}+<6TD=3RW!?%*d%Stud+bgZeu_LM%r%_cF~`G5+(-x$=N|_7{qI88X1%QZm(td`0ukd+W4*=_f&t z)g(uUx~!ZcKTce3FOcI|_@2EB?n-~dLFaT)a(&nzxb&CN`B@|>($L(f*I&^b8_D_j zJeENnb7@xC)Mw};*xNd{Q|>GV#q^%78QpdwvlXo`Q44Um(}xPdiUzc&(hB{vDN8;Xg!gLvkpk z9?fUZuM7ME_NA_KXEGT?_gWj6{62VVWuWH#PqzU>ZKt*A***Yd;YDd0f64E3Oc8Yy z$Vxj&KKwx``rtV}h+8DRz}IGl&Vk$)0B2q%VWe{8c@Zaj%L4%ltcj=W>B*KmyS29B zdJRapIUBeY!SXE%hE2o3MXdsEU#@1(-g&Y?7NbrC*I@xaXWNGwE8f$P@^TE4KUn#6 zn)0P5rTmC4HZ+Rez=Q@#R3%e?^+kS@@sqiR&s4QSd}!QS;D;8dmAm}jllOpIV#@S{ zWAC5dkisjPhTqA7Y5{l{zH@q|S*wW0@K~=Tw8Ed){=4mfAXRDC5l{U__hX#HgVAMX zTEhMp<_jTl)U`!55(U3+m@p(|v!ph~9??H(y-z;dxkAQRcgoN6=c5rHrE2HCd7~$l zwx>#p@?pWi_R8$&T*1~Psf_33=s+v|5d3WWN^7_$+w@i#I`^UT-Kw7sWHTd*CBCpj z_eJ7}4ZG{gAMQK3$hCj5ej)CA@?`ajslv5CQ^L^x}8~w&T zbcSR9MQ^(H=vq0ne0B9)yz(JOMJjgDO5d_UmXojOPPCn^Oz`~Qo6wGQ#uy10Vob8I zn z>U8opjrtK>%zB$lmU~h;shTgt2G$-=6#*%}`W+nhXlo8_A4^6M)bW+I`EmRWJ@`W2 zFp~gL%oBmYX6tx^O+UZsEh)55aycTk4yDf3!J{pG91RpiQ zi4N+upfg7XImp+d*U$Z$E=;RGO`eVQurmMMnPbV1<)9|QR401b-LIjwbRp23DmT3JN08~F<~ax;S6fJ(roOjdID{Ow_bytrrAn9=xeE1c`kT6n9*tBh%v6l0 zY_!=loxpod#1qwzsf7*r;2eq!35A@_z!1&9Kgl^vr!|a6Jtk(OKEO1orPc2Z63e_c zL-E9BmkQe@Ie>MqPLY(VE;W`qkdjDYn?yOoitgt9D}rI_^TJ@siC+9@ZC%PFYjt~B z#oha;Yl)hDrq(^QZ(<@f_LJ=XQ;t)1P_8#4I6~Ll1^WEYh9wFoc0M`>VgjF?Cwb>x zOk;4moW`heTe)W#Xjdo_=B|I3w?F!Ye=5)NPMo}3E1xzi08C@&wBoG5&Ks>)LC;ag z4TqmI0vQv>-y}(SbA3v`+_A+fRsaSNSZenBXQqB)M%^EYu0oW|qII=Pi2G&YNMjLt$Grm%O= zGN>Tgx1K;>Iu|~_F$U(`5d!e`E0l54)3kY#%en#cnh^Kx&NqXR;xJ(8*}I}Tu~y~7 zDoE}dI7+qR=ZYM?-r1FH?MHjf%to%I>DY#VdL=f%l1Ap*Qa-bJvi%o|=>y|QR=ukm zL+5oq!kbowc7rH^Cu2q$UNXIL4zf98R%nGHN(BV-C@vh&ACs#S!Cgh3gh*FZh+kX< zTWe)`p=6f*h07amFI{wn;Y(klrlETSrvszEap73?l#MHUaJVI={r1JxTKermPYvTB zE_|XWOjVH~GKkt#cRP+jYxMGkB0=cp=vN|5d;d@8_`Irp?p{`TSNT6qnnBK5Os+1i zzNg0$5syFvGMFvaLQW3W5oejD6My0~?A|pfbEbDsN*zf1IyzkR&%1;GMX1Wzaf#XrAeY1(J=T}WLtvhhF zmexxTAhi2HZQMoTXL1UvaU#Vt@NF z#Z8-1;Xg~yOO@Ou{R6Z-ejd7`LmT!`{yx-*Ti>))YYLMGpke{?V$W;Zv&FjQ9i1*V z>Qqrb-(V;iA3v%)Q)GxzrLSq!n+_@QT=#LDRh(N8uRjHvKC9{}b;(4aZ*zlk9MxyJ zbo3(y^H<2Gx0t1;ql%HJgojYk{w)bzvjX@p_#2q;VLEoN@`KbSo;=$a7k@wP5%~yC zz>Y~>G2ouw_sB!X__1-f_tf8y;+sQG+wz+XpPDXEHmDUsrGOUju(4vGpVZM-IFTS& z%f!60PhjDec!;sv%%t6h3FZK-Bo8;LpJ&;iR1&=gBr%_k`x7mes;RP5y#^s!ADGV1 zhksfs22t||q34jyjKqR_K1TW9s0+URgkf)Nc^saKrmLgG&ZDvR+?VcjsR#7QUJ@Kx z(t>ZFVkAF|P*bN~duc+8^s_p!l%o9-uM$D8lAeL+c%~Y0GB-Wjdv^%=xsrM&6m)+k zI)K4l-&6*lt~MBFd9@fP%B-+@ylOcL1+p1|MW%c_1z)F_a)LIJE5+Tbr;-io(E-&U zcM6dmS81?F>QbSZy-x@ZvmO@YkCyP<(VRwMeY8?m6Qktnudj(o=yuo6VODhup$7hF zamOf!qbBAz!8AEc7ENZH{i>`O@gVfzr^qHVvvm)Pidc@;9*zuYX0E&plEBk_^5Z!; zON`lize2q_0epT;qRK0!FbmwcSg9D63QyM+;QDqbEj27TPyJF6j;x6dNyj`1HlN?} zF+=UR`RX@9{)_@wrk-X5bc(&<$)oECJaLLUcYL&e-1@%#bNu? zZWsniNfwT@K6WO?|U6$~3c26R8cZ*SZ$W%bcgtw?<_=4IiNW{%U+^s){}N?evghw%<@%P zu^Ya|do@Xdh5tSQ^P&Sd_c9pFZY`_z7h0YIMnrDz-;^J8j33e*yPj%!rBg50mX3!G zLjh`t+a;+=$BZfL=eU_RPTUO}_-)-!{-*`&?z5fC15E`MPXisyGm;A5(|G6IryaM4 z5WWkE#*fRcRc|1m`@pj|+Sexpzj)KZ`133>a*$|tc=&ua>ILYXLbKlYZ(=ZPXbxYg zByw0HE;k>McLn3Wu~MY(mHgn+`wnJ?)4$H&aMrR}S*ngbF{(Ry>E{sZ<-79Q0*093 z-n$4r99r_)@7m^nuUet^UdOKf1*Iwj1xnldTs#psRgq(CL#|h$$*j2d(4^J&djE(~ zYp>}=%Q8|z9exm2!?^E1eY$!>9z!{v|BneJ$Ze>_zD|nEA55Nedv+6I{sgITKD3=_ z>l30BF#q`xqysKDvPXUG3?qCR*h*<{qhf5lWRAM#*T6_D%Z%Mnj0{VXgUiADYs`5f z`TNEXL0KU&-SMIX=!5gu(_WX+Sd_ZTahIv;8?g>5EH>}@T10g&p26}xZF}DhPDhj$ zy>6Zdx9EP}514 z?R>K?0npv4Z(=iiQk(dGcqC^&e+Uo)0zLu<+|t08U-qz84>856m{vEmn1MQ&V|Xh_ zujyGw*&p7YXU7(?4WgtP@g;BOV)n-zJI^ZyUIJD+0GWD=Wvx8?XmzjT0UAq_&lw$( zawX>v{oP*x?i4anU3Pu=UA#b@gR9@1dz9w7G|_^}mvAsBj@p|8;q?hxq*JJ#fL0g{ zvSm8-)k^b=1JNQCJ|Rk`)2FnqXSVn-V)>MPmvm<*(~q- zRAps+p?nDrbmnk5S{~{@osFDT3C9kM8MZKt${zKG1LelB?k>06fiG~5d`U%~{}E)7 zP03P#&vgmL;_*PY#baj)=V_|OtCPmTeHr<#-?uUl=|;h=%gi2AD=J>71glMnR7}lM zMhCt+#BOuFwB0!Em7*M9TfuP5m9y{WS<%2=0yg`6hkUDK%{&)h?pM57H;Z_< zoLgX=I>b}#T#6-+0C58f%JY%LTq+Q>xq427{=r@ZGhxKwoL z?_~QZ#q2`={nmKZz|YpMz3I;W-N#cE^dbhdCedguVor76>|bQM(K2+lsx0-KWr!wu_mMzu2mr4xk|d!i$NylnVySXL;^CO| z*<^g~X?T&;A;qKb#AeQF0o7;0v_GUpjs$ATlI;mu0Y|hFfE;NppN+Wl{9YOv4(uM_ zP9@b6cgQ?(Hb3$xn;AZ}M`bKlIsf)zf?+qb#jebuaqYz17CkkF zodzP~?JLMB~{&y#Ul zDLlVIYO#&UwFwR6FtIlz4o$Oog&iaep-q=mx0%W`iEMfCxg(#S31CCXxQHbR7FhWw zS3-RAA)YiYnhnA>ynMYI3B5%r)K>*l;RYyN5;L+Fd<^+#EDgx6g8Iy=w}h)M1FbR- zoFyIu$L~L-BEIJ`+_$*Bu5BPi{(0B{>n%q7D2m}VTvX(%L(@Bf4ErVeF&W$;oFL`i zVlEmQ{aKI=e4n;cl^@smUT)bD{e+nQiRyLf-faa>T{;y zZ`nNatwEbXM;fv76hV1dF;1RzSx?R~qzIqtIiqi$;ywdmkn6ylmFc_Ra3aLQG0bkx zst;mO%P}EDg3}ZTA7X?OR#V&-`NrhYcAzdbV=fb<6Hf2JE{)f6*tkrJyIi57l+W9< zc1t#5O(K@kT;wLFuJFbBHtgidxe*;$!GJc{R|@GYb!8~zHgXB2JjUyb*x??a{P|u^ zskCqT`RwRyj$XOkUG%c2MzZ^=EdRE5Z=*HOs~WZ1AVWKRpPlUaYs12vn+w>!i?=== z9KlyoIWgw296P%y=eMve{cw>p4x1+m8JoEAc%3nPLw1IYtenbB66KM0T{H?{=4ek* z>GKHCLm&l`TGMnWv?l$Iv}~HdH6?IQWLKVVOEu6VS1^a={PTTLuVAfwk$I7j@u<8+VGJ!a2go< zpFh-XlXPs?A#2{nr%z*CzB;{0-CO?ZbAL)`gv@90@n(ZemXJS%q#H9xZ$cG3r_A?r zMVu8R-5d1~9;v^fL^ila+VE3itE0Nl<4^bzhuCSnd$8e5+`KGCs*jVrK|67c?>sj0 zS6d_>NTk;u_5y>Tn|zY{HS+iS{1hhGM7s|qKF!L>QU_ zIU0TaL?FK2O?QS3dG_n#lBx(9>z9uB6*+VHxmy$kdXJ6gNMLg~k}}`u%_B{$I`yJl zVptW6;~I{lEe__g Rjv`D2U{`>2tPa?b0yU0+4v}skxVn8QDQMk?6?MJhQq9k| zJ%;xtlnxjXv$FP%9;DsUs-kKW@f?EoAjps%;E=RdX$6K5h^Gz*mzkh8;=D{C$iQ`N zP3Q=3wvco0Pk;V_l{uHGTlcMOTMP3}<@ov+=5~It2P?^;t~qkaMTuSs=uBQ-uPg5` zhju7nT>>mjOB&f?4^f2tn06C$4`8$%q*DXJdsj#N}Lp|IBgQ(_(bH)&hv#bo@=4#s(BVOU6W+(6H*}P{)ALt#j0O*CxAb6C6)Q3iN5l(@ANC$8IE3=BR^%f&73h1lBTRJ>i2B>+Li`+s z3$otp0oDprl%#kdRbzylq4beYI`Yufz{nM7EtQ3lRdBJ&>*Hx2FaC%rkV))L|Gs?F zjN+sMxbG3z^evj_BD(|a#{5@NwWcfd9H)sMy4G~7(a#Ao6$2I#;i%RTLo@XUZWzob zLe~2d+3EEA4F|4*XTWHPDsF66bJXN@&uJ2rFwgK##Nf=!71>9P zQe0VTEk8Sj?GBN+g4SFQ}&L|!Ld)#M9ZGa%jpcvi_bBC2`6y=vg(Z>R`_k$ zBbH*N1u-e{8;lqiN$G_Hx$HbCx4?Aic_{tNyM+K;Cm5w+^QTv`xCR@;uEWEpDVJ$c zYzba<6Wb^-t&D3u4=LK2;*~4=J6Gvt6 zmCqBqX56jor(X`c7GaUMl}eY~S``{A4JX+aH)CeiNVgv$$0mflB7~sty@%^TF+LL7 z;O71)9@iE|=pb`QYkQjZ;l&FJHX8l>t&OX+djsn6f6^n2*u)pwm8b9lu;t^!&#xYX zs3-kuJvV`olyXjP;T0vDS)K(m zE~p_ku62U)pATi=Yp|q3xfu)1fQ$4zaI9g`e?;aGP|QAi3N;L?9_X6X;f>)sa*8*n zdt)0TI7SY6*&ax8Ny@kD^8?ff%+h5m0qoR0x(o3vkw=T(dljb`BOyYjK{K1@N%hw9 zOcg5Dmi+giyYc3XqZYDBcyn<-Y+8H#BByzO1FWz^1gk0Ny^0GN?1+!6*iMfv-^y*F zL<7tvOPDs|F*y^qV|0`#7w>RooCk;6y*^o4(g?84x)Z#oB$rkVeb zaR$pfhZerLY?pO=Qcx7Km?l+@t2Ga6o-%f6uv6%1lEc_;TvFX5u-m(>yKMg zC-CmMvOIl?=gyzz1mjA=B*_|3s^C#Mbt*3`d_msV^CtNzpu0L~6d4o(#{_Bl6>R-f zYVDd&|IklAn+5m!4A~5k!gn42NaB6av|_Ih+(NsAt%cXYcSUWirZagFDk#t)$|`>7 zAO}(sJwTHbsR#{w=XK&Nr10W-j*<^E#rg@O^ZY5_k664|z)Be|HEm%93s!4EK<2M3 zVd_qxl1bf%skuz^MM@|QM9b-MAwC-;X1Cg7J^N|`a!E6k?aH?fVel-*h|T}y{@mMy z028z7vP1dOsyrf6S(vHyEiw)jQcr*VW+`PyN-Q#f9^$kdT0CqJOBi=WTU#(hnp-I< zx~L2Xx#+ca#USWc1vxatJ6@xc3x4Z}1m)|LsCUJ(^a}FE2=@QzQz-Ov0Uy6arBY*d zzf-F+`&lwug+gg~K_pm1@D*Pn7Ve4JL)_P5s)Ail z?om1`WG;CJZd^W=Vhy|)D!$2kzbo72QesR8rd9D_@rEQsn7!?*NoK-u*LZQT*QC#g~p+<}c6of#MzO_sNB}A!)yROPo!^YS&lg)5tfvS36TXJPi5cJC%YMmAl_D*$ z`vt4c>>5jIF#lK$JBTv9wFD?jhZs>?uyZ!;aO(`faB@r0=if$KVe};QKeaww%|4~ym`@?PC z{!s%bOoWD+Rqbj2q5MJ#D@LJ(YesI*O4iwE6&NsEcjNUY@ZBVbrHtn!qxQ< zG>`<*H#7#GaICDO{8;PMsDy;o`l>1;1+v}KydwsuN3pJ!>LWQC@J^hhC2Hl#5tY24`&H;RehwiP}Kib`-e z97h6~r^IpjZ2n*UGHBA;q!s9x`aIn7?l>AC^9zK)ft(J!R`izoyBANkJ5a5-GgTtL zYG-kCykg7NOWf?zW)r3;tsrNP&OY6MUN(P(Ls!9xOrz|l=#Y}K2xk5o>|We79%i4f z=uZZG`CNH-ej?$_L* zRyDNKo#3I4{ksI*4oZ*|rLNlykIfy+l$mn~xQ`rG-;Kwt<^N{hYwIr#)^07o1Oj*d zsT*F*V|H>z2_Rq?+q#zIn)YY$z=1ei2k^i&&lf255QoZv0>-o!Os23|SQytK#23B^+l=_t<^#^6zU|VGt;+X1Bx8*E7GZclFFSBkQX6r_@3}hysA__7 zYd~ijfC)j>bUgfP3OpGIwid`TV@2`9rm3 zgmMylV&VJxTkoa@%LM8%w-FBhI0|d>N^ZMk=mw<6yct4GfoFR zH4Y7=7HJR0^fs+>Xh`>7Z5P4vEdEYWO zfIn>jN@lR9FGlG((u2}Cw?6mI^hx8e07ubTWW~#*$&Ue67I1%?4-i3cHq6M$Rk5IM z2<$s7r_4Z$8`DbmyEh&6HPlVi+8XOJ4-ZoZe8_P~c`|5I21-$fCyqE(#U&oi#f~_E z6U)GH8x7#b9$!6q#Z#m{4T}ccTM$4PW#lMToHS9WB^y)$ajXG8~IsRm%+so(2*sIYp+sA?LYPuRgsx9mAIQT-#ry9A=vGIeImH+#eC;eT_`lMPdl!h`pY89j+Q~4=j;sInjXM$hD zoLV2i3av-71uIt+9V&&2g~ljc?p`h-Mgl~Q~cnTgP+B-6z?|1eo^Yw&m~sVFx*);e7H zBX0>O%b7&OdyLQ(ASb<7?|)M%{ifMLjwkOWKx7$|CavLQNs&EBwAFbDTt4*iM`4fe z+X`gAdV+v}KR)8`sk9<&$fb-|0ruw{Y|!lz!MP#-bb0gOJn!YfRfjl_GgP z_0{(H+QPE4e^lh2989evnqtjzmcO(TposwXaE#@VPTok9ipyKz1c1Axr5%BPqFmkU zE+am1^f;F4HM(8d&=#1j$zntOMo;gG<9Q|#ZAbXXgSC`I21rEc!1e8Z8L6vcn9z21 zZd~j)?I6fF#W_tFt3S@@;pku;=jf?|;vN!L_a{|MF`BkhxYCyj#&f_0dp)JQ@|0D< zTx>DqtAW$Y1x)43mj)renT%Keb-mx!LSin%gx^gNG4iN+l72dpYbri{?67u~ym__u zc1?@l@bxDbE!{t!JG23gScxt9oxjOg__Eb=T(deK*v-^gX_OHFomgEzcDDb$os=yS zfNE_MbY}6IruR@;0`nnq`1;IDXj*S}U)3=O z3M=*iwO>0x?H63yxcy)NWS3?`k4-;=c_rzyoyTqxw8WTw+wq|5M43X%VO8b6GkTcy z^w^QCisvn0rn05!Xh%L=S#7|s}G~=C!`vE`G*y^5;%-^gx#eC6w5|kkXz>h zCG(us9$aKP24n}v9+nylEi}#@21;pL$i2hYN_!2NRL9FLHNQb4JSTUdKG5JD zBe7YC^T@?G>QZmF=St&HV-MbRIrlC}s9=;i+P%3je&Ptxoe}@^OI60VtAUl}L#pgO z(abVVur-^F7)K~Me8x`oLXM2g;2G7L&vV>2p#@7-*sp;4P6y7-{AEFd2LR1M;+E0u zpOiXI@5c6^SQaEz&j*3aDqa@_GO}rz7lnuf;3?0?XOU7u?OcDKs^Zjb%zw;6{I)qa z93ZO=B1(O&)`&FXXMfu~V-E&0C-0J;B^Ep^aCvF}MnFR&)hU zNpU%mG8{66(t{riTBoJ%NEEdM1Ab3(F9s+FgZK&A*x`zd)F*eovR{0Obb*Zj1+D(e z_m`U8;gAFE<0qE}t?#lc5kzm>8?Ez>Zjp?9KqRu`bJFyS; zUk#>io+705n||q|{e%S~@j~qOo}m8)HfV86l|6A@Sau4c&fo?C?(O2P?0;Y%{<-n` z)ReeP7yQId~7{|>KRoFByV5$Bapd(ZGm2it~+e-ZQ z720`TlIm=QeIcypFL(ck?S--NFP z;{e$gaR*3h@@m@SgRHGujoW%@mdqc$A~vVJtNs;t2NL{*W?xTgvvmd0A=yBv9T)hk z^o6BKj{aYQ66>w`u34r(+PPo5q2KZvYpsOGd&*m13oGX51F;J{%QpI5rDXxNn~F37 zKi4Pwld^3yc39Q(Sm3&Q^V0ZHQWJBJp2j_3xo(Qck&_|my9l^E9d4^`{@5eYU@9)H zJv7lGwX#!n$&kyZUJ7f9oLB%*oVi?I-;_&Mzy4t*I$GZZxV*mkp(|dnJ}RHHs^i^a zPkSfE?^i!?_fSMu{l0ku#H;l~dT|kEXpP3nxjt7}ksAjuF6M@|n|UTCuL^e?Tcwk~ z_V^i>wC|@W+P;poeUzAkaR*{um~9}mC1&SPn+QCKLz=I1g1gzK2U7b7o^7n}KJGEz zOVaeLXT;-IY1Pu9*`C@)J?fn|FrZuu;8tC3x%?9U&8RJQr%3eYCA&>)SU{;o)V6Oi z6A;}~#GH9n{R@T`8k1rKWn1)t5)&Teee0Yz4`J@8nY8@&cEIch&01^REzcddc``mT zvJ`bqY%CrG!~GV4{L%Cp2nM^6zuS8s=6d6C`GW2m>G3}xIdQGErq-9;C^KIiHp9rS zrAw_kB?X`)it?(;I?|ZlZi&jE$Ux|SqKyCEO@ApegXo=hf>@ae#FmY}X1VKFOq>_% zFuoEQY<@Uj%TPRyBX)`Vb(!h%zUuc`h`^5dn!-f@g~kA_;z%-EGs%Ec z3bwRg{ zsN3uHtI;|>nL;VWtVg!?cK1pgtv&-~T09$x%z3m}{C)DhxOUDlhj0fiFK+S%!LRc}E>21?8A6KPch-W7OaMZi{RH6wUEw)nz?EO*+HfzUe@tq48tcreClit~`{0ayV8K9|zKT|%NoE>h!$2>0t8Mm3K0T(dPXGqTkgPSkJSqTzCrk_i$`mEJ^A7Z?QA3 zVx>4cL%Z6}4nLL$Hg#p^xZt!dThOj*zBg((cmSml+xGKah;2{s^Ycu0XO`;9@}Tn} zdEXZ}H^S!jgIDgBuOVf)&gG|yxh@lEr^2G_3KWQzpUK`IA z<~h08c(45>?Lr0r+^1;a&1n5O!=YR8+pkfo2g>)>ql$I_Iz zWMpyf$TG_Sw2;c=aRX*<{$K?w)nzRr@{6pd`3u|`Xt?@WYYPCemF*0H7ZqNw`0?=S zxCZMvC=>k;CeT0xo2K#hoVN{NlPm{ox$*mmUay#0o?^wcj7TxsZ$pPdvfU5X;BZpv zz;(pr52Dsa@Pg(dpdV+TC}!oJX!qrTa+ot}Kc@?3hLr!^;uu=%5T9 z--j;>+mwTHumAbln*+Zd=qB-ue8kWoqkK;;LN%_Hat#uA1F?G|AeSHOz>7QG+&A3l%LC6$F;<^`)+3Q!betr6M&3Ez#T7u2ft)=Kw%l$h7rY*o0*lj*Vb^Oj5 zipNg;^1D6!=<)fQP`0(NnbgtS*QCUbUCRv{zlik;s0oNzN4oyk+OPTy8=BnsLC9A- zrdK&yD>IURV~|Pjxu*Yv^$*{he>_Z;_*k)vGaBHjB%mCK1HY1~=TLHu{&2JNl}IV< z=rEQg`pD7VJ;7HK^(A@Z{$OL1KOK7OYz+FkX8n!bWy7U7JXZRlt^j<5IS4Y{QR(&Z z^YfFJxNNK}km+8S7FH8x{^N|2;UDhysfW9v)L7PY9;AEqO=Lo8Hpt&{aA@&)mem7UbAASx|MO9uWUQBW zI>)}kt0_X>sPNwpT8yji0dU10yTh@AiN;JofW7y>)_x-{8l+n$nBJz}?Q6jOg)+NC z{!MumAuVGPL)1o60JhDd#2SnC1&fC`;k0?K@n~Kjh{8K)Kl;Zn7<$}#P1IGu; zEvBT;UFRxWEd>W+mj?deDEno+kRxnfo@b&EcxRV5a4OjD5Es>-3^=~^f%y>e8kHi z<8uxysrQIwiCCpHA(Wpfry;d;!v|jXdgh!-St>2T`(qSCRJDg^4@dXCv|hY1PNikn z%g@y)d{%C;9$?|dDEYA39CtMHGCPVye6(Shnk8;67qG((u9gC1gnYk+%DF14?*af_ z1n^oBvhr??3viFr6eovgyD*09W!;bgJt^DVX*j^oo}GyS!~TC0l*Kp5{;1$k*Q})P zLh;x%ZwxY|!ECm-_(4M(ArD))Q0DN4=MO2)91XRg(EC%t0uZrV#=U85?ve8}P2UG% z!c$pd{{#jsnvJ~PZ0QI%lL;Ejt`enu5rAibTGX_N{YDy1qS(C&RhC4a)AVuTq>?Wl zJMQzvcEE|wY?z4KZ1xH!OMz#DLysnpGPvz1f`z+$eOVDuJS3{R- zTg7F06nZohOJ%{9O&q!1E0DkLfu?dMD;!~VX4Y2RQI;VF&E{WY)of$e>~8VtY*8Wd zf3uINK=Ku>QVqd(w_C=RgNOw$kQLXb3gM2TWUCZlfqb*5uq5*~wYTbQDpxyX^9y)= zuzGGd-hS6E)k63x>5y$L7a^9f6lR9#*N;)qJMndwE=zgLR9TS%7zGqF+!h}5}x*drkU0LZUq^@ zPAS3fpF)*()e=-p9p~W?V?(HDv+Vt~|3lbYI8?QE+rxx_lG2+_>F$t_F6nM5=}u{p z?(US9?hfhhP6_Gm{ucUr-h0pQocsL)d$098GsYNmt~ozX)f+GE-*e;d1dh5VaCh>t zFYsLLnH^60X7x%QwS5;$Rc;IQ4e6wyG?~A>R6C@AQp4M9DrcY$=w)gu;Db;ovGu@6 zUOZx)yO}p66(DVKe|^oHLGL3q6hVm%BM>CAY)^*OC#xoW>K^xVg#G*|O35L~(FxAs zwA>`oF8$@ilaMBBM{0wB@1KS!D)d_G&Vb|-7+#{x9olF7^Q7vszuIjc_hlF>B5 zwzfLeE;?eYGUV zy&kE}FUsb>-UZVYx zrRpeW2mP16g=3+0#859Pv2SE)024#xnS=#JT)vPQc0@7mR5@*^gO@{UZNffbM z{N6%h(Uny;PM!-nCka79%JBp~K75cp{pcP_EqGDU7n=#<)$dn}7FEEH-Adn|NjfzI zJDrdTBj2bEj0k&Z6A2^BZLITqXfqx72}f>Qdz7r)q})lE+`9$$OB~{S*oq{7c$G*zJT>s?M+yp>@C!H+A*BQsO>`3t5|AY@o=`ECrjNkeW+hEjMIy*S{crH&*V+92h6iQ4Rm~luTFL<3TJJe7?0jG&9XN=Tcp=pN~AB%@r zAvWMkNa5`Wywi@>TtA}{%DBOl{|@=>P;Xq{6a2POmBXu?3E$cuU>jY?jGVdmfKS;C17V$g z<xWLxgvxm>No~N4B7i}|U3EIjA4(qX#c0(VJAlnNf9A08#=>X2 z7z>|GL|Z~CSbgy?az?>Hx<6$)Hn-AUCcScdXE24ZQ~857mKuS~zghp*wTkBw!YM|O zW4!9LqSV_p#q-%vl{d_y{7RwREjH&kOB)oz421CjxrFFiGaF!&-=wgBIiPrqOxAP0 z*Q?ENW9G9QXrqp``~csI{DDr@!1B$99`glX>=%3(?2{i5i>!vc!=D~MHa#j7J};+K zN~1ZtbtYe}?^r6vjrT1Tg|JFlvy{{uR@I$vwoDJDZhrO;BwVM2__P#V5Mjd<0lFI+Hlu7@#klhDFdqSnQ@)h;c!YlO5r-*s<0yS8Yh=>ZOGn3{r4`4UASL)T zJ{(Hj!_+STM!>xk#^YX%FCHFRBr2nYge4I+jA$@n z*S=}TJ0Mz^XkZtt=D6B)aPf)|06encb-v{Jpwxx-D4mMIZ?jTIsGpflLZbq_3@ z0HSGhB_bXvGEooYZ2d55w^^kHy zB}Ho|Ti`PGj!$?dUg{A_%u9Nq99!s4IdR{`IwtLOU>+Igw7}m)NcluYzNt={MFoP~ z^7AOq=b?B({knUHtA>Zl=8L}999O>DA(izmUo@>c@NRt> z4z(HC>9Sh0zY>LGpdX_3`!&nwcaTBn^2yPG$MmxG;w)a<9%UB*vlDv z1?3Nv!)TaTsf<4aR_{a?*K0&K>5o1w5wr!^ulA=eO(`RCdp>1-{|T88MMm z*$pmE>pf_3*c(HhvLZMB+TjlS?iJz=W)v?H$hG9oUBWZyaBB{SWYi|&jM-clsi^bz zMsmfkeT(?d{dOQ@2?&bMkx!B-j@+m`= z8lisDRQs)3ek;SeKhC%N@fIz?qZN=;gM>sRI{h^B3EY^hj~rJoV-HWiF@1l>tB$v` zyqp2~TBk$HcQfbf(%L(@nqmlToDFIJ$Vcq)y7TdoE1l))oy<1mcu2vN*2XinL*PTq zz~s{=9tyuwkvavn&WQNMqs?jbw)b$}Kx*VlTgBkbCfbc2emGt-Slu~n(}#g9MYI3_G606RU?KoYHf3M}RpPHUv-EBo?P6l2ucd5w@x6FfR zw2A!KbA@{W|FT8kD45%*HP4q#+~0r>*YL;0SkdZWj9 z&ty0(T}l}oI`}KCxc> z1^CwcS&ybNfYy*-8hhbg;m9qcP3w(R3h{W`pGIRikk{DEn09brxmibQpcKd23Mo$O z_033kjFBEZj~BMHdqL(UN%v)8;R5V+{MkdQZZMjHXnnI-OK6K;~)bl$UHee^qYjGifKcwu1L8&-V?tmLb!%jOG^GK-8v#e5GQ zl@w3oqi^XLjBx?1^{!AKI&=5J46|$Px8B&xtTf(i(mNy?kKli-x^%eOuqQxdP_?UFt4k z3_Wwgn)qbMefY_jw~wobsn}>U{Ic$KFduYF)5H?NE%az%c;gXA27ETw9@g*(c}z$? zrK!upnyF{XLYA7zc>*f z61<)Vt19!$5RPm?A>hEAmLY%+;X`sZ1UtT1I<)8sw^mV#Y(Wz?apAD;CwT`I;GVVv zHJGZ46htW5BT*VgK;RUfBWLOp*4Ca^Hzb~eyqBEUsB?B0dbssPod+&qe~~Ubz$W1A z3W_2YUZ8cvdd0~E5LsE6W3|a~p6pe6BF9Jw7JlZA%XIFE%X=T!ivh;}{64>CDl6G! zS}3+^mJJ_*KktcH0G4KdHAy|T>xOiVbbekn7QR))szID3AB!h17AunfhINw)K%2UI z600Nh-qoIUz7bD%$Q*}kcj8?@{be{h%c4cCl}EOcvCP%y?C3t7oAu)o#8r*8!R`>; z!{U_I#>m5&-PYbUc-^Iw?)8gW&Yc~ZdJ>8aGmi%Ug>#nCIP|tzyCp*tn8hE`u7Q4S zM+(4p5!wp#W5bC{D-4ZdzeWgP39}rf?jIu~hqUrdkhKKwr2hIPPT@54&JbPNZOv7a z{Ra}zC?Tfwlalp!l#_VllS@RcqEu?=B%#}iZkV#gmdG_x)W}1Zo9o{|f_u39Lh}m7 zdfiQTRjhWzUuwu@hhnud`RvY6j2`vm!E?!|*p&_PAk3k~4~rjX%T5sQQD*BXHFaf6 zFe$B{0#=RkXQX3W@NjzH{NXZhn{>`AIWDXhZt1`@9pfl;%X^}Uw|12W(p?>Y&&FXr zx5Psk>YDI}968ZEuszAr3f4Z6A9Lw}ZA+u;{F#zh%748CB8Ly2nb&#!VT%;9c>bO= z<;^|Dm8Q*lM>Mr9{aYadJ)Uts+!wepCM8nwL#cZUOEdmzavKlrMlCVj~U}sa;$vIq4y4 zzJa@L7WosdvD~LN33eeN;hRs{-0!ougxjFjmng~froRoN_V*lmWV6wMJ3^iB=3!i_8W9|%+c2=*c*_F#hoo~g<|*h*=mP&)er3SZ%2uV>qJv~&U=Ebq`h~{i{jiu zuYFY#k`JUbpkf^xWh)C3Z%^=Og9o+)Z;`n78ffzHR_#XyOFiYm0?87yNSXx&zF}1q zO8R?WW+WJ3Edl*3L{#VN{BiH&kXb8=+kTU;=fd#2GT_;F{E;7#ho2ggYW57TAhL7x z*hI2g0a9j^%Oish!HpkZtb7-QcO#MHedUDC+La^B4>=7p%!?*kW1*{kMc^t+VkhN> z8v`@QzXEQ!`aYiX&@n?<-%01Z6_Mkbw05gI8&Cm>-JEk8zf115w2A9`eX=+}FeJ4% zS%6gARaWjeQ62`467%zaMV;qpvH7hhK&rqc3oose(BQ3@Iu&o7l^?fyCm-ZCJ2d4b z8RMt(Z6Jn%69_4?ovP&8z)`e-TCu*!H>=O_brmhed0SzWvTG0*k{VpZUcfEIYTrKg zq`_Mcf8#&+$$$HHbpmI<4`R?6TJ=7#v0}ap$%7Qo5PAaM8UziiV=Z_$3zQTXmOd50kaG02w+xRQRiTqjSSNWw+6FFjH;Wpxv_nj_DSKiH?i@VL zoxtT?Gx@^4z4J?Bx9Y`uqwlm8tPi&Fi}UeO)LQAvFj)E_jNK4KjPe!?WZZFWQW&fv zRQkuAeIObmKiQS0#kbwCuqDnZo@q&C7<+m$!MxQhWG&roQeUpWSAKmzZCul!WF2ue z&v&v_xjfF!USg)CbV0hMO8)!Rb!Yh6wo*4~5U8EFto7ot4c1Gy3>Qw2Gu+(gM*6DL zAq`FYvtiNALz$OhKEg*f&X1lDw+vCYBA%~<{yMrgI>NZ|vhShP_*>~%IQtH72g_Ua zUt^KY+$X<6v~v`m6U;VORO|@m?96$(w3P7Ieq@o6P&!~_<{19P z29(ESrlZ<=tED2X`-u*w{vgbjG?*(!|D`<*!;SW8<#1bA>*gk{C3M>Si?{XobvGYZ zBcC=ds{-@9tx8`gyVI9$ozK8k9B^uqaoc{iWzJB1!zycxyCi@BdcL~19E{)Z!=8_Z z$Q{RUa5*Eco3s&RP)nMto`{mgW6iWzY(?V> zrgM>tL-u$Nu+DdM2MLfgxFicj<_Qo@8U)vuRI8~CZFldzE}}OK5lX=DwIMXGIA1HF zQ)odZkDG#{V?(fqUrpX*2oy2<_qUj|H!}4J1cppI<@?kNT?iGWtP=<6z}(uv|8;X4*B4fs!CV9;)q zcapr&-3Sn2mf+L(25%o1PMupdEf36ug;k6H`MJ7b6W88#jaHe)7@zsrb&ESP%T`F1 zF?64{<*sck#&sh(%Tg9YQZ-p+H;HoxhZvuf+M85?M;z3C@;i+DynVY0&oWOYVrN4+; zn*z^CIKeKRM$Dg)Bx9cEd#QODm4c@?wf|}AWY`RT+k@a5=4I3X7;_451{Wp;2Yj7v zh|LO|fuw%-kubQ|pU4CRI&SF@hSv3z~o3O#n^zl63DOY?` z&|`9{qzt)s$k53QZ?70p5>>m8)J$3nw(If6qKDAOhNNzhgQ3mGe>t>Y=TM>fIDSRD zI*z%qA2BQgR^8Cc=C6jO)=d~yGwo=;^?oF9lhcEK{IB5npGWAfm})^hIE`xdtihM# z=_*!-vl=k2A>jS`$%URsZi+{@h$27(j+EQTAcwRshw^9=hHM402vL;bd(Nh>t0Ep@^RrzQFovZ*U*rcdHXW%Ht-8ANL-kJrU%1l$7X z4E4|3Zz{o4h>vq{$%nqh<_hP0JWfv3*pT*nssUGVE8`D2o6q$L%K=L|+2d~&!13WE z0fGe<{Z|$T{(@<23KdKa*B7c!aL0RsZLXmkhl~SHNE~(0st-OXYEelP@l}8%YJCOI z37OqjUBORP?LxW$(mdnK=wVn#$VoRh89c>p#oYOyDFcW$2`e^T`VXf}(2+md3%3~e z`@1O=1g2rEHxtl^NsFV}#)7UbTI9+VPgcja;IIjNa0q5$^bi;xB&nv-y zd2L3zj$WBPiza(m2NA30Y0^pJ%5};QTZGO!RR;!s8@(^(#3ewiDRlbLFi9OgVrfBg zd)SnIA4z=@NLkpUN+&lqep1`Z7V#!6PExm}5tgGKCVw2o*}33EzzsHk1!wy<#QeRX zDTKulwB@)KZ;#mcqIyT>P zjnXfGfNgw>KOG0sD}W>+#z9fr=U&TuY>2e_RoV6xeC8YSt0zcBbDEx(?K`s9g>kKN z3$EGwTabTC1RgFpK7ydDa|3wIQ&i{#QODBn`OA2l8R|&zotEpK-ogKUur?YmY?PRr zgVmi^X61LYYGZkdJ;NjwGAV&*cY~;|5M7HWWcrQEQm^6`Wtea54&F7f>IWOcK>+_4 zZvj6YrUKaMbfA&H`6DEU-3yK~`NL^}zz7&jt=Xt(5fzA$gNRq?rY0#efNTCn8h|rB za6sSQU_;iUbw65dh}{t=#Wi7sF3HGrubS?9seCKr_KKgde!jf@W;G2)3-^?51xfvH zi8z~vxzQh^m5_|(yR@y9Ncm`P5XKxD#~O^V7;6}pWe;ps^fyuyHBPoizMah7r)K3a z>SN}pM(k4j(Dtx&nB!D&K>PGCI-c17e##r}H7-^Bs_ejXriz0qN9#VZ>I^{Mm9KbV zrvvThVBfCvfFYG=50|B*kwsT&8ah8mCVjrv`SOgr#JNaEnep0a41X#*Wt|IMq96?o zV~xYbp6Lw7a(CQQQ?>buG%WpuRFP?u-!>iK{_dTmA71);*uj@5~hM#JC-hX*6!|Bm=VUkO{z9MvgVB?Jk?6 zdWXV|87;SPt+V?3k+_P1M|w$RG$O&#Lw{)&5+FMgmAGqINk6IHq8P9r&=`3o%q)7D zE-PsqV5l6p3YuVRY%K~Is#-d{?05w_p3|H3u;Cge%_;mUU$*W7L;QTbl+Xp@Z89?h zhEzWcy%%!9*xew7lwyV7$Gc~iH)dUzQf8(rO*TT-gc(=q=5PMP6&1b_Zb>wYx*V@a+*XPZ`BIeVC zGfzi|DI%;bEM7o0W&*3TENU9wkN0*CWi>bEUREn?xQjgkAF+hN*Fv0>^&R{LP$0ys z+Y{c7MT6~dENXg0D?A`S{7QM>r1#>L;PLn52v(M-5J$AeWUE*lP1UE;UcP!2=UJbN zXO@C8RlXJ`P!cmh=&DFG<2Q!voGC-1InxjXa-IF?;r7xiV6_m^c{2_s=R ze0S?sY#!Yc-qW>^2Z!JiN{W~mntwlK4rs>|&K@nOw zP)16QC!?5RO(K4P8|{hp5mm8Bw<+{Ft0Zhk@ykOTTj&rva?0lBrceqLE2Oh;o+hQ9 zoqGCXe+uJ6jIanrY*Ql0hlAz)drbPB$GdIOkTGcHg}K8?v^MGTs}G^i+E*5oWad9z z!*?&uELVn>CY~{<+c_nJdWPA4PNLZPy?Wo=cyx!(;k^4+L~8*plc@WQ;YhRqx2w^# z40m5!_uh*Qiq{;mNehRgPGtCXW+E~2*scWPn|=uQ<%ox!5%8`2VNqT&nP_HV>BHDp z$;srP)&e_pHhr2P3hfjl-QD(2W#=2J#LeZ>!-3?fJL!Tn z58%3tyI-$Pdd$f%d-(Zuc)9-UohP0%u|bvHl3#~m#7}rE;@bYmtP@o&EFb~yLk|99 zSWO8E=NHQSi)TDjwBPym`8mm;E7|bB7dDem^$uE!sni}%zQmfH*Ou$Uop4AQFcJFP zAzLiy0v8EkQ>HeO!=7!KiN4Hzf=wrxUcGhnv<1XOms%vHoK3O~@8*Go0Mw zU{v=dAV~LxakhQvxk_{Vnu$f!Quh-zQEZL@YnDwA?>t&*1$=-v-hCb~@3RCI2Jt^z zVu<115SB({?(|4@;}V4y@e91&m=2%#>8?8;^`P~QQ1GGSdvt`cJQKsQ@!83|0{41> z#3)k@9YNoKQQ$+a6yoon%R+)mv5mhiZ+WUw-{xZG6?N1Zx(ZXnHT82#Ny_waGuH<2 zQtP6~46Nl(Y6pZWc+)pP@F6O~&|qt3a`94V;caI+`rWKk5~^Xm9=1ELetfLkzw$uO z_pIM%eooqqt?T~@XGdW`M+FZ-AR|8Vkj>`Lr3*_z#f zN<@#RpaIPAFb!Wm+5x!|Q~c0ym|A6$71|{ST=vk|fe-UDl)cCq3iZrRjt0)*ifVeSY%^E-gGiJtrw-y>%qd}7)jm& zhiTxG+Z1=0`uDoJ11zizUt*#C_LU%iT}gA$_zlYl=mTIrKJSXHMf22+<%+9}P29@$ zvO-Z+JL*X#d62h?koBefjk|jSzUj-B#4Nh|sbhc45mBSsrdny!n4uXGkNmtHL&C}5 zCG+HhlW;=JaPdxeF|r;XuX@pJBf1yVtad( zR>gIp3m?hTY=B)Hp1Ec>r;)QwqV+4Gd#>a5mYj-d=qXrA4Ve77SKH^H<71S>m^wWc z>w}MNL+jp+A0f2T71)*4{aY1)=Z1PPMxVK5IyKHt3*E1DV?7DL1TDXV{u~^?w z%+YuL9rW42?*j=IG_jlOIK_B7pPMh%IAQQ%qTPAwY}T#UX3$WRez*ng$GMB^m@-D& zB^`uE9ikW~3`+y7vm2}RjLsZ69KfMVp0Ky?v&~KRt;q2P+z_q6JX)|+PY|q?F`#P1 zRr(sUnQh}_X-k)ZIGTiNX@XZh zMl7>|J&v_mQW=0quZrg$8Kpr^va#*jYkPPCi=B#_-rO6gdHGB2`2~CbNDgJs5vVaC zp$N{f;vSiTG2rEydqHqD*rfG?|ccH&lf;@)s4EK_R0xjTP(e-D180vTnALW;8D4e;UFAtfVrY=y?_r&7o6QHNp_339Zl7S9K-5m1nGF=n@M$lFl>g(~ z7!-eSY`#x-@;b^S;m0bC_k@6yS#kMMR|@`k0--GiW~1CqB4|Sr-dGg3Fj&5_ zk}HFwM;Ptjk|97oVU^)i?#An0d-9%zM1Jm-?!h)WMmLE3J)Pv)p$vktjsnfjR9duTW4AI&5(< z>QE31!UQzVFhtO?!JVWbwb?u@3jliYOwi%Pe&H|l@C&#vppaWT)M4_0V#yKG+#nle z{N^J3hUrqTY1V;N%?hApjH#(^*F}+9L7)moIt|m}`Ss;nN_Ht|p$o#E{usyqg3*78 zA5a4DHFz~MuWZ7GHbkbFemGwS`Cb1=lPtT4u&Nd=#HuAKS0fdPJKzNr`vZ((x_d5$ z&SI!A^Vo;o1MfpYugCOW8{WUY|8Fw(3?M@`gVRE(pM_c#l|BUKzIOtj=^klK_djca z&bv@T?)9UMO$J#q-Y_c^%ogGpKM`7w&}7^NpECXOr*4+Ns1aeO?qEh7XtaUKG@hPP z9eZoz(b7Tj=({_wXWp*(u#E@hXsOQ^pSH`nie_1$Q6$V9nz#_GSz8X~4D)Xa!+)R7 zqv!YW3i(0l4~Eh*9?cyBDylU8t~O>zNl;&tZ)v!3@=A7Eux=Tp>w{htu1s$3;v=A+d;lKG!k)0eE1Vzyywh>sph z4lyoa2afKH7w-sZUm5eh%y&)X>ixwcRCQPX(86~C?FDv}dPZV9C`7wrM##K_Og5j& zb@ax*joQ&U@*(yzjDQSNl$W@bnF`WA6ouDOz>F} z?M`qccxcwTAl<7IOtmeHZ|)wujlzc-A0P25j|caBOSB-v1$M*^{^)`u7692l8MCm% zTMu4$4wd0ymGO?C4gE#Ywa74;IA`7=4ctUJR20g_X<{zq)VtqS0|EC(LxSLe?inHb z2AJO+G1J?t0rS)7I1p*~x3G>I1whH1n=RBr3p+xQdVC&Vu?FK#`v5O=$dg#V}5`yVCZF98eq^O@R$ z+)q(AGjd|Vyct;ivTo`O%jgg-WcSuIxQUo&wqd_(cV*`roU zZ<56_I+kn6+jR>}P9y};g5j{0+IrTwIBEo|Bh5gtyQtb%b*1l9)3 zvRO2;?Q&mgmYQ3vzG`G5AGbkdsB5h5Bd-pm0Zz3m&{6c^)cNA_)Zpx~GsULWib9i_DnzCKO#JN@{84d^#w zWQ#`+u~ynWCL_rzS<|oAUo1x~9l$}UGcg}fu5M@pa^@0x-MS3xu}}S1pj$uR8)Zpg znCioGDAtFPm*YyO(`6N*phN)_rG;o>649_hRU`d}9uT!A*KM63LV>yn9b6!fi*^+_ zEe}G%NfwQf1Z}9D4{U~XlNMcKX0}-Utu2+v5`;a_c;>V_fUttb=<%e(vznE(HrO20KiIf}cZLWD>V*-m@Bp z_=Y@Ih{|!@EC#T@zxihwH7GC=kRG>_g7FXgK>O)KR0#ynVl1pJeA<&?YSP7z?(x)~ zuG!?pL9#KT0T7VB*`$;p4Li_uPkGw1ki3`R-Yy)HrGo>C^mR7R@tN*wrF6w86<(<; z)^V>Ve|+AC!XvdQ*-^xk{cl+L29Q%va`apRq-(u&P)wm)A}r89cmfGqrmS_kxU^!31;8o2UDLx9m^V3j)1Esg4y zjd$;uS3NDfr})4`Yr!<~!2Lt-Xw<+#$8W3`N^h8%NvVe{U!*M=y$vq_lKHRHs}IHR zEf!*rd#FhkZTCY7gX39jh2n%pClOQv>ZE)k1nf{^ojXZOKA`n&chHwU zYW}t~&O-_Pv@aFnD3NyO1I%3ingAEz;1M!n|)F=cpmxbX-Kh5JYM;E+v=8p87Yb$en19L z(VMAQ8tMJ+diuMJPM49Q=<9$_0dCy`(@nqpBt$Da%br)O%`xXg2s&%b3$?e|Ff9#V zi;Yvok>yKb+%d#Y2zwAI$$E^GlGoO3mhyrbPs87fNvc@gGW+#rzs!v5#_Zr6=rC+L zSmqX;hTJ(%kP3P&;iuTz=_>yvra1IR!PSohZVC7TyhP{9?cc1sn-2F+xQG1&Ul@ZZ zI?^30v^NyZv-d4cu~;f$SB(P)^p8g&R*guc!1vI&cikY{TqGHs8L+&V-f- zP7WcTl}51Ly0Uve%C^INF8xWPip8j9{U4A2FGl3c1MM@f)RUUZ<10!nWKbfgM<(!g zKQOA5E&mOb(tPhUnkEE?Cy*JvVGE_3@Hm_V%ne=Z6ycxC4)Y_E=(bk;X7z6l9cxoq z^}`aa{@Eu1Os`)gOMzDs6wgI7w@K4ag-T4+ep%bPYbe<(ZTopJ^9yMGn2En%ZPkCz z03l*Affat1SMm_;Y?PQL|Au9>gToPd8G9Btb+<2veR4eE7a3)AwE2_%RnYWCGs6m} zGKKumRd~ob?Y;z6V^m6Ey8s)#tI-dYGlZ~K6D_*itNFXS+uEnvt{%J<32JY&ZfMIk zQ0qf}PE!)MN2xH@Wh<*`47m0Ddsgh~?99iX$f4-Y5RVlbGpc=4T2xyYH=CUXj9DPQ z;SzxkWy{|8(=lOO$} zfanR4MYt81VLZtGDX95H%CJ{&sKK11VTiN5wa&axYQc6)b_HPOEuFqwRJ4e#)OyW_ z6?^?oYWm>*f4HtNBedCNx;zi}$5+boeGVupT{3777em@C%UE~|48U?{ zk*ZfA<11Q2f>_a^j$f#1!K>TwaPaN~^w_@y_dj{+zj7N8QG?XsFLAkpZ#2RSBij$e z{W;hV-i*M6iw00bNlxIbCr-t7mR}iJbRFnCk*j;hb&ggf0dc~QvaJ-UZ=IC#-83Pm ztI#k?{Vt?~x2Sd(p&g^zPwIb#c_3>0Ffxu^ueze0*RH17fo4e1(6mAgHusy8jb-b- zSZ|q4Xdl^~U@*+NsnoIIVv`|i--81QqC zJTjj$8?qi8R-p#2>8LqC~MPiAzeHvB2( zY%(QhY^L*{qwwzdUFlbC&3f%)8m30fIuKt*n-TaDPMOE><_SFSGT6e|r}1qGqC~j1 zGE%Ww9P$GoF{U@O|aCQW_pw*D6Fj`eoF9!Fj1M)o=dJO z_Xy)CG8GXC{AvWU(>M;vTUKS^l!5MFL@PU*M&ZVLLFG5-Sb zs$u-!VF(VTz*2ao$Jb7kpc*U8;Nx(iJ{cs}@lI4elswBYfso$;h59@$jE$G7aieu6F5jmuYG#sghCd`&2?i4Fubkx$ zKP>~XZ01EEsNHi~=5J$n&))Xg>DZ!oVfM8nl94}e`1lU_WNhs9;L)(sR8iyw3=_FZ zh2TtjnHyhWOk6F!0+U@T%0C~@rWQQnheeQX`2s>MHzHrLrwZA--xcLBtez{R&W*et ztQmOCzb@pQ@%pYhiD>i@T(>QLw;#VTEJcZD z#huB@e|IzdOQ+)0Z`d~2$`seD`WTAKDX(Qp6gMHX9%nS7XU*y`XoT(vb8L(KM}9@0 z2Nm5SUe~4O@fTLq>+u2G>`z1s_R8Nj6Ul25iP=G|$Hs6oRDJj7U#aybyt9oD-#X;i zE7Y&?Kk4SHb4OSNMq;!p*^*J(WqsE;B`(z~+tF>>EnoZxu$ErR_*(J#3SlB!vAkD)XK5LxT}$y0o05$~^w7bl{JllBR`e8-4?3r{6=`{XMOE zcvgyE(+=qT15E_(gQneh#(2FIg*KDuclCGIcwbXW#Nu}yKcxI~#{o1z4UfgSb!XfN zv(c_BVSw$-@*-y8?m}MC6A=xGeRYoMdt2YJ|`M-^##(>w5x;1OtoC zDMn+ZuT|KFi}T-rl8gV(eCMGWPk{?t^{f;4x|p;;(yC3-WWcFxvVdHCEC-V71IJS1<6d)eb!(zPb02rospwg2@HI6fvakj(xNd!FDJVc?gvP(l8X56e)8DbPYn zN-Bfq=jTHl@lj;AAEPJAtncK;MofS9R;sXcMmO)0)FrqNi)J;12cHb|t2XiKb4&Qn zMKeD$ittUCe^1+Rn%_Kuo*ly`L!KtIx(!|jLbC;=bUB`#>qN9MwgMDNb*r@fDX=R} z*y80##%NNfxI-?w`I$VcZlJimwnEa*;lied%gkf(7XP=8NYVdtg2IVg^jXjgZX-n@ zMd<$Pxcu$8x~yHSMgBn98^^1y1`b@VREpc>rqMj)Wr9hREBgWxb?oRu!|%d4uBUH} zthhn|E`ezw?V;JAa*<8QNYZ7o=t&E2j=E|G3y1Zu?{gmp6v0&p^~>z=BN8&8C2F^n zdbp`7OtJ0sB{f%av3Hdzd?n;Qa3qt)ckXl8LXXG{w`}h?6c_4UD}@T173QLl5Dd=w z-L>d^Fk|oGOv@8iJt3Tm*3`=hgX(I~pT%Xw{hLHx>;)lgo%Huaxl^DNQ%G$8gtUCa8(=Pba+MHy$e_B(wS==RGzmDkJ z6aLi^0<>Kr{dN5LpcHPzdu!SVTSVhgnC&OZ(fv;upEbv$V$Uc|5-M*3p4(HRD@(*2 z9YpBTXqIm~uUQl7^!R|DBl_-a8+%ge0@9$$<=&#u%P#}Hd~AB#lNX>?w{$>Ir9=Ez zDe{-(NzK40_8tOgH0&gJLB$Ggd9940dC@+BI<40MUe7~c&B7L1*YIjrk%AIvpu85i zFf(28emESiRtlf3y><7ztO+45B4v8Zq3W$_^ zMbMbt*LRyQ%e$5BxK7mwvzyR)pQuuNCxXMVS}>4$70 z{1xQ`K!cvBv*+BeaiJI4gvms0+d0?2bCRJG<2Ei{2N-4Sb2=)Y`vZ+`AEWbS3*ihU z&}xTXGRBW3G_d7+`7VST;nqwOQ(7!uK3dw=h<{6x+aBw!2oC!ZIk5YzXjd-&|FA=F z0!WE~LC=ouIxn17NGjIY9=ji1EunI`LeF=*-Xzc$(Q#7YMO{7MIA9>=*f=&xqXJ>a zPVi1oqCxY6zK$VDonrTfR8}5-KaQt`NaL8@@$evRzB<=pT`CT{jy$B3Ly7NunDwdZ zS>Jya#sH!k!q{xQGq~Yu_;fmB&^`rBYqAk80!_nt@{B1}u?$mxyGoVk>60>;b^2P) z?WTSxp$}UTkJj!Ty;Z()Ejsw6CxUYCq>Hc7nuX}qR@8*`YK%?&Ky3M@m0Q-<2?~mf z>wggNDa0Q{13?Gf15AX|f@)Gmye`Cyh&71d7^?pE34c&B3WDvi+1NMf}({Di=8jU4p06~M}BUtRc-YOZcmp1 zZ^VQ!DLB;u_~V7>?)SE{ZZD%ORjSMyN2ob+W_EmKo<@nVPh?%1JB3?#Z@3H)&_2qG zhP7(e!96R{=X1V4{*CE}l;78G=}gI?$lx4_gjJJ)XFJ|R0fmUdZ3Qzr3nCoE`S`g6 z(->-RUQ@G`iZ_B0Nofx>80utaF|$9q)j~Q$mwJXjoL3F0HchB+$NuKtahQL&H>Ncs zg@U9*%evN+<4xRl)RuR7j$QB)vDGNLD@KnNnfyJK5ih(FSY&|X|>x&IDrgJ5zSzc!EE&&}{w;ha&Md_&JYD9K#&nLDUTSCA}f>Az_ka z!W5kHtBG*x`3`iJHeqvCW{3cq1HNx~)`oK>y+}n2*1k>*m?rdD?x(T91}|CG?W}aR z_cmEU!YKl7z*o%Jn@=4DVec+M_m$E~m}3{Xd_K zmM&1`8;0txE5BA^bqrbxRRZ}*n|23WslB0*eLk_O?zSRo`Dz5~Ia!CYGMh{TtDbP1PSB#2L@;r1$QewC;k3! z!JFpDSHDXLn30hrqMzdCR390;Su}1Fi>OgBpx|%YoqHntd_E5r5$SDpf8T1*pI_H1 zvsI;MBr_tKHZ@G)9_JX1YyGK#Q9Wl4t|_avPyu^*q%P`a@<;J1=a*#&Ds=?GULA*- z%HmX8sroLJn;L@{^}a|X%|4a4wE=~Tff-N=FBtGuOOq06g1Cb)JmeEnKoQj)R7&E$ zwdH_Djbc7UAvW%Yiw0{n#Z>>7j|7lg+%`l*dvPxjAU2B%ro8_FSmHuHi`ty$XZ-N@ zYOxxjslk1q0Q|Wjh7aJrK>01cl=1pOj#F~up0X_!Q3#8E`ZoR>99#+RNB503Y@c3+ zJGQP5?NB75sVdSMHI&0L|6*pxc{WtNT(8&ly!+WbKYJ^D-9$-zZjpq?)G?$Xw7A8a z?0T1u8s96RzUDO`cNt?qS zoe%!&6Pd!xmls2Cn0_)U%US~#aY_Sy7Y{!0BvX@%=Ly-$3*V#-mEfGLrrkl(kh6?Dv2sz z@P7_%!e)DBv|S^wHpAP}MnHvG<1jg{Uo^!0B4dg=*D0N0j`8u;lupb6?$~ z26Ih-5Mnh8-S)r3#zA(t?)2h^u#h_?;6&ch(S3i$kG z?WK(4zM)g>iI(*(#gPpuTZ8y>>u;~fILVdcxN5E(!t725sP0fGwtj1|<=;R5(H$|- zeZFw$PFoX>+30D#ec@~g0~EtD4z&24u^hbRE1GuEq=z92IT`h>4TFuxl7KFv>#h33 z>$MuTZi>b)qLwHW{Ci24&Ky0Qlq%x^rM`Ah-NA2jt731p7s zd(tr1YM%a0kNn$X6v(36|7gCxz@Xlk6z1CK+?nIjAB2ReEZ}!QimIbLwz>So-ZXfu$SY}#3u-CaCz^ta{n>FR zntbD49?+bRER{u$B8I2I1#wjt1oQEYpkGIiWVHY5G5p(F57q6yZfPdDQ;*YqGF9+? zyZrsU>^%BX8THt`v3Cz6OHg4-?}5Mswg?_y*PXQpg%N3HCWcvCq@~*_YUXEe3l;j$ zN(3UphBx2um`iAW_*pV;FH|whKil^CK1*_sUwK!$#5Snv&^+ijt7>YCScEu9!ZjXz z!bU~6eEI*7&|xcaSx~EQS3YEDMQlDV=tZ;B`)~OhPs@wcN-4y?fxaJSdoihV@3^@> zD7k_E#@*k<-j%3<-9bRQU~{KWF?D1~)PB_$a^2fcZmc*^KOV8BRPytmp9+=(+KGND zNI?DMC>z9)X?$W>PW!@Dvv1aUd!X;Lj3k!FB4gKrWnOQ1Qd8g0)D_OzD)^nrr}@uyjeK}3IsJ@+SO~VDkULMDxre1R`NL0t7xS+p3&^w zZ(UP7-lT|Sud2_w0RKb_^7YkLrC0+ko|)$B4y%#b2mfT% zC$qUK&`Q5A*lElqYQvYDSbs25$`DSOtivjsNE78rh%_r6e<`F-M^!u?l0#h-1y9Ii z6fLT!=G*p9wFfSJceViJsuTIG`#3iN$)m{B^t4_TRELrPkRoAJAFk)Bc#-3}aryHe z=!7XRc~T9&k%Tz3u8v)NR_=XRd&i!W2o$nshk3Zwy$VmGe=pNi|B}cD%#o_D9&erF zJfcT_>n2TP&~#9jRqVA98dzWLO<3bqd~CRlYK)ZcswVyFE3+MZtSgp)A8zdfs3!Fa zHk|g{l{uRuv4D3%v!=i6s~jNI%q}0JAgwuO_yn4^g7q;(grW4H_b_W{3l`PBzXW2Od{ zFL5AuIBmt19AAU&Y0Z<)M1ErV@l^o4UR=hL0{gAL?*TNk-M?KnPhpNZSok7^@!^`x z-9zn|Ye8%L-FrCIZ@mpU9b1`3B22ah##%qwSG5&I_a+LaeBjEq#`fq+#;tAE(5lEY zox9t~)BhOD#pAp>D4p@m|NCx%zj8QtCmbEv$KF3w$@T8V3DdLt6nEm#?axV1yKba~ z>IWUgweSn*3??rthNr|aac6PlG4mPkv;z7_yz1zyZD4wC%{5O*w~I{7ldm$!#l18G z-G#o!{BFz^h!!Fu{G`uru)DW^7FtOD4pN^^}D?fe`M@>M0((E={8B=BQuFxrz(({c`)dk{e=3N^f0g+$Xx?$Jg6tRAQ;#iQd=x#vJ)Fq1KQIua?KmSg zS~{o4U-aav{(3)V6pJyasKgt~O$Ju{VwBUE2cmYxvUsbf8fW;Y>yVNu1{U?kF?m`G z`WsUfcZ>x%LV(K-iWW2Ovf8w(G7qkXRo%K*s8BCh%RUjJV_El2jTPs=!d?GoH26OY zoFDGsXoE)1{f;)TWbz-By(&vFyPeemr=M@Yfvz3gd@9wsA8;-?(HTpdP?++xq`|L@ zJyVa2ias91Za#G=Acs28MPfqARq3>>s8l$K_!-p;YR-g5BAT=*nnjIEN5&)UoRU5< z7166l*b{#H$2SBb;x&aV=_Yzo&yO6*zK6v2p<=kjDAKm4lhfFE2m|$_dqY-dGuQ}g~R); zZ7gZ>dfXZ3RH(x7x4IlYhMrs1@uo(uxIV#IO51VRUuP^5Nzee-k7TlKsr;#Ph>gy6 z@gBC-bGoW|N+aZO_;;#$R~obzR{6}31;*Ae4bYn@mgxSY@&HTu*)kPg<2lcry$h(qhl|UQ{KIzWl|hYKZIE!AVuRgSc4v zzysdIr=FrGL<0>K9czX>C>SG-?ZJvng>Ttm47 zV`=Q^&fC=q(se5?aO1N@n_P^(t6x>W-m$XZi)@gw?lJDC%vl&4f&X$WyAw0|lcv4< zpEhe)40TEKbFHXDm2lr7t=X$0+)7QEi-Yvkb_&oVev?pcB*p=wKAIFQS z`W4j$+@DS?EH+HWc^YY%TQ%%0%%<0z=~;8UoLJOqKSW`y1zPmNcn zhAZ8wf)J)s(oKlWQrBa1n+|xyy`}Gs8@bkt7>AxbD1UV+1Jf34?ZSRz;tTIrc<-$z z8g3b?vk{`rcFv3PO)vBnFZ<5-kDPp_j_I@2|*!5?V)D=c(Y03LF zr+cW(a6&%}BG^_SBjlD>trPV&8+T{3?&Wdx(nXx+E3!Kjnb@l{~G6)W-idFY$y zw_o*bdmBBUQa#@mi+uo#3Bn@Zg6S)))Tei{3hs086?khaS|Dj&e88tkN|7bn1-6Y9 zLnQt55p?w@E!7h9Y+I5l7+RZUGL%g>zgDCl$NgU<)FeEm@0_EyZ4REmD)8f||p^#aWQ(O8t0A(9#- zpWvo~{hREuyX=EI;~KsT>U`&+;^;PNy!!O3u3V2P6^0&IFMkW$kcU^7XUpaktgS8M z)vZLRzwgY0{73C20YeOnn_*`WeCnnmDX8ttuuqqPL`wFFjsa|M1?k%kix3dV>dZNG>P93ie-4{s-NgCDAfTP_ zQuf=vk!68psDcjQ|K?+8g1%t*XnREfWSqJmOM?UV7vg8`@A!EyFf!h&5ZyM*CwTv- z3c1wn<9;dtXYvD;MoyZjmk&gS@3A~2?FdLySrXSDBZ$Wmstp$5@`jSmapomcQ4oE+^KIoi^EuZ2 zcn3D)!v(?^Ml6y4)oH+cmHTaj{OrNb!s-Y7+DxPIElRs5|B<5ux8&~ z5tL3o{DC%MdlqOCA^%-CA@5Ov;nkt%W$D{BTSAF9Uuz66zu0uLOpnw?*Az-L9@L~2 zH9i#E*Z+7pHUReSq4T2Jn$vnLSY8<{x2kDad?>q3NRoJjNu@uGo?_{2Kf??d5+g1U z#Jk^Vz!5?541}YB)h4OGb+)5rpQ!Ao*$nZ9?(E{P744^L=OqJK{CZdpA)8PYk#x&j zx=^z#p`I?kaytp#;a+4#C(T(VN-ZV(%5mps+Q$bn?;22`y|Xa;v*wTg?aN|}S#mjX zBZwp{sS5DPi9RKCQbBC)FlUhd+7Fa+>~*b%rZyZ?q+c*U=zP(P7<8BN3G}vF<|wa{ z3e%($S0|1`xNJ$2cDUS@vOxd>hN`{sH_aT7o=Ou`zRef z5$1qRL)x2USeQ6`1O-hAiPn+#8VA z^wv=!X=%b(17oc#8?A!;d}^M~U%MZ}-oNfQwC?eXc-sTjTf3)UJqvcg0;FYv1n?z! z;NH3G8KiqVhVf*X`De=Gp;Z%fqK9`lw~t6Y!NU%u*ANb{eb{M@e94biKe%}DuA_Ix zPWYGtf30(KetR>)n871G8rtjqS4r|u>T}(q@Jh7G@=D`v6eM--BQ(`Jqv_4%q#=t; z(vd>iaAZaAF`pfkv5Q4;KqqXVoJG4?YPb8?wl{A5%tn@edN_*{UpY7wJ`qDW&=!jD zC2)e`ZSThov%G=T8lON*_d|&`lS?E#{I#*oRF9;xs%V$Lws*g5dv%1WaD<$*q2fvp z@sH%-@ygvme(G(p3QAgQhcJOQ|08pVOh6ClP6Mbr*X;a0lb7zFuC|>SDvk2x$bN^M zDY1Ys9X4EDU{7;RQPGfX8zU>l!Cmz+nxHZ;FnNCCj-W4-jN##V30hA6+aBJxxmwty z(9=L+AFR$jdV&DK--Vv^pZBl)i?}6t0kM~szc(|B0Gl)pzW3yc#A1#cpYCREQ+k%A zO_7mB=8TT}8mF-n4Km&9R82886$-wQ?nqgIyi!Bahm5spNPfq~0|^>es~KUQ7ML8W zFrB~}XZIzolFbR2j11OlpSyb!F-$mU9>@Cq(=+OTFozG^-K4@JT2d_Q(>eftY^0-} z0^A=A#xk-%=Cf^0Vu>K*r9)~fwg{wl<#@8R#qHGMhcxgmCP9kFqSK8+5UuUqOlawn zwD#GAtqyhnctG>&*ru+hATt5o-?Xd02DL<-lK15M?>aESiL0o<hGctenAR zH53q)I@G?}Y@aaTXL*NQ*CZeVMkXkXai#W>Azjqxm48x_|2M$ZF1(VivfPO*O8NbZ zkAm}jqS{;+PG8r521em@<=XIkYNcQVj3TuU?NcXBP2pXrx)V%FgCj5a=AZB!wkLl9 zGRb8j8XeLla379)E+(3oCMLaRD#&r21;O*bvA_Qj1GZkksh}1<0HYy%tt^xa9Iym6 z1im!cf688hO*x6UuxSyBh=zupXgVQfbkhFD`LnSa3S;XzU^iUV7+6Dh_^8&#*ZZX_ zp8>DX5SQ_YZ2sC07oK6CzXav}6&CBUF8E;)7VYiz^foD#)d&lND9iOl1Y#nxKDK5h zwl+sxxp1yl<8I_nS$d*#2bsZSSV;RFB_`kwbdsEffPo`4$qz z#IYDD_1Wd?bE%3a_R-&fk{y~D&vem*`=c0tXPXX#9F%5y193H) zG}%-!vaRDWCH?1aKa2L(#gr2M{+DXCiUl$dA*&o~JQG1yYi-2}VdT69p zTik2fxi49(6TEpE&ImczZMP<{p=fP#*w!H^OLjA63g{A-H{*S$VJ~~+M9AX}#M07T zAIUe7!2XA(m<;iwYudm}iT$u-98v1L#&TqhW=U9TEZ-f4AlInL8nb|FS#(f4^~Z6I z#Rx~iB9G^7y_0(p2TW?{OfmGs&#`eqx?o`-$IC=#6Dmu-@=Op6Q7c?(1B- z=}UDMvn%sp$;@~hF*uU&(O-)4%@2!w=8K|%u7xYe6-O2xF1Slt2d9XM*2|T%ob?#S zR4Fg508xGN~K;Z53uD6&tg-bV0*LapQH3J|LvazSeExHX<-{Q ziV&Yt_X87Dr2$dOr@lHP4`R6T7~rud`Y`cM3XFMzr^5CgAy?hf<%PB#!~oeWKUp&x zVn{U1N@clVE3Cvh(S4LV zgD?HzLvepi4pHO-c$K74@B^)ORWV5Brtx=Y2k#A&?D_+7Lq6urs$(`H|1}1$=KJ`l zv0S?c#Jh4NFU{5wD!rNVNH3K4*BYr=+P~u=u8nULTSr3x5o6qu`(?#|q$YjvF0boD zZ=k3?Y`gioTI0O*S-=)j2AyA-B=@16FBZQ|l0zVL=Jp*gUah<5s1ZkNYfUFp-_Ol{Mqx{7Vvoi$HQ8EhHZFIuox z5sSZQ>qgTzj%Tv&!|F`xogg#14vM7<<91=fv&{(~tWq{D9A6S^8Fb+4qvtJkTImnkt$x`F{+Rq%Eu0kalX9dU3sF|OR0{p zQGLd!!TNw`GaAEEx;@QdH|)E8Jir4?4>oM@D2AgwfYsC{uywzzo9yahl^ z5RY&h1ndjOU1N+iBYezFffK1(+z0fuB|b0zAiyxl_ja`b*bR^poMW8L0Ht2xea4K^e5Ixb{sjiU zroCI1&fAkzxy!Lqi$V5WM2D_pRfQk$4Og}>JYB4#1%?zA|F^2{WcgJ~-GDgXm!Gd% zuqa{%F%gwy| zo`?QX-ApZL`MOp|e)ioIUDk>{f0Bsac*9#7LAm4KntAF1EM-onvd=xkeV$Iqz7FkD z?tK0J=jz5ikD85&cV5Kaz_=|Z(8bfwSl<5#OQq5uVSraGHk1YfGfYj>xT|<+)ri|4 z5t;6yDbrYW?xLpRCESp;D(yWb@g6m*ghjh%rCne^vK^@I89EqI17*A8MRj4ms|dkg z$HTu=+yFm6xkfVm^_&;eys2-IL4xzg%SL}qqnT=jlO==AIuju9b(q{uE2dFgcMgs3?>I36xQUy|0%2}(Zb%H z859cg=lrX>4$C<+FegpI_YzTFj(MP9o_aW;K;Lf4m+%wU0B7K#e>EQ2h<&MfkdiyL zg!VhF2oF64b6b^ohj1LAQRRb2Z(%so_`BHBBY}g zMOOGxr93)@#YDSL5Ch6n~}fcG{_6gvk) zz)uDHhUmpvaL+qM6XkkTq?4sy?(53jGk`*0sW$Fr;@1k)qR|njUl@nWqiwu-r>dkR zqCkmL$4Qf73Qu5N$nq_Z>W#E^ZQWyWOjL9a*X&b=#+rDBzq2yI9;jpKjk7qFaBqHS z7TrC)lMfMrSd^<4XbR%-u9motgn*4F4i!0>AQ#J9&ySgyU0NH=YO0;?4BEflKCSbX za@1#LW%&*OUOqnGbkdF_NiJPDpx4zhfgY6>r;pvsO{z_P`SW81VfDVsPkQ2AjY3|8 zzNe3$X#%%#I;M9qo)}`6x-mteGj_A1CaCe^!b$U~11f#rFq;I0wm4~2S7w4fz=>x#Upisxhf%}`49wtr{ z4=VHD>`Khf_(nH7(~t1wO3%;#e&7uPUwAIqivkhQ($bM1A6(`0#3cGIb}Vy$3r8~5 ziZFZo%@(YNXhbV{1ZD20k14V;^TLEH#qIR1E+tUe+=lfMr6t?C>}m0MVguqh7A<|d z{p`E)jg5EwA;;%eNw9A8Bi7%4RnY`HZ*{kw=i9Jbj*Pw7KD}2@^6KteSs9tSuM!mI z0rk&?1y}&lMpdvP#v~-Alp5*72hFqNuznLQ39BTHN=a`2fMvg4NB+?aVtpCsaBMf3 zM7A6A6uIx2{u$$WsD9yv&IK|Dt%=(;ms2b0$Ey)8e2N20zMLbCRFZ}Di?QL~wYb>~KQQRldVlVF4*rCc6G1{C;&I2l@H=-9BwU?XG-Kcxk z>iA$&FQMsdDHVU1CFDI+=4#4bND)&PS;>$<3iv_g+si^+P8zHvh7vxyz)fTWnc9GU z3)(@Z=RKsVU6eEeiE(xJXT}7pRy<^2zY0pO!qZWWY0B+87E=qL$*@Smq;_QfqQeG=;98wS$%K;8>Ut{;KoC+P%`kD=uXR zOy2X_RnL}J5-=g(JFs+1Qo~91*x=x4ZY-jcQ*qF3UnR2$kBvB$sEJx%Cf23xVxjT5 zl`X|>B3l>0UBow6Z?~R^aWKrPZjnDN;|wKU*3+{ z4qfDz?kCc0MkE@QqD7UoOXbw;41t?A$NY^~2C z!=4byjy7+0AkP_Cdp4Z)U#l9wRu6c5!U(c%TcEt!C847rkLw#7ds@fZj>jOByYhp)u z$C|wM8b#V@WynJ>@G2@u&l;zM&(-9W3@qB&R)??bj={V>wKDNqQ0W?HnsPu#tah6d z9iKwsPFR#K&>m|2%ZTEaQWZBEcwf*8hNye+5uh&aT3sU7Tye~w%z^46kDe9k?qFDM zQiwZ=h(Yp`2H5viF1cEJR66GCl$AQFnv96Tf3R26^qX;fk>VKXfm_-sgwwRwv|6%Z z(C#~t4=5maE!JcuKLQiO z4iJ<0HL>!rf5GP9$NWQ*8Rr>r0UK|5LyW@}2L#*Nc&6H>JE(;EG|#Q}iHBT?dxFr@ z?7FmQNsOuo$21iGURMGaSK#dK`uv&IlRafd7^sB~Xcj;K6y3zv3`3@;bEU3oMs0ko@nuCPrlYCI~2As z*&>xGvr^z%qgeRH$v9vz26>?28R^6?NrA}ZNRKZ>xoc->ZTZKOfFfHv<<5#q+jNeh zGcXPvYKU(fG>?Q#gqmLPUT!CaD2)I8uRhmmQQ{A_!?Y{>F7AN9{QFVtb_}v&F<)>N z1zy&TwtnKO6bdR^b!;Wx-i%ZdQ0SlVBMzeTuM*|CypCHMu(tH(5eP2Fm$NmBKxsi*|$*T3ZZV8xDd1>qD51)=i&S0YQuX>)vLEx7dG;+3;piC?Vm zE#kTwLXND}M6~SgGVt|aqB8k9SzFLv0BYltRTwy#iG@l@{1d^oXu8Y<%4GamTXQv} zKl|0^sky_PHoG>d8J0}6xQ55;P6Agl+Fx-Tn!w<^}Z+Rzq7erbt^R5N!o z38$C?ZvMaTZ6ajzV_Ap{PY_oNYH zX(Al zvA%8dTx}z_kQ5QSd~xYPGi-bH&!mDZa3HP_@J>o2O>u1tb+`Ow;YY2MjhQ4%m$zHxBNdvU@-> zFvB$YqT{cx>Y5#aV)LLa9tj!ZeoUu32Y`Ld2m_q_e5SQg;*Pq1(A>B4_JSgsgUOtdxR*6k4^UG0w#&1g|+1}9Mntp0R0V1?~S0)2;=Rsl=3b?asx1(`5YYHbDW!1N-K(` zd)$jndeV7_v~oWNfiZZLqxDEYpdQsq!W1 zJAci*!|ntC>){UQNL}xQ=8UJ=bT=g#%0-p1=xT#kg`QQjf5XP#FF2g2b2)IaL({p^ z6QjXh2??AIf#vkJ(3Fs)n4)+MTFF>oP+AZmnJoPJBjjh)EW~VXm5c8{jFDs%ahQ1b zgOjxh=_JXnDRVGLzvuw)r#*1dNJ(@;y>mp&MKn+}zRnv&W29w+>F8Ts#EJJ4}`PH>uJ3ZW=F_1vG2AK3P)$ds?BN&-8IGmL?nsned!Z%upk%U-GM{A-_UQskel#ys1wdn$nUx$s_OzDc63 zCi2m(s#coG?{DqMOf7?5^t3n-*zCTBoK|(V#Y`A`$4Y25utd;jgUMUI_Kvg0&XQ$z zfc->JH6F3zi_t_pAvV$M628w#uLnMt4$mcoz`7qkBEATp*U%!NT^7VWfB^2`F8OuX z!+(&D4qqchH>`d&S*qw2hQtKi{G023o-{{KYzcWe!T~sCV zfjsWlFO$C(x9ic1u-`hGX5M^esYTeIlc~Snzoeh2f-t=Kl#-E%{N3E=8xm%8;NZOX zUmDXd=(H(s$mQ|{Sm{Q9RQc@Nr&37ztV&!yA@g$=i$=KWLhtM&-r4K!4sd`xWTh}TV zgYSaS$e1F=LV}Sx%4Wd1D+%Ws+ic>A5GnzlcR@6Z^_(Y>AX^G5e=ISHwR@0h)vJ7b z0+em-k8+KC-7o(m&L2B>UbMLX_4K_C39H~H0X4sX?_G~sS)6Coe`-4^ZLENj8;*A! zb?=);JN-(djt>Bwhm@(e7Ex+v#qpGYzVxUgtoNHgbBIEt#bdTHQblG0CUs+}a4TfG zRQ(5(!3N)*Z>k`_7=l_~Bm#?aZ$2N=YWI$9DaLBUvvE$|?yL~P)BV?d1U?a_kEOQ+ zJa(CNitEpCy$kZ*MJww$-C@r8wZib1I7_BX<~)bLlA;w`^1g|J1j^h%V+~=wODD@W zH;9p1)hg#Qd-9k4!i^Q_PrNGtKN#H>I&eGju@4^O=kP~f{i@mX18${m9|9-xa$HNZ zXi=WZ?Gm*J3dWhBJ`f2OaNcNO^b-TAe;ibx}s*~dC&#|1E1!(2B;Nh>x(O|2T*u|mb%^so)QG0tLbK{Cmp15rI!BF))M)(egh>}&YC5wxWb{{j7x>~vstXqCcah(BZo?d5!Alt@(8{}Dp#F26Zfh5-&SfednxnbtCZ-lE z4Oa)bZ5!d!^l0c5lZRb&tzi}jQ-;qkq>{hw4Xgno?Zr;`sgNvrYfwH8Zi zoYoDc>Wftrh@CD7%^*;+oP}@1*6u$!AwFebsjD)?n*LENDmuH`(q&(^v^OxCaR$8X zL#v{CZba>Q+;CVuyvbg^|7i(Gd9FYBJBsDy1+_cxGaxYw{R#L8%Fl#(4+0FCnm&_3 z3g_L*RPMXm8}kjhMhvegt6|}JfZEIAIRgfAg#=QNz4@CtXnqWvOcH7YVpzqcG-vd7 z*)FTS2nJ6?YX)w2BvLDz%HV11*?aw~)9+5JOI{?({*H_O*Nf@~r~7OZE0%lv(?m5( z3AcMEy+uHkm#e`&bW~sdn}a5CO(^D$*gE@h;1+6d;t#C<@vx&cr4$f8SCPd zP>4A?_R<2I&HNtP|45r!cPK;w5oH*p;+hkUUTuboGArR2jt9*|i0YNb`a-S}aK|?z zVrN8Dl4fsH_WeAw_J`F8Yit30jNYN0QnLue}+orRGMj7*gdCzJ>BrTqy&g)N56I)#Z7(p7+xI!s`1 zds^MYHo_^!zL|6O{x2SZ7N$GsNm=J=5W(HWsrL4Q6yOq`&-?Y)Cc=MRCGF`T7cn~YXs zIqb4B%ZA62k?P{K)iacsi2W!;Xh5pA6u;Ub8e$z;K2@JlwBxmO1L7D-gEB;z*|L|ek7{80m&fcjg8o|X-p-SV3OR)QWd z<7NVS8eo^#RK8F(O`Wpec-q7G`#wI`fy^`5U8sg!oShUqIycFX!)Vx7b6>UaI0Qh! zIGn&%WkA6rohSyiZ!V0u&uc+V-b>`9K95akng4vwaiIrLi|Gn3OpyqqY zK&0HYGjq*PX*Q_4xeqJlE`628i3)su!C*W$)9;!D5eWyJ=)?#YE1-Ge)`SEIp@Kae zf8L4!zn7-~5@mB*m)@wF(qBFH(shUE9mJS~?(EIYllU&qr-5>69m zmp>S6eSW2Es9z3EM%e`Y)yipn53*R9;neFkxqYRzLWYJpmqIGx!3ewHg&R@tggY)k zHNghkplAO`^f&Lf8NqErU@hHHslmy!iek%>rvTIGg?m=6u8qMrR#RoXj!fSk?fE!y z5mkePehI=@^gvrA&FDK>0>WUJWX--nRiS8jscXxWh56)an zuXO?xKcBV}a-Ok+NA%iA%qNzaqVkeaZ!83s-?-NFZTTY3;78&Jlp+Q}IJ=B42o`Re1H##)N@Ot2d7zjZki2{C4P?R3j_1kK%pw!c zd+hJjYIQ0m&Vf|(^R^2}*ba>*rd!L?NgyFqR5KiB4t;?CUo{CZa>vv^Dd9;IMqtjP zO$B>8!^IQ8wW+a>hhczk*i5$2<=8%$1xnV;X*R8sU_|eBK3r;VGL51^GE>na>f4&n zJIs~mC6v;M^J5#G(WO~SebhUiHVrVDy1!9{2SF*SN3ui>r2J)awZ7PZBZ5FaqZ)9q2?; zMJj0khO>oR*X4saz^?o#P(>g>aYo0NDiB>5=nOn{A@Qho4%tuSSMdC#gXLXS*_|r4 z^2X=k)a~f2E}YF?O!b>`eN|?TaN-MF%A0hbi0{>=hVG8$1RULJMWhF(7$epoQ|I4E z-JfPOf$n^HfgNWy0@G;VqyT;uBcR{LQX4$ubf>c z%>=y2cx0nO8TA&&Zvv?y?l$QY*pZlic|z4aSET;ov;-*a1z{EYsUC?DA#2;R0;WGI zq<-G+lU3kx5R`LHI#px{e~hx11ehFF$mTNOGU;#8vy_WY*k2XC@qc3W`lfZW3QQYI zKls2hzIIys&LG`8bJj9(BAxodgO0l%Hgkk|(RezZiZi0+DT^}cJ*GHyD9Uhc;)@UU zS;kb8p^)s$PR(MHIpuU33F``g;|um1Re9`}$L%s2ff@Q3JEZ8736DP@-9Jwb7aizG zezvZz!!*~0K&iml*%1&u2yq+KDK!W&8gAfeE6e(_uzJD)OME@<)6dgt%KVukC5{2I zQmn}_>zZY1)S^@goIEiMa8LgCUHw(&DRn?5qzH zS=ck}8Lhax2q-BFmu^h0h#vS0hZ-6M87RTR53pWo75N9tUk1diaAqc|;k3W5sI(L{ zMQ^>Sv8#8l-uHAvZ>J?IL@vIb9{!=aHO4HSLV$(RYuq^bNYcIVG+h(@x`M ztW*jcmp<+eU;)%!6erJmLPpVk^libO?VslL+((Il@a#<|s0?h5_a6Vx8VN*ARoytS zVKRH%rHQ-NLC1qIl*oGZdpZ$vxmtld`rz9Fox8A5rl3^D2%4D1l0;y{{)S;&#}4a& z_Ry2dk?$zOu@h5@13P}&$ch8rj;U#Ncs|jC2I9D?;lz|eTO^eE(ftik%-d!V$TUAG z3tSX=+Yhha*)wxC>0}9PaKzlo|=A#+Ew&a zRYdxV$QbBKLV_jgD-!-6N_{4Q1cUBTFdh+Se0!D9_nma}Aa#GnvpWk2?KF!2DLtG;hy(obpX^WCS)n;w6VT_T*MJLhJ2aj($OrOq(Pjr#lvtErMzfr7yF7o&>^Vngp zZYj0eNfLK}VSVt@unXVbQ9H*5%`+p}0LdN&lX`7>d%uwC$){?4H_j{ZxRLaf7<8<0 zi!NpG(&ySbP#yxxn+7%9(T^8VWMCM?S`5w~SagG2&%$h4zg_18pgAWgzQ5W)rh(5V z;laKd3ohq;_9p7oV z$sT7yDn6F9POox7Y6B=`^sJU7fXBJS)qllRu|)XWx984GZ&zjBX*t}vetwQ~teqGP zWgd7|tlKQQug_$0!b;v@+FF(2{PT5GFAD&U<+{Eoz&9M6JbNuaJPozCNmEm*RVpv( zP+7AU@Ly=QlqIL;0)^mLREbmlYp>yS53>){3mO0G34+ZmZW(S;HfTJX5gPQ}&nj-F zShcirx3toE8JK_1RW4RA?@v}$S`YsW+}5}s$208xHdjIV*xk5Mz)!i7SF)ne_gfZk z|ItT64fBLZrm*AhiKjyTYUngRt4f74p7?o@Pr`1iK?pc0kdn3kfgeX6iz_dd z)iFcX#3qffc~P8@jNY}E!XxBp2|Z$P9;tlC=vOrY0ZWX2V~e4LiN{LpqwJ6+(vjhi z|LpVroVVineTxKX<-?xqizsC%-W#q|z2~VukRm5a?M?6y&$r`dPm)YGR2Z^c+rt{a zu|Fi<)N81|Y!5PKvVMOGU-=}17ppKN0=b%Cg+roK&90(e`; zms!z}{-0X8W(hCJ1`Z^AACec=PzbXSgGm>j=geY5pG-@YmS~5a^R7g+tpV47~?7T^=pRbGRvr zI?6ceKN^voUD@`==_bC%uJHWc-oOqmT#mUY-4#zDM!Swzj@_jBW%!Iasjr^JeprwH zYFNB5K!7m>?=}PhQ8eAqd`2Kx4P&GyUkxpo;Z-DLjc~1)dx{OAk=M#ZZ1fr-Wq6l|DF&n(>%lfY9I{`jb8 z$CM6nQS4qV>rS%c{S6`oHIzubW~-JB4{DJVa4JU3mNxu4G~(THh!pPGg#Hk?eu4ko z#bJBj?9>(fmqmgMh`VgVI(6z?J==uIjiMtBnp$0o&!#T{oMhjy(UisIS2|ni9j5L@vg~m&=SXp1) zR&&7bb?*|$O~`SrbnO?g7#`mRxHas~ehOm>wl^W7SZMnFzAPxaTusjvf;Npl8V&r& z3$4XQrt|`&2c5%;W83_-Qo9mK|JX#xMe@(_F5hr*0N!IvM*ZD5_yd^4mj*0r_t3

&)$yOo{LSngl0gCANfzTyi z+I1x~8@OGlDx{c#>@$38mql1QQQsDjt1Ad-+*M9})p%f{pkQS$v7uB!&Ducu;;#H(MxL@o2=XTf-}zeXhXu$q8mW*WV+Tce38rq_kg_6J3m>IURM z5*KY?&E|uLXm6VH<+v$qbXeIxnzs8gmb?{n-Eg#bbBv=;)&CXW?cg~3)mV^SUWnfI zjY7>@J%GEdYBEgPN)pzqPBfyJaYvKzbn=BHx2Bk*`kx3fjK9Mqnmr?kY2?$XU}y3_ zJN>s95Bm%cP%Jy$bSa-!8BvM2C2Df^En4!yzw_UJc3Tu0BZ72&l20)EM?llW1yY7L_2 z%9o68EGat3%9q)*?XZ3@;>z>bE~_c9w;cK|`RQLCq-ZGntB!7-6WGUT?9ZJfCEn4~ zZ26=ss-AbOj8e@+)VKESHv;wO;XEsz2XGVRkGt}7Eg;8deFY+EY8;2PvL8fm3i6B+ z8r)#V3us9l<&D#Wi!Y9$T4i(la;Y~UECSfaMDcY?fSDSaZEF>|~@duV|aAPSIk9edFgK=r9&=<9|EKW6+2u7}oJSO!Vd40z~ zf`Sv?-4t|MCX3HOogiKFnVhR4$}g-CojW@#f7Gx1XA!f5N^cy21}Y^kDsu#n0F>d0 z2*lKMh~R#_no%=u(a(6u`tW&$cj&Ikc|erCg_2|+E{n!6%x?)?mQ-{W^#BU1Hb0tX zyd)0$7ZJEy!GE901Xkwpjb>WPSmNdf8?0tYP=T1)hWdm(2tP7L!kYsYlS!uG0rcK?zH65*_^zDeeDZ!)KnJDBf;-yM;M* znVmVr*=40jYiY$}al1H>lbJCV>&ePk(A}LeL+eFJGGNHRV;{qXdA&6_Ci>B%Z^n;i zp90|+-)Xo|Jrb9%k;^Rs=00HTWJRo#*WZeXx*WP)@`Op0=~;{)t``a+IjL8BTbY%3 zQ?CI172|(i5Y-*ZULWnN~6_onMFb=dO?6U6GW>Z!Z+CMx0{|lhBf6*YM?z z84rvze2#WHBDLMX+_vv4ZIkznE=>(9L20qgohc}toF&zPV~AJH*o@nb6Hh0?4;?oJ z$;#U|>gVN_P>1}9AunHWV(VueE`L0h$ni8@w&#p933Ap@y8H)yK4Fi8ebG#7@{-ongcZ`EH3{gXvzyuNd0+Ek8MXvP+(blaIsPV zd3K&A4dxb4A0smPR$i_=Uf*Hs*qgI*Sxn0J&xl6oa}U4nOBWb-{{KjO%c!`vW(zcg z7!V}56Fj)P1$TE3?hxGRKyZh~rE$054#C~s-7UDo+njUH`R@0|{qx5A(|h#j-nOJx zt*Tjb{;mr2=9-dHB)B77mgE)0L6P5rm}@yS^Wb+O8XTEh1oF@rE<7b5AnHpR!bc3u6RDL7+% z5D8n;Gt=BFA(&%ZRqia{4DP^Sg9$bx`e3q@F&BWP1A)5jFEZ{UoJzs4C|o0pV+C=X zM2Q35z@7(<_t#;Q-9)@3!%wG&a**qHMXw$gM$L8PKLs1ETw_vU)8;c6wxat3oK9pg z0LL`VagVu=MulR7knKZrVl+x z>|oSO9wix+#IIirc2?IM#dHYz{8c8K?!LWD%g5_`~6H*S^2`zr3{Cb4*Kkk^HhuC&9`Az0GiGz4{b2QKzAvAcncj0WWg^hYQ_~Xd|O0~ zQ)2*TJAv;E_dSdUtX=S3n~#%U zb_#Cw-Elj%%q30EH&--$HfyV|1d33JHS8|-36dG(@IM_$rNoy7_s#Z^PgXRJyKdCP zjP~`xb&o8%SJwPRap8Hmqg<2yqcXkBk=yImi=o4RKBRo-Mt#F#G0=kd38U7tS}If= zz>1Ak6>7-{(}YPsxzQyx?Y{y9^)O!|c&WJ_eKm;+UG|1<}dm- zKXTHb^1={VGP(oux7l7VLEcOBA&LhEvhp$%a1sM^J(zk&9CPSHMygSRy37ZdFvOIK zXO;zymOW(mAw+EFm&l%u#`}A`w@M|IsJ*)fNk$TC4#fs5>j`RLgxnXRdi!wjlQ`8? z2q^J*64Rg4+$!6p2q_s}!wVckX=6Xv_?)ig+Z^7T6{ijI*Pg>fBNmwIjdav`Q=6Yz zSM~N+?7|t#=*M^JGeYtF5PuG#;H-M#^O4d zLpBeD-G%N~5sM~C$G7X=j6swZp2&&}ysi9|j-GS%<->YFJdTcPa`aAsUsx zPx8%@g^41}D}ZurIAQThU_;6TMF)=f zzzgVY8}nyzcqRRh!5No5>{kre%_n&ZJk)0{te(HxP*N zPapI7HMZ!4Tkxr;n2CU=qEoLDID3|F4w`p=891R^ZKbL@D!-6pgr(8(A7SJH?$BGT zf7b99$iCE_P4Ov3_tOkE1Jx$hhTuS~!4J-*DgKbNOJ#ER|FX)LN+<6M$rBCkBp*#` zYtYFrXH?iJyA7-@g97M^0*1T$c&nM6GD#T#TsB#Jx7w&(B2^f8dpG|(&>j18K@dC@ zCwva#Zp|Sud(`_#n74&&%LNke?oap$SmOE!_4_86y05#`C#SVC4Tayz2bsWxx<-um6xQ?rT>hD8Q?l~T zW~r(AcIbYOL2P1bAyF#=i{b^k{A>!3*`&rSwPJg+A|G>`>vbH+OaQ@5m5IC z{nRnwFTPD=d55Z7s3=G?z^C4ffPj6Xckv`eb58f9W!MuGm3h1fv)beR`(md!tvqyk zSF26Z5WqU!`kT8_yF4+zz)k_r15bkJ!NKNUs?RrN6oD3Sd%{TRu8;uEy1^17Y3AHJ zl;u#(8rjS2JYh!ia~Mx|hK){cT21@wq#{kFHh@DRh?R>Nw34v*v&FvKp97kxdqAZ% zcbOsf&$;K(*6)gtFfv%&w)9zN{wBGqQKT6Uj0z~ zL{f8|MlwRcCv3;&F&bBvt}#|bbYsMX#J@lG4Pr28AHEAvD#Bc}eLL{XD=#-e z8l0m-W94B*8=q9YhLe<0-Zs$3KuRXz|0YP$-CS|<4lGuU`h|+dBEQ64S-*=L%9)HP zu*n~;TFF-Vey_#w7^09Q^C#>+ohGL1s%`mrR8Nk}28P~|tLLZoTye#|kw`6lZF7z~ zrK;BjT~cTQ#e8)+L>;jelU#z)dfOh1xIUX8nl3asoK=BY=*WgU50x*DM%=PbYfZmy zE&b5z8~SJwp;D=ylB7x%)~!64#u2ZE&*C<3ybubz3FP{L zDWD3J6?fyUJdn@BMnQ!1l!Df=9F=K1B^75vwq!u10}r!D=2&Ss(6fVK0i(u~mJH_s zK#^J^!*__wL_%E4*hr#%9${Q8Eic8_7Q#iNo z5WDNdN>Ojl_}39nCLV5w79QAzU*d=4l12ZsBYPp>h`<~@i=!;8c~{NcQe(7D`fl@6 zj}(*u6Tfvsw!c*XW_@LNu_O^}SHlv~+^G|5HFXgRMDey1bZ-d^;2k zCyJQ}r#HA8*auge9)MRHP^in0>DW+-}F*J;q+)t2L*;o=hgdwl`G8v#OA zpMsFhQ!6tNG;8*(lsJg8O8foNH-E4(XPHboN>7QE5yTy$34;r&-OkHsu$TbFqw-iR zXcMdKKkHqiCs}?jPU9M5#*<5WuEPrlt70C}FT1?~&4>D4!1%w#BNggidHrx62Z)Tr zTeaSIR0ERVPzH2wcx_I+0x6n1WPr!%vya{ZJT7*SQ3`fmP z-`AQ*T^Swr-#s)wCOi%>YxFM|Dr*W3irCJzmh}xcSk)V*t_ch>prsz&F7vru>`Y~{ z)RM81x)&}RH$*H_7S$*?6{@gmQNvr%AJTn%vMV?}mtJt#X?I_5i`t@5y|dX984yz3JThkDQ%{ zp;bKKaap}=g=$~nYkknNYi-DQ{!bVQ*gwaoF?=63Our*sS@MK=5ljT&B#8y4xr#jv z(==XNdkUtJkA_Wk`KC!s_RiP>wdsk}7dLdsg8*cdy{@j3`CMu_6Lp0 z$y|Dg;Ru-#uX+TK1PXc;;0x5OH0qN1077q53X+|7>}U6kZS3mg+k?^c7O5dpOhy1> zX=1HniEV3DN>I()8VP6j?zJl1UONsni<~XOrIpmOa6=JcOD1DK7uUjNbBn;aFB~4~ z(^yo1{V27YEN18d%8qF@6ip*N#p4~Z;_Tx>*?@S}s{aT^)^wy95FXqM(z){KCzH6K zS$5SrR1>n&v64?&I)D6j#R}vwC_TvbTgCW_(zw8mQZS-aJF}r}@K!}wWx^ax!5ZqO za~%TPz`ZFZ=-oYe#nd6 z?@0^sDr_l#Jv;+)*{|LYww`^t*ok?M{%WiFxqZOmf7|>!v~0{KFT5$N)5-Ak^8>GN zpi05HD9de`McI*hkQ1YgziTv0URcT_Ju9J{5h!1HgJGZ1K#D~q3tO?1QcqNmw=gr0 z@=gh^W3hWSIL^SuDd04azSQDa0c@V~$^^;T0>a(jBgQI2wpVsVR=yC{AQ2hSM@)X# zGMi{Ha(do<4hL`R6?2&~+n<>XITh>ijO^Y$T-a(EU4j7TP!s|4zF)dC2DkVe zT)`UHC=v>b9zoZy`-ctN7-OmLc2AD}B5EVOV6Vj{PoLBvRR=+0%DYEarFChC>Ppa# zzFv6Sra;bL80r~IO)KEucvRb4}?B>8eUaos)0@ z;WUcGP3kADNyAIdNEpW2PqOZWYfUe?Gk3%`S*=$yW}POjvv21IA$QnKFUD7M5*Of8$HCcHOSOPI|HiAPjAN9Z*#Ow z^K(l4D;Zsti@9A{hd01ecuV>zre2;VjZ%FP2mra>iet%%Ro*9zceA;vjZ9951vRJPPJ;Qd8pZ3tTI+`I@S3Er5mX&^ORtI6sHG4VOO3htD^hZl{l z#F~n~JGv2+49uUUprIgiK)$}^OGJ_4xYaw=Y2vdenpO569SKczDahFWsZ@dL)tn){ zJ@Vc7^?=6aR7#Fv38LVonCWyEc{dCppp673BEtp&Rp9^?V3cWBG0uDUH9ZXTSQ?6b zk5C4$ciWb{)bqzDgBTI#Wwx&+j(~i>e%7hhOF0}i!aY#dLRRIm2jCSyS$Np&)iBrG zb-B=}ORJUZHnrf}Ha!&^NC>iVG=nLPl4A)@rJ0+MTD)SlF~IHeAz=}p zM!HRKioV4GN-#d&eZu61syif|yLz6yVV*$?+(WEte7}2zJ8Bc!0KHYAR|w|&ujQZ0 zlwsDcSH~fyTYEpY=Y^=*%Bg#>zbU!B>hda;L2Axw`6Vyp2vpgR<{D$6V!UN%OtbY<*THf7a7rIXUW(t&UCzqk+>&8s*DCL5Y&!qke#BTGg>vrrf?vjbx_{?kT2)o_ zk(Bt$nm(D%Rp3(OVLoqoZ6cq{w(dd+OsNg}oW=TRoiRkQ2+xCdj=iA--!!Lc*II^2?( zJqaLWQCPtF0L$T@tNR}<1W!s+r}%R7E{IlK<_G`{g-{i!6wFi*3=3>|cI>z&_WS|| zT)@<$x;pLrtD_?66{mvkvo7GfbMcMTB^Nw1?kN+UxrSdL zd45w%E3`d}G~Fk%esOK1p@_PZ?q&^1m#h3Bvy}%80+tF3b`O8sirDbGSP8u=#ihxy z6nN}L5`)HN9vdAB4XPyJuaeY23LP%1l6?(py!I2eYB(xag+rkxemraOXPGIRQn3=n|X}1D6CYnnOL@QZ`_Nsa2FGdm^Oa1 zfB%VtiZo!v+M(RGTA};sMZT`tfV<0}V7sduI1B!@l-$? zL}xk;NBXIW&faJCHX!;ffO`}=IwJ-6+oa1ag`Q%Q@Y&Dp86(C$W$RkA*hTX3#d4Ep zyRF}#QIR2ks5&|eU>m#6XVeHyF}g2eCsi|5pJ5@O6H+MD9Bj(y`)U@>iDMXYYA-42 z)Mhw^804%o}qJ~I4qj5%~XR%;qjsI zkJ^ZvOKzFs%27!Bi8R$oa%yh&i$fY1t9x@>+WFCQW$_Uri>A`|q<9vz;>J2S11 zm1ST()7SfQs!cov1;LC3v~9eF4WXGyvF;4X1My>t_jdyt0{A&gC}4q(M$pGS0TFRxe}KmCZ8vs~o;$MAC0-=kaTR(sZy>sDv9ppO>i2 z4_eC+$f(k0te(!{6|z1u=SyUa_n$14>#t0fo96i7EkmaJL~{ThMVrw$wcpNK9Au;u+f-v6PcL@R+md1M@yhcLnqI#>|QtS)D`nEUe6ux2mZ9Z z#BCwj@WPw<9-8)S#N&j2TEkNMcyC4~Oj0{5yj^ZvG*$fSyu!huKov@RB`L2P8O{DO zQg%MR)lQLHs-!T!8;F?`w%4T&*l9&?Ys1VD=6G1A+prS-DY=>z%p{zCQYajZrrjw2R*>y{^} z;c~R0_J&6LqtMI-vV-g4rxYWBfMvl7fdNo)(EDJXA+_}BVmzTTj(L^(W66nT>#_$q zXZH$!V>b9FJFI=gN4Oc!hS{4t*`SS!O6Q%KfiUo6v%WEEwQTtHV9Ou>{ee+Wxr5E4 zYww-r&Zo-O-vh(y82t?nBUcIxT65eQm)t3Dz0CqhZ1Q=B^ZAaLrbMI{eC}H`GrWd3 z4KTwxaS3!@IM*Z{I1nL z9eDbe#P!A)t&Z%Kl#%2t3hl71O3U}b*S6s$rXl*kMhi!S_ZvVqE?UW)&l1wRy-nAy z%3NT{b)A(eBvZ7-(HMqOlVyS|yn?Y@Gt81|PvVn8u3^0NL8C!vCnuI@>zFu4DRWax zp%7Ddp@Q-yFR>)7FO)$+9*&|WAjvB>ElF`WLWr`V&!N{r1BtlYuR1_{yj;eBq!Bbg zyOP6fE98V4bba5z2obiGN8Fhq>2VNfGEbu(*O;MRwQ#kT0cf&=(qK*#*4?&adDsdy za(&hC6&NJYKcH_;v@Z??2wM)NQB~%UOwR!DP|vd;30Q`p;T%cSo@Az)!uc=L2Z7Fq>D{9)QmKk^tRNYV-V~!zX7lFfb9GF<$%94e4 zZB0dq=5K>Fb~fDZJ%3RQKVa2@2$F7o`TFXVfpGY^=8lLqOZM^h6b`xFpp8cnN73v)P1=o6U z{E?=Q?YF*L2~UMGZw15;#Sg?G*9Q~P(M3Q8=RW>=FN8(VRORh?N9iO3(6t7+eP)y&qlJaP#6qSp=ve)sb1^m2@4njTIE4 zq)c&RDnO)<7xdcR-N-^J{=x1SE6AWbolmnq?sN_bHP&5g|WJY^Vmmzb>w@ zgV|w9{dP<}QYE)~&gQ0%mFVf*174T*hmdy6LFe8lteaY7KWtK|B-iDHip z3uy*@A->uws!@OFye_*8k&b7D8OGkopy~Rzmt_{XpwVHGo`z+Uy*U#%@nO8?d?zF; zmXz4X?vVxU6WDjp4Yu!~ zZ)@(1t_nHTi;lTJGR-s?7?$%8D_;m*|4H-lPn*_5KUOo7al$%Q%&N@n4Yk&++7D2F zDnt_);Hv;HV2%bYxHHwRCQ@M=X(;fMBh7$X)JRbBx8J7*#<0m)w>D*^+7g+_>KppW za2I!Jlc)S1>y#7X${T$(dDt*^BaQ*Y z*6E|C#Wy&BS+v?}2ia!Or^Z2Gi(*?mjb^BlBqFLC<^nG~RX)F_Cv}B7o;;!Ze0Qqu zb=<^sdeHuxF?QTf_@M&^lp!>xZyPMm2`vc>n)ylXG6Qs~F7PohM9 zTm$E}yaCh@l#H^*6;U{0sKN5u>aIt=V&-sTN9apm?QMg^lAq^rin)Bt%7dMZpy|Oh zJ`;YmKGzj>?l@?)%%g=W#w&cj5P}$QXkV)h`&P{ZNJfg)He|}U`Cv{(q-VtbN09y>^BOX zT}1RW1ky~J;p}>L1BLAf9i5^vA$)4!nUZgq-TlVH=0(i0RynK<%rKJhDNIZF9`q=Tz!ktP%B zH=^zD1k!E{+wiGUHrz-NWXi-0qmpf^poXV&QnhmOb31g-)7!@}TJxA@ATB&u6;>Q1 zW2pjvQX+z{MBrzhXy|87q4snaTL z(dpKPi6Gq6QP-WL`T=bTclJ}evuyc69IJZalygQ$L{exYfK5uqopti=pj7UKu% zO~zr3uyi_7g9uC^2$I|OwIKMe(1q$UW%PmTl)(g217TtJ9d6G8Y^V__4JzaK#j$eq z7R?GApqhz^#?h8nMCM&h0a=X=$lNDoE(Xsnwb@xvlKWypVuX?Od_Z9yyR1MLe?MD9 zb-&&+O1gTg`cu`N@I$lyG}w)Nfte3>NImJsWZNTVnNm_;>P@5s>~$ znOSIlHG7tqLP!)o)0=_{0}BONK)CRV1rxojkppNF{!Jc^QZ3}dfwkEm`pgG3Y(%t{ z-jrS1P{Q&C-w~rTLw6@1MiY@_{U{PJkO)R%q7b;Nt+KIqGwTS>*A*ZBnsF6tkrc># zYpwNO@_>SwXykRei^-(;g)&ibNFe?FAf5mfWKa=< zvo)oD4{5r|gTre;Os?PdNF*z-9<7ODJjSVt;l?T)Q;E9 z&_qFKxv}=1k(L2ss-(6(!-1yVQmU-XAvs((Z&F(|Tp`ESJe-!+G_BL<*8+u3bp=7K zJo%F0=GYz0d|qE4)w>58~)niwVy6LjQZ-V30A&5^x=M1ZvqRDUC0 zYh{Ym3trb!(BcDvI#>%(JJUdd6$qPGXD;*ijeZNQFBi_u4%u5u)a;rrWhQ-^quO+8 zR$|2pRrd$t1?}?eti6b^Jru*~72)*Xqd6OamI1a&@?bi5*rp`e z-}ZR6h*!x*(NpdcLw2NHJPNPB%RPRsvWb1P&TERvjqDW*^^JKwzk=u+`%VJ0)zAze zc*h~bY4vVZnqg(GAHI()&d%NY;l7zWyAZKP^}S`TGQ z*i`|9z&6VTEXT9O>(=~nCIk0=|Hs$z_HxC7o_~swX;MApCEPb0g@HcmJu`pK#S&I` z1X5X=h+SEFTfI_miRpxz<8zBpi0*bcTWUi{dr3?R zShs%1{hMfy-HpKDLeh$wuC+eAk9TmZSN%7WxJnhq(gOVcgP(?4xtIo&j9l*LdRem7 zQkxwbiL%7AH~xy+>5J*Ul%#4DD$EA~$Y7R%xZfq+7KdF0c12olo@%;utZ_RBH%{!x zU*f1>?QqQ=7F~^}^10}-8*;ZwKknBknT(&or_bP7anZC|I>NcmVEnGjP$P@G9os`F z^3T&73oM$NeMxa5V+BRQJ?SyN34rSI`C&MqRLscYjm}o&-8G-)4TcnR?`y#>J~d*a zYCrJ*4Y&RIY;&UhyQpy3^Te5yknOXtyAKrnYsz4?s@NYj*j--pR~~6Xi)by!&6;U$ zP8O{?vtCO}IQxDByp20@ZX7))+&$<#_ZLu0`hQYNn!m7KS;nSMsnLBCW;T5dh1dxuH`7#+4qS7o{_-e5&9Hb zOAxl4W!2UDb5ygpnI?g!YrMyKcZg9C!*CTM5<3R|s{}?&MJ{N}^p*KhBxecPFpNLC zI*SxGiJr!?w6Qiz>_gjxm~`Qd{hMY;%k|GU_xWqDjY$0}E(y40kz8ayiydKO*BZ06V3rl4!p70M#eBc$oJ zPmikD!*JLDrYTKxjL=)zC%xVgDig}%Xel%#dtHjuD3aMD~g~BLG#E%X5w&o~*=Bibi^x;|B3&MCM1Ip^ zN`9RXx)nwxE*Im9n_O3tc8@S((AzTx$L|qqtV>e|WIBXTP*>c?eZL?EtSQ~M*J+Jv zPrUr2*097sBky7f6P@{{(fjXmHPll&<>mwF6;83Du+lKh_(<%=NwkT`0*Bv0+no*4 z^|A?x=o+?^3?fb@6cA+%27PvV*yfGOEg=H$1TWTfqlo&DH0s9j&+H9$@b+>a{`}8j zm#^G6z;Nzvj6acUDmk~ZmiOz&@YoS+aF`9VWTV07YtsA@A3c%*2vD-XucYMBy{Oq={=!HJ++ zhxGX_k0<;($O6V~wd|7MX~U{we`aATo~}Ut$h!_s7Gw`eo!XW+V5ZV-EFB+q%KE%} z1pRzh+H|!BbsNg?(5lTNc!hTmnRR56UGi8psl_wrhNYzV$ z)0B#y_Wr0hj^nF8r>yrJe!C>tHtLi+r1fi$h2rU)ucMs;)pKzy=p*?ARJr4_+ba6) z+OwOgmmek*Z-T__@olW#&s3fsij`7-Qa(D>mecx>l3h%k9n7C9RGg|osc?svi4pps zeWWk#*7`V9yhzZsJg7(NThUeY<4yeLWOPx|YP#jZ?R>=*b2}(I0rVA))xNB%?(m@^ zx|C;sz#*hpreoHYqSGbF^|py=D65FihS4Z18~&|qeTfqBNCF=SeIq}P{^`@Z-9gq-fHlmlQ3`f4E<9c^6aN($p03)M4e7K4!fd>!U8N z|F+l@bD4ZdbPIGcdm=ru|3i-pkuK3-2K4Z7&l*YNpYrW09pGIVpfw0WJSn;Ocp>x~ z+*LAivTPN5!hLESQ~T=27yoZ*Kmptm_AKgo_U zM-`v%9PPPRC;s#U@B342JXGq*Tax73T}Gni3I%#)$8j+DpC%;Y-QF(*Ro!X5mzV# zct^PQ3d_>xQ`dG^!q6&S9pVE@i^p!^jxumRdAzs{r;-BRoaP_pmp(-jVC-B2=UJ_e zwGCrDpAVcJA0Mx#|A}^)PCTxodw94e=$#+pA`)3Y3|5%CVN-T;@rM&a3M7yyUZX6d zYn@x!$AKpxh;qKhjUs=VHSEIGLTuvu_W8ZHXjihd=w{iDc8r|I{GWO9nlQQP^%1G^ z4!7flo0<}){RZQ)Si25Vl*5(;tF3xx&60fOm^AXVWCj`QM0K*0>Y6?yBhn~#UV9bm za9AY`%d2MB?KkyjJ__|#Dv8{G$`%eo`99D;oHz0s9l${CtKDN!MSq6$^U*f7*8sjQ zr;EVTPO^KZF?+rByo;-=Np0;YqII*>)3&`LFmWkCt358ZAMG(Z^KTn9>8b_G*1gvZ zF^4Pq56?$5orL>{*u9pkY{PdH4#9d~7U`b%vAG`JGri*fD)4Rb4iRydPzZ?#*_-z^ zAaA9*qr)e^Ht03OVe8WgVpi_12zMeMZKJx^y>$rnV|?wPXJ`gnU9GgIy!K9}Rs;f7 zFMIiq?|6JI_BC3}HSW8b&fFxVBq)QoXXi~fd^fcGkFlUS0L8FV$#X9uE`wPRKjqBY zzqDWX%dvWrd6}l#`Et9PzK&hiFUndNcF|=c>@0xqcMe5Td%M8iZeU)*r@wpl10f0e z>ERxZbsfKs$Eh%=D32Z)>&Ofjp5{tTfHvzo)l;L^tkTKjlvE z+0f;(h<)m$M9!_~UnA$mBn(0=G^y+-HJ98C4H(I6-I50XI2XW-svj^68LSLeHnl66 zEI#7-L-{h&{yIrPJds*QleiijR$_g4>Dq0_xAMBo=iERg$x8sEqz&qx@cb7dBjWw% z|NB5P@qTVnb|;|cpC>>P5QFXY99=C#r`rkFNeG|JUT&lg2=WEs1mEi_ebQhF7rPc{hQ=J6rRp zH!g7{W^Q}(99g`)Z&Hak9=PzHrJ^luCe|?S&0R7ysH{9Z5r`UYZGtSWL6&E1M;*0QD&|R2pakAIqVopb;ocu8j?V$Lfl6y| z5uTAMHKq0~Kev0Md;Z{c^7g*Dq#7{l69N77j5Nm1vE87Y({Bxta3xjFjm=F1%b=$jQdKeYo<*TCW`uuUkH9d}O&!l} z#czGC-?)|X6jZ61y}jp-M@Y(r8Qm_nArqB!FwhiMKUJ}xDssLXb@8ob6T9dr;#q*N zrv+CsOi9&6QyET0T#(qEM0u68_=@)VDPE#L%a`>2bIG9g_JwyluNc=;$ZQA@Y5NdnfED&8ft71=+n=>_cHlU!Ey`*RKC*zPetOVVOr@fY&n;}~QY@=t?U zu9(_*#R$KTXlqi?@JT&*b^_nFNi8N|pXq!*om4}9Au9BdsaI4cdD4F{_4Ej%lj`#K zj1-_mmpt;}l>MwldGMY$mek0L*-P zqOEOVm*vN8zv6y8%?0@T&whj2WNU#?uTQG|6F{E&1liGk;q(K%y|^U`*B7`2;pgrj zfd=a6cAYzf^R*B@4nqM&dPZ{gAG@hdw=#`f15+42WLqrfgkrs&w-?FQa*HGOG*)>CRQw>u20X;AASznZ9WCeSVj;J?JXF`_GCmJ!-kAyA$G%WIyD^&{;$nR?i>s znP%-Wgd}u;sjOp-#*0>*So)v?4x@yPXYHre0s&dcw}@LR)G2&NJl(T)R0{Z!4f(=(Q=wD1-B-FQ9OPB!C!)zn_ z$B4h|-8+WA4PP|p>S_5n$w~;x`lH?%@iM8iH4@#-C3is-{1B_6;Z6gj2j%4wACdn4 zKjSN4PEtC|R%z@%%Ca^qQXp#5Mbj{voN|J7>57W54L!j->f?6qC5!hiMOD0BWz>n) zUFYltX~dHF=MsUqD^)t1dz`vLf3*b`=9kdFp7YfQgdBA; ziIVt0gkzC2Oh7p?Kl>RjPkH{*Uu1uCc z%k_MdE79d2l7eU>OiHG?g|de|Y}cDoMvBG*y#m*UMJ}(GHBS4`J?ZaDgv((*mHyR3 z1+UsvaZcjq8^74T{ABoDAmV@b@Wp?1>VN(8UklLxx6Xfg4W#Jm|NkdNJGP6RuQ`FN zcE_ie_saf#a*|IOzuI&O>>jos**4o~s5UR=WH^=_H3Tv$w}VIS2AEj=>|_=^J4{3* ztm}kmG1bYsII@gX=1}V`+ut&_xHK(2JvQcTYNn+UlL~hj-a}a32M5JTRZLy?!;I@U z_F)S!wGGdihE}XSB)ytUYg&c>8l1pKq{~M$z0I_hhvs6}`^Kl~dN5snj-+kb4 zZ%}L3Q_L%U4U^1lwW!817e&sY@OdLxa&tFGt5Ju?paOL>G_tyNfo7#;4f|z-O%3@-a6Yi7qmX7Kqf4qOPMK zkndsiBverE=5xqpt2AwOTe-+iArm&lU`n`lqHMvC&A?;ogmxp7Y#t@S2v5l zVj`E;X>{;k5VqqYA>WDlpuqQQnZhI_XCRv*XJe}Z#;9WFTeuVsn|yd0bz})aN;I@p zhoOs30rz>>$berC#N{>r=9sEe;^dcWkZtZFqkSg#)F`#{U_l^7^kmDJC6D^9<6ndG zWh#6T)HD3?n|>DCW`@tdltO9ac518V6G%)1d$xKDh|eT8dd>!D7B(BO zy6ny@lbH{#36O?i^A_7a=9lC;qll(dnB{S*}^-%B4ZZqYSWKYV$K9mIL7QBp=fT=?OgEhU@G z{`-uZ9{%mUu0P&6`>ELq3wxs}w%m3~R+KoFZEoVlSBzc$&=wCup^1hOc&6#Z9wP{9OZ;96Q6YJJ%%ySO+ zdT!er8R|hE^0-PP(OTV=ukcrF401gz+TP5$>jQb1D#c@#-eC(weLkF5?aeeSy8K1%-c z-q|>?#OnTTv2XIu{k}mVf>}b0Mg5N+HvRAzD?MVgcndmVsStT8rGdcG0l}JU##gPm zo8zLhfNr*&?=D4~=&S>CdhUa%TSH#ZcJ0JDm7YzlTi)MlD3?>%9Yw+&Q(_Nt2jeXI zOQVa(v`A5c$!ACYxpSnFfF22)>%~^Ln4B^OUK03&OG=fa!@RnMRvEbLIbtSD2%OTc zg2h`Q%xRxYlJ_mm*G?vB(5bJF$EsPzEz8m+aS)$xA(yI0*DSv86(W|DiPS&WCV}?* zG;T6^u*tU4!b>FJG6BUV!p;BZ7Ug;{7KomS3ZYU*y@xWs9%F^^lM(+?E9j4r8nvDY zw%a^J=%aZOIty_gP~XG)a^=&WXg5%0VdU1g#RxjfGm=`vd`3BWz*c>`vrAP+7B=?)$L-s!r=>EPtnEo z2CU7}|MQY0121><<}K4QOmKSsw%rFzRlqbL0Gw$V(q5$pK-R(7UsB;tSGN)Q8< z*ibH`T*AQ#7vp2R>#|49@s`MeRWukRX9wpj87___X$PBhG@7EO6q-Q2ahBJsNr2Y3 zG&3AKGLk?;d@kDGhC;si?6t{b#uY^l7}yxyhb@+;PycvT6;OZOU>S##ONN>r_5EvD zp^tdcSzoEWk7X^Z z$X0+ohkb1RXRv()Oh+WYXw#lA3e?D_H`c=RGj|aP{Y3+vW<&I5_pL zfsgF=E%P?Focf}!oD@aGh8-OH`VI}iOZOgG)NYuBz_ zRljN|yN(K1?E*8O!bsxQ$6xEoJZV$3;{OpYFJcz(GK{i@Q(yJ}PO|q8>vZEc=MdAT z$pWa--&)mBzZ|~W!lLf|s?#$yLX&A;N3rH0{4HVNNm|;pJ8ZaI-8b+;{i-u+7QtB% zm+%dYsN$;ps$!ZB45-iAI)?S5wI_bqD)=-|J7%xTeRW1|amD35$8^^ zmekqZ`_YQ)yk1OZ!%WLGi4d1Pb-6QA#m%%TwwK!Cq_X+gOfvbwyPc!adPV5FxY)?9 z)ww(wk7KwQ=6}@ZQQ><52{>>(h)e;H!UD`wWj9-mZfSYZLZ;;WKxr=e5>f?A`QVGjeA{DB;Rbt_v zzd3|a(FdteF6=fUUpqmjHPQkN%QJl9jKz;$v8VsfTA)-XYY`46eLf|mw=^G`C!{gQ zr?;U_Nq)qwwS<~4>q!$Jr4%ZKjQjRrUQD+9M(acCCv+egNC2~6PMkIt5ODwA#mwcR zac`4rTI?`*n3R2>Md*dPM>d?Hi&uEsm$!O8sA!%u$JaY;S2E~1!YNtnaPxh=5<4we zX_h$9W6C+1YR2x)G+bqg(exja$}o$VR!RV$w{72LS5u^18;|og_e3lcZ&%nSd&?w) z`*3Ep=0d8VWA3G^v1dX^`Uw#?!g9nQ-t8CFzBi`q*-f{1ksS z5Iuixjq$qaq=A3eDRI)!EM?NjEX@hM{wl|V@3Z+^3USZzMKUP&{88a@inYuUFhgHV zt3NWWuWOlrerLUN;7%Nab}RSDuAs^LP<%Sb?t8%8c@;JQ+u~G*K!Opq5%u0Q98C3m zDQYS~636_K^<@yb5&y*E~byqwY5jP z9eXW}{*&-jH~H0FeBao-b@RD$yAN_K>RnMtKFSdZZ4Ja z4TAT!++OiH63!8#-^*1}&?}fZmZv>_hkse?Kho>pJ*ruU;gMVl^irVD;?C^I%~1oD zsZ#j{RT}39ZnJLTB*ZYT1JOoAZN?nCzsBxYrzlU8m6|b_HoLlINuM)`$j(br#{s#E z`}j^#Iyz8lu*B(R`hpea3`yrM_nPx?xUfB?vv=-YNOMBsC?{eeS!lLQZZ?&Cne2~i zf$4GjSUe(KUV|r=Hj|C6PL&wA zceDF+<_6(}o{N(H8gq~_x;W3u*BG7jiFa(R7f>E}Lo7Vu%dxUoETbfLsA?>-p-tXk z9F|6(D7@mFeKFWw`cvMV}d=sJX+pwAs zn4ljq@ILV{8xkd#aIg*QI$&L3SHXO?i@(Uc?{fI3Nt2fF-Iz_0F?(CM z=ayWDzsN}cC?d5bpNo=v0qYnuA6##320BXiSgEB4r8D-2{|s4A!m*uK?$tpNw&duB zP*+l6M%>nXAiu1N0wMDNF}T1PfMCW*q~PB^8XS$5b408s9&K2hFa}xkki#&>F4Wow zbL7CiXtahNE8hqtAA8yb2v`{u->|tbcTv>jzhn}e;5=FL$H2-#e52$F1#v}52bD)1qRSZS8dh(*}PnXB#F9i*i z?e9n5mt^cX`n1?wj$3trx077DGj9=J$)R8_G71L zw_sqLC&zqVy`Q8la&4oNe@ZP^tz>0*RrF?m;4nXGj<`Uv6=`Yjz_>uSOis!%-nuS_ zRw!Q8GJfdI;hpTkg^!@noSV@4;-|}@H*9vqj7GdM?F$DrjTZL{5f(K0zme# zi^pVym}lbDEBdwrvIt<95>bbEr~Fzp-KBh+V+Mi4L{QuP1g2EY4Npqsj-b03o7h%N z+%6S>DU3F`Sg(JoqYCjVY)LN4a@RZ=RMVMK(Ch1P3JK4t#gkhg*XPR^QLu{7-4fT~ zQ4@(d%?!!Ju-6TKyeHJC4v`U=T^-e}iiI{Ubrfvv-MI`H-7H4iYYye`o4wS4ru*Y< zhCyNGz1(YP$j}Ip0I&+BdZa&&DYLX|f*gh=3_gurW}!5&ww;aY zsC66BFaBG?P47cjL2)Om;0%6L9M+?29> zx1!mT*Ly?NYdt?qw5NE(x!0;OE7qz}b$`Hl?|mFmVs@B7gNQ~cIC z=Q;7#F-)eZpg$RV6Ap4eX$8qH7>GsOaW1bPeCDHBqD4PeVF3vRrJT&#cBRv|6q~Kk zkZ->dBVz=O(ir|p2)!?!rA9MzY!?|N@on1OHoN6TGHrT65#s-8r{5siY^97Om5Cn` z5{)}ycaE)8`$H=5$7+S%B|C9A1Wx0Fq$=2;(ADeXuxO;qaP{k6(m+;lx^?h^sA;eb zMS1@8h{W!ek!+7UUCPWM*y>H1(KvynY;b!ZFtp1rc{$_QEPtihn3fU6baeSEGCkCJ zjXS!EN~2O);DFLkgDipHPy-EAS!GI>#Q&f=nbAwQ#pbj9%_P&wB!SWIN5|bxo!b4y z+j7O3*@`eVp6$p&uI1+DLi!4to(pZBtM;@YV|pMGi1w~IfyQ`OxT*&;7J3YnmcJ2w zcO+e^`TA5=R1AIbr1_`Ky>vj=0eZL#R4Hm^$dBTP?1HNWg=WM2jZ-PJLqHL7vqq(u z`+02r-Xin2{e|z`Gcl1w(~Cp`D|>g2+AggEfg5jmifQd;*D-A87bR@!hAxJXPQH6i ziD5;3PZU{8^rgbRnvEK+Q+eNrHr@&yF=$sJbq*qrdhcI5HK)=U)9rJ1k<$wAAxgal zX9=%=`o)|7Wk9sPagnj2%^>rw?SyBE%#&@0ZMqEu0{12pG#%chi-!3*J!agDkIKwL z{#m{f=N=S^^W9JvVRu!pD2=`#_r;A&lanErS#EdLAcl;^kFIHbB&@rb14{0cA2+TQ zl*?mr)|E??3kC%exJT-|DVgFvFlqbcdEYODctgv7)aqP}G58M!W!paxT*<$lDOCTp z@ZpLnqi%;nm*vw*r1B^G@55Rt)>Fl-;x}z(bhsB5YgvXt)>}C$BMCbore=xL7t)gZ z26Ns*QQ`@$wUc&11Np~V)FvzLYoa?SYA%5xdsI$K4F1%(e0>}#dB-($B*Q0yAVd&7 z8Mr`v_zgPPHqiNj2ptwRoP}}#=@QQ{koX*Bi*e4*Iv4}Y_|5tzw3|cAg`iY6M4A*L zPZQsSh}8MV&Pp83sQe&_Yv&zpd;hVlpk@Sytw|Ex)GKS(j+K8Gqhe97kA%XRLDEy) zx|^fCAPYOiu04sD6)lApc3X%Q;9WH*y-y)0HBA~E#gtJ(o;mkHGw;#Dvm#`)3D0Kd z_KE)r&k{0^ZLqX5AwvO2>fHCPfr|-lnyu7C#?PyihhCT7<*ITkT%vX|XS`M=trOEJ zPu(gfx2m5#Jd0iI{l@u|s;?^$4pn$n+RpuY!eZ`%Xq?E&`KDbkcUR=PLj&ap?MeC1 zy4gh~9(tx|!UQ~4vc0cZ;Usz?wBe^~-8OVNH!ZEw2>+C~tKkoNYn@6LgYRbh$gC$E z6>gKyw?*^E;Z70#1@8N0U0ocnu}t9`X!WtVv!*qSbHmr5l! zVcAB_HXvHku4pj#abOh^8rZlPYsec9%uwi)jSK_UVa_!1>{?LqI15GYqV zr;%ie)ksvUuGyvZE}PIrNgU%(XyNqJccDhIfqz-1`0-6xy#35m9GOSfz|u+9(o#kK zm15q1S}KlDP(Iep>aDc?ANJxe0+A*K0*T4A`do$XWwVWtBX!nx|2 z@<0sui{R|B=Hyq<`>;E7OP{!IZcP^?FwreVj;PfPL{^4y&6xo|TWUJ>9_)r1Jlf%g+4?sl+ppTuU5>UV1v(&(x742bV*p7F{-K^^nC*N^p@aofO~?a?_6O=l4Xz2>a~9- zCN>1R^cw;pyT)vyEwx)_T6B<(`nGgZn8k!ZuP4-IK?`hQ1&20*1$T76sD>w_nt!;2{ma%gw{FqCWe5iKLH1ePE*E+AB9{pkwAk zox8A&h;Zw?I9MhajC0;s^Hyr>J>Iu~^is>`h5Q{9qQ{J&eg&SlLWaJSaWT}y@kguy zt^~;&t}&8vQN}+`uxi?3yHR~OlgJnBm+4wZogeJcr6}56$;L5m&_i=!fQoifFIQtj zaYb&MWgaU{E3uZi!FYhT{wsi(?Yy5<`nNM;a=K@|u9K8nC`ZheA9N;ZeZYj=OHRf} z?i%_o2@F6W^rqmGPmdvPs4`OqV^_39gclUx644T}%n4EQ^C{`lmkhf^O}FnPv802= zD(e>VO!haR{S6(GMj&<}g(K#~8Pr^vdoE|#gPADHD6-bZ&-p{4u#vfRn)>@)Mo~F* zSww?py&t#$B-9RcoB=gzk!1QJyZ2slpd|l| zHaA)D*U8qUo8U(3H?1o-!9!6zF5vZ)8!zRfzL&lS&ED(P`SkZ3&_nL2y&N|P!5b7L zt@cu8dNwISI8Zj0&kPz2%9Daddx)dzY0IrCzY`pmJ66KMk6jXw>uu|tY(>exrnblG3c+{WyR6!AqeV?{F2o?}|pcOka%nM#mvdK%|2d zz?cGSj4`%QoC@n-$33QnwNj_WjJN zf{Fdx5lf3tLn7dE#}rP!IrsXY)Cx32fK655ayvv2fY21&2ZHA)zQU1M*Nlq z!}T^$quFWJF;^waCA_ugNKamB~e|KxM%%5tJt&mFR6>|oY?;hC^$C{k27Owa1 zmRGmux}rZ^jc!QERdq2^iDLAT2VGhMn{Q7qsP$=!Uu{DhpVEZ<;U9pQEKTQI0_CU% zF$;CLdt?)Os@e@=k~8{PdJ&hacY4bL=lmzotw(`Qw`JfY1qKrfS9TIepSQZ$np9;| z+@T^#?D1EFR)hzQW}JdQPg`_@>Uo|9AX(RPMH0TdMlH;_hn{er1V1M^x^8>hsrHhR zikAD7`f^3}MmRj}apgQgYElTg`LMJ14LJewffYSRmci%Gv=d%CaNQ!OC7N+6XpMbR z4tZ9lS1W-q*G(-k;kpwA)t8SsE*j2Q&KyOB8@joEuxOViC7-|0RjMZWEil`E%>NcSM&zw<)6?7n0tvghM041H~RmdTSDO(dYSVwJ=&bPZylq}>*?>LS=;6PEoMlGrPXbkj*rKe5R@ zwQRAHx}M*u&pnPxharaxB8PBlq7x|^FQZ;r~RFRtv zmT!!hx*%{mX;t@U~pdWiO-1ZFu7JMTcXRxa7B zfXN6yBc5*R7LSn%)A~(?kXilWPlHmj(vgq0eC_rzYFbj{l+c@`A@?md4+F`%=b*_Z zu}LPWFNZjTzlS_BnUFT=)-r{HE1}p^@~Wmh(Vf|VUYr#F9ct%we^hoo+P#ho|Fi`c z8@CvKFsv((+d_0Tj5n$p;y{zh&jyZDY!_9h)_1yc$By zLdi)Obz=$j!rQMiMayHs)UQJi!`x|l+0Ugb^~FibNqW9W6|O{ziuItv;Aka3T1H$J z9cCH+yemMm(RvD`uRW5>BQ$Kfi7&(a67HT=@ETiAp?`M);wjmIvRnmqIi2Aiabt zgI)M8#Hl|?qE%aT3s?AF+G`7kX(iin&!Kg`8V~6?g!nlAsqKKqCzooKb%p@MG?v^} zs1n@gu4{s8kb6)IV)9|*GO8iwNJqfVFq+Ik4r(GIr56z-L`JY|b_kU#P5=&%R0N^8 zD4p5)7ItAn(^5Q)m)K&U^WcS=6NvG#p zl22v1cz>zDii?=F^_g|QvCA_<8GOL10k$&;7w&*;MZN;iHj50&dxNg;7({Y&(S>;~5hn1I6Sa{-~Y7G|!||wYbBJ5L^Bz*A-X;Te??c z{Zb9)HdX~O5jm`Zik(e2cUWI90UIvoCng~)5xFcCixEu*KwL+YxJ@EP^}FRu8n`~^ zrK(jn3q*rvTPoeH*&?~UnF}Tb@Ly8lyL<9)7J&&BdPj>+3VTC8&?$P!`@5O@7WOTc zXpDY zcVs$19go9E0*MJDqBLX(=SRCHC75!|ycQBXk+HfQkq3hSQ78RT)@g8J@@23hk=u<> z^T9ykNh{PPcM5WqL8-fO_pURqc2AipDN4dPll;kgMAo^$f;(61Q!W(ohnSrZc%E;$CIPSm1qd>coC%u2qLK~CZur!nid{hs){-%y1#TS` zbDf9jSI+K|sDy86n0>dCTCj#Qk2T1=SGS$lt1UC;iGDOMo798~O0U`v-&y&~b(jPx zPz-0`PuI_r$lP;OZ>l|nK?zg+7AW99wX7!!n#6C{T~DfGES`W|pMglL+x|p^mLsVP zn3s_?lf5O%ku7W^>}$Onwk^{tmkCw>@&(D7R#)n|R^_7Xh;w}h2G|^EFAJ>j zMwrzLRo7#SWdKV1a$+ z6I<*bKaM=ioGl3J9fha11$sWN9Q|(C$!EJ%u-*5a`_&k)H&$+YLe%k!!o4SQq9ZzN z#G7o8kC=M=n6Mo+j|XOy{eqJfjy>G@=Ez`}c$WbmtW z2XLy-nRK%tStr>q*451CkdU8omuzg6#muo-V&+WmM=}Q+&9ioPr2z`8Vj_SpT%Rn=l7OqvCWzpi|ij_5?NeBu>(^IQKi% zP@aSnDWLRCNke!bosGWD2N-3{-WksWvS4HIaXwE9BMu1Jvx13RCJ4ra-CHRJA zh8W_=-I;109;lihy4&~hcbKdkq=l&4_Xe6^HwahogYC9{Q)Xe9__g%`J|6QOo z;F_bdHybLKv!fa!(e18|2%@;kTC4?pa!Qzjl2a1&MhzBgvmje%kR;AuoN=5vQ zI@U+SgC)L8HFOF&PiEE>`xObC>2dv*2LjrEOpHM1_DAW~3Wi>ohkD20m~}L|iIcT5 zD!D?RL(YcXeqfTk#Z91q%fcPPL@dmRP$gWz0njT5QTAfpB&M((x-nP$k8cx1`9xhD z-hYV7u`URQV{UWO&%3HP8zd-V0*KuGP}XHsr8uae3qy)CPMYSYw(smOoPsD7h;VA| zKIaq8U|EuFzpgF#MHTk?ROATUke{^U6m~C9S=B0z0J+XMLfi5}W8An*Ey{O<7s-qJ zcfFm~q3ndY;O5{;$@tE*)hx)Bt2m1uDly_cEdY}q{0_pGjWWIsOvbp`t0V8P1u}v< z1~sM>2c93HnoDBa#k#kv^iiIFTt`84;*^EFjd0J+8W<8-6>)pg{HClq)Jv{$<|(Jp zr<<%VfX^3@^9MxiG6jFg59KbzpK=5Z+2Tt>-=*Vyr^&|WhKZs1PFEG~gtW-&W+uXQ-mvkHw`ZLmpjqH?Q77Ee=# zquEG#NSSc&@dGoLG#SPzl~HkskRZE)e|{qWEGoN;6|eUXWD{XT*)Hm4AC9Q5#CE~; z@%rQI=G2Rej0B1di(WxZat7GOeKmECeo70ZJq?5ylY<`y0;||3B#z*doaLbW zn?Hf&I}Kd^C}$H;NfvZ8@pAec9hykMnLd{jKX__W%IDesbOslp#i&jpcUp?z*5?J3Zf{+k z%FPQsCq2`!Zd+t#m;Aw#p?8&%U4TF;%{q3+<=ab&y;z6NBM9KgIBIZnK~wp_Kw8p@ z+!I9~-OlP%css=XTdumD;@qM;d-LMQvN-f1Z_TPbz7VfAw+2L8X6Mzc_Iqs_Zi`?_ zZTQ(zqlxPWXx*E;QR+YJS?G6I9_fs5M&qr`s_pzg&Ec0(MU?ab69kkLPSSnc&Wl}ozBH>bZ0zvVGAbVKL|3N~(gK1uA7BF-T%Q}6AIftc@e{yBai$Q` z4(3s*Aecm*yIvJCuGxJS}JN$v-gd=U#`aKzS1U&O}x&`z6NqmoZUT*6lWk#{s zZo%RQL$fu;?bRh;LUEi{`q>MLI5yc|s4k_6$Ah`# zmhb$rROvlKVo4QskwiMgK` zeW`>+pQou5SuHzwh5UbnItt$>|J|oO9vF5Wqly3aI^l_>k0H_j)Kyj!|07rae$i+6 znwtM|M-~SdBh6rvZ1BHlJ$s9S$i`~M{`;T884v)>f3N<(;3T|q5lOn!uC~4LZ!jZt zRhn~D#*|LbN*dk6wlJt2XYaY~8T}c)He3WN>AIZNOrzU(?S+v|kM1JqNZyc1k^mfD z=~HhlrGM~akc~I>p|FxVGa8!i5VXCl2t55Rg7!}1fl7ndDY)P?WLcCrp~g{#+i0?-k}p!8k;YlG^aiwM{&L&1Ko;aT0( z0bNSAF^A1=*r{bu!lbHu5blIb7J`vWss8@z?p(0MzPWVfu#%%3aSG81#UNkV?wNGl zIOn>1qSq8UX`!iZ)SP#oPhItN#k1SRUE&hoYg0v~KAgxx?y&})!i{TQ7c1wlrGB4& ziuo~!r*k!Szq(m%9UZCS>d~hEO|+o<8}?#sw3kYm$Oq#~^FZsvM{PC|i#`P6=AI@T zn2W&P;veYhY$95RB$T*@;>KtOY_cCFnGYh;5Y*hZpkVrh>E;8fYj&?TTnEv-!8|tp zBc1o`BHFpMVM(#af--gu+Z9D&#zZ%o!PhqZ`P}@O+JLh0j71QF7etV$TAw?gR4>e+ zQ1Lj~+`g@EGtv}(@f885WNhFwb|}o@CxY*#fc{yEU9?DIP{@-(GJU%YJZR$tmLuX`rEIuW#{dz!M4Wk{QU8SREy4uXEP&Z8f! z#^qJ~GA=Hz_<8k~3I!pcN;lJ|H^|F|N&c%{)YjC6@zvj{QqK+sPnstulsfZ;wYU7E z5!@!P9EFjux{VmCw;eA-L{h&!-B+$F%*hE6180*BrH!^uv@~ItFF_~ArT(L1(b(26 zn13%D8cNFXEk*He%!# zlUMn)UB)$L;G-w-men(B?(tP$jN|}9%zN8Bp zdf!~p7mS9$YP;@mk`F)oNxlzE#5+WcFmLD$1qZmo<@j-`|F}~_AkVbhdJ!bf@FqN8 z#9e@bQ}{F}W@7^rnMUu24_uq>xffrUW}n^;_an<(ju`*9OkPH5B8igc|7NdcED=HG#P^fB%lZ?09nGV=*_Y~0V79@T;#$$|{Ezil5rqCqIZeBMcQP1!$8(92E-`EA z7j&i@>1c;fH0T z%LKkbnyxIL`iIb2g`=70Cm$SuWeM-Sjs~hHck6YAR;M~0zV`~xS7T3^N!ILX)fA9MJE4G3 zR3)>&Xsxv!GD^j(#?sHYDnfH~J2r3L8Wqezy;ahBDc-wi-%%JG>*wDBhCH>|1+<-_ z>Yn#iBM^H{-9BPlP)Cu$#WZi~Pz0^82HDeE9~;ZXo5?OhibCW(BO%u1Eqx9JPij(on5Prfb`d{}Wl4&Te z+CJ$)&lRj}@a@^!y@(YXT3ceO{t;wlyW=jO)(>%%2zj5#GR@N^ff5i(GeQ##}$UBDi$fq+Q)~$z9 z%c^lhywA@*>p3PXI0RTxBYF+^XV-Re5-$451kxkdmX2;(4|j940jhtOAGCZWr%KlFXu zmr;+73%0bJ!QbLkWydumeXHk2aK@e#fst3ng%`du|6;0we|sq!E<0ktsq*ytYK$c= z>CBEUn_tURjI(SE3b%>2>WWr9)AoMoaOPp$ze2|nulV>n(_8WVmt-3?0d3LgiePKF z3PP3g#{a6)!(UI&T1i`%^l&KTQ&j6KL@f+O8-tbJh&y&)`qlg?iy$quKey925%HcN zVRYf69g2gQ6ej{7rmk-CZU&J6blDub1rUZ90e9BMy~s4g7K+`)=_4tZC+k}G^qFke z0OQZUx54;Xyo@<+()LOHJlC0%M2~$ z(J@L^XJzU{&t%sbR9OkX(_35q`3I->UOn-Zp;8uhJp<@T0Y21ISqszOhL05BR5Q!I zPwXTugoY5#me4sj8K5FMQlY-SiB?GEb8Hf|jw+Ab2T70^2k|o-+=I8{VGh%^J|FCr z!|bC3ip2LI^s`JqsnjRPnN5R2{zpW?|3qX5YkfOek-Y9@r`pJobT($WO8>l%7pVJt z8I{RFrQ;UR-j+-RZ_le41C}Iz7vwnIfh7B{OBl2kA5@V*Hfiy#=+_yFYn*=VKh3;| zUo1L8G~8kbJH9t#epfU%<-=qC^a*EuPt;Sr_p1z+rFwUj@{bJ=ZX9`$*CzTc7ys0C zN@QI!N%xmm;Q4;zeAZjt1Lu<~OgmA;^PW=QmX1w)!tPq(y9YSH7PYChe~1#~_qk$v zCuu^DOP{LLbPJFzi9<}F#Cr&4C-tMNPbz188fJFm@MiiX+_<5i+|19-iwmdN?k!lrJXLEtQx^7k$#$rdlNKmZz6VzF_T{x4W-Dp;*15pum ze1z_%|DWq_EYIKN^YQTixdVC3&m(^Gcwlh&*K*+R7yrj6so-5bAYHyH=$LBlumvDK N%JS-RNuRHoZva!rinc%e9-NB>Dxm~owqUWS80lF+ZPk7Jg!`*wbWVe_! zp}f&$uJ7hnKk?B2VD&RE1KeZ@^1JpL$iYZb&~>l%LjkR#X}XH%%p6?X-8nL65Tex5!dG%_zyCGTO2H#+k^qDtd* zgtB`ULYu_cTPmT!_gAuL9*R|ehRQ^Wbjfih$b;Aubm+ts3# zU3`2z3fgEht5C40oakE?3M6%3tqmQVso$_V5y;Z-@M#)3cgMGXCAwp!Qc_X^;akud zeU)8XOTf&`tUrPq)jmy(cH;$ATn02u)64B8~ z4~9fdIPOT`nKhzfF~0H3BW4uYT!^!osQ&!UJRnFQ zsJ8$I>41G;|7mR7RDH6b?<>dq*D=$*b5M7oHm+*C%xBa<L-HCqsa8_pf^CMe&SKNNVR z^l|PX$8gHpk?0RmA{3FPtP`vI$#6Q79>|;9+b@G@7jz3e=5&Gt*v?K42AOrk)vByB zc~AD&vd_sZ$QZqcfS}`APtqf*DO}Id z)8-!#@W!?NHUnE|>1)?|4jCC4L^`Es97X2q3|}>Qu-QaL!Dsw^+#FITHCU`1Qqko3 z^YR9mby?m`R#$VWkrem!^<|V&KQb*;#J2K+Zb~&0d-1{&DTp(*devI`iLy*YQwf@R`pEvb`#0C0jiXxUl&=#0Z zKUd>_6VezM!X~wkLSZo+%4*haU?8$hFFHfEn3tcQ5AKslPxbb;xqy(+x6v3gb1D(Z zU~r$H;ow$q7~Cz(QjPfe`B5J{NCnq7l(6m~VgyUx=Dar$ENN_M$ppR)s*n0YeFt&C+s8*6 zL`P3>m_-B>>`vQPzL9V!*p&j1ik4SEV8ng>`pnA7^r0rvN&uN|Ja_;SpYQ+hC>QtsA3e&YdOi6slzKZ)!{_)yb?DjzBcIYj(F6n0rgbUNO}ctEpSc@7P1&a z)un;ZAu15uu!4)Tpp)esUx}&AOTNR43TQ(GI-LCKE&LQG6v5|trhPB*ADH$NXF zO_nxXX=P<_m>A0ztrb*@bWvjF3?if7OCoaWo!zZc^Qr7&TX8^`Jj+u7dLB_t%|0V1uZ zw>LO6GzCQ3K5nH@ATmQvV=4KK8M9{@~&=mume%`hVwg!)92`-w|RHh;ua&k$Ru ze)Z)p0wzr#IYTI!^QT6;A{V--_V{XV2Xz(xkU&v1N_HD3CnqcFD87(|u!sm!1_rc= z32rtUGgb2Jj-fXsP!YfEO4 zHcASO_j@GB^v_F*8KcI#wqlR$$0C@ifEV(d2acoY_*lCbYoD)vK|L2(b* zwIUBhSLQcoXx-z>L+`V*-%VD4XJT6rd5cKr^=lqYbZ6{~GA<%=cEWJi%?W+4`XgM*5L zA=qT^)B$KDAtjw&>tw5VNR}=lB68R5pRmu}d-r-ubYVr86ciLZHaAV7p`n*vF`%Cy z4Fop^^6>CLPRVz`yI|jdpXRMt<{|zRW2&c5{h(ldMJV6n!>outZ>Z(6c54Q&x{a6X z2x3UOoEoT}&!E_H>clvETwlrz8||PZcL-!QfarkJol2?AzpQ@tL|@d{n5L(v$I`pwQ&`x?jt+4UiETvGGb z#z<*p4j7 zp+Vb5(oAK%3M^5~;e;}7nioa=yUvIVk#p_28dJMrlrtYC1{)~f7UvnQmvL7+h+qBR zeW9YR#1v2>V=cA4lo9~wcG3kzBVg=S(Fme+?g z??|T$9hx^>yEN)ZXx2&AG7jnqgt-J+V^e|8@|`pGM*O2a&a%3ct(E~Uu|oUo@AWOb z=-z5>R+AYisp+g=Fq^h!hVw&s(bGrXJGvK|3=!OR=m*uM9%O`}WRm9V$H&K@k#Z;N zq@tx2*3~7euEC}(bDMhr4-e00YFcpFb=ioGurM(_;N#<~4DTR*_f|4u7_^2*=gw@_={I@$vGy+uzlt%T@OFC&^RQa_PY@3QxjqC5q2}x*oMa zo)o@;uMTfcx@@h!Z^>y|H8>8P|Ij@WK-^wrKdVvq;ARSC>hqX>@7;Dd?bE$A*Cu9V zWO4qJuz_mT!ST%CF-w@dX3NBr>QH5`;qIK~?k0!bY>^KiKZ5Ipx=dD(0s!KikgzZ# zxNX?6qL)oXTt>ztSgfas#^OU=pq1#LyaV@61+)|mS4I8u8s5Hhr+=?r-Ze>Q<~}Q& zQp_Y%!*jFqSDJ!6+iNWrhWU)~`rnQ=_E=)uen9OPCPCfOBRuAgGqrGpl0oa!j~_o~8D(c@ zgVtAKgq4<73iJVh4aqV>xMy$oVvC08A5bimPvMV9jOqj_6UDARyUqHOeTz538yrSV z?O8fpgWwI@VcN@%y%<$*GB`N`Wa&@|d;)*m0NcB7P4Od@%5?B+NB84suIrnO4dY&4 zlWT+Zr>1t}=COyqX6a7Y0*1HO9Zks>y2RXq7YeaNcNVng-ECNm9frl|TYtdN#N$v5 z(^+O#L^#{Se{?{wf>)CL0^9Da?jgnMu*HmPIpizhj7m&uop!>$9W?_sP30}~1%qQE!vlburGP_m#JOq+ly^3ufVw!wkC>*kDm*j zBh8-?HtbZOOdogW37=MNU1pMFdG3gugb*uzT^?nXcN!X^3!$-yX=!Os((hh(MgxO` zmo4rbQbtY=fcw6nm9kLm(z@=c!VGAY-OpfGL^Kq)*@Bq?L83}H$H5op$>(9bkiVs~ zhq}o>5L`Y}Fp7$gm-~G}eS*zs2^29_xv-CzI8$qbmPF?(8+9`iChPra@l^kOk>7j< zoQG~ucu0twkIy~OC_R4qRL)36t#i#Wm*fvEl|8=|ga6-Yxh)xmkyZj3o0*Iaw|iPV ziBjkIVhOiQsx1as*-{r?$r)Fop4_7mc9KtZmbbvQHu_pNTH8;4eM}@P;8r4yyL3IW zb#TbkQDzBND?rG1u0m&waQ1a^E|lpX3=jNP>t@hb$O($W58)daGN2Qbg!_G{2w{)L z+E?02-5*eNXNDJx&Q+iFisJd~x1?GhkGUt0pI8~mIvfmY>yf9U++>XwJ7y7zWcQ|M z^37;SHS?Tyj&WpQW@R5n(LYE5oq&_cBl!GO*$M1@p2_$w(L7jGjCOA68bc~kGQRm$cG95D;nT|BG z{q)2JF62-KZL#gVUYEvUn_}J02uYNOLNs>nhGB#ijaF1w4`^)_v2|dSG=^z=jE08h zHZ`RQ4k~Cp{EN}sw~yT1+$=#0h*lXE7Dmj)g$D(-Zc;0Ka>+G|o-WPKrgUjAB!K>r zUQj^bgT9`gg8w42HJp4@WT3NEvx8l27*U~luoJXWHj+m4Ku->{2fbw zts^8^GfOaV>8&QE{TKb?Ez6%dMB@mH*ny=jK6iF$x z0Cq!dlc4sffwlaoz$Hby*FPga;75K@&3nAth{*#c2)E&ClEnPgk7+arZ^z;*oJFHjcQQ62==m1s?D1-BQdzF;ykTZZXDh9=(>+uTV9P40+OK* zu7=AeWI#JQ=2^q>-pbb3J1Dk}N=5_aSX|Cq&|EIVx~dkAc#eCe;neW^2kdm{$+e#o z?y;1k|KNq;fg-PjR%K&XAhfC(8&ge9O9Mj1V=5|ysHiAV<3ssgy?Al&$&)95Buy(Q zkS;N@Vzy~2^!e8u9L@=&ZrN^_K=&=Y6-do!tz=4eM^*Ip%<|8;HgPXocq}H{6#Ev@%2M_X*R{I=CzQ97c|Mle zaBIV2%ydppG%CVqEGyom;*u`Du*1R%w#Lq%o{}@OvnU<5rUy&w=k$79JV!g;hl^1* z)743eS>z99IKLihZ6$fYE_oGY=&>A2W~-RD_NXQW2r6HfWX zK&5@6C?8_5qS27T%atY8$!+u9f^Gf&L6w}6AR6zBndGWNHI2GsjM zoY0gGC@v{>G~VOG!;GDX4oYvr*W%z3B#jI!n_zcavBJrq7(H2F&1oj{94F^M(_E5} z^y8KxtWbERoE6BS__tW+jiCR?I^*fqFadI8PF~ZM4;zmItG;%f^HaAjkGmD;K+@-0 z*i6Apk;fwS0ZyE|#W%SgcH$n1?eKY()+thDpQ_nwdYZG%mw08XY^oQ_d*$=KDyBW# zp_?;Ow2)uHLf`sqq+chmc`bCYKD*XTs9}?57In%%oIA%PqosDl2{N?4wcD~Kb1qy7 zYV?1@a7OVx{?GRo#U0V|D|r8Jxug+V8y*e?2N6v}b@TQmxPo%hpPU6P+Um$xNO$HJ z7D%Y6B_dkIm6erSJ30Uqi1`bU9kcGizYx6N+1}nu&LAcs;jcgH=5`yDgy6);FGixG z-hiQct*1vyO3DvjYI%9NwQV|lOF;`f6KN}9l|`}9d?w)7bux`m%} zX+`e5%HBe+T+HIBV5VaZSNdaUTb5(6BjnQDJtEkiGa?Tv*a< zBD%wjPB7;w7C?|A_SIl={Tm}Cue%ItiY3xi{}k!y%SY$I+4r%EUp_IDGH0PFKY4PmH(g3t#A{^=uVgZj&s}cx_~i29#C+Mii7bw`$8rO7K9oF!*DZXdc;HzS`)8172 zLSuE(9!B4qbpq)Csr~t;S6XD5f%9 z=)LNTV=V-0Ii^XI%FlTO4%vP+7r2J$-RH@^09_YmJ*_^oN&Id@$`W?rhB;8<8mduu zH=_EGeO;|WlH7}HZ7V-mrChi!`Z^Zu(P6P$)BLEbc7qX+o{5*ouMbasJZoA^DLuWL zvYOhQjdhNyv5dB9Aj-b36r3g&zXnuoPMhfBUAJf;TSwRjF=u6E0oK)Ln<;5>VN{7Af3nXIg=vW(_O#0E64x`y!@hca-4`x}$_*YX0; zB`Y4xY&ehicrEdW)Ywo=)E==lO8GP`@o9O%`}TCREaGm*@G#`ij=1;Zwp+IS&5BsU z4*w>T{SOl3BOps)!25`fhJX456e<;KYZe9uhD)Xn2Cx0*lSusMAr^m@- zfnCz$e3LI9+uydf)9J!JRvVr zid&ke0(*s*UZ%YB6z>)8v^xqXwH>n9+&)noyw#9$ymTYkLa4!;l^OHy(LJrxdScA; zjx3K`i!Hv!5-mQSQ7%DwhFIqjw2@H4wA9x!6OJydMNbW?y064iz-e++2L&*gwaT;%)^m|6|aZ*R|OT#)|EDA{mg&6o<*;y zH8E#b*(Y*Y&bWqoBRgJ8O*C@n=MuNIka>s3R@K(lUh-k0JKx*eQL(Y%O-!2Ga*6&@ z!3dI!7ylge!5ApNcTrG;pSc#Eu|)Y^_C_DM0+)Uc0g`V^;=+O5ZP2QeDNwpj=BciEtpZ4E0LgOl1tZho{l&FJv z*;D~>f&D0Xjbjm(_mha=1IKxBy~WV!q~!s_&?C@Mdr?U7-fO}Oi1iOzkOOaJjnhV9 zp|cASGKcKR7D@VdP#RFJtx&Z&hJ+@4`64&}fcQ%0xVeg<)lgw!MSFBnqU+{u|4HOq zvIGL3x2TszYzO|eqb7k5HaTGDV6VB+SuZi^b3)!b{VpvFz`y@JIBHdLDZ`vB%+CYh zn)dm#P>B&AAMJ*+HPpYqe9FTnShml(-sDI6Vy@a@^>x5#Ze_~K7qYqJ8U>+yvdQb~ z8#!-ubzFLTqL)cMlg(G;GsYcK^Pq4HFTDL;9uTT#JJU2J+gO;MGfqzTGsjp`Uw00e z-V)EY2Ly8BvO+nKC5280U^~ia6WF`}^oUz%lJ7cM>e*i!R$7)~zy2{n z{p$pz1~T*$x2}I065-O=p3O>Z(M~gVV2yl!_^Q(Ry1Ztb=_0h>sp2iS^}}VAtSic# zdA+rX6C21W|5Dg)%=@&yw9eu_nYAIjJ7V9v06%zs0YVq6YKuVD0Ei6%EHsMrYk0cq z!(Ly=5KV3dtcIac?fUU-g3s3JVC?s6G83Osry23#ThoK`t!CUkD*UvWj~~L6VmSz# zXYSHJ+>yn+bC6%ejR1&4=$uyJ+AUr5&>26upqem6_YZ0rYGg&^loQ`RB3L1n% zY$-IeSUGMe3u{j$S}ARg-z2y2- zzwdr^Hw-j1Gyo?alxjCWKkwz|_o0k+c1|JaZ$aDpi3V-re?+$AQI6N$?;2runzna@ z(bEvf7cT8iG+PN61=fxhx#5|Y)JY;jZrn#H*_G;E+)NNTN&<|uKvxr&(f1ZYvF=0C zv-k?~iXRt?;$>TskvnOjt;6~|MkZ1Jdm9cb86d=d)2S>wsa#x-trSQ^&)wFxzQ`XR6C2p?RriJD_1^%0^%Tz{J8FjlZz2arO1ansk|#V zQ~nwg&qULL@sBgK@@$gt_X-I>ZZb<3GY~%?kmoir#Z}d}8{iC3JWQJA@q~GB@Q@hQ z0yQN*@RGZ1oj#iI0jWSPBy`&AeG;U+vXo$Qaiej$L9#{b3|ZEyWUs`QVh7vm>3e9q z1`gal*1G^6sopd?90|}keyM@Yq(^9rst9+23#zw{Jm%p`qbCBvYgz_~QPdt8RUPk0 zg`TILKQJ+|#f6!Ni9Be2wfBZeq@eyT8=1NTqV~5t{q!Y)Ik{i*^T~EZB|Un2UiJ-` zD+dl=x`KfAx|3Rl(FKL}kZy3bd zSA2AkE*-S(on)S;*-JlsXLGOmj{k$lisHB)nWQ9rg{_nI?{TlQicOz^8{#E5zLL~D z7EjX_P6CH!F+>=E&6mk2;yN8!-kkW}sjU$-pr+y-^bjRzWJd(8X}j{hPxV+hKO>hN zcO)feucYAA0i(* z|ub9S*0_m%U%1NFyjwk5Cy7!Uz6!g%=b z<8p60DH)jnz~-<>IH@B8lam@(+NCGTA~MgLot+(7BV63kc2?ny+x7MJSw?V(ScyQr zoNe}RX!J%0aFEGvTi1_(`xP*Qt+HDB6A%Dqs7J7faJjeKA}7y08|!Grb(nP4GO9Af zQ0MWe^1ZgUO8}}aI_~EdZ6Y5><$UHW?P5#=jDP`<(XxC1LT}%`eIFkm=`t1Zzk$DZ z@1@bo+PHzji4`XrStuWFlvw!N?^kuN9f)=%zdUQ{E*Iwjn*j8$a-~FH(l%0o>uC>Z ztFSGCz0zaWgds0@wiRztp=(D5CdB|A@C#4TnficngHFQvZQ2V4wcc2%R+CKxDgOFA zZvBA<$hUsmr)%`5d!BVO#hnSuiq}1wjN)JyOEB>&5&j ziuVdS{YJK3`N>MvZ_NSK?hhh<`jCZAn2>m(=LQih%@jlxNlkbj9>Qp&2zk&F)}|qX8i{k)UW2Y_|_R$y!BpG-%Z=l6>r z{%e2X-vs~mZ-V%`U%VajD1yo+{L;@`K4QK4M(jIqy+9NBaUq4yMAMeDZMTvZ0%Kty zihf;*iu0gwr_l%l7NP1U)B;Le;3$bn!yu-Me|C$ie=kY}j)Thy0_2J3vLcJ3a(k7@ zHC9(k6Q*=F4As$NQNam5{=xJV+;@Y3{)c_<+|I`JY}e42($DcQ*bw>8Jic|eJVII5 z)1AwsCQLuKoX>bKy!@+uFsxx~B^p(+Cq92Bt#!=@wUA@1pviox4)Z2$lS{{2cBWk^ zZZ1FfNA$ld4X8V2l0K| z(~%pPTUw?o#3%{x(s>mW6x;z`@u?O6bK-MIdDaM_BAzoYkN?GkozESzRx`sLdNPw= zb9SizCnilbeTdgxF58K>mo#*jX|edXpF!vT_>&TxejR6+gl6>5&-nYd!ndjQt#3T| zRy@FMDU6Nt6H9lfsCP(|ZQS!d?j5sE}GO~Tez^I zBeIQ%hI{)Z^a&1>mwy$@OgptkmX5i^fWpY2B51ZK`QN?E{Qmg)LP#uP54gRm7_T2* z*5|f0*G>vx+r6SS$l0+|f7hUgaY^bT0pI8#T!p0cqE^uR%G?{wAEK4fVD8=d+COee zvrbc$rP53fKC1KC`k#%yIz)aQGXDdY%X|Az#K`UBEGzS9){1_Wx1o51deReY&izcv zoU#LM7!nImyt#dJW?HC`8L>Z*xx_lmsjA(MS3ODPxqfcRU7%gqdvxd9?S6&unS<~8 ztK*ZFohM;Bd4>!z(fBS=|zx4e493)AKHBQIFOMd9^ z=qR()-`~F<7$Si*)L(iB77?%zrDn6uS~HE_fP|0cvSSbmB*?w?Ji>x5!3gN}NuW|y z_O;5Y!fKsdYNZf>Q<_!COCn{@esw8hG)MGkesQ(@PXR3R9V9WF~hToH0^39N_I;& zJ#XEyfq;trSvF(BDazM6+?6Sp?UB54xUMt9Iq5qW-W zSzWcICV$iEE&wc2nal04uesP2SK0UWEkZkaBj9o~%FY(w+Uyy3Tv+oAJjngY43~dt z;)hdC$;!G1RM(7Lqv*&_9L9j0%Q9M7iK(q?;{w)w;n!&^22>>){QT}5SC&5DE6ptZ zhxlp(od4iijsm-W<&_u%NZmf8Uz9BlyRlBiaFaRwR+op(u8akhvszLhvihHR+-dvI zNF^FtT1on&U_b-_i_rgy$8Gyb&VYM@q~;Fd$PCXN@nh9~QeG`z1dh=}u`(fZM44}# z-p!-D4BCLeGEC&wGyNJzL@f!91;t2nsrfpg^zAF}5H7ZG`d37Iin zl&WuHnuHOY#rQymObXrW?+?`Uv)Yi+X+n4jCN505oO@=y5PkZXJvLoU@myNBDlIp0 zc%8W@#3K{MbW4FrNIZcDpP1Nx@o^L|YVu_not>Rs8AEIiH>bff+`7hdE6$(sOQe7~ zN`DmU4lH2HM$64+>C9#XfVW>Fo(nrgIB?(}ziufo68xxhaZ%IP_nJjUHxA*AXPA57 zNWX|sZP_fgMEKS*Zd|@v7XWU>~*Hvk;;&ww4?5x8WLqR4>?Qj%N7%3GU5 z!pDI9CAgxxy1MVr2o6jg0P{WgF%b|EeGmV9Z=UkLCKmfXNXxL z6`V%QAKz#_9gQFhh)`2Un6fMuuy1ZLkVHO)c|25T;>kgAeJDHNP{s%1xg82D7A4j6 zznf7s3@AWjAH(i80TxcaWe;gjX@7^o%CX=NMCiyX5GsErLRD(>UXC&`F=br!L5gZ> zar(bAq1tRrfGb}LxajO_{`m6U6>hwPnVCHAYnKSM$xJh|a)p1cpFxH~eNpO^2(iT| zAP|%ZUkL>T3H#7=esX|~{Mxrg z6&}TwYviJf49ZoDIU>Us3R?F_kZqlytGC*5Z=Q2T$;-mVcCj_QzSF|S{TwwgRAz3w zo=m19vC#q!K#5c(-%AxmGE#5X_s&M~K1dz7&_ zG_R1`K*Z@0ECA;udyc_tZ)vm%^bz@X6)tNbvwq(r@hAqth-ibN1_3H}M5ohZ&4Eqj zN@%h?sXk%2h^^Tcoo^q2AMK5=kI%Q=UR3}dq!aU%H=jG+? zFD)!A1lb!6c(X^Wzq&$!uUU-8*u-PmWPn%`N-5R6^fLuK^ns`|V1)dvRUa$B<<#~p zCHXi0PP6Y9eMe8Wx4nBc6azr1$E8yE(n7+VVb##dt)^W_?Q@{34QsV8q|%)hRs3&B z5p7J$*PgN?pb7pi_px$use;bx%8UaBal~?!-QG#uzQ=My>iJQ(bP1fshPCPiz0Yva z?>2|0FWM0C^TtaFI2c%MaEP;Y;A&4Yu&#WFZzIyi7(B}HfgswpGS z#wB8XF^>0!-iCCNwO$TNm7#QB`72D(nY{cP40DX4=VWMe--aL-VRDGLBQ}Xdvtj~y z$DYPP61I@U33p&FEOWN<7?$j;07kItAln>$FTSh*e*5);$yG$@gHg?aZxTOq7-?oLzt10FduQ~3S)-2qu|1kP*R0^7t#WmOF=i2^$xQs{WBBV zdrz6q+~>oG4@7L`X6!gtvA>OvHDX)53HgUQ^2`;?d;Ciu5MHoWo_=GXq%lo7jHw7iE=7 z3>24(0*>|E)X=X1ZdR$GxcK;;z|p5`N^#}OPfkt-WT&g8?)(_A^Eon@23-v)UJv(y zIYr7VjHn8O)ye_aFAg$ZH62p+Pa;`4pyPN(A+8MOw`|Y1TeUGeG|LFpa!fX_Ihbwp zz65?v!Nq{)uwFlMR23TqZ9)6@_r&{Bpc2mI+&G*@0tv@3+f5>~%sHz!dl76&&fw)~ zF(lP8+)%EQ$B8M0J2S9(xI0A&xW_mBcpgN|&W??#KD2!+l=Agp)KTDrIU^IEn0o8n zXU%8nNhU!+pMd208I_;;H?QHgw0P)@c!~6lPTX5riRWwX%9pDti(pmfm?bZ9bh|+SOdCE0`kkB@Rf>oMAGz&NfV&|yfjb0f?$Ld$S%gcNNSBgt# z+>suBW?=Ly$8)SQC|I-lM*d9~Jr)X^jweI@da^7tNBKLOdl1?C5N^5tLDs(6Qu#7s z7aJay)e%>KedL`?i2kEuvtD+Twjb>5{x_yA;Ut2zAWo8eZn@t2F5Zo~NFue3O|_r< z=6_ABbjCUAGELOXvytI(L(6*XwH%?N)MpRkxmUDc@!gg(j^(*ci4WQiWE@AC-F8*z zqYs(M&=_4#C#tHOT`+9td$U_VqCGV^9r`S|m9O9iuAW6u#b4MF)p7yb*Hdd}X9p^6 zW@e_0k&5(GxfVwhpPP11DLHv(D0?V-QE@St#Z3a!V!OMRb8~aR7~p^AkyqcL+?V3- zyXNbu7uXcz66-@r6Yq+S?BCb@Q)4 z8$U)==AEB7?A1E!SA3w_Fm}YmwK3_tVKs_4ZQT(I;YEy1<936QkwZQAffS2RKeY4e znA)NAmj+ujEB?E_FXV_Of#X36T*X8LTkB|R+mxi2h8GXyulx)m-8@p2DSYm*nWcLN zHZ^139Fimd45HhsaNi&xBP$qjYJR;1Kq46a#-oso%>YlKEtFDccj+g1VwWzgEAR(Q zJI4nb`C-hhJRF@nEp$_i{WEij7mRF9*%$@oM(2OH|%W=>Q$Or@GqJMU4Tq-d?C793ROm zrySK=k9_7QI$=}0UbP=g3yo_;^vbPIa^X`UD71WFvRs}fpGMK;+TDkr16(b}2Ho-8 zLlqY3G*$t8PVRjjuvHhi6Cb{B^P4J+DMxZ?GSKjxYICvgh(aG?$ub-$Y&1P2)ObIu z!AsB^F45p^66A4tfJ6K}-o+aBa?*L^juU-?^`iv>U6bx+(Ag_#loI$V(0;2czR1XuTvn4M2;#Up>P$+~xdajU~5d)Z)-hv(uJxr|mUBR})PV zIrUW>gCzw7y8d9CNI+P)VX(}qoK7owUq6&&G2>d3;z; z#Z7)HgMG2 zn%h5|!EcZOym7vypXsr@=rWXi$!pw}I&serGMzw8r9c@faq-+R&LxnHboP*gc zI-{%|J0_3+ZuT=<1_2P3>d%%V(cwOkoLBALt7w7NihX`1bwDfdRN=o5t z(F+L{+w0X2+95*UE_{F91oOx|C>G<5p{cFP!ole;TItJZrW<7kGwJxezePSEEM%zI z7c>v)>t@^82-we2ubMV;-UbPcu@9F#=<3?=qs*ystn0gL2M$y}&8*M~cqgl0Uk;Ed zzV_!ZrX5zBi3&}q{~Gi@>-6M&k{(>&%j+Mzz3{kvqv}LjrJMQe8hKrEssCV=AojHr z>XCG*W`RrnxHd~E`zx43DBW?}c#hT48{;SY9%b^0_4od+RQO-_*w>SepcN}9pxfP; zEEh=PWV4TK2=SJvTS*Ck-$M~pb6@c*+gPj#lyG2K4zc^g6$68?z)a}oCO2yDuru5K z$~C>Ixy(OL|kcwknYI>LJ8@x{(~9?>>l=qVvmG0F$tt~Ml8>LPPvGV;y9`(9`R^#E6SnWfwC>7c6c_|m_tTNNRY4MTL)DNS)D&$wYI~ERv?~43!cSp%jnTF$K(kZx5H^h49 z`b*naNVi0D-J5d+^kn}yLXcy|cRINzB-`bs4L*{%erbs8(@d+%=E79Lva-Un;AbXy(KhpH5U4-!lL=K zjc7+uP*Cf5clj$v6O6{#Ly$M!&UoYo~)6|lp zt0&Ht+~m%fWDJme@5)qQH|BlEF&wK^#8;U<F-TnP)32HW_N^=1+9R1xA{Re`l|P!mplW`YtQqdPYTOiZSI z0`tBC4`23i>CitrSN{cJd+A&yaYDW(+5RLj81IC7g=+nhw0qlZEjLxgU-Zv@&-H%x z95FoSXZL6-&ja_0f&fVix~6d*cf`yD>aVM*>A{-a36`tOBC*A{vhkcVyRKas zT8T8W2jMqcb0E&qWG)>h>{u_0^mrLcSD#PkmD@Vh&~0h2cf0Zk01X8`qPyY##ZY@9Cv}OBg$=Pdz>O&)*+R1QuT8%*)jP~sI;2Lg~ zYr|6OtE*)vJSEGqw%92wW9cjRwhPfh?=O~TO0SAHb}M^3!eZNd%)DmRS@&rw?-iV? z*NnXjJR3NJjdX-}tiDF_e?vvnTqP)Ytw&xOQ5FCBF_cH+2J1=)v7Hgrx;>*<1lNhN zPP;d`%cRMgInq^>_kj1nC`QGM@gaw64wtZCz!KY=oq}MLo#4*a@OPsyEa?W&!&A|7 zF5?^=J?!(oHEQ5vN#g-~<=tX^@3FT6hF0JRHV=uS8Txh%VUWL3cvfFNP4~)p=!`U@Mp^W0xp|e?qG(Ubq9n#v%lq2y(zjT-6 ziY&2BqN(^bnhvPzUz2R({j%9CQ-xA4GA)YutcVER*tr2~WN_|JgH0Fbvjdv_8d5CV zN>T|+r)a4L>uFahp$WF5^Nixe0?MIX*cWJlBpLsQ9Vh<7G`h&Y8-+WFZnGWt`5(;I z&%Lp_n&93JVIr=2fq3cKoNLB=&(hRBgBnT)pN+dfDj6^dX5`EP9jWD~97_9^=X_Pd z9!$m%p)F9uu50vrkl+7{%_u7afWEO*ojo{k_niyW$T^7pps%Ua9+&hX#Z%K#97})S zk8l2SjCAqJ+dlbb;_oZaPuZQ}Jv@;5^9_xMyW2O{n{BKzgMSUprlh2R)fTRZU8zQw zD=vU0e7WH%ASbp8kuFjS7P+SsP-&i5GooP0(+c#}#6b2f_qZ`8YvzGs-e?#sE-Wlo zQNrcfhexf0uZ2Tr>`h$xc7Lcx7f!y7`J9~b`eBzCDKMYZoJEKaVDpx5-C<2PMR}6t zPmMq>+z`9?a;q-_S8g~=HUQ6+RQsD{Tk$R4*>6f^CU^HSJB6ASa5o|B7hfw#y9Bo@ z+OY6gl(;v(>&5W)UTd{|TE=K>ENu-}yV*u}nJ>Bf=jQB7=Cr@t>S9{luulm5kMgA@ zmZ1^TLs3e8Ft#1Ubia95R!0Nwm&my0vw8?JO>A*mEf1Enn^AY!&KP*&A*nAB_Ux|v z1V&&I)R@N7*eR4d5Dpl>iyo4pus%~&%?r5Wc>Dfn%UKvCV$!94B0AiH_iB(##sI5$ z2~*sv+*>W^Lkzjp6bz&PJgUA}dsrkVEqwFcFTYKUD{KG6-5Wak3^t?*T@8YB$D~^r z!z>OX14&7XnSyf`iLjWz{8}X?~y-=Fk+pc z2PSOp@zgkRXrEyB>aO766y$wXnj8wTVYs&^BU=}S!v{-GtnbF7pZC@TRnlRH>C(NM zk(K=o)SB6Kd7JDO2i(ctd=kcMk7StahmI?g#mb6G8O+m?xXVFe%bM3TB?;mcVgKxr z1Y2o_b{K*x{&@)#-FV^7&mge8Ku0XU-U2FJ)kSuL>N&{*iBJtiv$Za+ODTtoW_N!I zX32}hdb1kw-Z^aG@f@p=1Y2wj41d4HW?V|%i2M9_tGjZp(V7^WJrRYc=1f4<;hU+v zRb;Lspfvjm51*FFfp%JQfyJqh39d1p+@H_m11UNkTi;oTH`u_y6@Sha;Bsa=cG6jM z_;y7YvK3)+;Z{{wt5WCFL2{!;$^pSx?B59K>b30lm_b()QQnJOB7M$96x_d?h`LnL zW9H9b!RVPEZ49LaQ*$cZ=wWD7vDe6Q#EiMzU}arQg}JbiL~bq$1Y|QtvmN2gg!jyPNrR(7N!?{C#aYc z<(wPmBWK4MKZTD7wT@`pZ)`)*+FQ`L-g%Al!sBv%GeBr{M zY-xwXBy^^y5M(vZoXx2WknO%wOzdgl>2kh_dI!tq0o^D+J)t?|+<~|@lv6ruHQX*X-_J= zY7aN;S)SRL>550bSU+rCEj*mvMSZeV013dBKx5*FVIjHA=iL0#SL4NZna!#d@!0@) z!tTovXFuo=>k!Q35*k7$_GY1g{xqT5iQ4i*FJFKJ@BbPMW6@yX$43Y2|3(HzV+b`A zf{CIKM_N@G*5v-csV-e{u}7D^Bmq#AORtvqU9HpG@A2XgxeXfunD~QOJ7~Z#BcAbd z3BNdVtfrsce57`p=R8w{kXiq2kRzhM7Js5Cx=40O=T{ zhH9Y~5$S{?q4ye)4k{K15Fm6=ks`gfP(@0pBArkr^xixC7iaH%&b{}!_j#EY@JUwI znwfL_#`q4-fQfP%$N|Htzv2OD)8Oo_6@77H`T+YUQSyYRM01rNs@RTGVBNA-4TVG| z`iJ-jLvEX1S6iU3p{f?(4g|>81CSm(js7~ZLOj32CHx2FyqD)#cHw}3D(l1DX^cZk ztB}1hnP1&{krM-Kw7MRDAH4o0!fSo}ZOm7VA5B#3vOf!Rq23&ew4Q2AdOA99|K%1R z286b*e?-`68I+{ezeLzaJIzr(pkUPhnA@_Q6Z=E~m-By2ZsiLzWghh$1X7??0Vt6h z1Su^Eq~!iRvVF1no9owIMM|+9QKk20Lnkjh`Bql$Z3TE)M9rpb16TLWnvkoKtcAL> zJ>Ypl0Xu0=gH@N+pGKbKTR$`f&73_~X_S$^|4=Kjfnqp=zg9B4jrXr;|3{>3X=a_x zPT?>4Ck^iK_27SJ*)d|mi56$%AMT7SKcTtO4W4O8|K3M_xZ+uD_=~KFb4pPG;|c9{ z1jQ$>j;>$taFM-M0 z%}rn6p*TR&#WrNTVFy->+75aOh=Skws+S0_eBEmC%RhCbVM`fV6!6iuoe|_gpUf6u zlu742SB?)FaWmCc<@(o5C8sJ{?g;?{3SUfBZk8=^c%Qi*sbZLe|@XmYbyomq&m>YD}fzqb+y*6Q@ zxjJZT3EoZ)f{{K*sa5GQd2c!_ej!9~<@aNg~@d-6H<2LP( zLTS^NTg~ENPBkWo{iZ0&>mRL&^k1n8_L+TC6UDIxF!bxe`+xi$)Brb&FO--Z@Plt| z`sC@`$^OqXIf*l+mhj&`bsOV%N(&7C$54i-y;ra7ZdzLp&uB3$qHyzHMg|~;_T=(H z!R_bN%A>FXK1<>jUjyKt5=dEVV1NAvFi6&UtqJv4Ih*bmCriLMDK_ENl7$6Dt=fs2 z-{(+g2dB=X#rB~B(NH;79fHw?Kr*a+Z>yNiBX-Sco&k@}msbc@b>(Np( zEw>Qe;NK_gkPqyDg5d!RBSp_qN-$fnx985CynD@e5%93I(z@B}yOyVy?D`RDRY5H| zk?*}ws^mk5HvT-P<~~T^u*f@LZ~}|9Vl8{54ej{rzJ$auaaE%U_h0;bQ9A6Lsx)E| z8Lwz0uGmi_nGb{DERQN8eCUBSD3iH&Bf%|91|Pr=FlVYYNQczleiP@l zw#N(qk>BnI>;4bHpat3(EU9r)i-wDB-b70LJL~#Ap;3ex6Uu~ARU^`!9*K4dvA81|7{N9S_dPnCM+rU@vE|VS-1V3M1hi4;gIhJzn*Fm1tdNWD>UAH%7+J!2Fp7zN+=6gSR5fEiF~uyM=8!ET(TuF7JJ^?aG?% zXJOV62FPmf-`Db9En-oTRq--*y)D|E?{lcI_ThIO$F)8r)gm-m;wNr6EpJ-O6`%6| zkdn5JZ-fBkk!UXakHa(X`kdqpKRnFHtE*)!DhMPGyeNIB%zL%|tbTj-VM_h${`fBZ z>Id@$kRb!+`Hbe3^j(QN8b+fq z+qaEXvdoejZ2J>cfk$`R+ZglGZJmG!?$Q3CDX?*z@R`lNyQif+O&bu_CmNWg3e1}5 zAA#)`f(J>&Ps88mj3j(KCI?pUMGO5>1wAytOgC9{^d@r!7Vd99@`AaivFZ!~|73Un zgLyo(5^Jcu!*V`Y?U@N=QXZK!tUQ3aZC=@@fT-ZmHqBklrem5(XWwPuc#iSuvmYaU zOf6EoGj331?l%aa**0=JH)vix-Xq-Gwx3wPUk_r^3-HSnsPWqDKfFKNK?q%e{+|TN zN%S0!#x(W)`0EkOlcIZYCZ}ZYWC4JU^q0+LbeBSGQ1riYOxFW0Y7Wwm`f4wikh9fK z5G?>VfWWzE<2WtmKmM1X68=YtUH^Ji{x{0SShG}`s(%MSxgH_n0(dG>ei%8Z9i$f+ z5d%7D{s;-(&$4)pAIO_+xs&%5Sf~*sy-bt2*Fs&?E{;_1c_lvMbTmbMJhJZ7#h-PE@D3~5MP_BL6K^Zv%u)uPcrvZ5D z-HXlD%NFdtso}l@hyOShI0LKIr=2(OE9V$*r^m+zjomy&=PxC9q5vbPxj~6QX4&C ztZHSY|_v9;q@ z+^p7$KZHbR$AJ^?9ZnVEldyVd%`2plPuqV$+rI1>r;MZKuey4NH-*^#<>`SK zJ$+7i;X5993(KWD@~Fzrepfzhf*&PCB^~?^TK#n?<&I3#+;Ze9@{5Bhy_1n=@?xse zBT~L&=NjztU%XOks-4e@$R z9Lh2u_zh9O>O*ivT)-HY3b);BtP5U|v}kloWZTUayd2DG($VCgQM{s8RM*Q)?r~Gg zC_OhyQfb;8%eUSaF5n6#B;DgXa>AQB+gE=%q%%7`cG;H5+xPTB;1GT3t+Iq2`Zw<# zI_A8z{x4M`pHsPN`fOdj;!%Z5(P=@O@4f#eEkbWp6>U##79|%tdGd9b{72c}0CA{= z-22mY0qx3fIp~(@yZ(_C9QHcY7#b5Oi1wUY(=fZoB z!o|)nWh{V{w2aL`{Enag=1aG+R`B|j%-^hHDhFm31By($KujYi=V5O;+m|O>zv%^M zKWgdaltwN7gG^gE_S;>w^ZCFFw#cf=`^&EM{ImVI!j$_J_YWZ3e0Q_8{N5Ska%m@K zfHsa|9aT@C{)R7IYX4@9nQcUe^kltglJZoywNMR_mLFNm@_(k<84uIrt*-bU?*qk{ zDf0ua9s0vrG&E(PP?G%OEF1EvK3~(Gqg9I9CyldaSMy#<_-IfYYm2j^(#7ad7R636 zJ)$6k7j9Q{zGrB>y-jOZbptYHxL(^=Xg_i-Zrlp+PWun0tUdjWyyC+|+XpuUpX6AN zH8`VX>@>1sFB_))d!vV=yfh8dzo|CWaqkYM>qXSuXl_uT2(6p+v9s0E-1(PrVgam* z7F`;nsZOrAnw>BK5vKc0fqKo1r}@-ZSDdwM_{$*IXm0ED@E0|e%{gc1% zUsormg@UH>;4^Cr05$wM+EG$F_@G->jisgvZ6~ICR{J=$pl*~K8Kg|W zIg4ZC%CoR7QdNZJB3gG1`c~Ojm8tcPQ<*PMwsW6wg$Bij+&*_$br`LXXAxPnlYe1C#$<3Fcokz)Z=-`K~o=mhLAcgIa2gIl#|3qX3sXRUVO?HPH*F2F%G$$UqYuj z9S9~p^nNF^VsJ3Bu7@qG)y6*m^l2KcPXvWYqRG~VQ4El#@^=$D$ay+1xO$B$3%vk~ zr%%inneKv>i-&LL`U;!}Plhct$f%(@Qzw{M`N-!~uPSezdV}mHOIBnD?dj$OQ#(D$ zhIp^O%N=^g53B9a={4zT!Q%AVJ6Oz4cpCCvHY8@c)#%>T3++)3mx2BhC$-%pH?Lugiew;7+!9;3S z*@luf8teuhj@p;={fXxr4zzT+K(4*_95Q6x=pNLpfimfg_yUCXa_M=H4-DKWFl3)H zmsN*G+)|b~h54>FP$c+QU)V-0T1Q9)WmcE63r1a*8cQ#B59y*;y^5Y_I8p>m?&lS< zDMn!R3)}wC0JQP!3w@#aI99cBD{kcJ2-@i}IbL|6wG=op?8WI<7Q2&4m?chs!PlVPE*8jUU z!x`&Ewk!bKdJw8)t@xBN_|`1Dp>*8-n^BsrcGtj{!Yto}K_9Z;fWWa*1dbg4!N+VK zv|=pZy#?9wedp6M$}^EzQ0ac}D6zzbM{G-jq5ayCoo&+M#FA2zd`I$;!-FedaOJiA zr}&S+G*7Fsy*iTa2PtHwU2hz$Z8`r2E}B`Goq9Hp*eO!!eLFXS-TK^&)f&X zZ=jI~Ua+q`O1auyVTXRS5}qvC;4o-eefnU;G&}FVkoue4UCQ$?;Z({&E8@b>thS_G zf79@ru%uv^%p{6HbTE;!6Y_&h1i_PV=_4S+=Q7l;_uWG80={r5#Qhp6kf?~F!yLLP zr9Tnkc@nAak9QXwUc+&ZXwC?WEVXLHHT z!To&}+smdb>Eu0O^|7LYw4Zw)n(eI{vQR2MZexn^HO9ktR#?Wfnli#ujmf3w4_!9i zyK7Z8b~|2cF3e0Rvv4c#2 z1^WjO6FzF{rLLh&3pTqvaE6Sfc6{FJjRjQ2@9qlYG7k{;C-VKt9V7)s@q#}HlDs4( zLnox82(=CnEdciDJrH`LyO_G5n;IFF>`(LP)pk=FD}8B|H;NgFGobVW?4_@a2gRW) zjDYjd?O6KK;zZVEytr+%$Dr(5XwSL!re2o}ZX>|hoAJiMohzQ8r|*c8qy-Sw4#wgI z?;Z;Xzy3BiuNEMf-Qcql4Dq|N&WQ_esChaNk#>5Ilj90AHhut*4ZYMIj%h)Os0l3; z0#Lm=9~@mHy+0u_uaS>!(D3|h2`4z6I6lCCa}_00qa%KnpZO&KpdXnlm8^x)j~cltQvH=6>uXhX)- z2pA^r^{d2=YVo7L5FE%!45lM+)~HOg0}ihYc7;6FJ(6P> z*k;VpN}`W$v$;-|Q)m*gt=RPfr}P(fiY)s;WFfkuxv;KkR$64JuqwLu9Y`Z-yN#^k z;v6ua>{X*CZ@9(xFq?^&Pk&iy(U*)sr1I9Rme`Ene@a}-GN{zvrlqD7Ui-<6%U%Ey zqgLi|_qJ=?OHD7)XpkZJ^oK+fD?ECEQB;w9MPZNW%Z3Yvm2G?NDdA~N+PHw@3irb} zGKMt}CIcAeM#+ETOD-;R%O;(bQgY+e_R%y5_;^E2VuP8@$Y0V+k|XhRw{DcXZSSo6 z;NDqa`pG5%shnkJwOV7Q0@z)?5Rb(S| zm5t|t3K1#pkX2aA@CIE9crTU{9%ISiYmM}rJPd?48fG{Ci9cAJE8)RQWhd=W_i?<@ z>$@lw_w)HMLbX_~gY2Oma3Uo&ZR9=E;C~X+7i8ev^Fn*llK4}8a8=B71!&m4j#*iN z026JI&TYk+cz!?BEwP>xV>N#`L+3&bo_lVE?)Gs;yzb~FLUc9Ygw;ZL5fBPYi7{G= zhz{S6z?fnM^0**mmx9w5&&W?WsxuHw_++o%Z;eU>AKIQ4-73D@sV-(d$--sg^PHh^$QT1MN;gE?ZJ;HN zK%U454OC9N2iWzgZv0CZFo(6w5Iz&0CRX7)uVDo%DbUB$M|7wW%JaecrZwY zI*f4GOHbA;6@PMBDc05rc{X;ZSb2(axno(gtC4Z{uCd!s4u$5o%0(J4>|a5n=}Ex5 zO=G+gMKhbWZMCo(_Ji%UNXiKvcT4AelcDHoZAU`df|Q+p=+u1s# z6vHy;UQAkR`sk(_xt&K72D`yc@sp{~(62n^yow%&d_rnJ&5G|@!%s|{Utx@~FV2^a zw|DYIZAe955Sko)_qh{DTC8$SY2L(U)~N`ME*gob*C4{ds2<4X@q$;?P?m}F0HF4z z5p(VROH^GtXleH7!qcNY7VVL{!7a%hHN!nj0D_Xh>@ZcCJCOvh{!5R1cS@VnBaOc93@V`ZTREn z6DvqZcc{yy%f7E0XJ6N1UWzXQ6d2N-6vZLw<{z7UqtxRU)3KCCTta_;{9XU=_#18r z*_{^l+;mP*5enx~QWZw%0`gw?n8HP>$eGi~{(%q5PY$tsziup!5x)yEgP+D%iAh+) zyt*sq3ZHEtj76TbP3jK(i8;~~%IRbE^xHx#GU~A`@z59`fxG!v-&@JnJ>;7Mjf&!z zB=OEb-wOW%%qG%~4RYyZ5VQFmmNIMY1X`{FkyLHy_bI3^AFJ6eNP{>1fl_@O1M zAND79FwDxqh7Tc&^VZq?cs3~$utDNvW$Ua#tVwVnt9c?^NbegVVDMxErTmx+lF0CS z<(D>)45Rlxn+=uCnIvJvKs60iS3g=5lIyLqOD_Z13gOH)Hg23cqX0g@AVMwDfcb=ag2j1idl& z&YS$3sNE-$zR0TP7*9R#saM<0gCxmobi2Qo1?^ z-R{lsc+MfTV3%7({|!C#LW6ku_TnZ+(e$#xn|qO?;!T?dYO&+mc%rc|Zrq%!%os-c zDRpAsMEe`q^&VcA`?SNM6LV=}gS0Q2ki?S8f@9Gh$?g*wz9#m2o^`YY*f-3Z1|H=} zdVvU%d?Q5*NlN#W3ds=?K{&rFM2fM1p35_Q1MPUvX7xuTJJO9ZdFzm%j#Q7D1&O{i zx2p1tA;X9IDEVT-viaUpLPpE6#PZBJ>)8s6BAqUINtH_PSSGssN>1|#L#u_l!Px^$ zRo(PK)-R@2iLom2TwCHwfKm%L46~5GC7$(By z*vcAOF`RFZflr>Dx)6~12yapPoT;=@G!o20PxCJF!Xrcg59_tw(pfSLNo%6R@nIFs#XCH zMQVXb@a&zcfi=sqkh6<5nfk2(E4b0bShXwra3S=Qd#?mZaB$nB(_tj~y)dfJg-Ool znf2&&JIiu>)+*As)H4Bg;PhdQZe{`#i&g~&45

oQ=E~SM&59R=AL$_#VC|yo&w5 z^n#K#jGxdtK|S*Vh{bI?l*LOgqwQD);63Z8%UVXt%vue`2b&T#_P7sZLZIbLf1^i< zy@K*Q%b&+-epbBQg~Am})1;(?7zHo)N(*g4Xk(?~HfVbTyPJyp)Lob|ucN*Ae zL=+iZY@BTzeHb$*K-r7yO}BXGL+{sds#(Y-dwY!d!%6$H4Yl<0V0y()K0z0Ffkl`l zQ2Y<&%IJ;W=4?(w?>@u_x{MHIdaQ5~k^Figy?cZqwN;@Ru3?xaF-_i zJZAwj*NSR(J$Y+!|HFZ0_M`Y-paG;z^5FbxttF;6tZcBM?DgBZ2esQ6r%{+m*(NAK zmlBUOAm6Qww>8H_u0NTZ&x>p$4O5t%id!vSBVosPig)RzlJaZThpq&`I78L&yhO}m z*Kb{l3@E)^^sD;4(HG;$0F)9rmh$^wl>7E26#VHPyNtxs^oAu0WpD=j(NAut5|w$bls*3f)ClzUs^S>1M6 zD|@{-bn@0t`H*R6D>sjpi7M=*(gV3}s!A;7HlnkkhE5`0Q9^F1ho|MJreQYq5AKE4 zk?#em68D4EYwDGstjoV!n(dEr99WYlOHAVJVm99Pxaj;mpWDw5A}@<(dH~}Aa@mY% zPU>&fK0kVRcD?N}Ub&iu{x5(4wgjn-ofePiS%Z8O=@Hbps6>9Z_=%yJA->+Oudw6bvt&1I`SH$ei87@NO48oy`@&?ftl+3h zKCIrmQJIqKH*HQUiiI)O@womYp}quK_AXseU;OTi@1bz1Me~}cB-%HwtA>zCTisNx zF#h_``b`E72Q&8m66R^d5K1;|9`(gi)@l5ML|=vT$7DJ>=J&f?WIx=w3(IC@MXjX( zW5eFU5@#tKX0buSoE2O3%Qd#QM9nr9vgyc%$p!roNacdp5E|Y9zZ`y<+nn#mv~1SN zs*>g6g%dz|9KkxjPt?bLUkA5N($<`^U1q5%#)7m9#l7AY+%IE>)z?J9o~QR5=j&)! zL#Sac6U;9*!c*vczn(BjQkXQ39gsVnoN+?!REU+SVK)3@(T_K}yTXZ14ULz>Rne*> z!;|fs>T}LNB50(hZ&kQg5q#nkiQ*vf0tdy*N90qYL@Ix8r~BLNqL+U#!@R$4eIUTh z!)A64e4Kq5A9ONUF3)t$v~G0v>*WS1+AD{Y_?Y$pgaPK{i-eN~qbJm!lGEq*{1Pl2 z9jvLxhhhyyy`&KO=Ur;t%2LCI8^nCbNBcYd@p-F3b=H&Q2Ou+^=7`~h2EW=`?2_8X zgFw%1y>*5qNQ?p305VG?v6ByH$OAuLA9*H02}=C#Pa4u46urN)(_qi9DNmfZ!xyTO zr;JsmxK97vKV?(KHSfN&Ez_Di&h|Kg9q!}vX3mFobH4F>RI2I|JLv=Ev^$AOf+Gy1 z@5DJTb`xltg7ZXy_lQbj408TuE#C@yuSrDF# z!H@gt)6_FA7i1{=urAPBit}IqwkK5GXBGz===G_>V+%g}wy#W5Ssc4L@bGRVXwkTF zfXz9QQ+Ns|{l`f(Hl@m~OfE#O6pe6i>KHowP0y_4FXt~?s4s1Sv0IkSo;%IojCS$D zKRK{%P)m>}7LzB&y3{`ro9m$jiwCs49+s;b`|&&R)RXHkh(Ow*Z5$0!o_JNL;};my zBIFglXxqW>I>7ZpgGuDtWlf#M>eqrlwwo8jc3s2z)b;VUpX~R>t=I+*@32(qPeNUA z+#Re;VEWtRF~t?{KoDfFwQ8VZma-(Lyq(~3N+(n^598r=in0dN8fU$!`c^Mb+}`ww z?A;W4Mw;xpS3O9HdRh6gv^5ymbd}K~G^EDY!-;FU?uV8PSO3Z29h{kplSQ1e_sZ`1 z?Qbfzxfz(ubqpaB4n-Tn;EjQIX@hC?^`^viPGqysvs)ne5cbhH=A}_h@`HhNj>flSgqB|2(*Z}xwND&q=|LUTET?X)^n-PKF%Qd>vc9X9 zYA3Gn;R?&vgk}!>#~us4ERVGr)YuqT&hmvbOK)qX(85uGg}56PWk6Hdq5JWG{|M9` zoY!Ql3eQ-_8OQQn7Iye>gnE(M)zoJ2$(J;yAHhZF;u2*FQCuBCI>fVXP|u0_FYIfW zCzi?yspS~tT)em1=T#*u2|g7lY_0dJasX*NljR#i3Xb$ogxN5|`Z^X|y+yhY?ju<& z#|&Gru&pV4F_VxIk!>mO&$Eoh zym=!8tjVddQsq~Mi0T*I;z`SC;B))4ROMe55@dcJi)v0-&did3!_FVT zLM=e~V6?X*R@ebftn30Z^7X-ShrHUIU85Xg`Z!#DFkqkTKySqb4`oRhezcvC{WG#` z0tbznrvfwSA|)`B3d`SAwjR52k3wF#DQ-54P=3uSoC_w@gsJ4@2Ua9mPzx+~1O&`3 zI#mUh+iU(&tkL%CHCkls2>kW?v$|y3C+)j=P|`I+Lz-#b-x8ixsg_1wYV?PVt}7F^ zf~TnpHSB(?cdK%_YkJ4g8UN8S35C1;Shzrd%;xGQJkSY2d@`!)`lYPj{^>3^iuLwdoZ4zlWTF6 zTORFYB8Fu~O@Md$JIuq&O+9wHh^&qy0c2FCGDTq!DloQf+1Zdv=8~SU{WF;RhXS;4glC2asb& zwyv93^RSZ=EsLSPaR#?_WO{|pVrp2QVj_mU>m6f7tdJo-*-iuUuq+1=-3}YKFtdu(Tl{?%t3{K`#Za#H;hCv~Fg+Bs} zB2pHXbkTX2(vZ4Hm_#h$1}Hv;&=vIHk8O5Fni&xPviqlprM=A^(Y1B2#|hcjv@GIY z+plol&Ts8eo~iSU5N3!hOthG_V@AkjQ^QDqWu_g!9{bkCxU)ZP^9t!MfD9N7iEr#` zFXHfh2(G0pOpqjtR~OkxdZ{~NK0%QFxw3cP$p3jG>+Oq;6U0ioro`ZZO+#BHI%@qo zv|zVta?w;NLCS%}hb_BkY+P09H+rgztWDEFxm^|vUqw~*h*;^03@P&f6g z%ua{v@q17$QVsDbB6kq{+WM*ubdsJLu2EAqcE?56m8>>FLc1w?uGVA`J)7phJN<5Q z2(43iQy9|ySn^Au)!h!L%h>Ga3fS|pq~Hn&_2;NeQE-B5oRUrln6$lMBp+w{UDK!| zRS|QGm4GtwkH9*gsuGCulRxVN-@UGeEia_|V>cG1YuXzhJ1fIn{1}z9v){c#f8X?6`22MCxe-xg z?M+O@44t=aUL{}uGT9D&z!a7rvGQRszx=C;2ZM>Bul^`X>enG_frrl`{~5e| zX`(+tdYP&_z)D0kRuqbTZR5d`U$-p&hPX1|W?LaEX5R$k^Gy9TRwH9#wl-j5|HL4N zyW4GK6xu*AM!k$<+t|DyUDPNl%hn92)zM~*FNA)K9~LQ$fpcP;Yr1yLxZqUt8ee$@ zQ!YZ1j#=qjicY@ye3f1{=1Nb_&w5wu8-WY+-c1psR3oZN0+l1V`yOu$7u0s7*mimK z8qHw(HhCnVdZUI7I^@H!nkPA?IkonK!=6POl>{_kCIfsDKs480L~~qCTIVU2fKaA{ z^sz_0Jec%-xzz~C*c~0zX*Gk5WDKOuP0To}7ouqm7hBEYhrtQxN2^tGI5%~C`o=Nk z7nd+GPWw2>Huav3YL+*AgeUR7!0L3*47Way@-|Mg&h=0s&bN)}cnn0vH_(;o2oNFV zbsT9|94@7!r>a#IRPl(*l)vgGrU?d9E!uxZUvq{%|CaQYLwUaTQ*uK!>GbVtjT`*J z(jW{je3bs^_%MA4Orn@d4|C#|kcIIMqdIz-&KUj^s-~nu146v*dY7@?|jIK1_3|4 zkl0OEubgwQwAuf9XVXpv|-}`;SHX3^OjmO!h)QU!h?=$P9npaulSt=dS zCpEsjsS~IWS^nrmKIB7eKz5^W_BlMux1mOHUC^0}V7oExXoO&O(-NXSrdw8@GD2mf z-m7ZRx0x`gIb~Y*uI~kgar$E2v8v1k=Pq%&gAmlBDisZAhO2LGTqm6ZD&i+~5`AWS zJuQk_9Am=I=Qy_K2Iw_elu!=_`sbxrr5p_d1V|l}Sf5uy94M7@d762ZU-0@U!m4hK zHMgo=*={$^Aa2IQY^pQ@0hh0UDYFBMt>(&Nei;E7zX5;`smia-#B{SsOyde0hd#Jr zRjigefb>8Ld^bAfb}6I0jN<$_HW7Ymq>3M0itAxIbs{T;J&`Hm0LYqrmob@-C%Lab zom35LbLY>*-zqki4K!)DzUg5NbW2_XjykV2h*ztPjC=q@Rk16&za;Q-c<$jsR3Vhb zCT{xhvT)-MM1#wd)+TC<5`6QAw#(;Cbl#3}X#6@D`y*~x=arx)XgQW|E(#V2_|)bO zoU-%#<3_wYc?46fFz?s7kK^J17Yw*!HMmSs)BCnHxpPv^Mtca0R(ala3yb#qh0ZC3 zp6XeXSdw7yleyI0>E#M|3~20Y3XR)cgOFzkJh2*K-*f8`F*L8UsV-=-X5t(rAIqCo znNaqTkWSaxsKAPW@s{hG+Bruq?7(F7pV#d-3@k2x({EVctcW9IfJKy+r}8~P*8iEW z=h@_*bvh(4D4eac_&CAQH<9uoA>bk1M3HBWS*6uK1j^ZXvaj`-v*$i zfd13FOxLHzl|z2cFY-C-UCYZ%A=8a%${^fIt?B#(QcY9gQ5p1Xgj@uqc*duY)yKt2 z(1&Lp+HG9mA&%*cxt@C{@&7`k1ZBAy`~OlSu|6}Rh1q=X_ay)bU9FQG`7uc3SEO)H zLcd4PJb6*pTnwWH^x!YMEBZ3b-B;OaIZvh`SGj>WafR2&6Ek_ya>`U_CD<|P((08N zPGOs*uaRZhwaahC8K0LQ|IkPt<=!!=W^lmTOrb2r?Q@$TKxrtPIpb3$kw*)Ye0-^nrH2igKX1wKcj1F z88+*7DF7;K&=X4Omm>#G;9sW=N4~UX(bqz8DbZsLf`z`fiV6cO3|>h=#`YDxE^Yah ziBGrNS>_Tf5Y16+PdwI})e95B+UkWL9`kD@y4+My6eV68|Fc@usN0+pqv0mI+NV+q z+5wvMa#H!$KuxR?4u)mnxscPfvOX%Hs?v5KYncJ8ZSNHyby4h|KAM=fou)$K(l}>U zx12>X3F(+Q@^3Qtde-H`Y1o2f4PAZnQT<-M7*IbBw6*HDL!)Ll0Z4du7WwyxN=A`L1F>sqDai>CN||$Qnr=a z&jii^Z%eAPcGt9#d{fzj6HXwYTuegu)P7tpM7$86>@jgG^@CdAAZkoZ_a>XrW6)+N z2;*(Hpk2*{W0sOwz&PDAqblXYU3@=eKmYAh6=?Z(HMQH7 z_I!cReC1kVUwL3KKG1*d3H-hUJLgmNnbUAJ4zY;&g=Dm%JptJ(vk8#@w@5u)hR=$r z*$d-C$*?(v-nLG1is|pko9GI@>tHG^P0wN?`Zp7|wqdh_Z{L$UN}Lz@8%gQGE*%U$ z%J(QgR!QXkZL%{fs68~|1TQPdj^HbCx%=&NS`qsqr6N!nm`laGF%XdfV zB6_Tpo}4g$O0KkjkCSzhjKAc&{|1h&_wFkdjarvZmzbwdkv?;P5-^HvJ*e|IQN5~d z8Y$QK|6?gv3F;A7H~=_ipig;ov&g<1OeHLsFzJB`kf(M+(Vy?`fkQ_LCyr-Sx>Mr` z*>7w8(>a4~J&3zX1OKVDRrrh>J=Q;;!B^Yed8~#XRb76r%0WmY>vhc?{M`8wKwfxW zZJ#cA@dvR?cWX!-{Y5O-KBwh7uZ9lRTOwwR6fo1Qyjblx@GaFab~Fc^o&u78?u%5! zNX0Nwz#;=NF>FSGos|}d!m}flIN_#5hjuToiLp`R2KvBbfDBN{t$g(01IvdTUnF4^ z5+a9B`IH~Y;S$hXJM%*nYu&nm|9SH{_IgZuBhEmv-M!ahsbB39b;!Aw8GimBu`!0ExMEO2TAcW!voY*;q z^KU&U)NF3XX&>pWI&O|53bUzM}Ek{?I17m%Wi|?8Mz>^mzqANSSk` ze+D3+C2}hs$i8qS=fS?AzNJN3xxzMMe;2!)_J}1RpvpDHg-`|Rx+@O6EEE5!`OT}c zKPFS5Z7QjNhuI9304SH%3jj?2Lns{uTKdKd1;AkHsi|(L!`pRiRo?m_EESTdSZnmV z^2?Vm0##ZW2QdY-U7ej&%*=?OpsBK$$DeNecHq)wa_N9IVaNLzG|!2N?9S-^u6D zWiw~)sIuSsN&SJ<>#N3OM^*kKIjIo%51^qXwQ+I^VHz>5D2wg87x2EYT+Zt2dNk|| z@v4nL(Ug)5A}>28szYRuGtod~?n*N|P~~&~O{kAlHtO{w?5hFBwJ%zK1*slkNggB$ z{EaUfj0ITajZ7ejT7o(;H8(eRPEHO0-$(uJ93KL3U7YK@rypZ#{_YDB&!XoNeyOXQ z3t&>V>x`ZkZSS5o{bmooOe3pvVc4p=RY`eZd7@0BGha!$(-)3DJ@s1YJc#B$yQ&fV z9us$wPdNdAhq3_^jMvGL3G2S?jA=}8PMer^ zMLd?N@97?;`@UF-6Xxf?fAry;e3u2|uQ^W>I-J}&@-K6g+bZ04?(~_ygLYVKwJ*E1 zHBHmMnW{Rw`_l$1F(U~dXy&FBR1)|A_(tdEGeh{*S$dPj%gIB@o({eNva<27uq0Q+ z9#2Z}dw+j{;_T;oqifSdb^D6grbBzEIXgV~QifWo?w7v8mJQ>Ug_u&1k%5)e_^T04 z{}~1Q1y~oWPmgdDSEYPbc|5yq7v;t;qGY%O!9+@xhkTbet-eovH03Mn21hCf`^|IT zy_h62J6RXutqo<^yLayQ>ODgXw2z_%Y-G>chtqaFo3k7Uw*D+D$Sv-x23u#-2lgG` z-J5SwFmq5Q+Zybztn^oxHD@wb3$9$gH&ZW5zj%0;a&$cKQ@~>*ALzgt zBe$D!giaij69v-GL1sY>%rE@7r8%-pFQfgg&ogcG>fzQbv~BI(UVKEN zq??J1{XObMf6G(m7ZIDv7aq^7(mKHGrMIuX`|vr3cjVX_81V6Pj2`R=Fn%J?&FtzVT{qXl&xYo_moi1NFRWSM!4olf@440r)qAT|qNb6LNu zfZu^YZf0aA(j@QC=n}7+O4&@*z|Y38kMWr`5n?FrGxz&jXCBxYpNfFrPl;r&6}5^% zMR%~-mD9~?*iGNcLYF5!R3+pqaHm094cy_$ANr<7>udIx*}SP|J72apYm6S7b2Wc1 zx}-SUa)!=+?i@DtpO>1OMs8wK$9c@ETGT#=qCf#26>2{&mPXx3IRn+t?Fbw;^Qqb}Z>=q)e9A_J`Qh2(A~nc7SFi#o(E#7_VrS>5Q8i8a~&=FZycD z%BDo=DyP>GW#n%Z)14V_8hmA~p)#h2kccn5HZ#C~Ztjp?FnThYOTLy7dy5Ni@vMt3 zUzOrr!xP8A5zz++JN<$#tftnQ(d!~5a#2rMO26JdI{i{R(|xdsSv68&9ZO;jy%qj;`MdrL}}ftocO+^=a7O1LA(5L z@m%n3nyq9Mc00L5H1Jfg4MAL*95mK^J&{^amC$Xfk{r1b+~PpcCr=ZBJ_Rcsz*f|Q z0$JuZs?_-5nSIx0+J@wmz7=lCWi?(dyi!$SLqBA+uootM0BfA`fY#G_$_Tk}ZgsUc z6;&!4S;>r!wO3k8;WOHwj&-xHo^zCZE*oH}teEa;+rAf%zd9|9U{bH^_R?5ljU@DI zILULJxD%*^j}XU-n*`LX!}k%c4)8tCCWA=&uG>>+^3jvffFGEg-EcY0OYxEEqBEyn zzn6C(8Mv`QkVi-N7U4NlnsRPxXV%2UecY6x>_GVn&CgV`ZXx~Ywx8j>xYIZ$ z(8tp7c^L$*E~2WQ@qjj-Nr9 zu1w>eU)`<2dtfQ`VLtw)j-!_e~dk0K=RZrRWA zF=8x>4``t-LVMyfxs(wW%DE4;OHxU?z|g=mj@r){R?`q7^U(0kcCqKOUocHtSrJ`w zFDi9XghoVJs{j@88ppsa+;LdYpZv0f=(MW$e>{Pv7u?O?Mqm8R-ZPY-LO z1*wp@6D^PFlMq>IKL#O&1dqg$vnN(T)$B&bZE8YZ#SeOi<1|3mS%U?AqgrWB?V&YC zIx|YxV=i6(63>kkY940)f?H-$xc6Yjmt~5^QI&}`P1j$GFYG0_i3qK_LW`AaN3TDS z04#}wF1ftH@qKoZ7Ofgq4c)H#Dr{Y%FyCK0_gTjeAV_xzsMA}cVKK0F%mg}hPi%=W zr&RcDUDd93c&W=Rzgh2IA{t#5V1|izb>(>`>L~}9AAbGGcG1w`v*mHsaxv)GQFyJZ zNN6|)yH9U(FTakEEH#VQ0Ysky`yqIYNl0Xcf3r+#$SEctyp;JN?!|F(ea`+)p<_dG z&=%>n3&B3RB~>rq8VGc$cql_HIlei@UrrG3R?Y6(ni}@nbL0%>^H6HTlOW*>y9v_x z4YW#%J|!b~>_~?>dZ zVTsp0D}YVA4vWY+)QdB*A{5&3SpBQUam-Se$GKTCMJB6^-{pwm(-eZE^5eZUcQ3<)R zYWQ4blmP>Ll(^oJ1DMYHvpMoKM~={h&xF6ahu@J;=_|z6G0b(nTpINM=z7b5D%-7F z7+7?NbhpwW-O?dQcPJpRXq0Z364D?bk_t$7cS(n!EV?A5L%R7ceD*%?{`PqfKXmC2 zxxKlrImaAx%sGN{SYa_JJthbamlO4`IAI3*tJ_cSq?XG0qpT4##ZHo~8}D)kgWJ6O zu3mp9nLT?@iY4)Owc_A$>Suu`Xwx)fJ=FgC3K`HLzPMbJm$7FsV4XX*ubSrLXDsiM$sFYQI!g%OnLS9xx7|+ zj}9mI=If9GVbSQ0j0v`f52c~dLQzj<0`e3a;O1!1!u zOmUU>RZw=>BzL*1r=nrnF)3r81*>%k?GS{nOT8*@H=G5mhZwOmB+u+ScCrr@(i5r zGS0I9@ZgL;8jxg{*}EJZBI)no*^#rHjHcn@=EmFH-25nDpEQWT4NT{j9O)R`3i<_; za_4&D!@|@)+`1hB5|Fq{!QZzsqs@P9g?bfRs) zfhg|?bCcFzQ?GEfiLE%854uiwAsEjN3TDN_zK|l5^`hNgYV}*%mU*y2DeQx z;yp6rjLnBna6-k0V|e-_Szv8GF;8IG8#jDrE>2*Alk?p95pDZhWXp+f{<-b0fj<&I zVXqR#N6DP_X-A4(mMRf8_|_un2mW~cD2v~akFI~)s(tglc~%A0a?V9#XE4*qD>XG+ zRE;LpKDs;M(A`H8acd;{t!Qd3C>v6p24`H0`^2@PF*qzps5m%0FlTra_YL$t; zmHAy!^Z0x7FU6z;DP;9bbVO!|ZpFQNgZjd}&w?@EEhS=_Exu@}?^R^F0#bSs zt&-bVk(6FAU80=M?L5&Q0#{9X)ALY-E*r82A(OcF6sDpanBJBw@5cyW0u+8TM-}#V zt%&y#{nxHwRIt6GFZU}y`M?RNpbQl%$M3EY%dMkIZP8MUZl<2MN7Tyf{#1mNji7o= zqjtQEzsAVqKmdgRO%09%(|WL4l@k#jK@cG6&ze|YcgV=5|FJoBTVkFK8l3kFG?WeS zq;dI)Cw&~(_#@ovLTZ~qCByBSIoP{oJUD(L1X7v^mca^8Id0h1EvN$xq|wJ`lA0B%vHcVe+Ck7XCD> z&Cr$4cr3%NytI1E-0o-}Z0v}45n$be?9GDsri!MkE+OMdkL#Uaz#?I_9lP>NuT!lh z4a4@~+E=%$SE+lp4C^o7>`E~5%kP9}2qh`^O~k&ARq1A%EvWR$c;(hx@G-NIjD6AQ zUG!V>j|rb4^&!1RYS*^u6HEa^i<-d+G*>Fry>HPNP8Je?_i*I@fNU(Kkjv`iXEh=? zlD{Co#1;gfC91b(pE(QFPE=7o9-HFR_{v>3k&FjqZY=7L5`o(!>2IE^7DDADCuzQ zYU?x9-e%+{NPPC@0v-t)V&fk_akWK^RC7|Fe^)bgVW`4iRv$-^wFheZle&;M|LAd=Pi3-6xn-na)f= zP!o*(&|IYLq7;%R<$#^ly&e(dOnsVKm(X+|RO6-xd%aE*Z8!G_9NDylj?1&}o0w1c zR?Sa6j_juPtfo+V_vgM~sauu%1^=A%Wbr+0_rH%X=W)u1aG?VuQ$-1yVJfZeu$7jvJJ znr?UJQHP=7q)2W4U$N9z_uTy@$~lJxU21PO2WaCXch`(6eJKyT*y{pbvutl#H~QK) zds4>UN`bd(Ofpi1vwB0tSFdUz`;x9N;3j1-=!|;e672*{-OK_RaaEwwyp=;WR$6Ib zG1X?>lWDu(xuPcZI(0nY#9g`rujj(E?}4R0;ulz-j6{YuKgopPd}$>e#vj=Fi})gP zT*vl?uX3v-o*(JHI4LI)i}TmGq6RtiCkvzH7fo<)u&g@OHh~yChjogWA;yQ`jAQu5 zVw7914BCZ{UMeHs?*&X3WHyoay zr#}5MbYN&pRoKbghKcUA;$95-J8+@)Gx5%`^Au=7{Icoz#_uuBfbUx z{YIg`9-$N|8h?F2eLCr6uay3}b^p&M%C$Xi!zXThI(oG{rY-FKwQu9w+NYf}k<7(& zuvn&zp{v4P5*_uhOqozdr)`|S#|7IWz{H|=PiQ?0#HQ@0XA3EI{@(&eGo z3h zuO_*8Y$gCwlYZ>Z97ALXR$um=fQ?qG#bnB=fWg;_+g-`-IDM$~=d$JkY?$(?_?HhU zValU_(R-^jFzj8%|7GK(lSgkOY207$#$2bqpL9Yu@|M#KT_J)v7(S8 zOPD*b8?dM3_R#kCulm{Y(5d{T>5U}a+f0i+yQqHZA zB*~34D=2_FFXvc(Lu$F*!A-;C!CU?$;Ju{F=K+uO_-5qq)M(f1OiLwFNNs+|4z)NV zZ8iSp@lOM7*dY%yX9H06Wx_Q`$sl`4Iy(qvpkkh978d`*wY0Gv)pSxBdK>9`LiA}h z#bpll*&BpP&fFcd@)KXWGwP*;3&7ppAf<*UBYI8+patIcEB!w2bq;2i;z7O39&zO3 zasJXef&Rj8wHoV9`l@bhd&tUkWjQDey$!^gucZ?;3hlH$Q!y zF6knRLN~XHHJvUJsmW z9}-o|fxfY{d2RDCUIoq}8iY|D2{jtdJ-U2{m3EQO>lKrNK;@3ZW7{0?LxGU1)vJ+! z?sAn|0T%^>tX~a3W!K^?RL=5%`|8gi7kRX@koBW)-&EZ@-u20zfCS335>tDcl!kM- z-#>(hF@R4H=dQQPXii&;21vKnq|6v0)H9*efnQUi|QfilegTzPKk+69;c{wk@ zWJ__1BV(7!OlA6zQ1%1O zkq(0{Z+e6~Mda5b4Pa?pqXm4uSIr-em}3o9NR$okj%9-#=y)Ploz)Ua)zyjB4nKb# z_^ebQ7hKwHnf=>tmoUZd`uxvFo{ot)M-;9U+ou0xR9cIOlmh*4qf))%63^<6E?mqM z<;yJM(|x3cdhCa@S?rJ3mpa3bBJD2yQKx+P0@}k;+KKlecgfB}2(fAxd*gZ(gE((@ zw&<#GnD&EXJB}4SDXZ|sr;n)*R=t**SfloJlgO3ut){!%U)9Q#ufD<;1yiDE|JqSH zbB19L+aRg^>hRR1n+U^d$eaA&&p~T^P_IBH#jI0pPFsn+sHgmqH4)&EB3q?Nhlu_$ zl0=xjkWM1|-`5Owqz5Z~tRrJ5a#GL=E+s@!t`~Wp8)5yxaRp9Sz~oDZ!J`JYqJLRy zL^P_%v-wl$^$qA%&pkzz-aJ6tZ7qB~>UG|Aa(*`1L-E@?k0xYR-DyQfpJD4p>lW3o zL5|eKV0>U`(`|juHC5I|G0jo!`&l)6aBMCKA5mw*RCdsAgLGo6D)-u=5F+txl$(8i z>PhY0D|ll3+n8h)UtF*1cSF&AcM7CwN?dOzm`ok|XMtiV92~LM)@w0GW`0I1`>~II zq%G=8nHaWca4-L)0c(<(*B1-RFi$L1(r~tauaTeouG+U)PDn;+qY@OnVbMX&5|%H| z*S(m&!3eI$j%#!Jawl!P5iSop7?}9EE%E5Qg14P6XNSxpmKl)`>-mqhp4T^VtPoOh zyg3WXjloG$LSq-tvX>KDM_|3ws(esegZS$S+nL2b%|< zz+I{rta;HFloX|~z?XR3$3uKHJBQHSXO1>RGaUzKmP4cM1$%cu^%BPpae%ov)0(J37BRU44@^k0j z4%2AmAUMjm^c9QjwvMju=j!SQH8nM$qgCm=C(eNo=Xi6n$sm<%he>mMetFLX|UwTMg&fQ7!b(Zx`r;Fb$;3%ZT3+kJi-H z>~IxrvprNYZ2G>?L`aO{EAt=>Q$|fG_-)3sCv3>*IkA^}p8FX5$}d@V)wk}>7C6r4 z$Yq5a8eWYEt@~w4XuV_Tkhu+M)G^F=ntE)}bEP2C`-+xN&qU2vRl+V*Z5hohp8|KB zq& zt-ZXH(ueWw3SwXA{bb-*=S1lbn~MzhK*E`=b?nNHk=#0v8A(h_i~RVJ49>vM%)~?| zDQQ+ib#(Mv(L&L(@|l)iX>uh~uT?w=@Rz#wE6Sa+dJk0PEzS`U5pZ(8ryhI<@cDy) zBM!#!Uo4J<#-x>@foIp6gk3usM#9AlvbTLiR^Ci5Lh>q%~w|&)xLdPCo&kNOFNH> zgeVa-_9`e*K)(70(~r~LF)&c~8L z`=#8mU0-l!OuT6dTO;5al<0g)K{BFN7=pqo8)Sl%>}+i1oowg?eA|*79e(0BuERg5 z`8pDr=%Q)lc2SP_@M~Prgdk-aNXwFPy~}FnG%CogZM5fKlXA~{`GaU_b#S6SkbOW7 zWN^XfIg(v5PaF_Ct>ne+o(UcpaZhA@&cbu0z2vaF2)Om}P6ItowQqiEU6qiY zW{)n06QqRdWjYupj|Dm37FdgRNF`9KK;})+^R{XMIgZiYv_Cf1*Vrr?;)4)fNJ(tr?KJoo7q?Ka}hd54#} zQfu%Z&%%&|ekg|WhOp^X08_z=L~4`@`U$*%)a5ptO`|ily**-_2zX3zDnDMxXwl-< zwDYrVMXK7amo0BKa*U<-slenBo?&?Ic>RIGnDGlKr8kw6;Ab_o6z7f6&me!LLE}>H z6ZTj(^@p^gueEetzlc~}yP8tL``dQyRjjDr>0WdlMB^3KGx%aQ)(Wf+Ui`>WJ^+s5 zHhmmGW#F^uWc0=5 z<(5AsNV+4j(+bg4VBtABxWiG@VkBK5@G2i%IC(G51dD}PwIE|gR=gNACYKVf&0?P} z6H=`t&dJUvl?vM{gsDrsROm!!B%9{V%fw_;njXX3OSD|3jB3;=y6CBo~NXzM$Jk}YmJADUsTkRpZGpjC@x=x{jNnts6 zMl?UEEE`PA=+fl9L8brL(hU8g$T(`TT_d-uRNhu+X8mN9G?`(&K38pOqWsXQhUsvH`cN2~Y6hj)6w}WG<`evTU9qHA zz@WfP>xUkatm~n0`3`i6b9djHkIEn)C#23lFJs)~kIMWZ8P!5IxBwl62;j6nwd?GH zs{2`xAIBilq~xPfnUKsDwirlVKMV`ova$%<-$PegJ719Ufhgx zZiRag*j4zOH6P0`#X|K5X?r%Jf;8O>+n+C-*`;-@TGyYIc>G08um-yKgstkh@S*v4vj;8#$b5>5Q>wq15&u5 z0V=KfRn+G=|29A7Rwk+O(ASMaCL|->A0Fo@(Igzu$|>r7$OIfvHI0l4M`8`Z66upx zPHxXw*(`zBX7s@3uN3dqmaJ!G&1#5&+tCd2od%svs_5swfp;GS3ZKiGzNbrfMRS2~ zOV=R=HR196a#~gMK|)#Q5-jANYd}P&w#H!7VQnDaf{vQ+I1iE?3AvAY^e;UvHEjs# zHvxW=K8ph_$!Xd2E2xE(sdrIF=ys)E?+NP1ZT=I;W_Y zIN3g1Q@{eo-Q6nc>I!OVk>KJJ5)$Im(v}&y^S7%X_SOYzjNMM2Iw-h_yvB2Ra?wD- z#mb7Nsj1obeO-^B3V7db`x~1$WY4{@XUL^@e8i11A^Gyre*G``r9T<%#_NdOF_Qtm zM$qD0kz22u;$WZW#q_HU^q>jU z=|x_%^H{e+t4*1inSB<&=H?dgTP3}DgVf?&Raw8=V@OCuL_kWKXJqwtYRZ6#nYn-@ zrKG1jmu*(Y6;uo*Q zh>H7{Pcozs*xeTjT&1iI8ty^NJW+BV5gwsw0}0oD?U}Q42+uCg2@}{xZ2urCmq^fZ z1{+?SL(2X!#QM9@8n&MY`B#a<#|*Px%_)FXFHAt}pjP+iX*{u@p}AqfaK0{-+#NUJ z;UEhXe@wi%@QP%F#$wu6!qZ#)y-He}T$EDXito}9Ww0kVV!(A-9D0Sw8nlg(wU|WV zYca%(%6JeHnYdi+x!7kY@n?b_z0fVLYueE(?3Mb(hIV&ziXsw|>N@{6>1>@BQKcCeK)BVVuFl7-Q2M|5rzioh+0pn-?9(1d+{ zz_tWq59(@yM>rf{Azf-9g7_Wk5Wm!E8i-I=!XGbacJW@&u8mlDU2-YOJP5@Pc2>4{Rgf4Nlo#Ka#_MBJ`I!2i6&yLLOmyY#k7N5 z5e=CW++#Ts-txKU?l!mqv+n5cIA2qSBqx&sgT|#jvtEt&1tY+a@wnB!BxA^>4aTH$ z6;SuV%mI_qTocU$y8*kNmE>a!)%lr+95b?kd^9Jdtidq z`8g#aT)*1S#e)0skYL=ptOcb^MfE04Za4`Ib8~aYt%<(eB8vXKI69tu6FBHDu~#7! z-LtdCZBl*yof+@2NR0}mro5D5OTMbfjif{5S|g_;sVA4T=mpsFWmdl=M7VXlLD|CA zoPB(BV%vm4#d^B^zR%ckvR|XWzxRX9L_v~ZW}^k&Udjv0J1-#2w4|lEV8gIp>v0_X zK1i)vN)=ti;IrWf?Y;G)KK~_E_`D0^i%843vG!W^O^}vY?s14&!OfGFG79(dJ>K0v z^-x=@lTPdJh%FS_2KRf>-wv$bF+$gFIU!Le=eI!?7}Zj#ikDQw(LYt^k)&^i0@Y2IrF zTGah1P(xv{{nD8+Y$gu2y;##ycRScL@@*sI`fcvK=m8o4E9I#VE3O_coto=rV>G{} zaOqR0Ayn=&kT8GZ$mDAEl5h!*xKR)<0)m5Pc8W-5gxSuU@Ts8pp}I;kcyh(<#}Iao zB5H?pdsw~c8>8apX7SbEmDiv7sU&=K0>|NtEXTDC%unLQ25Qk2_dd?yL13KLdrmiW zsF@C;K{&p+Mf~nn;-^8Pg?91|gDPXbhpWm~Ha6MS)j9xLJs=_3@;5d!!_~2k$!87r zuik1=G1M+7z7n~%3b&vS3nz40H zgs`*e;#a~fi^Y?+(k*P4mv>I*24a&%5m7C(dUK|x$50|v(w%;h;JZ?_Z#zOl%b$b< z8IBC%d`2q1K~B+x#44kUvXf+3?EYre@A@`<54LGSdm|VLjt3Cxn*#(7-V1J;HR+_b z6a>RQD17)9%2+zVvYH2>f$sa>(k~5)MOxZ`ZdSQ73~CU!|5QZ*wfee5!fp3!j={js zco7v9mE+c@s`e}HgP($tyK_MLtOOy+_{9r`<>h6ah@l6Rlo2^OOyCXOr}MMW<>eRd zU+tcH2}1^X(B@5<+GIUj2;~*lR6+$K|0b(2v-E>MB`a~|OGr#y&G>^(B9QFPt)zV0 zoYTg=bS5l+_`D&dHm>CYsj&{$l+OX#!fZJyt=zsCv9Ljt1SP4&89Odj#ocD+YJ}Hy z=6RL(e*-ApPWy(FA7mGQ{}bc z%r#SdJSjMRTiDdNOXy6s-VB*o*dE7?>#)#41aU~pGiib#XI+%EQ7xJP&OnC_3iHDo~FN($>9PZmhd& zCv`=GN94mr$*>%5r3DJ(>fsGXLECL8qR8ayY$xf+X(t-+QNJTRx?Yb*6AJ7DkfdP* z6&)Uq$DIZZJWs@gHVE6(iBUip$oB`r^suzO1B~7)tFpi=yyj+)I;bI4Urn*u!5^0{ zX2vGQZ;O0}+tb~ovQ3`iC(mm*Rohhc6vrI|TQHhE1P`ptm$En8_cGx`aH_dti8=~l zEzbUY2bprkfK$s-{%A)LXZq1WHvgl;HpE=_*)Q5fLnZAqcZiF_C<_frSFL9h>(=() z1mb#lL4R9QtZR!fs(p)aggKm+*)?MvkL8svi!-$F)8y4FESHf4d)*?I1}wWab&p}H zNs#7*(Sxa@C^lyK4v!bxI_MRiC>NN~>vHT|>@8IBa8z$XpQ#@5DlaolmNxm`==oQR zNDZS2Hs@35y$nFWZs`=3tR9@gt&p0rjR+HwUc#r_>zdK06@QI?u#-h0sI=Ux&w?P& z1~xaO2C3eC7j}Ah(c0Q*EKpouk0|5^IhNE;xAkYr3(L%;_4B7*H~xGX_bchxu{WCf z*Gg9+=gauFPN8_T3c#SHxjFI-gHK;OhH{2T`Fi8`@2}=!T@r;TZ+muyBJ%s`&zoo&A13djJkCM!1j681@^5r)a4_2-wp zze60P5Ocd?!g3N13YTAZI@u%;ZX^~16jZ@hr0a9@d$1N$Rjbv9)n)USCftx+surOE1`jDQIssFA_DI2W4G^lTf~a= zeu6dr)6>&F>Tw>9F))qmrejFYJo>TQGj^jl5AqfZDJbq}9#UNhS>d%&ugR8av2H(K zkCARj&kT3?taPO<@OYaBl0lBmfsL>rN~?7Kt&f|29oIpNyHci5<-B^2xjSAcD=P~W z^BnOBGJ9C>-klf-$htF#kmoqBEvSx+rLBb2s`oU;_lBq4H&ySe{qfg-YgOP3%FD|O z5}JyVlC)nlEO%$vLg%~s`N41g*yareho3agi!Mfq%~X^)qp@v0+|ZTx_X{9j~SLu-?{^u)p5K8oGT@e=M@Z;<)V09oms{H-39nXig^~ zVY)y2H)YUZ;ub-~7DVy9zTh2PD_P91^c14R)nc44dt6;G7e5VnMqO?8qYcbwfJXzr zj$H|Iay|t~9T-Yq3bM1Sf{)BBEDT&+>Hun1R8%ObsAzHW8E5z4j9c8Fo`~h`O;p<5 zF|q_SltM2=YYpj@Gg7XL0aU+ytH$ zu;T4{VyrNNY;SX;dgXjuM8SeVQH)FV5GaAC^C&#tVxyH_A=SGS#BGe_MV#K4qnq4C z{bBtZ^?)Y?L5&Fbo&}5+!>11Ja_X)e!{{7xZP-?hD7e>%R!*84P=)V^x2K5&Jh6#b zd5frCdPOFqyyFJbF3wagN6;myNA2EN@C25vSAsmNeDHi0+c44mZfkBbnfL(hNV#}V zCj=TLcWC{xbAg{+R9FRpd4a2$fhC1^hS@)8tPj zbUfH0d&66FX}g}uE_=vp68&|3A)GJW7n0nDaP7~?!wn$|%yV7H&jcuUGyQRiB8vv=eFDNEuE z#l^*sTXC?k?)kyi)>fZIRJ6%#P!bRJ#W8|+{2A0&VD$3ERQYpoH0+P-gDKw1ph7FI zZ*InNRY?K2=e{+r99V5VVazfi_y>3i|C?@8X!us!v+&lW@9lz>q@<+JVq>G=;qG8J z&Owz9zli+EQ(tX?;$tejv^E2Q8NvI?A!=xCdHIX^f7J@UWI~Tg$+uCFkwG;y{I62s z%_rRZNePy8v4f5;0GQ=@22AYKXP6P=8&bGTc;Ryl2>LQFBPK^7dd zY@fbEEe$}c_fFi+`s+Nd3yk3jYLuy4<~0&4IoQi=58>D)ojv+Ny}l4y6U1g;-h-WI z7I}gxrA0p&EbbKG`M)E@j68GSska3E2}JuUiG-b5dS8nZXgdB67u5jX)L$;jcDwMm zwQZwT601groQH>?imEC+h2-I;>QXP7u57;;y4(md?!G1~^v_CQaN2H9MN_h7h}*b> z#qZGeZVj^ar+Nkk`Dc#a-VLI%F9-Ykfk{~~G|rHXjqTW8zw|kuzM)~tLY><_^SUkf zO2}_I%X!P*=zFpyKVRv-p!)lk#$PbAvNE!;D1e)bfq@Yg6Qf^JJ1ENC#XVa&9(VK~ zA%%ZH3AwVaASCglC*T~6lZqf{V1Uj)%2QXC|Hd&Jdrh|tNtRombvQXAqx8(t)wKdV zRs!IOlr=f|RF##(7wYWn?6$B|`$GM9o}A%&n0VcNtCQh zicbp1;vQ$$5KdsCO<+=Y+ih%0z4lb*dA?Rss2Sxfl(iHKo%;0~BQgUAyI~Gpsn`eo zq2zP%^`GPq#a~eAi#pTeQ+%H1zI$A&`OQBoU8h@y+ZU0{x5af%j>&ET%1OvekN+=djSoj%IvIO37CKMT+MhV5~0;PV%bJy#h zVQK%V(PD6P^d$S++9zh|xzHI5VvATR?59)~_e?b`tr{oqcNaTG3HG>GS3#(;1 zfAITJb)KuNc0vUg1bbvgU zLv9vE_0pj%Z{fvIy4I1AjssB9(@Kcf4-{bp4B%HQtm3N7n5P_?5qBot z8h7kvvF50&s-i+CGa%dJZ^h*Gz*wKcn+($}s+QB{_NPJ0!I|yS8|JN?<-C*NVl8y4 z9ChJQ(0|&d*lnvowt-HSNNC)r8=a?D*nAEqn8_GNyqtWHqn@Hy@M43C&V1=#OEM$O zS9w;MK)`mYr?*$;fTwV}@w)Is?y9Yl(yP6;mh)$9ZgsbBel$aiSeVMof1!Z5Xj4P# zQgfR3A@%w+vt8elJop_T3o{pOF@&cWE*`MV6;ON%KSMa%NB!-Gd%bJFv^X23i+S?P z={V&n{FTsSg8u&4^z^7hH#9hJz9y5i^gp2v*dP7F9f1$WC97TZ>$c7-Azzs+P5W2m zM(9PzS8wUgFrcEl+1#BE7>O@L+{QX6!bKjdA1jQINk(nvgc0?PjnPk)o#I9jE8a?^4FnK4~qL zh{vuZzaJe1h^@Q38-&HDmqN_UfUD#9589jrI2SFxw6+EedhNGwa^JeULHvFsC`h8L ztPIk~O8sZ=>azRBB}aIv3lN9PhG36XMT+|1Yi?@_aLd+cC0!U@t=I>Ff{WG+rI`oy z{7^mXOGai=psVljHD-L^^9sS~z&k#RNsX->YHQ}L_GtdVbSYdU3y?uXPif$X2&*uKw%po{{7Ny(h?$4IM z^JPV-z<*;eA%#b(hP}^%GvoOx7*6R1#3m}|+uK0vTK)$qDD-$I?X#Dh3O{dV;k?yo z!x7%sq+2#>AC{Gx_n$JXFFluG`f&Dhb~(9{x4!ipF_MO?bfnrDgmH9C%r`~si>+zQ zJUq`btK%B1)^h%X$UV6a?0pWq?sKCLtcoe|@w1Gq1f89oZ~nQFRJjD2O`0Y~h@>~Q z>u(Zr*Uryu{?xl%@P4>F<1@1u954=!H&Pk7Ij1ZCLk!P<`3>Hl`#nFz(o=maw2R(m z`TcS?*{ehM$cH{yLdkQX!Ce|%)x6io3HRaBNb!j`d zg{9%C-z?r6PzrRBz=ApHFTOoIJd90EEdrq z4!f3AgD3+LZWA4tgo}$6U3o~n){(Nub88mw@WOna2t0;yqm=p)vqBWeqV)%*}{sIHESiOE(b%NMa46#pL(58y|g z`*#h_fX=B&z0gU{Jo*wbfpFf3gNh)p*T}2XL6h`%n zE9KHPMNx6-FgbXEC^(2lp`eF+-_BFn^TykX8Ie03wHY6gV+-?o@!3-HyPj7s+ELnv z&JaoU{r?f!T>G6^&FkX54QmPAx^tf?{FmH@+{=|@bMbzNiJ|JlhYuV6sY!aOm4<~v z|L>?aLk3HG^KSr%1$!cz&)6lM{CIBfv;>Ms4EiJIda92_cT_AUSPMTt5=UBvCX^j& zEltS`l0+=nAia{TLS~}q(2J#K4h1A3_<~XcE730=^u<-&dmpU|W)7-*?Ok5+Ce1nL zlSQ{kl#R#OletLp+)%^IJGyZ`wwMS|ID4uO)5&fuwYV*M44_TIUhbH6vM{M$%?1fH|Ih3vc2MXLECiYOa|+MNh4uYGm|{4(73XP323Etm9M{~<>^joMtW~Dne(gQUV8IT zP1%}t$bZyy?g<__&oqt=(*2yR&~b3!R}(*fYJ=Ka`R;UgRv%;z8X6j(#gKOuR3+1X z{{APeIJmfa;9xK+MuTwn7W9aFqNyXEcZGlm_AiuOV*udP#*f??8gD-NJoWTr#U?Ee zLg7YQ0Hd?2`-Dj!BU67J5{MR9WO=zXedH#?S;^lhA^*mT&yMj`Lw)_mWT{D)6_=2ZP|H7j2v;x8 zQ@Nf-fCfQIJNiq1xn;V%k5WCkYWnjrx{sp4pPxXa>dut4wq{OW^@u&;EMXkN?Ctd*LtHLTVD#dMGVR`KscQpE32b|TSGNV0eV zMO0lc)c9Myr0LSSHHMZIt&N@F{mmwkMZyOC-sxb>7ByG-W3r*mh6iI?b_6Z;V!wed zX!YVf_O2~%BX@0p{46lLBdBre<*ybyA8e1gLlJC2e4tw-a5LO8bHoiwBpL$gGffv) zM6(R);Miz|g?DbdPc4pa8G$H+td%8M`7|-!9U$C~eMlU1;j)t0I3=N#N#0>i2pp(o3F5BLtAH2VhW=4)@ z^^NlT{v}43|Dtf|-qLSvM2tXMJT-E{99n%=Aw%*)gR7ZklAzD~3W!Ms8o z0=t5Hj9sVRO(cl&)23LC4OIHWjQ_=)eG034X}*Z{K_?Y^Ef=zHf(*#Iq~T|*yL|#| zYGIBkNf-g{M{RTO?H4a0ch`?;>H_d#4~iUdT(4r5ot^K3VTv3?Xel}18R(_j0x&2` z2K5KnLR^aIx)x;BZXbd%0H6=y;<~?F_qA*-(Hrewr+qcxnzmS?x=LbMYpigvoEw)-i_J5L7s_pviI)o5tdys*gF)&oI*^azeeu_0T%;#?IASHWqL1ZH z{II{^{qwJ=*MQ1W^#qL)@6oTV(Q|Kw<=*$$YIk46OlD+W^v>Lqw496K4i;CQ?a{PB zo!Qbx*Z>!gCkT3ZA>JvY{APg&-Q}=)6*F8@E&Z_3?Q&UPy(Rlu^iq1cnO^1`bQJz{ z7NfuQEYUOVR5=UkNz5&()Mc1L=QCKhvUR|R-N#_)Cvope8r$--`lAssIJ-U3o9S1{ z2r}qe{#vn?nz7u39d9LO)Y=Y|;uKF%ppmQ}=u6DK4xZENbkPz|TV&a80w$Kt9 z*b;glOUuA&H( zAmsa{LJJ{#Z7%qGqIGQn;vW4_D#_AW3#$+4UIk~u7r_GW7 zyW!yvG^#M{x*TUQj~#T{%+niR2SMcxkMo1)$jHd;gM+H+%=|TluCnZmVE7EQ%(s(= zSi@v*aISGIImi}$=5=9FwQsn_`yci2?%6Ojb*;u*FQO09ZQKelZhy zgW80M`s>&4LXAB}X9)=H+-sji1lajt*q+zY7n#Cb9a|wSQo6oHzVbvFr)STer9-eg zCp<95>QZ&dRh?2sS#5sQf#O}m!h#Nhtxg9qZ15nr;K@{@%5eszc7`4Z0q?Ae@2hMt zU*GLBG-Je&9*m9;MPHwh)yieknDlY)_Y?lmOE`;pj#^Uxw>|E;et_F^cW;`gBZRK-|BEd9v&Mu-#Oq zaY@=sYU1Q1#ubCOfSuo4ZzS~^Xp4{da{lRajK2ViB&ADR@j{36(RUW7Zi7d}gEsay zGXT!!cgNpoS87BJvHG&JpXt}y2FL*Do<+ZvbrHEWjbU@T|CKg5QGaO~E_P!1w^lA$ ze^3yyo06o9tyQaqgp*hw|CtRK0fQF&9vv&1!24C4hYxKH+9P)oI&%M`hMx277cm;H z|4bZTQM&5NupXO+?G_k&g)Bh*zl+T{btd#I7WV;n6d{N~`zjs!xa`ivwtwuv-B0v% zHEopjpXPX(@w0X_NmPObc%@K=2zk)I0AiHYM=QzyLWmyFBd!#=e<(sjQ0{Q@-YcbD z0W|nep|mZ{eP3ZPp$g))ua#x+w6G-M`rUmi0CPj|S-P!R<)>e1!NHfV-ts6J7ySmq z&uAys*soCZaQKdEptQnTS!EyT{=&n8dw7_%)+f0%uNu_Js4zQ7TYuxZv?mqp`vR0} z_Wb+GU|Z=o7%85fV*8mfU-{Lun1uJu-EjLKd}S z7z)ctTW3Aw%BX&Y6{}DAP7w-|J($y^Hsra;mbbNi$nx|PvWA9+J6NuDGh63u4$!%m zm)C|rCCNljM79vb+}ymy83u!aKs5W8=KtKHn6UZ(gpLsaSBkoCZ8ker0W2Af2dWHWZdP*Jj5i>VC4tg!MRXMJtfpf_} z2gq(lA@)AHnkF$A3GB|)>zJ1soM?vLMSqevGot}AU)_kI*T);0H)F+qoZ*D_8&js# z)if8Zsz7^sno-8NnO$zyZ^3OaW(FiO3}RxGYirT3OrLeF{e?=pYC|kV>8mq|_8*6I z_4K};?e-@?2dPs^0=2cMt^>4S|Elkjz5@B|Kj=rdZ9r1TGdw&zEFuCl zth5~*IO5~uLH*O?DtlxLmkAk)$?M8pr?TjI?A}u`KF&hjyI$g`y-B8F3HnL9QtjtqK%!*ZGNC6cpT&h~3%Pi9BfVx5c6ge-FbR^YRre z-;oA@kve-sBtCqcv%UKESK(8+r=`u<1_2V~+pO+S_&256iMb*At(e#R1Rq_JeZHJr z?03T|mMWibz^Adew$iAs8~M?CF;&MgB961)<*Arl0&EqLd2^`Z4>lv+R||Ss#AxI| zsosq_RQjr6Qzs_?wK#1){emp))1c=aQf*)n#iv)aKWL7E!t8^`s)E&9;6x>pQ8uSC zt7#oxerkw5?x%=sK}4*oe}*)~#@RWFVJNVs*#&jYf-<-s=D%vsTqtEY?KT4^acYg! zSNWG|1HG{X4dg`Rwzd@^xYY0ei;NP{91yh_CbZbqvRK=d-nrVs7~ZTyOrUudRSQTO z{B`w=w-P+&`Q%LFCG{%RZ>KU~*q}jpFM1T0*e$!v>WTZW_FvIa9;1%p zzxsb@MSzTqV^joh;Rz@#Ku@W={CU^Ef38w8A?4Esnwr7HRUG8xPhQT4GJlN8lN!;n z;m|8KcwV#IaSBTVz=PJb@ipiRY2VkJq1yg|v<2UP1k*u4rgz z_}BOm3%O9W_Pv@A{TU};YF%Ajz~6+H?jfmyrFf3*ZV=`7z7;^+P&|f8MtZ`jo9MNz0*SxYy2=32~ z!a^JNxi@|JzNbamsX+^ZmmSr?uf+DdMhH1B)Q*%|8x4pi6IkN_>Hgz~R?AJhJZ!9E z@c(1%tfQ(-+qRFSNC}9PgrsyR-3rnv-AKu%LApgs8lIYU%>7T+_;8W^NcS1m1t>UD}#-kfQ_oDpbJ|2DrXE+E@U zw0&+5tGFytw5R)R=}XHR@b^Ve2u%9<=4bYsJ4&H15!%#M;^M1~3E5-&o}Zs-R~$-a0FB-daf>eg6_Q zZO9nUmz9#GCDqOTFzQ2P-Dj&Rx(U`Kx?e7dmsYzr{~l%i%^OQ9xB^5z$eE>Yuk^irIvSo@;xLASZ-Jx8_~-MHAg~XOhs^*q)XZP zu!nBYW|M!H5_>43va_RXM-<=-4K-@WmuU5pZ-3-Fp~{pNnmwBF_M#^C3cFyK9m3wh zgrg`#x;o;R9nh$+zD&4|OJD0iqJ0-ya4$ov{j;%X6(;+~CpNXB$8gpTMp_XW zhOO8F%e&tXa6;JD)pX!{`#?HvF44^=Uo&<;wDCn^YuJ;p+5@Dl`dj?*$QMpRHm%*l z!smrpUi~|F54Pxi-n@H(NBcFP->t;Vdh=8~Z`mm4+7Xp5^K{F8$meIMTz%iX@}6n^-b#xX$Ew)m)g>i*)+msh``-vGl=@ zi00u({pGrLP-!Bg3sBUC@YUMB9B13$({@WiTBnK}re-zYPwm6qwS4&*QZrjAdAT$0 zU|3;DIch`I=s+d9_v>7YvDWLQ5MfUMvw5ny@_)?cVJ7Q^uRU!>i_ho>~n^M8)R-Fr5An>op`j8`(O!x2dw;--60N$*fYn{A~< zL#kbal-jPzKCTDsM8i#?AYI=~(g(LvT5Z!g#!G^y=bx`uu;=Tdne2hU~=ea^8Wa0k6k zf+L6XuQ3&LS?2c9@vz$6(Y={q6ewl;ms(9#_K&0LojZ-&RR;ZBoue@x@M6@)9bM3G zw-kLCC|zfRe$umL+nE59aE=2a;qPz|3-J3|@bK`!+NdDqQh6!U?h1wx)&wX(@^5R^ z97oxYKH!R=`~RNDf6CWDH_Ayu-&$)ps;~z*1(65VQtvj`1BnVheiYrFD1XvDOwAtfZ^Q9} z_r+Pr!8ch|rlH!LW^SvS9t^wKT43jVKQH~XdtiLSo|$#oT6pAYjVfVje(s_3ivK|I zZhEfs<#-9VK;0IqT+1O&y#E>lVbs9>prWiF^`}vD$`Ye0OkIKpKNKsxL+JvBV2u>E z;w3m`2B+~zkpycM`4l8kP;}5iw(>#rKo++Y_Qa z_$_AkXpgG$P4snt&Hm9r88u$ZVl`j_g#?)e+@0+j2{D9}e5oDN?P0BSGOZq~fy$HK zGvZ1Eu1}VhZO~J~{%%UpkTVT`Pk+W{HOURjClYbo0Xh%zydb<|p^~YNH*^NsT^*&i z`OnDOFyscv&6^(qdbGrdLlrGaoY39cD%N;2zWuw*l1t|O ziN&7!Ur&^bBcrK>CUaBxnVBLIA>{XYN|5H35D3m7y*dgZO!J8KZ7*Kck~Ue}_kTOP zxh_AT#_~kGu(j zkRYOwrHcGub1WX{89j&xZzaqvc1FX%FJ@-ByoQCLV8$CfdGXSSl;uab2mj>G@ZrMj zipI4i(ZbnlpX}P**y3Xa&zL+sCduCgPn7$cq=z7KhlIq@ovgH=tgQS?_$VwbW&b67 z*uuI(k>%);EnuMohp_7Jz#lk-VII0a_JohLuiTCKfsF!8SjT1djbV;SOFbz5AcaR6 zZ*jVJs&=B}?-Qbm%J@llxYpy{QLG7NXjEk7t`I)P)9WoRVD2przug`FZfcIg}Fff!QR^aaqA0`$a?WFA>mA1_4ABRIj8-;T0*Di;HqaoJrRw;bh4Y7Ya5mV7!M^oBZJjC~?F6BFZH_+% zr0T7#636_PPfe3X`g>kJJgEz#Q+zfXg_}(k4BlIrgJ_+Me`VGfRmi`wo7Qc5M+77? zWQG1r*Th(uS1RZdMPoE3BqGW?F36^ZrgH}$Sc9qtOeW^%=F*QX)z#xc9kY9QICRd* z&8-e3#n1<^n9!u=PxQb0yX89D7Q}DRoTj?nJTqxcdexWcUka?x4PLN%v`Kwr2j?~a zjrSnfH^{+lKI1Yk#WNA2{P;kssi+JxdYAWkE!K1ak-xXq!`rtv3V|KqFX`|~g%tAG z*ye6ZovTsI9h}n7bM?gX&-!{B)?`|e$NHi!Y%jNBtBheF`fV*WwFVEKV8l+NAJ3Pg z>Z|`9r@l$L843Q|68hydWC&y6EMUFh+h9*qhz&tO9%pvt<~MX^yi%XHM54&(X!y)u z-yoq45>n8fZMc&ElwKIsa?8XLA|`+)uX_m=JJQ`f{J5*_V0wwhZJiEL&{EXY4J$y| zpZ&S~EJtx!gtin=?kvoBtL9{6I3*Cc~uCor$T!Iu_+JO3y*RE z3{ko`{Us@la*AcU2y!9Ur{96-n!KT2OZQeB{Z%KcA&^{HN7lZ^VBIV74k$X>x#h2i zF?o{Q1J}}@DSn8;)BblS=#b@*@Pt)?L}m7>52yI0efJo*`Y#u1&6x-Jz^?|+HU_L1 zJCzatSBK}jfV>j<@59a@-2D~f@hi7*e?$UNi4%g^GUbnXl@)ArmRwEb|1`x9g(dUf z`r42UjAGXcC_}He5M7UkUD-1EoT zZq}uG%wT2oJy@wTq;fEy$3p=5F0EPkHK`_&^|=CQcll5l@TUUCU{mfgI+md=eHN&{ z$$b5qcL$Fu?F1IpMFVt6B@s4?g4mfwI-g;0_Vt0xbZ~IW#N42viLt`1_#GSM*z`RP z`bWDqp&VG2FiSMk*f5^3XPE6I+dTr?3R{^)swGUNTXAZv@~q&KMCL20D>6B?K&l2%O4n zE#BM|A9k334wR{+G=&$R&nK@4?tav<9tznSLX8WvxKhgb?KB5Qa}6p9nrKe;IL7pt z8z)U1u%7-hOV3s}yTBYvO-lW}^Z)FNGGZYu!QiLgdTzO_X+JM+R9Q&Ezk8aDYuoq! z*6LI%d;e>(O^1)Lqd#!`hSq_W<@HVG=ipP4aik4R%Lm=}gLb{R!h${sdjpFR2++9O z_i5NTJ${3hcudypGYNkg5BswnDUO6j5pXS{oyby5n!kt0(BvSX<(c46RTfenp6efqQ}v%a{!;DZ*R`2*KuZ{?Q5p!GNI7ZV9r;*i*al^ z$&?T_qu{SB;qcqqaPM=84Q4uFXJvd2p$yTzKxWV9&zJM-C@vb#BRp>$ghtY}ci7(o zBk{Wc+MN4}Xr;j3{mHh;x(}X*Z%|Tp^yiv)j!X6DYW?NvlssxE;Rmnon;bxe_9o}9 zp=G7zgughM$KafA#}lCoaS~0d<$6g2i-0o6zy{OBE#=N8?ll zQ`q;J!(pErAtSmeM?+!i*!~X6Ui>naIya#Lk3n^I4O*nibbg;%I}i!&K5%DA;s{C2 z^XHOHW*J-E(&dxpu&Dltk~Shb#42vQM>AaKh$$&ZBbl@~?%?F4W~x;M)zt{EzHD>Y zA1%j@cW`C7tWI|{A_X2IT5`6Ys12z%gz~xqN);B-A6?qR$;7Lyre@c=xNH70XKPBu zD=l=|NS{@LdwyqkSJAW+J?i`B&Romw+qb>r;^KIvP3FN1@!!4K%*@Qdo_$OFl_LQ9 z=#bszc8#zHNxP~`INwJMAQ%2VK`&hx8TG*}<4rU@fEnj4EX;L@-+%_4$D?dBj7x8M0ynrEW5`DkR=R+=jerjv8~ss;{jwgnuY+ZF5FR zQK@b3J*=51zypV3k8G4+>}YPH=Ps_dn)nboL=ZGT)y|?$L-2y3X3p>(-|8qFl%w;p zyLoywkN^C!-;uQ8EXlF1zCtw&*=#}KDxapbU>^-KgzTw|6xO(ng8WH6$>r!jakI+B zwGxB1+b8^4b6PZe!JEgysd0Qy`Ns6*m|@|t?(UlLW{n$jbBkJDgk@=u(ytd4#K_KW zP%#gpXCGO&pGcwp7Q2Fih1;otohxa|g)QIKIpeLO=bOzv+t)#A z!&|C-@RY8I`j=kWb9ugz1K;c52iVZz-W|+a{Vca;uFy_4ko5=5 zfr>I@jUe(&#W%+oZGFRcpe6K2Da?u^`}DJ?g>0p$_TCq3XX7bSkBSytA&YhpoC(bj z`;hDFy94fq{?%(d8vk=fDbdL6JCv&-td|bfm4n^C_?Y^)JSgIP`u36VP>{X=LA|rl#@^RDvnl z3lhRxNag|i!Mk8Ur~)OzpKW{GvU`M)olGAV$aZGchlMVIJau(-ckkUpbaHZX$g-?4 z5_NL^OlVD(sAO;3x!*Wfkt5*hHdV>^J_bsS#yRO>CFGzy1Y)P_jrZpR3KBZFO=`aZ z!8m-ns<1HB>-_V|0(bsYWTvM7ir1K*+6duw?2**}YCUYW_1*9IH+cz`#U!`O+Atz- zk;4m!daCbL4!K)FD!vz7!L{BM0T+=JnXMK=a6QTrZ*Gm}OQFSR@pGsZe+BC?{ndLl zW#E!LQhOY4uo-6Yb*rqNX~6-H^&zYeI0L_t4)g#=_*yUI(tN4A$sNcUDM}c8RNsXM zyXxw!xb9d|xqstVeGTDw!-VjLkD@&KQr^~@r#lLceJ}j-5u>fH?7Bw)8Yry9(WGrw z5v6rtZv+P-Y|8w{=%<;(Zb?zPr#ky-z&kt(p-2ubs-3|(HhktwbtWKnS z!91rvKdastA0MOW^4y{uCT6Qk4O;vTV5rE(N`=yju>G9K&u0W~iP-q~!0Kw)K(Mu~ zje@QdLd}@a6=I7pL1JtKg=J9- z`h>DDn+QE>^J4w-pK?3dL_jzuF>udwC}%rW_=@T2Ud#ygtCzkpXj>;P<~x5o9qWhA z()+Fn-zzoH^qQAwdh7YJ8LDtyt!L4%^63yZdDFS4G7(U1k5|0MIaHjvVg^bk%UwIC zR#*gkp22@%uRlGWr;t{+(Tb6@=5>y%*usV7Q|szlA~!-MJGt2-EJNG2AE~=jv6}F1 zoEMQFf&qNtC2-GcUydVht`lmhPlEgjFa&CI(%-|b=QY$6#hT=3Rnp!6nd&&J?!Tnw z4+j^YBq=JQY!C#w`EBUbC`-^#KZTNdwhX|3L1+UZJS-<3XWTqVZ%+`&9 zM+{(uU|Lac1ffwiwZ}w>q4>$kXi@3YLt4}+Ofta`Z*MqfmoYhh>ChH%7)i{F17Gyz z8TG#8ym-Qk*PG)i+be6_srHzKfMo_`^F|j0^hQC9eAkZKtbt!Bo3gm_kO?l{cng~5 z`cwD>0tR7dtmHo`E&}~mY4V(#VDxrbx*j-P6$V(WWT{`r&{=P5H0v`Iy`?JGc1|$n zc>eLoL!vmN9u*zk$h#TUh@4@B83BDcI>`5c2?X6>pY6Zl3C5I?u<|wXi5z9>@L^Kc z9G|`wyUhT-rAhQ{885V*S-9k!bl{y~NsUiX`xv&Nm7El$L%;ph!D_sAx)n1|9H6og zanCjOWce?KRDUTt4!|xS$rRv}i@?Y1A(t4+h+M}@V0ld{T(m2^GW|R;kjTOr>pXQ; zbekt+VA=qw@X}QIc}G(yCHBFX{w&J9Yr8S?3YUxypx1E5}87z`sb<2uO|IjH}cxYq_#d z_7K1x?B9)A^YkG(kRp5@B#rNm=X4k5BDPP_4wk>>PixF#imtnbgoK_GFAIYG9_hv3 zJ5EKG0dC;OO$_%}XUX7_)WHJ+Ymk_dlKI%fp{i376rGlYF5DWLAlhRA!_RyKoyezO zVo>=LaPm>y9D_W7OpPrHY{DeZ+Y;s6xiS_`2$fIg1D^ZF zk3^!2jA|j6t=m{h!4AjrZEXQr^X*#KkLQ#WjR}t`3!vgcu&jOhr z53iop%Ugii9v4r@fdn$dcY|ZwnAhhU>m{%f?hF z%GC+;t;5(B-)`NDM|i|Y_w0*LX7y!@dWiN3Zm;W0jFc-g6neC0GbA-NQo1-VtQQMxFoz(}A7UzFM znbEgnz>sU`97ul)Tsq3#sE+Pf?#_5S-^gdjnuUMFfy#V!tcm9s`g~#__XX{xNblUz zl3!XHd3CM*Qt;RfuS~!?@Urvk*DIYNMKDTkB%ZF_eIk0m?kPX1t<7q$Eq}55UAfM! z#jN_3bD(F#Lta-mZtbA{$=}nVU`LG38&$Wvr$_des%tYj%MWuC<$TH`ey$(^ zjjB6k!1FP|CKaUfv%}7pcYHMSGx+FV00d<&!{DK_ zqpQJ#NayS2$E=U4O~{S9oB40fTg#^aQC7?7H`HcM4UFSD2SXNTh9(~!vo>KB{4WaF za$al@dlmd?fO3m}63JTH<_*7qe1-cDH4~DFPR}9rTlrdAo!ty`%Q|Qe7&p4ASZ{kd z9-lR}ezlE;JP$m%dB(fnsh_d3Gs0z-x952!`^sAphhHc15CK7V^D#gU?euOlah)38 zgx&4{SxiY$G5r_yp{uLw7a-#CLWW>ihz?J-sJvMN?vr`S-sBhu?pl$DKM ziQ9kouPr*}4{oDF;PEC{ej>_j^ zHfsQuRG56NTCGd5-`yymANj=2eWtJ)B7^m<@pTR_0{{MiT)mW-G}UEdR8)p$f%saw zJL3t2q0rq$z{*7kS&#N3)Kt?yDhj9Gdf>+o!14LuBM0#$Rr*%eXC?iB|4b!Gp)|l84dPbOP_F{~^JueJsf6 z4sGozro-gtc(*IzkS*iJgC&ma!$CFfK;YkEJo(@&RYsLX(n1Xm&g0DEhgVIC7j;Z% z$DR)YXw@n%W6VHDtevrYWT6i-QTg$F&y&ldV&BCO_}Z-d#r{L}@dq5)6VY1Yv@fsJ zvR4fC#o#FH!oUNK#HB{raS9}6V5Sro%4%}~?8Qgrib@AD6}2Tx3opa2%3Z*Ri~6^RDLh&#n-+*EMTHslj&B~)(rF6_fjbMKw9sv9@8Xe|2N`lA+tA% zkScv*t|b8b?p-*RBF#N!MPJyl6Lr!Lj-f`+PWPx2#pQcCwT?sQHM|LZLndDXv0Zg> z0yvrdx)JrCwer96TBXu^cFdARY3O1shx~Ae<})l10uu0cl?7%~41|jT8XB0QZj4ho zy%R4s58GN)bFm?)K)xd;)gQf-?g8s@&I41AIIK@=roc*jbR2F48`2xT0vl{F2M7t4 z1t1Bs@-r-;AWFF5vlW(-ou*vW_ok*MRb2hMDO-iyUayKFL$9CD0N0F5XZ*859b|%U zw74igwEzGs;6@4p73SXv1^Ui_Hk{j)$2lBL`r^NYpwT>94w|}6WCGE3l24Mk5vcnm zRGK<){nD&nUtR|!@P>M@#ZZgVlf}Nmt#~-mpo+rzni%o*Mj>E?%5Ik`rpJHpi@%7C zRh!K^zW!Rfe*Cf}rR9t#FZG<|0XkXu2ZWAuW)M741l>8r&R{OyzegpSKdYemU0;@p zEbkkkMSSmdPkXoULXmM&_@?JCW}rF)ezvN$G_kv6BY#HT;`!th$ZV|X?^9HYf5@d}=FMEvqEtJpipaeJW_Q>$Fwg_d2;D0JTd7&Lv~ zjz6M&LAUY5;k#$&bXV79jFI4<@W(@YNjc=76MK8Zsf=t*?Fd%P95eo2lOKYpXK0|R zn|s0C2Tb@?UIf9{?kRzKmBvt0@4a_-V1QkM`d1uh7sq_shh50|a=l7@<1{V^ckbL# zhB`!S((uqywfj+XQx4IvhvDU_?ne(r|59K9!Q_9da{C|9@F)2g11icH=jGOTKf4kC z&sw9siOR>L{1)253{Yu7rabuXVqE{t)Bs{SRYHu0z&PYJ%MFIu!cm8EK zE6;0r{#w`UtBYhZ%QoW1tl3vS{dyqxH#>~=awqyo(+xHSPy#@G$w;`E_tK$GQuEHrLpb7 z5Ixj=;1DlnIDZS#sN3mg*52K771+@SiOS=g%u0hzOlj0^P$&M5+``6~%H#484=p%> zpG27s59jYC0V1RC@EGz{`A0n!(C{vCBI>A@Wu|6U(h*w3} z0|tH9Ecs9#r1wO3t)oPVZ-VJ<=3rz)%GS=&E8^70`7<68B)0@=Pu61i=&3(FhC$&5 z2es*qW`r5;)sG_KmfXTq4SH;m%xAoyRQ)QOOL>d|H}n%TZiNs%qYC|+i0WgBVuKql z>|gSVw(0gI(&%}u?PLv?%}A;@-@1vK+P_bA!ddocsvbVi3vO_4AghfG3rWTDj#l zOs-~7^(LE*k)A>r1OqwGwykkp4g2w0*xZ}xleo<+xW+DaPFLqwa>=-8|94u>yj#QL z|NScHT}jFu3j0noS&cqGnh*%!`9Y!5Y`c+W>W-PAaJ~dWpW224S6gw}yxQ0&C%xei zcv2f1y)NO=cOzrre5>d2kO?+Gd<5lAFQxA!sH0)1LK+a+vwR3Py?mSh!4P10{3CeR z%ZsESnXPi(quf@=Zr@y9$#|QitZ&tCq>v;4-$X3u@%_???G!o$WoQ<-4@^*5Eu?x{ ze{5II0RX?MNZk14dn443GNeZN=!8UTMb~sV1DemDyZ@WB^Q+K?(GlzF>krR;3&6*f zhg}3=eyh~+LLy5N@vLOh8EWc74|;%W2wz4BPdVP(1&^4uE${Q!uT0$${c`N?l`cp% zO;}ht{xtKNX?+@bBBFz(fKoW07f6~-(@t%?JH%g}t+$k+ydDS-I4(v9v?`-LkeSHH8vHDD=ZCbPy3`xxsXhJo zXeDw7uMmkCi>z6wMaTWfwov5qd_KzK&wgnSF$6giqpeefA?)G}taGs0j+E}}kL{{l zRV0(7Vcf>66>WF-b!QJe--_bihH8VCWWVarx+*~xH!|f=lh~w`fOgN(Le2ZT;DF0j z;po#UW7gqmuvQcJPVOH7Omp#ZU}Hy)WJTy<)*#IiNlz;nRt%NSEusP<%=n{yHp_db zHN3es66S7Nv0X~C{~nffXv4Ir%DOsB<>xtDbq|}fRUd<@Yp&wa#3!2TUC9S`-gO@= zq=o4^AMB0qb0rBqA%I2Z7D5cgPK;|e-7$Wn5|g&opj~%|Jfdf31%wTCKJQI7`>aW* zva3%cXiE8^p4x!&0fx%|A4(XI!1(1BAAtY11=zo7S+Me+U;GF@b>{Z<%9sArrRFBk z_@i7Y$kPXP`f)Ask zX)1RGN3#r$Oi8vdwRO2zl!<0sVR_*o8*6oD%J$QbBy?X(p0-age|Y*kG|prWmC_>r zHD#Ibc?_xhFH;tCtOfsA;46V>$dRH5en7U+$(4HraCX*uw~eeg#($14IxiIn+g8Yr zQ+;QZIkyf9)GWz;_C~J2BqFGMkuK+>b@U0dMn#%hI(MeE+ECt9{(vjUFgmYa1LXG+ zNufvU7nFWCwzd9Lo9Qw|g6l>-o9=VAv#(Q(V5F`p&LK-=q>-#J<=L|S5JulHNLSV%L-MpS6^u)xSyStz!8!;M(!(9lgVT(*T$k6J|obq8GP zle>!f5RR0_@POT(QJcQ^S8F+0Imxl^==hjL2?n`cu|cnCynqWILJuT`?x;C^)axL| zOwpxX-?g_GHEu(pzItu}ogOz;9hMVwXS?-&%M?SmNkHRGxZFzBZ}mg%=E# z98i-U-Cr)^sFJ;{LAV1XJ_tt=q6}5z+q}u#fh)7@2mBDPR?(OrF$m^`&c%hSCDfre zx8H|5V7gd(GVC!{B-s$xHA|t~gEjEDS!2{Sot2%1PB!$ABUiNjZLJXXpDlC*y{4fhBv; ze{h5XK`3hAM!Hkq>~zaD7$2xkr-l(@?pveyE(1#Yaoa7fYs6}|+~^@#1b|%pKV>`r zZ=fuLfj-P9yw1mCJf4!MEGf+?Wy%q7-G^_ zqw#hG+l5sZQ^7?9VbeMuyIjz1O907`C@mQ>*mUex4U$Aam@A0l*Mw@LQcyio)CkQ4 z{E+_uh`>}lfVoGybqfQH=*8x*+X5zy!=A|Y=ANcAe3i@(kF8K>uGMOBkC9wcZfPI; zah{QUN*P2vKs0H6~4Qkx{<;TXR2cMjOroVn-O8csasod4__y#GIRX0g;-hVY()MGY z2`?lN0@yl3I2lpZUyWIlq{tZF7B0M0fgfuhsxQShNww0z*ww8VLZ<+tgd!hf^r;j{ z9klSf#)Tz&ujfmq=ZxBZxqYH@A=j60w1fit84O0tP7;kiLfz4nAbSZ3sv?Fx7^a%4 zkKM7I?((Q!>vleT7{f;2DTVCjuVI-mIu2h63nf>efR}2YVHo*`5>Li#ME}v&$57Tr z@##R~NWK$I!=*O@I_C&JzACEaxR;`?^}DmaH@gre4RBASv?C6 zGfJsaQ|j2vO56&=*C=%Ad}zDEK7sdWc(bF8)+_G<=Yx0=f&X{!JgwVu>jR&<90Rbp zwqA&HNUQlfm8G5=RS%84+KNF3P^7ber8Hn=25_-+JBElTnEstQ1D6R$(H+Z-;tO6& z<=UxNwXSgXf(X2aPk(u!LiUaFZm4m5Ig28p6uN+aB9oq5m(8_rzRhBzJ__GY&oA>FW9u^D0mEcBhpa)T!c-= z68oa0@G95kX~2-CDyXe8j1sB!g#C(q`iu$BK8|*6Xhrzn#Fq_Mf@>KQI4>_GWc`uO~YT z{QAc%Yaf^M)O=F10gh7f+~H@(mh;+Lq)HS^3b@RzwYlUfh_+p0P(+lMy+<9tVa#lo zE5|rLJtuX2U6_!s&}AxU6S)v$v|T7aWKS>SZh>)iD#;(~9v3p{zA#`S#Nx#7;xJ^1 zGn^HU@eE&x()#NhZfka)etwD6+3F)QUxJ~5QX)}$<9j@hMl|r1P#5AX$42XBTvAu9 zc%0E$3dcghDHsM8d#o{nUV0t8Qyc|4P@k0wk)^~J-cHQ$SI%Mr={)OtO@V}<_7i>F zb|`w_`(k(9t5LEdJ|h`NH>&6aigv#^ za3sOFJ+Cphkz;i*9+W5^^S?%Cb?^bhyvPb&9d~&ZUskPDtA;35kt%`5Skz0;pQ*A) zG`tZuh#|B8k9U)`P|hj z(cA(fZwPTPAArKVDmS)OzEk6DM!x46yfJWISR!`;8zLt%VTZO?9j3bt&(4uw)A%Rh z$RTg50b;Ojsj*N=RGS0+7t?B)35_QB&z2Q26SP0KovF}65)PT)w_R_7O%)frtzNRl zn5TY$mp)4U-ZRUsgdgDQM|&dSJ>M9I{-sG@dcJk7bX{SMy*Lw}nG7#avngDQaRP+~ z%dSo(Ln)>X9V4H0x7SrVLC)N*RDL#~z+vLYEU>Wa)fyO7?weh_tibrl+i5Ct^!K8% zC)0fsrEGI0daRd281bjBPblseJpY(nTDsZ%Z-((W!skKOU$L4F{_Y|a&l9W&9Ha-M zw?zd|>o~Db&Pah>@HyO^)(MZuvd{?^INC6ipf&8Fh+Zchb%_D zQ(@!<4iHPCVJb;uY7Gwsz0%OHpY5JI5a!)8wba(uzJdH|&6DJBz_z)CL1JMeZwE}8)$y}D zp?~uEB6)CxkfIuuF&Mgk8zm&SPiLGa6g5@d=ms86F+u5~h$5beM9E80W4hU) zt&zgr1E{uA%sdU4(#bUt>irB7~&u=vl0)xs%VguXrFFDg4GJg9ca(BCs51+GW6}OLY1l#j<4n;p#@5IW!CyA{9Zk;wAsISK9w|AO8*jDAF#jc zK~hP7;`%u~^~gzeeB2v#lM3aOOjoy-7zk_ynn#}&lbSHLt-hE^d$sY%7q-4__iC;H z{3vPN6InfvS#l2~CHp%H3fgXR;FD|Esj5eB+nUCHdMRQ5c`jKNCQo}fJhwFimTpsn zaRva0#g^phF(EhU>A`_sb9+!arMEq zw@6$L?tK>*myVtu6;R9l%d)R@E}fri@Y}ajbct(`H#It)Y`c)4I)QzUPX4rLf799_ z2Mbi$-@Yl1R<2Tf{U(HEekFja7P6I|;=p)qL{}P4OwD4+d@@0?Vtq=ks%NG^x9|$vv*^g7DDk_Nydz!BqmOn0 zh49>ImwYSC;aua69d}U0uPaXw4r^DW$G#u%S|Q~^jlDLiPCeegk68$vfmkKxLqS&R zvVr_q_wm8j8Z-=2im6^f`^QRTt^su!kNT&VD8euQ`N@Ii>}g~Z;5_08s>-WNh7UaF z^Md;XNqspf-h_rd{>mu4zjCQu%iBN=k~tjKfBQ#zDzsv@G~M~-nMBf9V`4*vzPmnMN-g)t zUg?ANuJ(bRxk?1Bi@Hhd@lMaqUR|B_SnUcn7s3?X3fu&G$xrXsFBXqb)t#=5sFgtgkR?c~l@DnYFg2aR9@@{1G=)5kSS z4J|OcKw|+#7(9tr7OA56A*?c(!7l|1W)j+dE*jD;Xin8QNKxKVKRe zM!tXl5#)A$MVpOAk2rR&K8>f&z=64*n-@w$HA0~4q_bzA=4@+86LB<*>rc9k0i({Y zF{gcRhWMtK!kJ!!MIUdIk-?S^;=_2g?PRbpbh#+|@N217ZxhxvH?i6=vq&G@d31i3 zW3a=#I0LK_WO10ZV`Ch|G0KtmLq(NPw;oYl zubgg=IquAMF`Z2CB_31?fZ&3P_)%w9Wa9KW?z*FT6meJM&))EtyX$g>cx~p2Zmbr~ z^fImxP+(u6Uh71@azYB=I2GjDt|F6IU7TPqY2+bUR7NsJEsyg=J z>1Ja7H_eh$a$Sw8?A{pLKq9cphW(;cf<(FOh;4JqjBTg?^=$D_$_tIo2=fZpW+7$b zPo9X{r}V4`cl2k)nviaoqWl{ye4y90Tg)o^!d5jt92#`_c`jzmP#NkN%N~n2`oR$$ z)nSsCdOoPP^G?)5Zqu}- zf&Iq%dej%GK|j=_W!xMPz)gZlrWK?5p8kHN1+;}Ta*551+ve-heV`#&wmj3bXk8Gp z81co9p~9Z8CsVt8t3^{$n(-`(Pj~OaIzIc-X+?neQ`|*)wt2uZ3kxkC)z-pE#VI!(%BbQWEp)U_@t+D6wl+JPgoF z9d0wmJYq{0zz4g@2iYNlV=ic(!ZNp6iXq`wf)bO8Th!uyNPSj2q{beZPMFk9K|N5cc&Iqe$PxY+&YM z#GdvdS**T)1#BzbT%1l|e?#hVg=e&6LH=sQ5Lzdpi~3P}gXXnWr&|AHYB|eyn)zXm zo$(4o+hK33ll7nVHd80lYmCLKiAIZN*OhHi<}#{j-(1$Q0J=gxIq%b8`vpt%0eM`- zWd3j?_CFwdCCe4| z5`R_%)l&03;7FnJX4$_MZ%WvSXwO_eFHIr2#dE3YAT3xW7- z+V>YDdx-b$5vPs{z3#j_X;NXC&U?D(*3lxArz%?ox!#OVNj|WPI#pGnuo9?cS-vz5 zgz(Tn;f;P+1yhZbtp<2}EgqkvDf$X@oK|JXl)?X2`?sz7NW7L3Ivw)IUv`jKsc}vY{N{QPh7vgH5Oj2u{!)X9bIU1aLkYW%b+eQEh~yctbz%7Nw!@A+!#N$>f~;H%Da zy7Aj)5;=`2&!8ZtV1VNRvOnE*@Ck4c!F`g$_4ahK;D( zj9IS2o>a(Ys^RN-z;8SfZ`p6$_|fg(C93v~w>~a~wT!*SxUJ;rBpzXQ(LoNCB%j^~ zl62a!e7QYV2{IL{=<3%-IalLrc_XlY@#$@k5q9bRN}m3NYXTq z#5TV*A9C*5OtR$yl|z2*e3OKF8Ri0kTD0V{bQV4QB)+NPd5)Mwx^;mSWaJk{rCMOs zdor!=YP^p6gnI(m!cO{Dj?{|tQ}}Xwk25R%MUYo!+l4np=Iv$|#-6jczqEvl%*3cv z6;cAbsUQouBT!wGEr$qM=M4-nG7ZdG%Dq?|yYI4dBN2QQ{dDooBGN0<0lw!tUt$ny`=DaH^yOwNM=k3{qzdqo-ds|xBMRvZqIGw|Atf?9$sV`s2q8#OM zjnh$9b*-oRb5twWFg$;_7*GFhsd47nOvSTv4M`glCj{^r(3M&C*^{xCo_aRy=D|P5dG+nV_CmD4=B&#dJ(V@z|F78D;s0juCrG@65_$#WmhT z#NOnh`Z75-DJ2tgE(*y-?s*8gXnp^dCWbrL$esfgxh+^A^RtT35=cDvUo9;^`KFVS zrg=ykL)TDy%s6D1UtO*}lg-?G=XCK5IJ5}zWcPZ=W9aFnUuv!o^kA)TCFW}$^|;z+ zrj!>W6C!CM;TfrX#mjWlzubDpohw@>{uW7JzZjc8!fQrIFsL0%i;02r48@_T?6G*V zW){m5O9AwSa+KsZ@Sdk-R&CAfm+8RXUm~2fb6X zp<1Xn6pBV#ToTpP-hwd$5i&=8GD_J@K)0?jwei^1a5tu9HjCm3&h1EV35S#|tMSHX zl?00W#PA%raNeMkkN z(F>t{KHB3Jo#=B)$7}5O=6XUIYAd{Irx8OerFhx-v1VWWTAm%qKPg}!gfU*iWr=Tb zZLW~}6as344_GSsvrl$o1P@F5Nwpk)IXEqv46%1KUbiI5kKm4d5NT+% z#`$p=RqIi4{srmTo83iuKE@y^=w+eSdjA*-*$l6)p5)-ZoQOu&nd#eS5{OJAPm>4B5^;n-|-M81%Q8ofB(CvV9DsNT3tCQsu>4^RMK>IaD(afchu9b14pY`v9sHn zt|dTx_!|Z5A7dS>AA~4N-w6rKu0Xwd#L?`uST)5{y~T8H%>0b+bau$ReekDw>lR;z z*E>cAg5HA4AI}7-W9bpj?Le-*rQ5!3P}2@(zuE-}tLM)=A3)yH*WB6qK{EpMK?ttX z`I0d4x;3twVgFJEOG)b0IP%x60*$a2@;JG&X-l{V*B;hx!EzoF-!tv}#HhWjvEIk3 zC3WGy>~_FCo9*rNz$TjYjjIs!5P)C-AL?Pz%F3qyGu0tEBfpSEj=MjWqzj3BcuWVi zOI`|CjXG7s4d_kH+QcYW7LpQYtvrhq7CZFH%!i!Lk*%aTskI-cC2P>yG+&G5#xh}= z3=yFUOL*sVDk+LdRgF_X-{yCJ8>cvxlhZ2Iye3qp{p3tpL_EBjgx+Y;{R0}He8uR8 zIB-z;Va@NvZJoi^h$G;A6UN4@-vel>fr2;-zo5s*EBhGz`1k9UYy22dZ})sx^Manm zY4bc7(WKTbU|BYT@ok>GF~k4#-uHFUQrzgYIm~~`FAe&aSJqMD6+RM*Jt8W2N{&i- zPs@dgxvU1Q@8E0Oz=*>^@811Dsf(r^x%!Deq^GG#l#!WvXg-nmX1uFMA z@^#M{q`Ia4A8T(J6jv9ti()~71qeZcYjF2qK?e;E!GeY01b26r;O-3W1a}MW?i1YI zIh*7?U)@{x+<#|PO$|EBdUf~i?)5w@cQwI@rwai}8GDW=XYD;*zLyyd6d9@S#$kz$ z%AB6IwQtCD?%i#fhnb&R>R_?$K_Pn|R)2#9Y^F4lFBj}rb7D6$R{@14ksVHw2b7T^ zt~@NNPgj-JVdI4My6({VP|2khj?7Va@M}D-AMN>^x;O2)e-Ngg?_4kR38kP-a~z0L zS|o$;#;@K3l}-DL{s+<6)G_C|G|j{<=*S1kjW=gyY%Gmv#hT^-kBTq=Ov%`Cp_l@# z1CN*LOAN~quX9)FZRMvK4_j`^^^>xrJ@(OyLwX8J6;l9ON1@!gsO>5_Zx89uw%A@~ zvdm#Z4QuP(vL*Y%-OCHurI@e^fG2Uf=yzkM zkTi*OO*t;%m*ZUb!1Kdn;_EYO4u*CTNbL7ru3NaXbehL~fQl%`)qdt_cBK8!R7qt% z^Qz6m-8IJC{f+JgTx^}66eQEs?YlbEuQ&kNHd=C zRUDAWz;%FUZMsPU*1)N?(*erpd$ zQLw$^!XMN^IisH89Zf zB)^r`2T4#I`%$)kzD)l0Rh_xD;hw&Q*wx_&flw4wF8Qj}KzoGDJ+|6ei0SBH6z#1X zK~yQTJ*oF+Fz#8o{N|6*z8~BcyQ3}wF_GEVya&=W-gI%FOU@aUErpW-gd*Z)n_h4( zcp3!OrLol@uFBhqoa(B*vaqK+gv`Ft1w;LyocE|!zQ2_|QC3w|p{``mC>0)lxy8x(-X?=N7Gg9l-ZeW&Fn{{W=EuxP2Yv4c4u)+2?;~ZuB22<5W348 zIdtlRol>m5tD)y35Nh2+;mURogO zcufKD3w+424oBq(zsU%%c%p>8? zeT;|OG1VfaCLJgu`mzaq^HNvoVj6z7tqBPLk1XC!jrvICsavP9dh~Uan5N;*;kBlr zec;1;qT7Y5g7Z%>;;*h8TT{>M-5Ogrig=M==xbu(Y9=y|BF;Ngr`uAxL~EwiTKXOE zG_bF7u52shTxh+~=Br3~q@V8Y#KSxfa6aCJCwD0WY#C5UCVe%}D=`Obmr;*?smD+0 zMY@pyvyqevw#MnjmKDw29{qeHIY^a`;fWIucH1+OB~)!6q}B#DeVyd=C2|yKn-H12pR~L9s>e8OYw-xq6pG{q;HWjHQiA?RP*FkZJS`f>L7)^^3 z^XA8@%UX-HcZexh9yk)JU=@vE1(iMp9&(umwq#UYo4)J3R$r9uGN8qLP-@BW|k0w!fNpZLNV*&2&wh_?D zUT4W6CMqS;TPF8)NB%AkdsYp?)p{d{V2nJq(b?BfnGv-m6MC8isaI8YANyC4b9`D( zHX{W$!q`TH%5_wHKgA7p(iv@IuV-(2R^QTWZ!gToKcLq}%g4x5PF9osVG(TV!c`&? zPzZAs44%aLu8N;6dzIey?E);C9MMl9Cs10~qcAYh_$60XW>rI%E&9946+&`C7)lQv z=WjPv>m)@j)uxuNlPg-;aA#r?f5~N{AadNphk;Y z)O^&K-0|@cSWx?y{Kp7FZpA{iBp#)dU*%H2Ki!Qts+|6EOeNmZvGA0k>WC~Pbv-UrqF0-4buFjWf|Pl!B$?}swsx^UnotphU-Nm)BCR-(Rv3Og z3)P7)0G|#`ZXvRp@9q_tt4UXi?>1xEtDFbVECm)zkQW_z;r#cmt10s^huLpkTp3LK zem|3Q-TC1D@P>07*Kd$|qbgU6%8kLFJ~rd(H#}fUbYOk~L2?2CH+A$q7iS(F6OuZD zkNMQ!N=oWjBvUS)w>LWM8P$?KtKPowTolJLOushd=x1Y-Ak|7S{}M~$OVRO@HGkVQ z_RpQuO>yZ>#TU%xL5aW(e>2mJrP*(;TR*femdXJv!HdAsuRm*lxbtqF^O=s4lH{@H z*%i9&X@h?Mk}^V=&pv-4s=uR-J5Y+2pLU$i8p?$;YyD+L_VAIgZS-B-&)tk0O@shL z&$bKikH#4oUQwpF0MWE0y19i6e@S^E-eeP2{Bu%3EhjB_j!ai1hVl1tdI=nWd+SSa zcsx2#yrlR!3xSg|GFWDbi4ZTuQy(ENii;uA+-DZ_c;bf2WK#RG5P@l>a1s$Ee0x;pD|myR zE{RERtavWoG;{wbS}Y()BC2XQ&_oY?Y^YBJ&(_kW$Mnuk+dkG=dfnE9P zl!^siPcOUe| zNNgNS(6avi8X5fg^dfAbSVTES3sZ4Lp%vjaY4DVi=^;XkPleTRUkbutJaywy%5ckw zXZ85aQ%v&Mven6EK{8cu^DavM(rEWN-uJ8{awxqx=BsasP|>j9==)55c>Q_e`%3do z0scbDJV&dK)#!{f9&+{=)z^q+9;M%`b|clo09ezf^_U!f?&Xyn%X*B72uj~D*8 z|4_50J=Po;BY2B23=7TdO3geoxrwgmix;*)S9Zl>nho>=gxf?CNIX?vV65P z%@k6SI`@!uWtn7d?vE=l+}{J#tcgy&9+)^pU4W}DtdY^B92*-tQ|7z9&6`1Qa-g_Zk>ua2?#4WT)On1xdmDZaEem8qxleZ|5S z!r~$NY;v;Ent%HvxP5scoT^)xbJ>#u>be`o@d5s#$YIy{4o0mF6@?pp2jDI~ls)8_ zj#qawZF8H{sfWY$(PArmdTDpoPutx=~2otAyQ=+;5nP8v9FiE zlc_HD15VnDH2rC1XIhU$5>Olxhm_T+|HQqfsXH@&;XofgufjG0Dv&Q?8tVFsa5SL- z{FgGris~4>@oce@1gV$fCpr}YO3%ikE-Eivmx7l_jO~z<3%FkOBtCArPB)#evs~uo z=M!YR;OjHaaL=b6xVv9{E(1zFA$Re*kMAvi2?GSG041)$?b)BZ+V^j#Y%q&zUjeM# zH&=^RKUUqZvqTW$*X-eusxsWK=DDwzY+v|VC>Y!~f~l=fdvNwu-t>Qrxd6V>?Y`KZ zWYOCRX5)T+wIQPwr?J& z^R(jy^2CoopbgLPKmps9m3snEL?cCv<6|+@%EfI@m*oJ%cIQm#)jqOPmrN4tD**n% zB{OV@ni9%*DAAiiv#w^5)oX;zx03I;87nC%2@$QX%`O&Sjy8KJg$q4W;I0tp7f2Y3 z&6a7OKAewkuDBkn0MI{tjz`^@!oF|t@Paj}zk#a_sb~Oj!Kzh{`xm-zU~zY_mY7;^ zJ^^dga=VrC>#%O|;%tN8<>Iq313p`Zfj!dwg1j7n0RPKsTxuxkJyK4)6cyR_NXKun z>)LzX{J$F{s_ckmsRh6u%5+bJ?{)X)CEfs++L|ie5pYGDq#n5cV^?wf;T^gft(xFu?0Jx6; zH2m)m9|xBdU6n`AXLV|;0b-?pjRz>Q`8O0%!~dZ6fxqs53q0?40;Oxy7(CKnzh?51 zRfBx+ZHQKgQv==iwE%Ic1AcV6U{7>adJb~dWYq=0>!&byLUZn6j|oTC6-n`E|91P* zbMW7)(3fvtJ{BmVduh=$FEGgeni6yW*qeW}#MC3PeHW2z(^ymLAbLG+iImiPZ&zuI$^y zerSzDNH18s*dROHWAfgzo4~GqkMGK2b7%Gd@Q^ExR%v6|SD1$0v^bG%6>lm*?$Uv3 zecJNlm)dcJnr;s>Li-A1W%v^{f4B`oo1DzoJ;3D~qnV6u~J0 zxwXemaE)A^OMg(RsyE&sZB5ECP2GrsyLsUlJQDT-bC&)Bit=|~9eW+zQ4=miI^cKq zoaKYCgS7c3kIe^O>~rT`4x{SI^ONwJ z+x_WZJZ6iR=-z5>7bb^=7%kisHRCxtQPb?t7hE$8Fe$w{c&})tm*)U+0gi zJMZ05Y1XVBj(SmUYpVJMA)%|Os|HtC4Ojl4p%P$~Z4y*p*>)PWXN`D|-+$%$uCtS2 zmg>H4gHjaBftLe+h59%oIyP+h3Q@ruk zE1WNF+RawM!Jnodpl9yg=Ig(W9ifkoAjmCSy*h3PH zr*mqvf30DkvyGz&T@^gH=A=R~9sGoJM~+o`bzdxmr|`n?rr?^1i3W#R^F=sNIRf$i7UiGOBguNv7 zk&~?_MN~IV?RJ+psbAgu+|E<_(_Gk-d{>V@$o{>>!^b$M3LF1P?e-<3g=L>Y3;n1p zodbHuiFut3(Qu0U=>vMrs+R6xQ-JZSq~b|A(cMhIg7rrRJ%=`f64DA2{_nXNgO;DG zg^XF~BNy@uT^IsgBNH}!gJWQ{3s)af3b(N3QfkhGj2ICYPg+1f{q9a?Qq^BjQ7U>x z>O5*e?;d#{Rz%nT>03*f5u2)hkJZ9s{ANIJw2;W3*VIU7rjFi9niO;ORK*sl?f3rG zEd8J5*B@(1)oZ);#YNL#H4DZp8x3kSt*28g0VLhd4)rwkIGG~Aj{y3L&h@KxYwWrg z>%z^bQbX&8==}u8?$6D6nz&lOX>sugr;syDY3(Vvn?c;?@2G=sHVx)Q&_$aAt*KL@ z!`|0L9~{?i@y`wbFy_oO^1F(q1bI*CwckT3_k!Kcsuuc?nsvF8IK6UQSbpcF(#B>d zT7|SP>Ex;0~AGD{SwE~V(A=oM?&g&}97n5!p{UtKa1>8>ZL74~iCyRfuP}K3`cF6b^KN zpQ>3-{ycWVar&TqB4$>FFaTOnha2L z`_H;zBmvbd|NS59tN%X>`+qitFE>b30lsk@9Gs@eU1H-R9A1qVTml&h!(>x{c0!@) zZ#N1lRdDZVX+P_2R_dz;xuCw-R9m3T|KF(o8&+Z3z=IR7);Do7o62d2*QMI_Y+?ZP z;urqoDuB>4N$PHv=dwBc5VuXkYIW@j0HMyl@_HF~_SH@`PogiXDV-R6yh-U%C|wug zxcc4%p{=;GfUY-c=$1jYN+!Urv}_CuXn{jqgm~!cCWBq^OPG@GRHn}8tf%`h$**#w z$=?c!lt52CP)*3dicQ+|CXI@hH7jd~%gVnL_3czJGmIu&g#c9>pUMllV{`wZRG*_5{ zBfgY|nMoKC*7k(}AT4gmlrI#ZGR*|aA7_=`L8mAgNs9uvZDD);_@pR!P}k$25nl$$ z^>>ijy#1nk@9bXy)(rvH3gGQ<+!!pW64+RyY_3|2{;9KX%B}VHp1-x}AXWIv!`CyZ!2x;HSSsgfII)3h$c3 zU*vIM46LvIarFLweY5|!Nc|P{|7(&C4E6u|5&B!FlLV0zW|4avx6uvS9G@OVc87hO zdhyy{ngtesEgki<7Jc@?32ZvArZ9o@r>Enj3{i}$TxVyRl)$&~LSnT{8-r*kkfnvU zSnY*W3uv`EFJ5tc$z$TP3q|EDn6MWO2SJGs?o_&m@C8b#P%3*_O<7)ct;_1 zA(DVsfvg|?(!Pj_4u=Q_h<~7=lK?;*0YsKe-+De?r-rWCNm+ig4>U}|dzH!uJdFsR z`Bq&cOUvBWWY`iRlM3E8m$c`<)a?8+T-EGOUw`@@_~rr)u_x0~5Apms;!WEdzng&e z$zi3IW1*

$`OfVLs@1S3r1K=Kmq)|LG8(-aZ30MVXG0KlFu$@3Ec zLo}KDu>++TK_Ge;ECWd&>OGwhvHl_W8YePGJQF7TKH9axIZIxMyYrzFV`CXXyTwIc za@IQt@en~!-tm(5Z*OF#RzP=wSAPz>o|+%ItskH!#etiHdmInWZ6U;dAT&s#7y#t)|xy|A{~?Aqwjl&23NKjiD_}>tcKu zq~!5~`_gw7!A#*$Gm+Z-wRM`&E@I1| zk-&4;j7Ve`U9X@u#9!Z^jYk2*&7H|<`PzTGUzi8nax=9*kt9V+<9^{hzHxQUG(%XV zWUfZ8x-E;g?C!9;&e`ZcWx)ZpO5}elHdg{5KeR^I-@ymrMpje{p^khW2yzqBz zGr1hm`;ZuNECmNv^|YSndPnLLl{m+z8^L*zcU4fNda~->B#6SLRG;ELFJOrCQT4pT zO#`bNzumVgs!78G*S>yy{?hTp_i7QW*o5(g;YZ0UO~MTyDw4zskZ3#<5~RwI6v%YHNE06u+h)Uw;fenp_WmK6j=N^-t#bC(`VnnFoX( z_hKh#-5k$74j8~wgHNQ!80_rCdR2OMS0v0ff)6lE$+at?Xu-Xm zNXXGVJXo;?R4KLpMlhwDXqZVSey8QMH%e?U=utcxkO}3v^b^;2v7noj^@{mQwYfBK zp~R$QJg=w>{*s~gu0gwj^XkhI|E^`4UC`@bR@=u%K@9GN*iVImU5(Y$=o2k(1Mg{+(`< zIyFHq6Oa&mX=e;nc;Clev&=s{Hi% z2mub^oSPHd)6D>}f`YEzOr11wLIfZ6Qt-ZnR^+b=?*I7+AK)WuJf4me9(KazhcKg@ zyKv#|?z8gCkftwXe-(!C>rQ@-T*zDw3R?{BZO7W8)*ASn$R?AJrd5%WlaQwrb%?wG#=FGQAM9m{m6%tAu; zyc38>&}KJl-o{b)UE4`R3|m5f{v4>W*f7@qStcwwD0o~oiGUvuqyRct{O4^->cx1& zx5$qw8)&X;_yxihVR|8QgrlJP>>^Bv8Q9XH@f2O`yhV^#TR)k{Z&?{FhlbXp2E>ix zp-Ya8qz2amI^n`#B?=-Ur4_=McB=LqlO1b!7!<8XKK$kH_GA~s#-dy#QE`x7C1|zl zs5lVObp?w3DFjs}v~P zGxRH|QM{W0sh)(FV&UVbzh{8`1Q6UQe|Jipi>M^e`#JAOxnF3$w?hd9>nl^I-;fF| z3&mv(P#HOOL}f+7(`Uto2ODi`x2-DHuK+1QGl7+$J*iFjvWhr0*RGszyf+?BjI{EXg4S4!sfOI zJ{4T#yXiw~YC4($F6#5yJyo~cRDb;F7!itgz*moMh0_+kG}-W>oQ^Bf&Rn_sLs&RL zC<}(c#RnWk3TPGz>mX#pU5LJm(f)xE4#--4vivdAaJCDy@B zWnJN$d{$4^YfGdL?AJ_l3dsn5L`t5O;aky1(Q;G168JW<2I#N4vu*dew3u0AreB){X!?re}( z#U>((U~WG3S1$+UN^{&(?`aMqXX|8R-*y_(&5* zfL|mPl-^s6`JM%4 zcW#V^PYzB{ch5e#N@yM;fxb4^J*cMnorsFpN3{~t?$KT-hg>|K$er>vc7fyr;L&>$ zFxzs?IB&q7s0^szzgr3!*cvQ0^J8~FcOYJ=^~m_b_-M@x?1vNc>RjWH4zp8a{WIrk z#8h}eWl=fXrY9NYM|~p(>3oi1p(q_^4Y3uFtsk`Cuer<^UQyFkK>X7REzD;IW9FO= zqv!988%0b7o1Hgg&G{-(??;ch%M85@ge(gmLxCz>Ge9)7^{hM&+KU+cxivgMOwz-Co-Gz+N796mW0_DbBeCeAzbh|# z(i)%Pqq#p4JfEMG2B9HO3@%g3(mknOa1o9{GKRU#%2B|(nS5YnN=}M*l_L7~pDD>r zDA1+FZOmCEMt2ZcOH7}V+zte)HHoo?ONZ}l$1+0gC``8&L%x)m6bgf6gXL)Zrz|@S zq!H!YwXu#n6R6!asFUHbz}R**XCER|h`Pp+OFi3&z-Yv&PeRXxt(p&vMfgQShk4hTJs;de;Up3z?$W3HcopnnFoZD> z(O=KDX`0g7i^5EA6zRLuODZZwyh@U4n6g8n`9bqb4}$vZ2P8a^ML*z{=1laei63$r z9YT(aCxAKIs}oAYqGT<5z@bBFVl)TwseaX%S|R|(@;poW{R60j8^>aCy)fsu8J9if zN~#rYalD$)NG<0tPjOCfvO~kcXZ)&oK`}(Yf~7z@6Qn(Lq_~-PwUEaUUT9TTZ<>(& zXCeQKmU(kwTR9`AmMFk|SX>iVRIB{weztW!r>%*sFL8A(4fzshK}SBnN}Dxq zm3$wPin&8vXjb=|BTc(nW!A2C`>~}-C+_;g@vuk6QLPyzDbq2iHR0fxqCvc-E$2d+ zU;Gg;wAs)b#yo+S+BxN;a-vSwnShC^7vu@GdT`)M{!${iX|_pTdArVD?%7IiGk&{u z%5^z~1KH?6qo=sJ@JCX>vg=%L)SKOH+Kh3+Js?#3jZ*`sr%1t_u-SpOb~r9fA$g1} z%OJ}OJ{eDnv{MxJdDHNDN4k3B+peK6`*3uq*Aoec!wQ`<`f+@7F)U+4P%V>?-5LQw z#7X-VGFF2VkCwAK^*adn5z=-hJw3CGX9Rgb*jSt9)}QPC*7)vDgaUyv9OY$F$7ITN zX2&J14C+;gkAkTZ@U+t%m`A)J`3K`XsCcY>?5f*0xvtQYnlW`O7|v?Izc9@%Y9sWk z>e0xc_H9{&k?Z{*+l1XX8U5eep1(FK`Q;95WC9b7i8~#{S#vAh*qYR%uqyjyxhQ( z{Z`|M@s@w&SVT%gJ87^P&SgZFlz$lE#?j4Iw4bxhbI;vfAP&yL7{Wi`*zBezL(D=r z87L2!nMev&i1_cM(4s;xy>zvLvphrTOnCB$)9WZBQ!doFO_435JrDEWyz^F9#*7(l zKlcJm6E=l?Z0_0O!LBe_O{>WKqvD0k7vyznRUZa>vb^%+WZ6SIcrVn1iOL zGuLKPob;>Xcs}SO9IC5VAW!YYi+HUtP`0oscR!(vZVYlgU|)H`B(i7_-1jmR;0ym# z-S*NPE3t8ZvWLT))r#!{qVqz!`N(UTh5}6v>W|UMm^Nyr2?lCyoH=KZW6WnXtZeE; z%2A4)7%wpa%?4yzN3p!k#TED|%$<1<0vNm@t3=G_RRJqG58uFD4~w+j_UtW=scR!w zX%;ciycGPi?LAm*JldqIz&`0`w1KVRoTU3lXv&5zq<@CafVC7`i7S~db*b2#$DYP z`H|x;;5c1>$Vi}gLoqISabPjJcZ{_s_@cgFJyjjEwQA5)0^wX1+{d>FGeNdlP6m^jN!QtF%#HTt!lFWSNmvbYHADs0O!D721iLRy-UBKTp?MK(23N;0|N#qWE@Oi+06*0|{o& z+}BeH;vgq+a@J_diu+Qg3jI9odEfkL&$Q_VW8gwjLZ-HLY0~GAaBl^oQ}|<24?~*c z-O2}z->uC$hsV*$j!-*nfRe*XS}aP-oW&jk0l_c!Lvg=7E7ND^tj}%*^;#lh(UaN2;A4pk}WL3>O z5sp|7WG_ksBIR5|qvc}rWR-aW1$M4XM3T8jqnV<=7ABh2+mCS7`@aN|aiRU;m&L*<$9?*~my%2`BGE;Ahg!w5OZCBnQVNb~~do;wPh>e!T>BH-V>vnCzE!Lt?Mk7ibkMBb4EH;#$xAb!_U znW7lhM%Y4cilY5hUTi7{d5lvN#O7sTzc}m{^kQ5?HtOI^HF8f z`+@5w#_el+J|yhY)-HY6E{vQj_Y$x>E*r(WuFee%EK;MNWewBVw**UONDG4_vT6{P zrnzBah!xuy(-`GR!Zp+InPHl{Tfc{cJU;hvSD7jDWxRO-1;e3%rg$=>T& z6w#?~v!^x>o1uIPtA@1-sVtoMOwZD^pJ1AvFo{qog2o81wYl?;p$41n)~J&nM*3fQ zX`u|f%H?bL@Uv)Mak-{?3vC3@Xc)9g&ir5jdT%c{!_)QCt@$+DvR%@))yGeAjPDMO z8unSDK+Lqzf1U}Rh#_yccS2bK#l~&2n88b{LjBHVLe;q<3i(Ha0r~w{%W~b&;(qh( zLV_F}CD@wsI)MU{vhcfE?9l~L>S~5HTF3z!$aPW8>p^yrumE(9(SUetx+zzIim&P; zTSKDNl0Fnz?5t5YdtDq9EtGqQRxj;0`SA1A7D)T^_Ivi};>QxHSl;>u8I{v>wv6ga zynXll*8Ng2Z3q7iU-anagtNUj#h=t9CZ#?de-{}-PYWfL1F&1fCjr}S3+s6zj>~|D z$NlS)l>(Wx)pCNxPag7x1ja=u!K!`1E*Xq{x_%3s_K%duc{(BP&EQ*Jw&5Eql3T|8 z%R*fsbRf#O@_0dT^nA(4o-#sV)$|Qc=k8ASB!Q{E_~(*+RKz32EeTF5X5pMgK%Qjg z8Uxto15OTRqGTJY!-;k?Gf~t?yc9STt7uz{&oE&Wv8R*?Ez4=VP#y3<9RBl?Y z25VEC5$>zPn@h472`zLK!o1(#Ng6}H;BXjw*#;`#cGLdpD}k!*B9Y0bjj}}kG^FgK zPbfK1rLoO$YdKbK;Ze}sdVYL_inJ5znCvfr$^R}W4Y8Zz%OYKeTPH1~(`Q0SFGlDF3e2ME?MIE%xCAc~yl>ujKx{$OE=dhpZe7#U{8;O#m@B*| zl6AU=7z4vT1I+WAdd-pBUi&N~ zreR`JZFPW;}%-G-IU3oe~A9W7abbQX3Yg?*@^|}@cEcTU6louV3lvG}OpR=k6 zda6E_EO8vlI1#-0Q$uXHIxk4)sIprva-@!)Vfbo*pVD#okJGecy-Fs7C)dTi^|dD~ zTkE%Xg@P{|L{#c|kC^_L(wNBhbch_Q($EW_?Kpqdg?-y%pt4ECkBmDRs`p`(xDLjs z!N5XoyG7Y@creXagK3}Qdj;(G1U|=aI{Auesz+gigqlc2Mmk4pQrKF?XLpS*bqh~> zie^Q}M@7y^mJ2@L3!oOzibQfsfywNgV}cX>MY2wqY&lW zNFswrcl++LM^f)5cY@!QZ}*hbTKFJ|vDegn83duc82J&8%*XeR4P*xk#Al8gr6aN~ zD>6pU++0W%DZ+E-iYZ%C(dWsjUAY>8sa+IVG=n1gB}OLcBFvJ2&@DG^z7@vho?I?{5A(1~Dg5Ys zZ3!8<6(WI-DRZ&%p-h@}G?iVW5KeEk-E~t_3HdU^Z(8h(G(;bL3I@ZgacBWtwK^%99k@-&4m-Sw^1aCt)sa~Im>5%l3bz13G#$G8o;}yhm2$rdP$ElDS_zw_pbuXxBWM+48)7{ zq~pFdNi{IRSn^QW+q=|e7_I`2fCS-GO1n-BEdOptdQgyn5)l5$X4E$Q-kYrp+4K7( z-y;^VW7u^7BDa$b(!=Q3iXPD}vHCRM1E1FYp*Y&4MF;KVx+^H?O*blP58~wlD>30a zLywR$Q&if_pF)xdqO`bG$GyL+YC>y|x1{67D!HIHjf-uHlb=&nup5{Lw4Y*~g-+2p zmXT8LBwv}TIb*vaSySi3Vr>x=e-a;yDzBXw^9v;hF`ybZN!`NINvMah*5n%Yra*v{%`>G~&14z*)#-mS0~ zPB15!^sA$4VZqfXd@?oenZ{1?yQ?%$CBuU=irQxiFo{w_*D|3Ey=2vT_FbxkTs7wF zWfO##I3p}RU;rSslX0~-znRYL!o4AWS&|Wv-L<9w#@v)qEn-A!X@_gzsNQ|Sc4c*; z%xu7p6k!EiQSA^~7|@55^j5WqEg~+)x-0;OY)QFmMuO?(|_o?@vzFw9aoNGA`cx zygH>n)9A8u73^fUVu+$pE+%LAOSq}m3$B9IJWZyB658=pP9+z=nRdck*OLP4VQL!} z3}eA(UB9^7RG*h{wcl5-nTAE=x!UNvvi(rf?LQSCm5gbig2y@jQ5;w;yGw%@@1Qb7 z@cidhio93$;ie07+1p0i)?RIL^xfic)IW_||nrM4t1G_=1Bx`ZHg0@p{;v znNf8mRXcXSQp+Mxu#h0Z@XLIm&Xsi=cRd_U0H-sZr@o2$F&>!2a(1bH3pgn@n9b6Q zmrD5-?x%tIx4t-r{hyHTTGq=2tnL|GwBy=JP22E*c#7+%7_z>VS8~l(mkA^W&({Gh z7H2Esc{SA7>X#Wnz*nH_<%|`_u+QFHWn5*i8RlsiBnjG6s6KYFFI$OZL^~W9^)Z$o z>FEAxq=SQ}x|V){n!SlzoAHAEHT?`V@qmm0 zUtf8~M-~hZ`Y75By^W@U^lI0ntqs(MbVX>toB7#P2oA2;Bq&*G7?GpAps3&0x3gqh z+7|YnvAJL!+K3(61ZJF*K9}~2Ihr+&@7CdyaDGhK3u_*kO(!rrR1d`zA>P}4eW&ip z1`S012Y7u=x}jtNGU4a`{SpNz!(14eiJ$Fl=MmJSssBNz%$R>Ozr|oV zb=pWDCI9|CHI8CU{Rt2)QFb99u_6kq+eL}(P0a2%Ckw7A=-C4CtF7?9UDV7cFEFAS zsp;*%fx`XcNEG`hrOXo!dMaREIS#ut;IKB^XqwnT9_+Nd1|A~ z{y66$8=zM*{7zD|pM25$%eME!gZYmTjlany{KOaW@D>sO#I5=L^3DoJqt#l9f2T_+ zZi*c@Bcy2Dwt{*GzS)%&?UtI3ai3yhS@{`@_cUrvErOgO=k$j(nG}W@(JRXg)=$*1 zM~U&7_wFb07dWTr`+`E_&X-T&g8V-NV$P&*>IIKj%)G2TO3rWyXr7{U_);r5;1 zh1}5Gxm}{W^a`@0Zsy^?$FNur^oN{CxR)-Z*T9}I9H@$skqtyYamECFt4XI59l||6N=2ac^DUi$n#%;{(GfJO+is^+D4meQxZNqVGS6 zSSBUJ?v;I|kIBR|(XftfUDilce#{rna4!|@ncZoijSS)*O8-c39xJg25i)nGaEAM? zP_Sy$wh~^Cp2lJ3MQo%KS-!$PL$5(@_%JC=ywM_Gia`gt)Op@Amx%}+8+_S&QCOsx zXV%JIX(9JoO>m=I!-$FYrWhS-9f%e1NmeEX{0z;wMfv@5lOvVRSwD3`Q6VAVwdn6Z zDQdsZCa>=8Sqq&F@5YId*vLbVFxVWy+QL|?yq$f?+zcx=g`&##y9wZAa8Es{^!5g< zGp(kE7m^YMOkH%YS95%zFYP3~bje5u&&V==iwNiZmoB^{co~wMDL#QGF?Tfb+ZJQW zH+LaZ0#S09SldGvCxR$#ii7yX}X*{m9%Oe`l6+_ehzJW zF29N(wIU$)75wOg33c~#@gV!=#?Vw3jw2vYW) zdd3Po$(oFUe?0W|Bp=RJ-rISiq`f3Nnac0m>7gA9!g}Rfc_-;LINmxCGpXglG|B(m z6rHC$4{|IEkL+%wtY!|DW%=86AaE$~!$Jh%J}Hyn;v2m>nOM)F4zF$Z$1D~RqnSp_ zY``ew$swDOo!QjJ!z}jb`+Rv%rou8=XQbjYTw~F)KsC?ln)b6e)4_*H(l|QC+G*1Z zwn1Vv2i$x z-1*@Vo%T5ad%HCX3PFhWkM8A%JmJSJ4nkbz6$6F1f(^!0;(c04avU!O4BxHwW4ynU z#8RPVm_rNPVOw7i)^_%JmMJ3ZyWvND0QvI>JzR{6Vg+=_iRayHCpgrGbL+jw=7(eJ z71isV`_2*GdufpKhUh>WM&vF!3Llf0fX8Y^==p$4KoI)*Cnph$-eHdZ-+~o;zzN9q zmNX@m)F*wu77900xw4EM#}9~LHL|;BryAI!_J*g#`>`R&c`Pw;Vyz`eg*9S?Bg;eD#eg$5W^9AG0Jg-+$p zy;6|sq1h5(W<94%tjT0Qn9_MS0)Tv8aWX-;CPWlxI^(yYP84*ykuvKtcj5hs9A6?u zqq$3bJ%k!T;=>=xO~zz-UZm*z3E(RfwsB~|$+;Wauc&8Boib+D#pB}t+Onp(kM3i5GQ68TNITWz{uwAwo+XbC>LLmL1t@Zd)DmFg zC|i#C^oGLQzpM1-!C-BF$q{{nN`m?G`K%@9W>CO>=-M|+#K(FzOhH}15fd}})9}Jk ztODCrTBDb5L9vWt)@zB;>CAba_xd;Yx9b6?EH_Oir@ut7cV&PuR8UZJA246O-P!g^ z^bgB9Au`ur+^K5n5~**z?0UJksFW<>Fuy@TH@iytc7a2_G~ak&=&Y!e@MRvzWVU6X zP4%H8t5M3}?2hVbm2eQ_zs(Fhf5`ArnycB*m4mV~bP^4^)3~(lnl=Mx$g@xWFx9pY zVGBu1)=&M=y^_zXeN$u>p8^OYD;m{N1E_;vdkJQz5xmE$> zp(`IN_A4^AqxA$1A---YGh7_S6WO6*V_DnNQvk11y&OTnh1n+abE8wl#7l--4XE_l zsTRgW*cMRu^TxWa!o4-C_hScg%!jB5oJ-~?#ianhFj-c4itLpbDD7mU=DKZm!2cKD z_2)g89F;_f8$c4d{P0dOzsMOcc{0sT`Sxkuw*MAFzan6VW?bZQ?aD{C$j0QHdo=ke zfaLO=4gGU@fB%Qo>nI^CB!BTzhzNc>+aW#Ue_C z)(^02JDh7lw2Dd{@4d5xmTKGkO{lW0TU30yhOmNyc&W%uB`1VK2$x*QR%=|PX-_+% z&u=OUwWy&!;$gn^TFeh?C!EAQ>Dd?G`!mvS1{&Z~4S2x9){cOXKB_NynqeL_{0KWj z-!!dIYPmlCcHDP*ekhW?@WjJ_A-`;&_TsW-Kebc9qRIfOYJky9vVWwe2-&nr-hV`r zRj>Q4O4+N8n8j@a>O|@{7?bQ{BzoflOTNf3^3OL2)(Tn@NBWAcU6yA-F?=1`nR#7TjG1 z2{yP(fZ#y}f(Hl$2{6c@!3GN!WP%ek=rGveHppIn?{00?*8Xd2_w$~QQ$5w)x9{!q z^mCqb+HX2^Jye_A(@NSQ($~RZOgs523<9C4Vp`Li`*KA{IHUvrN@4=q<#sbVn+f+g*+h& zXPHQ{_(aMAGG+t2X2?jBkW4!K!alALSz<)C&*P@G38l$Ose$Lgsaq zap8J}bv>irtcns#J*<%0>)Z}d&sO+~fuCPUEq=|D0hTxjh^TK-jRoezXX`g_=Hf3Y zEp7+(tnzD)S~Se!p5v)rK6vF;$$s=Y3;_P3?&RiStJ69Vh>$3gAdO@?Y22TbsMV>M zZm+(yoCRpQ8fQr3D)!C3CGW_z$ztBmwI7dYCi2RlJ-7q?7o07z)Dp*x${Yrzl%)0r0D z!lnf1Q6LQFu4{%p@p=N1&)pRkc`uZqETfb&O7?*l`G+#?vM(-qW=W+l`Id4tsl*`= z>fU+#lhnUUJvhrr&*@P@|eL7N0^BB=QqI=2AKMYf;NUVvWi{pUiv7632M;3tWM~@L!U10~| zJmyg?wx9SMO)3UO!UVyzd@57lX|v&OaW32|@c?@DMUNl(B7Yk$wDyeKGmUAMEDU_l z@qJE5m9U?b(B86kJ%B7H!QT>8*PX~x;AX4hVM^*pa;^9Ne0~jQA!eAfW@Du$cc}2I zS4#s9W7aE=N)7o;rnxWXKN?7^l?j79(^qZMHFW2`XZQCDeZ;#$%|a_G)Jk9SLq-gdYBAkhB#|(^$Hba! z8K840gjsqZN=@m0iEOBV@eeI|#Dm`X2{Wsw!&m_FICmnHmy0Otm~5dRHBJVdd$~Yd zg8#b6f})=kYw1Ez*kskS%;!Ay;YPY@*%$m}iiD3)Jo#mnKwNu|IjQv}@3TCW*v?@k z_Vag#Cfll)l}VufDv!i%O6-xsu3mjGW!$Yv(!5RAU!s=S19bLTCQEs5Z`Za28w+QJ z=y_^_K+#m!q--+j7^nPGqC>x5NH1xeD>fYq=fqjYVSVPe%UmL?EC=)h40x@8*e6ZX zw9xhwHPs?OtSYAi>d*`kZutRjhI zu1G;i8J%xA6$tZR8e@xQCS`{G9S%shHn`#5Frz9VAxZ{qecG8*r`C0z;|d`^Z6)R9 z6qijDAfY0LZcOTsIZ^_S@P072)T&9DL-qvRUN(MKSkNI)C%cq$ZrjFOsX+D=_4!;; zm6|vo$yPd+vX&57tT5q++W+Gq!BzTw5~JIWTf4A}1{6pbN?Ky8;MqoIOP{}S@LbRf-}0l!Yn55QewSwz}$n>f_gZ+igLGhGP5uyx_cS8+N2az@nP8UfI#{ zx#iRWeP72K#Gx!92CwW@s64!bSq3an%EO2^(=rByzgcSmx9&__u7?tF_$B1bC{O$QZYnNLA& z6aF<(#xB|VavL^^wmF<*c;Dnr%D__tj7qcvqJB_iF0nl0N!vz9p_9*948M~60xuUW zL+I`R+xyrO5@A+9l8O;+t(Hn*W@6ulGBaV4&qjvHf5pm+?S>}QueGK@kP{4xCiA%E zmd9sGR~iVSxaz6#gdi)0|F=tl>QjCLIdgf3Xi7pL%oZy_^KGj1DFv8I#p6x^O_vG(VnT*PsiFpZuq9es(i;`pqV>>e0MPO-zqKH zzea~FaY6uT_-}$_P*QmEWiLlnYnTUeWEsf%7jo>^4?fCXdUJDpdy#kh2g+bB>bp;G z7JOk7wA0(u^rTIptv2Ay>=HYio6RjI!mr7()l2i3tb^t=wP$StQW!L7X|g zs3@g5W_Egr@~{ZV`+ro`ej`d7u*3V9Msxz|%mxF92Y4T|49|?xL)ytgXtrG62U6#qL_nVrhllQuse~R&U8B?wfU8%t>emSJf-hedt7e8lp`4s% ztuw$>E?3CgzmwR^HG=Pkt)-=vl#vmwZyq!W48eanf_(pPIMH4Cgl`Jwi-BPWCQBA) z`2do*vo#Wcx&TlRU=a1YSmnPa*$L2w|JnsMa7Oso{+GtT2^yDzTQa}F`G6`7{0eYZ znNy9W<%@i@>(Xh3h{r~T$e|!@OHdT10X?wauof^nI%=D6sceVD%@w`0r&2 zqWwP!-d%xsXZ?Ub`X4#|d4OE`-(RBx!;~U(UkpeW=jH9aR#)C&jq>~8&w-{uV6>;^ zFmnj7;Ng(}R@fYD%SZj${2BL|Gy2Dl6cHvJNnqaJ?NE=_L%)h^pedg_Yb)t1)vgS| z6pOD0K6IturY-3cr&(GvOb&~;_zbLmu-bmb0M z*FDcHM!+n|>z&${ErXm?yItWnbTN-y*f@L@zDpA{w6_$kg}mN=T6hq+OyGwov@FU5 zGxhmwDMM=#(XF}$nOQN=r$?{7IztPt-$VvE&8`QOZn*tH;~C&%&bf6x_WFeVn91u$ zkY+@8GmwD9vhA$aRjgU1`ZF^*X8P;wf0;8jrO9q}*<=vmc^zU`YE52R`IhI*8R1DP zpP zSK>7R;l7zN9U+S>@medc^ZIs4yL~*f20x)_GtU_*5l5b;MID6=!Unb@a}Uq23)`1= ztWz)z80ht?Nbr6uB4_#_aJ11NB|keh0faT4@((yo?&^yws8#DDW3B4K>P+23j=T{$ z$8CR5mY1_~Y*ON5=6K#gBlfYphlg<)bGxcnE5r6deldfvtuRbO`da0zEvMU`5JoyV zR+W(>IUZEYKNmCS^Y}x2<(wPbSB1>APD(jd+`^~i2bGD!;y2e~nu&JhZF`638J-~S zUoK+s0g{u(Yy4`5;DGplAeU`Zr$&tPjc}N?;8^aE1~TdtEt2bjd0s{3-+$!ute3f- zE*p5mrruxu?eThmAP0baqzmdVbACPUvk3{&=iX%n+g;;58IYilB_H<)e7qL&;+O3Cx2_1o=DEzHv?z*q-)^PF1lqN9M> zSKQyPa}L(D_MZw-b;5nyi#(rlJl_*%o>m$N%pos~3sT`5X14P;XnW_wRo6zA}WksjqI zQ#);3G^i_9P%X44DJ2y#G#(j2*2sczuLlH5PH$K>qJ3B?dQf=Y|8Sv>kUJ1?P+ zK|Fsta#w<6r+?L=D^rLJ1zo399nk+Yc#ct?U%<2%%v#p*#t*)lcE1fqvJCsuI~n<9-KPR=olZG^u%zlezus|3DnQPOr7bxf=QQU!CCUL5#$m!g4=GD zzrgX_`8*@XIj79bTw7lq{BS3K4-i~_v4~O6nzS4zNt{$K)%FjeoNsJfe=}14r~il8 z0vFzZhYJ`bv=?XMnAF2#mKYxgBtEu?E*&=K`!J7MOuHsCSBVnT2}1tDPhgdmB);%X zKuqtcJ;v;Xw=o6FNYz9}IOl1wEf{W*?)Z-l%Z#M7K0k^bPg3H>d)OH?CpPxdlHA7! z_#4GGcS{fhYY%0yT7q@?brCWyytPr!Y$}GtuQ>bshj6^B3&{>DY+6SX*`v=Uy4f*W zME7uS&TQ*Pg&?9S=+iWz1Z%hUWfP%7X?tz1TBC!6+tQ`M^faEh`7y88eT4-p!t^mA z)mYlusP4h@NWtTD%s&GDuPI6_?=M6_3!eD8Ik_*LMpBfG_=OC(>Tq}e1~xk?+QSc z_Z3G44R1%%x{L7ms(l8$fNbA^O!|K&P9b%nzN_<}&=kORm|5oi7jE+Z%BTMS#{Z9S z5iBRt6#`5t?>`&nE%S^ajf{U}8_U3NYF~igVBi+%J z1*{m>XKQWNt1CSw1Sb)vTz@n8fnKYwT^fhxkM}rJXrVYsi?&-;P-+I*;%x1+_XI-U zxeCio7ZN6ejt!BP^?7uB!XiWNEDe%7fvrSN;oI}e98W+CtGMlUvrAr`>SNXWIJtPy z(U(+rAZo%nL0@m>pjp>|S8BpYvxbZ#9V%y&QtvA_Y?7cmuD3$`kX*m9`2qBL%9bV&Pka z?;7m!&urZwhTsF+x(1itWM12dX=%vKU-rM9ll_uly;0o~`*CF`b<2Z67Zk=qH@l8B zajAuvBiPJBPowcC!H)HLwn*b^NEpCm7M@`J%pv0y@M+yC8equ zbg$f;>!V}Os_23z1HV^TaKh4>04SJ^Ac9-}&!Tu=ZNWQ7m}v0JXEU9^}v_&}GzWhP3B#|Rp zy&L0_zE=BdYQVT3`mJ(gaZ!1D)P%4^p(V$qybPpEHj7a;vJbEv|#o58cF1 zoZFO@u6$O}Qqi)C?V}zq@-Bj4_R1lvpMH9Bg;}SJjO0 zr$=9IeMXU4xAu5UtKGx_q~_U_dG%#ZRb?+0YQtb`E-!`*aQV0HNQveN^Q(j*1jR{0SP?oqAWt0l+fg*fQhoWE5Mf;!d0b!#8$s zupAsmeaGZL9f>+x{Sxee8b@_xFVBjYdZ3+!kDUT8@CwWS*dV~#bE%=AZDJdmw1w>O zI=Vr$FE)X;j;k98i!X&Amd{GV5yFC4`b3WY^meaS1#**9VLIO!>ZCE3}OHiLzqeoxijiona z_@Q1cR1|oRT2`Z=#Y8Ny4MSgr zL#s8$7Gy2LxADuPZ7Dd>MX8VJfU0`=(v}^1vS+o`*8EbmjPrc8D}aGG@Km@5F9_{zSJ(`h zPy7Fdjs`ZhRa{g!+Lj^3cdrIYSO3m!odpMZI7S$Hh#Y-s5pHOv#@p~Iz8&+c5SiND z-S@_b&8w4D7}IK1`Jio2ezghjPLKPWi1KHQ(DVhf%?X5 zXhA1lNQ-thGTcv{e$vM4MX{Q?_Bj58w|@&SR;GtZ%Y{l7vs8K_Zxa^J&73)}jGk>G|m?%&V>LQtSkBy%otx`P;ki#C$ zjw75UMlWM|8p&TOnkPT#I}+J_$I9-Jbj?}4Gvev>*}ITbPHUB(WuU&h@3%lCeJ|UhW^UIPn!2r-o7o@G_mqsYovdDB24G&=@cKHHZi?dd-%+PtHA|)+l>ft zq@niVe0#}ksN8udOvHE=P+HliwW*_;^R0NY-gHXiH}a8!Bz}vS7ErV2UD6d5>?Hh!%ByHhVgChR@x*cFRbeWdRfjy5s>PX{pEKLx*a)`2Vlczo;#l~>6h zHXk`Q32(8}yqJfCS7c9FuXhtbZZeLyG_V!)cNegR>o`Vv9aKVhn8N9)oyug^-N+up zbK(gRl^s~6Dln~z21#u)Ix?D%G7+6hIi6vtVUNIG+&K=d4Ia5z?Ua~byT&kh#d{eA zYS-4HV4<#So=$;IR|mfQY~`OkGR=A)XtR<@#P zBc2vV-l)Z@r%hleF0IiA0iJ}aLSH=Uh54F$9JU+u0WH{dPu5zq;?Ju}m@2rMPu($6 z<(2(SOtb{g%G+*RsMmg3)-vI4QxhaD>sXg=o{(jvf0eBLSgIJ{N+#60_hvH?)z~c# z@Es3H@22)JLgV8Iw)+$E%$6Xvk@T&yIf|G{-HvZn@A{I#Roxq{*54(r82P9T4UWpT z?Fkmek?!mrn_E+sQS6ZGV`*rGK`d8Ky}h$Uat|GkLNDm(Ga^}H8@4m*R4AU8 z7~8A&d2cDwnWw6|tf!QF7-xkIp_Ok?86^h8F_7?M=QC$N-V$kGR4C2lpE!KWKlhT( zrHTcIf~e#hJqIoh(gSva>{#{jnbIj(utC4A&9ZPxWhE&t{WyQ%GRW)ObgiEr8nPFi zTYGPinkp$p-ws&eI#L2JZM^kBz}?qBBRg|>``($uhzMylm(61}ESw_-h(-!R@064U zZ#(gG_jmk3Eel+nfi_q|^kk@)N^i7jr;63(W@{_SG5H60&8QC>!ycmlNSN$#rxn!n zDMd&RxO5==~GBQTS}q0 zK4%OY9daDkf^jZ}di|-CSetHZr^rs!vCyl*Zvz$)su##F=&{f&C(Ik`rbfn;F@lP473ldA^QW) zyx`W!9k&a6dz?v3Oz3h4^9Y~5B&z5uGp>ONcroa?%$CiiRE44;?+)VbG)%|Tvj(VdO-r1w1J^eWAbzv_0mZzfy! zgiq+!8><0sI-^8|0-Z?eobL~5fh4ml7Q>GRswq{p$6%+`i7EH{2q5JTpmm_>mO3n@ zK=&;CgPMc$YmVw=!V{5xyUTs)p=K#6nJ>a(0yKlU#sv@LPW+at!sPydc`7=(6T?!At4!6Q07+7n*6;p%{Rz+Xf4Auw$x*~;CJQj?}!4XrmY`}GJJQt=`~Qz z1HfdAjAZJqZvSM{sl6FVA>idPHT6WRcg0rpC5=xV`M=P*vF11oslPV^r_4khz2dPJ zbdRd)Xb1yhq~rkREy0Q@HTW7f`bA<_7hP{prgJm>bfWF@-m~H=X|r>AA37?toq6J?%A75S`(qAPY*^TK8pY_ zYdycink`?C3thY*1kY5&B7__M!e!Y-r%#s{*9mo1n4|845+ZN_|6+ zY*M4}%E6j6bU>pWJb>@?A}d00?r0LDnTI|Ne?5bG`R&mKn3P_UX_#dh;E{v+)O%q9 zfLLJyE9Ms7Gvu{&aNF{Gh>$knU8dr>8|5JZEnNrsuG~zu#e*rtu)ZKbxCpFvJmWC0t;{>s8N`QCI}+fyaf6R6Y~Bi|RSW!kKp zY?N&!=Ja+vm|xh}1me*LAvAdHCox8FcyRtk?e$Y)Q@OjtO~GF2VCS#GqBnZPdc!9h z@FTKnJ1*NIQmdlGu(w+(5-N|#+UouxF&pTBRSeEYitccv_QRzfmL~^g{J4ZRJwPUe z+1Xj@Ei3C>v9Gf4&8I}$TUdGkRnoR{e|w4_nxkg+kDNSb*jHl9WYnf8KT0-!!HW!q z@)1$xn#Pfx4RvFIK^8qLdpLVaar&0JJ^rBG{dY%M+%$ha5rR4U%BuJ~e*>vEdqAzi zUZgZ^LzDG6fTc+8u#_edDZ@70ufP3_erkx$qMqUuDmN?BaoHL=|0P_biHyU=D7xO@ zgDwL6ljNv{?%~v~LHu#aDh!5j data +I0407 21:56:36.679855 23673 net.cpp:380] train-data -> label +I0407 21:56:36.679867 23673 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0407 21:56:36.685935 23673 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 21:56:36.806490 23673 net.cpp:122] Setting up train-data +I0407 21:56:36.806512 23673 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 21:56:36.806519 23673 net.cpp:129] Top shape: 128 (128) +I0407 21:56:36.806521 23673 net.cpp:137] Memory required for data: 79149056 +I0407 21:56:36.806531 23673 layer_factory.hpp:77] Creating layer conv1 +I0407 21:56:36.806552 23673 net.cpp:84] Creating Layer conv1 +I0407 21:56:36.806558 23673 net.cpp:406] conv1 <- data +I0407 21:56:36.806569 23673 net.cpp:380] conv1 -> conv1 +I0407 21:56:37.381981 23673 net.cpp:122] Setting up conv1 +I0407 21:56:37.382002 23673 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:56:37.382006 23673 net.cpp:137] Memory required for data: 227833856 +I0407 21:56:37.382025 23673 layer_factory.hpp:77] Creating layer relu1 +I0407 21:56:37.382036 23673 net.cpp:84] Creating Layer relu1 +I0407 21:56:37.382040 23673 net.cpp:406] relu1 <- conv1 +I0407 21:56:37.382046 23673 net.cpp:367] relu1 -> conv1 (in-place) +I0407 21:56:37.382333 23673 net.cpp:122] Setting up relu1 +I0407 21:56:37.382342 23673 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:56:37.382345 23673 net.cpp:137] Memory required for data: 376518656 +I0407 21:56:37.382349 23673 layer_factory.hpp:77] Creating layer norm1 +I0407 21:56:37.382359 23673 net.cpp:84] Creating Layer norm1 +I0407 21:56:37.382362 23673 net.cpp:406] norm1 <- conv1 +I0407 21:56:37.382387 23673 net.cpp:380] norm1 -> norm1 +I0407 21:56:37.382825 23673 net.cpp:122] Setting up norm1 +I0407 21:56:37.382834 23673 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 21:56:37.382838 23673 net.cpp:137] Memory required for data: 525203456 +I0407 21:56:37.382843 23673 layer_factory.hpp:77] Creating layer pool1 +I0407 21:56:37.382851 23673 net.cpp:84] Creating Layer pool1 +I0407 21:56:37.382854 23673 net.cpp:406] pool1 <- norm1 +I0407 21:56:37.382860 23673 net.cpp:380] pool1 -> pool1 +I0407 21:56:37.382897 23673 net.cpp:122] Setting up pool1 +I0407 21:56:37.382903 23673 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 21:56:37.382907 23673 net.cpp:137] Memory required for data: 561035264 +I0407 21:56:37.382910 23673 layer_factory.hpp:77] Creating layer conv2 +I0407 21:56:37.382920 23673 net.cpp:84] Creating Layer conv2 +I0407 21:56:37.382925 23673 net.cpp:406] conv2 <- pool1 +I0407 21:56:37.382930 23673 net.cpp:380] conv2 -> conv2 +I0407 21:56:37.389679 23673 net.cpp:122] Setting up conv2 +I0407 21:56:37.389693 23673 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:56:37.389696 23673 net.cpp:137] Memory required for data: 656586752 +I0407 21:56:37.389704 23673 layer_factory.hpp:77] Creating layer relu2 +I0407 21:56:37.389714 23673 net.cpp:84] Creating Layer relu2 +I0407 21:56:37.389716 23673 net.cpp:406] relu2 <- conv2 +I0407 21:56:37.389722 23673 net.cpp:367] relu2 -> conv2 (in-place) +I0407 21:56:37.390226 23673 net.cpp:122] Setting up relu2 +I0407 21:56:37.390237 23673 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:56:37.390240 23673 net.cpp:137] Memory required for data: 752138240 +I0407 21:56:37.390244 23673 layer_factory.hpp:77] Creating layer norm2 +I0407 21:56:37.390251 23673 net.cpp:84] Creating Layer norm2 +I0407 21:56:37.390255 23673 net.cpp:406] norm2 <- conv2 +I0407 21:56:37.390261 23673 net.cpp:380] norm2 -> norm2 +I0407 21:56:37.390621 23673 net.cpp:122] Setting up norm2 +I0407 21:56:37.390630 23673 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 21:56:37.390633 23673 net.cpp:137] Memory required for data: 847689728 +I0407 21:56:37.390636 23673 layer_factory.hpp:77] Creating layer pool2 +I0407 21:56:37.390645 23673 net.cpp:84] Creating Layer pool2 +I0407 21:56:37.390650 23673 net.cpp:406] pool2 <- norm2 +I0407 21:56:37.390655 23673 net.cpp:380] pool2 -> pool2 +I0407 21:56:37.390683 23673 net.cpp:122] Setting up pool2 +I0407 21:56:37.390689 23673 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:56:37.390693 23673 net.cpp:137] Memory required for data: 869840896 +I0407 21:56:37.390697 23673 layer_factory.hpp:77] Creating layer conv3 +I0407 21:56:37.390705 23673 net.cpp:84] Creating Layer conv3 +I0407 21:56:37.390708 23673 net.cpp:406] conv3 <- pool2 +I0407 21:56:37.390713 23673 net.cpp:380] conv3 -> conv3 +I0407 21:56:37.400655 23673 net.cpp:122] Setting up conv3 +I0407 21:56:37.400666 23673 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:37.400671 23673 net.cpp:137] Memory required for data: 903067648 +I0407 21:56:37.400681 23673 layer_factory.hpp:77] Creating layer relu3 +I0407 21:56:37.400687 23673 net.cpp:84] Creating Layer relu3 +I0407 21:56:37.400691 23673 net.cpp:406] relu3 <- conv3 +I0407 21:56:37.400696 23673 net.cpp:367] relu3 -> conv3 (in-place) +I0407 21:56:37.401188 23673 net.cpp:122] Setting up relu3 +I0407 21:56:37.401197 23673 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:37.401201 23673 net.cpp:137] Memory required for data: 936294400 +I0407 21:56:37.401204 23673 layer_factory.hpp:77] Creating layer conv4 +I0407 21:56:37.401214 23673 net.cpp:84] Creating Layer conv4 +I0407 21:56:37.401218 23673 net.cpp:406] conv4 <- conv3 +I0407 21:56:37.401226 23673 net.cpp:380] conv4 -> conv4 +I0407 21:56:37.411550 23673 net.cpp:122] Setting up conv4 +I0407 21:56:37.411563 23673 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:37.411568 23673 net.cpp:137] Memory required for data: 969521152 +I0407 21:56:37.411576 23673 layer_factory.hpp:77] Creating layer relu4 +I0407 21:56:37.411583 23673 net.cpp:84] Creating Layer relu4 +I0407 21:56:37.411604 23673 net.cpp:406] relu4 <- conv4 +I0407 21:56:37.411609 23673 net.cpp:367] relu4 -> conv4 (in-place) +I0407 21:56:37.411952 23673 net.cpp:122] Setting up relu4 +I0407 21:56:37.411959 23673 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 21:56:37.411963 23673 net.cpp:137] Memory required for data: 1002747904 +I0407 21:56:37.411967 23673 layer_factory.hpp:77] Creating layer conv5 +I0407 21:56:37.411978 23673 net.cpp:84] Creating Layer conv5 +I0407 21:56:37.411980 23673 net.cpp:406] conv5 <- conv4 +I0407 21:56:37.411988 23673 net.cpp:380] conv5 -> conv5 +I0407 21:56:37.420325 23673 net.cpp:122] Setting up conv5 +I0407 21:56:37.420336 23673 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:56:37.420341 23673 net.cpp:137] Memory required for data: 1024899072 +I0407 21:56:37.420351 23673 layer_factory.hpp:77] Creating layer relu5 +I0407 21:56:37.420358 23673 net.cpp:84] Creating Layer relu5 +I0407 21:56:37.420361 23673 net.cpp:406] relu5 <- conv5 +I0407 21:56:37.420367 23673 net.cpp:367] relu5 -> conv5 (in-place) +I0407 21:56:37.420856 23673 net.cpp:122] Setting up relu5 +I0407 21:56:37.420866 23673 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 21:56:37.420869 23673 net.cpp:137] Memory required for data: 1047050240 +I0407 21:56:37.420872 23673 layer_factory.hpp:77] Creating layer pool5 +I0407 21:56:37.420879 23673 net.cpp:84] Creating Layer pool5 +I0407 21:56:37.420883 23673 net.cpp:406] pool5 <- conv5 +I0407 21:56:37.420889 23673 net.cpp:380] pool5 -> pool5 +I0407 21:56:37.420926 23673 net.cpp:122] Setting up pool5 +I0407 21:56:37.420933 23673 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 21:56:37.420935 23673 net.cpp:137] Memory required for data: 1051768832 +I0407 21:56:37.420938 23673 layer_factory.hpp:77] Creating layer fc6 +I0407 21:56:37.420949 23673 net.cpp:84] Creating Layer fc6 +I0407 21:56:37.420953 23673 net.cpp:406] fc6 <- pool5 +I0407 21:56:37.420958 23673 net.cpp:380] fc6 -> fc6 +I0407 21:56:37.782258 23673 net.cpp:122] Setting up fc6 +I0407 21:56:37.782280 23673 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:37.782286 23673 net.cpp:137] Memory required for data: 1053865984 +I0407 21:56:37.782299 23673 layer_factory.hpp:77] Creating layer relu6 +I0407 21:56:37.782310 23673 net.cpp:84] Creating Layer relu6 +I0407 21:56:37.782316 23673 net.cpp:406] relu6 <- fc6 +I0407 21:56:37.782325 23673 net.cpp:367] relu6 -> fc6 (in-place) +I0407 21:56:37.784193 23673 net.cpp:122] Setting up relu6 +I0407 21:56:37.784207 23673 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:37.784212 23673 net.cpp:137] Memory required for data: 1055963136 +I0407 21:56:37.784217 23673 layer_factory.hpp:77] Creating layer drop6 +I0407 21:56:37.784226 23673 net.cpp:84] Creating Layer drop6 +I0407 21:56:37.784231 23673 net.cpp:406] drop6 <- fc6 +I0407 21:56:37.784238 23673 net.cpp:367] drop6 -> fc6 (in-place) +I0407 21:56:37.784276 23673 net.cpp:122] Setting up drop6 +I0407 21:56:37.784284 23673 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:37.784289 23673 net.cpp:137] Memory required for data: 1058060288 +I0407 21:56:37.784294 23673 layer_factory.hpp:77] Creating layer fc7 +I0407 21:56:37.784307 23673 net.cpp:84] Creating Layer fc7 +I0407 21:56:37.784312 23673 net.cpp:406] fc7 <- fc6 +I0407 21:56:37.784319 23673 net.cpp:380] fc7 -> fc7 +I0407 21:56:38.016695 23673 net.cpp:122] Setting up fc7 +I0407 21:56:38.016716 23673 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:38.016719 23673 net.cpp:137] Memory required for data: 1060157440 +I0407 21:56:38.016728 23673 layer_factory.hpp:77] Creating layer relu7 +I0407 21:56:38.016737 23673 net.cpp:84] Creating Layer relu7 +I0407 21:56:38.016741 23673 net.cpp:406] relu7 <- fc7 +I0407 21:56:38.016747 23673 net.cpp:367] relu7 -> fc7 (in-place) +I0407 21:56:38.017369 23673 net.cpp:122] Setting up relu7 +I0407 21:56:38.017379 23673 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:38.017382 23673 net.cpp:137] Memory required for data: 1062254592 +I0407 21:56:38.017385 23673 layer_factory.hpp:77] Creating layer drop7 +I0407 21:56:38.017392 23673 net.cpp:84] Creating Layer drop7 +I0407 21:56:38.017416 23673 net.cpp:406] drop7 <- fc7 +I0407 21:56:38.017421 23673 net.cpp:367] drop7 -> fc7 (in-place) +I0407 21:56:38.017446 23673 net.cpp:122] Setting up drop7 +I0407 21:56:38.017452 23673 net.cpp:129] Top shape: 128 4096 (524288) +I0407 21:56:38.017454 23673 net.cpp:137] Memory required for data: 1064351744 +I0407 21:56:38.017458 23673 layer_factory.hpp:77] Creating layer fc8 +I0407 21:56:38.017467 23673 net.cpp:84] Creating Layer fc8 +I0407 21:56:38.017470 23673 net.cpp:406] fc8 <- fc7 +I0407 21:56:38.017477 23673 net.cpp:380] fc8 -> fc8 +I0407 21:56:38.025106 23673 net.cpp:122] Setting up fc8 +I0407 21:56:38.025115 23673 net.cpp:129] Top shape: 128 196 (25088) +I0407 21:56:38.025120 23673 net.cpp:137] Memory required for data: 1064452096 +I0407 21:56:38.025125 23673 layer_factory.hpp:77] Creating layer loss +I0407 21:56:38.025133 23673 net.cpp:84] Creating Layer loss +I0407 21:56:38.025137 23673 net.cpp:406] loss <- fc8 +I0407 21:56:38.025141 23673 net.cpp:406] loss <- label +I0407 21:56:38.025147 23673 net.cpp:380] loss -> loss +I0407 21:56:38.025156 23673 layer_factory.hpp:77] Creating layer loss +I0407 21:56:38.025749 23673 net.cpp:122] Setting up loss +I0407 21:56:38.025758 23673 net.cpp:129] Top shape: (1) +I0407 21:56:38.025761 23673 net.cpp:132] with loss weight 1 +I0407 21:56:38.025779 23673 net.cpp:137] Memory required for data: 1064452100 +I0407 21:56:38.025782 23673 net.cpp:198] loss needs backward computation. +I0407 21:56:38.025790 23673 net.cpp:198] fc8 needs backward computation. +I0407 21:56:38.025794 23673 net.cpp:198] drop7 needs backward computation. +I0407 21:56:38.025797 23673 net.cpp:198] relu7 needs backward computation. +I0407 21:56:38.025800 23673 net.cpp:198] fc7 needs backward computation. +I0407 21:56:38.025804 23673 net.cpp:198] drop6 needs backward computation. +I0407 21:56:38.025807 23673 net.cpp:198] relu6 needs backward computation. +I0407 21:56:38.025810 23673 net.cpp:198] fc6 needs backward computation. +I0407 21:56:38.025815 23673 net.cpp:198] pool5 needs backward computation. +I0407 21:56:38.025817 23673 net.cpp:198] relu5 needs backward computation. +I0407 21:56:38.025821 23673 net.cpp:198] conv5 needs backward computation. +I0407 21:56:38.025825 23673 net.cpp:198] relu4 needs backward computation. +I0407 21:56:38.025828 23673 net.cpp:198] conv4 needs backward computation. +I0407 21:56:38.025831 23673 net.cpp:198] relu3 needs backward computation. +I0407 21:56:38.025835 23673 net.cpp:198] conv3 needs backward computation. +I0407 21:56:38.025840 23673 net.cpp:198] pool2 needs backward computation. +I0407 21:56:38.025842 23673 net.cpp:198] norm2 needs backward computation. +I0407 21:56:38.025846 23673 net.cpp:198] relu2 needs backward computation. +I0407 21:56:38.025849 23673 net.cpp:198] conv2 needs backward computation. +I0407 21:56:38.025853 23673 net.cpp:198] pool1 needs backward computation. +I0407 21:56:38.025856 23673 net.cpp:198] norm1 needs backward computation. +I0407 21:56:38.025861 23673 net.cpp:198] relu1 needs backward computation. +I0407 21:56:38.025863 23673 net.cpp:198] conv1 needs backward computation. +I0407 21:56:38.025867 23673 net.cpp:200] train-data does not need backward computation. +I0407 21:56:38.025871 23673 net.cpp:242] This network produces output loss +I0407 21:56:38.025885 23673 net.cpp:255] Network initialization done. +I0407 21:56:38.026327 23673 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 21:56:38.026357 23673 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 21:56:38.026494 23673 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 21:56:38.026589 23673 layer_factory.hpp:77] Creating layer val-data +I0407 21:56:38.028141 23673 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0407 21:56:38.028537 23673 net.cpp:84] Creating Layer val-data +I0407 21:56:38.028548 23673 net.cpp:380] val-data -> data +I0407 21:56:38.028555 23673 net.cpp:380] val-data -> label +I0407 21:56:38.028563 23673 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0407 21:56:38.033105 23673 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 21:56:38.063024 23673 net.cpp:122] Setting up val-data +I0407 21:56:38.063046 23673 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 21:56:38.063050 23673 net.cpp:129] Top shape: 32 (32) +I0407 21:56:38.063055 23673 net.cpp:137] Memory required for data: 19787264 +I0407 21:56:38.063060 23673 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 21:56:38.063072 23673 net.cpp:84] Creating Layer label_val-data_1_split +I0407 21:56:38.063076 23673 net.cpp:406] label_val-data_1_split <- label +I0407 21:56:38.063083 23673 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 21:56:38.063093 23673 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 21:56:38.063155 23673 net.cpp:122] Setting up label_val-data_1_split +I0407 21:56:38.063163 23673 net.cpp:129] Top shape: 32 (32) +I0407 21:56:38.063165 23673 net.cpp:129] Top shape: 32 (32) +I0407 21:56:38.063169 23673 net.cpp:137] Memory required for data: 19787520 +I0407 21:56:38.063172 23673 layer_factory.hpp:77] Creating layer conv1 +I0407 21:56:38.063184 23673 net.cpp:84] Creating Layer conv1 +I0407 21:56:38.063187 23673 net.cpp:406] conv1 <- data +I0407 21:56:38.063194 23673 net.cpp:380] conv1 -> conv1 +I0407 21:56:38.065093 23673 net.cpp:122] Setting up conv1 +I0407 21:56:38.065102 23673 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:56:38.065106 23673 net.cpp:137] Memory required for data: 56958720 +I0407 21:56:38.065116 23673 layer_factory.hpp:77] Creating layer relu1 +I0407 21:56:38.065122 23673 net.cpp:84] Creating Layer relu1 +I0407 21:56:38.065126 23673 net.cpp:406] relu1 <- conv1 +I0407 21:56:38.065131 23673 net.cpp:367] relu1 -> conv1 (in-place) +I0407 21:56:38.065420 23673 net.cpp:122] Setting up relu1 +I0407 21:56:38.065428 23673 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:56:38.065431 23673 net.cpp:137] Memory required for data: 94129920 +I0407 21:56:38.065435 23673 layer_factory.hpp:77] Creating layer norm1 +I0407 21:56:38.065443 23673 net.cpp:84] Creating Layer norm1 +I0407 21:56:38.065448 23673 net.cpp:406] norm1 <- conv1 +I0407 21:56:38.065452 23673 net.cpp:380] norm1 -> norm1 +I0407 21:56:38.065909 23673 net.cpp:122] Setting up norm1 +I0407 21:56:38.065919 23673 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 21:56:38.065922 23673 net.cpp:137] Memory required for data: 131301120 +I0407 21:56:38.065927 23673 layer_factory.hpp:77] Creating layer pool1 +I0407 21:56:38.065932 23673 net.cpp:84] Creating Layer pool1 +I0407 21:56:38.065937 23673 net.cpp:406] pool1 <- norm1 +I0407 21:56:38.065941 23673 net.cpp:380] pool1 -> pool1 +I0407 21:56:38.065989 23673 net.cpp:122] Setting up pool1 +I0407 21:56:38.065995 23673 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 21:56:38.065999 23673 net.cpp:137] Memory required for data: 140259072 +I0407 21:56:38.066002 23673 layer_factory.hpp:77] Creating layer conv2 +I0407 21:56:38.066010 23673 net.cpp:84] Creating Layer conv2 +I0407 21:56:38.066013 23673 net.cpp:406] conv2 <- pool1 +I0407 21:56:38.066037 23673 net.cpp:380] conv2 -> conv2 +I0407 21:56:38.073166 23673 net.cpp:122] Setting up conv2 +I0407 21:56:38.073179 23673 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:56:38.073182 23673 net.cpp:137] Memory required for data: 164146944 +I0407 21:56:38.073191 23673 layer_factory.hpp:77] Creating layer relu2 +I0407 21:56:38.073199 23673 net.cpp:84] Creating Layer relu2 +I0407 21:56:38.073204 23673 net.cpp:406] relu2 <- conv2 +I0407 21:56:38.073208 23673 net.cpp:367] relu2 -> conv2 (in-place) +I0407 21:56:38.073712 23673 net.cpp:122] Setting up relu2 +I0407 21:56:38.073722 23673 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:56:38.073726 23673 net.cpp:137] Memory required for data: 188034816 +I0407 21:56:38.073729 23673 layer_factory.hpp:77] Creating layer norm2 +I0407 21:56:38.073740 23673 net.cpp:84] Creating Layer norm2 +I0407 21:56:38.073743 23673 net.cpp:406] norm2 <- conv2 +I0407 21:56:38.073750 23673 net.cpp:380] norm2 -> norm2 +I0407 21:56:38.074317 23673 net.cpp:122] Setting up norm2 +I0407 21:56:38.074327 23673 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 21:56:38.074331 23673 net.cpp:137] Memory required for data: 211922688 +I0407 21:56:38.074334 23673 layer_factory.hpp:77] Creating layer pool2 +I0407 21:56:38.074340 23673 net.cpp:84] Creating Layer pool2 +I0407 21:56:38.074344 23673 net.cpp:406] pool2 <- norm2 +I0407 21:56:38.074350 23673 net.cpp:380] pool2 -> pool2 +I0407 21:56:38.074381 23673 net.cpp:122] Setting up pool2 +I0407 21:56:38.074386 23673 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:56:38.074389 23673 net.cpp:137] Memory required for data: 217460480 +I0407 21:56:38.074393 23673 layer_factory.hpp:77] Creating layer conv3 +I0407 21:56:38.074404 23673 net.cpp:84] Creating Layer conv3 +I0407 21:56:38.074407 23673 net.cpp:406] conv3 <- pool2 +I0407 21:56:38.074417 23673 net.cpp:380] conv3 -> conv3 +I0407 21:56:38.085281 23673 net.cpp:122] Setting up conv3 +I0407 21:56:38.085295 23673 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:38.085299 23673 net.cpp:137] Memory required for data: 225767168 +I0407 21:56:38.085311 23673 layer_factory.hpp:77] Creating layer relu3 +I0407 21:56:38.085319 23673 net.cpp:84] Creating Layer relu3 +I0407 21:56:38.085323 23673 net.cpp:406] relu3 <- conv3 +I0407 21:56:38.085328 23673 net.cpp:367] relu3 -> conv3 (in-place) +I0407 21:56:38.085840 23673 net.cpp:122] Setting up relu3 +I0407 21:56:38.085851 23673 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:38.085855 23673 net.cpp:137] Memory required for data: 234073856 +I0407 21:56:38.085858 23673 layer_factory.hpp:77] Creating layer conv4 +I0407 21:56:38.085870 23673 net.cpp:84] Creating Layer conv4 +I0407 21:56:38.085873 23673 net.cpp:406] conv4 <- conv3 +I0407 21:56:38.085880 23673 net.cpp:380] conv4 -> conv4 +I0407 21:56:38.095295 23673 net.cpp:122] Setting up conv4 +I0407 21:56:38.095306 23673 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:38.095310 23673 net.cpp:137] Memory required for data: 242380544 +I0407 21:56:38.095317 23673 layer_factory.hpp:77] Creating layer relu4 +I0407 21:56:38.095327 23673 net.cpp:84] Creating Layer relu4 +I0407 21:56:38.095332 23673 net.cpp:406] relu4 <- conv4 +I0407 21:56:38.095337 23673 net.cpp:367] relu4 -> conv4 (in-place) +I0407 21:56:38.095679 23673 net.cpp:122] Setting up relu4 +I0407 21:56:38.095687 23673 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 21:56:38.095692 23673 net.cpp:137] Memory required for data: 250687232 +I0407 21:56:38.095696 23673 layer_factory.hpp:77] Creating layer conv5 +I0407 21:56:38.095706 23673 net.cpp:84] Creating Layer conv5 +I0407 21:56:38.095710 23673 net.cpp:406] conv5 <- conv4 +I0407 21:56:38.095715 23673 net.cpp:380] conv5 -> conv5 +I0407 21:56:38.104161 23673 net.cpp:122] Setting up conv5 +I0407 21:56:38.104172 23673 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:56:38.104176 23673 net.cpp:137] Memory required for data: 256225024 +I0407 21:56:38.104187 23673 layer_factory.hpp:77] Creating layer relu5 +I0407 21:56:38.104193 23673 net.cpp:84] Creating Layer relu5 +I0407 21:56:38.104197 23673 net.cpp:406] relu5 <- conv5 +I0407 21:56:38.104221 23673 net.cpp:367] relu5 -> conv5 (in-place) +I0407 21:56:38.104715 23673 net.cpp:122] Setting up relu5 +I0407 21:56:38.104725 23673 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 21:56:38.104729 23673 net.cpp:137] Memory required for data: 261762816 +I0407 21:56:38.104732 23673 layer_factory.hpp:77] Creating layer pool5 +I0407 21:56:38.104743 23673 net.cpp:84] Creating Layer pool5 +I0407 21:56:38.104748 23673 net.cpp:406] pool5 <- conv5 +I0407 21:56:38.104753 23673 net.cpp:380] pool5 -> pool5 +I0407 21:56:38.104789 23673 net.cpp:122] Setting up pool5 +I0407 21:56:38.104795 23673 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 21:56:38.104799 23673 net.cpp:137] Memory required for data: 262942464 +I0407 21:56:38.104804 23673 layer_factory.hpp:77] Creating layer fc6 +I0407 21:56:38.104810 23673 net.cpp:84] Creating Layer fc6 +I0407 21:56:38.104813 23673 net.cpp:406] fc6 <- pool5 +I0407 21:56:38.104820 23673 net.cpp:380] fc6 -> fc6 +I0407 21:56:38.456493 23673 net.cpp:122] Setting up fc6 +I0407 21:56:38.456514 23673 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:38.456517 23673 net.cpp:137] Memory required for data: 263466752 +I0407 21:56:38.456526 23673 layer_factory.hpp:77] Creating layer relu6 +I0407 21:56:38.456535 23673 net.cpp:84] Creating Layer relu6 +I0407 21:56:38.456539 23673 net.cpp:406] relu6 <- fc6 +I0407 21:56:38.456545 23673 net.cpp:367] relu6 -> fc6 (in-place) +I0407 21:56:38.457394 23673 net.cpp:122] Setting up relu6 +I0407 21:56:38.457404 23673 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:38.457407 23673 net.cpp:137] Memory required for data: 263991040 +I0407 21:56:38.457412 23673 layer_factory.hpp:77] Creating layer drop6 +I0407 21:56:38.457418 23673 net.cpp:84] Creating Layer drop6 +I0407 21:56:38.457422 23673 net.cpp:406] drop6 <- fc6 +I0407 21:56:38.457427 23673 net.cpp:367] drop6 -> fc6 (in-place) +I0407 21:56:38.457456 23673 net.cpp:122] Setting up drop6 +I0407 21:56:38.457461 23673 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:38.457465 23673 net.cpp:137] Memory required for data: 264515328 +I0407 21:56:38.457468 23673 layer_factory.hpp:77] Creating layer fc7 +I0407 21:56:38.457476 23673 net.cpp:84] Creating Layer fc7 +I0407 21:56:38.457479 23673 net.cpp:406] fc7 <- fc6 +I0407 21:56:38.457484 23673 net.cpp:380] fc7 -> fc7 +I0407 21:56:38.613785 23673 net.cpp:122] Setting up fc7 +I0407 21:56:38.613806 23673 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:38.613809 23673 net.cpp:137] Memory required for data: 265039616 +I0407 21:56:38.613818 23673 layer_factory.hpp:77] Creating layer relu7 +I0407 21:56:38.613827 23673 net.cpp:84] Creating Layer relu7 +I0407 21:56:38.613832 23673 net.cpp:406] relu7 <- fc7 +I0407 21:56:38.613838 23673 net.cpp:367] relu7 -> fc7 (in-place) +I0407 21:56:38.614269 23673 net.cpp:122] Setting up relu7 +I0407 21:56:38.614277 23673 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:38.614282 23673 net.cpp:137] Memory required for data: 265563904 +I0407 21:56:38.614286 23673 layer_factory.hpp:77] Creating layer drop7 +I0407 21:56:38.614293 23673 net.cpp:84] Creating Layer drop7 +I0407 21:56:38.614297 23673 net.cpp:406] drop7 <- fc7 +I0407 21:56:38.614302 23673 net.cpp:367] drop7 -> fc7 (in-place) +I0407 21:56:38.614326 23673 net.cpp:122] Setting up drop7 +I0407 21:56:38.614332 23673 net.cpp:129] Top shape: 32 4096 (131072) +I0407 21:56:38.614336 23673 net.cpp:137] Memory required for data: 266088192 +I0407 21:56:38.614338 23673 layer_factory.hpp:77] Creating layer fc8 +I0407 21:56:38.614346 23673 net.cpp:84] Creating Layer fc8 +I0407 21:56:38.614351 23673 net.cpp:406] fc8 <- fc7 +I0407 21:56:38.614356 23673 net.cpp:380] fc8 -> fc8 +I0407 21:56:38.622051 23673 net.cpp:122] Setting up fc8 +I0407 21:56:38.622059 23673 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:56:38.622063 23673 net.cpp:137] Memory required for data: 266113280 +I0407 21:56:38.622069 23673 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 21:56:38.622077 23673 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 21:56:38.622081 23673 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 21:56:38.622104 23673 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 21:56:38.622112 23673 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 21:56:38.622146 23673 net.cpp:122] Setting up fc8_fc8_0_split +I0407 21:56:38.622151 23673 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:56:38.622155 23673 net.cpp:129] Top shape: 32 196 (6272) +I0407 21:56:38.622159 23673 net.cpp:137] Memory required for data: 266163456 +I0407 21:56:38.622162 23673 layer_factory.hpp:77] Creating layer accuracy +I0407 21:56:38.622169 23673 net.cpp:84] Creating Layer accuracy +I0407 21:56:38.622174 23673 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 21:56:38.622177 23673 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 21:56:38.622184 23673 net.cpp:380] accuracy -> accuracy +I0407 21:56:38.622190 23673 net.cpp:122] Setting up accuracy +I0407 21:56:38.622195 23673 net.cpp:129] Top shape: (1) +I0407 21:56:38.622197 23673 net.cpp:137] Memory required for data: 266163460 +I0407 21:56:38.622200 23673 layer_factory.hpp:77] Creating layer loss +I0407 21:56:38.622206 23673 net.cpp:84] Creating Layer loss +I0407 21:56:38.622210 23673 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 21:56:38.622213 23673 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 21:56:38.622218 23673 net.cpp:380] loss -> loss +I0407 21:56:38.622225 23673 layer_factory.hpp:77] Creating layer loss +I0407 21:56:38.622819 23673 net.cpp:122] Setting up loss +I0407 21:56:38.622828 23673 net.cpp:129] Top shape: (1) +I0407 21:56:38.622831 23673 net.cpp:132] with loss weight 1 +I0407 21:56:38.622840 23673 net.cpp:137] Memory required for data: 266163464 +I0407 21:56:38.622844 23673 net.cpp:198] loss needs backward computation. +I0407 21:56:38.622849 23673 net.cpp:200] accuracy does not need backward computation. +I0407 21:56:38.622853 23673 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 21:56:38.622857 23673 net.cpp:198] fc8 needs backward computation. +I0407 21:56:38.622861 23673 net.cpp:198] drop7 needs backward computation. +I0407 21:56:38.622864 23673 net.cpp:198] relu7 needs backward computation. +I0407 21:56:38.622867 23673 net.cpp:198] fc7 needs backward computation. +I0407 21:56:38.622871 23673 net.cpp:198] drop6 needs backward computation. +I0407 21:56:38.622874 23673 net.cpp:198] relu6 needs backward computation. +I0407 21:56:38.622879 23673 net.cpp:198] fc6 needs backward computation. +I0407 21:56:38.622882 23673 net.cpp:198] pool5 needs backward computation. +I0407 21:56:38.622886 23673 net.cpp:198] relu5 needs backward computation. +I0407 21:56:38.622890 23673 net.cpp:198] conv5 needs backward computation. +I0407 21:56:38.622895 23673 net.cpp:198] relu4 needs backward computation. +I0407 21:56:38.622897 23673 net.cpp:198] conv4 needs backward computation. +I0407 21:56:38.622901 23673 net.cpp:198] relu3 needs backward computation. +I0407 21:56:38.622905 23673 net.cpp:198] conv3 needs backward computation. +I0407 21:56:38.622910 23673 net.cpp:198] pool2 needs backward computation. +I0407 21:56:38.622915 23673 net.cpp:198] norm2 needs backward computation. +I0407 21:56:38.622920 23673 net.cpp:198] relu2 needs backward computation. +I0407 21:56:38.622923 23673 net.cpp:198] conv2 needs backward computation. +I0407 21:56:38.622927 23673 net.cpp:198] pool1 needs backward computation. +I0407 21:56:38.622931 23673 net.cpp:198] norm1 needs backward computation. +I0407 21:56:38.622934 23673 net.cpp:198] relu1 needs backward computation. +I0407 21:56:38.622938 23673 net.cpp:198] conv1 needs backward computation. +I0407 21:56:38.622941 23673 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 21:56:38.622946 23673 net.cpp:200] val-data does not need backward computation. +I0407 21:56:38.622949 23673 net.cpp:242] This network produces output accuracy +I0407 21:56:38.622953 23673 net.cpp:242] This network produces output loss +I0407 21:56:38.622968 23673 net.cpp:255] Network initialization done. +I0407 21:56:38.623034 23673 solver.cpp:56] Solver scaffolding done. +I0407 21:56:38.623454 23673 caffe.cpp:248] Starting Optimization +I0407 21:56:38.623463 23673 solver.cpp:272] Solving +I0407 21:56:38.623476 23673 solver.cpp:273] Learning Rate Policy: exp +I0407 21:56:38.627288 23673 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 21:56:38.627298 23673 net.cpp:676] Ignoring source layer train-data +I0407 21:56:38.720505 23673 blocking_queue.cpp:49] Waiting for data +I0407 21:56:43.042217 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:56:43.087146 23673 solver.cpp:397] Test net output #0: accuracy = 0.00306373 +I0407 21:56:43.087195 23673 solver.cpp:397] Test net output #1: loss = 5.27606 (* 1 = 5.27606 loss) +I0407 21:56:43.182868 23673 solver.cpp:218] Iteration 0 (1.74956e+36 iter/s, 4.55921s/12 iters), loss = 5.29002 +I0407 21:56:43.184388 23673 solver.cpp:237] Train net output #0: loss = 5.29002 (* 1 = 5.29002 loss) +I0407 21:56:43.184409 23673 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 21:56:47.166393 23673 solver.cpp:218] Iteration 12 (3.01367 iter/s, 3.98186s/12 iters), loss = 5.27431 +I0407 21:56:47.166445 23673 solver.cpp:237] Train net output #0: loss = 5.27431 (* 1 = 5.27431 loss) +I0407 21:56:47.166456 23673 sgd_solver.cpp:105] Iteration 12, lr = 0.00998818 +I0407 21:56:52.030967 23673 solver.cpp:218] Iteration 24 (2.46692 iter/s, 4.86436s/12 iters), loss = 5.28889 +I0407 21:56:52.031015 23673 solver.cpp:237] Train net output #0: loss = 5.28889 (* 1 = 5.28889 loss) +I0407 21:56:52.031028 23673 sgd_solver.cpp:105] Iteration 24, lr = 0.00997638 +I0407 21:56:56.934319 23673 solver.cpp:218] Iteration 36 (2.44741 iter/s, 4.90314s/12 iters), loss = 5.29434 +I0407 21:56:56.934365 23673 solver.cpp:237] Train net output #0: loss = 5.29434 (* 1 = 5.29434 loss) +I0407 21:56:56.934374 23673 sgd_solver.cpp:105] Iteration 36, lr = 0.00996459 +I0407 21:57:01.873780 23673 solver.cpp:218] Iteration 48 (2.42952 iter/s, 4.93925s/12 iters), loss = 5.3048 +I0407 21:57:01.873837 23673 solver.cpp:237] Train net output #0: loss = 5.3048 (* 1 = 5.3048 loss) +I0407 21:57:01.873849 23673 sgd_solver.cpp:105] Iteration 48, lr = 0.00995282 +I0407 21:57:06.853536 23673 solver.cpp:218] Iteration 60 (2.40987 iter/s, 4.97953s/12 iters), loss = 5.29247 +I0407 21:57:06.853765 23673 solver.cpp:237] Train net output #0: loss = 5.29247 (* 1 = 5.29247 loss) +I0407 21:57:06.853797 23673 sgd_solver.cpp:105] Iteration 60, lr = 0.00994106 +I0407 21:57:11.844830 23673 solver.cpp:218] Iteration 72 (2.40438 iter/s, 4.9909s/12 iters), loss = 5.2996 +I0407 21:57:11.844887 23673 solver.cpp:237] Train net output #0: loss = 5.2996 (* 1 = 5.2996 loss) +I0407 21:57:11.844899 23673 sgd_solver.cpp:105] Iteration 72, lr = 0.00992931 +I0407 21:57:16.868747 23673 solver.cpp:218] Iteration 84 (2.38868 iter/s, 5.02369s/12 iters), loss = 5.30185 +I0407 21:57:16.868798 23673 solver.cpp:237] Train net output #0: loss = 5.30185 (* 1 = 5.30185 loss) +I0407 21:57:16.868810 23673 sgd_solver.cpp:105] Iteration 84, lr = 0.00991757 +I0407 21:57:21.777052 23673 solver.cpp:218] Iteration 96 (2.44495 iter/s, 4.90808s/12 iters), loss = 5.31926 +I0407 21:57:21.777104 23673 solver.cpp:237] Train net output #0: loss = 5.31926 (* 1 = 5.31926 loss) +I0407 21:57:21.777117 23673 sgd_solver.cpp:105] Iteration 96, lr = 0.00990586 +I0407 21:57:23.501546 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:23.860872 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 21:57:26.923511 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 21:57:30.374620 23673 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 21:57:30.374646 23673 net.cpp:676] Ignoring source layer train-data +I0407 21:57:34.766472 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:57:34.843257 23673 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0407 21:57:34.843307 23673 solver.cpp:397] Test net output #1: loss = 5.28986 (* 1 = 5.28986 loss) +I0407 21:57:36.667896 23673 solver.cpp:218] Iteration 108 (0.805894 iter/s, 14.8903s/12 iters), loss = 5.31861 +I0407 21:57:36.667954 23673 solver.cpp:237] Train net output #0: loss = 5.31861 (* 1 = 5.31861 loss) +I0407 21:57:36.667968 23673 sgd_solver.cpp:105] Iteration 108, lr = 0.00989415 +I0407 21:57:41.661607 23673 solver.cpp:218] Iteration 120 (2.40313 iter/s, 4.99348s/12 iters), loss = 5.28317 +I0407 21:57:41.661759 23673 solver.cpp:237] Train net output #0: loss = 5.28317 (* 1 = 5.28317 loss) +I0407 21:57:41.661773 23673 sgd_solver.cpp:105] Iteration 120, lr = 0.00988246 +I0407 21:57:46.652010 23673 solver.cpp:218] Iteration 132 (2.40477 iter/s, 4.99009s/12 iters), loss = 5.25356 +I0407 21:57:46.652058 23673 solver.cpp:237] Train net output #0: loss = 5.25356 (* 1 = 5.25356 loss) +I0407 21:57:46.652071 23673 sgd_solver.cpp:105] Iteration 132, lr = 0.00987078 +I0407 21:57:51.662017 23673 solver.cpp:218] Iteration 144 (2.39531 iter/s, 5.00979s/12 iters), loss = 5.3105 +I0407 21:57:51.662065 23673 solver.cpp:237] Train net output #0: loss = 5.3105 (* 1 = 5.3105 loss) +I0407 21:57:51.662076 23673 sgd_solver.cpp:105] Iteration 144, lr = 0.00985912 +I0407 21:57:56.692351 23673 solver.cpp:218] Iteration 156 (2.38563 iter/s, 5.03011s/12 iters), loss = 5.24762 +I0407 21:57:56.692396 23673 solver.cpp:237] Train net output #0: loss = 5.24762 (* 1 = 5.24762 loss) +I0407 21:57:56.692406 23673 sgd_solver.cpp:105] Iteration 156, lr = 0.00984747 +I0407 21:58:01.667374 23673 solver.cpp:218] Iteration 168 (2.41215 iter/s, 4.97481s/12 iters), loss = 5.23787 +I0407 21:58:01.667415 23673 solver.cpp:237] Train net output #0: loss = 5.23787 (* 1 = 5.23787 loss) +I0407 21:58:01.667426 23673 sgd_solver.cpp:105] Iteration 168, lr = 0.00983583 +I0407 21:58:07.052482 23673 solver.cpp:218] Iteration 180 (2.22846 iter/s, 5.38488s/12 iters), loss = 5.15948 +I0407 21:58:07.052537 23673 solver.cpp:237] Train net output #0: loss = 5.15948 (* 1 = 5.15948 loss) +I0407 21:58:07.052551 23673 sgd_solver.cpp:105] Iteration 180, lr = 0.00982421 +I0407 21:58:12.336282 23673 solver.cpp:218] Iteration 192 (2.27119 iter/s, 5.28356s/12 iters), loss = 5.24681 +I0407 21:58:12.336376 23673 solver.cpp:237] Train net output #0: loss = 5.24681 (* 1 = 5.24681 loss) +I0407 21:58:12.336386 23673 sgd_solver.cpp:105] Iteration 192, lr = 0.0098126 +I0407 21:58:16.170331 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:58:16.889189 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 21:58:19.843729 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 21:58:22.144641 23673 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 21:58:22.144662 23673 net.cpp:676] Ignoring source layer train-data +I0407 21:58:26.489969 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:58:26.612943 23673 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0407 21:58:26.612994 23673 solver.cpp:397] Test net output #1: loss = 5.20483 (* 1 = 5.20483 loss) +I0407 21:58:26.704030 23673 solver.cpp:218] Iteration 204 (0.835237 iter/s, 14.3672s/12 iters), loss = 5.13684 +I0407 21:58:26.704085 23673 solver.cpp:237] Train net output #0: loss = 5.13684 (* 1 = 5.13684 loss) +I0407 21:58:26.704097 23673 sgd_solver.cpp:105] Iteration 204, lr = 0.009801 +I0407 21:58:31.080279 23673 solver.cpp:218] Iteration 216 (2.74221 iter/s, 4.37604s/12 iters), loss = 5.17204 +I0407 21:58:31.080327 23673 solver.cpp:237] Train net output #0: loss = 5.17204 (* 1 = 5.17204 loss) +I0407 21:58:31.080338 23673 sgd_solver.cpp:105] Iteration 216, lr = 0.00978942 +I0407 21:58:36.059645 23673 solver.cpp:218] Iteration 228 (2.41005 iter/s, 4.97914s/12 iters), loss = 5.20493 +I0407 21:58:36.059700 23673 solver.cpp:237] Train net output #0: loss = 5.20493 (* 1 = 5.20493 loss) +I0407 21:58:36.059711 23673 sgd_solver.cpp:105] Iteration 228, lr = 0.00977785 +I0407 21:58:41.279723 23673 solver.cpp:218] Iteration 240 (2.29892 iter/s, 5.21984s/12 iters), loss = 5.22543 +I0407 21:58:41.279772 23673 solver.cpp:237] Train net output #0: loss = 5.22543 (* 1 = 5.22543 loss) +I0407 21:58:41.279783 23673 sgd_solver.cpp:105] Iteration 240, lr = 0.0097663 +I0407 21:58:46.369488 23673 solver.cpp:218] Iteration 252 (2.35778 iter/s, 5.08954s/12 iters), loss = 5.13605 +I0407 21:58:46.369587 23673 solver.cpp:237] Train net output #0: loss = 5.13605 (* 1 = 5.13605 loss) +I0407 21:58:46.369597 23673 sgd_solver.cpp:105] Iteration 252, lr = 0.00975476 +I0407 21:58:51.388101 23673 solver.cpp:218] Iteration 264 (2.39123 iter/s, 5.01834s/12 iters), loss = 5.25369 +I0407 21:58:51.388156 23673 solver.cpp:237] Train net output #0: loss = 5.25369 (* 1 = 5.25369 loss) +I0407 21:58:51.388170 23673 sgd_solver.cpp:105] Iteration 264, lr = 0.00974323 +I0407 21:58:56.469434 23673 solver.cpp:218] Iteration 276 (2.3617 iter/s, 5.08109s/12 iters), loss = 5.20717 +I0407 21:58:56.469491 23673 solver.cpp:237] Train net output #0: loss = 5.20717 (* 1 = 5.20717 loss) +I0407 21:58:56.469503 23673 sgd_solver.cpp:105] Iteration 276, lr = 0.00973172 +I0407 21:59:01.481992 23673 solver.cpp:218] Iteration 288 (2.3941 iter/s, 5.01233s/12 iters), loss = 5.08744 +I0407 21:59:01.482036 23673 solver.cpp:237] Train net output #0: loss = 5.08744 (* 1 = 5.08744 loss) +I0407 21:59:01.482045 23673 sgd_solver.cpp:105] Iteration 288, lr = 0.00972022 +I0407 21:59:06.502712 23673 solver.cpp:218] Iteration 300 (2.3902 iter/s, 5.0205s/12 iters), loss = 5.18047 +I0407 21:59:06.502763 23673 solver.cpp:237] Train net output #0: loss = 5.18047 (* 1 = 5.18047 loss) +I0407 21:59:06.502776 23673 sgd_solver.cpp:105] Iteration 300, lr = 0.00970873 +I0407 21:59:07.515949 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:08.614754 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 21:59:11.561811 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 21:59:13.846679 23673 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 21:59:13.846704 23673 net.cpp:676] Ignoring source layer train-data +I0407 21:59:18.286324 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 21:59:18.444336 23673 solver.cpp:397] Test net output #0: accuracy = 0.00857843 +I0407 21:59:18.444380 23673 solver.cpp:397] Test net output #1: loss = 5.15469 (* 1 = 5.15469 loss) +I0407 21:59:20.440160 23673 solver.cpp:218] Iteration 312 (0.861022 iter/s, 13.9369s/12 iters), loss = 5.13532 +I0407 21:59:20.440210 23673 solver.cpp:237] Train net output #0: loss = 5.13532 (* 1 = 5.13532 loss) +I0407 21:59:20.440220 23673 sgd_solver.cpp:105] Iteration 312, lr = 0.00969726 +I0407 21:59:25.436688 23673 solver.cpp:218] Iteration 324 (2.40178 iter/s, 4.9963s/12 iters), loss = 5.18628 +I0407 21:59:25.436738 23673 solver.cpp:237] Train net output #0: loss = 5.18628 (* 1 = 5.18628 loss) +I0407 21:59:25.436749 23673 sgd_solver.cpp:105] Iteration 324, lr = 0.0096858 +I0407 21:59:30.447798 23673 solver.cpp:218] Iteration 336 (2.39479 iter/s, 5.01088s/12 iters), loss = 5.1465 +I0407 21:59:30.447845 23673 solver.cpp:237] Train net output #0: loss = 5.1465 (* 1 = 5.1465 loss) +I0407 21:59:30.447856 23673 sgd_solver.cpp:105] Iteration 336, lr = 0.00967435 +I0407 21:59:35.432197 23673 solver.cpp:218] Iteration 348 (2.40762 iter/s, 4.98417s/12 iters), loss = 5.12079 +I0407 21:59:35.432247 23673 solver.cpp:237] Train net output #0: loss = 5.12079 (* 1 = 5.12079 loss) +I0407 21:59:35.432258 23673 sgd_solver.cpp:105] Iteration 348, lr = 0.00966292 +I0407 21:59:40.501835 23673 solver.cpp:218] Iteration 360 (2.36714 iter/s, 5.06941s/12 iters), loss = 5.17407 +I0407 21:59:40.501874 23673 solver.cpp:237] Train net output #0: loss = 5.17407 (* 1 = 5.17407 loss) +I0407 21:59:40.501883 23673 sgd_solver.cpp:105] Iteration 360, lr = 0.0096515 +I0407 21:59:45.538745 23673 solver.cpp:218] Iteration 372 (2.38252 iter/s, 5.03669s/12 iters), loss = 5.10898 +I0407 21:59:45.538792 23673 solver.cpp:237] Train net output #0: loss = 5.10898 (* 1 = 5.10898 loss) +I0407 21:59:45.538803 23673 sgd_solver.cpp:105] Iteration 372, lr = 0.0096401 +I0407 21:59:50.652194 23673 solver.cpp:218] Iteration 384 (2.34686 iter/s, 5.11322s/12 iters), loss = 5.08271 +I0407 21:59:50.652338 23673 solver.cpp:237] Train net output #0: loss = 5.08271 (* 1 = 5.08271 loss) +I0407 21:59:50.652351 23673 sgd_solver.cpp:105] Iteration 384, lr = 0.00962871 +I0407 21:59:55.752672 23673 solver.cpp:218] Iteration 396 (2.35287 iter/s, 5.10015s/12 iters), loss = 5.07951 +I0407 21:59:55.752727 23673 solver.cpp:237] Train net output #0: loss = 5.07951 (* 1 = 5.07951 loss) +I0407 21:59:55.752739 23673 sgd_solver.cpp:105] Iteration 396, lr = 0.00961733 +I0407 21:59:58.965939 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:00.397931 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 22:00:03.347818 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 22:00:05.633965 23673 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 22:00:05.633986 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:00:09.906111 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:10.109853 23673 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 22:00:10.109902 23673 solver.cpp:397] Test net output #1: loss = 5.09848 (* 1 = 5.09848 loss) +I0407 22:00:10.200992 23673 solver.cpp:218] Iteration 408 (0.830577 iter/s, 14.4478s/12 iters), loss = 5.17172 +I0407 22:00:10.201038 23673 solver.cpp:237] Train net output #0: loss = 5.17172 (* 1 = 5.17172 loss) +I0407 22:00:10.201048 23673 sgd_solver.cpp:105] Iteration 408, lr = 0.00960597 +I0407 22:00:14.508584 23673 solver.cpp:218] Iteration 420 (2.78591 iter/s, 4.30739s/12 iters), loss = 5.13016 +I0407 22:00:14.508628 23673 solver.cpp:237] Train net output #0: loss = 5.13016 (* 1 = 5.13016 loss) +I0407 22:00:14.508638 23673 sgd_solver.cpp:105] Iteration 420, lr = 0.00959461 +I0407 22:00:19.495308 23673 solver.cpp:218] Iteration 432 (2.4065 iter/s, 4.9865s/12 iters), loss = 5.13662 +I0407 22:00:19.495352 23673 solver.cpp:237] Train net output #0: loss = 5.13662 (* 1 = 5.13662 loss) +I0407 22:00:19.495362 23673 sgd_solver.cpp:105] Iteration 432, lr = 0.00958328 +I0407 22:00:24.520870 23673 solver.cpp:218] Iteration 444 (2.3879 iter/s, 5.02534s/12 iters), loss = 5.07287 +I0407 22:00:24.520959 23673 solver.cpp:237] Train net output #0: loss = 5.07287 (* 1 = 5.07287 loss) +I0407 22:00:24.520969 23673 sgd_solver.cpp:105] Iteration 444, lr = 0.00957195 +I0407 22:00:29.495390 23673 solver.cpp:218] Iteration 456 (2.41242 iter/s, 4.97425s/12 iters), loss = 5.09011 +I0407 22:00:29.495436 23673 solver.cpp:237] Train net output #0: loss = 5.09011 (* 1 = 5.09011 loss) +I0407 22:00:29.495445 23673 sgd_solver.cpp:105] Iteration 456, lr = 0.00956064 +I0407 22:00:34.518591 23673 solver.cpp:218] Iteration 468 (2.38902 iter/s, 5.02298s/12 iters), loss = 5.10187 +I0407 22:00:34.518636 23673 solver.cpp:237] Train net output #0: loss = 5.10187 (* 1 = 5.10187 loss) +I0407 22:00:34.518644 23673 sgd_solver.cpp:105] Iteration 468, lr = 0.00954934 +I0407 22:00:39.580722 23673 solver.cpp:218] Iteration 480 (2.37065 iter/s, 5.0619s/12 iters), loss = 5.02779 +I0407 22:00:39.580777 23673 solver.cpp:237] Train net output #0: loss = 5.02779 (* 1 = 5.02779 loss) +I0407 22:00:39.580790 23673 sgd_solver.cpp:105] Iteration 480, lr = 0.00953806 +I0407 22:00:44.598134 23673 solver.cpp:218] Iteration 492 (2.39178 iter/s, 5.01718s/12 iters), loss = 5.06634 +I0407 22:00:44.598191 23673 solver.cpp:237] Train net output #0: loss = 5.06634 (* 1 = 5.06634 loss) +I0407 22:00:44.598202 23673 sgd_solver.cpp:105] Iteration 492, lr = 0.00952679 +I0407 22:00:49.656487 23673 solver.cpp:218] Iteration 504 (2.37243 iter/s, 5.05811s/12 iters), loss = 5.0899 +I0407 22:00:49.656536 23673 solver.cpp:237] Train net output #0: loss = 5.0899 (* 1 = 5.0899 loss) +I0407 22:00:49.656549 23673 sgd_solver.cpp:105] Iteration 504, lr = 0.00951553 +I0407 22:00:49.903225 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:00:51.700913 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 22:00:57.322207 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 22:00:59.649554 23673 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 22:00:59.649581 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:01:03.908774 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:04.146924 23673 solver.cpp:397] Test net output #0: accuracy = 0.0177696 +I0407 22:01:04.146973 23673 solver.cpp:397] Test net output #1: loss = 5.03284 (* 1 = 5.03284 loss) +I0407 22:01:05.969785 23673 solver.cpp:218] Iteration 516 (0.735623 iter/s, 16.3127s/12 iters), loss = 5.00781 +I0407 22:01:05.969838 23673 solver.cpp:237] Train net output #0: loss = 5.00781 (* 1 = 5.00781 loss) +I0407 22:01:05.969851 23673 sgd_solver.cpp:105] Iteration 516, lr = 0.00950429 +I0407 22:01:11.025851 23673 solver.cpp:218] Iteration 528 (2.37349 iter/s, 5.05584s/12 iters), loss = 5.07707 +I0407 22:01:11.025895 23673 solver.cpp:237] Train net output #0: loss = 5.07707 (* 1 = 5.07707 loss) +I0407 22:01:11.025907 23673 sgd_solver.cpp:105] Iteration 528, lr = 0.00949306 +I0407 22:01:16.057947 23673 solver.cpp:218] Iteration 540 (2.3848 iter/s, 5.03188s/12 iters), loss = 5.03665 +I0407 22:01:16.058005 23673 solver.cpp:237] Train net output #0: loss = 5.03665 (* 1 = 5.03665 loss) +I0407 22:01:16.058013 23673 sgd_solver.cpp:105] Iteration 540, lr = 0.00948184 +I0407 22:01:21.099918 23673 solver.cpp:218] Iteration 552 (2.38013 iter/s, 5.04174s/12 iters), loss = 5.083 +I0407 22:01:21.099969 23673 solver.cpp:237] Train net output #0: loss = 5.083 (* 1 = 5.083 loss) +I0407 22:01:21.099982 23673 sgd_solver.cpp:105] Iteration 552, lr = 0.00947063 +I0407 22:01:26.324512 23673 solver.cpp:218] Iteration 564 (2.29693 iter/s, 5.22436s/12 iters), loss = 4.99145 +I0407 22:01:26.324560 23673 solver.cpp:237] Train net output #0: loss = 4.99145 (* 1 = 4.99145 loss) +I0407 22:01:26.324570 23673 sgd_solver.cpp:105] Iteration 564, lr = 0.00945944 +I0407 22:01:31.333266 23673 solver.cpp:218] Iteration 576 (2.39591 iter/s, 5.00853s/12 iters), loss = 4.97568 +I0407 22:01:31.333400 23673 solver.cpp:237] Train net output #0: loss = 4.97568 (* 1 = 4.97568 loss) +I0407 22:01:31.333417 23673 sgd_solver.cpp:105] Iteration 576, lr = 0.00944826 +I0407 22:01:36.246150 23673 solver.cpp:218] Iteration 588 (2.4427 iter/s, 4.91259s/12 iters), loss = 4.87745 +I0407 22:01:36.246191 23673 solver.cpp:237] Train net output #0: loss = 4.87745 (* 1 = 4.87745 loss) +I0407 22:01:36.246201 23673 sgd_solver.cpp:105] Iteration 588, lr = 0.0094371 +I0407 22:01:41.172363 23673 solver.cpp:218] Iteration 600 (2.43605 iter/s, 4.926s/12 iters), loss = 5.05832 +I0407 22:01:41.172411 23673 solver.cpp:237] Train net output #0: loss = 5.05832 (* 1 = 5.05832 loss) +I0407 22:01:41.172422 23673 sgd_solver.cpp:105] Iteration 600, lr = 0.00942595 +I0407 22:01:43.519995 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:45.740607 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 22:01:48.737026 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 22:01:51.066030 23673 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 22:01:51.066056 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:01:55.206990 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:01:55.492528 23673 solver.cpp:397] Test net output #0: accuracy = 0.0245098 +I0407 22:01:55.492578 23673 solver.cpp:397] Test net output #1: loss = 4.98713 (* 1 = 4.98713 loss) +I0407 22:01:55.583765 23673 solver.cpp:218] Iteration 612 (0.832705 iter/s, 14.4109s/12 iters), loss = 4.99757 +I0407 22:01:55.583817 23673 solver.cpp:237] Train net output #0: loss = 4.99757 (* 1 = 4.99757 loss) +I0407 22:01:55.583829 23673 sgd_solver.cpp:105] Iteration 612, lr = 0.00941481 +I0407 22:01:59.931967 23673 solver.cpp:218] Iteration 624 (2.75989 iter/s, 4.348s/12 iters), loss = 4.96052 +I0407 22:01:59.932019 23673 solver.cpp:237] Train net output #0: loss = 4.96052 (* 1 = 4.96052 loss) +I0407 22:01:59.932030 23673 sgd_solver.cpp:105] Iteration 624, lr = 0.00940368 +I0407 22:02:04.971573 23673 solver.cpp:218] Iteration 636 (2.38125 iter/s, 5.03938s/12 iters), loss = 4.82169 +I0407 22:02:04.971699 23673 solver.cpp:237] Train net output #0: loss = 4.82169 (* 1 = 4.82169 loss) +I0407 22:02:04.971714 23673 sgd_solver.cpp:105] Iteration 636, lr = 0.00939257 +I0407 22:02:09.963601 23673 solver.cpp:218] Iteration 648 (2.40398 iter/s, 4.99173s/12 iters), loss = 5.03702 +I0407 22:02:09.963654 23673 solver.cpp:237] Train net output #0: loss = 5.03702 (* 1 = 5.03702 loss) +I0407 22:02:09.963666 23673 sgd_solver.cpp:105] Iteration 648, lr = 0.00938147 +I0407 22:02:15.145054 23673 solver.cpp:218] Iteration 660 (2.31606 iter/s, 5.18122s/12 iters), loss = 4.93725 +I0407 22:02:15.145113 23673 solver.cpp:237] Train net output #0: loss = 4.93725 (* 1 = 4.93725 loss) +I0407 22:02:15.145128 23673 sgd_solver.cpp:105] Iteration 660, lr = 0.00937039 +I0407 22:02:20.131109 23673 solver.cpp:218] Iteration 672 (2.40683 iter/s, 4.98582s/12 iters), loss = 4.90497 +I0407 22:02:20.131160 23673 solver.cpp:237] Train net output #0: loss = 4.90497 (* 1 = 4.90497 loss) +I0407 22:02:20.131170 23673 sgd_solver.cpp:105] Iteration 672, lr = 0.00935931 +I0407 22:02:25.167201 23673 solver.cpp:218] Iteration 684 (2.38291 iter/s, 5.03586s/12 iters), loss = 4.77132 +I0407 22:02:25.167250 23673 solver.cpp:237] Train net output #0: loss = 4.77132 (* 1 = 4.77132 loss) +I0407 22:02:25.167260 23673 sgd_solver.cpp:105] Iteration 684, lr = 0.00934825 +I0407 22:02:25.977191 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:02:30.276525 23673 solver.cpp:218] Iteration 696 (2.34875 iter/s, 5.1091s/12 iters), loss = 4.90747 +I0407 22:02:30.276566 23673 solver.cpp:237] Train net output #0: loss = 4.90747 (* 1 = 4.90747 loss) +I0407 22:02:30.276577 23673 sgd_solver.cpp:105] Iteration 696, lr = 0.00933721 +I0407 22:02:34.958429 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:02:35.344980 23673 solver.cpp:218] Iteration 708 (2.36769 iter/s, 5.06824s/12 iters), loss = 4.93135 +I0407 22:02:35.345094 23673 solver.cpp:237] Train net output #0: loss = 4.93135 (* 1 = 4.93135 loss) +I0407 22:02:35.345108 23673 sgd_solver.cpp:105] Iteration 708, lr = 0.00932617 +I0407 22:02:37.390935 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 22:02:40.451826 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 22:02:42.766505 23673 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 22:02:42.766525 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:02:46.919201 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:02:47.239871 23673 solver.cpp:397] Test net output #0: accuracy = 0.03125 +I0407 22:02:47.239920 23673 solver.cpp:397] Test net output #1: loss = 4.91919 (* 1 = 4.91919 loss) +I0407 22:02:49.238842 23673 solver.cpp:218] Iteration 720 (0.863726 iter/s, 13.8933s/12 iters), loss = 4.89855 +I0407 22:02:49.238898 23673 solver.cpp:237] Train net output #0: loss = 4.89855 (* 1 = 4.89855 loss) +I0407 22:02:49.238909 23673 sgd_solver.cpp:105] Iteration 720, lr = 0.00931515 +I0407 22:02:54.586464 23673 solver.cpp:218] Iteration 732 (2.24409 iter/s, 5.34739s/12 iters), loss = 4.77419 +I0407 22:02:54.586503 23673 solver.cpp:237] Train net output #0: loss = 4.77419 (* 1 = 4.77419 loss) +I0407 22:02:54.586511 23673 sgd_solver.cpp:105] Iteration 732, lr = 0.00930415 +I0407 22:02:59.706064 23673 solver.cpp:218] Iteration 744 (2.34403 iter/s, 5.11938s/12 iters), loss = 4.89559 +I0407 22:02:59.706110 23673 solver.cpp:237] Train net output #0: loss = 4.89559 (* 1 = 4.89559 loss) +I0407 22:02:59.706120 23673 sgd_solver.cpp:105] Iteration 744, lr = 0.00929315 +I0407 22:03:04.711055 23673 solver.cpp:218] Iteration 756 (2.39771 iter/s, 5.00477s/12 iters), loss = 5.00385 +I0407 22:03:04.711103 23673 solver.cpp:237] Train net output #0: loss = 5.00385 (* 1 = 5.00385 loss) +I0407 22:03:04.711114 23673 sgd_solver.cpp:105] Iteration 756, lr = 0.00928217 +I0407 22:03:09.620085 23673 solver.cpp:218] Iteration 768 (2.44458 iter/s, 4.90881s/12 iters), loss = 4.8122 +I0407 22:03:09.620205 23673 solver.cpp:237] Train net output #0: loss = 4.8122 (* 1 = 4.8122 loss) +I0407 22:03:09.620218 23673 sgd_solver.cpp:105] Iteration 768, lr = 0.0092712 +I0407 22:03:14.618906 23673 solver.cpp:218] Iteration 780 (2.4007 iter/s, 4.99853s/12 iters), loss = 4.85319 +I0407 22:03:14.618948 23673 solver.cpp:237] Train net output #0: loss = 4.85319 (* 1 = 4.85319 loss) +I0407 22:03:14.618958 23673 sgd_solver.cpp:105] Iteration 780, lr = 0.00926025 +I0407 22:03:19.616230 23673 solver.cpp:218] Iteration 792 (2.40139 iter/s, 4.99711s/12 iters), loss = 4.62438 +I0407 22:03:19.616261 23673 solver.cpp:237] Train net output #0: loss = 4.62438 (* 1 = 4.62438 loss) +I0407 22:03:19.616271 23673 sgd_solver.cpp:105] Iteration 792, lr = 0.0092493 +I0407 22:03:24.677809 23673 solver.cpp:218] Iteration 804 (2.3709 iter/s, 5.06137s/12 iters), loss = 4.81705 +I0407 22:03:24.677855 23673 solver.cpp:237] Train net output #0: loss = 4.81705 (* 1 = 4.81705 loss) +I0407 22:03:24.677867 23673 sgd_solver.cpp:105] Iteration 804, lr = 0.00923837 +I0407 22:03:26.437096 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:03:29.231016 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 22:03:32.314083 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 22:03:34.629091 23673 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 22:03:34.629114 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:03:38.717520 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:03:39.073168 23673 solver.cpp:397] Test net output #0: accuracy = 0.03125 +I0407 22:03:39.073218 23673 solver.cpp:397] Test net output #1: loss = 4.81953 (* 1 = 4.81953 loss) +I0407 22:03:39.164633 23673 solver.cpp:218] Iteration 816 (0.828368 iter/s, 14.4863s/12 iters), loss = 4.90009 +I0407 22:03:39.164680 23673 solver.cpp:237] Train net output #0: loss = 4.90009 (* 1 = 4.90009 loss) +I0407 22:03:39.164691 23673 sgd_solver.cpp:105] Iteration 816, lr = 0.00922746 +I0407 22:03:43.565249 23673 solver.cpp:218] Iteration 828 (2.72702 iter/s, 4.40041s/12 iters), loss = 4.92229 +I0407 22:03:43.565359 23673 solver.cpp:237] Train net output #0: loss = 4.92229 (* 1 = 4.92229 loss) +I0407 22:03:43.565373 23673 sgd_solver.cpp:105] Iteration 828, lr = 0.00921655 +I0407 22:03:48.420486 23673 solver.cpp:218] Iteration 840 (2.4717 iter/s, 4.85497s/12 iters), loss = 4.68485 +I0407 22:03:48.420533 23673 solver.cpp:237] Train net output #0: loss = 4.68485 (* 1 = 4.68485 loss) +I0407 22:03:48.420545 23673 sgd_solver.cpp:105] Iteration 840, lr = 0.00920566 +I0407 22:03:53.401693 23673 solver.cpp:218] Iteration 852 (2.40916 iter/s, 4.98099s/12 iters), loss = 4.75053 +I0407 22:03:53.401748 23673 solver.cpp:237] Train net output #0: loss = 4.75053 (* 1 = 4.75053 loss) +I0407 22:03:53.401760 23673 sgd_solver.cpp:105] Iteration 852, lr = 0.00919478 +I0407 22:03:58.411015 23673 solver.cpp:218] Iteration 864 (2.39564 iter/s, 5.00909s/12 iters), loss = 4.73179 +I0407 22:03:58.411067 23673 solver.cpp:237] Train net output #0: loss = 4.73179 (* 1 = 4.73179 loss) +I0407 22:03:58.411078 23673 sgd_solver.cpp:105] Iteration 864, lr = 0.00918392 +I0407 22:04:03.690582 23673 solver.cpp:218] Iteration 876 (2.27301 iter/s, 5.27934s/12 iters), loss = 4.69752 +I0407 22:04:03.690631 23673 solver.cpp:237] Train net output #0: loss = 4.69752 (* 1 = 4.69752 loss) +I0407 22:04:03.690644 23673 sgd_solver.cpp:105] Iteration 876, lr = 0.00917307 +I0407 22:04:08.913000 23673 solver.cpp:218] Iteration 888 (2.29789 iter/s, 5.22219s/12 iters), loss = 4.60307 +I0407 22:04:08.913056 23673 solver.cpp:237] Train net output #0: loss = 4.60307 (* 1 = 4.60307 loss) +I0407 22:04:08.913069 23673 sgd_solver.cpp:105] Iteration 888, lr = 0.00916223 +I0407 22:04:14.099617 23673 solver.cpp:218] Iteration 900 (2.31375 iter/s, 5.18638s/12 iters), loss = 4.75401 +I0407 22:04:14.099792 23673 solver.cpp:237] Train net output #0: loss = 4.75401 (* 1 = 4.75401 loss) +I0407 22:04:14.099809 23673 sgd_solver.cpp:105] Iteration 900, lr = 0.0091514 +I0407 22:04:18.317723 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:04:19.474754 23673 solver.cpp:218] Iteration 912 (2.23264 iter/s, 5.37479s/12 iters), loss = 4.51286 +I0407 22:04:19.474790 23673 solver.cpp:237] Train net output #0: loss = 4.51286 (* 1 = 4.51286 loss) +I0407 22:04:19.474799 23673 sgd_solver.cpp:105] Iteration 912, lr = 0.00914059 +I0407 22:04:21.742367 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 22:04:24.696581 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 22:04:29.558840 23673 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 22:04:29.558866 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:04:33.758172 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:04:34.160044 23673 solver.cpp:397] Test net output #0: accuracy = 0.0294118 +I0407 22:04:34.160095 23673 solver.cpp:397] Test net output #1: loss = 4.80752 (* 1 = 4.80752 loss) +I0407 22:04:36.079795 23673 solver.cpp:218] Iteration 924 (0.722697 iter/s, 16.6045s/12 iters), loss = 4.72687 +I0407 22:04:36.079843 23673 solver.cpp:237] Train net output #0: loss = 4.72687 (* 1 = 4.72687 loss) +I0407 22:04:36.079855 23673 sgd_solver.cpp:105] Iteration 924, lr = 0.00912979 +I0407 22:04:41.066298 23673 solver.cpp:218] Iteration 936 (2.4066 iter/s, 4.98628s/12 iters), loss = 4.68527 +I0407 22:04:41.066352 23673 solver.cpp:237] Train net output #0: loss = 4.68527 (* 1 = 4.68527 loss) +I0407 22:04:41.066365 23673 sgd_solver.cpp:105] Iteration 936, lr = 0.009119 +I0407 22:04:46.143324 23673 solver.cpp:218] Iteration 948 (2.3637 iter/s, 5.0768s/12 iters), loss = 4.58337 +I0407 22:04:46.143473 23673 solver.cpp:237] Train net output #0: loss = 4.58337 (* 1 = 4.58337 loss) +I0407 22:04:46.143488 23673 sgd_solver.cpp:105] Iteration 948, lr = 0.00910822 +I0407 22:04:51.199252 23673 solver.cpp:218] Iteration 960 (2.3736 iter/s, 5.05561s/12 iters), loss = 4.5346 +I0407 22:04:51.199301 23673 solver.cpp:237] Train net output #0: loss = 4.5346 (* 1 = 4.5346 loss) +I0407 22:04:51.199313 23673 sgd_solver.cpp:105] Iteration 960, lr = 0.00909746 +I0407 22:04:56.289444 23673 solver.cpp:218] Iteration 972 (2.35758 iter/s, 5.08997s/12 iters), loss = 4.48475 +I0407 22:04:56.289492 23673 solver.cpp:237] Train net output #0: loss = 4.48475 (* 1 = 4.48475 loss) +I0407 22:04:56.289503 23673 sgd_solver.cpp:105] Iteration 972, lr = 0.00908671 +I0407 22:05:01.297835 23673 solver.cpp:218] Iteration 984 (2.39608 iter/s, 5.00817s/12 iters), loss = 4.30539 +I0407 22:05:01.297880 23673 solver.cpp:237] Train net output #0: loss = 4.30539 (* 1 = 4.30539 loss) +I0407 22:05:01.297891 23673 sgd_solver.cpp:105] Iteration 984, lr = 0.00907597 +I0407 22:05:06.468609 23673 solver.cpp:218] Iteration 996 (2.32083 iter/s, 5.17056s/12 iters), loss = 4.47152 +I0407 22:05:06.468644 23673 solver.cpp:237] Train net output #0: loss = 4.47152 (* 1 = 4.47152 loss) +I0407 22:05:06.468653 23673 sgd_solver.cpp:105] Iteration 996, lr = 0.00906525 +I0407 22:05:11.924449 23673 solver.cpp:218] Iteration 1008 (2.19957 iter/s, 5.45562s/12 iters), loss = 4.54033 +I0407 22:05:11.924491 23673 solver.cpp:237] Train net output #0: loss = 4.54033 (* 1 = 4.54033 loss) +I0407 22:05:11.924500 23673 sgd_solver.cpp:105] Iteration 1008, lr = 0.00905453 +I0407 22:05:13.066136 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:16.918043 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 22:05:21.500929 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 22:05:25.275084 23673 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 22:05:25.275102 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:05:29.211298 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:05:29.645314 23673 solver.cpp:397] Test net output #0: accuracy = 0.0582108 +I0407 22:05:29.645349 23673 solver.cpp:397] Test net output #1: loss = 4.54078 (* 1 = 4.54078 loss) +I0407 22:05:29.733922 23673 solver.cpp:218] Iteration 1020 (0.673822 iter/s, 17.8089s/12 iters), loss = 4.3574 +I0407 22:05:29.733978 23673 solver.cpp:237] Train net output #0: loss = 4.3574 (* 1 = 4.3574 loss) +I0407 22:05:29.733986 23673 sgd_solver.cpp:105] Iteration 1020, lr = 0.00904383 +I0407 22:05:34.023010 23673 solver.cpp:218] Iteration 1032 (2.79793 iter/s, 4.28888s/12 iters), loss = 4.44446 +I0407 22:05:34.023057 23673 solver.cpp:237] Train net output #0: loss = 4.44446 (* 1 = 4.44446 loss) +I0407 22:05:34.023068 23673 sgd_solver.cpp:105] Iteration 1032, lr = 0.00903315 +I0407 22:05:39.009115 23673 solver.cpp:218] Iteration 1044 (2.4068 iter/s, 4.98588s/12 iters), loss = 4.34081 +I0407 22:05:39.009160 23673 solver.cpp:237] Train net output #0: loss = 4.34081 (* 1 = 4.34081 loss) +I0407 22:05:39.009168 23673 sgd_solver.cpp:105] Iteration 1044, lr = 0.00902247 +I0407 22:05:44.008869 23673 solver.cpp:218] Iteration 1056 (2.40022 iter/s, 4.99954s/12 iters), loss = 4.49058 +I0407 22:05:44.008924 23673 solver.cpp:237] Train net output #0: loss = 4.49058 (* 1 = 4.49058 loss) +I0407 22:05:44.008936 23673 sgd_solver.cpp:105] Iteration 1056, lr = 0.00901181 +I0407 22:05:49.056615 23673 solver.cpp:218] Iteration 1068 (2.37741 iter/s, 5.04752s/12 iters), loss = 4.64789 +I0407 22:05:49.060887 23673 solver.cpp:237] Train net output #0: loss = 4.64789 (* 1 = 4.64789 loss) +I0407 22:05:49.060904 23673 sgd_solver.cpp:105] Iteration 1068, lr = 0.00900116 +I0407 22:05:54.087749 23673 solver.cpp:218] Iteration 1080 (2.38725 iter/s, 5.0267s/12 iters), loss = 4.3995 +I0407 22:05:54.087790 23673 solver.cpp:237] Train net output #0: loss = 4.3995 (* 1 = 4.3995 loss) +I0407 22:05:54.087798 23673 sgd_solver.cpp:105] Iteration 1080, lr = 0.00899053 +I0407 22:05:59.156257 23673 solver.cpp:218] Iteration 1092 (2.36766 iter/s, 5.0683s/12 iters), loss = 4.40228 +I0407 22:05:59.156297 23673 solver.cpp:237] Train net output #0: loss = 4.40228 (* 1 = 4.40228 loss) +I0407 22:05:59.156307 23673 sgd_solver.cpp:105] Iteration 1092, lr = 0.0089799 +I0407 22:06:04.235697 23673 solver.cpp:218] Iteration 1104 (2.36256 iter/s, 5.07923s/12 iters), loss = 4.36355 +I0407 22:06:04.235744 23673 solver.cpp:237] Train net output #0: loss = 4.36355 (* 1 = 4.36355 loss) +I0407 22:06:04.235756 23673 sgd_solver.cpp:105] Iteration 1104, lr = 0.00896929 +I0407 22:06:07.591742 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:06:09.482831 23673 solver.cpp:218] Iteration 1116 (2.28706 iter/s, 5.2469s/12 iters), loss = 4.37152 +I0407 22:06:09.482885 23673 solver.cpp:237] Train net output #0: loss = 4.37152 (* 1 = 4.37152 loss) +I0407 22:06:09.482897 23673 sgd_solver.cpp:105] Iteration 1116, lr = 0.00895869 +I0407 22:06:11.536376 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 22:06:14.604773 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 22:06:16.906592 23673 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 22:06:16.906611 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:06:20.902673 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:06:21.383416 23673 solver.cpp:397] Test net output #0: accuracy = 0.0631127 +I0407 22:06:21.383481 23673 solver.cpp:397] Test net output #1: loss = 4.42848 (* 1 = 4.42848 loss) +I0407 22:06:23.232192 23673 solver.cpp:218] Iteration 1128 (0.872799 iter/s, 13.7489s/12 iters), loss = 4.40529 +I0407 22:06:23.232239 23673 solver.cpp:237] Train net output #0: loss = 4.40529 (* 1 = 4.40529 loss) +I0407 22:06:23.232249 23673 sgd_solver.cpp:105] Iteration 1128, lr = 0.0089481 +I0407 22:06:28.349690 23673 solver.cpp:218] Iteration 1140 (2.345 iter/s, 5.11727s/12 iters), loss = 4.31024 +I0407 22:06:28.349742 23673 solver.cpp:237] Train net output #0: loss = 4.31024 (* 1 = 4.31024 loss) +I0407 22:06:28.349753 23673 sgd_solver.cpp:105] Iteration 1140, lr = 0.00893753 +I0407 22:06:33.657089 23673 solver.cpp:218] Iteration 1152 (2.26109 iter/s, 5.30717s/12 iters), loss = 4.1737 +I0407 22:06:33.657142 23673 solver.cpp:237] Train net output #0: loss = 4.1737 (* 1 = 4.1737 loss) +I0407 22:06:33.657153 23673 sgd_solver.cpp:105] Iteration 1152, lr = 0.00892697 +I0407 22:06:38.866791 23673 solver.cpp:218] Iteration 1164 (2.3035 iter/s, 5.20947s/12 iters), loss = 4.33327 +I0407 22:06:38.866830 23673 solver.cpp:237] Train net output #0: loss = 4.33327 (* 1 = 4.33327 loss) +I0407 22:06:38.866838 23673 sgd_solver.cpp:105] Iteration 1164, lr = 0.00891642 +I0407 22:06:43.989686 23673 solver.cpp:218] Iteration 1176 (2.34252 iter/s, 5.12268s/12 iters), loss = 4.31619 +I0407 22:06:43.989729 23673 solver.cpp:237] Train net output #0: loss = 4.31619 (* 1 = 4.31619 loss) +I0407 22:06:43.989738 23673 sgd_solver.cpp:105] Iteration 1176, lr = 0.00890588 +I0407 22:06:49.045915 23673 solver.cpp:218] Iteration 1188 (2.37341 iter/s, 5.05602s/12 iters), loss = 4.22972 +I0407 22:06:49.045970 23673 solver.cpp:237] Train net output #0: loss = 4.22972 (* 1 = 4.22972 loss) +I0407 22:06:49.045980 23673 sgd_solver.cpp:105] Iteration 1188, lr = 0.00889536 +I0407 22:06:54.215201 23673 solver.cpp:218] Iteration 1200 (2.32151 iter/s, 5.16906s/12 iters), loss = 4.44619 +I0407 22:06:54.215389 23673 solver.cpp:237] Train net output #0: loss = 4.44619 (* 1 = 4.44619 loss) +I0407 22:06:54.215402 23673 sgd_solver.cpp:105] Iteration 1200, lr = 0.00888485 +I0407 22:06:59.324811 23673 solver.cpp:218] Iteration 1212 (2.34868 iter/s, 5.10926s/12 iters), loss = 4.07184 +I0407 22:06:59.324847 23673 solver.cpp:237] Train net output #0: loss = 4.07184 (* 1 = 4.07184 loss) +I0407 22:06:59.324856 23673 sgd_solver.cpp:105] Iteration 1212, lr = 0.00887435 +I0407 22:06:59.602377 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:03.915834 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 22:07:09.021040 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 22:07:11.730304 23673 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 22:07:11.730329 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:07:15.708912 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:16.221175 23673 solver.cpp:397] Test net output #0: accuracy = 0.0827206 +I0407 22:07:16.221225 23673 solver.cpp:397] Test net output #1: loss = 4.36216 (* 1 = 4.36216 loss) +I0407 22:07:16.312711 23673 solver.cpp:218] Iteration 1224 (0.706409 iter/s, 16.9873s/12 iters), loss = 4.41684 +I0407 22:07:16.312757 23673 solver.cpp:237] Train net output #0: loss = 4.41684 (* 1 = 4.41684 loss) +I0407 22:07:16.312768 23673 sgd_solver.cpp:105] Iteration 1224, lr = 0.00886386 +I0407 22:07:20.569988 23673 solver.cpp:218] Iteration 1236 (2.81883 iter/s, 4.25709s/12 iters), loss = 4.23493 +I0407 22:07:20.570039 23673 solver.cpp:237] Train net output #0: loss = 4.23493 (* 1 = 4.23493 loss) +I0407 22:07:20.570050 23673 sgd_solver.cpp:105] Iteration 1236, lr = 0.00885339 +I0407 22:07:25.591588 23673 solver.cpp:218] Iteration 1248 (2.38978 iter/s, 5.02138s/12 iters), loss = 4.03193 +I0407 22:07:25.591714 23673 solver.cpp:237] Train net output #0: loss = 4.03193 (* 1 = 4.03193 loss) +I0407 22:07:25.591727 23673 sgd_solver.cpp:105] Iteration 1248, lr = 0.00884293 +I0407 22:07:30.639899 23673 solver.cpp:218] Iteration 1260 (2.37717 iter/s, 5.04802s/12 iters), loss = 4.15227 +I0407 22:07:30.639953 23673 solver.cpp:237] Train net output #0: loss = 4.15227 (* 1 = 4.15227 loss) +I0407 22:07:30.639966 23673 sgd_solver.cpp:105] Iteration 1260, lr = 0.00883248 +I0407 22:07:35.634824 23673 solver.cpp:218] Iteration 1272 (2.40255 iter/s, 4.9947s/12 iters), loss = 3.90676 +I0407 22:07:35.634876 23673 solver.cpp:237] Train net output #0: loss = 3.90676 (* 1 = 3.90676 loss) +I0407 22:07:35.634886 23673 sgd_solver.cpp:105] Iteration 1272, lr = 0.00882204 +I0407 22:07:40.633052 23673 solver.cpp:218] Iteration 1284 (2.40096 iter/s, 4.99801s/12 iters), loss = 4.07134 +I0407 22:07:40.633097 23673 solver.cpp:237] Train net output #0: loss = 4.07134 (* 1 = 4.07134 loss) +I0407 22:07:40.633108 23673 sgd_solver.cpp:105] Iteration 1284, lr = 0.00881162 +I0407 22:07:45.706708 23673 solver.cpp:218] Iteration 1296 (2.36526 iter/s, 5.07344s/12 iters), loss = 3.86791 +I0407 22:07:45.706763 23673 solver.cpp:237] Train net output #0: loss = 3.86791 (* 1 = 3.86791 loss) +I0407 22:07:45.706779 23673 sgd_solver.cpp:105] Iteration 1296, lr = 0.0088012 +I0407 22:07:51.038132 23673 solver.cpp:218] Iteration 1308 (2.2509 iter/s, 5.3312s/12 iters), loss = 3.98068 +I0407 22:07:51.038174 23673 solver.cpp:237] Train net output #0: loss = 3.98068 (* 1 = 3.98068 loss) +I0407 22:07:51.038184 23673 sgd_solver.cpp:105] Iteration 1308, lr = 0.0087908 +I0407 22:07:53.584787 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:07:56.034616 23673 solver.cpp:218] Iteration 1320 (2.40179 iter/s, 4.99627s/12 iters), loss = 3.95295 +I0407 22:07:56.034770 23673 solver.cpp:237] Train net output #0: loss = 3.95295 (* 1 = 3.95295 loss) +I0407 22:07:56.034785 23673 sgd_solver.cpp:105] Iteration 1320, lr = 0.00878042 +I0407 22:07:58.079277 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 22:08:02.254097 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 22:08:07.062549 23673 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 22:08:07.062577 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:08:11.045135 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:08:11.610291 23673 solver.cpp:397] Test net output #0: accuracy = 0.114583 +I0407 22:08:11.610342 23673 solver.cpp:397] Test net output #1: loss = 4.10392 (* 1 = 4.10392 loss) +I0407 22:08:13.412981 23673 solver.cpp:218] Iteration 1332 (0.690542 iter/s, 17.3777s/12 iters), loss = 3.84778 +I0407 22:08:13.413046 23673 solver.cpp:237] Train net output #0: loss = 3.84778 (* 1 = 3.84778 loss) +I0407 22:08:13.413058 23673 sgd_solver.cpp:105] Iteration 1332, lr = 0.00877004 +I0407 22:08:18.832835 23673 solver.cpp:218] Iteration 1344 (2.21418 iter/s, 5.41962s/12 iters), loss = 4.01944 +I0407 22:08:18.832870 23673 solver.cpp:237] Train net output #0: loss = 4.01944 (* 1 = 4.01944 loss) +I0407 22:08:18.832880 23673 sgd_solver.cpp:105] Iteration 1344, lr = 0.00875968 +I0407 22:08:24.099601 23673 solver.cpp:218] Iteration 1356 (2.27853 iter/s, 5.26655s/12 iters), loss = 4.02132 +I0407 22:08:24.099660 23673 solver.cpp:237] Train net output #0: loss = 4.02132 (* 1 = 4.02132 loss) +I0407 22:08:24.099675 23673 sgd_solver.cpp:105] Iteration 1356, lr = 0.00874932 +I0407 22:08:29.262571 23673 solver.cpp:218] Iteration 1368 (2.32435 iter/s, 5.16274s/12 iters), loss = 3.82388 +I0407 22:08:29.265668 23673 solver.cpp:237] Train net output #0: loss = 3.82388 (* 1 = 3.82388 loss) +I0407 22:08:29.265681 23673 sgd_solver.cpp:105] Iteration 1368, lr = 0.00873899 +I0407 22:08:30.484704 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:08:34.345319 23673 solver.cpp:218] Iteration 1380 (2.36245 iter/s, 5.07947s/12 iters), loss = 3.84068 +I0407 22:08:34.345367 23673 solver.cpp:237] Train net output #0: loss = 3.84068 (* 1 = 3.84068 loss) +I0407 22:08:34.345378 23673 sgd_solver.cpp:105] Iteration 1380, lr = 0.00872866 +I0407 22:08:39.438167 23673 solver.cpp:218] Iteration 1392 (2.35636 iter/s, 5.09261s/12 iters), loss = 3.92615 +I0407 22:08:39.438230 23673 solver.cpp:237] Train net output #0: loss = 3.92615 (* 1 = 3.92615 loss) +I0407 22:08:39.438242 23673 sgd_solver.cpp:105] Iteration 1392, lr = 0.00871835 +I0407 22:08:44.549154 23673 solver.cpp:218] Iteration 1404 (2.34799 iter/s, 5.11075s/12 iters), loss = 3.89455 +I0407 22:08:44.549211 23673 solver.cpp:237] Train net output #0: loss = 3.89455 (* 1 = 3.89455 loss) +I0407 22:08:44.549224 23673 sgd_solver.cpp:105] Iteration 1404, lr = 0.00870804 +I0407 22:08:49.436530 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:08:49.815369 23673 solver.cpp:218] Iteration 1416 (2.27878 iter/s, 5.26599s/12 iters), loss = 3.73814 +I0407 22:08:49.815418 23673 solver.cpp:237] Train net output #0: loss = 3.73814 (* 1 = 3.73814 loss) +I0407 22:08:49.815429 23673 sgd_solver.cpp:105] Iteration 1416, lr = 0.00869775 +I0407 22:08:54.821766 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 22:08:57.824978 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 22:09:00.145413 23673 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 22:09:00.145524 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:09:04.036437 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:04.627983 23673 solver.cpp:397] Test net output #0: accuracy = 0.11826 +I0407 22:09:04.628034 23673 solver.cpp:397] Test net output #1: loss = 3.95968 (* 1 = 3.95968 loss) +I0407 22:09:04.719767 23673 solver.cpp:218] Iteration 1428 (0.80516 iter/s, 14.9039s/12 iters), loss = 3.67194 +I0407 22:09:04.719820 23673 solver.cpp:237] Train net output #0: loss = 3.67194 (* 1 = 3.67194 loss) +I0407 22:09:04.719831 23673 sgd_solver.cpp:105] Iteration 1428, lr = 0.00868747 +I0407 22:09:09.177867 23673 solver.cpp:218] Iteration 1440 (2.69185 iter/s, 4.4579s/12 iters), loss = 3.86244 +I0407 22:09:09.177914 23673 solver.cpp:237] Train net output #0: loss = 3.86244 (* 1 = 3.86244 loss) +I0407 22:09:09.177925 23673 sgd_solver.cpp:105] Iteration 1440, lr = 0.00867721 +I0407 22:09:14.452765 23673 solver.cpp:218] Iteration 1452 (2.27502 iter/s, 5.27468s/12 iters), loss = 3.89432 +I0407 22:09:14.452806 23673 solver.cpp:237] Train net output #0: loss = 3.89432 (* 1 = 3.89432 loss) +I0407 22:09:14.452816 23673 sgd_solver.cpp:105] Iteration 1452, lr = 0.00866696 +I0407 22:09:19.686739 23673 solver.cpp:218] Iteration 1464 (2.29281 iter/s, 5.23375s/12 iters), loss = 3.77781 +I0407 22:09:19.686789 23673 solver.cpp:237] Train net output #0: loss = 3.77781 (* 1 = 3.77781 loss) +I0407 22:09:19.686800 23673 sgd_solver.cpp:105] Iteration 1464, lr = 0.00865671 +I0407 22:09:24.988958 23673 solver.cpp:218] Iteration 1476 (2.2633 iter/s, 5.30199s/12 iters), loss = 3.60105 +I0407 22:09:24.989006 23673 solver.cpp:237] Train net output #0: loss = 3.60105 (* 1 = 3.60105 loss) +I0407 22:09:24.989015 23673 sgd_solver.cpp:105] Iteration 1476, lr = 0.00864648 +I0407 22:09:30.273097 23673 solver.cpp:218] Iteration 1488 (2.27105 iter/s, 5.2839s/12 iters), loss = 3.78944 +I0407 22:09:30.273197 23673 solver.cpp:237] Train net output #0: loss = 3.78944 (* 1 = 3.78944 loss) +I0407 22:09:30.273211 23673 sgd_solver.cpp:105] Iteration 1488, lr = 0.00863627 +I0407 22:09:35.534519 23673 solver.cpp:218] Iteration 1500 (2.28087 iter/s, 5.26115s/12 iters), loss = 3.27436 +I0407 22:09:35.534569 23673 solver.cpp:237] Train net output #0: loss = 3.27436 (* 1 = 3.27436 loss) +I0407 22:09:35.534581 23673 sgd_solver.cpp:105] Iteration 1500, lr = 0.00862606 +I0407 22:09:40.664033 23673 solver.cpp:218] Iteration 1512 (2.33951 iter/s, 5.12929s/12 iters), loss = 3.60214 +I0407 22:09:40.664094 23673 solver.cpp:237] Train net output #0: loss = 3.60214 (* 1 = 3.60214 loss) +I0407 22:09:40.664106 23673 sgd_solver.cpp:105] Iteration 1512, lr = 0.00861587 +I0407 22:09:42.518558 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:45.833148 23673 solver.cpp:218] Iteration 1524 (2.32159 iter/s, 5.16888s/12 iters), loss = 3.51796 +I0407 22:09:45.833190 23673 solver.cpp:237] Train net output #0: loss = 3.51796 (* 1 = 3.51796 loss) +I0407 22:09:45.833201 23673 sgd_solver.cpp:105] Iteration 1524, lr = 0.00860569 +I0407 22:09:47.874891 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 22:09:51.711802 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 22:09:54.036870 23673 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 22:09:54.036895 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:09:57.828215 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:09:58.466341 23673 solver.cpp:397] Test net output #0: accuracy = 0.143995 +I0407 22:09:58.466392 23673 solver.cpp:397] Test net output #1: loss = 3.78794 (* 1 = 3.78794 loss) +I0407 22:10:00.446319 23673 solver.cpp:218] Iteration 1536 (0.821206 iter/s, 14.6127s/12 iters), loss = 3.40414 +I0407 22:10:00.446465 23673 solver.cpp:237] Train net output #0: loss = 3.40414 (* 1 = 3.40414 loss) +I0407 22:10:00.446478 23673 sgd_solver.cpp:105] Iteration 1536, lr = 0.00859552 +I0407 22:10:05.595360 23673 solver.cpp:218] Iteration 1548 (2.33067 iter/s, 5.14872s/12 iters), loss = 3.1715 +I0407 22:10:05.595408 23673 solver.cpp:237] Train net output #0: loss = 3.1715 (* 1 = 3.1715 loss) +I0407 22:10:05.595422 23673 sgd_solver.cpp:105] Iteration 1548, lr = 0.00858536 +I0407 22:10:10.690383 23673 solver.cpp:218] Iteration 1560 (2.35534 iter/s, 5.0948s/12 iters), loss = 3.55946 +I0407 22:10:10.690433 23673 solver.cpp:237] Train net output #0: loss = 3.55946 (* 1 = 3.55946 loss) +I0407 22:10:10.690444 23673 sgd_solver.cpp:105] Iteration 1560, lr = 0.00857522 +I0407 22:10:15.852505 23673 solver.cpp:218] Iteration 1572 (2.32473 iter/s, 5.1619s/12 iters), loss = 3.7873 +I0407 22:10:15.852558 23673 solver.cpp:237] Train net output #0: loss = 3.7873 (* 1 = 3.7873 loss) +I0407 22:10:15.852571 23673 sgd_solver.cpp:105] Iteration 1572, lr = 0.00856508 +I0407 22:10:20.913864 23673 solver.cpp:218] Iteration 1584 (2.37101 iter/s, 5.06113s/12 iters), loss = 3.51933 +I0407 22:10:20.913918 23673 solver.cpp:237] Train net output #0: loss = 3.51933 (* 1 = 3.51933 loss) +I0407 22:10:20.913930 23673 sgd_solver.cpp:105] Iteration 1584, lr = 0.00855496 +I0407 22:10:26.069773 23673 solver.cpp:218] Iteration 1596 (2.32753 iter/s, 5.15568s/12 iters), loss = 3.62207 +I0407 22:10:26.069828 23673 solver.cpp:237] Train net output #0: loss = 3.62207 (* 1 = 3.62207 loss) +I0407 22:10:26.069840 23673 sgd_solver.cpp:105] Iteration 1596, lr = 0.00854485 +I0407 22:10:31.171725 23673 solver.cpp:218] Iteration 1608 (2.35214 iter/s, 5.10173s/12 iters), loss = 3.37716 +I0407 22:10:31.171833 23673 solver.cpp:237] Train net output #0: loss = 3.37716 (* 1 = 3.37716 loss) +I0407 22:10:31.171845 23673 sgd_solver.cpp:105] Iteration 1608, lr = 0.00853476 +I0407 22:10:35.222003 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:10:36.345003 23673 solver.cpp:218] Iteration 1620 (2.31974 iter/s, 5.173s/12 iters), loss = 3.55597 +I0407 22:10:36.345062 23673 solver.cpp:237] Train net output #0: loss = 3.55597 (* 1 = 3.55597 loss) +I0407 22:10:36.345073 23673 sgd_solver.cpp:105] Iteration 1620, lr = 0.00852467 +I0407 22:10:41.020815 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 22:10:46.521113 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 22:10:48.830533 23673 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 22:10:48.830554 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:10:52.633893 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:10:53.306007 23673 solver.cpp:397] Test net output #0: accuracy = 0.129902 +I0407 22:10:53.306052 23673 solver.cpp:397] Test net output #1: loss = 3.84627 (* 1 = 3.84627 loss) +I0407 22:10:53.397253 23673 solver.cpp:218] Iteration 1632 (0.703744 iter/s, 17.0516s/12 iters), loss = 3.40244 +I0407 22:10:53.397305 23673 solver.cpp:237] Train net output #0: loss = 3.40244 (* 1 = 3.40244 loss) +I0407 22:10:53.397316 23673 sgd_solver.cpp:105] Iteration 1632, lr = 0.0085146 +I0407 22:10:57.981524 23673 solver.cpp:218] Iteration 1644 (2.61777 iter/s, 4.58406s/12 iters), loss = 3.59637 +I0407 22:10:57.981576 23673 solver.cpp:237] Train net output #0: loss = 3.59637 (* 1 = 3.59637 loss) +I0407 22:10:57.981588 23673 sgd_solver.cpp:105] Iteration 1644, lr = 0.00850454 +I0407 22:11:03.126242 23673 solver.cpp:218] Iteration 1656 (2.33259 iter/s, 5.14449s/12 iters), loss = 3.40473 +I0407 22:11:03.126370 23673 solver.cpp:237] Train net output #0: loss = 3.40473 (* 1 = 3.40473 loss) +I0407 22:11:03.126381 23673 sgd_solver.cpp:105] Iteration 1656, lr = 0.00849449 +I0407 22:11:08.201942 23673 solver.cpp:218] Iteration 1668 (2.36434 iter/s, 5.07541s/12 iters), loss = 3.10173 +I0407 22:11:08.201999 23673 solver.cpp:237] Train net output #0: loss = 3.10173 (* 1 = 3.10173 loss) +I0407 22:11:08.202008 23673 sgd_solver.cpp:105] Iteration 1668, lr = 0.00848445 +I0407 22:11:13.482067 23673 solver.cpp:218] Iteration 1680 (2.27278 iter/s, 5.27989s/12 iters), loss = 3.42093 +I0407 22:11:13.482111 23673 solver.cpp:237] Train net output #0: loss = 3.42093 (* 1 = 3.42093 loss) +I0407 22:11:13.482120 23673 sgd_solver.cpp:105] Iteration 1680, lr = 0.00847442 +I0407 22:11:18.620010 23673 solver.cpp:218] Iteration 1692 (2.33566 iter/s, 5.13773s/12 iters), loss = 3.35783 +I0407 22:11:18.620050 23673 solver.cpp:237] Train net output #0: loss = 3.35783 (* 1 = 3.35783 loss) +I0407 22:11:18.620060 23673 sgd_solver.cpp:105] Iteration 1692, lr = 0.00846441 +I0407 22:11:23.629979 23673 solver.cpp:218] Iteration 1704 (2.39533 iter/s, 5.00975s/12 iters), loss = 3.09615 +I0407 22:11:23.630023 23673 solver.cpp:237] Train net output #0: loss = 3.09615 (* 1 = 3.09615 loss) +I0407 22:11:23.630031 23673 sgd_solver.cpp:105] Iteration 1704, lr = 0.00845441 +I0407 22:11:28.730959 23673 solver.cpp:218] Iteration 1716 (2.35259 iter/s, 5.10076s/12 iters), loss = 3.31927 +I0407 22:11:28.731017 23673 solver.cpp:237] Train net output #0: loss = 3.31927 (* 1 = 3.31927 loss) +I0407 22:11:28.731029 23673 sgd_solver.cpp:105] Iteration 1716, lr = 0.00844442 +I0407 22:11:29.798019 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:11:33.788151 23673 solver.cpp:218] Iteration 1728 (2.37296 iter/s, 5.05697s/12 iters), loss = 3.24218 +I0407 22:11:33.788233 23673 solver.cpp:237] Train net output #0: loss = 3.24218 (* 1 = 3.24218 loss) +I0407 22:11:33.788247 23673 sgd_solver.cpp:105] Iteration 1728, lr = 0.00843444 +I0407 22:11:35.846745 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 22:11:45.130303 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 22:11:47.525425 23673 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 22:11:47.525447 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:11:51.370719 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:11:52.079021 23673 solver.cpp:397] Test net output #0: accuracy = 0.170343 +I0407 22:11:52.079066 23673 solver.cpp:397] Test net output #1: loss = 3.61265 (* 1 = 3.61265 loss) +I0407 22:11:54.057054 23673 solver.cpp:218] Iteration 1740 (0.592061 iter/s, 20.2682s/12 iters), loss = 3.14903 +I0407 22:11:54.057106 23673 solver.cpp:237] Train net output #0: loss = 3.14903 (* 1 = 3.14903 loss) +I0407 22:11:54.057116 23673 sgd_solver.cpp:105] Iteration 1740, lr = 0.00842447 +I0407 22:11:59.150133 23673 solver.cpp:218] Iteration 1752 (2.35624 iter/s, 5.09286s/12 iters), loss = 3.02479 +I0407 22:11:59.150180 23673 solver.cpp:237] Train net output #0: loss = 3.02479 (* 1 = 3.02479 loss) +I0407 22:11:59.150192 23673 sgd_solver.cpp:105] Iteration 1752, lr = 0.00841452 +I0407 22:12:04.353596 23673 solver.cpp:218] Iteration 1764 (2.30625 iter/s, 5.20324s/12 iters), loss = 3.29917 +I0407 22:12:04.353674 23673 solver.cpp:237] Train net output #0: loss = 3.29917 (* 1 = 3.29917 loss) +I0407 22:12:04.353686 23673 sgd_solver.cpp:105] Iteration 1764, lr = 0.00840457 +I0407 22:12:09.877313 23673 solver.cpp:218] Iteration 1776 (2.17255 iter/s, 5.52345s/12 iters), loss = 3.46472 +I0407 22:12:09.877363 23673 solver.cpp:237] Train net output #0: loss = 3.46472 (* 1 = 3.46472 loss) +I0407 22:12:09.877375 23673 sgd_solver.cpp:105] Iteration 1776, lr = 0.00839464 +I0407 22:12:15.085985 23673 solver.cpp:218] Iteration 1788 (2.30395 iter/s, 5.20845s/12 iters), loss = 3.28356 +I0407 22:12:15.086036 23673 solver.cpp:237] Train net output #0: loss = 3.28356 (* 1 = 3.28356 loss) +I0407 22:12:15.086048 23673 sgd_solver.cpp:105] Iteration 1788, lr = 0.00838472 +I0407 22:12:20.159348 23673 solver.cpp:218] Iteration 1800 (2.3654 iter/s, 5.07314s/12 iters), loss = 3.26223 +I0407 22:12:20.159401 23673 solver.cpp:237] Train net output #0: loss = 3.26223 (* 1 = 3.26223 loss) +I0407 22:12:20.159413 23673 sgd_solver.cpp:105] Iteration 1800, lr = 0.00837481 +I0407 22:12:25.245820 23673 solver.cpp:218] Iteration 1812 (2.3593 iter/s, 5.08625s/12 iters), loss = 3.14785 +I0407 22:12:25.245867 23673 solver.cpp:237] Train net output #0: loss = 3.14785 (* 1 = 3.14785 loss) +I0407 22:12:25.245877 23673 sgd_solver.cpp:105] Iteration 1812, lr = 0.00836492 +I0407 22:12:28.497313 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:12:30.273370 23673 solver.cpp:218] Iteration 1824 (2.38695 iter/s, 5.02734s/12 iters), loss = 3.11305 +I0407 22:12:30.273422 23673 solver.cpp:237] Train net output #0: loss = 3.11305 (* 1 = 3.11305 loss) +I0407 22:12:30.273437 23673 sgd_solver.cpp:105] Iteration 1824, lr = 0.00835503 +I0407 22:12:34.937638 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 22:12:39.356735 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 22:12:42.200219 23673 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 22:12:42.200242 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:12:45.921334 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:12:46.671835 23673 solver.cpp:397] Test net output #0: accuracy = 0.186275 +I0407 22:12:46.671885 23673 solver.cpp:397] Test net output #1: loss = 3.62662 (* 1 = 3.62662 loss) +I0407 22:12:46.763022 23673 solver.cpp:218] Iteration 1836 (0.727755 iter/s, 16.4891s/12 iters), loss = 3.21696 +I0407 22:12:46.763075 23673 solver.cpp:237] Train net output #0: loss = 3.21696 (* 1 = 3.21696 loss) +I0407 22:12:46.763087 23673 sgd_solver.cpp:105] Iteration 1836, lr = 0.00834516 +I0407 22:12:51.104022 23673 solver.cpp:218] Iteration 1848 (2.76447 iter/s, 4.3408s/12 iters), loss = 2.91917 +I0407 22:12:51.104066 23673 solver.cpp:237] Train net output #0: loss = 2.91917 (* 1 = 2.91917 loss) +I0407 22:12:51.104079 23673 sgd_solver.cpp:105] Iteration 1848, lr = 0.0083353 +I0407 22:12:56.182224 23673 solver.cpp:218] Iteration 1860 (2.36314 iter/s, 5.07798s/12 iters), loss = 3.11619 +I0407 22:12:56.182272 23673 solver.cpp:237] Train net output #0: loss = 3.11619 (* 1 = 3.11619 loss) +I0407 22:12:56.182286 23673 sgd_solver.cpp:105] Iteration 1860, lr = 0.00832545 +I0407 22:13:01.357868 23673 solver.cpp:218] Iteration 1872 (2.31865 iter/s, 5.17542s/12 iters), loss = 2.94947 +I0407 22:13:01.357923 23673 solver.cpp:237] Train net output #0: loss = 2.94947 (* 1 = 2.94947 loss) +I0407 22:13:01.357936 23673 sgd_solver.cpp:105] Iteration 1872, lr = 0.00831561 +I0407 22:13:06.511346 23673 solver.cpp:218] Iteration 1884 (2.32863 iter/s, 5.15325s/12 iters), loss = 3.19943 +I0407 22:13:06.511430 23673 solver.cpp:237] Train net output #0: loss = 3.19943 (* 1 = 3.19943 loss) +I0407 22:13:06.511443 23673 sgd_solver.cpp:105] Iteration 1884, lr = 0.00830578 +I0407 22:13:11.662509 23673 solver.cpp:218] Iteration 1896 (2.32969 iter/s, 5.1509s/12 iters), loss = 3.28377 +I0407 22:13:11.662562 23673 solver.cpp:237] Train net output #0: loss = 3.28377 (* 1 = 3.28377 loss) +I0407 22:13:11.662575 23673 sgd_solver.cpp:105] Iteration 1896, lr = 0.00829597 +I0407 22:13:16.833907 23673 solver.cpp:218] Iteration 1908 (2.32056 iter/s, 5.17117s/12 iters), loss = 2.97967 +I0407 22:13:16.833978 23673 solver.cpp:237] Train net output #0: loss = 2.97967 (* 1 = 2.97967 loss) +I0407 22:13:16.833992 23673 sgd_solver.cpp:105] Iteration 1908, lr = 0.00828617 +I0407 22:13:22.026257 23673 solver.cpp:218] Iteration 1920 (2.3112 iter/s, 5.19212s/12 iters), loss = 3.09817 +I0407 22:13:22.026307 23673 solver.cpp:237] Train net output #0: loss = 3.09817 (* 1 = 3.09817 loss) +I0407 22:13:22.026319 23673 sgd_solver.cpp:105] Iteration 1920, lr = 0.00827637 +I0407 22:13:22.347321 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:13:27.136258 23673 solver.cpp:218] Iteration 1932 (2.34844 iter/s, 5.10978s/12 iters), loss = 3.18618 +I0407 22:13:27.136310 23673 solver.cpp:237] Train net output #0: loss = 3.18618 (* 1 = 3.18618 loss) +I0407 22:13:27.136322 23673 sgd_solver.cpp:105] Iteration 1932, lr = 0.00826659 +I0407 22:13:29.248430 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 22:13:36.594502 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 22:13:39.042798 23673 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 22:13:39.042824 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:13:42.733100 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:13:43.520561 23673 solver.cpp:397] Test net output #0: accuracy = 0.204657 +I0407 22:13:43.520608 23673 solver.cpp:397] Test net output #1: loss = 3.495 (* 1 = 3.495 loss) +I0407 22:13:45.453001 23673 solver.cpp:218] Iteration 1944 (0.655161 iter/s, 18.3161s/12 iters), loss = 2.76734 +I0407 22:13:45.453043 23673 solver.cpp:237] Train net output #0: loss = 2.76734 (* 1 = 2.76734 loss) +I0407 22:13:45.453052 23673 sgd_solver.cpp:105] Iteration 1944, lr = 0.00825683 +I0407 22:13:50.745009 23673 solver.cpp:218] Iteration 1956 (2.26767 iter/s, 5.29178s/12 iters), loss = 2.83377 +I0407 22:13:50.745061 23673 solver.cpp:237] Train net output #0: loss = 2.83377 (* 1 = 2.83377 loss) +I0407 22:13:50.745074 23673 sgd_solver.cpp:105] Iteration 1956, lr = 0.00824707 +I0407 22:13:55.883762 23673 solver.cpp:218] Iteration 1968 (2.3353 iter/s, 5.13853s/12 iters), loss = 2.83272 +I0407 22:13:55.883810 23673 solver.cpp:237] Train net output #0: loss = 2.83272 (* 1 = 2.83272 loss) +I0407 22:13:55.883819 23673 sgd_solver.cpp:105] Iteration 1968, lr = 0.00823732 +I0407 22:14:01.395717 23673 solver.cpp:218] Iteration 1980 (2.17718 iter/s, 5.51172s/12 iters), loss = 2.9452 +I0407 22:14:01.395758 23673 solver.cpp:237] Train net output #0: loss = 2.9452 (* 1 = 2.9452 loss) +I0407 22:14:01.395767 23673 sgd_solver.cpp:105] Iteration 1980, lr = 0.00822759 +I0407 22:14:06.893167 23673 solver.cpp:218] Iteration 1992 (2.18292 iter/s, 5.49722s/12 iters), loss = 2.67579 +I0407 22:14:06.893246 23673 solver.cpp:237] Train net output #0: loss = 2.67579 (* 1 = 2.67579 loss) +I0407 22:14:06.893255 23673 sgd_solver.cpp:105] Iteration 1992, lr = 0.00821787 +I0407 22:14:11.945365 23673 solver.cpp:218] Iteration 2004 (2.37532 iter/s, 5.05194s/12 iters), loss = 2.46936 +I0407 22:14:11.945418 23673 solver.cpp:237] Train net output #0: loss = 2.46936 (* 1 = 2.46936 loss) +I0407 22:14:11.945430 23673 sgd_solver.cpp:105] Iteration 2004, lr = 0.00820816 +I0407 22:14:17.082609 23673 solver.cpp:218] Iteration 2016 (2.33599 iter/s, 5.13702s/12 iters), loss = 2.86115 +I0407 22:14:17.082653 23673 solver.cpp:237] Train net output #0: loss = 2.86115 (* 1 = 2.86115 loss) +I0407 22:14:17.082662 23673 sgd_solver.cpp:105] Iteration 2016, lr = 0.00819846 +I0407 22:14:19.702008 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:22.173983 23673 solver.cpp:218] Iteration 2028 (2.35703 iter/s, 5.09116s/12 iters), loss = 2.62497 +I0407 22:14:22.174021 23673 solver.cpp:237] Train net output #0: loss = 2.62497 (* 1 = 2.62497 loss) +I0407 22:14:22.174031 23673 sgd_solver.cpp:105] Iteration 2028, lr = 0.00818877 +I0407 22:14:26.803316 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 22:14:31.693454 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 22:14:34.019977 23673 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 22:14:34.020004 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:14:37.670058 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:14:38.500842 23673 solver.cpp:397] Test net output #0: accuracy = 0.226103 +I0407 22:14:38.500892 23673 solver.cpp:397] Test net output #1: loss = 3.36485 (* 1 = 3.36485 loss) +I0407 22:14:38.592597 23673 solver.cpp:218] Iteration 2040 (0.730903 iter/s, 16.418s/12 iters), loss = 2.95772 +I0407 22:14:38.592641 23673 solver.cpp:237] Train net output #0: loss = 2.95772 (* 1 = 2.95772 loss) +I0407 22:14:38.592653 23673 sgd_solver.cpp:105] Iteration 2040, lr = 0.00817909 +I0407 22:14:42.768543 23673 solver.cpp:218] Iteration 2052 (2.87373 iter/s, 4.17576s/12 iters), loss = 2.794 +I0407 22:14:42.768601 23673 solver.cpp:237] Train net output #0: loss = 2.794 (* 1 = 2.794 loss) +I0407 22:14:42.768616 23673 sgd_solver.cpp:105] Iteration 2052, lr = 0.00816943 +I0407 22:14:44.345557 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:14:47.708922 23673 solver.cpp:218] Iteration 2064 (2.42907 iter/s, 4.94015s/12 iters), loss = 2.86157 +I0407 22:14:47.708977 23673 solver.cpp:237] Train net output #0: loss = 2.86157 (* 1 = 2.86157 loss) +I0407 22:14:47.708992 23673 sgd_solver.cpp:105] Iteration 2064, lr = 0.00815977 +I0407 22:14:52.698560 23673 solver.cpp:218] Iteration 2076 (2.40509 iter/s, 4.98941s/12 iters), loss = 2.7559 +I0407 22:14:52.698611 23673 solver.cpp:237] Train net output #0: loss = 2.7559 (* 1 = 2.7559 loss) +I0407 22:14:52.698623 23673 sgd_solver.cpp:105] Iteration 2076, lr = 0.00815013 +I0407 22:14:57.775991 23673 solver.cpp:218] Iteration 2088 (2.3635 iter/s, 5.07721s/12 iters), loss = 3.00213 +I0407 22:14:57.776042 23673 solver.cpp:237] Train net output #0: loss = 3.00213 (* 1 = 3.00213 loss) +I0407 22:14:57.776054 23673 sgd_solver.cpp:105] Iteration 2088, lr = 0.0081405 +I0407 22:15:02.878194 23673 solver.cpp:218] Iteration 2100 (2.35203 iter/s, 5.10198s/12 iters), loss = 2.76666 +I0407 22:15:02.878239 23673 solver.cpp:237] Train net output #0: loss = 2.76666 (* 1 = 2.76666 loss) +I0407 22:15:02.878248 23673 sgd_solver.cpp:105] Iteration 2100, lr = 0.00813088 +I0407 22:15:08.150535 23673 solver.cpp:218] Iteration 2112 (2.27613 iter/s, 5.27212s/12 iters), loss = 2.96685 +I0407 22:15:08.150607 23673 solver.cpp:237] Train net output #0: loss = 2.96685 (* 1 = 2.96685 loss) +I0407 22:15:08.150617 23673 sgd_solver.cpp:105] Iteration 2112, lr = 0.00812127 +I0407 22:15:12.825068 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:15:13.140869 23673 solver.cpp:218] Iteration 2124 (2.40476 iter/s, 4.99009s/12 iters), loss = 2.60363 +I0407 22:15:13.140913 23673 solver.cpp:237] Train net output #0: loss = 2.60363 (* 1 = 2.60363 loss) +I0407 22:15:13.140923 23673 sgd_solver.cpp:105] Iteration 2124, lr = 0.00811168 +I0407 22:15:18.264346 23673 solver.cpp:218] Iteration 2136 (2.34226 iter/s, 5.12326s/12 iters), loss = 2.68822 +I0407 22:15:18.264398 23673 solver.cpp:237] Train net output #0: loss = 2.68822 (* 1 = 2.68822 loss) +I0407 22:15:18.264410 23673 sgd_solver.cpp:105] Iteration 2136, lr = 0.00810209 +I0407 22:15:20.335908 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 22:15:24.968070 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 22:15:27.312256 23673 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 22:15:27.312284 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:15:30.857630 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:15:31.725620 23673 solver.cpp:397] Test net output #0: accuracy = 0.252451 +I0407 22:15:31.725669 23673 solver.cpp:397] Test net output #1: loss = 3.21553 (* 1 = 3.21553 loss) +I0407 22:15:33.726979 23673 solver.cpp:218] Iteration 2148 (0.776092 iter/s, 15.4621s/12 iters), loss = 2.47292 +I0407 22:15:33.727027 23673 solver.cpp:237] Train net output #0: loss = 2.47292 (* 1 = 2.47292 loss) +I0407 22:15:33.727038 23673 sgd_solver.cpp:105] Iteration 2148, lr = 0.00809252 +I0407 22:15:39.136615 23673 solver.cpp:218] Iteration 2160 (2.21836 iter/s, 5.4094s/12 iters), loss = 2.85904 +I0407 22:15:39.136736 23673 solver.cpp:237] Train net output #0: loss = 2.85904 (* 1 = 2.85904 loss) +I0407 22:15:39.136750 23673 sgd_solver.cpp:105] Iteration 2160, lr = 0.00808295 +I0407 22:15:44.317795 23673 solver.cpp:218] Iteration 2172 (2.31621 iter/s, 5.18088s/12 iters), loss = 2.55976 +I0407 22:15:44.317850 23673 solver.cpp:237] Train net output #0: loss = 2.55976 (* 1 = 2.55976 loss) +I0407 22:15:44.317863 23673 sgd_solver.cpp:105] Iteration 2172, lr = 0.0080734 +I0407 22:15:49.508340 23673 solver.cpp:218] Iteration 2184 (2.312 iter/s, 5.19031s/12 iters), loss = 2.80627 +I0407 22:15:49.508399 23673 solver.cpp:237] Train net output #0: loss = 2.80627 (* 1 = 2.80627 loss) +I0407 22:15:49.508412 23673 sgd_solver.cpp:105] Iteration 2184, lr = 0.00806386 +I0407 22:15:55.008579 23673 solver.cpp:218] Iteration 2196 (2.18182 iter/s, 5.5s/12 iters), loss = 2.66681 +I0407 22:15:55.008618 23673 solver.cpp:237] Train net output #0: loss = 2.66681 (* 1 = 2.66681 loss) +I0407 22:15:55.008627 23673 sgd_solver.cpp:105] Iteration 2196, lr = 0.00805433 +I0407 22:16:00.357722 23673 solver.cpp:218] Iteration 2208 (2.24344 iter/s, 5.34892s/12 iters), loss = 2.502 +I0407 22:16:00.357774 23673 solver.cpp:237] Train net output #0: loss = 2.502 (* 1 = 2.502 loss) +I0407 22:16:00.357785 23673 sgd_solver.cpp:105] Iteration 2208, lr = 0.00804482 +I0407 22:16:05.530596 23673 solver.cpp:218] Iteration 2220 (2.3199 iter/s, 5.17265s/12 iters), loss = 2.36398 +I0407 22:16:05.530648 23673 solver.cpp:237] Train net output #0: loss = 2.36398 (* 1 = 2.36398 loss) +I0407 22:16:05.530658 23673 sgd_solver.cpp:105] Iteration 2220, lr = 0.00803531 +I0407 22:16:07.352185 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:10.638469 23673 solver.cpp:218] Iteration 2232 (2.34942 iter/s, 5.10764s/12 iters), loss = 2.63228 +I0407 22:16:10.655921 23673 solver.cpp:237] Train net output #0: loss = 2.63228 (* 1 = 2.63228 loss) +I0407 22:16:10.655936 23673 sgd_solver.cpp:105] Iteration 2232, lr = 0.00802581 +I0407 22:16:15.327852 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 22:16:20.013352 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 22:16:22.430148 23673 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 22:16:22.430179 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:16:26.046835 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:16:26.972385 23673 solver.cpp:397] Test net output #0: accuracy = 0.259804 +I0407 22:16:26.972421 23673 solver.cpp:397] Test net output #1: loss = 3.13007 (* 1 = 3.13007 loss) +I0407 22:16:27.063762 23673 solver.cpp:218] Iteration 2244 (0.731381 iter/s, 16.4073s/12 iters), loss = 2.60012 +I0407 22:16:27.063804 23673 solver.cpp:237] Train net output #0: loss = 2.60012 (* 1 = 2.60012 loss) +I0407 22:16:27.063814 23673 sgd_solver.cpp:105] Iteration 2244, lr = 0.00801633 +I0407 22:16:31.297441 23673 solver.cpp:218] Iteration 2256 (2.83454 iter/s, 4.23349s/12 iters), loss = 2.44962 +I0407 22:16:31.297484 23673 solver.cpp:237] Train net output #0: loss = 2.44962 (* 1 = 2.44962 loss) +I0407 22:16:31.297493 23673 sgd_solver.cpp:105] Iteration 2256, lr = 0.00800686 +I0407 22:16:36.300002 23673 solver.cpp:218] Iteration 2268 (2.39888 iter/s, 5.00234s/12 iters), loss = 2.50488 +I0407 22:16:36.300061 23673 solver.cpp:237] Train net output #0: loss = 2.50488 (* 1 = 2.50488 loss) +I0407 22:16:36.300076 23673 sgd_solver.cpp:105] Iteration 2268, lr = 0.0079974 +I0407 22:16:41.580446 23673 solver.cpp:218] Iteration 2280 (2.27264 iter/s, 5.28021s/12 iters), loss = 2.21417 +I0407 22:16:41.580554 23673 solver.cpp:237] Train net output #0: loss = 2.21417 (* 1 = 2.21417 loss) +I0407 22:16:41.580567 23673 sgd_solver.cpp:105] Iteration 2280, lr = 0.00798795 +I0407 22:16:47.102453 23673 solver.cpp:218] Iteration 2292 (2.17324 iter/s, 5.52172s/12 iters), loss = 2.41745 +I0407 22:16:47.102499 23673 solver.cpp:237] Train net output #0: loss = 2.41745 (* 1 = 2.41745 loss) +I0407 22:16:47.102509 23673 sgd_solver.cpp:105] Iteration 2292, lr = 0.00797851 +I0407 22:16:52.238560 23673 solver.cpp:218] Iteration 2304 (2.3365 iter/s, 5.13588s/12 iters), loss = 2.34782 +I0407 22:16:52.238608 23673 solver.cpp:237] Train net output #0: loss = 2.34782 (* 1 = 2.34782 loss) +I0407 22:16:52.238620 23673 sgd_solver.cpp:105] Iteration 2304, lr = 0.00796908 +I0407 22:16:57.456076 23673 solver.cpp:218] Iteration 2316 (2.30004 iter/s, 5.21729s/12 iters), loss = 2.46142 +I0407 22:16:57.456120 23673 solver.cpp:237] Train net output #0: loss = 2.46142 (* 1 = 2.46142 loss) +I0407 22:16:57.456130 23673 sgd_solver.cpp:105] Iteration 2316, lr = 0.00795966 +I0407 22:17:01.803594 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:17:02.963342 23673 solver.cpp:218] Iteration 2328 (2.17903 iter/s, 5.50703s/12 iters), loss = 2.25591 +I0407 22:17:02.963397 23673 solver.cpp:237] Train net output #0: loss = 2.25591 (* 1 = 2.25591 loss) +I0407 22:17:02.963409 23673 sgd_solver.cpp:105] Iteration 2328, lr = 0.00795026 +I0407 22:17:08.367202 23673 solver.cpp:218] Iteration 2340 (2.22073 iter/s, 5.40362s/12 iters), loss = 2.12586 +I0407 22:17:08.367256 23673 solver.cpp:237] Train net output #0: loss = 2.12586 (* 1 = 2.12586 loss) +I0407 22:17:08.367269 23673 sgd_solver.cpp:105] Iteration 2340, lr = 0.00794086 +I0407 22:17:10.551589 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 22:17:17.560112 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 22:17:20.679625 23673 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 22:17:20.679651 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:17:24.229388 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:17:25.245620 23673 solver.cpp:397] Test net output #0: accuracy = 0.284314 +I0407 22:17:25.245669 23673 solver.cpp:397] Test net output #1: loss = 3.06286 (* 1 = 3.06286 loss) +I0407 22:17:27.186507 23673 solver.cpp:218] Iteration 2352 (0.637665 iter/s, 18.8186s/12 iters), loss = 2.56837 +I0407 22:17:27.186558 23673 solver.cpp:237] Train net output #0: loss = 2.56837 (* 1 = 2.56837 loss) +I0407 22:17:27.186568 23673 sgd_solver.cpp:105] Iteration 2352, lr = 0.00793148 +I0407 22:17:32.229562 23673 solver.cpp:218] Iteration 2364 (2.37962 iter/s, 5.04283s/12 iters), loss = 2.37422 +I0407 22:17:32.229621 23673 solver.cpp:237] Train net output #0: loss = 2.37422 (* 1 = 2.37422 loss) +I0407 22:17:32.229633 23673 sgd_solver.cpp:105] Iteration 2364, lr = 0.00792211 +I0407 22:17:37.514521 23673 solver.cpp:218] Iteration 2376 (2.2707 iter/s, 5.28472s/12 iters), loss = 2.31007 +I0407 22:17:37.514576 23673 solver.cpp:237] Train net output #0: loss = 2.31007 (* 1 = 2.31007 loss) +I0407 22:17:37.514588 23673 sgd_solver.cpp:105] Iteration 2376, lr = 0.00791274 +I0407 22:17:42.562512 23673 solver.cpp:218] Iteration 2388 (2.37729 iter/s, 5.04777s/12 iters), loss = 2.47549 +I0407 22:17:42.562552 23673 solver.cpp:237] Train net output #0: loss = 2.47549 (* 1 = 2.47549 loss) +I0407 22:17:42.562561 23673 sgd_solver.cpp:105] Iteration 2388, lr = 0.00790339 +I0407 22:17:47.658535 23673 solver.cpp:218] Iteration 2400 (2.35488 iter/s, 5.09581s/12 iters), loss = 2.12602 +I0407 22:17:47.658845 23673 solver.cpp:237] Train net output #0: loss = 2.12602 (* 1 = 2.12602 loss) +I0407 22:17:47.658856 23673 sgd_solver.cpp:105] Iteration 2400, lr = 0.00789405 +I0407 22:17:52.710844 23673 solver.cpp:218] Iteration 2412 (2.37538 iter/s, 5.05183s/12 iters), loss = 2.17311 +I0407 22:17:52.710897 23673 solver.cpp:237] Train net output #0: loss = 2.17311 (* 1 = 2.17311 loss) +I0407 22:17:52.710909 23673 sgd_solver.cpp:105] Iteration 2412, lr = 0.00788473 +I0407 22:17:57.778069 23673 solver.cpp:218] Iteration 2424 (2.36827 iter/s, 5.067s/12 iters), loss = 2.59616 +I0407 22:17:57.778115 23673 solver.cpp:237] Train net output #0: loss = 2.59616 (* 1 = 2.59616 loss) +I0407 22:17:57.778127 23673 sgd_solver.cpp:105] Iteration 2424, lr = 0.00787541 +I0407 22:17:58.850898 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:02.835027 23673 solver.cpp:218] Iteration 2436 (2.37307 iter/s, 5.05674s/12 iters), loss = 2.28139 +I0407 22:18:02.835069 23673 solver.cpp:237] Train net output #0: loss = 2.28139 (* 1 = 2.28139 loss) +I0407 22:18:02.835080 23673 sgd_solver.cpp:105] Iteration 2436, lr = 0.0078661 +I0407 22:18:07.585827 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 22:18:10.932289 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 22:18:13.304824 23673 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 22:18:13.304849 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:18:16.798020 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:17.794304 23673 solver.cpp:397] Test net output #0: accuracy = 0.285539 +I0407 22:18:17.794414 23673 solver.cpp:397] Test net output #1: loss = 3.12738 (* 1 = 3.12738 loss) +I0407 22:18:17.885807 23673 solver.cpp:218] Iteration 2448 (0.797329 iter/s, 15.0503s/12 iters), loss = 2.27955 +I0407 22:18:17.885854 23673 solver.cpp:237] Train net output #0: loss = 2.27955 (* 1 = 2.27955 loss) +I0407 22:18:17.885864 23673 sgd_solver.cpp:105] Iteration 2448, lr = 0.00785681 +I0407 22:18:22.217820 23673 solver.cpp:218] Iteration 2460 (2.77021 iter/s, 4.33181s/12 iters), loss = 2.01722 +I0407 22:18:22.217876 23673 solver.cpp:237] Train net output #0: loss = 2.01722 (* 1 = 2.01722 loss) +I0407 22:18:22.217888 23673 sgd_solver.cpp:105] Iteration 2460, lr = 0.00784752 +I0407 22:18:27.325333 23673 solver.cpp:218] Iteration 2472 (2.34959 iter/s, 5.10728s/12 iters), loss = 2.34017 +I0407 22:18:27.325381 23673 solver.cpp:237] Train net output #0: loss = 2.34017 (* 1 = 2.34017 loss) +I0407 22:18:27.325392 23673 sgd_solver.cpp:105] Iteration 2472, lr = 0.00783825 +I0407 22:18:32.665055 23673 solver.cpp:218] Iteration 2484 (2.2474 iter/s, 5.33949s/12 iters), loss = 2.08265 +I0407 22:18:32.665109 23673 solver.cpp:237] Train net output #0: loss = 2.08265 (* 1 = 2.08265 loss) +I0407 22:18:32.665122 23673 sgd_solver.cpp:105] Iteration 2484, lr = 0.00782899 +I0407 22:18:37.728669 23673 solver.cpp:218] Iteration 2496 (2.36995 iter/s, 5.06339s/12 iters), loss = 2.40368 +I0407 22:18:37.728713 23673 solver.cpp:237] Train net output #0: loss = 2.40368 (* 1 = 2.40368 loss) +I0407 22:18:37.728724 23673 sgd_solver.cpp:105] Iteration 2496, lr = 0.00781974 +I0407 22:18:43.232964 23673 solver.cpp:218] Iteration 2508 (2.18021 iter/s, 5.50405s/12 iters), loss = 1.98511 +I0407 22:18:43.233029 23673 solver.cpp:237] Train net output #0: loss = 1.98511 (* 1 = 1.98511 loss) +I0407 22:18:43.233044 23673 sgd_solver.cpp:105] Iteration 2508, lr = 0.0078105 +I0407 22:18:48.737694 23673 solver.cpp:218] Iteration 2520 (2.18004 iter/s, 5.50448s/12 iters), loss = 1.96654 +I0407 22:18:48.737834 23673 solver.cpp:237] Train net output #0: loss = 1.96654 (* 1 = 1.96654 loss) +I0407 22:18:48.737848 23673 sgd_solver.cpp:105] Iteration 2520, lr = 0.00780127 +I0407 22:18:51.973524 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:18:53.792528 23673 solver.cpp:218] Iteration 2532 (2.37411 iter/s, 5.05452s/12 iters), loss = 2.40244 +I0407 22:18:53.792584 23673 solver.cpp:237] Train net output #0: loss = 2.40244 (* 1 = 2.40244 loss) +I0407 22:18:53.792596 23673 sgd_solver.cpp:105] Iteration 2532, lr = 0.00779205 +I0407 22:18:58.842181 23673 solver.cpp:218] Iteration 2544 (2.37651 iter/s, 5.04942s/12 iters), loss = 2.3547 +I0407 22:18:58.842231 23673 solver.cpp:237] Train net output #0: loss = 2.3547 (* 1 = 2.3547 loss) +I0407 22:18:58.842243 23673 sgd_solver.cpp:105] Iteration 2544, lr = 0.00778284 +I0407 22:19:01.006417 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 22:19:09.194352 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 22:19:12.377218 23673 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 22:19:12.377239 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:19:15.821352 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:19:16.943943 23673 solver.cpp:397] Test net output #0: accuracy = 0.284314 +I0407 22:19:16.943994 23673 solver.cpp:397] Test net output #1: loss = 3.13806 (* 1 = 3.13806 loss) +I0407 22:19:18.950093 23673 solver.cpp:218] Iteration 2556 (0.596801 iter/s, 20.1072s/12 iters), loss = 2.24839 +I0407 22:19:18.953747 23673 solver.cpp:237] Train net output #0: loss = 2.24839 (* 1 = 2.24839 loss) +I0407 22:19:18.953758 23673 sgd_solver.cpp:105] Iteration 2556, lr = 0.00777364 +I0407 22:19:24.153012 23673 solver.cpp:218] Iteration 2568 (2.3081 iter/s, 5.19909s/12 iters), loss = 1.89148 +I0407 22:19:24.153065 23673 solver.cpp:237] Train net output #0: loss = 1.89148 (* 1 = 1.89148 loss) +I0407 22:19:24.153077 23673 sgd_solver.cpp:105] Iteration 2568, lr = 0.00776446 +I0407 22:19:29.624913 23673 solver.cpp:218] Iteration 2580 (2.19312 iter/s, 5.47166s/12 iters), loss = 1.97796 +I0407 22:19:29.624963 23673 solver.cpp:237] Train net output #0: loss = 1.97796 (* 1 = 1.97796 loss) +I0407 22:19:29.624979 23673 sgd_solver.cpp:105] Iteration 2580, lr = 0.00775528 +I0407 22:19:34.661934 23673 solver.cpp:218] Iteration 2592 (2.38246 iter/s, 5.0368s/12 iters), loss = 2.31022 +I0407 22:19:34.661991 23673 solver.cpp:237] Train net output #0: loss = 2.31022 (* 1 = 2.31022 loss) +I0407 22:19:34.662003 23673 sgd_solver.cpp:105] Iteration 2592, lr = 0.00774612 +I0407 22:19:39.871570 23673 solver.cpp:218] Iteration 2604 (2.30353 iter/s, 5.2094s/12 iters), loss = 2.40099 +I0407 22:19:39.871620 23673 solver.cpp:237] Train net output #0: loss = 2.40099 (* 1 = 2.40099 loss) +I0407 22:19:39.871634 23673 sgd_solver.cpp:105] Iteration 2604, lr = 0.00773697 +I0407 22:19:45.404964 23673 solver.cpp:218] Iteration 2616 (2.16874 iter/s, 5.53315s/12 iters), loss = 2.31446 +I0407 22:19:45.405019 23673 solver.cpp:237] Train net output #0: loss = 2.31446 (* 1 = 2.31446 loss) +I0407 22:19:45.405030 23673 sgd_solver.cpp:105] Iteration 2616, lr = 0.00772782 +I0407 22:19:50.931871 23673 solver.cpp:218] Iteration 2628 (2.17129 iter/s, 5.52666s/12 iters), loss = 2.01284 +I0407 22:19:50.931999 23673 solver.cpp:237] Train net output #0: loss = 2.01284 (* 1 = 2.01284 loss) +I0407 22:19:50.932013 23673 sgd_solver.cpp:105] Iteration 2628, lr = 0.00771869 +I0407 22:19:51.422209 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:19:56.465459 23673 solver.cpp:218] Iteration 2640 (2.1687 iter/s, 5.53328s/12 iters), loss = 2.6192 +I0407 22:19:56.465503 23673 solver.cpp:237] Train net output #0: loss = 2.6192 (* 1 = 2.6192 loss) +I0407 22:19:56.465513 23673 sgd_solver.cpp:105] Iteration 2640, lr = 0.00770957 +I0407 22:20:01.461757 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 22:20:08.934579 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 22:20:11.715752 23673 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 22:20:11.715780 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:20:15.119843 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:20:16.180083 23673 solver.cpp:397] Test net output #0: accuracy = 0.292279 +I0407 22:20:16.180121 23673 solver.cpp:397] Test net output #1: loss = 3.08091 (* 1 = 3.08091 loss) +I0407 22:20:16.271553 23673 solver.cpp:218] Iteration 2652 (0.605895 iter/s, 19.8054s/12 iters), loss = 2.08969 +I0407 22:20:16.271602 23673 solver.cpp:237] Train net output #0: loss = 2.08969 (* 1 = 2.08969 loss) +I0407 22:20:16.271611 23673 sgd_solver.cpp:105] Iteration 2652, lr = 0.00770046 +I0407 22:20:20.500905 23673 solver.cpp:218] Iteration 2664 (2.83744 iter/s, 4.22916s/12 iters), loss = 2.28596 +I0407 22:20:20.500941 23673 solver.cpp:237] Train net output #0: loss = 2.28596 (* 1 = 2.28596 loss) +I0407 22:20:20.500949 23673 sgd_solver.cpp:105] Iteration 2664, lr = 0.00769136 +I0407 22:20:25.483335 23673 solver.cpp:218] Iteration 2676 (2.40857 iter/s, 4.98222s/12 iters), loss = 2.1419 +I0407 22:20:25.483484 23673 solver.cpp:237] Train net output #0: loss = 2.1419 (* 1 = 2.1419 loss) +I0407 22:20:25.483497 23673 sgd_solver.cpp:105] Iteration 2676, lr = 0.00768227 +I0407 22:20:30.525909 23673 solver.cpp:218] Iteration 2688 (2.37989 iter/s, 5.04225s/12 iters), loss = 1.98835 +I0407 22:20:30.525981 23673 solver.cpp:237] Train net output #0: loss = 1.98835 (* 1 = 1.98835 loss) +I0407 22:20:30.525995 23673 sgd_solver.cpp:105] Iteration 2688, lr = 0.00767319 +I0407 22:20:35.592653 23673 solver.cpp:218] Iteration 2700 (2.36849 iter/s, 5.06651s/12 iters), loss = 1.90642 +I0407 22:20:35.592708 23673 solver.cpp:237] Train net output #0: loss = 1.90642 (* 1 = 1.90642 loss) +I0407 22:20:35.592720 23673 sgd_solver.cpp:105] Iteration 2700, lr = 0.00766413 +I0407 22:20:40.603179 23673 solver.cpp:218] Iteration 2712 (2.39507 iter/s, 5.01029s/12 iters), loss = 1.65366 +I0407 22:20:40.603232 23673 solver.cpp:237] Train net output #0: loss = 1.65366 (* 1 = 1.65366 loss) +I0407 22:20:40.603245 23673 sgd_solver.cpp:105] Iteration 2712, lr = 0.00765507 +I0407 22:20:45.658640 23673 solver.cpp:218] Iteration 2724 (2.37378 iter/s, 5.05523s/12 iters), loss = 1.77608 +I0407 22:20:45.658695 23673 solver.cpp:237] Train net output #0: loss = 1.77608 (* 1 = 1.77608 loss) +I0407 22:20:45.658707 23673 sgd_solver.cpp:105] Iteration 2724, lr = 0.00764602 +I0407 22:20:48.281873 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:20:50.699247 23673 solver.cpp:218] Iteration 2736 (2.38077 iter/s, 5.04038s/12 iters), loss = 1.86153 +I0407 22:20:50.699297 23673 solver.cpp:237] Train net output #0: loss = 1.86153 (* 1 = 1.86153 loss) +I0407 22:20:50.699308 23673 sgd_solver.cpp:105] Iteration 2736, lr = 0.00763699 +I0407 22:20:55.734787 23673 solver.cpp:218] Iteration 2748 (2.38317 iter/s, 5.03531s/12 iters), loss = 2.09083 +I0407 22:20:55.734910 23673 solver.cpp:237] Train net output #0: loss = 2.09083 (* 1 = 2.09083 loss) +I0407 22:20:55.734923 23673 sgd_solver.cpp:105] Iteration 2748, lr = 0.00762796 +I0407 22:20:57.795639 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 22:21:02.759968 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 22:21:05.087728 23673 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 22:21:05.087754 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:21:08.201715 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:21:08.437824 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:09.545349 23673 solver.cpp:397] Test net output #0: accuracy = 0.283701 +I0407 22:21:09.545390 23673 solver.cpp:397] Test net output #1: loss = 3.06711 (* 1 = 3.06711 loss) +I0407 22:21:11.508666 23673 solver.cpp:218] Iteration 2760 (0.760782 iter/s, 15.7732s/12 iters), loss = 1.82121 +I0407 22:21:11.508723 23673 solver.cpp:237] Train net output #0: loss = 1.82121 (* 1 = 1.82121 loss) +I0407 22:21:11.508735 23673 sgd_solver.cpp:105] Iteration 2760, lr = 0.00761895 +I0407 22:21:16.613274 23673 solver.cpp:218] Iteration 2772 (2.35093 iter/s, 5.10437s/12 iters), loss = 2.25539 +I0407 22:21:16.613327 23673 solver.cpp:237] Train net output #0: loss = 2.25539 (* 1 = 2.25539 loss) +I0407 22:21:16.613338 23673 sgd_solver.cpp:105] Iteration 2772, lr = 0.00760995 +I0407 22:21:21.681020 23673 solver.cpp:218] Iteration 2784 (2.36802 iter/s, 5.06752s/12 iters), loss = 2.02282 +I0407 22:21:21.681073 23673 solver.cpp:237] Train net output #0: loss = 2.02282 (* 1 = 2.02282 loss) +I0407 22:21:21.681085 23673 sgd_solver.cpp:105] Iteration 2784, lr = 0.00760095 +I0407 22:21:26.741855 23673 solver.cpp:218] Iteration 2796 (2.37126 iter/s, 5.06061s/12 iters), loss = 2.06505 +I0407 22:21:26.742000 23673 solver.cpp:237] Train net output #0: loss = 2.06505 (* 1 = 2.06505 loss) +I0407 22:21:26.742013 23673 sgd_solver.cpp:105] Iteration 2796, lr = 0.00759197 +I0407 22:21:31.774524 23673 solver.cpp:218] Iteration 2808 (2.38457 iter/s, 5.03235s/12 iters), loss = 1.89639 +I0407 22:21:31.774582 23673 solver.cpp:237] Train net output #0: loss = 1.89639 (* 1 = 1.89639 loss) +I0407 22:21:31.774595 23673 sgd_solver.cpp:105] Iteration 2808, lr = 0.007583 +I0407 22:21:36.837996 23673 solver.cpp:218] Iteration 2820 (2.37002 iter/s, 5.06324s/12 iters), loss = 1.62236 +I0407 22:21:36.838049 23673 solver.cpp:237] Train net output #0: loss = 1.62236 (* 1 = 1.62236 loss) +I0407 22:21:36.838060 23673 sgd_solver.cpp:105] Iteration 2820, lr = 0.00757404 +I0407 22:21:41.976550 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:21:42.286388 23673 solver.cpp:218] Iteration 2832 (2.20258 iter/s, 5.44815s/12 iters), loss = 1.74672 +I0407 22:21:42.286443 23673 solver.cpp:237] Train net output #0: loss = 1.74672 (* 1 = 1.74672 loss) +I0407 22:21:42.286455 23673 sgd_solver.cpp:105] Iteration 2832, lr = 0.00756509 +I0407 22:21:47.493280 23673 solver.cpp:218] Iteration 2844 (2.30474 iter/s, 5.20666s/12 iters), loss = 1.91931 +I0407 22:21:47.493331 23673 solver.cpp:237] Train net output #0: loss = 1.91931 (* 1 = 1.91931 loss) +I0407 22:21:47.493343 23673 sgd_solver.cpp:105] Iteration 2844, lr = 0.00755615 +I0407 22:21:52.062184 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 22:21:56.923662 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 22:21:59.249097 23673 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 22:21:59.249123 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:22:02.537824 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:03.680668 23673 solver.cpp:397] Test net output #0: accuracy = 0.297181 +I0407 22:22:03.680716 23673 solver.cpp:397] Test net output #1: loss = 2.97826 (* 1 = 2.97826 loss) +I0407 22:22:03.772374 23673 solver.cpp:218] Iteration 2856 (0.737168 iter/s, 16.2785s/12 iters), loss = 1.8312 +I0407 22:22:03.772423 23673 solver.cpp:237] Train net output #0: loss = 1.8312 (* 1 = 1.8312 loss) +I0407 22:22:03.772435 23673 sgd_solver.cpp:105] Iteration 2856, lr = 0.00754722 +I0407 22:22:08.197705 23673 solver.cpp:218] Iteration 2868 (2.71178 iter/s, 4.42513s/12 iters), loss = 1.70884 +I0407 22:22:08.197742 23673 solver.cpp:237] Train net output #0: loss = 1.70884 (* 1 = 1.70884 loss) +I0407 22:22:08.197751 23673 sgd_solver.cpp:105] Iteration 2868, lr = 0.0075383 +I0407 22:22:13.303968 23673 solver.cpp:218] Iteration 2880 (2.35015 iter/s, 5.10605s/12 iters), loss = 1.62305 +I0407 22:22:13.304008 23673 solver.cpp:237] Train net output #0: loss = 1.62305 (* 1 = 1.62305 loss) +I0407 22:22:13.304016 23673 sgd_solver.cpp:105] Iteration 2880, lr = 0.0075294 +I0407 22:22:18.293992 23673 solver.cpp:218] Iteration 2892 (2.4049 iter/s, 4.98981s/12 iters), loss = 1.98865 +I0407 22:22:18.294039 23673 solver.cpp:237] Train net output #0: loss = 1.98865 (* 1 = 1.98865 loss) +I0407 22:22:18.294049 23673 sgd_solver.cpp:105] Iteration 2892, lr = 0.0075205 +I0407 22:22:23.383945 23673 solver.cpp:218] Iteration 2904 (2.35769 iter/s, 5.08973s/12 iters), loss = 1.66176 +I0407 22:22:23.383985 23673 solver.cpp:237] Train net output #0: loss = 1.66176 (* 1 = 1.66176 loss) +I0407 22:22:23.383994 23673 sgd_solver.cpp:105] Iteration 2904, lr = 0.00751161 +I0407 22:22:28.517309 23673 solver.cpp:218] Iteration 2916 (2.33775 iter/s, 5.13315s/12 iters), loss = 1.762 +I0407 22:22:28.517380 23673 solver.cpp:237] Train net output #0: loss = 1.762 (* 1 = 1.762 loss) +I0407 22:22:28.517390 23673 sgd_solver.cpp:105] Iteration 2916, lr = 0.00750274 +I0407 22:22:33.635454 23673 solver.cpp:218] Iteration 2928 (2.34471 iter/s, 5.1179s/12 iters), loss = 1.77419 +I0407 22:22:33.635499 23673 solver.cpp:237] Train net output #0: loss = 1.77419 (* 1 = 1.77419 loss) +I0407 22:22:33.635509 23673 sgd_solver.cpp:105] Iteration 2928, lr = 0.00749387 +I0407 22:22:35.545096 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:38.830840 23673 solver.cpp:218] Iteration 2940 (2.30984 iter/s, 5.19517s/12 iters), loss = 1.50095 +I0407 22:22:38.830883 23673 solver.cpp:237] Train net output #0: loss = 1.50095 (* 1 = 1.50095 loss) +I0407 22:22:38.830893 23673 sgd_solver.cpp:105] Iteration 2940, lr = 0.00748501 +I0407 22:22:43.915138 23673 solver.cpp:218] Iteration 2952 (2.36031 iter/s, 5.08408s/12 iters), loss = 1.906 +I0407 22:22:43.915191 23673 solver.cpp:237] Train net output #0: loss = 1.906 (* 1 = 1.906 loss) +I0407 22:22:43.915205 23673 sgd_solver.cpp:105] Iteration 2952, lr = 0.00747617 +I0407 22:22:46.097334 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 22:22:51.200815 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 22:22:53.527551 23673 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 22:22:53.527580 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:22:56.803936 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:22:57.992295 23673 solver.cpp:397] Test net output #0: accuracy = 0.335172 +I0407 22:22:57.992326 23673 solver.cpp:397] Test net output #1: loss = 2.89882 (* 1 = 2.89882 loss) +I0407 22:22:59.979199 23673 solver.cpp:218] Iteration 2964 (0.747036 iter/s, 16.0635s/12 iters), loss = 1.44791 +I0407 22:22:59.979321 23673 solver.cpp:237] Train net output #0: loss = 1.44791 (* 1 = 1.44791 loss) +I0407 22:22:59.979331 23673 sgd_solver.cpp:105] Iteration 2964, lr = 0.00746734 +I0407 22:23:05.287787 23673 solver.cpp:218] Iteration 2976 (2.26061 iter/s, 5.30829s/12 iters), loss = 1.63648 +I0407 22:23:05.287827 23673 solver.cpp:237] Train net output #0: loss = 1.63648 (* 1 = 1.63648 loss) +I0407 22:23:05.287837 23673 sgd_solver.cpp:105] Iteration 2976, lr = 0.00745851 +I0407 22:23:10.357185 23673 solver.cpp:218] Iteration 2988 (2.36724 iter/s, 5.06918s/12 iters), loss = 1.71525 +I0407 22:23:10.357232 23673 solver.cpp:237] Train net output #0: loss = 1.71525 (* 1 = 1.71525 loss) +I0407 22:23:10.357244 23673 sgd_solver.cpp:105] Iteration 2988, lr = 0.0074497 +I0407 22:23:15.471073 23673 solver.cpp:218] Iteration 3000 (2.34665 iter/s, 5.11366s/12 iters), loss = 1.90417 +I0407 22:23:15.471125 23673 solver.cpp:237] Train net output #0: loss = 1.90417 (* 1 = 1.90417 loss) +I0407 22:23:15.471139 23673 sgd_solver.cpp:105] Iteration 3000, lr = 0.00744089 +I0407 22:23:20.586282 23673 solver.cpp:218] Iteration 3012 (2.34605 iter/s, 5.11498s/12 iters), loss = 1.53533 +I0407 22:23:20.586338 23673 solver.cpp:237] Train net output #0: loss = 1.53533 (* 1 = 1.53533 loss) +I0407 22:23:20.586351 23673 sgd_solver.cpp:105] Iteration 3012, lr = 0.0074321 +I0407 22:23:25.669756 23673 solver.cpp:218] Iteration 3024 (2.3607 iter/s, 5.08324s/12 iters), loss = 1.57173 +I0407 22:23:25.669811 23673 solver.cpp:237] Train net output #0: loss = 1.57173 (* 1 = 1.57173 loss) +I0407 22:23:25.669823 23673 sgd_solver.cpp:105] Iteration 3024, lr = 0.00742332 +I0407 22:23:29.737737 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:30.753428 23673 solver.cpp:218] Iteration 3036 (2.36061 iter/s, 5.08344s/12 iters), loss = 1.53153 +I0407 22:23:30.753540 23673 solver.cpp:237] Train net output #0: loss = 1.53153 (* 1 = 1.53153 loss) +I0407 22:23:30.753553 23673 sgd_solver.cpp:105] Iteration 3036, lr = 0.00741455 +I0407 22:23:35.835132 23673 solver.cpp:218] Iteration 3048 (2.36154 iter/s, 5.08142s/12 iters), loss = 1.88705 +I0407 22:23:35.835180 23673 solver.cpp:237] Train net output #0: loss = 1.88705 (* 1 = 1.88705 loss) +I0407 22:23:35.835192 23673 sgd_solver.cpp:105] Iteration 3048, lr = 0.00740579 +I0407 22:23:40.734092 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 22:23:45.241933 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 22:23:50.163646 23673 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 22:23:50.163673 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:23:53.419903 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:54.642875 23673 solver.cpp:397] Test net output #0: accuracy = 0.314338 +I0407 22:23:54.642917 23673 solver.cpp:397] Test net output #1: loss = 3.02528 (* 1 = 3.02528 loss) +I0407 22:23:54.734294 23673 solver.cpp:218] Iteration 3060 (0.634971 iter/s, 18.8985s/12 iters), loss = 1.74523 +I0407 22:23:54.734352 23673 solver.cpp:237] Train net output #0: loss = 1.74523 (* 1 = 1.74523 loss) +I0407 22:23:54.734364 23673 sgd_solver.cpp:105] Iteration 3060, lr = 0.00739703 +I0407 22:23:59.178925 23673 solver.cpp:218] Iteration 3072 (2.70002 iter/s, 4.44441s/12 iters), loss = 1.71137 +I0407 22:23:59.178982 23673 solver.cpp:237] Train net output #0: loss = 1.71137 (* 1 = 1.71137 loss) +I0407 22:23:59.178997 23673 sgd_solver.cpp:105] Iteration 3072, lr = 0.00738829 +I0407 22:24:04.513705 23673 solver.cpp:218] Iteration 3084 (2.24949 iter/s, 5.33453s/12 iters), loss = 1.68953 +I0407 22:24:04.513833 23673 solver.cpp:237] Train net output #0: loss = 1.68953 (* 1 = 1.68953 loss) +I0407 22:24:04.513844 23673 sgd_solver.cpp:105] Iteration 3084, lr = 0.00737956 +I0407 22:24:09.543498 23673 solver.cpp:218] Iteration 3096 (2.38592 iter/s, 5.0295s/12 iters), loss = 1.73892 +I0407 22:24:09.543546 23673 solver.cpp:237] Train net output #0: loss = 1.73892 (* 1 = 1.73892 loss) +I0407 22:24:09.543555 23673 sgd_solver.cpp:105] Iteration 3096, lr = 0.00737084 +I0407 22:24:14.609349 23673 solver.cpp:218] Iteration 3108 (2.36891 iter/s, 5.06563s/12 iters), loss = 1.74452 +I0407 22:24:14.609390 23673 solver.cpp:237] Train net output #0: loss = 1.74452 (* 1 = 1.74452 loss) +I0407 22:24:14.609400 23673 sgd_solver.cpp:105] Iteration 3108, lr = 0.00736213 +I0407 22:24:19.727365 23673 solver.cpp:218] Iteration 3120 (2.34476 iter/s, 5.1178s/12 iters), loss = 1.42196 +I0407 22:24:19.727404 23673 solver.cpp:237] Train net output #0: loss = 1.42196 (* 1 = 1.42196 loss) +I0407 22:24:19.727413 23673 sgd_solver.cpp:105] Iteration 3120, lr = 0.00735343 +I0407 22:24:25.064255 23673 solver.cpp:218] Iteration 3132 (2.24859 iter/s, 5.33667s/12 iters), loss = 1.69879 +I0407 22:24:25.064306 23673 solver.cpp:237] Train net output #0: loss = 1.69879 (* 1 = 1.69879 loss) +I0407 22:24:25.064316 23673 sgd_solver.cpp:105] Iteration 3132, lr = 0.00734474 +I0407 22:24:26.191352 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:30.234233 23673 solver.cpp:218] Iteration 3144 (2.32119 iter/s, 5.16975s/12 iters), loss = 1.47621 +I0407 22:24:30.234282 23673 solver.cpp:237] Train net output #0: loss = 1.47621 (* 1 = 1.47621 loss) +I0407 22:24:30.234295 23673 sgd_solver.cpp:105] Iteration 3144, lr = 0.00733606 +I0407 22:24:35.407177 23673 solver.cpp:218] Iteration 3156 (2.31986 iter/s, 5.17272s/12 iters), loss = 1.95945 +I0407 22:24:35.407289 23673 solver.cpp:237] Train net output #0: loss = 1.95945 (* 1 = 1.95945 loss) +I0407 22:24:35.407301 23673 sgd_solver.cpp:105] Iteration 3156, lr = 0.0073274 +I0407 22:24:37.474335 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 22:24:43.270203 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 22:24:51.736855 23673 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 22:24:51.736883 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:24:54.895615 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:56.168380 23673 solver.cpp:397] Test net output #0: accuracy = 0.324142 +I0407 22:24:56.168416 23673 solver.cpp:397] Test net output #1: loss = 3.03066 (* 1 = 3.03066 loss) +I0407 22:24:58.271333 23673 solver.cpp:218] Iteration 3168 (0.524858 iter/s, 22.8633s/12 iters), loss = 1.28666 +I0407 22:24:58.271378 23673 solver.cpp:237] Train net output #0: loss = 1.28666 (* 1 = 1.28666 loss) +I0407 22:24:58.271386 23673 sgd_solver.cpp:105] Iteration 3168, lr = 0.00731874 +I0407 22:25:03.464493 23673 solver.cpp:218] Iteration 3180 (2.31083 iter/s, 5.19293s/12 iters), loss = 1.29858 +I0407 22:25:03.464550 23673 solver.cpp:237] Train net output #0: loss = 1.29858 (* 1 = 1.29858 loss) +I0407 22:25:03.464563 23673 sgd_solver.cpp:105] Iteration 3180, lr = 0.00731009 +I0407 22:25:08.501834 23673 solver.cpp:218] Iteration 3192 (2.38232 iter/s, 5.03711s/12 iters), loss = 1.88738 +I0407 22:25:08.501992 23673 solver.cpp:237] Train net output #0: loss = 1.88738 (* 1 = 1.88738 loss) +I0407 22:25:08.502007 23673 sgd_solver.cpp:105] Iteration 3192, lr = 0.00730145 +I0407 22:25:13.594415 23673 solver.cpp:218] Iteration 3204 (2.35652 iter/s, 5.09225s/12 iters), loss = 1.55279 +I0407 22:25:13.594463 23673 solver.cpp:237] Train net output #0: loss = 1.55279 (* 1 = 1.55279 loss) +I0407 22:25:13.594475 23673 sgd_solver.cpp:105] Iteration 3204, lr = 0.00729282 +I0407 22:25:18.717530 23673 solver.cpp:218] Iteration 3216 (2.34243 iter/s, 5.12289s/12 iters), loss = 1.39978 +I0407 22:25:18.717582 23673 solver.cpp:237] Train net output #0: loss = 1.39978 (* 1 = 1.39978 loss) +I0407 22:25:18.717597 23673 sgd_solver.cpp:105] Iteration 3216, lr = 0.0072842 +I0407 22:25:23.943738 23673 solver.cpp:218] Iteration 3228 (2.29623 iter/s, 5.22596s/12 iters), loss = 1.32041 +I0407 22:25:23.943797 23673 solver.cpp:237] Train net output #0: loss = 1.32041 (* 1 = 1.32041 loss) +I0407 22:25:23.943809 23673 sgd_solver.cpp:105] Iteration 3228, lr = 0.0072756 +I0407 22:25:27.193194 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:28.955416 23673 solver.cpp:218] Iteration 3240 (2.39452 iter/s, 5.01145s/12 iters), loss = 1.52058 +I0407 22:25:28.955466 23673 solver.cpp:237] Train net output #0: loss = 1.52058 (* 1 = 1.52058 loss) +I0407 22:25:28.955479 23673 sgd_solver.cpp:105] Iteration 3240, lr = 0.007267 +I0407 22:25:34.238332 23673 solver.cpp:218] Iteration 3252 (2.27157 iter/s, 5.28268s/12 iters), loss = 1.54464 +I0407 22:25:34.238379 23673 solver.cpp:237] Train net output #0: loss = 1.54464 (* 1 = 1.54464 loss) +I0407 22:25:34.238390 23673 sgd_solver.cpp:105] Iteration 3252, lr = 0.00725841 +I0407 22:25:39.261132 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 22:25:50.122423 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 22:25:57.761286 23673 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 22:25:57.761315 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:26:00.925315 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:02.228812 23673 solver.cpp:397] Test net output #0: accuracy = 0.308211 +I0407 22:26:02.228861 23673 solver.cpp:397] Test net output #1: loss = 3.10076 (* 1 = 3.10076 loss) +I0407 22:26:02.320463 23673 solver.cpp:218] Iteration 3264 (0.427332 iter/s, 28.0812s/12 iters), loss = 1.50905 +I0407 22:26:02.320509 23673 solver.cpp:237] Train net output #0: loss = 1.50905 (* 1 = 1.50905 loss) +I0407 22:26:02.320520 23673 sgd_solver.cpp:105] Iteration 3264, lr = 0.00724984 +I0407 22:26:06.884003 23673 solver.cpp:218] Iteration 3276 (2.62966 iter/s, 4.56333s/12 iters), loss = 1.78439 +I0407 22:26:06.884058 23673 solver.cpp:237] Train net output #0: loss = 1.78439 (* 1 = 1.78439 loss) +I0407 22:26:06.884071 23673 sgd_solver.cpp:105] Iteration 3276, lr = 0.00724127 +I0407 22:26:11.919028 23673 solver.cpp:218] Iteration 3288 (2.38341 iter/s, 5.03479s/12 iters), loss = 1.7721 +I0407 22:26:11.919121 23673 solver.cpp:237] Train net output #0: loss = 1.7721 (* 1 = 1.7721 loss) +I0407 22:26:11.919134 23673 sgd_solver.cpp:105] Iteration 3288, lr = 0.00723271 +I0407 22:26:16.969942 23673 solver.cpp:218] Iteration 3300 (2.37593 iter/s, 5.05065s/12 iters), loss = 1.30094 +I0407 22:26:16.970011 23673 solver.cpp:237] Train net output #0: loss = 1.30094 (* 1 = 1.30094 loss) +I0407 22:26:16.970023 23673 sgd_solver.cpp:105] Iteration 3300, lr = 0.00722417 +I0407 22:26:22.152477 23673 solver.cpp:218] Iteration 3312 (2.31558 iter/s, 5.18229s/12 iters), loss = 1.56297 +I0407 22:26:22.152519 23673 solver.cpp:237] Train net output #0: loss = 1.56297 (* 1 = 1.56297 loss) +I0407 22:26:22.152530 23673 sgd_solver.cpp:105] Iteration 3312, lr = 0.00721563 +I0407 22:26:27.122016 23673 solver.cpp:218] Iteration 3324 (2.41481 iter/s, 4.96933s/12 iters), loss = 1.16414 +I0407 22:26:27.122063 23673 solver.cpp:237] Train net output #0: loss = 1.16414 (* 1 = 1.16414 loss) +I0407 22:26:27.122076 23673 sgd_solver.cpp:105] Iteration 3324, lr = 0.0072071 +I0407 22:26:32.164459 23673 solver.cpp:218] Iteration 3336 (2.3799 iter/s, 5.04222s/12 iters), loss = 1.50422 +I0407 22:26:32.164513 23673 solver.cpp:237] Train net output #0: loss = 1.50422 (* 1 = 1.50422 loss) +I0407 22:26:32.164525 23673 sgd_solver.cpp:105] Iteration 3336, lr = 0.00719859 +I0407 22:26:32.640929 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:37.148229 23673 solver.cpp:218] Iteration 3348 (2.40793 iter/s, 4.98354s/12 iters), loss = 1.65238 +I0407 22:26:37.148284 23673 solver.cpp:237] Train net output #0: loss = 1.65238 (* 1 = 1.65238 loss) +I0407 22:26:37.148296 23673 sgd_solver.cpp:105] Iteration 3348, lr = 0.00719008 +I0407 22:26:42.284114 23673 solver.cpp:218] Iteration 3360 (2.3366 iter/s, 5.13566s/12 iters), loss = 1.58698 +I0407 22:26:42.284394 23673 solver.cpp:237] Train net output #0: loss = 1.58698 (* 1 = 1.58698 loss) +I0407 22:26:42.284406 23673 sgd_solver.cpp:105] Iteration 3360, lr = 0.00718158 +I0407 22:26:44.535082 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 22:26:51.705760 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 22:26:57.389045 23673 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 22:26:57.389070 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:27:00.489647 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:01.826937 23673 solver.cpp:397] Test net output #0: accuracy = 0.297181 +I0407 22:27:01.826987 23673 solver.cpp:397] Test net output #1: loss = 3.11607 (* 1 = 3.11607 loss) +I0407 22:27:03.727018 23673 solver.cpp:218] Iteration 3372 (0.559651 iter/s, 21.4419s/12 iters), loss = 1.45104 +I0407 22:27:03.727089 23673 solver.cpp:237] Train net output #0: loss = 1.45104 (* 1 = 1.45104 loss) +I0407 22:27:03.727104 23673 sgd_solver.cpp:105] Iteration 3372, lr = 0.0071731 +I0407 22:27:08.828014 23673 solver.cpp:218] Iteration 3384 (2.3526 iter/s, 5.10075s/12 iters), loss = 1.46973 +I0407 22:27:08.828078 23673 solver.cpp:237] Train net output #0: loss = 1.46973 (* 1 = 1.46973 loss) +I0407 22:27:08.828090 23673 sgd_solver.cpp:105] Iteration 3384, lr = 0.00716462 +I0407 22:27:13.974488 23673 solver.cpp:218] Iteration 3396 (2.3318 iter/s, 5.14624s/12 iters), loss = 1.73515 +I0407 22:27:13.974575 23673 solver.cpp:237] Train net output #0: loss = 1.73515 (* 1 = 1.73515 loss) +I0407 22:27:13.974587 23673 sgd_solver.cpp:105] Iteration 3396, lr = 0.00715615 +I0407 22:27:19.032661 23673 solver.cpp:218] Iteration 3408 (2.37252 iter/s, 5.05791s/12 iters), loss = 1.53298 +I0407 22:27:19.032717 23673 solver.cpp:237] Train net output #0: loss = 1.53298 (* 1 = 1.53298 loss) +I0407 22:27:19.032728 23673 sgd_solver.cpp:105] Iteration 3408, lr = 0.0071477 +I0407 22:27:24.168543 23673 solver.cpp:218] Iteration 3420 (2.33661 iter/s, 5.13565s/12 iters), loss = 1.12671 +I0407 22:27:24.168592 23673 solver.cpp:237] Train net output #0: loss = 1.12671 (* 1 = 1.12671 loss) +I0407 22:27:24.168604 23673 sgd_solver.cpp:105] Iteration 3420, lr = 0.00713925 +I0407 22:27:29.180366 23673 solver.cpp:218] Iteration 3432 (2.39445 iter/s, 5.0116s/12 iters), loss = 1.38235 +I0407 22:27:29.180418 23673 solver.cpp:237] Train net output #0: loss = 1.38235 (* 1 = 1.38235 loss) +I0407 22:27:29.180431 23673 sgd_solver.cpp:105] Iteration 3432, lr = 0.00713082 +I0407 22:27:31.834270 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:34.246888 23673 solver.cpp:218] Iteration 3444 (2.36859 iter/s, 5.0663s/12 iters), loss = 1.12519 +I0407 22:27:34.246937 23673 solver.cpp:237] Train net output #0: loss = 1.12519 (* 1 = 1.12519 loss) +I0407 22:27:34.246948 23673 sgd_solver.cpp:105] Iteration 3444, lr = 0.00712239 +I0407 22:27:39.351212 23673 solver.cpp:218] Iteration 3456 (2.35105 iter/s, 5.1041s/12 iters), loss = 1.21929 +I0407 22:27:39.351259 23673 solver.cpp:237] Train net output #0: loss = 1.21929 (* 1 = 1.21929 loss) +I0407 22:27:39.351271 23673 sgd_solver.cpp:105] Iteration 3456, lr = 0.00711397 +I0407 22:27:44.046818 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 22:27:50.278908 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 22:27:58.870927 23673 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 22:27:58.870955 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:27:59.301970 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:28:01.910111 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:03.295233 23673 solver.cpp:397] Test net output #0: accuracy = 0.313726 +I0407 22:28:03.295280 23673 solver.cpp:397] Test net output #1: loss = 2.95018 (* 1 = 2.95018 loss) +I0407 22:28:03.383574 23673 solver.cpp:218] Iteration 3468 (0.499344 iter/s, 24.0315s/12 iters), loss = 1.43592 +I0407 22:28:03.383625 23673 solver.cpp:237] Train net output #0: loss = 1.43592 (* 1 = 1.43592 loss) +I0407 22:28:03.383637 23673 sgd_solver.cpp:105] Iteration 3468, lr = 0.00710557 +I0407 22:28:07.518774 23673 solver.cpp:218] Iteration 3480 (2.90205 iter/s, 4.135s/12 iters), loss = 1.21484 +I0407 22:28:07.518826 23673 solver.cpp:237] Train net output #0: loss = 1.21484 (* 1 = 1.21484 loss) +I0407 22:28:07.518838 23673 sgd_solver.cpp:105] Iteration 3480, lr = 0.00709717 +I0407 22:28:12.592893 23673 solver.cpp:218] Iteration 3492 (2.36505 iter/s, 5.0739s/12 iters), loss = 1.41319 +I0407 22:28:12.592941 23673 solver.cpp:237] Train net output #0: loss = 1.41319 (* 1 = 1.41319 loss) +I0407 22:28:12.592952 23673 sgd_solver.cpp:105] Iteration 3492, lr = 0.00708878 +I0407 22:28:17.690248 23673 solver.cpp:218] Iteration 3504 (2.35426 iter/s, 5.09713s/12 iters), loss = 1.30981 +I0407 22:28:17.690366 23673 solver.cpp:237] Train net output #0: loss = 1.30981 (* 1 = 1.30981 loss) +I0407 22:28:17.690380 23673 sgd_solver.cpp:105] Iteration 3504, lr = 0.00708041 +I0407 22:28:22.785055 23673 solver.cpp:218] Iteration 3516 (2.35547 iter/s, 5.09452s/12 iters), loss = 1.05286 +I0407 22:28:22.785107 23673 solver.cpp:237] Train net output #0: loss = 1.05286 (* 1 = 1.05286 loss) +I0407 22:28:22.785120 23673 sgd_solver.cpp:105] Iteration 3516, lr = 0.00707204 +I0407 22:28:27.870843 23673 solver.cpp:218] Iteration 3528 (2.35962 iter/s, 5.08556s/12 iters), loss = 1.32253 +I0407 22:28:27.870898 23673 solver.cpp:237] Train net output #0: loss = 1.32253 (* 1 = 1.32253 loss) +I0407 22:28:27.870909 23673 sgd_solver.cpp:105] Iteration 3528, lr = 0.00706368 +I0407 22:28:32.745085 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:33.017040 23673 solver.cpp:218] Iteration 3540 (2.33192 iter/s, 5.14597s/12 iters), loss = 1.1432 +I0407 22:28:33.017087 23673 solver.cpp:237] Train net output #0: loss = 1.1432 (* 1 = 1.1432 loss) +I0407 22:28:33.017100 23673 sgd_solver.cpp:105] Iteration 3540, lr = 0.00705534 +I0407 22:28:38.101790 23673 solver.cpp:218] Iteration 3552 (2.3601 iter/s, 5.08452s/12 iters), loss = 1.4571 +I0407 22:28:38.101850 23673 solver.cpp:237] Train net output #0: loss = 1.4571 (* 1 = 1.4571 loss) +I0407 22:28:38.101867 23673 sgd_solver.cpp:105] Iteration 3552, lr = 0.007047 +I0407 22:28:43.240396 23673 solver.cpp:218] Iteration 3564 (2.33537 iter/s, 5.13837s/12 iters), loss = 1.41141 +I0407 22:28:43.240453 23673 solver.cpp:237] Train net output #0: loss = 1.41141 (* 1 = 1.41141 loss) +I0407 22:28:43.240468 23673 sgd_solver.cpp:105] Iteration 3564, lr = 0.00703867 +I0407 22:28:45.350138 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 22:28:54.496280 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 22:28:58.668875 23673 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 22:28:58.668898 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:29:01.714972 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:03.130367 23673 solver.cpp:397] Test net output #0: accuracy = 0.324755 +I0407 22:29:03.130417 23673 solver.cpp:397] Test net output #1: loss = 3.0171 (* 1 = 3.0171 loss) +I0407 22:29:04.947080 23673 solver.cpp:218] Iteration 3576 (0.552844 iter/s, 21.7059s/12 iters), loss = 1.44788 +I0407 22:29:04.947127 23673 solver.cpp:237] Train net output #0: loss = 1.44788 (* 1 = 1.44788 loss) +I0407 22:29:04.947139 23673 sgd_solver.cpp:105] Iteration 3576, lr = 0.00703035 +I0407 22:29:10.005990 23673 solver.cpp:218] Iteration 3588 (2.37216 iter/s, 5.05869s/12 iters), loss = 1.28184 +I0407 22:29:10.006040 23673 solver.cpp:237] Train net output #0: loss = 1.28184 (* 1 = 1.28184 loss) +I0407 22:29:10.006053 23673 sgd_solver.cpp:105] Iteration 3588, lr = 0.00702205 +I0407 22:29:14.967839 23673 solver.cpp:218] Iteration 3600 (2.41856 iter/s, 4.96163s/12 iters), loss = 1.24944 +I0407 22:29:14.967883 23673 solver.cpp:237] Train net output #0: loss = 1.24944 (* 1 = 1.24944 loss) +I0407 22:29:14.967893 23673 sgd_solver.cpp:105] Iteration 3600, lr = 0.00701375 +I0407 22:29:19.919575 23673 solver.cpp:218] Iteration 3612 (2.42349 iter/s, 4.95153s/12 iters), loss = 1.22555 +I0407 22:29:19.919607 23673 solver.cpp:237] Train net output #0: loss = 1.22555 (* 1 = 1.22555 loss) +I0407 22:29:19.919616 23673 sgd_solver.cpp:105] Iteration 3612, lr = 0.00700546 +I0407 22:29:24.854028 23673 solver.cpp:218] Iteration 3624 (2.43198 iter/s, 4.93425s/12 iters), loss = 1.44958 +I0407 22:29:24.854147 23673 solver.cpp:237] Train net output #0: loss = 1.44958 (* 1 = 1.44958 loss) +I0407 22:29:24.854161 23673 sgd_solver.cpp:105] Iteration 3624, lr = 0.00699718 +I0407 22:29:29.808537 23673 solver.cpp:218] Iteration 3636 (2.42218 iter/s, 4.95422s/12 iters), loss = 1.40502 +I0407 22:29:29.808584 23673 solver.cpp:237] Train net output #0: loss = 1.40502 (* 1 = 1.40502 loss) +I0407 22:29:29.808598 23673 sgd_solver.cpp:105] Iteration 3636, lr = 0.00698891 +I0407 22:29:31.911983 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:35.109280 23673 solver.cpp:218] Iteration 3648 (2.26393 iter/s, 5.30052s/12 iters), loss = 1.02085 +I0407 22:29:35.109326 23673 solver.cpp:237] Train net output #0: loss = 1.02085 (* 1 = 1.02085 loss) +I0407 22:29:35.109338 23673 sgd_solver.cpp:105] Iteration 3648, lr = 0.00698066 +I0407 22:29:40.090135 23673 solver.cpp:218] Iteration 3660 (2.40933 iter/s, 4.98063s/12 iters), loss = 1.0423 +I0407 22:29:40.090191 23673 solver.cpp:237] Train net output #0: loss = 1.0423 (* 1 = 1.0423 loss) +I0407 22:29:40.090204 23673 sgd_solver.cpp:105] Iteration 3660, lr = 0.00697241 +I0407 22:29:44.982239 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 22:29:49.981377 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 22:29:54.080184 23673 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 22:29:54.080209 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:29:57.424962 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:58.947571 23673 solver.cpp:397] Test net output #0: accuracy = 0.309436 +I0407 22:29:58.947619 23673 solver.cpp:397] Test net output #1: loss = 3.09424 (* 1 = 3.09424 loss) +I0407 22:29:59.038970 23673 solver.cpp:218] Iteration 3672 (0.633307 iter/s, 18.9482s/12 iters), loss = 1.01447 +I0407 22:29:59.039026 23673 solver.cpp:237] Train net output #0: loss = 1.01447 (* 1 = 1.01447 loss) +I0407 22:29:59.039036 23673 sgd_solver.cpp:105] Iteration 3672, lr = 0.00696417 +I0407 22:30:03.216612 23673 solver.cpp:218] Iteration 3684 (2.87257 iter/s, 4.17744s/12 iters), loss = 1.28516 +I0407 22:30:03.216666 23673 solver.cpp:237] Train net output #0: loss = 1.28516 (* 1 = 1.28516 loss) +I0407 22:30:03.216681 23673 sgd_solver.cpp:105] Iteration 3684, lr = 0.00695594 +I0407 22:30:08.228610 23673 solver.cpp:218] Iteration 3696 (2.39436 iter/s, 5.01177s/12 iters), loss = 1.21135 +I0407 22:30:08.228669 23673 solver.cpp:237] Train net output #0: loss = 1.21135 (* 1 = 1.21135 loss) +I0407 22:30:08.228682 23673 sgd_solver.cpp:105] Iteration 3696, lr = 0.00694772 +I0407 22:30:13.341711 23673 solver.cpp:218] Iteration 3708 (2.34702 iter/s, 5.11287s/12 iters), loss = 1.10377 +I0407 22:30:13.341768 23673 solver.cpp:237] Train net output #0: loss = 1.10377 (* 1 = 1.10377 loss) +I0407 22:30:13.341779 23673 sgd_solver.cpp:105] Iteration 3708, lr = 0.00693951 +I0407 22:30:18.449503 23673 solver.cpp:218] Iteration 3720 (2.34946 iter/s, 5.10756s/12 iters), loss = 1.32872 +I0407 22:30:18.449544 23673 solver.cpp:237] Train net output #0: loss = 1.32872 (* 1 = 1.32872 loss) +I0407 22:30:18.449553 23673 sgd_solver.cpp:105] Iteration 3720, lr = 0.00693131 +I0407 22:30:23.547030 23673 solver.cpp:218] Iteration 3732 (2.35418 iter/s, 5.09731s/12 iters), loss = 1.11069 +I0407 22:30:23.547078 23673 solver.cpp:237] Train net output #0: loss = 1.11069 (* 1 = 1.11069 loss) +I0407 22:30:23.547087 23673 sgd_solver.cpp:105] Iteration 3732, lr = 0.00692312 +I0407 22:30:27.643797 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:28.671375 23673 solver.cpp:218] Iteration 3744 (2.34187 iter/s, 5.12412s/12 iters), loss = 0.945905 +I0407 22:30:28.671428 23673 solver.cpp:237] Train net output #0: loss = 0.945905 (* 1 = 0.945905 loss) +I0407 22:30:28.671442 23673 sgd_solver.cpp:105] Iteration 3744, lr = 0.00691494 +I0407 22:30:33.859812 23673 solver.cpp:218] Iteration 3756 (2.31294 iter/s, 5.18821s/12 iters), loss = 1.04121 +I0407 22:30:33.859848 23673 solver.cpp:237] Train net output #0: loss = 1.04121 (* 1 = 1.04121 loss) +I0407 22:30:33.859856 23673 sgd_solver.cpp:105] Iteration 3756, lr = 0.00690677 +I0407 22:30:39.020581 23673 solver.cpp:218] Iteration 3768 (2.32533 iter/s, 5.16055s/12 iters), loss = 1.123 +I0407 22:30:39.020625 23673 solver.cpp:237] Train net output #0: loss = 1.123 (* 1 = 1.123 loss) +I0407 22:30:39.020635 23673 sgd_solver.cpp:105] Iteration 3768, lr = 0.0068986 +I0407 22:30:41.088694 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 22:30:45.387542 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 22:30:54.888326 23673 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 22:30:54.888355 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:30:58.001636 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:59.550994 23673 solver.cpp:397] Test net output #0: accuracy = 0.328431 +I0407 22:30:59.551043 23673 solver.cpp:397] Test net output #1: loss = 2.99749 (* 1 = 2.99749 loss) +I0407 22:31:01.448757 23673 solver.cpp:218] Iteration 3780 (0.53506 iter/s, 22.4274s/12 iters), loss = 1.0378 +I0407 22:31:01.448799 23673 solver.cpp:237] Train net output #0: loss = 1.0378 (* 1 = 1.0378 loss) +I0407 22:31:01.448808 23673 sgd_solver.cpp:105] Iteration 3780, lr = 0.00689045 +I0407 22:31:06.523015 23673 solver.cpp:218] Iteration 3792 (2.36498 iter/s, 5.07404s/12 iters), loss = 1.27912 +I0407 22:31:06.523061 23673 solver.cpp:237] Train net output #0: loss = 1.27912 (* 1 = 1.27912 loss) +I0407 22:31:06.523070 23673 sgd_solver.cpp:105] Iteration 3792, lr = 0.00688231 +I0407 22:31:11.624270 23673 solver.cpp:218] Iteration 3804 (2.35246 iter/s, 5.10103s/12 iters), loss = 1.10299 +I0407 22:31:11.624320 23673 solver.cpp:237] Train net output #0: loss = 1.10299 (* 1 = 1.10299 loss) +I0407 22:31:11.624333 23673 sgd_solver.cpp:105] Iteration 3804, lr = 0.00687418 +I0407 22:31:16.727470 23673 solver.cpp:218] Iteration 3816 (2.35157 iter/s, 5.10297s/12 iters), loss = 1.09288 +I0407 22:31:16.727522 23673 solver.cpp:237] Train net output #0: loss = 1.09288 (* 1 = 1.09288 loss) +I0407 22:31:16.727535 23673 sgd_solver.cpp:105] Iteration 3816, lr = 0.00686605 +I0407 22:31:21.849263 23673 solver.cpp:218] Iteration 3828 (2.34303 iter/s, 5.12156s/12 iters), loss = 1.12529 +I0407 22:31:21.849313 23673 solver.cpp:237] Train net output #0: loss = 1.12529 (* 1 = 1.12529 loss) +I0407 22:31:21.849325 23673 sgd_solver.cpp:105] Iteration 3828, lr = 0.00685794 +I0407 22:31:26.987907 23673 solver.cpp:218] Iteration 3840 (2.33535 iter/s, 5.13842s/12 iters), loss = 0.948897 +I0407 22:31:26.987951 23673 solver.cpp:237] Train net output #0: loss = 0.948897 (* 1 = 0.948897 loss) +I0407 22:31:26.987960 23673 sgd_solver.cpp:105] Iteration 3840, lr = 0.00684984 +I0407 22:31:28.126168 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:32.091156 23673 solver.cpp:218] Iteration 3852 (2.35154 iter/s, 5.10303s/12 iters), loss = 0.870748 +I0407 22:31:32.091202 23673 solver.cpp:237] Train net output #0: loss = 0.870748 (* 1 = 0.870748 loss) +I0407 22:31:32.091212 23673 sgd_solver.cpp:105] Iteration 3852, lr = 0.00684174 +I0407 22:31:37.051218 23673 solver.cpp:218] Iteration 3864 (2.41943 iter/s, 4.95984s/12 iters), loss = 1.16978 +I0407 22:31:37.051266 23673 solver.cpp:237] Train net output #0: loss = 1.16978 (* 1 = 1.16978 loss) +I0407 22:31:37.051278 23673 sgd_solver.cpp:105] Iteration 3864, lr = 0.00683366 +I0407 22:31:41.627436 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 22:31:44.578377 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 22:31:46.893746 23673 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 22:31:46.893776 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:31:49.827217 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:51.401855 23673 solver.cpp:397] Test net output #0: accuracy = 0.33701 +I0407 22:31:51.401904 23673 solver.cpp:397] Test net output #1: loss = 3.03007 (* 1 = 3.03007 loss) +I0407 22:31:51.493234 23673 solver.cpp:218] Iteration 3876 (0.830939 iter/s, 14.4415s/12 iters), loss = 0.925296 +I0407 22:31:51.493284 23673 solver.cpp:237] Train net output #0: loss = 0.925296 (* 1 = 0.925296 loss) +I0407 22:31:51.493296 23673 sgd_solver.cpp:105] Iteration 3876, lr = 0.00682558 +I0407 22:31:55.734012 23673 solver.cpp:218] Iteration 3888 (2.8298 iter/s, 4.24058s/12 iters), loss = 1.29869 +I0407 22:31:55.734063 23673 solver.cpp:237] Train net output #0: loss = 1.29869 (* 1 = 1.29869 loss) +I0407 22:31:55.734076 23673 sgd_solver.cpp:105] Iteration 3888, lr = 0.00681752 +I0407 22:32:00.935847 23673 solver.cpp:218] Iteration 3900 (2.30698 iter/s, 5.2016s/12 iters), loss = 0.998382 +I0407 22:32:00.935973 23673 solver.cpp:237] Train net output #0: loss = 0.998382 (* 1 = 0.998382 loss) +I0407 22:32:00.935986 23673 sgd_solver.cpp:105] Iteration 3900, lr = 0.00680946 +I0407 22:32:05.883416 23673 solver.cpp:218] Iteration 3912 (2.42558 iter/s, 4.94727s/12 iters), loss = 1.2557 +I0407 22:32:05.883474 23673 solver.cpp:237] Train net output #0: loss = 1.2557 (* 1 = 1.2557 loss) +I0407 22:32:05.883486 23673 sgd_solver.cpp:105] Iteration 3912, lr = 0.00680141 +I0407 22:32:11.147297 23673 solver.cpp:218] Iteration 3924 (2.27979 iter/s, 5.26365s/12 iters), loss = 1.08113 +I0407 22:32:11.147337 23673 solver.cpp:237] Train net output #0: loss = 1.08113 (* 1 = 1.08113 loss) +I0407 22:32:11.147346 23673 sgd_solver.cpp:105] Iteration 3924, lr = 0.00679338 +I0407 22:32:16.407371 23673 solver.cpp:218] Iteration 3936 (2.28144 iter/s, 5.25984s/12 iters), loss = 1.02381 +I0407 22:32:16.407428 23673 solver.cpp:237] Train net output #0: loss = 1.02381 (* 1 = 1.02381 loss) +I0407 22:32:16.407440 23673 sgd_solver.cpp:105] Iteration 3936, lr = 0.00678535 +I0407 22:32:19.845736 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:21.505597 23673 solver.cpp:218] Iteration 3948 (2.35387 iter/s, 5.098s/12 iters), loss = 1.16812 +I0407 22:32:21.505641 23673 solver.cpp:237] Train net output #0: loss = 1.16812 (* 1 = 1.16812 loss) +I0407 22:32:21.505650 23673 sgd_solver.cpp:105] Iteration 3948, lr = 0.00677733 +I0407 22:32:26.619099 23673 solver.cpp:218] Iteration 3960 (2.34683 iter/s, 5.11328s/12 iters), loss = 0.946512 +I0407 22:32:26.619156 23673 solver.cpp:237] Train net output #0: loss = 0.946512 (* 1 = 0.946512 loss) +I0407 22:32:26.619170 23673 sgd_solver.cpp:105] Iteration 3960, lr = 0.00676932 +I0407 22:32:31.666568 23673 solver.cpp:218] Iteration 3972 (2.37753 iter/s, 5.04725s/12 iters), loss = 1.36826 +I0407 22:32:31.666707 23673 solver.cpp:237] Train net output #0: loss = 1.36826 (* 1 = 1.36826 loss) +I0407 22:32:31.666721 23673 sgd_solver.cpp:105] Iteration 3972, lr = 0.00676132 +I0407 22:32:33.720649 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 22:32:39.381170 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 22:32:41.694911 23673 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 22:32:41.694938 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:32:44.752447 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:46.345386 23673 solver.cpp:397] Test net output #0: accuracy = 0.341912 +I0407 22:32:46.345428 23673 solver.cpp:397] Test net output #1: loss = 3.03449 (* 1 = 3.03449 loss) +I0407 22:32:48.331871 23673 solver.cpp:218] Iteration 3984 (0.720088 iter/s, 16.6646s/12 iters), loss = 1.11844 +I0407 22:32:48.331923 23673 solver.cpp:237] Train net output #0: loss = 1.11844 (* 1 = 1.11844 loss) +I0407 22:32:48.331936 23673 sgd_solver.cpp:105] Iteration 3984, lr = 0.00675333 +I0407 22:32:53.794631 23673 solver.cpp:218] Iteration 3996 (2.19679 iter/s, 5.46252s/12 iters), loss = 0.941721 +I0407 22:32:53.794674 23673 solver.cpp:237] Train net output #0: loss = 0.941721 (* 1 = 0.941721 loss) +I0407 22:32:53.794683 23673 sgd_solver.cpp:105] Iteration 3996, lr = 0.00674535 +I0407 22:32:58.812480 23673 solver.cpp:218] Iteration 4008 (2.39157 iter/s, 5.01763s/12 iters), loss = 0.88353 +I0407 22:32:58.812520 23673 solver.cpp:237] Train net output #0: loss = 0.88353 (* 1 = 0.88353 loss) +I0407 22:32:58.812530 23673 sgd_solver.cpp:105] Iteration 4008, lr = 0.00673738 +I0407 22:33:03.970459 23673 solver.cpp:218] Iteration 4020 (2.32659 iter/s, 5.15776s/12 iters), loss = 1.05532 +I0407 22:33:03.970535 23673 solver.cpp:237] Train net output #0: loss = 1.05532 (* 1 = 1.05532 loss) +I0407 22:33:03.970544 23673 sgd_solver.cpp:105] Iteration 4020, lr = 0.00672942 +I0407 22:33:08.997408 23673 solver.cpp:218] Iteration 4032 (2.38725 iter/s, 5.0267s/12 iters), loss = 1.24307 +I0407 22:33:08.997455 23673 solver.cpp:237] Train net output #0: loss = 1.24307 (* 1 = 1.24307 loss) +I0407 22:33:08.997467 23673 sgd_solver.cpp:105] Iteration 4032, lr = 0.00672147 +I0407 22:33:14.019765 23673 solver.cpp:218] Iteration 4044 (2.38942 iter/s, 5.02214s/12 iters), loss = 0.913905 +I0407 22:33:14.019815 23673 solver.cpp:237] Train net output #0: loss = 0.913905 (* 1 = 0.913905 loss) +I0407 22:33:14.019826 23673 sgd_solver.cpp:105] Iteration 4044, lr = 0.00671353 +I0407 22:33:14.515882 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:19.052430 23673 solver.cpp:218] Iteration 4056 (2.38453 iter/s, 5.03244s/12 iters), loss = 1.07104 +I0407 22:33:19.052472 23673 solver.cpp:237] Train net output #0: loss = 1.07104 (* 1 = 1.07104 loss) +I0407 22:33:19.052482 23673 sgd_solver.cpp:105] Iteration 4056, lr = 0.00670559 +I0407 22:33:24.365672 23673 solver.cpp:218] Iteration 4068 (2.25861 iter/s, 5.31301s/12 iters), loss = 0.99628 +I0407 22:33:24.365731 23673 solver.cpp:237] Train net output #0: loss = 0.99628 (* 1 = 0.99628 loss) +I0407 22:33:24.365743 23673 sgd_solver.cpp:105] Iteration 4068, lr = 0.00669767 +I0407 22:33:29.199779 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 22:33:32.386755 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 22:33:34.785408 23673 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 22:33:34.785518 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:33:37.639706 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:39.257809 23673 solver.cpp:397] Test net output #0: accuracy = 0.344976 +I0407 22:33:39.257853 23673 solver.cpp:397] Test net output #1: loss = 3.06588 (* 1 = 3.06588 loss) +I0407 22:33:39.352788 23673 solver.cpp:218] Iteration 4080 (0.800717 iter/s, 14.9866s/12 iters), loss = 1.02864 +I0407 22:33:39.352854 23673 solver.cpp:237] Train net output #0: loss = 1.02864 (* 1 = 1.02864 loss) +I0407 22:33:39.352869 23673 sgd_solver.cpp:105] Iteration 4080, lr = 0.00668975 +I0407 22:33:43.615579 23673 solver.cpp:218] Iteration 4092 (2.8152 iter/s, 4.26258s/12 iters), loss = 0.801335 +I0407 22:33:43.615633 23673 solver.cpp:237] Train net output #0: loss = 0.801335 (* 1 = 0.801335 loss) +I0407 22:33:43.615644 23673 sgd_solver.cpp:105] Iteration 4092, lr = 0.00668185 +I0407 22:33:48.665840 23673 solver.cpp:218] Iteration 4104 (2.37622 iter/s, 5.05003s/12 iters), loss = 0.965487 +I0407 22:33:48.665876 23673 solver.cpp:237] Train net output #0: loss = 0.965487 (* 1 = 0.965487 loss) +I0407 22:33:48.665885 23673 sgd_solver.cpp:105] Iteration 4104, lr = 0.00667395 +I0407 22:33:53.785022 23673 solver.cpp:218] Iteration 4116 (2.34422 iter/s, 5.11897s/12 iters), loss = 1.0686 +I0407 22:33:53.785063 23673 solver.cpp:237] Train net output #0: loss = 1.0686 (* 1 = 1.0686 loss) +I0407 22:33:53.785073 23673 sgd_solver.cpp:105] Iteration 4116, lr = 0.00666607 +I0407 22:33:58.894110 23673 solver.cpp:218] Iteration 4128 (2.34886 iter/s, 5.10887s/12 iters), loss = 0.969625 +I0407 22:33:58.894162 23673 solver.cpp:237] Train net output #0: loss = 0.969625 (* 1 = 0.969625 loss) +I0407 22:33:58.894176 23673 sgd_solver.cpp:105] Iteration 4128, lr = 0.00665819 +I0407 22:34:04.056819 23673 solver.cpp:218] Iteration 4140 (2.32447 iter/s, 5.16248s/12 iters), loss = 0.931388 +I0407 22:34:04.056875 23673 solver.cpp:237] Train net output #0: loss = 0.931388 (* 1 = 0.931388 loss) +I0407 22:34:04.056888 23673 sgd_solver.cpp:105] Iteration 4140, lr = 0.00665032 +I0407 22:34:06.776911 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:09.216400 23673 solver.cpp:218] Iteration 4152 (2.32587 iter/s, 5.15935s/12 iters), loss = 1.17056 +I0407 22:34:09.216445 23673 solver.cpp:237] Train net output #0: loss = 1.17056 (* 1 = 1.17056 loss) +I0407 22:34:09.216456 23673 sgd_solver.cpp:105] Iteration 4152, lr = 0.00664246 +I0407 22:34:10.889719 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:34:14.337253 23673 solver.cpp:218] Iteration 4164 (2.34346 iter/s, 5.12063s/12 iters), loss = 1.14509 +I0407 22:34:14.337306 23673 solver.cpp:237] Train net output #0: loss = 1.14509 (* 1 = 1.14509 loss) +I0407 22:34:14.337318 23673 sgd_solver.cpp:105] Iteration 4164, lr = 0.00663461 +I0407 22:34:19.487870 23673 solver.cpp:218] Iteration 4176 (2.32992 iter/s, 5.15038s/12 iters), loss = 1.13337 +I0407 22:34:19.487924 23673 solver.cpp:237] Train net output #0: loss = 1.13337 (* 1 = 1.13337 loss) +I0407 22:34:19.487936 23673 sgd_solver.cpp:105] Iteration 4176, lr = 0.00662677 +I0407 22:34:21.691076 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 22:34:26.821240 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 22:34:29.157687 23673 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 22:34:29.157711 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:34:31.961077 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:33.766067 23673 solver.cpp:397] Test net output #0: accuracy = 0.365196 +I0407 22:34:33.766103 23673 solver.cpp:397] Test net output #1: loss = 2.94328 (* 1 = 2.94328 loss) +I0407 22:34:35.692790 23673 solver.cpp:218] Iteration 4188 (0.740542 iter/s, 16.2043s/12 iters), loss = 1.11174 +I0407 22:34:35.692842 23673 solver.cpp:237] Train net output #0: loss = 1.11174 (* 1 = 1.11174 loss) +I0407 22:34:35.692852 23673 sgd_solver.cpp:105] Iteration 4188, lr = 0.00661894 +I0407 22:34:40.794757 23673 solver.cpp:218] Iteration 4200 (2.35214 iter/s, 5.10173s/12 iters), loss = 1.01808 +I0407 22:34:40.794906 23673 solver.cpp:237] Train net output #0: loss = 1.01808 (* 1 = 1.01808 loss) +I0407 22:34:40.794921 23673 sgd_solver.cpp:105] Iteration 4200, lr = 0.00661112 +I0407 22:34:45.975608 23673 solver.cpp:218] Iteration 4212 (2.31636 iter/s, 5.18053s/12 iters), loss = 0.951026 +I0407 22:34:45.975656 23673 solver.cpp:237] Train net output #0: loss = 0.951026 (* 1 = 0.951026 loss) +I0407 22:34:45.975667 23673 sgd_solver.cpp:105] Iteration 4212, lr = 0.00660331 +I0407 22:34:51.068639 23673 solver.cpp:218] Iteration 4224 (2.35627 iter/s, 5.09281s/12 iters), loss = 0.940716 +I0407 22:34:51.068686 23673 solver.cpp:237] Train net output #0: loss = 0.940716 (* 1 = 0.940716 loss) +I0407 22:34:51.068697 23673 sgd_solver.cpp:105] Iteration 4224, lr = 0.00659551 +I0407 22:34:56.181275 23673 solver.cpp:218] Iteration 4236 (2.34723 iter/s, 5.11241s/12 iters), loss = 0.936439 +I0407 22:34:56.181340 23673 solver.cpp:237] Train net output #0: loss = 0.936439 (* 1 = 0.936439 loss) +I0407 22:34:56.181354 23673 sgd_solver.cpp:105] Iteration 4236, lr = 0.00658771 +I0407 22:35:01.024623 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:01.261307 23673 solver.cpp:218] Iteration 4248 (2.3623 iter/s, 5.07979s/12 iters), loss = 0.935679 +I0407 22:35:01.261363 23673 solver.cpp:237] Train net output #0: loss = 0.935679 (* 1 = 0.935679 loss) +I0407 22:35:01.261375 23673 sgd_solver.cpp:105] Iteration 4248, lr = 0.00657993 +I0407 22:35:06.336205 23673 solver.cpp:218] Iteration 4260 (2.36469 iter/s, 5.07467s/12 iters), loss = 0.978754 +I0407 22:35:06.336261 23673 solver.cpp:237] Train net output #0: loss = 0.978754 (* 1 = 0.978754 loss) +I0407 22:35:06.336274 23673 sgd_solver.cpp:105] Iteration 4260, lr = 0.00657215 +I0407 22:35:11.368453 23673 solver.cpp:218] Iteration 4272 (2.38473 iter/s, 5.03202s/12 iters), loss = 0.851716 +I0407 22:35:11.368584 23673 solver.cpp:237] Train net output #0: loss = 0.851716 (* 1 = 0.851716 loss) +I0407 22:35:11.368602 23673 sgd_solver.cpp:105] Iteration 4272, lr = 0.00656439 +I0407 22:35:16.114295 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 22:35:19.130522 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 22:35:21.458024 23673 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 22:35:21.458050 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:35:24.232352 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:25.931041 23673 solver.cpp:397] Test net output #0: accuracy = 0.360907 +I0407 22:35:25.931092 23673 solver.cpp:397] Test net output #1: loss = 2.94266 (* 1 = 2.94266 loss) +I0407 22:35:26.022470 23673 solver.cpp:218] Iteration 4284 (0.818922 iter/s, 14.6534s/12 iters), loss = 0.734185 +I0407 22:35:26.022518 23673 solver.cpp:237] Train net output #0: loss = 0.734185 (* 1 = 0.734185 loss) +I0407 22:35:26.022529 23673 sgd_solver.cpp:105] Iteration 4284, lr = 0.00655663 +I0407 22:35:30.647604 23673 solver.cpp:218] Iteration 4296 (2.59464 iter/s, 4.62493s/12 iters), loss = 0.789141 +I0407 22:35:30.647653 23673 solver.cpp:237] Train net output #0: loss = 0.789141 (* 1 = 0.789141 loss) +I0407 22:35:30.647665 23673 sgd_solver.cpp:105] Iteration 4296, lr = 0.00654888 +I0407 22:35:36.164639 23673 solver.cpp:218] Iteration 4308 (2.17517 iter/s, 5.5168s/12 iters), loss = 0.682877 +I0407 22:35:36.164686 23673 solver.cpp:237] Train net output #0: loss = 0.682877 (* 1 = 0.682877 loss) +I0407 22:35:36.164711 23673 sgd_solver.cpp:105] Iteration 4308, lr = 0.00654114 +I0407 22:35:41.609839 23673 solver.cpp:218] Iteration 4320 (2.20387 iter/s, 5.44497s/12 iters), loss = 1.05989 +I0407 22:35:41.609952 23673 solver.cpp:237] Train net output #0: loss = 1.05989 (* 1 = 1.05989 loss) +I0407 22:35:41.609977 23673 sgd_solver.cpp:105] Iteration 4320, lr = 0.00653341 +I0407 22:35:46.668589 23673 solver.cpp:218] Iteration 4332 (2.37226 iter/s, 5.05847s/12 iters), loss = 0.761345 +I0407 22:35:46.668643 23673 solver.cpp:237] Train net output #0: loss = 0.761345 (* 1 = 0.761345 loss) +I0407 22:35:46.668655 23673 sgd_solver.cpp:105] Iteration 4332, lr = 0.00652569 +I0407 22:35:51.667412 23673 solver.cpp:218] Iteration 4344 (2.40067 iter/s, 4.9986s/12 iters), loss = 1.00677 +I0407 22:35:51.667459 23673 solver.cpp:237] Train net output #0: loss = 1.00677 (* 1 = 1.00677 loss) +I0407 22:35:51.667470 23673 sgd_solver.cpp:105] Iteration 4344, lr = 0.00651798 +I0407 22:35:53.610584 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:56.699388 23673 solver.cpp:218] Iteration 4356 (2.38485 iter/s, 5.03175s/12 iters), loss = 0.980423 +I0407 22:35:56.699438 23673 solver.cpp:237] Train net output #0: loss = 0.980423 (* 1 = 0.980423 loss) +I0407 22:35:56.699450 23673 sgd_solver.cpp:105] Iteration 4356, lr = 0.00651028 +I0407 22:36:01.872651 23673 solver.cpp:218] Iteration 4368 (2.31972 iter/s, 5.17304s/12 iters), loss = 0.967595 +I0407 22:36:01.872694 23673 solver.cpp:237] Train net output #0: loss = 0.967595 (* 1 = 0.967595 loss) +I0407 22:36:01.872705 23673 sgd_solver.cpp:105] Iteration 4368, lr = 0.00650259 +I0407 22:36:07.223124 23673 solver.cpp:218] Iteration 4380 (2.24289 iter/s, 5.35024s/12 iters), loss = 0.845914 +I0407 22:36:07.223179 23673 solver.cpp:237] Train net output #0: loss = 0.845914 (* 1 = 0.845914 loss) +I0407 22:36:07.223192 23673 sgd_solver.cpp:105] Iteration 4380, lr = 0.0064949 +I0407 22:36:09.375653 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 22:36:12.374981 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 22:36:16.996337 23673 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 22:36:16.996366 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:36:19.713241 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:21.457479 23673 solver.cpp:397] Test net output #0: accuracy = 0.369485 +I0407 22:36:21.457527 23673 solver.cpp:397] Test net output #1: loss = 3.0443 (* 1 = 3.0443 loss) +I0407 22:36:23.463205 23673 solver.cpp:218] Iteration 4392 (0.738939 iter/s, 16.2395s/12 iters), loss = 0.892488 +I0407 22:36:23.463254 23673 solver.cpp:237] Train net output #0: loss = 0.892488 (* 1 = 0.892488 loss) +I0407 22:36:23.463264 23673 sgd_solver.cpp:105] Iteration 4392, lr = 0.00648723 +I0407 22:36:28.624330 23673 solver.cpp:218] Iteration 4404 (2.32518 iter/s, 5.1609s/12 iters), loss = 0.79459 +I0407 22:36:28.624382 23673 solver.cpp:237] Train net output #0: loss = 0.79459 (* 1 = 0.79459 loss) +I0407 22:36:28.624394 23673 sgd_solver.cpp:105] Iteration 4404, lr = 0.00647956 +I0407 22:36:33.678697 23673 solver.cpp:218] Iteration 4416 (2.37429 iter/s, 5.05415s/12 iters), loss = 0.775037 +I0407 22:36:33.678745 23673 solver.cpp:237] Train net output #0: loss = 0.775037 (* 1 = 0.775037 loss) +I0407 22:36:33.678756 23673 sgd_solver.cpp:105] Iteration 4416, lr = 0.00647191 +I0407 22:36:39.360127 23673 solver.cpp:218] Iteration 4428 (2.11223 iter/s, 5.68119s/12 iters), loss = 0.608584 +I0407 22:36:39.360177 23673 solver.cpp:237] Train net output #0: loss = 0.608584 (* 1 = 0.608584 loss) +I0407 22:36:39.360189 23673 sgd_solver.cpp:105] Iteration 4428, lr = 0.00646426 +I0407 22:36:44.464253 23673 solver.cpp:218] Iteration 4440 (2.35114 iter/s, 5.1039s/12 iters), loss = 1.06865 +I0407 22:36:44.464365 23673 solver.cpp:237] Train net output #0: loss = 1.06865 (* 1 = 1.06865 loss) +I0407 22:36:44.464377 23673 sgd_solver.cpp:105] Iteration 4440, lr = 0.00645662 +I0407 22:36:48.610621 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:49.578668 23673 solver.cpp:218] Iteration 4452 (2.34644 iter/s, 5.11413s/12 iters), loss = 0.539245 +I0407 22:36:49.578723 23673 solver.cpp:237] Train net output #0: loss = 0.539245 (* 1 = 0.539245 loss) +I0407 22:36:49.578735 23673 sgd_solver.cpp:105] Iteration 4452, lr = 0.00644899 +I0407 22:36:54.900373 23673 solver.cpp:218] Iteration 4464 (2.25502 iter/s, 5.32147s/12 iters), loss = 0.681997 +I0407 22:36:54.900420 23673 solver.cpp:237] Train net output #0: loss = 0.681997 (* 1 = 0.681997 loss) +I0407 22:36:54.900429 23673 sgd_solver.cpp:105] Iteration 4464, lr = 0.00644137 +I0407 22:37:00.356642 23673 solver.cpp:218] Iteration 4476 (2.1994 iter/s, 5.45603s/12 iters), loss = 0.549058 +I0407 22:37:00.356699 23673 solver.cpp:237] Train net output #0: loss = 0.549058 (* 1 = 0.549058 loss) +I0407 22:37:00.356712 23673 sgd_solver.cpp:105] Iteration 4476, lr = 0.00643376 +I0407 22:37:05.073704 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 22:37:12.027833 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 22:37:16.080041 23673 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 22:37:16.080121 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:37:18.770972 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:20.546378 23673 solver.cpp:397] Test net output #0: accuracy = 0.365809 +I0407 22:37:20.546429 23673 solver.cpp:397] Test net output #1: loss = 3.04804 (* 1 = 3.04804 loss) +I0407 22:37:20.637732 23673 solver.cpp:218] Iteration 4488 (0.591705 iter/s, 20.2804s/12 iters), loss = 0.674301 +I0407 22:37:20.637784 23673 solver.cpp:237] Train net output #0: loss = 0.674301 (* 1 = 0.674301 loss) +I0407 22:37:20.637795 23673 sgd_solver.cpp:105] Iteration 4488, lr = 0.00642616 +I0407 22:37:25.142655 23673 solver.cpp:218] Iteration 4500 (2.66387 iter/s, 4.50472s/12 iters), loss = 0.978929 +I0407 22:37:25.142705 23673 solver.cpp:237] Train net output #0: loss = 0.978929 (* 1 = 0.978929 loss) +I0407 22:37:25.142717 23673 sgd_solver.cpp:105] Iteration 4500, lr = 0.00641856 +I0407 22:37:30.212816 23673 solver.cpp:218] Iteration 4512 (2.36689 iter/s, 5.06994s/12 iters), loss = 0.664458 +I0407 22:37:30.212867 23673 solver.cpp:237] Train net output #0: loss = 0.664458 (* 1 = 0.664458 loss) +I0407 22:37:30.212878 23673 sgd_solver.cpp:105] Iteration 4512, lr = 0.00641098 +I0407 22:37:35.752579 23673 solver.cpp:218] Iteration 4524 (2.16625 iter/s, 5.53953s/12 iters), loss = 0.759205 +I0407 22:37:35.752625 23673 solver.cpp:237] Train net output #0: loss = 0.759205 (* 1 = 0.759205 loss) +I0407 22:37:35.752636 23673 sgd_solver.cpp:105] Iteration 4524, lr = 0.0064034 +I0407 22:37:40.968376 23673 solver.cpp:218] Iteration 4536 (2.3008 iter/s, 5.21557s/12 iters), loss = 0.67534 +I0407 22:37:40.968431 23673 solver.cpp:237] Train net output #0: loss = 0.67534 (* 1 = 0.67534 loss) +I0407 22:37:40.968443 23673 sgd_solver.cpp:105] Iteration 4536, lr = 0.00639583 +I0407 22:37:46.116672 23673 solver.cpp:218] Iteration 4548 (2.33098 iter/s, 5.14806s/12 iters), loss = 0.745576 +I0407 22:37:46.126049 23673 solver.cpp:237] Train net output #0: loss = 0.745576 (* 1 = 0.745576 loss) +I0407 22:37:46.126065 23673 sgd_solver.cpp:105] Iteration 4548, lr = 0.00638828 +I0407 22:37:47.441110 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:51.348101 23673 solver.cpp:218] Iteration 4560 (2.29802 iter/s, 5.22188s/12 iters), loss = 0.753765 +I0407 22:37:51.348153 23673 solver.cpp:237] Train net output #0: loss = 0.753765 (* 1 = 0.753765 loss) +I0407 22:37:51.348165 23673 sgd_solver.cpp:105] Iteration 4560, lr = 0.00638073 +I0407 22:37:56.607739 23673 solver.cpp:218] Iteration 4572 (2.28163 iter/s, 5.2594s/12 iters), loss = 0.592325 +I0407 22:37:56.607800 23673 solver.cpp:237] Train net output #0: loss = 0.592325 (* 1 = 0.592325 loss) +I0407 22:37:56.607811 23673 sgd_solver.cpp:105] Iteration 4572, lr = 0.00637319 +I0407 22:38:01.753345 23673 solver.cpp:218] Iteration 4584 (2.3322 iter/s, 5.14537s/12 iters), loss = 0.524445 +I0407 22:38:01.753398 23673 solver.cpp:237] Train net output #0: loss = 0.524445 (* 1 = 0.524445 loss) +I0407 22:38:01.753409 23673 sgd_solver.cpp:105] Iteration 4584, lr = 0.00636566 +I0407 22:38:03.862866 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 22:38:07.808413 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 22:38:12.045951 23673 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 22:38:12.045995 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:38:14.616627 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:16.477699 23673 solver.cpp:397] Test net output #0: accuracy = 0.381127 +I0407 22:38:16.477859 23673 solver.cpp:397] Test net output #1: loss = 3.00484 (* 1 = 3.00484 loss) +I0407 22:38:18.361519 23673 solver.cpp:218] Iteration 4596 (0.722562 iter/s, 16.6076s/12 iters), loss = 0.630246 +I0407 22:38:18.361578 23673 solver.cpp:237] Train net output #0: loss = 0.630246 (* 1 = 0.630246 loss) +I0407 22:38:18.361590 23673 sgd_solver.cpp:105] Iteration 4596, lr = 0.00635814 +I0407 22:38:23.424295 23673 solver.cpp:218] Iteration 4608 (2.37035 iter/s, 5.06255s/12 iters), loss = 0.912095 +I0407 22:38:23.424336 23673 solver.cpp:237] Train net output #0: loss = 0.912095 (* 1 = 0.912095 loss) +I0407 22:38:23.424346 23673 sgd_solver.cpp:105] Iteration 4608, lr = 0.00635062 +I0407 22:38:28.586939 23673 solver.cpp:218] Iteration 4620 (2.32449 iter/s, 5.16242s/12 iters), loss = 0.601239 +I0407 22:38:28.586993 23673 solver.cpp:237] Train net output #0: loss = 0.601239 (* 1 = 0.601239 loss) +I0407 22:38:28.587007 23673 sgd_solver.cpp:105] Iteration 4620, lr = 0.00634312 +I0407 22:38:33.625289 23673 solver.cpp:218] Iteration 4632 (2.38184 iter/s, 5.03812s/12 iters), loss = 0.508715 +I0407 22:38:33.625341 23673 solver.cpp:237] Train net output #0: loss = 0.508715 (* 1 = 0.508715 loss) +I0407 22:38:33.625355 23673 sgd_solver.cpp:105] Iteration 4632, lr = 0.00633562 +I0407 22:38:38.973779 23673 solver.cpp:218] Iteration 4644 (2.24372 iter/s, 5.34826s/12 iters), loss = 0.977364 +I0407 22:38:38.973817 23673 solver.cpp:237] Train net output #0: loss = 0.977364 (* 1 = 0.977364 loss) +I0407 22:38:38.973826 23673 sgd_solver.cpp:105] Iteration 4644, lr = 0.00632813 +I0407 22:38:42.517117 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:44.272822 23673 solver.cpp:218] Iteration 4656 (2.26466 iter/s, 5.29882s/12 iters), loss = 0.910479 +I0407 22:38:44.272876 23673 solver.cpp:237] Train net output #0: loss = 0.910479 (* 1 = 0.910479 loss) +I0407 22:38:44.272888 23673 sgd_solver.cpp:105] Iteration 4656, lr = 0.00632066 +I0407 22:38:49.673354 23673 solver.cpp:218] Iteration 4668 (2.2221 iter/s, 5.40029s/12 iters), loss = 0.630513 +I0407 22:38:49.673466 23673 solver.cpp:237] Train net output #0: loss = 0.630513 (* 1 = 0.630513 loss) +I0407 22:38:49.673480 23673 sgd_solver.cpp:105] Iteration 4668, lr = 0.00631319 +I0407 22:38:54.815207 23673 solver.cpp:218] Iteration 4680 (2.33392 iter/s, 5.14157s/12 iters), loss = 0.651857 +I0407 22:38:54.815254 23673 solver.cpp:237] Train net output #0: loss = 0.651857 (* 1 = 0.651857 loss) +I0407 22:38:54.815264 23673 sgd_solver.cpp:105] Iteration 4680, lr = 0.00630573 +I0407 22:38:59.371285 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 22:39:04.984697 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 22:39:07.730209 23673 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 22:39:07.730235 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:39:10.340095 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:12.198200 23673 solver.cpp:397] Test net output #0: accuracy = 0.371324 +I0407 22:39:12.198248 23673 solver.cpp:397] Test net output #1: loss = 3.05722 (* 1 = 3.05722 loss) +I0407 22:39:12.289726 23673 solver.cpp:218] Iteration 4692 (0.686738 iter/s, 17.4739s/12 iters), loss = 0.849303 +I0407 22:39:12.289778 23673 solver.cpp:237] Train net output #0: loss = 0.849303 (* 1 = 0.849303 loss) +I0407 22:39:12.289789 23673 sgd_solver.cpp:105] Iteration 4692, lr = 0.00629828 +I0407 22:39:17.170657 23673 solver.cpp:218] Iteration 4704 (2.45866 iter/s, 4.88071s/12 iters), loss = 0.794684 +I0407 22:39:17.170701 23673 solver.cpp:237] Train net output #0: loss = 0.794684 (* 1 = 0.794684 loss) +I0407 22:39:17.170712 23673 sgd_solver.cpp:105] Iteration 4704, lr = 0.00629083 +I0407 22:39:22.723932 23673 solver.cpp:218] Iteration 4716 (2.16098 iter/s, 5.55303s/12 iters), loss = 0.574322 +I0407 22:39:22.724076 23673 solver.cpp:237] Train net output #0: loss = 0.574322 (* 1 = 0.574322 loss) +I0407 22:39:22.724093 23673 sgd_solver.cpp:105] Iteration 4716, lr = 0.0062834 +I0407 22:39:28.038451 23673 solver.cpp:218] Iteration 4728 (2.2581 iter/s, 5.3142s/12 iters), loss = 0.751721 +I0407 22:39:28.038497 23673 solver.cpp:237] Train net output #0: loss = 0.751721 (* 1 = 0.751721 loss) +I0407 22:39:28.038508 23673 sgd_solver.cpp:105] Iteration 4728, lr = 0.00627598 +I0407 22:39:33.175913 23673 solver.cpp:218] Iteration 4740 (2.33588 iter/s, 5.13724s/12 iters), loss = 0.543426 +I0407 22:39:33.175951 23673 solver.cpp:237] Train net output #0: loss = 0.543426 (* 1 = 0.543426 loss) +I0407 22:39:33.175959 23673 sgd_solver.cpp:105] Iteration 4740, lr = 0.00626856 +I0407 22:39:38.292624 23673 solver.cpp:218] Iteration 4752 (2.34536 iter/s, 5.1165s/12 iters), loss = 0.497719 +I0407 22:39:38.292676 23673 solver.cpp:237] Train net output #0: loss = 0.497719 (* 1 = 0.497719 loss) +I0407 22:39:38.292688 23673 sgd_solver.cpp:105] Iteration 4752, lr = 0.00626115 +I0407 22:39:38.838248 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:43.403471 23673 solver.cpp:218] Iteration 4764 (2.34805 iter/s, 5.11062s/12 iters), loss = 0.504132 +I0407 22:39:43.403529 23673 solver.cpp:237] Train net output #0: loss = 0.504132 (* 1 = 0.504132 loss) +I0407 22:39:43.403542 23673 sgd_solver.cpp:105] Iteration 4764, lr = 0.00625375 +I0407 22:39:48.480011 23673 solver.cpp:218] Iteration 4776 (2.36392 iter/s, 5.07631s/12 iters), loss = 0.522259 +I0407 22:39:48.480067 23673 solver.cpp:237] Train net output #0: loss = 0.522259 (* 1 = 0.522259 loss) +I0407 22:39:48.480079 23673 sgd_solver.cpp:105] Iteration 4776, lr = 0.00624636 +I0407 22:39:53.603734 23673 solver.cpp:218] Iteration 4788 (2.34215 iter/s, 5.12349s/12 iters), loss = 0.680392 +I0407 22:39:53.603838 23673 solver.cpp:237] Train net output #0: loss = 0.680392 (* 1 = 0.680392 loss) +I0407 22:39:53.603850 23673 sgd_solver.cpp:105] Iteration 4788, lr = 0.00623898 +I0407 22:39:55.641384 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 22:39:58.946306 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 22:40:02.341886 23673 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 22:40:02.341913 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:40:04.900559 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:06.803401 23673 solver.cpp:397] Test net output #0: accuracy = 0.387868 +I0407 22:40:06.803450 23673 solver.cpp:397] Test net output #1: loss = 3.01223 (* 1 = 3.01223 loss) +I0407 22:40:08.683809 23673 solver.cpp:218] Iteration 4800 (0.795783 iter/s, 15.0795s/12 iters), loss = 0.687298 +I0407 22:40:08.683856 23673 solver.cpp:237] Train net output #0: loss = 0.687298 (* 1 = 0.687298 loss) +I0407 22:40:08.683867 23673 sgd_solver.cpp:105] Iteration 4800, lr = 0.00623161 +I0407 22:40:13.997248 23673 solver.cpp:218] Iteration 4812 (2.25852 iter/s, 5.31321s/12 iters), loss = 0.5824 +I0407 22:40:13.997303 23673 solver.cpp:237] Train net output #0: loss = 0.5824 (* 1 = 0.5824 loss) +I0407 22:40:13.997316 23673 sgd_solver.cpp:105] Iteration 4812, lr = 0.00622425 +I0407 22:40:19.490329 23673 solver.cpp:218] Iteration 4824 (2.18466 iter/s, 5.49284s/12 iters), loss = 0.855713 +I0407 22:40:19.490375 23673 solver.cpp:237] Train net output #0: loss = 0.855713 (* 1 = 0.855713 loss) +I0407 22:40:19.490386 23673 sgd_solver.cpp:105] Iteration 4824, lr = 0.00621689 +I0407 22:40:24.748942 23673 solver.cpp:218] Iteration 4836 (2.28207 iter/s, 5.25839s/12 iters), loss = 0.642904 +I0407 22:40:24.749065 23673 solver.cpp:237] Train net output #0: loss = 0.642904 (* 1 = 0.642904 loss) +I0407 22:40:24.749078 23673 sgd_solver.cpp:105] Iteration 4836, lr = 0.00620954 +I0407 22:40:26.833170 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:40:29.870471 23673 solver.cpp:218] Iteration 4848 (2.34318 iter/s, 5.12124s/12 iters), loss = 0.752162 +I0407 22:40:29.870513 23673 solver.cpp:237] Train net output #0: loss = 0.752162 (* 1 = 0.752162 loss) +I0407 22:40:29.870522 23673 sgd_solver.cpp:105] Iteration 4848, lr = 0.00620221 +I0407 22:40:32.572352 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:35.048787 23673 solver.cpp:218] Iteration 4860 (2.31745 iter/s, 5.1781s/12 iters), loss = 0.472429 +I0407 22:40:35.048826 23673 solver.cpp:237] Train net output #0: loss = 0.472429 (* 1 = 0.472429 loss) +I0407 22:40:35.048836 23673 sgd_solver.cpp:105] Iteration 4860, lr = 0.00619488 +I0407 22:40:40.329208 23673 solver.cpp:218] Iteration 4872 (2.27264 iter/s, 5.2802s/12 iters), loss = 0.74669 +I0407 22:40:40.329263 23673 solver.cpp:237] Train net output #0: loss = 0.74669 (* 1 = 0.74669 loss) +I0407 22:40:40.329277 23673 sgd_solver.cpp:105] Iteration 4872, lr = 0.00618756 +I0407 22:40:45.571856 23673 solver.cpp:218] Iteration 4884 (2.28902 iter/s, 5.24241s/12 iters), loss = 0.382371 +I0407 22:40:45.571908 23673 solver.cpp:237] Train net output #0: loss = 0.382371 (* 1 = 0.382371 loss) +I0407 22:40:45.571920 23673 sgd_solver.cpp:105] Iteration 4884, lr = 0.00618025 +I0407 22:40:50.263481 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 22:40:54.245676 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 22:40:59.518647 23673 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 22:40:59.518707 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:41:01.975458 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:03.947198 23673 solver.cpp:397] Test net output #0: accuracy = 0.392157 +I0407 22:41:03.947247 23673 solver.cpp:397] Test net output #1: loss = 3.016 (* 1 = 3.016 loss) +I0407 22:41:04.038741 23673 solver.cpp:218] Iteration 4896 (0.64983 iter/s, 18.4664s/12 iters), loss = 0.611236 +I0407 22:41:04.038794 23673 solver.cpp:237] Train net output #0: loss = 0.611236 (* 1 = 0.611236 loss) +I0407 22:41:04.038805 23673 sgd_solver.cpp:105] Iteration 4896, lr = 0.00617294 +I0407 22:41:08.526548 23673 solver.cpp:218] Iteration 4908 (2.67401 iter/s, 4.48764s/12 iters), loss = 0.481163 +I0407 22:41:08.526594 23673 solver.cpp:237] Train net output #0: loss = 0.481163 (* 1 = 0.481163 loss) +I0407 22:41:08.526607 23673 sgd_solver.cpp:105] Iteration 4908, lr = 0.00616565 +I0407 22:41:13.628686 23673 solver.cpp:218] Iteration 4920 (2.35204 iter/s, 5.10196s/12 iters), loss = 0.731651 +I0407 22:41:13.628743 23673 solver.cpp:237] Train net output #0: loss = 0.731651 (* 1 = 0.731651 loss) +I0407 22:41:13.628756 23673 sgd_solver.cpp:105] Iteration 4920, lr = 0.00615836 +I0407 22:41:18.770048 23673 solver.cpp:218] Iteration 4932 (2.33409 iter/s, 5.14118s/12 iters), loss = 0.601572 +I0407 22:41:18.770085 23673 solver.cpp:237] Train net output #0: loss = 0.601572 (* 1 = 0.601572 loss) +I0407 22:41:18.770094 23673 sgd_solver.cpp:105] Iteration 4932, lr = 0.00615109 +I0407 22:41:23.903100 23673 solver.cpp:218] Iteration 4944 (2.33787 iter/s, 5.13288s/12 iters), loss = 0.677044 +I0407 22:41:23.903144 23673 solver.cpp:237] Train net output #0: loss = 0.677044 (* 1 = 0.677044 loss) +I0407 22:41:23.903156 23673 sgd_solver.cpp:105] Iteration 4944, lr = 0.00614382 +I0407 22:41:28.805536 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:29.014493 23673 solver.cpp:218] Iteration 4956 (2.34778 iter/s, 5.11121s/12 iters), loss = 0.367749 +I0407 22:41:29.014547 23673 solver.cpp:237] Train net output #0: loss = 0.367749 (* 1 = 0.367749 loss) +I0407 22:41:29.014559 23673 sgd_solver.cpp:105] Iteration 4956, lr = 0.00613656 +I0407 22:41:34.193559 23673 solver.cpp:218] Iteration 4968 (2.3171 iter/s, 5.17888s/12 iters), loss = 0.747932 +I0407 22:41:34.193693 23673 solver.cpp:237] Train net output #0: loss = 0.747932 (* 1 = 0.747932 loss) +I0407 22:41:34.193706 23673 sgd_solver.cpp:105] Iteration 4968, lr = 0.00612931 +I0407 22:41:39.207691 23673 solver.cpp:218] Iteration 4980 (2.39336 iter/s, 5.01387s/12 iters), loss = 0.726671 +I0407 22:41:39.207746 23673 solver.cpp:237] Train net output #0: loss = 0.726671 (* 1 = 0.726671 loss) +I0407 22:41:39.207759 23673 sgd_solver.cpp:105] Iteration 4980, lr = 0.00612206 +I0407 22:41:44.327844 23673 solver.cpp:218] Iteration 4992 (2.34377 iter/s, 5.11996s/12 iters), loss = 0.540761 +I0407 22:41:44.327898 23673 solver.cpp:237] Train net output #0: loss = 0.540761 (* 1 = 0.540761 loss) +I0407 22:41:44.327910 23673 sgd_solver.cpp:105] Iteration 4992, lr = 0.00611483 +I0407 22:41:46.435096 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 22:41:51.721155 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 22:41:54.065433 23673 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 22:41:54.065459 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:41:56.560379 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:58.559798 23673 solver.cpp:397] Test net output #0: accuracy = 0.377451 +I0407 22:41:58.559847 23673 solver.cpp:397] Test net output #1: loss = 3.05756 (* 1 = 3.05756 loss) +I0407 22:42:00.535274 23673 solver.cpp:218] Iteration 5004 (0.740422 iter/s, 16.207s/12 iters), loss = 0.663276 +I0407 22:42:00.535328 23673 solver.cpp:237] Train net output #0: loss = 0.663276 (* 1 = 0.663276 loss) +I0407 22:42:00.535339 23673 sgd_solver.cpp:105] Iteration 5004, lr = 0.0061076 +I0407 22:42:05.610554 23673 solver.cpp:218] Iteration 5016 (2.36449 iter/s, 5.07509s/12 iters), loss = 0.676496 +I0407 22:42:05.610653 23673 solver.cpp:237] Train net output #0: loss = 0.676496 (* 1 = 0.676496 loss) +I0407 22:42:05.610666 23673 sgd_solver.cpp:105] Iteration 5016, lr = 0.00610038 +I0407 22:42:10.713718 23673 solver.cpp:218] Iteration 5028 (2.35159 iter/s, 5.10293s/12 iters), loss = 0.421423 +I0407 22:42:10.713774 23673 solver.cpp:237] Train net output #0: loss = 0.421423 (* 1 = 0.421423 loss) +I0407 22:42:10.713788 23673 sgd_solver.cpp:105] Iteration 5028, lr = 0.00609318 +I0407 22:42:15.746600 23673 solver.cpp:218] Iteration 5040 (2.38441 iter/s, 5.0327s/12 iters), loss = 0.553635 +I0407 22:42:15.746647 23673 solver.cpp:237] Train net output #0: loss = 0.553635 (* 1 = 0.553635 loss) +I0407 22:42:15.746659 23673 sgd_solver.cpp:105] Iteration 5040, lr = 0.00608598 +I0407 22:42:20.706199 23673 solver.cpp:218] Iteration 5052 (2.41964 iter/s, 4.95943s/12 iters), loss = 0.457772 +I0407 22:42:20.706244 23673 solver.cpp:237] Train net output #0: loss = 0.457772 (* 1 = 0.457772 loss) +I0407 22:42:20.706254 23673 sgd_solver.cpp:105] Iteration 5052, lr = 0.00607878 +I0407 22:42:22.657606 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:25.799088 23673 solver.cpp:218] Iteration 5064 (2.35631 iter/s, 5.09271s/12 iters), loss = 0.508789 +I0407 22:42:25.799132 23673 solver.cpp:237] Train net output #0: loss = 0.508789 (* 1 = 0.508789 loss) +I0407 22:42:25.799141 23673 sgd_solver.cpp:105] Iteration 5064, lr = 0.0060716 +I0407 22:42:30.797117 23673 solver.cpp:218] Iteration 5076 (2.40103 iter/s, 4.99785s/12 iters), loss = 0.61289 +I0407 22:42:30.797160 23673 solver.cpp:237] Train net output #0: loss = 0.61289 (* 1 = 0.61289 loss) +I0407 22:42:30.797169 23673 sgd_solver.cpp:105] Iteration 5076, lr = 0.00606443 +I0407 22:42:35.801970 23673 solver.cpp:218] Iteration 5088 (2.39776 iter/s, 5.00466s/12 iters), loss = 0.428715 +I0407 22:42:35.802045 23673 solver.cpp:237] Train net output #0: loss = 0.428715 (* 1 = 0.428715 loss) +I0407 22:42:35.802057 23673 sgd_solver.cpp:105] Iteration 5088, lr = 0.00605726 +I0407 22:42:40.387598 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 22:42:46.334774 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 22:42:51.241573 23673 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 22:42:51.241597 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:42:53.694962 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:55.718497 23673 solver.cpp:397] Test net output #0: accuracy = 0.369485 +I0407 22:42:55.718540 23673 solver.cpp:397] Test net output #1: loss = 3.13582 (* 1 = 3.13582 loss) +I0407 22:42:55.809700 23673 solver.cpp:218] Iteration 5100 (0.599785 iter/s, 20.0072s/12 iters), loss = 0.578556 +I0407 22:42:55.809736 23673 solver.cpp:237] Train net output #0: loss = 0.578556 (* 1 = 0.578556 loss) +I0407 22:42:55.809746 23673 sgd_solver.cpp:105] Iteration 5100, lr = 0.0060501 +I0407 22:43:00.030073 23673 solver.cpp:218] Iteration 5112 (2.84345 iter/s, 4.22022s/12 iters), loss = 0.581513 +I0407 22:43:00.030118 23673 solver.cpp:237] Train net output #0: loss = 0.581513 (* 1 = 0.581513 loss) +I0407 22:43:00.030129 23673 sgd_solver.cpp:105] Iteration 5112, lr = 0.00604295 +I0407 22:43:05.380672 23673 solver.cpp:218] Iteration 5124 (2.24282 iter/s, 5.35041s/12 iters), loss = 0.482719 +I0407 22:43:05.380713 23673 solver.cpp:237] Train net output #0: loss = 0.482719 (* 1 = 0.482719 loss) +I0407 22:43:05.380722 23673 sgd_solver.cpp:105] Iteration 5124, lr = 0.00603581 +I0407 22:43:10.925992 23673 solver.cpp:218] Iteration 5136 (2.16406 iter/s, 5.54513s/12 iters), loss = 0.471126 +I0407 22:43:10.926112 23673 solver.cpp:237] Train net output #0: loss = 0.471126 (* 1 = 0.471126 loss) +I0407 22:43:10.926124 23673 sgd_solver.cpp:105] Iteration 5136, lr = 0.00602868 +I0407 22:43:16.408563 23673 solver.cpp:218] Iteration 5148 (2.18886 iter/s, 5.48231s/12 iters), loss = 0.558202 +I0407 22:43:16.408614 23673 solver.cpp:237] Train net output #0: loss = 0.558202 (* 1 = 0.558202 loss) +I0407 22:43:16.408625 23673 sgd_solver.cpp:105] Iteration 5148, lr = 0.00602156 +I0407 22:43:20.605777 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:21.524794 23673 solver.cpp:218] Iteration 5160 (2.34556 iter/s, 5.11604s/12 iters), loss = 0.487785 +I0407 22:43:21.524845 23673 solver.cpp:237] Train net output #0: loss = 0.487785 (* 1 = 0.487785 loss) +I0407 22:43:21.524857 23673 sgd_solver.cpp:105] Iteration 5160, lr = 0.00601444 +I0407 22:43:26.581692 23673 solver.cpp:218] Iteration 5172 (2.37309 iter/s, 5.0567s/12 iters), loss = 0.513661 +I0407 22:43:26.581748 23673 solver.cpp:237] Train net output #0: loss = 0.513661 (* 1 = 0.513661 loss) +I0407 22:43:26.581758 23673 sgd_solver.cpp:105] Iteration 5172, lr = 0.00600733 +I0407 22:43:31.806849 23673 solver.cpp:218] Iteration 5184 (2.29667 iter/s, 5.22496s/12 iters), loss = 0.443739 +I0407 22:43:31.806891 23673 solver.cpp:237] Train net output #0: loss = 0.443739 (* 1 = 0.443739 loss) +I0407 22:43:31.806901 23673 sgd_solver.cpp:105] Iteration 5184, lr = 0.00600024 +I0407 22:43:37.318637 23673 solver.cpp:218] Iteration 5196 (2.17723 iter/s, 5.5116s/12 iters), loss = 0.402819 +I0407 22:43:37.318686 23673 solver.cpp:237] Train net output #0: loss = 0.402819 (* 1 = 0.402819 loss) +I0407 22:43:37.318697 23673 sgd_solver.cpp:105] Iteration 5196, lr = 0.00599314 +I0407 22:43:39.596987 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 22:43:42.638571 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 22:43:45.028600 23673 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 22:43:45.028628 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:43:47.530706 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:49.696656 23673 solver.cpp:397] Test net output #0: accuracy = 0.38174 +I0407 22:43:49.696699 23673 solver.cpp:397] Test net output #1: loss = 3.13115 (* 1 = 3.13115 loss) +I0407 22:43:51.693588 23673 solver.cpp:218] Iteration 5208 (0.834811 iter/s, 14.3745s/12 iters), loss = 0.608102 +I0407 22:43:51.693672 23673 solver.cpp:237] Train net output #0: loss = 0.608102 (* 1 = 0.608102 loss) +I0407 22:43:51.693691 23673 sgd_solver.cpp:105] Iteration 5208, lr = 0.00598606 +I0407 22:43:56.910832 23673 solver.cpp:218] Iteration 5220 (2.30016 iter/s, 5.21703s/12 iters), loss = 0.550116 +I0407 22:43:56.910876 23673 solver.cpp:237] Train net output #0: loss = 0.550116 (* 1 = 0.550116 loss) +I0407 22:43:56.910887 23673 sgd_solver.cpp:105] Iteration 5220, lr = 0.00597899 +I0407 22:44:01.971045 23673 solver.cpp:218] Iteration 5232 (2.37153 iter/s, 5.06002s/12 iters), loss = 0.528228 +I0407 22:44:01.971101 23673 solver.cpp:237] Train net output #0: loss = 0.528228 (* 1 = 0.528228 loss) +I0407 22:44:01.971112 23673 sgd_solver.cpp:105] Iteration 5232, lr = 0.00597192 +I0407 22:44:07.304225 23673 solver.cpp:218] Iteration 5244 (2.25015 iter/s, 5.33298s/12 iters), loss = 0.508869 +I0407 22:44:07.304280 23673 solver.cpp:237] Train net output #0: loss = 0.508869 (* 1 = 0.508869 loss) +I0407 22:44:07.304291 23673 sgd_solver.cpp:105] Iteration 5244, lr = 0.00596487 +I0407 22:44:12.825397 23673 solver.cpp:218] Iteration 5256 (2.17353 iter/s, 5.52097s/12 iters), loss = 0.479492 +I0407 22:44:12.825521 23673 solver.cpp:237] Train net output #0: loss = 0.479492 (* 1 = 0.479492 loss) +I0407 22:44:12.825536 23673 sgd_solver.cpp:105] Iteration 5256, lr = 0.00595782 +I0407 22:44:14.254164 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:18.332973 23673 solver.cpp:218] Iteration 5268 (2.17893 iter/s, 5.5073s/12 iters), loss = 0.643354 +I0407 22:44:18.333031 23673 solver.cpp:237] Train net output #0: loss = 0.643354 (* 1 = 0.643354 loss) +I0407 22:44:18.333043 23673 sgd_solver.cpp:105] Iteration 5268, lr = 0.00595078 +I0407 22:44:23.871976 23673 solver.cpp:218] Iteration 5280 (2.16654 iter/s, 5.5388s/12 iters), loss = 0.582776 +I0407 22:44:23.872025 23673 solver.cpp:237] Train net output #0: loss = 0.582776 (* 1 = 0.582776 loss) +I0407 22:44:23.872036 23673 sgd_solver.cpp:105] Iteration 5280, lr = 0.00594375 +I0407 22:44:29.393095 23673 solver.cpp:218] Iteration 5292 (2.17355 iter/s, 5.52091s/12 iters), loss = 0.4629 +I0407 22:44:29.393146 23673 solver.cpp:237] Train net output #0: loss = 0.4629 (* 1 = 0.4629 loss) +I0407 22:44:29.393157 23673 sgd_solver.cpp:105] Iteration 5292, lr = 0.00593672 +I0407 22:44:34.396185 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 22:44:37.422484 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 22:44:41.333173 23673 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 22:44:41.333199 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:44:43.680351 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:45.779875 23673 solver.cpp:397] Test net output #0: accuracy = 0.397672 +I0407 22:44:45.779927 23673 solver.cpp:397] Test net output #1: loss = 2.96488 (* 1 = 2.96488 loss) +I0407 22:44:45.871322 23673 solver.cpp:218] Iteration 5304 (0.728255 iter/s, 16.4778s/12 iters), loss = 0.501838 +I0407 22:44:45.871366 23673 solver.cpp:237] Train net output #0: loss = 0.501838 (* 1 = 0.501838 loss) +I0407 22:44:45.871376 23673 sgd_solver.cpp:105] Iteration 5304, lr = 0.00592971 +I0407 22:44:50.209380 23673 solver.cpp:218] Iteration 5316 (2.76633 iter/s, 4.33788s/12 iters), loss = 0.507754 +I0407 22:44:50.209446 23673 solver.cpp:237] Train net output #0: loss = 0.507754 (* 1 = 0.507754 loss) +I0407 22:44:50.209463 23673 sgd_solver.cpp:105] Iteration 5316, lr = 0.0059227 +I0407 22:44:55.300499 23673 solver.cpp:218] Iteration 5328 (2.35714 iter/s, 5.09092s/12 iters), loss = 0.416805 +I0407 22:44:55.300544 23673 solver.cpp:237] Train net output #0: loss = 0.416805 (* 1 = 0.416805 loss) +I0407 22:44:55.300554 23673 sgd_solver.cpp:105] Iteration 5328, lr = 0.0059157 +I0407 22:45:00.225433 23673 solver.cpp:218] Iteration 5340 (2.43667 iter/s, 4.92475s/12 iters), loss = 0.478783 +I0407 22:45:00.225484 23673 solver.cpp:237] Train net output #0: loss = 0.478783 (* 1 = 0.478783 loss) +I0407 22:45:00.225497 23673 sgd_solver.cpp:105] Iteration 5340, lr = 0.00590871 +I0407 22:45:05.281608 23673 solver.cpp:218] Iteration 5352 (2.37343 iter/s, 5.05598s/12 iters), loss = 0.575504 +I0407 22:45:05.281656 23673 solver.cpp:237] Train net output #0: loss = 0.575504 (* 1 = 0.575504 loss) +I0407 22:45:05.281666 23673 sgd_solver.cpp:105] Iteration 5352, lr = 0.00590173 +I0407 22:45:09.049379 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:10.773983 23673 solver.cpp:218] Iteration 5364 (2.18493 iter/s, 5.49216s/12 iters), loss = 0.533216 +I0407 22:45:10.774039 23673 solver.cpp:237] Train net output #0: loss = 0.533216 (* 1 = 0.533216 loss) +I0407 22:45:10.774051 23673 sgd_solver.cpp:105] Iteration 5364, lr = 0.00589476 +I0407 22:45:16.184850 23673 solver.cpp:218] Iteration 5376 (2.21784 iter/s, 5.41066s/12 iters), loss = 0.55977 +I0407 22:45:16.184974 23673 solver.cpp:237] Train net output #0: loss = 0.55977 (* 1 = 0.55977 loss) +I0407 22:45:16.184984 23673 sgd_solver.cpp:105] Iteration 5376, lr = 0.00588779 +I0407 22:45:21.245271 23673 solver.cpp:218] Iteration 5388 (2.37147 iter/s, 5.06015s/12 iters), loss = 0.539675 +I0407 22:45:21.245323 23673 solver.cpp:237] Train net output #0: loss = 0.539675 (* 1 = 0.539675 loss) +I0407 22:45:21.245334 23673 sgd_solver.cpp:105] Iteration 5388, lr = 0.00588083 +I0407 22:45:26.233844 23673 solver.cpp:218] Iteration 5400 (2.4056 iter/s, 4.98837s/12 iters), loss = 0.436037 +I0407 22:45:26.233902 23673 solver.cpp:237] Train net output #0: loss = 0.436037 (* 1 = 0.436037 loss) +I0407 22:45:26.233916 23673 sgd_solver.cpp:105] Iteration 5400, lr = 0.00587388 +I0407 22:45:28.430538 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 22:45:31.382566 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 22:45:33.737066 23673 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 22:45:33.737092 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:45:36.057543 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:38.193642 23673 solver.cpp:397] Test net output #0: accuracy = 0.383578 +I0407 22:45:38.193691 23673 solver.cpp:397] Test net output #1: loss = 3.15454 (* 1 = 3.15454 loss) +I0407 22:45:40.212530 23673 solver.cpp:218] Iteration 5412 (0.858477 iter/s, 13.9783s/12 iters), loss = 0.385207 +I0407 22:45:40.212589 23673 solver.cpp:237] Train net output #0: loss = 0.385207 (* 1 = 0.385207 loss) +I0407 22:45:40.212601 23673 sgd_solver.cpp:105] Iteration 5412, lr = 0.00586694 +I0407 22:45:45.281904 23673 solver.cpp:218] Iteration 5424 (2.36725 iter/s, 5.06917s/12 iters), loss = 0.774517 +I0407 22:45:45.281951 23673 solver.cpp:237] Train net output #0: loss = 0.774517 (* 1 = 0.774517 loss) +I0407 22:45:45.281976 23673 sgd_solver.cpp:105] Iteration 5424, lr = 0.00586001 +I0407 22:45:50.358573 23673 solver.cpp:218] Iteration 5436 (2.36384 iter/s, 5.07648s/12 iters), loss = 0.366468 +I0407 22:45:50.358685 23673 solver.cpp:237] Train net output #0: loss = 0.366468 (* 1 = 0.366468 loss) +I0407 22:45:50.358700 23673 sgd_solver.cpp:105] Iteration 5436, lr = 0.00585308 +I0407 22:45:55.447274 23673 solver.cpp:218] Iteration 5448 (2.35829 iter/s, 5.08844s/12 iters), loss = 0.374619 +I0407 22:45:55.447332 23673 solver.cpp:237] Train net output #0: loss = 0.374619 (* 1 = 0.374619 loss) +I0407 22:45:55.447345 23673 sgd_solver.cpp:105] Iteration 5448, lr = 0.00584617 +I0407 22:46:00.859822 23673 solver.cpp:218] Iteration 5460 (2.21716 iter/s, 5.41233s/12 iters), loss = 0.628335 +I0407 22:46:00.859879 23673 solver.cpp:237] Train net output #0: loss = 0.628335 (* 1 = 0.628335 loss) +I0407 22:46:00.859892 23673 sgd_solver.cpp:105] Iteration 5460, lr = 0.00583926 +I0407 22:46:01.421283 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:05.923763 23673 solver.cpp:218] Iteration 5472 (2.36979 iter/s, 5.06374s/12 iters), loss = 0.523545 +I0407 22:46:05.923820 23673 solver.cpp:237] Train net output #0: loss = 0.523545 (* 1 = 0.523545 loss) +I0407 22:46:05.923832 23673 sgd_solver.cpp:105] Iteration 5472, lr = 0.00583236 +I0407 22:46:11.038614 23673 solver.cpp:218] Iteration 5484 (2.34621 iter/s, 5.11464s/12 iters), loss = 0.508037 +I0407 22:46:11.038671 23673 solver.cpp:237] Train net output #0: loss = 0.508037 (* 1 = 0.508037 loss) +I0407 22:46:11.038682 23673 sgd_solver.cpp:105] Iteration 5484, lr = 0.00582547 +I0407 22:46:16.118587 23673 solver.cpp:218] Iteration 5496 (2.36231 iter/s, 5.07977s/12 iters), loss = 0.531823 +I0407 22:46:16.118640 23673 solver.cpp:237] Train net output #0: loss = 0.531823 (* 1 = 0.531823 loss) +I0407 22:46:16.118651 23673 sgd_solver.cpp:105] Iteration 5496, lr = 0.00581858 +I0407 22:46:20.725937 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 22:46:23.669185 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 22:46:25.981492 23673 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 22:46:25.981518 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:46:28.257195 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:30.440711 23673 solver.cpp:397] Test net output #0: accuracy = 0.393382 +I0407 22:46:30.440760 23673 solver.cpp:397] Test net output #1: loss = 3.1126 (* 1 = 3.1126 loss) +I0407 22:46:30.532122 23673 solver.cpp:218] Iteration 5508 (0.832577 iter/s, 14.4131s/12 iters), loss = 0.53988 +I0407 22:46:30.532176 23673 solver.cpp:237] Train net output #0: loss = 0.53988 (* 1 = 0.53988 loss) +I0407 22:46:30.532188 23673 sgd_solver.cpp:105] Iteration 5508, lr = 0.00581171 +I0407 22:46:34.932876 23673 solver.cpp:218] Iteration 5520 (2.72692 iter/s, 4.40057s/12 iters), loss = 0.629333 +I0407 22:46:34.932927 23673 solver.cpp:237] Train net output #0: loss = 0.629333 (* 1 = 0.629333 loss) +I0407 22:46:34.932941 23673 sgd_solver.cpp:105] Iteration 5520, lr = 0.00580484 +I0407 22:46:37.496479 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:46:40.040994 23673 solver.cpp:218] Iteration 5532 (2.34929 iter/s, 5.10792s/12 iters), loss = 0.622639 +I0407 22:46:40.041040 23673 solver.cpp:237] Train net output #0: loss = 0.622639 (* 1 = 0.622639 loss) +I0407 22:46:40.041051 23673 sgd_solver.cpp:105] Iteration 5532, lr = 0.00579798 +I0407 22:46:45.132447 23673 solver.cpp:218] Iteration 5544 (2.35698 iter/s, 5.09126s/12 iters), loss = 0.513239 +I0407 22:46:45.132483 23673 solver.cpp:237] Train net output #0: loss = 0.513239 (* 1 = 0.513239 loss) +I0407 22:46:45.132493 23673 sgd_solver.cpp:105] Iteration 5544, lr = 0.00579113 +I0407 22:46:50.279917 23673 solver.cpp:218] Iteration 5556 (2.33133 iter/s, 5.14728s/12 iters), loss = 0.536228 +I0407 22:46:50.279963 23673 solver.cpp:237] Train net output #0: loss = 0.536228 (* 1 = 0.536228 loss) +I0407 22:46:50.279974 23673 sgd_solver.cpp:105] Iteration 5556, lr = 0.00578429 +I0407 22:46:53.050098 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:55.414453 23673 solver.cpp:218] Iteration 5568 (2.3372 iter/s, 5.13434s/12 iters), loss = 0.454606 +I0407 22:46:55.414502 23673 solver.cpp:237] Train net output #0: loss = 0.454606 (* 1 = 0.454606 loss) +I0407 22:46:55.414515 23673 sgd_solver.cpp:105] Iteration 5568, lr = 0.00577745 +I0407 22:47:00.618656 23673 solver.cpp:218] Iteration 5580 (2.30592 iter/s, 5.20401s/12 iters), loss = 0.422172 +I0407 22:47:00.618695 23673 solver.cpp:237] Train net output #0: loss = 0.422172 (* 1 = 0.422172 loss) +I0407 22:47:00.618705 23673 sgd_solver.cpp:105] Iteration 5580, lr = 0.00577062 +I0407 22:47:05.743815 23673 solver.cpp:218] Iteration 5592 (2.34148 iter/s, 5.12497s/12 iters), loss = 0.75693 +I0407 22:47:05.743862 23673 solver.cpp:237] Train net output #0: loss = 0.75693 (* 1 = 0.75693 loss) +I0407 22:47:05.743872 23673 sgd_solver.cpp:105] Iteration 5592, lr = 0.00576381 +I0407 22:47:10.793754 23673 solver.cpp:218] Iteration 5604 (2.37636 iter/s, 5.04974s/12 iters), loss = 0.403569 +I0407 22:47:10.793808 23673 solver.cpp:237] Train net output #0: loss = 0.403569 (* 1 = 0.403569 loss) +I0407 22:47:10.793820 23673 sgd_solver.cpp:105] Iteration 5604, lr = 0.00575699 +I0407 22:47:12.856156 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 22:47:16.936203 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 22:47:19.288066 23673 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 22:47:19.288094 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:47:21.584007 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:23.836328 23673 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0407 22:47:23.836464 23673 solver.cpp:397] Test net output #1: loss = 3.15931 (* 1 = 3.15931 loss) +I0407 22:47:25.845037 23673 solver.cpp:218] Iteration 5616 (0.797299 iter/s, 15.0508s/12 iters), loss = 0.425607 +I0407 22:47:25.845093 23673 solver.cpp:237] Train net output #0: loss = 0.425607 (* 1 = 0.425607 loss) +I0407 22:47:25.845104 23673 sgd_solver.cpp:105] Iteration 5616, lr = 0.00575019 +I0407 22:47:31.115873 23673 solver.cpp:218] Iteration 5628 (2.27677 iter/s, 5.27062s/12 iters), loss = 0.367853 +I0407 22:47:31.115931 23673 solver.cpp:237] Train net output #0: loss = 0.367853 (* 1 = 0.367853 loss) +I0407 22:47:31.115943 23673 sgd_solver.cpp:105] Iteration 5628, lr = 0.0057434 +I0407 22:47:36.114490 23673 solver.cpp:218] Iteration 5640 (2.40076 iter/s, 4.99842s/12 iters), loss = 0.419675 +I0407 22:47:36.114531 23673 solver.cpp:237] Train net output #0: loss = 0.419675 (* 1 = 0.419675 loss) +I0407 22:47:36.114539 23673 sgd_solver.cpp:105] Iteration 5640, lr = 0.00573661 +I0407 22:47:41.246680 23673 solver.cpp:218] Iteration 5652 (2.33827 iter/s, 5.132s/12 iters), loss = 0.238172 +I0407 22:47:41.246723 23673 solver.cpp:237] Train net output #0: loss = 0.238172 (* 1 = 0.238172 loss) +I0407 22:47:41.246734 23673 sgd_solver.cpp:105] Iteration 5652, lr = 0.00572983 +I0407 22:47:46.197834 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:46.376920 23673 solver.cpp:218] Iteration 5664 (2.33916 iter/s, 5.13005s/12 iters), loss = 0.489024 +I0407 22:47:46.376974 23673 solver.cpp:237] Train net output #0: loss = 0.489024 (* 1 = 0.489024 loss) +I0407 22:47:46.376988 23673 sgd_solver.cpp:105] Iteration 5664, lr = 0.00572306 +I0407 22:47:51.702484 23673 solver.cpp:218] Iteration 5676 (2.25337 iter/s, 5.32536s/12 iters), loss = 0.639075 +I0407 22:47:51.702531 23673 solver.cpp:237] Train net output #0: loss = 0.639075 (* 1 = 0.639075 loss) +I0407 22:47:51.702543 23673 sgd_solver.cpp:105] Iteration 5676, lr = 0.0057163 +I0407 22:47:56.806468 23673 solver.cpp:218] Iteration 5688 (2.3512 iter/s, 5.10378s/12 iters), loss = 0.513047 +I0407 22:47:56.806563 23673 solver.cpp:237] Train net output #0: loss = 0.513047 (* 1 = 0.513047 loss) +I0407 22:47:56.806576 23673 sgd_solver.cpp:105] Iteration 5688, lr = 0.00570954 +I0407 22:48:01.845527 23673 solver.cpp:218] Iteration 5700 (2.38151 iter/s, 5.03882s/12 iters), loss = 0.319407 +I0407 22:48:01.845578 23673 solver.cpp:237] Train net output #0: loss = 0.319407 (* 1 = 0.319407 loss) +I0407 22:48:01.845590 23673 sgd_solver.cpp:105] Iteration 5700, lr = 0.0057028 +I0407 22:48:06.470105 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 22:48:09.505340 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 22:48:11.843921 23673 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 22:48:11.843947 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:48:14.077327 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:16.330772 23673 solver.cpp:397] Test net output #0: accuracy = 0.401348 +I0407 22:48:16.330822 23673 solver.cpp:397] Test net output #1: loss = 3.12561 (* 1 = 3.12561 loss) +I0407 22:48:16.422089 23673 solver.cpp:218] Iteration 5712 (0.823265 iter/s, 14.5761s/12 iters), loss = 0.505359 +I0407 22:48:16.422138 23673 solver.cpp:237] Train net output #0: loss = 0.505359 (* 1 = 0.505359 loss) +I0407 22:48:16.422149 23673 sgd_solver.cpp:105] Iteration 5712, lr = 0.00569606 +I0407 22:48:21.016842 23673 solver.cpp:218] Iteration 5724 (2.61178 iter/s, 4.59456s/12 iters), loss = 0.383393 +I0407 22:48:21.016897 23673 solver.cpp:237] Train net output #0: loss = 0.383393 (* 1 = 0.383393 loss) +I0407 22:48:21.016909 23673 sgd_solver.cpp:105] Iteration 5724, lr = 0.00568933 +I0407 22:48:26.308791 23673 solver.cpp:218] Iteration 5736 (2.26768 iter/s, 5.29174s/12 iters), loss = 0.413877 +I0407 22:48:26.308836 23673 solver.cpp:237] Train net output #0: loss = 0.413877 (* 1 = 0.413877 loss) +I0407 22:48:26.308848 23673 sgd_solver.cpp:105] Iteration 5736, lr = 0.0056826 +I0407 22:48:31.479934 23673 solver.cpp:218] Iteration 5748 (2.32066 iter/s, 5.17094s/12 iters), loss = 0.545295 +I0407 22:48:31.480057 23673 solver.cpp:237] Train net output #0: loss = 0.545295 (* 1 = 0.545295 loss) +I0407 22:48:31.480070 23673 sgd_solver.cpp:105] Iteration 5748, lr = 0.00567589 +I0407 22:48:36.784691 23673 solver.cpp:218] Iteration 5760 (2.26224 iter/s, 5.30448s/12 iters), loss = 0.507455 +I0407 22:48:36.784750 23673 solver.cpp:237] Train net output #0: loss = 0.507455 (* 1 = 0.507455 loss) +I0407 22:48:36.784765 23673 sgd_solver.cpp:105] Iteration 5760, lr = 0.00566918 +I0407 22:48:38.938802 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:41.945719 23673 solver.cpp:218] Iteration 5772 (2.32521 iter/s, 5.16082s/12 iters), loss = 0.236098 +I0407 22:48:41.945765 23673 solver.cpp:237] Train net output #0: loss = 0.236098 (* 1 = 0.236098 loss) +I0407 22:48:41.945776 23673 sgd_solver.cpp:105] Iteration 5772, lr = 0.00566248 +I0407 22:48:47.059521 23673 solver.cpp:218] Iteration 5784 (2.34668 iter/s, 5.1136s/12 iters), loss = 0.403266 +I0407 22:48:47.059574 23673 solver.cpp:237] Train net output #0: loss = 0.403266 (* 1 = 0.403266 loss) +I0407 22:48:47.059587 23673 sgd_solver.cpp:105] Iteration 5784, lr = 0.00565579 +I0407 22:48:52.187373 23673 solver.cpp:218] Iteration 5796 (2.34026 iter/s, 5.12764s/12 iters), loss = 0.505418 +I0407 22:48:52.187431 23673 solver.cpp:237] Train net output #0: loss = 0.505418 (* 1 = 0.505418 loss) +I0407 22:48:52.187443 23673 sgd_solver.cpp:105] Iteration 5796, lr = 0.00564911 +I0407 22:48:57.269527 23673 solver.cpp:218] Iteration 5808 (2.3613 iter/s, 5.08195s/12 iters), loss = 0.545905 +I0407 22:48:57.269567 23673 solver.cpp:237] Train net output #0: loss = 0.545905 (* 1 = 0.545905 loss) +I0407 22:48:57.269577 23673 sgd_solver.cpp:105] Iteration 5808, lr = 0.00564243 +I0407 22:48:59.447887 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 22:49:02.422734 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 22:49:04.729907 23673 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 22:49:04.729929 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:49:06.911475 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:09.206818 23673 solver.cpp:397] Test net output #0: accuracy = 0.383578 +I0407 22:49:09.206857 23673 solver.cpp:397] Test net output #1: loss = 3.15516 (* 1 = 3.15516 loss) +I0407 22:49:11.024411 23673 solver.cpp:218] Iteration 5820 (0.872444 iter/s, 13.7545s/12 iters), loss = 0.485616 +I0407 22:49:11.024451 23673 solver.cpp:237] Train net output #0: loss = 0.485616 (* 1 = 0.485616 loss) +I0407 22:49:11.024461 23673 sgd_solver.cpp:105] Iteration 5820, lr = 0.00563576 +I0407 22:49:16.101222 23673 solver.cpp:218] Iteration 5832 (2.36378 iter/s, 5.07661s/12 iters), loss = 0.512632 +I0407 22:49:16.101279 23673 solver.cpp:237] Train net output #0: loss = 0.512632 (* 1 = 0.512632 loss) +I0407 22:49:16.101292 23673 sgd_solver.cpp:105] Iteration 5832, lr = 0.0056291 +I0407 22:49:21.204216 23673 solver.cpp:218] Iteration 5844 (2.35166 iter/s, 5.10278s/12 iters), loss = 0.351153 +I0407 22:49:21.204267 23673 solver.cpp:237] Train net output #0: loss = 0.351153 (* 1 = 0.351153 loss) +I0407 22:49:21.204277 23673 sgd_solver.cpp:105] Iteration 5844, lr = 0.00562245 +I0407 22:49:26.600899 23673 solver.cpp:218] Iteration 5856 (2.22368 iter/s, 5.39647s/12 iters), loss = 0.295288 +I0407 22:49:26.600950 23673 solver.cpp:237] Train net output #0: loss = 0.295288 (* 1 = 0.295288 loss) +I0407 22:49:26.600962 23673 sgd_solver.cpp:105] Iteration 5856, lr = 0.00561581 +I0407 22:49:31.115998 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:31.961457 23673 solver.cpp:218] Iteration 5868 (2.23866 iter/s, 5.36035s/12 iters), loss = 0.399765 +I0407 22:49:31.961503 23673 solver.cpp:237] Train net output #0: loss = 0.399765 (* 1 = 0.399765 loss) +I0407 22:49:31.961514 23673 sgd_solver.cpp:105] Iteration 5868, lr = 0.00560917 +I0407 22:49:36.975689 23673 solver.cpp:218] Iteration 5880 (2.39328 iter/s, 5.01404s/12 iters), loss = 0.517163 +I0407 22:49:36.975805 23673 solver.cpp:237] Train net output #0: loss = 0.517163 (* 1 = 0.517163 loss) +I0407 22:49:36.975816 23673 sgd_solver.cpp:105] Iteration 5880, lr = 0.00560254 +I0407 22:49:42.048811 23673 solver.cpp:218] Iteration 5892 (2.36553 iter/s, 5.07285s/12 iters), loss = 0.378885 +I0407 22:49:42.048859 23673 solver.cpp:237] Train net output #0: loss = 0.378885 (* 1 = 0.378885 loss) +I0407 22:49:42.048872 23673 sgd_solver.cpp:105] Iteration 5892, lr = 0.00559592 +I0407 22:49:47.076496 23673 solver.cpp:218] Iteration 5904 (2.38688 iter/s, 5.02748s/12 iters), loss = 0.431868 +I0407 22:49:47.076550 23673 solver.cpp:237] Train net output #0: loss = 0.431868 (* 1 = 0.431868 loss) +I0407 22:49:47.076563 23673 sgd_solver.cpp:105] Iteration 5904, lr = 0.00558931 +I0407 22:49:51.965667 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 22:49:55.220352 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 22:49:57.543735 23673 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 22:49:57.543762 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:49:59.788784 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:02.232060 23673 solver.cpp:397] Test net output #0: accuracy = 0.392157 +I0407 22:50:02.232103 23673 solver.cpp:397] Test net output #1: loss = 3.09801 (* 1 = 3.09801 loss) +I0407 22:50:02.323704 23673 solver.cpp:218] Iteration 5916 (0.787054 iter/s, 15.2467s/12 iters), loss = 0.328902 +I0407 22:50:02.323745 23673 solver.cpp:237] Train net output #0: loss = 0.328902 (* 1 = 0.328902 loss) +I0407 22:50:02.323755 23673 sgd_solver.cpp:105] Iteration 5916, lr = 0.00558271 +I0407 22:50:06.780438 23673 solver.cpp:218] Iteration 5928 (2.69266 iter/s, 4.45655s/12 iters), loss = 0.268474 +I0407 22:50:06.780493 23673 solver.cpp:237] Train net output #0: loss = 0.268474 (* 1 = 0.268474 loss) +I0407 22:50:06.780504 23673 sgd_solver.cpp:105] Iteration 5928, lr = 0.00557611 +I0407 22:50:12.184980 23673 solver.cpp:218] Iteration 5940 (2.22044 iter/s, 5.40433s/12 iters), loss = 0.447216 +I0407 22:50:12.185060 23673 solver.cpp:237] Train net output #0: loss = 0.447216 (* 1 = 0.447216 loss) +I0407 22:50:12.185071 23673 sgd_solver.cpp:105] Iteration 5940, lr = 0.00556952 +I0407 22:50:17.236721 23673 solver.cpp:218] Iteration 5952 (2.37553 iter/s, 5.05151s/12 iters), loss = 0.350745 +I0407 22:50:17.236760 23673 solver.cpp:237] Train net output #0: loss = 0.350745 (* 1 = 0.350745 loss) +I0407 22:50:17.236769 23673 sgd_solver.cpp:105] Iteration 5952, lr = 0.00556294 +I0407 22:50:22.516779 23673 solver.cpp:218] Iteration 5964 (2.27279 iter/s, 5.27986s/12 iters), loss = 0.389845 +I0407 22:50:22.516839 23673 solver.cpp:237] Train net output #0: loss = 0.389845 (* 1 = 0.389845 loss) +I0407 22:50:22.516855 23673 sgd_solver.cpp:105] Iteration 5964, lr = 0.00555637 +I0407 22:50:23.844664 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:27.629382 23673 solver.cpp:218] Iteration 5976 (2.34724 iter/s, 5.11239s/12 iters), loss = 0.431547 +I0407 22:50:27.629429 23673 solver.cpp:237] Train net output #0: loss = 0.431547 (* 1 = 0.431547 loss) +I0407 22:50:27.629441 23673 sgd_solver.cpp:105] Iteration 5976, lr = 0.0055498 +I0407 22:50:32.725519 23673 solver.cpp:218] Iteration 5988 (2.35482 iter/s, 5.09594s/12 iters), loss = 0.359758 +I0407 22:50:32.725566 23673 solver.cpp:237] Train net output #0: loss = 0.359758 (* 1 = 0.359758 loss) +I0407 22:50:32.725577 23673 sgd_solver.cpp:105] Iteration 5988, lr = 0.00554324 +I0407 22:50:37.785986 23673 solver.cpp:218] Iteration 6000 (2.37142 iter/s, 5.06026s/12 iters), loss = 0.405498 +I0407 22:50:37.786044 23673 solver.cpp:237] Train net output #0: loss = 0.405498 (* 1 = 0.405498 loss) +I0407 22:50:37.786058 23673 sgd_solver.cpp:105] Iteration 6000, lr = 0.00553669 +I0407 22:50:42.867772 23673 solver.cpp:218] Iteration 6012 (2.36147 iter/s, 5.08158s/12 iters), loss = 0.374134 +I0407 22:50:42.867868 23673 solver.cpp:237] Train net output #0: loss = 0.374134 (* 1 = 0.374134 loss) +I0407 22:50:42.867878 23673 sgd_solver.cpp:105] Iteration 6012, lr = 0.00553015 +I0407 22:50:44.883631 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 22:50:47.852880 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 22:50:51.929128 23673 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 22:50:51.929152 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:50:53.978631 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:56.430701 23673 solver.cpp:397] Test net output #0: accuracy = 0.400735 +I0407 22:50:56.430739 23673 solver.cpp:397] Test net output #1: loss = 3.10412 (* 1 = 3.10412 loss) +I0407 22:50:58.353909 23673 solver.cpp:218] Iteration 6024 (0.774913 iter/s, 15.4856s/12 iters), loss = 0.489515 +I0407 22:50:58.353951 23673 solver.cpp:237] Train net output #0: loss = 0.489515 (* 1 = 0.489515 loss) +I0407 22:50:58.353969 23673 sgd_solver.cpp:105] Iteration 6024, lr = 0.00552361 +I0407 22:51:03.375481 23673 solver.cpp:218] Iteration 6036 (2.38978 iter/s, 5.02137s/12 iters), loss = 0.228991 +I0407 22:51:03.375531 23673 solver.cpp:237] Train net output #0: loss = 0.228991 (* 1 = 0.228991 loss) +I0407 22:51:03.375542 23673 sgd_solver.cpp:105] Iteration 6036, lr = 0.00551709 +I0407 22:51:08.446206 23673 solver.cpp:218] Iteration 6048 (2.36662 iter/s, 5.07053s/12 iters), loss = 0.256993 +I0407 22:51:08.446247 23673 solver.cpp:237] Train net output #0: loss = 0.256993 (* 1 = 0.256993 loss) +I0407 22:51:08.446256 23673 sgd_solver.cpp:105] Iteration 6048, lr = 0.00551057 +I0407 22:51:13.505558 23673 solver.cpp:218] Iteration 6060 (2.37194 iter/s, 5.05916s/12 iters), loss = 0.325446 +I0407 22:51:13.505630 23673 solver.cpp:237] Train net output #0: loss = 0.325446 (* 1 = 0.325446 loss) +I0407 22:51:13.505641 23673 sgd_solver.cpp:105] Iteration 6060, lr = 0.00550406 +I0407 22:51:17.016238 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:18.581784 23673 solver.cpp:218] Iteration 6072 (2.36407 iter/s, 5.076s/12 iters), loss = 0.483867 +I0407 22:51:18.581830 23673 solver.cpp:237] Train net output #0: loss = 0.483867 (* 1 = 0.483867 loss) +I0407 22:51:18.581840 23673 sgd_solver.cpp:105] Iteration 6072, lr = 0.00549755 +I0407 22:51:24.061378 23673 solver.cpp:218] Iteration 6084 (2.19003 iter/s, 5.47938s/12 iters), loss = 0.364256 +I0407 22:51:24.061421 23673 solver.cpp:237] Train net output #0: loss = 0.364256 (* 1 = 0.364256 loss) +I0407 22:51:24.061430 23673 sgd_solver.cpp:105] Iteration 6084, lr = 0.00549106 +I0407 22:51:29.408099 23673 solver.cpp:218] Iteration 6096 (2.24445 iter/s, 5.34651s/12 iters), loss = 0.34089 +I0407 22:51:29.408144 23673 solver.cpp:237] Train net output #0: loss = 0.34089 (* 1 = 0.34089 loss) +I0407 22:51:29.408156 23673 sgd_solver.cpp:105] Iteration 6096, lr = 0.00548457 +I0407 22:51:34.924008 23673 solver.cpp:218] Iteration 6108 (2.17561 iter/s, 5.5157s/12 iters), loss = 0.346168 +I0407 22:51:34.924062 23673 solver.cpp:237] Train net output #0: loss = 0.346168 (* 1 = 0.346168 loss) +I0407 22:51:34.924077 23673 sgd_solver.cpp:105] Iteration 6108, lr = 0.00547809 +I0407 22:51:39.854722 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 22:51:44.150876 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 22:51:48.746294 23673 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 22:51:48.746320 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:51:50.819880 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:53.229784 23673 solver.cpp:397] Test net output #0: accuracy = 0.400735 +I0407 22:51:53.229820 23673 solver.cpp:397] Test net output #1: loss = 3.15334 (* 1 = 3.15334 loss) +I0407 22:51:53.321441 23673 solver.cpp:218] Iteration 6120 (0.652285 iter/s, 18.3969s/12 iters), loss = 0.290375 +I0407 22:51:53.321482 23673 solver.cpp:237] Train net output #0: loss = 0.290375 (* 1 = 0.290375 loss) +I0407 22:51:53.321491 23673 sgd_solver.cpp:105] Iteration 6120, lr = 0.00547161 +I0407 22:51:57.676206 23673 solver.cpp:218] Iteration 6132 (2.75572 iter/s, 4.35458s/12 iters), loss = 0.325843 +I0407 22:51:57.676260 23673 solver.cpp:237] Train net output #0: loss = 0.325843 (* 1 = 0.325843 loss) +I0407 22:51:57.676272 23673 sgd_solver.cpp:105] Iteration 6132, lr = 0.00546515 +I0407 22:52:02.763180 23673 solver.cpp:218] Iteration 6144 (2.35906 iter/s, 5.08676s/12 iters), loss = 0.332183 +I0407 22:52:02.763244 23673 solver.cpp:237] Train net output #0: loss = 0.332183 (* 1 = 0.332183 loss) +I0407 22:52:02.763260 23673 sgd_solver.cpp:105] Iteration 6144, lr = 0.00545869 +I0407 22:52:07.699460 23673 solver.cpp:218] Iteration 6156 (2.43109 iter/s, 4.93606s/12 iters), loss = 0.601704 +I0407 22:52:07.699515 23673 solver.cpp:237] Train net output #0: loss = 0.601704 (* 1 = 0.601704 loss) +I0407 22:52:07.699528 23673 sgd_solver.cpp:105] Iteration 6156, lr = 0.00545224 +I0407 22:52:12.792317 23673 solver.cpp:218] Iteration 6168 (2.35634 iter/s, 5.09264s/12 iters), loss = 0.321145 +I0407 22:52:12.792371 23673 solver.cpp:237] Train net output #0: loss = 0.321145 (* 1 = 0.321145 loss) +I0407 22:52:12.792383 23673 sgd_solver.cpp:105] Iteration 6168, lr = 0.0054458 +I0407 22:52:13.393234 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:17.931668 23673 solver.cpp:218] Iteration 6180 (2.33502 iter/s, 5.13914s/12 iters), loss = 0.370388 +I0407 22:52:17.931766 23673 solver.cpp:237] Train net output #0: loss = 0.370388 (* 1 = 0.370388 loss) +I0407 22:52:17.931777 23673 sgd_solver.cpp:105] Iteration 6180, lr = 0.00543936 +I0407 22:52:23.022089 23673 solver.cpp:218] Iteration 6192 (2.35749 iter/s, 5.09016s/12 iters), loss = 0.378975 +I0407 22:52:23.022141 23673 solver.cpp:237] Train net output #0: loss = 0.378975 (* 1 = 0.378975 loss) +I0407 22:52:23.022152 23673 sgd_solver.cpp:105] Iteration 6192, lr = 0.00543293 +I0407 22:52:28.119503 23673 solver.cpp:218] Iteration 6204 (2.35423 iter/s, 5.09721s/12 iters), loss = 0.429114 +I0407 22:52:28.119546 23673 solver.cpp:237] Train net output #0: loss = 0.429114 (* 1 = 0.429114 loss) +I0407 22:52:28.119556 23673 sgd_solver.cpp:105] Iteration 6204, lr = 0.00542651 +I0407 22:52:33.243250 23673 solver.cpp:218] Iteration 6216 (2.34213 iter/s, 5.12354s/12 iters), loss = 0.281007 +I0407 22:52:33.243309 23673 solver.cpp:237] Train net output #0: loss = 0.281007 (* 1 = 0.281007 loss) +I0407 22:52:33.243321 23673 sgd_solver.cpp:105] Iteration 6216, lr = 0.0054201 +I0407 22:52:35.380771 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 22:52:42.273397 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 22:52:47.697518 23673 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 22:52:47.697543 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:52:49.727952 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:51.005651 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:52:52.179177 23673 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0407 22:52:52.179216 23673 solver.cpp:397] Test net output #1: loss = 3.12422 (* 1 = 3.12422 loss) +I0407 22:52:54.042909 23673 solver.cpp:218] Iteration 6228 (0.576951 iter/s, 20.799s/12 iters), loss = 0.220968 +I0407 22:52:54.042955 23673 solver.cpp:237] Train net output #0: loss = 0.220968 (* 1 = 0.220968 loss) +I0407 22:52:54.042966 23673 sgd_solver.cpp:105] Iteration 6228, lr = 0.0054137 +I0407 22:52:59.134734 23673 solver.cpp:218] Iteration 6240 (2.35681 iter/s, 5.09162s/12 iters), loss = 0.356742 +I0407 22:52:59.134778 23673 solver.cpp:237] Train net output #0: loss = 0.356742 (* 1 = 0.356742 loss) +I0407 22:52:59.134788 23673 sgd_solver.cpp:105] Iteration 6240, lr = 0.0054073 +I0407 22:53:04.183861 23673 solver.cpp:218] Iteration 6252 (2.37674 iter/s, 5.04893s/12 iters), loss = 0.376241 +I0407 22:53:04.183902 23673 solver.cpp:237] Train net output #0: loss = 0.376241 (* 1 = 0.376241 loss) +I0407 22:53:04.183914 23673 sgd_solver.cpp:105] Iteration 6252, lr = 0.00540091 +I0407 22:53:09.296792 23673 solver.cpp:218] Iteration 6264 (2.34708 iter/s, 5.11273s/12 iters), loss = 0.319341 +I0407 22:53:09.296846 23673 solver.cpp:237] Train net output #0: loss = 0.319341 (* 1 = 0.319341 loss) +I0407 22:53:09.296859 23673 sgd_solver.cpp:105] Iteration 6264, lr = 0.00539453 +I0407 22:53:12.201012 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:14.664011 23673 solver.cpp:218] Iteration 6276 (2.23589 iter/s, 5.367s/12 iters), loss = 0.363225 +I0407 22:53:14.664057 23673 solver.cpp:237] Train net output #0: loss = 0.363225 (* 1 = 0.363225 loss) +I0407 22:53:14.664067 23673 sgd_solver.cpp:105] Iteration 6276, lr = 0.00538815 +I0407 22:53:20.133460 23673 solver.cpp:218] Iteration 6288 (2.19409 iter/s, 5.46923s/12 iters), loss = 0.342467 +I0407 22:53:20.133531 23673 solver.cpp:237] Train net output #0: loss = 0.342467 (* 1 = 0.342467 loss) +I0407 22:53:20.133540 23673 sgd_solver.cpp:105] Iteration 6288, lr = 0.00538178 +I0407 22:53:25.222715 23673 solver.cpp:218] Iteration 6300 (2.35801 iter/s, 5.08903s/12 iters), loss = 0.372968 +I0407 22:53:25.222765 23673 solver.cpp:237] Train net output #0: loss = 0.372968 (* 1 = 0.372968 loss) +I0407 22:53:25.222774 23673 sgd_solver.cpp:105] Iteration 6300, lr = 0.00537543 +I0407 22:53:30.259819 23673 solver.cpp:218] Iteration 6312 (2.38242 iter/s, 5.03689s/12 iters), loss = 0.303949 +I0407 22:53:30.259861 23673 solver.cpp:237] Train net output #0: loss = 0.303949 (* 1 = 0.303949 loss) +I0407 22:53:30.259871 23673 sgd_solver.cpp:105] Iteration 6312, lr = 0.00536907 +I0407 22:53:34.876739 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 22:53:40.157480 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 22:53:42.693208 23673 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 22:53:42.693238 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:53:44.682263 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:47.171306 23673 solver.cpp:397] Test net output #0: accuracy = 0.398284 +I0407 22:53:47.171356 23673 solver.cpp:397] Test net output #1: loss = 3.13932 (* 1 = 3.13932 loss) +I0407 22:53:47.262884 23673 solver.cpp:218] Iteration 6324 (0.705778 iter/s, 17.0025s/12 iters), loss = 0.21941 +I0407 22:53:47.262939 23673 solver.cpp:237] Train net output #0: loss = 0.21941 (* 1 = 0.21941 loss) +I0407 22:53:47.262951 23673 sgd_solver.cpp:105] Iteration 6324, lr = 0.00536273 +I0407 22:53:51.543536 23673 solver.cpp:218] Iteration 6336 (2.80344 iter/s, 4.28046s/12 iters), loss = 0.422834 +I0407 22:53:51.543604 23673 solver.cpp:237] Train net output #0: loss = 0.422834 (* 1 = 0.422834 loss) +I0407 22:53:51.543614 23673 sgd_solver.cpp:105] Iteration 6336, lr = 0.00535639 +I0407 22:53:56.552464 23673 solver.cpp:218] Iteration 6348 (2.39583 iter/s, 5.0087s/12 iters), loss = 0.349196 +I0407 22:53:56.552510 23673 solver.cpp:237] Train net output #0: loss = 0.349196 (* 1 = 0.349196 loss) +I0407 22:53:56.552521 23673 sgd_solver.cpp:105] Iteration 6348, lr = 0.00535006 +I0407 22:54:01.645823 23673 solver.cpp:218] Iteration 6360 (2.3561 iter/s, 5.09316s/12 iters), loss = 0.278238 +I0407 22:54:01.645865 23673 solver.cpp:237] Train net output #0: loss = 0.278238 (* 1 = 0.278238 loss) +I0407 22:54:01.645874 23673 sgd_solver.cpp:105] Iteration 6360, lr = 0.00534374 +I0407 22:54:06.646937 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:06.802018 23673 solver.cpp:218] Iteration 6372 (2.32739 iter/s, 5.15599s/12 iters), loss = 0.375996 +I0407 22:54:06.802058 23673 solver.cpp:237] Train net output #0: loss = 0.375996 (* 1 = 0.375996 loss) +I0407 22:54:06.802067 23673 sgd_solver.cpp:105] Iteration 6372, lr = 0.00533743 +I0407 22:54:12.464076 23673 solver.cpp:218] Iteration 6384 (2.11945 iter/s, 5.66184s/12 iters), loss = 0.434877 +I0407 22:54:12.464128 23673 solver.cpp:237] Train net output #0: loss = 0.434877 (* 1 = 0.434877 loss) +I0407 22:54:12.464140 23673 sgd_solver.cpp:105] Iteration 6384, lr = 0.00533112 +I0407 22:54:17.794364 23673 solver.cpp:218] Iteration 6396 (2.25138 iter/s, 5.33007s/12 iters), loss = 0.254869 +I0407 22:54:17.794411 23673 solver.cpp:237] Train net output #0: loss = 0.254869 (* 1 = 0.254869 loss) +I0407 22:54:17.794427 23673 sgd_solver.cpp:105] Iteration 6396, lr = 0.00532482 +I0407 22:54:22.861769 23673 solver.cpp:218] Iteration 6408 (2.36817 iter/s, 5.0672s/12 iters), loss = 0.332238 +I0407 22:54:22.861865 23673 solver.cpp:237] Train net output #0: loss = 0.332238 (* 1 = 0.332238 loss) +I0407 22:54:22.861876 23673 sgd_solver.cpp:105] Iteration 6408, lr = 0.00531853 +I0407 22:54:28.248448 23673 solver.cpp:218] Iteration 6420 (2.22783 iter/s, 5.38642s/12 iters), loss = 0.368036 +I0407 22:54:28.248493 23673 solver.cpp:237] Train net output #0: loss = 0.368036 (* 1 = 0.368036 loss) +I0407 22:54:28.248507 23673 sgd_solver.cpp:105] Iteration 6420, lr = 0.00531224 +I0407 22:54:30.513255 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 22:54:34.247182 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 22:54:36.574715 23673 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 22:54:36.574743 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:54:38.528038 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:41.114014 23673 solver.cpp:397] Test net output #0: accuracy = 0.413603 +I0407 22:54:41.114060 23673 solver.cpp:397] Test net output #1: loss = 3.03721 (* 1 = 3.03721 loss) +I0407 22:54:42.926709 23673 solver.cpp:218] Iteration 6432 (0.817562 iter/s, 14.6778s/12 iters), loss = 0.306451 +I0407 22:54:42.926755 23673 solver.cpp:237] Train net output #0: loss = 0.306451 (* 1 = 0.306451 loss) +I0407 22:54:42.926767 23673 sgd_solver.cpp:105] Iteration 6432, lr = 0.00530596 +I0407 22:54:47.937263 23673 solver.cpp:218] Iteration 6444 (2.39504 iter/s, 5.01034s/12 iters), loss = 0.311133 +I0407 22:54:47.937325 23673 solver.cpp:237] Train net output #0: loss = 0.311133 (* 1 = 0.311133 loss) +I0407 22:54:47.937337 23673 sgd_solver.cpp:105] Iteration 6444, lr = 0.00529969 +I0407 22:54:53.125285 23673 solver.cpp:218] Iteration 6456 (2.31312 iter/s, 5.18779s/12 iters), loss = 0.310253 +I0407 22:54:53.125377 23673 solver.cpp:237] Train net output #0: loss = 0.310253 (* 1 = 0.310253 loss) +I0407 22:54:53.125391 23673 sgd_solver.cpp:105] Iteration 6456, lr = 0.00529343 +I0407 22:54:58.281380 23673 solver.cpp:218] Iteration 6468 (2.32746 iter/s, 5.15584s/12 iters), loss = 0.467715 +I0407 22:54:58.281440 23673 solver.cpp:237] Train net output #0: loss = 0.467715 (* 1 = 0.467715 loss) +I0407 22:54:58.281451 23673 sgd_solver.cpp:105] Iteration 6468, lr = 0.00528718 +I0407 22:55:00.266207 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:03.425925 23673 solver.cpp:218] Iteration 6480 (2.33267 iter/s, 5.14432s/12 iters), loss = 0.311095 +I0407 22:55:03.425992 23673 solver.cpp:237] Train net output #0: loss = 0.311095 (* 1 = 0.311095 loss) +I0407 22:55:03.426002 23673 sgd_solver.cpp:105] Iteration 6480, lr = 0.00528093 +I0407 22:55:08.698861 23673 solver.cpp:218] Iteration 6492 (2.27587 iter/s, 5.2727s/12 iters), loss = 0.332551 +I0407 22:55:08.698917 23673 solver.cpp:237] Train net output #0: loss = 0.332551 (* 1 = 0.332551 loss) +I0407 22:55:08.698928 23673 sgd_solver.cpp:105] Iteration 6492, lr = 0.00527469 +I0407 22:55:14.211683 23673 solver.cpp:218] Iteration 6504 (2.17683 iter/s, 5.5126s/12 iters), loss = 0.339227 +I0407 22:55:14.211733 23673 solver.cpp:237] Train net output #0: loss = 0.339227 (* 1 = 0.339227 loss) +I0407 22:55:14.211745 23673 sgd_solver.cpp:105] Iteration 6504, lr = 0.00526846 +I0407 22:55:19.749534 23673 solver.cpp:218] Iteration 6516 (2.16699 iter/s, 5.53763s/12 iters), loss = 0.20099 +I0407 22:55:19.749580 23673 solver.cpp:237] Train net output #0: loss = 0.20099 (* 1 = 0.20099 loss) +I0407 22:55:19.749591 23673 sgd_solver.cpp:105] Iteration 6516, lr = 0.00526223 +I0407 22:55:24.666749 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 22:55:27.695643 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 22:55:30.008271 23673 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 22:55:30.008296 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:55:31.909055 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:34.492071 23673 solver.cpp:397] Test net output #0: accuracy = 0.401348 +I0407 22:55:34.492116 23673 solver.cpp:397] Test net output #1: loss = 3.05562 (* 1 = 3.05562 loss) +I0407 22:55:34.583665 23673 solver.cpp:218] Iteration 6528 (0.808972 iter/s, 14.8336s/12 iters), loss = 0.456931 +I0407 22:55:34.583721 23673 solver.cpp:237] Train net output #0: loss = 0.456931 (* 1 = 0.456931 loss) +I0407 22:55:34.583734 23673 sgd_solver.cpp:105] Iteration 6528, lr = 0.00525601 +I0407 22:55:38.998121 23673 solver.cpp:218] Iteration 6540 (2.71847 iter/s, 4.41425s/12 iters), loss = 0.261815 +I0407 22:55:38.998175 23673 solver.cpp:237] Train net output #0: loss = 0.261815 (* 1 = 0.261815 loss) +I0407 22:55:38.998188 23673 sgd_solver.cpp:105] Iteration 6540, lr = 0.0052498 +I0407 22:55:44.155174 23673 solver.cpp:218] Iteration 6552 (2.32701 iter/s, 5.15682s/12 iters), loss = 0.204952 +I0407 22:55:44.155225 23673 solver.cpp:237] Train net output #0: loss = 0.204951 (* 1 = 0.204951 loss) +I0407 22:55:44.155236 23673 sgd_solver.cpp:105] Iteration 6552, lr = 0.0052436 +I0407 22:55:49.288233 23673 solver.cpp:218] Iteration 6564 (2.33788 iter/s, 5.13285s/12 iters), loss = 0.278702 +I0407 22:55:49.288292 23673 solver.cpp:237] Train net output #0: loss = 0.278702 (* 1 = 0.278702 loss) +I0407 22:55:49.288309 23673 sgd_solver.cpp:105] Iteration 6564, lr = 0.0052374 +I0407 22:55:53.640599 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:54.408989 23673 solver.cpp:218] Iteration 6576 (2.3435 iter/s, 5.12054s/12 iters), loss = 0.390311 +I0407 22:55:54.409037 23673 solver.cpp:237] Train net output #0: loss = 0.390311 (* 1 = 0.390311 loss) +I0407 22:55:54.409050 23673 sgd_solver.cpp:105] Iteration 6576, lr = 0.00523121 +I0407 22:55:59.481379 23673 solver.cpp:218] Iteration 6588 (2.36584 iter/s, 5.07218s/12 iters), loss = 0.214206 +I0407 22:55:59.481464 23673 solver.cpp:237] Train net output #0: loss = 0.214206 (* 1 = 0.214206 loss) +I0407 22:55:59.481477 23673 sgd_solver.cpp:105] Iteration 6588, lr = 0.00522503 +I0407 22:56:04.541595 23673 solver.cpp:218] Iteration 6600 (2.37155 iter/s, 5.05997s/12 iters), loss = 0.341912 +I0407 22:56:04.541648 23673 solver.cpp:237] Train net output #0: loss = 0.341912 (* 1 = 0.341912 loss) +I0407 22:56:04.541661 23673 sgd_solver.cpp:105] Iteration 6600, lr = 0.00521886 +I0407 22:56:09.543640 23673 solver.cpp:218] Iteration 6612 (2.39912 iter/s, 5.00184s/12 iters), loss = 0.360174 +I0407 22:56:09.543692 23673 solver.cpp:237] Train net output #0: loss = 0.360174 (* 1 = 0.360174 loss) +I0407 22:56:09.543705 23673 sgd_solver.cpp:105] Iteration 6612, lr = 0.00521269 +I0407 22:56:14.662449 23673 solver.cpp:218] Iteration 6624 (2.34439 iter/s, 5.1186s/12 iters), loss = 0.256395 +I0407 22:56:14.662503 23673 solver.cpp:237] Train net output #0: loss = 0.256395 (* 1 = 0.256395 loss) +I0407 22:56:14.662515 23673 sgd_solver.cpp:105] Iteration 6624, lr = 0.00520653 +I0407 22:56:16.743230 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 22:56:19.854549 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 22:56:25.151602 23673 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 22:56:25.151628 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:56:26.985170 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:29.589735 23673 solver.cpp:397] Test net output #0: accuracy = 0.409926 +I0407 22:56:29.589870 23673 solver.cpp:397] Test net output #1: loss = 3.03397 (* 1 = 3.03397 loss) +I0407 22:56:31.395449 23673 solver.cpp:218] Iteration 6636 (0.717169 iter/s, 16.7324s/12 iters), loss = 0.205399 +I0407 22:56:31.395509 23673 solver.cpp:237] Train net output #0: loss = 0.205399 (* 1 = 0.205399 loss) +I0407 22:56:31.395521 23673 sgd_solver.cpp:105] Iteration 6636, lr = 0.00520038 +I0407 22:56:36.368191 23673 solver.cpp:218] Iteration 6648 (2.41326 iter/s, 4.97253s/12 iters), loss = 0.351782 +I0407 22:56:36.368237 23673 solver.cpp:237] Train net output #0: loss = 0.351782 (* 1 = 0.351782 loss) +I0407 22:56:36.368248 23673 sgd_solver.cpp:105] Iteration 6648, lr = 0.00519423 +I0407 22:56:41.316531 23673 solver.cpp:218] Iteration 6660 (2.42516 iter/s, 4.94813s/12 iters), loss = 0.297979 +I0407 22:56:41.316597 23673 solver.cpp:237] Train net output #0: loss = 0.297979 (* 1 = 0.297979 loss) +I0407 22:56:41.316610 23673 sgd_solver.cpp:105] Iteration 6660, lr = 0.00518809 +I0407 22:56:46.353449 23673 solver.cpp:218] Iteration 6672 (2.38252 iter/s, 5.03669s/12 iters), loss = 0.306085 +I0407 22:56:46.353514 23673 solver.cpp:237] Train net output #0: loss = 0.306085 (* 1 = 0.306085 loss) +I0407 22:56:46.353526 23673 sgd_solver.cpp:105] Iteration 6672, lr = 0.00518196 +I0407 22:56:47.698179 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:51.335685 23673 solver.cpp:218] Iteration 6684 (2.40867 iter/s, 4.98201s/12 iters), loss = 0.424573 +I0407 22:56:51.335738 23673 solver.cpp:237] Train net output #0: loss = 0.424573 (* 1 = 0.424573 loss) +I0407 22:56:51.335752 23673 sgd_solver.cpp:105] Iteration 6684, lr = 0.00517584 +I0407 22:56:56.335480 23673 solver.cpp:218] Iteration 6696 (2.4002 iter/s, 4.99958s/12 iters), loss = 0.207807 +I0407 22:56:56.335541 23673 solver.cpp:237] Train net output #0: loss = 0.207807 (* 1 = 0.207807 loss) +I0407 22:56:56.335553 23673 sgd_solver.cpp:105] Iteration 6696, lr = 0.00516972 +I0407 22:57:01.357137 23673 solver.cpp:218] Iteration 6708 (2.38975 iter/s, 5.02144s/12 iters), loss = 0.214655 +I0407 22:57:01.357255 23673 solver.cpp:237] Train net output #0: loss = 0.214655 (* 1 = 0.214655 loss) +I0407 22:57:01.357268 23673 sgd_solver.cpp:105] Iteration 6708, lr = 0.00516362 +I0407 22:57:06.297510 23673 solver.cpp:218] Iteration 6720 (2.4291 iter/s, 4.9401s/12 iters), loss = 0.379533 +I0407 22:57:06.297560 23673 solver.cpp:237] Train net output #0: loss = 0.379533 (* 1 = 0.379533 loss) +I0407 22:57:06.297572 23673 sgd_solver.cpp:105] Iteration 6720, lr = 0.00515751 +I0407 22:57:10.842613 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 22:57:13.946355 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 22:57:16.318012 23673 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 22:57:16.318037 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:57:18.141433 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:20.786736 23673 solver.cpp:397] Test net output #0: accuracy = 0.416054 +I0407 22:57:20.786777 23673 solver.cpp:397] Test net output #1: loss = 3.13409 (* 1 = 3.13409 loss) +I0407 22:57:20.878087 23673 solver.cpp:218] Iteration 6732 (0.823041 iter/s, 14.5801s/12 iters), loss = 0.400757 +I0407 22:57:20.878141 23673 solver.cpp:237] Train net output #0: loss = 0.400757 (* 1 = 0.400757 loss) +I0407 22:57:20.878151 23673 sgd_solver.cpp:105] Iteration 6732, lr = 0.00515142 +I0407 22:57:25.256793 23673 solver.cpp:218] Iteration 6744 (2.74066 iter/s, 4.37851s/12 iters), loss = 0.257316 +I0407 22:57:25.256842 23673 solver.cpp:237] Train net output #0: loss = 0.257316 (* 1 = 0.257316 loss) +I0407 22:57:25.256852 23673 sgd_solver.cpp:105] Iteration 6744, lr = 0.00514533 +I0407 22:57:30.398581 23673 solver.cpp:218] Iteration 6756 (2.33392 iter/s, 5.14157s/12 iters), loss = 0.210393 +I0407 22:57:30.398636 23673 solver.cpp:237] Train net output #0: loss = 0.210393 (* 1 = 0.210393 loss) +I0407 22:57:30.398650 23673 sgd_solver.cpp:105] Iteration 6756, lr = 0.00513925 +I0407 22:57:35.545240 23673 solver.cpp:218] Iteration 6768 (2.33171 iter/s, 5.14644s/12 iters), loss = 0.269796 +I0407 22:57:35.545346 23673 solver.cpp:237] Train net output #0: loss = 0.269796 (* 1 = 0.269796 loss) +I0407 22:57:35.545357 23673 sgd_solver.cpp:105] Iteration 6768, lr = 0.00513318 +I0407 22:57:39.254456 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:40.749083 23673 solver.cpp:218] Iteration 6780 (2.30611 iter/s, 5.20357s/12 iters), loss = 0.240236 +I0407 22:57:40.749140 23673 solver.cpp:237] Train net output #0: loss = 0.240235 (* 1 = 0.240235 loss) +I0407 22:57:40.749151 23673 sgd_solver.cpp:105] Iteration 6780, lr = 0.00512711 +I0407 22:57:45.955169 23673 solver.cpp:218] Iteration 6792 (2.30509 iter/s, 5.20587s/12 iters), loss = 0.284097 +I0407 22:57:45.955217 23673 solver.cpp:237] Train net output #0: loss = 0.284097 (* 1 = 0.284097 loss) +I0407 22:57:45.955229 23673 sgd_solver.cpp:105] Iteration 6792, lr = 0.00512105 +I0407 22:57:50.924618 23673 solver.cpp:218] Iteration 6804 (2.41486 iter/s, 4.96924s/12 iters), loss = 0.221761 +I0407 22:57:50.924672 23673 solver.cpp:237] Train net output #0: loss = 0.221761 (* 1 = 0.221761 loss) +I0407 22:57:50.924685 23673 sgd_solver.cpp:105] Iteration 6804, lr = 0.005115 +I0407 22:57:55.977864 23673 solver.cpp:218] Iteration 6816 (2.37481 iter/s, 5.05303s/12 iters), loss = 0.100522 +I0407 22:57:55.977922 23673 solver.cpp:237] Train net output #0: loss = 0.100522 (* 1 = 0.100522 loss) +I0407 22:57:55.977934 23673 sgd_solver.cpp:105] Iteration 6816, lr = 0.00510896 +I0407 22:58:01.287778 23673 solver.cpp:218] Iteration 6828 (2.26002 iter/s, 5.30969s/12 iters), loss = 0.242382 +I0407 22:58:01.287834 23673 solver.cpp:237] Train net output #0: loss = 0.242382 (* 1 = 0.242382 loss) +I0407 22:58:01.287847 23673 sgd_solver.cpp:105] Iteration 6828, lr = 0.00510292 +I0407 22:58:03.367710 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 22:58:07.799401 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 22:58:12.285506 23673 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 22:58:12.285533 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:58:14.207283 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:17.053033 23673 solver.cpp:397] Test net output #0: accuracy = 0.408701 +I0407 22:58:17.053083 23673 solver.cpp:397] Test net output #1: loss = 3.11441 (* 1 = 3.11441 loss) +I0407 22:58:19.406304 23673 solver.cpp:218] Iteration 6840 (0.662328 iter/s, 18.1179s/12 iters), loss = 0.407451 +I0407 22:58:19.406369 23673 solver.cpp:237] Train net output #0: loss = 0.407451 (* 1 = 0.407451 loss) +I0407 22:58:19.406383 23673 sgd_solver.cpp:105] Iteration 6840, lr = 0.00509689 +I0407 22:58:24.515427 23673 solver.cpp:218] Iteration 6852 (2.34884 iter/s, 5.1089s/12 iters), loss = 0.294337 +I0407 22:58:24.515476 23673 solver.cpp:237] Train net output #0: loss = 0.294337 (* 1 = 0.294337 loss) +I0407 22:58:24.515489 23673 sgd_solver.cpp:105] Iteration 6852, lr = 0.00509087 +I0407 22:58:30.006368 23673 solver.cpp:218] Iteration 6864 (2.18551 iter/s, 5.49072s/12 iters), loss = 0.102293 +I0407 22:58:30.006412 23673 solver.cpp:237] Train net output #0: loss = 0.102293 (* 1 = 0.102293 loss) +I0407 22:58:30.006422 23673 sgd_solver.cpp:105] Iteration 6864, lr = 0.00508485 +I0407 22:58:35.090629 23673 solver.cpp:218] Iteration 6876 (2.36032 iter/s, 5.08405s/12 iters), loss = 0.145511 +I0407 22:58:35.090683 23673 solver.cpp:237] Train net output #0: loss = 0.145511 (* 1 = 0.145511 loss) +I0407 22:58:35.090695 23673 sgd_solver.cpp:105] Iteration 6876, lr = 0.00507884 +I0407 22:58:35.701318 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:40.132710 23673 solver.cpp:218] Iteration 6888 (2.38007 iter/s, 5.04187s/12 iters), loss = 0.464449 +I0407 22:58:40.132845 23673 solver.cpp:237] Train net output #0: loss = 0.464449 (* 1 = 0.464449 loss) +I0407 22:58:40.132855 23673 sgd_solver.cpp:105] Iteration 6888, lr = 0.00507284 +I0407 22:58:45.308996 23673 solver.cpp:218] Iteration 6900 (2.3184 iter/s, 5.17599s/12 iters), loss = 0.276537 +I0407 22:58:45.309047 23673 solver.cpp:237] Train net output #0: loss = 0.276537 (* 1 = 0.276537 loss) +I0407 22:58:45.309058 23673 sgd_solver.cpp:105] Iteration 6900, lr = 0.00506685 +I0407 22:58:50.502319 23673 solver.cpp:218] Iteration 6912 (2.31075 iter/s, 5.19311s/12 iters), loss = 0.200132 +I0407 22:58:50.502367 23673 solver.cpp:237] Train net output #0: loss = 0.200132 (* 1 = 0.200132 loss) +I0407 22:58:50.502378 23673 sgd_solver.cpp:105] Iteration 6912, lr = 0.00506086 +I0407 22:58:55.641970 23673 solver.cpp:218] Iteration 6924 (2.33489 iter/s, 5.13943s/12 iters), loss = 0.213472 +I0407 22:58:55.642015 23673 solver.cpp:237] Train net output #0: loss = 0.213472 (* 1 = 0.213472 loss) +I0407 22:58:55.642024 23673 sgd_solver.cpp:105] Iteration 6924, lr = 0.00505488 +I0407 22:59:00.323814 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 22:59:05.492579 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 22:59:09.372309 23673 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 22:59:09.372336 23673 net.cpp:676] Ignoring source layer train-data +I0407 22:59:10.034965 23673 blocking_queue.cpp:49] Waiting for data +I0407 22:59:11.112108 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:13.910195 23673 solver.cpp:397] Test net output #0: accuracy = 0.401348 +I0407 22:59:13.910248 23673 solver.cpp:397] Test net output #1: loss = 3.18117 (* 1 = 3.18117 loss) +I0407 22:59:14.001979 23673 solver.cpp:218] Iteration 6936 (0.653616 iter/s, 18.3594s/12 iters), loss = 0.262531 +I0407 22:59:14.002043 23673 solver.cpp:237] Train net output #0: loss = 0.262531 (* 1 = 0.262531 loss) +I0407 22:59:14.002055 23673 sgd_solver.cpp:105] Iteration 6936, lr = 0.00504891 +I0407 22:59:18.482507 23673 solver.cpp:218] Iteration 6948 (2.67838 iter/s, 4.48032s/12 iters), loss = 0.238523 +I0407 22:59:18.482565 23673 solver.cpp:237] Train net output #0: loss = 0.238523 (* 1 = 0.238523 loss) +I0407 22:59:18.482576 23673 sgd_solver.cpp:105] Iteration 6948, lr = 0.00504294 +I0407 22:59:23.712867 23673 solver.cpp:218] Iteration 6960 (2.29439 iter/s, 5.23014s/12 iters), loss = 0.330089 +I0407 22:59:23.712913 23673 solver.cpp:237] Train net output #0: loss = 0.330089 (* 1 = 0.330089 loss) +I0407 22:59:23.712924 23673 sgd_solver.cpp:105] Iteration 6960, lr = 0.00503698 +I0407 22:59:29.177151 23673 solver.cpp:218] Iteration 6972 (2.19617 iter/s, 5.46406s/12 iters), loss = 0.311399 +I0407 22:59:29.177204 23673 solver.cpp:237] Train net output #0: loss = 0.311399 (* 1 = 0.311399 loss) +I0407 22:59:29.177217 23673 sgd_solver.cpp:105] Iteration 6972, lr = 0.00503103 +I0407 22:59:31.977986 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:34.391299 23673 solver.cpp:218] Iteration 6984 (2.30153 iter/s, 5.21393s/12 iters), loss = 0.370624 +I0407 22:59:34.391350 23673 solver.cpp:237] Train net output #0: loss = 0.370624 (* 1 = 0.370624 loss) +I0407 22:59:34.391362 23673 sgd_solver.cpp:105] Iteration 6984, lr = 0.00502508 +I0407 22:59:39.465247 23673 solver.cpp:218] Iteration 6996 (2.36512 iter/s, 5.07373s/12 iters), loss = 0.179895 +I0407 22:59:39.465304 23673 solver.cpp:237] Train net output #0: loss = 0.179895 (* 1 = 0.179895 loss) +I0407 22:59:39.465317 23673 sgd_solver.cpp:105] Iteration 6996, lr = 0.00501915 +I0407 22:59:44.532778 23673 solver.cpp:218] Iteration 7008 (2.36812 iter/s, 5.06731s/12 iters), loss = 0.177861 +I0407 22:59:44.535429 23673 solver.cpp:237] Train net output #0: loss = 0.177861 (* 1 = 0.177861 loss) +I0407 22:59:44.535441 23673 sgd_solver.cpp:105] Iteration 7008, lr = 0.00501322 +I0407 22:59:49.827200 23673 solver.cpp:218] Iteration 7020 (2.26774 iter/s, 5.29161s/12 iters), loss = 0.349114 +I0407 22:59:49.827253 23673 solver.cpp:237] Train net output #0: loss = 0.349114 (* 1 = 0.349114 loss) +I0407 22:59:49.827266 23673 sgd_solver.cpp:105] Iteration 7020, lr = 0.00500729 +I0407 22:59:55.209786 23673 solver.cpp:218] Iteration 7032 (2.2295 iter/s, 5.38237s/12 iters), loss = 0.229989 +I0407 22:59:55.209827 23673 solver.cpp:237] Train net output #0: loss = 0.229988 (* 1 = 0.229988 loss) +I0407 22:59:55.209836 23673 sgd_solver.cpp:105] Iteration 7032, lr = 0.00500137 +I0407 22:59:57.460559 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 23:00:01.311204 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 23:00:04.174201 23673 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 23:00:04.174226 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:00:05.994887 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:08.983916 23673 solver.cpp:397] Test net output #0: accuracy = 0.410539 +I0407 23:00:08.983971 23673 solver.cpp:397] Test net output #1: loss = 3.18401 (* 1 = 3.18401 loss) +I0407 23:00:10.734263 23673 solver.cpp:218] Iteration 7044 (0.772999 iter/s, 15.524s/12 iters), loss = 0.264682 +I0407 23:00:10.734311 23673 solver.cpp:237] Train net output #0: loss = 0.264682 (* 1 = 0.264682 loss) +I0407 23:00:10.734323 23673 sgd_solver.cpp:105] Iteration 7044, lr = 0.00499546 +I0407 23:00:16.098942 23673 solver.cpp:218] Iteration 7056 (2.23695 iter/s, 5.36446s/12 iters), loss = 0.448337 +I0407 23:00:16.099030 23673 solver.cpp:237] Train net output #0: loss = 0.448337 (* 1 = 0.448337 loss) +I0407 23:00:16.099042 23673 sgd_solver.cpp:105] Iteration 7056, lr = 0.00498956 +I0407 23:00:21.561209 23673 solver.cpp:218] Iteration 7068 (2.197 iter/s, 5.462s/12 iters), loss = 0.316392 +I0407 23:00:21.561260 23673 solver.cpp:237] Train net output #0: loss = 0.316392 (* 1 = 0.316392 loss) +I0407 23:00:21.561272 23673 sgd_solver.cpp:105] Iteration 7068, lr = 0.00498367 +I0407 23:00:26.771216 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:26.889380 23673 solver.cpp:218] Iteration 7080 (2.25227 iter/s, 5.32795s/12 iters), loss = 0.24302 +I0407 23:00:26.889432 23673 solver.cpp:237] Train net output #0: loss = 0.24302 (* 1 = 0.24302 loss) +I0407 23:00:26.889444 23673 sgd_solver.cpp:105] Iteration 7080, lr = 0.00497778 +I0407 23:00:32.428299 23673 solver.cpp:218] Iteration 7092 (2.16658 iter/s, 5.53869s/12 iters), loss = 0.0772631 +I0407 23:00:32.428344 23673 solver.cpp:237] Train net output #0: loss = 0.077263 (* 1 = 0.077263 loss) +I0407 23:00:32.428352 23673 sgd_solver.cpp:105] Iteration 7092, lr = 0.00497189 +I0407 23:00:37.655598 23673 solver.cpp:218] Iteration 7104 (2.29573 iter/s, 5.22709s/12 iters), loss = 0.108408 +I0407 23:00:37.655647 23673 solver.cpp:237] Train net output #0: loss = 0.108408 (* 1 = 0.108408 loss) +I0407 23:00:37.655658 23673 sgd_solver.cpp:105] Iteration 7104, lr = 0.00496602 +I0407 23:00:42.985006 23673 solver.cpp:218] Iteration 7116 (2.25175 iter/s, 5.32918s/12 iters), loss = 0.2041 +I0407 23:00:42.985060 23673 solver.cpp:237] Train net output #0: loss = 0.2041 (* 1 = 0.2041 loss) +I0407 23:00:42.985072 23673 sgd_solver.cpp:105] Iteration 7116, lr = 0.00496015 +I0407 23:00:48.386798 23673 solver.cpp:218] Iteration 7128 (2.22158 iter/s, 5.40156s/12 iters), loss = 0.250186 +I0407 23:00:48.387265 23673 solver.cpp:237] Train net output #0: loss = 0.250186 (* 1 = 0.250186 loss) +I0407 23:00:48.387284 23673 sgd_solver.cpp:105] Iteration 7128, lr = 0.00495429 +I0407 23:00:52.992646 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 23:00:56.137476 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 23:00:59.904292 23673 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 23:00:59.904320 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:01:01.596717 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:04.486928 23673 solver.cpp:397] Test net output #0: accuracy = 0.414216 +I0407 23:01:04.486972 23673 solver.cpp:397] Test net output #1: loss = 3.07464 (* 1 = 3.07464 loss) +I0407 23:01:04.576707 23673 solver.cpp:218] Iteration 7140 (0.741246 iter/s, 16.189s/12 iters), loss = 0.201107 +I0407 23:01:04.576752 23673 solver.cpp:237] Train net output #0: loss = 0.201107 (* 1 = 0.201107 loss) +I0407 23:01:04.576766 23673 sgd_solver.cpp:105] Iteration 7140, lr = 0.00494843 +I0407 23:01:09.077392 23673 solver.cpp:218] Iteration 7152 (2.66638 iter/s, 4.50049s/12 iters), loss = 0.419005 +I0407 23:01:09.077440 23673 solver.cpp:237] Train net output #0: loss = 0.419005 (* 1 = 0.419005 loss) +I0407 23:01:09.077448 23673 sgd_solver.cpp:105] Iteration 7152, lr = 0.00494259 +I0407 23:01:14.150385 23673 solver.cpp:218] Iteration 7164 (2.36557 iter/s, 5.07278s/12 iters), loss = 0.261352 +I0407 23:01:14.150445 23673 solver.cpp:237] Train net output #0: loss = 0.261352 (* 1 = 0.261352 loss) +I0407 23:01:14.150458 23673 sgd_solver.cpp:105] Iteration 7164, lr = 0.00493675 +I0407 23:01:19.331627 23673 solver.cpp:218] Iteration 7176 (2.31615 iter/s, 5.18102s/12 iters), loss = 0.160109 +I0407 23:01:19.331732 23673 solver.cpp:237] Train net output #0: loss = 0.160109 (* 1 = 0.160109 loss) +I0407 23:01:19.331743 23673 sgd_solver.cpp:105] Iteration 7176, lr = 0.00493091 +I0407 23:01:21.509323 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:24.452327 23673 solver.cpp:218] Iteration 7188 (2.34355 iter/s, 5.12043s/12 iters), loss = 0.239023 +I0407 23:01:24.452376 23673 solver.cpp:237] Train net output #0: loss = 0.239023 (* 1 = 0.239023 loss) +I0407 23:01:24.452389 23673 sgd_solver.cpp:105] Iteration 7188, lr = 0.00492509 +I0407 23:01:29.490753 23673 solver.cpp:218] Iteration 7200 (2.3818 iter/s, 5.03821s/12 iters), loss = 0.162993 +I0407 23:01:29.490806 23673 solver.cpp:237] Train net output #0: loss = 0.162993 (* 1 = 0.162993 loss) +I0407 23:01:29.490818 23673 sgd_solver.cpp:105] Iteration 7200, lr = 0.00491927 +I0407 23:01:34.791757 23673 solver.cpp:218] Iteration 7212 (2.26382 iter/s, 5.30078s/12 iters), loss = 0.0764142 +I0407 23:01:34.791808 23673 solver.cpp:237] Train net output #0: loss = 0.0764141 (* 1 = 0.0764141 loss) +I0407 23:01:34.791821 23673 sgd_solver.cpp:105] Iteration 7212, lr = 0.00491345 +I0407 23:01:39.692943 23673 solver.cpp:218] Iteration 7224 (2.4485 iter/s, 4.90097s/12 iters), loss = 0.222525 +I0407 23:01:39.692993 23673 solver.cpp:237] Train net output #0: loss = 0.222525 (* 1 = 0.222525 loss) +I0407 23:01:39.693004 23673 sgd_solver.cpp:105] Iteration 7224, lr = 0.00490765 +I0407 23:01:44.723965 23673 solver.cpp:218] Iteration 7236 (2.3853 iter/s, 5.03081s/12 iters), loss = 0.223598 +I0407 23:01:44.724018 23673 solver.cpp:237] Train net output #0: loss = 0.223598 (* 1 = 0.223598 loss) +I0407 23:01:44.724030 23673 sgd_solver.cpp:105] Iteration 7236, lr = 0.00490185 +I0407 23:01:46.812469 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 23:01:51.031378 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 23:01:54.651818 23673 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 23:01:54.651840 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:01:56.237746 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:59.083881 23673 solver.cpp:397] Test net output #0: accuracy = 0.436887 +I0407 23:01:59.083930 23673 solver.cpp:397] Test net output #1: loss = 3.02706 (* 1 = 3.02706 loss) +I0407 23:02:01.101789 23673 solver.cpp:218] Iteration 7248 (0.732723 iter/s, 16.3773s/12 iters), loss = 0.199614 +I0407 23:02:01.101837 23673 solver.cpp:237] Train net output #0: loss = 0.199613 (* 1 = 0.199613 loss) +I0407 23:02:01.101848 23673 sgd_solver.cpp:105] Iteration 7248, lr = 0.00489606 +I0407 23:02:06.292949 23673 solver.cpp:218] Iteration 7260 (2.31172 iter/s, 5.19094s/12 iters), loss = 0.113134 +I0407 23:02:06.293005 23673 solver.cpp:237] Train net output #0: loss = 0.113134 (* 1 = 0.113134 loss) +I0407 23:02:06.293018 23673 sgd_solver.cpp:105] Iteration 7260, lr = 0.00489027 +I0407 23:02:11.257081 23673 solver.cpp:218] Iteration 7272 (2.41745 iter/s, 4.96391s/12 iters), loss = 0.19668 +I0407 23:02:11.257136 23673 solver.cpp:237] Train net output #0: loss = 0.19668 (* 1 = 0.19668 loss) +I0407 23:02:11.257149 23673 sgd_solver.cpp:105] Iteration 7272, lr = 0.00488449 +I0407 23:02:15.619187 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:16.372440 23673 solver.cpp:218] Iteration 7284 (2.34598 iter/s, 5.11514s/12 iters), loss = 0.317686 +I0407 23:02:16.372491 23673 solver.cpp:237] Train net output #0: loss = 0.317686 (* 1 = 0.317686 loss) +I0407 23:02:16.372503 23673 sgd_solver.cpp:105] Iteration 7284, lr = 0.00487872 +I0407 23:02:21.504079 23673 solver.cpp:218] Iteration 7296 (2.33853 iter/s, 5.13142s/12 iters), loss = 0.186202 +I0407 23:02:21.504166 23673 solver.cpp:237] Train net output #0: loss = 0.186202 (* 1 = 0.186202 loss) +I0407 23:02:21.504179 23673 sgd_solver.cpp:105] Iteration 7296, lr = 0.00487295 +I0407 23:02:26.536689 23673 solver.cpp:218] Iteration 7308 (2.38457 iter/s, 5.03236s/12 iters), loss = 0.260728 +I0407 23:02:26.536744 23673 solver.cpp:237] Train net output #0: loss = 0.260728 (* 1 = 0.260728 loss) +I0407 23:02:26.536757 23673 sgd_solver.cpp:105] Iteration 7308, lr = 0.0048672 +I0407 23:02:33.041671 23673 solver.cpp:218] Iteration 7320 (1.84481 iter/s, 6.50472s/12 iters), loss = 0.220251 +I0407 23:02:33.041730 23673 solver.cpp:237] Train net output #0: loss = 0.220251 (* 1 = 0.220251 loss) +I0407 23:02:33.041743 23673 sgd_solver.cpp:105] Iteration 7320, lr = 0.00486145 +I0407 23:02:38.109076 23673 solver.cpp:218] Iteration 7332 (2.36818 iter/s, 5.06718s/12 iters), loss = 0.159954 +I0407 23:02:38.109125 23673 solver.cpp:237] Train net output #0: loss = 0.159954 (* 1 = 0.159954 loss) +I0407 23:02:38.109136 23673 sgd_solver.cpp:105] Iteration 7332, lr = 0.0048557 +I0407 23:02:42.739413 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 23:02:47.194885 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 23:02:50.199039 23673 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 23:02:50.199064 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:02:52.284318 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:55.607890 23673 solver.cpp:397] Test net output #0: accuracy = 0.436274 +I0407 23:02:55.607940 23673 solver.cpp:397] Test net output #1: loss = 3.07101 (* 1 = 3.07101 loss) +I0407 23:02:55.699273 23673 solver.cpp:218] Iteration 7344 (0.682221 iter/s, 17.5896s/12 iters), loss = 0.227751 +I0407 23:02:55.699326 23673 solver.cpp:237] Train net output #0: loss = 0.227751 (* 1 = 0.227751 loss) +I0407 23:02:55.699350 23673 sgd_solver.cpp:105] Iteration 7344, lr = 0.00484996 +I0407 23:03:00.349258 23673 solver.cpp:218] Iteration 7356 (2.58077 iter/s, 4.64978s/12 iters), loss = 0.212196 +I0407 23:03:00.349308 23673 solver.cpp:237] Train net output #0: loss = 0.212196 (* 1 = 0.212196 loss) +I0407 23:03:00.349319 23673 sgd_solver.cpp:105] Iteration 7356, lr = 0.00484423 +I0407 23:03:05.674940 23673 solver.cpp:218] Iteration 7368 (2.25332 iter/s, 5.32546s/12 iters), loss = 0.252905 +I0407 23:03:05.674989 23673 solver.cpp:237] Train net output #0: loss = 0.252905 (* 1 = 0.252905 loss) +I0407 23:03:05.675000 23673 sgd_solver.cpp:105] Iteration 7368, lr = 0.00483851 +I0407 23:03:10.804284 23673 solver.cpp:218] Iteration 7380 (2.33958 iter/s, 5.12913s/12 iters), loss = 0.274873 +I0407 23:03:10.804330 23673 solver.cpp:237] Train net output #0: loss = 0.274873 (* 1 = 0.274873 loss) +I0407 23:03:10.804340 23673 sgd_solver.cpp:105] Iteration 7380, lr = 0.00483279 +I0407 23:03:12.215046 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:15.978577 23673 solver.cpp:218] Iteration 7392 (2.31925 iter/s, 5.17408s/12 iters), loss = 0.251772 +I0407 23:03:15.978618 23673 solver.cpp:237] Train net output #0: loss = 0.251772 (* 1 = 0.251772 loss) +I0407 23:03:15.978629 23673 sgd_solver.cpp:105] Iteration 7392, lr = 0.00482708 +I0407 23:03:21.071723 23673 solver.cpp:218] Iteration 7404 (2.35621 iter/s, 5.09294s/12 iters), loss = 0.153496 +I0407 23:03:21.071777 23673 solver.cpp:237] Train net output #0: loss = 0.153496 (* 1 = 0.153496 loss) +I0407 23:03:21.071789 23673 sgd_solver.cpp:105] Iteration 7404, lr = 0.00482137 +I0407 23:03:26.023914 23673 solver.cpp:218] Iteration 7416 (2.42327 iter/s, 4.95198s/12 iters), loss = 0.137478 +I0407 23:03:26.024019 23673 solver.cpp:237] Train net output #0: loss = 0.137478 (* 1 = 0.137478 loss) +I0407 23:03:26.024029 23673 sgd_solver.cpp:105] Iteration 7416, lr = 0.00481568 +I0407 23:03:31.126225 23673 solver.cpp:218] Iteration 7428 (2.352 iter/s, 5.10204s/12 iters), loss = 0.212868 +I0407 23:03:31.126274 23673 solver.cpp:237] Train net output #0: loss = 0.212868 (* 1 = 0.212868 loss) +I0407 23:03:31.126286 23673 sgd_solver.cpp:105] Iteration 7428, lr = 0.00480999 +I0407 23:03:36.351161 23673 solver.cpp:218] Iteration 7440 (2.29678 iter/s, 5.22472s/12 iters), loss = 0.317629 +I0407 23:03:36.351208 23673 solver.cpp:237] Train net output #0: loss = 0.317629 (* 1 = 0.317629 loss) +I0407 23:03:36.351220 23673 sgd_solver.cpp:105] Iteration 7440, lr = 0.0048043 +I0407 23:03:38.415690 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 23:03:42.728821 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 23:03:45.046169 23673 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 23:03:45.046195 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:03:46.591100 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:49.512403 23673 solver.cpp:397] Test net output #0: accuracy = 0.425245 +I0407 23:03:49.512454 23673 solver.cpp:397] Test net output #1: loss = 3.11482 (* 1 = 3.11482 loss) +I0407 23:03:51.531739 23673 solver.cpp:218] Iteration 7452 (0.79051 iter/s, 15.1801s/12 iters), loss = 0.103015 +I0407 23:03:51.531790 23673 solver.cpp:237] Train net output #0: loss = 0.103015 (* 1 = 0.103015 loss) +I0407 23:03:51.531802 23673 sgd_solver.cpp:105] Iteration 7452, lr = 0.00479863 +I0407 23:03:56.976142 23673 solver.cpp:218] Iteration 7464 (2.20419 iter/s, 5.44418s/12 iters), loss = 0.164859 +I0407 23:03:56.976227 23673 solver.cpp:237] Train net output #0: loss = 0.164859 (* 1 = 0.164859 loss) +I0407 23:03:56.976239 23673 sgd_solver.cpp:105] Iteration 7464, lr = 0.00479296 +I0407 23:04:02.085988 23673 solver.cpp:218] Iteration 7476 (2.34852 iter/s, 5.1096s/12 iters), loss = 0.324079 +I0407 23:04:02.086032 23673 solver.cpp:237] Train net output #0: loss = 0.324079 (* 1 = 0.324079 loss) +I0407 23:04:02.086042 23673 sgd_solver.cpp:105] Iteration 7476, lr = 0.00478729 +I0407 23:04:05.698264 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:07.194453 23673 solver.cpp:218] Iteration 7488 (2.34914 iter/s, 5.10826s/12 iters), loss = 0.342168 +I0407 23:04:07.194504 23673 solver.cpp:237] Train net output #0: loss = 0.342167 (* 1 = 0.342167 loss) +I0407 23:04:07.194515 23673 sgd_solver.cpp:105] Iteration 7488, lr = 0.00478163 +I0407 23:04:12.569633 23673 solver.cpp:218] Iteration 7500 (2.23258 iter/s, 5.37495s/12 iters), loss = 0.188815 +I0407 23:04:12.569692 23673 solver.cpp:237] Train net output #0: loss = 0.188815 (* 1 = 0.188815 loss) +I0407 23:04:12.569705 23673 sgd_solver.cpp:105] Iteration 7500, lr = 0.00477598 +I0407 23:04:17.769351 23673 solver.cpp:218] Iteration 7512 (2.30792 iter/s, 5.19949s/12 iters), loss = 0.341131 +I0407 23:04:17.769402 23673 solver.cpp:237] Train net output #0: loss = 0.341131 (* 1 = 0.341131 loss) +I0407 23:04:17.769415 23673 sgd_solver.cpp:105] Iteration 7512, lr = 0.00477034 +I0407 23:04:22.939733 23673 solver.cpp:218] Iteration 7524 (2.32101 iter/s, 5.17016s/12 iters), loss = 0.237506 +I0407 23:04:22.939783 23673 solver.cpp:237] Train net output #0: loss = 0.237506 (* 1 = 0.237506 loss) +I0407 23:04:22.939795 23673 sgd_solver.cpp:105] Iteration 7524, lr = 0.0047647 +I0407 23:04:28.218845 23673 solver.cpp:218] Iteration 7536 (2.27321 iter/s, 5.27889s/12 iters), loss = 0.277435 +I0407 23:04:28.219017 23673 solver.cpp:237] Train net output #0: loss = 0.277435 (* 1 = 0.277435 loss) +I0407 23:04:28.219034 23673 sgd_solver.cpp:105] Iteration 7536, lr = 0.00475907 +I0407 23:04:32.829273 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 23:04:36.649066 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 23:04:41.005503 23673 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 23:04:41.005532 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:04:42.612310 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:45.574105 23673 solver.cpp:397] Test net output #0: accuracy = 0.433824 +I0407 23:04:45.574157 23673 solver.cpp:397] Test net output #1: loss = 3.16236 (* 1 = 3.16236 loss) +I0407 23:04:45.665477 23673 solver.cpp:218] Iteration 7548 (0.68784 iter/s, 17.4459s/12 iters), loss = 0.202363 +I0407 23:04:45.665551 23673 solver.cpp:237] Train net output #0: loss = 0.202363 (* 1 = 0.202363 loss) +I0407 23:04:45.665570 23673 sgd_solver.cpp:105] Iteration 7548, lr = 0.00475345 +I0407 23:04:49.912681 23673 solver.cpp:218] Iteration 7560 (2.82553 iter/s, 4.24699s/12 iters), loss = 0.131414 +I0407 23:04:49.912744 23673 solver.cpp:237] Train net output #0: loss = 0.131414 (* 1 = 0.131414 loss) +I0407 23:04:49.912755 23673 sgd_solver.cpp:105] Iteration 7560, lr = 0.00474783 +I0407 23:04:54.868377 23673 solver.cpp:218] Iteration 7572 (2.42157 iter/s, 4.95547s/12 iters), loss = 0.122241 +I0407 23:04:54.868436 23673 solver.cpp:237] Train net output #0: loss = 0.122241 (* 1 = 0.122241 loss) +I0407 23:04:54.868451 23673 sgd_solver.cpp:105] Iteration 7572, lr = 0.00474222 +I0407 23:05:00.236580 23673 solver.cpp:218] Iteration 7584 (2.23548 iter/s, 5.36797s/12 iters), loss = 0.360773 +I0407 23:05:00.236688 23673 solver.cpp:237] Train net output #0: loss = 0.360773 (* 1 = 0.360773 loss) +I0407 23:05:00.236701 23673 sgd_solver.cpp:105] Iteration 7584, lr = 0.00473662 +I0407 23:05:00.896196 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:05.361918 23673 solver.cpp:218] Iteration 7596 (2.34143 iter/s, 5.12506s/12 iters), loss = 0.200789 +I0407 23:05:05.361990 23673 solver.cpp:237] Train net output #0: loss = 0.200789 (* 1 = 0.200789 loss) +I0407 23:05:05.362000 23673 sgd_solver.cpp:105] Iteration 7596, lr = 0.00473102 +I0407 23:05:10.585005 23673 solver.cpp:218] Iteration 7608 (2.2976 iter/s, 5.22285s/12 iters), loss = 0.142475 +I0407 23:05:10.585040 23673 solver.cpp:237] Train net output #0: loss = 0.142475 (* 1 = 0.142475 loss) +I0407 23:05:10.585049 23673 sgd_solver.cpp:105] Iteration 7608, lr = 0.00472543 +I0407 23:05:16.072607 23673 solver.cpp:218] Iteration 7620 (2.18683 iter/s, 5.48738s/12 iters), loss = 0.124939 +I0407 23:05:16.072662 23673 solver.cpp:237] Train net output #0: loss = 0.124939 (* 1 = 0.124939 loss) +I0407 23:05:16.072674 23673 sgd_solver.cpp:105] Iteration 7620, lr = 0.00471985 +I0407 23:05:19.231326 23673 blocking_queue.cpp:49] Waiting for data +I0407 23:05:21.982802 23673 solver.cpp:218] Iteration 7632 (2.03048 iter/s, 5.90994s/12 iters), loss = 0.139938 +I0407 23:05:21.982858 23673 solver.cpp:237] Train net output #0: loss = 0.139938 (* 1 = 0.139938 loss) +I0407 23:05:21.982870 23673 sgd_solver.cpp:105] Iteration 7632, lr = 0.00471427 +I0407 23:05:27.543254 23673 solver.cpp:218] Iteration 7644 (2.15819 iter/s, 5.56022s/12 iters), loss = 0.183379 +I0407 23:05:27.543295 23673 solver.cpp:237] Train net output #0: loss = 0.183379 (* 1 = 0.183379 loss) +I0407 23:05:27.543305 23673 sgd_solver.cpp:105] Iteration 7644, lr = 0.0047087 +I0407 23:05:29.785449 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 23:05:36.704139 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 23:05:39.037719 23673 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 23:05:39.037746 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:05:40.520707 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:43.662514 23673 solver.cpp:397] Test net output #0: accuracy = 0.443015 +I0407 23:05:43.662565 23673 solver.cpp:397] Test net output #1: loss = 3.17801 (* 1 = 3.17801 loss) +I0407 23:05:45.665872 23673 solver.cpp:218] Iteration 7656 (0.662178 iter/s, 18.122s/12 iters), loss = 0.318765 +I0407 23:05:45.665913 23673 solver.cpp:237] Train net output #0: loss = 0.318765 (* 1 = 0.318765 loss) +I0407 23:05:45.665923 23673 sgd_solver.cpp:105] Iteration 7656, lr = 0.00470313 +I0407 23:05:50.669677 23673 solver.cpp:218] Iteration 7668 (2.39827 iter/s, 5.0036s/12 iters), loss = 0.311606 +I0407 23:05:50.669718 23673 solver.cpp:237] Train net output #0: loss = 0.311606 (* 1 = 0.311606 loss) +I0407 23:05:50.669728 23673 sgd_solver.cpp:105] Iteration 7668, lr = 0.00469758 +I0407 23:05:55.732067 23673 solver.cpp:218] Iteration 7680 (2.37052 iter/s, 5.06218s/12 iters), loss = 0.0950024 +I0407 23:05:55.732127 23673 solver.cpp:237] Train net output #0: loss = 0.0950023 (* 1 = 0.0950023 loss) +I0407 23:05:55.732141 23673 sgd_solver.cpp:105] Iteration 7680, lr = 0.00469203 +I0407 23:05:58.585382 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:00.830200 23673 solver.cpp:218] Iteration 7692 (2.35391 iter/s, 5.0979s/12 iters), loss = 0.1774 +I0407 23:06:00.830257 23673 solver.cpp:237] Train net output #0: loss = 0.1774 (* 1 = 0.1774 loss) +I0407 23:06:00.830271 23673 sgd_solver.cpp:105] Iteration 7692, lr = 0.00468648 +I0407 23:06:05.780391 23673 solver.cpp:218] Iteration 7704 (2.42426 iter/s, 4.94997s/12 iters), loss = 0.298985 +I0407 23:06:05.780453 23673 solver.cpp:237] Train net output #0: loss = 0.298985 (* 1 = 0.298985 loss) +I0407 23:06:05.780467 23673 sgd_solver.cpp:105] Iteration 7704, lr = 0.00468094 +I0407 23:06:10.877645 23673 solver.cpp:218] Iteration 7716 (2.35431 iter/s, 5.09703s/12 iters), loss = 0.116858 +I0407 23:06:10.877738 23673 solver.cpp:237] Train net output #0: loss = 0.116858 (* 1 = 0.116858 loss) +I0407 23:06:10.877748 23673 sgd_solver.cpp:105] Iteration 7716, lr = 0.00467541 +I0407 23:06:15.985041 23673 solver.cpp:218] Iteration 7728 (2.34965 iter/s, 5.10713s/12 iters), loss = 0.112754 +I0407 23:06:15.985088 23673 solver.cpp:237] Train net output #0: loss = 0.112754 (* 1 = 0.112754 loss) +I0407 23:06:15.985098 23673 sgd_solver.cpp:105] Iteration 7728, lr = 0.00466989 +I0407 23:06:21.024899 23673 solver.cpp:218] Iteration 7740 (2.38112 iter/s, 5.03965s/12 iters), loss = 0.231401 +I0407 23:06:21.024952 23673 solver.cpp:237] Train net output #0: loss = 0.231401 (* 1 = 0.231401 loss) +I0407 23:06:21.024964 23673 sgd_solver.cpp:105] Iteration 7740, lr = 0.00466437 +I0407 23:06:25.541358 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 23:06:30.272863 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 23:06:32.921861 23673 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 23:06:32.921885 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:06:34.352450 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:37.405658 23673 solver.cpp:397] Test net output #0: accuracy = 0.442402 +I0407 23:06:37.405711 23673 solver.cpp:397] Test net output #1: loss = 3.01813 (* 1 = 3.01813 loss) +I0407 23:06:37.497416 23673 solver.cpp:218] Iteration 7752 (0.728512 iter/s, 16.4719s/12 iters), loss = 0.222668 +I0407 23:06:37.497464 23673 solver.cpp:237] Train net output #0: loss = 0.222668 (* 1 = 0.222668 loss) +I0407 23:06:37.497473 23673 sgd_solver.cpp:105] Iteration 7752, lr = 0.00465886 +I0407 23:06:41.808473 23673 solver.cpp:218] Iteration 7764 (2.78366 iter/s, 4.31086s/12 iters), loss = 0.202909 +I0407 23:06:41.809195 23673 solver.cpp:237] Train net output #0: loss = 0.202909 (* 1 = 0.202909 loss) +I0407 23:06:41.809209 23673 sgd_solver.cpp:105] Iteration 7764, lr = 0.00465335 +I0407 23:06:46.857939 23673 solver.cpp:218] Iteration 7776 (2.37691 iter/s, 5.04858s/12 iters), loss = 0.147739 +I0407 23:06:46.858018 23673 solver.cpp:237] Train net output #0: loss = 0.147739 (* 1 = 0.147739 loss) +I0407 23:06:46.858031 23673 sgd_solver.cpp:105] Iteration 7776, lr = 0.00464785 +I0407 23:06:51.945050 23673 solver.cpp:218] Iteration 7788 (2.35901 iter/s, 5.08688s/12 iters), loss = 0.123449 +I0407 23:06:51.945097 23673 solver.cpp:237] Train net output #0: loss = 0.123448 (* 1 = 0.123448 loss) +I0407 23:06:51.945111 23673 sgd_solver.cpp:105] Iteration 7788, lr = 0.00464236 +I0407 23:06:51.956301 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:56.964627 23673 solver.cpp:218] Iteration 7800 (2.39074 iter/s, 5.01937s/12 iters), loss = 0.379349 +I0407 23:06:56.964676 23673 solver.cpp:237] Train net output #0: loss = 0.379349 (* 1 = 0.379349 loss) +I0407 23:06:56.964689 23673 sgd_solver.cpp:105] Iteration 7800, lr = 0.00463688 +I0407 23:07:02.384183 23673 solver.cpp:218] Iteration 7812 (2.2143 iter/s, 5.41933s/12 iters), loss = 0.221702 +I0407 23:07:02.384233 23673 solver.cpp:237] Train net output #0: loss = 0.221702 (* 1 = 0.221702 loss) +I0407 23:07:02.384244 23673 sgd_solver.cpp:105] Iteration 7812, lr = 0.0046314 +I0407 23:07:07.583107 23673 solver.cpp:218] Iteration 7824 (2.30827 iter/s, 5.19871s/12 iters), loss = 0.225673 +I0407 23:07:07.583153 23673 solver.cpp:237] Train net output #0: loss = 0.225673 (* 1 = 0.225673 loss) +I0407 23:07:07.583163 23673 sgd_solver.cpp:105] Iteration 7824, lr = 0.00462592 +I0407 23:07:12.614207 23673 solver.cpp:218] Iteration 7836 (2.38526 iter/s, 5.03089s/12 iters), loss = 0.195456 +I0407 23:07:12.614302 23673 solver.cpp:237] Train net output #0: loss = 0.195456 (* 1 = 0.195456 loss) +I0407 23:07:12.614313 23673 sgd_solver.cpp:105] Iteration 7836, lr = 0.00462046 +I0407 23:07:18.029695 23673 solver.cpp:218] Iteration 7848 (2.21598 iter/s, 5.41522s/12 iters), loss = 0.165 +I0407 23:07:18.029736 23673 solver.cpp:237] Train net output #0: loss = 0.164999 (* 1 = 0.164999 loss) +I0407 23:07:18.029745 23673 sgd_solver.cpp:105] Iteration 7848, lr = 0.004615 +I0407 23:07:20.280259 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 23:07:23.333112 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 23:07:25.650247 23673 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 23:07:25.650274 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:07:27.035599 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:30.118921 23673 solver.cpp:397] Test net output #0: accuracy = 0.433824 +I0407 23:07:30.118971 23673 solver.cpp:397] Test net output #1: loss = 3.13068 (* 1 = 3.13068 loss) +I0407 23:07:32.096037 23673 solver.cpp:218] Iteration 7860 (0.853129 iter/s, 14.0659s/12 iters), loss = 0.248674 +I0407 23:07:32.096096 23673 solver.cpp:237] Train net output #0: loss = 0.248674 (* 1 = 0.248674 loss) +I0407 23:07:32.096107 23673 sgd_solver.cpp:105] Iteration 7860, lr = 0.00460954 +I0407 23:07:37.129400 23673 solver.cpp:218] Iteration 7872 (2.3842 iter/s, 5.03314s/12 iters), loss = 0.298403 +I0407 23:07:37.129453 23673 solver.cpp:237] Train net output #0: loss = 0.298403 (* 1 = 0.298403 loss) +I0407 23:07:37.129465 23673 sgd_solver.cpp:105] Iteration 7872, lr = 0.0046041 +I0407 23:07:42.234040 23673 solver.cpp:218] Iteration 7884 (2.3509 iter/s, 5.10442s/12 iters), loss = 0.225998 +I0407 23:07:42.234094 23673 solver.cpp:237] Train net output #0: loss = 0.225998 (* 1 = 0.225998 loss) +I0407 23:07:42.234107 23673 sgd_solver.cpp:105] Iteration 7884, lr = 0.00459866 +I0407 23:07:44.446321 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:47.545070 23673 solver.cpp:218] Iteration 7896 (2.25954 iter/s, 5.31081s/12 iters), loss = 0.0888889 +I0407 23:07:47.545112 23673 solver.cpp:237] Train net output #0: loss = 0.0888888 (* 1 = 0.0888888 loss) +I0407 23:07:47.545121 23673 sgd_solver.cpp:105] Iteration 7896, lr = 0.00459322 +I0407 23:07:53.081677 23673 solver.cpp:218] Iteration 7908 (2.16748 iter/s, 5.53638s/12 iters), loss = 0.157983 +I0407 23:07:53.081723 23673 solver.cpp:237] Train net output #0: loss = 0.157983 (* 1 = 0.157983 loss) +I0407 23:07:53.081732 23673 sgd_solver.cpp:105] Iteration 7908, lr = 0.00458779 +I0407 23:07:58.570644 23673 solver.cpp:218] Iteration 7920 (2.18629 iter/s, 5.48874s/12 iters), loss = 0.185352 +I0407 23:07:58.570689 23673 solver.cpp:237] Train net output #0: loss = 0.185352 (* 1 = 0.185352 loss) +I0407 23:07:58.570699 23673 sgd_solver.cpp:105] Iteration 7920, lr = 0.00458237 +I0407 23:08:03.516319 23673 solver.cpp:218] Iteration 7932 (2.42646 iter/s, 4.94547s/12 iters), loss = 0.26738 +I0407 23:08:03.516368 23673 solver.cpp:237] Train net output #0: loss = 0.26738 (* 1 = 0.26738 loss) +I0407 23:08:03.516381 23673 sgd_solver.cpp:105] Iteration 7932, lr = 0.00457696 +I0407 23:08:08.681298 23673 solver.cpp:218] Iteration 7944 (2.32344 iter/s, 5.16476s/12 iters), loss = 0.129747 +I0407 23:08:08.681347 23673 solver.cpp:237] Train net output #0: loss = 0.129747 (* 1 = 0.129747 loss) +I0407 23:08:08.681360 23673 sgd_solver.cpp:105] Iteration 7944, lr = 0.00457155 +I0407 23:08:13.315112 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 23:08:16.272279 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 23:08:23.497937 23673 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 23:08:23.497983 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:08:24.848930 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:27.972802 23673 solver.cpp:397] Test net output #0: accuracy = 0.431373 +I0407 23:08:27.972842 23673 solver.cpp:397] Test net output #1: loss = 3.21921 (* 1 = 3.21921 loss) +I0407 23:08:28.061487 23673 solver.cpp:218] Iteration 7956 (0.61921 iter/s, 19.3795s/12 iters), loss = 0.132999 +I0407 23:08:28.061534 23673 solver.cpp:237] Train net output #0: loss = 0.132999 (* 1 = 0.132999 loss) +I0407 23:08:28.061543 23673 sgd_solver.cpp:105] Iteration 7956, lr = 0.00456615 +I0407 23:08:32.520058 23673 solver.cpp:218] Iteration 7968 (2.69156 iter/s, 4.45837s/12 iters), loss = 0.211931 +I0407 23:08:32.520107 23673 solver.cpp:237] Train net output #0: loss = 0.211931 (* 1 = 0.211931 loss) +I0407 23:08:32.520117 23673 sgd_solver.cpp:105] Iteration 7968, lr = 0.00456075 +I0407 23:08:37.673815 23673 solver.cpp:218] Iteration 7980 (2.32849 iter/s, 5.15354s/12 iters), loss = 0.11834 +I0407 23:08:37.673853 23673 solver.cpp:237] Train net output #0: loss = 0.11834 (* 1 = 0.11834 loss) +I0407 23:08:37.673861 23673 sgd_solver.cpp:105] Iteration 7980, lr = 0.00455536 +I0407 23:08:41.899216 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:42.631676 23673 solver.cpp:218] Iteration 7992 (2.4205 iter/s, 4.95766s/12 iters), loss = 0.229713 +I0407 23:08:42.631721 23673 solver.cpp:237] Train net output #0: loss = 0.229713 (* 1 = 0.229713 loss) +I0407 23:08:42.631732 23673 sgd_solver.cpp:105] Iteration 7992, lr = 0.00454998 +I0407 23:08:47.758033 23673 solver.cpp:218] Iteration 8004 (2.34094 iter/s, 5.12614s/12 iters), loss = 0.0644083 +I0407 23:08:47.758149 23673 solver.cpp:237] Train net output #0: loss = 0.0644081 (* 1 = 0.0644081 loss) +I0407 23:08:47.758162 23673 sgd_solver.cpp:105] Iteration 8004, lr = 0.0045446 +I0407 23:08:52.910864 23673 solver.cpp:218] Iteration 8016 (2.32895 iter/s, 5.15254s/12 iters), loss = 0.205196 +I0407 23:08:52.910921 23673 solver.cpp:237] Train net output #0: loss = 0.205196 (* 1 = 0.205196 loss) +I0407 23:08:52.910933 23673 sgd_solver.cpp:105] Iteration 8016, lr = 0.00453923 +I0407 23:08:57.977766 23673 solver.cpp:218] Iteration 8028 (2.36842 iter/s, 5.06668s/12 iters), loss = 0.121694 +I0407 23:08:57.977831 23673 solver.cpp:237] Train net output #0: loss = 0.121694 (* 1 = 0.121694 loss) +I0407 23:08:57.977850 23673 sgd_solver.cpp:105] Iteration 8028, lr = 0.00453387 +I0407 23:09:03.077723 23673 solver.cpp:218] Iteration 8040 (2.35307 iter/s, 5.09973s/12 iters), loss = 0.135087 +I0407 23:09:03.077773 23673 solver.cpp:237] Train net output #0: loss = 0.135087 (* 1 = 0.135087 loss) +I0407 23:09:03.077785 23673 sgd_solver.cpp:105] Iteration 8040, lr = 0.00452851 +I0407 23:09:08.210888 23673 solver.cpp:218] Iteration 8052 (2.33784 iter/s, 5.13295s/12 iters), loss = 0.07128 +I0407 23:09:08.210943 23673 solver.cpp:237] Train net output #0: loss = 0.0712798 (* 1 = 0.0712798 loss) +I0407 23:09:08.210955 23673 sgd_solver.cpp:105] Iteration 8052, lr = 0.00452316 +I0407 23:09:10.283479 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 23:09:15.344324 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 23:09:21.568683 23673 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 23:09:21.568740 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:09:22.804548 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:25.984834 23673 solver.cpp:397] Test net output #0: accuracy = 0.460784 +I0407 23:09:25.984872 23673 solver.cpp:397] Test net output #1: loss = 3.14564 (* 1 = 3.14564 loss) +I0407 23:09:27.996718 23673 solver.cpp:218] Iteration 8064 (0.606515 iter/s, 19.7852s/12 iters), loss = 0.157395 +I0407 23:09:27.996771 23673 solver.cpp:237] Train net output #0: loss = 0.157395 (* 1 = 0.157395 loss) +I0407 23:09:27.996780 23673 sgd_solver.cpp:105] Iteration 8064, lr = 0.00451781 +I0407 23:09:33.284883 23673 solver.cpp:218] Iteration 8076 (2.26932 iter/s, 5.28794s/12 iters), loss = 0.126004 +I0407 23:09:33.284932 23673 solver.cpp:237] Train net output #0: loss = 0.126004 (* 1 = 0.126004 loss) +I0407 23:09:33.284945 23673 sgd_solver.cpp:105] Iteration 8076, lr = 0.00451248 +I0407 23:09:38.511337 23673 solver.cpp:218] Iteration 8088 (2.29611 iter/s, 5.22624s/12 iters), loss = 0.213329 +I0407 23:09:38.511375 23673 solver.cpp:237] Train net output #0: loss = 0.213329 (* 1 = 0.213329 loss) +I0407 23:09:38.511384 23673 sgd_solver.cpp:105] Iteration 8088, lr = 0.00450714 +I0407 23:09:40.009523 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:43.856685 23673 solver.cpp:218] Iteration 8100 (2.24503 iter/s, 5.34513s/12 iters), loss = 0.186246 +I0407 23:09:43.856734 23673 solver.cpp:237] Train net output #0: loss = 0.186246 (* 1 = 0.186246 loss) +I0407 23:09:43.856746 23673 sgd_solver.cpp:105] Iteration 8100, lr = 0.00450182 +I0407 23:09:49.182688 23673 solver.cpp:218] Iteration 8112 (2.25319 iter/s, 5.32578s/12 iters), loss = 0.17032 +I0407 23:09:49.182745 23673 solver.cpp:237] Train net output #0: loss = 0.17032 (* 1 = 0.17032 loss) +I0407 23:09:49.182758 23673 sgd_solver.cpp:105] Iteration 8112, lr = 0.0044965 +I0407 23:09:54.308246 23673 solver.cpp:218] Iteration 8124 (2.34131 iter/s, 5.12534s/12 iters), loss = 0.300321 +I0407 23:09:54.308315 23673 solver.cpp:237] Train net output #0: loss = 0.300321 (* 1 = 0.300321 loss) +I0407 23:09:54.308324 23673 sgd_solver.cpp:105] Iteration 8124, lr = 0.00449118 +I0407 23:09:59.531440 23673 solver.cpp:218] Iteration 8136 (2.29755 iter/s, 5.22295s/12 iters), loss = 0.0788153 +I0407 23:09:59.531494 23673 solver.cpp:237] Train net output #0: loss = 0.0788151 (* 1 = 0.0788151 loss) +I0407 23:09:59.531507 23673 sgd_solver.cpp:105] Iteration 8136, lr = 0.00448588 +I0407 23:10:04.572331 23673 solver.cpp:218] Iteration 8148 (2.38063 iter/s, 5.04067s/12 iters), loss = 0.22455 +I0407 23:10:04.572384 23673 solver.cpp:237] Train net output #0: loss = 0.22455 (* 1 = 0.22455 loss) +I0407 23:10:04.572397 23673 sgd_solver.cpp:105] Iteration 8148, lr = 0.00448058 +I0407 23:10:09.172875 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 23:10:15.721556 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 23:10:19.716773 23673 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 23:10:19.716799 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:10:20.964892 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:24.241784 23673 solver.cpp:397] Test net output #0: accuracy = 0.443627 +I0407 23:10:24.241829 23673 solver.cpp:397] Test net output #1: loss = 3.14224 (* 1 = 3.14224 loss) +I0407 23:10:24.333092 23673 solver.cpp:218] Iteration 8160 (0.607284 iter/s, 19.7601s/12 iters), loss = 0.163085 +I0407 23:10:24.333235 23673 solver.cpp:237] Train net output #0: loss = 0.163085 (* 1 = 0.163085 loss) +I0407 23:10:24.333248 23673 sgd_solver.cpp:105] Iteration 8160, lr = 0.00447528 +I0407 23:10:28.935060 23673 solver.cpp:218] Iteration 8172 (2.60775 iter/s, 4.60167s/12 iters), loss = 0.172748 +I0407 23:10:28.935111 23673 solver.cpp:237] Train net output #0: loss = 0.172748 (* 1 = 0.172748 loss) +I0407 23:10:28.935123 23673 sgd_solver.cpp:105] Iteration 8172, lr = 0.00446999 +I0407 23:10:34.036409 23673 solver.cpp:218] Iteration 8184 (2.35242 iter/s, 5.10113s/12 iters), loss = 0.117476 +I0407 23:10:34.036466 23673 solver.cpp:237] Train net output #0: loss = 0.117475 (* 1 = 0.117475 loss) +I0407 23:10:34.036480 23673 sgd_solver.cpp:105] Iteration 8184, lr = 0.00446471 +I0407 23:10:37.860359 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:39.357609 23673 solver.cpp:218] Iteration 8196 (2.25523 iter/s, 5.32097s/12 iters), loss = 0.102963 +I0407 23:10:39.357659 23673 solver.cpp:237] Train net output #0: loss = 0.102963 (* 1 = 0.102963 loss) +I0407 23:10:39.357671 23673 sgd_solver.cpp:105] Iteration 8196, lr = 0.00445944 +I0407 23:10:44.506764 23673 solver.cpp:218] Iteration 8208 (2.33058 iter/s, 5.14894s/12 iters), loss = 0.174891 +I0407 23:10:44.506817 23673 solver.cpp:237] Train net output #0: loss = 0.174891 (* 1 = 0.174891 loss) +I0407 23:10:44.506829 23673 sgd_solver.cpp:105] Iteration 8208, lr = 0.00445417 +I0407 23:10:49.569815 23673 solver.cpp:218] Iteration 8220 (2.37021 iter/s, 5.06284s/12 iters), loss = 0.141939 +I0407 23:10:49.569860 23673 solver.cpp:237] Train net output #0: loss = 0.141938 (* 1 = 0.141938 loss) +I0407 23:10:49.569869 23673 sgd_solver.cpp:105] Iteration 8220, lr = 0.0044489 +I0407 23:10:54.526098 23673 solver.cpp:218] Iteration 8232 (2.42127 iter/s, 4.95608s/12 iters), loss = 0.229808 +I0407 23:10:54.526211 23673 solver.cpp:237] Train net output #0: loss = 0.229808 (* 1 = 0.229808 loss) +I0407 23:10:54.526221 23673 sgd_solver.cpp:105] Iteration 8232, lr = 0.00444365 +I0407 23:10:59.646004 23673 solver.cpp:218] Iteration 8244 (2.34392 iter/s, 5.11963s/12 iters), loss = 0.332101 +I0407 23:10:59.646055 23673 solver.cpp:237] Train net output #0: loss = 0.332101 (* 1 = 0.332101 loss) +I0407 23:10:59.646067 23673 sgd_solver.cpp:105] Iteration 8244, lr = 0.00443839 +I0407 23:11:04.745328 23673 solver.cpp:218] Iteration 8256 (2.35335 iter/s, 5.09911s/12 iters), loss = 0.15694 +I0407 23:11:04.745379 23673 solver.cpp:237] Train net output #0: loss = 0.15694 (* 1 = 0.15694 loss) +I0407 23:11:04.745391 23673 sgd_solver.cpp:105] Iteration 8256, lr = 0.00443315 +I0407 23:11:06.809248 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 23:11:13.231417 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 23:11:15.568928 23673 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 23:11:15.568953 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:11:16.803608 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:20.034759 23673 solver.cpp:397] Test net output #0: accuracy = 0.436274 +I0407 23:11:20.034807 23673 solver.cpp:397] Test net output #1: loss = 3.14857 (* 1 = 3.14857 loss) +I0407 23:11:22.158797 23673 solver.cpp:218] Iteration 8268 (0.689145 iter/s, 17.4129s/12 iters), loss = 0.136119 +I0407 23:11:22.158840 23673 solver.cpp:237] Train net output #0: loss = 0.136118 (* 1 = 0.136118 loss) +I0407 23:11:22.158850 23673 sgd_solver.cpp:105] Iteration 8268, lr = 0.00442791 +I0407 23:11:27.161847 23673 solver.cpp:218] Iteration 8280 (2.39864 iter/s, 5.00284s/12 iters), loss = 0.135881 +I0407 23:11:27.161988 23673 solver.cpp:237] Train net output #0: loss = 0.135881 (* 1 = 0.135881 loss) +I0407 23:11:27.162003 23673 sgd_solver.cpp:105] Iteration 8280, lr = 0.00442268 +I0407 23:11:32.332607 23673 solver.cpp:218] Iteration 8292 (2.32088 iter/s, 5.17046s/12 iters), loss = 0.15775 +I0407 23:11:32.332657 23673 solver.cpp:237] Train net output #0: loss = 0.15775 (* 1 = 0.15775 loss) +I0407 23:11:32.332669 23673 sgd_solver.cpp:105] Iteration 8292, lr = 0.00441745 +I0407 23:11:32.983206 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:37.554455 23673 solver.cpp:218] Iteration 8304 (2.29813 iter/s, 5.22163s/12 iters), loss = 0.110295 +I0407 23:11:37.554497 23673 solver.cpp:237] Train net output #0: loss = 0.110295 (* 1 = 0.110295 loss) +I0407 23:11:37.554507 23673 sgd_solver.cpp:105] Iteration 8304, lr = 0.00441223 +I0407 23:11:40.668427 23673 blocking_queue.cpp:49] Waiting for data +I0407 23:11:42.833410 23673 solver.cpp:218] Iteration 8316 (2.27327 iter/s, 5.27874s/12 iters), loss = 0.08802 +I0407 23:11:42.833464 23673 solver.cpp:237] Train net output #0: loss = 0.0880198 (* 1 = 0.0880198 loss) +I0407 23:11:42.833477 23673 sgd_solver.cpp:105] Iteration 8316, lr = 0.00440702 +I0407 23:11:47.928097 23673 solver.cpp:218] Iteration 8328 (2.3555 iter/s, 5.09447s/12 iters), loss = 0.196169 +I0407 23:11:47.928148 23673 solver.cpp:237] Train net output #0: loss = 0.196169 (* 1 = 0.196169 loss) +I0407 23:11:47.928161 23673 sgd_solver.cpp:105] Iteration 8328, lr = 0.00440181 +I0407 23:11:53.117342 23673 solver.cpp:218] Iteration 8340 (2.31257 iter/s, 5.18902s/12 iters), loss = 0.205661 +I0407 23:11:53.117396 23673 solver.cpp:237] Train net output #0: loss = 0.205661 (* 1 = 0.205661 loss) +I0407 23:11:53.117408 23673 sgd_solver.cpp:105] Iteration 8340, lr = 0.00439661 +I0407 23:11:58.219849 23673 solver.cpp:218] Iteration 8352 (2.35189 iter/s, 5.10228s/12 iters), loss = 0.100056 +I0407 23:11:58.219972 23673 solver.cpp:237] Train net output #0: loss = 0.100056 (* 1 = 0.100056 loss) +I0407 23:11:58.219986 23673 sgd_solver.cpp:105] Iteration 8352, lr = 0.00439141 +I0407 23:12:02.860139 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 23:12:05.848069 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 23:12:08.176095 23673 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 23:12:08.176122 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:12:09.357275 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:12.646163 23673 solver.cpp:397] Test net output #0: accuracy = 0.441176 +I0407 23:12:12.646214 23673 solver.cpp:397] Test net output #1: loss = 3.16731 (* 1 = 3.16731 loss) +I0407 23:12:12.737502 23673 solver.cpp:218] Iteration 8364 (0.826613 iter/s, 14.5171s/12 iters), loss = 0.19166 +I0407 23:12:12.737555 23673 solver.cpp:237] Train net output #0: loss = 0.19166 (* 1 = 0.19166 loss) +I0407 23:12:12.737567 23673 sgd_solver.cpp:105] Iteration 8364, lr = 0.00438623 +I0407 23:12:17.399935 23673 solver.cpp:218] Iteration 8376 (2.57388 iter/s, 4.66223s/12 iters), loss = 0.158605 +I0407 23:12:17.399981 23673 solver.cpp:237] Train net output #0: loss = 0.158605 (* 1 = 0.158605 loss) +I0407 23:12:17.399993 23673 sgd_solver.cpp:105] Iteration 8376, lr = 0.00438104 +I0407 23:12:22.710884 23673 solver.cpp:218] Iteration 8388 (2.25958 iter/s, 5.31073s/12 iters), loss = 0.225954 +I0407 23:12:22.710933 23673 solver.cpp:237] Train net output #0: loss = 0.225954 (* 1 = 0.225954 loss) +I0407 23:12:22.710945 23673 sgd_solver.cpp:105] Iteration 8388, lr = 0.00437587 +I0407 23:12:25.544078 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:27.740348 23673 solver.cpp:218] Iteration 8400 (2.38604 iter/s, 5.02925s/12 iters), loss = 0.0465599 +I0407 23:12:27.740399 23673 solver.cpp:237] Train net output #0: loss = 0.0465598 (* 1 = 0.0465598 loss) +I0407 23:12:27.740413 23673 sgd_solver.cpp:105] Iteration 8400, lr = 0.00437069 +I0407 23:12:32.786665 23673 solver.cpp:218] Iteration 8412 (2.37807 iter/s, 5.0461s/12 iters), loss = 0.279343 +I0407 23:12:32.786813 23673 solver.cpp:237] Train net output #0: loss = 0.279343 (* 1 = 0.279343 loss) +I0407 23:12:32.786828 23673 sgd_solver.cpp:105] Iteration 8412, lr = 0.00436553 +I0407 23:12:38.007792 23673 solver.cpp:218] Iteration 8424 (2.29849 iter/s, 5.22081s/12 iters), loss = 0.228779 +I0407 23:12:38.007839 23673 solver.cpp:237] Train net output #0: loss = 0.228778 (* 1 = 0.228778 loss) +I0407 23:12:38.007849 23673 sgd_solver.cpp:105] Iteration 8424, lr = 0.00436037 +I0407 23:12:43.331195 23673 solver.cpp:218] Iteration 8436 (2.25429 iter/s, 5.32318s/12 iters), loss = 0.142052 +I0407 23:12:43.331245 23673 solver.cpp:237] Train net output #0: loss = 0.142052 (* 1 = 0.142052 loss) +I0407 23:12:43.331255 23673 sgd_solver.cpp:105] Iteration 8436, lr = 0.00435522 +I0407 23:12:48.436458 23673 solver.cpp:218] Iteration 8448 (2.35061 iter/s, 5.10505s/12 iters), loss = 0.120266 +I0407 23:12:48.436504 23673 solver.cpp:237] Train net output #0: loss = 0.120266 (* 1 = 0.120266 loss) +I0407 23:12:48.436513 23673 sgd_solver.cpp:105] Iteration 8448, lr = 0.00435007 +I0407 23:12:53.479579 23673 solver.cpp:218] Iteration 8460 (2.37958 iter/s, 5.04291s/12 iters), loss = 0.157382 +I0407 23:12:53.479614 23673 solver.cpp:237] Train net output #0: loss = 0.157382 (* 1 = 0.157382 loss) +I0407 23:12:53.479624 23673 sgd_solver.cpp:105] Iteration 8460, lr = 0.00434493 +I0407 23:12:55.526703 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 23:12:58.513684 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 23:13:00.842248 23673 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 23:13:00.842273 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:13:02.000752 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:05.393474 23673 solver.cpp:397] Test net output #0: accuracy = 0.429534 +I0407 23:13:05.393611 23673 solver.cpp:397] Test net output #1: loss = 3.24494 (* 1 = 3.24494 loss) +I0407 23:13:07.477238 23673 solver.cpp:218] Iteration 8472 (0.857315 iter/s, 13.9972s/12 iters), loss = 0.150495 +I0407 23:13:07.477277 23673 solver.cpp:237] Train net output #0: loss = 0.150495 (* 1 = 0.150495 loss) +I0407 23:13:07.477286 23673 sgd_solver.cpp:105] Iteration 8472, lr = 0.0043398 +I0407 23:13:12.586793 23673 solver.cpp:218] Iteration 8484 (2.34864 iter/s, 5.10935s/12 iters), loss = 0.0890262 +I0407 23:13:12.586844 23673 solver.cpp:237] Train net output #0: loss = 0.089026 (* 1 = 0.089026 loss) +I0407 23:13:12.586856 23673 sgd_solver.cpp:105] Iteration 8484, lr = 0.00433467 +I0407 23:13:17.692864 23673 solver.cpp:218] Iteration 8496 (2.35024 iter/s, 5.10585s/12 iters), loss = 0.14622 +I0407 23:13:17.692915 23673 solver.cpp:237] Train net output #0: loss = 0.14622 (* 1 = 0.14622 loss) +I0407 23:13:17.692929 23673 sgd_solver.cpp:105] Iteration 8496, lr = 0.00432955 +I0407 23:13:17.740067 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:23.075242 23673 solver.cpp:218] Iteration 8508 (2.22959 iter/s, 5.38215s/12 iters), loss = 0.128871 +I0407 23:13:23.075290 23673 solver.cpp:237] Train net output #0: loss = 0.128871 (* 1 = 0.128871 loss) +I0407 23:13:23.075301 23673 sgd_solver.cpp:105] Iteration 8508, lr = 0.00432443 +I0407 23:13:28.607074 23673 solver.cpp:218] Iteration 8520 (2.16935 iter/s, 5.5316s/12 iters), loss = 0.16616 +I0407 23:13:28.607131 23673 solver.cpp:237] Train net output #0: loss = 0.16616 (* 1 = 0.16616 loss) +I0407 23:13:28.607143 23673 sgd_solver.cpp:105] Iteration 8520, lr = 0.00431932 +I0407 23:13:33.781440 23673 solver.cpp:218] Iteration 8532 (2.31923 iter/s, 5.17414s/12 iters), loss = 0.0966823 +I0407 23:13:33.781500 23673 solver.cpp:237] Train net output #0: loss = 0.0966821 (* 1 = 0.0966821 loss) +I0407 23:13:33.781514 23673 sgd_solver.cpp:105] Iteration 8532, lr = 0.00431422 +I0407 23:13:38.782979 23673 solver.cpp:218] Iteration 8544 (2.39937 iter/s, 5.00132s/12 iters), loss = 0.273994 +I0407 23:13:38.784435 23673 solver.cpp:237] Train net output #0: loss = 0.273994 (* 1 = 0.273994 loss) +I0407 23:13:38.784449 23673 sgd_solver.cpp:105] Iteration 8544, lr = 0.00430912 +I0407 23:13:44.029059 23673 solver.cpp:218] Iteration 8556 (2.28813 iter/s, 5.24445s/12 iters), loss = 0.0656031 +I0407 23:13:44.029116 23673 solver.cpp:237] Train net output #0: loss = 0.0656029 (* 1 = 0.0656029 loss) +I0407 23:13:44.029129 23673 sgd_solver.cpp:105] Iteration 8556, lr = 0.00430403 +I0407 23:13:48.984915 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 23:13:52.092633 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 23:13:54.412904 23673 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 23:13:54.412925 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:13:55.472107 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:58.860033 23673 solver.cpp:397] Test net output #0: accuracy = 0.45098 +I0407 23:13:58.860083 23673 solver.cpp:397] Test net output #1: loss = 3.11927 (* 1 = 3.11927 loss) +I0407 23:13:58.950240 23673 solver.cpp:218] Iteration 8568 (0.804254 iter/s, 14.9207s/12 iters), loss = 0.0701313 +I0407 23:13:58.950294 23673 solver.cpp:237] Train net output #0: loss = 0.0701311 (* 1 = 0.0701311 loss) +I0407 23:13:58.950304 23673 sgd_solver.cpp:105] Iteration 8568, lr = 0.00429894 +I0407 23:14:03.251619 23673 solver.cpp:218] Iteration 8580 (2.78993 iter/s, 4.30119s/12 iters), loss = 0.138455 +I0407 23:14:03.251658 23673 solver.cpp:237] Train net output #0: loss = 0.138455 (* 1 = 0.138455 loss) +I0407 23:14:03.251667 23673 sgd_solver.cpp:105] Iteration 8580, lr = 0.00429386 +I0407 23:14:08.680928 23673 solver.cpp:218] Iteration 8592 (2.21031 iter/s, 5.42909s/12 iters), loss = 0.134602 +I0407 23:14:08.680969 23673 solver.cpp:237] Train net output #0: loss = 0.134602 (* 1 = 0.134602 loss) +I0407 23:14:08.680979 23673 sgd_solver.cpp:105] Iteration 8592, lr = 0.00428879 +I0407 23:14:11.102528 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:14.120236 23673 solver.cpp:218] Iteration 8604 (2.20625 iter/s, 5.43909s/12 iters), loss = 0.0904113 +I0407 23:14:14.120285 23673 solver.cpp:237] Train net output #0: loss = 0.0904111 (* 1 = 0.0904111 loss) +I0407 23:14:14.120296 23673 sgd_solver.cpp:105] Iteration 8604, lr = 0.00428372 +I0407 23:14:19.132220 23673 solver.cpp:218] Iteration 8616 (2.39436 iter/s, 5.01177s/12 iters), loss = 0.0738635 +I0407 23:14:19.132272 23673 solver.cpp:237] Train net output #0: loss = 0.0738634 (* 1 = 0.0738634 loss) +I0407 23:14:19.132284 23673 sgd_solver.cpp:105] Iteration 8616, lr = 0.00427866 +I0407 23:14:24.115968 23673 solver.cpp:218] Iteration 8628 (2.40793 iter/s, 4.98354s/12 iters), loss = 0.153574 +I0407 23:14:24.116020 23673 solver.cpp:237] Train net output #0: loss = 0.153573 (* 1 = 0.153573 loss) +I0407 23:14:24.116032 23673 sgd_solver.cpp:105] Iteration 8628, lr = 0.0042736 +I0407 23:14:29.194309 23673 solver.cpp:218] Iteration 8640 (2.36308 iter/s, 5.07812s/12 iters), loss = 0.144961 +I0407 23:14:29.194355 23673 solver.cpp:237] Train net output #0: loss = 0.144961 (* 1 = 0.144961 loss) +I0407 23:14:29.194363 23673 sgd_solver.cpp:105] Iteration 8640, lr = 0.00426855 +I0407 23:14:34.349980 23673 solver.cpp:218] Iteration 8652 (2.32764 iter/s, 5.15544s/12 iters), loss = 0.11623 +I0407 23:14:34.350025 23673 solver.cpp:237] Train net output #0: loss = 0.11623 (* 1 = 0.11623 loss) +I0407 23:14:34.350035 23673 sgd_solver.cpp:105] Iteration 8652, lr = 0.00426351 +I0407 23:14:39.498694 23673 solver.cpp:218] Iteration 8664 (2.33078 iter/s, 5.1485s/12 iters), loss = 0.0809609 +I0407 23:14:39.498744 23673 solver.cpp:237] Train net output #0: loss = 0.0809607 (* 1 = 0.0809607 loss) +I0407 23:14:39.498754 23673 sgd_solver.cpp:105] Iteration 8664, lr = 0.00425847 +I0407 23:14:41.592067 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 23:14:44.562461 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 23:14:46.868947 23673 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 23:14:46.868975 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:14:47.946465 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:51.609083 23673 solver.cpp:397] Test net output #0: accuracy = 0.441789 +I0407 23:14:51.609128 23673 solver.cpp:397] Test net output #1: loss = 3.0716 (* 1 = 3.0716 loss) +I0407 23:14:53.466470 23673 solver.cpp:218] Iteration 8676 (0.85915 iter/s, 13.9673s/12 iters), loss = 0.112653 +I0407 23:14:53.466514 23673 solver.cpp:237] Train net output #0: loss = 0.112653 (* 1 = 0.112653 loss) +I0407 23:14:53.466523 23673 sgd_solver.cpp:105] Iteration 8676, lr = 0.00425344 +I0407 23:14:58.640543 23673 solver.cpp:218] Iteration 8688 (2.31935 iter/s, 5.17387s/12 iters), loss = 0.147595 +I0407 23:14:58.640595 23673 solver.cpp:237] Train net output #0: loss = 0.147594 (* 1 = 0.147594 loss) +I0407 23:14:58.640607 23673 sgd_solver.cpp:105] Iteration 8688, lr = 0.00424841 +I0407 23:15:03.051808 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:03.734501 23673 solver.cpp:218] Iteration 8700 (2.35583 iter/s, 5.09375s/12 iters), loss = 0.124958 +I0407 23:15:03.734558 23673 solver.cpp:237] Train net output #0: loss = 0.124958 (* 1 = 0.124958 loss) +I0407 23:15:03.734570 23673 sgd_solver.cpp:105] Iteration 8700, lr = 0.00424339 +I0407 23:15:08.743692 23673 solver.cpp:218] Iteration 8712 (2.39569 iter/s, 5.00899s/12 iters), loss = 0.129073 +I0407 23:15:08.743736 23673 solver.cpp:237] Train net output #0: loss = 0.129073 (* 1 = 0.129073 loss) +I0407 23:15:08.743746 23673 sgd_solver.cpp:105] Iteration 8712, lr = 0.00423838 +I0407 23:15:13.780877 23673 solver.cpp:218] Iteration 8724 (2.38237 iter/s, 5.037s/12 iters), loss = 0.103328 +I0407 23:15:13.780942 23673 solver.cpp:237] Train net output #0: loss = 0.103328 (* 1 = 0.103328 loss) +I0407 23:15:13.780952 23673 sgd_solver.cpp:105] Iteration 8724, lr = 0.00423337 +I0407 23:15:18.702204 23673 solver.cpp:218] Iteration 8736 (2.43847 iter/s, 4.92111s/12 iters), loss = 0.128239 +I0407 23:15:18.702257 23673 solver.cpp:237] Train net output #0: loss = 0.128239 (* 1 = 0.128239 loss) +I0407 23:15:18.702270 23673 sgd_solver.cpp:105] Iteration 8736, lr = 0.00422836 +I0407 23:15:23.757200 23673 solver.cpp:218] Iteration 8748 (2.37398 iter/s, 5.0548s/12 iters), loss = 0.289811 +I0407 23:15:23.757249 23673 solver.cpp:237] Train net output #0: loss = 0.289811 (* 1 = 0.289811 loss) +I0407 23:15:23.757261 23673 sgd_solver.cpp:105] Iteration 8748, lr = 0.00422337 +I0407 23:15:28.837536 23673 solver.cpp:218] Iteration 8760 (2.36214 iter/s, 5.08014s/12 iters), loss = 0.140588 +I0407 23:15:28.837575 23673 solver.cpp:237] Train net output #0: loss = 0.140588 (* 1 = 0.140588 loss) +I0407 23:15:28.837584 23673 sgd_solver.cpp:105] Iteration 8760, lr = 0.00421838 +I0407 23:15:33.403525 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 23:15:36.445777 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 23:15:38.748358 23673 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 23:15:38.748379 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:15:39.649379 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:43.185240 23673 solver.cpp:397] Test net output #0: accuracy = 0.464461 +I0407 23:15:43.185271 23673 solver.cpp:397] Test net output #1: loss = 3.10627 (* 1 = 3.10627 loss) +I0407 23:15:43.276433 23673 solver.cpp:218] Iteration 8772 (0.831114 iter/s, 14.4384s/12 iters), loss = 0.0762339 +I0407 23:15:43.276475 23673 solver.cpp:237] Train net output #0: loss = 0.0762337 (* 1 = 0.0762337 loss) +I0407 23:15:43.276484 23673 sgd_solver.cpp:105] Iteration 8772, lr = 0.00421339 +I0407 23:15:47.502032 23673 solver.cpp:218] Iteration 8784 (2.83995 iter/s, 4.22542s/12 iters), loss = 0.20574 +I0407 23:15:47.502159 23673 solver.cpp:237] Train net output #0: loss = 0.205739 (* 1 = 0.205739 loss) +I0407 23:15:47.502171 23673 sgd_solver.cpp:105] Iteration 8784, lr = 0.00420841 +I0407 23:15:52.612886 23673 solver.cpp:218] Iteration 8796 (2.34807 iter/s, 5.11058s/12 iters), loss = 0.190834 +I0407 23:15:52.612936 23673 solver.cpp:237] Train net output #0: loss = 0.190834 (* 1 = 0.190834 loss) +I0407 23:15:52.612947 23673 sgd_solver.cpp:105] Iteration 8796, lr = 0.00420344 +I0407 23:15:54.198966 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:57.829244 23673 solver.cpp:218] Iteration 8808 (2.30054 iter/s, 5.21616s/12 iters), loss = 0.155338 +I0407 23:15:57.829293 23673 solver.cpp:237] Train net output #0: loss = 0.155337 (* 1 = 0.155337 loss) +I0407 23:15:57.829305 23673 sgd_solver.cpp:105] Iteration 8808, lr = 0.00419847 +I0407 23:16:02.942237 23673 solver.cpp:218] Iteration 8820 (2.34706 iter/s, 5.11279s/12 iters), loss = 0.0879409 +I0407 23:16:02.942297 23673 solver.cpp:237] Train net output #0: loss = 0.0879407 (* 1 = 0.0879407 loss) +I0407 23:16:02.942312 23673 sgd_solver.cpp:105] Iteration 8820, lr = 0.00419351 +I0407 23:16:08.115681 23673 solver.cpp:218] Iteration 8832 (2.31963 iter/s, 5.17323s/12 iters), loss = 0.0972831 +I0407 23:16:08.115731 23673 solver.cpp:237] Train net output #0: loss = 0.0972829 (* 1 = 0.0972829 loss) +I0407 23:16:08.115744 23673 sgd_solver.cpp:105] Iteration 8832, lr = 0.00418856 +I0407 23:16:13.179694 23673 solver.cpp:218] Iteration 8844 (2.36976 iter/s, 5.06381s/12 iters), loss = 0.133455 +I0407 23:16:13.179747 23673 solver.cpp:237] Train net output #0: loss = 0.133455 (* 1 = 0.133455 loss) +I0407 23:16:13.179759 23673 sgd_solver.cpp:105] Iteration 8844, lr = 0.00418361 +I0407 23:16:18.287817 23673 solver.cpp:218] Iteration 8856 (2.3493 iter/s, 5.10791s/12 iters), loss = 0.0928284 +I0407 23:16:18.287941 23673 solver.cpp:237] Train net output #0: loss = 0.0928281 (* 1 = 0.0928281 loss) +I0407 23:16:18.287955 23673 sgd_solver.cpp:105] Iteration 8856, lr = 0.00417866 +I0407 23:16:23.364876 23673 solver.cpp:218] Iteration 8868 (2.3637 iter/s, 5.07679s/12 iters), loss = 0.0987345 +I0407 23:16:23.364926 23673 solver.cpp:237] Train net output #0: loss = 0.0987342 (* 1 = 0.0987342 loss) +I0407 23:16:23.364938 23673 sgd_solver.cpp:105] Iteration 8868, lr = 0.00417373 +I0407 23:16:25.429646 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 23:16:28.469274 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 23:16:30.767704 23673 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 23:16:30.767729 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:16:31.929356 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:35.583026 23673 solver.cpp:397] Test net output #0: accuracy = 0.456495 +I0407 23:16:35.583082 23673 solver.cpp:397] Test net output #1: loss = 3.21331 (* 1 = 3.21331 loss) +I0407 23:16:37.600741 23673 solver.cpp:218] Iteration 8880 (0.842968 iter/s, 14.2354s/12 iters), loss = 0.0589438 +I0407 23:16:37.600793 23673 solver.cpp:237] Train net output #0: loss = 0.0589435 (* 1 = 0.0589435 loss) +I0407 23:16:37.600805 23673 sgd_solver.cpp:105] Iteration 8880, lr = 0.00416879 +I0407 23:16:42.783324 23673 solver.cpp:218] Iteration 8892 (2.31554 iter/s, 5.18237s/12 iters), loss = 0.11053 +I0407 23:16:42.783382 23673 solver.cpp:237] Train net output #0: loss = 0.11053 (* 1 = 0.11053 loss) +I0407 23:16:42.783396 23673 sgd_solver.cpp:105] Iteration 8892, lr = 0.00416387 +I0407 23:16:46.751081 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:48.299368 23673 solver.cpp:218] Iteration 8904 (2.17556 iter/s, 5.51582s/12 iters), loss = 0.0707729 +I0407 23:16:48.299510 23673 solver.cpp:237] Train net output #0: loss = 0.0707727 (* 1 = 0.0707727 loss) +I0407 23:16:48.299520 23673 sgd_solver.cpp:105] Iteration 8904, lr = 0.00415895 +I0407 23:16:53.340350 23673 solver.cpp:218] Iteration 8916 (2.38063 iter/s, 5.04069s/12 iters), loss = 0.163494 +I0407 23:16:53.340401 23673 solver.cpp:237] Train net output #0: loss = 0.163493 (* 1 = 0.163493 loss) +I0407 23:16:53.340413 23673 sgd_solver.cpp:105] Iteration 8916, lr = 0.00415403 +I0407 23:16:58.281723 23673 solver.cpp:218] Iteration 8928 (2.42858 iter/s, 4.94117s/12 iters), loss = 0.19839 +I0407 23:16:58.281780 23673 solver.cpp:237] Train net output #0: loss = 0.19839 (* 1 = 0.19839 loss) +I0407 23:16:58.281791 23673 sgd_solver.cpp:105] Iteration 8928, lr = 0.00414912 +I0407 23:17:03.080821 23673 solver.cpp:218] Iteration 8940 (2.50057 iter/s, 4.7989s/12 iters), loss = 0.283444 +I0407 23:17:03.080868 23673 solver.cpp:237] Train net output #0: loss = 0.283444 (* 1 = 0.283444 loss) +I0407 23:17:03.080880 23673 sgd_solver.cpp:105] Iteration 8940, lr = 0.00414422 +I0407 23:17:08.152637 23673 solver.cpp:218] Iteration 8952 (2.36611 iter/s, 5.07161s/12 iters), loss = 0.196053 +I0407 23:17:08.152685 23673 solver.cpp:237] Train net output #0: loss = 0.196053 (* 1 = 0.196053 loss) +I0407 23:17:08.152696 23673 sgd_solver.cpp:105] Iteration 8952, lr = 0.00413932 +I0407 23:17:13.126133 23673 solver.cpp:218] Iteration 8964 (2.41289 iter/s, 4.97329s/12 iters), loss = 0.0942649 +I0407 23:17:13.126188 23673 solver.cpp:237] Train net output #0: loss = 0.0942647 (* 1 = 0.0942647 loss) +I0407 23:17:13.126199 23673 sgd_solver.cpp:105] Iteration 8964, lr = 0.00413443 +I0407 23:17:17.725518 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 23:17:20.894266 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 23:17:23.219174 23673 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 23:17:23.219200 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:17:24.181277 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:27.691299 23673 solver.cpp:397] Test net output #0: accuracy = 0.454657 +I0407 23:17:27.691351 23673 solver.cpp:397] Test net output #1: loss = 3.1224 (* 1 = 3.1224 loss) +I0407 23:17:27.782773 23673 solver.cpp:218] Iteration 8976 (0.818768 iter/s, 14.6562s/12 iters), loss = 0.0756663 +I0407 23:17:27.782838 23673 solver.cpp:237] Train net output #0: loss = 0.0756661 (* 1 = 0.0756661 loss) +I0407 23:17:27.782855 23673 sgd_solver.cpp:105] Iteration 8976, lr = 0.00412955 +I0407 23:17:32.072860 23673 solver.cpp:218] Iteration 8988 (2.79727 iter/s, 4.28989s/12 iters), loss = 0.138925 +I0407 23:17:32.072917 23673 solver.cpp:237] Train net output #0: loss = 0.138925 (* 1 = 0.138925 loss) +I0407 23:17:32.072929 23673 sgd_solver.cpp:105] Iteration 8988, lr = 0.00412467 +I0407 23:17:35.405908 23673 blocking_queue.cpp:49] Waiting for data +I0407 23:17:37.151108 23673 solver.cpp:218] Iteration 9000 (2.36312 iter/s, 5.07804s/12 iters), loss = 0.0514634 +I0407 23:17:37.151157 23673 solver.cpp:237] Train net output #0: loss = 0.0514632 (* 1 = 0.0514632 loss) +I0407 23:17:37.151166 23673 sgd_solver.cpp:105] Iteration 9000, lr = 0.00411979 +I0407 23:17:37.855862 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:42.216176 23673 solver.cpp:218] Iteration 9012 (2.36926 iter/s, 5.06487s/12 iters), loss = 0.13372 +I0407 23:17:42.216226 23673 solver.cpp:237] Train net output #0: loss = 0.13372 (* 1 = 0.13372 loss) +I0407 23:17:42.216235 23673 sgd_solver.cpp:105] Iteration 9012, lr = 0.00411493 +I0407 23:17:47.223601 23673 solver.cpp:218] Iteration 9024 (2.39654 iter/s, 5.00722s/12 iters), loss = 0.184898 +I0407 23:17:47.223655 23673 solver.cpp:237] Train net output #0: loss = 0.184898 (* 1 = 0.184898 loss) +I0407 23:17:47.223667 23673 sgd_solver.cpp:105] Iteration 9024, lr = 0.00411006 +I0407 23:17:52.282310 23673 solver.cpp:218] Iteration 9036 (2.37224 iter/s, 5.0585s/12 iters), loss = 0.218241 +I0407 23:17:52.282438 23673 solver.cpp:237] Train net output #0: loss = 0.218241 (* 1 = 0.218241 loss) +I0407 23:17:52.282447 23673 sgd_solver.cpp:105] Iteration 9036, lr = 0.00410521 +I0407 23:17:57.380527 23673 solver.cpp:218] Iteration 9048 (2.3539 iter/s, 5.09793s/12 iters), loss = 0.132126 +I0407 23:17:57.380585 23673 solver.cpp:237] Train net output #0: loss = 0.132126 (* 1 = 0.132126 loss) +I0407 23:17:57.380599 23673 sgd_solver.cpp:105] Iteration 9048, lr = 0.00410036 +I0407 23:18:02.496250 23673 solver.cpp:218] Iteration 9060 (2.3458 iter/s, 5.11552s/12 iters), loss = 0.115809 +I0407 23:18:02.496299 23673 solver.cpp:237] Train net output #0: loss = 0.115809 (* 1 = 0.115809 loss) +I0407 23:18:02.496311 23673 sgd_solver.cpp:105] Iteration 9060, lr = 0.00409551 +I0407 23:18:08.223935 23673 solver.cpp:218] Iteration 9072 (2.09517 iter/s, 5.72746s/12 iters), loss = 0.112893 +I0407 23:18:08.223996 23673 solver.cpp:237] Train net output #0: loss = 0.112893 (* 1 = 0.112893 loss) +I0407 23:18:08.224009 23673 sgd_solver.cpp:105] Iteration 9072, lr = 0.00409067 +I0407 23:18:10.338248 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 23:18:13.415144 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 23:18:15.744987 23673 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 23:18:15.745015 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:18:16.650970 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:20.211954 23673 solver.cpp:397] Test net output #0: accuracy = 0.457108 +I0407 23:18:20.212016 23673 solver.cpp:397] Test net output #1: loss = 3.07237 (* 1 = 3.07237 loss) +I0407 23:18:22.224398 23673 solver.cpp:218] Iteration 9084 (0.857142 iter/s, 14s/12 iters), loss = 0.0488291 +I0407 23:18:22.224442 23673 solver.cpp:237] Train net output #0: loss = 0.0488289 (* 1 = 0.0488289 loss) +I0407 23:18:22.224452 23673 sgd_solver.cpp:105] Iteration 9084, lr = 0.00408584 +I0407 23:18:27.741235 23673 solver.cpp:218] Iteration 9096 (2.17524 iter/s, 5.51663s/12 iters), loss = 0.0517813 +I0407 23:18:27.741325 23673 solver.cpp:237] Train net output #0: loss = 0.051781 (* 1 = 0.051781 loss) +I0407 23:18:27.741335 23673 sgd_solver.cpp:105] Iteration 9096, lr = 0.00408101 +I0407 23:18:30.958300 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:33.071009 23673 solver.cpp:218] Iteration 9108 (2.25161 iter/s, 5.32952s/12 iters), loss = 0.189858 +I0407 23:18:33.071061 23673 solver.cpp:237] Train net output #0: loss = 0.189857 (* 1 = 0.189857 loss) +I0407 23:18:33.071072 23673 sgd_solver.cpp:105] Iteration 9108, lr = 0.00407619 +I0407 23:18:38.269922 23673 solver.cpp:218] Iteration 9120 (2.30827 iter/s, 5.1987s/12 iters), loss = 0.217262 +I0407 23:18:38.269982 23673 solver.cpp:237] Train net output #0: loss = 0.217262 (* 1 = 0.217262 loss) +I0407 23:18:38.269992 23673 sgd_solver.cpp:105] Iteration 9120, lr = 0.00407137 +I0407 23:18:43.507773 23673 solver.cpp:218] Iteration 9132 (2.29111 iter/s, 5.23763s/12 iters), loss = 0.158232 +I0407 23:18:43.507824 23673 solver.cpp:237] Train net output #0: loss = 0.158232 (* 1 = 0.158232 loss) +I0407 23:18:43.507835 23673 sgd_solver.cpp:105] Iteration 9132, lr = 0.00406656 +I0407 23:18:48.590728 23673 solver.cpp:218] Iteration 9144 (2.36093 iter/s, 5.08274s/12 iters), loss = 0.0834881 +I0407 23:18:48.590776 23673 solver.cpp:237] Train net output #0: loss = 0.0834878 (* 1 = 0.0834878 loss) +I0407 23:18:48.590787 23673 sgd_solver.cpp:105] Iteration 9144, lr = 0.00406175 +I0407 23:18:53.615940 23673 solver.cpp:218] Iteration 9156 (2.38806 iter/s, 5.02501s/12 iters), loss = 0.0939696 +I0407 23:18:53.615988 23673 solver.cpp:237] Train net output #0: loss = 0.0939693 (* 1 = 0.0939693 loss) +I0407 23:18:53.615999 23673 sgd_solver.cpp:105] Iteration 9156, lr = 0.00405695 +I0407 23:18:58.870415 23673 solver.cpp:218] Iteration 9168 (2.28386 iter/s, 5.25427s/12 iters), loss = 0.0378972 +I0407 23:18:58.870558 23673 solver.cpp:237] Train net output #0: loss = 0.037897 (* 1 = 0.037897 loss) +I0407 23:18:58.870573 23673 sgd_solver.cpp:105] Iteration 9168, lr = 0.00405216 +I0407 23:19:03.485626 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 23:19:07.637996 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 23:19:09.996364 23673 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 23:19:09.996387 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:19:10.838724 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:14.426990 23673 solver.cpp:397] Test net output #0: accuracy = 0.457721 +I0407 23:19:14.427035 23673 solver.cpp:397] Test net output #1: loss = 3.04143 (* 1 = 3.04143 loss) +I0407 23:19:14.518497 23673 solver.cpp:218] Iteration 9180 (0.766896 iter/s, 15.6475s/12 iters), loss = 0.156404 +I0407 23:19:14.518548 23673 solver.cpp:237] Train net output #0: loss = 0.156404 (* 1 = 0.156404 loss) +I0407 23:19:14.518559 23673 sgd_solver.cpp:105] Iteration 9180, lr = 0.00404737 +I0407 23:19:19.110052 23673 solver.cpp:218] Iteration 9192 (2.6136 iter/s, 4.59137s/12 iters), loss = 0.313898 +I0407 23:19:19.110097 23673 solver.cpp:237] Train net output #0: loss = 0.313897 (* 1 = 0.313897 loss) +I0407 23:19:19.110107 23673 sgd_solver.cpp:105] Iteration 9192, lr = 0.00404259 +I0407 23:19:24.335984 23673 solver.cpp:218] Iteration 9204 (2.29633 iter/s, 5.22572s/12 iters), loss = 0.0524873 +I0407 23:19:24.336038 23673 solver.cpp:237] Train net output #0: loss = 0.052487 (* 1 = 0.052487 loss) +I0407 23:19:24.336050 23673 sgd_solver.cpp:105] Iteration 9204, lr = 0.00403781 +I0407 23:19:24.415395 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:29.333209 23673 solver.cpp:218] Iteration 9216 (2.40143 iter/s, 4.99702s/12 iters), loss = 0.107177 +I0407 23:19:29.333326 23673 solver.cpp:237] Train net output #0: loss = 0.107177 (* 1 = 0.107177 loss) +I0407 23:19:29.333340 23673 sgd_solver.cpp:105] Iteration 9216, lr = 0.00403304 +I0407 23:19:34.472832 23673 solver.cpp:218] Iteration 9228 (2.33492 iter/s, 5.13935s/12 iters), loss = 0.0695427 +I0407 23:19:34.472880 23673 solver.cpp:237] Train net output #0: loss = 0.0695424 (* 1 = 0.0695424 loss) +I0407 23:19:34.472890 23673 sgd_solver.cpp:105] Iteration 9228, lr = 0.00402827 +I0407 23:19:39.636521 23673 solver.cpp:218] Iteration 9240 (2.32401 iter/s, 5.16348s/12 iters), loss = 0.0633787 +I0407 23:19:39.636574 23673 solver.cpp:237] Train net output #0: loss = 0.0633784 (* 1 = 0.0633784 loss) +I0407 23:19:39.636584 23673 sgd_solver.cpp:105] Iteration 9240, lr = 0.00402351 +I0407 23:19:44.792663 23673 solver.cpp:218] Iteration 9252 (2.32742 iter/s, 5.15593s/12 iters), loss = 0.121552 +I0407 23:19:44.792719 23673 solver.cpp:237] Train net output #0: loss = 0.121552 (* 1 = 0.121552 loss) +I0407 23:19:44.792732 23673 sgd_solver.cpp:105] Iteration 9252, lr = 0.00401876 +I0407 23:19:49.878540 23673 solver.cpp:218] Iteration 9264 (2.35957 iter/s, 5.08567s/12 iters), loss = 0.105038 +I0407 23:19:49.878585 23673 solver.cpp:237] Train net output #0: loss = 0.105038 (* 1 = 0.105038 loss) +I0407 23:19:49.878597 23673 sgd_solver.cpp:105] Iteration 9264, lr = 0.00401401 +I0407 23:19:55.011505 23673 solver.cpp:218] Iteration 9276 (2.33792 iter/s, 5.13276s/12 iters), loss = 0.157004 +I0407 23:19:55.011556 23673 solver.cpp:237] Train net output #0: loss = 0.157004 (* 1 = 0.157004 loss) +I0407 23:19:55.011569 23673 sgd_solver.cpp:105] Iteration 9276, lr = 0.00400927 +I0407 23:19:57.079190 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 23:20:00.100250 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 23:20:02.720995 23673 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 23:20:02.721022 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:20:03.616326 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:07.379395 23673 solver.cpp:397] Test net output #0: accuracy = 0.457108 +I0407 23:20:07.379436 23673 solver.cpp:397] Test net output #1: loss = 3.25668 (* 1 = 3.25668 loss) +I0407 23:20:09.377079 23673 solver.cpp:218] Iteration 9288 (0.835358 iter/s, 14.3651s/12 iters), loss = 0.0704898 +I0407 23:20:09.377136 23673 solver.cpp:237] Train net output #0: loss = 0.0704895 (* 1 = 0.0704895 loss) +I0407 23:20:09.377149 23673 sgd_solver.cpp:105] Iteration 9288, lr = 0.00400453 +I0407 23:20:14.402276 23673 solver.cpp:218] Iteration 9300 (2.38807 iter/s, 5.02498s/12 iters), loss = 0.0635856 +I0407 23:20:14.402334 23673 solver.cpp:237] Train net output #0: loss = 0.0635854 (* 1 = 0.0635854 loss) +I0407 23:20:14.402346 23673 sgd_solver.cpp:105] Iteration 9300, lr = 0.0039998 +I0407 23:20:16.665374 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:19.484146 23673 solver.cpp:218] Iteration 9312 (2.36144 iter/s, 5.08165s/12 iters), loss = 0.0769626 +I0407 23:20:19.484200 23673 solver.cpp:237] Train net output #0: loss = 0.0769623 (* 1 = 0.0769623 loss) +I0407 23:20:19.484211 23673 sgd_solver.cpp:105] Iteration 9312, lr = 0.00399507 +I0407 23:20:24.585029 23673 solver.cpp:218] Iteration 9324 (2.35263 iter/s, 5.10067s/12 iters), loss = 0.0920527 +I0407 23:20:24.585086 23673 solver.cpp:237] Train net output #0: loss = 0.0920524 (* 1 = 0.0920524 loss) +I0407 23:20:24.585099 23673 sgd_solver.cpp:105] Iteration 9324, lr = 0.00399035 +I0407 23:20:29.560559 23673 solver.cpp:218] Iteration 9336 (2.41191 iter/s, 4.97532s/12 iters), loss = 0.0968961 +I0407 23:20:29.560611 23673 solver.cpp:237] Train net output #0: loss = 0.0968958 (* 1 = 0.0968958 loss) +I0407 23:20:29.560622 23673 sgd_solver.cpp:105] Iteration 9336, lr = 0.00398563 +I0407 23:20:34.932693 23673 solver.cpp:218] Iteration 9348 (2.23384 iter/s, 5.37191s/12 iters), loss = 0.0653665 +I0407 23:20:34.932821 23673 solver.cpp:237] Train net output #0: loss = 0.0653663 (* 1 = 0.0653663 loss) +I0407 23:20:34.932834 23673 sgd_solver.cpp:105] Iteration 9348, lr = 0.00398092 +I0407 23:20:40.428221 23673 solver.cpp:218] Iteration 9360 (2.18371 iter/s, 5.49524s/12 iters), loss = 0.0489999 +I0407 23:20:40.428259 23673 solver.cpp:237] Train net output #0: loss = 0.0489996 (* 1 = 0.0489996 loss) +I0407 23:20:40.428269 23673 sgd_solver.cpp:105] Iteration 9360, lr = 0.00397622 +I0407 23:20:45.597064 23673 solver.cpp:218] Iteration 9372 (2.32169 iter/s, 5.16865s/12 iters), loss = 0.0852792 +I0407 23:20:45.597102 23673 solver.cpp:237] Train net output #0: loss = 0.0852789 (* 1 = 0.0852789 loss) +I0407 23:20:45.597110 23673 sgd_solver.cpp:105] Iteration 9372, lr = 0.00397152 +I0407 23:20:50.284320 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 23:20:53.302642 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 23:20:56.497793 23673 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 23:20:56.497822 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:20:57.257791 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:00.927469 23673 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 23:21:00.927518 23673 solver.cpp:397] Test net output #1: loss = 3.11849 (* 1 = 3.11849 loss) +I0407 23:21:01.018798 23673 solver.cpp:218] Iteration 9384 (0.778147 iter/s, 15.4212s/12 iters), loss = 0.133325 +I0407 23:21:01.018841 23673 solver.cpp:237] Train net output #0: loss = 0.133325 (* 1 = 0.133325 loss) +I0407 23:21:01.018851 23673 sgd_solver.cpp:105] Iteration 9384, lr = 0.00396683 +I0407 23:21:05.582599 23673 solver.cpp:218] Iteration 9396 (2.62949 iter/s, 4.56361s/12 iters), loss = 0.0343185 +I0407 23:21:05.582717 23673 solver.cpp:237] Train net output #0: loss = 0.0343182 (* 1 = 0.0343182 loss) +I0407 23:21:05.582729 23673 sgd_solver.cpp:105] Iteration 9396, lr = 0.00396214 +I0407 23:21:10.191931 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:10.859290 23673 solver.cpp:218] Iteration 9408 (2.27427 iter/s, 5.27641s/12 iters), loss = 0.250631 +I0407 23:21:10.859339 23673 solver.cpp:237] Train net output #0: loss = 0.25063 (* 1 = 0.25063 loss) +I0407 23:21:10.859349 23673 sgd_solver.cpp:105] Iteration 9408, lr = 0.00395746 +I0407 23:21:15.950624 23673 solver.cpp:218] Iteration 9420 (2.35704 iter/s, 5.09113s/12 iters), loss = 0.167101 +I0407 23:21:15.950665 23673 solver.cpp:237] Train net output #0: loss = 0.167101 (* 1 = 0.167101 loss) +I0407 23:21:15.950675 23673 sgd_solver.cpp:105] Iteration 9420, lr = 0.00395278 +I0407 23:21:21.070313 23673 solver.cpp:218] Iteration 9432 (2.34398 iter/s, 5.11949s/12 iters), loss = 0.0965757 +I0407 23:21:21.070360 23673 solver.cpp:237] Train net output #0: loss = 0.0965754 (* 1 = 0.0965754 loss) +I0407 23:21:21.070370 23673 sgd_solver.cpp:105] Iteration 9432, lr = 0.00394811 +I0407 23:21:26.140599 23673 solver.cpp:218] Iteration 9444 (2.36683 iter/s, 5.07008s/12 iters), loss = 0.0783833 +I0407 23:21:26.140645 23673 solver.cpp:237] Train net output #0: loss = 0.078383 (* 1 = 0.078383 loss) +I0407 23:21:26.140655 23673 sgd_solver.cpp:105] Iteration 9444, lr = 0.00394345 +I0407 23:21:31.346215 23673 solver.cpp:218] Iteration 9456 (2.30529 iter/s, 5.20541s/12 iters), loss = 0.0612541 +I0407 23:21:31.346254 23673 solver.cpp:237] Train net output #0: loss = 0.0612538 (* 1 = 0.0612538 loss) +I0407 23:21:31.346263 23673 sgd_solver.cpp:105] Iteration 9456, lr = 0.00393879 +I0407 23:21:36.419215 23673 solver.cpp:218] Iteration 9468 (2.36556 iter/s, 5.07281s/12 iters), loss = 0.0807772 +I0407 23:21:36.419314 23673 solver.cpp:237] Train net output #0: loss = 0.0807769 (* 1 = 0.0807769 loss) +I0407 23:21:36.419327 23673 sgd_solver.cpp:105] Iteration 9468, lr = 0.00393413 +I0407 23:21:41.866461 23673 solver.cpp:218] Iteration 9480 (2.20306 iter/s, 5.44698s/12 iters), loss = 0.114585 +I0407 23:21:41.866513 23673 solver.cpp:237] Train net output #0: loss = 0.114585 (* 1 = 0.114585 loss) +I0407 23:21:41.866524 23673 sgd_solver.cpp:105] Iteration 9480, lr = 0.00392948 +I0407 23:21:44.120573 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 23:21:47.240216 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 23:21:51.503000 23673 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 23:21:51.503028 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:21:52.228113 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:55.940320 23673 solver.cpp:397] Test net output #0: accuracy = 0.454657 +I0407 23:21:55.940371 23673 solver.cpp:397] Test net output #1: loss = 3.12717 (* 1 = 3.12717 loss) +I0407 23:21:58.372967 23673 solver.cpp:218] Iteration 9492 (0.72701 iter/s, 16.506s/12 iters), loss = 0.108913 +I0407 23:21:58.373019 23673 solver.cpp:237] Train net output #0: loss = 0.108913 (* 1 = 0.108913 loss) +I0407 23:21:58.373031 23673 sgd_solver.cpp:105] Iteration 9492, lr = 0.00392484 +I0407 23:22:04.258661 23673 solver.cpp:218] Iteration 9504 (2.03892 iter/s, 5.88546s/12 iters), loss = 0.126183 +I0407 23:22:04.258718 23673 solver.cpp:237] Train net output #0: loss = 0.126182 (* 1 = 0.126182 loss) +I0407 23:22:04.258730 23673 sgd_solver.cpp:105] Iteration 9504, lr = 0.0039202 +I0407 23:22:05.868232 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:09.334650 23673 solver.cpp:218] Iteration 9516 (2.36417 iter/s, 5.07577s/12 iters), loss = 0.133341 +I0407 23:22:09.334772 23673 solver.cpp:237] Train net output #0: loss = 0.133341 (* 1 = 0.133341 loss) +I0407 23:22:09.334785 23673 sgd_solver.cpp:105] Iteration 9516, lr = 0.00391557 +I0407 23:22:14.467453 23673 solver.cpp:218] Iteration 9528 (2.33803 iter/s, 5.13252s/12 iters), loss = 0.113791 +I0407 23:22:14.467501 23673 solver.cpp:237] Train net output #0: loss = 0.113791 (* 1 = 0.113791 loss) +I0407 23:22:14.467511 23673 sgd_solver.cpp:105] Iteration 9528, lr = 0.00391094 +I0407 23:22:19.479969 23673 solver.cpp:218] Iteration 9540 (2.39411 iter/s, 5.01231s/12 iters), loss = 0.0459199 +I0407 23:22:19.480021 23673 solver.cpp:237] Train net output #0: loss = 0.0459196 (* 1 = 0.0459196 loss) +I0407 23:22:19.480033 23673 sgd_solver.cpp:105] Iteration 9540, lr = 0.00390632 +I0407 23:22:24.495282 23673 solver.cpp:218] Iteration 9552 (2.39277 iter/s, 5.0151s/12 iters), loss = 0.155654 +I0407 23:22:24.495334 23673 solver.cpp:237] Train net output #0: loss = 0.155654 (* 1 = 0.155654 loss) +I0407 23:22:24.495347 23673 sgd_solver.cpp:105] Iteration 9552, lr = 0.00390171 +I0407 23:22:29.504912 23673 solver.cpp:218] Iteration 9564 (2.39549 iter/s, 5.00942s/12 iters), loss = 0.0607887 +I0407 23:22:29.504958 23673 solver.cpp:237] Train net output #0: loss = 0.0607884 (* 1 = 0.0607884 loss) +I0407 23:22:29.504969 23673 sgd_solver.cpp:105] Iteration 9564, lr = 0.0038971 +I0407 23:22:34.667438 23673 solver.cpp:218] Iteration 9576 (2.32454 iter/s, 5.16232s/12 iters), loss = 0.0474158 +I0407 23:22:34.667490 23673 solver.cpp:237] Train net output #0: loss = 0.0474155 (* 1 = 0.0474155 loss) +I0407 23:22:34.667502 23673 sgd_solver.cpp:105] Iteration 9576, lr = 0.00389249 +I0407 23:22:39.383114 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 23:22:42.429730 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 23:22:46.849349 23673 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 23:22:46.849375 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:22:47.556082 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:51.341935 23673 solver.cpp:397] Test net output #0: accuracy = 0.459559 +I0407 23:22:51.341987 23673 solver.cpp:397] Test net output #1: loss = 3.22732 (* 1 = 3.22732 loss) +I0407 23:22:51.433151 23673 solver.cpp:218] Iteration 9588 (0.715769 iter/s, 16.7652s/12 iters), loss = 0.136714 +I0407 23:22:51.433184 23673 solver.cpp:237] Train net output #0: loss = 0.136713 (* 1 = 0.136713 loss) +I0407 23:22:51.433192 23673 sgd_solver.cpp:105] Iteration 9588, lr = 0.00388789 +I0407 23:22:56.049052 23673 solver.cpp:218] Iteration 9600 (2.59981 iter/s, 4.61572s/12 iters), loss = 0.0491747 +I0407 23:22:56.049104 23673 solver.cpp:237] Train net output #0: loss = 0.0491744 (* 1 = 0.0491744 loss) +I0407 23:22:56.049118 23673 sgd_solver.cpp:105] Iteration 9600, lr = 0.0038833 +I0407 23:23:00.010787 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:01.446234 23673 solver.cpp:218] Iteration 9612 (2.22347 iter/s, 5.39696s/12 iters), loss = 0.0969214 +I0407 23:23:01.446290 23673 solver.cpp:237] Train net output #0: loss = 0.0969212 (* 1 = 0.0969212 loss) +I0407 23:23:01.446301 23673 sgd_solver.cpp:105] Iteration 9612, lr = 0.00387871 +I0407 23:23:06.766760 23673 solver.cpp:218] Iteration 9624 (2.25551 iter/s, 5.32031s/12 iters), loss = 0.0941694 +I0407 23:23:06.766805 23673 solver.cpp:237] Train net output #0: loss = 0.0941691 (* 1 = 0.0941691 loss) +I0407 23:23:06.766816 23673 sgd_solver.cpp:105] Iteration 9624, lr = 0.00387412 +I0407 23:23:11.922597 23673 solver.cpp:218] Iteration 9636 (2.32755 iter/s, 5.15563s/12 iters), loss = 0.176353 +I0407 23:23:11.922703 23673 solver.cpp:237] Train net output #0: loss = 0.176353 (* 1 = 0.176353 loss) +I0407 23:23:11.922713 23673 sgd_solver.cpp:105] Iteration 9636, lr = 0.00386955 +I0407 23:23:17.009747 23673 solver.cpp:218] Iteration 9648 (2.35901 iter/s, 5.08688s/12 iters), loss = 0.225566 +I0407 23:23:17.009804 23673 solver.cpp:237] Train net output #0: loss = 0.225566 (* 1 = 0.225566 loss) +I0407 23:23:17.009817 23673 sgd_solver.cpp:105] Iteration 9648, lr = 0.00386497 +I0407 23:23:21.983280 23673 solver.cpp:218] Iteration 9660 (2.41287 iter/s, 4.97332s/12 iters), loss = 0.0687485 +I0407 23:23:21.983331 23673 solver.cpp:237] Train net output #0: loss = 0.0687483 (* 1 = 0.0687483 loss) +I0407 23:23:21.983343 23673 sgd_solver.cpp:105] Iteration 9660, lr = 0.00386041 +I0407 23:23:27.189457 23673 solver.cpp:218] Iteration 9672 (2.30505 iter/s, 5.20596s/12 iters), loss = 0.139547 +I0407 23:23:27.189507 23673 solver.cpp:237] Train net output #0: loss = 0.139547 (* 1 = 0.139547 loss) +I0407 23:23:27.189522 23673 sgd_solver.cpp:105] Iteration 9672, lr = 0.00385584 +I0407 23:23:32.701223 23673 solver.cpp:218] Iteration 9684 (2.17725 iter/s, 5.51154s/12 iters), loss = 0.115391 +I0407 23:23:32.701274 23673 solver.cpp:237] Train net output #0: loss = 0.11539 (* 1 = 0.11539 loss) +I0407 23:23:32.701287 23673 sgd_solver.cpp:105] Iteration 9684, lr = 0.00385129 +I0407 23:23:35.002410 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 23:23:39.819417 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 23:23:46.114143 23673 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 23:23:46.115896 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:23:46.732198 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:49.544095 23673 blocking_queue.cpp:49] Waiting for data +I0407 23:23:50.532527 23673 solver.cpp:397] Test net output #0: accuracy = 0.460784 +I0407 23:23:50.532562 23673 solver.cpp:397] Test net output #1: loss = 3.0444 (* 1 = 3.0444 loss) +I0407 23:23:52.518599 23673 solver.cpp:218] Iteration 9696 (0.605549 iter/s, 19.8167s/12 iters), loss = 0.175833 +I0407 23:23:52.518641 23673 solver.cpp:237] Train net output #0: loss = 0.175833 (* 1 = 0.175833 loss) +I0407 23:23:52.518651 23673 sgd_solver.cpp:105] Iteration 9696, lr = 0.00384674 +I0407 23:23:58.016832 23673 solver.cpp:218] Iteration 9708 (2.18261 iter/s, 5.49801s/12 iters), loss = 0.0219269 +I0407 23:23:58.016889 23673 solver.cpp:237] Train net output #0: loss = 0.0219267 (* 1 = 0.0219267 loss) +I0407 23:23:58.016901 23673 sgd_solver.cpp:105] Iteration 9708, lr = 0.00384219 +I0407 23:23:58.851511 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:03.505184 23673 solver.cpp:218] Iteration 9720 (2.18654 iter/s, 5.48812s/12 iters), loss = 0.0498005 +I0407 23:24:03.505239 23673 solver.cpp:237] Train net output #0: loss = 0.0498002 (* 1 = 0.0498002 loss) +I0407 23:24:03.505250 23673 sgd_solver.cpp:105] Iteration 9720, lr = 0.00383765 +I0407 23:24:09.019515 23673 solver.cpp:218] Iteration 9732 (2.17624 iter/s, 5.51411s/12 iters), loss = 0.0901195 +I0407 23:24:09.019559 23673 solver.cpp:237] Train net output #0: loss = 0.0901192 (* 1 = 0.0901192 loss) +I0407 23:24:09.019569 23673 sgd_solver.cpp:105] Iteration 9732, lr = 0.00383312 +I0407 23:24:14.526710 23673 solver.cpp:218] Iteration 9744 (2.17905 iter/s, 5.50698s/12 iters), loss = 0.109038 +I0407 23:24:14.526747 23673 solver.cpp:237] Train net output #0: loss = 0.109038 (* 1 = 0.109038 loss) +I0407 23:24:14.526757 23673 sgd_solver.cpp:105] Iteration 9744, lr = 0.00382859 +I0407 23:24:19.875933 23673 solver.cpp:218] Iteration 9756 (2.2434 iter/s, 5.34902s/12 iters), loss = 0.266349 +I0407 23:24:19.876045 23673 solver.cpp:237] Train net output #0: loss = 0.266348 (* 1 = 0.266348 loss) +I0407 23:24:19.876060 23673 sgd_solver.cpp:105] Iteration 9756, lr = 0.00382406 +I0407 23:24:25.046890 23673 solver.cpp:218] Iteration 9768 (2.32077 iter/s, 5.17069s/12 iters), loss = 0.107951 +I0407 23:24:25.046931 23673 solver.cpp:237] Train net output #0: loss = 0.107951 (* 1 = 0.107951 loss) +I0407 23:24:25.046939 23673 sgd_solver.cpp:105] Iteration 9768, lr = 0.00381954 +I0407 23:24:30.148715 23673 solver.cpp:218] Iteration 9780 (2.35219 iter/s, 5.10162s/12 iters), loss = 0.119994 +I0407 23:24:30.148770 23673 solver.cpp:237] Train net output #0: loss = 0.119994 (* 1 = 0.119994 loss) +I0407 23:24:30.148782 23673 sgd_solver.cpp:105] Iteration 9780, lr = 0.00381503 +I0407 23:24:34.718173 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 23:24:38.378813 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 23:24:42.049564 23673 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 23:24:42.049592 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:24:42.640435 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:46.556082 23673 solver.cpp:397] Test net output #0: accuracy = 0.452206 +I0407 23:24:46.556133 23673 solver.cpp:397] Test net output #1: loss = 3.18877 (* 1 = 3.18877 loss) +I0407 23:24:46.647552 23673 solver.cpp:218] Iteration 9792 (0.727348 iter/s, 16.4983s/12 iters), loss = 0.0690062 +I0407 23:24:46.647604 23673 solver.cpp:237] Train net output #0: loss = 0.069006 (* 1 = 0.069006 loss) +I0407 23:24:46.647617 23673 sgd_solver.cpp:105] Iteration 9792, lr = 0.00381052 +I0407 23:24:51.120633 23673 solver.cpp:218] Iteration 9804 (2.68283 iter/s, 4.47289s/12 iters), loss = 0.191844 +I0407 23:24:51.120733 23673 solver.cpp:237] Train net output #0: loss = 0.191843 (* 1 = 0.191843 loss) +I0407 23:24:51.120743 23673 sgd_solver.cpp:105] Iteration 9804, lr = 0.00380602 +I0407 23:24:54.128984 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:56.223966 23673 solver.cpp:218] Iteration 9816 (2.35153 iter/s, 5.10307s/12 iters), loss = 0.128989 +I0407 23:24:56.224023 23673 solver.cpp:237] Train net output #0: loss = 0.128988 (* 1 = 0.128988 loss) +I0407 23:24:56.224037 23673 sgd_solver.cpp:105] Iteration 9816, lr = 0.00380152 +I0407 23:25:01.320930 23673 solver.cpp:218] Iteration 9828 (2.35444 iter/s, 5.09674s/12 iters), loss = 0.124763 +I0407 23:25:01.320988 23673 solver.cpp:237] Train net output #0: loss = 0.124763 (* 1 = 0.124763 loss) +I0407 23:25:01.320999 23673 sgd_solver.cpp:105] Iteration 9828, lr = 0.00379703 +I0407 23:25:06.397399 23673 solver.cpp:218] Iteration 9840 (2.36395 iter/s, 5.07625s/12 iters), loss = 0.13631 +I0407 23:25:06.397449 23673 solver.cpp:237] Train net output #0: loss = 0.13631 (* 1 = 0.13631 loss) +I0407 23:25:06.397460 23673 sgd_solver.cpp:105] Iteration 9840, lr = 0.00379254 +I0407 23:25:11.490846 23673 solver.cpp:218] Iteration 9852 (2.35606 iter/s, 5.09324s/12 iters), loss = 0.0389735 +I0407 23:25:11.490900 23673 solver.cpp:237] Train net output #0: loss = 0.0389732 (* 1 = 0.0389732 loss) +I0407 23:25:11.490912 23673 sgd_solver.cpp:105] Iteration 9852, lr = 0.00378806 +I0407 23:25:16.572553 23673 solver.cpp:218] Iteration 9864 (2.36151 iter/s, 5.08149s/12 iters), loss = 0.183684 +I0407 23:25:16.572609 23673 solver.cpp:237] Train net output #0: loss = 0.183684 (* 1 = 0.183684 loss) +I0407 23:25:16.572621 23673 sgd_solver.cpp:105] Iteration 9864, lr = 0.00378359 +I0407 23:25:21.654520 23673 solver.cpp:218] Iteration 9876 (2.36139 iter/s, 5.08175s/12 iters), loss = 0.00916722 +I0407 23:25:21.654600 23673 solver.cpp:237] Train net output #0: loss = 0.00916699 (* 1 = 0.00916699 loss) +I0407 23:25:21.654613 23673 sgd_solver.cpp:105] Iteration 9876, lr = 0.00377911 +I0407 23:25:26.648372 23673 solver.cpp:218] Iteration 9888 (2.40307 iter/s, 4.99361s/12 iters), loss = 0.102931 +I0407 23:25:26.648427 23673 solver.cpp:237] Train net output #0: loss = 0.102931 (* 1 = 0.102931 loss) +I0407 23:25:26.648439 23673 sgd_solver.cpp:105] Iteration 9888, lr = 0.00377465 +I0407 23:25:28.725455 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 23:25:34.973577 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 23:25:38.709838 23673 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 23:25:38.709865 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:25:39.279958 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:43.171025 23673 solver.cpp:397] Test net output #0: accuracy = 0.445466 +I0407 23:25:43.171072 23673 solver.cpp:397] Test net output #1: loss = 3.27942 (* 1 = 3.27942 loss) +I0407 23:25:45.118811 23673 solver.cpp:218] Iteration 9900 (0.649708 iter/s, 18.4698s/12 iters), loss = 0.115426 +I0407 23:25:45.118856 23673 solver.cpp:237] Train net output #0: loss = 0.115425 (* 1 = 0.115425 loss) +I0407 23:25:45.118865 23673 sgd_solver.cpp:105] Iteration 9900, lr = 0.00377019 +I0407 23:25:50.218678 23673 solver.cpp:218] Iteration 9912 (2.3531 iter/s, 5.09965s/12 iters), loss = 0.0806156 +I0407 23:25:50.218727 23673 solver.cpp:237] Train net output #0: loss = 0.0806153 (* 1 = 0.0806153 loss) +I0407 23:25:50.218736 23673 sgd_solver.cpp:105] Iteration 9912, lr = 0.00376573 +I0407 23:25:50.316783 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:55.423213 23673 solver.cpp:218] Iteration 9924 (2.30578 iter/s, 5.20431s/12 iters), loss = 0.143227 +I0407 23:25:55.423318 23673 solver.cpp:237] Train net output #0: loss = 0.143226 (* 1 = 0.143226 loss) +I0407 23:25:55.423329 23673 sgd_solver.cpp:105] Iteration 9924, lr = 0.00376128 +I0407 23:26:00.608971 23673 solver.cpp:218] Iteration 9936 (2.31415 iter/s, 5.18549s/12 iters), loss = 0.147971 +I0407 23:26:00.609030 23673 solver.cpp:237] Train net output #0: loss = 0.14797 (* 1 = 0.14797 loss) +I0407 23:26:00.609042 23673 sgd_solver.cpp:105] Iteration 9936, lr = 0.00375684 +I0407 23:26:05.694849 23673 solver.cpp:218] Iteration 9948 (2.35958 iter/s, 5.08566s/12 iters), loss = 0.0445552 +I0407 23:26:05.694900 23673 solver.cpp:237] Train net output #0: loss = 0.0445549 (* 1 = 0.0445549 loss) +I0407 23:26:05.694911 23673 sgd_solver.cpp:105] Iteration 9948, lr = 0.0037524 +I0407 23:26:10.799263 23673 solver.cpp:218] Iteration 9960 (2.35101 iter/s, 5.1042s/12 iters), loss = 0.11423 +I0407 23:26:10.799310 23673 solver.cpp:237] Train net output #0: loss = 0.11423 (* 1 = 0.11423 loss) +I0407 23:26:10.799319 23673 sgd_solver.cpp:105] Iteration 9960, lr = 0.00374796 +I0407 23:26:15.930577 23673 solver.cpp:218] Iteration 9972 (2.33868 iter/s, 5.13111s/12 iters), loss = 0.103403 +I0407 23:26:15.930615 23673 solver.cpp:237] Train net output #0: loss = 0.103403 (* 1 = 0.103403 loss) +I0407 23:26:15.930622 23673 sgd_solver.cpp:105] Iteration 9972, lr = 0.00374354 +I0407 23:26:21.086956 23673 solver.cpp:218] Iteration 9984 (2.32731 iter/s, 5.15617s/12 iters), loss = 0.0550655 +I0407 23:26:21.087002 23673 solver.cpp:237] Train net output #0: loss = 0.0550653 (* 1 = 0.0550653 loss) +I0407 23:26:21.087011 23673 sgd_solver.cpp:105] Iteration 9984, lr = 0.00373911 +I0407 23:26:25.965713 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 23:26:29.762269 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 23:26:35.285786 23673 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 23:26:35.285815 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:26:35.770643 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:39.855986 23673 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 23:26:39.856034 23673 solver.cpp:397] Test net output #1: loss = 3.14034 (* 1 = 3.14034 loss) +I0407 23:26:39.947553 23673 solver.cpp:218] Iteration 9996 (0.636268 iter/s, 18.86s/12 iters), loss = 0.117575 +I0407 23:26:39.947625 23673 solver.cpp:237] Train net output #0: loss = 0.117574 (* 1 = 0.117574 loss) +I0407 23:26:39.947641 23673 sgd_solver.cpp:105] Iteration 9996, lr = 0.00373469 +I0407 23:26:44.235484 23673 solver.cpp:218] Iteration 10008 (2.79869 iter/s, 4.28772s/12 iters), loss = 0.127021 +I0407 23:26:44.235530 23673 solver.cpp:237] Train net output #0: loss = 0.127021 (* 1 = 0.127021 loss) +I0407 23:26:44.235541 23673 sgd_solver.cpp:105] Iteration 10008, lr = 0.00373028 +I0407 23:26:46.603682 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:49.424059 23673 solver.cpp:218] Iteration 10020 (2.31287 iter/s, 5.18835s/12 iters), loss = 0.138874 +I0407 23:26:49.424115 23673 solver.cpp:237] Train net output #0: loss = 0.138874 (* 1 = 0.138874 loss) +I0407 23:26:49.424127 23673 sgd_solver.cpp:105] Iteration 10020, lr = 0.00372587 +I0407 23:26:54.510860 23673 solver.cpp:218] Iteration 10032 (2.35915 iter/s, 5.08658s/12 iters), loss = 0.0491051 +I0407 23:26:54.510902 23673 solver.cpp:237] Train net output #0: loss = 0.0491049 (* 1 = 0.0491049 loss) +I0407 23:26:54.510911 23673 sgd_solver.cpp:105] Iteration 10032, lr = 0.00372147 +I0407 23:26:59.622198 23673 solver.cpp:218] Iteration 10044 (2.34782 iter/s, 5.11113s/12 iters), loss = 0.0216121 +I0407 23:26:59.622339 23673 solver.cpp:237] Train net output #0: loss = 0.0216119 (* 1 = 0.0216119 loss) +I0407 23:26:59.622352 23673 sgd_solver.cpp:105] Iteration 10044, lr = 0.00371707 +I0407 23:27:04.947186 23673 solver.cpp:218] Iteration 10056 (2.25365 iter/s, 5.32469s/12 iters), loss = 0.123722 +I0407 23:27:04.947225 23673 solver.cpp:237] Train net output #0: loss = 0.123722 (* 1 = 0.123722 loss) +I0407 23:27:04.947234 23673 sgd_solver.cpp:105] Iteration 10056, lr = 0.00371268 +I0407 23:27:10.341863 23673 solver.cpp:218] Iteration 10068 (2.2245 iter/s, 5.39446s/12 iters), loss = 0.0785977 +I0407 23:27:10.341909 23673 solver.cpp:237] Train net output #0: loss = 0.0785975 (* 1 = 0.0785975 loss) +I0407 23:27:10.341920 23673 sgd_solver.cpp:105] Iteration 10068, lr = 0.00370829 +I0407 23:27:15.288719 23673 solver.cpp:218] Iteration 10080 (2.42588 iter/s, 4.94666s/12 iters), loss = 0.120008 +I0407 23:27:15.288761 23673 solver.cpp:237] Train net output #0: loss = 0.120008 (* 1 = 0.120008 loss) +I0407 23:27:15.288770 23673 sgd_solver.cpp:105] Iteration 10080, lr = 0.00370391 +I0407 23:27:20.394894 23673 solver.cpp:218] Iteration 10092 (2.35019 iter/s, 5.10597s/12 iters), loss = 0.100504 +I0407 23:27:20.394939 23673 solver.cpp:237] Train net output #0: loss = 0.100504 (* 1 = 0.100504 loss) +I0407 23:27:20.394949 23673 sgd_solver.cpp:105] Iteration 10092, lr = 0.00369953 +I0407 23:27:22.412142 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 23:27:27.847314 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 23:27:40.147420 23673 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 23:27:40.147521 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:27:40.633297 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:44.617646 23673 solver.cpp:397] Test net output #0: accuracy = 0.469363 +I0407 23:27:44.617681 23673 solver.cpp:397] Test net output #1: loss = 3.11758 (* 1 = 3.11758 loss) +I0407 23:27:46.622176 23673 solver.cpp:218] Iteration 10104 (0.457553 iter/s, 26.2265s/12 iters), loss = 0.0644831 +I0407 23:27:46.622217 23673 solver.cpp:237] Train net output #0: loss = 0.0644829 (* 1 = 0.0644829 loss) +I0407 23:27:46.622226 23673 sgd_solver.cpp:105] Iteration 10104, lr = 0.00369516 +I0407 23:27:51.189345 23677 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:51.827693 23673 solver.cpp:218] Iteration 10116 (2.30534 iter/s, 5.20531s/12 iters), loss = 0.0843735 +I0407 23:27:51.827740 23673 solver.cpp:237] Train net output #0: loss = 0.0843733 (* 1 = 0.0843733 loss) +I0407 23:27:51.827752 23673 sgd_solver.cpp:105] Iteration 10116, lr = 0.0036908 +I0407 23:27:57.102475 23673 solver.cpp:218] Iteration 10128 (2.27507 iter/s, 5.27455s/12 iters), loss = 0.223904 +I0407 23:27:57.102524 23673 solver.cpp:237] Train net output #0: loss = 0.223903 (* 1 = 0.223903 loss) +I0407 23:27:57.102535 23673 sgd_solver.cpp:105] Iteration 10128, lr = 0.00368643 +I0407 23:28:02.263638 23673 solver.cpp:218] Iteration 10140 (2.32515 iter/s, 5.16095s/12 iters), loss = 0.178737 +I0407 23:28:02.263684 23673 solver.cpp:237] Train net output #0: loss = 0.178736 (* 1 = 0.178736 loss) +I0407 23:28:02.263697 23673 sgd_solver.cpp:105] Iteration 10140, lr = 0.00368208 +I0407 23:28:07.332509 23673 solver.cpp:218] Iteration 10152 (2.36749 iter/s, 5.06866s/12 iters), loss = 0.0660207 +I0407 23:28:07.332546 23673 solver.cpp:237] Train net output #0: loss = 0.0660204 (* 1 = 0.0660204 loss) +I0407 23:28:07.332556 23673 sgd_solver.cpp:105] Iteration 10152, lr = 0.00367773 +I0407 23:28:12.429327 23673 solver.cpp:218] Iteration 10164 (2.35451 iter/s, 5.09661s/12 iters), loss = 0.0631081 +I0407 23:28:12.429476 23673 solver.cpp:237] Train net output #0: loss = 0.0631079 (* 1 = 0.0631079 loss) +I0407 23:28:12.429489 23673 sgd_solver.cpp:105] Iteration 10164, lr = 0.00367338 +I0407 23:28:17.488503 23673 solver.cpp:218] Iteration 10176 (2.37207 iter/s, 5.05888s/12 iters), loss = 0.0733068 +I0407 23:28:17.488541 23673 solver.cpp:237] Train net output #0: loss = 0.0733066 (* 1 = 0.0733066 loss) +I0407 23:28:17.488550 23673 sgd_solver.cpp:105] Iteration 10176, lr = 0.00366904 +I0407 23:28:22.567410 23673 solver.cpp:218] Iteration 10188 (2.36281 iter/s, 5.07871s/12 iters), loss = 0.0503836 +I0407 23:28:22.567456 23673 solver.cpp:237] Train net output #0: loss = 0.0503834 (* 1 = 0.0503834 loss) +I0407 23:28:22.567467 23673 sgd_solver.cpp:105] Iteration 10188, lr = 0.0036647 +I0407 23:28:27.287384 23673 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 23:28:33.551002 23673 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 23:28:38.215843 23673 solver.cpp:310] Iteration 10200, loss = 0.0516681 +I0407 23:28:38.215873 23673 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 23:28:38.215878 23673 net.cpp:676] Ignoring source layer train-data +I0407 23:28:38.631624 23679 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:42.650635 23673 solver.cpp:397] Test net output #0: accuracy = 0.454657 +I0407 23:28:42.650761 23673 solver.cpp:397] Test net output #1: loss = 3.2498 (* 1 = 3.2498 loss) +I0407 23:28:42.650776 23673 solver.cpp:315] Optimization Done. +I0407 23:28:42.650784 23673 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.99/conf.csv b/cars/lr-investigations/exponential/1e-2/0.99/conf.csv new file mode 100644 index 0000000..4d5c4b6 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.99/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura RL Sedan 2012,1,2,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Acura TL Sedan 2012,0,0,7,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Acura TL Type-S 2008,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Acura TSX Sedan 2012,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Acura Integra Type R 2001,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Aston Martin V8 Vantage Convertible 2012,1,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Audi TTS Coupe 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.4167 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.0909 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.125 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,6,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.5455 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0.2222 +Buick Enclave SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.4 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.3 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Chevrolet Impala Sedan 2007,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Sonic Sedan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Chevrolet Cobalt SS 2010,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Chrysler Sebring Convertible 2010,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,7,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5385 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,2,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Ferrari FF Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,3,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.1429 +Ford F-450 Super Duty Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4444 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.5455 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.2308 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.2308 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8182 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6923 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4167 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +HUMMER H3T Crew Cab 2010,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.1111 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1667 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Hyundai Elantra Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0.5556 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Infiniti G Coupe IPL 2012,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7273 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Land Rover LR2 SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.375 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,2,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Mitsubishi Lancer Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.25 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.6364 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0.125 +Nissan 240SX Coupe 1998,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3333 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.4444 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Suzuki Kizashi Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0.2 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0.2308 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0.8182 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0.5714 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0.3077 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,4,0,0,0,0,0,0,0,0.3333 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0.3077 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0.2857 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,5,0,0,0,0,0.4545 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0.6667 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0.5 +smart fortwo Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,6,0.4615 diff --git a/cars/lr-investigations/exponential/1e-2/0.99/large.png b/cars/lr-investigations/exponential/1e-2/0.99/large.png new file mode 100644 index 0000000000000000000000000000000000000000..f6da183f504626e6a0c6642bc6f9493c431f940e GIT binary patch literal 117717 zcmeFZbyQSe+Xifc0uoZv5`qF!BN9Uh0)tW#3P>|_=g^?iHGoK$(gM;c9Wunw(%s!L zAoU%D-}AiB`-;!^-}lcqYq1<$%sG4ZzV~%s_jO0c zu0Q*^iZD;txpL(+<%Nilg1!36D7v#kZ{N)gPD8p+oleg_e85e<^-xq+L{`>BL^e;r z1vXxw_)Mf>kD#@HZ&?2(p@@jks~aMp-pQr-Ui;!P=5*`P_=NNgAN`4E3k0Z9p8i@dp56;dRC2VJL{J!W2?9~C6>U9K!~ zFi)60#yYL@B_a}jNLOq&Y6MC4Bw2u>{fc}qp!YfG-*0o2K#}}+?uB?N%M4oQv^8&U z+N_(kzffhRqZvGj@KLvHZyR+K3_NI#iNhDwEym@rS$GAWrQev&DrnD75Q^4AMrvJl zZB{{&1_WY$owt1X3Rdoqz}PlOemP%bhaywxs<=$lV-GA6j)o{J{GH7n8NtDhi%Cj6 zdRw3;Rop+=lO|J=Ad5?ZmmrmwJbrriQdFREC+{p5wn`HNbybJ=k4f!^D7W~`MZupMdo zUVYOpG;S7@Z!8&Vyb(5X^pjcVPO*y!K_0H~#fJ#z9HY-h6aH95@3PSZk?iN<3RCCV zEXsjt9wVPofjSXbJM7n8{^#2oZ%^ERqJvH8)|X&SMT7tNga7fd8t*na-;0p>_q!Id zvqc^VQTpTcfsb!!QF{n~pzz)OU$_3(m8pn?{|U-E&HwhdYoyOF=3s==>z|KR{J*%x ze;wn+#Tc>v+xMBwX1^FhgBtYWQ$GLyH2j{4|2_>}Odd!|v((X2DgbeYgN6cRk6lns zzk;^LgmrI%?=JrVC4K{jfRSe~01#c~Kj{lj#0Ah`MRw$20W<6}(C|t@@hlP@So|E-H7{m@>5#PZ~=pJ)$i{Qn+NXH6&af@)$ z@w<&l0@?aY{ipJ1s1{u?Z_^a_n@t;F0@=&3X-u5AyDdBP2`Y zizu%=agiK8zxxV~xwLuz36=jw&50z1TZ>-rUvLkdCV}+^^}cd!pJDbpG{x%o4VJ~; z;-PusXdC?cUO{^L z-@x$^s=Tp+ch~$VBp-csDkI4@Nr~^*EY*O+{kAcuta<$5$rkzO0no)A{k|lwkjiIc zQXh{?*O@niD`|O9k;Ac2BECuV;4s-AhX-Sz>YQgur0kKq2CPnE=QyRnZgDumv9dFt zmbBd?4<{1J2Y%jdv>3md-H(thnq^ZkJmIL*?i+F;iq$zh9HJb={(jpkWouc_!vV$zs?h@i1_314L3z#L_FE=J7_)>kGe&lP9w`rdOo zeYmb4EpgX8 z2%_{cvwGX|X_$oCaQJXyW6s~ww2pIsW@ve1?zR4OYEN{MP#Bv1w|?VDyJKdB!6yWZ zhi{#Fq#-sV-ac8yH-cQta3d-gk!myw)P{`f3%k#*4Mk zjVma8umN4@{IaKRj06aegvL{b4m&hNWYCPepH?mMZ6SnNrFHYOqkaS8GEA6UEMU^K!T z{ttOQ2Sqobk%c=(?6DlCnY-&~NZUAqjQTq~PM7%)Iv2$HzYD>^SUqs&~dd zdLrv>aY-hHmQLuoD`shQbQ`!6u!4}p9Nvwb+LG+a65DV01nzRIGE!5|>%Jgx{GYt= zU*yc?p!sude~<1ROlsH0#{=)Yt5pNCTKw_wQF)cUAyurkJNWD~C3f_l_io>TZjSQv zuaKOFs_dY=ECw~9qoHJOtF&1F9Pye_bgQ{gyla9jejSwiF#r2;Ot`DkHxdXI;o0W(^<%S zIw^{xN;A?Th(M89J@e06m8Nr5E0W5^H%r`jaZcm*N_biz^J#7koa=4u2y-IS!USd4 zJf^}+6ZF|FN~5Kp|J=F$*kWQGVWHXUK2WWFYcIzc%ezEflQh)}k%c%JVx^`xqpM4V z*?08c&)55iD(yQOsuAU^!I3D5B;*u^v$|H-@lao2|J@(JRUrs87MEtp%xSFrx{%^& ztQC!eTivjD-=^G$A_^)2jEHKFmbMe`1+?i(L<#QeLt+sx^l)Jg_vkj00hcCtOU_f% zp#eNYt^Zq!{hlF#5l(vX0tmxUSDujqyl(Bfw``f*jjFPFx*ZB0+>pHO>#6U6$*Mi6 zMjr-2gp-t*hfDk8ucnoxyMx~T6eU|%&lP9-5rjVEK~AH@%Oux0jz3RD|IJb7OyZH!hseGXBxqIErR0>>Yil`WEN z^~q$ee7m?Nfe{cG4qH<lY1FL1^A3 zsy;uZe7W;8GfC2@xUa_N+KBWg__VZ*Jt=rD)~0M%c>gZ*W7-~g3-P5{1%c(PbgQ{m zDvh&%7E(^%{^omjrnITHUF7CO)0%wn_XD})RXz&uzGM8aWI4~?h!qa1iRpRs@k~p3 zh^{>oDbm%$RCif#2!D~Y{WP^TD`NF8sH$_KOQ-C zKF#LMUhF1NtP1rQ%!DNxuHGv&Q=(X{EO9#-=FJ+ny%q0M>0|bU6z_HHgC{50=HJN; z%fYmaG+2g4lIafV;H9fT1tCIVxCG&~p+ltDFa~_y(pNA_a7N%f9T=5j7DWN(@qX_fH z8%9wycHVB?SWOI^t9YCFeyln&M>zv=I9?Uzj(k&oHKwPu!tJ!F$s$=_=jM@$*}@ps zbJn@Bj`N68IAVNB?ZGdMVR%5VfhV$`(Es(#?bFI%IwGE6jWJp$-l!y|)7A@B)nJTiR4 z7P7A~za}?|w}Y!#uR>r6Xvv)K7@P$exg2o9mZUzQcQepgl#i`6h(R=0;qIj;r>@Uq z7^=7+Jgk9#58dS86Ke;s>OeL%>6;*S2oDZSzhgQmoU6My!Snf}{v;XqVZ5qE0rJ6K ziVYp=j6JM|hU%*_on{>Hnh#B*mC`j(jmM20Zl?9`3vH}FS)YRrO$$(*V|8J`4D^^&86CwO+32jlS);K`NLX z2>?n88G_9LKTdwySUWF$41JX%=RwkHxlTO~>t86-P5Z)lk?CGQsYM2ft8+kzLJI!( z%%@&o$1DE!m5E1J>fWaF>2|5A;n5fBSM zg(|oOMMXme&dOuClYL^AZq!Xy!)9S1OVOk*I;Gy{aN5PTUfz;AM9Rjx$z2Cq9cA|4 zh7lNSdhstD4oTASu@3?(_UUh-^XP|Xunt|218G5iK9V#gtLr+heY1uDa5FhBbzdaE zT1eE;EeOm`cxX@kncfqcjI1X&Lm+yi@5i}L;g#NS`%rMeMr6^x!5&6oP^Ok^uSkHfjRvNATL?#GN%2U~fw${cxGM+A()`@vhh#F)WxKGeT;797t}E&ql3jugV5h(ucI~os4kx9I1yT z)wQvMPwu=C-Egq{TZNytvqlPX;^vcgq&BwTT7PlZ%PIAXV&Ai-sC&FN596J;UN{k@ zGuxH9Y#tKYyZn0Tgy!ME*YwFvW&?&@T+Ti%kDN%>$#Iq;p{zj>kF`A^vD{tyb@7yg1JZj60#e4E1>$& z=1Hd7k1>h!86{K`edO_JD1|*nP(ox%znI^sv1 zmAx%l9s!lBtG-N_vbL$wA&XQW?>urWG+J1BN{e_!EcDk1De??H7Z>itQ9z>uM5lbV z2AMfoBkcU1gNLztZ4IV-Yt}%)mJ8fEE5jNkA6(uVk?%?gK0yfajxGlZH zUvKiGyzxwifFUBYDk2&_>9eYiVLx6{w3bFj-^0N+t;9v|A9?Toh$|ZUMod@ajYZp#uYrQ9d@#SOWKRC*bC8Z0*E<}Ttayivo)QXvCy=*IYhbI;NNR^cr2J_>s z*TO=EZlJ#zcMquFwZvVvSS)SboE(W-*x4cAJDR0h;5NZXJud5Yh3$2NIPz?!DXp2Y z|0;rn=zTpc={tGSPbQsQo8S)6;qg?&yrXh=TIuou}6p zy{9I82Z93JrMez2GiHsgFj+O_tPfQblbn`1Gg02F#C5`^5Za9tulQMgz1?t?sqkFc zl087^eO1V4=ncrD^(J6XcJqm%)?Jy80~KY60^rA>Tj!iC4ugG-rU#HSYK4*x+#;i=UBGTQUViUAck_Ty1$@!Z9d^= zCmbW_?*ed3aQdxBP@ON*y$`L|_V#h(KR@g#R`o&dEbSq$|3>1&N`6$B0R7`Z6G+vt zdR4wV#XqG2D=-qggwtYd|GxE2IN#jE`IDtL)_$~NM8U3~Z(<)E-^0#w#6|zOzB5MT zo6g&V_j*~;`c$qw%&g~aSX);dlU$M94MtIdTO(M^FcLmXuv109fbq=I*;AOge(cN%U8w>`ygIhUU#M;r$3&+27sBNbS7nI7m zs!EH<=vfB?%Ej8aDuqS-f4yd(tpc@0o(C->HXv}Pw7{<$!e%TwGDRVgN%kyxaXej)CRjkCKQ1kMBj4j-QtLK=B8q;{&L{W?FmOJB@N~dc?kQI_FJ8T?*t2?diko$f z@r-X!%Fr`%9o(B_H-3*R>GHRv=j|EHF$0fhnD}N4j!s$@7fbyLZRpQ7YKJD#wsjHm zh0=Y|VuqWP4nJOgSO;SvPvR;#i6f~ zbSA&i9kGUCo~bmIH_l%fVUjadRoIIUx0<5b7nWpSZovsoln{iZj0FhHlwA z_3F_`zlKOf@dPLHSn)m6<>DXJGAAXKVdv}K;_hd~-v%rdtghyTct=yA{xcE#djgdQ z3aY#9Ce~x$wV3Hgd#?6&2CxED{vv^;+J1O{UUNk4Z zbYe17nS48;ZA`Xfzr_WT{+=D8!Gx;uu~7cM6@&xKMX`n_10p(eTOAQED4ILeeFih_ z$W1dC1*(gHTu{)2q#?1AB}1x|<5%L7e%`j^+-%r?5LseI%**-B_au#~*1dX6FT7E* z%-Qd__hKLPKCEI9S)Q>uZ0AH&2k9Sj$qp9(VV_s+^nJ&xQa7dYK(pvAv$uzi|mI>SS`i zTR6{S#CqGu%QPD&6WOd8fiE(iD2YI?{BIQaob(=jKZ!md%VJZlO|sbAZov@KDtB4Cf$gkk(&Fx_5b_f@T|KoB^aJdY+{rY@JT4eJO5_NJA*uD8*t$ zrgbO&S5>xYG)2w#NG+d0zaJfn#{m{HrIp?n+nxr1`&sqrq*g6*DdU4*9)(5|!!CNK zlUVu_(pa06NgQNJW;W0jsbT-JnE4^_#V#I^An_ClLJ&yv)qh+GeAdn86vOblYoCIP zNlh3zOq~4I=EhiD87Xw`SC#zfQ2sca`76eEPoZ_o+V7(SxdOGZ(l6t6;3t<(qQ<6f zE=kfFm4Cyovff@3vkhWna4be22L;!Q8qV)y&|W!Csz^}g1zOVL1_b^ku5Wcam}SO# zzQ9*jHR1Ao(n4b4ah%$h?%=Aa*3Va`hKIg%;cQyg%*`Cwf4AeBPc2m!7s*Fecl&zc za>xbUAmX5@ufxTUavBdp77jJ>jx;d`MHOj<{|hx4^$jH^5S?G11Ek!{ef-Lr-C9ha z6VSdJ1Ybi!tRAUR)(hVv>4)*R!^yd9%)RWgmuF&Ux|!4DM+=aa-O)9(>?ahy^WR22 zWj^*r(}t15Jpa`A_)nGj#l5vM%zKj~{lhQyG;Rvfsyy zMOocIJ{$YeE9UCrAN08#d(Z|U&y>u9KK#xUSi6&8n443Vw2@})P-C${So|iDVo!-g zKxv{iK2~LEAP>eO#mBhtU0p~N^UrKjPqf#hpVdZT+!ixe^pcSl0<|3~plg^^wHKwC zLby$R4c+H*wWmE6sx)Jz->-Jsem0CX3h#MB;@^OGeWJ2RL7O`H!;s6yt#H#3<3=Z( zl$h6Zc9pbV0sQ!2H2681g6BiWkL}RYhL*>NtID5Q+Ki*7S9-xn zc6)~aH^`I`JKmg9rByPIT(hRW*`NE$fPTW5E<{``1`tL)WU-^2+V zRtmJGR+^~ii!#L~PtEv##HQ)%OakDTXDO4xGya_cf4-QXSS@qRAGxD+R^i&Xo42_r zSY5i{kZ-sjpJY*gT&MECYPsj7`KWn+>8otv(?=NqZQ z^WA&;^O5+Jr|pA0VoNe78dmEE(fX_+twN!};qkudLxNxADw|X7nhMkeM8-WrR~XK_ z!Lo+3XLb@j51aaDpq~1}JXgA3YV3DoKKR}Lzk1M@&X6fc#Qs}||NTVQT?2jGBks+3 zH+C0+?1i5Vv8k(k_$26Xlxqn^V@xYLEiI^iMEc8*?9M+oJq5nE$puk^1n;sl-ZZe- zB@-v_?^NFE)?vO2$yGKow02v^Uwvr*;v+idn=H|iY2z;;i>y<%U+(nZXG&u1Ti5Va zoU5L4e#=s&QgQqAz}1sSZZh|>c3O}tHJ#a&M#@pV)T?L#u!!oWfp*g77N-|jVHFMV zz)e+c6&>oHv8fGuua16^$u(KbTuT)7`W;FgU4_OkyZtmsd@q~`S0A33xq%LWJ_*6B znmF3|>A*#%Hre(I+m7G!M=^N9x>5y0uO~uCs9_G0MGHRAIqy2y{e;S3G20Wca8pm5Ze9NEpN3imn5H0(J5ZoF)86$0H2@8uyb}Ivolo3w0^T* zsE_!y(#K-2J=Qzm+_~qr`8|8r)_(t|H&9x-F5sl{WHQk+lH;HDUT<4|lUH(~{a8W^ z6cU9OfR-r5&5zf72kahFly}3T@{D)JlUAEHJ193{Gu)rT->b78d&pLQE4cU^9w9a+ zHGy!IC`X`F&rfE)r)KPYQLqw{WeZ1AvB%L`9q-(Bjoy#l-d&CAFcv&9g?yq~!T9zc zJ&b>hn?UFE7U2uwdL^(`!x=5F<4Re|JRqw$MQI{Vo~(@htS{S4XXY#4(6Be|QfWe3 zk>;#P?LH2)T;+?@`>)qEkxZuGVOjswwkIGYfrPK{QK0vYc>a`%n5-EBTi83XS|7$> zjyDL>pI#rvHU-Vs<{wvHEFZ=@Ph5<$T(;k{g81F5JfUouO*->XZGd$9qj}+sC z=34esJHfId({D*SO-PDBsOsDW`F+Npp6Z#&4EIt%_KHRAf4(Wqu%@Xxp68r{T@+ES zfL}2kw|HGJpt@v@3yPZTN!G(UaoTMz-7K^(%+hEZTe7C3y?!SXlBAasZNFZDvXDVI zRaA3h$#Uv{X|Xh?{XWT^xVbF~TX=-A+voWqu0oUkRQawiT-=+2;o*9$o7B1jtMJ z03bKk$}klVftXs|31d)NYeQ;tPZ;@fOR06{dQlQ3nj;?wOiDyQg)JM=V&dto@J70J z!XFA=3d;axY^^qW4pIUHLMCJofxZMsPWy0tXp*xGoDnE?pdsgE( zDD>nBqF&_}jjgrdS)ZRXG@MfKG#GGg@d(gAJ%}9G?b+pa&+-X%6 z2X!n=cb754j-8}tw{kZClz1eEVQu42HW1Wq=8*`=)6g~ZO|1BWQ(g1g4 zH5kTSAL|@kjE;`TVzc>X2PctM;;bcqWOq66s6oYh0pe}Z3ockCLBhUUzd3}(Y@(2_ z^Xy?=ap{C=n1X5t_AqVV**Jwc+9|Dpjy5Xx=Ib6*chx!ct z-51d}dwwPS%k^*oK(D8W7Vlk&q@M@Ic7p{gud@l@m@yg#jjEKP;7gYpuqr37wb*?` zO0&z|3W?LyVTg+51GY{CEE`@Rmf*=Ib5Bo|=X##(;4b00mmu-O1YmE*h+pj|N{f3% z7DiL|>QOgpHEQ-a$NW&NbaBVNz{LzDHX0Hi1#fN+UDdx3P-X)G4EC*q(ZO@%Z_=I) z5;DcFxnoNi4XC83_@EE(r3`^466c7cXn|P`_^-2C1jg2$4L{b4&EF2@=?E$a0+WT+ zF=^HI-5jv8@UILzx|F{Hs&w*FUd~AkAffA3XrZXB_!`9)sLOzHYXxQ_YL|;t;bONRdd{Cv)tCn&;A~iDds1Bp3AUd(C6np zr2D_xdyoU8QuJUhn7LOiaglINS7k29mO%_f5!hFxGVFAou+l%58e_@czUOF3R%oa& zde$MWeapoMa~kPz(+IMV;b!rvu8A!$yy!2_q5~QH?!l_~h(IY1iNeEm%+Oq%>0^e2qYGaZ|%Vn2f`+=wU>nIwaOe41<0df>M z+*Erh-vdf75*m;|zJ;7BGvJ>U=bd0in_ zAvI8e43V4dlp$UM+Q8B+2!0V1INSzVt9Mw5H`@+$1!=u#=dT|b1~}%A z5d}s-U7-#M4%UQt_NRvQ(7lG6$>8R(a*hI6RO2HGbt0|kuSH7k<~aOL*ZWqkI%6QGcC6Ey_3SlI2`#SdxD1P%z?#qe;Y3C~&j zyk7fZzOC;Y+2?fsdo#C#K>XTc+MNHPRbluh!sy1nud~s!jOjF5@qNTArA4|!i6&Pf z^dhH!AW#J*yl?wV3?YPM<-&ie>RGEvZZJFKQ9bv@E<*j1s5_j#YiX_MzYo8xyQSct z1+M6-cx-29KfZ{9FIEXHUa91qhvVy&TlQJ4P@h}=HFnM8lR>6#11e1Pm*_>CdbuRc z{_c9tHWWU}3u_nFN3 zxoOue-JTP;U@Em|Th7wfGn7jOC`kYFm!i=R!J;$Iv#D1 z8*0LW9Nd}@_xk)iFBQgKx=_;@Dm_=Ne~LpmWU5bT4&hNL>4_q-QV2&U8U7VDdHVQ3 z&@Ao3W+1l60w@l^aj)OUv=~8t1+<%{`cDwVC9og(0KpU=zu}Y_w6n!?nhZU}!!hW` zuMApN(<$r-QxYO3lN7k(C^6|c$EJAy%URnml#Zn+FkDF!^Mrhi3iH#K33B?2Pnoa^}l zU;tP6WE#&yq!Cz#cBfLv#_ig@pO4RU@;LS9URdl`Z@RtuK_iOGZa!+ZB4FPTAPO{Z z=LT|LJ|79Ta3{fu;YX5R0QMB)Zwo{a|J#w^6m}Vgz#s3pofyI#zbpZ<&DIBp7qRv# z-iiXmB#Nsg#pQ&YNygEuHu%+24a=D7C8$s4m*TSgQcQ~6AVCHInd~7jo2(7CAc~uQ za33*elM0g4qHWfSW5n>io!0x->hYJLX5@RBsD~alWaI->9uL7JQST*^_9(a7a1Wq| zRIr)INWL!kMc;sCG62YWuV8d$s-Q-Ae*X|lf^xB84$sR zC}4JbkMd=Sewp#x)+mxGBlQwLp0VLgbq|L+cFSG6dmIN4YZZrvzvaOw4*gwh@Rnsv z62>CVN6n6)OtqU~H1%ytS!1v(fK~njm+OevPm0lCPf5wKeYbmCcM@>Vr=Jny>_Cig zZ%Ap6CFg1r!&CY?I61KDbCKa8?+bS%L9oE6m=CP38bO7tmG6)SA_~X&NyHt6sBqTH zznK~|T{7h4empO>-sm{QBoQpu*3?vUhs<_Yob0;w52bx4q<;PUB2*c~Z65tFe{ zzjTZ76082XqBdE-`&V(a)_n;iU=)&|G()g7`s{Qus2Q zc{bp2=*gv%LXLWxyWP+r8eR@8^zP)Yj7mfE_hMO?^_MF@->&QIq%Ku z&nb~!8t?$iBe?rzO`Kf6q{)_NHi#LiQh*6KsUWo0)hYy*aPOY${&b1)^OEGmPUL-S zYW}w~83t6g_qw`+ERK_xH<7XWNZED?vP+3GP$RV@d$${VzQk*Xvz-(OG&J!TheXr2 z>Ww(XLIWA4@n5^;E6l~iQIVUO+Zv*ddMCwmF6PZnuo-&*d|?+VZwkr9K%KS9y&}O2 zR(7Sr$V~W42@`Vm zM@Hgfk^^51gnmcF^T_qc1D4avD|Vpn(H$!XDaOpQWz!dBXdbs;-$O!*dre1kN$0Z0 zd;w#U5iA_fIKCWry99~26KejfZ6P{x#GHc>^5!Y(VA$54Sbcxh(de79REEzkcU?^c;Y6Aa)sZf0Wj{ZQY_nv1eH<_gnh@PVm_`J zn+Cb|+N<)dY0KZZz3nj>-Pf=ADniKMRm%G^jb8y5!qy_aod>3!`L3MnP43c& z-ntD58LPFXaP$&4zH#QzvaM?4&cwI+%nJfbfH+BbH<~^x8gS z`_MqSAmzBIh6fSn{&F%b*95^)uq|m=_cuT(>&eh!RxiuHPK314@|sbW|YGWB`*5%>T_&h1rr!|gzA*#bXvt|)GmTQBlFgS)J`G&P>`Kj)x%Iuz3J<&GjP zlbT-S73+TPA9!vqF(^)ixuTmfJmuz}*(zXbw&=f?feUD2%_~Hq5qhR#+K@SICp3j- z$(lLB{$bDrQ10JzQQ>l$vmVk<(=s1Y5BP3D093Zd7l-E>@ZVtarF@AIFyvVo-97h*UEVQK?bEsi) z-{c-%5^!03VW2=e6rh%t@CtpGsUMN4U+G7p*v^Jvk%~!@*dCfYX$Ak71bAl~x6=4@ z+$=j_v!-RL4=DOO!lZnq-8{2JkEq8&<6aQbCGfIUEXLK zKjxqpLyy_YNIKm}EXnyuIcY+Z961S4ZVp)r}i$`|(ik(OtiQT%+xQhoy)a9hhb zqxTY;G_-ZA>Goyih@;Xy2zfiVNn`XSoE~}Bki+l=%=zGMyY<1xK5&wPg2Eq<`^MbKOnOt3&OJL{|3~I9*V9< zWMGuUb$J}1+iTK}Y4lvc$wzhINZ9%(i^n<4bmjdnqD(1#PuKf(z*aXB<{>WyFsbLc zz*KlzcuIw)c*W!++UAcP{ytjeMe&hRy#NZrgqDyn%Qv9~$o=IojhG~~zmG6R+E@>Q zjpAdu;fXuR64b@~e}=WrpY~v^vdX$9j|~^m_P2_kQMO?2T&C*+T`sa{6nRz4&wOjocKkA%_?B3ggx@F~|tl_p**k<4$}!^?8%TH4Q=K;=JTR+K+e zK3_G2B)0>KFf$rA$t0j_UHw(CaxvnJwT*L7 zNffizqDu(Y>^&d0gvO9c02>Vj(KjY=HL;#x}N+Z-xG8M$G&d{Gtx49h8l~@t1){tS-ONOHTV&^ovl0D`m=PtQ>BR3z z#}o!?<(y}AqW(PJKN%=-s^$!Rfc;EPLg^Jss#u~A=gG8-p7x)5A|cvPE5ickbtmrs>4V~FC}dAgA2q$%+m z`*z}}^;E{^Q4~|hl-n9FX}MsA>i8NXLv8WIL0wE@(18`LbP_due3qDZ1L;amIKMNV z?B-eP55r`zv9dHP$(%{Go+ae#U6P&L=9WVDsot|f2xzy%Qr7A|YoHCPT$HR2f8$*_ zg>Re@!Y%DvL&5P-qVe`y25561Y=molC(*04Y6y@)^09e|c zdSoAgu@hZFYpQ6z0LAtrFQ552K7G>kIpROhTFySl0ALben6AxYE(p-;(S>fFn5?%I zcmvNm_{Vxyb?t>=lH#pR*O1tkAthMfH+l!bqYOzAYCMIF$U^SJ#OFqi z^x@`1`W@tE?!B*qXW1i4D##CmRuC>d>-7PjNCuqW1)=>`3*>@HV^Lt23n3@LP-0cgq}p%tBNr9+;5?Ct)i$iXz_zAveOmYqoQe&()ZNboqKo+yG)A zd0fB*>g)j%PC2^`N}3+#VohoZx+t+#XS#^)S@xH}d5n8(j`yubp|lSM4|T~r*7h(3 zRa1vvMg7)Db>&M@PHSBP-*UNLV^As^$Yti2jYd6@+fw@krO^i5Ia(d$<}8jq@O;HS z&_kR*9Oi2^N7JJb?nDGrKVPZrlgH71H>#2-B)@hFjtYm zxPBCHGKEbCbl3SSO}lm<6sEoCL?P){@dL&55gbN}7AwUCqpo(O|8J?_H9vhf9Amzt z?JyYd*gbJu0b76C{s1TkITSq6Z;Xu~gU~;VRD>F6ci1#VXd0hd($m^#@ZB|69j#HV z?+~`r|0sO+gbi88VU>r3!XMd2reh|lrCxt9Jz?%rBxmnU7TIA;=`mVR(k)}M0nW%; zOAgw0l5ZO;V;_sCx;H*JjV_rd+qYeh`O5FW7#;=i!+If)694r)kmui#(HI{GA2kk|m)7>0-?vn)=a7|3 z%+CSZ!{BRoNqJSK+tn-U$&ZW776@MCPw(J252~u%u)LWtkDypxuQ{Br3=&d9kJ|Ru z=L=Bt#ymMZXHTyc93`NDkM=4donhkA8@P_@(~K83S^0g0yzM!--3{=5^v8jCdF=1+ zNMKI=)GInu&ed^`-|jr`pyvnV13&6Ptv^pQ`*o^ON@@kOu-WWRPc_m4E>4PqH>L=n zd$Sk*tp2b_^mxDk6fQt#rA|;ULuFR{Gi;VUf#vk)*iwD_$R+L+fLz^tk=v>fZq5i8 zW0)uQWahMM%B?M0fUa^|UEm&e0?}?pqB4a(nfjyRCI{IDu^&@qlpRrqgr^mFrrZ;(Mo|E@Nazp+C;105KBL^ym%aSxYX7msiTGBaMqLDI-X{s_kPS} zXIPxgyU9r2%=f`5ZQQ?}#Cw&01*t~L_McB)x_Fw#Zo>U|2+rT4fokb5|ALUWSbB&SNrH!JkS-_)zfsekInxJF?~KFH3n=Knm@3Apsx zLzf;l4TIhchRB>rHtbJ%yUA(mTtLq}AgLbvWy#N>fEn`T(>5i{Bsu#B0Si3WCgUxf ztEQ}vVz&zZu_u4{JppgPcUzx+_YTql6l_t6n+;5~wD#COPHRGdMf+Y?btON}Of_BV z=Qbtlo_y`upnBKNox2J>XO`3H1?qMe!f#6R`I8}b9!Y)9b*`tQ}_w}`8b z>kU7Us-kT+*TIhm*GXyptY1jx#>jjpSzRiwA1kc1w`g?tF}kO_PW|}LIyq23i3m}y z_F&8xe>LxLKKae{MMOQK9)KP%fy=8SQ@{4jq{OT~)Gtt6&rO=bo4Z{vpONuT7VG+8@LQ(oH?aI+u}umz!C3bX66=QHg^asH-8m90}t?gv7)7CGJU-tj1Y{a&RGsWs4(@d<>RQtz}KYPsACmB@i=(Y86dyKW^(Qfit zRUO4Ac-|{S71_Emd%z(8?wFKc;LK)az$5f^@5Mjz)bB;;hd1b#WSm)+`QB(^_A*Hu zegIm`lh0lW(fy2H+{C)8LYJtgBV}Fn*p`eV|K;BLGweUY(|HA&-xtE2t)~lSq#1sg ztZqUe2As<}9*g#DuTRwkXu%w;E5+flbu6Hi^AMG^;Dv4KpcvSXmlnBM_P9-ks&8u? z9e7qoyuABI_v@JhDMT?8z()lU*m5MlH;2W74+!%)yhBD^tMS335qvm0ub^flklXNq zEYAh~y@H8;0cW*w{!qw39LZg>)#bykQe4rGPXOHeHf)KDa;fSJ2rZ#_HahT9FZOPt z*H>YVU{`92CEJ?#dZ&#ws`VkK^yFMn$sZo~@UJjlLk4?@tx2=Vkw3DhrsHKCIa7A= z1`4@)14`Dw0oT8hq^2~j%uvh~#{!Q`Al7J?U`Kqg0@)w^M6_AXY=sOsT4a*QUt%K$ ze9Y8aLwTpUs8i)VB^&Q<4oj;ZQoWJSj!$4zSR=eB&9~nNO;NR7{%l6=yiUfSgF^eJ zKJ@EN)w25oGACw|?P}iw&;bV&gn<6JYQ1v}Ch=o2&?e+#o4&e3+5?>Hj(tgaCRXYK znn%;1@n*BhBQg84PtzQVWh$r3_bQ*<#hViX+zWwOvGV|4vbaLJ(q1>5aA1+IDeS62;?OKee`b~Be? zotQVD4gwCB3ci7uV&c=tBb?+^FxkUWzS`xv=b8rHug*@TNvd)6lFwEoo|ovhbgsX; zL)l8rudyt44gh#k3IhAlw;r9&R~KvT7GKw6{{9rTOfp62yw=iW;p*Z|FFoD+p^3%a z7(ZLIvSl|Hw*EHY*f^^)O!$9wA;Wag0Ih%1;JPGF3(su4&|AIVHv8v>9h3Z#j!FLo;E+yUZ2|CQxuuBlPjrX1slbS zOjzVFigJq+A_dS#_!es#7K^}%_LFaYKNTv=;Y)rhuBAVaxL>9a|B)09PzQb;A^TD^ zl&7-V`n3*xngtd1eRbB-viylLKBkIV zsOKfd{SvGh^nhRi>aFKq%Qv38{|8)bt;dP3pLuL6a)slB!co-`^OXVUdVE)c5bk@s zLos$ox)o;QyntD5+%+}(O#UBss|eKKIx+%wpPW_8vnm+$6c%nGIC%VmZ}iv@6s{eq z+Th*Yc%5wZjGYnyMaPe#(CoInTT_k|t?9(|nq6ey#x^06ee7c`Yo)B&m$4*q=cS@8$J+-Ou}e+|vQBEbOLkuUJNc&(7@=uVfc^!#bK4ft|ojh8f@0xdoKu zE5YXadr|q*Ut=w(mZZ8tNlH1)lVA5x!=cgukZ78`W`%>vesRP`E?SF-ngv4Y(k}yt zd1&Lzn{ylkID?tDiOA8JdFw3pIr)9i*nGY31E==Tt+th7^N_m(X&6BERM{RoH<{gt zBGangNCy-Ifg`J4ue^xf?<5Z6CSPlR_h0nb+sZ6h&Y&xeT+^|q(uR8F5#sQP79FmidwB#q^Fve%n)JtJu09Lxl@Q@nGE&KvZRS_y{wV(SC1tn`5=Yk7Xh6Hu zHuaHn`nh((zaDn2c9!^rB`s}sTxqGHpkS1H!+P?DwV1KxqCcT}g&qZBmd(dgMU8Vv z)|;2mPP`CuM#E#|#2P*;d&=^8Jg<>|cuyh^aanppy>2csp?4v%w>e<&%hQHXriUMV zs5)CP9ARPP{*_K2NQ&}`dxkBL&)N7%1IPbqHF;1L#&qwsL=t%8S3mNIFjpv*MNiLN zK=?pt(m9K13~Yi;4Njl{tlIB6V!_f5aaDaV)SY~~%T40R_UdMVE7L!iBY-oNq{M;NYGb`EHY$_9{J}Sau4d@FZ7kp@S!}PxzMsgkQC!-U-6k&{ z4r7~7WpZUP%VbCHZamiz038`Exd$>Sn~3DRK)EwH`?$T-t*u=da*M<}lBj$`K#KLP z%R>lowXgK#Bz%8o_T`B)#~%*ixmQw8!k$AilTSBepkj*Z=3H~c=)SXP%1MFx)~-)7 zOS{Q=sC}H(MoNxykH`CGqgh)|JVPVWEM*Il^ zw`N2OB8WychsbX_bzZ@DfJm0{8r&lFw?{M#9$ePSSL%^S5;b>bIJDuJp-vo-8Gf4* zFg((IaU{h;)gFXB>m4&6$H zi~37iIVC19UlUHY0h#C^7PxyS2)~~W@7=#Nu>^OaOdxB9ldR?k@fQg4hX(M92R!M3 zvAdh=@z$;C-4V}_Mi|)p+0vM|{*g|_9hZ80KUaZ@W>6j^xVu^9~9phhoH=K zG{t7-8ur34yQml}{unqG_}yT1*-p%yMe>1u9IqsxWwu>fu0J)e?y9&37}7DN8*#uxVCAk?j@=w_g=< z4Oc4kAL;i`)fcC8(~R0W^pfcnYggVL?L`^+ZCXf2EC;K|6Gde$wX=#(h!{v-5Ndg1 z&|_kH0DhmWsss(1U*-z8$XWskq{54)8v!GLY>7rZ54qH?e)U-MK*9_EZ2b?eN?so- z1?=iBtA{sti1<6|BIIvWcmGwbG)!q`KvA}HXx@*$+pUDdW#;;M_6ZlixG$3%BtUri zju$;#!3JQi6sryGpnOLv@Fy>4cpjbK5iv9>05%qY7i`W@552s8qi$9? ztH7ny&Uc-ypC$C#g8_!!3L^-+LQ@C2{bI)EFN`$<{f#F^w^%Ow3KrM7lREcT?5&c8 z79a^^0Fu_k-07rEEr2sXJyq{5RGJ*qS;J8;U6+ELdvK+jXjm_=6=@RBcvy~qrVq<%BEUkH!50Vm< zI`K?qNfY!gWC>|*_*Ph7 zcEk^Q5n-GRxKlw;sI^Tj3S_mTQ`l5`k$=tsw-+HY1zeyR%h!zjQ7#e7&cJ!^@%c3? zxNHP`C8*u!fFnjMDo**&T;v_;0OaKYHQRmZ`ge}EjUw7xRt+DYhn80h8M}(p--cwl z#w*~VM;7F%3*K56V_y3Uf`&p@D!36{01D&z!tspr+rb;*H?DHQcH1s04PS(gYHbIV zC<~PSo=2>pcChLK-$<&~qpt&S?**C<^O4xW%V35e#R*hj+&n3QdWE z(|@)mgZgMSX3s(cYU{?EUKTVSjNkQSniiTF$F2Jpsft?;9xuI9v7-qo9fMn0H5cC5 z6txQMaXLWqNp091k*NQ}Sm~`$$;a;Dr~S!a{kjq~VKc%k0W!N9AQe2n;j)^|ajlzk z@ch8p(Dm97o{1?rVD-Pi2U(eGBWoq(N+y#@%ZtzA?~aWd$x1oTblw29@aBf}neN&v zFlOPblF4)2M9=ci_u#x_s(duYpk8HEh-JH_W9VQ05#WnRyEV+EHxiX9`J@P%4u_|0<#&UARZp(QHF-eP;!o=lUT<1O;&BO6BMeQ_!bn zA7I5+01xxm8)0r1QO5agBliJGe4%GW3B@|{R?aY!D#0oP5{{VQ%hMIqEUq?>NCGC5 zW9~vtbbc1J{B!-gO(P1_g(%R;=es0Hd@sd^7nP@~hI<|_m#`bE@Hnq`!bJC}M@$9{;r^S0{t z{(3&UGk-R<>1}!}{b9t?&?fj)-LOaINH;IW_ZVt}5~hna?JE@9{ed(yIN)?tn6Nrf zQ_`Vj<;jQ1SWvg0>g@Wv^>L@+*52Z6AQR3`)2^WW?&{*87hmZIwt+UrQPUwfd*LMi z&vv>etf$F5tL-CiX&Z zO*E6G-kyvIU4RjIS%PGUBa$XV%Dup~qgw{_kvuZ%sF&uf=phBn%fh%@o#%z}Z+VQi zHvA;tZO#J8#BNX#zyj3VEoU-dS5XB!R_`mOhYnK>cCu~wfiS_J&qIe5J60LF(2%c_ z@&Zn=u(kQyYZ>;hrRI zeGrFG3DGn*K58bbBMDkjgTcNMeeNllC6P8Eev@{BJJ#0KqEhIEHcRKD?NhfWhmr43 z3DjA9z5q*GpQiJ^9-M{1KIF>^b`X~`Ig?eUjBn0f^x6OLSFweR2*zY+BPU8fobX(b z5zq>$8rV%{bi?0o%nU!BKO`mgsXsh^BO2xuR4avX7q@lDc9hUm0e{A7MsT0FY(bFD zRCTX~6=bHiqI_6#ikJ=q+b58pL02}_U!)k|ARt(6z{@=Mlo7pMNY%6Ypd|49g=KqReuODogDx0{sZ6@31(z!o_x2R-~Z@NjwCNgY*xUMnB?ja3+eddg5 z{VldoElJ!^Rr9PBlInwYBY28D4sbzC%Q4j+_iw5T;u-gPW()*23BH|T_%cIXwJVsJ zvPk$9IouP3%~7urM>4mM>P82Xxn?Lx%+Qg&6=E!_j@hwE-9PAd9xhEo(dk z(fUmh?#1)hIWFdxW9Ji_Ws&T`Fk`;HjOI^1D?NLM!|*&*rs$ke07T5T{)sO?&W0S+ z4H@o>vHF21Qh)dR%!ck%v_+-!dzYcYa^sSX6F!n8hKsNZ!Uf?Lh&*XrRjEU0?1mlZU{U~dI%Wm`564w{yduLR}z7!O=$fW-*Z zGhqzRfp@#i(omW*k~ZaQ`V?x|GXIc;0TMh3V6RMA=$~TE$=2(aZXWBQZ0$0ex^3eXvic#YL6yu z;sq8G5OG&_qWD0^m!N*dF&4@QEpxru*L(6;p_7L^yBVfVhp@5{7({ZzB>8QPM5*-Z zjf33YrD7*6%u#hNE$LCIjsn^+HUSi$60|>8A}^!twyn*HQ&qStEq^t)n#tY2e`+cT zO?o#xvyqF0kML@^SQp$Yd`6;H854YQbw?TFmTv#NK`&L9MJV~W?&N$w&|Z zyNI>1$l@P}LDz|}{i&@l;c!Ege%(j{yL~%4VFVjX$*pApLt!MH}?p_q87G4YGgCw7{XOzhl z3l=3*0g{re=4?@zlvSSh7jQ-ME$XY;C!KiWP-2xXNf=fga4(-sSX;6GEu^Uhvo?7O zJO+&NWk;~FzOP|8y%cINcWQqVvL_9Pv%}|j^MuB1Za#Wstrc*o`Du3fcRw0NPv*}O z!)ZeHCheL16^s{foBp_;g)G$9tgJHTyt?=4;=`agwJW8r!Q{!^VZS7+ulny5;UQt; z=i0_-I}@@`Ec~hq+)?=3fEWl!TG3Y7rOhc92*+VR4--^44wzr>l|tEM@hZZa`E7Tm zon})r^2_43;L}4zj7QE^Y?Diawx@5&o_+t(TMVsJzne%}FMB2{)9I|P0;BH_aj_9? zj65fQ-4z27h$Lx;z9&G!=X}zO2YGD#43M>U-b*0+Q!@xILFkZZmfRUs66GS-=9q=Z zAmR(h%{imy_^#o5jE@5cl$jTvgDH12ME(*ZS{dk?B=#uSh1T(jg@woUMU5gx+gmYk zt6Qo{>$* z3vrwZVEx{0-7di!&MsuIc-DP=Xme}G<08yVm}R}`Yg=DLR*FPZDk?kZM~s!6p5OPL z)J=tDYJ1Pe>B}0c-*pwZcd017YCOyz&MX?0yAAojoB$7x$Wlk0q+xHP8%M461W+&W z0U30LZvNTUJG)gMgBGwE4%ug{0co&2X9>>bXhSCSs-L5Mu({r-FnqIKfJMsp{Y_b_ z(i%awp^#8fez(*hcds1(b5Ay&JqIy<(tH8{Q@FNQKc?iu7~Bs&OQVcroUD>%9`jEw za)h~WCkzEu!g~c|d88jtsN;y>_gUeLzrI)@~cH%xL;L5<1!S#>AAW($pZn}>$*lKMC+ zeE112nQ~j7HDPe`f(R+TP<;su$b;uuQXHTBwD56(+1DXsQ*;9CEBi3hr;IDs z*!HuQPye-}d~^2P@b#Q7Za!)t)MtFHfn7!P9YdT)!#aF_>+OE!^BC*J>sA+)aG6E5 z_VvVMGrKhb8I{Z0GRYlXndM&~SCr=pV+z3w?h`$ObY5=0!tTDyGb|rdvA6F#Y^}63 zL%x$%X7pj3Kbyd|yXR~{@gOg73+Zz^qDVxl)rqJJ&NiC8mlm*rkA9eISMYTG8)q9N zJ77j_J!>7rWWt#iz8+MubtR`mU`%LvX5dkpTa(Q2Y-W*`jcLT@o%W%<)zlTwIuDII zD{V=1egY|OYwJF9dqe|cqho5uy&VZ$&roY%3oCgC&okWiNvUOZJpoCllP&lC9$c?p`>jt2|PPgB9)Qb20nI7QaxBYTL>m@}yJ**os!=rG1 zIYDnnTIki&^UZ7=c8k42s>y!ja=apa7 zo%&><S%%b(F`YnPo$m|bK!O3ak3x{GzmB9$du>f|5_{a%CC$VFb2uDT##Bja$9ae6=;Nt`R@ z&`_o;dnY#P2Necu8)TK~NI%SK8mMCPgv!C$nv>4a`TZ20${P8jIJ6g%y4KqQYxK+o z`>b!J@z;a&^cji|ctUv|qmkQbXg>Ujn_BUwJeC9UkXkA0$+D&`pc2OX_1Ok&Kn5jd zqIZGxhv{9Z%tvY1Z=vNg4#%Gv9s93=-&lg!9d)65DbNIJFo>R7)D_WKh7a;EExWc@ zy!b=4GZe}pI*6hUBE+`uO0u}&q`-43G%<{|m_>_OV3_ruF%*M!@ImQ8HyxLIEJ5)? z#OVQ(oJwIEr+Cj%_l0z|BF0ZopPH8KV7GTZHT&OHJlp|28^O{0iWg& z)7du=cKQvH&K#Z=5pqgCb)u7u87FNs)vz%5oA~yvjK!ArHMuX8uO%_cV979oLUtaO zAI3D%VI1Vw#%$5E#2kkIJCk12e^0Ze(D~F9&o6)T#Cx1wg)nRqO2cVhDKoycXNXpA zu#h}y{Qj{R`)keth0_+bNjtH>O&fBHvW|f;fv0Bdmdum;Z`2oFY_?0?FO%8}?nWkiOLbx1 z?C-+WQ#37E-iLP_^o{SUz~j@pHw^2CGeRj1zcfI2jJ=eIOy~plFhqhN*hRH1;78v* zn^yx@E|J*=lzVm0rNy_$HaF{}#DCPUSlqbnl83ubOOMXQ7p@)V;5tV3m4P!Od1hmm zsF;ci0B2j!GRovVU{73m6DFk>tp|R8r-QN=CeN9Py%p42d(t|}9}G*{t4g)L5`{2f z24BetiW&~AohcgJxBmTzq>`F&1|9MwOJ%@=5yq7|@i}pE9yFY)uJ0VhxW{h`h+nTb zUyOd+&X>lXS4kQ2&}pfWyexW0cLyP)j+&mcbT&qe{@h(cNkOr8Zlz%0%$kGdlPVyX zBzM?jLNVnC1(=iDD4jv0uB59ibkQWsCQt7i7EmVxkacW)NsuzumD{qJSQT`DR^WZ; zgtp0lpX$}P?czV;|Ld*y-5QOg0!*}~DL+C`79 z>Bm-QVJ3eC(lZThKAK?}qMRv20CQ%L*WD;((&!=7?bd&0jb%Ky`<^4dcRX$MVYtq2 zrd<|y>oR8(tKYxR_z)>Ih>zSlf36oLA6)HCpMN~NU+TD2`Bt5F`%8eh2%j$jf#2aW^{y(&eQp44Qb zQA~MSBLne!sy~lRa41DEgPc#})e?ByFux8=n6}-G$t*WGuHj zac_nCy?%UvQPIIyRdIF4Lu&LQ&b26OgkiZd$jDd+YB*b)A?#!FDueAAK3rT`LI?h8 zKA|Q`<;tw>iJA?J65mq81z9@^v;IMH{{u%Rya4Y=O7#rMSU3xS^^6i41Ez9S{6eu- zS)i3hm7h$5MHlcY5+n;px72n434KHS*p%H~{7>yXs{{2~c!#_figM82qLX1E!&5+k zg5R{utsl8**T4QIq}+^zH+r{KQ+w$G=R>=e9Dj~$*@Bc!e-W$Od{f-UTLw~u775MD z6N!>bnRN$$Oxe#4t)C?vJ83(IS&c8&*{`9EAIZq-l09w7B&V*#E8q>ImN30!uRGy# zD*}m%ay?d+q~N|3LN21ra5g86EyeT3sPT~Y0(!1cK4#KOirDxd9^NOao)RtNqpAv2 z63nbPV2*29=i#|y(`q+uhn)T~hJG1iX!y4g|^-fxa{8KbxO9$f`beEL1|B{2|{h1@?I|S*zzx$pH<{k3K zaG9XLXgHU*hmTCPFk`0eW7q$TPb@+o^VGU1`O!J0HAxiFn!WE(L?m9NM75`4b=(v| z;Z^wi5x2v>ZV2q+4n=I2VkWrSOuq`Y(BG-gBPjtP)XT?Cscb{Y^2O{6i<; zEONei3PWD{8Vm$vh$2Ocpw}6tkF^S~*UYtlb|R5-=Qb@?!|G0MNX&FHzWn=Dy6s0Z z#$GSN4iVF0^{x%`21tNrSqf-M;;ULWss!3L82dfgo8FrH4AVk+j#Ea$e#v3ddlEMc zuBnunImZu7Sj9g=%QK6Ed~27hpxK4z@mR#e`*lo}R_`u&!9+3cVnf0ji16$Ip_#Rr z#a9NBOGmN^p>OyPt)0P8 zO8Da83PDiBvv>AU1l*Xc1Ieiru}R{36PP0@Sa$Vhz3TL=AzoG^OB*>QgEIJXDD?zT z{v_5@%gjV3)Ro??y_0jz=qLW2sT^L?S2G8Fa$>t{aqFPEHdqGHR3Cpbg(2LH;6^-) zAPjs&6o(l)ZBoo3kj%}?1EaUbhG*1Fxhv}GV*ut_t>MD_A^+>OXN%YkKY^wepCzoX)4`P3C1ax@}TLRpIeuxp|6U7V;vYHjjh85$(?bw5`Kd`a1T7{6AX)jm5=#B>e)FQf3 zsr$6=vN<7d-EN7^G06C7u&=vlley{|{4IX^`5QgP1R&hwi>g%u>2~o^K#M?pOzP`Q4Z0b2}fQ65Q_*Gq32 z3$)UBlF81pG3GXjdeVZX>vy81#@__;#79UT!=e(~AMM&YvDx**q z)Do=c0d;Mp&kQoMu8Z*vRCROIeSM-__B?;8!6yE?y2Q!ZlBUGlF~V#2Z#A#m`Pts| zKQ6s7Dic1I9n=0aO_k)d*&a6F!Auby(U`s02B?pxURbcFkm%ffDKeQ~xY{SHci^yQ zgH;e-!T3>-L-c9Oq3&E_6ypO&^9zSjhJi(?!Z|!3(hoT-qltg2a2S4nIyAVNaEMSI zZIQn%iS&aax1nE*muDV;CnVbfFf#XbJ10utByZSgDv2YCE^w)@xjLs(r}LLGDmk&- zKyOV!+)CPeCFiQ~?Emb_ZsDOq=hd>rG=KmnKxGw0X3UR-GgPl|YUU2x+pH zAF$61G1h|;;Xh9D8aXHJX}5iAD;vJJ-s-$939cJUI%!X{u{Dt4)q}F*V~@CEMva{ATF3E7 zx%M+Nuw=R1VXqz6 z>A59j6?2{G{aL<@AXz{Ddiv{dLy2F0O;$PjK3d1u9VebX=Dtucvgz0ejP&XcN5Z8h zX5?x0%WG^;_WRCCWt2AW0Ak4>*?u6WIz0ZxWFAU)-;MJo7kRnhIXd}SycXWGh!`#^ z`^HfMjsx^XSzPjvW-;SMM?KQ8h?1pGYabohN7xqC#M}|XGeLHZH#QN}^MJXAV0FB% zBTUFP-E%}w=c*9t{hIyM`mY9L6Xnea2j%inQBh41R9WqnM8k6~$rmpl6ZTDFeWVVPwL3rAg7Dm_vEP1iI3OQv) zAYgb&^GW7@_1F1ze$}RjEx(bY0Rez*5tvE$7iLD31+4fz|M$w7ertMcCUl^utLmVf z>LO|Od5rL|QM=Upj(fo>Z&@?#y@bUaZg1^av%a18%l3ff<&D!95J?IA1Rq7!bEnjm zP70~-)V`cn#*8Z>sy+PVmj?S3wiz^$OZRDUMLpc4S=|6L6Cv6)5aYUCm-5JeG~0;{ z-}?+CNN!q%9E`V9D`3*u=!^CUrFUgrOVc|(KhILPJhmT5!;)uX26CMYfVso9kvk)So{$>!XZhx{Umnl1%)^1P=!#zu*R0cQQaYOg ze&oyEuYWAceb*@|EGwOM5gq#RylE{+(=_Wdm~|<@X3)nV+Kw?hFG>rBioz*Pm2i1Y z7D(NfQbvanuRyf~-ZF#jRthBGBpW*F|KNj6{0oh zUT98O{Vs9vwjxm6C7#_8W$jcEW!C9){2q0#gys20n5~dhtplgc-?`aBLNmP?39*s# zI`;QYcQwL!V-^mCu7{-+JZXZG^HXrlM9{%0fzr!n>}R2w!RS|fBafFXN$KyCssx4+ zVi)7h_@NftLXJmvYXDuSaC5=ESaby#oz8}5M~Yc*rBurFup zcY$CDw{>i$dA2 z6KT3!`be_Pr=@g&Z91{_t1_v6tX5=rg5hI`X~2o^zSO~I|C?+5XSsml!yzLYr-P6? z05v?%D!RJ8w_;aXzw~O%Rale^eMeo$^JiT?yc*-3P=Iy0MBXLQN<4#eZ07yyx{obz z^`g&s%vY+}@#)C_;Lg{i%H%%Lk%Yt(Mhz>#b++1JS0iHce3tIrZ`2B9BHP^eJs6u3 zlxuSyU)AKXB>cE;W|=xhh)7bG#j@3J+ymfys_h%GsW-rH)P5Oq+u9zr!VG!q&z1gk zd+7W!KSmo8@e9ejEuw#G3+E446>r`u3Q%_zVS#<&cSksBy`jXUNzA3PalYpzDV1KT zKz_QJEF@F+OUv0)hjO`vl>%75jD_mrJDRpjyXRpgsLMwd!s=6wF3glgoqIY<8g9)JF&h39@PFG{d7W$pb^^4b79HxB2yz~2G`)a0#qUBZc`g-F2X zB&YwoMK_?ql*7Xa z>Kq{EFnkd0ypf7~X%tDz=K_~ISJ_C&)#tWt5-V4GbYSBc6D60^9txxnXFd^2rRsSK zl}K#$uiw8zCSRI6U~rR)@9}nt(b>_?dVU^73#Cex^UB<>mf5}A=${EEewwLF4vdtF zpI>?FT;45TZ^piwWTiH`F)kn*>A0q|ow0Y4hQ3&5R`VH`EgV~9ePmJl&>@>DK~5|H zvBA0)WAc4I0M{*$%hPg@ikjH>VH?R4%4{3I$P2qHB>))W{YQwRB?Qn zP3GHq#*=$x(FSeBJ#Q=5re?<^|il@#)E1rs42={a-rq*iPw#d6fR4^l}KXQ#}bmflU4*5IP+@3pM zy7#l9~1B!(@+P=0lp0}G#=iFmhS^ehxZ50Kq zQmA`30x0H-(viA>j{ML(fgb|htfNb2^uRp*Wo=x#%9lh}v0vnztR&f+ws?xUdG=W| zwOH+nr^=d^th-*kB7h`v@J#Qyn!rowFG3uPY0#LQq_Vv(Yq;3c9|7Uq&?}_; zeM3NuvVB{Vx)avuXB5HsX~?3f`{B=fVp1}o12V78=o`Tu*`^s?nY8{%zRXMd*`Nji zvCBbCIiEEQqA8(6YF301k3EtgnltZrRpQi0qQaq52u~AGAD7ecLYbSxJg`xcu3`QQ zds&6XJ^CWqX{!$inUpsV!2{Dza=9;<9lapvxAzlmm1gC{GKGWcvLG9M4nAv_ zvU7>?=~mz7fOF9)&`2o@^P~dpv~87wHP~@K`LuJk9)#CtPZ(rI)TIwnMhHB)rtbDQ zQ8nKMDNAmnHv3#9<_Y}AM^e3m4~=;)-~&9L{zl*VH4~yJP`P+J9CVp%@L#ngwuC|6 zOE`wrxC@4o8p4l|RIStx3kM9})AD&jHO7|)ezDnh7az$rAJYpaySqjJWt{lyJ=}s1 z$_6@r2|WEeyGDH-M6c?*v+!9y*bd3>=TCnUA_`bzpC3mJ{LB~OX&XzN*1iJnpRol3 zEGgL$9>Bm;6nwqYhS0Faz}FU#p;hNFY+;C!aX@E%9jhondV*xqHJx<5a$F0TEuZYXYQhXgI+k)EQKnr!XL$3DnXHMCN_RxKG!?*$4Q+i=DYT2$xEJiED9 zs#FC(#gU&@O_)me33Ogmwr456y7T{XdCw|#|N6tl$&_Bx! z=L3T?nkHRcD&96sG4Sul?RsLL<7%IK2-S}vQxm9^RT$Xd=Zzxj86B`?IVJfCb7|-3 z01k8&K+5_m5VEz0HIRPya;9+=Fc$XI^=uclP^5==N^hp+(GwMNX6fvY)_Q+7zi^Oc zF5C2}@o4k9Q`%n7y+tz0{pQ>>><)$kdr5gOfU0sDQIi@DM{Jzn0b1KeN2FFY>&x8F zYIk;x>m8C(Kl}ap9ZSX3ztlzX5sE^I2A#k@|A$uJiO;-u?s7BFs;BTn#xVSY_s*|b zMG-j=O_lshhYuo~<)3snxG}mXUr2V$EpgxNl&hcFQh!Jn_BC93qDiRQ8>Ot^m-V|j z3Z)4!@-DYw1VgnJo-dTM-ufG5d^CT;uIz#C(TS@Kea)Y(gGLwFjO}|Tmoyg+NYs9={Lh#mMmks~uBZX$% zrRC3x+!qe>!&27P1OPsG2IRkg82jP7fq|;eUT^PXz0H$Ox4}%oEhZ&8Oh@O{FrzS{>Jr_ws9TLs`=aWCrZWpHSf}(ZTOXqgyk2 zpqRSM2>=IrFUdbVjpyNfhu#6TZkq$rfGg-EY#EgU7&i?b<|ledk(dF`w@c%VgCL89 zp^Z3vNi+9_y8A{I#|20zZLE6wfAu+-=d%e`pU~RU*Qlxzm8ls-lT~J>9zx^RV;-RQ zzA4dNn%lT>DDZ9A#4nfTKE~dBH44`5n9iltxT)VaeGfaoxqb)cBvCcq_@UNg$;N7K zQ}OFds~P{A=5qbVeh>Tf8y}EXPg1;{r(rti>?mLZI1h|L?dPS=`A`yx!`RDz?+h?9 z*FFBjePI+C;ClFeWzh!6w#_bQbw?NQe0w}o)bsmG)$RWNR+ZS(WRn5!+P$BjLuAvx zc!)?0n@M>@yjRMKL93Ttf^h#QR0LE~uL5ij^2G7hziPAWWz$#=dk6MM&c8LxPU^Ep zd%lz5LGW2}r~7|(SsOD?{3fiV_FFtd^%QhLY(v#OwySH0*xhUV$XD#pH}U1gX}6NO zhrw&5EyI9vU?j@ud3!P`{-V{x8y>w?_X8hL3(2b5s1pOGf2`1KsMfLIBqJD3^D2AP zZdPBUt5kOMh%i%T#71&|n@S;8B4z!0mF(2kAQV6-eNgeM+C8TpdzsB1$5dB~czQXm z-eret=l9^oN`(J|c2fQiXlI$s?zd1Y70GY18gY04Uq!v^TJ%IaG;F|lWY>XE9=_7- z0i@~s?L;MBGs2MEaeL8Z9tJ>%Ks)Zn1`_mK5w3r$tV?#My9cf#$C>}_cDaV z)|TsB6Pxkg{Xke%lVIxr?Q*Nq`xs88j$AxF$UrQgH+_5`A8Gxbt~_Y{I7i`#)8J@g z4aheWY7ZaT-O$dqAEKFv&Mn_lhixP*W9>|e|Ae_mbx%9e|FUZ!%V8s+^hr@wjU zhw|U8Uzh%A+dX^HN#Q4rd5R`Lt{yRVt_toam^HKUot^sSp>c8%1kgG^4Q$`a|JB^8 z#QdE>ziED16ap);w^NHZ&)l7)<8=523mi{EYL zsC0B9WR1Mmx*j_v{3WKlOq%if1}#?zdC1x^Y+b}}=kG80@Xt8_D>?PE_PgZdtH*CB zaqASEf?tN;AQ}j}YD|`R56vwt@$POv*8th*dAND$Ag0)zsM%;h( z6o#zbwW9hl(DarRsRm%7c4PfN2L?>RUYalGu>4>D4q*@gd2?HrEk4CfzzYW zPn)Mr%{d)@_32}q5sql&N=GDh#{9nu%!~2mXJW3dU0zq;{6=z(bN@bR#8)@Tbmyy0 zLF;w+Ne7oR&Z_#;&ymJfZP-+FC0`_V==Nrx5EuKDEbtvM(eqsRUx*Q41C?qW&QH;I zP_dACQ_2aIx~oJKxyBW6+9s9WE<44>!xH5B+Kbuq!4S>w?Fnc2j6KHhW%su^Y*U~n zz~b;(o*KcSg*ur#o0Ev@r`O?{nW@v^sc{*wne4XsUC#b~HB(+mMM}PU$z!?It*QF$ zC#d1IZ?>n|dxtM##?EhGfT)@K&qpjaaT#~-%BFZHKOh(8e0Tm>nqd9@z5syxNcL?! z<)c3!SGJ^QdE8b;PVW+^RMZJZq2f%`|MP=&+9T|G!n+uvBZX|0w3RBt#BEce=gXvL zq*p)Mcx36d0$-ZkAGvsWZBZ}Ngyg%p*T*YX5;M&c$tTMyTn}=~;x{5@`gPqmsVt~%JsAxn^B41R~&Gj$O!`_Tsu|V@0rXtw?Dqo9vbd~rK#@t`0%*^ywu{; zz}AFj%p*TD+5QdcLmEV-d7QPz z66xzWy@QW7>PEhw*!BP8znkwDi6mLR`m`U}SxuGces1c?nS}mHqj&8Y)&2KW7OQJ| zHSB;XQDShw-?>u?NSQZZ7WLloHo(yQnYn^VAB0(Gqg1!0sMrP$n>w34ceKy zCU@?eY7iYuWLw{vw~{4SxwvEZ5;t6;HB^tpQ z;*|T?M69Uty>ENFifs4tVjJU~m#F49Wna0l1Gf!Ivn7<%pNsW}M1Y-nXs8+x+2jM5 zC4D&jL!W=R3t9R3iG3WtRmoCQ8KiK4aat!JCicI+vzU?jwhNJ@yvW$iSM^0T3eQ+N zXdXN`x2sMwj;dA25+L42-@D>SoHtC!ujO2J&rHA{DB7JO(&k}9e-@#;Mh}Y8*>g+s zv1Qr`cLFgVxNp2om{O>7LF)t7z<=(k=;b-81ht^=*^qfol3B{Rkq{&sWLFCNl>0M@ zDfo-Pwuw0QCU%s;3GvkK@8hn4p#ox*%d1jkLv;MBVUv%H_AXmLQiaRCtf!=HhYgmN zmUeoUH+?+wXg*lW4|0mkh0@UYyS-44)=2vQABJVM=$Z9)mVQzsHpLHE%Lf@1qe+&L zJ3-1zbhcD4u-nInUqd60XXh+wsnsd{vroSphA>XH46+UFP(Wv96`79k!gl3{?mLH! zE{!_dpgYi?EzY)`+!r+6v;HE|`s9}5Bel5Nc|=0h@7&Rkajb~Oai19%I{SQff;1}E z_~P7rYjytOBfgA}>uc!Vg|(G+hFyOXGVwJKA~IIWw7&M>o0f7@+pt-5-e+1+3Q$8* zY~nSm-Ss-Oz(Esh3lx_}*yX8;Mz4ggGTtk$JeS?+!canGGs*{&E_qI<(j8(pX&k+bTTX|8P6DXb0#(X@?IrSk-QH#z_D8Hx?7NqgSxFBL*IQoXZA zVTEs)n0p8`GdHy=1EK9FUAPARsaDR(mg}jyY|;&{##zppJC5-PJuN-Vy&KQ}QYy$f zHVi`wfP{PD{4@IdBjpU_r?3DwAKJI+r^}}7m!1E?8`rCtx8_bj%ui%aZN_Ot{`Z?M z`f3gl5@<(VbU}22ZDVGBZ_L~F%DBgthjd;cEi#0j6?*1G@x0>KsR#|}Gz*bR7mO-V za4o=;MCSHGLW!Z_U;%H;Rd0O2-AXEni7d1LR((COtY0gF+_B^t;9TUf69E}8&YCdb zxni(qW0um%ee^-<7SWK17@t1eHNWo8>>xJ$hAr{d93hUw~J2yTHGs_k|rWYd5T3R35bPMhhOD zoaPr!pW_dV@t^E3JbAiR9X{CL)1(v=y%ZWEl|MmsC~<~N5b&Ntb-iT?#wlMs!2@F@ z4!gmtc8P~nl+4Di$-KyOn!%4fc39`tC10gT1t$A$;c5=|F|$b{MZ2WCax=SmN{iw+ z%~nQLjK<6|CA18A;nT0P$L)4FiC2y0XLel9ya^1Ue2LynLQi&Z=j`6D35)9J{!@28 zXMyAgf$%)NJqxqGeiFL`?d>u`g;2tYoAiA;@wY6q&&ubW#j3h^Nt|~BO^uCwBK&<~ z7pRuSlF0@%%XS>V#-}W<%O3E=tY7GL{>XS;W>buhue;FrgFi6J^_atj%Ut14dh{mW zMz#NPuIini$tSwfeTS25{?Dn%=#oT*T$AtrC_Vq)THd>u*n0iQy-u~Z>V(lX9IATB z)KfNRSKV$@V8kP?E#llKr`^J%mA=^oBDUa*YjlGO1M96ng+~NL=(SFt&asTKj(35G znByw>u4d&|rf>@ulf<+#PB&tHk3oc4)uzPqz}~v0h%7I+)pH|SR~MP>XBS)~I_@W{ zPZ1P!P?rgX&{=`JY{kPNeOt=mjS}}@Tb;R;lY&xK0sWU*kaH&oRiyLkcqJE=^Zxr0 zT=BiJ;I6ig{GH*)`S4I<-CCE?-jQZEg$*Ny`@geXIP*Rh)%mJQ%4)Q#pH)$PA-Ixq zZuaJU;#FpixWSt7XpyBK(95AKOIsJy)5nd1Av4c$)qd_gkvH@bpP3ckg4Aqw8lK7` z&va09YY=GTTqxh)j)5V(&0Q4d!gNr_VQ~WiHqzWaMON5`j}^d}fVK76enSxEZWiRE zx{X4#xdPz!QqI|PfYsU0aj=}pV@4}?{A~!Nl~8_?Io;T9VhXl@qbmBkse^?`ro?XF zi_Ze6%JW#&E7Q9-QCh9oe~1l-5@-4cXxM5OG!vbcZYO?bfa{abbT8= z=iGDOd++xLJh0bZYt8&(_6&YMxUZaD@}#7Js7HdN{cDXOox+^yoHAv?G+s;%L)Yr! zNz7f2S7xpSj!aF{=0Bn?q~Rr=`9^Q?uNz6YJ;U1aa35IlZ}zc04KuwM?FI?1C>1nY zvRn|zU$39z{$Bp)H71T>kdEf+GcYRmoGyr4dwU2aC4-(UDeqg=Ve!Qg-V5lbJqx_f zb)5Ch{1W#a<*g){7?WIq!DjR-!ct#m#*#E&Q=>-j~7c)}ecmeCzLksdYsruW|#W){goYq$=CEH$&`GZA=jX(GA;U{iM zu6m^5wbvf#?fTx|fAt$)t)~e-RUsn12opF<@D(j65sq9PbNHORI@dTk1_LoL`T7cH?b6wlB zTn8Rk^~^EG0&^r?&D<1iUfet-9?Eu&0o_YSs|*M&2b-r|R~g-7&LW5Q>kBRX4NQ?% z`R`4Q1rm-g(~)~=JtsKJd2NK)%?Ox>F#a1j?v?c5YjsFqZ#RvflJ277i-PM3r?;1GF2TuY;;B*x9Ln|YrhAY8LZx>p#ES{X?<=Sy==o9-0t;ag!KfHSOqt!v0u5j4u&8Cp+! zNL1r@XPseh5C7ybZ3eM?ppJU+GSddYfFc1alhQGm4EbQ>&rS750#Q7X@Ernb7tN}6 zq>M!4vUeC5IJRv4{r!yf*U88&$X^VAj{DmhT4(kz$^i)GHyu)l%1_JR^-}%-Ou~82 zsNsKmr{?7p?r30}G=ylMobBK`M?Kf8%@09Po)G3PNkQ?2IcM{Rm}w?%Kfu2A_*<1wAXD>>t6hc*rIS40rT# zfJRsu1u$Nkt%1}}o4&yLT79DhI$;CjFsx%7UM4$jWgPBS?Xr`S^X{0$KCaq(@Dt9% zdpV(1`bM_pVV>K*p)*3zc{ZkBh}T26=?G;f0sqO%w-J!AK+0q8%VC#&O|F+-Gz7St z_|d-I;oblcXn1yU>5gA`|HRIw^N|?h%1s}{wFi;mlikJ&bvUYq$S$=9wRm6fsE4!Df+LV!)t=$fX<}~E$=^&QQhcF`L;h}?2QS11I+C=KR5n# zjr@(zb5aLpD{>ExglF!?xcMH1VDMd?l6}3r!WZK6r;SOaQRrqWX_9}Hxb4WSOPqAD zKhEodBQ?q6TX0&TWSF}`!UgX~X9gq?MoNX7q6YYimNVUxOc?l0y;hA;k9KfjO?aZO zHaeJb>D*aeGR8@-dWO>b<+BrluGvzpmpnnH+vFv{70No}1BK<`*BHoB%|_-h>YN;}%PTDQy=q znV3qS(PyQgi@4-8qQLul&W#TwqvvHQSY7f?aM2mai%OEk#2Ds%KRbUo@n5VscqaQ^ zdsm@8f2tY+Y@63R;?9bmCkXgLzh|whAY!{QFY8_C<@nl{y|ncin0^{BhtLai1=zr{ zQ6a8q zfz$X)c0B}64o&Rtlh^c|xfLDG#F`LHRQu{Jhj*4KT0TQOWB9lagxjv|8k59R{mrUd ze!|N@oFJ#|F9~SsHPuA!6Q9kI9?l0eS7Y^x?72Th)Tlcdtta3u*l_WAq7a?=+*sFa z)p>kco3*(8bwqv=i2^Jp`0PB1Xrf6|mOVKyBjueJ;os3Ar((o}24Vr-eBg< z2Qka_j?9d_44g!(io1dp-ui<~;Yi2KDrpnH0UK_CW7jd`y&x}vkE>4gX-U?We5>or z>V2n81Jdb}FkE6~`VK94Kxf&Pj%)KoZJUkW0y;JZl!b^k0u*ipI{IXkpADP=sbDE8 z#doi%5qE z7Vnr^^ckM9HQ2B6WcUY~bu(~S zJuGyzLp-dxch+}uc~;i>Nr&wC9%3fsr#kjZT=nS;jQFn`3;*!9RZ_$=s%O!ISiT5# zbZTJvg5C?9L#UR#gJH(N@=?o;ZQ}lNM%~0}*c!ECmW})wK2)Y81Z|vR?J{&a3F8io z(VLttrl+0n9UIB)8A8%Ay))w=+kK$JcH6&X3;lAuk-Lg(@_VoKmQdgbnVL?K@BH+3 zg9I3Tul1TqVSgxtH%}uG_Zfs~c*vm_nEKr^d=<%~&{?}erEO(TACGp;d*uP! z6Y$kTn9`@grivV+hUo0WQn=d-1W}ihMqAq1Yqv?lvkAJK6MEsg5V^OTZH|7|o{$yU zKkpZZtZ?>zkomgqMU%J8lzuvDbAb0D+Vqa6)c@Ljf8@?o|9oV`aMzAFjhyxQQ{eG) zH6+j_AMuByVqALv!rMUu7{Qle!GvbO^kK(DUH$gPnR`*b>}CBOW`>bK;1h!j&+wO4 z^&p!L*I1k{phvki%z5fMI?#5v=>q$D63O$q&qK85xcQGqGjm(UbowSH*{|J}fmP`8>rftzWioJDcSBWQA9R zYQ$}K+A~Jny6!y@U6bRNpCa3;aHS@tTx@wZTW1H=W?+QBiLZ9}lH}Oad^pb=V?bYM zGuiOkam=?bwpyU~9nWZ;Sy||M*Zw8^WP#v9$|Jr}zh=X8fgoHYu%!=Gv1yLGs3R<_ zMu7jNy?e~aP6_6&Bjb;NoqGU`7RQC+XdSg4NA*I{l83JBC zQxOH9UHJONr$8!aJH)VgibjyK-EY{Ooaj!FhuHxG(l;(U1rYolvz#Je&QILh9M`jH zeM2)O?In}*U)>6byfsk=1~x3jr?GI!gA?n3>ztC?eOnNgL0YeV27gY6UFKa$BcnLk zKhZ&YIB_y{S9YNmIK+HwbpIn#uZ|1b4^v34B}E)H*AVDl84SgTp2D!O&#B?VW=BvK z;+a8BtV%Eb!A`%>vF;Fm!?wFTV~$ea!vVBxk=$YQ85qL4y}ageZz)=pVZ87~z(wWm z^uMrKyAFHY0?CuyKI}4g*KJ&xO2rf6?lqGF-|j`w;iA&~m;8Q)uCsRRxH5r?2h1X+ zxm7hWw8_rBYo3-Ir?&16#P-Xp*> z_aho@%hpUCg;VW(FRdLcz6v3f98X*_& z`@~z3sM|Zw(~kJ#U(kogq|$)6(zxmx%bjv!)$`1EkYF`(3#Aq3r$7eE!h6*_r`iJ) z9d>-PRgADGnEm>5J%xVmmU@7{U0+v8zd4sSVH!9@@pbTL()J7q7{QFs1m@Udfg8c% zXr{9rbFOEy`xhQSRyaecdF^0|kL*BkSTW}7kig<}Yy)>2@Rg*KnRSmxM>6-wMiri2 z)34W@TBbaWMxw`#c92}*X|Qm!BLRp;(k3!+_`~Ee{&rUg{?pN@;LG&JHlhA;vfQ5v zc@CJ1y};Kzl7(;@j~XWk;BGOrJ{gbS5&5}I(5?y`c;JC39q$by(7(dpWoY8Q)!O0b ztBZjxCqY46hFIo+ZS1}$6QDOz|L8gnVZv`K#ESF1LDWQRU?g~*7>o@>G2Ogs4x7wy zx%+^UBZWg+QsVeY8_d4Rn_Fb?*^(Y`NQ>mSAY7?=*j-&JAhEq+N}oq>uX{M5npdoa z;=|rU7KliqhqywTxM%wnpbdW+?)zCj9xzNeC`o+rYjS)LUjS^uYDByMlMnsi_fUE) zhCt3}FKJ7?2Los|o228NeoiT^I%}c!jFfft+t&`^p-$;lj zXmkAZnZ1Hw=WyNO0;O|7t{BC zM6X16vK1B<%be@y7??AnqXGH%Y}+8z<|RBbV6Ns;v5cgo-JMKa);E*W9~G8|uT7Ox zZ0jhp6OL!%wZ{{_|J&Rk`sn|wE0uE@Pd}sErRkQc7n+t*#d6c??5?l4^XpNjF?EG2 z#OklC*!IIOd#7kWLOtHFMm6tCA+ z{cnx7Kn>z$lRe0EoPX}loq&i@_(+&rtG)AtS8Sq@*X1;WDW~KtL(Y;N)5a+SpEP+!V7-M;)9@>!6c^B=%J9K#Ejc)+@dw=%s8 zCld{sCzo1>O+p67JvltBR-+6bsx^SNtyy-+D-Z?K>tNOxmUoHVSscbZ9GRZnJz9D0 zj6MT{G+Yo>!r}Wn5f1q{^tz%IQmmIF-|91WO<|;@t?9=MF43FRsQk-8z=`Y1#>mJN zE18BI!?UnufSIfsE2ms&8o%GU_8Ge8nK?o-7B*gUSo^7v8w3w3F2k4*{R|Yn#dLokX$ngnFZi7t=i;jqnB zTtTdd>1ve#8>%Wt5(9j%?OFjMNDcxHDq*?7)`YX6Mcsimg=gU2AS119c=xJR4#RDRd*QjL z#mbz}B%QMeL8g89rYRNtm)Cbsbu?^;2fcif{+A!X(um;l4Re&EM~1sPch%!CVKYVt zI*X<(x>?)NPik?L?KegLj3EMX%puxnjoU;sX1|`3C%(d@h!Hwn|qjg?i+PBLinLP!y{! zH`+Im0D5$s)-dv`qr3}xm|Bobfl?M8(HrgjwNH*cz|cJv|LOECkb=q#xcz(Hv>5TF z*doQJN^BD((+A#(SWphIhz^M8uIyL{ zk1pA**Yd1u<(I~ zdiF%wx8UN3#y%eZ!xY^wFXwu*>}L?<)AfR3>(w>2Gg55$FvjWf$$>b~QEEZaDM=p| z_`|<8aCg;nST&xa_g|0M%MmS6r8Fx@D$(W2;b`Iw4 ze-O-DdNL@ol5N3(L|BFPX(q;rraUR?hs;HQEN-l(esP4~0_7XqGQRRRJuD_ul?ni zxn(V`xHN*Ruf$c%Ww*`+%b6iwH6IH1rKV=x1(`Ea22cMSa8qYQlPHMxX0dwHDl1T& zeyroqGT~;5y?A^08wbCP!Fc88)*N2=nR(KgMTnFR1paoU#!Xq!GBGX-aw90lifLri>w?bMbn1Pxl{x*=axP^w7L~4KZ=bOCM*W_pP$NvEC%8f( z-!fXS*s%7(ezy?H%Lezep4v5;`z|_$4R4`qAG7tHn+)_Lh*`&e8mkCYOyR@|k1l5( zM~6c%k*L0?+(}u9aURy(_iLOeG^ZNTVE%}8HS8yJa+0hXm1GgE@IzI9_h7^`w_&$| zh@D76iC@~GNG{x&XDlWqO1~Np#2_TwOr-IchmWg;3|@Yxfiy;Td&%v4M^gF3McVuZ zknn{=&WLrtz_4s+Ht7VJnCWoQ-jwOg0g`Te@2-YVp`$pM>jOehodRrtn6%|~3?zDT z5#;+S^iJihd{2d#epCAw0D!eQTld_@or=cntU8Rl{ocK)!0CG4_!(f3ml;jNQ*LYh^U(&Boc(98a|_ z(JMb-KRFzOn7j;UG8Sy z0E1;OJ;$5tYkJ+>*ru(U3b$*1fN^$Dcbn487d4!&MoV=!t+!Ymu^Y*3r26;V+4$v#A6;3q$lkU`@&p6X!6mXMG_kRGv# z;fNN@>{-{XyLUPJuhHV!eq6c$-XlflnfE?KsPjkvhNy#w`)b0uV~dB0J9(y#CX-gH zB^?^(i@>$WKgaa1xPgtX6R*+H+OuvcA&b1jEp*^8an<}Kwdhr&N^#t1c)$JHHT`MC z;#+FXQC`-i8t@L}m!G@N_WGH?PK*R24kK$OViwPc+jx6W>R}&v6)>^Uhu6mTG*%Dl)rZfRi1$up_|XptACphiB)sn}o{%Tgd({JJzYXDn znnZfJY2ie)>(p#umfKJpySRCLt-kV4`dYOxe3z0!t3Jlzi8Q!G>HJ|`{kX;CuK8NA zYTULwaS+kM{4lavFY*y%>(a~=<1XW)#3nL*AW(0x0>N*?FX)jmEok(Ru)Jq;d;8o5 z-MWIU!6y|XTbSU-%$&@@W%w1MK?aiUjRFqL#J*OVUyjj0JJvamwh*3%F~2RExIeKx z7)mJw?&flTu>C50Y8ijaWPCtFlZ9`LOdGn`q)49rjq6@y3Ic+GzE8gRhLPfm8aidMS1BE zhRy3c{zJnh%lGf>H6}raf*wj<+$ljgjD~BnArICI9MltGe2Icq%rt+o91Z zKZma8DB(v0zY#=^N;f->i33{FA;tbY(!^pooil&0k#>dB7QuX&rtTB*zcPAC2diYy zO(>1wdccWYk~^gjPu9tjCUVJjpKuSs^EV6{5e>;V){82asZ8$SUAh7Xpa<(rmY+YV za|`S%VH&P6d8o!b$c=uuoYY;yNhtS*f^c+~SKG?xF6T~UmD*1GDj;8Q$(A&t*{7+O zSAvs%ChW{=wkKIbZ=6fJaqSy`mI+EB4%+GMN+tT zEOqAJ$X!zEUy3bGGvs-+>(12U7g<CtL3|Rq+Ubo2$`ce` zo0&7YnL&T*6bO{^g0+Yl@U0Q4;f*n}1IKra(cR+QYg~P}^rVL7ksF}tBE@~BYOtCt z@OLgQU8*2lYFXS6I*`{<=`6N01oiu0Kg3=kz?Dmu>c2KrkhT6SeSEBl)3LIIb!3^M zDv{5uDvRR#nw4$)d^;?%&bG@^wMHlErl7^?EZ6M?Vd-Rj7;elrZEW+UMG^gtK;sbb zZq*UfHl-0Wu4x5iogMrma-MFBmUAyRh~MdB{W#>)nvEPN_Gt49iPFLkjYI{y4KaWJ3;sStzBP?v`AFH)(XATT(cNCiM^P@P9hFgzP7YVYg616M z`y(8KjDfO|uGZ&s*js05a!T^tS6XV!(d04s#2uycz|NJer9^Gdyx&N_c#tnF*W-Lw zTU%;!{@&TMkDx5t*o(Wjxx&mhI`)0y} zt?i%3=clCVC%pzitV7Z8ai+k;bX{+weUgcN`gk zM~x>t5Ao5$Ed(>9uIHD|3e^ewl^Op~DF7PDn1wb%2d?-wC?6l? z90;b(#U=H`WOowlc;{FRAqyN%V{4fr(4V2&>G~r?? z(=Y#ezek%m`%l*dwp3}tVv6n=E+L<{s6N}x&^X*Le3bCBtw^{Oc=&wNy7CT*!NOHF zv-S6}{vCUNQ@59euqM;Xe(fQ@bb?WuVw*-IrBJ4(H#3pUrk*{5X~Q7fc76JOP7Q~ANoCN>{76NMi*9-I2wpCquS>B- zYJ^t>#@$Ay{C^s6xm0#z_$@{EU(T!LoPjy_qUKbn4&D@8oN}fGIn2J{sfE7zY53t> zS9s{{Mzd@b*F-%V3}&RX*CA>*kjtz1H+}~|_%i(>5UO_TYvL#K0&DEPt3cY4olVZC zg^y%dkcap+2aoqLdKMlggr1l^pxw-f>~?&GE6{|ehW!biz_J9P_^UO?-sNCiS43}& zHRJQd<>6YrX@7#MLkuzraB7ymdZbkZZ#-kp(X-{*_&F@SiI~!n1%};zk_Me%(whBd z7h$YOUdRQ0yabFb%mJft> z*CISq!G^+BERi3#(f)wi-&`7a*v`Pe!y+^qB%POq^PArG-U4SBiJFqCU8RcF-MM1a zz{M?Z9Br!X(dhm&^SXnvrSpHBtO{5^y7vz*0;nxeS>&_qM$AzU1Wa=Q$wNlSN12jVEzvpicJt_SlSKgrz;Y5fju{^RXLcz=jQsv9Pxj+4ZytPNGxNAXD&S4U(h(D#!;+&@VGAk%1+$yQ3NfJTzpeM zX^PEAH?EM$CIG$Hh!N#3kR5ojj9TzDJ4HG|Yvm@Ilj(+eGjjt4{dXMipseG~bCUa@ z{Q&_cvyL@qMahLZ+1p}tMcE->U*5~PNe5eLgMa;4+(9jE-2Y~#7F8X z5R(Pwf{=qHA_G&vv)B=LRhX>{FqpS5D3BbFOU)$d~z-Bli3lE>Y@@Y&kFqZv_B07}Ii8u8QX zl(@~=0$cDMA=3LA{lpp-v!;<{`*RI2aF8${aW)C`rZ^TH1it)|*SyvCzX%Q>3v$B{ z134xN+IabwYza*o$TBlVxaeJ26J;kp&-zuh3wT{`^6|IZfFFR3XD3=+DQ(7Of<+HSL@uOu74scr2WYNnTU zDQ!?z0OH@8CRQM*#puTb#hC-oa5sUUDKez%2sE(<^e-PRJ=-nUPCje@E&bst+9U4M z(XGy|=xUaIqz*_bx)Ov7McV!``ZUu`>=rob8E`&rMD#f@l53bNg8m`EFY3K=$8Ow2 z$~i*Xf6vfy<{AGY^!}DH|H{3r*oo?}b>9NL@gtf^r@wRarKOdCQrmrml)kf7yJQT; znBvKnm`P2QT{CHvQ@1jgA77V?7U`CBv&oHK(1gm>F{F1y6M$UzADsW7S7;u z#Lzx1C^wBbEN9qxM{uoE$bgdj8V`2)G<3P11Ji@QnD@OHW~Ddh=^k_^mpX)}dJzI) z{a9k1xEv*ZY?XlBr!$^JL<8V<5RFA>BMi4Uj1ve)L{*0!hCaLZ_;c)+KY zFMWy%^*MJ8NJOeZwV0ywKOm&chS#CV&jEO12SjYwPx(#GnrWCw6T1l+)RH~LhESa` z;DZ-h#`vZ^=Jkl{t?GofVSf&x;Z4XHnDD5COPZlsrEF9P>k8OouJ+Y9Tci73lbrqy zHv1Ytq!?0oL`f$z@+E|S7m z!YrDkRPk$G1@FI>7K~>XMYdLh#iYY-Hco%IIX7$?DOkYjtP?7thob$`dPeR@DKKQA zV}Y)!M9oXA1*^mT&Z^iN!=UwwR`DBvAXvZP{e4xxk-@C&d%_ndhtq}tftsOya+H~^ z_-8WYM*hLA(CkLwg7(&Y>|y=Fs5}tVm_HyEsrAawK~``jGe$cGMr1sBvB&vn5h)Z& zB99`vH$a}gV{aN|i0DC>G7rPX+wXI067K_rskT$sDn;Pv~S4J*oU` z23Xi9+~jwOUvuo=asxe_Nqk|HjF%9bFox6Ns!xlOmTq7Q8TE^)5QO63;-F84 zSgA;l_2HITVH+O=8_!4 z`R>+h;)Qa67!dzfLo0F&PlwN;W5_sdH;pMJwLL{Za|4SJAvwJy)3Ot-z zmz0h=1+|ZjJYxrA%(AM{X!_7v+A8$XG&0fP*=u%oN7MDFm6_=>EL*2a& zSpJqwxD3T`iP%C~G0@-mxUDu3(lmt8*#|H|rYO^!?~ z-yNSgr8%eB!F+G+asded;S0RL=T#_|k&jE`dQXB1B@xY?0WN~({9r(uIf2NJW>zG^ zM*O39{}CGgxQi%qL6vdq5j}TUMu=t$(iMG4t;yXg3|PU(Nc6x#VzQ1OSs-mU4c6$z zPN{nF&KB*62QL<1Ucg&?>NnWk!|X;hMQZ zDm0~8nU4hgC5HXyuFPxF(tU474B<|h95`|&TJ98BW0Z(hf9lFTvQQ^b0^aWZI z;SD8MGW32flb<AeLG8Y4{Y)bJ#ca4<~uYdU&V;9C6qo%{u@$huzA z+YWB(rJz}pv{BHo<$^TJP}1v=0{QE%P0ul$GG-!+lwPbd<5Bc3MF}HOLo>@@z}4y~ z1^ikBjXP*mMMT^OEL3y-zFv_~;2r&I`Trn!2vcf78^I3b`k1!)uc#I*MY|SfxoBp( zc~NGM!0t+2wqBZPC|=Ijw|Q6&a=-&YW0m~ z7%^FZkvNp{It0KFN_i9OfYL*t&ICif0+YcDGkt8~1-VklWB?ufzdqC-82kf2u&rOt z&@q?6;%=#=%}}S!>a>?;R4kPJhoS&IS^}LGbBwOB4pWLX*Cz$wAH4HS1}Dji?fZBS zv19_?`yL!pD6jJ?ePzHOJ>cJqUq|Z;j}wdPSfr9u+XWqpIH$6@sCgRx#3z(Z5|?ct zkwM$Qrwjj~Lbs^Lw;8ywbb3(@HCdS4_tr7vnV9#-yiZD|Zo*Yj3`xg|?E|jnR~VQ@ z>IRhzd=}t9L{)ubu)-h&yM&RrRVJLwQQBY@0Q|D5dKUexta$jfzgryJ67Xc(MXSh=ljt?DF za3V25*VjY8VeEhGCk60-?dRlrdMrmfR%hO3c9jf|!N0gPcF}JmEecfSbI*uxv00hH<+p6bEk&vrYY+Zw;jcLNv`^^ zWGv3yc9eQo#gF@J>zOW{J=%V^wvcCz;3;Q$WsQ&bh|Zox$n<9a%TYFc8;z<(t_*#K z5-V)#927+?z-ze>bs5Nty_(fliifYl1Q=rV<(k+S$?nNK3@h#`mxswGyb%X{b7~ZW zghDqP?+j&VR!cWudx4lA7-kNBVMGal}q_>H`tt|MIm587z*d#bt9Prv26 zt9wiTN6YEA%3sc+r*U?laP0u22J)-lj~4%>9sGV~s9cb-=N{kw-S0bGTItwiek3)o z&aHP+EEI2$292)R6Ku__!*ExZ zok6ZO6_WydcL?{D#a0&9w7_DeftLc;*>9ggr!guT>7|+v7}J(o8pqQ{N=Z;3c-=J5=f1{eTRyFz~#x2 zQbP{{O1ajY`*=8=OSR={P3+Zt`9`M801S{{dbWqrS#b?0D zc2Q(pCIHofW)&Xr5oH1}IespjTX1ZEI3^C?=hUM4S}^;{`^1p^2b27BJKch;$&I>j zx>?{TCaEkJ5OAc84|RTZjMb^2_iP0E8XFAfqFprQP;39C68YCE_gQZ--=%YTKiGBjml#a*UTpjL3zsEzfLoA>#6{Sg` zeyyK_6!nFAcL-U22W94grvUifH`42$FRKeyKDc2wxuFaYS}Y%r#&<*4GV(*^_SDyg9h03ZLBz zpiY{|ZDy!<*S_X8WU#tZuBYCaCsRQ5(W=(Iq}*won7=|fRio#q%-Ld1X@h)|IGpeB zANs&w#W=C2y7=8=7OhY69W}HtT-*^k$OjtIwMn2nF=;)L<@eLC&I)Ct*>ZK!Pg>?J z{imQ_T0FY;z}}ex@9t z+AtD|y=jyDtM=z_O88QrurBrrB-4ThnZBO%ma&(KW%~PkF=*wyWJlY|{zNRG(qf&WY^4*<$BZb zr|?;ow$j2~bLW0GJpFVPMQOd#!AL6^opxAVy^P>b9XjM%_<+{No97WCAZ;x0QBNNH z$QFw2yB|q8^!FoiU0HuamQrQLhYE~QJNwAwzMWFMJU^)haD>&QBcS4^FbcP>3Axc1 zdg2(yx%Z*}zcaWOb@ETW(;t~>EEqSnr6n;U2Gg3fwtM8sh$nBONodynh@d3E}Y4Zq!0@*3UJjgcRa$Rjsn=YhXSYPWWBtJE(5SWbR zL%>NJeNvYeR3$11JImYI?%0fBW_6&+R`~Ic(e}G^Uf zEGgbu_|J`*^82lV0z#IlCn9yla$xL^4UV{U$_YPppZ`P4t>3=XSk;WEQ2951qqI{y zQ>@3haw~1w%R^q`O!CEwsrzu3zPra8vuJ|Y{59G>P^6E)s`L(M+V;Tiw&gjz-u@#P zYpNGbI@MD|NIBGGxu@^zyEax>c{!cH#Hsd%OGXy2&{lcHF;(3fmf_p6 zA4L2g9QRMOe9^Fe11-KK(CJ<6=u2Xjll?kyWFrea=5*b?O01hpaIsoFw;s_Zh<*-h zEw`2)`hxwFL1;@g_jIKLZDM$M&vewqsp?&D*f;Z5oLgR>tPZrV=rKRO-twJJTBKQ> znQxGkP;f}42g=^ZZiG^`oSw#homQ01fc_9`rJhOno)6i}6U%O!QsEgQXH8@M-G;rZ zx1=uFumAfVGB6w|ORLC?RZSI1f69$ovDh%*0mUWtZHJN->brDs$i7_c- zcZp*?SR`3h6Wug5T=a{es!tb|BR)($!kaQCzGIfUBul*cjQh!h&~P-i*BnzEZlIsr z`_X3-yAkrhAEnuCh3hQO@S1#P+&{ZKMJfq@2YgNzf_DvJ`uGcz(eDH*^ACv6JYsEZ zbyl7Em;oxh*iY<^-kHPpwxHEKJ0rZ837I!b+jTq7?F)-Y97M6OO#UdY=}jfKpS=Ke zs0)`^8pW#%OCYh_Sf@?oWUHZg`0INUv32i3U#&?6IaV)g&H(u`CXcF@O_EYf&rtge z+hnCAwX|G|QT(*bMj1DL;hF9gMMpVUeY))5qSwaFdR^l>pmmK-v4a2Ar#Pv0GKY5Qq zJaj60$hqf`XVqIQoG)zwOT)hYVu_-bb821$muy+bG#I?lb6pfk*{3$ZH2nnm)*8m2448XD=+8j<%uDR~RWV08MljYG9( z6rZ*9-H4J^i6SJ`dD|K9AZ%oAaZ@kwPc=!_v#W$ncqa^5>`u^gY*5a4KCR5y^Ovwa z9iCDlHxK7zT2eGKH;Ymei}>$5Q!*qSm5}&d^Fr`FLk`Wt*rXu?MW#1{q^85KRLZU* zQ2f;9An?pP8zB7|`z{|Au25KJ8j;v;5J<~|57}Q3I4d^w-^4_H9yFmiihNe+q1i-8 z{ll!p`m4@jai5cQ4+Ca59^iMeMuPl}zl42sUs!HN`Qg`s`2Gi!1&KD;2tMSYCbC#B zgt{*h;sa*b71L%qp(=Ese5{Ct;)c%&o1pE(%xyN}!fDGQ_BF(MuSF-bE13D9aHzIl zOLT>1Sy^)~B$a6S11k3kXA|UzYoMR=$C+SkSS|=5J=jKeW08W%-hBw~|MQ0bDJn3C z?TS>d7cQmqp^N<7TxmGR%8G1s9wFfNOwwdIrKTQG-7^))so=Nrhqx&_sG1qHxALZ;Q8f+H_aG)6ZUb64xD=SECQf zyTW*nVFRW{kZt*%BMamGYK9>AneDmcjh9jd*!nl5rB+Erq+rLoGUQ6GI8&rY@j zb6vu?JXd0$>xtf7lYdnlt|K`+=HBS@D3NYG;_*I}vCVi_BuSDFq zCr{dUL#SnPPK0GPN+YqMD)BjVr84^v_Um(G=Pk;>Q~r`)u{_vwJEGU*TH|A;@RmuZ zD#`FL-fw`0Ao_Oz-@u(e@J{^=sY(x*dXu9fI-kjnh@xz#?!#uYp(MzIT7COiFY*q$ zOEB``k^BjKVRMJUfDb!PYLkW)pWNT-lHte|Li7^0Od7F^_Exlyg9{L+JO+~t-80w%`j;N#+;!x@ig#>vcgI&c~VWi5Yjd@77h= z6iO)-3a}>5rqL6;Xk3f4bdmIIPuLPZ!@E(G+$M@p=Bg&T4{?(OMf-(d#gL4} zXXtY}Hs+S`P5Tlv!~PxF5S#?D;U+=LyhM#4WV^}XK6yV$=U|tBT8MH#bw)Go-JiJHW78Y3@balh|d?BOSj;qq6J6vu+{KV-eJp3$2;7H~l)8CeY()>aqo9xCWzH5?;mO^Qgap;)9D6+UC{uUyb2`pSNQ zFQLmXcDh+lnN{3 zE_P*Zn(EPJEY$JK1HN&aFQ*>^z(lG4AAsgaJi0p|H&s%Vd*uDVHR+S=6MyELPG!iP zZ?Wab6DfW^$X>Fu6yn{l$_#|M_3uUUb{l*Ble9;=h(eA8a=Ezs$9H&c9qg5+O+bv9 z!TNmUYHp4+1G#4x*-V){p&V>+g zJ8j&xCI9Ptf`2$gitkGaoPDQP!`V`~CrP{ZMY@a!17Rdnsx2XV%n5N=I7%#6IbPO3 z(Yz6~j$R-y6*L?Sn6zpX&&||c0nCwY40q3oji`l+Dyt#xqSQMYpCQWRoS2F4?5UUt zubDmCI0;<6TXbrL7*-3)e^|%HZgGn8&58vMIrPDYyY~P1gsl&$d;AeDZh;vh`x5+% zAh;LbtD8y$J1ZQyM4O->1R;)N$sgWdcm5~n)_>|HMHcnN_aCz`dLN}9vvXgPH{%H+ z{TcncNGhtzF{1SH$2%$2i;e7lkM)FPRk5{C8LMX&ld-2CHpNt&iLgQH)v*O{j@Q2g z+`JF768ykieK$M8Sh6#!zY?E3BmI@w&gb#m&F2Hb`nMhb0~$yw`e7l}-(JGJh^1#IV-6;VrI!M{V=82t#affB_?M@5KIo>Zn6c=-xT* zKbq?-Zfc!iO!j*m>rn@P7n}GgzH$aO`Pwh-OeD@+Q6yk;T};;Y4%oU#A$7!3p^IB8 z;|dKlc3fq{wH=uf&Fq!qj0oS_S-X9IZt46l^r+(lh%~vLTku^pegRY6?i&%kRaa~n zpA$^<3p$lrO5xrp!b!9Z`5d~Ypp|uu7jDrz))V%0 zW2g;6GCA6W2XdR~><)ZJv`85jLNgqKEcjaNU%RHOcIg+`Kc!M}`oCO0V52^O_ciz7 zKc|>UA%=gQ!lo$vn)k1Iwy3I_sWo}nj|p+_Jt^1Vp+^ zLb|)VrMp|YQ@RDDyStmG!L~n&29dlG~uo&|U4GoaE z`?f@E@7S7W`xzM8QR$zKV=2;MI5Mm+oyCH5f*#aHtL0`79ALmCO8PpT9PGFGsfz&pA_b;lt!#QWe=0QA%50ZrUyR5OaJ zzwq?pj6P965!`%SRfH%uM<17^W&_k>eTahb-0(n&*sQ9lRL|7Fe8lpqE{6he8j$-c zotdJ>1<5=7mnxF)h9fyudN_@Hy5?jV{YuvgV`*e7XMCYBL+dQCQ(g`Yd|0jS3jA;W z>kkwH3>^%8ug79s^}A22MvGgi0WH=GzGDchEO-&IVp!=un8%-{3@6`?IVuLk>`Cex zqC}u*^HMHr_8wFn7;Jd%ITVos0e1y$qz0=}pqdvp`)5|Fcp9=>o6W3}VBW9i1A*`= z^d1k+p-+snVfZ%xzy5S|SGZZ(mjzL=W%Sf-&sS~Wf4OE@nIA=6)KNVDK8oJa&kGFr zeg>qzCs8k=Y@XY&_9eAYE~P!Zq+$`MWo|xGs@y$upG2G}u1bZsccr$Y!oEI0(NM1y zCjoS2*L0T{ZjI|94-xi{knq#u7?Qjw`YuU;c~S&30?7+g=E`o#R2RS&aYDIbiC4c0 zy^uy7%u63*;#B+R0cPFd>x)dsSLi03{rD(`>$W?N9m{hw9TPiT**5}&+l0~X^Vb|N zXgmoxGIGoHDKH>Dw7^p6_FYpz_h1oBm)|~DzYJ`O6*Xe9TRj$-3)*tJzdrUSpCCVn z?P-`Yn))oR@NJrru*-~j?Ac`BT=S(zwkjsvjq7s^Yxa}0_x(~3JtN^@@5<&Px}<*p z+wuE+7j(-vA*)3vMYaa_ znjcmOY)?zY1X}F**~!TA?6qkQu&&aQ=UjA?z!zOOqYr>}vWx?AlMpu}L-n=f;Wd0m_?-P&V{R9sA!X)ET3 zTMzpm!owSLIWrqSQ(7cObw*#ZTCt;;&LSz4GIO9rx}%UR+`K=h`{{1Yc5>_7Xl6e0 z8!GwnyZ!+>T1Xs!B8L!h44gSG0y787i3c)3S|Bi^dLR_o$D0L2Xu{UuL$NfyDq0x4 zs|!tnqH~9&(2&48JB@2x67_gyZ2!3LQS1UZ$n13(~wULk+g z1pH?>{M}tmV8w%Sxg<|xs!aN$ZH?ih0HMLs?lVjt;yB{zsfJxUFq9E`CAqoWb>8+4_(Q@Un~{C?0<1&A60jk5nJ{DZ zAQch050WQb0big+PoVnE|AZxJY}tN6y;-KPbp7cHcfDqmz0`dm6l4=Mu=T3;VPbd6 z`X?UVb)9EJPPNx=5-XlAl%@`Bd}X*|uWp=eR<~ z8bf&PMG%!3oEcH%jU(YgWrFQsS3-`v{Oaem%a<1~c1-v4l$neJst97xnaFzbr|i93&qPPCWNe;P?i%r~Ma0`BZxyOm}@czE}7K z8+0TPl=z!Qm0wU7Wr}RVrYZxx4X3jM?qgHgN1ESJ=$xQ*!T(X7Uf$>2FOlVfW zj2Vk%Wb&+i*(Ti;*E-3=kBW8%GEfOs<=Mp<%-v;UP~@=viNUun)&41rQ*0tSo*#!? z(&|lGPye0+X;?A-f4mxhfslXGuV4q$m9JNc9}}zJD)CHb7j>QMXES2$OKA}!WX>@i zxaDiZ3%>BQHjVJMYkGXc$7PC04~_y~B&Q;iMy%-)Wg!HtcFe%%zb(Z7Zu$Sv2s9kZ zs7ABu3+>;98?~h0V&c+T1}l$(2#8P#{azQ{n#vV;p06Q<-&*5|J+|RS9$jAf~gN9eUTD4-sQbBeY7d(rV2K3-+ydDl)D;ioV6?Xs7!2XsOhciBU z`yd5pK^TGJ4rA>FD!Vj%aslQYv@57}k{FukB$V!qcitY}yS6KC!xBnO>Kw@#_g*5P z!PkM5XE;VuWN--pUz;y$N=TD72NnodW2;d}o|@Bebel!gx3GN;49+k|Z`;eXM!1|1BPN;K7KfE8)0-W+3g5&UEuU=z!VQezsK| z?@Q4na)WUy4jMkYcO_OeJDxIe6oJiYfUMK7;c+HODKp=WHE+1iJEh42G3@X+6E9bIbrj#YGlg+-?I^DpN&)2n>AuD67C zhth;&4K{D5Nn|m|Mp2Anm-XNx3)1@>Du4FsyDeELih5_j-$mx>_Qn>eeyZDc$}tOQ zQH-ZZJb3gf_oQspq0`wlJHVcyU;bxkb0X>0pll(s9pF<5E%xW~Pa@_Mgon=)i%^t6 zxr2s91nU)i8IzCaZ%Ezf<%=opw%-BF{g!mJ_>a$vNb8hS8dwp4u*M=G4Edg^H|zx+ zCMY4FL{$I5;LG8Fgi*4RkO*-cZe_2rPSjT1B}rfZTz&tzi*sL9;T?#0b#adBa6zT7 zVG?kt8m}M;PYtG{OTsJfU0D6cnD>9Lx_9$rLMZJ7!G3Ec-;2Q0BE%&31RP4A`kCw- zd4QC&f8h;?&}Uc=o>k|%<394O!h*F`xZ@SpZ|uW_iW?IWGjrSvIwY1iM2RQboH^se zLq}3sH>PU^A&+FZ^2Mf5SPzZv+eju&cH7H>Cbsi6_8x}#bMq@%DXV_iy?)S5qR{-k z&||9a6JG%uXb48W=fTaFyl}trL$$vvKG~E)Ih<%Q9)2&ed~?YGMOhFC0oG`#6ZP6^ z6=AY)0pmvJx7pyLnrB~#*lxtf=lEWG?gpJ+rX zs(bAS;oic9>*850UBgeiLR*e`@;{cd!BW~xej^}hfC0mo8`ZTQ!p^ls8{z9OD!@{E zAcP_QSifVi*=EH00!J;RcN)5>SmAOty>j7t{v&SFG^3bJ>9P}CNWa|s_S8W^W;v9| z%pUwr!&TJQ^MQZ_15<2A7aW5Vo=s&UDilidOHu~^MV0>XVU(WZ2Uic%bOt&CfYFcX zF;}XF%WV5xoNR0W`mu%9?x;i*)(~wYQKL+WM{6?hTbJYb?mcG~!Ws_1kxr;{>XHc# z&AvEE?v{vtGjAmE5owo$yI)Z*Y&K9jysZ@5yY8%%$jNE$M2QgmT7spWWn@ez*#R|)Mtt=DZ7D#w_i zeQgeXcaFY-&T+G=AfeZIJ@S7}@2cvb@t}8FsO~U98gFUdQ7D}4M9(JwaHXG|;!qEY zTyptfA33-mF5N>A&t1jCZ|ra8_|e4N(_7dB&P+iRuM(Frn=%wL49P3WaHzkzx-Qh2 zeN@PP1d21!T@1}tMp{-WsnPChlGIt`?VCTRi0of%!H>}Aq=FRKiiOyq(r=mgr_MGVWqz?rfmoFqPPV*Y7n*vtk2Pi`hcH7Bg4z z4U7q2T08P*H0xY+VgB<)2L2x>Ys{5q44dW+>^6M0F@$g1NwhE=0MDYU3M|iT1u~!; zL8Xnzh?QM*@j6dUjgdOMB+GjUZnxXM`yra6tjNeFSwp6&xha=|;;<98WbgC6LCePezGwU9P5_s-V4ISGwk0>VxT z=OPU}ayip%Lp-;o+M)hn9jj8H>n^REb;{8t)zBg-uiTQt@qM+4Y(2=rYlt zisbOy?gU&c8jRUx4r-p3EsJ3Ls}Q2e>9v{9iFxKWy{ zu_!%oi>Ertc(d?DjxNcb36+4z++b7ez6!n ziy{$$E8u$ztwZoKG%3MLRo~%`YwyU=Ij9&=1cH(r{egMs*W2-Oh8?C9eaJWl&Wy|u zR*zVbv^7Am8TtSJ$|v2k)wYXS({~O1IiYM3(#?@uKBwo@;*DN-EM*2`DE4`tFdlwW zQ@zE$lnyE)PMw$C-f`FjqYII0532#)l!Y_M#mY6m+&f7G3o7J9ns*B~r(AXbk?_ra zP8+B!7U(V{^XK7aniAp?bS0kb( zkrvqpH~3*bF8f|RE`*ld$pu$xIQEnR=jxE}=4wL^x7s8{UTX7~$%($wNMkp`@8(Nz zV~s=uZ0(9j^aODYorr?EUu)XvL2sH^sqzkTjeQty!U7GV+N0JuhC4c@60((O0HUM= zw&0q0$EDcLLe@FBGZQ&!T6pQIqez(3rxcKr17l${KjxmYvn(9e!W*)gc zA*T$!{K)wTJoMS%n?|Lfp_P7-G)$tk7(^I!rAHHcFnqGG;6;MY?$!8`HuGMqhQ(Pj zcb6LapKnmGs%kfuMRWEWg`(R71gN`f@^gYmm5II;fBZ*sK!TZI4H|?9<@7$Ufah={ z6aHC@WqxjeoSS7SNG51@8PeD-9anlwivMWCMUgn8JyXD?shZTQP2DfH9`UwJlwbYl z{NsYF08L3wVxKG^M=Qqv{VO&C7W^k&L)@Uti^6c!*?G|X+JX1Cf_7gzvEiD56Q{G0 z3QPNGh4c@AUe(oDUP|HBPe8~fDrH!8{|#m`RW>70B1S)D5H5}uQ3&FPutvi@1KSZV zLK3X2b*gqIYDs8q>S{(UI=g43I+|wd_93abOx#tmb07)@#{LbmFiiS--0Zj9`kl~O z={@!P`ip2_OWWK0|0i~TW4#x+-q3(uaZW~Po4Ws5ZBr3!3c^Awg10uHrQ;dFMn}}1 zc$T#?p<7enJqjwyRIUrqhT67F{6s%??4Tp6ZC5f9v}9bl}d1o!FQtL|3q9Eoas1P;I9v17ET|D zfFz)!>MyEIt_m}8KqJC%TeV}cWxX7&+Hl#DN^~w**61JVnD{B7@xDw&b))C_law)^ z$YD{(!9r`_*e}o2_pveNk8ggErB};6=+?^t3c+L^7Y$}*3d(xeg3BB}ct+D7f^T?i zDpH;dG=1v2e~cJ(0@#Iq1VPXD3jqWjNLWG-;)J?2#`M3VspcIh8cxlTk$J2p48@G- z2ve)=&_n!yYK^Q}9SiSxr&S^lf?9$PPYufK{GLBDUbsNS?p#cJTQHQLr!rn{(;Exk z)&VBI+H=JPd-WAM7~lbG&Zi9vY*a7;0sG0FX?e3S8CeoF)cyw->X;1_kI+gBzb8mRG9V z4kVOuF9c%K(Kl#+_FI#7xDm|8Lv&UpnNsXLt7< zbs8Pm7jsurGh5D$-ga<5fe?ieQo@-aLm*z+%`0RLH@zA=n*N0oOHi+Nn7UrN@K zbJpVqoF*Q%_ZEs2RjrX07L!IfSWC5E^RFympVK2CS>ME7HWArZPJ&ELX>(I?8;cnY zX8B-9*7qdR9nd^~Gyj}l>}UXM#IFW-9+a7NNW*EyIe~CFdFXDW->t_662 ze{GF#F#RF1mavmgox80)kD48bPHy-VNZvK+w{h&O@*<%UT#|@)!Tsn-o#P77E5z*kckGI*cUd9wNxUMB)(?Y3(W@l>&m+vIG8vSN*F#?1DEvKq7e z2sXi3K3#t9_H4^o5A9lDCSE2Ef0VL!S`1}l1gH0uM5>-f_yw~+1d;>P zB*sadG{l3qWVr>_HO$#G-?vCkfrQ!b4yqKbyoO=m?rpHK)=JO})K<{m16@hykaWgDPYin_U9o8lEr67ey{j9Z4b@&107&Zajk4(xj`)6ZV$<^;kn(#0e z`T6nU)a*tx{w6`DpT`Q$r;UtK$P+7;;srpHS93pC?H*as+NKBvw5E&8o8Eu=jrQB~ zanxzqB&7i_VYy>ZI5sp9asY)(2;0B&*s=)lX{Ra5E`@ze9o8(}Qp8YGeONyW`3f*4 zE%#LhWZExAU%##KH2G;fDqk6|VK>u&sq2P-Nu)h{6nq4&Bt3)ek6B^im%6RYq~M8n z)0>&xfRl#OdKmYm<*$G@J-?xVsKRNd2N;Wrj*&7Flhq@H{=brdz`VGA-wJvNMMMbJ zF~B3BtkaRqav8egdayy(@L5G=a%z4*3EkstF#Y%$DYCM|`bu?Q&F#|f|O3eg) z9U%kLSv*c}DxDg#Ln~C~bs=W{lSgmJrZyg_@XO5XGRB8xX>lDg)7TgTW;6~=9S z93Bu?t(K;|J+S$92+95BE|{iH^7tqGo#+}t%!ix+1TTtB%+o$KSZ7d-ZJPmMSc`is zVJ_=~R#msp_n_^+Nl$^`t^;Al$ttT)d}JV;w;5S%Q8GOf3_2LXe>4%ho%Hp%rWR7Z zdrTdVWDvc07pNb57$@Xh;85b^09iehlotXb`%n*>=>CT2Bml(#3{oH$eoID>v4P=g zqVT-?w}8DdXw$x z6!{&y81gV2D${%OH?(9ffZ`}d97!r#Bl(l- zyqD9~_Ry69MB9+c5WU%AjabT|we;N7T0|}|*gFJ&E!}S*e#^Z<6P#z`>N5(thTCk7 zZoo>=zcDx)2#h%EKF(mcU&mKx`1PWNy_A+JamZ~nnlr}I~pc#@7dVpRrMo3WPHn*D%k$vDjY?})1Z zS_|p=&#j=mbcB`_3d5VxWk|C5ZHCW=I*V?Q>J9f_%q$bBBT;(IaCNgqCSPe!Re|>E z%QP^cdla$PLJ&~iOQjoC#5c7w9vm7Y-ymZ``7}H`&dTzmEV&BlJ`Yl4IQklB#`2wh zGLvg_LDAK$Kh^d4Ky|}WYnFnxuahG#rr6!jnm_qtP8N-jKe7)n9Y3v>H2oi?h~Q#v z$K9_l+cTgzcA&yOI zSV@kU;tUguA&Kjlj-|J5!GU}5vE8;+OwCWYmfI^aWPkAJ1R%z}7>(2Aiy0*4!cw2a zzjAC|hBv2VzU5~}x=mGUxyll^lE*EQr^bF5#u-_27AKJ{%C~?2_lf;aa1D_?5=!EW zHEkH90$kIWTEAN_Um)jCt)-$o`sw38VNJ}|5sZgmdI8o7)U>PNmG|QR@`}oUJ09L* zU`}w|2PIx#td=*F;acAv3Tf}BlM0pU-g(54BX0~)O(nLXK{(Ea@;}r;TyF2{%^7Ul zG>+2MvLG16Y+7>n2R{GD?Z!|5K`PkR2FKxuQZxtKFo&hbj=Xmf-}J%|z=>dXcwPa~ zAK^wS{+r{h4mTm3mmA4O_SYh*W?Cxr5!6c)mN)JYaL@Zol})#2E)d8 z21z36G3$$n76JYxj7@4xbz`1p39ugmlz6dDSrvHXd0NlXZ+{e%2p!TN(`92MqH|Dv zgMY0Re>BWqTR`&X?LT5QPdD^&#;==enm@eesXhr7=W5{92wzA;Fo;hTeV-AsZp+pe zhsm0V_wGAUT|+6NVoyn1@Gni4;ef<-?T0>T5mAi6MK7_M$j`4CQK=V3U+)(seoY2^ z6pTsi@6stSESJgi{=chNNpPo%E{+law5!~>26k?i8q?ETZ|-6w3KOD?les@Wuq zdZd|mkB~@-l`!}-TK9d;?%mFZFp6^8obweY4c@%sMKqB?v#=hQdfWLoi_~v85>4`> zr(1~hN0uYZDUw%)oj5K|mdh(8d}9@Qf;B8-V-Wo1H6x(tke~q~(JvgUx`;hlij$Em zx-YQq@3_+0T+DLl^G%YbDYUd}A~qyLGt6HOOGka(ztqt|AR8v-^oVpHcXhMeNi5YQ zulUs}5q@8+RrwOCE{~K~AR`nU#;lAc$eZq<`R4a1u}=RB^)1XMx<@Fzxw2H<{*d zd9LWtX1|c_Jkx4nq>hU6ao9WUosum0aw<~f!r7KWL+!76T?w@%G4<12bK$!Eai54i zOYhwU$zifZPU*bUv??ko;M_3#S~_eS-h6Di0RQAmKPoDJO-t@Dt2Q`RIi0TayB}Hz zv?n4#5Uw~by0x21Jc}p5N9Y#0dN_f!TM>55oAn!xA6m)E8F(# zP?0*->-)6+^#niK8CDWUQ_PKov$Np`L&_Uvs8!rq3^1#Ao3MQpZK7gW9hz@5@1kAf zH=^FIcLA4(XC;kzVI3R;ks9nB;n3TgJb{vZIWE_qa5|1z<|Tnt`D=u+3A@kQ2Vb9C z@9-#r((*FrejdBwHV+c8(mAUhaeeZ(9T7a-EdZ_$Q;2`K<<|9xd%%4)cKdi!E1$Y6 zuwOrk-K)Ga=Mivv4Fx2YJ90uziiTyo#7SOn-Cn9QaxM6zUk4+8nE@)ig)BnmD!aI2q1@J#$vOVnzYH&mX(=aKA7z z-ffMPD6t!(f5=blTfn|p(zIHnw@uT;$%6lf-J4zuBqes~#!(yLVnf!n;x}vvbDES! zpC@IX6~5nAY$$b70VsF0alJ`xybE0vRI@AW#nF5zUJ&udWg|sj>KQ|Va((-8c6w{= zVX*cKLx;!^=Euy;^}YeU*`gSqo$oktjz_}>FYi!rcb@`C!XbnH=!f2Ko>m>7lh`eA z3&fx1M&$rtO2wCc-vf_mFNs3HhI;%B=7{Sk<5@$4=$qBH0(hHalZurXPs!OnhNNV5 z%V>3l=d&u~+QE19X8PgEI6X06#JM+%Zv+7XHhB7LRndO0?KtvgSZaSr|gdpQx*{!Se5bnzoAdQp%)u%NBBdso@1?op#C@kYxi z8Mn_MEnqN|1L1k^BRhevzS8XxX0p%-IwB+U*0^kqB;;!zs;V)qUyk!0Ic()fqTQJh zm*>f=&1>^HhVu9W3Htk5votrTcpw!0PcTO!>fOM&rU4T67-f`NX|9zWcxdp^sSRw2n#mwBF=AwSs)@( zz>3u=y0Xgt+4MS6#hxlm&E4GDCi&4~Kt096m(^z@f@U9rm=)fgU})?W&%`LocnQMD&B|z) zQpi1CWoSsjn;AmG1lpQU_Vs4J1$PdS;N^bpCAz_iYP4kV#ftSCphHIA!HTDSU$MLX zCe9hqVrTk&hbJ2U)+Hz9vKhy@WFAc_ONt{s7XOk|bdP{>sbDsr*@oRB>54{<+mi@B z&*!Qq$hp;T_&R3K^s2JQ%A_3Vh2baJfW93n!J!V0ZvV4(Y#b`*ih~;YKO9Xkn5R%g zjZ*mLW!*TVY!OinnGiS_HINhP>Z;)O4gMHoj!+RiRS79o$-Xyr}%vK~4${h2cj{U>A1c0;3Uva$82Rn_5+)lr%8PyAfUt%)^pxD_guBn7UAm;elkxwT4$mB#%5kTrdE%e~)^9BcS2 zitd(kzQ3Phldi0_GPT=wo#a@em2G@61tNE{{H75rBxOmqvH~fy;fbj~T4RMMTq~Ro zN{T=}&dghFp1ejKamuA^YlC9+m|-2cGtrNB^(cJFS!dYYq3gv+NvW=-Ip-Cino85M(I19rm zk>UkXDOGu+VAE7Fth-|3_HGufcz$h4k{DNelD-WV8Q5^uAe@a)w2|wQ)@hdeM~?St z8ltE{4~e^a2E4ZrGuans*T_`_triHF!J?VH(p38{GAuU%&pe}n0IJh;yD<5bJjnI) z9%fXPt)a(z=F`@`rkM&~Ia{-+ZMiFS>x8Mcq%L^}6Zz%?tl7!}@ywUPblvu0pGP8v zDU)jq5b@KX~#O0yc zh>c#Nv*qnkJ0}kfR~BwSWQfzRk~2A7^Ff(b>rF&SPpC1+W_jKCCE;c2+s;FEH8Nr| zb4dZ4yOG2cT!dg};H`(;QFu_EqUbS#uyw?D2N;BqP@0eHn5J0_22b6x^V6X)qeclD ztitL7B4{_Uj7~?fwZ3r1pg_|7s&lBog0{RQOEHVqo_9GSDd3xcr`KM1!PvVc9m8cD z7E(vp!(oy?fxy%=hd|#+6ZSSDVhL-it!YmQ7gI{>M6nfxU2}#af=`AjWVj3a?_e%K zKB|kO4TbgqLd&~|emothqBS+V=^(&X(a$)ry8Aeop({ORPpE7)GsH<&{_|T{(ygO5 zDHGdu5xjwl(#ULdwNR+2n10W*$FFjzkp&>#%h}?J!v&M1wokBh!>a9RB21JX@07;B zbrPuM-cdgWC-&w1kA$Ig=MhMZHu|M>b!Nf3Q95WM2X@FTMvN9yI`h!f?JY%QAgEog z*o;${q>wMQ8t-ssDsj@M6w^=-2s*bT35u;nLD#ItUaRa*Kkx zNlBNAYi`N}zGPuYHPV;n$+F@HVSGxRggs}FV4z4<>+qx%z;a`YEp@)FH$gA{aYJBL zJItbr!)l`v4ljmOSv%3{Yt)Zp4dYv<-RWmR<-)T+9%@U0=RW1aTtnO?t5xXPQ`qmV zq_|_dG|jtb`_ETD6)u!eFix`P z0#0}-Xp^BbT=?pB*6*b=*<@m_z|1LK40d; zrBLeTh|_%TIW^1?HlIhwVuVGGc1SkpoqU90xB;{i0DH+~YMY$CsXw@4rfu-4f0;I@ zrxGtnQS|WV!5VJNequG#n32&&Z@cH|#)c)ewoj>))d-$Rs(NTT5ZAbz^m9bIh07@q zClFev!XNcHig+OWUoefQ0+p_U9wLWLPV!Z3=mAJzjZvtw%_SMIt~OTO66ZOyr~l^5 z)wuAT-Hr>gXjYak0*3hM$olCjLv#;uj$z-$#`*X24(o!FE{>!(7l`Ia`9#Be3!&&T zao{9BCUcMUU__zON=Vh88ddKmpIWc)b$xKGsE*&Af54o}~eDT+?wI%P61nrO*1oG6ho^(T!GWKhi90Q`X52 z(F%~ixBU7vZsEY^ejtY^d@?iTZ9hcC;GEx68JQ??tDSN!cHy*o^A*VGT2cvjq%N;H z$A6EEr}2^-VVIN>PzLu@w-0U@+UhMq)jOAL-hXBN7J$SKMm>_+xe@*OlB1;7Qi43% zwIaVprra28iP2W+cu8m*=y=k!AOf2){&<8EWAp*>3YvDV|{ep53>{M-=y7rK1a zM^ZB|1izQu8_j<&*Fi0zCHtlSObCm|)VCng%%1Ln=Q5MkIm_mK1l97C=;{}C;E6=N znjEN&3qjC6+BuQXCK;4My_)S{FTrCAj$z?-xm;}TabMEoaYv6a3{lM2>;2+}qZK!G zOHVIy$;%oKZ!S7d!$>ppH>DrF@i^*Vj_qS~8WxuJw~;iq1OsE=@n70YFwgtCB0p>R z*nyhm8P{3~0@Ps2EBk3g{qPK}OT0W|hD>ujWYHrf9!XIT3+HGc4o*l(N>Is%iD~o- z;q)rH*b-G`T+8Z%!X(t9*G{u2x5_x3B_>YN6-&YljD)KuEvZK1U2+4w1tqrriL9_S z2RXEE3kcFejpFSs!1|N3kuI9Hay+4Q+;?D*PGnwyt-Rfvnt0(i}ZvTo)BW*nm7Gb;SIlsMPWcWXP# zCP>QTUBfS^6VW!S@&2J$tyg;>fBDXxtuB%MD0QGu$I^(l$0}3@*qc>vP%d>eUL7w^ zm0Fm?S*Quubmr=4niXPB^;qtQlP^rnH0U2n1ie%QlQA_+*ioHEgRbI&*ag3$qX$PxLe)y~%Q?)l~ii&K<|Vn@CFtrw$y4n1bex}VD;k|Tvx=#oS3 zTC}Yzu$$7sa!p@d>5W=#*(ZQq(+5EPgJ6~sEHw(_iil~7U>pjO{zJm%mx|6WW^_4m z|Kh293VINkS0P!gedb!v%TNwuX9g=@jxe#V>a^Y%^1J@f^BdTW0&@QGJl^w8C+kU& zn0ccO>8rNTd=sNI5t#3FDiKI=S4SwefF(UJCTUS-EGUz=!OMXaXmHQ;&z!9KKDb zL87?@V^xw#+pD%L3?ZB^CScy+yfC zNl9(2BzfMV;MJss-w+nP+9!9cGn@$eao&}ME1Db7*S6=0=juE#nBhno)Aiq|H28wU zK!MbZaos5E03w1iei+}m6MwrI>PUj{_0ePWuGTa7HFkP!X}+=way4lWa%+SD-_Ek_%Q4(C4>=W@^Ub+tin0Z)8BjNM4kRe1gSJxsT7rYEKJ=IhL^2cW zs`FQ__HPg^LpUVYte?UAEzp)HrW|vH13J3fcEp9VS|cO%eoc^R(h}C^Oxb>=_EJH> zBmj8))(w<4?4@-p-_`sL1^qo^PlWc=a+O5BWqQ5$h$7D-hDXuzr_cV*423Qwy59QU zx>Eld46BYcR>vZ2ODQrcMtvs@UGL zMKxrA@-1L6McH0&E%W&r$ZAaGw9f&%|IVtzq-_iZYGwN97Xu^iVu9GFWy$e@o~Blb z+}cHtBN7vvdHO|th0XdYyffIsL$|2;5YR32bKzj{swp#08ZH)=0hW5aNXlfHN)obei+E0 zouCO7V3r2r+)CV6`961jCdx68-M7mVYy4)~C5m24pTHPLo9lac&|6jmGZ7ND~5LXH_otE$P8728vEtKSEIjM z>!QjJ71J*?Ds;GK3xzAjCC{}|yds~?Z<<1FxgQP%Q}vkdlSh9=hcJH`n&II1Ep}&1 zB#X_h$@0xHQwy_Y7_h%}-~hvFWC_2vFIRUVFz0U-hoxl$j;AP~`B0xd4nmDPV&>XF z94re!B>6f;bZ5w%)c6uK>fq$zp+mLH@g{{ao2ZGI?Wi98t1+a%5B`7Y^pB2ee>#2> z$xVl!%C6uVz%pE4Ptlv(ID;|8Lqzmxu1l94N88=qovX->oR5QlrzpGGBwNK$+|m>H zSX`NKVWevl2+LATl(bS)stYxoc@ma&S~IQwUD7q#@NN!qE9}u3ET_3+a`>)EvuZDL z#2`%@A#vK5Fj0`0zU@LrtQ78VyyAV`!nLg;cd*tHYF1&TG-@d!A1~SRl4&P&r$|MY zta8I3ulL#t9D$qu_?>3?c1971Sp@?OrQm%-w1pmG&Ni^jZqz;}zQBb0yRh?TFscJ> z+X3V$AdmTCkaX@wr$5^VQG_KmYuyKdcfg)i>P7z|c^wW23P%aD*uhDWHYue2Si@S`g<_2|5M+caM=ZhV`M?bZn2o zZLDcD<9&LO07%6F3C0K8JfgNgIUWcoE>Xw+@y zTZ4?jjr17@;B`pQyX7KfCY&U%YP<}+^pKN^UvaF=y&!*LY(v~IdP)L?@wtayf|4UA zCBU#45cRM^rs)$Z)=-7Q=R}n_povlgr1VY>z1tRx164M(dgw4#y{?h|WaQ$;kv-Qb z*iR=s#t2LM;Px+9_zkW86VGTgR1L>$Sdx<;03}> zqxM~;D&z1VSi= zT~75n%*-WJSi6Y|)J0|$QDgLxvZziS#Z1U_Ye_;^A5E#t?>@v(*h$hxc;y82-+D>p z+LlGUCu1;T>JL=sAEeY{wk)k`=Ftw$7r+<;YeW-?VNIWJE+;>xagjH zb@YB!+5|R_HPCN$71-z2VyKTsUNr5D#M+5fKxn=;A}cRKm-1KlThICzzKdxEw>5=v z*S|NJHlSVUiauXJbz+5?7r0 zlR5r@U!96%aqMjPBW|50E!*h z)Eh3dQWP~nb}ICrimCU75lKqx4FT9GnzSRLH9g3tkqZDR^9#l|b4b;KRBUYCdAQjK zOnvIEOI3O{3l@vs43LI}t|-q{0YgzRH4U@4Sz(fFA}PhFCrt_V^z5zHC+Xbq8$RtP8dUb7eyRs@{wZavc89r zlf<$_bE7fK#*>X69~iE=s5uoyY148pWmNX!mnZV;4i@f#py7iXv1%c2^%f~I&G0*G zFPpg&2^8+>t$@a(Px5|Cm*e9CzgwRGi?kX7ZU|vMT?$Rpvbc{1t8-3#vC;sLtFGHS zV;&as6>~tai$+=m@85e_Ij~@X@Ue~RuGOtD`N+=L2K;3NW>x@k=VqxlW~=EJZt&FD;3 zN~*=M=GV=8vw~3ORv~64<^HI&Htle7^5WfISJ}+0D*SCpG*r1IAe=$CnUQ(Rc<7^5 zVw-x>;RFrl;%c(I<(PZUBH2Dwr%+k#tc0Ll8^Ty(6WK1xe=6A9D8WMHwwHCkxBl;@7ReaEGm;rGP_?sI~*JF4=kQHomLgCTE(0Q+8WE3=49M&# z8e=k3LbjW?5SZIcI*=U2f+~!H(MgrfQbOGh#}+s@F^^GdB}UQ)=_K^&7IIR!dNf^n zxFCX(4K1qzIQmJ}%}(l|5upC>;MOkRll|i>*wGFJg)_X(g6d!NHWv}Rmjy?l+(a)u zB9MG~fh75Azv|VX{S)vUzl8ghml+Cd#NOnu5Sn3PLXJh&9};fXyzDAKmlRtcuXWgL zqJ@^#Z{S2Fnmf{K78*3z0VP|J=4T3i1yvzgSV=2*w(67Xrc#BasiF;A9gQn>A*awV zz*eO~N{(hY&6eO0jNNUCz8Gu?dF1L16Wy4`_Q;45s5d8*G%JW~H7DP-=_va zU(6g1uodinb}v*l6nlLNkQPd=JM(*$5`s*Ua=2-`0QnRjRqZ(n-E z=6zb^o1?qKjpUCfN`#J~$2<}kHZ2U%;4`KbHLoYh>}UbxcC+pHbhQa*?v?%sGY*WV z31D;DUtjjgp+t@iK1Y=6=~!`CgexP)X_nWCC&fQU&FuGNEbF_zru3Y{WVF4}MCbZ? z-RpKaT(#!daL#Rn;C)Ef)4)^@<_&m$}xFYp3(&0j{)Q2}cEHp*A$~ zvTy1@cpHB&GhW{Q_Q9KeY;KPWD`nX0ixQx@ifAdrIZ%sp5-Q>~N>zAu$YWJ0y1|kf z_qM-~Be9%EKkbHFg~5_Rh`QN}zAIZqdeolL5cIx2&mB1w*-}SU+FiJ)0QB&UJ|_gC z=%6e@MtyiqDN1LSe6B9P;^=MddC}=?c$j!Jy}H@(J(y5$*xuXV%wlG_rEs-6zhvB!y2*%)b9nft?IBp z^fc$~_@1b3M%jWkj*_)R?)xuBH<=7O5HYP2-12B!`G6qG;ue{m1Dim|Sz;w8Dg&!t?n*#Djb062W8G@sTM@w-0&2@oqi zFcFc42#l2~jX~c&o<2pYjQfM^J$cMpCv$0*eS)S&f)Z62r?W!j6ZH}fvXa;no!HCR zZ3$U4IZ1`x0ohA~oqG_T{BsNDuRg|>*C+Qk2}>j#bJZ*bMmiAAuSt~82{O$&vaG$o zqA-sv)fzE_Kh&2-J!kAi0xNlje%~@V2}NG`VV$rrS`z0X#%L9mP4=B3(=Vp@i8UDr zr{Gi|r~*?m=0zWtsfl4&6GyUWN1x5Px4^jPpc3(mL+`_!2K_tV29yp!@};p18;qB- zf4Q)aB;3?S`nUmufR7D zsJ0(AodTA8b&iKOlc2~`GPym=>+gy<3Uy0uG$GZ3QoL8!W?P838Wy$!1+Qr_fbk zlL0767U{Z9$?15f8)R)c8I^=HKzRI!TduhXIuaq9x zSa}1@V92dJPy8UKkDIIN^{J+B2bTF`Jh@8sOPb$q=a*_`*#x5I$R8c8;@4_CB1r*&VE?YOmf5ZXY@<1_0Z(eweTUv>O`reUvI6$H3%bZ+An`X+&#E^LR7U>Q4*PCe zPd`>gvhH&a;Qsp?;rsulw^dQO zI@L!?~;4-7?6_d87+cNDIu1L$z*Xx4`e}RJ6~Z}y zJP$_P5^}Z~O?XJqos$4#jwbzDbq#utiaC#WtQTg8gLaJK^x-=5n4Pn^>hJ;;-rxI@ zcEI%cza0G0RmCXX>Y&iZH^B|qo%O0PHaBQ{Pa&tNjzmtMflBM)>~6Na*M@BsS6M*C zsavzv^OJXTE4-M_k}_@ipxiWde!D66H)}M9LOg0yuBV2mrndUBaY63gHpV>Gey#)2 zq~RZc4#(Hl_9!IM=q}t@0N&%Z3KTU)Bl>D&$s(yCN2h*Ssi&v8mx5bdQNA?8aVk#v z_WO6CIh(K0>%mF`3Q5n?68W472hZeFo)}&WP-w8H_Nw0P2c)MaRK2nF&;13_yH-7c zwj*6=XlkV7bgQbnMqSR$JVj+C42BI|SvZ`zK6;s~%#?)yCM4R~$n;O#f86@2(U-Pq zDgq!)Tr37tc_~hC7l)yz-ga;{fn^CW95OQlPz46t_y9N^Uj9Y56AKONbbFz1xRyW`TLBBReJ%EV6M6PjR;xZj7sZdBx@}(q zq%Ju-+KOR@a3~M7X0{9B3){`mVj2Mg9#Gr~0uWgd%ejp&#h~(}wX|l@%e;Wx!ro6& z`U;cEhJ5In&W0IQ;|oSGbSOZ&EbXjqvA9U~Vgbm@d)7 z3rWm953dC-l*Ff{kS!&9Q@DDThL$`NjJjeKF`mkqsT-i+-UlDuq|Ndxd*_JoptrB(|-Rm;QMFC&|D(X_Nb>n zcV5H4$DD;Kzd8i}?|dvu(46;dnwoZTBl%L`k{961p@q|dLmZr8nzKUN7tE5epKITU zA)1H5x;Tra;+j-@7OpJ%gTAUmlQ{rNilYcpWe2SP0#MwHZf1+?kL@()TM~TQCq|PWE$Iuht1`cW zBM$)L6URc8Nu%o8S?UXR(8VG9a%#0n_M3desAQY?@qnqSZ<-nHbZ9;GM-NtbUlIn- ze{Z`N0fcMTW)Z)xnPbGdNDJ>LmJSg@KnAEv+>4rspV9_&&XNh}#X21U^KrO((pLRC ztGJ1cY?cX4-#T;3Y*7Y)<6?w54Hyo|j_KH?m@47VCeqy>!M>F$csm~7#F6Al4Q2FU zlgFG`aa*|l6y)_X` zW1)baRi*!}iejA<#UQoOXs^TO<_s@-PhB#EZB(ZJ;$0SrqDD>aQ<#p>6FInw=~K|i z_(zrlC{Fy;G%?T+>Q;J^X^S(5+D^}AC3c&OE57oJ5=?$FIhqNGUgeq0|eHl!RE88$1i$| zM1`sGRvyXR552m#j}A1;K@s>TiJIQh1XJGW?2;?1cOX5AoNBB(-eH#jx05jsL#oJF z48p;Q7{rOzuPJU~v}yNHV;F7znC;G{%2M!lfKHFT3vZeoC_6eP5P5c9q~kIVqeHN& zL18+lh8>N!?44LLV~jM|59j}{!FoVJ)UcMrVsYvB?7F+`Yt!a`*V|ymk84-Lb)R~V z&W$VF7qKT(22rPTA8|vik74UsD6X$6qAP8<jbfVAFVLN3=Q7RU0+3%axo}XQb!=O~$;a^Oz29vvs`8@iA~dhc(7cF~%Am8dGq; z8CB0Ncf9Z96rbS-fEpcbOhqblURgT+<`0W2u8eG)V2WDe%0W)VUwEz9o$Klx;9VvM z93_rF|1-UN*&px6TRg+oV`GT}vL%AGwCZ=A;n9w0>Vh@&12n5QK-Cj*`ss1QDGxNpwf4%%ZcdHnuZ@b=`jJ;A9z^#8VE+7 z0wPRfX$clT`0!519_pfnB;%9V{F3|nE0iis6JyW*-p(vNW@g${LCIsz#HS{cz_yG% z5iEi*i?jdLIj9Y%@ze*>AfJ~XuJfJV+oR&kCut)gY5lc(v(kl(CgGzR5-O!^W5(F3 z=H1rqO|IS)*R#I$2n?yVHb_zG27YQuLX=o82d6`!Y#(l*^j{q!c-U@eAdS=~Z;WWK|6Tuayzjbw;J??KD2McJDcyMeN*ffQi!7&3 z2osvW!w`W=XJPZKG-m&2Woo*iY>{42afvQZK1ZjzYsD7;EZ|FGeUz8|L7o$b$Qqs9 z@pdu0xAs;Ptme+awC^nJNsnYGQhF6$%W=^&gnvuJtq9<5J!jjiWD!oGM*w@yu1D;O*Q!Bk;*e0l+R zo$7us%kw3K&_Tn7Pvi_=PFX}p?LTXw%Ks@~NX+W1^$B-&iD9NUPab0gU-hx*#{XGF zT*SKLS<3HE_G!NLT<=p`Zz(`{>5bK1YB(brvsjI3z5Z*Jd&X(I*$?MHEvffF?mln~ zWAB3JGi=t~cjdpK~jXfyl+Y0gf;nVvgRBlSPc#{?7g18J$nFp8Uu@+2e4u3XM% zpPm4^%}80+)u5#14EZA7RF|%C0%%S9?wH5XW1HwDPLRj3gg~g=X(w>ESBH;KN{V-j zGFwct;*7lbebln+nvo~w>E-rzaq5q=h%{K>fGK}NcgvWc=W0qBn9G@plmmfhp1i;G z0ZNFr1=B^lP#_Hb@A$u{jsGa1#wr4tU~A@eX%WFDv(A7~-+jfiqutckiN_`UQDlL0 zth8yt9GGWF*125*!F9D^?Jd1RuRuaRUINYln@%{Wfv+~KqcB19@Srz{EEfH zsE07QuIYZ+L<5|@6@lDnw`t4s9^$FP6NisUpS>!Xaqqv)7>U3 zlbhQ_fs&fM&9ZiD)&?BK&jN%uh1dQVzuD$+BpG$~0X+AUFP+<|*RKjtv_@ol&FlMF zD+WNOhm{~v_ky*OVF#o+4^GB-e=oPO>-GsJ4X5>fM=1PG9rYc*$LW0ST~uMNP?>m8 z_3-c31vu}={zvPpsl;3zSQ_k*mJVcLC-t2=5 zSjX`*ot1(B&DNhrkJdY#6hT0*hd5Yr)gL>3On0-X;!0*zKY zKi}950(maUi=0W6QD&;R;*@#pLrJxP2`2U64Evb9A~Iyc7Tne)j8U+r@M~dL=r27vOp_+2K)Y=nYTAZk zlR;jCB}L^AX?gKXjAZd|9Y>zXba!3rX# z)|Xb|fyVwQXryMXH_Ne<3H>sQKik1u4ymzJkVeCK1)j%JvoKF0Fm#P`jH;w^I=jIW z0WjJsTsmKzUF+7F%A?Y|dC;fuF~7*>v%C1?0k6W#4ZU4SaIOr_Ip+nUxPRWOy=fPJ zwmlqHnh4?<-8m&)+!uQ3ZJ?w~kzx@A+U6ELD>WVqo*SuIMI!CTv*h5(>2Z;cgxZ z5DohS_q&K9GOM4OzSRF=(@eBNV5x-wd52n{MpqL&WoT^1cYFtY`Vnumd2jDFtl@2V zb6Rh6LMR;6y{UR!QMiwKB8sIWiTmwbQWTHYL%U~wx*wuh+F=X8df*8h7V(T)0AQti6jCOKP!LP_fShZ+>3bqh|%J8WPf`$Z|*P%$0+ap;u8WLXT_U0 zngfXn&BG(5{+b4WS+qeYedkD4vqQX2)!Gsy2*?Bbrjq%Op+T49mtgir$2u&H`Yi-c zMNT-Eg5{=?HhW;^hxGg0;rPc;LwWOVI7$IyumFQ?va&0UOBd{pkZ=UHpfkQ>8O!y zhKuL-zoeFIqTz<&`n|H!USZqjzNnU7X9fw)O|rfewqKP~1zKi6~b_&aAh3zhM(_-`ozSbqT@Z11N+60PlugTOl!OPu_cDCH&5gKciNsZo@*w z&#NHPVFY-AL_QAl`|#2)+eByCKr3p->;7Bd0k2fwZ|!bF_una$oVRH$QH3F>}b5rCoazE8X2dOJ?XI9$mXhi5JL^>tpX;PU> zG9NnFjIUZZjcDC^U`+R3i<(Oay*F<;CiBE=Gd&%R&%%5l9~XHrj90v-lG%VFb3~*E z7UGuQLeuC|`w8GDilFmiC~?lLYE?s%I25i5y~=C)pO0{mprEcN=bzaeJAJZIM`h^{ z0UJk~z}0fZ1Ld!1gc)EVR_QD9+X}NyN0;%t{^#;>|3}VSSGg-@)v`gN5--DT{M}z^ zU7H3`kL_5q^hEys7VKrzCON$vh0cU>UF%R(QLPESq;>@0nhwBvS|J9k4Vc!co|oeA zXKh|J3_8$d%SR4ynf~7s(HF;3d0Jfd0x za15I-zBvu64Qa|oW#P9;p4Ye73k|rYJS)P7b&zIx)Y*RIK7JJ;gT*l;j*^B(4EQfA zjx<;CCh<=9I-K#nt`Yr5-)e+%#uMAUM>j>JMcL)USLJ5jX`~s29uIe>B5tmo4xa)9 zV?(w#7zp_|#ByVuSxUaj)bvud%3Fi2%Sz*Y=4EJBZQ(zMgmM9wo=~L2F5q9y7Boq2 z%i8|Na@8kup?%YjKRI=y0BO1Giz7_@g8eWfD*KIUF0I&@PmjKAJw9TLVN4`i?dg=7 z7>d6>RUef^wK2YbNd1l*-^Hr<5Z@!trJ2;M$~6fha3boqIF|&vxo~x2JO0`cTnsqm zi=Kv^GU-vRbth$zX?8i(kshj0fw?$6Y9>&|@V5h$pCW!?VEX#GzwFQHKTpIh(Hk!5 zsqF9?$K(M-y1oS{ldBzcR>R1DNCMnar<(ctDyZW4)BHCFo^cLFhJpqQo$B)>><`17 z{=N2N^hrisu#AiG()9Xllz<6eTgIqbSpmZvDw4I=#Dnz4G_bI&I%g zUu$o5tH)fAdP$*yr`?j`y!+I{8ZBpPwjDk%fB*T9h1RhkuVO?U%6knMQ#)O$hKadG z<#ACPU#Otgy<(2p`4bS{%Sfdc$2T9@L*)%Zn{+78fTX|Zv91p--%rTEDxF(g?T%=k z^bfTtjlCH@%d;G>wKcMi`mVKI3Rq(9G+ zW0eZ8Zr<_(-C6OQcgoAD%6l7FkEOcM#@8;0^#XRwT` zgqB1asz%xpJzDCN{ON|E&HqV#ceRZtH%BIvm}t5Issx2O=THwwhX#I!miO7LY8dG) z!z~w)g?twV;Jk?BIbp`+gGF9BohLXnPlnQxY-mT`#!=scv$v@=M6KtdggHf+)l*bh zJNP3`k}bJrkd07Fu1S`37l$~VQ`)9FxDy=Gl;&NoJZ({dPiCxF&ObDQw$7ERhDLGb4|hOOfY~ipbwipKi(n}ALkvTBap3Z zPcfJ_`eE`kFxhond^G5=q4zRT1RKy77rnMS0>f`$UdoMdAEH8tFi*~?F)d|FZl-b# zL?^itd(}DPY3%1Bz~S zEsA9HGDDmJI!OM>2!Q-{N^0%nvmEC{WPk98eVK}{J=`52u?(apErnfYD7MVWuJ)n3>@vsd-uP$7+zz19NppS?2thh!&#@R6O^ro5JV8ym#QudJW3Cnt_f{AH2-y}g9j;fpoxTvGQPpOq)PqfZcFu?X&6aY2hppNJZWi$t(os>Q zJf+0%$I*!4%w$`rNOix90v+SIoH>J6s^eNb&(G5!o_5Q~?`JXUWq=sZlvOHH51B`f zSFep2@edat&)rjS#38GmJk_eq9RHQ%omKvQ2@JPHGC_XdMni;OH^5Q=XbkZwNmk1) za3VjpzJ{180uFe0@Whha(*8FV^bln!qY0Sc^iHMIGdvlsS1b@`utO}T6tR|^=f@)1 z%?46%m5o6ijS`{|j~-esX;uxJTYFedesReWkABAvq$-swg_o z8yEZItoI_-N*3EA*jQ6z#+x0dG%@x|&m(a_uIjMn5^J6p0wW@p^ek=KC|?KVSfS5;-!iJ1{qZ~T^o`)+ zAzYRejnlVHAa&-yEa4OF(5_Efyzft{r>{#U3I;i^f-S6Gwy#fKWr;wiINrlw(Oc{Y zDbq|>2ct*+y_I%#W?XRoD>65Rn|hszY(!b|+7NSHMuv~v((lXlb#ql$M(!#WvRqBgZ^XS1#aerfsOC6mY#wcB!M~h>9{!@lO&ImF@vpe?{MNn(|8` zh1UPFj4@=6)!Pal;&X4CN~(N`a5z-o!e{0NuKShSbH+vICY&#jM|dQ)mjvtoaSiNB zeFD<&{D!J)iarB`zOA*jD-9Ij$$ezwjMw>u$q8cO00+or%S*!8khu&J zD94a}R-aA!2o)%O$HK44(}he6C_n!_sFO{q6M7V#ZhG^$?Y(*SwmM;h0TM9teS~O7 zGSLpN-$(S}0c45k?vz1RxGcA@o$Ov;!w9s93*(yr6*1h5!IA>RgpxA)b=K9JFBz+{ zf|>|z6@)?VJQcCqW36Qf=@xW~%XErMyu2(@@p6k#s^7@c)Z7poDt5&G#ws~tnIieg z(r<)z-w=~4KfdYNt6^ZT7?1T^H}R@M(Hw0al*gcei;?h*W_pB#ld1mznoLm37o-x9 zJN7BPmtk?ERGoTN{2u~t0qmF> zp`Id_o>qkfQafG+TYcqv3>eba?j3A+{Isy%sz43B;YRjseeO+kv#9V4=4=?fW8?te zhIaUjUK_V854&u4G*!ftw&@y`>K}+=phGJRdO0cnEfdD9ZwMBwAAZwXJP4ey3K7&n z{=c*GwY6RAUNQVvXe=QhULa<7tRO!yYvU@)2Ru#dV%k$8R(R4yfJkPsFH48+UfE_h zDM_hQcFe9SjagbuMw2v-u;W{f;R*{_k0Y|$!Oeg0O3jTc)1h?&Fn)42G*yR31YQQX zEO()&Ri_^fJo(69oGmeeQ@&=EJ7p?q!6PZu3ZX`)3mL|7;WVynQGhX9Uj*QyR^^nF zEdJe|e5!ck(c1P#Ya!eH=v=p!C8lM09H!(P1hT&@{muzi-N9Td zn3>);Y*znA$o~!q1WZXY>i*9;xTWnhTT=cE(np)@U+Qy4;m1Oirv2};zY*6i|muv z`MG`qJ!tZRhm}&k`{UG$`Xlt-uBqLh!*0D>s4)Gjwj&>zPmDQpugQV(YSLAZd8(S_2T@ z0_H7z!W-{E?0b?#(4uXiDROd}7HQA68j%tRL+6rz3?sex#uneKew?d{>Y`Jk1uSm%6)B#SfcO1R%;}Eo z(M?ysd{y%rk>iScyJTYt-d}??yx)|(5iUQ=`{mo=UNR)#t-S1DRb*>r)0NI!de3f`(B8rmYXMS+T&ShGJE{>Jq?7?;Y zzpP73rO9yD*V?0SB`-J~g|4pZts~L2G`ItnP+(GUDc>{0bMy7oB0J2m|6Ao>NUY2gUPRPA+6r#hO+`UDBOv zRw-?UhQ+gf7vM|9%l!3l7L1A>jYm1T6X*X3KC0Co@sO&Qc%T!`!J*SzS@>)@7Z{oW zdM-}p1aR=Ul#|eiN8&2QXi3!rup=6l+5%lKoJJ)~Zu3L?^IuN7 z$=W}egTO?O6Dyr@ErR{A`2A2tAOKHt^_j3M9rb}Rg8XdMg3;6dB-4bFbVv4A(v}m= zIMaPn)#@YqWyPA!|EgGDY$#QXAs5Wk-6E8Eb>|=Jo43<6gx(?A0&&hnQb$TS5{9-3q zeU^Nv;4<4LdY57vH=rk!?c)G(ksj8`GWp`DXuUT6+;~m#S4Cy_?l~2im~6!8jloC% zfwHW?pQK@PCD!CQ?<};Sv+IxZx}|dsSAIDk8|(8Oo9d5d!`sWT$_%U8$8yXGK59z7 zGe-SNtdt~~1U}arU%KZtOHX%*LzA#);?d(vdD&LA9=UGw)St~J|lz*@A$e~7TgY7=@P#2`I}dKD?AU)IfDUx@QtZy zT;RDqN!2^r9c4H?5pAHqRJ(h-3;Q_$S%~_xsxj;t)$iiyM751$n(=Cdci1$!_l_~k z4Exq#K|eWy93j6Vn2tpk{oreJ8lQHDh==_-h6VhuT@9CA#u>y(A>ZDCqS=mr@p;cz zB5AXK3nRp)tX%U7U14p=w5pqg^wj?ECu5XTM!{kl!!XT9Exxs3#IZX*)joB?8>%%U>owC~lYF zHP>g;^TgeIl1_ZGv+GPZH$Hm?l)($1DovBnm4}3ZMqO%tea<eooVD zq@yQd9L8uSBnM(z*N(P{D1+jge|B1LdO3pkP}LPEKTV1WR=R8KJ6&fhOlu%zd{rffajslhx|7$Graz-z!<^ z4(^jo`^(C;SQGF034=G9uX;bf>e?!-EQ?K4wQ7V|`kYtjL=`3Dc{i%lr(ZS@e8@F# z>)FS6Z41}E;&tB6gHe6647L%P0W!WsqI~FHP0|fC<_^lYo3W!~oW8cRMn2o-Pjpigdltj#;~C!kI>PioY< z1pSNoUV#kcC)p^0&v|?`e+6TApEC#I*4-d_2q?E;9}g&fo9x!{Hp#kY7tcPPNXI== z>`5iYzDHmq-$#&9yUqNGR4m&Ll1H=xiLecN^B!TWrO)TH{LFjq8*S%KeiS@YGC96F z!Lw|HI3(+se_j=l35KgMt~Me(Fyz>5lM?#SSpB%=W79t2jlsVzpApgai~pXQ5jeKKIAioPo#)!H>bD+4txCOQ=r0!eIHqYNf)VbW;Im8k(Ql ztY4NU!^tcW7OUJJ-$W65cU<{|Z9o<76+BACT{X$mDd_2+F0lIeLV_=GbALjskqzbW@|C&CW7nXWkxtKwfb%oz&>K9 zqshj=(48$_faDkI2Gi{DQ#Tbg&BbkZTIcMZqdNx+Dg*)SEyK8DPI!w@O(_1VakBooT(5z85QT)99frr{%vwGxbfuXzJhRZA2s)EOL zsZ^srG@SMwhm_o1v&!=N_AB#l(~sIn?^9N@pnppv3C2>NTC^Ybw46H>Wl-$7O+e76 zR39XgZy$@JJ^z025n}9gMy5T!71>%^B(Y9wh#(*}$iq-vbnfZ=zV;?e#OAJ+y`Sgh z%8=j{co&nk@W)SAk$SV{DSg}L*(8t0XBQhN@w}g=Zr+L}RtC1(AaMD{x~)<+os43M z`OG@)#(I$52zA=+8jLSq5Nu`~F&i&kZpV{7t=CxV<^`?Ni%MOIb3cIPT;F`^MHZoa zbriE5td@!QOC4*HTmdmmriZ1)S3yeb!Pe7C`+E6 z7~FY(NqH7Qln-c&Mko8b`s&ma9tJ0d6q-V!gmAAu# zdkt1oIqmZS@8i z^>-ri!{WziJn^lC-b%WNX~MkB%ykhk9BS(3FntO{Kf-N$y<%^-X_oN5+`$x-A}#Xq zdELj=jU&5cm==QVzU=1Yo0l7F5z0q>#?$osl-rdSwZsS5xKg8(6N-D3H&v-|Yg{}I zZxJa~)ESKgr|u*vZCI736yEAgQv^B59J&3~lZeXTpgSpBCa<+6#B^%!On2>&!CNLz zn@}Rqd^c*>Mw(y-il>CRx+Gx`339Tf*-aMQ?U}{Y-9*zcm`ENFx){nuc}uv!-9jdt zny0?Y{gK3w?U)mN0XHB|8XAIzFJr|8ZiGcGC#l(e$UvqRIt$jK4+*=_Ae4*2%}iz} z2YGo1#EFeXj9ec3kCjiA(-GbtWC<|Me&eVnAvpbH0S1G!oJfnvHFRT2g3DrW|=4H*l&7ZH_H78qM( zR69e_SI<_a&Q|+K6!mXA>Y74H6@vG2*zfk%d^=CKJ~)3eo3FJE!_atg-o@@TBe7*z z&g+#6>IO?*zAFgBo~ZYXrjvbmyqKEM9vtRIZBoxP|NQQ}_^hi_kE*A|Ljf~eAmn4t zr;7VgkF$D8(15JZmxS{BABPE5yev~@u1L>>ksD<+MM`9)UIvQ|RiqWXclf++QcS7& zgIN{U#$QvWIe?QL;S78ozD?P`D4tj&An#A1e%kU*Tqzz1|CG&TeuActZ|#8Lt-TX} zC=svH^^NBmKH-^GAdM<(uVf^YWg)Xp zQ{*((nz>kD^|bjFnQKD(z|Mid!#Y0s4`YttG#`ufvf+_=28~`o9+8i9VG3irBI2{wN-kG`c3ScEgK&J6DdiIp9BWS!DQY*{v&s43!a6?_3Z}M z_%BmgnZ=&MzZH=9@(kusvZNp1UiV9A?~DDu5Mbc<-3&xiYjKK@9JvoaZYqjqL0Z^L zSY_y=kw-V>GsV~wvb~ROZ!h>_J_p0aJ^A^Sn>yd3s)ft_1P?s-P@B0!IkY z){w7828TjumOpVu=JFm15-(x^tVp>z$-+k}Hv12 z+i6562sPV0n8`YQJp3OLkE|)bsVx;qGoFX&-(EAMThfnn+r`f)@9PJ)#Ar{H>X4Pt zR6(z%jM!}9-Fsi}xrwF52Ev{gQPkaiWy5Hpn|M2l8WqsZ@k40j0~XbjJxh9xjyrfc zD#2e!LdS5D^eJFmS5J`t88h|-J#6J{USeum7b{io^28Ow^^qBs^4~H)m`&oPtowe* zCh(@$%ew;ZV&csIcDTEp;WvZEcl`RDjkH&0!Kr94ZEfAqUlbsO?nz`mWGijIa}35D zGj0vnaq_b(B>GxdoYfx>dhIBKA5e_1WOoOD3fN-%w}`qxZ~aTh>qpUb)f;&6txr#P z6bH=-=?q_a#v)!RqNE{hUQWdu0v5bI>9goiBA7CAZZ!@`;F z`@}X!cfO|>&$NSLtVuTI#eOinzM0>GH8>6;Q9~H1S+-q5Tivdp;EjBDyqFVte`sgc z-q2snbh5zT*3xO*yO;cBZ^gxY{}+LqjM#|!7n+9(e}4t0Q~PdWGw^6ML+l#Ax5m?@ zPvVkDCARq654N4>9(DEYUp~9M2l3t=;BuO$28hgyx;3)Tid9`4tqdjgEMrQBPUgJ_ z3o5JLxFMpWyqSm6 zh~*li|5M%5|1fVHz(Wd65DONN3cHPMK2eITd{E7Ec!V=D6x;lNTDX^I8@c*^uVD7w z=Og-*fGRF?5a!YLUgD`b8}>rI?83Yt1A`tXLksuXA5W5tgP47GhY;kEBb2S#Rt69^ z!-=IwuOLjzk|LAn+DyNI=DH7ESJ18xc9ZY8zfPGY?(AC=M)`o> zOwA%MSp_#^fOM8#2+~v_Y57DV-v-(JXjcL4T%T?Gtc%m05u8IU$&~VLRoC`eB_sm) z$4rPQ-|sNK1SGp~Q%4;_qa%HT94$%ZSJ@PgJ9o5`PiH@GBcc2u?3C;ArIE9nQdF`Y zSJBTbRueIH)6dBVL zQYQ@sIFbWmdT|m6(*0kL7ZT%Kp zmBwb@y7)A&ckX_ebP-6%7WNhr=E^pqV)cX2>2xE3W_$ER4;Pd2PgSQ)+7luj=_H8+ ziO1-l!yme^7eD+>(e-=Agq^+BTjRG|R7Dq!P6yQ9FI(ELkNWdgr^U}w(>hW~nBNuJ z`UvuQ>!%TPo`qteKV_;1=B7T>^tMxO=b=+}+(FxCR&;f;*f^?&p4=_k7=4=hyi&Ywg)H-My=;tFFGP zs`oJ0ZC`&!SFThykDsN5%X$hM+Hi8GU)#?JAAUHm#BO0P+VBaAUrI8yA(YXiAM~*W>mn@>3YjsvQz~5na)EptgT$X?v z-01KIDKxtUbkaL63(Dz9IOqo!9D(HKPH(v*@W2?2M;%^RrnvU|yvPM)t8=ayL%plddQ+vEyc zUsc-F$==S;O|`5}o;bcfcnNI^#rBy9!&o2Js!p7j%R_MRhG7MHlHlNkoN7@b(H zWS#~-0q`TrS^L}@rxtS0aK96mkEDwC#*|^v8lBTelqQxtp!v>-&*Wy2;#wTWG!A3G zS|JA@OZOX*Z)>=voQ*V9$76rs)-THrAjz9&E4?EFoq!SfSDsSA`oGv*Jg)sfbe*^6 zs5fRjrZ#3T3Yh(Gqc>6~`)^u}Mw1dR6H27^^%sunrk zYXBBmkB{Hg{pD)GG$#iUAy@v>&Z~ojbE09*JS7C5vU5KXmVh^6=&U^a_#;~l0h>AtM#a-9xB4g%9_6N=x4y|jSAEj&xq z*eS$ujGw3dblP5%^Q4fFO1uFZ!<}AE8lFG{7cR4q?%fdE%-0*PkLEDWvC#Ul=;UE> z_d1ErY4D@`IBtV1NS}iLM6^5{(cp4^MYtg!}D+C7oHdN}ye&C2p}t;y8V`ZOuFSZ{Y} zMGm~2Z;7+QeH0m7Yf>WMmgamse_&bjl=uDQDpiKyYb!wvywgtZ9u+BxV%=|@piH_Z znb(Ibj)v3DhedB*F=fmrx28_I^YcTqZRN^qv+X!se?eq+>O$)E*QB8*d#`PeT)EMl z3cgO5kL~A??vdrGXD7jCZ2oD-Qoc=_11%R+5DpHDh%bv8GRF`?1?^)3HBzdFQ5`Hr zCWce*?|o9r?)w&`J`6yBdKeN6rB`kmO8T53sXQF?E+8%-VIEI!L2%Vkj>3P0h983w zN22T1UCSWN{gEN<;v4kE2DpXeEP`^hA#qt>b<@4G$tNSrU1AmzVZA@;yF4Mh)Id9= z_D1i=mzaTR@AIK*Y#-+UO^-#=b`xG!Be^9+-JcN(Z1w@XMN4eM##)KUZa2%?2z3!A2IZ9nkOAZ)h|WE&qLl8WtyQ$hu;#pW1L z`QHzMQ>l@F?}GX?3l|<&q%2~jh|K{*%PCR~Y<%uJDxep~M0X@&is$JZj;k@81Lv

`cMgT_?a*65vhx_Y})wiAAJHhYsMz1#eg~8tyBR~eaFRu%@A7rf7@IY@29hP z#d!|td;o2d`mZG@krw8S8iP=9T~cfGd#NwZ+h+u$G8xp0gkJ7ralb@lj)lb5pZ#4g ztDJ^Sr`2IaV9+=l#5MYP&PjcCt8Z;XqJm`8I@bgSav~>x_&-hYzqCFzBf0C(Yb5)1 zD2p<$)9jhmCvPYS8$7t#S<;Y^`x$*xX!VPW76%TNFU)ImAlxgSwhFpkmdWk_JmY8( zke#u#IJdw3ya1_ykdKBrY`VrDbbDPI4Fv;CO>cR9N_;g#wf0? z(EmadU+(8?f{}Kyp!`HfDOIz~-8k&HagVF_Q<}7le&BQno|Ch&UHI}fD#wi9{^4kg zJP$$!Q4dBr&HCeciF{XwY55>MTRFHMfrKEd8>uVkTiizaiGoarpSW0|Q);mbW3>p^@*LtPMN%bZAJjRckf~EwI2pO!k~@%9u}YGj;Tm@>GhH#3KYXWPdS*^1X2X z(s!oSSiboxGv?y!Dmv#Jy~TAt)KvYEc=6*JApL^2=ZZjMIN{7PNCiZ~HUt_gvUKvB zY`FMID1wLPZ(^k0ICa96AvX=1y^Zmp==n_-dr@hC{Pj0HknI_)r&Z6=vWE@dzLqIU z7JqueW%Cl22WgM-qQfE$q z#MZ6v0M$|?CY`!ymrQ2&^gho=U7~`h-|g9_ z7t^1$C+7{{a9w9J787-&ULq5Q`jiy+{w3tB81EX61e!;WX2rzse)lmftwAN}1#gvx zJ=a#2Ybcjd-JGjMxCF+BKVak_@e!#_`Q8Ni+eKTUU#?aA?smMv=KP3M3X3ZmPhDV3 z+3%6o+AK~l_4a#AIL~U`JoPxIRE!KZN8xYL5c%e&Xx>WyWn?8YU6aP^$WSLv|+^u~qL z#78h2##`5H9wQ6&+dj(FeZ1jMDNlEA{42ib>vpV3m(>aA(Z4=?LwWvIEvJdJ#HoDI zs+g+NM6`iOn49p*<-lN{t+4- z6X3J9v#0KjG1uzZB%C;$-0)j4E6MSR{9oseL`6%rxv2cunWR={*@=3#^qKtSBDYpa z_vuNjaYSU&=Xf&wq`v>Cg_k2vR~;wm^H*mIkDt<(40f!E5dn=N+uuI%It}1)#-ZM7 ziFJmi==G$SnGijXi2{c28Iwn8f7@K zg#r_=XyOeOo$}sj<|<4lr|Psb?d{S#wX_Lbd`ZD;g60!6=P<#1V7zRN`X9*o2Y0%n zb7x7Mrb2cFGCX;uau9cu^mP6#>zAZ6n0Ut7Og+I}9Q8LkM$ZXR!O6QrL;s2gSp}qb ziD`Uzqqf8)RVGC{1RM15I7}!yB|>vFRJ8g0fun4ly6b+Aw)O*5?Vip8Ud+{g&3|(c z{`C3_l%35g6Wg)|=dJ6uWO^~LV}I|w`!&wNI>t+~HwvjVBW126m+ZeW$bZAt|Mknt z)V#7|O4nl4wDG>*Vn9hkx<#zaS7r^&@i4vr zWiCWOoK_Lc$?`xTq6F>a>kGOPNdHV5*l%UfA4ZfELi|yuxVnAu`=?$@S zDEm&Cow(5dJ(mA+<~abHDa~Vbcbb2N3z2YH8a)Ql(*XiBF0)A;-SAhpzf|1+jwx866fdLbeAw+zj6!8BK0Dv?dRLn)qqoriT2oWE_l_b7<~ulV2g zH{h0YKfm*#{Q@hBSg$-hd%yK?i|}d>W2^EVkPZ8ysDuysefNfO@p{3Fs8Gj6eA-J5 z?y$e$aX-%+;wVhDi>oX(hhDdppUOj;Zrl{*%kUVgx5G7EIrSJT?eOuPON+gWCe=|f zZBZbrw}&qnEcnB{7^INanbWqP5YSSF{rl`OZR1eiPz)yzUp^Bp=O({P{&mk~QvJ-r z*;|`H8_8RuH@2~@<(t)sSW6{6jZiN)-v`tAGG66bF_wCpsxXp=W`%c28pT_GyhLg6 z=5*ItVj?J!c00kiHIoz za+0JK;$^{S;rW+piZixqw%&L)W9PQ!Hb<_)l2rWCcfV&ou}^ot(rGxoHB=y(V=O4* z=T)%?)*kdf*A`yODMqtOVd+<+{b*YE>N@P*{SD13q35eqQN!My!JTyEDhfvguPpk& zaFfOk?_*;iZ^*QzB)wRhXdP!&S6Q(zF6lGT{Z0A9l?VDQU}rL3~C)7(Ec;BE-@ zzp6%t@|IYtybjzCF~v7G4*1bq1QWw;HPkwrKEmR?l20S>06j~!+1FlS2xF9(Fl<#4 znB#_z24@gl1LBL#?tBVbe&V=}KDz_73Ou@0CXy994+({K>>X?@YPFQ8rw}7WmBu+@fExfA4`j5p4x;2- zY@O9v7|Xd}2G2%u{IMM7C2+s{RWKNydD51I1R@;?X+@CA;+D9Jw(3}=e4T_M=Q`FG z%itYV>d0&gR^#m_5eSwWH@d82zJl*wqIMq`rjR9>Bh|v8NN8q~ew?F zfDDorYfytcn?$+A)`Odning&*w!5_>sNMvmP*3GR>$$lliImBw(d1xN;8kTsmf>Lq zibBI1D*R0W(L~;Ec@5g(M8Er7G%K7&J<;@mF^0ZNagsTD)yeK;sUk2Ij3VU1bDLWR z1kIa@u@}r+;;M4{o_mLM3IW2ucJto8ItWQX6hD>=v$8X<|3ytL(k7dPSj?!RIs^m!Lu8CS3%^t@ zYIbkqQSfdO>d%Vql)z3`-DfL8i-*ZZUZx~!n(V%tS{;A+0$J0Juk^nKWU;?;NpA0b z-2e(h)HTFEAwijRBZ{|#PUUrCW6R@)z4OyL=eyU8pIvg@{@|YfvD1>o!f1Rl|C&a~ z-WBT2e~phNx61#zQxN#SOdc^B?tialEOP(HdWFPE!+!mHl?hG9c~*ogCl^j`#(J)i zgC=kG;boTY1@%t{ve%OT^kY7Rszv%nZiuKT>O$i$4?3sH@Yib_2013ROs&X0%x}D#CrR#xEaA8nj6q z`a&dX8Kb4oz;zj6a%#rrWb%jx@3c2d_s5=bdJcVI%P(|jQg|tF5BdF)u@@oSIYglN z_n{}q|B-~i`yfSQ$XiuA&7RPV=|+`yhZhf|)S_f#k?%Qq2U!!#SGQ^meXFywIVLu& z=WvllHWkBeCx?@^-2Mt#_WD28{O3fF1FlRSvzJ5DjwDo?0cGS<5gT2<6laHhMHVaL z&9+FxSi+M-0@0sGic9~GuqWaSXH#WGW6$45>?*a|)X7p&OI?_}N$+sEZ5Z_vH6YJO zrTeoUp7v_npIZrJUykMcX#eSWJPuoundz^vT?0)@`y1uD0UwC}h_=+5o%*kc|9(Ux zNdNbuaJmcl-?`)_{%0!w-v2-R62kv)it@L=|F5n>rI|v?mp_{!nvQnRyx{(if)X>n zqY4&VqxA4RQA_K%d;5|(l(+qMckVzlC6zJn<3T)VUR%)A1p-bpybB$@5wU$DwgE#tHdsrmjN?N__CbdVg% zd2N>U>v-~hSzVglanTvJiKlx+Cu_X?F`F@xw_Uum6JA7}XU56jT5GfBt^MG7$gpw~ zYT~dkG1KUaC_wfh#WW*km?zk4Bz2W^spc(h?5l5v0wKsa24ofsulmob`6G;anP42r zhNP3EuOu%Ali^oZIaEaBvpc`56Wq!((X*0gw!f)qwrNG&p2WHRP#P)nZ8dQ|uoG~( z2q@$hun6rnD_N)K%KOMN7H1g-E@k=V`GIN4on29S?L+wx&|b1#vTD1~5ZlI`dWVl6BGJ#{Z@6bmG-95%X+FjZ4OjcAjIWQ~f}ZBj z_y-&HX{4f#nl0|KATmVxZ^w7g0$767;~80TzA__#bkd}`Ib&+ViJ&?KT}Y_dX`<8R;;7EWENPwP9Idq40TW4pGAx z&8B(WIk_hJrt=ubZR@4kK)%S-ik|dgWh{;$wLNAy44|6B&^r# z7e-Gbt!mVxG*+>WhDMv^M&+W;r$AC6J^HNW?8J|yh=o^+ewA9v#OXJrHRIl88C!ax zqx;9x@e4f4p>D*7Y(EHjhyQI{jR3M0pG1<*ZR@B3oO)Q53j2*BHCw49M~mLSJek(G zZa@gis>r9UqrFkR$#$B`iU;+9%oT+SA+e7yFH2sYm$PW`Gj-}}>7;RUMW*rTZkm#L zvoESR#h+?Fb8>nYMx6?3vmUyEOw7$5t*OQ5n)l7^hezG@6gd9198@hT(8{-a0@#hEy^g<2oHn~jDj58{`kYB+06 z9KyP1ift+UzgtlH>0a$qlNoFxToy&a z`mU=bpt>=%8Cv74LNl90dc|A$2qNrnS_$A8(e|u5+x5>Q=sZb^t!j`?^C;*40O1va3Ah z#6KLWW(4=4f2KSy&Nxk|i<+e6@y%FMvRo_wp*y|pbT4^BV4|?VF~i!P)fxJ)cL_)P zimApT{#%?|HqPT$ILeJ)lU3MG>`*nb9%$cn!dqV-JDR&1i@sEbj-^1;%bg7r#oJ$# zclEI~I%wS*lOsMkoqmn8RZi(U>A`eMn61_Of7dz$!q6UwGdJI#(_M^_732eOPWr)+ z5LAtocj?KNband{sSsuG!*P6qqF92;gW!^%NqZ-6`dAUmH}fO%nf6ca2R~a=BTVi9m{M-7RFGEP2AWD3l-wCAs3q67rdhXOvhF>>daHI~AEoW?s3wbxF z-kA|jZ3At@YE)w~*AMJfvQJsOM>mz8O%EPi?&pE3oDGxg2lF)dmHY@hSpC^dw{3B=5nctI5UO!O2Y?g^tQ{#39jA?a#mj9g}iHf_Lz#1 zb@;s6JADT@PIrAq??k**ZpcI^-<1wNvy5<+&$2hOA4w9edp6l-Croqq8vHBTLRN`C z|dKAYYjLdqa{|9-JzT?8rkTa_{lY@^xj)WEdc+uRP~~%; ztYmS9{1KStM6`CSLj&!YTDhZB6~U}AUI^U5b{lKY7-o{?qj`~6zFa#Zru}nxWGudd zrF9uBAi&~GE5x-jVJsf=7g+vLRdd9zm@^gu!1L$(QAmbsa8I}@50y2h3#`vA-m?t` zZ}&Bj9~x7`X6CcAF87iIIu@Yl>M)UB-kmwg|M)JOV6~OO7ikTYw0n#^hNY!h`}9xO%1I@eQCIe`&o#bKfO_1*GFL zuTi@jc*gj6E3mb8f_YRa`wU5d@BEuZT2e@>N^KHsgqjo^$X6NZ!sJax16gXCQD;|7 z_O|Zi43Z{@vU+=fH}SI&`?aDT_U{^mICEyq_fsNl*j1vAqwp8MBbf?Xj(pE#jDM6= zJL#mI)I&1#sT>To6B=45E0O1El!t>CFcR%!htY0>3dB*n-T2TatAmg((sPHSnPS9q zo6nj}c?EaNB(!Rr_7Ijln*cZ249F<-f)xr35`9PjEO&8@p79Ls+eXU2Gi;8sKKvmz zX`~wm@!Q8pCEoNDb#yON-A4N?7n|v6zd37$+~VQq!J8Ft7~`ygXHe3Xl&A6j6!pb< z9eo#~#tuvQ!Q~tQ1f+fmK;rN}Fl+WQOt!_}24e*7pO4(KHmpzy0&wais{#UoOv()& z##`M)rb@8N2OXi{FoZ3D2oeNcm{OnZ*=mm{9mJsmErOnCV8`z%UHHa4=b&dXfs%#JLwG{!@y}4^IM}}t@&e1IuHP-!?A;8(}AKuHi z2)Ef{AAe`pZ2v}QB0lD?>+R??)F0H0aSz}fUs#jeUe`d-H5-j()RR=B(?tn7CCd zR!*-jlNk$~?$Wg-ijo-4XNy;-xp!J}OhYi9a251g;86(bFDDxYU6EGlT3%m z-O7u8GznzS(rhYHFTBCiFvug8t z=i|5O>>oKI(b#im901LBo@V)?nexqa(X&ncs{uX7Nr&zOo1r;OOe{f;CL18B9qQ*b z!B5}88@U73Gp4{SbRUkcren>t`T|#3C897m^oZ?3!>N{j3WcZh0rsliu8`Nb!5)?j zNX;mDgY80_o~C$k?mS2DT)kLmtp?7f*Lja+mWaZmQjU@_zt^D!e=#~jVs%lMZ%oR& zwx|6_U17DcPJG32u3a&id5#K6k-Uj(V#jeAW%7D9mF~S7`aqg0w~giBBGqRW$KC|n zfB@rY0&!G_2B(!B?ToFjeE3Z_u8#{#m0^V2e7583Jjgkf6@lgqwOU2(80>|Gg?HA! zf;IRT#eCTACIPn4GU#r-TnIw0qgUx>zvy1-?h*GIII;24Hc4BRPzMedA=&7tuJAq< zT^q#DilkFU;&;8lK}R8!q1HA(>yolU(K!0BS$i6Ic?Zs-A0N#T{oCyf5^g11uiUoG z>oqcloKX-dCfk=k*urHT5RU#9lB3?#mk?>$eCcX8^2hPn;s$NNKjHheT^cjdXR&x_ z1nKD=Z?Ih|mH1o#_6y|*`Sf_4P9=OIHYphE4mtTUW%y!kbT?rwXVJU9BDnLtN9>F_ z;VoNVjN-S9o_rb8+>Wa(Jc|3EP0tO@mgyJUN;yggU*{>l-Q>W=J9%P02$K;Gn=i)d zF@M$9RIJ&`@H77xxMu0>y8(DNV#-6<6)P86 z<{(9TOcn?v(GPhOupiV$iz$!!BWU|QX172!SqNxBBYB8SnWY{EW#oPxgAD_P-lIA5 zNvv`-@yNM{E#bzr-_x-)B3&;BsiWizDZbWIrQ$;vQ+C1|4!O>zeGU99>9u*hD-3}U zkl)FJmMUE`td3jT*o1MHi)#P@)EpN8%Lh$^3ei~T&LG|T0Uipjv*F5OtygIq{s-r8 z*Ktvb36%DZ{WIa3*$6E2$PSe<{-FEZ#gBM<^d7=UbV=>9G<;Ycj6dld&U*A6nj+;R zPa^&Fm}p83Hk-Skis6i(297lQk@^I+z zP4@;oiSMQitpzR&+>z#P_XZL`cYlL1>g1}r<^zp(S&-`{+1?sD*(^>P4Q1j%k-ORq>I=i*RiFWnXr+3F+@@_K8iD>40h zA@roYtk99onBW5HoiFogo|9#VLinfeZjA{iz8f#--vI+laDj*4Z!402dVhYjW<>DM zDQB=)XZx)m$dPaBAhy||gxeOmm5!zNC9GzAp4_7o7%|tIJM9G)`LKaPsnk1PRn4Si zEKVfH4bh2GC~jX!_M0#yuEv;7x%}R{P$Ch?nqs7|iV;mJoNnlXnuy-gWh`?%y z5yUH$I@f_QjEd)n9mq+$0~qzb2N#`IEo@1qVHvWWF=WP!Tj2qh+ZZ8&`-I!@`(5X- zNq)YAUPo2L=GQj*>gO`JY=TYXPgtR_x?~oKCT?cr2+PsfYyLVL+KKg` zgY;Ok#*WS=f2L_}^GT!XHf)__!Wa8RkKLbUMr~G@W59l=z2rB7!&bsgzH>{`<0wk(%Kv!Qu{)41OKTx++-hyODFNQzgAl0P`gpJ&A zU(eXaWsuUsJ+OfG+!L7csg1UE!YaeX;I{=hc3c>cb|{_^CEnH(S=rIGRB2_VJ*fG4 ztr0k#fIwn~N8X6z4VzF!Fa{)JCPU0YNNU*y=U|GD)1_SJEbZq=H7s>;jCZe` z|1o;8a)gN+wq+8_%+r{tATKWj`Kc+YOL2$8-*kfc&PE=^h^_aq=wJeSv-}|CT)Z>A zbf29*V}9o&Apnw@$|!3}^six1NAi|-JMGXCdCn10Bd72>LPB z^et_$CiDUD7RiErwo2kaUy|G+N-rnLA?HN-n6{B2CzMZ5e?^S2D!7;Hews`IV@uNV>leXLbZJ6PQ1 zPbKg1J?6Kddo4b66cn!Nu7;uazrYj{r?@)`)1-8<8=TZ;v3yOT9>|8ORpV*lTGo`@U9=-R}SW(0(jd8-+YiG}2zAa+bHk%<@qfE=ASSZH@ z;^s1p+OMVupSA0Om5aZ5E2X-=`H9>|7?UejIhzDs>@vu>y;*sa=>wz?8oLU#eL+AD zy68f#LpR(sMjNS6vTE@hlvq+CDPDAqF%}qim^TVWH4cu78Njy{@ir9A?nNn{m*%1@ z>s}OO9O)jj7D&%<3Mn2BxHOCsT(9k3!MF~5uw2v<9qxzBP&sem0!7A^B5NAuSl|NRoCbaUK&;P z@w+&pF+!>vwiwC$qd;pgVum9r~VQberQB7(m@vsx>w^sDZpT1IZ_D4|v5IHX> zkNBlXol6wLi)^{E@*M|>zB-_hz?EW?oc&hX6bm!8F`uB16|&M81B_Z)#Hlp^Ty-aO zGmv^O>Yf5dN;M=92Qe8e2@-bfr1c@&y0V_KFCbSvwcNI%G>Z&NTC_C6sFr`zqfK_7t_8-kFTW10uTOr z=M99l#71EI5jJj5*bzj*a@`SOOg?)f&)?y;{gsGq+QZVVsG1bE1C@rE!XViiCULq$ z_mOS+reCmop{dGvo1eb|HiQbC;zPzB%a&#)Uee-Qx{mc6^kWur%xSDZl=GRY_bGeD za=Y!oiT@Z08AEXQhS>4P%M&tJZe~OIgvLX{M4cd!U0|R;vl+`>mt!bN~x`_ z=dZ+Zr3_OB9qP&%Od%D6^P%Ho0nw%$M%X=}An%{3cx1JVfTh8l0sd~toHC`H!-HNlRAYnF-U3c57MmAv8Zwho6|`(MhZ(QGl- zFyC4-pSm|jy^Trt9lNo(2^8#ZS2`rPNefVXHisSF(b@JhjAb1TfGlY=C_Fq$dU3#1 z(YvIrQ$(Ykq%*0OU8zbwOc_ca1$I~f9FU5?K{}Yht7Fp%DiDS`GzclKwQ}Da9s~Fe zlSc&|iN4Dg99)8rM7Q{A4awjd9BiJ-KnLK%k528p)dwKo=$KZ(w{MFB^hfOK9xa@fux$i7 zdg)B&Aq(*n2BF6hQF^HtbCq)QbV`-*aqB={P^H`WviZ9QLDe*{U|Z1S#jp~ZZR|y! zt8`gdoHlr0NJK9wp9= zG*JwxrkIMb1>qFtlhQ6Cfaooj^DO{~6W<31IHqvTzX`kziH*SS`jrX6nYw2z3$q;ZlA>^b_UfkVpRt}VsnX+dSDXlRMr*ba8u^=kl0MVVaJ0P zVSjQmXKTw}b@Re|Tjw|2SBK|D8GrvPChPWVt)^+u_o8t==+?(usG`_YzR95b)@^;| zJK`)$)N1d63evXS(9W*IIPnB1W~LNeEaTU--o=TG1BV3Y%Ug{Cxt`H6@w`BYIU|LD z7fVXYGHQJQK*}OfikZ@)X;=|73#&?MM~<0EAkqWHhlq3|bxDXPL}`b5xU3CMHCCsM z4}gGJ-qkGjo5x&_N)dt(bbu>^gb`dmGPRN}WqGa-v1ibE-4Wu__GjsQIbEi*_i8d- z1RmpE6-$dChl!Zy9V-WyIY-AVLid&q-*1f~45<<{*qB*yhqP(mQFZMT`HhRLM}}nz z0oJZ%9F*Ao?hV^KJb`4JhSstzF<5#=S(@7cp@`0?Sp(gCw!R(>6%IBBlE@H}9yi2uQg*72jeHOtd&M^v9Kb>3n1CkPkn_1-(4BTv-#? z?N|LX6Us~$&IY5qpd~|89r1AI2nsrvbC6<@ZM6flz~Erojnwwxnx9ak(YdlD0b?Zz zC-jR#Z?;8Q5SW+u4C(^&4i# z2cVHz)i+!%;%`~S({s>WF+GbN80lpzuN!pekIPMkJV36FA#HTOql3bUE#f86s@Wb; z=F_;L4;rUPM|lVvib-;7cPcmKyKgG5cbPn4)APPgNea^$4Vs+UxjAA@Dqn@}D5%`p zL_*`c?3nE|U*Hu`Z;|0#c1w=Y5{bTi^R_AZf}`nVXghjqhgvI}MLEb6#UGjPrcbjo zXgiX>Bj#=GJGh7O#*>R@-UmXOl=nS_{095y_3N){%6}QyLp+FnQvHbhw z`F11cwff|G_xclE4TK3@byKzDhj|Z=1Mm@c4kKvK0}*421xS}{J}s}H!6ifZ?z%4s z)GD|qMhGw?kg7uDx53X{Ho@Bsi8L3Fqmna6i;P;GE+AB8t+%#n@vB$e$}JvE+bUXq zb+vU$_Kd!QrXMa9wgarc$O7?Bul!toHcIJxcFI;9cz!5!v8JVfpO;81LFcBT?KpnF z*?rDr&1=*jJWqX4^knA@)jEc%Y42>6>MggjY+XsZEDR5u{+$-4Wos7o`5z*k@J}4S z3{t7`$QK?GwVeeO7MqnA1-7g?>f$(<8{u!37-O4Vo@^XFqNq$+k#PfE&4O6*Q_7cU z3!KJ8%^ns(!85|W&LtQhP&^^iP8x?Qke2+eRhc^>K~ZP8D|@NN=b8TgAugG-#X2Hd zn!n9Ig;}e4!p3thyF$(?;tJU|`Q{zsaa#@FoOW{P1StQb?>B}y<>ahWnqDvSC9u$t z@x{uXeu~|@R#RE9U$ei9yl3ri8cSD~jGe;c#EN&`h1}nwN$r-EM8%dR-Q=x@ZC0e_ z$t~!&!`xE{lI;^}Xh5{}rjIwWlVDRPshDPu=%SKRAJm4@Ae!8Le*KW(aXh1uf@w0s z!I4-asj%$q--fLSbDl2u3o9G{Bs|3JKw=x1@%$DyRo*{_vabV;-j53$*AH3BCH>4J zS92-LDgPj(q1NIr0sdkA#k&ca-b1RfLl%5^v3U(^`hfEN_{M@h#3IQf+-RCvrWH@R zP~N&WmX}VlPQFQCdRmQ1aP_7&<=g%F^UP=Tp|5%XyZsHxbp~w~8o{qoT5cKRZgP9{ zVYHVnX_;d~$vL z5+ubWZUD(^VzFA%WI?-fbZ}(xJbY;2mTBTBfS!o#!E2nb40Z*r*iE@4IBoFa&0^J2 zZdhy=t^O9 zy6z|EI79Mj3JW)!???JBgOT(ib{btno z2bOY1+PS_D=H8;t@1O8zDdQjiF(kgT_*^PG>;yU)ed<;yupZ`u7N8QmI){t>J*8au z@%2uTFU4F9~b7{ET4Ne>Bw6%)TIi{9bqy7d>=ZIn0ycmahf zvME4SgmiZ9@sM{=Md%voTYkGX1_)!j_<5nZ{ZPEAOAwG=(iBuvAQ~qll`#6nOWn@f zn?=0f^OaYfyfG=pXq6~_w_S=Jqc)<-9>Mc5iQ{?hN{AvrcgXa zC08g^kT8aA%RQonk2t18{O6McX(>#oz4qghlq1-cz}y7%RdRa>IwOQ;)E6HMK>Fo& zi{c2khS1qz6}E;rY)VxG=XqZdX-kU~LY7G)XB0^CH7MI1zk)HGk*3IT!anxER0>C7 z+e^0!b?`O)UFB(HO|G>O6!b3*`-)mUq=HPwI=BMCDz=eJ2y56lh#Iuh1Y0X20Y2A} z*6aqv!mCug-C%3johu=NBrN)+R0ZdDf{pj?Rz!4DGK!(iK%jP26>K(D_Mo(6u=iEko^(9xg6>AK*$n;X)t zVVB`b%Ge+N8qUI(KTlzjx0ZJ3z)tBV{={E5yU~Qr4NV{F);`we2)D8q;X-tL4JTRl z_0YkO%A~0WA>GSRys-%w;7~wRMT&)OcLkR$p(5_ygVEVE62VX%0uO)By-G?A)zbs^ zmFanG!D4{=62eOmWC6tir>IToCvFiSp08*}87kh@7e zr$79hu>+-1*M0S=NC8twm)i=?f@n(0N&hV7hB$ctx-7MD^R8qsBK@%`xBOP5aZGwR zlcnnIVKpa1+h0Xgr}#r8y^A5kUApQRn*WA14Z9YToVNAb&c6U|=$Lt?ERv{Z+%QuV z)sEoXaeSRV^xiriZ`qrhuwIN}%>qhY2}&UE;56WSg+-7V_iWTqH7@Y0F!Eis6!np$SnjP5eUF8QrpbFNw#KjA0n zYG~?Sh)b`Yrrk%sBX-sYvWe3uSCPe_1;UK+jk;t|0u|ESo^zc%RUMdfLCpN*nRg!f z;T7(V88}8+(hGgC3!x9tc8O>qXh57d4ZZied6JFpG`0b}ctN??WA49#N{GfYg1{;z z?m(GX5~0$7U((6y^cIF9A*Ai(@Vk(<#r-Q@aH2ZO811sK|G-Nlh^ykZ`w+cdd&>n{ z8^~L!73DP4ioDUU#YPn*BP}kBuzBgi5&iJ_4$*brD_eFlvaJM7Bmbvy^C^gdk?_EEt***7aiQt7T=s3c4HVXzQ-Q1ZpE2w8zwzy&6ZDX{P& zE7C|5=V1pX!<4C0_Pd1>@PmqhX3@B%gYQ0szP}d%FJgWWpF*gr<~<4wD9n!|S3ZJX z2(||JT2ZfPS^!WEk#FH|`s*#{!mVY1wt}%vfq>Ikli&v_kv{n`9ik>XT12}p9LdJQ??Q zV5@wgv*;HssRfXkXq2l?l_TUMe!L%dvyutOf_dz+tZMf zs&Pa!3MBQC*pbs-E;`U7A5faPd78IMS>-7rEJCV+END(c0vbkFN|FcyTxJL%8h=O; zb{k>ySiB&@9BOMOj=^XyDJ=tv@s$$1doOd@lS$r71n7vR0k_HAcwpWW^ z?HlPcXPDgyK_Fs~U~7_8WtT+sUMdX#T}1$l`E|NMr*VN^*`Y#fiE+7jK$DjW!I654 zfVKk})Y?-rxqziqDkTGAL$F6c&45*Wux*?WoGKsjbv~sNI8EpxzeO57g3V!S%>n^0 zB++9WSVa+nw(|j!D6qSA1g&kC`wPDhC-+{By$iuz_!?x}61+_XgE&ZOH-|*GXng~@Xv9L*r}BSXF{D_(@U*sG)}%KhdlMQO zQpg-E9kL67;Y4y^Sw6ByG_xxyA7zFwCI?SLeR97OD5@PR}YR`4zc z0meq+S$RUHY|y7>OaV=l+WmO3loj?GY^hOn?=0jJbG-Vp4^`zQ#sJH1KRmtnQWkJ(QtEV! z@3hp-WFX*-0kS_FHeMiR%PVoi`>r>*oc(FcrOk{TAs20E94}oUSa^5eH#HYqRsY+R3YPTPwP08<2 zU#d_z$ceEcTa|22HkBgi4GZ31jyig`$m7^!oh*0ID)jpCZ7?Wdng*wAlQb2RxJTYh z21ZaZWH9aQH{)du`o;?WM4~tj+q3%SDM}gN{0P_0aoiEJUufz$N`RtUa6`HKhQjKt zZ-sH*q`9rsHr&w!T{f`r+CWdSSOsD6MWMf<_FKLnP^!(V^xc(KIcwRY2al95CY;jIv4$d&A!32l%pTHs5_OEvXYd2jyi$3Tx^=o`^z?G!k%` zhsuv06X>g=&;QC0CJ1%t01Jfu-jK3P&-wo}bDm*MZEFIi_Yx@v1WACgG(GW4v~|XOE2%8J_bva_Qf3yW+K8Qs(qWg9BV{PJH=DXAz@)+W z%K5uq&%k}SyLB8*?%|2f2z*LS`P0%|i^%qd1l0-q$HO7s!YFulggO%9AhR#cBtKM@Nil_@r2VRqr zFtRec3qya5Kd|iye&t+Ay$oL!?Req)QspETw`hTqPG%m>$`7$eF34?~-Ik^xS^D{t z-B3G!yt_F4llUamL8|>Ic8h)`nMItx1bc(Tj~;_WNMXrZCGu+#`|@bV^M75ZLMFr> zv$~Z_@3SmzEq$uTQKM_-c50qEt4HYI@(-KxblZ<;qs^X<_M2X~)>U7DqiX$nW;2gx z?2kWKz!auAR8WJ}@JTx#&8nbHsis3pFBWayg{j;TIuf!KESr5?W^W!KeQzuXbkTRS zska^aZ;Esx(e8{J z#Ope_%k3Ak++uZMVgNhPm(c2F=sLCdwtD2z>yy}Q7u2?{3x4O}rllV$x>0>8ESNUV zt4bu@Ef?(ozVVZ`5Jg5@w0oMA1j8T_u!)e0$r>6j1)`xbv(KR)qjTfLkOgtkZ+nVo)xy{>2z z7sjz;Zd#hqpj~{QuJmjG?m+tVowv@mlb&X@bngqW!emuNoA~*CM0qa_HbQOGTiZ?k zt%`uXsK-2)5I-M65g%XT1ky77gUp_=+<8}kY}K(%iRkjLSbPV!{?I|hawu>wbM7W* z-UggWm=Fuy&_NW9}M$zPOA(9A(Z6d8z_Wl z!S{#+ajRTvWSakL)i*ceNKX=%^s!8z#kNT#oiSkP6AGE{0Gb-B()!MpFOnzs#bsUV ziT?VjF2__)_D?ZvxEl6*>o)E9#7x1!xTsjFo=CZF8aG~JZS~4fo%Rcy-vTJ{VrbHz$>OWr-wV(P$l3C{(V0BHP^(_ zB_*G6v|xAEZmJnr^HGf>=tZ=o+(Hjo#a58Qda@sI84>K;nJg7LsWo<0K6LV!04&K` zrnI(vWd4z?e&fDnLPxT~W9H^oei{C|H<^Qd<2-0fM<&7Nc7thyiu`5@7Nf-R;3-N7 z#Uek1_my9_dfn~ROi24LY%zs=M@a}n-(xutOMQ0~%_7vYQZ$$__@Vc#u2Go{Q_q?4 zsIaTM<6ARXOW#;~I+{Tl8yoC$Cn`e*swhLb0c||jd{3wvgd~Dd8E1^w1#WFh6Bnkk zlL61_aEfU@C^yhSL)gV3CP|P@ESI85uY2+Ky$5pPWoe8L*xbyejFB{q6U{hY(}O|| zEtf=nEi7OQ{;PAI4fir%SnYHPG1p!-G@Qh$5@@!_9Y{~?=O%~262iVh*S?Q&DH8jO zozLRg^&#`4a7ntI(Sr-8ZMaQ+%IG;jiY}iGSTjGiimarfXR=wm<3p5DIzI&049UkN zkxrgGuPAgui%t9#`=NK4*AK*6J;h)+l2XcUOg!4U@nQBv@Fn1fLM_dBjBezflaJbJlk+?c#*VtDo zd&be8j#NbZdh)?R@@*0?^1yhh2MmVI zktf7S-%EcE3fYc`Ea3qu+!U8OB&L*{=YD8B&RwUQeZ}Zb-Xfl?;V}au{r@VZWih&ITj4 zZ$m?STO*zohGMm{M~as+)*W3Mds@Q0SrkFhKZI?#rMmdmx&^~9Qf4D zr3O$s*3o;ChDE!{{RxB$Ey)+DZ_z9|X91#( zDTmC+SP{JRC{&Gr^_YBlQ?N=^T5(#qhO@s^+fLq@Hws;7OuIt)A~c_x0e!8~9^heX z`bTku-t=nx;=7~^l9DB z)ELJCkd?vJt4Ydr&`0|$tAE?6|0_HFFSQ2`Q438(RcHV+J%9h#?TvqzR`l3R>v-x7 zf;O|mCkb=f{|4_pMhX32;@akzoRakPZ1bga67{{AA%w_L1ez5xXdjj}eaf!b-FN+% zFT44j695^DRdJpWjR3lx#(=N~P)??iHl)nH>Ipu~21z7E4Qs8UHvf!h`qkQToC83q zvJV!c0Kk*cE6r$QmsGx6);5f6%L`p~yi6!EauERx~+m`#d3W zym$HRbn*14^S!j0ZLvM@tq`T6?*9AyT?=O7^)Y*9aw49`q}1INdOd3X1ldUVCO7M|^Mg2JD|4;;t8+sUfInrWGN+7j z*}`uZ9_v`svVR&CyJ!Mf9Axa1)^lf$%aA%kW6EWbv*C06ePnyI25+4fCk{LDx%uT$ zbW&t00As&vu~5ibi=^eyFU+(-kOr1r)S%~Nuw3IrFm_B%2(R~49gbh_LY z#1vH8yOL%kIDd`}D73OI{F|*BBsKfd6lsXr%hW%;#U9GOV3LX1nz_8MwMCb?*pQL} z90)BcF_2!tLNC3LUKp47k}oN^&O!v5r1S&iF!v*(?=KO0fcCBlu{*twqhKCfo}J?^ z=DdS{o|xK4<}W&0s{<&DH#8DiDb|lxK1T*Q;&eK!hbuC_=8I-T7uh z0C@Xh*`o7+7;1|p8i9~=ovpQAWS7!oO2E$n{t8UGbH?7 zH$f?&mSGajwuuldIqMBPFNGPrCnoyNzSfb0Skd9)J;c-hRhf07f20U=LK!&hbeJw#kNy06#3KJPf zaNSGpkD)fBTmz$x`oDuE`gObx6R!rBjXm|~p>rVHdK2+I{PS45Uq44ps(4uRi*I}GP*tUoYQ%WHq)KX^9em1*=i7s!u8 zN>!5TC^m?o*RRXG%o}!X6Obk?DjnV*pvVe3iEspU`NojHL+w1tO8n?VT z>SlU)cH=X`ycu8#`HY0`S~cB|h1UY99*T1Nv)@Q5{@kn#ArkfGO57sH%(d4dqa3Mx zE(O*qZAJ--eUYy2b7XH@f62bPI+6oV>;mLx(*>IX_^OQqn*CGq=We6U{UWYhJlIY@ zR&Ll>Rtz`ZB{5;DshCzKyw@;<)Z>ylYokp?zDeyGCZP;vjaJhK@}PTZce~belmge!`#tPXCoWAh4K=BhHIq3Nsh) zXB@Jk+#Y;dB_QDexLX5BLl8#%%{7`UK3*==X)UtnjVryyD+#1bYncDh{?s4U2JYpK zE{droqW>tp<=>^p$Ye6|9#)e*T>REK9x#Ii$IsI|E_>I13*@7YzYJ@9@^@;aq!E=7kb0mrxd?#_G6b%9q2A! zw)T4)U37eMg9n7n&z?lF{al*8`a`ul79w?FtA`9p~xvFC^dT#{&(McF4mN!N_ldk@?UdmjGnDEMd z0;V&Zt?+R1VBnce(%aFId*W_|g?~C+Emlhl<2y*;&tP*KiJ29jF(hw|^Y=Sl^LARt zt5{2*R2Hvk1+^VcOUixEe63u3>BM7D!Sy=_a>hL;YpyVgsUI3rp!@no z4k86)Upa>BymcX5aa}GBgO`jC;XSW+bg2vvn2FyXOC+lFXrW55by|!Mm_0* zQd^F93c9Mg1=sIn@?A4iOL|uLkL$3w`^7+T*nPrBdLt*=vIb$KQ*mMfDqjBG_xua1 z$zY%sAMHEiZnB;8R6t)Ni{+!rNJ1l`-BuYT6B24gPDo=j%vU$Qe#+9_zVrc^Tg6vO zm>N8w6|7#!zC!4?h4&6#He6{-#2&mm^VdiYE@ zfN>&@CFwiCUU9#8p`%_tOSxyPxMS?CJnCsfU)qa@ODvK?Uc5dbQE?XfKph!a7M%2x zi>IT`O~)#^R(LHF6dt-&VH)>10i6U-!5x3vS`XjY0eS{rtp#X&+|C(Zn2C3e>eq8R zNo1MbJ~FH2aBdWWb6QyNqA{aeL%^Bxq7k{nODT=Qj^&*N4Fh1qDs^v6i?AZQq}#+1 z>NNi1fgwqKIL!I=pyP!v_Ty(+z1Up|>#h^-!p0EFkZIW!e$J2KHO1%h(1Ox6bVvx&rIdtpx75%Lf*>s|A>9qb!2cn9 zJAUUq@AOGPB2*Rs$`gcp6a$l5Gl{;dm(bq6sBb1tLrZcn57@?Tp9NP`_a{#F{$9QX z6-#)En_C*v-iQ|t_Vq22cDyuht{edcqDhHWTJG_4AziQB$daRin!(O>cJopa+NuwC z`%q3CsTDzddhmc&OPWAjaAsFwkpviAv}wk4#*l}CzsUH>TRNPf!}ZXUV^r`tY4j8V z(FCEDJ=x8>?g{za^)OU7JS$k$tTAL5)#z^(gC+BK-4A%oyKsM~9|VGnIgy3K$z!$l z@g&_^n;9VRCW0 zP!HL*;m)^mTAOZ`aK0$RYjkvU!@<2qlP~l0@=$;M`ejx_5dZ77cA31E)?+$)dT^j@ zl$*wu0b97GIpYywL2G42Ooc~TV4TM0m$fEw-BB8S^=E0|@p#mS)o9OO(^r|S<{#w_ zS=(#YIx@~LEP%Uf5z!v5(6ha1^~dC-mkF{$fq;m(`jTxm$!Vs!#Gut?%C>WrfKAxv*>>ZlfJ8V+ zD7mQr%1gG?oSb_p9!HPmc~+^2z{5(A7}+!6Mbsj84~7)RIE=sMspa1%APACp6pWzu54^(&tK{I$rpi z9;5HtW8=7NN5WHIblSulm6x~gNq2FftSiAv>@A@!A5os8;WHH+i;G>~Hv6L$1afI2 z*WHvB9M1H8dVhTFEv&-7*(DWvY{DB>1vu?UpG!l+6NG&K8K>(~VOqdokG5A%pPyuH1Fl{IW^ z=5agP@J>k~wP(;;{GKXmCJTJA)QRzrrMror5>Z5c3I3>4U6w0ZmWgw7mlHsM4n%QC zz8JkYISS@~W(J;{n?tA46yt&4xUVV6Q?8_>1l$!uG8n7`erB8YCtuy=DX`mSi_lL- zzn@|GSgHgQiZL45zyyyn8fpA(&)o)J>NN^3X<1&$r5N*TODedp-Ic zOlcAZEZ#4ZHmsvOjE$2wJRCN>sP?H$MTCXDzn%)4NcSPUnaspyC{97S>bur3KZ08{tlXo=dfe{<6_W-+Ft8so65?>U1hB9VWxLA zMAa1mF%}saxpVkxY7#YSpYqwW2jt}Bz%wJPK7O&()O_UQ>kDR#Ckq@wMME3Wg8g~3 zM7^G)|_{|G)}Fh@Y9M22sD3@Be-?prE2E_ai%bBa~sfy}A9S!%zNt0Se`h zIJ*Vd*c6Tgc#Z_4T%y=hKYtebbxu}JW$N?AQcdk+5&4j@USr~u9UR&05zK&lF{z& z?h_`aQ4Zr5^73J3lVxRWz$TG~nwXdXdqi1Rw`k%yFRwNbmN@58mEZdNf!y@+t?)#ftj?!Om%-dfRv}eC$LyXk0GdXB^hgPcJ3g0@V%M!8s6dOp2 z5fS%+XG&GQn0U^>fZp8P48(Xuo7uZ}@74+~nwo@wj9faaPb}TEvb>zVrN^d#!}2u_ zC|DvD<@90810C&lJS>9+P;S>y&n<`x0C04I- zdMw4FfOPLV(gR>f>r#5L-U#bJlFwcCtrddP3aEc}TY=3U{KW!H2(yr1mEPep;pMTA zS1xBBoX;6@_jd&ZWFkJ#W>t#+x3BOfSzN@s0=%YqKeI!$iQS-2L)wjc8dt?`RC$rd z!ySCcCp)~YG8y$B2eV^k5xL60k7Y~2xQL{8a&ciRo{*_KTG|?LoszBg)!w(8AR!Ng zfU9n3LFt3y(lvoDOG;GOa~lT6%Ac@kav0I#!lmU;vFes&zE4u9cN`crAl$An+Lu#( zpNX=!?V4U($IY%Gp{onrpFdZM-x)Hp$6A)@3Z3?oMt|}}t2F?t^JI4c*q{U)W)Fa( zTL@&V#34bKJ!3zA|1|=(OzYW(Jj+^#)im?2XK!YOeUVmi;&JZZ|2$Et*C?^kpMive zf}&(OnXkbNL_;VMH;z$92oNuCrmAfpu^Rf_Zg|p3{o0p$RfH}*CZ830H4Ch5l-m&) zcH{lzN^8J4oE`1$21~v1kj3%e+x_Nyq#X&V=iBp{>eiyu5yZihK%cf-Zv}^9*rLkN;m-H# zg9^F9099{F#e*?U@(7{PNubv`+89rlF&><$cN+;VPH zq<*<=6(Q)%*#E+wwQ>{{UaS76drPZW?~pXXNav((^mAr#W03cRUq}c#6%7rLeLf^4 z1bz7M0H_hhEDuRZ!{_G>fvd5&xR_JPNKZe+VVv;A+QcM_De@`M1m;Z`jyfrUkOhc-AK2zBZKTOb~%b%4|(fi&p&wv+$>6tks(X!<5A1$(BKs9fa(m3 z^ACD{#a=V-YG>t}1=V2%f<6Qy|LwenPV-E$Zw8X&)97)Oel}FqV|C&L!)_4fRXt77 zyYMMQL>}fCVWy;n4-5>1h|y$bWl>O5i^q07dmPf<*_mEltqIgFZf@>8%bu@a9Wdf) zHb2G3=gJtraB-g=Uq3hIqTya8@f^75n9Y)_v)MOj^4g@|R9&VJ{4 zB>VdFFX_o)IzPr5@sqhK59hso(vgP&pJ%qo4_318PhEojBpTmFcr!Ou$p}2(JON$G z-2}T?@m|a~MHI));>Yg`ahdx>H!M1#m17&4+H#$p`Xcb)z!OwKjRv3KWbIJ26i~o& z<5#iR90hEfHY6Cfqh~YkefPyl$Zdw){D^>ab`6^H3oS-?P05P9Hs6Ze0=JLH`Sz9? z_5-F$KAu$zz@@^5gV3h+L|(qrTVY+BYzutqMvU(E z`r$6hla?_4_G)OMaoq`+W=86VzuSy_Ge@yU09}W*844DbDOoec;A8!OCZ56g(4Zhg zvSv88d(oAz$eMZh-HwcbyJm1Lj{g`5{BHjImI5UX81z-tH_`98XnlH%r`2Vr(_iM1 z2rGQ4bEzxY`Vj@=Cxp#l2iupG&hCL-kbOkNf(x_k_!he&WSs$&XWKd4T)n-K`g>!j zNA6C2c&akogNq_DW!J+9QB9{Y6-k^~)7L9xAq^fe^Ly=bIsN!Z4Ry`>9`vhU^_!aa zpHx&P2Uz01-|1`i({1+H8Shp2xow^j=>Ggv>zsB|aP6f7+J?VJCWmR4`a>+?Zfkob z(BlmAw<}$W?%>8{!uXrb(;Km?;}Ir!;SA=><2`!Y@&fcS}F zYV%n>CMFgDFQlxDGdMH^^fcvVvk@g-$O08%F2l5ZvY*WK0>3j843(m2^@YPWINocs z5)XvolJPu2!XtFH}Il!$LzQ5?Zn^=^%?vqnTs=_L#CN zS>F96waq!~`*s&|U+4bQ{)M9At(FBs(#|X&xwG`!SFWgDlFcEcSqY8%6?SY{{IdHI zFH`c;_d7V=QGUc|51$G2H>WgQ;0kn~iN)$j^+4}{&LKI5TCX?X{y)nvWkCjiAzxl9k>9d0i&76%4!o6TCPBKRe8I%Pst6txo017i3{k z9E*~^!do~jXQ!vR(AeH+gb=nY;A1OpZsc(XtYMTd z9Cdv^=cOM=LSp0kRWNTC*wTO{^<5(S4$;)}v**2!9l4WhE!fUIJQQv9AEB}r50lQ# z)Hc=y^9LNQ+)|86>qac8c<6y^LA?Es(u(rGwkm=qG(ffG zC){l0r?{(^%FTCXMvo69E3C^JrH>*bUCNFJN-raOqZ3gO5fSN@k#E8lp!BYaH1zD( zl;>59|J#UG>;XRe$0^q{eLU6s)Thfig8WYl8QRSS>-;Ah>xlEKiY5BIiKu?j&dphq zcG!3KuZEj7UWaGbCXu?7oSgWJ7ePQj&-N%dJY3S&wiEz4c6N5ElQADhzR`-BNc}Yw z)+Uvb@AyOg0(IH9xs=#&@9@pWuk)!-W*iB>9*2p)dc*wL_|X>0>60yzeX{dBaN0vG zQ>(hTBZ|t+$t;=MIzM`~xR%|M;bz3tIdrSxqBZ5VEc+x6ENhW=yCn?|JJL&!vjx)} z#)eyI1*`W(=djL#ZZ2h)D>}`WG`UHyF%7T>Y~PCN9HLE3sny^VRRp&F7RK?Um~M>v z7EYP7#(fVGfv-=J( zdcw|tJWUNWz7>|my7j;ner~rY74n!}0%*={7di~u-ecc(T0AB!2CXh6f=$|fGaZ}H;Oy&MtfF1`s!-g9NYC7q zWWLq56*Ya9K9L20{3}usc$2N^+I)O1N*0#;0C~4_eEjfHM%Fz{Om)lk^`5vYHL6E6 zzU*u=XGAxY*eMXql^;!+wS2D;f0Z_85?W{o+BJ3KBCpu98d3kHu0XD-;EFC+mwYy^ zx6h)~IIAwp#{=h-;u69%!nOZH*LgiF(0Q>XVda(D8`1}+)9(g-?3Eg<(Z8b7rW;Rg z=IMZlKMUp&Am=-+nb#IOdcH$$bWyxb%I_13MUimJDvJ=p!X>OhRy|t+_V;EQ-oRNU z+dV6ae|G;efgOoi&r)yCYa9i(+xyGN#)1?Yu~Kykyj#Sh%|{WA`?oR#*a*jcs@FqmtnwAsyRfQ)Vp4tVUY zg0c-K^_ZKE_xn_v1GE;P3+sZ(p3Z8bYA&1~mQu2d_)jgMre|NRCNC`C&pr+(b*#FO zz7IX#?o8%)14`dSty8gUB*zOG86`!jfH{?gd3l2z#uG)L+Tp7LUf}=X znz+v|D^src3oZ+Kv^hl0wh8dIYd3TjG0P3v@ik7sl1ER(9`WRKeh(MA9#y!nyv3d3 z;|$HNVm&Qn-!=S77*}OQ!sL2PG1ai-*n8@XSp?g7xxtWE&!0y9%Gj8UHIkmTAmaZ9 zX|6ao`)x2-l)+f}pC8*a_)YzgiyOWRk6PdA%X0L@EsCi7lVaua1MsFgM@jZG(*8_= zKrBy~kj4b{6775{7;E+SJjaQcIqo|%lI_R{(6vRgrXD9kOCRm;4wvzPR4AF4`raV= zLN&CHz9Y6`uUKC`k6F@tUsg|>XCCl%KHc`oF^*~sy6Rm-g~cb`+j|W|zvI83=jU@| zr!;JS89m4&0e7y4OgbxvBQc?*HV6WZ%g@f|z6i(heW7LAbi#j_Qu1Kvj7exbtk%Y+ zGxW(UFE(=3bck;wDEBhP?X+FzxztVSI^55V@wh|W?N7ZEf3Khz{J{8X08|E33U$GC zP^0WxLqMTp&@2%e`+`-~Zq?HHrUqiXpzU3fiZ#hJ<<+xI;D&F-b%6vjnWcu0<)u&C6*dwKbGu%W3;9KYvg&3@%&8@{~wMC zeuD#qGI`{UOu4qYwZlj24hgLp-(;>J3y0PNo`A;-XXJcbLa`e!oRWOY_@lwyOkKrU zt@{&L#dA@|OwIEc!Mj!47yk4DHE`k9?mCUP6=m4Ko<>Tj*)z)572G1^vw}zBH&(=b zml8T6CR~e%O!j33hv?*&!2|1By!OTm6sV`?y$0&e)$kni@$jCV(QxbETM_K2BRJ6< zN(gL`YS;sJmsw+X*RfnFkj?W^K`y+p#Ak3L)RL)r8}~kZMAV;N(?3K=If4ER8;(I=NX|D#V$NinV0th0N`cCde_Vnj_5VB!~itz zmh}C)Wk}cKl%ho~3UjGG1Q&rWd!Lt>z9>m;1N^n~nn|MMPnxjMmC@`M!)~Zn(+cz;N1rs;^X6iO7tN%Hox*)Umw7W2O%_OSnlt;oPAIm92|`J zn`YdoF%=A8sK6wa667q*&0HCwU#Sgec}4fVXjX5_EH4r+PYnQ?JP=hk__5VqaWo^E z3SM5YUmU?^9RhF4HV^yNgJe31P)JFkV6YnghmAVSUr@;jdJ7+znGc4wNnN01g9pM$ z<>hV5w!fDfBP+c4k%+m*W=`Zfq#PK`z37@+x3i6wN!%!yNKx=l)W-@PN}s$N=oWhNk9psuNz)3=6&jy_yrjB|CZ z5JEgXJ=ZR%_kmywc?ztBDsS!D%0kU(3&46f#C)=`i6=H`F4 z(xs2iy#-IT=#~35O;1y>LL{}Wj0hJh-xf+~-S)QR?iuKMRnscHn-R=yAOVnY{Y~4`}iU{d#yvO*P`VllVvL3Cm=+-PDoDj?B{PY#A8B)@E zHmvJdy8NAlZ+9A3YVxChOO(h|-I>W%3+Fj~Oz-$`vu!UWW+9=!NLbf4`GW8!FAnRn z#tD&xuFevFWUAHA%QM4agS@OYVqEfM!;g+t=;)XVg;Yvd*)r+Mc*(_@bzRVmOG+$t z&q#J&NU|x|(L8wYASaR3IA&2c;^-r*B=`80kr&)xBRVT5P=tLLt*}-&H8XI!`a%?48wThooo3JBqzdP&}y@fGIQmRQ&O$R8qU%;fW1ytvObU=0H6q9DhYAgF1ny9 z{|^R}>sI&~S<%-st(DP2Lb!ijy10_dk=$MnlPMW^a~bGkiAnmmj2*Q)&yI`kE@9A; zGjs{OwZo)(e~<{%tgNJuNi0JELP`~kqo`Q}&V)EVBq8Y&@)6HqZ^HBjXRs6E;k66- zAR6DNvFs7@0lOY;bOU!YTIv1`_+&9`#W{3$s*ADsei-nJ+|ltHRNzW>LQLxRX4p6z zJ*;h#a~vLV%i_Y46vvaXt=Gt8jX?ibKfRLLxAd9oyp}`U71kaSxL?YZ`m#_UUtTlh z6xWn&boG0(pSTALzDy+jw#M>A(NbD}8UoC!vt1vKLk8b#yXyNEd?r`@W*y355zBN9>e+#{C7f_wT}UWAA{2!bBMvJ5*4K6U}y zx{F;a-lp@hs6%dLZfly&dE`;OK`chSEbQs%mQL`jjMo@7*?-P@W6t`QC{uE8Y86ur6Ll-T!9V*(zk z-PhL0Y2OV*Lhj}{zZu#bbD)OT+|Gt4zId{}pR9TCiDqpv2)4jtWXiF`UCHlYh)xrM z?Uc-lpiRPy-`^gh_6mi*F8Y8lNX9(Ii|2dZym_@Cj#4UV7cogZJha3B`fExPxcsN)l{0`pcb5NpjKcz%D$q#|Fl@Ij3zo? zS;r9*Ko&BTP@riYahg9Sv{dN+p>(P$a$Hg2flX&? zE^$vJCG!fgY~R~b88~Q+-7O7}=ty#MCp}m->5o-({)|qV{VUIWF7dtXVb}RSHCULJZN+-p=@!2ygK$vGWyX;!CD z1q7l?o<7GP!Q!=acjm&EVa4|thF(*V>j$2aKmyU4&qIN~Poy7?Zq+>SO9xVnRX-pA~>D;TwF0WgHt^H!HOb82aMko_|{aMf?EMIGEe~**n zsdOKq^UR!B$mFqgr~fA5@E=ui&?^6-cGozbP=PQb?EQm$w!KoL@cN;N_F^=qkOoCi zFlW^4e^cJEDgC9p;IHPU`YhfI_Nw9cWr-hV7Uk#V?@m;4C@_2T#rG0K=2d z8+R@~?dpNjmTvR`m89*`OWoYCXj%n{*ROMc+I@DknLkk}6U%h1X(E1>V{-T?9{W}x zfazK7On>hW2n528@MM3KAViZ4jOi}EvV=2X6fatMjd_?55au;#I=OHAa{8_J4%SR= z@!E?%(|J;rtA0V(I20HGi;0UjU+I`4o&xfgJWCIcnzwy)IOx&MkK?IvAN>QC3gEfm zry*c~Ct-Z@M2i2q>&qrS9Ky5T%;7YK)jkExOTA~$De@v!;Aq+(7mz^S7*qOSW4`2P@^ zT7P1sgIeSUa|4Oqbh(z&wfATi8EY}@OCR+2zv+7E%V1o1=UT(z_x$G`Zn((o7C6=w z7$=FZZn1-NpU*PY-k);f9zFjMj^8kmXP*1?XlptjSc1VpWuWE#oR%g6ECDq&b)Mx7 zGh7Ks{=im(@zmP%zh*wV#r5VD6sZ0QAdZ)tVgXl9T0q`}n8)GwDr_R-mKoV`bR@K$tO!D2E1&b1HiZ?01hl>HcM_+ z0`2aNEbO+XFO!`{mhWs8M%#3hJn2nhxuZ92%i({P954tnO?`H0IGJL)-iV0cF#CS` zBIP%;Ux8=I8+RqzWYT^({01{z)@*U~-D@#7sVOc%1k+0Yh_AjYq{#b%iy~vomXY=d ztsbhIteF(E$-`*Wu-@i-}Z?o(%6xa44kn@L2xhjnMF<;Y$3)_M{8&Fs)7c@DlZq_ zEQS;xPPUov+c$DSCG*$#D31tVwG8uU6W~0QYdP1Fv4tUkge|}B%(d?NZ+@~rju*X; zJt2;{Dk0s6ey~HFHB(#(Ti)p2PH9`)%m)Y7J^t4Uq1@Vpz}|=>;%BcT0G-L*yLa;} zp@-%x7qVtKfC_D-vfg!M(SV{{B8(`I)u>|yC;pk$6j#V2RuMpfa76f068RoYS81d` zoGq6#3-*5Am{Gz0==&=|r_LLND7XDxKma9M8uFIF{-bmAuuXhTFo(NE)l%ww!x`n8 ztJ8YzSy0{TOnoiDo&pd68xIfB%gYO3PXT5tzw+>K)0uU63kd^idJ_bZJu#gLDW&+v_=a{|O{Io~>xi%V?)^sQVwL<+rCSTF;qohI7^DmU~m9?4U+dI`)nv_Bh8{N`2xapE8mm> zI@g!e7cgk4X+H@FPM**Zi$V%VLa$m+K=&1NdppppvjEFKr7hXH}1>g|-*a;ylnb~O}I7yEiW=2g?u%ANRg zOFiuYJpxo*jw|2E4}q>4p@IkrH)rIU;$>BeeLECZij150l|nJe3D=*5RrRB|u?+Ys4gkZ;Z+N6Ntkp?`61*Eomjr}WG|LAH$$XDfQ&WM8xjI=@Y&OXR+R#q!;`>{9 zohR^s-|D(=YvOF?i(QeA*iAwJ+F+q0wDmnUB``6#q1A*6nfUmKt|V5}wL3rWglx=$ zKpLuQ3zLPlBNh2^Mn+Re4S+6BPv1~b-E1I}ZQ>_j}eC)v=pL8$Y~qFdS{qh67@e73I)U_%IX|dB2-TJ6R)H;^_7> zFk`2^qC7=I{z5d}F(q)UXhtPG?BB8zDI zGg^h@kni6WfoyxQIjK=$8OsE^8clEVzWz=IqELZ@gHxS6S|3vY8WccQo@eQHn74`_ zp#^}_wm4QJU@H-DS`kTvJW7=@CV*lT`Zgn68wr5d4`3PrPede8h0LBSd(9w>ui3a> z4uMflo~^5RjGQ_E)(0RD0&4X4K|wxOOf0zypj20zJUiPP`*1s|>;bG3)7QiTz_RB3 zh1z9vwD1!!m=zWlzMYkAWGa1f`WlhEW{h0=2D(kx%f2yf=)hgM)Yx27j@t8SkW-=Pmz0f9k}jrx=Mfk7pIPd^9AHeE&>oW)lkhHhA1Mk?~-K}J) zt*)MRtpM)rl?5*8*Pb4=NfT4kbpkf=KSFC(yn%w$sjAOl`ZW!CGVULEQQqdnf)JPWdcvn9O06Fl9?p}Sy=5M_ z2@2qA>vMFqb}T5&S}+2t#1|niy(zb)`=GqS;LZ9i^1G15&DnuQ-mC zueUm26*1HWS9}dn*?$?{Ug?z8scY>v#$=#G+S{(Yn0I`u4wTDDP2Vf!km3*6h!l$j zhJNp_>`nx1(zgPcvFO;w?zYASul6nYS8GruM(J@2uP|UJ7&FU<-B4-nbVYH$+tz)b zx0XO<1z_->-Q5cFKS(;)62f{S#R5$wv_+%dO0!YdIKf~rVB$vBy&e=4bpN+&hm2cL zL{tTR+0ZO3DN#%sA${~(ur#pu%D3|mtr#?&_9(&bEN}Le7n#C^ zt#hwP!wcKEQg%#M*l<8~@%q~zqUq}RBqUoL5oA_e;QKhsDep2)O$|>;X^2R4sH`rD zy)NfX!JB=!v;0c*5oDFyvtht|MJ$%*`6_yeD4=2Pl@J$ajnKdQ*iU-$N?`*`vVk9W zS4+Ou1Ei=6n^45HCN0g?kG^fJ zT%rShWG};qPwSai2si0L&*Fs7aIA9!cV>2o1h#*2??j;W1(RYLEn8k{jTjGpX{Ph9O zSij19rxdmS?1z@!_Etiq?4(e%RW#QYC6Bi}KA9G^d* zI85h_2_uz_kWCO^zuz;vN<6p}6!#oJ?aInZrvQV-P%=!4C z6n^bzv)_#x4;;vob&5|EY()-o$n97Qai6NU9BoBFF_&kfrlB|TpH1{9?xh_uBfcA=E$UVgyo1Lw``1)jpE-cC z!rpjEa~}~qG-j;kr=Z%*?mf^s{VHMcEnnhSv-gu}eziulbN<~o;Ii9NtGyNG<-oQ( zr^8SY$_LFkN4t^y*>oxluc$D_`|zY;$ow>dUKGwg4$VI6H0bE7rjhigA`jR|kNm}a zZMH&iw7alU$yna#M7%tch+WG&iX;T#e=zgIbidos%&V3Q%vm&Dc3=1*`Q_P3&P%1W zv8NZ3OE*!)M@`jUTwGi^ffm8y;^OZ^Li~!EhoGAOPIUk8g?vE^+~yA7NnT!&l;Hp! z+~mtU(Xg|#LxYSXmSQD*_LZMBkY;$^H)^&>2%HJq{zcT)TnFAC21`=@ukA(IqD8V& znv1^Dn&Dm^%v&GHk&K5P|$iL^w11OcVWH|f})=>3G_0B(3 z>5UEVV8KwDCF`?fD!2DD-o;IL(S_aP5gEHK`$}$|A5lgDfeJ$Bk-u3zU23wvh>i}C zNnc{FO!DrMIh4fp7`e@Asz|2ErSq^u&ord%sKvMXqy`MBtb7_hO1^p=K3u_Pyx1vR z$*aS9jyfeU0V|EVZgPh`uk0$ARi4ibM%*Va`#Py6F(^4h6}-5=8Bi}B9XE%(Iyz72 zGwF>>MT(fwHD(;2rGj=Ptna?*G=QaK&u@OB`I!&R`gvLOD8Q=u?xXQy!V8zv*A5tY zwGTY{!|d;46Qvdr&#uq!8P>&}QIO1@RMSM^yJd=GSHDQGBRQSO$*?00O&As zetysm!+^}Lt(1*T^fN#uKx}?Z8s2t)Q8=%!xQFR5n>OBUeBh>=wgZT6@QdR_ZUoUZ zNE&3&jb?vKxcBu9gjvj6K*l`-c%=!CJ@K_VxN~#$+q=}@lK$c(M zOx`Idkc$9MD5v|0O$e!=ZtTmxorbyU)i1(aADmF=WWok3IF3jrf$d&jCj6TBb!YfkA$R>K?{CoIdh!F2Z@Aa! zFp}Y8Z?t|KdS4dpzFvPA{=Stwc@KV$+aF0yU2M$00foKA)2Dr^bWgu z)dQ<$fQc$~IX1avQHM*f@R`-+1?)$;X*g3w*h<%g+YEKM2>7GNs_SS2LtXrC7UXD2 z==AOsY-BnPHefMTenisdPUI_Ca3-3+1p4vE^mgiCa0TSrI|{hw)h54|#}+gL;;4+` zTI*Q>fHA@(=E+FL+DrT#0~{An0lD>MDX*U_#ZJIqtOZ#COlTIvEQV~>-VMrgFj z>&C$)9;B?&*C}i<1aN$G3ujOf96D~IPaG;CI6oZ*S%kYBqWe_Eu@24cbC_@3V8u<^zE}Gp7CK_IVsxpR$RRL2YKsVF)mY$qAKft#q41V*^U2YcJ z-7dMi|J=KqFx1q=0MOOQz!F*w_kAiM#Y#RQGxQ(9e4@j1qRb%RQp!~0bo#yL5N}6$ zLgrR%p5pbIY0>!PO`JmY%iU8(%W1)S_+Z%3 zwjg=t+kAwZb%$L)ch1ACSk@-O5{;5Vl8lb(#hCLLV+kP>kwYreU2EgI)LWs?1oIV_ z`&)sYS=sFJsdZ^%iMpr8q>bYY^(yJmd5OsU11^8U-XekaQbW4d;YUkl17{B`Gq?_pJ18$5Yh40J|WrhMUB z4@0FrXmicE2j&`AFV)5vQ~##qzyRkD&i{muGB)cQ*%2it`uPwyMEisX!67R0Pg z?F?0OcOUgZEIU;2y4+Og0S5`VDDt8h$pMexs@d)~d*{QYYJ1OCurv3j|4%!5e?>(7 z7H8*f+Bl_&+UxMon|ZuaXnUefQm0jK#G$L;MXYB56&ZUr^UtloACFUT%^;v!$6P>% zRMaECH*+;7_y>WUR+p1kJ~2h%cPvmdr!LM zMC2>lk4o!Lbi9+5UW6tdTxiGcV62Pe6Q?PBFH$CtOXc%DDDxR50n;_|;|m+4yR~ny zRu#s@+?cEWjh<7RDbm(7Iwr<{anTq!*&-?`Dk3?#=ucD~1s2jFy130-{=lB1H02F} z?{)DJOr9VX(;q~iCv-hoH^p@hX2h$lH$Au%J)3mjlsmT?o>wnRg36%a?PBL=b4s`E zk{RgglGs|LBotx_o{yeqz5%2G$nFlpP(vtw^;Y@%PQTn`TVcL+J0Jl(OPWx2%A`nV z5xuQiFR_4#)J5lv^JA^z!cQ^r$djqC94|*?w)T8HdwvvJWNYoEwO^%uL*;P*1N7lF ze=O3l-G$C|Yl>N4Vq!X8)JAjlXKfCg9f#B+V>e@;fojj^-RodOza6&2u7C=0uLV#IT`_eyCET?x(vR@vbu>+X zHP^uRw*zTyHEQ~54p31(W;p$8-R9R0J(zLFVScEKJ0kr?j$mA~q1n5$tCZir$YG?F z?AdyC5`_88aXhhk{_4quBw%ofO0W*;M{gT-aF>Efv__cEUQvrS4q?o(;MlUhBqDIiB~0ZRF^fJ2R6zIe#HKRL1T*8TtYZJ*x0 z0utr%@4k;kz9R;V$v=JDz8q(GJAU(z-$b+aaqaS-xlpMd}qGz z#k*;}Ghq6{itfko&rQt#Y4cdy5RYZXaD$mR1yfmTV*ftC6TmQkzBU1VQfCYPt8){s zd61@aHCM3&;^6FS;;yqPnY@tGFj+TfHJnfFlFFHPY{?e|C4b4tbz>h8N{J`i@W=Ee zgmcJ8l4;zWaItPpqqGmCvS@~EAeAMoRd+4e9KO#7cQ;IvKNUpbJ=*@xaowjFs{_Q& zo#6gFen$S?IWtwkf^~q9!7;+#bbqhVm>b7xPF)7L%|UyiL7!AO8A_h^3^9G+Gqyy^ z!m^seb`?t|TK>W|mt9Aps#@7sw$9r*qg6hgdQMh!xtx*wf5+WfCjD^DfJl6bFU-*A8Savzm8)-@;*8x>9RsFm%AI;Lsh9Rt5k|O>eA_ zgdZ~UXKN=Yww~I^$O&t)6sYRUo!L86tY?^R%?%5};}9o$D=iN+&#C?NBJ%5ZGBqD7 zYQNG@>>heu9($cpf&iK2g*nSesfX^eY|baY(*0e4b*^ZznpEBLJ6*GLwJ4e#K@BpV z*bv0GIg6`%#r~bvgkh8uI4TT*>hEdkszS(Is8~T?$@YM|VTY8CqmRcsAsOhplUMs7 zV!bp@!4lK;Yk(7SphXi-;r(K?3Wq)txm(< zP8F*(z=LQjPycADvFjxuwX@`jAWN*`iF?uV4%96U2%bojAB_m<6sEFj^C@or=uO7zwTdrOW!Gh7#WmS(ytgAbglqQMzc zg+H((uoM!eY1b>Sp2_-8>$5H+HJfLsAYF5T(57&GcZ1a}1l7UA9 z*m0pQgto2AoGZ$ffbtc6pY})9&8c;fpz;p;q6Hbw$u-=Er}~3SnXdW19_YNsCx;xg z0uG9n?yr8IePU(Llg@ruhUTknD_mX&H4mTD8F=U>V-rV`&n2BzjL>@6Z}TaJT$F=D*d{))SKlAOB{+xe5O5X-o^o zwH|OR($?O`wkTBZ1F@D3pDv|^pT%9D2e$bWH~?>{iu)iLH(*Lr-^xo8(^vY3>iQ?z zNYdp6ZeYN3=o$j%`IbuaLd;U>H+a}2nESvv2OFL}Py^Kly@)JZa9Z5r%`oqc!n?N{ z+rAJ#l+vscozhauAEtH)z?f>c&FLtk@uxTNld}P4 zo{s3hISVT0m=JS$yS&k?FhRqW(xgTO(_fzL$O4}mm+JG+(@&?~^_1Ha5 zoj4-B?ySMjqu9TbuvBC8k0r!8dGZ5;H4@FZxew}}=YWnOFQ7o+go{xl)(q;nZiRln z-??_!h*1HLg1Mc2?hl+%;?PY{HexWBkq|983aiAtoH$^5 zE2d26^7QZr*d`Xn&nEH*&(#Y1W+F1rM`fnSIEeXAu=rs zfTTHhm-JYOI28n5#%>fPa@|q*Mvy7fv@jIjiP(8OkV)W%`5`^6>{s8{%QyWBfP8Wo zlzWSYdBPJiLcU2uRsibA418^JuK;@qSU(yh<;B;VvL{f+PYe~0CCZ*HMZ?@_-M8+&8c%`oH%50EhN* z?a@SN{q>0#5pF=X8^7pWeHM_!et*m_Be?IXSO0ycpV_2H?a5r6uEEMfqR-}QQH&U| zAzQ)P*~10KC(E&d3;J3;d{cl0C#E6KT&LLfEJ!xu@6WOLM^MXZ$pLGG{NEhLO8EO8y0@QVWxmnajegsd})>sshn^bSe{$M)>u~#HJkJzedXzw zXV!OcJ<F8@Wc@J=uUTbw3^=Ua>^VN2O|Q$-i8Y&ytHnk{Msw&! zKdpLbtr?;+%Z(T71?J9bV8^@cIZ5%X!tDubM<1WDIeDef1sw00h)O35q6YI3MCE`q zZEWSJ&a&&^j!8{&gRJoZNzB0rySQ`PyV%*^ON*)Gq;K} z8~sNnH5NwxA7AGg4p-Z^`v@VT6G=pmL82x^ZxIC1BYI7YPV{cnM2SAa=p~5WM(;#| z(feTZ8oiHh_LAqmpW}Gny^sCb2eW3@y4H1_|MUEv^oGB4b`8FsrtY6J3FpEDTEgv| zn#Xb;@7h90(!r4L3ah3&J?~=`e#B{b4v?%q8ytM^dw#BR6Nq=gpK!7ObiHf*OFIQ~ z;-?_v(6=RjzR@#cC1fA4OelG4Z=~bxtPDj<+s^t+QJxo6n`>giqXgDApvRx6TnOHv zY4R1&cx78gJ>soQy?~52m6h&`(NQApntujyLy39r?MFlbiYXnY9|AFFlzgBvZdy8` zwR$77r%<>Nb9wBNr?eb+|MDgeyjeGAR(qykIi(vLz%gCcRqP!siMx)03cybc=S&$Y zLez|6%pHGXt2kx2{&yJSqDcQ^#+wL%rJ(V1Gs{i9oPBx3!C7W`l6fU>eh(taD^ zk7S53C|yaxCWm-vScGvV%&b3#>{JYijw=QwD(Mvphd347ePsiw? zW4AP8ns)#WhI9TKnYcCa&&zc@^3_x~6MieF;Jya_rPVP3rWQdX1gRW$FB(@ zcLN&tTyw23_QB=ZMU`Km;cM7?TTLzZ#Ml0&A+Ik%@Uf#3FP4|J0PJ0G40TkXv!(I5&;54yPqIhu*WJ; z&$$M);ibS;3;G_t@dR1>=o)t++3hQAjhXA=tJ5W4WImMji!X6f`MorS@56#sz3 z*Y*XiLrn&E01c}~AXs8o+gz{-yu8i}R@}qxwH)?{+`NptQi{E5KK7&m6f7-QHU8PN zGg=N5oN)b%ty`Us-u~}uZeW`X|JKAAQ~W3m=M>l2J!+vISk&<|k|f=vB45}bC`!Qr zopVUY6Y~*v{zeFWW8XmobcwDMbLp8+qL3nYd&BMrQ1qLft%qa=f^b`k4A~V z*YwaPF(b2UQLNsAa(@v zbrwpyY+k+p9W94@qy_P$RMz!`o}V+TejHAFH=rjiX8X+I8GN|4eCn05tv1{twBA*g z`~Z@4oX=H7Xm`bM=B*3oJ{pTGCAM>k&Inj~YR4Fet~FY8&Of6;>CePa;t(-PCIpX* zeFl&b>R7MjGZO1+%;J)1WUmM1NdOTnFD=V{?)1VL-<|7B2(-%Qt8oC3SKb%C)lc;q zT|YgP_XRw;Pq7q^)`^Ia-&%kXqFUG=l-MH$y9B_Dy`FDvWrLWE`a)m1MW~oQC=TqU zp!aqTnZE;Q)U%Sw@;5H}`H&dNZO%eFHH9u(AMPvK!5xIl<@86$Dzj^Z$33ISxm+OxLtgxRyYmZpQn-U&LB zS-BRx0ELtpU){cR&0tY0=D=?@p9XxPEvH-Vdir3HQ?;q=4QM!A_N9@1}; zutSE~xLlvWz)KF671sRC7iuO}SH3Isy;|%l%NF8pkx`;_7`IhSrk=5Y0XC(D?n(01 zuiN>)7e8wv%q~u(50s|SIcsaJ|HL*2nR)-khtPs$f|!C|Ndqv9SEc7UnX~8n#kz$C50rI72+oZ%I_?9<(1KJ0m(_j!pHJu&J*6M& zD@OInOs51DzjX+1`-}_BF^g19FNPWp;&%78$7c$*cGm(=K8aCv(&`*4bi5s2ICfTy z734Y)ygWSeEg+Uth@qnKIGeZ@DIW-ZME2r!i$I52(5|)ImuU4f1ZZDE;4f#8?;JI2*fm2bMVEx5VEwK3&TMc8Q_}ih(d-{8& zc4a0}5cGE~cT(}X!}rq8+uyr2Q3i07xO>gal2il9@7Pe4ap7HUVfx$?3EGyeD;c6a z6_JCN`o5RPbQE_ym?{G2)*vKCC|}lNF?`k&F`X8ZlbT&jkO1%OD073}o0)*W+f!+9 zz?PA#p(_WrbmABlHJ@gjDWK&g(r50eW){Tu+nVrv?cvDk<*x@4N!)2;Wxw=Fcvbqr zD&-t^T%%jtYlP+s!k0VW(0IAu`Rx2ljQP@QI|cc?`NZA8N_>6#Ei00iN?Kla@&ka9 z>Y7TfMxv3whg;&gDB}MCI;^2bdrON2hIkT=n7F=S> zexc1l=PQ&U78dYHOwfaqY!gfdo}I=9=xiixSy>ZH?zRYmi~);W=*i$@8D0DPTdHQo zO;`E~Mw!hk8wbbT$nD4?*V?VDp0d(WADizux}f=wcPv}49f zcTJ?KS$lp){){;p{`T9$D%iSAiQ_CY>OD#sRo~)9MXApTkJ+Z(#=qZl zHB5To^@iM_{yL$nI}DR@MPK#xH|-f+S2wQC0>kpfNy{MynZZePL$n80j`==W&F*Q9 z@US$48w$%o>QWS8XK^lxCT&bPc0ChY?*){1#8A#7(@Z5dS%+!eyTub-xUu#<6P$R^ zZKSyYP2I|m1&J*N8cDR?_#UeY&2z=Wo?YesdAD{bzshRmHw>hdmBkO1g(V+-@30rB zcnbE|mWBCb_ZPs@WwnOSL^DtD>z8LRIhXW?au7+_#@7}O!@h7Kxo9=BE+DOSv={!3 zWBY1E!1o{tM+tWUeqYCjA2@my;Yt&a;HtDQU&l7}XI$-n23Dqp zZv&7RH7s8@uswUlDC@D1JaROynw`j3`wEW|>?A7=^Pj;j2)(0{cxh@KogQTrNG|M2 z@I8fZois z3EH!|Z|amO=GP<|bU%f5Q=HsgenQpb=NGfMHIX|uT{C{vEwySeE4f$lX#_+DYHTOd z>pd#SoT-!=eth6295C^55ciq6V85qeI{?zdyw~jOs>p1PBP9OsZD(HGAJ5yCS|vd_ zUyr2F;JSmHYrkPQS*y_HDYybc_7HE;^-~*&7rj_ag!nbo0y9o~mjB7ytqMmm*+oRTdVx@lcIsD#2Q}J&8Zhr5j0`UVXQG&Bc z$o4eyeUk{Be5twW#G}`X5yG%ez!&7ykFyp>$MZCv5^EOvy8qJNtk`RKq0%RJ;f!|+ zpR8$yw@J#g(Cf`@xe{QeH< zV;4(eHFMv5)SqYW;#67vb{Q*(p2NZjZAw^GCAViv1t;)kQr>Wj8_$ZWKD6T=xBH?e z`=W$v%t?x;!zXq(`nyArrDA02LFiu<);?_tbKnnvkG&rEY$-_nyTeIh+R0EyXJ?^l zl=_dCK4!i5?p?XfqbW=Fe!^X-li`VMqQQU#D-5UC#$y4W1*gO(Hy}sDN)^7 zZdK*iE8U~Xp~HXO8cLE8Rto7!#L@YLIY0|jjhQ9~Y^m6hVyABggc3YIOh~K;7t4-I zd=FsV5eyJ2;jOOfLVmnR0zWv3AF5$!WxW-8CzMT&6WeKR>{&n9vc)?b=UJLUzRm`h z*(XDniX?p7dz103s6!giTyQTrM)ee1d_uQkF_)1Y z(pao&Y4PfHtsd3H{o`U`cjw_Os~{sEJH#%xxd4qXHsDQwae1)#hsc-5j<&44-Klbc zl^%LlW>(x#I!rIzWUIO4T7Hg*{b7&=j^|^kK!^+pgA|)BQ(KJ{Xt1qsXUoUh|7O)< z0JwSuu+L=zQS~|oUQgH|@fiJz?}$Xu;kP)BSw|Q5Lzs60 zI3ivw3*Pwt`x+n_z8iAu^r=Hz0GyPn+xV~JA9X`*Jmkp*RAjmF5wC5b&J5s|8t2WrAf3DFu%m2ti=K10=$?xGG%FYzG`9 z{6RUOTh$j_ds4KkMe7#VojK1o+G2*Qit7bGmb#7qy&F9TC@fztkmJ2cVyUN50XR0Qvyl;2$lQ!^els`_gaf>nEMD)r$l+jSrFm?0-L>Z3e z4~Yf)FZeHCD?m&9yA>}fBVjB#~u$pYpHn^ke3Iy%W;tv4+f&a&Iq5|VTA(2 zbAmK-q$)~21qgo}Ms{_v;TpeOFUhXzWWb@`V&*8 z4M#&_h4MpRR2A&4aO0)Y1ILrPxhI1(vu4evzFR=_O`AQr>hi#KN4t9q+}ru0OMLze z!5nyJy{qdT-(-|-@U_^J3iY*Lsaf$0h^hZhXuVk)UBofeAh7!9je9!ZDL%Igcy-UzqMx+pb z&o^>#8LEVm^a{f(4B~JRK&~%F4yCEcM{6jNg!|s=;npvSbdPQN4d*ypvZOaT-Ws#& z(BB_4io3doLziliQBGbwUwCy84Cxg#VXh+%0w3})swrbVXm61<(__0H1v8DAJ32HV zrn+U)y=rG&w1ZbtF~2;|W>1Vunw(!pOluznki4$!R5h@AY$>pobBXkI5ldt9xX0U) zw(hW^2>~a6wdtw7KHSt8e2?q;I=)q+ap!}}cIb2`c`q~;ABpFyI!C1v<&Ctz+gH3-OLwgjftEDSV?ZZke#o>QsYGo7E_`AF2kp!H=u6hwu4=NgD{gH0NyjI$Y;Q{;Ir}K*nZ1xyl@^pFmkWUh`*?64g15cx}nZ$W(%Va@JWc~8%Ncl z2XetbJf_aVdb17< zkAk)&U|6v@8YI9sCQoOIZe#>!cr6uBlbDaYtu%f!GGiC(gQo*bbUv?1ee#5OX_pX@RiH#o1iE)Q@JZ$UUZ2xM#?pXSI_n(P3aqurv!NQ?{k46WnJJxHtw$63 zzxwulQgQ|Q?%fcV+CW9J$L$m`H8!~Czrr;nKU>tzdbSko-gQ6J3B!N1?ek2~uOclH zI2QCjo+T*cnPz=MK|kkl@6A#1MNeKn{-ad+fR~9_(Wb?*ktx}@j4G^R+b={aMYJMn z-$EK`NSOk8UIy`KyNt>vCI!1?n67`f<8`?G*^IY$gkpAPcDse-tq=K6ZYX6 z=Oj>^z4zQc9<{Q}Q^+w{q7-}aF47=&H*8v#;$rlwsmkhtjW6t}&bH|*7TzTyTGg(% zej?3{S^dN7cq*QxFWRl*bsvPPi3S_ zK)~tywU~&*MshilRdAh?hQ>_R;AiiM{)*D!;;Aa@hd+P*oOZQXsieVA5$@us!0BmZ z=8oljgoL;n6yqfN3LSIP!O9v4#s$+emO@i#7(71FtW7D*%kMn&pi{8d+QBe2jN5R= zP-!Pp#WQ5EBV8@o&gfE4TPW0YSA43G#}i6+Adl(sxoz`vf%ue5MqYRy<2G}ksqDKq zlei2OC;d0$711Qs*h=kYej+$q^&9*aNaDN3f_=LTsG8uTMSIpc`P_!;@#JEbA! z8KpSd|6ylgM`bVb?nqVm^{CW0eUBlQL2M z63r03%psV9^FCP|T;Hv=u(#Q4w4XkTnNOZ;R+DHUzZ;)INQAH51@Y+k%DcsTU5$>5 zW0!bv9kP4aqP44FtPbVn2Zx0`OCxWq?-BWl6CR-bW#gjO$0$iseK~#*M*O7Yw)-WFx+v)&5xl)S z{Vukznptkmpr5(K4p5#&!3-PIXEq#m=6V9(I3zy(8It^g=v~{9Y8WcDmT*x_AViCr z_QJ06=#?+_?7ieW<;ivA*WSXP!Zas@N1Cg#K1jF6+IcYX5)WIt5dNIDRQ%4(7$|k7 zZ(6op(#}{BZe)Xby}kP_YY&`XzZLTUE+f;Abd!yDXEBIb=I`-QN8G|h?fVw-g)y;z zOcUKkw0lV!;Q723wiu4F?0O|HEICZ&C>y^m;6_!;tE0xiP9SRe7VUs2+7ZmsCpUz+ zuLskeAl`Dt9crfKDzs9sHK|$4SF%(2b+2t{D^vfW4{7L_9$Q{|yy6qDWg=3aHl?KL z>TSP{$F}!`U1ZrD8COK=So672oab)Lm^_>^BXfX-YE&Qd`?$(+yo>O#84meFIZg18 z77{bX#wf|4^J%+3kaY@IP}wWXR3=!|#B}o;jrpnWxpgqiLgAJAZMoUz;MWI}T{aCS z>>W!!Q+kKa^ugQP7H zbc7F7Hsu;JtmzZnbC2$=ZzuuTCGp%Z8 zaH<(NApYrTVqF|lF1VFDaIq)I;732yEm}E{16k?<{c>pYb-O;y7uJqHhD-nAk+1l| z0G-Hu3HIk7DKXr%jO%`KYcjaU@Q55n6el?UvO+ywM$T{Tvkgzy4Z>*y)*QI`B7T@E znu^YRSS_52F7Rk(UAxLQ4(UxgybsN3W9c$hj#sJIV|-Fb!6kTpyXw~g=G}C9sH#RJVhYBG6q!X#K-6w(3!}CoGc82z6v931-$}+LZ{P}ozwj< znolqGfKl#fRd0}oi27{ebRfA!Eajc!?ZoPUBDxr+d2m=(rc8@vmtAaKh)z z4oMtjuvZC(LqVL9KK&&Zm%>pJH3ve7EA+PAPVC(`II?*ZjBie8ip^RvahKdz%CO? zb_zPCcTn!A&M!V`V>IjwART{6*w=51Yy5t&!kHT&-GlKgfEXD&(auV2ypG3BpW1y7 zT47#jbE(41?+2~xNx{1WzBy~oq^@uTvdVt12Xw$8YjQcAaz?$opz;{PJ!-h3mKm5P zG#TuwZKlNRU%`kiLg|I$nCIzn@ zu;^w+9v*y)(KTaY&S0p>M<5>jl18>-{z)^>SA!4D?op+K(+PtxOZDU0%+zQ=jKE*M zE_tEGyA=QEIGAS^{Y;9b1wCRYjM0zXsA5@rrD1{?cniVb|AmD4Mlju`_UScps_mI! zfGEkr^l?AgrJa~%Mbd6@fYRI7*_9<|=ABszy}`^M753wKvl$;(^kp*3kshp$rA6iG zi+B~^ldINBbrW4{y!A?pYP2W?|1adkDRUUKj^(8elS^2FulyAHGxTej9H>(Y6QX!r z3V4^79+tjw$cLowvTLRL@kSOWDIVa7{}EMu=Z>dWn*3f%0QO z0#+RBq(+zoRV>p z72ZVfcg7~OZ>IO^f~j0lb_rJW18cDj2bBT_Q<`Wie)FDiUbj$OYK0vMorov7hJpv8 za?J#mxjB0Ap40t{1zxb7z5V0-5us+wWu;n^aEK)&u=+xd!s|5R`e!0{-f~|54RhIp zj{F@)5q>y%ad6z^g=pBAYCG$7KAZfua+Dh9T-dmxXu(BMSTzb+T#$ux_P^>zaIAGaj(Ng zboz3?TQ{1Z~Uh4G>B1;gS#eM7JWeF-ywR>;8<)MCB5%4v+ZNsJ0D0ul299P>% zk(gM@onXHnt>CcJ>NFNlme}WJ=(xks^WL;$bo<5kh~>vm9awl1hsnNe<3Pg)?-8YP z#z}vMYiY-CbW@!wF)GxU;@1?q&3fPgz3J@^owT{uqOp+uhfQ8X3j>oLVL{VIj_LT5 z=9tOw0peY(-SEcLRpS7gKB42{DSt+D_#N2;wOW)RQybUh=9R&Y8{Mu1)h{2Ro{MMV z#VZv?;_U^$G#-h$zvQBJqpCl3RbzJqH@qq4H01*OaaFX!iKOEjdkPpWnegAprG?5v z^!Rt9K`(r^gOSep{8WTJ8MRg3SI5Y_qM~2xxiwoEjpfUe94IYNEtlS%WiNI;Dc!)7 zHw-PwSCC7M?^bJ}VL*LU(>PkfoCWHcw7l(1t&?9RZU$*;>CvN5aoX#>0=Fn61+Z9| zv9O0=~`u8N(=`*KZgmP1_ccOB~QrdX>o)N?r5d<)!nT zSTKG=3Kv5KiieuY%|X8qkiAlZQ{82rG$)+hX->arI&VygO%_W(5WT6Zx$%$bLOF$q zHWZeZ-wG4-F$cE)fNuTnU-R#&JDlxj8kkt}7*{qc*hB&1A_u%lGSy+5<>+z)7+SoG z{tk4+&r3rSJf3*1JXF%nMvI*g?&J#(b4U7;A@K~Nd{f>z(PV<$8og`}Rh*+Wm{eFj zX9u|TRKcZi9IhQ2bpiX)!NX=#p+DHHqJFS`4|!Xrm|L*QK#*fBC$*zZ{uI|db2fJ& z9SA=g5aFB;K&mX*uXG-B29ixiKH=?sx62hhsLk^SdMh9>Wq-G;=sGGpX*Z_m$DdyR z&+!b~o3?umr^~-jcRes-jduES(aMqC`i|Y?RY?dGK4%HlFbW#$l^%|NP4T=A2?kWz z1HxEQ(pkCWu2!W3lCCt5Gk1AXHi~jWztD-JRlmLMRD1)KbD@7YEb9&u7)Oa0iwcPRPXSPi717-UdKW2(GAQ^TX@s>q$ zbX>-HJAgoTjPRS$b%)d1ugvd&6{mRes}4rFH5{W*W`GHJiyamVYAE4|g{|}rTiPn| z3_2~7MT@oA8SH5mU(JM`g>G=z;y-D;=xJcfV?f-ee%o&i%g7fYuZ@m8_Z_$@6*ixu zMckjAZkm9PwU)y)Bb}YyY@pFpOFsj5qP*`D5n0KZ>p>HNH!F$g%AM%RR=$eyyo$<| z5LGuYb6BCFWRrdNZVVe%8jb%N!x}{5a=X2L)Ey2w_k=ms(y~f-(fO{Eb`!z^K`yb& zu~2Mjs7W`HNuhORWxMy&nf7D@``j*m6YKmLZ<-bsmnELi;=5}lp>~4<61gY+tI^(f z;frqq__MO!6dL!|I5lgen>cAL3dXi2IM36TTwUq{&kk4hE~=y%17G<)<4Oe-bSKw~ zEEy@sNBhNHHokpQf9y0~2ULB{i z-t~L{RdxR5ctmTIOzt`^SlLq!wnc+)sKgTZQilAv8xXxrS+XUV(_1dNvWN>3DRzJ( z-=C+QItPCJ?MZH0x1*Fau+cyQ%C==_ymEE}M+P0x#fC3*{qe=lNtw4vPduml(U5FY zbI4SIM2coCgSF{_-Go=!j-hIB!G={Y#DgjAe38|=#g+tGy<2X82?so4(s-z?_hE$f zrtycQH?fh8n}okpJ~)jkx;PD%93kOojKVMJL-|*ij$x{yP z1$Cdu2xH(I3qa;$Bg$UI%q|7*H&kLNj^1!6Cn$C~2rl!h94ZAB?k0;uXt69M_q3?V zW2XY?lwqoG;P2e&SMYOBkX>N!`N{f*(Af$?Hm#_d=jG=bv1TngFJ>SwJF(fR2)ve! zbnF&>B^5I|D#9xB6*Upzan7%(&-v63y9mG2aIy*UEw7z^UC_$Yc;@&%hnK3-{cQpZ z78gD#!is@PFvVjuQQNa^STl9OmRN^&E$QVupALFJ_Q;a$PO=}$2m?%+J86=m&4}G= zU|iH5A@=FljO=VgshRJW!|&FSL$=mn%Bi3Pq7A3`xU_>ab*~2z7O2u7B^?(e{a?EF z|H<*5qO6c z&l}w5oZRFiJ475Os@VU7KUKA7CX~#l*@q2P#Va5GCq?8nu1}b<&U@S}`5%Kr7gQSk#K{PL_ODoak zr4>Q_Kba`#hL}+UCsSTy$a%&1;vRC;4-3WHZ}5;zZ&Ue>PZ5zo>QR%$c&iu8?fc*I z>3V;51nh93l>UjeQM_&p1FCYmc;13wS*O~f{YhLIQZk^pSj^s<1pg7L5I~sb{ql3f zKs|t(`BD6968cgLfhNsnELc?HSP~w2t-Zj5alB{YwyV!bZlo4de;X%Rsd_8Jj<+nv z+0|QzN1~StN?t*mT_ye#dxKQLPR|7Y+SmHHcLo|HwiD9am+ApFhKZvaz&JppZQCL~ z6ia{RhgK?RKB@eH`GKjK)u0?s^!f8E`2BD-{XJjRi*Qr?X2KHc_K|#2=&9B3FYNEd z{o?Ica<%IFh8QHjX$|;j6yGD8oqE$h2-Cm?nqul!eMO9zWr5B3Be0&d37Ec1vojol zWC?v?T0Q9!uhRwLz+VGBa-53E9qYy)CKsg*V_T++E~b$leICq4{6W2qC5}V8dI?bx z8d5aWxSw(esxNU=6G3DWbI^zzlo6?7eVICQd_XP81^37ms{EbBI8*W!aO(+IBUF68 zY=6NUJLZK&bmW+9>~uD+R_y{D)|0l+Bf)PLs;p6;hB+y~iPu2Cp;xalS10WiU@F__ z{X{Tn?mL#NMSI<_(^VsyUoO)nfUHkb5kYMJ_)L9bZTa9QZ6eyggblXLqxCw`>+CEWdWqn`B42jI^ z`4w!7EUwEoxoMfd)Wv5wyaCFwi>@g#SnZZ1zOO*7OVE+OAYP~ZQM!@DQ@KR!Lj%q@ z*~1wKy#VWMnbI5lKre}~3u^nJnj5$68QNkdia7V;7mSoio>KuYe@xxw&y~}2cBweKW~u<$U|+r(~d2rez^R36<}|}=^(4T#PHt|2rcdmTYUzm))1)FX<;*C}F3_p7D7ty`X6#E|Mts&%NM|J8Y(fi=P0nt%s zSo#EgrayXVgU1m~-=E3gMZXePQHtXrzmsm3OR^bS$jWD9=jO$#N3q=XQm8<_|0AsT zkms&5cm?L?pK{+GnBFZxPq^C>1Ulyf+_+VRNIs|hWav~CivJ$}my7yp<bMA8g_sz^zp8LKumty0Od zUzWC)B^U305eg$}P(+S07v8Pqo>T^^lq;^8ObrnGi6>DlM$FCMn9i0%6odj?oCk)0 zyiCo%9n0Rr1(g5)5?7B60YSY6*J4!cMT*f5*fvh-Dy;l^Z^BWmqvOaD+hjHfP>q|M z{3rBLYpG#56p985*w2rTAdv#3*^M+uFkkI31akLJKd-yP> zVK-Ws_@Hk2-Q_nsiF*Tc19*0`_T(iZG9Pottl|X#M(;*bzar0hX`?$c%W>+mgQgy| zCv_s%mN{P($RxXac8^rurhyJfYO1{CZ~N%Q$Z95+hO5PR&A2hW19&vQp0W06`PM_1 z7ItX7a=Fz0!d=PUkl4lDw4p>&&JA$fTPphF$t(BBjejS&O zl=G~{ne}bdgx^#*biCphWi-K`P zGm@H5I2w@%`SYEzc=ImL$O7u&&- zp8l=C(`qKqJ?En7jiW@*(?;q7>{UgEjmAikcky;wg*oRfSB3$!7uM*YIoESz#gSam zaIuZM$GLJntJh+9i8JUQ%_n-XprCI~V1#6*8l(_^oe!c`6nTRWMo zN3&aM^ht=u!i@tU9-Wt=CGyla#U0*?QBAX^zi-EQ{TulUOHUzPblTEbuKUa``f3994&#j%dAW8y(@ z{e#^ro(+&m|0df}4P6CbptJGBizlfwk*+U1Du|K<4!uU_xOe}g-5AE1#S0%uKKwJ*!5RW-a_u6V&p zB99d9wFMm*1FiyrP`=p}J+Q4ZC?I?EC?qfM>FEVZWthR~A6&L0R_cG7eP92t&Xlab zaHdsxBcR-uv2y9?$09_Tj##}W0YzlD0~O)$UUGr%1&ip`Px1MW3Hv8BnAJjroR+#x;NU%Jpcwi zO8<`!_iRAen>-W7R3f0;`%@cwUh4WlAb`^xiY z+`mCL3op5M6-xA8p!gX$dJGj47z+vL>kl<{Q6|G*1;nt?wrTQn|%bFtW|V*lw} zvC7`P&f?amDZApZIWOgM{6=8Q()s88<}(08VW$GiXMuBg+bg}431 zvs#b$q>U~eGm2jR@rOX*pl-~+F)_p=Qk3|U(P5IyZ6+X&oSNV? zivz^KZW5FkW#Z>QBT7Ws;{KwZQYQc?bSttmO<^H;4qeCux+zr3BU*o)!#(}TJE-|j z1{8zW=qkQ95Yu|V?r*z!L_PW(U;CZ8b>LwbiY71hzo2{YaGqM$bI&6n49`9|_ptM5 zqu{2rDW*PF9`;!3UmB+rfFv8Pu`?R0HmG+V;sYmD?q)~^0_=MHyLVM>QKd$_B)dO^ z|5+7&Cu$dl(+H6RH84X!3;1-c!=o2JA>VCET_=J(lb4*^B0fJnk`bvg!7f{o%3zSv z64a@9 zL7+i2fhiwPF_tt z80<3Ch2Ybq81;oYlB)F>lfMCQI2)>H@NI6TDu6-QmfA}F5M^E&=6H-(iA|Z)I;`_5 zRNS^uPr|tWp7EAOt0l=Tb1}2hhv@^@_i8p?ig#0dvvs^ z^(r!$NsgHmR7kF>LdPxf$=sskv&Nyn&QQqs%8$S8Ab&wsQIYjfHDDFh;I{kDB;_C- za^-({(Z&Pb=F&vIZ~1?%776!9+5TND;KJ(vqpTw5&FM71vHR6)2B3ZzzAwOqC0=LL zqN68uPGoENsbCERfg=rZ3yY0a7Pz)hH7c-;@`XFbha&aHyi1fBNQe4)@Ko5V=viU4 zvftT53O5+}pnNxZY^<`9YrxuNH5tOY6#}9hC3w-8tgRi~A^6OyLzo z{j1}VjM$dY&zV@`;MjjrbzO;TFYo+^<=&Z5bKUj#;{PQ!hAO^QQj&T56;=_-_sPZL z@ju(v1gu9Rj*gD+QSotcK#5qrGg}eCoHhp3 zOErN9pu120LVoGY!ck$12IoHmT?QsT{djFq=CG{Mb*`)Ra`>d$|N5ZN&#k0_d&Diy zdNY_aHG*z{_|2(=4fd&92_E_r(oQ&L7lG2cjcMxQPw-XMno_L2Bk1#ktM=|Lf&Ruf zzZVN07ey_sUs`ULreNC`Vtt!9_kwRrX)<2g1wmZe8)~L%v;<@4+gW{w??^@N@jTq2 zzNLS~xHoUt%KQncpt&iLQ*0!LL^oBc$ie64Lu+2%aR{+AD=`L^w7Vuz1@hIEp#VMg z$@fS}_?#E~caPV$&M#xgfydU<#0l)MS?*mDMk8H=&CvyZC?Ze;YDV zvDTu26K!bSK3hk_rN#x&^L|pwU&W}5r;l3;?zB3hUZG`BuiRAPAz#|Z$Ih`+vzu&H z(5E|nWf2p8jskjV;OAH8XXyDr(AT5Nq;%42CB+8<`PxkuM zU!8lQISD>#X1z>UROG-~RC zDXD0r-%>dCMP;*3pZ2X(Vyo1DzQtsdUMS)izIYFHOD_ORLuqSHp70I1ySNKs85$@Z z3bM*V_T#0AKRB)QM=^ktf9pB9w6QE&%#TO3_RZZQF+++U3@7g+Cu?3i<5&28g4eev z7VVslGCv)%WH#<&YF+d)aAN8jiViD3nBn8}cnON}_|M+E8jqYxz-shqIGva-OqAg0 zhIym{9yfrJZCstY$o>3j#(H-g z+t^MXmzwuqN#Y5%q($K7q{OF#pY4 zy4CpJ2Yy`cj7Eir<**SW9M6a{-==1+mfYZ!9PXqx)Twuu5PIcYYG8!&Q+Q+V^$Tp4 zje7#P8(H+!KlK(7t@iWT$^Lch)1}6O$3Dh;iLF8keiaX~#UiWcxMd@;&6@8iUbyw~ z-&0vW!gJFTrdj^;b}jDliyqs#WdHg>X)H-#8GZ+OE0g;m;*U->{c%zKCdmPuf8Rpx z2~VKM%`Q%ubh4oZ(!@0}4ew85G&0-hG%RMf9kvOqr&L}UhaZXzpl&Zuw2PwFwnIT& z-)L}&p=G-hVJ>Y%RF9%sG#~1x*kjvYvCUt$Y~CaJR9$7Bu2w%Ujl1GxYb(4WY22?@ zEqO_QM6C=KYFWOeN^f!@UMGUyPjIqHt$5>YbncD;?-cAGoZkeB`c(Dl|~ZAIUArgx1;mqb-!wytF=i$vNevC0SFd0HnC*V`f}?K5T4uXh|7(PfTg7Mdl#~=kR#s_X zlG)OeZur6RARIBP^L7I@gu zKLN?o;fcABY|1IfWrY)5ue|Y;M7`%Ltz1=VA+oG^whP(RqUZ0=8`_}nL#{IPf~{Be zHV9|euw%#Xnj?)a8Kf5lOmEa9o{?<*cJ{l`X!hW^)4 zxW#wbyk+!xKqYaR1S{p|ClVDM4OBjf|LGJwM!E9pyvU!2rz7i9MMcxZq3v(t&~rY00`+*{h(ERD z5X2~TyY00hCVzV#8V0Q#gQBLK&_@jucQ#LqFZE;R)W7P0?kF%LU&3=I8jx^9UMEnq z`xd&roK3;C)Cp^o2u|R?D?Bu~g{nf=*i=wyBY@LNMWt=zGImQr3XoYUSgdUj)-lNX zao&+yQu!In^+MZta$u=*upU?9$=_w>SEAq4sXxzNhW4IKuZFNHTnt*%rq6P7NS5L8Bu1;yn@=!i2@XrzOTec z(iJxa7DtZ`e%~MNY zp!5s#M}Rzv!|4Sgqj&WM;DXWL$;~%dy}ypX3ua|dcpcxginNNfi+b3iP;Nv4(XAx0*n=HE#1bTK5@4Ay05jX6A^?D^QMLjUFo51;4D2 z*>FrD*bB{3Vl1-ba?-z8|4VHwIx-kmEh`!y*(z&tkT@8A`1HZY%)JN6?(_1)7N%eI zG|R7vC*3~V&ZYWi$@`@>IR;AnjWM9LU<;wMpN+B;W|%cuGDIqRM@)u34LG??k$3C<748{PH(`f5Kcfq<+U zOqc;21wdN7-2R@JFD-hH1qu!tO`BbHcpjj;V#5SZzO7iceH1(Gp%AKrta5#kTlBe| z_b)+nQj4ZFb5wFqJoM(dS`H8^bQI4`)RSzg*58`Um$Fv|h}`_8MV(U0iSoKrde&8v zaAG+>t~Z1{cN6^!);YVAe|&A36KcJg+?~3zwuwA0$BP$ur;wERcd=Z1DXrY@-u#_y zlmHoUh=^o?;iKiT^SQwA8Z0iLX5mkC*^2;WiHOTe{h8Cw5D~X>rol$-dEpi=*7sUhufmQcVJaZBQm?l;Ay1 zV$u=(`_$!lz4i?y=pPp_rwhrtQ>^cn;JrpzhwQE}(RO%{Kio{NYRmJq?x&z6&rqcL zpU`y^G3y?-my$3Pk#XVu{R;Ep{R9QA(AKgZOn;kaXfz@#JcJ}3z(}QNh(qP*?puX# z1}6}$cXcpQtRSs{Fyi~#F2}-&<<8n$hoiuox_SF zAIlzJT5&k}jo7^Uqa(ooJ~6!VC*-30=i;N}FQ6-&F0}t9Q#3w&gynQvAS3<$3~|{r zr5flrX)hJ9?kqmsovqL$c@pdodAqzHvhP_;R?ofh{T!Sk0K2FF`5Ou`cBVP{$^!>MR2q6pN48v$#f87yrBQou!K)4rHT8+Jzg;&4XM3B(x z6TbIcwNaO-{p7~XrTb}5Tc7$*{iM!tzPnX>NgRjOoh z)p2PPX;#O=lY0x)ZW-nR)p*jf0!(}LLEd-yYSi_c|HsF{cyR19qDg&9E;+iNAC>x6 za?oT7>vyV8-`II)>WF~qY3oC^*Bc3`SD2pO2Lj}L-JN$5?)-xAVSJ8!a_TMDI=HyV zBMMWYaY}csi8hgyG(vb=x6~6T-_$7I+w8lYNvGktkd|j7;BBGhhTJx!Zr%z}UO8LY zNUC;bQ-1XoG=1xQK(Bm;t^P7~i_-r>qlTki_n!*7uXH4(^5tIx-LU82wFHB*n!jgP zCN}>EE}BFQzb>lL#hU(eNJ&asT1C^(@$or6%P9D+BB%57bI;gVas;M9B4MLzp;`z( zaVO7WCv*2~@dTXLf=`rQWn*qq;Ib^VTHCCT_YsydS=cE*f?U&UBEVMdn&jZC{jT>F zNq}B`>{~ILTT)uDAO@-NUqrG0h8tKKF8_GFOmg&$(DLW?{XVz~QYLiw(`P6O!9}=x zB={e=CG$rpFb(IsCnJ8NY|cSwsPk=RpnY{>uUmgyJ4&4Rofy5<#^n?4WRvlI8-Mi0)a$ z|0*V(wh`va9Q4A)@nrU`KPW{NStGhJ$2TwjfxPh5?!LXcF*lex zt`Vb!!+R}Yl{_&T8Ufo1l{L&372iO-k3unM7TM4>UPPq$fccU-ArX!&Uqn#rM=XX6 z?%*PZV&L0x8*roX$di7%MYt_ySSgZ;lWJ0(w*cv_!^x?vKOk$XWMKuE2TS_=tnpRa z)3OaN9=9%x)-3sDZXbKbwtT^_m%$D;QvS)Q(U)CE153FdX>4jl%V&R?Yka!Q#QVj! z2+SE(D51Ts?hp# zhE!mC?iQ}AW2s4W@2|NgZ(%C zjDt{FhfpHzjbbikn*<}8R;7Tho?7t>Pexos{=c{}O6L#s7kH=_8Z^cQv#=!Nl8oZ( zR7-_;84@Js01d;2y8G2MiLGKdwC9We$xY*L9N*sxC+FX7LQKvrVEIWEdv3H$a8jLD z;;hyWCFYK^}cJzjmtjs9U`#dlm4I!`hk>Qi?U zgoyc=M=4KzFNTK^tDzfs*F4$9u@fxFm@m;2_e=thi~Q)AXfmVgKqODy+04?N7~lna z)G0CXHON<&FH!ElQ1gyDUx8HEuu@UIiGK_Q_xydPp+nhP zjdB^5E!5izFIX*RTm@M((* zQW!ry(E(3;0E#+GWdZj z4{MHAlz?#7nZWSw_GGp1K_{w2d+#3;_as31rss>CP_n)Auhy`~SMYNyNR@%;H-gv; zozi}_i9nYq)8Ei~pr5@})5Z0kwQzz2ySum60C5Gr#-)1mJJ|EEe81}MZyRQyiVuxl zkyl^14yV@SR-Xp{y1Ui(SDsGC7M#qP4!Y9S$X|T>(_BV7#e5u}ZaHNy$Y}HS-Mh@J z^UrqC?(~38mYf{%TG^qoCim~vyhC6IyNWth8vV-Gd73K$ZytRU+G1u(vh3ICS^Wrkm(JvHnNjfdbc9L>FH6U^U8iLNUEHM2r#Tt8be(uZ8x%#)p+9dlzN#V@hv8?CS~DX_^3 z^!%?8JQJG*6UJ8F`kfs!{V>+CGw?3ZG4W}d`e_R%kyHnCJlxviU1S~v)dh{s)W*1W~_w`A;^+B3K-DQH^o7gmU zS+!;Rt_#dTu^Hx_uzaP=WkZuqZ#bPXT~|SFkf37<2~*<^Cu42N{(LH#Lfof&Jzni0 zZ$gy=a0wehwpIR%G-@;$nO7SXT{S0#9=!ea$$1-7tlfx!PD@)z>}!h zXuT{A{DlL=p_r7rEDq}&K=esD^Fr;BGW~(?BpF`o-{`PM?ERtE4AT11S{-e4n!*EnZS} z*Igqz-YtRpHVgXY;=@b1t~fOhxSw%bH>_f~R!su<=t3boz2I#r@Ub)E+Y;tkB-@_5 zYjWuR{@C$tO&o?AjA`7Lr{|)x9sez?tR(uKusLzew&MYdlUo<)zptwpscW%}c=O1>;9N9QskdQA8Foq1!BPut~JF12CCygQ%qkLME zO63BD0pb~WCkx^*DVp5(y5er~3|z4LTrgtO+h?T5Zs{UcqPT+T5Mqm{ zvo#k)HRPYWM{DT6?^D^PmwJXx8iV*Yc1{+qH-^#z)CTlLKdNVrX@I)b5LsA2({WJ( zyl>UMVd=b|5Pke%uXb-Y+tcL|6^Ga~rjb)X)|yVOl0Y@LgO+CrPG+6PrbBx0rF1>3 ziTZ$JB!*Pku7yIXuG#yXbfn0Xv0*3%LGmAYdV{1Gcm&r4XJLv|;)k?yBW{*{;rYp< zf_K1yW4I0#=IDC!{kgg8!%;m}aMxCan;iITb!`(o?kUD^t@RI}s;g%Ck)D5!U_# zqx_ZE+o3`!&Pqc=k!E4sF1h_Ap6QPf{azRS<&7-U*SQxCe(!qQbRH|h)li6;GH|oo znwpw68D~IrHKXI>vdc|Q=1xD|T$J*%sDP;E`muWRdafixk+VA?7Vcz-&`I%Pswg{0 z|LZ2Bipa8uMicqujIS1X@&1|vfyiZbB^~9GW45au+Lo1K!{%GJJW^+UT9unzA_@Zh zh`gc*``uvDi%Q&2d3~Yfa>>k??h1ooMem_+1?!)2t>_Q5@0?me7DWLYI#zF_++*C0 zFt*L&-S&rLiN@tzT38s`;h3QW zZj_MBSAM50H-6p1+bknZHwyY(!|=T|MbLmbV9HiD5GBbWqkruk>--fiKLtHU-^+%3 zt{k446b+MJ8-#>M40qLU1I^)xO}!x1fBwaZzFW48n16I~tGseocjoc4cNXV3G88MnpR;Kbu|2imK{o+bj_lmR|HN_gtS*N11ZFmUr3arJ|Ld>$hd*};yQL_n0KDINbsa@NTv9ab2o%k zuLg-5L^3CIicGr#+;OMtN01N%)AI(qLlmKAAPY#!!>bF^S_C>~J#-siL+SB0O3WsD zZf7(X7ooWA0^Gh1sW;}s6#m;y`%{4lF(~d|b&`)E8{q!)&Km zhyzM^>hCa349h}jbSOEkBnd`x4sUWV?!>2XcJJPzY3x2Xj%*xJrHI~_s8eqYDgXd1 zK=iPp27PI?>q7?jRCD4JsBx<^$s>vQipljU;YJ-}g~9)@HI9ISXY&~$phe0UwaiWS=W#ej|4gpEwtrJoV5I2x#PQ;S%$OdF=9v#I26!ty4CF(-|=HIp?KK{zRm$(s@4iezidrgY!v&VtYR_hBC^ zITIwF;%1M@zD}0fF6cvfji#<(1ZU zhj1~UG(3nc#?BZMB(TC&Iz|w1Bd$FvS&H4`@8(US$~l%;zRR3ImXVTN%N**Wt)-eN+UN8 zmN3db;H+=ELxuZbnCJO}@Gsg(MnY;T{mz5gQb869ZxbDz3M~nP$~z|g6IB6dk|bo@ ztB(v+g{=O;x+amLifz z4cyjAkgb?!hVdw7543!!`6^Qiy0B5z|3+(YvHSWlM-3G3$kv6B-?Y+z+G3vX(aV;- ze0T?voPfb{fz9-d!qUdvR?gc88T)2f+4`?TE_O}Q&RDrd^RiGp{PXsutIl)c45H^= zf3ikS9<*jc&LD}ojJ6&YA|&O(q^}hwA|eV0#Ox`HcTsV1vfA3oyLP|-1mv83{2XW< zM<^F`I5_RfyU3{3@}&!1m(FN@^kU|_m`ODN6PY=2qvFUJ z&s2k2ffMF!WHnomDppF6@eqi~0+nfGAF{qWTPjaqh7cqk{AEN;Npo@t+Q!=r>Cp z)5Ok;6F=uO?@km*gyuJi1`V4k#YSB}m`LGW$vx=~SZo?fL|<*j3cuBPRkqZZuY3;o~R7%_mEtpBv1wYolK*9dx9Yj^Td`J+%Pt1tv$IYk| zWJ%;S_tdE^nNMatB~m**DzflTOPW(GgBr(jNA6Z@r42@^S&q|k*8GISne>AGW*HG zT`S^2=f{~M4@Nlkt80%m&UFZx9cEae@jEGzUUwSMKEiD#v3w(#M#s+UD#dkTy2ZlM zy`TMra29lk_xg4m&lb!&Ck&R~GZbXzuq_!;fy)d6@2Puec&JS`P8HuS<$zxy}bi z5AT8#gEYA5guR@cocc9N5ELQl+1as8PRl(@tvLf7%^dt4GT^K78QSl!P}+i0yqJg4 zW<{7f)~maA<;M?TH8GWvR{kh*w~3pm$L(DJ$oE&cVs4~HPUUqX{gd{o1j6=%tD76R zp+WytYM8u>@02zt5nGJOpQGuJ9W(v(_^Tp{l8!E<5j$^3rNBiJpHtu7`U{hjULGp? zs*C#F>6>IW(#BA*F0D3Cf<&_pZ`04O0^z`zHo=ibiGSd1vOoq+P*5*by4LSM533sY(Cpk|Yt4P8prWi)F(4H$$I*_f7X{x-(q_vHw zH|K4-D#WHU@lz? zwb(uScaU$7HrtV1<8y`OjO-fDf01q*Wm#-|e;AWYi~eY5duy{Z>@oGek}~fbd`aIU z;+6?61wkW0a3bDx6#U(l?HnfY8$%Ry^}|QGXV@?jT0Y+Xcdd2>RiI`+YRs}5uX0VF z`d7u)idmZ2dG*3y73}pFr^DXWdhzGFkIV}{yzkS z7X8lt#@B3!bTors%QwwNB95F3fSx6E#1%xD8LG5VTa3l_-IQFz@g^9KImKIiH;)Ep zzoSRorkCVUC}RR-P|%IKU`{Am*D7g81kBj4-@YxgO_wMpFLw`N>hy||rJLkOQyj5X z#!PRg5&mwuVq~QhQO8xoqCiRlFm1X{FDy#jmB5r3cZulIecAG}tsTcoo|?zi;o6M5 zdVXyS{4?cz4L#t`*J@;T(Z+fl3He;gQIJ+Q%LRaxPX^g{@8n#|> zkCy$s4=V{f@?@I8Z9pH%keEkmRjpm>?S|Lg+1%X3rle%|QC6Conu>^u!WA9OTxg~c zZq^y;nc@#mxgV##kZvW{rtVncle^c|S(iGP?b%y8Rsx6kpQdCT%z_l_2}wz#vdF7> z^S=WcjJG2iDrz4N+QKu!3r|S72!LM*A8TsLkMICSXEqvAk^yNG1!LXA8vcQ7{IXt5P;)*LCoS_p7kVqSQ7c>OpfDHVD(BNksXGnwN!tNQ!;sJXc{FVa&1+dDQH8Hc0kff?Pb!>JMnQ6~wEs^DIB> zc<%9@?64GAP@jv`dV+V6HE1AM(|tbP*e9{P=B2~Um?=_zxA?Wxc%KegIZxTlCJQ0w zQ;@Q>ls>AGNlRlVlmO3IZ-QDalm(3hsc>DTt@Im8`&EKZ?-{T!SY7wSA-|}CHaKkW zy)0i6U12wn=+do^P%mWPFryiu8jUeQ!lb7Al+)EinK1`sFFD7)LKKLJ+ZW9}BMkRC)< z`8)U%)^UuMoUNUilr%pDGd>&y#)5I~2#S-0sEj64%bmQ-8?`-^#CtfNvTj2Fw%I@? zJSIKo0I#Q1?#H`F=;ky3obC`?<TWvMU%DyIO<%*qRE1xA=JYin9dk22Ya1Je+_tr~HGqwcYG`N>X`-Z@HQgH+ z+h6Yz2Z2D+08jJ!V9yQAap^}(n zB}{U1a<_L9^C-H$FGzYuxw>q{Own2LQi(C{pjxe`<+pUEZ5{ofk)31|#?UG3p12Hw zV<=F>=fuK0KjZJRsub*9U$)6*-W;npA)GH!v>?Q~zIvEFm#f)0<+RSeqm55Urs4a(uk1 zxppK0l!kR%imY5Vu@g@dGEy@0Zb3+FG*xED&q;5{@<%DV8B}=V;kT$T%D0#;fpDA_HMe~cKShE*1{7$aNacbk7Z_Dq zs9=58ziHcka!=!?ae+?H%xt$lDjNcWbiw`4?=VPSB#ZW4t}1*& zLLhLbGiK*1YvDf>)TyYb5Xhy^y?_56n}mc3*cgD_DIzwOK(yq$`!zqNL)r4z;- zadGW^WmOFOvV4du>IO)Z<Sy+S$>mM>ngYi!ZEh;z8?Djzugo^Zc?LF@g_#0-y z%u4Nb8=OambyR525fvJAD7yDqiPwb|e*zZzs*nOYu^0)KDTEPWwYo}^Zxz?^cjh2l z1d!3vWIyD_DD#{1O%-720Dwg+mLna&mYChd*t*QehDGyh0o^BCK_H9RVDrc!V}@y& zipt9`J6yL79mtD;gl(!OkY-<8*WXBQ>VCJ}?HGtAk|X#DD#v{q?JFk@n1e*dMYWvLRrlVSLW8E#-kG;0WDvvdWyd9*Jd|! z%qewtb`lG^=IwH^-QM1Iudkb4kRtWAqu47D*AU`c9M#B4*Hp@oeP6BE{qra6U-ayk zAvY%wen6}J%MNWYht%){orm|4^|Z=?FA57RASR^0k)B}4Gb7=EK1wTx)5X!i*SoN| zIBc5#uqg#wY;l6k}!lBHik|odii-x=pXUw2~XorhJygiFb3_}$l57Ga8t>+kJM4)aXW%)K4OP-_c2HF2tj`h)e%M>9Ig}R?HH58%xDvY zUAx;Sj^xta%J)p+;E8ZJ@s$!_8uWYo+9$3&P9nkY7&qrSr;T5oCcMYr zjWmE`bwYX&R6t=&|GkFuFN4#oex^{YW1G>_I~E7)nYltoE)q`puf7r7v%{EByDkh>jA$s(dC`G zyF2w?gqqN%Jf7#73pJanhqg9;(j^IkNF83wfYWQJfw8p z-Idt*cp}k~l%Afq-i~;9Li-JKj5jj>7ob|<^vbp*EjgLilnV6)d+U;s+Hgw39}r-gw?dCXR2`8@ zVspjJg7<5(DSYg_V5W~?3#LD`;I)Fzx{o_X6+iJ6E9VIfp!RC9K*RbAUb{J>DBq!$ zmOA#QI!AxG-efXK0i-n`Xkqbnn!SCGOdl-~Twa9{Qx_K5#L3!OShJhLcTH$IHSMrG z25Z8W67yG^`^?rob%lS=KFl^f!B>Gdv+RZfA|L>A@qvwA202i|1O#F(w5t0_Af&ka z{e|HSKye*Kf=GP@OUA>9x**DSp^h!UeM;dleRr@xYJiy&6q_yB^KuOXf0Ja1l#%cG ziT8`2Cs3Gk@6Gnawt0YS*{_yxd3cb*wpnL6 zqwz!3$_%OfgI?edr|I}4u$H0BAk5)??in1EMWqZu5hOdDyu0%K`*#944C$&w`sL}G zA0DJ9yJ+YEU3_J#ilbbW5gIquq=wrHzG1ZUcI!l!fQ`>}(1g z3gKG;IF-jR>bycR6pO7zMMteX&9JaanS`L8YVA7e)4b`l$)A;NZEZf(G#6~p`O;*D zJ8hI;5I&6-I6b!?$sUDHZsnv%EI}giRdLrSJ~fL1d0EJZyFf3Y>~NN4f+J(Bc0be? z*gtS~ z1PJiYX=01m%v>+Dg(b#qc-3O#?i3LoEAj~nb!LHGk$Ra7^5(xq7tv=$3OB2e?FPm5 z=%WCZ12n@uIOv?w(EG6`Z^Kj3*u;C$8q zgo@#_Z{nZZ{aqf2>$;njF^kf+j)#HbWV6euUCxi)j_K;E6Q`9ZyM!v4h#~woZ*=kz7t2V2z{X(1c zkW;8#iVkNo+{OtB;Z_yJMqK&4py0T~lKl4fd*Lfs z&CCiU4&NH#Z`^QC?mtLqM|hN;QJlnS^N7az=v7LUDgZ58ahDoA-ruZbK$! zz%Fk8d-Jg3OG7#k&Dl}^32ROwl{sIKVw}$@rrm4 zagq|tl#uj!@Eb9NqX+VIOLc>dVBR0kpI}Y`Orc5LkgNV}JtXa|1*(Gl0xLOahU+7L z$e+U?N&#j=!OS0USWbwbBb~L^+Gl4wW@gK8p&Wb1ek;@o5{6`9DrQ(y zQ&V(uL3M!Kd3bn$9v^e~s2B#Byq(#)K2;}J@q@WypjSNHi6X4&)G@=Xp zE?*)V$-THs?vD^%ZS4mV0Kwi`q*$|q3npyog3QJbb3yZZ>faK-y_=j1d-rF1JM;zc zuC0ND=+k2cnw8Snfs*MxP~*o}H8)RPz0$P+BJA0M&!zB8aalr4_sq-e*TP7IsT)ywZPMXhws4P`*+7h&49XkZ@lU%WyT>`fJtl|9?F=OUe~UN z%O54)D{|rxmbLYTuR`VwZ$kCpU3hQCD5gE^t4?y^RjP}AiyHF@$9DU*F!MW4 z!q}zltu1&jFE4$=^LQpDw+|nZ7;Kacb*K44#*Kx;GnyP79k=Q{U!r~b+<$g;vkaPl zxqS)Se^>C)3(eY{oh&uO$V_P#0thr(p2tcxlXA)F<}AzFr;F zJ6bQ$(gZ{o`^Bz6hT`Ml` z#}?39E^(>Kg50QkuyxdiggJzn*>icm&6yR`Y85@8AKo$DVg%1eT{D;WVo#}W^e*F~f{{XctL0@uuHG}vU zw$IwY&CLxND~(=3`NMzH$^1Qs%mGcNF{b2%1=qKx$+Qt6Bce-s{>Os7Zm=aeI|)b z=4FQXxOH3kwL`?VSOUm{C0l%5Q*HR^f#Ep!Mpa({mel%metyKkePHXK#Sy^M+&gMF@ z|6>5d1e|M{g)J^+rT=I2JDWREOl|p%VQw|Uh##fUh#hyqP?$_Ik|uq{{KXblT62^4 zu@YzV4X^Hwk+CrVL}@&D)LopB$HQ4z(0jyS6ASyh73KMpB)G2=B_pNr+>6NysTctN zv{t?r^RYhQKo?5QqIswBe@349vqTs7w+bz+H<$3MwaZ2-aAdrOvH3X|4D7IQf41Vga>{^ zcmY3T41M5Erh(Lx8hm0*YEfxjZ4G0%1|xOOhQNS7pe}{(+*D{&S&GXbO-5rk?1RSc#Ev<)>+&k7AHF ztI9~YLu%K|xrSoWq6rep2)K?1$tX>#)gGAT2)MiR%K~sEehk3#)8ew-DvMs%Z^Z0= zC>gZbiS%f{zee$EIiw8`b|q}~YhR{LQ2!VT+E&v4^i|S8j_t>#y*n8GpIPd^^1y$i zc^_G+|3UNo;^L-2h-|p=m%@|1Zq3NZ0Dy_C5Z>&WoZ-~bCw}oyfZ>hEDTVm->AS1{6xr!M>G*ejPXOM{eVxU zEBWE6O%LRMqo~-u8vg}gVuzKN%Ag`=8W*~?USL5B6*D_<%+s-f6k?q~t@8$B0YB)m z6XdZA7ElgSDS}R;gF2J?z9IrS?M?--INGLwoWSZI9zk?n!L?#%?Y1e+98b8I*&QLl z?`KG;C>%#q$^T9(cL^Lz1Yi9SXE$bpR3{N_NytR*brJrnO)S1gRRBBB=DCqo5u&fH zO*_ACwKPqqQ7`{W^q^UO>X9*!1aK| z>lDj~WOzq8$5%P}AC!;091ml%Yvco6V*MK4z((``#WQN<^MZW!y6VN~q}-JMEi=4d z-_S7Crl@IN^rtMA1k^S|;TtUl|LegAjY3Au6^yx1)< zk2}9|=HB!boZBsN7cucw)^zob$vd)GPn^GzQ?egjqT7%>L%!=UnHYN!FM7*tQUKEA z&(r;x-VNK*XBr)C%_x%(Psz_}nB$!$IT!Q4a^*BRe-9#0u{i9HP3`_!Q@;53ji(E} zkT3x&y~Gun6(o>Mq@plnS`U&{GZ4zwQ+~E|1*@Lin|8h*;?8@=kzen;H_}LYT|bDc z2`(-|W`{Aa(fsO&QPpI}zW{|_$k zb&0?m;ru_0on>5=+xE7lrKKBG8U#VQK|ngBI|V_yyGufl?hpilMS~#HT?zuyAl+Tk z@Xm$0_c{BV^Z&iy{GcvzJW){Fd3O z>|pT0-m3!rnCamh9zk?+-<)t8u`ieVr?X4fH0q>in}wzL?^J&T4ig;V(MF`#xvKtt zb|EDH0czxj3Q)iTM$8Z&I`TVOY9BLNzQ8~4CvGXs8M2|&gFPrsnleehdW0N-HKxP0KmMR z7o&aMB^l>%EKN;L27;0W_#-8lj_C#;fiI<~zoVn$0YASExKC#1E%{GDi zYO{?3+!TITK+OCAy*4Q^%K(0)t&0k`Da-<2Uj^@yY&>fNYYl@9Dn^t7K?v(bLa!8OZzIG0CZVy3 zl{b-w8xpwC-aDgIe3;#^eGW7BRe2H(V+ek>DZtyQHRFaMk;~9n_Q}c(et2$bWbZP? z>a{z3RB41FwouqB?6}H#;`Q;0y34tlFt+yFF<1HL5nF#`T*!=$$r?oWz%;o+2N zLMd0M)3h*;4n_C|Uq-05VX?idWAhLXSdZBFp;qNv=6cu?I3Rk{2FS+jmqoakQF|>b ztIx8+Q&EeGi&#n$>s&F%wL^t(aREZ(gwZ?x$c7rMWExH-xSOUJ_qx7FiL@FTC~;8? zzC2DZEq#oLK}rX7MsIKLy^|9H0ZO;zW}!o0g^)XaAq?A>mUFFA2E(#*O;!s5!1g7U zWA5PK(6%<1GrzC^dlPwn@b<${$(&K-x_}4p@L&}mbpAYOuGjW7w8&}V$2>4+(rRuQ zmZQ`xNK8!Rum1V-CuoU*Un`MW7cc=G{r&Rf+BUnLnN#npdHzElgMkXQAZAj~>-;tO zF!3zc_cw_5Wbd|a4LK$0t!MTiOKPANW$yHxVH4j4JY1D^apoh|?JDS)Azs-P?{uCs zmsj+h_5ODLkasD;UXQSO=V$*R({N148jBcv3g_R-Sbr+Z`|xXiPW6XRXqzOfdM(yp z&}zAR|6rP@v!_jKaK$s9Q0;pm-$N=i?G8&&c)Ga(f@)&uV1soyzG^9H2g5JC?VFSTNJghiVnULy=+F&K5S4yk z;#*StyKS=YxRK-nVL_+_DPF9jYk^EiF)D@pOZr&o$hu@js?6QRb$0?X?~$3Bgccz)K^XHyF8YL*k~rrT%!b&!pW zo%$pH7%nfV!rjbUX9FT5C#nn!QlDC)zLu;BGQlGagP$E5IS%fLX8Gl?o;GkhGk5rL zU_jGDs(nYEDZV}YY2AgN+tDXj@kA3KI7S&)SMe(YX&nbCcf9072vK9K(=@J zk`vX!5ERSe_>@SA*vhxcS&ixM-+a_^gqNm@V^TD ze@l{z2XttA^XC}HSj8B~n3zER%3WJC6B946e7WY`V3xn;P-j*a_J>gCvCll9Id%EA z%Yn}J+-*K;jmixbb{$x_E@nSrl+J!9>HnG6XNAEszH%Rl;meZl{rz=BZMBGRnR2xR z8R^N1m4_Fdh7qTKrP9W$yIoS;-`_X2uFxvi24J!ua0}4 z;XA2Tf5L(351G_zbhGaTa2&wwTs|dzF~ZS)-=_6C@Bri~GcR>(-+NvB1}_g@&3mf* zen36)3O0XC^vqN?D5u~-o1BX@+c9&;yB$Xm8snL3v;@AZe69s9tl1E=kade*8XXl_ z6ht>n?zhcJ*>engeQipjTZy|)Y5`eH5P*{Q=ydGPM5M5nr?P$*|IH<-h-Qw4e$R6to20`TAw#Hlr0 zB%7jA)b6Tu7z7N(hV<(^jZOynl0R13q_QRA2Au6I5Iv^Oeb!G74r01SfBevcp7;Cz zUyQ-uMU*?qhTd~lkqbIU{zYD`C

Zt1yu{qvrdF{#vJ?s^|UVc>AcLNm5eMxt$#h z?Wqa~YH$KQRsklBrC?gb7QadE(+f5EyGoio2J$j5`5c`rXlm#+vZk2dt<-cMc7HNT z3Y64jvOD!`>!#XXTB3?7{>X8YRDp{UJh&8L9$u~ft2apis@rd1XQk24JZ#5FyGoIq zlVzKSm$&yf*6Cs%!GTaa^xolWF`IHf6T`7i-Z5zut%iUw!R~T>j%N_oAIT+-hAdkd zApji~FBn1|!8E&{X$Iq9vyaC#cbPkF0fT<~J#`j_gPRHmLX!Z3PD55z>PI-5#^S1E zakTZJbFCkNN$q{zj~SwA_b(RW10#-p2&hgkWU+OFhfoB^4JV&!*(aO*eRu%V4$=2_ zved7;D_0mrem~>4G+ttSd{8)noRFc(h~tsVQmGH3`0O+q=@b=)^v*f4t>VDJKp~Bg z5QVw9IUNJT#e49=AMM-6PgRlm#ZZ?_yFA;8wQHCeoXmCiIA>5EH0;=cAB5c@|1N?- zcVtnjuQhS6ns;esrPo+nN$DXFdvZT~=ySSAuBO{(`)6_bHHh_q_IeX6)x?})ZfCG1H8DCIQ1!;N7mPdE_SC!)Tq@5)4Fk%_qLzU%q&^Up>cMnX31v*%uFncs`9}Hq;>*# z0hYv(-Wl~X`9=*jdO_5YM9ZQQ^6iv9DLg4)Ucr96oc+EEcXoS_R?pKYE{3s1QFL+x ziVOjm)9V;pwIXcr)OlU$n%|Ja__tJ3!`)i7u(kClsyHMh1pIom$;Sr-pMqve$-vjwfc!?jtXgFdw|Q(G*J`9z)3Flx#SnvWogfZOHFauoKIY_j1*E=s*B` z5;Bl5TYlUycTb7xX%kQi{+cOoFhW7zU!|ijp~hGh_mJ)0&(JkVYcGmDqR_s?$9<1Y zi2#}=DI+8L{P~2G8vz#qxTxt%wR|f=7I2~`vSj@38~6%ny4 z2b){zxXboa^7SGS!I*ujW$3+IxsXh-j|D*3Tp)C>a=}t=YE! zri5PqsMq$|KM2e)TYoRRRaeW^rX72+*kZV$eXlUA8V*<4TY{%6M{scQE%VA@)DhS8 zhGLf#VGX$)UhzS77Y(R&e+%22HC-%Lzd6YyI#2+A=^rCU9|J~Y|4R}Bh{I?H@}n>G z-DgJtMBAv*T;+T-Eu0^PHJo%ixmRX%^BWs_E49@O@+tJ2FQjiwlrPIv&u?Y|cwf7` zqFIy{{Gs8aan!3-uB|^PB6s5+7Z{B_ayz9RaWM=pUb?`au~-+}@8kf+#aDaDzXU_* z$5C|zHTO>WrT6)Mr)&<26^_=}naD%69eA}~mr^-CN^AX<%vL?CntA~vgR?>4!TGca z4~0MdaRL9*af4i<3+mni101yMKs<0I37uW>Vq|2Ni!F0k)#eoyCw!ld8!5nxo+RHU zOLQ16%yizKYg8A42>oRD$S4J@fzc{sJZi+JgZkVG{gw24iWhl=G=}f7O5HY%&@HI71b$4BG7-M)= zJ4os<;lcapT~{E7Lmd8MCo8d?LxaQO%m%-K%&gnahqd_mZ`d5*k_BXN?|Z80Riv^- zEru12>5+}~1E?afUIO{q+}@P@Ae`>G(!^X>E(Brkug1pYKN_3j?Jz3D-|(cNyDAPO z`TFXD66{C;LyKE@Qh@@rUX{~cqW4S_6O4W;4ywi``5prbv8}K1gj+VFf*cu)V7^oU zwPNt|$Fui#vSm*9(D4{{Zxw0QK3iK`-?})Gs)US;U&qDEU8~jtp$&YU^D{nR3{_wgoQLd+Wy zp>g_}1}$F0U5mvfXRGtGIiC8@%+IV{>>OHtCUzQ}6rg@O*}OVnRj1`^|3dM&2I^Mo zeC5C5fVVzYnyEuR!j3}a`p|V7dkZAx-=7&AiJh-Cd=fK8xTJb7Qx}>nz_E}8R|?ID zxn(X#XBxK={R+7QWk-;(Nws0UXke~~{rH-|?y*}G(wY7PW!mtIgcYHA}BccAy|__ zYEB5P;ez^gT#;2z{G~OpQC`WCXT5lo9fIhBxpBXy2eVE-D=X_K9GM(Kdfop1J{XcH zX=u_(&j2N5{|-Ea|n- zv2GL|5a|LEC)bCbSr3~xJz&tZz8%+%d~Uz@D3$ig$BKo&xM*n_bxcp$sRi!7ne`Jj zkrN^;&m?VYbkQ7W7q^irSLu6c2@(^YGsSzSomLOMEDAm+DU#(@3U3J%%8q@T{$VM} zY_=C!L^r%?kesn9p>N zRgc2FeEHJNQh=Wy;MyPmQ6r<0v1f~()z{ZAZ3Z-Wjl?KbrrZWkm6Vj2&3yj2#$hM! zmTmY{e3!(0q9XUwC}DnX?hasU#wQtYW`jGM0|f6+JC zk63f&0qPA+y=mxH1~O0JW0%gwFbym_erl4(*Q7!E4^y1|`G4R35*mk`T6%hNONsXmlKOa_ztIq}F3oyDgxuX&AD;m_&vjuo_9CvK3;T#E3WUo;Oe-<6+;psGbYI?Kwbq@?kXlW6Lg%Rs1 zHC<*Kc{ZIKeH>Q>^M3v_V|e`QcUI_@=U31mwonywB_Aev(;yjjRB>%!sA0C=VDh54 zYtedKi(i->6nn-*_mzxf1s{*;{a;r_d|iSyQqxI>|14_GGOS$Ge~MbsPxc{$r-TVw zAYcQVMh+`Pqu~!fZUI~J9@aw$_S%(v{Fr&qfu-z_Y(MY4uF%~2RrBHvY-u}OlqC$1 z+icY2939!Sv$Mg3_YI9PP&B)HdaxvjBcrO*m1ZXQwljvuo!RA%UePeq%UoZ5uRj^E z8&m?|ci?C;tr!^8*kZkWtmd^a)!T9OV*}_(z71BxGuslY)}Hl_ZwylyehCQW=BrC( z@V^8EX(5SZ@%DfBJwmLSGuFWXPZ!YSt{sL}ui{*u(?b#s`?DM9n67YRI{;W6QBhHZsj{kt`TLhabTi-cf|Iyde{@C?wRW^wjSs}krg#i)i zgtNfxua+{bC5fqPs$Nd8)SjN4OK;cWzlsm_PGC4#gZ2U1Tp1S?5}UBRo2hc5ODCan zj~Jl@NpWs8G#XbQU{6Yrwz%tfE9?Cq4)@)`d2C+Ef02~ziO}9tvJlZ1dnF)_3U$GN z%pz=o!~E~dKuDluQ=gC@tWFj%jo4wRLAI(atLBW|io1QzlSdrKTu{K4rjFago^V)f z1MB{B*;+o~>FXo1o@GmoZNd@JoA%l9pE(7mvzc9rDn<{9%nxXm?Q=HR^&vW7<%lcW2WqwsY8ban({-0b$lOS1 z!`$XF0|n&``LHP;67;OsP<{ag#)*q@17(lfKl8sdFGSfigL#q@-~TJ zt~=-pvD_omPSpz%y;Vrd4|N1hi{D^L9H(ttm3xhvRXI4}O5k=-=eo|N!i{@v_)piA zSGS&EVs^f^wpzYM(pHcxjkUkv6ngB*&LnKjCH{vruP2t4anu$!o~n0q0KUY~99h&j z4JJxT(UOtfIRjn_6o??S3zTj)Gd8BoY?Aee^Nn7?wVJGo?wUx7kH;HWeU#OMgu@V^ zAea}r;5p}$?)wxcwniQ2&WC5@iiXG1(x&8%(|C`CmOn5diF#^*AOuGq+pI+c3re|f zG9|@I(7dm3>)r6I603Xe{A3D2q)+7=8&eRhNLeo5Jt;}#)BDsIa(SWD{7#~7B?)^C zoiDYQDWcBdj9e^3b>PwUdApvgk)yh0gjA=^^VR5-_>isohdk>3{dLNhESl$sj*)2t z?MxKA2~%H5EwKcA>Pc;HkHSSL1!8tEMM?@`D@vhL;L*7@=VKBmG z>x0M6AQ~%{1!+LNC<^PdawU>JCs)XF^^cftA4m>67Qgbzxb#QF*xDXhZTIH-AN$S^ zga<^7G$hgyhPH)O3%%x1L?ttmOCv!<6G66 zZ~@adyY%iRa%(yI1=Yv-&eSVrL0w?-!5#fdaG&b-(~O&;vmP@aoNY>rBm2j2gF>N^ zOMY*pi6omm+F^c$JWAvV{7L&UvqW^VMpu_`aJ&D-2Hn;|t@7#%RM#C<5zfwjgG|JO zVBdkrF?KwfsCRW(CgNL~lHIS@iM|_Tbgq7}_r36LgpUvHk8uNS_{z-@Z4xdJX@zLn|g6cll|Wo`-(fMg9SaM~N`9z!2-Q)8@S68sw zr-K$1hCnd2Z|%@Sj-z_HGOtk~C?TebhnKi8k@;|Wn<6+rV!5IzDqQbM?0?G`Bi7lml2kIaBTG+uz`*`U*b zwY>XeY;9M9?)BbAyI%H(9Yp;rH6-aD8oC7&d5PM}{#|`E)mpccXAVbbkIuPuCCN_J zmVsDwsvX6F29#hC03>K!ohrJSH214_8ohAg+Gl1t3?}DhKS3nb_N1(?=SGP|iYv}A zFprY-X#$8uw7OKp`Z|sJo2+=$tI5>TMFF+*B6-IJllRHUC`rS$#o=c0W0MmYOt}QV zp6%Pxo}{Uh_`TxR24pew87A%-e;wv0Pej|}7*j0Djuw>58Zr&H44`5m<9j4zRdzg8XAS?zYXVryThxpPkqpIQyNY$P0? zX>LxjlB!geY?ey{gW8}9beseFc>>bSk`7^e zRj~3w_6`V)^mIWjd-_V*;N3&R%-6v$=Gs2uOWt>6YvzJa5ap`e+1Y`5b5a5a$F&&V z3YTz=Z|u3CSMyF!4=7jlGJqHsuUXROARn}>0t7Trk~1QyrN*%nOAa#KBE>o(7C2Kb0&h34;~pM2)}v3 zmP^nkh=-0$t!w$b?xKgtIPW=j4{%QQZMQC9UwRa6sFFP?!8JJPLCr?u=PX1$cm3Gx zf{FfFt^dioJ+pt)WE2EJ=OP8#cf3LREAp)9NAIAJlS;gmk(*;AdkZ(zCgGof^=4A^ zmJUn?fgb;vTAN^~F=DtmSZL#P%5=`}7#adCg#a}fo9qifYL?!C=~AxTUpqmBEMl{)FxhWnHKf~~5BF5hJ z6Ao#~R`$3>UrbDw;UQRmU&IZy{tgZ+k9gvSW2F3CN9ki)J3#wF@onpx63yu86wCL1 zHfAGj3B>!Q3QY!iG){;3$y6_-Gj(OxYek)&m(~Xso#@r0P`DXR(2Sh*9%vd@%aD;Xf_H0$v zaCCYew_0o(-;33#rIm=&U_DPefFJ0bM5#HCN2hsv5x_g&GpHLMX`Sr9x8C$&ZzA$W zEb6u^HH0RC;7!~hymgazL}MSLwGmy4f`+R04XqAE!TB^G>fl}Er^?_&{HS5D>eOgZ zQqn@vj-K)@LRV?mEGLw?M)-3eHyn2`c|0QLA7Kg*A;3LZYC6z+qzVD!N7m zeMu`GO4GBA8t!SVZ+ca|d@h5Idj6>DC~xDtc(|a~t=KYo~vWT&V*;%?G) zy83g$)WD778xR9Sj*|eZ>~m);?fy$cMrM^r5?&ug_E(v|Gc&;LWa9{|H6;e2oq$RS z`-@O{Z9=%h&r&@j>lBjHqj~!HDs0-hyoM>Zdyr7|4NLCFN&y|R_$M(R-~7WG!==7E znDRUQBClyy-X$h6WO$cFC08rp9X{TpmsaL^z*11u z&(D#UY8HRuW>(KX!R5SnB>qC@xwOLbp^oPQ(@WJn0{kh9fb=UntBr;pb6*;3Yg|L5 zmGb6ttZ2o5Kiju%!rSZje)ihPyI3E_c#=_gI0A7RmkZNo-Pxhfs<}4O4hr}8L&nq?Fqq2c3+4fz8j^O=T%0VhwX}he z3!UG5f81(&_G+T|UemL62>0~PE_Gs1(IfrG>hMnH0bS3Wqx+t1)C1S<7I#K41mU9# z^B?tA8jSXDTeRYZ1*2ca`hY)%6-IUUBvsx2o?W4iRPjEvB@DT_kiI#y^v;Lsa4u=T z)E_WfN&Q25oy8QeaOC&M-rcB}SML|BeQ&%)Pxi52$-KM8_P`!gFdT~itTn1lpMCT14TebXN50FkgiGoR4dmb~>cjP6#sFkxmDP1}i>A2Ls z(3v_HKGUYSW+rVstj@aF`s!-jX80ntXEh4}aDJ}Las?lMd%mIZM0me$>3M)ivG|AR zJ1U1!oR`J9OOiwmPLjpM#DXI3@yjP=5-EExiD%}l+>yC!6dcjGrMS+nhs8g{SYO;t za#KmcvxL#(Mgx}ZvPJlpU}z3Qrft{}5YUc-FsC8SxpU<%1TMDatTYJ8wY^lcl|huS zst5N~@Qcl|gu04rV`NJLV^}3o!ey{3ZXS{A6FmS_A9zAHD1j)~$;3mfA*iBhXFDe| zm+96l0R!yE%>`CUKFqe43Lqq*Hqp=FLi_`Y4u}mJ%ABak;RdEfvuBPL;ma*>VwkV_ zJ&52EEjtc{$gm}RL$CP7A?I|f{_3d5MK^{wCI&ez40plF30&-f0Kl}%x&JibId#wi ztie~W=BQX-0gBK78l7UKT2ew|rv*fPOi$aIrnUITc(tob2!n;m<5a^QW{Y3yyKZMr ziMNI155-5^%Z-qxI?WB7|k@qW@?CGK<%Mg!;|RulN5I{Nx#$hAE@JnY_E zgX&7IJChm;*2aK?Rz~dWNylb2Pd*RL6;Z;|#i?8w0wArFS60S$jZW41GYA#+0+x8W z{CIB66FHg*f z{hNM7ImTnhbBO-}?!a6A&#WFqXty`BS#37>6j-7Dj-~)7o<%+XxuiNi8(5BK*GzeH zC&~(`L_eQOhpIZVxjVV}>n?*=r$+2(Nsyx)%R8sa6d@Qlb5DioA$@@x*xVP>4jZsE zo@F?E3VFs|`;K73hzl?w;+K!@H6@^5=Li|}+3Az!Z7_H8OJOaAD?y~5c~*a?-kmtf z2{tJfMTbkjzJ<_YBQHsl$JRL084Q#%WhtPTatnm(XKM`KxzQ@4@&5O5>oV+JeUN^2 z#fY)cVuNWgG26v@bD|O9exZMfZ71*P4?V;26AAr$)MT(|KD$FjNa|AgSbb&D_mpoa zpbc4HZ*OZyIKH%F5oZ!9QQmirQy2`VH0z;pSQMuKV% zzX3R~Ou#9G<`}9rxVuwKFJfj^PcHWnPBbu?My!W3CO*XH!jx zE|(Jhs}@PXFoC^T>8oF2%1Cs)df-CLfe!_ZSG@H9u5~;GCAmw#BP=w~5U_dSjT_d8 zQM9*04T_#t9I<6p{We6Ny%jYEWBk9f-iWi|Bf4&|$rzynNE|-DW~7et&d0xZ2>_?Z zZbiD2jhcL*X`^yq=g>Mfl%R8 zYw1+h&cX*kw&mw8s!U@UoRLL9EdFSC!wRyP2xyD&*%6zukyIigbrEZxnP2)5hj=IR@7R zb|0hZRNyWCK<@zaqmB>I(iY5cw^C-z@N+1xG(B>NFTLO%mX~M0s7sexeR%}>z@Nuj8Yjc7B^T=}d( z@D-tp*^&5g{KQ*5nUm1PJVGx$w}SXRgJVAk1mX;GJLgcn?zha;^nkF>8MHlgzvbIB z3qBAv;R_811wox8V|`?snZ%JeGBgjZ2j7fe51DTR0Agtbz-0 zl>`n5cm!#t7{6-wpS?67C+ogQ2swsw^VoMttFS-vwkP5p3!Jz2&w~+9*?)jVHa9Nj zD*lva7zu%)j~&OczaXbraw~CJ+a@Br%eQ_EpqQ zh{WmK{-7@Cl1GsGL)E@+MGZ9j4KK@_DuM9Zyi?;|VYYat_dOh{UVHjST!_qP68#Nt zK_i>JptQxC9J#K)4MOP%+CwauH@2vuUbRQ30{ENg)wXFaQ;>h`vSu1MJMy`}ilKUh1+NyEcmp~2>t9j=@%xh^S zW5~@mamX~H{8?dqWrJCKV!FD<;!;Fn3I5!~$hndo9B*}NTB^rldfhqY*0CL!>Ap$q zJPCaBF_ij!?s+^ak@|NTXRq^JdeAPEx^yf?E_>|n|BOAg-ZlTCgTsWx_=-}58oV?# zy&k-#gO`pVgWEA2oFY;VyE!Q}G;|z1T=4EzI zkbpc`zqNzkuE&8!`2B7RlrpGIiGCYk@=W5?Buc}N$lN@h%*j&+P3Cab|>kEV=U z7#Zn@?Ti6`0lhu7ZDZj1uZ1=9+3M)pt8lZkuv^{~boY9?Ew}u9FXEhW@P8-D8EgGA z$ozY!{XO#qTf?S%ov{ig*B~P!H5=wsWFF|c*c+h={)e4_V%jooOA!EC#K0kz$UEE5 zjt2^Emz^Bjoz9W_fWV>0-pQ=8*0Z2p1C~sGg3?`jLCuVSVh(9EHI}4<)o5J)@+Yu^ zt8qOT#VJ`L20eEN|kJX~c zZj{+o+OKG!huS9&hq4Z+W3C_<2aCss|KaKnUy<}9ReSO?!OO|v%doVjxbT~y(zyav ztcAO_x{qD>pJba(A=Q26XiJSf56yr%>#{5$-6K5iZz8<<*|gTQXXBVzN#x)o;1446 zptPTd4~2wfOfq$=skdI#T1lgQPWdE3rXR@<)Q)0`-Ojjywr@Tyv!~7j=C`Jdyf^OT zvU`35xO0mB($0bOLmt_htjj0Q7dJN<6Oma@jE*(D6U_3v7ro4Z>#}3Clejo-d&vqe zZYrzh1H?0pX6eMsK{z8WwSwl7H2BJfFSzL=*;oS!L!v!Z9OnF0-PN+QoE*h8mQNEm zN~!!-5Rvg`BRAXogwklU0XhC?^f$Eptsebs0c6%GIL$Nv%ld#{sGx6ULTBhcKi zlTH)X*ya8y0fGcO6RoU&85gHIKO9Nr)Oa24#*MLZBJxr>RNrEtXx(V=i>MA5=n6zmz9<&opwC1OUJadQZQ^j}L5@ zQGX8BhV-D0xg_cdELG=%<9b=y{MJpM);?Is7w?R)zpnnRw}U)@SN(dGa{28y>Rfit z@edrM{O{~{zYG6;pa;ZU#+rviFZTa+-AX6W(DF}Q%xW zA@{!-Gu{*X!JE1PVq*lAN{1I+Ea-J)wCT=J&tcUXyY7FRP21mpXR0NGGx)YExEq3c z|0|^OFwAys%Y;;+r}I3CUH1AQE6rd(z>2oLly3LZq)(kX%L*54%s6+gT{zpUGk(kd zfb-{|z_tB-zj{|u%q>?pG&O#1$sHW6h0IueJ~z0v;Q0QT6nN|(d(5T zaOql>%3rWC?xUrBWzl^X0E>%G^e5{3mkRZ-)_r(Wp5q(lH}>}fnOf5BN4MRF9_Phu z`4h>1yd(DlCvrVlo3m2d%Gw}rr^TMU;w0i(ADWq$8@dr!V)c00oLkHeXO3{xMB-{& zd4%&kGXmV@Qy5C|-W4hvJf0wGwHfRJs{#A(~|3S2j?V5~L+)QCs+&qiyr+j$a zqf8ryT%HuP-k`m!V&Me3<7K*;M}p<3u4h8)k%#Oo>oQqZF3SSoeUj|&#bLt3vvmG0 zuwPTQ{rxibT?rpZA)}`uAR$yCd8we(_DSobTNab&f1uqN5WP2YwC` z?I<-J>}YAb$s~2$L)TSBBikRBn$B_cg!W?8;dDzXG@{ijLdkE z|6^8PL}OX})#?GAcw#kkwr)af`Wt?`QuHeK*3*G(v6xI*OyN}1p9_*BILMz`)7?Twm&hn`cNb`ysmgi{-J?uER*mOOn5g04S^I*_&ph$qvOunpU%{eYx3wZ5F?vCiGaAO=DlAhn_J& zI^f6AJoA?u0er~M%;-LQC5(_atUU`jPKz5OkOSa{RjYp*psMg+(B?m}O5Rg@@Ox9k z!qYa*p+X?`xPxTq>!|K5tZrARAUG41^Tn3>aNNT(GSnUTz7Us^-pnp}L$4mL+9~Zm z-ZuB0n|Se!=~<1Ka)yh$P6osusx5CQi0x0%)IofF~e%Q~nD6`M;4 z<_i?znie@&_H&OKC-I`{1ZTss-BkTP=g?1N=SE`7ZAd?@wykKpp*e2zpE}R7Vl#nA zFXZZ6-gACtom%-~@p)Q59R*cxlZ6_2Y5S9(hb<0-H{Nu-P1VShv)Ag^T2BBpa;uuB z=n96ZX-fD#&7pqBDs(HIN0ToCJH1#4xWtM>iESZ%ehqIWFXLI~PX%5Nel!*6CV!Z@ zYS8XJLtgWGdC~biH<0{D$VL(Wpf7#Do2`;}zOLZ|R@s_OL<~)kH@K073rX~7Q&k=9 z%y!w$hFzTsZn1lZO16Vbz43Zp4jqFUEHXy*Mi1SM&Ea!P-l9fcUs#I1_p|CDF=|Ri zGLsAkTijP_&46YS^NwCG#wAie*x%h}A7l*gv^oKc2rPKPGOTWxfNwaKyk^^Wc9rR-HWJ@R5JG?(iq{Pq|IBpF>BG2^>&*Rb{@N+07C`FCmF& z{zxPb2Nsj>l{b{c#FT2ye^?8*|2CKTsY2%9q)WfOYf2$h&n>`9%NWd>?$z1CatiXn zdgzgbM9<8$*EJ7AFbqHR23`aGsx-doeLUT8$XX4TVz%_InsjzAD)>Q*lY8-3V9}{c z{ZB}6w0i7sxR7iI5-*l~Ti}!~R-&BswXf`WYVO!v<&v|X@*fF-?a81iBmzUJ8A&0G zK-qY2Y?A43gS~-58A#W(Gk1cf(O;}pv***zFEPZ=udX8b`1pW%;$J4??2P(I)y&`0 z%*RUoCi?7OzBdl<0o@O!TYEiCA5_$7J!$0bj6jVk#|2d>6qspU9unzg4=?>m*hc!b&CAj$^0#->|WsQGF%bE?Wt`@A`?i7lLwLZR7W|IBoCD3vTI-UwJxe^u#T14*17-#Gzqc~*Zr3w>m1n>imT}EZ63mY=dkL^kEIfU~4@X*2Q{{a|jh`Cd(Vk+V@plC1c9PG+ zV|p?&J-uz6NmSrkbNI?H%_lqib0NSFe+(c3?kNof=;nxr;{#k{Wo?a4pJI)-KXAYUKPzAXqQkygMjm-y@nL>{H!#Gz#~$ z7Kx!^JKw#;uQ%I@E>H1EFKBD@WTd5FqLG?-?jzAf(l9DCgY`c9onIT4tBKpF()4$w zg*)R9GzSQ-$-|Er-46ICIwy%a5l5)`wYkI87G0j3SoT&vWkWjlg+V9@c4pNT&t=H( zMJlFoGq1kBMq|ymexoq3AMdNl(6+!B#!`is{U-B|*4!$Q>yLleiOl${& zO>Z9pj5>mkY_9jng&w7Dd^n*&4NT@eL1OiOt3AFvT_WM!*Y z>+w$i6vmXy{}RU5sXQQ7>+9?GGuL@k>-Hs=VzWuib`R*A*k@2widm@{DPj|LTSUz5 zUrN7EW6T#sp-yg zDK1A~R%gWN(c0dBx6{ud^T~Dp;S;vwTKS~vgM)*mzk3c6yQZ*U7(Uv$QB1!boOT#B z-I&iLZ937M?O7X zpV#2*z=VQ{`m;j!(zk9pM3tL%B+}?kWPC=A|`>bea!VzV~q1|j2`dqmDf}Gho`Lr(cQhO zYHEts!5uXx@l%mQP3Z?LYend#btA~Yih0P%G2+?$K5s<^=T!CL7@5fmZ6|?(e1|fV zBpBHBmeO!BBi9~9-buw|T$Pj~1xuB6loHnB#r0RO@RKaNeiOH^##)7pmV1eCK|*LN zP(;fdmCs12&{hBP9e^ml4McDTY}eUhk6-z%-FfN39~j_808>hJ#}6|s2fQ>%)klk z0{E}n#ko@X@o7l&tF*y|)>io#h1CYHG6mPC^A<+XOBKGas-7+@K6LLtQ)bpIINY!D zwSZvVeG}B5m$Zb^C&9^HW#S8a*T$0DAE{B`_3lXq{w|%is62B6Q5`rLLC#Biy|$c< z{-@eZ!L@_k{VI!=ad*8AhfNPg-`5JmNuBGj)SVn z@lwN?pO_kgm+a$i%?DrX@)xC3PLdn;n9Q}(T%1);piu~w_dYgk^IlD*_E(U9E03?| zYD|YvE(u`9^r;^!G*v9?AWLVrCXcza$8ar+wrk#u1wCkmAuyhj!(|{<|=uj{~)UcSGs<^ICUP?6g%TAPk=yL9g&G~X8sFj6>`&g&6R91wprlo5b z@pXoq5E-|{K|yW7VlV_}la^b-v1J*x z-Q82tnAB%gJuflk0(OV)RWFqoqrJO;8_YQG@z(UMcA19mQUt z4@O6Lk=a^d-hw0=#}wm5Mt`DE@;C~Ih1`$KK7F!PQY;3DJXktnQySM|JPGyQcgUKg zKkEj=82uk4uge>zJFuD?YTebI+`vCZOX&lMg@@xVB)t(z@SQ`;F^**iNYbd9#PiINr& zIrK2-rWd+w*Y?cuPZB3GlrH6$v<;2XUsmmGJ`cn1cP88#CWb>(i?rlRprJ*~g-?lV zquiKYMmaQ18vbqk)!Rnidf`r@C>&D3XtGgfOg{ld!J&CIwdb9+;nLYt&CS9`>%$V( z>Rr}n7xDt;JN-E8V=)Dss=sZ*uLkr>8DS6>c2MC37`b$B9d(=@Qkt6o=vlOf`xG^g ze=lmuh9`&cKusV;1^d7yR)dMrdd*eR)>PR!*SxjKYGSZVbIp{twM4y}S7lco5+5J$ zxiiFLX&%Q1Ow^DxiFXWI(mo2xlbq_(FNt%6j9qK0vn5O(iX-=+Tqb%WNW_lB-c^hL zohdNVI)9jlW4fZoMgc=T^gfJ)_oiLVhq3i?_DCW1s$Tnn`wv&BQ4S~?!J3O6VJ>k! zo1a`AfJEXClRgC@|A|~+} zr*4sLeQVLi8C>(7+Q4pHK`Tgg;p>W@vwT&tYw;smDOt*AUBL$RrR%g8E{IhG#Rq6L zyow844y_9MQ2wgLX*amn1FSHs+xh0UZ#@$x^(Bth6U3f$L?56r>Zy#hdvA+D&b7(B zqvTs31SsW%TR*-KyGXX10c#rjfA%)0lnknce4Jlpv5;%aUvd1opz2wF71zz1?U^|- zxt8O6Q*)O8N=jWOE1vA6cpP)q&8H_+isItI(;v?iiQ-rsex4st^BsnVElcBZi~t0f z>9LAa?vq>-qG4iC<=t2<-q!_&_+|S0dG(c2r!r8ktX5>QhQu%_4T-0Nb%A>IM;YKY z*Tx1S^m*Ev9-vTpx<>gVquf0vQiW)^YM(8S#(D0SN9WZvD(WH5G(}hQY=sZJo$6G2 za=7=+1#Eq)yY3NUYVnaunO2I2Ge%O-kE@aYUUlxrs&#$?>wavbY3CAr^a)a!o?Fv1 z>K;bXjk;AeiH8d3T*EV_m{BX-$18I7p=u1zrRg$TEf``Qi_@j+9wz2YJ019Q!(QSf z`d_G#3cEWuPTz2B)L$k)u(6Jf8ouDw-wEq7!C7UAKYc&jL_>GV(`w-K_FaAJ!@vx> zn+8?o0?jk~a;Quh-?c|Rg%M8T3C_tgW;3oP7e*Cu;3cVM#o zEV71I;~CgO@q~>HKu0yaW{jYK{-$nioXXxF9XayMN+?fnWCbZatrF-T43%XQoe2+uq%KueE+yvVM_%2()eTbE>;)|JKPd z=%x>lkM;HSMZ^awS5JGTO|4eAB84TxVnuw;ZfX;2?0K>SefI0l#hhM7kPbgq+b$vQ z5o*1p9r;fFxX6=;=c)eS(tkYQcze2e5$((`o#N2U@X3O-Hht{C5Ad3Req80@#003- z0=2qnL~jvn5$h}zIh^3Qqeo)vK8(cjq~iy!q=^XviozJ%flVXAli)v-wYPgK3U^-Y zA*eb>erc&jLstt2%#6Gd23QHumfKL_h>r*%nt!9KLO9rke$0-)vMlOXf?nv*OF-@9 zW9P9Y;Wv&QupA8;`|bxGEAD1ESYgV?LTUBbBiTGYICSugnSa{k~4DM+}solSDY>{H9ub~ zAE{SNTEZ+9A^#6Y^`gv~@%(&c>1b^`D+Y-IQ=&DNi4tidz5FW9$mNv}5#GG};%7Bz zzqWpgs09!D==?`;uwBv|q2Bqrkh8X+;DHmuv=f#75f zKIwu^(IMc{=g<;;R#`lJ+)Go<0#Aph!izk$Fd0Ysrm zJ~HoidPwyx!WbKrUy$sh~&5FqPs?FAAK ziekgtG0pMmK7jr(we;2i;?duukwkX$0hPKObecF6w-H-JgoUhZAdMS2pO%oUbTVd}*V>0gT%}_U8|nxkt4$9>s?B0Q<=QNhvoD(y>59v)Kf}!2ZtR|KTMnW1 zC1&kB(-LXw?zR^6MxTTuVN@uW8$1s%Slc{ygZ1}Q1MH#Ta2zktT^1jq6>y&5RK~y^ ztC~>~WTG?O34Z{tuF5k8ATz~YCu=P^7UVxn-*3Gr^QeSgW*^8RkHPc3^H_O#pzKbax}&(hTT^Rb{`G|GYXlP?-t|pu!qdE#liAAiqwiC-$9NCxIU#{0 zR^3|Jt^VcucQzwHm0PmAnzr-ji*+ey3(FsjAVX#0fmY~et^)1JuB7T_zI@BaPmcB) z^Va#kY5tQz@AwyW@E&dmS{6RjTH=o<`IIzhXrV((lb17=M?VCG6+sHZNEbQt3x8{z zrra8j;!p_x0P+?ipX zT{gD`ows3R=cen0gUj*+BPGZt^4fYOa_Q#R2K|){z#{6LhHVvz*3qAL%Co_DtYMl% zH0JkC ztl!|gv9);Mec|Q|(uNsOrTG^fztamw=4dMN-S$&-XX2cOzZ$_TSbGX$bF%p8KeB z-YML}d@%P3OmJz|027jIy`laYz=w|Z&?sLDN6FRnoI5_Nq=Y8Y`rHIvsz5dVd%e)N zSJ=)g*lnIuGA1Ni$!hNjCGD5hslVP)C9X9u`4P|c_X3lJKyy?R$_1tDn(8A?wmLWx zqiG#OgsOMRkTHSYi8Vjh`9t1B@0pG6Cy;W}eFS?U#41ImF+S8B7l4$H=)v|lR3Apd z-cN+4LDh?6l#|(m&kny=6Jddgag-hQgnpMUo0a|3&Q7q&{`kNxtI+=!3hl(4+_5Hr zMR_N*Dc&E$Dwzg|2j|}AG&m5?jUWLF2;2Ern!$KIaJ;Bwkq(5#g@u8HW;`slmd%)yK6!)^qXY(-R=6A@^JKQZXln=h z{akKIB0KGTYf3v~=GUswm*Rn~#SF5;>Sk{-t$}Hjy+NAi`)cYnkLX7#e1>%qxlb(% zu>{TrvKhoTuAfE>cQzKA4FP~KK*hQXDY;-Q_^afKOLW&8t5D>k4LE65EdFk^Zx&ET z`q-bI-&I&9eH02L*lwqPtDf+DdGSx;Sl9rf-I6==8NlvG+fS@OE-esee~CLO%I^ek zc-uPuin$ObH1%XOR}mIp>N22N^1ck7goVq4O}Z3^Phb2VVefJG`vSTXHiF_n22ULk z557c7F z;Y<`Pg`3gMWY6+#Ub!5mf>Ux$)tvsvvCk9JH=edn@&qT!=X~hj(%u0yWHHX1l+WDV zP6J&$d#Y{odqfhg7?2-=az<_AxEY_=_M7H((&wP|M?(;ialH!pmuR2w(Mz;|umFI{ z5bD1(O60VPBbBIwbX>pf%Q1~+pwtys#2(7b554pVZ@z(8QA#2}M-M)RWg2I0{C0e> z^1%tR`-0ouhCICOM7ejs+}XNC{lNwcLt{LdzNU)2M<#~o|!-#z?8c9u=ktu zKfV~21jZ@r{r(J?tr;F>iL1hZTKWVroVivv@sPt~((qTI*d>gu#+4K6A09SOf7JDE zfFoFQT!pX;38Anl`*t9YXMO#^lk3%h;I7DRW75Fwr?lr4+a;CY-l4S%Rr#_L%^Cc90b#~&8 z8`WCGM3juVWCDG%%wi&4a8XsrUYYh@9{N6PELkGdWO97FBkj-(s4J++)>VtE`MoY#BrXJC6{Sa^Hs~Xv= z&29SGi&_OpWt;L3h@=YqK5X}TGa{>Q;elabl)VY++%}eMNS2YMOy2~B-^&(xZhC-q zLwb&i?3>)hSc4h7^_P#3_~z-IZJCD9mFycU(VXa7qLwV2uXoi zyne4^x~InWG(Oe~=Slkv#4}>Z4hCPi!=yjNO`wXs+yRHK!%(2o$dg#}oCY$hPHl&JBegv1`Trn>KXBkd4J``vf4Dp_kwVDaemH5s?np(M;-xisB zZfv7p+-FoOI9}8`BsXn@hXWR+Hr!$>^2}MQNwSHmg9J+sU@~I`M@3h$6}#IZ2GzPji=2()lFle3#67Kmy7Tfc`4iXRLv7 zJ?Eh#Pm$7UtbQ9Y%}^hZb~&Kv(@lVgNc)Zrg(4!wSHa1~j4ncO<=aZcG@f5pmvlbS zbp;?mbsZtaPg_^q7HkRHr(q9sJjzG_4i?mL#0PFTg+?A(>x|dc5vHDW0~f7XffI5UmYN8d+Pv9UM-1Ft)a}m2&G_wf9*6Noc^nU zlFDBy2#(q$>w~qc%u1Mf?}P;D#`ib?8cUg}C0JRSBeL3k?pbx^Q(3}S&3;T?z9d1{ zHu4#!9s~2PJj%=p5OYI--R7&`b|dl9!|fXw;Fpy}R;w#rnjlkhil?Q*&=^Q!~5n)|IAT9tf+IdykbQ?UWY`^8ZQXemx7dLp4Q!K3I z=B1-~*jo~i-k6g)D+;3~AFjfqH(%^5PlzY=&A4Wn8(TixNvzzOkN9-5>-QvB+>vYm zDwGkVTR%37VTnp))fqwPx#)c1oiTyCc6kZt3B%S1Q@Wc8-rf z`LB=6r~Yt0u*w%fbVmD1(bHdyI0p2I2cdqDmvy|M-&7-wqP>M;x}uc`FoQT#^y zshlI;`!faSpbLhJXv4!DeHZt5c{S%&qhZziRZB3g1Y(Za-6&}d(^rJt)(vnlr6SW| zesY#Zxaue#KOWDM#Gadr!6(y7)cNchpp>42|31tdVkB`6qjnoXM^$<)Ik1h)$1|d! zZ9lcG2g9>$=+vtNHywA2A8_k9+Qc~(v`@(%h_Tw;m99NQ)aj&Jh|@(I zGK)is`bH#@Q^1tM1;itTN2t!O<}BvUrhY!X48b_X@@hh$i2Ti2h}FO}33=68nV3D8 zKWq$4YaIEJcDKsdXRC;$KN@!E|NDLunL@IVct=B<<}Z1D>?^mwQ4N?mMkY0Vp2k2y z>SaNq;{8RkKRNxj_v+>VB#KDd6_?=RM@oLwr`O~q>8kGeZcWH>fQlK&_ z32MNDWXd-VAED!bJ*pblRT|%zA20?_f~cs{FgFKbKQD+jv5`7G99A{dNZ)v6KR`@@dQ*qrypJ8pOdGtoML6*;eT8I& z?rf2vE=?3G(Kf3qAVw`u&-+a~&6|VzS6~=ibJx=51ZYD7QIMnfI zVXdO#ub>iK3lFL@SkTKORvR`2QQ;Wr`YIdbY39ARLnrB&%Iu2w5Yd;S`e<>oOJNxf zBx|rMBvsx1Y5n<_@AC6fxC!}Y74jSrz(%BBF^_x9BxplVYL{&qSbHWsIK=2}zf592 zcr0$ka-b31ABwNc;kE@)8o27z_%9t?m`Rh0K?#((e80(ayt{YO{m@m)qkOWrxN!xv~A3B$ZMJBwKq z1e`UXlvM8RSA23A)o!SW=Y(ZostCump+y}Q?PXv}_8KwRAANK|{JCaRCCh628G)1f`9A#goz^cXi~Dz&7oeZd{A&&58GxXL z&s)3eGdln|IV#tCAK4f=mY?Jc>g!GqXnBxl;3U0`(pk9-a=+YIu8w1eef@C~aFFO3 zM!ike9CI}`c9iU_@0uROxWEF62|4!x(pAwhnE3J-Ql|2oul$Ydyw~CU7A97kAY0si zesp%+do^SKu@8sX)APvMw|j+zgcR56f%wNNmD4N#H1pA$ecgi5D|8@6pUJP5)|L4A zv01V>E|W1P%1)`Pf5mmg-+Uq`9fd_sXRFRoXiZiPm+<-VH+W~-Y-x0z=vWVaK)W(oOqEO0j=MZJDzF-&%xI^dz3|{NmF5m*vxQahB7*cJeu(P`|(Le=# z2@Wsa`yZ}b-n9N2sAKCC*v18iT{ zc)_jg>;PH>zp>$WZz87_KbHTBK!GvAX8)y2sBdVnB4`JHOE}d;1Q~^s!Z6h$P(<*m zvCj8Xv65aHE1zD1-rirzT*CyA8`{&F)gbT!D1keY$o%ylBEqakLPsW6uLET@&)i5z z_hZ-fNoPfSXVA;We%98tbI3mlNSE1Q8v?)XM1CitfpDNm?WmdtNca3n+SVZk&2udYu$BjWWBx~EC=t*?j=U{%_8;}pv^aXK zYNCu{?G0~a;Imtu`|lVB&PqI1qlj;O`G+cNE!u*@{OZIXY^d)-pe!CSjdEL%{>~@h zM_=3=kl8QytV_O4LboKPgQ(~+=gRt-BGKuhED>jqnoO!BB!ucd;bxjUMTA=Ycx%M- z#_{!}Fm{jAfdT^~ceP9&+tA4+lx+a-UG)e*ZF!WsnmV4Vc(30R5~(fWVmezI8?DH7JtYqS zO5svhuc%+ve2@U>u{e+~s#5hM6o@TyYvrY$o&7XhszDtIsH;j>GP7@}*TGQwMz6CB|SQlWCZ3 z^^)G%bNT8gbAZ@y(Hm){il);RY=9b%)q3j}P#}ZF5^GFMOdlA1UbD9QJ*0e|MEiPY zz<8Zy_k4ir_PFFMa4;1S6$OqI-lNE0(vkrn(+o#@00OW#wV#2x6~M1_y;~1(1gZp7 z*AJCUD#LIz4F(pr9Z))cdx7)K-a)Vm%_jRmKq~+Y4D3R{zSAE8XtxPvZ8yJOd=DHz zOV(($rJ1#`cN*tQ_W8ENUyj%rfY9+*Un!8Ho!G9@YNS*H4*S0mo0OLkprkwTM^~j$ z8fUH!t#e1Rqc9-Jp1_M~03zf+$W3*ncWi9_l$zfbDIW7%y7XIbD+vOs6f|bAI}qbb za?X&$?NQ|iC61P6SjNl&_6aR{3M*7Jtx0!UpZ+&CrkQMO-GK!-M{UZJHa@py_U~7I}_0m@qR#^kfg}t1}w(NE^7` zJ7@aQeTnU{*ykRfo(IhQjmarv)qwkH@T^`Z6))gTVg1RscW1OicVE4nQ%beQt^fMN zKnsee=`KnA8+v*&5Ve<#y-V!YSLb4~C|o^64`tJ){Q}UUlZx^T0dg~h{TVp10KYKU zB-cHu(tBG%%&!32KBqYC3$C_zGt

1h@lW)F)NdNzEHZ7Cv*e2*kvlY9Fa6D9}V zVp8PjJdl!a#@b>)s_)u7#y_{An?SrUJ9du?7)RS(hrgJ-kO+Zu?jl||6vX$@w!3*J z%q${*q&H6jb@oP1zZV#|x-%-;UYa-_E8e&4R+NMh49%qG&uY0;2sj(c^$|}r`Ia>> zD~>nx-y%#4%tCgit4=foXH-V3<1HT0Gkg5L&5LJK9$c#^A#@h2MVuTA!DsV@K)&8N6h!EkMn}}0cB!J{#gY4!f3WN- zpp9(nW2Xp8s;D2!23by}zJ@Gr?0oBjGl75`IT6z~Lki#a=ljGtQ(c8(mi7L1!R zlc5FnH_rVd0HEU7yA8tH5f>3U>aalPKm)>d;! zy>4nTOc6cHcDf%w6W~VmtdY#{c@s#eg<5FOPanYS-=rA%Uq#Q}Mo3)G8^Af)O?;ir zjVsP~IL-niAuh&OGz~_J1GWfnV|nN->+SM;>dMvs=_IFy@n z2q3#E!h@SI>t(GtZBRJs-0srC5?czhb8W7HQ4=KIeMR;v*PSzUk0mZbyAQnkqYL$T zF31aDID_7Z!AXhEkx0~&xfF2plOp5k2BZD^Rc5`4;HFgcVA9gU7zX1LYq!YQ4QltR zJFgOLtC~WhRc0_DjX!wTu1uaA_koJjTf7;oOa-(I@?F$Mm~x7LtIkNKConfGGN`Cp zSubK?v#W#NO_itsbOQ}yjcRl=tX6by6rq|3#eVJ z5IS$1TqhMNpmKi=K%l^cn-9xax51^&oLy%*$K>xcV$(QNY_INdD%}Vdu0r@eGv;eB zkmO0NB!`XfOkM}<@xJlq^1aRq*ORs$YTJvYg&3|A5|z}rq& z4ep^RN^mq|RyzMXmL(d!^b2DcK(hnkeIz#ZX2D-$qSShFHMbb3p|)>A#QEq^DXlCn z=4O1!!3?UEaXsjGGitR z&o4N&YuTBRxIgr?PS3!%1eS->8{e}N;F||h{}d+y zvkG(pdA*Q;y_7>AJrJfkAHVJw)muy21zKCUD_B~)0M;qWb_k+X%)QA`L5A94v}GNvGI_1w(dxTm(J(>bQBkNa!nMXV)Ei z#d|yx8Gl6`|G9H;yAuD0?fR$K^!C~R-Ln4w<{?v~8)`ow2dsZ~Yno!i=TqDp(?v9L z6#2uO5jSN3lJ@|6&MYEcURRBlOIc<&xez$|mljVI$T9stO#NGhunGXjTob_&p#7DLMNa_eN=4m$l$k}V%3#xY#X+?Yni3+)>IY&MW{%QjTrLY z-wqZFy#ZI3DIx#*TU>AY&w$gufb*d#?k7DYA)`-)`}h|U=#DWfYj=p}M_#}~u*UPV zvX=6-$8^|zTh=-VkbLBxGc^REdtO?bUA)2z|6KOIiuT1W!FoY-kSsw!fZDNTt9v$- zR2Gxa)H4XCO5-^@>nRW^@Em(GZjaHQs|F zydtO?$Uv>Tk14yLXgbD3QBp#$(d60AL^ejzkrXzY9oN>;&|kkw$t6fXA|oS+oKYF$^i?K?SRRLem|W zo7N*sKtz-^sL9(DG6SHg1>$kJN;XYZ$=z~oY9Wb$%R^@n;_WwZUBE`ezTE>{Td4Ln zz=MCU^l}4m-`d z_%^>w@PbPTOazJ}-*Ss*ZJfx5COVXC|M2#%z4L@bI@noIXlIP9Y(mUOU3ct%%``sN z^W7WcCI+v!Zna@>=~B|gg>E5f6L}0PJg2Ro#78ZtSP8|^b^?$cF+5)%pD{eYH zT}1DGL}8MM<@NmlFK`Cr>KQ4=B3!d7X!%AhpeQiKXVo;fb8g_Tdl7%cW`HB^M4=<4 zL`Kz*qGxtD6RzZo`>%hV1N(j5l~!cJHZHqaonAoP9Cm1ahT^gsZcx+1iZC#R-`dL6 z6c2`~o{7KEA!hT-(NQ>)67dHVpnQ*w&=G(VRwLD@uy581 zl{E5t`2<7>KEfz}TUVBh6cs9PBgi?W(0Y|*gI}FvWQu7$*hW}Z!v@OmU}Rn6TZ6^= zm~AE$40|}Qs1U>~F+sUfo%0#SJ~yGLABB}X9mNk6(q5?!kiC0>?(=d~> zdBAOl<{BY#279i-LHLWX6-6Vw5NMLL&>v&hTkg1}z(xO^Bu2mV8N3=JPCmIvE9z^D zGT#&d=iJ-B8-8MWWg60bsg|I|W$*v^Q7+8W^XsMj3OwA0j;t6#N1d7XjYSZD-whea zUL%zWmr|P2Uo9|kl~wb}vbjER#|?|0&8|HLfg70ld(MQReEbOp6O(JlLzxBZCCf2B zXK$q(q#kA2?oj%ISStNzrI_&F8)bU-Lmbo;K72|cFY62pa&C@+=oD47$19^7-9y8< zq!0?Z$Gj&0YRWE&Pmc>v_N8l@xU6UTT=|gx)4y47bf(AP^>m_O@Lp@l3Y_+ovj7!w z#2*;mu$VEEupT+|a@S4U3pX&%*qnAmJ$1=+!bG0aPe zf0OLMQi62MlblsGP?AGxqiT|UCCtCZy~mD*we6o~s^07JPHU{p!+K45#0xS(B&NGU1Mig5 zSK0e)m!m~DdNU%aZ_$CY^UUiI{okVa3bX?hE*lYxyW@w$RW@J$PgH>)G1Y?V6HK1$ z)FAY-v1HVggBa}$*M2*!*&Z7|<0xC;dvLtaT%WQcko^7nNPK!ApG?V0kjuT=fc7Fh zE}1#br4%=yVN*ZyD>vdKYW7uQr9T7f0gmHy-=X9E+Msi4l^{iMIfETZk8mi9>Ax=d zT?aHO-|2R0w@TBs=Lyuf=69oyJ7K|s3%;y5q2YoDcdS!dtigs3Ji)W!Ef#6h`zwjJ zdP+}UmRNU$LSV3UXa3F1NLrvA!ptLARQIO^?x*{<&s9Cms`~n8+n=*#m#wilOtrcK zd%}l_H6?$gc^;yab=qZ@>0AFZ2Yt{$mqb_>R)XPUDC+E-) zB1|ElOqc8jY^|ID`tV5^C@6@HgS(w>pS3T=X|fv<&!1CFSq+EjGA#z38(MXaz+K%2X0608sCVlAtvQ-_Kx0wOq-{_h zkr%dwWp6hw3TT=l_zU9j|5V6S!xLyL7rGp3`Had2l_<{;$xIDT+$o$?^RK4gFaS&4 zlNLpJ#H!@=dS8thFla*e0nA{Y2?YVl4zqXfrI>0sh}X zGcMEh9bA@$0kN|#{S`Aky_DY6({hOp$0k3$Lp$izd)c4~83QXowo_Qww#z64&myRi znvq{5Dx;t=2<HUs$STB-Ay2(icX(+}IvR*yMUx)jk+qh%Fmwi_aqgI`ndgU1z|6`KHYYF7EK83gm zJ>8K$w)!7a%$V40Go1W?`(#TS@O+$fmpP!%B~FlSMmaM1yy^|qz+0^Ch+f2E`^pI} zMNU(Gvw7j>a@gMIT%k@eIfU)6i2;jLsc1b^LAD&d{Z4spC7gzI(SzB=^ zpk1-p2e1dMsvpS16mcgt$)dBP=xI!FNV_E%M(eLeX41P07UY!xt4C5p@{nY}e+4mw zN&j9sv|cRy*|wnXhV1|cm(f-e&JW$sv1pI_kLFb^o{q~*pQ`hk`F4W;$@Hp}QlyI`wtd9>?S2@n})5ecEm8JVKX{y?`KAZ9?y>ovlgPYiSiN zWy@Hsi5y#-upD0~1Ss_n`b)a@IL|iHexN9Wrg4!V=;aK5TJb^6_YkCTdD{I(~SZIaNKVyk7TyBnA5DzGs z+QKw2SUaX|O zwlAEWH&8bym=O#RI82W}j=D^9ld|Q;7zp8I@GDP=rp?`)?!7*YIj+?XfFMlkdvwn` z32~=2plDB8ikn>=TNt~pDLe&hMw)tlm~no7H29Fw09*Jw*LFU7#x6d|?aRWcgHty9 z%+&ex&rCi`kKWtFNtXicWXcP6z-l!irnzhaHVmhXEsR)E*fzB6!`7Gf-$ zhx$~Vh>fySYo}1VVY`Rt7*DyCI{WKU(phYV)LMvGYnn5E5LzRKhbDAiZR|{(8ecV> zz10p$*HFMvetHM^< zdh6;932>n|a9lW(SY>OMISp6F=;ynz%&+rxS}oo!ma`gEq}95rWE`Hi_~N`;OHycB z80;H2HD^Y{2hMH`ZnlQ7!P*R|-EMK_phD*{ zgofG$7V~Qq6*|GNNIkPVVeP+QW-%@qxVE1}&+EAjd{sA7-F9!*<$Lql+hu;{@oGaj zidSw~XVPe!WOoRwVr(7gY0xMg86-cDVT8(U5@2xSVnkktg~5x$!u&zU#wvo2n$kYn z8FZ7_O2BI!GN6PY_;;7SOe@qFLd%PfJ6r%O7>=ID<%4 ziO`oC!A8lrj=8#GVXG6d=JU3{PZ33FLuJeF7c2%LfUM|0ZZ$_dr=vt?@x));r{Hj? zl4(Adl>d>Ly%Lq&Zy)fv%X)&Z>kWn=9O=is9~yXxblbFK=qrc7zU&?9HQ%&gG<738 zO*GS1)JGqwOPTFWhKR15+QqX&teh2(Sc>F4n>3BulmsV(bp*Aq4Xh7zIkc+Y!rl;OZc>Hi{c=;*#lIMEj3#!{v z6B)sd%80Z{Wa-V-z;3o%GVvlfJ=P(f)pU^f^Ns9Nj=FbB{PC98(Kl^F;%GPGKul3^ z5u$9`E!W9OhuP<iw5*Dj`k%CMW1?mu(b>%6CH;iweL_GY9$E% zWxn-7qak9C>YhIq{s6Kc-u6kl!3b9|Xg^AG)k%lCYfYHBRUz>BjJ@^Y*w-mpC zjIZLMsfl~4k2yktfHrEZwrIBj2YIR41= z{#o-SPHlm)OQdSKWd_rZY>}!)sSdQ770%PJhgM0w7*w~Ox_P?h6NPlej>Q`FGa5of z-ZZ)t%%0|A9wjOyVs{V4h!8C$dytRT>=rz%3CTF9-<>f2I;t)H@=%9xm&+;Ce%o`oS~E&IiZya` zB-!StN5o|vXfMYg(3MPV>`*%DdzCt|D8E1{9;LNbNBRb(~~5{+aB)%*gi4r;IjP2bd(DL zr{)I^#ku?!rEi0f#af*2b=x(Qt3=BwwDm6hb~Rj1Bqeub2(?e-H}mY7bYp0Fn#2Qe z3D}~sE=Nb*R@n9o=J9Yb5kE~x$f$kkJB&E4RQH}M;RBWbNfBA2DN{v(k22aT*!G5K zVo%f$GidNU-_}dji2hMGA;`~-anc8wd&yKIr*Blpd!{f+$rlGw0U2)wf)0*+W2Phq z9x1_cAz&_49cHoniOrfe7ADtSj;G zeuyl-y~{~v@-kC?d2#F{HQGIcY`B+XwQYB76D;+!hqOu7?JUJ_3MwC4xE+cuN@NsQ zvzkQyKvs(e0pEiQElm4r{RHn3xCvG>PgOijB(kD2FJqEqh58#xk)T` zCxaDk*^mY@8k-aJrd8`)_-ho4AtWt^-)kO{{!V0uvmzs3oe2~XZhfz$d5AVU{0Ei32Sx41c-rSo2GLm z;am4F&XPC0E^->FgWH(V1j;5VB*v6JXZ?mZVkGIJkIg4W#uMMwl718M)qvDeRylTW z@r>P44SrBzZ5A8QX8b&RF1uv)f0i8r=p%78TrvAh=@m02hkGL5;={v3xlY5vd2* zv{(&Rx3jeHYKva9H~9ILrhc72ZHe;aPg)+tC~}>5CaQ^@VA7@;$rTjP?(hB$;c$x4 zT4qY_OeBerd!MNhAtsrbx>R9`$Q6n8dET({G^j9${Uq))JRd5MP-4`mL`!aha$~Yk^N(TO?ySa!eK@@!~~fZ7*=D(7|>$ zVq>cL8;wyeTR!ebmq~LzcPVYmMU1{m1q{pO$HzvZ$KL7HC@kIv*5iG*V}u5sIIw9@ z1HrT5F^w#WuNK#ZNh)W=0<(whH^S4t-EZ9KD>#g4B6OtbewlNeb9nFD5oxw>H?LTGXyb$Pp5_REb-x|K@usQ>1!uHXe^ zdM-zDV!c7Nzc}C4Q3e9)k6J5ED9JqBfzjwEO~fJC^cvEF6x7ICcYE~~$2#hEy^4;Y z>|L-K8tAC+5qT%}RniS*@iinCs0b5Dyfgr@%fLaF^neZl#yCEjM~3>BzP4!l3Epr4 zTrMdx1R53;PEkERli}vi7`)z2sY6zU=CN(w4?EeD`1@eE21{XHg_&eTjaf_z;NAE| z@bS`K@^WyVLX15!M~*rjl7&Ncap&Kjuu26rTeXb9)RLzv=f5Z#E7loM5ElK}*(=qQ z-h8YlI-_}oLp~j(+{lB%qG~^=M9X1 zeSl{$E#;iBm5qXn(ulw+Gq#$vMdfMAOZoN7sIP!lS^LRS9c-b`n72cbw`+TrsN&nU z)!LN>`mfV>11;~o1KwxKN|7`kK1Z5(bg45kJA%NF@+m*fS>Yw5m%jo6$#!|FyZ!@h0pvp)&;?Z0`P!rA&bn-x{v^4wBWnqBM4 zQe51-8)wzsKr?aS;WD&>XXd)&>*$v6)1@v%H9Nv}s<6JDr{K)ZDM75pVdxNW^Iw~B zf4CeiR^n?;+j5jeKjX5D7gERNGRej-Z0a!XRhd}^I+xjAy47$-u3olSleQ|~1cng) zWD{@sgjqCjci)!KFw+uaB?scO-5@SXS<*eeq*`WihaVbXaQN$S3MAPE-!;YCXEtV5 z^)EVLNK8yhN=Y+dpabpgBWRNfo1^ei?aE7$YFVAVVh!z!cobh;s3NH-f$001VrE$1 zO!9knsz@UJ_oDA;9#7>WcJ4ZbRhE$+f+3bsEtE)>#X^`AlLZ3gJF>?qkck*+tA9Ud zJ?<@bUrom^-n6wwX;g@pPs&AMMYUZ7h}3v&HAg{o)E^Fu(Wa~zxZ#C~dlQZ>+=MBC zNB%HgRTd0$LYkaE@b$yFw2Q*D5sR7E|9Ta7R3*z;oTHc(Gq1Eyq530wRIi)9Na0iB z;*W+W#p{*)B(e!!9U!#C-lq_a^ztH)7FS5CLZ+|RY4vy|TkqCGzQkkz@(#FuhOes6 z!fWUA5(!b#rUW8g9Q!UBntG5wh)EM;n?cO`BVKWC>d+d6BB)LrF#C8hbKQ$N8DuC& zVvN^N=zZdJwC%xe>LNVWut_=6oDF1P>H{ThTZ^87b?*q5SMb^FK?OfgGSmv&w7gv? zE?TrH36Uv(Ny%g270yv(f)pZkl+@IwQsi>4Ha>koah3ivU)UVq4nyLY_ds^J%5&UD|DEXt5)fzGBl37%Z8{IoJb+*HTPN(as2W1&EiOXi1Cb`XtL9!-p946dNni}Gf!4~sBnm)S- zGhRS2?j@?xio>Q+O4}}DFsLLh#r@bA$ti2HP@<6>$Te=Dym-tNZP6?;VriOX4%>0R zU7f^`)h{-$(-yzoIrrjAUCg>Im`B_-k2-;C-d++|MQwPpTS3&Gr~XVNTr``zk{@OP zN26tV^bgC zpdtw{Wq`j$DV0~aenP3=#%?rsFtV=hy>#4{n)a+E&xUpm%TGbdBe_57MoNJkAKYpK z&yk(K2APs|t+zwE6K>d^9a6uf0%zo!USoLHiu#iJ)B4f^E$UPRHD zYd4LTt(kUnn2hOvXNvM}ZrHy&)1kP11|$==x~$9)p)sMMSXvRp1xN<^Hl@Vy**$j#TtoK=Twt;P0Av;wPG-gzmwIZb?LF~kVN z38D>G3c7=XV0H12;}LJcRi`QEOay#9wt%`D4qNZctkQYT2}NrS);J9gDY8$E4w{a; zHqb8=yYM))r<$)r6xl@QS6nvqWNbafgjgU@AI-A4qz%b4uR*m{L1Jv~mCLn&w;=`Y zaByzJIr4R;DUIOhO&R1tb#6H(=z$wLTsP1fJAu~rK90p zB|a^z-dAnOK#-F9C8IP)Nqv^7h^U{^Qs}ZSS|hYjjQKo`s+eRo zlTUmchJb)=|6BN&yProbtnMa$BfLr4;dAl$e90urS;=9qzL^>8%Y6y|GvmmHf52J= zN8UcD-LKX@rO>49{K7fqOWEWgs>y!gb;mP{WEaw_N#ltL-;}Anw)C!=NK?O)u$6_F z<%#&D>F2e9ictxhnqHII!@v-&6V6;!$w2g!^!p`FT~86z?@h4w!qi2SQJ^u&-Eehg zKOaAc(DUfxu3y#G5s{mk73x-V%di9CDrLDmeO3gI5+^(hs(F+ zBp&bvt>$GJOD$&Ei??Dxfky(7HdG&twN52k-HoM6Z@es&N>|hqzmDE>ovxJd$5p1j z=+$vry}0h@I+-&_F7a9*AtPU71M9%=*_`h7Ll>#d;pP=cLg27jr9uZq$=#TNh@VS4 zL>&HCGl`a zb)mVL$@&6bA@I?5DXnmbbX`)I;}yhf+gaRM-a9O7S2 zDSJkQY)E>rXmhI{eXxZdd zqPK|=pOZTTZCRdgHHwVuW9xW7H|lnGbv_~K-<4R~8mnt_W;I*W8)YB|fI#+Arh4d1 z*R@&IRL|embcbK|D1eT)>dz39oSy5IDns>|m0!t(d2mD)VGe06ChFza? zf%bSl+o3n07ne#YCG}Gqh`?*iABKZN^$L186l^2s3wTs^*-|=NIOWy+qpuDNF68Z0JgTq8Kb%c|W;4Hs(r*{dZf}YOip;CF+rVi{&*BS!t3|p(I>qyR9Y1m5hI%OVKt$jVRO!{7eC;TR$XZ z?NUiVMvzQ|*pjOfTw5{!bRk9KW7MNf zp7wCY{bObv_f6C+I0}T&V<=9zgqT++Y;fC#IU<`JZk_4+!&}d25OE=L{mM zbl4x4?2w=-37NWarPoX`I%78-lf>_%FMn0#**FncNtXpI0@ZxcpLIQ?VqY9UAgozT zRxe*4QSM4~p)fo?#h)K^{l{!poR@Ey94PiYtEGq{H?QrOYbaUC3z)?WkZFE}gq{|C zlDC~v{aa=jHCrYYA?S3NQVMlJM^Q7G@oj4mmnoRV7e^+lMG7bbpz;5 zXvsC0$2C}1vP!P~lx*@Z7vK4j#V>n2B8)EoHFRFqar`?^Mrh&J`NoU56m zDeS?dvL{}Tc%)Xufhg-A!9!P_+0RCQf;n7OX^UcF{_O879zqzwAEA14Q-QQQ8@mCZN zw0lNG*3kX;A$?#8>ZzS??g|UG?@=g96RLtvh_7;D3z7n8v1uJCO|My82`-GXUYG-- ziqD%~Ziuil4>G=Rh;SmlTvVv8n84pDD5x53L5w}DyTsSs85rp?aR1S$62Y z(_3@QysP#-C_@zTozRU6Yv$8(%&j0>#>$!nhIElKiKp|Ajkx?iO3@95F|i7@|K;mF zgJI0wNOaVU!6l<&D|(3#*0E>H-YM#IMK^i-q^BFA*5OTA-#5hf=BX5v?tTxUPack7 zROg8VZg!&3iHvzY>ei9pB4`JRTY?EFf2G>8I4@uX?>BY4WHcyf(3*G0a)$uL`#J{^%=vr1Q<_?WB8LlOv|Lzf% z&cXS*Mi!H>Sj*yL{M56lwpgm#rc2-~d~WWv(0*V&+i#zACZg^cLDdk;Sre5PevRc2 ziuQIA3Nn84xi?CNV$Jr?5};=Oe$!h-`ws674E2uIV&gPfjUooA&1K$iqGsAo(hkr2 z%x&>{IWbh?t+I~~%UAEneJq1+*-7^ninp9pL}?5Sb+O@qUz8cap?dIk0b0bXxZavhexp4Q9PTmp|UC?kIT6UY~c|J`lQi zCGT<9CGvOc6W@re+#DBhH2t0VoXgDw|Bt&D0H4_@oO6QldG@WrdhzzpDicU#GzEbx zu-=8R2$I+ybH?_&037!!>dEW*0eie0u$4wN3&ym3+R14Uavvmy<}md1%1?if;Z6*q z#eQFe(5sp6O&1qP;D5g-KDek6Q8*t9PVn4nFB^NQB4fB-z=90<+vxJ~06g+f%_a@7 z1jdaOfcUR5h+X_-CM{t2D9!P4r625TwxlU^UC8JqJH8g@NRL%QJ(4htyxL)M+N^o? z@%8B6AjA9yLPgn!g&S&zecST>K=wTFo2@;Bt;(k41X0REqywfJCug{{HhFnQF2%1= zv6H4gj}9HbXoK-I{^~B76rlnUN!hDl6)FP4-wRlFI`dm=jHOV`ryoSMl^^|^zWuqw zQKuFkNWbe^j{Ub~jQ`Ndm1?Jw@FtwYFidUvJsCmB@AHkA>7wVp=fAT8mN~d@i>)0B zKm-+pY|qP)<_wz*k!Jf6Xs<7O9|QY(fs}QOc%621I1!EMNy2eN1X2@-0|i>)!56&n z97DTed7aF#l*!p61UJLphT9tXr%P#E4NYgFNRMsM7qiZV>XWcBXI-xXJBw-<`!=YP@b2UD2Zv)MYH0*V#81?|JsTB~u3K@lL zSVF=(6A-_^oQFwKO#dYb!|w)RK`o`&^>%+e7_(kT;Am)Tz9*nNwdJBM+?H`a2QoW%mJSPxKC0eut)Zw(Je79d2Vt#6%GcPBC=U?F zRbreXVxo&W9XpV*$fY115KPsm7FIP}C+y#yW%he*45bYa%zQ4%OR4ZuM{iko%Ei>6 zlRC)p-TnPRS6C`}iV)L_u}ZpV!RO_Bs+Msoj{utg%TDPBT#`!j-Z;AtS+7EpF29$z zA^<((x$CcxUeLA$Og+-ufV<_e+K1B`i40rcDaBrxBB;*z3<1R%v>j;NrFFnCeMxyD z*uAnNs#&iElt_sfWxCi-N72Q4_-N7%)-tXr2w^dg4i_`ge5VgnIZfCJMr`fq`F}(1 z%EhGyp@Zwr1Ckk6fjvH8CSH2cah!^oz9 z&ouaQ3%0bPM;X z5Wg=32S+9by{R=>rnbk0qsDw-A3MQeQBT*jp&DFP?_P%=h&nf2a=BL;m5G%Q0bMc4IRW(n>MRMJ4e zr3-XGe>dK;A6_ZJi5wjDLvg=EsprMhCpS5Cd?v4ECkQJ>V8vM;9qJMGyjdIsmC9=c}gY@{Ek%>u(9ns|a zwtePDm~D#?=nyKERr1VS<{#iC)U>1^L6&W=6MeK0$11s*G;kxI_fVRn~%~s?#h@h;>C-9gkbP^wU&uZ1Wl)l z378(v15VsGGM4Q9g#}TY^BbQ!y8rpKDEoTaxvt~hP55krzDFm}OtbFS;Wo?c!aO7vsDChHraL=_~UUcpg@h&Rsqi2YokNMgUc(R5)w=zH;<5@e^AgbSI5NZ9Oc`l zwQ9#9*8-640FVkLg;nCg#G8dvWo%9{wg^}qn52)m4$t+TIk8{z0~X~1JpGO7U=;$D zpWaLO`L$}h|E-p7_{Mp?JEGr8Ci5-| z7FreLIn%IvWN1aGRT)12L~6wj+c^W?;Gg%{zlY-%vKC$Ft_Uie(d+qFEofvo)$#4R%u(0VYvV6W>&g zmI=)}$o<73s|FK5Wz(oJd}9K>TIZ*IpHIPvEm#Yetc+h6W+6BlKNLLbVzioD>x1! zYTdqbnE8B|jLi8w03(-<`U2ated$(J{Aw+b3C2ln=k88jToD@av-%r@O$P6O90}Q4%tfKn@-E)(awqI#RS zo{uM~YzbSSoXMAk2NmExgowUITAiP+sq za=+aM&)Rx+c$vLdX}5)=;i~yHuf-}_;2q6OI3w~{hc+yy=D-F_nl3|LwKAd9&E|v$ zbUL?=R5Dg>Q?P;?gUv5ef=xSQ1AvPB!W`O75i(Jzb?>p1M=xAeeX+b+&r`CKQnmh! zVz5G#&8!Z_L@O(0cyTPBj2N&*0BR?WZM6Kx3ng349#@sIzCEMNVxE|#m(GMI8n3O+~_o_tg_J5!1jBBBp@-aKx4O z)v~OQ%TTfsH{uCuAX4`GYGCv^j6Zf@H+lRiPm$f{OhNjW`+mG&r}rN}P{1N-QKrDm zV8Cae`M`*#=d78JIag`krw5~NF$67BwA$=?pZz@_P?Sd+DY$N+Z=X%XEeM?WvZfW~ z553Bb)D9YiCZ_VJ$5K!S8x32>od7hJ3lOZSf}b)pTyGA;b zCvFUHS|DJKqv)DLk4|-@-7EU2?$uIbZ=s@sn^6k)>^~&la^BqO-v+LgT6ezGFQH7E zS}*O(q*MrP-^kTEr3e(u{81JGLmVv=Z#5IBEo+~w7{lLdRD7r9*ve3izmV8&j@wRd z8u|!KmO&S|CmrIKHrtDLuFt5FmJB_d->B*%xWPhauTN%QbyU%?Ks~i!-M;yv} z-(kGKM+|HtFTy5H&3r`l1c~1tC=BOXn=HYokGsLfUXz2l--7gkIk5VxBT?xD0?y?j zZl*gYUbdgSv~Qs&(vo*KP-*DryOJ5E;+WW3xLiCzE!tJG0*LM!0#U$Chyb}MBUi_@ ztM;NCQ2&Tk1^1J^5h?r(0Qj&&As8APtM=PGPCh{=VKC9s(G<;~4LypNwuTX$P!EZl z=!A8O7Idf@eMigc59$+(w4>S%he_Xv;@(-(ArtE?ef`&M#lLNvps4*dN*(YLyj;9# z?F|0i@OcteXeH%}dOlJj)%q&1&V-c2ji zXBXsmp`3ugIroDW+a$dmm~ov{|KQ=ajPq!|=9sNN!TR^T%jHI6xztS=cVtw9qWWL{ zoPDCYU(hwg%xN#lfw(vV#@f}@lxJ#I1A?za;Yf!!YoO#)tAoNKZ*wK2%b4UN0?aIA z^%Hb{`l3P6a@6?4-xors5~8ASsAnz+EVaq{OK*qNtT7f1rsaWF52kI<>3-Q(b{MA6 z6sCzJ1&`CV&{q7~K3kB3HKFgII-6KnaPSq9DSzvaMR}xfl&l+UKPty_Ymvi|x`D)R z_&=o%QwZ4&xOYLxwrQSu z{jYeS~Fxu+#y(F|C& zYa0Vm`CC|6bay=;b^RL`JnO^cUHLwj0Qi-XvZc}WfDh|E|H&I-QA6iNDKDn!MZNO z*OTH7e54mYP!f`K_tgBMFw-qLYZ%I3EJI-SuS8&@p3Tf6^mYb3K4yzM9l59L>8`>JF)i6HP*-;)=Eb;;JZwPUlrPj%L{ z_5x#k=L-3J-7hkhrG+Wd+wJ!0*gNZ*?Y*TT=_3dZ>O_Axo7a{4=W$dQz}53m^>9Kr3Bd9z33TaTtP)UI#Btuw#AY7 z?fSE3d#Dse9h4_`#`DDub-<(ZJoK@6x@KwRloEXVIIC$)v3_q|?d3@`($=sNp>j}^2o^-`%6s|lM&@FTaCf2p&0(-!9$&~@BndhIWP#?fFVxyX^;IR4La*BNkcy^6E>9apF8?$Ic}b=-;&nroXK?13hgC_&Ib;WX@msOm!`A z_C)8=EOsB`(WXJE9mNPZ4OqX#wc`ARtTDX0e$SaD;JR7;vr7*rs~n%RkB^*=V3|0f(JVHtW+ZfEN3w(ZI1-Hfcy=`PZPpy~xfQ2m_D3Lwt1& zd}BQxVJW9RqKCBqb6t&(uDOBI-o<-TNu=%syk;RUPs1a9Y0=3B|1M{M?x~Ky;$CR6 z1_IfhPLH$Qx>nE8VXuoQ3N$ZX z{PfO(XK+FFDggg2;S>cak#*D{7E2TO+*}ZO1 zp~@T;WkB#UWHCB69q!EufgE$7G;e7g($o$t_nETtS!G(6S3XZ9;n~D4jikjcO@h!- zme$6xa%ZRW27vz=lt7<%COZf_IQCkrjv472I(7W}k)QOOvx0un*`ZE@p1G8zua$?mWQg# zH`{5kD-0e}JNU(=VXd_95pQkR2R8zQXXar0Oi;a|#kYs9KkZpQ#<<+S;3zWS(Otvf z^Y8a9MQyt-XVV)i=JT^ZDlE0fBU!LlFbWn-GZ0}1#A%%{ZEwYI;OM7*q9p}FtNc|- zS6$Xs+1ZzFx0MvYWz#o48(zcWPGV=v<5y+A zAgA?*@U`qykt3K{80+7II}*rs_P=V)O=-Uy|JQlKI)5QP@oI^m`%HoucE2ZPME;7z z(m$l*Wk8V3RuqJ^{FNkbnRU%}WgTabJzehnBqj=ec6JPe`2&h(8Tz-rhLbJ!o^Tua zcF?nb#&ydVW0Bftj_VML4trrAjaS=0ci*_R;8IiNxjHGQH;!J3YqZkTu_@xWe<1)n zhkm$}FQu9PZ;t?pZTy)38+sZ1udN#XH`n<;kn8`#?hF41-uV6h0Ez9MzL&b$mCMx& ze=Qrkshr!o56=07e(JV%?_ATK+7@?{&mg|$*)5W=sHFL|dBqgnt_LIff5_n!n@w`T zXPp-0)ikwI^<`78yn0i`c^(@ypZ#Nu&g@5%Tb1-fUbGeZfzy1mu`Qru{$7*hT>vPB zbk`5xiQG+O4W%j9_4J$&g=ZZ%AfQ;l;HJ``$oRrp2=^Th=I7U?7-R*PmtSaZ5recp zm{oin>Nzw$Qku0|?I_r->`T)szjzxQHlnk|26{2jslE%}k>MzRP+%bte&9np(}`Zu zu8Z*6$#a$l$UdDCk9z#Wu@N#-e}^*_@TzVM)3qM$=UQj)qlq=6o&p_Whs!nPboint z)1~9s=j7&*M`6h7}5Y|wIpJyGsDYd#oY5h$5 zlo3#RF!(TKhUeCj2HEAW#P6slx5iB|jwkCo(Togm9Eq>6tIT3wHs!8rOxNB!){O11 z?Krdt@yMr>bPWzHq1b^(X^&i89({|o*H2eT1=8%YN5Bs#(;PrQHcNT}cPPK@un~(v zEsnMR2ed!~{7e5EnLTfuxR6vLY@?@8!Y(2;3cGF^gUoPRXak^K>;(HNXY-zaHT`V4 zwTk!FU{o4%yX{_T+iFgOc4Pd!uqL(rObe`Vp29Og$|%>h%g4RRhz1Px40{u%!uqdK zm2^3VMzUekrN4)yG%}_9T8koArMmE9f#fHws#hZ88ID4q6 zx)*i47oQpzdNaaVeHcw%`(cP^P`eiWNdLeuhLSqZkEV|Q9gflj{o@(0x1JCq3=U&~ zEGM{b(fzW@PR$$bnK+rF5GL4^j|dw8{+g#rjrQ6>ZjUq1jB?`R!;n5L=FthSD^gx8 zzzuw|;8( z>gXT8oyxk08qcB8oDEe1<_+gtA*!^ERg0FVx3d6=+sWnvFzn# z{mD+dO0V(6@v{s8EWeWH(^d(!AtKqm7~`%aTMy8a@E!u4zq~g!=cpTgJ)q7(3hLvU;liIh z3XP800^8`MYz--&*LyvMThG|T^5KEq$*_h(!NY9Zc56tF4s@IhX=(#ebj;Q8{0r^! zhe*cpd~`S-c9?UWYGF(&_=IkITpw3&g^~}lVKb`aCcvjAO#OYZ$**Th?b~QMZBrm} zO^&qjC9c4+`f1cMKIznZY_3#{l5=uFTx}6{zAs==aR~|B2f2SucszW@S^7xsR65uvz2My zowIj*M3iZ%gHZbN;%qJx;bPYt^_8UD7-e@^C0f?E$||i`?H`h3qM*3(P%ArgOiv(N zV|!W{`0Q&_WAE~bJ2L@LMJ13B-Mi!m#aHCp78+AAdICdXr$%?b^Q(1VIKnvPZAO{%>P*trf3UQIMsofUzLP2 zMkWbZWlm)8KaXq#lUyuB!GrWa<2r7t`=2+km%b^_=dR|RaI84YKqLc(Mc1F+N*X62 z{19}CznVq{`FU_~k|!w3nASz$m3Y8;h{M{v{LC%H7;iYQG8#RhMIWkmAW71QZ znD`R~t2Wbj6Qm#0j2Q#_dc^1e!>;g-ZnizJ)J5!P;o>4xCn4ws;7 zq)8n=s1eX3h0?ImVUBcl!KJ(NP+xc}8y`y`bqQbY^84Z}74(8UUiD1~?M)Wln8d^F-1jXKtPs{;j@+X#hijquDtNR|L=|7q zrMz{BFYR!4s#N7|8P8Z~IB+|@#$bVNaxEnIV_=46OBWe)&2`MVx*^zSIdkC4T&v>m ztK-*Z>qgxqjnp(W!=0Rf<8H^jJ)ZZN~-c9|uWlZZ3qaJW7>E z_9pCTg4*~#?$y>n%8!&h&(weM)aO4rkgs{~d4iyVdx84lVHThM=L6IP(LNd>)V9q& z<9D{=kZ@2Cl`@K2i_DpiN<6T)>d%D2+GEqdq``JJja$JCL2_Q%{7}djyv`f~cT+>9 zT9y2xxi8!8$=0WLK()dpW&Drw2TPh>pB(XaOV0&xwcLxS=SrbcvyG%SoJ|c{S2fgA zf#$VsF*56Sn*=ue%Hj1yOd!|}ps!wOs49{Bd!FacYgpHE5^m5mFVkX6L~ybel3}oC zB>rzpvwkCQ;BJ+c+A-G)Gl}rWK-#Img*p~bS2fb2vxebR^e$Zg(aCMj4ArLlQnw4k zMI@EO>4((7(NNNbW?SJ#k)!U2LddV|;rK5N(cO7fWv=6)1BCp8e)B7*Vrr=(xEQ&& zQDGJqud-r`IH0cu!raR5=$$J<;~P2t)~?&1XR9$$q0XOPhHf-DUlHgHJ;g=UL@#uK6Q_H=sMk}C@B~xzr7yPi2+fV&8p5!3ZKx|FMoKf_s zT2x?E=w&~*mi^Cemf}6-Zl%z6yFjFG!4ox9rKf zlS32ZpnXOwS-EVLw}s!;#yPg#qFl&-&QR>-Y&1m%oLI*vISSfM=tj23m!Gdy$`8&E z{#_FSM~7e4$RK65vgq76=W_4BpnLtJSup~cz(wI(KT^g(hqZ*r7z4Vo&bZW zVU3jX+d~{7m0vOP_Mjdk`=xuRr#CC(pl0n`PUMY zb}oOc2I){Vt``o#Z$A?c>c;WZw@PB{I)~!4eZoD|Ln0rR7?9~0rsi_6Sq=f4;Th=_ zJ$R3(8yYJS&)KpoR!MhsEn{y4fK{Y$(AJiI^o?G#h10=cFaVAdP|zYTAwmB25uh{1 zx=!|z(!V=5xd{u(fB*&Qo=PzCMZYHw4_jIYW)ptSMyTJ?aCZN1l8*B_E9YR{Dez3b z!>D8D(Ebo1Z{LR!QHLJGQRodb2IJGAHSRB1DKY6JbsNe~tgRU33$i!ST_W zLaqp$ZulEDJsFy`)U8pkD=$&Wy=&w;3?p@M=2mv)g)ix;l>Yhg-_=IV3= z9Gn({K81dzg@qEdjjt^gu_LPQ zJC~Il&fq{ge1qBy$NI6?p#hlp!7U`nxlAbKl{!&3njzd1c7L|eeX(ze-9fOxBYa`z ztOB6E3L%bkPeBt1~j{rJIDK-~!8@|kb~Q9=UYwI1Mq#wBVS3?lzG{tvfu cMCpD(sBM&`$84sSeFGan$!`*sU%m(ZKLHety8r+H literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/fixed/1e-1/100e/conf.csv b/cars/lr-investigations/fixed/1e-1/100e/conf.csv new file mode 100644 index 0000000..0e48fd2 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-1/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/fixed/1e-1/100e/pred.csv b/cars/lr-investigations/fixed/1e-1/100e/pred.csv new file mode 100644 index 0000000..4b4e591 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-1/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.87% Chrysler 300 SRT-8 2010 0.68% Eagle Talon Hatchback 1998 0.64% HUMMER H2 SUT Crew Cab 2009 0.63% Chrysler PT Cruiser Convertible 2008 0.62% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/1e-2/100e/conf.csv b/cars/lr-investigations/fixed/1e-2/100e/conf.csv new file mode 100644 index 0000000..86c6de5 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-2/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.25 +Acura RL Sedan 2012,1,1,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Acura TL Sedan 2012,0,0,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Acura TL Type-S 2008,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Acura TSX Sedan 2012,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.2857 +Acura Integra Type R 2001,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0.125 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,1,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0.25 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW 1 Series Convertible 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +BMW 6 Series Convertible 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.0769 +BMW M3 Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0.1 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Regal GS 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0.1 +Buick Verano Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.2857 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0.2 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Chevrolet Avalanche Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.25 +Chevrolet Cobalt SS 2010,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet TrailBlazer SS 2009,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1818 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.125 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.2222 +Chrysler 300 SRT-8 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.2222 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.1667 +Dodge Caravan Minivan 1997,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.5714 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,4,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0.2 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,2,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +FIAT 500 Convertible 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Coupe 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2143 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.1111 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Ford Edge SUV 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3333 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,5,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0.3571 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0.3636 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.4167 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Geo Metro Convertible 1993,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4615 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1111 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0.4286 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.1667 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4286 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1111 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0.125 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0.4545 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.0909 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.1429 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.5 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0.0625 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1429 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Spyker C8 Convertible 2009,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.0833 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Suzuki SX4 Hatchback 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,6,0,0,0,0,0,0,0,0,0,0,0.5455 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0.1429 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,1,0,0,0,0,0.1538 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0.25 +Volkswagen Golf Hatchback 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0.1538 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0.2857 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.0909 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0.1667 +Volvo XC90 SUV 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0.125 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0.4615 diff --git a/cars/lr-investigations/fixed/1e-2/100e/pred.csv b/cars/lr-investigations/fixed/1e-2/100e/pred.csv new file mode 100644 index 0000000..d2f7a2c --- /dev/null +++ b/cars/lr-investigations/fixed/1e-2/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Nissan Juke Hatchback 2012 2.99% GMC Canyon Extended Cab 2012 2.99% BMW X3 SUV 2012 2.67% Dodge Durango SUV 2012 2.4% Chevrolet Tahoe Hybrid SUV 2012 2.31% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Chrysler Sebring Convertible 2010 13.5% Bentley Continental GT Coupe 2007 9.95% Acura ZDX Hatchback 2012 5.56% GMC Savana Van 2012 4.93% Chrysler PT Cruiser Convertible 2008 4.58% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Hyundai Veloster Hatchback 2012 24.52% Toyota Camry Sedan 2012 5.76% Buick Regal GS 2012 5.3% Volkswagen Beetle Hatchback 2012 4.57% Ford Edge SUV 2012 4.13% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Chrysler 300 SRT-8 2010 6.21% Cadillac SRX SUV 2012 4.65% Chevrolet Traverse SUV 2012 3.66% BMW X5 SUV 2007 3.53% Chevrolet Camaro Convertible 2012 3.25% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Bentley Continental Flying Spur Sedan 2007 8.48% Suzuki Kizashi Sedan 2012 8.02% Acura TL Type-S 2008 7.29% Chevrolet Malibu Sedan 2007 4.16% Nissan Juke Hatchback 2012 3.8% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Volkswagen Golf Hatchback 1991 36.24% Audi V8 Sedan 1994 24.62% Volvo 240 Sedan 1993 9.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.21% Jeep Liberty SUV 2012 3.63% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Audi RS 4 Convertible 2008 9.9% Eagle Talon Hatchback 1998 8.24% Bugatti Veyron 16.4 Coupe 2009 6.97% Audi TT Hatchback 2011 5.82% Mitsubishi Lancer Sedan 2012 2.92% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Toyota 4Runner SUV 2012 17.29% Mazda Tribute SUV 2011 14.49% Dodge Caliber Wagon 2012 13.83% GMC Canyon Extended Cab 2012 5.31% GMC Terrain SUV 2012 2.63% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Hyundai Veracruz SUV 2012 12.37% Dodge Caliber Wagon 2012 6.04% Daewoo Nubira Wagon 2002 4.79% Ford Expedition EL SUV 2009 4.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.43% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 100.0% Chevrolet Corvette ZR1 2012 0.0% Audi 100 Wagon 1994 0.0% Infiniti G Coupe IPL 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Audi S4 Sedan 2007 28.1% Audi A5 Coupe 2012 13.05% Audi S4 Sedan 2012 12.32% Toyota Camry Sedan 2012 8.92% BMW 6 Series Convertible 2007 5.38% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura ZDX Hatchback 2012 10.95% Maybach Landaulet Convertible 2012 8.49% Acura TL Sedan 2012 5.49% Hyundai Tucson SUV 2012 4.84% Plymouth Neon Coupe 1999 4.64% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Honda Accord Sedan 2012 5.25% Suzuki SX4 Sedan 2012 3.95% BMW M6 Convertible 2010 3.77% Chevrolet Malibu Sedan 2007 2.97% Toyota Corolla Sedan 2012 2.24% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 25.38% Ford F-150 Regular Cab 2012 11.23% Chrysler Aspen SUV 2009 6.48% GMC Canyon Extended Cab 2012 5.57% Chevrolet Silverado 1500 Regular Cab 2012 5.06% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 6.9% Honda Accord Sedan 2012 6.58% Ford F-150 Regular Cab 2007 5.62% Hyundai Elantra Sedan 2007 5.01% Ford Freestar Minivan 2007 4.6% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford F-150 Regular Cab 2012 33.9% Chevrolet Silverado 2500HD Regular Cab 2012 32.39% Chevrolet Silverado 1500 Regular Cab 2012 27.51% GMC Canyon Extended Cab 2012 2.57% Chevrolet Silverado 1500 Extended Cab 2012 1.46% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 AM General Hummer SUV 2000 16.22% Chevrolet Avalanche Crew Cab 2012 12.07% Chrysler 300 SRT-8 2010 11.77% HUMMER H3T Crew Cab 2010 11.28% GMC Canyon Extended Cab 2012 8.23% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Toyota 4Runner SUV 2012 10.7% Toyota Sequoia SUV 2012 5.18% MINI Cooper Roadster Convertible 2012 2.95% Chevrolet Traverse SUV 2012 2.85% Dodge Durango SUV 2012 2.82% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Audi S5 Coupe 2012 20.92% Porsche Panamera Sedan 2012 19.64% Audi TT Hatchback 2011 18.48% Acura TL Type-S 2008 3.81% Audi TT RS Coupe 2012 3.56% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 11.1% Hyundai Veloster Hatchback 2012 6.19% Volkswagen Golf Hatchback 1991 5.73% Bentley Continental Supersports Conv. Convertible 2012 5.16% Suzuki Kizashi Sedan 2012 4.23% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 68.96% Audi S4 Sedan 2012 25.46% Audi TTS Coupe 2012 1.67% BMW 6 Series Convertible 2007 0.45% Audi S6 Sedan 2011 0.45% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Chevrolet Avalanche Crew Cab 2012 4.63% Dodge Charger SRT-8 2009 4.5% Mercedes-Benz C-Class Sedan 2012 2.76% Daewoo Nubira Wagon 2002 2.74% Plymouth Neon Coupe 1999 1.94% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 99.41% Lincoln Town Car Sedan 2011 0.37% Chevrolet Impala Sedan 2007 0.12% Chevrolet Malibu Sedan 2007 0.03% Chevrolet Monte Carlo Coupe 2007 0.01% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 11.91% Chevrolet Sonic Sedan 2012 6.41% GMC Canyon Extended Cab 2012 5.98% Audi R8 Coupe 2012 3.56% Audi S5 Convertible 2012 3.53% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 52.93% Audi TT Hatchback 2011 22.45% Audi S4 Sedan 2012 8.61% Audi TT RS Coupe 2012 3.5% Audi S5 Convertible 2012 2.86% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 85.06% BMW ActiveHybrid 5 Sedan 2012 1.26% BMW X5 SUV 2007 1.16% Suzuki Kizashi Sedan 2012 0.82% Mercedes-Benz C-Class Sedan 2012 0.69% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 97.45% Volvo XC90 SUV 2007 1.02% Buick Enclave SUV 2012 0.5% Ford E-Series Wagon Van 2012 0.26% Toyota Sequoia SUV 2012 0.12% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 27.06% Spyker C8 Coupe 2009 20.29% Mercedes-Benz C-Class Sedan 2012 16.46% Ford GT Coupe 2006 14.78% Audi R8 Coupe 2012 4.08% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 35.22% Volvo XC90 SUV 2007 27.02% Chrysler Aspen SUV 2009 6.25% Chrysler Crossfire Convertible 2008 3.81% Land Rover Range Rover SUV 2012 2.83% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Ram C/V Cargo Van Minivan 2012 5.33% Cadillac CTS-V Sedan 2012 3.22% Chevrolet Malibu Hybrid Sedan 2010 3.12% Chevrolet Sonic Sedan 2012 2.76% Chevrolet Traverse SUV 2012 2.42% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 BMW Z4 Convertible 2012 31.11% BMW 6 Series Convertible 2007 30.7% Audi A5 Coupe 2012 16.72% BMW ActiveHybrid 5 Sedan 2012 7.3% Audi TTS Coupe 2012 4.32% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 44.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 14.07% Daewoo Nubira Wagon 2002 6.16% Volkswagen Golf Hatchback 1991 3.57% Rolls-Royce Ghost Sedan 2012 2.37% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 17.3% Chevrolet Silverado 1500 Extended Cab 2012 11.85% Chevrolet Silverado 1500 Regular Cab 2012 10.65% Ford F-450 Super Duty Crew Cab 2012 5.35% GMC Canyon Extended Cab 2012 5.3% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Chevrolet Impala Sedan 2007 98.68% Honda Accord Sedan 2012 0.32% Dodge Caravan Minivan 1997 0.3% Hyundai Elantra Sedan 2007 0.15% Honda Odyssey Minivan 2012 0.13% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 20.69% BMW 1 Series Coupe 2012 11.38% Nissan 240SX Coupe 1998 10.81% Dodge Challenger SRT8 2011 8.15% Jaguar XK XKR 2012 4.27% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 26.61% Toyota 4Runner SUV 2012 21.66% Jeep Grand Cherokee SUV 2012 2.95% Chrysler Town and Country Minivan 2012 2.52% Dodge Journey SUV 2012 2.34% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Ford Edge SUV 2012 45.92% Honda Accord Coupe 2012 14.72% Aston Martin V8 Vantage Coupe 2012 10.3% Buick Regal GS 2012 2.85% Infiniti QX56 SUV 2011 2.17% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Journey SUV 2012 96.89% Dodge Durango SUV 2012 1.2% Chrysler Aspen SUV 2009 0.18% Infiniti G Coupe IPL 2012 0.14% Dodge Durango SUV 2007 0.09% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 72.01% GMC Canyon Extended Cab 2012 8.1% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.86% Audi 100 Wagon 1994 1.81% Ford E-Series Wagon Van 2012 1.53% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 70.83% Jeep Grand Cherokee SUV 2012 3.64% Dodge Caliber Wagon 2007 1.49% Dodge Journey SUV 2012 1.41% Ford Mustang Convertible 2007 1.23% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 40.43% Chevrolet Camaro Convertible 2012 20.67% Rolls-Royce Ghost Sedan 2012 4.65% Bugatti Veyron 16.4 Coupe 2009 4.18% Fisker Karma Sedan 2012 3.68% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Ford Edge SUV 2012 48.0% Ferrari 458 Italia Convertible 2012 7.85% Aston Martin V8 Vantage Coupe 2012 6.97% Chevrolet Sonic Sedan 2012 6.28% Dodge Charger Sedan 2012 2.21% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 19.85% Cadillac CTS-V Sedan 2012 16.33% Bentley Arnage Sedan 2009 6.84% Rolls-Royce Phantom Sedan 2012 4.82% Bentley Continental GT Coupe 2012 3.82% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 GMC Canyon Extended Cab 2012 44.44% GMC Acadia SUV 2012 10.65% Chevrolet Silverado 1500 Regular Cab 2012 5.63% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.9% Chevrolet Silverado 2500HD Regular Cab 2012 2.63% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 HUMMER H2 SUT Crew Cab 2009 23.21% Volkswagen Beetle Hatchback 2012 3.44% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.34% Toyota 4Runner SUV 2012 3.29% Nissan NV Passenger Van 2012 1.6% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Dodge Sprinter Cargo Van 2009 13.54% Mercedes-Benz 300-Class Convertible 1993 8.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.25% smart fortwo Convertible 2012 5.92% Volkswagen Golf Hatchback 1991 4.25% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Dakota Club Cab 2007 60.35% Dodge Caliber Wagon 2012 16.51% Dodge Durango SUV 2007 9.35% Dodge Magnum Wagon 2008 8.31% Dodge Durango SUV 2012 1.16% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Daewoo Nubira Wagon 2002 20.03% Volkswagen Golf Hatchback 2012 19.74% Hyundai Elantra Touring Hatchback 2012 9.09% Mitsubishi Lancer Sedan 2012 5.39% Acura TL Type-S 2008 4.46% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Chevrolet Corvette ZR1 2012 16.17% Bugatti Veyron 16.4 Coupe 2009 15.5% Ford Mustang Convertible 2007 6.05% Acura RL Sedan 2012 3.56% BMW M3 Coupe 2012 2.22% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Scion xD Hatchback 2012 29.02% Nissan Leaf Hatchback 2012 26.25% Hyundai Sonata Hybrid Sedan 2012 19.73% Ford Fiesta Sedan 2012 3.24% Toyota Camry Sedan 2012 3.08% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 71.17% Chevrolet Silverado 1500 Extended Cab 2012 10.89% Dodge Dakota Club Cab 2007 10.52% GMC Canyon Extended Cab 2012 1.42% Chevrolet Impala Sedan 2007 0.73% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Ford GT Coupe 2006 45.89% AM General Hummer SUV 2000 38.46% Spyker C8 Convertible 2009 4.21% Bugatti Veyron 16.4 Coupe 2009 4.05% Ferrari California Convertible 2012 0.69% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 12.61% GMC Canyon Extended Cab 2012 12.16% Chevrolet Silverado 2500HD Regular Cab 2012 8.82% Ford F-150 Regular Cab 2007 4.88% Dodge Dakota Club Cab 2007 4.57% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Lamborghini Reventon Coupe 2008 73.51% Acura TL Type-S 2008 1.87% GMC Savana Van 2012 1.69% Maybach Landaulet Convertible 2012 1.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.5% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Volkswagen Beetle Hatchback 2012 3.1% Dodge Durango SUV 2012 2.85% Acura RL Sedan 2012 2.54% Acura ZDX Hatchback 2012 2.41% Audi S5 Coupe 2012 1.93% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 81.06% Chevrolet Express Cargo Van 2007 15.63% Chevrolet Express Van 2007 3.26% Plymouth Neon Coupe 1999 0.01% Volvo 240 Sedan 1993 0.01% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Volvo 240 Sedan 1993 6.62% Audi 100 Wagon 1994 5.75% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.5% GMC Canyon Extended Cab 2012 3.17% Chevrolet Express Van 2007 2.6% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Volkswagen Beetle Hatchback 2012 73.55% Audi TT RS Coupe 2012 3.13% Chevrolet Cobalt SS 2010 2.75% Suzuki Kizashi Sedan 2012 2.58% Chevrolet HHR SS 2010 2.05% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Honda Accord Coupe 2012 31.73% Volvo C30 Hatchback 2012 24.97% BMW Z4 Convertible 2012 13.4% Dodge Charger SRT-8 2009 9.91% Toyota Corolla Sedan 2012 5.3% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Sedan 2012 52.96% Suzuki Aerio Sedan 2007 9.67% Hyundai Elantra Sedan 2007 4.41% Suzuki SX4 Hatchback 2012 2.63% Cadillac SRX SUV 2012 1.89% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.71% Rolls-Royce Phantom Sedan 2012 7.01% BMW Z4 Convertible 2012 5.39% Aston Martin V8 Vantage Convertible 2012 3.47% Aston Martin Virage Convertible 2012 2.67% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Dodge Charger Sedan 2012 45.16% GMC Terrain SUV 2012 5.71% Audi S4 Sedan 2012 5.63% Jaguar XK XKR 2012 3.48% Chevrolet Cobalt SS 2010 3.18% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 23.42% Volvo 240 Sedan 1993 7.93% Cadillac CTS-V Sedan 2012 3.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.73% Daewoo Nubira Wagon 2002 2.45% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 98.51% Chevrolet Corvette ZR1 2012 0.52% Fisker Karma Sedan 2012 0.4% Ferrari 458 Italia Coupe 2012 0.28% Ferrari FF Coupe 2012 0.07% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 68.17% Aston Martin V8 Vantage Coupe 2012 18.03% Mitsubishi Lancer Sedan 2012 5.33% Spyker C8 Convertible 2009 5.02% McLaren MP4-12C Coupe 2012 0.91% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Bentley Continental GT Coupe 2007 36.42% Acura ZDX Hatchback 2012 34.73% Chrysler Sebring Convertible 2010 7.42% Honda Accord Sedan 2012 4.05% Toyota 4Runner SUV 2012 2.23% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Hyundai Tucson SUV 2012 7.15% Volkswagen Golf Hatchback 2012 6.96% Ford Fiesta Sedan 2012 3.8% Hyundai Veloster Hatchback 2012 3.74% Honda Accord Sedan 2012 3.02% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 Ford Mustang Convertible 2007 15.21% BMW 3 Series Wagon 2012 3.25% Hyundai Veloster Hatchback 2012 2.72% smart fortwo Convertible 2012 2.66% Chevrolet Camaro Convertible 2012 2.37% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Infiniti G Coupe IPL 2012 6.47% Mitsubishi Lancer Sedan 2012 4.42% BMW M6 Convertible 2010 4.31% Audi S6 Sedan 2011 4.3% Suzuki Kizashi Sedan 2012 4.09% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 BMW M5 Sedan 2010 28.07% Toyota Camry Sedan 2012 5.65% Hyundai Sonata Sedan 2012 4.66% Buick Regal GS 2012 4.24% Nissan 240SX Coupe 1998 3.58% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Plymouth Neon Coupe 1999 13.2% Eagle Talon Hatchback 1998 9.83% Nissan 240SX Coupe 1998 8.01% Spyker C8 Convertible 2009 5.42% Ford GT Coupe 2006 3.79% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 28.21% Cadillac CTS-V Sedan 2012 16.45% Buick Verano Sedan 2012 3.55% Bentley Continental Flying Spur Sedan 2007 2.61% Bentley Continental GT Coupe 2012 2.45% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 20.12% Buick Verano Sedan 2012 8.35% BMW 6 Series Convertible 2007 5.66% Hyundai Veracruz SUV 2012 4.05% Ford Mustang Convertible 2007 3.52% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 8.97% Buick Rainier SUV 2007 6.33% Jeep Patriot SUV 2012 4.55% Volvo XC90 SUV 2007 4.34% Volkswagen Golf Hatchback 1991 3.71% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 32.92% Chevrolet Silverado 1500 Regular Cab 2012 20.76% Chevrolet Silverado 2500HD Regular Cab 2012 8.05% GMC Yukon Hybrid SUV 2012 6.97% Ford F-150 Regular Cab 2012 3.83% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Toyota Sequoia SUV 2012 67.78% Mercedes-Benz C-Class Sedan 2012 7.59% Land Rover LR2 SUV 2012 7.41% Hyundai Santa Fe SUV 2012 4.09% Ford E-Series Wagon Van 2012 2.23% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Lamborghini Reventon Coupe 2008 24.14% Cadillac CTS-V Sedan 2012 6.38% Maybach Landaulet Convertible 2012 5.61% Aston Martin V8 Vantage Convertible 2012 3.79% Rolls-Royce Phantom Sedan 2012 3.44% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 20.87% Nissan Leaf Hatchback 2012 7.1% Aston Martin Virage Coupe 2012 6.88% Hyundai Elantra Touring Hatchback 2012 5.36% Chevrolet Sonic Sedan 2012 5.2% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Ford GT Coupe 2006 39.61% Ferrari 458 Italia Convertible 2012 8.24% Jaguar XK XKR 2012 5.29% Bentley Continental Supersports Conv. Convertible 2012 5.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.73% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Wagon 1994 63.6% Audi 100 Sedan 1994 26.6% Mercedes-Benz 300-Class Convertible 1993 5.0% Audi V8 Sedan 1994 2.57% Plymouth Neon Coupe 1999 0.42% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Hyundai Azera Sedan 2012 33.93% Hyundai Genesis Sedan 2012 29.18% Infiniti G Coupe IPL 2012 8.87% Mercedes-Benz S-Class Sedan 2012 4.07% Chrysler Crossfire Convertible 2008 3.98% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 99.98% Bentley Continental GT Coupe 2012 0.01% Bentley Continental Supersports Conv. Convertible 2012 0.01% Bentley Arnage Sedan 2009 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Honda Odyssey Minivan 2012 33.12% Hyundai Veracruz SUV 2012 13.38% Ford Edge SUV 2012 6.89% Hyundai Tucson SUV 2012 2.81% Buick Verano Sedan 2012 2.73% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 71.11% Ram C/V Cargo Van Minivan 2012 2.37% Chevrolet Tahoe Hybrid SUV 2012 2.01% GMC Yukon Hybrid SUV 2012 1.6% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.36% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW X5 SUV 2007 81.54% BMW 3 Series Wagon 2012 1.82% BMW M5 Sedan 2010 1.48% Mercedes-Benz E-Class Sedan 2012 1.29% BMW ActiveHybrid 5 Sedan 2012 1.2% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Audi A5 Coupe 2012 36.84% Dodge Journey SUV 2012 20.33% Audi S4 Sedan 2012 9.55% Audi S5 Coupe 2012 4.0% Audi TT Hatchback 2011 2.6% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Chevrolet Malibu Hybrid Sedan 2010 38.06% Dodge Magnum Wagon 2008 7.7% Infiniti QX56 SUV 2011 7.26% Maybach Landaulet Convertible 2012 5.55% BMW M5 Sedan 2010 5.36% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Toyota Camry Sedan 2012 12.51% Audi TT RS Coupe 2012 11.23% Audi TT Hatchback 2011 6.35% Audi A5 Coupe 2012 5.5% Buick Verano Sedan 2012 4.94% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Hyundai Azera Sedan 2012 11.38% Chevrolet Corvette ZR1 2012 3.64% Spyker C8 Convertible 2009 2.78% Bugatti Veyron 16.4 Coupe 2009 2.54% Nissan Juke Hatchback 2012 2.52% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Maybach Landaulet Convertible 2012 49.43% Volvo 240 Sedan 1993 8.47% Audi V8 Sedan 1994 6.25% Bentley Continental Flying Spur Sedan 2007 3.3% BMW Z4 Convertible 2012 2.95% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Nissan NV Passenger Van 2012 22.85% AM General Hummer SUV 2000 8.63% smart fortwo Convertible 2012 6.54% Lamborghini Diablo Coupe 2001 6.04% Jeep Wrangler SUV 2012 4.45% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Toyota 4Runner SUV 2012 24.58% Chrysler Town and Country Minivan 2012 18.35% Dodge Durango SUV 2007 7.54% Dodge Durango SUV 2012 5.73% Jeep Grand Cherokee SUV 2012 5.11% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Infiniti G Coupe IPL 2012 4.45% Honda Accord Sedan 2012 3.05% Honda Odyssey Minivan 2007 2.65% Dodge Durango SUV 2012 2.23% BMW M6 Convertible 2010 2.06% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Hyundai Veracruz SUV 2012 5.83% Honda Odyssey Minivan 2012 5.08% Daewoo Nubira Wagon 2002 2.45% GMC Savana Van 2012 2.36% Chevrolet Corvette ZR1 2012 2.22% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Audi S5 Coupe 2012 22.51% Hyundai Genesis Sedan 2012 7.86% BMW M5 Sedan 2010 7.07% FIAT 500 Abarth 2012 5.97% Porsche Panamera Sedan 2012 5.11% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 50.94% Ford F-450 Super Duty Crew Cab 2012 10.77% Dodge Ram Pickup 3500 Quad Cab 2009 9.07% Chevrolet Silverado 1500 Regular Cab 2012 8.78% GMC Canyon Extended Cab 2012 3.1% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 BMW X3 SUV 2012 5.04% MINI Cooper Roadster Convertible 2012 4.89% Suzuki SX4 Sedan 2012 4.68% Jeep Grand Cherokee SUV 2012 3.37% Bentley Continental GT Coupe 2012 2.54% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 85.36% McLaren MP4-12C Coupe 2012 11.67% AM General Hummer SUV 2000 0.76% Chevrolet Corvette Convertible 2012 0.34% Ford Mustang Convertible 2007 0.27% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Eagle Talon Hatchback 1998 13.82% Chevrolet Camaro Convertible 2012 10.05% Aston Martin Virage Coupe 2012 5.92% BMW M6 Convertible 2010 2.86% Lamborghini Reventon Coupe 2008 2.64% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Jaguar XK XKR 2012 12.72% Chevrolet Camaro Convertible 2012 7.1% BMW M3 Coupe 2012 4.92% Bentley Continental Supersports Conv. Convertible 2012 3.57% BMW Z4 Convertible 2012 3.54% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 48.5% Dodge Ram Pickup 3500 Crew Cab 2010 14.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 12.12% Dodge Dakota Crew Cab 2010 6.58% Chevrolet Avalanche Crew Cab 2012 3.23% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW M3 Coupe 2012 45.02% BMW M5 Sedan 2010 23.1% BMW ActiveHybrid 5 Sedan 2012 5.4% Acura TL Type-S 2008 4.36% Acura Integra Type R 2001 2.08% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Ford F-150 Regular Cab 2007 6.2% Volvo 240 Sedan 1993 2.72% Volkswagen Golf Hatchback 1991 2.54% Chevrolet TrailBlazer SS 2009 2.31% Chevrolet Traverse SUV 2012 2.29% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 21.64% Ford F-150 Regular Cab 2012 7.83% GMC Canyon Extended Cab 2012 6.95% Chevrolet Silverado 1500 Regular Cab 2012 6.59% Chevrolet Silverado 2500HD Regular Cab 2012 5.76% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Chevrolet Malibu Hybrid Sedan 2010 11.95% Infiniti G Coupe IPL 2012 10.44% Acura TL Type-S 2008 4.88% Chevrolet Cobalt SS 2010 4.09% Buick Verano Sedan 2012 3.82% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Volvo 240 Sedan 1993 35.71% Volkswagen Golf Hatchback 1991 32.11% Daewoo Nubira Wagon 2002 2.84% Chevrolet Express Van 2007 1.61% Audi 100 Wagon 1994 1.29% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 80.22% Plymouth Neon Coupe 1999 13.16% Eagle Talon Hatchback 1998 3.41% Audi 100 Sedan 1994 1.87% Bentley Arnage Sedan 2009 0.28% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 73.84% Lamborghini Gallardo LP 570-4 Superleggera 2012 18.31% Jaguar XK XKR 2012 6.53% McLaren MP4-12C Coupe 2012 0.33% Ferrari 458 Italia Convertible 2012 0.19% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 63.06% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.38% Dodge Durango SUV 2007 2.57% Ford Expedition EL SUV 2009 2.01% Land Rover Range Rover SUV 2012 1.98% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 95.47% Chevrolet Camaro Convertible 2012 1.31% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.25% Mercedes-Benz SL-Class Coupe 2009 0.33% Spyker C8 Coupe 2009 0.32% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 7.19% Dodge Sprinter Cargo Van 2009 3.93% Buick Rainier SUV 2007 3.56% Honda Accord Coupe 2012 3.06% Volkswagen Golf Hatchback 1991 2.92% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 98.43% Plymouth Neon Coupe 1999 0.42% Suzuki Aerio Sedan 2007 0.39% Hyundai Elantra Touring Hatchback 2012 0.18% Nissan 240SX Coupe 1998 0.13% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 59.85% Bugatti Veyron 16.4 Coupe 2009 36.74% Bugatti Veyron 16.4 Convertible 2009 1.2% smart fortwo Convertible 2012 0.62% FIAT 500 Abarth 2012 0.23% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Volkswagen Golf Hatchback 2012 14.72% Chevrolet Camaro Convertible 2012 12.31% Chevrolet Monte Carlo Coupe 2007 10.85% Chevrolet Impala Sedan 2007 7.23% Cadillac Escalade EXT Crew Cab 2007 5.1% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 BMW Z4 Convertible 2012 18.65% Lamborghini Diablo Coupe 2001 15.87% Ford Mustang Convertible 2007 9.14% McLaren MP4-12C Coupe 2012 8.13% Audi RS 4 Convertible 2008 3.77% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 37.7% Honda Odyssey Minivan 2012 13.43% Hyundai Sonata Sedan 2012 5.28% Audi 100 Wagon 1994 3.61% Dodge Caravan Minivan 1997 3.61% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 81.46% Mercedes-Benz Sprinter Van 2012 9.82% Nissan NV Passenger Van 2012 4.08% Dodge Dakota Club Cab 2007 0.98% Dodge Ram Pickup 3500 Quad Cab 2009 0.51% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 59.11% Ford F-150 Regular Cab 2012 29.7% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.99% Ford E-Series Wagon Van 2012 2.2% Dodge Ram Pickup 3500 Crew Cab 2010 0.99% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Lamborghini Reventon Coupe 2008 5.26% Aston Martin Virage Convertible 2012 4.72% Ferrari 458 Italia Coupe 2012 2.26% Spyker C8 Convertible 2009 2.15% Fisker Karma Sedan 2012 2.01% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 15.79% Jeep Compass SUV 2012 14.03% Hyundai Genesis Sedan 2012 7.64% Spyker C8 Convertible 2009 4.83% Lamborghini Reventon Coupe 2008 3.86% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Dodge Challenger SRT8 2011 8.14% Audi S4 Sedan 2007 7.46% Audi S5 Convertible 2012 5.91% Audi S6 Sedan 2011 5.46% Chrysler Sebring Convertible 2010 4.66% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Audi 100 Sedan 1994 6.32% Audi 100 Wagon 1994 6.27% Ford Focus Sedan 2007 5.3% Audi R8 Coupe 2012 4.53% Buick Rainier SUV 2007 4.0% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.89% Hyundai Veloster Hatchback 2012 0.07% Lamborghini Reventon Coupe 2008 0.03% Lamborghini Diablo Coupe 2001 0.0% Lamborghini Aventador Coupe 2012 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Suzuki Kizashi Sedan 2012 14.56% MINI Cooper Roadster Convertible 2012 2.98% BMW M5 Sedan 2010 2.04% Daewoo Nubira Wagon 2002 2.02% Mercedes-Benz Sprinter Van 2012 1.99% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 75.03% Audi 100 Wagon 1994 13.13% Audi R8 Coupe 2012 5.6% Suzuki SX4 Sedan 2012 2.22% Bentley Arnage Sedan 2009 1.37% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 14.72% Land Rover Range Rover SUV 2012 8.39% Ford F-450 Super Duty Crew Cab 2012 5.37% Dodge Ram Pickup 3500 Crew Cab 2010 4.52% Hyundai Santa Fe SUV 2012 4.33% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Mazda Tribute SUV 2011 14.17% Hyundai Elantra Touring Hatchback 2012 7.2% Daewoo Nubira Wagon 2002 5.35% Ram C/V Cargo Van Minivan 2012 4.65% Dodge Durango SUV 2007 3.27% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Audi V8 Sedan 1994 35.8% Audi S6 Sedan 2011 26.83% Aston Martin Virage Coupe 2012 4.98% Aston Martin Virage Convertible 2012 4.83% Buick Enclave SUV 2012 3.95% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Ford Fiesta Sedan 2012 37.57% Acura TSX Sedan 2012 32.73% Toyota Corolla Sedan 2012 17.35% Scion xD Hatchback 2012 9.44% Toyota Camry Sedan 2012 1.22% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 39.19% Ford Freestar Minivan 2007 6.49% Geo Metro Convertible 1993 5.55% Daewoo Nubira Wagon 2002 3.73% Dodge Charger SRT-8 2009 3.47% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 77.96% Chrysler 300 SRT-8 2010 7.51% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.35% Maybach Landaulet Convertible 2012 1.3% Audi TT RS Coupe 2012 1.14% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 5.09% AM General Hummer SUV 2000 3.94% HUMMER H2 SUT Crew Cab 2009 2.61% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.47% Lamborghini Diablo Coupe 2001 2.34% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 33.96% Chevrolet Avalanche Crew Cab 2012 11.7% GMC Yukon Hybrid SUV 2012 4.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.01% Dodge Dakota Club Cab 2007 2.77% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 55.47% Chevrolet Silverado 1500 Regular Cab 2012 7.93% Chevrolet Avalanche Crew Cab 2012 4.89% Isuzu Ascender SUV 2008 3.18% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.46% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 BMW X6 SUV 2012 14.5% Dodge Caliber Wagon 2007 4.21% GMC Acadia SUV 2012 4.02% GMC Canyon Extended Cab 2012 2.51% Buick Regal GS 2012 2.08% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 92.17% Chevrolet Corvette Convertible 2012 4.41% Dodge Charger Sedan 2012 2.44% Acura Integra Type R 2001 0.46% Ford Mustang Convertible 2007 0.16% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 75.29% Hyundai Sonata Sedan 2012 14.74% Chrysler Sebring Convertible 2010 3.54% Honda Odyssey Minivan 2012 2.73% Chevrolet Malibu Sedan 2007 0.47% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Chevrolet Silverado 1500 Regular Cab 2012 5.73% Chevrolet Silverado 1500 Extended Cab 2012 5.66% Honda Odyssey Minivan 2007 4.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.18% Chevrolet Avalanche Crew Cab 2012 3.62% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Mercedes-Benz S-Class Sedan 2012 18.46% BMW 3 Series Sedan 2012 9.58% Lincoln Town Car Sedan 2011 4.64% Chevrolet Corvette ZR1 2012 4.19% Mercedes-Benz C-Class Sedan 2012 3.88% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 19.72% AM General Hummer SUV 2000 3.94% FIAT 500 Abarth 2012 3.4% BMW ActiveHybrid 5 Sedan 2012 3.25% HUMMER H3T Crew Cab 2010 3.16% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 46.68% Ford Ranger SuperCab 2011 16.45% HUMMER H2 SUT Crew Cab 2009 3.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.86% Dodge Durango SUV 2007 2.52% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Dodge Journey SUV 2012 38.58% Toyota 4Runner SUV 2012 18.61% Volkswagen Beetle Hatchback 2012 11.15% Ford Mustang Convertible 2007 4.61% Bentley Continental GT Coupe 2007 3.48% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 30.11% Chrysler 300 SRT-8 2010 8.41% GMC Yukon Hybrid SUV 2012 8.16% Rolls-Royce Phantom Sedan 2012 4.42% Dodge Challenger SRT8 2011 3.17% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 71.74% Dodge Dakota Club Cab 2007 7.29% Dodge Charger Sedan 2012 3.25% Honda Accord Coupe 2012 2.7% Audi V8 Sedan 1994 2.06% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Dodge Dakota Crew Cab 2010 15.51% Chevrolet Silverado 1500 Regular Cab 2012 8.8% Chevrolet Silverado 1500 Classic Extended Cab 2007 8.42% Ford F-150 Regular Cab 2012 3.5% Chevrolet Avalanche Crew Cab 2012 3.4% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Ferrari California Convertible 2012 13.67% Toyota 4Runner SUV 2012 8.95% Lamborghini Reventon Coupe 2008 6.71% Lamborghini Aventador Coupe 2012 3.96% Bentley Arnage Sedan 2009 2.84% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 99.65% GMC Savana Van 2012 0.21% Chevrolet Express Van 2007 0.03% Buick Rainier SUV 2007 0.02% Chevrolet Silverado 1500 Extended Cab 2012 0.01% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 99.61% Nissan Juke Hatchback 2012 0.11% Audi 100 Wagon 1994 0.08% Audi 100 Sedan 1994 0.08% Dodge Ram Pickup 3500 Quad Cab 2009 0.02% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 HUMMER H3T Crew Cab 2010 94.93% Toyota 4Runner SUV 2012 4.73% Chevrolet Silverado 2500HD Regular Cab 2012 0.08% Land Rover LR2 SUV 2012 0.07% Chevrolet Tahoe Hybrid SUV 2012 0.05% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 9.6% Acura Integra Type R 2001 5.82% Mercedes-Benz 300-Class Convertible 1993 4.7% Dodge Challenger SRT8 2011 3.42% Chevrolet Sonic Sedan 2012 2.71% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Geo Metro Convertible 1993 46.34% Ford Mustang Convertible 2007 9.79% FIAT 500 Convertible 2012 6.65% Volkswagen Golf Hatchback 1991 4.91% Chevrolet Corvette Convertible 2012 4.74% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Chevrolet Malibu Sedan 2007 4.63% Audi V8 Sedan 1994 4.0% Audi 100 Wagon 1994 3.95% Ford Ranger SuperCab 2011 3.8% Lincoln Town Car Sedan 2011 3.59% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chrysler 300 SRT-8 2010 12.32% Chevrolet Camaro Convertible 2012 4.51% Toyota Camry Sedan 2012 3.28% Ferrari FF Coupe 2012 3.26% Cadillac CTS-V Sedan 2012 3.07% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Daewoo Nubira Wagon 2002 29.49% Honda Odyssey Minivan 2007 10.27% Hyundai Elantra Touring Hatchback 2012 9.04% BMW 3 Series Wagon 2012 5.85% Suzuki Aerio Sedan 2007 3.02% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 AM General Hummer SUV 2000 13.38% Nissan NV Passenger Van 2012 3.73% Ferrari California Convertible 2012 3.55% Chevrolet Tahoe Hybrid SUV 2012 2.42% Land Rover LR2 SUV 2012 2.29% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Chevrolet Corvette ZR1 2012 10.56% Dodge Challenger SRT8 2011 8.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.47% Bugatti Veyron 16.4 Coupe 2009 5.05% Chevrolet Camaro Convertible 2012 3.16% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Acura TL Type-S 2008 15.19% Audi TT Hatchback 2011 8.74% BMW M3 Coupe 2012 6.21% BMW M5 Sedan 2010 5.41% Aston Martin V8 Vantage Coupe 2012 3.87% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Veracruz SUV 2012 34.04% GMC Acadia SUV 2012 5.88% Dodge Durango SUV 2012 4.28% Toyota 4Runner SUV 2012 3.49% Mazda Tribute SUV 2011 3.17% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Chevrolet Corvette Convertible 2012 34.62% McLaren MP4-12C Coupe 2012 9.01% Chevrolet Corvette ZR1 2012 8.88% Ferrari 458 Italia Coupe 2012 8.2% Aston Martin V8 Vantage Coupe 2012 7.88% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 BMW 3 Series Wagon 2012 20.39% Acura Integra Type R 2001 11.45% Dodge Challenger SRT8 2011 8.13% Chevrolet Silverado 1500 Extended Cab 2012 5.4% AM General Hummer SUV 2000 3.47% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Chevrolet Malibu Sedan 2007 27.03% Daewoo Nubira Wagon 2002 10.35% Hyundai Azera Sedan 2012 6.04% Honda Accord Sedan 2012 5.11% Hyundai Elantra Sedan 2007 4.68% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 BMW M3 Coupe 2012 65.43% Volkswagen Beetle Hatchback 2012 21.37% Audi TT RS Coupe 2012 1.96% Audi S5 Coupe 2012 0.71% Chrysler Sebring Convertible 2010 0.65% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 53.49% Cadillac SRX SUV 2012 17.83% Toyota 4Runner SUV 2012 4.62% Toyota Sequoia SUV 2012 4.35% Ford Expedition EL SUV 2009 3.64% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Volkswagen Golf Hatchback 1991 11.95% Daewoo Nubira Wagon 2002 9.85% Volvo 240 Sedan 1993 9.06% Lamborghini Reventon Coupe 2008 8.49% Audi V8 Sedan 1994 8.06% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Ford F-450 Super Duty Crew Cab 2012 21.59% Chrysler 300 SRT-8 2010 4.01% Chevrolet Silverado 1500 Extended Cab 2012 3.29% MINI Cooper Roadster Convertible 2012 3.13% Ford Edge SUV 2012 2.3% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Honda Accord Coupe 2012 55.35% Honda Accord Sedan 2012 19.63% Acura TSX Sedan 2012 10.67% Honda Odyssey Minivan 2012 4.99% Hyundai Genesis Sedan 2012 3.3% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Dodge Journey SUV 2012 30.51% Jeep Liberty SUV 2012 15.99% Dodge Durango SUV 2007 7.9% Jeep Grand Cherokee SUV 2012 5.74% Jeep Wrangler SUV 2012 4.13% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 20.47% Ford E-Series Wagon Van 2012 12.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.42% Volvo XC90 SUV 2007 6.72% Ford Ranger SuperCab 2011 6.03% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Land Rover Range Rover SUV 2012 45.0% Chrysler Aspen SUV 2009 9.73% Hyundai Veracruz SUV 2012 3.03% Buick Enclave SUV 2012 2.34% Cadillac Escalade EXT Crew Cab 2007 2.02% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Acura RL Sedan 2012 3.82% Acura TL Sedan 2012 2.77% Chevrolet Corvette Convertible 2012 2.51% Audi TT Hatchback 2011 2.45% Acura TL Type-S 2008 2.05% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 22.2% Mitsubishi Lancer Sedan 2012 9.37% Ferrari California Convertible 2012 9.0% Ferrari 458 Italia Convertible 2012 4.84% BMW 1 Series Coupe 2012 4.28% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 97.59% Mitsubishi Lancer Sedan 2012 0.8% Acura TL Sedan 2012 0.25% Toyota Camry Sedan 2012 0.21% Honda Accord Sedan 2012 0.2% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Audi S4 Sedan 2012 64.55% Acura TSX Sedan 2012 18.38% Mercedes-Benz E-Class Sedan 2012 13.5% Toyota Camry Sedan 2012 1.49% Hyundai Elantra Sedan 2007 1.0% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental GT Coupe 2007 80.76% Bentley Continental Flying Spur Sedan 2007 10.15% Audi S6 Sedan 2011 2.06% Rolls-Royce Ghost Sedan 2012 0.78% Bentley Mulsanne Sedan 2011 0.49% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 37.02% Mercedes-Benz C-Class Sedan 2012 6.17% BMW 1 Series Coupe 2012 5.23% FIAT 500 Abarth 2012 3.68% Jeep Patriot SUV 2012 2.18% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 11.78% BMW M5 Sedan 2010 9.88% Cadillac CTS-V Sedan 2012 5.71% Porsche Panamera Sedan 2012 5.3% Chrysler 300 SRT-8 2010 4.47% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-450 Super Duty Crew Cab 2012 16.8% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.23% GMC Yukon Hybrid SUV 2012 9.35% Audi TT Hatchback 2011 7.52% HUMMER H3T Crew Cab 2010 4.81% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 94.8% Chevrolet Corvette Convertible 2012 1.31% Dodge Challenger SRT8 2011 1.16% Ferrari 458 Italia Convertible 2012 1.13% McLaren MP4-12C Coupe 2012 0.26% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 38.08% Suzuki SX4 Sedan 2012 5.85% GMC Terrain SUV 2012 5.34% Acura TL Type-S 2008 5.07% Audi 100 Wagon 1994 4.36% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Ram Pickup 3500 Quad Cab 2009 25.88% Dodge Caliber Wagon 2012 10.39% GMC Canyon Extended Cab 2012 4.52% Chevrolet Silverado 1500 Extended Cab 2012 2.53% Volvo XC90 SUV 2007 2.47% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 54.4% BMW 6 Series Convertible 2007 8.16% Bentley Continental Flying Spur Sedan 2007 4.83% BMW M6 Convertible 2010 3.33% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.72% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Toyota Sequoia SUV 2012 96.49% Buick Enclave SUV 2012 2.8% Hyundai Santa Fe SUV 2012 0.1% BMW X3 SUV 2012 0.09% Acura ZDX Hatchback 2012 0.09% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 18.37% Hyundai Veracruz SUV 2012 6.53% Mitsubishi Lancer Sedan 2012 5.58% Suzuki SX4 Hatchback 2012 5.22% Land Rover LR2 SUV 2012 3.4% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 22.74% BMW 6 Series Convertible 2007 17.84% BMW 1 Series Convertible 2012 17.47% Chevrolet Camaro Convertible 2012 6.92% BMW M3 Coupe 2012 3.35% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 6.35% BMW 3 Series Wagon 2012 4.13% FIAT 500 Convertible 2012 3.28% Hyundai Veloster Hatchback 2012 3.19% Chevrolet Camaro Convertible 2012 2.91% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 80.19% GMC Yukon Hybrid SUV 2012 10.44% Ford F-150 Regular Cab 2007 2.62% Chevrolet Silverado 1500 Regular Cab 2012 1.78% Chevrolet Silverado 1500 Extended Cab 2012 1.59% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 79.57% Chevrolet Corvette Convertible 2012 16.31% Lamborghini Diablo Coupe 2001 2.0% McLaren MP4-12C Coupe 2012 1.17% Aston Martin V8 Vantage Coupe 2012 0.33% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Ford F-150 Regular Cab 2012 89.64% Chevrolet Silverado 2500HD Regular Cab 2012 3.14% Dodge Dakota Club Cab 2007 3.04% Dodge Ram Pickup 3500 Quad Cab 2009 0.84% Ford F-450 Super Duty Crew Cab 2012 0.8% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 26.82% Ford F-150 Regular Cab 2007 12.17% GMC Canyon Extended Cab 2012 11.4% Chevrolet Silverado 1500 Extended Cab 2012 5.44% HUMMER H3T Crew Cab 2010 5.37% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Buick Verano Sedan 2012 28.87% Bentley Continental Supersports Conv. Convertible 2012 17.38% Bentley Continental GT Coupe 2007 16.72% Bentley Continental GT Coupe 2012 11.3% Rolls-Royce Phantom Sedan 2012 8.93% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Chrysler PT Cruiser Convertible 2008 3.55% Honda Accord Coupe 2012 3.26% Hyundai Elantra Touring Hatchback 2012 2.74% Hyundai Sonata Hybrid Sedan 2012 2.7% Ford Fiesta Sedan 2012 2.48% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Acura ZDX Hatchback 2012 18.21% Infiniti QX56 SUV 2011 7.36% Chevrolet Malibu Hybrid Sedan 2010 4.34% Bentley Continental Flying Spur Sedan 2007 3.48% Chevrolet Impala Sedan 2007 3.16% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Buick Rainier SUV 2007 11.19% Jeep Liberty SUV 2012 8.5% Dodge Caliber Wagon 2007 5.54% Suzuki SX4 Hatchback 2012 5.02% Volkswagen Golf Hatchback 1991 4.32% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Fisker Karma Sedan 2012 12.57% BMW 6 Series Convertible 2007 2.53% Ford GT Coupe 2006 2.08% Aston Martin Virage Convertible 2012 1.87% Jaguar XK XKR 2012 1.6% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 72.17% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 18.94% Chevrolet Silverado 1500 Extended Cab 2012 3.68% Ford F-150 Regular Cab 2012 2.48% Chevrolet Silverado 1500 Regular Cab 2012 0.83% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 14.9% smart fortwo Convertible 2012 10.25% MINI Cooper Roadster Convertible 2012 5.32% Acura RL Sedan 2012 5.19% Chevrolet Camaro Convertible 2012 4.56% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 30.12% Dodge Sprinter Cargo Van 2009 24.62% FIAT 500 Convertible 2012 3.76% HUMMER H2 SUT Crew Cab 2009 3.28% Mazda Tribute SUV 2011 2.78% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Dodge Journey SUV 2012 19.41% Ford Expedition EL SUV 2009 16.03% Dodge Durango SUV 2012 12.66% Infiniti QX56 SUV 2011 6.01% Chevrolet Avalanche Crew Cab 2012 5.33% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 66.88% Buick Verano Sedan 2012 5.75% Ford Edge SUV 2012 2.65% Toyota Camry Sedan 2012 2.48% Chevrolet Sonic Sedan 2012 2.44% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Malibu Sedan 2007 23.42% Ford F-150 Regular Cab 2012 14.18% Aston Martin V8 Vantage Coupe 2012 11.91% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.46% Mercedes-Benz 300-Class Convertible 1993 3.45% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Dodge Sprinter Cargo Van 2009 14.56% Volvo XC90 SUV 2007 8.17% Audi 100 Wagon 1994 6.9% BMW 3 Series Sedan 2012 5.97% Nissan Juke Hatchback 2012 4.79% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Toyota 4Runner SUV 2012 43.17% Hyundai Veracruz SUV 2012 17.18% Chevrolet Corvette ZR1 2012 3.3% Suzuki SX4 Sedan 2012 2.44% Chevrolet Impala Sedan 2007 2.41% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 BMW X5 SUV 2007 5.61% BMW X3 SUV 2012 4.61% Hyundai Santa Fe SUV 2012 4.57% Chrysler PT Cruiser Convertible 2008 3.56% Chevrolet Malibu Hybrid Sedan 2010 3.5% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 BMW Z4 Convertible 2012 41.88% Lamborghini Diablo Coupe 2001 24.26% Ferrari 458 Italia Convertible 2012 5.84% McLaren MP4-12C Coupe 2012 4.66% Spyker C8 Coupe 2009 3.68% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 99.5% Chevrolet Express Cargo Van 2007 0.36% Chevrolet Express Van 2007 0.15% Acura Integra Type R 2001 0.0% Buick Rainier SUV 2007 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Ferrari California Convertible 2012 25.25% Lamborghini Diablo Coupe 2001 20.39% HUMMER H3T Crew Cab 2010 19.26% Chevrolet Corvette Convertible 2012 4.92% Hyundai Veloster Hatchback 2012 3.75% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 AM General Hummer SUV 2000 23.29% BMW Z4 Convertible 2012 18.57% Lamborghini Gallardo LP 570-4 Superleggera 2012 16.19% Ferrari 458 Italia Convertible 2012 10.79% Lamborghini Aventador Coupe 2012 4.95% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Ferrari California Convertible 2012 35.83% Ferrari 458 Italia Convertible 2012 7.07% Geo Metro Convertible 1993 6.92% Aston Martin V8 Vantage Convertible 2012 4.84% Chevrolet Corvette Convertible 2012 4.7% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Durango SUV 2012 11.67% Dodge Caliber Wagon 2012 6.43% Toyota 4Runner SUV 2012 6.35% Dodge Journey SUV 2012 4.04% HUMMER H2 SUT Crew Cab 2009 3.36% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 97.0% Dodge Charger SRT-8 2009 0.45% Dodge Challenger SRT8 2011 0.43% BMW M3 Coupe 2012 0.32% Aston Martin V8 Vantage Coupe 2012 0.26% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 77.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.3% GMC Terrain SUV 2012 3.26% Ford Expedition EL SUV 2009 1.21% Ford Edge SUV 2012 0.99% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Acura TL Sedan 2012 38.01% Hyundai Santa Fe SUV 2012 9.1% Acura ZDX Hatchback 2012 7.59% Ford Fiesta Sedan 2012 5.16% Chevrolet TrailBlazer SS 2009 3.98% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.92% McLaren MP4-12C Coupe 2012 0.03% Aston Martin V8 Vantage Coupe 2012 0.02% Ferrari 458 Italia Convertible 2012 0.02% Hyundai Veloster Hatchback 2012 0.0% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 28.75% Ford Edge SUV 2012 19.27% Hyundai Elantra Touring Hatchback 2012 8.22% Ford Fiesta Sedan 2012 7.32% Toyota Camry Sedan 2012 5.06% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Aston Martin V8 Vantage Convertible 2012 46.59% Audi TTS Coupe 2012 13.49% BMW M6 Convertible 2010 10.68% Fisker Karma Sedan 2012 4.44% Mercedes-Benz S-Class Sedan 2012 3.08% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Hyundai Sonata Sedan 2012 29.19% Infiniti G Coupe IPL 2012 13.6% Toyota Camry Sedan 2012 8.52% Hyundai Sonata Hybrid Sedan 2012 7.82% Suzuki SX4 Sedan 2012 6.29% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2007 6.18% Chevrolet Corvette ZR1 2012 2.98% Nissan Juke Hatchback 2012 2.77% BMW M6 Convertible 2010 2.55% BMW 6 Series Convertible 2007 2.14% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Ford Mustang Convertible 2007 30.84% BMW X5 SUV 2007 9.51% Volkswagen Golf Hatchback 1991 5.71% Audi V8 Sedan 1994 3.73% Buick Enclave SUV 2012 2.96% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 42.62% Ford Fiesta Sedan 2012 18.9% Nissan Leaf Hatchback 2012 3.01% Plymouth Neon Coupe 1999 2.45% Hyundai Tucson SUV 2012 1.89% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 46.69% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 21.37% Chevrolet Silverado 2500HD Regular Cab 2012 18.71% Chevrolet Silverado 1500 Extended Cab 2012 5.39% Dodge Ram Pickup 3500 Quad Cab 2009 2.62% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 97.92% Chevrolet Express Cargo Van 2007 0.69% Chevrolet Express Van 2007 0.37% GMC Canyon Extended Cab 2012 0.1% Volvo XC90 SUV 2007 0.09% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Bentley Continental Flying Spur Sedan 2007 8.41% Aston Martin Virage Coupe 2012 3.6% Daewoo Nubira Wagon 2002 2.93% Mercedes-Benz E-Class Sedan 2012 2.11% Lamborghini Aventador Coupe 2012 1.88% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 75.11% Ford E-Series Wagon Van 2012 23.72% Dodge Ram Pickup 3500 Crew Cab 2010 0.62% Ford F-150 Regular Cab 2012 0.29% Ford Expedition EL SUV 2009 0.07% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 89.09% Volkswagen Golf Hatchback 1991 8.19% Geo Metro Convertible 1993 1.2% FIAT 500 Convertible 2012 0.84% Lamborghini Reventon Coupe 2008 0.16% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 77.62% GMC Canyon Extended Cab 2012 21.28% Ford F-150 Regular Cab 2012 0.33% Chevrolet Silverado 2500HD Regular Cab 2012 0.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.23% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 36.48% Audi A5 Coupe 2012 13.06% BMW ActiveHybrid 5 Sedan 2012 9.63% Audi S6 Sedan 2011 5.01% BMW 1 Series Coupe 2012 3.57% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Rolls-Royce Phantom Sedan 2012 6.82% BMW M3 Coupe 2012 6.06% Infiniti G Coupe IPL 2012 5.12% Dodge Challenger SRT8 2011 3.44% Mercedes-Benz S-Class Sedan 2012 3.34% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 3.7% Audi TT Hatchback 2011 2.99% Audi TTS Coupe 2012 2.59% Aston Martin V8 Vantage Convertible 2012 2.56% Audi S6 Sedan 2011 2.56% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 77.43% Dodge Ram Pickup 3500 Quad Cab 2009 12.71% Ford F-450 Super Duty Crew Cab 2012 8.33% GMC Canyon Extended Cab 2012 0.65% Ford F-150 Regular Cab 2012 0.34% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Rolls-Royce Phantom Sedan 2012 14.75% Cadillac CTS-V Sedan 2012 5.99% Spyker C8 Convertible 2009 4.2% Mercedes-Benz SL-Class Coupe 2009 4.04% Audi TTS Coupe 2012 3.9% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 73.21% Toyota 4Runner SUV 2012 3.92% Suzuki SX4 Sedan 2012 3.84% Hyundai Veracruz SUV 2012 3.14% Chevrolet TrailBlazer SS 2009 0.82% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 29.51% Volvo 240 Sedan 1993 13.42% GMC Acadia SUV 2012 12.63% Lincoln Town Car Sedan 2011 5.76% BMW X5 SUV 2007 4.21% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Nissan Juke Hatchback 2012 22.58% Ram C/V Cargo Van Minivan 2012 7.22% GMC Yukon Hybrid SUV 2012 4.64% Chevrolet Traverse SUV 2012 4.14% Chevrolet Malibu Sedan 2007 3.33% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Audi 100 Sedan 1994 12.69% Plymouth Neon Coupe 1999 11.45% Chrysler Crossfire Convertible 2008 5.9% Audi V8 Sedan 1994 2.94% Nissan 240SX Coupe 1998 2.56% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Hyundai Sonata Sedan 2012 4.85% Land Rover Range Rover SUV 2012 4.26% Cadillac Escalade EXT Crew Cab 2007 4.14% Cadillac SRX SUV 2012 3.54% Mercedes-Benz C-Class Sedan 2012 2.76% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 67.88% Plymouth Neon Coupe 1999 10.24% Geo Metro Convertible 1993 5.39% Honda Accord Sedan 2012 4.86% Chevrolet Malibu Sedan 2007 3.62% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 44.76% Chevrolet Corvette ZR1 2012 12.22% BMW Z4 Convertible 2012 7.79% Audi S5 Convertible 2012 3.67% Chevrolet Camaro Convertible 2012 3.0% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Land Rover Range Rover SUV 2012 15.25% Chevrolet Avalanche Crew Cab 2012 7.68% Chevrolet Tahoe Hybrid SUV 2012 4.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.7% Dodge Ram Pickup 3500 Crew Cab 2010 3.18% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Rolls-Royce Ghost Sedan 2012 10.21% Rolls-Royce Phantom Sedan 2012 8.04% BMW M5 Sedan 2010 8.0% Acura TL Sedan 2012 5.91% Chevrolet Sonic Sedan 2012 5.29% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 81.83% Hyundai Genesis Sedan 2012 3.64% BMW M3 Coupe 2012 2.21% Chevrolet Corvette ZR1 2012 1.56% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.86% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Jaguar XK XKR 2012 12.61% Dodge Challenger SRT8 2011 5.86% Chevrolet Malibu Hybrid Sedan 2010 5.18% Suzuki Kizashi Sedan 2012 3.99% BMW 6 Series Convertible 2007 3.99% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 GMC Canyon Extended Cab 2012 48.45% Jeep Patriot SUV 2012 19.9% AM General Hummer SUV 2000 14.23% Jeep Wrangler SUV 2012 7.51% Dodge Ram Pickup 3500 Quad Cab 2009 1.9% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 99.98% Chevrolet Monte Carlo Coupe 2007 0.01% Nissan 240SX Coupe 1998 0.0% Lincoln Town Car Sedan 2011 0.0% Audi 100 Wagon 1994 0.0% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 62.97% Maybach Landaulet Convertible 2012 12.63% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.78% MINI Cooper Roadster Convertible 2012 3.97% Nissan NV Passenger Van 2012 3.45% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 BMW M6 Convertible 2010 33.71% smart fortwo Convertible 2012 23.75% MINI Cooper Roadster Convertible 2012 5.15% BMW Z4 Convertible 2012 4.44% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.05% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Bentley Continental GT Coupe 2012 48.15% Rolls-Royce Phantom Sedan 2012 19.38% Cadillac CTS-V Sedan 2012 5.97% Dodge Charger Sedan 2012 4.43% Bentley Continental Supersports Conv. Convertible 2012 3.64% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Durango SUV 2012 6.67% Chevrolet Avalanche Crew Cab 2012 4.09% Chevrolet TrailBlazer SS 2009 3.0% Land Rover Range Rover SUV 2012 2.52% Chevrolet Tahoe Hybrid SUV 2012 2.49% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.21% Lamborghini Diablo Coupe 2001 0.44% Aston Martin V8 Vantage Coupe 2012 0.2% Spyker C8 Convertible 2009 0.06% McLaren MP4-12C Coupe 2012 0.02% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Daewoo Nubira Wagon 2002 10.19% Chevrolet Express Cargo Van 2007 4.71% Suzuki Kizashi Sedan 2012 4.02% Chrysler PT Cruiser Convertible 2008 2.99% Dodge Caravan Minivan 1997 2.35% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Infiniti QX56 SUV 2011 64.97% Chevrolet Traverse SUV 2012 12.87% Buick Enclave SUV 2012 10.82% Toyota Sequoia SUV 2012 1.97% Ford Freestar Minivan 2007 1.62% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Eagle Talon Hatchback 1998 7.21% Volkswagen Beetle Hatchback 2012 4.83% Acura Integra Type R 2001 4.17% Honda Accord Coupe 2012 2.89% Suzuki SX4 Sedan 2012 2.76% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 49.6% BMW 1 Series Convertible 2012 19.65% BMW M3 Coupe 2012 8.46% Infiniti G Coupe IPL 2012 7.71% Mercedes-Benz S-Class Sedan 2012 3.71% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Porsche Panamera Sedan 2012 45.96% Jaguar XK XKR 2012 14.1% Dodge Challenger SRT8 2011 2.91% Audi S4 Sedan 2012 2.57% BMW ActiveHybrid 5 Sedan 2012 1.84% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Tesla Model S Sedan 2012 72.84% Audi TT Hatchback 2011 13.69% Audi R8 Coupe 2012 1.95% Ferrari FF Coupe 2012 1.82% BMW Z4 Convertible 2012 1.67% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford F-150 Regular Cab 2012 0.0% Toyota Sequoia SUV 2012 0.0% Hyundai Genesis Sedan 2012 0.0% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 9.53% Mercedes-Benz S-Class Sedan 2012 9.25% BMW ActiveHybrid 5 Sedan 2012 4.11% Hyundai Azera Sedan 2012 3.88% Spyker C8 Convertible 2009 3.46% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ferrari 458 Italia Convertible 2012 8.06% Chevrolet Corvette ZR1 2012 6.5% Aston Martin V8 Vantage Coupe 2012 5.77% BMW M3 Coupe 2012 4.14% Chevrolet Sonic Sedan 2012 4.07% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Audi S5 Coupe 2012 27.2% Buick Verano Sedan 2012 13.98% Ferrari FF Coupe 2012 13.48% Jaguar XK XKR 2012 6.85% Infiniti G Coupe IPL 2012 2.84% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Lamborghini Reventon Coupe 2008 4.04% Dodge Charger SRT-8 2009 3.84% Spyker C8 Coupe 2009 3.4% Ford GT Coupe 2006 3.32% Bugatti Veyron 16.4 Convertible 2009 2.46% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 87.17% Jeep Patriot SUV 2012 1.87% Dodge Caravan Minivan 1997 1.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.99% GMC Canyon Extended Cab 2012 0.82% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 61.61% Buick Verano Sedan 2012 16.49% Bentley Continental GT Coupe 2007 3.7% Buick Regal GS 2012 2.94% Cadillac CTS-V Sedan 2012 2.28% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Daewoo Nubira Wagon 2002 11.21% GMC Acadia SUV 2012 3.39% Chrysler Town and Country Minivan 2012 3.06% Chevrolet Malibu Sedan 2007 2.52% GMC Savana Van 2012 2.06% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Bentley Continental GT Coupe 2007 16.06% Bugatti Veyron 16.4 Coupe 2009 10.89% Jeep Wrangler SUV 2012 7.88% Jeep Liberty SUV 2012 7.36% BMW X6 SUV 2012 6.61% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 18.08% Chevrolet Traverse SUV 2012 3.67% FIAT 500 Convertible 2012 3.49% Volkswagen Beetle Hatchback 2012 2.77% Daewoo Nubira Wagon 2002 2.35% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Chrysler PT Cruiser Convertible 2008 26.58% Honda Odyssey Minivan 2012 12.82% Suzuki Aerio Sedan 2007 11.26% Nissan Juke Hatchback 2012 7.38% Buick Rainier SUV 2007 7.15% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Dodge Charger SRT-8 2009 6.62% BMW 1 Series Coupe 2012 5.04% Chevrolet HHR SS 2010 3.49% BMW 3 Series Sedan 2012 2.38% Dodge Charger Sedan 2012 2.25% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Audi V8 Sedan 1994 30.94% Volvo 240 Sedan 1993 26.37% Nissan Juke Hatchback 2012 13.4% Isuzu Ascender SUV 2008 5.96% BMW X5 SUV 2007 2.43% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Maybach Landaulet Convertible 2012 75.77% Mercedes-Benz 300-Class Convertible 1993 2.6% Lamborghini Aventador Coupe 2012 2.17% Volvo 240 Sedan 1993 2.13% Nissan NV Passenger Van 2012 1.9% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 90.38% Bentley Continental GT Coupe 2007 4.25% Bentley Continental Flying Spur Sedan 2007 1.98% Bentley Mulsanne Sedan 2011 1.9% BMW 6 Series Convertible 2007 0.39% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 22.84% Audi 100 Wagon 1994 15.34% Volkswagen Golf Hatchback 1991 15.13% Audi TT RS Coupe 2012 7.1% Dodge Sprinter Cargo Van 2009 4.59% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 42.95% GMC Acadia SUV 2012 23.45% Buick Enclave SUV 2012 8.79% Nissan NV Passenger Van 2012 7.55% Dodge Caliber Wagon 2007 3.45% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Plymouth Neon Coupe 1999 86.36% Chevrolet Express Cargo Van 2007 2.12% Audi V8 Sedan 1994 2.02% Eagle Talon Hatchback 1998 1.59% Bugatti Veyron 16.4 Coupe 2009 1.53% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 18.37% AM General Hummer SUV 2000 9.38% Ford Edge SUV 2012 6.55% Chevrolet Camaro Convertible 2012 6.41% Fisker Karma Sedan 2012 3.34% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 24.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.09% Dodge Ram Pickup 3500 Crew Cab 2010 6.97% Dodge Dakota Crew Cab 2010 5.16% Chevrolet Silverado 2500HD Regular Cab 2012 3.62% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 89.13% Dodge Dakota Club Cab 2007 1.91% Dodge Dakota Crew Cab 2010 1.11% GMC Canyon Extended Cab 2012 1.07% Chevrolet Silverado 2500HD Regular Cab 2012 0.96% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Hyundai Sonata Hybrid Sedan 2012 5.93% Ferrari FF Coupe 2012 4.11% Chevrolet Cobalt SS 2010 2.78% Buick Verano Sedan 2012 2.59% Nissan Leaf Hatchback 2012 2.5% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 23.33% Hyundai Sonata Sedan 2012 7.51% Buick Regal GS 2012 5.09% Chevrolet Malibu Hybrid Sedan 2010 4.87% Volkswagen Beetle Hatchback 2012 4.52% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 93.94% Volkswagen Golf Hatchback 2012 0.48% FIAT 500 Convertible 2012 0.41% Dodge Journey SUV 2012 0.32% Land Rover Range Rover SUV 2012 0.32% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 GMC Acadia SUV 2012 57.44% Ford E-Series Wagon Van 2012 16.18% Isuzu Ascender SUV 2008 14.02% Ford F-150 Regular Cab 2012 9.97% Ford Ranger SuperCab 2011 0.64% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Lamborghini Reventon Coupe 2008 8.51% Spyker C8 Coupe 2009 3.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.75% Plymouth Neon Coupe 1999 3.02% HUMMER H2 SUT Crew Cab 2009 2.88% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Hyundai Veracruz SUV 2012 6.89% Audi R8 Coupe 2012 6.31% BMW X6 SUV 2012 5.31% Jeep Grand Cherokee SUV 2012 5.0% Honda Odyssey Minivan 2012 4.4% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Hyundai Veracruz SUV 2012 5.5% Eagle Talon Hatchback 1998 5.17% Chevrolet Monte Carlo Coupe 2007 5.16% Toyota Camry Sedan 2012 4.94% Chevrolet Malibu Hybrid Sedan 2010 4.36% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 30.06% Ford F-150 Regular Cab 2007 18.46% Toyota 4Runner SUV 2012 10.65% Chevrolet Silverado 1500 Extended Cab 2012 8.48% HUMMER H2 SUT Crew Cab 2009 7.64% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 53.4% Chevrolet Silverado 1500 Regular Cab 2012 6.97% Ferrari 458 Italia Convertible 2012 5.16% Chevrolet Monte Carlo Coupe 2007 4.13% Ford GT Coupe 2006 2.57% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 9.98% Chevrolet Camaro Convertible 2012 8.55% Mercedes-Benz 300-Class Convertible 1993 6.52% BMW M6 Convertible 2010 5.83% Ferrari California Convertible 2012 4.87% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Charger Sedan 2012 5.36% Ferrari 458 Italia Convertible 2012 3.03% Hyundai Elantra Sedan 2007 2.72% Jeep Wrangler SUV 2012 2.69% Nissan NV Passenger Van 2012 2.4% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 27.84% Nissan Juke Hatchback 2012 3.51% Jaguar XK XKR 2012 3.46% Bugatti Veyron 16.4 Coupe 2009 3.43% Acura TL Type-S 2008 3.15% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.86% FIAT 500 Convertible 2012 0.05% Ford F-450 Super Duty Crew Cab 2012 0.03% Ford GT Coupe 2006 0.01% Bentley Arnage Sedan 2009 0.01% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 15.53% GMC Canyon Extended Cab 2012 11.47% Chevrolet Silverado 1500 Classic Extended Cab 2007 9.4% GMC Savana Van 2012 6.78% Buick Rainier SUV 2007 4.77% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Ford F-150 Regular Cab 2012 92.73% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.63% GMC Canyon Extended Cab 2012 1.8% Chevrolet Silverado 1500 Extended Cab 2012 1.05% Ford Expedition EL SUV 2009 0.98% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 BMW M5 Sedan 2010 17.41% Audi TT Hatchback 2011 9.46% Acura TL Sedan 2012 6.38% BMW M6 Convertible 2010 5.19% Audi R8 Coupe 2012 4.69% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 50.22% MINI Cooper Roadster Convertible 2012 8.74% Suzuki Kizashi Sedan 2012 7.99% Hyundai Sonata Hybrid Sedan 2012 3.79% Chevrolet Corvette ZR1 2012 3.59% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 9.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.61% Chevrolet Silverado 1500 Extended Cab 2012 2.67% GMC Canyon Extended Cab 2012 2.46% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.3% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Chevrolet Avalanche Crew Cab 2012 22.18% Chevrolet Tahoe Hybrid SUV 2012 17.87% Dodge Journey SUV 2012 10.98% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.47% Chrysler Aspen SUV 2009 7.15% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Hyundai Accent Sedan 2012 13.78% Hyundai Genesis Sedan 2012 3.57% BMW M5 Sedan 2010 3.27% Dodge Journey SUV 2012 3.08% Fisker Karma Sedan 2012 2.79% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 94.8% Dodge Challenger SRT8 2011 0.81% Cadillac CTS-V Sedan 2012 0.33% Maybach Landaulet Convertible 2012 0.29% Chrysler 300 SRT-8 2010 0.18% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 75.48% Audi S4 Sedan 2012 4.74% Acura RL Sedan 2012 2.36% Dodge Caliber Wagon 2012 1.05% BMW M3 Coupe 2012 0.98% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 GMC Yukon Hybrid SUV 2012 29.12% Jeep Grand Cherokee SUV 2012 25.45% GMC Terrain SUV 2012 6.95% Chrysler PT Cruiser Convertible 2008 5.07% Cadillac Escalade EXT Crew Cab 2007 4.3% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Hyundai Elantra Touring Hatchback 2012 7.77% Chrysler Sebring Convertible 2010 3.7% Dodge Charger Sedan 2012 3.56% Honda Accord Coupe 2012 3.45% Ford Focus Sedan 2007 2.83% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 BMW X5 SUV 2007 20.58% Chevrolet TrailBlazer SS 2009 14.69% Nissan Juke Hatchback 2012 5.59% Dodge Journey SUV 2012 3.47% Toyota Sequoia SUV 2012 3.24% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 79.77% FIAT 500 Abarth 2012 1.27% Audi S4 Sedan 2012 1.25% Volvo 240 Sedan 1993 1.25% Chevrolet Camaro Convertible 2012 1.19% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 44.24% McLaren MP4-12C Coupe 2012 5.4% Spyker C8 Convertible 2009 4.4% AM General Hummer SUV 2000 4.21% Bugatti Veyron 16.4 Convertible 2009 3.52% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Plymouth Neon Coupe 1999 36.01% BMW M5 Sedan 2010 17.38% Nissan 240SX Coupe 1998 5.11% BMW 6 Series Convertible 2007 2.76% Ford Focus Sedan 2007 2.11% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Hyundai Veloster Hatchback 2012 23.83% Audi RS 4 Convertible 2008 16.46% Lamborghini Diablo Coupe 2001 13.33% Ferrari California Convertible 2012 10.23% McLaren MP4-12C Coupe 2012 7.65% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 55.04% Ram C/V Cargo Van Minivan 2012 17.58% Ford Mustang Convertible 2007 13.71% Ford Freestar Minivan 2007 2.95% Audi 100 Wagon 1994 2.57% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Ford Expedition EL SUV 2009 38.48% Chrysler PT Cruiser Convertible 2008 14.03% Dodge Journey SUV 2012 9.31% Honda Odyssey Minivan 2007 4.97% Dodge Caliber Wagon 2012 3.75% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 BMW M3 Coupe 2012 43.62% Nissan 240SX Coupe 1998 5.05% BMW Z4 Convertible 2012 3.91% Toyota Camry Sedan 2012 2.99% BMW ActiveHybrid 5 Sedan 2012 1.69% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 80.17% Mercedes-Benz C-Class Sedan 2012 5.17% BMW 3 Series Sedan 2012 3.54% Acura TL Type-S 2008 0.88% BMW M5 Sedan 2010 0.78% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Volkswagen Golf Hatchback 1991 27.75% Toyota Sequoia SUV 2012 8.57% Volvo XC90 SUV 2007 8.12% GMC Acadia SUV 2012 7.61% GMC Terrain SUV 2012 4.86% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Honda Odyssey Minivan 2007 7.56% Nissan NV Passenger Van 2012 5.58% Ford Edge SUV 2012 5.39% Chevrolet Traverse SUV 2012 4.56% Hyundai Veracruz SUV 2012 4.11% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 84.43% Bentley Continental GT Coupe 2012 13.41% Bentley Continental Flying Spur Sedan 2007 0.49% Fisker Karma Sedan 2012 0.42% Bentley Mulsanne Sedan 2011 0.32% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 8.03% GMC Yukon Hybrid SUV 2012 4.64% Jeep Wrangler SUV 2012 3.49% Mazda Tribute SUV 2011 3.18% Dodge Caliber Wagon 2012 2.27% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Audi S5 Convertible 2012 75.89% Audi TTS Coupe 2012 11.01% Audi A5 Coupe 2012 5.13% Audi S4 Sedan 2012 2.12% Audi TT RS Coupe 2012 1.34% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 99.41% Chevrolet Silverado 1500 Extended Cab 2012 0.29% Chevrolet Silverado 1500 Regular Cab 2012 0.2% Dodge Dakota Club Cab 2007 0.07% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 4.93% Ford Ranger SuperCab 2011 4.78% Ford F-150 Regular Cab 2012 4.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.5% Volvo XC90 SUV 2007 3.15% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.95% Chevrolet Avalanche Crew Cab 2012 1.9% Honda Accord Sedan 2012 1.77% smart fortwo Convertible 2012 1.56% Ford Mustang Convertible 2007 1.55% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 81.62% Buick Regal GS 2012 2.05% Chevrolet Impala Sedan 2007 1.22% Suzuki Kizashi Sedan 2012 1.12% Dodge Challenger SRT8 2011 1.04% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 26.0% Ford F-150 Regular Cab 2012 24.11% Chevrolet Silverado 1500 Regular Cab 2012 10.53% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.39% Chevrolet Silverado 2500HD Regular Cab 2012 4.07% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 97.42% Dodge Caliber Wagon 2007 1.98% Dodge Durango SUV 2007 0.25% Dodge Magnum Wagon 2008 0.21% Dodge Journey SUV 2012 0.06% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 BMW Z4 Convertible 2012 15.15% McLaren MP4-12C Coupe 2012 8.04% Aston Martin Virage Coupe 2012 7.54% Dodge Challenger SRT8 2011 5.35% Ferrari 458 Italia Coupe 2012 5.28% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 4.56% Honda Odyssey Minivan 2007 3.32% Suzuki SX4 Sedan 2012 2.82% Acura TL Type-S 2008 2.4% Buick Regal GS 2012 2.07% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Honda Accord Coupe 2012 10.11% Acura TL Type-S 2008 8.22% Toyota Camry Sedan 2012 7.94% Audi S4 Sedan 2012 7.53% Honda Accord Sedan 2012 6.64% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 25.17% Dodge Caliber Wagon 2012 8.81% Dodge Durango SUV 2007 6.08% Dodge Journey SUV 2012 3.97% BMW X3 SUV 2012 2.19% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Aventador Coupe 2012 44.51% Ford GT Coupe 2006 18.03% Ferrari California Convertible 2012 17.34% Ferrari 458 Italia Convertible 2012 5.32% Bugatti Veyron 16.4 Coupe 2009 3.67% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M5 Sedan 2010 7.41% BMW ActiveHybrid 5 Sedan 2012 6.18% Audi S5 Coupe 2012 5.95% Suzuki SX4 Sedan 2012 4.53% Buick Verano Sedan 2012 4.46% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 Chevrolet Sonic Sedan 2012 9.9% Ford Focus Sedan 2007 5.22% Hyundai Tucson SUV 2012 4.9% Plymouth Neon Coupe 1999 4.65% Acura TL Sedan 2012 3.47% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Plymouth Neon Coupe 1999 10.44% Daewoo Nubira Wagon 2002 3.65% Jeep Liberty SUV 2012 2.09% Chevrolet Malibu Sedan 2007 1.96% Ferrari FF Coupe 2012 1.77% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Nissan Juke Hatchback 2012 82.36% Dodge Caliber Wagon 2007 1.38% Dodge Journey SUV 2012 1.18% Suzuki SX4 Hatchback 2012 1.16% Jeep Compass SUV 2012 0.82% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler Crossfire Convertible 2008 65.89% MINI Cooper Roadster Convertible 2012 12.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.39% BMW 6 Series Convertible 2007 4.93% BMW M5 Sedan 2010 2.47% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Cadillac CTS-V Sedan 2012 3.83% Audi R8 Coupe 2012 3.5% Eagle Talon Hatchback 1998 2.97% Lamborghini Reventon Coupe 2008 2.79% Mitsubishi Lancer Sedan 2012 2.59% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 99.63% Honda Odyssey Minivan 2012 0.21% Ferrari FF Coupe 2012 0.13% Dodge Caliber Wagon 2007 0.0% Hyundai Elantra Sedan 2007 0.0% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 55.73% Acura TL Type-S 2008 4.48% Tesla Model S Sedan 2012 2.98% Fisker Karma Sedan 2012 2.48% Ferrari FF Coupe 2012 1.46% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Audi V8 Sedan 1994 82.04% Volvo 240 Sedan 1993 6.27% Audi 100 Sedan 1994 5.99% Audi 100 Wagon 1994 2.54% Nissan 240SX Coupe 1998 1.13% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caliber Wagon 2012 66.92% Ram C/V Cargo Van Minivan 2012 3.69% Ford Edge SUV 2012 2.0% Suzuki SX4 Sedan 2012 1.99% Honda Odyssey Minivan 2007 1.89% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 40.42% Audi TT RS Coupe 2012 27.26% Audi S5 Convertible 2012 7.87% Ferrari California Convertible 2012 4.69% Aston Martin V8 Vantage Coupe 2012 2.94% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 27.95% Volkswagen Beetle Hatchback 2012 18.49% Honda Accord Coupe 2012 16.49% Chevrolet Corvette Convertible 2012 7.83% BMW 1 Series Coupe 2012 4.64% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Dodge Charger Sedan 2012 28.84% Dodge Charger SRT-8 2009 15.32% Jaguar XK XKR 2012 3.68% Chevrolet Sonic Sedan 2012 3.17% Audi TT RS Coupe 2012 2.44% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Mercedes-Benz E-Class Sedan 2012 35.94% Ford F-450 Super Duty Crew Cab 2012 22.73% Dodge Ram Pickup 3500 Crew Cab 2010 9.58% Chevrolet Corvette ZR1 2012 2.03% Cadillac Escalade EXT Crew Cab 2007 1.74% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW 3 Series Sedan 2012 48.53% Dodge Journey SUV 2012 9.67% Dodge Dakota Crew Cab 2010 7.78% Dodge Charger Sedan 2012 5.9% Dodge Charger SRT-8 2009 3.56% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Fisker Karma Sedan 2012 4.85% Lamborghini Reventon Coupe 2008 4.52% Bugatti Veyron 16.4 Coupe 2009 3.66% AM General Hummer SUV 2000 3.59% Rolls-Royce Ghost Sedan 2012 2.84% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Audi V8 Sedan 1994 33.06% Buick Enclave SUV 2012 7.47% Mercedes-Benz 300-Class Convertible 1993 6.44% Lincoln Town Car Sedan 2011 5.98% Volvo 240 Sedan 1993 5.34% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Ford Focus Sedan 2007 10.54% Daewoo Nubira Wagon 2002 4.25% Chrysler Crossfire Convertible 2008 3.91% Eagle Talon Hatchback 1998 2.21% Hyundai Elantra Touring Hatchback 2012 2.02% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 99.91% Dodge Charger SRT-8 2009 0.07% Dodge Charger Sedan 2012 0.01% Volvo C30 Hatchback 2012 0.01% Audi TT RS Coupe 2012 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Toyota Corolla Sedan 2012 63.14% Hyundai Elantra Sedan 2007 14.3% Toyota Camry Sedan 2012 3.33% Acura TSX Sedan 2012 2.13% Honda Accord Coupe 2012 2.08% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 33.89% GMC Yukon Hybrid SUV 2012 17.51% Chevrolet Malibu Sedan 2007 11.18% Daewoo Nubira Wagon 2002 6.69% Suzuki SX4 Sedan 2012 4.88% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Nissan Leaf Hatchback 2012 39.28% Audi 100 Wagon 1994 18.22% Chevrolet Silverado 1500 Extended Cab 2012 11.58% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.97% Hyundai Elantra Sedan 2007 5.4% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 64.34% Spyker C8 Convertible 2009 35.55% Ford GT Coupe 2006 0.03% Ferrari 458 Italia Coupe 2012 0.03% Lamborghini Aventador Coupe 2012 0.02% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 41.43% Honda Odyssey Minivan 2007 22.63% Dodge Caliber Wagon 2012 16.53% Dodge Durango SUV 2012 7.06% Ram C/V Cargo Van Minivan 2012 1.44% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 39.17% Buick Enclave SUV 2012 19.76% Hyundai Tucson SUV 2012 3.15% Jaguar XK XKR 2012 1.82% Dodge Sprinter Cargo Van 2009 1.7% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Ford F-450 Super Duty Crew Cab 2012 47.71% Toyota Sequoia SUV 2012 18.6% Cadillac SRX SUV 2012 16.84% GMC Yukon Hybrid SUV 2012 3.07% Toyota 4Runner SUV 2012 3.0% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 49.2% BMW 3 Series Sedan 2012 5.12% Bentley Arnage Sedan 2009 4.82% Audi V8 Sedan 1994 4.69% Audi 100 Sedan 1994 3.39% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 88.66% Toyota 4Runner SUV 2012 4.9% Dodge Durango SUV 2012 1.39% Cadillac Escalade EXT Crew Cab 2007 0.69% Acura ZDX Hatchback 2012 0.58% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 47.81% Chevrolet Silverado 2500HD Regular Cab 2012 40.59% HUMMER H3T Crew Cab 2010 1.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.96% Chevrolet Silverado 1500 Extended Cab 2012 0.92% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 93.43% Isuzu Ascender SUV 2008 2.09% Jeep Patriot SUV 2012 0.67% GMC Savana Van 2012 0.66% GMC Yukon Hybrid SUV 2012 0.44% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Buick Enclave SUV 2012 9.86% Buick Rainier SUV 2007 8.47% Dodge Challenger SRT8 2011 4.83% Mazda Tribute SUV 2011 4.81% Hyundai Veloster Hatchback 2012 3.58% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Cadillac CTS-V Sedan 2012 8.32% Volkswagen Beetle Hatchback 2012 5.66% BMW 3 Series Wagon 2012 5.38% Bentley Mulsanne Sedan 2011 4.75% Toyota Camry Sedan 2012 4.14% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Infiniti QX56 SUV 2011 10.15% Hyundai Veracruz SUV 2012 7.9% Land Rover LR2 SUV 2012 4.17% Cadillac SRX SUV 2012 3.54% Chrysler Aspen SUV 2009 2.6% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 64.11% Cadillac SRX SUV 2012 8.76% Ford F-450 Super Duty Crew Cab 2012 4.51% Toyota 4Runner SUV 2012 4.5% Suzuki Kizashi Sedan 2012 2.41% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 McLaren MP4-12C Coupe 2012 23.16% Nissan NV Passenger Van 2012 5.57% Lamborghini Diablo Coupe 2001 4.51% Ferrari 458 Italia Convertible 2012 3.71% BMW M3 Coupe 2012 3.7% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Dodge Durango SUV 2012 11.28% Dodge Ram Pickup 3500 Crew Cab 2010 5.04% Chrysler Town and Country Minivan 2012 4.6% Chevrolet Traverse SUV 2012 2.57% Cadillac Escalade EXT Crew Cab 2007 2.44% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 49.15% Chevrolet Corvette Convertible 2012 18.0% Ferrari 458 Italia Coupe 2012 5.17% Dodge Challenger SRT8 2011 3.07% Porsche Panamera Sedan 2012 2.44% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Nissan NV Passenger Van 2012 24.93% Ford F-450 Super Duty Crew Cab 2012 13.4% Jeep Wrangler SUV 2012 11.95% Ford E-Series Wagon Van 2012 11.41% Ford F-150 Regular Cab 2012 8.96% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Chevrolet Impala Sedan 2007 6.04% Hyundai Elantra Sedan 2007 5.51% BMW X5 SUV 2007 4.38% Ford Focus Sedan 2007 3.92% Honda Accord Sedan 2012 2.8% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Hyundai Elantra Sedan 2007 5.49% Ferrari FF Coupe 2012 2.53% Chevrolet Cobalt SS 2010 2.41% Volvo 240 Sedan 1993 1.94% Nissan 240SX Coupe 1998 1.87% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Ford GT Coupe 2006 8.12% Chevrolet Monte Carlo Coupe 2007 7.13% Aston Martin Virage Convertible 2012 7.05% Chevrolet Corvette ZR1 2012 6.82% Aston Martin V8 Vantage Coupe 2012 4.44% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Hyundai Veracruz SUV 2012 25.9% Hyundai Tucson SUV 2012 15.39% Honda Odyssey Minivan 2012 10.1% Hyundai Santa Fe SUV 2012 6.12% Hyundai Sonata Sedan 2012 5.63% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 15.05% Chevrolet Camaro Convertible 2012 11.09% Lincoln Town Car Sedan 2011 4.81% Buick Verano Sedan 2012 4.37% Chrysler Sebring Convertible 2010 3.76% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Dodge Magnum Wagon 2008 24.6% Buick Enclave SUV 2012 8.78% Chevrolet Sonic Sedan 2012 6.46% Ford GT Coupe 2006 4.35% Acura ZDX Hatchback 2012 4.15% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 86.62% GMC Savana Van 2012 11.11% Chevrolet Express Van 2007 2.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Dodge Charger Sedan 2012 5.32% Lamborghini Aventador Coupe 2012 4.13% Ferrari 458 Italia Convertible 2012 3.27% Jaguar XK XKR 2012 2.57% HUMMER H2 SUT Crew Cab 2009 2.29% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Audi R8 Coupe 2012 21.69% Ford GT Coupe 2006 13.29% Lamborghini Reventon Coupe 2008 10.09% Spyker C8 Coupe 2009 6.7% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.86% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Dodge Caravan Minivan 1997 15.58% Nissan Leaf Hatchback 2012 11.68% Hyundai Elantra Sedan 2007 8.8% Suzuki SX4 Hatchback 2012 6.63% Audi 100 Wagon 1994 4.55% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Chevrolet Silverado 2500HD Regular Cab 2012 91.47% Chevrolet Avalanche Crew Cab 2012 0.97% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.82% Toyota 4Runner SUV 2012 0.7% Chevrolet Silverado 1500 Regular Cab 2012 0.59% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Jeep Liberty SUV 2012 38.97% Bentley Arnage Sedan 2009 9.21% GMC Yukon Hybrid SUV 2012 4.66% Chevrolet Sonic Sedan 2012 2.58% Nissan NV Passenger Van 2012 2.09% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Lamborghini Reventon Coupe 2008 7.47% BMW 6 Series Convertible 2007 6.76% BMW M6 Convertible 2010 6.38% Infiniti G Coupe IPL 2012 5.41% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.6% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Mercedes-Benz 300-Class Convertible 1993 55.68% Volvo 240 Sedan 1993 14.35% Ford F-150 Regular Cab 2007 10.39% Lincoln Town Car Sedan 2011 4.41% Ford Freestar Minivan 2007 4.34% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Suzuki SX4 Hatchback 2012 38.16% Daewoo Nubira Wagon 2002 22.42% Hyundai Elantra Touring Hatchback 2012 12.13% Volvo XC90 SUV 2007 10.11% Volvo C30 Hatchback 2012 3.71% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 99.38% Audi R8 Coupe 2012 0.6% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.01% Jaguar XK XKR 2012 0.0% Chrysler 300 SRT-8 2010 0.0% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Aston Martin V8 Vantage Convertible 2012 8.52% Porsche Panamera Sedan 2012 5.86% Audi TT Hatchback 2011 5.77% BMW ActiveHybrid 5 Sedan 2012 3.93% Jaguar XK XKR 2012 3.89% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Daewoo Nubira Wagon 2002 6.03% Audi S6 Sedan 2011 3.16% Volkswagen Golf Hatchback 1991 3.01% Acura Integra Type R 2001 2.51% Audi 100 Wagon 1994 2.14% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Ford E-Series Wagon Van 2012 65.72% Ford Ranger SuperCab 2011 24.14% Isuzu Ascender SUV 2008 5.92% GMC Yukon Hybrid SUV 2012 0.98% Ford F-150 Regular Cab 2012 0.6% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Hyundai Genesis Sedan 2012 10.78% Hyundai Azera Sedan 2012 5.23% Volkswagen Golf Hatchback 2012 4.3% Infiniti G Coupe IPL 2012 4.02% Hyundai Veloster Hatchback 2012 3.48% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Hyundai Veloster Hatchback 2012 29.66% smart fortwo Convertible 2012 25.61% Tesla Model S Sedan 2012 24.07% BMW 1 Series Convertible 2012 7.04% Mercedes-Benz C-Class Sedan 2012 3.36% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 79.88% Chevrolet Tahoe Hybrid SUV 2012 4.31% Toyota 4Runner SUV 2012 4.04% Chevrolet Avalanche Crew Cab 2012 2.03% Ford F-150 Regular Cab 2012 1.02% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Dodge Charger Sedan 2012 12.31% Infiniti G Coupe IPL 2012 11.84% Chevrolet Corvette ZR1 2012 6.69% Suzuki Kizashi Sedan 2012 5.89% Hyundai Veloster Hatchback 2012 5.38% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz SL-Class Coupe 2009 10.55% Infiniti G Coupe IPL 2012 5.79% Volkswagen Golf Hatchback 2012 3.22% Bentley Continental GT Coupe 2007 2.94% Buick Regal GS 2012 2.94% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.98% Volvo 240 Sedan 1993 0.02% Buick Enclave SUV 2012 0.0% BMW 3 Series Wagon 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi S4 Sedan 2007 100.0% Audi A5 Coupe 2012 0.0% Audi RS 4 Convertible 2008 0.0% Audi S6 Sedan 2011 0.0% Audi S4 Sedan 2012 0.0% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Dodge Caliber Wagon 2012 37.98% Dodge Durango SUV 2012 15.22% Jeep Grand Cherokee SUV 2012 12.37% Dodge Durango SUV 2007 7.87% Jeep Compass SUV 2012 7.36% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Nissan Juke Hatchback 2012 60.29% Nissan NV Passenger Van 2012 7.26% Suzuki SX4 Hatchback 2012 4.49% Geo Metro Convertible 1993 4.22% Hyundai Elantra Sedan 2007 3.47% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 47.83% Ford Expedition EL SUV 2009 19.33% Chrysler Aspen SUV 2009 14.16% Ford F-150 Regular Cab 2012 3.92% Chevrolet Tahoe Hybrid SUV 2012 3.49% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Toyota Camry Sedan 2012 5.56% Ferrari FF Coupe 2012 2.52% Chevrolet Impala Sedan 2007 2.3% Chevrolet Monte Carlo Coupe 2007 1.99% Honda Accord Sedan 2012 1.86% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 GMC Canyon Extended Cab 2012 3.09% Dodge Durango SUV 2007 2.6% Volvo 240 Sedan 1993 2.45% Maybach Landaulet Convertible 2012 2.33% Mazda Tribute SUV 2011 2.14% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Jeep Liberty SUV 2012 36.65% Ford Edge SUV 2012 18.55% Jeep Patriot SUV 2012 8.25% Volkswagen Golf Hatchback 1991 7.87% Cadillac Escalade EXT Crew Cab 2007 4.49% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Audi TT Hatchback 2011 29.1% Fisker Karma Sedan 2012 4.57% Audi S6 Sedan 2011 4.43% Chevrolet Corvette ZR1 2012 4.29% Ford GT Coupe 2006 4.07% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 FIAT 500 Convertible 2012 3.85% Spyker C8 Coupe 2009 3.38% smart fortwo Convertible 2012 3.09% Jeep Compass SUV 2012 2.96% MINI Cooper Roadster Convertible 2012 2.17% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Ferrari 458 Italia Convertible 2012 86.07% Audi TT RS Coupe 2012 6.48% Ferrari California Convertible 2012 3.14% Chevrolet Corvette Convertible 2012 1.65% Volkswagen Beetle Hatchback 2012 0.72% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Toyota 4Runner SUV 2012 23.6% GMC Terrain SUV 2012 16.9% Scion xD Hatchback 2012 14.14% Nissan Juke Hatchback 2012 12.81% Buick Rainier SUV 2007 2.4% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 33.4% Maybach Landaulet Convertible 2012 24.53% smart fortwo Convertible 2012 10.02% Bentley Continental Flying Spur Sedan 2007 3.79% Nissan Leaf Hatchback 2012 2.78% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.82% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.09% HUMMER H2 SUT Crew Cab 2009 0.06% Lamborghini Diablo Coupe 2001 0.0% AM General Hummer SUV 2000 0.0% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 49.04% Dodge Caravan Minivan 1997 19.61% Buick Enclave SUV 2012 6.91% Chevrolet Traverse SUV 2012 2.39% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.06% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Hyundai Veracruz SUV 2012 18.53% Dodge Durango SUV 2012 7.08% Infiniti QX56 SUV 2011 5.03% Toyota 4Runner SUV 2012 2.64% Hyundai Genesis Sedan 2012 2.12% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Hyundai Veloster Hatchback 2012 13.53% Lamborghini Aventador Coupe 2012 6.94% Dodge Challenger SRT8 2011 6.8% Maybach Landaulet Convertible 2012 6.34% BMW 6 Series Convertible 2007 5.61% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 83.2% Dodge Ram Pickup 3500 Crew Cab 2010 3.65% AM General Hummer SUV 2000 3.22% HUMMER H2 SUT Crew Cab 2009 2.02% Jeep Patriot SUV 2012 0.98% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Dodge Journey SUV 2012 80.58% Suzuki SX4 Hatchback 2012 3.61% Dodge Caliber Wagon 2007 1.97% Dodge Caliber Wagon 2012 1.44% Acura RL Sedan 2012 0.93% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler 300 SRT-8 2010 16.85% Volkswagen Beetle Hatchback 2012 15.3% Chrysler Crossfire Convertible 2008 8.0% Mercedes-Benz C-Class Sedan 2012 7.13% Dodge Challenger SRT8 2011 4.53% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Ferrari FF Coupe 2012 31.17% Chevrolet Corvette Convertible 2012 17.72% Nissan Juke Hatchback 2012 7.83% Honda Odyssey Minivan 2012 5.55% Dodge Journey SUV 2012 4.52% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Rolls-Royce Phantom Sedan 2012 10.3% Jeep Patriot SUV 2012 9.99% Buick Rainier SUV 2007 6.82% BMW M5 Sedan 2010 5.06% Volvo 240 Sedan 1993 4.36% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Acura RL Sedan 2012 7.72% BMW 3 Series Sedan 2012 4.11% Dodge Journey SUV 2012 2.79% Chevrolet Sonic Sedan 2012 2.67% Suzuki SX4 Sedan 2012 2.61% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 16.99% Jeep Wrangler SUV 2012 6.78% Lamborghini Reventon Coupe 2008 3.58% HUMMER H3T Crew Cab 2010 3.25% Jeep Patriot SUV 2012 2.88% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 32.35% Aston Martin V8 Vantage Coupe 2012 7.85% Fisker Karma Sedan 2012 6.74% McLaren MP4-12C Coupe 2012 5.16% Lamborghini Reventon Coupe 2008 4.27% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Mercedes-Benz C-Class Sedan 2012 2.25% Chevrolet Corvette ZR1 2012 2.08% Fisker Karma Sedan 2012 2.0% Cadillac CTS-V Sedan 2012 1.92% BMW M6 Convertible 2010 1.87% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 6.57% Jeep Wrangler SUV 2012 5.76% BMW 1 Series Coupe 2012 5.48% Audi R8 Coupe 2012 4.01% Buick Enclave SUV 2012 3.53% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 smart fortwo Convertible 2012 11.19% FIAT 500 Convertible 2012 5.4% Chrysler Sebring Convertible 2010 4.14% Bentley Continental Flying Spur Sedan 2007 2.84% Acura ZDX Hatchback 2012 2.76% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 43.39% Chevrolet Corvette ZR1 2012 22.81% Ford GT Coupe 2006 4.85% Lamborghini Aventador Coupe 2012 4.35% Mercedes-Benz SL-Class Coupe 2009 2.61% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 29.53% Chevrolet TrailBlazer SS 2009 3.09% Rolls-Royce Phantom Sedan 2012 2.96% Cadillac CTS-V Sedan 2012 2.87% Infiniti QX56 SUV 2011 2.6% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 31.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.25% Dodge Ram Pickup 3500 Quad Cab 2009 3.15% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.98% Dodge Sprinter Cargo Van 2009 2.73% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 BMW M3 Coupe 2012 5.85% Chrysler Sebring Convertible 2010 3.47% Volkswagen Beetle Hatchback 2012 3.46% Toyota 4Runner SUV 2012 3.05% Scion xD Hatchback 2012 2.76% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Nissan NV Passenger Van 2012 12.37% Suzuki SX4 Sedan 2012 6.06% Toyota 4Runner SUV 2012 3.86% Chevrolet Malibu Sedan 2007 2.93% Chevrolet Traverse SUV 2012 2.66% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Cadillac CTS-V Sedan 2012 66.64% Audi TT Hatchback 2011 14.71% Mercedes-Benz SL-Class Coupe 2009 1.74% Toyota Camry Sedan 2012 1.51% Chevrolet Camaro Convertible 2012 1.25% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 GMC Acadia SUV 2012 13.69% Chevrolet Malibu Hybrid Sedan 2010 9.92% Chevrolet Avalanche Crew Cab 2012 4.72% Hyundai Elantra Sedan 2007 3.45% Scion xD Hatchback 2012 3.03% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 55.11% Aston Martin Virage Convertible 2012 13.13% Aston Martin V8 Vantage Convertible 2012 5.67% Lamborghini Reventon Coupe 2008 3.18% Bugatti Veyron 16.4 Coupe 2009 1.02% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 29.97% Ferrari FF Coupe 2012 22.24% Honda Accord Coupe 2012 17.93% BMW Z4 Convertible 2012 5.4% Ferrari 458 Italia Coupe 2012 2.52% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 93.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.66% Audi 100 Wagon 1994 0.7% GMC Canyon Extended Cab 2012 0.62% Chevrolet Silverado 1500 Extended Cab 2012 0.59% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW 6 Series Convertible 2007 5.25% Mercedes-Benz S-Class Sedan 2012 5.12% Ford GT Coupe 2006 3.17% Mitsubishi Lancer Sedan 2012 3.16% BMW M5 Sedan 2010 2.91% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 44.72% Dodge Challenger SRT8 2011 14.23% Bentley Continental GT Coupe 2012 11.15% Bentley Mulsanne Sedan 2011 3.41% Suzuki Kizashi Sedan 2012 2.03% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.74% Volvo XC90 SUV 2007 0.13% Ford Ranger SuperCab 2011 0.08% Buick Rainier SUV 2007 0.01% BMW 1 Series Coupe 2012 0.01% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford E-Series Wagon Van 2012 26.05% GMC Canyon Extended Cab 2012 13.16% Chevrolet Tahoe Hybrid SUV 2012 12.11% Chevrolet Silverado 1500 Classic Extended Cab 2007 11.88% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.66% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 19.06% Toyota 4Runner SUV 2012 12.21% HUMMER H2 SUT Crew Cab 2009 3.27% Dodge Dakota Crew Cab 2010 2.83% Cadillac Escalade EXT Crew Cab 2007 2.76% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 BMW M5 Sedan 2010 20.32% Aston Martin V8 Vantage Convertible 2012 4.39% BMW 6 Series Convertible 2007 2.71% Cadillac CTS-V Sedan 2012 2.08% Rolls-Royce Ghost Sedan 2012 2.07% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Mercedes-Benz 300-Class Convertible 1993 4.43% Honda Accord Sedan 2012 4.09% Chevrolet Camaro Convertible 2012 3.39% Acura TSX Sedan 2012 3.31% Dodge Magnum Wagon 2008 3.28% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 48.2% Ford Focus Sedan 2007 16.52% Chevrolet Corvette ZR1 2012 7.49% Hyundai Elantra Touring Hatchback 2012 2.68% Volkswagen Beetle Hatchback 2012 2.37% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 100.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Spyker C8 Convertible 2009 0.0% Spyker C8 Coupe 2009 0.0% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Ford Focus Sedan 2007 4.18% Plymouth Neon Coupe 1999 2.92% Acura TL Type-S 2008 2.78% Chevrolet Express Cargo Van 2007 2.57% Hyundai Elantra Touring Hatchback 2012 2.36% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Jaguar XK XKR 2012 18.02% BMW M5 Sedan 2010 9.83% BMW M3 Coupe 2012 6.21% Dodge Challenger SRT8 2011 5.45% BMW ActiveHybrid 5 Sedan 2012 3.8% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Spyker C8 Coupe 2009 18.21% Ford GT Coupe 2006 17.62% Lamborghini Diablo Coupe 2001 10.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 8.59% AM General Hummer SUV 2000 5.0% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Lincoln Town Car Sedan 2011 52.31% Chevrolet Impala Sedan 2007 7.76% Hyundai Veracruz SUV 2012 5.88% Chevrolet Camaro Convertible 2012 5.33% Chevrolet Malibu Sedan 2007 2.69% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Dodge Journey SUV 2012 12.61% Spyker C8 Coupe 2009 7.94% Dodge Caliber Wagon 2012 5.52% Jaguar XK XKR 2012 4.82% Volkswagen Golf Hatchback 1991 3.61% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Hyundai Accent Sedan 2012 39.75% Audi TT Hatchback 2011 6.76% Toyota Camry Sedan 2012 6.16% Acura TSX Sedan 2012 5.09% Audi TTS Coupe 2012 4.77% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 99.81% Bentley Continental Flying Spur Sedan 2007 0.08% Bentley Continental GT Coupe 2012 0.06% Bentley Arnage Sedan 2009 0.03% Maybach Landaulet Convertible 2012 0.0% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Spyker C8 Convertible 2009 34.98% Hyundai Veloster Hatchback 2012 4.05% Jeep Wrangler SUV 2012 2.51% Aston Martin Virage Coupe 2012 2.37% smart fortwo Convertible 2012 1.84% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Chrysler 300 SRT-8 2010 7.82% Volvo 240 Sedan 1993 6.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.66% Lamborghini Reventon Coupe 2008 5.62% Rolls-Royce Phantom Sedan 2012 5.49% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 15.16% Daewoo Nubira Wagon 2002 4.23% Dodge Challenger SRT8 2011 4.0% Aston Martin Virage Convertible 2012 3.11% Acura ZDX Hatchback 2012 3.0% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Dodge Caravan Minivan 1997 7.39% Chevrolet Silverado 1500 Extended Cab 2012 5.08% Audi 100 Wagon 1994 2.15% Chevrolet Avalanche Crew Cab 2012 1.93% Chevrolet Malibu Hybrid Sedan 2010 1.79% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 31.36% Hyundai Sonata Sedan 2012 15.23% Hyundai Elantra Sedan 2007 6.75% Mercedes-Benz S-Class Sedan 2012 6.02% Chevrolet Malibu Hybrid Sedan 2010 5.1% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 65.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.03% McLaren MP4-12C Coupe 2012 4.68% Lamborghini Diablo Coupe 2001 4.43% Ford Mustang Convertible 2007 1.98% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 9.45% Hyundai Elantra Sedan 2007 5.19% Tesla Model S Sedan 2012 4.72% Mitsubishi Lancer Sedan 2012 4.25% Cadillac CTS-V Sedan 2012 3.34% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 36.48% Ford F-150 Regular Cab 2012 7.61% Chevrolet Silverado 1500 Extended Cab 2012 5.65% Chevrolet Silverado 2500HD Regular Cab 2012 4.68% Chevrolet Express Cargo Van 2007 3.59% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 BMW 3 Series Wagon 2012 6.86% Dodge Magnum Wagon 2008 4.49% Chevrolet HHR SS 2010 3.75% Volkswagen Beetle Hatchback 2012 3.57% Chevrolet Malibu Hybrid Sedan 2010 3.45% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 29.82% Chevrolet Avalanche Crew Cab 2012 7.97% Dodge Magnum Wagon 2008 4.53% Dodge Dakota Crew Cab 2010 3.15% Cadillac CTS-V Sedan 2012 2.36% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 98.38% Jaguar XK XKR 2012 0.2% BMW M3 Coupe 2012 0.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.12% Aston Martin V8 Vantage Coupe 2012 0.11% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 54.5% GMC Canyon Extended Cab 2012 20.14% Land Rover Range Rover SUV 2012 4.61% GMC Savana Van 2012 2.09% Honda Odyssey Minivan 2007 1.25% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 28.72% Dodge Journey SUV 2012 16.93% Chevrolet Sonic Sedan 2012 5.34% Volvo C30 Hatchback 2012 3.56% Cadillac CTS-V Sedan 2012 2.97% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 96.22% Chevrolet Corvette Convertible 2012 1.79% Ferrari FF Coupe 2012 0.39% Ferrari 458 Italia Coupe 2012 0.36% Volkswagen Beetle Hatchback 2012 0.24% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 30.22% Aston Martin V8 Vantage Convertible 2012 25.75% Tesla Model S Sedan 2012 22.48% BMW M6 Convertible 2010 5.72% Lamborghini Reventon Coupe 2008 2.54% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Lamborghini Reventon Coupe 2008 100.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% Nissan Juke Hatchback 2012 0.0% Plymouth Neon Coupe 1999 0.0% Spyker C8 Coupe 2009 0.0% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 96.4% Chevrolet Express Cargo Van 2007 2.13% Volkswagen Golf Hatchback 1991 0.8% Chevrolet Express Van 2007 0.11% Suzuki Kizashi Sedan 2012 0.07% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Toyota 4Runner SUV 2012 22.99% Dodge Durango SUV 2007 10.22% Jeep Liberty SUV 2012 9.78% Ford F-150 Regular Cab 2007 7.2% GMC Canyon Extended Cab 2012 3.54% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Aston Martin V8 Vantage Convertible 2012 12.65% Ferrari FF Coupe 2012 10.95% Chevrolet Sonic Sedan 2012 9.33% Volkswagen Beetle Hatchback 2012 7.33% Nissan Juke Hatchback 2012 3.5% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Extended Cab 2012 11.56% Chevrolet Monte Carlo Coupe 2007 6.78% Audi 100 Sedan 1994 5.75% Dodge Dakota Crew Cab 2010 4.56% Ford F-150 Regular Cab 2007 3.78% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 GMC Canyon Extended Cab 2012 23.24% Chevrolet Express Cargo Van 2007 15.51% Chevrolet Silverado 1500 Extended Cab 2012 12.22% GMC Savana Van 2012 8.42% Chevrolet Silverado 2500HD Regular Cab 2012 7.43% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Toyota Camry Sedan 2012 22.37% Mercedes-Benz C-Class Sedan 2012 11.28% BMW 3 Series Sedan 2012 7.76% Volkswagen Golf Hatchback 1991 5.83% Chevrolet HHR SS 2010 5.62% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Sedan 1994 34.4% Audi V8 Sedan 1994 29.01% Nissan 240SX Coupe 1998 25.1% Volvo 240 Sedan 1993 3.15% Ford GT Coupe 2006 1.7% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 BMW 6 Series Convertible 2007 13.63% Hyundai Azera Sedan 2012 11.03% Infiniti G Coupe IPL 2012 9.69% Buick Verano Sedan 2012 8.15% Hyundai Sonata Hybrid Sedan 2012 4.48% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 78.66% Aston Martin V8 Vantage Convertible 2012 5.13% Audi TTS Coupe 2012 2.68% Chevrolet Corvette ZR1 2012 2.47% Eagle Talon Hatchback 1998 2.09% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 37.63% Ford E-Series Wagon Van 2012 36.93% Audi 100 Sedan 1994 4.05% Nissan NV Passenger Van 2012 2.99% Mercedes-Benz Sprinter Van 2012 1.33% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Volkswagen Golf Hatchback 1991 12.56% Audi V8 Sedan 1994 9.81% Audi 100 Wagon 1994 6.73% Buick Enclave SUV 2012 3.22% Audi 100 Sedan 1994 2.79% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Hyundai Genesis Sedan 2012 8.84% Audi 100 Sedan 1994 7.92% Audi V8 Sedan 1994 4.97% GMC Canyon Extended Cab 2012 4.42% Dodge Ram Pickup 3500 Crew Cab 2010 4.29% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Suzuki SX4 Sedan 2012 6.08% BMW M5 Sedan 2010 5.3% Nissan 240SX Coupe 1998 5.28% Audi S4 Sedan 2007 5.25% Hyundai Sonata Sedan 2012 5.2% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 BMW 1 Series Coupe 2012 94.52% BMW X6 SUV 2012 2.29% Audi TT RS Coupe 2012 1.28% Jaguar XK XKR 2012 0.66% Honda Odyssey Minivan 2012 0.46% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 91.11% Jeep Wrangler SUV 2012 8.23% Dodge Dakota Club Cab 2007 0.1% Buick Rainier SUV 2007 0.09% Chevrolet Express Van 2007 0.06% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 47.92% Dodge Ram Pickup 3500 Quad Cab 2009 11.72% Chevrolet Silverado 2500HD Regular Cab 2012 10.45% GMC Canyon Extended Cab 2012 7.71% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.6% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Mercedes-Benz E-Class Sedan 2012 60.95% Suzuki Kizashi Sedan 2012 9.93% Hyundai Azera Sedan 2012 6.73% Acura TSX Sedan 2012 5.43% Chrysler Sebring Convertible 2010 3.19% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 GMC Terrain SUV 2012 68.96% Mazda Tribute SUV 2011 26.14% Toyota 4Runner SUV 2012 1.65% Chevrolet Silverado 1500 Regular Cab 2012 0.35% Jeep Compass SUV 2012 0.35% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Rolls-Royce Phantom Drophead Coupe Convertible 2012 11.82% BMW 6 Series Convertible 2007 3.89% Mercedes-Benz 300-Class Convertible 1993 3.24% Daewoo Nubira Wagon 2002 3.05% Chevrolet Malibu Sedan 2007 2.34% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Jeep Wrangler SUV 2012 11.74% Jeep Patriot SUV 2012 7.9% Chevrolet Sonic Sedan 2012 6.65% Nissan Juke Hatchback 2012 5.77% Dodge Durango SUV 2012 5.67% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Hyundai Genesis Sedan 2012 9.83% Chrysler PT Cruiser Convertible 2008 5.02% Hyundai Azera Sedan 2012 3.5% Toyota 4Runner SUV 2012 3.0% Aston Martin Virage Convertible 2012 2.93% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW ActiveHybrid 5 Sedan 2012 39.36% Infiniti G Coupe IPL 2012 29.0% BMW 1 Series Convertible 2012 8.13% Aston Martin Virage Convertible 2012 4.99% Jaguar XK XKR 2012 3.36% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Toyota Camry Sedan 2012 24.72% Acura TSX Sedan 2012 12.4% Honda Accord Sedan 2012 7.33% Chrysler Sebring Convertible 2010 5.57% Honda Odyssey Minivan 2012 5.35% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 13.66% Chevrolet Silverado 2500HD Regular Cab 2012 9.29% Jaguar XK XKR 2012 5.91% Lamborghini Reventon Coupe 2008 3.29% Suzuki Kizashi Sedan 2012 3.27% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Hyundai Sonata Sedan 2012 6.44% Aston Martin V8 Vantage Coupe 2012 4.9% Ford Edge SUV 2012 2.92% Cadillac CTS-V Sedan 2012 2.36% BMW 3 Series Sedan 2012 2.1% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 HUMMER H2 SUT Crew Cab 2009 32.56% Jeep Wrangler SUV 2012 15.28% Dodge Ram Pickup 3500 Quad Cab 2009 4.87% GMC Canyon Extended Cab 2012 2.48% AM General Hummer SUV 2000 2.4% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Audi R8 Coupe 2012 25.77% Audi TT RS Coupe 2012 10.34% Buick Verano Sedan 2012 5.8% Chevrolet Sonic Sedan 2012 5.23% Audi S4 Sedan 2012 4.92% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Dodge Caravan Minivan 1997 8.02% Ford Freestar Minivan 2007 5.84% Chevrolet Cobalt SS 2010 5.57% Honda Odyssey Minivan 2007 4.85% Dodge Caliber Wagon 2012 4.59% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 72.45% Dodge Journey SUV 2012 14.41% Dodge Durango SUV 2012 2.04% Dodge Caliber Wagon 2007 1.32% Chrysler Town and Country Minivan 2012 1.18% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 Dodge Durango SUV 2012 28.66% Mercedes-Benz C-Class Sedan 2012 8.12% Audi S6 Sedan 2011 6.01% Volkswagen Golf Hatchback 2012 5.01% Hyundai Azera Sedan 2012 3.75% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 98.19% BMW X5 SUV 2007 0.13% BMW ActiveHybrid 5 Sedan 2012 0.12% BMW 3 Series Sedan 2012 0.11% Acura ZDX Hatchback 2012 0.1% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi S6 Sedan 2011 40.91% Audi TTS Coupe 2012 14.76% Audi S4 Sedan 2007 9.43% Audi S4 Sedan 2012 4.57% BMW M6 Convertible 2010 4.24% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Chevrolet Express Cargo Van 2007 13.4% Porsche Panamera Sedan 2012 11.36% Acura TL Type-S 2008 5.33% BMW M5 Sedan 2010 3.53% BMW 1 Series Convertible 2012 3.39% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 34.29% Mercedes-Benz C-Class Sedan 2012 14.03% Hyundai Azera Sedan 2012 13.32% Mercedes-Benz E-Class Sedan 2012 2.7% Cadillac SRX SUV 2012 2.24% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 41.94% Chevrolet Silverado 2500HD Regular Cab 2012 35.68% Ford F-150 Regular Cab 2012 14.09% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.69% GMC Yukon Hybrid SUV 2012 0.95% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 35.31% BMW 3 Series Sedan 2012 7.74% Chrysler 300 SRT-8 2010 5.86% Chrysler Sebring Convertible 2010 4.63% Ford Focus Sedan 2007 4.62% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 8.23% Hyundai Veracruz SUV 2012 7.8% Land Rover LR2 SUV 2012 6.45% Ford Edge SUV 2012 5.52% Toyota 4Runner SUV 2012 4.39% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 34.36% Chevrolet Sonic Sedan 2012 6.24% Hyundai Elantra Touring Hatchback 2012 4.57% Mitsubishi Lancer Sedan 2012 3.12% BMW 1 Series Coupe 2012 2.96% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Hyundai Elantra Touring Hatchback 2012 7.77% Ferrari California Convertible 2012 5.6% Eagle Talon Hatchback 1998 5.18% Mercedes-Benz 300-Class Convertible 1993 3.91% Ford Mustang Convertible 2007 3.89% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Eagle Talon Hatchback 1998 7.72% Hyundai Veracruz SUV 2012 6.89% Toyota 4Runner SUV 2012 6.09% Ford F-150 Regular Cab 2007 4.03% Ford Focus Sedan 2007 3.93% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 GMC Canyon Extended Cab 2012 28.47% Chevrolet HHR SS 2010 8.7% Dodge Caliber Wagon 2007 8.41% Jeep Wrangler SUV 2012 7.66% Ferrari 458 Italia Coupe 2012 2.96% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 HUMMER H2 SUT Crew Cab 2009 8.13% Volkswagen Golf Hatchback 1991 8.09% BMW X3 SUV 2012 5.62% Jeep Wrangler SUV 2012 3.44% Dodge Ram Pickup 3500 Crew Cab 2010 2.84% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Aston Martin V8 Vantage Coupe 2012 58.88% Bentley Continental GT Coupe 2007 9.9% Chevrolet Corvette ZR1 2012 6.81% Ford GT Coupe 2006 6.08% BMW 1 Series Convertible 2012 3.22% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Audi R8 Coupe 2012 32.95% Mitsubishi Lancer Sedan 2012 9.87% Chevrolet Sonic Sedan 2012 9.34% Tesla Model S Sedan 2012 8.13% Dodge Durango SUV 2007 7.31% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Toyota Sequoia SUV 2012 78.44% MINI Cooper Roadster Convertible 2012 9.95% smart fortwo Convertible 2012 1.77% Mazda Tribute SUV 2011 1.58% Ford F-450 Super Duty Crew Cab 2012 1.02% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Durango SUV 2012 5.86% Dodge Journey SUV 2012 4.44% Mitsubishi Lancer Sedan 2012 3.38% Chevrolet Tahoe Hybrid SUV 2012 1.73% Infiniti G Coupe IPL 2012 1.71% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 45.06% GMC Canyon Extended Cab 2012 16.44% Chevrolet Silverado 2500HD Regular Cab 2012 11.98% GMC Savana Van 2012 5.34% Chevrolet Tahoe Hybrid SUV 2012 2.65% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Dodge Journey SUV 2012 16.27% Suzuki SX4 Hatchback 2012 8.27% Jeep Liberty SUV 2012 3.05% Volkswagen Beetle Hatchback 2012 2.48% AM General Hummer SUV 2000 2.03% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Acura TL Type-S 2008 13.71% Hyundai Genesis Sedan 2012 8.63% Chevrolet Malibu Hybrid Sedan 2010 7.25% Mercedes-Benz C-Class Sedan 2012 6.96% Audi S4 Sedan 2007 6.33% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Aston Martin Virage Coupe 2012 81.3% BMW M3 Coupe 2012 11.41% Ferrari 458 Italia Coupe 2012 1.26% McLaren MP4-12C Coupe 2012 1.21% Volvo C30 Hatchback 2012 0.77% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Dodge Caliber Wagon 2012 12.71% Infiniti G Coupe IPL 2012 11.96% Acura ZDX Hatchback 2012 10.54% Volkswagen Beetle Hatchback 2012 6.26% Toyota Camry Sedan 2012 5.49% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 88.88% Audi TT RS Coupe 2012 4.96% Audi TTS Coupe 2012 3.67% Audi A5 Coupe 2012 0.93% Bugatti Veyron 16.4 Coupe 2009 0.62% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 79.91% Spyker C8 Convertible 2009 12.23% Ford GT Coupe 2006 0.75% Aston Martin Virage Convertible 2012 0.62% BMW M6 Convertible 2010 0.53% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 26.48% Dodge Ram Pickup 3500 Quad Cab 2009 10.79% Dodge Dakota Club Cab 2007 7.78% Volkswagen Golf Hatchback 1991 3.47% Buick Rainier SUV 2007 3.22% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 30.01% Dodge Ram Pickup 3500 Quad Cab 2009 12.55% Ford F-150 Regular Cab 2007 10.28% Dodge Dakota Crew Cab 2010 8.59% Dodge Dakota Club Cab 2007 5.27% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Mazda Tribute SUV 2011 13.53% Volkswagen Golf Hatchback 1991 2.64% Ford Mustang Convertible 2007 2.1% GMC Canyon Extended Cab 2012 2.06% Chrysler 300 SRT-8 2010 1.99% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 83.09% Aston Martin V8 Vantage Coupe 2012 8.53% Ferrari 458 Italia Coupe 2012 1.56% Aston Martin V8 Vantage Convertible 2012 1.4% Fisker Karma Sedan 2012 0.9% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Cadillac CTS-V Sedan 2012 5.14% Honda Accord Sedan 2012 4.78% Suzuki Aerio Sedan 2007 4.03% MINI Cooper Roadster Convertible 2012 3.86% Chevrolet Silverado 1500 Extended Cab 2012 3.65% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Spyker C8 Convertible 2009 39.35% Lamborghini Reventon Coupe 2008 17.13% Spyker C8 Coupe 2009 11.08% McLaren MP4-12C Coupe 2012 10.93% Suzuki SX4 Hatchback 2012 5.64% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Canyon Extended Cab 2012 70.18% Dodge Dakota Crew Cab 2010 12.18% Ford F-150 Regular Cab 2007 3.66% Ford F-150 Regular Cab 2012 2.66% Chevrolet Silverado 1500 Extended Cab 2012 1.74% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Dodge Caravan Minivan 1997 53.88% Ford Freestar Minivan 2007 4.78% Hyundai Elantra Sedan 2007 4.02% Ford Ranger SuperCab 2011 2.27% Lincoln Town Car Sedan 2011 1.85% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Aston Martin Virage Coupe 2012 10.02% McLaren MP4-12C Coupe 2012 8.34% Ford GT Coupe 2006 6.09% Ferrari California Convertible 2012 4.7% Chevrolet Camaro Convertible 2012 4.63% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Ford GT Coupe 2006 28.55% Ferrari 458 Italia Coupe 2012 15.59% Ferrari 458 Italia Convertible 2012 14.74% Dodge Dakota Club Cab 2007 7.49% Volkswagen Golf Hatchback 1991 4.67% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Jeep Compass SUV 2012 4.93% BMW 3 Series Sedan 2012 2.66% BMW 1 Series Convertible 2012 2.63% Jeep Grand Cherokee SUV 2012 2.62% Rolls-Royce Ghost Sedan 2012 2.41% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 70.65% Isuzu Ascender SUV 2008 25.22% Jeep Grand Cherokee SUV 2012 2.28% Dodge Dakota Crew Cab 2010 0.49% HUMMER H3T Crew Cab 2010 0.41% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 96.98% Ford F-150 Regular Cab 2012 2.81% MINI Cooper Roadster Convertible 2012 0.13% Dodge Ram Pickup 3500 Crew Cab 2010 0.03% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 100.0% Audi TT Hatchback 2011 0.0% Aston Martin V8 Vantage Convertible 2012 0.0% BMW M6 Convertible 2010 0.0% Hyundai Veloster Hatchback 2012 0.0% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 51.84% Jeep Compass SUV 2012 41.06% Jeep Wrangler SUV 2012 2.32% BMW X5 SUV 2007 1.04% Nissan Juke Hatchback 2012 0.6% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Acura RL Sedan 2012 23.46% Honda Odyssey Minivan 2012 6.94% Suzuki SX4 Sedan 2012 6.55% Chevrolet Impala Sedan 2007 5.99% Dodge Caliber Wagon 2007 5.37% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Cadillac SRX SUV 2012 32.73% Audi S5 Coupe 2012 13.29% Audi S6 Sedan 2011 10.81% Mercedes-Benz E-Class Sedan 2012 8.64% Hyundai Azera Sedan 2012 2.25% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 GMC Canyon Extended Cab 2012 12.45% GMC Acadia SUV 2012 11.58% Cadillac Escalade EXT Crew Cab 2007 5.71% Ford F-450 Super Duty Crew Cab 2012 3.39% Chevrolet Silverado 1500 Regular Cab 2012 2.94% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 1500 Extended Cab 2012 65.3% Chevrolet Silverado 2500HD Regular Cab 2012 5.22% Dodge Ram Pickup 3500 Quad Cab 2009 3.99% Lincoln Town Car Sedan 2011 2.07% BMW ActiveHybrid 5 Sedan 2012 1.58% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Nissan Juke Hatchback 2012 36.86% Chevrolet Tahoe Hybrid SUV 2012 5.92% Chevrolet TrailBlazer SS 2009 5.22% Chevrolet Sonic Sedan 2012 4.56% Mazda Tribute SUV 2011 2.69% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 44.47% Mitsubishi Lancer Sedan 2012 28.66% Toyota Camry Sedan 2012 4.89% Acura TSX Sedan 2012 4.04% Hyundai Azera Sedan 2012 2.3% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Rolls-Royce Phantom Drophead Coupe Convertible 2012 32.69% Volvo 240 Sedan 1993 13.94% Volkswagen Golf Hatchback 1991 13.72% Mazda Tribute SUV 2011 9.36% Chevrolet Malibu Sedan 2007 4.64% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Chrysler Town and Country Minivan 2012 23.03% Honda Odyssey Minivan 2007 11.29% Dodge Durango SUV 2012 7.43% Dodge Caliber Wagon 2012 4.94% Ram C/V Cargo Van Minivan 2012 4.38% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Chevrolet Avalanche Crew Cab 2012 8.45% Dodge Durango SUV 2012 8.17% Chevrolet Tahoe Hybrid SUV 2012 2.86% Chevrolet Malibu Sedan 2007 1.93% GMC Yukon Hybrid SUV 2012 1.89% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 25.87% Audi A5 Coupe 2012 9.45% Audi S5 Coupe 2012 8.22% Audi S4 Sedan 2012 3.34% Audi S5 Convertible 2012 2.52% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 30.17% Tesla Model S Sedan 2012 16.36% Dodge Challenger SRT8 2011 5.0% Ferrari FF Coupe 2012 3.35% Lamborghini Reventon Coupe 2008 2.86% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Toyota 4Runner SUV 2012 55.47% Land Rover LR2 SUV 2012 17.76% Suzuki Kizashi Sedan 2012 2.71% Volkswagen Beetle Hatchback 2012 2.24% Nissan Juke Hatchback 2012 1.8% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Aston Martin V8 Vantage Convertible 2012 22.17% Aston Martin V8 Vantage Coupe 2012 7.75% Infiniti G Coupe IPL 2012 5.39% BMW 6 Series Convertible 2007 5.27% Aston Martin Virage Convertible 2012 4.53% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Ford GT Coupe 2006 37.54% Bentley Continental GT Coupe 2007 13.09% Chevrolet Camaro Convertible 2012 7.09% Audi R8 Coupe 2012 6.3% Ford Mustang Convertible 2007 5.88% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Bentley Continental Supersports Conv. Convertible 2012 28.71% Mercedes-Benz SL-Class Coupe 2009 6.78% BMW 6 Series Convertible 2007 5.93% Bentley Arnage Sedan 2009 5.43% BMW 1 Series Convertible 2012 4.42% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Cadillac SRX SUV 2012 51.43% Cadillac CTS-V Sedan 2012 26.21% Mercedes-Benz E-Class Sedan 2012 3.01% Mercedes-Benz S-Class Sedan 2012 2.79% Bentley Mulsanne Sedan 2011 1.94% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 McLaren MP4-12C Coupe 2012 51.99% Spyker C8 Coupe 2009 18.04% Lamborghini Aventador Coupe 2012 12.07% Spyker C8 Convertible 2009 4.57% Ferrari 458 Italia Convertible 2012 1.08% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Elantra Sedan 2007 22.08% Hyundai Sonata Sedan 2012 21.41% Hyundai Azera Sedan 2012 13.3% Chevrolet Malibu Hybrid Sedan 2010 4.67% Hyundai Sonata Hybrid Sedan 2012 4.64% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 10.34% Jaguar XK XKR 2012 7.48% HUMMER H3T Crew Cab 2010 5.07% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.35% GMC Canyon Extended Cab 2012 2.09% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 23.46% Toyota 4Runner SUV 2012 17.59% Bentley Mulsanne Sedan 2011 16.64% Land Rover Range Rover SUV 2012 12.19% Cadillac CTS-V Sedan 2012 3.82% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Ford GT Coupe 2006 15.49% GMC Yukon Hybrid SUV 2012 8.78% FIAT 500 Abarth 2012 6.77% Jeep Compass SUV 2012 6.63% Bentley Continental GT Coupe 2007 5.97% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Dodge Ram Pickup 3500 Crew Cab 2010 6.47% Toyota Sequoia SUV 2012 5.55% Ford Expedition EL SUV 2009 5.31% Chrysler Aspen SUV 2009 4.55% Volvo 240 Sedan 1993 3.35% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 35.52% Dodge Ram Pickup 3500 Quad Cab 2009 9.74% Dodge Durango SUV 2012 8.98% Dodge Dakota Club Cab 2007 5.75% Ford F-150 Regular Cab 2012 5.62% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 HUMMER H3T Crew Cab 2010 19.33% Rolls-Royce Phantom Sedan 2012 18.05% Dodge Charger Sedan 2012 13.3% Lamborghini Reventon Coupe 2008 2.08% GMC Yukon Hybrid SUV 2012 1.99% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 10.18% Audi 100 Wagon 1994 6.84% Chevrolet Express Cargo Van 2007 2.88% Audi V8 Sedan 1994 2.66% Volvo 240 Sedan 1993 2.36% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 52.82% Spyker C8 Coupe 2009 8.87% Hyundai Veloster Hatchback 2012 2.52% Jeep Wrangler SUV 2012 2.01% Spyker C8 Convertible 2009 1.95% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 14.04% Audi S5 Coupe 2012 9.68% Audi A5 Coupe 2012 5.29% Dodge Durango SUV 2007 4.74% Audi S4 Sedan 2007 2.86% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 McLaren MP4-12C Coupe 2012 40.45% BMW Z4 Convertible 2012 21.83% Ferrari 458 Italia Convertible 2012 19.51% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.53% Hyundai Veloster Hatchback 2012 2.62% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Geo Metro Convertible 1993 46.31% Honda Accord Coupe 2012 7.14% Chrysler Crossfire Convertible 2008 5.48% Audi S5 Convertible 2012 3.51% Chevrolet Corvette Convertible 2012 2.62% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Volvo 240 Sedan 1993 12.2% Audi 100 Wagon 1994 9.63% BMW 3 Series Wagon 2012 5.9% Chevrolet Traverse SUV 2012 5.54% Jaguar XK XKR 2012 3.95% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental GT Coupe 2007 56.06% Bentley Continental Flying Spur Sedan 2007 43.5% Bentley Continental GT Coupe 2012 0.33% Bentley Mulsanne Sedan 2011 0.03% Volkswagen Beetle Hatchback 2012 0.02% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 98.83% GMC Savana Van 2012 0.64% Chevrolet Express Van 2007 0.4% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Chevrolet Silverado 1500 Regular Cab 2012 0.02% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% GMC Canyon Extended Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Chevrolet Express Cargo Van 2007 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 BMW M5 Sedan 2010 9.22% Dodge Charger Sedan 2012 5.65% Acura TL Type-S 2008 4.81% Acura TL Sedan 2012 4.18% Chevrolet Silverado 2500HD Regular Cab 2012 4.1% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 40.15% Hyundai Veracruz SUV 2012 8.03% Hyundai Veloster Hatchback 2012 4.08% Ford Edge SUV 2012 3.4% Volkswagen Golf Hatchback 2012 2.63% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Jeep Grand Cherokee SUV 2012 18.14% Dodge Durango SUV 2007 3.98% BMW X5 SUV 2007 3.85% Dodge Ram Pickup 3500 Crew Cab 2010 3.27% Dodge Durango SUV 2012 2.46% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Audi R8 Coupe 2012 19.35% BMW M6 Convertible 2010 18.65% Tesla Model S Sedan 2012 16.74% BMW M3 Coupe 2012 2.74% BMW 6 Series Convertible 2007 2.73% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Nissan 240SX Coupe 1998 6.4% Honda Odyssey Minivan 2007 5.51% Chevrolet Cobalt SS 2010 3.3% Suzuki SX4 Sedan 2012 2.25% Ram C/V Cargo Van Minivan 2012 2.15% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Cadillac CTS-V Sedan 2012 17.82% Bentley Arnage Sedan 2009 10.0% Volkswagen Beetle Hatchback 2012 9.13% Bentley Mulsanne Sedan 2011 7.02% Ford Focus Sedan 2007 6.58% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 32.47% Nissan Leaf Hatchback 2012 9.37% Dodge Journey SUV 2012 8.76% Chevrolet Malibu Sedan 2007 6.76% Mazda Tribute SUV 2011 5.57% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 84.57% Toyota 4Runner SUV 2012 3.11% GMC Terrain SUV 2012 1.52% Ford F-450 Super Duty Crew Cab 2012 1.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.77% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 77.51% Ferrari 458 Italia Convertible 2012 3.98% Lamborghini Aventador Coupe 2012 3.44% MINI Cooper Roadster Convertible 2012 1.86% Fisker Karma Sedan 2012 1.21% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 17.1% BMW 3 Series Wagon 2012 6.71% Plymouth Neon Coupe 1999 3.45% Toyota Corolla Sedan 2012 3.31% Volvo C30 Hatchback 2012 2.86% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Audi R8 Coupe 2012 14.26% Spyker C8 Coupe 2009 10.51% smart fortwo Convertible 2012 9.27% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.39% Hyundai Veloster Hatchback 2012 6.03% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 53.47% Chevrolet Malibu Hybrid Sedan 2010 42.89% GMC Yukon Hybrid SUV 2012 0.42% Toyota Corolla Sedan 2012 0.38% Chrysler Aspen SUV 2009 0.34% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 BMW M3 Coupe 2012 34.97% BMW ActiveHybrid 5 Sedan 2012 10.95% Jaguar XK XKR 2012 8.03% Aston Martin V8 Vantage Convertible 2012 7.21% Chevrolet Corvette ZR1 2012 5.32% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Buick Verano Sedan 2012 16.96% Hyundai Elantra Sedan 2007 12.55% Dodge Charger Sedan 2012 10.77% BMW 1 Series Convertible 2012 8.29% Chevrolet Cobalt SS 2010 4.27% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 GMC Yukon Hybrid SUV 2012 13.88% Ford Freestar Minivan 2007 4.52% Dodge Durango SUV 2007 3.68% Nissan NV Passenger Van 2012 3.03% Chevrolet Silverado 2500HD Regular Cab 2012 3.0% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Chrysler Town and Country Minivan 2012 18.27% Dodge Sprinter Cargo Van 2009 16.25% Mercedes-Benz Sprinter Van 2012 16.22% Ram C/V Cargo Van Minivan 2012 8.97% Suzuki SX4 Hatchback 2012 2.54% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Eagle Talon Hatchback 1998 8.98% Volkswagen Beetle Hatchback 2012 7.31% Suzuki SX4 Sedan 2012 5.46% Nissan 240SX Coupe 1998 5.32% Chevrolet Corvette ZR1 2012 3.69% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 12.28% Nissan 240SX Coupe 1998 4.3% BMW 6 Series Convertible 2007 3.52% Hyundai Elantra Touring Hatchback 2012 3.32% Hyundai Sonata Hybrid Sedan 2012 3.18% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Hyundai Veloster Hatchback 2012 60.61% Spyker C8 Coupe 2009 10.98% smart fortwo Convertible 2012 7.03% Spyker C8 Convertible 2009 5.59% Lamborghini Aventador Coupe 2012 3.03% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 BMW 1 Series Coupe 2012 36.39% Ford Edge SUV 2012 18.98% Dodge Journey SUV 2012 14.06% Honda Accord Coupe 2012 11.98% BMW X6 SUV 2012 3.1% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Infiniti G Coupe IPL 2012 8.52% Audi A5 Coupe 2012 6.24% Bentley Continental GT Coupe 2012 6.23% Toyota Camry Sedan 2012 5.96% Acura TSX Sedan 2012 4.4% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Monte Carlo Coupe 2007 16.81% Ford Freestar Minivan 2007 4.23% Mercedes-Benz 300-Class Convertible 1993 3.63% Toyota Corolla Sedan 2012 2.95% Chrysler PT Cruiser Convertible 2008 2.12% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette ZR1 2012 17.86% Aston Martin V8 Vantage Coupe 2012 7.53% Buick Verano Sedan 2012 3.93% Dodge Durango SUV 2012 2.95% Ford GT Coupe 2006 2.82% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 HUMMER H2 SUT Crew Cab 2009 5.28% Volvo XC90 SUV 2007 5.23% Mazda Tribute SUV 2011 4.82% Chevrolet Malibu Sedan 2007 2.56% Acura TSX Sedan 2012 2.36% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 84.32% Dodge Journey SUV 2012 11.08% Audi A5 Coupe 2012 2.04% Cadillac CTS-V Sedan 2012 1.67% Infiniti G Coupe IPL 2012 0.5% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Chevrolet Sonic Sedan 2012 33.06% Acura ZDX Hatchback 2012 5.63% Ford Edge SUV 2012 5.23% GMC Yukon Hybrid SUV 2012 4.62% Hyundai Tucson SUV 2012 4.16% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.18% Aston Martin V8 Vantage Convertible 2012 4.54% Lamborghini Reventon Coupe 2008 3.4% Aston Martin V8 Vantage Coupe 2012 3.16% BMW 6 Series Convertible 2007 2.89% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Aston Martin V8 Vantage Convertible 2012 20.43% Rolls-Royce Phantom Drophead Coupe Convertible 2012 12.99% BMW Z4 Convertible 2012 3.9% Bugatti Veyron 16.4 Coupe 2009 2.84% Bentley Continental Flying Spur Sedan 2007 2.7% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Bentley Continental GT Coupe 2007 26.31% Bentley Continental GT Coupe 2012 9.63% Bentley Mulsanne Sedan 2011 8.67% Ford GT Coupe 2006 7.93% BMW Z4 Convertible 2012 4.14% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Hyundai Sonata Hybrid Sedan 2012 7.62% Chevrolet Sonic Sedan 2012 6.74% Buick Verano Sedan 2012 3.26% BMW X3 SUV 2012 2.97% MINI Cooper Roadster Convertible 2012 2.67% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 70.75% Acura TSX Sedan 2012 11.41% Hyundai Sonata Hybrid Sedan 2012 11.0% Mitsubishi Lancer Sedan 2012 1.94% Hyundai Veloster Hatchback 2012 1.42% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Dodge Challenger SRT8 2011 23.43% Chrysler Crossfire Convertible 2008 21.28% Volkswagen Golf Hatchback 1991 12.08% Infiniti G Coupe IPL 2012 8.85% BMW 6 Series Convertible 2007 7.44% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT Hatchback 2011 67.86% Audi A5 Coupe 2012 18.84% Audi TT RS Coupe 2012 2.17% Audi S5 Coupe 2012 2.0% BMW Z4 Convertible 2012 1.45% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Ford Freestar Minivan 2007 81.91% Infiniti QX56 SUV 2011 1.3% Dodge Durango SUV 2012 1.28% Dodge Ram Pickup 3500 Crew Cab 2010 1.21% Ram C/V Cargo Van Minivan 2012 1.12% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Aston Martin V8 Vantage Convertible 2012 3.38% Aston Martin V8 Vantage Coupe 2012 3.03% Bugatti Veyron 16.4 Coupe 2009 2.1% Ford GT Coupe 2006 1.95% Buick Enclave SUV 2012 1.85% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Daewoo Nubira Wagon 2002 24.29% Chevrolet Malibu Sedan 2007 7.24% Bentley Continental GT Coupe 2007 6.63% Lincoln Town Car Sedan 2011 3.32% Plymouth Neon Coupe 1999 2.64% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 78.95% Chevrolet Tahoe Hybrid SUV 2012 7.63% Chevrolet Silverado 1500 Regular Cab 2012 3.56% Chevrolet Avalanche Crew Cab 2012 3.04% Chevrolet Silverado 2500HD Regular Cab 2012 2.44% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Mazda Tribute SUV 2011 36.87% Land Rover LR2 SUV 2012 16.96% Volvo 240 Sedan 1993 5.24% Honda Odyssey Minivan 2012 3.38% Volvo C30 Hatchback 2012 2.82% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Aston Martin Virage Convertible 2012 6.6% Spyker C8 Coupe 2009 6.22% Eagle Talon Hatchback 1998 5.49% Buick Enclave SUV 2012 4.05% BMW Z4 Convertible 2012 3.71% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Lamborghini Gallardo LP 570-4 Superleggera 2012 14.81% Lamborghini Reventon Coupe 2008 8.65% Chrysler PT Cruiser Convertible 2008 5.84% Maybach Landaulet Convertible 2012 4.78% Aston Martin Virage Coupe 2012 3.34% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Terrain SUV 2012 7.36% GMC Acadia SUV 2012 4.52% Honda Odyssey Minivan 2007 3.9% Land Rover Range Rover SUV 2012 3.77% GMC Yukon Hybrid SUV 2012 3.4% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 AM General Hummer SUV 2000 19.13% Ford GT Coupe 2006 11.02% Buick Enclave SUV 2012 7.35% Audi 100 Wagon 1994 3.86% Chevrolet Corvette ZR1 2012 3.5% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 99.5% Dodge Ram Pickup 3500 Quad Cab 2009 0.33% Ford F-150 Regular Cab 2012 0.12% GMC Canyon Extended Cab 2012 0.05% Ford F-450 Super Duty Crew Cab 2012 0.0% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Ford Focus Sedan 2007 64.29% Hyundai Elantra Touring Hatchback 2012 18.2% Plymouth Neon Coupe 1999 6.0% Volkswagen Golf Hatchback 2012 3.62% Suzuki Aerio Sedan 2007 2.0% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Buick Enclave SUV 2012 12.12% GMC Acadia SUV 2012 11.87% GMC Terrain SUV 2012 4.93% Land Rover Range Rover SUV 2012 4.66% Hyundai Tucson SUV 2012 2.8% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 BMW X6 SUV 2012 50.94% Hyundai Veloster Hatchback 2012 12.93% Bentley Continental Flying Spur Sedan 2007 4.31% GMC Savana Van 2012 3.67% Cadillac SRX SUV 2012 2.61% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 HUMMER H2 SUT Crew Cab 2009 23.31% Land Rover LR2 SUV 2012 10.24% GMC Canyon Extended Cab 2012 3.4% Honda Odyssey Minivan 2012 3.14% Toyota 4Runner SUV 2012 2.57% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Suzuki Kizashi Sedan 2012 5.32% Audi S4 Sedan 2007 4.8% Fisker Karma Sedan 2012 3.24% BMW X3 SUV 2012 2.53% Audi S5 Coupe 2012 2.24% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Mitsubishi Lancer Sedan 2012 5.41% Suzuki Kizashi Sedan 2012 5.13% Toyota 4Runner SUV 2012 2.83% Nissan NV Passenger Van 2012 2.66% Ford F-450 Super Duty Crew Cab 2012 2.58% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Mitsubishi Lancer Sedan 2012 6.09% BMW 6 Series Convertible 2007 5.37% Audi R8 Coupe 2012 4.87% Audi TT Hatchback 2011 4.67% Audi S4 Sedan 2012 3.01% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Infiniti G Coupe IPL 2012 6.71% Mitsubishi Lancer Sedan 2012 6.25% Audi RS 4 Convertible 2008 4.68% Audi S6 Sedan 2011 4.15% Ferrari California Convertible 2012 3.74% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Ford GT Coupe 2006 3.2% Chevrolet Corvette Convertible 2012 3.14% Ferrari California Convertible 2012 2.58% Ferrari FF Coupe 2012 2.43% Ferrari 458 Italia Convertible 2012 2.18% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Audi TT RS Coupe 2012 41.56% Tesla Model S Sedan 2012 7.76% Volkswagen Beetle Hatchback 2012 6.66% Hyundai Elantra Sedan 2007 5.38% Ferrari FF Coupe 2012 2.73% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 GMC Canyon Extended Cab 2012 23.94% Dodge Dakota Crew Cab 2010 6.78% Jeep Wrangler SUV 2012 6.77% Toyota 4Runner SUV 2012 5.24% HUMMER H3T Crew Cab 2010 4.25% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Daewoo Nubira Wagon 2002 18.25% Dodge Magnum Wagon 2008 15.17% Honda Accord Coupe 2012 14.84% Dodge Caliber Wagon 2007 6.68% Dodge Durango SUV 2012 4.77% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 99.72% Dodge Challenger SRT8 2011 0.14% Nissan Juke Hatchback 2012 0.04% Buick Verano Sedan 2012 0.02% Ferrari 458 Italia Coupe 2012 0.01% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Volvo 240 Sedan 1993 12.7% Rolls-Royce Phantom Sedan 2012 12.12% Aston Martin V8 Vantage Coupe 2012 8.0% Lamborghini Reventon Coupe 2008 6.84% Aston Martin V8 Vantage Convertible 2012 5.0% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 35.32% Dodge Durango SUV 2012 21.83% Toyota 4Runner SUV 2012 13.54% Land Rover Range Rover SUV 2012 8.48% Cadillac Escalade EXT Crew Cab 2007 4.37% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 14.91% GMC Canyon Extended Cab 2012 13.33% Ford F-150 Regular Cab 2007 5.69% Ford Ranger SuperCab 2011 4.41% Nissan Juke Hatchback 2012 3.97% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Toyota Camry Sedan 2012 17.35% Ferrari 458 Italia Coupe 2012 9.58% Chevrolet Corvette Convertible 2012 4.63% Chevrolet Monte Carlo Coupe 2007 4.03% Chrysler PT Cruiser Convertible 2008 3.82% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 98.79% Chevrolet Camaro Convertible 2012 0.41% Jaguar XK XKR 2012 0.4% Ferrari 458 Italia Coupe 2012 0.14% Chevrolet Corvette ZR1 2012 0.1% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Acura RL Sedan 2012 10.22% Honda Accord Coupe 2012 9.62% Daewoo Nubira Wagon 2002 8.24% Aston Martin V8 Vantage Coupe 2012 4.88% Nissan 240SX Coupe 1998 4.29% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 66.11% Buick Rainier SUV 2007 6.1% BMW X5 SUV 2007 5.26% BMW 1 Series Coupe 2012 4.03% BMW X3 SUV 2012 2.97% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Audi 100 Wagon 1994 7.37% Daewoo Nubira Wagon 2002 5.55% Chrysler Crossfire Convertible 2008 5.36% Dodge Challenger SRT8 2011 3.94% Chevrolet Monte Carlo Coupe 2007 3.58% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chrysler Town and Country Minivan 2012 33.97% Hyundai Sonata Sedan 2012 10.09% Honda Odyssey Minivan 2007 8.23% Hyundai Santa Fe SUV 2012 3.76% Chrysler Sebring Convertible 2010 3.54% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Ferrari 458 Italia Coupe 2012 2.55% Dodge Challenger SRT8 2011 2.55% Hyundai Veloster Hatchback 2012 1.85% Nissan Juke Hatchback 2012 1.71% Daewoo Nubira Wagon 2002 1.69% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 98.08% Ford F-450 Super Duty Crew Cab 2012 1.52% Ford E-Series Wagon Van 2012 0.39% Ford F-150 Regular Cab 2007 0.01% GMC Yukon Hybrid SUV 2012 0.0% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.69% Chevrolet Malibu Sedan 2007 0.08% Eagle Talon Hatchback 1998 0.07% Geo Metro Convertible 1993 0.05% Ford Freestar Minivan 2007 0.03% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 100.0% Hyundai Elantra Touring Hatchback 2012 0.0% Ford Fiesta Sedan 2012 0.0% Ford Edge SUV 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 78.98% Dodge Caravan Minivan 1997 18.54% Chevrolet Silverado 1500 Extended Cab 2012 1.19% Plymouth Neon Coupe 1999 0.18% Geo Metro Convertible 1993 0.11% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Toyota 4Runner SUV 2012 5.69% GMC Terrain SUV 2012 5.32% Jeep Grand Cherokee SUV 2012 2.5% Ford F-450 Super Duty Crew Cab 2012 2.25% Ford Edge SUV 2012 1.99% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 83.8% Chevrolet Express Van 2007 7.05% GMC Savana Van 2012 7.03% Acura Integra Type R 2001 1.96% Ford E-Series Wagon Van 2012 0.05% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 GMC Terrain SUV 2012 11.46% Jeep Compass SUV 2012 6.16% Chevrolet Sonic Sedan 2012 2.98% Ford F-150 Regular Cab 2012 2.84% Volvo C30 Hatchback 2012 2.62% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Caliber Wagon 2007 4.3% Ferrari 458 Italia Convertible 2012 4.17% Suzuki SX4 Sedan 2012 3.67% Dodge Caliber Wagon 2012 3.47% BMW 3 Series Sedan 2012 3.37% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Porsche Panamera Sedan 2012 69.9% Chevrolet Impala Sedan 2007 2.11% Fisker Karma Sedan 2012 1.96% BMW ActiveHybrid 5 Sedan 2012 1.46% Buick Enclave SUV 2012 1.08% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Dodge Dakota Club Cab 2007 16.78% Ford Ranger SuperCab 2011 15.82% HUMMER H3T Crew Cab 2010 8.28% Jeep Patriot SUV 2012 7.13% Nissan NV Passenger Van 2012 6.75% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Audi R8 Coupe 2012 69.11% Chevrolet Camaro Convertible 2012 5.87% Fisker Karma Sedan 2012 4.21% Audi RS 4 Convertible 2008 1.3% Chrysler 300 SRT-8 2010 1.03% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Cadillac CTS-V Sedan 2012 47.36% Audi TT Hatchback 2011 8.67% Cadillac SRX SUV 2012 6.94% Suzuki Kizashi Sedan 2012 3.05% Suzuki SX4 Hatchback 2012 2.6% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 21.74% Geo Metro Convertible 1993 20.11% Chevrolet Camaro Convertible 2012 3.04% Aston Martin V8 Vantage Convertible 2012 2.6% FIAT 500 Convertible 2012 2.15% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 95.46% AM General Hummer SUV 2000 0.92% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.49% Spyker C8 Convertible 2009 0.28% Ferrari 458 Italia Coupe 2012 0.27% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 BMW M5 Sedan 2010 16.0% Daewoo Nubira Wagon 2002 12.62% Mercedes-Benz E-Class Sedan 2012 11.07% Suzuki Aerio Sedan 2007 11.04% Suzuki Kizashi Sedan 2012 6.45% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 88.28% Chevrolet Traverse SUV 2012 4.05% GMC Acadia SUV 2012 2.36% Honda Odyssey Minivan 2007 0.65% Chrysler Town and Country Minivan 2012 0.59% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Suzuki SX4 Hatchback 2012 4.67% Ford Focus Sedan 2007 3.98% Chevrolet Malibu Sedan 2007 3.96% Geo Metro Convertible 1993 3.68% Hyundai Elantra Sedan 2007 3.05% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Buick Regal GS 2012 87.44% Cadillac CTS-V Sedan 2012 10.74% Bentley Continental GT Coupe 2012 0.93% Audi R8 Coupe 2012 0.35% Fisker Karma Sedan 2012 0.25% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Volkswagen Golf Hatchback 2012 4.21% Hyundai Veloster Hatchback 2012 3.2% smart fortwo Convertible 2012 2.87% Nissan Leaf Hatchback 2012 2.86% Scion xD Hatchback 2012 2.86% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 70.72% Ferrari 458 Italia Convertible 2012 9.83% Ferrari FF Coupe 2012 5.24% Ferrari California Convertible 2012 4.15% Spyker C8 Coupe 2009 2.42% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 33.4% Chevrolet Silverado 2500HD Regular Cab 2012 21.73% Ford F-150 Regular Cab 2007 8.93% Toyota 4Runner SUV 2012 5.92% Chevrolet Avalanche Crew Cab 2012 3.72% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 47.86% Jaguar XK XKR 2012 10.28% Chevrolet Corvette ZR1 2012 8.18% Ferrari 458 Italia Coupe 2012 6.06% Porsche Panamera Sedan 2012 3.79% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Ferrari California Convertible 2012 17.13% Suzuki Kizashi Sedan 2012 10.41% Chevrolet Corvette Convertible 2012 7.66% Volkswagen Golf Hatchback 1991 6.97% Ford GT Coupe 2006 5.68% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Spyker C8 Coupe 2009 80.3% Ferrari 458 Italia Coupe 2012 17.18% Ford GT Coupe 2006 1.3% Lamborghini Aventador Coupe 2012 0.6% Ferrari FF Coupe 2012 0.25% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Infiniti G Coupe IPL 2012 83.54% Hyundai Veracruz SUV 2012 5.56% Suzuki Kizashi Sedan 2012 2.92% Acura TL Sedan 2012 2.42% Nissan Juke Hatchback 2012 0.65% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Dodge Caliber Wagon 2007 11.92% Dodge Journey SUV 2012 7.31% Dodge Caliber Wagon 2012 3.73% Honda Accord Coupe 2012 3.09% Dodge Charger Sedan 2012 2.93% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 10.19% Chevrolet Monte Carlo Coupe 2007 3.93% Volvo 240 Sedan 1993 2.74% Acura TL Type-S 2008 2.42% Chevrolet Silverado 1500 Extended Cab 2012 2.41% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Aston Martin V8 Vantage Coupe 2012 21.33% Aston Martin Virage Coupe 2012 13.85% Fisker Karma Sedan 2012 8.53% Aston Martin V8 Vantage Convertible 2012 7.57% Hyundai Veracruz SUV 2012 4.25% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 FIAT 500 Abarth 2012 6.99% Fisker Karma Sedan 2012 5.65% Hyundai Genesis Sedan 2012 3.63% Jaguar XK XKR 2012 3.59% Hyundai Tucson SUV 2012 3.3% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 54.54% Ford Edge SUV 2012 16.85% GMC Yukon Hybrid SUV 2012 5.89% Dodge Durango SUV 2012 2.6% Ford F-150 Regular Cab 2012 1.45% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Suzuki Aerio Sedan 2007 48.14% Scion xD Hatchback 2012 13.26% Ford Fiesta Sedan 2012 7.39% Suzuki SX4 Sedan 2012 3.39% Chevrolet Malibu Sedan 2007 3.05% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Hybrid Sedan 2010 4.11% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.86% Cadillac CTS-V Sedan 2012 2.9% Suzuki Aerio Sedan 2007 2.84% Chevrolet Sonic Sedan 2012 2.51% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Suzuki Kizashi Sedan 2012 3.66% Chevrolet Express Cargo Van 2007 3.22% Chevrolet Silverado 2500HD Regular Cab 2012 2.88% Chevrolet Silverado 1500 Extended Cab 2012 2.76% Ferrari 458 Italia Convertible 2012 2.51% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Coupe 2012 92.72% Aston Martin V8 Vantage Convertible 2012 3.63% Chevrolet Corvette Convertible 2012 1.24% Aston Martin Virage Coupe 2012 1.02% Ferrari 458 Italia Convertible 2012 0.59% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 63.22% Hyundai Sonata Hybrid Sedan 2012 28.59% Hyundai Elantra Sedan 2007 2.04% Buick Regal GS 2012 1.24% Acura TL Sedan 2012 0.55% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Cadillac CTS-V Sedan 2012 14.43% Daewoo Nubira Wagon 2002 4.82% BMW M5 Sedan 2010 4.54% BMW ActiveHybrid 5 Sedan 2012 4.18% Bentley Continental GT Coupe 2007 3.54% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Honda Odyssey Minivan 2007 66.8% Honda Odyssey Minivan 2012 9.89% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.01% GMC Yukon Hybrid SUV 2012 3.86% Chevrolet Malibu Sedan 2007 1.96% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 BMW M6 Convertible 2010 38.16% Lamborghini Reventon Coupe 2008 10.27% Aston Martin V8 Vantage Coupe 2012 5.52% Aston Martin V8 Vantage Convertible 2012 4.38% BMW 1 Series Convertible 2012 3.79% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Chrysler Crossfire Convertible 2008 29.73% Eagle Talon Hatchback 1998 7.28% Chevrolet Monte Carlo Coupe 2007 2.07% McLaren MP4-12C Coupe 2012 1.85% Audi V8 Sedan 1994 1.82% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 16.23% Bentley Continental GT Coupe 2007 13.66% Bentley Continental Flying Spur Sedan 2007 8.73% Dodge Challenger SRT8 2011 8.39% Bugatti Veyron 16.4 Convertible 2009 6.58% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 9.45% Aston Martin V8 Vantage Coupe 2012 3.89% Bentley Continental Flying Spur Sedan 2007 2.63% Acura Integra Type R 2001 2.56% Infiniti QX56 SUV 2011 2.21% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Daewoo Nubira Wagon 2002 18.25% Dodge Magnum Wagon 2008 15.17% Honda Accord Coupe 2012 14.84% Dodge Caliber Wagon 2007 6.68% Dodge Durango SUV 2012 4.77% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 31.09% Bentley Mulsanne Sedan 2011 16.71% BMW X3 SUV 2012 4.94% Cadillac CTS-V Sedan 2012 4.35% Suzuki SX4 Sedan 2012 3.39% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 95.46% Acura TL Type-S 2008 2.49% Acura RL Sedan 2012 0.27% Hyundai Sonata Sedan 2012 0.24% Acura TSX Sedan 2012 0.21% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 75.95% Audi 100 Sedan 1994 5.16% Dodge Journey SUV 2012 2.85% Hyundai Veloster Hatchback 2012 1.9% Mercedes-Benz SL-Class Coupe 2009 1.59% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Chevrolet Corvette ZR1 2012 4.65% Bentley Continental Supersports Conv. Convertible 2012 4.21% Jaguar XK XKR 2012 4.07% Suzuki Kizashi Sedan 2012 3.41% GMC Terrain SUV 2012 3.12% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 24.12% Chevrolet Express Van 2007 15.83% Jeep Patriot SUV 2012 12.42% Chevrolet Express Cargo Van 2007 11.63% Jeep Wrangler SUV 2012 5.21% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Jeep Wrangler SUV 2012 31.12% Chevrolet Express Cargo Van 2007 16.65% GMC Yukon Hybrid SUV 2012 10.86% Jeep Patriot SUV 2012 4.75% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.25% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Fisker Karma Sedan 2012 1.96% BMW 6 Series Convertible 2007 1.95% HUMMER H3T Crew Cab 2010 1.45% Ford Mustang Convertible 2007 1.42% BMW X6 SUV 2012 1.39% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Infiniti G Coupe IPL 2012 40.51% Jaguar XK XKR 2012 20.41% BMW 1 Series Convertible 2012 6.06% Toyota Camry Sedan 2012 5.3% Acura TL Sedan 2012 4.27% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 65.72% BMW 6 Series Convertible 2007 6.62% Infiniti G Coupe IPL 2012 3.9% BMW M6 Convertible 2010 2.8% Chevrolet Impala Sedan 2007 2.51% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 BMW ActiveHybrid 5 Sedan 2012 40.11% Mercedes-Benz E-Class Sedan 2012 21.84% Mercedes-Benz SL-Class Coupe 2009 6.54% Dodge Challenger SRT8 2011 4.85% Audi R8 Coupe 2012 2.4% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Aston Martin V8 Vantage Coupe 2012 23.91% Chevrolet Corvette ZR1 2012 17.18% Ferrari FF Coupe 2012 13.69% Jaguar XK XKR 2012 5.99% Chevrolet Camaro Convertible 2012 4.39% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Chevrolet Traverse SUV 2012 8.82% Jeep Grand Cherokee SUV 2012 5.95% Acura TSX Sedan 2012 3.75% Dodge Journey SUV 2012 3.74% Hyundai Tucson SUV 2012 3.07% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Lamborghini Aventador Coupe 2012 18.22% MINI Cooper Roadster Convertible 2012 10.81% Ferrari 458 Italia Convertible 2012 3.75% BMW X3 SUV 2012 3.73% Nissan NV Passenger Van 2012 3.57% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Aston Martin Virage Convertible 2012 32.52% Aston Martin V8 Vantage Convertible 2012 5.27% Spyker C8 Coupe 2009 4.69% Rolls-Royce Phantom Sedan 2012 3.38% Mercedes-Benz 300-Class Convertible 1993 3.21% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 25.92% Ford Freestar Minivan 2007 6.1% Chevrolet Traverse SUV 2012 4.94% Dodge Caravan Minivan 1997 4.15% Honda Odyssey Minivan 2007 3.48% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Audi R8 Coupe 2012 40.09% Buick Regal GS 2012 9.66% Audi S4 Sedan 2012 8.56% Chevrolet Sonic Sedan 2012 7.66% Cadillac CTS-V Sedan 2012 7.1% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 96.85% HUMMER H2 SUT Crew Cab 2009 0.82% Land Rover LR2 SUV 2012 0.63% Suzuki Kizashi Sedan 2012 0.18% Dodge Dakota Club Cab 2007 0.12% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 54.97% Lincoln Town Car Sedan 2011 13.39% Chevrolet Malibu Sedan 2007 7.68% Chevrolet Impala Sedan 2007 6.77% Chevrolet Avalanche Crew Cab 2012 5.7% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Porsche Panamera Sedan 2012 35.69% Acura Integra Type R 2001 6.85% Volkswagen Beetle Hatchback 2012 5.33% Ferrari California Convertible 2012 4.22% Suzuki SX4 Sedan 2012 3.28% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Honda Accord Sedan 2012 21.39% Acura TL Type-S 2008 8.42% Mitsubishi Lancer Sedan 2012 8.36% Nissan 240SX Coupe 1998 6.68% Honda Accord Coupe 2012 4.93% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Audi V8 Sedan 1994 3.15% Acura Integra Type R 2001 2.23% Audi S6 Sedan 2011 1.78% Audi A5 Coupe 2012 1.67% BMW 1 Series Coupe 2012 1.66% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Acura ZDX Hatchback 2012 24.5% Nissan Juke Hatchback 2012 11.08% Bentley Arnage Sedan 2009 9.91% Dodge Dakota Crew Cab 2010 9.61% Hyundai Azera Sedan 2012 4.0% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Chevrolet Cobalt SS 2010 31.6% Chevrolet Monte Carlo Coupe 2007 9.75% Chevrolet Impala Sedan 2007 5.19% Toyota Corolla Sedan 2012 4.96% BMW M3 Coupe 2012 4.28% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 BMW X5 SUV 2007 13.81% Infiniti QX56 SUV 2011 13.37% Dodge Magnum Wagon 2008 11.72% Chevrolet Traverse SUV 2012 4.9% Nissan Juke Hatchback 2012 4.61% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Ford GT Coupe 2006 9.57% Chevrolet Malibu Hybrid Sedan 2010 5.1% Jaguar XK XKR 2012 3.8% GMC Terrain SUV 2012 3.51% Cadillac CTS-V Sedan 2012 2.93% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Volkswagen Beetle Hatchback 2012 69.33% Honda Accord Coupe 2012 6.66% Hyundai Elantra Sedan 2007 3.21% Toyota Corolla Sedan 2012 2.6% Toyota Camry Sedan 2012 1.82% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Suzuki Kizashi Sedan 2012 45.13% Chevrolet Corvette ZR1 2012 8.33% Dodge Challenger SRT8 2011 6.02% Volkswagen Beetle Hatchback 2012 2.41% BMW 6 Series Convertible 2007 2.2% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Hyundai Elantra Sedan 2007 17.82% Chrysler Crossfire Convertible 2008 13.18% Geo Metro Convertible 1993 6.19% Honda Accord Coupe 2012 4.01% Hyundai Veloster Hatchback 2012 3.81% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Chevrolet Corvette ZR1 2012 86.1% Acura RL Sedan 2012 1.65% Acura TL Sedan 2012 1.52% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.79% Buick Regal GS 2012 0.74% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 63.79% Chevrolet Avalanche Crew Cab 2012 19.53% Chevrolet Tahoe Hybrid SUV 2012 7.84% Dodge Dakota Club Cab 2007 2.71% GMC Yukon Hybrid SUV 2012 2.04% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Honda Accord Coupe 2012 65.71% Audi TT RS Coupe 2012 14.82% Chevrolet Cobalt SS 2010 11.39% Dodge Caliber Wagon 2007 2.0% Chevrolet Monte Carlo Coupe 2007 1.92% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Acura TL Sedan 2012 48.75% Chevrolet Impala Sedan 2007 48.61% Acura TL Type-S 2008 1.17% Volkswagen Golf Hatchback 2012 0.72% Acura TSX Sedan 2012 0.51% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Infiniti G Coupe IPL 2012 7.96% Honda Accord Sedan 2012 5.9% Chevrolet Sonic Sedan 2012 3.64% Volkswagen Beetle Hatchback 2012 3.5% Acura TSX Sedan 2012 3.49% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 54.29% Aston Martin V8 Vantage Convertible 2012 4.38% Fisker Karma Sedan 2012 4.34% Rolls-Royce Phantom Sedan 2012 3.26% Aston Martin Virage Convertible 2012 2.93% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 63.71% Ferrari 458 Italia Coupe 2012 12.42% AM General Hummer SUV 2000 6.0% McLaren MP4-12C Coupe 2012 4.83% HUMMER H2 SUT Crew Cab 2009 3.28% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Cadillac CTS-V Sedan 2012 15.33% Rolls-Royce Phantom Sedan 2012 7.47% Infiniti QX56 SUV 2011 5.17% Land Rover Range Rover SUV 2012 3.64% Hyundai Genesis Sedan 2012 3.32% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 BMW 6 Series Convertible 2007 20.34% BMW 3 Series Sedan 2012 11.01% Plymouth Neon Coupe 1999 4.62% BMW Z4 Convertible 2012 3.84% Volvo 240 Sedan 1993 3.05% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Hyundai Azera Sedan 2012 12.12% Volkswagen Beetle Hatchback 2012 9.18% Buick Verano Sedan 2012 6.53% Chrysler Sebring Convertible 2010 4.8% BMW ActiveHybrid 5 Sedan 2012 3.5% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 BMW M3 Coupe 2012 29.7% Ferrari 458 Italia Convertible 2012 14.31% Ferrari 458 Italia Coupe 2012 7.98% Scion xD Hatchback 2012 6.92% Dodge Charger Sedan 2012 6.68% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 GMC Terrain SUV 2012 24.86% BMW X3 SUV 2012 16.65% Ford F-150 Regular Cab 2012 10.95% Jeep Compass SUV 2012 9.99% Ford Edge SUV 2012 4.14% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Volvo XC90 SUV 2007 8.38% McLaren MP4-12C Coupe 2012 6.09% Audi V8 Sedan 1994 5.51% Chevrolet Silverado 1500 Extended Cab 2012 3.66% HUMMER H3T Crew Cab 2010 3.38% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 18.85% Ford E-Series Wagon Van 2012 18.28% Ford Ranger SuperCab 2011 12.68% Chevrolet Silverado 1500 Extended Cab 2012 4.41% Chevrolet Avalanche Crew Cab 2012 4.23% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Suzuki Kizashi Sedan 2012 42.81% FIAT 500 Convertible 2012 33.29% Hyundai Sonata Hybrid Sedan 2012 2.31% BMW 3 Series Wagon 2012 2.03% smart fortwo Convertible 2012 1.46% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Spyker C8 Coupe 2009 7.0% Audi S4 Sedan 2012 5.65% Suzuki Kizashi Sedan 2012 4.57% Dodge Challenger SRT8 2011 3.95% Audi R8 Coupe 2012 3.8% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 33.22% Volvo 240 Sedan 1993 28.17% Dodge Dakota Crew Cab 2010 19.37% Audi V8 Sedan 1994 8.34% Chevrolet Monte Carlo Coupe 2007 2.75% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 66.07% Aston Martin V8 Vantage Convertible 2012 12.65% Ferrari 458 Italia Coupe 2012 1.8% Bugatti Veyron 16.4 Coupe 2009 1.62% Aston Martin Virage Coupe 2012 1.4% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 97.13% McLaren MP4-12C Coupe 2012 1.59% BMW M6 Convertible 2010 0.21% BMW 1 Series Coupe 2012 0.14% Ford GT Coupe 2006 0.06% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Bugatti Veyron 16.4 Coupe 2009 10.76% Lamborghini Reventon Coupe 2008 10.63% AM General Hummer SUV 2000 8.84% HUMMER H2 SUT Crew Cab 2009 5.26% BMW M6 Convertible 2010 3.91% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 34.67% Volkswagen Golf Hatchback 1991 23.13% Dodge Sprinter Cargo Van 2009 21.73% Ford E-Series Wagon Van 2012 11.57% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.84% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 HUMMER H3T Crew Cab 2010 42.68% Dodge Ram Pickup 3500 Quad Cab 2009 12.74% Ford F-450 Super Duty Crew Cab 2012 4.35% GMC Yukon Hybrid SUV 2012 4.28% Ferrari FF Coupe 2012 3.51% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Honda Accord Coupe 2012 59.67% Aston Martin V8 Vantage Convertible 2012 19.38% Audi TT RS Coupe 2012 10.36% Chrysler Crossfire Convertible 2008 1.72% Nissan 240SX Coupe 1998 1.49% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 33.06% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.53% Lamborghini Reventon Coupe 2008 5.44% MINI Cooper Roadster Convertible 2012 4.82% Bugatti Veyron 16.4 Convertible 2009 3.22% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 91.9% Dodge Sprinter Cargo Van 2009 4.04% Daewoo Nubira Wagon 2002 1.02% Volkswagen Golf Hatchback 1991 0.89% Chevrolet Corvette Convertible 2012 0.28% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Acura Integra Type R 2001 5.7% smart fortwo Convertible 2012 3.8% Lamborghini Reventon Coupe 2008 2.91% Suzuki Kizashi Sedan 2012 2.32% Daewoo Nubira Wagon 2002 2.02% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Express Cargo Van 2007 37.01% Dodge Sprinter Cargo Van 2009 16.29% Chevrolet Express Van 2007 10.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.8% Volvo XC90 SUV 2007 3.79% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Ferrari FF Coupe 2012 14.81% Audi R8 Coupe 2012 3.78% BMW 3 Series Sedan 2012 3.7% smart fortwo Convertible 2012 3.19% Bugatti Veyron 16.4 Coupe 2009 2.42% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Honda Odyssey Minivan 2007 5.27% Mitsubishi Lancer Sedan 2012 5.15% Honda Accord Coupe 2012 2.52% Chevrolet Impala Sedan 2007 1.96% Dodge Caravan Minivan 1997 1.86% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 17.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.39% Bugatti Veyron 16.4 Convertible 2009 5.29% smart fortwo Convertible 2012 4.23% Hyundai Veracruz SUV 2012 3.59% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Journey SUV 2012 9.75% Volvo C30 Hatchback 2012 8.48% Dodge Caliber Wagon 2012 4.73% Dodge Caliber Wagon 2007 3.04% Jeep Compass SUV 2012 2.9% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 28.15% Volkswagen Beetle Hatchback 2012 7.09% Acura ZDX Hatchback 2012 4.79% Hyundai Sonata Sedan 2012 3.79% Hyundai Azera Sedan 2012 3.52% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Infiniti QX56 SUV 2011 12.86% Audi R8 Coupe 2012 6.64% Ford Edge SUV 2012 3.2% Suzuki Kizashi Sedan 2012 3.18% Buick Enclave SUV 2012 2.37% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 84.54% Audi S4 Sedan 2012 6.42% Audi S4 Sedan 2007 0.95% Audi S5 Coupe 2012 0.64% Audi A5 Coupe 2012 0.63% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Jaguar XK XKR 2012 13.81% Audi S6 Sedan 2011 5.06% Dodge Challenger SRT8 2011 3.88% Aston Martin V8 Vantage Coupe 2012 3.82% Audi R8 Coupe 2012 3.62% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 2.31% Chevrolet Avalanche Crew Cab 2012 2.17% Lincoln Town Car Sedan 2011 1.73% Jeep Grand Cherokee SUV 2012 1.69% Cadillac Escalade EXT Crew Cab 2007 1.63% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 BMW 3 Series Sedan 2012 6.07% Ford Focus Sedan 2007 5.96% Buick Enclave SUV 2012 5.61% Nissan 240SX Coupe 1998 5.18% BMW M5 Sedan 2010 5.13% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X6 SUV 2012 48.96% BMW X5 SUV 2007 9.69% Isuzu Ascender SUV 2008 8.28% GMC Acadia SUV 2012 6.66% BMW 1 Series Coupe 2012 3.89% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Acura Integra Type R 2001 33.98% Fisker Karma Sedan 2012 30.71% Eagle Talon Hatchback 1998 9.61% Lamborghini Reventon Coupe 2008 3.1% Bentley Continental GT Coupe 2012 2.44% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 GMC Yukon Hybrid SUV 2012 19.54% Jeep Liberty SUV 2012 11.36% Jeep Compass SUV 2012 4.15% Chrysler PT Cruiser Convertible 2008 3.91% Hyundai Elantra Touring Hatchback 2012 2.74% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Infiniti G Coupe IPL 2012 8.46% Hyundai Veracruz SUV 2012 7.95% Hyundai Azera Sedan 2012 6.78% Mercedes-Benz E-Class Sedan 2012 4.48% Acura TL Sedan 2012 4.22% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Ford F-450 Super Duty Crew Cab 2012 21.57% Chevrolet Silverado 2500HD Regular Cab 2012 11.94% Chrysler 300 SRT-8 2010 8.93% Chevrolet Avalanche Crew Cab 2012 6.22% Chevrolet Silverado 1500 Regular Cab 2012 3.62% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 69.12% Bugatti Veyron 16.4 Convertible 2009 10.95% Chevrolet Camaro Convertible 2012 1.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% Eagle Talon Hatchback 1998 1.45% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 76.92% Chevrolet Tahoe Hybrid SUV 2012 13.87% Mazda Tribute SUV 2011 4.91% Chrysler Aspen SUV 2009 0.97% GMC Canyon Extended Cab 2012 0.6% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Porsche Panamera Sedan 2012 11.56% BMW ActiveHybrid 5 Sedan 2012 8.35% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.0% Ferrari 458 Italia Convertible 2012 2.92% Cadillac Escalade EXT Crew Cab 2007 2.88% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Dodge Caliber Wagon 2007 14.4% BMW 3 Series Sedan 2012 13.63% Dodge Journey SUV 2012 3.92% Chevrolet Camaro Convertible 2012 3.89% Eagle Talon Hatchback 1998 2.92% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Aston Martin Virage Convertible 2012 17.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.13% Volkswagen Beetle Hatchback 2012 4.07% MINI Cooper Roadster Convertible 2012 3.41% Nissan Leaf Hatchback 2012 3.39% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Dodge Caravan Minivan 1997 94.82% Eagle Talon Hatchback 1998 2.21% Lincoln Town Car Sedan 2011 1.5% Acura RL Sedan 2012 0.36% Acura TL Type-S 2008 0.29% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 20.58% Dodge Durango SUV 2007 9.53% Volvo 240 Sedan 1993 3.21% Jeep Liberty SUV 2012 3.12% BMW M6 Convertible 2010 1.53% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari 458 Italia Convertible 2012 13.25% Dodge Charger SRT-8 2009 11.19% Ferrari California Convertible 2012 8.59% Ford GT Coupe 2006 7.48% Ferrari 458 Italia Coupe 2012 6.58% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Ferrari 458 Italia Coupe 2012 45.9% Ferrari California Convertible 2012 7.24% Jaguar XK XKR 2012 6.03% Aston Martin V8 Vantage Convertible 2012 3.86% Fisker Karma Sedan 2012 3.78% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Ford Freestar Minivan 2007 8.82% Chevrolet Traverse SUV 2012 7.69% Daewoo Nubira Wagon 2002 4.02% Chevrolet Impala Sedan 2007 3.8% Honda Odyssey Minivan 2007 3.27% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 84.45% BMW 1 Series Convertible 2012 10.44% Jaguar XK XKR 2012 1.16% BMW 3 Series Sedan 2012 0.83% Hyundai Veloster Hatchback 2012 0.81% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Chevrolet Express Cargo Van 2007 7.37% Buick Rainier SUV 2007 6.61% Audi 100 Wagon 1994 5.77% Audi 100 Sedan 1994 4.38% Audi V8 Sedan 1994 3.73% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Bentley Arnage Sedan 2009 3.09% Chevrolet Silverado 1500 Extended Cab 2012 2.22% Mercedes-Benz S-Class Sedan 2012 2.02% Ford E-Series Wagon Van 2012 2.01% Audi 100 Sedan 1994 1.89% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Dodge Durango SUV 2012 7.13% Dodge Dakota Crew Cab 2010 6.17% Jeep Grand Cherokee SUV 2012 3.82% Toyota Camry Sedan 2012 2.87% Mercedes-Benz 300-Class Convertible 1993 2.64% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Audi TTS Coupe 2012 13.91% Toyota 4Runner SUV 2012 10.52% Ford Expedition EL SUV 2009 5.53% GMC Yukon Hybrid SUV 2012 5.26% Dodge Durango SUV 2007 3.71% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Honda Accord Coupe 2012 19.59% Geo Metro Convertible 1993 14.66% Mercedes-Benz 300-Class Convertible 1993 13.3% Chevrolet Corvette Convertible 2012 8.72% Chrysler Crossfire Convertible 2008 5.06% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Volvo 240 Sedan 1993 21.51% Bentley Arnage Sedan 2009 16.21% Chevrolet Monte Carlo Coupe 2007 8.09% Nissan 240SX Coupe 1998 5.11% Bentley Continental GT Coupe 2007 3.73% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Hyundai Genesis Sedan 2012 30.82% Hyundai Azera Sedan 2012 21.98% Hyundai Veloster Hatchback 2012 19.19% Infiniti G Coupe IPL 2012 13.65% Infiniti QX56 SUV 2011 3.33% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 84.9% Nissan NV Passenger Van 2012 4.32% Volvo 240 Sedan 1993 1.13% Mazda Tribute SUV 2011 1.11% Buick Rainier SUV 2007 0.58% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 BMW 3 Series Sedan 2012 21.25% Hyundai Genesis Sedan 2012 11.78% GMC Canyon Extended Cab 2012 10.99% Hyundai Veracruz SUV 2012 7.59% GMC Acadia SUV 2012 7.13% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Suzuki Kizashi Sedan 2012 26.38% Chevrolet HHR SS 2010 10.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.69% Hyundai Veloster Hatchback 2012 5.69% Ford GT Coupe 2006 4.18% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Dodge Journey SUV 2012 23.66% Chevrolet Sonic Sedan 2012 15.81% Ford Fiesta Sedan 2012 10.96% Audi TT Hatchback 2011 2.95% Chevrolet Impala Sedan 2007 2.76% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 BMW X6 SUV 2012 24.64% Jeep Patriot SUV 2012 5.03% BMW X5 SUV 2007 4.22% Ford GT Coupe 2006 3.57% BMW 1 Series Coupe 2012 3.0% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 GMC Acadia SUV 2012 21.02% BMW M5 Sedan 2010 8.97% FIAT 500 Abarth 2012 7.32% Audi S5 Coupe 2012 3.47% BMW 6 Series Convertible 2007 3.2% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 smart fortwo Convertible 2012 8.96% Ford GT Coupe 2006 7.37% FIAT 500 Convertible 2012 5.12% Nissan Leaf Hatchback 2012 4.46% Hyundai Tucson SUV 2012 3.62% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Hyundai Santa Fe SUV 2012 20.9% Hyundai Veracruz SUV 2012 14.49% Volkswagen Golf Hatchback 1991 5.61% Chevrolet Traverse SUV 2012 5.34% Honda Odyssey Minivan 2007 4.81% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 35.14% Toyota Sequoia SUV 2012 4.87% Audi A5 Coupe 2012 3.33% Audi S4 Sedan 2012 3.29% Dodge Journey SUV 2012 3.03% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2012 30.48% MINI Cooper Roadster Convertible 2012 6.63% Dodge Dakota Crew Cab 2010 5.94% Mazda Tribute SUV 2011 3.98% Dodge Journey SUV 2012 2.68% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Suzuki SX4 Sedan 2012 22.86% Daewoo Nubira Wagon 2002 16.63% Chrysler PT Cruiser Convertible 2008 10.71% Dodge Magnum Wagon 2008 5.13% Chrysler Town and Country Minivan 2012 2.73% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 99.42% Ferrari California Convertible 2012 0.29% Fisker Karma Sedan 2012 0.1% Ferrari 458 Italia Convertible 2012 0.06% BMW 6 Series Convertible 2007 0.05% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 GMC Yukon Hybrid SUV 2012 61.43% Ford F-150 Regular Cab 2007 13.01% Audi 100 Wagon 1994 2.3% Bentley Arnage Sedan 2009 1.83% Chevrolet Avalanche Crew Cab 2012 1.72% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 16.69% Rolls-Royce Ghost Sedan 2012 7.44% BMW 3 Series Wagon 2012 5.7% BMW 3 Series Sedan 2012 5.46% Audi S6 Sedan 2011 5.44% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Mercedes-Benz 300-Class Convertible 1993 24.05% Volvo 240 Sedan 1993 16.87% Ford F-150 Regular Cab 2007 8.34% Chevrolet Silverado 1500 Extended Cab 2012 8.32% Lincoln Town Car Sedan 2011 6.52% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Suzuki SX4 Hatchback 2012 26.82% Mitsubishi Lancer Sedan 2012 15.83% Aston Martin V8 Vantage Coupe 2012 6.63% Lamborghini Aventador Coupe 2012 6.54% Volvo C30 Hatchback 2012 6.28% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 40.27% HUMMER H3T Crew Cab 2010 3.82% Ford GT Coupe 2006 2.88% Lamborghini Reventon Coupe 2008 2.82% Lamborghini Diablo Coupe 2001 2.65% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.71% Ford F-450 Super Duty Crew Cab 2012 0.06% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% Bentley Mulsanne Sedan 2011 0.02% Bugatti Veyron 16.4 Convertible 2009 0.02% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Audi R8 Coupe 2012 14.21% BMW 6 Series Convertible 2007 13.64% Jaguar XK XKR 2012 8.92% Infiniti G Coupe IPL 2012 5.19% GMC Acadia SUV 2012 4.43% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 97.22% Bugatti Veyron 16.4 Convertible 2009 0.52% Bentley Arnage Sedan 2009 0.14% Hyundai Veloster Hatchback 2012 0.08% Chrysler PT Cruiser Convertible 2008 0.08% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin Virage Convertible 2012 85.79% BMW M6 Convertible 2010 9.8% Aston Martin V8 Vantage Coupe 2012 2.11% Jaguar XK XKR 2012 0.84% Aston Martin V8 Vantage Convertible 2012 0.46% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 76.76% Chevrolet Express Van 2007 21.55% GMC Savana Van 2012 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Ford E-Series Wagon Van 2012 0.01% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Volkswagen Beetle Hatchback 2012 66.56% Acura ZDX Hatchback 2012 17.24% Ford Edge SUV 2012 12.82% Audi TT Hatchback 2011 1.47% Honda Odyssey Minivan 2012 0.27% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Dodge Journey SUV 2012 22.65% Chevrolet Traverse SUV 2012 5.76% Volvo 240 Sedan 1993 3.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.96% Dodge Ram Pickup 3500 Quad Cab 2009 2.81% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Volvo 240 Sedan 1993 50.66% Bentley Arnage Sedan 2009 21.99% Bentley Mulsanne Sedan 2011 21.13% Rolls-Royce Phantom Sedan 2012 3.13% Chrysler 300 SRT-8 2010 0.31% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 77.91% Scion xD Hatchback 2012 6.62% Nissan Leaf Hatchback 2012 3.29% Dodge Caravan Minivan 1997 3.08% Hyundai Elantra Sedan 2007 2.87% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 37.23% Chevrolet Monte Carlo Coupe 2007 10.8% Aston Martin V8 Vantage Convertible 2012 10.78% Audi R8 Coupe 2012 2.76% Chevrolet Camaro Convertible 2012 2.63% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Ferrari 458 Italia Convertible 2012 28.03% Chevrolet Corvette Convertible 2012 9.24% Chevrolet Monte Carlo Coupe 2007 8.69% Audi TT RS Coupe 2012 7.08% Aston Martin V8 Vantage Convertible 2012 4.67% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Audi TT Hatchback 2011 5.56% Dodge Charger SRT-8 2009 4.87% Dodge Challenger SRT8 2011 3.81% Buick Verano Sedan 2012 3.58% Hyundai Veloster Hatchback 2012 3.45% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 73.07% Audi TT RS Coupe 2012 10.88% Toyota Camry Sedan 2012 1.17% Audi TT Hatchback 2011 0.95% BMW 3 Series Sedan 2012 0.74% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 14.17% Ferrari 458 Italia Convertible 2012 13.3% Bentley Continental Supersports Conv. Convertible 2012 12.17% Dodge Charger Sedan 2012 11.94% Audi TT RS Coupe 2012 10.0% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Dodge Durango SUV 2007 5.97% Audi S4 Sedan 2007 4.86% Volvo C30 Hatchback 2012 3.07% Volvo XC90 SUV 2007 2.71% Dodge Journey SUV 2012 2.54% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Acura RL Sedan 2012 15.58% Honda Accord Coupe 2012 10.96% Chevrolet Malibu Hybrid Sedan 2010 5.52% Acura TSX Sedan 2012 4.21% BMW 3 Series Wagon 2012 3.94% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 99.86% BMW ActiveHybrid 5 Sedan 2012 0.04% Jaguar XK XKR 2012 0.03% Ford GT Coupe 2006 0.01% Dodge Challenger SRT8 2011 0.01% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Volvo 240 Sedan 1993 17.31% Plymouth Neon Coupe 1999 10.73% Volkswagen Golf Hatchback 1991 7.52% Hyundai Elantra Touring Hatchback 2012 7.48% Daewoo Nubira Wagon 2002 4.24% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 10.04% Ferrari 458 Italia Coupe 2012 8.59% Bentley Continental GT Coupe 2012 7.65% Bentley Continental Flying Spur Sedan 2007 3.87% Ferrari FF Coupe 2012 3.33% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Spyker C8 Convertible 2009 66.82% Bugatti Veyron 16.4 Coupe 2009 17.49% Lamborghini Reventon Coupe 2008 9.29% Bugatti Veyron 16.4 Convertible 2009 2.3% Spyker C8 Coupe 2009 1.51% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Aston Martin V8 Vantage Convertible 2012 46.91% Bentley Continental GT Coupe 2007 11.01% Bentley Continental Flying Spur Sedan 2007 4.99% Bugatti Veyron 16.4 Coupe 2009 2.95% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.79% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Chevrolet Sonic Sedan 2012 8.23% Acura RL Sedan 2012 7.68% Buick Regal GS 2012 4.07% Acura TSX Sedan 2012 2.52% BMW 1 Series Convertible 2012 2.39% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Canyon Extended Cab 2012 11.13% Ford Expedition EL SUV 2009 8.26% Buick Rainier SUV 2007 7.67% Ford Ranger SuperCab 2011 6.85% Chevrolet Tahoe Hybrid SUV 2012 2.8% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Dodge Caravan Minivan 1997 34.73% Honda Odyssey Minivan 2012 5.6% Acura TL Type-S 2008 4.8% Honda Accord Sedan 2012 3.94% Chevrolet Malibu Sedan 2007 3.76% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2007 59.11% Chrysler Aspen SUV 2009 4.09% Dodge Dakota Crew Cab 2010 3.68% Dodge Durango SUV 2012 3.14% Jeep Grand Cherokee SUV 2012 2.83% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 50.88% Aston Martin Virage Coupe 2012 13.1% Ferrari 458 Italia Convertible 2012 11.53% Ford GT Coupe 2006 7.35% Ferrari 458 Italia Coupe 2012 5.67% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 65.81% Chevrolet Corvette ZR1 2012 21.28% Bugatti Veyron 16.4 Coupe 2009 4.87% Jaguar XK XKR 2012 2.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.95% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 Chevrolet Silverado 1500 Regular Cab 2012 11.65% HUMMER H2 SUT Crew Cab 2009 7.72% Lamborghini Reventon Coupe 2008 7.37% AM General Hummer SUV 2000 7.32% Volvo 240 Sedan 1993 6.38% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 smart fortwo Convertible 2012 23.56% Mazda Tribute SUV 2011 10.92% Mitsubishi Lancer Sedan 2012 5.32% GMC Canyon Extended Cab 2012 4.03% Scion xD Hatchback 2012 3.78% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Jaguar XK XKR 2012 29.28% BMW M3 Coupe 2012 7.4% Chevrolet Malibu Hybrid Sedan 2010 5.57% Infiniti G Coupe IPL 2012 3.92% Toyota Camry Sedan 2012 3.18% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Infiniti QX56 SUV 2011 15.39% Ford Fiesta Sedan 2012 3.03% Land Rover LR2 SUV 2012 2.78% Hyundai Genesis Sedan 2012 2.35% Land Rover Range Rover SUV 2012 2.12% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Canyon Extended Cab 2012 8.84% HUMMER H3T Crew Cab 2010 7.2% AM General Hummer SUV 2000 6.47% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.75% Dodge Ram Pickup 3500 Crew Cab 2010 3.59% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 27.47% Lamborghini Diablo Coupe 2001 10.38% Ford Mustang Convertible 2007 9.7% McLaren MP4-12C Coupe 2012 5.32% Audi S4 Sedan 2007 3.19% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Audi TT Hatchback 2011 7.66% Audi A5 Coupe 2012 5.58% Honda Accord Sedan 2012 5.03% Scion xD Hatchback 2012 4.74% Ford Edge SUV 2012 4.59% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Daewoo Nubira Wagon 2002 24.82% Plymouth Neon Coupe 1999 11.89% Hyundai Elantra Touring Hatchback 2012 10.44% Chevrolet Malibu Sedan 2007 7.87% Geo Metro Convertible 1993 7.67% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 FIAT 500 Abarth 2012 40.82% Dodge Challenger SRT8 2011 2.15% Mitsubishi Lancer Sedan 2012 1.83% Ford Mustang Convertible 2007 1.51% Infiniti G Coupe IPL 2012 1.28% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Toyota 4Runner SUV 2012 8.74% Eagle Talon Hatchback 1998 7.91% Jeep Liberty SUV 2012 7.05% Dodge Durango SUV 2012 5.44% Honda Odyssey Minivan 2007 2.68% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 McLaren MP4-12C Coupe 2012 35.24% Ford GT Coupe 2006 9.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.01% Hyundai Veloster Hatchback 2012 2.96% Spyker C8 Coupe 2009 2.68% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Infiniti QX56 SUV 2011 86.78% Lamborghini Reventon Coupe 2008 1.33% GMC Canyon Extended Cab 2012 0.91% Nissan Juke Hatchback 2012 0.79% Land Rover Range Rover SUV 2012 0.76% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 12.66% Ford Mustang Convertible 2007 6.58% Suzuki SX4 Hatchback 2012 3.13% Volvo C30 Hatchback 2012 2.25% Geo Metro Convertible 1993 2.19% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 54.85% GMC Savana Van 2012 31.3% Chevrolet Express Van 2007 4.32% Acura Integra Type R 2001 0.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.8% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Ford Fiesta Sedan 2012 54.85% Buick Regal GS 2012 26.27% Hyundai Veloster Hatchback 2012 10.49% Tesla Model S Sedan 2012 2.88% Volkswagen Beetle Hatchback 2012 2.27% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Ferrari 458 Italia Convertible 2012 20.22% Acura TSX Sedan 2012 15.12% Volkswagen Beetle Hatchback 2012 13.72% Ferrari California Convertible 2012 5.59% Dodge Magnum Wagon 2008 4.41% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Canyon Extended Cab 2012 31.64% Chevrolet Silverado 2500HD Regular Cab 2012 27.76% Chevrolet Silverado 1500 Classic Extended Cab 2007 9.24% Ford F-150 Regular Cab 2012 8.19% Chevrolet Silverado 1500 Regular Cab 2012 7.41% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Ford GT Coupe 2006 8.9% Suzuki Kizashi Sedan 2012 5.18% BMW 3 Series Wagon 2012 3.93% Buick Regal GS 2012 3.25% Infiniti G Coupe IPL 2012 3.19% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Ford E-Series Wagon Van 2012 98.28% Ford Ranger SuperCab 2011 0.49% GMC Yukon Hybrid SUV 2012 0.45% Isuzu Ascender SUV 2008 0.17% GMC Canyon Extended Cab 2012 0.07% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 100.0% Jeep Liberty SUV 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% Nissan NV Passenger Van 2012 0.0% Jeep Wrangler SUV 2012 0.0% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 BMW X3 SUV 2012 26.61% Nissan Juke Hatchback 2012 10.98% Bentley Continental GT Coupe 2012 7.75% Buick Enclave SUV 2012 6.2% Ford E-Series Wagon Van 2012 5.46% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.99% Honda Odyssey Minivan 2012 0.01% Dodge Journey SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Toyota Camry Sedan 2012 0.0% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Toyota 4Runner SUV 2012 63.07% GMC Canyon Extended Cab 2012 2.27% Bentley Arnage Sedan 2009 1.95% HUMMER H2 SUT Crew Cab 2009 1.6% Jeep Liberty SUV 2012 1.47% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 88.37% Ford Edge SUV 2012 3.37% Dodge Durango SUV 2007 1.83% GMC Yukon Hybrid SUV 2012 0.71% Dodge Durango SUV 2012 0.67% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Toyota 4Runner SUV 2012 14.32% FIAT 500 Convertible 2012 13.14% smart fortwo Convertible 2012 12.9% Suzuki Kizashi Sedan 2012 5.71% Nissan Leaf Hatchback 2012 5.25% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Suzuki SX4 Hatchback 2012 35.45% Dodge Caliber Wagon 2012 15.01% Isuzu Ascender SUV 2008 11.88% Dodge Caliber Wagon 2007 7.32% Dodge Journey SUV 2012 3.9% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 98.44% Chevrolet Corvette ZR1 2012 1.5% Jaguar XK XKR 2012 0.01% Ferrari 458 Italia Coupe 2012 0.01% Ford GT Coupe 2006 0.01% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Toyota 4Runner SUV 2012 75.4% GMC Terrain SUV 2012 8.73% Mazda Tribute SUV 2011 2.48% HUMMER H2 SUT Crew Cab 2009 2.35% GMC Canyon Extended Cab 2012 1.5% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Audi S4 Sedan 2007 6.2% Audi TTS Coupe 2012 6.04% Suzuki Kizashi Sedan 2012 4.3% Audi TT Hatchback 2011 4.13% Audi S5 Convertible 2012 3.94% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Mitsubishi Lancer Sedan 2012 13.9% Lamborghini Reventon Coupe 2008 10.76% Bugatti Veyron 16.4 Convertible 2009 6.63% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.23% Lamborghini Aventador Coupe 2012 5.06% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Acura RL Sedan 2012 25.87% Audi 100 Wagon 1994 6.54% Ford Focus Sedan 2007 5.78% Ford Freestar Minivan 2007 5.43% BMW 1 Series Convertible 2012 4.73% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Plymouth Neon Coupe 1999 70.42% Eagle Talon Hatchback 1998 20.33% Chevrolet Corvette ZR1 2012 1.68% Aston Martin V8 Vantage Convertible 2012 1.05% Chevrolet Camaro Convertible 2012 0.88% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 50.91% Chevrolet Silverado 1500 Extended Cab 2012 21.72% Dodge Ram Pickup 3500 Quad Cab 2009 6.07% Volvo 240 Sedan 1993 3.2% Dodge Dakota Club Cab 2007 3.12% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.75% Ford F-450 Super Duty Crew Cab 2012 0.09% Dodge Durango SUV 2012 0.08% Toyota Sequoia SUV 2012 0.01% Ford F-150 Regular Cab 2007 0.01% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Toyota 4Runner SUV 2012 29.4% HUMMER H2 SUT Crew Cab 2009 20.3% AM General Hummer SUV 2000 4.76% Land Rover LR2 SUV 2012 2.53% GMC Acadia SUV 2012 2.13% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 16.4% FIAT 500 Abarth 2012 12.34% Dodge Charger Sedan 2012 6.85% AM General Hummer SUV 2000 5.85% Spyker C8 Convertible 2009 5.49% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 26.51% Ford Focus Sedan 2007 22.43% BMW 3 Series Sedan 2012 2.51% Volkswagen Golf Hatchback 1991 2.03% Eagle Talon Hatchback 1998 1.67% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Cadillac CTS-V Sedan 2012 3.35% Mitsubishi Lancer Sedan 2012 2.06% Rolls-Royce Phantom Sedan 2012 1.8% BMW 6 Series Convertible 2007 1.77% Dodge Charger SRT-8 2009 1.75% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Buick Verano Sedan 2012 11.41% Toyota Camry Sedan 2012 6.75% Hyundai Veloster Hatchback 2012 6.71% Nissan Leaf Hatchback 2012 6.06% Maybach Landaulet Convertible 2012 5.09% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Honda Odyssey Minivan 2007 10.74% Ford F-150 Regular Cab 2007 8.88% Dodge Ram Pickup 3500 Quad Cab 2009 5.38% Toyota 4Runner SUV 2012 4.38% Dodge Durango SUV 2007 4.26% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 BMW X3 SUV 2012 10.96% GMC Terrain SUV 2012 10.85% BMW X5 SUV 2007 4.71% Chevrolet Sonic Sedan 2012 3.76% Jeep Compass SUV 2012 3.39% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 6.93% Spyker C8 Coupe 2009 4.03% Aston Martin Virage Coupe 2012 3.43% Hyundai Azera Sedan 2012 2.93% BMW M6 Convertible 2010 2.81% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 94.55% Ford Focus Sedan 2007 1.67% Hyundai Elantra Touring Hatchback 2012 1.13% Nissan 240SX Coupe 1998 1.06% Daewoo Nubira Wagon 2002 0.42% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Honda Accord Coupe 2012 10.93% Chevrolet Cobalt SS 2010 9.13% Dodge Journey SUV 2012 5.05% Toyota Camry Sedan 2012 4.96% Suzuki Kizashi Sedan 2012 4.68% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Acura Integra Type R 2001 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Chevrolet Corvette Convertible 2012 0.0% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 38.93% GMC Canyon Extended Cab 2012 26.46% Chevrolet Silverado 1500 Extended Cab 2012 22.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.92% Chevrolet Silverado 2500HD Regular Cab 2012 3.35% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Suzuki SX4 Hatchback 2012 2.2% Ford Freestar Minivan 2007 2.18% Cadillac SRX SUV 2012 2.16% Ford F-450 Super Duty Crew Cab 2012 1.92% Chevrolet Monte Carlo Coupe 2007 1.81% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Rolls-Royce Phantom Drophead Coupe Convertible 2012 85.68% Volvo 240 Sedan 1993 5.61% Audi 100 Wagon 1994 1.2% BMW 3 Series Sedan 2012 0.67% Audi TT RS Coupe 2012 0.59% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Audi TT RS Coupe 2012 14.64% Audi R8 Coupe 2012 10.78% Audi A5 Coupe 2012 9.13% Porsche Panamera Sedan 2012 8.1% Dodge Challenger SRT8 2011 8.03% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 33.71% Chevrolet Silverado 1500 Extended Cab 2012 18.45% Chevrolet Silverado 1500 Regular Cab 2012 11.73% GMC Terrain SUV 2012 7.88% Cadillac Escalade EXT Crew Cab 2007 4.66% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Chevrolet Monte Carlo Coupe 2007 15.87% BMW 6 Series Convertible 2007 10.44% BMW ActiveHybrid 5 Sedan 2012 6.56% BMW X5 SUV 2007 5.07% BMW 3 Series Wagon 2012 4.87% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 HUMMER H2 SUT Crew Cab 2009 36.11% Chevrolet Silverado 1500 Extended Cab 2012 27.71% Dodge Ram Pickup 3500 Quad Cab 2009 7.05% HUMMER H3T Crew Cab 2010 4.3% GMC Canyon Extended Cab 2012 3.79% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 19.3% Jaguar XK XKR 2012 15.05% Ford GT Coupe 2006 4.98% Eagle Talon Hatchback 1998 4.76% Bentley Continental GT Coupe 2007 4.34% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Jeep Liberty SUV 2012 12.38% Rolls-Royce Phantom Sedan 2012 10.52% Bentley Arnage Sedan 2009 4.05% Chevrolet Sonic Sedan 2012 2.8% GMC Terrain SUV 2012 2.61% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 5.31% Volvo C30 Hatchback 2012 4.58% Volvo XC90 SUV 2007 3.35% Spyker C8 Convertible 2009 2.36% Chevrolet Express Cargo Van 2007 2.03% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Chrysler Sebring Convertible 2010 19.68% Mercedes-Benz S-Class Sedan 2012 19.42% BMW M6 Convertible 2010 7.52% Dodge Charger Sedan 2012 4.5% Honda Accord Coupe 2012 3.35% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Hyundai Tucson SUV 2012 13.75% Volkswagen Golf Hatchback 2012 4.14% Acura ZDX Hatchback 2012 3.53% Chevrolet Avalanche Crew Cab 2012 3.11% BMW X5 SUV 2007 2.69% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 79.0% HUMMER H3T Crew Cab 2010 13.17% Volkswagen Golf Hatchback 1991 1.54% HUMMER H2 SUT Crew Cab 2009 1.12% Chevrolet Silverado 1500 Extended Cab 2012 0.41% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Toyota 4Runner SUV 2012 14.11% Mazda Tribute SUV 2011 13.65% Dodge Caliber Wagon 2012 11.79% HUMMER H2 SUT Crew Cab 2009 7.89% Hyundai Veloster Hatchback 2012 6.12% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 13.64% Dodge Ram Pickup 3500 Crew Cab 2010 11.1% GMC Yukon Hybrid SUV 2012 8.44% Infiniti QX56 SUV 2011 6.87% Ford Expedition EL SUV 2009 5.78% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 77.45% Spyker C8 Coupe 2009 16.87% Ferrari 458 Italia Convertible 2012 1.13% Ford GT Coupe 2006 0.85% Honda Accord Coupe 2012 0.37% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 10.71% Bentley Continental GT Coupe 2007 7.47% Audi S6 Sedan 2011 5.46% Acura ZDX Hatchback 2012 3.8% Tesla Model S Sedan 2012 2.85% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Toyota Camry Sedan 2012 16.56% Acura TSX Sedan 2012 9.29% Scion xD Hatchback 2012 7.16% Hyundai Sonata Hybrid Sedan 2012 6.03% Hyundai Sonata Sedan 2012 3.63% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 48.87% Ford F-450 Super Duty Crew Cab 2012 5.93% Chevrolet Silverado 1500 Regular Cab 2012 5.8% Chevrolet Silverado 2500HD Regular Cab 2012 3.09% Ford F-150 Regular Cab 2012 2.98% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 30.08% Lamborghini Reventon Coupe 2008 9.57% Audi V8 Sedan 1994 6.01% Suzuki SX4 Sedan 2012 4.77% Aston Martin Virage Coupe 2012 2.92% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Sonata Sedan 2012 99.83% Hyundai Sonata Hybrid Sedan 2012 0.04% Hyundai Elantra Sedan 2007 0.04% Hyundai Azera Sedan 2012 0.03% Chrysler Sebring Convertible 2010 0.01% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 MINI Cooper Roadster Convertible 2012 42.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 40.73% Ford GT Coupe 2006 3.76% Spyker C8 Convertible 2009 2.01% Chevrolet Corvette ZR1 2012 1.76% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H3T Crew Cab 2010 47.16% HUMMER H2 SUT Crew Cab 2009 43.38% Dodge Ram Pickup 3500 Quad Cab 2009 1.87% AM General Hummer SUV 2000 1.27% Jeep Compass SUV 2012 1.14% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 GMC Terrain SUV 2012 47.42% Mazda Tribute SUV 2011 19.62% Volvo XC90 SUV 2007 13.25% GMC Acadia SUV 2012 3.91% Chevrolet Impala Sedan 2007 2.42% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 19.95% Acura Integra Type R 2001 5.69% Aston Martin Virage Coupe 2012 3.6% McLaren MP4-12C Coupe 2012 3.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.05% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 48.88% Dodge Sprinter Cargo Van 2009 48.07% Audi 100 Wagon 1994 0.43% GMC Savana Van 2012 0.35% Nissan NV Passenger Van 2012 0.28% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Dodge Journey SUV 2012 46.55% Hyundai Elantra Sedan 2007 14.88% Dodge Caliber Wagon 2012 6.86% Chevrolet Traverse SUV 2012 6.54% Chrysler Sebring Convertible 2010 5.85% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 32.06% Aston Martin V8 Vantage Coupe 2012 9.24% Lamborghini Reventon Coupe 2008 7.71% Bugatti Veyron 16.4 Coupe 2009 6.76% Aston Martin V8 Vantage Convertible 2012 4.99% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Dodge Durango SUV 2012 22.5% Honda Odyssey Minivan 2012 18.2% Honda Accord Sedan 2012 10.66% Toyota Camry Sedan 2012 10.01% Toyota Corolla Sedan 2012 9.71% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 39.68% Jeep Patriot SUV 2012 9.45% Jeep Liberty SUV 2012 6.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.11% Ford GT Coupe 2006 3.36% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 BMW M5 Sedan 2010 78.0% Aston Martin V8 Vantage Convertible 2012 4.63% Aston Martin V8 Vantage Coupe 2012 1.29% Audi R8 Coupe 2012 1.29% Hyundai Tucson SUV 2012 1.08% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 AM General Hummer SUV 2000 34.47% Acura Integra Type R 2001 26.56% Geo Metro Convertible 1993 3.63% Chevrolet Corvette Convertible 2012 3.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.72% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 6.07% Chrysler Aspen SUV 2009 5.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.09% Ram C/V Cargo Van Minivan 2012 5.06% Dodge Durango SUV 2007 4.09% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 13.87% BMW Z4 Convertible 2012 11.84% Dodge Challenger SRT8 2011 9.59% Dodge Charger SRT-8 2009 7.47% Dodge Charger Sedan 2012 5.03% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 5.22% Chevrolet Monte Carlo Coupe 2007 3.31% BMW 1 Series Coupe 2012 3.23% Volkswagen Beetle Hatchback 2012 2.87% Chevrolet Malibu Sedan 2007 2.63% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Chevrolet Monte Carlo Coupe 2007 100.0% Plymouth Neon Coupe 1999 0.0% Lincoln Town Car Sedan 2011 0.0% Chevrolet Malibu Sedan 2007 0.0% Chevrolet Impala Sedan 2007 0.0% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Ford F-450 Super Duty Crew Cab 2012 4.52% HUMMER H2 SUT Crew Cab 2009 4.23% Ford F-150 Regular Cab 2012 3.33% Dodge Ram Pickup 3500 Quad Cab 2009 3.26% Toyota Camry Sedan 2012 2.92% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 GMC Canyon Extended Cab 2012 29.41% Audi 100 Wagon 1994 9.63% Chevrolet Silverado 2500HD Regular Cab 2012 8.68% Chevrolet Silverado 1500 Classic Extended Cab 2007 8.53% Daewoo Nubira Wagon 2002 6.64% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.58% Chevrolet Express Van 2007 0.24% GMC Savana Van 2012 0.08% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.01% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Audi R8 Coupe 2012 6.73% Fisker Karma Sedan 2012 5.98% Ford GT Coupe 2006 3.4% Spyker C8 Convertible 2009 3.0% Daewoo Nubira Wagon 2002 2.93% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 76.59% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.46% Dodge Ram Pickup 3500 Quad Cab 2009 4.87% Chevrolet Tahoe Hybrid SUV 2012 4.47% Dodge Dakota Crew Cab 2010 2.06% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Fisker Karma Sedan 2012 41.57% Bentley Continental Flying Spur Sedan 2007 12.33% Tesla Model S Sedan 2012 7.97% Acura Integra Type R 2001 4.03% Volvo C30 Hatchback 2012 2.25% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Audi 100 Sedan 1994 13.9% Volvo XC90 SUV 2007 7.78% Mercedes-Benz E-Class Sedan 2012 5.52% BMW 3 Series Sedan 2012 5.14% Ford Freestar Minivan 2007 5.08% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Volkswagen Beetle Hatchback 2012 34.7% Audi TT Hatchback 2011 28.79% Audi TT RS Coupe 2012 7.93% BMW M3 Coupe 2012 4.4% Audi S5 Coupe 2012 3.26% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Volvo XC90 SUV 2007 10.0% GMC Acadia SUV 2012 7.49% Ford F-150 Regular Cab 2012 6.18% Ford F-150 Regular Cab 2007 3.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.47% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 95.61% Mercedes-Benz Sprinter Van 2012 1.78% Ford E-Series Wagon Van 2012 0.94% Chevrolet Express Van 2007 0.11% Hyundai Tucson SUV 2012 0.11% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Dodge Sprinter Cargo Van 2009 13.64% Chevrolet Sonic Sedan 2012 3.81% HUMMER H3T Crew Cab 2010 3.34% smart fortwo Convertible 2012 2.74% Audi 100 Sedan 1994 2.37% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Audi S5 Convertible 2012 6.08% Dodge Caliber Wagon 2007 5.5% Dodge Journey SUV 2012 5.37% BMW X6 SUV 2012 5.34% Dodge Caliber Wagon 2012 4.08% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Chevrolet Malibu Sedan 2007 5.63% Jeep Liberty SUV 2012 3.75% Jeep Patriot SUV 2012 3.28% Honda Accord Coupe 2012 3.05% Mazda Tribute SUV 2011 2.63% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Hyundai Veloster Hatchback 2012 79.16% smart fortwo Convertible 2012 6.06% HUMMER H3T Crew Cab 2010 2.96% McLaren MP4-12C Coupe 2012 2.02% Spyker C8 Coupe 2009 1.14% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Bentley Continental GT Coupe 2007 7.09% smart fortwo Convertible 2012 4.88% Nissan Leaf Hatchback 2012 4.42% Chevrolet Sonic Sedan 2012 2.72% Nissan Juke Hatchback 2012 2.42% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 39.69% Dodge Charger SRT-8 2009 32.41% Aston Martin V8 Vantage Coupe 2012 8.28% BMW M5 Sedan 2010 3.85% Audi S6 Sedan 2011 1.65% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 72.52% GMC Yukon Hybrid SUV 2012 12.07% Cadillac Escalade EXT Crew Cab 2007 5.23% Chevrolet Avalanche Crew Cab 2012 2.78% Dodge Dakota Crew Cab 2010 1.37% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Infiniti G Coupe IPL 2012 7.22% BMW 6 Series Convertible 2007 4.7% Bentley Continental GT Coupe 2012 3.21% Bentley Continental Supersports Conv. Convertible 2012 3.03% Cadillac CTS-V Sedan 2012 2.51% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 BMW X5 SUV 2007 48.0% BMW X6 SUV 2012 13.82% Buick Rainier SUV 2007 7.0% Hyundai Tucson SUV 2012 4.64% Volkswagen Golf Hatchback 1991 3.5% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Fisker Karma Sedan 2012 4.87% Rolls-Royce Phantom Sedan 2012 2.15% Toyota Camry Sedan 2012 2.04% Honda Odyssey Minivan 2012 1.75% Acura TL Type-S 2008 1.62% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Hyundai Accent Sedan 2012 12.99% Hyundai Sonata Hybrid Sedan 2012 7.58% Scion xD Hatchback 2012 6.83% Acura Integra Type R 2001 4.01% Hyundai Veloster Hatchback 2012 4.01% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 4.86% Toyota Corolla Sedan 2012 4.53% Chevrolet Tahoe Hybrid SUV 2012 3.42% Dodge Journey SUV 2012 3.21% Chevrolet TrailBlazer SS 2009 2.99% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Volvo 240 Sedan 1993 22.99% Chevrolet Silverado 1500 Regular Cab 2012 22.85% Dodge Dakota Club Cab 2007 9.0% Chevrolet Silverado 1500 Extended Cab 2012 6.63% Dodge Dakota Crew Cab 2010 5.06% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 3.6% Acura ZDX Hatchback 2012 3.05% Chevrolet Monte Carlo Coupe 2007 2.63% Jaguar XK XKR 2012 2.2% Lamborghini Reventon Coupe 2008 2.13% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Canyon Extended Cab 2012 97.51% Chevrolet Silverado 1500 Extended Cab 2012 1.7% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.51% Dodge Ram Pickup 3500 Quad Cab 2009 0.12% Dodge Dakota Crew Cab 2010 0.05% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Toyota Camry Sedan 2012 8.22% Acura TSX Sedan 2012 5.59% Hyundai Genesis Sedan 2012 3.5% BMW M6 Convertible 2010 3.37% Audi S4 Sedan 2012 3.1% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Ram C/V Cargo Van Minivan 2012 11.1% Infiniti QX56 SUV 2011 5.48% Mercedes-Benz E-Class Sedan 2012 5.34% Dodge Durango SUV 2012 3.11% Chevrolet Tahoe Hybrid SUV 2012 2.91% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Dodge Challenger SRT8 2011 3.96% Daewoo Nubira Wagon 2002 3.43% Audi 100 Wagon 1994 3.16% Aston Martin V8 Vantage Coupe 2012 3.04% Honda Accord Coupe 2012 2.49% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Dodge Journey SUV 2012 87.1% Dodge Durango SUV 2012 11.52% Mercedes-Benz S-Class Sedan 2012 0.21% Hyundai Santa Fe SUV 2012 0.14% Infiniti QX56 SUV 2011 0.13% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 GMC Yukon Hybrid SUV 2012 23.23% Chevrolet Silverado 2500HD Regular Cab 2012 12.51% Chevrolet Tahoe Hybrid SUV 2012 8.2% Ford F-150 Regular Cab 2012 7.75% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.61% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Audi A5 Coupe 2012 2.0% BMW 3 Series Wagon 2012 1.92% Dodge Journey SUV 2012 1.87% Audi R8 Coupe 2012 1.79% Acura ZDX Hatchback 2012 1.63% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Classic Extended Cab 2007 7.84% Chevrolet Express Van 2007 7.41% Buick Rainier SUV 2007 6.84% Chevrolet Express Cargo Van 2007 4.37% Ford Ranger SuperCab 2011 3.46% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 34.84% Chevrolet Corvette ZR1 2012 7.33% Aston Martin V8 Vantage Convertible 2012 4.62% Hyundai Veloster Hatchback 2012 3.93% Audi TT Hatchback 2011 2.4% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Spyker C8 Convertible 2009 5.23% Spyker C8 Coupe 2009 4.15% Hyundai Veloster Hatchback 2012 3.13% Chevrolet Corvette ZR1 2012 3.12% Lamborghini Reventon Coupe 2008 2.82% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Ford Focus Sedan 2007 3.81% Chevrolet Traverse SUV 2012 2.58% Hyundai Veloster Hatchback 2012 2.36% Rolls-Royce Ghost Sedan 2012 2.31% Buick Rainier SUV 2007 2.16% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 98.45% Ferrari FF Coupe 2012 0.17% Honda Accord Coupe 2012 0.13% Ford GT Coupe 2006 0.11% BMW 1 Series Coupe 2012 0.09% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Corvette Convertible 2012 78.43% Chevrolet Corvette ZR1 2012 4.75% Aston Martin V8 Vantage Coupe 2012 1.28% Ferrari California Convertible 2012 1.13% Lamborghini Diablo Coupe 2001 0.79% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 41.92% Fisker Karma Sedan 2012 38.07% Chevrolet Corvette Convertible 2012 3.58% Ferrari FF Coupe 2012 1.66% Ferrari California Convertible 2012 0.83% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Jeep Wrangler SUV 2012 21.22% Ford F-150 Regular Cab 2007 7.22% GMC Canyon Extended Cab 2012 6.29% Jeep Patriot SUV 2012 4.11% Jeep Liberty SUV 2012 4.02% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 72.23% Isuzu Ascender SUV 2008 14.89% Chevrolet Silverado 1500 Extended Cab 2012 3.12% Volvo XC90 SUV 2007 1.87% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.29% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Buick Verano Sedan 2012 21.01% Infiniti G Coupe IPL 2012 5.76% Aston Martin Virage Coupe 2012 4.61% Land Rover LR2 SUV 2012 3.47% Infiniti QX56 SUV 2011 2.58% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Chevrolet Tahoe Hybrid SUV 2012 50.34% Chrysler PT Cruiser Convertible 2008 9.24% Toyota 4Runner SUV 2012 5.3% AM General Hummer SUV 2000 3.99% Jeep Patriot SUV 2012 2.69% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 46.41% BMW X5 SUV 2007 8.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.9% Toyota Sequoia SUV 2012 3.42% Cadillac Escalade EXT Crew Cab 2007 3.15% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 48.7% Acura TL Type-S 2008 7.58% Chevrolet Malibu Sedan 2007 4.43% smart fortwo Convertible 2012 3.91% Land Rover LR2 SUV 2012 3.6% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Canyon Extended Cab 2012 19.0% Ford F-450 Super Duty Crew Cab 2012 15.36% Ford F-150 Regular Cab 2012 14.14% Dodge Ram Pickup 3500 Crew Cab 2010 3.38% Ford Edge SUV 2012 2.64% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 100.0% Ford F-150 Regular Cab 2007 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% Ford E-Series Wagon Van 2012 0.0% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2012 52.78% Ram C/V Cargo Van Minivan 2012 6.67% Mazda Tribute SUV 2011 6.46% Dodge Durango SUV 2007 6.34% Dodge Dakota Crew Cab 2010 4.1% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Cadillac CTS-V Sedan 2012 31.93% Chevrolet Sonic Sedan 2012 9.32% Dodge Journey SUV 2012 7.32% Acura RL Sedan 2012 4.07% Cadillac SRX SUV 2012 2.24% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 AM General Hummer SUV 2000 17.3% GMC Acadia SUV 2012 10.56% Ford F-450 Super Duty Crew Cab 2012 7.56% Dodge Ram Pickup 3500 Crew Cab 2010 3.96% Ford Edge SUV 2012 3.37% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.61% Chrysler Crossfire Convertible 2008 16.49% BMW ActiveHybrid 5 Sedan 2012 4.28% Chrysler PT Cruiser Convertible 2008 3.87% Ford Mustang Convertible 2007 3.05% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Ferrari California Convertible 2012 45.15% BMW Z4 Convertible 2012 3.54% HUMMER H3T Crew Cab 2010 3.5% Aston Martin V8 Vantage Coupe 2012 2.41% BMW 3 Series Sedan 2012 1.92% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 78.78% Chevrolet Express Cargo Van 2007 20.92% Chevrolet Express Van 2007 0.28% Acura Integra Type R 2001 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Lamborghini Reventon Coupe 2008 19.63% Chrysler 300 SRT-8 2010 4.88% Aston Martin V8 Vantage Convertible 2012 4.66% Bugatti Veyron 16.4 Coupe 2009 3.35% Aston Martin V8 Vantage Coupe 2012 3.23% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Infiniti G Coupe IPL 2012 2.9% BMW 6 Series Convertible 2007 2.74% Jaguar XK XKR 2012 2.31% Honda Accord Coupe 2012 2.29% Chevrolet Camaro Convertible 2012 2.23% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Traverse SUV 2012 4.09% Jeep Grand Cherokee SUV 2012 2.21% Dodge Durango SUV 2012 1.98% Honda Accord Coupe 2012 1.73% Chevrolet Avalanche Crew Cab 2012 1.66% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari 458 Italia Convertible 2012 95.46% Audi TT RS Coupe 2012 1.98% Honda Accord Coupe 2012 0.94% Ferrari California Convertible 2012 0.58% Ferrari 458 Italia Coupe 2012 0.51% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Suzuki SX4 Sedan 2012 9.16% Bentley Mulsanne Sedan 2011 5.56% Audi 100 Wagon 1994 5.09% Ford Mustang Convertible 2007 3.79% Honda Accord Sedan 2012 3.65% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Chevrolet Traverse SUV 2012 10.02% Hyundai Azera Sedan 2012 3.24% BMW M5 Sedan 2010 2.77% Buick Enclave SUV 2012 2.73% Chevrolet Corvette ZR1 2012 2.59% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Land Rover Range Rover SUV 2012 13.5% Suzuki SX4 Sedan 2012 11.63% GMC Yukon Hybrid SUV 2012 10.62% Jeep Patriot SUV 2012 4.21% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.01% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Honda Accord Coupe 2012 33.52% Nissan 240SX Coupe 1998 10.85% Acura TL Type-S 2008 5.13% Chevrolet Cobalt SS 2010 4.2% Chrysler Sebring Convertible 2010 3.16% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.85% Ford Edge SUV 2012 0.12% Toyota Camry Sedan 2012 0.01% Buick Regal GS 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.43% Lamborghini Reventon Coupe 2008 3.44% Land Rover Range Rover SUV 2012 2.9% GMC Yukon Hybrid SUV 2012 2.55% Toyota 4Runner SUV 2012 2.5% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 8.03% Chevrolet Express Cargo Van 2007 4.8% Dodge Caravan Minivan 1997 3.87% Chevrolet Express Van 2007 3.73% Volvo 240 Sedan 1993 3.67% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 78.29% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.86% Chevrolet Silverado 1500 Extended Cab 2012 4.21% Dodge Ram Pickup 3500 Quad Cab 2009 2.6% Dodge Ram Pickup 3500 Crew Cab 2010 2.38% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Ford GT Coupe 2006 25.6% Chevrolet Corvette ZR1 2012 13.99% Volkswagen Beetle Hatchback 2012 12.26% Acura ZDX Hatchback 2012 5.59% Chrysler Sebring Convertible 2010 5.4% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 25.04% Nissan 240SX Coupe 1998 19.43% Hyundai Elantra Touring Hatchback 2012 12.5% Volkswagen Golf Hatchback 2012 10.27% Acura TSX Sedan 2012 5.81% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Honda Odyssey Minivan 2012 8.37% BMW 3 Series Wagon 2012 6.2% Toyota Camry Sedan 2012 5.31% Mitsubishi Lancer Sedan 2012 4.54% Volkswagen Golf Hatchback 2012 4.35% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 98.58% Hyundai Sonata Sedan 2012 0.34% Hyundai Elantra Touring Hatchback 2012 0.14% Audi S4 Sedan 2012 0.12% Hyundai Genesis Sedan 2012 0.12% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 74.09% Volkswagen Beetle Hatchback 2012 12.49% Bentley Continental GT Coupe 2007 12.35% Bentley Mulsanne Sedan 2011 0.27% Bentley Continental GT Coupe 2012 0.15% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Toyota 4Runner SUV 2012 6.92% Ford Edge SUV 2012 5.59% Ford F-150 Regular Cab 2007 5.45% Honda Odyssey Minivan 2012 4.26% GMC Canyon Extended Cab 2012 3.84% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Ferrari FF Coupe 2012 5.77% Chrysler Sebring Convertible 2010 3.19% BMW M5 Sedan 2010 2.78% Aston Martin Virage Convertible 2012 2.69% Mercedes-Benz E-Class Sedan 2012 2.55% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 FIAT 500 Abarth 2012 72.68% Spyker C8 Convertible 2009 12.5% Lamborghini Reventon Coupe 2008 4.21% AM General Hummer SUV 2000 2.16% Jeep Wrangler SUV 2012 0.74% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Chevrolet Monte Carlo Coupe 2007 17.76% Ford GT Coupe 2006 15.71% Bentley Continental GT Coupe 2007 10.65% Hyundai Veracruz SUV 2012 5.47% Mercedes-Benz C-Class Sedan 2012 4.39% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 77.94% Ferrari 458 Italia Coupe 2012 11.71% Chevrolet Corvette ZR1 2012 1.36% Spyker C8 Coupe 2009 1.16% Fisker Karma Sedan 2012 0.81% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Bentley Continental GT Coupe 2012 10.47% Fisker Karma Sedan 2012 7.94% Ferrari FF Coupe 2012 3.71% Suzuki SX4 Hatchback 2012 3.04% Aston Martin V8 Vantage Coupe 2012 2.98% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Land Rover LR2 SUV 2012 18.68% Hyundai Santa Fe SUV 2012 16.0% Ford Edge SUV 2012 7.1% Honda Accord Sedan 2012 6.5% Suzuki SX4 Sedan 2012 5.64% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 97.33% Cadillac SRX SUV 2012 0.83% Ford F-150 Regular Cab 2007 0.75% Toyota 4Runner SUV 2012 0.31% Cadillac Escalade EXT Crew Cab 2007 0.19% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Hyundai Accent Sedan 2012 23.24% Suzuki SX4 Sedan 2012 15.58% Toyota Corolla Sedan 2012 5.98% Chevrolet Sonic Sedan 2012 5.6% Acura RL Sedan 2012 3.59% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Chrysler 300 SRT-8 2010 14.24% Audi R8 Coupe 2012 10.98% BMW M6 Convertible 2010 10.19% Ferrari FF Coupe 2012 4.48% Lamborghini Reventon Coupe 2008 3.65% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 29.2% Aston Martin Virage Coupe 2012 26.23% Hyundai Veloster Hatchback 2012 25.32% Lamborghini Diablo Coupe 2001 2.72% BMW Z4 Convertible 2012 2.63% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 96.87% Ford E-Series Wagon Van 2012 1.69% Ford F-150 Regular Cab 2012 0.93% GMC Yukon Hybrid SUV 2012 0.22% Ford F-150 Regular Cab 2007 0.13% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 59.3% FIAT 500 Convertible 2012 21.2% Volkswagen Golf Hatchback 1991 2.34% Suzuki SX4 Hatchback 2012 2.24% MINI Cooper Roadster Convertible 2012 2.08% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 13.64% Chevrolet Traverse SUV 2012 11.68% Toyota Sequoia SUV 2012 7.53% Mazda Tribute SUV 2011 5.93% Jeep Grand Cherokee SUV 2012 5.56% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 9.62% Suzuki Kizashi Sedan 2012 6.15% Acura ZDX Hatchback 2012 5.45% FIAT 500 Abarth 2012 4.96% Jaguar XK XKR 2012 3.6% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chevrolet TrailBlazer SS 2009 9.2% Chrysler 300 SRT-8 2010 7.59% GMC Acadia SUV 2012 6.97% Dodge Charger SRT-8 2009 3.37% Buick Verano Sedan 2012 3.33% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Jaguar XK XKR 2012 24.53% Audi TT RS Coupe 2012 13.87% Acura TSX Sedan 2012 13.65% BMW 6 Series Convertible 2007 6.6% Audi TT Hatchback 2011 5.84% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Buick Rainier SUV 2007 45.42% Audi 100 Wagon 1994 5.9% Chrysler Aspen SUV 2009 4.46% Dodge Dakota Crew Cab 2010 1.88% GMC Acadia SUV 2012 1.76% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Ram C/V Cargo Van Minivan 2012 12.37% Dodge Ram Pickup 3500 Quad Cab 2009 9.67% Jeep Grand Cherokee SUV 2012 6.42% Toyota 4Runner SUV 2012 5.19% Dodge Durango SUV 2007 3.9% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Ferrari FF Coupe 2012 45.64% Ferrari 458 Italia Coupe 2012 9.55% Ford Freestar Minivan 2007 9.44% Chevrolet Monte Carlo Coupe 2007 5.76% Honda Odyssey Minivan 2012 3.4% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Chevrolet Sonic Sedan 2012 2.6% Maybach Landaulet Convertible 2012 2.48% Chrysler Sebring Convertible 2010 2.05% Suzuki Kizashi Sedan 2012 1.78% Rolls-Royce Phantom Sedan 2012 1.74% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Spyker C8 Convertible 2009 21.15% Ford GT Coupe 2006 6.22% Volkswagen Beetle Hatchback 2012 6.12% Jeep Wrangler SUV 2012 5.36% Spyker C8 Coupe 2009 4.19% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Mitsubishi Lancer Sedan 2012 24.94% Ferrari 458 Italia Convertible 2012 18.32% Ferrari California Convertible 2012 16.21% Dodge Challenger SRT8 2011 8.79% Suzuki Kizashi Sedan 2012 3.18% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 29.88% Bentley Continental GT Coupe 2012 12.86% Aston Martin Virage Coupe 2012 4.29% Bentley Continental GT Coupe 2007 3.75% Suzuki Kizashi Sedan 2012 3.17% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 52.01% Chevrolet Silverado 1500 Extended Cab 2012 13.31% Chevrolet Silverado 1500 Regular Cab 2012 7.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.74% Chevrolet Silverado 2500HD Regular Cab 2012 4.68% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 28.81% Lamborghini Reventon Coupe 2008 22.26% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.37% Acura Integra Type R 2001 5.04% McLaren MP4-12C Coupe 2012 4.99% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 16.51% Suzuki Kizashi Sedan 2012 7.11% Chevrolet Sonic Sedan 2012 6.15% Dodge Caliber Wagon 2007 2.8% Volvo C30 Hatchback 2012 1.82% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Regular Cab 2012 30.37% Chevrolet Avalanche Crew Cab 2012 18.5% GMC Canyon Extended Cab 2012 11.15% Dodge Dakota Club Cab 2007 9.42% Jeep Patriot SUV 2012 6.61% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Chevrolet Camaro Convertible 2012 10.82% BMW Z4 Convertible 2012 9.37% Ford GT Coupe 2006 6.0% Audi 100 Wagon 1994 5.8% Mercedes-Benz 300-Class Convertible 1993 5.17% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 74.67% Chevrolet Tahoe Hybrid SUV 2012 8.87% Isuzu Ascender SUV 2008 6.18% GMC Yukon Hybrid SUV 2012 1.64% Chevrolet Avalanche Crew Cab 2012 1.21% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Ferrari 458 Italia Convertible 2012 54.46% Ferrari California Convertible 2012 10.53% Dodge Challenger SRT8 2011 10.01% Dodge Charger Sedan 2012 4.32% FIAT 500 Abarth 2012 2.87% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Mitsubishi Lancer Sedan 2012 41.58% Ford GT Coupe 2006 13.86% Volvo C30 Hatchback 2012 3.72% Aston Martin V8 Vantage Coupe 2012 3.48% BMW M6 Convertible 2010 3.21% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 96.97% Dodge Caravan Minivan 1997 0.74% Buick Enclave SUV 2012 0.56% Honda Odyssey Minivan 2007 0.26% Cadillac Escalade EXT Crew Cab 2007 0.13% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.41% GMC Yukon Hybrid SUV 2012 0.37% Chevrolet Tahoe Hybrid SUV 2012 0.12% Cadillac SRX SUV 2012 0.03% Chevrolet Avalanche Crew Cab 2012 0.02% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 93.88% Jaguar XK XKR 2012 1.9% Aston Martin V8 Vantage Convertible 2012 1.39% BMW Z4 Convertible 2012 0.47% Chevrolet Corvette ZR1 2012 0.42% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 GMC Acadia SUV 2012 35.5% Ford Edge SUV 2012 20.82% Jeep Patriot SUV 2012 4.58% Buick Enclave SUV 2012 3.49% Jeep Compass SUV 2012 3.14% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Dodge Caliber Wagon 2007 30.56% Chrysler Crossfire Convertible 2008 18.51% Chrysler Sebring Convertible 2010 5.14% Ford Focus Sedan 2007 4.5% Dodge Charger Sedan 2012 2.84% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 45.83% BMW X5 SUV 2007 16.33% BMW 1 Series Coupe 2012 5.91% Buick Regal GS 2012 4.47% Mitsubishi Lancer Sedan 2012 3.05% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Ford Focus Sedan 2007 88.63% Toyota Camry Sedan 2012 1.52% Hyundai Elantra Sedan 2007 0.75% Cadillac Escalade EXT Crew Cab 2007 0.75% Chevrolet Silverado 1500 Regular Cab 2012 0.74% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 33.53% Dodge Challenger SRT8 2011 13.48% Bentley Mulsanne Sedan 2011 4.28% Chrysler Sebring Convertible 2010 4.12% Chrysler 300 SRT-8 2010 3.84% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Audi TTS Coupe 2012 24.11% Audi S4 Sedan 2012 12.28% Audi R8 Coupe 2012 10.89% Aston Martin V8 Vantage Convertible 2012 5.44% BMW M5 Sedan 2010 4.92% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 51.64% Jeep Patriot SUV 2012 10.24% GMC Yukon Hybrid SUV 2012 2.53% HUMMER H2 SUT Crew Cab 2009 2.51% AM General Hummer SUV 2000 2.33% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Ford GT Coupe 2006 33.4% BMW M6 Convertible 2010 8.32% AM General Hummer SUV 2000 7.65% Lamborghini Reventon Coupe 2008 3.41% Spyker C8 Convertible 2009 3.17% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Audi A5 Coupe 2012 9.62% BMW 3 Series Sedan 2012 8.91% Audi S5 Coupe 2012 8.83% Audi TTS Coupe 2012 6.53% Audi S6 Sedan 2011 4.4% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 90.75% Audi S4 Sedan 2012 2.23% Audi S6 Sedan 2011 1.17% Audi S5 Coupe 2012 0.69% Audi TT RS Coupe 2012 0.55% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 24.68% Jeep Patriot SUV 2012 2.68% Suzuki SX4 Sedan 2012 2.36% Buick Enclave SUV 2012 2.33% GMC Acadia SUV 2012 2.3% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Chevrolet Malibu Sedan 2007 43.48% Chevrolet Monte Carlo Coupe 2007 19.88% Honda Accord Sedan 2012 5.49% Chevrolet Impala Sedan 2007 4.37% Honda Odyssey Minivan 2012 4.19% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 31.07% Jeep Compass SUV 2012 7.17% Dodge Ram Pickup 3500 Quad Cab 2009 6.68% Ford E-Series Wagon Van 2012 4.14% Ford Ranger SuperCab 2011 4.06% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Buick Regal GS 2012 11.72% Infiniti QX56 SUV 2011 3.92% Chevrolet Sonic Sedan 2012 3.46% Dodge Magnum Wagon 2008 2.93% Ford Fiesta Sedan 2012 2.74% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Dodge Caravan Minivan 1997 24.07% Jeep Patriot SUV 2012 8.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.09% Audi 100 Sedan 1994 5.59% Chevrolet Express Van 2007 4.42% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford E-Series Wagon Van 2012 69.92% Dodge Ram Pickup 3500 Quad Cab 2009 12.37% Jeep Wrangler SUV 2012 6.66% Ford Ranger SuperCab 2011 3.71% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.11% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Chevrolet Tahoe Hybrid SUV 2012 53.14% Dodge Dakota Crew Cab 2010 11.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.79% Chevrolet Silverado 2500HD Regular Cab 2012 5.5% Jeep Wrangler SUV 2012 3.49% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 83.85% Land Rover Range Rover SUV 2012 3.99% Chevrolet Avalanche Crew Cab 2012 3.78% Volkswagen Golf Hatchback 1991 0.87% Chevrolet Tahoe Hybrid SUV 2012 0.77% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Ford GT Coupe 2006 12.18% Chevrolet Cobalt SS 2010 2.92% BMW Z4 Convertible 2012 2.64% Volvo 240 Sedan 1993 2.53% Bentley Arnage Sedan 2009 2.44% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% MINI Cooper Roadster Convertible 2012 0.0% smart fortwo Convertible 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Dodge Caliber Wagon 2012 0.0% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Volvo XC90 SUV 2007 24.72% Lincoln Town Car Sedan 2011 15.86% Buick Rainier SUV 2007 10.52% Rolls-Royce Ghost Sedan 2012 9.03% Rolls-Royce Phantom Sedan 2012 3.17% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 12.37% Nissan Leaf Hatchback 2012 8.14% Nissan Juke Hatchback 2012 3.76% Ford Fiesta Sedan 2012 2.63% Geo Metro Convertible 1993 2.32% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Honda Accord Coupe 2012 25.21% Acura TSX Sedan 2012 18.96% Hyundai Elantra Sedan 2007 6.84% Acura TL Sedan 2012 4.2% Hyundai Accent Sedan 2012 3.78% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 BMW M3 Coupe 2012 45.19% Spyker C8 Coupe 2009 13.06% Mitsubishi Lancer Sedan 2012 8.21% Lamborghini Aventador Coupe 2012 3.59% Dodge Charger SRT-8 2009 3.08% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Bentley Continental Supersports Conv. Convertible 2012 5.34% Audi R8 Coupe 2012 4.46% Chevrolet Silverado 1500 Regular Cab 2012 3.13% Audi V8 Sedan 1994 2.72% Rolls-Royce Phantom Sedan 2012 2.18% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Lamborghini Reventon Coupe 2008 33.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 23.95% Daewoo Nubira Wagon 2002 5.79% Volvo 240 Sedan 1993 2.43% Audi V8 Sedan 1994 2.22% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Audi 100 Sedan 1994 15.99% Lincoln Town Car Sedan 2011 8.67% Audi V8 Sedan 1994 7.71% Ram C/V Cargo Van Minivan 2012 4.9% Audi 100 Wagon 1994 3.96% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 29.17% Chevrolet Express Cargo Van 2007 21.09% Nissan Juke Hatchback 2012 10.84% Chevrolet Traverse SUV 2012 7.86% Hyundai Tucson SUV 2012 7.06% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Chevrolet Malibu Sedan 2007 18.98% BMW 3 Series Wagon 2012 7.32% Suzuki SX4 Sedan 2012 3.88% Chevrolet Cobalt SS 2010 3.27% Honda Odyssey Minivan 2012 3.0% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Dodge Journey SUV 2012 7.9% FIAT 500 Abarth 2012 3.88% BMW 3 Series Wagon 2012 3.6% Audi S4 Sedan 2012 3.07% GMC Terrain SUV 2012 2.97% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 71.51% Cadillac CTS-V Sedan 2012 11.02% Bentley Continental GT Coupe 2012 10.89% Audi R8 Coupe 2012 2.1% Buick Regal GS 2012 0.94% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.93% Cadillac CTS-V Sedan 2012 0.04% GMC Yukon Hybrid SUV 2012 0.01% Cadillac SRX SUV 2012 0.01% Chevrolet Tahoe Hybrid SUV 2012 0.0% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 22.15% Audi 100 Wagon 1994 22.05% Chevrolet Silverado 2500HD Regular Cab 2012 10.25% Chevrolet Silverado 1500 Regular Cab 2012 7.37% Volvo 240 Sedan 1993 6.76% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Infiniti G Coupe IPL 2012 25.37% BMW M6 Convertible 2010 21.35% BMW 6 Series Convertible 2007 3.63% Aston Martin V8 Vantage Convertible 2012 3.52% Hyundai Azera Sedan 2012 3.46% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Honda Odyssey Minivan 2012 17.37% Honda Accord Sedan 2012 6.59% Chevrolet HHR SS 2010 2.96% Dodge Journey SUV 2012 2.94% BMW 6 Series Convertible 2007 2.69% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 59.61% Audi S4 Sedan 2012 15.92% Hyundai Elantra Sedan 2007 14.65% Honda Accord Coupe 2012 5.51% Volkswagen Beetle Hatchback 2012 2.9% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 25.51% Rolls-Royce Phantom Sedan 2012 9.36% Toyota 4Runner SUV 2012 9.09% Bentley Arnage Sedan 2009 8.08% Jeep Patriot SUV 2012 4.9% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 BMW Z4 Convertible 2012 9.75% McLaren MP4-12C Coupe 2012 8.65% Aston Martin Virage Coupe 2012 8.2% Volvo 240 Sedan 1993 4.03% Bentley Continental GT Coupe 2007 3.89% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Suzuki SX4 Sedan 2012 10.28% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.08% Suzuki Kizashi Sedan 2012 5.72% Nissan Juke Hatchback 2012 4.76% Maybach Landaulet Convertible 2012 4.4% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 BMW X5 SUV 2007 19.07% BMW ActiveHybrid 5 Sedan 2012 11.81% BMW 3 Series Wagon 2012 9.55% Chevrolet Traverse SUV 2012 7.9% BMW 6 Series Convertible 2007 7.61% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 98.98% HUMMER H2 SUT Crew Cab 2009 0.18% Jeep Patriot SUV 2012 0.13% Chevrolet Camaro Convertible 2012 0.13% GMC Canyon Extended Cab 2012 0.1% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 39.53% GMC Canyon Extended Cab 2012 16.93% Chevrolet Silverado 1500 Classic Extended Cab 2007 13.64% Ford F-150 Regular Cab 2007 6.47% HUMMER H3T Crew Cab 2010 2.28% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 FIAT 500 Abarth 2012 7.3% Nissan Juke Hatchback 2012 5.52% Spyker C8 Coupe 2009 3.39% Chevrolet Traverse SUV 2012 2.6% BMW X6 SUV 2012 1.95% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 9.0% BMW M6 Convertible 2010 6.29% Mercedes-Benz C-Class Sedan 2012 5.87% Mercedes-Benz S-Class Sedan 2012 4.18% Lamborghini Reventon Coupe 2008 3.88% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 16.82% Chrysler Town and Country Minivan 2012 13.8% Volkswagen Beetle Hatchback 2012 6.71% Chrysler Sebring Convertible 2010 5.23% Ford E-Series Wagon Van 2012 4.11% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 74.78% Dodge Dakota Club Cab 2007 13.5% Chrysler Aspen SUV 2009 3.81% Ford Freestar Minivan 2007 1.49% Cadillac Escalade EXT Crew Cab 2007 0.8% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Dodge Magnum Wagon 2008 25.94% Chevrolet Malibu Hybrid Sedan 2010 18.71% Chevrolet Cobalt SS 2010 7.54% Infiniti G Coupe IPL 2012 2.59% BMW M5 Sedan 2010 2.21% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 7.32% MINI Cooper Roadster Convertible 2012 4.76% Aston Martin V8 Vantage Coupe 2012 4.26% Spyker C8 Coupe 2009 3.67% Chevrolet Corvette ZR1 2012 3.2% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Infiniti G Coupe IPL 2012 5.7% Hyundai Sonata Sedan 2012 2.86% Daewoo Nubira Wagon 2002 2.68% Acura TL Type-S 2008 2.37% Fisker Karma Sedan 2012 1.85% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Mercedes-Benz E-Class Sedan 2012 23.45% Tesla Model S Sedan 2012 14.25% BMW 3 Series Wagon 2012 13.43% Porsche Panamera Sedan 2012 11.67% Buick Verano Sedan 2012 7.32% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 BMW 1 Series Convertible 2012 4.06% Suzuki Kizashi Sedan 2012 4.06% BMW 6 Series Convertible 2007 3.86% Infiniti G Coupe IPL 2012 3.52% Acura TSX Sedan 2012 3.16% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Ford GT Coupe 2006 40.66% Spyker C8 Coupe 2009 19.73% Dodge Challenger SRT8 2011 19.02% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.37% Jeep Liberty SUV 2012 3.08% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 83.88% HUMMER H2 SUT Crew Cab 2009 10.21% Jeep Wrangler SUV 2012 5.49% HUMMER H3T Crew Cab 2010 0.12% Lamborghini Diablo Coupe 2001 0.04% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 18.99% Suzuki Aerio Sedan 2007 15.14% Hyundai Elantra Touring Hatchback 2012 11.61% Volkswagen Golf Hatchback 2012 7.12% Chrysler Sebring Convertible 2010 1.53% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Coupe 2012 82.59% Ferrari 458 Italia Convertible 2012 10.5% Ferrari FF Coupe 2012 3.7% Volkswagen Beetle Hatchback 2012 1.46% Dodge Magnum Wagon 2008 1.11% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 2500HD Regular Cab 2012 3.01% Ford F-150 Regular Cab 2007 2.56% Chevrolet Silverado 1500 Extended Cab 2012 2.4% Dodge Ram Pickup 3500 Crew Cab 2010 1.83% Chevrolet Express Van 2007 1.72% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 11.68% Volvo 240 Sedan 1993 4.16% Acura Integra Type R 2001 4.04% Bentley Continental GT Coupe 2007 3.77% Audi S4 Sedan 2007 3.46% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Cadillac CTS-V Sedan 2012 12.07% Bentley Mulsanne Sedan 2011 8.2% Toyota 4Runner SUV 2012 3.59% Fisker Karma Sedan 2012 3.55% Bentley Continental GT Coupe 2007 2.79% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Jaguar XK XKR 2012 88.34% Land Rover Range Rover SUV 2012 1.48% BMW 1 Series Coupe 2012 1.11% Audi R8 Coupe 2012 0.79% Dodge Charger Sedan 2012 0.53% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.8% Chevrolet Express Van 2007 0.14% GMC Savana Van 2012 0.04% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Volvo XC90 SUV 2007 0.0% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Honda Accord Sedan 2012 9.17% Dodge Magnum Wagon 2008 5.8% Volkswagen Beetle Hatchback 2012 4.3% Dodge Durango SUV 2012 4.05% Aston Martin V8 Vantage Coupe 2012 3.1% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 GMC Yukon Hybrid SUV 2012 32.05% Volvo XC90 SUV 2007 5.8% Chevrolet Avalanche Crew Cab 2012 5.77% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.28% Chevrolet Tahoe Hybrid SUV 2012 3.94% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Ram C/V Cargo Van Minivan 2012 65.42% Chrysler Town and Country Minivan 2012 7.19% Suzuki Aerio Sedan 2007 1.94% Dodge Durango SUV 2012 1.57% Ford Freestar Minivan 2007 1.26% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Daewoo Nubira Wagon 2002 19.72% smart fortwo Convertible 2012 18.22% Nissan Leaf Hatchback 2012 6.39% Nissan Juke Hatchback 2012 4.17% Hyundai Tucson SUV 2012 3.89% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Honda Accord Coupe 2012 65.24% Jaguar XK XKR 2012 8.78% Chevrolet Corvette ZR1 2012 5.95% Chrysler Crossfire Convertible 2008 3.95% Chrysler Sebring Convertible 2010 1.84% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 HUMMER H2 SUT Crew Cab 2009 17.26% Dodge Ram Pickup 3500 Quad Cab 2009 12.69% Bentley Arnage Sedan 2009 4.77% Hyundai Veracruz SUV 2012 3.68% Toyota 4Runner SUV 2012 3.34% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 FIAT 500 Abarth 2012 24.66% Ferrari FF Coupe 2012 19.19% Ford GT Coupe 2006 13.4% Spyker C8 Coupe 2009 5.03% Ferrari 458 Italia Convertible 2012 4.6% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.99% Jeep Patriot SUV 2012 0.01% Bentley Arnage Sedan 2009 0.0% Buick Enclave SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Ford F-150 Regular Cab 2012 54.26% Dodge Dakota Club Cab 2007 9.49% Dodge Ram Pickup 3500 Crew Cab 2010 4.62% Chrysler Town and Country Minivan 2012 3.86% Dodge Durango SUV 2007 3.31% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 44.79% Audi S5 Convertible 2012 18.44% Chrysler Crossfire Convertible 2008 9.79% Hyundai Veloster Hatchback 2012 5.76% Chevrolet Cobalt SS 2010 3.92% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 95.19% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.8% Chevrolet Silverado 1500 Regular Cab 2012 0.93% GMC Canyon Extended Cab 2012 0.91% Chevrolet Silverado 1500 Extended Cab 2012 0.23% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 Fisker Karma Sedan 2012 20.07% Dodge Challenger SRT8 2011 10.14% Chevrolet Corvette ZR1 2012 7.38% Ferrari 458 Italia Convertible 2012 6.55% Jaguar XK XKR 2012 4.36% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.9% Jeep Compass SUV 2012 0.07% Jeep Grand Cherokee SUV 2012 0.02% Bentley Arnage Sedan 2009 0.01% Bentley Continental Flying Spur Sedan 2007 0.0% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Rolls-Royce Phantom Sedan 2012 2.6% Nissan Leaf Hatchback 2012 2.5% Dodge Charger SRT-8 2009 2.43% Suzuki Kizashi Sedan 2012 1.92% Hyundai Genesis Sedan 2012 1.84% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Buick Regal GS 2012 90.5% Cadillac CTS-V Sedan 2012 1.62% BMW 1 Series Convertible 2012 1.35% Audi S5 Convertible 2012 0.56% Bentley Continental Supersports Conv. Convertible 2012 0.39% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Audi 100 Wagon 1994 53.18% Chevrolet Corvette Convertible 2012 4.59% BMW Z4 Convertible 2012 4.15% Mercedes-Benz E-Class Sedan 2012 3.38% BMW ActiveHybrid 5 Sedan 2012 2.43% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 4.95% Dodge Dakota Crew Cab 2010 4.18% Buick Rainier SUV 2007 3.5% Chevrolet Traverse SUV 2012 3.41% Dodge Durango SUV 2007 3.07% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Ford F-150 Regular Cab 2012 27.1% GMC Canyon Extended Cab 2012 9.65% Volkswagen Golf Hatchback 1991 4.38% Chevrolet Silverado 1500 Regular Cab 2012 3.68% Chevrolet Traverse SUV 2012 2.66% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Chevrolet Corvette Convertible 2012 56.86% Ferrari California Convertible 2012 14.73% Geo Metro Convertible 1993 7.75% Honda Accord Coupe 2012 3.64% Ford Mustang Convertible 2007 2.71% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 60.97% Dodge Ram Pickup 3500 Quad Cab 2009 16.7% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.01% Chevrolet Silverado 1500 Regular Cab 2012 1.92% Ford F-150 Regular Cab 2007 1.5% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Daewoo Nubira Wagon 2002 3.08% Suzuki Kizashi Sedan 2012 2.0% Audi R8 Coupe 2012 1.91% BMW M5 Sedan 2010 1.8% Bugatti Veyron 16.4 Coupe 2009 1.68% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Plymouth Neon Coupe 1999 20.37% BMW M3 Coupe 2012 10.1% Jaguar XK XKR 2012 8.2% Audi R8 Coupe 2012 5.61% Audi S4 Sedan 2007 3.82% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Mazda Tribute SUV 2011 12.23% GMC Canyon Extended Cab 2012 8.3% Chevrolet Tahoe Hybrid SUV 2012 3.84% Chevrolet TrailBlazer SS 2009 2.93% Toyota 4Runner SUV 2012 2.84% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Chevrolet Monte Carlo Coupe 2007 34.3% Dodge Dakota Crew Cab 2010 18.87% Chevrolet Silverado 2500HD Regular Cab 2012 7.76% Audi 100 Sedan 1994 6.26% Chevrolet Avalanche Crew Cab 2012 5.55% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 14.4% Nissan Leaf Hatchback 2012 10.76% MINI Cooper Roadster Convertible 2012 7.78% Ford F-450 Super Duty Crew Cab 2012 7.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.48% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Dodge Ram Pickup 3500 Crew Cab 2010 13.21% Chevrolet Silverado 2500HD Regular Cab 2012 9.96% Dodge Magnum Wagon 2008 6.66% Bentley Continental Supersports Conv. Convertible 2012 3.89% Audi R8 Coupe 2012 3.5% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 BMW M3 Coupe 2012 3.99% Jaguar XK XKR 2012 3.82% Chrysler Sebring Convertible 2010 3.17% Mercedes-Benz SL-Class Coupe 2009 2.62% Rolls-Royce Phantom Sedan 2012 2.06% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Ford F-150 Regular Cab 2012 75.0% MINI Cooper Roadster Convertible 2012 8.43% GMC Terrain SUV 2012 3.34% Ford F-450 Super Duty Crew Cab 2012 3.07% Nissan NV Passenger Van 2012 1.74% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Porsche Panamera Sedan 2012 6.69% Acura TL Type-S 2008 5.87% BMW M3 Coupe 2012 4.8% Suzuki SX4 Sedan 2012 4.5% Jaguar XK XKR 2012 3.61% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Buick Regal GS 2012 21.58% BMW ActiveHybrid 5 Sedan 2012 16.92% Dodge Challenger SRT8 2011 8.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.09% Mercedes-Benz SL-Class Coupe 2009 6.19% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Ford GT Coupe 2006 4.13% MINI Cooper Roadster Convertible 2012 3.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.66% Chevrolet Tahoe Hybrid SUV 2012 2.74% Suzuki Kizashi Sedan 2012 1.89% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Hyundai Sonata Hybrid Sedan 2012 17.77% Volvo 240 Sedan 1993 10.88% GMC Canyon Extended Cab 2012 6.86% Hyundai Sonata Sedan 2012 5.23% Hyundai Azera Sedan 2012 4.72% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 70.35% Ferrari 458 Italia Convertible 2012 9.8% Chevrolet Corvette Convertible 2012 9.22% BMW 3 Series Sedan 2012 3.64% smart fortwo Convertible 2012 3.47% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 46.15% Lamborghini Reventon Coupe 2008 13.98% Lamborghini Aventador Coupe 2012 9.04% Bugatti Veyron 16.4 Convertible 2009 5.72% Spyker C8 Coupe 2009 4.28% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 GMC Yukon Hybrid SUV 2012 48.22% Ford GT Coupe 2006 5.94% Cadillac CTS-V Sedan 2012 5.28% Cadillac SRX SUV 2012 3.02% Bentley Continental GT Coupe 2007 2.99% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Ford Edge SUV 2012 15.51% Hyundai Veloster Hatchback 2012 4.22% Ford GT Coupe 2006 3.25% Hyundai Veracruz SUV 2012 2.49% McLaren MP4-12C Coupe 2012 2.37% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 5.48% Hyundai Tucson SUV 2012 2.44% Buick Enclave SUV 2012 2.31% Chevrolet Monte Carlo Coupe 2007 2.11% Jeep Patriot SUV 2012 2.0% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Hyundai Genesis Sedan 2012 5.32% Ford GT Coupe 2006 4.66% Fisker Karma Sedan 2012 3.74% Ford F-150 Regular Cab 2007 3.24% Chevrolet Traverse SUV 2012 2.06% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Dodge Journey SUV 2012 90.98% Toyota Camry Sedan 2012 6.25% Volkswagen Golf Hatchback 2012 0.61% Infiniti G Coupe IPL 2012 0.36% Hyundai Genesis Sedan 2012 0.17% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 15.54% Daewoo Nubira Wagon 2002 11.89% smart fortwo Convertible 2012 10.16% Mitsubishi Lancer Sedan 2012 7.23% BMW M5 Sedan 2010 5.96% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 7.21% Honda Odyssey Minivan 2007 6.0% Honda Accord Sedan 2012 4.08% Hyundai Genesis Sedan 2012 3.41% Dodge Sprinter Cargo Van 2009 2.42% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Bentley Arnage Sedan 2009 95.16% Rolls-Royce Phantom Sedan 2012 3.04% Bentley Mulsanne Sedan 2011 0.76% Volvo 240 Sedan 1993 0.48% Bentley Continental Flying Spur Sedan 2007 0.06% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Audi V8 Sedan 1994 5.29% Eagle Talon Hatchback 1998 3.42% Dodge Dakota Crew Cab 2010 3.2% Acura Integra Type R 2001 2.28% Hyundai Sonata Sedan 2012 1.88% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Wagon 2012 44.17% BMW 3 Series Sedan 2012 11.3% Acura TSX Sedan 2012 8.43% BMW M5 Sedan 2010 4.96% Volvo 240 Sedan 1993 3.34% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 47.29% Audi V8 Sedan 1994 18.53% Audi 100 Sedan 1994 17.71% Audi 100 Wagon 1994 9.45% Volkswagen Golf Hatchback 1991 1.4% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 30.19% Hyundai Accent Sedan 2012 15.34% Ford Edge SUV 2012 8.01% Hyundai Sonata Hybrid Sedan 2012 6.35% Chevrolet Sonic Sedan 2012 4.9% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 6.7% Daewoo Nubira Wagon 2002 5.76% Ferrari California Convertible 2012 4.24% Chevrolet Sonic Sedan 2012 3.83% Suzuki SX4 Hatchback 2012 2.99% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Audi S5 Convertible 2012 74.49% Volkswagen Beetle Hatchback 2012 6.14% Aston Martin Virage Convertible 2012 1.65% Bentley Arnage Sedan 2009 1.62% Audi S5 Coupe 2012 1.46% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Chevrolet Monte Carlo Coupe 2007 5.45% Hyundai Sonata Sedan 2012 5.2% Chevrolet Impala Sedan 2007 3.05% Chrysler Sebring Convertible 2010 3.02% Acura TL Type-S 2008 2.12% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Aston Martin V8 Vantage Convertible 2012 21.49% Tesla Model S Sedan 2012 12.76% Acura TL Sedan 2012 12.71% Aston Martin Virage Convertible 2012 12.17% Ferrari 458 Italia Convertible 2012 5.99% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Chevrolet Malibu Hybrid Sedan 2010 17.11% BMW M3 Coupe 2012 9.07% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.88% Audi R8 Coupe 2012 3.27% Mercedes-Benz E-Class Sedan 2012 2.78% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 52.31% Chevrolet Silverado 1500 Extended Cab 2012 6.91% Ford F-450 Super Duty Crew Cab 2012 6.76% Dodge Ram Pickup 3500 Quad Cab 2009 6.52% Ford F-150 Regular Cab 2012 5.64% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.76% Lamborghini Diablo Coupe 2001 0.24% Aston Martin Virage Coupe 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 34.05% Ford E-Series Wagon Van 2012 10.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.22% Chevrolet Silverado 1500 Extended Cab 2012 5.0% Chevrolet Express Cargo Van 2007 3.25% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 91.02% Acura RL Sedan 2012 1.74% Dodge Journey SUV 2012 1.42% Chrysler Sebring Convertible 2010 1.23% Acura TSX Sedan 2012 0.7% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Volkswagen Golf Hatchback 2012 8.12% Chevrolet Traverse SUV 2012 6.92% Hyundai Tucson SUV 2012 6.58% Toyota Sequoia SUV 2012 5.81% Hyundai Veracruz SUV 2012 3.64% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Audi R8 Coupe 2012 18.02% Chevrolet Camaro Convertible 2012 5.79% Porsche Panamera Sedan 2012 5.56% Volkswagen Beetle Hatchback 2012 4.49% Dodge Charger SRT-8 2009 4.26% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 83.23% Suzuki SX4 Hatchback 2012 9.08% Chevrolet Impala Sedan 2007 1.76% Buick Verano Sedan 2012 1.72% BMW X3 SUV 2012 0.56% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Aston Martin V8 Vantage Coupe 2012 3.85% MINI Cooper Roadster Convertible 2012 3.69% Ferrari 458 Italia Coupe 2012 2.99% Infiniti G Coupe IPL 2012 2.76% Rolls-Royce Phantom Sedan 2012 2.69% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Mitsubishi Lancer Sedan 2012 28.29% Ford Edge SUV 2012 3.06% Hyundai Veloster Hatchback 2012 2.7% Hyundai Sonata Sedan 2012 2.66% Chevrolet Sonic Sedan 2012 2.39% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Fisker Karma Sedan 2012 42.46% Cadillac CTS-V Sedan 2012 8.49% BMW M6 Convertible 2010 4.44% Lamborghini Reventon Coupe 2008 2.13% Audi TTS Coupe 2012 1.83% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Jaguar XK XKR 2012 40.28% Cadillac CTS-V Sedan 2012 24.96% Toyota Corolla Sedan 2012 4.9% Audi TT RS Coupe 2012 4.86% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.4% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 87.05% Audi TT Hatchback 2011 10.66% Audi S4 Sedan 2007 1.42% Audi A5 Coupe 2012 0.19% Audi S4 Sedan 2012 0.17% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 5.22% Nissan Juke Hatchback 2012 2.86% Bentley Continental Supersports Conv. Convertible 2012 2.39% BMW X3 SUV 2012 2.32% Mercedes-Benz E-Class Sedan 2012 2.11% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Dodge Caliber Wagon 2012 17.99% Honda Odyssey Minivan 2007 16.08% Dodge Caliber Wagon 2007 10.57% Cadillac SRX SUV 2012 7.2% Jeep Compass SUV 2012 6.49% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 28.75% GMC Yukon Hybrid SUV 2012 25.0% Dodge Dakota Club Cab 2007 6.82% Ford F-150 Regular Cab 2012 5.95% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.05% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Chevrolet Express Cargo Van 2007 7.9% Dodge Sprinter Cargo Van 2009 4.75% Chrysler Aspen SUV 2009 4.06% Geo Metro Convertible 1993 3.58% Nissan NV Passenger Van 2012 2.38% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Dodge Challenger SRT8 2011 6.86% Buick Regal GS 2012 3.44% Audi S5 Coupe 2012 2.54% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.14% Bentley Continental Supersports Conv. Convertible 2012 1.78% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 97.48% GMC Savana Van 2012 1.3% Chevrolet Express Van 2007 0.95% Chevrolet Silverado 1500 Extended Cab 2012 0.13% Chevrolet Silverado 1500 Regular Cab 2012 0.05% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Volkswagen Golf Hatchback 2012 7.28% Chrysler Sebring Convertible 2010 7.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.64% Daewoo Nubira Wagon 2002 4.16% Aston Martin Virage Convertible 2012 3.51% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Chevrolet Monte Carlo Coupe 2007 9.86% Acura TL Type-S 2008 5.97% Lamborghini Reventon Coupe 2008 5.4% Audi R8 Coupe 2012 4.36% Toyota Camry Sedan 2012 3.56% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Lincoln Town Car Sedan 2011 48.97% Chevrolet Malibu Hybrid Sedan 2010 6.85% Dodge Caravan Minivan 1997 6.12% Ford Mustang Convertible 2007 5.83% Chrysler Sebring Convertible 2010 3.54% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Audi S4 Sedan 2012 31.58% Audi A5 Coupe 2012 6.04% Audi TT Hatchback 2011 5.13% Audi S5 Convertible 2012 4.81% Ferrari FF Coupe 2012 4.24% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Mitsubishi Lancer Sedan 2012 5.94% Spyker C8 Coupe 2009 5.67% Acura Integra Type R 2001 5.03% Hyundai Sonata Hybrid Sedan 2012 4.2% Suzuki Aerio Sedan 2007 2.65% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Ram C/V Cargo Van Minivan 2012 76.42% Dodge Sprinter Cargo Van 2009 3.23% Nissan NV Passenger Van 2012 2.92% Chrysler Town and Country Minivan 2012 2.46% Chevrolet Tahoe Hybrid SUV 2012 1.85% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Chevrolet Monte Carlo Coupe 2007 58.06% Lincoln Town Car Sedan 2011 24.06% Dodge Magnum Wagon 2008 7.41% Dodge Caliber Wagon 2012 2.98% Chevrolet Malibu Sedan 2007 2.17% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 19.2% Lamborghini Reventon Coupe 2008 14.96% Bentley Mulsanne Sedan 2011 8.08% Bugatti Veyron 16.4 Convertible 2009 4.33% Acura Integra Type R 2001 4.16% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 smart fortwo Convertible 2012 91.88% Acura TL Type-S 2008 0.85% Chrysler PT Cruiser Convertible 2008 0.65% Porsche Panamera Sedan 2012 0.59% Nissan Leaf Hatchback 2012 0.53% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 BMW M5 Sedan 2010 7.93% BMW M6 Convertible 2010 7.8% BMW 6 Series Convertible 2007 7.54% Chevrolet Sonic Sedan 2012 5.53% Dodge Charger SRT-8 2009 2.72% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Chevrolet Camaro Convertible 2012 14.08% Bentley Continental Supersports Conv. Convertible 2012 13.39% Aston Martin V8 Vantage Convertible 2012 9.97% Aston Martin V8 Vantage Coupe 2012 6.63% Ferrari California Convertible 2012 6.05% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Dodge Journey SUV 2012 47.35% Chevrolet Malibu Sedan 2007 11.86% Mitsubishi Lancer Sedan 2012 6.97% Honda Odyssey Minivan 2007 5.35% Suzuki SX4 Hatchback 2012 3.65% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 21.78% Acura TL Type-S 2008 19.39% Honda Accord Sedan 2012 9.57% Acura RL Sedan 2012 6.88% Honda Odyssey Minivan 2012 5.87% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 43.33% Chevrolet Silverado 1500 Extended Cab 2012 23.15% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.94% Chevrolet Silverado 1500 Regular Cab 2012 5.4% Ford F-450 Super Duty Crew Cab 2012 1.88% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Honda Odyssey Minivan 2007 9.01% Honda Odyssey Minivan 2012 8.23% Toyota Camry Sedan 2012 5.93% Hyundai Sonata Sedan 2012 5.53% Hyundai Genesis Sedan 2012 4.18% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Aston Martin Virage Coupe 2012 52.72% Dodge Charger Sedan 2012 6.47% Ferrari 458 Italia Convertible 2012 5.37% smart fortwo Convertible 2012 4.79% BMW M3 Coupe 2012 3.91% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 5.16% Isuzu Ascender SUV 2008 2.82% Chevrolet Malibu Sedan 2007 2.63% Ford F-450 Super Duty Crew Cab 2012 2.51% Dodge Ram Pickup 3500 Quad Cab 2009 2.41% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 32.2% Audi R8 Coupe 2012 12.35% Eagle Talon Hatchback 1998 10.49% Spyker C8 Convertible 2009 5.03% Bugatti Veyron 16.4 Convertible 2009 2.79% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 87.48% Audi R8 Coupe 2012 4.84% Eagle Talon Hatchback 1998 1.02% BMW 6 Series Convertible 2007 0.99% Spyker C8 Convertible 2009 0.65% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.97% Ford F-150 Regular Cab 2012 0.03% Chrysler Aspen SUV 2009 0.0% Ford Ranger SuperCab 2011 0.0% GMC Canyon Extended Cab 2012 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Audi R8 Coupe 2012 99.86% Chevrolet Sonic Sedan 2012 0.04% Audi S4 Sedan 2012 0.03% GMC Terrain SUV 2012 0.02% Audi TT RS Coupe 2012 0.01% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 20.05% Toyota 4Runner SUV 2012 7.92% Ford F-150 Regular Cab 2007 6.5% Toyota Sequoia SUV 2012 5.23% Dodge Ram Pickup 3500 Crew Cab 2010 3.92% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Chrysler PT Cruiser Convertible 2008 4.73% FIAT 500 Convertible 2012 3.84% smart fortwo Convertible 2012 3.74% Lamborghini Reventon Coupe 2008 3.55% Daewoo Nubira Wagon 2002 3.2% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Acura Integra Type R 2001 5.06% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.28% Spyker C8 Coupe 2009 3.71% Chevrolet Cobalt SS 2010 3.6% Suzuki SX4 Sedan 2012 3.38% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 BMW 1 Series Convertible 2012 6.63% Cadillac CTS-V Sedan 2012 4.38% BMW 1 Series Coupe 2012 4.38% Suzuki Kizashi Sedan 2012 3.73% Audi S6 Sedan 2011 2.97% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 19.93% Chevrolet Silverado 1500 Extended Cab 2012 7.71% Volvo 240 Sedan 1993 4.73% Volvo XC90 SUV 2007 4.71% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.98% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 31.37% Aston Martin V8 Vantage Convertible 2012 20.2% BMW 6 Series Convertible 2007 13.28% Chevrolet Malibu Hybrid Sedan 2010 12.23% Acura TSX Sedan 2012 5.99% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2007 12.41% Buick Enclave SUV 2012 9.04% Jeep Compass SUV 2012 6.5% GMC Yukon Hybrid SUV 2012 5.33% Jeep Grand Cherokee SUV 2012 4.43% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Volvo 240 Sedan 1993 21.58% Audi 100 Sedan 1994 19.38% GMC Canyon Extended Cab 2012 5.4% Chevrolet Silverado 2500HD Regular Cab 2012 5.3% BMW 3 Series Sedan 2012 5.14% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Suzuki Kizashi Sedan 2012 19.31% Ford Focus Sedan 2007 13.8% Audi S6 Sedan 2011 11.43% Hyundai Elantra Touring Hatchback 2012 7.11% Buick Enclave SUV 2012 3.02% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Bentley Arnage Sedan 2009 3.43% Audi 100 Wagon 1994 2.94% Rolls-Royce Phantom Sedan 2012 2.81% Ford Mustang Convertible 2007 2.41% Daewoo Nubira Wagon 2002 2.06% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 BMW X3 SUV 2012 61.11% BMW 1 Series Coupe 2012 23.95% Ram C/V Cargo Van Minivan 2012 2.12% Buick Verano Sedan 2012 0.96% Jeep Compass SUV 2012 0.92% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Spyker C8 Coupe 2009 2.93% Ferrari FF Coupe 2012 2.31% Mercedes-Benz SL-Class Coupe 2009 1.93% McLaren MP4-12C Coupe 2012 1.89% Dodge Challenger SRT8 2011 1.79% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Bentley Arnage Sedan 2009 6.21% Audi S6 Sedan 2011 3.55% Bentley Mulsanne Sedan 2011 3.15% Audi S4 Sedan 2012 2.81% BMW ActiveHybrid 5 Sedan 2012 2.55% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 97.76% Mercedes-Benz Sprinter Van 2012 2.0% Ram C/V Cargo Van Minivan 2012 0.06% Audi 100 Sedan 1994 0.03% Volkswagen Golf Hatchback 1991 0.02% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 4.87% Spyker C8 Coupe 2009 3.71% Volvo C30 Hatchback 2012 3.44% Audi 100 Wagon 1994 2.32% Ford Freestar Minivan 2007 2.22% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 83.58% Acura TL Sedan 2012 11.46% BMW M5 Sedan 2010 0.86% Acura TL Type-S 2008 0.6% Suzuki SX4 Sedan 2012 0.55% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Suzuki SX4 Hatchback 2012 98.05% Volkswagen Golf Hatchback 1991 0.61% Hyundai Santa Fe SUV 2012 0.52% Ford Edge SUV 2012 0.12% Hyundai Veracruz SUV 2012 0.09% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Ford Edge SUV 2012 11.93% BMW 3 Series Sedan 2012 8.75% Chevrolet Traverse SUV 2012 5.14% BMW 3 Series Wagon 2012 4.74% BMW M6 Convertible 2010 3.49% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.15% Ford F-150 Regular Cab 2012 5.98% Chevrolet Silverado 1500 Regular Cab 2012 5.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.76% GMC Canyon Extended Cab 2012 4.54% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 19.32% Chevrolet Silverado 2500HD Regular Cab 2012 10.0% Ford F-450 Super Duty Crew Cab 2012 6.3% Dodge Ram Pickup 3500 Crew Cab 2010 5.03% Ford E-Series Wagon Van 2012 3.61% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 33.68% GMC Yukon Hybrid SUV 2012 14.91% Ford Ranger SuperCab 2011 6.91% Chevrolet Avalanche Crew Cab 2012 5.91% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.54% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.87% Toyota 4Runner SUV 2012 0.08% Ford Expedition EL SUV 2009 0.01% Chrysler Aspen SUV 2009 0.01% Dodge Durango SUV 2012 0.01% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Suzuki SX4 Sedan 2012 6.61% Mazda Tribute SUV 2011 5.72% Daewoo Nubira Wagon 2002 3.39% Suzuki Aerio Sedan 2007 3.17% Ford Edge SUV 2012 3.12% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Honda Accord Coupe 2012 11.99% Dodge Journey SUV 2012 5.93% Volkswagen Beetle Hatchback 2012 5.5% Audi S5 Convertible 2012 5.12% BMW M6 Convertible 2010 4.38% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 BMW M3 Coupe 2012 18.76% Jaguar XK XKR 2012 16.18% BMW 1 Series Convertible 2012 8.29% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.79% Maybach Landaulet Convertible 2012 4.82% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Elantra Sedan 2007 4.79% Honda Accord Coupe 2012 4.1% Chevrolet Traverse SUV 2012 3.25% Mitsubishi Lancer Sedan 2012 3.11% Hyundai Accent Sedan 2012 2.64% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 58.34% Ford F-150 Regular Cab 2012 7.27% GMC Canyon Extended Cab 2012 6.75% Chevrolet Silverado 2500HD Regular Cab 2012 6.09% Toyota 4Runner SUV 2012 2.77% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 88.91% Chevrolet Silverado 1500 Extended Cab 2012 9.17% Nissan NV Passenger Van 2012 0.46% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.35% AM General Hummer SUV 2000 0.34% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Honda Accord Sedan 2012 18.55% Chevrolet Malibu Hybrid Sedan 2010 9.13% BMW 3 Series Wagon 2012 6.4% BMW 1 Series Convertible 2012 6.35% Acura RL Sedan 2012 6.09% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 11.46% Dodge Ram Pickup 3500 Quad Cab 2009 9.16% Infiniti QX56 SUV 2011 7.9% Chevrolet Silverado 1500 Extended Cab 2012 6.9% Dodge Durango SUV 2012 6.76% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 MINI Cooper Roadster Convertible 2012 74.65% Cadillac CTS-V Sedan 2012 4.77% Bentley Continental Supersports Conv. Convertible 2012 3.95% Rolls-Royce Phantom Sedan 2012 1.37% BMW 1 Series Convertible 2012 0.88% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Ford F-150 Regular Cab 2007 52.47% Suzuki Kizashi Sedan 2012 11.11% Eagle Talon Hatchback 1998 5.72% Chevrolet Silverado 2500HD Regular Cab 2012 4.06% Honda Odyssey Minivan 2007 2.16% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 59.03% Chrysler Crossfire Convertible 2008 13.11% Mercedes-Benz S-Class Sedan 2012 4.23% Hyundai Genesis Sedan 2012 2.51% Chrysler Sebring Convertible 2010 2.32% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 19.58% BMW 6 Series Convertible 2007 6.47% Aston Martin V8 Vantage Coupe 2012 3.16% Jaguar XK XKR 2012 2.97% Chevrolet Monte Carlo Coupe 2007 2.12% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 98.93% BMW M6 Convertible 2010 0.61% BMW 1 Series Convertible 2012 0.23% Ferrari FF Coupe 2012 0.04% BMW 6 Series Convertible 2007 0.03% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 19.45% Honda Accord Coupe 2012 14.88% Chevrolet Monte Carlo Coupe 2007 12.25% GMC Canyon Extended Cab 2012 9.89% Dodge Journey SUV 2012 6.99% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Ford Edge SUV 2012 6.38% Volkswagen Beetle Hatchback 2012 5.7% Maybach Landaulet Convertible 2012 5.63% Spyker C8 Coupe 2009 4.84% MINI Cooper Roadster Convertible 2012 4.5% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Daewoo Nubira Wagon 2002 7.41% Mercedes-Benz S-Class Sedan 2012 7.38% Volkswagen Golf Hatchback 1991 6.86% Cadillac CTS-V Sedan 2012 3.38% Audi 100 Wagon 1994 3.31% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 93.46% Hyundai Veracruz SUV 2012 2.03% Hyundai Tucson SUV 2012 1.89% Chevrolet Traverse SUV 2012 0.95% Buick Enclave SUV 2012 0.36% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Bentley Continental GT Coupe 2012 6.59% Hyundai Veloster Hatchback 2012 5.83% Ford Mustang Convertible 2007 5.04% Spyker C8 Coupe 2009 4.66% BMW Z4 Convertible 2012 4.63% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 26.56% Rolls-Royce Ghost Sedan 2012 24.82% Honda Accord Coupe 2012 7.19% Chevrolet HHR SS 2010 3.2% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.07% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 89.53% Aston Martin V8 Vantage Coupe 2012 1.65% Cadillac CTS-V Sedan 2012 1.31% Spyker C8 Convertible 2009 0.84% Lamborghini Aventador Coupe 2012 0.66% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Chevrolet Corvette Convertible 2012 26.77% Audi TT Hatchback 2011 9.31% BMW M6 Convertible 2010 8.99% Audi A5 Coupe 2012 8.34% Mercedes-Benz E-Class Sedan 2012 7.14% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 88.51% Chevrolet Silverado 1500 Regular Cab 2012 9.48% Volkswagen Golf Hatchback 1991 0.4% Ford Ranger SuperCab 2011 0.31% Daewoo Nubira Wagon 2002 0.12% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Ferrari 458 Italia Convertible 2012 74.63% Aston Martin V8 Vantage Coupe 2012 10.06% Chevrolet Corvette ZR1 2012 6.51% Lamborghini Aventador Coupe 2012 2.63% Ferrari California Convertible 2012 1.66% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 49.42% Acura TSX Sedan 2012 24.04% Chevrolet Sonic Sedan 2012 7.98% Ferrari FF Coupe 2012 7.04% Hyundai Elantra Touring Hatchback 2012 2.36% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 14.78% Chevrolet Sonic Sedan 2012 4.45% GMC Terrain SUV 2012 3.91% Cadillac CTS-V Sedan 2012 3.48% GMC Yukon Hybrid SUV 2012 2.67% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 100.0% Bentley Arnage Sedan 2009 0.0% Audi 100 Sedan 1994 0.0% Lamborghini Reventon Coupe 2008 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Chevrolet Silverado 1500 Regular Cab 2012 23.74% Chevrolet Tahoe Hybrid SUV 2012 17.25% Ferrari California Convertible 2012 8.19% HUMMER H3T Crew Cab 2010 7.06% Chevrolet Silverado 1500 Extended Cab 2012 5.87% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Jaguar XK XKR 2012 45.87% Infiniti G Coupe IPL 2012 12.8% Toyota Camry Sedan 2012 5.82% Acura TL Sedan 2012 5.41% BMW ActiveHybrid 5 Sedan 2012 5.34% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Toyota Camry Sedan 2012 7.03% Chevrolet Monte Carlo Coupe 2007 6.63% Hyundai Sonata Hybrid Sedan 2012 5.29% Eagle Talon Hatchback 1998 3.68% Honda Odyssey Minivan 2007 2.84% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Mercedes-Benz C-Class Sedan 2012 4.36% Mercedes-Benz E-Class Sedan 2012 3.91% Cadillac CTS-V Sedan 2012 3.58% Suzuki Kizashi Sedan 2012 3.55% Bentley Continental GT Coupe 2007 3.11% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Honda Odyssey Minivan 2012 13.18% GMC Canyon Extended Cab 2012 7.8% Ford Freestar Minivan 2007 7.74% Chevrolet TrailBlazer SS 2009 5.98% Ford F-150 Regular Cab 2007 5.95% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 69.39% Ford Focus Sedan 2007 18.05% Audi S6 Sedan 2011 2.98% Dodge Challenger SRT8 2011 2.51% Plymouth Neon Coupe 1999 2.25% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 98.66% Chevrolet Express Van 2007 0.86% GMC Savana Van 2012 0.42% Jeep Wrangler SUV 2012 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Wagon 1994 11.52% FIAT 500 Abarth 2012 10.65% Nissan 240SX Coupe 1998 5.7% Dodge Journey SUV 2012 5.42% Hyundai Genesis Sedan 2012 3.82% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Hyundai Elantra Touring Hatchback 2012 23.47% Suzuki Kizashi Sedan 2012 11.75% Plymouth Neon Coupe 1999 10.61% Ford Focus Sedan 2007 4.9% Chevrolet Corvette ZR1 2012 3.48% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Ford Focus Sedan 2007 75.21% Volkswagen Golf Hatchback 2012 18.09% Plymouth Neon Coupe 1999 1.47% BMW 3 Series Sedan 2012 0.71% Audi V8 Sedan 1994 0.7% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 98.84% Cadillac CTS-V Sedan 2012 1.03% Cadillac Escalade EXT Crew Cab 2007 0.02% Acura RL Sedan 2012 0.02% Suzuki Kizashi Sedan 2012 0.01% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 HUMMER H3T Crew Cab 2010 36.01% HUMMER H2 SUT Crew Cab 2009 19.01% Jeep Wrangler SUV 2012 17.47% smart fortwo Convertible 2012 12.08% Hyundai Veloster Hatchback 2012 8.94% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 BMW 6 Series Convertible 2007 16.77% Plymouth Neon Coupe 1999 7.3% Mercedes-Benz 300-Class Convertible 1993 3.4% Audi R8 Coupe 2012 2.45% Audi 100 Wagon 1994 2.36% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Ford F-150 Regular Cab 2007 14.2% AM General Hummer SUV 2000 10.87% Chevrolet Silverado 1500 Regular Cab 2012 7.34% Jeep Liberty SUV 2012 4.78% Jeep Wrangler SUV 2012 4.59% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 8.39% Jeep Patriot SUV 2012 4.24% Jeep Grand Cherokee SUV 2012 3.87% Volkswagen Beetle Hatchback 2012 2.67% Nissan Leaf Hatchback 2012 2.53% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Acura RL Sedan 2012 19.41% Buick Regal GS 2012 7.49% Chevrolet Sonic Sedan 2012 5.9% Chevrolet Corvette ZR1 2012 4.68% Dodge Durango SUV 2007 4.44% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 61.18% GMC Savana Van 2012 34.32% Chevrolet Express Cargo Van 2007 3.8% Dodge Sprinter Cargo Van 2009 0.34% Audi 100 Sedan 1994 0.11% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 99.06% Bugatti Veyron 16.4 Coupe 2009 0.49% Hyundai Veloster Hatchback 2012 0.18% McLaren MP4-12C Coupe 2012 0.11% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.04% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Hyundai Elantra Sedan 2007 10.64% Honda Accord Coupe 2012 5.79% Tesla Model S Sedan 2012 4.72% Chevrolet Cobalt SS 2010 3.97% Audi TT Hatchback 2011 3.23% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 9.77% Infiniti G Coupe IPL 2012 3.69% BMW M5 Sedan 2010 3.58% Cadillac CTS-V Sedan 2012 3.22% Chrysler Town and Country Minivan 2012 2.11% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Nissan Juke Hatchback 2012 8.02% Suzuki Kizashi Sedan 2012 3.12% Ford Mustang Convertible 2007 2.92% Hyundai Tucson SUV 2012 1.97% Chevrolet Traverse SUV 2012 1.95% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 21.91% Aston Martin Virage Coupe 2012 11.62% Ferrari 458 Italia Coupe 2012 9.8% Spyker C8 Coupe 2009 7.5% Ford GT Coupe 2006 6.71% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Toyota 4Runner SUV 2012 30.55% Ram C/V Cargo Van Minivan 2012 20.33% Dodge Caliber Wagon 2007 12.84% Jeep Grand Cherokee SUV 2012 9.95% Ford Mustang Convertible 2007 4.82% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 BMW 6 Series Convertible 2007 80.33% Audi S4 Sedan 2012 4.0% BMW M5 Sedan 2010 2.99% Honda Accord Coupe 2012 1.29% Audi A5 Coupe 2012 1.18% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 93.11% Ferrari California Convertible 2012 1.8% Ferrari 458 Italia Convertible 2012 1.57% Bugatti Veyron 16.4 Coupe 2009 0.75% Ford GT Coupe 2006 0.57% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 16.81% Acura TSX Sedan 2012 11.99% Toyota Camry Sedan 2012 11.29% Chevrolet Monte Carlo Coupe 2007 4.17% Aston Martin Virage Convertible 2012 3.57% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 23.71% Ford Mustang Convertible 2007 21.21% Lamborghini Diablo Coupe 2001 18.87% Acura Integra Type R 2001 17.48% Spyker C8 Coupe 2009 2.79% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Chevrolet Impala Sedan 2007 84.31% Honda Odyssey Minivan 2012 9.79% Hyundai Elantra Sedan 2007 1.39% Honda Odyssey Minivan 2007 0.73% Mazda Tribute SUV 2011 0.41% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 83.65% GMC Savana Van 2012 12.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.46% Chevrolet Express Van 2007 1.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.37% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Dodge Journey SUV 2012 81.3% Mitsubishi Lancer Sedan 2012 1.43% BMW X6 SUV 2012 1.18% Nissan Juke Hatchback 2012 1.05% Volvo C30 Hatchback 2012 0.79% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 28.45% Infiniti G Coupe IPL 2012 13.68% Jaguar XK XKR 2012 3.95% Aston Martin V8 Vantage Convertible 2012 3.6% Lamborghini Reventon Coupe 2008 3.24% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TL Type-S 2008 34.13% Acura TL Sedan 2012 21.2% Acura RL Sedan 2012 9.14% Chevrolet Impala Sedan 2007 5.26% Honda Accord Coupe 2012 4.33% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Aston Martin Virage Coupe 2012 10.48% McLaren MP4-12C Coupe 2012 6.23% Bentley Continental GT Coupe 2007 5.29% Spyker C8 Convertible 2009 4.18% Spyker C8 Coupe 2009 2.69% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 61.18% Acura Integra Type R 2001 16.69% Chevrolet Corvette Convertible 2012 10.31% Dodge Charger Sedan 2012 5.37% AM General Hummer SUV 2000 2.69% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Nissan NV Passenger Van 2012 33.26% Bentley Arnage Sedan 2009 16.62% GMC Yukon Hybrid SUV 2012 5.99% AM General Hummer SUV 2000 4.13% Jeep Liberty SUV 2012 2.77% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi TT RS Coupe 2012 42.04% Ferrari California Convertible 2012 34.99% Buick Regal GS 2012 4.86% Audi S4 Sedan 2012 3.65% Audi TT Hatchback 2011 2.62% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Ferrari 458 Italia Convertible 2012 28.22% Aston Martin Virage Coupe 2012 15.54% McLaren MP4-12C Coupe 2012 8.42% Ferrari California Convertible 2012 7.75% BMW Z4 Convertible 2012 5.84% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Aston Martin V8 Vantage Coupe 2012 12.92% Chevrolet Corvette ZR1 2012 7.36% Aston Martin Virage Convertible 2012 4.13% Hyundai Sonata Sedan 2012 3.99% Acura TL Sedan 2012 3.64% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Sedan 2007 37.67% Honda Odyssey Minivan 2012 12.7% Chrysler 300 SRT-8 2010 5.01% Hyundai Elantra Sedan 2007 2.27% Chevrolet Cobalt SS 2010 2.21% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Ferrari 458 Italia Convertible 2012 19.53% Ferrari 458 Italia Coupe 2012 5.93% Suzuki Kizashi Sedan 2012 5.36% Chevrolet Corvette Convertible 2012 4.77% BMW 3 Series Sedan 2012 4.72% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Chevrolet Express Cargo Van 2007 57.13% Chevrolet Express Van 2007 32.11% Acura Integra Type R 2001 2.25% GMC Savana Van 2012 1.59% Volkswagen Golf Hatchback 1991 1.18% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 44.2% Chevrolet Avalanche Crew Cab 2012 18.75% Chevrolet Silverado 2500HD Regular Cab 2012 15.44% Dodge Dakota Club Cab 2007 10.14% Chevrolet Silverado 1500 Extended Cab 2012 5.61% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Canyon Extended Cab 2012 54.77% HUMMER H2 SUT Crew Cab 2009 7.82% Jeep Patriot SUV 2012 6.17% Ford F-150 Regular Cab 2007 5.23% AM General Hummer SUV 2000 4.46% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Jeep Patriot SUV 2012 45.62% Rolls-Royce Phantom Sedan 2012 12.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 9.14% Volvo 240 Sedan 1993 4.16% BMW X5 SUV 2007 3.87% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 24.49% Audi R8 Coupe 2012 15.0% Honda Accord Coupe 2012 10.07% Audi A5 Coupe 2012 9.7% Audi S5 Coupe 2012 3.96% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Rolls-Royce Phantom Sedan 2012 13.95% Aston Martin V8 Vantage Coupe 2012 5.49% Bentley Arnage Sedan 2009 4.86% Audi 100 Sedan 1994 3.68% Ford F-150 Regular Cab 2007 3.43% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Dodge Magnum Wagon 2008 22.24% Chevrolet Monte Carlo Coupe 2007 20.93% Volkswagen Beetle Hatchback 2012 18.16% Buick Verano Sedan 2012 5.29% BMW M3 Coupe 2012 4.62% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Corvette ZR1 2012 23.95% Ferrari FF Coupe 2012 9.74% Aston Martin V8 Vantage Coupe 2012 9.66% Chevrolet Corvette Convertible 2012 6.11% Ferrari 458 Italia Coupe 2012 5.44% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 94.49% Jeep Wrangler SUV 2012 5.15% HUMMER H2 SUT Crew Cab 2009 0.22% Lamborghini Diablo Coupe 2001 0.06% Chevrolet Tahoe Hybrid SUV 2012 0.02% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Journey SUV 2012 86.65% Toyota Camry Sedan 2012 2.63% Toyota Corolla Sedan 2012 1.21% Chevrolet Malibu Sedan 2007 0.87% Dodge Charger Sedan 2012 0.72% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 5.61% Chevrolet Camaro Convertible 2012 5.05% Ferrari California Convertible 2012 2.87% Ferrari 458 Italia Convertible 2012 2.81% Dodge Journey SUV 2012 2.42% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Acura ZDX Hatchback 2012 10.51% Hyundai Azera Sedan 2012 6.14% Hyundai Sonata Sedan 2012 3.13% Acura TSX Sedan 2012 2.95% Acura TL Sedan 2012 2.67% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Hyundai Tucson SUV 2012 7.15% Maybach Landaulet Convertible 2012 6.21% Lamborghini Reventon Coupe 2008 6.06% Plymouth Neon Coupe 1999 5.05% Spyker C8 Coupe 2009 4.07% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Fisker Karma Sedan 2012 5.47% Lamborghini Reventon Coupe 2008 5.41% Volkswagen Beetle Hatchback 2012 4.49% Rolls-Royce Phantom Sedan 2012 4.04% Cadillac CTS-V Sedan 2012 3.75% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Chevrolet Corvette ZR1 2012 8.19% Maybach Landaulet Convertible 2012 5.55% BMW M5 Sedan 2010 4.13% Aston Martin V8 Vantage Coupe 2012 3.83% Acura TL Type-S 2008 3.5% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 24.97% Audi S6 Sedan 2011 14.83% Buick Regal GS 2012 7.25% Audi S4 Sedan 2007 6.94% Audi A5 Coupe 2012 3.49% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Cadillac CTS-V Sedan 2012 47.95% Chevrolet Sonic Sedan 2012 9.54% Ford Edge SUV 2012 9.47% Cadillac SRX SUV 2012 5.98% Chevrolet Silverado 1500 Regular Cab 2012 3.4% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Nissan Juke Hatchback 2012 6.66% Volvo 240 Sedan 1993 3.31% Audi V8 Sedan 1994 2.63% Chevrolet Express Cargo Van 2007 2.57% BMW X5 SUV 2007 2.35% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 McLaren MP4-12C Coupe 2012 16.43% Nissan Juke Hatchback 2012 7.29% Jeep Wrangler SUV 2012 4.48% Spyker C8 Convertible 2009 3.79% Dodge Charger Sedan 2012 3.24% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Hyundai Tucson SUV 2012 15.63% Honda Accord Coupe 2012 2.77% Dodge Caravan Minivan 1997 2.67% Plymouth Neon Coupe 1999 2.53% Hyundai Santa Fe SUV 2012 2.05% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chrysler Crossfire Convertible 2008 8.62% Bentley Continental GT Coupe 2007 4.81% Dodge Magnum Wagon 2008 4.57% Volkswagen Beetle Hatchback 2012 3.58% Eagle Talon Hatchback 1998 3.35% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Nissan 240SX Coupe 1998 12.54% Dodge Challenger SRT8 2011 11.18% BMW M6 Convertible 2010 6.47% Aston Martin V8 Vantage Convertible 2012 4.14% FIAT 500 Convertible 2012 3.42% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 68.3% Nissan Juke Hatchback 2012 16.01% Ford Edge SUV 2012 2.49% BMW X6 SUV 2012 0.71% Hyundai Accent Sedan 2012 0.63% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Hyundai Genesis Sedan 2012 4.67% Acura RL Sedan 2012 3.27% Acura TL Sedan 2012 2.78% Mitsubishi Lancer Sedan 2012 2.42% Acura TL Type-S 2008 2.4% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 98.59% Dodge Ram Pickup 3500 Crew Cab 2010 0.83% Ford F-450 Super Duty Crew Cab 2012 0.33% Toyota Sequoia SUV 2012 0.12% Infiniti QX56 SUV 2011 0.08% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.63% Chevrolet Express Van 2007 0.26% Chevrolet Express Cargo Van 2007 0.09% Daewoo Nubira Wagon 2002 0.01% Buick Rainier SUV 2007 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Acura TL Type-S 2008 6.02% Ford Edge SUV 2012 5.15% Hyundai Santa Fe SUV 2012 2.32% Audi R8 Coupe 2012 1.79% Toyota Camry Sedan 2012 1.78% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Toyota 4Runner SUV 2012 8.62% HUMMER H2 SUT Crew Cab 2009 5.18% Dodge Durango SUV 2012 4.22% Dodge Durango SUV 2007 2.56% Jeep Compass SUV 2012 2.35% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 36.58% BMW 3 Series Wagon 2012 4.75% Audi R8 Coupe 2012 3.23% Infiniti G Coupe IPL 2012 2.7% Audi V8 Sedan 1994 2.33% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Bugatti Veyron 16.4 Coupe 2009 9.25% GMC Acadia SUV 2012 5.87% Nissan Juke Hatchback 2012 3.1% Nissan Leaf Hatchback 2012 2.72% Jeep Wrangler SUV 2012 2.67% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 3.57% Cadillac CTS-V Sedan 2012 2.37% Aston Martin V8 Vantage Coupe 2012 1.85% Ford GT Coupe 2006 1.63% Chevrolet Corvette ZR1 2012 1.6% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 93.93% Audi 100 Wagon 1994 3.16% Volkswagen Golf Hatchback 1991 1.21% Audi 100 Sedan 1994 0.75% Ford Mustang Convertible 2007 0.37% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Chevrolet Malibu Sedan 2007 93.94% Chevrolet Silverado 1500 Regular Cab 2012 4.01% Spyker C8 Coupe 2009 0.24% Bentley Continental GT Coupe 2012 0.19% Scion xD Hatchback 2012 0.19% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.99% Cadillac CTS-V Sedan 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% Infiniti G Coupe IPL 2012 0.0% Acura TSX Sedan 2012 0.0% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 McLaren MP4-12C Coupe 2012 12.52% AM General Hummer SUV 2000 12.02% Lamborghini Diablo Coupe 2001 10.53% Aston Martin V8 Vantage Coupe 2012 8.68% Acura Integra Type R 2001 6.5% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz S-Class Sedan 2012 50.54% Bentley Continental Flying Spur Sedan 2007 10.61% Mercedes-Benz SL-Class Coupe 2009 7.3% Bentley Continental Supersports Conv. Convertible 2012 5.39% Suzuki Aerio Sedan 2007 3.09% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 28.32% Jeep Liberty SUV 2012 22.01% Maybach Landaulet Convertible 2012 14.03% Buick Verano Sedan 2012 5.52% Rolls-Royce Ghost Sedan 2012 3.91% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Chrysler Sebring Convertible 2010 92.9% Acura TSX Sedan 2012 3.78% Audi S4 Sedan 2012 1.42% Audi S4 Sedan 2007 0.64% Mercedes-Benz E-Class Sedan 2012 0.55% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Nissan NV Passenger Van 2012 21.11% Suzuki SX4 Sedan 2012 16.29% Chevrolet HHR SS 2010 6.94% Cadillac CTS-V Sedan 2012 5.27% GMC Yukon Hybrid SUV 2012 4.94% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 16.24% Chevrolet Tahoe Hybrid SUV 2012 5.69% Ford F-150 Regular Cab 2007 4.43% GMC Yukon Hybrid SUV 2012 4.19% Cadillac SRX SUV 2012 2.87% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 55.77% HUMMER H2 SUT Crew Cab 2009 6.6% Jeep Wrangler SUV 2012 4.8% Dodge Ram Pickup 3500 Crew Cab 2010 3.41% Ford F-450 Super Duty Crew Cab 2012 2.7% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Nissan Juke Hatchback 2012 43.38% BMW 3 Series Sedan 2012 33.99% Dodge Journey SUV 2012 4.5% BMW X6 SUV 2012 4.13% Chevrolet Traverse SUV 2012 2.38% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 54.82% HUMMER H2 SUT Crew Cab 2009 39.05% AM General Hummer SUV 2000 1.05% Chevrolet Silverado 2500HD Regular Cab 2012 0.75% Jeep Wrangler SUV 2012 0.56% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Chevrolet Silverado 1500 Regular Cab 2012 31.37% Nissan Juke Hatchback 2012 5.19% Hyundai Veracruz SUV 2012 2.39% Bugatti Veyron 16.4 Coupe 2009 2.04% Chevrolet Camaro Convertible 2012 1.99% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 41.1% Infiniti G Coupe IPL 2012 4.3% BMW M3 Coupe 2012 4.03% Rolls-Royce Ghost Sedan 2012 3.55% Jaguar XK XKR 2012 3.12% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Honda Accord Coupe 2012 22.74% BMW M5 Sedan 2010 7.65% BMW M6 Convertible 2010 4.8% BMW 6 Series Convertible 2007 3.33% Acura TL Sedan 2012 3.16% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Rolls-Royce Phantom Sedan 2012 7.76% Cadillac CTS-V Sedan 2012 7.05% Chevrolet Malibu Hybrid Sedan 2010 5.71% Chrysler Sebring Convertible 2010 4.97% Chevrolet Monte Carlo Coupe 2007 4.14% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 99.95% Hyundai Veloster Hatchback 2012 0.03% Spyker C8 Convertible 2009 0.01% Lamborghini Diablo Coupe 2001 0.0% Spyker C8 Coupe 2009 0.0% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 83.04% McLaren MP4-12C Coupe 2012 4.43% Lamborghini Aventador Coupe 2012 2.57% Bugatti Veyron 16.4 Convertible 2009 2.06% Spyker C8 Convertible 2009 1.98% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 smart fortwo Convertible 2012 26.56% Volkswagen Golf Hatchback 2012 8.74% Hyundai Sonata Hybrid Sedan 2012 6.06% Hyundai Veloster Hatchback 2012 3.75% Hyundai Azera Sedan 2012 3.59% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 BMW Z4 Convertible 2012 36.89% Ferrari 458 Italia Convertible 2012 19.19% Jaguar XK XKR 2012 9.59% Chevrolet Cobalt SS 2010 5.54% BMW 6 Series Convertible 2007 4.65% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 10.98% Toyota 4Runner SUV 2012 7.88% Porsche Panamera Sedan 2012 6.94% Acura TL Type-S 2008 5.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.88% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 80.45% Hyundai Elantra Touring Hatchback 2012 9.01% Volvo C30 Hatchback 2012 6.86% Ford Edge SUV 2012 1.47% Cadillac SRX SUV 2012 0.36% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 56.69% HUMMER H2 SUT Crew Cab 2009 25.08% Jeep Wrangler SUV 2012 18.04% Lamborghini Diablo Coupe 2001 0.07% Chevrolet Silverado 1500 Regular Cab 2012 0.03% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Ford Freestar Minivan 2007 38.25% Chevrolet Malibu Sedan 2007 21.42% Chevrolet Impala Sedan 2007 8.24% Chevrolet Monte Carlo Coupe 2007 5.74% GMC Yukon Hybrid SUV 2012 5.01% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Aston Martin V8 Vantage Coupe 2012 35.19% Jaguar XK XKR 2012 34.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.51% BMW M3 Coupe 2012 3.36% BMW M6 Convertible 2010 2.65% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Porsche Panamera Sedan 2012 11.26% BMW 3 Series Sedan 2012 10.51% BMW ActiveHybrid 5 Sedan 2012 8.44% BMW 6 Series Convertible 2007 5.6% Fisker Karma Sedan 2012 5.03% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 28.46% Hyundai Genesis Sedan 2012 17.32% Infiniti G Coupe IPL 2012 11.77% Mercedes-Benz S-Class Sedan 2012 8.17% Dodge Journey SUV 2012 5.2% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Chrysler Aspen SUV 2009 21.29% Hyundai Genesis Sedan 2012 11.9% Hyundai Veracruz SUV 2012 6.98% Infiniti G Coupe IPL 2012 5.09% Suzuki SX4 Sedan 2012 4.44% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 GMC Terrain SUV 2012 68.78% Ford Edge SUV 2012 8.89% Chevrolet Silverado 1500 Extended Cab 2012 6.03% Toyota 4Runner SUV 2012 4.26% Infiniti QX56 SUV 2011 1.53% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Nissan Leaf Hatchback 2012 38.16% Lamborghini Reventon Coupe 2008 14.88% Plymouth Neon Coupe 1999 11.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.32% Acura TL Sedan 2012 4.22% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Ferrari FF Coupe 2012 50.2% Chevrolet Sonic Sedan 2012 43.12% Spyker C8 Coupe 2009 2.33% Hyundai Elantra Sedan 2007 1.2% Plymouth Neon Coupe 1999 0.87% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 HUMMER H2 SUT Crew Cab 2009 70.96% Jeep Wrangler SUV 2012 21.6% HUMMER H3T Crew Cab 2010 5.38% AM General Hummer SUV 2000 0.97% Chevrolet Silverado 1500 Regular Cab 2012 0.23% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 98.78% Lamborghini Reventon Coupe 2008 0.7% Aston Martin Virage Convertible 2012 0.15% Bentley Continental Supersports Conv. Convertible 2012 0.09% Aston Martin Virage Coupe 2012 0.06% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Dodge Magnum Wagon 2008 13.96% Hyundai Veracruz SUV 2012 8.05% Honda Accord Sedan 2012 7.41% Chrysler 300 SRT-8 2010 6.84% Suzuki SX4 Sedan 2012 6.81% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 GMC Canyon Extended Cab 2012 31.23% Ford F-150 Regular Cab 2012 13.65% Chevrolet Silverado 1500 Regular Cab 2012 9.62% Jeep Patriot SUV 2012 4.14% Chevrolet Silverado 1500 Extended Cab 2012 3.07% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Aston Martin V8 Vantage Convertible 2012 15.65% Nissan 240SX Coupe 1998 4.02% Toyota Camry Sedan 2012 3.36% Bugatti Veyron 16.4 Coupe 2009 3.2% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.17% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 34.83% Ford F-150 Regular Cab 2012 20.83% Ford Edge SUV 2012 8.6% Toyota 4Runner SUV 2012 3.63% Ford F-450 Super Duty Crew Cab 2012 3.38% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 HUMMER H2 SUT Crew Cab 2009 45.85% HUMMER H3T Crew Cab 2010 10.07% FIAT 500 Abarth 2012 4.57% McLaren MP4-12C Coupe 2012 3.97% Toyota 4Runner SUV 2012 3.65% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Dodge Caliber Wagon 2012 3.61% Honda Accord Coupe 2012 2.78% Volkswagen Beetle Hatchback 2012 2.68% Volkswagen Golf Hatchback 2012 2.45% Dodge Magnum Wagon 2008 2.45% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 58.03% Mercedes-Benz S-Class Sedan 2012 3.12% Bentley Continental Flying Spur Sedan 2007 2.87% Acura RL Sedan 2012 2.12% Aston Martin V8 Vantage Convertible 2012 1.62% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 43.31% Chevrolet Silverado 1500 Regular Cab 2012 39.25% GMC Yukon Hybrid SUV 2012 5.47% Chevrolet Silverado 2500HD Regular Cab 2012 3.16% Chevrolet Tahoe Hybrid SUV 2012 1.96% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 9.29% Volkswagen Golf Hatchback 1991 8.74% Dodge Challenger SRT8 2011 4.46% Nissan 240SX Coupe 1998 3.68% Hyundai Sonata Sedan 2012 2.31% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Dodge Durango SUV 2012 23.03% Ford Ranger SuperCab 2011 9.12% Jeep Grand Cherokee SUV 2012 4.83% Dodge Charger SRT-8 2009 4.02% HUMMER H3T Crew Cab 2010 3.9% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Spyker C8 Coupe 2009 16.91% Bentley Continental GT Coupe 2007 8.09% Ferrari 458 Italia Convertible 2012 5.83% Hyundai Azera Sedan 2012 3.08% Ferrari 458 Italia Coupe 2012 2.96% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 BMW M6 Convertible 2010 11.58% Volkswagen Beetle Hatchback 2012 9.7% BMW 1 Series Convertible 2012 6.33% Dodge Challenger SRT8 2011 5.59% Hyundai Veloster Hatchback 2012 4.65% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 BMW M5 Sedan 2010 38.24% BMW 6 Series Convertible 2007 6.88% Dodge Durango SUV 2012 3.76% Acura RL Sedan 2012 3.5% Dodge Journey SUV 2012 2.69% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 53.76% Suzuki SX4 Sedan 2012 6.15% Ford Freestar Minivan 2007 5.81% Chevrolet Malibu Sedan 2007 4.79% Chevrolet Tahoe Hybrid SUV 2012 2.41% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Chevrolet Malibu Hybrid Sedan 2010 7.16% Chevrolet Monte Carlo Coupe 2007 3.92% Chevrolet TrailBlazer SS 2009 3.88% BMW M6 Convertible 2010 3.76% Honda Accord Coupe 2012 3.21% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 38.25% Suzuki Aerio Sedan 2007 6.77% Ford Fiesta Sedan 2012 6.28% Chevrolet Malibu Sedan 2007 5.4% Toyota Corolla Sedan 2012 5.3% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 72.86% Toyota Camry Sedan 2012 13.77% Acura TL Sedan 2012 4.6% Toyota Corolla Sedan 2012 3.45% Chevrolet Impala Sedan 2007 3.19% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Honda Accord Sedan 2012 6.88% Hyundai Elantra Sedan 2007 4.15% Chevrolet Malibu Hybrid Sedan 2010 3.84% Honda Odyssey Minivan 2012 3.66% Chevrolet Malibu Sedan 2007 2.99% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 61.92% AM General Hummer SUV 2000 17.37% Dodge Charger Sedan 2012 1.99% Chevrolet Corvette Convertible 2012 1.49% Ferrari 458 Italia Coupe 2012 1.01% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 19.36% Honda Odyssey Minivan 2012 6.67% Chevrolet Impala Sedan 2007 4.84% Chevrolet Malibu Sedan 2007 3.64% Chevrolet Cobalt SS 2010 2.99% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 76.17% Lamborghini Diablo Coupe 2001 4.16% Hyundai Veloster Hatchback 2012 3.23% Aston Martin Virage Coupe 2012 2.93% BMW 1 Series Coupe 2012 1.28% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Gallardo LP 570-4 Superleggera 2012 90.63% Lamborghini Reventon Coupe 2008 1.16% smart fortwo Convertible 2012 1.01% Hyundai Veloster Hatchback 2012 0.77% Porsche Panamera Sedan 2012 0.48% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 BMW M3 Coupe 2012 30.46% BMW Z4 Convertible 2012 13.38% Audi S5 Coupe 2012 6.01% Jaguar XK XKR 2012 4.88% BMW ActiveHybrid 5 Sedan 2012 4.34% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 BMW X6 SUV 2012 10.71% Hyundai Elantra Sedan 2007 10.34% Ford Edge SUV 2012 7.19% Buick Regal GS 2012 5.72% Volvo C30 Hatchback 2012 3.28% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TT Hatchback 2011 22.99% BMW 6 Series Convertible 2007 17.78% BMW ActiveHybrid 5 Sedan 2012 12.24% Bentley Continental GT Coupe 2007 6.1% Audi R8 Coupe 2012 3.39% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari California Convertible 2012 14.19% Ferrari 458 Italia Convertible 2012 13.04% Audi TT RS Coupe 2012 5.75% Honda Accord Coupe 2012 3.29% Ferrari 458 Italia Coupe 2012 3.22% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Mercedes-Benz SL-Class Coupe 2009 28.24% McLaren MP4-12C Coupe 2012 22.5% Audi V8 Sedan 1994 6.59% Audi R8 Coupe 2012 4.72% HUMMER H3T Crew Cab 2010 3.38% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Honda Accord Coupe 2012 6.03% Ferrari 458 Italia Coupe 2012 3.67% BMW 3 Series Sedan 2012 3.57% Hyundai Accent Sedan 2012 3.3% BMW Z4 Convertible 2012 3.08% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 55.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 10.17% smart fortwo Convertible 2012 9.09% Chrysler PT Cruiser Convertible 2008 4.08% Geo Metro Convertible 1993 2.86% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Audi S6 Sedan 2011 17.39% Daewoo Nubira Wagon 2002 12.93% Acura Integra Type R 2001 8.69% Nissan Leaf Hatchback 2012 6.81% Bentley Continental GT Coupe 2007 4.65% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Plymouth Neon Coupe 1999 16.56% Suzuki SX4 Sedan 2012 10.23% Spyker C8 Coupe 2009 7.53% Fisker Karma Sedan 2012 5.2% Audi V8 Sedan 1994 5.11% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 95.66% Dodge Ram Pickup 3500 Quad Cab 2009 1.1% Honda Odyssey Minivan 2012 0.99% Dodge Caliber Wagon 2007 0.39% GMC Yukon Hybrid SUV 2012 0.22% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Ferrari FF Coupe 2012 46.63% Plymouth Neon Coupe 1999 5.91% BMW 6 Series Convertible 2007 5.28% Aston Martin Virage Convertible 2012 4.65% Ferrari 458 Italia Coupe 2012 4.29% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 35.46% Ford F-150 Regular Cab 2012 33.63% Dodge Ram Pickup 3500 Quad Cab 2009 5.67% Dodge Ram Pickup 3500 Crew Cab 2010 2.94% MINI Cooper Roadster Convertible 2012 1.97% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Honda Accord Coupe 2012 14.83% Acura TL Type-S 2008 13.84% Toyota Camry Sedan 2012 8.8% Chrysler Sebring Convertible 2010 7.27% Mercedes-Benz C-Class Sedan 2012 6.3% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 GMC Acadia SUV 2012 14.27% FIAT 500 Abarth 2012 5.33% BMW X6 SUV 2012 4.57% Cadillac CTS-V Sedan 2012 2.3% BMW 1 Series Coupe 2012 2.16% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Honda Accord Coupe 2012 0.0% Ford Fiesta Sedan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Toyota Corolla Sedan 2012 39.78% Dodge Caliber Wagon 2012 13.63% Chevrolet Monte Carlo Coupe 2007 6.72% Dodge Journey SUV 2012 3.74% Chevrolet Malibu Sedan 2007 2.98% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Toyota Corolla Sedan 2012 15.55% Jaguar XK XKR 2012 11.11% Buick Verano Sedan 2012 8.18% Lincoln Town Car Sedan 2011 6.19% BMW X5 SUV 2007 5.67% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Audi S6 Sedan 2011 9.37% Fisker Karma Sedan 2012 6.55% BMW 6 Series Convertible 2007 4.07% Dodge Charger SRT-8 2009 3.38% Rolls-Royce Ghost Sedan 2012 3.3% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari 458 Italia Coupe 2012 7.39% Ferrari 458 Italia Convertible 2012 5.83% Ferrari California Convertible 2012 5.47% Hyundai Sonata Hybrid Sedan 2012 3.62% Spyker C8 Coupe 2009 3.37% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Toyota Camry Sedan 2012 10.4% Suzuki SX4 Sedan 2012 8.24% Hyundai Sonata Sedan 2012 7.16% Hyundai Azera Sedan 2012 2.68% Acura TSX Sedan 2012 2.63% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Nissan NV Passenger Van 2012 4.23% Bentley Continental GT Coupe 2007 3.01% Chevrolet Silverado 1500 Regular Cab 2012 2.91% Spyker C8 Coupe 2009 2.75% Ford Mustang Convertible 2007 2.7% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H3T Crew Cab 2010 32.31% HUMMER H2 SUT Crew Cab 2009 29.87% Chevrolet Silverado 1500 Extended Cab 2012 17.37% Dodge Ram Pickup 3500 Quad Cab 2009 7.01% Dodge Dakota Club Cab 2007 5.07% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Dodge Journey SUV 2012 50.75% Honda Accord Coupe 2012 24.87% Dodge Dakota Crew Cab 2010 3.77% Jeep Grand Cherokee SUV 2012 3.46% Nissan Juke Hatchback 2012 2.93% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 36.97% Audi S5 Coupe 2012 22.03% Tesla Model S Sedan 2012 16.93% Honda Accord Sedan 2012 4.91% Hyundai Elantra Sedan 2007 4.23% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 78.96% Chrysler PT Cruiser Convertible 2008 1.8% Mercedes-Benz SL-Class Coupe 2009 1.17% Mercedes-Benz C-Class Sedan 2012 0.88% Chrysler Crossfire Convertible 2008 0.84% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 22.91% GMC Canyon Extended Cab 2012 19.15% Buick Rainier SUV 2007 14.51% Chevrolet Tahoe Hybrid SUV 2012 14.11% Dodge Ram Pickup 3500 Quad Cab 2009 11.41% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari FF Coupe 2012 71.22% BMW 3 Series Sedan 2012 9.42% Ferrari 458 Italia Convertible 2012 6.04% Bugatti Veyron 16.4 Coupe 2009 3.51% Eagle Talon Hatchback 1998 2.07% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Hyundai Sonata Sedan 2012 13.03% Acura TL Type-S 2008 4.68% Aston Martin V8 Vantage Convertible 2012 2.63% Suzuki Kizashi Sedan 2012 2.31% Chevrolet Silverado 1500 Regular Cab 2012 2.3% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Chevrolet Silverado 2500HD Regular Cab 2012 86.86% AM General Hummer SUV 2000 2.86% Ford F-150 Regular Cab 2012 1.64% HUMMER H2 SUT Crew Cab 2009 1.31% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.29% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Chevrolet Traverse SUV 2012 13.92% Buick Enclave SUV 2012 11.51% Hyundai Tucson SUV 2012 5.47% Bentley Continental Flying Spur Sedan 2007 4.45% Audi 100 Sedan 1994 3.73% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Chevrolet Express Van 2007 28.3% Ford E-Series Wagon Van 2012 12.13% Chevrolet Express Cargo Van 2007 9.47% GMC Yukon Hybrid SUV 2012 8.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.33% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Jeep Compass SUV 2012 35.25% Toyota Sequoia SUV 2012 9.79% BMW X3 SUV 2012 7.34% Dodge Journey SUV 2012 4.17% BMW 1 Series Coupe 2012 3.9% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Audi TT Hatchback 2011 18.04% BMW X3 SUV 2012 16.48% BMW 1 Series Convertible 2012 14.43% Audi S5 Convertible 2012 8.34% BMW X5 SUV 2007 6.11% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Hyundai Sonata Sedan 2012 8.51% Buick Verano Sedan 2012 7.18% Ford Edge SUV 2012 4.19% Buick Enclave SUV 2012 3.28% Cadillac CTS-V Sedan 2012 3.22% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Cadillac Escalade EXT Crew Cab 2007 11.7% Jeep Liberty SUV 2012 7.3% Jeep Compass SUV 2012 6.63% GMC Terrain SUV 2012 4.98% Dodge Journey SUV 2012 4.66% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 71.75% Ford F-150 Regular Cab 2012 6.6% Chevrolet Silverado 2500HD Regular Cab 2012 6.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.37% Dodge Dakota Crew Cab 2010 1.55% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bentley Continental GT Coupe 2007 73.27% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.29% Aston Martin V8 Vantage Coupe 2012 2.45% Bentley Continental Flying Spur Sedan 2007 2.21% Bentley Mulsanne Sedan 2011 1.91% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Ferrari 458 Italia Coupe 2012 3.0% Dodge Charger SRT-8 2009 1.88% Ford Mustang Convertible 2007 1.49% Nissan Juke Hatchback 2012 1.34% Lamborghini Diablo Coupe 2001 1.29% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Chevrolet Tahoe Hybrid SUV 2012 58.84% Jeep Patriot SUV 2012 28.78% Buick Rainier SUV 2007 6.2% Isuzu Ascender SUV 2008 1.6% Chevrolet Silverado 1500 Extended Cab 2012 0.54% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Audi S5 Convertible 2012 48.05% Jeep Compass SUV 2012 11.82% Audi A5 Coupe 2012 7.87% Toyota Corolla Sedan 2012 6.1% Audi S4 Sedan 2012 4.01% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Lamborghini Reventon Coupe 2008 4.53% Jaguar XK XKR 2012 4.49% BMW M6 Convertible 2010 3.25% Chevrolet Silverado 2500HD Regular Cab 2012 2.85% Volvo 240 Sedan 1993 2.81% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz C-Class Sedan 2012 4.1% BMW 6 Series Convertible 2007 4.05% Fisker Karma Sedan 2012 3.83% Mercedes-Benz E-Class Sedan 2012 2.91% Volkswagen Golf Hatchback 2012 2.27% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Bentley Continental Supersports Conv. Convertible 2012 4.72% Chevrolet Silverado 1500 Regular Cab 2012 4.27% Jaguar XK XKR 2012 2.45% Eagle Talon Hatchback 1998 2.41% Suzuki Kizashi Sedan 2012 2.02% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Malibu Sedan 2007 39.23% Dodge Caliber Wagon 2012 9.44% Toyota Camry Sedan 2012 4.27% Chrysler PT Cruiser Convertible 2008 4.08% Chevrolet Avalanche Crew Cab 2012 3.84% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% Jeep Grand Cherokee SUV 2012 0.0% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Corolla Sedan 2012 82.26% Toyota Camry Sedan 2012 13.14% Acura TSX Sedan 2012 3.25% Chevrolet Malibu Sedan 2007 0.41% Dodge Journey SUV 2012 0.29% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Chrysler Aspen SUV 2009 2.1% Volkswagen Golf Hatchback 1991 2.0% Cadillac Escalade EXT Crew Cab 2007 2.0% Chevrolet Traverse SUV 2012 1.94% Honda Odyssey Minivan 2012 1.8% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.97% Isuzu Ascender SUV 2008 0.01% Audi V8 Sedan 1994 0.01% BMW X3 SUV 2012 0.0% Lincoln Town Car Sedan 2011 0.0% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Volkswagen Golf Hatchback 2012 6.19% Hyundai Veracruz SUV 2012 4.14% BMW M6 Convertible 2010 4.06% Audi S4 Sedan 2012 2.86% Spyker C8 Convertible 2009 2.67% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 BMW X3 SUV 2012 20.49% GMC Acadia SUV 2012 9.6% Dodge Magnum Wagon 2008 4.71% Land Rover LR2 SUV 2012 3.86% Hyundai Veracruz SUV 2012 3.48% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Buick Regal GS 2012 10.79% Toyota Camry Sedan 2012 4.29% Volvo C30 Hatchback 2012 4.16% Infiniti G Coupe IPL 2012 4.14% Chevrolet Sonic Sedan 2012 3.05% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Ferrari 458 Italia Convertible 2012 97.51% Ferrari California Convertible 2012 0.58% Chevrolet Camaro Convertible 2012 0.41% Mitsubishi Lancer Sedan 2012 0.32% Bugatti Veyron 16.4 Coupe 2009 0.13% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Canyon Extended Cab 2012 20.94% Chevrolet Silverado 1500 Classic Extended Cab 2007 11.18% Chevrolet Silverado 2500HD Regular Cab 2012 7.01% Dodge Sprinter Cargo Van 2009 6.01% Buick Enclave SUV 2012 3.93% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Honda Accord Coupe 2012 14.45% Honda Accord Sedan 2012 7.11% Hyundai Sonata Hybrid Sedan 2012 5.99% Hyundai Genesis Sedan 2012 5.15% Dodge Journey SUV 2012 4.67% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Lamborghini Reventon Coupe 2008 15.17% Rolls-Royce Ghost Sedan 2012 4.31% Land Rover Range Rover SUV 2012 2.93% Mercedes-Benz Sprinter Van 2012 2.84% smart fortwo Convertible 2012 2.11% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 HUMMER H2 SUT Crew Cab 2009 10.99% AM General Hummer SUV 2000 10.41% Chevrolet Avalanche Crew Cab 2012 4.78% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.42% Chevrolet Tahoe Hybrid SUV 2012 3.89% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 67.53% Spyker C8 Convertible 2009 7.48% Spyker C8 Coupe 2009 4.15% Ferrari 458 Italia Convertible 2012 3.2% Audi R8 Coupe 2012 2.19% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Hyundai Tucson SUV 2012 95.54% Chevrolet Malibu Hybrid Sedan 2010 3.65% Plymouth Neon Coupe 1999 0.19% Chevrolet Traverse SUV 2012 0.14% BMW X5 SUV 2007 0.11% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Audi TT Hatchback 2011 45.62% Spyker C8 Convertible 2009 8.23% Ferrari FF Coupe 2012 4.97% Audi A5 Coupe 2012 4.86% Audi S5 Coupe 2012 4.37% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 98.85% Infiniti G Coupe IPL 2012 0.14% Aston Martin Virage Convertible 2012 0.12% Chevrolet Camaro Convertible 2012 0.06% Audi R8 Coupe 2012 0.06% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Cadillac CTS-V Sedan 2012 5.66% Cadillac SRX SUV 2012 4.42% Rolls-Royce Phantom Sedan 2012 3.77% Honda Odyssey Minivan 2007 3.73% GMC Terrain SUV 2012 3.54% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Extended Cab 2012 54.26% Chevrolet Silverado 1500 Regular Cab 2012 19.76% Chevrolet Silverado 2500HD Regular Cab 2012 4.73% Ford E-Series Wagon Van 2012 3.28% Dodge Dakota Club Cab 2007 2.81% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Scion xD Hatchback 2012 16.96% Hyundai Veracruz SUV 2012 5.92% Toyota 4Runner SUV 2012 5.28% Jeep Compass SUV 2012 3.74% Suzuki SX4 Sedan 2012 3.52% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Acura TL Type-S 2008 8.62% Acura TL Sedan 2012 7.84% Chevrolet Malibu Sedan 2007 6.01% Infiniti G Coupe IPL 2012 5.35% Chevrolet Impala Sedan 2007 3.71% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Acura TL Type-S 2008 18.07% Infiniti G Coupe IPL 2012 7.34% BMW M6 Convertible 2010 7.24% Jaguar XK XKR 2012 5.5% BMW X5 SUV 2007 3.91% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ford GT Coupe 2006 13.22% Acura RL Sedan 2012 6.49% Spyker C8 Coupe 2009 4.94% Bentley Continental GT Coupe 2007 4.07% Ferrari California Convertible 2012 3.39% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Express Cargo Van 2007 25.9% Daewoo Nubira Wagon 2002 21.26% Chevrolet Traverse SUV 2012 9.5% Dodge Sprinter Cargo Van 2009 5.0% Mercedes-Benz Sprinter Van 2012 4.19% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Mitsubishi Lancer Sedan 2012 12.51% Acura TSX Sedan 2012 3.55% Chevrolet Malibu Sedan 2007 3.51% Suzuki SX4 Sedan 2012 3.05% Chevrolet Impala Sedan 2007 3.05% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Cadillac Escalade EXT Crew Cab 2007 3.16% Chevrolet TrailBlazer SS 2009 2.94% Chevrolet Silverado 1500 Regular Cab 2012 2.38% Ford Focus Sedan 2007 2.38% Honda Odyssey Minivan 2007 2.05% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chevrolet Tahoe Hybrid SUV 2012 5.2% Ford F-150 Regular Cab 2012 4.21% Honda Odyssey Minivan 2007 3.61% Scion xD Hatchback 2012 3.04% Cadillac SRX SUV 2012 2.85% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Maybach Landaulet Convertible 2012 9.23% Suzuki Kizashi Sedan 2012 5.36% Hyundai Azera Sedan 2012 4.51% Acura TL Type-S 2008 3.72% Nissan Juke Hatchback 2012 3.23% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Hyundai Azera Sedan 2012 31.31% Hyundai Genesis Sedan 2012 2.93% Audi TTS Coupe 2012 2.12% Ford E-Series Wagon Van 2012 2.11% Mercedes-Benz C-Class Sedan 2012 2.02% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Bentley Mulsanne Sedan 2011 13.9% Bentley Continental GT Coupe 2007 5.47% Maybach Landaulet Convertible 2012 5.21% Cadillac CTS-V Sedan 2012 3.95% Volkswagen Beetle Hatchback 2012 3.37% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi 100 Sedan 1994 78.94% Volvo XC90 SUV 2007 6.01% Audi 100 Wagon 1994 5.67% Audi V8 Sedan 1994 4.7% Audi S5 Coupe 2012 1.19% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Chevrolet Traverse SUV 2012 24.89% Nissan Juke Hatchback 2012 17.17% Audi 100 Wagon 1994 15.03% Hyundai Azera Sedan 2012 5.09% Acura RL Sedan 2012 3.43% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 6.72% Chrysler Sebring Convertible 2010 5.81% Acura TL Sedan 2012 4.57% Infiniti G Coupe IPL 2012 3.99% Hyundai Azera Sedan 2012 3.7% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Porsche Panamera Sedan 2012 6.52% Audi TT Hatchback 2011 5.5% BMW ActiveHybrid 5 Sedan 2012 4.78% Tesla Model S Sedan 2012 4.67% Mercedes-Benz C-Class Sedan 2012 4.05% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 6.81% Chevrolet Silverado 1500 Extended Cab 2012 4.91% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.81% Ford Freestar Minivan 2007 4.15% Ford Expedition EL SUV 2009 3.45% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 85.95% Cadillac SRX SUV 2012 6.11% Dodge Journey SUV 2012 2.5% Toyota 4Runner SUV 2012 1.58% Chevrolet Sonic Sedan 2012 0.43% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 77.46% Ford Ranger SuperCab 2011 9.97% Chevrolet Silverado 1500 Regular Cab 2012 4.25% Aston Martin Virage Convertible 2012 0.75% Rolls-Royce Phantom Sedan 2012 0.73% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 45.61% Dodge Durango SUV 2012 6.27% Dodge Journey SUV 2012 3.78% Mercedes-Benz S-Class Sedan 2012 2.25% Acura TL Type-S 2008 1.92% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Nissan Leaf Hatchback 2012 13.02% Chevrolet Corvette ZR1 2012 7.17% Suzuki Kizashi Sedan 2012 4.91% Porsche Panamera Sedan 2012 4.36% AM General Hummer SUV 2000 3.41% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Buick Regal GS 2012 47.86% Chevrolet Camaro Convertible 2012 28.08% Infiniti G Coupe IPL 2012 7.73% Rolls-Royce Phantom Sedan 2012 2.67% Mitsubishi Lancer Sedan 2012 1.43% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Bentley Arnage Sedan 2009 88.44% Chrysler 300 SRT-8 2010 3.73% Volvo 240 Sedan 1993 3.06% Bentley Mulsanne Sedan 2011 1.13% Rolls-Royce Phantom Sedan 2012 1.05% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Volkswagen Beetle Hatchback 2012 82.77% Jaguar XK XKR 2012 4.06% BMW M3 Coupe 2012 4.05% Toyota Corolla Sedan 2012 1.77% Chrysler Sebring Convertible 2010 1.69% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Hyundai Azera Sedan 2012 13.06% Toyota Camry Sedan 2012 5.96% Jaguar XK XKR 2012 5.37% Honda Odyssey Minivan 2012 4.84% Infiniti G Coupe IPL 2012 4.63% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Cadillac CTS-V Sedan 2012 17.7% Infiniti QX56 SUV 2011 13.51% Honda Odyssey Minivan 2012 10.11% BMW M5 Sedan 2010 9.41% Mercedes-Benz E-Class Sedan 2012 8.4% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Isuzu Ascender SUV 2008 43.38% GMC Yukon Hybrid SUV 2012 15.68% Mazda Tribute SUV 2011 7.68% Jeep Patriot SUV 2012 5.66% Ford E-Series Wagon Van 2012 3.76% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Toyota Corolla Sedan 2012 27.11% Honda Accord Coupe 2012 10.72% Spyker C8 Coupe 2009 7.16% Dodge Challenger SRT8 2011 6.86% Dodge Charger SRT-8 2009 6.77% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Chevrolet Corvette ZR1 2012 36.92% Mercedes-Benz C-Class Sedan 2012 12.74% Audi R8 Coupe 2012 9.92% Rolls-Royce Phantom Sedan 2012 4.03% Fisker Karma Sedan 2012 3.66% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 34.87% Chevrolet Express Cargo Van 2007 7.38% Daewoo Nubira Wagon 2002 6.0% Plymouth Neon Coupe 1999 4.18% Chevrolet Express Van 2007 2.91% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ford GT Coupe 2006 68.86% FIAT 500 Convertible 2012 10.11% Lamborghini Aventador Coupe 2012 4.39% Ferrari FF Coupe 2012 2.16% Ford Focus Sedan 2007 1.45% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 20.83% Chevrolet Tahoe Hybrid SUV 2012 13.02% Chevrolet TrailBlazer SS 2009 4.49% Mazda Tribute SUV 2011 2.61% Dodge Durango SUV 2007 2.11% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Lamborghini Reventon Coupe 2008 11.7% Ford Edge SUV 2012 8.15% Ford GT Coupe 2006 7.22% Nissan Juke Hatchback 2012 6.65% Aston Martin V8 Vantage Coupe 2012 6.22% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Audi S4 Sedan 2007 9.07% Ferrari FF Coupe 2012 3.01% Chevrolet Cobalt SS 2010 2.84% Acura TL Sedan 2012 2.81% Mercedes-Benz E-Class Sedan 2012 2.71% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.92% Chrysler PT Cruiser Convertible 2008 0.04% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Chevrolet Corvette Convertible 2012 0.01% Dodge Caravan Minivan 1997 0.01% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 6.79% Chevrolet Traverse SUV 2012 6.26% GMC Canyon Extended Cab 2012 4.17% Chevrolet Silverado 1500 Regular Cab 2012 3.89% Dodge Dakota Crew Cab 2010 2.88% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 14.38% BMW M5 Sedan 2010 9.49% Toyota Camry Sedan 2012 7.2% Buick Regal GS 2012 5.75% Cadillac CTS-V Sedan 2012 4.68% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 8.97% Dodge Journey SUV 2012 3.69% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.44% Audi S5 Coupe 2012 2.41% Honda Accord Sedan 2012 2.26% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 70.25% Audi S4 Sedan 2007 12.14% Eagle Talon Hatchback 1998 2.27% Hyundai Elantra Touring Hatchback 2012 1.85% Audi A5 Coupe 2012 1.76% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Dodge Magnum Wagon 2008 12.73% Cadillac CTS-V Sedan 2012 7.37% Chevrolet Malibu Sedan 2007 5.99% Mitsubishi Lancer Sedan 2012 5.18% Dodge Journey SUV 2012 3.75% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Mitsubishi Lancer Sedan 2012 6.69% Buick Regal GS 2012 3.21% Acura TSX Sedan 2012 2.13% Chevrolet Malibu Sedan 2007 2.09% Audi TTS Coupe 2012 1.98% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 12.95% Audi A5 Coupe 2012 7.76% BMW 6 Series Convertible 2007 7.04% BMW M3 Coupe 2012 5.35% Audi S5 Convertible 2012 3.97% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 77.98% Mitsubishi Lancer Sedan 2012 2.3% Suzuki Kizashi Sedan 2012 1.7% Bugatti Veyron 16.4 Coupe 2009 1.24% Mercedes-Benz E-Class Sedan 2012 0.72% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 BMW 3 Series Sedan 2012 8.43% Hyundai Genesis Sedan 2012 6.51% Honda Odyssey Minivan 2012 4.97% Chevrolet Traverse SUV 2012 2.67% Bentley Arnage Sedan 2009 1.98% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Honda Odyssey Minivan 2012 19.43% Dodge Caravan Minivan 1997 18.88% Chevrolet Impala Sedan 2007 12.55% Honda Odyssey Minivan 2007 8.31% Dodge Ram Pickup 3500 Crew Cab 2010 5.11% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 76.95% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.6% Hyundai Veloster Hatchback 2012 1.54% Infiniti G Coupe IPL 2012 1.25% Bentley Mulsanne Sedan 2011 1.14% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Chevrolet Monte Carlo Coupe 2007 29.75% Chevrolet Malibu Sedan 2007 9.27% BMW 3 Series Wagon 2012 4.21% Chrysler Sebring Convertible 2010 2.89% Chevrolet Impala Sedan 2007 2.46% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Lincoln Town Car Sedan 2011 7.92% Chevrolet Monte Carlo Coupe 2007 4.24% Chevrolet Tahoe Hybrid SUV 2012 2.98% Geo Metro Convertible 1993 2.6% Dodge Caravan Minivan 1997 2.58% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Aston Martin V8 Vantage Coupe 2012 11.72% Mercedes-Benz S-Class Sedan 2012 9.06% BMW 6 Series Convertible 2007 5.81% Fisker Karma Sedan 2012 4.76% Rolls-Royce Phantom Sedan 2012 3.64% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 AM General Hummer SUV 2000 85.97% Lamborghini Reventon Coupe 2008 1.28% Aston Martin V8 Vantage Coupe 2012 0.91% Ferrari California Convertible 2012 0.69% Dodge Charger SRT-8 2009 0.55% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 16.79% Infiniti G Coupe IPL 2012 5.61% Acura TL Type-S 2008 4.08% Fisker Karma Sedan 2012 3.76% Acura Integra Type R 2001 3.39% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 61.17% Chevrolet Avalanche Crew Cab 2012 27.78% Chrysler Aspen SUV 2009 2.77% Dodge Durango SUV 2012 2.44% Land Rover Range Rover SUV 2012 1.74% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 50.67% GMC Canyon Extended Cab 2012 14.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.57% Chevrolet Silverado 2500HD Regular Cab 2012 7.34% Chevrolet Silverado 1500 Regular Cab 2012 4.14% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Hyundai Veloster Hatchback 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Honda Accord Sedan 2012 43.3% Toyota Camry Sedan 2012 30.95% Mercedes-Benz E-Class Sedan 2012 2.46% Lincoln Town Car Sedan 2011 2.38% Buick Verano Sedan 2012 2.22% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 54.64% Acura TL Type-S 2008 18.94% Honda Accord Coupe 2012 4.23% Chrysler Sebring Convertible 2010 2.39% Honda Odyssey Minivan 2007 1.9% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Audi V8 Sedan 1994 69.23% Audi 100 Sedan 1994 25.41% Audi 100 Wagon 1994 4.78% Dodge Ram Pickup 3500 Quad Cab 2009 0.13% Bentley Arnage Sedan 2009 0.05% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Cadillac CTS-V Sedan 2012 4.63% Hyundai Veloster Hatchback 2012 3.57% Chevrolet Traverse SUV 2012 2.92% FIAT 500 Convertible 2012 2.08% Ford GT Coupe 2006 1.94% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Toyota 4Runner SUV 2012 10.87% Toyota Camry Sedan 2012 9.63% Honda Odyssey Minivan 2012 6.29% Eagle Talon Hatchback 1998 5.16% Ferrari FF Coupe 2012 4.76% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 AM General Hummer SUV 2000 27.74% Lamborghini Reventon Coupe 2008 26.57% Volkswagen Golf Hatchback 1991 5.24% Dodge Charger SRT-8 2009 3.46% Aston Martin V8 Vantage Coupe 2012 3.46% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 76.35% Spyker C8 Coupe 2009 2.74% Hyundai Azera Sedan 2012 2.55% Nissan Juke Hatchback 2012 1.55% Mitsubishi Lancer Sedan 2012 1.15% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Chevrolet Tahoe Hybrid SUV 2012 13.18% Ford Mustang Convertible 2007 6.21% Acura ZDX Hatchback 2012 4.98% BMW X3 SUV 2012 4.77% Fisker Karma Sedan 2012 4.2% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Ford GT Coupe 2006 21.91% Audi 100 Wagon 1994 5.21% Honda Accord Coupe 2012 4.43% Hyundai Tucson SUV 2012 4.05% Ferrari FF Coupe 2012 3.37% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 98.22% Rolls-Royce Phantom Sedan 2012 0.22% Buick Rainier SUV 2007 0.2% Volvo XC90 SUV 2007 0.16% Volvo 240 Sedan 1993 0.15% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 8.34% Aston Martin V8 Vantage Coupe 2012 5.27% Ferrari California Convertible 2012 3.02% Hyundai Veracruz SUV 2012 3.0% Geo Metro Convertible 1993 2.96% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 9.47% Honda Accord Coupe 2012 7.99% Audi 100 Wagon 1994 5.48% Ferrari FF Coupe 2012 4.36% BMW X6 SUV 2012 4.1% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Chrysler Crossfire Convertible 2008 7.54% Bentley Arnage Sedan 2009 7.23% Chevrolet Monte Carlo Coupe 2007 7.12% Suzuki Kizashi Sedan 2012 6.86% BMW X5 SUV 2007 5.62% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Dodge Challenger SRT8 2011 15.23% Suzuki SX4 Sedan 2012 14.06% Suzuki Kizashi Sedan 2012 5.67% Buick Verano Sedan 2012 4.18% Chevrolet Sonic Sedan 2012 3.79% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Geo Metro Convertible 1993 7.26% Spyker C8 Coupe 2009 5.37% Ford GT Coupe 2006 4.71% Scion xD Hatchback 2012 2.73% AM General Hummer SUV 2000 2.45% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Suzuki SX4 Hatchback 2012 12.38% Hyundai Azera Sedan 2012 7.22% Dodge Journey SUV 2012 6.95% Nissan Juke Hatchback 2012 4.72% Hyundai Genesis Sedan 2012 3.1% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 15.88% Spyker C8 Coupe 2009 3.1% Chevrolet Corvette ZR1 2012 3.03% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.72% Ford Mustang Convertible 2007 2.25% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 BMW X3 SUV 2012 9.98% Audi S4 Sedan 2012 6.26% Honda Accord Sedan 2012 5.66% Honda Odyssey Minivan 2012 5.54% Suzuki Aerio Sedan 2007 5.18% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 40.67% BMW X6 SUV 2012 31.03% BMW X5 SUV 2007 18.56% Jeep Compass SUV 2012 6.85% Mazda Tribute SUV 2011 0.47% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.32% FIAT 500 Convertible 2012 0.1% Chevrolet Sonic Sedan 2012 0.03% Bugatti Veyron 16.4 Coupe 2009 0.03% Suzuki Aerio Sedan 2007 0.02% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 59.73% Chevrolet Silverado 1500 Extended Cab 2012 22.13% GMC Canyon Extended Cab 2012 11.63% Ford F-150 Regular Cab 2012 1.56% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.79% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Bentley Mulsanne Sedan 2011 16.39% Bentley Arnage Sedan 2009 8.34% Volvo 240 Sedan 1993 3.96% Buick Enclave SUV 2012 2.91% Audi 100 Wagon 1994 2.89% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Land Rover LR2 SUV 2012 7.95% Chevrolet Tahoe Hybrid SUV 2012 4.54% Hyundai Veracruz SUV 2012 3.8% smart fortwo Convertible 2012 3.55% Chevrolet TrailBlazer SS 2009 3.34% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 10.47% Acura Integra Type R 2001 9.81% Audi S4 Sedan 2007 6.66% Aston Martin V8 Vantage Coupe 2012 6.56% Chevrolet Corvette ZR1 2012 5.29% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Jeep Patriot SUV 2012 25.84% Chrysler PT Cruiser Convertible 2008 6.09% GMC Yukon Hybrid SUV 2012 5.93% Nissan NV Passenger Van 2012 2.93% Jeep Liberty SUV 2012 2.84% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Eagle Talon Hatchback 1998 62.41% Ford Mustang Convertible 2007 10.89% Dodge Caravan Minivan 1997 9.96% Plymouth Neon Coupe 1999 6.83% Chrysler Sebring Convertible 2010 2.74% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 HUMMER H3T Crew Cab 2010 8.11% Honda Odyssey Minivan 2012 7.73% Mazda Tribute SUV 2011 7.55% Chevrolet Silverado 1500 Regular Cab 2012 4.84% HUMMER H2 SUT Crew Cab 2009 3.18% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 10.85% Land Rover LR2 SUV 2012 8.19% Chevrolet Monte Carlo Coupe 2007 5.73% Buick Verano Sedan 2012 5.14% Chevrolet Silverado 2500HD Regular Cab 2012 4.02% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Suzuki Kizashi Sedan 2012 7.42% Chevrolet HHR SS 2010 6.68% Land Rover LR2 SUV 2012 2.12% Volkswagen Beetle Hatchback 2012 1.71% Jeep Liberty SUV 2012 1.65% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Dodge Caliber Wagon 2007 27.14% Dodge Journey SUV 2012 13.08% Honda Accord Coupe 2012 8.22% Hyundai Elantra Sedan 2007 3.78% Dodge Caliber Wagon 2012 3.31% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Regular Cab 2012 45.73% Ford F-150 Regular Cab 2007 27.96% Chevrolet Express Van 2007 4.9% Cadillac Escalade EXT Crew Cab 2007 4.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.59% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 72.32% Buick Verano Sedan 2012 12.65% Bentley Continental GT Coupe 2012 3.04% Buick Regal GS 2012 1.62% BMW 1 Series Coupe 2012 1.52% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 10.89% Ford Mustang Convertible 2007 4.39% Chrysler 300 SRT-8 2010 4.15% Chevrolet Malibu Sedan 2007 3.4% Bentley Continental GT Coupe 2007 3.29% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Jaguar XK XKR 2012 90.38% Chevrolet Impala Sedan 2007 6.69% Audi 100 Wagon 1994 2.03% Chevrolet Malibu Hybrid Sedan 2010 0.33% Hyundai Elantra Sedan 2007 0.26% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Nissan 240SX Coupe 1998 17.58% Daewoo Nubira Wagon 2002 3.51% Dodge Charger SRT-8 2009 3.11% Ford Fiesta Sedan 2012 2.72% Chevrolet Camaro Convertible 2012 1.76% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 BMW 6 Series Convertible 2007 7.68% Ferrari FF Coupe 2012 7.55% Plymouth Neon Coupe 1999 5.79% Dodge Journey SUV 2012 5.37% Mitsubishi Lancer Sedan 2012 5.14% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 14.77% Lamborghini Reventon Coupe 2008 12.75% Lamborghini Diablo Coupe 2001 11.65% Dodge Challenger SRT8 2011 6.75% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.07% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Jeep Patriot SUV 2012 59.6% Volvo 240 Sedan 1993 18.48% Chevrolet Express Cargo Van 2007 4.26% Chevrolet Silverado 1500 Regular Cab 2012 1.87% Chevrolet Express Van 2007 1.26% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 FIAT 500 Abarth 2012 81.36% Audi R8 Coupe 2012 6.32% Audi 100 Wagon 1994 2.31% Chevrolet Traverse SUV 2012 1.85% Nissan Juke Hatchback 2012 1.34% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Ferrari 458 Italia Convertible 2012 49.41% Lamborghini Diablo Coupe 2001 33.79% McLaren MP4-12C Coupe 2012 11.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.33% Aston Martin Virage Coupe 2012 0.9% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Jaguar XK XKR 2012 25.09% Audi TT Hatchback 2011 22.74% Porsche Panamera Sedan 2012 14.77% Chrysler Sebring Convertible 2010 5.54% BMW 6 Series Convertible 2007 4.1% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 18.79% Bentley Continental GT Coupe 2007 8.2% Aston Martin V8 Vantage Convertible 2012 7.16% Chevrolet Malibu Hybrid Sedan 2010 7.16% BMW 6 Series Convertible 2007 5.12% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Rolls-Royce Phantom Sedan 2012 17.14% Chrysler 300 SRT-8 2010 7.23% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.94% Bentley Continental Supersports Conv. Convertible 2012 6.11% Bentley Mulsanne Sedan 2011 5.31% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Focus Sedan 2007 14.08% Ford Freestar Minivan 2007 9.01% Toyota Corolla Sedan 2012 6.27% Volvo 240 Sedan 1993 4.92% Hyundai Elantra Sedan 2007 4.66% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Land Rover LR2 SUV 2012 78.74% Toyota 4Runner SUV 2012 5.29% Dodge Durango SUV 2012 2.44% BMW X3 SUV 2012 2.18% Infiniti QX56 SUV 2011 1.61% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 9.07% Volkswagen Golf Hatchback 2012 5.21% Daewoo Nubira Wagon 2002 4.97% Acura Integra Type R 2001 3.85% Buick Verano Sedan 2012 2.8% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 13.29% Ford Freestar Minivan 2007 9.43% Acura TL Type-S 2008 8.3% Ram C/V Cargo Van Minivan 2012 7.14% GMC Yukon Hybrid SUV 2012 5.34% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 86.85% Hyundai Genesis Sedan 2012 12.94% Hyundai Sonata Sedan 2012 0.13% Mercedes-Benz S-Class Sedan 2012 0.04% Mercedes-Benz C-Class Sedan 2012 0.01% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 95.91% Jeep Patriot SUV 2012 1.92% AM General Hummer SUV 2000 0.78% GMC Canyon Extended Cab 2012 0.23% Nissan NV Passenger Van 2012 0.09% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 30.45% Toyota Camry Sedan 2012 19.7% Suzuki SX4 Sedan 2012 4.53% Suzuki SX4 Hatchback 2012 3.4% Acura TL Sedan 2012 2.48% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 22.86% Toyota 4Runner SUV 2012 11.79% Hyundai Veracruz SUV 2012 5.39% Dodge Durango SUV 2012 3.62% Dodge Journey SUV 2012 3.54% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Yukon Hybrid SUV 2012 40.67% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 20.19% Chevrolet Silverado 1500 Classic Extended Cab 2007 9.05% Dodge Dakota Crew Cab 2010 5.87% Chevrolet Silverado 2500HD Regular Cab 2012 4.11% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Audi 100 Wagon 1994 12.02% Volkswagen Golf Hatchback 1991 8.6% Ford Freestar Minivan 2007 4.91% Dodge Caravan Minivan 1997 4.07% Chevrolet Malibu Sedan 2007 3.46% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 94.6% Dodge Sprinter Cargo Van 2009 0.92% Dodge Durango SUV 2007 0.65% Volkswagen Golf Hatchback 1991 0.49% Hyundai Santa Fe SUV 2012 0.28% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Ferrari 458 Italia Coupe 2012 57.45% Acura TSX Sedan 2012 17.45% Spyker C8 Coupe 2009 10.14% Ferrari FF Coupe 2012 3.33% Ferrari 458 Italia Convertible 2012 2.18% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Eagle Talon Hatchback 1998 67.23% Audi V8 Sedan 1994 15.26% Plymouth Neon Coupe 1999 8.75% Buick Enclave SUV 2012 5.59% Audi S6 Sedan 2011 0.28% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Chrysler Sebring Convertible 2010 15.07% Volkswagen Golf Hatchback 1991 8.1% Ford Focus Sedan 2007 7.11% Chevrolet Malibu Sedan 2007 5.8% Plymouth Neon Coupe 1999 5.18% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Suzuki SX4 Sedan 2012 23.4% Hyundai Elantra Sedan 2007 12.9% GMC Acadia SUV 2012 6.29% Honda Odyssey Minivan 2012 6.21% Dodge Caliber Wagon 2007 5.16% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Dodge Caliber Wagon 2012 18.3% Honda Odyssey Minivan 2007 15.62% BMW X3 SUV 2012 6.15% Buick Verano Sedan 2012 4.57% Suzuki SX4 Sedan 2012 4.03% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 19.07% Lamborghini Reventon Coupe 2008 18.88% Porsche Panamera Sedan 2012 5.71% Aston Martin V8 Vantage Coupe 2012 5.41% Geo Metro Convertible 1993 4.73% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 92.88% Plymouth Neon Coupe 1999 5.11% Spyker C8 Coupe 2009 0.48% Daewoo Nubira Wagon 2002 0.22% Dodge Caravan Minivan 1997 0.21% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Honda Odyssey Minivan 2012 12.34% Lincoln Town Car Sedan 2011 9.97% Volvo 240 Sedan 1993 4.69% Audi 100 Wagon 1994 4.58% Chevrolet Traverse SUV 2012 3.97% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Suzuki Kizashi Sedan 2012 4.73% Nissan Juke Hatchback 2012 4.65% AM General Hummer SUV 2000 3.67% Chevrolet Silverado 1500 Extended Cab 2012 2.48% Mazda Tribute SUV 2011 2.24% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Dodge Durango SUV 2007 13.84% HUMMER H2 SUT Crew Cab 2009 9.68% Honda Odyssey Minivan 2012 8.48% Buick Rainier SUV 2007 7.41% Dodge Durango SUV 2012 5.5% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Daewoo Nubira Wagon 2002 11.81% Aston Martin Virage Convertible 2012 10.96% Fisker Karma Sedan 2012 4.28% Spyker C8 Coupe 2009 3.08% Plymouth Neon Coupe 1999 2.68% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Volkswagen Golf Hatchback 2012 21.24% smart fortwo Convertible 2012 10.2% Nissan Leaf Hatchback 2012 2.66% Maybach Landaulet Convertible 2012 2.65% Hyundai Accent Sedan 2012 2.64% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Audi R8 Coupe 2012 18.08% Ford GT Coupe 2006 18.06% Ferrari 458 Italia Convertible 2012 12.86% Ferrari FF Coupe 2012 9.27% Chevrolet Sonic Sedan 2012 7.48% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Ford Ranger SuperCab 2011 18.0% Ferrari FF Coupe 2012 6.11% BMW 1 Series Coupe 2012 5.29% Dodge Sprinter Cargo Van 2009 3.2% Aston Martin V8 Vantage Convertible 2012 3.13% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 BMW 3 Series Sedan 2012 6.13% Mercedes-Benz C-Class Sedan 2012 4.58% Nissan Juke Hatchback 2012 3.04% Nissan NV Passenger Van 2012 3.03% Ferrari FF Coupe 2012 2.54% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 52.48% Audi V8 Sedan 1994 41.4% Plymouth Neon Coupe 1999 4.28% Ford Mustang Convertible 2007 1.37% Dodge Caravan Minivan 1997 0.2% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 93.35% Chrysler Crossfire Convertible 2008 6.36% Mercedes-Benz S-Class Sedan 2012 0.14% Mercedes-Benz E-Class Sedan 2012 0.03% Audi TTS Coupe 2012 0.02% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Hyundai Elantra Touring Hatchback 2012 3.17% Eagle Talon Hatchback 1998 2.93% Mercedes-Benz 300-Class Convertible 1993 2.6% Ferrari 458 Italia Convertible 2012 2.23% Hyundai Sonata Sedan 2012 2.22% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 15.37% Chevrolet Avalanche Crew Cab 2012 8.36% Ford F-150 Regular Cab 2007 5.08% Chevrolet Silverado 1500 Regular Cab 2012 4.41% Chevrolet Silverado 2500HD Regular Cab 2012 4.25% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 23.94% Dodge Charger Sedan 2012 19.17% Dodge Caliber Wagon 2012 8.44% Chevrolet Camaro Convertible 2012 7.64% BMW M3 Coupe 2012 6.24% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Volvo 240 Sedan 1993 5.52% Volvo XC90 SUV 2007 4.9% Audi 100 Sedan 1994 3.03% Jeep Wrangler SUV 2012 2.11% Dodge Dakota Crew Cab 2010 2.06% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Chevrolet Tahoe Hybrid SUV 2012 18.19% Dodge Ram Pickup 3500 Crew Cab 2010 14.61% Jeep Patriot SUV 2012 11.67% Toyota 4Runner SUV 2012 8.55% Jeep Liberty SUV 2012 7.35% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 44.98% Dodge Caravan Minivan 1997 41.95% Eagle Talon Hatchback 1998 2.3% Chevrolet Express Van 2007 1.06% Acura TSX Sedan 2012 0.79% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 96.78% Mercedes-Benz 300-Class Convertible 1993 1.57% Chrysler Crossfire Convertible 2008 0.68% Ford Mustang Convertible 2007 0.65% Chevrolet Corvette Convertible 2012 0.29% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Hyundai Veloster Hatchback 2012 15.79% BMW M3 Coupe 2012 11.15% Tesla Model S Sedan 2012 10.75% Jaguar XK XKR 2012 8.55% Ford Fiesta Sedan 2012 6.03% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 97.93% McLaren MP4-12C Coupe 2012 1.03% Hyundai Veloster Hatchback 2012 0.39% BMW 1 Series Coupe 2012 0.1% Suzuki Kizashi Sedan 2012 0.08% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 10.54% Dodge Journey SUV 2012 6.7% Mitsubishi Lancer Sedan 2012 5.36% Dodge Caravan Minivan 1997 5.1% Ram C/V Cargo Van Minivan 2012 5.0% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Dodge Charger SRT-8 2009 4.44% Ferrari FF Coupe 2012 4.15% Chevrolet Sonic Sedan 2012 2.87% Maybach Landaulet Convertible 2012 2.16% GMC Yukon Hybrid SUV 2012 2.03% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Chrysler PT Cruiser Convertible 2008 71.94% Chrysler Crossfire Convertible 2008 14.49% Chevrolet Camaro Convertible 2012 9.83% Chrysler Sebring Convertible 2010 1.24% MINI Cooper Roadster Convertible 2012 0.31% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 93.44% Dodge Sprinter Cargo Van 2009 1.01% Mitsubishi Lancer Sedan 2012 0.25% Tesla Model S Sedan 2012 0.25% Audi V8 Sedan 1994 0.25% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Extended Cab 2012 43.27% Isuzu Ascender SUV 2008 6.05% HUMMER H2 SUT Crew Cab 2009 4.06% Jeep Patriot SUV 2012 4.04% Jeep Wrangler SUV 2012 3.87% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Suzuki Kizashi Sedan 2012 4.32% Dodge Caliber Wagon 2012 3.49% Nissan Juke Hatchback 2012 3.43% Mitsubishi Lancer Sedan 2012 3.27% Jaguar XK XKR 2012 2.73% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 55.06% Mercedes-Benz Sprinter Van 2012 43.48% Volkswagen Golf Hatchback 1991 0.4% Chevrolet Express Van 2007 0.27% Chevrolet Express Cargo Van 2007 0.16% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Suzuki SX4 Sedan 2012 12.07% Buick Verano Sedan 2012 7.3% Acura TL Sedan 2012 5.39% Nissan Leaf Hatchback 2012 4.56% Dodge Challenger SRT8 2011 3.63% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Tesla Model S Sedan 2012 3.33% Honda Accord Sedan 2012 3.13% Chrysler PT Cruiser Convertible 2008 2.78% Hyundai Sonata Sedan 2012 2.77% Toyota Camry Sedan 2012 2.69% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Toyota Camry Sedan 2012 69.68% Dodge Durango SUV 2012 9.36% Toyota Corolla Sedan 2012 3.06% Mitsubishi Lancer Sedan 2012 2.65% Hyundai Accent Sedan 2012 2.29% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Audi S5 Coupe 2012 25.9% Cadillac SRX SUV 2012 8.6% BMW X3 SUV 2012 4.79% Chrysler 300 SRT-8 2010 3.83% Dodge Magnum Wagon 2008 3.75% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Bentley Arnage Sedan 2009 5.15% Chrysler 300 SRT-8 2010 4.13% Aston Martin V8 Vantage Coupe 2012 3.86% Eagle Talon Hatchback 1998 3.42% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.85% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Audi S4 Sedan 2012 43.1% Audi A5 Coupe 2012 39.74% Audi RS 4 Convertible 2008 2.53% Audi S5 Coupe 2012 2.35% Audi S5 Convertible 2012 1.25% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 85.43% HUMMER H2 SUT Crew Cab 2009 5.33% AM General Hummer SUV 2000 2.44% Jeep Wrangler SUV 2012 0.81% Ferrari 458 Italia Coupe 2012 0.41% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 GMC Canyon Extended Cab 2012 22.36% Ford Expedition EL SUV 2009 3.36% Dodge Durango SUV 2007 3.34% Ford F-450 Super Duty Crew Cab 2012 2.48% Dodge Caliber Wagon 2012 2.44% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 63.68% Audi S5 Convertible 2012 10.37% Ferrari 458 Italia Convertible 2012 3.1% Ferrari California Convertible 2012 2.45% Audi TTS Coupe 2012 1.96% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Toyota Corolla Sedan 2012 8.41% Toyota Camry Sedan 2012 4.94% Hyundai Accent Sedan 2012 3.74% Buick Regal GS 2012 3.47% Hyundai Sonata Hybrid Sedan 2012 3.47% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Chrysler Aspen SUV 2009 25.08% Nissan NV Passenger Van 2012 5.08% Chevrolet Silverado 1500 Regular Cab 2012 4.77% Ford F-150 Regular Cab 2007 3.42% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.17% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.99% Nissan Juke Hatchback 2012 0.01% Audi R8 Coupe 2012 0.0% GMC Acadia SUV 2012 0.0% Acura Integra Type R 2001 0.0% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Hyundai Veracruz SUV 2012 17.84% Hyundai Tucson SUV 2012 8.71% Hyundai Sonata Sedan 2012 6.24% Scion xD Hatchback 2012 4.73% Acura ZDX Hatchback 2012 4.35% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Audi R8 Coupe 2012 30.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.37% Aston Martin V8 Vantage Coupe 2012 3.68% Chevrolet Malibu Hybrid Sedan 2010 2.26% Chevrolet TrailBlazer SS 2009 2.06% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 74.24% Dodge Caravan Minivan 1997 9.67% Porsche Panamera Sedan 2012 2.0% Aston Martin Virage Convertible 2012 1.98% Bentley Continental GT Coupe 2007 1.09% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Plymouth Neon Coupe 1999 49.54% Nissan 240SX Coupe 1998 19.29% Eagle Talon Hatchback 1998 6.42% BMW 3 Series Sedan 2012 2.6% Audi 100 Wagon 1994 2.48% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 46.96% Audi A5 Coupe 2012 32.33% Audi S5 Coupe 2012 11.01% Audi RS 4 Convertible 2008 5.6% Audi S4 Sedan 2012 3.13% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Hyundai Azera Sedan 2012 11.94% BMW M5 Sedan 2010 11.51% Mercedes-Benz S-Class Sedan 2012 5.42% Cadillac CTS-V Sedan 2012 3.77% Suzuki Kizashi Sedan 2012 3.44% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Daewoo Nubira Wagon 2002 24.04% Audi S6 Sedan 2011 22.95% Acura Integra Type R 2001 8.81% Bentley Continental GT Coupe 2007 7.62% Bentley Continental Flying Spur Sedan 2007 5.81% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Audi R8 Coupe 2012 10.41% Bugatti Veyron 16.4 Coupe 2009 5.64% Aston Martin V8 Vantage Convertible 2012 3.72% Nissan Juke Hatchback 2012 3.33% Ferrari California Convertible 2012 3.19% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Chevrolet Malibu Sedan 2007 14.42% Honda Odyssey Minivan 2012 14.42% GMC Terrain SUV 2012 5.37% Chevrolet Silverado 1500 Regular Cab 2012 4.55% Chevrolet Monte Carlo Coupe 2007 4.22% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Maybach Landaulet Convertible 2012 12.15% Bentley Continental GT Coupe 2007 8.5% Fisker Karma Sedan 2012 3.32% Mercedes-Benz E-Class Sedan 2012 3.23% Daewoo Nubira Wagon 2002 2.57% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 MINI Cooper Roadster Convertible 2012 21.18% Acura TL Type-S 2008 15.51% Mercedes-Benz S-Class Sedan 2012 12.44% Audi S4 Sedan 2007 5.27% Volkswagen Beetle Hatchback 2012 4.72% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Eagle Talon Hatchback 1998 46.03% Dodge Ram Pickup 3500 Quad Cab 2009 16.77% Hyundai Veracruz SUV 2012 3.44% Chevrolet Corvette ZR1 2012 2.95% FIAT 500 Abarth 2012 2.02% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Jeep Wrangler SUV 2012 15.82% Hyundai Veloster Hatchback 2012 11.78% McLaren MP4-12C Coupe 2012 6.36% Jeep Compass SUV 2012 6.21% Dodge Caliber Wagon 2012 5.18% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Dodge Durango SUV 2012 4.0% Jeep Compass SUV 2012 2.79% Dodge Dakota Crew Cab 2010 2.19% Chevrolet Tahoe Hybrid SUV 2012 1.67% Land Rover LR2 SUV 2012 1.64% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Jaguar XK XKR 2012 3.64% Chevrolet Silverado 1500 Regular Cab 2012 3.37% Chevrolet Malibu Sedan 2007 2.61% Dodge Dakota Crew Cab 2010 2.58% Dodge Charger SRT-8 2009 2.57% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 99.05% Chevrolet Impala Sedan 2007 0.42% Dodge Magnum Wagon 2008 0.25% Cadillac Escalade EXT Crew Cab 2007 0.07% Mitsubishi Lancer Sedan 2012 0.04% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Chrysler Aspen SUV 2009 4.68% Buick Enclave SUV 2012 4.13% BMW M6 Convertible 2010 3.85% Land Rover Range Rover SUV 2012 3.59% Land Rover LR2 SUV 2012 3.31% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 44.04% Dodge Ram Pickup 3500 Quad Cab 2009 28.03% Ford Ranger SuperCab 2011 2.37% Ford F-450 Super Duty Crew Cab 2012 2.31% AM General Hummer SUV 2000 1.85% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Aston Martin V8 Vantage Convertible 2012 24.37% BMW Z4 Convertible 2012 10.29% Volvo 240 Sedan 1993 3.77% Audi TTS Coupe 2012 3.48% Audi V8 Sedan 1994 3.24% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 AM General Hummer SUV 2000 57.62% Bugatti Veyron 16.4 Coupe 2009 17.32% Lamborghini Aventador Coupe 2012 10.77% Ferrari 458 Italia Convertible 2012 3.15% Spyker C8 Coupe 2009 1.56% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Jaguar XK XKR 2012 53.22% Bentley Continental Supersports Conv. Convertible 2012 7.3% Lamborghini Reventon Coupe 2008 4.33% Bugatti Veyron 16.4 Convertible 2009 3.66% Lamborghini Aventador Coupe 2012 3.59% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 89.99% Dodge Caliber Wagon 2012 5.57% Dodge Journey SUV 2012 3.43% Dodge Dakota Crew Cab 2010 0.55% Volvo C30 Hatchback 2012 0.15% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Toyota 4Runner SUV 2012 5.57% Ford F-150 Regular Cab 2007 2.84% Chevrolet Express Cargo Van 2007 2.47% Chevrolet Traverse SUV 2012 2.3% Buick Enclave SUV 2012 2.23% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 63.73% Lamborghini Reventon Coupe 2008 19.4% Bugatti Veyron 16.4 Coupe 2009 10.26% Aston Martin V8 Vantage Convertible 2012 2.62% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.51% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 26.29% AM General Hummer SUV 2000 12.31% Ferrari 458 Italia Convertible 2012 11.35% Acura Integra Type R 2001 7.26% Chevrolet Corvette Convertible 2012 6.06% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Infiniti QX56 SUV 2011 7.22% Suzuki Kizashi Sedan 2012 7.17% BMW M3 Coupe 2012 5.58% Chevrolet Corvette ZR1 2012 5.08% Mercedes-Benz S-Class Sedan 2012 4.58% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Ram C/V Cargo Van Minivan 2012 38.98% Suzuki SX4 Sedan 2012 2.92% Dodge Durango SUV 2012 2.74% Ford Freestar Minivan 2007 2.72% Jeep Grand Cherokee SUV 2012 2.25% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 13.22% Aston Martin Virage Coupe 2012 7.0% BMW M5 Sedan 2010 6.28% Chevrolet Cobalt SS 2010 4.54% Ferrari 458 Italia Coupe 2012 4.52% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Honda Accord Coupe 2012 37.14% Hyundai Tucson SUV 2012 27.86% Eagle Talon Hatchback 1998 2.5% Honda Odyssey Minivan 2012 2.24% Hyundai Elantra Sedan 2007 1.46% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Toyota Camry Sedan 2012 4.1% Suzuki Aerio Sedan 2007 3.79% Toyota Corolla Sedan 2012 3.04% Mitsubishi Lancer Sedan 2012 2.8% Ford Fiesta Sedan 2012 2.73% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Continental Flying Spur Sedan 2007 11.73% Acura Integra Type R 2001 10.54% Eagle Talon Hatchback 1998 8.69% Daewoo Nubira Wagon 2002 5.97% Ford Focus Sedan 2007 5.58% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 14.25% Ford E-Series Wagon Van 2012 7.17% Jeep Patriot SUV 2012 6.53% Buick Rainier SUV 2007 5.69% Ford Ranger SuperCab 2011 5.38% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 97.8% Nissan NV Passenger Van 2012 2.13% Ford F-150 Regular Cab 2007 0.05% Ford F-150 Regular Cab 2012 0.01% Daewoo Nubira Wagon 2002 0.0% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 62.12% Audi S4 Sedan 2007 37.51% Audi S4 Sedan 2012 0.35% Audi S5 Coupe 2012 0.01% Audi S6 Sedan 2011 0.0% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 46.99% Chrysler Town and Country Minivan 2012 13.28% Dodge Durango SUV 2007 10.33% Ford Expedition EL SUV 2009 9.79% Toyota 4Runner SUV 2012 4.79% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 28.03% Audi A5 Coupe 2012 21.7% Audi S4 Sedan 2012 13.33% Audi RS 4 Convertible 2008 12.0% BMW M6 Convertible 2010 9.28% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 37.91% Lamborghini Gallardo LP 570-4 Superleggera 2012 11.77% Buick Regal GS 2012 6.37% Dodge Challenger SRT8 2011 3.55% BMW Z4 Convertible 2012 3.54% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Chevrolet Camaro Convertible 2012 36.2% Bugatti Veyron 16.4 Convertible 2009 23.46% Audi RS 4 Convertible 2008 8.61% Bugatti Veyron 16.4 Coupe 2009 6.37% BMW Z4 Convertible 2012 3.37% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Ford E-Series Wagon Van 2012 27.07% Nissan NV Passenger Van 2012 21.87% Jeep Liberty SUV 2012 6.92% MINI Cooper Roadster Convertible 2012 4.77% Audi R8 Coupe 2012 3.51% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 15.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.78% Ford Expedition EL SUV 2009 4.52% Audi 100 Sedan 1994 3.58% Volvo XC90 SUV 2007 3.1% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.6% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.05% Nissan NV Passenger Van 2012 0.05% Mercedes-Benz S-Class Sedan 2012 0.05% Bentley Continental Supersports Conv. Convertible 2012 0.03% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Bentley Continental Flying Spur Sedan 2007 43.67% Bentley Continental GT Coupe 2007 36.22% Bentley Continental GT Coupe 2012 9.67% Ford GT Coupe 2006 0.97% Spyker C8 Convertible 2009 0.78% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Aston Martin Virage Convertible 2012 13.06% Mitsubishi Lancer Sedan 2012 10.0% Chrysler Crossfire Convertible 2008 4.02% Hyundai Azera Sedan 2012 3.83% MINI Cooper Roadster Convertible 2012 2.7% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 BMW Z4 Convertible 2012 11.76% Chevrolet Traverse SUV 2012 7.76% Toyota Camry Sedan 2012 7.08% Volkswagen Beetle Hatchback 2012 5.54% Acura ZDX Hatchback 2012 4.66% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Toyota Sequoia SUV 2012 23.09% Buick Enclave SUV 2012 13.21% Jeep Liberty SUV 2012 8.04% Toyota 4Runner SUV 2012 7.81% Chevrolet Traverse SUV 2012 4.99% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Cadillac CTS-V Sedan 2012 6.04% Chevrolet Impala Sedan 2007 4.51% Chevrolet Malibu Hybrid Sedan 2010 4.15% Buick Verano Sedan 2012 2.86% Dodge Journey SUV 2012 2.44% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 49.41% Aston Martin V8 Vantage Convertible 2012 8.7% Jaguar XK XKR 2012 7.96% BMW M6 Convertible 2010 5.15% Audi TT Hatchback 2011 4.99% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Lincoln Town Car Sedan 2011 8.34% Chevrolet Silverado 1500 Extended Cab 2012 7.59% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.77% Dodge Dakota Crew Cab 2010 5.12% Isuzu Ascender SUV 2008 3.29% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 GMC Yukon Hybrid SUV 2012 24.89% Toyota 4Runner SUV 2012 13.03% Lamborghini Reventon Coupe 2008 8.37% Dodge Caliber Wagon 2007 6.53% Dodge Durango SUV 2012 4.14% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 11.1% Bentley Continental GT Coupe 2007 8.56% Ford GT Coupe 2006 8.19% Ferrari 458 Italia Coupe 2012 7.65% Audi R8 Coupe 2012 5.04% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 92.42% Dodge Durango SUV 2007 3.98% Dodge Dakota Club Cab 2007 2.52% Dodge Caliber Wagon 2007 0.67% Dodge Ram Pickup 3500 Quad Cab 2009 0.21% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 89.5% Chevrolet Avalanche Crew Cab 2012 1.02% Toyota Camry Sedan 2012 0.8% Dodge Dakota Crew Cab 2010 0.61% Chevrolet Malibu Sedan 2007 0.53% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Plymouth Neon Coupe 1999 51.54% Audi S6 Sedan 2011 10.17% Hyundai Elantra Touring Hatchback 2012 8.34% Suzuki Kizashi Sedan 2012 5.09% GMC Savana Van 2012 2.8% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Audi R8 Coupe 2012 21.47% Tesla Model S Sedan 2012 14.74% Spyker C8 Coupe 2009 6.62% Bentley Continental GT Coupe 2007 5.56% Buick Regal GS 2012 4.68% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 94.97% Land Rover LR2 SUV 2012 1.16% Honda Odyssey Minivan 2012 0.89% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.42% Ford Expedition EL SUV 2009 0.39% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Mercedes-Benz S-Class Sedan 2012 23.32% Bentley Continental Flying Spur Sedan 2007 16.24% BMW 6 Series Convertible 2007 12.65% Bentley Mulsanne Sedan 2011 11.94% Hyundai Genesis Sedan 2012 6.62% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.91% Daewoo Nubira Wagon 2002 0.07% Cadillac Escalade EXT Crew Cab 2007 0.01% Chevrolet Avalanche Crew Cab 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Audi S5 Coupe 2012 10.03% Bentley Continental Flying Spur Sedan 2007 8.48% Audi S4 Sedan 2007 2.99% Ford Mustang Convertible 2007 2.41% Cadillac Escalade EXT Crew Cab 2007 1.99% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Suzuki Kizashi Sedan 2012 15.07% Toyota Corolla Sedan 2012 8.92% Cadillac CTS-V Sedan 2012 7.68% Suzuki SX4 Hatchback 2012 5.42% Dodge Magnum Wagon 2008 5.23% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Jaguar XK XKR 2012 56.86% BMW M3 Coupe 2012 15.24% Audi TT Hatchback 2011 14.61% Porsche Panamera Sedan 2012 9.9% Hyundai Veloster Hatchback 2012 0.86% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Jeep Liberty SUV 2012 4.93% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.49% Jeep Wrangler SUV 2012 4.36% Dodge Charger SRT-8 2009 4.33% HUMMER H3T Crew Cab 2010 2.48% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 34.08% Volvo 240 Sedan 1993 5.35% Audi V8 Sedan 1994 2.52% Chevrolet Monte Carlo Coupe 2007 2.26% Plymouth Neon Coupe 1999 1.66% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Dodge Dakota Crew Cab 2010 5.27% BMW X6 SUV 2012 4.95% HUMMER H2 SUT Crew Cab 2009 4.21% Acura TL Type-S 2008 4.04% GMC Canyon Extended Cab 2012 3.89% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford Ranger SuperCab 2011 12.38% Chevrolet Tahoe Hybrid SUV 2012 7.55% GMC Yukon Hybrid SUV 2012 6.21% GMC Canyon Extended Cab 2012 5.1% Toyota 4Runner SUV 2012 3.69% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 32.0% Toyota Camry Sedan 2012 31.96% Hyundai Sonata Hybrid Sedan 2012 25.58% Hyundai Accent Sedan 2012 2.37% Scion xD Hatchback 2012 1.88% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Aston Martin V8 Vantage Coupe 2012 70.28% Ford GT Coupe 2006 7.45% Honda Accord Sedan 2012 3.77% Dodge Magnum Wagon 2008 2.58% Audi 100 Wagon 1994 1.25% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Dodge Magnum Wagon 2008 12.42% Chevrolet Avalanche Crew Cab 2012 7.32% Dodge Durango SUV 2012 6.27% Infiniti G Coupe IPL 2012 5.42% Dodge Durango SUV 2007 4.34% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 54.4% Dodge Caravan Minivan 1997 30.79% Honda Accord Sedan 2012 9.25% Honda Odyssey Minivan 2012 1.58% Acura TL Type-S 2008 0.64% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Hyundai Veracruz SUV 2012 20.92% Rolls-Royce Phantom Sedan 2012 14.94% Chevrolet Camaro Convertible 2012 6.78% Volkswagen Golf Hatchback 2012 6.23% Lamborghini Reventon Coupe 2008 5.74% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 70.19% Buick Rainier SUV 2007 8.13% Dodge Sprinter Cargo Van 2009 5.71% Nissan NV Passenger Van 2012 1.54% Ford E-Series Wagon Van 2012 1.52% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Lamborghini Reventon Coupe 2008 3.73% Spyker C8 Coupe 2009 3.62% Plymouth Neon Coupe 1999 2.48% Audi S6 Sedan 2011 2.25% Eagle Talon Hatchback 1998 2.21% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Mercedes-Benz Sprinter Van 2012 23.33% Volkswagen Golf Hatchback 1991 3.95% Daewoo Nubira Wagon 2002 3.85% Ram C/V Cargo Van Minivan 2012 3.61% Jeep Liberty SUV 2012 3.53% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 4.25% Chrysler Town and Country Minivan 2012 3.99% GMC Acadia SUV 2012 3.81% Cadillac CTS-V Sedan 2012 3.54% Chevrolet Silverado 1500 Regular Cab 2012 2.62% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Ferrari 458 Italia Convertible 2012 67.39% BMW Z4 Convertible 2012 2.57% Aston Martin V8 Vantage Coupe 2012 2.16% Ferrari FF Coupe 2012 1.99% Hyundai Sonata Sedan 2012 0.97% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Hyundai Veloster Hatchback 2012 13.42% Ford GT Coupe 2006 12.33% Lamborghini Aventador Coupe 2012 8.43% FIAT 500 Convertible 2012 5.31% Ferrari 458 Italia Convertible 2012 3.92% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Rolls-Royce Phantom Sedan 2012 15.56% MINI Cooper Roadster Convertible 2012 9.1% Bentley Arnage Sedan 2009 3.75% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.56% Audi V8 Sedan 1994 2.38% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 7.06% Maybach Landaulet Convertible 2012 6.75% Audi A5 Coupe 2012 5.6% Audi S4 Sedan 2007 3.66% Audi S4 Sedan 2012 3.62% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 38.22% Audi R8 Coupe 2012 9.19% Bentley Continental Supersports Conv. Convertible 2012 6.43% smart fortwo Convertible 2012 5.07% Chevrolet Corvette ZR1 2012 4.83% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 25.79% GMC Acadia SUV 2012 22.58% Audi 100 Wagon 1994 5.61% Eagle Talon Hatchback 1998 5.4% Hyundai Tucson SUV 2012 2.51% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Audi S4 Sedan 2007 25.04% Jaguar XK XKR 2012 19.61% Dodge Challenger SRT8 2011 9.15% BMW M5 Sedan 2010 7.17% Suzuki Kizashi Sedan 2012 4.49% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 54.64% Dodge Caliber Wagon 2012 45.12% Chrysler PT Cruiser Convertible 2008 0.08% Chrysler Crossfire Convertible 2008 0.08% Dodge Journey SUV 2012 0.01% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW 3 Series Wagon 2012 18.12% BMW ActiveHybrid 5 Sedan 2012 8.52% Audi S4 Sedan 2012 5.62% BMW M5 Sedan 2010 4.79% Audi S6 Sedan 2011 3.94% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Porsche Panamera Sedan 2012 31.45% Chevrolet Corvette ZR1 2012 8.87% Bentley Continental GT Coupe 2007 6.48% Chevrolet Corvette Convertible 2012 5.13% Acura TL Type-S 2008 4.7% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 10.48% Audi A5 Coupe 2012 7.04% Honda Accord Sedan 2012 5.96% Lincoln Town Car Sedan 2011 3.12% Audi 100 Wagon 1994 3.02% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 96.13% Dodge Magnum Wagon 2008 0.83% Dodge Journey SUV 2012 0.52% Chevrolet HHR SS 2010 0.26% Chevrolet Sonic Sedan 2012 0.24% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 AM General Hummer SUV 2000 64.29% Jeep Wrangler SUV 2012 6.89% Jeep Compass SUV 2012 4.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.67% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.91% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 14.27% Acura TSX Sedan 2012 6.03% Honda Odyssey Minivan 2012 4.96% Acura TL Type-S 2008 4.75% Audi A5 Coupe 2012 4.13% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Plymouth Neon Coupe 1999 9.69% Chevrolet Silverado 1500 Regular Cab 2012 5.41% Nissan 240SX Coupe 1998 5.36% Audi 100 Sedan 1994 2.43% Chevrolet Cobalt SS 2010 2.07% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 58.74% Chevrolet Tahoe Hybrid SUV 2012 3.56% Suzuki SX4 Hatchback 2012 3.0% Dodge Durango SUV 2012 1.21% Volvo XC90 SUV 2007 1.16% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 BMW 1 Series Coupe 2012 29.57% Dodge Journey SUV 2012 7.78% Suzuki SX4 Hatchback 2012 5.76% BMW 3 Series Sedan 2012 5.63% Chevrolet Sonic Sedan 2012 4.18% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Chevrolet Express Cargo Van 2007 10.95% Jaguar XK XKR 2012 5.23% Chevrolet Corvette ZR1 2012 4.55% Bentley Continental Supersports Conv. Convertible 2012 4.0% Scion xD Hatchback 2012 3.13% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Audi R8 Coupe 2012 11.82% Audi S4 Sedan 2012 9.37% Tesla Model S Sedan 2012 9.06% Audi S6 Sedan 2011 3.78% Mitsubishi Lancer Sedan 2012 3.77% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 McLaren MP4-12C Coupe 2012 65.46% Hyundai Veloster Hatchback 2012 29.81% Aston Martin Virage Coupe 2012 2.01% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.57% Lamborghini Diablo Coupe 2001 0.53% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Audi 100 Wagon 1994 74.59% Mercedes-Benz 300-Class Convertible 1993 4.51% Ford Focus Sedan 2007 3.11% Rolls-Royce Ghost Sedan 2012 2.87% Chevrolet Silverado 1500 Extended Cab 2012 1.83% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 52.37% Dodge Ram Pickup 3500 Quad Cab 2009 5.98% Ford F-150 Regular Cab 2012 3.48% Ford F-150 Regular Cab 2007 2.13% Dodge Dakota Club Cab 2007 2.04% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 7.36% Chevrolet Camaro Convertible 2012 2.38% Chevrolet Cobalt SS 2010 2.28% Chevrolet Malibu Sedan 2007 2.03% Dodge Charger Sedan 2012 1.9% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Chevrolet Tahoe Hybrid SUV 2012 30.3% Chrysler Aspen SUV 2009 23.99% Chevrolet Avalanche Crew Cab 2012 18.22% Chevrolet Silverado 1500 Extended Cab 2012 4.97% Cadillac Escalade EXT Crew Cab 2007 4.89% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 15.92% Hyundai Santa Fe SUV 2012 15.5% Volkswagen Golf Hatchback 1991 12.6% Dodge Durango SUV 2007 12.54% Buick Rainier SUV 2007 7.2% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Aston Martin V8 Vantage Coupe 2012 13.46% Rolls-Royce Phantom Sedan 2012 7.99% Volvo 240 Sedan 1993 7.03% BMW Z4 Convertible 2012 4.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.63% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/1e-3/100e/conf.csv b/cars/lr-investigations/fixed/1e-3/100e/conf.csv new file mode 100644 index 0000000..eb29c7c --- /dev/null +++ b/cars/lr-investigations/fixed/1e-3/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,5,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4167 +Acura RL Sedan 2012,0,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Acura TL Sedan 2012,0,0,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Acura TL Type-S 2008,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.3333 +Acura TSX Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.1429 +Acura Integra Type R 2001,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Acura ZDX Hatchback 2012,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Audi A5 Coupe 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0.375 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0.1818 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Audi S5 Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.125 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.25 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0.25 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.2222 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.2 +BMW Z4 Convertible 2012,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.2 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0.125 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.1 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0.1111 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1429 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.25 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,2,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Journey SUV 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0.1111 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.6667 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1429 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.4 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.0909 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0.2 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3333 +Ford GT Coupe 2006,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.0714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,1,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5385 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0833 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Odyssey Minivan 2012,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Honda Odyssey Minivan 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.3333 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.125 +Hyundai Veracruz SUV 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Hyundai Elantra Sedan 2007,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.25 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.2222 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0.125 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Infiniti G Coupe IPL 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0.25 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0.2 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.2222 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover LR2 SUV 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.1429 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.2222 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1429 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.3636 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0625 +Nissan 240SX Coupe 1998,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Porsche Panamera Sedan 2012,0,0,0,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.0833 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.1111 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.1667 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.25 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0.1667 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0.375 +Toyota Sequoia SUV 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0.2727 +Toyota Camry Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0.1429 +Toyota Corolla Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0.1538 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0.1538 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0.2857 +Volkswagen Beetle Hatchback 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.0909 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0.25 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0.1538 diff --git a/cars/lr-investigations/fixed/1e-3/100e/pred.csv b/cars/lr-investigations/fixed/1e-3/100e/pred.csv new file mode 100644 index 0000000..4905d45 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-3/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Traverse SUV 2012 53.2% Dodge Challenger SRT8 2011 6.65% Suzuki SX4 Hatchback 2012 6.11% Buick Enclave SUV 2012 4.97% BMW X5 SUV 2007 3.81% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Scion xD Hatchback 2012 32.06% Ram C/V Cargo Van Minivan 2012 20.67% Chrysler Town and Country Minivan 2012 10.48% Chevrolet Traverse SUV 2012 5.67% Honda Odyssey Minivan 2012 5.0% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Lamborghini Aventador Coupe 2012 22.04% BMW M6 Convertible 2010 19.25% Audi S5 Coupe 2012 4.98% McLaren MP4-12C Coupe 2012 4.95% Aston Martin V8 Vantage Coupe 2012 3.93% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Buick Rainier SUV 2007 12.72% Ford F-150 Regular Cab 2007 10.9% Chevrolet Impala Sedan 2007 9.31% Volkswagen Golf Hatchback 1991 7.72% Chevrolet Silverado 1500 Extended Cab 2012 6.66% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 GMC Acadia SUV 2012 16.05% Jeep Patriot SUV 2012 9.58% Ford Ranger SuperCab 2011 8.94% Honda Accord Sedan 2012 8.43% Cadillac Escalade EXT Crew Cab 2007 6.68% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 38.8% Audi V8 Sedan 1994 21.22% Mercedes-Benz Sprinter Van 2012 12.55% Audi 100 Wagon 1994 4.86% Buick Rainier SUV 2007 4.15% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 BMW X5 SUV 2007 15.45% Audi S5 Convertible 2012 9.37% Volvo 240 Sedan 1993 8.87% Audi S4 Sedan 2012 7.99% BMW M3 Coupe 2012 7.9% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 26.1% Chevrolet TrailBlazer SS 2009 10.52% Bentley Continental GT Coupe 2007 10.47% Buick Rainier SUV 2007 6.92% Hyundai Tucson SUV 2012 5.04% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Dodge Durango SUV 2007 25.61% HUMMER H2 SUT Crew Cab 2009 21.59% Cadillac Escalade EXT Crew Cab 2007 9.68% GMC Yukon Hybrid SUV 2012 7.79% Dodge Dakota Club Cab 2007 4.84% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 66.05% Ferrari 458 Italia Coupe 2012 6.59% Cadillac CTS-V Sedan 2012 4.82% Mercedes-Benz SL-Class Coupe 2009 2.86% GMC Yukon Hybrid SUV 2012 1.71% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 BMW M5 Sedan 2010 19.07% Audi S4 Sedan 2007 13.27% Mitsubishi Lancer Sedan 2012 11.77% Chrysler Town and Country Minivan 2012 9.16% BMW Z4 Convertible 2012 8.66% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 53.43% Acura TL Sedan 2012 11.38% Hyundai Tucson SUV 2012 5.59% Nissan 240SX Coupe 1998 4.2% Hyundai Genesis Sedan 2012 3.92% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Sonata Sedan 2012 22.2% Buick Enclave SUV 2012 21.37% Cadillac Escalade EXT Crew Cab 2007 13.9% Ford F-450 Super Duty Crew Cab 2012 9.87% Lincoln Town Car Sedan 2011 3.48% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Ford F-150 Regular Cab 2012 21.63% GMC Canyon Extended Cab 2012 16.25% Lincoln Town Car Sedan 2011 11.04% Mercedes-Benz C-Class Sedan 2012 7.22% Hyundai Veracruz SUV 2012 5.89% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Honda Accord Sedan 2012 69.21% Ford Freestar Minivan 2007 17.26% Lincoln Town Car Sedan 2011 4.06% Chevrolet Traverse SUV 2012 3.28% Chevrolet Impala Sedan 2007 1.74% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 95.98% Chevrolet Silverado 2500HD Regular Cab 2012 3.47% Chevrolet Express Cargo Van 2007 0.31% HUMMER H3T Crew Cab 2010 0.07% Dodge Dakota Club Cab 2007 0.07% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Cadillac Escalade EXT Crew Cab 2007 47.85% Jeep Wrangler SUV 2012 10.27% Ford Edge SUV 2012 5.17% Nissan Juke Hatchback 2012 3.87% Chevrolet TrailBlazer SS 2009 2.65% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Chrysler Aspen SUV 2009 52.48% Chrysler PT Cruiser Convertible 2008 16.05% Dodge Caliber Wagon 2012 5.93% GMC Acadia SUV 2012 5.46% Dodge Durango SUV 2007 3.85% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 55.21% Rolls-Royce Phantom Drophead Coupe Convertible 2012 9.53% Audi S4 Sedan 2007 7.41% Audi TT Hatchback 2011 4.25% Hyundai Sonata Hybrid Sedan 2012 3.98% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 98.18% Chevrolet Camaro Convertible 2012 0.38% Ferrari 458 Italia Convertible 2012 0.29% Bentley Continental Supersports Conv. Convertible 2012 0.16% BMW Z4 Convertible 2012 0.14% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Chevrolet Malibu Hybrid Sedan 2010 22.99% Audi S5 Coupe 2012 20.99% Audi A5 Coupe 2012 6.51% Chrysler 300 SRT-8 2010 4.99% BMW 6 Series Convertible 2007 4.21% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Mercedes-Benz C-Class Sedan 2012 72.14% Acura ZDX Hatchback 2012 3.46% Mercedes-Benz E-Class Sedan 2012 2.74% Audi 100 Wagon 1994 2.13% GMC Yukon Hybrid SUV 2012 1.97% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Acura TL Type-S 2008 33.57% Acura RL Sedan 2012 7.59% Chrysler Sebring Convertible 2010 7.18% Lincoln Town Car Sedan 2011 6.92% Plymouth Neon Coupe 1999 4.22% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Suzuki Aerio Sedan 2007 73.85% Mercedes-Benz S-Class Sedan 2012 3.2% Mercedes-Benz C-Class Sedan 2012 2.62% Audi S5 Convertible 2012 2.33% Suzuki SX4 Sedan 2012 2.16% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi S4 Sedan 2012 52.56% Audi TT RS Coupe 2012 19.43% Audi A5 Coupe 2012 8.59% Audi TT Hatchback 2011 5.41% Audi S5 Coupe 2012 2.23% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 95.11% BMW ActiveHybrid 5 Sedan 2012 1.05% BMW M5 Sedan 2010 0.97% Acura TSX Sedan 2012 0.53% Suzuki SX4 Sedan 2012 0.33% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 Buick Enclave SUV 2012 53.8% Volvo XC90 SUV 2007 16.03% BMW X5 SUV 2007 11.6% Infiniti QX56 SUV 2011 6.78% GMC Acadia SUV 2012 5.74% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 40.84% Chevrolet Corvette ZR1 2012 26.36% Audi TTS Coupe 2012 17.65% Ferrari FF Coupe 2012 8.91% McLaren MP4-12C Coupe 2012 4.82% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 GMC Acadia SUV 2012 62.59% Honda Accord Coupe 2012 9.72% Audi A5 Coupe 2012 7.64% Chevrolet Malibu Sedan 2007 3.99% Honda Accord Sedan 2012 2.92% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Acura Integra Type R 2001 17.36% Suzuki Aerio Sedan 2007 11.11% BMW M5 Sedan 2010 10.76% Daewoo Nubira Wagon 2002 8.87% Chrysler Town and Country Minivan 2012 7.04% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 40.12% Audi S6 Sedan 2011 33.36% Audi TT Hatchback 2011 9.84% Audi S4 Sedan 2012 6.7% Audi RS 4 Convertible 2008 4.17% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 18.9% Cadillac CTS-V Sedan 2012 18.69% Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.41% Bentley Continental Flying Spur Sedan 2007 10.2% Mercedes-Benz S-Class Sedan 2012 6.32% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Ford F-450 Super Duty Crew Cab 2012 41.14% Chevrolet Silverado 2500HD Regular Cab 2012 16.75% GMC Canyon Extended Cab 2012 15.83% Chevrolet Silverado 1500 Regular Cab 2012 11.97% Chevrolet Silverado 1500 Extended Cab 2012 11.69% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Honda Accord Sedan 2012 98.51% Dodge Caravan Minivan 1997 1.11% Honda Odyssey Minivan 2012 0.13% Hyundai Elantra Sedan 2007 0.1% Hyundai Elantra Touring Hatchback 2012 0.06% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 54.99% Cadillac CTS-V Sedan 2012 28.29% BMW 1 Series Coupe 2012 7.62% Spyker C8 Convertible 2009 2.42% Bugatti Veyron 16.4 Coupe 2009 1.29% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Chevrolet Traverse SUV 2012 51.09% Dodge Durango SUV 2007 13.21% Toyota 4Runner SUV 2012 10.15% Dodge Durango SUV 2012 6.99% Ford F-150 Regular Cab 2012 6.22% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Jaguar XK XKR 2012 51.57% Chrysler Sebring Convertible 2010 5.93% Hyundai Genesis Sedan 2012 4.4% Aston Martin V8 Vantage Coupe 2012 4.11% Ford Expedition EL SUV 2009 3.16% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 36.63% Dodge Durango SUV 2007 27.44% Ford Ranger SuperCab 2011 17.74% Dodge Durango SUV 2012 5.86% Audi V8 Sedan 1994 2.29% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Geo Metro Convertible 1993 47.09% GMC Canyon Extended Cab 2012 17.06% Dodge Dakota Crew Cab 2010 11.57% Dodge Journey SUV 2012 4.85% BMW M6 Convertible 2010 1.79% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 51.36% Dodge Caliber Wagon 2007 31.52% Dodge Magnum Wagon 2008 2.99% BMW X6 SUV 2012 2.04% Chevrolet HHR SS 2010 1.57% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 87.92% Infiniti G Coupe IPL 2012 7.13% Spyker C8 Convertible 2009 1.79% Ferrari FF Coupe 2012 1.15% Bentley Continental GT Coupe 2007 0.52% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Lamborghini Aventador Coupe 2012 87.39% Aston Martin Virage Coupe 2012 6.31% Ferrari California Convertible 2012 1.77% Aston Martin V8 Vantage Coupe 2012 0.81% Chevrolet Camaro Convertible 2012 0.78% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Porsche Panamera Sedan 2012 56.19% Hyundai Veloster Hatchback 2012 32.47% Audi RS 4 Convertible 2008 7.21% Dodge Charger SRT-8 2009 0.98% Audi S4 Sedan 2007 0.76% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Chevrolet TrailBlazer SS 2009 88.4% Hyundai Veracruz SUV 2012 6.4% Chevrolet Silverado 2500HD Regular Cab 2012 2.51% GMC Canyon Extended Cab 2012 0.42% Volvo 240 Sedan 1993 0.32% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 22.23% Lincoln Town Car Sedan 2011 12.46% Cadillac Escalade EXT Crew Cab 2007 7.64% Buick Enclave SUV 2012 6.86% Chrysler Town and Country Minivan 2012 6.47% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 69.79% Buick Verano Sedan 2012 17.75% Aston Martin Virage Convertible 2012 5.9% Hyundai Veracruz SUV 2012 1.04% Mercedes-Benz S-Class Sedan 2012 0.95% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 38.17% Dodge Durango SUV 2007 20.73% Dodge Dakota Club Cab 2007 14.46% Dodge Caliber Wagon 2012 4.59% Chrysler PT Cruiser Convertible 2008 3.91% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 77.25% Nissan 240SX Coupe 1998 11.47% Mercedes-Benz S-Class Sedan 2012 3.33% Mercedes-Benz SL-Class Coupe 2009 2.16% BMW 3 Series Sedan 2012 1.7% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 34.47% Aston Martin V8 Vantage Coupe 2012 19.23% BMW X6 SUV 2012 11.56% Dodge Challenger SRT8 2011 5.88% Ford Mustang Convertible 2007 3.72% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 64.3% Ford Fiesta Sedan 2012 14.26% Acura TSX Sedan 2012 3.33% Acura TL Sedan 2012 2.31% Hyundai Sonata Hybrid Sedan 2012 2.04% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Dodge Dakota Club Cab 2007 52.79% Jeep Patriot SUV 2012 23.2% Dodge Ram Pickup 3500 Quad Cab 2009 12.43% Ford F-150 Regular Cab 2007 8.59% Chevrolet Silverado 1500 Extended Cab 2012 1.15% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 smart fortwo Convertible 2012 42.18% Ferrari California Convertible 2012 8.4% Lamborghini Reventon Coupe 2008 8.04% Ferrari 458 Italia Coupe 2012 5.5% Chrysler PT Cruiser Convertible 2008 4.96% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 99.1% Dodge Ram Pickup 3500 Quad Cab 2009 0.41% Chevrolet Silverado 1500 Extended Cab 2012 0.26% Dodge Dakota Club Cab 2007 0.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.05% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 55.22% Volkswagen Golf Hatchback 1991 4.6% Eagle Talon Hatchback 1998 3.91% Cadillac CTS-V Sedan 2012 3.34% Suzuki SX4 Sedan 2012 3.03% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Bentley Arnage Sedan 2009 29.71% Mercedes-Benz S-Class Sedan 2012 11.28% Bentley Mulsanne Sedan 2011 9.35% Toyota 4Runner SUV 2012 8.39% Cadillac CTS-V Sedan 2012 5.41% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.92% Chevrolet Express Cargo Van 2007 0.08% Chevrolet Express Van 2007 0.0% Audi 100 Sedan 1994 0.0% Buick Enclave SUV 2012 0.0% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Chevrolet Silverado 1500 Extended Cab 2012 36.6% Chevrolet TrailBlazer SS 2009 19.2% Audi 100 Sedan 1994 18.67% Chevrolet Silverado 1500 Regular Cab 2012 2.48% Ford Ranger SuperCab 2011 2.14% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Audi TT RS Coupe 2012 29.96% Chevrolet HHR SS 2010 18.72% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 13.91% Nissan 240SX Coupe 1998 4.14% Ram C/V Cargo Van Minivan 2012 3.78% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 23.18% Ford Ranger SuperCab 2011 20.0% Nissan 240SX Coupe 1998 10.55% Dodge Dakota Crew Cab 2010 5.91% Honda Accord Coupe 2012 5.42% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Bentley Continental Supersports Conv. Convertible 2012 14.84% BMW 6 Series Convertible 2007 10.31% Cadillac CTS-V Sedan 2012 9.83% Chevrolet Camaro Convertible 2012 8.72% Mercedes-Benz S-Class Sedan 2012 8.18% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Mercedes-Benz SL-Class Coupe 2009 41.69% Spyker C8 Convertible 2009 11.17% Aston Martin V8 Vantage Convertible 2012 8.88% Suzuki Kizashi Sedan 2012 6.0% BMW 3 Series Wagon 2012 3.3% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Dodge Journey SUV 2012 92.74% Dodge Caliber Wagon 2012 2.92% Chevrolet Malibu Hybrid Sedan 2010 1.13% Acura RL Sedan 2012 0.82% Cadillac SRX SUV 2012 0.54% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Fisker Karma Sedan 2012 32.87% Mitsubishi Lancer Sedan 2012 20.43% Bentley Mulsanne Sedan 2011 6.66% Cadillac CTS-V Sedan 2012 6.46% Audi S4 Sedan 2007 5.81% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Lamborghini Aventador Coupe 2012 74.32% Aston Martin V8 Vantage Coupe 2012 9.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.45% MINI Cooper Roadster Convertible 2012 5.36% Audi TT Hatchback 2011 1.36% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 88.02% Aston Martin V8 Vantage Coupe 2012 6.74% Audi TT RS Coupe 2012 1.5% Scion xD Hatchback 2012 1.24% Lamborghini Aventador Coupe 2012 0.47% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Chrysler Sebring Convertible 2010 26.59% Suzuki Kizashi Sedan 2012 25.92% Suzuki Aerio Sedan 2007 15.99% Chevrolet Monte Carlo Coupe 2007 6.42% BMW M5 Sedan 2010 4.17% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Dodge Dakota Crew Cab 2010 27.5% Audi S4 Sedan 2007 23.44% Suzuki SX4 Hatchback 2012 11.54% Audi RS 4 Convertible 2008 6.23% Suzuki Aerio Sedan 2007 4.36% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 BMW 6 Series Convertible 2007 47.11% Audi TT RS Coupe 2012 7.12% Nissan Juke Hatchback 2012 4.14% Volvo XC90 SUV 2007 3.87% Hyundai Elantra Touring Hatchback 2012 3.28% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi RS 4 Convertible 2008 76.69% Audi S6 Sedan 2011 16.15% Audi S5 Coupe 2012 3.47% Porsche Panamera Sedan 2012 1.95% Audi S5 Convertible 2012 0.4% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Cadillac SRX SUV 2012 31.55% Hyundai Genesis Sedan 2012 12.89% Mercedes-Benz S-Class Sedan 2012 11.14% Chrysler Town and Country Minivan 2012 7.69% Mercedes-Benz E-Class Sedan 2012 6.84% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 69.84% GMC Terrain SUV 2012 4.42% Cadillac CTS-V Sedan 2012 4.18% Chevrolet Camaro Convertible 2012 3.84% Bentley Continental GT Coupe 2007 2.83% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 45.47% Bugatti Veyron 16.4 Coupe 2009 6.31% Ferrari 458 Italia Coupe 2012 5.81% Buick Verano Sedan 2012 5.3% Porsche Panamera Sedan 2012 4.12% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Chevrolet Traverse SUV 2012 60.38% Acura ZDX Hatchback 2012 11.75% Acura TSX Sedan 2012 8.24% Lincoln Town Car Sedan 2011 4.49% Hyundai Veracruz SUV 2012 2.93% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Hyundai Genesis Sedan 2012 60.1% Geo Metro Convertible 1993 21.39% Audi 100 Wagon 1994 5.53% Hyundai Sonata Hybrid Sedan 2012 4.37% Land Rover Range Rover SUV 2012 1.4% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet TrailBlazer SS 2009 44.03% Volvo XC90 SUV 2007 32.33% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.86% Toyota Sequoia SUV 2012 4.85% Audi V8 Sedan 1994 1.87% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Mercedes-Benz SL-Class Coupe 2009 49.82% McLaren MP4-12C Coupe 2012 18.91% Lamborghini Aventador Coupe 2012 7.53% Dodge Sprinter Cargo Van 2009 4.55% Hyundai Veracruz SUV 2012 3.33% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 11.21% Maybach Landaulet Convertible 2012 10.5% Lamborghini Reventon Coupe 2008 7.64% Land Rover Range Rover SUV 2012 4.78% Mercedes-Benz S-Class Sedan 2012 4.27% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 BMW 1 Series Coupe 2012 22.63% Hyundai Elantra Touring Hatchback 2012 10.16% Aston Martin Virage Coupe 2012 10.01% Dodge Charger SRT-8 2009 8.28% Chevrolet HHR SS 2010 7.85% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Volkswagen Beetle Hatchback 2012 63.89% Eagle Talon Hatchback 1998 10.44% Dodge Magnum Wagon 2008 4.64% Bentley Continental GT Coupe 2012 3.77% Plymouth Neon Coupe 1999 3.75% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 73.92% Audi 100 Sedan 1994 24.52% Audi 100 Wagon 1994 1.44% Audi V8 Sedan 1994 0.05% Ford Ranger SuperCab 2011 0.02% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Hyundai Elantra Touring Hatchback 2012 32.6% Lincoln Town Car Sedan 2011 32.15% Hyundai Sonata Hybrid Sedan 2012 7.9% Chevrolet Malibu Sedan 2007 7.6% Hyundai Elantra Sedan 2007 4.86% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 79.19% Bentley Arnage Sedan 2009 8.98% BMW X3 SUV 2012 4.67% Audi S5 Coupe 2012 1.99% Bentley Continental GT Coupe 2007 1.6% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chevrolet TrailBlazer SS 2009 77.37% Buick Verano Sedan 2012 9.11% Infiniti G Coupe IPL 2012 3.13% Hyundai Veracruz SUV 2012 1.26% Chevrolet Camaro Convertible 2012 1.01% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 89.83% Chevrolet Tahoe Hybrid SUV 2012 4.83% Chrysler Aspen SUV 2009 0.87% Ford E-Series Wagon Van 2012 0.53% Cadillac Escalade EXT Crew Cab 2007 0.4% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 95.43% BMW ActiveHybrid 5 Sedan 2012 3.87% Acura TL Type-S 2008 0.16% Porsche Panamera Sedan 2012 0.15% Hyundai Genesis Sedan 2012 0.11% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Cadillac SRX SUV 2012 30.89% BMW X5 SUV 2007 30.68% Honda Accord Sedan 2012 12.88% BMW X3 SUV 2012 8.45% Acura TL Sedan 2012 6.21% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 29.12% Dodge Challenger SRT8 2011 9.66% Cadillac CTS-V Sedan 2012 7.04% Infiniti G Coupe IPL 2012 2.87% BMW M6 Convertible 2010 2.38% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 30.17% McLaren MP4-12C Coupe 2012 26.03% BMW 1 Series Convertible 2012 20.42% Audi TT Hatchback 2011 6.42% Ford GT Coupe 2006 4.84% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Suzuki SX4 Sedan 2012 49.8% Hyundai Azera Sedan 2012 14.56% Bugatti Veyron 16.4 Coupe 2009 6.9% Bentley Arnage Sedan 2009 4.64% Acura ZDX Hatchback 2012 4.53% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Audi V8 Sedan 1994 81.77% Mercedes-Benz 300-Class Convertible 1993 6.31% Lamborghini Reventon Coupe 2008 2.34% Geo Metro Convertible 1993 1.16% Spyker C8 Convertible 2009 1.14% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 80.19% Daewoo Nubira Wagon 2002 9.38% Ford GT Coupe 2006 3.85% Scion xD Hatchback 2012 0.65% Lamborghini Diablo Coupe 2001 0.53% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Jeep Patriot SUV 2012 39.49% Jeep Grand Cherokee SUV 2012 30.33% Dodge Ram Pickup 3500 Crew Cab 2010 10.55% Jeep Wrangler SUV 2012 9.62% Cadillac Escalade EXT Crew Cab 2007 2.4% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Audi RS 4 Convertible 2008 40.27% Tesla Model S Sedan 2012 34.34% Fisker Karma Sedan 2012 6.21% Ferrari FF Coupe 2012 5.43% Audi TTS Coupe 2012 4.86% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Bugatti Veyron 16.4 Coupe 2009 64.74% FIAT 500 Abarth 2012 7.73% Lamborghini Aventador Coupe 2012 5.88% Aston Martin V8 Vantage Convertible 2012 3.39% Chevrolet Corvette ZR1 2012 1.22% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Plymouth Neon Coupe 1999 36.57% Audi 100 Sedan 1994 29.54% Mercedes-Benz 300-Class Convertible 1993 12.34% Hyundai Sonata Sedan 2012 7.56% Audi 100 Wagon 1994 5.03% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 93.11% Dodge Durango SUV 2007 1.5% Chevrolet Silverado 1500 Regular Cab 2012 1.05% Jeep Patriot SUV 2012 0.7% Hyundai Veracruz SUV 2012 0.56% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 59.65% BMW Z4 Convertible 2012 20.89% Hyundai Azera Sedan 2012 5.7% Honda Odyssey Minivan 2007 1.11% Suzuki SX4 Sedan 2012 0.92% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 40.98% Lamborghini Gallardo LP 570-4 Superleggera 2012 35.05% Lamborghini Diablo Coupe 2001 22.69% Bugatti Veyron 16.4 Coupe 2009 0.56% Ferrari 458 Italia Convertible 2012 0.47% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 BMW M6 Convertible 2010 79.48% Audi RS 4 Convertible 2008 4.56% Chevrolet Malibu Sedan 2007 3.1% Infiniti G Coupe IPL 2012 2.7% Cadillac Escalade EXT Crew Cab 2007 1.69% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 BMW 1 Series Convertible 2012 41.71% BMW 6 Series Convertible 2007 24.51% BMW M3 Coupe 2012 9.5% Maybach Landaulet Convertible 2012 2.41% Mercedes-Benz S-Class Sedan 2012 2.37% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Dakota Club Cab 2007 56.6% Dodge Dakota Crew Cab 2010 7.38% Isuzu Ascender SUV 2008 6.03% Chevrolet Silverado 1500 Regular Cab 2012 5.97% GMC Canyon Extended Cab 2012 3.98% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 33.56% Acura ZDX Hatchback 2012 19.89% Ford Focus Sedan 2007 13.13% BMW M5 Sedan 2010 12.34% Buick Verano Sedan 2012 4.84% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chrysler 300 SRT-8 2010 43.21% BMW 6 Series Convertible 2007 9.09% Porsche Panamera Sedan 2012 7.77% Mercedes-Benz C-Class Sedan 2012 7.37% Bentley Arnage Sedan 2009 7.23% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2007 41.34% Chevrolet Silverado 1500 Extended Cab 2012 29.07% HUMMER H2 SUT Crew Cab 2009 18.51% Ford Ranger SuperCab 2011 4.95% Ford F-150 Regular Cab 2012 1.91% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Mercedes-Benz S-Class Sedan 2012 21.94% Infiniti G Coupe IPL 2012 21.7% Mercedes-Benz 300-Class Convertible 1993 6.77% BMW M6 Convertible 2010 5.94% Audi RS 4 Convertible 2008 5.84% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Chevrolet Malibu Sedan 2007 66.77% Honda Accord Coupe 2012 5.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.05% Dodge Magnum Wagon 2008 3.52% Audi S4 Sedan 2007 2.67% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 85.74% Volvo 240 Sedan 1993 5.47% Audi 100 Sedan 1994 3.41% Dodge Ram Pickup 3500 Crew Cab 2010 2.09% Eagle Talon Hatchback 1998 0.6% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 62.79% McLaren MP4-12C Coupe 2012 31.12% Bentley Continental Supersports Conv. Convertible 2012 1.03% Lamborghini Aventador Coupe 2012 0.96% Chrysler 300 SRT-8 2010 0.85% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 20.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 14.05% Audi V8 Sedan 1994 11.42% Ford F-150 Regular Cab 2007 6.34% Chrysler Town and Country Minivan 2012 5.85% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 98.97% Cadillac CTS-V Sedan 2012 0.39% Audi TT Hatchback 2011 0.25% Chevrolet Corvette Convertible 2012 0.14% BMW M5 Sedan 2010 0.06% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 75.1% Dodge Sprinter Cargo Van 2009 22.84% Chevrolet Cobalt SS 2010 1.07% Dodge Magnum Wagon 2008 0.23% BMW X6 SUV 2012 0.09% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Lincoln Town Car Sedan 2011 77.05% Daewoo Nubira Wagon 2002 8.56% Chevrolet Impala Sedan 2007 4.23% Chevrolet Malibu Sedan 2007 1.86% Acura TSX Sedan 2012 1.22% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 92.89% Maybach Landaulet Convertible 2012 2.84% Bentley Continental Supersports Conv. Convertible 2012 1.8% BMW 6 Series Convertible 2007 0.53% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.28% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Acura ZDX Hatchback 2012 19.84% Audi S6 Sedan 2011 14.2% Hyundai Elantra Touring Hatchback 2012 11.61% Chevrolet Monte Carlo Coupe 2007 8.07% Volvo XC90 SUV 2007 6.32% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 21.17% Lamborghini Diablo Coupe 2001 21.09% Ferrari 458 Italia Convertible 2012 18.96% Dodge Challenger SRT8 2011 14.29% McLaren MP4-12C Coupe 2012 5.53% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Hyundai Genesis Sedan 2012 33.63% Mitsubishi Lancer Sedan 2012 23.09% Honda Accord Coupe 2012 21.3% Mercedes-Benz C-Class Sedan 2012 8.74% Acura RL Sedan 2012 2.39% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 96.75% Dodge Ram Pickup 3500 Quad Cab 2009 1.06% Ram C/V Cargo Van Minivan 2012 0.62% Lincoln Town Car Sedan 2011 0.5% Nissan NV Passenger Van 2012 0.26% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 51.82% Isuzu Ascender SUV 2008 21.21% Ford F-450 Super Duty Crew Cab 2012 14.27% Dodge Ram Pickup 3500 Crew Cab 2010 3.57% Chevrolet Silverado 1500 Regular Cab 2012 2.96% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 69.98% Audi S5 Coupe 2012 7.3% Spyker C8 Convertible 2009 5.8% Spyker C8 Coupe 2009 3.67% smart fortwo Convertible 2012 3.2% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 BMW M5 Sedan 2010 57.12% FIAT 500 Abarth 2012 15.1% Chrysler PT Cruiser Convertible 2008 8.16% Infiniti G Coupe IPL 2012 6.52% Tesla Model S Sedan 2012 3.5% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Nissan Leaf Hatchback 2012 33.13% Chrysler PT Cruiser Convertible 2008 11.29% Scion xD Hatchback 2012 8.49% Porsche Panamera Sedan 2012 5.65% Daewoo Nubira Wagon 2002 5.24% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Honda Accord Sedan 2012 94.38% Chevrolet Silverado 1500 Regular Cab 2012 1.79% Chevrolet Impala Sedan 2007 1.16% Chevrolet Malibu Sedan 2007 0.73% Ford Focus Sedan 2007 0.67% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Hyundai Veloster Hatchback 2012 0.0% smart fortwo Convertible 2012 0.0% Scion xD Hatchback 2012 0.0% AM General Hummer SUV 2000 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Audi S4 Sedan 2007 39.4% Volkswagen Golf Hatchback 1991 27.55% Volvo 240 Sedan 1993 6.4% Mitsubishi Lancer Sedan 2012 5.96% Audi V8 Sedan 1994 3.66% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Suzuki SX4 Sedan 2012 74.86% Bentley Arnage Sedan 2009 4.03% Nissan Juke Hatchback 2012 3.41% BMW M3 Coupe 2012 2.52% Spyker C8 Coupe 2009 2.23% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 80.56% Ford E-Series Wagon Van 2012 3.71% GMC Acadia SUV 2012 3.44% Land Rover Range Rover SUV 2012 3.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.85% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Lincoln Town Car Sedan 2011 78.65% Ram C/V Cargo Van Minivan 2012 3.31% Chevrolet Traverse SUV 2012 2.87% Nissan NV Passenger Van 2012 1.92% Chevrolet Malibu Sedan 2007 1.74% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Cadillac Escalade EXT Crew Cab 2007 68.15% Dodge Durango SUV 2007 9.06% Rolls-Royce Phantom Sedan 2012 3.42% Acura TL Sedan 2012 1.99% Honda Odyssey Minivan 2012 1.73% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 99.06% Chevrolet Malibu Sedan 2007 0.81% Hyundai Elantra Sedan 2007 0.03% Acura TSX Sedan 2012 0.02% Chevrolet Monte Carlo Coupe 2007 0.02% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 34.56% Bentley Continental GT Coupe 2007 33.33% Plymouth Neon Coupe 1999 13.16% Chevrolet Corvette ZR1 2012 4.71% Ferrari 458 Italia Coupe 2012 3.38% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Bentley Continental Supersports Conv. Convertible 2012 98.25% Audi R8 Coupe 2012 0.81% Rolls-Royce Ghost Sedan 2012 0.18% Bugatti Veyron 16.4 Coupe 2009 0.17% Chrysler 300 SRT-8 2010 0.14% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Acura Integra Type R 2001 28.47% Scion xD Hatchback 2012 27.21% Hyundai Veloster Hatchback 2012 9.05% Chevrolet Corvette Convertible 2012 6.88% Audi RS 4 Convertible 2008 4.79% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 45.67% Bentley Arnage Sedan 2009 9.18% Chevrolet Sonic Sedan 2012 8.79% Dodge Durango SUV 2012 7.6% Jeep Liberty SUV 2012 4.64% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Volvo 240 Sedan 1993 24.58% Lincoln Town Car Sedan 2011 17.39% Buick Rainier SUV 2007 9.45% Ford Ranger SuperCab 2011 6.87% Mazda Tribute SUV 2011 4.75% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Dodge Dakota Crew Cab 2010 68.57% Suzuki SX4 Sedan 2012 7.21% Dodge Durango SUV 2007 4.91% Dodge Caliber Wagon 2007 2.83% Dodge Journey SUV 2012 2.69% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 56.85% Acura Integra Type R 2001 42.07% Chevrolet Cobalt SS 2010 0.56% Ford Mustang Convertible 2007 0.31% Spyker C8 Coupe 2009 0.06% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Acura TL Type-S 2008 90.45% Acura RL Sedan 2012 4.17% Honda Odyssey Minivan 2007 2.88% Eagle Talon Hatchback 1998 0.73% Porsche Panamera Sedan 2012 0.3% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Bugatti Veyron 16.4 Convertible 2009 48.48% Rolls-Royce Phantom Drophead Coupe Convertible 2012 42.28% Lamborghini Aventador Coupe 2012 1.6% Infiniti G Coupe IPL 2012 1.47% Hyundai Sonata Hybrid Sedan 2012 1.4% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 BMW M5 Sedan 2010 52.48% BMW 6 Series Convertible 2007 13.1% Chevrolet Corvette ZR1 2012 11.67% Spyker C8 Convertible 2009 3.98% Aston Martin Virage Coupe 2012 2.9% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 HUMMER H3T Crew Cab 2010 38.94% HUMMER H2 SUT Crew Cab 2009 17.57% McLaren MP4-12C Coupe 2012 7.9% Mercedes-Benz SL-Class Coupe 2009 5.21% Chevrolet Silverado 1500 Regular Cab 2012 2.49% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 87.13% Jeep Wrangler SUV 2012 5.58% Nissan NV Passenger Van 2012 2.9% HUMMER H2 SUT Crew Cab 2009 2.62% Ford E-Series Wagon Van 2012 0.62% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Ford Mustang Convertible 2007 34.74% Cadillac CTS-V Sedan 2012 31.15% Chevrolet HHR SS 2010 4.81% Chevrolet Camaro Convertible 2012 4.65% Audi S5 Convertible 2012 3.09% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Nissan NV Passenger Van 2012 14.55% BMW ActiveHybrid 5 Sedan 2012 9.28% Hyundai Elantra Sedan 2007 7.04% Dodge Dakota Crew Cab 2010 5.34% Lincoln Town Car Sedan 2011 4.41% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 99.79% Dodge Journey SUV 2012 0.11% Dodge Charger Sedan 2012 0.05% Dodge Caliber Wagon 2007 0.04% Audi S4 Sedan 2012 0.0% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Hyundai Veracruz SUV 2012 43.18% GMC Terrain SUV 2012 16.25% Toyota Sequoia SUV 2012 9.46% BMW X5 SUV 2007 4.27% Ford Edge SUV 2012 3.73% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Infiniti QX56 SUV 2011 78.74% Audi 100 Wagon 1994 8.27% Tesla Model S Sedan 2012 3.46% Bentley Mulsanne Sedan 2011 2.48% Audi V8 Sedan 1994 1.73% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 72.28% GMC Savana Van 2012 24.39% Chevrolet Express Van 2007 2.0% Isuzu Ascender SUV 2008 0.7% Plymouth Neon Coupe 1999 0.34% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Nissan Juke Hatchback 2012 63.42% Dodge Ram Pickup 3500 Quad Cab 2009 17.14% BMW X6 SUV 2012 8.03% Ford Ranger SuperCab 2011 4.05% Audi TT RS Coupe 2012 2.62% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Cadillac Escalade EXT Crew Cab 2007 69.8% GMC Savana Van 2012 25.95% Chevrolet Silverado 2500HD Regular Cab 2012 0.62% Toyota 4Runner SUV 2012 0.53% Land Rover Range Rover SUV 2012 0.28% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 47.62% Ferrari California Convertible 2012 30.95% Aston Martin V8 Vantage Convertible 2012 4.33% BMW 3 Series Sedan 2012 3.73% BMW M3 Coupe 2012 1.56% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Volkswagen Golf Hatchback 1991 71.8% Geo Metro Convertible 1993 8.74% Mercedes-Benz 300-Class Convertible 1993 6.21% Chrysler Crossfire Convertible 2008 5.84% Audi 100 Wagon 1994 2.0% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 95.85% Lincoln Town Car Sedan 2011 0.91% GMC Canyon Extended Cab 2012 0.65% Hyundai Elantra Touring Hatchback 2012 0.61% Audi S6 Sedan 2011 0.57% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 BMW M5 Sedan 2010 9.35% Hyundai Genesis Sedan 2012 8.07% Audi S5 Coupe 2012 6.71% Hyundai Azera Sedan 2012 5.9% Mercedes-Benz SL-Class Coupe 2009 5.15% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Hyundai Elantra Touring Hatchback 2012 64.1% Daewoo Nubira Wagon 2002 31.58% Cadillac Escalade EXT Crew Cab 2007 0.82% Porsche Panamera Sedan 2012 0.57% Nissan NV Passenger Van 2012 0.28% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Rolls-Royce Ghost Sedan 2012 51.7% Rolls-Royce Phantom Sedan 2012 20.61% Lamborghini Aventador Coupe 2012 6.98% Maybach Landaulet Convertible 2012 5.75% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.04% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Chevrolet TrailBlazer SS 2009 16.07% Dodge Charger SRT-8 2009 7.71% Buick Rainier SUV 2007 6.4% Chevrolet Tahoe Hybrid SUV 2012 5.9% Toyota Sequoia SUV 2012 5.13% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Acura TL Type-S 2008 16.97% BMW ActiveHybrid 5 Sedan 2012 16.76% Infiniti G Coupe IPL 2012 11.45% Hyundai Sonata Hybrid Sedan 2012 9.81% Volkswagen Golf Hatchback 2012 8.76% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 68.32% Chevrolet Silverado 2500HD Regular Cab 2012 13.05% GMC Canyon Extended Cab 2012 7.5% Ford F-150 Regular Cab 2007 2.9% Volvo 240 Sedan 1993 2.54% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Hyundai Veloster Hatchback 2012 48.44% BMW 1 Series Coupe 2012 13.51% Chevrolet Corvette Convertible 2012 10.97% Spyker C8 Coupe 2009 10.16% Volkswagen Beetle Hatchback 2012 2.35% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 BMW 1 Series Coupe 2012 26.55% BMW 3 Series Wagon 2012 12.59% Ferrari California Convertible 2012 7.02% Ferrari 458 Italia Convertible 2012 6.36% HUMMER H3T Crew Cab 2010 5.12% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 99.42% Acura TL Sedan 2012 0.46% Hyundai Elantra Sedan 2007 0.09% Ford Fiesta Sedan 2012 0.01% Nissan 240SX Coupe 1998 0.0% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.99% Audi S5 Convertible 2012 0.0% Acura ZDX Hatchback 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Hyundai Elantra Sedan 2007 0.0% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Toyota 4Runner SUV 2012 35.05% Dodge Durango SUV 2012 16.7% Chevrolet Traverse SUV 2012 11.89% GMC Acadia SUV 2012 7.65% Chevrolet Silverado 1500 Regular Cab 2012 7.17% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 70.54% Ford F-150 Regular Cab 2007 7.99% Dodge Caravan Minivan 1997 3.31% Bentley Mulsanne Sedan 2011 2.49% Dodge Dakota Crew Cab 2010 2.39% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 87.33% Chrysler 300 SRT-8 2010 3.66% Infiniti QX56 SUV 2011 1.23% FIAT 500 Abarth 2012 1.1% Cadillac SRX SUV 2012 1.03% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Toyota Corolla Sedan 2012 42.33% Hyundai Genesis Sedan 2012 36.57% Acura TSX Sedan 2012 15.35% Hyundai Elantra Touring Hatchback 2012 1.9% Hyundai Sonata Sedan 2012 1.6% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Jeep Wrangler SUV 2012 25.91% Jeep Grand Cherokee SUV 2012 12.61% GMC Savana Van 2012 10.15% Toyota 4Runner SUV 2012 3.82% Chevrolet Traverse SUV 2012 3.82% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Ford Ranger SuperCab 2011 9.23% Volvo XC90 SUV 2007 7.62% Land Rover Range Rover SUV 2012 7.33% Dodge Ram Pickup 3500 Quad Cab 2009 7.11% Toyota Sequoia SUV 2012 6.94% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Regular Cab 2012 73.13% Dodge Ram Pickup 3500 Crew Cab 2010 9.33% Dodge Ram Pickup 3500 Quad Cab 2009 8.15% Volvo XC90 SUV 2007 2.09% Ford Expedition EL SUV 2009 1.46% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Chevrolet Corvette Convertible 2012 63.4% Porsche Panamera Sedan 2012 9.71% Audi TT Hatchback 2011 7.76% Audi RS 4 Convertible 2008 3.07% Acura TL Type-S 2008 2.37% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Chevrolet Corvette Convertible 2012 29.55% Audi R8 Coupe 2012 23.22% Bentley Continental GT Coupe 2007 10.61% Volkswagen Beetle Hatchback 2012 9.75% Dodge Magnum Wagon 2008 3.65% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 97.38% Acura TL Sedan 2012 1.46% Mercedes-Benz SL-Class Coupe 2009 0.66% Acura RL Sedan 2012 0.13% Honda Accord Sedan 2012 0.09% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 70.99% BMW ActiveHybrid 5 Sedan 2012 11.16% Volkswagen Golf Hatchback 2012 6.94% Chrysler Sebring Convertible 2010 6.75% Audi S6 Sedan 2011 1.15% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler PT Cruiser Convertible 2008 65.19% Aston Martin Virage Coupe 2012 21.1% Audi S4 Sedan 2012 2.27% BMW X5 SUV 2007 1.55% Acura ZDX Hatchback 2012 1.3% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 31.0% Audi TTS Coupe 2012 20.07% Audi S4 Sedan 2007 11.79% Ferrari FF Coupe 2012 8.86% Audi S5 Convertible 2012 7.49% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Daewoo Nubira Wagon 2002 57.13% Lincoln Town Car Sedan 2011 5.53% Volvo 240 Sedan 1993 4.1% Scion xD Hatchback 2012 3.87% Suzuki Aerio Sedan 2007 3.62% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 29.16% Audi S5 Coupe 2012 10.99% Volkswagen Golf Hatchback 2012 10.75% Chevrolet Corvette ZR1 2012 7.32% Audi S6 Sedan 2011 7.15% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 99.73% Ferrari 458 Italia Convertible 2012 0.12% Audi RS 4 Convertible 2008 0.11% Ferrari 458 Italia Coupe 2012 0.02% Dodge Challenger SRT8 2011 0.01% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 56.36% Chevrolet Malibu Sedan 2007 29.86% Suzuki Aerio Sedan 2007 5.9% Bentley Continental Flying Spur Sedan 2007 3.41% Lincoln Town Car Sedan 2011 1.46% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 89.29% BMW 1 Series Convertible 2012 3.38% Dodge Dakota Crew Cab 2010 1.65% GMC Canyon Extended Cab 2012 1.0% Ford Focus Sedan 2007 0.47% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 BMW 6 Series Convertible 2007 23.29% Hyundai Veloster Hatchback 2012 11.63% Bentley Mulsanne Sedan 2011 8.51% Mitsubishi Lancer Sedan 2012 5.53% Bentley Continental Flying Spur Sedan 2007 3.67% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Nissan 240SX Coupe 1998 91.8% Audi V8 Sedan 1994 4.29% Audi TTS Coupe 2012 1.33% Volkswagen Golf Hatchback 1991 0.89% Acura ZDX Hatchback 2012 0.33% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Accord Sedan 2012 95.68% Cadillac SRX SUV 2012 2.21% Hyundai Genesis Sedan 2012 0.79% GMC Acadia SUV 2012 0.47% Lincoln Town Car Sedan 2011 0.22% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Aston Martin V8 Vantage Convertible 2012 26.05% BMW 6 Series Convertible 2007 16.47% Rolls-Royce Phantom Drophead Coupe Convertible 2012 12.93% BMW Z4 Convertible 2012 6.06% BMW 1 Series Convertible 2012 5.26% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 85.47% Audi S4 Sedan 2012 6.3% Chevrolet Silverado 2500HD Regular Cab 2012 0.88% BMW 1 Series Coupe 2012 0.61% BMW 3 Series Wagon 2012 0.52% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Acadia SUV 2012 32.59% Chevrolet Traverse SUV 2012 23.23% Jeep Grand Cherokee SUV 2012 13.94% Dodge Durango SUV 2012 6.48% Lincoln Town Car Sedan 2011 4.33% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Aston Martin Virage Coupe 2012 29.86% Lamborghini Diablo Coupe 2001 26.85% Chevrolet Corvette Convertible 2012 13.27% McLaren MP4-12C Coupe 2012 8.95% Aston Martin V8 Vantage Coupe 2012 6.87% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Mercedes-Benz Sprinter Van 2012 0.0% Dodge Sprinter Cargo Van 2009 0.0% Ford F-150 Regular Cab 2007 0.0% Ford E-Series Wagon Van 2012 0.0% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 67.1% Ford F-150 Regular Cab 2007 15.14% Chevrolet Traverse SUV 2012 3.6% Dodge Magnum Wagon 2008 2.88% Chevrolet Silverado 1500 Extended Cab 2012 2.74% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler Sebring Convertible 2010 46.31% Suzuki SX4 Sedan 2012 11.88% BMW M5 Sedan 2010 5.9% BMW ActiveHybrid 5 Sedan 2012 3.91% Bentley Continental GT Coupe 2007 3.69% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Dodge Caravan Minivan 1997 80.21% Hyundai Elantra Touring Hatchback 2012 12.81% Ford Fiesta Sedan 2012 2.62% Plymouth Neon Coupe 1999 1.26% Honda Odyssey Minivan 2012 0.73% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Audi S5 Convertible 2012 32.42% BMW X3 SUV 2012 29.51% Mercedes-Benz E-Class Sedan 2012 9.64% Audi S5 Coupe 2012 4.36% Infiniti QX56 SUV 2011 3.69% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 BMW X6 SUV 2012 49.86% BMW 1 Series Convertible 2012 20.88% Toyota 4Runner SUV 2012 5.1% GMC Canyon Extended Cab 2012 3.86% Chevrolet Silverado 1500 Extended Cab 2012 1.67% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 52.65% Lamborghini Reventon Coupe 2008 15.91% McLaren MP4-12C Coupe 2012 10.94% Chevrolet Camaro Convertible 2012 3.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.69% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 24.32% Lincoln Town Car Sedan 2011 15.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 14.29% Chevrolet Silverado 2500HD Regular Cab 2012 8.87% Chevrolet Traverse SUV 2012 4.61% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 64.46% smart fortwo Convertible 2012 15.1% Dodge Challenger SRT8 2011 7.01% Chrysler Sebring Convertible 2010 2.2% Spyker C8 Coupe 2009 1.99% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Suzuki SX4 Hatchback 2012 59.91% Nissan Juke Hatchback 2012 13.02% Dodge Journey SUV 2012 2.36% Ferrari FF Coupe 2012 1.74% Volvo C30 Hatchback 2012 1.69% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Toyota Camry Sedan 2012 49.37% Toyota Corolla Sedan 2012 16.97% Chevrolet Malibu Sedan 2007 9.69% Chevrolet Camaro Convertible 2012 5.43% Acura TSX Sedan 2012 2.92% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Elantra Touring Hatchback 2012 32.11% Honda Odyssey Minivan 2007 16.5% Hyundai Sonata Hybrid Sedan 2012 5.79% Ford Fiesta Sedan 2012 4.84% Bentley Continental GT Coupe 2012 4.59% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 54.74% Audi 100 Wagon 1994 11.38% Chevrolet Silverado 1500 Regular Cab 2012 7.29% Audi 100 Sedan 1994 4.36% Chevrolet Silverado 2500HD Regular Cab 2012 4.24% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Volvo XC90 SUV 2007 23.8% BMW 3 Series Sedan 2012 14.42% Hyundai Elantra Sedan 2007 12.2% Jaguar XK XKR 2012 11.26% BMW X6 SUV 2012 9.98% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 49.75% Porsche Panamera Sedan 2012 45.91% Lamborghini Aventador Coupe 2012 1.85% Mercedes-Benz 300-Class Convertible 1993 0.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.43% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 64.94% Mercedes-Benz 300-Class Convertible 1993 10.13% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.1% Jeep Liberty SUV 2012 1.7% Audi 100 Sedan 1994 1.46% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Geo Metro Convertible 1993 62.9% Spyker C8 Convertible 2009 22.86% Lamborghini Diablo Coupe 2001 4.75% Audi RS 4 Convertible 2008 2.97% McLaren MP4-12C Coupe 2012 1.82% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 89.71% GMC Savana Van 2012 10.28% Chevrolet Express Van 2007 0.01% Ford F-150 Regular Cab 2012 0.0% Dodge Dakota Club Cab 2007 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 71.79% Acura ZDX Hatchback 2012 17.7% Bugatti Veyron 16.4 Convertible 2009 7.77% Mercedes-Benz SL-Class Coupe 2009 1.27% Chevrolet Corvette ZR1 2012 0.46% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 McLaren MP4-12C Coupe 2012 53.36% Lamborghini Aventador Coupe 2012 19.51% Ferrari 458 Italia Convertible 2012 10.79% BMW 3 Series Sedan 2012 3.35% Aston Martin Virage Coupe 2012 3.0% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Aston Martin V8 Vantage Coupe 2012 13.03% BMW Z4 Convertible 2012 13.03% Audi TT RS Coupe 2012 12.66% Ferrari 458 Italia Convertible 2012 6.57% Ford Mustang Convertible 2007 6.55% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Durango SUV 2012 32.98% GMC Yukon Hybrid SUV 2012 24.55% Cadillac Escalade EXT Crew Cab 2007 15.45% Toyota 4Runner SUV 2012 6.73% Ram C/V Cargo Van Minivan 2012 3.87% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 77.12% Ferrari California Convertible 2012 3.65% BMW Z4 Convertible 2012 3.44% Ferrari 458 Italia Coupe 2012 3.34% Scion xD Hatchback 2012 3.11% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ram C/V Cargo Van Minivan 2012 36.64% Dodge Ram Pickup 3500 Quad Cab 2009 11.09% Chrysler Town and Country Minivan 2012 9.95% Dodge Ram Pickup 3500 Crew Cab 2010 8.52% Lincoln Town Car Sedan 2011 5.94% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 FIAT 500 Abarth 2012 15.25% Bugatti Veyron 16.4 Coupe 2009 11.35% GMC Acadia SUV 2012 9.79% Dodge Charger SRT-8 2009 6.04% Ferrari 458 Italia Coupe 2012 5.83% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 81.09% Ferrari 458 Italia Coupe 2012 4.64% McLaren MP4-12C Coupe 2012 3.33% Lamborghini Diablo Coupe 2001 1.68% Spyker C8 Coupe 2009 1.64% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 BMW X6 SUV 2012 46.32% Honda Accord Coupe 2012 19.05% Buick Verano Sedan 2012 7.64% Hyundai Elantra Touring Hatchback 2012 4.62% BMW 1 Series Coupe 2012 3.04% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Aston Martin V8 Vantage Convertible 2012 44.07% Lamborghini Reventon Coupe 2008 14.4% Bentley Continental Flying Spur Sedan 2007 6.52% Cadillac CTS-V Sedan 2012 4.61% Audi TTS Coupe 2012 3.1% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Lincoln Town Car Sedan 2011 50.3% Hyundai Elantra Touring Hatchback 2012 8.29% Bentley Continental Flying Spur Sedan 2007 6.56% Audi S6 Sedan 2011 3.49% Volkswagen Beetle Hatchback 2012 3.11% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Dodge Challenger SRT8 2011 23.78% Spyker C8 Convertible 2009 17.92% Bugatti Veyron 16.4 Coupe 2009 14.12% Lamborghini Reventon Coupe 2008 12.09% Audi S4 Sedan 2007 4.2% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Audi 100 Sedan 1994 26.23% Audi 100 Wagon 1994 24.77% Volvo XC90 SUV 2007 21.1% Acura Integra Type R 2001 6.63% Toyota Sequoia SUV 2012 4.34% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ford Mustang Convertible 2007 41.07% Ford F-150 Regular Cab 2012 15.18% Geo Metro Convertible 1993 8.48% Ford Fiesta Sedan 2012 5.01% Chevrolet Camaro Convertible 2012 3.78% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 30.09% Chevrolet Tahoe Hybrid SUV 2012 22.32% Chevrolet Silverado 2500HD Regular Cab 2012 20.82% GMC Acadia SUV 2012 7.38% Dodge Ram Pickup 3500 Quad Cab 2009 2.2% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.32% Nissan Juke Hatchback 2012 0.6% FIAT 500 Convertible 2012 0.03% Chevrolet Express Cargo Van 2007 0.02% Chevrolet Express Van 2007 0.01% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 BMW 1 Series Coupe 2012 32.11% Aston Martin Virage Coupe 2012 17.18% Spyker C8 Coupe 2009 6.14% Audi TTS Coupe 2012 5.2% Suzuki SX4 Hatchback 2012 4.23% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford E-Series Wagon Van 2012 50.83% Ford F-450 Super Duty Crew Cab 2012 46.36% Ford Ranger SuperCab 2011 1.66% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.47% Dodge Ram Pickup 3500 Crew Cab 2010 0.33% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Chrysler PT Cruiser Convertible 2008 79.23% Geo Metro Convertible 1993 20.58% Mercedes-Benz 300-Class Convertible 1993 0.11% Audi 100 Wagon 1994 0.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.03% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 34.3% Ferrari FF Coupe 2012 12.0% Ford Mustang Convertible 2007 10.49% GMC Canyon Extended Cab 2012 5.97% BMW 3 Series Wagon 2012 4.28% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 33.98% Audi S4 Sedan 2007 11.98% Audi S6 Sedan 2011 9.01% Mercedes-Benz E-Class Sedan 2012 7.61% Audi S5 Coupe 2012 7.36% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Infiniti G Coupe IPL 2012 15.88% BMW ActiveHybrid 5 Sedan 2012 14.31% Dodge Magnum Wagon 2008 11.68% BMW 1 Series Convertible 2012 9.53% Dodge Challenger SRT8 2011 7.9% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Audi RS 4 Convertible 2008 26.6% BMW 6 Series Convertible 2007 8.49% Audi S5 Coupe 2012 6.25% BMW Z4 Convertible 2012 6.13% Audi TTS Coupe 2012 5.99% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Quad Cab 2009 59.14% Dodge Ram Pickup 3500 Crew Cab 2010 37.58% Ford F-150 Regular Cab 2007 2.04% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.78% Ford F-450 Super Duty Crew Cab 2012 0.28% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Cadillac CTS-V Sedan 2012 26.25% Rolls-Royce Ghost Sedan 2012 20.03% Rolls-Royce Phantom Sedan 2012 18.74% BMW M6 Convertible 2010 15.94% Bentley Arnage Sedan 2009 6.01% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 70.61% Ford Freestar Minivan 2007 25.62% Buick Enclave SUV 2012 2.08% Buick Rainier SUV 2007 0.64% Chevrolet Traverse SUV 2012 0.53% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Volvo 240 Sedan 1993 33.14% Dodge Ram Pickup 3500 Quad Cab 2009 14.23% Lincoln Town Car Sedan 2011 12.88% Chevrolet Traverse SUV 2012 10.8% Dodge Sprinter Cargo Van 2009 10.77% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 44.32% Daewoo Nubira Wagon 2002 43.13% Buick Rainier SUV 2007 2.91% Buick Verano Sedan 2012 2.78% Ford Freestar Minivan 2007 1.21% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 50.1% Daewoo Nubira Wagon 2002 23.9% Volvo 240 Sedan 1993 19.01% Lincoln Town Car Sedan 2011 1.71% Dodge Caravan Minivan 1997 0.91% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Dodge Ram Pickup 3500 Crew Cab 2010 37.41% Dodge Durango SUV 2012 20.26% Mercedes-Benz C-Class Sedan 2012 17.31% Ford Expedition EL SUV 2009 6.44% GMC Acadia SUV 2012 4.28% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Honda Odyssey Minivan 2012 66.4% Dodge Caravan Minivan 1997 6.55% Honda Accord Sedan 2012 5.72% Hyundai Elantra Sedan 2007 4.62% Chrysler Sebring Convertible 2010 3.6% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Chevrolet Camaro Convertible 2012 36.62% Jaguar XK XKR 2012 18.94% Chevrolet Corvette ZR1 2012 12.78% Audi TT Hatchback 2011 8.47% Ferrari 458 Italia Convertible 2012 7.51% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Infiniti QX56 SUV 2011 32.24% Rolls-Royce Ghost Sedan 2012 15.73% Ford Expedition EL SUV 2009 7.23% Chevrolet TrailBlazer SS 2009 6.24% Bentley Arnage Sedan 2009 5.17% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Ferrari 458 Italia Coupe 2012 22.67% Audi TTS Coupe 2012 20.64% Audi S5 Convertible 2012 14.69% Aston Martin V8 Vantage Convertible 2012 11.47% Buick Regal GS 2012 6.52% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 29.68% Infiniti G Coupe IPL 2012 20.55% Hyundai Sonata Sedan 2012 9.83% Hyundai Azera Sedan 2012 8.42% Mercedes-Benz C-Class Sedan 2012 3.52% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Hyundai Accent Sedan 2012 29.86% Acura TSX Sedan 2012 7.69% BMW ActiveHybrid 5 Sedan 2012 4.44% Ford Fiesta Sedan 2012 3.69% Acura ZDX Hatchback 2012 3.45% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 GMC Canyon Extended Cab 2012 66.41% HUMMER H3T Crew Cab 2010 26.63% HUMMER H2 SUT Crew Cab 2009 2.97% Hyundai Veracruz SUV 2012 0.66% Ford F-150 Regular Cab 2012 0.65% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 99.32% Hyundai Elantra Touring Hatchback 2012 0.21% Plymouth Neon Coupe 1999 0.18% Dodge Charger Sedan 2012 0.09% Buick Rainier SUV 2007 0.04% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 98.23% Toyota Sequoia SUV 2012 0.54% GMC Yukon Hybrid SUV 2012 0.26% Nissan NV Passenger Van 2012 0.15% Buick Rainier SUV 2007 0.1% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.23% Chrysler Crossfire Convertible 2008 0.43% Audi RS 4 Convertible 2008 0.11% Suzuki SX4 Sedan 2012 0.05% FIAT 500 Convertible 2012 0.04% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Cadillac CTS-V Sedan 2012 17.54% Mercedes-Benz S-Class Sedan 2012 16.88% Porsche Panamera Sedan 2012 9.19% Acura RL Sedan 2012 4.68% Buick Verano Sedan 2012 4.46% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Chrysler Aspen SUV 2009 51.41% Toyota 4Runner SUV 2012 7.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.75% Infiniti QX56 SUV 2011 6.47% Ford Ranger SuperCab 2011 4.35% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.19% Lamborghini Aventador Coupe 2012 0.49% Scion xD Hatchback 2012 0.08% Ferrari 458 Italia Coupe 2012 0.07% Ferrari 458 Italia Convertible 2012 0.06% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Volvo 240 Sedan 1993 18.63% Lamborghini Reventon Coupe 2008 18.34% Audi 100 Sedan 1994 10.52% Dodge Caravan Minivan 1997 7.68% Daewoo Nubira Wagon 2002 7.31% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 35.0% Chrysler Town and Country Minivan 2012 31.75% Buick Enclave SUV 2012 12.68% Toyota Sequoia SUV 2012 6.67% GMC Acadia SUV 2012 2.89% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Chevrolet Cobalt SS 2010 28.73% Honda Accord Coupe 2012 16.0% Toyota Camry Sedan 2012 15.8% Hyundai Accent Sedan 2012 8.3% Mitsubishi Lancer Sedan 2012 7.91% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Volkswagen Golf Hatchback 2012 76.99% Acura TSX Sedan 2012 10.45% BMW 1 Series Coupe 2012 6.1% Suzuki Aerio Sedan 2007 2.17% Porsche Panamera Sedan 2012 0.97% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 BMW ActiveHybrid 5 Sedan 2012 13.0% Chrysler 300 SRT-8 2010 4.74% Audi S4 Sedan 2012 4.5% Volvo C30 Hatchback 2012 4.17% Chrysler Sebring Convertible 2010 3.84% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 26.06% Infiniti QX56 SUV 2011 16.86% Land Rover Range Rover SUV 2012 12.27% BMW ActiveHybrid 5 Sedan 2012 5.17% Buick Verano Sedan 2012 4.27% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 95.42% Dodge Ram Pickup 3500 Crew Cab 2010 1.61% Ford Ranger SuperCab 2011 1.19% Toyota Sequoia SUV 2012 0.43% Ford F-150 Regular Cab 2012 0.26% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.78% BMW Z4 Convertible 2012 0.1% Bentley Mulsanne Sedan 2011 0.03% Audi TT Hatchback 2011 0.01% Mercedes-Benz E-Class Sedan 2012 0.01% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Acura ZDX Hatchback 2012 33.02% Bentley Arnage Sedan 2009 28.8% Nissan Juke Hatchback 2012 14.88% Acura RL Sedan 2012 6.21% Chevrolet Corvette ZR1 2012 2.99% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 2500HD Regular Cab 2012 60.7% Chevrolet TrailBlazer SS 2009 10.34% Acura TL Type-S 2008 4.83% GMC Acadia SUV 2012 4.09% Buick Verano Sedan 2012 4.06% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Mercedes-Benz S-Class Sedan 2012 44.56% Acura RL Sedan 2012 10.56% Acura Integra Type R 2001 8.12% smart fortwo Convertible 2012 7.24% FIAT 500 Convertible 2012 3.89% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Chevrolet Avalanche Crew Cab 2012 73.64% Jeep Wrangler SUV 2012 24.81% Jeep Liberty SUV 2012 0.69% Ford Ranger SuperCab 2011 0.17% Hyundai Tucson SUV 2012 0.15% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 93.25% BMW 6 Series Convertible 2007 2.41% Buick Verano Sedan 2012 1.83% Audi A5 Coupe 2012 0.67% Chrysler 300 SRT-8 2010 0.46% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Acura RL Sedan 2012 11.86% Nissan Leaf Hatchback 2012 9.73% Daewoo Nubira Wagon 2002 6.11% Ferrari 458 Italia Coupe 2012 4.73% Bugatti Veyron 16.4 Convertible 2009 4.02% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Nissan Juke Hatchback 2012 19.4% Rolls-Royce Phantom Sedan 2012 6.76% Plymouth Neon Coupe 1999 5.92% Tesla Model S Sedan 2012 5.34% Bentley Continental GT Coupe 2007 5.1% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Chevrolet Malibu Sedan 2007 65.03% Chevrolet Monte Carlo Coupe 2007 8.1% Acura RL Sedan 2012 3.44% Chevrolet Impala Sedan 2007 3.08% Plymouth Neon Coupe 1999 2.51% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 HUMMER H2 SUT Crew Cab 2009 57.76% Volvo 240 Sedan 1993 11.37% Acura TSX Sedan 2012 7.64% Honda Odyssey Minivan 2012 4.38% Hyundai Veracruz SUV 2012 4.24% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Bentley Arnage Sedan 2009 15.43% BMW ActiveHybrid 5 Sedan 2012 8.69% Buick Enclave SUV 2012 6.73% Volkswagen Golf Hatchback 1991 5.71% Audi 100 Sedan 1994 5.18% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.05% Dodge Dakota Crew Cab 2010 0.56% Ford Ranger SuperCab 2011 0.23% Dodge Journey SUV 2012 0.08% Hyundai Santa Fe SUV 2012 0.04% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Aston Martin Virage Convertible 2012 40.02% Spyker C8 Convertible 2009 39.88% Maybach Landaulet Convertible 2012 3.51% Aston Martin V8 Vantage Convertible 2012 2.27% MINI Cooper Roadster Convertible 2012 1.83% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 95.9% Bentley Continental GT Coupe 2007 1.87% Bentley Continental Flying Spur Sedan 2007 0.71% BMW ActiveHybrid 5 Sedan 2012 0.59% Bugatti Veyron 16.4 Convertible 2009 0.28% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 Audi 100 Sedan 1994 90.94% Audi V8 Sedan 1994 2.78% Mercedes-Benz SL-Class Coupe 2009 2.16% BMW 1 Series Coupe 2012 1.78% Honda Accord Sedan 2012 0.89% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 97.61% Jeep Grand Cherokee SUV 2012 1.98% Jeep Compass SUV 2012 0.18% Jeep Wrangler SUV 2012 0.11% Nissan NV Passenger Van 2012 0.03% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Bentley Arnage Sedan 2009 80.96% Audi S4 Sedan 2007 10.76% Chrysler 300 SRT-8 2010 1.84% BMW X5 SUV 2007 1.0% Volkswagen Golf Hatchback 1991 0.96% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 smart fortwo Convertible 2012 30.13% Cadillac CTS-V Sedan 2012 30.05% Bentley Continental GT Coupe 2012 5.9% Audi S5 Coupe 2012 5.87% Audi RS 4 Convertible 2008 4.52% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 66.65% Dodge Ram Pickup 3500 Quad Cab 2009 5.4% Dodge Dakota Club Cab 2007 5.39% Jeep Liberty SUV 2012 5.26% Ford F-150 Regular Cab 2012 5.21% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford F-150 Regular Cab 2007 19.16% Chevrolet Silverado 1500 Extended Cab 2012 16.56% Volkswagen Golf Hatchback 1991 14.3% GMC Canyon Extended Cab 2012 9.34% Dodge Ram Pickup 3500 Quad Cab 2009 7.24% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Volvo C30 Hatchback 2012 16.05% BMW 3 Series Wagon 2012 7.66% Acura RL Sedan 2012 6.29% Mercedes-Benz C-Class Sedan 2012 5.81% Dodge Journey SUV 2012 5.8% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Hyundai Elantra Sedan 2007 62.8% Acura TSX Sedan 2012 13.6% Chevrolet Malibu Sedan 2007 6.56% Chevrolet Malibu Hybrid Sedan 2010 5.01% Hyundai Sonata Sedan 2012 2.13% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Ford Fiesta Sedan 2012 24.87% Buick Enclave SUV 2012 20.51% smart fortwo Convertible 2012 13.75% Mazda Tribute SUV 2011 4.69% Land Rover LR2 SUV 2012 3.03% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 93.15% Dodge Ram Pickup 3500 Crew Cab 2010 3.21% Dodge Dakota Crew Cab 2010 1.75% Ford Ranger SuperCab 2011 0.78% GMC Canyon Extended Cab 2012 0.6% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Dodge Caravan Minivan 1997 42.96% Chevrolet Express Van 2007 28.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.38% Volvo 240 Sedan 1993 2.76% Audi 100 Sedan 1994 2.41% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 GMC Yukon Hybrid SUV 2012 79.36% Mitsubishi Lancer Sedan 2012 4.67% GMC Acadia SUV 2012 3.59% Mercedes-Benz C-Class Sedan 2012 2.98% Infiniti QX56 SUV 2011 2.21% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Acura TL Sedan 2012 17.77% Mitsubishi Lancer Sedan 2012 17.05% Mercedes-Benz SL-Class Coupe 2009 14.51% Acura TL Type-S 2008 8.46% Infiniti G Coupe IPL 2012 5.07% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Lincoln Town Car Sedan 2011 69.05% Honda Odyssey Minivan 2007 27.2% Daewoo Nubira Wagon 2002 0.54% Chevrolet Impala Sedan 2007 0.52% Chevrolet Traverse SUV 2012 0.4% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 30.83% Chevrolet Silverado 1500 Regular Cab 2012 21.49% Chevrolet Silverado 1500 Extended Cab 2012 21.28% Ford F-150 Regular Cab 2007 15.99% Geo Metro Convertible 1993 3.01% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 BMW 6 Series Convertible 2007 45.85% Ford Focus Sedan 2007 24.87% Porsche Panamera Sedan 2012 8.3% Acura TL Sedan 2012 3.48% Eagle Talon Hatchback 1998 2.38% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 1500 Extended Cab 2012 44.99% Ford Mustang Convertible 2007 17.12% Buick Rainier SUV 2007 9.58% Jeep Wrangler SUV 2012 7.58% Mazda Tribute SUV 2011 6.17% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Ferrari 458 Italia Coupe 2012 46.49% Chevrolet Corvette ZR1 2012 30.12% Aston Martin V8 Vantage Coupe 2012 9.92% Bugatti Veyron 16.4 Coupe 2009 4.7% Lamborghini Reventon Coupe 2008 3.89% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Ford GT Coupe 2006 36.29% MINI Cooper Roadster Convertible 2012 30.91% Chevrolet Corvette ZR1 2012 13.61% Spyker C8 Convertible 2009 10.74% Bentley Mulsanne Sedan 2011 1.95% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 54.73% GMC Yukon Hybrid SUV 2012 30.38% Cadillac Escalade EXT Crew Cab 2007 5.23% Chevrolet TrailBlazer SS 2009 3.32% Ford Ranger SuperCab 2011 2.3% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Chevrolet Traverse SUV 2012 57.63% Lincoln Town Car Sedan 2011 14.23% Chevrolet Tahoe Hybrid SUV 2012 9.21% Ford Expedition EL SUV 2009 6.06% Chevrolet Silverado 1500 Regular Cab 2012 5.73% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Infiniti G Coupe IPL 2012 56.58% Audi TT Hatchback 2011 20.33% Cadillac CTS-V Sedan 2012 6.4% Bentley Continental GT Coupe 2012 2.04% Mitsubishi Lancer Sedan 2012 1.6% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 32.18% Suzuki Kizashi Sedan 2012 23.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 20.05% FIAT 500 Convertible 2012 7.49% Scion xD Hatchback 2012 7.22% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Durango SUV 2012 7.61% Ford Expedition EL SUV 2009 6.54% Chrysler Town and Country Minivan 2012 6.31% Audi V8 Sedan 1994 5.54% BMW 6 Series Convertible 2007 4.83% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 64.68% Dodge Journey SUV 2012 31.75% Buick Rainier SUV 2007 1.01% Dodge Dakota Club Cab 2007 0.43% Dodge Durango SUV 2007 0.43% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 smart fortwo Convertible 2012 73.05% Nissan Juke Hatchback 2012 13.67% Dodge Durango SUV 2007 3.13% FIAT 500 Abarth 2012 0.94% Dodge Caliber Wagon 2007 0.83% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 99.7% Volvo 240 Sedan 1993 0.06% Dodge Dakota Crew Cab 2010 0.04% Rolls-Royce Ghost Sedan 2012 0.03% Dodge Durango SUV 2007 0.03% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 91.6% Dodge Caliber Wagon 2012 1.94% Volvo C30 Hatchback 2012 0.96% Ford GT Coupe 2006 0.89% BMW 1 Series Coupe 2012 0.63% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Silverado 1500 Extended Cab 2012 68.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.33% Dodge Ram Pickup 3500 Crew Cab 2010 5.38% Ford Ranger SuperCab 2011 5.25% GMC Canyon Extended Cab 2012 3.94% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Ford Ranger SuperCab 2011 23.95% Volvo 240 Sedan 1993 18.58% GMC Terrain SUV 2012 11.11% Mazda Tribute SUV 2011 6.73% Dodge Durango SUV 2007 3.24% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Buick Rainier SUV 2007 74.69% Ford Ranger SuperCab 2011 12.24% Jeep Liberty SUV 2012 5.67% Dodge Dakota Crew Cab 2010 1.7% GMC Yukon Hybrid SUV 2012 1.32% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Lamborghini Aventador Coupe 2012 46.58% McLaren MP4-12C Coupe 2012 8.49% Chevrolet Corvette ZR1 2012 4.39% BMW X3 SUV 2012 3.4% Audi S4 Sedan 2012 2.88% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Maybach Landaulet Convertible 2012 19.01% FIAT 500 Convertible 2012 18.22% Chrysler Town and Country Minivan 2012 11.23% Mercedes-Benz S-Class Sedan 2012 10.4% BMW M6 Convertible 2010 5.77% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Audi V8 Sedan 1994 22.92% Plymouth Neon Coupe 1999 17.84% Hyundai Elantra Touring Hatchback 2012 14.74% Chevrolet Malibu Sedan 2007 11.26% Acura TL Sedan 2012 7.22% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 94.05% Bugatti Veyron 16.4 Coupe 2009 4.24% Ferrari 458 Italia Convertible 2012 0.47% Dodge Challenger SRT8 2011 0.45% BMW Z4 Convertible 2012 0.23% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Volkswagen Golf Hatchback 1991 32.95% Buick Verano Sedan 2012 32.23% Honda Accord Coupe 2012 14.21% Honda Accord Sedan 2012 3.79% Ford Mustang Convertible 2007 3.54% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caliber Wagon 2012 62.61% Lincoln Town Car Sedan 2011 14.55% Dodge Journey SUV 2012 3.19% Suzuki SX4 Hatchback 2012 3.0% Land Rover LR2 SUV 2012 2.07% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 63.08% Toyota Corolla Sedan 2012 12.81% Hyundai Genesis Sedan 2012 6.44% Mitsubishi Lancer Sedan 2012 5.44% Hyundai Accent Sedan 2012 1.38% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 80.88% Mercedes-Benz S-Class Sedan 2012 11.56% BMW M5 Sedan 2010 1.6% Mercedes-Benz C-Class Sedan 2012 1.23% Acura TSX Sedan 2012 0.68% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Ford F-150 Regular Cab 2007 15.63% Volvo XC90 SUV 2007 13.72% Chrysler Aspen SUV 2009 10.72% Mercedes-Benz S-Class Sedan 2012 8.7% Mercedes-Benz E-Class Sedan 2012 6.47% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 39.34% Chrysler Town and Country Minivan 2012 21.83% FIAT 500 Convertible 2012 13.1% GMC Savana Van 2012 6.61% Lincoln Town Car Sedan 2011 4.16% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Aston Martin V8 Vantage Convertible 2012 58.87% Nissan 240SX Coupe 1998 6.95% Dodge Magnum Wagon 2008 5.46% Chrysler 300 SRT-8 2010 5.41% BMW M5 Sedan 2010 3.13% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Dakota Crew Cab 2010 34.59% Audi S4 Sedan 2012 10.32% Ford F-150 Regular Cab 2012 7.23% Ford Ranger SuperCab 2011 6.75% HUMMER H2 SUT Crew Cab 2009 4.9% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Mercedes-Benz S-Class Sedan 2012 30.47% Tesla Model S Sedan 2012 6.4% smart fortwo Convertible 2012 4.98% Audi S6 Sedan 2011 4.16% Audi RS 4 Convertible 2008 2.51% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 32.47% Dodge Dakota Club Cab 2007 23.24% Bentley Continental Supersports Conv. Convertible 2012 17.39% Dodge Ram Pickup 3500 Quad Cab 2009 11.01% Chevrolet Silverado 1500 Regular Cab 2012 7.95% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 94.64% Ford E-Series Wagon Van 2012 1.69% Dodge Dakota Crew Cab 2010 1.38% Dodge Ram Pickup 3500 Quad Cab 2009 1.21% Dodge Ram Pickup 3500 Crew Cab 2010 0.67% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 BMW Z4 Convertible 2012 29.18% BMW ActiveHybrid 5 Sedan 2012 16.88% BMW 1 Series Convertible 2012 7.43% BMW 3 Series Wagon 2012 6.58% Audi RS 4 Convertible 2008 5.7% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 89.19% Hyundai Sonata Hybrid Sedan 2012 9.36% Hyundai Accent Sedan 2012 0.39% Honda Accord Coupe 2012 0.22% Toyota Corolla Sedan 2012 0.18% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 78.25% Dodge Ram Pickup 3500 Quad Cab 2009 7.15% Dodge Ram Pickup 3500 Crew Cab 2010 3.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.54% Chevrolet Silverado 2500HD Regular Cab 2012 2.1% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 99.83% Dodge Caliber Wagon 2007 0.13% BMW X6 SUV 2012 0.04% Dodge Durango SUV 2007 0.01% GMC Savana Van 2012 0.0% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 80.17% Aston Martin Virage Coupe 2012 6.6% Lamborghini Diablo Coupe 2001 5.76% Hyundai Veloster Hatchback 2012 4.37% Bentley Continental GT Coupe 2012 0.71% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 23.57% Chevrolet Monte Carlo Coupe 2007 11.33% smart fortwo Convertible 2012 9.22% Chevrolet Malibu Sedan 2007 8.13% Ford Fiesta Sedan 2012 6.48% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Toyota Camry Sedan 2012 22.67% Chevrolet Impala Sedan 2007 14.02% Volkswagen Golf Hatchback 2012 9.05% Ford Fiesta Sedan 2012 6.51% Chrysler Sebring Convertible 2010 4.14% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Jeep Compass SUV 2012 49.18% Dodge Durango SUV 2012 32.4% Cadillac SRX SUV 2012 3.69% Hyundai Tucson SUV 2012 1.93% Chevrolet Tahoe Hybrid SUV 2012 1.84% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari California Convertible 2012 55.38% Dodge Magnum Wagon 2008 22.46% Ferrari 458 Italia Coupe 2012 12.69% Ford GT Coupe 2006 5.03% Ferrari 458 Italia Convertible 2012 1.46% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Buick Verano Sedan 2012 24.98% Audi S5 Coupe 2012 20.91% BMW 3 Series Wagon 2012 4.06% BMW X3 SUV 2012 3.59% Hyundai Elantra Touring Hatchback 2012 3.46% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 83.12% GMC Savana Van 2012 16.76% Chevrolet Express Van 2007 0.12% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Land Rover Range Rover SUV 2012 0.0% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Volkswagen Beetle Hatchback 2012 25.36% Lincoln Town Car Sedan 2011 23.3% Chevrolet Malibu Sedan 2007 11.68% Volvo 240 Sedan 1993 7.98% Audi S5 Coupe 2012 2.37% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 FIAT 500 Abarth 2012 41.86% BMW 3 Series Sedan 2012 21.5% Ferrari 458 Italia Coupe 2012 9.65% Nissan NV Passenger Van 2012 7.9% Volkswagen Beetle Hatchback 2012 5.0% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 BMW M5 Sedan 2010 14.29% Rolls-Royce Phantom Drophead Coupe Convertible 2012 14.11% smart fortwo Convertible 2012 10.82% Toyota Camry Sedan 2012 6.75% Mercedes-Benz E-Class Sedan 2012 6.67% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Infiniti QX56 SUV 2011 84.18% Audi R8 Coupe 2012 8.62% BMW ActiveHybrid 5 Sedan 2012 4.44% Audi TT Hatchback 2011 0.57% Porsche Panamera Sedan 2012 0.49% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 83.46% Honda Odyssey Minivan 2012 7.07% Acura RL Sedan 2012 7.07% Honda Accord Sedan 2012 2.15% Mercedes-Benz E-Class Sedan 2012 0.09% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Eagle Talon Hatchback 1998 86.52% Mitsubishi Lancer Sedan 2012 2.46% Acura TL Type-S 2008 2.06% Chevrolet Corvette ZR1 2012 1.62% Lamborghini Reventon Coupe 2008 1.57% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Audi 100 Sedan 1994 98.22% Audi V8 Sedan 1994 0.37% Audi 100 Wagon 1994 0.31% Bentley Arnage Sedan 2009 0.21% Honda Accord Sedan 2012 0.17% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Chrysler PT Cruiser Convertible 2008 22.51% Chrysler Town and Country Minivan 2012 22.11% Chevrolet Malibu Sedan 2007 8.99% Ram C/V Cargo Van Minivan 2012 8.19% Cadillac Escalade EXT Crew Cab 2007 6.88% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 23.1% Honda Accord Coupe 2012 22.18% Aston Martin V8 Vantage Coupe 2012 13.21% Audi S5 Convertible 2012 13.18% Mercedes-Benz 300-Class Convertible 1993 5.53% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.25% Ferrari 458 Italia Coupe 2012 0.18% Scion xD Hatchback 2012 0.14% Chevrolet Camaro Convertible 2012 0.14% Lamborghini Aventador Coupe 2012 0.07% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Geo Metro Convertible 1993 44.41% BMW Z4 Convertible 2012 7.73% Eagle Talon Hatchback 1998 7.35% Honda Accord Coupe 2012 5.23% Dodge Dakota Crew Cab 2010 3.54% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 97.24% Ford F-150 Regular Cab 2012 0.78% Ford Expedition EL SUV 2009 0.56% Ford F-450 Super Duty Crew Cab 2012 0.39% Cadillac SRX SUV 2012 0.25% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Dodge Journey SUV 2012 80.8% Jaguar XK XKR 2012 3.44% Dodge Caliber Wagon 2012 2.75% BMW 1 Series Coupe 2012 2.15% Hyundai Veloster Hatchback 2012 1.2% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Audi TTS Coupe 2012 76.42% Spyker C8 Convertible 2009 3.4% smart fortwo Convertible 2012 1.59% Cadillac CTS-V Sedan 2012 1.51% Aston Martin V8 Vantage Convertible 2012 1.43% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Dodge Ram Pickup 3500 Quad Cab 2009 36.3% Audi 100 Sedan 1994 28.06% Dodge Sprinter Cargo Van 2009 12.22% Chevrolet Silverado 1500 Regular Cab 2012 5.79% Chevrolet Express Van 2007 2.51% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Chevrolet Impala Sedan 2007 68.14% Daewoo Nubira Wagon 2002 12.14% Chevrolet Malibu Sedan 2007 10.14% Suzuki SX4 Hatchback 2012 2.27% Chevrolet Monte Carlo Coupe 2007 1.54% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 99.95% Chevrolet HHR SS 2010 0.02% BMW 3 Series Sedan 2012 0.01% Audi TT RS Coupe 2012 0.01% Chevrolet Impala Sedan 2007 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Hyundai Veloster Hatchback 2012 20.4% Hyundai Elantra Touring Hatchback 2012 17.52% Hyundai Accent Sedan 2012 10.79% Ferrari California Convertible 2012 6.72% Acura TSX Sedan 2012 6.17% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Ford Ranger SuperCab 2011 35.38% Chevrolet Traverse SUV 2012 14.04% Chevrolet Express Cargo Van 2007 10.12% GMC Savana Van 2012 9.16% Audi 100 Wagon 1994 6.19% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Jaguar XK XKR 2012 78.7% Chrysler Sebring Convertible 2010 8.98% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.58% Lincoln Town Car Sedan 2011 1.74% Bentley Continental GT Coupe 2007 0.53% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 89.73% Spyker C8 Convertible 2009 4.41% Scion xD Hatchback 2012 1.78% Aston Martin V8 Vantage Convertible 2012 1.1% Porsche Panamera Sedan 2012 0.74% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Ford Freestar Minivan 2007 20.87% Volvo 240 Sedan 1993 12.13% Chrysler Town and Country Minivan 2012 9.5% Dodge Dakota Club Cab 2007 6.36% Isuzu Ascender SUV 2008 5.7% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 43.74% Cadillac SRX SUV 2012 15.16% BMW X5 SUV 2007 13.53% Chrysler PT Cruiser Convertible 2008 4.74% Audi S5 Coupe 2012 2.85% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 40.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 19.34% Chevrolet Silverado 1500 Extended Cab 2012 16.95% Chevrolet Silverado 1500 Regular Cab 2012 6.95% Ford Expedition EL SUV 2009 5.14% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Audi 100 Sedan 1994 35.67% Dodge Ram Pickup 3500 Quad Cab 2009 12.13% Ford Ranger SuperCab 2011 10.0% Buick Enclave SUV 2012 8.58% Volvo 240 Sedan 1993 5.95% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 99.67% Toyota 4Runner SUV 2012 0.09% GMC Yukon Hybrid SUV 2012 0.09% Infiniti QX56 SUV 2011 0.05% Land Rover Range Rover SUV 2012 0.03% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 BMW 1 Series Convertible 2012 57.75% Audi S4 Sedan 2012 22.95% Chevrolet TrailBlazer SS 2009 12.46% BMW M6 Convertible 2010 1.36% GMC Canyon Extended Cab 2012 1.15% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Volvo XC90 SUV 2007 21.09% Bentley Arnage Sedan 2009 20.97% Jeep Compass SUV 2012 15.7% Cadillac Escalade EXT Crew Cab 2007 9.82% Jeep Liberty SUV 2012 7.19% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Chrysler Aspen SUV 2009 10.68% Buick Rainier SUV 2007 8.72% Mazda Tribute SUV 2011 7.06% Chevrolet Avalanche Crew Cab 2012 6.77% Ford Ranger SuperCab 2011 6.59% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Hyundai Sonata Hybrid Sedan 2012 21.78% Buick Verano Sedan 2012 14.02% Audi S5 Coupe 2012 11.29% Bentley Continental Flying Spur Sedan 2007 11.08% Buick Regal GS 2012 5.89% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Ford E-Series Wagon Van 2012 18.32% Chevrolet Silverado 2500HD Regular Cab 2012 13.03% Chevrolet Tahoe Hybrid SUV 2012 9.21% Chevrolet TrailBlazer SS 2009 7.87% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.16% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Dodge Durango SUV 2012 88.25% Toyota Sequoia SUV 2012 8.89% BMW X6 SUV 2012 0.7% Dodge Dakota Crew Cab 2010 0.56% Infiniti QX56 SUV 2011 0.55% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Audi RS 4 Convertible 2008 29.74% Audi S4 Sedan 2012 17.07% Lamborghini Diablo Coupe 2001 16.05% Ferrari 458 Italia Convertible 2012 12.66% Geo Metro Convertible 1993 11.74% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 42.02% Hyundai Genesis Sedan 2012 11.77% Buick Enclave SUV 2012 8.99% Mercedes-Benz SL-Class Coupe 2009 3.82% Mercedes-Benz E-Class Sedan 2012 3.36% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 99.81% Aston Martin V8 Vantage Coupe 2012 0.05% Nissan Leaf Hatchback 2012 0.05% Daewoo Nubira Wagon 2002 0.04% Porsche Panamera Sedan 2012 0.01% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Nissan NV Passenger Van 2012 64.73% Ford E-Series Wagon Van 2012 12.86% Dodge Ram Pickup 3500 Crew Cab 2010 10.19% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.55% Ford F-450 Super Duty Crew Cab 2012 3.68% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Hyundai Veracruz SUV 2012 84.83% Lincoln Town Car Sedan 2011 3.76% BMW 3 Series Wagon 2012 2.85% Chevrolet Impala Sedan 2007 2.26% Chevrolet Traverse SUV 2012 2.17% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 24.08% Ram C/V Cargo Van Minivan 2012 19.38% Hyundai Elantra Sedan 2007 6.47% Acura TL Type-S 2008 5.29% Buick Verano Sedan 2012 3.77% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 66.71% Chevrolet Corvette ZR1 2012 26.58% Acura TL Type-S 2008 5.23% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.66% McLaren MP4-12C Coupe 2012 0.21% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Hyundai Tucson SUV 2012 25.67% GMC Acadia SUV 2012 23.99% Hyundai Santa Fe SUV 2012 9.65% Chevrolet Traverse SUV 2012 7.13% Toyota 4Runner SUV 2012 4.57% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Mercedes-Benz S-Class Sedan 2012 31.35% Lincoln Town Car Sedan 2011 18.38% Chrysler Sebring Convertible 2010 17.11% Suzuki SX4 Sedan 2012 8.81% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.49% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 64.99% Ford Ranger SuperCab 2011 7.2% Ford GT Coupe 2006 5.96% Ram C/V Cargo Van Minivan 2012 4.65% Ferrari FF Coupe 2012 2.95% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 62.01% Chevrolet Express Cargo Van 2007 37.75% Ford E-Series Wagon Van 2012 0.13% Chevrolet Express Van 2007 0.03% Chevrolet Silverado 1500 Regular Cab 2012 0.03% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Nissan Juke Hatchback 2012 47.14% Mazda Tribute SUV 2011 6.05% BMW X6 SUV 2012 4.96% Aston Martin Virage Coupe 2012 3.24% Spyker C8 Convertible 2009 3.03% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Audi TTS Coupe 2012 19.14% Bentley Continental GT Coupe 2007 18.08% Chevrolet Corvette ZR1 2012 9.11% Aston Martin V8 Vantage Convertible 2012 7.6% Lamborghini Aventador Coupe 2012 5.32% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Honda Accord Sedan 2012 21.47% Volkswagen Golf Hatchback 2012 11.78% Audi S4 Sedan 2007 11.18% Acura TL Type-S 2008 8.28% Suzuki Aerio Sedan 2007 7.37% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Chevrolet Monte Carlo Coupe 2007 39.39% Lincoln Town Car Sedan 2011 13.47% Chevrolet Silverado 2500HD Regular Cab 2012 12.07% Bentley Continental Supersports Conv. Convertible 2012 12.05% Hyundai Veracruz SUV 2012 11.11% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Dodge Ram Pickup 3500 Quad Cab 2009 41.82% Dodge Dakota Crew Cab 2010 34.69% Rolls-Royce Phantom Sedan 2012 3.17% Cadillac Escalade EXT Crew Cab 2007 3.15% Dodge Ram Pickup 3500 Crew Cab 2010 1.83% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 21.55% Spyker C8 Convertible 2009 16.09% Audi S5 Convertible 2012 8.83% Bentley Continental Flying Spur Sedan 2007 8.43% Acura RL Sedan 2012 8.35% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Eagle Talon Hatchback 1998 48.09% Volvo 240 Sedan 1993 32.79% Dodge Caravan Minivan 1997 12.64% Lincoln Town Car Sedan 2011 3.47% Chrysler 300 SRT-8 2010 0.65% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Lincoln Town Car Sedan 2011 56.68% Chrysler Sebring Convertible 2010 17.65% Suzuki SX4 Hatchback 2012 8.53% Daewoo Nubira Wagon 2002 2.87% Hyundai Elantra Sedan 2007 2.29% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 98.67% BMW M3 Coupe 2012 0.41% Audi S5 Coupe 2012 0.18% Audi RS 4 Convertible 2008 0.16% BMW 6 Series Convertible 2007 0.12% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Infiniti G Coupe IPL 2012 50.36% Dodge Challenger SRT8 2011 9.35% BMW ActiveHybrid 5 Sedan 2012 7.96% BMW 1 Series Convertible 2012 4.45% Cadillac CTS-V Sedan 2012 3.89% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Chrysler Town and Country Minivan 2012 51.65% Audi S4 Sedan 2012 6.5% Suzuki SX4 Sedan 2012 4.53% Audi S4 Sedan 2007 4.14% Toyota Camry Sedan 2012 2.86% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Chrysler Town and Country Minivan 2012 22.17% Dodge Journey SUV 2012 13.29% Ford E-Series Wagon Van 2012 10.36% Hyundai Genesis Sedan 2012 6.55% Nissan Juke Hatchback 2012 5.83% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Hyundai Genesis Sedan 2012 94.36% BMW X3 SUV 2012 1.71% Audi S6 Sedan 2011 0.89% BMW 3 Series Sedan 2012 0.79% Cadillac CTS-V Sedan 2012 0.29% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Tesla Model S Sedan 2012 87.07% BMW 1 Series Convertible 2012 4.65% Audi A5 Coupe 2012 4.51% BMW M5 Sedan 2010 0.65% Hyundai Elantra Touring Hatchback 2012 0.62% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 94.55% Rolls-Royce Ghost Sedan 2012 2.97% Chrysler 300 SRT-8 2010 1.16% Jeep Wrangler SUV 2012 0.28% HUMMER H2 SUT Crew Cab 2009 0.16% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Jeep Wrangler SUV 2012 70.26% Jeep Liberty SUV 2012 11.93% Volvo 240 Sedan 1993 6.2% BMW 3 Series Sedan 2012 5.12% Bentley Arnage Sedan 2009 2.37% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Volkswagen Beetle Hatchback 2012 37.48% Honda Accord Coupe 2012 29.04% Porsche Panamera Sedan 2012 19.33% Toyota Camry Sedan 2012 3.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.53% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 Ford Ranger SuperCab 2011 98.34% GMC Acadia SUV 2012 1.62% BMW X6 SUV 2012 0.01% Ford E-Series Wagon Van 2012 0.0% Volvo XC90 SUV 2007 0.0% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Rolls-Royce Ghost Sedan 2012 48.9% Chrysler 300 SRT-8 2010 36.94% BMW M5 Sedan 2010 7.18% Audi S4 Sedan 2007 3.26% Audi S5 Coupe 2012 2.28% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 94.92% Chevrolet Traverse SUV 2012 2.13% Hyundai Tucson SUV 2012 1.45% GMC Acadia SUV 2012 0.39% Hyundai Veracruz SUV 2012 0.34% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Mitsubishi Lancer Sedan 2012 34.92% Dodge Charger SRT-8 2009 24.63% Suzuki SX4 Hatchback 2012 13.12% Chevrolet HHR SS 2010 10.6% BMW X6 SUV 2012 5.11% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 64.9% Mercedes-Benz C-Class Sedan 2012 14.86% Volkswagen Golf Hatchback 2012 4.17% Hyundai Elantra Touring Hatchback 2012 3.45% GMC Acadia SUV 2012 2.84% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Chrysler Town and Country Minivan 2012 18.08% Acura TSX Sedan 2012 17.22% Honda Accord Sedan 2012 14.63% Lincoln Town Car Sedan 2011 3.08% Mercedes-Benz 300-Class Convertible 1993 3.06% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Chevrolet TrailBlazer SS 2009 94.43% GMC Yukon Hybrid SUV 2012 4.42% Jeep Patriot SUV 2012 0.34% Toyota 4Runner SUV 2012 0.18% BMW X6 SUV 2012 0.08% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Buick Enclave SUV 2012 22.29% GMC Canyon Extended Cab 2012 10.04% Dodge Durango SUV 2007 6.41% GMC Savana Van 2012 5.89% Buick Rainier SUV 2007 5.51% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 29.41% Audi S5 Coupe 2012 19.98% Audi A5 Coupe 2012 10.21% Audi TTS Coupe 2012 8.02% Audi RS 4 Convertible 2008 7.53% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 BMW 6 Series Convertible 2007 18.27% smart fortwo Convertible 2012 10.19% Spyker C8 Convertible 2009 6.76% Maybach Landaulet Convertible 2012 5.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.29% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Ferrari 458 Italia Convertible 2012 35.68% Volkswagen Beetle Hatchback 2012 19.08% Ferrari California Convertible 2012 18.88% Chevrolet HHR SS 2010 6.79% Audi TT RS Coupe 2012 2.7% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Infiniti QX56 SUV 2011 17.4% Hyundai Santa Fe SUV 2012 17.36% Hyundai Veracruz SUV 2012 10.38% Suzuki Kizashi Sedan 2012 8.35% Hyundai Veloster Hatchback 2012 5.31% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 57.68% Chrysler PT Cruiser Convertible 2008 30.77% Chevrolet Express Cargo Van 2007 1.27% GMC Savana Van 2012 1.11% Ford Ranger SuperCab 2011 0.98% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.34% Lamborghini Aventador Coupe 2012 0.39% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.19% Chevrolet Corvette ZR1 2012 0.03% Lamborghini Diablo Coupe 2001 0.02% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Ford Freestar Minivan 2007 37.43% Honda Odyssey Minivan 2007 14.01% Dodge Caravan Minivan 1997 7.5% Ford F-150 Regular Cab 2007 3.72% Honda Accord Sedan 2012 2.35% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 GMC Yukon Hybrid SUV 2012 63.77% Cadillac Escalade EXT Crew Cab 2007 9.93% Chevrolet TrailBlazer SS 2009 9.84% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.0% Cadillac SRX SUV 2012 2.68% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Hyundai Veloster Hatchback 2012 71.32% McLaren MP4-12C Coupe 2012 15.43% Lamborghini Aventador Coupe 2012 7.89% Ferrari 458 Italia Coupe 2012 1.69% BMW 6 Series Convertible 2007 0.93% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 97.87% Volvo 240 Sedan 1993 1.18% Jeep Liberty SUV 2012 0.31% Jeep Patriot SUV 2012 0.2% Mazda Tribute SUV 2011 0.15% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Dodge Charger SRT-8 2009 20.87% Ford Mustang Convertible 2007 9.76% Ferrari 458 Italia Coupe 2012 8.82% BMW Z4 Convertible 2012 5.98% Chevrolet Cobalt SS 2010 4.4% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler 300 SRT-8 2010 19.01% GMC Terrain SUV 2012 11.57% Mercedes-Benz S-Class Sedan 2012 7.68% Bentley Continental Supersports Conv. Convertible 2012 7.54% Bentley Continental Flying Spur Sedan 2007 6.79% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Chrysler Sebring Convertible 2010 12.72% Dodge Caliber Wagon 2007 12.4% Nissan NV Passenger Van 2012 12.04% Honda Odyssey Minivan 2012 6.41% Ford F-150 Regular Cab 2012 6.01% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 79.72% HUMMER H2 SUT Crew Cab 2009 6.62% Ford F-150 Regular Cab 2007 2.49% HUMMER H3T Crew Cab 2010 2.32% Dodge Ram Pickup 3500 Quad Cab 2009 1.31% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 BMW 3 Series Sedan 2012 68.15% BMW Z4 Convertible 2012 4.71% Lamborghini Aventador Coupe 2012 4.66% Hyundai Sonata Sedan 2012 4.61% Ram C/V Cargo Van Minivan 2012 1.9% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Regular Cab 2012 26.69% Suzuki Aerio Sedan 2007 25.51% Chevrolet Silverado 2500HD Regular Cab 2012 18.23% GMC Savana Van 2012 3.1% Hyundai Veloster Hatchback 2012 2.89% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Audi R8 Coupe 2012 99.86% Mercedes-Benz SL-Class Coupe 2009 0.06% Fisker Karma Sedan 2012 0.03% Porsche Panamera Sedan 2012 0.02% Audi S5 Coupe 2012 0.01% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Honda Odyssey Minivan 2007 46.46% Chrysler Sebring Convertible 2010 14.44% Mercedes-Benz SL-Class Coupe 2009 4.27% Porsche Panamera Sedan 2012 3.05% Dodge Durango SUV 2007 2.87% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 70.52% BMW X6 SUV 2012 6.45% Jeep Grand Cherokee SUV 2012 4.02% Infiniti QX56 SUV 2011 2.68% Nissan Juke Hatchback 2012 2.37% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Dodge Challenger SRT8 2011 50.0% BMW 1 Series Convertible 2012 6.88% Cadillac SRX SUV 2012 6.45% smart fortwo Convertible 2012 3.25% Infiniti G Coupe IPL 2012 3.01% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Hyundai Elantra Sedan 2007 80.07% Acura TL Type-S 2008 7.26% Acura Integra Type R 2001 2.22% Audi S6 Sedan 2011 2.06% Chrysler Sebring Convertible 2010 1.3% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 90.33% Ferrari 458 Italia Coupe 2012 3.72% Chevrolet TrailBlazer SS 2009 2.38% Bentley Continental GT Coupe 2012 1.96% GMC Acadia SUV 2012 0.69% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz S-Class Sedan 2012 21.89% Jeep Grand Cherokee SUV 2012 14.54% Audi S5 Coupe 2012 8.37% BMW ActiveHybrid 5 Sedan 2012 5.94% Cadillac Escalade EXT Crew Cab 2007 5.73% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 Chevrolet Camaro Convertible 2012 25.0% McLaren MP4-12C Coupe 2012 21.58% Chevrolet Corvette Convertible 2012 10.88% Scion xD Hatchback 2012 9.49% Aston Martin V8 Vantage Convertible 2012 5.75% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Fisker Karma Sedan 2012 33.51% Dodge Challenger SRT8 2011 30.51% Cadillac CTS-V Sedan 2012 6.28% Land Rover Range Rover SUV 2012 3.76% Bentley Mulsanne Sedan 2011 2.87% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Audi S4 Sedan 2012 37.08% Audi S5 Coupe 2012 15.04% Audi A5 Coupe 2012 13.72% BMW X3 SUV 2012 6.45% Dodge Challenger SRT8 2011 3.62% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Lamborghini Aventador Coupe 2012 34.34% Lamborghini Reventon Coupe 2008 12.06% Chevrolet Monte Carlo Coupe 2007 9.12% Aston Martin V8 Vantage Convertible 2012 8.11% Chevrolet Cobalt SS 2010 6.73% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin Virage Convertible 2012 22.93% Bentley Continental GT Coupe 2012 16.53% Aston Martin V8 Vantage Convertible 2012 12.14% Infiniti G Coupe IPL 2012 9.97% Audi TT Hatchback 2011 7.3% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Eagle Talon Hatchback 1998 19.91% BMW 3 Series Sedan 2012 15.66% Ferrari California Convertible 2012 11.28% Ferrari 458 Italia Coupe 2012 8.36% Plymouth Neon Coupe 1999 6.17% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 90.6% Chevrolet Express Van 2007 7.55% GMC Savana Van 2012 0.91% GMC Canyon Extended Cab 2012 0.31% Ford E-Series Wagon Van 2012 0.11% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 97.12% Jaguar XK XKR 2012 0.84% Chevrolet Corvette ZR1 2012 0.73% Bentley Arnage Sedan 2009 0.34% BMW 1 Series Coupe 2012 0.21% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 99.41% Chevrolet Corvette ZR1 2012 0.28% Rolls-Royce Ghost Sedan 2012 0.17% Bentley Mulsanne Sedan 2011 0.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 93.84% GMC Canyon Extended Cab 2012 5.33% Volvo XC90 SUV 2007 0.25% Volvo 240 Sedan 1993 0.14% Jeep Wrangler SUV 2012 0.09% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford F-150 Regular Cab 2007 72.49% Jeep Wrangler SUV 2012 4.72% Chrysler Aspen SUV 2009 3.65% Buick Rainier SUV 2007 3.39% Chevrolet Tahoe Hybrid SUV 2012 2.35% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 16.29% Dodge Ram Pickup 3500 Crew Cab 2010 10.6% Nissan Juke Hatchback 2012 9.29% Hyundai Veracruz SUV 2012 7.37% Chevrolet TrailBlazer SS 2009 4.3% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Aston Martin V8 Vantage Convertible 2012 53.58% Ford GT Coupe 2006 6.84% Rolls-Royce Ghost Sedan 2012 6.13% Bentley Mulsanne Sedan 2011 6.02% Aston Martin Virage Convertible 2012 4.6% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 89.33% Chevrolet Camaro Convertible 2012 4.48% Aston Martin V8 Vantage Convertible 2012 2.5% Dodge Magnum Wagon 2008 0.87% Toyota Corolla Sedan 2012 0.42% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Chevrolet Traverse SUV 2012 41.4% Buick Rainier SUV 2007 26.15% Lincoln Town Car Sedan 2011 13.83% Buick Enclave SUV 2012 8.22% Suzuki SX4 Hatchback 2012 1.61% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.44% Bugatti Veyron 16.4 Convertible 2009 0.26% Tesla Model S Sedan 2012 0.13% Spyker C8 Convertible 2009 0.04% Infiniti G Coupe IPL 2012 0.04% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 41.94% McLaren MP4-12C Coupe 2012 28.07% HUMMER H2 SUT Crew Cab 2009 5.69% Hyundai Veloster Hatchback 2012 4.47% HUMMER H3T Crew Cab 2010 2.43% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Porsche Panamera Sedan 2012 37.19% Acura Integra Type R 2001 22.12% Dodge Challenger SRT8 2011 7.31% Chevrolet Corvette ZR1 2012 2.72% Honda Odyssey Minivan 2007 2.53% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 66.35% Ford GT Coupe 2006 13.15% Lamborghini Diablo Coupe 2001 4.45% AM General Hummer SUV 2000 3.73% Ferrari California Convertible 2012 2.66% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 70.69% Volvo 240 Sedan 1993 5.25% Audi S4 Sedan 2012 4.08% GMC Canyon Extended Cab 2012 2.26% Honda Odyssey Minivan 2012 1.72% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Toyota Camry Sedan 2012 28.3% BMW Z4 Convertible 2012 21.71% Suzuki Kizashi Sedan 2012 13.36% BMW M6 Convertible 2010 12.09% Spyker C8 Coupe 2009 5.84% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 26.89% Volkswagen Golf Hatchback 2012 23.94% Nissan 240SX Coupe 1998 18.51% Dodge Challenger SRT8 2011 17.52% Lincoln Town Car Sedan 2011 2.4% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 59.03% Porsche Panamera Sedan 2012 11.34% Bentley Mulsanne Sedan 2011 2.99% GMC Yukon Hybrid SUV 2012 2.72% Chevrolet Impala Sedan 2007 2.58% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Dodge Charger Sedan 2012 18.89% Spyker C8 Convertible 2009 13.42% Jeep Wrangler SUV 2012 10.66% Lamborghini Diablo Coupe 2001 9.91% Aston Martin Virage Coupe 2012 7.35% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 34.5% Daewoo Nubira Wagon 2002 32.1% Suzuki Kizashi Sedan 2012 8.19% Porsche Panamera Sedan 2012 3.63% Acura TL Type-S 2008 3.27% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Chrysler PT Cruiser Convertible 2008 44.54% Jeep Compass SUV 2012 7.37% Daewoo Nubira Wagon 2002 6.14% Hyundai Tucson SUV 2012 5.3% Suzuki SX4 Hatchback 2012 4.31% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 98.86% Toyota 4Runner SUV 2012 0.22% Dodge Ram Pickup 3500 Quad Cab 2009 0.1% Dodge Caravan Minivan 1997 0.1% Mazda Tribute SUV 2011 0.07% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Mercedes-Benz S-Class Sedan 2012 51.87% Mercedes-Benz E-Class Sedan 2012 11.92% Hyundai Genesis Sedan 2012 8.63% Hyundai Azera Sedan 2012 7.96% Acura RL Sedan 2012 4.59% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 84.14% Geo Metro Convertible 1993 12.84% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.57% Chevrolet Cobalt SS 2010 0.22% Lamborghini Diablo Coupe 2001 0.11% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Hatchback 2012 16.44% Chevrolet HHR SS 2010 13.48% Volvo C30 Hatchback 2012 9.21% Dodge Ram Pickup 3500 Quad Cab 2009 3.17% Spyker C8 Coupe 2009 2.37% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2012 31.74% Nissan NV Passenger Van 2012 20.66% Lincoln Town Car Sedan 2011 14.68% Dodge Ram Pickup 3500 Crew Cab 2010 9.34% Chevrolet Impala Sedan 2007 3.69% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Hyundai Accent Sedan 2012 48.26% BMW Z4 Convertible 2012 18.19% Audi S4 Sedan 2012 6.95% Chevrolet Camaro Convertible 2012 6.75% Mercedes-Benz S-Class Sedan 2012 5.86% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Avalanche Crew Cab 2012 18.49% Jeep Grand Cherokee SUV 2012 11.45% HUMMER H2 SUT Crew Cab 2009 8.48% Land Rover LR2 SUV 2012 7.78% Suzuki SX4 Hatchback 2012 7.68% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW Z4 Convertible 2012 33.02% Aston Martin V8 Vantage Coupe 2012 14.15% Infiniti G Coupe IPL 2012 11.09% Audi RS 4 Convertible 2008 7.31% Chevrolet Corvette Convertible 2012 7.25% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Suzuki SX4 Sedan 2012 18.43% Hyundai Azera Sedan 2012 18.18% Audi 100 Wagon 1994 7.46% Hyundai Elantra Touring Hatchback 2012 6.13% BMW ActiveHybrid 5 Sedan 2012 4.89% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Chrysler Crossfire Convertible 2008 27.28% Chevrolet Silverado 1500 Extended Cab 2012 23.83% Dodge Caliber Wagon 2007 10.08% Ford Ranger SuperCab 2011 7.23% GMC Canyon Extended Cab 2012 5.53% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Chevrolet Cobalt SS 2010 57.88% Ferrari California Convertible 2012 19.77% Chevrolet Corvette Convertible 2012 12.34% Ferrari 458 Italia Convertible 2012 7.09% Ferrari 458 Italia Coupe 2012 1.68% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 99.4% Ford F-450 Super Duty Crew Cab 2012 0.1% Bentley Mulsanne Sedan 2011 0.09% Rolls-Royce Phantom Sedan 2012 0.08% Dodge Durango SUV 2007 0.06% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Charger SRT-8 2009 73.3% Bugatti Veyron 16.4 Coupe 2009 6.04% Aston Martin V8 Vantage Convertible 2012 3.42% Spyker C8 Coupe 2009 3.2% Mitsubishi Lancer Sedan 2012 1.09% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 90.23% Chevrolet Express Cargo Van 2007 8.56% Ford F-150 Regular Cab 2012 0.59% Chevrolet Silverado 1500 Extended Cab 2012 0.24% Chevrolet Silverado 1500 Regular Cab 2012 0.13% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Toyota Sequoia SUV 2012 41.44% Volvo XC90 SUV 2007 18.05% GMC Acadia SUV 2012 12.03% GMC Terrain SUV 2012 4.84% Infiniti QX56 SUV 2011 4.59% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Plymouth Neon Coupe 1999 23.43% Audi V8 Sedan 1994 15.77% Mitsubishi Lancer Sedan 2012 12.04% Chevrolet Corvette ZR1 2012 10.26% GMC Savana Van 2012 10.0% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Volvo 240 Sedan 1993 57.98% Ford F-150 Regular Cab 2007 23.55% Chevrolet Silverado 1500 Extended Cab 2012 4.61% Dodge Dakota Crew Cab 2010 2.75% Chevrolet Silverado 1500 Regular Cab 2012 1.92% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 37.58% Ford Ranger SuperCab 2011 24.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 14.67% Dodge Dakota Crew Cab 2010 4.29% Ford F-450 Super Duty Crew Cab 2012 3.11% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Chevrolet Tahoe Hybrid SUV 2012 69.82% Ram C/V Cargo Van Minivan 2012 10.88% GMC Acadia SUV 2012 5.64% Chevrolet Impala Sedan 2007 4.66% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.66% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo 240 Sedan 1993 41.95% Daewoo Nubira Wagon 2002 18.97% Ford F-150 Regular Cab 2007 13.63% Audi V8 Sedan 1994 7.81% Audi 100 Sedan 1994 3.77% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 GMC Yukon Hybrid SUV 2012 12.94% BMW X5 SUV 2007 12.92% Cadillac CTS-V Sedan 2012 11.42% Honda Accord Sedan 2012 8.66% Chevrolet TrailBlazer SS 2009 7.21% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Bentley Continental Flying Spur Sedan 2007 37.66% Audi S6 Sedan 2011 8.12% Audi TTS Coupe 2012 6.89% Aston Martin V8 Vantage Coupe 2012 5.19% Mitsubishi Lancer Sedan 2012 5.07% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 50.16% Chrysler PT Cruiser Convertible 2008 32.76% Hyundai Santa Fe SUV 2012 4.12% Mercedes-Benz Sprinter Van 2012 2.69% Buick Rainier SUV 2007 2.48% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 35.01% Jeep Compass SUV 2012 30.1% Cadillac Escalade EXT Crew Cab 2007 5.13% Audi S4 Sedan 2007 4.92% GMC Acadia SUV 2012 3.68% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Hyundai Genesis Sedan 2012 56.54% Chevrolet Malibu Sedan 2007 23.65% Mercedes-Benz SL-Class Coupe 2009 4.56% Dodge Charger Sedan 2012 2.86% Chrysler Town and Country Minivan 2012 1.82% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 BMW M6 Convertible 2010 54.14% Ford Mustang Convertible 2007 21.49% Spyker C8 Convertible 2009 7.62% Chevrolet Corvette Convertible 2012 1.68% Jaguar XK XKR 2012 1.68% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 81.7% BMW 1 Series Coupe 2012 6.9% Ford Ranger SuperCab 2011 2.86% Hyundai Sonata Hybrid Sedan 2012 1.95% Chevrolet Traverse SUV 2012 1.5% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Wrangler SUV 2012 69.47% Dodge Dakota Club Cab 2007 21.82% Jeep Compass SUV 2012 2.94% Jeep Patriot SUV 2012 2.88% Ford F-150 Regular Cab 2007 0.89% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 73.0% Dodge Dakota Club Cab 2007 26.88% Dodge Dakota Crew Cab 2010 0.06% Ford Ranger SuperCab 2011 0.02% Ford F-150 Regular Cab 2012 0.01% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Audi S5 Coupe 2012 96.13% Audi TT Hatchback 2011 1.95% Porsche Panamera Sedan 2012 0.91% Audi S4 Sedan 2012 0.37% Ford GT Coupe 2006 0.12% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Chevrolet Silverado 1500 Regular Cab 2012 25.03% Volvo 240 Sedan 1993 20.87% Mazda Tribute SUV 2011 16.73% Dodge Dakota Club Cab 2007 5.92% Isuzu Ascender SUV 2008 3.45% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Cadillac Escalade EXT Crew Cab 2007 12.49% GMC Acadia SUV 2012 11.36% Hyundai Tucson SUV 2012 10.43% BMW X3 SUV 2012 9.92% Cadillac SRX SUV 2012 6.81% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 92.41% Suzuki Kizashi Sedan 2012 6.17% Ford Fiesta Sedan 2012 0.71% Hyundai Azera Sedan 2012 0.15% Cadillac SRX SUV 2012 0.13% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Chevrolet Malibu Sedan 2007 5.55% Chevrolet Impala Sedan 2007 4.83% Dodge Caliber Wagon 2012 3.74% Audi S4 Sedan 2007 3.68% Dodge Challenger SRT8 2011 3.5% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW 1 Series Convertible 2012 39.74% Audi TT RS Coupe 2012 21.54% Aston Martin V8 Vantage Coupe 2012 14.76% Spyker C8 Coupe 2009 5.51% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.0% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Chrysler Sebring Convertible 2010 13.97% Dodge Charger SRT-8 2009 9.33% Chevrolet HHR SS 2010 8.18% BMW 6 Series Convertible 2007 7.71% Chevrolet Monte Carlo Coupe 2007 4.16% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Chevrolet Malibu Sedan 2007 52.5% Tesla Model S Sedan 2012 4.32% Ferrari FF Coupe 2012 3.56% Honda Odyssey Minivan 2007 3.08% Spyker C8 Convertible 2009 2.58% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 BMW X3 SUV 2012 29.95% Mercedes-Benz E-Class Sedan 2012 19.36% Infiniti QX56 SUV 2011 10.63% Acura Integra Type R 2001 5.67% GMC Yukon Hybrid SUV 2012 5.48% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Canyon Extended Cab 2012 22.93% Chevrolet Silverado 1500 Extended Cab 2012 20.75% Ford F-450 Super Duty Crew Cab 2012 12.31% Chevrolet Silverado 2500HD Regular Cab 2012 9.08% Ford F-150 Regular Cab 2012 7.02% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Audi S5 Coupe 2012 33.98% Audi S5 Convertible 2012 9.66% Audi A5 Coupe 2012 8.53% BMW M5 Sedan 2010 6.9% Hyundai Azera Sedan 2012 5.34% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Ferrari California Convertible 2012 15.83% Volkswagen Beetle Hatchback 2012 6.26% Chevrolet Cobalt SS 2010 5.21% Chevrolet HHR SS 2010 4.17% Nissan 240SX Coupe 1998 4.08% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Chrysler Town and Country Minivan 2012 72.57% Chevrolet Malibu Sedan 2007 5.52% Hyundai Elantra Sedan 2007 4.55% Ram C/V Cargo Van Minivan 2012 2.33% Mitsubishi Lancer Sedan 2012 1.76% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 Audi S6 Sedan 2011 72.91% Hyundai Elantra Touring Hatchback 2012 5.53% Acura TSX Sedan 2012 5.04% BMW 3 Series Sedan 2012 2.8% Bentley Continental Flying Spur Sedan 2007 2.28% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 97.7% Acura TL Sedan 2012 0.65% Acura ZDX Hatchback 2012 0.21% Audi S5 Coupe 2012 0.2% Audi S4 Sedan 2012 0.14% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi TTS Coupe 2012 94.95% BMW 6 Series Convertible 2007 2.25% Audi S4 Sedan 2012 1.35% Audi S4 Sedan 2007 0.68% Audi A5 Coupe 2012 0.41% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Ford Focus Sedan 2007 40.7% Chevrolet Express Cargo Van 2007 8.54% Chevrolet Monte Carlo Coupe 2007 6.56% Suzuki SX4 Hatchback 2012 6.18% Porsche Panamera Sedan 2012 5.26% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac SRX SUV 2012 32.31% Chrysler Town and Country Minivan 2012 20.81% Audi S4 Sedan 2012 10.29% Mercedes-Benz E-Class Sedan 2012 5.47% Mercedes-Benz C-Class Sedan 2012 4.45% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Hyundai Veracruz SUV 2012 92.05% Chevrolet Silverado 2500HD Regular Cab 2012 2.71% Hyundai Tucson SUV 2012 1.32% Ford Ranger SuperCab 2011 1.26% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.94% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Chevrolet Malibu Sedan 2007 68.49% Acura RL Sedan 2012 24.33% Chrysler Town and Country Minivan 2012 1.79% Acura TL Type-S 2008 0.9% Hyundai Genesis Sedan 2012 0.77% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Hyundai Tucson SUV 2012 44.61% Isuzu Ascender SUV 2008 16.97% Hyundai Santa Fe SUV 2012 12.46% Toyota 4Runner SUV 2012 3.58% Chevrolet Impala Sedan 2007 3.29% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 45.3% Hyundai Elantra Touring Hatchback 2012 36.72% Aston Martin Virage Coupe 2012 3.66% Hyundai Veloster Hatchback 2012 3.37% BMW 3 Series Sedan 2012 1.48% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Coupe 2012 43.67% Ferrari 458 Italia Convertible 2012 15.77% Ferrari California Convertible 2012 10.19% Ferrari FF Coupe 2012 3.92% Chevrolet Corvette ZR1 2012 3.23% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 BMW M6 Convertible 2010 61.82% BMW 6 Series Convertible 2007 25.76% Chevrolet Silverado 2500HD Regular Cab 2012 5.58% Buick Verano Sedan 2012 1.18% Volkswagen Golf Hatchback 1991 0.89% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Silverado 1500 Extended Cab 2012 46.58% Chevrolet HHR SS 2010 23.11% GMC Canyon Extended Cab 2012 6.96% Suzuki Aerio Sedan 2007 4.69% Ferrari California Convertible 2012 2.97% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 98.28% Chrysler 300 SRT-8 2010 1.06% Jeep Patriot SUV 2012 0.22% Buick Enclave SUV 2012 0.09% Jeep Liberty SUV 2012 0.07% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Acura RL Sedan 2012 59.64% BMW M3 Coupe 2012 30.79% BMW 6 Series Convertible 2007 3.12% Honda Odyssey Minivan 2012 3.05% Acura TSX Sedan 2012 2.09% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Dodge Magnum Wagon 2008 65.01% Chevrolet HHR SS 2010 32.19% Ferrari 458 Italia Convertible 2012 1.36% McLaren MP4-12C Coupe 2012 0.68% BMW 3 Series Sedan 2012 0.16% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 smart fortwo Convertible 2012 49.44% Mazda Tribute SUV 2011 27.52% Ram C/V Cargo Van Minivan 2012 3.79% Cadillac SRX SUV 2012 3.38% Bentley Continental Flying Spur Sedan 2007 1.98% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Durango SUV 2012 27.89% Mercedes-Benz C-Class Sedan 2012 10.0% Audi S4 Sedan 2012 9.97% Dodge Magnum Wagon 2008 7.02% Audi S4 Sedan 2007 5.45% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 99.19% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.41% GMC Canyon Extended Cab 2012 0.15% Ford F-150 Regular Cab 2012 0.11% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.06% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 69.87% smart fortwo Convertible 2012 6.01% Ford Expedition EL SUV 2009 3.17% Dodge Journey SUV 2012 2.32% Mitsubishi Lancer Sedan 2012 1.69% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Dodge Charger Sedan 2012 15.8% Aston Martin Virage Convertible 2012 9.86% Land Rover Range Rover SUV 2012 9.48% Audi TTS Coupe 2012 9.46% Mercedes-Benz 300-Class Convertible 1993 8.58% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Chevrolet Cobalt SS 2010 68.13% McLaren MP4-12C Coupe 2012 10.66% Ferrari California Convertible 2012 4.58% Ferrari 458 Italia Coupe 2012 4.17% Chevrolet Corvette Convertible 2012 2.87% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 90.35% Audi A5 Coupe 2012 7.92% Audi S5 Coupe 2012 1.3% Toyota Sequoia SUV 2012 0.08% Toyota Camry Sedan 2012 0.07% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 86.91% Audi S4 Sedan 2012 5.56% Audi A5 Coupe 2012 2.91% Audi TTS Coupe 2012 1.94% Audi S5 Coupe 2012 1.35% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Spyker C8 Convertible 2009 71.42% BMW 6 Series Convertible 2007 6.9% Spyker C8 Coupe 2009 4.96% Hyundai Veloster Hatchback 2012 3.3% Audi S4 Sedan 2012 1.77% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Suzuki SX4 Hatchback 2012 21.47% Buick Verano Sedan 2012 20.96% Ford Expedition EL SUV 2009 7.89% Volvo XC90 SUV 2007 6.94% GMC Yukon Hybrid SUV 2012 6.41% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-150 Regular Cab 2007 31.01% Dodge Ram Pickup 3500 Quad Cab 2009 20.51% Nissan NV Passenger Van 2012 18.3% Honda Accord Sedan 2012 9.47% Volvo 240 Sedan 1993 4.24% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 GMC Acadia SUV 2012 88.86% Buick Enclave SUV 2012 4.99% Mazda Tribute SUV 2011 3.78% Jeep Wrangler SUV 2012 1.08% Buick Rainier SUV 2007 0.68% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 66.18% Buick Regal GS 2012 4.93% Cadillac SRX SUV 2012 3.96% BMW M6 Convertible 2010 3.01% Porsche Panamera Sedan 2012 2.13% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 36.8% BMW 1 Series Coupe 2012 9.99% BMW ActiveHybrid 5 Sedan 2012 9.33% Acura ZDX Hatchback 2012 9.16% BMW M5 Sedan 2010 5.28% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Acura ZDX Hatchback 2012 31.2% Aston Martin Virage Convertible 2012 8.84% Bugatti Veyron 16.4 Coupe 2009 5.8% Lamborghini Reventon Coupe 2008 4.94% Bentley Mulsanne Sedan 2011 4.32% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Chevrolet Silverado 2500HD Regular Cab 2012 76.87% Ford F-150 Regular Cab 2012 8.04% Dodge Ram Pickup 3500 Quad Cab 2009 6.48% GMC Canyon Extended Cab 2012 2.49% Acura TL Type-S 2008 2.24% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 83.97% Lincoln Town Car Sedan 2011 7.58% Audi 100 Sedan 1994 1.95% Ford Focus Sedan 2007 1.8% Buick Enclave SUV 2012 0.78% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Ferrari 458 Italia Convertible 2012 53.24% Lamborghini Aventador Coupe 2012 18.85% Volvo 240 Sedan 1993 5.26% Ferrari 458 Italia Coupe 2012 4.5% McLaren MP4-12C Coupe 2012 2.52% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 HUMMER H3T Crew Cab 2010 90.91% Ford F-150 Regular Cab 2007 1.86% Hyundai Veloster Hatchback 2012 1.69% Dodge Ram Pickup 3500 Quad Cab 2009 1.27% Chevrolet Silverado 1500 Extended Cab 2012 1.2% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Chevrolet Sonic Sedan 2012 23.07% Bentley Continental GT Coupe 2012 21.52% Rolls-Royce Ghost Sedan 2012 15.85% MINI Cooper Roadster Convertible 2012 10.0% Chevrolet Malibu Hybrid Sedan 2010 4.08% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Grand Cherokee SUV 2012 59.94% Jeep Compass SUV 2012 39.55% Jeep Liberty SUV 2012 0.51% Cadillac Escalade EXT Crew Cab 2007 0.0% BMW X5 SUV 2007 0.0% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 52.37% Ford F-450 Super Duty Crew Cab 2012 9.99% Ford F-150 Regular Cab 2012 9.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.65% Dodge Dakota Club Cab 2007 4.23% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Infiniti G Coupe IPL 2012 29.0% Nissan 240SX Coupe 1998 10.33% Acura TL Sedan 2012 6.71% BMW M5 Sedan 2010 5.99% Mercedes-Benz 300-Class Convertible 1993 5.01% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 BMW X6 SUV 2012 66.24% Jeep Grand Cherokee SUV 2012 22.97% BMW ActiveHybrid 5 Sedan 2012 5.41% Jeep Compass SUV 2012 1.44% Audi S6 Sedan 2011 0.81% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 BMW 3 Series Sedan 2012 9.09% Chevrolet Corvette ZR1 2012 7.13% Lincoln Town Car Sedan 2011 6.28% Audi V8 Sedan 1994 4.32% Chevrolet Camaro Convertible 2012 4.25% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 57.31% BMW X3 SUV 2012 18.44% Audi RS 4 Convertible 2008 4.37% Dodge Ram Pickup 3500 Crew Cab 2010 4.28% Audi S5 Coupe 2012 4.09% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 BMW X6 SUV 2012 39.38% Chrysler Town and Country Minivan 2012 14.93% Acura RL Sedan 2012 13.16% Cadillac Escalade EXT Crew Cab 2007 10.15% GMC Yukon Hybrid SUV 2012 7.12% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Ford Freestar Minivan 2007 46.25% Suzuki Aerio Sedan 2007 20.54% Chevrolet Monte Carlo Coupe 2007 7.1% Suzuki Kizashi Sedan 2012 3.17% Ford F-150 Regular Cab 2007 2.3% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Mercedes-Benz C-Class Sedan 2012 22.8% Suzuki Aerio Sedan 2007 14.34% Hyundai Elantra Touring Hatchback 2012 7.91% Ferrari FF Coupe 2012 5.82% Hyundai Accent Sedan 2012 4.91% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 26.92% Toyota Corolla Sedan 2012 9.66% BMW M5 Sedan 2010 9.27% Hyundai Genesis Sedan 2012 5.68% Mercedes-Benz E-Class Sedan 2012 4.18% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Porsche Panamera Sedan 2012 36.37% Audi S5 Convertible 2012 21.19% Mercedes-Benz 300-Class Convertible 1993 6.93% Volkswagen Golf Hatchback 1991 5.81% Bentley Arnage Sedan 2009 5.47% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Honda Odyssey Minivan 2007 91.47% Chevrolet Traverse SUV 2012 1.46% Ford Focus Sedan 2007 1.32% Buick Rainier SUV 2007 1.23% Chevrolet Malibu Sedan 2007 1.23% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Chevrolet Traverse SUV 2012 45.65% Buick Rainier SUV 2007 19.87% Mazda Tribute SUV 2011 8.78% Suzuki SX4 Hatchback 2012 5.26% Jeep Wrangler SUV 2012 4.04% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Malibu Sedan 2007 58.04% BMW 6 Series Convertible 2007 7.17% Honda Accord Sedan 2012 6.99% Mitsubishi Lancer Sedan 2012 6.58% Acura TL Type-S 2008 4.63% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Audi S5 Convertible 2012 62.05% Acura TL Sedan 2012 10.21% Buick Verano Sedan 2012 5.51% Acura TL Type-S 2008 3.57% Hyundai Sonata Hybrid Sedan 2012 2.15% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 39.24% Chevrolet Traverse SUV 2012 24.18% Jeep Grand Cherokee SUV 2012 14.54% Dodge Caliber Wagon 2012 11.98% Hyundai Veracruz SUV 2012 5.41% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Porsche Panamera Sedan 2012 23.91% Aston Martin V8 Vantage Coupe 2012 12.79% Aston Martin Virage Convertible 2012 10.91% Jaguar XK XKR 2012 10.44% Cadillac CTS-V Sedan 2012 7.41% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 GMC Acadia SUV 2012 39.57% Suzuki SX4 Sedan 2012 15.32% Audi R8 Coupe 2012 8.8% Mercedes-Benz 300-Class Convertible 1993 3.75% Chevrolet Cobalt SS 2010 3.65% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Mercedes-Benz SL-Class Coupe 2009 19.09% Lincoln Town Car Sedan 2011 14.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 11.61% Chevrolet Impala Sedan 2007 5.69% Land Rover Range Rover SUV 2012 4.99% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 90.66% BMW X5 SUV 2007 6.8% Mercedes-Benz S-Class Sedan 2012 0.87% Toyota 4Runner SUV 2012 0.2% Cadillac SRX SUV 2012 0.18% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Spyker C8 Coupe 2009 52.75% Ferrari 458 Italia Coupe 2012 8.62% Ford GT Coupe 2006 7.7% Hyundai Sonata Sedan 2012 7.64% Scion xD Hatchback 2012 5.05% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Lamborghini Aventador Coupe 2012 64.58% Jaguar XK XKR 2012 23.74% BMW 1 Series Coupe 2012 4.14% Dodge Charger SRT-8 2009 3.58% Honda Accord Coupe 2012 0.93% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Chevrolet Impala Sedan 2007 38.01% Hyundai Tucson SUV 2012 33.08% Volvo 240 Sedan 1993 22.35% Land Rover LR2 SUV 2012 1.93% Scion xD Hatchback 2012 1.01% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 GMC Yukon Hybrid SUV 2012 47.37% Ford Expedition EL SUV 2009 13.55% Bentley Arnage Sedan 2009 4.94% Ford F-450 Super Duty Crew Cab 2012 4.59% Chrysler Town and Country Minivan 2012 3.0% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Audi TTS Coupe 2012 21.83% MINI Cooper Roadster Convertible 2012 16.33% GMC Yukon Hybrid SUV 2012 7.5% BMW 3 Series Sedan 2012 7.14% Acura ZDX Hatchback 2012 6.42% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Dodge Ram Pickup 3500 Quad Cab 2009 41.38% Cadillac Escalade EXT Crew Cab 2007 9.95% HUMMER H2 SUT Crew Cab 2009 6.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.97% Honda Accord Sedan 2012 5.42% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 90.64% Dodge Ram Pickup 3500 Crew Cab 2010 6.75% Ford F-150 Regular Cab 2007 0.76% GMC Canyon Extended Cab 2012 0.58% Dodge Dakota Crew Cab 2010 0.53% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 63.48% Cadillac Escalade EXT Crew Cab 2007 15.02% HUMMER H3T Crew Cab 2010 5.87% Infiniti QX56 SUV 2011 4.3% FIAT 500 Abarth 2012 3.07% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Toyota Sequoia SUV 2012 39.72% Dodge Caravan Minivan 1997 25.48% Hyundai Veracruz SUV 2012 3.7% Ford Freestar Minivan 2007 2.7% Infiniti QX56 SUV 2011 2.62% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Aston Martin Virage Coupe 2012 39.68% BMW 1 Series Coupe 2012 19.02% Aston Martin V8 Vantage Coupe 2012 12.08% Mitsubishi Lancer Sedan 2012 9.96% Spyker C8 Coupe 2009 9.96% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 21.06% Tesla Model S Sedan 2012 19.4% Chrysler 300 SRT-8 2010 18.83% Bentley Arnage Sedan 2009 10.7% Buick Regal GS 2012 7.37% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Ford Mustang Convertible 2007 78.8% McLaren MP4-12C Coupe 2012 7.69% BMW Z4 Convertible 2012 3.12% Dodge Challenger SRT8 2011 1.5% Aston Martin V8 Vantage Coupe 2012 1.41% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Geo Metro Convertible 1993 99.99% Jaguar XK XKR 2012 0.0% Honda Accord Sedan 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% Chrysler Sebring Convertible 2010 0.0% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 32.77% Audi 100 Wagon 1994 15.0% BMW ActiveHybrid 5 Sedan 2012 8.59% Hyundai Elantra Touring Hatchback 2012 5.66% Suzuki Aerio Sedan 2007 5.59% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 36.78% Bentley Continental GT Coupe 2007 23.26% Acura TL Sedan 2012 14.73% Spyker C8 Convertible 2009 10.68% Daewoo Nubira Wagon 2002 4.46% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.98% GMC Savana Van 2012 0.01% Chevrolet Express Van 2007 0.0% Ford F-150 Regular Cab 2012 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 71.05% Dodge Dakota Club Cab 2007 19.96% Ford Ranger SuperCab 2011 2.02% Isuzu Ascender SUV 2008 1.93% GMC Canyon Extended Cab 2012 1.35% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Spyker C8 Convertible 2009 94.2% Buick Verano Sedan 2012 2.24% BMW X3 SUV 2012 0.58% Land Rover LR2 SUV 2012 0.55% Infiniti G Coupe IPL 2012 0.39% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 63.23% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.78% Dodge Caliber Wagon 2012 4.58% Mercedes-Benz C-Class Sedan 2012 4.33% Toyota Corolla Sedan 2012 3.53% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Daewoo Nubira Wagon 2002 24.35% BMW M5 Sedan 2010 22.67% Bugatti Veyron 16.4 Coupe 2009 7.22% Chevrolet Impala Sedan 2007 5.04% Mitsubishi Lancer Sedan 2012 3.28% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Chevrolet Camaro Convertible 2012 26.33% Aston Martin V8 Vantage Convertible 2012 24.16% Ferrari California Convertible 2012 17.98% Chrysler 300 SRT-8 2010 11.43% Nissan 240SX Coupe 1998 3.28% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 GMC Acadia SUV 2012 39.38% Geo Metro Convertible 1993 11.48% Chevrolet Corvette ZR1 2012 9.03% Lincoln Town Car Sedan 2011 6.43% Chevrolet Silverado 1500 Regular Cab 2012 4.98% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Cadillac CTS-V Sedan 2012 59.77% Infiniti G Coupe IPL 2012 5.98% Hyundai Genesis Sedan 2012 3.61% Audi S5 Convertible 2012 2.65% Chevrolet Sonic Sedan 2012 2.11% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Chrysler PT Cruiser Convertible 2008 99.19% Audi S6 Sedan 2011 0.39% Audi S5 Convertible 2012 0.15% BMW 3 Series Wagon 2012 0.07% Volkswagen Beetle Hatchback 2012 0.05% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 32.81% Jeep Liberty SUV 2012 24.54% GMC Yukon Hybrid SUV 2012 15.29% Ford F-150 Regular Cab 2007 4.07% Rolls-Royce Phantom Sedan 2012 3.67% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 79.13% Ferrari 458 Italia Coupe 2012 9.55% Ferrari 458 Italia Convertible 2012 6.76% Ferrari FF Coupe 2012 3.45% Lamborghini Aventador Coupe 2012 0.31% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Ferrari 458 Italia Coupe 2012 16.22% Volvo 240 Sedan 1993 15.36% Ford GT Coupe 2006 10.4% FIAT 500 Abarth 2012 9.49% Spyker C8 Convertible 2009 8.35% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 45.15% Lamborghini Reventon Coupe 2008 21.61% smart fortwo Convertible 2012 14.44% Chevrolet Impala Sedan 2007 3.22% Chevrolet Malibu Sedan 2007 2.74% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Lincoln Town Car Sedan 2011 32.22% Chrysler Aspen SUV 2009 15.5% Chevrolet Traverse SUV 2012 12.32% Volvo 240 Sedan 1993 8.52% Mercedes-Benz C-Class Sedan 2012 3.5% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Mercedes-Benz S-Class Sedan 2012 86.81% Acura TL Type-S 2008 4.61% Hyundai Elantra Sedan 2007 2.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.28% Nissan Leaf Hatchback 2012 1.31% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Chevrolet TrailBlazer SS 2009 37.19% Infiniti QX56 SUV 2011 27.25% Buick Rainier SUV 2007 16.83% BMW 1 Series Convertible 2012 5.13% Jeep Compass SUV 2012 2.95% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chrysler Town and Country Minivan 2012 51.86% Ram C/V Cargo Van Minivan 2012 17.57% Dodge Durango SUV 2007 3.81% GMC Yukon Hybrid SUV 2012 3.31% Chrysler Sebring Convertible 2010 2.96% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Buick Enclave SUV 2012 14.95% Hyundai Accent Sedan 2012 13.59% Mazda Tribute SUV 2011 10.1% Ford Fiesta Sedan 2012 8.28% BMW X6 SUV 2012 7.09% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 90.73% Ford Mustang Convertible 2007 2.16% Audi V8 Sedan 1994 1.62% Tesla Model S Sedan 2012 1.32% Fisker Karma Sedan 2012 1.14% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 36.26% Hyundai Tucson SUV 2012 9.01% Dodge Charger SRT-8 2009 6.88% Honda Accord Coupe 2012 6.22% Chevrolet Avalanche Crew Cab 2012 4.3% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 McLaren MP4-12C Coupe 2012 90.3% AM General Hummer SUV 2000 5.27% HUMMER H2 SUT Crew Cab 2009 2.18% Hyundai Veloster Hatchback 2012 0.69% Lamborghini Diablo Coupe 2001 0.33% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Volvo 240 Sedan 1993 36.68% BMW Z4 Convertible 2012 19.87% Chevrolet Malibu Hybrid Sedan 2010 10.64% Hyundai Sonata Hybrid Sedan 2012 5.83% Hyundai Elantra Sedan 2007 5.51% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Spyker C8 Convertible 2009 24.19% Ferrari California Convertible 2012 12.04% Daewoo Nubira Wagon 2002 6.93% Lamborghini Reventon Coupe 2008 6.36% Cadillac CTS-V Sedan 2012 5.78% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Scion xD Hatchback 2012 88.96% Hyundai Tucson SUV 2012 6.37% Chevrolet Traverse SUV 2012 2.75% Ford Freestar Minivan 2007 0.38% Honda Odyssey Minivan 2007 0.32% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Dodge Challenger SRT8 2011 58.72% Chevrolet Cobalt SS 2010 6.51% Ford Fiesta Sedan 2012 6.48% Aston Martin V8 Vantage Coupe 2012 5.92% Chevrolet Corvette ZR1 2012 4.67% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 GMC Canyon Extended Cab 2012 84.19% Jeep Liberty SUV 2012 4.92% Audi S4 Sedan 2007 1.22% Hyundai Veracruz SUV 2012 0.99% Mercedes-Benz C-Class Sedan 2012 0.87% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Audi A5 Coupe 2012 55.25% Audi TTS Coupe 2012 11.3% Audi S6 Sedan 2011 8.4% Mercedes-Benz S-Class Sedan 2012 5.02% Audi S4 Sedan 2012 3.19% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Ferrari California Convertible 2012 29.52% Chevrolet Camaro Convertible 2012 9.71% Suzuki SX4 Sedan 2012 7.94% Suzuki SX4 Hatchback 2012 6.13% Chevrolet Sonic Sedan 2012 5.58% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 20.59% Dodge Durango SUV 2012 18.04% Spyker C8 Convertible 2009 13.29% Porsche Panamera Sedan 2012 7.25% Bentley Continental GT Coupe 2007 3.03% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Volvo 240 Sedan 1993 29.65% Volkswagen Golf Hatchback 1991 7.89% Hyundai Tucson SUV 2012 5.8% Lincoln Town Car Sedan 2011 4.3% Land Rover LR2 SUV 2012 3.22% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Porsche Panamera Sedan 2012 34.07% BMW M6 Convertible 2010 28.22% Audi S5 Coupe 2012 20.98% Acura RL Sedan 2012 3.81% Audi S6 Sedan 2011 2.17% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Suzuki SX4 Hatchback 2012 40.7% Chevrolet Malibu Sedan 2007 17.0% Chevrolet Monte Carlo Coupe 2007 4.46% Ford Fiesta Sedan 2012 3.68% Ford Freestar Minivan 2007 3.16% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Acura TL Type-S 2008 62.9% Acura TL Sedan 2012 12.34% Hyundai Sonata Hybrid Sedan 2012 6.82% Mercedes-Benz SL-Class Coupe 2009 5.6% Honda Odyssey Minivan 2007 2.54% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Infiniti G Coupe IPL 2012 83.42% Audi RS 4 Convertible 2008 12.97% Audi S5 Coupe 2012 1.94% Audi S4 Sedan 2012 0.46% Lamborghini Diablo Coupe 2001 0.34% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 82.39% Audi TT Hatchback 2011 13.77% Audi R8 Coupe 2012 2.42% Audi S5 Coupe 2012 0.49% Audi RS 4 Convertible 2008 0.25% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Jeep Liberty SUV 2012 96.21% Ford Freestar Minivan 2007 1.1% Ford F-450 Super Duty Crew Cab 2012 0.63% Land Rover Range Rover SUV 2012 0.6% Dodge Durango SUV 2012 0.47% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Volkswagen Golf Hatchback 1991 24.1% Land Rover Range Rover SUV 2012 18.31% Rolls-Royce Ghost Sedan 2012 5.71% Volvo 240 Sedan 1993 4.87% Chevrolet TrailBlazer SS 2009 4.41% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 59.82% Chevrolet Malibu Sedan 2007 16.1% Daewoo Nubira Wagon 2002 10.63% Scion xD Hatchback 2012 5.91% Suzuki SX4 Sedan 2012 1.6% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 GMC Yukon Hybrid SUV 2012 31.05% Chevrolet Avalanche Crew Cab 2012 28.86% Chevrolet Tahoe Hybrid SUV 2012 27.55% Dodge Dakota Club Cab 2007 5.37% Ford F-150 Regular Cab 2012 3.55% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Lamborghini Reventon Coupe 2008 98.61% Acura Integra Type R 2001 0.28% Volvo 240 Sedan 1993 0.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.21% Chrysler PT Cruiser Convertible 2008 0.15% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Aston Martin Virage Convertible 2012 86.48% Aston Martin V8 Vantage Coupe 2012 7.11% Eagle Talon Hatchback 1998 1.65% Lamborghini Reventon Coupe 2008 1.46% Lamborghini Aventador Coupe 2012 1.23% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Audi S5 Coupe 2012 22.55% Mercedes-Benz S-Class Sedan 2012 20.77% Cadillac CTS-V Sedan 2012 20.69% Bentley Mulsanne Sedan 2011 11.74% Mercedes-Benz C-Class Sedan 2012 6.37% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 smart fortwo Convertible 2012 61.89% GMC Acadia SUV 2012 19.36% Cadillac Escalade EXT Crew Cab 2007 3.4% Acura TL Type-S 2008 2.16% Suzuki Aerio Sedan 2007 1.87% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 62.88% Porsche Panamera Sedan 2012 15.09% Plymouth Neon Coupe 1999 10.05% Mercedes-Benz C-Class Sedan 2012 4.03% Bentley Continental GT Coupe 2007 1.5% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-150 Regular Cab 2007 43.26% Dodge Dakota Club Cab 2007 22.87% Jeep Compass SUV 2012 11.98% Isuzu Ascender SUV 2008 7.04% Dodge Ram Pickup 3500 Quad Cab 2009 3.97% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Lincoln Town Car Sedan 2011 63.03% Hyundai Elantra Sedan 2007 15.57% Honda Accord Sedan 2012 3.65% Dodge Caravan Minivan 1997 3.23% Acura TSX Sedan 2012 2.95% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Land Rover Range Rover SUV 2012 81.92% Cadillac Escalade EXT Crew Cab 2007 1.79% Toyota Sequoia SUV 2012 1.38% Dodge Durango SUV 2007 1.13% Chrysler 300 SRT-8 2010 1.09% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Buick Verano Sedan 2012 35.74% Infiniti G Coupe IPL 2012 23.6% Lamborghini Reventon Coupe 2008 20.61% Mercedes-Benz E-Class Sedan 2012 3.49% Volkswagen Golf Hatchback 1991 2.79% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 Audi TT RS Coupe 2012 21.02% Spyker C8 Convertible 2009 20.59% Aston Martin V8 Vantage Convertible 2012 18.32% Bentley Arnage Sedan 2009 9.46% Audi S5 Convertible 2012 5.76% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Infiniti G Coupe IPL 2012 24.68% Mercedes-Benz SL-Class Coupe 2009 9.32% Honda Accord Coupe 2012 6.88% Ford Mustang Convertible 2007 6.8% Cadillac SRX SUV 2012 5.74% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Jeep Wrangler SUV 2012 36.52% Buick Rainier SUV 2007 32.19% Chevrolet Tahoe Hybrid SUV 2012 19.85% Chevrolet Avalanche Crew Cab 2012 4.44% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.08% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 BMW 6 Series Convertible 2007 31.13% Bugatti Veyron 16.4 Convertible 2009 20.22% Chrysler 300 SRT-8 2010 10.36% Audi S5 Convertible 2012 6.51% Bentley Mulsanne Sedan 2011 5.0% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Audi RS 4 Convertible 2008 18.76% Acura TL Type-S 2008 16.05% Acura RL Sedan 2012 13.84% Infiniti G Coupe IPL 2012 12.12% Mitsubishi Lancer Sedan 2012 7.32% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Ford GT Coupe 2006 88.39% Spyker C8 Convertible 2009 4.99% Lamborghini Aventador Coupe 2012 4.05% Eagle Talon Hatchback 1998 1.32% Rolls-Royce Phantom Sedan 2012 0.2% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Audi TT RS Coupe 2012 48.97% Volkswagen Beetle Hatchback 2012 20.66% BMW 3 Series Sedan 2012 9.02% Suzuki Kizashi Sedan 2012 6.95% Hyundai Elantra Sedan 2007 3.07% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 Hyundai Veracruz SUV 2012 42.75% BMW 1 Series Convertible 2012 6.35% AM General Hummer SUV 2000 6.16% GMC Acadia SUV 2012 6.1% BMW X3 SUV 2012 5.97% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 80.72% Chrysler Town and Country Minivan 2012 8.85% Dodge Dakota Crew Cab 2010 6.2% Dodge Ram Pickup 3500 Crew Cab 2010 0.58% Dodge Journey SUV 2012 0.55% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 85.87% Daewoo Nubira Wagon 2002 3.25% Buick Verano Sedan 2012 1.83% Suzuki Kizashi Sedan 2012 1.06% Suzuki SX4 Hatchback 2012 0.68% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Mercedes-Benz C-Class Sedan 2012 43.42% Jeep Liberty SUV 2012 12.04% Chevrolet Malibu Sedan 2007 10.53% BMW 3 Series Sedan 2012 4.6% Ferrari FF Coupe 2012 2.48% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota 4Runner SUV 2012 42.41% Volvo XC90 SUV 2007 14.72% Land Rover Range Rover SUV 2012 13.26% Toyota Sequoia SUV 2012 9.41% BMW X6 SUV 2012 9.23% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Ranger SuperCab 2011 96.25% Jeep Compass SUV 2012 1.3% Ford F-150 Regular Cab 2007 0.64% Mazda Tribute SUV 2011 0.53% HUMMER H2 SUT Crew Cab 2009 0.34% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Chevrolet Malibu Sedan 2007 58.27% Dodge Journey SUV 2012 20.77% Chrysler Crossfire Convertible 2008 6.09% Hyundai Elantra Sedan 2007 2.87% Suzuki SX4 Hatchback 2012 1.73% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Aston Martin V8 Vantage Convertible 2012 51.84% Aston Martin V8 Vantage Coupe 2012 25.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.42% Jaguar XK XKR 2012 3.49% Lamborghini Reventon Coupe 2008 2.42% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 35.1% Mercedes-Benz 300-Class Convertible 1993 12.6% Ferrari California Convertible 2012 12.55% Aston Martin V8 Vantage Coupe 2012 5.19% Nissan 240SX Coupe 1998 4.62% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X5 SUV 2007 31.45% Infiniti QX56 SUV 2011 8.11% Hyundai Santa Fe SUV 2012 6.81% Audi S5 Coupe 2012 5.25% Nissan Juke Hatchback 2012 4.02% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Chrysler PT Cruiser Convertible 2008 69.08% Daewoo Nubira Wagon 2002 9.61% Chevrolet Impala Sedan 2007 3.31% Buick Rainier SUV 2007 2.77% Volvo 240 Sedan 1993 2.17% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Malibu Sedan 2007 55.69% Hyundai Sonata Sedan 2012 33.28% Hyundai Elantra Sedan 2007 2.56% Acura ZDX Hatchback 2012 2.46% Hyundai Sonata Hybrid Sedan 2012 1.76% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Lamborghini Gallardo LP 570-4 Superleggera 2012 61.28% Honda Accord Sedan 2012 9.33% Ford Fiesta Sedan 2012 5.17% Nissan Juke Hatchback 2012 2.35% Chrysler Crossfire Convertible 2008 2.33% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 54.3% Cadillac Escalade EXT Crew Cab 2007 38.5% Ford Expedition EL SUV 2009 2.6% Ford Ranger SuperCab 2011 2.41% Toyota Sequoia SUV 2012 1.27% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Hyundai Elantra Sedan 2007 53.52% Plymouth Neon Coupe 1999 23.5% Toyota Corolla Sedan 2012 4.58% Nissan 240SX Coupe 1998 4.46% Eagle Talon Hatchback 1998 4.07% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Sonata Hybrid Sedan 2012 24.76% Aston Martin Virage Convertible 2012 10.46% Toyota Camry Sedan 2012 7.34% BMW 6 Series Convertible 2007 7.33% Bentley Continental GT Coupe 2012 7.22% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 90.72% Daewoo Nubira Wagon 2002 7.78% Chevrolet Impala Sedan 2007 1.21% Lincoln Town Car Sedan 2011 0.15% Scion xD Hatchback 2012 0.05% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Chrysler 300 SRT-8 2010 25.64% Bentley Continental GT Coupe 2007 16.08% Bentley Mulsanne Sedan 2011 13.25% Ford Mustang Convertible 2007 5.12% Ford F-150 Regular Cab 2007 3.88% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Jeep Liberty SUV 2012 64.53% Dodge Caliber Wagon 2012 7.99% Chevrolet Express Van 2007 7.29% Dodge Sprinter Cargo Van 2009 5.06% GMC Savana Van 2012 4.58% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 HUMMER H3T Crew Cab 2010 31.26% Dodge Caliber Wagon 2007 20.84% GMC Savana Van 2012 5.87% Dodge Challenger SRT8 2011 5.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.72% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Caliber Wagon 2007 23.99% Spyker C8 Coupe 2009 5.66% Dodge Dakota Crew Cab 2010 3.39% BMW 3 Series Wagon 2012 2.61% Dodge Journey SUV 2012 2.49% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 BMW 3 Series Wagon 2012 78.29% Suzuki Kizashi Sedan 2012 3.65% Audi S4 Sedan 2007 2.56% Hyundai Genesis Sedan 2012 1.24% Chevrolet Malibu Sedan 2007 1.22% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Jeep Patriot SUV 2012 32.47% Dodge Dakota Club Cab 2007 17.09% Jeep Liberty SUV 2012 15.27% Ford Ranger SuperCab 2011 11.18% Dodge Ram Pickup 3500 Quad Cab 2009 7.38% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Cadillac CTS-V Sedan 2012 33.52% Audi R8 Coupe 2012 25.05% Audi S5 Coupe 2012 15.34% Audi RS 4 Convertible 2008 12.18% BMW 6 Series Convertible 2007 1.9% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Audi S6 Sedan 2011 86.83% Tesla Model S Sedan 2012 3.4% Audi TTS Coupe 2012 2.99% Ford Mustang Convertible 2007 1.24% Audi S4 Sedan 2012 1.17% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 25.16% Geo Metro Convertible 1993 18.44% Chevrolet Camaro Convertible 2012 9.48% Ferrari California Convertible 2012 8.47% Nissan 240SX Coupe 1998 7.58% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 30.01% Chevrolet Corvette Convertible 2012 20.35% AM General Hummer SUV 2000 12.87% Ferrari 458 Italia Coupe 2012 10.4% Geo Metro Convertible 1993 10.1% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Volkswagen Golf Hatchback 2012 33.74% BMW ActiveHybrid 5 Sedan 2012 26.01% Acura TL Type-S 2008 11.87% Suzuki Aerio Sedan 2007 7.7% Mercedes-Benz E-Class Sedan 2012 4.32% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 39.43% Chevrolet Silverado 1500 Regular Cab 2012 16.82% Hyundai Tucson SUV 2012 10.34% Dodge Caravan Minivan 1997 5.96% Chevrolet Traverse SUV 2012 4.47% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Honda Accord Coupe 2012 20.93% Hyundai Sonata Sedan 2012 13.24% Hyundai Elantra Sedan 2007 10.2% Volvo 240 Sedan 1993 5.5% Chevrolet Traverse SUV 2012 5.1% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 BMW X6 SUV 2012 94.41% BMW X3 SUV 2012 1.8% BMW X5 SUV 2007 1.54% Cadillac SRX SUV 2012 0.26% Infiniti QX56 SUV 2011 0.24% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet Silverado 1500 Regular Cab 2012 18.42% Chevrolet Silverado 2500HD Regular Cab 2012 12.35% Land Rover LR2 SUV 2012 12.19% Audi 100 Wagon 1994 11.85% Cadillac SRX SUV 2012 7.25% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari FF Coupe 2012 69.05% Ferrari California Convertible 2012 30.77% Audi TT Hatchback 2011 0.1% Volkswagen Beetle Hatchback 2012 0.04% Chevrolet Camaro Convertible 2012 0.01% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 99.94% GMC Canyon Extended Cab 2012 0.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.01% Dodge Durango SUV 2007 0.0% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 96.11% Chevrolet Corvette ZR1 2012 2.6% Aston Martin V8 Vantage Convertible 2012 0.82% Bugatti Veyron 16.4 Coupe 2009 0.19% Audi RS 4 Convertible 2008 0.05% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Camaro Convertible 2012 37.37% Chevrolet Corvette Convertible 2012 28.5% Lamborghini Aventador Coupe 2012 13.67% Volkswagen Golf Hatchback 1991 7.45% Ford F-150 Regular Cab 2007 4.32% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Ford GT Coupe 2006 45.19% Spyker C8 Convertible 2009 13.87% Lamborghini Reventon Coupe 2008 5.37% Ferrari 458 Italia Coupe 2012 4.15% Bentley Arnage Sedan 2009 3.9% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Acura ZDX Hatchback 2012 26.22% Hyundai Veracruz SUV 2012 19.05% Nissan Juke Hatchback 2012 12.98% Hyundai Veloster Hatchback 2012 6.55% Buick Verano Sedan 2012 5.96% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Buick Rainier SUV 2007 17.02% BMW 1 Series Convertible 2012 15.15% Mercedes-Benz C-Class Sedan 2012 14.51% Dodge Caliber Wagon 2007 13.07% Dodge Journey SUV 2012 3.96% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 88.33% BMW X5 SUV 2007 6.22% Hyundai Elantra Touring Hatchback 2012 3.76% Chevrolet Monte Carlo Coupe 2007 0.28% Chevrolet Silverado 2500HD Regular Cab 2012 0.23% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Hyundai Elantra Touring Hatchback 2012 17.19% Ford Mustang Convertible 2007 8.34% Acura RL Sedan 2012 6.45% Acura TL Type-S 2008 5.99% Chrysler Town and Country Minivan 2012 5.54% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 BMW M5 Sedan 2010 68.24% Bentley Arnage Sedan 2009 11.67% Tesla Model S Sedan 2012 4.77% Audi S5 Convertible 2012 2.21% Acura ZDX Hatchback 2012 1.75% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 26.64% Chrysler 300 SRT-8 2010 17.49% Dodge Dakota Crew Cab 2010 4.7% GMC Terrain SUV 2012 4.4% Dodge Dakota Club Cab 2007 3.97% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Chevrolet Express Cargo Van 2007 78.33% Chevrolet Monte Carlo Coupe 2007 4.01% Scion xD Hatchback 2012 3.47% Chevrolet Traverse SUV 2012 2.24% Lincoln Town Car Sedan 2011 1.09% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 18.22% Chevrolet Camaro Convertible 2012 14.99% BMW M6 Convertible 2010 11.74% Ford Mustang Convertible 2007 11.35% Chrysler PT Cruiser Convertible 2008 11.31% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 45.57% Suzuki Kizashi Sedan 2012 13.08% Audi S5 Coupe 2012 7.4% BMW 3 Series Sedan 2012 5.64% BMW 1 Series Convertible 2012 4.22% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Coupe 2012 45.49% Chevrolet Cobalt SS 2010 21.23% Lamborghini Diablo Coupe 2001 9.28% Chevrolet Corvette Convertible 2012 7.4% Dodge Charger Sedan 2012 2.86% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 26.97% Chevrolet Monte Carlo Coupe 2007 24.38% Toyota Camry Sedan 2012 9.46% Hyundai Sonata Hybrid Sedan 2012 9.09% Hyundai Genesis Sedan 2012 8.76% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S5 Convertible 2012 25.37% Cadillac CTS-V Sedan 2012 24.91% Mitsubishi Lancer Sedan 2012 5.96% Audi S4 Sedan 2012 5.89% Audi RS 4 Convertible 2008 5.78% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 44.3% Dodge Caravan Minivan 1997 29.27% Chevrolet Traverse SUV 2012 9.47% Chevrolet Malibu Sedan 2007 6.25% Hyundai Santa Fe SUV 2012 5.02% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 32.37% Aston Martin V8 Vantage Convertible 2012 28.79% Jaguar XK XKR 2012 11.38% BMW ActiveHybrid 5 Sedan 2012 10.5% Infiniti G Coupe IPL 2012 4.52% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Eagle Talon Hatchback 1998 83.22% Buick Verano Sedan 2012 2.8% McLaren MP4-12C Coupe 2012 1.95% Audi S5 Coupe 2012 1.74% Chevrolet Camaro Convertible 2012 1.66% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 BMW 6 Series Convertible 2007 17.93% Chevrolet Impala Sedan 2007 10.85% Honda Accord Sedan 2012 10.8% Cadillac CTS-V Sedan 2012 5.88% Ford Mustang Convertible 2007 5.02% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 47.52% FIAT 500 Abarth 2012 15.37% Chevrolet TrailBlazer SS 2009 6.77% Audi TTS Coupe 2012 6.52% Audi RS 4 Convertible 2008 4.66% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 80.72% Chrysler Town and Country Minivan 2012 8.85% Dodge Dakota Crew Cab 2010 6.2% Dodge Ram Pickup 3500 Crew Cab 2010 0.58% Dodge Journey SUV 2012 0.55% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Mercedes-Benz S-Class Sedan 2012 10.81% BMW ActiveHybrid 5 Sedan 2012 8.96% Hyundai Genesis Sedan 2012 6.22% Porsche Panamera Sedan 2012 5.59% Infiniti QX56 SUV 2011 5.48% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 71.47% Honda Accord Sedan 2012 24.14% Chevrolet Malibu Hybrid Sedan 2010 2.19% Mercedes-Benz C-Class Sedan 2012 1.39% Chevrolet Impala Sedan 2007 0.07% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 Hyundai Veloster Hatchback 2012 63.55% Chevrolet Express Van 2007 6.99% Mercedes-Benz SL-Class Coupe 2009 4.62% McLaren MP4-12C Coupe 2012 3.6% Audi R8 Coupe 2012 2.06% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Lamborghini Aventador Coupe 2012 35.86% Aston Martin V8 Vantage Coupe 2012 19.1% Jaguar XK XKR 2012 9.58% Bugatti Veyron 16.4 Convertible 2009 4.0% Audi TTS Coupe 2012 3.57% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Toyota Sequoia SUV 2012 14.36% Jeep Wrangler SUV 2012 12.35% Jeep Liberty SUV 2012 11.37% Rolls-Royce Phantom Sedan 2012 10.05% Ford F-150 Regular Cab 2012 6.72% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Cadillac SRX SUV 2012 20.12% GMC Yukon Hybrid SUV 2012 11.05% Chevrolet Silverado 1500 Regular Cab 2012 9.62% Ford F-150 Regular Cab 2007 9.6% Cadillac Escalade EXT Crew Cab 2007 6.16% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 McLaren MP4-12C Coupe 2012 26.86% Chevrolet Corvette ZR1 2012 26.34% Volkswagen Beetle Hatchback 2012 7.52% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.88% Porsche Panamera Sedan 2012 3.96% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Acura RL Sedan 2012 26.5% Suzuki Aerio Sedan 2007 24.88% Mitsubishi Lancer Sedan 2012 18.8% Toyota Camry Sedan 2012 4.28% Lincoln Town Car Sedan 2011 4.22% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 17.39% Cadillac SRX SUV 2012 15.6% Land Rover LR2 SUV 2012 12.75% Land Rover Range Rover SUV 2012 5.76% Hyundai Veracruz SUV 2012 5.0% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 84.62% Aston Martin Virage Convertible 2012 8.77% Infiniti G Coupe IPL 2012 2.57% Audi RS 4 Convertible 2008 0.74% BMW M5 Sedan 2010 0.49% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 30.81% Ferrari California Convertible 2012 20.19% Jaguar XK XKR 2012 17.5% Mercedes-Benz 300-Class Convertible 1993 9.69% BMW M3 Coupe 2012 3.18% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Ford Fiesta Sedan 2012 48.64% Chevrolet HHR SS 2010 30.92% Buick Rainier SUV 2007 6.0% Mitsubishi Lancer Sedan 2012 1.45% Hyundai Elantra Sedan 2007 1.44% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Chrysler 300 SRT-8 2010 28.76% GMC Terrain SUV 2012 16.41% Chevrolet Express Cargo Van 2007 9.62% Ford F-150 Regular Cab 2007 8.73% Ford F-150 Regular Cab 2012 5.85% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 BMW 3 Series Sedan 2012 30.02% Rolls-Royce Ghost Sedan 2012 10.74% Volvo 240 Sedan 1993 10.04% Land Rover LR2 SUV 2012 5.4% Hyundai Veracruz SUV 2012 4.54% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 36.82% Lincoln Town Car Sedan 2011 18.44% Acura Integra Type R 2001 13.55% Chevrolet Impala Sedan 2007 7.42% Chrysler Town and Country Minivan 2012 7.04% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Mercedes-Benz S-Class Sedan 2012 7.38% Audi V8 Sedan 1994 6.32% Audi R8 Coupe 2012 5.24% Honda Accord Sedan 2012 4.33% Jaguar XK XKR 2012 4.19% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 37.06% Ford F-150 Regular Cab 2012 25.39% GMC Canyon Extended Cab 2012 18.33% Chevrolet Silverado 1500 Extended Cab 2012 9.51% GMC Savana Van 2012 5.51% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 79.31% Volvo 240 Sedan 1993 8.68% Chevrolet Silverado 1500 Regular Cab 2012 3.35% Mercedes-Benz S-Class Sedan 2012 2.32% Audi 100 Sedan 1994 1.39% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Audi S5 Convertible 2012 17.48% Aston Martin Virage Coupe 2012 15.17% Chevrolet Corvette ZR1 2012 11.07% Porsche Panamera Sedan 2012 7.11% BMW 1 Series Coupe 2012 6.37% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Dodge Caravan Minivan 1997 42.95% Acura TL Type-S 2008 30.08% Mitsubishi Lancer Sedan 2012 18.19% Honda Odyssey Minivan 2012 1.78% Honda Accord Coupe 2012 0.82% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 BMW X6 SUV 2012 22.28% BMW X3 SUV 2012 8.19% BMW X5 SUV 2007 5.91% Toyota 4Runner SUV 2012 5.66% Buick Regal GS 2012 5.28% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 67.12% Audi R8 Coupe 2012 11.91% Audi 100 Sedan 1994 4.8% Bentley Arnage Sedan 2009 3.95% Ford Ranger SuperCab 2011 2.25% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Scion xD Hatchback 2012 37.1% Ferrari 458 Italia Coupe 2012 34.58% Eagle Talon Hatchback 1998 15.69% Ferrari 458 Italia Convertible 2012 4.0% Chevrolet Cobalt SS 2010 3.86% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Terrain SUV 2012 70.58% Hyundai Veracruz SUV 2012 4.62% Dodge Dakota Club Cab 2007 4.33% Toyota Sequoia SUV 2012 3.68% Land Rover Range Rover SUV 2012 2.92% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 58.79% AM General Hummer SUV 2000 36.15% Ford F-150 Regular Cab 2007 1.92% Dodge Ram Pickup 3500 Quad Cab 2009 1.37% HUMMER H3T Crew Cab 2010 0.98% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Sedan 2012 29.2% Volvo C30 Hatchback 2012 19.61% BMW 1 Series Coupe 2012 14.64% Toyota Corolla Sedan 2012 9.91% Ferrari 458 Italia Coupe 2012 4.63% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Suzuki Kizashi Sedan 2012 36.16% Dodge Challenger SRT8 2011 27.45% Ferrari California Convertible 2012 9.59% Jaguar XK XKR 2012 6.93% Chevrolet Corvette ZR1 2012 3.29% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Leaf Hatchback 2012 92.41% Chrysler Crossfire Convertible 2008 1.31% Chrysler Sebring Convertible 2010 1.06% Suzuki SX4 Hatchback 2012 0.84% Chrysler PT Cruiser Convertible 2008 0.69% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Acura ZDX Hatchback 2012 16.72% Acura TL Sedan 2012 14.11% Acura RL Sedan 2012 7.09% Lincoln Town Car Sedan 2011 4.92% Mazda Tribute SUV 2011 3.63% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 76.35% Dodge Dakota Crew Cab 2010 9.44% Chevrolet Avalanche Crew Cab 2012 8.06% Chevrolet Tahoe Hybrid SUV 2012 1.87% GMC Yukon Hybrid SUV 2012 1.16% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Eagle Talon Hatchback 1998 67.46% Dodge Charger SRT-8 2009 16.55% Plymouth Neon Coupe 1999 4.96% Nissan 240SX Coupe 1998 3.83% Scion xD Hatchback 2012 3.54% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 83.18% Acura TL Sedan 2012 10.25% Acura TSX Sedan 2012 2.66% Acura ZDX Hatchback 2012 1.53% Toyota Corolla Sedan 2012 0.52% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Infiniti G Coupe IPL 2012 76.77% Spyker C8 Convertible 2009 8.7% BMW M6 Convertible 2010 5.94% Lamborghini Reventon Coupe 2008 0.99% Acura TL Type-S 2008 0.98% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 48.03% Bugatti Veyron 16.4 Coupe 2009 28.84% Acura TL Sedan 2012 2.55% Cadillac CTS-V Sedan 2012 2.24% BMW 3 Series Sedan 2012 1.95% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 35.06% Chevrolet Cobalt SS 2010 24.3% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.5% Acura Integra Type R 2001 10.98% Ferrari 458 Italia Coupe 2012 8.06% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Chrysler 300 SRT-8 2010 62.96% Audi V8 Sedan 1994 13.28% Audi R8 Coupe 2012 7.21% Mercedes-Benz E-Class Sedan 2012 3.84% FIAT 500 Abarth 2012 1.87% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Audi V8 Sedan 1994 51.57% Volvo 240 Sedan 1993 21.88% Audi 100 Sedan 1994 16.46% Geo Metro Convertible 1993 2.53% Plymouth Neon Coupe 1999 1.82% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Toyota Camry Sedan 2012 53.2% Hyundai Sonata Hybrid Sedan 2012 24.71% Acura TL Sedan 2012 8.19% Audi S4 Sedan 2007 3.46% Suzuki SX4 Sedan 2012 3.4% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette ZR1 2012 90.94% Volkswagen Golf Hatchback 1991 4.67% Ferrari 458 Italia Coupe 2012 1.5% Ferrari 458 Italia Convertible 2012 1.39% Geo Metro Convertible 1993 0.44% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Chevrolet Malibu Sedan 2007 32.35% Scion xD Hatchback 2012 27.92% Lincoln Town Car Sedan 2011 6.42% Chevrolet Tahoe Hybrid SUV 2012 4.89% Toyota 4Runner SUV 2012 3.39% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Acura Integra Type R 2001 17.72% Acura TL Sedan 2012 17.04% FIAT 500 Abarth 2012 13.36% Rolls-Royce Phantom Sedan 2012 9.91% HUMMER H3T Crew Cab 2010 7.67% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Toyota Sequoia SUV 2012 70.48% Isuzu Ascender SUV 2008 22.12% Ford F-450 Super Duty Crew Cab 2012 2.59% HUMMER H2 SUT Crew Cab 2009 2.07% Cadillac Escalade EXT Crew Cab 2007 1.21% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Ferrari FF Coupe 2012 84.97% Hyundai Sonata Hybrid Sedan 2012 4.11% Ferrari 458 Italia Coupe 2012 3.7% Honda Accord Coupe 2012 1.24% Audi TTS Coupe 2012 0.92% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Daewoo Nubira Wagon 2002 28.15% Audi S4 Sedan 2007 17.97% Volkswagen Golf Hatchback 1991 7.5% Eagle Talon Hatchback 1998 6.06% Suzuki Kizashi Sedan 2012 4.49% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 38.15% Ford Ranger SuperCab 2011 18.26% Audi 100 Wagon 1994 10.26% Audi 100 Sedan 1994 7.95% Lincoln Town Car Sedan 2011 7.83% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Audi S4 Sedan 2007 32.2% Aston Martin V8 Vantage Coupe 2012 21.05% Porsche Panamera Sedan 2012 12.86% Nissan Leaf Hatchback 2012 9.85% Chevrolet Corvette ZR1 2012 5.02% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Ferrari California Convertible 2012 35.8% Aston Martin Virage Coupe 2012 32.86% BMW M3 Coupe 2012 26.32% Lamborghini Aventador Coupe 2012 2.56% HUMMER H3T Crew Cab 2010 1.13% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Buick Verano Sedan 2012 58.57% Lamborghini Gallardo LP 570-4 Superleggera 2012 35.5% Land Rover Range Rover SUV 2012 1.53% Cadillac CTS-V Sedan 2012 1.45% BMW 1 Series Coupe 2012 0.76% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 96.9% Dodge Sprinter Cargo Van 2009 0.75% Buick Rainier SUV 2007 0.72% Toyota Sequoia SUV 2012 0.4% Isuzu Ascender SUV 2008 0.18% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 97.05% Nissan NV Passenger Van 2012 0.49% GMC Yukon Hybrid SUV 2012 0.47% Ram C/V Cargo Van Minivan 2012 0.26% Dodge Ram Pickup 3500 Crew Cab 2010 0.22% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 98.57% Toyota Camry Sedan 2012 0.5% Hyundai Accent Sedan 2012 0.28% Honda Accord Coupe 2012 0.22% BMW Z4 Convertible 2012 0.08% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 95.71% FIAT 500 Convertible 2012 1.43% smart fortwo Convertible 2012 0.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.24% Mercedes-Benz S-Class Sedan 2012 0.23% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 93.24% Chevrolet Silverado 1500 Extended Cab 2012 3.28% Suzuki Aerio Sedan 2007 1.4% Ford F-150 Regular Cab 2012 0.62% Dodge Dakota Club Cab 2007 0.3% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Infiniti G Coupe IPL 2012 49.07% Spyker C8 Convertible 2009 10.65% Mercedes-Benz S-Class Sedan 2012 8.82% BMW 6 Series Convertible 2007 6.28% Mercedes-Benz SL-Class Coupe 2009 5.26% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 69.69% Ford F-150 Regular Cab 2007 4.11% Mercedes-Benz 300-Class Convertible 1993 3.76% Chevrolet Express Cargo Van 2007 3.3% Mercedes-Benz Sprinter Van 2012 3.13% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Lincoln Town Car Sedan 2011 88.83% Dodge Sprinter Cargo Van 2009 1.84% Nissan NV Passenger Van 2012 1.84% Ram C/V Cargo Van Minivan 2012 1.56% McLaren MP4-12C Coupe 2012 1.08% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Plymouth Neon Coupe 1999 30.53% Acura TSX Sedan 2012 20.45% Hyundai Elantra Touring Hatchback 2012 5.02% Hyundai Genesis Sedan 2012 3.37% Aston Martin Virage Convertible 2012 2.76% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 95.33% smart fortwo Convertible 2012 1.86% Hyundai Veloster Hatchback 2012 0.88% Ram C/V Cargo Van Minivan 2012 0.14% Chevrolet Silverado 1500 Regular Cab 2012 0.14% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Plymouth Neon Coupe 1999 41.75% Chevrolet Monte Carlo Coupe 2007 16.44% Chevrolet Malibu Sedan 2007 9.02% Suzuki SX4 Hatchback 2012 8.85% Ford Freestar Minivan 2007 8.49% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 99.65% Acura TL Type-S 2008 0.1% Ferrari FF Coupe 2012 0.1% Hyundai Elantra Sedan 2007 0.06% Volvo 240 Sedan 1993 0.01% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 19.93% Bugatti Veyron 16.4 Convertible 2009 13.78% Chevrolet Camaro Convertible 2012 11.46% Ford GT Coupe 2006 7.72% Spyker C8 Coupe 2009 3.92% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 95.07% Audi S5 Coupe 2012 2.97% Audi S4 Sedan 2012 0.37% Audi A5 Coupe 2012 0.27% Audi TTS Coupe 2012 0.21% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi S5 Convertible 2012 59.72% Audi TT Hatchback 2011 26.62% Audi S5 Coupe 2012 5.44% Audi A5 Coupe 2012 2.73% Audi TTS Coupe 2012 0.96% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Audi A5 Coupe 2012 31.06% Ford F-150 Regular Cab 2007 23.07% Chevrolet Malibu Sedan 2007 17.38% Scion xD Hatchback 2012 9.67% Hyundai Veracruz SUV 2012 3.44% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Aston Martin V8 Vantage Convertible 2012 16.13% Ferrari California Convertible 2012 14.1% Audi TTS Coupe 2012 11.76% Bentley Continental Flying Spur Sedan 2007 8.65% Buick Enclave SUV 2012 6.91% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X6 SUV 2012 21.68% Toyota Sequoia SUV 2012 12.14% Volvo XC90 SUV 2007 10.47% Ford Edge SUV 2012 8.19% Hyundai Tucson SUV 2012 7.98% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Infiniti G Coupe IPL 2012 61.72% Acura Integra Type R 2001 20.01% Acura TL Sedan 2012 3.75% Audi R8 Coupe 2012 2.79% Hyundai Azera Sedan 2012 2.37% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Audi R8 Coupe 2012 67.23% BMW X3 SUV 2012 9.8% Nissan Juke Hatchback 2012 3.48% Audi S5 Coupe 2012 2.85% Hyundai Veracruz SUV 2012 2.51% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Audi TTS Coupe 2012 55.28% Aston Martin Virage Convertible 2012 15.31% Infiniti G Coupe IPL 2012 12.54% Chevrolet Camaro Convertible 2012 5.66% Porsche Panamera Sedan 2012 3.41% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 23.05% Hyundai Veracruz SUV 2012 17.33% AM General Hummer SUV 2000 12.78% BMW 6 Series Convertible 2007 5.01% Ford Mustang Convertible 2007 4.68% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 31.08% BMW M3 Coupe 2012 15.52% Eagle Talon Hatchback 1998 14.6% BMW M6 Convertible 2010 4.09% Bugatti Veyron 16.4 Convertible 2009 4.02% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Mazda Tribute SUV 2011 56.39% GMC Terrain SUV 2012 6.92% Chrysler Aspen SUV 2009 5.11% Toyota 4Runner SUV 2012 4.33% Jeep Grand Cherokee SUV 2012 2.34% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 McLaren MP4-12C Coupe 2012 34.08% Lamborghini Aventador Coupe 2012 12.78% Porsche Panamera Sedan 2012 12.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.58% FIAT 500 Convertible 2012 7.45% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 69.02% Chrysler PT Cruiser Convertible 2008 5.01% Chevrolet Camaro Convertible 2012 4.15% Toyota Corolla Sedan 2012 3.9% Ferrari 458 Italia Coupe 2012 3.51% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 74.5% Suzuki Kizashi Sedan 2012 5.86% BMW 6 Series Convertible 2007 2.56% Suzuki SX4 Sedan 2012 2.1% Aston Martin V8 Vantage Convertible 2012 1.81% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Plymouth Neon Coupe 1999 33.92% Dodge Caravan Minivan 1997 17.61% Hyundai Elantra Touring Hatchback 2012 16.04% Audi 100 Sedan 1994 9.61% Volvo 240 Sedan 1993 7.79% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-450 Super Duty Crew Cab 2012 46.41% Dodge Ram Pickup 3500 Crew Cab 2010 28.27% Dodge Durango SUV 2007 13.27% Nissan NV Passenger Van 2012 7.45% Dodge Ram Pickup 3500 Quad Cab 2009 3.48% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari 458 Italia Coupe 2012 98.1% Ferrari 458 Italia Convertible 2012 1.16% Ford GT Coupe 2006 0.39% Ferrari California Convertible 2012 0.14% Dodge Magnum Wagon 2008 0.11% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Dodge Charger SRT-8 2009 47.35% Ferrari 458 Italia Coupe 2012 9.38% Ferrari 458 Italia Convertible 2012 7.81% Ferrari California Convertible 2012 6.24% Chevrolet Cobalt SS 2010 4.86% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Honda Odyssey Minivan 2007 92.46% Honda Odyssey Minivan 2012 5.64% Dodge Caravan Minivan 1997 0.43% Ford F-150 Regular Cab 2007 0.31% Dodge Magnum Wagon 2008 0.19% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 100.0% Audi R8 Coupe 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Chevrolet Express Cargo Van 2007 32.77% Audi 100 Sedan 1994 16.0% Dodge Caravan Minivan 1997 8.36% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.05% Chevrolet TrailBlazer SS 2009 4.65% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz SL-Class Coupe 2009 41.95% McLaren MP4-12C Coupe 2012 20.29% BMW ActiveHybrid 5 Sedan 2012 14.86% Hyundai Genesis Sedan 2012 3.53% Acura Integra Type R 2001 3.31% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Ford F-150 Regular Cab 2007 36.86% Dodge Dakota Club Cab 2007 20.13% Chevrolet Express Cargo Van 2007 11.63% Volkswagen Golf Hatchback 1991 9.45% GMC Terrain SUV 2012 7.74% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Rolls-Royce Phantom Sedan 2012 76.37% Volvo 240 Sedan 1993 6.95% Chevrolet TrailBlazer SS 2009 3.86% Audi TTS Coupe 2012 2.73% Aston Martin V8 Vantage Convertible 2012 1.37% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 38.63% Eagle Talon Hatchback 1998 15.77% Geo Metro Convertible 1993 13.69% Volkswagen Golf Hatchback 1991 6.84% Chrysler Crossfire Convertible 2008 6.12% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 35.87% Ford F-150 Regular Cab 2007 10.66% Chrysler 300 SRT-8 2010 9.37% Mercedes-Benz C-Class Sedan 2012 6.67% BMW M6 Convertible 2010 5.79% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Acura RL Sedan 2012 7.83% BMW 3 Series Sedan 2012 4.96% Mitsubishi Lancer Sedan 2012 4.71% Honda Odyssey Minivan 2012 4.51% Hyundai Veloster Hatchback 2012 4.13% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 93.47% Scion xD Hatchback 2012 1.65% Buick Enclave SUV 2012 1.14% GMC Canyon Extended Cab 2012 0.99% Hyundai Elantra Sedan 2007 0.52% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 74.08% Chevrolet Silverado 1500 Regular Cab 2012 8.12% Ford Ranger SuperCab 2011 6.56% Chevrolet TrailBlazer SS 2009 2.58% GMC Canyon Extended Cab 2012 2.37% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 HUMMER H3T Crew Cab 2010 25.06% Lamborghini Diablo Coupe 2001 20.79% Eagle Talon Hatchback 1998 6.74% Aston Martin Virage Coupe 2012 6.54% Ford GT Coupe 2006 4.33% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Dodge Durango SUV 2007 85.01% Chevrolet Avalanche Crew Cab 2012 4.33% Cadillac Escalade EXT Crew Cab 2007 1.93% Ford F-450 Super Duty Crew Cab 2012 1.89% Chrysler 300 SRT-8 2010 0.97% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 BMW X6 SUV 2012 62.5% Volkswagen Golf Hatchback 1991 3.32% Dodge Sprinter Cargo Van 2009 2.74% Audi 100 Wagon 1994 2.5% BMW 1 Series Coupe 2012 2.36% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Chevrolet Corvette ZR1 2012 18.47% Honda Accord Sedan 2012 17.91% BMW 6 Series Convertible 2007 16.65% Audi S5 Convertible 2012 9.94% Porsche Panamera Sedan 2012 7.35% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 83.39% Jaguar XK XKR 2012 12.18% Ferrari 458 Italia Convertible 2012 0.72% Lamborghini Aventador Coupe 2012 0.72% Audi TT RS Coupe 2012 0.35% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Volkswagen Golf Hatchback 1991 50.93% Porsche Panamera Sedan 2012 37.53% Volkswagen Golf Hatchback 2012 1.7% Daewoo Nubira Wagon 2002 0.94% Buick Rainier SUV 2007 0.83% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Land Rover LR2 SUV 2012 26.6% Hyundai Santa Fe SUV 2012 15.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 12.5% Ford Ranger SuperCab 2011 11.84% Mercedes-Benz S-Class Sedan 2012 5.57% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 BMW M5 Sedan 2010 84.37% Dodge Durango SUV 2012 1.73% BMW 3 Series Wagon 2012 1.46% Porsche Panamera Sedan 2012 1.34% Cadillac CTS-V Sedan 2012 1.31% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 76.59% Daewoo Nubira Wagon 2002 18.75% Audi 100 Wagon 1994 1.4% Audi S4 Sedan 2007 0.97% Ford Focus Sedan 2007 0.4% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 93.03% Jaguar XK XKR 2012 4.05% Ferrari 458 Italia Convertible 2012 2.02% Audi TT RS Coupe 2012 0.57% Ferrari California Convertible 2012 0.05% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Volvo 240 Sedan 1993 62.9% Chrysler Aspen SUV 2009 22.11% Toyota Sequoia SUV 2012 2.91% Cadillac Escalade EXT Crew Cab 2007 1.91% Buick Rainier SUV 2007 1.37% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 59.23% BMW 6 Series Convertible 2007 4.94% Audi S5 Coupe 2012 4.44% BMW M5 Sedan 2010 3.44% Acura TSX Sedan 2012 3.13% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Chevrolet Malibu Sedan 2007 66.94% Lincoln Town Car Sedan 2011 8.86% Chrysler PT Cruiser Convertible 2008 4.02% Chevrolet Monte Carlo Coupe 2007 2.79% Dodge Caliber Wagon 2012 2.14% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Volvo C30 Hatchback 2012 98.31% BMW 3 Series Sedan 2012 0.79% Audi TT RS Coupe 2012 0.25% BMW 1 Series Coupe 2012 0.24% Aston Martin Virage Coupe 2012 0.15% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 85.52% Lamborghini Diablo Coupe 2001 5.16% Spyker C8 Convertible 2009 3.37% Ferrari 458 Italia Coupe 2012 1.89% Lamborghini Aventador Coupe 2012 1.32% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.38% Bentley Mulsanne Sedan 2011 0.33% Mercedes-Benz E-Class Sedan 2012 0.07% BMW 6 Series Convertible 2007 0.04% Cadillac CTS-V Sedan 2012 0.03% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 BMW 6 Series Convertible 2007 20.92% Hyundai Veracruz SUV 2012 14.79% Chevrolet Silverado 2500HD Regular Cab 2012 7.12% Jaguar XK XKR 2012 6.01% Ford Mustang Convertible 2007 5.04% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.73% Bentley Continental Flying Spur Sedan 2007 0.1% Bugatti Veyron 16.4 Convertible 2009 0.03% smart fortwo Convertible 2012 0.03% FIAT 500 Convertible 2012 0.02% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 60.84% Aston Martin V8 Vantage Convertible 2012 34.63% Infiniti G Coupe IPL 2012 1.85% Jaguar XK XKR 2012 1.77% Aston Martin Virage Convertible 2012 0.19% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.99% Chevrolet Express Van 2007 0.01% GMC Savana Van 2012 0.0% Mercedes-Benz Sprinter Van 2012 0.0% Dodge Sprinter Cargo Van 2009 0.0% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Lincoln Town Car Sedan 2011 31.96% Lamborghini Gallardo LP 570-4 Superleggera 2012 24.94% Jaguar XK XKR 2012 7.04% Chevrolet Camaro Convertible 2012 6.64% Acura Integra Type R 2001 4.24% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Mercedes-Benz C-Class Sedan 2012 25.61% BMW ActiveHybrid 5 Sedan 2012 6.58% Ford F-150 Regular Cab 2012 3.78% Audi S4 Sedan 2007 1.75% BMW 1 Series Convertible 2012 1.69% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 GMC Yukon Hybrid SUV 2012 21.77% Cadillac Escalade EXT Crew Cab 2007 11.5% Jeep Patriot SUV 2012 11.33% Volkswagen Golf Hatchback 1991 10.23% Scion xD Hatchback 2012 5.09% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Acura TL Sedan 2012 29.42% Plymouth Neon Coupe 1999 28.9% Dodge Caravan Minivan 1997 11.64% Nissan Leaf Hatchback 2012 10.75% Eagle Talon Hatchback 1998 4.74% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Chevrolet Monte Carlo Coupe 2007 28.93% Daewoo Nubira Wagon 2002 23.9% Volvo 240 Sedan 1993 15.34% Mercedes-Benz 300-Class Convertible 1993 11.25% Eagle Talon Hatchback 1998 5.03% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 70.58% Ferrari 458 Italia Convertible 2012 20.44% Audi TT RS Coupe 2012 3.6% FIAT 500 Convertible 2012 2.51% Suzuki Kizashi Sedan 2012 1.09% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Jaguar XK XKR 2012 68.91% Porsche Panamera Sedan 2012 11.28% Bugatti Veyron 16.4 Coupe 2009 5.66% Hyundai Sonata Hybrid Sedan 2012 2.49% Audi S5 Convertible 2012 1.89% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 41.39% Chevrolet HHR SS 2010 35.68% Audi TT RS Coupe 2012 13.83% Ferrari 458 Italia Convertible 2012 3.32% Acura TSX Sedan 2012 1.77% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Chevrolet Camaro Convertible 2012 30.46% Ferrari California Convertible 2012 15.68% Dodge Magnum Wagon 2008 13.87% Ferrari 458 Italia Convertible 2012 6.66% Chevrolet Corvette ZR1 2012 5.71% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Chevrolet Silverado 1500 Regular Cab 2012 43.47% Ford Expedition EL SUV 2009 20.94% Chevrolet Silverado 2500HD Regular Cab 2012 14.83% GMC Canyon Extended Cab 2012 6.49% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.37% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Acura RL Sedan 2012 29.92% Hyundai Accent Sedan 2012 25.53% Toyota Corolla Sedan 2012 11.42% Honda Odyssey Minivan 2007 4.61% Honda Accord Coupe 2012 4.29% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Ram C/V Cargo Van Minivan 2012 31.13% Lincoln Town Car Sedan 2011 5.03% Hyundai Sonata Hybrid Sedan 2012 4.84% McLaren MP4-12C Coupe 2012 4.14% Cadillac CTS-V Sedan 2012 3.99% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Plymouth Neon Coupe 1999 45.25% Volvo 240 Sedan 1993 17.58% Daewoo Nubira Wagon 2002 4.34% Chevrolet Corvette ZR1 2012 3.22% Hyundai Sonata Sedan 2012 2.29% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 86.33% Tesla Model S Sedan 2012 8.06% BMW M5 Sedan 2010 1.05% Ford GT Coupe 2006 1.01% Ferrari FF Coupe 2012 0.69% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Lamborghini Reventon Coupe 2008 72.19% Tesla Model S Sedan 2012 9.86% BMW 6 Series Convertible 2007 6.13% Ferrari 458 Italia Coupe 2012 3.38% Spyker C8 Convertible 2009 1.97% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 67.25% Audi S5 Coupe 2012 10.38% Lamborghini Reventon Coupe 2008 6.34% Suzuki SX4 Hatchback 2012 2.83% Bentley Continental Flying Spur Sedan 2007 2.16% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Aston Martin V8 Vantage Convertible 2012 39.6% Chrysler Crossfire Convertible 2008 5.84% Mitsubishi Lancer Sedan 2012 4.99% Cadillac CTS-V Sedan 2012 3.52% FIAT 500 Abarth 2012 2.95% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Chevrolet Traverse SUV 2012 24.8% Ford Ranger SuperCab 2011 19.9% Chevrolet Silverado 1500 Regular Cab 2012 8.79% GMC Acadia SUV 2012 8.36% Chrysler Town and Country Minivan 2012 8.09% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Hyundai Elantra Touring Hatchback 2012 96.5% Acura TSX Sedan 2012 2.73% Honda Accord Coupe 2012 0.41% Lincoln Town Car Sedan 2011 0.17% Chevrolet Malibu Sedan 2007 0.05% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2007 33.16% Chrysler 300 SRT-8 2010 24.63% BMW 6 Series Convertible 2007 8.93% Cadillac Escalade EXT Crew Cab 2007 7.42% Jeep Grand Cherokee SUV 2012 3.93% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Ferrari FF Coupe 2012 29.61% Audi TT RS Coupe 2012 21.12% Audi TTS Coupe 2012 19.89% Ferrari 458 Italia Coupe 2012 11.07% Ferrari California Convertible 2012 4.54% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Lamborghini Aventador Coupe 2012 26.12% Acura TL Type-S 2008 21.11% McLaren MP4-12C Coupe 2012 11.23% Ford GT Coupe 2006 6.71% Spyker C8 Convertible 2009 5.34% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 Ford F-150 Regular Cab 2007 73.96% Lamborghini Diablo Coupe 2001 7.85% Mercedes-Benz 300-Class Convertible 1993 6.19% Ford Freestar Minivan 2007 3.44% McLaren MP4-12C Coupe 2012 2.53% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 55.97% Hyundai Sonata Sedan 2012 25.23% BMW M5 Sedan 2010 2.94% Honda Odyssey Minivan 2007 2.29% Land Rover LR2 SUV 2012 1.94% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Audi S4 Sedan 2012 60.43% BMW Z4 Convertible 2012 6.5% Maybach Landaulet Convertible 2012 4.68% BMW M3 Coupe 2012 3.17% Audi S5 Coupe 2012 2.8% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 BMW X3 SUV 2012 10.82% Toyota 4Runner SUV 2012 5.72% Cadillac CTS-V Sedan 2012 5.63% GMC Yukon Hybrid SUV 2012 5.42% Chevrolet TrailBlazer SS 2009 4.9% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 42.83% Dodge Ram Pickup 3500 Quad Cab 2009 19.09% Volvo XC90 SUV 2007 11.79% GMC Canyon Extended Cab 2012 6.11% Audi 100 Sedan 1994 5.38% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 80.98% Geo Metro Convertible 1993 6.5% Chevrolet Corvette Convertible 2012 4.7% Chevrolet Cobalt SS 2010 2.77% Lamborghini Diablo Coupe 2001 1.67% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Audi V8 Sedan 1994 41.32% Mercedes-Benz SL-Class Coupe 2009 12.83% BMW X3 SUV 2012 9.35% Acura ZDX Hatchback 2012 9.05% Bugatti Veyron 16.4 Convertible 2009 5.57% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Ferrari California Convertible 2012 35.11% Mercedes-Benz 300-Class Convertible 1993 16.84% Honda Accord Coupe 2012 5.52% Audi S5 Convertible 2012 4.69% Chevrolet Impala Sedan 2007 4.42% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Ferrari FF Coupe 2012 37.44% Ford Freestar Minivan 2007 30.25% Lamborghini Aventador Coupe 2012 9.73% Ferrari 458 Italia Coupe 2012 5.82% Ferrari 458 Italia Convertible 2012 5.75% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Chrysler PT Cruiser Convertible 2008 17.38% Acura TL Type-S 2008 7.04% Fisker Karma Sedan 2012 6.84% Chrysler Sebring Convertible 2010 6.58% GMC Yukon Hybrid SUV 2012 6.48% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Nissan NV Passenger Van 2012 30.52% Jeep Patriot SUV 2012 15.37% Jeep Liberty SUV 2012 11.45% Bentley Continental Supersports Conv. Convertible 2012 7.28% Ford E-Series Wagon Van 2012 4.22% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Cadillac CTS-V Sedan 2012 97.75% HUMMER H2 SUT Crew Cab 2009 0.77% Infiniti QX56 SUV 2011 0.51% Rolls-Royce Ghost Sedan 2012 0.23% Ford E-Series Wagon Van 2012 0.11% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Dodge Charger SRT-8 2009 19.7% Dodge Challenger SRT8 2011 14.13% McLaren MP4-12C Coupe 2012 13.67% Volkswagen Golf Hatchback 1991 12.9% Aston Martin Virage Coupe 2012 10.47% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 90.27% GMC Savana Van 2012 9.48% Ford F-150 Regular Cab 2012 0.14% Chevrolet Express Van 2007 0.07% Chevrolet Silverado 1500 Regular Cab 2012 0.01% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 BMW M3 Coupe 2012 33.63% Mercedes-Benz S-Class Sedan 2012 11.25% Porsche Panamera Sedan 2012 8.77% Buick Regal GS 2012 8.31% Volkswagen Beetle Hatchback 2012 7.38% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 BMW 3 Series Sedan 2012 74.67% BMW 3 Series Wagon 2012 11.83% Toyota Corolla Sedan 2012 5.5% Dodge Caliber Wagon 2007 1.81% Acura RL Sedan 2012 0.97% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford Ranger SuperCab 2011 90.02% Audi 100 Sedan 1994 6.12% Dodge Ram Pickup 3500 Quad Cab 2009 2.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.4% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.35% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Chevrolet Cobalt SS 2010 57.5% Honda Accord Coupe 2012 8.26% Nissan Juke Hatchback 2012 2.99% Hyundai Genesis Sedan 2012 2.31% Chevrolet Malibu Sedan 2007 2.04% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Classic Extended Cab 2007 31.5% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 22.48% Ford F-450 Super Duty Crew Cab 2012 13.94% Ford E-Series Wagon Van 2012 6.55% Chevrolet Silverado 2500HD Regular Cab 2012 5.5% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 62.53% GMC Terrain SUV 2012 27.68% Jeep Liberty SUV 2012 3.2% Rolls-Royce Ghost Sedan 2012 2.43% Jeep Wrangler SUV 2012 1.28% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 BMW X3 SUV 2012 54.29% BMW X5 SUV 2007 26.28% Buick Enclave SUV 2012 6.25% BMW X6 SUV 2012 3.95% Rolls-Royce Ghost Sedan 2012 3.77% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 79.53% Hyundai Santa Fe SUV 2012 14.93% Honda Odyssey Minivan 2007 4.19% Dodge Caravan Minivan 1997 0.64% Hyundai Tucson SUV 2012 0.53% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Ford F-150 Regular Cab 2012 35.43% Chevrolet Silverado 2500HD Regular Cab 2012 23.89% Toyota 4Runner SUV 2012 8.06% Chevrolet Avalanche Crew Cab 2012 6.66% Ford F-450 Super Duty Crew Cab 2012 4.29% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Dodge Durango SUV 2007 41.79% BMW X3 SUV 2012 28.52% BMW X6 SUV 2012 8.99% Audi S6 Sedan 2011 2.9% Jeep Grand Cherokee SUV 2012 2.87% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Hyundai Elantra Sedan 2007 45.31% Nissan Leaf Hatchback 2012 14.66% Chrysler PT Cruiser Convertible 2008 9.23% Chevrolet Impala Sedan 2007 6.31% Hyundai Genesis Sedan 2012 2.02% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Club Cab 2007 95.8% Dodge Dakota Crew Cab 2010 2.63% Acura RL Sedan 2012 0.58% Chrysler Town and Country Minivan 2012 0.32% Ford Ranger SuperCab 2011 0.16% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.22% Aston Martin Virage Convertible 2012 0.43% Jaguar XK XKR 2012 0.23% Chevrolet Corvette ZR1 2012 0.03% Lamborghini Reventon Coupe 2008 0.03% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Jeep Wrangler SUV 2012 33.95% Cadillac Escalade EXT Crew Cab 2007 13.93% AM General Hummer SUV 2000 12.14% Dodge Dakota Club Cab 2007 5.63% HUMMER H2 SUT Crew Cab 2009 4.15% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 32.34% Bentley Continental Supersports Conv. Convertible 2012 16.24% MINI Cooper Roadster Convertible 2012 11.75% Cadillac CTS-V Sedan 2012 6.89% Suzuki Kizashi Sedan 2012 5.64% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 66.08% Bugatti Veyron 16.4 Coupe 2009 28.51% Acura RL Sedan 2012 1.5% Mercedes-Benz SL-Class Coupe 2009 0.56% MINI Cooper Roadster Convertible 2012 0.48% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Hatchback 2012 43.12% Buick Rainier SUV 2007 14.75% Dodge Caliber Wagon 2007 5.19% GMC Acadia SUV 2012 4.94% Nissan Juke Hatchback 2012 4.03% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Plymouth Neon Coupe 1999 67.66% Nissan 240SX Coupe 1998 9.42% Eagle Talon Hatchback 1998 4.6% Daewoo Nubira Wagon 2002 3.15% Lincoln Town Car Sedan 2011 3.0% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Ford F-150 Regular Cab 2007 56.46% Lincoln Town Car Sedan 2011 14.56% Chevrolet Silverado 1500 Extended Cab 2012 6.17% Dodge Ram Pickup 3500 Quad Cab 2009 3.92% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.81% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Audi S6 Sedan 2011 16.89% Dodge Durango SUV 2007 16.42% Chrysler 300 SRT-8 2010 10.05% BMW 3 Series Sedan 2012 9.58% Chrysler Town and Country Minivan 2012 6.85% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 43.45% HUMMER H2 SUT Crew Cab 2009 38.16% Jeep Wrangler SUV 2012 7.48% Cadillac Escalade EXT Crew Cab 2007 4.72% Chevrolet Avalanche Crew Cab 2012 2.09% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Spyker C8 Convertible 2009 47.89% AM General Hummer SUV 2000 6.32% HUMMER H2 SUT Crew Cab 2009 6.2% Volvo 240 Sedan 1993 5.34% Suzuki SX4 Hatchback 2012 3.96% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Acura TL Type-S 2008 17.03% Dodge Dakota Crew Cab 2010 11.65% Suzuki SX4 Hatchback 2012 10.45% Chevrolet Corvette ZR1 2012 8.86% Audi S5 Coupe 2012 7.92% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 GMC Canyon Extended Cab 2012 77.1% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.33% Ford F-150 Regular Cab 2012 2.87% Chrysler Aspen SUV 2009 1.52% Audi 100 Sedan 1994 1.25% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Acura RL Sedan 2012 17.5% Lincoln Town Car Sedan 2011 13.58% Maybach Landaulet Convertible 2012 13.47% Suzuki Aerio Sedan 2007 8.67% Ferrari FF Coupe 2012 6.28% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Chevrolet Impala Sedan 2007 88.89% Honda Odyssey Minivan 2007 3.91% Volvo XC90 SUV 2007 1.87% GMC Terrain SUV 2012 1.5% Dodge Caravan Minivan 1997 1.15% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 94.79% Cadillac Escalade EXT Crew Cab 2007 3.73% Chrysler 300 SRT-8 2010 0.52% Rolls-Royce Ghost Sedan 2012 0.23% Dodge Dakota Club Cab 2007 0.08% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 61.28% Audi V8 Sedan 1994 23.63% BMW 1 Series Coupe 2012 10.31% Jaguar XK XKR 2012 2.08% Spyker C8 Coupe 2009 0.99% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Eagle Talon Hatchback 1998 74.71% Mercedes-Benz C-Class Sedan 2012 6.68% Hyundai Sonata Sedan 2012 6.57% Acura TL Type-S 2008 3.45% Mercedes-Benz SL-Class Coupe 2009 2.15% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Ford Expedition EL SUV 2009 25.05% Aston Martin Virage Coupe 2012 14.78% Audi R8 Coupe 2012 11.01% Toyota 4Runner SUV 2012 8.59% Suzuki Kizashi Sedan 2012 7.07% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 47.68% Geo Metro Convertible 1993 42.98% Hyundai Veloster Hatchback 2012 4.71% Acura Integra Type R 2001 1.85% Chrysler Sebring Convertible 2010 1.69% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford Ranger SuperCab 2011 64.39% Dodge Ram Pickup 3500 Quad Cab 2009 30.46% Ford F-150 Regular Cab 2007 2.04% Chevrolet Silverado 1500 Extended Cab 2012 1.59% Dodge Dakota Club Cab 2007 0.86% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Ford Freestar Minivan 2007 18.82% Ford Ranger SuperCab 2011 17.12% Dodge Dakota Crew Cab 2010 14.37% Dodge Caliber Wagon 2007 14.32% Chevrolet TrailBlazer SS 2009 3.7% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Jaguar XK XKR 2012 19.15% McLaren MP4-12C Coupe 2012 12.68% Lamborghini Reventon Coupe 2008 9.36% BMW ActiveHybrid 5 Sedan 2012 5.97% Mercedes-Benz SL-Class Coupe 2009 4.3% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Audi S5 Convertible 2012 29.16% Audi S5 Coupe 2012 27.95% Dodge Challenger SRT8 2011 15.92% Porsche Panamera Sedan 2012 9.97% Audi RS 4 Convertible 2008 3.27% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Lincoln Town Car Sedan 2011 81.87% Chevrolet Express Cargo Van 2007 5.98% Ram C/V Cargo Van Minivan 2012 2.61% Chevrolet Malibu Sedan 2007 1.88% Mercedes-Benz S-Class Sedan 2012 1.32% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Suzuki Aerio Sedan 2007 32.32% Aston Martin Virage Convertible 2012 8.3% Chevrolet Corvette ZR1 2012 5.7% BMW 3 Series Wagon 2012 4.25% BMW M6 Convertible 2010 4.19% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 77.97% GMC Canyon Extended Cab 2012 7.93% HUMMER H3T Crew Cab 2010 5.18% Volvo 240 Sedan 1993 4.52% Chevrolet Silverado 1500 Extended Cab 2012 1.2% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Jaguar XK XKR 2012 51.28% Lincoln Town Car Sedan 2011 10.18% Ram C/V Cargo Van Minivan 2012 6.75% Bentley Continental Supersports Conv. Convertible 2012 6.38% Ferrari FF Coupe 2012 5.92% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Audi S5 Coupe 2012 12.25% Dodge Journey SUV 2012 10.0% Chevrolet Sonic Sedan 2012 9.26% Hyundai Accent Sedan 2012 4.57% Spyker C8 Convertible 2009 4.08% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Chevrolet Corvette ZR1 2012 54.28% Bentley Continental Supersports Conv. Convertible 2012 13.8% Ford GT Coupe 2006 12.24% Spyker C8 Convertible 2009 4.55% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.52% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Volkswagen Golf Hatchback 2012 22.17% Honda Accord Sedan 2012 17.57% Chrysler Sebring Convertible 2010 8.21% Nissan 240SX Coupe 1998 5.03% Chevrolet Camaro Convertible 2012 3.96% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Acura ZDX Hatchback 2012 10.58% Acura RL Sedan 2012 8.53% Acura Integra Type R 2001 8.01% Audi S4 Sedan 2012 7.42% Acura TSX Sedan 2012 4.52% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 HUMMER H3T Crew Cab 2010 90.56% Dodge Ram Pickup 3500 Quad Cab 2009 3.95% Chevrolet Silverado 1500 Extended Cab 2012 3.32% Dodge Sprinter Cargo Van 2009 1.72% Chevrolet Silverado 1500 Regular Cab 2012 0.26% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 72.27% FIAT 500 Convertible 2012 10.38% Volkswagen Golf Hatchback 2012 5.54% Hyundai Elantra Touring Hatchback 2012 4.19% Dodge Caliber Wagon 2007 3.95% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 76.56% Nissan NV Passenger Van 2012 8.47% Ford Expedition EL SUV 2009 5.63% Jeep Liberty SUV 2012 3.56% HUMMER H3T Crew Cab 2010 1.01% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari 458 Italia Convertible 2012 59.55% Ferrari FF Coupe 2012 20.06% Chevrolet Corvette ZR1 2012 14.13% Volkswagen Beetle Hatchback 2012 2.09% Mercedes-Benz C-Class Sedan 2012 1.57% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Infiniti G Coupe IPL 2012 64.06% Hyundai Veloster Hatchback 2012 11.71% Bugatti Veyron 16.4 Coupe 2009 4.37% Hyundai Azera Sedan 2012 3.88% Spyker C8 Convertible 2009 3.55% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Toyota Corolla Sedan 2012 87.18% Honda Odyssey Minivan 2012 2.2% Scion xD Hatchback 2012 1.84% Chevrolet Camaro Convertible 2012 1.39% Lincoln Town Car Sedan 2011 1.28% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H2 SUT Crew Cab 2009 28.77% Jeep Wrangler SUV 2012 18.19% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 14.11% Ford F-150 Regular Cab 2007 10.74% Chevrolet Silverado 1500 Regular Cab 2012 8.6% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.75% Acura Integra Type R 2001 0.03% Nissan NV Passenger Van 2012 0.02% BMW 6 Series Convertible 2007 0.02% Scion xD Hatchback 2012 0.02% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 22.93% Scion xD Hatchback 2012 18.75% Chevrolet Malibu Sedan 2007 9.61% Dodge Dakota Club Cab 2007 8.87% Ford F-150 Regular Cab 2007 6.5% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 60.81% Mercedes-Benz S-Class Sedan 2012 6.93% Aston Martin V8 Vantage Convertible 2012 6.17% BMW ActiveHybrid 5 Sedan 2012 6.05% BMW M5 Sedan 2010 4.82% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Durango SUV 2007 61.51% HUMMER H3T Crew Cab 2010 28.16% Jeep Liberty SUV 2012 1.25% Ford F-150 Regular Cab 2007 0.91% Volvo C30 Hatchback 2012 0.81% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Dodge Durango SUV 2007 29.8% Ford Focus Sedan 2007 22.2% Chevrolet Impala Sedan 2007 13.09% Dodge Magnum Wagon 2008 4.15% Dodge Caliber Wagon 2012 3.73% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 99.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.25% Ferrari 458 Italia Coupe 2012 0.25% Ford GT Coupe 2006 0.08% Audi RS 4 Convertible 2008 0.04% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 80.31% Mercedes-Benz Sprinter Van 2012 18.92% Dodge Caravan Minivan 1997 0.43% Chrysler Town and Country Minivan 2012 0.21% GMC Savana Van 2012 0.06% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 99.81% Dodge Caliber Wagon 2012 0.07% Ford Freestar Minivan 2007 0.04% Dodge Journey SUV 2012 0.03% Ford Ranger SuperCab 2011 0.02% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 24.23% smart fortwo Convertible 2012 12.83% MINI Cooper Roadster Convertible 2012 10.9% Maybach Landaulet Convertible 2012 8.0% Aston Martin V8 Vantage Coupe 2012 3.87% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Buick Rainier SUV 2007 11.39% Hyundai Santa Fe SUV 2012 8.5% Dodge Caliber Wagon 2012 8.12% Chrysler Town and Country Minivan 2012 5.59% Dodge Caliber Wagon 2007 5.48% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Ghost Sedan 2012 87.95% Rolls-Royce Phantom Sedan 2012 7.06% Dodge Durango SUV 2007 1.46% Mercedes-Benz C-Class Sedan 2012 0.85% Jeep Compass SUV 2012 0.46% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 12.33% BMW M6 Convertible 2010 6.86% BMW M5 Sedan 2010 5.97% BMW X3 SUV 2012 5.63% Dodge Journey SUV 2012 4.59% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 94.64% Chevrolet Cobalt SS 2010 2.15% Hyundai Veloster Hatchback 2012 1.79% Lamborghini Diablo Coupe 2001 0.64% Geo Metro Convertible 1993 0.36% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Chrysler Aspen SUV 2009 29.19% Nissan NV Passenger Van 2012 14.63% Dodge Sprinter Cargo Van 2009 8.27% Chevrolet Traverse SUV 2012 4.34% Land Rover LR2 SUV 2012 3.73% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 41.93% Aston Martin V8 Vantage Convertible 2012 13.35% Acura Integra Type R 2001 12.89% Audi RS 4 Convertible 2008 6.38% Ferrari 458 Italia Convertible 2012 6.34% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Dodge Charger Sedan 2012 71.14% Chevrolet Cobalt SS 2010 4.37% Dodge Charger SRT-8 2009 3.88% Chevrolet Camaro Convertible 2012 3.68% Spyker C8 Coupe 2009 2.73% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Daewoo Nubira Wagon 2002 50.88% Plymouth Neon Coupe 1999 35.25% Chevrolet Impala Sedan 2007 6.5% Hyundai Elantra Touring Hatchback 2012 3.21% Eagle Talon Hatchback 1998 1.93% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Volvo 240 Sedan 1993 19.04% Dodge Charger SRT-8 2009 7.49% Plymouth Neon Coupe 1999 5.54% Ford F-150 Regular Cab 2012 4.94% Eagle Talon Hatchback 1998 4.07% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 42.6% Dodge Ram Pickup 3500 Quad Cab 2009 12.18% Chevrolet Silverado 1500 Classic Extended Cab 2007 10.01% Audi 100 Sedan 1994 8.22% Dodge Dakota Club Cab 2007 4.83% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 68.73% Chevrolet Express Cargo Van 2007 30.71% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.27% Dodge Sprinter Cargo Van 2009 0.18% Lamborghini Reventon Coupe 2008 0.05% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Mitsubishi Lancer Sedan 2012 34.52% BMW 6 Series Convertible 2007 13.17% Bentley Continental Supersports Conv. Convertible 2012 10.55% Acura RL Sedan 2012 7.41% BMW Z4 Convertible 2012 4.23% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 28.35% GMC Canyon Extended Cab 2012 26.72% Ford Ranger SuperCab 2011 4.27% Volvo 240 Sedan 1993 2.51% Jeep Wrangler SUV 2012 2.38% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Mercedes-Benz S-Class Sedan 2012 42.81% Aston Martin Virage Convertible 2012 6.74% Tesla Model S Sedan 2012 4.24% BMW ActiveHybrid 5 Sedan 2012 4.09% Fisker Karma Sedan 2012 3.86% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Volvo 240 Sedan 1993 53.15% Audi V8 Sedan 1994 17.77% Audi 100 Sedan 1994 16.59% Volvo XC90 SUV 2007 3.75% GMC Canyon Extended Cab 2012 2.14% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Acura Integra Type R 2001 26.92% Mercedes-Benz E-Class Sedan 2012 14.96% Nissan 240SX Coupe 1998 9.21% Maybach Landaulet Convertible 2012 8.53% BMW M3 Coupe 2012 3.58% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Hyundai Genesis Sedan 2012 18.09% Isuzu Ascender SUV 2008 14.97% GMC Acadia SUV 2012 10.28% Ford Ranger SuperCab 2011 9.61% Cadillac SRX SUV 2012 9.39% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 71.63% Dodge Sprinter Cargo Van 2009 21.34% Ford F-150 Regular Cab 2007 3.61% Dodge Caravan Minivan 1997 2.13% Buick Rainier SUV 2007 0.47% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 45.77% Dodge Ram Pickup 3500 Quad Cab 2009 37.5% HUMMER H3T Crew Cab 2010 14.2% Dodge Sprinter Cargo Van 2009 0.37% HUMMER H2 SUT Crew Cab 2009 0.28% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Audi S5 Convertible 2012 28.02% BMW 1 Series Coupe 2012 24.46% Cadillac CTS-V Sedan 2012 7.57% Chevrolet Camaro Convertible 2012 5.81% Volvo 240 Sedan 1993 5.48% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Jeep Wrangler SUV 2012 64.58% HUMMER H2 SUT Crew Cab 2009 34.26% AM General Hummer SUV 2000 0.72% Rolls-Royce Ghost Sedan 2012 0.15% Ford Ranger SuperCab 2011 0.09% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Suzuki SX4 Hatchback 2012 63.14% BMW X6 SUV 2012 14.84% McLaren MP4-12C Coupe 2012 5.87% Jeep Wrangler SUV 2012 4.51% Chevrolet Avalanche Crew Cab 2012 3.37% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Chevrolet Corvette ZR1 2012 32.36% Aston Martin V8 Vantage Coupe 2012 7.48% Ferrari 458 Italia Coupe 2012 4.51% Bentley Arnage Sedan 2009 3.93% Bentley Continental GT Coupe 2007 3.61% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 58.79% Porsche Panamera Sedan 2012 7.9% Infiniti G Coupe IPL 2012 7.1% Dodge Challenger SRT8 2011 5.79% Nissan 240SX Coupe 1998 3.65% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 69.74% GMC Yukon Hybrid SUV 2012 22.18% Lincoln Town Car Sedan 2011 3.03% Dodge Durango SUV 2007 1.69% Dodge Dakota Crew Cab 2010 0.74% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Infiniti G Coupe IPL 2012 30.58% Cadillac CTS-V Sedan 2012 29.67% Mercedes-Benz S-Class Sedan 2012 5.19% Chevrolet Corvette ZR1 2012 3.48% Bentley Continental GT Coupe 2007 3.21% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Jeep Compass SUV 2012 42.46% Audi R8 Coupe 2012 22.76% Cadillac Escalade EXT Crew Cab 2007 13.27% Volkswagen Golf Hatchback 1991 11.25% GMC Terrain SUV 2012 3.69% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Mercedes-Benz S-Class Sedan 2012 56.66% Volkswagen Golf Hatchback 2012 10.77% Ram C/V Cargo Van Minivan 2012 5.81% Lincoln Town Car Sedan 2011 3.96% Suzuki SX4 Hatchback 2012 1.86% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Chevrolet Monte Carlo Coupe 2007 31.87% Hyundai Sonata Hybrid Sedan 2012 18.47% Hyundai Accent Sedan 2012 15.16% Aston Martin V8 Vantage Coupe 2012 7.39% Mitsubishi Lancer Sedan 2012 5.43% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 62.59% Chevrolet Silverado 1500 Regular Cab 2012 11.43% GMC Canyon Extended Cab 2012 6.28% Hyundai Santa Fe SUV 2012 4.66% Hyundai Azera Sedan 2012 3.53% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Durango SUV 2007 50.05% Chevrolet Silverado 1500 Regular Cab 2012 20.44% Dodge Dakota Club Cab 2007 12.25% Ford F-150 Regular Cab 2012 6.27% Ford Ranger SuperCab 2011 3.2% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Jaguar XK XKR 2012 13.07% Dodge Durango SUV 2007 12.08% Fisker Karma Sedan 2012 9.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.63% BMW 3 Series Wagon 2012 6.41% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Ford F-150 Regular Cab 2007 64.31% Dodge Charger SRT-8 2009 11.11% GMC Canyon Extended Cab 2012 4.93% Volvo 240 Sedan 1993 2.73% Chevrolet HHR SS 2010 2.06% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz 300-Class Convertible 1993 41.75% Audi S4 Sedan 2012 13.97% Hyundai Veloster Hatchback 2012 7.31% Aston Martin V8 Vantage Convertible 2012 4.62% Acura TSX Sedan 2012 3.51% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 33.74% Land Rover LR2 SUV 2012 23.66% Hyundai Veloster Hatchback 2012 13.67% Volkswagen Golf Hatchback 2012 9.82% BMW X6 SUV 2012 2.73% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Chrysler PT Cruiser Convertible 2008 53.28% Daewoo Nubira Wagon 2002 5.6% Hyundai Elantra Touring Hatchback 2012 4.89% Honda Odyssey Minivan 2012 4.66% Honda Accord Sedan 2012 3.81% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Mercedes-Benz S-Class Sedan 2012 37.56% Suzuki Kizashi Sedan 2012 12.61% Acura ZDX Hatchback 2012 7.78% Chevrolet Tahoe Hybrid SUV 2012 6.08% Daewoo Nubira Wagon 2002 5.13% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 2500HD Regular Cab 2012 72.27% Dodge Dakota Club Cab 2007 21.33% Ford F-150 Regular Cab 2012 4.92% Ford Ranger SuperCab 2011 1.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.22% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Spyker C8 Convertible 2009 45.71% Audi R8 Coupe 2012 10.81% Acura ZDX Hatchback 2012 5.16% Bentley Mulsanne Sedan 2011 4.78% Tesla Model S Sedan 2012 2.83% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Dodge Sprinter Cargo Van 2009 94.63% Chevrolet TrailBlazer SS 2009 1.34% Infiniti QX56 SUV 2011 0.54% Volvo XC90 SUV 2007 0.53% Land Rover Range Rover SUV 2012 0.5% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 82.3% Acura TL Type-S 2008 8.9% Porsche Panamera Sedan 2012 4.03% Dodge Charger SRT-8 2009 0.97% Chevrolet Corvette Convertible 2012 0.84% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Audi TTS Coupe 2012 46.5% Hyundai Veloster Hatchback 2012 8.96% Spyker C8 Convertible 2009 4.69% Ferrari 458 Italia Coupe 2012 4.04% Land Rover LR2 SUV 2012 3.81% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Ford Focus Sedan 2007 57.52% Chevrolet Sonic Sedan 2012 16.71% Audi 100 Wagon 1994 10.04% Acura TSX Sedan 2012 1.72% Chevrolet Malibu Hybrid Sedan 2010 1.42% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.84% BMW 1 Series Coupe 2012 0.1% Aston Martin V8 Vantage Coupe 2012 0.02% Audi TTS Coupe 2012 0.01% Dodge Charger SRT-8 2009 0.01% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chrysler Crossfire Convertible 2008 63.08% Audi RS 4 Convertible 2008 19.9% Chevrolet Cobalt SS 2010 5.45% Acura Integra Type R 2001 2.25% Dodge Challenger SRT8 2011 2.11% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 99.39% Chevrolet Monte Carlo Coupe 2007 0.28% Acura TL Sedan 2012 0.09% Acura TL Type-S 2008 0.06% Suzuki SX4 Hatchback 2012 0.05% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 HUMMER H2 SUT Crew Cab 2009 47.08% Toyota 4Runner SUV 2012 9.69% HUMMER H3T Crew Cab 2010 7.77% GMC Yukon Hybrid SUV 2012 3.7% Ford Edge SUV 2012 3.45% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 99.99% Dodge Dakota Club Cab 2007 0.01% Chrysler Aspen SUV 2009 0.0% Ford F-150 Regular Cab 2012 0.0% Dodge Sprinter Cargo Van 2009 0.0% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 BMW M6 Convertible 2010 79.15% AM General Hummer SUV 2000 3.97% Ferrari California Convertible 2012 3.54% BMW 6 Series Convertible 2007 1.81% Mercedes-Benz S-Class Sedan 2012 1.56% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 21.89% Dodge Charger SRT-8 2009 12.84% Cadillac SRX SUV 2012 12.22% Chrysler PT Cruiser Convertible 2008 8.24% Acura Integra Type R 2001 6.85% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Chevrolet TrailBlazer SS 2009 71.19% Buick Enclave SUV 2012 8.91% Land Rover Range Rover SUV 2012 8.55% GMC Yukon Hybrid SUV 2012 3.87% Chevrolet Tahoe Hybrid SUV 2012 2.53% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 91.99% Acura TSX Sedan 2012 0.88% Buick Verano Sedan 2012 0.8% Acura TL Type-S 2008 0.73% Ford Fiesta Sedan 2012 0.59% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Ranger SuperCab 2011 26.2% Cadillac Escalade EXT Crew Cab 2007 19.03% Dodge Dakota Crew Cab 2010 15.61% Dodge Ram Pickup 3500 Quad Cab 2009 8.58% Ford F-150 Regular Cab 2012 5.57% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Chevrolet Tahoe Hybrid SUV 2012 37.75% Ford F-150 Regular Cab 2007 20.97% Dodge Durango SUV 2007 12.73% GMC Terrain SUV 2012 10.8% Jeep Patriot SUV 2012 5.63% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Dakota Crew Cab 2010 26.03% Chrysler Aspen SUV 2009 19.85% Nissan NV Passenger Van 2012 11.4% Lincoln Town Car Sedan 2011 9.09% Chevrolet Avalanche Crew Cab 2012 8.32% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Mercedes-Benz C-Class Sedan 2012 84.07% Plymouth Neon Coupe 1999 3.83% BMW 3 Series Sedan 2012 2.03% Hyundai Elantra Sedan 2007 1.08% Suzuki SX4 Sedan 2012 0.61% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 GMC Canyon Extended Cab 2012 22.72% Volvo 240 Sedan 1993 11.37% Ford Expedition EL SUV 2009 5.26% Ford F-150 Regular Cab 2007 4.43% Ford F-450 Super Duty Crew Cab 2012 4.15% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Audi RS 4 Convertible 2008 35.65% Bentley Arnage Sedan 2009 26.64% Rolls-Royce Phantom Drophead Coupe Convertible 2012 11.86% Audi S5 Convertible 2012 10.56% BMW 6 Series Convertible 2007 9.75% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Geo Metro Convertible 1993 40.25% Ferrari California Convertible 2012 34.63% Chevrolet Corvette Convertible 2012 18.41% HUMMER H3T Crew Cab 2010 4.23% Lamborghini Aventador Coupe 2012 0.89% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 81.4% Chevrolet Express Cargo Van 2007 17.93% Chevrolet Express Van 2007 0.67% HUMMER H3T Crew Cab 2010 0.0% Jeep Wrangler SUV 2012 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Spyker C8 Convertible 2009 41.87% Lamborghini Reventon Coupe 2008 26.83% Bugatti Veyron 16.4 Coupe 2009 8.01% Acura RL Sedan 2012 2.65% Volkswagen Golf Hatchback 2012 1.82% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Audi RS 4 Convertible 2008 41.0% Audi S5 Coupe 2012 12.78% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.77% Infiniti G Coupe IPL 2012 5.11% Chevrolet Sonic Sedan 2012 4.57% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 65.6% Jeep Compass SUV 2012 13.21% GMC Terrain SUV 2012 5.43% Chrysler 300 SRT-8 2010 3.49% Hyundai Tucson SUV 2012 2.6% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 98.13% Ferrari 458 Italia Convertible 2012 1.11% Ferrari 458 Italia Coupe 2012 0.6% Chevrolet Corvette Convertible 2012 0.06% Chevrolet Camaro Convertible 2012 0.04% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 GMC Yukon Hybrid SUV 2012 68.46% Infiniti QX56 SUV 2011 11.57% Porsche Panamera Sedan 2012 6.27% Buick Rainier SUV 2007 3.07% Toyota 4Runner SUV 2012 2.76% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Ferrari 458 Italia Coupe 2012 25.08% Ferrari California Convertible 2012 14.57% Nissan Leaf Hatchback 2012 10.02% Aston Martin V8 Vantage Convertible 2012 6.73% Hyundai Accent Sedan 2012 6.45% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Dodge Sprinter Cargo Van 2009 54.4% Audi 100 Wagon 1994 12.01% Volkswagen Golf Hatchback 1991 7.32% Suzuki SX4 Sedan 2012 5.29% Volkswagen Golf Hatchback 2012 3.78% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Dodge Charger Sedan 2012 46.81% Chrysler Crossfire Convertible 2008 16.4% Honda Accord Coupe 2012 5.85% Chevrolet Camaro Convertible 2012 4.7% Dodge Caliber Wagon 2007 3.19% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 100.0% Rolls-Royce Phantom Sedan 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% BMW ActiveHybrid 5 Sedan 2012 0.0% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 FIAT 500 Convertible 2012 56.01% Volkswagen Golf Hatchback 1991 8.95% Daewoo Nubira Wagon 2002 5.43% Volvo 240 Sedan 1993 3.12% Nissan 240SX Coupe 1998 2.78% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Nissan Leaf Hatchback 2012 68.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 18.82% Hyundai Elantra Sedan 2007 1.91% Mercedes-Benz S-Class Sedan 2012 1.77% Nissan 240SX Coupe 1998 1.46% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 42.63% Hyundai Veracruz SUV 2012 27.86% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.49% Chrysler Aspen SUV 2009 5.27% Ford Edge SUV 2012 3.32% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Chevrolet Corvette ZR1 2012 35.05% BMW 1 Series Coupe 2012 23.14% Hyundai Sonata Sedan 2012 6.14% Ford GT Coupe 2006 5.56% Porsche Panamera Sedan 2012 4.98% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz C-Class Sedan 2012 24.11% Mercedes-Benz S-Class Sedan 2012 11.74% BMW ActiveHybrid 5 Sedan 2012 10.97% Cadillac CTS-V Sedan 2012 10.3% Mercedes-Benz E-Class Sedan 2012 10.12% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Honda Odyssey Minivan 2007 18.65% Chevrolet HHR SS 2010 16.29% Toyota Corolla Sedan 2012 7.66% Mitsubishi Lancer Sedan 2012 6.83% Acura RL Sedan 2012 4.81% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Audi S6 Sedan 2011 65.48% Mercedes-Benz C-Class Sedan 2012 15.74% Hyundai Elantra Touring Hatchback 2012 6.07% Audi S4 Sedan 2012 5.45% BMW 3 Series Sedan 2012 1.24% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Porsche Panamera Sedan 2012 37.21% Chrysler Sebring Convertible 2010 11.12% Nissan Leaf Hatchback 2012 9.16% Acura ZDX Hatchback 2012 6.38% Hyundai Azera Sedan 2012 6.1% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 45.45% Hyundai Sonata Sedan 2012 13.96% BMW X6 SUV 2012 13.08% Chevrolet Traverse SUV 2012 8.38% Volvo XC90 SUV 2007 7.65% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 McLaren MP4-12C Coupe 2012 18.88% Acura TL Type-S 2008 15.28% Buick Regal GS 2012 13.55% BMW M6 Convertible 2010 7.44% Audi TT Hatchback 2011 6.62% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 79.95% Lamborghini Reventon Coupe 2008 3.58% Bentley Arnage Sedan 2009 3.22% Hyundai Azera Sedan 2012 2.43% Nissan NV Passenger Van 2012 2.25% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Porsche Panamera Sedan 2012 36.08% Mercedes-Benz C-Class Sedan 2012 35.01% Audi S5 Coupe 2012 13.84% Chevrolet Camaro Convertible 2012 4.25% Chrysler 300 SRT-8 2010 1.61% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 98.77% Nissan Juke Hatchback 2012 0.31% McLaren MP4-12C Coupe 2012 0.24% Acura TL Sedan 2012 0.16% Aston Martin V8 Vantage Coupe 2012 0.08% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 BMW Z4 Convertible 2012 20.31% Audi A5 Coupe 2012 18.76% Ford Mustang Convertible 2007 11.7% Audi S4 Sedan 2012 8.26% Audi S5 Coupe 2012 6.41% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Honda Accord Sedan 2012 20.99% Acura TL Type-S 2008 16.52% Audi 100 Sedan 1994 11.22% Hyundai Elantra Touring Hatchback 2012 7.61% Hyundai Elantra Sedan 2007 6.93% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Durango SUV 2007 48.46% Dodge Durango SUV 2012 19.32% Ford F-150 Regular Cab 2007 19.1% Cadillac Escalade EXT Crew Cab 2007 3.78% Dodge Ram Pickup 3500 Crew Cab 2010 3.56% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2012 23.85% Plymouth Neon Coupe 1999 21.6% Dodge Dakota Club Cab 2007 9.34% Dodge Caliber Wagon 2007 6.62% Ferrari FF Coupe 2012 5.14% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Aston Martin Virage Convertible 2012 45.88% BMW 6 Series Convertible 2007 39.62% Hyundai Genesis Sedan 2012 3.14% Dodge Dakota Crew Cab 2010 2.25% Hyundai Azera Sedan 2012 1.32% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 BMW Z4 Convertible 2012 76.65% Audi RS 4 Convertible 2008 15.2% Audi S4 Sedan 2007 5.1% Ferrari 458 Italia Convertible 2012 0.41% Ferrari California Convertible 2012 0.23% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 43.16% Dodge Durango SUV 2007 33.15% Ford F-150 Regular Cab 2007 10.99% Dodge Ram Pickup 3500 Quad Cab 2009 6.29% GMC Canyon Extended Cab 2012 2.02% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Geo Metro Convertible 1993 56.33% FIAT 500 Convertible 2012 12.65% Chrysler PT Cruiser Convertible 2008 10.33% Ferrari California Convertible 2012 5.83% smart fortwo Convertible 2012 4.09% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 13.21% Volkswagen Golf Hatchback 2012 9.54% Hyundai Elantra Touring Hatchback 2012 8.51% Hyundai Veloster Hatchback 2012 7.97% Hyundai Santa Fe SUV 2012 6.87% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 62.86% Audi S5 Convertible 2012 5.57% Porsche Panamera Sedan 2012 3.91% Acura TSX Sedan 2012 3.4% Chevrolet Sonic Sedan 2012 2.98% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chevrolet TrailBlazer SS 2009 74.74% Scion xD Hatchback 2012 7.98% Buick Verano Sedan 2012 5.59% BMW M3 Coupe 2012 2.5% Hyundai Elantra Sedan 2007 1.59% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Aston Martin Virage Convertible 2012 13.74% Hyundai Accent Sedan 2012 12.93% Jaguar XK XKR 2012 9.48% Porsche Panamera Sedan 2012 8.42% Infiniti G Coupe IPL 2012 5.93% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 28.21% Toyota 4Runner SUV 2012 26.12% Audi 100 Wagon 1994 6.07% Dodge Dakota Club Cab 2007 5.38% Chrysler Sebring Convertible 2010 3.32% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 BMW X5 SUV 2007 15.57% Jeep Compass SUV 2012 12.96% Cadillac SRX SUV 2012 7.84% Dodge Ram Pickup 3500 Quad Cab 2009 6.69% Dodge Dakota Crew Cab 2010 6.18% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Dodge Journey SUV 2012 45.96% AM General Hummer SUV 2000 24.38% Dodge Durango SUV 2007 8.01% GMC Savana Van 2012 7.69% Nissan NV Passenger Van 2012 3.29% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Aston Martin Virage Coupe 2012 40.71% Spyker C8 Convertible 2009 18.93% Audi S4 Sedan 2012 7.74% Aston Martin V8 Vantage Coupe 2012 6.51% Tesla Model S Sedan 2012 6.44% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 BMW 6 Series Convertible 2007 24.33% BMW M6 Convertible 2010 10.94% Mercedes-Benz E-Class Sedan 2012 9.56% Maybach Landaulet Convertible 2012 6.3% Honda Accord Sedan 2012 4.46% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Ferrari 458 Italia Coupe 2012 53.41% Ferrari California Convertible 2012 20.62% Ferrari FF Coupe 2012 6.01% Chevrolet Camaro Convertible 2012 4.84% BMW 3 Series Sedan 2012 2.94% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Infiniti G Coupe IPL 2012 50.29% Dodge Charger SRT-8 2009 28.67% Hyundai Sonata Sedan 2012 5.11% Acura TSX Sedan 2012 3.79% Mitsubishi Lancer Sedan 2012 1.72% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 90.28% GMC Canyon Extended Cab 2012 7.41% Chevrolet Silverado 2500HD Regular Cab 2012 0.53% Dodge Ram Pickup 3500 Quad Cab 2009 0.32% Ford F-450 Super Duty Crew Cab 2012 0.32% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Geo Metro Convertible 1993 30.46% Acura Integra Type R 2001 26.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.74% Lamborghini Diablo Coupe 2001 4.94% AM General Hummer SUV 2000 3.77% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Audi TT RS Coupe 2012 42.86% Volkswagen Beetle Hatchback 2012 18.35% Cadillac CTS-V Sedan 2012 14.02% BMW 3 Series Sedan 2012 3.82% Suzuki Kizashi Sedan 2012 2.94% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 35.73% HUMMER H2 SUT Crew Cab 2009 31.34% Dodge Dakota Crew Cab 2010 17.37% Ford Ranger SuperCab 2011 7.09% Dodge Ram Pickup 3500 Quad Cab 2009 5.18% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Chevrolet Cobalt SS 2010 15.1% Acura Integra Type R 2001 13.95% Dodge Charger SRT-8 2009 10.08% McLaren MP4-12C Coupe 2012 6.26% Chrysler PT Cruiser Convertible 2008 3.44% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 BMW M5 Sedan 2010 26.02% BMW X3 SUV 2012 20.2% BMW X6 SUV 2012 12.97% Infiniti QX56 SUV 2011 12.69% Land Rover LR2 SUV 2012 4.2% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Volvo 240 Sedan 1993 26.32% Hyundai Veracruz SUV 2012 21.09% Eagle Talon Hatchback 1998 20.25% BMW M6 Convertible 2010 10.47% Chevrolet Silverado 1500 Regular Cab 2012 3.46% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 96.91% Mitsubishi Lancer Sedan 2012 1.19% Chevrolet HHR SS 2010 0.57% Volvo C30 Hatchback 2012 0.4% BMW 3 Series Sedan 2012 0.21% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Volkswagen Golf Hatchback 1991 22.36% Ford Freestar Minivan 2007 12.44% Lamborghini Reventon Coupe 2008 6.09% Chrysler 300 SRT-8 2010 5.64% Buick Verano Sedan 2012 4.8% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Durango SUV 2012 36.45% BMW 3 Series Wagon 2012 25.36% Cadillac CTS-V Sedan 2012 8.24% Ford F-150 Regular Cab 2007 6.47% Chevrolet Silverado 2500HD Regular Cab 2012 4.25% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 14.13% Audi R8 Coupe 2012 8.76% Porsche Panamera Sedan 2012 4.63% Dodge Magnum Wagon 2008 4.23% Chevrolet Camaro Convertible 2012 3.84% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Ford Ranger SuperCab 2011 45.51% GMC Canyon Extended Cab 2012 11.68% Land Rover Range Rover SUV 2012 10.67% Dodge Ram Pickup 3500 Crew Cab 2010 5.72% Jeep Wrangler SUV 2012 5.07% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 BMW 1 Series Coupe 2012 80.46% Honda Accord Coupe 2012 5.59% Hyundai Elantra Touring Hatchback 2012 3.19% Dodge Caliber Wagon 2012 1.66% Volkswagen Golf Hatchback 2012 1.0% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Porsche Panamera Sedan 2012 64.5% Audi RS 4 Convertible 2008 13.17% Audi S5 Coupe 2012 5.13% BMW X5 SUV 2007 2.77% Tesla Model S Sedan 2012 2.07% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Jeep Liberty SUV 2012 25.42% Cadillac Escalade EXT Crew Cab 2007 21.7% Dodge Caliber Wagon 2012 14.97% GMC Yukon Hybrid SUV 2012 9.8% Jeep Compass SUV 2012 4.08% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Mercedes-Benz S-Class Sedan 2012 11.72% Bentley Mulsanne Sedan 2011 10.75% Hyundai Genesis Sedan 2012 8.19% Dodge Challenger SRT8 2011 7.34% Cadillac CTS-V Sedan 2012 6.82% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Dodge Caliber Wagon 2012 15.69% Cadillac SRX SUV 2012 6.42% BMW X3 SUV 2012 4.63% Chrysler 300 SRT-8 2010 4.47% BMW M6 Convertible 2010 4.22% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 GMC Yukon Hybrid SUV 2012 44.51% Cadillac Escalade EXT Crew Cab 2007 31.88% Cadillac CTS-V Sedan 2012 20.69% Bentley Continental GT Coupe 2007 1.26% Bentley Arnage Sedan 2009 0.5% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Dodge Charger SRT-8 2009 36.31% Hyundai Elantra Touring Hatchback 2012 17.91% Eagle Talon Hatchback 1998 15.69% BMW 6 Series Convertible 2007 15.19% Chevrolet Impala Sedan 2007 1.67% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 BMW ActiveHybrid 5 Sedan 2012 50.14% Acura TSX Sedan 2012 9.6% Mercedes-Benz SL-Class Coupe 2009 7.76% Infiniti G Coupe IPL 2012 6.52% Hyundai Genesis Sedan 2012 4.49% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 51.68% Infiniti G Coupe IPL 2012 20.43% Audi S6 Sedan 2011 15.37% Audi TTS Coupe 2012 2.64% BMW M3 Coupe 2012 1.43% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 17.32% Nissan NV Passenger Van 2012 14.01% Dodge Durango SUV 2007 6.4% Jeep Patriot SUV 2012 4.81% Mercedes-Benz S-Class Sedan 2012 3.7% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 17.13% Honda Accord Coupe 2012 10.91% Suzuki Aerio Sedan 2007 6.1% Honda Odyssey Minivan 2007 4.79% Acura Integra Type R 2001 3.8% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Land Rover Range Rover SUV 2012 35.17% Dodge Ram Pickup 3500 Crew Cab 2010 23.6% Audi V8 Sedan 1994 6.66% Dodge Durango SUV 2007 4.36% Isuzu Ascender SUV 2008 2.17% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 65.71% Chrysler PT Cruiser Convertible 2008 21.59% Chevrolet Silverado 1500 Extended Cab 2012 1.76% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.43% Rolls-Royce Ghost Sedan 2012 1.1% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Buick Enclave SUV 2012 23.47% Ford F-150 Regular Cab 2007 20.21% Volvo 240 Sedan 1993 16.62% Chevrolet Traverse SUV 2012 5.04% Dodge Caravan Minivan 1997 4.62% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 57.05% Dodge Dakota Club Cab 2007 37.42% Dodge Caliber Wagon 2007 1.98% HUMMER H2 SUT Crew Cab 2009 0.72% Dodge Sprinter Cargo Van 2009 0.69% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Land Rover LR2 SUV 2012 61.46% Ferrari FF Coupe 2012 7.89% Rolls-Royce Ghost Sedan 2012 7.4% Cadillac CTS-V Sedan 2012 4.49% Mercedes-Benz C-Class Sedan 2012 2.99% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 GMC Canyon Extended Cab 2012 54.75% Chevrolet TrailBlazer SS 2009 32.25% Land Rover Range Rover SUV 2012 8.6% Chrysler 300 SRT-8 2010 2.29% Dodge Dakota Crew Cab 2010 0.6% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Nissan 240SX Coupe 1998 32.64% Aston Martin V8 Vantage Coupe 2012 12.02% Aston Martin V8 Vantage Convertible 2012 6.48% Audi S4 Sedan 2012 3.86% BMW Z4 Convertible 2012 3.85% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.7% Audi S5 Convertible 2012 0.22% smart fortwo Convertible 2012 0.01% Suzuki Kizashi Sedan 2012 0.01% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.01% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Ford F-150 Regular Cab 2007 26.5% Chevrolet Silverado 1500 Classic Extended Cab 2007 18.69% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 13.86% Dodge Ram Pickup 3500 Quad Cab 2009 12.18% Ford F-450 Super Duty Crew Cab 2012 9.74% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Volkswagen Golf Hatchback 2012 68.3% Chrysler Sebring Convertible 2010 8.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.22% Honda Accord Sedan 2012 3.59% Volkswagen Beetle Hatchback 2012 2.17% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Mercedes-Benz Sprinter Van 2012 17.82% Dodge Sprinter Cargo Van 2009 12.0% Acura ZDX Hatchback 2012 8.6% BMW X3 SUV 2012 8.28% Chevrolet Express Van 2007 6.56% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Lamborghini Aventador Coupe 2012 39.75% BMW M3 Coupe 2012 28.86% Hyundai Veloster Hatchback 2012 8.32% Aston Martin Virage Coupe 2012 3.79% Ferrari 458 Italia Coupe 2012 3.4% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 2500HD Regular Cab 2012 40.35% BMW M6 Convertible 2010 19.54% Volkswagen Golf Hatchback 1991 11.1% Ford F-150 Regular Cab 2012 7.12% Ford F-150 Regular Cab 2007 2.1% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Daewoo Nubira Wagon 2002 36.4% Lamborghini Reventon Coupe 2008 28.96% Audi 100 Wagon 1994 12.56% Eagle Talon Hatchback 1998 6.78% Chevrolet Monte Carlo Coupe 2007 5.12% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Chevrolet TrailBlazer SS 2009 23.06% GMC Canyon Extended Cab 2012 22.3% Ford F-150 Regular Cab 2007 19.39% Jeep Patriot SUV 2012 6.21% Chevrolet Impala Sedan 2007 3.3% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Chevrolet Traverse SUV 2012 41.89% Hyundai Tucson SUV 2012 29.05% Hyundai Veracruz SUV 2012 25.33% Scion xD Hatchback 2012 0.71% Hyundai Santa Fe SUV 2012 0.6% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Hyundai Accent Sedan 2012 72.06% Acura RL Sedan 2012 4.87% Toyota Camry Sedan 2012 3.43% Suzuki Aerio Sedan 2007 3.16% Toyota Corolla Sedan 2012 2.42% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 98.9% Suzuki SX4 Hatchback 2012 0.23% BMW 1 Series Convertible 2012 0.19% GMC Canyon Extended Cab 2012 0.13% Audi V8 Sedan 1994 0.09% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2012 91.52% BMW 6 Series Convertible 2007 1.45% BMW 3 Series Sedan 2012 1.0% Rolls-Royce Phantom Sedan 2012 0.9% Audi S4 Sedan 2012 0.73% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 96.34% Dodge Dakota Club Cab 2007 0.89% Ford Ranger SuperCab 2011 0.71% HUMMER H2 SUT Crew Cab 2009 0.65% Cadillac CTS-V Sedan 2012 0.29% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Volvo 240 Sedan 1993 32.53% Ford Ranger SuperCab 2011 8.48% Chevrolet Express Cargo Van 2007 8.25% Dodge Caravan Minivan 1997 6.88% Audi 100 Sedan 1994 6.51% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Audi S5 Coupe 2012 83.06% Audi TT RS Coupe 2012 9.18% Infiniti G Coupe IPL 2012 1.11% Acura ZDX Hatchback 2012 0.9% BMW 1 Series Convertible 2012 0.9% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Suzuki Aerio Sedan 2007 16.19% Hyundai Veracruz SUV 2012 11.74% Volkswagen Golf Hatchback 2012 10.76% Audi S5 Coupe 2012 9.97% Acura TL Type-S 2008 7.88% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 20.9% Hyundai Sonata Hybrid Sedan 2012 16.7% Chevrolet HHR SS 2010 13.22% Nissan 240SX Coupe 1998 9.77% Chevrolet Cobalt SS 2010 6.45% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Ford F-150 Regular Cab 2012 37.83% Volvo 240 Sedan 1993 17.23% Dodge Durango SUV 2012 8.98% Ford Expedition EL SUV 2009 8.39% Chevrolet Silverado 2500HD Regular Cab 2012 3.83% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Audi V8 Sedan 1994 15.98% Bentley Arnage Sedan 2009 13.52% Audi S5 Coupe 2012 12.48% Volvo 240 Sedan 1993 11.77% Audi 100 Sedan 1994 8.72% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Chevrolet Sonic Sedan 2012 43.23% Jaguar XK XKR 2012 4.74% Hyundai Veloster Hatchback 2012 4.53% Hyundai Azera Sedan 2012 4.34% Hyundai Sonata Sedan 2012 4.0% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Hyundai Sonata Hybrid Sedan 2012 39.94% Jaguar XK XKR 2012 14.71% Porsche Panamera Sedan 2012 7.12% BMW ActiveHybrid 5 Sedan 2012 6.6% Audi S4 Sedan 2012 6.21% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 84.02% Acura ZDX Hatchback 2012 12.23% AM General Hummer SUV 2000 1.61% HUMMER H2 SUT Crew Cab 2009 0.74% Land Rover LR2 SUV 2012 0.12% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 63.57% Ford F-150 Regular Cab 2007 29.66% HUMMER H3T Crew Cab 2010 5.05% GMC Canyon Extended Cab 2012 1.16% GMC Savana Van 2012 0.1% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Ford Freestar Minivan 2007 52.11% Buick Rainier SUV 2007 12.75% Dodge Dakota Crew Cab 2010 9.81% BMW 1 Series Convertible 2012 4.05% Jeep Wrangler SUV 2012 3.35% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Mulsanne Sedan 2011 79.68% Cadillac CTS-V Sedan 2012 9.58% Ford F-450 Super Duty Crew Cab 2012 2.46% BMW 6 Series Convertible 2007 1.6% Audi S5 Coupe 2012 0.8% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Chevrolet Malibu Hybrid Sedan 2010 30.67% Volkswagen Beetle Hatchback 2012 17.92% Chrysler Town and Country Minivan 2012 13.69% Lincoln Town Car Sedan 2011 12.17% Hyundai Elantra Sedan 2007 4.5% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Dakota Club Cab 2007 51.24% Dodge Dakota Crew Cab 2010 32.9% Dodge Durango SUV 2007 13.97% Dodge Durango SUV 2012 0.5% Chrysler Aspen SUV 2009 0.47% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 McLaren MP4-12C Coupe 2012 22.09% Jaguar XK XKR 2012 16.41% Eagle Talon Hatchback 1998 6.91% Infiniti G Coupe IPL 2012 6.22% Acura Integra Type R 2001 5.88% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 21.61% Chevrolet Corvette ZR1 2012 13.41% Audi S5 Convertible 2012 9.83% Scion xD Hatchback 2012 9.47% Nissan Juke Hatchback 2012 9.08% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 79.0% Mitsubishi Lancer Sedan 2012 5.54% Porsche Panamera Sedan 2012 4.19% Mercedes-Benz C-Class Sedan 2012 2.13% Volvo 240 Sedan 1993 1.31% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Porsche Panamera Sedan 2012 44.6% Hyundai Sonata Hybrid Sedan 2012 24.64% Honda Odyssey Minivan 2007 8.79% BMW M5 Sedan 2010 6.54% Hyundai Sonata Sedan 2012 2.35% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Hyundai Tucson SUV 2012 22.52% Hyundai Veracruz SUV 2012 7.65% Hyundai Sonata Sedan 2012 6.16% Chevrolet Malibu Hybrid Sedan 2010 5.16% Chevrolet Silverado 1500 Regular Cab 2012 2.78% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2007 89.89% Bugatti Veyron 16.4 Coupe 2009 2.79% Aston Martin V8 Vantage Coupe 2012 1.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.02% Aston Martin V8 Vantage Convertible 2012 0.77% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.66% HUMMER H2 SUT Crew Cab 2009 0.14% HUMMER H3T Crew Cab 2010 0.06% Chevrolet Silverado 1500 Regular Cab 2012 0.02% Dodge Dakota Crew Cab 2010 0.01% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 70.62% Chevrolet Silverado 2500HD Regular Cab 2012 18.42% Chevrolet Monte Carlo Coupe 2007 2.93% Scion xD Hatchback 2012 0.8% BMW X5 SUV 2007 0.69% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Coupe 2012 56.18% Ferrari 458 Italia Convertible 2012 42.98% Dodge Charger SRT-8 2009 0.49% Lamborghini Aventador Coupe 2012 0.12% BMW M3 Coupe 2012 0.04% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 GMC Canyon Extended Cab 2012 50.95% Volvo XC90 SUV 2007 23.67% Chevrolet Silverado 1500 Regular Cab 2012 6.56% HUMMER H2 SUT Crew Cab 2009 5.92% Ford F-150 Regular Cab 2007 3.56% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Geo Metro Convertible 1993 64.94% Eagle Talon Hatchback 1998 17.12% Chevrolet Impala Sedan 2007 5.54% Ram C/V Cargo Van Minivan 2012 3.28% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.86% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Chevrolet TrailBlazer SS 2009 19.68% Chevrolet Malibu Sedan 2007 7.89% Hyundai Veracruz SUV 2012 4.54% GMC Acadia SUV 2012 4.52% Toyota Corolla Sedan 2012 3.94% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Land Rover LR2 SUV 2012 29.96% Hyundai Elantra Touring Hatchback 2012 24.83% Hyundai Sonata Sedan 2012 7.93% Porsche Panamera Sedan 2012 6.38% Chevrolet Malibu Hybrid Sedan 2010 4.04% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.97% GMC Savana Van 2012 0.03% Chevrolet Express Van 2007 0.0% Ford F-150 Regular Cab 2012 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Hyundai Accent Sedan 2012 40.22% Acura ZDX Hatchback 2012 25.95% Chevrolet Corvette ZR1 2012 16.07% Ford GT Coupe 2006 6.49% Acura Integra Type R 2001 1.76% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Audi 100 Sedan 1994 78.42% Hyundai Accent Sedan 2012 4.21% Audi 100 Wagon 1994 3.43% Hyundai Santa Fe SUV 2012 2.97% Ram C/V Cargo Van Minivan 2012 2.23% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 BMW X3 SUV 2012 21.49% Daewoo Nubira Wagon 2002 18.26% BMW 3 Series Wagon 2012 15.84% Audi 100 Wagon 1994 8.49% Suzuki Aerio Sedan 2007 8.25% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Eagle Talon Hatchback 1998 53.93% Chevrolet Monte Carlo Coupe 2007 16.68% Plymouth Neon Coupe 1999 12.25% Bentley Continental GT Coupe 2007 4.74% Nissan Leaf Hatchback 2012 2.63% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Chevrolet Cobalt SS 2010 44.7% Volkswagen Beetle Hatchback 2012 18.61% Bentley Continental GT Coupe 2012 11.95% Chevrolet Corvette ZR1 2012 10.34% Suzuki Aerio Sedan 2007 4.96% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Land Rover Range Rover SUV 2012 14.51% BMW X5 SUV 2007 11.09% Cadillac SRX SUV 2012 10.7% Audi S4 Sedan 2007 6.55% Dodge Durango SUV 2007 5.81% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari 458 Italia Convertible 2012 66.82% Chevrolet Corvette ZR1 2012 16.99% Ferrari FF Coupe 2012 13.62% Ferrari 458 Italia Coupe 2012 1.32% Lamborghini Aventador Coupe 2012 0.56% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 79.19% Jeep Patriot SUV 2012 7.22% Chevrolet Tahoe Hybrid SUV 2012 5.11% Dodge Durango SUV 2007 4.18% Dodge Dakota Club Cab 2007 0.83% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Lincoln Town Car Sedan 2011 69.62% Ford F-150 Regular Cab 2007 4.94% Dodge Dakota Crew Cab 2010 4.22% Ford Freestar Minivan 2007 4.0% Dodge Durango SUV 2007 2.52% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 86.0% Audi S5 Convertible 2012 5.16% smart fortwo Convertible 2012 4.99% Suzuki SX4 Hatchback 2012 0.76% Hyundai Veloster Hatchback 2012 0.5% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Canyon Extended Cab 2012 47.06% Chevrolet Silverado 1500 Classic Extended Cab 2007 21.44% Dodge Ram Pickup 3500 Quad Cab 2009 9.16% Ford F-450 Super Duty Crew Cab 2012 8.1% Chevrolet Silverado 2500HD Regular Cab 2012 2.8% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 Audi S5 Coupe 2012 39.0% MINI Cooper Roadster Convertible 2012 19.86% smart fortwo Convertible 2012 18.72% BMW 1 Series Convertible 2012 2.82% Audi RS 4 Convertible 2008 2.19% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 51.31% Bentley Mulsanne Sedan 2011 19.34% Cadillac Escalade EXT Crew Cab 2007 10.0% Bentley Arnage Sedan 2009 9.08% Dodge Durango SUV 2007 1.19% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Ford Ranger SuperCab 2011 45.79% Ford F-150 Regular Cab 2007 10.08% Jeep Wrangler SUV 2012 9.92% Volvo 240 Sedan 1993 5.83% Ford F-450 Super Duty Crew Cab 2012 4.87% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Hyundai Elantra Touring Hatchback 2012 34.62% Suzuki SX4 Sedan 2012 14.95% GMC Acadia SUV 2012 5.9% Mercedes-Benz S-Class Sedan 2012 5.7% Buick Regal GS 2012 4.41% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Chevrolet Corvette ZR1 2012 98.96% Audi R8 Coupe 2012 0.2% Mitsubishi Lancer Sedan 2012 0.1% BMW 6 Series Convertible 2007 0.07% Porsche Panamera Sedan 2012 0.06% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Chrysler Town and Country Minivan 2012 86.81% Cadillac Escalade EXT Crew Cab 2007 3.68% Jeep Compass SUV 2012 3.02% Ford Ranger SuperCab 2011 2.1% GMC Acadia SUV 2012 1.54% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Cadillac SRX SUV 2012 39.45% Chevrolet Silverado 2500HD Regular Cab 2012 29.98% Jeep Compass SUV 2012 9.78% Honda Accord Sedan 2012 7.45% GMC Terrain SUV 2012 3.37% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Lamborghini Aventador Coupe 2012 75.04% Ferrari California Convertible 2012 19.72% Ferrari 458 Italia Convertible 2012 2.84% Chevrolet Camaro Convertible 2012 0.85% Ferrari 458 Italia Coupe 2012 0.53% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Durango SUV 2007 41.92% Dodge Ram Pickup 3500 Crew Cab 2010 19.04% Ford F-150 Regular Cab 2007 17.8% Dodge Ram Pickup 3500 Quad Cab 2009 10.05% Ford Expedition EL SUV 2009 5.63% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Dodge Challenger SRT8 2011 31.24% BMW 6 Series Convertible 2007 10.75% Audi TT RS Coupe 2012 8.88% Hyundai Azera Sedan 2012 8.13% Mercedes-Benz SL-Class Coupe 2009 6.34% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 HUMMER H3T Crew Cab 2010 96.74% HUMMER H2 SUT Crew Cab 2009 1.03% Honda Accord Coupe 2012 0.74% Cadillac Escalade EXT Crew Cab 2007 0.43% Mercedes-Benz SL-Class Coupe 2009 0.22% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Hyundai Santa Fe SUV 2012 42.25% Land Rover LR2 SUV 2012 21.47% GMC Acadia SUV 2012 11.48% Toyota 4Runner SUV 2012 7.75% Hyundai Tucson SUV 2012 7.54% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Daewoo Nubira Wagon 2002 91.66% Mercedes-Benz 300-Class Convertible 1993 4.3% Ford Ranger SuperCab 2011 0.91% Audi V8 Sedan 1994 0.75% Volvo 240 Sedan 1993 0.63% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 96.79% MINI Cooper Roadster Convertible 2012 2.71% Mercedes-Benz C-Class Sedan 2012 0.25% Audi S6 Sedan 2011 0.05% Buick Rainier SUV 2007 0.03% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Buick Regal GS 2012 64.96% Dodge Charger Sedan 2012 13.25% Audi S5 Coupe 2012 3.88% Hyundai Elantra Touring Hatchback 2012 2.95% Audi A5 Coupe 2012 2.12% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Mercedes-Benz E-Class Sedan 2012 20.48% Audi S5 Coupe 2012 15.31% Hyundai Santa Fe SUV 2012 7.66% Hyundai Sonata Hybrid Sedan 2012 5.21% Mercedes-Benz C-Class Sedan 2012 3.56% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Dodge Ram Pickup 3500 Quad Cab 2009 8.63% Audi S6 Sedan 2011 7.31% Audi RS 4 Convertible 2008 4.28% Audi S4 Sedan 2007 3.93% Audi S5 Coupe 2012 3.5% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Geo Metro Convertible 1993 64.31% Jaguar XK XKR 2012 29.25% Aston Martin V8 Vantage Coupe 2012 3.01% Audi S4 Sedan 2012 0.72% Honda Odyssey Minivan 2012 0.71% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Bugatti Veyron 16.4 Convertible 2009 71.46% McLaren MP4-12C Coupe 2012 7.38% Porsche Panamera Sedan 2012 6.46% Acura ZDX Hatchback 2012 4.91% Mercedes-Benz SL-Class Coupe 2009 3.6% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Ford Fiesta Sedan 2012 18.25% Bugatti Veyron 16.4 Convertible 2009 14.92% Scion xD Hatchback 2012 12.83% Spyker C8 Coupe 2009 7.97% Bentley Continental Supersports Conv. Convertible 2012 7.59% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 BMW M6 Convertible 2010 32.0% Chevrolet Monte Carlo Coupe 2007 16.7% Jaguar XK XKR 2012 13.98% Ferrari 458 Italia Convertible 2012 5.93% Chrysler Sebring Convertible 2010 4.4% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 75.04% BMW 3 Series Sedan 2012 18.16% Chevrolet HHR SS 2010 1.95% Audi TT Hatchback 2011 0.88% Volvo C30 Hatchback 2012 0.8% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 67.13% smart fortwo Convertible 2012 18.01% Infiniti G Coupe IPL 2012 6.61% BMW M6 Convertible 2010 1.38% Scion xD Hatchback 2012 0.73% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 62.38% Mercedes-Benz SL-Class Coupe 2009 12.19% Chevrolet Corvette Convertible 2012 6.44% BMW M6 Convertible 2010 2.93% Bugatti Veyron 16.4 Convertible 2009 2.47% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Lincoln Town Car Sedan 2011 27.0% Jaguar XK XKR 2012 16.1% BMW M6 Convertible 2010 15.48% Geo Metro Convertible 1993 11.88% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.1% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 11.11% Chrysler PT Cruiser Convertible 2008 8.84% HUMMER H2 SUT Crew Cab 2009 5.18% Chevrolet Malibu Sedan 2007 3.4% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.34% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Volvo 240 Sedan 1993 81.13% Ford F-150 Regular Cab 2007 4.04% Ford Expedition EL SUV 2009 1.5% Audi V8 Sedan 1994 1.08% Hyundai Genesis Sedan 2012 1.07% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Acura TL Sedan 2012 65.37% Mercedes-Benz SL-Class Coupe 2009 7.34% Hyundai Genesis Sedan 2012 7.05% Acura TL Type-S 2008 6.86% Audi TT Hatchback 2011 3.3% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Canyon Extended Cab 2012 14.95% Land Rover Range Rover SUV 2012 13.26% Volkswagen Golf Hatchback 1991 12.44% Volvo 240 Sedan 1993 11.89% Chevrolet Express Cargo Van 2007 10.54% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Ford Freestar Minivan 2007 40.23% Dodge Caravan Minivan 1997 26.6% Chrysler Town and Country Minivan 2012 13.21% Honda Odyssey Minivan 2007 4.52% Buick Rainier SUV 2007 3.98% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 40.29% Plymouth Neon Coupe 1999 9.31% Bentley Arnage Sedan 2009 7.14% Ford Focus Sedan 2007 3.64% Eagle Talon Hatchback 1998 3.37% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Volkswagen Golf Hatchback 1991 22.18% Nissan 240SX Coupe 1998 11.36% Mercedes-Benz C-Class Sedan 2012 10.23% Mercedes-Benz S-Class Sedan 2012 9.78% BMW M6 Convertible 2010 5.35% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Porsche Panamera Sedan 2012 34.07% BMW ActiveHybrid 5 Sedan 2012 20.22% Volvo 240 Sedan 1993 16.21% Honda Accord Sedan 2012 6.21% Volkswagen Golf Hatchback 1991 5.39% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Ford F-150 Regular Cab 2007 74.47% Volvo 240 Sedan 1993 17.63% Ford Ranger SuperCab 2011 2.66% Dodge Dakota Club Cab 2007 0.75% Chevrolet Silverado 1500 Extended Cab 2012 0.66% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Hyundai Azera Sedan 2012 51.57% Dodge Caliber Wagon 2007 8.74% Hyundai Tucson SUV 2012 6.88% Buick Regal GS 2012 6.3% Honda Accord Coupe 2012 4.37% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Sedan 2012 70.36% Suzuki SX4 Hatchback 2012 4.41% Eagle Talon Hatchback 1998 3.02% Chevrolet Sonic Sedan 2012 2.55% Audi TTS Coupe 2012 2.54% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 34.06% Mercedes-Benz S-Class Sedan 2012 28.43% Audi V8 Sedan 1994 10.64% Mercedes-Benz E-Class Sedan 2012 6.86% Audi R8 Coupe 2012 4.51% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Jaguar XK XKR 2012 35.67% Lincoln Town Car Sedan 2011 16.67% Hyundai Genesis Sedan 2012 11.64% Chevrolet Corvette ZR1 2012 4.35% Acura TL Sedan 2012 3.52% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Aston Martin V8 Vantage Convertible 2012 30.64% Ferrari FF Coupe 2012 24.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 12.87% Jaguar XK XKR 2012 6.52% Chevrolet Monte Carlo Coupe 2007 5.15% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Fisker Karma Sedan 2012 56.91% Volvo 240 Sedan 1993 5.09% BMW 3 Series Sedan 2012 4.62% Bentley Mulsanne Sedan 2011 3.87% Chrysler Town and Country Minivan 2012 3.85% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Dodge Dakota Club Cab 2007 22.49% Dodge Ram Pickup 3500 Quad Cab 2009 19.41% Audi V8 Sedan 1994 18.34% HUMMER H3T Crew Cab 2010 11.72% Chevrolet Silverado 2500HD Regular Cab 2012 11.17% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 69.74% McLaren MP4-12C Coupe 2012 19.96% Lamborghini Aventador Coupe 2012 4.84% Aston Martin Virage Coupe 2012 3.39% Acura Integra Type R 2001 0.46% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Isuzu Ascender SUV 2008 25.45% Chevrolet Express Cargo Van 2007 23.78% GMC Savana Van 2012 17.85% Dodge Ram Pickup 3500 Quad Cab 2009 10.33% Dodge Dakota Club Cab 2007 5.24% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 98.21% Hyundai Elantra Sedan 2007 0.75% Chevrolet Impala Sedan 2007 0.25% Dodge Magnum Wagon 2008 0.13% Chevrolet Cobalt SS 2010 0.07% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 88.42% Chrysler PT Cruiser Convertible 2008 2.71% Lincoln Town Car Sedan 2011 1.73% Hyundai Veracruz SUV 2012 1.3% Scion xD Hatchback 2012 0.68% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Chevrolet TrailBlazer SS 2009 76.66% Chrysler 300 SRT-8 2010 2.28% Cadillac CTS-V Sedan 2012 2.25% Toyota Corolla Sedan 2012 2.0% Land Rover LR2 SUV 2012 1.88% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Volkswagen Golf Hatchback 2012 74.35% Acura TSX Sedan 2012 9.56% Suzuki SX4 Sedan 2012 5.4% Acura TL Sedan 2012 5.06% Chrysler Sebring Convertible 2010 2.9% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Audi RS 4 Convertible 2008 16.4% smart fortwo Convertible 2012 12.45% Dodge Challenger SRT8 2011 8.91% Aston Martin V8 Vantage Coupe 2012 7.43% Audi S6 Sedan 2011 5.36% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 67.79% Hyundai Sonata Sedan 2012 12.53% Chevrolet Avalanche Crew Cab 2012 5.03% Volkswagen Golf Hatchback 2012 2.91% Bentley Arnage Sedan 2009 2.26% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Land Rover LR2 SUV 2012 74.47% Porsche Panamera Sedan 2012 18.9% Volvo XC90 SUV 2007 1.85% Rolls-Royce Ghost Sedan 2012 0.61% Audi S5 Coupe 2012 0.55% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz S-Class Sedan 2012 49.91% Hyundai Genesis Sedan 2012 12.18% Hyundai Azera Sedan 2012 11.95% Chrysler PT Cruiser Convertible 2008 7.06% Acura TL Type-S 2008 4.04% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 92.32% Audi S5 Coupe 2012 4.53% Ferrari FF Coupe 2012 0.69% Dodge Challenger SRT8 2011 0.38% Chrysler 300 SRT-8 2010 0.22% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 61.94% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.85% HUMMER H2 SUT Crew Cab 2009 4.41% Jeep Wrangler SUV 2012 2.88% Chrysler 300 SRT-8 2010 1.69% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 57.77% Hyundai Tucson SUV 2012 12.7% Dodge Durango SUV 2007 9.21% Ford Freestar Minivan 2007 4.79% GMC Acadia SUV 2012 4.32% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 61.26% Dodge Sprinter Cargo Van 2009 9.26% Audi 100 Wagon 1994 7.33% Ford F-150 Regular Cab 2012 6.44% Dodge Caravan Minivan 1997 5.19% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Volvo 240 Sedan 1993 51.8% Dodge Caravan Minivan 1997 15.98% Dodge Sprinter Cargo Van 2009 12.46% Chevrolet Express Cargo Van 2007 7.31% Audi 100 Wagon 1994 5.17% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 30.11% Lamborghini Gallardo LP 570-4 Superleggera 2012 15.09% Buick Regal GS 2012 5.21% Volkswagen Golf Hatchback 2012 4.6% Mercedes-Benz Sprinter Van 2012 4.1% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 90.79% GMC Savana Van 2012 8.21% Chevrolet Silverado 2500HD Regular Cab 2012 0.33% Lincoln Town Car Sedan 2011 0.14% Chevrolet Impala Sedan 2007 0.12% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Camaro Convertible 2012 49.71% Chevrolet Impala Sedan 2007 13.18% Mitsubishi Lancer Sedan 2012 8.01% Lamborghini Reventon Coupe 2008 7.03% Acura Integra Type R 2001 5.54% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Acura Integra Type R 2001 20.32% BMW M6 Convertible 2010 13.34% Chevrolet Sonic Sedan 2012 10.59% Lamborghini Reventon Coupe 2008 10.57% Mercedes-Benz S-Class Sedan 2012 5.27% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Buick Enclave SUV 2012 57.67% Chevrolet Traverse SUV 2012 16.16% Lincoln Town Car Sedan 2011 8.66% Chrysler 300 SRT-8 2010 4.3% Honda Accord Sedan 2012 1.3% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Audi S4 Sedan 2012 95.91% Ford Focus Sedan 2007 0.55% Volkswagen Golf Hatchback 1991 0.41% Audi V8 Sedan 1994 0.4% Ford Ranger SuperCab 2011 0.27% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Volvo 240 Sedan 1993 50.86% Volkswagen Golf Hatchback 1991 19.14% Daewoo Nubira Wagon 2002 6.18% Hyundai Elantra Touring Hatchback 2012 4.55% Acura Integra Type R 2001 2.81% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Bentley Continental Flying Spur Sedan 2007 24.6% Volvo 240 Sedan 1993 14.47% Bentley Mulsanne Sedan 2011 11.68% Nissan NV Passenger Van 2012 8.93% Acura ZDX Hatchback 2012 4.86% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Chevrolet Malibu Sedan 2007 55.9% Lincoln Town Car Sedan 2011 35.79% Hyundai Tucson SUV 2012 3.49% Chevrolet Traverse SUV 2012 0.81% Ford Fiesta Sedan 2012 0.74% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 32.18% Bentley Mulsanne Sedan 2011 26.98% Suzuki Kizashi Sedan 2012 10.22% Bentley Continental Supersports Conv. Convertible 2012 8.77% Bugatti Veyron 16.4 Convertible 2009 8.57% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Chevrolet Corvette ZR1 2012 54.92% Nissan Leaf Hatchback 2012 25.42% Geo Metro Convertible 1993 9.86% Volvo C30 Hatchback 2012 1.13% Suzuki Aerio Sedan 2007 1.08% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 BMW M6 Convertible 2010 63.31% Audi S4 Sedan 2012 10.58% BMW M5 Sedan 2010 8.61% Audi S6 Sedan 2011 5.44% Audi RS 4 Convertible 2008 2.68% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Bugatti Veyron 16.4 Convertible 2009 78.05% Bentley Mulsanne Sedan 2011 2.67% BMW Z4 Convertible 2012 2.64% Audi S5 Convertible 2012 1.95% Audi V8 Sedan 1994 1.62% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 BMW 3 Series Wagon 2012 44.35% Suzuki SX4 Hatchback 2012 6.69% Chevrolet Malibu Sedan 2007 4.19% Dodge Journey SUV 2012 3.22% Chevrolet Impala Sedan 2007 3.14% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 BMW 6 Series Convertible 2007 26.4% Chevrolet Corvette ZR1 2012 16.81% Honda Accord Sedan 2012 9.28% Acura ZDX Hatchback 2012 7.93% Acura RL Sedan 2012 7.22% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Traverse SUV 2012 44.43% Chevrolet Camaro Convertible 2012 11.22% Chevrolet Express Cargo Van 2007 6.53% Hyundai Tucson SUV 2012 6.18% Lincoln Town Car Sedan 2011 4.41% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Scion xD Hatchback 2012 40.8% Honda Odyssey Minivan 2007 40.34% Chevrolet Impala Sedan 2007 9.63% Chrysler Sebring Convertible 2010 2.8% Dodge Caravan Minivan 1997 2.3% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Chevrolet HHR SS 2010 84.44% Aston Martin Virage Coupe 2012 14.83% BMW 1 Series Coupe 2012 0.2% Hyundai Veloster Hatchback 2012 0.14% Ferrari 458 Italia Convertible 2012 0.1% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Volvo 240 Sedan 1993 39.29% Ford F-150 Regular Cab 2012 16.81% BMW ActiveHybrid 5 Sedan 2012 12.51% Mercedes-Benz C-Class Sedan 2012 7.57% Isuzu Ascender SUV 2008 4.85% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 smart fortwo Convertible 2012 41.09% Plymouth Neon Coupe 1999 27.76% Mercedes-Benz 300-Class Convertible 1993 4.48% Bentley Continental Flying Spur Sedan 2007 3.11% Bentley Continental Supersports Conv. Convertible 2012 2.37% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Porsche Panamera Sedan 2012 33.06% Audi S5 Coupe 2012 12.95% Bugatti Veyron 16.4 Coupe 2009 11.21% Chrysler 300 SRT-8 2010 10.67% Chevrolet Camaro Convertible 2012 7.11% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.98% Dodge Ram Pickup 3500 Crew Cab 2010 0.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 BMW 3 Series Sedan 2012 97.21% Hyundai Sonata Sedan 2012 1.51% Chevrolet Sonic Sedan 2012 0.29% Chevrolet Camaro Convertible 2012 0.29% Jeep Compass SUV 2012 0.26% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 89.53% HUMMER H2 SUT Crew Cab 2009 5.85% Bentley Arnage Sedan 2009 1.3% GMC Yukon Hybrid SUV 2012 0.56% Dodge Ram Pickup 3500 Quad Cab 2009 0.42% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 34.43% Chevrolet Impala Sedan 2007 22.54% Volkswagen Golf Hatchback 2012 7.68% Buick Rainier SUV 2007 7.42% Ford Fiesta Sedan 2012 5.25% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 28.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 26.7% Audi V8 Sedan 1994 12.25% Geo Metro Convertible 1993 5.07% Chevrolet Cobalt SS 2010 3.98% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Audi RS 4 Convertible 2008 18.09% Audi A5 Coupe 2012 17.02% Cadillac CTS-V Sedan 2012 14.8% Audi TT Hatchback 2011 10.44% BMW M5 Sedan 2010 6.23% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Volvo 240 Sedan 1993 72.18% Ford F-150 Regular Cab 2007 14.94% Hyundai Elantra Touring Hatchback 2012 5.4% Buick Rainier SUV 2007 1.95% Dodge Ram Pickup 3500 Quad Cab 2009 1.02% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 94.76% Aston Martin V8 Vantage Convertible 2012 4.97% Jaguar XK XKR 2012 0.1% Infiniti G Coupe IPL 2012 0.06% Audi TT RS Coupe 2012 0.03% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Chevrolet Malibu Sedan 2007 28.19% Buick Rainier SUV 2007 23.41% Dodge Ram Pickup 3500 Quad Cab 2009 15.95% GMC Acadia SUV 2012 13.04% Dodge Durango SUV 2007 6.73% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Dodge Ram Pickup 3500 Quad Cab 2009 40.91% Chevrolet Silverado 2500HD Regular Cab 2012 12.17% GMC Acadia SUV 2012 9.1% Jeep Patriot SUV 2012 7.41% Acura TL Type-S 2008 6.52% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Volvo 240 Sedan 1993 30.69% Plymouth Neon Coupe 1999 14.07% Buick Enclave SUV 2012 6.49% Rolls-Royce Ghost Sedan 2012 5.56% Eagle Talon Hatchback 1998 4.81% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Audi S5 Coupe 2012 25.56% Ford GT Coupe 2006 15.67% BMW M3 Coupe 2012 5.78% Chevrolet Camaro Convertible 2012 5.11% Audi TTS Coupe 2012 4.44% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 BMW 1 Series Coupe 2012 59.69% Mercedes-Benz S-Class Sedan 2012 11.3% Mercedes-Benz E-Class Sedan 2012 8.0% Mercedes-Benz C-Class Sedan 2012 6.57% Audi A5 Coupe 2012 4.67% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Plymouth Neon Coupe 1999 24.65% Daewoo Nubira Wagon 2002 14.1% Audi V8 Sedan 1994 7.06% Volvo 240 Sedan 1993 6.2% Ford Ranger SuperCab 2011 3.34% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 BMW M6 Convertible 2010 87.19% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.55% Mercedes-Benz 300-Class Convertible 1993 2.43% Ford Mustang Convertible 2007 1.94% Spyker C8 Convertible 2009 1.25% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 92.47% Mercedes-Benz Sprinter Van 2012 6.17% Ford E-Series Wagon Van 2012 1.14% Nissan NV Passenger Van 2012 0.13% GMC Savana Van 2012 0.06% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 43.44% Bentley Continental GT Coupe 2012 8.06% Buick Regal GS 2012 5.61% Bentley Arnage Sedan 2009 4.72% Chrysler PT Cruiser Convertible 2008 4.49% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 99.96% Acura TSX Sedan 2012 0.04% Mercedes-Benz SL-Class Coupe 2009 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 GMC Acadia SUV 2012 55.94% Suzuki SX4 Hatchback 2012 29.13% Hyundai Santa Fe SUV 2012 2.81% Volkswagen Beetle Hatchback 2012 2.8% Volkswagen Golf Hatchback 2012 1.43% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Chevrolet Camaro Convertible 2012 26.02% BMW 6 Series Convertible 2007 7.85% Bentley Arnage Sedan 2009 4.01% McLaren MP4-12C Coupe 2012 3.9% Audi S6 Sedan 2011 3.7% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Audi RS 4 Convertible 2008 38.21% Bentley Arnage Sedan 2009 34.97% Ford Mustang Convertible 2007 5.04% Audi 100 Wagon 1994 4.77% Dodge Dakota Crew Cab 2010 4.1% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Lincoln Town Car Sedan 2011 16.21% Chevrolet Malibu Sedan 2007 15.17% Ford F-150 Regular Cab 2007 15.08% Hyundai Tucson SUV 2012 12.25% Chevrolet Impala Sedan 2007 9.92% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 50.79% Chevrolet Silverado 1500 Regular Cab 2012 19.94% Ford Ranger SuperCab 2011 19.55% GMC Acadia SUV 2012 4.26% Chevrolet Avalanche Crew Cab 2012 1.47% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 96.93% Buick Rainier SUV 2007 1.86% Acura ZDX Hatchback 2012 0.46% Acura RL Sedan 2012 0.29% GMC Yukon Hybrid SUV 2012 0.17% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Cadillac SRX SUV 2012 33.98% Honda Accord Sedan 2012 15.8% Hyundai Tucson SUV 2012 9.32% Chevrolet Malibu Hybrid Sedan 2010 7.13% Hyundai Santa Fe SUV 2012 4.78% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Spyker C8 Convertible 2009 29.78% Chevrolet Corvette ZR1 2012 12.28% Suzuki SX4 Hatchback 2012 10.49% BMW 3 Series Sedan 2012 7.65% Chrysler Sebring Convertible 2010 6.4% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Infiniti G Coupe IPL 2012 38.72% McLaren MP4-12C Coupe 2012 22.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.72% Lamborghini Reventon Coupe 2008 6.03% Aston Martin V8 Vantage Coupe 2012 5.02% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Santa Fe SUV 2012 36.1% Ford Ranger SuperCab 2011 6.54% BMW X6 SUV 2012 4.77% GMC Acadia SUV 2012 4.74% Dodge Caliber Wagon 2012 3.94% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Mercedes-Benz C-Class Sedan 2012 28.37% Buick Rainier SUV 2007 21.9% Volkswagen Golf Hatchback 2012 11.34% Mazda Tribute SUV 2011 8.0% Chevrolet Monte Carlo Coupe 2007 6.81% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 67.6% Chevrolet Silverado 2500HD Regular Cab 2012 13.46% Ford F-150 Regular Cab 2007 6.5% Dodge Ram Pickup 3500 Quad Cab 2009 3.59% Ford F-150 Regular Cab 2012 3.41% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Honda Odyssey Minivan 2007 94.17% Suzuki Aerio Sedan 2007 2.14% Chrysler Town and Country Minivan 2012 1.12% Honda Odyssey Minivan 2012 0.7% Hyundai Elantra Touring Hatchback 2012 0.48% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz S-Class Sedan 2012 16.34% Mercedes-Benz E-Class Sedan 2012 15.27% Chrysler PT Cruiser Convertible 2008 10.71% Maybach Landaulet Convertible 2012 8.82% Audi S5 Coupe 2012 7.96% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Acura Integra Type R 2001 24.08% Mercedes-Benz S-Class Sedan 2012 18.28% BMW Z4 Convertible 2012 8.85% Hyundai Elantra Sedan 2007 4.62% BMW 6 Series Convertible 2007 4.12% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Lincoln Town Car Sedan 2011 35.93% Lamborghini Reventon Coupe 2008 19.66% Buick Enclave SUV 2012 15.41% Chrysler 300 SRT-8 2010 13.69% Chevrolet Traverse SUV 2012 3.5% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 36.75% Aston Martin V8 Vantage Convertible 2012 11.37% Cadillac CTS-V Sedan 2012 10.03% Cadillac Escalade EXT Crew Cab 2007 8.37% BMW 3 Series Wagon 2012 5.65% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Mitsubishi Lancer Sedan 2012 23.4% Toyota Camry Sedan 2012 16.36% Suzuki SX4 Sedan 2012 6.39% Aston Martin Virage Coupe 2012 6.07% FIAT 500 Abarth 2012 4.61% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 98.48% Hyundai Sonata Hybrid Sedan 2012 0.51% BMW M6 Convertible 2010 0.44% Ferrari FF Coupe 2012 0.34% Ferrari 458 Italia Coupe 2012 0.06% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Regular Cab 2012 26.62% Chevrolet Silverado 1500 Extended Cab 2012 10.41% Audi 100 Sedan 1994 8.44% Honda Accord Sedan 2012 8.04% Volkswagen Golf Hatchback 1991 7.69% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 BMW M6 Convertible 2010 50.85% Spyker C8 Convertible 2009 47.37% BMW 6 Series Convertible 2007 0.66% BMW 1 Series Convertible 2012 0.22% Audi TTS Coupe 2012 0.21% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Volkswagen Golf Hatchback 1991 30.56% Audi 100 Wagon 1994 19.63% Audi R8 Coupe 2012 12.26% Dodge Dakota Crew Cab 2010 8.82% Porsche Panamera Sedan 2012 4.98% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 78.82% Hyundai Tucson SUV 2012 18.0% BMW X3 SUV 2012 1.14% Dodge Caliber Wagon 2012 0.63% Hyundai Veracruz SUV 2012 0.3% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 83.29% BMW 1 Series Convertible 2012 7.55% Audi TT RS Coupe 2012 2.03% Ford Mustang Convertible 2007 0.98% Dodge Charger Sedan 2012 0.92% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Hyundai Sonata Hybrid Sedan 2012 80.02% Honda Accord Coupe 2012 3.37% Hyundai Sonata Sedan 2012 2.97% Hyundai Tucson SUV 2012 2.29% Mitsubishi Lancer Sedan 2012 1.87% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 51.81% Audi R8 Coupe 2012 15.57% Infiniti G Coupe IPL 2012 13.4% Buick Verano Sedan 2012 4.68% Aston Martin Virage Convertible 2012 3.35% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Maybach Landaulet Convertible 2012 31.17% Bugatti Veyron 16.4 Convertible 2009 16.34% BMW M5 Sedan 2010 11.65% Ferrari FF Coupe 2012 8.26% BMW 6 Series Convertible 2007 8.15% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Geo Metro Convertible 1993 62.0% Ford Ranger SuperCab 2011 33.75% Chevrolet Express Cargo Van 2007 1.59% Volvo 240 Sedan 1993 0.64% GMC Savana Van 2012 0.43% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 45.08% Chevrolet Camaro Convertible 2012 42.34% Lamborghini Aventador Coupe 2012 3.74% BMW M6 Convertible 2010 1.53% Aston Martin V8 Vantage Coupe 2012 1.43% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 92.21% Volkswagen Beetle Hatchback 2012 3.32% Tesla Model S Sedan 2012 2.07% Eagle Talon Hatchback 1998 1.12% Audi TTS Coupe 2012 0.16% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Rolls-Royce Ghost Sedan 2012 36.07% Chrysler 300 SRT-8 2010 26.34% Audi S6 Sedan 2011 8.82% BMW 6 Series Convertible 2007 4.63% Jeep Grand Cherokee SUV 2012 3.49% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 99.98% Mercedes-Benz S-Class Sedan 2012 0.01% Audi 100 Sedan 1994 0.01% Audi S5 Coupe 2012 0.0% Ford Mustang Convertible 2007 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Geo Metro Convertible 1993 58.31% Ferrari California Convertible 2012 18.59% Mercedes-Benz 300-Class Convertible 1993 4.6% BMW Z4 Convertible 2012 2.88% Volkswagen Beetle Hatchback 2012 2.88% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Acura RL Sedan 2012 20.36% Jaguar XK XKR 2012 17.67% Suzuki Aerio Sedan 2007 14.4% Audi TT RS Coupe 2012 7.9% Lincoln Town Car Sedan 2011 4.96% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Volvo 240 Sedan 1993 30.99% Suzuki Kizashi Sedan 2012 15.46% Audi 100 Sedan 1994 9.06% Nissan 240SX Coupe 1998 7.08% Audi TTS Coupe 2012 3.4% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Cadillac CTS-V Sedan 2012 27.04% BMW M5 Sedan 2010 14.16% Lamborghini Reventon Coupe 2008 12.0% Jaguar XK XKR 2012 10.3% Audi S4 Sedan 2012 8.26% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet TrailBlazer SS 2009 46.89% Hyundai Veracruz SUV 2012 29.01% Volvo 240 Sedan 1993 8.98% GMC Canyon Extended Cab 2012 4.09% GMC Acadia SUV 2012 3.1% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 23.11% Plymouth Neon Coupe 1999 16.87% Eagle Talon Hatchback 1998 9.95% Chevrolet Monte Carlo Coupe 2007 8.17% Hyundai Elantra Sedan 2007 4.34% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 78.49% GMC Savana Van 2012 19.85% Nissan NV Passenger Van 2012 1.06% Ford F-150 Regular Cab 2012 0.18% Chevrolet Express Van 2007 0.18% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 47.28% GMC Savana Van 2012 22.62% Chevrolet Silverado 1500 Extended Cab 2012 11.5% Ford F-150 Regular Cab 2007 8.48% Dodge Journey SUV 2012 1.41% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Lamborghini Reventon Coupe 2008 27.42% Lamborghini Aventador Coupe 2012 7.12% Aston Martin V8 Vantage Convertible 2012 5.98% Nissan Juke Hatchback 2012 4.63% Chevrolet Silverado 2500HD Regular Cab 2012 4.25% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Plymouth Neon Coupe 1999 54.85% Dodge Journey SUV 2012 25.9% BMW M6 Convertible 2010 9.85% Daewoo Nubira Wagon 2002 1.67% Volkswagen Golf Hatchback 2012 1.4% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Mercedes-Benz S-Class Sedan 2012 32.14% Acura RL Sedan 2012 6.48% Chevrolet Corvette ZR1 2012 6.45% BMW X3 SUV 2012 5.73% Ford GT Coupe 2006 4.86% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 78.56% HUMMER H2 SUT Crew Cab 2009 15.18% Jeep Wrangler SUV 2012 3.85% Aston Martin Virage Coupe 2012 1.43% Dodge Challenger SRT8 2011 0.44% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Eagle Talon Hatchback 1998 44.89% Chevrolet Camaro Convertible 2012 9.15% Chevrolet Impala Sedan 2007 7.55% Chevrolet TrailBlazer SS 2009 3.39% Lincoln Town Car Sedan 2011 2.93% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Acura Integra Type R 2001 58.59% Rolls-Royce Phantom Drophead Coupe Convertible 2012 35.04% Chevrolet Impala Sedan 2007 1.38% Maybach Landaulet Convertible 2012 0.79% Dodge Charger SRT-8 2009 0.66% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 84.11% HUMMER H2 SUT Crew Cab 2009 9.86% Jeep Grand Cherokee SUV 2012 2.87% Jeep Patriot SUV 2012 1.27% AM General Hummer SUV 2000 0.89% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Dodge Caravan Minivan 1997 12.9% Cadillac Escalade EXT Crew Cab 2007 8.95% Dodge Journey SUV 2012 7.51% Dodge Sprinter Cargo Van 2009 6.42% Isuzu Ascender SUV 2008 6.36% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.99% Chevrolet Express Van 2007 0.0% GMC Savana Van 2012 0.0% Volvo 240 Sedan 1993 0.0% Daewoo Nubira Wagon 2002 0.0% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 McLaren MP4-12C Coupe 2012 75.78% Acura Integra Type R 2001 10.48% Lamborghini Diablo Coupe 2001 7.39% Chevrolet Corvette ZR1 2012 1.66% Ferrari 458 Italia Convertible 2012 0.98% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Dodge Charger SRT-8 2009 13.59% Spyker C8 Coupe 2009 12.37% Dodge Magnum Wagon 2008 10.23% Dodge Durango SUV 2012 9.99% BMW 1 Series Convertible 2012 7.66% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Mercedes-Benz E-Class Sedan 2012 24.22% Acura Integra Type R 2001 10.61% Audi S5 Coupe 2012 9.76% Mazda Tribute SUV 2011 7.11% Mercedes-Benz S-Class Sedan 2012 6.73% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Ford F-150 Regular Cab 2007 48.87% Chevrolet Traverse SUV 2012 6.43% BMW X6 SUV 2012 6.08% Suzuki SX4 Hatchback 2012 5.29% Ford Ranger SuperCab 2011 3.84% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 55.07% Acura TSX Sedan 2012 15.92% Nissan 240SX Coupe 1998 9.05% Acura RL Sedan 2012 6.3% Lincoln Town Car Sedan 2011 2.88% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Jeep Grand Cherokee SUV 2012 81.6% Buick Enclave SUV 2012 12.67% Jeep Wrangler SUV 2012 1.58% Nissan Leaf Hatchback 2012 0.86% Dodge Durango SUV 2007 0.78% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 BMW 6 Series Convertible 2007 29.71% Infiniti G Coupe IPL 2012 11.59% Aston Martin Virage Convertible 2012 6.21% Spyker C8 Convertible 2009 4.24% Audi TT RS Coupe 2012 3.77% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Audi TT RS Coupe 2012 37.61% BMW 1 Series Coupe 2012 25.68% Ferrari California Convertible 2012 11.92% Chevrolet Corvette Convertible 2012 5.06% Ferrari 458 Italia Coupe 2012 4.14% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 26.59% Acura TL Sedan 2012 19.05% Chrysler Sebring Convertible 2010 13.52% Chevrolet Impala Sedan 2007 12.96% Acura ZDX Hatchback 2012 12.85% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 96.35% Lamborghini Diablo Coupe 2001 2.52% Chevrolet Corvette Convertible 2012 0.43% Geo Metro Convertible 1993 0.39% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.12% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Lincoln Town Car Sedan 2011 77.19% Honda Accord Sedan 2012 8.55% Chrysler Aspen SUV 2009 2.71% Chevrolet Impala Sedan 2007 2.64% BMW M6 Convertible 2010 2.23% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 95.93% GMC Savana Van 2012 3.85% Chevrolet Express Cargo Van 2007 0.21% Chevrolet Tahoe Hybrid SUV 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Ford Freestar Minivan 2007 38.08% Dodge Caliber Wagon 2007 7.46% Dodge Dakota Crew Cab 2010 5.67% Buick Rainier SUV 2007 5.26% Chrysler Town and Country Minivan 2012 4.39% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 99.3% Audi S5 Convertible 2012 0.42% Infiniti G Coupe IPL 2012 0.11% Acura TL Type-S 2008 0.09% Mercedes-Benz 300-Class Convertible 1993 0.02% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TL Type-S 2008 8.79% Chrysler PT Cruiser Convertible 2008 6.2% Fisker Karma Sedan 2012 5.35% Ford Focus Sedan 2007 4.81% Bentley Continental GT Coupe 2007 4.68% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 15.14% BMW 6 Series Convertible 2007 13.79% Aston Martin Virage Coupe 2012 4.9% smart fortwo Convertible 2012 4.12% Dodge Charger Sedan 2012 3.83% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 58.12% Acura Integra Type R 2001 26.58% Geo Metro Convertible 1993 4.34% Chevrolet Camaro Convertible 2012 3.79% Dodge Charger Sedan 2012 3.04% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Bentley Continental Supersports Conv. Convertible 2012 16.31% Dodge Challenger SRT8 2011 13.76% Bentley Mulsanne Sedan 2011 13.51% Cadillac SRX SUV 2012 8.29% Jeep Liberty SUV 2012 6.57% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 BMW 3 Series Sedan 2012 63.24% BMW Z4 Convertible 2012 20.75% Suzuki Kizashi Sedan 2012 6.87% Audi TT RS Coupe 2012 5.15% Audi TT Hatchback 2011 1.28% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Audi RS 4 Convertible 2008 45.76% Geo Metro Convertible 1993 17.78% Chrysler Crossfire Convertible 2008 16.73% Mercedes-Benz 300-Class Convertible 1993 5.68% Chrysler PT Cruiser Convertible 2008 3.83% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Aston Martin V8 Vantage Coupe 2012 45.56% Bentley Mulsanne Sedan 2011 14.7% Aston Martin V8 Vantage Convertible 2012 4.38% Jaguar XK XKR 2012 2.96% Bugatti Veyron 16.4 Coupe 2009 2.13% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Nissan Leaf Hatchback 2012 24.81% Chevrolet Malibu Sedan 2007 22.87% Dodge Charger SRT-8 2009 8.11% Ford F-150 Regular Cab 2012 5.91% BMW ActiveHybrid 5 Sedan 2012 5.23% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 81.7% Ferrari 458 Italia Convertible 2012 2.95% Lamborghini Aventador Coupe 2012 2.65% Ferrari FF Coupe 2012 2.41% Jaguar XK XKR 2012 1.71% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 43.11% Dodge Challenger SRT8 2011 24.91% Volkswagen Golf Hatchback 1991 21.06% Geo Metro Convertible 1993 2.82% Daewoo Nubira Wagon 2002 1.51% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Isuzu Ascender SUV 2008 22.75% Ford F-150 Regular Cab 2012 17.6% Ford F-450 Super Duty Crew Cab 2012 14.98% Dodge Dakota Crew Cab 2010 14.14% HUMMER H3T Crew Cab 2010 9.89% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 Ford F-150 Regular Cab 2007 79.28% Chevrolet Silverado 1500 Regular Cab 2012 5.9% Chevrolet Traverse SUV 2012 5.24% Audi 100 Wagon 1994 2.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.94% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Mazda Tribute SUV 2011 50.19% Dodge Durango SUV 2007 14.25% GMC Terrain SUV 2012 4.81% Jeep Patriot SUV 2012 4.36% Rolls-Royce Phantom Sedan 2012 3.41% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 36.31% Hyundai Elantra Touring Hatchback 2012 17.14% Acura Integra Type R 2001 13.25% Bugatti Veyron 16.4 Convertible 2009 10.37% BMW M5 Sedan 2010 7.03% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 BMW X6 SUV 2012 49.14% HUMMER H2 SUT Crew Cab 2009 11.08% Mercedes-Benz E-Class Sedan 2012 5.78% Suzuki SX4 Sedan 2012 4.57% Nissan Juke Hatchback 2012 2.57% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Camaro Convertible 2012 37.53% Chevrolet Corvette Ron Fellows Edition Z06 2007 19.82% McLaren MP4-12C Coupe 2012 9.6% Acura Integra Type R 2001 8.5% Jaguar XK XKR 2012 5.12% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Malibu Sedan 2007 30.28% Chevrolet Corvette ZR1 2012 16.24% Hyundai Veloster Hatchback 2012 10.41% BMW 1 Series Convertible 2012 6.15% Audi RS 4 Convertible 2008 6.07% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 70.82% Jeep Patriot SUV 2012 29.08% Jeep Wrangler SUV 2012 0.07% HUMMER H2 SUT Crew Cab 2009 0.01% Jeep Liberty SUV 2012 0.01% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Journey SUV 2012 49.33% Chevrolet HHR SS 2010 30.23% Dodge Charger Sedan 2012 8.49% Dodge Charger SRT-8 2009 1.61% Audi TT RS Coupe 2012 1.48% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 GMC Canyon Extended Cab 2012 27.91% Dodge Ram Pickup 3500 Quad Cab 2009 14.72% Dodge Durango SUV 2007 6.64% BMW X5 SUV 2007 6.52% Chevrolet TrailBlazer SS 2009 4.33% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Mercedes-Benz S-Class Sedan 2012 40.34% Suzuki Aerio Sedan 2007 13.67% Mercedes-Benz E-Class Sedan 2012 9.56% Acura Integra Type R 2001 9.51% BMW M5 Sedan 2010 6.65% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 59.45% Daewoo Nubira Wagon 2002 26.99% Nissan Leaf Hatchback 2012 6.56% Ford Focus Sedan 2007 2.85% Lincoln Town Car Sedan 2011 0.98% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Lamborghini Reventon Coupe 2008 17.53% Porsche Panamera Sedan 2012 14.17% Cadillac CTS-V Sedan 2012 12.82% Mercedes-Benz SL-Class Coupe 2009 10.8% Aston Martin Virage Convertible 2012 7.34% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Maybach Landaulet Convertible 2012 10.96% Audi 100 Sedan 1994 9.62% BMW M5 Sedan 2010 8.77% Acura RL Sedan 2012 8.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 8.15% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 93.14% Mercedes-Benz E-Class Sedan 2012 5.5% BMW M5 Sedan 2010 0.86% Hyundai Genesis Sedan 2012 0.21% Mercedes-Benz SL-Class Coupe 2009 0.06% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Porsche Panamera Sedan 2012 62.74% BMW 6 Series Convertible 2007 17.02% Infiniti G Coupe IPL 2012 6.55% GMC Acadia SUV 2012 3.25% BMW M6 Convertible 2010 2.43% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Chevrolet Malibu Sedan 2007 70.89% Chevrolet Corvette Convertible 2012 5.06% Chrysler Sebring Convertible 2010 2.61% Ford Focus Sedan 2007 2.42% Chevrolet Impala Sedan 2007 2.3% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Audi S5 Coupe 2012 91.49% Audi 100 Sedan 1994 1.27% Ford Freestar Minivan 2007 0.89% BMW 6 Series Convertible 2007 0.45% Rolls-Royce Phantom Sedan 2012 0.37% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Toyota Corolla Sedan 2012 35.69% Scion xD Hatchback 2012 14.2% Chevrolet Traverse SUV 2012 10.95% Hyundai Sonata Sedan 2012 9.03% Acura Integra Type R 2001 5.22% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chevrolet TrailBlazer SS 2009 17.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 17.32% Audi A5 Coupe 2012 16.26% Chrysler Crossfire Convertible 2008 4.6% Jeep Compass SUV 2012 4.27% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Aston Martin Virage Convertible 2012 27.16% Mercedes-Benz SL-Class Coupe 2009 22.74% Jaguar XK XKR 2012 15.06% Toyota Corolla Sedan 2012 4.03% Aston Martin V8 Vantage Convertible 2012 3.41% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 41.86% Buick Verano Sedan 2012 6.0% Suzuki SX4 Hatchback 2012 2.48% Jeep Liberty SUV 2012 2.22% Audi S4 Sedan 2007 2.17% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Convertible 2012 60.27% Acura Integra Type R 2001 11.12% McLaren MP4-12C Coupe 2012 4.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.56% Spyker C8 Convertible 2009 3.44% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 98.29% Ford Expedition EL SUV 2009 1.23% Dodge Ram Pickup 3500 Quad Cab 2009 0.43% Ford F-150 Regular Cab 2012 0.02% Jeep Liberty SUV 2012 0.01% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.18% Chevrolet Express Cargo Van 2007 0.72% Chevrolet Express Van 2007 0.09% Jeep Liberty SUV 2012 0.0% Mercedes-Benz Sprinter Van 2012 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Land Rover LR2 SUV 2012 77.7% Ford Expedition EL SUV 2009 7.89% Chevrolet Silverado 1500 Regular Cab 2012 6.38% Hyundai Santa Fe SUV 2012 2.32% Land Rover Range Rover SUV 2012 1.0% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Cadillac Escalade EXT Crew Cab 2007 83.43% BMW X6 SUV 2012 7.3% Nissan Juke Hatchback 2012 5.08% Chevrolet Traverse SUV 2012 1.5% GMC Acadia SUV 2012 0.94% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Audi S6 Sedan 2011 12.62% BMW 3 Series Sedan 2012 7.59% Audi S4 Sedan 2007 4.98% Chrysler 300 SRT-8 2010 4.41% Volkswagen Golf Hatchback 1991 3.83% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Cadillac CTS-V Sedan 2012 38.2% GMC Acadia SUV 2012 17.73% Cadillac Escalade EXT Crew Cab 2007 10.67% Dodge Challenger SRT8 2011 5.34% GMC Yukon Hybrid SUV 2012 4.31% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Hyundai Elantra Touring Hatchback 2012 31.85% Chevrolet Traverse SUV 2012 7.55% Bugatti Veyron 16.4 Convertible 2009 6.76% Suzuki Kizashi Sedan 2012 6.29% Hyundai Azera Sedan 2012 2.99% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 80.03% Audi 100 Sedan 1994 10.18% Volvo 240 Sedan 1993 3.76% Audi 100 Wagon 1994 0.77% Chrysler Town and Country Minivan 2012 0.67% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 40.18% Chevrolet Corvette ZR1 2012 7.87% Volkswagen Golf Hatchback 1991 6.49% Cadillac CTS-V Sedan 2012 6.12% Infiniti G Coupe IPL 2012 5.85% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 57.54% Cadillac CTS-V Sedan 2012 17.18% Chevrolet Corvette Convertible 2012 5.19% BMW 1 Series Convertible 2012 4.86% Mercedes-Benz S-Class Sedan 2012 4.49% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 93.7% Acura Integra Type R 2001 4.95% Geo Metro Convertible 1993 0.6% AM General Hummer SUV 2000 0.47% Hyundai Veloster Hatchback 2012 0.1% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Chrysler PT Cruiser Convertible 2008 71.22% Acura Integra Type R 2001 9.82% Hyundai Elantra Sedan 2007 3.11% Lamborghini Diablo Coupe 2001 1.63% Aston Martin Virage Coupe 2012 1.5% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 30.92% Chrysler Aspen SUV 2009 13.15% Dodge Durango SUV 2007 10.44% Nissan NV Passenger Van 2012 6.69% GMC Yukon Hybrid SUV 2012 5.33% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 55.52% Audi S4 Sedan 2007 35.48% BMW 3 Series Wagon 2012 7.11% BMW M3 Coupe 2012 0.65% Audi S6 Sedan 2011 0.33% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Volvo XC90 SUV 2007 23.54% Hyundai Veracruz SUV 2012 23.52% Land Rover LR2 SUV 2012 11.03% Jeep Liberty SUV 2012 3.45% Ford Edge SUV 2012 3.37% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Suzuki SX4 Sedan 2012 48.39% Buick Verano Sedan 2012 22.31% Suzuki SX4 Hatchback 2012 4.82% Ford Focus Sedan 2007 3.74% Hyundai Elantra Sedan 2007 3.71% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 26.63% Chrysler 300 SRT-8 2010 14.06% Dodge Ram Pickup 3500 Quad Cab 2009 11.56% Ford F-150 Regular Cab 2007 10.19% Dodge Dakota Club Cab 2007 9.46% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Hyundai Elantra Sedan 2007 23.4% Volvo 240 Sedan 1993 17.69% Ford Ranger SuperCab 2011 12.56% BMW X6 SUV 2012 9.53% BMW 3 Series Sedan 2012 6.55% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 85.51% HUMMER H2 SUT Crew Cab 2009 12.61% AM General Hummer SUV 2000 1.78% Chevrolet Silverado 1500 Regular Cab 2012 0.09% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Audi S5 Coupe 2012 31.57% Fisker Karma Sedan 2012 16.15% Buick Verano Sedan 2012 5.51% Hyundai Veracruz SUV 2012 5.29% Bentley Continental GT Coupe 2012 5.26% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 92.5% Audi S5 Convertible 2012 6.32% Acura TL Type-S 2008 0.49% Infiniti G Coupe IPL 2012 0.44% Mercedes-Benz 300-Class Convertible 1993 0.09% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Mitsubishi Lancer Sedan 2012 38.42% BMW M6 Convertible 2010 17.13% BMW M5 Sedan 2010 11.21% Volkswagen Golf Hatchback 1991 8.68% Mercedes-Benz 300-Class Convertible 1993 4.2% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Daewoo Nubira Wagon 2002 34.55% Chrysler Town and Country Minivan 2012 29.83% Ford Focus Sedan 2007 7.57% Chrysler PT Cruiser Convertible 2008 5.37% Acura TL Sedan 2012 4.74% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 83.72% Lamborghini Diablo Coupe 2001 11.03% Chevrolet Corvette Convertible 2012 0.86% Acura Integra Type R 2001 0.69% Aston Martin Virage Coupe 2012 0.66% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Aston Martin V8 Vantage Coupe 2012 93.98% Lamborghini Reventon Coupe 2008 1.8% Jaguar XK XKR 2012 1.73% Aston Martin V8 Vantage Convertible 2012 1.62% Audi TT RS Coupe 2012 0.57% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Hyundai Veracruz SUV 2012 44.64% Hyundai Veloster Hatchback 2012 14.11% Bugatti Veyron 16.4 Coupe 2009 4.86% Nissan Leaf Hatchback 2012 4.55% Mercedes-Benz SL-Class Coupe 2009 3.68% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 BMW 3 Series Sedan 2012 19.0% Ferrari 458 Italia Coupe 2012 14.19% Chevrolet Corvette ZR1 2012 9.13% Spyker C8 Coupe 2009 8.03% Chevrolet Cobalt SS 2010 6.04% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 36.36% Honda Accord Sedan 2012 13.61% Honda Odyssey Minivan 2012 7.95% Toyota 4Runner SUV 2012 6.03% Dodge Charger SRT-8 2009 5.61% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Honda Accord Sedan 2012 31.77% Volvo XC90 SUV 2007 8.02% BMW 3 Series Wagon 2012 7.38% GMC Acadia SUV 2012 7.2% Audi RS 4 Convertible 2008 3.3% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.95% Jeep Patriot SUV 2012 0.04% HUMMER H2 SUT Crew Cab 2009 0.01% Jeep Wrangler SUV 2012 0.0% Ford GT Coupe 2006 0.0% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Lincoln Town Car Sedan 2011 14.27% Acura Integra Type R 2001 8.03% Daewoo Nubira Wagon 2002 7.6% Volvo 240 Sedan 1993 5.67% Buick Verano Sedan 2012 4.53% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 99.18% BMW Z4 Convertible 2012 0.5% BMW 1 Series Convertible 2012 0.08% Cadillac CTS-V Sedan 2012 0.07% Dodge Charger Sedan 2012 0.04% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Porsche Panamera Sedan 2012 46.78% Chevrolet Corvette ZR1 2012 35.02% Buick Verano Sedan 2012 4.02% Jaguar XK XKR 2012 3.75% Audi S4 Sedan 2012 3.53% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 73.05% Mercedes-Benz C-Class Sedan 2012 25.97% Fisker Karma Sedan 2012 0.57% Audi 100 Wagon 1994 0.24% Mercedes-Benz S-Class Sedan 2012 0.07% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 99.71% Toyota Corolla Sedan 2012 0.1% Infiniti G Coupe IPL 2012 0.09% Dodge Durango SUV 2012 0.06% Hyundai Elantra Sedan 2007 0.01% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Tesla Model S Sedan 2012 39.1% Spyker C8 Coupe 2009 12.41% Chevrolet Corvette ZR1 2012 10.75% Spyker C8 Convertible 2009 9.25% Suzuki Kizashi Sedan 2012 7.0% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Acura TL Sedan 2012 42.82% Bugatti Veyron 16.4 Convertible 2009 36.64% Nissan Leaf Hatchback 2012 10.96% Nissan 240SX Coupe 1998 2.17% Eagle Talon Hatchback 1998 1.84% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Honda Accord Coupe 2012 60.09% Eagle Talon Hatchback 1998 18.27% Plymouth Neon Coupe 1999 10.12% BMW 3 Series Sedan 2012 2.08% Chrysler Crossfire Convertible 2008 1.9% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 Ford F-150 Regular Cab 2007 67.18% Lamborghini Diablo Coupe 2001 20.85% Aston Martin Virage Coupe 2012 8.58% Audi S4 Sedan 2012 0.62% Ford Freestar Minivan 2007 0.6% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.86% Bentley Continental Supersports Conv. Convertible 2012 0.07% Hyundai Veloster Hatchback 2012 0.01% Porsche Panamera Sedan 2012 0.01% Lamborghini Reventon Coupe 2008 0.01% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 96.7% Chevrolet Silverado 2500HD Regular Cab 2012 1.83% Hyundai Veracruz SUV 2012 1.1% Buick Verano Sedan 2012 0.28% Hyundai Elantra Sedan 2007 0.02% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2007 60.75% Ford Ranger SuperCab 2011 24.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.72% Audi 100 Sedan 1994 1.85% Ford F-150 Regular Cab 2012 1.62% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Hyundai Veracruz SUV 2012 24.21% Rolls-Royce Ghost Sedan 2012 12.19% Dodge Durango SUV 2007 7.34% Chevrolet Corvette ZR1 2012 7.11% Jeep Patriot SUV 2012 6.28% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Ford Ranger SuperCab 2011 43.56% Mazda Tribute SUV 2011 11.22% HUMMER H2 SUT Crew Cab 2009 10.93% Dodge Ram Pickup 3500 Quad Cab 2009 5.57% Chevrolet Silverado 1500 Regular Cab 2012 3.62% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Dodge Durango SUV 2007 53.08% Dodge Ram Pickup 3500 Quad Cab 2009 4.79% Toyota Sequoia SUV 2012 4.57% Nissan NV Passenger Van 2012 1.97% Mazda Tribute SUV 2011 1.95% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Dodge Caliber Wagon 2012 75.95% Lincoln Town Car Sedan 2011 10.72% Chevrolet Malibu Sedan 2007 2.34% Dodge Caliber Wagon 2007 1.15% Ram C/V Cargo Van Minivan 2012 1.11% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 BMW 3 Series Wagon 2012 76.32% Bentley Arnage Sedan 2009 4.11% BMW M5 Sedan 2010 3.59% Cadillac CTS-V Sedan 2012 3.57% Bentley Mulsanne Sedan 2011 2.47% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 25.63% Chrysler Town and Country Minivan 2012 24.94% Chrysler Aspen SUV 2009 12.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.62% Hyundai Genesis Sedan 2012 3.19% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 51.99% Dodge Caravan Minivan 1997 10.25% Acura RL Sedan 2012 3.38% Eagle Talon Hatchback 1998 3.04% Audi V8 Sedan 1994 2.8% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 BMW M6 Convertible 2010 73.0% Hyundai Azera Sedan 2012 11.3% HUMMER H3T Crew Cab 2010 3.36% Land Rover LR2 SUV 2012 2.37% Dodge Durango SUV 2007 2.07% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Scion xD Hatchback 2012 35.94% Ferrari California Convertible 2012 20.22% Spyker C8 Coupe 2009 6.48% Eagle Talon Hatchback 1998 5.12% Aston Martin Virage Coupe 2012 4.36% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 44.71% Hyundai Genesis Sedan 2012 14.18% Buick Regal GS 2012 5.21% BMW 6 Series Convertible 2007 4.22% Dodge Challenger SRT8 2011 3.62% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Tesla Model S Sedan 2012 38.13% Buick Rainier SUV 2007 10.49% McLaren MP4-12C Coupe 2012 7.1% Eagle Talon Hatchback 1998 4.83% Mitsubishi Lancer Sedan 2012 4.63% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Chrysler Town and Country Minivan 2012 42.24% Ram C/V Cargo Van Minivan 2012 27.96% Dodge Caravan Minivan 1997 26.99% Ford Freestar Minivan 2007 2.0% Honda Odyssey Minivan 2007 0.39% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Toyota Corolla Sedan 2012 31.38% Hyundai Tucson SUV 2012 23.13% Infiniti G Coupe IPL 2012 9.11% Audi TTS Coupe 2012 6.63% Honda Accord Coupe 2012 4.49% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Sedan 2007 31.19% Ford Fiesta Sedan 2012 28.06% Hyundai Elantra Touring Hatchback 2012 4.67% Chevrolet HHR SS 2010 4.63% Volkswagen Golf Hatchback 2012 3.83% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Hyundai Accent Sedan 2012 18.08% Volkswagen Golf Hatchback 2012 16.14% Hyundai Sonata Sedan 2012 12.82% Hyundai Elantra Touring Hatchback 2012 8.55% Acura TSX Sedan 2012 8.23% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Plymouth Neon Coupe 1999 32.91% Dodge Charger Sedan 2012 21.27% Volkswagen Golf Hatchback 2012 10.32% Ford Ranger SuperCab 2011 7.38% Volvo 240 Sedan 1993 4.61% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Geo Metro Convertible 1993 99.18% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.73% Lamborghini Diablo Coupe 2001 0.04% Audi 100 Sedan 1994 0.01% Acura Integra Type R 2001 0.01% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Chevrolet TrailBlazer SS 2009 96.95% Toyota 4Runner SUV 2012 1.52% Dodge Durango SUV 2012 0.32% Buick Rainier SUV 2007 0.28% Cadillac CTS-V Sedan 2012 0.18% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 94.28% Spyker C8 Convertible 2009 2.95% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.23% Aston Martin Virage Coupe 2012 0.7% BMW M3 Coupe 2012 0.25% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Mazda Tribute SUV 2011 47.28% Hyundai Veloster Hatchback 2012 15.27% smart fortwo Convertible 2012 14.37% Dodge Challenger SRT8 2011 12.0% Daewoo Nubira Wagon 2002 7.06% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 McLaren MP4-12C Coupe 2012 26.59% Volvo C30 Hatchback 2012 12.3% Ram C/V Cargo Van Minivan 2012 7.44% Chevrolet Corvette ZR1 2012 6.19% Volkswagen Beetle Hatchback 2012 6.1% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Suzuki Kizashi Sedan 2012 14.28% Tesla Model S Sedan 2012 13.16% Bentley Continental GT Coupe 2012 9.17% Ford Mustang Convertible 2007 6.67% Volkswagen Golf Hatchback 2012 4.71% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 28.14% BMW 6 Series Convertible 2007 11.24% BMW 1 Series Convertible 2012 11.14% BMW 3 Series Wagon 2012 11.04% Jaguar XK XKR 2012 6.38% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 99.62% Ferrari California Convertible 2012 0.35% Audi S5 Convertible 2012 0.02% Chevrolet Corvette Convertible 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 HUMMER H3T Crew Cab 2010 26.24% McLaren MP4-12C Coupe 2012 25.6% Mercedes-Benz SL-Class Coupe 2009 16.14% Audi S5 Convertible 2012 8.14% Hyundai Veloster Hatchback 2012 6.07% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Toyota Camry Sedan 2012 63.18% BMW 3 Series Sedan 2012 4.79% Dodge Caliber Wagon 2007 4.74% BMW Z4 Convertible 2012 2.98% Mercedes-Benz E-Class Sedan 2012 2.43% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 81.4% Ferrari California Convertible 2012 4.23% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.07% Fisker Karma Sedan 2012 2.98% Bentley Continental GT Coupe 2007 1.6% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 99.58% Eagle Talon Hatchback 1998 0.4% Ford Focus Sedan 2007 0.01% Hyundai Elantra Touring Hatchback 2012 0.0% Volvo 240 Sedan 1993 0.0% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Chevrolet Sonic Sedan 2012 44.31% Hyundai Sonata Sedan 2012 15.92% Mercedes-Benz E-Class Sedan 2012 5.2% Infiniti QX56 SUV 2011 4.01% Rolls-Royce Ghost Sedan 2012 3.16% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Audi V8 Sedan 1994 88.59% Land Rover Range Rover SUV 2012 2.68% GMC Yukon Hybrid SUV 2012 1.77% Dodge Ram Pickup 3500 Quad Cab 2009 1.34% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 46.33% Acura TL Sedan 2012 12.04% Ferrari FF Coupe 2012 8.16% Ferrari 458 Italia Coupe 2012 6.19% Chevrolet Sonic Sedan 2012 4.67% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 26.64% Ford F-450 Super Duty Crew Cab 2012 21.79% Ford F-150 Regular Cab 2007 21.27% Dodge Ram Pickup 3500 Quad Cab 2009 7.91% Ford E-Series Wagon Van 2012 4.96% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 53.02% Aston Martin Virage Convertible 2012 14.04% Chrysler Crossfire Convertible 2008 5.38% Mercedes-Benz 300-Class Convertible 1993 4.36% Toyota Corolla Sedan 2012 3.27% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 BMW X6 SUV 2012 30.04% Buick Verano Sedan 2012 15.37% Chrysler 300 SRT-8 2010 14.88% Cadillac Escalade EXT Crew Cab 2007 8.3% Suzuki SX4 Hatchback 2012 5.13% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 99.47% BMW M6 Convertible 2010 0.35% Audi S4 Sedan 2012 0.14% Audi S4 Sedan 2007 0.01% BMW X3 SUV 2012 0.01% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 88.07% Chrysler Sebring Convertible 2010 3.69% Hyundai Elantra Sedan 2007 1.69% Toyota Corolla Sedan 2012 0.78% Hyundai Tucson SUV 2012 0.71% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Volkswagen Golf Hatchback 2012 19.1% Toyota Sequoia SUV 2012 14.05% Porsche Panamera Sedan 2012 12.0% Hyundai Veracruz SUV 2012 9.64% Lincoln Town Car Sedan 2011 9.54% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 BMW X5 SUV 2007 28.53% Bentley Mulsanne Sedan 2011 23.21% Hyundai Genesis Sedan 2012 15.28% Audi RS 4 Convertible 2008 4.46% Cadillac Escalade EXT Crew Cab 2007 3.59% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ford Mustang Convertible 2007 13.68% Ferrari 458 Italia Coupe 2012 13.52% Ford GT Coupe 2006 9.88% BMW 3 Series Sedan 2012 9.08% BMW Z4 Convertible 2012 5.22% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 36.59% Chevrolet Corvette ZR1 2012 16.3% Mercedes-Benz S-Class Sedan 2012 6.11% Nissan Juke Hatchback 2012 5.48% Bentley Mulsanne Sedan 2011 2.95% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Diablo Coupe 2001 60.83% Maybach Landaulet Convertible 2012 9.27% Mitsubishi Lancer Sedan 2012 4.46% Chevrolet Cobalt SS 2010 3.84% Chevrolet Corvette Convertible 2012 2.13% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 98.72% Dodge Ram Pickup 3500 Quad Cab 2009 0.45% Ford F-150 Regular Cab 2012 0.31% Chevrolet Silverado 1500 Regular Cab 2012 0.16% Toyota 4Runner SUV 2012 0.11% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Ford Ranger SuperCab 2011 91.46% BMW 3 Series Sedan 2012 5.58% Dodge Journey SUV 2012 1.67% Plymouth Neon Coupe 1999 0.31% Volvo 240 Sedan 1993 0.27% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 14.5% Aston Martin Virage Coupe 2012 9.58% Chevrolet Camaro Convertible 2012 8.47% Rolls-Royce Ghost Sedan 2012 7.39% Lamborghini Reventon Coupe 2008 6.87% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 61.47% Mercedes-Benz C-Class Sedan 2012 17.7% BMW M3 Coupe 2012 6.96% Volkswagen Golf Hatchback 2012 5.45% Acura RL Sedan 2012 0.83% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 85.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.26% Chevrolet Silverado 1500 Extended Cab 2012 1.77% Dodge Dakota Club Cab 2007 1.66% HUMMER H2 SUT Crew Cab 2009 1.47% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 87.3% Chevrolet Corvette ZR1 2012 7.39% Ferrari California Convertible 2012 3.72% Lamborghini Aventador Coupe 2012 1.07% Ferrari FF Coupe 2012 0.23% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Ford F-450 Super Duty Crew Cab 2012 59.81% GMC Canyon Extended Cab 2012 17.37% Chevrolet Silverado 1500 Regular Cab 2012 6.18% Ford Ranger SuperCab 2011 4.44% Isuzu Ascender SUV 2008 2.86% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 HUMMER H3T Crew Cab 2010 91.66% AM General Hummer SUV 2000 7.07% HUMMER H2 SUT Crew Cab 2009 1.14% Jeep Wrangler SUV 2012 0.09% Jeep Patriot SUV 2012 0.03% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Land Rover LR2 SUV 2012 60.54% Bentley Continental Flying Spur Sedan 2007 9.78% Cadillac SRX SUV 2012 7.68% Lincoln Town Car Sedan 2011 1.98% GMC Acadia SUV 2012 1.46% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 36.75% HUMMER H2 SUT Crew Cab 2009 33.79% Ford F-450 Super Duty Crew Cab 2012 13.28% Nissan NV Passenger Van 2012 5.93% Dodge Dakota Club Cab 2007 4.04% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Dodge Durango SUV 2012 13.57% Audi A5 Coupe 2012 10.0% Toyota Sequoia SUV 2012 9.39% Dodge Journey SUV 2012 7.08% Toyota Camry Sedan 2012 5.12% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 82.47% Jeep Compass SUV 2012 6.97% BMW X5 SUV 2007 2.03% Acura RL Sedan 2012 1.99% Audi S5 Coupe 2012 1.78% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Dodge Charger SRT-8 2009 25.79% Cadillac SRX SUV 2012 17.14% Hyundai Accent Sedan 2012 8.26% Jeep Grand Cherokee SUV 2012 6.75% Dodge Caliber Wagon 2007 6.21% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 24.11% Jeep Wrangler SUV 2012 18.6% GMC Yukon Hybrid SUV 2012 15.18% Mazda Tribute SUV 2011 11.92% Jeep Grand Cherokee SUV 2012 4.59% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 38.6% BMW M6 Convertible 2010 24.78% Geo Metro Convertible 1993 10.7% BMW 3 Series Sedan 2012 4.26% Bentley Continental Supersports Conv. Convertible 2012 2.19% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Infiniti G Coupe IPL 2012 45.24% Bentley Continental GT Coupe 2007 18.16% MINI Cooper Roadster Convertible 2012 6.05% Fisker Karma Sedan 2012 3.42% Aston Martin Virage Convertible 2012 2.98% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Audi RS 4 Convertible 2008 60.25% Lamborghini Diablo Coupe 2001 13.2% Ford GT Coupe 2006 9.5% Acura Integra Type R 2001 6.3% Mercedes-Benz 300-Class Convertible 1993 1.95% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Chevrolet Silverado 1500 Extended Cab 2012 41.05% Chevrolet Tahoe Hybrid SUV 2012 33.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.54% Jeep Patriot SUV 2012 3.42% Ford F-150 Regular Cab 2012 2.93% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 47.19% Audi S6 Sedan 2011 16.69% BMW X3 SUV 2012 6.42% Dodge Dakota Club Cab 2007 2.1% Mercedes-Benz E-Class Sedan 2012 2.07% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Rolls-Royce Ghost Sedan 2012 41.17% Chrysler 300 SRT-8 2010 28.25% Acura TL Type-S 2008 8.5% BMW M6 Convertible 2010 6.51% Land Rover LR2 SUV 2012 4.05% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 BMW 6 Series Convertible 2007 88.66% Hyundai Genesis Sedan 2012 9.84% Acura TSX Sedan 2012 0.75% Volkswagen Golf Hatchback 2012 0.26% Honda Odyssey Minivan 2007 0.07% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Lamborghini Aventador Coupe 2012 68.02% Ferrari 458 Italia Convertible 2012 9.57% Chevrolet Cobalt SS 2010 6.04% Ferrari California Convertible 2012 2.19% Chevrolet Camaro Convertible 2012 1.57% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Charger Sedan 2012 23.79% BMW Z4 Convertible 2012 9.36% Ford F-150 Regular Cab 2012 7.86% Volkswagen Golf Hatchback 1991 6.15% Chevrolet Avalanche Crew Cab 2012 4.61% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 78.98% Bentley Arnage Sedan 2009 16.94% AM General Hummer SUV 2000 2.16% Jeep Patriot SUV 2012 0.85% Jeep Wrangler SUV 2012 0.55% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Volkswagen Golf Hatchback 2012 40.8% Toyota Camry Sedan 2012 36.32% Toyota Corolla Sedan 2012 12.0% Acura TSX Sedan 2012 7.42% Hyundai Accent Sedan 2012 1.67% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Ford Ranger SuperCab 2011 58.14% Volkswagen Golf Hatchback 1991 35.09% Dodge Caliber Wagon 2007 2.39% GMC Acadia SUV 2012 1.0% Hyundai Tucson SUV 2012 0.78% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Mercedes-Benz S-Class Sedan 2012 17.26% GMC Acadia SUV 2012 14.68% Audi V8 Sedan 1994 8.15% Lincoln Town Car Sedan 2011 7.11% Audi 100 Sedan 1994 5.41% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Infiniti G Coupe IPL 2012 75.71% BMW M6 Convertible 2010 4.74% Dodge Charger Sedan 2012 2.88% Rolls-Royce Phantom Sedan 2012 1.85% Audi S4 Sedan 2012 1.63% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 GMC Acadia SUV 2012 56.63% Ford F-450 Super Duty Crew Cab 2012 20.86% Ford Expedition EL SUV 2009 6.16% Chevrolet Malibu Sedan 2007 2.88% Cadillac Escalade EXT Crew Cab 2007 2.78% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Hyundai Accent Sedan 2012 33.16% Buick Regal GS 2012 13.32% Mitsubishi Lancer Sedan 2012 9.66% Nissan Juke Hatchback 2012 4.56% Hyundai Sonata Hybrid Sedan 2012 4.47% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Ferrari California Convertible 2012 32.76% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.79% AM General Hummer SUV 2000 6.78% Ferrari 458 Italia Coupe 2012 4.93% Bentley Continental Supersports Conv. Convertible 2012 2.71% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 82.2% Ford Ranger SuperCab 2011 9.78% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.53% Ford F-150 Regular Cab 2012 1.21% Chevrolet Silverado 1500 Regular Cab 2012 0.91% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Dodge Challenger SRT8 2011 35.92% Mercedes-Benz E-Class Sedan 2012 19.23% Hyundai Genesis Sedan 2012 10.24% Honda Accord Coupe 2012 4.85% Acura RL Sedan 2012 4.48% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Bugatti Veyron 16.4 Convertible 2009 46.81% Bentley Mulsanne Sedan 2011 11.34% Mazda Tribute SUV 2011 4.06% Mercedes-Benz E-Class Sedan 2012 3.55% Bentley Continental Flying Spur Sedan 2007 3.44% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford F-450 Super Duty Crew Cab 2012 40.6% Chrysler PT Cruiser Convertible 2008 26.45% Chevrolet Tahoe Hybrid SUV 2012 7.17% Mercedes-Benz 300-Class Convertible 1993 4.53% Dodge Ram Pickup 3500 Crew Cab 2010 4.2% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Ferrari 458 Italia Coupe 2012 80.33% Spyker C8 Convertible 2009 8.28% Chevrolet Corvette ZR1 2012 4.2% Chevrolet Corvette Convertible 2012 1.86% Ferrari California Convertible 2012 1.61% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Volvo 240 Sedan 1993 29.57% Aston Martin V8 Vantage Coupe 2012 24.51% Nissan 240SX Coupe 1998 13.7% Lamborghini Reventon Coupe 2008 6.8% Rolls-Royce Ghost Sedan 2012 3.87% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Ford GT Coupe 2006 83.39% Spyker C8 Convertible 2009 2.61% GMC Yukon Hybrid SUV 2012 2.23% Mercedes-Benz S-Class Sedan 2012 2.17% Acura ZDX Hatchback 2012 1.94% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 99.55% Audi A5 Coupe 2012 0.23% Audi TTS Coupe 2012 0.05% Chrysler 300 SRT-8 2010 0.04% Audi S4 Sedan 2012 0.02% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Infiniti G Coupe IPL 2012 47.32% Buick Verano Sedan 2012 12.14% Bentley Continental Flying Spur Sedan 2007 6.02% Hyundai Accent Sedan 2012 5.74% BMW 1 Series Coupe 2012 5.47% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 64.67% Dodge Ram Pickup 3500 Quad Cab 2009 7.71% Ford F-150 Regular Cab 2007 4.38% Audi 100 Sedan 1994 3.97% Ford F-150 Regular Cab 2012 3.71% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Hyundai Santa Fe SUV 2012 19.52% Hyundai Veracruz SUV 2012 11.24% Mazda Tribute SUV 2011 8.47% Scion xD Hatchback 2012 7.95% Jeep Grand Cherokee SUV 2012 7.81% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Chevrolet Malibu Sedan 2007 16.22% Hyundai Veloster Hatchback 2012 11.28% Acura TL Type-S 2008 8.14% Hyundai Veracruz SUV 2012 7.39% Chevrolet TrailBlazer SS 2009 7.18% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Chevrolet Corvette ZR1 2012 27.58% Mercedes-Benz SL-Class Coupe 2009 17.73% Aston Martin V8 Vantage Convertible 2012 15.14% Acura ZDX Hatchback 2012 13.23% Lamborghini Reventon Coupe 2008 5.0% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 30.25% Ferrari FF Coupe 2012 18.12% Dodge Magnum Wagon 2008 9.79% Jaguar XK XKR 2012 7.55% Ferrari 458 Italia Coupe 2012 7.24% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 48.13% Dodge Sprinter Cargo Van 2009 40.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.4% Volkswagen Beetle Hatchback 2012 2.06% Mercedes-Benz Sprinter Van 2012 1.5% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Ford Focus Sedan 2007 23.39% Geo Metro Convertible 1993 12.73% Acura ZDX Hatchback 2012 5.63% Cadillac SRX SUV 2012 5.53% Suzuki SX4 Sedan 2012 5.45% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 HUMMER H2 SUT Crew Cab 2009 24.07% Audi RS 4 Convertible 2008 15.12% Ford F-450 Super Duty Crew Cab 2012 11.95% Dodge Ram Pickup 3500 Quad Cab 2009 8.56% Ford F-150 Regular Cab 2007 5.77% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chevrolet Corvette ZR1 2012 14.59% Ford Freestar Minivan 2007 9.14% Chevrolet Express Cargo Van 2007 8.95% Acura Integra Type R 2001 7.27% Eagle Talon Hatchback 1998 5.7% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 BMW M6 Convertible 2010 51.64% Ford Mustang Convertible 2007 29.87% BMW 3 Series Sedan 2012 12.63% Dodge Dakota Crew Cab 2010 2.53% Dodge Journey SUV 2012 0.71% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 58.4% Dodge Durango SUV 2007 20.52% Ford F-450 Super Duty Crew Cab 2012 10.57% Chrysler Town and Country Minivan 2012 1.78% Mercedes-Benz S-Class Sedan 2012 1.23% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Acura TL Sedan 2012 28.73% Acura ZDX Hatchback 2012 28.25% Mercedes-Benz S-Class Sedan 2012 13.58% BMW M5 Sedan 2010 8.67% Cadillac Escalade EXT Crew Cab 2007 7.05% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 91.31% Audi 100 Sedan 1994 3.9% Chevrolet Silverado 2500HD Regular Cab 2012 1.39% Volvo XC90 SUV 2007 0.67% Chevrolet Silverado 1500 Extended Cab 2012 0.54% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Ferrari 458 Italia Coupe 2012 29.26% FIAT 500 Abarth 2012 10.54% Bugatti Veyron 16.4 Coupe 2009 8.35% Suzuki SX4 Hatchback 2012 5.41% Hyundai Tucson SUV 2012 4.81% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 36.96% Hyundai Sonata Sedan 2012 14.22% smart fortwo Convertible 2012 9.57% Mercedes-Benz S-Class Sedan 2012 9.26% Hyundai Genesis Sedan 2012 5.19% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Audi S5 Coupe 2012 52.86% Mercedes-Benz SL-Class Coupe 2009 18.23% BMW 3 Series Wagon 2012 8.14% BMW X3 SUV 2012 5.08% Audi TT Hatchback 2011 3.38% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Nissan Juke Hatchback 2012 50.66% Honda Accord Sedan 2012 8.19% Ford Ranger SuperCab 2011 7.28% Nissan 240SX Coupe 1998 4.46% Mazda Tribute SUV 2011 4.2% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Dodge Durango SUV 2012 23.66% Audi S6 Sedan 2011 20.17% Dodge Durango SUV 2007 13.38% Toyota Sequoia SUV 2012 10.36% Mercedes-Benz S-Class Sedan 2012 8.93% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 94.81% Ford Ranger SuperCab 2011 2.23% Hyundai Veracruz SUV 2012 0.94% Chevrolet Silverado 1500 Regular Cab 2012 0.59% Dodge Ram Pickup 3500 Quad Cab 2009 0.56% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Dodge Challenger SRT8 2011 52.8% Hyundai Santa Fe SUV 2012 9.56% Hyundai Sonata Hybrid Sedan 2012 5.81% Hyundai Genesis Sedan 2012 3.76% Hyundai Veracruz SUV 2012 2.73% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 83.01% Honda Accord Sedan 2012 2.71% Hyundai Sonata Hybrid Sedan 2012 2.57% Acura TL Type-S 2008 1.87% Audi S4 Sedan 2012 1.79% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Bugatti Veyron 16.4 Coupe 2009 77.42% Infiniti G Coupe IPL 2012 9.53% Dodge Charger SRT-8 2009 5.67% Chevrolet Cobalt SS 2010 2.19% Mitsubishi Lancer Sedan 2012 0.99% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 34.13% FIAT 500 Abarth 2012 19.37% Cadillac CTS-V Sedan 2012 10.61% Bentley Arnage Sedan 2009 10.27% Audi TTS Coupe 2012 3.42% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 81.78% Hyundai Genesis Sedan 2012 6.14% Acura TSX Sedan 2012 3.59% Hyundai Azera Sedan 2012 3.03% Buick Verano Sedan 2012 2.08% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Bugatti Veyron 16.4 Coupe 2009 34.41% Audi S5 Convertible 2012 11.86% Jaguar XK XKR 2012 4.19% AM General Hummer SUV 2000 3.9% Aston Martin V8 Vantage Coupe 2012 3.84% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Nissan 240SX Coupe 1998 24.72% Chevrolet Impala Sedan 2007 11.94% BMW M3 Coupe 2012 11.92% Audi S5 Coupe 2012 8.75% Audi 100 Sedan 1994 7.11% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Suzuki SX4 Hatchback 2012 38.46% GMC Savana Van 2012 24.18% Jeep Liberty SUV 2012 6.87% Volkswagen Golf Hatchback 2012 6.17% Ram C/V Cargo Van Minivan 2012 5.16% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Plymouth Neon Coupe 1999 33.12% Scion xD Hatchback 2012 31.27% Volkswagen Golf Hatchback 2012 12.96% Toyota Corolla Sedan 2012 4.86% BMW Z4 Convertible 2012 4.49% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Volkswagen Golf Hatchback 1991 15.0% Mercedes-Benz C-Class Sedan 2012 14.89% Cadillac CTS-V Sedan 2012 14.09% BMW 6 Series Convertible 2007 11.26% Chevrolet Camaro Convertible 2012 9.1% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 34.82% Suzuki SX4 Hatchback 2012 31.67% Audi 100 Wagon 1994 8.65% Plymouth Neon Coupe 1999 5.76% Hyundai Elantra Touring Hatchback 2012 4.4% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 94.11% Ferrari 458 Italia Convertible 2012 2.54% Aston Martin Virage Coupe 2012 1.17% Ferrari FF Coupe 2012 1.1% Ferrari 458 Italia Coupe 2012 0.4% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Acura ZDX Hatchback 2012 46.74% Land Rover Range Rover SUV 2012 9.63% Chevrolet TrailBlazer SS 2009 8.36% Honda Odyssey Minivan 2012 8.08% GMC Yukon Hybrid SUV 2012 4.7% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Aston Martin V8 Vantage Coupe 2012 62.62% McLaren MP4-12C Coupe 2012 13.44% Spyker C8 Coupe 2009 6.05% Fisker Karma Sedan 2012 5.63% Lamborghini Reventon Coupe 2008 2.27% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Daewoo Nubira Wagon 2002 42.05% Nissan NV Passenger Van 2012 25.2% Mercedes-Benz E-Class Sedan 2012 7.55% BMW M5 Sedan 2010 5.64% BMW X3 SUV 2012 4.18% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.71% Dodge Caravan Minivan 1997 0.13% Honda Odyssey Minivan 2012 0.08% Audi 100 Wagon 1994 0.03% Jaguar XK XKR 2012 0.02% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Hyundai Santa Fe SUV 2012 42.97% Honda Accord Sedan 2012 25.34% Cadillac Escalade EXT Crew Cab 2007 11.92% Chevrolet Traverse SUV 2012 8.45% Chevrolet Silverado 1500 Regular Cab 2012 3.56% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.99% Acura TL Type-S 2008 0.0% Porsche Panamera Sedan 2012 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Azera Sedan 2012 0.0% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Dodge Challenger SRT8 2011 58.8% Hyundai Santa Fe SUV 2012 6.06% Chrysler PT Cruiser Convertible 2008 3.34% Dodge Dakota Crew Cab 2010 3.32% BMW ActiveHybrid 5 Sedan 2012 3.3% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 56.54% Audi S5 Coupe 2012 22.9% Audi S4 Sedan 2012 6.39% BMW 3 Series Sedan 2012 2.24% Acura TL Type-S 2008 2.13% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Suzuki SX4 Sedan 2012 20.22% Chevrolet Impala Sedan 2007 11.07% Chrysler Town and Country Minivan 2012 5.4% BMW 3 Series Wagon 2012 4.74% Ford Focus Sedan 2007 4.42% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Eagle Talon Hatchback 1998 17.96% Lamborghini Reventon Coupe 2008 13.21% Chevrolet Malibu Sedan 2007 12.43% Acura TL Type-S 2008 9.64% GMC Terrain SUV 2012 8.71% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 19.1% Audi S5 Convertible 2012 10.36% Audi S4 Sedan 2012 8.68% Audi S6 Sedan 2011 6.54% Audi TT Hatchback 2011 4.75% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 38.59% GMC Terrain SUV 2012 10.37% Cadillac CTS-V Sedan 2012 4.47% Chrysler 300 SRT-8 2010 4.21% Fisker Karma Sedan 2012 3.97% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 BMW 6 Series Convertible 2007 16.91% Cadillac SRX SUV 2012 6.3% Cadillac CTS-V Sedan 2012 4.96% Rolls-Royce Ghost Sedan 2012 3.15% Chevrolet TrailBlazer SS 2009 3.0% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Chrysler Sebring Convertible 2010 74.54% Honda Odyssey Minivan 2007 16.99% BMW 3 Series Wagon 2012 4.0% Chrysler 300 SRT-8 2010 0.85% Chevrolet Malibu Hybrid Sedan 2010 0.67% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Infiniti G Coupe IPL 2012 34.79% Audi S5 Coupe 2012 19.67% Audi S4 Sedan 2012 11.93% Tesla Model S Sedan 2012 7.31% BMW ActiveHybrid 5 Sedan 2012 4.87% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 86.95% Toyota Camry Sedan 2012 6.66% Chevrolet Impala Sedan 2007 1.99% Honda Odyssey Minivan 2007 1.4% Chevrolet Malibu Sedan 2007 1.08% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Chevrolet Impala Sedan 2007 78.05% Hyundai Sonata Hybrid Sedan 2012 5.28% Honda Odyssey Minivan 2007 4.33% Lincoln Town Car Sedan 2011 4.22% Chevrolet Malibu Sedan 2007 2.76% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Hyundai Genesis Sedan 2012 14.51% Aston Martin Virage Convertible 2012 12.87% BMW 6 Series Convertible 2007 10.47% Mercedes-Benz S-Class Sedan 2012 7.36% Honda Accord Coupe 2012 5.13% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 smart fortwo Convertible 2012 83.73% FIAT 500 Convertible 2012 6.21% Ford Fiesta Sedan 2012 3.98% Bentley Mulsanne Sedan 2011 1.58% BMW 6 Series Convertible 2007 0.97% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Spyker C8 Coupe 2009 58.82% Hyundai Veloster Hatchback 2012 13.59% Hyundai Azera Sedan 2012 10.43% Dodge Charger SRT-8 2009 5.99% Lamborghini Diablo Coupe 2001 5.25% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 86.7% Chevrolet Avalanche Crew Cab 2012 7.12% Chrysler Aspen SUV 2009 2.71% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.0% Cadillac Escalade EXT Crew Cab 2007 0.45% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 86.33% GMC Canyon Extended Cab 2012 6.37% Chevrolet Silverado 1500 Extended Cab 2012 3.69% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.01% Ford F-150 Regular Cab 2007 0.95% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.99% Lamborghini Aventador Coupe 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% Spyker C8 Convertible 2009 0.0% Dodge Magnum Wagon 2008 0.0% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Suzuki Aerio Sedan 2007 28.84% Lincoln Town Car Sedan 2011 23.21% Toyota Camry Sedan 2012 14.83% Mitsubishi Lancer Sedan 2012 4.66% Honda Accord Sedan 2012 4.57% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 35.86% Chevrolet Corvette ZR1 2012 21.27% Honda Accord Sedan 2012 12.18% Acura TL Type-S 2008 8.94% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.61% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Dodge Ram Pickup 3500 Quad Cab 2009 77.24% Volvo 240 Sedan 1993 5.93% Audi 100 Wagon 1994 5.6% Audi 100 Sedan 1994 2.92% Ford F-150 Regular Cab 2012 1.76% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Hyundai Sonata Sedan 2012 22.29% Cadillac CTS-V Sedan 2012 16.84% Volkswagen Golf Hatchback 2012 14.12% BMW M6 Convertible 2010 9.5% Mercedes-Benz C-Class Sedan 2012 5.49% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Nissan Juke Hatchback 2012 23.26% Dodge Durango SUV 2012 9.95% Toyota Corolla Sedan 2012 9.22% Maybach Landaulet Convertible 2012 6.54% Dodge Charger SRT-8 2009 5.37% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 smart fortwo Convertible 2012 34.54% BMW 6 Series Convertible 2007 13.47% AM General Hummer SUV 2000 10.81% Chrysler Sebring Convertible 2010 7.62% Bentley Mulsanne Sedan 2011 4.64% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Hyundai Sonata Hybrid Sedan 2012 39.03% Ferrari 458 Italia Coupe 2012 32.06% Ferrari 458 Italia Convertible 2012 19.61% Ferrari FF Coupe 2012 3.94% Ferrari California Convertible 2012 2.81% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Cadillac CTS-V Sedan 2012 31.37% Chevrolet Corvette ZR1 2012 24.76% Cadillac Escalade EXT Crew Cab 2007 10.24% Infiniti G Coupe IPL 2012 7.09% BMW 3 Series Wagon 2012 3.39% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Ferrari 458 Italia Coupe 2012 33.43% Ferrari FF Coupe 2012 22.85% Jaguar XK XKR 2012 6.24% Mitsubishi Lancer Sedan 2012 4.1% Chevrolet Corvette ZR1 2012 3.26% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Volvo 240 Sedan 1993 52.28% Mazda Tribute SUV 2011 13.51% Dodge Durango SUV 2007 12.39% Chrysler Aspen SUV 2009 7.81% Buick Rainier SUV 2007 5.65% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Porsche Panamera Sedan 2012 58.32% Hyundai Veracruz SUV 2012 29.62% HUMMER H2 SUT Crew Cab 2009 4.41% Mercedes-Benz 300-Class Convertible 1993 1.28% Maybach Landaulet Convertible 2012 1.24% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 34.37% Nissan Juke Hatchback 2012 16.08% Dodge Magnum Wagon 2008 9.09% Mercedes-Benz SL-Class Coupe 2009 7.93% BMW 1 Series Coupe 2012 3.96% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Acura TL Type-S 2008 33.13% Audi RS 4 Convertible 2008 11.06% Porsche Panamera Sedan 2012 9.4% Audi S6 Sedan 2011 8.44% Acura TSX Sedan 2012 8.35% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Audi S5 Convertible 2012 18.75% BMW X3 SUV 2012 12.47% Mercedes-Benz E-Class Sedan 2012 12.08% Suzuki Aerio Sedan 2007 10.25% MINI Cooper Roadster Convertible 2012 9.75% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Chevrolet Camaro Convertible 2012 57.65% Eagle Talon Hatchback 1998 26.91% Jaguar XK XKR 2012 11.7% BMW M3 Coupe 2012 1.85% Volkswagen Golf Hatchback 1991 0.37% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Chevrolet Traverse SUV 2012 44.24% Suzuki SX4 Hatchback 2012 11.97% Nissan Juke Hatchback 2012 10.7% Bugatti Veyron 16.4 Coupe 2009 4.6% Audi R8 Coupe 2012 4.41% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 96.16% Ford F-150 Regular Cab 2012 1.22% Toyota 4Runner SUV 2012 0.51% Ford Ranger SuperCab 2011 0.5% Scion xD Hatchback 2012 0.43% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Honda Odyssey Minivan 2007 49.01% Toyota Corolla Sedan 2012 21.18% Suzuki SX4 Sedan 2012 7.66% Dodge Sprinter Cargo Van 2009 3.11% Hyundai Elantra Touring Hatchback 2012 2.86% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 92.35% Jeep Grand Cherokee SUV 2012 4.65% Audi A5 Coupe 2012 0.73% Dodge Caliber Wagon 2012 0.5% Audi S5 Coupe 2012 0.5% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Aston Martin Virage Convertible 2012 39.31% Spyker C8 Convertible 2009 17.95% Aston Martin V8 Vantage Convertible 2012 16.42% MINI Cooper Roadster Convertible 2012 6.2% Bugatti Veyron 16.4 Convertible 2009 3.89% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 57.44% Chevrolet Silverado 2500HD Regular Cab 2012 32.8% GMC Canyon Extended Cab 2012 5.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.48% Chevrolet Silverado 1500 Extended Cab 2012 1.07% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Hyundai Genesis Sedan 2012 84.15% BMW X3 SUV 2012 5.85% Volkswagen Golf Hatchback 2012 2.04% Audi 100 Wagon 1994 1.47% Acura Integra Type R 2001 0.79% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Land Rover Range Rover SUV 2012 34.74% Mercedes-Benz S-Class Sedan 2012 22.18% Mercedes-Benz C-Class Sedan 2012 7.8% Cadillac SRX SUV 2012 7.47% Acura RL Sedan 2012 4.38% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 45.38% Lamborghini Gallardo LP 570-4 Superleggera 2012 18.93% Chevrolet Monte Carlo Coupe 2007 7.53% Chevrolet Corvette Convertible 2012 7.47% Geo Metro Convertible 1993 5.53% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Lamborghini Reventon Coupe 2008 21.88% Acura ZDX Hatchback 2012 14.16% Bentley Arnage Sedan 2009 11.11% Chevrolet Sonic Sedan 2012 8.48% Jeep Patriot SUV 2012 6.45% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Chrysler Town and Country Minivan 2012 31.76% Ford Freestar Minivan 2007 8.45% Chevrolet Express Cargo Van 2007 4.81% Ram C/V Cargo Van Minivan 2012 4.32% Ford Ranger SuperCab 2011 4.13% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Ford F-150 Regular Cab 2007 96.31% Hyundai Veracruz SUV 2012 0.83% Volvo 240 Sedan 1993 0.55% Nissan NV Passenger Van 2012 0.41% Daewoo Nubira Wagon 2002 0.31% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 70.78% Chevrolet TrailBlazer SS 2009 14.82% GMC Yukon Hybrid SUV 2012 2.56% Land Rover LR2 SUV 2012 2.29% Chevrolet Tahoe Hybrid SUV 2012 1.62% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari California Convertible 2012 41.83% Volkswagen Beetle Hatchback 2012 21.42% Eagle Talon Hatchback 1998 10.63% Ford GT Coupe 2006 10.35% Chevrolet Corvette ZR1 2012 2.34% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 BMW 3 Series Sedan 2012 60.6% Ferrari 458 Italia Convertible 2012 16.14% Mercedes-Benz 300-Class Convertible 1993 12.62% Lamborghini Aventador Coupe 2012 2.37% Ferrari FF Coupe 2012 2.13% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 HUMMER H2 SUT Crew Cab 2009 32.71% Cadillac Escalade EXT Crew Cab 2007 26.38% Chevrolet Tahoe Hybrid SUV 2012 6.49% Scion xD Hatchback 2012 3.77% Cadillac CTS-V Sedan 2012 3.36% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Suzuki SX4 Hatchback 2012 97.58% Ferrari FF Coupe 2012 1.34% Ferrari California Convertible 2012 0.31% Audi TT RS Coupe 2012 0.14% Bentley Continental GT Coupe 2007 0.08% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Ford Mustang Convertible 2007 9.28% Hyundai Tucson SUV 2012 8.99% Chevrolet Sonic Sedan 2012 7.45% Aston Martin Virage Convertible 2012 5.87% Volkswagen Golf Hatchback 2012 5.29% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Jaguar XK XKR 2012 99.6% Aston Martin Virage Convertible 2012 0.11% Ford GT Coupe 2006 0.1% BMW 6 Series Convertible 2007 0.04% BMW M6 Convertible 2010 0.02% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Audi R8 Coupe 2012 19.18% Volkswagen Golf Hatchback 1991 11.66% Tesla Model S Sedan 2012 7.15% Volkswagen Beetle Hatchback 2012 6.0% Hyundai Veloster Hatchback 2012 3.95% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 38.32% Ford Mustang Convertible 2007 15.83% Volvo 240 Sedan 1993 15.69% Chrysler Town and Country Minivan 2012 7.23% Dodge Caravan Minivan 1997 6.28% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Hyundai Veracruz SUV 2012 43.69% Cadillac CTS-V Sedan 2012 8.64% Acura RL Sedan 2012 7.46% Spyker C8 Convertible 2009 6.32% Bugatti Veyron 16.4 Coupe 2009 5.59% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.66% Dodge Caravan Minivan 1997 0.07% Plymouth Neon Coupe 1999 0.06% Ford Focus Sedan 2007 0.05% GMC Canyon Extended Cab 2012 0.05% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Jeep Wrangler SUV 2012 62.1% BMW X6 SUV 2012 7.26% Hyundai Tucson SUV 2012 6.54% Acura RL Sedan 2012 3.27% FIAT 500 Abarth 2012 3.19% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 88.46% Chevrolet Corvette ZR1 2012 3.69% Dodge Charger Sedan 2012 1.39% Ferrari 458 Italia Convertible 2012 1.35% Hyundai Veloster Hatchback 2012 1.2% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 51.65% Jaguar XK XKR 2012 18.56% Honda Accord Coupe 2012 12.42% Aston Martin V8 Vantage Coupe 2012 4.72% Chevrolet Corvette ZR1 2012 3.13% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Chrysler 300 SRT-8 2010 37.69% Infiniti G Coupe IPL 2012 18.11% Chevrolet TrailBlazer SS 2009 11.15% Cadillac SRX SUV 2012 8.79% Audi S6 Sedan 2011 5.04% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Rolls-Royce Ghost Sedan 2012 64.96% Suzuki Kizashi Sedan 2012 14.49% Bentley Continental Supersports Conv. Convertible 2012 8.74% Mercedes-Benz S-Class Sedan 2012 6.72% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.14% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Freestar Minivan 2007 40.77% Ford Focus Sedan 2007 18.83% Jeep Grand Cherokee SUV 2012 16.4% Chevrolet TrailBlazer SS 2009 12.14% Hyundai Elantra Sedan 2007 3.87% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 GMC Acadia SUV 2012 60.76% Acura ZDX Hatchback 2012 9.32% Ford Edge SUV 2012 6.71% Dodge Charger Sedan 2012 2.75% Cadillac SRX SUV 2012 1.63% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 74.15% Buick Verano Sedan 2012 5.9% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.61% Volkswagen Golf Hatchback 2012 2.88% Bugatti Veyron 16.4 Convertible 2009 2.27% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac SRX SUV 2012 75.56% Suzuki SX4 Sedan 2012 6.66% Suzuki SX4 Hatchback 2012 5.41% Cadillac Escalade EXT Crew Cab 2007 3.49% Acura ZDX Hatchback 2012 3.01% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 72.04% Hyundai Genesis Sedan 2012 25.68% MINI Cooper Roadster Convertible 2012 0.62% Infiniti G Coupe IPL 2012 0.34% Acura RL Sedan 2012 0.17% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 25.45% Chevrolet Avalanche Crew Cab 2012 24.32% GMC Canyon Extended Cab 2012 23.44% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.15% Dodge Dakota Crew Cab 2010 5.05% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Aston Martin Virage Convertible 2012 25.98% BMW X5 SUV 2007 21.47% Acura TL Sedan 2012 11.35% Acura TSX Sedan 2012 9.25% BMW M5 Sedan 2010 5.09% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Acura RL Sedan 2012 20.37% Nissan Juke Hatchback 2012 10.16% Ford F-150 Regular Cab 2012 8.34% Audi V8 Sedan 1994 8.04% Mercedes-Benz S-Class Sedan 2012 6.37% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Canyon Extended Cab 2012 34.07% Dodge Ram Pickup 3500 Quad Cab 2009 28.55% Volvo 240 Sedan 1993 14.96% Ford F-450 Super Duty Crew Cab 2012 6.96% Jeep Patriot SUV 2012 4.19% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 36.79% Daewoo Nubira Wagon 2002 24.16% Geo Metro Convertible 1993 17.92% Eagle Talon Hatchback 1998 5.87% Audi 100 Wagon 1994 5.48% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 92.48% Dodge Sprinter Cargo Van 2009 7.48% Nissan NV Passenger Van 2012 0.03% Ram C/V Cargo Van Minivan 2012 0.01% Buick Rainier SUV 2007 0.0% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Ferrari 458 Italia Coupe 2012 84.08% Hyundai Veloster Hatchback 2012 12.72% Mercedes-Benz SL-Class Coupe 2009 1.88% Chevrolet Malibu Sedan 2007 0.23% Toyota Camry Sedan 2012 0.19% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Chrysler Crossfire Convertible 2008 15.87% Audi S6 Sedan 2011 9.7% Nissan 240SX Coupe 1998 9.5% Mitsubishi Lancer Sedan 2012 6.81% Mercedes-Benz 300-Class Convertible 1993 5.99% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Dodge Durango SUV 2007 99.86% Cadillac CTS-V Sedan 2012 0.04% Volkswagen Golf Hatchback 1991 0.03% GMC Yukon Hybrid SUV 2012 0.01% Aston Martin Virage Convertible 2012 0.01% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 44.41% Honda Odyssey Minivan 2012 18.65% Dodge Caliber Wagon 2007 9.39% Chevrolet TrailBlazer SS 2009 7.41% Volvo 240 Sedan 1993 2.2% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 71.71% Chevrolet Impala Sedan 2007 7.51% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.15% Daewoo Nubira Wagon 2002 2.78% Hyundai Sonata Hybrid Sedan 2012 1.54% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 71.9% MINI Cooper Roadster Convertible 2012 6.93% Bentley Mulsanne Sedan 2011 2.64% Aston Martin Virage Coupe 2012 1.2% BMW M5 Sedan 2010 1.16% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 98.89% Daewoo Nubira Wagon 2002 0.39% Eagle Talon Hatchback 1998 0.29% Plymouth Neon Coupe 1999 0.15% Audi S4 Sedan 2007 0.03% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Ford F-150 Regular Cab 2007 29.39% Chevrolet Silverado 1500 Extended Cab 2012 26.89% Lincoln Town Car Sedan 2011 15.85% Volvo 240 Sedan 1993 11.75% Mercedes-Benz 300-Class Convertible 1993 4.31% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Mazda Tribute SUV 2011 71.6% GMC Acadia SUV 2012 12.12% Chrysler Aspen SUV 2009 6.92% GMC Terrain SUV 2012 2.18% Mercedes-Benz S-Class Sedan 2012 1.07% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Toyota 4Runner SUV 2012 42.94% Dodge Dakota Crew Cab 2010 14.52% Dodge Ram Pickup 3500 Crew Cab 2010 13.53% Dodge Charger Sedan 2012 5.52% HUMMER H2 SUT Crew Cab 2009 4.67% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Chrysler PT Cruiser Convertible 2008 52.43% Chevrolet Avalanche Crew Cab 2012 12.22% Daewoo Nubira Wagon 2002 6.69% BMW M5 Sedan 2010 4.61% Dodge Durango SUV 2012 3.62% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Volkswagen Golf Hatchback 2012 30.24% Acura RL Sedan 2012 12.69% smart fortwo Convertible 2012 7.17% MINI Cooper Roadster Convertible 2012 4.8% Bugatti Veyron 16.4 Coupe 2009 3.86% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Volvo 240 Sedan 1993 59.82% Volkswagen Golf Hatchback 1991 11.65% Ford GT Coupe 2006 10.62% Jaguar XK XKR 2012 3.76% Bentley Arnage Sedan 2009 2.91% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 86.11% Audi V8 Sedan 1994 4.54% Audi TTS Coupe 2012 1.7% Mercedes-Benz Sprinter Van 2012 1.24% Ford Ranger SuperCab 2011 1.16% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 BMW M5 Sedan 2010 52.93% BMW 3 Series Sedan 2012 7.59% Hyundai Elantra Sedan 2007 6.62% BMW ActiveHybrid 5 Sedan 2012 4.45% Ferrari FF Coupe 2012 4.39% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Lamborghini Reventon Coupe 2008 27.49% Dodge Caravan Minivan 1997 26.32% Volkswagen Golf Hatchback 1991 22.5% Audi 100 Wagon 1994 14.08% Geo Metro Convertible 1993 3.07% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 85.73% Acura RL Sedan 2012 5.27% BMW 6 Series Convertible 2007 2.61% Cadillac CTS-V Sedan 2012 1.39% Audi S6 Sedan 2011 1.06% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Ferrari California Convertible 2012 25.36% Mercedes-Benz 300-Class Convertible 1993 17.94% Ferrari 458 Italia Coupe 2012 12.52% BMW 3 Series Sedan 2012 9.36% Chevrolet Corvette ZR1 2012 9.32% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota 4Runner SUV 2012 38.72% Chevrolet Tahoe Hybrid SUV 2012 14.81% Mercedes-Benz SL-Class Coupe 2009 9.34% Chevrolet Traverse SUV 2012 9.02% Chrysler Aspen SUV 2009 3.64% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 79.58% Lamborghini Aventador Coupe 2012 14.67% Ferrari 458 Italia Coupe 2012 0.98% Ferrari 458 Italia Convertible 2012 0.73% BMW 1 Series Coupe 2012 0.6% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 42.24% Volvo XC90 SUV 2007 9.29% Chevrolet Tahoe Hybrid SUV 2012 9.17% Chevrolet Silverado 1500 Extended Cab 2012 3.42% Ford Expedition EL SUV 2009 2.89% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 52.1% Buick Rainier SUV 2007 17.19% Daewoo Nubira Wagon 2002 9.77% Ford F-450 Super Duty Crew Cab 2012 6.23% Chevrolet Tahoe Hybrid SUV 2012 5.2% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 13.47% Eagle Talon Hatchback 1998 13.45% Lamborghini Reventon Coupe 2008 12.45% Audi V8 Sedan 1994 10.92% Volkswagen Golf Hatchback 1991 8.0% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.14% Ferrari 458 Italia Convertible 2012 0.42% Lamborghini Aventador Coupe 2012 0.15% Ferrari California Convertible 2012 0.14% Dodge Magnum Wagon 2008 0.02% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Tesla Model S Sedan 2012 53.06% Ford Fiesta Sedan 2012 7.76% Spyker C8 Convertible 2009 5.46% BMW 6 Series Convertible 2007 4.66% Audi S5 Coupe 2012 4.64% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% McLaren MP4-12C Coupe 2012 0.0% Dodge Charger SRT-8 2009 0.0% Lamborghini Aventador Coupe 2012 0.0% HUMMER H3T Crew Cab 2010 0.0% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Eagle Talon Hatchback 1998 57.46% Ford Focus Sedan 2007 13.81% Dodge Caliber Wagon 2007 3.01% Audi S4 Sedan 2012 2.46% Audi A5 Coupe 2012 2.27% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 18.19% BMW 1 Series Coupe 2012 16.95% BMW 1 Series Convertible 2012 8.75% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.23% Audi S6 Sedan 2011 4.79% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Ford Focus Sedan 2007 29.0% Volkswagen Beetle Hatchback 2012 16.86% Chrysler Sebring Convertible 2010 10.56% Volkswagen Golf Hatchback 2012 9.63% BMW 1 Series Convertible 2012 7.42% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.91% Dodge Sprinter Cargo Van 2009 0.06% Tesla Model S Sedan 2012 0.02% Audi V8 Sedan 1994 0.0% Porsche Panamera Sedan 2012 0.0% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 38.38% GMC Yukon Hybrid SUV 2012 16.24% GMC Savana Van 2012 13.21% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.62% Chevrolet Express Cargo Van 2007 3.65% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Audi S5 Convertible 2012 17.22% Ferrari California Convertible 2012 12.88% Ferrari FF Coupe 2012 11.35% BMW Z4 Convertible 2012 9.81% Mitsubishi Lancer Sedan 2012 5.36% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 99.63% Mercedes-Benz Sprinter Van 2012 0.36% Buick Rainier SUV 2007 0.01% Dodge Caravan Minivan 1997 0.0% Ford F-150 Regular Cab 2007 0.0% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Audi S5 Coupe 2012 20.48% Acura TL Sedan 2012 18.61% Acura TSX Sedan 2012 9.08% Audi TTS Coupe 2012 4.86% Audi S4 Sedan 2007 4.7% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Chevrolet Traverse SUV 2012 17.18% Hyundai Genesis Sedan 2012 14.14% Volvo XC90 SUV 2007 7.98% GMC Acadia SUV 2012 6.33% Honda Accord Sedan 2012 4.21% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 19.09% Hyundai Genesis Sedan 2012 18.68% Acura TL Sedan 2012 12.4% Chevrolet Camaro Convertible 2012 11.52% Hyundai Sonata Sedan 2012 7.87% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Infiniti QX56 SUV 2011 27.56% Toyota 4Runner SUV 2012 19.31% Audi V8 Sedan 1994 16.18% Acura ZDX Hatchback 2012 5.43% Dodge Charger Sedan 2012 4.63% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Mitsubishi Lancer Sedan 2012 25.08% BMW 6 Series Convertible 2007 11.4% Chevrolet Sonic Sedan 2012 9.24% Dodge Charger SRT-8 2009 6.13% Aston Martin V8 Vantage Coupe 2012 6.0% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 18.95% Audi S6 Sedan 2011 16.86% Audi S5 Coupe 2012 15.25% Audi A5 Coupe 2012 12.07% Audi S4 Sedan 2012 6.6% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 89.39% HUMMER H3T Crew Cab 2010 10.18% Chrysler 300 SRT-8 2010 0.25% AM General Hummer SUV 2000 0.11% Ford Ranger SuperCab 2011 0.02% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 38.98% GMC Canyon Extended Cab 2012 35.27% Ford F-450 Super Duty Crew Cab 2012 8.39% Buick Enclave SUV 2012 5.66% Cadillac SRX SUV 2012 2.5% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Dodge Charger Sedan 2012 83.16% Ferrari California Convertible 2012 4.96% Ferrari 458 Italia Convertible 2012 4.03% Aston Martin V8 Vantage Coupe 2012 1.0% Ferrari FF Coupe 2012 0.91% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Chevrolet Cobalt SS 2010 14.82% Ram C/V Cargo Van Minivan 2012 9.04% Hyundai Azera Sedan 2012 8.7% Toyota Corolla Sedan 2012 5.68% Chevrolet Monte Carlo Coupe 2007 4.99% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Cadillac CTS-V Sedan 2012 19.21% Lamborghini Reventon Coupe 2008 16.21% Dodge Charger SRT-8 2009 15.21% BMW 6 Series Convertible 2007 13.18% Audi S5 Coupe 2012 12.63% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 Infiniti G Coupe IPL 2012 25.5% FIAT 500 Abarth 2012 23.1% BMW 3 Series Sedan 2012 18.4% Volkswagen Beetle Hatchback 2012 8.21% Mercedes-Benz S-Class Sedan 2012 6.89% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Acura ZDX Hatchback 2012 77.19% Hyundai Sonata Sedan 2012 7.6% Toyota Corolla Sedan 2012 2.5% Dodge Durango SUV 2012 1.89% Hyundai Genesis Sedan 2012 1.77% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Chrysler 300 SRT-8 2010 31.85% Chevrolet Camaro Convertible 2012 12.83% Chevrolet TrailBlazer SS 2009 12.61% Porsche Panamera Sedan 2012 9.04% BMW M6 Convertible 2010 8.63% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Audi 100 Wagon 1994 21.09% Chevrolet Impala Sedan 2007 18.86% Audi 100 Sedan 1994 16.38% Mercedes-Benz 300-Class Convertible 1993 14.22% Daewoo Nubira Wagon 2002 10.88% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 94.82% Plymouth Neon Coupe 1999 4.43% BMW 3 Series Sedan 2012 0.29% Ferrari 458 Italia Coupe 2012 0.17% Ford GT Coupe 2006 0.1% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Hyundai Elantra Touring Hatchback 2012 31.52% BMW 3 Series Sedan 2012 14.11% Volkswagen Beetle Hatchback 2012 9.45% Volkswagen Golf Hatchback 2012 8.4% Cadillac CTS-V Sedan 2012 6.34% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Honda Odyssey Minivan 2007 34.65% Chrysler Town and Country Minivan 2012 8.38% GMC Acadia SUV 2012 7.47% Chevrolet TrailBlazer SS 2009 4.73% Honda Accord Sedan 2012 4.14% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Eagle Talon Hatchback 1998 51.77% Chevrolet Impala Sedan 2007 38.61% Aston Martin Virage Convertible 2012 3.09% Spyker C8 Convertible 2009 2.16% Chevrolet Corvette ZR1 2012 1.3% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Audi R8 Coupe 2012 13.32% Bugatti Veyron 16.4 Coupe 2009 12.34% Aston Martin V8 Vantage Convertible 2012 10.04% Porsche Panamera Sedan 2012 7.12% BMW M5 Sedan 2010 4.7% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Chevrolet Tahoe Hybrid SUV 2012 15.57% Dodge Dakota Crew Cab 2010 13.26% Dodge Journey SUV 2012 7.4% Honda Accord Sedan 2012 7.23% Toyota Corolla Sedan 2012 6.23% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Nissan Leaf Hatchback 2012 85.13% Fisker Karma Sedan 2012 3.46% Hyundai Elantra Sedan 2007 2.46% Volkswagen Golf Hatchback 2012 1.68% BMW 6 Series Convertible 2007 1.48% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Audi S5 Coupe 2012 33.73% Acura ZDX Hatchback 2012 9.31% Mercedes-Benz S-Class Sedan 2012 6.17% Audi S4 Sedan 2007 5.57% Bentley Mulsanne Sedan 2011 5.52% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Eagle Talon Hatchback 1998 73.0% Land Rover Range Rover SUV 2012 7.46% GMC Yukon Hybrid SUV 2012 4.12% Mercedes-Benz E-Class Sedan 2012 3.55% Audi V8 Sedan 1994 2.96% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 28.97% Dodge Caliber Wagon 2007 18.65% Lamborghini Diablo Coupe 2001 9.87% Jeep Wrangler SUV 2012 6.6% Land Rover LR2 SUV 2012 4.52% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 73.73% Ford F-150 Regular Cab 2007 13.74% Ford E-Series Wagon Van 2012 6.09% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.69% Volkswagen Golf Hatchback 1991 0.53% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Chrysler Sebring Convertible 2010 95.88% Lincoln Town Car Sedan 2011 1.6% Geo Metro Convertible 1993 0.46% Jaguar XK XKR 2012 0.42% Porsche Panamera Sedan 2012 0.34% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TL Sedan 2012 12.3% BMW 3 Series Wagon 2012 11.09% Hyundai Sonata Sedan 2012 9.1% Hyundai Accent Sedan 2012 8.69% Acura RL Sedan 2012 7.32% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Nissan NV Passenger Van 2012 30.06% Ford GT Coupe 2006 12.87% Bentley Continental Flying Spur Sedan 2007 8.74% Jeep Compass SUV 2012 5.33% Lamborghini Reventon Coupe 2008 3.88% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Durango SUV 2007 52.64% Nissan NV Passenger Van 2012 18.3% Dodge Dakota Crew Cab 2010 14.8% Dodge Ram Pickup 3500 Crew Cab 2010 5.27% Dodge Ram Pickup 3500 Quad Cab 2009 2.17% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo 240 Sedan 1993 62.55% Hyundai Tucson SUV 2012 6.7% Daewoo Nubira Wagon 2002 4.72% Lincoln Town Car Sedan 2011 4.44% Mercedes-Benz SL-Class Coupe 2009 3.73% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 41.32% AM General Hummer SUV 2000 18.8% McLaren MP4-12C Coupe 2012 16.28% Ford Mustang Convertible 2007 10.82% Lamborghini Aventador Coupe 2012 5.11% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Ford Mustang Convertible 2007 98.92% BMW M6 Convertible 2010 0.26% Mercedes-Benz 300-Class Convertible 1993 0.12% McLaren MP4-12C Coupe 2012 0.11% Chevrolet Monte Carlo Coupe 2007 0.09% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Durango SUV 2007 47.94% Dodge Caliber Wagon 2007 24.98% Dodge Caliber Wagon 2012 7.77% Ford Ranger SuperCab 2011 4.58% Jeep Liberty SUV 2012 2.85% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Ford Ranger SuperCab 2011 22.48% Tesla Model S Sedan 2012 20.57% Chevrolet Express Cargo Van 2007 13.75% Volvo 240 Sedan 1993 9.03% Audi 100 Sedan 1994 8.15% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Audi S4 Sedan 2012 16.39% Geo Metro Convertible 1993 13.25% Dodge Charger SRT-8 2009 11.99% Chevrolet Corvette ZR1 2012 7.07% Aston Martin V8 Vantage Coupe 2012 5.95% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.75% Ferrari 458 Italia Convertible 2012 0.2% Ford Mustang Convertible 2007 0.02% Ferrari California Convertible 2012 0.02% Acura Integra Type R 2001 0.01% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 17.87% Lincoln Town Car Sedan 2011 16.8% Acura TL Sedan 2012 13.01% Dodge Durango SUV 2012 10.04% Suzuki SX4 Sedan 2012 9.52% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Ram C/V Cargo Van Minivan 2012 95.69% Ford Mustang Convertible 2007 1.27% Maybach Landaulet Convertible 2012 0.89% Chrysler Sebring Convertible 2010 0.62% Honda Accord Sedan 2012 0.34% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Spyker C8 Coupe 2009 51.08% Audi RS 4 Convertible 2008 19.51% BMW Z4 Convertible 2012 15.93% BMW M3 Coupe 2012 4.07% Suzuki Aerio Sedan 2007 4.01% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Toyota Sequoia SUV 2012 41.65% Ford Expedition EL SUV 2009 39.89% Land Rover LR2 SUV 2012 14.54% Chevrolet Silverado 2500HD Regular Cab 2012 0.69% Hyundai Accent Sedan 2012 0.63% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Porsche Panamera Sedan 2012 54.09% Nissan Leaf Hatchback 2012 26.71% Nissan 240SX Coupe 1998 3.8% Mercedes-Benz 300-Class Convertible 1993 3.53% Jaguar XK XKR 2012 1.45% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 McLaren MP4-12C Coupe 2012 57.23% Lamborghini Reventon Coupe 2008 20.0% Spyker C8 Convertible 2009 8.52% Aston Martin Virage Convertible 2012 4.29% Bugatti Veyron 16.4 Convertible 2009 2.55% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 68.41% Dodge Sprinter Cargo Van 2009 14.61% Nissan NV Passenger Van 2012 12.99% GMC Savana Van 2012 1.0% Chevrolet Silverado 1500 Regular Cab 2012 0.78% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Mercedes-Benz Sprinter Van 2012 35.0% Ford E-Series Wagon Van 2012 25.45% Dodge Sprinter Cargo Van 2009 24.77% Nissan NV Passenger Van 2012 8.7% Dodge Caravan Minivan 1997 2.56% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 55.11% Audi S5 Coupe 2012 42.18% BMW X3 SUV 2012 1.27% Audi TTS Coupe 2012 1.05% Chrysler 300 SRT-8 2010 0.11% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Dodge Durango SUV 2007 38.33% Toyota 4Runner SUV 2012 22.04% Dodge Durango SUV 2012 7.04% Dodge Dakota Crew Cab 2010 4.89% Dodge Ram Pickup 3500 Crew Cab 2010 4.47% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Bentley Continental Flying Spur Sedan 2007 15.61% Bentley Mulsanne Sedan 2011 14.15% smart fortwo Convertible 2012 9.45% Audi S5 Coupe 2012 8.56% Audi S4 Sedan 2007 7.95% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Acura Integra Type R 2001 62.45% Dodge Charger SRT-8 2009 12.34% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.22% Mercedes-Benz S-Class Sedan 2012 6.38% Bentley Continental Supersports Conv. Convertible 2012 2.44% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 MINI Cooper Roadster Convertible 2012 67.33% BMW Z4 Convertible 2012 7.82% Bugatti Veyron 16.4 Convertible 2009 6.5% BMW M3 Coupe 2012 4.83% BMW 6 Series Convertible 2007 3.45% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 MINI Cooper Roadster Convertible 2012 27.76% Nissan NV Passenger Van 2012 27.71% Aston Martin Virage Convertible 2012 22.54% BMW M6 Convertible 2010 14.94% Nissan Leaf Hatchback 2012 1.8% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 69.95% Chevrolet Silverado 1500 Extended Cab 2012 4.95% Chevrolet Express Van 2007 3.51% Dodge Ram Pickup 3500 Quad Cab 2009 3.27% Audi V8 Sedan 1994 2.97% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 97.12% Suzuki Kizashi Sedan 2012 1.5% Hyundai Elantra Sedan 2007 0.45% Plymouth Neon Coupe 1999 0.36% Scion xD Hatchback 2012 0.1% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Audi TT Hatchback 2011 24.73% Audi R8 Coupe 2012 20.13% Cadillac CTS-V Sedan 2012 14.91% Audi TTS Coupe 2012 13.15% Audi S5 Coupe 2012 5.01% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 BMW 6 Series Convertible 2007 22.27% Mercedes-Benz S-Class Sedan 2012 16.69% Jaguar XK XKR 2012 16.56% Chrysler Crossfire Convertible 2008 4.6% Scion xD Hatchback 2012 4.24% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Acura ZDX Hatchback 2012 49.91% Buick Regal GS 2012 18.95% Honda Accord Coupe 2012 9.41% Volkswagen Beetle Hatchback 2012 4.47% Lincoln Town Car Sedan 2011 3.54% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Hyundai Veracruz SUV 2012 15.64% Ford Freestar Minivan 2007 8.88% Volvo XC90 SUV 2007 7.77% Mazda Tribute SUV 2011 6.25% Cadillac SRX SUV 2012 5.22% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Infiniti G Coupe IPL 2012 29.37% Audi TTS Coupe 2012 14.09% Hyundai Sonata Sedan 2012 5.89% Bugatti Veyron 16.4 Coupe 2009 5.15% Cadillac CTS-V Sedan 2012 4.64% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Jaguar XK XKR 2012 49.94% Porsche Panamera Sedan 2012 38.54% Chevrolet Corvette ZR1 2012 6.58% Acura TL Type-S 2008 1.65% Audi RS 4 Convertible 2008 1.03% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Lincoln Town Car Sedan 2011 16.29% Ford Freestar Minivan 2007 13.4% Ford F-150 Regular Cab 2007 7.4% Dodge Dakota Club Cab 2007 5.52% Buick Rainier SUV 2007 5.09% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 HUMMER H3T Crew Cab 2010 64.47% Mercedes-Benz E-Class Sedan 2012 17.56% Cadillac SRX SUV 2012 4.24% Acura ZDX Hatchback 2012 1.94% Toyota Camry Sedan 2012 1.8% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Spyker C8 Convertible 2009 16.73% Bugatti Veyron 16.4 Coupe 2009 13.02% Audi RS 4 Convertible 2008 9.45% Ford GT Coupe 2006 7.95% McLaren MP4-12C Coupe 2012 6.83% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 99.23% Jeep Compass SUV 2012 0.72% Dodge Charger Sedan 2012 0.02% Volkswagen Golf Hatchback 1991 0.01% Dodge Dakota Club Cab 2007 0.0% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Dodge Journey SUV 2012 16.74% Chevrolet Malibu Sedan 2007 12.62% Lincoln Town Car Sedan 2011 10.42% Hyundai Elantra Touring Hatchback 2012 8.29% Toyota Camry Sedan 2012 6.06% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 36.1% Plymouth Neon Coupe 1999 31.82% Chevrolet Express Cargo Van 2007 12.8% Volvo 240 Sedan 1993 7.41% GMC Savana Van 2012 3.85% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Audi S5 Coupe 2012 69.24% Tesla Model S Sedan 2012 25.02% Infiniti G Coupe IPL 2012 2.62% Audi S6 Sedan 2011 0.89% Aston Martin V8 Vantage Convertible 2012 0.65% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Honda Odyssey Minivan 2007 54.37% Hyundai Genesis Sedan 2012 11.21% Hyundai Elantra Touring Hatchback 2012 10.75% Hyundai Sonata Sedan 2012 4.34% Honda Odyssey Minivan 2012 3.6% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Bentley Mulsanne Sedan 2011 71.46% Tesla Model S Sedan 2012 17.95% Bentley Continental Flying Spur Sedan 2007 3.41% Audi S4 Sedan 2007 1.73% Audi S4 Sedan 2012 1.04% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Chevrolet Malibu Hybrid Sedan 2010 30.25% Toyota Corolla Sedan 2012 17.79% Hyundai Tucson SUV 2012 16.94% Ford Fiesta Sedan 2012 6.38% Chrysler Sebring Convertible 2010 3.07% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Audi S5 Coupe 2012 13.2% Land Rover LR2 SUV 2012 10.9% BMW X6 SUV 2012 6.89% Bentley Continental Flying Spur Sedan 2007 4.49% Audi A5 Coupe 2012 3.21% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 BMW M3 Coupe 2012 25.29% Ferrari 458 Italia Coupe 2012 14.94% Chevrolet Camaro Convertible 2012 11.66% Jaguar XK XKR 2012 11.64% Ferrari California Convertible 2012 9.69% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Porsche Panamera Sedan 2012 95.1% FIAT 500 Convertible 2012 1.1% Hyundai Sonata Sedan 2012 0.65% Audi S5 Coupe 2012 0.48% Audi TT Hatchback 2011 0.4% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Jeep Wrangler SUV 2012 93.84% Ford Edge SUV 2012 2.62% GMC Canyon Extended Cab 2012 1.78% GMC Savana Van 2012 0.37% BMW X6 SUV 2012 0.29% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 84.97% BMW M6 Convertible 2010 4.74% Nissan 240SX Coupe 1998 2.8% Volvo 240 Sedan 1993 0.94% Aston Martin V8 Vantage Coupe 2012 0.93% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Chevrolet Corvette ZR1 2012 99.44% Porsche Panamera Sedan 2012 0.23% Land Rover LR2 SUV 2012 0.09% Suzuki SX4 Hatchback 2012 0.08% Acura TL Type-S 2008 0.05% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Lincoln Town Car Sedan 2011 20.41% Ford F-150 Regular Cab 2007 17.98% Ford Ranger SuperCab 2011 15.71% Chrysler Aspen SUV 2009 15.18% Buick Rainier SUV 2007 10.05% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 49.45% Scion xD Hatchback 2012 13.85% Chevrolet Impala Sedan 2007 7.73% Toyota Camry Sedan 2012 7.63% Chevrolet Malibu Sedan 2007 2.8% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 74.81% BMW M5 Sedan 2010 10.75% Audi S5 Coupe 2012 4.84% Aston Martin V8 Vantage Coupe 2012 2.34% Lamborghini Reventon Coupe 2008 0.71% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 GMC Terrain SUV 2012 10.5% Dodge Caliber Wagon 2012 8.79% Dodge Magnum Wagon 2008 6.08% Jeep Compass SUV 2012 5.7% Hyundai Tucson SUV 2012 5.36% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 56.42% Acura TL Type-S 2008 26.15% Chevrolet Malibu Sedan 2007 10.47% Acura TSX Sedan 2012 2.56% Honda Accord Sedan 2012 1.35% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Infiniti QX56 SUV 2011 43.06% Dodge Ram Pickup 3500 Crew Cab 2010 12.86% Acura ZDX Hatchback 2012 10.39% Audi S5 Coupe 2012 7.74% BMW ActiveHybrid 5 Sedan 2012 3.54% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 51.3% Dodge Sprinter Cargo Van 2009 45.39% Buick Rainier SUV 2007 2.04% Chevrolet Traverse SUV 2012 0.25% Hyundai Veracruz SUV 2012 0.21% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 50.19% Audi V8 Sedan 1994 19.12% Mercedes-Benz 300-Class Convertible 1993 3.47% Rolls-Royce Ghost Sedan 2012 2.68% Bentley Mulsanne Sedan 2011 2.39% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Honda Accord Sedan 2012 85.08% Honda Odyssey Minivan 2012 4.36% Toyota 4Runner SUV 2012 2.49% BMW 3 Series Sedan 2012 1.3% Audi TT Hatchback 2011 1.15% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Buick Rainier SUV 2007 33.14% Cadillac Escalade EXT Crew Cab 2007 18.78% Dodge Caliber Wagon 2012 9.66% Dodge Caliber Wagon 2007 4.7% Dodge Dakota Crew Cab 2010 3.64% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Hyundai Sonata Hybrid Sedan 2012 75.97% Hyundai Accent Sedan 2012 10.18% BMW M5 Sedan 2010 2.1% Buick Regal GS 2012 2.03% Buick Verano Sedan 2012 1.84% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Malibu Sedan 2007 33.4% Spyker C8 Convertible 2009 13.97% Chevrolet Monte Carlo Coupe 2007 9.03% Jaguar XK XKR 2012 6.94% Spyker C8 Coupe 2009 5.59% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 BMW Z4 Convertible 2012 36.16% MINI Cooper Roadster Convertible 2012 21.73% Aston Martin V8 Vantage Coupe 2012 11.83% Hyundai Azera Sedan 2012 5.77% Jaguar XK XKR 2012 3.66% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 32.46% Ford Mustang Convertible 2007 7.71% Chrysler 300 SRT-8 2010 6.73% Audi RS 4 Convertible 2008 5.91% Dodge Ram Pickup 3500 Crew Cab 2010 5.5% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Audi S5 Coupe 2012 20.94% BMW 3 Series Sedan 2012 15.21% Audi S6 Sedan 2011 12.8% GMC Yukon Hybrid SUV 2012 11.24% BMW X3 SUV 2012 5.89% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Scion xD Hatchback 2012 74.89% Plymouth Neon Coupe 1999 6.15% Jeep Patriot SUV 2012 5.45% Dodge Caravan Minivan 1997 2.91% Honda Odyssey Minivan 2012 2.06% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Jaguar XK XKR 2012 30.76% Toyota Corolla Sedan 2012 13.66% Audi S4 Sedan 2012 11.81% Chrysler Sebring Convertible 2010 7.57% Audi S4 Sedan 2007 7.14% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 39.03% Dodge Caliber Wagon 2012 15.55% Aston Martin Virage Coupe 2012 13.18% GMC Canyon Extended Cab 2012 6.82% Dodge Magnum Wagon 2008 3.76% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW 3 Series Wagon 2012 28.06% Audi A5 Coupe 2012 8.71% Infiniti QX56 SUV 2011 4.84% Bentley Mulsanne Sedan 2011 4.46% Aston Martin V8 Vantage Convertible 2012 4.33% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Audi S4 Sedan 2012 17.88% Audi 100 Wagon 1994 7.25% Mercedes-Benz 300-Class Convertible 1993 6.47% Audi 100 Sedan 1994 4.92% Chevrolet Cobalt SS 2010 4.32% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Volvo XC90 SUV 2007 14.88% Rolls-Royce Ghost Sedan 2012 9.14% BMW X5 SUV 2007 9.12% BMW X3 SUV 2012 7.56% Toyota Sequoia SUV 2012 6.4% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 BMW 1 Series Coupe 2012 17.14% Suzuki Kizashi Sedan 2012 10.28% Audi TT Hatchback 2011 9.33% Chevrolet Camaro Convertible 2012 6.16% Audi A5 Coupe 2012 5.75% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Mazda Tribute SUV 2011 79.42% smart fortwo Convertible 2012 6.8% AM General Hummer SUV 2000 4.18% Cadillac CTS-V Sedan 2012 3.33% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.61% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TL Type-S 2008 45.8% Chevrolet Impala Sedan 2007 15.81% Honda Odyssey Minivan 2012 10.4% Chevrolet HHR SS 2010 10.02% Dodge Charger SRT-8 2009 4.48% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Acura TL Type-S 2008 38.64% Infiniti G Coupe IPL 2012 29.7% Toyota Camry Sedan 2012 7.28% Hyundai Tucson SUV 2012 5.48% Chevrolet TrailBlazer SS 2009 3.25% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.8% Ford Ranger SuperCab 2011 0.11% Cadillac Escalade EXT Crew Cab 2007 0.04% HUMMER H3T Crew Cab 2010 0.03% GMC Yukon Hybrid SUV 2012 0.01% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Audi S4 Sedan 2012 77.03% Audi R8 Coupe 2012 8.34% Suzuki SX4 Hatchback 2012 3.3% BMW 1 Series Coupe 2012 1.83% Bentley Continental GT Coupe 2012 0.97% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Porsche Panamera Sedan 2012 22.04% Aston Martin V8 Vantage Coupe 2012 18.44% Chevrolet Corvette ZR1 2012 16.87% Fisker Karma Sedan 2012 9.85% Jaguar XK XKR 2012 6.52% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 McLaren MP4-12C Coupe 2012 49.19% Bugatti Veyron 16.4 Coupe 2009 22.78% Fisker Karma Sedan 2012 10.03% Ferrari California Convertible 2012 4.58% Acura Integra Type R 2001 4.13% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 31.54% Bugatti Veyron 16.4 Coupe 2009 31.24% Ferrari California Convertible 2012 26.26% Aston Martin V8 Vantage Convertible 2012 7.49% Audi RS 4 Convertible 2008 1.18% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Mercedes-Benz S-Class Sedan 2012 47.78% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 22.62% Dodge Ram Pickup 3500 Quad Cab 2009 3.73% Infiniti G Coupe IPL 2012 3.16% Chevrolet Traverse SUV 2012 2.89% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 73.93% Ford Expedition EL SUV 2009 22.71% Dodge Ram Pickup 3500 Quad Cab 2009 2.07% GMC Acadia SUV 2012 0.51% Volvo XC90 SUV 2007 0.23% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 67.68% Maybach Landaulet Convertible 2012 6.9% Jaguar XK XKR 2012 6.09% Acura RL Sedan 2012 4.35% Toyota Camry Sedan 2012 2.17% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Volvo XC90 SUV 2007 40.18% Toyota 4Runner SUV 2012 9.21% Chevrolet Silverado 2500HD Regular Cab 2012 8.06% BMW X3 SUV 2012 3.69% Mazda Tribute SUV 2011 3.47% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Mercedes-Benz SL-Class Coupe 2009 39.56% Jaguar XK XKR 2012 18.94% Audi 100 Sedan 1994 12.95% Chevrolet Express Van 2007 4.54% Hyundai Sonata Sedan 2012 4.24% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Porsche Panamera Sedan 2012 69.31% Acura TL Type-S 2008 5.34% Volkswagen Golf Hatchback 1991 5.34% Volvo 240 Sedan 1993 3.95% Mitsubishi Lancer Sedan 2012 3.51% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/1e-4/100e/conf.csv b/cars/lr-investigations/fixed/1e-4/100e/conf.csv new file mode 100644 index 0000000..74ebc33 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-4/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0833 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Silverado 2500HD Regular Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Coupe 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Mustang Convertible 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Mitsubishi Lancer Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0833 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/fixed/1e-4/100e/pred.csv b/cars/lr-investigations/fixed/1e-4/100e/pred.csv new file mode 100644 index 0000000..cdbe8de --- /dev/null +++ b/cars/lr-investigations/fixed/1e-4/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Mercedes-Benz Sprinter Van 2012 1.32% Mercedes-Benz S-Class Sedan 2012 1.06% Audi 100 Sedan 1994 0.98% Nissan Leaf Hatchback 2012 0.96% GMC Savana Van 2012 0.95% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Honda Odyssey Minivan 2007 1.63% Mercedes-Benz Sprinter Van 2012 1.53% Acura TL Sedan 2012 1.45% Ram C/V Cargo Van Minivan 2012 1.45% Dodge Caravan Minivan 1997 1.38% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Ram C/V Cargo Van Minivan 2012 2.13% FIAT 500 Convertible 2012 1.8% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.77% Nissan Leaf Hatchback 2012 1.68% MINI Cooper Roadster Convertible 2012 1.65% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 2.02% Hyundai Genesis Sedan 2012 1.6% Bugatti Veyron 16.4 Coupe 2009 1.49% Fisker Karma Sedan 2012 1.48% Spyker C8 Convertible 2009 1.41% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 1.39% Chevrolet TrailBlazer SS 2009 1.39% HUMMER H3T Crew Cab 2010 1.36% Dodge Caliber Wagon 2007 1.32% Chrysler 300 SRT-8 2010 1.31% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 1.74% Dodge Sprinter Cargo Van 2009 1.58% GMC Savana Van 2012 1.55% Volkswagen Golf Hatchback 2012 1.15% BMW X3 SUV 2012 1.11% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Hyundai Genesis Sedan 2012 1.51% Bentley Arnage Sedan 2009 1.23% Bugatti Veyron 16.4 Coupe 2009 1.15% Bentley Mulsanne Sedan 2011 1.15% Hyundai Azera Sedan 2012 1.14% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Chevrolet TrailBlazer SS 2009 2.17% Chrysler 300 SRT-8 2010 1.4% Cadillac Escalade EXT Crew Cab 2007 1.34% Ford Expedition EL SUV 2009 1.17% BMW M6 Convertible 2010 1.14% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 1.3% Chevrolet Silverado 1500 Extended Cab 2012 1.22% Daewoo Nubira Wagon 2002 1.1% Dodge Caravan Minivan 1997 1.09% Plymouth Neon Coupe 1999 1.07% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 HUMMER H2 SUT Crew Cab 2009 2.55% FIAT 500 Abarth 2012 2.38% Bentley Arnage Sedan 2009 2.22% Land Rover Range Rover SUV 2012 1.54% AM General Hummer SUV 2000 1.47% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Nissan Leaf Hatchback 2012 1.54% Ram C/V Cargo Van Minivan 2012 1.49% Dodge Caravan Minivan 1997 1.44% Mercedes-Benz Sprinter Van 2012 1.36% Volkswagen Golf Hatchback 2012 1.32% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 3.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.88% Bugatti Veyron 16.4 Convertible 2009 1.88% Maybach Landaulet Convertible 2012 1.72% Nissan Leaf Hatchback 2012 1.68% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Bentley Arnage Sedan 2009 2.21% Cadillac Escalade EXT Crew Cab 2007 2.02% Chevrolet TrailBlazer SS 2009 1.76% Ford Expedition EL SUV 2009 1.51% Land Rover Range Rover SUV 2012 1.48% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 1.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% Chevrolet Silverado 2500HD Regular Cab 2012 1.47% Chevrolet Silverado 1500 Regular Cab 2012 1.44% Ford F-450 Super Duty Crew Cab 2012 1.22% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Daewoo Nubira Wagon 2002 1.32% Rolls-Royce Phantom Sedan 2012 1.28% Nissan Leaf Hatchback 2012 1.14% Hyundai Genesis Sedan 2012 1.1% Dodge Caravan Minivan 1997 1.09% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.47% Chrysler 300 SRT-8 2010 1.32% Jeep Grand Cherokee SUV 2012 1.27% Land Rover Range Rover SUV 2012 1.24% GMC Savana Van 2012 1.13% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet TrailBlazer SS 2009 1.96% Cadillac Escalade EXT Crew Cab 2007 1.33% Ford Expedition EL SUV 2009 1.33% Dodge Ram Pickup 3500 Crew Cab 2010 1.22% Jeep Liberty SUV 2012 1.21% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Dodge Sprinter Cargo Van 2009 1.81% Mercedes-Benz Sprinter Van 2012 1.75% GMC Savana Van 2012 1.61% Chevrolet Express Cargo Van 2007 1.3% Buick Rainier SUV 2007 1.25% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 MINI Cooper Roadster Convertible 2012 2.02% Bugatti Veyron 16.4 Coupe 2009 1.74% Fisker Karma Sedan 2012 1.65% Hyundai Genesis Sedan 2012 1.63% Mercedes-Benz E-Class Sedan 2012 1.53% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 2.45% Bugatti Veyron 16.4 Convertible 2009 1.33% Ram C/V Cargo Van Minivan 2012 1.33% Daewoo Nubira Wagon 2002 1.26% BMW M3 Coupe 2012 1.21% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.59% GMC Savana Van 2012 1.44% Chrysler 300 SRT-8 2010 1.35% Dodge Durango SUV 2007 1.33% Jeep Grand Cherokee SUV 2012 1.32% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 2.22% FIAT 500 Abarth 2012 2.22% Land Rover Range Rover SUV 2012 1.25% Jeep Patriot SUV 2012 1.24% Bugatti Veyron 16.4 Coupe 2009 1.15% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Ford E-Series Wagon Van 2012 1.44% Mercedes-Benz Sprinter Van 2012 1.29% Dodge Caravan Minivan 1997 1.29% GMC Savana Van 2012 1.17% Hyundai Tucson SUV 2012 1.1% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 MINI Cooper Roadster Convertible 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.43% Hyundai Azera Sedan 2012 1.26% Bugatti Veyron 16.4 Coupe 2009 1.25% Hyundai Genesis Sedan 2012 1.24% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 BMW X5 SUV 2007 1.44% Jeep Grand Cherokee SUV 2012 1.23% Land Rover Range Rover SUV 2012 1.22% Chrysler 300 SRT-8 2010 1.17% Cadillac Escalade EXT Crew Cab 2007 1.13% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Nissan Leaf Hatchback 2012 1.21% Dodge Caravan Minivan 1997 1.08% Lincoln Town Car Sedan 2011 1.02% Acura TL Sedan 2012 1.02% Honda Odyssey Minivan 2007 1.0% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 2.03% BMW X5 SUV 2007 1.32% Mercedes-Benz Sprinter Van 2012 1.3% Dodge Sprinter Cargo Van 2009 1.29% Ford E-Series Wagon Van 2012 1.23% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Chevrolet Cobalt SS 2010 3.07% Aston Martin Virage Coupe 2012 3.01% Ferrari FF Coupe 2012 2.91% Lamborghini Aventador Coupe 2012 2.41% Chevrolet Corvette Convertible 2012 2.39% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.45% Chevrolet Silverado 1500 Regular Cab 2012 1.42% GMC Savana Van 2012 1.25% Chrysler 300 SRT-8 2010 1.16% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.12% Nissan Leaf Hatchback 2012 1.79% Rolls-Royce Phantom Sedan 2012 1.45% MINI Cooper Roadster Convertible 2012 1.45% Daewoo Nubira Wagon 2002 1.33% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 1.76% Dodge Sprinter Cargo Van 2009 1.64% Mercedes-Benz Sprinter Van 2012 1.39% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% Audi A5 Coupe 2012 1.17% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.24% BMW M3 Coupe 2012 1.23% Bugatti Veyron 16.4 Convertible 2009 1.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.14% Chrysler PT Cruiser Convertible 2008 1.09% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Ferrari FF Coupe 2012 1.62% GMC Canyon Extended Cab 2012 1.47% Chevrolet Silverado 1500 Regular Cab 2012 1.42% Dodge Ram Pickup 3500 Quad Cab 2009 1.38% GMC Savana Van 2012 1.15% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Audi S6 Sedan 2011 1.37% Ford E-Series Wagon Van 2012 1.35% Isuzu Ascender SUV 2008 1.28% Ford F-450 Super Duty Crew Cab 2012 1.27% Chrysler Aspen SUV 2009 1.25% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 1.94% Chevrolet Express Cargo Van 2007 1.64% Buick Rainier SUV 2007 1.49% Ferrari FF Coupe 2012 1.02% Chevrolet Express Van 2007 0.97% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.73% GMC Savana Van 2012 1.54% Chevrolet Silverado 1500 Regular Cab 2012 1.38% Ford F-150 Regular Cab 2012 1.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.28% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Ford E-Series Wagon Van 2012 1.47% Chrysler Aspen SUV 2009 1.4% Cadillac Escalade EXT Crew Cab 2007 1.23% Audi S6 Sedan 2011 1.23% Dodge Durango SUV 2007 1.22% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.83% Bentley Arnage Sedan 2009 1.8% Audi S6 Sedan 2011 1.41% Land Rover Range Rover SUV 2012 1.39% Chrysler 300 SRT-8 2010 1.37% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Lamborghini Diablo Coupe 2001 5.38% Chevrolet Corvette Convertible 2012 3.67% Ferrari 458 Italia Convertible 2012 3.5% Aston Martin Virage Coupe 2012 3.4% Ferrari California Convertible 2012 3.16% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 Lamborghini Diablo Coupe 2001 2.33% Spyker C8 Convertible 2009 2.14% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.88% Lamborghini Aventador Coupe 2012 1.8% AM General Hummer SUV 2000 1.64% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet TrailBlazer SS 2009 3.15% Chevrolet Silverado 1500 Regular Cab 2012 2.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.94% Chrysler 300 SRT-8 2010 1.85% BMW M6 Convertible 2010 1.53% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 McLaren MP4-12C Coupe 2012 6.73% Ferrari 458 Italia Coupe 2012 4.53% Ferrari California Convertible 2012 4.41% Aston Martin Virage Coupe 2012 4.15% Chevrolet Corvette Convertible 2012 3.77% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.31% Chevrolet Silverado 2500HD Regular Cab 2012 1.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.21% GMC Acadia SUV 2012 1.06% Jeep Grand Cherokee SUV 2012 1.01% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.01% Chevrolet Silverado 1500 Regular Cab 2012 1.98% Chevrolet Silverado 2500HD Regular Cab 2012 1.66% Chrysler 300 SRT-8 2010 1.45% Chevrolet Silverado 1500 Extended Cab 2012 1.33% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 BMW X5 SUV 2007 1.21% Chrysler Aspen SUV 2009 1.13% Ford E-Series Wagon Van 2012 1.11% GMC Savana Van 2012 1.05% Dodge Caravan Minivan 1997 1.02% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 1.79% Chevrolet Silverado 1500 Regular Cab 2012 1.15% Chevrolet Silverado 2500HD Regular Cab 2012 1.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.03% Buick Rainier SUV 2007 0.99% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 1.5% Dodge Caravan Minivan 1997 1.46% Chrysler Aspen SUV 2009 1.2% Nissan Leaf Hatchback 2012 1.18% Dodge Challenger SRT8 2011 1.15% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 1.8% Mercedes-Benz S-Class Sedan 2012 1.77% Ram C/V Cargo Van Minivan 2012 1.74% Bugatti Veyron 16.4 Convertible 2009 1.45% MINI Cooper Roadster Convertible 2012 1.4% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 McLaren MP4-12C Coupe 2012 2.53% HUMMER H2 SUT Crew Cab 2009 2.32% AM General Hummer SUV 2000 2.22% Ferrari 458 Italia Coupe 2012 1.99% Audi TT RS Coupe 2012 1.92% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Ford E-Series Wagon Van 2012 1.15% Dodge Caravan Minivan 1997 1.04% Audi S6 Sedan 2011 0.97% BMW X5 SUV 2007 0.96% Hyundai Tucson SUV 2012 0.96% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Bentley Arnage Sedan 2009 1.94% Land Rover Range Rover SUV 2012 1.44% Cadillac SRX SUV 2012 1.31% FIAT 500 Abarth 2012 1.26% Jeep Patriot SUV 2012 1.23% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 1.89% Bugatti Veyron 16.4 Coupe 2009 1.63% Mercedes-Benz E-Class Sedan 2012 1.45% Audi S5 Convertible 2012 1.33% Fisker Karma Sedan 2012 1.3% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Hyundai Azera Sedan 2012 1.57% Hyundai Genesis Sedan 2012 1.27% Dodge Challenger SRT8 2011 1.27% Bentley Arnage Sedan 2009 1.18% Ford E-Series Wagon Van 2012 1.16% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 1.57% Chevrolet Express Cargo Van 2007 1.17% Ford F-150 Regular Cab 2012 1.04% Buick Rainier SUV 2007 1.03% Jeep Grand Cherokee SUV 2012 1.02% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Bentley Arnage Sedan 2009 1.77% Land Rover Range Rover SUV 2012 1.54% FIAT 500 Abarth 2012 1.48% Jeep Patriot SUV 2012 1.31% Jeep Compass SUV 2012 1.2% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.84% Cadillac Escalade EXT Crew Cab 2007 1.48% Chrysler 300 SRT-8 2010 1.44% Chevrolet Avalanche Crew Cab 2012 1.31% Dodge Durango SUV 2007 1.3% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Chevrolet TrailBlazer SS 2009 2.05% Chevrolet Silverado 1500 Regular Cab 2012 1.91% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.7% Chrysler 300 SRT-8 2010 1.61% Dodge Ram Pickup 3500 Crew Cab 2010 1.32% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Lamborghini Diablo Coupe 2001 5.17% McLaren MP4-12C Coupe 2012 3.49% Audi TT RS Coupe 2012 3.03% Ferrari California Convertible 2012 2.76% Ferrari 458 Italia Convertible 2012 2.75% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Chevrolet Corvette Convertible 2012 2.51% Aston Martin Virage Coupe 2012 2.35% Ferrari California Convertible 2012 2.11% BMW 1 Series Coupe 2012 1.98% Dodge Caliber Wagon 2007 1.87% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 MINI Cooper Roadster Convertible 2012 1.77% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% Nissan Leaf Hatchback 2012 1.61% Rolls-Royce Phantom Sedan 2012 1.39% Mercedes-Benz S-Class Sedan 2012 1.22% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Dodge Caravan Minivan 1997 1.35% Ford E-Series Wagon Van 2012 1.25% Nissan Leaf Hatchback 2012 1.22% Chrysler PT Cruiser Convertible 2008 1.21% Dodge Challenger SRT8 2011 1.16% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 McLaren MP4-12C Coupe 2012 2.66% Audi TT RS Coupe 2012 2.63% AM General Hummer SUV 2000 2.09% HUMMER H2 SUT Crew Cab 2009 1.93% Ferrari California Convertible 2012 1.91% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 2.8% FIAT 500 Abarth 2012 2.41% Chevrolet TrailBlazer SS 2009 1.9% Land Rover Range Rover SUV 2012 1.63% Chrysler 300 SRT-8 2010 1.54% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz E-Class Sedan 2012 3.33% MINI Cooper Roadster Convertible 2012 3.04% FIAT 500 Convertible 2012 2.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.03% Fisker Karma Sedan 2012 1.91% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 2.67% Lamborghini Aventador Coupe 2012 2.63% AM General Hummer SUV 2000 2.41% Audi TT RS Coupe 2012 2.09% Chevrolet Corvette Convertible 2012 2.06% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Ford F-150 Regular Cab 2012 1.09% Jeep Grand Cherokee SUV 2012 1.08% GMC Savana Van 2012 1.05% Chevrolet Express Cargo Van 2007 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.99% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Cadillac Escalade EXT Crew Cab 2007 1.8% Chrysler 300 SRT-8 2010 1.53% Chrysler Aspen SUV 2009 1.28% Land Rover Range Rover SUV 2012 1.26% Dodge Durango SUV 2007 1.26% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 HUMMER H2 SUT Crew Cab 2009 2.08% Chevrolet TrailBlazer SS 2009 1.59% GMC Savana Van 2012 1.57% AM General Hummer SUV 2000 1.47% HUMMER H3T Crew Cab 2010 1.46% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.46% GMC Savana Van 2012 1.31% Dodge Sprinter Cargo Van 2009 1.24% BMW ActiveHybrid 5 Sedan 2012 1.11% Audi A5 Coupe 2012 1.1% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.46% Nissan Leaf Hatchback 2012 2.44% Ram C/V Cargo Van Minivan 2012 1.97% MINI Cooper Roadster Convertible 2012 1.91% FIAT 500 Convertible 2012 1.74% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chevrolet Silverado 1500 Regular Cab 2012 2.27% Cadillac Escalade EXT Crew Cab 2007 2.1% Chrysler 300 SRT-8 2010 2.06% Chevrolet TrailBlazer SS 2009 1.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.93% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 2.76% Chevrolet TrailBlazer SS 2009 2.69% Chrysler 300 SRT-8 2010 1.99% Dodge Durango SUV 2007 1.58% Land Rover Range Rover SUV 2012 1.53% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 1.62% Dodge Sprinter Cargo Van 2009 1.46% Mercedes-Benz Sprinter Van 2012 1.34% Ram C/V Cargo Van Minivan 2012 1.25% Volkswagen Golf Hatchback 2012 1.08% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 1.08% Chevrolet Express Cargo Van 2007 1.01% Mercedes-Benz Sprinter Van 2012 0.94% Lincoln Town Car Sedan 2011 0.88% Honda Odyssey Minivan 2007 0.83% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 1.48% Jeep Grand Cherokee SUV 2012 1.47% Ford F-150 Regular Cab 2012 1.43% BMW X5 SUV 2007 1.34% Chevrolet Avalanche Crew Cab 2012 1.27% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Mercedes-Benz Sprinter Van 2012 1.91% Mercedes-Benz S-Class Sedan 2012 1.79% Lincoln Town Car Sedan 2011 1.67% Ram C/V Cargo Van Minivan 2012 1.44% Acura TL Sedan 2012 1.36% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Bentley Arnage Sedan 2009 3.35% FIAT 500 Abarth 2012 2.82% HUMMER H2 SUT Crew Cab 2009 1.54% Chevrolet TrailBlazer SS 2009 1.44% Land Rover Range Rover SUV 2012 1.39% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Ferrari 458 Italia Coupe 2012 4.04% Aston Martin Virage Coupe 2012 3.4% Lamborghini Aventador Coupe 2012 3.09% Dodge Charger SRT-8 2009 3.03% Ferrari 458 Italia Convertible 2012 2.98% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Caliber Wagon 2007 3.02% Ferrari 458 Italia Coupe 2012 2.75% Chevrolet Corvette Convertible 2012 2.57% McLaren MP4-12C Coupe 2012 2.23% Aston Martin Virage Coupe 2012 2.22% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 1.48% Chevrolet Express Cargo Van 2007 1.22% BMW X5 SUV 2007 1.2% Ford F-150 Regular Cab 2012 1.06% Buick Rainier SUV 2007 1.02% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 1.61% Dodge Sprinter Cargo Van 2009 1.35% Mercedes-Benz Sprinter Van 2012 1.35% Volkswagen Golf Hatchback 2012 1.17% Ram C/V Cargo Van Minivan 2012 1.16% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 1.79% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% GMC Acadia SUV 2012 1.09% Chevrolet Avalanche Crew Cab 2012 1.04% Dodge Sprinter Cargo Van 2009 1.03% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chevrolet TrailBlazer SS 2009 2.67% Chevrolet Silverado 1500 Regular Cab 2012 2.11% Chrysler 300 SRT-8 2010 2.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.94% Cadillac Escalade EXT Crew Cab 2007 1.8% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Spyker C8 Convertible 2009 1.43% Bugatti Veyron 16.4 Coupe 2009 1.16% Hyundai Veloster Hatchback 2012 1.05% Ford GT Coupe 2006 1.04% Mitsubishi Lancer Sedan 2012 1.03% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 Mercedes-Benz S-Class Sedan 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.39% MINI Cooper Roadster Convertible 2012 1.17% Ram C/V Cargo Van Minivan 2012 1.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.04% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 2.18% Chevrolet Express Cargo Van 2007 1.67% Buick Rainier SUV 2007 1.52% Ford F-150 Regular Cab 2012 1.33% BMW X5 SUV 2007 1.27% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Bentley Arnage Sedan 2009 1.7% Hyundai Genesis Sedan 2012 1.43% Land Rover Range Rover SUV 2012 1.32% Cadillac Escalade EXT Crew Cab 2007 1.31% Chrysler 300 SRT-8 2010 1.24% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Dodge Sprinter Cargo Van 2009 2.29% Mercedes-Benz Sprinter Van 2012 1.78% Ram C/V Cargo Van Minivan 2012 1.44% GMC Savana Van 2012 1.43% Lincoln Town Car Sedan 2011 1.35% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 FIAT 500 Abarth 2012 5.7% Bentley Arnage Sedan 2009 3.68% Jeep Patriot SUV 2012 1.75% HUMMER H2 SUT Crew Cab 2009 1.56% Land Rover Range Rover SUV 2012 1.55% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Ford GT Coupe 2006 1.17% Spyker C8 Convertible 2009 1.12% Spyker C8 Coupe 2009 0.94% Daewoo Nubira Wagon 2002 0.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.91% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Lamborghini Diablo Coupe 2001 1.78% Chevrolet Sonic Sedan 2012 1.22% Daewoo Nubira Wagon 2002 1.21% Volvo C30 Hatchback 2012 1.2% Spyker C8 Convertible 2009 1.17% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Plymouth Neon Coupe 1999 1.23% Dodge Ram Pickup 3500 Crew Cab 2010 1.19% GMC Savana Van 2012 1.19% Honda Accord Coupe 2012 1.14% Ferrari FF Coupe 2012 1.08% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.39% Bentley Arnage Sedan 2009 2.1% Chrysler 300 SRT-8 2010 2.05% Land Rover Range Rover SUV 2012 1.84% Chevrolet TrailBlazer SS 2009 1.71% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Bentley Arnage Sedan 2009 3.48% FIAT 500 Abarth 2012 3.25% Chevrolet TrailBlazer SS 2009 2.6% Cadillac Escalade EXT Crew Cab 2007 1.83% Land Rover Range Rover SUV 2012 1.63% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 1.95% FIAT 500 Abarth 2012 1.86% HUMMER H2 SUT Crew Cab 2009 1.72% Land Rover Range Rover SUV 2012 1.51% Jeep Patriot SUV 2012 1.32% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet TrailBlazer SS 2009 2.7% Chevrolet Silverado 1500 Regular Cab 2012 2.53% Chrysler 300 SRT-8 2010 2.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.09% Cadillac Escalade EXT Crew Cab 2007 1.83% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz Sprinter Van 2012 1.46% Dodge Sprinter Cargo Van 2009 1.13% Ford E-Series Wagon Van 2012 1.12% Audi S6 Sedan 2011 1.1% GMC Savana Van 2012 1.1% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Ferrari 458 Italia Coupe 2012 4.47% McLaren MP4-12C Coupe 2012 4.05% Aston Martin Virage Coupe 2012 4.02% Chevrolet Corvette Convertible 2012 3.91% Dodge Caliber Wagon 2007 3.84% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Chevrolet TrailBlazer SS 2009 2.3% Chevrolet Silverado 1500 Regular Cab 2012 2.23% Chrysler 300 SRT-8 2010 2.18% Cadillac Escalade EXT Crew Cab 2007 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.07% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.1% MINI Cooper Roadster Convertible 2012 1.68% Mercedes-Benz S-Class Sedan 2012 1.59% Nissan Leaf Hatchback 2012 1.54% Bugatti Veyron 16.4 Convertible 2009 1.48% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Regular Cab 2012 1.82% Cadillac Escalade EXT Crew Cab 2007 1.64% Chrysler 300 SRT-8 2010 1.56% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.55% Jeep Grand Cherokee SUV 2012 1.4% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.39% FIAT 500 Convertible 2012 1.96% Bugatti Veyron 16.4 Convertible 2009 1.7% Mercedes-Benz S-Class Sedan 2012 1.68% BMW 1 Series Convertible 2012 1.51% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.81% Chevrolet Silverado 1500 Regular Cab 2012 1.78% Chevrolet Silverado 2500HD Regular Cab 2012 1.7% Chrysler 300 SRT-8 2010 1.58% Chevrolet Silverado 1500 Extended Cab 2012 1.27% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 HUMMER H2 SUT Crew Cab 2009 4.88% AM General Hummer SUV 2000 3.56% Jeep Wrangler SUV 2012 3.03% HUMMER H3T Crew Cab 2010 2.69% Dodge Caliber Wagon 2007 2.61% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Jeep Compass SUV 2012 1.33% Hyundai Azera Sedan 2012 1.25% Bentley Mulsanne Sedan 2011 1.19% Bugatti Veyron 16.4 Coupe 2009 1.18% Land Rover Range Rover SUV 2012 1.17% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.58% Chevrolet Silverado 1500 Regular Cab 2012 1.49% GMC Savana Van 2012 1.47% Chevrolet Silverado 2500HD Regular Cab 2012 1.44% Jeep Grand Cherokee SUV 2012 1.34% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Bentley Arnage Sedan 2009 2.4% FIAT 500 Abarth 2012 1.71% Land Rover Range Rover SUV 2012 1.69% Chrysler 300 SRT-8 2010 1.41% Hyundai Genesis Sedan 2012 1.36% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 MINI Cooper Roadster Convertible 2012 1.84% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.69% FIAT 500 Convertible 2012 1.43% Mercedes-Benz S-Class Sedan 2012 1.36% Ram C/V Cargo Van Minivan 2012 1.2% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 1.6% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.43% Jeep Grand Cherokee SUV 2012 1.36% Ford F-150 Regular Cab 2012 1.36% Chevrolet Silverado 2500HD Regular Cab 2012 1.35% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.96% MINI Cooper Roadster Convertible 2012 1.78% Nissan Leaf Hatchback 2012 1.65% Rolls-Royce Phantom Sedan 2012 1.38% Hyundai Azera Sedan 2012 1.31% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Aston Martin Virage Coupe 2012 3.79% Chevrolet Corvette Convertible 2012 3.64% Chevrolet Cobalt SS 2010 3.22% Dodge Caliber Wagon 2007 2.97% Ferrari 458 Italia Coupe 2012 2.9% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Mercedes-Benz Sprinter Van 2012 1.39% Lincoln Town Car Sedan 2011 1.23% GMC Savana Van 2012 1.14% Buick Rainier SUV 2007 1.06% Acura TL Sedan 2012 1.06% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.52% FIAT 500 Convertible 2012 1.27% Mercedes-Benz S-Class Sedan 2012 1.22% MINI Cooper Roadster Convertible 2012 1.18% Mercedes-Benz Sprinter Van 2012 1.17% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 1.56% Plymouth Neon Coupe 1999 1.1% Daewoo Nubira Wagon 2002 1.07% BMW M3 Coupe 2012 1.06% Dodge Dakota Club Cab 2007 0.99% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 7.6% McLaren MP4-12C Coupe 2012 5.68% Chevrolet Corvette Convertible 2012 5.58% Ferrari 458 Italia Convertible 2012 5.57% Ferrari California Convertible 2012 5.49% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Rolls-Royce Phantom Sedan 2012 1.56% Nissan Leaf Hatchback 2012 1.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.4% Hyundai Genesis Sedan 2012 1.31% Bentley Continental Supersports Conv. Convertible 2012 1.19% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Ram C/V Cargo Van Minivan 2012 2.07% BMW 1 Series Convertible 2012 1.45% Ferrari FF Coupe 2012 1.45% GMC Savana Van 2012 1.44% Dodge Sprinter Cargo Van 2009 1.28% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 1.34% BMW X5 SUV 2007 1.28% Jeep Grand Cherokee SUV 2012 1.19% Cadillac Escalade EXT Crew Cab 2007 1.17% GMC Yukon Hybrid SUV 2012 1.14% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Hyundai Azera Sedan 2012 1.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.43% MINI Cooper Roadster Convertible 2012 1.25% Nissan Leaf Hatchback 2012 1.15% Ford E-Series Wagon Van 2012 1.1% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Bentley Arnage Sedan 2009 3.55% FIAT 500 Abarth 2012 3.06% Land Rover Range Rover SUV 2012 1.77% Lamborghini Reventon Coupe 2008 1.71% Bugatti Veyron 16.4 Coupe 2009 1.68% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 FIAT 500 Convertible 2012 5.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.03% Bugatti Veyron 16.4 Convertible 2009 2.14% Maybach Landaulet Convertible 2012 1.93% Bentley Continental Supersports Conv. Convertible 2012 1.61% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Chevrolet TrailBlazer SS 2009 2.43% Cadillac Escalade EXT Crew Cab 2007 2.25% Chrysler 300 SRT-8 2010 2.06% Chevrolet Silverado 1500 Regular Cab 2012 2.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.54% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.55% Audi TT RS Coupe 2012 2.03% AM General Hummer SUV 2000 1.76% Spyker C8 Convertible 2009 1.58% Dodge Caliber Wagon 2007 1.56% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Mercedes-Benz S-Class Sedan 2012 0.98% Mercedes-Benz Sprinter Van 2012 0.96% Dodge Caravan Minivan 1997 0.94% Nissan Leaf Hatchback 2012 0.91% MINI Cooper Roadster Convertible 2012 0.89% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 FIAT 500 Abarth 2012 4.51% Bentley Arnage Sedan 2009 3.09% Chevrolet TrailBlazer SS 2009 1.53% Jeep Patriot SUV 2012 1.52% Land Rover Range Rover SUV 2012 1.45% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Bentley Arnage Sedan 2009 2.03% Hyundai Azera Sedan 2012 1.51% Land Rover Range Rover SUV 2012 1.48% FIAT 500 Abarth 2012 1.39% Cadillac SRX SUV 2012 1.37% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 1.47% Dodge Sprinter Cargo Van 2009 1.22% Mercedes-Benz Sprinter Van 2012 1.14% Volkswagen Golf Hatchback 2012 1.0% Chevrolet Avalanche Crew Cab 2012 0.98% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 1.77% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.46% Chevrolet Silverado 1500 Regular Cab 2012 1.45% GMC Acadia SUV 2012 1.44% Chrysler 300 SRT-8 2010 1.32% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Ram C/V Cargo Van Minivan 2012 1.43% Mercedes-Benz Sprinter Van 2012 1.37% Bugatti Veyron 16.4 Convertible 2009 1.21% Mercedes-Benz S-Class Sedan 2012 1.21% Lincoln Town Car Sedan 2011 1.13% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Daewoo Nubira Wagon 2002 0.85% GMC Savana Van 2012 0.82% Buick Rainier SUV 2007 0.8% Hyundai Genesis Sedan 2012 0.79% Isuzu Ascender SUV 2008 0.78% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Dodge Challenger SRT8 2011 1.23% Chrysler Aspen SUV 2009 1.23% Ford E-Series Wagon Van 2012 1.22% Audi S6 Sedan 2011 1.19% Jeep Compass SUV 2012 1.1% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Lamborghini Diablo Coupe 2001 5.72% Audi TT RS Coupe 2012 4.87% McLaren MP4-12C Coupe 2012 3.94% Chevrolet Corvette Convertible 2012 3.61% Aston Martin Virage Coupe 2012 3.33% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Ford Expedition EL SUV 2009 1.28% Chevrolet TrailBlazer SS 2009 1.27% Cadillac Escalade EXT Crew Cab 2007 1.2% Chrysler 300 SRT-8 2010 1.11% Dodge Ram Pickup 3500 Crew Cab 2010 1.07% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 1.68% Chevrolet Silverado 1500 Regular Cab 2012 1.2% Isuzu Ascender SUV 2008 1.15% Ford F-150 Regular Cab 2012 1.13% Chevrolet Silverado 2500HD Regular Cab 2012 1.12% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.76% Spyker C8 Convertible 2009 1.67% Dodge Caliber Wagon 2007 1.49% Lamborghini Diablo Coupe 2001 1.39% Lamborghini Aventador Coupe 2012 1.3% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Aston Martin Virage Coupe 2012 4.82% Chevrolet Corvette Convertible 2012 4.76% Chevrolet Cobalt SS 2010 3.35% Lamborghini Aventador Coupe 2012 3.11% Ferrari 458 Italia Coupe 2012 3.04% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 1.47% Cadillac Escalade EXT Crew Cab 2007 1.38% Chrysler 300 SRT-8 2010 1.33% BMW X5 SUV 2007 1.22% Land Rover Range Rover SUV 2012 1.22% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 1.64% Mercedes-Benz Sprinter Van 2012 1.19% Chevrolet Express Cargo Van 2007 1.16% Buick Rainier SUV 2007 1.06% Dodge Sprinter Cargo Van 2009 1.04% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 HUMMER H2 SUT Crew Cab 2009 2.13% Mercedes-Benz E-Class Sedan 2012 1.79% Mercedes-Benz 300-Class Convertible 1993 1.65% Fisker Karma Sedan 2012 1.64% AM General Hummer SUV 2000 1.64% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Dodge Caliber Wagon 2007 1.76% Ferrari FF Coupe 2012 1.57% McLaren MP4-12C Coupe 2012 1.56% BMW 1 Series Coupe 2012 1.49% Ferrari California Convertible 2012 1.33% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Bentley Arnage Sedan 2009 2.23% Chevrolet TrailBlazer SS 2009 2.01% Cadillac Escalade EXT Crew Cab 2007 1.83% FIAT 500 Abarth 2012 1.56% Ford Expedition EL SUV 2009 1.42% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Dodge Caliber Wagon 2007 2.75% AM General Hummer SUV 2000 1.83% HUMMER H2 SUT Crew Cab 2009 1.71% HUMMER H3T Crew Cab 2010 1.7% Ferrari 458 Italia Coupe 2012 1.65% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Ram C/V Cargo Van Minivan 2012 1.59% GMC Savana Van 2012 1.09% Honda Odyssey Minivan 2007 1.06% Volkswagen Golf Hatchback 2012 1.05% Nissan Leaf Hatchback 2012 1.04% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Aston Martin Virage Coupe 2012 3.53% Ferrari California Convertible 2012 3.38% Ferrari 458 Italia Coupe 2012 3.12% Ferrari 458 Italia Convertible 2012 3.08% Chevrolet Corvette Convertible 2012 2.99% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 1.62% Cadillac Escalade EXT Crew Cab 2007 1.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.44% Chevrolet Silverado 1500 Regular Cab 2012 1.43% Chrysler 300 SRT-8 2010 1.41% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 FIAT 500 Abarth 2012 5.03% Bentley Arnage Sedan 2009 3.35% Bugatti Veyron 16.4 Coupe 2009 1.64% HUMMER H2 SUT Crew Cab 2009 1.6% Spyker C8 Convertible 2009 1.56% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.42% Chevrolet Silverado 1500 Regular Cab 2012 1.41% Chevrolet Avalanche Crew Cab 2012 1.27% Cadillac Escalade EXT Crew Cab 2007 1.24% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 HUMMER H2 SUT Crew Cab 2009 5.76% AM General Hummer SUV 2000 4.54% HUMMER H3T Crew Cab 2010 2.8% McLaren MP4-12C Coupe 2012 1.98% Jeep Wrangler SUV 2012 1.58% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 1.93% Chrysler 300 SRT-8 2010 1.72% Cadillac Escalade EXT Crew Cab 2007 1.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.63% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 9.06% Chevrolet Corvette Convertible 2012 4.82% Ferrari California Convertible 2012 4.25% Ferrari 458 Italia Coupe 2012 4.23% Ferrari 458 Italia Convertible 2012 4.16% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Bugatti Veyron 16.4 Convertible 2009 1.05% Mercedes-Benz Sprinter Van 2012 1.02% BMW X3 SUV 2012 0.97% Daewoo Nubira Wagon 2002 0.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.94% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 1.66% Ford E-Series Wagon Van 2012 1.51% Chevrolet Avalanche Crew Cab 2012 1.32% BMW X5 SUV 2007 1.32% Audi S6 Sedan 2011 1.31% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chevrolet TrailBlazer SS 2009 2.35% Ford Expedition EL SUV 2009 2.14% Cadillac Escalade EXT Crew Cab 2007 2.02% Dodge Ram Pickup 3500 Crew Cab 2010 1.69% Chrysler 300 SRT-8 2010 1.53% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 2.15% Mercedes-Benz E-Class Sedan 2012 2.03% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.81% Rolls-Royce Phantom Sedan 2012 1.73% Nissan Leaf Hatchback 2012 1.57% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 FIAT 500 Convertible 2012 1.27% Bugatti Veyron 16.4 Convertible 2009 1.05% BMW M3 Coupe 2012 1.01% Daewoo Nubira Wagon 2002 0.98% Chevrolet Sonic Sedan 2012 0.97% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 2.47% FIAT 500 Abarth 2012 2.08% Land Rover Range Rover SUV 2012 1.76% Bugatti Veyron 16.4 Coupe 2009 1.66% Lamborghini Reventon Coupe 2008 1.47% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Mercedes-Benz S-Class Sedan 2012 1.67% MINI Cooper Roadster Convertible 2012 1.44% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.31% Bugatti Veyron 16.4 Convertible 2009 1.06% Bugatti Veyron 16.4 Coupe 2009 1.06% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Rolls-Royce Phantom Sedan 2012 1.36% Daewoo Nubira Wagon 2002 0.94% Nissan Leaf Hatchback 2012 0.93% Mercedes-Benz C-Class Sedan 2012 0.89% Chevrolet Sonic Sedan 2012 0.86% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Chevrolet Cobalt SS 2010 2.7% Ferrari FF Coupe 2012 2.62% Aston Martin Virage Coupe 2012 2.58% Dodge Caliber Wagon 2007 2.5% BMW 1 Series Coupe 2012 2.33% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 3.88% Ferrari 458 Italia Coupe 2012 3.7% Chevrolet Corvette Convertible 2012 3.19% Ferrari 458 Italia Convertible 2012 2.96% Chevrolet Cobalt SS 2010 2.96% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Mercedes-Benz S-Class Sedan 2012 1.45% Mercedes-Benz Sprinter Van 2012 1.43% Lincoln Town Car Sedan 2011 1.18% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.13% MINI Cooper Roadster Convertible 2012 1.12% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 FIAT 500 Convertible 2012 3.53% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.69% Nissan Leaf Hatchback 2012 2.28% Ram C/V Cargo Van Minivan 2012 1.92% Daewoo Nubira Wagon 2002 1.91% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.72% Dodge Durango SUV 2007 1.85% Chrysler 300 SRT-8 2010 1.63% Chevrolet TrailBlazer SS 2009 1.62% Ford F-450 Super Duty Crew Cab 2012 1.51% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Chevrolet TrailBlazer SS 2009 1.94% Chrysler 300 SRT-8 2010 1.46% Cadillac Escalade EXT Crew Cab 2007 1.43% Land Rover Range Rover SUV 2012 1.27% Bentley Arnage Sedan 2009 1.23% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 1.35% BMW 1 Series Coupe 2012 1.34% BMW M3 Coupe 2012 1.15% Hyundai Veloster Hatchback 2012 1.09% Dodge Caliber Wagon 2007 1.07% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 FIAT 500 Convertible 2012 1.07% Ram C/V Cargo Van Minivan 2012 1.03% Daewoo Nubira Wagon 2002 0.96% GMC Savana Van 2012 0.95% Mercedes-Benz S-Class Sedan 2012 0.9% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 2.8% AM General Hummer SUV 2000 2.24% Jeep Wrangler SUV 2012 1.86% Dodge Charger Sedan 2012 1.76% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.76% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Land Rover Range Rover SUV 2012 1.85% Bentley Arnage Sedan 2009 1.85% Cadillac Escalade EXT Crew Cab 2007 1.76% Chevrolet TrailBlazer SS 2009 1.75% FIAT 500 Abarth 2012 1.75% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 1.64% Ferrari FF Coupe 2012 1.55% Chevrolet Silverado 1500 Regular Cab 2012 1.25% Buick Rainier SUV 2007 1.16% Chevrolet Express Cargo Van 2007 1.08% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Dodge Sprinter Cargo Van 2009 1.91% Ram C/V Cargo Van Minivan 2012 1.78% Mercedes-Benz Sprinter Van 2012 1.6% BMW 1 Series Convertible 2012 1.51% BMW ActiveHybrid 5 Sedan 2012 1.31% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Aston Martin Virage Coupe 2012 3.58% McLaren MP4-12C Coupe 2012 3.49% Ferrari 458 Italia Coupe 2012 3.24% Ferrari California Convertible 2012 3.14% Lamborghini Diablo Coupe 2001 3.1% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 BMW X5 SUV 2007 1.5% GMC Savana Van 2012 1.42% Jeep Grand Cherokee SUV 2012 1.22% Chrysler 300 SRT-8 2010 1.2% GMC Yukon Hybrid SUV 2012 1.2% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 1.94% Dodge Sprinter Cargo Van 2009 1.48% Mercedes-Benz Sprinter Van 2012 1.39% Ford E-Series Wagon Van 2012 1.34% BMW X5 SUV 2007 1.29% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 BMW X5 SUV 2007 1.34% Jeep Compass SUV 2012 1.32% Land Rover Range Rover SUV 2012 1.3% GMC Yukon Hybrid SUV 2012 1.21% Bentley Arnage Sedan 2009 1.12% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 1.81% Chrysler 300 SRT-8 2010 1.45% Chevrolet Silverado 1500 Regular Cab 2012 1.41% Cadillac Escalade EXT Crew Cab 2007 1.32% Volkswagen Golf Hatchback 1991 1.24% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.06% Buick Rainier SUV 2007 1.0% BMW X5 SUV 2007 1.0% Dodge Caravan Minivan 1997 0.98% GMC Savana Van 2012 0.95% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 1.81% GMC Savana Van 2012 1.37% Dodge Sprinter Cargo Van 2009 1.35% BMW 1 Series Convertible 2012 1.28% BMW ActiveHybrid 5 Sedan 2012 1.21% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 16.07% McLaren MP4-12C Coupe 2012 7.34% Ferrari 458 Italia Coupe 2012 5.71% Ferrari 458 Italia Convertible 2012 4.12% Ferrari California Convertible 2012 4.02% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 1.31% BMW X5 SUV 2007 1.22% Jeep Grand Cherokee SUV 2012 1.13% Chevrolet Avalanche Crew Cab 2012 1.04% Chevrolet Silverado 1500 Regular Cab 2012 0.99% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Ferrari FF Coupe 2012 2.79% Dodge Caliber Wagon 2007 2.16% GMC Canyon Extended Cab 2012 1.9% Honda Accord Coupe 2012 1.85% Chevrolet Cobalt SS 2010 1.53% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Mercedes-Benz E-Class Sedan 2012 1.35% Hyundai Genesis Sedan 2012 1.34% Hyundai Azera Sedan 2012 1.33% Rolls-Royce Phantom Sedan 2012 1.29% MINI Cooper Roadster Convertible 2012 1.21% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Fisker Karma Sedan 2012 1.78% Audi S5 Convertible 2012 1.41% Bugatti Veyron 16.4 Coupe 2009 1.35% MINI Cooper Roadster Convertible 2012 1.31% Acura TL Type-S 2008 1.21% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 1.95% Dodge Sprinter Cargo Van 2009 1.3% Buick Rainier SUV 2007 1.22% Chevrolet Express Cargo Van 2007 1.09% Mercedes-Benz Sprinter Van 2012 1.08% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 FIAT 500 Convertible 2012 2.49% Ram C/V Cargo Van Minivan 2012 1.96% BMW 1 Series Convertible 2012 1.34% Ferrari FF Coupe 2012 1.23% Suzuki Aerio Sedan 2007 1.16% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 FIAT 500 Convertible 2012 2.03% Ram C/V Cargo Van Minivan 2012 1.94% GMC Savana Van 2012 1.64% Ferrari FF Coupe 2012 1.32% Daewoo Nubira Wagon 2002 1.3% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Dodge Sprinter Cargo Van 2009 1.68% Mercedes-Benz Sprinter Van 2012 1.57% GMC Savana Van 2012 1.53% Acura TL Sedan 2012 1.26% Honda Odyssey Minivan 2007 1.17% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 6.08% Chevrolet Corvette Convertible 2012 6.05% Ferrari 458 Italia Convertible 2012 5.39% Lamborghini Aventador Coupe 2012 4.57% Chevrolet Cobalt SS 2010 4.48% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 2.24% Chevrolet Express Cargo Van 2007 1.6% BMW X5 SUV 2007 1.42% Ford F-150 Regular Cab 2012 1.36% Buick Rainier SUV 2007 1.35% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Ram C/V Cargo Van Minivan 2012 1.74% FIAT 500 Convertible 2012 1.62% Lincoln Town Car Sedan 2011 1.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.16% Bugatti Veyron 16.4 Convertible 2009 1.13% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Nissan Leaf Hatchback 2012 1.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.5% Dodge Caravan Minivan 1997 1.43% Chrysler PT Cruiser Convertible 2008 1.34% MINI Cooper Roadster Convertible 2012 1.29% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Ford E-Series Wagon Van 2012 1.51% Nissan Leaf Hatchback 2012 1.5% Dodge Caravan Minivan 1997 1.39% Audi S6 Sedan 2011 1.31% Hyundai Genesis Sedan 2012 1.24% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.22% Mercedes-Benz Sprinter Van 2012 1.11% Mercedes-Benz S-Class Sedan 2012 1.01% Audi 100 Sedan 1994 0.98% Daewoo Nubira Wagon 2002 0.96% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Dodge Caliber Wagon 2007 2.21% Ferrari FF Coupe 2012 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.34% BMW 1 Series Coupe 2012 1.31% GMC Canyon Extended Cab 2012 1.21% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Convertible 2012 6.5% Mercedes-Benz E-Class Sedan 2012 2.71% Ram C/V Cargo Van Minivan 2012 1.69% Maybach Landaulet Convertible 2012 1.61% Bugatti Veyron 16.4 Convertible 2009 1.52% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 MINI Cooper Roadster Convertible 2012 1.01% Ram C/V Cargo Van Minivan 2012 0.92% Nissan Leaf Hatchback 2012 0.91% Mercedes-Benz E-Class Sedan 2012 0.91% Rolls-Royce Phantom Sedan 2012 0.89% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 3.44% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.47% MINI Cooper Roadster Convertible 2012 2.0% Maybach Landaulet Convertible 2012 1.88% Spyker C8 Coupe 2009 1.72% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 AM General Hummer SUV 2000 2.68% HUMMER H2 SUT Crew Cab 2009 2.1% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.8% HUMMER H3T Crew Cab 2010 1.63% Spyker C8 Convertible 2009 1.36% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Acura TL Sedan 2012 1.05% Mercedes-Benz Sprinter Van 2012 1.04% Audi A5 Coupe 2012 1.04% Dodge Sprinter Cargo Van 2009 0.95% Volkswagen Golf Hatchback 2012 0.92% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.09% Dodge Sprinter Cargo Van 2009 1.77% GMC Savana Van 2012 1.58% BMW 1 Series Convertible 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.4% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Audi S6 Sedan 2011 1.21% GMC Acadia SUV 2012 1.01% BMW X5 SUV 2007 1.01% GMC Savana Van 2012 0.99% Chrysler 300 SRT-8 2010 0.98% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 1.31% Jeep Liberty SUV 2012 1.13% Dodge Caliber Wagon 2007 1.06% Chevrolet TrailBlazer SS 2009 0.97% Chevrolet Avalanche Crew Cab 2012 0.92% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 HUMMER H2 SUT Crew Cab 2009 2.37% Chevrolet Corvette ZR1 2012 1.8% Volkswagen Golf Hatchback 1991 1.49% Jeep Wrangler SUV 2012 1.23% Fisker Karma Sedan 2012 1.1% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 1.82% Dodge Caliber Wagon 2007 1.74% HUMMER H2 SUT Crew Cab 2009 1.68% HUMMER H3T Crew Cab 2010 1.6% McLaren MP4-12C Coupe 2012 1.56% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 10.58% McLaren MP4-12C Coupe 2012 5.68% Audi TT RS Coupe 2012 4.31% Chevrolet HHR SS 2010 3.92% Ferrari 458 Italia Coupe 2012 3.77% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 2.65% BMW X5 SUV 2007 1.43% Chevrolet Express Cargo Van 2007 1.42% Buick Rainier SUV 2007 1.24% Ford F-150 Regular Cab 2012 1.2% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Lamborghini Diablo Coupe 2001 2.7% Acura Integra Type R 2001 2.02% Ferrari 458 Italia Convertible 2012 1.85% Volvo C30 Hatchback 2012 1.79% BMW M3 Coupe 2012 1.73% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 8.35% Ferrari California Convertible 2012 6.58% McLaren MP4-12C Coupe 2012 6.06% Acura Integra Type R 2001 4.69% Ferrari 458 Italia Convertible 2012 4.57% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 HUMMER H2 SUT Crew Cab 2009 7.99% AM General Hummer SUV 2000 5.7% HUMMER H3T Crew Cab 2010 3.19% McLaren MP4-12C Coupe 2012 2.26% Jeep Wrangler SUV 2012 1.96% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Ferrari FF Coupe 2012 1.71% GMC Savana Van 2012 1.23% Dodge Sprinter Cargo Van 2009 1.06% Buick Rainier SUV 2007 1.03% BMW M3 Coupe 2012 0.99% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 8.79% Aston Martin Virage Coupe 2012 4.66% Ferrari 458 Italia Convertible 2012 4.56% Lamborghini Aventador Coupe 2012 4.42% Acura Integra Type R 2001 4.15% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ram C/V Cargo Van Minivan 2012 3.75% FIAT 500 Convertible 2012 3.48% BMW 1 Series Convertible 2012 1.42% Lincoln Town Car Sedan 2011 1.38% Daewoo Nubira Wagon 2002 1.35% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 FIAT 500 Abarth 2012 4.91% Bentley Arnage Sedan 2009 4.4% Land Rover Range Rover SUV 2012 2.31% HUMMER H2 SUT Crew Cab 2009 1.71% Jeep Patriot SUV 2012 1.65% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Lamborghini Diablo Coupe 2001 10.95% Ferrari California Convertible 2012 6.03% McLaren MP4-12C Coupe 2012 5.16% Aston Martin Virage Coupe 2012 4.97% Ferrari 458 Italia Convertible 2012 4.76% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 HUMMER H2 SUT Crew Cab 2009 4.8% AM General Hummer SUV 2000 2.45% HUMMER H3T Crew Cab 2010 2.35% Dodge Caliber Wagon 2007 2.23% Volkswagen Golf Hatchback 1991 1.96% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 2.57% HUMMER H2 SUT Crew Cab 2009 2.26% FIAT 500 Abarth 2012 1.81% Bugatti Veyron 16.4 Coupe 2009 1.55% Land Rover Range Rover SUV 2012 1.38% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Dodge Durango SUV 2007 1.44% Cadillac Escalade EXT Crew Cab 2007 1.41% Ford E-Series Wagon Van 2012 1.37% BMW X5 SUV 2007 1.36% Audi S6 Sedan 2011 1.35% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 1.5% BMW X5 SUV 2007 1.28% Jeep Grand Cherokee SUV 2012 1.12% Chevrolet Avalanche Crew Cab 2012 1.11% Land Rover Range Rover SUV 2012 1.09% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 GMC Savana Van 2012 1.54% Chevrolet Express Cargo Van 2007 1.25% Buick Rainier SUV 2007 1.02% Chevrolet Express Van 2007 0.93% BMW X5 SUV 2007 0.88% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Chevrolet Corvette Convertible 2012 4.23% Aston Martin Virage Coupe 2012 4.19% Ferrari California Convertible 2012 4.07% McLaren MP4-12C Coupe 2012 3.3% Ferrari 458 Italia Coupe 2012 3.29% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Chevrolet Silverado 2500HD Regular Cab 2012 1.69% GMC Savana Van 2012 1.52% Dodge Ram Pickup 3500 Quad Cab 2009 1.15% Audi A5 Coupe 2012 1.06% Honda Accord Sedan 2012 1.04% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 Ram C/V Cargo Van Minivan 2012 1.85% Mercedes-Benz Sprinter Van 2012 1.61% Dodge Sprinter Cargo Van 2009 1.36% GMC Savana Van 2012 1.35% Mercedes-Benz S-Class Sedan 2012 1.33% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Dodge Caliber Wagon 2007 2.59% Aston Martin Virage Coupe 2012 2.5% Ferrari 458 Italia Coupe 2012 2.24% Lamborghini Aventador Coupe 2012 2.0% Ferrari 458 Italia Convertible 2012 1.76% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Hyundai Genesis Sedan 2012 1.19% Rolls-Royce Phantom Sedan 2012 1.17% Hyundai Azera Sedan 2012 1.08% Bugatti Veyron 16.4 Coupe 2009 1.02% Dodge Challenger SRT8 2011 1.0% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.82% FIAT 500 Convertible 2012 1.66% Nissan Leaf Hatchback 2012 1.5% Maybach Landaulet Convertible 2012 1.48% Bugatti Veyron 16.4 Convertible 2009 1.48% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 2.92% Aston Martin Virage Coupe 2012 2.29% Chevrolet Cobalt SS 2010 2.29% Ferrari 458 Italia Coupe 2012 2.26% Dodge Charger Sedan 2012 1.9% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.04% Dodge Sprinter Cargo Van 2009 1.62% GMC Savana Van 2012 1.56% BMW 1 Series Convertible 2012 1.41% Lincoln Town Car Sedan 2011 1.27% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Mercedes-Benz Sprinter Van 2012 1.01% Lincoln Town Car Sedan 2011 0.97% Buick Rainier SUV 2007 0.9% MINI Cooper Roadster Convertible 2012 0.9% Mercedes-Benz S-Class Sedan 2012 0.89% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 1.29% Ford E-Series Wagon Van 2012 1.21% Mercedes-Benz Sprinter Van 2012 1.11% Mercedes-Benz S-Class Sedan 2012 1.09% Nissan Leaf Hatchback 2012 1.06% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 2.54% Chrysler 300 SRT-8 2010 1.89% Chevrolet TrailBlazer SS 2009 1.84% Chevrolet Silverado 1500 Regular Cab 2012 1.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.57% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.51% Chrysler 300 SRT-8 2010 1.43% Ford Expedition EL SUV 2009 1.4% Chevrolet TrailBlazer SS 2009 1.22% Dodge Ram Pickup 3500 Crew Cab 2010 1.21% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Ram C/V Cargo Van Minivan 2012 1.65% GMC Savana Van 2012 1.47% Dodge Sprinter Cargo Van 2009 1.24% Mercedes-Benz Sprinter Van 2012 1.17% Lincoln Town Car Sedan 2011 1.14% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Ram C/V Cargo Van Minivan 2012 1.56% Lincoln Town Car Sedan 2011 1.41% Mercedes-Benz Sprinter Van 2012 1.29% BMW 1 Series Convertible 2012 1.12% Dodge Sprinter Cargo Van 2009 1.11% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Mercedes-Benz S-Class Sedan 2012 1.9% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% MINI Cooper Roadster Convertible 2012 1.4% Bugatti Veyron 16.4 Convertible 2009 1.37% Nissan Leaf Hatchback 2012 1.31% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Rolls-Royce Phantom Sedan 2012 1.13% Nissan Leaf Hatchback 2012 1.11% MINI Cooper Roadster Convertible 2012 1.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.06% Daewoo Nubira Wagon 2002 0.94% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Chevrolet TrailBlazer SS 2009 1.56% Chrysler 300 SRT-8 2010 1.54% Chevrolet Silverado 1500 Regular Cab 2012 1.46% Cadillac Escalade EXT Crew Cab 2007 1.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.41% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 BMW X5 SUV 2007 1.45% Chevrolet Avalanche Crew Cab 2012 1.38% Jeep Grand Cherokee SUV 2012 1.36% Dodge Durango SUV 2007 1.27% Ford F-150 Regular Cab 2012 1.26% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Dodge Sprinter Cargo Van 2009 1.92% Mercedes-Benz Sprinter Van 2012 1.49% Ram C/V Cargo Van Minivan 2012 1.47% GMC Savana Van 2012 1.41% BMW 1 Series Convertible 2012 1.34% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 FIAT 500 Abarth 2012 1.85% Bentley Arnage Sedan 2009 1.5% Spyker C8 Convertible 2009 1.28% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.1% Bugatti Veyron 16.4 Coupe 2009 1.09% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 FIAT 500 Abarth 2012 5.41% Bentley Arnage Sedan 2009 4.05% Land Rover Range Rover SUV 2012 1.62% Lamborghini Reventon Coupe 2008 1.57% Jeep Patriot SUV 2012 1.57% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 1.68% MINI Cooper Roadster Convertible 2012 1.59% Fisker Karma Sedan 2012 1.32% Acura TL Type-S 2008 1.22% Bentley Mulsanne Sedan 2011 1.18% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Dodge Sprinter Cargo Van 2009 2.08% Ram C/V Cargo Van Minivan 2012 1.92% Mercedes-Benz Sprinter Van 2012 1.84% Lincoln Town Car Sedan 2011 1.61% GMC Savana Van 2012 1.39% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Ferrari California Convertible 2012 4.42% Dodge Charger SRT-8 2009 4.38% Ferrari 458 Italia Coupe 2012 4.34% McLaren MP4-12C Coupe 2012 3.98% Chevrolet Corvette Convertible 2012 3.9% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Ferrari 458 Italia Coupe 2012 2.36% Aston Martin Virage Coupe 2012 2.31% Dodge Caliber Wagon 2007 2.25% Chevrolet Corvette Convertible 2012 2.15% Ferrari California Convertible 2012 2.08% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 FIAT 500 Convertible 2012 2.07% Mercedes-Benz S-Class Sedan 2012 1.96% MINI Cooper Roadster Convertible 2012 1.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.64% Bugatti Veyron 16.4 Convertible 2009 1.5% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 MINI Cooper Roadster Convertible 2012 1.43% Mercedes-Benz S-Class Sedan 2012 1.07% Mercedes-Benz E-Class Sedan 2012 1.0% Fisker Karma Sedan 2012 0.98% Porsche Panamera Sedan 2012 0.98% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.1% BMW 1 Series Convertible 2012 1.7% FIAT 500 Convertible 2012 1.61% Ferrari FF Coupe 2012 1.4% Dodge Sprinter Cargo Van 2009 1.36% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Ford E-Series Wagon Van 2012 1.34% Chrysler Aspen SUV 2009 1.16% Cadillac Escalade EXT Crew Cab 2007 1.1% Land Rover Range Rover SUV 2012 1.09% Audi S6 Sedan 2011 1.07% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Lamborghini Diablo Coupe 2001 5.18% Aston Martin Virage Coupe 2012 5.12% Lamborghini Aventador Coupe 2012 5.05% Acura Integra Type R 2001 4.13% Ferrari 458 Italia Convertible 2012 3.62% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 BMW X5 SUV 2007 1.03% Jeep Compass SUV 2012 0.98% Chevrolet Express Cargo Van 2007 0.94% Buick Rainier SUV 2007 0.91% GMC Savana Van 2012 0.89% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 FIAT 500 Convertible 2012 3.64% Ram C/V Cargo Van Minivan 2012 2.87% Bugatti Veyron 16.4 Convertible 2009 1.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.41% Mercedes-Benz S-Class Sedan 2012 1.36% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 AM General Hummer SUV 2000 3.03% Lamborghini Diablo Coupe 2001 2.98% Lamborghini Aventador Coupe 2012 2.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.47% Aston Martin Virage Coupe 2012 2.41% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Ram C/V Cargo Van Minivan 2012 2.41% Dodge Sprinter Cargo Van 2009 1.71% GMC Savana Van 2012 1.54% BMW 1 Series Convertible 2012 1.48% FIAT 500 Convertible 2012 1.32% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Ram C/V Cargo Van Minivan 2012 1.5% Dodge Caravan Minivan 1997 1.25% GMC Savana Van 2012 1.19% Volkswagen Golf Hatchback 2012 1.16% Mercedes-Benz Sprinter Van 2012 1.13% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 1.81% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% Chevrolet Silverado 1500 Regular Cab 2012 1.65% Cadillac Escalade EXT Crew Cab 2007 1.35% Chrysler 300 SRT-8 2010 1.33% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 2.1% Ford F-150 Regular Cab 2012 1.61% Jeep Grand Cherokee SUV 2012 1.44% Chevrolet Avalanche Crew Cab 2012 1.38% BMW X5 SUV 2007 1.34% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.4% Mercedes-Benz S-Class Sedan 2012 1.36% Nissan Leaf Hatchback 2012 1.2% Bugatti Veyron 16.4 Coupe 2009 1.14% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Hyundai Azera Sedan 2012 1.69% Bugatti Veyron 16.4 Coupe 2009 1.52% Spyker C8 Convertible 2009 1.49% Jeep Patriot SUV 2012 1.36% Jeep Compass SUV 2012 1.25% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.64% Chevrolet Silverado 1500 Regular Cab 2012 1.64% Chrysler 300 SRT-8 2010 1.42% Chevrolet TrailBlazer SS 2009 1.41% GMC Canyon Extended Cab 2012 1.38% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Mercedes-Benz E-Class Sedan 2012 1.29% Volkswagen Beetle Hatchback 2012 1.22% FIAT 500 Convertible 2012 1.19% Geo Metro Convertible 1993 0.9% Acura Integra Type R 2001 0.9% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Chevrolet Avalanche Crew Cab 2012 1.67% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.58% Chevrolet Silverado 1500 Extended Cab 2012 1.45% Isuzu Ascender SUV 2008 1.43% GMC Savana Van 2012 1.42% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Ram C/V Cargo Van Minivan 2012 3.28% FIAT 500 Convertible 2012 2.8% BMW 1 Series Convertible 2012 1.7% Bugatti Veyron 16.4 Convertible 2009 1.57% Dodge Sprinter Cargo Van 2009 1.5% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Ram C/V Cargo Van Minivan 2012 1.2% Mercedes-Benz Sprinter Van 2012 1.14% Lincoln Town Car Sedan 2011 1.03% Chrysler Town and Country Minivan 2012 1.0% Nissan Leaf Hatchback 2012 0.99% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Ford Expedition EL SUV 2009 1.06% Dodge Ram Pickup 3500 Crew Cab 2010 0.95% Ford F-450 Super Duty Crew Cab 2012 0.92% Cadillac Escalade EXT Crew Cab 2007 0.9% Isuzu Ascender SUV 2008 0.88% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Hyundai Azera Sedan 2012 1.52% Spyker C8 Convertible 2009 1.38% Bugatti Veyron 16.4 Coupe 2009 1.22% Bentley Arnage Sedan 2009 1.16% Bentley Mulsanne Sedan 2011 1.09% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 HUMMER H2 SUT Crew Cab 2009 1.2% Chevrolet TrailBlazer SS 2009 1.19% Chevrolet Silverado 1500 Regular Cab 2012 1.17% Chrysler 300 SRT-8 2010 1.15% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.1% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Hyundai Azera Sedan 2012 1.97% Hyundai Genesis Sedan 2012 1.5% Bentley Mulsanne Sedan 2011 1.35% Bentley Arnage Sedan 2009 1.27% Dodge Challenger SRT8 2011 1.2% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 1.1% BMW X5 SUV 2007 1.07% Jeep Grand Cherokee SUV 2012 1.05% Ford F-150 Regular Cab 2012 1.03% Audi S6 Sedan 2011 1.02% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Sedan 2012 1.37% BMW M6 Convertible 2010 0.97% Mercedes-Benz E-Class Sedan 2012 0.97% Hyundai Genesis Sedan 2012 0.96% Chrysler 300 SRT-8 2010 0.95% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Arnage Sedan 2009 1.34% Land Rover Range Rover SUV 2012 1.13% Hyundai Genesis Sedan 2012 1.1% Bentley Mulsanne Sedan 2011 1.09% Bugatti Veyron 16.4 Coupe 2009 1.08% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 3.72% BMW 1 Series Coupe 2012 3.05% Ferrari FF Coupe 2012 2.38% McLaren MP4-12C Coupe 2012 1.84% Honda Accord Coupe 2012 1.77% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 BMW 1 Series Coupe 2012 0.84% Dodge Caliber Wagon 2007 0.84% Plymouth Neon Coupe 1999 0.82% Hyundai Elantra Sedan 2007 0.76% Daewoo Nubira Wagon 2002 0.75% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Chrysler 300 SRT-8 2010 1.72% Cadillac Escalade EXT Crew Cab 2007 1.58% Chevrolet TrailBlazer SS 2009 1.44% Jeep Grand Cherokee SUV 2012 1.14% Land Rover Range Rover SUV 2012 1.11% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Lamborghini Diablo Coupe 2001 2.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.25% Spyker C8 Convertible 2009 2.23% Chevrolet HHR SS 2010 1.52% Volvo C30 Hatchback 2012 1.44% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Bentley Mulsanne Sedan 2011 1.23% Jeep Patriot SUV 2012 1.07% Bugatti Veyron 16.4 Coupe 2009 1.02% Daewoo Nubira Wagon 2002 0.98% Lamborghini Reventon Coupe 2008 0.98% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 1.2% Audi S6 Sedan 2011 1.17% Ford F-150 Regular Cab 2012 1.06% BMW X5 SUV 2007 1.05% Isuzu Ascender SUV 2008 1.0% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Lamborghini Aventador Coupe 2012 2.57% Aston Martin Virage Coupe 2012 2.48% Ferrari 458 Italia Coupe 2012 2.23% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.09% Ferrari 458 Italia Convertible 2012 2.08% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.79% Nissan Leaf Hatchback 2012 1.3% Lincoln Town Car Sedan 2011 1.25% Daewoo Nubira Wagon 2002 1.22% Mercedes-Benz S-Class Sedan 2012 1.22% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 1.46% Ford Expedition EL SUV 2009 1.3% Land Rover Range Rover SUV 2012 1.26% Dodge Durango SUV 2007 1.22% Chevrolet TrailBlazer SS 2009 1.21% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Mercedes-Benz Sprinter Van 2012 1.31% Lincoln Town Car Sedan 2011 1.3% Acura TL Sedan 2012 1.18% Audi A5 Coupe 2012 1.15% Chevrolet Express Cargo Van 2007 1.08% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Cadillac Escalade EXT Crew Cab 2007 2.15% FIAT 500 Abarth 2012 1.93% Land Rover Range Rover SUV 2012 1.72% Chevrolet TrailBlazer SS 2009 1.71% Chrysler 300 SRT-8 2010 1.69% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Hyundai Genesis Sedan 2012 1.03% Rolls-Royce Phantom Sedan 2012 1.0% Audi S6 Sedan 2011 0.98% Bentley Continental Flying Spur Sedan 2007 0.88% Chrysler Aspen SUV 2009 0.87% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Land Rover Range Rover SUV 2012 1.06% Hyundai Genesis Sedan 2012 1.03% Jeep Patriot SUV 2012 0.98% Jeep Compass SUV 2012 0.95% Bentley Arnage Sedan 2009 0.94% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 MINI Cooper Roadster Convertible 2012 1.94% Nissan Leaf Hatchback 2012 1.87% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.72% Mercedes-Benz Sprinter Van 2012 1.34% Dodge Caravan Minivan 1997 1.27% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Aston Martin Virage Coupe 2012 3.84% Chevrolet Corvette Convertible 2012 3.82% Chevrolet Cobalt SS 2010 3.75% Ferrari 458 Italia Convertible 2012 3.21% Lamborghini Aventador Coupe 2012 3.13% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 7.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.89% Maybach Landaulet Convertible 2012 2.73% Mercedes-Benz E-Class Sedan 2012 2.61% Bentley Continental Supersports Conv. Convertible 2012 1.95% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 2.54% Honda Accord Coupe 2012 1.65% GMC Canyon Extended Cab 2012 1.6% BMW 3 Series Sedan 2012 1.53% Ferrari FF Coupe 2012 1.34% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Bentley Arnage Sedan 2009 3.81% FIAT 500 Abarth 2012 3.03% Hyundai Azera Sedan 2012 2.07% Hyundai Genesis Sedan 2012 1.54% Bentley Mulsanne Sedan 2011 1.52% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.29% Audi 100 Sedan 1994 0.99% Chrysler PT Cruiser Convertible 2008 0.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.97% Mercedes-Benz Sprinter Van 2012 0.95% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 FIAT 500 Abarth 2012 3.21% Bentley Arnage Sedan 2009 3.15% Land Rover Range Rover SUV 2012 1.47% Chevrolet TrailBlazer SS 2009 1.44% Chrysler 300 SRT-8 2010 1.36% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 1.84% Chevrolet Avalanche Crew Cab 2012 1.22% Jeep Grand Cherokee SUV 2012 1.19% Ford F-150 Regular Cab 2012 1.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.05% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.59% MINI Cooper Roadster Convertible 2012 1.55% Mercedes-Benz S-Class Sedan 2012 1.27% Bugatti Veyron 16.4 Coupe 2009 1.21% Hyundai Azera Sedan 2012 1.12% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 FIAT 500 Convertible 2012 10.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.03% Maybach Landaulet Convertible 2012 2.52% Bentley Continental Supersports Conv. Convertible 2012 2.07% Bugatti Veyron 16.4 Convertible 2009 1.84% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 2.05% Chevrolet Silverado 1500 Regular Cab 2012 1.37% Ford F-150 Regular Cab 2012 1.33% Jeep Grand Cherokee SUV 2012 1.33% Chevrolet Silverado 2500HD Regular Cab 2012 1.3% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Nissan Leaf Hatchback 2012 1.41% Mercedes-Benz S-Class Sedan 2012 1.16% Honda Odyssey Minivan 2007 1.1% Rolls-Royce Phantom Sedan 2012 1.1% Dodge Caravan Minivan 1997 1.07% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 FIAT 500 Abarth 2012 2.04% HUMMER H2 SUT Crew Cab 2009 1.54% Bentley Arnage Sedan 2009 1.52% Dodge Caliber Wagon 2007 1.41% Nissan Juke Hatchback 2012 1.19% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 2.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.13% Maybach Landaulet Convertible 2012 1.91% Nissan Leaf Hatchback 2012 1.85% Rolls-Royce Phantom Sedan 2012 1.75% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Ferrari 458 Italia Coupe 2012 3.81% Aston Martin Virage Coupe 2012 3.62% McLaren MP4-12C Coupe 2012 3.49% Dodge Caliber Wagon 2007 3.23% Chevrolet Corvette Convertible 2012 3.09% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 1.6% Ford F-150 Regular Cab 2012 1.47% Chevrolet Silverado 1500 Extended Cab 2012 1.42% Jeep Grand Cherokee SUV 2012 1.3% Chevrolet Avalanche Crew Cab 2012 1.26% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 1.24% Chevrolet Avalanche Crew Cab 2012 1.14% Chevrolet Silverado 1500 Extended Cab 2012 1.14% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.09% Chevrolet Silverado 2500HD Regular Cab 2012 1.06% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 1.64% BMW X5 SUV 2007 1.47% Ford F-150 Regular Cab 2012 1.45% Chevrolet Express Cargo Van 2007 1.26% Hyundai Santa Fe SUV 2012 1.21% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 FIAT 500 Abarth 2012 1.95% Bentley Arnage Sedan 2009 1.72% Spyker C8 Convertible 2009 1.41% Hyundai Azera Sedan 2012 1.4% AM General Hummer SUV 2000 1.23% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Spyker C8 Convertible 2009 2.52% Lamborghini Diablo Coupe 2001 2.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.79% Lamborghini Aventador Coupe 2012 1.65% Ford GT Coupe 2006 1.52% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 1.34% Chevrolet Silverado 2500HD Regular Cab 2012 1.15% Chevrolet Silverado 1500 Regular Cab 2012 1.09% Ford F-150 Regular Cab 2012 1.03% Chevrolet Express Cargo Van 2007 0.98% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 5.54% McLaren MP4-12C Coupe 2012 5.54% Ferrari 458 Italia Coupe 2012 4.54% Ferrari California Convertible 2012 3.66% Chevrolet HHR SS 2010 3.59% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 1.91% Chevrolet Silverado 1500 Regular Cab 2012 1.76% Dodge Caliber Wagon 2007 1.54% Volkswagen Golf Hatchback 1991 1.53% Ferrari FF Coupe 2012 1.25% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz Sprinter Van 2012 1.77% Lincoln Town Car Sedan 2011 1.53% Ram C/V Cargo Van Minivan 2012 1.42% Mercedes-Benz S-Class Sedan 2012 1.3% Acura TL Sedan 2012 1.19% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.12% Lincoln Town Car Sedan 2011 1.4% Honda Odyssey Minivan 2007 1.39% Mercedes-Benz Sprinter Van 2012 1.21% GMC Savana Van 2012 1.17% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 FIAT 500 Convertible 2012 12.12% Mercedes-Benz E-Class Sedan 2012 7.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.31% Fisker Karma Sedan 2012 2.2% Maybach Landaulet Convertible 2012 1.82% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 1.75% Land Rover Range Rover SUV 2012 1.61% BMW X5 SUV 2007 1.48% Dodge Durango SUV 2007 1.46% Chrysler 300 SRT-8 2010 1.42% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 FIAT 500 Convertible 2012 2.51% Ram C/V Cargo Van Minivan 2012 2.01% GMC Savana Van 2012 1.27% Daewoo Nubira Wagon 2002 1.13% BMW 1 Series Convertible 2012 1.1% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 2.04% Cadillac Escalade EXT Crew Cab 2007 2.01% Chrysler 300 SRT-8 2010 1.86% Land Rover Range Rover SUV 2012 1.64% Chevrolet TrailBlazer SS 2009 1.4% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet TrailBlazer SS 2009 2.28% Chevrolet Silverado 1500 Regular Cab 2012 1.75% Cadillac Escalade EXT Crew Cab 2007 1.7% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.54% Ford Expedition EL SUV 2009 1.53% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 FIAT 500 Convertible 2012 2.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.08% Nissan Leaf Hatchback 2012 1.83% Ram C/V Cargo Van Minivan 2012 1.8% Bugatti Veyron 16.4 Convertible 2009 1.52% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.73% GMC Savana Van 2012 1.57% Chevrolet Silverado 1500 Regular Cab 2012 1.3% Chevrolet Silverado 1500 Extended Cab 2012 1.18% Chevrolet Express Cargo Van 2007 1.14% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Bentley Arnage Sedan 2009 1.18% Chevrolet TrailBlazer SS 2009 1.15% Ford GT Coupe 2006 1.03% BMW M6 Convertible 2010 1.0% Rolls-Royce Phantom Sedan 2012 1.0% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Dodge Sprinter Cargo Van 2009 1.29% GMC Savana Van 2012 1.24% Ram C/V Cargo Van Minivan 2012 1.23% BMW 1 Series Convertible 2012 1.18% Mercedes-Benz Sprinter Van 2012 1.13% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 McLaren MP4-12C Coupe 2012 3.26% Ferrari California Convertible 2012 2.1% Aston Martin Virage Coupe 2012 1.96% Ferrari 458 Italia Coupe 2012 1.92% Ferrari 458 Italia Convertible 2012 1.77% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 1.42% Chevrolet Silverado 2500HD Regular Cab 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.28% Ford F-150 Regular Cab 2012 1.26% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 FIAT 500 Abarth 2012 2.18% Bentley Arnage Sedan 2009 1.86% Land Rover Range Rover SUV 2012 1.48% Jeep Patriot SUV 2012 1.45% Cadillac Escalade EXT Crew Cab 2007 1.2% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 7.94% Aston Martin Virage Coupe 2012 4.5% Acura Integra Type R 2001 3.88% Ferrari California Convertible 2012 3.85% Lamborghini Aventador Coupe 2012 3.36% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 FIAT 500 Convertible 2012 2.99% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.34% Mercedes-Benz E-Class Sedan 2012 1.94% Maybach Landaulet Convertible 2012 1.78% Bentley Continental Supersports Conv. Convertible 2012 1.75% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Hyundai Azera Sedan 2012 1.31% Bentley Mulsanne Sedan 2011 1.12% Bentley Arnage Sedan 2009 1.08% Audi S5 Convertible 2012 1.07% Hyundai Genesis Sedan 2012 1.06% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.7% Chevrolet Avalanche Crew Cab 2012 1.42% Chevrolet Silverado 2500HD Regular Cab 2012 1.21% Ford F-150 Regular Cab 2012 1.2% Dodge Sprinter Cargo Van 2009 1.17% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Diablo Coupe 2001 8.02% Lamborghini Aventador Coupe 2012 4.26% Aston Martin Virage Coupe 2012 4.11% Ferrari 458 Italia Convertible 2012 3.49% Ferrari 458 Italia Coupe 2012 3.11% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 1.31% Dodge Sprinter Cargo Van 2009 1.26% BMW ActiveHybrid 5 Sedan 2012 1.11% Mercedes-Benz Sprinter Van 2012 1.1% Ram C/V Cargo Van Minivan 2012 1.1% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 Dodge Challenger SRT8 2011 1.1% Jeep Compass SUV 2012 1.07% BMW X5 SUV 2007 0.98% Hyundai Tucson SUV 2012 0.97% Ford E-Series Wagon Van 2012 0.93% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.15% Buick Rainier SUV 2007 1.05% Mercedes-Benz Sprinter Van 2012 0.92% Toyota Camry Sedan 2012 0.89% Lincoln Town Car Sedan 2011 0.87% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Dodge Caliber Wagon 2007 1.81% Chevrolet TrailBlazer SS 2009 1.29% BMW 3 Series Sedan 2012 1.23% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.14% Dodge Charger SRT-8 2009 1.11% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 3.6% Nissan Leaf Hatchback 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.62% Mercedes-Benz E-Class Sedan 2012 1.53% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 1.12% Chevrolet Express Cargo Van 2007 1.03% Buick Rainier SUV 2007 1.02% GMC Acadia SUV 2012 0.96% BMW X3 SUV 2012 0.96% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 FIAT 500 Convertible 2012 2.55% Mercedes-Benz E-Class Sedan 2012 2.21% Acura Integra Type R 2001 1.7% Ford GT Coupe 2006 1.31% BMW Z4 Convertible 2012 1.19% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Cadillac Escalade EXT Crew Cab 2007 1.24% Land Rover Range Rover SUV 2012 1.19% BMW X5 SUV 2007 1.18% GMC Yukon Hybrid SUV 2012 1.16% Chrysler 300 SRT-8 2010 1.13% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 HUMMER H2 SUT Crew Cab 2009 3.22% Chevrolet TrailBlazer SS 2009 2.6% Bentley Arnage Sedan 2009 1.9% Chrysler 300 SRT-8 2010 1.64% AM General Hummer SUV 2000 1.44% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Mercedes-Benz Sprinter Van 2012 1.22% Ford E-Series Wagon Van 2012 1.2% Audi S6 Sedan 2011 1.18% GMC Savana Van 2012 1.13% BMW X5 SUV 2007 1.1% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 McLaren MP4-12C Coupe 2012 4.85% Audi TT RS Coupe 2012 4.34% Ferrari California Convertible 2012 2.89% Ferrari 458 Italia Coupe 2012 2.71% Lamborghini Aventador Coupe 2012 2.71% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Ferrari California Convertible 2012 3.4% Ferrari 458 Italia Convertible 2012 3.11% Lamborghini Diablo Coupe 2001 3.07% Aston Martin Virage Coupe 2012 2.95% Chevrolet Corvette Convertible 2012 2.92% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Lamborghini Diablo Coupe 2001 5.65% Audi TT RS Coupe 2012 3.36% Ferrari 458 Italia Convertible 2012 3.02% Lamborghini Aventador Coupe 2012 3.02% Aston Martin Virage Coupe 2012 2.94% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Land Rover Range Rover SUV 2012 1.49% Bentley Arnage Sedan 2009 1.18% Chrysler 300 SRT-8 2010 1.17% Cadillac Escalade EXT Crew Cab 2007 1.08% Hyundai Genesis Sedan 2012 1.04% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Jeep Patriot SUV 2012 1.13% Dodge Caliber Wagon 2007 1.09% Land Rover Range Rover SUV 2012 1.06% Jeep Liberty SUV 2012 1.04% GMC Savana Van 2012 1.03% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Chevrolet TrailBlazer SS 2009 1.42% Cadillac Escalade EXT Crew Cab 2007 1.4% Chrysler 300 SRT-8 2010 1.35% GMC Acadia SUV 2012 1.24% HUMMER H2 SUT Crew Cab 2009 1.18% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.38% Dodge Sprinter Cargo Van 2009 1.36% Mercedes-Benz Sprinter Van 2012 1.11% BMW 1 Series Convertible 2012 1.02% Chevrolet Express Cargo Van 2007 0.99% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Mercedes-Benz S-Class Sedan 2012 1.14% MINI Cooper Roadster Convertible 2012 1.13% Nissan Leaf Hatchback 2012 1.13% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% Dodge Caravan Minivan 1997 1.06% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Lamborghini Diablo Coupe 2001 11.71% Ferrari California Convertible 2012 5.34% Acura Integra Type R 2001 4.65% Aston Martin Virage Coupe 2012 4.54% Ferrari 458 Italia Convertible 2012 4.48% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Ferrari California Convertible 2012 4.71% Aston Martin Virage Coupe 2012 4.11% Chevrolet Corvette Convertible 2012 3.44% Ferrari 458 Italia Convertible 2012 3.31% McLaren MP4-12C Coupe 2012 3.25% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 FIAT 500 Convertible 2012 3.56% Ram C/V Cargo Van Minivan 2012 1.91% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% Bugatti Veyron 16.4 Convertible 2009 1.62% Mercedes-Benz S-Class Sedan 2012 1.27% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Hyundai Genesis Sedan 2012 1.66% Hyundai Azera Sedan 2012 1.54% Bentley Arnage Sedan 2009 1.41% Audi S6 Sedan 2011 1.29% Nissan Leaf Hatchback 2012 1.2% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 FIAT 500 Convertible 2012 10.52% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.0% Maybach Landaulet Convertible 2012 2.62% Bentley Continental Supersports Conv. Convertible 2012 2.33% Mercedes-Benz E-Class Sedan 2012 2.16% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Hyundai Genesis Sedan 2012 1.12% Jeep Compass SUV 2012 1.06% Dodge Challenger SRT8 2011 1.03% Land Rover Range Rover SUV 2012 1.02% Hyundai Azera Sedan 2012 0.99% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.23% Ram C/V Cargo Van Minivan 2012 2.15% FIAT 500 Convertible 2012 2.03% Bugatti Veyron 16.4 Convertible 2009 1.86% Mercedes-Benz S-Class Sedan 2012 1.76% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Rolls-Royce Phantom Sedan 2012 1.14% Nissan Leaf Hatchback 2012 1.12% Dodge Caravan Minivan 1997 0.95% MINI Cooper Roadster Convertible 2012 0.95% Honda Odyssey Minivan 2007 0.92% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Audi S6 Sedan 2011 1.22% Dodge Challenger SRT8 2011 1.03% Land Rover LR2 SUV 2012 1.01% Hyundai Genesis Sedan 2012 1.01% GMC Yukon Hybrid SUV 2012 0.98% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.65% Chrysler 300 SRT-8 2010 1.34% Bentley Arnage Sedan 2009 1.34% Chevrolet TrailBlazer SS 2009 1.33% Land Rover Range Rover SUV 2012 1.32% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 2.61% Chevrolet Silverado 1500 Regular Cab 2012 1.7% Dodge Ram Pickup 3500 Crew Cab 2010 1.44% Ford Expedition EL SUV 2009 1.44% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.39% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Chevrolet TrailBlazer SS 2009 2.38% Cadillac Escalade EXT Crew Cab 2007 1.88% Bentley Arnage Sedan 2009 1.6% Chrysler 300 SRT-8 2010 1.45% Ford Expedition EL SUV 2009 1.36% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Ford E-Series Wagon Van 2012 1.01% BMW X5 SUV 2007 0.99% GMC Savana Van 2012 0.96% Hyundai Tucson SUV 2012 0.89% Mercedes-Benz Sprinter Van 2012 0.84% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.87% Dodge Sprinter Cargo Van 2009 1.8% BMW 1 Series Convertible 2012 1.53% BMW ActiveHybrid 5 Sedan 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.36% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Ford E-Series Wagon Van 2012 1.09% Audi S6 Sedan 2011 1.01% Rolls-Royce Phantom Sedan 2012 0.98% Hyundai Genesis Sedan 2012 0.98% Chrysler Aspen SUV 2009 0.94% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 BMW X5 SUV 2007 1.27% Chrysler Aspen SUV 2009 1.14% Hyundai Santa Fe SUV 2012 1.0% Ford F-150 Regular Cab 2012 0.98% Jeep Compass SUV 2012 0.97% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 24.22% Chevrolet HHR SS 2010 4.39% McLaren MP4-12C Coupe 2012 3.46% Ferrari 458 Italia Coupe 2012 3.27% Ferrari 458 Italia Convertible 2012 3.18% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.63% Ford Expedition EL SUV 2009 1.62% Chevrolet TrailBlazer SS 2009 1.41% Ford F-450 Super Duty Crew Cab 2012 1.31% Audi S6 Sedan 2011 1.25% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Audi S6 Sedan 2011 1.32% Ford E-Series Wagon Van 2012 1.09% GMC Savana Van 2012 1.05% Audi A5 Coupe 2012 0.99% Mercedes-Benz Sprinter Van 2012 0.98% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 2.11% Cadillac Escalade EXT Crew Cab 2007 1.63% Ford Expedition EL SUV 2009 1.54% GMC Savana Van 2012 1.39% Ford F-450 Super Duty Crew Cab 2012 1.28% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.89% Dodge Sprinter Cargo Van 2009 1.75% Audi A5 Coupe 2012 1.37% MINI Cooper Roadster Convertible 2012 1.32% Ram C/V Cargo Van Minivan 2012 1.27% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ferrari FF Coupe 2012 1.9% GMC Canyon Extended Cab 2012 1.75% Chevrolet Silverado 1500 Regular Cab 2012 1.52% Honda Accord Coupe 2012 1.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 HUMMER H2 SUT Crew Cab 2009 2.12% Fisker Karma Sedan 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.34% Spyker C8 Convertible 2009 1.25% Mercedes-Benz 300-Class Convertible 1993 1.24% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.62% Chrysler 300 SRT-8 2010 2.09% Chevrolet TrailBlazer SS 2009 1.89% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.57% Dodge Durango SUV 2007 1.53% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 6.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.84% Ram C/V Cargo Van Minivan 2012 2.63% Bugatti Veyron 16.4 Convertible 2009 2.41% Mercedes-Benz S-Class Sedan 2012 2.28% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.65% Audi TT RS Coupe 2012 1.55% Dodge Caliber Wagon 2007 1.49% McLaren MP4-12C Coupe 2012 1.19% AM General Hummer SUV 2000 1.15% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 2.23% Chevrolet Avalanche Crew Cab 2012 1.4% Jeep Grand Cherokee SUV 2012 1.32% Ford F-150 Regular Cab 2012 1.29% Chevrolet Silverado 1500 Regular Cab 2012 1.27% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 BMW X5 SUV 2007 1.33% GMC Yukon Hybrid SUV 2012 1.25% Audi S6 Sedan 2011 1.17% Bentley Arnage Sedan 2009 1.16% Jeep Compass SUV 2012 1.11% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Chevrolet Express Cargo Van 2007 1.13% GMC Acadia SUV 2012 1.01% BMW X5 SUV 2007 0.98% Buick Rainier SUV 2007 0.96% GMC Savana Van 2012 0.96% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 1.72% Audi S6 Sedan 2011 1.48% Ford Expedition EL SUV 2009 1.39% Dodge Durango SUV 2007 1.37% Ford F-450 Super Duty Crew Cab 2012 1.32% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 1.37% Audi S6 Sedan 2011 1.35% Cadillac Escalade EXT Crew Cab 2007 1.32% Ford F-450 Super Duty Crew Cab 2012 1.27% Volvo XC90 SUV 2007 1.24% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Plymouth Neon Coupe 1999 1.05% Dodge Ram Pickup 3500 Crew Cab 2010 1.03% Ford Freestar Minivan 2007 0.93% Ford Expedition EL SUV 2009 0.93% Chevrolet Monte Carlo Coupe 2007 0.91% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 1.18% Hyundai Azera Sedan 2012 1.15% Bentley Mulsanne Sedan 2011 1.13% Spyker C8 Convertible 2009 1.12% Hyundai Genesis Sedan 2012 1.04% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Chevrolet TrailBlazer SS 2009 1.75% Cadillac Escalade EXT Crew Cab 2007 1.41% Ford Expedition EL SUV 2009 1.35% Bentley Arnage Sedan 2009 1.31% Chrysler 300 SRT-8 2010 1.27% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Ram C/V Cargo Van Minivan 2012 1.53% Mercedes-Benz Sprinter Van 2012 1.37% Bugatti Veyron 16.4 Convertible 2009 1.28% FIAT 500 Convertible 2012 1.22% Mercedes-Benz S-Class Sedan 2012 1.21% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.63% GMC Savana Van 2012 1.43% Chevrolet Silverado 1500 Regular Cab 2012 1.16% Honda Accord Sedan 2012 1.12% Dodge Sprinter Cargo Van 2009 1.1% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Dodge Caravan Minivan 1997 1.06% Honda Odyssey Minivan 2007 1.05% Audi S6 Sedan 2011 1.04% Nissan Leaf Hatchback 2012 0.99% Mercedes-Benz Sprinter Van 2012 0.99% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 1.6% Ford E-Series Wagon Van 2012 1.17% Isuzu Ascender SUV 2008 1.15% Chrysler Aspen SUV 2009 1.08% Ford F-450 Super Duty Crew Cab 2012 1.08% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 1.71% GMC Acadia SUV 2012 1.22% Volvo XC90 SUV 2007 1.22% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.17% Ford F-450 Super Duty Crew Cab 2012 1.15% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 2.04% FIAT 500 Abarth 2012 1.25% Land Rover Range Rover SUV 2012 1.17% BMW M6 Convertible 2010 1.13% GMC Yukon Hybrid SUV 2012 1.13% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.28% GMC Savana Van 2012 1.79% Dodge Sprinter Cargo Van 2009 1.7% BMW 1 Series Convertible 2012 1.48% Volkswagen Golf Hatchback 2012 1.19% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.32% Chrysler 300 SRT-8 2010 1.29% GMC Savana Van 2012 1.28% Jeep Grand Cherokee SUV 2012 1.25% Chevrolet Silverado 1500 Regular Cab 2012 1.14% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Daewoo Nubira Wagon 2002 1.01% Ford Freestar Minivan 2007 0.93% Hyundai Elantra Sedan 2007 0.92% Chevrolet Sonic Sedan 2012 0.9% GMC Savana Van 2012 0.88% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 1.76% Mercedes-Benz Sprinter Van 2012 1.31% Dodge Sprinter Cargo Van 2009 1.27% Isuzu Ascender SUV 2008 1.14% Ford F-150 Regular Cab 2012 1.1% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 BMW X5 SUV 2007 1.16% Audi S6 Sedan 2011 1.06% Jeep Grand Cherokee SUV 2012 0.96% Chevrolet Express Cargo Van 2007 0.92% Ford E-Series Wagon Van 2012 0.92% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 BMW X5 SUV 2007 1.32% Chevrolet Express Cargo Van 2007 1.27% GMC Savana Van 2012 1.2% GMC Acadia SUV 2012 1.17% Buick Rainier SUV 2007 1.14% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 1.33% Mercedes-Benz Sprinter Van 2012 1.3% Acura TL Sedan 2012 1.22% Ford F-150 Regular Cab 2012 1.18% Chevrolet Avalanche Crew Cab 2012 1.16% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 FIAT 500 Abarth 2012 3.72% Bentley Arnage Sedan 2009 2.5% HUMMER H2 SUT Crew Cab 2009 1.78% AM General Hummer SUV 2000 1.49% Nissan Juke Hatchback 2012 1.32% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Dodge Sprinter Cargo Van 2009 2.32% Mercedes-Benz Sprinter Van 2012 2.31% GMC Savana Van 2012 1.68% Ram C/V Cargo Van Minivan 2012 1.67% Volkswagen Golf Hatchback 2012 1.56% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 1.29% Honda Odyssey Minivan 2007 1.21% Chevrolet Silverado 1500 Extended Cab 2012 1.04% Isuzu Ascender SUV 2008 1.02% Ford E-Series Wagon Van 2012 0.98% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.99% Chevrolet Sonic Sedan 2012 1.49% Ford GT Coupe 2006 1.33% Lamborghini Diablo Coupe 2001 1.33% Spyker C8 Convertible 2009 1.26% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.93% BMW X3 SUV 2012 0.81% GMC Acadia SUV 2012 0.79% Mercedes-Benz Sprinter Van 2012 0.72% BMW X5 SUV 2007 0.71% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 1.95% Cadillac Escalade EXT Crew Cab 2007 1.94% Chevrolet TrailBlazer SS 2009 1.76% FIAT 500 Abarth 2012 1.75% Chrysler 300 SRT-8 2010 1.7% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.11% MINI Cooper Roadster Convertible 2012 1.09% Rolls-Royce Phantom Sedan 2012 1.08% FIAT 500 Convertible 2012 1.05% Mercedes-Benz E-Class Sedan 2012 1.03% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Lamborghini Aventador Coupe 2012 3.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.03% Lamborghini Diablo Coupe 2001 2.94% Aston Martin Virage Coupe 2012 2.91% Ferrari 458 Italia Convertible 2012 2.4% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Bentley Arnage Sedan 2009 2.43% FIAT 500 Abarth 2012 2.05% Chevrolet TrailBlazer SS 2009 1.94% HUMMER H2 SUT Crew Cab 2009 1.56% AM General Hummer SUV 2000 1.35% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 2.68% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.87% Bugatti Veyron 16.4 Convertible 2009 1.76% Mercedes-Benz S-Class Sedan 2012 1.66% Maybach Landaulet Convertible 2012 1.31% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 3.87% Lamborghini Aventador Coupe 2012 3.68% Ferrari 458 Italia Coupe 2012 3.62% Ferrari California Convertible 2012 3.03% Chevrolet Corvette Convertible 2012 2.85% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 1.26% Chevrolet Silverado 1500 Extended Cab 2012 1.04% Dodge Ram Pickup 3500 Crew Cab 2010 0.99% Ford Expedition EL SUV 2009 0.98% Chevrolet Avalanche Crew Cab 2012 0.97% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Bentley Arnage Sedan 2009 3.36% FIAT 500 Abarth 2012 3.19% Chevrolet TrailBlazer SS 2009 1.83% Chrysler 300 SRT-8 2010 1.53% Cadillac Escalade EXT Crew Cab 2007 1.52% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Dodge Caliber Wagon 2007 4.3% McLaren MP4-12C Coupe 2012 3.79% Ferrari 458 Italia Coupe 2012 3.29% Aston Martin Virage Coupe 2012 2.64% BMW 1 Series Coupe 2012 2.62% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.62% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.39% Chevrolet TrailBlazer SS 2009 1.34% Dodge Ram Pickup 3500 Crew Cab 2010 1.29% Chrysler 300 SRT-8 2010 1.26% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Lamborghini Aventador Coupe 2012 1.94% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.87% Ferrari 458 Italia Coupe 2012 1.59% Ford GT Coupe 2006 1.58% Chevrolet Cobalt SS 2010 1.57% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 BMW X5 SUV 2007 1.02% Jeep Compass SUV 2012 1.0% Land Rover Range Rover SUV 2012 0.98% Jeep Patriot SUV 2012 0.94% Chrysler 300 SRT-8 2010 0.92% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 FIAT 500 Convertible 2012 2.41% Ram C/V Cargo Van Minivan 2012 1.7% Bugatti Veyron 16.4 Convertible 2009 1.59% BMW 1 Series Convertible 2012 1.57% Dodge Sprinter Cargo Van 2009 1.4% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Mercedes-Benz Sprinter Van 2012 1.6% MINI Cooper Roadster Convertible 2012 1.24% Mercedes-Benz S-Class Sedan 2012 1.22% BMW X3 SUV 2012 1.16% Buick Rainier SUV 2007 1.03% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.69% Spyker C8 Coupe 2009 1.35% Ford GT Coupe 2006 1.24% Chevrolet Sonic Sedan 2012 1.12% Hyundai Elantra Sedan 2007 1.11% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 FIAT 500 Abarth 2012 3.99% Bentley Arnage Sedan 2009 2.72% Chevrolet TrailBlazer SS 2009 2.45% HUMMER H2 SUT Crew Cab 2009 2.09% Land Rover Range Rover SUV 2012 1.74% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 AM General Hummer SUV 2000 2.22% HUMMER H2 SUT Crew Cab 2009 1.99% Jeep Wrangler SUV 2012 1.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.36% HUMMER H3T Crew Cab 2010 1.35% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.81% Chevrolet Silverado 1500 Regular Cab 2012 1.65% Chrysler 300 SRT-8 2010 1.49% Cadillac Escalade EXT Crew Cab 2007 1.43% Chevrolet Silverado 2500HD Regular Cab 2012 1.4% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Nissan Leaf Hatchback 2012 1.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.43% MINI Cooper Roadster Convertible 2012 1.35% Mercedes-Benz Sprinter Van 2012 1.34% Mercedes-Benz S-Class Sedan 2012 1.32% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.65% MINI Cooper Roadster Convertible 2012 2.14% Nissan Leaf Hatchback 2012 1.91% Rolls-Royce Phantom Sedan 2012 1.55% Bentley Continental Supersports Conv. Convertible 2012 1.4% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.56% Nissan Leaf Hatchback 2012 1.69% Mercedes-Benz Sprinter Van 2012 1.56% Honda Odyssey Minivan 2007 1.39% Dodge Caravan Minivan 1997 1.36% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Chevrolet TrailBlazer SS 2009 3.27% Cadillac Escalade EXT Crew Cab 2007 2.01% Chrysler 300 SRT-8 2010 1.8% Bentley Arnage Sedan 2009 1.63% HUMMER H2 SUT Crew Cab 2009 1.49% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.2% Chrysler 300 SRT-8 2010 1.11% Jeep Grand Cherokee SUV 2012 1.06% Ford F-450 Super Duty Crew Cab 2012 1.02% Ford Expedition EL SUV 2009 1.02% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 MINI Cooper Roadster Convertible 2012 2.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.37% FIAT 500 Convertible 2012 2.22% Nissan Leaf Hatchback 2012 1.62% Mercedes-Benz S-Class Sedan 2012 1.43% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Bentley Arnage Sedan 2009 2.78% FIAT 500 Abarth 2012 2.05% Land Rover Range Rover SUV 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.45% Lamborghini Reventon Coupe 2008 1.34% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 1.87% BMW X5 SUV 2007 1.59% Jeep Grand Cherokee SUV 2012 1.49% Cadillac Escalade EXT Crew Cab 2007 1.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.29% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 FIAT 500 Abarth 2012 2.99% Bentley Arnage Sedan 2009 2.96% Chevrolet TrailBlazer SS 2009 2.34% Cadillac Escalade EXT Crew Cab 2007 1.78% Land Rover Range Rover SUV 2012 1.76% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 1.6% Chevrolet Express Cargo Van 2007 1.49% Chevrolet Silverado 2500HD Regular Cab 2012 1.33% Ford F-150 Regular Cab 2012 1.2% Dodge Sprinter Cargo Van 2009 1.16% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Aston Martin Virage Coupe 2012 2.35% Lamborghini Aventador Coupe 2012 2.18% Ferrari 458 Italia Convertible 2012 1.89% Chevrolet Cobalt SS 2010 1.87% Ford GT Coupe 2006 1.83% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 1.27% Mercedes-Benz Sprinter Van 2012 1.22% Dodge Caravan Minivan 1997 1.04% Chevrolet Express Cargo Van 2007 1.02% Audi 100 Sedan 1994 1.01% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 AM General Hummer SUV 2000 1.99% HUMMER H2 SUT Crew Cab 2009 1.97% Spyker C8 Convertible 2009 1.91% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.6% HUMMER H3T Crew Cab 2010 1.45% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.06% Nissan Leaf Hatchback 2012 1.68% Daewoo Nubira Wagon 2002 1.5% FIAT 500 Convertible 2012 1.38% Dodge Caravan Minivan 1997 1.3% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 1.96% GMC Acadia SUV 2012 1.21% Volvo XC90 SUV 2007 1.14% Ford Edge SUV 2012 1.13% GMC Yukon Hybrid SUV 2012 1.1% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 1.24% Ram C/V Cargo Van Minivan 2012 1.17% Chevrolet Silverado 2500HD Regular Cab 2012 1.16% Chevrolet Silverado 1500 Extended Cab 2012 1.06% Lincoln Town Car Sedan 2011 1.06% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Chevrolet TrailBlazer SS 2009 2.8% Bentley Arnage Sedan 2009 1.56% Cadillac Escalade EXT Crew Cab 2007 1.53% Dodge Ram Pickup 3500 Crew Cab 2010 1.48% Ford Expedition EL SUV 2009 1.39% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 1.97% Land Rover Range Rover SUV 2012 1.88% Chrysler 300 SRT-8 2010 1.33% Hyundai Genesis Sedan 2012 1.26% GMC Yukon Hybrid SUV 2012 1.25% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Silverado 2500HD Regular Cab 2012 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.46% Chevrolet Silverado 1500 Extended Cab 2012 1.46% GMC Savana Van 2012 1.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.33% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 1.8% BMW X5 SUV 2007 1.4% Buick Rainier SUV 2007 1.27% Ford F-150 Regular Cab 2012 1.18% Chevrolet Express Cargo Van 2007 1.17% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Bentley Arnage Sedan 2009 2.45% FIAT 500 Abarth 2012 2.44% Hyundai Azera Sedan 2012 1.7% Bugatti Veyron 16.4 Coupe 2009 1.55% Lamborghini Reventon Coupe 2008 1.52% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 HUMMER H2 SUT Crew Cab 2009 3.76% AM General Hummer SUV 2000 3.1% HUMMER H3T Crew Cab 2010 2.29% Dodge Caliber Wagon 2007 1.79% McLaren MP4-12C Coupe 2012 1.75% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Mercedes-Benz Sprinter Van 2012 1.59% GMC Savana Van 2012 1.37% Ford E-Series Wagon Van 2012 1.31% Dodge Sprinter Cargo Van 2009 1.31% Audi S6 Sedan 2011 1.21% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 12.26% McLaren MP4-12C Coupe 2012 4.63% Ferrari California Convertible 2012 4.44% Chevrolet HHR SS 2010 3.87% Ferrari 458 Italia Convertible 2012 3.68% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 1.88% Chevrolet Avalanche Crew Cab 2012 1.46% Ford F-450 Super Duty Crew Cab 2012 1.34% Ford F-150 Regular Cab 2012 1.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.24% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 McLaren MP4-12C Coupe 2012 3.93% Ferrari 458 Italia Coupe 2012 3.36% Chevrolet Corvette Convertible 2012 3.18% Ferrari 458 Italia Convertible 2012 3.13% Ferrari California Convertible 2012 2.88% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.3% Audi 100 Sedan 1994 1.13% MINI Cooper Roadster Convertible 2012 1.13% Ford E-Series Wagon Van 2012 1.13% Dodge Challenger SRT8 2011 1.11% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 1.36% GMC Acadia SUV 2012 1.12% Audi S6 Sedan 2011 1.04% Volvo XC90 SUV 2007 0.97% GMC Yukon Hybrid SUV 2012 0.92% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Aston Martin Virage Coupe 2012 4.9% Ferrari California Convertible 2012 4.42% Ferrari 458 Italia Coupe 2012 4.3% Lamborghini Aventador Coupe 2012 4.2% Ferrari 458 Italia Convertible 2012 4.17% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Cadillac Escalade EXT Crew Cab 2007 1.43% Chevrolet TrailBlazer SS 2009 1.32% Chrysler 300 SRT-8 2010 1.23% Dodge Ram Pickup 3500 Crew Cab 2010 1.09% Ford Expedition EL SUV 2009 1.09% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Land Rover Range Rover SUV 2012 1.86% Bentley Arnage Sedan 2009 1.76% FIAT 500 Abarth 2012 1.63% Jeep Patriot SUV 2012 1.34% Chrysler 300 SRT-8 2010 1.3% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Bentley Arnage Sedan 2009 1.98% Audi S6 Sedan 2011 1.2% Hyundai Genesis Sedan 2012 1.19% Land Rover Range Rover SUV 2012 1.18% Hyundai Azera Sedan 2012 1.18% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Bentley Arnage Sedan 2009 2.33% FIAT 500 Abarth 2012 1.96% Hyundai Azera Sedan 2012 1.61% Lamborghini Reventon Coupe 2008 1.27% Hyundai Genesis Sedan 2012 1.25% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 McLaren MP4-12C Coupe 2012 3.35% Ferrari California Convertible 2012 3.1% Chevrolet Corvette Convertible 2012 3.05% Ferrari 458 Italia Convertible 2012 2.75% Ferrari 458 Italia Coupe 2012 2.54% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 McLaren MP4-12C Coupe 2012 3.07% Ferrari California Convertible 2012 2.84% Aston Martin Virage Coupe 2012 2.81% Acura Integra Type R 2001 2.48% Chevrolet Corvette Convertible 2012 2.45% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Mercedes-Benz E-Class Sedan 2012 1.07% Mercedes-Benz Sprinter Van 2012 1.03% Mercedes-Benz S-Class Sedan 2012 1.03% Fisker Karma Sedan 2012 0.98% Acura TL Type-S 2008 0.96% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Lincoln Town Car Sedan 2011 1.45% Ram C/V Cargo Van Minivan 2012 1.42% Mercedes-Benz Sprinter Van 2012 1.28% Audi A5 Coupe 2012 1.21% Acura TL Sedan 2012 1.17% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 1.79% Ford Expedition EL SUV 2009 1.44% Chevrolet TrailBlazer SS 2009 1.43% Audi S6 Sedan 2011 1.37% Bentley Arnage Sedan 2009 1.29% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Audi A5 Coupe 2012 1.02% Ram C/V Cargo Van Minivan 2012 1.01% Chevrolet Silverado 2500HD Regular Cab 2012 0.98% BMW ActiveHybrid 5 Sedan 2012 0.98% Dodge Sprinter Cargo Van 2009 0.98% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Ram C/V Cargo Van Minivan 2012 1.51% Dodge Sprinter Cargo Van 2009 1.47% BMW 1 Series Convertible 2012 1.37% Mercedes-Benz Sprinter Van 2012 1.22% BMW ActiveHybrid 5 Sedan 2012 1.19% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Caliber Wagon 2007 2.31% AM General Hummer SUV 2000 1.47% Jeep Wrangler SUV 2012 1.4% Ferrari 458 Italia Coupe 2012 1.36% Aston Martin Virage Coupe 2012 1.31% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 6.44% Ferrari 458 Italia Convertible 2012 5.68% Chevrolet Corvette Convertible 2012 4.93% McLaren MP4-12C Coupe 2012 4.34% Aston Martin Virage Coupe 2012 4.31% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.5% Chrysler 300 SRT-8 2010 1.39% Jeep Grand Cherokee SUV 2012 1.21% Land Rover Range Rover SUV 2012 1.17% Bentley Arnage Sedan 2009 1.11% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 FIAT 500 Abarth 2012 3.23% Bentley Arnage Sedan 2009 2.56% Land Rover Range Rover SUV 2012 1.83% Jeep Patriot SUV 2012 1.64% HUMMER H2 SUT Crew Cab 2009 1.56% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 BMW X5 SUV 2007 1.33% Cadillac Escalade EXT Crew Cab 2007 1.31% GMC Savana Van 2012 1.3% GMC Yukon Hybrid SUV 2012 1.29% Chrysler 300 SRT-8 2010 1.23% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 2.0% GMC Savana Van 2012 1.83% Chrysler 300 SRT-8 2010 1.66% Chevrolet TrailBlazer SS 2009 1.64% GMC Acadia SUV 2012 1.49% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Hyundai Genesis Sedan 2012 1.27% Bentley Arnage Sedan 2009 1.27% Hyundai Azera Sedan 2012 1.13% Ford E-Series Wagon Van 2012 1.11% Cadillac SRX SUV 2012 0.94% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Maybach Landaulet Convertible 2012 1.79% Rolls-Royce Phantom Sedan 2012 1.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.57% Nissan Leaf Hatchback 2012 1.35% Bentley Continental Supersports Conv. Convertible 2012 1.33% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 FIAT 500 Convertible 2012 1.98% MINI Cooper Roadster Convertible 2012 1.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.46% Mercedes-Benz S-Class Sedan 2012 1.34% Bugatti Veyron 16.4 Convertible 2009 1.18% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Ferrari California Convertible 2012 2.48% McLaren MP4-12C Coupe 2012 2.32% Acura Integra Type R 2001 2.18% Aston Martin Virage Coupe 2012 2.11% Lamborghini Diablo Coupe 2001 2.02% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Honda Odyssey Minivan 2007 1.11% Chevrolet Silverado 1500 Extended Cab 2012 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 1.02% Isuzu Ascender SUV 2008 0.98% Lincoln Town Car Sedan 2011 0.93% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 1.24% Audi S6 Sedan 2011 1.21% Hyundai Santa Fe SUV 2012 1.09% BMW X5 SUV 2007 1.08% Ford F-150 Regular Cab 2012 1.08% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Audi S6 Sedan 2011 1.4% Ford E-Series Wagon Van 2012 1.25% Hyundai Genesis Sedan 2012 1.23% Bentley Arnage Sedan 2009 1.21% Dodge Challenger SRT8 2011 1.13% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 FIAT 500 Convertible 2012 2.02% Spyker C8 Convertible 2009 1.47% Mercedes-Benz E-Class Sedan 2012 1.4% Acura Integra Type R 2001 1.3% Ford GT Coupe 2006 1.26% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.97% Chrysler 300 SRT-8 2010 1.67% Chevrolet Silverado 1500 Regular Cab 2012 1.63% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.49% Chevrolet TrailBlazer SS 2009 1.43% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet TrailBlazer SS 2009 1.8% Chevrolet Silverado 1500 Regular Cab 2012 1.75% Cadillac Escalade EXT Crew Cab 2007 1.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.72% Chrysler 300 SRT-8 2010 1.59% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Cadillac Escalade EXT Crew Cab 2007 3.29% Land Rover Range Rover SUV 2012 2.32% Dodge Durango SUV 2007 2.27% Chrysler 300 SRT-8 2010 2.13% Chevrolet TrailBlazer SS 2009 1.86% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 McLaren MP4-12C Coupe 2012 4.5% Ferrari California Convertible 2012 3.38% Lamborghini Diablo Coupe 2001 2.87% Chevrolet Corvette Convertible 2012 2.81% Aston Martin Virage Coupe 2012 2.61% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 BMW X5 SUV 2007 1.18% Ford E-Series Wagon Van 2012 1.1% GMC Savana Van 2012 1.1% Chevrolet Express Cargo Van 2007 1.09% Hyundai Tucson SUV 2012 1.08% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 1.29% Chevrolet Silverado 2500HD Regular Cab 2012 1.23% Ford F-150 Regular Cab 2012 1.06% Chevrolet Avalanche Crew Cab 2012 1.05% Chevrolet Silverado 1500 Extended Cab 2012 1.04% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.83% FIAT 500 Convertible 2012 2.72% MINI Cooper Roadster Convertible 2012 2.23% Mercedes-Benz S-Class Sedan 2012 2.16% Ram C/V Cargo Van Minivan 2012 1.94% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Fisker Karma Sedan 2012 1.4% Rolls-Royce Phantom Sedan 2012 1.35% Hyundai Genesis Sedan 2012 1.23% Mercedes-Benz E-Class Sedan 2012 1.13% MINI Cooper Roadster Convertible 2012 1.04% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Honda Odyssey Minivan 2007 0.85% Isuzu Ascender SUV 2008 0.84% Jeep Grand Cherokee SUV 2012 0.79% Chrysler 300 SRT-8 2010 0.78% Ford Expedition EL SUV 2009 0.76% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Hyundai Azera Sedan 2012 1.5% Jeep Patriot SUV 2012 1.36% Hyundai Genesis Sedan 2012 1.22% Lamborghini Reventon Coupe 2008 1.13% Spyker C8 Convertible 2009 0.99% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.74% Rolls-Royce Phantom Sedan 2012 1.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.35% Maybach Landaulet Convertible 2012 1.29% Nissan Leaf Hatchback 2012 1.22% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 2.12% Ferrari FF Coupe 2012 1.84% FIAT 500 Convertible 2012 1.81% BMW 1 Series Convertible 2012 1.59% GMC Savana Van 2012 1.55% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.44% GMC Savana Van 2012 1.34% Chevrolet Express Cargo Van 2007 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.22% Ford F-150 Regular Cab 2012 1.13% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 1.57% BMW X5 SUV 2007 1.33% Ford F-150 Regular Cab 2012 1.17% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.14% Isuzu Ascender SUV 2008 1.13% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 HUMMER H2 SUT Crew Cab 2009 2.4% Mercedes-Benz E-Class Sedan 2012 2.06% AM General Hummer SUV 2000 1.82% Spyker C8 Convertible 2009 1.67% Mercedes-Benz 300-Class Convertible 1993 1.67% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 HUMMER H2 SUT Crew Cab 2009 2.86% Dodge Caliber Wagon 2007 2.77% AM General Hummer SUV 2000 2.53% Jeep Wrangler SUV 2012 2.33% HUMMER H3T Crew Cab 2010 1.97% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 FIAT 500 Abarth 2012 3.34% Bentley Arnage Sedan 2009 3.28% Land Rover Range Rover SUV 2012 1.57% Chevrolet TrailBlazer SS 2009 1.5% Cadillac Escalade EXT Crew Cab 2007 1.46% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 McLaren MP4-12C Coupe 2012 3.78% Chevrolet Corvette Convertible 2012 3.68% Ferrari California Convertible 2012 3.46% Ferrari 458 Italia Coupe 2012 3.1% Aston Martin Virage Coupe 2012 3.0% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 BMW M3 Coupe 2012 1.18% Daewoo Nubira Wagon 2002 1.17% Dodge Caravan Minivan 1997 0.95% Plymouth Neon Coupe 1999 0.94% Audi 100 Sedan 1994 0.9% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 1.48% Audi S6 Sedan 2011 1.2% Ford F-450 Super Duty Crew Cab 2012 1.14% Dodge Sprinter Cargo Van 2009 1.13% Volvo XC90 SUV 2007 1.1% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Hyundai Azera Sedan 2012 1.77% Hyundai Genesis Sedan 2012 1.36% Bugatti Veyron 16.4 Coupe 2009 1.28% Bentley Mulsanne Sedan 2011 1.26% Bentley Arnage Sedan 2009 1.25% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.09% GMC Savana Van 2012 1.75% Chevrolet TrailBlazer SS 2009 1.73% Chrysler 300 SRT-8 2010 1.71% Chevrolet Silverado 1500 Regular Cab 2012 1.55% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 1.66% Dodge Sprinter Cargo Van 2009 1.31% Chevrolet Express Cargo Van 2007 1.13% Chevrolet Silverado 2500HD Regular Cab 2012 1.1% Honda Accord Sedan 2012 1.09% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Audi S6 Sedan 2011 1.78% GMC Yukon Hybrid SUV 2012 1.58% BMW X5 SUV 2007 1.53% Land Rover Range Rover SUV 2012 1.47% Cadillac Escalade EXT Crew Cab 2007 1.42% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Audi S6 Sedan 2011 1.51% Mercedes-Benz Sprinter Van 2012 1.5% Dodge Sprinter Cargo Van 2009 1.44% GMC Savana Van 2012 1.39% Audi A5 Coupe 2012 1.35% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.95% Dodge Caravan Minivan 1997 0.93% Mercedes-Benz Sprinter Van 2012 0.91% Acura TL Sedan 2012 0.88% Chrysler Sebring Convertible 2010 0.86% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Dodge Sprinter Cargo Van 2009 2.2% Mercedes-Benz Sprinter Van 2012 1.87% GMC Savana Van 2012 1.73% Audi A5 Coupe 2012 1.44% Lincoln Town Car Sedan 2011 1.31% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Ferrari California Convertible 2012 4.66% Aston Martin Virage Coupe 2012 4.61% Ferrari 458 Italia Convertible 2012 4.26% Chevrolet Corvette Convertible 2012 3.72% Ferrari 458 Italia Coupe 2012 3.65% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Dodge Caliber Wagon 2007 2.7% Ferrari 458 Italia Coupe 2012 2.13% Chevrolet Cobalt SS 2010 2.04% Aston Martin Virage Coupe 2012 2.01% Dodge Charger Sedan 2012 1.86% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Chevrolet TrailBlazer SS 2009 3.03% Chevrolet Silverado 1500 Regular Cab 2012 2.48% Chrysler 300 SRT-8 2010 2.23% Cadillac Escalade EXT Crew Cab 2007 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.94% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Corvette Convertible 2012 3.46% Aston Martin Virage Coupe 2012 3.36% Chevrolet Cobalt SS 2010 3.25% Ferrari 458 Italia Convertible 2012 2.96% Ferrari 458 Italia Coupe 2012 2.89% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Land Rover Range Rover SUV 2012 1.37% Chrysler 300 SRT-8 2010 1.35% Cadillac Escalade EXT Crew Cab 2007 1.28% Jeep Grand Cherokee SUV 2012 1.14% BMW X5 SUV 2007 1.13% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.69% MINI Cooper Roadster Convertible 2012 1.59% Mercedes-Benz S-Class Sedan 2012 1.58% Chrysler PT Cruiser Convertible 2008 1.26% Lincoln Town Car Sedan 2011 1.22% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 McLaren MP4-12C Coupe 2012 4.53% Lamborghini Diablo Coupe 2001 4.45% Audi TT RS Coupe 2012 4.08% Ferrari 458 Italia Coupe 2012 3.61% Lamborghini Aventador Coupe 2012 3.34% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.58% MINI Cooper Roadster Convertible 2012 1.34% Bugatti Veyron 16.4 Convertible 2009 1.12% Chrysler PT Cruiser Convertible 2008 1.07% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.32% Chevrolet Silverado 1500 Regular Cab 2012 1.27% Chevrolet Silverado 1500 Extended Cab 2012 1.19% GMC Savana Van 2012 1.14% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.02% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 1.47% Chevrolet Silverado 2500HD Regular Cab 2012 1.12% Audi S6 Sedan 2011 1.04% Chevrolet Avalanche Crew Cab 2012 1.03% Chevrolet Silverado 1500 Extended Cab 2012 0.94% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Aston Martin Virage Coupe 2012 2.35% Chevrolet Corvette Convertible 2012 1.96% Ferrari 458 Italia Convertible 2012 1.91% Chevrolet Cobalt SS 2010 1.9% Lamborghini Aventador Coupe 2012 1.85% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Chevrolet TrailBlazer SS 2009 2.22% Cadillac Escalade EXT Crew Cab 2007 1.55% Chrysler 300 SRT-8 2010 1.47% Ford Expedition EL SUV 2009 1.25% BMW M6 Convertible 2010 1.18% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Lamborghini Diablo Coupe 2001 15.17% McLaren MP4-12C Coupe 2012 4.49% Acura Integra Type R 2001 4.32% Ferrari California Convertible 2012 3.97% Chevrolet HHR SS 2010 3.54% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.61% GMC Savana Van 2012 1.47% Dodge Ram Pickup 3500 Quad Cab 2009 1.3% Chevrolet Silverado 1500 Regular Cab 2012 1.28% Chevrolet Silverado 1500 Extended Cab 2012 1.25% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.23% Mercedes-Benz Sprinter Van 2012 1.61% Bugatti Veyron 16.4 Convertible 2009 1.46% FIAT 500 Convertible 2012 1.41% Dodge Sprinter Cargo Van 2009 1.38% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Hyundai Azera Sedan 2012 1.03% Hyundai Genesis Sedan 2012 0.92% Nissan Leaf Hatchback 2012 0.9% Dodge Caravan Minivan 1997 0.89% Mercedes-Benz Sprinter Van 2012 0.88% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Dodge Caliber Wagon 2007 4.37% BMW 1 Series Coupe 2012 3.08% Ferrari FF Coupe 2012 2.34% Aston Martin Virage Coupe 2012 1.94% McLaren MP4-12C Coupe 2012 1.84% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 2.14% GMC Savana Van 2012 1.74% Dodge Sprinter Cargo Van 2009 1.43% BMW 1 Series Convertible 2012 1.37% Volkswagen Golf Hatchback 2012 1.09% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 1.48% Chevrolet Express Cargo Van 2007 1.24% Ford F-150 Regular Cab 2012 1.16% Mercedes-Benz Sprinter Van 2012 1.14% Chevrolet Silverado 2500HD Regular Cab 2012 1.07% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.39% Dodge Durango SUV 2007 1.33% Land Rover Range Rover SUV 2012 1.25% GMC Yukon Hybrid SUV 2012 1.17% BMW X5 SUV 2007 1.17% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Ram C/V Cargo Van Minivan 2012 2.48% Ferrari FF Coupe 2012 1.74% BMW 1 Series Convertible 2012 1.71% FIAT 500 Convertible 2012 1.61% GMC Savana Van 2012 1.55% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Nissan Leaf Hatchback 2012 1.44% Daewoo Nubira Wagon 2002 1.25% MINI Cooper Roadster Convertible 2012 1.24% Dodge Caravan Minivan 1997 1.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.14% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Ferrari FF Coupe 2012 1.57% GMC Savana Van 2012 1.55% GMC Canyon Extended Cab 2012 1.37% Dodge Ram Pickup 3500 Quad Cab 2009 1.22% Honda Accord Coupe 2012 1.19% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.38% Ford Expedition EL SUV 2009 1.34% Chevrolet Avalanche Crew Cab 2012 1.21% Ford F-450 Super Duty Crew Cab 2012 1.15% Ford Freestar Minivan 2007 1.01% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Aston Martin Virage Coupe 2012 3.71% Ferrari California Convertible 2012 3.24% Lamborghini Diablo Coupe 2001 3.17% Lamborghini Aventador Coupe 2012 2.96% Ferrari 458 Italia Convertible 2012 2.69% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Ferrari 458 Italia Coupe 2012 4.74% Aston Martin Virage Coupe 2012 4.3% Ferrari California Convertible 2012 3.88% McLaren MP4-12C Coupe 2012 3.82% Dodge Charger SRT-8 2009 3.58% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.62% Lincoln Town Car Sedan 2011 1.7% Mercedes-Benz Sprinter Van 2012 1.45% Acura TSX Sedan 2012 1.35% Volkswagen Golf Hatchback 2012 1.29% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 BMW X5 SUV 2007 1.11% Chevrolet Avalanche Crew Cab 2012 1.03% Jeep Grand Cherokee SUV 2012 1.02% GMC Savana Van 2012 1.02% Ford F-150 Regular Cab 2012 0.96% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 1.02% Mercedes-Benz Sprinter Van 2012 1.01% Lincoln Town Car Sedan 2011 0.94% Ram C/V Cargo Van Minivan 2012 0.92% Chevrolet Express Cargo Van 2007 0.91% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Land Rover Range Rover SUV 2012 1.46% Chrysler 300 SRT-8 2010 1.25% Bentley Arnage Sedan 2009 1.24% Cadillac Escalade EXT Crew Cab 2007 1.2% BMW X5 SUV 2007 1.16% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Ford E-Series Wagon Van 2012 1.25% Audi S6 Sedan 2011 1.17% GMC Savana Van 2012 1.02% Chrysler Aspen SUV 2009 0.93% Isuzu Ascender SUV 2008 0.92% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Dodge Caliber Wagon 2007 1.67% Chevrolet Silverado 1500 Regular Cab 2012 1.46% Volkswagen Golf Hatchback 1991 1.19% Jeep Liberty SUV 2012 1.15% Chevrolet TrailBlazer SS 2009 1.1% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 1.48% Ford E-Series Wagon Van 2012 1.23% GMC Savana Van 2012 1.05% Hyundai Santa Fe SUV 2012 0.93% Chrysler Aspen SUV 2009 0.91% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Jeep Compass SUV 2012 0.8% Nissan Juke Hatchback 2012 0.77% Jeep Wrangler SUV 2012 0.76% Mercedes-Benz 300-Class Convertible 1993 0.73% Bugatti Veyron 16.4 Coupe 2009 0.72% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chevrolet Silverado 1500 Regular Cab 2012 1.43% Chrysler 300 SRT-8 2010 1.22% Chevrolet Silverado 1500 Extended Cab 2012 1.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.12% Cadillac Escalade EXT Crew Cab 2007 1.1% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 2.81% BMW 1 Series Convertible 2012 1.66% Dodge Sprinter Cargo Van 2009 1.58% BMW ActiveHybrid 5 Sedan 2012 1.5% FIAT 500 Convertible 2012 1.41% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Ford E-Series Wagon Van 2012 1.3% GMC Savana Van 2012 1.13% Audi S6 Sedan 2011 1.08% Mercedes-Benz Sprinter Van 2012 1.04% Acura TL Sedan 2012 1.04% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.28% Audi S6 Sedan 2011 1.06% Isuzu Ascender SUV 2008 1.02% BMW X5 SUV 2007 1.02% Ford F-450 Super Duty Crew Cab 2012 0.97% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.53% BMW X5 SUV 2007 1.02% GMC Acadia SUV 2012 1.01% Chevrolet Silverado 2500HD Regular Cab 2012 1.0% Buick Rainier SUV 2007 0.99% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Mercedes-Benz Sprinter Van 2012 1.46% Audi 100 Sedan 1994 1.23% Ford E-Series Wagon Van 2012 1.21% Mercedes-Benz S-Class Sedan 2012 1.19% Dodge Caravan Minivan 1997 1.13% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 1.95% Ford F-150 Regular Cab 2012 1.32% BMW X5 SUV 2007 1.26% Chevrolet Express Cargo Van 2007 1.24% Dodge Sprinter Cargo Van 2009 1.17% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.34% Ram C/V Cargo Van Minivan 2012 1.89% Mercedes-Benz Sprinter Van 2012 1.79% Lincoln Town Car Sedan 2011 1.51% Acura TL Sedan 2012 1.47% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Audi A5 Coupe 2012 1.34% Mercedes-Benz Sprinter Van 2012 1.22% GMC Savana Van 2012 1.21% Acura TL Sedan 2012 1.14% Audi S6 Sedan 2011 1.12% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Chevrolet TrailBlazer SS 2009 3.04% Chrysler 300 SRT-8 2010 2.31% Cadillac Escalade EXT Crew Cab 2007 2.18% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.57% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Phantom Sedan 2012 2.06% Maybach Landaulet Convertible 2012 1.53% Bentley Continental Supersports Conv. Convertible 2012 1.43% Chevrolet Sonic Sedan 2012 1.37% Daewoo Nubira Wagon 2002 1.35% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 1.69% BMW X5 SUV 2007 1.27% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.21% Jeep Grand Cherokee SUV 2012 1.16% Buick Rainier SUV 2007 1.14% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Hyundai Azera Sedan 2012 1.71% Bentley Arnage Sedan 2009 1.5% Bentley Mulsanne Sedan 2011 1.47% Bugatti Veyron 16.4 Coupe 2009 1.37% Hyundai Genesis Sedan 2012 1.33% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Lamborghini Diablo Coupe 2001 13.76% Ferrari California Convertible 2012 4.68% Acura Integra Type R 2001 4.19% Ferrari 458 Italia Coupe 2012 3.91% Chevrolet Corvette Convertible 2012 3.76% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Caliber Wagon 2007 1.73% Volkswagen Golf Hatchback 1991 1.45% GMC Savana Van 2012 1.39% HUMMER H3T Crew Cab 2010 1.24% Chevrolet Silverado 1500 Regular Cab 2012 1.2% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Jeep Grand Cherokee SUV 2012 0.93% Chrysler 300 SRT-8 2010 0.87% GMC Savana Van 2012 0.82% GMC Acadia SUV 2012 0.82% Cadillac Escalade EXT Crew Cab 2007 0.81% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 2.34% FIAT 500 Abarth 2012 1.9% Land Rover Range Rover SUV 2012 1.4% Chevrolet TrailBlazer SS 2009 1.34% Cadillac Escalade EXT Crew Cab 2007 1.31% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 1.76% Hyundai Azera Sedan 2012 1.5% Bugatti Veyron 16.4 Coupe 2009 1.29% Hyundai Genesis Sedan 2012 1.18% FIAT 500 Abarth 2012 1.15% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.26% Chrysler 300 SRT-8 2010 2.01% Chevrolet Silverado 1500 Regular Cab 2012 1.81% Chevrolet TrailBlazer SS 2009 1.78% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.51% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Cadillac Escalade EXT Crew Cab 2007 1.62% Chevrolet Avalanche Crew Cab 2012 1.55% Chevrolet Silverado 1500 Regular Cab 2012 1.53% GMC Savana Van 2012 1.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.45% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 1.49% Fisker Karma Sedan 2012 1.38% HUMMER H2 SUT Crew Cab 2009 1.23% Mercedes-Benz 300-Class Convertible 1993 1.15% Bugatti Veyron 16.4 Coupe 2009 1.13% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Jeep Patriot SUV 2012 1.85% Land Rover Range Rover SUV 2012 1.66% FIAT 500 Abarth 2012 1.59% Bentley Arnage Sedan 2009 1.34% Cadillac Escalade EXT Crew Cab 2007 1.25% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Dodge Caliber Wagon 2007 3.75% Aston Martin Virage Coupe 2012 2.74% Ferrari 458 Italia Coupe 2012 2.61% Dodge Charger Sedan 2012 2.21% HUMMER H3T Crew Cab 2010 2.02% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 3.59% FIAT 500 Abarth 2012 2.74% Bugatti Veyron 16.4 Coupe 2009 2.01% HUMMER H2 SUT Crew Cab 2009 1.98% Lamborghini Reventon Coupe 2008 1.78% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 McLaren MP4-12C Coupe 2012 5.44% Lamborghini Diablo Coupe 2001 5.36% Audi TT RS Coupe 2012 5.29% Aston Martin Virage Coupe 2012 4.8% Ferrari California Convertible 2012 4.64% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Audi S6 Sedan 2011 1.21% Isuzu Ascender SUV 2008 1.1% Mercedes-Benz Sprinter Van 2012 1.04% Audi A5 Coupe 2012 1.0% BMW X5 SUV 2007 0.96% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Honda Odyssey Minivan 2007 0.99% Chevrolet Silverado 1500 Extended Cab 2012 0.97% Chevrolet Silverado 2500HD Regular Cab 2012 0.93% Isuzu Ascender SUV 2008 0.93% Chevrolet Avalanche Crew Cab 2012 0.88% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Mercedes-Benz Sprinter Van 2012 1.33% Lincoln Town Car Sedan 2011 1.23% Mercedes-Benz S-Class Sedan 2012 1.13% Dodge Caravan Minivan 1997 1.12% Ram C/V Cargo Van Minivan 2012 1.1% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Buick Rainier SUV 2007 1.24% GMC Savana Van 2012 1.23% Chevrolet Express Cargo Van 2007 1.17% Mercedes-Benz Sprinter Van 2012 1.13% BMW X5 SUV 2007 1.12% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Hyundai Azera Sedan 2012 1.19% Dodge Challenger SRT8 2011 1.15% MINI Cooper Roadster Convertible 2012 1.09% Ford E-Series Wagon Van 2012 1.08% Dodge Caravan Minivan 1997 1.03% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Chevrolet TrailBlazer SS 2009 2.84% Chevrolet Silverado 1500 Regular Cab 2012 2.58% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.33% Chrysler 300 SRT-8 2010 2.15% Cadillac Escalade EXT Crew Cab 2007 2.01% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 1.87% Ram C/V Cargo Van Minivan 2012 1.54% Dodge Sprinter Cargo Van 2009 1.31% Chevrolet Silverado 2500HD Regular Cab 2012 1.08% Mercedes-Benz Sprinter Van 2012 1.04% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 HUMMER H2 SUT Crew Cab 2009 2.08% Bentley Arnage Sedan 2009 1.27% Fisker Karma Sedan 2012 1.21% Bugatti Veyron 16.4 Coupe 2009 1.14% Chevrolet Corvette ZR1 2012 1.11% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 1.99% Chrysler 300 SRT-8 2010 1.63% Land Rover Range Rover SUV 2012 1.59% Chevrolet TrailBlazer SS 2009 1.44% Dodge Durango SUV 2007 1.32% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet TrailBlazer SS 2009 1.34% Bentley Arnage Sedan 2009 1.02% BMW M6 Convertible 2010 1.02% Chrysler 300 SRT-8 2010 1.01% Rolls-Royce Phantom Sedan 2012 0.9% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Bentley Arnage Sedan 2009 1.75% Hyundai Genesis Sedan 2012 1.36% Chrysler 300 SRT-8 2010 1.17% FIAT 500 Abarth 2012 1.12% Land Rover Range Rover SUV 2012 1.11% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 1.71% Audi S6 Sedan 2011 1.48% Ford F-150 Regular Cab 2012 1.38% Dodge Sprinter Cargo Van 2009 1.35% Isuzu Ascender SUV 2008 1.27% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 2.09% Chevrolet Avalanche Crew Cab 2012 1.84% Ford F-150 Regular Cab 2012 1.57% Chevrolet Silverado 1500 Extended Cab 2012 1.54% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.36% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Lamborghini Diablo Coupe 2001 11.03% Ferrari California Convertible 2012 6.39% McLaren MP4-12C Coupe 2012 5.94% Ferrari 458 Italia Convertible 2012 4.41% Aston Martin Virage Coupe 2012 4.17% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Dodge Caliber Wagon 2007 2.33% BMW 3 Series Sedan 2012 1.84% Ferrari 458 Italia Coupe 2012 1.76% Dodge Charger SRT-8 2009 1.46% Dodge Charger Sedan 2012 1.36% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 1.62% Ram C/V Cargo Van Minivan 2012 1.41% Suzuki Aerio Sedan 2007 1.29% Bugatti Veyron 16.4 Convertible 2009 1.28% GMC Savana Van 2012 1.15% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 2.79% Dodge Sprinter Cargo Van 2009 1.8% BMW 1 Series Convertible 2012 1.58% GMC Savana Van 2012 1.48% Mercedes-Benz Sprinter Van 2012 1.43% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 FIAT 500 Convertible 2012 4.59% Mercedes-Benz E-Class Sedan 2012 3.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.3% MINI Cooper Roadster Convertible 2012 1.91% Maybach Landaulet Convertible 2012 1.8% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 HUMMER H2 SUT Crew Cab 2009 2.94% Chevrolet TrailBlazer SS 2009 2.42% Dodge Caliber Wagon 2007 2.39% AM General Hummer SUV 2000 2.12% HUMMER H3T Crew Cab 2010 2.11% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Ford E-Series Wagon Van 2012 0.94% Ford Expedition EL SUV 2009 0.94% GMC Savana Van 2012 0.88% Dodge Ram Pickup 3500 Crew Cab 2010 0.86% Chrysler 300 SRT-8 2010 0.84% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.98% GMC Savana Van 2012 1.96% Dodge Sprinter Cargo Van 2009 1.78% Mercedes-Benz Sprinter Van 2012 1.36% Volkswagen Golf Hatchback 2012 1.24% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 1.56% Chevrolet Express Cargo Van 2007 1.43% BMW X5 SUV 2007 1.36% Ford F-150 Regular Cab 2012 1.3% Jeep Grand Cherokee SUV 2012 1.21% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Cadillac Escalade EXT Crew Cab 2007 1.77% Chrysler 300 SRT-8 2010 1.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.49% Jeep Grand Cherokee SUV 2012 1.45% Chevrolet Silverado 1500 Regular Cab 2012 1.31% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Lamborghini Diablo Coupe 2001 13.03% McLaren MP4-12C Coupe 2012 6.32% Ferrari California Convertible 2012 5.72% Aston Martin Virage Coupe 2012 4.53% Acura Integra Type R 2001 4.35% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Dodge Caliber Wagon 2007 2.2% HUMMER H3T Crew Cab 2010 1.53% HUMMER H2 SUT Crew Cab 2009 1.5% AM General Hummer SUV 2000 1.38% Hyundai Veloster Hatchback 2012 1.29% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Nissan Leaf Hatchback 2012 1.51% Dodge Caravan Minivan 1997 1.3% MINI Cooper Roadster Convertible 2012 1.3% Rolls-Royce Phantom Sedan 2012 1.21% Ford E-Series Wagon Van 2012 1.16% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Cadillac Escalade EXT Crew Cab 2007 1.33% Chrysler 300 SRT-8 2010 1.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.22% Jeep Grand Cherokee SUV 2012 1.19% Chevrolet Silverado 1500 Extended Cab 2012 1.18% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 2.94% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.82% MINI Cooper Roadster Convertible 2012 1.84% Mercedes-Benz S-Class Sedan 2012 1.71% Bugatti Veyron 16.4 Convertible 2009 1.64% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Chevrolet TrailBlazer SS 2009 1.8% Cadillac Escalade EXT Crew Cab 2007 1.68% Ford Expedition EL SUV 2009 1.63% GMC Savana Van 2012 1.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.52% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.51% Mercedes-Benz S-Class Sedan 2012 2.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.7% MINI Cooper Roadster Convertible 2012 1.65% Lincoln Town Car Sedan 2011 1.64% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Lamborghini Diablo Coupe 2001 2.05% Audi TT RS Coupe 2012 1.83% McLaren MP4-12C Coupe 2012 1.82% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.64% Spyker C8 Convertible 2009 1.63% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 2.92% FIAT 500 Abarth 2012 1.84% Bugatti Veyron 16.4 Coupe 2009 1.43% Land Rover Range Rover SUV 2012 1.39% HUMMER H2 SUT Crew Cab 2009 1.39% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Jeep Grand Cherokee SUV 2012 1.19% Chrysler 300 SRT-8 2010 1.11% Cadillac Escalade EXT Crew Cab 2007 0.96% GMC Acadia SUV 2012 0.94% Chevrolet Silverado 2500HD Regular Cab 2012 0.88% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Ford E-Series Wagon Van 2012 1.36% BMW X5 SUV 2007 1.29% Audi S6 Sedan 2011 1.17% Jeep Compass SUV 2012 1.17% Land Rover Range Rover SUV 2012 1.15% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 FIAT 500 Convertible 2012 0.99% Mercedes-Benz E-Class Sedan 2012 0.92% Maybach Landaulet Convertible 2012 0.91% Spyker C8 Coupe 2009 0.86% Daewoo Nubira Wagon 2002 0.86% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Nissan Leaf Hatchback 2012 1.23% Chrysler PT Cruiser Convertible 2008 1.16% MINI Cooper Roadster Convertible 2012 1.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.09% Mercedes-Benz S-Class Sedan 2012 1.09% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Dodge Ram Pickup 3500 Crew Cab 2010 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.43% Jeep Liberty SUV 2012 1.4% Chrysler 300 SRT-8 2010 1.29% Chevrolet TrailBlazer SS 2009 1.27% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Mercedes-Benz Sprinter Van 2012 1.38% GMC Savana Van 2012 1.33% Acura TL Sedan 2012 1.17% Volkswagen Golf Hatchback 2012 1.16% Isuzu Ascender SUV 2008 1.13% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 FIAT 500 Abarth 2012 2.57% HUMMER H2 SUT Crew Cab 2009 2.56% Bentley Arnage Sedan 2009 2.47% Spyker C8 Convertible 2009 1.94% Bugatti Veyron 16.4 Coupe 2009 1.89% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 3.31% FIAT 500 Abarth 2012 2.53% Land Rover Range Rover SUV 2012 1.95% Cadillac Escalade EXT Crew Cab 2007 1.54% Chrysler 300 SRT-8 2010 1.45% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 FIAT 500 Convertible 2012 1.3% Hyundai Elantra Sedan 2007 1.26% Volvo C30 Hatchback 2012 1.13% Spyker C8 Coupe 2009 1.06% Ford GT Coupe 2006 1.05% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 1.77% Chevrolet Silverado 2500HD Regular Cab 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.32% Ford F-150 Regular Cab 2012 1.23% Chevrolet Express Cargo Van 2007 1.2% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Bentley Arnage Sedan 2009 2.27% FIAT 500 Abarth 2012 2.13% Bugatti Veyron 16.4 Coupe 2009 1.91% Lamborghini Reventon Coupe 2008 1.73% Spyker C8 Convertible 2009 1.7% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 1.32% Bentley Arnage Sedan 2009 1.32% Ford Expedition EL SUV 2009 1.28% Chrysler 300 SRT-8 2010 1.26% Chevrolet TrailBlazer SS 2009 1.18% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Bentley Arnage Sedan 2009 2.38% FIAT 500 Abarth 2012 2.0% Spyker C8 Convertible 2009 1.51% Bugatti Veyron 16.4 Coupe 2009 1.48% Hyundai Azera Sedan 2012 1.43% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Nissan Leaf Hatchback 2012 1.43% Ram C/V Cargo Van Minivan 2012 1.43% Mercedes-Benz Sprinter Van 2012 1.27% Honda Odyssey Minivan 2007 1.18% Dodge Sprinter Cargo Van 2009 1.14% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 1.39% Jeep Grand Cherokee SUV 2012 0.96% Cadillac Escalade EXT Crew Cab 2007 0.94% Chevrolet TrailBlazer SS 2009 0.91% Ford Expedition EL SUV 2009 0.9% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 BMW X5 SUV 2007 1.42% Audi S6 Sedan 2011 1.3% Hyundai Santa Fe SUV 2012 1.24% Ford F-150 Regular Cab 2012 1.2% Chrysler Aspen SUV 2009 1.18% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 1.43% Mercedes-Benz Sprinter Van 2012 1.23% Ford E-Series Wagon Van 2012 1.21% Dodge Sprinter Cargo Van 2009 1.21% Dodge Caravan Minivan 1997 1.2% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.63% Bentley Arnage Sedan 2009 1.5% Spyker C8 Convertible 2009 1.27% Fisker Karma Sedan 2012 1.27% Bentley Mulsanne Sedan 2011 1.25% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 GMC Canyon Extended Cab 2012 1.71% Chevrolet Silverado 1500 Regular Cab 2012 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.54% Ferrari FF Coupe 2012 1.35% Dodge Ram Pickup 3500 Quad Cab 2009 1.31% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 FIAT 500 Abarth 2012 2.96% Bentley Arnage Sedan 2009 2.61% Chevrolet TrailBlazer SS 2009 2.42% Cadillac Escalade EXT Crew Cab 2007 1.97% Land Rover Range Rover SUV 2012 1.92% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 1.64% Chevrolet Silverado 2500HD Regular Cab 2012 1.53% Chevrolet Silverado 1500 Regular Cab 2012 1.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.26% Ford F-150 Regular Cab 2012 1.23% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% Chevrolet Silverado 1500 Regular Cab 2012 1.45% GMC Savana Van 2012 1.39% Chevrolet Avalanche Crew Cab 2012 1.34% Cadillac Escalade EXT Crew Cab 2007 1.31% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 BMW X5 SUV 2007 1.48% Land Rover Range Rover SUV 2012 1.23% Jeep Grand Cherokee SUV 2012 1.13% GMC Yukon Hybrid SUV 2012 1.07% Jeep Compass SUV 2012 1.07% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.65% GMC Savana Van 2012 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.39% Ford F-150 Regular Cab 2012 1.32% Chevrolet Silverado 1500 Regular Cab 2012 1.31% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Chevrolet TrailBlazer SS 2009 1.82% Chrysler 300 SRT-8 2010 1.38% Dodge Ram Pickup 3500 Crew Cab 2010 1.25% Cadillac Escalade EXT Crew Cab 2007 1.19% Bentley Arnage Sedan 2009 1.18% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Aventador Coupe 2012 2.98% Aston Martin Virage Coupe 2012 2.81% Audi TT RS Coupe 2012 2.64% Acura Integra Type R 2001 2.48% Ferrari 458 Italia Convertible 2012 2.42% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 Chevrolet TrailBlazer SS 2009 2.22% Chevrolet Silverado 1500 Regular Cab 2012 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% Chrysler 300 SRT-8 2010 1.29% BMW M6 Convertible 2010 1.28% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Lamborghini Diablo Coupe 2001 4.64% McLaren MP4-12C Coupe 2012 3.82% AM General Hummer SUV 2000 2.88% Ferrari California Convertible 2012 2.83% Lamborghini Aventador Coupe 2012 2.45% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Hyundai Azera Sedan 2012 1.81% Bentley Arnage Sedan 2009 1.47% Bentley Mulsanne Sedan 2011 1.34% Bugatti Veyron 16.4 Coupe 2009 1.32% Lamborghini Reventon Coupe 2008 1.3% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 2.22% Chrysler 300 SRT-8 2010 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.72% Chevrolet TrailBlazer SS 2009 1.71% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford E-Series Wagon Van 2012 1.09% Audi S6 Sedan 2011 1.01% Hyundai Genesis Sedan 2012 1.0% Dodge Challenger SRT8 2011 0.98% Chrysler Aspen SUV 2009 0.97% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 2.19% HUMMER H2 SUT Crew Cab 2009 2.18% AM General Hummer SUV 2000 1.64% HUMMER H3T Crew Cab 2010 1.58% BMW X6 SUV 2012 1.25% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Cadillac Escalade EXT Crew Cab 2007 1.24% Jeep Grand Cherokee SUV 2012 1.2% Chrysler 300 SRT-8 2010 1.2% BMW X5 SUV 2007 1.0% Land Rover Range Rover SUV 2012 0.98% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz S-Class Sedan 2012 0.92% Chrysler PT Cruiser Convertible 2008 0.9% Mercedes-Benz 300-Class Convertible 1993 0.89% Geo Metro Convertible 1993 0.86% Tesla Model S Sedan 2012 0.86% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 3.3% Audi TT RS Coupe 2012 2.87% Ferrari California Convertible 2012 2.72% Lamborghini Diablo Coupe 2001 2.67% Ferrari 458 Italia Coupe 2012 2.38% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 Dodge Sprinter Cargo Van 2009 1.97% Ram C/V Cargo Van Minivan 2012 1.86% BMW 1 Series Convertible 2012 1.58% Mercedes-Benz Sprinter Van 2012 1.37% GMC Savana Van 2012 1.32% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 FIAT 500 Convertible 2012 1.93% Ford GT Coupe 2006 1.6% Maybach Landaulet Convertible 2012 1.58% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.52% Bentley Continental Supersports Conv. Convertible 2012 1.47% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 2.18% Chevrolet Silverado 1500 Regular Cab 2012 1.56% GMC Terrain SUV 2012 1.43% Jeep Grand Cherokee SUV 2012 1.39% BMW X5 SUV 2007 1.34% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 HUMMER H2 SUT Crew Cab 2009 1.75% Chevrolet TrailBlazer SS 2009 1.39% Dodge Caliber Wagon 2007 1.33% Chrysler 300 SRT-8 2010 1.31% Volkswagen Golf Hatchback 1991 1.29% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.81% Chrysler 300 SRT-8 2010 1.53% Jeep Grand Cherokee SUV 2012 1.29% Dodge Ram Pickup 3500 Crew Cab 2010 1.26% Land Rover Range Rover SUV 2012 1.21% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Acura Integra Type R 2001 2.3% Lamborghini Diablo Coupe 2001 2.07% Ferrari 458 Italia Convertible 2012 1.86% Chevrolet Cobalt SS 2010 1.86% Aston Martin Virage Coupe 2012 1.79% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 1.99% Ford F-150 Regular Cab 2012 1.34% Chevrolet Express Cargo Van 2007 1.23% Buick Rainier SUV 2007 1.22% Dodge Sprinter Cargo Van 2009 1.22% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caravan Minivan 1997 1.28% Ford E-Series Wagon Van 2012 1.23% Acura TL Sedan 2012 1.13% Honda Odyssey Minivan 2007 1.07% Chrysler Aspen SUV 2009 1.06% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 1.48% Chevrolet Express Cargo Van 2007 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.24% Ford F-150 Regular Cab 2012 1.12% Dodge Sprinter Cargo Van 2009 1.08% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Bentley Arnage Sedan 2009 3.67% FIAT 500 Abarth 2012 3.65% Land Rover Range Rover SUV 2012 1.8% Jeep Patriot SUV 2012 1.67% Cadillac SRX SUV 2012 1.55% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 Lamborghini Diablo Coupe 2001 5.24% Aston Martin Virage Coupe 2012 4.13% Ferrari California Convertible 2012 3.74% AM General Hummer SUV 2000 3.55% Lamborghini Aventador Coupe 2012 3.48% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.27% Ford GT Coupe 2006 1.51% Spyker C8 Coupe 2009 1.29% Volvo C30 Hatchback 2012 1.29% Hyundai Elantra Sedan 2007 1.29% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Jeep Compass SUV 2012 1.0% GMC Yukon Hybrid SUV 2012 1.0% Ford E-Series Wagon Van 2012 0.98% Jeep Patriot SUV 2012 0.97% Land Rover Range Rover SUV 2012 0.97% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Cadillac Escalade EXT Crew Cab 2007 1.99% Dodge Durango SUV 2007 1.5% Chrysler 300 SRT-8 2010 1.46% Land Rover Range Rover SUV 2012 1.36% Chevrolet TrailBlazer SS 2009 1.35% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Chrysler 300 SRT-8 2010 1.23% HUMMER H2 SUT Crew Cab 2009 1.18% Jeep Grand Cherokee SUV 2012 1.14% GMC Acadia SUV 2012 1.12% Land Rover Range Rover SUV 2012 1.09% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 1.66% Cadillac Escalade EXT Crew Cab 2007 1.55% Audi S6 Sedan 2011 1.44% BMW X5 SUV 2007 1.42% Jeep Grand Cherokee SUV 2012 1.41% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ferrari California Convertible 2012 2.68% Lamborghini Diablo Coupe 2001 2.57% Ferrari 458 Italia Convertible 2012 2.34% Volvo C30 Hatchback 2012 2.33% Lamborghini Aventador Coupe 2012 2.26% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 AM General Hummer SUV 2000 7.09% HUMMER H2 SUT Crew Cab 2009 3.96% McLaren MP4-12C Coupe 2012 3.75% Lamborghini Diablo Coupe 2001 3.15% HUMMER H3T Crew Cab 2010 3.03% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Ram C/V Cargo Van Minivan 2012 2.24% Ferrari FF Coupe 2012 1.67% BMW 1 Series Convertible 2012 1.63% GMC Savana Van 2012 1.54% Dodge Sprinter Cargo Van 2009 1.36% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.88% Chrysler 300 SRT-8 2010 1.71% Cadillac Escalade EXT Crew Cab 2007 1.54% GMC Savana Van 2012 1.54% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 2.64% Aston Martin Virage Coupe 2012 2.5% Ferrari 458 Italia Coupe 2012 2.07% Chevrolet Cobalt SS 2010 1.82% Chevrolet Corvette Convertible 2012 1.79% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Mercedes-Benz Sprinter Van 2012 1.4% Audi S6 Sedan 2011 1.39% Ford E-Series Wagon Van 2012 1.2% Audi A5 Coupe 2012 1.1% Acura TL Sedan 2012 1.09% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 1.72% Chrysler 300 SRT-8 2010 1.56% HUMMER H2 SUT Crew Cab 2009 1.45% Bentley Arnage Sedan 2009 1.44% Land Rover Range Rover SUV 2012 1.4% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 6.43% McLaren MP4-12C Coupe 2012 5.68% Ferrari 458 Italia Convertible 2012 4.76% Chevrolet Corvette Convertible 2012 4.36% Lamborghini Diablo Coupe 2001 3.86% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 3.0% Cadillac Escalade EXT Crew Cab 2007 1.97% Ford Expedition EL SUV 2009 1.89% Dodge Ram Pickup 3500 Crew Cab 2010 1.72% Chrysler 300 SRT-8 2010 1.63% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.73% Chevrolet Silverado 1500 Extended Cab 2012 1.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.5% GMC Savana Van 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.32% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Aston Martin Virage Coupe 2012 3.76% HUMMER H2 SUT Crew Cab 2009 3.17% AM General Hummer SUV 2000 3.12% Jeep Wrangler SUV 2012 2.98% Chevrolet Corvette Convertible 2012 2.9% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Spyker C8 Convertible 2009 1.39% Ford GT Coupe 2006 1.16% Bugatti Veyron 16.4 Coupe 2009 1.12% BMW M3 Coupe 2012 1.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.01% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 1.7% GMC Canyon Extended Cab 2012 1.58% Chevrolet Silverado 1500 Regular Cab 2012 1.21% Ferrari FF Coupe 2012 1.17% Dodge Ram Pickup 3500 Quad Cab 2009 1.15% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 2.05% Honda Accord Coupe 2012 1.48% Chevrolet Silverado 1500 Regular Cab 2012 1.43% GMC Savana Van 2012 1.38% GMC Canyon Extended Cab 2012 1.33% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 2.25% Chevrolet Express Cargo Van 2007 1.64% Ford F-150 Regular Cab 2012 1.42% Chevrolet Silverado 2500HD Regular Cab 2012 1.3% GMC Acadia SUV 2012 1.26% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.2% Fisker Karma Sedan 2012 1.31% Chevrolet Corvette ZR1 2012 1.12% MINI Cooper Roadster Convertible 2012 1.07% Mercedes-Benz SL-Class Coupe 2009 1.06% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Bentley Arnage Sedan 2009 2.13% FIAT 500 Abarth 2012 2.02% HUMMER H2 SUT Crew Cab 2009 1.69% Bugatti Veyron 16.4 Coupe 2009 1.34% AM General Hummer SUV 2000 1.32% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.44% Lincoln Town Car Sedan 2011 1.25% Ram C/V Cargo Van Minivan 2012 1.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.2% Nissan Leaf Hatchback 2012 1.16% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 2.02% Dodge Sprinter Cargo Van 2009 1.72% Chevrolet Silverado 2500HD Regular Cab 2012 1.49% Chevrolet Express Cargo Van 2007 1.46% Mercedes-Benz Sprinter Van 2012 1.4% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 2.19% Chevrolet Silverado 1500 Regular Cab 2012 1.85% Chrysler 300 SRT-8 2010 1.78% Chevrolet TrailBlazer SS 2009 1.67% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.52% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.37% Lincoln Town Car Sedan 2011 1.31% GMC Savana Van 2012 1.16% Mercedes-Benz S-Class Sedan 2012 1.07% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 11.22% Acura Integra Type R 2001 4.82% Ferrari California Convertible 2012 4.8% Ferrari 458 Italia Convertible 2012 4.6% Aston Martin Virage Coupe 2012 4.59% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Ford E-Series Wagon Van 2012 1.25% Dodge Caravan Minivan 1997 1.2% Isuzu Ascender SUV 2008 1.06% Ford Freestar Minivan 2007 0.97% Honda Odyssey Minivan 2007 0.97% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Ford E-Series Wagon Van 2012 1.38% Cadillac Escalade EXT Crew Cab 2007 1.19% Audi S6 Sedan 2011 1.19% Land Rover Range Rover SUV 2012 1.16% Bentley Arnage Sedan 2009 1.14% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Mercedes-Benz Sprinter Van 2012 1.18% MINI Cooper Roadster Convertible 2012 1.08% Mercedes-Benz S-Class Sedan 2012 1.0% Lincoln Town Car Sedan 2011 0.96% Audi A5 Coupe 2012 0.94% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.56% BMW 1 Series Convertible 2012 1.71% Ferrari FF Coupe 2012 1.65% FIAT 500 Convertible 2012 1.6% GMC Savana Van 2012 1.36% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Dodge Caliber Wagon 2007 1.75% Volkswagen Golf Hatchback 1991 1.69% HUMMER H2 SUT Crew Cab 2009 1.56% HUMMER H3T Crew Cab 2010 1.31% Ferrari FF Coupe 2012 1.27% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bentley Arnage Sedan 2009 2.77% Chevrolet TrailBlazer SS 2009 2.3% FIAT 500 Abarth 2012 1.97% Cadillac Escalade EXT Crew Cab 2007 1.73% Chrysler 300 SRT-8 2010 1.5% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 4.53% FIAT 500 Abarth 2012 3.45% Chevrolet TrailBlazer SS 2009 1.61% Cadillac SRX SUV 2012 1.54% Hyundai Azera Sedan 2012 1.46% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Lamborghini Diablo Coupe 2001 4.64% McLaren MP4-12C Coupe 2012 3.82% AM General Hummer SUV 2000 2.88% Ferrari California Convertible 2012 2.83% Lamborghini Aventador Coupe 2012 2.45% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Mercedes-Benz Sprinter Van 2012 1.68% Ram C/V Cargo Van Minivan 2012 1.53% Mercedes-Benz S-Class Sedan 2012 1.45% Dodge Sprinter Cargo Van 2009 1.32% Lincoln Town Car Sedan 2011 1.27% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 MINI Cooper Roadster Convertible 2012 2.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.89% FIAT 500 Convertible 2012 1.74% Mercedes-Benz S-Class Sedan 2012 1.73% Mercedes-Benz E-Class Sedan 2012 1.59% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 McLaren MP4-12C Coupe 2012 2.39% Dodge Caliber Wagon 2007 2.22% Ferrari 458 Italia Coupe 2012 2.03% Dodge Charger SRT-8 2009 1.82% BMW 1 Series Coupe 2012 1.58% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz E-Class Sedan 2012 2.83% HUMMER H2 SUT Crew Cab 2009 2.56% Mercedes-Benz 300-Class Convertible 1993 2.38% Fisker Karma Sedan 2012 2.35% Spyker C8 Convertible 2009 2.16% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Ferrari FF Coupe 2012 0.95% GMC Savana Van 2012 0.88% Mercedes-Benz 300-Class Convertible 1993 0.83% Chevrolet Sonic Sedan 2012 0.82% Daewoo Nubira Wagon 2002 0.82% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 1.25% Jeep Grand Cherokee SUV 2012 1.13% Cadillac Escalade EXT Crew Cab 2007 1.1% BMW X5 SUV 2007 1.03% GMC Acadia SUV 2012 1.03% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 FIAT 500 Convertible 2012 1.63% Dodge Sprinter Cargo Van 2009 1.32% Ferrari FF Coupe 2012 1.29% GMC Savana Van 2012 1.26% BMW 1 Series Coupe 2012 1.24% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.09% Ferrari FF Coupe 2012 1.85% BMW 1 Series Convertible 2012 1.55% GMC Savana Van 2012 1.46% Dodge Sprinter Cargo Van 2009 1.19% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 GMC Acadia SUV 2012 1.2% HUMMER H2 SUT Crew Cab 2009 1.16% Infiniti G Coupe IPL 2012 1.07% Chevrolet Corvette ZR1 2012 1.06% Cadillac Escalade EXT Crew Cab 2007 1.04% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Silverado 2500HD Regular Cab 2012 1.58% GMC Savana Van 2012 1.47% Chevrolet Silverado 1500 Regular Cab 2012 1.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.11% Dodge Ram Pickup 3500 Quad Cab 2009 1.06% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Dodge Caliber Wagon 2007 2.73% McLaren MP4-12C Coupe 2012 2.59% Ferrari 458 Italia Coupe 2012 2.3% Hyundai Veloster Hatchback 2012 2.1% Audi TT RS Coupe 2012 1.91% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Ferrari 458 Italia Coupe 2012 2.55% Dodge Caliber Wagon 2007 2.25% McLaren MP4-12C Coupe 2012 2.15% Lamborghini Diablo Coupe 2001 1.87% Dodge Charger SRT-8 2009 1.6% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 1.31% Bugatti Veyron 16.4 Coupe 2009 1.21% BMW X5 SUV 2007 1.1% Mazda Tribute SUV 2011 1.08% Acura TL Type-S 2008 1.06% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 HUMMER H2 SUT Crew Cab 2009 1.23% Fisker Karma Sedan 2012 1.11% GMC Acadia SUV 2012 0.94% Acura TL Type-S 2008 0.93% Bugatti Veyron 16.4 Coupe 2009 0.9% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 2.2% Dodge Sprinter Cargo Van 2009 2.01% Mercedes-Benz Sprinter Van 2012 1.78% Lincoln Town Car Sedan 2011 1.59% GMC Savana Van 2012 1.46% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Nissan Leaf Hatchback 2012 1.85% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.83% MINI Cooper Roadster Convertible 2012 1.78% Chrysler PT Cruiser Convertible 2008 1.27% Dodge Caravan Minivan 1997 1.24% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 McLaren MP4-12C Coupe 2012 6.24% Ferrari California Convertible 2012 5.21% Ferrari 458 Italia Convertible 2012 4.59% Chevrolet Corvette Convertible 2012 4.41% Aston Martin Virage Coupe 2012 4.27% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ram C/V Cargo Van Minivan 2012 1.92% Dodge Sprinter Cargo Van 2009 1.81% Mercedes-Benz Sprinter Van 2012 1.66% GMC Savana Van 2012 1.54% Lincoln Town Car Sedan 2011 1.43% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Dodge Caliber Wagon 2007 2.38% HUMMER H2 SUT Crew Cab 2009 2.33% HUMMER H3T Crew Cab 2010 1.88% AM General Hummer SUV 2000 1.72% Volkswagen Golf Hatchback 1991 1.56% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.68% Chrysler 300 SRT-8 2010 2.05% Chevrolet TrailBlazer SS 2009 1.69% Dodge Durango SUV 2007 1.5% Land Rover Range Rover SUV 2012 1.46% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Ford E-Series Wagon Van 2012 1.23% Audi S6 Sedan 2011 0.96% Hyundai Tucson SUV 2012 0.93% Dodge Challenger SRT8 2011 0.93% Hyundai Genesis Sedan 2012 0.85% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 FIAT 500 Abarth 2012 3.96% Bentley Arnage Sedan 2009 2.38% HUMMER H2 SUT Crew Cab 2009 1.75% AM General Hummer SUV 2000 1.59% Hyundai Azera Sedan 2012 1.55% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Ferrari 458 Italia Convertible 2012 2.8% Ferrari California Convertible 2012 2.6% Acura Integra Type R 2001 2.56% Chevrolet Corvette Convertible 2012 2.41% Lamborghini Diablo Coupe 2001 2.33% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 1.77% Chevrolet Express Cargo Van 2007 1.43% BMW X5 SUV 2007 1.28% Ford F-150 Regular Cab 2012 1.28% Buick Rainier SUV 2007 1.12% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Chevrolet TrailBlazer SS 2009 2.73% Cadillac Escalade EXT Crew Cab 2007 2.73% Chrysler 300 SRT-8 2010 1.91% Chevrolet Silverado 1500 Regular Cab 2012 1.74% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.68% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Lamborghini Diablo Coupe 2001 4.47% Ferrari California Convertible 2012 4.37% McLaren MP4-12C Coupe 2012 3.81% Aston Martin Virage Coupe 2012 3.69% Ferrari 458 Italia Convertible 2012 3.38% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Land Rover Range Rover SUV 2012 1.3% Jeep Patriot SUV 2012 1.16% BMW X5 SUV 2007 1.12% Jeep Compass SUV 2012 1.12% Bentley Arnage Sedan 2009 1.06% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Leaf Hatchback 2012 1.47% Rolls-Royce Phantom Sedan 2012 1.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.21% Hyundai Genesis Sedan 2012 1.14% Bentley Continental GT Coupe 2007 1.13% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 FIAT 500 Abarth 2012 2.66% Bentley Arnage Sedan 2009 2.6% Hyundai Azera Sedan 2012 1.74% Land Rover Range Rover SUV 2012 1.59% Lamborghini Reventon Coupe 2008 1.56% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 1.85% Ford F-150 Regular Cab 2012 1.43% BMW X5 SUV 2007 1.34% Chevrolet Avalanche Crew Cab 2012 1.22% Jeep Grand Cherokee SUV 2012 1.21% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Lamborghini Diablo Coupe 2001 3.23% Ferrari 458 Italia Convertible 2012 2.75% Chevrolet Corvette Convertible 2012 2.4% Chevrolet Cobalt SS 2010 2.35% Ferrari California Convertible 2012 2.19% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.84% MINI Cooper Roadster Convertible 2012 1.8% Nissan Leaf Hatchback 2012 1.64% Hyundai Azera Sedan 2012 1.45% Mercedes-Benz S-Class Sedan 2012 1.27% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.17% Chevrolet Silverado 1500 Regular Cab 2012 1.14% Chrysler 300 SRT-8 2010 1.03% GMC Canyon Extended Cab 2012 0.95% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 FIAT 500 Abarth 2012 3.83% Bentley Arnage Sedan 2009 3.11% Chevrolet TrailBlazer SS 2009 1.84% HUMMER H2 SUT Crew Cab 2009 1.4% Land Rover Range Rover SUV 2012 1.4% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 6.25% Aston Martin Virage Coupe 2012 5.18% McLaren MP4-12C Coupe 2012 4.97% Ferrari California Convertible 2012 4.95% Chevrolet Corvette Convertible 2012 4.49% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 1.19% GMC Acadia SUV 2012 0.95% Buick Rainier SUV 2007 0.95% Chevrolet Silverado 1500 Regular Cab 2012 0.94% Chevrolet Silverado 2500HD Regular Cab 2012 0.93% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Spyker C8 Convertible 2009 1.09% Geo Metro Convertible 1993 1.06% Mercedes-Benz 300-Class Convertible 1993 1.05% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.97% Ford GT Coupe 2006 0.97% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Dodge Sprinter Cargo Van 2009 1.75% Mercedes-Benz Sprinter Van 2012 1.46% BMW ActiveHybrid 5 Sedan 2012 1.26% Audi A5 Coupe 2012 1.22% Acura TL Sedan 2012 1.15% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 HUMMER H2 SUT Crew Cab 2009 3.7% AM General Hummer SUV 2000 2.99% Ferrari California Convertible 2012 2.77% McLaren MP4-12C Coupe 2012 2.63% Aston Martin Virage Coupe 2012 2.61% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Ram C/V Cargo Van Minivan 2012 1.56% GMC Savana Van 2012 1.35% Dodge Sprinter Cargo Van 2009 1.28% Lincoln Town Car Sedan 2011 1.18% BMW 1 Series Convertible 2012 1.16% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 2.14% Chevrolet Express Cargo Van 2007 1.83% Ferrari FF Coupe 2012 1.59% Buick Rainier SUV 2007 1.37% BMW 1 Series Coupe 2012 1.08% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Mercedes-Benz S-Class Sedan 2012 1.5% Mercedes-Benz Sprinter Van 2012 1.37% Lincoln Town Car Sedan 2011 1.25% Chevrolet Express Cargo Van 2007 1.1% Acura TL Sedan 2012 1.0% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 GMC Canyon Extended Cab 2012 1.67% Ferrari FF Coupe 2012 1.44% Honda Accord Coupe 2012 1.4% Dodge Caliber Wagon 2007 1.37% Hyundai Elantra Sedan 2007 1.3% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz Sprinter Van 2012 1.39% Dodge Caravan Minivan 1997 1.13% Ford E-Series Wagon Van 2012 1.13% Dodge Sprinter Cargo Van 2009 1.03% Honda Odyssey Minivan 2007 1.02% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Chevrolet Silverado 2500HD Regular Cab 2012 1.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.35% Chrysler 300 SRT-8 2010 1.25% Chevrolet Silverado 1500 Regular Cab 2012 1.17% Chevrolet Silverado 1500 Extended Cab 2012 1.17% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Dodge Sprinter Cargo Van 2009 1.61% Audi A5 Coupe 2012 1.58% Mercedes-Benz Sprinter Van 2012 1.57% Audi S6 Sedan 2011 1.41% GMC Savana Van 2012 1.37% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Ferrari FF Coupe 2012 4.68% BMW 1 Series Coupe 2012 3.56% Dodge Caliber Wagon 2007 3.3% McLaren MP4-12C Coupe 2012 3.03% Aston Martin Virage Coupe 2012 2.31% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Ferrari FF Coupe 2012 2.06% BMW 1 Series Coupe 2012 2.06% GMC Savana Van 2012 1.87% Dodge Caliber Wagon 2007 1.66% Volkswagen Golf Hatchback 1991 1.18% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% MINI Cooper Roadster Convertible 2012 1.61% Mercedes-Benz S-Class Sedan 2012 1.44% Nissan Leaf Hatchback 2012 1.39% Mercedes-Benz Sprinter Van 2012 1.38% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 2.7% AM General Hummer SUV 2000 2.55% Spyker C8 Convertible 2009 1.81% HUMMER H3T Crew Cab 2010 1.79% McLaren MP4-12C Coupe 2012 1.77% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 4.34% Ferrari California Convertible 2012 3.51% McLaren MP4-12C Coupe 2012 3.35% BMW 1 Series Coupe 2012 3.06% Ferrari 458 Italia Convertible 2012 2.88% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 1.49% Daewoo Nubira Wagon 2002 1.32% Ford GT Coupe 2006 1.03% BMW M3 Coupe 2012 0.98% Spyker C8 Coupe 2009 0.96% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Aston Martin Virage Coupe 2012 3.64% Chevrolet Corvette Convertible 2012 3.63% Ferrari California Convertible 2012 3.19% Ferrari 458 Italia Coupe 2012 3.15% Ferrari 458 Italia Convertible 2012 2.82% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Ferrari 458 Italia Convertible 2012 1.71% Ferrari California Convertible 2012 1.64% Aston Martin Virage Coupe 2012 1.62% Lamborghini Aventador Coupe 2012 1.57% Chevrolet Corvette Convertible 2012 1.56% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.02% BMW X3 SUV 2012 0.97% Daewoo Nubira Wagon 2002 0.93% Audi 100 Sedan 1994 0.88% Mercedes-Benz S-Class Sedan 2012 0.87% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Ram C/V Cargo Van Minivan 2012 2.4% FIAT 500 Convertible 2012 2.11% BMW 1 Series Convertible 2012 1.8% Ferrari FF Coupe 2012 1.54% Dodge Sprinter Cargo Van 2009 1.37% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Dodge Caravan Minivan 1997 1.93% Mercedes-Benz Sprinter Van 2012 1.78% Nissan Leaf Hatchback 2012 1.59% Audi S6 Sedan 2011 1.44% Ford E-Series Wagon Van 2012 1.42% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Chevrolet TrailBlazer SS 2009 1.02% Ford Expedition EL SUV 2009 0.86% Volvo XC90 SUV 2007 0.85% Bentley Continental Flying Spur Sedan 2007 0.84% BMW M6 Convertible 2010 0.82% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 3.03% Spyker C8 Coupe 2009 1.71% FIAT 500 Convertible 2012 1.65% Ford GT Coupe 2006 1.53% Lamborghini Diablo Coupe 2001 1.34% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.16% BMW 1 Series Convertible 2012 1.41% Dodge Sprinter Cargo Van 2009 1.36% BMW ActiveHybrid 5 Sedan 2012 1.27% GMC Savana Van 2012 1.16% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.21% MINI Cooper Roadster Convertible 2012 1.92% FIAT 500 Convertible 2012 1.74% Nissan Leaf Hatchback 2012 1.58% Mercedes-Benz S-Class Sedan 2012 1.49% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Mercedes-Benz Sprinter Van 2012 1.5% Dodge Sprinter Cargo Van 2009 1.49% GMC Savana Van 2012 1.22% Audi S6 Sedan 2011 1.21% Ford E-Series Wagon Van 2012 1.2% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.98% Hyundai Azera Sedan 2012 1.9% MINI Cooper Roadster Convertible 2012 1.88% Nissan Leaf Hatchback 2012 1.37% Hyundai Genesis Sedan 2012 1.33% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 1.77% BMW X5 SUV 2007 1.34% Chevrolet Silverado 1500 Regular Cab 2012 1.32% Jeep Grand Cherokee SUV 2012 1.31% Chrysler 300 SRT-8 2010 1.27% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Bentley Arnage Sedan 2009 3.12% FIAT 500 Abarth 2012 2.78% Land Rover Range Rover SUV 2012 1.89% Cadillac Escalade EXT Crew Cab 2007 1.51% Jeep Patriot SUV 2012 1.49% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 1.63% Ford E-Series Wagon Van 2012 1.58% Audi S6 Sedan 2011 1.55% GMC Savana Van 2012 1.48% Hyundai Santa Fe SUV 2012 1.27% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Audi S6 Sedan 2011 1.31% GMC Savana Van 2012 1.19% Cadillac Escalade EXT Crew Cab 2007 1.18% Chrysler 300 SRT-8 2010 1.15% GMC Acadia SUV 2012 1.13% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Mercedes-Benz Sprinter Van 2012 1.19% Dodge Sprinter Cargo Van 2009 1.11% MINI Cooper Roadster Convertible 2012 1.1% GMC Savana Van 2012 1.0% BMW X3 SUV 2012 0.96% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 HUMMER H2 SUT Crew Cab 2009 1.88% Bentley Arnage Sedan 2009 1.82% Chrysler 300 SRT-8 2010 1.34% Land Rover Range Rover SUV 2012 1.28% Bugatti Veyron 16.4 Coupe 2009 1.23% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 2.81% Cadillac Escalade EXT Crew Cab 2007 2.01% HUMMER H2 SUT Crew Cab 2009 1.92% FIAT 500 Abarth 2012 1.86% Chrysler 300 SRT-8 2010 1.83% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Lincoln Town Car Sedan 2011 1.42% Nissan Leaf Hatchback 2012 1.4% Dodge Caravan Minivan 1997 1.37% Mercedes-Benz S-Class Sedan 2012 1.32% Honda Odyssey Minivan 2007 1.28% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Mercedes-Benz S-Class Sedan 2012 1.07% Bugatti Veyron 16.4 Coupe 2009 0.98% Buick Rainier SUV 2007 0.98% BMW X5 SUV 2007 0.96% Tesla Model S Sedan 2012 0.94% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 1.83% Dodge Sprinter Cargo Van 2009 1.55% Chevrolet Express Cargo Van 2007 1.48% Mercedes-Benz Sprinter Van 2012 1.33% Buick Rainier SUV 2007 1.19% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Ferrari California Convertible 2012 2.82% Aston Martin Virage Coupe 2012 2.69% Ferrari 458 Italia Coupe 2012 2.29% Ferrari 458 Italia Convertible 2012 2.23% Lamborghini Aventador Coupe 2012 2.14% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.88% Mercedes-Benz S-Class Sedan 2012 1.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.57% Nissan Leaf Hatchback 2012 1.4% Ram C/V Cargo Van Minivan 2012 1.36% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Cadillac Escalade EXT Crew Cab 2007 1.52% Ford Expedition EL SUV 2009 1.39% Ford E-Series Wagon Van 2012 1.24% Land Rover Range Rover SUV 2012 1.24% Ford F-450 Super Duty Crew Cab 2012 1.21% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Bentley Arnage Sedan 2009 1.61% Hyundai Azera Sedan 2012 1.61% Hyundai Genesis Sedan 2012 1.48% Bentley Mulsanne Sedan 2011 1.34% Bugatti Veyron 16.4 Coupe 2009 1.17% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Lamborghini Diablo Coupe 2001 12.4% Ferrari 458 Italia Convertible 2012 4.01% Lamborghini Aventador Coupe 2012 3.78% Audi TT RS Coupe 2012 3.72% Chevrolet HHR SS 2010 3.57% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 McLaren MP4-12C Coupe 2012 4.98% Ferrari California Convertible 2012 4.24% Ferrari 458 Italia Coupe 2012 4.09% Aston Martin Virage Coupe 2012 3.93% Lamborghini Diablo Coupe 2001 3.89% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Chevrolet TrailBlazer SS 2009 1.72% Ford Expedition EL SUV 2009 1.54% Cadillac Escalade EXT Crew Cab 2007 1.47% Dodge Ram Pickup 3500 Crew Cab 2010 1.41% Chrysler 300 SRT-8 2010 1.32% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.37% FIAT 500 Convertible 2012 2.02% BMW 1 Series Convertible 2012 1.59% Ferrari FF Coupe 2012 1.27% Dodge Sprinter Cargo Van 2009 1.27% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Land Rover Range Rover SUV 2012 1.31% BMW X5 SUV 2007 1.27% GMC Yukon Hybrid SUV 2012 1.21% Jeep Compass SUV 2012 1.15% Audi S6 Sedan 2011 1.02% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.08% Mercedes-Benz Sprinter Van 2012 1.61% Dodge Sprinter Cargo Van 2009 1.55% Lincoln Town Car Sedan 2011 1.51% Acura TL Sedan 2012 1.25% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 2.16% Jeep Grand Cherokee SUV 2012 1.41% Chevrolet Express Cargo Van 2007 1.34% Ford F-150 Regular Cab 2012 1.32% Chevrolet Silverado 1500 Regular Cab 2012 1.32% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Bentley Arnage Sedan 2009 2.86% FIAT 500 Abarth 2012 2.75% HUMMER H2 SUT Crew Cab 2009 2.37% Spyker C8 Convertible 2009 1.76% AM General Hummer SUV 2000 1.55% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 4.54% Audi TT RS Coupe 2012 3.0% McLaren MP4-12C Coupe 2012 2.97% Ferrari 458 Italia Coupe 2012 2.84% Ferrari 458 Italia Convertible 2012 2.83% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Rolls-Royce Phantom Sedan 2012 1.35% Mercedes-Benz E-Class Sedan 2012 1.23% Hyundai Genesis Sedan 2012 1.21% Fisker Karma Sedan 2012 1.16% Chevrolet TrailBlazer SS 2009 1.15% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Chevrolet TrailBlazer SS 2009 1.96% Chevrolet Silverado 1500 Regular Cab 2012 1.63% GMC Savana Van 2012 1.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.4% Ford Expedition EL SUV 2009 1.38% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Rolls-Royce Phantom Sedan 2012 1.19% Chevrolet Sonic Sedan 2012 1.08% Daewoo Nubira Wagon 2002 1.05% Ford GT Coupe 2006 1.04% FIAT 500 Convertible 2012 0.99% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Chevrolet TrailBlazer SS 2009 2.45% Chrysler 300 SRT-8 2010 1.86% Cadillac Escalade EXT Crew Cab 2007 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.49% Chevrolet Silverado 1500 Regular Cab 2012 1.35% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 AM General Hummer SUV 2000 5.15% Lamborghini Diablo Coupe 2001 3.92% Aston Martin Virage Coupe 2012 3.12% HUMMER H2 SUT Crew Cab 2009 3.0% Lamborghini Aventador Coupe 2012 2.88% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.75% GMC Savana Van 2012 1.69% Ford F-450 Super Duty Crew Cab 2012 1.54% GMC Acadia SUV 2012 1.46% Dodge Durango SUV 2007 1.42% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Ferrari FF Coupe 2012 1.72% BMW 1 Series Coupe 2012 1.6% BMW M3 Coupe 2012 1.42% Dodge Caliber Wagon 2007 1.16% GMC Savana Van 2012 1.11% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 HUMMER H2 SUT Crew Cab 2009 1.79% Chevrolet TrailBlazer SS 2009 1.75% Chrysler 300 SRT-8 2010 1.57% Cadillac Escalade EXT Crew Cab 2007 1.46% Chevrolet Silverado 1500 Regular Cab 2012 1.31% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 3.34% Aston Martin Virage Coupe 2012 3.31% Audi TT RS Coupe 2012 3.29% Lamborghini Diablo Coupe 2001 2.69% McLaren MP4-12C Coupe 2012 2.63% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 GMC Acadia SUV 2012 1.09% BMW X5 SUV 2007 1.07% Infiniti G Coupe IPL 2012 1.02% Chevrolet Corvette ZR1 2012 1.01% Acura TL Type-S 2008 0.98% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Mercedes-Benz Sprinter Van 2012 1.27% Mercedes-Benz S-Class Sedan 2012 1.26% MINI Cooper Roadster Convertible 2012 1.19% Nissan Leaf Hatchback 2012 1.18% Lincoln Town Car Sedan 2011 1.11% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 1.67% Ford F-150 Regular Cab 2012 1.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.47% Chevrolet Express Cargo Van 2007 1.47% Jeep Grand Cherokee SUV 2012 1.21% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 MINI Cooper Roadster Convertible 2012 2.92% FIAT 500 Convertible 2012 2.65% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.42% Mercedes-Benz S-Class Sedan 2012 2.08% Mercedes-Benz E-Class Sedan 2012 1.76% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 McLaren MP4-12C Coupe 2012 3.99% Ferrari California Convertible 2012 3.07% Aston Martin Virage Coupe 2012 2.71% Lamborghini Diablo Coupe 2001 2.7% Chevrolet Corvette Convertible 2012 2.67% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Bentley Arnage Sedan 2009 1.71% Hyundai Genesis Sedan 2012 1.36% Rolls-Royce Phantom Sedan 2012 1.27% Chrysler 300 SRT-8 2010 1.19% Spyker C8 Convertible 2009 1.02% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 1.63% Chevrolet Avalanche Crew Cab 2012 1.42% Ford F-150 Regular Cab 2012 1.3% Audi S6 Sedan 2011 1.26% BMW X5 SUV 2007 1.25% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Bentley Arnage Sedan 2009 1.49% Cadillac Escalade EXT Crew Cab 2007 1.34% Land Rover Range Rover SUV 2012 1.32% Chevrolet TrailBlazer SS 2009 1.32% Chrysler 300 SRT-8 2010 1.21% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 AM General Hummer SUV 2000 4.28% Lamborghini Aventador Coupe 2012 3.78% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.45% Aston Martin Virage Coupe 2012 3.3% Audi TT RS Coupe 2012 3.19% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Ferrari California Convertible 2012 4.04% Ferrari FF Coupe 2012 3.98% Ferrari 458 Italia Convertible 2012 3.36% McLaren MP4-12C Coupe 2012 3.23% Chevrolet Corvette Convertible 2012 3.2% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 1.31% Spyker C8 Convertible 2009 1.22% Bentley Mulsanne Sedan 2011 1.15% Fisker Karma Sedan 2012 1.12% Ford GT Coupe 2006 1.04% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Chevrolet TrailBlazer SS 2009 2.29% Cadillac Escalade EXT Crew Cab 2007 1.94% GMC Savana Van 2012 1.6% Chrysler 300 SRT-8 2010 1.51% Ford F-450 Super Duty Crew Cab 2012 1.42% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Hyundai Azera Sedan 2012 1.19% Hyundai Genesis Sedan 2012 1.09% Bentley Arnage Sedan 2009 1.06% Lamborghini Reventon Coupe 2008 1.05% Spyker C8 Convertible 2009 1.0% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.6% BMW 1 Series Convertible 2012 1.73% Ferrari FF Coupe 2012 1.53% Dodge Sprinter Cargo Van 2009 1.4% GMC Savana Van 2012 1.39% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.08% Chevrolet Express Cargo Van 2007 1.85% Buick Rainier SUV 2007 1.25% Chevrolet Silverado 2500HD Regular Cab 2012 1.24% Mercedes-Benz Sprinter Van 2012 1.18% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.94% Mercedes-Benz S-Class Sedan 2012 1.75% Fisker Karma Sedan 2012 1.59% MINI Cooper Roadster Convertible 2012 1.51% Bugatti Veyron 16.4 Coupe 2009 1.25% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 2.07% Ferrari FF Coupe 2012 1.79% GMC Canyon Extended Cab 2012 1.39% Honda Accord Coupe 2012 1.29% BMW 1 Series Coupe 2012 1.29% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Abarth 2012 3.41% Bentley Arnage Sedan 2009 2.9% Chevrolet TrailBlazer SS 2009 2.34% Land Rover Range Rover SUV 2012 2.17% Cadillac Escalade EXT Crew Cab 2007 1.99% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Mercedes-Benz S-Class Sedan 2012 1.5% Nissan Leaf Hatchback 2012 1.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.3% Bugatti Veyron 16.4 Convertible 2009 1.28% MINI Cooper Roadster Convertible 2012 1.25% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Daewoo Nubira Wagon 2002 1.81% Rolls-Royce Phantom Sedan 2012 1.64% Nissan Leaf Hatchback 2012 1.48% Maybach Landaulet Convertible 2012 1.39% FIAT 500 Convertible 2012 1.37% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 5.29% Lamborghini Diablo Coupe 2001 5.08% Ferrari California Convertible 2012 4.98% Ferrari 458 Italia Convertible 2012 4.07% Lamborghini Aventador Coupe 2012 4.0% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 MINI Cooper Roadster Convertible 2012 2.18% Nissan Leaf Hatchback 2012 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.64% Mercedes-Benz S-Class Sedan 2012 1.32% Hyundai Azera Sedan 2012 1.19% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Lamborghini Diablo Coupe 2001 5.53% McLaren MP4-12C Coupe 2012 5.0% Audi TT RS Coupe 2012 4.42% Ferrari California Convertible 2012 3.84% Lamborghini Aventador Coupe 2012 3.27% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Aston Martin Virage Coupe 2012 3.9% Ferrari 458 Italia Coupe 2012 3.45% AM General Hummer SUV 2000 3.18% Chevrolet Corvette Convertible 2012 3.02% Lamborghini Aventador Coupe 2012 3.01% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 1.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.21% GMC Savana Van 2012 1.15% Dodge Ram Pickup 3500 Crew Cab 2010 1.13% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 MINI Cooper Roadster Convertible 2012 1.51% Nissan Leaf Hatchback 2012 1.44% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.39% Rolls-Royce Phantom Sedan 2012 1.12% Chrysler PT Cruiser Convertible 2008 1.07% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.0% BMW 1 Series Convertible 2012 1.58% Dodge Sprinter Cargo Van 2009 1.45% GMC Savana Van 2012 1.43% BMW ActiveHybrid 5 Sedan 2012 1.18% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 1.34% Chevrolet Avalanche Crew Cab 2012 1.19% Ford Expedition EL SUV 2009 1.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.14% Chevrolet Silverado 1500 Regular Cab 2012 1.13% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.86% Chrysler 300 SRT-8 2010 1.69% Land Rover Range Rover SUV 2012 1.68% Dodge Durango SUV 2007 1.65% GMC Savana Van 2012 1.57% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Mercedes-Benz Sprinter Van 2012 1.26% Buick Rainier SUV 2007 1.01% Mercedes-Benz S-Class Sedan 2012 1.0% Lincoln Town Car Sedan 2011 0.95% BMW X3 SUV 2012 0.94% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Bentley Arnage Sedan 2009 1.86% Land Rover Range Rover SUV 2012 1.36% FIAT 500 Abarth 2012 1.29% GMC Yukon Hybrid SUV 2012 1.22% Jeep Patriot SUV 2012 1.2% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Ford Expedition EL SUV 2009 1.26% Ford E-Series Wagon Van 2012 1.24% Cadillac Escalade EXT Crew Cab 2007 1.23% Hyundai Genesis Sedan 2012 1.17% Land Rover Range Rover SUV 2012 1.12% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.15% Chevrolet Silverado 2500HD Regular Cab 2012 1.01% GMC Terrain SUV 2012 0.96% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 1.55% Mercedes-Benz Sprinter Van 2012 1.2% Dodge Sprinter Cargo Van 2009 1.18% Chevrolet Avalanche Crew Cab 2012 1.16% Ford F-150 Regular Cab 2012 1.15% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Chevrolet TrailBlazer SS 2009 4.19% Cadillac Escalade EXT Crew Cab 2007 2.77% Chrysler 300 SRT-8 2010 2.58% Chevrolet Silverado 1500 Regular Cab 2012 1.96% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.91% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Ferrari California Convertible 2012 3.05% McLaren MP4-12C Coupe 2012 2.91% Aston Martin Virage Coupe 2012 2.62% Ferrari 458 Italia Convertible 2012 2.46% Chevrolet Corvette Convertible 2012 2.3% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.32% FIAT 500 Convertible 2012 2.49% MINI Cooper Roadster Convertible 2012 2.08% Maybach Landaulet Convertible 2012 2.05% Nissan Leaf Hatchback 2012 1.74% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 4.52% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.4% HUMMER H2 SUT Crew Cab 2009 2.98% Mercedes-Benz 300-Class Convertible 1993 2.95% Mercedes-Benz E-Class Sedan 2012 2.45% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Land Rover Range Rover SUV 2012 1.71% Chrysler 300 SRT-8 2010 1.65% Bentley Arnage Sedan 2009 1.59% Cadillac Escalade EXT Crew Cab 2007 1.58% HUMMER H2 SUT Crew Cab 2009 1.21% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Daewoo Nubira Wagon 2002 0.98% Ram C/V Cargo Van Minivan 2012 0.93% Chevrolet Impala Sedan 2007 0.93% Lincoln Town Car Sedan 2011 0.88% Chrysler PT Cruiser Convertible 2008 0.88% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Chevrolet TrailBlazer SS 2009 2.89% Cadillac Escalade EXT Crew Cab 2007 2.31% Bentley Arnage Sedan 2009 1.9% Chrysler 300 SRT-8 2010 1.63% Ford Expedition EL SUV 2009 1.54% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Bugatti Veyron 16.4 Coupe 2009 0.86% GMC Savana Van 2012 0.84% Fisker Karma Sedan 2012 0.8% Acura TL Type-S 2008 0.8% BMW X3 SUV 2012 0.79% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 4.68% Audi TT RS Coupe 2012 3.3% Ferrari 458 Italia Convertible 2012 3.08% McLaren MP4-12C Coupe 2012 3.03% Acura Integra Type R 2001 2.89% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.34% Mercedes-Benz Sprinter Van 2012 1.98% Ram C/V Cargo Van Minivan 2012 1.49% Lincoln Town Car Sedan 2011 1.49% GMC Savana Van 2012 1.42% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Lamborghini Diablo Coupe 2001 3.34% Lamborghini Aventador Coupe 2012 2.7% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.62% Aston Martin Virage Coupe 2012 2.43% Chevrolet Cobalt SS 2010 2.42% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.46% AM General Hummer SUV 2000 1.65% Ford GT Coupe 2006 1.53% Dodge Caliber Wagon 2007 1.51% Lamborghini Aventador Coupe 2012 1.51% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Cadillac Escalade EXT Crew Cab 2007 1.75% Dodge Durango SUV 2007 1.64% BMW X5 SUV 2007 1.59% Jeep Grand Cherokee SUV 2012 1.49% Land Rover Range Rover SUV 2012 1.42% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Bentley Arnage Sedan 2009 1.97% FIAT 500 Abarth 2012 1.69% Hyundai Azera Sedan 2012 1.56% Lamborghini Reventon Coupe 2008 1.33% Hyundai Genesis Sedan 2012 1.31% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 3.94% Bentley Arnage Sedan 2009 3.0% Cadillac Escalade EXT Crew Cab 2007 2.49% FIAT 500 Abarth 2012 2.48% Chrysler 300 SRT-8 2010 1.94% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Ferrari California Convertible 2012 3.8% McLaren MP4-12C Coupe 2012 3.73% Aston Martin Virage Coupe 2012 3.57% Chevrolet Corvette Convertible 2012 3.07% Ferrari 458 Italia Convertible 2012 3.06% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Ford E-Series Wagon Van 2012 1.22% GMC Savana Van 2012 1.2% Audi S6 Sedan 2011 1.09% BMW X5 SUV 2007 1.05% Chrysler Aspen SUV 2009 1.03% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 FIAT 500 Convertible 2012 2.02% Ram C/V Cargo Van Minivan 2012 1.98% BMW 1 Series Convertible 2012 1.69% Dodge Sprinter Cargo Van 2009 1.58% Bugatti Veyron 16.4 Convertible 2009 1.31% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Lamborghini Diablo Coupe 2001 4.68% Acura Integra Type R 2001 2.27% Volvo C30 Hatchback 2012 2.1% Chevrolet HHR SS 2010 2.05% Aston Martin Virage Coupe 2012 1.93% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 2.11% Mercedes-Benz Sprinter Van 2012 1.43% Dodge Sprinter Cargo Van 2009 1.41% Isuzu Ascender SUV 2008 1.24% Chevrolet Express Cargo Van 2007 1.22% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 2.75% HUMMER H3T Crew Cab 2010 2.08% Chevrolet TrailBlazer SS 2009 1.65% HUMMER H2 SUT Crew Cab 2009 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.38% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Mercedes-Benz Sprinter Van 2012 2.12% Dodge Sprinter Cargo Van 2009 1.99% Ram C/V Cargo Van Minivan 2012 1.52% GMC Savana Van 2012 1.48% Volkswagen Golf Hatchback 2012 1.38% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.66% Chrysler 300 SRT-8 2010 1.64% Land Rover Range Rover SUV 2012 1.34% Chevrolet TrailBlazer SS 2009 1.25% Jeep Grand Cherokee SUV 2012 1.18% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Mercedes-Benz Sprinter Van 2012 1.19% GMC Savana Van 2012 1.09% Dodge Sprinter Cargo Van 2009 1.09% Ford E-Series Wagon Van 2012 1.03% Audi A5 Coupe 2012 1.02% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 BMW X5 SUV 2007 1.29% Jeep Compass SUV 2012 1.08% Hyundai Tucson SUV 2012 1.0% Buick Rainier SUV 2007 0.98% Hyundai Santa Fe SUV 2012 0.96% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.99% Chevrolet Silverado 1500 Regular Cab 2012 1.98% Chrysler 300 SRT-8 2010 1.66% Cadillac Escalade EXT Crew Cab 2007 1.57% GMC Savana Van 2012 1.53% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Ford E-Series Wagon Van 2012 1.25% Mercedes-Benz Sprinter Van 2012 1.15% Nissan Leaf Hatchback 2012 1.11% Audi S6 Sedan 2011 1.1% Dodge Challenger SRT8 2011 1.05% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Rolls-Royce Phantom Sedan 2012 2.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.08% Nissan Leaf Hatchback 2012 1.77% Maybach Landaulet Convertible 2012 1.65% Bentley Continental Supersports Conv. Convertible 2012 1.49% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Aston Martin Virage Coupe 2012 1.79% AM General Hummer SUV 2000 1.75% Lamborghini Aventador Coupe 2012 1.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.6% Ferrari 458 Italia Convertible 2012 1.51% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Ford E-Series Wagon Van 2012 1.09% Dodge Challenger SRT8 2011 1.08% MINI Cooper Roadster Convertible 2012 1.06% Dodge Caravan Minivan 1997 0.94% Mercedes-Benz S-Class Sedan 2012 0.93% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Chevrolet TrailBlazer SS 2009 1.83% Bentley Arnage Sedan 2009 1.73% Chrysler 300 SRT-8 2010 1.5% Cadillac Escalade EXT Crew Cab 2007 1.31% BMW M6 Convertible 2010 1.16% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.78% Mercedes-Benz E-Class Sedan 2012 1.49% Maybach Landaulet Convertible 2012 1.47% Rolls-Royce Phantom Sedan 2012 1.47% Bentley Continental Supersports Conv. Convertible 2012 1.41% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 BMW X5 SUV 2007 1.28% Jeep Compass SUV 2012 1.07% Land Rover Range Rover SUV 2012 1.01% GMC Yukon Hybrid SUV 2012 0.95% Hyundai Santa Fe SUV 2012 0.91% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.85% Ford Edge SUV 2012 0.72% GMC Acadia SUV 2012 0.71% Nissan Juke Hatchback 2012 0.71% Ford Freestar Minivan 2007 0.7% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 FIAT 500 Convertible 2012 2.46% Maybach Landaulet Convertible 2012 2.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.21% Rolls-Royce Phantom Sedan 2012 2.07% Bentley Continental Supersports Conv. Convertible 2012 1.94% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 FIAT 500 Convertible 2012 6.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.88% Maybach Landaulet Convertible 2012 2.23% Bentley Continental Supersports Conv. Convertible 2012 1.79% Nissan Leaf Hatchback 2012 1.57% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.38% Ford Expedition EL SUV 2009 1.26% Chevrolet Avalanche Crew Cab 2012 1.23% Ford F-450 Super Duty Crew Cab 2012 1.21% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.17% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 2.94% Chevrolet TrailBlazer SS 2009 2.49% Chrysler 300 SRT-8 2010 1.98% Dodge Durango SUV 2007 1.96% Ford Expedition EL SUV 2009 1.89% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.72% Spyker C8 Convertible 2009 1.57% FIAT 500 Abarth 2012 1.32% Hyundai Azera Sedan 2012 1.21% Dodge Caliber Wagon 2007 1.19% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.63% Chevrolet Silverado 2500HD Regular Cab 2012 1.61% Chrysler 300 SRT-8 2010 1.47% Chevrolet Silverado 1500 Extended Cab 2012 1.46% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Ford Expedition EL SUV 2009 1.41% Chevrolet Avalanche Crew Cab 2012 1.15% Dodge Ram Pickup 3500 Crew Cab 2010 1.14% Ford F-450 Super Duty Crew Cab 2012 1.14% Chevrolet Silverado 1500 Extended Cab 2012 1.12% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Ram C/V Cargo Van Minivan 2012 2.2% Ferrari FF Coupe 2012 1.78% FIAT 500 Convertible 2012 1.55% BMW 1 Series Convertible 2012 1.55% GMC Savana Van 2012 1.36% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Nissan Leaf Hatchback 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.27% MINI Cooper Roadster Convertible 2012 1.25% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.23% Dodge Caravan Minivan 1997 1.21% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 1.96% Chevrolet Silverado 1500 Regular Cab 2012 1.68% Chrysler 300 SRT-8 2010 1.53% Cadillac Escalade EXT Crew Cab 2007 1.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.18% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.42% Chevrolet Silverado 1500 Extended Cab 2012 1.31% GMC Canyon Extended Cab 2012 1.19% GMC Savana Van 2012 1.15% Dodge Ram Pickup 3500 Quad Cab 2009 1.11% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 FIAT 500 Abarth 2012 1.54% Bentley Arnage Sedan 2009 1.45% Jeep Patriot SUV 2012 1.43% Land Rover Range Rover SUV 2012 1.43% Chrysler 300 SRT-8 2010 1.15% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Aston Martin Virage Coupe 2012 2.88% Ferrari 458 Italia Coupe 2012 2.77% Ferrari California Convertible 2012 2.52% McLaren MP4-12C Coupe 2012 2.37% Ferrari 458 Italia Convertible 2012 2.13% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Acura Integra Type R 2001 2.21% McLaren MP4-12C Coupe 2012 1.96% Chevrolet Corvette Convertible 2012 1.88% Lamborghini Diablo Coupe 2001 1.8% Geo Metro Convertible 1993 1.79% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 1.41% Ford E-Series Wagon Van 2012 1.23% Chevrolet Avalanche Crew Cab 2012 1.2% Dodge Caravan Minivan 1997 1.17% Chevrolet Silverado 1500 Extended Cab 2012 1.17% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Chevrolet TrailBlazer SS 2009 1.9% Bentley Arnage Sedan 2009 1.41% FIAT 500 Abarth 2012 1.28% AM General Hummer SUV 2000 1.15% BMW M6 Convertible 2010 1.15% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 2.14% Mercedes-Benz 300-Class Convertible 1993 1.84% HUMMER H2 SUT Crew Cab 2009 1.72% AM General Hummer SUV 2000 1.67% Spyker C8 Convertible 2009 1.54% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 1.76% Nissan Leaf Hatchback 2012 1.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.45% Hyundai Azera Sedan 2012 1.35% Hyundai Genesis Sedan 2012 1.21% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 1.31% Chevrolet Express Cargo Van 2007 1.11% Ford F-150 Regular Cab 2012 1.05% BMW X5 SUV 2007 1.04% Mercedes-Benz Sprinter Van 2012 0.98% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 1.97% Honda Odyssey Minivan 2007 1.21% Mercedes-Benz Sprinter Van 2012 1.2% Nissan Leaf Hatchback 2012 1.15% FIAT 500 Convertible 2012 1.15% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Dodge Caliber Wagon 2007 2.98% Aston Martin Virage Coupe 2012 2.54% Chevrolet Corvette Convertible 2012 2.37% Chevrolet Cobalt SS 2010 2.19% Ferrari 458 Italia Coupe 2012 2.12% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.23% GMC Savana Van 2012 1.53% BMW 1 Series Convertible 2012 1.48% Dodge Sprinter Cargo Van 2009 1.32% FIAT 500 Convertible 2012 1.29% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.94% Ferrari FF Coupe 2012 0.91% Chevrolet Sonic Sedan 2012 0.86% Daewoo Nubira Wagon 2002 0.75% Ford GT Coupe 2006 0.74% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Tesla Model S Sedan 2012 1.05% Bugatti Veyron 16.4 Coupe 2009 1.01% Dodge Challenger SRT8 2011 0.95% Hyundai Azera Sedan 2012 0.95% Jeep Compass SUV 2012 0.94% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.31% Chevrolet Express Cargo Van 2007 1.03% Dodge Sprinter Cargo Van 2009 1.0% BMW X5 SUV 2007 0.99% Ford F-150 Regular Cab 2012 0.97% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Spyker C8 Convertible 2009 1.34% Bugatti Veyron 16.4 Coupe 2009 1.25% Hyundai Azera Sedan 2012 1.22% Bentley Mulsanne Sedan 2011 1.21% Jeep Patriot SUV 2012 1.05% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Dodge Caliber Wagon 2007 3.01% Aston Martin Virage Coupe 2012 2.28% Ferrari 458 Italia Coupe 2012 2.2% HUMMER H2 SUT Crew Cab 2009 2.12% HUMMER H3T Crew Cab 2010 1.94% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Ram C/V Cargo Van Minivan 2012 3.08% FIAT 500 Convertible 2012 2.22% GMC Savana Van 2012 1.96% BMW 1 Series Convertible 2012 1.52% Dodge Sprinter Cargo Van 2009 1.29% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet TrailBlazer SS 2009 2.61% Bentley Arnage Sedan 2009 2.59% FIAT 500 Abarth 2012 2.16% Land Rover Range Rover SUV 2012 2.05% Cadillac Escalade EXT Crew Cab 2007 2.04% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 3.63% Honda Accord Coupe 2012 2.01% GMC Canyon Extended Cab 2012 1.9% BMW 1 Series Coupe 2012 1.57% GMC Savana Van 2012 1.4% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bentley Arnage Sedan 2009 2.03% Chevrolet TrailBlazer SS 2009 1.57% Cadillac Escalade EXT Crew Cab 2007 1.41% Chrysler 300 SRT-8 2010 1.4% Land Rover Range Rover SUV 2012 1.15% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.36% GMC Savana Van 2012 1.96% Dodge Sprinter Cargo Van 2009 1.62% Lincoln Town Car Sedan 2011 1.55% Mercedes-Benz Sprinter Van 2012 1.47% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Chevrolet Silverado 1500 Regular Cab 2012 1.16% Jeep Grand Cherokee SUV 2012 1.07% Chevrolet Silverado 2500HD Regular Cab 2012 0.99% GMC Savana Van 2012 0.96% GMC Acadia SUV 2012 0.91% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 FIAT 500 Abarth 2012 5.3% Bentley Arnage Sedan 2009 3.8% Hyundai Azera Sedan 2012 1.66% Lamborghini Reventon Coupe 2008 1.65% Jeep Patriot SUV 2012 1.57% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 1.82% Chevrolet Silverado 1500 Regular Cab 2012 1.56% Ford F-150 Regular Cab 2012 1.5% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.41% Ford F-450 Super Duty Crew Cab 2012 1.4% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.39% MINI Cooper Roadster Convertible 2012 1.72% Mercedes-Benz S-Class Sedan 2012 1.53% FIAT 500 Convertible 2012 1.51% Bugatti Veyron 16.4 Convertible 2009 1.45% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 AM General Hummer SUV 2000 3.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.66% HUMMER H2 SUT Crew Cab 2009 2.23% Spyker C8 Convertible 2009 2.18% HUMMER H3T Crew Cab 2010 1.77% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 FIAT 500 Convertible 2012 2.93% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.4% Maybach Landaulet Convertible 2012 2.33% MINI Cooper Roadster Convertible 2012 1.59% Bentley Continental Supersports Conv. Convertible 2012 1.54% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 9.85% Audi TT RS Coupe 2012 5.32% Chevrolet Corvette Convertible 2012 3.96% Lamborghini Aventador Coupe 2012 3.94% Ferrari 458 Italia Convertible 2012 3.91% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Ford E-Series Wagon Van 2012 1.51% BMW X5 SUV 2007 1.35% Dodge Durango SUV 2007 1.31% Cadillac Escalade EXT Crew Cab 2007 1.3% Land Rover Range Rover SUV 2012 1.25% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 1.71% FIAT 500 Abarth 2012 1.5% HUMMER H2 SUT Crew Cab 2009 1.1% HUMMER H3T Crew Cab 2010 1.08% Bentley Arnage Sedan 2009 1.07% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.07% Spyker C8 Convertible 2009 2.03% Bentley Arnage Sedan 2009 1.81% Mercedes-Benz 300-Class Convertible 1993 1.61% Rolls-Royce Phantom Sedan 2012 1.53% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 1.56% Dodge Sprinter Cargo Van 2009 1.34% Mercedes-Benz Sprinter Van 2012 1.29% Ford E-Series Wagon Van 2012 1.14% Volkswagen Golf Hatchback 2012 1.08% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 1.05% Ferrari FF Coupe 2012 0.98% Chevrolet Sonic Sedan 2012 0.96% BMW ActiveHybrid 5 Sedan 2012 0.92% GMC Canyon Extended Cab 2012 0.92% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.77% Chrysler 300 SRT-8 2010 1.47% Dodge Durango SUV 2007 1.39% Land Rover Range Rover SUV 2012 1.38% Bentley Arnage Sedan 2009 1.38% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 12.75% Acura Integra Type R 2001 6.33% Chevrolet Corvette Convertible 2012 4.32% Ferrari California Convertible 2012 4.02% Aston Martin Virage Coupe 2012 4.01% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 1.56% Chevrolet Silverado 2500HD Regular Cab 2012 1.13% Chevrolet Silverado 1500 Regular Cab 2012 1.08% Ford F-150 Regular Cab 2012 1.01% Honda Accord Sedan 2012 1.0% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Ferrari California Convertible 2012 8.08% Chevrolet Corvette Convertible 2012 6.55% Ferrari 458 Italia Convertible 2012 5.67% McLaren MP4-12C Coupe 2012 5.39% Ferrari 458 Italia Coupe 2012 5.34% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Aston Martin Virage Coupe 2012 3.93% Ferrari 458 Italia Convertible 2012 3.86% Chevrolet Corvette Convertible 2012 3.76% Ferrari California Convertible 2012 3.62% McLaren MP4-12C Coupe 2012 3.1% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Mercedes-Benz Sprinter Van 2012 1.66% Acura TL Sedan 2012 1.43% Lincoln Town Car Sedan 2011 1.42% Dodge Caravan Minivan 1997 1.31% Honda Odyssey Minivan 2007 1.24% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 1.7% Chevrolet Silverado 1500 Regular Cab 2012 1.21% Chevrolet Silverado 2500HD Regular Cab 2012 1.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.19% Ford F-150 Regular Cab 2012 1.19% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 1.39% Dodge Sprinter Cargo Van 2009 1.1% BMW ActiveHybrid 5 Sedan 2012 1.02% Ram C/V Cargo Van Minivan 2012 1.0% Mercedes-Benz Sprinter Van 2012 0.98% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 BMW X5 SUV 2007 1.24% Buick Rainier SUV 2007 1.17% GMC Savana Van 2012 1.12% Chevrolet Express Cargo Van 2007 1.09% GMC Acadia SUV 2012 1.05% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Maybach Landaulet Convertible 2012 1.95% FIAT 500 Convertible 2012 1.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% Bentley Continental Supersports Conv. Convertible 2012 1.67% Rolls-Royce Phantom Sedan 2012 1.46% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 2.89% Ferrari 458 Italia Coupe 2012 2.44% Aston Martin Virage Coupe 2012 2.28% Chevrolet Corvette Convertible 2012 2.2% BMW 1 Series Coupe 2012 2.08% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Mercedes-Benz Sprinter Van 2012 1.31% Dodge Sprinter Cargo Van 2009 1.27% GMC Savana Van 2012 1.27% Buick Rainier SUV 2007 1.21% Mercedes-Benz S-Class Sedan 2012 1.17% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 HUMMER H2 SUT Crew Cab 2009 2.64% AM General Hummer SUV 2000 1.72% HUMMER H3T Crew Cab 2010 1.24% Spyker C8 Convertible 2009 1.19% Bugatti Veyron 16.4 Coupe 2009 1.19% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 FIAT 500 Convertible 2012 2.2% MINI Cooper Roadster Convertible 2012 1.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.91% Mercedes-Benz E-Class Sedan 2012 1.71% Mercedes-Benz S-Class Sedan 2012 1.59% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 1.95% Chevrolet Silverado 1500 Regular Cab 2012 1.39% GMC Acadia SUV 2012 1.22% Ford F-150 Regular Cab 2012 1.19% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.19% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Land Rover Range Rover SUV 2012 1.48% Jeep Patriot SUV 2012 1.33% BMW X5 SUV 2007 1.27% Jeep Compass SUV 2012 1.19% GMC Yukon Hybrid SUV 2012 1.11% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Lamborghini Diablo Coupe 2001 8.42% McLaren MP4-12C Coupe 2012 6.2% Audi TT RS Coupe 2012 4.14% Ferrari California Convertible 2012 4.02% Lamborghini Aventador Coupe 2012 3.87% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 HUMMER H2 SUT Crew Cab 2009 2.66% AM General Hummer SUV 2000 1.57% Bugatti Veyron 16.4 Coupe 2009 1.44% Bentley Arnage Sedan 2009 1.35% Chevrolet Corvette ZR1 2012 1.24% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Cadillac Escalade EXT Crew Cab 2007 1.62% Chevrolet TrailBlazer SS 2009 1.4% Ford Expedition EL SUV 2009 1.39% Chrysler 300 SRT-8 2010 1.38% Dodge Ram Pickup 3500 Crew Cab 2010 1.16% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 McLaren MP4-12C Coupe 2012 4.38% Lamborghini Diablo Coupe 2001 4.18% Audi TT RS Coupe 2012 3.52% Ferrari California Convertible 2012 3.25% Ferrari 458 Italia Coupe 2012 3.1% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Chevrolet TrailBlazer SS 2009 2.61% Ford Expedition EL SUV 2009 2.17% Cadillac Escalade EXT Crew Cab 2007 2.06% Dodge Ram Pickup 3500 Crew Cab 2010 1.57% Chrysler 300 SRT-8 2010 1.52% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Rolls-Royce Phantom Sedan 2012 1.86% Hyundai Genesis Sedan 2012 1.39% Bentley Arnage Sedan 2009 1.38% Bentley Continental GT Coupe 2007 1.18% Chrysler 300 SRT-8 2010 1.07% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 1.84% GMC Savana Van 2012 1.61% Dodge Sprinter Cargo Van 2009 1.53% Mercedes-Benz Sprinter Van 2012 1.26% Lincoln Town Car Sedan 2011 1.26% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Chevrolet TrailBlazer SS 2009 2.41% Cadillac Escalade EXT Crew Cab 2007 1.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% Chrysler 300 SRT-8 2010 1.61% Ford Expedition EL SUV 2009 1.59% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 GMC Savana Van 2012 1.8% Buick Rainier SUV 2007 1.19% GMC Acadia SUV 2012 1.14% Chevrolet Express Cargo Van 2007 1.1% BMW X5 SUV 2007 1.08% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Lincoln Town Car Sedan 2011 1.37% Mercedes-Benz Sprinter Van 2012 1.34% Ram C/V Cargo Van Minivan 2012 1.33% Acura TL Sedan 2012 1.18% Honda Odyssey Minivan 2007 1.16% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 1.52% Chevrolet Express Cargo Van 2007 1.18% Ford F-150 Regular Cab 2012 1.13% Jeep Grand Cherokee SUV 2012 1.11% Chevrolet Avalanche Crew Cab 2012 1.07% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Dodge Caliber Wagon 2007 2.91% Ferrari FF Coupe 2012 1.62% Honda Accord Coupe 2012 1.54% BMW 3 Series Sedan 2012 1.45% BMW 1 Series Coupe 2012 1.39% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.49% Chrysler 300 SRT-8 2010 1.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.26% Chevrolet Silverado 1500 Regular Cab 2012 1.2% Ford F-450 Super Duty Crew Cab 2012 1.2% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Chrysler 300 SRT-8 2010 1.14% Land Rover Range Rover SUV 2012 1.06% HUMMER H2 SUT Crew Cab 2009 1.04% GMC Acadia SUV 2012 1.02% Jeep Grand Cherokee SUV 2012 1.01% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 AM General Hummer SUV 2000 3.42% Aston Martin Virage Coupe 2012 2.85% Lamborghini Aventador Coupe 2012 2.71% Chevrolet Cobalt SS 2010 2.42% Jeep Wrangler SUV 2012 2.25% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Rolls-Royce Phantom Sedan 2012 1.7% Maybach Landaulet Convertible 2012 1.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.26% Hyundai Genesis Sedan 2012 1.23% Nissan Leaf Hatchback 2012 1.2% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Chevrolet TrailBlazer SS 2009 2.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.92% Chevrolet Silverado 1500 Regular Cab 2012 1.9% Chrysler 300 SRT-8 2010 1.67% Ford Expedition EL SUV 2009 1.39% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Ford E-Series Wagon Van 2012 1.32% BMW X5 SUV 2007 1.25% Chrysler Aspen SUV 2009 1.19% Dodge Challenger SRT8 2011 1.11% Hyundai Tucson SUV 2012 1.09% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.51% Buick Rainier SUV 2007 1.0% Ford F-150 Regular Cab 2012 0.97% Chevrolet Express Cargo Van 2007 0.92% Dodge Sprinter Cargo Van 2009 0.9% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Ram C/V Cargo Van Minivan 2012 1.7% GMC Savana Van 2012 1.55% Ferrari FF Coupe 2012 1.48% BMW 1 Series Convertible 2012 1.39% Dodge Sprinter Cargo Van 2009 1.28% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 GMC Acadia SUV 2012 1.45% BMW X5 SUV 2007 1.33% Chrysler 300 SRT-8 2010 1.31% Jeep Grand Cherokee SUV 2012 1.27% GMC Savana Van 2012 1.26% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Chevrolet TrailBlazer SS 2009 3.24% Cadillac Escalade EXT Crew Cab 2007 2.65% Chrysler 300 SRT-8 2010 2.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.08% Ford Expedition EL SUV 2009 1.88% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Hyundai Genesis Sedan 2012 1.15% Chrysler Aspen SUV 2009 1.11% Isuzu Ascender SUV 2008 1.04% Audi S6 Sedan 2011 0.99% Dodge Caravan Minivan 1997 0.92% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Chevrolet TrailBlazer SS 2009 1.39% Ford Expedition EL SUV 2009 1.34% Cadillac Escalade EXT Crew Cab 2007 1.27% BMW M6 Convertible 2010 1.17% Chrysler 300 SRT-8 2010 1.14% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Daewoo Nubira Wagon 2002 1.65% FIAT 500 Convertible 2012 1.38% Nissan Leaf Hatchback 2012 1.38% Rolls-Royce Phantom Sedan 2012 1.3% Maybach Landaulet Convertible 2012 1.23% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Aston Martin Virage Coupe 2012 4.39% Chevrolet Corvette Convertible 2012 4.28% Chevrolet Cobalt SS 2010 3.95% Lamborghini Aventador Coupe 2012 3.6% Ferrari 458 Italia Convertible 2012 3.55% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Corvette Convertible 2012 4.77% Ferrari 458 Italia Convertible 2012 4.11% Aston Martin Virage Coupe 2012 3.52% Lamborghini Diablo Coupe 2001 3.39% Chevrolet Cobalt SS 2010 3.31% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.61% GMC Savana Van 2012 1.39% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% Chevrolet Silverado 1500 Regular Cab 2012 1.22% Ford F-150 Regular Cab 2012 1.21% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Chevrolet TrailBlazer SS 2009 2.1% HUMMER H2 SUT Crew Cab 2009 1.87% FIAT 500 Abarth 2012 1.63% Cadillac Escalade EXT Crew Cab 2007 1.51% Bentley Arnage Sedan 2009 1.49% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 BMW X5 SUV 2007 0.96% GMC Acadia SUV 2012 0.89% Buick Rainier SUV 2007 0.84% Audi S6 Sedan 2011 0.83% Jeep Compass SUV 2012 0.82% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Acura Integra Type R 2001 1.96% AM General Hummer SUV 2000 1.66% Aston Martin Virage Coupe 2012 1.35% Ford Mustang Convertible 2007 1.3% Mercedes-Benz E-Class Sedan 2012 1.23% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Lamborghini Diablo Coupe 2001 2.4% FIAT 500 Convertible 2012 2.19% Acura Integra Type R 2001 1.87% Geo Metro Convertible 1993 1.47% Volvo C30 Hatchback 2012 1.42% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 2.06% BMW X5 SUV 2007 1.32% GMC Acadia SUV 2012 1.25% Chevrolet Silverado 1500 Regular Cab 2012 1.25% Jeep Grand Cherokee SUV 2012 1.19% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Ford E-Series Wagon Van 2012 1.34% Audi S6 Sedan 2011 1.32% Chrysler Aspen SUV 2009 1.1% Cadillac SRX SUV 2012 1.09% Bentley Arnage Sedan 2009 1.08% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Caliber Wagon 2007 1.79% HUMMER H2 SUT Crew Cab 2009 1.39% Jeep Wrangler SUV 2012 1.35% HUMMER H3T Crew Cab 2010 1.31% AM General Hummer SUV 2000 1.3% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.69% GMC Savana Van 2012 1.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.41% GMC Terrain SUV 2012 1.35% Jeep Grand Cherokee SUV 2012 1.31% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Ram C/V Cargo Van Minivan 2012 1.3% Honda Odyssey Minivan 2007 1.1% Volkswagen Golf Hatchback 2012 1.08% Nissan Leaf Hatchback 2012 1.07% Dodge Sprinter Cargo Van 2009 1.03% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 1.5% Chevrolet Silverado 1500 Regular Cab 2012 1.43% GMC Canyon Extended Cab 2012 1.24% Honda Accord Coupe 2012 1.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 HUMMER H2 SUT Crew Cab 2009 1.41% Jeep Wrangler SUV 2012 1.4% Dodge Caliber Wagon 2007 1.33% Chevrolet Corvette ZR1 2012 1.28% Chevrolet Silverado 1500 Regular Cab 2012 1.18% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 1.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.23% Chevrolet Silverado 2500HD Regular Cab 2012 1.21% Ford F-150 Regular Cab 2012 1.17% Chevrolet Avalanche Crew Cab 2012 1.15% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Lamborghini Diablo Coupe 2001 9.36% Ferrari 458 Italia Coupe 2012 4.12% Ferrari 458 Italia Convertible 2012 3.85% McLaren MP4-12C Coupe 2012 3.72% Ferrari California Convertible 2012 3.58% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.82% Jeep Grand Cherokee SUV 2012 1.48% Chevrolet Silverado 1500 Regular Cab 2012 1.47% GMC Acadia SUV 2012 1.46% Cadillac Escalade EXT Crew Cab 2007 1.42% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.21% Bentley Arnage Sedan 2009 1.75% Dodge Durango SUV 2007 1.74% Land Rover Range Rover SUV 2012 1.71% GMC Yukon Hybrid SUV 2012 1.55% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.33% GMC Savana Van 2012 1.33% Chevrolet Silverado 1500 Regular Cab 2012 1.2% Chevrolet Silverado 1500 Extended Cab 2012 1.12% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.42% Chevrolet TrailBlazer SS 2009 2.12% Chrysler 300 SRT-8 2010 1.94% Ford Expedition EL SUV 2009 1.67% Dodge Ram Pickup 3500 Crew Cab 2010 1.61% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Lamborghini Diablo Coupe 2001 9.39% McLaren MP4-12C Coupe 2012 6.05% Ferrari California Convertible 2012 4.48% Ferrari 458 Italia Coupe 2012 4.28% Ferrari 458 Italia Convertible 2012 3.76% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 1.58% Land Rover Range Rover SUV 2012 1.32% Chrysler 300 SRT-8 2010 1.28% GMC Yukon Hybrid SUV 2012 1.25% Chevrolet TrailBlazer SS 2009 1.2% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 FIAT 500 Abarth 2012 4.06% Bentley Arnage Sedan 2009 3.29% Land Rover Range Rover SUV 2012 1.73% Jeep Patriot SUV 2012 1.65% Cadillac Escalade EXT Crew Cab 2007 1.51% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.57% Chevrolet Silverado 1500 Regular Cab 2012 1.41% Chevrolet Silverado 1500 Extended Cab 2012 1.15% Dodge Ram Pickup 3500 Crew Cab 2010 1.1% Chevrolet Avalanche Crew Cab 2012 1.1% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Spyker C8 Convertible 2009 1.16% Daewoo Nubira Wagon 2002 0.97% Ford GT Coupe 2006 0.97% Hyundai Azera Sedan 2012 0.96% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.91% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Nissan Leaf Hatchback 2012 2.2% Daewoo Nubira Wagon 2002 2.09% Rolls-Royce Phantom Sedan 2012 2.06% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% FIAT 500 Convertible 2012 1.49% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Mercedes-Benz S-Class Sedan 2012 2.15% MINI Cooper Roadster Convertible 2012 1.89% Bugatti Veyron 16.4 Convertible 2009 1.69% Mercedes-Benz Sprinter Van 2012 1.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.49% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Ram C/V Cargo Van Minivan 2012 1.74% Nissan Leaf Hatchback 2012 1.67% Dodge Caravan Minivan 1997 1.59% Mercedes-Benz Sprinter Van 2012 1.47% Honda Odyssey Minivan 2007 1.38% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.57% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.36% Chrysler 300 SRT-8 2010 1.25% GMC Savana Van 2012 1.16% Chevrolet Silverado 2500HD Regular Cab 2012 1.11% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 1.1% Jeep Compass SUV 2012 1.06% BMW X5 SUV 2007 0.99% GMC Acadia SUV 2012 0.88% Hyundai Tucson SUV 2012 0.86% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 1.85% Bugatti Veyron 16.4 Coupe 2009 1.78% HUMMER H2 SUT Crew Cab 2009 1.74% Spyker C8 Convertible 2009 1.56% Mercedes-Benz E-Class Sedan 2012 1.5% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.52% Lincoln Town Car Sedan 2011 1.25% Honda Odyssey Minivan 2007 1.23% Acura TL Sedan 2012 1.16% Volkswagen Golf Hatchback 2012 1.13% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Dodge Caliber Wagon 2007 2.21% BMW 1 Series Coupe 2012 1.41% HUMMER H3T Crew Cab 2010 1.37% HUMMER H2 SUT Crew Cab 2009 1.25% Suzuki SX4 Hatchback 2012 1.23% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 3.27% Mercedes-Benz Sprinter Van 2012 1.75% Dodge Sprinter Cargo Van 2009 1.61% Volkswagen Golf Hatchback 2012 1.6% Nissan Leaf Hatchback 2012 1.54% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 2.22% Aston Martin Virage Coupe 2012 1.82% HUMMER H3T Crew Cab 2010 1.58% AM General Hummer SUV 2000 1.52% Jeep Wrangler SUV 2012 1.51% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.16% Dodge Sprinter Cargo Van 2009 1.88% Mercedes-Benz Sprinter Van 2012 1.62% BMW 1 Series Convertible 2012 1.51% BMW ActiveHybrid 5 Sedan 2012 1.46% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 FIAT 500 Abarth 2012 3.18% Bentley Arnage Sedan 2009 2.37% HUMMER H2 SUT Crew Cab 2009 2.31% AM General Hummer SUV 2000 2.06% Spyker C8 Convertible 2009 1.8% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Bentley Arnage Sedan 2009 2.47% Chrysler 300 SRT-8 2010 1.42% Hyundai Genesis Sedan 2012 1.37% Chevrolet TrailBlazer SS 2009 1.28% FIAT 500 Abarth 2012 1.23% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 2.26% FIAT 500 Convertible 2012 2.15% BMW 1 Series Coupe 2012 1.47% BMW 1 Series Convertible 2012 1.38% BMW M3 Coupe 2012 1.36% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.47% Chevrolet Silverado 2500HD Regular Cab 2012 1.42% GMC Savana Van 2012 1.38% Chevrolet Silverado 1500 Regular Cab 2012 1.35% Chevrolet Silverado 1500 Extended Cab 2012 1.34% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 1.95% Hyundai Azera Sedan 2012 1.76% Hyundai Genesis Sedan 2012 1.54% Bugatti Veyron 16.4 Coupe 2009 1.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 2.79% Cadillac Escalade EXT Crew Cab 2007 2.63% FIAT 500 Abarth 2012 2.51% Land Rover Range Rover SUV 2012 2.49% Chevrolet TrailBlazer SS 2009 2.3% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 2.43% Chevrolet Silverado 1500 Regular Cab 2012 1.63% Ferrari FF Coupe 2012 1.47% Honda Accord Coupe 2012 1.46% BMW 3 Series Sedan 2012 1.19% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 1.47% Chevrolet Silverado 2500HD Regular Cab 2012 1.33% Dodge Ram Pickup 3500 Quad Cab 2009 1.26% Ferrari FF Coupe 2012 1.23% GMC Canyon Extended Cab 2012 1.22% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Lamborghini Diablo Coupe 2001 3.0% Chevrolet Corvette Convertible 2012 2.99% McLaren MP4-12C Coupe 2012 2.92% Ferrari California Convertible 2012 2.71% Ferrari 458 Italia Convertible 2012 2.7% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Dodge Sprinter Cargo Van 2009 2.39% Mercedes-Benz Sprinter Van 2012 1.88% Ram C/V Cargo Van Minivan 2012 1.72% GMC Savana Van 2012 1.63% Lincoln Town Car Sedan 2011 1.55% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Lamborghini Diablo Coupe 2001 8.41% McLaren MP4-12C Coupe 2012 4.97% Ferrari California Convertible 2012 4.47% Chevrolet Corvette Convertible 2012 4.29% Ferrari 458 Italia Convertible 2012 4.25% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 MINI Cooper Roadster Convertible 2012 1.16% Ford E-Series Wagon Van 2012 1.11% Mercedes-Benz S-Class Sedan 2012 1.05% Audi S6 Sedan 2011 1.04% Hyundai Azera Sedan 2012 1.02% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 1.37% Mercedes-Benz S-Class Sedan 2012 1.17% Mercedes-Benz E-Class Sedan 2012 1.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% Fisker Karma Sedan 2012 1.12% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chevrolet TrailBlazer SS 2009 2.46% Chevrolet Silverado 1500 Regular Cab 2012 2.25% Chrysler 300 SRT-8 2010 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.04% Cadillac Escalade EXT Crew Cab 2007 1.7% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Ram C/V Cargo Van Minivan 2012 1.58% Mercedes-Benz Sprinter Van 2012 1.54% Lincoln Town Car Sedan 2011 1.35% Mercedes-Benz S-Class Sedan 2012 1.22% Honda Odyssey Minivan 2007 1.22% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Ram C/V Cargo Van Minivan 2012 2.16% FIAT 500 Convertible 2012 1.53% BMW 1 Series Convertible 2012 1.53% Dodge Sprinter Cargo Van 2009 1.37% Lincoln Town Car Sedan 2011 1.19% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 FIAT 500 Convertible 2012 5.28% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.97% Ram C/V Cargo Van Minivan 2012 1.95% Mercedes-Benz S-Class Sedan 2012 1.8% Bugatti Veyron 16.4 Convertible 2009 1.76% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Aston Martin Virage Coupe 2012 3.38% Ferrari 458 Italia Coupe 2012 2.76% Lamborghini Aventador Coupe 2012 2.63% Dodge Charger Sedan 2012 2.32% Ferrari California Convertible 2012 2.21% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.88% Hyundai Azera Sedan 2012 1.83% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.58% Bugatti Veyron 16.4 Coupe 2009 1.37% Nissan Leaf Hatchback 2012 1.3% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 HUMMER H2 SUT Crew Cab 2009 3.41% AM General Hummer SUV 2000 2.23% Mercedes-Benz E-Class Sedan 2012 1.9% Jeep Wrangler SUV 2012 1.72% Fisker Karma Sedan 2012 1.61% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Lamborghini Diablo Coupe 2001 7.75% Chevrolet HHR SS 2010 3.0% Audi TT RS Coupe 2012 2.97% Ferrari 458 Italia Coupe 2012 2.64% McLaren MP4-12C Coupe 2012 2.44% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 2.88% Chevrolet TrailBlazer SS 2009 2.06% FIAT 500 Abarth 2012 1.92% Chrysler 300 SRT-8 2010 1.33% BMW M6 Convertible 2010 1.32% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Dodge Caliber Wagon 2007 2.41% Aston Martin Virage Coupe 2012 2.29% Ferrari 458 Italia Coupe 2012 1.85% Chevrolet Corvette Convertible 2012 1.76% Lamborghini Aventador Coupe 2012 1.65% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 HUMMER H2 SUT Crew Cab 2009 3.79% AM General Hummer SUV 2000 3.41% HUMMER H3T Crew Cab 2010 1.99% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.63% Spyker C8 Convertible 2009 1.62% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Lamborghini Diablo Coupe 2001 2.13% Audi TT RS Coupe 2012 2.12% Lamborghini Aventador Coupe 2012 2.01% Aston Martin Virage Coupe 2012 1.82% Acura Integra Type R 2001 1.77% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 HUMMER H2 SUT Crew Cab 2009 2.26% AM General Hummer SUV 2000 1.95% Jeep Wrangler SUV 2012 1.38% HUMMER H3T Crew Cab 2010 1.37% Spyker C8 Convertible 2009 1.35% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Lamborghini Diablo Coupe 2001 3.12% McLaren MP4-12C Coupe 2012 2.85% Acura Integra Type R 2001 2.8% Ferrari California Convertible 2012 2.66% Aston Martin Virage Coupe 2012 2.08% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.73% Chevrolet Silverado 2500HD Regular Cab 2012 1.64% Chevrolet Silverado 1500 Regular Cab 2012 1.59% GMC Savana Van 2012 1.5% Chevrolet Silverado 1500 Extended Cab 2012 1.36% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Chevrolet TrailBlazer SS 2009 2.06% Chrysler 300 SRT-8 2010 1.44% Bentley Arnage Sedan 2009 1.31% BMW M6 Convertible 2010 1.22% Cadillac Escalade EXT Crew Cab 2007 1.15% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Lamborghini Diablo Coupe 2001 4.38% Audi TT RS Coupe 2012 4.23% Lamborghini Aventador Coupe 2012 4.17% Aston Martin Virage Coupe 2012 4.11% Ferrari 458 Italia Convertible 2012 3.59% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Chevrolet Silverado 1500 Regular Cab 2012 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Chevrolet Silverado 1500 Extended Cab 2012 1.49% Chrysler 300 SRT-8 2010 1.46% Chevrolet Silverado 2500HD Regular Cab 2012 1.28% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Ford E-Series Wagon Van 2012 1.3% Dodge Challenger SRT8 2011 1.2% Hyundai Tucson SUV 2012 1.13% Hyundai Azera Sedan 2012 1.12% Dodge Caravan Minivan 1997 1.06% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Mercedes-Benz S-Class Sedan 2012 0.97% Audi R8 Coupe 2012 0.87% Audi A5 Coupe 2012 0.85% Bentley Continental GT Coupe 2007 0.83% MINI Cooper Roadster Convertible 2012 0.83% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Jeep Grand Cherokee SUV 2012 1.02% GMC Savana Van 2012 1.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.96% GMC Acadia SUV 2012 0.92% Ford F-450 Super Duty Crew Cab 2012 0.91% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Dodge Caliber Wagon 2007 3.05% Dodge Charger Sedan 2012 1.58% BMW 3 Series Sedan 2012 1.53% AM General Hummer SUV 2000 1.52% HUMMER H3T Crew Cab 2010 1.46% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 FIAT 500 Abarth 2012 3.58% Bentley Arnage Sedan 2009 3.26% Land Rover Range Rover SUV 2012 1.63% Jeep Patriot SUV 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.45% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Cadillac Escalade EXT Crew Cab 2007 2.51% Chevrolet TrailBlazer SS 2009 2.04% Chrysler 300 SRT-8 2010 1.76% Bentley Arnage Sedan 2009 1.59% Dodge Durango SUV 2007 1.46% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Land Rover Range Rover SUV 2012 1.23% Jeep Patriot SUV 2012 1.2% Bentley Mulsanne Sedan 2011 1.07% Dodge Ram Pickup 3500 Crew Cab 2010 1.05% Chrysler 300 SRT-8 2010 0.92% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Chevrolet TrailBlazer SS 2009 2.79% Cadillac Escalade EXT Crew Cab 2007 2.26% Chrysler 300 SRT-8 2010 1.82% Bentley Arnage Sedan 2009 1.54% Dodge Durango SUV 2007 1.34% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 2.48% Cadillac Escalade EXT Crew Cab 2007 2.17% FIAT 500 Abarth 2012 2.15% Land Rover Range Rover SUV 2012 2.05% GMC Yukon Hybrid SUV 2012 1.95% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 1.12% Chevrolet Sonic Sedan 2012 0.99% Hyundai Elantra Sedan 2007 0.97% Daewoo Nubira Wagon 2002 0.89% Honda Accord Coupe 2012 0.85% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 1.59% Chevrolet Avalanche Crew Cab 2012 1.12% Ford E-Series Wagon Van 2012 0.98% Isuzu Ascender SUV 2008 0.98% Dodge Sprinter Cargo Van 2009 0.97% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Mercedes-Benz S-Class Sedan 2012 1.59% MINI Cooper Roadster Convertible 2012 1.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.29% Mercedes-Benz Sprinter Van 2012 1.24% Lincoln Town Car Sedan 2011 1.17% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 MINI Cooper Roadster Convertible 2012 1.16% Hyundai Azera Sedan 2012 1.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.07% Nissan Leaf Hatchback 2012 0.97% Bentley Continental Flying Spur Sedan 2007 0.96% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Dodge Sprinter Cargo Van 2009 1.8% GMC Savana Van 2012 1.66% Mercedes-Benz Sprinter Van 2012 1.3% Audi A5 Coupe 2012 1.09% Honda Accord Sedan 2012 1.07% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 2.53% FIAT 500 Abarth 2012 1.97% Land Rover Range Rover SUV 2012 1.74% Chrysler 300 SRT-8 2010 1.45% Jeep Compass SUV 2012 1.24% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Convertible 2012 6.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.83% Maybach Landaulet Convertible 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.5% Bentley Continental Supersports Conv. Convertible 2012 1.49% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Cadillac Escalade EXT Crew Cab 2007 1.45% Jeep Grand Cherokee SUV 2012 1.27% Land Rover Range Rover SUV 2012 1.23% Chrysler 300 SRT-8 2010 1.16% BMW X5 SUV 2007 1.13% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 1.93% BMW 1 Series Coupe 2012 1.21% Suzuki SX4 Hatchback 2012 1.2% McLaren MP4-12C Coupe 2012 1.14% Hyundai Veloster Hatchback 2012 1.13% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Chevrolet Silverado 2500HD Regular Cab 2012 1.85% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% Chevrolet Silverado 1500 Regular Cab 2012 1.57% GMC Canyon Extended Cab 2012 1.24% Chrysler 300 SRT-8 2010 1.23% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 2.04% Chrysler 300 SRT-8 2010 1.98% Cadillac Escalade EXT Crew Cab 2007 1.84% Bentley Arnage Sedan 2009 1.46% Land Rover Range Rover SUV 2012 1.39% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bentley Arnage Sedan 2009 1.79% Hyundai Genesis Sedan 2012 1.72% Hyundai Azera Sedan 2012 1.36% Lamborghini Reventon Coupe 2008 1.28% Rolls-Royce Phantom Sedan 2012 1.27% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 4.81% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.51% MINI Cooper Roadster Convertible 2012 2.36% Mercedes-Benz E-Class Sedan 2012 2.18% Maybach Landaulet Convertible 2012 2.11% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chevrolet TrailBlazer SS 2009 2.15% Chevrolet Silverado 1500 Regular Cab 2012 1.7% Chrysler 300 SRT-8 2010 1.65% Cadillac Escalade EXT Crew Cab 2007 1.63% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.62% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Ford E-Series Wagon Van 2012 1.54% Audi S6 Sedan 2011 1.43% BMW X5 SUV 2007 1.26% Dodge Challenger SRT8 2011 1.25% Chrysler Aspen SUV 2009 1.18% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Dodge Sprinter Cargo Van 2009 1.6% Mercedes-Benz Sprinter Van 2012 1.35% GMC Savana Van 2012 1.35% Audi A5 Coupe 2012 1.18% Volkswagen Golf Hatchback 2012 1.04% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 9.41% Ferrari California Convertible 2012 4.11% Ferrari 458 Italia Convertible 2012 4.03% McLaren MP4-12C Coupe 2012 3.79% Chevrolet HHR SS 2010 3.43% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.1% Chevrolet Silverado 1500 Regular Cab 2012 1.96% Chrysler 300 SRT-8 2010 1.88% Cadillac Escalade EXT Crew Cab 2007 1.75% GMC Savana Van 2012 1.59% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Rolls-Royce Phantom Sedan 2012 2.04% Maybach Landaulet Convertible 2012 1.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.83% Bentley Continental Supersports Conv. Convertible 2012 1.69% FIAT 500 Convertible 2012 1.64% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 HUMMER H2 SUT Crew Cab 2009 2.9% Chevrolet TrailBlazer SS 2009 1.49% AM General Hummer SUV 2000 1.45% Chevrolet Corvette ZR1 2012 1.32% Bentley Arnage Sedan 2009 1.2% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 1.54% Jeep Grand Cherokee SUV 2012 1.11% BMW X5 SUV 2007 1.08% Ford F-150 Regular Cab 2012 1.06% GMC Acadia SUV 2012 1.01% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Hyundai Azera Sedan 2012 1.43% Hyundai Genesis Sedan 2012 1.28% MINI Cooper Roadster Convertible 2012 1.2% Dodge Challenger SRT8 2011 1.14% Nissan Leaf Hatchback 2012 1.12% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 1.66% GMC Savana Van 2012 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.44% Ferrari FF Coupe 2012 1.27% BMW 1 Series Coupe 2012 1.27% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 3.84% MINI Cooper Roadster Convertible 2012 1.81% FIAT 500 Convertible 2012 1.7% Mercedes-Benz Sprinter Van 2012 1.7% Lincoln Town Car Sedan 2011 1.65% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Bentley Arnage Sedan 2009 3.73% FIAT 500 Abarth 2012 3.68% Land Rover Range Rover SUV 2012 1.98% Chevrolet TrailBlazer SS 2009 1.81% Chrysler 300 SRT-8 2010 1.71% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet TrailBlazer SS 2009 2.73% Cadillac Escalade EXT Crew Cab 2007 2.14% Chrysler 300 SRT-8 2010 2.02% Bentley Arnage Sedan 2009 1.74% Dodge Ram Pickup 3500 Crew Cab 2010 1.47% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.95% FIAT 500 Convertible 2012 1.91% MINI Cooper Roadster Convertible 2012 1.8% Bugatti Veyron 16.4 Convertible 2009 1.57% Ram C/V Cargo Van Minivan 2012 1.54% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Mercedes-Benz Sprinter Van 2012 1.82% Dodge Sprinter Cargo Van 2009 1.64% GMC Savana Van 2012 1.51% Volkswagen Golf Hatchback 2012 1.35% Honda Odyssey Minivan 2007 1.19% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Lamborghini Diablo Coupe 2001 5.24% Audi TT RS Coupe 2012 3.0% Acura Integra Type R 2001 2.34% Geo Metro Convertible 1993 2.29% McLaren MP4-12C Coupe 2012 2.17% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 1.85% Chevrolet Silverado 1500 Regular Cab 2012 1.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.52% Chrysler 300 SRT-8 2010 1.36% Cadillac Escalade EXT Crew Cab 2007 1.15% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 HUMMER H2 SUT Crew Cab 2009 1.54% Volkswagen Golf Hatchback 1991 1.1% Jeep Compass SUV 2012 1.02% BMW X6 SUV 2012 0.99% Chrysler 300 SRT-8 2010 0.96% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.47% Nissan Leaf Hatchback 2012 2.24% MINI Cooper Roadster Convertible 2012 1.84% Bentley Continental Supersports Conv. Convertible 2012 1.84% Maybach Landaulet Convertible 2012 1.77% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.35% MINI Cooper Roadster Convertible 2012 1.14% Lincoln Town Car Sedan 2011 1.06% BMW X3 SUV 2012 1.05% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Ferrari 458 Italia Coupe 2012 4.12% Dodge Charger SRT-8 2009 3.08% Aston Martin Virage Coupe 2012 3.0% Lamborghini Diablo Coupe 2001 2.96% Dodge Caliber Wagon 2007 2.69% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Aston Martin Virage Coupe 2012 3.38% AM General Hummer SUV 2000 2.94% Chevrolet Cobalt SS 2010 2.58% Ferrari 458 Italia Coupe 2012 2.51% Chevrolet Corvette Convertible 2012 2.46% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 1.41% BMW 3 Series Sedan 2012 1.2% Ford GT Coupe 2006 1.14% Volvo C30 Hatchback 2012 1.04% AM General Hummer SUV 2000 1.03% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Jeep Patriot SUV 2012 1.15% Hyundai Genesis Sedan 2012 1.05% Hyundai Azera Sedan 2012 1.02% Bentley Arnage Sedan 2009 1.0% Land Rover Range Rover SUV 2012 0.98% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 1.9% Ford F-150 Regular Cab 2012 1.36% Dodge Sprinter Cargo Van 2009 1.3% Chevrolet Avalanche Crew Cab 2012 1.29% Chevrolet Silverado 2500HD Regular Cab 2012 1.26% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 1.2% Ford F-150 Regular Cab 2012 0.99% Isuzu Ascender SUV 2008 0.93% Chevrolet Avalanche Crew Cab 2012 0.91% Chevrolet Silverado 1500 Extended Cab 2012 0.91% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.66% MINI Cooper Roadster Convertible 2012 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% Mercedes-Benz Sprinter Van 2012 1.15% Lincoln Town Car Sedan 2011 1.13% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% MINI Cooper Roadster Convertible 2012 1.53% Nissan Leaf Hatchback 2012 1.37% Mercedes-Benz S-Class Sedan 2012 1.31% Mercedes-Benz Sprinter Van 2012 1.17% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.93% Fisker Karma Sedan 2012 1.84% Rolls-Royce Phantom Sedan 2012 1.61% Mercedes-Benz 300-Class Convertible 1993 1.55% Hyundai Genesis Sedan 2012 1.46% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 FIAT 500 Convertible 2012 3.67% Ram C/V Cargo Van Minivan 2012 2.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.04% Bugatti Veyron 16.4 Convertible 2009 1.94% Mercedes-Benz S-Class Sedan 2012 1.84% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 1.12% Audi A5 Coupe 2012 1.01% Lincoln Town Car Sedan 2011 1.01% Mercedes-Benz Sprinter Van 2012 0.99% Ford F-150 Regular Cab 2012 0.98% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 FIAT 500 Convertible 2012 1.49% Ram C/V Cargo Van Minivan 2012 1.33% Mercedes-Benz S-Class Sedan 2012 1.29% Mercedes-Benz E-Class Sedan 2012 1.14% MINI Cooper Roadster Convertible 2012 1.12% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 Aston Martin Virage Coupe 2012 5.64% Ferrari California Convertible 2012 4.84% Ferrari 458 Italia Coupe 2012 3.86% McLaren MP4-12C Coupe 2012 3.79% Lamborghini Aventador Coupe 2012 3.7% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 1.65% Chevrolet Silverado 2500HD Regular Cab 2012 1.63% GMC Savana Van 2012 1.59% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.33% Chevrolet Silverado 1500 Extended Cab 2012 1.16% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Diablo Coupe 2001 9.38% Ferrari California Convertible 2012 5.89% McLaren MP4-12C Coupe 2012 5.63% Ferrari 458 Italia Convertible 2012 5.52% Ferrari 458 Italia Coupe 2012 5.04% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Chrysler 300 SRT-8 2010 1.36% Chevrolet TrailBlazer SS 2009 1.33% Ford Expedition EL SUV 2009 1.29% Cadillac Escalade EXT Crew Cab 2007 1.24% Dodge Ram Pickup 3500 Crew Cab 2010 1.14% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 FIAT 500 Convertible 2012 3.91% Ram C/V Cargo Van Minivan 2012 2.53% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.89% Bugatti Veyron 16.4 Convertible 2009 1.8% Mercedes-Benz S-Class Sedan 2012 1.72% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Chevrolet TrailBlazer SS 2009 1.28% Chevrolet Silverado 1500 Regular Cab 2012 1.18% GMC Canyon Extended Cab 2012 1.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.0% Dodge Caliber Wagon 2007 0.99% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.12% Nissan Leaf Hatchback 2012 1.54% Mercedes-Benz Sprinter Van 2012 1.51% Dodge Sprinter Cargo Van 2009 1.41% Honda Odyssey Minivan 2007 1.28% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 1.57% Chevrolet Express Cargo Van 2007 1.05% Ford F-150 Regular Cab 2012 1.03% Audi A5 Coupe 2012 0.95% Mercedes-Benz Sprinter Van 2012 0.93% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Hyundai Azera Sedan 2012 1.62% MINI Cooper Roadster Convertible 2012 1.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.36% Dodge Challenger SRT8 2011 1.27% Mercedes-Benz S-Class Sedan 2012 1.15% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Ram C/V Cargo Van Minivan 2012 1.52% Mercedes-Benz Sprinter Van 2012 1.39% MINI Cooper Roadster Convertible 2012 1.32% Lincoln Town Car Sedan 2011 1.22% Audi A5 Coupe 2012 1.19% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Nissan Leaf Hatchback 2012 1.15% MINI Cooper Roadster Convertible 2012 1.1% Audi S6 Sedan 2011 1.02% Mercedes-Benz Sprinter Van 2012 1.01% Chrysler PT Cruiser Convertible 2008 0.99% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Acura TL Sedan 2012 1.24% Honda Odyssey Minivan 2007 1.13% Dodge Caravan Minivan 1997 1.13% Chevrolet Avalanche Crew Cab 2012 1.12% Volkswagen Golf Hatchback 2012 1.09% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 1.56% Chevrolet Avalanche Crew Cab 2012 1.48% Ford F-450 Super Duty Crew Cab 2012 1.39% Ford Expedition EL SUV 2009 1.18% Isuzu Ascender SUV 2008 1.18% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Chrysler 300 SRT-8 2010 1.15% Bentley Arnage Sedan 2009 1.0% Cadillac Escalade EXT Crew Cab 2007 0.99% Land Rover Range Rover SUV 2012 0.95% Hyundai Genesis Sedan 2012 0.92% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 2.2% AM General Hummer SUV 2000 2.11% HUMMER H2 SUT Crew Cab 2009 1.8% HUMMER H3T Crew Cab 2010 1.69% GMC Canyon Extended Cab 2012 1.61% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Hyundai Azera Sedan 2012 1.11% Bentley Mulsanne Sedan 2011 1.02% Ford E-Series Wagon Van 2012 1.02% Dodge Challenger SRT8 2011 1.02% Jeep Compass SUV 2012 0.98% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 1.36% Mercedes-Benz Sprinter Van 2012 1.23% Chevrolet Express Cargo Van 2007 1.21% Dodge Sprinter Cargo Van 2009 1.14% Ford F-150 Regular Cab 2012 1.07% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.74% Nissan Leaf Hatchback 2012 1.39% Daewoo Nubira Wagon 2002 1.27% Honda Odyssey Minivan 2007 1.16% GMC Savana Van 2012 1.06% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.63% Spyker C8 Convertible 2009 1.48% Mercedes-Benz E-Class Sedan 2012 1.45% Mercedes-Benz 300-Class Convertible 1993 1.31% Spyker C8 Coupe 2009 1.08% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.13% MINI Cooper Roadster Convertible 2012 1.92% FIAT 500 Convertible 2012 1.79% Nissan Leaf Hatchback 2012 1.49% Mercedes-Benz S-Class Sedan 2012 1.38% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 2.54% Cadillac Escalade EXT Crew Cab 2007 2.26% Chevrolet TrailBlazer SS 2009 2.23% Chrysler 300 SRT-8 2010 2.0% Land Rover Range Rover SUV 2012 1.83% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.85% Chrysler 300 SRT-8 2010 1.48% Chevrolet TrailBlazer SS 2009 1.43% Bentley Arnage Sedan 2009 1.32% Dodge Durango SUV 2007 1.27% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 1.8% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% Bugatti Veyron 16.4 Convertible 2009 1.66% Ram C/V Cargo Van Minivan 2012 1.4% Mercedes-Benz S-Class Sedan 2012 1.36% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Acura Integra Type R 2001 3.04% Lamborghini Diablo Coupe 2001 3.01% Aston Martin Virage Coupe 2012 2.25% Ferrari California Convertible 2012 2.21% McLaren MP4-12C Coupe 2012 2.09% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 2.12% Chevrolet Silverado 1500 Regular Cab 2012 1.67% GMC Terrain SUV 2012 1.34% Jeep Grand Cherokee SUV 2012 1.31% Cadillac Escalade EXT Crew Cab 2007 1.29% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 2.02% Cadillac Escalade EXT Crew Cab 2007 1.88% Dodge Durango SUV 2007 1.55% Chevrolet Avalanche Crew Cab 2012 1.52% Jeep Grand Cherokee SUV 2012 1.41% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Aston Martin Virage Coupe 2012 3.44% Chevrolet Cobalt SS 2010 3.02% Lamborghini Aventador Coupe 2012 2.75% Chevrolet Corvette Convertible 2012 2.55% Ferrari 458 Italia Coupe 2012 2.43% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet Avalanche Crew Cab 2012 1.32% Ford F-150 Regular Cab 2012 1.3% Chevrolet Silverado 2500HD Regular Cab 2012 1.28% Chevrolet Silverado 1500 Extended Cab 2012 1.27% GMC Savana Van 2012 1.26% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Hyundai Azera Sedan 2012 1.56% Rolls-Royce Phantom Sedan 2012 1.46% Bentley Continental Supersports Conv. Convertible 2012 1.36% Hyundai Genesis Sedan 2012 1.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 GMC Savana Van 2012 2.3% Chevrolet Silverado 1500 Regular Cab 2012 1.69% Chevrolet Express Cargo Van 2007 1.34% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.32% GMC Acadia SUV 2012 1.3% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Chevrolet TrailBlazer SS 2009 1.4% Cadillac Escalade EXT Crew Cab 2007 1.28% Chrysler 300 SRT-8 2010 1.26% Dodge Ram Pickup 3500 Crew Cab 2010 1.19% Ford Expedition EL SUV 2009 1.11% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.63% Chevrolet Silverado 2500HD Regular Cab 2012 1.53% Chevrolet Silverado 1500 Regular Cab 2012 1.34% Chrysler 300 SRT-8 2010 1.32% Chevrolet Silverado 1500 Extended Cab 2012 1.26% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 2.41% MINI Cooper Roadster Convertible 2012 2.13% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.75% Mercedes-Benz E-Class Sedan 2012 1.71% Maybach Landaulet Convertible 2012 1.69% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Dodge Sprinter Cargo Van 2009 2.43% GMC Savana Van 2012 2.06% Mercedes-Benz Sprinter Van 2012 1.98% Audi A5 Coupe 2012 1.45% Acura TL Sedan 2012 1.31% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 FIAT 500 Convertible 2012 2.7% MINI Cooper Roadster Convertible 2012 2.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.0% Bugatti Veyron 16.4 Convertible 2009 1.89% Mercedes-Benz E-Class Sedan 2012 1.89% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Ram C/V Cargo Van Minivan 2012 1.65% Mercedes-Benz Sprinter Van 2012 1.58% Dodge Sprinter Cargo Van 2009 1.43% Lincoln Town Car Sedan 2011 1.37% BMW ActiveHybrid 5 Sedan 2012 1.3% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Bentley Arnage Sedan 2009 2.94% FIAT 500 Abarth 2012 2.11% Land Rover Range Rover SUV 2012 2.09% GMC Yukon Hybrid SUV 2012 1.54% Jeep Patriot SUV 2012 1.44% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 2.04% Chevrolet Express Cargo Van 2007 1.56% Buick Rainier SUV 2007 1.27% Mercedes-Benz Sprinter Van 2012 1.18% Dodge Sprinter Cargo Van 2009 1.1% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Spyker C8 Convertible 2009 1.36% Bentley Mulsanne Sedan 2011 1.18% Bugatti Veyron 16.4 Coupe 2009 1.11% Hyundai Azera Sedan 2012 1.1% Ford GT Coupe 2006 1.05% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.55% Chevrolet Silverado 1500 Regular Cab 2012 1.33% Jeep Grand Cherokee SUV 2012 1.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.21% GMC Terrain SUV 2012 1.21% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Lamborghini Diablo Coupe 2001 5.71% Audi TT RS Coupe 2012 4.02% McLaren MP4-12C Coupe 2012 3.56% Lamborghini Aventador Coupe 2012 3.0% Ferrari 458 Italia Convertible 2012 2.69% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Fisker Karma Sedan 2012 1.58% MINI Cooper Roadster Convertible 2012 1.55% Mercedes-Benz E-Class Sedan 2012 1.49% Bugatti Veyron 16.4 Coupe 2009 1.27% Rolls-Royce Phantom Sedan 2012 1.14% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% MINI Cooper Roadster Convertible 2012 1.17% Audi 100 Sedan 1994 1.14% Chrysler PT Cruiser Convertible 2008 1.07% Mercedes-Benz S-Class Sedan 2012 1.06% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.14% Mercedes-Benz Sprinter Van 2012 1.46% Lincoln Town Car Sedan 2011 1.44% Dodge Sprinter Cargo Van 2009 1.44% Acura TL Sedan 2012 1.34% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Bentley Arnage Sedan 2009 3.18% FIAT 500 Abarth 2012 1.88% Chevrolet TrailBlazer SS 2009 1.65% Cadillac Escalade EXT Crew Cab 2007 1.57% Land Rover Range Rover SUV 2012 1.52% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.97% FIAT 500 Convertible 2012 2.59% Spyker C8 Coupe 2009 1.94% Ford GT Coupe 2006 1.51% Bentley Continental Supersports Conv. Convertible 2012 1.41% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 1.88% Chevrolet Express Cargo Van 2007 1.68% Ford F-150 Regular Cab 2012 1.48% BMW X5 SUV 2007 1.31% Buick Rainier SUV 2007 1.29% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Spyker C8 Convertible 2009 1.34% Geo Metro Convertible 1993 1.09% Mercedes-Benz 300-Class Convertible 1993 1.07% Bugatti Veyron 16.4 Coupe 2009 1.06% Ford GT Coupe 2006 1.0% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 3.81% Ram C/V Cargo Van Minivan 2012 1.68% Daewoo Nubira Wagon 2002 1.58% Maybach Landaulet Convertible 2012 1.31% Spyker C8 Coupe 2009 1.22% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 1.5% Audi S6 Sedan 2011 1.12% Dodge Caravan Minivan 1997 1.1% Chrysler Aspen SUV 2009 1.09% Ford Expedition EL SUV 2009 1.07% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Jeep Grand Cherokee SUV 2012 1.14% Chrysler 300 SRT-8 2010 1.13% Cadillac Escalade EXT Crew Cab 2007 1.12% Land Rover Range Rover SUV 2012 1.09% BMW X5 SUV 2007 1.07% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Audi A5 Coupe 2012 1.05% BMW ActiveHybrid 5 Sedan 2012 1.01% Dodge Sprinter Cargo Van 2009 0.99% Mercedes-Benz Sprinter Van 2012 0.98% GMC Savana Van 2012 0.97% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Cadillac Escalade EXT Crew Cab 2007 1.22% Jeep Grand Cherokee SUV 2012 1.06% Ford Expedition EL SUV 2009 1.0% Chrysler 300 SRT-8 2010 0.99% Chevrolet Silverado 1500 Regular Cab 2012 0.99% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 4.43% BMW 1 Series Coupe 2012 2.05% Ferrari 458 Italia Coupe 2012 1.78% HUMMER H3T Crew Cab 2010 1.71% BMW 3 Series Sedan 2012 1.6% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 2.98% Ferrari FF Coupe 2012 2.02% BMW 1 Series Coupe 2012 1.78% BMW 3 Series Sedan 2012 1.65% Aston Martin Virage Coupe 2012 1.6% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 1.17% Buick Rainier SUV 2007 1.04% Mercedes-Benz E-Class Sedan 2012 1.0% Dodge Sprinter Cargo Van 2009 0.98% BMW X3 SUV 2012 0.97% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 FIAT 500 Convertible 2012 3.32% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.22% Maybach Landaulet Convertible 2012 2.33% MINI Cooper Roadster Convertible 2012 1.98% Nissan Leaf Hatchback 2012 1.94% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 FIAT 500 Convertible 2012 3.63% Bugatti Veyron 16.4 Convertible 2009 1.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.58% Mercedes-Benz S-Class Sedan 2012 1.57% Ram C/V Cargo Van Minivan 2012 1.54% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Lamborghini Diablo Coupe 2001 1.82% Spyker C8 Convertible 2009 1.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.3% Ford GT Coupe 2006 1.22% Volvo C30 Hatchback 2012 1.02% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 2.12% Chevrolet Express Cargo Van 2007 1.56% Dodge Sprinter Cargo Van 2009 1.53% Ford F-150 Regular Cab 2012 1.53% Chevrolet Silverado 2500HD Regular Cab 2012 1.39% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 6.72% Chevrolet Corvette Convertible 2012 5.65% Ferrari 458 Italia Convertible 2012 5.18% McLaren MP4-12C Coupe 2012 4.86% Lamborghini Aventador Coupe 2012 4.8% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Ford F-150 Regular Cab 2012 1.28% GMC Savana Van 2012 1.28% Mercedes-Benz Sprinter Van 2012 1.25% Isuzu Ascender SUV 2008 1.2% BMW X5 SUV 2007 1.15% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Lamborghini Diablo Coupe 2001 4.91% Acura Integra Type R 2001 3.13% Lamborghini Aventador Coupe 2012 2.32% Ferrari 458 Italia Convertible 2012 2.06% Geo Metro Convertible 1993 2.06% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Ford E-Series Wagon Van 2012 1.56% Mercedes-Benz Sprinter Van 2012 1.37% Dodge Caravan Minivan 1997 1.33% Lincoln Town Car Sedan 2011 1.33% Ram C/V Cargo Van Minivan 2012 1.21% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Ford Expedition EL SUV 2009 1.25% Plymouth Neon Coupe 1999 1.22% Daewoo Nubira Wagon 2002 1.21% Chevrolet TrailBlazer SS 2009 1.2% Chevrolet Sonic Sedan 2012 1.17% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.31% Mercedes-Benz Sprinter Van 2012 1.22% Lincoln Town Car Sedan 2011 1.12% Bugatti Veyron 16.4 Convertible 2009 1.11% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.72% Nissan Leaf Hatchback 2012 1.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.42% Bentley Continental Supersports Conv. Convertible 2012 1.29% MINI Cooper Roadster Convertible 2012 1.28% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 1.28% Dodge Ram Pickup 3500 Crew Cab 2010 1.26% Jeep Liberty SUV 2012 1.11% Plymouth Neon Coupe 1999 1.06% Dodge Charger SRT-8 2009 1.05% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.86% Chevrolet Silverado 2500HD Regular Cab 2012 1.85% Chevrolet Silverado 1500 Regular Cab 2012 1.65% Chrysler 300 SRT-8 2010 1.36% Dodge Ram Pickup 3500 Quad Cab 2009 1.3% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.91% Ram C/V Cargo Van Minivan 2012 1.69% Mercedes-Benz S-Class Sedan 2012 1.58% FIAT 500 Convertible 2012 1.57% Bugatti Veyron 16.4 Convertible 2009 1.49% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Land Rover Range Rover SUV 2012 1.26% BMW X5 SUV 2007 1.25% Bentley Arnage Sedan 2009 1.22% Chrysler Aspen SUV 2009 1.21% Hyundai Genesis Sedan 2012 1.18% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 Chevrolet Silverado 1500 Regular Cab 2012 1.68% Cadillac Escalade EXT Crew Cab 2007 1.47% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.47% Chrysler 300 SRT-8 2010 1.42% Chevrolet TrailBlazer SS 2009 1.25% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 0.87% Jeep Grand Cherokee SUV 2012 0.86% BMW X5 SUV 2007 0.85% Honda Odyssey Minivan 2007 0.85% Hyundai Santa Fe SUV 2012 0.83% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 1.71% Dodge Sprinter Cargo Van 2009 1.56% Ford F-150 Regular Cab 2012 1.41% Chevrolet Express Cargo Van 2007 1.36% Chevrolet Silverado 2500HD Regular Cab 2012 1.31% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 2500HD Regular Cab 2012 1.19% GMC Savana Van 2012 1.1% Isuzu Ascender SUV 2008 1.03% Audi A5 Coupe 2012 0.99% Chevrolet Silverado 1500 Extended Cab 2012 0.98% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Ram C/V Cargo Van Minivan 2012 1.4% GMC Savana Van 2012 1.09% Dodge Sprinter Cargo Van 2009 1.07% Lincoln Town Car Sedan 2011 1.0% Acura TSX Sedan 2012 0.98% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.11% Ford F-150 Regular Cab 2012 1.45% Chevrolet Avalanche Crew Cab 2012 1.43% BMW X5 SUV 2007 1.37% Dodge Sprinter Cargo Van 2009 1.27% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Jeep Patriot SUV 2012 1.26% FIAT 500 Abarth 2012 1.19% Bentley Arnage Sedan 2009 1.08% Bugatti Veyron 16.4 Coupe 2009 1.05% Land Rover Range Rover SUV 2012 1.02% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Buick Rainier SUV 2007 0.93% Mercedes-Benz S-Class Sedan 2012 0.92% GMC Savana Van 2012 0.9% Suzuki Aerio Sedan 2007 0.88% Chevrolet Impala Sedan 2007 0.87% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.11% Chevrolet Silverado 1500 Regular Cab 2012 2.06% Chevrolet Silverado 1500 Extended Cab 2012 1.7% Chrysler 300 SRT-8 2010 1.52% Chevrolet Silverado 2500HD Regular Cab 2012 1.46% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Ferrari FF Coupe 2012 3.18% BMW 1 Series Coupe 2012 2.22% BMW M3 Coupe 2012 1.3% Dodge Caliber Wagon 2007 1.27% GMC Savana Van 2012 1.27% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 BMW X5 SUV 2007 1.26% GMC Savana Van 2012 1.2% Ford E-Series Wagon Van 2012 1.14% Hyundai Tucson SUV 2012 1.11% Jeep Compass SUV 2012 1.06% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Ram C/V Cargo Van Minivan 2012 2.55% BMW 1 Series Convertible 2012 1.69% FIAT 500 Convertible 2012 1.54% GMC Savana Van 2012 1.53% Dodge Sprinter Cargo Van 2009 1.51% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Land Rover Range Rover SUV 2012 1.11% Jeep Patriot SUV 2012 1.07% Bentley Arnage Sedan 2009 1.07% Hyundai Genesis Sedan 2012 1.05% Cadillac Escalade EXT Crew Cab 2007 1.01% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 FIAT 500 Abarth 2012 1.65% Spyker C8 Convertible 2009 1.65% Hyundai Azera Sedan 2012 1.62% Bentley Arnage Sedan 2009 1.54% Bentley Mulsanne Sedan 2011 1.29% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Bentley Arnage Sedan 2009 2.15% Land Rover Range Rover SUV 2012 1.94% GMC Yukon Hybrid SUV 2012 1.56% Cadillac Escalade EXT Crew Cab 2007 1.45% FIAT 500 Abarth 2012 1.42% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Bentley Arnage Sedan 2009 2.1% Land Rover Range Rover SUV 2012 1.84% Chrysler 300 SRT-8 2010 1.35% Hyundai Genesis Sedan 2012 1.32% Cadillac Escalade EXT Crew Cab 2007 1.28% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Hyundai Azera Sedan 2012 1.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% Bugatti Veyron 16.4 Coupe 2009 1.25% MINI Cooper Roadster Convertible 2012 1.18% Hyundai Genesis Sedan 2012 1.15% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 1.37% Mercedes-Benz Sprinter Van 2012 1.29% Ford E-Series Wagon Van 2012 1.08% BMW X5 SUV 2007 1.07% Dodge Caravan Minivan 1997 1.01% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 1.12% Chevrolet Silverado 1500 Regular Cab 2012 1.07% Chevrolet Corvette ZR1 2012 0.97% Chrysler 300 SRT-8 2010 0.96% Volkswagen Golf Hatchback 1991 0.93% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 2.02% Chevrolet Express Cargo Van 2007 1.63% Dodge Sprinter Cargo Van 2009 1.54% Ford F-150 Regular Cab 2012 1.36% Mercedes-Benz Sprinter Van 2012 1.32% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Chrysler 300 SRT-8 2010 1.15% Cadillac Escalade EXT Crew Cab 2007 1.04% Jeep Grand Cherokee SUV 2012 0.94% Dodge Durango SUV 2012 0.92% Hyundai Genesis Sedan 2012 0.91% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Ferrari 458 Italia Coupe 2012 4.76% McLaren MP4-12C Coupe 2012 4.33% Lamborghini Diablo Coupe 2001 3.82% Ferrari 458 Italia Convertible 2012 3.43% Chevrolet Corvette Convertible 2012 3.38% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.88% Chevrolet Silverado 1500 Regular Cab 2012 1.62% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.61% GMC Savana Van 2012 1.33% Dodge Ram Pickup 3500 Quad Cab 2009 1.3% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 1.0% Audi S6 Sedan 2011 0.98% Chrysler 300 SRT-8 2010 0.97% BMW M6 Convertible 2010 0.95% Rolls-Royce Phantom Sedan 2012 0.95% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet TrailBlazer SS 2009 4.08% Chrysler 300 SRT-8 2010 2.17% Cadillac Escalade EXT Crew Cab 2007 1.82% Bentley Arnage Sedan 2009 1.71% Ford Expedition EL SUV 2009 1.64% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 1.51% GMC Savana Van 2012 1.15% Mercedes-Benz Sprinter Van 2012 1.13% Dodge Caravan Minivan 1997 1.01% Isuzu Ascender SUV 2008 1.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Lamborghini Diablo Coupe 2001 2.67% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.38% Volvo C30 Hatchback 2012 2.11% Lamborghini Aventador Coupe 2012 2.08% Ford GT Coupe 2006 1.93% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Bentley Arnage Sedan 2009 4.22% FIAT 500 Abarth 2012 2.39% HUMMER H2 SUT Crew Cab 2009 1.89% Chrysler 300 SRT-8 2010 1.81% Chevrolet TrailBlazer SS 2009 1.66% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Hyundai Azera Sedan 2012 1.89% Bentley Arnage Sedan 2009 1.64% Hyundai Genesis Sedan 2012 1.54% Bentley Mulsanne Sedan 2011 1.33% FIAT 500 Abarth 2012 1.26% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 FIAT 500 Convertible 2012 2.06% Daewoo Nubira Wagon 2002 1.29% Maybach Landaulet Convertible 2012 1.2% BMW M3 Coupe 2012 1.19% Ram C/V Cargo Van Minivan 2012 1.17% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Dodge Sprinter Cargo Van 2009 2.0% GMC Savana Van 2012 1.56% Mercedes-Benz Sprinter Van 2012 1.48% Ram C/V Cargo Van Minivan 2012 1.45% Lincoln Town Car Sedan 2011 1.3% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 2.35% Chevrolet Express Cargo Van 2007 1.69% Ford F-150 Regular Cab 2012 1.38% Buick Rainier SUV 2007 1.33% Honda Accord Sedan 2012 1.22% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.77% BMW 1 Series Convertible 2012 1.58% Lincoln Town Car Sedan 2011 1.45% FIAT 500 Convertible 2012 1.35% BMW ActiveHybrid 5 Sedan 2012 1.33% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 HUMMER H2 SUT Crew Cab 2009 3.28% Bentley Arnage Sedan 2009 2.57% FIAT 500 Abarth 2012 2.52% AM General Hummer SUV 2000 1.58% Bugatti Veyron 16.4 Coupe 2009 1.39% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Regular Cab 2012 1.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.82% Chevrolet TrailBlazer SS 2009 1.64% Chevrolet Silverado 2500HD Regular Cab 2012 1.59% GMC Canyon Extended Cab 2012 1.42% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Hyundai Genesis Sedan 2012 1.02% Mercedes-Benz 300-Class Convertible 1993 0.97% Bentley Arnage Sedan 2009 0.93% Spyker C8 Convertible 2009 0.93% Ford GT Coupe 2006 0.89% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.44% Chrysler 300 SRT-8 2010 1.35% Chevrolet TrailBlazer SS 2009 1.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% GMC Savana Van 2012 1.24% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.75% Dodge Sprinter Cargo Van 2009 1.82% BMW 1 Series Convertible 2012 1.7% FIAT 500 Convertible 2012 1.59% Bugatti Veyron 16.4 Convertible 2009 1.55% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Bentley Arnage Sedan 2009 1.22% BMW M6 Convertible 2010 1.04% Chrysler 300 SRT-8 2010 0.94% Chevrolet TrailBlazer SS 2009 0.93% Rolls-Royce Phantom Sedan 2012 0.9% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 MINI Cooper Roadster Convertible 2012 1.21% Bugatti Veyron 16.4 Coupe 2009 1.03% Fisker Karma Sedan 2012 1.03% Mercedes-Benz S-Class Sedan 2012 0.99% Hyundai Genesis Sedan 2012 0.95% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Ram C/V Cargo Van Minivan 2012 1.38% Dodge Sprinter Cargo Van 2009 1.2% Volkswagen Golf Hatchback 2012 1.18% Mercedes-Benz Sprinter Van 2012 1.17% Nissan Leaf Hatchback 2012 1.12% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Lamborghini Diablo Coupe 2001 3.04% AM General Hummer SUV 2000 2.95% Lamborghini Aventador Coupe 2012 2.43% McLaren MP4-12C Coupe 2012 2.42% Aston Martin Virage Coupe 2012 2.3% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.33% Chevrolet Express Cargo Van 2007 1.32% GMC Savana Van 2012 1.18% Buick Rainier SUV 2007 1.09% BMW X5 SUV 2007 1.04% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Ram C/V Cargo Van Minivan 2012 3.0% FIAT 500 Convertible 2012 2.26% Bugatti Veyron 16.4 Convertible 2009 1.3% Daewoo Nubira Wagon 2002 1.27% Lincoln Town Car Sedan 2011 1.27% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.21% HUMMER H2 SUT Crew Cab 2009 1.11% AM General Hummer SUV 2000 1.11% Spyker C8 Convertible 2009 1.04% FIAT 500 Abarth 2012 1.0% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler 300 SRT-8 2010 1.72% Cadillac Escalade EXT Crew Cab 2007 1.49% HUMMER H2 SUT Crew Cab 2009 1.46% Land Rover Range Rover SUV 2012 1.41% Bentley Arnage Sedan 2009 1.3% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 BMW X5 SUV 2007 1.5% GMC Savana Van 2012 1.43% Ford F-150 Regular Cab 2012 1.36% Ford E-Series Wagon Van 2012 1.3% Hyundai Santa Fe SUV 2012 1.3% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.79% GMC Savana Van 2012 1.78% Chevrolet Silverado 1500 Regular Cab 2012 1.75% Chrysler 300 SRT-8 2010 1.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Fisker Karma Sedan 2012 1.6% HUMMER H2 SUT Crew Cab 2009 1.47% Mercedes-Benz E-Class Sedan 2012 1.43% Bugatti Veyron 16.4 Coupe 2009 1.24% Audi S5 Convertible 2012 1.16% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 FIAT 500 Convertible 2012 2.77% Mercedes-Benz S-Class Sedan 2012 2.03% Bugatti Veyron 16.4 Convertible 2009 1.93% Ram C/V Cargo Van Minivan 2012 1.85% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.84% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.98% GMC Savana Van 2012 1.87% Cadillac Escalade EXT Crew Cab 2007 1.63% Chevrolet TrailBlazer SS 2009 1.56% Jeep Liberty SUV 2012 1.46% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.18% MINI Cooper Roadster Convertible 2012 1.81% Mercedes-Benz S-Class Sedan 2012 1.69% Nissan Leaf Hatchback 2012 1.38% Chrysler PT Cruiser Convertible 2008 1.33% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Bentley Arnage Sedan 2009 1.92% FIAT 500 Abarth 2012 1.89% Jeep Patriot SUV 2012 1.62% Land Rover Range Rover SUV 2012 1.46% Cadillac Escalade EXT Crew Cab 2007 1.26% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 1.74% Ram C/V Cargo Van Minivan 2012 1.64% Dodge Sprinter Cargo Van 2009 1.46% BMW 1 Series Convertible 2012 1.26% Mercedes-Benz Sprinter Van 2012 1.14% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 2.16% Chevrolet Express Cargo Van 2007 1.58% Buick Rainier SUV 2007 1.23% Ford F-150 Regular Cab 2012 1.18% Chevrolet Express Van 2007 1.13% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.17% GMC Savana Van 2012 1.8% Dodge Sprinter Cargo Van 2009 1.63% BMW 1 Series Convertible 2012 1.38% Mercedes-Benz Sprinter Van 2012 1.24% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Lamborghini Diablo Coupe 2001 3.09% Acura Integra Type R 2001 3.08% McLaren MP4-12C Coupe 2012 2.82% Aston Martin Virage Coupe 2012 2.79% Ferrari California Convertible 2012 2.75% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.35% Mercedes-Benz E-Class Sedan 2012 1.34% Bugatti Veyron 16.4 Coupe 2009 1.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.18% Mercedes-Benz 300-Class Convertible 1993 1.16% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 1.44% Chevrolet Silverado 1500 Extended Cab 2012 1.23% Dodge Ram Pickup 3500 Quad Cab 2009 1.06% Chevrolet Silverado 1500 Regular Cab 2012 1.06% Honda Accord Coupe 2012 1.04% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 2.84% Chevrolet TrailBlazer SS 2009 2.71% Chrysler 300 SRT-8 2010 2.09% Land Rover Range Rover SUV 2012 1.95% Bentley Arnage Sedan 2009 1.91% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Lamborghini Diablo Coupe 2001 2.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.13% Audi TT RS Coupe 2012 2.03% Spyker C8 Convertible 2009 1.96% Lamborghini Aventador Coupe 2012 1.77% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Dodge Caliber Wagon 2007 2.29% GMC Canyon Extended Cab 2012 2.13% Ferrari FF Coupe 2012 1.83% Honda Accord Coupe 2012 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.53% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Cobalt SS 2010 2.86% Chevrolet Corvette Convertible 2012 2.8% Aston Martin Virage Coupe 2012 2.65% Ferrari 458 Italia Convertible 2012 2.37% Lamborghini Aventador Coupe 2012 2.23% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.03% MINI Cooper Roadster Convertible 2012 1.96% Mercedes-Benz S-Class Sedan 2012 1.51% Hyundai Azera Sedan 2012 1.29% Nissan Leaf Hatchback 2012 1.2% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Lamborghini Diablo Coupe 2001 4.24% Spyker C8 Convertible 2009 1.78% BMW M3 Coupe 2012 1.72% Volvo C30 Hatchback 2012 1.66% McLaren MP4-12C Coupe 2012 1.57% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 BMW X5 SUV 2007 1.39% Ford E-Series Wagon Van 2012 1.33% GMC Savana Van 2012 1.18% Dodge Caravan Minivan 1997 1.12% Hyundai Tucson SUV 2012 1.09% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 AM General Hummer SUV 2000 7.27% HUMMER H2 SUT Crew Cab 2009 5.22% HUMMER H3T Crew Cab 2010 3.24% Jeep Wrangler SUV 2012 2.68% Aston Martin Virage Coupe 2012 2.32% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Rolls-Royce Phantom Sedan 2012 1.47% Nissan Leaf Hatchback 2012 1.44% Daewoo Nubira Wagon 2002 1.35% Dodge Caravan Minivan 1997 1.25% Ford Freestar Minivan 2007 1.13% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Chevrolet Silverado 2500HD Regular Cab 2012 1.48% GMC Savana Van 2012 1.25% Dodge Ram Pickup 3500 Quad Cab 2009 1.14% Chevrolet Silverado 1500 Regular Cab 2012 1.12% Chevrolet Silverado 1500 Extended Cab 2012 1.09% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.95% FIAT 500 Convertible 2012 2.79% BMW 1 Series Convertible 2012 1.96% Ferrari FF Coupe 2012 1.52% Dodge Sprinter Cargo Van 2009 1.45% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 MINI Cooper Roadster Convertible 2012 1.68% Mercedes-Benz S-Class Sedan 2012 1.52% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.28% Mercedes-Benz Sprinter Van 2012 1.22% BMW X3 SUV 2012 1.02% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Cadillac Escalade EXT Crew Cab 2007 2.62% Chevrolet TrailBlazer SS 2009 2.26% Chrysler 300 SRT-8 2010 2.2% Bentley Arnage Sedan 2009 1.61% Dodge Durango SUV 2007 1.41% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 2.05% BMW 1 Series Coupe 2012 1.49% GMC Savana Van 2012 1.29% Dodge Sprinter Cargo Van 2009 1.09% BMW 1 Series Convertible 2012 0.97% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 1.66% Hyundai Genesis Sedan 2012 1.31% Chrysler 300 SRT-8 2010 1.1% Rolls-Royce Phantom Sedan 2012 1.08% Audi S6 Sedan 2011 1.03% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.64% MINI Cooper Roadster Convertible 2012 2.06% Nissan Leaf Hatchback 2012 1.66% Hyundai Azera Sedan 2012 1.64% Bentley Continental Supersports Conv. Convertible 2012 1.36% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Ferrari FF Coupe 2012 5.44% BMW 1 Series Coupe 2012 3.13% Ferrari California Convertible 2012 2.83% McLaren MP4-12C Coupe 2012 2.78% Dodge Caliber Wagon 2007 2.62% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Ram C/V Cargo Van Minivan 2012 2.27% Ferrari FF Coupe 2012 1.99% FIAT 500 Convertible 2012 1.84% BMW 1 Series Convertible 2012 1.71% GMC Savana Van 2012 1.39% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 BMW X5 SUV 2007 1.06% Jeep Compass SUV 2012 1.01% Chrysler Aspen SUV 2009 0.99% Land Rover Range Rover SUV 2012 0.99% Ford E-Series Wagon Van 2012 0.99% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 BMW X5 SUV 2007 1.18% Ford E-Series Wagon Van 2012 1.1% Hyundai Tucson SUV 2012 1.02% Jeep Grand Cherokee SUV 2012 0.98% GMC Savana Van 2012 0.94% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Chevrolet TrailBlazer SS 2009 1.56% Chrysler 300 SRT-8 2010 1.53% Chevrolet Silverado 2500HD Regular Cab 2012 1.36% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 1.36% BMW X5 SUV 2007 1.35% Ford F-150 Regular Cab 2012 1.32% Chevrolet Express Cargo Van 2007 1.22% Audi S6 Sedan 2011 1.08% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.87% Ford F-150 Regular Cab 2012 1.12% Jeep Grand Cherokee SUV 2012 1.1% BMW X5 SUV 2007 1.08% GMC Acadia SUV 2012 1.02% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Spyker C8 Convertible 2009 1.62% Mercedes-Benz E-Class Sedan 2012 1.59% Rolls-Royce Phantom Sedan 2012 1.54% Mercedes-Benz 300-Class Convertible 1993 1.44% Ford GT Coupe 2006 1.38% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Hyundai Azera Sedan 2012 1.15% Bentley Arnage Sedan 2009 1.11% Audi S6 Sedan 2011 1.1% Audi S5 Convertible 2012 1.01% Bugatti Veyron 16.4 Coupe 2009 1.0% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Bentley Arnage Sedan 2009 1.73% Chrysler 300 SRT-8 2010 1.57% Chevrolet TrailBlazer SS 2009 1.49% Cadillac Escalade EXT Crew Cab 2007 1.36% Land Rover Range Rover SUV 2012 1.26% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Hyundai Azera Sedan 2012 1.46% MINI Cooper Roadster Convertible 2012 1.4% Dodge Challenger SRT8 2011 1.27% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.2% Mercedes-Benz S-Class Sedan 2012 1.1% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 AM General Hummer SUV 2000 5.73% HUMMER H2 SUT Crew Cab 2009 4.6% McLaren MP4-12C Coupe 2012 3.94% Aston Martin Virage Coupe 2012 3.41% Chevrolet Corvette Convertible 2012 3.41% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.95% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.72% Cadillac Escalade EXT Crew Cab 2007 1.69% Chrysler 300 SRT-8 2010 1.64% Jeep Grand Cherokee SUV 2012 1.43% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.65% Lamborghini Diablo Coupe 2001 2.43% Spyker C8 Convertible 2009 2.1% Spyker C8 Coupe 2009 1.62% FIAT 500 Convertible 2012 1.51% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.98% Chrysler 300 SRT-8 2010 1.66% Dodge Durango SUV 2007 1.43% Chevrolet TrailBlazer SS 2009 1.42% GMC Savana Van 2012 1.32% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Hyundai Genesis Sedan 2012 1.32% Rolls-Royce Phantom Sedan 2012 1.28% Nissan Leaf Hatchback 2012 1.24% Audi S6 Sedan 2011 1.18% Ford E-Series Wagon Van 2012 1.11% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Ford E-Series Wagon Van 2012 1.09% Dodge Challenger SRT8 2011 1.05% Audi S6 Sedan 2011 0.98% BMW X5 SUV 2007 0.92% Jeep Compass SUV 2012 0.9% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 9.26% Ferrari California Convertible 2012 7.29% McLaren MP4-12C Coupe 2012 7.14% Ferrari 458 Italia Convertible 2012 5.79% Ferrari 458 Italia Coupe 2012 5.28% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Aston Martin Virage Coupe 2012 4.66% Chevrolet Corvette Convertible 2012 3.9% Ferrari California Convertible 2012 3.84% Lamborghini Aventador Coupe 2012 3.8% Ferrari 458 Italia Coupe 2012 3.71% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Hyundai Azera Sedan 2012 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% Rolls-Royce Phantom Sedan 2012 1.59% Bentley Continental Supersports Conv. Convertible 2012 1.53% Mercedes-Benz E-Class Sedan 2012 1.51% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.23% AM General Hummer SUV 2000 1.56% HUMMER H3T Crew Cab 2010 1.47% Dodge Caliber Wagon 2007 1.43% FIAT 500 Abarth 2012 1.34% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.71% MINI Cooper Roadster Convertible 2012 1.56% FIAT 500 Convertible 2012 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.27% Mercedes-Benz S-Class Sedan 2012 1.09% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 1.58% HUMMER H2 SUT Crew Cab 2009 1.54% AM General Hummer SUV 2000 1.49% Ford Mustang Convertible 2007 1.26% BMW 3 Series Sedan 2012 1.23% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Audi S6 Sedan 2011 1.22% Ford E-Series Wagon Van 2012 1.1% BMW X5 SUV 2007 1.1% Land Rover Range Rover SUV 2012 1.06% Dodge Challenger SRT8 2011 1.06% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Dodge Caliber Wagon 2007 3.84% Ferrari 458 Italia Coupe 2012 2.56% Aston Martin Virage Coupe 2012 2.39% BMW 1 Series Coupe 2012 2.3% McLaren MP4-12C Coupe 2012 2.24% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.51% Lincoln Town Car Sedan 2011 1.36% Audi A5 Coupe 2012 1.32% GMC Savana Van 2012 1.29% Acura TL Sedan 2012 1.23% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 3.63% Aston Martin Virage Coupe 2012 3.56% Lamborghini Aventador Coupe 2012 3.29% Ferrari California Convertible 2012 3.15% Ferrari 458 Italia Convertible 2012 3.08% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 FIAT 500 Convertible 2012 3.74% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.59% MINI Cooper Roadster Convertible 2012 2.21% Nissan Leaf Hatchback 2012 1.82% Ram C/V Cargo Van Minivan 2012 1.8% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.49% Ford F-150 Regular Cab 2012 1.26% Chevrolet Express Cargo Van 2007 1.24% BMW X5 SUV 2007 1.23% Ford E-Series Wagon Van 2012 1.17% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 HUMMER H2 SUT Crew Cab 2009 2.14% Chevrolet TrailBlazer SS 2009 1.97% AM General Hummer SUV 2000 1.84% HUMMER H3T Crew Cab 2010 1.56% FIAT 500 Abarth 2012 1.28% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.87% Chevrolet Silverado 1500 Regular Cab 2012 1.86% Chevrolet Silverado 2500HD Regular Cab 2012 1.78% Chrysler 300 SRT-8 2010 1.32% Dodge Ram Pickup 3500 Quad Cab 2009 1.28% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 MINI Cooper Roadster Convertible 2012 1.99% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.77% Nissan Leaf Hatchback 2012 1.63% Rolls-Royce Phantom Sedan 2012 1.51% FIAT 500 Convertible 2012 1.33% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 8.01% Aston Martin Virage Coupe 2012 5.02% Acura Integra Type R 2001 4.6% Ferrari California Convertible 2012 4.54% Lamborghini Aventador Coupe 2012 4.25% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 4.05% Audi TT RS Coupe 2012 3.75% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.54% Lamborghini Aventador Coupe 2012 3.35% Chevrolet Corvette Convertible 2012 2.93% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Rolls-Royce Phantom Sedan 2012 1.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.35% Maybach Landaulet Convertible 2012 1.28% Hyundai Genesis Sedan 2012 1.26% Nissan Leaf Hatchback 2012 1.23% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Lamborghini Diablo Coupe 2001 7.17% Acura Integra Type R 2001 3.27% Chevrolet Corvette Convertible 2012 2.84% Ferrari 458 Italia Convertible 2012 2.78% Aston Martin Virage Coupe 2012 2.75% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 4.35% McLaren MP4-12C Coupe 2012 3.38% Ferrari California Convertible 2012 3.38% Ferrari 458 Italia Convertible 2012 3.27% Aston Martin Virage Coupe 2012 3.24% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Bentley Arnage Sedan 2009 2.24% Hyundai Genesis Sedan 2012 1.66% Hyundai Azera Sedan 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.22% Rolls-Royce Phantom Sedan 2012 1.21% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.49% Jeep Grand Cherokee SUV 2012 1.39% Chevrolet Silverado 1500 Regular Cab 2012 1.37% Cadillac Escalade EXT Crew Cab 2007 1.36% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Ferrari 458 Italia Convertible 2012 4.39% Chevrolet Corvette Convertible 2012 4.11% Ferrari 458 Italia Coupe 2012 3.82% Ferrari California Convertible 2012 3.75% Aston Martin Virage Coupe 2012 3.74% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Chrysler 300 SRT-8 2010 1.77% Cadillac Escalade EXT Crew Cab 2007 1.36% Land Rover Range Rover SUV 2012 1.29% Chevrolet TrailBlazer SS 2009 1.28% Dodge Ram Pickup 3500 Crew Cab 2010 1.23% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 1.94% Chevrolet Silverado 2500HD Regular Cab 2012 1.37% Dodge Ram Pickup 3500 Quad Cab 2009 1.17% Chevrolet Silverado 1500 Extended Cab 2012 1.1% GMC Canyon Extended Cab 2012 1.09% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 4.76% AM General Hummer SUV 2000 4.31% HUMMER H2 SUT Crew Cab 2009 2.51% Lamborghini Aventador Coupe 2012 2.42% HUMMER H3T Crew Cab 2010 2.15% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.06% Bentley Arnage Sedan 2009 1.64% FIAT 500 Abarth 2012 1.59% Bugatti Veyron 16.4 Coupe 2009 1.38% Spyker C8 Convertible 2009 1.34% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.86% FIAT 500 Convertible 2012 2.03% BMW 1 Series Convertible 2012 1.83% Dodge Sprinter Cargo Van 2009 1.5% BMW ActiveHybrid 5 Sedan 2012 1.48% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Bentley Arnage Sedan 2009 1.94% Rolls-Royce Phantom Sedan 2012 1.65% Chevrolet TrailBlazer SS 2009 1.43% BMW M6 Convertible 2010 1.28% Chevrolet Sonic Sedan 2012 1.27% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 11.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.42% Mercedes-Benz E-Class Sedan 2012 2.86% Maybach Landaulet Convertible 2012 2.46% Bugatti Veyron 16.4 Convertible 2009 1.86% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Ford Expedition EL SUV 2009 1.56% Cadillac Escalade EXT Crew Cab 2007 1.54% Ford F-450 Super Duty Crew Cab 2012 1.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% Chevrolet Avalanche Crew Cab 2012 1.37% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 Ferrari 458 Italia Coupe 2012 2.93% Aston Martin Virage Coupe 2012 2.91% Lamborghini Aventador Coupe 2012 2.87% Chevrolet Corvette Convertible 2012 2.79% Ferrari California Convertible 2012 2.58% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Caliber Wagon 2007 2.83% Ferrari 458 Italia Coupe 2012 2.65% McLaren MP4-12C Coupe 2012 2.57% HUMMER H2 SUT Crew Cab 2009 2.47% Aston Martin Virage Coupe 2012 2.23% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.83% Bentley Arnage Sedan 2009 1.65% Chrysler 300 SRT-8 2010 1.38% Chevrolet TrailBlazer SS 2009 1.33% Ford Expedition EL SUV 2009 1.32% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 FIAT 500 Convertible 2012 2.62% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.41% MINI Cooper Roadster Convertible 2012 1.94% Mercedes-Benz S-Class Sedan 2012 1.92% Bugatti Veyron 16.4 Convertible 2009 1.74% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Ford E-Series Wagon Van 2012 1.74% Dodge Caravan Minivan 1997 1.63% Nissan Leaf Hatchback 2012 1.38% Mercedes-Benz Sprinter Van 2012 1.34% Audi 100 Sedan 1994 1.29% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 1.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.71% Ford Expedition EL SUV 2009 1.69% Chevrolet TrailBlazer SS 2009 1.64% Chevrolet Silverado 1500 Regular Cab 2012 1.63% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 FIAT 500 Convertible 2012 2.9% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.74% Maybach Landaulet Convertible 2012 2.25% Bentley Continental Supersports Conv. Convertible 2012 2.11% Nissan Leaf Hatchback 2012 1.7% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Ford E-Series Wagon Van 2012 1.18% Ford Expedition EL SUV 2009 1.12% Dodge Caravan Minivan 1997 1.07% Hyundai Genesis Sedan 2012 1.05% Daewoo Nubira Wagon 2002 0.93% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 1.62% HUMMER H2 SUT Crew Cab 2009 1.32% GMC Acadia SUV 2012 1.21% Chrysler 300 SRT-8 2010 1.13% GMC Yukon Hybrid SUV 2012 1.1% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Mercedes-Benz Sprinter Van 2012 1.01% Mercedes-Benz S-Class Sedan 2012 1.0% Lincoln Town Car Sedan 2011 0.91% Chrysler Sebring Convertible 2010 0.88% Acura TL Sedan 2012 0.85% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 HUMMER H2 SUT Crew Cab 2009 2.63% AM General Hummer SUV 2000 1.72% HUMMER H3T Crew Cab 2010 1.7% FIAT 500 Abarth 2012 1.48% Chevrolet TrailBlazer SS 2009 1.42% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Cadillac Escalade EXT Crew Cab 2007 2.66% Chevrolet TrailBlazer SS 2009 2.1% Chrysler 300 SRT-8 2010 1.79% Dodge Durango SUV 2007 1.53% Land Rover Range Rover SUV 2012 1.35% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chrysler 300 SRT-8 2010 1.47% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% Cadillac Escalade EXT Crew Cab 2007 1.22% Chevrolet Silverado 1500 Regular Cab 2012 1.21% Jeep Grand Cherokee SUV 2012 1.17% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 1.57% Dodge Sprinter Cargo Van 2009 1.2% Chevrolet Avalanche Crew Cab 2012 1.16% Audi A5 Coupe 2012 1.12% Chevrolet Express Cargo Van 2007 1.12% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 HUMMER H2 SUT Crew Cab 2009 2.51% AM General Hummer SUV 2000 1.5% HUMMER H3T Crew Cab 2010 1.29% Volkswagen Golf Hatchback 1991 1.24% Jeep Wrangler SUV 2012 1.12% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz Sprinter Van 2012 1.38% Audi S6 Sedan 2011 1.18% Ford E-Series Wagon Van 2012 1.13% Dodge Caravan Minivan 1997 1.07% Nissan Leaf Hatchback 2012 1.03% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Lamborghini Diablo Coupe 2001 2.18% Dodge Caliber Wagon 2007 1.59% Volvo C30 Hatchback 2012 1.57% Chevrolet HHR SS 2010 1.56% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.41% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 Ram C/V Cargo Van Minivan 2012 1.63% FIAT 500 Convertible 2012 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.37% Daewoo Nubira Wagon 2002 1.22% Nissan Leaf Hatchback 2012 1.22% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.68% Chevrolet TrailBlazer SS 2009 2.04% Chrysler 300 SRT-8 2010 1.95% Land Rover Range Rover SUV 2012 1.84% Dodge Durango SUV 2007 1.67% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.58% GMC Savana Van 2012 1.43% Chrysler 300 SRT-8 2010 1.39% Chevrolet Silverado 1500 Regular Cab 2012 1.31% Chevrolet TrailBlazer SS 2009 1.28% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Chevrolet TrailBlazer SS 2009 2.38% Cadillac Escalade EXT Crew Cab 2007 2.31% Chrysler 300 SRT-8 2010 1.66% Bentley Arnage Sedan 2009 1.54% Land Rover Range Rover SUV 2012 1.46% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Bentley Arnage Sedan 2009 2.58% FIAT 500 Abarth 2012 1.66% Land Rover Range Rover SUV 2012 1.63% Cadillac Escalade EXT Crew Cab 2007 1.44% GMC Yukon Hybrid SUV 2012 1.41% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Ferrari FF Coupe 2012 2.06% BMW 1 Series Coupe 2012 1.44% Dodge Sprinter Cargo Van 2009 1.2% GMC Savana Van 2012 1.16% BMW M3 Coupe 2012 1.07% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Bentley Arnage Sedan 2009 1.3% Bugatti Veyron 16.4 Coupe 2009 1.28% Land Rover Range Rover SUV 2012 1.17% Bentley Mulsanne Sedan 2011 1.17% Spyker C8 Convertible 2009 1.14% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 1.45% Chevrolet Silverado 1500 Regular Cab 2012 1.33% Chrysler 300 SRT-8 2010 1.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.27% GMC Acadia SUV 2012 1.23% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 5.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.93% Ram C/V Cargo Van Minivan 2012 2.66% Bugatti Veyron 16.4 Convertible 2009 2.06% Maybach Landaulet Convertible 2012 1.91% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 5.15% McLaren MP4-12C Coupe 2012 4.31% Audi TT RS Coupe 2012 4.03% Ferrari 458 Italia Coupe 2012 2.83% Chevrolet HHR SS 2010 2.81% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz E-Class Sedan 2012 1.37% Spyker C8 Convertible 2009 1.21% HUMMER H2 SUT Crew Cab 2009 1.2% Mercedes-Benz 300-Class Convertible 1993 1.15% AM General Hummer SUV 2000 1.09% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 4.0% Mercedes-Benz E-Class Sedan 2012 1.64% Bugatti Veyron 16.4 Convertible 2009 1.58% Acura Integra Type R 2001 1.41% Ram C/V Cargo Van Minivan 2012 1.37% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.47% FIAT 500 Convertible 2012 2.17% BMW 1 Series Convertible 2012 1.85% Dodge Sprinter Cargo Van 2009 1.59% Bugatti Veyron 16.4 Convertible 2009 1.49% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 1.61% Chrysler 300 SRT-8 2010 1.17% Land Rover Range Rover SUV 2012 1.12% Chevrolet Avalanche Crew Cab 2012 1.06% Jeep Grand Cherokee SUV 2012 1.06% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Ram C/V Cargo Van Minivan 2012 2.18% Mercedes-Benz Sprinter Van 2012 1.68% Dodge Sprinter Cargo Van 2009 1.57% GMC Savana Van 2012 1.47% Lincoln Town Car Sedan 2011 1.37% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 1.84% Chevrolet Silverado 1500 Regular Cab 2012 1.31% Chevrolet Silverado 2500HD Regular Cab 2012 1.31% Ford F-150 Regular Cab 2012 1.22% Buick Rainier SUV 2007 1.16% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.9% Lamborghini Diablo Coupe 2001 1.71% Volvo C30 Hatchback 2012 1.68% FIAT 500 Convertible 2012 1.6% Ford GT Coupe 2006 1.5% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 AM General Hummer SUV 2000 3.64% HUMMER H2 SUT Crew Cab 2009 3.56% HUMMER H3T Crew Cab 2010 2.7% Ferrari 458 Italia Coupe 2012 2.69% Aston Martin Virage Coupe 2012 2.59% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Chevrolet TrailBlazer SS 2009 2.83% Chevrolet Silverado 1500 Regular Cab 2012 1.61% Chrysler 300 SRT-8 2010 1.58% Cadillac Escalade EXT Crew Cab 2007 1.58% HUMMER H2 SUT Crew Cab 2009 1.57% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.96% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.96% Chevrolet Silverado 2500HD Regular Cab 2012 1.75% Chrysler 300 SRT-8 2010 1.43% Chevrolet TrailBlazer SS 2009 1.39% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Hyundai Genesis Sedan 2012 1.13% Chrysler 300 SRT-8 2010 1.12% Bentley Arnage Sedan 2009 1.1% Land Rover Range Rover SUV 2012 1.03% Ford Expedition EL SUV 2009 0.94% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ram C/V Cargo Van Minivan 2012 2.11% Nissan Leaf Hatchback 2012 1.89% Daewoo Nubira Wagon 2002 1.41% Dodge Caravan Minivan 1997 1.41% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Lamborghini Diablo Coupe 2001 20.19% Audi TT RS Coupe 2012 4.64% Chevrolet HHR SS 2010 4.21% Lamborghini Aventador Coupe 2012 4.06% Ferrari 458 Italia Convertible 2012 3.95% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.08% BMW 1 Series Convertible 2012 1.4% BMW ActiveHybrid 5 Sedan 2012 1.38% GMC Savana Van 2012 1.16% Ferrari FF Coupe 2012 1.14% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Dodge Ram Pickup 3500 Crew Cab 2010 1.53% Jeep Liberty SUV 2012 1.35% Cadillac Escalade EXT Crew Cab 2007 1.35% Land Rover Range Rover SUV 2012 1.29% Jeep Patriot SUV 2012 1.22% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Lamborghini Diablo Coupe 2001 8.58% Chevrolet HHR SS 2010 2.61% Ferrari 458 Italia Coupe 2012 2.4% Volvo C30 Hatchback 2012 2.34% McLaren MP4-12C Coupe 2012 2.31% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 FIAT 500 Convertible 2012 2.29% MINI Cooper Roadster Convertible 2012 2.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.03% Mercedes-Benz S-Class Sedan 2012 1.77% Bugatti Veyron 16.4 Convertible 2009 1.68% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Chevrolet TrailBlazer SS 2009 3.46% Cadillac Escalade EXT Crew Cab 2007 2.55% Bentley Arnage Sedan 2009 2.08% Chrysler 300 SRT-8 2010 2.07% BMW M6 Convertible 2010 1.66% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 Lamborghini Aventador Coupe 2012 3.0% AM General Hummer SUV 2000 2.81% Aston Martin Virage Coupe 2012 2.74% Audi TT RS Coupe 2012 2.64% McLaren MP4-12C Coupe 2012 2.49% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 1.67% Chrysler 300 SRT-8 2010 1.38% Dodge Durango SUV 2007 1.26% Jeep Grand Cherokee SUV 2012 1.19% Land Rover Range Rover SUV 2012 1.13% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 FIAT 500 Convertible 2012 6.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.56% Maybach Landaulet Convertible 2012 2.74% Bentley Continental Supersports Conv. Convertible 2012 1.89% Bugatti Veyron 16.4 Convertible 2009 1.82% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Chevrolet TrailBlazer SS 2009 2.16% Chevrolet Silverado 1500 Regular Cab 2012 1.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.85% Chrysler 300 SRT-8 2010 1.62% Cadillac Escalade EXT Crew Cab 2007 1.58% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.89% Fisker Karma Sedan 2012 1.43% MINI Cooper Roadster Convertible 2012 1.4% Audi S5 Convertible 2012 1.07% Chevrolet Corvette ZR1 2012 1.06% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Ford E-Series Wagon Van 2012 1.32% Dodge Challenger SRT8 2011 1.22% Hyundai Azera Sedan 2012 1.21% Hyundai Genesis Sedan 2012 1.17% Audi S6 Sedan 2011 1.17% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Jeep Patriot SUV 2012 1.36% Land Rover Range Rover SUV 2012 1.25% Hyundai Azera Sedan 2012 1.24% Bugatti Veyron 16.4 Coupe 2009 1.2% Jeep Compass SUV 2012 1.2% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 FIAT 500 Convertible 2012 1.96% Mercedes-Benz S-Class Sedan 2012 1.95% Bugatti Veyron 16.4 Convertible 2009 1.83% Ram C/V Cargo Van Minivan 2012 1.76% MINI Cooper Roadster Convertible 2012 1.59% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Dodge Caliber Wagon 2007 1.56% Ferrari FF Coupe 2012 1.48% GMC Savana Van 2012 1.41% BMW 1 Series Coupe 2012 1.35% BMW 3 Series Sedan 2012 0.96% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 AM General Hummer SUV 2000 3.78% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.48% Aston Martin Virage Coupe 2012 2.05% Lamborghini Aventador Coupe 2012 1.78% Ford GT Coupe 2006 1.77% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.25% Dodge Ram Pickup 3500 Crew Cab 2010 1.15% Chrysler 300 SRT-8 2010 1.12% Cadillac Escalade EXT Crew Cab 2007 1.12% Ford Expedition EL SUV 2009 1.1% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 2.26% Chevrolet Silverado 1500 Regular Cab 2012 2.11% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.96% Chrysler 300 SRT-8 2010 1.85% Ford Expedition EL SUV 2009 1.64% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 1.25% Hyundai Tucson SUV 2012 1.21% BMW X5 SUV 2007 1.21% Jeep Compass SUV 2012 1.18% Dodge Challenger SRT8 2011 1.1% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 HUMMER H2 SUT Crew Cab 2009 2.83% AM General Hummer SUV 2000 2.41% Jeep Wrangler SUV 2012 1.57% HUMMER H3T Crew Cab 2010 1.34% Chevrolet Corvette ZR1 2012 1.31% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.9% FIAT 500 Convertible 2012 1.61% MINI Cooper Roadster Convertible 2012 1.58% Ram C/V Cargo Van Minivan 2012 1.5% Bugatti Veyron 16.4 Convertible 2009 1.42% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 HUMMER H2 SUT Crew Cab 2009 3.31% AM General Hummer SUV 2000 2.37% HUMMER H3T Crew Cab 2010 1.62% Bugatti Veyron 16.4 Coupe 2009 1.22% BMW X6 SUV 2012 1.21% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Ford E-Series Wagon Van 2012 1.23% Dodge Caravan Minivan 1997 1.19% BMW X5 SUV 2007 1.1% Hyundai Tucson SUV 2012 1.02% Chrysler Aspen SUV 2009 1.0% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 3.86% FIAT 500 Abarth 2012 3.74% HUMMER H2 SUT Crew Cab 2009 1.73% Bugatti Veyron 16.4 Coupe 2009 1.73% Spyker C8 Convertible 2009 1.72% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.93% Mercedes-Benz Sprinter Van 2012 0.83% Honda Odyssey Minivan 2007 0.81% Chevrolet Avalanche Crew Cab 2012 0.8% Dodge Caravan Minivan 1997 0.8% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.23% GMC Canyon Extended Cab 2012 0.92% Chevrolet Silverado 1500 Regular Cab 2012 0.84% Dodge Ram Pickup 3500 Quad Cab 2009 0.8% Chevrolet Silverado 1500 Extended Cab 2012 0.77% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Bentley Arnage Sedan 2009 1.27% GMC Savana Van 2012 1.23% Ford Edge SUV 2012 1.2% GMC Yukon Hybrid SUV 2012 1.17% FIAT 500 Abarth 2012 1.15% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Lamborghini Aventador Coupe 2012 2.45% Aston Martin Virage Coupe 2012 2.3% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.3% Lamborghini Diablo Coupe 2001 2.26% Audi TT RS Coupe 2012 2.21% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 FIAT 500 Convertible 2012 2.78% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.92% Maybach Landaulet Convertible 2012 1.8% Rolls-Royce Phantom Sedan 2012 1.74% Daewoo Nubira Wagon 2002 1.73% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 BMW X5 SUV 2007 1.64% GMC Savana Van 2012 1.45% Audi S6 Sedan 2011 1.34% Hyundai Santa Fe SUV 2012 1.22% GMC Acadia SUV 2012 1.16% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Mercedes-Benz Sprinter Van 2012 1.41% Nissan Leaf Hatchback 2012 1.35% Mercedes-Benz S-Class Sedan 2012 1.29% Dodge Caravan Minivan 1997 1.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.28% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Ford Expedition EL SUV 2009 1.55% Chevrolet TrailBlazer SS 2009 1.54% Dodge Ram Pickup 3500 Crew Cab 2010 1.41% Cadillac Escalade EXT Crew Cab 2007 1.32% Chrysler 300 SRT-8 2010 1.23% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Aston Martin Virage Coupe 2012 3.53% AM General Hummer SUV 2000 3.09% Ferrari California Convertible 2012 2.99% HUMMER H2 SUT Crew Cab 2009 2.75% McLaren MP4-12C Coupe 2012 2.74% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 FIAT 500 Convertible 2012 5.94% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.52% Mercedes-Benz S-Class Sedan 2012 2.42% MINI Cooper Roadster Convertible 2012 2.39% Bugatti Veyron 16.4 Convertible 2009 2.23% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.27% Chevrolet Silverado 2500HD Regular Cab 2012 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.11% Chevrolet Silverado 1500 Extended Cab 2012 1.09% Dodge Ram Pickup 3500 Quad Cab 2009 1.07% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 2.23% Audi TT RS Coupe 2012 2.02% Volvo C30 Hatchback 2012 1.91% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.78% Acura Integra Type R 2001 1.76% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.76% Chevrolet Silverado 2500HD Regular Cab 2012 1.46% GMC Savana Van 2012 1.46% Chevrolet Silverado 1500 Extended Cab 2012 1.44% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Ferrari California Convertible 2012 7.17% McLaren MP4-12C Coupe 2012 6.88% Chevrolet Corvette Convertible 2012 6.26% Ferrari 458 Italia Convertible 2012 6.05% Aston Martin Virage Coupe 2012 4.73% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 FIAT 500 Abarth 2012 2.31% Bentley Arnage Sedan 2009 1.58% Bugatti Veyron 16.4 Coupe 2009 1.48% Spyker C8 Convertible 2009 1.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.23% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.58% MINI Cooper Roadster Convertible 2012 1.55% Mercedes-Benz S-Class Sedan 2012 1.52% Bugatti Veyron 16.4 Convertible 2009 1.38% Nissan Leaf Hatchback 2012 1.32% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Dodge Caliber Wagon 2007 2.07% HUMMER H2 SUT Crew Cab 2009 1.89% AM General Hummer SUV 2000 1.78% HUMMER H3T Crew Cab 2010 1.66% McLaren MP4-12C Coupe 2012 1.59% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 FIAT 500 Convertible 2012 2.76% Maybach Landaulet Convertible 2012 2.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.9% Bentley Continental Supersports Conv. Convertible 2012 1.41% Mercedes-Benz S-Class Sedan 2012 1.34% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 3.81% Lamborghini Diablo Coupe 2001 3.78% Lamborghini Aventador Coupe 2012 2.89% Audi TT RS Coupe 2012 2.77% Chevrolet Cobalt SS 2010 2.45% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Dodge Caliber Wagon 2007 2.39% Ferrari FF Coupe 2012 2.38% BMW 1 Series Coupe 2012 1.91% Honda Accord Coupe 2012 1.5% GMC Savana Van 2012 1.34% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Lamborghini Diablo Coupe 2001 2.58% AM General Hummer SUV 2000 2.57% Lamborghini Aventador Coupe 2012 2.38% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.1% Ferrari 458 Italia Coupe 2012 1.93% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 1.48% Bentley Mulsanne Sedan 2011 1.33% Spyker C8 Convertible 2009 1.29% Mitsubishi Lancer Sedan 2012 1.25% Hyundai Veloster Hatchback 2012 1.08% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Dodge Caravan Minivan 1997 1.57% Nissan Leaf Hatchback 2012 1.43% Mercedes-Benz Sprinter Van 2012 1.4% Acura TL Sedan 2012 1.32% Honda Odyssey Minivan 2007 1.27% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.25% Nissan Leaf Hatchback 2012 2.34% Maybach Landaulet Convertible 2012 1.81% FIAT 500 Convertible 2012 1.78% Bentley Continental Supersports Conv. Convertible 2012 1.73% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 1.16% GMC Acadia SUV 2012 1.11% BMW X5 SUV 2007 1.09% Buick Rainier SUV 2007 1.04% Audi S6 Sedan 2011 0.98% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Ford E-Series Wagon Van 2012 1.31% Audi S6 Sedan 2011 1.31% Chrysler Aspen SUV 2009 0.97% Dodge Challenger SRT8 2011 0.96% Hyundai Genesis Sedan 2012 0.9% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.85% Chevrolet Silverado 1500 Regular Cab 2012 1.64% Ford Expedition EL SUV 2009 1.47% GMC Savana Van 2012 1.39% Chevrolet TrailBlazer SS 2009 1.35% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.18% BMW 1 Series Convertible 2012 1.72% Dodge Sprinter Cargo Van 2009 1.62% FIAT 500 Convertible 2012 1.6% GMC Savana Van 2012 1.34% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 HUMMER H2 SUT Crew Cab 2009 1.92% Chevrolet TrailBlazer SS 2009 1.86% Dodge Caliber Wagon 2007 1.78% HUMMER H3T Crew Cab 2010 1.71% Volkswagen Golf Hatchback 1991 1.47% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 1.93% Audi S6 Sedan 2011 1.41% Dodge Sprinter Cargo Van 2009 1.3% Ford F-150 Regular Cab 2012 1.23% BMW X5 SUV 2007 1.22% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 BMW X5 SUV 2007 1.04% GMC Savana Van 2012 1.01% Hyundai Tucson SUV 2012 0.92% Ford F-150 Regular Cab 2012 0.91% Jeep Grand Cherokee SUV 2012 0.88% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 FIAT 500 Convertible 2012 3.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.67% Bugatti Veyron 16.4 Convertible 2009 2.19% Mercedes-Benz S-Class Sedan 2012 2.0% MINI Cooper Roadster Convertible 2012 1.89% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 3.41% FIAT 500 Abarth 2012 3.14% Chevrolet TrailBlazer SS 2009 2.28% Cadillac Escalade EXT Crew Cab 2007 1.59% Land Rover Range Rover SUV 2012 1.55% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 14.29% McLaren MP4-12C Coupe 2012 3.79% Chevrolet HHR SS 2010 3.6% Ferrari California Convertible 2012 3.36% Ferrari 458 Italia Convertible 2012 3.07% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 FIAT 500 Convertible 2012 1.29% BMW 1 Series Convertible 2012 1.11% BMW 1 Series Coupe 2012 1.09% GMC Savana Van 2012 1.07% Ferrari FF Coupe 2012 1.06% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 FIAT 500 Convertible 2012 4.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.72% Spyker C8 Coupe 2009 1.68% Maybach Landaulet Convertible 2012 1.5% Hyundai Elantra Sedan 2007 1.39% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Aston Martin Virage Coupe 2012 4.6% Chevrolet Corvette Convertible 2012 4.11% Ferrari 458 Italia Coupe 2012 3.96% McLaren MP4-12C Coupe 2012 3.75% Ferrari California Convertible 2012 3.53% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.53% Volvo C30 Hatchback 2012 1.48% Ford GT Coupe 2006 1.42% Geo Metro Convertible 1993 1.38% Hyundai Elantra Sedan 2007 1.37% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Nissan Leaf Hatchback 2012 1.32% Ram C/V Cargo Van Minivan 2012 1.18% Dodge Caravan Minivan 1997 1.17% Honda Odyssey Minivan 2007 1.14% Ford Freestar Minivan 2007 1.05% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Fisker Karma Sedan 2012 1.75% Mercedes-Benz E-Class Sedan 2012 1.66% Mercedes-Benz S-Class Sedan 2012 1.55% MINI Cooper Roadster Convertible 2012 1.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.34% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Mercedes-Benz E-Class Sedan 2012 1.36% Fisker Karma Sedan 2012 1.25% Bugatti Veyron 16.4 Coupe 2009 1.2% HUMMER H2 SUT Crew Cab 2009 1.16% Acura TL Type-S 2008 1.13% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 3.38% Aston Martin Virage Coupe 2012 3.08% Ferrari California Convertible 2012 2.95% Chevrolet Cobalt SS 2010 2.78% Chevrolet Corvette Convertible 2012 2.71% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 GMC Savana Van 2012 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.61% Chevrolet Silverado 2500HD Regular Cab 2012 1.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.21% Dodge Ram Pickup 3500 Quad Cab 2009 1.13% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Jeep Compass SUV 2012 1.27% Land Rover Range Rover SUV 2012 1.25% Hyundai Azera Sedan 2012 1.23% Dodge Challenger SRT8 2011 1.21% Bentley Arnage Sedan 2009 1.09% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 MINI Cooper Roadster Convertible 2012 1.57% Bugatti Veyron 16.4 Coupe 2009 1.36% Fisker Karma Sedan 2012 1.35% Mercedes-Benz E-Class Sedan 2012 1.26% Mercedes-Benz S-Class Sedan 2012 1.24% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 2.16% Jeep Grand Cherokee SUV 2012 1.51% Cadillac Escalade EXT Crew Cab 2007 1.44% BMW X5 SUV 2007 1.41% GMC Terrain SUV 2012 1.37% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 1.4% BMW X5 SUV 2007 1.18% Ford F-150 Regular Cab 2012 1.17% Jeep Grand Cherokee SUV 2012 1.11% Chevrolet Silverado 2500HD Regular Cab 2012 1.09% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Bentley Arnage Sedan 2009 1.85% Hyundai Azera Sedan 2012 1.58% Bugatti Veyron 16.4 Coupe 2009 1.37% Bentley Mulsanne Sedan 2011 1.32% Hyundai Genesis Sedan 2012 1.29% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 FIAT 500 Abarth 2012 2.17% Bentley Arnage Sedan 2009 1.91% Jeep Patriot SUV 2012 1.25% Lamborghini Reventon Coupe 2008 1.24% Bugatti Veyron 16.4 Coupe 2009 1.13% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.74% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.66% Chevrolet Silverado 2500HD Regular Cab 2012 1.57% GMC Savana Van 2012 1.52% Chevrolet Silverado 1500 Extended Cab 2012 1.3% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Lamborghini Diablo Coupe 2001 3.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.48% Audi TT RS Coupe 2012 2.42% Lamborghini Aventador Coupe 2012 2.16% Chevrolet HHR SS 2010 2.15% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bentley Mulsanne Sedan 2011 0.96% Mercedes-Benz S-Class Sedan 2012 0.95% Hyundai Genesis Sedan 2012 0.93% MINI Cooper Roadster Convertible 2012 0.85% Bentley Continental GT Coupe 2007 0.84% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Dodge Caliber Wagon 2007 4.27% Ferrari 458 Italia Coupe 2012 2.51% BMW 1 Series Coupe 2012 2.29% BMW 3 Series Sedan 2012 2.28% Aston Martin Virage Coupe 2012 1.91% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Ferrari FF Coupe 2012 2.9% BMW M3 Coupe 2012 2.11% BMW 1 Series Coupe 2012 2.09% McLaren MP4-12C Coupe 2012 1.86% Ferrari California Convertible 2012 1.57% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% Nissan Leaf Hatchback 2012 1.62% Ram C/V Cargo Van Minivan 2012 1.45% Mercedes-Benz S-Class Sedan 2012 1.45% Chrysler PT Cruiser Convertible 2008 1.36% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.02% Chevrolet Silverado 2500HD Regular Cab 2012 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.86% Chrysler 300 SRT-8 2010 1.66% Chevrolet Silverado 1500 Extended Cab 2012 1.32% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Ram C/V Cargo Van Minivan 2012 1.48% Nissan Leaf Hatchback 2012 1.48% Dodge Caravan Minivan 1997 1.21% Honda Odyssey Minivan 2007 1.2% Mercedes-Benz Sprinter Van 2012 1.17% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Dodge Caliber Wagon 2007 4.03% Ferrari 458 Italia Coupe 2012 3.07% Aston Martin Virage Coupe 2012 2.93% McLaren MP4-12C Coupe 2012 2.43% Dodge Charger Sedan 2012 2.34% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 3.38% Ferrari 458 Italia Coupe 2012 2.55% Aston Martin Virage Coupe 2012 2.5% Ferrari California Convertible 2012 1.94% BMW 1 Series Coupe 2012 1.93% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 1.53% Audi S6 Sedan 2011 1.33% Ford F-150 Regular Cab 2012 1.18% Isuzu Ascender SUV 2008 1.18% Ford E-Series Wagon Van 2012 1.18% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.14% GMC Savana Van 2012 1.04% Dodge Sprinter Cargo Van 2009 0.97% Ford E-Series Wagon Van 2012 0.96% Lincoln Town Car Sedan 2011 0.92% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 1.42% Volkswagen Golf Hatchback 1991 1.4% Jeep Wrangler SUV 2012 1.02% GMC Savana Van 2012 1.02% BMW X6 SUV 2012 1.01% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Bentley Arnage Sedan 2009 1.97% Land Rover Range Rover SUV 2012 1.69% FIAT 500 Abarth 2012 1.53% Jeep Patriot SUV 2012 1.41% GMC Yukon Hybrid SUV 2012 1.29% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 2.23% Chevrolet Express Cargo Van 2007 1.84% Ford F-150 Regular Cab 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.37% Chevrolet Silverado 2500HD Regular Cab 2012 1.3% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 1.73% Chevrolet Silverado 2500HD Regular Cab 2012 1.64% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.54% Ford F-150 Regular Cab 2012 1.33% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 HUMMER H2 SUT Crew Cab 2009 2.02% Dodge Caliber Wagon 2007 1.61% AM General Hummer SUV 2000 1.44% HUMMER H3T Crew Cab 2010 1.29% McLaren MP4-12C Coupe 2012 1.22% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 3.38% AM General Hummer SUV 2000 2.65% McLaren MP4-12C Coupe 2012 2.4% Audi TT RS Coupe 2012 2.4% Lamborghini Aventador Coupe 2012 2.35% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 AM General Hummer SUV 2000 2.31% GMC Canyon Extended Cab 2012 1.67% Dodge Caliber Wagon 2007 1.61% HUMMER H2 SUT Crew Cab 2009 1.49% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.42% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 1.19% GMC Acadia SUV 2012 1.09% Audi S6 Sedan 2011 1.06% Volvo XC90 SUV 2007 0.97% BMW X5 SUV 2007 0.91% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Spyker C8 Convertible 2009 1.62% Bentley Arnage Sedan 2009 1.47% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.46% Mercedes-Benz E-Class Sedan 2012 1.41% Hyundai Azera Sedan 2012 1.38% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 2.43% Dodge Ram Pickup 3500 Crew Cab 2010 1.48% Chevrolet Silverado 1500 Regular Cab 2012 1.47% Chrysler 300 SRT-8 2010 1.42% Cadillac Escalade EXT Crew Cab 2007 1.4% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Diablo Coupe 2001 18.59% McLaren MP4-12C Coupe 2012 5.06% Chevrolet HHR SS 2010 4.73% Ferrari California Convertible 2012 4.69% Ferrari 458 Italia Convertible 2012 3.82% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 3.52% Chevrolet TrailBlazer SS 2009 1.92% FIAT 500 Abarth 2012 1.8% Chrysler 300 SRT-8 2010 1.79% Cadillac Escalade EXT Crew Cab 2007 1.5% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Bentley Arnage Sedan 2009 2.99% FIAT 500 Abarth 2012 1.8% Hyundai Azera Sedan 2012 1.52% Cadillac SRX SUV 2012 1.43% Hyundai Genesis Sedan 2012 1.41% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Chevrolet TrailBlazer SS 2009 2.49% Cadillac Escalade EXT Crew Cab 2007 2.14% Chrysler 300 SRT-8 2010 1.8% Chevrolet Silverado 1500 Regular Cab 2012 1.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.59% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Dodge Sprinter Cargo Van 2009 1.79% GMC Savana Van 2012 1.77% Mercedes-Benz Sprinter Van 2012 1.44% Volkswagen Golf Hatchback 2012 1.31% Ram C/V Cargo Van Minivan 2012 1.21% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Mercedes-Benz Sprinter Van 2012 1.84% MINI Cooper Roadster Convertible 2012 1.33% Ram C/V Cargo Van Minivan 2012 1.29% Dodge Sprinter Cargo Van 2009 1.27% Nissan Leaf Hatchback 2012 1.16% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.36% Chrysler 300 SRT-8 2010 1.12% Chevrolet Silverado 1500 Extended Cab 2012 1.06% Eagle Talon Hatchback 1998 1.04% Volkswagen Golf Hatchback 1991 0.99% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.37% MINI Cooper Roadster Convertible 2012 1.34% Hyundai Genesis Sedan 2012 1.3% Bugatti Veyron 16.4 Coupe 2009 1.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.2% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Hyundai Azera Sedan 2012 1.67% Hyundai Genesis Sedan 2012 1.26% Bentley Mulsanne Sedan 2011 1.24% Bugatti Veyron 16.4 Coupe 2009 1.18% Audi S5 Convertible 2012 1.17% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Dodge Caliber Wagon 2007 2.68% Ferrari 458 Italia Coupe 2012 2.29% McLaren MP4-12C Coupe 2012 2.01% Lamborghini Diablo Coupe 2001 1.97% Volvo C30 Hatchback 2012 1.94% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 1.77% Chevrolet Express Cargo Van 2007 1.32% Buick Rainier SUV 2007 1.32% Dodge Sprinter Cargo Van 2009 1.29% Mercedes-Benz Sprinter Van 2012 1.23% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 FIAT 500 Convertible 2012 2.96% Ram C/V Cargo Van Minivan 2012 2.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.12% Mercedes-Benz S-Class Sedan 2012 1.87% Bugatti Veyron 16.4 Convertible 2009 1.78% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Cadillac Escalade EXT Crew Cab 2007 2.1% Chrysler 300 SRT-8 2010 1.92% Chevrolet TrailBlazer SS 2009 1.43% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% Ford F-450 Super Duty Crew Cab 2012 1.35% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chevrolet Silverado 1500 Regular Cab 2012 1.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.72% Chrysler 300 SRT-8 2010 1.39% Cadillac Escalade EXT Crew Cab 2007 1.3% Chevrolet Silverado 2500HD Regular Cab 2012 1.3% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Lamborghini Gallardo LP 570-4 Superleggera 2012 4.49% Lamborghini Diablo Coupe 2001 3.32% Spyker C8 Convertible 2009 1.97% Audi TT RS Coupe 2012 1.91% Volvo C30 Hatchback 2012 1.88% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.35% Dodge Durango SUV 2007 1.86% Chevrolet TrailBlazer SS 2009 1.78% GMC Yukon Hybrid SUV 2012 1.77% Land Rover Range Rover SUV 2012 1.75% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 FIAT 500 Convertible 2012 7.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.86% Maybach Landaulet Convertible 2012 2.58% Bugatti Veyron 16.4 Convertible 2009 2.31% Nissan Leaf Hatchback 2012 1.85% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi S6 Sedan 2011 1.66% GMC Savana Van 2012 1.48% Isuzu Ascender SUV 2008 1.4% Mercedes-Benz Sprinter Van 2012 1.37% Ford E-Series Wagon Van 2012 1.35% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.05% FIAT 500 Abarth 2012 1.55% AM General Hummer SUV 2000 1.49% Bentley Arnage Sedan 2009 1.31% HUMMER H3T Crew Cab 2010 1.31% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.87% MINI Cooper Roadster Convertible 2012 1.55% FIAT 500 Convertible 2012 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.44% Bugatti Veyron 16.4 Convertible 2009 1.4% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Ram C/V Cargo Van Minivan 2012 1.82% Dodge Sprinter Cargo Van 2009 1.69% Mercedes-Benz Sprinter Van 2012 1.44% Lincoln Town Car Sedan 2011 1.31% GMC Savana Van 2012 1.27% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 1.24% Buick Rainier SUV 2007 1.17% Chevrolet Express Cargo Van 2007 1.03% BMW X5 SUV 2007 0.97% Tesla Model S Sedan 2012 0.91% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Audi A5 Coupe 2012 1.28% Lincoln Town Car Sedan 2011 1.25% Acura TL Sedan 2012 1.22% Mercedes-Benz Sprinter Van 2012 1.21% Mercedes-Benz S-Class Sedan 2012 1.12% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 2.47% Dodge Sprinter Cargo Van 2009 1.31% Mercedes-Benz Sprinter Van 2012 1.21% Ram C/V Cargo Van Minivan 2012 1.09% Lincoln Town Car Sedan 2011 1.04% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Ford E-Series Wagon Van 2012 1.37% Dodge Caravan Minivan 1997 1.14% Dodge Challenger SRT8 2011 1.11% Audi S6 Sedan 2011 1.08% Hyundai Azera Sedan 2012 1.04% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.38% Chevrolet Silverado 1500 Extended Cab 2012 1.16% Dodge Ram Pickup 3500 Quad Cab 2009 1.15% Ford Mustang Convertible 2007 1.11% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Bentley Arnage Sedan 2009 2.47% HUMMER H2 SUT Crew Cab 2009 2.39% Chevrolet TrailBlazer SS 2009 1.81% Land Rover Range Rover SUV 2012 1.71% Chrysler 300 SRT-8 2010 1.48% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Abarth 2012 3.89% Bentley Arnage Sedan 2009 2.6% HUMMER H2 SUT Crew Cab 2009 1.72% Jeep Patriot SUV 2012 1.52% Land Rover Range Rover SUV 2012 1.37% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.05% Lincoln Town Car Sedan 2011 1.08% GMC Savana Van 2012 1.08% Honda Odyssey Minivan 2007 1.06% BMW 1 Series Convertible 2012 1.01% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Bentley Arnage Sedan 2009 2.41% FIAT 500 Abarth 2012 1.43% Land Rover Range Rover SUV 2012 1.41% Hyundai Genesis Sedan 2012 1.38% Hyundai Azera Sedan 2012 1.31% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.35% MINI Cooper Roadster Convertible 2012 1.34% Hyundai Azera Sedan 2012 1.31% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.3% Chrysler PT Cruiser Convertible 2008 1.18% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Ram C/V Cargo Van Minivan 2012 3.04% FIAT 500 Convertible 2012 2.13% Bugatti Veyron 16.4 Convertible 2009 1.56% Lincoln Town Car Sedan 2011 1.54% Mercedes-Benz S-Class Sedan 2012 1.53% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Chevrolet Corvette Convertible 2012 3.63% Chevrolet Cobalt SS 2010 3.48% Aston Martin Virage Coupe 2012 2.73% Ferrari 458 Italia Convertible 2012 2.67% Dodge Caliber Wagon 2007 2.57% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Chrysler 300 SRT-8 2010 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.95% Jeep Grand Cherokee SUV 2012 0.94% GMC Acadia SUV 2012 0.93% Audi S6 Sedan 2011 0.83% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 1.17% Chevrolet Silverado 2500HD Regular Cab 2012 1.09% Chevrolet Silverado 1500 Regular Cab 2012 1.07% Jeep Grand Cherokee SUV 2012 1.06% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.04% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Convertible 2012 2.05% Aston Martin Virage Coupe 2012 1.86% Spyker C8 Coupe 2009 1.77% Lamborghini Aventador Coupe 2012 1.72% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.67% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Cadillac Escalade EXT Crew Cab 2007 1.25% Chrysler 300 SRT-8 2010 1.12% GMC Savana Van 2012 1.09% GMC Yukon Hybrid SUV 2012 1.06% Chevrolet TrailBlazer SS 2009 1.06% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 MINI Cooper Roadster Convertible 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.44% Nissan Leaf Hatchback 2012 1.33% FIAT 500 Convertible 2012 1.16% Ram C/V Cargo Van Minivan 2012 1.04% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Dodge Sprinter Cargo Van 2009 1.86% Ram C/V Cargo Van Minivan 2012 1.65% Mercedes-Benz Sprinter Van 2012 1.61% GMC Savana Van 2012 1.51% Lincoln Town Car Sedan 2011 1.32% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Rolls-Royce Phantom Sedan 2012 1.96% Hyundai Genesis Sedan 2012 1.43% Nissan Leaf Hatchback 2012 1.38% Bentley Continental GT Coupe 2007 1.23% MINI Cooper Roadster Convertible 2012 1.17% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chrysler 300 SRT-8 2010 1.87% Chevrolet Silverado 1500 Regular Cab 2012 1.64% Cadillac Escalade EXT Crew Cab 2007 1.62% Chevrolet TrailBlazer SS 2009 1.6% HUMMER H2 SUT Crew Cab 2009 1.37% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 6.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.49% Bugatti Veyron 16.4 Convertible 2009 2.3% Ram C/V Cargo Van Minivan 2012 2.18% MINI Cooper Roadster Convertible 2012 2.06% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 FIAT 500 Convertible 2012 3.12% Ram C/V Cargo Van Minivan 2012 2.12% Bugatti Veyron 16.4 Convertible 2009 1.77% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.73% MINI Cooper Roadster Convertible 2012 1.65% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 1.16% Ford F-150 Regular Cab 2012 0.96% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.95% Audi S6 Sedan 2011 0.95% GMC Acadia SUV 2012 0.94% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.32% MINI Cooper Roadster Convertible 2012 1.22% Nissan Leaf Hatchback 2012 1.14% Mercedes-Benz S-Class Sedan 2012 1.12% Chrysler PT Cruiser Convertible 2008 1.11% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Jeep Grand Cherokee SUV 2012 1.56% BMW X5 SUV 2007 1.52% GMC Savana Van 2012 1.4% Ford F-150 Regular Cab 2012 1.21% GMC Acadia SUV 2012 1.19% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Mercedes-Benz Sprinter Van 2012 2.05% Dodge Sprinter Cargo Van 2009 2.05% Ram C/V Cargo Van Minivan 2012 1.85% Volkswagen Golf Hatchback 2012 1.59% Lincoln Town Car Sedan 2011 1.56% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Cadillac Escalade EXT Crew Cab 2007 1.82% Land Rover Range Rover SUV 2012 1.56% Bentley Arnage Sedan 2009 1.49% Dodge Durango SUV 2007 1.44% Chevrolet TrailBlazer SS 2009 1.42% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Land Rover Range Rover SUV 2012 1.45% GMC Yukon Hybrid SUV 2012 1.35% Chrysler 300 SRT-8 2010 1.32% BMW X5 SUV 2007 1.28% Jeep Grand Cherokee SUV 2012 1.22% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.08% Chevrolet Express Cargo Van 2007 1.06% GMC Savana Van 2012 1.05% Ford F-150 Regular Cab 2012 0.96% Isuzu Ascender SUV 2008 0.95% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Ferrari FF Coupe 2012 1.65% GMC Savana Van 2012 1.56% Ram C/V Cargo Van Minivan 2012 1.49% GMC Canyon Extended Cab 2012 1.19% BMW 1 Series Convertible 2012 1.16% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 1.53% Chevrolet Silverado 1500 Extended Cab 2012 1.34% Chevrolet Avalanche Crew Cab 2012 1.14% Isuzu Ascender SUV 2008 0.98% Chevrolet Silverado 1500 Regular Cab 2012 0.95% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.69% Daewoo Nubira Wagon 2002 1.67% Nissan Leaf Hatchback 2012 1.6% FIAT 500 Convertible 2012 1.37% Rolls-Royce Phantom Sedan 2012 1.22% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.68% Nissan Leaf Hatchback 2012 1.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.28% Daewoo Nubira Wagon 2002 1.2% Mercedes-Benz E-Class Sedan 2012 1.12% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Lamborghini Diablo Coupe 2001 4.01% Acura Integra Type R 2001 3.1% Lamborghini Aventador Coupe 2012 1.95% Volvo C30 Hatchback 2012 1.9% Aston Martin Virage Coupe 2012 1.86% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Aston Martin Virage Coupe 2012 3.43% Ferrari California Convertible 2012 3.33% Ferrari 458 Italia Convertible 2012 2.63% Ferrari 458 Italia Coupe 2012 2.58% McLaren MP4-12C Coupe 2012 2.55% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford E-Series Wagon Van 2012 1.51% BMW X5 SUV 2007 1.36% Chrysler Aspen SUV 2009 1.32% Dodge Durango SUV 2007 1.3% Cadillac Escalade EXT Crew Cab 2007 1.21% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.5% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.41% Chevrolet Silverado 1500 Extended Cab 2012 1.3% GMC Savana Van 2012 1.27% GMC Canyon Extended Cab 2012 1.23% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Lamborghini Diablo Coupe 2001 9.61% Lamborghini Aventador Coupe 2012 4.11% Ferrari 458 Italia Convertible 2012 3.99% Chevrolet Cobalt SS 2010 3.95% Chevrolet Corvette Convertible 2012 3.93% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.33% Ferrari FF Coupe 2012 1.66% BMW 1 Series Convertible 2012 1.63% GMC Savana Van 2012 1.49% Dodge Sprinter Cargo Van 2009 1.34% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Nissan Leaf Hatchback 2012 2.09% Mercedes-Benz Sprinter Van 2012 1.78% Ram C/V Cargo Van Minivan 2012 1.73% MINI Cooper Roadster Convertible 2012 1.73% Dodge Caravan Minivan 1997 1.64% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Chevrolet TrailBlazer SS 2009 2.45% Chevrolet Silverado 1500 Regular Cab 2012 2.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.15% Chrysler 300 SRT-8 2010 1.8% Chevrolet Silverado 2500HD Regular Cab 2012 1.48% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.7% FIAT 500 Convertible 2012 1.36% Spyker C8 Coupe 2009 1.32% Ford GT Coupe 2006 1.26% Hyundai Elantra Sedan 2007 1.18% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Land Rover Range Rover SUV 2012 1.32% Chrysler 300 SRT-8 2010 1.25% Bentley Arnage Sedan 2009 1.09% Bugatti Veyron 16.4 Coupe 2009 1.03% Jeep Grand Cherokee SUV 2012 0.94% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 4.91% Lamborghini Aventador Coupe 2012 2.32% McLaren MP4-12C Coupe 2012 2.22% Spyker C8 Convertible 2009 2.16% Chevrolet HHR SS 2010 2.13% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Lamborghini Diablo Coupe 2001 7.82% Audi TT RS Coupe 2012 4.1% McLaren MP4-12C Coupe 2012 3.99% Ferrari 458 Italia Coupe 2012 3.63% Chevrolet HHR SS 2010 3.55% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Chrysler 300 SRT-8 2010 1.62% Chevrolet Silverado 1500 Regular Cab 2012 1.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.39% Cadillac Escalade EXT Crew Cab 2007 1.36% Jeep Grand Cherokee SUV 2012 1.33% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 BMW M3 Coupe 2012 1.58% Lamborghini Diablo Coupe 2001 1.33% Audi TT RS Coupe 2012 1.32% Hyundai Veloster Hatchback 2012 1.31% Geo Metro Convertible 1993 1.24% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 1.32% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% Chevrolet Silverado 1500 Regular Cab 2012 1.11% Honda Accord Sedan 2012 1.03% Chevrolet Silverado 1500 Extended Cab 2012 1.02% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Bentley Arnage Sedan 2009 1.61% Spyker C8 Convertible 2009 1.57% Mercedes-Benz 300-Class Convertible 1993 1.23% Bugatti Veyron 16.4 Coupe 2009 1.19% Fisker Karma Sedan 2012 1.14% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 FIAT 500 Convertible 2012 1.75% BMW M3 Coupe 2012 1.57% Acura Integra Type R 2001 1.52% Ferrari FF Coupe 2012 1.47% BMW 1 Series Coupe 2012 1.34% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Hyundai Genesis Sedan 2012 1.37% Rolls-Royce Phantom Sedan 2012 1.32% Bentley Continental GT Coupe 2007 1.03% Hyundai Azera Sedan 2012 1.03% Bentley Arnage Sedan 2009 1.0% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Hyundai Azera Sedan 2012 1.08% MINI Cooper Roadster Convertible 2012 1.07% Bentley Mulsanne Sedan 2011 1.03% Bugatti Veyron 16.4 Coupe 2009 1.02% Hyundai Genesis Sedan 2012 1.0% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Audi TT RS Coupe 2012 4.41% McLaren MP4-12C Coupe 2012 3.98% Lamborghini Diablo Coupe 2001 3.48% Lamborghini Aventador Coupe 2012 2.8% Ferrari 458 Italia Coupe 2012 2.68% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 FIAT 500 Abarth 2012 4.59% Bentley Arnage Sedan 2009 2.91% HUMMER H2 SUT Crew Cab 2009 2.14% AM General Hummer SUV 2000 1.66% Hyundai Azera Sedan 2012 1.64% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 1.87% Jeep Wrangler SUV 2012 1.51% Chevrolet Cobalt SS 2010 1.41% Ford Mustang Convertible 2007 1.39% Aston Martin Virage Coupe 2012 1.36% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 1.97% Dodge Sprinter Cargo Van 2009 1.41% Mercedes-Benz Sprinter Van 2012 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.17% Volkswagen Golf Hatchback 2012 1.16% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 GMC Savana Van 2012 1.72% Chevrolet Silverado 2500HD Regular Cab 2012 1.49% Dodge Sprinter Cargo Van 2009 1.33% Chevrolet Express Cargo Van 2007 1.33% Mercedes-Benz Sprinter Van 2012 1.21% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.49% Mercedes-Benz Sprinter Van 2012 1.32% Lincoln Town Car Sedan 2011 1.27% MINI Cooper Roadster Convertible 2012 1.19% Acura TL Sedan 2012 1.18% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 1.64% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.34% Chevrolet Silverado 1500 Regular Cab 2012 1.28% Chevrolet Avalanche Crew Cab 2012 1.21% GMC Acadia SUV 2012 1.19% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Cadillac Escalade EXT Crew Cab 2007 1.77% Chrysler 300 SRT-8 2010 1.67% Land Rover Range Rover SUV 2012 1.48% Dodge Ram Pickup 3500 Crew Cab 2010 1.45% Chevrolet Avalanche Crew Cab 2012 1.39% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Bentley Arnage Sedan 2009 1.31% Hyundai Genesis Sedan 2012 1.15% Chrysler 300 SRT-8 2010 1.06% Land Rover Range Rover SUV 2012 1.0% Ford Expedition EL SUV 2009 1.0% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 2.78% Ferrari 458 Italia Coupe 2012 2.58% Lamborghini Aventador Coupe 2012 2.5% Chevrolet Corvette Convertible 2012 2.46% Aston Martin Virage Coupe 2012 2.42% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 FIAT 500 Abarth 2012 5.2% Bentley Arnage Sedan 2009 3.52% Hyundai Azera Sedan 2012 1.94% Jeep Patriot SUV 2012 1.84% Lamborghini Reventon Coupe 2008 1.75% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 1.28% Ram C/V Cargo Van Minivan 2012 1.08% Dodge Sprinter Cargo Van 2009 1.05% Chevrolet Silverado 2500HD Regular Cab 2012 1.04% Mercedes-Benz Sprinter Van 2012 1.03% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.74% Ferrari FF Coupe 2012 1.55% GMC Savana Van 2012 1.34% Chevrolet Silverado 1500 Extended Cab 2012 1.28% Eagle Talon Hatchback 1998 1.18% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 3.24% Cadillac Escalade EXT Crew Cab 2007 2.72% Chevrolet Silverado 1500 Regular Cab 2012 2.1% Chrysler 300 SRT-8 2010 2.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.86% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Lamborghini Diablo Coupe 2001 4.06% McLaren MP4-12C Coupe 2012 3.29% Ferrari 458 Italia Coupe 2012 2.97% Ferrari California Convertible 2012 2.82% Chevrolet HHR SS 2010 2.77% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 5.56% BMW 1 Series Coupe 2012 2.9% Dodge Caliber Wagon 2007 2.19% Ferrari 458 Italia Convertible 2012 1.97% BMW M3 Coupe 2012 1.92% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.32% Chevrolet TrailBlazer SS 2009 1.93% Chrysler 300 SRT-8 2010 1.86% Land Rover Range Rover SUV 2012 1.63% Bentley Arnage Sedan 2009 1.44% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 BMW 1 Series Coupe 2012 3.05% Ferrari FF Coupe 2012 2.89% Dodge Caliber Wagon 2007 2.59% McLaren MP4-12C Coupe 2012 2.55% Ferrari California Convertible 2012 2.46% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Jeep Compass SUV 2012 0.93% Ford E-Series Wagon Van 2012 0.83% Chrysler Aspen SUV 2009 0.82% Land Rover Range Rover SUV 2012 0.81% Cadillac Escalade EXT Crew Cab 2007 0.8% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 FIAT 500 Convertible 2012 1.16% Mercedes-Benz E-Class Sedan 2012 1.11% Maybach Landaulet Convertible 2012 1.09% Mercedes-Benz 300-Class Convertible 1993 1.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.04% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Volkswagen Golf Hatchback 1991 1.13% Dodge Caliber Wagon 2007 1.11% HUMMER H2 SUT Crew Cab 2009 0.98% Nissan Juke Hatchback 2012 0.98% Jeep Patriot SUV 2012 0.96% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 1.73% Ford F-150 Regular Cab 2012 1.49% Dodge Sprinter Cargo Van 2009 1.44% Chevrolet Silverado 2500HD Regular Cab 2012 1.4% Chevrolet Express Cargo Van 2007 1.32% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Chevrolet TrailBlazer SS 2009 1.61% Chrysler 300 SRT-8 2010 1.28% Bentley Arnage Sedan 2009 1.23% Jeep Liberty SUV 2012 1.18% Cadillac Escalade EXT Crew Cab 2007 1.17% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Chevrolet Silverado 1500 Regular Cab 2012 1.53% GMC Savana Van 2012 1.37% Chevrolet Silverado 1500 Extended Cab 2012 1.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.27% GMC Canyon Extended Cab 2012 1.25% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 FIAT 500 Abarth 2012 3.14% Bentley Arnage Sedan 2009 2.51% Hyundai Azera Sedan 2012 1.44% Jeep Patriot SUV 2012 1.41% BMW M6 Convertible 2010 1.2% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Aston Martin Virage Coupe 2012 7.83% Chevrolet Corvette Convertible 2012 7.11% Lamborghini Aventador Coupe 2012 6.49% Ferrari 458 Italia Convertible 2012 6.06% Ferrari California Convertible 2012 5.3% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Bentley Arnage Sedan 2009 2.53% FIAT 500 Abarth 2012 1.8% Hyundai Azera Sedan 2012 1.66% Cadillac SRX SUV 2012 1.38% Hyundai Genesis Sedan 2012 1.36% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 1.61% Chrysler 300 SRT-8 2010 1.55% Hyundai Genesis Sedan 2012 1.32% Rolls-Royce Phantom Sedan 2012 1.17% Land Rover Range Rover SUV 2012 1.1% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 5.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.28% Maybach Landaulet Convertible 2012 2.81% Bentley Continental Supersports Conv. Convertible 2012 2.01% Bugatti Veyron 16.4 Convertible 2009 1.83% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Dodge Caliber Wagon 2007 1.93% GMC Canyon Extended Cab 2012 1.33% Honda Accord Coupe 2012 1.3% Dodge Charger Sedan 2012 1.29% Chevrolet Silverado 1500 Regular Cab 2012 1.22% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Ram C/V Cargo Van Minivan 2012 1.92% Mercedes-Benz Sprinter Van 2012 1.5% Dodge Sprinter Cargo Van 2009 1.48% Lincoln Town Car Sedan 2011 1.32% BMW ActiveHybrid 5 Sedan 2012 1.3% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 1.78% Dodge Sprinter Cargo Van 2009 1.46% Chevrolet Express Cargo Van 2007 1.29% Audi A5 Coupe 2012 1.09% Mercedes-Benz Sprinter Van 2012 1.04% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 FIAT 500 Convertible 2012 3.59% Ram C/V Cargo Van Minivan 2012 2.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.27% Mercedes-Benz S-Class Sedan 2012 1.99% MINI Cooper Roadster Convertible 2012 1.98% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Bentley Arnage Sedan 2009 2.86% Hyundai Azera Sedan 2012 1.9% FIAT 500 Abarth 2012 1.76% Land Rover Range Rover SUV 2012 1.65% Hyundai Genesis Sedan 2012 1.57% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.27% Chevrolet Silverado 2500HD Regular Cab 2012 1.23% GMC Savana Van 2012 1.18% Chevrolet Silverado 1500 Extended Cab 2012 1.17% Isuzu Ascender SUV 2008 1.08% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.41% Ram C/V Cargo Van Minivan 2012 2.03% Mercedes-Benz Sprinter Van 2012 1.99% GMC Savana Van 2012 1.53% Lincoln Town Car Sedan 2011 1.49% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.41% Hyundai Azera Sedan 2012 1.34% Bugatti Veyron 16.4 Coupe 2009 1.26% Mercedes-Benz S-Class Sedan 2012 1.24% MINI Cooper Roadster Convertible 2012 1.2% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 FIAT 500 Abarth 2012 1.73% Bentley Arnage Sedan 2009 1.7% Jeep Patriot SUV 2012 1.48% Land Rover Range Rover SUV 2012 1.31% Jeep Compass SUV 2012 1.17% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Nissan Leaf Hatchback 2012 1.44% Rolls-Royce Phantom Sedan 2012 1.41% MINI Cooper Roadster Convertible 2012 1.22% Daewoo Nubira Wagon 2002 1.14% Hyundai Genesis Sedan 2012 1.11% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.39% Dodge Sprinter Cargo Van 2009 1.36% Buick Rainier SUV 2007 1.08% Lincoln Town Car Sedan 2011 1.05% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Dodge Caliber Wagon 2007 1.72% Volvo C30 Hatchback 2012 1.62% Hyundai Veloster Hatchback 2012 1.5% Ferrari 458 Italia Coupe 2012 1.39% Audi TT RS Coupe 2012 1.3% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 1.16% Jeep Grand Cherokee SUV 2012 1.15% Land Rover Range Rover SUV 2012 1.08% BMW X5 SUV 2007 1.07% Chrysler 300 SRT-8 2010 1.0% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Chrysler 300 SRT-8 2010 1.48% Chevrolet Silverado 1500 Regular Cab 2012 1.47% Cadillac Escalade EXT Crew Cab 2007 1.42% GMC Savana Van 2012 1.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.33% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Chevrolet TrailBlazer SS 2009 2.68% AM General Hummer SUV 2000 1.38% Dodge Caliber Wagon 2007 1.21% HUMMER H2 SUT Crew Cab 2009 1.17% Cadillac CTS-V Sedan 2012 1.16% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Daewoo Nubira Wagon 2002 1.44% Dodge Caravan Minivan 1997 1.17% Nissan Leaf Hatchback 2012 0.99% Plymouth Neon Coupe 1999 0.97% Ford Freestar Minivan 2007 0.97% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 3.81% FIAT 500 Abarth 2012 3.4% Hyundai Azera Sedan 2012 1.95% Lamborghini Reventon Coupe 2008 1.7% Land Rover Range Rover SUV 2012 1.65% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Bentley Arnage Sedan 2009 2.06% Hyundai Azera Sedan 2012 1.52% FIAT 500 Abarth 2012 1.38% Hyundai Genesis Sedan 2012 1.33% Cadillac SRX SUV 2012 1.3% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Bentley Arnage Sedan 2009 1.99% Chrysler 300 SRT-8 2010 1.29% Hyundai Genesis Sedan 2012 1.22% Chevrolet TrailBlazer SS 2009 1.19% Rolls-Royce Phantom Sedan 2012 1.14% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 HUMMER H2 SUT Crew Cab 2009 1.45% Spyker C8 Convertible 2009 1.1% Mercedes-Benz 300-Class Convertible 1993 1.02% Fisker Karma Sedan 2012 1.01% AM General Hummer SUV 2000 0.99% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Spyker C8 Convertible 2009 1.49% Bugatti Veyron 16.4 Coupe 2009 1.44% Ford GT Coupe 2006 1.15% Fisker Karma Sedan 2012 1.11% Bentley Mulsanne Sedan 2011 1.1% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Land Rover Range Rover SUV 2012 1.4% BMW X5 SUV 2007 1.29% Jeep Compass SUV 2012 1.29% Dodge Challenger SRT8 2011 1.23% Ford E-Series Wagon Van 2012 1.21% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.5% Land Rover Range Rover SUV 2012 1.26% GMC Yukon Hybrid SUV 2012 1.2% Audi S6 Sedan 2011 1.19% Chrysler 300 SRT-8 2010 1.16% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Dodge Caliber Wagon 2007 1.9% Hyundai Veloster Hatchback 2012 1.22% Suzuki SX4 Hatchback 2012 1.19% McLaren MP4-12C Coupe 2012 1.18% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.17% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 2.47% Chevrolet Express Cargo Van 2007 1.88% Dodge Sprinter Cargo Van 2009 1.51% Buick Rainier SUV 2007 1.35% Mercedes-Benz Sprinter Van 2012 1.31% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 3.72% BMW 1 Series Coupe 2012 1.85% Hyundai Elantra Sedan 2007 1.41% FIAT 500 Convertible 2012 1.38% BMW M3 Coupe 2012 1.24% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.96% BMW X3 SUV 2012 0.83% Mitsubishi Lancer Sedan 2012 0.81% Buick Rainier SUV 2007 0.81% Jeep Compass SUV 2012 0.8% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Arnage Sedan 2009 1.54% Cadillac Escalade EXT Crew Cab 2007 1.19% Hyundai Genesis Sedan 2012 1.15% Ford E-Series Wagon Van 2012 1.13% Ford Expedition EL SUV 2009 1.13% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 AM General Hummer SUV 2000 2.54% Dodge Caliber Wagon 2007 2.07% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.03% HUMMER H2 SUT Crew Cab 2009 1.96% Jeep Wrangler SUV 2012 1.77% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.54% Mercedes-Benz S-Class Sedan 2012 1.53% Lincoln Town Car Sedan 2011 1.29% Nissan Leaf Hatchback 2012 1.28% Chrysler PT Cruiser Convertible 2008 1.24% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Ferrari 458 Italia Convertible 2012 4.02% Chevrolet Corvette Convertible 2012 3.5% Ferrari California Convertible 2012 3.47% Ferrari 458 Italia Coupe 2012 3.43% Lamborghini Diablo Coupe 2001 3.43% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 1.23% Chrysler 300 SRT-8 2010 1.14% Jeep Grand Cherokee SUV 2012 1.06% GMC Savana Van 2012 1.06% Chevrolet Silverado 1500 Regular Cab 2012 1.05% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Audi S6 Sedan 2011 1.21% Porsche Panamera Sedan 2012 0.97% BMW X3 SUV 2012 0.92% Audi S5 Convertible 2012 0.91% GMC Acadia SUV 2012 0.9% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Chevrolet Silverado 1500 Regular Cab 2012 1.18% GMC Acadia SUV 2012 1.18% Chrysler 300 SRT-8 2010 1.15% Chevrolet Corvette ZR1 2012 1.07% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.05% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.94% Lamborghini Aventador Coupe 2012 1.9% Ferrari 458 Italia Convertible 2012 1.81% Chevrolet Cobalt SS 2010 1.72% Ferrari 458 Italia Coupe 2012 1.69% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 1.71% Dodge Sprinter Cargo Van 2009 1.68% Mercedes-Benz Sprinter Van 2012 1.34% Ram C/V Cargo Van Minivan 2012 1.17% Lincoln Town Car Sedan 2011 1.17% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Dodge Caliber Wagon 2007 4.39% Ferrari 458 Italia Coupe 2012 4.16% McLaren MP4-12C Coupe 2012 3.78% Aston Martin Virage Coupe 2012 3.67% Dodge Charger SRT-8 2009 2.91% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Ferrari FF Coupe 2012 3.51% BMW 1 Series Coupe 2012 2.59% Dodge Caliber Wagon 2007 1.87% GMC Savana Van 2012 1.27% Honda Accord Coupe 2012 1.27% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.68% BMW 1 Series Convertible 2012 1.88% FIAT 500 Convertible 2012 1.67% Ferrari FF Coupe 2012 1.57% Dodge Sprinter Cargo Van 2009 1.5% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Ram C/V Cargo Van Minivan 2012 2.21% Dodge Sprinter Cargo Van 2009 2.13% Mercedes-Benz Sprinter Van 2012 1.9% Volkswagen Golf Hatchback 2012 1.55% Lincoln Town Car Sedan 2011 1.52% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 BMW X5 SUV 2007 1.43% Ford E-Series Wagon Van 2012 1.15% Jeep Compass SUV 2012 1.13% Hyundai Tucson SUV 2012 1.07% Land Rover Range Rover SUV 2012 1.06% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Dodge Caravan Minivan 1997 1.37% Ford E-Series Wagon Van 2012 1.2% Chrysler PT Cruiser Convertible 2008 1.09% Honda Odyssey Minivan 2007 1.08% Audi 100 Sedan 1994 1.07% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 McLaren MP4-12C Coupe 2012 3.36% Ferrari California Convertible 2012 2.83% Ferrari 458 Italia Coupe 2012 2.55% Chevrolet Corvette Convertible 2012 2.4% Ferrari 458 Italia Convertible 2012 2.37% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 2.07% GMC Savana Van 2012 2.01% Mercedes-Benz Sprinter Van 2012 1.99% Volkswagen Golf Hatchback 2012 1.38% Lincoln Town Car Sedan 2011 1.31% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Ram C/V Cargo Van Minivan 2012 2.12% Mercedes-Benz Sprinter Van 2012 1.89% Nissan Leaf Hatchback 2012 1.81% MINI Cooper Roadster Convertible 2012 1.71% Acura TL Sedan 2012 1.62% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.33% Chevrolet Silverado 1500 Regular Cab 2012 0.97% Chevrolet Silverado 1500 Extended Cab 2012 0.89% Chevrolet Express Cargo Van 2007 0.84% Chevrolet Malibu Sedan 2007 0.84% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.59% MINI Cooper Roadster Convertible 2012 1.38% Bugatti Veyron 16.4 Convertible 2009 1.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.18% Mercedes-Benz Sprinter Van 2012 1.1% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 1.87% Ford F-150 Regular Cab 2012 1.31% Jeep Grand Cherokee SUV 2012 1.25% BMW X5 SUV 2007 1.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.17% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Bentley Arnage Sedan 2009 1.28% Chevrolet TrailBlazer SS 2009 1.23% Cadillac Escalade EXT Crew Cab 2007 1.21% Chrysler 300 SRT-8 2010 1.18% Ford Expedition EL SUV 2009 1.12% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 1.77% Ram C/V Cargo Van Minivan 2012 1.39% Ferrari FF Coupe 2012 1.21% Dodge Ram Pickup 3500 Quad Cab 2009 1.16% Chevrolet Silverado 2500HD Regular Cab 2012 1.15% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 Land Rover Range Rover SUV 2012 1.54% Chrysler 300 SRT-8 2010 1.37% Cadillac Escalade EXT Crew Cab 2007 1.27% Jeep Compass SUV 2012 1.16% GMC Yukon Hybrid SUV 2012 1.11% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 1.6% Ford Expedition EL SUV 2009 1.12% Chevrolet Avalanche Crew Cab 2012 1.02% Dodge Ram Pickup 3500 Crew Cab 2010 1.01% Ford Freestar Minivan 2007 1.0% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Lamborghini Diablo Coupe 2001 6.96% Audi TT RS Coupe 2012 4.68% Lamborghini Aventador Coupe 2012 4.13% Ferrari 458 Italia Convertible 2012 3.87% Ferrari 458 Italia Coupe 2012 3.77% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Aston Martin Virage Coupe 2012 2.2% Ferrari 458 Italia Convertible 2012 2.1% Chevrolet Cobalt SS 2010 2.02% Ferrari California Convertible 2012 1.94% Chevrolet Corvette Convertible 2012 1.9% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Chevrolet TrailBlazer SS 2009 1.53% Cadillac Escalade EXT Crew Cab 2007 1.49% Chrysler 300 SRT-8 2010 1.47% HUMMER H2 SUT Crew Cab 2009 1.47% Land Rover Range Rover SUV 2012 1.43% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 Cadillac Escalade EXT Crew Cab 2007 1.97% Chevrolet TrailBlazer SS 2009 1.76% Chrysler 300 SRT-8 2010 1.75% Chevrolet Silverado 1500 Regular Cab 2012 1.51% GMC Acadia SUV 2012 1.41% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Ferrari FF Coupe 2012 1.69% Plymouth Neon Coupe 1999 1.57% BMW M3 Coupe 2012 1.42% Dodge Caliber Wagon 2007 1.39% BMW 1 Series Coupe 2012 1.36% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Rolls-Royce Phantom Sedan 2012 2.06% Bentley Arnage Sedan 2009 2.01% Hyundai Genesis Sedan 2012 1.62% Bentley Continental GT Coupe 2007 1.2% Chrysler 300 SRT-8 2010 1.18% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Audi S6 Sedan 2011 1.32% GMC Savana Van 2012 1.31% Chevrolet Silverado 2500HD Regular Cab 2012 1.3% Chevrolet Avalanche Crew Cab 2012 1.23% Chevrolet Silverado 1500 Extended Cab 2012 1.18% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 FIAT 500 Convertible 2012 2.55% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.89% Ford GT Coupe 2006 1.63% Spyker C8 Coupe 2009 1.58% Spyker C8 Convertible 2009 1.36% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Aston Martin Virage Coupe 2012 3.64% Ferrari 458 Italia Convertible 2012 3.21% Ferrari California Convertible 2012 3.14% Chevrolet Cobalt SS 2010 3.03% Chevrolet Corvette Convertible 2012 2.99% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Chrysler 300 SRT-8 2010 1.14% GMC Acadia SUV 2012 1.11% Ford F-450 Super Duty Crew Cab 2012 1.09% Volvo XC90 SUV 2007 1.08% Jeep Grand Cherokee SUV 2012 1.07% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Nissan Leaf Hatchback 2012 1.01% Hyundai Genesis Sedan 2012 0.94% Mercedes-Benz E-Class Sedan 2012 0.91% Honda Odyssey Minivan 2007 0.89% Rolls-Royce Phantom Sedan 2012 0.89% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Hyundai Genesis Sedan 2012 1.46% Bentley Arnage Sedan 2009 1.32% Bentley Mulsanne Sedan 2011 1.26% Hyundai Azera Sedan 2012 1.25% Bugatti Veyron 16.4 Coupe 2009 1.21% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Chevrolet Silverado 1500 Extended Cab 2012 1.04% Honda Odyssey Minivan 2007 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.99% Ram C/V Cargo Van Minivan 2012 0.98% GMC Savana Van 2012 0.96% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.55% Dodge Sprinter Cargo Van 2009 1.11% Nissan Leaf Hatchback 2012 1.07% Mercedes-Benz Sprinter Van 2012 1.06% Volkswagen Golf Hatchback 2012 1.06% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.99% Rolls-Royce Phantom Sedan 2012 1.61% MINI Cooper Roadster Convertible 2012 1.61% Hyundai Azera Sedan 2012 1.51% Nissan Leaf Hatchback 2012 1.42% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Dodge Caliber Wagon 2007 1.71% Volkswagen Golf Hatchback 1991 1.57% Chevrolet Silverado 1500 Regular Cab 2012 1.52% HUMMER H2 SUT Crew Cab 2009 1.49% Chevrolet TrailBlazer SS 2009 1.45% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Ferrari 458 Italia Coupe 2012 3.23% McLaren MP4-12C Coupe 2012 3.13% Lamborghini Diablo Coupe 2001 2.78% Ferrari California Convertible 2012 2.74% Lamborghini Aventador Coupe 2012 2.7% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 3.64% Cadillac Escalade EXT Crew Cab 2007 2.52% Chevrolet Silverado 1500 Regular Cab 2012 2.49% Chrysler 300 SRT-8 2010 2.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.12% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Audi S6 Sedan 2011 1.09% Chrysler Aspen SUV 2009 1.02% Hyundai Genesis Sedan 2012 1.0% Ford E-Series Wagon Van 2012 0.99% Chrysler 300 SRT-8 2010 0.93% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Ford E-Series Wagon Van 2012 1.34% Nissan Leaf Hatchback 2012 1.25% Dodge Caravan Minivan 1997 1.24% Hyundai Azera Sedan 2012 1.17% Chrysler PT Cruiser Convertible 2008 1.11% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 FIAT 500 Abarth 2012 3.24% Bentley Arnage Sedan 2009 3.13% Hyundai Azera Sedan 2012 1.71% Lamborghini Reventon Coupe 2008 1.63% Bugatti Veyron 16.4 Coupe 2009 1.55% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 FIAT 500 Convertible 2012 2.1% Ram C/V Cargo Van Minivan 2012 2.0% BMW 1 Series Convertible 2012 1.42% Ferrari FF Coupe 2012 1.21% Suzuki Aerio Sedan 2007 1.14% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Cadillac Escalade EXT Crew Cab 2007 2.1% Land Rover Range Rover SUV 2012 1.73% Chrysler 300 SRT-8 2010 1.65% Dodge Durango SUV 2007 1.4% Chevrolet TrailBlazer SS 2009 1.34% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 AM General Hummer SUV 2000 9.4% HUMMER H2 SUT Crew Cab 2009 7.4% HUMMER H3T Crew Cab 2010 4.08% McLaren MP4-12C Coupe 2012 4.05% Aston Martin Virage Coupe 2012 3.4% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Fisker Karma Sedan 2012 1.44% Acura TL Type-S 2008 1.21% Bugatti Veyron 16.4 Coupe 2009 1.16% Mazda Tribute SUV 2011 1.05% Aston Martin Virage Convertible 2012 1.04% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 McLaren MP4-12C Coupe 2012 3.4% Ferrari 458 Italia Coupe 2012 3.05% Lamborghini Diablo Coupe 2001 3.02% Ferrari California Convertible 2012 2.71% Ferrari 458 Italia Convertible 2012 2.32% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 1.53% Mercedes-Benz S-Class Sedan 2012 1.18% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.01% BMW X3 SUV 2012 1.01% Lincoln Town Car Sedan 2011 1.0% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 1.89% Hyundai Genesis Sedan 2012 1.49% Lamborghini Reventon Coupe 2008 1.4% Land Rover Range Rover SUV 2012 1.39% Jeep Patriot SUV 2012 1.18% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 3.33% McLaren MP4-12C Coupe 2012 3.12% Audi TT RS Coupe 2012 2.96% Ferrari California Convertible 2012 2.43% Ferrari 458 Italia Coupe 2012 2.39% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.41% Mercedes-Benz S-Class Sedan 2012 2.23% MINI Cooper Roadster Convertible 2012 2.09% FIAT 500 Convertible 2012 1.74% Bugatti Veyron 16.4 Convertible 2009 1.73% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% Nissan Leaf Hatchback 2012 1.55% Hyundai Azera Sedan 2012 1.33% Chrysler PT Cruiser Convertible 2008 1.27% Maybach Landaulet Convertible 2012 1.26% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Chevrolet Corvette Convertible 2012 2.19% Ferrari 458 Italia Convertible 2012 1.93% Acura Integra Type R 2001 1.92% Geo Metro Convertible 1993 1.88% Chevrolet Cobalt SS 2010 1.75% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 2.83% GMC Savana Van 2012 1.9% FIAT 500 Convertible 2012 1.56% Dodge Sprinter Cargo Van 2009 1.46% BMW 1 Series Convertible 2012 1.36% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.17% Daewoo Nubira Wagon 2002 1.14% Plymouth Neon Coupe 1999 1.03% Hyundai Genesis Sedan 2012 1.02% Nissan Leaf Hatchback 2012 1.0% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Mercedes-Benz Sprinter Van 2012 1.38% Dodge Sprinter Cargo Van 2009 1.31% GMC Savana Van 2012 1.22% Mercedes-Benz S-Class Sedan 2012 1.16% Buick Rainier SUV 2007 1.11% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 2.8% Dodge Sprinter Cargo Van 2009 1.86% Mercedes-Benz Sprinter Van 2012 1.62% Chevrolet Express Cargo Van 2007 1.56% Buick Rainier SUV 2007 1.42% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 1.27% Hyundai Azera Sedan 2012 1.24% Dodge Challenger SRT8 2011 1.14% Hyundai Tucson SUV 2012 1.03% Jeep Compass SUV 2012 1.0% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Ram C/V Cargo Van Minivan 2012 1.72% Mercedes-Benz Sprinter Van 2012 1.7% MINI Cooper Roadster Convertible 2012 1.6% Mercedes-Benz S-Class Sedan 2012 1.58% Lincoln Town Car Sedan 2011 1.31% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 1.65% Chevrolet Avalanche Crew Cab 2012 1.46% Jeep Grand Cherokee SUV 2012 1.3% Chevrolet Silverado 1500 Extended Cab 2012 1.27% Ford F-150 Regular Cab 2012 1.27% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Bentley Arnage Sedan 2009 3.32% FIAT 500 Abarth 2012 1.85% Hyundai Azera Sedan 2012 1.79% Hyundai Genesis Sedan 2012 1.75% Cadillac SRX SUV 2012 1.5% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 FIAT 500 Convertible 2012 2.33% Mercedes-Benz E-Class Sedan 2012 1.97% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.55% Mercedes-Benz 300-Class Convertible 1993 1.41% Fisker Karma Sedan 2012 1.32% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 FIAT 500 Convertible 2012 3.04% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.57% Mercedes-Benz S-Class Sedan 2012 2.05% Ram C/V Cargo Van Minivan 2012 1.96% Bugatti Veyron 16.4 Convertible 2009 1.96% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 1.12% Isuzu Ascender SUV 2008 0.97% Chevrolet Silverado 2500HD Regular Cab 2012 0.93% Ford F-450 Super Duty Crew Cab 2012 0.92% Audi A5 Coupe 2012 0.91% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.87% GMC Acadia SUV 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.3% Jeep Grand Cherokee SUV 2012 1.25% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 11.78% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.54% Maybach Landaulet Convertible 2012 2.5% Bentley Continental Supersports Conv. Convertible 2012 2.0% Bugatti Veyron 16.4 Convertible 2009 1.85% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 1.46% Audi S6 Sedan 2011 1.22% BMW X5 SUV 2007 1.15% GMC Acadia SUV 2012 1.12% Jeep Grand Cherokee SUV 2012 1.01% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 FIAT 500 Convertible 2012 2.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.17% Mercedes-Benz S-Class Sedan 2012 1.71% Maybach Landaulet Convertible 2012 1.64% Bugatti Veyron 16.4 Convertible 2009 1.63% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 2.05% Dodge Sprinter Cargo Van 2009 1.46% Mercedes-Benz Sprinter Van 2012 1.37% Chevrolet Express Van 2007 1.16% Chevrolet Express Cargo Van 2007 1.13% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Audi S6 Sedan 2011 1.15% Chevrolet Silverado 2500HD Regular Cab 2012 1.13% Isuzu Ascender SUV 2008 1.12% GMC Savana Van 2012 1.1% Audi A5 Coupe 2012 1.03% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Chevrolet TrailBlazer SS 2009 1.84% Cadillac Escalade EXT Crew Cab 2007 1.82% Chrysler 300 SRT-8 2010 1.47% Land Rover Range Rover SUV 2012 1.28% Dodge Durango SUV 2007 1.24% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.4% Chevrolet Silverado 2500HD Regular Cab 2012 1.34% Chevrolet Silverado 1500 Regular Cab 2012 1.29% Ford F-450 Super Duty Crew Cab 2012 1.17% Chrysler 300 SRT-8 2010 1.15% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford E-Series Wagon Van 2012 1.42% BMW X5 SUV 2007 1.14% Dodge Caravan Minivan 1997 1.13% Hyundai Tucson SUV 2012 1.09% GMC Savana Van 2012 1.01% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.07% AM General Hummer SUV 2000 1.94% Lamborghini Diablo Coupe 2001 1.62% Spyker C8 Convertible 2009 1.43% McLaren MP4-12C Coupe 2012 1.43% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 2.36% BMW M3 Coupe 2012 1.95% Geo Metro Convertible 1993 1.75% Volvo C30 Hatchback 2012 1.64% Audi TT RS Coupe 2012 1.46% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Aston Martin Virage Coupe 2012 3.86% Ferrari California Convertible 2012 3.85% Chevrolet Corvette Convertible 2012 3.41% Ferrari 458 Italia Coupe 2012 3.17% Ferrari 458 Italia Convertible 2012 3.12% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Mercedes-Benz Sprinter Van 2012 1.44% GMC Savana Van 2012 1.24% Dodge Sprinter Cargo Van 2009 1.23% Volkswagen Golf Hatchback 2012 1.08% Acura TL Sedan 2012 1.07% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Bentley Arnage Sedan 2009 2.0% Chevrolet TrailBlazer SS 2009 1.76% BMW M6 Convertible 2010 1.25% Chrysler 300 SRT-8 2010 1.14% FIAT 500 Abarth 2012 1.14% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Nissan Leaf Hatchback 2012 1.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.21% MINI Cooper Roadster Convertible 2012 1.2% Rolls-Royce Phantom Sedan 2012 1.09% Mercedes-Benz E-Class Sedan 2012 1.05% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Dodge Sprinter Cargo Van 2009 2.57% Ram C/V Cargo Van Minivan 2012 1.87% Mercedes-Benz Sprinter Van 2012 1.81% GMC Savana Van 2012 1.61% Lincoln Town Car Sedan 2011 1.4% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Land Rover Range Rover SUV 2012 1.45% Bentley Arnage Sedan 2009 1.43% HUMMER H2 SUT Crew Cab 2009 1.21% Chrysler 300 SRT-8 2010 1.19% Hyundai Genesis Sedan 2012 1.19% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ram C/V Cargo Van Minivan 2012 1.54% Mercedes-Benz Sprinter Van 2012 1.19% Honda Odyssey Minivan 2007 1.12% Dodge Sprinter Cargo Van 2009 1.08% Lincoln Town Car Sedan 2011 1.06% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.4% Chevrolet Silverado 2500HD Regular Cab 2012 1.29% GMC Savana Van 2012 1.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.16% GMC Acadia SUV 2012 1.12% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 McLaren MP4-12C Coupe 2012 2.66% Ferrari California Convertible 2012 2.64% Ferrari 458 Italia Convertible 2012 2.21% Chevrolet Corvette Convertible 2012 2.21% BMW 1 Series Coupe 2012 2.15% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 FIAT 500 Convertible 2012 2.8% Mercedes-Benz S-Class Sedan 2012 2.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.35% Bugatti Veyron 16.4 Convertible 2009 2.0% MINI Cooper Roadster Convertible 2012 1.76% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 HUMMER H2 SUT Crew Cab 2009 2.86% Dodge Caliber Wagon 2007 2.56% AM General Hummer SUV 2000 2.25% HUMMER H3T Crew Cab 2010 2.15% Jeep Wrangler SUV 2012 1.66% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Rolls-Royce Phantom Sedan 2012 1.86% Bentley Arnage Sedan 2009 1.45% Ford GT Coupe 2006 1.35% Spyker C8 Convertible 2009 1.29% Mercedes-Benz E-Class Sedan 2012 1.25% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Chevrolet Silverado 2500HD Regular Cab 2012 2.1% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.69% Chevrolet Silverado 1500 Regular Cab 2012 1.37% Chevrolet Silverado 1500 Extended Cab 2012 1.35% GMC Savana Van 2012 1.29% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 FIAT 500 Convertible 2012 4.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.08% Maybach Landaulet Convertible 2012 2.82% Bentley Continental Supersports Conv. Convertible 2012 2.05% Rolls-Royce Phantom Sedan 2012 2.04% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Ford E-Series Wagon Van 2012 1.03% Hyundai Tucson SUV 2012 0.9% Chrysler PT Cruiser Convertible 2008 0.9% Dodge Caravan Minivan 1997 0.87% Hyundai Genesis Sedan 2012 0.84% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 2.19% Bentley Arnage Sedan 2009 1.79% Hyundai Genesis Sedan 2012 1.61% Spyker C8 Convertible 2009 1.53% Bentley Continental Supersports Conv. Convertible 2012 1.52% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.76% Chevrolet TrailBlazer SS 2009 1.94% Dodge Durango SUV 2007 1.79% Chrysler 300 SRT-8 2010 1.79% Land Rover Range Rover SUV 2012 1.62% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.32% Land Rover Range Rover SUV 2012 1.31% Chrysler 300 SRT-8 2010 1.3% GMC Acadia SUV 2012 1.25% GMC Yukon Hybrid SUV 2012 1.16% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 1.59% Ford F-150 Regular Cab 2012 1.16% Jeep Grand Cherokee SUV 2012 1.15% Ford F-450 Super Duty Crew Cab 2012 1.14% Chevrolet Avalanche Crew Cab 2012 1.11% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 1.86% Dodge Sprinter Cargo Van 2009 1.5% GMC Savana Van 2012 1.49% Ram C/V Cargo Van Minivan 2012 1.32% Lincoln Town Car Sedan 2011 1.24% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 1.98% Hyundai Genesis Sedan 2012 1.56% Rolls-Royce Phantom Sedan 2012 1.42% Bugatti Veyron 16.4 Coupe 2009 1.29% Hyundai Azera Sedan 2012 1.25% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Dodge Sprinter Cargo Van 2009 2.08% Ram C/V Cargo Van Minivan 2012 1.96% Mercedes-Benz Sprinter Van 2012 1.67% Lincoln Town Car Sedan 2011 1.54% BMW ActiveHybrid 5 Sedan 2012 1.48% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 HUMMER H2 SUT Crew Cab 2009 1.72% Dodge Caliber Wagon 2007 1.38% BMW X6 SUV 2012 1.19% Volkswagen Golf Hatchback 1991 1.09% AM General Hummer SUV 2000 1.05% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 HUMMER H2 SUT Crew Cab 2009 2.3% AM General Hummer SUV 2000 2.06% Dodge Caliber Wagon 2007 1.64% HUMMER H3T Crew Cab 2010 1.54% McLaren MP4-12C Coupe 2012 1.43% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 16.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.17% Maybach Landaulet Convertible 2012 2.83% Bugatti Veyron 16.4 Convertible 2009 2.11% Mercedes-Benz E-Class Sedan 2012 1.77% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 MINI Cooper Roadster Convertible 2012 1.44% Nissan Leaf Hatchback 2012 1.24% Audi S6 Sedan 2011 0.97% Ford E-Series Wagon Van 2012 0.96% Rolls-Royce Phantom Sedan 2012 0.96% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 MINI Cooper Roadster Convertible 2012 1.78% Mercedes-Benz S-Class Sedan 2012 1.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.53% Hyundai Azera Sedan 2012 1.25% Audi 100 Sedan 1994 1.2% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Dodge Sprinter Cargo Van 2009 1.44% Mercedes-Benz Sprinter Van 2012 1.33% GMC Savana Van 2012 1.27% Audi A5 Coupe 2012 1.21% Chevrolet Express Cargo Van 2007 1.12% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Chrysler 300 SRT-8 2010 1.41% Cadillac Escalade EXT Crew Cab 2007 1.28% Chevrolet TrailBlazer SS 2009 1.13% Land Rover Range Rover SUV 2012 1.13% Jeep Grand Cherokee SUV 2012 1.04% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 1.36% Chevrolet Express Cargo Van 2007 1.24% Ford F-150 Regular Cab 2012 1.17% Mercedes-Benz Sprinter Van 2012 1.04% Dodge Sprinter Cargo Van 2009 1.03% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 3.43% BMW 3 Series Sedan 2012 1.64% Dodge Charger Sedan 2012 1.59% HUMMER H3T Crew Cab 2010 1.48% Dodge Charger SRT-8 2009 1.45% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 1.75% Land Rover Range Rover SUV 2012 1.62% Jeep Patriot SUV 2012 1.36% Hyundai Azera Sedan 2012 1.36% Cadillac SRX SUV 2012 1.3% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 1.26% Nissan Leaf Hatchback 2012 1.14% MINI Cooper Roadster Convertible 2012 1.04% Mercedes-Benz Sprinter Van 2012 0.95% Chrysler Sebring Convertible 2010 0.92% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Chrysler 300 SRT-8 2010 1.34% Jeep Grand Cherokee SUV 2012 1.31% Cadillac Escalade EXT Crew Cab 2007 1.26% Land Rover Range Rover SUV 2012 1.08% Ford Expedition EL SUV 2009 1.06% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Corvette Convertible 2012 4.69% Ferrari California Convertible 2012 4.02% Ferrari 458 Italia Convertible 2012 3.71% Aston Martin Virage Coupe 2012 3.57% Ferrari 458 Italia Coupe 2012 3.42% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 FIAT 500 Abarth 2012 3.29% Bentley Arnage Sedan 2009 2.42% Bugatti Veyron 16.4 Coupe 2009 1.55% Spyker C8 Convertible 2009 1.51% Lamborghini Reventon Coupe 2008 1.37% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 BMW X5 SUV 2007 1.12% Audi S6 Sedan 2011 1.11% Jeep Grand Cherokee SUV 2012 1.09% GMC Acadia SUV 2012 1.04% GMC Savana Van 2012 0.98% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Cadillac Escalade EXT Crew Cab 2007 1.93% Chevrolet TrailBlazer SS 2009 1.78% Chrysler 300 SRT-8 2010 1.68% Land Rover Range Rover SUV 2012 1.25% Dodge Ram Pickup 3500 Crew Cab 2010 1.25% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Ford E-Series Wagon Van 2012 1.52% GMC Savana Van 2012 1.48% Audi S6 Sedan 2011 1.4% BMW X5 SUV 2007 1.34% Hyundai Santa Fe SUV 2012 1.25% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.67% GMC Savana Van 2012 1.65% Dodge Caliber Wagon 2007 1.49% Volkswagen Golf Hatchback 1991 1.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.18% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 MINI Cooper Roadster Convertible 2012 1.84% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.69% Mercedes-Benz S-Class Sedan 2012 1.58% Nissan Leaf Hatchback 2012 1.29% Chrysler PT Cruiser Convertible 2008 1.1% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 FIAT 500 Abarth 2012 1.85% Dodge Caliber Wagon 2007 1.44% Land Rover Range Rover SUV 2012 1.41% Jeep Patriot SUV 2012 1.4% Chrysler 300 SRT-8 2010 1.34% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 5.81% McLaren MP4-12C Coupe 2012 5.49% Chevrolet Corvette Convertible 2012 4.84% Aston Martin Virage Coupe 2012 4.8% Ferrari 458 Italia Coupe 2012 4.24% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 MINI Cooper Roadster Convertible 2012 2.21% FIAT 500 Convertible 2012 2.13% Mercedes-Benz S-Class Sedan 2012 2.04% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.7% Mercedes-Benz E-Class Sedan 2012 1.67% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 1.62% Hyundai Genesis Sedan 2012 1.35% Chrysler 300 SRT-8 2010 1.13% Rolls-Royce Phantom Sedan 2012 1.12% Chevrolet TrailBlazer SS 2009 1.1% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Ram C/V Cargo Van Minivan 2012 2.06% BMW 1 Series Convertible 2012 1.29% Lincoln Town Car Sedan 2011 1.29% Dodge Sprinter Cargo Van 2009 1.24% Acura TSX Sedan 2012 1.23% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 1.53% Chevrolet Silverado 2500HD Regular Cab 2012 1.14% Dodge Sprinter Cargo Van 2009 1.12% Ram C/V Cargo Van Minivan 2012 1.06% Audi A5 Coupe 2012 1.0% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Corvette Convertible 2012 2.43% Ferrari 458 Italia Convertible 2012 2.36% BMW 1 Series Coupe 2012 2.32% Aston Martin Virage Coupe 2012 2.25% Ferrari California Convertible 2012 2.24% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Mercedes-Benz E-Class Sedan 2012 1.93% MINI Cooper Roadster Convertible 2012 1.82% Fisker Karma Sedan 2012 1.59% Rolls-Royce Phantom Sedan 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.35% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/1e-5/100e/conf.csv b/cars/lr-investigations/fixed/1e-5/100e/conf.csv new file mode 100644 index 0000000..0e48fd2 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-5/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/fixed/1e-5/100e/pred.csv b/cars/lr-investigations/fixed/1e-5/100e/pred.csv new file mode 100644 index 0000000..f2f0030 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-5/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Audi S4 Sedan 2007 0.57% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.63% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.56% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Chevrolet Corvette ZR1 2012 0.57% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.56% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Audi S4 Sedan 2007 0.57% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Audi S4 Sedan 2007 0.57% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Audi S4 Sedan 2007 0.57% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.56% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Isuzu Ascender SUV 2008 0.57% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi A5 Coupe 2012 0.57% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Audi S4 Sedan 2007 0.57% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.63% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Audi S4 Sedan 2007 0.57% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Isuzu Ascender SUV 2008 0.57% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.56% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Jeep Patriot SUV 2012 0.56% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Audi S4 Sedan 2007 0.57% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Audi S4 Sedan 2007 0.57% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Audi S4 Sedan 2007 0.57% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.59% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.59% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.57% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Isuzu Ascender SUV 2008 0.57% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.59% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.59% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 GMC Savana Van 2012 0.67% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.66% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Isuzu Ascender SUV 2008 0.57% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Mercedes-Benz S-Class Sedan 2012 0.57% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Corvette ZR1 2012 0.57% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Avalanche Crew Cab 2012 0.57% Audi S4 Sedan 2007 0.57% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.64% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.59% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.56% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi A5 Coupe 2012 0.56% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Audi S4 Sedan 2007 0.57% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.56% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.56% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.67% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% Bugatti Veyron 16.4 Coupe 2009 0.57% HUMMER H2 SUT Crew Cab 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Audi S4 Sedan 2007 0.57% Bugatti Veyron 16.4 Coupe 2009 0.57% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.59% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Chevrolet Corvette ZR1 2012 0.57% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Isuzu Ascender SUV 2008 0.57% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Audi S4 Sedan 2007 0.57% Isuzu Ascender SUV 2008 0.57% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Audi S4 Sedan 2007 0.57% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 GMC Savana Van 2012 0.64% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.56% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Audi S4 Sedan 2007 0.57% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 0.66% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.59% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 0.66% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Isuzu Ascender SUV 2008 0.57% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 0.65% Chevrolet Avalanche Crew Cab 2012 0.58% HUMMER H2 SUT Crew Cab 2009 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 GMC Savana Van 2012 0.65% HUMMER H2 SUT Crew Cab 2009 0.58% Chevrolet Avalanche Crew Cab 2012 0.58% Bugatti Veyron 16.4 Coupe 2009 0.57% Isuzu Ascender SUV 2008 0.57% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/1e-6/100e/conf.csv b/cars/lr-investigations/fixed/1e-6/100e/conf.csv new file mode 100644 index 0000000..1d89035 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-6/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura RL Sedan 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Acura Integra Type R 2001,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi RS 4 Convertible 2008,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Traverse SUV 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Crossfire Convertible 2008,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caravan Minivan 1997,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,11,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari FF Coupe 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari California Convertible 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Convertible 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari 458 Italia Coupe 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Mustang Convertible 2007,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Edge SUV 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2012,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Fiesta Sedan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Savana Van 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Yukon Hybrid SUV 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,6,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Grand Cherokee SUV 2012,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Aventador Coupe 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Diablo Coupe 2001,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover Range Rover SUV 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Maybach Landaulet Convertible 2012,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mitsubishi Lancer Sedan 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Coupe 2009,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/fixed/1e-6/100e/pred.csv b/cars/lr-investigations/fixed/1e-6/100e/pred.csv new file mode 100644 index 0000000..0e43530 --- /dev/null +++ b/cars/lr-investigations/fixed/1e-6/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Ford F-450 Super Duty Crew Cab 2012 0.59% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.63% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Audi TTS Coupe 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Audi TTS Coupe 2012 0.61% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Volkswagen Golf Hatchback 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.63% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Audi TTS Coupe 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 0.63% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.63% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Audi TTS Coupe 2012 0.63% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Audi TTS Coupe 2012 0.61% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Ford F-450 Super Duty Crew Cab 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Audi TTS Coupe 2012 0.63% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Audi TTS Coupe 2012 0.63% Acura TSX Sedan 2012 0.63% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% Jeep Grand Cherokee SUV 2012 0.59% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Audi TTS Coupe 2012 0.63% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.59% Buick Regal GS 2012 0.59% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Audi TTS Coupe 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% Jeep Grand Cherokee SUV 2012 0.59% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Ford F-450 Super Duty Crew Cab 2012 0.59% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.59% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Volkswagen Golf Hatchback 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Ford F-450 Super Duty Crew Cab 2012 0.59% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.6% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Buick Regal GS 2012 0.59% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Acura TSX Sedan 2012 0.63% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.59% Buick Regal GS 2012 0.59% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Volkswagen Golf Hatchback 2012 0.59% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Audi TTS Coupe 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Acura TSX Sedan 2012 0.63% Jeep Grand Cherokee SUV 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.6% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.6% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Acura TSX Sedan 2012 0.61% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Audi TTS Coupe 2012 0.62% Acura TSX Sedan 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Volkswagen Golf Hatchback 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Ford F-450 Super Duty Crew Cab 2012 0.59% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.6% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Buick Regal GS 2012 0.59% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% Volkswagen Golf Hatchback 2012 0.59% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.6% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Acura TSX Sedan 2012 0.63% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Volkswagen Golf Hatchback 2012 0.59% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.59% Lamborghini Diablo Coupe 2001 0.59% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.62% Jeep Grand Cherokee SUV 2012 0.61% Buick Regal GS 2012 0.6% Volkswagen Golf Hatchback 2012 0.59% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.6% Buick Regal GS 2012 0.6% Lamborghini Diablo Coupe 2001 0.59% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Acura TSX Sedan 2012 0.62% Audi TTS Coupe 2012 0.61% Jeep Grand Cherokee SUV 2012 0.61% Lamborghini Diablo Coupe 2001 0.6% Buick Regal GS 2012 0.59% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/5e-2/100e/conf.csv b/cars/lr-investigations/fixed/5e-2/100e/conf.csv new file mode 100644 index 0000000..73b1b09 --- /dev/null +++ b/cars/lr-investigations/fixed/5e-2/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi RS 4 Convertible 2008,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Audi 100 Sedan 1994,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Audi TT Hatchback 2011,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW 1 Series Convertible 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.1538 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Buick Verano Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Camaro Convertible 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet TrailBlazer SS 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Sebring Convertible 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chrysler Crossfire Convertible 2008,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Ranger SuperCab 2011,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Savana Van 2012,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Santa Fe SUV 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Hyundai Accent Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Lamborghini Diablo Coupe 2001,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0625 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1429 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/fixed/5e-2/100e/pred.csv b/cars/lr-investigations/fixed/5e-2/100e/pred.csv new file mode 100644 index 0000000..ce91c24 --- /dev/null +++ b/cars/lr-investigations/fixed/5e-2/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Nissan Leaf Hatchback 2012 1.84% Dodge Caravan Minivan 1997 1.42% Hyundai Tucson SUV 2012 1.25% Mercedes-Benz Sprinter Van 2012 1.24% Jeep Patriot SUV 2012 1.19% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Ram C/V Cargo Van Minivan 2012 2.45% Nissan 240SX Coupe 1998 2.0% Acura ZDX Hatchback 2012 1.91% Chrysler Sebring Convertible 2010 1.77% Chrysler PT Cruiser Convertible 2008 1.69% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Lincoln Town Car Sedan 2011 8.84% Chevrolet Impala Sedan 2007 7.14% Rolls-Royce Phantom Sedan 2012 5.87% BMW ActiveHybrid 5 Sedan 2012 3.42% BMW 6 Series Convertible 2007 3.04% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Bugatti Veyron 16.4 Coupe 2009 3.25% Infiniti G Coupe IPL 2012 2.6% BMW M6 Convertible 2010 2.48% Volvo 240 Sedan 1993 2.43% Mercedes-Benz 300-Class Convertible 1993 2.39% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Chrysler 300 SRT-8 2010 3.22% BMW X6 SUV 2012 2.06% BMW 3 Series Sedan 2012 1.93% Buick Rainier SUV 2007 1.41% Chevrolet Traverse SUV 2012 1.37% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Mercedes-Benz Sprinter Van 2012 1.77% Dodge Sprinter Cargo Van 2009 1.71% Chevrolet Express Van 2007 1.15% GMC Savana Van 2012 1.06% Suzuki SX4 Sedan 2012 1.03% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Bentley Arnage Sedan 2009 1.43% Chrysler 300 SRT-8 2010 1.38% Bugatti Veyron 16.4 Coupe 2009 1.2% HUMMER H2 SUT Crew Cab 2009 1.05% Aston Martin V8 Vantage Coupe 2012 0.98% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Chrysler 300 SRT-8 2010 4.52% Honda Accord Coupe 2012 2.21% GMC Canyon Extended Cab 2012 2.05% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.88% Scion xD Hatchback 2012 1.71% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Infiniti G Coupe IPL 2012 5.82% Volvo 240 Sedan 1993 2.88% Chevrolet Silverado 1500 Extended Cab 2012 2.74% Chevrolet Malibu Sedan 2007 2.68% Buick Rainier SUV 2007 2.25% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 Dodge Challenger SRT8 2011 1.96% Bugatti Veyron 16.4 Coupe 2009 1.81% Chrysler 300 SRT-8 2010 1.78% GMC Savana Van 2012 1.75% Bentley Arnage Sedan 2009 1.47% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Dodge Caravan Minivan 1997 2.9% BMW ActiveHybrid 5 Sedan 2012 2.55% Honda Odyssey Minivan 2007 2.43% Rolls-Royce Phantom Sedan 2012 1.97% Chrysler Sebring Convertible 2010 1.69% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 BMW ActiveHybrid 5 Sedan 2012 2.51% Plymouth Neon Coupe 1999 2.12% Rolls-Royce Phantom Sedan 2012 1.5% Mercedes-Benz S-Class Sedan 2012 1.48% Suzuki Aerio Sedan 2007 1.38% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Bentley Arnage Sedan 2009 4.7% Hyundai Genesis Sedan 2012 3.37% Isuzu Ascender SUV 2008 2.88% Bugatti Veyron 16.4 Coupe 2009 2.34% Rolls-Royce Phantom Sedan 2012 2.23% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chevrolet Malibu Sedan 2007 14.52% Chrysler 300 SRT-8 2010 4.14% Mercedes-Benz C-Class Sedan 2012 4.12% GMC Terrain SUV 2012 3.97% Honda Accord Coupe 2012 2.91% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Rolls-Royce Phantom Sedan 2012 6.76% BMW ActiveHybrid 5 Sedan 2012 3.12% Chevrolet Malibu Hybrid Sedan 2010 2.54% BMW 6 Series Convertible 2007 2.27% Lincoln Town Car Sedan 2011 2.25% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 7.21% Chevrolet Express Cargo Van 2007 6.78% Ford F-150 Regular Cab 2012 2.39% Isuzu Ascender SUV 2008 2.13% Dodge Sprinter Cargo Van 2009 1.91% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 BMW 3 Series Sedan 2012 3.2% Ford GT Coupe 2006 2.79% Jeep Patriot SUV 2012 2.31% Ferrari FF Coupe 2012 2.23% Lincoln Town Car Sedan 2011 1.75% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Dodge Sprinter Cargo Van 2009 4.09% Mercedes-Benz SL-Class Coupe 2009 2.13% Audi TT Hatchback 2011 1.99% Volkswagen Golf Hatchback 2012 1.84% Buick Rainier SUV 2007 1.79% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Chrysler PT Cruiser Convertible 2008 1.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.36% Audi A5 Coupe 2012 1.17% Chevrolet Corvette ZR1 2012 1.06% Mercedes-Benz SL-Class Coupe 2009 1.05% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 Audi TT Hatchback 2011 4.28% Dodge Sprinter Cargo Van 2009 3.4% Audi A5 Coupe 2012 3.12% Buick Regal GS 2012 2.81% MINI Cooper Roadster Convertible 2012 2.56% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 2.74% Chevrolet Express Cargo Van 2007 2.68% Ford E-Series Wagon Van 2012 2.04% HUMMER H2 SUT Crew Cab 2009 2.04% BMW X5 SUV 2007 2.03% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Dodge Durango SUV 2007 1.88% Cadillac Escalade EXT Crew Cab 2007 1.83% Bentley Arnage Sedan 2009 1.78% Ford E-Series Wagon Van 2012 1.69% Land Rover Range Rover SUV 2012 1.64% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Sprinter Cargo Van 2009 3.64% Mercedes-Benz Sprinter Van 2012 3.27% Ford E-Series Wagon Van 2012 2.62% GMC Savana Van 2012 2.45% Isuzu Ascender SUV 2008 1.32% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Chrysler PT Cruiser Convertible 2008 2.23% Mercedes-Benz S-Class Sedan 2012 1.88% Chrysler Sebring Convertible 2010 1.74% Hyundai Azera Sedan 2012 1.69% Ram C/V Cargo Van Minivan 2012 1.65% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Mercedes-Benz Sprinter Van 2012 1.87% Plymouth Neon Coupe 1999 1.78% Scion xD Hatchback 2012 1.68% Dodge Sprinter Cargo Van 2009 1.55% Ram C/V Cargo Van Minivan 2012 1.46% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Rolls-Royce Phantom Sedan 2012 3.5% Bentley Continental Supersports Conv. Convertible 2012 3.37% BMW ActiveHybrid 5 Sedan 2012 2.31% Maybach Landaulet Convertible 2012 1.79% BMW 1 Series Convertible 2012 1.77% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 Dodge Sprinter Cargo Van 2009 14.62% Mercedes-Benz Sprinter Van 2012 12.01% Isuzu Ascender SUV 2008 4.31% Hyundai Veracruz SUV 2012 3.21% GMC Savana Van 2012 3.17% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 12.41% Aston Martin Virage Coupe 2012 6.67% Chevrolet Cobalt SS 2010 4.46% Dodge Charger SRT-8 2009 4.22% BMW 1 Series Coupe 2012 3.85% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.95% Chrysler 300 SRT-8 2010 1.92% Ford Ranger SuperCab 2011 1.8% Dodge Durango SUV 2012 1.67% Audi S5 Coupe 2012 1.63% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Rolls-Royce Phantom Sedan 2012 5.25% BMW ActiveHybrid 5 Sedan 2012 2.75% Jeep Liberty SUV 2012 1.65% Buick Regal GS 2012 1.62% Hyundai Sonata Hybrid Sedan 2012 1.57% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Dodge Sprinter Cargo Van 2009 2.51% BMW ActiveHybrid 5 Sedan 2012 1.75% Acura TL Sedan 2012 1.68% Buick Regal GS 2012 1.48% Mercedes-Benz Sprinter Van 2012 1.46% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Plymouth Neon Coupe 1999 2.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.42% Hyundai Tucson SUV 2012 2.18% Dodge Caravan Minivan 1997 1.66% Mercedes-Benz S-Class Sedan 2012 1.52% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.64% Chrysler 300 SRT-8 2010 2.39% Honda Accord Coupe 2012 1.74% Chevrolet Silverado 1500 Extended Cab 2012 1.61% BMW X6 SUV 2012 1.59% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 BMW M6 Convertible 2010 2.45% Bentley Mulsanne Sedan 2011 1.9% Bentley Arnage Sedan 2009 1.89% Bugatti Veyron 16.4 Coupe 2009 1.87% Rolls-Royce Phantom Sedan 2012 1.75% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M3 Coupe 2012 1.64% BMW 1 Series Coupe 2012 1.62% Acura TL Type-S 2008 1.5% Ferrari FF Coupe 2012 1.27% Buick Rainier SUV 2007 1.23% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Chrysler 300 SRT-8 2010 2.06% Jeep Grand Cherokee SUV 2012 1.43% Ford Mustang Convertible 2007 1.41% GMC Acadia SUV 2012 1.26% BMW 6 Series Convertible 2007 1.25% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Chevrolet Corvette ZR1 2012 1.22% Lamborghini Reventon Coupe 2008 1.14% Hyundai Azera Sedan 2012 1.13% Bentley Arnage Sedan 2009 1.11% Aston Martin V8 Vantage Convertible 2012 1.01% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Bentley Mulsanne Sedan 2011 2.02% Jeep Compass SUV 2012 1.56% Chrysler 300 SRT-8 2010 1.46% Dodge Challenger SRT8 2011 1.15% Bugatti Veyron 16.4 Coupe 2009 1.13% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Ferrari California Convertible 2012 5.59% Aston Martin Virage Coupe 2012 4.43% Dodge Charger SRT-8 2009 4.05% Ferrari 458 Italia Coupe 2012 3.39% Geo Metro Convertible 1993 3.29% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 6.25% Ferrari 458 Italia Coupe 2012 5.77% Audi TT RS Coupe 2012 4.81% Chevrolet HHR SS 2010 4.42% Lamborghini Aventador Coupe 2012 4.09% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 5.51% Chevrolet Silverado 2500HD Regular Cab 2012 4.25% BMW M6 Convertible 2010 3.98% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.94% GMC Canyon Extended Cab 2012 2.41% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 McLaren MP4-12C Coupe 2012 5.44% BMW M3 Coupe 2012 4.18% Aston Martin Virage Coupe 2012 3.55% Lamborghini Aventador Coupe 2012 3.53% Suzuki SX4 Hatchback 2012 3.16% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 MINI Cooper Roadster Convertible 2012 2.67% Rolls-Royce Ghost Sedan 2012 2.45% Bugatti Veyron 16.4 Coupe 2009 2.29% Lamborghini Reventon Coupe 2008 2.16% Maybach Landaulet Convertible 2012 2.13% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Audi S5 Coupe 2012 3.17% Chrysler 300 SRT-8 2010 3.04% Chevrolet Silverado 2500HD Regular Cab 2012 2.53% Ferrari FF Coupe 2012 2.44% Honda Accord Coupe 2012 2.13% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Dodge Sprinter Cargo Van 2009 3.95% Mercedes-Benz Sprinter Van 2012 2.88% GMC Savana Van 2012 2.65% Ford E-Series Wagon Van 2012 2.64% Isuzu Ascender SUV 2008 1.73% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 24.43% Audi S5 Convertible 2012 13.95% Porsche Panamera Sedan 2012 10.96% Audi 100 Wagon 1994 3.82% Cadillac CTS-V Sedan 2012 2.94% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Mercedes-Benz Sprinter Van 2012 2.08% Chrysler Aspen SUV 2009 1.94% Dodge Durango SUV 2007 1.81% Jeep Liberty SUV 2012 1.78% Hyundai Tucson SUV 2012 1.66% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Aston Martin V8 Vantage Convertible 2012 2.7% Porsche Panamera Sedan 2012 2.25% Mercedes-Benz S-Class Sedan 2012 2.03% Volkswagen Golf Hatchback 2012 1.98% Hyundai Veloster Hatchback 2012 1.89% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Ferrari 458 Italia Coupe 2012 3.69% Buick Rainier SUV 2007 2.78% Dodge Caliber Wagon 2007 2.64% Dodge Caliber Wagon 2012 2.34% Hyundai Accent Sedan 2012 2.12% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.5% Audi TT Hatchback 2011 2.36% Dodge Caravan Minivan 1997 2.25% Plymouth Neon Coupe 1999 2.17% Daewoo Nubira Wagon 2002 1.84% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Bentley Arnage Sedan 2009 2.3% Ford E-Series Wagon Van 2012 1.52% Jeep Grand Cherokee SUV 2012 1.5% GMC Terrain SUV 2012 1.41% Audi 100 Sedan 1994 1.33% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 AM General Hummer SUV 2000 2.08% Jeep Patriot SUV 2012 1.48% Lamborghini Diablo Coupe 2001 1.07% Chrysler PT Cruiser Convertible 2008 1.07% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.07% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Corvette ZR1 2012 1.21% Hyundai Azera Sedan 2012 1.17% Lamborghini Reventon Coupe 2008 1.16% Bentley Arnage Sedan 2009 1.1% Bentley Mulsanne Sedan 2011 1.02% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Chevrolet Express Cargo Van 2007 3.74% Ford Mustang Convertible 2007 3.66% Infiniti G Coupe IPL 2012 2.87% Chevrolet Traverse SUV 2012 2.83% Chevrolet Silverado 1500 Regular Cab 2012 2.51% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 FIAT 500 Abarth 2012 2.67% Toyota 4Runner SUV 2012 2.65% Bentley Mulsanne Sedan 2011 2.42% Jeep Liberty SUV 2012 1.95% Land Rover Range Rover SUV 2012 1.63% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 Hyundai Veracruz SUV 2012 4.51% GMC Savana Van 2012 4.47% Land Rover Range Rover SUV 2012 2.98% Bentley Mulsanne Sedan 2011 2.77% Hyundai Sonata Sedan 2012 2.49% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Mercedes-Benz C-Class Sedan 2012 1.56% Chrysler 300 SRT-8 2010 1.33% Chevrolet Monte Carlo Coupe 2007 1.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% Plymouth Neon Coupe 1999 1.2% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Audi TT RS Coupe 2012 3.02% Volkswagen Beetle Hatchback 2012 2.83% Ferrari 458 Italia Coupe 2012 1.95% Chevrolet HHR SS 2010 1.9% Nissan Leaf Hatchback 2012 1.71% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Dodge Caliber Wagon 2007 6.46% Suzuki Kizashi Sedan 2012 4.62% Hyundai Accent Sedan 2012 3.55% Ferrari FF Coupe 2012 3.04% BMW 1 Series Coupe 2012 2.86% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Lincoln Town Car Sedan 2011 4.2% Rolls-Royce Phantom Sedan 2012 3.9% BMW ActiveHybrid 5 Sedan 2012 3.4% BMW 6 Series Convertible 2007 2.43% Honda Odyssey Minivan 2007 2.25% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Nissan Leaf Hatchback 2012 2.09% Jaguar XK XKR 2012 1.63% Chrysler PT Cruiser Convertible 2008 1.6% Dodge Caravan Minivan 1997 1.45% Ford E-Series Wagon Van 2012 1.42% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Audi TT RS Coupe 2012 8.25% Ferrari 458 Italia Coupe 2012 5.55% Dodge Magnum Wagon 2008 4.0% Chevrolet HHR SS 2010 3.31% Volkswagen Beetle Hatchback 2012 2.94% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Mulsanne Sedan 2011 9.3% Jeep Liberty SUV 2012 6.75% Buick Verano Sedan 2012 4.01% Volvo 240 Sedan 1993 2.62% Jeep Grand Cherokee SUV 2012 2.32% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.91% Suzuki Aerio Sedan 2007 1.85% Bentley Mulsanne Sedan 2011 1.54% Chevrolet Camaro Convertible 2012 1.43% Bentley Continental Supersports Conv. Convertible 2012 1.43% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Lamborghini Aventador Coupe 2012 12.87% Ferrari California Convertible 2012 8.86% Aston Martin Virage Coupe 2012 5.0% Ferrari 458 Italia Coupe 2012 4.44% Ferrari 458 Italia Convertible 2012 3.58% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Chevrolet Express Cargo Van 2007 4.67% GMC Savana Van 2012 3.29% Ford E-Series Wagon Van 2012 1.69% Jeep Grand Cherokee SUV 2012 1.66% Dodge Sprinter Cargo Van 2009 1.49% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Chrysler 300 SRT-8 2010 1.8% Bentley Arnage Sedan 2009 1.59% Bugatti Veyron 16.4 Coupe 2009 1.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.5% Chevrolet TrailBlazer SS 2009 1.38% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 BMW X5 SUV 2007 2.42% GMC Savana Van 2012 2.3% Dodge Sprinter Cargo Van 2009 1.83% Audi S6 Sedan 2011 1.58% Ford E-Series Wagon Van 2012 1.54% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 4.03% Ferrari FF Coupe 2012 2.23% Chrysler 300 SRT-8 2010 1.96% Chevrolet Silverado 2500HD Regular Cab 2012 1.4% Tesla Model S Sedan 2012 1.3% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Mercedes-Benz S-Class Sedan 2012 4.0% Chrysler PT Cruiser Convertible 2008 2.42% Acura ZDX Hatchback 2012 2.13% Dodge Caravan Minivan 1997 2.09% Acura TL Type-S 2008 1.71% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 3.8% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.18% Honda Accord Sedan 2012 1.73% Hyundai Veracruz SUV 2012 1.61% Chrysler Aspen SUV 2009 1.57% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 3.02% Toyota 4Runner SUV 2012 2.98% Cadillac Escalade EXT Crew Cab 2007 2.09% GMC Savana Van 2012 1.95% Audi S6 Sedan 2011 1.79% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Dodge Sprinter Cargo Van 2009 3.92% Hyundai Elantra Touring Hatchback 2012 3.83% Chevrolet Camaro Convertible 2012 3.83% BMW ActiveHybrid 5 Sedan 2012 3.53% Chevrolet Traverse SUV 2012 3.51% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Dodge Sprinter Cargo Van 2009 4.36% Chevrolet Express Cargo Van 2007 3.37% Chevrolet Express Van 2007 1.96% Mercedes-Benz Sprinter Van 2012 1.78% Chevrolet Traverse SUV 2012 1.75% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chrysler Aspen SUV 2009 3.76% Dodge Durango SUV 2012 3.23% Ford F-150 Regular Cab 2007 2.6% GMC Terrain SUV 2012 2.47% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.13% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Acura TL Type-S 2008 2.49% Aston Martin V8 Vantage Convertible 2012 2.17% Nissan 240SX Coupe 1998 2.11% Chrysler Sebring Convertible 2010 2.03% Porsche Panamera Sedan 2012 1.88% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 GMC Yukon Hybrid SUV 2012 2.23% Toyota 4Runner SUV 2012 2.19% Land Rover Range Rover SUV 2012 1.89% Hyundai Santa Fe SUV 2012 1.68% Cadillac Escalade EXT Crew Cab 2007 1.59% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Aston Martin Virage Coupe 2012 12.46% McLaren MP4-12C Coupe 2012 7.12% Dodge Charger SRT-8 2009 7.0% Chevrolet HHR SS 2010 5.39% Lamborghini Aventador Coupe 2012 4.9% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Caliber Wagon 2007 6.72% Ferrari 458 Italia Coupe 2012 2.81% Ford Fiesta Sedan 2012 2.78% Eagle Talon Hatchback 1998 2.68% Hyundai Elantra Sedan 2007 2.38% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Buick Rainier SUV 2007 2.56% Dodge Sprinter Cargo Van 2009 1.83% Mercedes-Benz Sprinter Van 2012 1.82% Ford E-Series Wagon Van 2012 1.68% Chrysler Aspen SUV 2009 1.62% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Ram C/V Cargo Van Minivan 2012 4.07% Chrysler Sebring Convertible 2010 2.59% Chevrolet Malibu Sedan 2007 1.69% Honda Odyssey Minivan 2007 1.55% Ford E-Series Wagon Van 2012 1.44% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Ferrari FF Coupe 2012 4.01% Jeep Compass SUV 2012 2.75% Audi S5 Coupe 2012 2.72% Bugatti Veyron 16.4 Coupe 2009 2.7% Dodge Durango SUV 2012 1.99% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chrysler 300 SRT-8 2010 3.73% Toyota 4Runner SUV 2012 1.7% Scion xD Hatchback 2012 1.56% Cadillac CTS-V Sedan 2012 1.55% GMC Canyon Extended Cab 2012 1.43% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Bugatti Veyron 16.4 Coupe 2009 2.1% BMW M5 Sedan 2010 1.83% Ford GT Coupe 2006 1.38% Lamborghini Diablo Coupe 2001 1.34% Mitsubishi Lancer Sedan 2012 1.3% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 Mercedes-Benz S-Class Sedan 2012 2.35% Volkswagen Golf Hatchback 2012 2.22% Acura ZDX Hatchback 2012 2.08% Dodge Caravan Minivan 1997 2.08% Porsche Panamera Sedan 2012 1.53% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.94% Chevrolet Express Cargo Van 2007 1.76% Honda Accord Sedan 2012 1.53% Mercedes-Benz Sprinter Van 2012 1.51% Chevrolet Traverse SUV 2012 1.43% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.48% Spyker C8 Coupe 2009 2.33% Ram C/V Cargo Van Minivan 2012 2.01% Mercedes-Benz SL-Class Coupe 2009 1.88% Rolls-Royce Phantom Sedan 2012 1.82% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Dodge Sprinter Cargo Van 2009 7.68% Mercedes-Benz SL-Class Coupe 2009 3.08% Audi TT Hatchback 2011 3.07% Mercedes-Benz Sprinter Van 2012 2.18% Chevrolet Express Cargo Van 2007 2.11% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Dodge Caravan Minivan 1997 1.49% Jeep Patriot SUV 2012 1.38% Lamborghini Reventon Coupe 2008 1.26% Ford E-Series Wagon Van 2012 1.18% Hyundai Santa Fe SUV 2012 1.17% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Fisker Karma Sedan 2012 5.55% Volvo 240 Sedan 1993 5.53% Jeep Compass SUV 2012 4.49% Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Chevrolet TrailBlazer SS 2009 3.33% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Lamborghini Diablo Coupe 2001 3.13% Bugatti Veyron 16.4 Coupe 2009 2.17% Volvo 240 Sedan 1993 2.08% Bentley Mulsanne Sedan 2011 1.82% BMW X5 SUV 2007 1.76% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Scion xD Hatchback 2012 2.54% Ferrari FF Coupe 2012 2.53% Chevrolet HHR SS 2010 1.92% Plymouth Neon Coupe 1999 1.91% Chevrolet Monte Carlo Coupe 2007 1.88% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Dodge Durango SUV 2007 1.41% BMW X5 SUV 2007 1.28% Jeep Grand Cherokee SUV 2012 1.27% Chrysler 300 SRT-8 2010 1.21% Toyota 4Runner SUV 2012 1.21% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Bentley Arnage Sedan 2009 2.28% Plymouth Neon Coupe 1999 2.06% Aston Martin V8 Vantage Coupe 2012 1.65% Bugatti Veyron 16.4 Coupe 2009 1.64% Hyundai Genesis Sedan 2012 1.54% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Hyundai Azera Sedan 2012 2.56% Ford GT Coupe 2006 1.98% Audi 100 Sedan 1994 1.88% FIAT 500 Abarth 2012 1.78% Bentley Arnage Sedan 2009 1.61% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Cadillac CTS-V Sedan 2012 4.11% Chevrolet Corvette ZR1 2012 3.49% Audi S5 Coupe 2012 2.4% Chevrolet Silverado 1500 Extended Cab 2012 2.29% Chrysler 300 SRT-8 2010 1.99% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Chrysler Sebring Convertible 2010 4.97% Eagle Talon Hatchback 1998 2.81% BMW ActiveHybrid 5 Sedan 2012 2.62% Chevrolet Camaro Convertible 2012 2.49% Chevrolet Malibu Hybrid Sedan 2010 2.4% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Lamborghini Gallardo LP 570-4 Superleggera 2012 71.55% Chevrolet Corvette Convertible 2012 3.08% Hyundai Veloster Hatchback 2012 1.56% Audi S5 Convertible 2012 1.2% AM General Hummer SUV 2000 0.87% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Dodge Durango SUV 2012 2.31% Fisker Karma Sedan 2012 2.29% Chrysler 300 SRT-8 2010 1.94% Scion xD Hatchback 2012 1.9% Infiniti G Coupe IPL 2012 1.8% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Ram C/V Cargo Van Minivan 2012 2.45% Chrysler Sebring Convertible 2010 1.96% Dodge Caravan Minivan 1997 1.78% Mercedes-Benz S-Class Sedan 2012 1.64% Nissan Leaf Hatchback 2012 1.49% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chrysler 300 SRT-8 2010 4.16% Cadillac Escalade EXT Crew Cab 2007 3.22% Chevrolet Silverado 1500 Regular Cab 2012 2.55% Hyundai Veracruz SUV 2012 2.25% Chevrolet Monte Carlo Coupe 2007 2.1% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 Aston Martin V8 Vantage Convertible 2012 3.6% Mercedes-Benz S-Class Sedan 2012 2.3% Lincoln Town Car Sedan 2011 2.3% Hyundai Veloster Hatchback 2012 2.28% Buick Regal GS 2012 2.15% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chrysler 300 SRT-8 2010 2.26% Rolls-Royce Ghost Sedan 2012 2.03% BMW ActiveHybrid 5 Sedan 2012 1.92% Mercedes-Benz C-Class Sedan 2012 1.67% Lamborghini Reventon Coupe 2008 1.38% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 7.01% Buick Enclave SUV 2012 4.99% Dodge Charger SRT-8 2009 4.54% Chevrolet Cobalt SS 2010 3.84% BMW X6 SUV 2012 3.74% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 BMW X5 SUV 2007 1.86% Ford F-150 Regular Cab 2012 1.84% Jeep Patriot SUV 2012 1.81% Dodge Caravan Minivan 1997 1.54% Hyundai Tucson SUV 2012 1.51% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Cadillac CTS-V Sedan 2012 2.89% Audi S5 Coupe 2012 2.52% Audi 100 Wagon 1994 1.78% Mitsubishi Lancer Sedan 2012 1.65% Toyota Camry Sedan 2012 1.41% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi R8 Coupe 2012 1.28% BMW M6 Convertible 2010 1.04% Chevrolet Corvette ZR1 2012 1.04% Jeep Grand Cherokee SUV 2012 1.02% Lamborghini Reventon Coupe 2008 1.02% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.92% Mercedes-Benz S-Class Sedan 2012 1.86% Ram C/V Cargo Van Minivan 2012 1.73% Chrysler PT Cruiser Convertible 2008 1.55% Chrysler Sebring Convertible 2010 1.48% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Ford F-150 Regular Cab 2007 2.41% GMC Savana Van 2012 1.92% Chevrolet Silverado 1500 Regular Cab 2012 1.92% Chevrolet Monte Carlo Coupe 2007 1.82% Chevrolet Silverado 1500 Extended Cab 2012 1.69% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 Dodge Caravan Minivan 1997 1.85% Nissan Leaf Hatchback 2012 1.58% Bentley Continental Supersports Conv. Convertible 2012 1.19% Mercedes-Benz SL-Class Coupe 2009 1.19% Bentley Mulsanne Sedan 2011 1.12% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Chevrolet Cobalt SS 2010 8.68% Ferrari FF Coupe 2012 4.02% Chevrolet Camaro Convertible 2012 2.8% Dodge Caliber Wagon 2007 2.67% Ford Mustang Convertible 2007 1.9% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 FIAT 500 Convertible 2012 2.44% BMW M5 Sedan 2010 2.11% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.66% Mercedes-Benz Sprinter Van 2012 1.63% Volkswagen Golf Hatchback 2012 1.48% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 Maybach Landaulet Convertible 2012 2.25% BMW 6 Series Convertible 2007 2.18% BMW ActiveHybrid 5 Sedan 2012 1.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.54% Lincoln Town Car Sedan 2011 1.47% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 HUMMER H3T Crew Cab 2010 3.4% Dodge Durango SUV 2012 2.87% GMC Yukon Hybrid SUV 2012 2.66% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.92% Dodge Ram Pickup 3500 Crew Cab 2010 1.9% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 2.92% AM General Hummer SUV 2000 2.81% Acura Integra Type R 2001 2.56% Aston Martin Virage Coupe 2012 1.34% HUMMER H3T Crew Cab 2010 1.32% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Chevrolet Monte Carlo Coupe 2007 1.53% Rolls-Royce Phantom Sedan 2012 1.41% Dodge Caravan Minivan 1997 1.4% Chrysler 300 SRT-8 2010 1.33% Cadillac CTS-V Sedan 2012 1.21% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 BMW ActiveHybrid 5 Sedan 2012 2.92% Chevrolet Silverado 2500HD Regular Cab 2012 2.06% BMW 1 Series Convertible 2012 1.86% Lincoln Town Car Sedan 2011 1.55% Tesla Model S Sedan 2012 1.49% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 3.44% Dodge Sprinter Cargo Van 2009 2.83% Mercedes-Benz Sprinter Van 2012 2.69% GMC Savana Van 2012 2.36% Isuzu Ascender SUV 2008 2.32% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Acura ZDX Hatchback 2012 1.25% Hyundai Azera Sedan 2012 1.2% Chevrolet Corvette ZR1 2012 1.15% Lamborghini Reventon Coupe 2008 1.09% Rolls-Royce Phantom Sedan 2012 1.06% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Bentley Mulsanne Sedan 2011 4.41% Chevrolet Corvette ZR1 2012 2.24% Infiniti G Coupe IPL 2012 2.05% Audi S5 Coupe 2012 2.04% Toyota 4Runner SUV 2012 1.97% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.26% Chrysler Sebring Convertible 2010 1.94% Acura TL Sedan 2012 1.7% Hyundai Sonata Hybrid Sedan 2012 1.55% Hyundai Elantra Sedan 2007 1.53% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Chrysler 300 SRT-8 2010 7.04% Honda Accord Sedan 2012 2.67% Audi S4 Sedan 2012 2.46% BMW 6 Series Convertible 2007 2.26% Jeep Liberty SUV 2012 2.13% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Diablo Coupe 2001 10.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.24% AM General Hummer SUV 2000 4.01% Jeep Patriot SUV 2012 2.98% Acura Integra Type R 2001 2.5% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Daewoo Nubira Wagon 2002 2.5% BMW ActiveHybrid 5 Sedan 2012 1.8% Acura TL Type-S 2008 1.41% Dodge Caravan Minivan 1997 1.25% Volvo 240 Sedan 1993 1.23% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Dodge Caravan Minivan 1997 1.46% Jeep Patriot SUV 2012 1.32% Lamborghini Reventon Coupe 2008 1.21% Ford E-Series Wagon Van 2012 1.15% Hyundai Santa Fe SUV 2012 1.14% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Dodge Caravan Minivan 1997 1.5% Ford E-Series Wagon Van 2012 1.29% Lamborghini Reventon Coupe 2008 1.28% Jeep Patriot SUV 2012 1.26% Chrysler Aspen SUV 2009 1.14% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 BMW X5 SUV 2007 3.28% Daewoo Nubira Wagon 2002 2.04% Lincoln Town Car Sedan 2011 2.03% Volkswagen Beetle Hatchback 2012 1.78% Chevrolet Traverse SUV 2012 1.63% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Chrysler 300 SRT-8 2010 2.6% GMC Acadia SUV 2012 1.8% Honda Accord Coupe 2012 1.78% Audi A5 Coupe 2012 1.58% Dodge Durango SUV 2012 1.55% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Ram C/V Cargo Van Minivan 2012 3.3% Chrysler Sebring Convertible 2010 2.59% Chevrolet Malibu Sedan 2007 1.9% Honda Odyssey Minivan 2007 1.77% Acura ZDX Hatchback 2012 1.73% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Caravan Minivan 1997 1.73% Acura TL Type-S 2008 1.59% Mazda Tribute SUV 2011 1.55% Plymouth Neon Coupe 1999 1.42% Daewoo Nubira Wagon 2002 1.36% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Chevrolet Corvette ZR1 2012 1.1% Lamborghini Reventon Coupe 2008 1.04% Hyundai Azera Sedan 2012 1.04% Bentley Arnage Sedan 2009 1.02% Aston Martin V8 Vantage Convertible 2012 0.95% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Lamborghini Diablo Coupe 2001 8.33% AM General Hummer SUV 2000 4.73% Geo Metro Convertible 1993 2.52% Acura Integra Type R 2001 2.15% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.12% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Rolls-Royce Ghost Sedan 2012 2.9% Plymouth Neon Coupe 1999 2.76% Jeep Compass SUV 2012 2.62% Bentley Arnage Sedan 2009 2.59% Audi TTS Coupe 2012 1.99% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Honda Accord Coupe 2012 2.7% Ford F-150 Regular Cab 2012 1.94% Audi A5 Coupe 2012 1.81% Chevrolet Express Cargo Van 2007 1.78% GMC Savana Van 2012 1.31% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Volvo 240 Sedan 1993 1.71% Jeep Grand Cherokee SUV 2012 1.56% Jeep Compass SUV 2012 1.55% BMW 3 Series Wagon 2012 1.48% Bugatti Veyron 16.4 Coupe 2009 1.44% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 19.21% Chevrolet Corvette Convertible 2012 4.13% Porsche Panamera Sedan 2012 2.29% Lamborghini Diablo Coupe 2001 2.07% Aston Martin Virage Coupe 2012 2.01% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Ford F-150 Regular Cab 2007 6.17% GMC Terrain SUV 2012 3.49% Dodge Durango SUV 2012 3.42% Jeep Grand Cherokee SUV 2012 2.5% Chrysler Aspen SUV 2009 2.15% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Chevrolet Express Cargo Van 2007 11.64% Chevrolet Express Van 2007 5.33% Chevrolet Traverse SUV 2012 4.36% Ford Mustang Convertible 2007 3.36% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.26% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Infiniti G Coupe IPL 2012 7.58% Fisker Karma Sedan 2012 5.43% Acura TL Type-S 2008 4.42% Aston Martin Virage Convertible 2012 2.63% Chevrolet TrailBlazer SS 2009 2.57% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Dodge Durango SUV 2012 2.74% Jeep Liberty SUV 2012 2.37% Jeep Grand Cherokee SUV 2012 2.29% GMC Savana Van 2012 2.27% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.13% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Chevrolet Corvette ZR1 2012 2.5% Chrysler 300 SRT-8 2010 1.6% Cadillac Escalade EXT Crew Cab 2007 1.57% Ford F-150 Regular Cab 2007 1.45% Hyundai Genesis Sedan 2012 1.41% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Cobalt SS 2010 3.97% BMW 3 Series Sedan 2012 3.14% Dodge Magnum Wagon 2008 2.62% Dodge Charger SRT-8 2009 2.57% Dodge Caliber Wagon 2007 2.41% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 BMW ActiveHybrid 5 Sedan 2012 3.39% Ram C/V Cargo Van Minivan 2012 2.68% GMC Savana Van 2012 2.2% Lincoln Town Car Sedan 2011 1.62% Honda Odyssey Minivan 2007 1.37% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 3.59% Ferrari California Convertible 2012 2.52% Ferrari 458 Italia Coupe 2012 2.47% Suzuki Kizashi Sedan 2012 2.39% Volkswagen Beetle Hatchback 2012 2.31% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.58% Chevrolet Express Cargo Van 2007 3.29% HUMMER H2 SUT Crew Cab 2009 3.14% Chevrolet Traverse SUV 2012 1.71% GMC Savana Van 2012 1.71% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Chrysler 300 SRT-8 2010 2.13% Bugatti Veyron 16.4 Coupe 2009 1.28% Fisker Karma Sedan 2012 1.08% Jeep Patriot SUV 2012 1.03% Bentley Arnage Sedan 2009 1.0% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Jeep Liberty SUV 2012 2.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.47% Audi S4 Sedan 2012 1.4% Ford F-150 Regular Cab 2012 1.39% Dodge Charger Sedan 2012 1.32% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 BMW X6 SUV 2012 2.62% smart fortwo Convertible 2012 2.35% Dodge Journey SUV 2012 2.32% Ferrari 458 Italia Coupe 2012 2.25% Dodge Magnum Wagon 2008 2.15% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Audi 100 Wagon 1994 2.84% Cadillac Escalade EXT Crew Cab 2007 2.47% Audi V8 Sedan 1994 2.21% Chevrolet Silverado 1500 Regular Cab 2012 2.15% Audi S6 Sedan 2011 2.04% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Coupe 2012 2.38% Ferrari California Convertible 2012 2.29% BMW M5 Sedan 2010 1.98% Geo Metro Convertible 1993 1.83% Volkswagen Golf Hatchback 1991 1.74% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Hyundai Azera Sedan 2012 2.16% Chrysler Sebring Convertible 2010 2.01% Chevrolet Camaro Convertible 2012 1.54% Chrysler PT Cruiser Convertible 2008 1.54% Hyundai Elantra Sedan 2007 1.43% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 HUMMER H2 SUT Crew Cab 2009 4.93% HUMMER H3T Crew Cab 2010 4.32% Ford E-Series Wagon Van 2012 4.0% Audi S6 Sedan 2011 3.58% AM General Hummer SUV 2000 2.82% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chrysler Sebring Convertible 2010 1.39% Honda Odyssey Minivan 2007 1.27% Chrysler 300 SRT-8 2010 1.15% GMC Savana Van 2012 1.13% Hyundai Azera Sedan 2012 1.07% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Daewoo Nubira Wagon 2002 2.97% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.86% Mercedes-Benz S-Class Sedan 2012 2.43% Mercedes-Benz E-Class Sedan 2012 2.07% Ford GT Coupe 2006 2.04% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 BMW ActiveHybrid 5 Sedan 2012 4.09% MINI Cooper Roadster Convertible 2012 3.32% Audi TT Hatchback 2011 2.03% Chevrolet Tahoe Hybrid SUV 2012 2.01% Ram C/V Cargo Van Minivan 2012 1.88% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 BMW M6 Convertible 2010 1.88% Chevrolet Camaro Convertible 2012 1.81% Bentley Mulsanne Sedan 2011 1.73% AM General Hummer SUV 2000 1.67% Lincoln Town Car Sedan 2011 1.61% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Plymouth Neon Coupe 1999 1.66% Mercedes-Benz Sprinter Van 2012 1.52% Nissan Leaf Hatchback 2012 1.47% BMW X5 SUV 2007 1.4% Hyundai Tucson SUV 2012 1.33% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Maybach Landaulet Convertible 2012 3.52% Eagle Talon Hatchback 1998 3.48% Rolls-Royce Ghost Sedan 2012 3.29% FIAT 500 Convertible 2012 2.71% Aston Martin Virage Convertible 2012 2.63% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 11.68% Chevrolet Corvette Convertible 2012 4.65% Aston Martin Virage Coupe 2012 2.54% Audi RS 4 Convertible 2008 2.13% BMW 3 Series Wagon 2012 2.11% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 8.2% Dodge Charger SRT-8 2009 7.97% Lamborghini Diablo Coupe 2001 7.65% Ferrari California Convertible 2012 5.21% Lamborghini Aventador Coupe 2012 5.15% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Nissan Leaf Hatchback 2012 2.18% Jaguar XK XKR 2012 1.98% Acura TL Sedan 2012 1.59% Audi S5 Coupe 2012 1.48% Volkswagen Golf Hatchback 2012 1.44% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura TL Type-S 2008 2.39% Dodge Caravan Minivan 1997 2.13% Acura TL Sedan 2012 2.09% Daewoo Nubira Wagon 2002 2.04% Mercedes-Benz S-Class Sedan 2012 1.96% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Bentley Arnage Sedan 2009 1.16% Hyundai Azera Sedan 2012 1.16% Rolls-Royce Phantom Sedan 2012 1.15% Chevrolet Corvette ZR1 2012 1.09% Aston Martin V8 Vantage Convertible 2012 1.0% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Lamborghini Diablo Coupe 2001 4.66% AM General Hummer SUV 2000 1.9% Chrysler 300 SRT-8 2010 1.83% Bugatti Veyron 16.4 Coupe 2009 1.71% Audi RS 4 Convertible 2008 1.7% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 BMW M3 Coupe 2012 3.85% Eagle Talon Hatchback 1998 3.33% Scion xD Hatchback 2012 2.86% Ford Mustang Convertible 2007 2.54% Plymouth Neon Coupe 1999 2.43% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz Sprinter Van 2012 3.43% Dodge Sprinter Cargo Van 2009 3.36% Honda Odyssey Minivan 2007 2.45% Ford Mustang Convertible 2007 2.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.89% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Lamborghini Aventador Coupe 2012 7.57% Dodge Charger SRT-8 2009 4.18% Dodge Magnum Wagon 2008 3.6% Ferrari FF Coupe 2012 3.39% Ferrari 458 Italia Coupe 2012 3.34% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Acura ZDX Hatchback 2012 1.51% Rolls-Royce Phantom Sedan 2012 1.36% Hyundai Azera Sedan 2012 1.32% Chevrolet Corvette ZR1 2012 1.3% Bentley Arnage Sedan 2009 1.2% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Hyundai Veracruz SUV 2012 4.57% Audi TTS Coupe 2012 3.28% Land Rover Range Rover SUV 2012 3.02% Chevrolet Corvette ZR1 2012 2.95% Dodge Durango SUV 2012 2.6% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Dodge Sprinter Cargo Van 2009 3.19% Mercedes-Benz Sprinter Van 2012 1.82% Chevrolet Express Cargo Van 2007 1.33% Acura TL Sedan 2012 1.32% BMW ActiveHybrid 5 Sedan 2012 1.22% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Lamborghini Aventador Coupe 2012 2.91% Dodge Charger SRT-8 2009 2.47% Ferrari 458 Italia Convertible 2012 2.47% McLaren MP4-12C Coupe 2012 2.45% Ferrari 458 Italia Coupe 2012 2.36% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Chrysler Aspen SUV 2009 1.96% Plymouth Neon Coupe 1999 1.76% BMW X5 SUV 2007 1.36% Mercedes-Benz Sprinter Van 2012 1.31% Chrysler Sebring Convertible 2010 1.3% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Dodge Sprinter Cargo Van 2009 7.73% Mercedes-Benz Sprinter Van 2012 5.18% BMW X5 SUV 2007 3.11% GMC Savana Van 2012 2.89% Chevrolet Express Van 2007 2.5% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Dodge Caravan Minivan 1997 1.26% Jeep Patriot SUV 2012 1.22% Lamborghini Reventon Coupe 2008 1.19% Hyundai Santa Fe SUV 2012 1.1% Ford E-Series Wagon Van 2012 1.09% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Chevrolet Silverado 1500 Regular Cab 2012 3.29% GMC Terrain SUV 2012 2.37% Buick Rainier SUV 2007 2.08% Chevrolet Malibu Sedan 2007 2.04% Audi V8 Sedan 1994 1.98% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Dodge Caravan Minivan 1997 2.69% Jeep Compass SUV 2012 1.49% Acura TL Type-S 2008 1.45% Scion xD Hatchback 2012 1.45% Audi 100 Sedan 1994 1.42% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 12.06% Audi RS 4 Convertible 2008 3.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.07% AM General Hummer SUV 2000 1.95% Jeep Patriot SUV 2012 1.93% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Chrysler Aspen SUV 2009 4.0% BMW X5 SUV 2007 3.21% Jeep Grand Cherokee SUV 2012 2.77% Dodge Durango SUV 2012 1.89% Bentley Continental Flying Spur Sedan 2007 1.88% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Chevrolet Cobalt SS 2010 11.17% Ferrari FF Coupe 2012 5.3% GMC Canyon Extended Cab 2012 4.32% Chevrolet Silverado 1500 Extended Cab 2012 2.95% Ford Mustang Convertible 2007 2.88% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Mercedes-Benz S-Class Sedan 2012 2.2% Rolls-Royce Phantom Sedan 2012 2.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.02% Acura TL Type-S 2008 1.7% Maybach Landaulet Convertible 2012 1.46% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Infiniti G Coupe IPL 2012 9.33% Acura TL Type-S 2008 5.45% Fisker Karma Sedan 2012 3.68% Porsche Panamera Sedan 2012 3.32% Audi S5 Convertible 2012 3.26% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Dodge Sprinter Cargo Van 2009 2.62% Chevrolet Express Cargo Van 2007 2.22% Mercedes-Benz SL-Class Coupe 2009 2.05% Lincoln Town Car Sedan 2011 1.54% GMC Savana Van 2012 1.5% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Maybach Landaulet Convertible 2012 2.34% BMW 6 Series Convertible 2007 1.68% BMW ActiveHybrid 5 Sedan 2012 1.61% Aston Martin V8 Vantage Convertible 2012 1.49% Ram C/V Cargo Van Minivan 2012 1.47% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 5.37% Ram C/V Cargo Van Minivan 2012 3.73% Maybach Landaulet Convertible 2012 3.16% smart fortwo Convertible 2012 3.07% Volvo 240 Sedan 1993 2.69% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Chevrolet Express Cargo Van 2007 3.74% Dodge Sprinter Cargo Van 2009 3.18% Mercedes-Benz Sprinter Van 2012 2.54% Isuzu Ascender SUV 2008 1.83% Ford E-Series Wagon Van 2012 1.78% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 20.69% Lamborghini Aventador Coupe 2012 10.91% Aston Martin Virage Coupe 2012 7.79% Ferrari 458 Italia Convertible 2012 7.48% Dodge Charger SRT-8 2009 5.16% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Jeep Grand Cherokee SUV 2012 3.32% Ford Mustang Convertible 2007 2.23% Chevrolet Silverado 2500HD Regular Cab 2012 1.7% Ford E-Series Wagon Van 2012 1.59% Buick Rainier SUV 2007 1.54% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Chevrolet Impala Sedan 2007 6.66% FIAT 500 Convertible 2012 4.33% BMW 6 Series Convertible 2007 2.25% Lincoln Town Car Sedan 2011 2.14% Tesla Model S Sedan 2012 1.76% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.34% Chrysler Sebring Convertible 2010 2.15% Acura ZDX Hatchback 2012 2.01% Dodge Caravan Minivan 1997 1.99% Acura TL Sedan 2012 1.89% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Plymouth Neon Coupe 1999 2.64% Bentley Arnage Sedan 2009 2.24% Hyundai Genesis Sedan 2012 1.68% BMW M6 Convertible 2010 1.39% Mercedes-Benz C-Class Sedan 2012 1.38% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Chrysler Sebring Convertible 2010 3.5% GMC Savana Van 2012 2.05% Hyundai Azera Sedan 2012 2.01% BMW X3 SUV 2012 1.79% Eagle Talon Hatchback 1998 1.75% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Dodge Caliber Wagon 2007 4.17% Buick Enclave SUV 2012 3.72% Ford GT Coupe 2006 3.31% Buick Verano Sedan 2012 3.03% Honda Accord Coupe 2012 2.74% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Lincoln Town Car Sedan 2011 5.51% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.77% BMW 6 Series Convertible 2007 2.48% Rolls-Royce Ghost Sedan 2012 2.34% Chevrolet Camaro Convertible 2012 2.27% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 1.74% Chevrolet Silverado 1500 Regular Cab 2012 1.29% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.11% Lincoln Town Car Sedan 2011 1.08% BMW 6 Series Convertible 2007 1.08% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 Chrysler Sebring Convertible 2010 1.52% Ram C/V Cargo Van Minivan 2012 1.38% Nissan Leaf Hatchback 2012 1.36% Hyundai Azera Sedan 2012 1.35% Dodge Caravan Minivan 1997 1.12% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 1.33% Ram C/V Cargo Van Minivan 2012 1.26% Plymouth Neon Coupe 1999 1.24% Dodge Caliber Wagon 2012 1.24% BMW 3 Series Sedan 2012 1.19% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.73% Chrysler Sebring Convertible 2010 2.91% Honda Accord Sedan 2012 2.87% Ford F-150 Regular Cab 2007 2.75% Buick Rainier SUV 2007 2.66% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.68% Ferrari FF Coupe 2012 2.18% Ram C/V Cargo Van Minivan 2012 1.8% Tesla Model S Sedan 2012 1.66% Suzuki Aerio Sedan 2007 1.57% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Acadia SUV 2012 2.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.56% Chevrolet Silverado 2500HD Regular Cab 2012 1.55% Buick Rainier SUV 2007 1.51% Chrysler 300 SRT-8 2010 1.48% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 7.37% Ford GT Coupe 2006 6.53% Ferrari FF Coupe 2012 5.5% Hyundai Accent Sedan 2012 3.77% Ferrari 458 Italia Coupe 2012 3.53% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Toyota 4Runner SUV 2012 4.96% Land Rover Range Rover SUV 2012 3.6% Audi S5 Coupe 2012 3.58% Porsche Panamera Sedan 2012 2.59% Bentley Mulsanne Sedan 2011 2.56% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 7.71% AM General Hummer SUV 2000 4.66% Jeep Patriot SUV 2012 2.03% Bugatti Veyron 16.4 Coupe 2009 1.84% Acura Integra Type R 2001 1.7% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 11.82% Aston Martin Virage Coupe 2012 7.63% AM General Hummer SUV 2000 3.72% McLaren MP4-12C Coupe 2012 3.45% Acura Integra Type R 2001 2.95% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 Infiniti G Coupe IPL 2012 1.19% Jeep Grand Cherokee SUV 2012 1.18% Toyota 4Runner SUV 2012 1.17% Jeep Compass SUV 2012 1.15% Dodge Durango SUV 2007 1.09% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Lamborghini Aventador Coupe 2012 4.51% Chevrolet Corvette Convertible 2012 4.33% Dodge Charger SRT-8 2009 3.11% Nissan 240SX Coupe 1998 2.47% Volkswagen Beetle Hatchback 2012 2.42% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 7.98% Lamborghini Diablo Coupe 2001 6.5% McLaren MP4-12C Coupe 2012 6.1% Aston Martin Virage Coupe 2012 5.39% Ferrari 458 Italia Coupe 2012 4.92% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Ferrari California Convertible 2012 5.33% Ferrari 458 Italia Coupe 2012 3.9% Acura RL Sedan 2012 2.59% Audi TT RS Coupe 2012 2.31% BMW 3 Series Sedan 2012 2.19% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Lincoln Town Car Sedan 2011 1.85% BMW 6 Series Convertible 2007 1.84% Chevrolet Impala Sedan 2007 1.66% MINI Cooper Roadster Convertible 2012 1.53% Scion xD Hatchback 2012 1.41% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 17.71% Lamborghini Aventador Coupe 2012 9.32% Ferrari California Convertible 2012 4.81% Ferrari 458 Italia Convertible 2012 4.28% BMW M3 Coupe 2012 4.11% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Lincoln Town Car Sedan 2011 3.62% Honda Odyssey Minivan 2007 2.93% BMW ActiveHybrid 5 Sedan 2012 2.77% BMW 6 Series Convertible 2007 2.5% Ram C/V Cargo Van Minivan 2012 2.36% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Porsche Panamera Sedan 2012 2.32% Chrysler 300 SRT-8 2010 2.18% Hyundai Genesis Sedan 2012 2.0% Chevrolet Corvette ZR1 2012 1.4% GMC Acadia SUV 2012 1.27% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 16.37% McLaren MP4-12C Coupe 2012 8.17% Lamborghini Aventador Coupe 2012 6.73% Lamborghini Diablo Coupe 2001 6.57% Ferrari 458 Italia Convertible 2012 5.48% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 HUMMER H2 SUT Crew Cab 2009 8.92% BMW X6 SUV 2012 6.31% Dodge Ram Pickup 3500 Quad Cab 2009 5.66% Ford F-150 Regular Cab 2012 3.49% Buick Rainier SUV 2007 3.45% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Bentley Mulsanne Sedan 2011 3.47% Infiniti G Coupe IPL 2012 2.94% Hyundai Genesis Sedan 2012 2.07% Mazda Tribute SUV 2011 1.78% Acura ZDX Hatchback 2012 1.71% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Honda Odyssey Minivan 2007 1.55% Chevrolet Impala Sedan 2007 1.55% Ram C/V Cargo Van Minivan 2012 1.37% Plymouth Neon Coupe 1999 1.3% Dodge Caliber Wagon 2012 1.27% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Chevrolet Express Cargo Van 2007 2.36% HUMMER H2 SUT Crew Cab 2009 2.2% Dodge Sprinter Cargo Van 2009 2.06% Ford E-Series Wagon Van 2012 2.01% Chevrolet Traverse SUV 2012 1.87% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 FIAT 500 Abarth 2012 1.4% Nissan Juke Hatchback 2012 1.19% MINI Cooper Roadster Convertible 2012 1.17% Toyota 4Runner SUV 2012 1.16% Hyundai Azera Sedan 2012 1.07% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Dodge Caliber Wagon 2007 3.99% BMW M3 Coupe 2012 3.61% Chevrolet Camaro Convertible 2012 3.33% Suzuki Kizashi Sedan 2012 3.09% Honda Accord Coupe 2012 2.89% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 BMW ActiveHybrid 5 Sedan 2012 1.75% Audi A5 Coupe 2012 1.51% Ferrari FF Coupe 2012 1.47% Lincoln Town Car Sedan 2011 1.43% Chevrolet Silverado 2500HD Regular Cab 2012 1.42% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 3.7% Volkswagen Beetle Hatchback 2012 2.59% Lincoln Town Car Sedan 2011 2.45% BMW 6 Series Convertible 2007 2.38% Tesla Model S Sedan 2012 2.06% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 GMC Savana Van 2012 3.31% HUMMER H2 SUT Crew Cab 2009 2.74% Lamborghini Aventador Coupe 2012 2.21% Ford Mustang Convertible 2007 1.86% Ferrari California Convertible 2012 1.7% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Lincoln Town Car Sedan 2011 3.16% Rolls-Royce Phantom Sedan 2012 3.02% Ford Freestar Minivan 2007 2.6% Isuzu Ascender SUV 2008 2.54% Hyundai Elantra Touring Hatchback 2012 2.5% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 Dodge Sprinter Cargo Van 2009 2.82% Mercedes-Benz S-Class Sedan 2012 2.01% Dodge Dakota Club Cab 2007 1.98% Acura TL Type-S 2008 1.9% Volvo 240 Sedan 1993 1.74% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Cobalt SS 2010 11.53% Ford Mustang Convertible 2007 4.54% Ferrari FF Coupe 2012 4.4% Lamborghini Aventador Coupe 2012 3.9% Chevrolet Silverado 1500 Extended Cab 2012 3.64% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Audi R8 Coupe 2012 2.51% Chevrolet Impala Sedan 2007 2.17% Rolls-Royce Ghost Sedan 2012 2.11% Aston Martin V8 Vantage Convertible 2012 1.96% Lincoln Town Car Sedan 2011 1.84% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Dodge Sprinter Cargo Van 2009 7.79% Chevrolet Express Cargo Van 2007 6.97% Mercedes-Benz Sprinter Van 2012 5.65% GMC Savana Van 2012 5.27% Ford E-Series Wagon Van 2012 4.15% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chrysler 300 SRT-8 2010 3.69% Dodge Durango SUV 2012 3.62% Hyundai Veracruz SUV 2012 2.83% Chevrolet Monte Carlo Coupe 2007 2.48% Audi S4 Sedan 2007 2.25% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Plymouth Neon Coupe 1999 2.56% Bentley Arnage Sedan 2009 2.04% Rolls-Royce Ghost Sedan 2012 1.75% Audi TTS Coupe 2012 1.74% Cadillac CTS-V Sedan 2012 1.72% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Dodge Sprinter Cargo Van 2009 7.45% GMC Savana Van 2012 2.62% Audi A5 Coupe 2012 2.2% Mercedes-Benz Sprinter Van 2012 2.1% Chevrolet Express Van 2007 1.76% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Acura TL Sedan 2012 1.56% Lincoln Town Car Sedan 2011 1.51% Dodge Sprinter Cargo Van 2009 1.36% Mercedes-Benz Sprinter Van 2012 1.25% BMW 6 Series Convertible 2007 1.23% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Nissan Leaf Hatchback 2012 2.58% Chrysler Sebring Convertible 2010 1.91% Ram C/V Cargo Van Minivan 2012 1.82% Chrysler PT Cruiser Convertible 2008 1.69% Acura TL Sedan 2012 1.54% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Ford F-150 Regular Cab 2007 1.71% Lincoln Town Car Sedan 2011 1.63% Infiniti G Coupe IPL 2012 1.42% Hyundai Genesis Sedan 2012 1.22% Acura TSX Sedan 2012 1.21% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 1.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.07% Chevrolet Silverado 1500 Extended Cab 2012 1.04% Chrysler 300 SRT-8 2010 1.0% Chevrolet Traverse SUV 2012 0.99% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Ford F-150 Regular Cab 2007 2.71% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.29% Chrysler Aspen SUV 2009 1.96% GMC Terrain SUV 2012 1.88% Jeep Patriot SUV 2012 1.85% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Cadillac CTS-V Sedan 2012 7.56% Dodge Ram Pickup 3500 Quad Cab 2009 6.24% Chevrolet Silverado 1500 Extended Cab 2012 3.75% Mitsubishi Lancer Sedan 2012 3.43% Acura ZDX Hatchback 2012 3.12% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Bentley Arnage Sedan 2009 1.64% Cadillac CTS-V Sedan 2012 1.6% Ford Edge SUV 2012 1.59% Dodge Ram Pickup 3500 Crew Cab 2010 1.46% Dodge Charger SRT-8 2009 1.42% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Chrysler 300 SRT-8 2010 1.98% Bentley Mulsanne Sedan 2011 1.48% Dodge Challenger SRT8 2011 1.23% Jeep Compass SUV 2012 1.11% Rolls-Royce Phantom Sedan 2012 1.04% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Toyota 4Runner SUV 2012 2.65% Audi R8 Coupe 2012 2.24% Bentley Mulsanne Sedan 2011 1.97% MINI Cooper Roadster Convertible 2012 1.8% Infiniti G Coupe IPL 2012 1.7% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Dodge Sprinter Cargo Van 2009 1.57% Ram C/V Cargo Van Minivan 2012 1.43% BMW ActiveHybrid 5 Sedan 2012 1.25% Honda Odyssey Minivan 2007 1.22% BMW 6 Series Convertible 2007 1.11% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 HUMMER H3T Crew Cab 2010 4.9% HUMMER H2 SUT Crew Cab 2009 3.37% Dodge Charger SRT-8 2009 3.03% Aston Martin Virage Coupe 2012 2.87% Chevrolet Cobalt SS 2010 2.8% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Dodge Caliber Wagon 2007 7.17% Suzuki Kizashi Sedan 2012 4.64% Ferrari FF Coupe 2012 3.68% Ferrari 458 Italia Coupe 2012 3.32% Plymouth Neon Coupe 1999 2.83% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz S-Class Sedan 2012 3.45% FIAT 500 Convertible 2012 2.71% Audi TT Hatchback 2011 2.29% Chrysler PT Cruiser Convertible 2008 2.07% Dodge Caravan Minivan 1997 1.78% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 Eagle Talon Hatchback 1998 1.91% Lincoln Town Car Sedan 2011 1.77% BMW 6 Series Convertible 2007 1.69% Ford GT Coupe 2006 1.57% Bugatti Veyron 16.4 Convertible 2009 1.48% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Maybach Landaulet Convertible 2012 1.65% BMW 6 Series Convertible 2007 1.61% Rolls-Royce Ghost Sedan 2012 1.3% Lincoln Town Car Sedan 2011 1.29% Tesla Model S Sedan 2012 1.29% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Bentley Arnage Sedan 2009 2.13% Bugatti Veyron 16.4 Coupe 2009 1.31% Audi 100 Sedan 1994 1.26% Aston Martin V8 Vantage Coupe 2012 1.18% GMC Yukon Hybrid SUV 2012 1.15% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 12.61% Ferrari California Convertible 2012 11.51% Lamborghini Aventador Coupe 2012 11.05% Ferrari 458 Italia Convertible 2012 4.61% McLaren MP4-12C Coupe 2012 3.91% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Volkswagen Golf Hatchback 1991 2.55% BMW X5 SUV 2007 2.17% BMW M5 Sedan 2010 2.03% Infiniti G Coupe IPL 2012 1.62% Volvo 240 Sedan 1993 1.48% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 FIAT 500 Convertible 2012 3.91% Tesla Model S Sedan 2012 3.11% BMW 6 Series Convertible 2007 2.75% Aston Martin V8 Vantage Convertible 2012 2.22% Maybach Landaulet Convertible 2012 2.18% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Honda Accord Coupe 2012 11.04% Ferrari California Convertible 2012 7.52% Eagle Talon Hatchback 1998 6.62% BMW Z4 Convertible 2012 4.46% Chevrolet Camaro Convertible 2012 4.01% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Lincoln Town Car Sedan 2011 3.48% BMW ActiveHybrid 5 Sedan 2012 3.17% Chevrolet Malibu Sedan 2007 2.62% Suzuki Aerio Sedan 2007 2.35% Volkswagen Beetle Hatchback 2012 2.26% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 BMW ActiveHybrid 5 Sedan 2012 4.28% GMC Savana Van 2012 2.22% Jeep Liberty SUV 2012 1.81% Chrysler Aspen SUV 2009 1.78% Ram C/V Cargo Van Minivan 2012 1.77% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Chevrolet Corvette ZR1 2012 2.12% Audi S6 Sedan 2011 1.78% Chevrolet Silverado 1500 Extended Cab 2012 1.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.45% Infiniti G Coupe IPL 2012 1.43% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Buick Rainier SUV 2007 3.19% Ford F-150 Regular Cab 2007 2.56% BMW M5 Sedan 2010 2.22% Chrysler Aspen SUV 2009 1.94% Chrysler Sebring Convertible 2010 1.7% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.26% Mercedes-Benz S-Class Sedan 2012 2.02% Chrysler PT Cruiser Convertible 2008 1.96% Chrysler Sebring Convertible 2010 1.67% Acura TL Type-S 2008 1.26% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Chevrolet Traverse SUV 2012 3.13% Buick Rainier SUV 2007 3.08% Ford Ranger SuperCab 2011 2.64% BMW 1 Series Coupe 2012 2.55% Dodge Caliber Wagon 2012 2.28% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chrysler 300 SRT-8 2010 8.74% Chevrolet Silverado 2500HD Regular Cab 2012 6.47% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.44% Scion xD Hatchback 2012 3.19% BMW M6 Convertible 2010 2.93% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 GMC Savana Van 2012 1.98% Jeep Grand Cherokee SUV 2012 1.44% Chevrolet Express Cargo Van 2007 1.42% Dodge Sprinter Cargo Van 2009 1.36% Mercedes-Benz Sprinter Van 2012 1.16% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Audi A5 Coupe 2012 1.66% Chrysler 300 SRT-8 2010 1.62% Ford Ranger SuperCab 2011 1.51% GMC Acadia SUV 2012 1.46% Dodge Durango SUV 2012 1.42% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Dodge Sprinter Cargo Van 2009 1.85% Lincoln Town Car Sedan 2011 1.83% Tesla Model S Sedan 2012 1.79% BMW 6 Series Convertible 2007 1.77% FIAT 500 Convertible 2012 1.53% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Chevrolet Express Cargo Van 2007 5.02% Mercedes-Benz Sprinter Van 2012 3.5% Dodge Sprinter Cargo Van 2009 2.86% Ford E-Series Wagon Van 2012 1.97% BMW ActiveHybrid 5 Sedan 2012 1.68% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Rolls-Royce Phantom Sedan 2012 3.83% BMW ActiveHybrid 5 Sedan 2012 3.01% Daewoo Nubira Wagon 2002 2.16% Porsche Panamera Sedan 2012 1.54% Plymouth Neon Coupe 1999 1.43% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Hyundai Tucson SUV 2012 4.06% BMW ActiveHybrid 5 Sedan 2012 3.27% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.4% Suzuki SX4 Hatchback 2012 2.17% Dodge Caliber Wagon 2012 2.01% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Lincoln Town Car Sedan 2011 9.4% AM General Hummer SUV 2000 5.11% Chevrolet Camaro Convertible 2012 3.98% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.98% Ford Focus Sedan 2007 2.6% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Chrysler Sebring Convertible 2010 1.51% Hyundai Azera Sedan 2012 1.4% Ram C/V Cargo Van Minivan 2012 1.32% Nissan Leaf Hatchback 2012 1.29% Mercedes-Benz Sprinter Van 2012 1.13% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Aston Martin V8 Vantage Convertible 2012 2.68% Porsche Panamera Sedan 2012 2.03% Chrysler Sebring Convertible 2010 1.7% Acura TL Type-S 2008 1.62% BMW 6 Series Convertible 2007 1.52% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Maybach Landaulet Convertible 2012 5.59% Daewoo Nubira Wagon 2002 3.77% Dodge Caravan Minivan 1997 1.79% Audi V8 Sedan 1994 1.64% Bugatti Veyron 16.4 Coupe 2009 1.58% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Toyota 4Runner SUV 2012 3.13% Chevrolet Corvette ZR1 2012 2.18% Hyundai Genesis Sedan 2012 1.85% Bentley Mulsanne Sedan 2011 1.75% Audi S5 Coupe 2012 1.74% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 Ford GT Coupe 2006 8.06% Buick Rainier SUV 2007 5.72% BMW 1 Series Coupe 2012 4.68% Buick Verano Sedan 2012 4.16% Buick Enclave SUV 2012 3.97% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Dodge Caliber Wagon 2007 4.23% Ferrari 458 Italia Convertible 2012 3.5% BMW 3 Series Sedan 2012 3.48% Hyundai Veloster Hatchback 2012 2.74% Ferrari FF Coupe 2012 2.45% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Chevrolet Malibu Hybrid Sedan 2010 1.73% Dodge Caravan Minivan 1997 1.68% Cadillac CTS-V Sedan 2012 1.62% Toyota 4Runner SUV 2012 1.57% Scion xD Hatchback 2012 1.49% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Lamborghini Diablo Coupe 2001 4.25% AM General Hummer SUV 2000 3.01% Jeep Patriot SUV 2012 1.73% Acura Integra Type R 2001 1.5% Audi RS 4 Convertible 2008 1.36% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Chevrolet Express Van 2007 5.03% Dodge Challenger SRT8 2011 3.61% Suzuki SX4 Hatchback 2012 2.59% Dodge Ram Pickup 3500 Crew Cab 2010 2.57% Chrysler Sebring Convertible 2010 2.43% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Toyota Camry Sedan 2012 2.38% GMC Yukon Hybrid SUV 2012 2.22% Chevrolet Corvette ZR1 2012 2.05% Acura TL Type-S 2008 1.99% Honda Accord Sedan 2012 1.9% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Ferrari California Convertible 2012 24.95% BMW 3 Series Sedan 2012 8.23% Ferrari 458 Italia Convertible 2012 6.98% Ferrari 458 Italia Coupe 2012 5.63% Dodge Journey SUV 2012 4.6% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 4.1% Jeep Liberty SUV 2012 3.79% Dodge Caliber Wagon 2012 2.51% Ram C/V Cargo Van Minivan 2012 2.3% Volkswagen Golf Hatchback 2012 1.96% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Audi S6 Sedan 2011 2.26% HUMMER H2 SUT Crew Cab 2009 1.8% Ford E-Series Wagon Van 2012 1.53% GMC Yukon Hybrid SUV 2012 1.4% BMW X5 SUV 2007 1.28% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Hyundai Veloster Hatchback 2012 4.02% Lincoln Town Car Sedan 2011 3.09% Buick Regal GS 2012 3.05% Acura ZDX Hatchback 2012 2.82% Porsche Panamera Sedan 2012 2.79% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Dodge Caravan Minivan 1997 1.34% Lamborghini Reventon Coupe 2008 1.19% Ford E-Series Wagon Van 2012 1.15% Jeep Patriot SUV 2012 1.11% Hyundai Santa Fe SUV 2012 1.04% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Bugatti Veyron 16.4 Coupe 2009 2.45% Volvo 240 Sedan 1993 2.42% Daewoo Nubira Wagon 2002 2.4% Bentley Mulsanne Sedan 2011 1.95% Mercedes-Benz C-Class Sedan 2012 1.76% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Mazda Tribute SUV 2011 2.3% Bentley Mulsanne Sedan 2011 2.19% Volvo 240 Sedan 1993 2.01% Chrysler Aspen SUV 2009 1.91% Daewoo Nubira Wagon 2002 1.59% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 FIAT 500 Convertible 2012 4.23% Dodge Caravan Minivan 1997 2.76% Daewoo Nubira Wagon 2002 2.48% Bugatti Veyron 16.4 Convertible 2009 2.16% Acura TL Type-S 2008 2.15% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Chevrolet Cobalt SS 2010 8.65% Lamborghini Aventador Coupe 2012 5.65% Dodge Caliber Wagon 2007 5.55% Dodge Charger SRT-8 2009 5.42% Dodge Magnum Wagon 2008 4.09% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Bentley Continental Supersports Conv. Convertible 2012 3.34% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.59% Chevrolet Camaro Convertible 2012 2.47% BMW 6 Series Convertible 2007 2.37% Suzuki Aerio Sedan 2007 2.35% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Chevrolet Cobalt SS 2010 7.86% Ferrari FF Coupe 2012 5.31% GMC Canyon Extended Cab 2012 4.05% Ferrari 458 Italia Coupe 2012 3.23% Dodge Caliber Wagon 2007 3.1% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Dodge Caravan Minivan 1997 1.36% Jeep Patriot SUV 2012 1.18% Ford E-Series Wagon Van 2012 1.09% Lamborghini Reventon Coupe 2008 1.07% Hyundai Santa Fe SUV 2012 1.05% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Jeep Compass SUV 2012 2.27% Audi 100 Sedan 1994 2.0% Jaguar XK XKR 2012 1.69% Chrysler Sebring Convertible 2010 1.64% Volvo 240 Sedan 1993 1.57% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.43% Chrysler 300 SRT-8 2010 1.36% Chevrolet Silverado 2500HD Regular Cab 2012 1.21% Chevrolet TrailBlazer SS 2009 1.21% Aston Martin V8 Vantage Coupe 2012 1.14% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Chevrolet Express Cargo Van 2007 5.62% GMC Savana Van 2012 3.77% Dodge Sprinter Cargo Van 2009 3.54% Isuzu Ascender SUV 2008 3.0% Mercedes-Benz Sprinter Van 2012 2.9% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.13% Chrysler 300 SRT-8 2010 0.97% GMC Yukon Hybrid SUV 2012 0.86% Lincoln Town Car Sedan 2011 0.83% Bentley Arnage Sedan 2009 0.82% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 9.56% Ford Mustang Convertible 2007 2.59% Mercedes-Benz S-Class Sedan 2012 2.48% Chevrolet Corvette ZR1 2012 2.02% MINI Cooper Roadster Convertible 2012 1.89% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Cadillac Escalade EXT Crew Cab 2007 2.69% Toyota 4Runner SUV 2012 2.54% Audi 100 Wagon 1994 2.42% Audi S6 Sedan 2011 2.34% Audi V8 Sedan 1994 2.03% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Ford Freestar Minivan 2007 2.29% Ford F-150 Regular Cab 2012 2.05% BMW X5 SUV 2007 1.74% Chrysler Sebring Convertible 2010 1.59% Dodge Dakota Club Cab 2007 1.55% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Nissan Juke Hatchback 2012 5.38% Hyundai Sonata Sedan 2012 4.79% BMW X6 SUV 2012 3.6% Ford GT Coupe 2006 3.13% Dodge Caliber Wagon 2012 2.71% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.98% Dodge Caliber Wagon 2012 1.6% Chrysler Sebring Convertible 2010 1.57% Mercedes-Benz S-Class Sedan 2012 1.5% Maybach Landaulet Convertible 2012 1.5% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Aston Martin Virage Coupe 2012 7.45% Lamborghini Aventador Coupe 2012 6.52% Ferrari 458 Italia Convertible 2012 6.18% Dodge Caliber Wagon 2007 4.02% Ferrari 458 Italia Coupe 2012 3.74% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Silverado 2500HD Regular Cab 2012 4.05% Chevrolet Express Cargo Van 2007 3.12% GMC Savana Van 2012 2.66% Chevrolet Silverado 1500 Regular Cab 2012 1.95% Ford F-150 Regular Cab 2012 1.83% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Rolls-Royce Ghost Sedan 2012 2.34% Cadillac CTS-V Sedan 2012 2.1% Chrysler Aspen SUV 2009 1.85% Audi TTS Coupe 2012 1.65% Plymouth Neon Coupe 1999 1.56% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Chevrolet Express Cargo Van 2007 3.01% GMC Savana Van 2012 2.65% Chevrolet Express Van 2007 1.67% Jeep Grand Cherokee SUV 2012 1.61% BMW X5 SUV 2007 1.38% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette ZR1 2012 4.15% Chrysler Sebring Convertible 2010 2.88% Audi S4 Sedan 2012 2.88% Acura TL Type-S 2008 1.98% Chevrolet Malibu Hybrid Sedan 2010 1.75% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 2.19% AM General Hummer SUV 2000 1.72% Bugatti Veyron 16.4 Coupe 2009 1.56% Dodge Charger SRT-8 2009 1.38% Bentley Arnage Sedan 2009 1.31% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.08% Ford F-150 Regular Cab 2012 1.97% Honda Accord Coupe 2012 1.72% Audi A5 Coupe 2012 1.67% Ford Ranger SuperCab 2011 1.65% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 4.93% AM General Hummer SUV 2000 2.55% Audi RS 4 Convertible 2008 2.34% Acura Integra Type R 2001 2.02% Aston Martin Virage Coupe 2012 1.9% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Buick Enclave SUV 2012 8.17% Chevrolet Silverado 1500 Regular Cab 2012 7.16% BMW X6 SUV 2012 6.26% Ford Mustang Convertible 2007 4.1% Dodge Ram Pickup 3500 Quad Cab 2009 3.78% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Dodge Sprinter Cargo Van 2009 2.96% Chevrolet Express Cargo Van 2007 2.14% Chevrolet Traverse SUV 2012 1.92% Mercedes-Benz Sprinter Van 2012 1.59% Ford E-Series Wagon Van 2012 1.53% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.9% Lincoln Town Car Sedan 2011 2.75% BMW 6 Series Convertible 2007 1.98% Honda Odyssey Minivan 2007 1.86% Rolls-Royce Phantom Sedan 2012 1.64% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Fisker Karma Sedan 2012 5.35% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.0% Aston Martin Virage Convertible 2012 2.76% Chevrolet Camaro Convertible 2012 2.67% Mercedes-Benz 300-Class Convertible 1993 2.59% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Jeep Grand Cherokee SUV 2012 1.5% Chrysler Aspen SUV 2009 1.45% Buick Rainier SUV 2007 1.39% GMC Acadia SUV 2012 1.31% BMW X5 SUV 2007 1.2% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Lincoln Town Car Sedan 2011 2.45% BMW 6 Series Convertible 2007 1.75% Tesla Model S Sedan 2012 1.67% Chevrolet Impala Sedan 2007 1.63% BMW ActiveHybrid 5 Sedan 2012 1.58% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 1.45% Chevrolet Monte Carlo Coupe 2007 1.28% Dodge Durango SUV 2007 1.26% Cadillac CTS-V Sedan 2012 1.25% Jeep Grand Cherokee SUV 2012 1.23% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chrysler Aspen SUV 2009 4.61% Jeep Liberty SUV 2012 4.35% Jeep Patriot SUV 2012 3.99% Audi S4 Sedan 2012 3.37% Dodge Ram Pickup 3500 Crew Cab 2010 2.82% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Rolls-Royce Phantom Sedan 2012 4.15% BMW ActiveHybrid 5 Sedan 2012 3.83% Mercedes-Benz S-Class Sedan 2012 2.53% Chrysler PT Cruiser Convertible 2008 2.05% Chrysler Sebring Convertible 2010 1.77% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 5.96% Chevrolet Silverado 1500 Regular Cab 2012 3.47% Chevrolet Silverado 1500 Extended Cab 2012 2.23% GMC Savana Van 2012 2.09% BMW ActiveHybrid 5 Sedan 2012 1.8% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Bentley Arnage Sedan 2009 4.07% Chevrolet Monte Carlo Coupe 2007 2.38% Hyundai Genesis Sedan 2012 2.34% Jeep Patriot SUV 2012 2.11% Bugatti Veyron 16.4 Coupe 2009 2.01% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Acura ZDX Hatchback 2012 2.0% Chevrolet Silverado 1500 Extended Cab 2012 1.79% Honda Accord Sedan 2012 1.78% BMW ActiveHybrid 5 Sedan 2012 1.57% BMW 1 Series Convertible 2012 1.48% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Acura RL Sedan 2012 4.77% Buick Verano Sedan 2012 4.12% BMW 3 Series Sedan 2012 3.23% Ferrari California Convertible 2012 2.95% Honda Accord Coupe 2012 2.72% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Express Cargo Van 2007 2.52% GMC Savana Van 2012 2.1% Chevrolet Silverado 1500 Regular Cab 2012 1.24% Ford E-Series Wagon Van 2012 1.23% Chevrolet Silverado 2500HD Regular Cab 2012 1.18% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Ferrari FF Coupe 2012 2.18% Audi 100 Wagon 1994 2.04% Dodge Caliber Wagon 2012 1.74% Ford GT Coupe 2006 1.66% BMW X6 SUV 2012 1.58% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Aston Martin Virage Coupe 2012 20.13% McLaren MP4-12C Coupe 2012 8.91% Chevrolet HHR SS 2010 8.43% Lamborghini Diablo Coupe 2001 7.37% Lamborghini Aventador Coupe 2012 6.3% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Acura Integra Type R 2001 2.18% Suzuki Aerio Sedan 2007 2.13% Daewoo Nubira Wagon 2002 1.68% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.67% Maybach Landaulet Convertible 2012 1.65% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Hyundai Azera Sedan 2012 3.14% Lamborghini Reventon Coupe 2008 2.04% Acura ZDX Hatchback 2012 1.75% Aston Martin V8 Vantage Coupe 2012 1.65% BMW M3 Coupe 2012 1.57% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 BMW ActiveHybrid 5 Sedan 2012 2.32% Mercedes-Benz Sprinter Van 2012 1.96% Dodge Sprinter Cargo Van 2009 1.77% GMC Savana Van 2012 1.47% Chevrolet Express Cargo Van 2007 1.41% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 7.71% BMW 3 Series Sedan 2012 5.51% Ferrari 458 Italia Coupe 2012 5.5% Dodge Magnum Wagon 2008 4.64% Lamborghini Aventador Coupe 2012 3.78% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet Silverado 1500 Extended Cab 2012 2.32% GMC Savana Van 2012 2.18% BMW ActiveHybrid 5 Sedan 2012 1.79% Mercedes-Benz SL-Class Coupe 2009 1.77% Honda Accord Sedan 2012 1.66% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 Acura ZDX Hatchback 2012 1.32% Hyundai Azera Sedan 2012 1.28% Rolls-Royce Phantom Sedan 2012 1.23% Bentley Arnage Sedan 2009 1.14% Chevrolet Corvette ZR1 2012 1.11% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Buick Rainier SUV 2007 2.19% GMC Terrain SUV 2012 1.51% Chrysler Aspen SUV 2009 1.5% Honda Odyssey Minivan 2007 1.46% BMW M5 Sedan 2010 1.42% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Dodge Caliber Wagon 2007 3.7% Ferrari 458 Italia Coupe 2012 3.4% Hyundai Elantra Sedan 2007 3.29% Dodge Magnum Wagon 2008 2.99% Ferrari 458 Italia Convertible 2012 2.88% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Sprinter Cargo Van 2009 2.09% Ram C/V Cargo Van Minivan 2012 1.9% Audi TT Hatchback 2011 1.81% Volkswagen Golf Hatchback 2012 1.72% Honda Odyssey Minivan 2007 1.66% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 BMW M5 Sedan 2010 2.72% Volkswagen Golf Hatchback 1991 2.08% Eagle Talon Hatchback 1998 1.89% GMC Terrain SUV 2012 1.75% Acura RL Sedan 2012 1.71% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Dodge Magnum Wagon 2008 6.02% Audi TT RS Coupe 2012 5.16% BMW Z4 Convertible 2012 3.35% Ferrari California Convertible 2012 3.18% BMW 3 Series Sedan 2012 2.99% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 GMC Yukon Hybrid SUV 2012 1.85% GMC Savana Van 2012 1.57% Honda Odyssey Minivan 2007 1.5% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.43% Ford E-Series Wagon Van 2012 1.41% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Ford F-150 Regular Cab 2007 3.08% Chevrolet TrailBlazer SS 2009 2.89% Bugatti Veyron 16.4 Coupe 2009 2.81% Mercedes-Benz 300-Class Convertible 1993 2.49% Chevrolet Corvette ZR1 2012 1.95% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Dodge Sprinter Cargo Van 2009 3.34% Mercedes-Benz Sprinter Van 2012 2.61% GMC Savana Van 2012 2.06% Ford E-Series Wagon Van 2012 1.72% Isuzu Ascender SUV 2008 1.37% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Lamborghini Aventador Coupe 2012 3.57% Chevrolet Camaro Convertible 2012 2.79% BMW 1 Series Coupe 2012 2.47% Ferrari 458 Italia Coupe 2012 2.27% Ferrari California Convertible 2012 2.15% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Ferrari 458 Italia Convertible 2012 5.74% Ferrari 458 Italia Coupe 2012 5.01% Lamborghini Aventador Coupe 2012 4.47% Aston Martin Virage Coupe 2012 4.39% Dodge Caliber Wagon 2007 4.18% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Dodge Charger SRT-8 2009 9.53% Lamborghini Aventador Coupe 2012 5.89% Ferrari California Convertible 2012 4.35% Ferrari 458 Italia Coupe 2012 3.91% Dodge Caliber Wagon 2007 3.79% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Fisker Karma Sedan 2012 3.55% Jeep Compass SUV 2012 2.78% Jeep Patriot SUV 2012 2.71% GMC Yukon Hybrid SUV 2012 2.49% Audi R8 Coupe 2012 2.29% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Buick Rainier SUV 2007 3.28% GMC Canyon Extended Cab 2012 2.57% Dodge Caliber Wagon 2007 2.51% Dodge Caliber Wagon 2012 2.36% Suzuki SX4 Hatchback 2012 2.36% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 GMC Yukon Hybrid SUV 2012 2.28% Rolls-Royce Ghost Sedan 2012 2.09% Bugatti Veyron 16.4 Coupe 2009 2.04% Jaguar XK XKR 2012 1.87% GMC Savana Van 2012 1.74% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Mercedes-Benz Sprinter Van 2012 1.72% Dodge Sprinter Cargo Van 2009 1.46% BMW ActiveHybrid 5 Sedan 2012 1.34% Chevrolet Express Cargo Van 2007 1.3% Audi A5 Coupe 2012 1.25% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Honda Odyssey Minivan 2007 0.99% Dodge Caravan Minivan 1997 0.98% Lincoln Town Car Sedan 2011 0.95% GMC Savana Van 2012 0.95% Audi A5 Coupe 2012 0.92% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Aston Martin Virage Coupe 2012 10.15% Lamborghini Aventador Coupe 2012 9.59% Chevrolet HHR SS 2010 9.25% Volvo C30 Hatchback 2012 6.31% Dodge Charger SRT-8 2009 6.31% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 BMW M3 Coupe 2012 4.2% Dodge Caliber Wagon 2007 3.64% Ferrari 458 Italia Coupe 2012 2.73% Scion xD Hatchback 2012 2.71% Lamborghini Aventador Coupe 2012 2.58% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 BMW 6 Series Convertible 2007 2.34% Lincoln Town Car Sedan 2011 1.93% Volkswagen Golf Hatchback 2012 1.93% FIAT 500 Convertible 2012 1.67% Toyota Corolla Sedan 2012 1.5% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Chrysler Sebring Convertible 2010 1.94% Hyundai Azera Sedan 2012 1.89% Chrysler PT Cruiser Convertible 2008 1.8% Ram C/V Cargo Van Minivan 2012 1.73% Acura TL Type-S 2008 1.58% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Lincoln Town Car Sedan 2011 4.57% Spyker C8 Coupe 2009 4.48% Aston Martin Virage Convertible 2012 3.62% Chevrolet Sonic Sedan 2012 3.4% Ram C/V Cargo Van Minivan 2012 3.25% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Honda Odyssey Minivan 2007 1.82% Volvo 240 Sedan 1993 1.68% Lincoln Town Car Sedan 2011 1.61% Chevrolet Impala Sedan 2007 1.58% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.53% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Mercedes-Benz S-Class Sedan 2012 3.89% Acura ZDX Hatchback 2012 3.32% Dodge Caravan Minivan 1997 2.97% Audi TT Hatchback 2011 2.24% Chrysler PT Cruiser Convertible 2008 2.21% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Hyundai Genesis Sedan 2012 2.46% Ford F-150 Regular Cab 2007 2.1% Bentley Continental Supersports Conv. Convertible 2012 1.79% BMW 6 Series Convertible 2007 1.65% Audi V8 Sedan 1994 1.57% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 BMW X3 SUV 2012 2.83% MINI Cooper Roadster Convertible 2012 2.67% Ford Edge SUV 2012 2.37% Chrysler Aspen SUV 2009 2.23% BMW M6 Convertible 2010 1.83% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Ford F-150 Regular Cab 2007 3.77% Dodge Ram Pickup 3500 Quad Cab 2009 2.76% Chevrolet Silverado 1500 Regular Cab 2012 2.38% Dodge Durango SUV 2007 2.22% GMC Savana Van 2012 1.98% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 BMW 1 Series Convertible 2012 3.69% Chrysler 300 SRT-8 2010 3.35% Chrysler Aspen SUV 2009 3.22% Jeep Liberty SUV 2012 2.62% Dodge Ram Pickup 3500 Crew Cab 2010 2.37% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 5.97% GMC Savana Van 2012 5.1% Chrysler Aspen SUV 2009 3.32% Ford Ranger SuperCab 2011 2.65% Ford Edge SUV 2012 2.64% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 1.7% BMW 6 Series Convertible 2007 1.42% Isuzu Ascender SUV 2008 1.39% GMC Yukon Hybrid SUV 2012 1.23% Chevrolet Avalanche Crew Cab 2012 1.2% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Audi TT Hatchback 2011 3.54% Dodge Sprinter Cargo Van 2009 3.49% Buick Regal GS 2012 2.83% Mercedes-Benz SL-Class Coupe 2009 2.58% Toyota Camry Sedan 2012 2.35% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Chevrolet Express Cargo Van 2007 3.68% GMC Savana Van 2012 2.4% Dodge Caravan Minivan 1997 1.78% Isuzu Ascender SUV 2008 1.68% Mercedes-Benz Sprinter Van 2012 1.68% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Nissan Leaf Hatchback 2012 3.93% Chrysler Sebring Convertible 2010 3.07% Mercedes-Benz Sprinter Van 2012 3.02% Chrysler PT Cruiser Convertible 2008 2.48% Ram C/V Cargo Van Minivan 2012 2.46% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 5.94% Dodge Challenger SRT8 2011 2.15% Audi RS 4 Convertible 2008 1.87% Dodge Charger SRT-8 2009 1.81% Geo Metro Convertible 1993 1.38% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Chrysler 300 SRT-8 2010 1.07% Audi S6 Sedan 2011 1.01% Rolls-Royce Phantom Sedan 2012 0.99% Bugatti Veyron 16.4 Coupe 2009 0.99% Chevrolet TrailBlazer SS 2009 0.95% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Dodge Caravan Minivan 1997 4.08% Daewoo Nubira Wagon 2002 1.88% Nissan Leaf Hatchback 2012 1.71% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.56% Honda Odyssey Minivan 2007 1.37% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Audi S6 Sedan 2011 2.9% Ford F-150 Regular Cab 2012 2.07% Dodge Durango SUV 2007 1.99% Chevrolet Avalanche Crew Cab 2012 1.98% HUMMER H2 SUT Crew Cab 2009 1.9% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 FIAT 500 Convertible 2012 3.78% Chevrolet Camaro Convertible 2012 2.45% Chevrolet Impala Sedan 2007 2.41% Lincoln Town Car Sedan 2011 2.16% Chrysler Sebring Convertible 2010 1.67% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Chrysler 300 SRT-8 2010 2.26% Honda Accord Coupe 2012 1.46% Scion xD Hatchback 2012 1.42% BMW ActiveHybrid 5 Sedan 2012 1.31% Audi S4 Sedan 2012 1.28% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 BMW M6 Convertible 2010 3.99% Lamborghini Aventador Coupe 2012 3.2% Chevrolet Camaro Convertible 2012 2.49% Bentley Mulsanne Sedan 2011 2.37% Lincoln Town Car Sedan 2011 2.06% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Chrysler 300 SRT-8 2010 1.87% Audi RS 4 Convertible 2008 1.83% BMW 6 Series Convertible 2007 1.54% Chevrolet Silverado 1500 Extended Cab 2012 1.51% Cadillac Escalade EXT Crew Cab 2007 1.46% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 BMW 6 Series Convertible 2007 3.01% Mercedes-Benz S-Class Sedan 2012 2.37% Lincoln Town Car Sedan 2011 2.25% Aston Martin V8 Vantage Convertible 2012 1.62% Volkswagen Golf Hatchback 2012 1.59% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Ford Ranger SuperCab 2011 3.98% Buick Verano Sedan 2012 3.43% Buick Rainier SUV 2007 3.21% BMW 1 Series Coupe 2012 2.78% Chevrolet Traverse SUV 2012 2.64% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 3.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.44% GMC Yukon Hybrid SUV 2012 1.39% Chevrolet Malibu Sedan 2007 1.38% Audi S6 Sedan 2011 1.28% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.55% Dodge Caravan Minivan 1997 2.16% Plymouth Neon Coupe 1999 1.95% Scion xD Hatchback 2012 1.44% Ram C/V Cargo Van Minivan 2012 1.38% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 3.09% GMC Yukon Hybrid SUV 2012 2.23% Rolls-Royce Ghost Sedan 2012 1.87% Jaguar XK XKR 2012 1.87% MINI Cooper Roadster Convertible 2012 1.8% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 MINI Cooper Roadster Convertible 2012 4.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.61% BMW M3 Coupe 2012 1.73% Audi S4 Sedan 2007 1.68% BMW M6 Convertible 2010 1.57% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 2.39% Chevrolet Express Van 2007 1.43% Chrysler 300 SRT-8 2010 1.3% Hyundai Veracruz SUV 2012 1.23% Ford E-Series Wagon Van 2012 1.18% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Abarth 2012 8.13% Mercedes-Benz E-Class Sedan 2012 3.72% Chevrolet Sonic Sedan 2012 3.71% Audi 100 Wagon 1994 2.22% Dodge Challenger SRT8 2011 2.18% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Bentley Arnage Sedan 2009 1.91% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.9% Bentley Mulsanne Sedan 2011 1.75% Jeep Grand Cherokee SUV 2012 1.51% Spyker C8 Convertible 2009 1.43% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Chevrolet Silverado 1500 Extended Cab 2012 1.53% GMC Savana Van 2012 1.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.18% Chrysler Sebring Convertible 2010 1.16% GMC Terrain SUV 2012 1.14% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Dodge Caravan Minivan 1997 1.76% Chrysler Sebring Convertible 2010 1.65% Audi 100 Sedan 1994 1.51% Chrysler PT Cruiser Convertible 2008 1.51% Jaguar XK XKR 2012 1.43% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 3.8% Ferrari FF Coupe 2012 1.97% Tesla Model S Sedan 2012 1.67% Ram C/V Cargo Van Minivan 2012 1.55% Suzuki Aerio Sedan 2007 1.42% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Lincoln Town Car Sedan 2011 1.97% Bugatti Veyron 16.4 Coupe 2009 1.3% Audi 100 Sedan 1994 1.18% Chevrolet Silverado 1500 Regular Cab 2012 1.06% Chevrolet Silverado 2500HD Regular Cab 2012 1.04% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Chrysler 300 SRT-8 2010 2.45% Cadillac Escalade EXT Crew Cab 2007 1.58% BMW 6 Series Convertible 2007 1.45% Audi S4 Sedan 2012 1.4% BMW M6 Convertible 2010 1.28% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Toyota 4Runner SUV 2012 3.87% Chevrolet Corvette ZR1 2012 3.71% GMC Savana Van 2012 2.9% Audi S6 Sedan 2011 2.62% Cadillac Escalade EXT Crew Cab 2007 1.96% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 3.38% HUMMER H2 SUT Crew Cab 2009 2.22% Bugatti Veyron 16.4 Coupe 2009 1.69% GMC Yukon Hybrid SUV 2012 1.59% Chevrolet TrailBlazer SS 2009 1.58% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 Ford F-150 Regular Cab 2012 2.02% BMW X5 SUV 2007 1.88% Chrysler Aspen SUV 2009 1.55% Ford F-150 Regular Cab 2007 1.35% Chevrolet Silverado 2500HD Regular Cab 2012 1.29% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% Dodge Sprinter Cargo Van 2009 1.64% Maybach Landaulet Convertible 2012 1.56% Daewoo Nubira Wagon 2002 1.49% Ford E-Series Wagon Van 2012 1.43% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Silverado 1500 Extended Cab 2012 5.49% Chevrolet Camaro Convertible 2012 4.46% Hyundai Elantra Touring Hatchback 2012 2.5% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.07% Buick Regal GS 2012 2.03% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 Mercedes-Benz Sprinter Van 2012 2.34% Porsche Panamera Sedan 2012 1.57% BMW X3 SUV 2012 1.48% Acura TL Sedan 2012 1.41% Acura TSX Sedan 2012 1.4% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.44% GMC Acadia SUV 2012 1.89% Chrysler Sebring Convertible 2010 1.58% BMW M5 Sedan 2010 1.57% Buick Rainier SUV 2007 1.56% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Chrysler Sebring Convertible 2010 1.72% Buick Rainier SUV 2007 1.42% BMW M5 Sedan 2010 1.39% Lincoln Town Car Sedan 2011 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.23% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Toyota 4Runner SUV 2012 2.25% Infiniti G Coupe IPL 2012 1.94% Jeep Liberty SUV 2012 1.46% Chevrolet Tahoe Hybrid SUV 2012 1.41% Bentley Mulsanne Sedan 2011 1.34% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Dodge Sprinter Cargo Van 2009 32.93% Mercedes-Benz Sprinter Van 2012 7.67% Chevrolet Express Van 2007 2.68% Audi TT Hatchback 2011 2.61% Isuzu Ascender SUV 2008 2.35% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Ram C/V Cargo Van Minivan 2012 3.01% Dodge Sprinter Cargo Van 2009 1.83% Chrysler Sebring Convertible 2010 1.8% Audi TT Hatchback 2011 1.73% Mercedes-Benz Sprinter Van 2012 1.53% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Chevrolet TrailBlazer SS 2009 10.88% Dodge Ram Pickup 3500 Crew Cab 2010 6.11% Bentley Mulsanne Sedan 2011 4.2% Audi V8 Sedan 1994 3.65% Volvo 240 Sedan 1993 3.59% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Ford Ranger SuperCab 2011 4.73% Audi S4 Sedan 2012 4.57% GMC Acadia SUV 2012 3.68% Chevrolet Malibu Hybrid Sedan 2010 3.08% BMW M5 Sedan 2010 3.08% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Toyota 4Runner SUV 2012 2.65% Chevrolet Corvette ZR1 2012 2.42% Cadillac Escalade EXT Crew Cab 2007 2.27% Audi S5 Coupe 2012 1.58% GMC Savana Van 2012 1.58% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Maybach Landaulet Convertible 2012 1.83% Ram C/V Cargo Van Minivan 2012 1.47% Tesla Model S Sedan 2012 1.4% Chrysler Sebring Convertible 2010 1.39% Honda Odyssey Minivan 2007 1.35% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Dodge Magnum Wagon 2008 5.02% Ferrari 458 Italia Convertible 2012 4.56% Ferrari California Convertible 2012 4.25% Ferrari 458 Italia Coupe 2012 3.56% Hyundai Elantra Sedan 2007 3.55% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Dodge Charger Sedan 2012 5.59% Hyundai Veloster Hatchback 2012 4.98% Honda Odyssey Minivan 2012 2.24% Jeep Liberty SUV 2012 2.17% Ford F-150 Regular Cab 2007 1.82% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Chrysler PT Cruiser Convertible 2008 2.77% Mercedes-Benz S-Class Sedan 2012 2.65% Acura ZDX Hatchback 2012 2.5% Ram C/V Cargo Van Minivan 2012 2.28% Aston Martin V8 Vantage Convertible 2012 2.22% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 10.03% Lamborghini Aventador Coupe 2012 7.61% BMW M3 Coupe 2012 7.17% Aston Martin Virage Coupe 2012 5.88% Ferrari California Convertible 2012 4.26% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Chrysler Sebring Convertible 2010 2.3% Ford F-150 Regular Cab 2007 1.77% Acura TL Type-S 2008 1.41% Ford Expedition EL SUV 2009 1.3% Chevrolet Silverado 1500 Regular Cab 2012 1.27% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Dodge Ram Pickup 3500 Crew Cab 2010 1.8% GMC Terrain SUV 2012 1.59% Bentley Arnage Sedan 2009 1.41% GMC Acadia SUV 2012 1.41% Audi 100 Sedan 1994 1.38% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 BMW 1 Series Coupe 2012 3.32% Dodge Dakota Club Cab 2007 2.79% Chevrolet Malibu Sedan 2007 2.56% Aston Martin Virage Coupe 2012 2.28% Hyundai Veloster Hatchback 2012 2.07% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Rolls-Royce Ghost Sedan 2012 2.13% Ford Expedition EL SUV 2009 1.73% Chevrolet Avalanche Crew Cab 2012 1.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.28% Bentley Arnage Sedan 2009 1.24% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Ferrari FF Coupe 2012 7.8% Ford GT Coupe 2006 7.76% Lamborghini Aventador Coupe 2012 6.15% Dodge Caliber Wagon 2007 4.16% BMW 1 Series Coupe 2012 3.89% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler 300 SRT-8 2010 2.33% GMC Savana Van 2012 1.57% Chevrolet Silverado 2500HD Regular Cab 2012 1.39% Bentley Continental Flying Spur Sedan 2007 1.34% Audi 100 Sedan 1994 1.33% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 BMW M3 Coupe 2012 2.69% Ferrari FF Coupe 2012 2.55% Ferrari 458 Italia Convertible 2012 2.45% Dodge Caliber Wagon 2007 1.96% Ferrari 458 Italia Coupe 2012 1.88% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Dodge Sprinter Cargo Van 2009 1.81% Mercedes-Benz Sprinter Van 2012 1.73% MINI Cooper Roadster Convertible 2012 1.42% Nissan Leaf Hatchback 2012 1.35% Audi TT Hatchback 2011 1.33% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Plymouth Neon Coupe 1999 3.36% Honda Accord Coupe 2012 2.2% Ford GT Coupe 2006 1.96% Ferrari FF Coupe 2012 1.91% Eagle Talon Hatchback 1998 1.85% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Chevrolet Corvette ZR1 2012 1.46% Chrysler 300 SRT-8 2010 1.46% Hyundai Santa Fe SUV 2012 1.21% BMW M5 Sedan 2010 1.17% GMC Acadia SUV 2012 1.07% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 McLaren MP4-12C Coupe 2012 18.57% Aston Martin Virage Coupe 2012 8.67% Lamborghini Aventador Coupe 2012 4.41% HUMMER H3T Crew Cab 2010 3.75% Lamborghini Diablo Coupe 2001 3.16% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 1500 Extended Cab 2012 2.92% Audi RS 4 Convertible 2008 2.37% BMW X3 SUV 2012 2.04% Spyker C8 Convertible 2009 1.92% Chrysler 300 SRT-8 2010 1.88% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Dodge Caravan Minivan 1997 1.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.91% Chevrolet Monte Carlo Coupe 2007 1.47% MINI Cooper Roadster Convertible 2012 1.28% Chrysler PT Cruiser Convertible 2008 1.28% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Rolls-Royce Phantom Sedan 2012 2.46% Ram C/V Cargo Van Minivan 2012 1.63% Dodge Caravan Minivan 1997 1.36% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.3% Audi S6 Sedan 2011 1.28% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.45% Acura ZDX Hatchback 2012 2.13% Honda Odyssey Minivan 2007 1.75% Acura TL Sedan 2012 1.56% Audi TT Hatchback 2011 1.54% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Bentley Continental Flying Spur Sedan 2007 1.9% Plymouth Neon Coupe 1999 1.67% Audi S4 Sedan 2007 1.6% Bentley Arnage Sedan 2009 1.59% Lamborghini Reventon Coupe 2008 1.59% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 GMC Yukon Hybrid SUV 2012 1.9% GMC Savana Van 2012 1.62% Dodge Durango SUV 2007 1.62% Audi S5 Coupe 2012 1.37% Chrysler PT Cruiser Convertible 2008 1.37% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 2.03% Acura TL Type-S 2008 1.98% Mercedes-Benz S-Class Sedan 2012 1.98% Daewoo Nubira Wagon 2002 1.91% Acura TL Sedan 2012 1.9% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Bentley Mulsanne Sedan 2011 6.69% Dodge Ram Pickup 3500 Crew Cab 2010 3.03% Jeep Liberty SUV 2012 3.01% Chevrolet Malibu Hybrid Sedan 2010 2.96% Land Rover Range Rover SUV 2012 2.76% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 GMC Savana Van 2012 2.89% Mercedes-Benz Sprinter Van 2012 2.08% Dodge Sprinter Cargo Van 2009 1.98% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.94% Chevrolet Express Cargo Van 2007 1.89% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Malibu Hybrid Sedan 2010 12.43% Chevrolet Corvette ZR1 2012 10.38% Audi S4 Sedan 2012 4.84% Chrysler Sebring Convertible 2010 3.43% Ford F-150 Regular Cab 2007 2.72% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Dodge Sprinter Cargo Van 2009 4.19% Chevrolet Express Cargo Van 2007 2.42% Mercedes-Benz SL-Class Coupe 2009 2.23% Mercedes-Benz Sprinter Van 2012 2.19% Audi S5 Convertible 2012 1.83% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Ferrari 458 Italia Convertible 2012 5.57% Ferrari California Convertible 2012 4.2% Ferrari 458 Italia Coupe 2012 4.01% Dodge Magnum Wagon 2008 3.79% BMW 3 Series Sedan 2012 3.56% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Plymouth Neon Coupe 1999 3.58% Scion xD Hatchback 2012 2.78% Audi TT Hatchback 2011 1.99% Lincoln Town Car Sedan 2011 1.86% Ram C/V Cargo Van Minivan 2012 1.8% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 Toyota 4Runner SUV 2012 2.02% Fisker Karma Sedan 2012 1.71% AM General Hummer SUV 2000 1.68% Lamborghini Reventon Coupe 2008 1.43% Volvo 240 Sedan 1993 1.42% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler PT Cruiser Convertible 2008 2.54% Mercedes-Benz S-Class Sedan 2012 2.08% Acura TL Type-S 2008 1.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.69% Porsche Panamera Sedan 2012 1.68% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 19.5% Hyundai Tucson SUV 2012 3.73% Chevrolet Express Van 2007 3.37% Mercedes-Benz Sprinter Van 2012 3.05% BMW X5 SUV 2007 2.44% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 1.97% Chevrolet Silverado 1500 Regular Cab 2012 1.93% Chevrolet Silverado 1500 Extended Cab 2012 1.63% Scion xD Hatchback 2012 1.49% Lincoln Town Car Sedan 2011 1.37% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Dodge Caravan Minivan 1997 1.79% Chevrolet Monte Carlo Coupe 2007 1.76% Ford Expedition EL SUV 2009 1.55% Bentley Arnage Sedan 2009 1.38% Honda Odyssey Minivan 2012 1.3% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Acura ZDX Hatchback 2012 1.63% Hyundai Azera Sedan 2012 1.39% Rolls-Royce Phantom Sedan 2012 1.38% Chevrolet Corvette ZR1 2012 1.35% Bentley Arnage Sedan 2009 1.26% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW ActiveHybrid 5 Sedan 2012 2.49% Audi TT Hatchback 2011 2.28% Buick Regal GS 2012 2.21% Ram C/V Cargo Van Minivan 2012 2.19% BMW 1 Series Convertible 2012 1.65% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Ford F-150 Regular Cab 2007 3.84% Lincoln Town Car Sedan 2011 2.31% Buick Rainier SUV 2007 2.31% Chrysler Sebring Convertible 2010 2.21% Chevrolet Monte Carlo Coupe 2007 1.67% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 1.12% Hyundai Azera Sedan 2012 1.06% Bentley Mulsanne Sedan 2011 1.04% Chevrolet Corvette ZR1 2012 1.02% Mercedes-Benz C-Class Sedan 2012 0.96% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Nissan Juke Hatchback 2012 4.66% Dodge Caliber Wagon 2012 3.37% Buick Rainier SUV 2007 3.22% Hyundai Tucson SUV 2012 2.88% Hyundai Accent Sedan 2012 2.73% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Ford E-Series Wagon Van 2012 1.09% Hyundai Azera Sedan 2012 1.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.96% Dodge Challenger SRT8 2011 0.95% Porsche Panamera Sedan 2012 0.92% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 20.31% AM General Hummer SUV 2000 4.76% Acura Integra Type R 2001 4.38% Aston Martin Virage Coupe 2012 3.03% McLaren MP4-12C Coupe 2012 2.99% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Chrysler Aspen SUV 2009 4.42% Ford F-150 Regular Cab 2012 3.39% Honda Accord Coupe 2012 3.19% Jeep Liberty SUV 2012 3.16% Dodge Ram Pickup 3500 Crew Cab 2010 2.41% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Chevrolet Cobalt SS 2010 3.67% Dodge Charger SRT-8 2009 3.45% Dodge Magnum Wagon 2008 3.4% Dodge Caliber Wagon 2007 2.74% Ferrari 458 Italia Convertible 2012 2.73% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Jeep Compass SUV 2012 1.76% Bentley Mulsanne Sedan 2011 1.56% Chrysler 300 SRT-8 2010 1.5% Infiniti G Coupe IPL 2012 1.42% Ford F-150 Regular Cab 2012 1.4% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Toyota 4Runner SUV 2012 4.13% GMC Yukon Hybrid SUV 2012 3.74% Dodge Challenger SRT8 2011 2.68% Audi S6 Sedan 2011 2.5% Cadillac Escalade EXT Crew Cab 2007 2.28% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 28.65% Aston Martin Virage Coupe 2012 5.82% Acura Integra Type R 2001 3.17% Lamborghini Diablo Coupe 2001 2.65% McLaren MP4-12C Coupe 2012 2.62% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Chrysler 300 SRT-8 2010 2.25% Jeep Grand Cherokee SUV 2012 1.78% Dodge Caravan Minivan 1997 1.71% Toyota 4Runner SUV 2012 1.61% Chrysler Aspen SUV 2009 1.6% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Nissan Leaf Hatchback 2012 1.32% Audi R8 Coupe 2012 1.22% McLaren MP4-12C Coupe 2012 1.11% GMC Yukon Hybrid SUV 2012 1.06% Lamborghini Diablo Coupe 2001 1.06% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Porsche Panamera Sedan 2012 3.2% Chrysler 300 SRT-8 2010 3.0% Chevrolet Corvette ZR1 2012 2.36% Chevrolet Malibu Hybrid Sedan 2010 2.06% GMC Acadia SUV 2012 1.97% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 1.55% Bentley Arnage Sedan 2009 1.36% Lamborghini Reventon Coupe 2008 1.3% Acura ZDX Hatchback 2012 1.13% Chevrolet Corvette ZR1 2012 1.13% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Lamborghini Gallardo LP 570-4 Superleggera 2012 7.72% AM General Hummer SUV 2000 6.02% Chevrolet Corvette Convertible 2012 4.04% Jeep Patriot SUV 2012 3.46% Geo Metro Convertible 1993 2.42% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Ferrari California Convertible 2012 7.34% Ferrari 458 Italia Coupe 2012 4.49% Dodge Charger SRT-8 2009 3.97% Volvo C30 Hatchback 2012 3.78% Lamborghini Aventador Coupe 2012 2.57% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Lamborghini Aventador Coupe 2012 2.9% BMW M6 Convertible 2010 2.11% Lincoln Town Car Sedan 2011 1.92% Chevrolet Camaro Convertible 2012 1.73% Ford GT Coupe 2006 1.57% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 2.18% Lincoln Town Car Sedan 2011 2.0% Rolls-Royce Phantom Sedan 2012 1.71% Hyundai Genesis Sedan 2012 1.69% Cadillac CTS-V Sedan 2012 1.51% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Caravan Minivan 1997 3.72% Plymouth Neon Coupe 1999 1.85% Cadillac CTS-V Sedan 2012 1.83% Honda Odyssey Minivan 2007 1.81% Cadillac Escalade EXT Crew Cab 2007 1.78% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW ActiveHybrid 5 Sedan 2012 3.09% Tesla Model S Sedan 2012 1.68% Ram C/V Cargo Van Minivan 2012 1.63% BMW 1 Series Convertible 2012 1.61% Lincoln Town Car Sedan 2011 1.48% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Maybach Landaulet Convertible 2012 2.32% BMW ActiveHybrid 5 Sedan 2012 1.93% BMW 6 Series Convertible 2007 1.71% Ram C/V Cargo Van Minivan 2012 1.32% Rolls-Royce Ghost Sedan 2012 1.25% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Charger SRT-8 2009 4.89% Ford Mustang Convertible 2007 4.41% Dodge Magnum Wagon 2008 3.97% Ferrari California Convertible 2012 3.36% Chevrolet Cobalt SS 2010 2.27% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Aston Martin Virage Coupe 2012 9.82% BMW M3 Coupe 2012 4.03% Ferrari California Convertible 2012 3.71% Hyundai Veloster Hatchback 2012 3.7% Dodge Charger SRT-8 2009 3.67% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 2.22% Ford Expedition EL SUV 2009 2.01% Land Rover Range Rover SUV 2012 1.98% Dodge Journey SUV 2012 1.95% Hyundai Santa Fe SUV 2012 1.74% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Azera Sedan 2012 1.5% Tesla Model S Sedan 2012 1.34% Audi S6 Sedan 2011 1.07% Lamborghini Reventon Coupe 2008 1.06% GMC Savana Van 2012 1.02% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 Ford F-150 Regular Cab 2007 4.05% Dodge Ram Pickup 3500 Quad Cab 2009 2.56% Chevrolet Silverado 1500 Regular Cab 2012 2.54% Dodge Durango SUV 2007 2.23% Dodge Ram Pickup 3500 Crew Cab 2010 2.12% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 4.77% Ford Edge SUV 2012 2.65% Hyundai Tucson SUV 2012 2.1% HUMMER H2 SUT Crew Cab 2009 2.01% Volvo XC90 SUV 2007 2.01% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Spyker C8 Coupe 2009 8.54% Hyundai Sonata Sedan 2012 3.4% Lamborghini Aventador Coupe 2012 2.54% BMW 3 Series Sedan 2012 1.92% Ferrari FF Coupe 2012 1.92% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Hyundai Genesis Sedan 2012 2.7% Chevrolet Monte Carlo Coupe 2007 2.5% Bentley Arnage Sedan 2009 2.41% Bugatti Veyron 16.4 Coupe 2009 2.33% Plymouth Neon Coupe 1999 1.84% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 BMW 6 Series Convertible 2007 1.26% Bentley Continental Flying Spur Sedan 2007 1.18% Honda Odyssey Minivan 2007 1.16% Audi A5 Coupe 2012 1.16% BMW ActiveHybrid 5 Sedan 2012 1.13% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Honda Accord Coupe 2012 4.73% Acura RL Sedan 2012 4.62% Buick Verano Sedan 2012 3.48% Eagle Talon Hatchback 1998 3.36% BMW Z4 Convertible 2012 3.29% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Ford F-150 Regular Cab 2007 3.41% Daewoo Nubira Wagon 2002 2.23% Mercedes-Benz 300-Class Convertible 1993 2.2% GMC Canyon Extended Cab 2012 2.11% Honda Odyssey Minivan 2012 1.92% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Lincoln Town Car Sedan 2011 2.25% Honda Odyssey Minivan 2007 2.13% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.86% Chevrolet Malibu Sedan 2007 1.71% Hyundai Tucson SUV 2012 1.46% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 2.56% Volvo 240 Sedan 1993 1.81% Ford F-450 Super Duty Crew Cab 2012 1.71% Plymouth Neon Coupe 1999 1.65% Eagle Talon Hatchback 1998 1.5% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Mazda Tribute SUV 2011 1.82% Jeep Grand Cherokee SUV 2012 1.38% Lamborghini Reventon Coupe 2008 1.38% AM General Hummer SUV 2000 1.22% Mercedes-Benz SL-Class Coupe 2009 1.18% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.69% Jeep Grand Cherokee SUV 2012 1.59% Chrysler 300 SRT-8 2010 1.43% Land Rover Range Rover SUV 2012 1.4% GMC Yukon Hybrid SUV 2012 1.36% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Audi S4 Sedan 2012 2.31% Ferrari FF Coupe 2012 2.29% Dodge Durango SUV 2012 2.14% Ford F-150 Regular Cab 2012 2.08% Honda Accord Coupe 2012 2.03% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Bentley Mulsanne Sedan 2011 1.41% Chrysler 300 SRT-8 2010 1.36% Jeep Grand Cherokee SUV 2012 1.17% Chrysler Aspen SUV 2009 0.98% Acura ZDX Hatchback 2012 0.98% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Audi TT RS Coupe 2012 2.58% BMW 3 Series Sedan 2012 1.9% Dodge Magnum Wagon 2008 1.89% Volkswagen Golf Hatchback 1991 1.84% BMW 1 Series Coupe 2012 1.78% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Compass SUV 2012 2.67% Audi 100 Sedan 1994 2.48% Chevrolet Silverado 2500HD Regular Cab 2012 2.19% Infiniti G Coupe IPL 2012 1.9% Volvo 240 Sedan 1993 1.76% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Honda Accord Coupe 2012 2.83% Ford F-150 Regular Cab 2012 2.09% GMC Savana Van 2012 1.82% Isuzu Ascender SUV 2008 1.74% Dodge Durango SUV 2012 1.58% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Lincoln Town Car Sedan 2011 4.18% GMC Savana Van 2012 2.84% BMW ActiveHybrid 5 Sedan 2012 2.37% Honda Odyssey Minivan 2007 1.95% Ford Freestar Minivan 2007 1.94% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mercedes-Benz 300-Class Convertible 1993 2.73% Ford F-150 Regular Cab 2007 2.39% Bentley Mulsanne Sedan 2011 2.32% Audi V8 Sedan 1994 2.25% Bugatti Veyron 16.4 Coupe 2009 2.09% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Mercedes-Benz 300-Class Convertible 1993 2.83% Bugatti Veyron 16.4 Coupe 2009 2.56% Rolls-Royce Ghost Sedan 2012 2.29% Chevrolet TrailBlazer SS 2009 1.93% Aston Martin Virage Convertible 2012 1.62% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Hyundai Azera Sedan 2012 3.57% Spyker C8 Coupe 2009 2.63% Mercedes-Benz SL-Class Coupe 2009 2.51% Chrysler Sebring Convertible 2010 2.46% Ram C/V Cargo Van Minivan 2012 2.21% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.82% Ram C/V Cargo Van Minivan 2012 1.36% Chevrolet Silverado 1500 Extended Cab 2012 1.29% Suzuki Aerio Sedan 2007 1.16% GMC Savana Van 2012 1.13% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Sprinter Cargo Van 2009 2.11% Chevrolet Express Cargo Van 2007 1.68% Audi A5 Coupe 2012 1.6% BMW ActiveHybrid 5 Sedan 2012 1.46% Mercedes-Benz SL-Class Coupe 2009 1.44% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 GMC Savana Van 2012 1.4% Chevrolet Express Cargo Van 2007 1.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.29% Dodge Sprinter Cargo Van 2009 1.19% Honda Odyssey Minivan 2007 1.13% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Hyundai Sonata Sedan 2012 3.17% BMW X6 SUV 2012 3.01% BMW 3 Series Sedan 2012 2.81% Acura RL Sedan 2012 2.71% Jaguar XK XKR 2012 2.7% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Lamborghini Aventador Coupe 2012 4.92% Ferrari California Convertible 2012 4.68% Chevrolet Corvette Convertible 2012 2.92% Ford Mustang Convertible 2007 2.76% Ferrari 458 Italia Coupe 2012 2.51% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Dodge Caravan Minivan 1997 1.48% Jeep Patriot SUV 2012 1.35% Lamborghini Reventon Coupe 2008 1.23% Ford E-Series Wagon Van 2012 1.17% Hyundai Santa Fe SUV 2012 1.16% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Chevrolet Cobalt SS 2010 3.14% Chevrolet Corvette Convertible 2012 2.82% Dodge Charger SRT-8 2009 2.75% Dodge Caliber Wagon 2007 2.72% Volkswagen Beetle Hatchback 2012 2.57% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Audi TT Hatchback 2011 2.19% Ram C/V Cargo Van Minivan 2012 1.93% Scion xD Hatchback 2012 1.82% Chrysler PT Cruiser Convertible 2008 1.55% BMW M3 Coupe 2012 1.52% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 MINI Cooper Roadster Convertible 2012 3.93% GMC Yukon Hybrid SUV 2012 2.56% Chevrolet Express Cargo Van 2007 2.51% GMC Savana Van 2012 2.47% Bugatti Veyron 16.4 Coupe 2009 2.34% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Bentley Arnage Sedan 2009 1.99% BMW M6 Convertible 2010 1.85% Bentley Mulsanne Sedan 2011 1.78% Hyundai Azera Sedan 2012 1.55% Chevrolet Corvette ZR1 2012 1.48% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Toyota 4Runner SUV 2012 4.04% Chevrolet Corvette ZR1 2012 2.72% Cadillac Escalade EXT Crew Cab 2007 2.64% GMC Savana Van 2012 2.07% Audi S6 Sedan 2011 1.79% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Audi TT Hatchback 2011 4.58% Dodge Sprinter Cargo Van 2009 3.02% Honda Accord Sedan 2012 2.36% Ram C/V Cargo Van Minivan 2012 2.23% Honda Odyssey Minivan 2007 1.84% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 GMC Yukon Hybrid SUV 2012 1.93% BMW X5 SUV 2007 1.71% Land Rover Range Rover SUV 2012 1.63% GMC Savana Van 2012 1.54% Hyundai Santa Fe SUV 2012 1.47% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 2.43% Honda Accord Sedan 2012 2.13% Chrysler Sebring Convertible 2010 2.13% Buick Rainier SUV 2007 2.05% Ford E-Series Wagon Van 2012 1.76% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler Aspen SUV 2009 4.05% Mercedes-Benz Sprinter Van 2012 3.14% Dodge Sprinter Cargo Van 2009 3.0% Jeep Grand Cherokee SUV 2012 2.3% Dodge Dakota Club Cab 2007 1.85% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Dodge Sprinter Cargo Van 2009 4.25% Mercedes-Benz SL-Class Coupe 2009 3.47% Audi TT Hatchback 2011 2.81% Honda Accord Sedan 2012 2.18% Mercedes-Benz Sprinter Van 2012 2.0% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 10.17% Lamborghini Aventador Coupe 2012 9.5% Ferrari 458 Italia Coupe 2012 6.33% Dodge Charger SRT-8 2009 5.89% Aston Martin Virage Coupe 2012 4.75% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Coupe 2012 5.07% Dodge Magnum Wagon 2008 4.06% Lamborghini Aventador Coupe 2012 4.01% Hyundai Elantra Sedan 2007 3.64% Ferrari California Convertible 2012 3.4% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Chrysler 300 SRT-8 2010 5.34% BMW 6 Series Convertible 2007 2.64% Audi RS 4 Convertible 2008 2.44% Audi S4 Sedan 2012 2.25% BMW M6 Convertible 2010 2.07% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Cobalt SS 2010 6.73% Lamborghini Aventador Coupe 2012 4.8% Ferrari FF Coupe 2012 4.78% BMW 1 Series Coupe 2012 3.99% Ferrari 458 Italia Coupe 2012 3.68% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Jeep Grand Cherokee SUV 2012 2.18% Chrysler 300 SRT-8 2010 2.01% Dodge Durango SUV 2007 1.54% Bentley Mulsanne Sedan 2011 1.5% Cadillac Escalade EXT Crew Cab 2007 1.44% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Chrysler PT Cruiser Convertible 2008 2.1% Ram C/V Cargo Van Minivan 2012 1.91% Mercedes-Benz S-Class Sedan 2012 1.86% Chrysler Sebring Convertible 2010 1.83% Acura TL Sedan 2012 1.49% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Hyundai Veloster Hatchback 2012 2.6% Spyker C8 Convertible 2009 2.28% Lamborghini Aventador Coupe 2012 2.12% Aston Martin Virage Coupe 2012 2.12% Ferrari 458 Italia Convertible 2012 1.89% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Bentley Arnage Sedan 2009 1.69% Lamborghini Reventon Coupe 2008 1.62% Bentley Mulsanne Sedan 2011 1.46% Hyundai Azera Sedan 2012 1.36% Jeep Compass SUV 2012 1.31% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.86% GMC Canyon Extended Cab 2012 1.65% Hyundai Sonata Sedan 2012 1.56% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.5% Volvo 240 Sedan 1993 1.4% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Express Cargo Van 2007 8.59% GMC Savana Van 2012 6.38% Chevrolet Express Van 2007 4.08% HUMMER H3T Crew Cab 2010 3.36% Dodge Sprinter Cargo Van 2009 2.93% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Lamborghini Aventador Coupe 2012 2.19% Ferrari 458 Italia Coupe 2012 1.93% Hyundai Elantra Sedan 2007 1.89% Dodge Charger SRT-8 2009 1.88% Dodge Caliber Wagon 2007 1.66% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 1.65% BMW M6 Convertible 2010 1.28% Hyundai Genesis Sedan 2012 1.25% Bugatti Veyron 16.4 Coupe 2009 1.24% Jeep Grand Cherokee SUV 2012 1.21% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 McLaren MP4-12C Coupe 2012 15.28% Aston Martin Virage Coupe 2012 14.83% Lamborghini Diablo Coupe 2001 14.46% Lamborghini Aventador Coupe 2012 4.65% Ferrari 458 Italia Convertible 2012 4.3% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Chevrolet Silverado 2500HD Regular Cab 2012 4.34% Dodge Sprinter Cargo Van 2009 2.13% Audi A5 Coupe 2012 2.12% Ford F-150 Regular Cab 2012 1.85% GMC Savana Van 2012 1.63% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Volkswagen Golf Hatchback 2012 2.63% FIAT 500 Convertible 2012 2.02% Hyundai Elantra Touring Hatchback 2012 1.95% Acura TL Sedan 2012 1.88% Toyota Corolla Sedan 2012 1.81% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Jaguar XK XKR 2012 1.78% Nissan Leaf Hatchback 2012 1.54% Mazda Tribute SUV 2011 1.23% BMW M5 Sedan 2010 1.21% Dodge Caravan Minivan 1997 1.21% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Buick Rainier SUV 2007 7.68% Buick Enclave SUV 2012 5.25% Dodge Caliber Wagon 2007 4.52% GMC Canyon Extended Cab 2012 3.69% Ford GT Coupe 2006 3.26% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Suzuki Aerio Sedan 2007 3.32% Lincoln Town Car Sedan 2011 3.13% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.28% BMW 6 Series Convertible 2007 2.05% Chevrolet Camaro Convertible 2012 1.68% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Chevrolet Express Cargo Van 2007 2.39% Chevrolet Silverado 2500HD Regular Cab 2012 1.91% Dodge Sprinter Cargo Van 2009 1.53% GMC Savana Van 2012 1.5% Hyundai Veracruz SUV 2012 1.36% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Dodge Caravan Minivan 1997 2.24% Daewoo Nubira Wagon 2002 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% Land Rover LR2 SUV 2012 1.42% BMW 6 Series Convertible 2007 1.41% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Daewoo Nubira Wagon 2002 4.13% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.12% Dodge Caravan Minivan 1997 2.61% Ram C/V Cargo Van Minivan 2012 2.45% BMW ActiveHybrid 5 Sedan 2012 2.42% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 BMW ActiveHybrid 5 Sedan 2012 2.54% Honda Accord Coupe 2012 1.96% Chrysler 300 SRT-8 2010 1.94% Chevrolet Silverado 2500HD Regular Cab 2012 1.68% Audi S4 Sedan 2012 1.29% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford E-Series Wagon Van 2012 1.88% Honda Accord Coupe 2012 1.51% Ford Freestar Minivan 2007 1.43% Jeep Liberty SUV 2012 1.31% Chrysler Aspen SUV 2009 1.29% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Ferrari California Convertible 2012 4.23% Ferrari 458 Italia Coupe 2012 3.7% Audi TT RS Coupe 2012 3.17% Dodge Caliber Wagon 2007 3.1% Chevrolet HHR SS 2010 2.49% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Aston Martin Virage Coupe 2012 5.59% Ferrari California Convertible 2012 3.5% Aston Martin V8 Vantage Coupe 2012 2.74% Lamborghini Aventador Coupe 2012 2.6% Dodge Charger SRT-8 2009 2.4% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 BMW 6 Series Convertible 2007 2.38% Aston Martin V8 Vantage Convertible 2012 2.09% Audi A5 Coupe 2012 1.35% Mercedes-Benz S-Class Sedan 2012 1.24% Chrysler PT Cruiser Convertible 2008 1.24% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Chrysler Aspen SUV 2009 11.47% Jeep Patriot SUV 2012 8.63% Chrysler 300 SRT-8 2010 4.05% Honda Accord Sedan 2012 2.75% GMC Terrain SUV 2012 2.43% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.92% Lincoln Town Car Sedan 2011 1.96% Chevrolet Silverado 1500 Regular Cab 2012 1.94% HUMMER H2 SUT Crew Cab 2009 1.71% Chevrolet Express Cargo Van 2007 1.59% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Chrysler Aspen SUV 2009 5.1% Bentley Arnage Sedan 2009 2.78% Volvo 240 Sedan 1993 2.06% Volkswagen Golf Hatchback 1991 1.8% Ford F-450 Super Duty Crew Cab 2012 1.68% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 7.62% Chevrolet Express Cargo Van 2007 7.48% Dodge Sprinter Cargo Van 2009 6.88% Isuzu Ascender SUV 2008 2.61% Jeep Grand Cherokee SUV 2012 2.6% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Chevrolet Malibu Sedan 2007 2.8% Chrysler 300 SRT-8 2010 2.58% Chrysler Aspen SUV 2009 2.32% Chevrolet Silverado 2500HD Regular Cab 2012 2.01% Jeep Grand Cherokee SUV 2012 1.87% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 MINI Cooper Roadster Convertible 2012 3.02% Ram C/V Cargo Van Minivan 2012 3.01% BMW ActiveHybrid 5 Sedan 2012 2.44% Rolls-Royce Phantom Sedan 2012 2.13% BMW X3 SUV 2012 1.95% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Dodge Caliber Wagon 2007 2.87% Ferrari California Convertible 2012 2.83% Nissan Juke Hatchback 2012 2.21% Jeep Wrangler SUV 2012 2.19% Ferrari 458 Italia Coupe 2012 2.19% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Infiniti G Coupe IPL 2012 9.22% Chevrolet Silverado 2500HD Regular Cab 2012 3.57% Chevrolet Silverado 1500 Extended Cab 2012 3.51% Chevrolet Silverado 1500 Regular Cab 2012 3.23% Ford Mustang Convertible 2007 2.75% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Dodge Sprinter Cargo Van 2009 2.86% Audi TT Hatchback 2011 2.15% Nissan NV Passenger Van 2012 1.96% Chevrolet Express Cargo Van 2007 1.95% Ram C/V Cargo Van Minivan 2012 1.9% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Buick Rainier SUV 2007 1.98% Honda Odyssey Minivan 2007 1.76% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.65% Dodge Caravan Minivan 1997 1.48% Ford Freestar Minivan 2007 1.3% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Honda Accord Sedan 2012 5.24% Toyota Camry Sedan 2012 3.27% GMC Savana Van 2012 2.42% Chevrolet Express Van 2007 2.22% Chevrolet Corvette ZR1 2012 1.87% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Audi 100 Sedan 1994 2.58% Chevrolet Traverse SUV 2012 1.8% Dodge Caravan Minivan 1997 1.6% Nissan Juke Hatchback 2012 1.52% Ford E-Series Wagon Van 2012 1.5% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Dodge Sprinter Cargo Van 2009 2.62% Chevrolet Express Cargo Van 2007 2.36% Mercedes-Benz Sprinter Van 2012 2.15% Buick Rainier SUV 2007 1.76% Dodge Caliber Wagon 2012 1.72% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.27% Audi TT Hatchback 2011 2.04% Toyota Camry Sedan 2012 1.62% Ram C/V Cargo Van Minivan 2012 1.54% Honda Accord Sedan 2012 1.43% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Audi A5 Coupe 2012 1.99% Chevrolet Express Cargo Van 2007 1.64% Dodge Sprinter Cargo Van 2009 1.64% Mazda Tribute SUV 2011 1.57% GMC Savana Van 2012 1.42% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Chrysler 300 SRT-8 2010 2.37% Chevrolet TrailBlazer SS 2009 1.97% Jeep Grand Cherokee SUV 2012 1.54% HUMMER H2 SUT Crew Cab 2009 1.48% Bentley Arnage Sedan 2009 1.41% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 3.27% Nissan 240SX Coupe 1998 3.2% Chevrolet Monte Carlo Coupe 2007 2.99% Mercedes-Benz C-Class Sedan 2012 2.62% Rolls-Royce Ghost Sedan 2012 2.55% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Ford F-150 Regular Cab 2007 2.66% GMC Savana Van 2012 2.53% Chevrolet Silverado 1500 Regular Cab 2012 1.69% Chevrolet Silverado 1500 Extended Cab 2012 1.67% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.54% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Dodge Caravan Minivan 1997 1.29% Nissan Leaf Hatchback 2012 1.2% Mercedes-Benz Sprinter Van 2012 1.19% Ford E-Series Wagon Van 2012 1.17% Ram C/V Cargo Van Minivan 2012 1.16% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Lamborghini Aventador Coupe 2012 8.37% Chevrolet HHR SS 2010 7.56% Aston Martin Virage Coupe 2012 7.31% Dodge Charger SRT-8 2009 6.66% Ferrari 458 Italia Convertible 2012 5.85% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 2.67% BMW X5 SUV 2007 1.96% BMW X6 SUV 2012 1.57% Daewoo Nubira Wagon 2002 1.49% Chevrolet Express Cargo Van 2007 1.4% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Chrysler Aspen SUV 2009 4.25% Rolls-Royce Ghost Sedan 2012 3.07% Dodge Journey SUV 2012 2.87% Jeep Patriot SUV 2012 2.09% Bentley Arnage Sedan 2009 1.92% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 4.56% Land Rover Range Rover SUV 2012 3.86% Fisker Karma Sedan 2012 3.63% Cadillac SRX SUV 2012 3.43% Bentley Mulsanne Sedan 2011 2.9% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Mulsanne Sedan 2011 2.12% BMW X3 SUV 2012 2.11% MINI Cooper Roadster Convertible 2012 1.55% Ram C/V Cargo Van Minivan 2012 1.45% Chrysler Aspen SUV 2009 1.29% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Chrysler 300 SRT-8 2010 2.82% Jeep Grand Cherokee SUV 2012 1.82% BMW X5 SUV 2007 1.73% Chevrolet Silverado 1500 Regular Cab 2012 1.72% Cadillac Escalade EXT Crew Cab 2007 1.59% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chrysler 300 SRT-8 2010 2.97% Chrysler Aspen SUV 2009 2.61% Honda Accord Sedan 2012 2.58% Dodge Durango SUV 2012 2.34% Chevrolet Silverado 2500HD Regular Cab 2012 2.31% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Audi TTS Coupe 2012 5.59% Nissan 240SX Coupe 1998 3.78% Fisker Karma Sedan 2012 3.57% Aston Martin Virage Convertible 2012 2.88% HUMMER H3T Crew Cab 2010 2.86% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Bentley Arnage Sedan 2009 1.19% Lamborghini Reventon Coupe 2008 1.14% Hyundai Genesis Sedan 2012 1.07% Bentley Mulsanne Sedan 2011 1.07% Jeep Patriot SUV 2012 1.02% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 5.48% BMW 1 Series Coupe 2012 5.23% Dodge Charger SRT-8 2009 3.47% Dodge Caliber Wagon 2007 3.31% Chevrolet Cobalt SS 2010 2.99% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Bentley Mulsanne Sedan 2011 3.22% Bentley Arnage Sedan 2009 2.74% Buick Regal GS 2012 2.5% Chevrolet Corvette ZR1 2012 2.45% Volvo 240 Sedan 1993 2.37% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 17.79% Spyker C8 Convertible 2009 6.51% Spyker C8 Coupe 2009 5.52% Lamborghini Aventador Coupe 2012 4.23% Lamborghini Diablo Coupe 2001 4.06% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Lincoln Town Car Sedan 2011 2.42% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.25% Bugatti Veyron 16.4 Coupe 2009 1.99% BMW 6 Series Convertible 2007 1.95% Chrysler Sebring Convertible 2010 1.69% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 BMW ActiveHybrid 5 Sedan 2012 1.71% Maybach Landaulet Convertible 2012 1.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% Chrysler Sebring Convertible 2010 1.57% Honda Odyssey Minivan 2007 1.56% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Mazda Tribute SUV 2011 1.59% Volvo 240 Sedan 1993 1.54% Lincoln Town Car Sedan 2011 1.54% Chrysler PT Cruiser Convertible 2008 1.48% Ford Freestar Minivan 2007 1.47% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Acura TL Type-S 2008 2.3% Jaguar XK XKR 2012 2.17% Chrysler Sebring Convertible 2010 1.73% Audi 100 Sedan 1994 1.69% Acura RL Sedan 2012 1.55% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Nissan Leaf Hatchback 2012 1.32% Chrysler PT Cruiser Convertible 2008 1.13% Ford E-Series Wagon Van 2012 1.12% MINI Cooper Roadster Convertible 2012 1.12% Dodge Sprinter Cargo Van 2009 1.08% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Chrysler 300 SRT-8 2010 6.08% Chevrolet Silverado 2500HD Regular Cab 2012 4.87% BMW M6 Convertible 2010 3.76% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.86% Scion xD Hatchback 2012 2.55% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Dodge Sprinter Cargo Van 2009 2.44% Audi A5 Coupe 2012 1.72% GMC Savana Van 2012 1.67% Chevrolet Silverado 2500HD Regular Cab 2012 1.67% BMW ActiveHybrid 5 Sedan 2012 1.63% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 GMC Yukon Hybrid SUV 2012 3.01% Toyota 4Runner SUV 2012 2.42% Jeep Grand Cherokee SUV 2012 1.86% Audi S5 Coupe 2012 1.85% Infiniti G Coupe IPL 2012 1.74% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Bentley Arnage Sedan 2009 1.84% GMC Yukon Hybrid SUV 2012 1.82% Jeep Grand Cherokee SUV 2012 1.77% Buick Enclave SUV 2012 1.58% Audi S6 Sedan 2011 1.47% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Monte Carlo Coupe 2007 3.41% Hyundai Genesis Sedan 2012 2.05% Rolls-Royce Phantom Sedan 2012 2.03% Mercedes-Benz C-Class Sedan 2012 1.97% Bentley Arnage Sedan 2009 1.93% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Bentley Arnage Sedan 2009 2.86% Hyundai Genesis Sedan 2012 2.45% Chevrolet Monte Carlo Coupe 2007 2.34% Plymouth Neon Coupe 1999 2.0% Jeep Patriot SUV 2012 1.91% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Dodge Sprinter Cargo Van 2009 4.46% Mercedes-Benz SL-Class Coupe 2009 2.64% Mercedes-Benz Sprinter Van 2012 2.33% Chevrolet Express Cargo Van 2007 2.28% Audi S5 Convertible 2012 1.89% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 9.28% GMC Savana Van 2012 6.6% Dodge Sprinter Cargo Van 2009 4.59% Isuzu Ascender SUV 2008 4.11% Mercedes-Benz Sprinter Van 2012 3.25% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 6.89% Dodge Magnum Wagon 2008 4.92% BMW 3 Series Sedan 2012 3.35% BMW 1 Series Coupe 2012 2.93% Lamborghini Aventador Coupe 2012 2.74% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Ferrari 458 Italia Convertible 2012 7.6% BMW 3 Series Sedan 2012 6.96% Ferrari 458 Italia Coupe 2012 5.1% Chevrolet HHR SS 2010 3.39% Plymouth Neon Coupe 1999 3.33% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Dodge Sprinter Cargo Van 2009 2.3% FIAT 500 Convertible 2012 1.36% Ford Mustang Convertible 2007 1.28% Mercedes-Benz Sprinter Van 2012 1.28% Chevrolet Traverse SUV 2012 1.2% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Dodge Sprinter Cargo Van 2009 9.02% Mercedes-Benz Sprinter Van 2012 5.2% Chevrolet Traverse SUV 2012 2.75% GMC Savana Van 2012 2.67% Acura TL Sedan 2012 2.62% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Maybach Landaulet Convertible 2012 3.02% Daewoo Nubira Wagon 2002 2.77% Acura TL Type-S 2008 2.21% Dodge Caravan Minivan 1997 1.62% Mercedes-Benz S-Class Sedan 2012 1.57% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Plymouth Neon Coupe 1999 1.71% Chrysler 300 SRT-8 2010 1.57% Chevrolet TrailBlazer SS 2009 1.56% Bentley Arnage Sedan 2009 1.46% Ford F-150 Regular Cab 2007 1.43% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Extended Cab 2012 4.31% GMC Savana Van 2012 2.73% Chevrolet Silverado 2500HD Regular Cab 2012 2.48% Chevrolet Silverado 1500 Regular Cab 2012 1.89% GMC Terrain SUV 2012 1.86% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Dodge Sprinter Cargo Van 2009 6.4% GMC Savana Van 2012 2.51% Tesla Model S Sedan 2012 2.35% Mercedes-Benz Sprinter Van 2012 2.09% Nissan NV Passenger Van 2012 2.07% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Chevrolet Express Cargo Van 2007 2.34% Mercedes-Benz Sprinter Van 2012 2.22% Dodge Sprinter Cargo Van 2009 2.19% Chevrolet Traverse SUV 2012 1.88% GMC Savana Van 2012 1.71% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Bentley Arnage Sedan 2009 1.6% Land Rover Range Rover SUV 2012 1.56% Rolls-Royce Ghost Sedan 2012 1.41% GMC Yukon Hybrid SUV 2012 1.39% Jeep Grand Cherokee SUV 2012 1.31% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Aston Martin Virage Coupe 2012 15.17% McLaren MP4-12C Coupe 2012 13.12% Lamborghini Aventador Coupe 2012 6.24% Lamborghini Diablo Coupe 2001 5.47% BMW M3 Coupe 2012 4.31% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Audi TT RS Coupe 2012 6.56% smart fortwo Convertible 2012 4.02% Ferrari FF Coupe 2012 3.22% Buick Verano Sedan 2012 2.76% BMW 1 Series Coupe 2012 2.46% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Chevrolet Monte Carlo Coupe 2007 1.56% Dodge Caravan Minivan 1997 1.42% Cadillac CTS-V Sedan 2012 1.35% Plymouth Neon Coupe 1999 1.3% Hyundai Genesis Sedan 2012 1.11% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Hyundai Santa Fe SUV 2012 2.44% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.34% Hyundai Sonata Sedan 2012 1.61% Dodge Durango SUV 2007 1.42% Jeep Grand Cherokee SUV 2012 1.42% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Dodge Caravan Minivan 1997 2.1% Ram C/V Cargo Van Minivan 2012 1.56% Mercedes-Benz Sprinter Van 2012 1.54% Nissan Leaf Hatchback 2012 1.48% Mercedes-Benz S-Class Sedan 2012 1.44% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Jeep Liberty SUV 2012 3.65% Bugatti Veyron 16.4 Coupe 2009 3.42% Ford Edge SUV 2012 2.79% Dodge Charger Sedan 2012 2.69% Nissan Juke Hatchback 2012 2.48% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 4.19% Volkswagen Golf Hatchback 2012 3.91% Acura ZDX Hatchback 2012 3.62% Hyundai Veloster Hatchback 2012 3.01% Toyota Corolla Sedan 2012 2.71% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Hyundai Sonata Sedan 2012 4.69% Acura RL Sedan 2012 4.13% BMW 3 Series Sedan 2012 3.94% BMW X6 SUV 2012 3.18% Ferrari California Convertible 2012 3.06% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Toyota 4Runner SUV 2012 3.76% Bentley Mulsanne Sedan 2011 3.02% Audi S5 Coupe 2012 2.52% Toyota Sequoia SUV 2012 2.38% Lamborghini Reventon Coupe 2008 2.0% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Volvo 240 Sedan 1993 1.22% GMC Yukon Hybrid SUV 2012 1.18% Dodge Ram Pickup 3500 Crew Cab 2010 1.06% Fisker Karma Sedan 2012 0.99% Rolls-Royce Ghost Sedan 2012 0.96% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 GMC Yukon Hybrid SUV 2012 2.0% GMC Savana Van 2012 1.46% BMW X3 SUV 2012 1.38% Chevrolet Express Cargo Van 2007 1.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.37% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 1.93% Dodge Caliber Wagon 2012 1.68% BMW ActiveHybrid 5 Sedan 2012 1.59% Chevrolet Monte Carlo Coupe 2007 1.49% Mitsubishi Lancer Sedan 2012 1.44% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 1.98% Volvo 240 Sedan 1993 1.8% Dodge Durango SUV 2007 1.66% Isuzu Ascender SUV 2008 1.64% Chrysler Aspen SUV 2009 1.5% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Volvo 240 Sedan 1993 6.73% Chevrolet TrailBlazer SS 2009 3.6% Infiniti G Coupe IPL 2012 3.36% Dodge Ram Pickup 3500 Crew Cab 2010 2.85% Cadillac Escalade EXT Crew Cab 2007 2.61% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Ram C/V Cargo Van Minivan 2012 2.3% Chrysler Sebring Convertible 2010 2.02% Acura ZDX Hatchback 2012 1.99% Buick Regal GS 2012 1.73% Acura TL Sedan 2012 1.5% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Chevrolet Corvette ZR1 2012 2.49% Toyota 4Runner SUV 2012 2.46% Bentley Mulsanne Sedan 2011 2.18% Audi S6 Sedan 2011 1.78% Bugatti Veyron 16.4 Coupe 2009 1.76% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Chrysler Aspen SUV 2009 2.11% Bentley Arnage Sedan 2009 1.35% Land Rover Range Rover SUV 2012 1.26% Acura TSX Sedan 2012 1.19% Bentley Mulsanne Sedan 2011 1.18% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Daewoo Nubira Wagon 2002 6.69% Lincoln Town Car Sedan 2011 4.07% Suzuki Aerio Sedan 2007 3.26% Volkswagen Beetle Hatchback 2012 2.91% Ford Freestar Minivan 2007 2.09% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Acura TL Sedan 2012 2.41% Dodge Sprinter Cargo Van 2009 1.81% Mercedes-Benz Sprinter Van 2012 1.77% Ferrari FF Coupe 2012 1.65% Audi A5 Coupe 2012 1.51% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Acura ZDX Hatchback 2012 2.39% Rolls-Royce Phantom Sedan 2012 1.7% Hyundai Azera Sedan 2012 1.68% Chevrolet Corvette ZR1 2012 1.68% BMW M6 Convertible 2010 1.56% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Chrysler Aspen SUV 2009 6.91% Jeep Patriot SUV 2012 5.35% Jeep Liberty SUV 2012 5.08% Bentley Arnage Sedan 2009 2.82% Dodge Journey SUV 2012 2.48% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Bentley Mulsanne Sedan 2011 3.49% Bentley Arnage Sedan 2009 2.72% Jeep Compass SUV 2012 1.8% BMW M6 Convertible 2010 1.6% Rolls-Royce Phantom Sedan 2012 1.56% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 11.13% Chrysler Sebring Convertible 2010 5.54% Hyundai Azera Sedan 2012 5.41% BMW 1 Series Convertible 2012 2.21% Dodge Ram Pickup 3500 Quad Cab 2009 2.11% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Bugatti Veyron 16.4 Coupe 2009 2.58% Mercedes-Benz C-Class Sedan 2012 2.21% Volvo 240 Sedan 1993 2.18% Daewoo Nubira Wagon 2002 2.16% Eagle Talon Hatchback 1998 1.94% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Infiniti G Coupe IPL 2012 1.88% Jeep Compass SUV 2012 1.78% Chevrolet Silverado 2500HD Regular Cab 2012 1.57% Chrysler 300 SRT-8 2010 1.51% Bugatti Veyron 16.4 Coupe 2009 1.29% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Chevrolet Impala Sedan 2007 2.9% smart fortwo Convertible 2012 2.82% BMW 6 Series Convertible 2007 2.4% Ford Focus Sedan 2007 2.23% Honda Odyssey Minivan 2007 2.12% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Bentley Mulsanne Sedan 2011 3.14% Rolls-Royce Phantom Sedan 2012 2.43% Infiniti G Coupe IPL 2012 2.38% Fisker Karma Sedan 2012 2.03% Acura ZDX Hatchback 2012 2.02% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Audi S5 Coupe 2012 6.2% AM General Hummer SUV 2000 4.99% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.04% Chevrolet Corvette ZR1 2012 3.53% Rolls-Royce Ghost Sedan 2012 2.75% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 BMW M6 Convertible 2010 1.87% Bentley Arnage Sedan 2009 1.82% Lamborghini Reventon Coupe 2008 1.67% Dodge Challenger SRT8 2011 1.63% GMC Yukon Hybrid SUV 2012 1.63% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 2.52% Dodge Sprinter Cargo Van 2009 2.38% Chevrolet Express Cargo Van 2007 2.28% GMC Savana Van 2012 2.08% Audi A5 Coupe 2012 1.93% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Dodge Caravan Minivan 1997 2.53% Cadillac CTS-V Sedan 2012 2.26% Chevrolet Malibu Hybrid Sedan 2010 1.8% Chevrolet Silverado 1500 Extended Cab 2012 1.71% Acura TL Sedan 2012 1.7% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Audi 100 Sedan 1994 1.53% Chevrolet Express Cargo Van 2007 1.27% Jeep Compass SUV 2012 1.24% Ford E-Series Wagon Van 2012 1.23% Ford F-150 Regular Cab 2012 1.17% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Dodge Sprinter Cargo Van 2009 3.46% Mercedes-Benz Sprinter Van 2012 2.18% Chevrolet Express Cargo Van 2007 1.97% Acura TL Sedan 2012 1.81% Audi A5 Coupe 2012 1.49% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Bentley Mulsanne Sedan 2011 1.67% Jeep Liberty SUV 2012 1.55% Audi R8 Coupe 2012 1.52% Bugatti Veyron 16.4 Coupe 2009 1.42% Chrysler 300 SRT-8 2010 1.38% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Dodge Caliber Wagon 2007 6.51% Ferrari 458 Italia Coupe 2012 4.3% Ferrari FF Coupe 2012 3.89% Suzuki Kizashi Sedan 2012 3.67% Plymouth Neon Coupe 1999 3.23% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 Jeep Compass SUV 2012 3.73% Audi S4 Sedan 2012 2.97% Ferrari FF Coupe 2012 2.93% Ford F-150 Regular Cab 2012 2.91% Jeep Liberty SUV 2012 2.66% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Magnum Wagon 2008 6.63% Audi TT RS Coupe 2012 5.59% Ferrari 458 Italia Coupe 2012 5.35% Chevrolet HHR SS 2010 2.7% Ferrari California Convertible 2012 2.64% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Mercedes-Benz Sprinter Van 2012 1.46% Dodge Caravan Minivan 1997 1.24% GMC Savana Van 2012 1.2% Jeep Patriot SUV 2012 1.02% Chevrolet Express Cargo Van 2007 1.02% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Infiniti G Coupe IPL 2012 1.78% Dodge Durango SUV 2012 1.53% Chevrolet Traverse SUV 2012 1.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.47% BMW X3 SUV 2012 1.28% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Dodge Sprinter Cargo Van 2009 2.71% Ford E-Series Wagon Van 2012 1.68% Mercedes-Benz Sprinter Van 2012 1.58% GMC Savana Van 2012 1.3% Dodge Challenger SRT8 2011 1.26% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ferrari FF Coupe 2012 2.89% Audi TT RS Coupe 2012 2.58% BMW X6 SUV 2012 2.54% smart fortwo Convertible 2012 2.3% Dodge Caliber Wagon 2012 2.26% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.53% BMW 6 Series Convertible 2007 1.25% Chevrolet Malibu Sedan 2007 1.12% Buick Rainier SUV 2007 1.09% Porsche Panamera Sedan 2012 1.08% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chrysler 300 SRT-8 2010 1.91% Bugatti Veyron 16.4 Coupe 2009 1.66% Eagle Talon Hatchback 1998 1.28% Volvo 240 Sedan 1993 1.17% Aston Martin Virage Convertible 2012 1.07% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Audi S4 Sedan 2012 4.14% Ferrari 458 Italia Coupe 2012 3.45% Audi TT RS Coupe 2012 2.86% Volkswagen Beetle Hatchback 2012 2.69% Buick Verano Sedan 2012 2.49% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW ActiveHybrid 5 Sedan 2012 4.8% Dodge Sprinter Cargo Van 2009 4.76% MINI Cooper Roadster Convertible 2012 4.28% Audi TT Hatchback 2011 3.74% Buick Regal GS 2012 2.81% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Rolls-Royce Phantom Sedan 2012 2.38% Bentley Continental Supersports Conv. Convertible 2012 2.27% Audi V8 Sedan 1994 2.04% Chevrolet Monte Carlo Coupe 2007 1.81% Hyundai Genesis Sedan 2012 1.59% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 2.76% Chevrolet Monte Carlo Coupe 2007 2.35% Chevrolet Silverado 1500 Extended Cab 2012 1.99% GMC Savana Van 2012 1.62% Audi V8 Sedan 1994 1.61% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Lamborghini Aventador Coupe 2012 5.31% Dodge Charger SRT-8 2009 4.98% Ferrari 458 Italia Convertible 2012 3.87% Ferrari California Convertible 2012 3.83% Aston Martin Virage Coupe 2012 3.57% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Chrysler Aspen SUV 2009 2.63% Hyundai Santa Fe SUV 2012 2.45% Dodge Journey SUV 2012 1.87% Jeep Patriot SUV 2012 1.67% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.44% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Dodge Caliber Wagon 2007 4.0% Ferrari 458 Italia Coupe 2012 3.69% Ferrari 458 Italia Convertible 2012 3.67% Plymouth Neon Coupe 1999 3.47% BMW 3 Series Sedan 2012 3.16% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Honda Accord Sedan 2012 3.22% Audi TT Hatchback 2011 2.78% Dodge Sprinter Cargo Van 2009 2.68% Mercedes-Benz SL-Class Coupe 2009 2.33% Chevrolet Express Cargo Van 2007 2.28% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Plymouth Neon Coupe 1999 3.28% Ford Freestar Minivan 2007 2.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.25% Lincoln Town Car Sedan 2011 2.16% Volvo 240 Sedan 1993 1.69% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Ford Mustang Convertible 2007 1.7% Jeep Grand Cherokee SUV 2012 1.68% Honda Accord Sedan 2012 1.59% Chevrolet Silverado 1500 Regular Cab 2012 1.25% Audi 100 Wagon 1994 1.22% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Chevrolet Corvette ZR1 2012 3.63% Land Rover Range Rover SUV 2012 2.43% Nissan Juke Hatchback 2012 2.4% GMC Acadia SUV 2012 2.33% Chrysler 300 SRT-8 2010 2.28% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 Aston Martin Virage Coupe 2012 15.29% McLaren MP4-12C Coupe 2012 6.65% Lamborghini Aventador Coupe 2012 6.48% Lamborghini Diablo Coupe 2001 6.07% Ferrari 458 Italia Convertible 2012 3.68% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ferrari 458 Italia Convertible 2012 10.83% BMW 3 Series Sedan 2012 8.39% Ferrari 458 Italia Coupe 2012 5.06% Eagle Talon Hatchback 1998 3.48% Dodge Caliber Wagon 2007 3.42% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Ford E-Series Wagon Van 2012 1.41% Infiniti QX56 SUV 2011 1.41% Bentley Arnage Sedan 2009 1.39% Cadillac Escalade EXT Crew Cab 2007 1.35% Audi S6 Sedan 2011 1.3% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Ford F-150 Regular Cab 2012 3.98% BMW X5 SUV 2007 3.1% Dodge Dakota Club Cab 2007 2.03% Volvo 240 Sedan 1993 1.88% Chrysler Aspen SUV 2009 1.76% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Chrysler Aspen SUV 2009 2.89% Volkswagen Golf Hatchback 1991 2.26% Land Rover Range Rover SUV 2012 2.11% Eagle Talon Hatchback 1998 1.83% Rolls-Royce Ghost Sedan 2012 1.53% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Audi S6 Sedan 2011 3.48% Audi 100 Wagon 1994 2.7% Audi A5 Coupe 2012 2.5% Audi V8 Sedan 1994 2.33% BMW M6 Convertible 2010 2.26% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Dodge Charger SRT-8 2009 5.99% Ferrari California Convertible 2012 4.95% Eagle Talon Hatchback 1998 3.05% Ferrari 458 Italia Coupe 2012 2.88% Geo Metro Convertible 1993 2.67% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 AM General Hummer SUV 2000 8.79% Lamborghini Diablo Coupe 2001 3.38% Geo Metro Convertible 1993 2.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.33% Acura Integra Type R 2001 2.2% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.34% Audi 100 Wagon 1994 2.31% Chevrolet TrailBlazer SS 2009 2.21% Chrysler 300 SRT-8 2010 2.13% Chevrolet Silverado 1500 Regular Cab 2012 1.85% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ferrari 458 Italia Coupe 2012 4.27% Hyundai Elantra Sedan 2007 3.65% Dodge Caliber Wagon 2007 3.37% Ferrari California Convertible 2012 3.08% Toyota Corolla Sedan 2012 2.32% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Chevrolet Express Cargo Van 2007 2.7% Ford E-Series Wagon Van 2012 2.31% Mercedes-Benz Sprinter Van 2012 1.99% Bugatti Veyron 16.4 Coupe 2009 1.93% GMC Savana Van 2012 1.69% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 GMC Savana Van 2012 3.4% Dodge Sprinter Cargo Van 2009 2.77% Chevrolet Express Cargo Van 2007 2.07% Ford E-Series Wagon Van 2012 1.89% Audi S6 Sedan 2011 1.75% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 BMW M3 Coupe 2012 10.59% Dodge Caliber Wagon 2007 9.94% Ferrari FF Coupe 2012 9.38% Ferrari 458 Italia Convertible 2012 4.45% Honda Accord Coupe 2012 3.81% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 HUMMER H3T Crew Cab 2010 3.28% HUMMER H2 SUT Crew Cab 2009 2.96% AM General Hummer SUV 2000 2.62% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.58% Isuzu Ascender SUV 2008 2.47% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Audi S6 Sedan 2011 1.63% Audi A5 Coupe 2012 1.56% Chrysler 300 SRT-8 2010 1.42% Eagle Talon Hatchback 1998 1.36% Acura TL Sedan 2012 1.09% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Jeep Compass SUV 2012 4.41% Chevrolet Silverado 1500 Regular Cab 2012 4.33% Dodge Charger Sedan 2012 4.09% BMW 1 Series Coupe 2012 2.43% Tesla Model S Sedan 2012 2.37% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Nissan Leaf Hatchback 2012 2.11% Ferrari 458 Italia Coupe 2012 2.0% BMW 3 Series Sedan 2012 1.77% Audi TT RS Coupe 2012 1.59% Spyker C8 Coupe 2009 1.54% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 3.9% Ford F-150 Regular Cab 2012 3.19% Jeep Liberty SUV 2012 3.17% Jeep Compass SUV 2012 3.03% Audi S4 Sedan 2012 2.43% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 5.9% Chevrolet Cobalt SS 2010 3.86% Ferrari 458 Italia Coupe 2012 3.56% BMW 3 Series Sedan 2012 3.39% Lamborghini Aventador Coupe 2012 2.72% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Dodge Sprinter Cargo Van 2009 1.89% Chevrolet Express Cargo Van 2007 1.71% Mercedes-Benz SL-Class Coupe 2009 1.65% Acura TL Type-S 2008 1.64% GMC Savana Van 2012 1.6% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Fisker Karma Sedan 2012 1.73% Volkswagen Beetle Hatchback 2012 1.29% Toyota Camry Sedan 2012 1.2% AM General Hummer SUV 2000 1.2% Toyota 4Runner SUV 2012 1.13% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 GMC Yukon Hybrid SUV 2012 3.62% Chevrolet Camaro Convertible 2012 2.4% Chevrolet Express Van 2007 2.1% Dodge Charger Sedan 2012 2.07% GMC Savana Van 2012 1.96% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.85% Bentley Continental Flying Spur Sedan 2007 1.29% Audi TT Hatchback 2011 1.27% Mazda Tribute SUV 2011 1.26% BMW ActiveHybrid 5 Sedan 2012 1.21% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 2.3% Audi TT Hatchback 2011 2.11% Dodge Sprinter Cargo Van 2009 1.97% Ram C/V Cargo Van Minivan 2012 1.95% Buick Regal GS 2012 1.5% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Silverado 1500 Regular Cab 2012 2.37% Cadillac Escalade EXT Crew Cab 2007 2.18% Chrysler 300 SRT-8 2010 1.77% Dodge Durango SUV 2007 1.71% Audi S5 Coupe 2012 1.7% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler Sebring Convertible 2010 2.12% Chrysler PT Cruiser Convertible 2008 2.1% Acura ZDX Hatchback 2012 1.89% Ram C/V Cargo Van Minivan 2012 1.69% Audi TT Hatchback 2011 1.67% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 AM General Hummer SUV 2000 6.38% Lamborghini Diablo Coupe 2001 5.59% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.13% Chevrolet Corvette Convertible 2012 1.8% Acura Integra Type R 2001 1.74% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Ram C/V Cargo Van Minivan 2012 4.14% Honda Odyssey Minivan 2007 2.76% Chrysler Sebring Convertible 2010 2.26% Acura TL Sedan 2012 2.21% Hyundai Sonata Hybrid Sedan 2012 1.97% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Bentley Arnage Sedan 2009 2.97% BMW M6 Convertible 2010 1.83% Bugatti Veyron 16.4 Coupe 2009 1.82% Dodge Challenger SRT8 2011 1.75% Cadillac Escalade EXT Crew Cab 2007 1.74% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Chevrolet Express Cargo Van 2007 8.02% Dodge Sprinter Cargo Van 2009 3.57% Mercedes-Benz Sprinter Van 2012 2.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.54% Dodge Caravan Minivan 1997 2.18% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 1500 Regular Cab 2012 3.04% BMW X6 SUV 2012 2.69% GMC Acadia SUV 2012 2.24% Tesla Model S Sedan 2012 1.91% GMC Terrain SUV 2012 1.78% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bentley Arnage Sedan 2009 2.07% BMW M5 Sedan 2010 1.65% BMW M6 Convertible 2010 1.52% Bugatti Veyron 16.4 Coupe 2009 1.48% Cadillac Escalade EXT Crew Cab 2007 1.44% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Plymouth Neon Coupe 1999 2.26% Aston Martin V8 Vantage Coupe 2012 1.84% Bentley Arnage Sedan 2009 1.65% Bugatti Veyron 16.4 Coupe 2009 1.55% Rolls-Royce Phantom Sedan 2012 1.4% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Magnum Wagon 2008 6.63% Audi TT RS Coupe 2012 5.59% Ferrari 458 Italia Coupe 2012 5.35% Chevrolet HHR SS 2010 2.7% Ferrari California Convertible 2012 2.64% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Mercedes-Benz Sprinter Van 2012 2.19% Acura TL Sedan 2012 1.94% Mercedes-Benz E-Class Sedan 2012 1.92% Acura ZDX Hatchback 2012 1.6% Bugatti Veyron 16.4 Convertible 2009 1.58% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.4% Acura TL Type-S 2008 2.02% Lincoln Town Car Sedan 2011 1.47% Jaguar XK XKR 2012 1.38% Audi 100 Sedan 1994 1.36% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 6.01% Ford GT Coupe 2006 4.61% Ferrari 458 Italia Convertible 2012 3.99% BMW 1 Series Coupe 2012 3.63% Dodge Magnum Wagon 2008 3.55% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Lamborghini Aventador Coupe 2012 3.4% BMW M6 Convertible 2010 2.35% Lincoln Town Car Sedan 2011 2.35% Hyundai Azera Sedan 2012 2.27% Bentley Mulsanne Sedan 2011 2.25% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 BMW ActiveHybrid 5 Sedan 2012 1.71% Honda Odyssey Minivan 2007 1.16% BMW 6 Series Convertible 2007 1.12% Chrysler Sebring Convertible 2010 1.06% Maybach Landaulet Convertible 2012 1.01% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Plymouth Neon Coupe 1999 3.11% Scion xD Hatchback 2012 1.47% Eagle Talon Hatchback 1998 1.42% Dodge Durango SUV 2007 1.28% Dodge Journey SUV 2012 1.25% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Ford Mustang Convertible 2007 2.8% Audi TT Hatchback 2011 2.68% Toyota Camry Sedan 2012 2.52% Dodge Sprinter Cargo Van 2009 2.08% Audi A5 Coupe 2012 1.95% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 AM General Hummer SUV 2000 3.63% Chevrolet Silverado 1500 Regular Cab 2012 2.35% Chevrolet TrailBlazer SS 2009 2.27% GMC Savana Van 2012 1.99% Chevrolet Traverse SUV 2012 1.99% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Dodge Sprinter Cargo Van 2009 2.16% Chevrolet Express Cargo Van 2007 1.92% BMW ActiveHybrid 5 Sedan 2012 1.57% Audi A5 Coupe 2012 1.38% Mercedes-Benz SL-Class Coupe 2009 1.26% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Coupe 2012 2.73% Audi TT RS Coupe 2012 2.55% Chevrolet HHR SS 2010 2.24% Dodge Magnum Wagon 2008 2.14% Dodge Caliber Wagon 2007 2.12% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 HUMMER H2 SUT Crew Cab 2009 4.06% Ferrari 458 Italia Convertible 2012 3.51% Bugatti Veyron 16.4 Coupe 2009 2.53% Ford GT Coupe 2006 2.33% Chevrolet HHR SS 2010 2.06% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 GMC Acadia SUV 2012 1.89% Jeep Grand Cherokee SUV 2012 1.83% Audi 100 Sedan 1994 1.73% Nissan Juke Hatchback 2012 1.61% HUMMER H2 SUT Crew Cab 2009 1.33% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 6.47% Bugatti Veyron 16.4 Coupe 2009 3.32% Bentley Mulsanne Sedan 2011 3.19% Chevrolet Camaro Convertible 2012 2.6% Infiniti G Coupe IPL 2012 1.97% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 1.81% BMW ActiveHybrid 5 Sedan 2012 1.72% Honda Odyssey Minivan 2007 1.44% Audi TT Hatchback 2011 1.43% Acura ZDX Hatchback 2012 1.2% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Daewoo Nubira Wagon 2002 1.79% Volkswagen Golf Hatchback 2012 1.77% Dodge Caravan Minivan 1997 1.68% Buick Regal GS 2012 1.58% Hyundai Elantra Touring Hatchback 2012 1.52% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 Aston Martin Virage Coupe 2012 7.7% BMW M3 Coupe 2012 7.52% Dodge Caliber Wagon 2007 6.62% BMW 1 Series Coupe 2012 5.19% McLaren MP4-12C Coupe 2012 4.3% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Chevrolet Express Van 2007 8.99% Dodge Sprinter Cargo Van 2009 7.64% Mercedes-Benz Sprinter Van 2012 7.17% BMW ActiveHybrid 5 Sedan 2012 3.74% Chevrolet Express Cargo Van 2007 2.67% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 10.37% Chevrolet Corvette Convertible 2012 5.62% Lamborghini Reventon Coupe 2008 3.51% Acura Integra Type R 2001 3.46% Toyota Sequoia SUV 2012 3.34% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 GMC Yukon Hybrid SUV 2012 1.57% Jeep Grand Cherokee SUV 2012 1.24% Audi S6 Sedan 2011 1.18% Dodge Challenger SRT8 2011 1.06% HUMMER H2 SUT Crew Cab 2009 0.99% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Dodge Caravan Minivan 1997 1.27% Hyundai Azera Sedan 2012 0.99% Ford E-Series Wagon Van 2012 0.97% Chrysler Sebring Convertible 2010 0.96% Mercedes-Benz Sprinter Van 2012 0.94% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Audi S4 Sedan 2007 4.49% BMW X5 SUV 2007 3.99% Daewoo Nubira Wagon 2002 3.69% Dodge Caliber Wagon 2012 2.87% Chevrolet Traverse SUV 2012 2.06% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 BMW 3 Series Sedan 2012 6.18% Dodge Caliber Wagon 2007 5.45% Ferrari 458 Italia Coupe 2012 4.81% Ferrari FF Coupe 2012 4.0% Ferrari 458 Italia Convertible 2012 3.73% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 Chevrolet Express Cargo Van 2007 2.55% Jeep Grand Cherokee SUV 2012 2.21% Dodge Caravan Minivan 1997 2.09% GMC Acadia SUV 2012 1.96% GMC Savana Van 2012 1.68% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Audi S6 Sedan 2011 2.43% Chevrolet Silverado 1500 Extended Cab 2012 1.96% HUMMER H2 SUT Crew Cab 2009 1.91% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.85% HUMMER H3T Crew Cab 2010 1.84% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Honda Accord Coupe 2012 7.46% BMW 3 Series Sedan 2012 6.76% BMW Z4 Convertible 2012 5.65% Eagle Talon Hatchback 1998 3.97% Audi TT RS Coupe 2012 3.92% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 BMW X5 SUV 2007 4.28% Chevrolet Silverado 2500HD Regular Cab 2012 2.66% Dodge Challenger SRT8 2011 2.15% Audi S4 Sedan 2007 2.12% Suzuki Aerio Sedan 2007 1.87% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Rolls-Royce Phantom Sedan 2012 2.42% Lincoln Town Car Sedan 2011 1.47% Hyundai Genesis Sedan 2012 1.46% Ram C/V Cargo Van Minivan 2012 1.38% Honda Odyssey Minivan 2007 1.38% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Dodge Caravan Minivan 1997 1.36% Jeep Patriot SUV 2012 1.18% Ford E-Series Wagon Van 2012 1.07% Lamborghini Reventon Coupe 2008 1.07% Chrysler Aspen SUV 2009 1.05% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Ford F-150 Regular Cab 2007 3.21% GMC Terrain SUV 2012 1.69% GMC Acadia SUV 2012 1.53% BMW X5 SUV 2007 1.52% Chrysler Aspen SUV 2009 1.49% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Ferrari 458 Italia Convertible 2012 4.47% Chevrolet Cobalt SS 2010 4.36% Dodge Charger SRT-8 2009 4.17% Dodge Magnum Wagon 2008 4.11% Lamborghini Aventador Coupe 2012 3.35% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.86% Dodge Caravan Minivan 1997 3.0% Daewoo Nubira Wagon 2002 2.25% MINI Cooper Roadster Convertible 2012 1.99% Mercedes-Benz S-Class Sedan 2012 1.95% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Chrysler 300 SRT-8 2010 2.41% Chevrolet Silverado 2500HD Regular Cab 2012 1.95% Audi S5 Coupe 2012 1.37% Chevrolet Silverado 1500 Extended Cab 2012 1.34% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.22% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet TrailBlazer SS 2009 1.53% Chevrolet Corvette ZR1 2012 1.35% Toyota 4Runner SUV 2012 1.31% Lamborghini Reventon Coupe 2008 1.22% Chrysler 300 SRT-8 2010 1.2% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 11.56% AM General Hummer SUV 2000 8.0% Acura Integra Type R 2001 2.94% Jeep Patriot SUV 2012 1.86% Geo Metro Convertible 1993 1.62% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Jeep Grand Cherokee SUV 2012 1.56% Bentley Continental Flying Spur Sedan 2007 1.52% Hyundai Veracruz SUV 2012 1.41% Land Rover Range Rover SUV 2012 1.33% Mercedes-Benz SL-Class Coupe 2009 1.31% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Bugatti Veyron 16.4 Coupe 2009 1.65% Aston Martin V8 Vantage Coupe 2012 1.35% Audi R8 Coupe 2012 1.29% Plymouth Neon Coupe 1999 1.19% Daewoo Nubira Wagon 2002 1.17% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Ram C/V Cargo Van Minivan 2012 3.38% Audi TT Hatchback 2011 3.2% Honda Accord Sedan 2012 2.87% Dodge Sprinter Cargo Van 2009 2.23% Mercedes-Benz SL-Class Coupe 2009 2.22% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Dodge Charger SRT-8 2009 2.7% Lamborghini Aventador Coupe 2012 2.33% Ferrari California Convertible 2012 2.03% HUMMER H2 SUT Crew Cab 2009 1.98% BMW X6 SUV 2012 1.95% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 BMW ActiveHybrid 5 Sedan 2012 1.39% Dodge Sprinter Cargo Van 2009 1.24% GMC Savana Van 2012 1.17% Chevrolet Silverado 2500HD Regular Cab 2012 1.17% Lincoln Town Car Sedan 2011 1.16% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Chevrolet Express Cargo Van 2007 2.74% Chevrolet Express Van 2007 2.54% GMC Savana Van 2012 2.45% Volvo XC90 SUV 2007 2.41% Mercedes-Benz SL-Class Coupe 2009 2.29% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Acura TL Type-S 2008 3.27% Jaguar XK XKR 2012 2.29% BMW M5 Sedan 2010 2.17% Acura TL Sedan 2012 1.44% Jeep Compass SUV 2012 1.23% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 4.25% Ferrari FF Coupe 2012 3.3% FIAT 500 Convertible 2012 2.09% Ferrari 458 Italia Coupe 2012 2.04% Honda Accord Coupe 2012 2.02% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz Sprinter Van 2012 2.2% Chrysler Aspen SUV 2009 2.02% Ford E-Series Wagon Van 2012 1.93% BMW X3 SUV 2012 1.78% GMC Savana Van 2012 1.68% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Chevrolet Silverado 2500HD Regular Cab 2012 7.38% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.4% Infiniti G Coupe IPL 2012 2.32% BMW X3 SUV 2012 1.83% Chevrolet Traverse SUV 2012 1.8% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Acura TL Type-S 2008 2.55% BMW M5 Sedan 2010 2.0% Acura TL Sedan 2012 1.78% Jaguar XK XKR 2012 1.75% Acura RL Sedan 2012 1.47% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Ferrari FF Coupe 2012 5.07% Dodge Caliber Wagon 2007 4.26% Ford GT Coupe 2006 3.99% BMW 1 Series Coupe 2012 3.45% BMW M3 Coupe 2012 3.33% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 60.82% Audi S5 Convertible 2012 3.32% Porsche Panamera Sedan 2012 1.71% Chevrolet Corvette Convertible 2012 1.56% Toyota Sequoia SUV 2012 1.03% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Plymouth Neon Coupe 1999 3.53% BMW ActiveHybrid 5 Sedan 2012 2.5% Ford Freestar Minivan 2007 2.2% Ford E-Series Wagon Van 2012 1.79% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 3.82% Bugatti Veyron 16.4 Coupe 2009 3.53% Lamborghini Diablo Coupe 2001 2.79% Ford GT Coupe 2006 2.67% Lamborghini Aventador Coupe 2012 2.67% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 13.83% Ferrari 458 Italia Convertible 2012 6.9% Dodge Caliber Wagon 2007 6.57% BMW M3 Coupe 2012 5.2% Chevrolet Cobalt SS 2010 4.51% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Lamborghini Diablo Coupe 2001 6.12% Bugatti Veyron 16.4 Coupe 2009 2.14% Volvo 240 Sedan 1993 1.83% AM General Hummer SUV 2000 1.72% Dodge Challenger SRT8 2011 1.67% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 7.99% Aston Martin Virage Coupe 2012 7.89% BMW M3 Coupe 2012 4.22% Lamborghini Aventador Coupe 2012 3.66% HUMMER H2 SUT Crew Cab 2009 3.48% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.93% Bentley Continental Flying Spur Sedan 2007 2.49% BMW X3 SUV 2012 1.62% AM General Hummer SUV 2000 1.57% Daewoo Nubira Wagon 2002 1.53% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Dodge Ram Pickup 3500 Crew Cab 2010 3.8% Chrysler Aspen SUV 2009 2.98% Dodge Sprinter Cargo Van 2009 2.8% Buick Rainier SUV 2007 2.79% Chevrolet Traverse SUV 2012 2.59% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 BMW ActiveHybrid 5 Sedan 2012 2.44% Dodge Sprinter Cargo Van 2009 1.64% Lincoln Town Car Sedan 2011 1.64% Ram C/V Cargo Van Minivan 2012 1.5% Tesla Model S Sedan 2012 1.49% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Plymouth Neon Coupe 1999 2.08% Ford E-Series Wagon Van 2012 1.88% Rolls-Royce Phantom Sedan 2012 1.84% BMW ActiveHybrid 5 Sedan 2012 1.82% Isuzu Ascender SUV 2008 1.45% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Daewoo Nubira Wagon 2002 2.12% MINI Cooper Roadster Convertible 2012 2.03% BMW M6 Convertible 2010 1.85% Plymouth Neon Coupe 1999 1.64% BMW ActiveHybrid 5 Sedan 2012 1.58% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Ferrari FF Coupe 2012 4.74% Ferrari 458 Italia Coupe 2012 4.53% Honda Accord Coupe 2012 3.01% Ferrari 458 Italia Convertible 2012 2.7% FIAT 500 Convertible 2012 2.42% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.09% Ferrari FF Coupe 2012 1.71% MINI Cooper Roadster Convertible 2012 1.6% Ram C/V Cargo Van Minivan 2012 1.53% Chrysler 300 SRT-8 2010 1.4% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Acura TL Sedan 2012 2.15% Acura TL Type-S 2008 2.13% Acura ZDX Hatchback 2012 1.97% Mercedes-Benz S-Class Sedan 2012 1.83% Dodge Caravan Minivan 1997 1.71% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Mercedes-Benz Sprinter Van 2012 2.99% Ford E-Series Wagon Van 2012 2.24% Audi A5 Coupe 2012 2.05% Dodge Sprinter Cargo Van 2009 1.99% Hyundai Azera Sedan 2012 1.92% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Chrysler Sebring Convertible 2010 1.94% Ram C/V Cargo Van Minivan 2012 1.56% Hyundai Azera Sedan 2012 1.53% Chrysler PT Cruiser Convertible 2008 1.4% Nissan Leaf Hatchback 2012 1.38% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Ford F-150 Regular Cab 2007 3.24% Chevrolet Silverado 1500 Regular Cab 2012 2.61% Chevrolet Monte Carlo Coupe 2007 2.47% Dodge Durango SUV 2012 2.24% GMC Terrain SUV 2012 1.99% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Audi S6 Sedan 2011 1.44% Bentley Arnage Sedan 2009 1.39% Ford E-Series Wagon Van 2012 1.34% Chevrolet TrailBlazer SS 2009 1.31% Ford F-150 Regular Cab 2012 1.29% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 Dodge Sprinter Cargo Van 2009 6.12% Mercedes-Benz Sprinter Van 2012 6.04% GMC Savana Van 2012 5.38% BMW X5 SUV 2007 3.39% Hyundai Veracruz SUV 2012 3.25% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Chrysler 300 SRT-8 2010 3.4% Cadillac Escalade EXT Crew Cab 2007 3.16% Chevrolet Silverado 1500 Regular Cab 2012 2.74% Chevrolet Monte Carlo Coupe 2007 2.41% Hyundai Veracruz SUV 2012 2.16% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Honda Odyssey Minivan 2007 4.07% Lincoln Town Car Sedan 2011 2.1% Hyundai Tucson SUV 2012 1.94% Dodge Sprinter Cargo Van 2009 1.8% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.77% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Lincoln Town Car Sedan 2011 5.45% Infiniti G Coupe IPL 2012 4.25% Chevrolet Camaro Convertible 2012 3.82% Chevrolet TrailBlazer SS 2009 2.33% Bugatti Veyron 16.4 Coupe 2009 1.89% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Chrysler 300 SRT-8 2010 2.99% BMW X5 SUV 2007 2.87% Ford Ranger SuperCab 2011 2.26% Jaguar XK XKR 2012 2.04% Dodge Ram Pickup 3500 Crew Cab 2010 1.73% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Mercedes-Benz S-Class Sedan 2012 2.65% Dodge Caravan Minivan 1997 2.26% Plymouth Neon Coupe 1999 1.78% Chevrolet Malibu Sedan 2007 1.73% Ram C/V Cargo Van Minivan 2012 1.69% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 7.01% Chevrolet Express Cargo Van 2007 3.43% Audi 100 Sedan 1994 2.38% Dodge Caravan Minivan 1997 2.28% Ford E-Series Wagon Van 2012 1.79% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Dodge Sprinter Cargo Van 2009 5.27% Mercedes-Benz SL-Class Coupe 2009 3.44% Chevrolet Express Cargo Van 2007 2.58% Audi TT Hatchback 2011 2.38% Mercedes-Benz Sprinter Van 2012 2.37% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Aston Martin Virage Coupe 2012 13.98% Lamborghini Aventador Coupe 2012 6.9% Ferrari California Convertible 2012 6.55% Ferrari 458 Italia Convertible 2012 4.12% Ferrari 458 Italia Coupe 2012 3.1% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Lincoln Town Car Sedan 2011 2.96% Mazda Tribute SUV 2011 2.19% BMW 6 Series Convertible 2007 1.83% Jaguar XK XKR 2012 1.72% Volkswagen Beetle Hatchback 2012 1.66% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Dodge Challenger SRT8 2011 1.84% Bentley Arnage Sedan 2009 1.5% GMC Yukon Hybrid SUV 2012 1.46% HUMMER H2 SUT Crew Cab 2009 1.46% Audi S6 Sedan 2011 1.4% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Bentley Mulsanne Sedan 2011 3.87% Jeep Compass SUV 2012 2.97% Dodge Ram Pickup 3500 Crew Cab 2010 1.93% Jeep Patriot SUV 2012 1.78% Toyota 4Runner SUV 2012 1.77% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari 458 Italia Convertible 2012 10.94% Lamborghini Aventador Coupe 2012 8.96% Aston Martin Virage Coupe 2012 6.96% Dodge Charger SRT-8 2009 6.35% Ferrari 458 Italia Coupe 2012 4.13% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Ferrari 458 Italia Coupe 2012 8.11% Dodge Charger SRT-8 2009 5.84% Lamborghini Aventador Coupe 2012 5.27% Ferrari 458 Italia Convertible 2012 4.75% Ferrari California Convertible 2012 4.7% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Chevrolet Monte Carlo Coupe 2007 2.39% Dodge Caravan Minivan 1997 1.92% Bentley Arnage Sedan 2009 1.81% Plymouth Neon Coupe 1999 1.72% Chrysler 300 SRT-8 2010 1.56% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 2.43% Maybach Landaulet Convertible 2012 1.57% Tesla Model S Sedan 2012 1.54% Ram C/V Cargo Van Minivan 2012 1.35% Lincoln Town Car Sedan 2011 1.31% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 4.11% Chevrolet Express Cargo Van 2007 2.97% BMW X5 SUV 2007 2.67% GMC Yukon Hybrid SUV 2012 2.08% Jeep Grand Cherokee SUV 2012 1.59% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.35% Dodge Sprinter Cargo Van 2009 2.02% Hyundai Elantra Touring Hatchback 2012 1.92% Chevrolet Malibu Sedan 2007 1.82% Chevrolet Traverse SUV 2012 1.64% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Chrysler Aspen SUV 2009 3.25% Dodge Durango SUV 2012 2.13% Chevrolet Express Van 2007 2.03% Acura TL Sedan 2012 1.99% Ford Ranger SuperCab 2011 1.78% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Toyota 4Runner SUV 2012 5.65% Chevrolet Corvette ZR1 2012 2.93% Audi R8 Coupe 2012 2.84% Bugatti Veyron 16.4 Coupe 2009 2.14% Bentley Mulsanne Sedan 2011 1.99% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 BMW 3 Series Sedan 2012 3.9% Eagle Talon Hatchback 1998 3.68% Chevrolet Cobalt SS 2010 3.49% Honda Accord Coupe 2012 3.17% Audi TT RS Coupe 2012 2.82% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Nissan 240SX Coupe 1998 2.55% Audi V8 Sedan 1994 2.49% BMW M6 Convertible 2010 2.48% Mercedes-Benz 300-Class Convertible 1993 2.4% Ford F-150 Regular Cab 2007 2.3% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Audi S4 Sedan 2012 3.0% Ford F-150 Regular Cab 2007 2.78% Ford F-150 Regular Cab 2012 2.68% Dodge Ram Pickup 3500 Quad Cab 2009 2.55% BMW M6 Convertible 2010 2.28% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Eagle Talon Hatchback 1998 3.06% Dodge Caliber Wagon 2012 2.62% Hyundai Sonata Sedan 2012 2.3% Volkswagen Beetle Hatchback 2012 2.11% Plymouth Neon Coupe 1999 2.01% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Chrysler 300 SRT-8 2010 2.18% BMW M6 Convertible 2010 1.92% BMW 3 Series Wagon 2012 1.68% Infiniti G Coupe IPL 2012 1.6% Audi RS 4 Convertible 2008 1.47% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Aston Martin Virage Coupe 2012 5.29% HUMMER H2 SUT Crew Cab 2009 5.06% AM General Hummer SUV 2000 4.31% Aston Martin V8 Vantage Coupe 2012 3.69% Acura Integra Type R 2001 3.47% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Jeep Liberty SUV 2012 3.06% Chrysler Aspen SUV 2009 2.29% Ford Edge SUV 2012 1.85% GMC Yukon Hybrid SUV 2012 1.73% GMC Savana Van 2012 1.66% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Chevrolet Cobalt SS 2010 5.03% Geo Metro Convertible 1993 3.71% BMW 3 Series Sedan 2012 2.69% Dodge Charger SRT-8 2009 2.28% Plymouth Neon Coupe 1999 1.92% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 Chrysler Aspen SUV 2009 9.97% Jeep Patriot SUV 2012 2.21% Hyundai Santa Fe SUV 2012 1.96% Audi TTS Coupe 2012 1.96% Dodge Durango SUV 2012 1.79% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 4.87% Aston Martin V8 Vantage Coupe 2012 3.74% BMW X6 SUV 2012 2.93% Volkswagen Golf Hatchback 1991 2.88% Ferrari 458 Italia Coupe 2012 2.8% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 BMW X3 SUV 2012 5.14% MINI Cooper Roadster Convertible 2012 4.89% Porsche Panamera Sedan 2012 3.46% Mercedes-Benz SL-Class Coupe 2009 3.3% Toyota 4Runner SUV 2012 2.39% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Daewoo Nubira Wagon 2002 2.6% Bentley Continental Flying Spur Sedan 2007 2.23% BMW ActiveHybrid 5 Sedan 2012 1.74% Suzuki Aerio Sedan 2007 1.68% Acura TL Type-S 2008 1.67% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Sprinter Cargo Van 2009 3.03% Mercedes-Benz Sprinter Van 2012 1.67% Chevrolet Express Cargo Van 2007 1.43% Mercedes-Benz SL-Class Coupe 2009 1.35% GMC Savana Van 2012 1.25% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz S-Class Sedan 2012 1.72% Nissan Leaf Hatchback 2012 1.63% MINI Cooper Roadster Convertible 2012 1.51% Audi S5 Coupe 2012 1.43% FIAT 500 Convertible 2012 1.42% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 4.71% Dodge Charger SRT-8 2009 2.05% Geo Metro Convertible 1993 1.77% Lamborghini Aventador Coupe 2012 1.66% Volkswagen Golf Hatchback 1991 1.65% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Chevrolet TrailBlazer SS 2009 2.52% Mercedes-Benz 300-Class Convertible 1993 2.33% Bentley Continental GT Coupe 2007 2.0% Bugatti Veyron 16.4 Coupe 2009 1.76% Infiniti G Coupe IPL 2012 1.7% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Dodge Sprinter Cargo Van 2009 3.76% Mercedes-Benz Sprinter Van 2012 2.71% Isuzu Ascender SUV 2008 1.93% Ford E-Series Wagon Van 2012 1.82% GMC Savana Van 2012 1.67% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Bugatti Veyron 16.4 Coupe 2009 1.33% Porsche Panamera Sedan 2012 1.32% Mercedes-Benz S-Class Sedan 2012 1.21% Rolls-Royce Phantom Sedan 2012 1.1% Dodge Challenger SRT8 2011 1.1% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Ferrari California Convertible 2012 11.82% Lamborghini Aventador Coupe 2012 10.5% Aston Martin Virage Coupe 2012 5.39% Ferrari 458 Italia Coupe 2012 5.04% Ferrari 458 Italia Convertible 2012 3.77% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 3.35% Ferrari California Convertible 2012 2.65% BMW M3 Coupe 2012 2.11% McLaren MP4-12C Coupe 2012 1.54% Hyundai Veloster Hatchback 2012 1.39% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Jeep Liberty SUV 2012 2.88% Hyundai Veloster Hatchback 2012 1.88% Jeep Grand Cherokee SUV 2012 1.82% GMC Savana Van 2012 1.7% Dodge Durango SUV 2012 1.38% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 5.03% Chevrolet Express Van 2007 2.54% HUMMER H3T Crew Cab 2010 2.42% Dodge Sprinter Cargo Van 2009 1.62% Plymouth Neon Coupe 1999 1.43% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.91% MINI Cooper Roadster Convertible 2012 1.4% Dodge Caravan Minivan 1997 1.39% Mercedes-Benz Sprinter Van 2012 1.32% Mercedes-Benz S-Class Sedan 2012 1.27% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Dodge Sprinter Cargo Van 2009 6.3% Chevrolet Express Cargo Van 2007 3.14% Mercedes-Benz Sprinter Van 2012 2.63% GMC Savana Van 2012 1.92% Chevrolet Traverse SUV 2012 1.73% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Jaguar XK XKR 2012 1.62% Mercedes-Benz SL-Class Coupe 2009 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.31% Lincoln Town Car Sedan 2011 1.25% Volvo 240 Sedan 1993 1.22% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 GMC Canyon Extended Cab 2012 4.91% Ferrari FF Coupe 2012 4.47% Ferrari 458 Italia Coupe 2012 3.46% Ford GT Coupe 2006 3.38% GMC Savana Van 2012 3.09% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Dodge Durango SUV 2007 1.09% Audi S6 Sedan 2011 1.05% Nissan Leaf Hatchback 2012 0.94% Audi R8 Coupe 2012 0.91% Jeep Grand Cherokee SUV 2012 0.88% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Mercedes-Benz Sprinter Van 2012 3.03% Mercedes-Benz S-Class Sedan 2012 2.92% Nissan Leaf Hatchback 2012 2.82% Acura TL Type-S 2008 2.76% Chrysler PT Cruiser Convertible 2008 2.26% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Hyundai Genesis Sedan 2012 3.44% Mercedes-Benz C-Class Sedan 2012 2.51% Plymouth Neon Coupe 1999 2.04% Nissan 240SX Coupe 1998 2.02% Chevrolet Monte Carlo Coupe 2007 1.97% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 BMW M3 Coupe 2012 5.15% Dodge Charger SRT-8 2009 4.82% Volvo C30 Hatchback 2012 4.71% Lamborghini Aventador Coupe 2012 4.28% Ferrari California Convertible 2012 3.97% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Mercedes-Benz S-Class Sedan 2012 2.03% Dodge Caravan Minivan 1997 1.62% Acura ZDX Hatchback 2012 1.6% Chrysler PT Cruiser Convertible 2008 1.57% Chrysler Sebring Convertible 2010 1.54% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Audi TT RS Coupe 2012 5.72% Dodge Magnum Wagon 2008 4.96% Ferrari 458 Italia Coupe 2012 4.68% Chevrolet HHR SS 2010 4.14% Ferrari California Convertible 2012 2.32% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Dodge Magnum Wagon 2008 8.81% Dodge Charger SRT-8 2009 6.7% Lamborghini Aventador Coupe 2012 4.28% Chevrolet Cobalt SS 2010 2.94% Chevrolet HHR SS 2010 2.85% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Audi S4 Sedan 2012 2.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.07% Ford Expedition EL SUV 2009 1.83% Honda Accord Coupe 2012 1.83% Jeep Patriot SUV 2012 1.69% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.41% BMW M3 Coupe 2012 1.77% Spyker C8 Coupe 2009 1.72% Mercedes-Benz S-Class Sedan 2012 1.71% MINI Cooper Roadster Convertible 2012 1.65% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Volvo 240 Sedan 1993 2.13% Chrysler Aspen SUV 2009 1.91% Chrysler 300 SRT-8 2010 1.91% Rolls-Royce Ghost Sedan 2012 1.89% Jeep Patriot SUV 2012 1.79% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Toyota 4Runner SUV 2012 5.73% FIAT 500 Abarth 2012 2.93% GMC Acadia SUV 2012 2.89% Land Rover Range Rover SUV 2012 2.53% Hyundai Santa Fe SUV 2012 2.07% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Chrysler Sebring Convertible 2010 1.85% Acura TL Type-S 2008 1.68% Jaguar XK XKR 2012 1.52% Mercedes-Benz S-Class Sedan 2012 1.25% Audi TTS Coupe 2012 1.16% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Bentley Mulsanne Sedan 2011 1.86% Bentley Arnage Sedan 2009 1.77% Hyundai Azera Sedan 2012 1.68% BMW M6 Convertible 2010 1.65% Jeep Grand Cherokee SUV 2012 1.47% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 6.55% MINI Cooper Roadster Convertible 2012 4.48% BMW M3 Coupe 2012 2.59% Tesla Model S Sedan 2012 1.83% Audi R8 Coupe 2012 1.61% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Dodge Caliber Wagon 2007 6.17% Buick Rainier SUV 2007 3.38% Ford Ranger SuperCab 2011 3.32% Chevrolet Traverse SUV 2012 2.74% Ford Freestar Minivan 2007 2.65% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Honda Accord Coupe 2012 4.9% Lincoln Town Car Sedan 2011 1.97% Ford F-150 Regular Cab 2012 1.87% Isuzu Ascender SUV 2008 1.73% GMC Acadia SUV 2012 1.72% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Chrysler 300 SRT-8 2010 3.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.77% Bentley Continental Flying Spur Sedan 2007 1.44% Audi S5 Coupe 2012 1.42% Honda Accord Sedan 2012 1.32% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Ferrari FF Coupe 2012 7.02% BMW M3 Coupe 2012 4.86% Ford GT Coupe 2006 4.01% Dodge Caliber Wagon 2007 3.97% BMW 1 Series Coupe 2012 3.54% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Mercedes-Benz S-Class Sedan 2012 2.26% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.71% Suzuki SX4 Sedan 2012 1.71% Dodge Caravan Minivan 1997 1.62% Acura TL Type-S 2008 1.61% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 5.69% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.18% GMC Savana Van 2012 2.04% Ford GT Coupe 2006 1.85% Eagle Talon Hatchback 1998 1.83% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Jeep Grand Cherokee SUV 2012 2.51% Chrysler Aspen SUV 2009 1.73% Nissan Juke Hatchback 2012 1.63% Bentley Mulsanne Sedan 2011 1.5% Ford Mustang Convertible 2007 1.32% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.13% Plymouth Neon Coupe 1999 1.89% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.67% Suzuki Aerio Sedan 2007 1.53% Mercedes-Benz S-Class Sedan 2012 1.45% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Audi S6 Sedan 2011 2.58% Bentley Arnage Sedan 2009 2.35% AM General Hummer SUV 2000 2.01% HUMMER H2 SUT Crew Cab 2009 1.75% Dodge Durango SUV 2007 1.64% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.33% Ford Mustang Convertible 2007 1.85% Chevrolet Camaro Convertible 2012 1.63% Chevrolet Corvette ZR1 2012 1.36% Chevrolet Express Van 2007 1.35% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 AM General Hummer SUV 2000 12.85% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.26% Lamborghini Diablo Coupe 2001 3.02% Jeep Patriot SUV 2012 2.46% Geo Metro Convertible 1993 2.35% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Dodge Sprinter Cargo Van 2009 4.97% Honda Accord Sedan 2012 2.39% Buick Rainier SUV 2007 2.14% Chevrolet Express Cargo Van 2007 2.1% Mercedes-Benz Sprinter Van 2012 1.94% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Charger SRT-8 2009 3.94% Ferrari California Convertible 2012 3.83% Lamborghini Aventador Coupe 2012 3.68% Ferrari 458 Italia Convertible 2012 3.26% Chevrolet HHR SS 2010 2.68% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Ford F-150 Regular Cab 2007 2.71% GMC Savana Van 2012 2.35% GMC Canyon Extended Cab 2012 2.22% Chevrolet HHR SS 2010 2.19% Chevrolet Silverado 1500 Regular Cab 2012 1.83% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 GMC Yukon Hybrid SUV 2012 1.39% Toyota 4Runner SUV 2012 1.18% GMC Savana Van 2012 1.11% Cadillac Escalade EXT Crew Cab 2007 1.01% Chrysler 300 SRT-8 2010 0.98% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Hyundai Azera Sedan 2012 1.59% Spyker C8 Coupe 2009 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% MINI Cooper Roadster Convertible 2012 1.33% Audi S6 Sedan 2011 1.21% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 HUMMER H2 SUT Crew Cab 2009 1.78% Bentley Arnage Sedan 2009 1.7% Audi S6 Sedan 2011 1.64% AM General Hummer SUV 2000 1.44% Chevrolet TrailBlazer SS 2009 1.21% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Ferrari 458 Italia Coupe 2012 3.4% Ferrari California Convertible 2012 3.24% Lamborghini Aventador Coupe 2012 3.07% Dodge Charger SRT-8 2009 2.93% Volvo C30 Hatchback 2012 2.69% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 4.82% Mercedes-Benz Sprinter Van 2012 4.14% Isuzu Ascender SUV 2008 3.27% Chevrolet Express Cargo Van 2007 3.27% Ford E-Series Wagon Van 2012 3.03% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Buick Regal GS 2012 5.83% FIAT 500 Convertible 2012 4.54% BMW ActiveHybrid 5 Sedan 2012 2.47% Volkswagen Beetle Hatchback 2012 2.41% Volkswagen Golf Hatchback 2012 2.41% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Ferrari California Convertible 2012 4.5% Chrysler PT Cruiser Convertible 2008 4.0% BMW 3 Series Sedan 2012 3.86% BMW Z4 Convertible 2012 3.66% Ferrari 458 Italia Coupe 2012 3.3% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Express Cargo Van 2007 15.78% GMC Savana Van 2012 9.66% Dodge Sprinter Cargo Van 2009 8.47% Isuzu Ascender SUV 2008 2.82% Mercedes-Benz Sprinter Van 2012 2.08% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 BMW X6 SUV 2012 5.19% Dodge Ram Pickup 3500 Quad Cab 2009 3.29% Chevrolet Cobalt SS 2010 2.82% GMC Canyon Extended Cab 2012 2.71% Dodge Caliber Wagon 2007 2.49% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Dodge Sprinter Cargo Van 2009 13.29% Mercedes-Benz Sprinter Van 2012 7.86% Ford E-Series Wagon Van 2012 4.18% Nissan NV Passenger Van 2012 2.86% GMC Savana Van 2012 2.53% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Chrysler 300 SRT-8 2010 1.83% Chevrolet Silverado 1500 Regular Cab 2012 1.79% Jeep Grand Cherokee SUV 2012 1.53% Cadillac Escalade EXT Crew Cab 2007 1.44% Bentley Mulsanne Sedan 2011 1.43% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 MINI Cooper Roadster Convertible 2012 5.79% BMW X3 SUV 2012 3.25% BMW X5 SUV 2007 2.52% Ford Edge SUV 2012 2.27% Mercedes-Benz Sprinter Van 2012 2.1% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Jeep Compass SUV 2012 1.99% Dodge Caravan Minivan 1997 1.85% Audi 100 Sedan 1994 1.51% Scion xD Hatchback 2012 1.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Sprinter Cargo Van 2009 3.23% Ford F-150 Regular Cab 2012 2.34% Chevrolet Express Cargo Van 2007 2.32% GMC Savana Van 2012 2.27% Audi A5 Coupe 2012 2.03% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Mercedes-Benz Sprinter Van 2012 3.35% MINI Cooper Roadster Convertible 2012 3.33% Nissan Leaf Hatchback 2012 2.62% Bugatti Veyron 16.4 Convertible 2009 2.58% Dodge Sprinter Cargo Van 2009 2.49% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Daewoo Nubira Wagon 2002 2.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.99% Mercedes-Benz S-Class Sedan 2012 1.84% Dodge Caravan Minivan 1997 1.8% Audi S6 Sedan 2011 1.73% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Lamborghini Aventador Coupe 2012 5.76% Dodge Charger SRT-8 2009 3.66% McLaren MP4-12C Coupe 2012 3.3% Aston Martin Virage Coupe 2012 3.24% Chevrolet Camaro Convertible 2012 2.32% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Hyundai Azera Sedan 2012 1.25% Chevrolet Corvette ZR1 2012 1.22% Bentley Arnage Sedan 2009 1.17% Lamborghini Reventon Coupe 2008 1.16% Acura ZDX Hatchback 2012 1.14% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Chevrolet Monte Carlo Coupe 2007 1.83% Bentley Arnage Sedan 2009 1.54% Bugatti Veyron 16.4 Coupe 2009 1.39% BMW M6 Convertible 2010 1.13% Mercedes-Benz 300-Class Convertible 1993 1.09% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Acura TL Type-S 2008 1.98% Dodge Caravan Minivan 1997 1.82% Bentley Mulsanne Sedan 2011 1.4% Daewoo Nubira Wagon 2002 1.36% Rolls-Royce Phantom Sedan 2012 1.32% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bentley Mulsanne Sedan 2011 2.62% Bentley Arnage Sedan 2009 1.98% BMW M6 Convertible 2010 1.94% Chevrolet Corvette ZR1 2012 1.63% Chevrolet Camaro Convertible 2012 1.38% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Dodge Caliber Wagon 2007 2.52% Hyundai Sonata Sedan 2012 1.77% Ford Edge SUV 2012 1.76% Nissan Juke Hatchback 2012 1.61% Ford GT Coupe 2006 1.59% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Chevrolet Monte Carlo Coupe 2007 2.72% Maybach Landaulet Convertible 2012 1.92% Rolls-Royce Ghost Sedan 2012 1.91% Mercedes-Benz C-Class Sedan 2012 1.74% Eagle Talon Hatchback 1998 1.59% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 BMW 6 Series Convertible 2007 1.77% Bentley Continental Supersports Conv. Convertible 2012 1.75% Suzuki Aerio Sedan 2007 1.6% Jaguar XK XKR 2012 1.38% Hyundai Genesis Sedan 2012 1.37% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Ford F-150 Regular Cab 2007 3.92% GMC Savana Van 2012 2.07% Jeep Grand Cherokee SUV 2012 1.97% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.94% GMC Terrain SUV 2012 1.88% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Jeep Liberty SUV 2012 1.63% HUMMER H2 SUT Crew Cab 2009 1.57% Dodge Durango SUV 2007 1.47% Bentley Arnage Sedan 2009 1.46% Chevrolet Avalanche Crew Cab 2012 1.41% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Ford Expedition EL SUV 2009 1.51% Land Rover Range Rover SUV 2012 1.26% Jeep Compass SUV 2012 1.24% Buick Regal GS 2012 1.12% Chevrolet Corvette ZR1 2012 1.1% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Chrysler 300 SRT-8 2010 1.71% Chevrolet Silverado 2500HD Regular Cab 2012 1.69% Scion xD Hatchback 2012 1.68% Lincoln Town Car Sedan 2011 1.39% Dodge Durango SUV 2012 1.33% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Jeep Grand Cherokee SUV 2012 1.96% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.73% Honda Accord Coupe 2012 1.71% Ford Expedition EL SUV 2009 1.53% GMC Savana Van 2012 1.48% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 2.15% Maybach Landaulet Convertible 2012 1.78% Ram C/V Cargo Van Minivan 2012 1.4% Tesla Model S Sedan 2012 1.39% BMW 6 Series Convertible 2007 1.39% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Rolls-Royce Phantom Sedan 2012 8.16% BMW ActiveHybrid 5 Sedan 2012 4.38% BMW 6 Series Convertible 2007 2.09% Lincoln Town Car Sedan 2011 1.98% BMW Z4 Convertible 2012 1.84% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 Ford F-150 Regular Cab 2007 1.99% Chevrolet Monte Carlo Coupe 2007 1.68% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.61% Chevrolet Silverado 1500 Regular Cab 2012 1.59% GMC Savana Van 2012 1.58% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Suzuki Aerio Sedan 2007 2.76% Lincoln Town Car Sedan 2011 2.67% AM General Hummer SUV 2000 2.26% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.18% Chrysler Crossfire Convertible 2008 1.8% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Jeep Compass SUV 2012 7.54% Bugatti Veyron 16.4 Coupe 2009 4.89% Fisker Karma Sedan 2012 4.42% Volvo 240 Sedan 1993 4.21% Bentley Mulsanne Sedan 2011 3.57% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Ferrari California Convertible 2012 8.62% Ferrari 458 Italia Coupe 2012 5.53% Aston Martin Virage Coupe 2012 4.7% Lamborghini Aventador Coupe 2012 4.08% BMW 1 Series Coupe 2012 3.12% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 2.76% Jeep Patriot SUV 2012 2.4% Lamborghini Diablo Coupe 2001 2.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.18% Hyundai Azera Sedan 2012 1.35% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 3.61% Chrysler Sebring Convertible 2010 3.22% GMC Savana Van 2012 2.14% Chevrolet Impala Sedan 2007 1.83% Honda Odyssey Minivan 2007 1.63% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 3.49% Hyundai Genesis Sedan 2012 3.25% Chevrolet Monte Carlo Coupe 2007 2.81% Plymouth Neon Coupe 1999 2.53% Jeep Patriot SUV 2012 2.49% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Hyundai Azera Sedan 2012 3.0% AM General Hummer SUV 2000 2.77% Aston Martin Virage Coupe 2012 2.64% Lamborghini Reventon Coupe 2008 2.12% Bentley Arnage Sedan 2009 2.1% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Sedan 2012 4.1% BMW ActiveHybrid 5 Sedan 2012 1.85% Acura TL Sedan 2012 1.73% Chrysler Sebring Convertible 2010 1.72% Porsche Panamera Sedan 2012 1.71% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Dodge Sprinter Cargo Van 2009 3.17% Chevrolet Express Cargo Van 2007 2.08% Mercedes-Benz Sprinter Van 2012 1.9% Chevrolet Traverse SUV 2012 1.61% Chevrolet Express Van 2007 1.56% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 BMW ActiveHybrid 5 Sedan 2012 2.51% Lincoln Town Car Sedan 2011 1.99% Honda Odyssey Minivan 2007 1.92% Ram C/V Cargo Van Minivan 2012 1.8% Chevrolet Malibu Hybrid Sedan 2010 1.46% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Jeep Wrangler SUV 2012 5.36% Chevrolet Cobalt SS 2010 5.18% BMW 1 Series Coupe 2012 3.79% Ford Mustang Convertible 2007 3.73% Dodge Ram Pickup 3500 Quad Cab 2009 3.1% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 3.05% Tesla Model S Sedan 2012 2.97% Ram C/V Cargo Van Minivan 2012 2.92% Hyundai Elantra Touring Hatchback 2012 1.91% Maybach Landaulet Convertible 2012 1.89% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Plymouth Neon Coupe 1999 3.91% Jeep Liberty SUV 2012 1.5% GMC Yukon Hybrid SUV 2012 1.32% Mitsubishi Lancer Sedan 2012 1.31% MINI Cooper Roadster Convertible 2012 1.13% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 GMC Yukon Hybrid SUV 2012 2.68% BMW X5 SUV 2007 2.53% HUMMER H2 SUT Crew Cab 2009 2.34% GMC Savana Van 2012 2.07% Land Rover Range Rover SUV 2012 1.95% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 BMW M5 Sedan 2010 3.4% Audi S4 Sedan 2007 2.99% Chrysler Sebring Convertible 2010 2.35% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.31% Chevrolet Malibu Hybrid Sedan 2010 2.09% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 GMC Yukon Hybrid SUV 2012 6.92% Jeep Patriot SUV 2012 5.25% HUMMER H2 SUT Crew Cab 2009 2.41% Volkswagen Golf Hatchback 2012 2.36% Dodge Ram Pickup 3500 Crew Cab 2010 2.09% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Ford Mustang Convertible 2007 7.44% HUMMER H2 SUT Crew Cab 2009 6.36% Chevrolet Cobalt SS 2010 5.86% BMW X6 SUV 2012 5.47% Dodge Ram Pickup 3500 Quad Cab 2009 5.28% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Ram C/V Cargo Van Minivan 2012 3.61% GMC Savana Van 2012 3.03% BMW ActiveHybrid 5 Sedan 2012 2.7% Lincoln Town Car Sedan 2011 2.61% FIAT 500 Convertible 2012 2.48% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chrysler 300 SRT-8 2010 0.91% Audi S6 Sedan 2011 0.78% GMC Yukon Hybrid SUV 2012 0.77% GMC Savana Van 2012 0.76% Dodge Durango SUV 2007 0.73% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 11.24% Ferrari 458 Italia Coupe 2012 4.84% Chevrolet Cobalt SS 2010 4.22% BMW 3 Series Sedan 2012 2.99% GMC Canyon Extended Cab 2012 2.79% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bugatti Veyron 16.4 Coupe 2009 1.88% Chevrolet TrailBlazer SS 2009 1.58% Cadillac CTS-V Sedan 2012 1.4% Bentley Arnage Sedan 2009 1.33% Chrysler 300 SRT-8 2010 1.31% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.16% Lincoln Town Car Sedan 2011 2.55% Ram C/V Cargo Van Minivan 2012 2.32% Tesla Model S Sedan 2012 1.69% BMW 6 Series Convertible 2007 1.55% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Jeep Patriot SUV 2012 5.88% Chrysler Aspen SUV 2009 5.38% Mercedes-Benz 300-Class Convertible 1993 4.46% Rolls-Royce Ghost Sedan 2012 3.97% Ford Edge SUV 2012 3.89% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 GMC Savana Van 2012 2.37% Chevrolet Express Van 2007 2.31% Chevrolet Express Cargo Van 2007 1.82% Jeep Patriot SUV 2012 1.63% Bentley Continental Supersports Conv. Convertible 2012 1.55% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Chevrolet Monte Carlo Coupe 2007 1.76% Chevrolet Silverado 1500 Regular Cab 2012 1.71% Chevrolet Silverado 1500 Extended Cab 2012 1.61% Hyundai Veracruz SUV 2012 1.48% Dodge Durango SUV 2012 1.42% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 1.97% Mercedes-Benz S-Class Sedan 2012 1.74% Mercedes-Benz C-Class Sedan 2012 1.69% Chrysler PT Cruiser Convertible 2008 1.35% BMW ActiveHybrid 5 Sedan 2012 1.23% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Aston Martin Virage Coupe 2012 2.91% HUMMER H3T Crew Cab 2010 2.38% HUMMER H2 SUT Crew Cab 2009 2.35% AM General Hummer SUV 2000 2.34% Jeep Compass SUV 2012 1.93% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 FIAT 500 Convertible 2012 11.5% Chevrolet Impala Sedan 2007 9.62% Chevrolet HHR SS 2010 3.48% Bentley Continental Supersports Conv. Convertible 2012 3.41% Ferrari 458 Italia Convertible 2012 2.62% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 5.25% Audi RS 4 Convertible 2008 2.92% Aston Martin Virage Coupe 2012 1.94% Dodge Charger SRT-8 2009 1.58% Bentley Continental Supersports Conv. Convertible 2012 1.5% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Dodge Caravan Minivan 1997 1.61% Jeep Patriot SUV 2012 1.42% Ford E-Series Wagon Van 2012 1.32% Dodge Durango SUV 2007 1.29% Lamborghini Reventon Coupe 2008 1.22% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Ferrari 458 Italia Coupe 2012 2.52% Dodge Magnum Wagon 2008 2.43% Dodge Caliber Wagon 2012 2.19% Dodge Caliber Wagon 2007 1.72% Hyundai Elantra Sedan 2007 1.71% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Bentley Continental Supersports Conv. Convertible 2012 2.24% Lamborghini Diablo Coupe 2001 1.92% Porsche Panamera Sedan 2012 1.65% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.4% Audi V8 Sedan 1994 1.39% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 GMC Savana Van 2012 3.57% Ram C/V Cargo Van Minivan 2012 2.56% Dodge Sprinter Cargo Van 2009 1.95% Chrysler Sebring Convertible 2010 1.78% Mercedes-Benz Sprinter Van 2012 1.75% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Chrysler Aspen SUV 2009 2.83% Bugatti Veyron 16.4 Coupe 2009 2.54% Ferrari FF Coupe 2012 2.46% Jeep Patriot SUV 2012 2.36% Rolls-Royce Ghost Sedan 2012 1.75% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 4.11% Land Rover Range Rover SUV 2012 3.03% Bentley Arnage Sedan 2009 2.93% Chrysler Aspen SUV 2009 2.22% Bugatti Veyron 16.4 Coupe 2009 2.16% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 14.47% AM General Hummer SUV 2000 6.81% Acura Integra Type R 2001 3.61% Ferrari California Convertible 2012 1.89% Bugatti Veyron 16.4 Coupe 2009 1.8% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Dodge Sprinter Cargo Van 2009 2.85% Honda Odyssey Minivan 2007 2.22% Ford E-Series Wagon Van 2012 2.03% Ram C/V Cargo Van Minivan 2012 1.97% Mercedes-Benz Sprinter Van 2012 1.77% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 4.55% Hyundai Veloster Hatchback 2012 3.72% Chevrolet Corvette Convertible 2012 2.39% Lamborghini Diablo Coupe 2001 2.38% Aston Martin Virage Coupe 2012 2.24% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Ferrari 458 Italia Convertible 2012 5.11% Ferrari 458 Italia Coupe 2012 4.74% Volvo C30 Hatchback 2012 4.11% Dodge Caliber Wagon 2007 3.69% Ferrari California Convertible 2012 3.66% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 2.16% Nissan Leaf Hatchback 2012 1.63% Chrysler Sebring Convertible 2010 1.56% Ford Freestar Minivan 2007 1.46% Jeep Compass SUV 2012 1.42% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 2.42% Chevrolet Express Cargo Van 2007 2.2% Audi A5 Coupe 2012 2.1% Honda Accord Coupe 2012 2.02% Bugatti Veyron 16.4 Coupe 2009 1.9% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Chevrolet Traverse SUV 2012 1.87% Dodge Sprinter Cargo Van 2009 1.82% Chevrolet Express Cargo Van 2007 1.59% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.46% Chevrolet Silverado 2500HD Regular Cab 2012 1.45% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chrysler Sebring Convertible 2010 1.81% Buick Rainier SUV 2007 1.51% Nissan 240SX Coupe 1998 1.37% Aston Martin V8 Vantage Convertible 2012 1.28% Acura TL Type-S 2008 1.26% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Rolls-Royce Phantom Sedan 2012 4.63% Lincoln Town Car Sedan 2011 2.13% Suzuki Aerio Sedan 2007 1.72% BMW ActiveHybrid 5 Sedan 2012 1.66% Hyundai Sonata Hybrid Sedan 2012 1.65% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Charger SRT-8 2009 3.29% Lamborghini Aventador Coupe 2012 3.06% Chevrolet Cobalt SS 2010 2.41% Ferrari 458 Italia Convertible 2012 2.08% Dodge Caliber Wagon 2007 1.99% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Dodge Sprinter Cargo Van 2009 1.85% Mercedes-Benz Sprinter Van 2012 1.67% Chevrolet Express Cargo Van 2007 1.49% Honda Accord Sedan 2012 1.46% Acura TL Type-S 2008 1.43% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Toyota 4Runner SUV 2012 3.63% Acura ZDX Hatchback 2012 2.68% Acura TSX Sedan 2012 2.48% Porsche Panamera Sedan 2012 1.86% Mercedes-Benz E-Class Sedan 2012 1.78% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 4.26% Mercedes-Benz E-Class Sedan 2012 2.7% MINI Cooper Roadster Convertible 2012 2.52% Toyota 4Runner SUV 2012 2.16% Acura TSX Sedan 2012 1.86% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Dodge Sprinter Cargo Van 2009 1.83% Chevrolet Express Cargo Van 2007 1.65% GMC Savana Van 2012 1.49% Honda Accord Sedan 2012 1.45% Ford E-Series Wagon Van 2012 1.28% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Cadillac CTS-V Sedan 2012 3.38% Chrysler Aspen SUV 2009 3.02% Ford F-150 Regular Cab 2007 2.85% BMW X5 SUV 2007 2.46% Buick Rainier SUV 2007 2.32% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Aston Martin Virage Coupe 2012 14.88% McLaren MP4-12C Coupe 2012 7.12% Lamborghini Diablo Coupe 2001 6.5% Lamborghini Aventador Coupe 2012 5.14% Chevrolet HHR SS 2010 4.56% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 BMW 3 Series Wagon 2012 3.96% BMW X6 SUV 2012 3.24% Eagle Talon Hatchback 1998 3.09% Ford Expedition EL SUV 2009 2.94% Infiniti G Coupe IPL 2012 2.79% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Dodge Caravan Minivan 1997 1.67% Cadillac CTS-V Sedan 2012 1.32% Plymouth Neon Coupe 1999 1.32% Bentley Arnage Sedan 2009 1.27% Chevrolet Avalanche Crew Cab 2012 1.13% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Aston Martin Virage Coupe 2012 11.48% Lamborghini Aventador Coupe 2012 7.03% Chevrolet HHR SS 2010 5.77% McLaren MP4-12C Coupe 2012 5.18% HUMMER H2 SUT Crew Cab 2009 4.89% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Ford E-Series Wagon Van 2012 2.81% Honda Accord Coupe 2012 2.16% HUMMER H2 SUT Crew Cab 2009 2.07% Audi S6 Sedan 2011 1.83% Honda Odyssey Minivan 2012 1.69% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 3.72% Bugatti Veyron 16.4 Coupe 2009 2.61% Plymouth Neon Coupe 1999 2.1% Chevrolet Monte Carlo Coupe 2007 2.03% BMW M6 Convertible 2010 1.95% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 Dodge Sprinter Cargo Van 2009 2.1% Chevrolet Express Cargo Van 2007 1.98% Buick Rainier SUV 2007 1.91% Ram C/V Cargo Van Minivan 2012 1.87% Honda Accord Sedan 2012 1.75% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Audi S4 Sedan 2012 2.56% BMW 3 Series Wagon 2012 2.39% Cadillac CTS-V Sedan 2012 2.37% BMW M6 Convertible 2010 1.95% Audi RS 4 Convertible 2008 1.85% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 GMC Acadia SUV 2012 5.75% BMW 3 Series Sedan 2012 3.63% BMW X6 SUV 2012 3.3% BMW 1 Series Coupe 2012 3.13% Chevrolet Sonic Sedan 2012 2.46% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Chrysler Sebring Convertible 2010 2.28% Chrysler PT Cruiser Convertible 2008 2.09% Ram C/V Cargo Van Minivan 2012 2.06% Nissan 240SX Coupe 1998 1.93% Nissan Leaf Hatchback 2012 1.81% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Chevrolet Express Cargo Van 2007 4.44% Chevrolet Traverse SUV 2012 4.26% Mercedes-Benz Sprinter Van 2012 3.49% Chevrolet Express Van 2007 3.47% Dodge Sprinter Cargo Van 2009 2.9% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ferrari FF Coupe 2012 8.56% Plymouth Neon Coupe 1999 7.93% Dodge Caliber Wagon 2007 6.88% Ferrari 458 Italia Coupe 2012 5.55% Ford GT Coupe 2006 4.23% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chrysler Aspen SUV 2009 2.68% Chrysler 300 SRT-8 2010 2.15% Land Rover Range Rover SUV 2012 2.07% Rolls-Royce Ghost Sedan 2012 2.05% Eagle Talon Hatchback 1998 1.96% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Chevrolet Express Van 2007 2.34% Buick Rainier SUV 2007 2.08% Volkswagen Golf Hatchback 1991 1.87% GMC Savana Van 2012 1.81% Chrysler 300 SRT-8 2010 1.46% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Lamborghini Aventador Coupe 2012 12.08% Ferrari California Convertible 2012 7.05% Dodge Charger SRT-8 2009 6.49% Aston Martin Virage Coupe 2012 4.77% Chevrolet Camaro Convertible 2012 3.71% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Lincoln Town Car Sedan 2011 2.62% Rolls-Royce Phantom Sedan 2012 2.5% Suzuki Aerio Sedan 2007 2.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.96% Chevrolet Malibu Hybrid Sedan 2010 1.82% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 3.02% BMW M6 Convertible 2010 2.91% Chrysler 300 SRT-8 2010 2.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.12% Infiniti G Coupe IPL 2012 2.11% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 2.88% GMC Acadia SUV 2012 2.4% Jeep Grand Cherokee SUV 2012 1.76% Ford F-150 Regular Cab 2012 1.7% Chevrolet Express Cargo Van 2007 1.5% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Chevrolet Express Van 2007 10.8% Chevrolet Camaro Convertible 2012 5.9% Volvo XC90 SUV 2007 3.05% Chevrolet Silverado 1500 Extended Cab 2012 2.15% Hyundai Veracruz SUV 2012 1.85% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 2500HD Regular Cab 2012 2.81% Dodge Sprinter Cargo Van 2009 2.69% Audi A5 Coupe 2012 2.36% Ford F-150 Regular Cab 2012 2.17% GMC Savana Van 2012 2.0% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Bentley Mulsanne Sedan 2011 3.05% Chrysler 300 SRT-8 2010 2.82% Chrysler Aspen SUV 2009 2.51% Eagle Talon Hatchback 1998 2.48% Land Rover Range Rover SUV 2012 2.11% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 HUMMER H2 SUT Crew Cab 2009 3.93% Audi S6 Sedan 2011 3.18% AM General Hummer SUV 2000 2.66% HUMMER H3T Crew Cab 2010 2.14% Land Rover LR2 SUV 2012 1.91% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Bentley Arnage Sedan 2009 4.09% Bugatti Veyron 16.4 Coupe 2009 2.75% BMW M6 Convertible 2010 2.03% Mercedes-Benz 300-Class Convertible 1993 1.57% Chevrolet Monte Carlo Coupe 2007 1.57% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Chevrolet Monte Carlo Coupe 2007 1.82% Mercedes-Benz C-Class Sedan 2012 1.71% Dodge Caravan Minivan 1997 1.56% Rolls-Royce Phantom Sedan 2012 1.46% Daewoo Nubira Wagon 2002 1.37% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Lincoln Town Car Sedan 2011 3.41% Rolls-Royce Phantom Sedan 2012 2.61% BMW 6 Series Convertible 2007 2.35% Suzuki Aerio Sedan 2007 1.79% Mercedes-Benz S-Class Sedan 2012 1.72% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 16.07% Dodge Charger SRT-8 2009 6.67% Dodge Caliber Wagon 2007 4.37% BMW 1 Series Coupe 2012 3.76% Lamborghini Aventador Coupe 2012 3.55% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 AM General Hummer SUV 2000 1.97% Lamborghini Diablo Coupe 2001 1.92% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.76% Dodge Charger SRT-8 2009 1.27% Aston Martin V8 Vantage Coupe 2012 1.19% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.92% Chevrolet Silverado 1500 Regular Cab 2012 2.66% Dodge Sprinter Cargo Van 2009 1.84% Chevrolet Express Cargo Van 2007 1.82% Chevrolet Silverado 1500 Extended Cab 2012 1.8% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 2.96% Chevrolet Corvette ZR1 2012 2.28% Ford F-150 Regular Cab 2012 1.99% Ford F-450 Super Duty Crew Cab 2012 1.82% Dodge Charger Sedan 2012 1.81% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Jeep Grand Cherokee SUV 2012 6.94% Chrysler Aspen SUV 2009 3.36% Audi TT Hatchback 2011 2.22% Ford Mustang Convertible 2007 1.98% GMC Acadia SUV 2012 1.83% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 AM General Hummer SUV 2000 6.94% Lamborghini Diablo Coupe 2001 3.82% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.79% Jeep Patriot SUV 2012 2.52% Aston Martin V8 Vantage Coupe 2012 2.14% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Lamborghini Diablo Coupe 2001 2.84% Bentley Continental Supersports Conv. Convertible 2012 2.44% Volvo 240 Sedan 1993 2.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.95% Bentley Mulsanne Sedan 2011 1.78% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.82% Chevrolet Monte Carlo Coupe 2007 1.77% Audi 100 Wagon 1994 1.69% Audi V8 Sedan 1994 1.68% GMC Savana Van 2012 1.63% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Bentley Arnage Sedan 2009 2.07% GMC Yukon Hybrid SUV 2012 1.59% HUMMER H2 SUT Crew Cab 2009 1.55% Chevrolet TrailBlazer SS 2009 1.47% Audi S6 Sedan 2011 1.46% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 BMW X6 SUV 2012 2.24% Chrysler 300 SRT-8 2010 1.88% Buick Rainier SUV 2007 1.76% Bugatti Veyron 16.4 Coupe 2009 1.7% Dodge Caliber Wagon 2007 1.6% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2007 3.07% Dodge Durango SUV 2012 2.82% Chevrolet Monte Carlo Coupe 2007 2.32% Chevrolet Silverado 1500 Regular Cab 2012 2.2% GMC Terrain SUV 2012 2.04% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Chrysler Sebring Convertible 2010 1.58% Nissan Leaf Hatchback 2012 1.52% Acura TL Type-S 2008 1.52% Dodge Caravan Minivan 1997 1.45% Honda Odyssey Minivan 2007 1.42% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Ferrari FF Coupe 2012 5.76% Ferrari 458 Italia Coupe 2012 4.48% Ford GT Coupe 2006 3.79% GMC Savana Van 2012 2.29% Hyundai Elantra Sedan 2007 2.19% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Ford Ranger SuperCab 2011 2.89% Chevrolet Traverse SUV 2012 2.78% BMW X6 SUV 2012 2.68% Jeep Wrangler SUV 2012 2.31% Chrysler 300 SRT-8 2010 2.08% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Lincoln Town Car Sedan 2011 3.56% BMW 6 Series Convertible 2007 2.99% GMC Terrain SUV 2012 2.77% Chevrolet Silverado 1500 Extended Cab 2012 2.59% Acura TL Sedan 2012 1.95% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Ferrari 458 Italia Convertible 2012 11.3% Ferrari 458 Italia Coupe 2012 6.9% Lamborghini Aventador Coupe 2012 5.99% Dodge Caliber Wagon 2007 5.62% BMW 3 Series Sedan 2012 4.08% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 4.4% Dodge Sprinter Cargo Van 2009 3.11% Ford E-Series Wagon Van 2012 2.31% HUMMER H3T Crew Cab 2010 2.12% Chevrolet Express Cargo Van 2007 2.04% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Chevrolet Corvette ZR1 2012 0.96% Hyundai Azera Sedan 2012 0.95% Lamborghini Reventon Coupe 2008 0.93% Chrysler 300 SRT-8 2010 0.92% Bentley Mulsanne Sedan 2011 0.87% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Chrysler 300 SRT-8 2010 4.9% Audi S4 Sedan 2012 2.15% Honda Accord Coupe 2012 1.99% Audi S5 Coupe 2012 1.91% Ferrari FF Coupe 2012 1.83% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Dodge Caravan Minivan 1997 2.24% Cadillac CTS-V Sedan 2012 2.13% Plymouth Neon Coupe 1999 1.8% Chevrolet Avalanche Crew Cab 2012 1.59% Daewoo Nubira Wagon 2002 1.43% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 6.05% Ferrari 458 Italia Coupe 2012 5.93% Chrysler PT Cruiser Convertible 2008 4.39% Chevrolet HHR SS 2010 4.38% Audi TT RS Coupe 2012 3.93% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Acura ZDX Hatchback 2012 2.6% Rolls-Royce Phantom Sedan 2012 1.77% Chevrolet Corvette ZR1 2012 1.72% Hyundai Azera Sedan 2012 1.6% BMW M6 Convertible 2010 1.49% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Hyundai Sonata Sedan 2012 2.6% Dodge Caliber Wagon 2007 1.99% Ferrari 458 Italia Coupe 2012 1.89% Dodge Caliber Wagon 2012 1.66% Hyundai Elantra Sedan 2007 1.62% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Yukon Hybrid SUV 2012 5.3% Chevrolet Corvette ZR1 2012 3.44% HUMMER H2 SUT Crew Cab 2009 3.37% BMW ActiveHybrid 5 Sedan 2012 3.28% Chevrolet Silverado 1500 Extended Cab 2012 3.05% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 BMW 3 Series Sedan 2012 2.85% Plymouth Neon Coupe 1999 2.81% Ferrari 458 Italia Coupe 2012 2.61% Dodge Caliber Wagon 2007 2.52% Honda Accord Coupe 2012 2.49% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Rolls-Royce Phantom Sedan 2012 5.99% BMW ActiveHybrid 5 Sedan 2012 4.88% Chrysler Sebring Convertible 2010 2.27% Dodge Caravan Minivan 1997 1.83% Dodge Caliber Wagon 2012 1.59% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 MINI Cooper Roadster Convertible 2012 3.91% Mercedes-Benz E-Class Sedan 2012 3.88% FIAT 500 Convertible 2012 3.07% BMW X3 SUV 2012 3.04% Acura TSX Sedan 2012 2.91% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Ram C/V Cargo Van Minivan 2012 5.47% Chrysler Sebring Convertible 2010 2.92% Chevrolet Impala Sedan 2007 2.75% Honda Odyssey Minivan 2007 2.55% Hyundai Sonata Hybrid Sedan 2012 2.01% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chrysler Aspen SUV 2009 3.17% Chrysler 300 SRT-8 2010 2.31% Acura TL Sedan 2012 2.15% GMC Terrain SUV 2012 1.87% Volvo 240 Sedan 1993 1.68% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 GMC Acadia SUV 2012 6.18% Suzuki Aerio Sedan 2007 5.3% BMW X6 SUV 2012 3.02% Lincoln Town Car Sedan 2011 2.53% BMW 3 Series Sedan 2012 2.43% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Bentley Mulsanne Sedan 2011 3.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.21% Chevrolet Corvette ZR1 2012 2.13% Bentley Arnage Sedan 2009 1.91% Cadillac CTS-V Sedan 2012 1.72% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Lincoln Town Car Sedan 2011 3.19% Rolls-Royce Phantom Sedan 2012 2.68% BMW ActiveHybrid 5 Sedan 2012 2.44% BMW 6 Series Convertible 2007 2.4% BMW 1 Series Convertible 2012 2.16% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Suzuki SX4 Hatchback 2012 2.17% Buick Rainier SUV 2007 1.83% Dodge Caliber Wagon 2007 1.75% Ford GT Coupe 2006 1.53% Tesla Model S Sedan 2012 1.43% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Dodge Caravan Minivan 1997 2.3% Acura ZDX Hatchback 2012 2.18% Mercedes-Benz S-Class Sedan 2012 2.15% Chrysler PT Cruiser Convertible 2008 1.76% Honda Odyssey Minivan 2007 1.66% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Buick Rainier SUV 2007 5.3% Dodge Caliber Wagon 2007 3.05% Ford Ranger SuperCab 2011 2.2% Hyundai Accent Sedan 2012 2.15% Jaguar XK XKR 2012 2.11% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Audi TT Hatchback 2011 3.86% Dodge Sprinter Cargo Van 2009 3.08% Toyota Camry Sedan 2012 2.07% Mercedes-Benz SL-Class Coupe 2009 1.85% Volkswagen Golf Hatchback 2012 1.71% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Toyota 4Runner SUV 2012 2.73% FIAT 500 Abarth 2012 2.6% Jeep Liberty SUV 2012 2.34% Bentley Mulsanne Sedan 2011 2.32% Infiniti G Coupe IPL 2012 2.07% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Chevrolet TrailBlazer SS 2009 2.31% Ford F-150 Regular Cab 2007 2.27% Infiniti G Coupe IPL 2012 1.85% Cadillac SRX SUV 2012 1.65% Bentley Arnage Sedan 2009 1.47% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 3.85% BMW M3 Coupe 2012 1.22% Hyundai Veloster Hatchback 2012 1.17% Ferrari 458 Italia Convertible 2012 1.12% Chrysler 300 SRT-8 2010 1.09% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Chevrolet Express Cargo Van 2007 1.61% Plymouth Neon Coupe 1999 1.37% Isuzu Ascender SUV 2008 1.3% Mercedes-Benz Sprinter Van 2012 1.3% BMW ActiveHybrid 5 Sedan 2012 1.22% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 FIAT 500 Abarth 2012 2.23% Nissan Juke Hatchback 2012 2.08% GMC Terrain SUV 2012 1.9% Dodge Durango SUV 2007 1.71% Chevrolet Corvette ZR1 2012 1.65% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 1.53% Chrysler 300 SRT-8 2010 1.4% Toyota 4Runner SUV 2012 1.36% BMW M6 Convertible 2010 1.22% Bentley Mulsanne Sedan 2011 1.2% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 4.29% Ferrari FF Coupe 2012 4.02% Lamborghini Aventador Coupe 2012 2.17% Ford GT Coupe 2006 1.87% Dodge Magnum Wagon 2008 1.78% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 BMW ActiveHybrid 5 Sedan 2012 6.64% Ferrari FF Coupe 2012 3.01% Volvo 240 Sedan 1993 2.69% Chrysler 300 SRT-8 2010 2.5% smart fortwo Convertible 2012 2.34% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 13.82% Lamborghini Diablo Coupe 2001 13.72% Aston Martin Virage Coupe 2012 6.42% Hyundai Veloster Hatchback 2012 3.19% BMW M3 Coupe 2012 2.95% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Dodge Sprinter Cargo Van 2009 3.43% Chevrolet Express Cargo Van 2007 2.27% Honda Accord Sedan 2012 1.86% Buick Rainier SUV 2007 1.82% Hyundai Elantra Touring Hatchback 2012 1.4% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Ferrari 458 Italia Coupe 2012 4.18% Aston Martin Virage Coupe 2012 4.14% Ferrari California Convertible 2012 4.13% Lamborghini Aventador Coupe 2012 3.49% Lamborghini Diablo Coupe 2001 3.4% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Dodge Caravan Minivan 1997 2.4% Chevrolet Traverse SUV 2012 2.21% Audi 100 Sedan 1994 2.16% Mercedes-Benz Sprinter Van 2012 2.13% Ford E-Series Wagon Van 2012 2.1% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Infiniti G Coupe IPL 2012 3.06% Chevrolet Corvette ZR1 2012 2.01% Jaguar XK XKR 2012 1.57% Fisker Karma Sedan 2012 1.39% Chevrolet Camaro Convertible 2012 1.34% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chrysler 300 SRT-8 2010 6.16% GMC Canyon Extended Cab 2012 2.81% Chevrolet Silverado 2500HD Regular Cab 2012 2.71% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.58% Scion xD Hatchback 2012 2.57% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Acura ZDX Hatchback 2012 2.73% Acura TL Type-S 2008 2.27% Ram C/V Cargo Van Minivan 2012 2.17% Chrysler Sebring Convertible 2010 2.01% Aston Martin V8 Vantage Convertible 2012 1.94% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 BMW 6 Series Convertible 2007 1.63% Aston Martin V8 Vantage Convertible 2012 1.56% Volkswagen Golf Hatchback 2012 1.37% Lincoln Town Car Sedan 2011 1.34% Ram C/V Cargo Van Minivan 2012 1.3% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 BMW 6 Series Convertible 2007 3.08% Lincoln Town Car Sedan 2011 2.75% Maybach Landaulet Convertible 2012 2.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.32% Mercedes-Benz S-Class Sedan 2012 1.95% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 5.99% Ferrari 458 Italia Coupe 2012 5.4% Hyundai Accent Sedan 2012 4.65% Toyota Corolla Sedan 2012 4.41% Lamborghini Aventador Coupe 2012 3.14% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Hyundai Azera Sedan 2012 1.27% Chrysler PT Cruiser Convertible 2008 1.23% Nissan Leaf Hatchback 2012 1.2% Ford E-Series Wagon Van 2012 1.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.19% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 AM General Hummer SUV 2000 10.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.61% Chevrolet Corvette Convertible 2012 2.66% Lamborghini Aventador Coupe 2012 1.86% Geo Metro Convertible 1993 1.73% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Ferrari California Convertible 2012 8.05% Ferrari 458 Italia Coupe 2012 6.75% Ferrari 458 Italia Convertible 2012 5.59% BMW 3 Series Sedan 2012 5.06% Lamborghini Aventador Coupe 2012 4.3% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Chevrolet Monte Carlo Coupe 2007 1.52% Bentley Arnage Sedan 2009 1.48% Lincoln Town Car Sedan 2011 1.35% Dodge Caravan Minivan 1997 1.31% Chevrolet TrailBlazer SS 2009 1.31% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 2.8% GMC Canyon Extended Cab 2012 2.74% HUMMER H2 SUT Crew Cab 2009 2.31% Ford F-150 Regular Cab 2012 2.22% Lamborghini Aventador Coupe 2012 1.99% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Chevrolet Corvette ZR1 2012 2.08% Toyota 4Runner SUV 2012 1.91% AM General Hummer SUV 2000 1.66% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.63% Cadillac CTS-V Sedan 2012 1.51% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Plymouth Neon Coupe 1999 6.0% Dodge Caliber Wagon 2007 3.54% Ferrari 458 Italia Coupe 2012 3.54% Volkswagen Beetle Hatchback 2012 2.75% Ferrari FF Coupe 2012 2.39% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 BMW 3 Series Sedan 2012 2.65% Eagle Talon Hatchback 1998 2.58% BMW 3 Series Wagon 2012 2.04% Ferrari California Convertible 2012 2.03% Volvo 240 Sedan 1993 1.94% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 BMW M5 Sedan 2010 3.36% Ford GT Coupe 2006 1.99% Toyota Sequoia SUV 2012 1.8% Acura Integra Type R 2001 1.6% Bugatti Veyron 16.4 Coupe 2009 1.56% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Fisker Karma Sedan 2012 2.1% Audi S5 Coupe 2012 1.95% Infiniti G Coupe IPL 2012 1.94% Chrysler 300 SRT-8 2010 1.9% Chevrolet Silverado 2500HD Regular Cab 2012 1.78% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Chevrolet Monte Carlo Coupe 2007 2.59% Hyundai Genesis Sedan 2012 2.5% Bentley Arnage Sedan 2009 1.84% Chrysler Aspen SUV 2009 1.77% Jeep Patriot SUV 2012 1.5% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Lamborghini Aventador Coupe 2012 10.08% McLaren MP4-12C Coupe 2012 7.45% Dodge Charger SRT-8 2009 6.95% Aston Martin Virage Coupe 2012 5.87% Ferrari 458 Italia Convertible 2012 3.67% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Chevrolet TrailBlazer SS 2009 2.04% Chrysler 300 SRT-8 2010 1.89% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.75% Mercedes-Benz C-Class Sedan 2012 1.69% Rolls-Royce Ghost Sedan 2012 1.38% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Dodge Caravan Minivan 1997 2.52% Ford E-Series Wagon Van 2012 2.32% Jeep Patriot SUV 2012 1.92% Audi 100 Sedan 1994 1.58% Mercedes-Benz Sprinter Van 2012 1.5% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Ferrari California Convertible 2012 4.63% Dodge Magnum Wagon 2008 2.18% Acura RL Sedan 2012 1.99% BMW X6 SUV 2012 1.97% Ferrari 458 Italia Coupe 2012 1.96% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Chrysler Aspen SUV 2009 2.83% Rolls-Royce Ghost Sedan 2012 2.5% Land Rover Range Rover SUV 2012 2.13% Bentley Arnage Sedan 2009 1.91% Dodge Durango SUV 2007 1.75% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Ferrari 458 Italia Coupe 2012 4.75% Dodge Caliber Wagon 2007 3.48% Chevrolet Cobalt SS 2010 2.68% Dodge Magnum Wagon 2008 2.64% Hyundai Elantra Sedan 2007 2.31% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Bentley Mulsanne Sedan 2011 2.99% Bentley Arnage Sedan 2009 2.07% Hyundai Genesis Sedan 2012 1.8% Jeep Grand Cherokee SUV 2012 1.75% Toyota 4Runner SUV 2012 1.51% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Chrysler Aspen SUV 2009 3.18% Plymouth Neon Coupe 1999 3.04% Land Rover Range Rover SUV 2012 2.66% Bentley Arnage Sedan 2009 2.61% Jeep Patriot SUV 2012 2.11% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Volvo 240 Sedan 1993 5.2% Bugatti Veyron 16.4 Coupe 2009 5.17% Jeep Compass SUV 2012 3.8% Bentley Mulsanne Sedan 2011 2.73% Chrysler 300 SRT-8 2010 2.73% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Bentley Arnage Sedan 2009 1.84% Rolls-Royce Ghost Sedan 2012 1.61% Cadillac Escalade EXT Crew Cab 2007 1.6% Chevrolet TrailBlazer SS 2009 1.57% Cadillac CTS-V Sedan 2012 1.52% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Dodge Durango SUV 2007 1.93% Ford E-Series Wagon Van 2012 1.87% HUMMER H2 SUT Crew Cab 2009 1.66% Cadillac Escalade EXT Crew Cab 2007 1.63% Land Rover LR2 SUV 2012 1.45% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Eagle Talon Hatchback 1998 1.66% AM General Hummer SUV 2000 1.21% Chrysler 300 SRT-8 2010 1.19% Bugatti Veyron 16.4 Coupe 2009 1.04% Plymouth Neon Coupe 1999 1.0% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 4.44% Jeep Compass SUV 2012 2.26% Dodge Durango SUV 2012 2.06% Ferrari FF Coupe 2012 1.96% Dodge Charger Sedan 2012 1.94% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Mercedes-Benz S-Class Sedan 2012 1.96% Chrysler PT Cruiser Convertible 2008 1.89% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.89% Chrysler Sebring Convertible 2010 1.65% Acura TL Sedan 2012 1.42% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 3.2% Chevrolet Express Cargo Van 2007 2.21% Jeep Grand Cherokee SUV 2012 1.77% Mercedes-Benz SL-Class Coupe 2009 1.58% HUMMER H2 SUT Crew Cab 2009 1.4% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Dodge Sprinter Cargo Van 2009 4.15% Mercedes-Benz SL-Class Coupe 2009 2.42% Mercedes-Benz Sprinter Van 2012 1.76% Audi TT Hatchback 2011 1.69% Toyota Camry Sedan 2012 1.63% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chrysler 300 SRT-8 2010 3.06% Audi R8 Coupe 2012 1.59% Fisker Karma Sedan 2012 1.47% BMW X6 SUV 2012 1.41% Chrysler Aspen SUV 2009 1.28% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 7.16% Dodge Caravan Minivan 1997 2.37% BMW ActiveHybrid 5 Sedan 2012 2.06% BMW Z4 Convertible 2012 1.77% Chevrolet Malibu Hybrid Sedan 2010 1.74% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Acura ZDX Hatchback 2012 2.08% Chevrolet Corvette ZR1 2012 1.51% Rolls-Royce Phantom Sedan 2012 1.44% Hyundai Azera Sedan 2012 1.42% BMW M3 Coupe 2012 1.22% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Magnum Wagon 2008 6.87% Audi TT RS Coupe 2012 5.42% BMW 3 Series Sedan 2012 4.12% Ferrari 458 Italia Coupe 2012 4.1% Chevrolet HHR SS 2010 3.87% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Chrysler 300 SRT-8 2010 3.32% Audi S5 Coupe 2012 3.05% Ferrari FF Coupe 2012 2.77% Chevrolet Silverado 2500HD Regular Cab 2012 2.42% Honda Accord Coupe 2012 1.85% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Bentley Arnage Sedan 2009 3.46% Bugatti Veyron 16.4 Coupe 2009 2.35% BMW M6 Convertible 2010 1.98% Volvo 240 Sedan 1993 1.78% Aston Martin V8 Vantage Coupe 2012 1.77% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Monte Carlo Coupe 2007 1.79% Dodge Caravan Minivan 1997 1.73% Mercedes-Benz C-Class Sedan 2012 1.27% Rolls-Royce Phantom Sedan 2012 1.2% Chrysler 300 SRT-8 2010 1.08% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 Audi S4 Sedan 2007 18.82% FIAT 500 Convertible 2012 13.39% BMW M5 Sedan 2010 7.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.39% Lincoln Town Car Sedan 2011 2.63% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.71% Audi S6 Sedan 2011 1.63% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.4% Audi S4 Sedan 2012 1.24% Audi S5 Coupe 2012 1.23% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Dodge Sprinter Cargo Van 2009 4.38% Mercedes-Benz Sprinter Van 2012 2.45% Ford E-Series Wagon Van 2012 2.26% Nissan NV Passenger Van 2012 1.76% GMC Savana Van 2012 1.74% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Dodge Sprinter Cargo Van 2009 4.31% Mercedes-Benz Sprinter Van 2012 2.52% Acura TL Sedan 2012 2.08% Chevrolet Express Cargo Van 2007 1.57% Audi A5 Coupe 2012 1.55% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Ferrari California Convertible 2012 6.93% Aston Martin Virage Coupe 2012 6.4% Geo Metro Convertible 1993 3.43% Ferrari 458 Italia Coupe 2012 3.34% Lamborghini Diablo Coupe 2001 3.04% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chrysler 300 SRT-8 2010 5.26% BMW 6 Series Convertible 2007 3.16% Audi RS 4 Convertible 2008 2.43% Audi S4 Sedan 2012 2.38% Ford Ranger SuperCab 2011 1.99% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Rolls-Royce Phantom Sedan 2012 4.86% Maybach Landaulet Convertible 2012 2.64% Chevrolet Monte Carlo Coupe 2007 2.48% Daewoo Nubira Wagon 2002 2.48% Aston Martin V8 Vantage Coupe 2012 2.27% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Bugatti Veyron 16.4 Coupe 2009 3.5% Mercedes-Benz 300-Class Convertible 1993 2.82% Chevrolet TrailBlazer SS 2009 1.86% Spyker C8 Convertible 2009 1.73% Audi 100 Wagon 1994 1.61% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Chevrolet Express Cargo Van 2007 1.96% Chevrolet Traverse SUV 2012 1.85% GMC Savana Van 2012 1.73% Ford Ranger SuperCab 2011 1.68% Chevrolet Silverado 1500 Regular Cab 2012 1.6% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Chevrolet Corvette ZR1 2012 1.07% Hyundai Azera Sedan 2012 1.07% Lamborghini Reventon Coupe 2008 1.04% Bentley Arnage Sedan 2009 0.97% Bentley Mulsanne Sedan 2011 0.95% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 4.58% BMW X6 SUV 2012 3.66% Dodge Ram Pickup 3500 Quad Cab 2009 3.05% Buick Enclave SUV 2012 2.86% Buick Rainier SUV 2007 2.54% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 MINI Cooper Roadster Convertible 2012 14.69% McLaren MP4-12C Coupe 2012 6.56% Maybach Landaulet Convertible 2012 3.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.88% Hyundai Veloster Hatchback 2012 2.57% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 FIAT 500 Abarth 2012 2.79% Lamborghini Reventon Coupe 2008 2.18% Chevrolet TrailBlazer SS 2009 1.89% BMW M6 Convertible 2010 1.71% Chevrolet Corvette ZR1 2012 1.6% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Jeep Grand Cherokee SUV 2012 1.38% Chevrolet Monte Carlo Coupe 2007 1.38% Audi S6 Sedan 2011 1.23% Plymouth Neon Coupe 1999 1.2% Ford Expedition EL SUV 2009 1.18% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 Acura TL Sedan 2012 2.4% Acura ZDX Hatchback 2012 2.24% Mercedes-Benz S-Class Sedan 2012 2.18% Dodge Caravan Minivan 1997 2.0% Ram C/V Cargo Van Minivan 2012 1.96% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Dodge Sprinter Cargo Van 2009 2.87% Lincoln Town Car Sedan 2011 1.59% Mercedes-Benz Sprinter Van 2012 1.55% Honda Odyssey Minivan 2007 1.45% Ford E-Series Wagon Van 2012 1.37% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Plymouth Neon Coupe 1999 4.17% Ferrari 458 Italia Coupe 2012 3.67% BMW Z4 Convertible 2012 3.25% Chevrolet HHR SS 2010 3.14% Ferrari FF Coupe 2012 2.89% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Volvo 240 Sedan 1993 3.73% Chevrolet Corvette ZR1 2012 2.64% Rolls-Royce Ghost Sedan 2012 2.32% Mercedes-Benz C-Class Sedan 2012 1.9% BMW 3 Series Wagon 2012 1.86% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Bentley Mulsanne Sedan 2011 3.28% Jeep Grand Cherokee SUV 2012 2.25% Audi R8 Coupe 2012 2.14% Audi S5 Coupe 2012 1.85% Rolls-Royce Ghost Sedan 2012 1.74% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Chrysler Sebring Convertible 2010 2.81% Chrysler PT Cruiser Convertible 2008 2.74% Ram C/V Cargo Van Minivan 2012 2.24% Acura TL Type-S 2008 2.13% Dodge Caravan Minivan 1997 2.07% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 BMW M5 Sedan 2010 4.51% Chrysler Sebring Convertible 2010 2.85% Lincoln Town Car Sedan 2011 2.69% Suzuki Aerio Sedan 2007 2.46% Acura TL Type-S 2008 2.45% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Volvo XC90 SUV 2007 7.85% HUMMER H3T Crew Cab 2010 7.68% Hyundai Veloster Hatchback 2012 3.25% BMW 3 Series Sedan 2012 3.17% Chrysler 300 SRT-8 2010 2.61% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Chevrolet Cobalt SS 2010 11.15% Dodge Charger SRT-8 2009 7.03% Lamborghini Aventador Coupe 2012 5.16% BMW 1 Series Coupe 2012 3.94% Ford Mustang Convertible 2007 3.04% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Ferrari California Convertible 2012 3.97% BMW 3 Series Sedan 2012 3.49% Ford GT Coupe 2006 2.2% Ferrari 458 Italia Coupe 2012 2.08% Chevrolet Traverse SUV 2012 1.99% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Chrysler 300 SRT-8 2010 1.67% Bentley Mulsanne Sedan 2011 1.61% Jeep Compass SUV 2012 1.49% Toyota 4Runner SUV 2012 1.44% Bentley Arnage Sedan 2009 1.41% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Dodge Sprinter Cargo Van 2009 3.01% Chevrolet Express Cargo Van 2007 2.32% Mercedes-Benz Sprinter Van 2012 1.98% GMC Savana Van 2012 1.71% Lincoln Town Car Sedan 2011 1.56% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Ford F-150 Regular Cab 2007 2.2% Lincoln Town Car Sedan 2011 2.18% Honda Accord Coupe 2012 1.89% BMW 6 Series Convertible 2007 1.72% Chevrolet Silverado 1500 Extended Cab 2012 1.71% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Acura TL Type-S 2008 2.49% Jaguar XK XKR 2012 2.43% Mercedes-Benz C-Class Sedan 2012 1.63% Acura TL Sedan 2012 1.45% Toyota Camry Sedan 2012 1.28% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Mercedes-Benz Sprinter Van 2012 1.62% Dodge Caravan Minivan 1997 1.38% Ram C/V Cargo Van Minivan 2012 1.31% Nissan Leaf Hatchback 2012 1.23% Chrysler Sebring Convertible 2010 1.14% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 4.32% Infiniti G Coupe IPL 2012 4.19% Chevrolet Camaro Convertible 2012 3.79% Volvo 240 Sedan 1993 3.32% Mercedes-Benz 300-Class Convertible 1993 3.12% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Lincoln Town Car Sedan 2011 4.05% BMW 6 Series Convertible 2007 2.47% Mercedes-Benz S-Class Sedan 2012 2.22% Volkswagen Golf Hatchback 2012 2.19% Chevrolet Impala Sedan 2007 1.89% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.84% Audi A5 Coupe 2012 1.33% Volkswagen Golf Hatchback 2012 1.28% Toyota Camry Sedan 2012 1.24% Dodge Sprinter Cargo Van 2009 1.21% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 BMW 6 Series Convertible 2007 2.44% Lincoln Town Car Sedan 2011 2.22% Maybach Landaulet Convertible 2012 2.14% BMW ActiveHybrid 5 Sedan 2012 1.69% Rolls-Royce Ghost Sedan 2012 1.57% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 13.03% Lamborghini Diablo Coupe 2001 5.35% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.0% Acura Integra Type R 2001 2.43% Aston Martin V8 Vantage Coupe 2012 2.22% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 5.19% Honda Accord Coupe 2012 2.41% Chrysler 300 SRT-8 2010 2.31% Ford Ranger SuperCab 2011 2.27% Dodge Durango SUV 2012 2.12% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Dodge Magnum Wagon 2008 7.15% Ferrari 458 Italia Convertible 2012 6.1% Chevrolet HHR SS 2010 5.28% Ferrari 458 Italia Coupe 2012 5.11% Lamborghini Aventador Coupe 2012 5.09% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Bentley Arnage Sedan 2009 1.52% Dodge Caravan Minivan 1997 1.47% Chrysler 300 SRT-8 2010 1.47% Chevrolet Monte Carlo Coupe 2007 1.45% Honda Odyssey Minivan 2012 1.4% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 BMW ActiveHybrid 5 Sedan 2012 2.56% Mercedes-Benz S-Class Sedan 2012 2.25% Chevrolet Sonic Sedan 2012 2.21% BMW 1 Series Convertible 2012 1.93% Chrysler Sebring Convertible 2010 1.61% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Lamborghini Reventon Coupe 2008 1.45% Rolls-Royce Ghost Sedan 2012 1.36% Mercedes-Benz C-Class Sedan 2012 1.16% Plymouth Neon Coupe 1999 1.13% Honda Accord Coupe 2012 1.13% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Honda Odyssey Minivan 2007 2.74% Chrysler Sebring Convertible 2010 2.52% Ram C/V Cargo Van Minivan 2012 2.05% Acura TL Sedan 2012 2.03% Acura ZDX Hatchback 2012 1.78% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 2.42% Dodge Sprinter Cargo Van 2009 2.16% Mercedes-Benz Sprinter Van 2012 1.91% Chevrolet Silverado 1500 Regular Cab 2012 1.48% Nissan NV Passenger Van 2012 1.47% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Dodge Caravan Minivan 1997 1.57% Ford E-Series Wagon Van 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.39% Jeep Patriot SUV 2012 1.28% Hyundai Tucson SUV 2012 1.26% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 BMW ActiveHybrid 5 Sedan 2012 3.01% Ram C/V Cargo Van Minivan 2012 1.98% Lincoln Town Car Sedan 2011 1.65% MINI Cooper Roadster Convertible 2012 1.54% Honda Odyssey Minivan 2007 1.52% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Audi 100 Sedan 1994 1.28% Chrysler Sebring Convertible 2010 1.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.17% Lincoln Town Car Sedan 2011 1.09% Chevrolet Traverse SUV 2012 1.06% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 BMW ActiveHybrid 5 Sedan 2012 3.71% Plymouth Neon Coupe 1999 2.95% Chrysler Aspen SUV 2009 2.3% Ford Freestar Minivan 2007 2.16% Lincoln Town Car Sedan 2011 1.73% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.09% Lincoln Town Car Sedan 2011 2.02% Volkswagen Beetle Hatchback 2012 1.81% Audi S6 Sedan 2011 1.76% Volkswagen Golf Hatchback 2012 1.73% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Chevrolet TrailBlazer SS 2009 1.44% Chevrolet Silverado 1500 Regular Cab 2012 1.19% Honda Odyssey Minivan 2007 1.18% Chevrolet Silverado 1500 Extended Cab 2012 1.02% Aston Martin V8 Vantage Convertible 2012 0.97% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 2.19% Hyundai Elantra Sedan 2007 1.55% BMW 3 Series Sedan 2012 1.55% GMC Savana Van 2012 1.53% Ferrari 458 Italia Coupe 2012 1.47% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Hyundai Azera Sedan 2012 1.28% Chevrolet Corvette ZR1 2012 1.27% Rolls-Royce Phantom Sedan 2012 1.22% Bentley Arnage Sedan 2009 1.19% Bentley Mulsanne Sedan 2011 1.13% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Ford F-150 Regular Cab 2007 5.01% Honda Accord Sedan 2012 2.43% GMC Savana Van 2012 2.37% Lincoln Town Car Sedan 2011 2.25% Chrysler Sebring Convertible 2010 2.0% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Dodge Sprinter Cargo Van 2009 4.39% Mitsubishi Lancer Sedan 2012 3.21% GMC Savana Van 2012 3.05% Ram C/V Cargo Van Minivan 2012 2.88% Tesla Model S Sedan 2012 2.77% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ferrari California Convertible 2012 2.31% Dodge Caliber Wagon 2007 2.24% Jeep Wrangler SUV 2012 2.04% BMW 3 Series Sedan 2012 1.93% Nissan Juke Hatchback 2012 1.91% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 3.43% BMW 6 Series Convertible 2007 2.18% Daewoo Nubira Wagon 2002 2.14% Maybach Landaulet Convertible 2012 2.06% Hyundai Veloster Hatchback 2012 1.85% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 2.12% Chevrolet TrailBlazer SS 2009 1.75% Dodge Caravan Minivan 1997 1.44% Plymouth Neon Coupe 1999 1.36% Land Rover Range Rover SUV 2012 1.23% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Bentley Mulsanne Sedan 2011 7.49% Chrysler Aspen SUV 2009 3.6% Eagle Talon Hatchback 1998 2.05% Rolls-Royce Ghost Sedan 2012 1.91% BMW X5 SUV 2007 1.64% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Mercedes-Benz S-Class Sedan 2012 5.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.84% Audi TT Hatchback 2011 2.96% MINI Cooper Roadster Convertible 2012 2.65% Chrysler PT Cruiser Convertible 2008 2.49% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Jeep Grand Cherokee SUV 2012 2.29% Eagle Talon Hatchback 1998 2.18% BMW 3 Series Wagon 2012 2.16% Chrysler PT Cruiser Convertible 2008 1.68% Mercedes-Benz 300-Class Convertible 1993 1.66% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Chevrolet Malibu Sedan 2007 9.63% Volkswagen Beetle Hatchback 2012 6.72% GMC Terrain SUV 2012 5.28% Suzuki Aerio Sedan 2007 5.22% Lincoln Town Car Sedan 2011 3.12% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Malibu Sedan 2007 3.79% Chrysler Sebring Convertible 2010 2.86% GMC Terrain SUV 2012 2.64% BMW X6 SUV 2012 2.43% Volkswagen Beetle Hatchback 2012 2.12% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Lamborghini Aventador Coupe 2012 8.76% Ferrari California Convertible 2012 6.15% Ford Mustang Convertible 2007 5.48% Chevrolet Camaro Convertible 2012 4.99% Dodge Charger SRT-8 2009 3.66% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet Monte Carlo Coupe 2007 1.7% Chrysler Sebring Convertible 2010 1.53% GMC Savana Van 2012 1.42% Ford F-150 Regular Cab 2007 1.27% Buick Rainier SUV 2007 1.27% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.53% Spyker C8 Coupe 2009 1.36% Hyundai Azera Sedan 2012 1.31% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.29% Nissan Leaf Hatchback 2012 1.27% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Chevrolet Silverado 1500 Regular Cab 2012 1.89% Acura TL Type-S 2008 1.88% GMC Savana Van 2012 1.73% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.68% Audi V8 Sedan 1994 1.64% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Jeep Grand Cherokee SUV 2012 3.07% Audi S4 Sedan 2007 2.06% Dodge Caliber Wagon 2012 1.91% FIAT 500 Abarth 2012 1.81% Volvo C30 Hatchback 2012 1.74% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Audi S5 Coupe 2012 2.21% Chevrolet Silverado 2500HD Regular Cab 2012 2.04% Audi RS 4 Convertible 2008 1.83% Infiniti G Coupe IPL 2012 1.72% Dodge Durango SUV 2012 1.7% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 Dodge Sprinter Cargo Van 2009 3.17% Audi TT Hatchback 2011 2.93% Hyundai Azera Sedan 2012 2.56% Ram C/V Cargo Van Minivan 2012 2.5% Honda Odyssey Minivan 2007 2.1% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Dodge Sprinter Cargo Van 2009 6.85% Honda Accord Sedan 2012 2.52% Chevrolet Express Cargo Van 2007 2.5% Mercedes-Benz SL-Class Coupe 2009 2.35% Mercedes-Benz Sprinter Van 2012 2.34% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.18% Fisker Karma Sedan 2012 1.75% Chrysler PT Cruiser Convertible 2008 1.46% Acura TL Type-S 2008 1.46% Aston Martin V8 Vantage Coupe 2012 1.42% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 FIAT 500 Convertible 2012 6.56% Hyundai Veloster Hatchback 2012 2.63% Volkswagen Beetle Hatchback 2012 2.57% Aston Martin V8 Vantage Convertible 2012 2.24% Buick Regal GS 2012 2.0% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Lamborghini Reventon Coupe 2008 1.25% Bentley Arnage Sedan 2009 1.15% Chevrolet Corvette ZR1 2012 1.09% Hyundai Azera Sedan 2012 1.09% Bentley Mulsanne Sedan 2011 1.06% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 Chevrolet Express Van 2007 3.66% Chevrolet Camaro Convertible 2012 3.61% Chevrolet Corvette ZR1 2012 3.57% Hyundai Elantra Touring Hatchback 2012 3.46% Dodge Sprinter Cargo Van 2009 3.1% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 2.77% Bentley Mulsanne Sedan 2011 2.46% Buick Verano Sedan 2012 2.03% BMW X5 SUV 2007 1.93% Jeep Liberty SUV 2012 1.68% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Audi S6 Sedan 2011 2.59% Chevrolet Silverado 2500HD Regular Cab 2012 1.97% Infiniti G Coupe IPL 2012 1.96% Bentley Arnage Sedan 2009 1.84% Buick Rainier SUV 2007 1.83% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 Aston Martin Virage Coupe 2012 6.07% Lamborghini Aventador Coupe 2012 5.71% McLaren MP4-12C Coupe 2012 4.87% BMW M3 Coupe 2012 4.84% Ferrari 458 Italia Coupe 2012 3.44% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Rolls-Royce Ghost Sedan 2012 7.46% Bentley Mulsanne Sedan 2011 6.45% BMW M6 Convertible 2010 5.2% Bugatti Veyron 16.4 Coupe 2009 3.68% Rolls-Royce Phantom Sedan 2012 3.21% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 GMC Savana Van 2012 3.25% Chevrolet Silverado 2500HD Regular Cab 2012 2.93% Dodge Dakota Club Cab 2007 2.5% Ford E-Series Wagon Van 2012 2.04% GMC Terrain SUV 2012 2.01% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 2.57% Lincoln Town Car Sedan 2011 2.2% Porsche Panamera Sedan 2012 1.48% Buick Regal GS 2012 1.47% Ram C/V Cargo Van Minivan 2012 1.37% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Plymouth Neon Coupe 1999 1.78% Bentley Arnage Sedan 2009 1.65% Dodge Caravan Minivan 1997 1.59% Ford Expedition EL SUV 2009 1.4% Chevrolet Avalanche Crew Cab 2012 1.36% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Ram C/V Cargo Van Minivan 2012 1.83% Ford Mustang Convertible 2007 1.66% Hyundai Sonata Hybrid Sedan 2012 1.55% BMW Z4 Convertible 2012 1.51% Eagle Talon Hatchback 1998 1.47% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.64% Buick Rainier SUV 2007 2.41% Chrysler Sebring Convertible 2010 2.15% Chevrolet Express Cargo Van 2007 2.03% Honda Odyssey Minivan 2007 1.88% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota Sequoia SUV 2012 2.28% Bugatti Veyron 16.4 Coupe 2009 1.82% Volvo 240 Sedan 1993 1.74% Volkswagen Golf Hatchback 1991 1.62% BMW X5 SUV 2007 1.6% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Rolls-Royce Phantom Sedan 2012 4.51% Lincoln Town Car Sedan 2011 3.09% BMW ActiveHybrid 5 Sedan 2012 2.5% BMW 6 Series Convertible 2007 2.44% Mercedes-Benz S-Class Sedan 2012 2.0% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.67% Ford Expedition EL SUV 2009 2.11% Cadillac Escalade EXT Crew Cab 2007 2.07% Audi TTS Coupe 2012 2.06% Bentley Arnage Sedan 2009 1.79% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Dodge Caravan Minivan 1997 2.15% Chevrolet TrailBlazer SS 2009 1.57% Bentley Arnage Sedan 2009 1.52% Chevrolet Monte Carlo Coupe 2007 1.45% Cadillac CTS-V Sedan 2012 1.44% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 2.9% Acura TL Sedan 2012 2.37% Ford F-150 Regular Cab 2012 2.34% Dodge Sprinter Cargo Van 2009 2.34% Chevrolet Express Cargo Van 2007 2.25% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Lincoln Town Car Sedan 2011 3.43% Honda Odyssey Minivan 2007 3.15% Dodge Caravan Minivan 1997 3.14% Chevrolet Malibu Hybrid Sedan 2010 2.94% Hyundai Sonata Sedan 2012 2.85% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Buick Rainier SUV 2007 5.13% BMW 3 Series Sedan 2012 4.46% BMW X6 SUV 2012 3.08% Dodge Caliber Wagon 2007 2.37% Chevrolet Silverado 1500 Regular Cab 2012 2.36% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Dodge Charger SRT-8 2009 2.48% BMW 3 Series Sedan 2012 2.28% Ferrari California Convertible 2012 2.19% Lamborghini Aventador Coupe 2012 1.89% Ferrari 458 Italia Convertible 2012 1.77% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 20.48% Audi S5 Convertible 2012 7.78% Cadillac CTS-V Sedan 2012 6.85% Toyota Camry Sedan 2012 6.83% Audi 100 Wagon 1994 4.32% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Rolls-Royce Phantom Sedan 2012 6.36% BMW ActiveHybrid 5 Sedan 2012 3.04% BMW 6 Series Convertible 2007 2.45% Chevrolet Malibu Hybrid Sedan 2010 2.23% Dodge Caravan Minivan 1997 2.19% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.55% Chrysler Sebring Convertible 2010 1.87% Plymouth Neon Coupe 1999 1.35% Jeep Liberty SUV 2012 1.26% Dodge Sprinter Cargo Van 2009 1.26% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Lamborghini Diablo Coupe 2001 16.35% Bugatti Veyron 16.4 Coupe 2009 2.83% Mitsubishi Lancer Sedan 2012 2.73% Ford F-150 Regular Cab 2012 2.17% Dodge Charger SRT-8 2009 1.84% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Dodge Sprinter Cargo Van 2009 4.18% Mercedes-Benz SL-Class Coupe 2009 3.02% Mercedes-Benz Sprinter Van 2012 2.37% Audi S5 Convertible 2012 2.06% Chevrolet Express Cargo Van 2007 1.95% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 10.26% McLaren MP4-12C Coupe 2012 6.99% Dodge Charger SRT-8 2009 5.0% Lamborghini Aventador Coupe 2012 3.51% Hyundai Veloster Hatchback 2012 3.5% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Ford F-150 Regular Cab 2007 2.79% Chrysler Sebring Convertible 2010 2.44% Chrysler Aspen SUV 2009 2.21% Ford Freestar Minivan 2007 1.88% Chevrolet Malibu Sedan 2007 1.76% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 13.19% Eagle Talon Hatchback 1998 8.85% BMW 3 Series Sedan 2012 6.57% BMW Z4 Convertible 2012 5.91% Ferrari California Convertible 2012 5.5% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Dodge Sprinter Cargo Van 2009 21.85% GMC Savana Van 2012 4.73% Chevrolet Express Cargo Van 2007 4.24% Audi A5 Coupe 2012 3.67% Mercedes-Benz Sprinter Van 2012 3.56% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Rolls-Royce Phantom Sedan 2012 2.6% Chevrolet Monte Carlo Coupe 2007 2.3% Dodge Caravan Minivan 1997 2.05% Chrysler 300 SRT-8 2010 1.54% Audi V8 Sedan 1994 1.44% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.93% Dodge Caravan Minivan 1997 2.07% Mercedes-Benz S-Class Sedan 2012 2.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.0% Chrysler PT Cruiser Convertible 2008 1.96% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 6.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.49% Mercedes-Benz S-Class Sedan 2012 3.59% Ram C/V Cargo Van Minivan 2012 2.05% Acura Integra Type R 2001 1.96% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Dodge Charger SRT-8 2009 1.93% GMC Canyon Extended Cab 2012 1.57% Dodge Journey SUV 2012 1.5% Chevrolet Silverado 1500 Regular Cab 2012 1.48% Eagle Talon Hatchback 1998 1.28% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Audi S5 Coupe 2012 2.55% Chrysler 300 SRT-8 2010 2.38% Chevrolet Silverado 2500HD Regular Cab 2012 2.34% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.04% Audi S4 Sedan 2012 1.96% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Ram C/V Cargo Van Minivan 2012 3.11% Mercedes-Benz S-Class Sedan 2012 2.95% Acura ZDX Hatchback 2012 2.67% Chrysler PT Cruiser Convertible 2008 2.47% Chrysler Sebring Convertible 2010 2.4% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Chrysler Aspen SUV 2009 2.33% Dodge Durango SUV 2007 2.23% Volvo 240 Sedan 1993 1.75% Bentley Arnage Sedan 2009 1.51% BMW M5 Sedan 2010 1.49% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 2.95% GMC Savana Van 2012 1.92% Chevrolet Silverado 2500HD Regular Cab 2012 1.85% BMW X5 SUV 2007 1.44% Jeep Grand Cherokee SUV 2012 1.38% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Lincoln Town Car Sedan 2011 3.04% Volvo 240 Sedan 1993 2.54% Dodge Journey SUV 2012 2.17% Ford Freestar Minivan 2007 2.09% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.97% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 2.75% Mercedes-Benz SL-Class Coupe 2009 2.37% Chevrolet Express Cargo Van 2007 1.91% Honda Accord Sedan 2012 1.7% GMC Savana Van 2012 1.67% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Acura TL Sedan 2012 1.36% Chrysler 300 SRT-8 2010 1.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.23% Scion xD Hatchback 2012 1.12% Hyundai Santa Fe SUV 2012 1.1% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Ram C/V Cargo Van Minivan 2012 2.68% Chrysler Sebring Convertible 2010 2.2% Chevrolet Silverado 1500 Extended Cab 2012 1.99% Ford Fiesta Sedan 2012 1.69% Honda Accord Sedan 2012 1.67% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Ford F-150 Regular Cab 2007 2.55% Buick Rainier SUV 2007 2.02% Chevrolet Express Cargo Van 2007 2.0% Chrysler Sebring Convertible 2010 1.98% Chevrolet Traverse SUV 2012 1.92% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 AM General Hummer SUV 2000 2.63% Jeep Patriot SUV 2012 1.76% Geo Metro Convertible 1993 1.42% Chrysler PT Cruiser Convertible 2008 1.29% GMC Savana Van 2012 1.23% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 2.33% Tesla Model S Sedan 2012 1.62% Geo Metro Convertible 1993 1.55% Acura Integra Type R 2001 1.39% Ford E-Series Wagon Van 2012 1.36% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.41% Chrysler 300 SRT-8 2010 1.51% Chevrolet Silverado 1500 Extended Cab 2012 1.41% Audi S5 Coupe 2012 1.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Ferrari FF Coupe 2012 4.42% BMW M3 Coupe 2012 3.95% BMW 1 Series Coupe 2012 2.7% Dodge Caliber Wagon 2007 2.53% Ferrari 458 Italia Convertible 2012 2.28% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 BMW M5 Sedan 2010 1.95% Nissan Juke Hatchback 2012 1.62% BMW X5 SUV 2007 1.53% Nissan Leaf Hatchback 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.28% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 BMW ActiveHybrid 5 Sedan 2012 2.87% Maybach Landaulet Convertible 2012 1.91% Ram C/V Cargo Van Minivan 2012 1.51% Tesla Model S Sedan 2012 1.39% Ferrari FF Coupe 2012 1.38% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Cadillac CTS-V Sedan 2012 1.68% Bugatti Veyron 16.4 Coupe 2009 1.67% Bentley Arnage Sedan 2009 1.45% Bentley Mulsanne Sedan 2011 1.17% Mercedes-Benz 300-Class Convertible 1993 1.08% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Hyundai Azera Sedan 2012 1.61% Acura ZDX Hatchback 2012 1.34% Lamborghini Reventon Coupe 2008 1.34% Bentley Arnage Sedan 2009 1.26% Bentley Mulsanne Sedan 2011 1.19% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 1.39% BMW X5 SUV 2007 1.21% Chevrolet Corvette ZR1 2012 1.14% Jaguar XK XKR 2012 1.1% Jeep Patriot SUV 2012 1.03% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Infiniti G Coupe IPL 2012 2.84% Bentley Arnage Sedan 2009 2.77% Bentley Continental GT Coupe 2007 2.7% Volvo 240 Sedan 1993 2.68% Bentley Mulsanne Sedan 2011 2.64% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Dodge Sprinter Cargo Van 2009 4.59% Mercedes-Benz Sprinter Van 2012 4.35% Dodge Dakota Club Cab 2007 2.64% Hyundai Tucson SUV 2012 2.32% Ford E-Series Wagon Van 2012 1.95% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Chrysler Sebring Convertible 2010 2.11% Honda Odyssey Minivan 2007 1.51% Ram C/V Cargo Van Minivan 2012 1.5% Lincoln Town Car Sedan 2011 1.49% Ford E-Series Wagon Van 2012 1.44% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Cadillac CTS-V Sedan 2012 8.98% BMW 3 Series Wagon 2012 5.58% Chevrolet Corvette ZR1 2012 4.77% Dodge Ram Pickup 3500 Crew Cab 2010 3.62% Dodge Ram Pickup 3500 Quad Cab 2009 3.58% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 4.46% Mercedes-Benz SL-Class Coupe 2009 2.96% Audi TT Hatchback 2011 2.4% Chevrolet Express Cargo Van 2007 2.34% Honda Accord Sedan 2012 2.15% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Chevrolet Monte Carlo Coupe 2007 1.5% Rolls-Royce Ghost Sedan 2012 1.08% Bugatti Veyron 16.4 Coupe 2009 1.01% Aston Martin Virage Convertible 2012 1.01% Cadillac CTS-V Sedan 2012 0.99% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Lamborghini Aventador Coupe 2012 12.86% Spyker C8 Coupe 2009 10.77% Aston Martin Virage Coupe 2012 10.5% Ferrari 458 Italia Convertible 2012 7.33% Dodge Caliber Wagon 2007 5.69% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Ferrari FF Coupe 2012 3.53% Honda Accord Coupe 2012 2.44% Ford F-150 Regular Cab 2012 2.28% Audi S5 Coupe 2012 2.1% Dodge Durango SUV 2012 1.94% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Bugatti Veyron 16.4 Coupe 2009 2.88% MINI Cooper Roadster Convertible 2012 2.6% Lamborghini Reventon Coupe 2008 2.39% Rolls-Royce Ghost Sedan 2012 2.27% Plymouth Neon Coupe 1999 2.23% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet Monte Carlo Coupe 2007 1.96% Mercedes-Benz C-Class Sedan 2012 1.71% BMW M6 Convertible 2010 1.53% HUMMER H2 SUT Crew Cab 2009 1.42% Honda Odyssey Minivan 2012 1.33% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 MINI Cooper Roadster Convertible 2012 2.08% GMC Savana Van 2012 1.79% GMC Yukon Hybrid SUV 2012 1.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.57% BMW 6 Series Convertible 2007 1.56% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 BMW 3 Series Sedan 2012 10.84% Ferrari 458 Italia Convertible 2012 10.28% Ferrari California Convertible 2012 8.01% Ferrari 458 Italia Coupe 2012 6.08% Eagle Talon Hatchback 1998 5.07% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Bentley Arnage Sedan 2009 2.92% BMW M6 Convertible 2010 2.32% Chrysler 300 SRT-8 2010 1.83% Bugatti Veyron 16.4 Coupe 2009 1.76% Bentley Mulsanne Sedan 2011 1.7% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Acura ZDX Hatchback 2012 1.81% Hyundai Azera Sedan 2012 1.44% Chevrolet Corvette ZR1 2012 1.3% MINI Cooper Roadster Convertible 2012 1.28% Rolls-Royce Phantom Sedan 2012 1.25% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 2.46% Acura Integra Type R 2001 1.69% Geo Metro Convertible 1993 1.55% Lamborghini Diablo Coupe 2001 1.47% Chevrolet Express Van 2007 1.44% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 2.49% Dodge Sprinter Cargo Van 2009 1.46% BMW 1 Series Convertible 2012 1.39% Ram C/V Cargo Van Minivan 2012 1.35% Tesla Model S Sedan 2012 1.28% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Chevrolet Traverse SUV 2012 6.12% Chevrolet Express Cargo Van 2007 5.19% Hyundai Elantra Touring Hatchback 2012 3.43% Dodge Sprinter Cargo Van 2009 2.95% Buick Rainier SUV 2007 2.46% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 2.43% Mercedes-Benz S-Class Sedan 2012 2.32% Porsche Panamera Sedan 2012 2.05% Audi TT Hatchback 2011 1.92% Ram C/V Cargo Van Minivan 2012 1.92% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Acura ZDX Hatchback 2012 2.81% Bugatti Veyron 16.4 Coupe 2009 2.67% Infiniti G Coupe IPL 2012 2.54% Spyker C8 Convertible 2009 2.18% Bentley Mulsanne Sedan 2011 2.12% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Chrysler 300 SRT-8 2010 6.3% Audi S5 Coupe 2012 2.95% Chevrolet Silverado 2500HD Regular Cab 2012 2.68% Honda Accord Coupe 2012 2.32% BMW M6 Convertible 2010 2.31% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler Aspen SUV 2009 2.41% Hyundai Genesis Sedan 2012 2.17% Bentley Arnage Sedan 2009 2.14% Plymouth Neon Coupe 1999 1.64% Ford F-450 Super Duty Crew Cab 2012 1.52% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 1.39% HUMMER H2 SUT Crew Cab 2009 1.22% Mitsubishi Lancer Sedan 2012 1.15% Audi S6 Sedan 2011 1.13% AM General Hummer SUV 2000 1.07% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Audi TT Hatchback 2011 4.04% MINI Cooper Roadster Convertible 2012 3.38% Dodge Sprinter Cargo Van 2009 3.38% McLaren MP4-12C Coupe 2012 2.87% Audi A5 Coupe 2012 2.31% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Plymouth Neon Coupe 1999 1.41% Eagle Talon Hatchback 1998 1.2% Jaguar XK XKR 2012 1.17% Lincoln Town Car Sedan 2011 1.16% GMC Yukon Hybrid SUV 2012 1.16% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Bentley Arnage Sedan 2009 2.41% Infiniti G Coupe IPL 2012 2.38% Volvo 240 Sedan 1993 2.28% Bentley Mulsanne Sedan 2011 2.27% BMW M6 Convertible 2010 1.99% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 7.27% GMC Savana Van 2012 5.06% Chevrolet Express Cargo Van 2007 4.23% Mercedes-Benz Sprinter Van 2012 2.62% Ram C/V Cargo Van Minivan 2012 2.22% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Ferrari California Convertible 2012 7.74% Ferrari 458 Italia Convertible 2012 6.96% Ferrari 458 Italia Coupe 2012 5.7% Aston Martin Virage Coupe 2012 4.5% Dodge Caliber Wagon 2007 4.21% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Volkswagen Golf Hatchback 1991 12.35% Buick Rainier SUV 2007 5.54% BMW M5 Sedan 2010 4.43% Acura TL Sedan 2012 4.33% Chrysler Aspen SUV 2009 4.15% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 BMW ActiveHybrid 5 Sedan 2012 7.02% Daewoo Nubira Wagon 2002 5.89% Volkswagen Beetle Hatchback 2012 5.62% FIAT 500 Convertible 2012 5.25% Lincoln Town Car Sedan 2011 4.4% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Audi RS 4 Convertible 2008 2.53% Lamborghini Diablo Coupe 2001 2.19% Bugatti Veyron 16.4 Coupe 2009 1.78% AM General Hummer SUV 2000 1.66% Aston Martin Virage Coupe 2012 1.61% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Bugatti Veyron 16.4 Coupe 2009 1.61% GMC Yukon Hybrid SUV 2012 1.49% Chrysler 300 SRT-8 2010 1.48% Bentley Arnage Sedan 2009 1.41% Audi R8 Coupe 2012 1.35% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2007 6.39% Lincoln Town Car Sedan 2011 2.65% GMC Savana Van 2012 2.31% Buick Rainier SUV 2007 2.27% Chrysler Sebring Convertible 2010 1.87% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.74% Chevrolet Monte Carlo Coupe 2007 2.24% Cadillac Escalade EXT Crew Cab 2007 1.86% Audi V8 Sedan 1994 1.75% Ford Mustang Convertible 2007 1.68% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Audi R8 Coupe 2012 2.1% Bentley Mulsanne Sedan 2011 1.81% Bugatti Veyron 16.4 Coupe 2009 1.78% Fisker Karma Sedan 2012 1.73% Infiniti G Coupe IPL 2012 1.55% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Mercedes-Benz S-Class Sedan 2012 3.15% Acura ZDX Hatchback 2012 2.33% Chrysler PT Cruiser Convertible 2008 2.12% Aston Martin V8 Vantage Convertible 2012 2.08% Acura TL Sedan 2012 1.92% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 GMC Canyon Extended Cab 2012 2.63% Buick Rainier SUV 2007 2.1% BMW X6 SUV 2012 1.95% Jaguar XK XKR 2012 1.81% GMC Savana Van 2012 1.81% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Lincoln Town Car Sedan 2011 2.82% Ford Freestar Minivan 2007 1.84% Honda Odyssey Minivan 2007 1.59% Dodge Caliber Wagon 2012 1.59% BMW 6 Series Convertible 2007 1.39% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Ford Ranger SuperCab 2011 3.12% Tesla Model S Sedan 2012 2.29% BMW X6 SUV 2012 2.18% Chrysler Sebring Convertible 2010 2.07% Chevrolet Silverado 1500 Regular Cab 2012 1.95% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Dodge Sprinter Cargo Van 2009 3.38% Mercedes-Benz Sprinter Van 2012 1.67% GMC Savana Van 2012 1.67% Chevrolet Express Cargo Van 2007 1.58% Audi A5 Coupe 2012 1.45% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Express Cargo Van 2007 4.04% Chevrolet Express Van 2007 3.7% Volvo XC90 SUV 2007 3.15% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.63% Hyundai Elantra Touring Hatchback 2012 1.86% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Tesla Model S Sedan 2012 3.31% Ram C/V Cargo Van Minivan 2012 2.66% Hyundai Elantra Touring Hatchback 2012 2.46% Dodge Sprinter Cargo Van 2009 2.18% Lincoln Town Car Sedan 2011 2.09% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Aston Martin Virage Coupe 2012 3.77% Jeep Wrangler SUV 2012 3.76% Dodge Charger SRT-8 2009 3.75% McLaren MP4-12C Coupe 2012 3.65% Lamborghini Aventador Coupe 2012 3.3% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Ferrari California Convertible 2012 4.35% Hyundai Azera Sedan 2012 3.7% Hyundai Tucson SUV 2012 3.0% Spyker C8 Convertible 2009 2.95% Ford GT Coupe 2006 2.09% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 BMW 6 Series Convertible 2007 2.13% BMW ActiveHybrid 5 Sedan 2012 2.11% Lincoln Town Car Sedan 2011 1.99% Maybach Landaulet Convertible 2012 1.95% smart fortwo Convertible 2012 1.52% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Arnage Sedan 2009 1.31% Chrysler 300 SRT-8 2010 1.22% Audi S6 Sedan 2011 1.18% GMC Yukon Hybrid SUV 2012 1.15% AM General Hummer SUV 2000 1.06% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Ferrari California Convertible 2012 1.59% Ferrari 458 Italia Coupe 2012 1.5% Mitsubishi Lancer Sedan 2012 1.29% BMW 3 Series Sedan 2012 1.21% Ferrari 458 Italia Convertible 2012 1.18% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 GMC Canyon Extended Cab 2012 6.81% Chevrolet Cobalt SS 2010 5.85% Ford F-150 Regular Cab 2007 4.94% Ferrari FF Coupe 2012 3.51% Chevrolet Silverado 1500 Regular Cab 2012 3.19% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Cobalt SS 2010 5.14% Ford Mustang Convertible 2007 2.75% GMC Canyon Extended Cab 2012 2.73% Ferrari FF Coupe 2012 2.66% Honda Accord Coupe 2012 2.65% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Jaguar XK XKR 2012 2.51% FIAT 500 Convertible 2012 1.69% Audi S5 Coupe 2012 1.68% Acura TL Sedan 2012 1.58% Mazda Tribute SUV 2011 1.46% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Volvo 240 Sedan 1993 5.2% Fisker Karma Sedan 2012 4.1% Jeep Compass SUV 2012 4.09% Bugatti Veyron 16.4 Coupe 2009 3.94% Volkswagen Golf Hatchback 1991 3.14% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Dodge Sprinter Cargo Van 2009 5.81% Mercedes-Benz Sprinter Van 2012 3.96% Chevrolet Express Cargo Van 2007 2.73% Ford E-Series Wagon Van 2012 2.72% Honda Odyssey Minivan 2007 2.22% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Chevrolet Cobalt SS 2010 8.59% Dodge Magnum Wagon 2008 7.38% Dodge Charger SRT-8 2009 5.83% Lamborghini Aventador Coupe 2012 4.25% Ferrari 458 Italia Coupe 2012 3.43% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 BMW 6 Series Convertible 2007 1.88% Chevrolet Monte Carlo Coupe 2007 1.79% Chrysler 300 SRT-8 2010 1.72% Hyundai Genesis Sedan 2012 1.64% Audi 100 Sedan 1994 1.61% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Chrysler 300 SRT-8 2010 1.61% Audi S5 Coupe 2012 1.34% Ferrari FF Coupe 2012 1.24% Audi S6 Sedan 2011 1.07% Scion xD Hatchback 2012 0.98% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Mazda Tribute SUV 2011 3.47% Acura TSX Sedan 2012 2.86% BMW 6 Series Convertible 2007 2.51% Isuzu Ascender SUV 2008 1.99% BMW X3 SUV 2012 1.94% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Dodge Durango SUV 2007 1.34% Lamborghini Reventon Coupe 2008 1.32% HUMMER H2 SUT Crew Cab 2009 1.27% Cadillac Escalade EXT Crew Cab 2007 1.27% Hyundai Santa Fe SUV 2012 1.22% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Ferrari FF Coupe 2012 4.28% Dodge Caliber Wagon 2007 3.13% BMW 1 Series Coupe 2012 2.29% BMW M3 Coupe 2012 2.2% Ferrari 458 Italia Convertible 2012 1.79% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 3.83% Plymouth Neon Coupe 1999 3.31% Aston Martin V8 Vantage Coupe 2012 2.4% Bugatti Veyron 16.4 Coupe 2009 1.72% Chevrolet TrailBlazer SS 2009 1.66% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Chrysler Sebring Convertible 2010 1.73% Hyundai Azera Sedan 2012 1.7% Dodge Caravan Minivan 1997 1.61% Mercedes-Benz S-Class Sedan 2012 1.57% Ram C/V Cargo Van Minivan 2012 1.52% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Aston Martin Virage Coupe 2012 7.29% Hyundai Veloster Hatchback 2012 3.35% McLaren MP4-12C Coupe 2012 3.2% Chevrolet Corvette Convertible 2012 3.13% Ferrari California Convertible 2012 2.88% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Bentley Continental Flying Spur Sedan 2007 1.17% Buick Rainier SUV 2007 1.16% Audi R8 Coupe 2012 1.11% Spyker C8 Convertible 2009 1.06% Jeep Grand Cherokee SUV 2012 1.06% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Ford E-Series Wagon Van 2012 1.56% Audi S6 Sedan 2011 1.49% Land Rover LR2 SUV 2012 1.38% Dodge Durango SUV 2007 1.37% GMC Yukon Hybrid SUV 2012 1.36% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chrysler 300 SRT-8 2010 4.41% Audi S5 Coupe 2012 3.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.66% Fisker Karma Sedan 2012 2.61% Rolls-Royce Ghost Sedan 2012 2.07% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Ford F-150 Regular Cab 2007 3.51% Chrysler Aspen SUV 2009 2.51% Buick Rainier SUV 2007 2.19% BMW X5 SUV 2007 1.97% Dodge Durango SUV 2012 1.92% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 5.32% Mercedes-Benz Sprinter Van 2012 5.21% Chevrolet Express Cargo Van 2007 5.09% Dodge Sprinter Cargo Van 2009 4.12% Chevrolet Express Van 2007 2.26% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Ford GT Coupe 2006 3.16% Bugatti Veyron 16.4 Coupe 2009 2.63% Mercedes-Benz 300-Class Convertible 1993 2.13% Chevrolet Monte Carlo Coupe 2007 1.78% BMW M6 Convertible 2010 1.77% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Hyundai Azera Sedan 2012 2.09% Jeep Grand Cherokee SUV 2012 1.38% Spyker C8 Convertible 2009 1.2% Chrysler PT Cruiser Convertible 2008 1.16% Ford GT Coupe 2006 1.14% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 2.08% Aston Martin V8 Vantage Coupe 2012 1.92% Plymouth Neon Coupe 1999 1.83% Cadillac CTS-V Sedan 2012 1.65% Jeep Compass SUV 2012 1.52% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.89% Chrysler PT Cruiser Convertible 2008 1.53% Dodge Caravan Minivan 1997 1.53% Chevrolet Impala Sedan 2007 1.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.18% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 7.76% Aston Martin Virage Coupe 2012 3.04% Lamborghini Aventador Coupe 2012 2.29% BMW 1 Series Coupe 2012 2.12% Buick Verano Sedan 2012 1.95% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Cadillac CTS-V Sedan 2012 3.69% Honda Odyssey Minivan 2012 2.47% BMW X5 SUV 2007 2.16% Audi RS 4 Convertible 2008 2.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.13% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Volvo 240 Sedan 1993 2.18% Chrysler Sebring Convertible 2010 2.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.98% Dodge Ram Pickup 3500 Crew Cab 2010 1.91% Chevrolet Silverado 1500 Extended Cab 2012 1.87% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Jeep Grand Cherokee SUV 2012 2.54% Chrysler 300 SRT-8 2010 2.53% Bentley Mulsanne Sedan 2011 2.12% Land Rover Range Rover SUV 2012 1.85% Ford Mustang Convertible 2007 1.84% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Bentley Arnage Sedan 2009 2.58% Plymouth Neon Coupe 1999 1.9% Aston Martin V8 Vantage Coupe 2012 1.79% Hyundai Genesis Sedan 2012 1.57% Chrysler Aspen SUV 2009 1.48% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Dodge Caravan Minivan 1997 2.5% Isuzu Ascender SUV 2008 2.21% GMC Savana Van 2012 2.11% Chevrolet Express Cargo Van 2007 2.09% Hyundai Tucson SUV 2012 2.01% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 AM General Hummer SUV 2000 8.46% Lamborghini Diablo Coupe 2001 8.13% Acura Integra Type R 2001 3.7% Ferrari California Convertible 2012 2.88% Dodge Charger SRT-8 2009 2.52% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 BMW M3 Coupe 2012 6.63% Chevrolet Cobalt SS 2010 6.36% Dodge Charger SRT-8 2009 6.02% Lamborghini Aventador Coupe 2012 4.8% Ferrari 458 Italia Convertible 2012 3.88% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.55% Audi S6 Sedan 2011 1.46% BMW M3 Coupe 2012 1.4% Spyker C8 Coupe 2009 1.31% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 BMW X6 SUV 2012 8.3% GMC Acadia SUV 2012 5.8% Jeep Patriot SUV 2012 3.62% BMW X5 SUV 2007 3.25% BMW M5 Sedan 2010 3.22% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 FIAT 500 Convertible 2012 17.06% Spyker C8 Coupe 2009 5.27% Hyundai Veloster Hatchback 2012 4.89% Ferrari California Convertible 2012 4.25% Lincoln Town Car Sedan 2011 3.33% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Magnum Wagon 2008 5.34% Ferrari 458 Italia Convertible 2012 5.1% Dodge Charger SRT-8 2009 4.23% Dodge Caliber Wagon 2007 2.95% Lamborghini Aventador Coupe 2012 2.77% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Honda Odyssey Minivan 2007 2.06% Buick Enclave SUV 2012 1.49% Dodge Caravan Minivan 1997 1.44% GMC Yukon Hybrid SUV 2012 1.12% Audi S6 Sedan 2011 1.1% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Dodge Caliber Wagon 2007 2.24% Ferrari 458 Italia Coupe 2012 2.22% Buick Enclave SUV 2012 2.17% Buick Rainier SUV 2007 2.11% Chevrolet Cobalt SS 2010 2.08% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Dodge Sprinter Cargo Van 2009 12.66% Chevrolet Traverse SUV 2012 4.12% Mercedes-Benz Sprinter Van 2012 3.53% Chevrolet Express Cargo Van 2007 2.89% Audi A5 Coupe 2012 2.89% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 7.58% AM General Hummer SUV 2000 3.99% Suzuki Aerio Sedan 2007 2.65% Chevrolet Corvette Convertible 2012 2.36% Lamborghini Diablo Coupe 2001 2.32% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Rolls-Royce Phantom Sedan 2012 4.67% Tesla Model S Sedan 2012 3.69% BMW ActiveHybrid 5 Sedan 2012 3.04% Chevrolet Impala Sedan 2007 2.94% Lincoln Town Car Sedan 2011 2.71% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Dodge Sprinter Cargo Van 2009 4.81% Mercedes-Benz Sprinter Van 2012 2.88% Chevrolet Express Cargo Van 2007 2.05% Ford E-Series Wagon Van 2012 2.04% Nissan NV Passenger Van 2012 2.04% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 AM General Hummer SUV 2000 4.56% Ford F-150 Regular Cab 2012 4.17% Infiniti QX56 SUV 2011 3.47% Ford F-150 Regular Cab 2007 3.25% Ford E-Series Wagon Van 2012 3.1% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Chrysler 300 SRT-8 2010 3.5% Audi S5 Coupe 2012 3.07% Chevrolet Silverado 2500HD Regular Cab 2012 2.74% Fisker Karma Sedan 2012 2.29% Audi RS 4 Convertible 2008 2.24% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.73% Spyker C8 Coupe 2009 1.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% Chrysler PT Cruiser Convertible 2008 1.56% MINI Cooper Roadster Convertible 2012 1.43% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 AM General Hummer SUV 2000 17.23% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.2% Chevrolet Corvette Convertible 2012 4.87% HUMMER H2 SUT Crew Cab 2009 3.83% Lamborghini Diablo Coupe 2001 3.36% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Lamborghini Gallardo LP 570-4 Superleggera 2012 3.53% Lamborghini Diablo Coupe 2001 3.29% AM General Hummer SUV 2000 3.24% Chevrolet Corvette Convertible 2012 1.58% Chevrolet Camaro Convertible 2012 1.53% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Dodge Ram Pickup 3500 Crew Cab 2010 1.83% Aston Martin Virage Convertible 2012 1.75% Bentley Mulsanne Sedan 2011 1.75% Hyundai Genesis Sedan 2012 1.57% Volvo 240 Sedan 1993 1.49% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Honda Accord Coupe 2012 9.06% BMW 3 Series Sedan 2012 5.54% Audi TT RS Coupe 2012 4.64% Dodge Magnum Wagon 2008 4.48% BMW Z4 Convertible 2012 3.87% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 McLaren MP4-12C Coupe 2012 5.58% Aston Martin Virage Coupe 2012 5.39% AM General Hummer SUV 2000 5.16% Lamborghini Diablo Coupe 2001 4.73% BMW M3 Coupe 2012 3.71% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Acura ZDX Hatchback 2012 2.18% Hyundai Azera Sedan 2012 1.71% Rolls-Royce Phantom Sedan 2012 1.67% Chevrolet Corvette ZR1 2012 1.63% BMW M6 Convertible 2010 1.54% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Chrysler 300 SRT-8 2010 1.81% Audi RS 4 Convertible 2008 1.55% BMW 6 Series Convertible 2007 1.29% Audi S6 Sedan 2011 1.26% Infiniti G Coupe IPL 2012 1.22% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Chevrolet Cobalt SS 2010 15.04% BMW 1 Series Coupe 2012 6.16% Dodge Charger SRT-8 2009 5.44% Dodge Caliber Wagon 2007 5.28% Lamborghini Aventador Coupe 2012 3.91% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Chrysler 300 SRT-8 2010 4.55% Bugatti Veyron 16.4 Coupe 2009 3.54% Fisker Karma Sedan 2012 3.44% Volkswagen Golf Hatchback 1991 2.9% Bentley Mulsanne Sedan 2011 2.84% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Dodge Sprinter Cargo Van 2009 4.88% GMC Savana Van 2012 3.14% Chevrolet Express Cargo Van 2007 2.14% Nissan NV Passenger Van 2012 1.99% Mercedes-Benz Sprinter Van 2012 1.88% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 Ferrari California Convertible 2012 6.92% Dodge Magnum Wagon 2008 3.27% Lamborghini Aventador Coupe 2012 2.94% Dodge Charger SRT-8 2009 2.91% Ford Mustang Convertible 2007 2.77% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Bentley Mulsanne Sedan 2011 3.7% BMW M6 Convertible 2010 3.09% Spyker C8 Convertible 2009 2.81% Bentley Arnage Sedan 2009 2.63% Lamborghini Reventon Coupe 2008 2.28% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 2.9% Tesla Model S Sedan 2012 1.62% BMW 1 Series Convertible 2012 1.45% Ram C/V Cargo Van Minivan 2012 1.43% Ferrari FF Coupe 2012 1.41% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 2.11% Bentley Arnage Sedan 2009 2.05% Chevrolet Monte Carlo Coupe 2007 1.98% Plymouth Neon Coupe 1999 1.95% Audi 100 Sedan 1994 1.85% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.77% FIAT 500 Convertible 2012 2.61% Chrysler Sebring Convertible 2010 1.98% Aston Martin Virage Convertible 2012 1.92% Audi S4 Sedan 2012 1.57% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Silverado 1500 Extended Cab 2012 2.07% Chevrolet Silverado 2500HD Regular Cab 2012 1.71% Dodge Ram Pickup 3500 Quad Cab 2009 1.66% GMC Savana Van 2012 1.57% Chrysler 300 SRT-8 2010 1.51% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 3.37% Aston Martin V8 Vantage Coupe 2012 2.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.99% Ford GT Coupe 2006 1.89% AM General Hummer SUV 2000 1.85% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Chevrolet HHR SS 2010 6.02% Ferrari 458 Italia Coupe 2012 4.19% Volvo C30 Hatchback 2012 4.05% Dodge Charger SRT-8 2009 3.89% Lamborghini Aventador Coupe 2012 3.59% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 BMW M6 Convertible 2010 1.86% Bugatti Veyron 16.4 Coupe 2009 1.73% Bentley Continental Flying Spur Sedan 2007 1.51% Aston Martin V8 Vantage Coupe 2012 1.44% Bentley Arnage Sedan 2009 1.36% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Acura TL Sedan 2012 1.89% Acura TL Type-S 2008 1.83% Mercedes-Benz S-Class Sedan 2012 1.79% Audi S5 Coupe 2012 1.74% FIAT 500 Convertible 2012 1.67% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Nissan Leaf Hatchback 2012 1.89% Jeep Compass SUV 2012 1.77% Jaguar XK XKR 2012 1.6% Chrysler PT Cruiser Convertible 2008 1.5% Chrysler Sebring Convertible 2010 1.42% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Chrysler 300 SRT-8 2010 1.38% Cadillac Escalade EXT Crew Cab 2007 1.31% Hyundai Veracruz SUV 2012 1.17% GMC Yukon Hybrid SUV 2012 1.03% Chevrolet Silverado 1500 Extended Cab 2012 1.03% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Dodge Caravan Minivan 1997 1.85% Chrysler 300 SRT-8 2010 1.8% Rolls-Royce Phantom Sedan 2012 1.64% Hyundai Sonata Hybrid Sedan 2012 1.61% Ram C/V Cargo Van Minivan 2012 1.39% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Chevrolet TrailBlazer SS 2009 3.92% Dodge Ram Pickup 3500 Crew Cab 2010 3.26% Ford Expedition EL SUV 2009 2.75% Audi RS 4 Convertible 2008 2.64% Land Rover Range Rover SUV 2012 1.97% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Chrysler 300 SRT-8 2010 3.2% BMW X5 SUV 2007 2.58% GMC Acadia SUV 2012 2.16% Chevrolet Corvette ZR1 2012 2.08% Infiniti G Coupe IPL 2012 2.06% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 BMW M5 Sedan 2010 2.27% Buick Rainier SUV 2007 2.25% Nissan Leaf Hatchback 2012 1.92% Chrysler Aspen SUV 2009 1.54% Mercedes-Benz S-Class Sedan 2012 1.3% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 AM General Hummer SUV 2000 4.52% Lamborghini Reventon Coupe 2008 3.39% Lamborghini Aventador Coupe 2012 2.74% BMW M6 Convertible 2010 2.5% Bentley Mulsanne Sedan 2011 2.17% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Hyundai Santa Fe SUV 2012 1.79% Cadillac Escalade EXT Crew Cab 2007 1.66% Land Rover Range Rover SUV 2012 1.55% GMC Yukon Hybrid SUV 2012 1.46% Jeep Grand Cherokee SUV 2012 1.37% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chrysler 300 SRT-8 2010 1.17% Scion xD Hatchback 2012 1.13% Audi S6 Sedan 2011 1.07% Ford Mustang Convertible 2007 1.05% Porsche Panamera Sedan 2012 0.99% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Acura TL Type-S 2008 1.41% Chrysler Sebring Convertible 2010 1.4% Ram C/V Cargo Van Minivan 2012 1.37% BMW M5 Sedan 2010 1.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.24% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 Chevrolet Corvette ZR1 2012 1.86% Toyota 4Runner SUV 2012 1.76% GMC Yukon Hybrid SUV 2012 1.73% Chevrolet Camaro Convertible 2012 1.68% Fisker Karma Sedan 2012 1.63% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Dodge Sprinter Cargo Van 2009 14.84% Mercedes-Benz Sprinter Van 2012 8.29% Ford E-Series Wagon Van 2012 5.13% Chevrolet Express Cargo Van 2007 3.66% GMC Savana Van 2012 3.19% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Volvo 240 Sedan 1993 2.04% Daewoo Nubira Wagon 2002 1.74% BMW X6 SUV 2012 1.39% Dodge Ram Pickup 3500 Crew Cab 2010 1.38% Chevrolet Traverse SUV 2012 1.36% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 FIAT 500 Convertible 2012 9.8% Hyundai Veloster Hatchback 2012 3.04% Volkswagen Beetle Hatchback 2012 2.9% Lincoln Town Car Sedan 2011 2.4% GMC Savana Van 2012 2.11% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 GMC Savana Van 2012 2.42% HUMMER H2 SUT Crew Cab 2009 2.28% GMC Yukon Hybrid SUV 2012 1.8% Toyota 4Runner SUV 2012 1.73% Chevrolet Express Van 2007 1.38% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 3.61% GMC Acadia SUV 2012 3.25% Dodge Caliber Wagon 2007 3.2% Ford Ranger SuperCab 2011 2.45% Buick Rainier SUV 2007 2.41% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Chrysler Aspen SUV 2009 1.81% Dodge Durango SUV 2007 1.57% Jeep Grand Cherokee SUV 2012 1.56% Hyundai Santa Fe SUV 2012 1.53% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.51% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Savana Van 2012 2.47% GMC Yukon Hybrid SUV 2012 1.93% Hyundai Tucson SUV 2012 1.9% Plymouth Neon Coupe 1999 1.65% Ford E-Series Wagon Van 2012 1.56% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 1.77% Ferrari FF Coupe 2012 1.58% Buick Regal GS 2012 1.55% MINI Cooper Roadster Convertible 2012 1.54% Toyota Camry Sedan 2012 1.2% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 6.97% Bugatti Veyron 16.4 Coupe 2009 3.72% Fisker Karma Sedan 2012 3.71% Audi V8 Sedan 1994 1.99% BMW X6 SUV 2012 1.85% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 2.89% Land Rover Range Rover SUV 2012 2.05% Ford Mustang Convertible 2007 1.77% Eagle Talon Hatchback 1998 1.77% Dodge Durango SUV 2007 1.75% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Mercedes-Benz S-Class Sedan 2012 3.35% Honda Odyssey Minivan 2007 2.45% Ram C/V Cargo Van Minivan 2012 2.18% Chrysler PT Cruiser Convertible 2008 2.15% Acura ZDX Hatchback 2012 2.04% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 3.46% Hyundai Azera Sedan 2012 3.1% AM General Hummer SUV 2000 3.04% Jeep Patriot SUV 2012 2.32% Aston Martin Virage Coupe 2012 2.26% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Aston Martin V8 Vantage Coupe 2012 3.0% Lamborghini Aventador Coupe 2012 1.99% Ferrari California Convertible 2012 1.84% Aston Martin Virage Coupe 2012 1.53% AM General Hummer SUV 2000 1.47% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Mercedes-Benz Sprinter Van 2012 3.17% Bugatti Veyron 16.4 Convertible 2009 2.49% FIAT 500 Convertible 2012 2.37% Suzuki Kizashi Sedan 2012 2.33% Acura TL Sedan 2012 2.19% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 12.51% Audi S4 Sedan 2007 7.73% Chrysler Sebring Convertible 2010 6.9% BMW M5 Sedan 2010 5.74% Audi S4 Sedan 2012 5.15% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 20.87% Chevrolet Express Van 2007 7.08% Chevrolet Express Cargo Van 2007 3.14% Land Rover Range Rover SUV 2012 2.81% Volvo XC90 SUV 2007 2.64% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Acura ZDX Hatchback 2012 1.85% Honda Odyssey Minivan 2007 1.77% BMW ActiveHybrid 5 Sedan 2012 1.71% Lincoln Town Car Sedan 2011 1.61% Audi TT Hatchback 2011 1.56% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Regular Cab 2012 2.84% Chevrolet Silverado 1500 Extended Cab 2012 2.21% Chevrolet Monte Carlo Coupe 2007 2.14% GMC Savana Van 2012 2.02% Chevrolet Silverado 2500HD Regular Cab 2012 1.84% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Plymouth Neon Coupe 1999 6.83% Ferrari 458 Italia Coupe 2012 6.72% Ferrari 458 Italia Convertible 2012 6.62% BMW 3 Series Sedan 2012 4.3% Dodge Magnum Wagon 2008 4.18% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 Dodge Charger SRT-8 2009 4.3% HUMMER H3T Crew Cab 2010 3.45% Audi R8 Coupe 2012 2.74% Dodge Caliber Wagon 2007 2.12% Dodge Durango SUV 2012 2.04% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Chevrolet Traverse SUV 2012 2.34% Chevrolet Silverado 1500 Regular Cab 2012 2.2% Fisker Karma Sedan 2012 1.99% Infiniti G Coupe IPL 2012 1.98% Chevrolet Silverado 1500 Extended Cab 2012 1.78% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 Chrysler 300 SRT-8 2010 3.83% Audi S5 Coupe 2012 2.95% Chevrolet Silverado 2500HD Regular Cab 2012 2.64% Fisker Karma Sedan 2012 2.34% Audi RS 4 Convertible 2008 2.34% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Daewoo Nubira Wagon 2002 3.54% Plymouth Neon Coupe 1999 2.68% Aston Martin V8 Vantage Coupe 2012 2.25% Mercedes-Benz C-Class Sedan 2012 2.18% Bentley Arnage Sedan 2009 1.97% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 BMW ActiveHybrid 5 Sedan 2012 4.51% Honda Odyssey Minivan 2007 2.73% Rolls-Royce Phantom Sedan 2012 2.66% Chevrolet Impala Sedan 2007 2.23% Lincoln Town Car Sedan 2011 1.98% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Aston Martin Virage Coupe 2012 9.13% McLaren MP4-12C Coupe 2012 6.06% Lamborghini Diablo Coupe 2001 5.83% Dodge Charger SRT-8 2009 3.82% Lamborghini Aventador Coupe 2012 2.88% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.1% BMW ActiveHybrid 5 Sedan 2012 2.07% Audi A5 Coupe 2012 1.49% Lincoln Town Car Sedan 2011 1.48% Audi S5 Coupe 2012 1.34% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Audi R8 Coupe 2012 2.88% HUMMER H2 SUT Crew Cab 2009 2.59% Toyota 4Runner SUV 2012 2.36% Dodge Durango SUV 2012 2.04% Audi S6 Sedan 2011 2.02% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Audi RS 4 Convertible 2008 2.06% Ford GT Coupe 2006 1.83% Dodge Caravan Minivan 1997 1.82% Volvo 240 Sedan 1993 1.63% Geo Metro Convertible 1993 1.59% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Mercedes-Benz C-Class Sedan 2012 2.28% Hyundai Santa Fe SUV 2012 2.14% Mercedes-Benz S-Class Sedan 2012 1.68% BMW ActiveHybrid 5 Sedan 2012 1.63% Toyota 4Runner SUV 2012 1.58% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Chevrolet TrailBlazer SS 2009 2.18% Cadillac Escalade EXT Crew Cab 2007 1.89% Rolls-Royce Ghost Sedan 2012 1.8% Bugatti Veyron 16.4 Coupe 2009 1.59% Bentley Arnage Sedan 2009 1.58% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 5.79% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.49% Lamborghini Diablo Coupe 2001 2.88% HUMMER H2 SUT Crew Cab 2009 1.97% Aston Martin V8 Vantage Coupe 2012 1.85% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Chrysler Aspen SUV 2009 4.37% Dodge Durango SUV 2012 3.72% GMC Terrain SUV 2012 2.67% Honda Accord Sedan 2012 2.58% Jeep Patriot SUV 2012 2.35% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Lincoln Town Car Sedan 2011 4.18% Rolls-Royce Phantom Sedan 2012 3.74% BMW 6 Series Convertible 2007 2.62% BMW ActiveHybrid 5 Sedan 2012 2.07% Chevrolet Impala Sedan 2007 1.88% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Audi S4 Sedan 2012 3.89% BMW M6 Convertible 2010 2.33% Ford F-150 Regular Cab 2012 2.07% Jeep Liberty SUV 2012 2.07% Ford F-150 Regular Cab 2007 2.01% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Acura TL Type-S 2008 2.68% Mercedes-Benz S-Class Sedan 2012 1.89% Chevrolet Corvette ZR1 2012 1.87% Aston Martin V8 Vantage Coupe 2012 1.86% Aston Martin Virage Convertible 2012 1.75% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Bentley Arnage Sedan 2009 1.54% Lamborghini Reventon Coupe 2008 1.25% Chrysler Aspen SUV 2009 1.14% Plymouth Neon Coupe 1999 1.14% Volvo 240 Sedan 1993 1.13% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Hyundai Azera Sedan 2012 1.83% Rolls-Royce Phantom Sedan 2012 1.61% Jeep Compass SUV 2012 1.51% Bentley Mulsanne Sedan 2011 1.36% Jaguar XK XKR 2012 1.33% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Acura TL Type-S 2008 3.92% Mercedes-Benz C-Class Sedan 2012 3.71% Suzuki Kizashi Sedan 2012 2.99% Nissan Leaf Hatchback 2012 2.74% Mercedes-Benz S-Class Sedan 2012 2.56% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Ferrari FF Coupe 2012 4.01% Dodge Caliber Wagon 2007 3.27% Ferrari 458 Italia Coupe 2012 2.93% Ferrari California Convertible 2012 1.8% Suzuki SX4 Hatchback 2012 1.8% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 Aston Martin Virage Coupe 2012 11.93% Lamborghini Aventador Coupe 2012 4.81% Ferrari California Convertible 2012 4.3% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.23% BMW 3 Series Wagon 2012 2.59% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 15.55% Audi S5 Convertible 2012 3.0% AM General Hummer SUV 2000 2.28% Jeep Patriot SUV 2012 1.72% Toyota Camry Sedan 2012 1.68% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chrysler 300 SRT-8 2010 4.52% Chevrolet Silverado 2500HD Regular Cab 2012 3.67% BMW M6 Convertible 2010 3.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.09% Audi S5 Coupe 2012 2.06% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Jeep Patriot SUV 2012 0.96% Chrysler 300 SRT-8 2010 0.93% BMW X5 SUV 2007 0.91% Dodge Caravan Minivan 1997 0.9% Dodge Durango SUV 2007 0.87% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Fisker Karma Sedan 2012 2.49% Aston Martin Virage Convertible 2012 2.02% Mercedes-Benz 300-Class Convertible 1993 1.93% Infiniti G Coupe IPL 2012 1.81% Chevrolet Camaro Convertible 2012 1.42% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Volkswagen Beetle Hatchback 2012 2.17% Mercedes-Benz S-Class Sedan 2012 2.03% Aston Martin V8 Vantage Convertible 2012 1.98% Buick Regal GS 2012 1.97% Porsche Panamera Sedan 2012 1.95% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Toyota 4Runner SUV 2012 2.48% Chevrolet Corvette ZR1 2012 2.37% Bentley Arnage Sedan 2009 1.65% Lamborghini Reventon Coupe 2008 1.64% Bentley Mulsanne Sedan 2011 1.58% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Chrysler PT Cruiser Convertible 2008 2.51% Mercedes-Benz S-Class Sedan 2012 2.22% Chrysler Sebring Convertible 2010 1.96% Dodge Caravan Minivan 1997 1.93% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.88% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Bentley Mulsanne Sedan 2011 1.98% Jeep Grand Cherokee SUV 2012 1.77% Chrysler 300 SRT-8 2010 1.63% Bentley Arnage Sedan 2009 1.45% BMW M6 Convertible 2010 1.33% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Mercedes-Benz Sprinter Van 2012 2.43% Honda Odyssey Minivan 2007 1.99% Dodge Caravan Minivan 1997 1.86% Chevrolet Express Cargo Van 2007 1.65% Daewoo Nubira Wagon 2002 1.53% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Rolls-Royce Ghost Sedan 2012 2.32% BMW ActiveHybrid 5 Sedan 2012 2.1% Lincoln Town Car Sedan 2011 2.08% Volvo 240 Sedan 1993 1.69% Plymouth Neon Coupe 1999 1.46% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 GMC Savana Van 2012 5.24% Ford Edge SUV 2012 3.76% Bugatti Veyron 16.4 Coupe 2009 3.28% Audi S6 Sedan 2011 2.67% Mercedes-Benz Sprinter Van 2012 2.65% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 3.58% Lincoln Town Car Sedan 2011 3.31% Dodge Caliber Wagon 2012 3.18% Daewoo Nubira Wagon 2002 3.09% Ram C/V Cargo Van Minivan 2012 2.72% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Rolls-Royce Phantom Sedan 2012 14.8% BMW ActiveHybrid 5 Sedan 2012 6.33% Lincoln Town Car Sedan 2011 4.17% Ford Freestar Minivan 2007 2.96% Aston Martin Virage Convertible 2012 2.3% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Jeep Grand Cherokee SUV 2012 2.47% Lamborghini Reventon Coupe 2008 1.81% Audi S5 Coupe 2012 1.65% Mercedes-Benz SL-Class Coupe 2009 1.61% Toyota 4Runner SUV 2012 1.44% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 3.53% Honda Odyssey Minivan 2007 2.38% Chrysler Sebring Convertible 2010 2.17% Chevrolet Impala Sedan 2007 2.0% Acura TL Sedan 2012 1.68% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Chrysler 300 SRT-8 2010 2.52% Jeep Grand Cherokee SUV 2012 2.33% Hyundai Genesis Sedan 2012 2.05% Chrysler Aspen SUV 2009 2.02% GMC Canyon Extended Cab 2012 1.95% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Dodge Magnum Wagon 2008 4.35% Dodge Charger SRT-8 2009 3.16% Lamborghini Aventador Coupe 2012 3.03% Dodge Caliber Wagon 2007 2.98% Volvo C30 Hatchback 2012 2.81% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 FIAT 500 Convertible 2012 4.25% Audi TT Hatchback 2011 2.87% Hyundai Veloster Hatchback 2012 2.39% Aston Martin V8 Vantage Convertible 2012 2.32% BMW 6 Series Convertible 2007 2.31% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Maybach Landaulet Convertible 2012 2.16% Rolls-Royce Ghost Sedan 2012 1.73% MINI Cooper Roadster Convertible 2012 1.59% BMW ActiveHybrid 5 Sedan 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.43% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Daewoo Nubira Wagon 2002 4.11% AM General Hummer SUV 2000 2.99% Toyota Sequoia SUV 2012 2.85% smart fortwo Convertible 2012 2.83% Hyundai Azera Sedan 2012 2.72% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Chrysler 300 SRT-8 2010 1.41% Buick Enclave SUV 2012 1.34% Toyota 4Runner SUV 2012 1.19% Cadillac CTS-V Sedan 2012 1.17% BMW 6 Series Convertible 2007 1.14% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Aston Martin Virage Coupe 2012 13.59% BMW M3 Coupe 2012 10.09% McLaren MP4-12C Coupe 2012 4.8% Hyundai Veloster Hatchback 2012 4.03% BMW 1 Series Coupe 2012 3.36% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Diablo Coupe 2001 11.04% AM General Hummer SUV 2000 2.76% Audi RS 4 Convertible 2008 2.65% Bugatti Veyron 16.4 Coupe 2009 1.72% Jeep Patriot SUV 2012 1.67% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.4% Chrysler Sebring Convertible 2010 2.0% Chrysler PT Cruiser Convertible 2008 1.44% Nissan Leaf Hatchback 2012 1.42% Mercedes-Benz Sprinter Van 2012 1.42% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 BMW X6 SUV 2012 4.23% Ferrari 458 Italia Coupe 2012 2.81% Volkswagen Golf Hatchback 1991 1.98% Ferrari California Convertible 2012 1.81% Volvo 240 Sedan 1993 1.77% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 7.58% Rolls-Royce Phantom Sedan 2012 3.86% Chevrolet Impala Sedan 2007 2.95% Chevrolet Sonic Sedan 2012 2.93% BMW 1 Series Convertible 2012 2.68% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Dodge Magnum Wagon 2008 6.51% Lamborghini Aventador Coupe 2012 5.52% Dodge Caliber Wagon 2007 4.76% Ferrari 458 Italia Convertible 2012 4.66% Dodge Charger SRT-8 2009 4.58% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Lamborghini Gallardo LP 570-4 Superleggera 2012 10.73% Porsche Panamera Sedan 2012 4.0% Audi S5 Convertible 2012 3.69% Chevrolet Corvette Convertible 2012 2.12% Mercedes-Benz SL-Class Coupe 2009 1.85% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Ferrari California Convertible 2012 6.56% Eagle Talon Hatchback 1998 5.12% Honda Accord Coupe 2012 4.49% Ferrari 458 Italia Convertible 2012 4.08% BMW 3 Series Sedan 2012 3.87% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Fisker Karma Sedan 2012 3.72% Volvo 240 Sedan 1993 3.02% BMW X6 SUV 2012 2.81% Dodge Ram Pickup 3500 Crew Cab 2010 2.33% Dodge Challenger SRT8 2011 2.2% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Lincoln Town Car Sedan 2011 4.54% Ford Freestar Minivan 2007 3.78% BMW ActiveHybrid 5 Sedan 2012 2.91% Dodge Durango SUV 2007 2.86% Rolls-Royce Phantom Sedan 2012 2.31% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.52% Chrysler Sebring Convertible 2010 3.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.68% Chrysler PT Cruiser Convertible 2008 1.84% Acura TL Sedan 2012 1.77% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Porsche Panamera Sedan 2012 1.71% Audi S6 Sedan 2011 1.59% Honda Accord Sedan 2012 1.5% Nissan 240SX Coupe 1998 1.44% Toyota 4Runner SUV 2012 1.33% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 3.49% Bugatti Veyron 16.4 Coupe 2009 3.41% Ford Edge SUV 2012 3.32% BMW M6 Convertible 2010 2.75% Rolls-Royce Phantom Sedan 2012 2.16% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Chrysler 300 SRT-8 2010 2.27% Chevrolet Silverado 2500HD Regular Cab 2012 1.98% Chevrolet TrailBlazer SS 2009 1.9% Chevrolet Silverado 1500 Extended Cab 2012 1.85% Dodge Ram Pickup 3500 Quad Cab 2009 1.78% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 2.32% Buick Regal GS 2012 1.65% Acura TL Sedan 2012 1.36% Dodge Sprinter Cargo Van 2009 1.34% Toyota Camry Sedan 2012 1.32% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 3.32% Chevrolet Corvette ZR1 2012 2.75% Mercedes-Benz C-Class Sedan 2012 2.66% Audi TTS Coupe 2012 2.64% BMW ActiveHybrid 5 Sedan 2012 2.28% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Audi S6 Sedan 2011 3.58% Toyota 4Runner SUV 2012 2.38% Audi A5 Coupe 2012 2.23% Mercedes-Benz Sprinter Van 2012 2.01% Audi V8 Sedan 1994 1.97% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 5.58% Chevrolet Express Van 2007 3.73% Chevrolet Express Cargo Van 2007 1.73% Toyota Sequoia SUV 2012 1.58% Plymouth Neon Coupe 1999 1.34% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Mercedes-Benz S-Class Sedan 2012 4.81% Chrysler PT Cruiser Convertible 2008 3.31% Acura ZDX Hatchback 2012 1.8% Acura TL Type-S 2008 1.72% Audi TT Hatchback 2011 1.68% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Bentley Mulsanne Sedan 2011 4.74% Jeep Compass SUV 2012 3.43% Cadillac SRX SUV 2012 2.06% Bentley Arnage Sedan 2009 2.0% Buick Regal GS 2012 1.97% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 7.81% Ferrari California Convertible 2012 5.99% Aston Martin Virage Coupe 2012 4.87% McLaren MP4-12C Coupe 2012 4.52% Lamborghini Aventador Coupe 2012 4.43% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 6.03% Toyota Camry Sedan 2012 4.36% Ford Mustang Convertible 2007 2.95% Chevrolet Express Van 2007 2.82% Honda Accord Sedan 2012 2.68% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 AM General Hummer SUV 2000 3.92% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.73% Ford GT Coupe 2006 2.3% Lamborghini Diablo Coupe 2001 1.87% Chevrolet Camaro Convertible 2012 1.69% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Lamborghini Aventador Coupe 2012 8.07% Dodge Charger SRT-8 2009 6.79% BMW 1 Series Coupe 2012 5.09% Dodge Magnum Wagon 2008 5.03% Chevrolet Camaro Convertible 2012 3.79% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 3.77% BMW 3 Series Sedan 2012 3.2% Hyundai Elantra Sedan 2007 2.55% Ferrari 458 Italia Coupe 2012 2.37% Toyota Corolla Sedan 2012 2.36% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 BMW 6 Series Convertible 2007 2.77% Dodge Caravan Minivan 1997 2.39% Acura TSX Sedan 2012 2.25% BMW ActiveHybrid 5 Sedan 2012 2.18% Jaguar XK XKR 2012 2.06% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 2.81% BMW ActiveHybrid 5 Sedan 2012 1.47% Suzuki Aerio Sedan 2007 1.45% Acura TL Type-S 2008 1.38% smart fortwo Convertible 2012 1.33% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2012 1.23% Chevrolet Malibu Sedan 2007 1.22% Land Rover Range Rover SUV 2012 1.2% BMW X5 SUV 2007 1.17% GMC Acadia SUV 2012 1.16% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 13.56% Ferrari 458 Italia Convertible 2012 8.44% Aston Martin Virage Coupe 2012 6.96% Ferrari 458 Italia Coupe 2012 5.81% Dodge Magnum Wagon 2008 4.44% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.11% Chrysler 300 SRT-8 2010 1.56% Audi S5 Coupe 2012 1.36% Chevrolet Silverado 1500 Extended Cab 2012 1.28% Scion xD Hatchback 2012 1.23% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Chevrolet Express Cargo Van 2007 3.51% GMC Savana Van 2012 2.38% Chevrolet Express Van 2007 2.27% Dodge Caravan Minivan 1997 2.1% Chevrolet Silverado 2500HD Regular Cab 2012 1.79% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Audi S5 Coupe 2012 3.04% Mazda Tribute SUV 2011 2.75% Bentley Mulsanne Sedan 2011 2.62% Toyota Sequoia SUV 2012 2.53% Hyundai Santa Fe SUV 2012 2.46% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford F-150 Regular Cab 2007 8.99% GMC Terrain SUV 2012 2.24% Chevrolet Silverado 1500 Regular Cab 2012 2.01% Chevrolet Silverado 1500 Extended Cab 2012 1.99% Dodge Durango SUV 2012 1.85% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Ram C/V Cargo Van Minivan 2012 2.23% Chrysler Sebring Convertible 2010 2.14% Buick Rainier SUV 2007 1.69% Honda Accord Sedan 2012 1.58% Ford E-Series Wagon Van 2012 1.45% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Chrysler 300 SRT-8 2010 1.67% Chevrolet Corvette ZR1 2012 1.6% Porsche Panamera Sedan 2012 1.46% Tesla Model S Sedan 2012 1.13% Audi S5 Coupe 2012 0.97% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Ferrari 458 Italia Convertible 2012 4.56% Spyker C8 Coupe 2009 3.18% Ferrari 458 Italia Coupe 2012 2.91% Dodge Caliber Wagon 2007 2.43% Mitsubishi Lancer Sedan 2012 2.04% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Spyker C8 Convertible 2009 1.57% Chevrolet Silverado 2500HD Regular Cab 2012 1.49% Infiniti G Coupe IPL 2012 1.49% Chrysler 300 SRT-8 2010 1.45% BMW 6 Series Convertible 2007 1.42% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Ferrari 458 Italia Coupe 2012 5.03% Chevrolet Cobalt SS 2010 3.74% Geo Metro Convertible 1993 2.99% BMW 3 Series Sedan 2012 2.74% Chrysler Sebring Convertible 2010 2.62% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Corvette ZR1 2012 1.64% Rolls-Royce Ghost Sedan 2012 1.57% Bentley Mulsanne Sedan 2011 1.41% Land Rover Range Rover SUV 2012 1.34% Toyota 4Runner SUV 2012 1.33% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Daewoo Nubira Wagon 2002 3.71% GMC Savana Van 2012 2.27% Eagle Talon Hatchback 1998 2.05% Chrysler 300 SRT-8 2010 1.65% Ford Expedition EL SUV 2009 1.55% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Dodge Sprinter Cargo Van 2009 3.88% Mercedes-Benz Sprinter Van 2012 3.3% Chevrolet Express Van 2007 2.97% Ford Mustang Convertible 2007 2.61% Chevrolet Express Cargo Van 2007 2.22% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Ram C/V Cargo Van Minivan 2012 2.86% Chrysler Sebring Convertible 2010 1.73% Dodge Caravan Minivan 1997 1.68% Chrysler PT Cruiser Convertible 2008 1.64% Mercedes-Benz S-Class Sedan 2012 1.57% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 2500HD Regular Cab 2012 3.31% Chrysler 300 SRT-8 2010 2.68% Infiniti G Coupe IPL 2012 2.19% Spyker C8 Convertible 2009 2.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.07% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Rolls-Royce Phantom Sedan 2012 4.01% Chevrolet Impala Sedan 2007 2.5% BMW ActiveHybrid 5 Sedan 2012 2.35% Dodge Caravan Minivan 1997 2.24% Ram C/V Cargo Van Minivan 2012 2.11% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Dodge Caliber Wagon 2007 3.85% Buick Enclave SUV 2012 3.78% BMW X6 SUV 2012 2.93% Ford GT Coupe 2006 2.9% Buick Rainier SUV 2007 2.9% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Cobalt SS 2010 2.77% Ferrari 458 Italia Coupe 2012 2.27% Hyundai Veloster Hatchback 2012 2.03% GMC Savana Van 2012 1.88% BMW 3 Series Sedan 2012 1.83% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Dodge Sprinter Cargo Van 2009 6.49% GMC Savana Van 2012 6.36% Chevrolet Express Cargo Van 2007 6.23% Mercedes-Benz Sprinter Van 2012 3.79% Ford E-Series Wagon Van 2012 3.17% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.68% Mercedes-Benz Sprinter Van 2012 2.24% Chrysler Sebring Convertible 2010 2.15% Dodge Sprinter Cargo Van 2009 2.02% Chevrolet Express Cargo Van 2007 1.85% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Volkswagen Golf Hatchback 1991 6.19% BMW X6 SUV 2012 3.66% Chrysler Sebring Convertible 2010 2.99% Volkswagen Beetle Hatchback 2012 2.88% Chevrolet Corvette Convertible 2012 2.71% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Acura ZDX Hatchback 2012 1.62% Rolls-Royce Phantom Sedan 2012 1.4% Hyundai Azera Sedan 2012 1.39% Chevrolet Corvette ZR1 2012 1.35% Bentley Arnage Sedan 2009 1.24% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Chevrolet Silverado 1500 Extended Cab 2012 2.6% Aston Martin Virage Coupe 2012 2.45% Chevrolet Silverado 1500 Regular Cab 2012 1.88% Chevrolet Silverado 2500HD Regular Cab 2012 1.81% Chevrolet Corvette ZR1 2012 1.76% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Ferrari FF Coupe 2012 3.0% Audi S5 Coupe 2012 1.93% Bugatti Veyron 16.4 Coupe 2009 1.89% Honda Accord Coupe 2012 1.64% Jeep Compass SUV 2012 1.6% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 BMW 3 Series Sedan 2012 5.73% Ford GT Coupe 2006 4.95% Ferrari California Convertible 2012 3.74% Chevrolet Traverse SUV 2012 3.41% Hyundai Sonata Sedan 2012 2.88% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Buick Verano Sedan 2012 3.06% Hyundai Veloster Hatchback 2012 2.01% BMW 1 Series Coupe 2012 1.79% Chrysler PT Cruiser Convertible 2008 1.49% Jeep Grand Cherokee SUV 2012 1.48% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 5.99% Chevrolet Cobalt SS 2010 4.64% Dodge Magnum Wagon 2008 4.49% Ferrari 458 Italia Coupe 2012 2.82% Chevrolet Silverado 1500 Regular Cab 2012 2.8% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Audi S6 Sedan 2011 1.91% Toyota 4Runner SUV 2012 1.84% Audi S5 Coupe 2012 1.45% Chevrolet Corvette ZR1 2012 1.41% Audi A5 Coupe 2012 1.29% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Hyundai Genesis Sedan 2012 1.61% Bugatti Veyron 16.4 Coupe 2009 1.29% Jeep Patriot SUV 2012 1.24% Mercedes-Benz SL-Class Coupe 2009 1.14% Bentley Continental Flying Spur Sedan 2007 1.1% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 2.36% Chevrolet Silverado 1500 Extended Cab 2012 2.04% BMW X5 SUV 2007 1.76% Dodge Ram Pickup 3500 Quad Cab 2009 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.65% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Ferrari 458 Italia Coupe 2012 3.76% Lamborghini Aventador Coupe 2012 3.16% Dodge Charger SRT-8 2009 2.93% Ferrari California Convertible 2012 2.85% Ferrari 458 Italia Convertible 2012 2.57% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 2.71% Audi 100 Sedan 1994 1.61% Chrysler 300 SRT-8 2010 1.47% Jeep Grand Cherokee SUV 2012 1.29% Chevrolet TrailBlazer SS 2009 1.26% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Dodge Caravan Minivan 1997 1.38% Jeep Patriot SUV 2012 1.2% Ford E-Series Wagon Van 2012 1.09% Lamborghini Reventon Coupe 2008 1.09% Hyundai Santa Fe SUV 2012 1.07% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Audi S4 Sedan 2012 2.91% Jeep Liberty SUV 2012 2.85% Ford F-150 Regular Cab 2012 2.06% GMC Acadia SUV 2012 1.91% Rolls-Royce Phantom Sedan 2012 1.84% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.09% BMW ActiveHybrid 5 Sedan 2012 2.81% Tesla Model S Sedan 2012 2.73% Hyundai Elantra Touring Hatchback 2012 2.08% GMC Savana Van 2012 2.01% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Dodge Sprinter Cargo Van 2009 5.72% Mercedes-Benz Sprinter Van 2012 3.24% Ford E-Series Wagon Van 2012 2.39% Ram C/V Cargo Van Minivan 2012 1.81% Hyundai Azera Sedan 2012 1.61% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Chrysler Aspen SUV 2009 3.45% Chrysler 300 SRT-8 2010 3.19% Scion xD Hatchback 2012 2.02% Honda Accord Sedan 2012 1.42% Land Rover Range Rover SUV 2012 1.32% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Audi 100 Sedan 1994 1.85% GMC Terrain SUV 2012 1.77% Ford E-Series Wagon Van 2012 1.74% Bentley Arnage Sedan 2009 1.73% Chevrolet Silverado 2500HD Regular Cab 2012 1.72% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 Nissan Leaf Hatchback 2012 1.72% Mercedes-Benz Sprinter Van 2012 1.51% Ford E-Series Wagon Van 2012 1.3% Dodge Caravan Minivan 1997 1.27% Chrysler Sebring Convertible 2010 1.26% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 8.15% Spyker C8 Coupe 2009 7.79% Dodge Caliber Wagon 2007 5.81% Aston Martin Virage Coupe 2012 4.44% Ferrari 458 Italia Coupe 2012 4.35% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Dodge Sprinter Cargo Van 2009 3.62% Nissan 240SX Coupe 1998 2.18% Acura TL Type-S 2008 1.94% Chrysler Sebring Convertible 2010 1.93% Buick Rainier SUV 2007 1.88% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Dodge Caravan Minivan 1997 2.68% Volkswagen Golf Hatchback 2012 2.04% Chevrolet Traverse SUV 2012 1.96% Audi 100 Wagon 1994 1.84% Audi 100 Sedan 1994 1.83% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Jeep Grand Cherokee SUV 2012 1.99% Chrysler 300 SRT-8 2010 1.87% Bentley Mulsanne Sedan 2011 1.61% Chrysler Aspen SUV 2009 1.35% Dodge Durango SUV 2007 1.32% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Chrysler 300 SRT-8 2010 5.03% Dodge Durango SUV 2012 2.37% Hyundai Veracruz SUV 2012 1.81% Audi RS 4 Convertible 2008 1.68% BMW 6 Series Convertible 2007 1.56% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Geo Metro Convertible 1993 1.91% Ford GT Coupe 2006 1.85% Ferrari California Convertible 2012 1.69% BMW 3 Series Sedan 2012 1.63% Daewoo Nubira Wagon 2002 1.59% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 GMC Savana Van 2012 4.0% GMC Yukon Hybrid SUV 2012 2.95% Buick Enclave SUV 2012 2.67% Ford Mustang Convertible 2007 2.43% Cadillac Escalade EXT Crew Cab 2007 2.42% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Rolls-Royce Phantom Sedan 2012 5.07% BMW ActiveHybrid 5 Sedan 2012 3.67% Lincoln Town Car Sedan 2011 3.59% Porsche Panamera Sedan 2012 2.22% Honda Odyssey Minivan 2007 2.09% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi A5 Coupe 2012 1.67% Ferrari FF Coupe 2012 1.6% BMW ActiveHybrid 5 Sedan 2012 1.59% Audi S5 Coupe 2012 1.33% Mercedes-Benz Sprinter Van 2012 1.3% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 2.37% GMC Canyon Extended Cab 2012 1.84% Nissan Juke Hatchback 2012 1.37% Dodge Caliber Wagon 2012 1.34% HUMMER H2 SUT Crew Cab 2009 1.32% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 BMW 6 Series Convertible 2007 2.12% Chrysler PT Cruiser Convertible 2008 1.54% Mercedes-Benz S-Class Sedan 2012 1.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.53% Acura TL Sedan 2012 1.52% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Hyundai Azera Sedan 2012 1.5% Aston Martin Virage Coupe 2012 1.48% AM General Hummer SUV 2000 1.42% McLaren MP4-12C Coupe 2012 1.22% Acura Integra Type R 2001 1.11% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Ram C/V Cargo Van Minivan 2012 2.46% Chrysler Sebring Convertible 2010 2.19% Nissan 240SX Coupe 1998 1.37% Nissan Leaf Hatchback 2012 1.34% Ford E-Series Wagon Van 2012 1.23% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 10.95% Dodge Sprinter Cargo Van 2009 5.04% Chevrolet Express Van 2007 3.91% Chevrolet Express Cargo Van 2007 3.53% Mercedes-Benz Sprinter Van 2012 3.28% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Nissan Leaf Hatchback 2012 2.28% Mercedes-Benz S-Class Sedan 2012 2.07% Dodge Sprinter Cargo Van 2009 2.04% MINI Cooper Roadster Convertible 2012 1.87% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 BMW 3 Series Wagon 2012 8.01% Chevrolet Corvette ZR1 2012 4.11% Honda Odyssey Minivan 2012 3.17% Cadillac CTS-V Sedan 2012 2.59% Jaguar XK XKR 2012 2.24% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Chevrolet TrailBlazer SS 2009 2.39% Bentley Arnage Sedan 2009 2.0% Audi S6 Sedan 2011 1.97% Cadillac Escalade EXT Crew Cab 2007 1.66% Ford F-150 Regular Cab 2007 1.64% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 BMW 1 Series Coupe 2012 3.0% Nissan Juke Hatchback 2012 2.79% FIAT 500 Abarth 2012 2.19% Dodge Journey SUV 2012 1.71% Chevrolet Corvette ZR1 2012 1.64% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Lincoln Town Car Sedan 2011 33.22% Volkswagen Beetle Hatchback 2012 10.16% Ram C/V Cargo Van Minivan 2012 7.58% BMW ActiveHybrid 5 Sedan 2012 6.21% Suzuki Aerio Sedan 2007 3.51% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 BMW M6 Convertible 2010 1.99% Lamborghini Reventon Coupe 2008 1.77% Bentley Arnage Sedan 2009 1.75% Chevrolet Corvette ZR1 2012 1.66% Acura ZDX Hatchback 2012 1.54% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Acura TL Type-S 2008 1.88% Jaguar XK XKR 2012 1.68% Chrysler Sebring Convertible 2010 1.66% Audi 100 Sedan 1994 1.62% Lincoln Town Car Sedan 2011 1.55% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Lincoln Town Car Sedan 2011 17.17% Volkswagen Beetle Hatchback 2012 11.83% Daewoo Nubira Wagon 2002 5.88% Ram C/V Cargo Van Minivan 2012 3.84% Mercedes-Benz S-Class Sedan 2012 2.61% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Chevrolet Cobalt SS 2010 17.28% Dodge Charger SRT-8 2009 6.81% Dodge Caliber Wagon 2007 3.83% BMW 1 Series Coupe 2012 3.72% Lamborghini Aventador Coupe 2012 2.98% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Bugatti Veyron 16.4 Coupe 2009 2.96% Rolls-Royce Ghost Sedan 2012 1.97% GMC Yukon Hybrid SUV 2012 1.81% Ferrari FF Coupe 2012 1.43% Jeep Compass SUV 2012 1.41% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Audi S6 Sedan 2011 1.61% Bugatti Veyron 16.4 Coupe 2009 1.59% Chevrolet Express Cargo Van 2007 1.56% Rolls-Royce Ghost Sedan 2012 1.46% Ford E-Series Wagon Van 2012 1.32% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Convertible 2012 17.38% GMC Savana Van 2012 6.29% Ferrari FF Coupe 2012 3.53% Hyundai Elantra Sedan 2007 2.87% Honda Accord Coupe 2012 2.61% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 HUMMER H2 SUT Crew Cab 2009 1.82% Chevrolet TrailBlazer SS 2009 1.27% Audi S6 Sedan 2011 1.24% Bentley Arnage Sedan 2009 1.1% Chevrolet Silverado 1500 Extended Cab 2012 1.1% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Ram C/V Cargo Van Minivan 2012 1.76% Rolls-Royce Phantom Sedan 2012 1.68% Chevrolet Monte Carlo Coupe 2007 1.67% MINI Cooper Roadster Convertible 2012 1.67% Dodge Caravan Minivan 1997 1.49% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 BMW ActiveHybrid 5 Sedan 2012 2.81% Ram C/V Cargo Van Minivan 2012 2.06% Buick Regal GS 2012 1.86% GMC Savana Van 2012 1.63% BMW 1 Series Convertible 2012 1.4% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Chevrolet Monte Carlo Coupe 2007 2.53% Ford GT Coupe 2006 1.62% Eagle Talon Hatchback 1998 1.54% Plymouth Neon Coupe 1999 1.5% Audi V8 Sedan 1994 1.47% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chrysler 300 SRT-8 2010 4.08% Jeep Grand Cherokee SUV 2012 3.24% BMW X5 SUV 2007 2.8% Dodge Ram Pickup 3500 Crew Cab 2010 2.22% Chevrolet Silverado 2500HD Regular Cab 2012 1.84% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 5.63% Audi TT Hatchback 2011 3.35% Dodge Caravan Minivan 1997 2.81% Hyundai Veloster Hatchback 2012 2.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.23% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 BMW 6 Series Convertible 2007 1.98% Volkswagen Golf Hatchback 2012 1.87% Lincoln Town Car Sedan 2011 1.83% Chevrolet Malibu Sedan 2007 1.64% Tesla Model S Sedan 2012 1.35% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.61% Chrysler Aspen SUV 2009 1.46% Chevrolet Malibu Sedan 2007 1.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.26% Jeep Patriot SUV 2012 1.24% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 MINI Cooper Roadster Convertible 2012 1.97% Audi S4 Sedan 2007 1.87% Daewoo Nubira Wagon 2002 1.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.64% Audi TT Hatchback 2011 1.63% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Jeep Compass SUV 2012 1.66% Dodge Durango SUV 2007 1.46% Infiniti G Coupe IPL 2012 1.37% Chrysler Aspen SUV 2009 1.35% Chrysler Sebring Convertible 2010 1.32% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Dodge Sprinter Cargo Van 2009 11.41% Mercedes-Benz Sprinter Van 2012 3.78% Nissan NV Passenger Van 2012 2.95% Ford E-Series Wagon Van 2012 2.8% Audi TT Hatchback 2011 2.37% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 BMW M6 Convertible 2010 1.86% Lamborghini Reventon Coupe 2008 1.73% Acura ZDX Hatchback 2012 1.73% Chevrolet Corvette ZR1 2012 1.56% Hyundai Azera Sedan 2012 1.56% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 GMC Yukon Hybrid SUV 2012 1.41% Jeep Grand Cherokee SUV 2012 1.31% GMC Savana Van 2012 1.22% Bentley Arnage Sedan 2009 1.18% Toyota Sequoia SUV 2012 1.13% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Buick Rainier SUV 2007 2.65% Hyundai Elantra Touring Hatchback 2012 2.54% Nissan Leaf Hatchback 2012 2.32% Nissan 240SX Coupe 1998 2.2% Dodge Sprinter Cargo Van 2009 2.08% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 3.94% Chrysler Sebring Convertible 2010 3.34% Honda Accord Sedan 2012 1.82% Buick Regal GS 2012 1.74% Ram C/V Cargo Van Minivan 2012 1.71% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 2.95% Lincoln Town Car Sedan 2011 2.71% Rolls-Royce Phantom Sedan 2012 2.5% Chevrolet Impala Sedan 2007 2.46% Ram C/V Cargo Van Minivan 2012 2.38% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Ford F-150 Regular Cab 2007 2.23% Daewoo Nubira Wagon 2002 2.12% Maybach Landaulet Convertible 2012 2.04% Dodge Caravan Minivan 1997 1.92% Hyundai Genesis Sedan 2012 1.75% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Lamborghini Diablo Coupe 2001 6.98% AM General Hummer SUV 2000 4.75% Acura Integra Type R 2001 1.91% Jeep Patriot SUV 2012 1.54% Dodge Charger SRT-8 2009 1.41% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 HUMMER H2 SUT Crew Cab 2009 9.9% Aston Martin Virage Coupe 2012 8.54% Jeep Wrangler SUV 2012 6.34% Dodge Charger SRT-8 2009 5.08% AM General Hummer SUV 2000 4.72% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 GMC Savana Van 2012 1.81% AM General Hummer SUV 2000 1.62% Ford F-150 Regular Cab 2012 1.58% Cadillac Escalade EXT Crew Cab 2007 1.56% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.55% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chrysler 300 SRT-8 2010 2.42% BMW ActiveHybrid 5 Sedan 2012 1.86% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.72% Chevrolet Silverado 2500HD Regular Cab 2012 1.51% BMW M6 Convertible 2010 1.43% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 McLaren MP4-12C Coupe 2012 15.16% Lamborghini Aventador Coupe 2012 9.92% Aston Martin Virage Coupe 2012 7.26% Ferrari 458 Italia Convertible 2012 6.94% Dodge Charger SRT-8 2009 4.76% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 3.28% Tesla Model S Sedan 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.66% Ferrari FF Coupe 2012 1.5% BMW 1 Series Convertible 2012 1.46% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Buick Regal GS 2012 3.99% Mercedes-Benz S-Class Sedan 2012 3.58% Volkswagen Golf Hatchback 2012 3.02% Lincoln Town Car Sedan 2011 2.91% Dodge Caravan Minivan 1997 2.9% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Audi S5 Coupe 2012 4.66% Chrysler 300 SRT-8 2010 3.89% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.88% Fisker Karma Sedan 2012 2.3% Chevrolet Silverado 2500HD Regular Cab 2012 2.08% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Ferrari 458 Italia Coupe 2012 3.47% Hyundai Elantra Sedan 2007 3.29% BMW 3 Series Sedan 2012 3.15% Dodge Caliber Wagon 2007 3.03% Ferrari California Convertible 2012 2.98% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Plymouth Neon Coupe 1999 2.76% Scion xD Hatchback 2012 2.07% Eagle Talon Hatchback 1998 1.97% Volvo 240 Sedan 1993 1.71% Chevrolet Monte Carlo Coupe 2007 1.69% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 14.27% AM General Hummer SUV 2000 7.25% Acura Integra Type R 2001 2.99% Ferrari California Convertible 2012 1.82% Jeep Patriot SUV 2012 1.79% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 2.8% Audi TT RS Coupe 2012 2.15% BMW 3 Series Sedan 2012 2.08% Chevrolet HHR SS 2010 2.05% Ferrari California Convertible 2012 1.73% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Ford Ranger SuperCab 2011 1.67% Dodge Durango SUV 2012 1.55% GMC Savana Van 2012 1.45% Acura TL Sedan 2012 1.45% Jeep Grand Cherokee SUV 2012 1.42% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Ferrari 458 Italia Coupe 2012 4.27% Ferrari FF Coupe 2012 4.03% BMW 3 Series Sedan 2012 3.18% Plymouth Neon Coupe 1999 2.93% Ferrari 458 Italia Convertible 2012 2.7% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Audi A5 Coupe 2012 1.23% Chrysler 300 SRT-8 2010 1.2% Audi S5 Coupe 2012 1.17% Acura TL Sedan 2012 1.16% Audi S6 Sedan 2011 1.07% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Jeep Compass SUV 2012 2.59% Bugatti Veyron 16.4 Coupe 2009 2.26% Volkswagen Golf Hatchback 1991 2.1% BMW X5 SUV 2007 2.07% Audi 100 Wagon 1994 1.9% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 Ferrari 458 Italia Convertible 2012 5.54% BMW 3 Series Sedan 2012 5.48% Ferrari 458 Italia Coupe 2012 4.79% Dodge Caliber Wagon 2007 4.05% Lamborghini Aventador Coupe 2012 3.57% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Chrysler Aspen SUV 2009 1.78% Cadillac SRX SUV 2012 1.78% Dodge Dakota Crew Cab 2010 1.71% Hyundai Genesis Sedan 2012 1.64% Bentley Mulsanne Sedan 2011 1.62% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Bentley Mulsanne Sedan 2011 2.32% Bentley Arnage Sedan 2009 1.85% Dodge Ram Pickup 3500 Crew Cab 2010 1.81% Jeep Patriot SUV 2012 1.77% Hyundai Genesis Sedan 2012 1.7% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 McLaren MP4-12C Coupe 2012 5.67% Lamborghini Aventador Coupe 2012 4.54% BMW M3 Coupe 2012 4.06% Aston Martin V8 Vantage Coupe 2012 3.77% Ferrari 458 Italia Coupe 2012 3.61% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Dodge Challenger SRT8 2011 7.76% Volvo C30 Hatchback 2012 4.67% Ferrari California Convertible 2012 4.04% Bugatti Veyron 16.4 Coupe 2009 3.5% Jeep Grand Cherokee SUV 2012 3.45% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Chevrolet Cobalt SS 2010 7.51% Chevrolet Silverado 1500 Regular Cab 2012 3.55% Chevrolet Silverado 1500 Extended Cab 2012 3.16% GMC Canyon Extended Cab 2012 3.12% Dodge Charger SRT-8 2009 2.89% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Dodge Sprinter Cargo Van 2009 2.87% GMC Savana Van 2012 2.45% Tesla Model S Sedan 2012 2.13% Lincoln Town Car Sedan 2011 1.85% Audi A5 Coupe 2012 1.68% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 Dodge Sprinter Cargo Van 2009 5.56% GMC Savana Van 2012 2.71% Chevrolet Express Cargo Van 2007 2.51% Nissan NV Passenger Van 2012 2.09% Mercedes-Benz Sprinter Van 2012 2.03% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Audi 100 Sedan 1994 1.99% Dodge Caravan Minivan 1997 1.81% Jeep Compass SUV 2012 1.8% Volvo 240 Sedan 1993 1.75% GMC Acadia SUV 2012 1.57% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Dodge Sprinter Cargo Van 2009 15.21% Chevrolet Express Cargo Van 2007 6.19% GMC Savana Van 2012 5.75% Mercedes-Benz Sprinter Van 2012 4.2% Isuzu Ascender SUV 2008 2.54% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Volvo 240 Sedan 1993 4.38% Chrysler 300 SRT-8 2010 3.44% Bugatti Veyron 16.4 Coupe 2009 2.79% Fisker Karma Sedan 2012 2.48% Jeep Compass SUV 2012 2.09% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 GMC Yukon Hybrid SUV 2012 1.81% Volvo 240 Sedan 1993 1.61% Chevrolet Corvette ZR1 2012 1.59% Bentley Mulsanne Sedan 2011 1.33% Chevrolet TrailBlazer SS 2009 1.24% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Toyota Sequoia SUV 2012 4.49% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.79% Lamborghini Diablo Coupe 2001 2.66% Hyundai Azera Sedan 2012 2.6% Jeep Patriot SUV 2012 2.46% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Hyundai Azera Sedan 2012 1.32% Bentley Arnage Sedan 2009 1.28% Hyundai Tucson SUV 2012 1.24% Lamborghini Reventon Coupe 2008 1.08% Spyker C8 Convertible 2009 1.06% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Lincoln Town Car Sedan 2011 1.24% BMW 6 Series Convertible 2007 1.19% GMC Yukon Hybrid SUV 2012 1.04% Bugatti Veyron 16.4 Coupe 2009 0.95% Aston Martin V8 Vantage Convertible 2012 0.93% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Infiniti G Coupe IPL 2012 12.66% Chevrolet Camaro Convertible 2012 3.57% Audi S6 Sedan 2011 3.14% Ford Mustang Convertible 2007 2.71% Chevrolet Traverse SUV 2012 2.43% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Audi RS 4 Convertible 2008 1.91% Chrysler 300 SRT-8 2010 1.84% BMW X3 SUV 2012 1.75% Audi S6 Sedan 2011 1.61% Chevrolet Silverado 1500 Extended Cab 2012 1.56% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Coupe 2012 3.83% Ferrari California Convertible 2012 2.89% Ferrari 458 Italia Convertible 2012 2.26% Audi TT RS Coupe 2012 2.1% Aston Martin Virage Coupe 2012 1.94% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 11.53% Chevrolet Cobalt SS 2010 3.67% Ferrari 458 Italia Coupe 2012 3.1% Dodge Caliber Wagon 2007 3.02% Ferrari 458 Italia Convertible 2012 2.87% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Bentley Mulsanne Sedan 2011 1.27% Chrysler 300 SRT-8 2010 1.16% Audi S6 Sedan 2011 1.09% Bentley Arnage Sedan 2009 0.99% Dodge Durango SUV 2007 0.9% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Ferrari FF Coupe 2012 9.23% Audi A5 Coupe 2012 6.28% Dodge Caliber Wagon 2007 5.18% Honda Accord Coupe 2012 4.11% Ford GT Coupe 2006 4.03% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Dodge Durango SUV 2007 2.3% Bugatti Veyron 16.4 Coupe 2009 2.19% Ford E-Series Wagon Van 2012 2.0% Rolls-Royce Phantom Sedan 2012 1.89% Isuzu Ascender SUV 2008 1.86% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Rolls-Royce Phantom Sedan 2012 3.87% Aston Martin Virage Convertible 2012 2.61% Rolls-Royce Ghost Sedan 2012 1.91% Maybach Landaulet Convertible 2012 1.73% BMW ActiveHybrid 5 Sedan 2012 1.5% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 3.98% Buick Verano Sedan 2012 3.67% Buick Rainier SUV 2007 3.61% Jeep Compass SUV 2012 3.24% Hyundai Accent Sedan 2012 3.07% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Porsche Panamera Sedan 2012 1.52% Mercedes-Benz S-Class Sedan 2012 1.19% Audi R8 Coupe 2012 1.17% Bentley Mulsanne Sedan 2011 1.12% Lincoln Town Car Sedan 2011 1.12% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Chrysler 300 SRT-8 2010 2.1% Bugatti Veyron 16.4 Coupe 2009 2.05% Cadillac Escalade EXT Crew Cab 2007 1.39% Dodge Challenger SRT8 2011 1.35% Lamborghini Reventon Coupe 2008 1.33% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Chrysler Aspen SUV 2009 1.96% Jeep Liberty SUV 2012 1.51% Jeep Patriot SUV 2012 1.35% Plymouth Neon Coupe 1999 1.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.22% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Ford GT Coupe 2006 7.43% Chevrolet Traverse SUV 2012 4.51% Audi 100 Sedan 1994 3.67% GMC Acadia SUV 2012 3.12% Jeep Patriot SUV 2012 3.05% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 14.99% AM General Hummer SUV 2000 3.5% Chevrolet Corvette ZR1 2012 3.28% Chevrolet Corvette Convertible 2012 2.71% Aston Martin Virage Coupe 2012 2.65% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 FIAT 500 Abarth 2012 1.9% Audi RS 4 Convertible 2008 1.8% Daewoo Nubira Wagon 2002 1.47% Bentley Continental Flying Spur Sedan 2007 1.42% Hyundai Azera Sedan 2012 1.41% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Mercedes-Benz 300-Class Convertible 1993 2.32% Nissan 240SX Coupe 1998 2.13% BMW M6 Convertible 2010 1.93% Plymouth Neon Coupe 1999 1.91% Ford F-150 Regular Cab 2007 1.82% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Ram C/V Cargo Van Minivan 2012 4.46% Chrysler Sebring Convertible 2010 3.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.71% Acura TL Sedan 2012 2.13% Hyundai Sonata Hybrid Sedan 2012 2.11% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Dodge Magnum Wagon 2008 5.77% Chevrolet Cobalt SS 2010 3.59% Dodge Charger SRT-8 2009 3.31% Dodge Caliber Wagon 2007 3.06% Hyundai Elantra Sedan 2007 2.94% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Toyota Camry Sedan 2012 3.46% Honda Accord Sedan 2012 2.94% Fisker Karma Sedan 2012 2.17% Chevrolet Camaro Convertible 2012 1.85% Chevrolet Corvette ZR1 2012 1.77% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.83% Chevrolet Express Cargo Van 2007 2.56% Mercedes-Benz SL-Class Coupe 2009 2.48% GMC Savana Van 2012 2.39% Audi S5 Convertible 2012 1.58% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Hyundai Veloster Hatchback 2012 4.66% Mercedes-Benz S-Class Sedan 2012 3.72% Audi TT Hatchback 2011 3.23% Aston Martin V8 Vantage Convertible 2012 3.08% Volkswagen Golf Hatchback 2012 2.56% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Dodge Caravan Minivan 1997 1.25% Jeep Patriot SUV 2012 1.06% Ford E-Series Wagon Van 2012 1.02% Lamborghini Reventon Coupe 2008 1.01% Hyundai Tucson SUV 2012 0.99% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 GMC Canyon Extended Cab 2012 2.43% Chrysler 300 SRT-8 2010 1.74% Chevrolet Silverado 1500 Regular Cab 2012 1.52% Honda Odyssey Minivan 2012 1.51% Chevrolet Monte Carlo Coupe 2007 1.46% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Dodge Sprinter Cargo Van 2009 2.03% BMW ActiveHybrid 5 Sedan 2012 1.94% Buick Regal GS 2012 1.68% Audi TT Hatchback 2011 1.59% BMW 1 Series Convertible 2012 1.52% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Jaguar XK XKR 2012 1.7% Jeep Compass SUV 2012 1.56% Hyundai Azera Sedan 2012 1.37% Acura RL Sedan 2012 1.22% Audi 100 Sedan 1994 1.16% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Toyota Sequoia SUV 2012 2.3% FIAT 500 Abarth 2012 2.02% GMC Savana Van 2012 1.87% Lamborghini Reventon Coupe 2008 1.77% Chevrolet Express Van 2007 1.74% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Volvo 240 Sedan 1993 5.17% Dodge Caravan Minivan 1997 4.45% Honda Odyssey Minivan 2007 4.3% Lincoln Town Car Sedan 2011 2.54% Mazda Tribute SUV 2011 2.51% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 5.11% Mercedes-Benz Sprinter Van 2012 2.51% Buick Rainier SUV 2007 2.38% Honda Odyssey Minivan 2007 2.06% Chevrolet Express Cargo Van 2007 2.04% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Ferrari 458 Italia Coupe 2012 3.19% Ferrari 458 Italia Convertible 2012 3.07% Ferrari California Convertible 2012 2.51% Lamborghini Aventador Coupe 2012 2.03% BMW 3 Series Sedan 2012 2.0% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Bugatti Veyron 16.4 Coupe 2009 1.76% GMC Yukon Hybrid SUV 2012 1.57% Bentley Arnage Sedan 2009 1.5% Lincoln Town Car Sedan 2011 1.34% MINI Cooper Roadster Convertible 2012 1.21% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Chrysler 300 SRT-8 2010 3.92% Dodge Durango SUV 2012 2.92% Chevrolet Silverado 1500 Regular Cab 2012 2.65% Hyundai Veracruz SUV 2012 2.57% Cadillac Escalade EXT Crew Cab 2007 2.57% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ferrari FF Coupe 2012 1.58% GMC Savana Van 2012 1.41% Honda Accord Coupe 2012 1.26% Eagle Talon Hatchback 1998 1.14% Chevrolet Monte Carlo Coupe 2007 1.12% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Hyundai Tucson SUV 2012 3.24% Mercedes-Benz S-Class Sedan 2012 1.99% Dodge Sprinter Cargo Van 2009 1.82% Audi RS 4 Convertible 2008 1.81% Suzuki SX4 Hatchback 2012 1.78% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Dodge Caravan Minivan 1997 1.35% Jeep Patriot SUV 2012 1.17% Lamborghini Reventon Coupe 2008 1.07% Ford E-Series Wagon Van 2012 1.07% Chrysler Aspen SUV 2009 1.05% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 1.43% Rolls-Royce Phantom Sedan 2012 1.35% Bentley Mulsanne Sedan 2011 1.29% Hyundai Azera Sedan 2012 1.28% Chevrolet Corvette ZR1 2012 1.28% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Rolls-Royce Ghost Sedan 2012 4.81% Bugatti Veyron 16.4 Coupe 2009 4.79% Bentley Arnage Sedan 2009 3.58% Volvo 240 Sedan 1993 3.42% Chevrolet Camaro Convertible 2012 3.27% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 AM General Hummer SUV 2000 5.01% HUMMER H2 SUT Crew Cab 2009 3.09% GMC Savana Van 2012 3.08% Lamborghini Diablo Coupe 2001 1.96% Acura Integra Type R 2001 1.48% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Dodge Magnum Wagon 2008 9.87% Nissan 240SX Coupe 1998 5.82% HUMMER H2 SUT Crew Cab 2009 3.99% Lamborghini Aventador Coupe 2012 2.63% Dodge Caliber Wagon 2007 2.36% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Volvo 240 Sedan 1993 2.28% BMW X5 SUV 2007 1.82% Chrysler Aspen SUV 2009 1.8% Ford F-150 Regular Cab 2012 1.72% Jeep Compass SUV 2012 1.65% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 GMC Yukon Hybrid SUV 2012 2.82% GMC Savana Van 2012 2.32% BMW X5 SUV 2007 1.83% Audi S6 Sedan 2011 1.69% BMW M6 Convertible 2010 1.58% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Buick Rainier SUV 2007 5.45% Ford GT Coupe 2006 3.69% BMW 1 Series Coupe 2012 3.55% Dodge Caliber Wagon 2007 3.42% Chevrolet Traverse SUV 2012 2.78% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 2.25% Audi S5 Convertible 2012 2.11% Dodge Sprinter Cargo Van 2009 2.02% Mercedes-Benz SL-Class Coupe 2009 2.02% Audi A5 Coupe 2012 1.81% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 15.79% Ford GT Coupe 2006 4.44% GMC Canyon Extended Cab 2012 3.06% BMW 1 Series Coupe 2012 3.03% Ferrari 458 Italia Coupe 2012 2.98% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Chrysler PT Cruiser Convertible 2008 2.41% Dodge Sprinter Cargo Van 2009 1.83% Dodge Caravan Minivan 1997 1.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.42% Plymouth Neon Coupe 1999 1.28% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Daewoo Nubira Wagon 2002 2.43% Aston Martin V8 Vantage Coupe 2012 2.13% Dodge Caravan Minivan 1997 2.06% Rolls-Royce Phantom Sedan 2012 2.02% Bugatti Veyron 16.4 Coupe 2009 2.01% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Ferrari California Convertible 2012 7.17% Ferrari 458 Italia Convertible 2012 6.52% Ferrari 458 Italia Coupe 2012 3.71% Hyundai Elantra Sedan 2007 3.4% Dodge Journey SUV 2012 3.24% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Mercedes-Benz S-Class Sedan 2012 2.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.09% Chrysler Sebring Convertible 2010 1.65% Chrysler PT Cruiser Convertible 2008 1.39% Suzuki Aerio Sedan 2007 1.31% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Lamborghini Aventador Coupe 2012 13.8% Aston Martin Virage Coupe 2012 9.12% Dodge Charger SRT-8 2009 5.51% Ferrari 458 Italia Convertible 2012 4.21% Ferrari 458 Italia Coupe 2012 3.95% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.83% Hyundai Santa Fe SUV 2012 2.02% Hyundai Sonata Sedan 2012 1.79% Dodge Journey SUV 2012 1.5% Chevrolet Malibu Sedan 2007 1.41% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 BMW M5 Sedan 2010 2.23% Buick Rainier SUV 2007 1.68% Audi S4 Sedan 2007 1.44% Acura TL Type-S 2008 1.37% Acura ZDX Hatchback 2012 1.21% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Buick Rainier SUV 2007 4.94% Volkswagen Golf Hatchback 1991 2.65% Chrysler Aspen SUV 2009 2.65% Dodge Dakota Crew Cab 2010 2.09% BMW M5 Sedan 2010 2.08% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Lamborghini Aventador Coupe 2012 10.64% McLaren MP4-12C Coupe 2012 8.03% Dodge Charger SRT-8 2009 6.44% Ferrari California Convertible 2012 5.72% Ferrari 458 Italia Convertible 2012 4.91% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Buick Regal GS 2012 2.72% BMW ActiveHybrid 5 Sedan 2012 2.27% Toyota Camry Sedan 2012 2.25% Dodge Sprinter Cargo Van 2009 1.96% Audi A5 Coupe 2012 1.86% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 McLaren MP4-12C Coupe 2012 7.99% BMW 1 Series Coupe 2012 7.81% Dodge Charger SRT-8 2009 5.14% Lamborghini Aventador Coupe 2012 4.78% Ford GT Coupe 2006 4.07% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Ferrari FF Coupe 2012 9.63% Dodge Caliber Wagon 2007 7.6% BMW M3 Coupe 2012 7.4% Ferrari 458 Italia Convertible 2012 5.16% Chevrolet Cobalt SS 2010 3.97% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Ferrari FF Coupe 2012 5.22% GMC Canyon Extended Cab 2012 1.92% Chevrolet Cobalt SS 2010 1.75% GMC Savana Van 2012 1.57% Tesla Model S Sedan 2012 1.5% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Dodge Sprinter Cargo Van 2009 2.06% BMW ActiveHybrid 5 Sedan 2012 1.87% Buick Regal GS 2012 1.68% Acura TL Sedan 2012 1.61% Toyota Camry Sedan 2012 1.48% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Ford E-Series Wagon Van 2012 2.55% Dodge Caravan Minivan 1997 2.11% Ford F-150 Regular Cab 2012 2.06% Jeep Patriot SUV 2012 2.02% Mercedes-Benz Sprinter Van 2012 1.7% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 2.75% Hyundai Sonata Hybrid Sedan 2012 2.48% Dodge Dakota Club Cab 2007 2.47% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.4% Chrysler Sebring Convertible 2010 2.04% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 2.46% Ferrari FF Coupe 2012 2.43% BMW M3 Coupe 2012 1.96% Suzuki Kizashi Sedan 2012 1.85% Ferrari 458 Italia Coupe 2012 1.83% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Jaguar XK XKR 2012 1.89% Mazda Tribute SUV 2011 1.49% BMW M5 Sedan 2010 1.36% Mercedes-Benz SL-Class Coupe 2009 1.24% Audi S5 Coupe 2012 1.24% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Ram C/V Cargo Van Minivan 2012 3.61% Lincoln Town Car Sedan 2011 2.83% Honda Odyssey Minivan 2007 2.8% BMW ActiveHybrid 5 Sedan 2012 2.49% Jeep Liberty SUV 2012 2.41% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Lincoln Town Car Sedan 2011 10.31% Ford Freestar Minivan 2007 8.68% Plymouth Neon Coupe 1999 3.51% Acura TSX Sedan 2012 2.63% Volkswagen Beetle Hatchback 2012 2.6% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 MINI Cooper Roadster Convertible 2012 2.67% Maybach Landaulet Convertible 2012 2.47% Audi TT Hatchback 2011 2.36% Nissan Leaf Hatchback 2012 2.08% Dodge Magnum Wagon 2008 1.85% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 2.09% Chevrolet Monte Carlo Coupe 2007 1.82% Audi V8 Sedan 1994 1.73% GMC Savana Van 2012 1.71% Audi 100 Wagon 1994 1.67% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Chevrolet Monte Carlo Coupe 2007 1.83% Dodge Caravan Minivan 1997 1.45% Mercedes-Benz C-Class Sedan 2012 1.45% Rolls-Royce Phantom Sedan 2012 1.11% Chevrolet Sonic Sedan 2012 1.05% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 BMW ActiveHybrid 5 Sedan 2012 3.08% Ferrari FF Coupe 2012 2.06% smart fortwo Convertible 2012 1.71% Maybach Landaulet Convertible 2012 1.54% Tesla Model S Sedan 2012 1.53% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 BMW X5 SUV 2007 1.54% Bentley Mulsanne Sedan 2011 1.5% Dodge Durango SUV 2007 1.36% Chrysler 300 SRT-8 2010 1.24% Toyota 4Runner SUV 2012 1.21% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 10.65% Chevrolet Silverado 1500 Regular Cab 2012 2.93% Dodge Ram Pickup 3500 Quad Cab 2009 2.68% Ford Freestar Minivan 2007 2.11% GMC Canyon Extended Cab 2012 2.02% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Ferrari 458 Italia Convertible 2012 9.17% Lamborghini Aventador Coupe 2012 8.44% Audi TT RS Coupe 2012 6.1% Ferrari 458 Italia Coupe 2012 5.99% Dodge Magnum Wagon 2008 5.56% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Ferrari 458 Italia Convertible 2012 4.23% Dodge Charger SRT-8 2009 3.74% Ferrari California Convertible 2012 3.72% Dodge Caliber Wagon 2007 3.32% Ferrari 458 Italia Coupe 2012 3.3% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Honda Accord Sedan 2012 2.57% Toyota Camry Sedan 2012 2.55% Chevrolet Corvette ZR1 2012 2.07% Cadillac CTS-V Sedan 2012 2.03% GMC Yukon Hybrid SUV 2012 1.99% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 Jeep Grand Cherokee SUV 2012 2.03% Buick Rainier SUV 2007 1.87% Chrysler 300 SRT-8 2010 1.72% Chrysler Aspen SUV 2009 1.66% Eagle Talon Hatchback 1998 1.66% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Ferrari 458 Italia Convertible 2012 3.71% Plymouth Neon Coupe 1999 3.21% Chevrolet Corvette Convertible 2012 2.69% Ferrari 458 Italia Coupe 2012 2.66% BMW 3 Series Sedan 2012 2.48% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Dodge Caravan Minivan 1997 3.05% Chevrolet Monte Carlo Coupe 2007 1.96% Chrysler 300 SRT-8 2010 1.71% Mercedes-Benz C-Class Sedan 2012 1.7% Honda Odyssey Minivan 2012 1.34% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Chevrolet Express Cargo Van 2007 3.72% GMC Savana Van 2012 2.97% GMC Yukon Hybrid SUV 2012 2.31% BMW X5 SUV 2007 1.97% Dodge Challenger SRT8 2011 1.84% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Ferrari 458 Italia Convertible 2012 5.42% Ferrari California Convertible 2012 4.29% BMW 3 Series Sedan 2012 4.23% Ferrari FF Coupe 2012 3.98% Ferrari 458 Italia Coupe 2012 3.7% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Ferrari 458 Italia Convertible 2012 6.61% Ferrari 458 Italia Coupe 2012 6.24% Dodge Caliber Wagon 2007 4.84% Dodge Magnum Wagon 2008 4.07% BMW 3 Series Sedan 2012 3.86% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.85% Toyota 4Runner SUV 2012 1.45% GMC Yukon Hybrid SUV 2012 1.45% Hyundai Santa Fe SUV 2012 1.41% Audi S6 Sedan 2011 1.36% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Plymouth Neon Coupe 1999 2.26% Rolls-Royce Phantom Sedan 2012 2.13% Aston Martin V8 Vantage Coupe 2012 1.82% Daewoo Nubira Wagon 2002 1.72% Bugatti Veyron 16.4 Coupe 2009 1.69% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 1.83% Jeep Grand Cherokee SUV 2012 1.38% GMC Yukon Hybrid SUV 2012 1.25% Infiniti QX56 SUV 2011 1.16% Audi 100 Sedan 1994 1.09% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 3.87% Aston Martin V8 Vantage Convertible 2012 3.45% Hyundai Veloster Hatchback 2012 2.72% Porsche Panamera Sedan 2012 2.41% Dodge Sprinter Cargo Van 2009 2.37% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 3.41% Chrysler Sebring Convertible 2010 1.89% Honda Odyssey Minivan 2007 1.63% Ford E-Series Wagon Van 2012 1.45% Chevrolet Malibu Sedan 2007 1.37% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Hyundai Genesis Sedan 2012 1.41% Bentley Mulsanne Sedan 2011 1.29% Bentley Continental Supersports Conv. Convertible 2012 1.03% Mercedes-Benz S-Class Sedan 2012 1.01% Ford E-Series Wagon Van 2012 0.98% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Mitsubishi Lancer Sedan 2012 9.26% Cadillac CTS-V Sedan 2012 7.13% Chevrolet TrailBlazer SS 2009 3.29% Audi RS 4 Convertible 2008 2.8% Audi 100 Wagon 1994 2.36% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Aston Martin Virage Coupe 2012 2.76% HUMMER H2 SUT Crew Cab 2009 2.41% McLaren MP4-12C Coupe 2012 2.12% HUMMER H3T Crew Cab 2010 1.99% Lamborghini Aventador Coupe 2012 1.91% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chrysler 300 SRT-8 2010 3.51% Chevrolet Silverado 2500HD Regular Cab 2012 3.43% BMW M6 Convertible 2010 2.35% Chevrolet Silverado 1500 Extended Cab 2012 1.86% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.73% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 1.2% Dodge Caravan Minivan 1997 1.02% Ford E-Series Wagon Van 2012 0.98% GMC Yukon Hybrid SUV 2012 0.98% BMW X5 SUV 2007 0.97% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Ram C/V Cargo Van Minivan 2012 3.66% Chrysler Sebring Convertible 2010 2.51% Honda Odyssey Minivan 2007 2.04% Acura TL Sedan 2012 2.0% Hyundai Sonata Hybrid Sedan 2012 1.85% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Hyundai Azera Sedan 2012 5.73% Acura ZDX Hatchback 2012 2.46% Lamborghini Reventon Coupe 2008 2.13% Spyker C8 Coupe 2009 1.9% Aston Martin V8 Vantage Convertible 2012 1.89% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Lincoln Town Car Sedan 2011 10.86% Volkswagen Beetle Hatchback 2012 5.32% Daewoo Nubira Wagon 2002 2.48% Plymouth Neon Coupe 1999 2.32% Suzuki Aerio Sedan 2007 2.22% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Chrysler 300 SRT-8 2010 3.42% Bugatti Veyron 16.4 Coupe 2009 1.53% Audi V8 Sedan 1994 1.46% Jeep Compass SUV 2012 1.45% Bentley Mulsanne Sedan 2011 1.33% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 4.85% AM General Hummer SUV 2000 2.93% McLaren MP4-12C Coupe 2012 2.07% Volvo 240 Sedan 1993 1.79% Bugatti Veyron 16.4 Coupe 2009 1.62% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Infiniti G Coupe IPL 2012 3.68% Bentley Mulsanne Sedan 2011 3.46% Jeep Grand Cherokee SUV 2012 2.53% GMC Yukon Hybrid SUV 2012 2.27% Chevrolet Corvette ZR1 2012 1.84% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Magnum Wagon 2008 4.86% Ferrari 458 Italia Coupe 2012 3.33% Audi TT RS Coupe 2012 2.79% BMW 1 Series Coupe 2012 2.48% Chevrolet HHR SS 2010 2.47% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz S-Class Sedan 2012 2.59% Nissan Leaf Hatchback 2012 2.46% Dodge Caravan Minivan 1997 2.02% Hyundai Tucson SUV 2012 1.98% Mercedes-Benz Sprinter Van 2012 1.95% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Dodge Ram Pickup 3500 Crew Cab 2010 1.74% Fisker Karma Sedan 2012 1.38% Land Rover Range Rover SUV 2012 1.37% Jeep Liberty SUV 2012 1.33% Jeep Grand Cherokee SUV 2012 1.24% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 16.1% AM General Hummer SUV 2000 3.21% Audi RS 4 Convertible 2008 3.09% Acura Integra Type R 2001 1.87% Dodge Charger SRT-8 2009 1.64% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.59% Audi 100 Sedan 1994 1.43% Suzuki Aerio Sedan 2007 1.43% Chrysler PT Cruiser Convertible 2008 1.38% Honda Odyssey Minivan 2007 1.35% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Ram C/V Cargo Van Minivan 2012 3.55% Chrysler Sebring Convertible 2010 2.28% Chrysler PT Cruiser Convertible 2008 1.5% Nissan Leaf Hatchback 2012 1.46% Dodge Caravan Minivan 1997 1.45% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 4.99% Aston Martin Virage Coupe 2012 3.26% Lamborghini Aventador Coupe 2012 2.74% Aston Martin V8 Vantage Coupe 2012 2.67% BMW M3 Coupe 2012 2.11% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 6.45% Dodge Sprinter Cargo Van 2009 5.91% Tesla Model S Sedan 2012 3.33% Chevrolet Express Van 2007 2.62% Hyundai Accent Sedan 2012 2.1% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Dodge Caravan Minivan 1997 1.93% Bentley Continental Supersports Conv. Convertible 2012 1.79% Bentley Mulsanne Sedan 2011 1.53% Land Rover Range Rover SUV 2012 1.31% Daewoo Nubira Wagon 2002 1.29% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Dodge Sprinter Cargo Van 2009 4.07% Mercedes-Benz Sprinter Van 2012 2.54% Audi TT Hatchback 2011 1.99% Ford Mustang Convertible 2007 1.74% Chevrolet Traverse SUV 2012 1.69% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 15.19% Mercedes-Benz Sprinter Van 2012 6.35% Chevrolet Express Cargo Van 2007 3.53% Acura TL Sedan 2012 2.35% Chevrolet Traverse SUV 2012 2.21% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Dodge Sprinter Cargo Van 2009 2.44% Mercedes-Benz Sprinter Van 2012 2.07% Ford E-Series Wagon Van 2012 2.03% Chevrolet Traverse SUV 2012 1.67% Audi 100 Sedan 1994 1.59% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Mercedes-Benz Sprinter Van 2012 3.5% Mercedes-Benz SL-Class Coupe 2009 3.1% MINI Cooper Roadster Convertible 2012 2.91% BMW X3 SUV 2012 2.63% Audi S5 Coupe 2012 2.25% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Scion xD Hatchback 2012 2.63% BMW M3 Coupe 2012 1.83% Jeep Grand Cherokee SUV 2012 1.75% Ford Mustang Convertible 2007 1.61% Ferrari FF Coupe 2012 1.57% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Bugatti Veyron 16.4 Coupe 2009 2.29% Porsche Panamera Sedan 2012 1.59% Bentley Arnage Sedan 2009 1.51% Jeep Compass SUV 2012 1.46% Bentley Mulsanne Sedan 2011 1.36% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Chevrolet Corvette ZR1 2012 1.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.4% Bentley Mulsanne Sedan 2011 1.32% Audi R8 Coupe 2012 1.22% Spyker C8 Convertible 2009 1.22% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Acura TL Sedan 2012 6.01% Acura TL Type-S 2008 3.08% smart fortwo Convertible 2012 2.49% Mercedes-Benz S-Class Sedan 2012 2.07% BMW M5 Sedan 2010 1.81% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Ram C/V Cargo Van Minivan 2012 3.6% Acura ZDX Hatchback 2012 2.99% Chrysler PT Cruiser Convertible 2008 2.81% Audi TT Hatchback 2011 2.53% Chrysler Sebring Convertible 2010 2.28% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 Audi S6 Sedan 2011 1.71% Audi A5 Coupe 2012 1.64% Dodge Sprinter Cargo Van 2009 1.35% Mercedes-Benz SL-Class Coupe 2009 1.33% Aston Martin Virage Convertible 2012 1.27% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 Dodge Caravan Minivan 1997 2.19% Suzuki SX4 Sedan 2012 2.01% Acura TL Sedan 2012 1.98% Daewoo Nubira Wagon 2002 1.96% Buick Verano Sedan 2012 1.87% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 4.19% Chevrolet Express Cargo Van 2007 3.57% Dodge Sprinter Cargo Van 2009 3.13% Mercedes-Benz Sprinter Van 2012 2.9% Ford E-Series Wagon Van 2012 2.13% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.71% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.35% Nissan Leaf Hatchback 2012 1.25% Chrysler PT Cruiser Convertible 2008 1.24% Chevrolet Sonic Sedan 2012 1.06% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Express Van 2007 27.27% BMW ActiveHybrid 5 Sedan 2012 5.05% Mercedes-Benz Sprinter Van 2012 4.5% GMC Savana Van 2012 4.24% Volvo XC90 SUV 2007 3.52% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Lincoln Town Car Sedan 2011 1.3% Chevrolet Silverado 2500HD Regular Cab 2012 1.1% BMW ActiveHybrid 5 Sedan 2012 1.1% Audi A5 Coupe 2012 1.01% Scion xD Hatchback 2012 1.01% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 GMC Savana Van 2012 2.2% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.03% Dodge Sprinter Cargo Van 2009 1.89% Jeep Grand Cherokee SUV 2012 1.63% Dodge Durango SUV 2012 1.61% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Audi A5 Coupe 2012 2.21% Chrysler 300 SRT-8 2010 1.95% Audi S6 Sedan 2011 1.84% BMW M6 Convertible 2010 1.55% Honda Accord Coupe 2012 1.44% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Dodge Caravan Minivan 1997 2.3% Ram C/V Cargo Van Minivan 2012 1.76% Ford E-Series Wagon Van 2012 1.75% Honda Odyssey Minivan 2007 1.57% Mercedes-Benz Sprinter Van 2012 1.54% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Bugatti Veyron 16.4 Coupe 2009 5.52% Toyota Sequoia SUV 2012 3.29% Ford GT Coupe 2006 3.29% Acura ZDX Hatchback 2012 3.0% Lamborghini Diablo Coupe 2001 2.87% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Bentley Continental Supersports Conv. Convertible 2012 2.28% Mercedes-Benz SL-Class Coupe 2009 1.84% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.49% Dodge Caravan Minivan 1997 1.28% Buick Regal GS 2012 1.22% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Chevrolet Cobalt SS 2010 6.73% Dodge Caliber Wagon 2007 6.29% Ferrari FF Coupe 2012 4.72% Ferrari 458 Italia Convertible 2012 4.37% Ferrari 458 Italia Coupe 2012 4.21% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Ford F-150 Regular Cab 2007 10.66% Buick Rainier SUV 2007 3.32% Lincoln Town Car Sedan 2011 3.11% GMC Savana Van 2012 2.53% Chrysler Sebring Convertible 2010 2.31% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Bentley Arnage Sedan 2009 5.66% Hyundai Genesis Sedan 2012 3.02% Plymouth Neon Coupe 1999 2.95% Bugatti Veyron 16.4 Coupe 2009 2.76% Dodge Journey SUV 2012 2.23% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Chrysler Sebring Convertible 2010 8.21% Hyundai Azera Sedan 2012 6.92% GMC Savana Van 2012 4.44% Chrysler PT Cruiser Convertible 2008 3.3% BMW M3 Coupe 2012 2.84% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Dodge Sprinter Cargo Van 2009 3.75% Audi TT Hatchback 2011 3.13% Buick Regal GS 2012 2.93% Toyota Camry Sedan 2012 2.68% BMW ActiveHybrid 5 Sedan 2012 2.34% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Bugatti Veyron 16.4 Coupe 2009 1.57% Bentley Arnage Sedan 2009 1.48% Chevrolet TrailBlazer SS 2009 1.34% Bentley Mulsanne Sedan 2011 1.24% Lincoln Town Car Sedan 2011 1.21% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Hyundai Veloster Hatchback 2012 4.39% Mercedes-Benz S-Class Sedan 2012 3.72% Aston Martin V8 Vantage Convertible 2012 3.41% Volkswagen Golf Hatchback 2012 3.05% Buick Regal GS 2012 2.78% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Chrysler Crossfire Convertible 2008 3.37% Chevrolet Camaro Convertible 2012 3.25% Lincoln Town Car Sedan 2011 2.57% Audi TTS Coupe 2012 2.42% Bugatti Veyron 16.4 Coupe 2009 2.22% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Dodge Caliber Wagon 2007 3.63% BMW 3 Series Sedan 2012 3.16% Ferrari 458 Italia Coupe 2012 3.0% BMW M3 Coupe 2012 2.55% Scion xD Hatchback 2012 2.54% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Dodge Caravan Minivan 1997 2.71% Ram C/V Cargo Van Minivan 2012 2.65% Mercedes-Benz S-Class Sedan 2012 2.26% Volkswagen Golf Hatchback 2012 1.92% Honda Odyssey Minivan 2007 1.88% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 HUMMER H2 SUT Crew Cab 2009 5.41% Nissan Juke Hatchback 2012 3.58% BMW X6 SUV 2012 3.33% GMC Acadia SUV 2012 2.71% Porsche Panamera Sedan 2012 2.3% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Ford F-150 Regular Cab 2007 11.36% Nissan 240SX Coupe 1998 4.01% Daewoo Nubira Wagon 2002 3.73% Mercedes-Benz 300-Class Convertible 1993 3.45% Audi V8 Sedan 1994 2.85% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 BMW ActiveHybrid 5 Sedan 2012 2.33% smart fortwo Convertible 2012 2.22% Maybach Landaulet Convertible 2012 2.1% Ferrari FF Coupe 2012 1.79% Ram C/V Cargo Van Minivan 2012 1.6% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Suzuki Aerio Sedan 2007 2.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.41% Lincoln Town Car Sedan 2011 1.97% Rolls-Royce Phantom Sedan 2012 1.79% Mercedes-Benz S-Class Sedan 2012 1.72% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 5.73% BMW 1 Series Convertible 2012 5.11% Chevrolet Sonic Sedan 2012 3.89% Rolls-Royce Phantom Sedan 2012 2.95% Mercedes-Benz S-Class Sedan 2012 1.95% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Chevrolet Silverado 2500HD Regular Cab 2012 2.35% Chevrolet Silverado 1500 Extended Cab 2012 2.11% Audi 100 Sedan 1994 1.85% Chrysler 300 SRT-8 2010 1.68% Audi S6 Sedan 2011 1.48% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Toyota 4Runner SUV 2012 1.48% Chevrolet Corvette ZR1 2012 1.21% FIAT 500 Abarth 2012 1.15% Dodge Durango SUV 2007 1.09% Bentley Mulsanne Sedan 2011 1.08% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Volkswagen Golf Hatchback 1991 4.88% BMW M5 Sedan 2010 3.95% Buick Rainier SUV 2007 3.14% Chrysler Aspen SUV 2009 2.13% Ford F-150 Regular Cab 2007 1.99% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 GMC Savana Van 2012 2.4% Chevrolet Express Van 2007 2.07% Chrysler 300 SRT-8 2010 1.67% Chevrolet Corvette ZR1 2012 1.66% Volvo XC90 SUV 2007 1.47% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 5.53% Mercedes-Benz Sprinter Van 2012 4.45% Isuzu Ascender SUV 2008 1.68% GMC Savana Van 2012 1.36% BMW X3 SUV 2012 1.36% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 3.47% Chevrolet Camaro Convertible 2012 2.97% Nissan 240SX Coupe 1998 2.78% Infiniti G Coupe IPL 2012 1.92% Plymouth Neon Coupe 1999 1.75% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Ram C/V Cargo Van Minivan 2012 1.62% Aston Martin V8 Vantage Convertible 2012 1.61% BMW 6 Series Convertible 2007 1.58% Honda Odyssey Minivan 2007 1.38% Audi TT Hatchback 2011 1.27% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Dodge Caliber Wagon 2007 4.19% Hyundai Sonata Sedan 2012 3.94% Ferrari 458 Italia Coupe 2012 3.45% BMW 3 Series Sedan 2012 3.09% Ferrari California Convertible 2012 2.43% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 BMW X6 SUV 2012 3.9% Ferrari California Convertible 2012 3.32% Jeep Patriot SUV 2012 2.38% BMW 3 Series Sedan 2012 2.23% Chevrolet Traverse SUV 2012 2.13% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 6.8% Lincoln Town Car Sedan 2011 4.4% BMW 6 Series Convertible 2007 4.13% Chevrolet Impala Sedan 2007 3.32% Rolls-Royce Phantom Sedan 2012 2.17% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 MINI Cooper Roadster Convertible 2012 5.23% Maybach Landaulet Convertible 2012 2.41% Bugatti Veyron 16.4 Coupe 2009 2.24% Rolls-Royce Phantom Sedan 2012 2.03% Ram C/V Cargo Van Minivan 2012 1.63% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Dodge Caravan Minivan 1997 3.51% Chevrolet Traverse SUV 2012 2.15% Ford E-Series Wagon Van 2012 2.09% Hyundai Tucson SUV 2012 1.82% Mercedes-Benz Sprinter Van 2012 1.73% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Dodge Sprinter Cargo Van 2009 3.74% Audi TT Hatchback 2011 3.0% Mercedes-Benz SL-Class Coupe 2009 2.01% Aston Martin Virage Convertible 2012 1.95% Acura ZDX Hatchback 2012 1.94% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 GMC Acadia SUV 2012 2.67% Eagle Talon Hatchback 1998 2.67% Audi 100 Wagon 1994 2.4% Bentley Continental GT Coupe 2007 2.21% Ford Mustang Convertible 2007 2.07% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Dodge Sprinter Cargo Van 2009 2.42% BMW X5 SUV 2007 1.61% Chevrolet Express Cargo Van 2007 1.47% Mercedes-Benz Sprinter Van 2012 1.43% Audi A5 Coupe 2012 1.43% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 2.79% Ford GT Coupe 2006 2.71% Chevrolet Cobalt SS 2010 2.57% Audi V8 Sedan 1994 2.31% BMW X6 SUV 2012 2.17% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 Chrysler 300 SRT-8 2010 1.25% Jaguar XK XKR 2012 0.92% GMC Savana Van 2012 0.89% Audi R8 Coupe 2012 0.88% Audi S6 Sedan 2011 0.87% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 GMC Terrain SUV 2012 1.91% Chrysler Sebring Convertible 2010 1.84% Dodge Durango SUV 2007 1.74% Infiniti G Coupe IPL 2012 1.64% Chevrolet Malibu Hybrid Sedan 2010 1.62% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Bentley Arnage Sedan 2009 2.24% Rolls-Royce Ghost Sedan 2012 2.08% Chrysler Aspen SUV 2009 2.03% Volvo 240 Sedan 1993 1.94% Bentley Continental GT Coupe 2007 1.78% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 BMW 3 Series Sedan 2012 9.13% Ferrari 458 Italia Coupe 2012 5.54% Dodge Caliber Wagon 2007 4.63% Ferrari California Convertible 2012 4.03% Honda Accord Coupe 2012 4.01% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.95% Bentley Continental Supersports Conv. Convertible 2012 1.72% Porsche Panamera Sedan 2012 1.71% Hyundai Genesis Sedan 2012 1.33% Bentley Mulsanne Sedan 2011 1.29% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 GMC Savana Van 2012 1.78% Chevrolet Express Cargo Van 2007 1.39% Mazda Tribute SUV 2011 1.39% GMC Yukon Hybrid SUV 2012 1.38% Chevrolet Silverado 2500HD Regular Cab 2012 1.38% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Chrysler 300 SRT-8 2010 1.85% Bugatti Veyron 16.4 Coupe 2009 1.53% Dodge Challenger SRT8 2011 1.44% Mazda Tribute SUV 2011 1.31% Chevrolet Silverado 1500 Regular Cab 2012 1.29% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Jeep Compass SUV 2012 1.52% Chrysler Sebring Convertible 2010 1.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.37% FIAT 500 Convertible 2012 1.36% Audi 100 Sedan 1994 1.31% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 BMW X6 SUV 2012 4.82% GMC Canyon Extended Cab 2012 3.78% Buick Enclave SUV 2012 2.94% Chevrolet Silverado 1500 Regular Cab 2012 2.79% Dodge Ram Pickup 3500 Quad Cab 2009 2.45% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Mercedes-Benz Sprinter Van 2012 4.6% Mazda Tribute SUV 2011 2.36% Mercedes-Benz SL-Class Coupe 2009 2.04% Audi TT Hatchback 2011 1.82% FIAT 500 Convertible 2012 1.81% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 1.32% Toyota 4Runner SUV 2012 1.17% Bentley Mulsanne Sedan 2011 1.16% FIAT 500 Abarth 2012 1.16% Hyundai Azera Sedan 2012 1.12% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Toyota Sequoia SUV 2012 5.89% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.06% GMC Savana Van 2012 2.75% AM General Hummer SUV 2000 2.69% Dodge Challenger SRT8 2011 2.19% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.65% FIAT 500 Convertible 2012 2.56% Ford GT Coupe 2006 2.45% Audi R8 Coupe 2012 1.67% Lincoln Town Car Sedan 2011 1.63% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Mercedes-Benz C-Class Sedan 2012 3.05% Volvo 240 Sedan 1993 2.56% Rolls-Royce Ghost Sedan 2012 2.5% Eagle Talon Hatchback 1998 2.29% Chevrolet Monte Carlo Coupe 2007 2.15% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 FIAT 500 Convertible 2012 3.13% Aston Martin V8 Vantage Convertible 2012 2.71% McLaren MP4-12C Coupe 2012 2.33% Maybach Landaulet Convertible 2012 2.17% Tesla Model S Sedan 2012 2.03% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 1.99% Ram C/V Cargo Van Minivan 2012 1.33% Lincoln Town Car Sedan 2011 1.3% Tesla Model S Sedan 2012 1.23% BMW 1 Series Convertible 2012 1.12% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Cobalt SS 2010 4.61% Dodge Charger SRT-8 2009 3.06% Dodge Caliber Wagon 2007 2.86% Dodge Magnum Wagon 2008 2.85% Ferrari 458 Italia Convertible 2012 2.72% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Ford GT Coupe 2006 4.55% Bugatti Veyron 16.4 Coupe 2009 3.47% Chevrolet Camaro Convertible 2012 2.13% Mercedes-Benz 300-Class Convertible 1993 2.12% Chevrolet Monte Carlo Coupe 2007 1.95% \ No newline at end of file diff --git a/cars/lr-investigations/fixed/5e-3/100e/conf.csv b/cars/lr-investigations/fixed/5e-3/100e/conf.csv new file mode 100644 index 0000000..be85502 --- /dev/null +++ b/cars/lr-investigations/fixed/5e-3/100e/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.5833 +Acura RL Sedan 2012,1,1,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Acura TL Sedan 2012,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.2 +Acura TL Type-S 2008,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.3333 +Acura TSX Sedan 2012,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Acura Integra Type R 2001,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Aston Martin V8 Vantage Convertible 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,7,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,2,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.0833 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3333 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW 1 Series Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +BMW M6 Convertible 2010,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0.3 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.2 +Buick Verano Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1429 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0.2222 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.25 +Chevrolet Cobalt SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.2222 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0.4286 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.125 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.6 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +FIAT 500 Convertible 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.2143 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.8 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.5455 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.5 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,4,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Ford Focus Sedan 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6364 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6154 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3846 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.375 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0.5 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Jeep Patriot SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.1818 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.1667 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8889 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +McLaren MP4-12C Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Mitsubishi Lancer Sedan 2012,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +Nissan NV Passenger Van 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,3,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.1875 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2143 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.3333 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Scion xD Hatchback 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Suzuki Aerio Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,1,0,0,1,0.1538 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0.7273 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.1429 +Toyota Corolla Sedan 2012,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0.0769 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,5,0,0,0,0,0,0,0,0.4167 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0.3846 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0.7143 +Volkswagen Beetle Hatchback 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0.1818 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0.6667 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0.625 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,6,0.4615 diff --git a/cars/lr-investigations/fixed/5e-3/100e/pred.csv b/cars/lr-investigations/fixed/5e-3/100e/pred.csv new file mode 100644 index 0000000..4198343 --- /dev/null +++ b/cars/lr-investigations/fixed/5e-3/100e/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Volvo XC90 SUV 2007 24.45% Toyota Sequoia SUV 2012 7.68% Hyundai Santa Fe SUV 2012 7.68% Mazda Tribute SUV 2011 7.16% BMW X6 SUV 2012 5.4% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Buick Enclave SUV 2012 13.74% Ford Edge SUV 2012 6.5% Honda Odyssey Minivan 2012 5.23% Chevrolet Impala Sedan 2007 4.32% Dodge Caravan Minivan 1997 4.01% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Buick Regal GS 2012 76.67% Maybach Landaulet Convertible 2012 3.09% Suzuki Kizashi Sedan 2012 2.81% Bentley Continental GT Coupe 2007 2.64% Hyundai Veloster Hatchback 2012 2.16% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Rolls-Royce Ghost Sedan 2012 37.39% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.86% Buick Rainier SUV 2007 4.07% Mazda Tribute SUV 2011 3.86% Ram C/V Cargo Van Minivan 2012 2.86% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Chevrolet Sonic Sedan 2012 33.62% Toyota Camry Sedan 2012 26.0% Honda Accord Sedan 2012 15.37% Audi S4 Sedan 2007 9.31% GMC Terrain SUV 2012 6.46% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Eagle Talon Hatchback 1998 27.35% Audi 100 Sedan 1994 15.8% Audi V8 Sedan 1994 9.42% Dodge Caravan Minivan 1997 8.29% Mercedes-Benz S-Class Sedan 2012 7.0% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 BMW M3 Coupe 2012 47.69% BMW M5 Sedan 2010 14.31% Audi TT Hatchback 2011 9.52% BMW Z4 Convertible 2012 6.3% Volvo 240 Sedan 1993 4.47% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 BMW X6 SUV 2012 32.14% Mazda Tribute SUV 2011 28.14% BMW X5 SUV 2007 19.93% Buick Rainier SUV 2007 2.98% Dodge Caliber Wagon 2012 2.2% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 Chrysler 300 SRT-8 2010 8.02% Chevrolet HHR SS 2010 7.82% AM General Hummer SUV 2000 6.63% HUMMER H3T Crew Cab 2010 4.69% Dodge Ram Pickup 3500 Crew Cab 2010 4.68% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 100.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Mitsubishi Lancer Sedan 2012 0.0% Nissan Juke Hatchback 2012 0.0% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Mitsubishi Lancer Sedan 2012 70.83% Audi S5 Coupe 2012 5.7% Jeep Compass SUV 2012 4.02% Audi S4 Sedan 2007 3.7% BMW X3 SUV 2012 1.72% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bugatti Veyron 16.4 Convertible 2009 14.57% Jaguar XK XKR 2012 11.4% Ferrari FF Coupe 2012 10.69% Fisker Karma Sedan 2012 8.72% FIAT 500 Convertible 2012 8.54% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Ranger SuperCab 2011 33.17% GMC Yukon Hybrid SUV 2012 19.87% Ford F-150 Regular Cab 2007 15.19% Chrysler Aspen SUV 2009 7.83% Jeep Patriot SUV 2012 5.7% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 GMC Canyon Extended Cab 2012 94.5% Isuzu Ascender SUV 2008 2.9% Jeep Liberty SUV 2012 1.47% Chrysler Aspen SUV 2009 0.48% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.21% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 85.65% Hyundai Veracruz SUV 2012 9.37% Hyundai Elantra Sedan 2007 2.31% Ford Freestar Minivan 2007 0.77% Honda Accord Sedan 2012 0.55% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 84.18% Chevrolet Silverado 1500 Regular Cab 2012 15.82% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Dodge Dakota Club Cab 2007 0.0% Ford F-150 Regular Cab 2007 0.0% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Ford Edge SUV 2012 99.17% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.54% Chevrolet Silverado 2500HD Regular Cab 2012 0.13% Ford Ranger SuperCab 2011 0.08% GMC Terrain SUV 2012 0.03% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 60.68% Hyundai Veracruz SUV 2012 29.18% Mazda Tribute SUV 2011 8.92% Chevrolet Traverse SUV 2012 0.49% Volkswagen Golf Hatchback 2012 0.34% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Porsche Panamera Sedan 2012 60.33% Audi S4 Sedan 2007 15.26% Fisker Karma Sedan 2012 9.21% Chrysler 300 SRT-8 2010 1.79% Acura TL Type-S 2008 1.56% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 54.84% Chevrolet Corvette ZR1 2012 12.07% Bentley Continental Supersports Conv. Convertible 2012 7.89% Ford GT Coupe 2006 7.35% BMW 3 Series Wagon 2012 2.78% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 100.0% Audi S5 Coupe 2012 0.0% Audi S4 Sedan 2007 0.0% Audi S4 Sedan 2012 0.0% Audi TTS Coupe 2012 0.0% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Nissan 240SX Coupe 1998 18.36% BMW 1 Series Coupe 2012 14.75% Chevrolet HHR SS 2010 12.4% Volvo 240 Sedan 1993 7.06% Dodge Challenger SRT8 2011 5.14% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Dodge Caravan Minivan 1997 58.0% Toyota Camry Sedan 2012 10.82% Honda Accord Sedan 2012 3.75% Acura RL Sedan 2012 3.43% Acura TL Type-S 2008 3.41% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 BMW ActiveHybrid 5 Sedan 2012 28.48% BMW M3 Coupe 2012 18.58% Chevrolet Malibu Sedan 2007 13.19% Audi TT Hatchback 2011 9.18% BMW 3 Series Wagon 2012 7.07% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 97.58% Audi S6 Sedan 2011 1.13% Audi TT Hatchback 2011 1.09% Audi S4 Sedan 2012 0.03% Audi S5 Convertible 2012 0.03% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 98.81% BMW 3 Series Sedan 2012 0.41% Acura RL Sedan 2012 0.18% Hyundai Genesis Sedan 2012 0.16% BMW X3 SUV 2012 0.14% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 97.57% Infiniti QX56 SUV 2011 2.39% GMC Canyon Extended Cab 2012 0.04% Land Rover Range Rover SUV 2012 0.0% Buick Enclave SUV 2012 0.0% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 40.99% Lamborghini Aventador Coupe 2012 34.81% Ford GT Coupe 2006 15.78% Ferrari 458 Italia Coupe 2012 2.48% Bugatti Veyron 16.4 Coupe 2009 2.15% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.95% Dodge Magnum Wagon 2008 0.02% Dodge Caliber Wagon 2012 0.02% Dodge Caliber Wagon 2007 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Chevrolet HHR SS 2010 25.37% Ram C/V Cargo Van Minivan 2012 15.63% Toyota Sequoia SUV 2012 10.27% GMC Savana Van 2012 10.14% Chrysler Town and Country Minivan 2012 8.11% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 87.94% Audi TTS Coupe 2012 6.77% Audi S6 Sedan 2011 1.6% BMW Z4 Convertible 2012 1.37% Audi A5 Coupe 2012 1.2% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 92.95% Bentley Continental Flying Spur Sedan 2007 7.0% Bentley Mulsanne Sedan 2011 0.04% Bentley Continental GT Coupe 2012 0.01% Cadillac CTS-V Sedan 2012 0.0% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 90.73% Chevrolet Silverado 1500 Regular Cab 2012 3.96% Dodge Dakota Crew Cab 2010 3.16% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.82% Chevrolet Silverado 1500 Extended Cab 2012 0.68% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Honda Accord Sedan 2012 82.3% Dodge Caravan Minivan 1997 8.94% Honda Odyssey Minivan 2012 7.29% Chevrolet Impala Sedan 2007 0.4% Honda Odyssey Minivan 2007 0.38% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 89.31% Audi R8 Coupe 2012 6.45% Lamborghini Aventador Coupe 2012 2.78% Hyundai Veloster Hatchback 2012 1.1% Buick Regal GS 2012 0.09% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 82.58% Hyundai Sonata Sedan 2012 8.11% Honda Odyssey Minivan 2012 3.78% Hyundai Santa Fe SUV 2012 1.22% Toyota 4Runner SUV 2012 0.72% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 39.85% Land Rover LR2 SUV 2012 12.95% Honda Odyssey Minivan 2012 12.5% GMC Terrain SUV 2012 8.61% Chrysler Aspen SUV 2009 6.54% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.97% Chrysler Aspen SUV 2009 0.01% Toyota Sequoia SUV 2012 0.01% Infiniti QX56 SUV 2011 0.0% Dodge Magnum Wagon 2008 0.0% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 31.92% Dodge Dakota Crew Cab 2010 21.62% Dodge Ram Pickup 3500 Quad Cab 2009 21.11% GMC Canyon Extended Cab 2012 11.5% Ford Ranger SuperCab 2011 8.62% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 91.86% Nissan 240SX Coupe 1998 2.07% Toyota Camry Sedan 2012 2.03% Acura TSX Sedan 2012 0.98% Suzuki Kizashi Sedan 2012 0.64% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 35.67% Audi R8 Coupe 2012 27.31% BMW M6 Convertible 2010 12.57% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.89% Rolls-Royce Phantom Sedan 2012 2.38% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Audi R8 Coupe 2012 79.35% Lamborghini Aventador Coupe 2012 11.96% Dodge Charger Sedan 2012 7.02% Chrysler 300 SRT-8 2010 0.46% BMW M6 Convertible 2010 0.37% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Porsche Panamera Sedan 2012 51.92% BMW ActiveHybrid 5 Sedan 2012 6.04% Audi S5 Coupe 2012 4.92% Fisker Karma Sedan 2012 3.47% Bugatti Veyron 16.4 Coupe 2009 3.14% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 GMC Yukon Hybrid SUV 2012 60.72% Cadillac Escalade EXT Crew Cab 2007 20.1% Ford Expedition EL SUV 2009 3.59% GMC Canyon Extended Cab 2012 2.46% Jeep Liberty SUV 2012 1.97% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 53.14% Land Rover LR2 SUV 2012 10.98% Jeep Liberty SUV 2012 8.76% Volvo C30 Hatchback 2012 6.29% Isuzu Ascender SUV 2008 4.91% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 75.76% Hyundai Veloster Hatchback 2012 12.73% smart fortwo Convertible 2012 4.72% Bugatti Veyron 16.4 Convertible 2009 1.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.02% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.18% Dodge Dakota Crew Cab 2010 0.24% Chrysler Aspen SUV 2009 0.22% Rolls-Royce Ghost Sedan 2012 0.05% Dodge Dakota Club Cab 2007 0.03% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Hyundai Elantra Touring Hatchback 2012 36.86% Dodge Caravan Minivan 1997 23.47% Honda Accord Sedan 2012 9.1% Nissan 240SX Coupe 1998 8.71% Audi 100 Sedan 1994 7.33% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 91.08% Dodge Charger Sedan 2012 3.19% Dodge Charger SRT-8 2009 2.44% Dodge Challenger SRT8 2011 0.52% Volvo C30 Hatchback 2012 0.34% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Ford Fiesta Sedan 2012 94.79% Nissan Leaf Hatchback 2012 3.6% Volkswagen Golf Hatchback 2012 0.53% Hyundai Tucson SUV 2012 0.18% Suzuki SX4 Hatchback 2012 0.17% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 99.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.16% AM General Hummer SUV 2000 0.11% HUMMER H2 SUT Crew Cab 2009 0.1% Ford F-150 Regular Cab 2007 0.1% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 70.22% Lamborghini Reventon Coupe 2008 9.9% Rolls-Royce Phantom Sedan 2012 4.17% Mercedes-Benz 300-Class Convertible 1993 3.6% smart fortwo Convertible 2012 1.66% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 47.85% Ford Ranger SuperCab 2011 16.05% Isuzu Ascender SUV 2008 13.75% Dodge Ram Pickup 3500 Quad Cab 2009 8.72% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.95% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Acura TL Type-S 2008 36.95% Lamborghini Reventon Coupe 2008 32.77% Porsche Panamera Sedan 2012 22.14% BMW 6 Series Convertible 2007 2.56% Acura RL Sedan 2012 1.38% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.51% Acura RL Sedan 2012 0.22% BMW ActiveHybrid 5 Sedan 2012 0.1% Hyundai Elantra Sedan 2007 0.07% Chrysler Sebring Convertible 2010 0.01% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 100.0% Chevrolet Express Cargo Van 2007 0.0% Volvo XC90 SUV 2007 0.0% Chevrolet Express Van 2007 0.0% Buick Rainier SUV 2007 0.0% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 27.21% Volvo 240 Sedan 1993 13.32% Audi V8 Sedan 1994 12.5% Buick Enclave SUV 2012 10.31% Bentley Arnage Sedan 2009 6.57% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 100.0% Dodge Magnum Wagon 2008 0.0% Audi TT RS Coupe 2012 0.0% GMC Savana Van 2012 0.0% BMW 3 Series Sedan 2012 0.0% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 88.16% Bentley Continental GT Coupe 2012 6.63% Audi S4 Sedan 2012 2.2% Audi S6 Sedan 2011 1.31% Audi TT RS Coupe 2012 1.18% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 69.32% Bentley Continental GT Coupe 2012 18.13% Cadillac CTS-V Sedan 2012 8.63% Mercedes-Benz S-Class Sedan 2012 1.39% Bentley Continental Supersports Conv. Convertible 2012 0.87% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Ferrari 458 Italia Convertible 2012 15.54% Ferrari FF Coupe 2012 7.86% Porsche Panamera Sedan 2012 7.75% Aston Martin Virage Convertible 2012 6.27% Hyundai Sonata Hybrid Sedan 2012 4.58% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Audi S4 Sedan 2012 37.8% Chevrolet Malibu Hybrid Sedan 2010 12.16% Audi R8 Coupe 2012 7.3% Lamborghini Aventador Coupe 2012 5.56% Dodge Caliber Wagon 2007 3.68% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 24.22% Lamborghini Reventon Coupe 2008 14.95% Bentley Arnage Sedan 2009 13.22% Fisker Karma Sedan 2012 11.94% Aston Martin V8 Vantage Convertible 2012 8.88% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette ZR1 2012 99.66% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.32% Ferrari FF Coupe 2012 0.02% Fisker Karma Sedan 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 38.45% Volvo C30 Hatchback 2012 9.79% Aston Martin V8 Vantage Coupe 2012 7.94% Lamborghini Aventador Coupe 2012 6.93% Hyundai Veloster Hatchback 2012 2.87% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 BMW 6 Series Convertible 2007 30.06% Suzuki Aerio Sedan 2007 22.21% Honda Accord Sedan 2012 14.27% Chevrolet Monte Carlo Coupe 2007 7.58% BMW M5 Sedan 2010 7.03% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Honda Accord Sedan 2012 81.08% Nissan Leaf Hatchback 2012 2.59% Volkswagen Golf Hatchback 1991 2.26% Suzuki Aerio Sedan 2007 1.85% Dodge Caravan Minivan 1997 1.78% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 16.94% Dodge Caliber Wagon 2007 11.66% Jeep Grand Cherokee SUV 2012 7.64% FIAT 500 Abarth 2012 7.31% Dodge Charger SRT-8 2009 5.65% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi S6 Sedan 2011 72.12% Audi RS 4 Convertible 2008 19.49% Audi S4 Sedan 2012 5.5% Audi S5 Coupe 2012 0.54% Audi A5 Coupe 2012 0.52% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Hyundai Genesis Sedan 2012 63.42% Dodge Dakota Crew Cab 2010 8.58% Dodge Journey SUV 2012 8.57% Honda Accord Coupe 2012 6.74% Infiniti G Coupe IPL 2012 6.14% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 99.0% Jeep Patriot SUV 2012 1.0% Rolls-Royce Phantom Sedan 2012 0.0% Ford Mustang Convertible 2007 0.0% Volvo 240 Sedan 1993 0.0% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 78.95% Chrysler 300 SRT-8 2010 6.55% Tesla Model S Sedan 2012 4.46% Porsche Panamera Sedan 2012 1.97% BMW M5 Sedan 2010 1.52% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 68.71% Hyundai Veracruz SUV 2012 5.76% Chevrolet Traverse SUV 2012 4.57% Eagle Talon Hatchback 1998 2.04% Acura RL Sedan 2012 1.77% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 48.52% Volkswagen Golf Hatchback 1991 8.22% Dodge Caravan Minivan 1997 4.32% Chrysler Aspen SUV 2009 3.1% BMW X5 SUV 2007 3.07% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 99.56% Chevrolet Silverado 2500HD Regular Cab 2012 0.43% Chevrolet Silverado 1500 Regular Cab 2012 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Chrysler Aspen SUV 2009 0.0% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 52.6% Ford Fiesta Sedan 2012 30.39% Hyundai Azera Sedan 2012 5.48% Acura TSX Sedan 2012 3.92% Hyundai Veracruz SUV 2012 2.48% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Nissan Juke Hatchback 2012 29.76% Dodge Journey SUV 2012 7.48% Acura RL Sedan 2012 7.35% Land Rover LR2 SUV 2012 5.13% Toyota Camry Sedan 2012 4.61% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 67.54% Nissan Leaf Hatchback 2012 16.25% BMW 1 Series Coupe 2012 4.43% BMW 3 Series Sedan 2012 2.88% Volvo C30 Hatchback 2012 1.53% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 99.41% Chevrolet Impala Sedan 2007 0.2% Eagle Talon Hatchback 1998 0.1% Hyundai Elantra Touring Hatchback 2012 0.09% Chevrolet Monte Carlo Coupe 2007 0.07% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Wagon 1994 90.26% Mercedes-Benz 300-Class Convertible 1993 9.68% Audi 100 Sedan 1994 0.05% Dodge Magnum Wagon 2008 0.0% Dodge Dakota Club Cab 2007 0.0% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Ford Fiesta Sedan 2012 10.79% Hyundai Azera Sedan 2012 8.35% Chrysler Crossfire Convertible 2008 6.97% Chrysler Sebring Convertible 2010 6.42% Mercedes-Benz S-Class Sedan 2012 4.32% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 100.0% Bentley Continental GT Coupe 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Bentley Arnage Sedan 2009 0.0% Bentley Continental GT Coupe 2007 0.0% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Hyundai Sonata Hybrid Sedan 2012 36.1% Hyundai Veracruz SUV 2012 30.04% Honda Odyssey Minivan 2012 11.51% Honda Accord Sedan 2012 10.81% Buick Verano Sedan 2012 4.5% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.99% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% AM General Hummer SUV 2000 0.0% Ford F-150 Regular Cab 2012 0.0% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW M3 Coupe 2012 91.88% Porsche Panamera Sedan 2012 4.23% BMW 3 Series Wagon 2012 1.2% BMW 1 Series Coupe 2012 0.4% BMW M5 Sedan 2010 0.38% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Dodge Journey SUV 2012 46.01% Ford Fiesta Sedan 2012 38.63% Suzuki SX4 Hatchback 2012 11.01% Hyundai Veracruz SUV 2012 1.38% Hyundai Santa Fe SUV 2012 0.78% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Honda Odyssey Minivan 2012 28.72% Mitsubishi Lancer Sedan 2012 8.76% Chevrolet HHR SS 2010 6.77% Dodge Magnum Wagon 2008 6.35% GMC Terrain SUV 2012 4.56% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Porsche Panamera Sedan 2012 51.3% Hyundai Veloster Hatchback 2012 24.56% Audi TT Hatchback 2011 5.44% Audi TTS Coupe 2012 3.93% Tesla Model S Sedan 2012 3.04% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Bugatti Veyron 16.4 Coupe 2009 63.69% Bentley Continental GT Coupe 2012 10.56% Spyker C8 Convertible 2009 6.09% Lamborghini Aventador Coupe 2012 3.57% Bentley Arnage Sedan 2009 2.18% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Audi V8 Sedan 1994 45.38% Volvo 240 Sedan 1993 23.25% Mercedes-Benz 300-Class Convertible 1993 5.28% HUMMER H3T Crew Cab 2010 3.43% Plymouth Neon Coupe 1999 3.3% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Volvo 240 Sedan 1993 27.3% Ford GT Coupe 2006 26.19% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.74% Spyker C8 Convertible 2009 12.98% Hyundai Veloster Hatchback 2012 6.61% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Jeep Grand Cherokee SUV 2012 36.85% Jeep Patriot SUV 2012 31.29% GMC Terrain SUV 2012 5.52% Ford Expedition EL SUV 2009 4.97% Jeep Liberty SUV 2012 4.76% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 82.37% Audi TTS Coupe 2012 6.81% Audi S5 Coupe 2012 4.47% Dodge Challenger SRT8 2011 1.84% Fisker Karma Sedan 2012 1.01% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 28.16% Bugatti Veyron 16.4 Coupe 2009 23.33% Chevrolet Corvette ZR1 2012 20.6% Bentley Continental GT Coupe 2012 7.31% Suzuki Kizashi Sedan 2012 5.15% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Hyundai Sonata Sedan 2012 67.11% Porsche Panamera Sedan 2012 17.23% Honda Odyssey Minivan 2012 5.17% Jaguar XK XKR 2012 2.63% Acura RL Sedan 2012 1.32% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 19.42% Chevrolet Silverado 1500 Regular Cab 2012 18.07% Jeep Patriot SUV 2012 13.92% Isuzu Ascender SUV 2008 3.61% Mercedes-Benz 300-Class Convertible 1993 3.32% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Audi TT Hatchback 2011 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Cadillac CTS-V Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 37.25% Lamborghini Gallardo LP 570-4 Superleggera 2012 36.22% Hyundai Veloster Hatchback 2012 7.79% Chevrolet Corvette Convertible 2012 6.71% Chevrolet Corvette ZR1 2012 4.85% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 33.62% BMW 3 Series Sedan 2012 23.19% Hyundai Genesis Sedan 2012 11.46% Eagle Talon Hatchback 1998 7.64% BMW M6 Convertible 2010 4.46% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chrysler Sebring Convertible 2010 48.91% Mercedes-Benz S-Class Sedan 2012 40.05% Ford Mustang Convertible 2007 7.92% Mercedes-Benz 300-Class Convertible 1993 1.18% Chrysler Crossfire Convertible 2008 0.79% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 82.57% Dodge Dakota Club Cab 2007 14.04% Dodge Ram Pickup 3500 Crew Cab 2010 2.74% Dodge Durango SUV 2007 0.23% Dodge Durango SUV 2012 0.06% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW M3 Coupe 2012 62.6% BMW ActiveHybrid 5 Sedan 2012 37.39% BMW M5 Sedan 2010 0.01% Porsche Panamera Sedan 2012 0.0% BMW 3 Series Wagon 2012 0.0% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Hyundai Veracruz SUV 2012 39.28% Fisker Karma Sedan 2012 30.66% Volkswagen Golf Hatchback 1991 12.34% Chevrolet TrailBlazer SS 2009 4.76% Audi 100 Wagon 1994 2.51% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 76.98% Ford F-150 Regular Cab 2012 8.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.07% Ford F-450 Super Duty Crew Cab 2012 2.86% Chevrolet Silverado 2500HD Regular Cab 2012 2.22% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 99.9% Acura TL Type-S 2008 0.02% Hyundai Azera Sedan 2012 0.01% Chevrolet Cobalt SS 2010 0.01% Aston Martin Virage Coupe 2012 0.01% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 86.1% Audi V8 Sedan 1994 9.55% Chevrolet Malibu Sedan 2007 2.54% Audi 100 Wagon 1994 1.34% Mercedes-Benz 300-Class Convertible 1993 0.07% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.93% Plymouth Neon Coupe 1999 0.05% Audi 100 Sedan 1994 0.01% Chevrolet Express Van 2007 0.01% Chevrolet Express Cargo Van 2007 0.0% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 63.83% Chevrolet Corvette Ron Fellows Edition Z06 2007 12.09% Bugatti Veyron 16.4 Coupe 2009 9.31% Bugatti Veyron 16.4 Convertible 2009 5.45% Ford GT Coupe 2006 3.36% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 100.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Ford Freestar Minivan 2007 17.87% Dodge Caliber Wagon 2007 15.96% Suzuki SX4 Hatchback 2012 12.53% Chevrolet Monte Carlo Coupe 2007 4.3% Daewoo Nubira Wagon 2002 3.22% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 47.82% Hyundai Elantra Touring Hatchback 2012 33.05% Ford Focus Sedan 2007 10.69% Daewoo Nubira Wagon 2002 6.92% Nissan 240SX Coupe 1998 0.63% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 95.42% Bugatti Veyron 16.4 Convertible 2009 1.84% Jeep Liberty SUV 2012 0.61% BMW X3 SUV 2012 0.57% Bentley Continental Supersports Conv. Convertible 2012 0.54% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 72.08% Scion xD Hatchback 2012 27.81% Ford Fiesta Sedan 2012 0.04% Eagle Talon Hatchback 1998 0.01% Bentley Continental GT Coupe 2007 0.01% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 72.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 17.91% Hyundai Veloster Hatchback 2012 7.37% McLaren MP4-12C Coupe 2012 0.55% Aston Martin Virage Coupe 2012 0.45% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 92.04% Hyundai Genesis Sedan 2012 7.67% Honda Accord Sedan 2012 0.25% Dodge Caravan Minivan 1997 0.03% Acura TSX Sedan 2012 0.0% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 65.46% Dodge Sprinter Cargo Van 2009 34.15% Ram C/V Cargo Van Minivan 2012 0.33% Audi 100 Sedan 1994 0.05% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 96.54% Toyota Sequoia SUV 2012 1.49% Ford E-Series Wagon Van 2012 0.82% Ford F-150 Regular Cab 2012 0.35% Dodge Ram Pickup 3500 Crew Cab 2010 0.24% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Dodge Sprinter Cargo Van 2009 19.67% Spyker C8 Convertible 2009 7.64% Chevrolet Express Cargo Van 2007 6.43% Tesla Model S Sedan 2012 4.8% Maybach Landaulet Convertible 2012 4.67% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 99.41% Honda Odyssey Minivan 2012 0.14% Acura ZDX Hatchback 2012 0.11% Lamborghini Reventon Coupe 2008 0.06% Infiniti G Coupe IPL 2012 0.05% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Bentley Continental Flying Spur Sedan 2007 18.29% Mercedes-Benz S-Class Sedan 2012 17.28% Daewoo Nubira Wagon 2002 9.0% Chrysler PT Cruiser Convertible 2008 6.5% Audi S5 Convertible 2012 4.56% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Honda Odyssey Minivan 2012 45.62% Chevrolet Impala Sedan 2007 30.58% Honda Accord Sedan 2012 9.32% Ford Focus Sedan 2007 5.62% Dodge Caravan Minivan 1997 2.93% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% smart fortwo Convertible 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% Hyundai Veloster Hatchback 2012 0.0% Lamborghini Reventon Coupe 2008 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 99.24% Bentley Arnage Sedan 2009 0.35% Daewoo Nubira Wagon 2002 0.14% Audi V8 Sedan 1994 0.04% Plymouth Neon Coupe 1999 0.03% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 47.95% Nissan Juke Hatchback 2012 31.87% Audi R8 Coupe 2012 5.83% Suzuki SX4 Sedan 2012 3.81% BMW M3 Coupe 2012 2.64% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 94.19% Toyota Sequoia SUV 2012 3.61% Land Rover Range Rover SUV 2012 1.23% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.75% Cadillac SRX SUV 2012 0.05% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Lincoln Town Car Sedan 2011 56.41% Daewoo Nubira Wagon 2002 8.88% Dodge Caliber Wagon 2012 4.18% Jeep Liberty SUV 2012 2.57% Chrysler Aspen SUV 2009 2.33% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Dodge Challenger SRT8 2011 96.02% Bugatti Veyron 16.4 Coupe 2009 2.76% BMW 6 Series Convertible 2007 0.21% Suzuki Kizashi Sedan 2012 0.16% Ford Mustang Convertible 2007 0.13% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 100.0% Ford Fiesta Sedan 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Toyota Corolla Sedan 2012 0.0% Acura TSX Sedan 2012 0.0% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 51.47% Chevrolet Impala Sedan 2007 38.98% Dodge Caravan Minivan 1997 4.57% Eagle Talon Hatchback 1998 1.31% Daewoo Nubira Wagon 2002 1.29% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Nissan NV Passenger Van 2012 40.83% Audi R8 Coupe 2012 34.57% Toyota 4Runner SUV 2012 12.85% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.48% Chrysler 300 SRT-8 2010 1.42% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 88.28% Acura Integra Type R 2001 2.22% Suzuki Aerio Sedan 2007 2.17% Ford Fiesta Sedan 2012 2.04% Nissan Leaf Hatchback 2012 0.99% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 60.46% GMC Yukon Hybrid SUV 2012 31.3% Jeep Patriot SUV 2012 2.84% Cadillac Escalade EXT Crew Cab 2007 1.16% Chrysler 300 SRT-8 2010 0.67% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 71.35% GMC Canyon Extended Cab 2012 25.6% Chevrolet Silverado 2500HD Regular Cab 2012 1.14% Chevrolet Silverado 1500 Regular Cab 2012 0.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.3% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 98.35% Dodge Caliber Wagon 2012 1.31% Dodge Dakota Crew Cab 2010 0.11% Dodge Journey SUV 2012 0.05% Dodge Dakota Club Cab 2007 0.04% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.96% Chevrolet Corvette ZR1 2012 0.02% Chevrolet Corvette Convertible 2012 0.01% Dodge Charger Sedan 2012 0.01% Ford Mustang Convertible 2007 0.0% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 94.72% Chevrolet Malibu Sedan 2007 3.23% Honda Accord Sedan 2012 0.74% Toyota Corolla Sedan 2012 0.45% Honda Odyssey Minivan 2012 0.38% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Lamborghini Reventon Coupe 2008 79.33% Bugatti Veyron 16.4 Convertible 2009 3.6% BMW M6 Convertible 2010 3.06% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.03% Jaguar XK XKR 2012 2.52% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Acura TSX Sedan 2012 28.15% Acura RL Sedan 2012 26.55% Audi TT Hatchback 2011 14.68% Hyundai Sonata Sedan 2012 4.05% Nissan 240SX Coupe 1998 2.55% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 58.5% Bugatti Veyron 16.4 Coupe 2009 16.05% Dodge Charger Sedan 2012 4.52% Mercedes-Benz SL-Class Coupe 2009 4.02% Ferrari California Convertible 2012 3.24% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Ford Ranger SuperCab 2011 73.64% GMC Savana Van 2012 14.46% Jeep Wrangler SUV 2012 2.81% Jeep Patriot SUV 2012 1.51% Jeep Liberty SUV 2012 0.93% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Chevrolet HHR SS 2010 31.57% Chevrolet Monte Carlo Coupe 2007 12.05% Dodge Magnum Wagon 2008 7.58% Volkswagen Beetle Hatchback 2012 7.06% Dodge Caliber Wagon 2007 6.32% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 73.78% Bentley Mulsanne Sedan 2011 21.54% Nissan NV Passenger Van 2012 2.34% Bentley Continental GT Coupe 2012 0.53% Jeep Grand Cherokee SUV 2012 0.43% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 94.8% Honda Accord Coupe 2012 5.2% Dodge Journey SUV 2012 0.0% Dodge Charger SRT-8 2009 0.0% Volvo C30 Hatchback 2012 0.0% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 70.63% Toyota Sequoia SUV 2012 25.75% Toyota 4Runner SUV 2012 1.14% BMW X5 SUV 2007 0.65% GMC Terrain SUV 2012 0.33% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Buick Verano Sedan 2012 20.47% Toyota 4Runner SUV 2012 9.52% Infiniti QX56 SUV 2011 6.09% Dodge Durango SUV 2012 4.47% Nissan Juke Hatchback 2012 3.65% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 99.99% GMC Savana Van 2012 0.01% Chevrolet Express Van 2007 0.0% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Chevrolet HHR SS 2010 33.58% Ford Expedition EL SUV 2009 30.27% Nissan Juke Hatchback 2012 9.29% Jeep Liberty SUV 2012 6.91% Chevrolet Tahoe Hybrid SUV 2012 6.55% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 98.89% GMC Canyon Extended Cab 2012 0.85% Chevrolet Silverado 2500HD Regular Cab 2012 0.08% Cadillac Escalade EXT Crew Cab 2007 0.07% Ford F-150 Regular Cab 2012 0.04% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Plymouth Neon Coupe 1999 85.68% Geo Metro Convertible 1993 13.46% Chevrolet Monte Carlo Coupe 2007 0.42% Ferrari California Convertible 2012 0.17% Chevrolet Impala Sedan 2007 0.04% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Camaro Convertible 2012 27.16% Chevrolet Corvette Convertible 2012 11.09% Chevrolet Corvette ZR1 2012 10.2% Ferrari California Convertible 2012 6.93% Ford GT Coupe 2006 4.27% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 89.0% Honda Odyssey Minivan 2012 3.48% Chevrolet Impala Sedan 2007 2.55% Audi V8 Sedan 1994 1.27% Hyundai Elantra Sedan 2007 0.59% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Ford Freestar Minivan 2007 10.69% Dodge Journey SUV 2012 7.51% Chevrolet TrailBlazer SS 2009 6.03% Dodge Magnum Wagon 2008 4.34% Chrysler 300 SRT-8 2010 3.43% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Hyundai Elantra Touring Hatchback 2012 53.51% Honda Odyssey Minivan 2012 20.82% Mercedes-Benz Sprinter Van 2012 10.88% Honda Odyssey Minivan 2007 10.63% Buick Rainier SUV 2007 1.27% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Rolls-Royce Ghost Sedan 2012 68.75% Rolls-Royce Phantom Sedan 2012 29.98% Bentley Mulsanne Sedan 2011 0.47% Audi R8 Coupe 2012 0.27% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.26% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 100.0% Jeep Compass SUV 2012 0.0% Ford Mustang Convertible 2007 0.0% BMW 3 Series Sedan 2012 0.0% BMW X3 SUV 2012 0.0% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Infiniti G Coupe IPL 2012 72.1% Porsche Panamera Sedan 2012 11.23% Hyundai Sonata Sedan 2012 9.04% Acura TL Sedan 2012 1.87% BMW M3 Coupe 2012 1.38% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 33.44% Chevrolet Silverado 1500 Regular Cab 2012 24.13% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 16.07% Ford F-450 Super Duty Crew Cab 2012 4.09% GMC Canyon Extended Cab 2012 2.85% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Hyundai Veloster Hatchback 2012 70.92% Lamborghini Diablo Coupe 2001 22.52% Audi RS 4 Convertible 2008 1.16% Spyker C8 Coupe 2009 1.06% Audi TTS Coupe 2012 0.93% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Dodge Magnum Wagon 2008 47.92% Bentley Mulsanne Sedan 2011 9.89% Hyundai Sonata Hybrid Sedan 2012 7.89% BMW 3 Series Wagon 2012 6.76% Dodge Charger Sedan 2012 6.61% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Hyundai Veracruz SUV 2012 40.15% Hyundai Elantra Sedan 2007 28.09% Acura TSX Sedan 2012 12.23% Honda Accord Sedan 2012 10.96% Acura TL Sedan 2012 4.04% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 53.44% Audi TT Hatchback 2011 16.14% Hyundai Sonata Sedan 2012 14.82% Porsche Panamera Sedan 2012 3.85% BMW M3 Coupe 2012 3.25% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 53.49% Toyota 4Runner SUV 2012 21.78% Cadillac SRX SUV 2012 16.67% GMC Acadia SUV 2012 2.34% Land Rover LR2 SUV 2012 1.57% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Bentley Mulsanne Sedan 2011 16.99% Audi V8 Sedan 1994 14.75% Volvo 240 Sedan 1993 12.38% Plymouth Neon Coupe 1999 12.28% Nissan 240SX Coupe 1998 9.45% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 35.02% MINI Cooper Roadster Convertible 2012 23.6% Volvo C30 Hatchback 2012 5.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.91% BMW 3 Series Sedan 2012 3.33% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 88.84% Infiniti G Coupe IPL 2012 10.67% Honda Accord Coupe 2012 0.4% Hyundai Sonata Sedan 2012 0.08% Hyundai Azera Sedan 2012 0.01% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Ford F-150 Regular Cab 2007 49.06% Chevrolet Silverado 1500 Regular Cab 2012 14.43% GMC Canyon Extended Cab 2012 11.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 9.11% Toyota 4Runner SUV 2012 2.38% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 91.47% Ford Ranger SuperCab 2011 7.35% Mercedes-Benz Sprinter Van 2012 0.58% Dodge Dakota Club Cab 2007 0.19% Audi 100 Wagon 1994 0.19% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 73.64% GMC Canyon Extended Cab 2012 10.08% Chevrolet Silverado 1500 Regular Cab 2012 9.13% Land Rover Range Rover SUV 2012 5.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.51% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Audi TT Hatchback 2011 37.33% Porsche Panamera Sedan 2012 9.45% Acura TL Sedan 2012 8.61% Audi RS 4 Convertible 2008 7.68% Audi S5 Convertible 2012 7.21% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 BMW 1 Series Coupe 2012 42.2% Bentley Continental GT Coupe 2007 27.97% Audi RS 4 Convertible 2008 8.14% BMW Z4 Convertible 2012 5.85% Audi TT Hatchback 2011 3.86% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 89.24% Acura TL Sedan 2012 5.81% Acura TSX Sedan 2012 4.83% Honda Odyssey Minivan 2012 0.08% Chevrolet Impala Sedan 2007 0.02% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 83.84% Acura TSX Sedan 2012 6.62% BMW 3 Series Wagon 2012 6.07% Chrysler Sebring Convertible 2010 1.3% BMW X5 SUV 2007 1.01% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 53.94% Bentley Continental GT Coupe 2007 14.06% Chrysler Sebring Convertible 2010 9.65% BMW ActiveHybrid 5 Sedan 2012 6.35% BMW M5 Sedan 2010 3.87% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 79.63% Volvo 240 Sedan 1993 5.95% Audi S4 Sedan 2007 5.04% Chrysler 300 SRT-8 2010 3.29% Buick Rainier SUV 2007 2.08% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Toyota Camry Sedan 2012 22.64% Toyota Corolla Sedan 2012 11.35% Acura TSX Sedan 2012 10.3% Chevrolet Sonic Sedan 2012 10.17% Ford Edge SUV 2012 9.49% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 50.01% Hyundai Genesis Sedan 2012 17.32% Ford Expedition EL SUV 2009 16.88% Honda Accord Sedan 2012 3.78% Toyota 4Runner SUV 2012 2.23% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette Convertible 2012 88.18% Lamborghini Diablo Coupe 2001 6.89% Ferrari 458 Italia Convertible 2012 1.58% Ferrari 458 Italia Coupe 2012 1.0% Chevrolet Monte Carlo Coupe 2007 0.38% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 70.47% Hyundai Azera Sedan 2012 9.32% Porsche Panamera Sedan 2012 6.33% Hyundai Elantra Sedan 2007 5.09% Hyundai Veracruz SUV 2012 2.46% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 99.92% Ram C/V Cargo Van Minivan 2012 0.03% Volvo 240 Sedan 1993 0.03% Dodge Dakota Crew Cab 2010 0.01% Audi 100 Sedan 1994 0.0% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 47.18% Bentley Continental GT Coupe 2007 13.36% BMW 6 Series Convertible 2007 9.95% Bentley Mulsanne Sedan 2011 8.84% Mercedes-Benz S-Class Sedan 2012 2.37% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Audi TTS Coupe 2012 88.23% Audi S5 Coupe 2012 5.26% Eagle Talon Hatchback 1998 2.58% Audi S6 Sedan 2011 1.99% Acura ZDX Hatchback 2012 0.7% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 59.08% Acura TSX Sedan 2012 37.4% Hyundai Elantra Sedan 2007 2.38% Honda Accord Sedan 2012 1.11% Chevrolet Impala Sedan 2007 0.01% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 28.94% Acura TSX Sedan 2012 19.03% BMW Z4 Convertible 2012 6.22% Jaguar XK XKR 2012 6.05% Toyota Camry Sedan 2012 3.29% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 Eagle Talon Hatchback 1998 83.49% FIAT 500 Convertible 2012 5.13% BMW ActiveHybrid 5 Sedan 2012 1.52% Chevrolet Malibu Hybrid Sedan 2010 1.3% Suzuki Kizashi Sedan 2012 1.14% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 67.65% Ford F-150 Regular Cab 2012 29.99% GMC Canyon Extended Cab 2012 1.1% Chevrolet Silverado 1500 Extended Cab 2012 0.34% Dodge Dakota Club Cab 2007 0.31% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 86.38% Aston Martin Virage Coupe 2012 11.79% Spyker C8 Convertible 2009 0.47% Audi TTS Coupe 2012 0.42% Lamborghini Aventador Coupe 2012 0.37% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.99% Ford E-Series Wagon Van 2012 0.01% Chrysler Aspen SUV 2009 0.0% AM General Hummer SUV 2000 0.0% Ford F-150 Regular Cab 2007 0.0% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 39.11% Scion xD Hatchback 2012 14.42% Toyota Camry Sedan 2012 8.53% Eagle Talon Hatchback 1998 4.66% Chevrolet Malibu Sedan 2007 3.71% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bentley Continental Flying Spur Sedan 2007 54.14% Bentley Mulsanne Sedan 2011 15.79% Bentley Continental GT Coupe 2007 9.78% Chrysler 300 SRT-8 2010 7.17% Rolls-Royce Ghost Sedan 2012 4.63% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 98.51% Dodge Caravan Minivan 1997 0.72% Honda Odyssey Minivan 2012 0.52% Hyundai Sonata Sedan 2012 0.05% Hyundai Santa Fe SUV 2012 0.04% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 72.69% Honda Odyssey Minivan 2012 23.02% Hyundai Sonata Sedan 2012 2.04% Acura TSX Sedan 2012 0.73% Buick Verano Sedan 2012 0.27% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Dodge Caravan Minivan 1997 71.23% Scion xD Hatchback 2012 22.14% Daewoo Nubira Wagon 2002 4.77% Ford Freestar Minivan 2007 0.31% BMW 1 Series Coupe 2012 0.26% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Reventon Coupe 2008 28.1% Aston Martin Virage Convertible 2012 19.1% Fisker Karma Sedan 2012 11.57% FIAT 500 Abarth 2012 8.02% Porsche Panamera Sedan 2012 5.86% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 86.54% Chevrolet Silverado 2500HD Regular Cab 2012 7.22% Chevrolet Tahoe Hybrid SUV 2012 1.99% GMC Yukon Hybrid SUV 2012 1.57% Chevrolet Silverado 1500 Regular Cab 2012 1.27% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 97.8% FIAT 500 Convertible 2012 2.18% Suzuki SX4 Hatchback 2012 0.01% MINI Cooper Roadster Convertible 2012 0.0% Scion xD Hatchback 2012 0.0% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 32.18% Dodge Journey SUV 2012 26.63% Suzuki SX4 Hatchback 2012 24.59% Dodge Caliber Wagon 2007 3.67% BMW X6 SUV 2012 3.35% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 38.65% Honda Accord Coupe 2012 38.34% Ford Expedition EL SUV 2009 4.19% Chevrolet Camaro Convertible 2012 2.51% Chrysler Sebring Convertible 2010 1.86% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.93% Hyundai Sonata Sedan 2012 0.05% Hyundai Accent Sedan 2012 0.02% Hyundai Azera Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Yukon Hybrid SUV 2012 61.21% Chevrolet Silverado 1500 Extended Cab 2012 25.66% Ford Expedition EL SUV 2009 4.76% Chevrolet Malibu Sedan 2007 4.08% Chevrolet Silverado 2500HD Regular Cab 2012 2.54% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 BMW 3 Series Sedan 2012 86.45% Jaguar XK XKR 2012 3.23% BMW X6 SUV 2012 2.69% Hyundai Sonata Sedan 2012 1.36% Audi V8 Sedan 1994 1.12% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Porsche Panamera Sedan 2012 97.79% Chevrolet Impala Sedan 2007 1.16% Nissan 240SX Coupe 1998 0.27% Jaguar XK XKR 2012 0.15% Audi TT Hatchback 2011 0.12% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Infiniti QX56 SUV 2011 21.42% Mazda Tribute SUV 2011 10.58% Hyundai Veracruz SUV 2012 7.64% Land Rover Range Rover SUV 2012 5.26% smart fortwo Convertible 2012 4.83% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Hyundai Veloster Hatchback 2012 26.39% Spyker C8 Coupe 2009 22.48% McLaren MP4-12C Coupe 2012 15.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 15.57% Lamborghini Diablo Coupe 2001 9.17% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 92.4% Chevrolet Express Cargo Van 2007 4.2% Chevrolet Express Van 2007 3.37% Buick Rainier SUV 2007 0.02% Volvo XC90 SUV 2007 0.01% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Jaguar XK XKR 2012 34.04% Volkswagen Beetle Hatchback 2012 28.49% BMW ActiveHybrid 5 Sedan 2012 22.57% Toyota Camry Sedan 2012 5.33% Infiniti G Coupe IPL 2012 1.83% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Mitsubishi Lancer Sedan 2012 14.76% BMW Z4 Convertible 2012 12.92% Lamborghini Aventador Coupe 2012 6.95% Volkswagen Golf Hatchback 2012 4.95% McLaren MP4-12C Coupe 2012 4.72% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Audi TT RS Coupe 2012 30.98% Cadillac CTS-V Sedan 2012 30.04% Bentley Continental GT Coupe 2012 16.35% Buick Regal GS 2012 6.4% Chrysler 300 SRT-8 2010 6.19% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Chrysler Town and Country Minivan 2012 91.52% Ford Freestar Minivan 2007 3.37% GMC Yukon Hybrid SUV 2012 1.65% Cadillac Escalade EXT Crew Cab 2007 1.4% Chrysler Aspen SUV 2009 0.93% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 49.69% Volvo C30 Hatchback 2012 35.73% Spyker C8 Convertible 2009 9.69% Dodge Charger Sedan 2012 1.95% Scion xD Hatchback 2012 1.32% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 99.16% Ford F-450 Super Duty Crew Cab 2012 0.47% Nissan NV Passenger Van 2012 0.26% Ford F-150 Regular Cab 2012 0.07% Dodge Ram Pickup 3500 Crew Cab 2010 0.02% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 99.15% Jeep Compass SUV 2012 0.22% Buick Verano Sedan 2012 0.19% Toyota Sequoia SUV 2012 0.16% Dodge Durango SUV 2012 0.03% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Ferrari 458 Italia Coupe 2012 0.0% Volvo C30 Hatchback 2012 0.0% Spyker C8 Convertible 2009 0.0% Ferrari FF Coupe 2012 0.0% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Hyundai Accent Sedan 2012 84.49% Hyundai Sonata Hybrid Sedan 2012 13.91% Toyota Camry Sedan 2012 1.15% Hyundai Veloster Hatchback 2012 0.31% Ford Fiesta Sedan 2012 0.12% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Fisker Karma Sedan 2012 38.86% Tesla Model S Sedan 2012 34.48% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.57% Aston Martin V8 Vantage Coupe 2012 7.2% Rolls-Royce Ghost Sedan 2012 6.31% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Hyundai Sonata Sedan 2012 23.22% Land Rover LR2 SUV 2012 21.88% Chevrolet Impala Sedan 2007 10.03% Toyota Camry Sedan 2012 9.86% Hyundai Sonata Hybrid Sedan 2012 6.79% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2007 17.77% Mercedes-Benz SL-Class Coupe 2009 12.61% Spyker C8 Convertible 2009 11.39% Ford GT Coupe 2006 9.84% Bentley Continental Flying Spur Sedan 2007 4.88% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 BMW X5 SUV 2007 98.46% GMC Savana Van 2012 0.74% Audi V8 Sedan 1994 0.26% Hyundai Veloster Hatchback 2012 0.1% Daewoo Nubira Wagon 2002 0.1% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 54.39% Ford Fiesta Sedan 2012 45.25% Hyundai Tucson SUV 2012 0.15% Chevrolet Sonic Sedan 2012 0.08% smart fortwo Convertible 2012 0.03% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 98.77% HUMMER H2 SUT Crew Cab 2009 0.57% HUMMER H3T Crew Cab 2010 0.55% Jeep Compass SUV 2012 0.04% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.02% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.88% Chevrolet Express Cargo Van 2007 0.08% Chevrolet Express Van 2007 0.04% Volvo XC90 SUV 2007 0.0% Buick Rainier SUV 2007 0.0% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Mitsubishi Lancer Sedan 2012 32.58% BMW 1 Series Coupe 2012 12.88% Volvo C30 Hatchback 2012 10.72% BMW X3 SUV 2012 10.14% Dodge Magnum Wagon 2008 2.46% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 79.66% Toyota Sequoia SUV 2012 11.05% Cadillac SRX SUV 2012 9.07% Ford F-150 Regular Cab 2012 0.09% Ford E-Series Wagon Van 2012 0.08% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 69.25% Geo Metro Convertible 1993 27.59% Plymouth Neon Coupe 1999 1.26% FIAT 500 Convertible 2012 0.68% Chrysler PT Cruiser Convertible 2008 0.31% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Canyon Extended Cab 2012 53.76% Chevrolet Silverado 1500 Regular Cab 2012 28.41% Chevrolet Silverado 1500 Extended Cab 2012 14.78% Ford F-150 Regular Cab 2007 2.24% Chevrolet Silverado 2500HD Regular Cab 2012 0.37% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 98.16% Audi S5 Coupe 2012 0.45% Audi TT Hatchback 2011 0.31% Mercedes-Benz C-Class Sedan 2012 0.3% Audi S6 Sedan 2011 0.21% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 BMW M3 Coupe 2012 46.95% Dodge Challenger SRT8 2011 18.96% BMW ActiveHybrid 5 Sedan 2012 16.83% Dodge Magnum Wagon 2008 9.05% BMW M5 Sedan 2010 1.09% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 19.3% Rolls-Royce Ghost Sedan 2012 15.5% Bentley Mulsanne Sedan 2011 12.33% BMW M6 Convertible 2010 11.55% Bugatti Veyron 16.4 Convertible 2009 6.05% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 98.96% Ford F-450 Super Duty Crew Cab 2012 0.86% Dodge Ram Pickup 3500 Quad Cab 2009 0.14% Chevrolet Silverado 2500HD Regular Cab 2012 0.03% GMC Canyon Extended Cab 2012 0.0% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Audi A5 Coupe 2012 32.39% Audi RS 4 Convertible 2008 21.49% Mitsubishi Lancer Sedan 2012 14.26% Audi TTS Coupe 2012 13.66% Audi S4 Sedan 2007 4.44% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 100.0% GMC Acadia SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 96.78% GMC Acadia SUV 2012 2.49% Volvo 240 Sedan 1993 0.2% Volkswagen Golf Hatchback 1991 0.17% Audi 100 Sedan 1994 0.1% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 82.31% Mercedes-Benz Sprinter Van 2012 2.86% Dodge Caravan Minivan 1997 1.64% Daewoo Nubira Wagon 2002 1.3% GMC Acadia SUV 2012 1.01% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 96.58% Nissan 240SX Coupe 1998 2.21% Eagle Talon Hatchback 1998 0.36% Volvo 240 Sedan 1993 0.33% Ford Focus Sedan 2007 0.13% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Land Rover Range Rover SUV 2012 70.32% Dodge Durango SUV 2012 8.48% Hyundai Genesis Sedan 2012 4.6% Cadillac SRX SUV 2012 3.74% Chrysler Aspen SUV 2009 1.78% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 99.03% Dodge Caravan Minivan 1997 0.41% Honda Accord Sedan 2012 0.26% Volkswagen Golf Hatchback 2012 0.15% Chevrolet Monte Carlo Coupe 2007 0.08% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Hyundai Sonata Hybrid Sedan 2012 59.5% Hyundai Veracruz SUV 2012 27.32% Dodge Challenger SRT8 2011 5.49% Chevrolet Camaro Convertible 2012 4.62% Jaguar XK XKR 2012 0.77% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Rolls-Royce Ghost Sedan 2012 43.36% Infiniti QX56 SUV 2011 14.06% AM General Hummer SUV 2000 8.28% Dodge Durango SUV 2012 6.68% Dodge Dakota Crew Cab 2010 3.93% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Buick Regal GS 2012 47.45% Ford Edge SUV 2012 16.2% Chevrolet Sonic Sedan 2012 6.03% Hyundai Azera Sedan 2012 5.88% Honda Odyssey Minivan 2012 5.14% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 57.33% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 15.5% Mercedes-Benz E-Class Sedan 2012 6.55% Buick Verano Sedan 2012 6.35% Jaguar XK XKR 2012 5.22% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Infiniti G Coupe IPL 2012 16.83% BMW 1 Series Coupe 2012 8.22% Jaguar XK XKR 2012 5.92% Dodge Challenger SRT8 2011 4.94% Nissan 240SX Coupe 1998 4.75% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Jeep Patriot SUV 2012 70.43% Jeep Compass SUV 2012 29.2% BMW X6 SUV 2012 0.24% Volvo XC90 SUV 2007 0.07% HUMMER H3T Crew Cab 2010 0.02% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 100.0% Nissan 240SX Coupe 1998 0.0% Honda Accord Sedan 2012 0.0% BMW 3 Series Sedan 2012 0.0% Volvo C30 Hatchback 2012 0.0% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 99.7% Dodge Sprinter Cargo Van 2009 0.07% Land Rover Range Rover SUV 2012 0.03% Audi V8 Sedan 1994 0.03% Nissan 240SX Coupe 1998 0.02% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.12% FIAT 500 Convertible 2012 0.3% Chevrolet Sonic Sedan 2012 0.21% Spyker C8 Convertible 2009 0.05% Suzuki Aerio Sedan 2007 0.04% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Bentley Mulsanne Sedan 2011 99.58% Cadillac CTS-V Sedan 2012 0.12% Rolls-Royce Ghost Sedan 2012 0.1% Rolls-Royce Phantom Sedan 2012 0.08% Hyundai Sonata Hybrid Sedan 2012 0.04% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 26.64% Jeep Grand Cherokee SUV 2012 11.64% GMC Canyon Extended Cab 2012 8.16% Land Rover LR2 SUV 2012 5.06% Dodge Ram Pickup 3500 Quad Cab 2009 4.43% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 93.43% FIAT 500 Abarth 2012 2.06% Spyker C8 Convertible 2009 1.84% Volvo C30 Hatchback 2012 0.51% Lamborghini Aventador Coupe 2012 0.48% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 57.63% Audi 100 Sedan 1994 39.43% Dodge Caravan Minivan 1997 2.19% Mercedes-Benz 300-Class Convertible 1993 0.43% Audi V8 Sedan 1994 0.16% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.44% Infiniti QX56 SUV 2011 0.32% Mazda Tribute SUV 2011 0.17% Toyota Sequoia SUV 2012 0.03% Buick Enclave SUV 2012 0.02% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 BMW 3 Series Wagon 2012 51.79% BMW 3 Series Sedan 2012 9.96% Acura Integra Type R 2001 4.06% Hyundai Elantra Sedan 2007 3.66% Toyota Corolla Sedan 2012 2.71% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 50.22% Acura TL Sedan 2012 32.3% BMW M3 Coupe 2012 5.79% Acura TL Type-S 2008 4.76% Acura TSX Sedan 2012 4.53% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Hyundai Veracruz SUV 2012 81.68% Volkswagen Golf Hatchback 2012 11.18% BMW X5 SUV 2007 4.28% Infiniti QX56 SUV 2011 2.22% Hyundai Santa Fe SUV 2012 0.33% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Audi R8 Coupe 2012 49.64% Porsche Panamera Sedan 2012 44.57% Volkswagen Beetle Hatchback 2012 1.38% Ferrari FF Coupe 2012 1.24% Tesla Model S Sedan 2012 1.01% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Toyota Sequoia SUV 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Toyota 4Runner SUV 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 98.44% Mercedes-Benz S-Class Sedan 2012 0.58% Porsche Panamera Sedan 2012 0.23% Bugatti Veyron 16.4 Convertible 2009 0.09% Cadillac CTS-V Sedan 2012 0.06% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 35.08% Spyker C8 Convertible 2009 32.42% Bugatti Veyron 16.4 Coupe 2009 17.93% Lamborghini Aventador Coupe 2012 2.84% Ferrari FF Coupe 2012 1.74% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Buick Verano Sedan 2012 17.32% Honda Accord Coupe 2012 10.54% Hyundai Sonata Hybrid Sedan 2012 6.37% Hyundai Veracruz SUV 2012 4.91% Honda Accord Sedan 2012 4.57% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 90.93% Spyker C8 Convertible 2009 2.18% Bugatti Veyron 16.4 Coupe 2009 1.57% Lamborghini Reventon Coupe 2008 0.83% Mitsubishi Lancer Sedan 2012 0.57% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 94.43% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.52% Chevrolet Avalanche Crew Cab 2012 0.93% Ford F-150 Regular Cab 2012 0.91% Chevrolet Silverado 1500 Regular Cab 2012 0.64% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Cadillac CTS-V Sedan 2012 54.74% Mercedes-Benz S-Class Sedan 2012 25.11% Bentley Continental GT Coupe 2012 15.96% Bentley Continental Flying Spur Sedan 2007 2.59% Buick Verano Sedan 2012 0.85% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 47.24% GMC Savana Van 2012 17.94% Honda Odyssey Minivan 2012 11.89% Honda Accord Sedan 2012 6.37% Chevrolet Malibu Sedan 2007 2.6% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 94.98% Porsche Panamera Sedan 2012 0.7% Eagle Talon Hatchback 1998 0.43% Audi S5 Coupe 2012 0.28% Ford Edge SUV 2012 0.27% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 95.81% Suzuki Aerio Sedan 2007 0.66% Hyundai Accent Sedan 2012 0.54% Chevrolet Impala Sedan 2007 0.51% Nissan 240SX Coupe 1998 0.33% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Toyota Camry Sedan 2012 61.42% Honda Odyssey Minivan 2012 17.36% GMC Canyon Extended Cab 2012 11.76% BMW X3 SUV 2012 2.48% Nissan Juke Hatchback 2012 1.53% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Mercedes-Benz S-Class Sedan 2012 14.53% Chevrolet HHR SS 2010 14.03% Rolls-Royce Phantom Sedan 2012 10.42% Volvo 240 Sedan 1993 8.44% Audi 100 Sedan 1994 7.25% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% Dodge Caravan Minivan 1997 0.0% Volvo XC90 SUV 2007 0.0% Hyundai Santa Fe SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 10.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.71% Mercedes-Benz 300-Class Convertible 1993 5.77% Audi V8 Sedan 1994 5.76% Nissan 240SX Coupe 1998 4.72% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 98.92% Bentley Continental GT Coupe 2012 1.06% Bentley Mulsanne Sedan 2011 0.01% Bentley Continental Flying Spur Sedan 2007 0.0% Aston Martin Virage Convertible 2012 0.0% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 99.42% Audi TT RS Coupe 2012 0.14% Chevrolet Corvette Convertible 2012 0.12% Bentley Continental GT Coupe 2007 0.09% BMW Z4 Convertible 2012 0.04% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.98% Buick Enclave SUV 2012 0.01% Buick Verano Sedan 2012 0.01% Jeep Grand Cherokee SUV 2012 0.0% Jeep Compass SUV 2012 0.0% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 95.52% Audi V8 Sedan 1994 3.67% BMW X5 SUV 2007 0.8% BMW X6 SUV 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Convertible 2009 14.38% BMW 6 Series Convertible 2007 13.7% Hyundai Azera Sedan 2012 11.41% BMW M6 Convertible 2010 7.15% Spyker C8 Convertible 2009 5.87% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 83.8% Chevrolet Tahoe Hybrid SUV 2012 5.22% Chrysler Aspen SUV 2009 5.02% Land Rover LR2 SUV 2012 1.06% Hyundai Santa Fe SUV 2012 0.94% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 95.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.49% Chevrolet Silverado 2500HD Regular Cab 2012 1.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.31% GMC Yukon Hybrid SUV 2012 0.27% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Hyundai Sonata Hybrid Sedan 2012 76.39% Toyota Camry Sedan 2012 7.47% Hyundai Elantra Sedan 2007 3.49% Acura TSX Sedan 2012 3.4% Chevrolet Sonic Sedan 2012 1.99% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 85.44% Hyundai Sonata Hybrid Sedan 2012 11.35% Hyundai Azera Sedan 2012 2.61% Hyundai Elantra Sedan 2007 0.19% Hyundai Veracruz SUV 2012 0.16% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Ford Fiesta Sedan 2012 62.23% smart fortwo Convertible 2012 34.13% Nissan Leaf Hatchback 2012 1.42% Hyundai Tucson SUV 2012 0.89% Volkswagen Golf Hatchback 2012 0.51% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Chrysler Aspen SUV 2009 0.0% GMC Canyon Extended Cab 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Nissan NV Passenger Van 2012 0.0% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Chevrolet Express Cargo Van 2007 45.15% Dodge Caravan Minivan 1997 24.4% Chevrolet Express Van 2007 14.84% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.77% GMC Savana Van 2012 1.95% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Infiniti QX56 SUV 2011 17.94% Mercedes-Benz S-Class Sedan 2012 12.18% Hyundai Santa Fe SUV 2012 9.97% Acura TL Type-S 2008 7.76% Mercedes-Benz C-Class Sedan 2012 7.32% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Acura TSX Sedan 2012 30.58% Chevrolet Malibu Sedan 2007 22.99% Toyota Corolla Sedan 2012 17.13% Toyota Camry Sedan 2012 14.4% Hyundai Sonata Hybrid Sedan 2012 5.83% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 60.79% Buick Enclave SUV 2012 7.83% Chevrolet Traverse SUV 2012 4.98% Hyundai Veracruz SUV 2012 3.99% Cadillac Escalade EXT Crew Cab 2007 3.59% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 49.77% Ford F-150 Regular Cab 2007 38.55% Chevrolet Silverado 1500 Extended Cab 2012 6.31% Geo Metro Convertible 1993 2.12% Ford Ranger SuperCab 2011 2.12% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Mercedes-Benz 300-Class Convertible 1993 45.36% Rolls-Royce Ghost Sedan 2012 26.53% Toyota Camry Sedan 2012 4.3% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.84% Nissan 240SX Coupe 1998 2.51% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Hyundai Elantra Sedan 2007 48.16% Chevrolet Cobalt SS 2010 22.0% BMW 1 Series Convertible 2012 10.05% Dodge Magnum Wagon 2008 4.37% Chevrolet Monte Carlo Coupe 2007 3.22% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Bugatti Veyron 16.4 Coupe 2009 40.87% Chevrolet Corvette ZR1 2012 29.61% Audi S5 Convertible 2012 15.48% Spyker C8 Convertible 2009 4.98% Aston Martin V8 Vantage Coupe 2012 2.59% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Cadillac SRX SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Ford F-150 Regular Cab 2012 0.0% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 74.79% GMC Yukon Hybrid SUV 2012 19.39% Chevrolet Silverado 1500 Extended Cab 2012 2.09% Chevrolet Tahoe Hybrid SUV 2012 1.71% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.73% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.65% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.27% Honda Odyssey Minivan 2012 0.07% Chevrolet Malibu Sedan 2007 0.01% Hyundai Veracruz SUV 2012 0.0% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Audi R8 Coupe 2012 43.48% Audi TT RS Coupe 2012 13.71% Audi TTS Coupe 2012 8.94% Hyundai Sonata Hybrid Sedan 2012 5.69% Tesla Model S Sedan 2012 4.47% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Volvo C30 Hatchback 2012 25.12% Mercedes-Benz Sprinter Van 2012 13.67% Scion xD Hatchback 2012 11.02% Nissan Leaf Hatchback 2012 10.79% Maybach Landaulet Convertible 2012 10.75% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Durango SUV 2012 30.24% Chevrolet Silverado 1500 Regular Cab 2012 24.54% Chevrolet Avalanche Crew Cab 2012 9.68% Ford F-150 Regular Cab 2012 5.9% GMC Terrain SUV 2012 3.1% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 98.1% Dodge Caravan Minivan 1997 1.31% Dodge Journey SUV 2012 0.5% Dodge Caliber Wagon 2007 0.06% Suzuki SX4 Hatchback 2012 0.02% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Toyota Camry Sedan 2012 41.79% Hyundai Accent Sedan 2012 30.22% Toyota Corolla Sedan 2012 5.09% Buick Verano Sedan 2012 3.06% Hyundai Veloster Hatchback 2012 2.06% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 99.95% Rolls-Royce Ghost Sedan 2012 0.05% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Dodge Charger Sedan 2012 0.0% BMW 3 Series Sedan 2012 0.0% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 99.9% BMW 1 Series Coupe 2012 0.06% Volvo C30 Hatchback 2012 0.02% Audi S4 Sedan 2012 0.01% Dodge Caliber Wagon 2012 0.0% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 35.31% Chevrolet Impala Sedan 2007 7.9% Dodge Ram Pickup 3500 Crew Cab 2010 7.83% Mitsubishi Lancer Sedan 2012 7.81% GMC Terrain SUV 2012 6.89% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Cadillac CTS-V Sedan 2012 34.65% Chrysler Crossfire Convertible 2008 34.54% Chrysler 300 SRT-8 2010 9.86% Chrysler Sebring Convertible 2010 4.42% Mercedes-Benz S-Class Sedan 2012 2.99% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 90.53% Mazda Tribute SUV 2011 2.16% Buick Rainier SUV 2007 1.58% Ford Expedition EL SUV 2009 0.52% GMC Acadia SUV 2012 0.41% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Dodge Charger Sedan 2012 69.26% Lamborghini Aventador Coupe 2012 8.4% Hyundai Azera Sedan 2012 5.63% BMW M3 Coupe 2012 2.42% Aston Martin Virage Coupe 2012 2.08% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 39.45% Mercedes-Benz S-Class Sedan 2012 10.75% FIAT 500 Convertible 2012 9.34% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.55% Suzuki Kizashi Sedan 2012 5.49% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 BMW M3 Coupe 2012 98.96% BMW M5 Sedan 2010 0.79% Plymouth Neon Coupe 1999 0.09% Nissan 240SX Coupe 1998 0.08% Dodge Challenger SRT8 2011 0.04% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 99.8% Lamborghini Diablo Coupe 2001 0.16% Bugatti Veyron 16.4 Coupe 2009 0.03% Ferrari 458 Italia Convertible 2012 0.0% Spyker C8 Coupe 2009 0.0% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 77.23% Ford Mustang Convertible 2007 10.59% Ford Freestar Minivan 2007 9.84% Geo Metro Convertible 1993 0.72% Dodge Caliber Wagon 2007 0.52% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Suzuki SX4 Sedan 2012 32.75% Toyota 4Runner SUV 2012 20.56% Land Rover LR2 SUV 2012 11.58% Suzuki SX4 Hatchback 2012 8.46% Chrysler PT Cruiser Convertible 2008 4.77% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 BMW M3 Coupe 2012 62.81% Nissan 240SX Coupe 1998 10.38% Chevrolet Malibu Hybrid Sedan 2010 8.7% Acura RL Sedan 2012 3.0% Honda Accord Coupe 2012 2.67% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 46.82% BMW 3 Series Sedan 2012 21.69% Nissan 240SX Coupe 1998 16.6% Mercedes-Benz S-Class Sedan 2012 12.33% Bentley Mulsanne Sedan 2011 1.52% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.74% Dodge Durango SUV 2007 0.17% Chrysler Aspen SUV 2009 0.07% Chevrolet Avalanche Crew Cab 2012 0.01% Land Rover Range Rover SUV 2012 0.0% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Volvo C30 Hatchback 2012 56.39% Suzuki SX4 Hatchback 2012 19.44% Ram C/V Cargo Van Minivan 2012 9.13% Dodge Caliber Wagon 2007 2.29% Buick Rainier SUV 2007 1.89% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 87.51% Bentley Continental GT Coupe 2012 7.64% Bentley Continental GT Coupe 2007 4.83% Bentley Mulsanne Sedan 2011 0.01% Bentley Arnage Sedan 2009 0.01% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 26.51% Jeep Liberty SUV 2012 17.85% Chevrolet Avalanche Crew Cab 2012 17.5% GMC Canyon Extended Cab 2012 15.36% Chevrolet Silverado 1500 Extended Cab 2012 9.17% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 33.63% Audi S5 Coupe 2012 18.45% Audi TT RS Coupe 2012 11.78% BMW M3 Coupe 2012 11.06% Audi TTS Coupe 2012 9.61% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 97.52% Chevrolet Silverado 1500 Regular Cab 2012 2.07% Dodge Dakota Club Cab 2007 0.25% Land Rover LR2 SUV 2012 0.03% Chevrolet Silverado 1500 Extended Cab 2012 0.01% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Jeep Wrangler SUV 2012 0.0% GMC Canyon Extended Cab 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% AM General Hummer SUV 2000 0.0% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Bentley Mulsanne Sedan 2011 85.97% Bentley Continental Flying Spur Sedan 2007 9.87% Ford Mustang Convertible 2007 1.93% Bentley Arnage Sedan 2009 0.94% Chrysler 300 SRT-8 2010 0.7% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 77.77% Buick Regal GS 2012 16.15% Chevrolet HHR SS 2010 4.09% Chevrolet Sonic Sedan 2012 0.43% BMW M5 Sedan 2010 0.33% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 90.23% Chevrolet Silverado 2500HD Regular Cab 2012 8.9% Chevrolet Silverado 1500 Extended Cab 2012 0.43% Chevrolet Avalanche Crew Cab 2012 0.27% Chevrolet Malibu Sedan 2007 0.08% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 97.7% Dodge Caliber Wagon 2007 2.12% Dodge Magnum Wagon 2008 0.14% Dodge Durango SUV 2007 0.02% Dodge Durango SUV 2012 0.01% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 59.6% Lamborghini Aventador Coupe 2012 36.5% Dodge Charger Sedan 2012 0.39% Infiniti G Coupe IPL 2012 0.38% HUMMER H3T Crew Cab 2010 0.28% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Maybach Landaulet Convertible 2012 19.95% Lamborghini Reventon Coupe 2008 15.94% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.67% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.65% Honda Odyssey Minivan 2012 3.23% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Volkswagen Golf Hatchback 2012 18.71% Honda Odyssey Minivan 2012 18.62% Chevrolet Malibu Sedan 2007 18.2% Honda Odyssey Minivan 2007 9.63% Hyundai Accent Sedan 2012 6.11% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.96% GMC Acadia SUV 2012 0.02% Infiniti QX56 SUV 2011 0.02% Dodge Caliber Wagon 2007 0.0% Dodge Durango SUV 2007 0.0% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari California Convertible 2012 90.2% Ferrari 458 Italia Convertible 2012 5.71% Ferrari 458 Italia Coupe 2012 1.58% Dodge Magnum Wagon 2008 0.51% Dodge Charger Sedan 2012 0.38% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Audi RS 4 Convertible 2008 12.2% MINI Cooper Roadster Convertible 2012 11.75% Audi TT Hatchback 2011 7.4% Mercedes-Benz S-Class Sedan 2012 6.32% Bugatti Veyron 16.4 Convertible 2009 4.86% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 94.63% Chevrolet Express Van 2007 4.45% Chevrolet Express Cargo Van 2007 0.8% Volvo XC90 SUV 2007 0.09% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 93.22% Ford Mustang Convertible 2007 1.97% Nissan 240SX Coupe 1998 1.65% Audi 100 Wagon 1994 1.31% Audi V8 Sedan 1994 0.67% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Lamborghini Aventador Coupe 2012 39.21% Spyker C8 Coupe 2009 20.77% Lamborghini Reventon Coupe 2008 4.88% Dodge Charger Sedan 2012 3.23% Bugatti Veyron 16.4 Coupe 2009 3.08% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Maybach Landaulet Convertible 2012 99.56% Mercedes-Benz E-Class Sedan 2012 0.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.05% Chevrolet Sonic Sedan 2012 0.04% FIAT 500 Convertible 2012 0.04% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 77.88% Porsche Panamera Sedan 2012 15.91% Fisker Karma Sedan 2012 2.26% Tesla Model S Sedan 2012 1.7% Audi TTS Coupe 2012 1.23% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 99.99% Acura RL Sedan 2012 0.01% Acura TL Sedan 2012 0.0% Nissan 240SX Coupe 1998 0.0% Acura ZDX Hatchback 2012 0.0% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 82.04% Lamborghini Aventador Coupe 2012 17.77% Mitsubishi Lancer Sedan 2012 0.15% Bugatti Veyron 16.4 Coupe 2009 0.01% Hyundai Sonata Hybrid Sedan 2012 0.01% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Audi 100 Wagon 1994 97.9% Audi V8 Sedan 1994 1.04% Nissan 240SX Coupe 1998 0.84% Audi 100 Sedan 1994 0.03% Mercedes-Benz 300-Class Convertible 1993 0.02% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 66.08% Chrysler Town and Country Minivan 2012 18.85% Land Rover LR2 SUV 2012 3.75% Dodge Caravan Minivan 1997 2.25% Honda Odyssey Minivan 2007 1.43% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Audi S5 Convertible 2012 45.08% Ferrari California Convertible 2012 23.63% Ferrari 458 Italia Convertible 2012 13.82% Chevrolet Corvette Convertible 2012 6.83% BMW 1 Series Convertible 2012 2.03% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 71.58% Toyota Camry Sedan 2012 23.58% Toyota Corolla Sedan 2012 3.98% Ferrari FF Coupe 2012 0.15% Ferrari 458 Italia Coupe 2012 0.12% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 65.33% Volkswagen Golf Hatchback 1991 30.72% Chrysler 300 SRT-8 2010 1.59% Dodge Challenger SRT8 2011 0.72% Dodge Charger Sedan 2012 0.52% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 50.28% Ford F-450 Super Duty Crew Cab 2012 48.84% Ford Expedition EL SUV 2009 0.6% Ford E-Series Wagon Van 2012 0.15% Land Rover Range Rover SUV 2012 0.09% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 47.73% Dodge Magnum Wagon 2008 23.42% GMC Terrain SUV 2012 18.78% BMW 1 Series Coupe 2012 2.53% Buick Rainier SUV 2007 1.94% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Toyota 4Runner SUV 2012 97.89% AM General Hummer SUV 2000 1.07% Ford Edge SUV 2012 0.37% BMW X3 SUV 2012 0.14% Jeep Liberty SUV 2012 0.11% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Lincoln Town Car Sedan 2011 39.56% Audi 100 Wagon 1994 37.73% Buick Enclave SUV 2012 11.64% Buick Rainier SUV 2007 5.8% Volvo XC90 SUV 2007 2.39% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 99.44% Hyundai Elantra Touring Hatchback 2012 0.47% Ford Focus Sedan 2007 0.04% Chevrolet Impala Sedan 2007 0.02% Eagle Talon Hatchback 1998 0.02% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 100.0% Chevrolet HHR SS 2010 0.0% Dodge Journey SUV 2012 0.0% Dodge Durango SUV 2012 0.0% Dodge Charger SRT-8 2009 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Scion xD Hatchback 2012 41.28% Chevrolet HHR SS 2010 8.65% Hyundai Veloster Hatchback 2012 4.49% Nissan 240SX Coupe 1998 3.32% Ferrari California Convertible 2012 3.21% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 98.85% Mazda Tribute SUV 2011 0.34% Isuzu Ascender SUV 2008 0.29% Jeep Patriot SUV 2012 0.23% Ram C/V Cargo Van Minivan 2012 0.08% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Audi 100 Wagon 1994 26.83% Chevrolet Silverado 1500 Extended Cab 2012 19.15% Chevrolet Express Cargo Van 2007 14.87% Ford F-450 Super Duty Crew Cab 2012 13.0% Ford E-Series Wagon Van 2012 7.02% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 98.64% Spyker C8 Coupe 2009 1.3% Volvo C30 Hatchback 2012 0.06% Hyundai Veloster Hatchback 2012 0.0% smart fortwo Convertible 2012 0.0% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 90.63% Dodge Caliber Wagon 2012 9.37% Chevrolet Tahoe Hybrid SUV 2012 0.0% Dodge Caliber Wagon 2007 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 46.92% Bentley Continental Supersports Conv. Convertible 2012 10.7% Nissan NV Passenger Van 2012 5.2% Chrysler PT Cruiser Convertible 2008 3.59% Spyker C8 Coupe 2009 3.19% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.79% Hyundai Santa Fe SUV 2012 0.2% Cadillac SRX SUV 2012 0.0% Dodge Journey SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.49% Audi V8 Sedan 1994 0.15% Rolls-Royce Ghost Sedan 2012 0.11% GMC Acadia SUV 2012 0.05% Bentley Arnage Sedan 2009 0.04% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 98.59% Ford Expedition EL SUV 2009 0.6% Ram C/V Cargo Van Minivan 2012 0.42% Volvo XC90 SUV 2007 0.1% Hyundai Santa Fe SUV 2012 0.05% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 35.46% Ford Mustang Convertible 2007 18.28% Chevrolet Silverado 1500 Regular Cab 2012 13.41% Ford F-450 Super Duty Crew Cab 2012 9.95% Chrysler 300 SRT-8 2010 5.46% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 99.01% Isuzu Ascender SUV 2008 0.68% Ford E-Series Wagon Van 2012 0.28% Jeep Patriot SUV 2012 0.01% Jeep Wrangler SUV 2012 0.01% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 52.56% Buick Enclave SUV 2012 12.87% GMC Acadia SUV 2012 12.76% Volvo 240 Sedan 1993 3.43% GMC Savana Van 2012 1.37% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Volkswagen Beetle Hatchback 2012 44.34% Bentley Continental Flying Spur Sedan 2007 13.75% Hyundai Azera Sedan 2012 10.09% Bentley Continental GT Coupe 2012 8.7% Maybach Landaulet Convertible 2012 5.0% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Chrysler Aspen SUV 2009 30.76% Land Rover Range Rover SUV 2012 13.97% Infiniti QX56 SUV 2011 12.17% GMC Canyon Extended Cab 2012 11.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.1% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.97% Ford F-450 Super Duty Crew Cab 2012 0.03% Cadillac SRX SUV 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 47.74% BMW Z4 Convertible 2012 19.08% Audi RS 4 Convertible 2008 13.42% Bugatti Veyron 16.4 Coupe 2009 6.98% Spyker C8 Coupe 2009 2.68% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz Sprinter Van 2012 25.6% Hyundai Genesis Sedan 2012 17.91% Honda Odyssey Minivan 2012 16.75% Mercedes-Benz E-Class Sedan 2012 10.93% Hyundai Sonata Hybrid Sedan 2012 8.37% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 99.9% Porsche Panamera Sedan 2012 0.1% Ford GT Coupe 2006 0.0% Ferrari FF Coupe 2012 0.0% Nissan Juke Hatchback 2012 0.0% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Nissan NV Passenger Van 2012 100.0% Ford F-150 Regular Cab 2007 0.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Jeep Liberty SUV 2012 0.0% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Hyundai Veracruz SUV 2012 52.76% Hyundai Santa Fe SUV 2012 10.93% Chevrolet Impala Sedan 2007 7.1% Lincoln Town Car Sedan 2011 5.76% Dodge Caravan Minivan 1997 5.49% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 96.93% Ram C/V Cargo Van Minivan 2012 1.13% Chrysler Town and Country Minivan 2012 0.41% Honda Odyssey Minivan 2007 0.36% Dodge Caravan Minivan 1997 0.26% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 24.16% Audi 100 Wagon 1994 13.37% Honda Accord Sedan 2012 7.0% Audi R8 Coupe 2012 6.8% Fisker Karma Sedan 2012 4.55% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 GMC Canyon Extended Cab 2012 92.79% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.46% Dodge Durango SUV 2012 1.5% Dodge Caravan Minivan 1997 0.07% Chrysler PT Cruiser Convertible 2008 0.04% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 24.87% Maybach Landaulet Convertible 2012 21.05% Bentley Mulsanne Sedan 2011 15.12% Rolls-Royce Phantom Sedan 2012 14.52% Bentley Continental Flying Spur Sedan 2007 10.11% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Buick Verano Sedan 2012 22.36% Audi TT RS Coupe 2012 18.26% Audi A5 Coupe 2012 13.49% Bentley Continental GT Coupe 2007 8.25% Audi S4 Sedan 2012 5.03% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.87% Chevrolet Express Cargo Van 2007 0.13% Chevrolet Express Van 2007 0.0% Ford E-Series Wagon Van 2012 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Nissan Juke Hatchback 2012 97.09% GMC Acadia SUV 2012 0.56% Dodge Journey SUV 2012 0.27% Cadillac Escalade EXT Crew Cab 2007 0.25% Toyota 4Runner SUV 2012 0.2% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Lamborghini Reventon Coupe 2008 31.96% Bugatti Veyron 16.4 Convertible 2009 29.43% Bugatti Veyron 16.4 Coupe 2009 3.06% Acura TL Sedan 2012 2.79% Cadillac CTS-V Sedan 2012 1.83% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Ford Expedition EL SUV 2009 19.88% Honda Odyssey Minivan 2012 15.64% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.1% Dodge Caravan Minivan 1997 4.4% Chrysler Town and Country Minivan 2012 4.31% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Bentley Continental Supersports Conv. Convertible 2012 19.96% Chevrolet Silverado 2500HD Regular Cab 2012 16.53% AM General Hummer SUV 2000 13.15% GMC Savana Van 2012 8.97% GMC Yukon Hybrid SUV 2012 7.14% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Jeep Liberty SUV 2012 52.82% Lincoln Town Car Sedan 2011 17.25% Daewoo Nubira Wagon 2002 11.6% Bentley Arnage Sedan 2009 5.36% Ford Edge SUV 2012 4.75% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Toyota Camry Sedan 2012 87.05% Acura RL Sedan 2012 3.75% BMW 6 Series Convertible 2007 2.99% BMW M5 Sedan 2010 1.97% Hyundai Sonata Sedan 2012 0.64% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Chrysler 300 SRT-8 2010 67.49% Eagle Talon Hatchback 1998 29.41% Plymouth Neon Coupe 1999 0.81% Nissan 240SX Coupe 1998 0.45% Honda Odyssey Minivan 2012 0.3% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Volvo C30 Hatchback 2012 99.33% Hyundai Elantra Touring Hatchback 2012 0.56% Suzuki SX4 Hatchback 2012 0.1% Hyundai Santa Fe SUV 2012 0.0% Dodge Caliber Wagon 2007 0.0% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 86.0% Audi R8 Coupe 2012 4.0% Audi S5 Coupe 2012 2.66% Bugatti Veyron 16.4 Coupe 2009 2.61% BMW X6 SUV 2012 1.1% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Infiniti G Coupe IPL 2012 57.08% Audi TT RS Coupe 2012 18.52% Porsche Panamera Sedan 2012 7.46% BMW M3 Coupe 2012 3.42% Hyundai Azera Sedan 2012 2.97% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 99.91% BMW M5 Sedan 2010 0.04% Bentley Mulsanne Sedan 2011 0.02% BMW Z4 Convertible 2012 0.01% Bentley Arnage Sedan 2009 0.0% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Chrysler Town and Country Minivan 2012 65.51% Isuzu Ascender SUV 2008 14.96% Lincoln Town Car Sedan 2011 7.3% Acura RL Sedan 2012 5.41% Ford Ranger SuperCab 2011 1.28% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 96.74% Chrysler Town and Country Minivan 2012 1.4% Infiniti G Coupe IPL 2012 0.48% Mercedes-Benz C-Class Sedan 2012 0.25% Mercedes-Benz E-Class Sedan 2012 0.19% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 Volvo C30 Hatchback 2012 75.18% BMW 1 Series Convertible 2012 13.04% smart fortwo Convertible 2012 2.08% Tesla Model S Sedan 2012 1.52% Audi TT RS Coupe 2012 1.29% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.97% Volvo XC90 SUV 2007 0.02% Jeep Compass SUV 2012 0.01% Dodge Dakota Club Cab 2007 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Dodge Charger Sedan 2012 41.97% Volvo 240 Sedan 1993 16.98% GMC Terrain SUV 2012 12.64% Honda Accord Sedan 2012 4.1% Hyundai Sonata Hybrid Sedan 2012 2.32% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 85.39% Audi TT Hatchback 2011 11.48% Jaguar XK XKR 2012 1.09% Chevrolet Corvette ZR1 2012 0.56% Bentley Continental Supersports Conv. Convertible 2012 0.31% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Volvo XC90 SUV 2007 0.0% Volvo 240 Sedan 1993 0.0% Audi V8 Sedan 1994 0.0% Jeep Grand Cherokee SUV 2012 0.0% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 99.67% Audi S4 Sedan 2007 0.32% Audi S5 Coupe 2012 0.0% Audi S4 Sedan 2012 0.0% Audi S6 Sedan 2011 0.0% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.93% BMW X5 SUV 2007 0.04% Chevrolet Avalanche Crew Cab 2012 0.01% GMC Acadia SUV 2012 0.0% Chevrolet TrailBlazer SS 2009 0.0% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Suzuki SX4 Hatchback 2012 51.87% Hyundai Elantra Sedan 2007 18.78% Dodge Caravan Minivan 1997 10.68% Mitsubishi Lancer Sedan 2012 7.66% Chrysler PT Cruiser Convertible 2008 3.74% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.91% Hyundai Santa Fe SUV 2012 0.03% Toyota 4Runner SUV 2012 0.02% Ford F-450 Super Duty Crew Cab 2012 0.01% Ford Expedition EL SUV 2009 0.01% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 50.97% Ford Focus Sedan 2007 6.09% Hyundai Elantra Sedan 2007 6.03% Honda Odyssey Minivan 2012 4.37% Chevrolet Impala Sedan 2007 4.25% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 AM General Hummer SUV 2000 44.14% Jeep Patriot SUV 2012 19.81% Jeep Grand Cherokee SUV 2012 19.67% Bentley Arnage Sedan 2009 6.71% Jeep Wrangler SUV 2012 4.68% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 43.18% Jeep Liberty SUV 2012 37.14% Ford Edge SUV 2012 12.58% Jeep Patriot SUV 2012 1.91% Dodge Durango SUV 2007 1.75% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Chevrolet Corvette ZR1 2012 86.84% Fisker Karma Sedan 2012 10.5% Chevrolet Corvette Convertible 2012 0.76% Audi R8 Coupe 2012 0.41% Chevrolet Camaro Convertible 2012 0.25% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Hyundai Azera Sedan 2012 23.9% smart fortwo Convertible 2012 10.12% BMW 6 Series Convertible 2007 6.29% Hyundai Sonata Sedan 2012 5.51% Hyundai Veloster Hatchback 2012 3.83% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Ferrari 458 Italia Convertible 2012 24.23% Chevrolet Corvette Convertible 2012 16.77% Dodge Charger Sedan 2012 13.49% Nissan NV Passenger Van 2012 9.33% Chevrolet HHR SS 2010 4.28% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Honda Odyssey Minivan 2012 84.86% Hyundai Tucson SUV 2012 5.87% BMW X6 SUV 2012 4.92% Scion xD Hatchback 2012 1.05% Nissan Juke Hatchback 2012 0.97% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 97.1% Honda Odyssey Minivan 2007 0.83% Acura RL Sedan 2012 0.46% Daewoo Nubira Wagon 2002 0.27% Hyundai Sonata Sedan 2012 0.27% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 96.87% Lamborghini Aventador Coupe 2012 3.11% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.02% Dodge Charger SRT-8 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 99.99% Ford Freestar Minivan 2007 0.01% Plymouth Neon Coupe 1999 0.0% Lincoln Town Car Sedan 2011 0.0% Eagle Talon Hatchback 1998 0.0% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 BMW X6 SUV 2012 80.75% Toyota 4Runner SUV 2012 5.79% Honda Odyssey Minivan 2012 3.14% Chevrolet TrailBlazer SS 2009 1.72% Buick Enclave SUV 2012 1.33% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 90.77% Lamborghini Aventador Coupe 2012 4.58% Bugatti Veyron 16.4 Coupe 2009 4.16% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.2% Spyker C8 Convertible 2009 0.07% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 79.44% AM General Hummer SUV 2000 17.92% Dodge Ram Pickup 3500 Quad Cab 2009 0.54% Jeep Patriot SUV 2012 0.29% GMC Terrain SUV 2012 0.27% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 27.8% BMW 1 Series Convertible 2012 27.02% BMW X6 SUV 2012 11.95% Dodge Journey SUV 2012 4.84% BMW 1 Series Coupe 2012 3.54% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler 300 SRT-8 2010 64.04% Mercedes-Benz S-Class Sedan 2012 31.74% Bentley Continental Flying Spur Sedan 2007 2.49% Buick Rainier SUV 2007 0.38% Volkswagen Beetle Hatchback 2012 0.34% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Scion xD Hatchback 2012 44.85% Hyundai Elantra Sedan 2007 37.34% Acura TSX Sedan 2012 6.26% Hyundai Accent Sedan 2012 6.0% Honda Odyssey Minivan 2012 1.05% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 97.43% Audi V8 Sedan 1994 0.7% Volvo XC90 SUV 2007 0.37% BMW 1 Series Coupe 2012 0.29% BMW 3 Series Sedan 2012 0.22% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Hyundai Sonata Sedan 2012 45.83% Ferrari FF Coupe 2012 20.79% Hyundai Elantra Sedan 2007 9.35% Ford GT Coupe 2006 5.95% FIAT 500 Abarth 2012 2.12% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Hyundai Veracruz SUV 2012 17.32% Infiniti QX56 SUV 2011 9.64% BMW X6 SUV 2012 8.26% Toyota Sequoia SUV 2012 4.72% Ford Edge SUV 2012 4.55% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Porsche Panamera Sedan 2012 35.05% Audi R8 Coupe 2012 24.69% BMW ActiveHybrid 5 Sedan 2012 24.61% Fisker Karma Sedan 2012 7.55% Audi TT Hatchback 2011 2.68% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Porsche Panamera Sedan 2012 19.5% Audi S5 Convertible 2012 7.85% BMW X3 SUV 2012 7.34% Chrysler Crossfire Convertible 2008 5.93% Suzuki SX4 Sedan 2012 5.69% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% BMW X5 SUV 2007 0.0% BMW X6 SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Cadillac SRX SUV 2012 10.25% Chrysler Sebring Convertible 2010 7.46% Bentley Continental Flying Spur Sedan 2007 6.5% smart fortwo Convertible 2012 6.02% Maybach Landaulet Convertible 2012 4.3% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 69.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 10.93% Bugatti Veyron 16.4 Convertible 2009 4.41% Bentley Continental Supersports Conv. Convertible 2012 3.29% Ford GT Coupe 2006 3.06% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 76.48% Ferrari 458 Italia Coupe 2012 7.0% Chevrolet TrailBlazer SS 2009 4.65% Jaguar XK XKR 2012 1.73% Dodge Challenger SRT8 2011 1.08% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2007 31.4% Ford F-150 Regular Cab 2012 24.95% Ford E-Series Wagon Van 2012 12.24% Dodge Ram Pickup 3500 Crew Cab 2010 5.14% Chevrolet Silverado 1500 Regular Cab 2012 4.58% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 Audi 100 Sedan 1994 19.75% Ram C/V Cargo Van Minivan 2012 7.18% BMW 3 Series Wagon 2012 7.06% BMW 1 Series Convertible 2012 6.92% Lincoln Town Car Sedan 2011 6.64% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Rolls-Royce Ghost Sedan 2012 45.06% Hyundai Genesis Sedan 2012 11.7% Toyota Camry Sedan 2012 7.14% Land Rover LR2 SUV 2012 4.24% Fisker Karma Sedan 2012 3.15% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 55.27% Audi TT Hatchback 2011 41.43% Cadillac CTS-V Sedan 2012 2.59% Ford GT Coupe 2006 0.23% Buick Regal GS 2012 0.17% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Malibu Hybrid Sedan 2010 65.05% Chevrolet Cobalt SS 2010 6.95% GMC Terrain SUV 2012 3.28% Nissan Juke Hatchback 2012 2.22% Buick Regal GS 2012 2.2% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin Virage Convertible 2012 96.5% Bentley Continental GT Coupe 2012 1.7% Aston Martin V8 Vantage Coupe 2012 1.38% Aston Martin V8 Vantage Convertible 2012 0.37% Jaguar XK XKR 2012 0.02% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 82.88% BMW 3 Series Wagon 2012 17.11% Dodge Magnum Wagon 2008 0.0% BMW 1 Series Coupe 2012 0.0% Volvo 240 Sedan 1993 0.0% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 98.24% Chevrolet Express Van 2007 1.04% Chevrolet Silverado 1500 Extended Cab 2012 0.31% Ford E-Series Wagon Van 2012 0.1% GMC Savana Van 2012 0.07% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 99.65% Jaguar XK XKR 2012 0.07% Acura TL Sedan 2012 0.03% Acura RL Sedan 2012 0.03% BMW M3 Coupe 2012 0.03% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Ghost Sedan 2012 70.47% Rolls-Royce Phantom Sedan 2012 29.45% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.04% Bentley Mulsanne Sedan 2011 0.03% Audi R8 Coupe 2012 0.0% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Volvo XC90 SUV 2007 0.0% Audi V8 Sedan 1994 0.0% GMC Terrain SUV 2012 0.0% Volvo 240 Sedan 1993 0.0% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford E-Series Wagon Van 2012 57.89% Chrysler Aspen SUV 2009 32.05% GMC Canyon Extended Cab 2012 3.27% Dodge Ram Pickup 3500 Quad Cab 2009 2.9% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.1% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 58.13% GMC Canyon Extended Cab 2012 10.77% Jeep Grand Cherokee SUV 2012 10.12% Dodge Dakota Crew Cab 2010 5.71% Dodge Ram Pickup 3500 Crew Cab 2010 5.38% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 64.03% Audi A5 Coupe 2012 5.06% Chevrolet HHR SS 2010 2.43% BMW 6 Series Convertible 2007 1.48% BMW 3 Series Wagon 2012 1.47% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Dodge Magnum Wagon 2008 54.35% Acura TSX Sedan 2012 13.06% Toyota Camry Sedan 2012 4.18% BMW ActiveHybrid 5 Sedan 2012 3.24% Jaguar XK XKR 2012 3.21% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 78.95% Buick Rainier SUV 2007 21.05% Hyundai Elantra Touring Hatchback 2012 0.01% BMW X5 SUV 2007 0.0% Volkswagen Golf Hatchback 2012 0.0% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 96.07% Bugatti Veyron 16.4 Convertible 2009 1.01% Tesla Model S Sedan 2012 0.92% Mercedes-Benz SL-Class Coupe 2009 0.46% Fisker Karma Sedan 2012 0.36% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Scion xD Hatchback 2012 30.04% Spyker C8 Coupe 2009 26.14% Ferrari California Convertible 2012 7.42% Eagle Talon Hatchback 1998 6.52% Ferrari 458 Italia Convertible 2012 4.02% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 BMW ActiveHybrid 5 Sedan 2012 78.88% BMW 3 Series Wagon 2012 6.56% BMW M3 Coupe 2012 6.42% Audi TT Hatchback 2011 1.53% Buick Verano Sedan 2012 1.17% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 99.99% Lamborghini Reventon Coupe 2008 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Lamborghini Diablo Coupe 2001 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Hyundai Veracruz SUV 2012 56.29% Scion xD Hatchback 2012 16.31% Chevrolet Traverse SUV 2012 4.36% Hyundai Santa Fe SUV 2012 2.49% Dodge Caravan Minivan 1997 1.96% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 BMW 3 Series Sedan 2012 31.27% Acura TSX Sedan 2012 12.97% BMW 1 Series Coupe 2012 6.66% Chevrolet Camaro Convertible 2012 5.31% Nissan 240SX Coupe 1998 4.7% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Toyota Camry Sedan 2012 71.16% Dodge Journey SUV 2012 7.6% Cadillac CTS-V Sedan 2012 5.78% Hyundai Genesis Sedan 2012 5.72% Infiniti G Coupe IPL 2012 5.06% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 100.0% Bentley Arnage Sedan 2009 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Continental GT Coupe 2007 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Spyker C8 Coupe 2009 49.1% Aston Martin Virage Coupe 2012 38.25% Hyundai Veloster Hatchback 2012 8.29% Spyker C8 Convertible 2009 1.43% smart fortwo Convertible 2012 0.98% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 89.78% Ford GT Coupe 2006 4.46% Lamborghini Aventador Coupe 2012 2.69% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.64% Audi R8 Coupe 2012 0.35% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Volkswagen Golf Hatchback 2012 18.83% Hyundai Tucson SUV 2012 13.2% Mitsubishi Lancer Sedan 2012 9.37% Hyundai Veloster Hatchback 2012 7.91% Volvo C30 Hatchback 2012 3.0% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 96.1% Honda Accord Sedan 2012 1.39% Chevrolet TrailBlazer SS 2009 0.92% Toyota 4Runner SUV 2012 0.25% Jeep Liberty SUV 2012 0.21% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 99.76% Volkswagen Golf Hatchback 2012 0.06% Hyundai Elantra Sedan 2007 0.05% Honda Odyssey Minivan 2012 0.04% Infiniti G Coupe IPL 2012 0.04% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 94.62% Chevrolet Corvette Convertible 2012 1.44% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.16% Geo Metro Convertible 1993 0.88% Lamborghini Diablo Coupe 2001 0.76% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 18.85% Volvo C30 Hatchback 2012 16.23% Dodge Caliber Wagon 2007 8.61% Dodge Magnum Wagon 2008 7.0% Bentley Continental Flying Spur Sedan 2007 5.31% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Nissan NV Passenger Van 2012 96.14% GMC Yukon Hybrid SUV 2012 1.17% Ford F-150 Regular Cab 2012 0.87% Chevrolet Silverado 1500 Regular Cab 2012 0.41% GMC Terrain SUV 2012 0.4% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 63.3% Chevrolet Camaro Convertible 2012 19.16% Dodge Journey SUV 2012 6.85% Mitsubishi Lancer Sedan 2012 3.39% Nissan 240SX Coupe 1998 0.97% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.79% GMC Yukon Hybrid SUV 2012 0.18% Cadillac SRX SUV 2012 0.02% BMW X5 SUV 2007 0.0% Ford Ranger SuperCab 2011 0.0% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW Z4 Convertible 2012 55.1% BMW 6 Series Convertible 2007 23.77% Aston Martin Virage Convertible 2012 8.37% BMW 1 Series Convertible 2012 7.76% Audi TT Hatchback 2011 0.91% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 25.94% Suzuki SX4 Sedan 2012 24.57% Honda Odyssey Minivan 2007 20.97% Ford Expedition EL SUV 2009 5.15% Honda Odyssey Minivan 2012 3.58% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Chevrolet Sonic Sedan 2012 72.49% Dodge Charger Sedan 2012 14.05% Ford Fiesta Sedan 2012 3.62% Toyota Corolla Sedan 2012 1.72% Buick Verano Sedan 2012 1.69% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 75.36% Ferrari 458 Italia Convertible 2012 22.8% Chevrolet Corvette Convertible 2012 1.45% Ferrari 458 Italia Coupe 2012 0.24% Chevrolet Corvette ZR1 2012 0.08% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 100.0% Rolls-Royce Phantom Sedan 2012 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Bentley Arnage Sedan 2009 0.0% Jeep Compass SUV 2012 0.0% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 67.66% Aston Martin Virage Coupe 2012 25.57% Chevrolet Corvette ZR1 2012 0.58% FIAT 500 Abarth 2012 0.56% Aston Martin Virage Convertible 2012 0.49% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.91% Chevrolet Express Cargo Van 2007 0.09% Chevrolet Express Van 2007 0.0% Ford E-Series Wagon Van 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Chrysler 300 SRT-8 2010 31.45% GMC Canyon Extended Cab 2012 20.3% Ford F-150 Regular Cab 2012 12.78% Toyota 4Runner SUV 2012 7.64% GMC Terrain SUV 2012 6.17% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Honda Odyssey Minivan 2012 18.24% Bugatti Veyron 16.4 Coupe 2009 15.5% Mitsubishi Lancer Sedan 2012 8.9% FIAT 500 Abarth 2012 8.62% Ferrari FF Coupe 2012 6.56% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Volvo 240 Sedan 1993 95.31% Dodge Dakota Crew Cab 2010 0.81% Chevrolet Silverado 2500HD Regular Cab 2012 0.33% Dodge Ram Pickup 3500 Quad Cab 2009 0.32% Eagle Talon Hatchback 1998 0.27% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 83.82% GMC Yukon Hybrid SUV 2012 9.33% Jeep Wrangler SUV 2012 5.2% Jeep Patriot SUV 2012 0.3% Jeep Compass SUV 2012 0.23% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Hyundai Veracruz SUV 2012 25.76% Chevrolet Impala Sedan 2007 20.09% Toyota 4Runner SUV 2012 18.94% GMC Acadia SUV 2012 4.98% Buick Rainier SUV 2007 4.89% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Volkswagen Golf Hatchback 1991 72.44% Audi V8 Sedan 1994 19.25% Honda Accord Sedan 2012 2.57% GMC Canyon Extended Cab 2012 2.1% Hyundai Santa Fe SUV 2012 0.68% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Bentley Mulsanne Sedan 2011 33.22% Chrysler PT Cruiser Convertible 2008 9.52% Hyundai Azera Sedan 2012 8.07% BMW 3 Series Sedan 2012 7.36% Honda Accord Sedan 2012 6.96% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 92.99% Hyundai Elantra Touring Hatchback 2012 2.83% Audi S6 Sedan 2011 0.81% Mercedes-Benz C-Class Sedan 2012 0.57% Plymouth Neon Coupe 1999 0.53% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Mercedes-Benz Sprinter Van 2012 53.88% Audi 100 Sedan 1994 45.8% Audi 100 Wagon 1994 0.22% Audi V8 Sedan 1994 0.05% Land Rover Range Rover SUV 2012 0.01% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 84.04% Jeep Patriot SUV 2012 6.83% BMW X5 SUV 2007 2.91% Chrysler 300 SRT-8 2010 1.21% Volvo 240 Sedan 1993 1.11% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Hyundai Genesis Sedan 2012 97.07% Dodge Ram Pickup 3500 Crew Cab 2010 1.02% Volkswagen Golf Hatchback 1991 0.45% Ford F-150 Regular Cab 2007 0.2% Dodge Charger Sedan 2012 0.18% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Nissan 240SX Coupe 1998 24.24% Bentley Continental Supersports Conv. Convertible 2012 7.33% Spyker C8 Convertible 2009 6.18% Plymouth Neon Coupe 1999 5.15% Eagle Talon Hatchback 1998 4.67% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 84.3% Honda Odyssey Minivan 2012 4.18% Chevrolet Malibu Hybrid Sedan 2010 3.63% Scion xD Hatchback 2012 1.92% Buick Regal GS 2012 1.17% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.37% Jeep Wrangler SUV 2012 0.34% GMC Yukon Hybrid SUV 2012 0.19% Jeep Compass SUV 2012 0.06% Jeep Liberty SUV 2012 0.04% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 98.51% Chevrolet Silverado 2500HD Regular Cab 2012 0.92% Dodge Dakota Club Cab 2007 0.22% GMC Canyon Extended Cab 2012 0.1% Dodge Ram Pickup 3500 Crew Cab 2010 0.1% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 BMW 1 Series Convertible 2012 26.91% Jaguar XK XKR 2012 20.74% Audi TT RS Coupe 2012 12.21% Audi TT Hatchback 2011 10.83% Infiniti G Coupe IPL 2012 2.79% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 97.19% GMC Terrain SUV 2012 2.59% Chevrolet Silverado 1500 Regular Cab 2012 0.07% GMC Canyon Extended Cab 2012 0.04% BMW X5 SUV 2007 0.03% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Acadia SUV 2012 13.68% Chevrolet Traverse SUV 2012 7.89% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.59% Rolls-Royce Ghost Sedan 2012 6.44% Chevrolet Malibu Hybrid Sedan 2010 6.08% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 74.81% Scion xD Hatchback 2012 3.71% Bugatti Veyron 16.4 Coupe 2009 3.18% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.76% Ford Fiesta Sedan 2012 1.33% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Honda Odyssey Minivan 2007 18.69% Suzuki SX4 Hatchback 2012 17.06% Dodge Journey SUV 2012 11.88% Scion xD Hatchback 2012 5.61% Nissan Juke Hatchback 2012 5.27% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 Audi TT RS Coupe 2012 95.91% Hyundai Sonata Hybrid Sedan 2012 1.23% Hyundai Veloster Hatchback 2012 0.83% Infiniti G Coupe IPL 2012 0.78% Jaguar XK XKR 2012 0.3% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 63.44% Hyundai Accent Sedan 2012 10.62% Acura RL Sedan 2012 7.52% Chevrolet Monte Carlo Coupe 2007 5.45% Toyota Camry Sedan 2012 3.92% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Acura TL Type-S 2008 31.8% Chrysler 300 SRT-8 2010 6.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.44% Honda Accord Sedan 2012 4.66% Land Rover LR2 SUV 2012 4.45% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Chrysler 300 SRT-8 2010 84.45% Bugatti Veyron 16.4 Coupe 2009 8.51% Ford Mustang Convertible 2007 4.4% Bentley Continental GT Coupe 2012 0.46% Bentley Mulsanne Sedan 2011 0.44% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 50.35% Chevrolet Silverado 1500 Regular Cab 2012 18.55% Ford F-450 Super Duty Crew Cab 2012 7.14% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.67% Toyota 4Runner SUV 2012 3.9% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Hyundai Azera Sedan 2012 66.06% Buick Verano Sedan 2012 17.05% Acura ZDX Hatchback 2012 8.67% Acura RL Sedan 2012 3.77% Infiniti G Coupe IPL 2012 3.45% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 94.14% Ford Focus Sedan 2007 3.74% Hyundai Elantra Touring Hatchback 2012 1.43% Hyundai Accent Sedan 2012 0.23% Nissan 240SX Coupe 1998 0.12% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 51.04% Chrysler Town and Country Minivan 2012 37.99% Suzuki SX4 Hatchback 2012 5.3% Dodge Caliber Wagon 2007 1.02% Honda Odyssey Minivan 2012 0.99% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 BMW 3 Series Sedan 2012 54.55% Honda Accord Coupe 2012 18.32% Hyundai Genesis Sedan 2012 11.95% Mercedes-Benz C-Class Sedan 2012 2.86% Acura TSX Sedan 2012 2.59% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 99.99% Acura TL Sedan 2012 0.0% Acura ZDX Hatchback 2012 0.0% Acura TSX Sedan 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi TTS Coupe 2012 99.88% Audi A5 Coupe 2012 0.08% Audi TT RS Coupe 2012 0.01% Audi S4 Sedan 2012 0.01% Audi S6 Sedan 2011 0.0% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Nissan 240SX Coupe 1998 24.33% Acura TL Type-S 2008 21.47% Ford Focus Sedan 2007 16.02% Eagle Talon Hatchback 1998 8.9% Plymouth Neon Coupe 1999 5.68% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 92.21% Hyundai Santa Fe SUV 2012 5.46% Mercedes-Benz SL-Class Coupe 2009 0.6% Audi TT Hatchback 2011 0.45% Hyundai Azera Sedan 2012 0.17% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.63% GMC Canyon Extended Cab 2012 0.29% Ford F-450 Super Duty Crew Cab 2012 0.07% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 99.86% Chrysler Sebring Convertible 2010 0.14% Mercedes-Benz C-Class Sedan 2012 0.0% Chrysler Crossfire Convertible 2008 0.0% Suzuki Kizashi Sedan 2012 0.0% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 97.46% Chevrolet Traverse SUV 2012 0.61% Hyundai Tucson SUV 2012 0.59% Ford Edge SUV 2012 0.55% Hyundai Santa Fe SUV 2012 0.23% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 82.02% Volvo C30 Hatchback 2012 17.05% Bentley Continental GT Coupe 2012 0.44% Buick Regal GS 2012 0.1% Dodge Magnum Wagon 2008 0.08% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Hyundai Elantra Touring Hatchback 2012 39.6% Eagle Talon Hatchback 1998 13.73% Audi 100 Wagon 1994 9.3% Chevrolet Corvette ZR1 2012 5.31% Plymouth Neon Coupe 1999 4.55% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 BMW 1 Series Convertible 2012 91.98% BMW 6 Series Convertible 2007 5.07% Honda Accord Coupe 2012 0.84% Honda Accord Sedan 2012 0.49% Chevrolet Malibu Sedan 2007 0.49% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet HHR SS 2010 76.75% Nissan NV Passenger Van 2012 4.06% Lincoln Town Car Sedan 2011 3.17% Dodge Magnum Wagon 2008 2.0% Nissan Leaf Hatchback 2012 1.83% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 97.05% Dodge Ram Pickup 3500 Crew Cab 2010 1.63% Dodge Ram Pickup 3500 Quad Cab 2009 0.44% Dodge Dakota Club Cab 2007 0.37% Rolls-Royce Phantom Sedan 2012 0.14% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Honda Odyssey Minivan 2012 36.03% Chevrolet Malibu Hybrid Sedan 2010 19.19% Acura TL Sedan 2012 9.37% Chrysler 300 SRT-8 2010 5.89% BMW 1 Series Coupe 2012 2.74% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 GMC Terrain SUV 2012 65.82% Dodge Charger Sedan 2012 12.1% Mitsubishi Lancer Sedan 2012 6.08% Dodge Magnum Wagon 2008 4.23% Chrysler 300 SRT-8 2010 3.43% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mazda Tribute SUV 2011 74.09% Toyota Sequoia SUV 2012 7.02% Cadillac SRX SUV 2012 6.79% BMW X3 SUV 2012 3.86% Hyundai Elantra Touring Hatchback 2012 1.79% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 85.26% Cadillac CTS-V Sedan 2012 11.22% Infiniti G Coupe IPL 2012 0.76% Mercedes-Benz S-Class Sedan 2012 0.54% Hyundai Azera Sedan 2012 0.28% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Canyon Extended Cab 2012 98.87% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.64% Ford F-450 Super Duty Crew Cab 2012 0.2% Ford F-150 Regular Cab 2012 0.1% Chevrolet Silverado 2500HD Regular Cab 2012 0.05% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Volvo C30 Hatchback 2012 56.21% Nissan 240SX Coupe 1998 7.22% Hyundai Elantra Touring Hatchback 2012 5.7% GMC Savana Van 2012 2.86% Audi R8 Coupe 2012 2.31% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Acura TL Type-S 2008 97.43% Audi S4 Sedan 2007 0.67% Jaguar XK XKR 2012 0.62% BMW M5 Sedan 2010 0.25% Chevrolet Sonic Sedan 2012 0.23% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 BMW M3 Coupe 2012 85.81% Volvo C30 Hatchback 2012 5.59% BMW 1 Series Coupe 2012 5.31% BMW 3 Series Sedan 2012 0.69% Dodge Magnum Wagon 2008 0.64% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 84.51% Bentley Continental GT Coupe 2012 7.88% Bentley Continental GT Coupe 2007 3.07% Audi A5 Coupe 2012 2.89% Ford Edge SUV 2012 0.34% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 90.46% Audi TTS Coupe 2012 8.86% Audi A5 Coupe 2012 0.36% Audi R8 Coupe 2012 0.17% Audi TT RS Coupe 2012 0.08% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Fisker Karma Sedan 2012 85.01% Aston Martin Virage Convertible 2012 3.46% Dodge Challenger SRT8 2011 2.85% Spyker C8 Coupe 2009 2.19% Porsche Panamera Sedan 2012 2.03% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Dodge Ram Pickup 3500 Quad Cab 2009 27.02% GMC Canyon Extended Cab 2012 19.26% HUMMER H3T Crew Cab 2010 16.62% Dodge Dakota Club Cab 2007 12.22% Chevrolet Avalanche Crew Cab 2012 6.87% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 49.76% GMC Canyon Extended Cab 2012 40.87% Chevrolet Silverado 1500 Extended Cab 2012 4.76% Ford F-150 Regular Cab 2007 3.2% Ford Ranger SuperCab 2011 0.48% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Jeep Liberty SUV 2012 99.97% Jeep Patriot SUV 2012 0.03% Mazda Tribute SUV 2011 0.0% Isuzu Ascender SUV 2008 0.0% Jeep Wrangler SUV 2012 0.0% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 83.64% Fisker Karma Sedan 2012 9.86% Audi TT Hatchback 2011 2.95% Audi R8 Coupe 2012 1.13% Buick Regal GS 2012 0.8% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Toyota Camry Sedan 2012 58.64% Suzuki Aerio Sedan 2007 36.56% BMW M5 Sedan 2010 1.68% Cadillac CTS-V Sedan 2012 0.71% Hyundai Accent Sedan 2012 0.47% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Cadillac CTS-V Sedan 2012 83.78% Porsche Panamera Sedan 2012 3.26% Dodge Challenger SRT8 2011 3.08% Ford Fiesta Sedan 2012 2.05% Mercedes-Benz SL-Class Coupe 2009 2.01% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 BMW 1 Series Coupe 2012 66.8% Audi 100 Sedan 1994 17.14% Volvo 240 Sedan 1993 6.94% Dodge Ram Pickup 3500 Quad Cab 2009 2.73% Audi V8 Sedan 1994 2.48% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.03% Daewoo Nubira Wagon 2002 0.42% Lincoln Town Car Sedan 2011 0.33% Ford Focus Sedan 2007 0.09% Hyundai Santa Fe SUV 2012 0.03% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 79.0% Ferrari 458 Italia Convertible 2012 5.53% Ford GT Coupe 2006 4.91% Mercedes-Benz 300-Class Convertible 1993 3.39% Ferrari California Convertible 2012 1.65% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Chevrolet HHR SS 2010 78.73% Dodge Ram Pickup 3500 Quad Cab 2009 20.92% Jeep Liberty SUV 2012 0.2% HUMMER H3T Crew Cab 2010 0.08% Dodge Dakota Club Cab 2007 0.03% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Audi S5 Convertible 2012 42.29% Jeep Compass SUV 2012 40.48% Chevrolet Sonic Sedan 2012 4.97% Audi TTS Coupe 2012 4.09% Rolls-Royce Ghost Sedan 2012 2.14% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% HUMMER H3T Crew Cab 2010 0.0% Bentley Arnage Sedan 2009 0.0% Isuzu Ascender SUV 2008 0.0% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 96.87% Dodge Ram Pickup 3500 Crew Cab 2010 1.28% Nissan NV Passenger Van 2012 0.54% Ford F-150 Regular Cab 2012 0.25% Toyota Sequoia SUV 2012 0.16% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 99.98% Porsche Panamera Sedan 2012 0.02% Hyundai Veloster Hatchback 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Acura TSX Sedan 2012 0.0% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Liberty SUV 2012 72.68% Jeep Grand Cherokee SUV 2012 25.1% Rolls-Royce Phantom Sedan 2012 0.81% Nissan NV Passenger Van 2012 0.53% Jeep Patriot SUV 2012 0.18% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Hyundai Elantra Sedan 2007 38.31% Honda Odyssey Minivan 2012 21.51% Ford Freestar Minivan 2007 13.32% Ferrari FF Coupe 2012 8.82% Hyundai Sonata Hybrid Sedan 2012 4.18% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi A5 Coupe 2012 44.05% Audi S6 Sedan 2011 26.24% Audi S4 Sedan 2012 9.37% Audi RS 4 Convertible 2008 5.67% Audi S5 Coupe 2012 4.85% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 BMW X6 SUV 2012 46.17% Dodge Caliber Wagon 2007 23.58% Jeep Grand Cherokee SUV 2012 18.57% GMC Acadia SUV 2012 5.02% Jeep Compass SUV 2012 3.83% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 38.76% Ford F-150 Regular Cab 2007 9.43% Chevrolet Silverado 1500 Extended Cab 2012 6.8% Chrysler 300 SRT-8 2010 5.99% Dodge Ram Pickup 3500 Quad Cab 2009 4.68% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Daewoo Nubira Wagon 2002 43.64% Maybach Landaulet Convertible 2012 11.71% GMC Acadia SUV 2012 6.21% Ram C/V Cargo Van Minivan 2012 5.58% Hyundai Elantra Touring Hatchback 2012 5.55% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Toyota Camry Sedan 2012 80.33% Toyota Corolla Sedan 2012 19.62% Hyundai Azera Sedan 2012 0.02% Acura TSX Sedan 2012 0.01% Hyundai Sonata Hybrid Sedan 2012 0.01% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Mercedes-Benz 300-Class Convertible 1993 95.66% Volvo 240 Sedan 1993 2.53% Ford Mustang Convertible 2007 0.33% Plymouth Neon Coupe 1999 0.31% Audi S4 Sedan 2007 0.29% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Chevrolet Malibu Sedan 2007 73.52% Honda Odyssey Minivan 2007 14.35% Chrysler Town and Country Minivan 2012 5.0% Dodge Caravan Minivan 1997 2.93% Ford Freestar Minivan 2007 1.92% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Toyota Sequoia SUV 2012 74.2% Mazda Tribute SUV 2011 16.52% Hyundai Veracruz SUV 2012 1.92% Nissan Juke Hatchback 2012 1.59% Hyundai Santa Fe SUV 2012 1.07% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 100.0% Acura TSX Sedan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% Toyota Camry Sedan 2012 0.0% Audi S5 Convertible 2012 0.0% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Porsche Panamera Sedan 2012 50.35% Volkswagen Beetle Hatchback 2012 24.58% Ferrari FF Coupe 2012 5.55% Volkswagen Golf Hatchback 2012 3.9% Buick Verano Sedan 2012 3.23% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Chevrolet Traverse SUV 2012 93.51% Hyundai Veloster Hatchback 2012 3.4% Hyundai Tucson SUV 2012 0.62% Dodge Journey SUV 2012 0.55% GMC Acadia SUV 2012 0.44% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 BMW 6 Series Convertible 2007 32.03% Dodge Charger SRT-8 2009 20.81% BMW M6 Convertible 2010 7.76% BMW M5 Sedan 2010 4.57% Audi RS 4 Convertible 2008 3.25% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Bentley Continental GT Coupe 2007 41.58% Mercedes-Benz 300-Class Convertible 1993 6.93% Dodge Caliber Wagon 2012 3.16% Bentley Arnage Sedan 2009 2.71% Bentley Continental Flying Spur Sedan 2007 2.46% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Audi 100 Wagon 1994 63.04% BMW 6 Series Convertible 2007 24.23% Buick Verano Sedan 2012 1.8% Audi V8 Sedan 1994 1.54% Chevrolet Malibu Sedan 2007 1.52% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Infiniti QX56 SUV 2011 42.85% Toyota Sequoia SUV 2012 36.81% Mercedes-Benz S-Class Sedan 2012 10.14% Dodge Durango SUV 2012 1.76% Cadillac SRX SUV 2012 1.63% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Nissan 240SX Coupe 1998 8.43% Audi R8 Coupe 2012 4.96% Ferrari 458 Italia Coupe 2012 4.0% Chevrolet Camaro Convertible 2012 3.84% Aston Martin Virage Coupe 2012 3.67% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 96.04% Spyker C8 Coupe 2009 3.26% Ford Edge SUV 2012 0.49% Hyundai Veloster Hatchback 2012 0.13% Hyundai Sonata Sedan 2012 0.03% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Toyota 4Runner SUV 2012 28.53% Hyundai Elantra Sedan 2007 27.57% Chevrolet Impala Sedan 2007 17.91% Land Rover LR2 SUV 2012 10.3% Hyundai Veracruz SUV 2012 4.8% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 48.31% Bentley Mulsanne Sedan 2011 23.66% Infiniti QX56 SUV 2011 19.7% Land Rover LR2 SUV 2012 1.41% GMC Terrain SUV 2012 1.18% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Cadillac CTS-V Sedan 2012 55.87% MINI Cooper Roadster Convertible 2012 21.02% Bugatti Veyron 16.4 Coupe 2009 11.48% GMC Yukon Hybrid SUV 2012 5.06% Ford GT Coupe 2006 1.96% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 22.56% Chrysler 300 SRT-8 2010 17.16% Jeep Liberty SUV 2012 5.09% Chrysler Town and Country Minivan 2012 4.19% Chrysler Aspen SUV 2009 3.79% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 98.89% Chevrolet Silverado 2500HD Regular Cab 2012 0.9% Dodge Ram Pickup 3500 Quad Cab 2009 0.2% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Dodge Charger Sedan 2012 72.77% Land Rover Range Rover SUV 2012 5.37% Ford Expedition EL SUV 2009 5.08% Hyundai Genesis Sedan 2012 3.18% HUMMER H3T Crew Cab 2010 2.03% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Scion xD Hatchback 2012 36.69% Hyundai Tucson SUV 2012 18.85% Toyota Sequoia SUV 2012 16.6% Dodge Journey SUV 2012 4.55% Buick Enclave SUV 2012 4.13% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Mitsubishi Lancer Sedan 2012 42.38% Aston Martin Virage Coupe 2012 26.66% McLaren MP4-12C Coupe 2012 25.19% Ford Edge SUV 2012 2.68% Bentley Continental GT Coupe 2012 1.14% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Audi TTS Coupe 2012 27.77% Audi S5 Coupe 2012 26.83% Audi TT Hatchback 2011 9.37% Audi RS 4 Convertible 2008 8.42% Audi A5 Coupe 2012 7.07% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 25.9% Lamborghini Aventador Coupe 2012 16.91% BMW Z4 Convertible 2012 15.29% BMW M3 Coupe 2012 12.21% Hyundai Veloster Hatchback 2012 11.0% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 BMW 1 Series Convertible 2012 29.46% Chrysler PT Cruiser Convertible 2008 15.35% Plymouth Neon Coupe 1999 9.96% Chrysler Sebring Convertible 2010 8.37% Honda Accord Coupe 2012 8.11% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 37.78% Audi 100 Wagon 1994 37.58% Dodge Caravan Minivan 1997 14.45% Suzuki Aerio Sedan 2007 4.94% Daewoo Nubira Wagon 2002 2.15% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 100.0% Volkswagen Beetle Hatchback 2012 0.0% Bentley Continental GT Coupe 2007 0.0% Volkswagen Golf Hatchback 2012 0.0% Chrysler Sebring Convertible 2010 0.0% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 100.0% GMC Savana Van 2012 0.0% Chevrolet Express Van 2007 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Geo Metro Convertible 1993 0.0% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Ford Ranger SuperCab 2011 0.0% Chrysler Aspen SUV 2009 0.0% GMC Savana Van 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Infiniti G Coupe IPL 2012 26.79% Acura TL Sedan 2012 13.2% Jaguar XK XKR 2012 8.56% BMW X6 SUV 2012 8.08% Acura RL Sedan 2012 5.33% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 97.32% Dodge Caliber Wagon 2012 1.7% Mitsubishi Lancer Sedan 2012 0.31% Hyundai Veloster Hatchback 2012 0.16% Jaguar XK XKR 2012 0.13% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 47.94% Jaguar XK XKR 2012 8.82% Infiniti G Coupe IPL 2012 6.1% Hyundai Veracruz SUV 2012 5.1% Aston Martin Virage Convertible 2012 3.42% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Dodge Charger SRT-8 2009 68.51% BMW 6 Series Convertible 2007 14.99% BMW Z4 Convertible 2012 7.11% Chevrolet Malibu Hybrid Sedan 2010 1.9% BMW 3 Series Sedan 2012 1.6% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 57.44% Dodge Dakota Crew Cab 2010 28.88% GMC Canyon Extended Cab 2012 5.44% Ford Freestar Minivan 2007 2.27% Audi 100 Sedan 1994 1.15% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 92.4% Chrysler 300 SRT-8 2010 2.96% Mercedes-Benz S-Class Sedan 2012 2.45% Rolls-Royce Phantom Sedan 2012 0.77% Mercedes-Benz C-Class Sedan 2012 0.24% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.85% Ford Fiesta Sedan 2012 0.1% Volkswagen Golf Hatchback 2012 0.02% Suzuki Aerio Sedan 2007 0.01% Hyundai Sonata Hybrid Sedan 2012 0.01% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.98% Ford F-150 Regular Cab 2007 0.01% Nissan NV Passenger Van 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% GMC Terrain SUV 2012 0.0% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 88.11% Lamborghini Aventador Coupe 2012 10.02% Ferrari 458 Italia Coupe 2012 1.81% BMW M3 Coupe 2012 0.02% Cadillac CTS-V Sedan 2012 0.02% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Plymouth Neon Coupe 1999 26.36% Scion xD Hatchback 2012 23.16% Volvo C30 Hatchback 2012 4.93% Ford GT Coupe 2006 4.56% Toyota Corolla Sedan 2012 3.82% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 52.45% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.69% Bugatti Veyron 16.4 Coupe 2009 4.67% smart fortwo Convertible 2012 3.7% Dodge Caravan Minivan 1997 2.75% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Malibu Hybrid Sedan 2010 50.44% Hyundai Tucson SUV 2012 30.34% Chevrolet Traverse SUV 2012 11.38% Chevrolet Avalanche Crew Cab 2012 3.9% Chevrolet Camaro Convertible 2012 1.16% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Chevrolet Corvette ZR1 2012 34.01% Chevrolet Corvette Ron Fellows Edition Z06 2007 21.12% Acura Integra Type R 2001 4.61% Spyker C8 Convertible 2009 4.21% Jaguar XK XKR 2012 3.36% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Chevrolet Impala Sedan 2007 16.43% Chevrolet TrailBlazer SS 2009 15.32% Ford Focus Sedan 2007 11.55% Buick Verano Sedan 2012 11.36% GMC Acadia SUV 2012 9.94% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chrysler Town and Country Minivan 2012 30.63% Ford F-150 Regular Cab 2012 24.88% Chrysler PT Cruiser Convertible 2008 20.7% GMC Terrain SUV 2012 18.08% Chrysler Aspen SUV 2009 0.96% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Mercedes-Benz Sprinter Van 2012 13.49% GMC Savana Van 2012 12.46% Volkswagen Golf Hatchback 2012 10.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.71% Mercedes-Benz S-Class Sedan 2012 5.76% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 40.63% BMW ActiveHybrid 5 Sedan 2012 12.54% Ferrari FF Coupe 2012 11.96% Audi TT Hatchback 2011 9.03% Tesla Model S Sedan 2012 5.7% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 52.21% Nissan 240SX Coupe 1998 19.18% Rolls-Royce Phantom Drophead Coupe Convertible 2012 16.04% Chevrolet Monte Carlo Coupe 2007 2.71% BMW 3 Series Sedan 2012 1.93% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Chevrolet HHR SS 2010 52.02% Hyundai Veloster Hatchback 2012 27.8% Volvo C30 Hatchback 2012 5.98% Lamborghini Diablo Coupe 2001 0.94% HUMMER H3T Crew Cab 2010 0.9% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 BMW 3 Series Sedan 2012 59.58% BMW 3 Series Wagon 2012 29.64% Acura TSX Sedan 2012 4.21% Hyundai Sonata Sedan 2012 3.71% BMW 1 Series Coupe 2012 0.78% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Acura Integra Type R 2001 20.8% Tesla Model S Sedan 2012 6.61% Audi S4 Sedan 2012 5.2% Rolls-Royce Ghost Sedan 2012 4.9% Chevrolet Camaro Convertible 2012 3.17% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Malibu Sedan 2007 35.16% Chevrolet Monte Carlo Coupe 2007 26.84% Ford Freestar Minivan 2007 25.65% Honda Odyssey Minivan 2007 3.31% Dodge Caravan Minivan 1997 2.53% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 38.41% Buick Regal GS 2012 22.05% Chevrolet Corvette ZR1 2012 8.14% Infiniti G Coupe IPL 2012 7.07% Dodge Challenger SRT8 2011 6.54% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Chevrolet Impala Sedan 2007 71.41% Hyundai Veracruz SUV 2012 17.82% Scion xD Hatchback 2012 2.25% Volkswagen Golf Hatchback 2012 1.33% Toyota Camry Sedan 2012 1.03% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 100.0% Infiniti G Coupe IPL 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Audi A5 Coupe 2012 0.0% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Buick Regal GS 2012 65.67% Hyundai Tucson SUV 2012 2.29% Suzuki SX4 Sedan 2012 2.2% BMW X3 SUV 2012 1.98% Buick Verano Sedan 2012 1.78% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 22.78% MINI Cooper Roadster Convertible 2012 7.04% Hyundai Veloster Hatchback 2012 5.89% Bugatti Veyron 16.4 Convertible 2009 5.58% Audi TT Hatchback 2011 3.66% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Plymouth Neon Coupe 1999 71.66% Eagle Talon Hatchback 1998 10.94% Lamborghini Reventon Coupe 2008 2.31% Mercedes-Benz S-Class Sedan 2012 0.85% Mercedes-Benz 300-Class Convertible 1993 0.84% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Lamborghini Aventador Coupe 2012 27.24% BMW M3 Coupe 2012 11.15% Nissan Juke Hatchback 2012 8.11% Audi R8 Coupe 2012 5.57% BMW ActiveHybrid 5 Sedan 2012 3.32% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Impala Sedan 2007 8.9% Chevrolet Malibu Sedan 2007 7.47% Chevrolet Monte Carlo Coupe 2007 6.88% Dodge Journey SUV 2012 6.35% Plymouth Neon Coupe 1999 4.94% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Hyundai Azera Sedan 2012 75.98% Toyota Corolla Sedan 2012 6.88% Hyundai Accent Sedan 2012 5.71% Toyota Camry Sedan 2012 5.12% Hyundai Sonata Hybrid Sedan 2012 4.87% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Jaguar XK XKR 2012 24.69% Chevrolet Corvette ZR1 2012 18.88% Ferrari California Convertible 2012 12.62% Audi S6 Sedan 2011 11.67% Chevrolet Corvette Convertible 2012 9.19% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 99.83% Audi R8 Coupe 2012 0.06% Audi TT Hatchback 2011 0.05% Buick Regal GS 2012 0.04% Rolls-Royce Ghost Sedan 2012 0.01% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Jeep Liberty SUV 2012 90.59% Jeep Patriot SUV 2012 3.47% Isuzu Ascender SUV 2008 2.0% Land Rover Range Rover SUV 2012 1.22% Volvo 240 Sedan 1993 0.77% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 98.25% Rolls-Royce Phantom Sedan 2012 0.75% Chrysler 300 SRT-8 2010 0.19% Chevrolet TrailBlazer SS 2009 0.12% Volvo 240 Sedan 1993 0.1% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Scion xD Hatchback 2012 47.69% Chevrolet Malibu Sedan 2007 19.96% Chevrolet Impala Sedan 2007 9.15% Mercedes-Benz Sprinter Van 2012 4.2% Suzuki SX4 Sedan 2012 1.95% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 96.92% GMC Yukon Hybrid SUV 2012 1.75% Chevrolet Malibu Sedan 2007 0.63% Chevrolet Silverado 1500 Extended Cab 2012 0.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.16% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Chevrolet Malibu Sedan 2007 8.61% Chevrolet HHR SS 2010 7.62% Audi S5 Coupe 2012 7.03% Chevrolet Express Cargo Van 2007 6.68% Ford GT Coupe 2006 6.59% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 21.65% smart fortwo Convertible 2012 21.48% GMC Savana Van 2012 19.88% Chevrolet Express Van 2007 16.12% Plymouth Neon Coupe 1999 2.65% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 BMW 6 Series Convertible 2007 19.67% Infiniti G Coupe IPL 2012 9.19% BMW M6 Convertible 2010 8.97% Lamborghini Reventon Coupe 2008 6.77% Nissan 240SX Coupe 1998 5.44% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Acadia SUV 2012 74.61% Buick Rainier SUV 2007 6.56% Land Rover LR2 SUV 2012 4.45% Hyundai Veracruz SUV 2012 2.81% Suzuki SX4 Hatchback 2012 2.36% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 61.32% Bugatti Veyron 16.4 Coupe 2009 11.14% Audi V8 Sedan 1994 7.04% Chevrolet Corvette ZR1 2012 5.37% Bentley Continental GT Coupe 2007 3.53% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 80.5% Dodge Ram Pickup 3500 Quad Cab 2009 19.5% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Canyon Extended Cab 2012 0.0% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Hyundai Elantra Touring Hatchback 2012 57.53% Plymouth Neon Coupe 1999 39.82% Daewoo Nubira Wagon 2002 1.4% Ford Focus Sedan 2007 0.35% Volkswagen Beetle Hatchback 2012 0.19% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Land Rover LR2 SUV 2012 37.51% Land Rover Range Rover SUV 2012 14.52% Ford Edge SUV 2012 9.66% Chevrolet HHR SS 2010 7.12% Chevrolet TrailBlazer SS 2009 4.12% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Bentley Continental GT Coupe 2007 56.76% BMW X6 SUV 2012 8.35% Jeep Grand Cherokee SUV 2012 6.0% Scion xD Hatchback 2012 4.23% Nissan Juke Hatchback 2012 3.08% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 Spyker C8 Convertible 2009 90.64% Nissan Juke Hatchback 2012 2.71% smart fortwo Convertible 2012 2.25% BMW 6 Series Convertible 2007 1.2% Hyundai Azera Sedan 2012 0.67% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Dodge Challenger SRT8 2011 29.63% Suzuki Kizashi Sedan 2012 16.6% Audi S4 Sedan 2007 15.93% Chevrolet Corvette ZR1 2012 12.65% Audi S6 Sedan 2011 5.62% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 82.77% Dodge Caliber Wagon 2012 5.11% Ford F-150 Regular Cab 2007 2.54% Dodge Ram Pickup 3500 Quad Cab 2009 2.49% Nissan NV Passenger Van 2012 1.22% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Audi S5 Convertible 2012 41.74% BMW 3 Series Sedan 2012 17.98% Audi S5 Coupe 2012 11.53% Acura RL Sedan 2012 9.71% BMW M3 Coupe 2012 3.57% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 BMW M5 Sedan 2010 24.47% Porsche Panamera Sedan 2012 7.96% Dodge Charger SRT-8 2009 7.86% Chrysler 300 SRT-8 2010 5.37% Bentley Arnage Sedan 2009 4.79% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Volvo 240 Sedan 1993 24.33% Eagle Talon Hatchback 1998 19.41% Porsche Panamera Sedan 2012 5.47% Honda Odyssey Minivan 2012 4.47% Mercedes-Benz 300-Class Convertible 1993 4.33% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Nissan Leaf Hatchback 2012 21.0% BMW 3 Series Sedan 2012 17.15% Volkswagen Beetle Hatchback 2012 9.45% Tesla Model S Sedan 2012 5.46% Hyundai Elantra Sedan 2007 3.87% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 Jeep Patriot SUV 2012 75.0% Jeep Liberty SUV 2012 8.89% Isuzu Ascender SUV 2008 4.65% AM General Hummer SUV 2000 2.47% HUMMER H3T Crew Cab 2010 2.03% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Dakota Club Cab 2007 41.67% Dodge Caliber Wagon 2007 28.02% Dodge Magnum Wagon 2008 11.68% Audi 100 Sedan 1994 10.88% Dodge Dakota Crew Cab 2010 5.61% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 100.0% Mazda Tribute SUV 2011 0.0% GMC Acadia SUV 2012 0.0% Scion xD Hatchback 2012 0.0% Chevrolet Traverse SUV 2012 0.0% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Fisker Karma Sedan 2012 20.64% Dodge Charger SRT-8 2009 12.35% BMW M6 Convertible 2010 12.06% Ferrari California Convertible 2012 9.37% Audi TTS Coupe 2012 8.3% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota 4Runner SUV 2012 47.64% Toyota Sequoia SUV 2012 26.82% GMC Yukon Hybrid SUV 2012 12.51% Land Rover Range Rover SUV 2012 7.95% Cadillac SRX SUV 2012 1.99% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Dakota Club Cab 2007 45.09% Chevrolet Silverado 1500 Extended Cab 2012 39.33% Chevrolet Avalanche Crew Cab 2012 5.98% Dodge Magnum Wagon 2008 4.29% Dodge Ram Pickup 3500 Quad Cab 2009 1.55% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Hyundai Veracruz SUV 2012 43.12% Nissan Juke Hatchback 2012 29.0% Toyota 4Runner SUV 2012 7.33% Dodge Journey SUV 2012 4.75% Suzuki SX4 Hatchback 2012 3.73% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.68% Jaguar XK XKR 2012 0.24% Audi R8 Coupe 2012 0.05% Bugatti Veyron 16.4 Convertible 2009 0.02% McLaren MP4-12C Coupe 2012 0.0% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Hyundai Elantra Touring Hatchback 2012 17.84% Nissan 240SX Coupe 1998 14.89% Eagle Talon Hatchback 1998 12.84% Aston Martin V8 Vantage Coupe 2012 11.98% Honda Accord Coupe 2012 7.23% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 99.91% BMW X3 SUV 2012 0.04% Jeep Compass SUV 2012 0.04% BMW X5 SUV 2007 0.0% BMW 1 Series Convertible 2012 0.0% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Hyundai Genesis Sedan 2012 29.37% Nissan 240SX Coupe 1998 16.6% Dodge Challenger SRT8 2011 15.96% Volvo 240 Sedan 1993 5.23% Daewoo Nubira Wagon 2002 3.58% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 94.92% Hyundai Sonata Sedan 2012 4.97% Hyundai Azera Sedan 2012 0.06% Hyundai Veracruz SUV 2012 0.03% Honda Odyssey Minivan 2012 0.01% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Spyker C8 Convertible 2009 21.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 13.33% Lamborghini Diablo Coupe 2001 5.25% Hyundai Veloster Hatchback 2012 4.97% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.94% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.17% Ford F-150 Regular Cab 2012 0.83% Ford E-Series Wagon Van 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.13% Dodge Caravan Minivan 1997 0.7% Eagle Talon Hatchback 1998 0.06% Chevrolet Impala Sedan 2007 0.05% Ford Focus Sedan 2007 0.03% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 100.0% Hyundai Elantra Touring Hatchback 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Ford Fiesta Sedan 2012 0.0% Scion xD Hatchback 2012 0.0% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 99.96% Chrysler Aspen SUV 2009 0.03% Dodge Caravan Minivan 1997 0.0% Dodge Journey SUV 2012 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Bentley Mulsanne Sedan 2011 50.61% Bentley Continental Flying Spur Sedan 2007 10.28% Chrysler 300 SRT-8 2010 3.25% Rolls-Royce Phantom Sedan 2012 2.92% Bentley Continental GT Coupe 2007 2.83% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Chevrolet Express Van 2007 48.19% Chevrolet Express Cargo Van 2007 19.12% Volkswagen Golf Hatchback 1991 7.88% GMC Savana Van 2012 2.18% Dodge Caravan Minivan 1997 1.92% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 40.07% Mitsubishi Lancer Sedan 2012 12.84% Dodge Caliber Wagon 2007 6.79% Chrysler PT Cruiser Convertible 2008 5.2% Chevrolet HHR SS 2010 3.78% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 11.24% Mercedes-Benz 300-Class Convertible 1993 5.89% Audi V8 Sedan 1994 3.6% Ford GT Coupe 2006 3.34% Rolls-Royce Phantom Sedan 2012 3.19% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Chevrolet Impala Sedan 2007 78.98% Mercedes-Benz 300-Class Convertible 1993 9.33% Honda Accord Sedan 2012 3.05% Audi S4 Sedan 2007 1.63% Lincoln Town Car Sedan 2011 1.44% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 72.2% Ford E-Series Wagon Van 2012 22.36% Ford Ranger SuperCab 2011 2.8% GMC Savana Van 2012 1.4% AM General Hummer SUV 2000 0.52% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 64.38% Rolls-Royce Ghost Sedan 2012 20.8% Audi R8 Coupe 2012 14.49% GMC Terrain SUV 2012 0.24% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 92.99% Acura Integra Type R 2001 3.49% Bentley Continental GT Coupe 2012 1.38% BMW 6 Series Convertible 2007 0.23% Chevrolet Express Cargo Van 2007 0.21% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 69.16% Geo Metro Convertible 1993 11.88% Nissan 240SX Coupe 1998 5.04% Eagle Talon Hatchback 1998 3.64% Acura Integra Type R 2001 2.23% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 20.7% Lamborghini Diablo Coupe 2001 18.69% Infiniti G Coupe IPL 2012 7.52% HUMMER H2 SUT Crew Cab 2009 5.51% smart fortwo Convertible 2012 2.49% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 82.03% Mitsubishi Lancer Sedan 2012 12.43% Acura TSX Sedan 2012 2.73% Mercedes-Benz E-Class Sedan 2012 0.59% Mercedes-Benz C-Class Sedan 2012 0.37% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 92.52% Scion xD Hatchback 2012 1.78% Chevrolet Impala Sedan 2007 1.51% Buick Enclave SUV 2012 1.45% Dodge Durango SUV 2012 1.11% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 69.07% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 28.17% Dodge Dakota Club Cab 2007 2.01% Chevrolet HHR SS 2010 0.3% Chevrolet Avalanche Crew Cab 2012 0.11% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 99.66% Bentley Mulsanne Sedan 2011 0.23% Chrysler 300 SRT-8 2010 0.05% Mercedes-Benz S-Class Sedan 2012 0.03% Dodge Durango SUV 2012 0.01% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Spyker C8 Convertible 2009 13.6% Eagle Talon Hatchback 1998 6.35% Bentley Continental Supersports Conv. Convertible 2012 6.06% Nissan 240SX Coupe 1998 4.11% Plymouth Neon Coupe 1999 3.58% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 94.14% Ferrari 458 Italia Convertible 2012 1.86% Lamborghini Reventon Coupe 2008 1.75% Tesla Model S Sedan 2012 1.14% Ferrari 458 Italia Coupe 2012 0.74% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 78.4% Dodge Ram Pickup 3500 Crew Cab 2010 11.27% HUMMER H3T Crew Cab 2010 6.79% GMC Canyon Extended Cab 2012 1.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.45% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 99.91% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.05% Geo Metro Convertible 1993 0.01% Audi RS 4 Convertible 2008 0.01% Acura TL Type-S 2008 0.01% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 95.34% Suzuki Aerio Sedan 2007 1.25% Chevrolet Camaro Convertible 2012 0.73% Geo Metro Convertible 1993 0.64% Ford Mustang Convertible 2007 0.53% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Fisker Karma Sedan 2012 42.19% Volvo 240 Sedan 1993 11.7% FIAT 500 Convertible 2012 10.97% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.25% Bugatti Veyron 16.4 Convertible 2009 6.27% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Honda Odyssey Minivan 2012 22.4% Infiniti QX56 SUV 2011 22.02% Toyota 4Runner SUV 2012 13.96% Ford Edge SUV 2012 8.4% Hyundai Sonata Hybrid Sedan 2012 6.82% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 43.09% Dodge Caliber Wagon 2007 38.43% Chevrolet Cobalt SS 2010 17.18% Chevrolet Monte Carlo Coupe 2007 0.68% Hyundai Elantra Sedan 2007 0.24% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Chevrolet Impala Sedan 2007 41.29% Hyundai Elantra Sedan 2007 21.66% Chevrolet Silverado 1500 Regular Cab 2012 15.74% Chevrolet Malibu Sedan 2007 12.05% Hyundai Veracruz SUV 2012 3.25% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Nissan 240SX Coupe 1998 28.57% Aston Martin Virage Convertible 2012 17.95% Spyker C8 Convertible 2009 12.54% Hyundai Sonata Sedan 2012 7.02% Acura Integra Type R 2001 3.69% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 BMW M6 Convertible 2010 16.79% Audi S5 Convertible 2012 14.04% Mitsubishi Lancer Sedan 2012 7.56% BMW 6 Series Convertible 2007 6.18% Aston Martin V8 Vantage Convertible 2012 4.21% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 29.2% Mazda Tribute SUV 2011 11.71% Toyota 4Runner SUV 2012 5.24% Land Rover Range Rover SUV 2012 4.12% GMC Canyon Extended Cab 2012 4.08% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 98.69% Scion xD Hatchback 2012 0.38% Hyundai Accent Sedan 2012 0.34% Chevrolet Sonic Sedan 2012 0.16% Hyundai Tucson SUV 2012 0.13% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Monte Carlo Coupe 2007 29.78% Infiniti G Coupe IPL 2012 29.5% Chevrolet Malibu Hybrid Sedan 2010 11.58% Chevrolet Malibu Sedan 2007 7.88% Mitsubishi Lancer Sedan 2012 5.71% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Infiniti G Coupe IPL 2012 25.6% FIAT 500 Convertible 2012 9.97% Bentley Continental Flying Spur Sedan 2007 5.84% Aston Martin Virage Coupe 2012 5.79% Spyker C8 Convertible 2009 5.42% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Coupe 2012 60.77% Dodge Charger Sedan 2012 22.4% Ferrari California Convertible 2012 7.53% Acura Integra Type R 2001 3.47% Chevrolet Corvette Convertible 2012 1.24% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 99.77% Hyundai Sonata Hybrid Sedan 2012 0.23% Hyundai Veloster Hatchback 2012 0.0% Hyundai Accent Sedan 2012 0.0% Hyundai Azera Sedan 2012 0.0% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S4 Sedan 2007 24.1% BMW ActiveHybrid 5 Sedan 2012 20.73% BMW X3 SUV 2012 10.37% Audi S4 Sedan 2012 8.03% Buick Regal GS 2012 2.77% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.67% Honda Odyssey Minivan 2007 0.1% Chevrolet Tahoe Hybrid SUV 2012 0.08% Hyundai Veracruz SUV 2012 0.05% Land Rover LR2 SUV 2012 0.03% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 45.21% Maybach Landaulet Convertible 2012 21.56% Infiniti G Coupe IPL 2012 6.54% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.59% Chevrolet Camaro Convertible 2012 3.56% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Porsche Panamera Sedan 2012 34.65% Bugatti Veyron 16.4 Coupe 2009 14.24% Hyundai Sonata Sedan 2012 10.81% Mitsubishi Lancer Sedan 2012 3.75% Audi R8 Coupe 2012 3.68% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Porsche Panamera Sedan 2012 34.23% Spyker C8 Convertible 2009 29.11% BMW 6 Series Convertible 2007 4.85% Bugatti Veyron 16.4 Coupe 2009 3.6% Lamborghini Reventon Coupe 2008 3.23% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 61.18% Dodge Charger SRT-8 2009 18.42% Chrysler 300 SRT-8 2010 15.45% Cadillac CTS-V Sedan 2012 2.54% Bentley Arnage Sedan 2009 1.53% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Dakota Club Cab 2007 41.67% Dodge Caliber Wagon 2007 28.02% Dodge Magnum Wagon 2008 11.68% Audi 100 Sedan 1994 10.88% Dodge Dakota Crew Cab 2010 5.61% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Bentley Mulsanne Sedan 2011 73.08% Infiniti QX56 SUV 2011 11.21% Buick Verano Sedan 2012 7.66% Bentley Continental GT Coupe 2012 4.34% Jeep Grand Cherokee SUV 2012 1.01% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 100.0% Hyundai Azera Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% Acura TSX Sedan 2012 0.0% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 69.74% Mitsubishi Lancer Sedan 2012 29.8% Dodge Caliber Wagon 2007 0.13% Bentley Continental GT Coupe 2007 0.13% Aston Martin Virage Coupe 2012 0.12% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 71.2% Bugatti Veyron 16.4 Convertible 2009 19.07% Ford GT Coupe 2006 5.74% Lamborghini Aventador Coupe 2012 3.12% Bugatti Veyron 16.4 Coupe 2009 0.29% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 AM General Hummer SUV 2000 99.61% Jeep Wrangler SUV 2012 0.29% HUMMER H3T Crew Cab 2010 0.04% Nissan NV Passenger Van 2012 0.03% HUMMER H2 SUT Crew Cab 2009 0.02% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 100.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Jeep Patriot SUV 2012 0.0% Cadillac SRX SUV 2012 0.0% Nissan NV Passenger Van 2012 0.0% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 25.56% Hyundai Veracruz SUV 2012 17.22% Hyundai Veloster Hatchback 2012 12.38% Mitsubishi Lancer Sedan 2012 6.98% smart fortwo Convertible 2012 4.23% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Bentley Continental GT Coupe 2007 20.88% Acura TSX Sedan 2012 14.3% Acura RL Sedan 2012 9.42% Jaguar XK XKR 2012 9.23% Buick Verano Sedan 2012 7.62% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 39.55% Acura TL Sedan 2012 28.54% Acura RL Sedan 2012 12.13% Audi TTS Coupe 2012 2.18% BMW ActiveHybrid 5 Sedan 2012 2.0% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 41.83% Mercedes-Benz SL-Class Coupe 2009 31.8% Porsche Panamera Sedan 2012 5.63% Hyundai Sonata Sedan 2012 2.91% Mitsubishi Lancer Sedan 2012 2.81% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 99.68% Dodge Charger Sedan 2012 0.12% Aston Martin V8 Vantage Convertible 2012 0.05% Jaguar XK XKR 2012 0.05% Ferrari California Convertible 2012 0.02% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Ford Fiesta Sedan 2012 99.83% Hyundai Tucson SUV 2012 0.13% Hyundai Elantra Touring Hatchback 2012 0.02% Hyundai Veloster Hatchback 2012 0.01% Hyundai Veracruz SUV 2012 0.0% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Buick Regal GS 2012 15.1% Nissan Juke Hatchback 2012 13.33% Rolls-Royce Ghost Sedan 2012 8.56% Suzuki Kizashi Sedan 2012 8.26% Bentley Continental GT Coupe 2012 5.75% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Bentley Arnage Sedan 2009 24.63% Buick Rainier SUV 2007 10.53% Chevrolet TrailBlazer SS 2009 10.12% GMC Acadia SUV 2012 8.61% Dodge Durango SUV 2007 5.33% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Honda Odyssey Minivan 2007 40.83% Dodge Caravan Minivan 1997 27.37% Ford Freestar Minivan 2007 7.92% Chrysler Town and Country Minivan 2012 7.53% Honda Odyssey Minivan 2012 5.86% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Audi R8 Coupe 2012 93.29% Audi V8 Sedan 1994 4.0% Audi 100 Sedan 1994 0.4% GMC Savana Van 2012 0.32% Volvo 240 Sedan 1993 0.31% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 Chevrolet Silverado 1500 Extended Cab 2012 37.79% GMC Canyon Extended Cab 2012 34.21% Dodge Dakota Club Cab 2007 15.93% Ford F-150 Regular Cab 2012 11.62% HUMMER H2 SUT Crew Cab 2009 0.21% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 17.06% GMC Savana Van 2012 15.3% Lincoln Town Car Sedan 2011 10.78% Volvo C30 Hatchback 2012 10.33% Chevrolet Avalanche Crew Cab 2012 7.87% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Porsche Panamera Sedan 2012 49.32% Audi RS 4 Convertible 2008 7.98% BMW M6 Convertible 2010 7.82% Infiniti G Coupe IPL 2012 5.31% Nissan Juke Hatchback 2012 3.8% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 75.16% Acura TL Type-S 2008 19.15% Honda Accord Sedan 2012 4.25% Dodge Caravan Minivan 1997 0.25% Nissan 240SX Coupe 1998 0.2% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Acura TL Type-S 2008 70.59% Mitsubishi Lancer Sedan 2012 3.86% Audi S4 Sedan 2007 2.78% Mercedes-Benz C-Class Sedan 2012 2.26% Ford F-150 Regular Cab 2007 2.17% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Chevrolet Sonic Sedan 2012 58.33% Hyundai Accent Sedan 2012 14.16% Nissan Juke Hatchback 2012 10.04% Jaguar XK XKR 2012 4.2% Audi TT RS Coupe 2012 2.84% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 99.91% Plymouth Neon Coupe 1999 0.05% Ferrari 458 Italia Coupe 2012 0.03% Chevrolet Impala Sedan 2007 0.01% Chevrolet Monte Carlo Coupe 2007 0.0% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 BMW X5 SUV 2007 56.71% Jeep Grand Cherokee SUV 2012 10.17% Ford Freestar Minivan 2007 7.85% Volvo XC90 SUV 2007 7.47% BMW X6 SUV 2012 6.82% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 55.49% HUMMER H3T Crew Cab 2010 15.47% Ford F-150 Regular Cab 2007 12.74% Toyota 4Runner SUV 2012 3.43% Hyundai Veracruz SUV 2012 2.0% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Wagon 2012 82.5% BMW 3 Series Sedan 2012 16.37% Volvo C30 Hatchback 2012 0.34% Chevrolet Sonic Sedan 2012 0.16% Dodge Magnum Wagon 2008 0.09% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 68.6% Jaguar XK XKR 2012 11.2% Ferrari 458 Italia Convertible 2012 8.45% Hyundai Sonata Hybrid Sedan 2012 2.89% Mercedes-Benz E-Class Sedan 2012 1.74% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Juke Hatchback 2012 19.3% Volkswagen Golf Hatchback 2012 6.79% Honda Accord Sedan 2012 5.76% Daewoo Nubira Wagon 2002 5.17% Acura TL Sedan 2012 5.03% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Ford Edge SUV 2012 63.64% Buick Regal GS 2012 9.24% Acura TL Sedan 2012 3.6% Acura TSX Sedan 2012 1.77% Audi TT Hatchback 2011 1.33% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.76% Chrysler Aspen SUV 2009 0.22% Dodge Durango SUV 2012 0.01% Dodge Caliber Wagon 2012 0.01% Mazda Tribute SUV 2011 0.0% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 98.56% Dodge Charger Sedan 2012 0.65% Honda Accord Coupe 2012 0.31% Eagle Talon Hatchback 1998 0.26% BMW Z4 Convertible 2012 0.05% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 93.65% Acura TL Sedan 2012 2.09% Hyundai Elantra Touring Hatchback 2012 1.95% Toyota Camry Sedan 2012 1.58% Ford Focus Sedan 2007 0.18% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Acura RL Sedan 2012 84.92% Infiniti G Coupe IPL 2012 13.34% Acura TL Sedan 2012 1.34% BMW M5 Sedan 2010 0.25% Suzuki Kizashi Sedan 2012 0.09% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Jaguar XK XKR 2012 28.57% Chevrolet TrailBlazer SS 2009 27.78% BMW M5 Sedan 2010 8.61% Chevrolet HHR SS 2010 6.84% Bugatti Veyron 16.4 Coupe 2009 5.98% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 92.98% Ford GT Coupe 2006 3.0% Acura Integra Type R 2001 1.83% Ferrari 458 Italia Coupe 2012 1.21% Ferrari 458 Italia Convertible 2012 0.25% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 38.02% Hyundai Elantra Touring Hatchback 2012 3.95% GMC Savana Van 2012 3.4% Hyundai Veloster Hatchback 2012 3.34% Ford E-Series Wagon Van 2012 3.26% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Audi V8 Sedan 1994 56.29% Plymouth Neon Coupe 1999 22.37% Audi 100 Wagon 1994 4.64% BMW 3 Series Sedan 2012 2.86% Daewoo Nubira Wagon 2002 2.42% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Acura RL Sedan 2012 46.58% Acura Integra Type R 2001 13.86% Suzuki Aerio Sedan 2007 10.62% Toyota Corolla Sedan 2012 4.45% Acura TL Type-S 2008 3.35% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 96.85% Ferrari California Convertible 2012 1.46% Ferrari FF Coupe 2012 0.56% Ferrari 458 Italia Convertible 2012 0.49% Scion xD Hatchback 2012 0.16% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Hyundai Veracruz SUV 2012 92.32% Toyota 4Runner SUV 2012 2.31% Acura TSX Sedan 2012 1.94% Ford Edge SUV 2012 1.62% Toyota Camry Sedan 2012 0.9% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Audi V8 Sedan 1994 20.06% Rolls-Royce Phantom Sedan 2012 6.54% HUMMER H2 SUT Crew Cab 2009 5.22% Chrysler 300 SRT-8 2010 3.38% Volkswagen Golf Hatchback 1991 3.17% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 HUMMER H2 SUT Crew Cab 2009 77.84% Isuzu Ascender SUV 2008 21.01% Volvo XC90 SUV 2007 0.34% HUMMER H3T Crew Cab 2010 0.32% Jeep Compass SUV 2012 0.12% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Suzuki SX4 Hatchback 2012 14.73% Dodge Caliber Wagon 2012 10.86% BMW 1 Series Convertible 2012 10.38% Dodge Caliber Wagon 2007 8.54% Hyundai Sonata Hybrid Sedan 2012 7.43% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Dodge Caravan Minivan 1997 23.95% Plymouth Neon Coupe 1999 14.99% Hyundai Santa Fe SUV 2012 6.48% Jaguar XK XKR 2012 4.63% Volkswagen Golf Hatchback 1991 4.33% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 59.24% Audi V8 Sedan 1994 16.96% BMW 3 Series Wagon 2012 13.59% Bentley Arnage Sedan 2009 3.85% Acura TL Sedan 2012 1.73% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 38.47% Aston Martin V8 Vantage Convertible 2012 11.3% Honda Accord Sedan 2012 8.47% Jaguar XK XKR 2012 4.85% Aston Martin Virage Coupe 2012 4.25% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 96.59% McLaren MP4-12C Coupe 2012 1.93% Lamborghini Aventador Coupe 2012 1.08% BMW M3 Coupe 2012 0.11% Ford GT Coupe 2006 0.09% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Hyundai Veloster Hatchback 2012 23.95% Bugatti Veyron 16.4 Convertible 2009 11.61% Hyundai Veracruz SUV 2012 9.17% Jaguar XK XKR 2012 5.52% Rolls-Royce Phantom Sedan 2012 4.31% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.79% Dodge Caravan Minivan 1997 0.14% Volkswagen Golf Hatchback 1991 0.04% Hyundai Santa Fe SUV 2012 0.02% Dodge Sprinter Cargo Van 2009 0.0% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 75.2% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 22.12% Ford Expedition EL SUV 2009 0.97% Chevrolet HHR SS 2010 0.88% HUMMER H3T Crew Cab 2010 0.25% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Hyundai Veloster Hatchback 2012 95.44% BMW 3 Series Sedan 2012 0.73% Bentley Continental GT Coupe 2012 0.6% Scion xD Hatchback 2012 0.46% Toyota Camry Sedan 2012 0.4% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.68% FIAT 500 Convertible 2012 0.17% Audi S5 Convertible 2012 0.03% Lamborghini Reventon Coupe 2008 0.03% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Dodge Caravan Minivan 1997 0.0% Chevrolet Corvette Convertible 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Plymouth Neon Coupe 1999 0.0% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 73.44% Spyker C8 Convertible 2009 14.77% Lamborghini Aventador Coupe 2012 8.97% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.27% Aston Martin Virage Coupe 2012 0.25% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 74.78% Dodge Sprinter Cargo Van 2009 25.18% Honda Accord Sedan 2012 0.03% Chrysler Town and Country Minivan 2012 0.01% Dodge Caravan Minivan 1997 0.0% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Bentley Continental Supersports Conv. Convertible 2012 21.01% Ram C/V Cargo Van Minivan 2012 11.87% Dodge Sprinter Cargo Van 2009 6.53% Rolls-Royce Phantom Sedan 2012 4.72% Lincoln Town Car Sedan 2011 3.59% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 94.13% Hyundai Accent Sedan 2012 3.01% Eagle Talon Hatchback 1998 0.89% Honda Accord Coupe 2012 0.53% Toyota Camry Sedan 2012 0.31% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.73% FIAT 500 Convertible 2012 0.09% Bugatti Veyron 16.4 Convertible 2009 0.09% smart fortwo Convertible 2012 0.05% MINI Cooper Roadster Convertible 2012 0.03% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 85.58% Buick Rainier SUV 2007 5.14% Jeep Patriot SUV 2012 1.87% Ford Freestar Minivan 2007 1.66% Nissan NV Passenger Van 2012 1.14% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 99.94% Hyundai Sonata Sedan 2012 0.05% Acura RL Sedan 2012 0.01% Acura TL Sedan 2012 0.0% Honda Accord Coupe 2012 0.0% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 29.06% Audi TT Hatchback 2011 20.51% Mercedes-Benz SL-Class Coupe 2009 10.01% Bugatti Veyron 16.4 Convertible 2009 6.12% Acura TSX Sedan 2012 3.76% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 86.46% Audi A5 Coupe 2012 8.83% Rolls-Royce Ghost Sedan 2012 4.05% Buick Regal GS 2012 0.14% Audi S4 Sedan 2007 0.11% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi R8 Coupe 2012 98.77% Audi TT Hatchback 2011 0.46% Audi S5 Convertible 2012 0.26% Audi TT RS Coupe 2012 0.19% Audi A5 Coupe 2012 0.06% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 74.57% Toyota Camry Sedan 2012 10.63% Chevrolet Malibu Sedan 2007 4.56% Hyundai Elantra Sedan 2007 3.52% Hyundai Veracruz SUV 2012 2.35% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Eagle Talon Hatchback 1998 40.85% Plymouth Neon Coupe 1999 34.99% GMC Savana Van 2012 7.84% Ford Focus Sedan 2007 6.62% Spyker C8 Coupe 2009 3.12% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 99.07% BMW X6 SUV 2012 0.92% Audi V8 Sedan 1994 0.0% BMW X3 SUV 2012 0.0% BMW 1 Series Coupe 2012 0.0% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Audi R8 Coupe 2012 25.17% Lamborghini Reventon Coupe 2008 11.74% Chrysler 300 SRT-8 2010 11.08% Aston Martin V8 Vantage Convertible 2012 9.34% Audi TTS Coupe 2012 8.95% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Porsche Panamera Sedan 2012 16.78% Spyker C8 Convertible 2009 10.27% Audi TT Hatchback 2011 8.87% Hyundai Tucson SUV 2012 5.9% Hyundai Veloster Hatchback 2012 5.31% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Audi TTS Coupe 2012 99.25% Fisker Karma Sedan 2012 0.24% Aston Martin Virage Convertible 2012 0.21% Infiniti G Coupe IPL 2012 0.17% Audi TT Hatchback 2011 0.03% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 GMC Terrain SUV 2012 20.92% Chrysler Aspen SUV 2009 13.65% Ford F-450 Super Duty Crew Cab 2012 8.43% Ford Ranger SuperCab 2011 7.46% Ford Edge SUV 2012 7.31% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 58.33% Bugatti Veyron 16.4 Convertible 2009 37.91% Bentley Continental Supersports Conv. Convertible 2012 1.51% Eagle Talon Hatchback 1998 0.53% Spyker C8 Convertible 2009 0.25% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Volvo 240 Sedan 1993 58.38% Buick Rainier SUV 2007 21.16% Rolls-Royce Ghost Sedan 2012 14.82% Audi 100 Sedan 1994 0.96% Volkswagen Golf Hatchback 1991 0.67% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 39.7% Mercedes-Benz 300-Class Convertible 1993 27.04% Chevrolet Silverado 2500HD Regular Cab 2012 10.62% MINI Cooper Roadster Convertible 2012 9.24% Bentley Continental Supersports Conv. Convertible 2012 3.31% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 84.69% Aston Martin Virage Coupe 2012 5.07% BMW 3 Series Wagon 2012 1.85% Mercedes-Benz S-Class Sedan 2012 1.32% Ford GT Coupe 2006 0.91% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 70.64% Nissan Leaf Hatchback 2012 9.21% Acura ZDX Hatchback 2012 6.55% Aston Martin Virage Convertible 2012 1.85% Acura TL Sedan 2012 1.74% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 91.64% Audi 100 Wagon 1994 7.21% Audi 100 Sedan 1994 0.4% Nissan 240SX Coupe 1998 0.39% Dodge Caravan Minivan 1997 0.28% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 33.28% Chevrolet Silverado 2500HD Regular Cab 2012 31.23% GMC Canyon Extended Cab 2012 21.81% Dodge Ram Pickup 3500 Quad Cab 2009 10.82% Ford F-150 Regular Cab 2007 1.33% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Charger Sedan 2012 35.35% Ferrari 458 Italia Coupe 2012 23.38% Volvo C30 Hatchback 2012 11.3% Ferrari 458 Italia Convertible 2012 9.8% Aston Martin Virage Coupe 2012 4.48% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Ferrari 458 Italia Coupe 2012 66.44% Ferrari California Convertible 2012 13.81% Dodge Charger Sedan 2012 7.28% Ferrari 458 Italia Convertible 2012 5.78% Chevrolet Corvette ZR1 2012 1.53% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Honda Odyssey Minivan 2012 45.7% Chevrolet Silverado 2500HD Regular Cab 2012 22.14% Ford Freestar Minivan 2007 5.38% Chevrolet Silverado 1500 Regular Cab 2012 4.97% Dodge Ram Pickup 3500 Crew Cab 2010 2.78% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.29% Audi R8 Coupe 2012 0.54% Bentley Mulsanne Sedan 2011 0.05% Rolls-Royce Ghost Sedan 2012 0.03% Hyundai Veloster Hatchback 2012 0.02% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Mazda Tribute SUV 2011 67.58% Toyota 4Runner SUV 2012 13.44% Suzuki SX4 Hatchback 2012 3.35% Nissan Juke Hatchback 2012 2.38% GMC Acadia SUV 2012 1.12% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Audi 100 Sedan 1994 34.88% Audi V8 Sedan 1994 24.45% Bentley Arnage Sedan 2009 13.9% Dodge Ram Pickup 3500 Quad Cab 2009 7.27% Acura RL Sedan 2012 3.09% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 67.61% Chrysler 300 SRT-8 2010 19.92% Buick Rainier SUV 2007 7.68% Volkswagen Golf Hatchback 1991 2.64% Dodge Dakota Club Cab 2007 0.5% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Jeep Patriot SUV 2012 59.62% Chevrolet TrailBlazer SS 2009 28.17% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.24% Bugatti Veyron 16.4 Coupe 2009 2.39% Land Rover Range Rover SUV 2012 1.52% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 95.68% Mercedes-Benz 300-Class Convertible 1993 3.47% Chevrolet Corvette Convertible 2012 0.63% Eagle Talon Hatchback 1998 0.12% Plymouth Neon Coupe 1999 0.06% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Volvo 240 Sedan 1993 90.61% Mercedes-Benz 300-Class Convertible 1993 4.45% Volkswagen Golf Hatchback 1991 1.88% Audi V8 Sedan 1994 1.57% Hyundai Elantra Touring Hatchback 2012 0.15% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Acura TL Sedan 2012 49.16% Volkswagen Golf Hatchback 2012 26.3% Volkswagen Beetle Hatchback 2012 9.87% Dodge Challenger SRT8 2011 6.26% Porsche Panamera Sedan 2012 2.35% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 100.0% Dodge Caravan Minivan 1997 0.0% Buick Rainier SUV 2007 0.0% Isuzu Ascender SUV 2008 0.0% Plymouth Neon Coupe 1999 0.0% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Chevrolet Impala Sedan 2007 39.77% Hyundai Veracruz SUV 2012 26.33% Ford Focus Sedan 2007 12.66% Audi 100 Sedan 1994 10.98% Audi 100 Wagon 1994 1.15% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 BMW 3 Series Sedan 2012 54.73% Aston Martin Virage Coupe 2012 35.44% Ford GT Coupe 2006 1.7% Volvo 240 Sedan 1993 1.48% BMW 3 Series Wagon 2012 1.26% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Chrysler Town and Country Minivan 2012 16.12% GMC Terrain SUV 2012 11.36% Dodge Journey SUV 2012 10.59% Ford Freestar Minivan 2007 9.03% Buick Rainier SUV 2007 6.61% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Buick Regal GS 2012 52.57% Buick Verano Sedan 2012 25.74% GMC Acadia SUV 2012 11.36% BMW X6 SUV 2012 5.33% Mazda Tribute SUV 2011 1.53% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 21.03% Fisker Karma Sedan 2012 14.08% Bentley Continental GT Coupe 2012 12.56% Porsche Panamera Sedan 2012 10.36% Dodge Challenger SRT8 2011 6.87% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 38.03% Ferrari California Convertible 2012 21.41% Chevrolet Corvette Convertible 2012 9.78% Ferrari 458 Italia Convertible 2012 8.24% smart fortwo Convertible 2012 2.92% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Chevrolet Impala Sedan 2007 28.02% Chevrolet Malibu Sedan 2007 23.84% Porsche Panamera Sedan 2012 9.89% Hyundai Santa Fe SUV 2012 8.27% Lincoln Town Car Sedan 2011 6.22% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Hyundai Azera Sedan 2012 50.62% Hyundai Santa Fe SUV 2012 10.07% Honda Accord Sedan 2012 9.23% Hyundai Genesis Sedan 2012 8.18% Mercedes-Benz S-Class Sedan 2012 2.26% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2012 59.97% Dodge Magnum Wagon 2008 9.05% Cadillac Escalade EXT Crew Cab 2007 6.89% GMC Yukon Hybrid SUV 2012 6.7% GMC Terrain SUV 2012 3.18% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 99.98% Dodge Magnum Wagon 2008 0.01% Mercedes-Benz S-Class Sedan 2012 0.0% Chevrolet Impala Sedan 2007 0.0% Chevrolet HHR SS 2010 0.0% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 82.49% Lamborghini Aventador Coupe 2012 14.05% Bugatti Veyron 16.4 Convertible 2009 2.11% Fisker Karma Sedan 2012 0.85% Ferrari California Convertible 2012 0.26% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Jeep Patriot SUV 2012 40.68% Jeep Liberty SUV 2012 20.48% Bentley Arnage Sedan 2009 10.27% Chrysler Aspen SUV 2009 8.23% Jeep Compass SUV 2012 7.14% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 100.0% BMW 6 Series Convertible 2007 0.0% BMW 3 Series Wagon 2012 0.0% BMW Z4 Convertible 2012 0.0% BMW M5 Sedan 2010 0.0% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Mercedes-Benz 300-Class Convertible 1993 87.18% Lincoln Town Car Sedan 2011 4.03% Chevrolet Malibu Sedan 2007 3.46% Dodge Magnum Wagon 2008 1.17% Chevrolet Monte Carlo Coupe 2007 0.84% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Audi S4 Sedan 2012 78.6% Bugatti Veyron 16.4 Coupe 2009 5.59% Ford Edge SUV 2012 3.52% Bentley Continental GT Coupe 2012 2.89% Audi R8 Coupe 2012 2.42% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Ford GT Coupe 2006 27.4% McLaren MP4-12C Coupe 2012 19.12% Spyker C8 Convertible 2009 15.85% Lamborghini Aventador Coupe 2012 9.67% Ferrari FF Coupe 2012 7.72% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% BMW Z4 Convertible 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Chrysler 300 SRT-8 2010 39.32% Mercedes-Benz S-Class Sedan 2012 20.12% BMW 6 Series Convertible 2007 12.3% Volvo XC90 SUV 2007 4.39% Chevrolet Corvette ZR1 2012 4.29% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.61% Nissan Leaf Hatchback 2012 0.32% Bugatti Veyron 16.4 Convertible 2009 0.03% Mercedes-Benz SL-Class Coupe 2009 0.02% Lamborghini Reventon Coupe 2008 0.01% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 86.77% Aston Martin V8 Vantage Coupe 2012 8.05% Aston Martin Virage Convertible 2012 3.37% Infiniti G Coupe IPL 2012 0.89% Maybach Landaulet Convertible 2012 0.17% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 96.94% GMC Savana Van 2012 2.45% Chevrolet Express Van 2007 0.54% Ford Ranger SuperCab 2011 0.04% Rolls-Royce Phantom Sedan 2012 0.01% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 29.58% Hyundai Azera Sedan 2012 28.08% Acura ZDX Hatchback 2012 4.87% Acura Integra Type R 2001 3.14% Hyundai Veloster Hatchback 2012 2.88% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Hyundai Elantra Sedan 2007 33.34% Chevrolet Traverse SUV 2012 23.53% Hyundai Sonata Hybrid Sedan 2012 21.38% Dodge Caravan Minivan 1997 8.4% Honda Odyssey Minivan 2012 2.28% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Jeep Patriot SUV 2012 52.4% Land Rover Range Rover SUV 2012 27.59% Bentley Arnage Sedan 2009 13.33% Rolls-Royce Phantom Sedan 2012 2.08% Jeep Liberty SUV 2012 0.62% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 97.11% Plymouth Neon Coupe 1999 1.76% Mercedes-Benz Sprinter Van 2012 0.43% Nissan Leaf Hatchback 2012 0.2% Honda Odyssey Minivan 2012 0.16% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Nissan 240SX Coupe 1998 58.91% Aston Martin V8 Vantage Coupe 2012 29.1% Chevrolet TrailBlazer SS 2009 4.22% Porsche Panamera Sedan 2012 2.13% Chrysler 300 SRT-8 2010 1.56% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 99.64% Chevrolet Monte Carlo Coupe 2007 0.17% Chevrolet Corvette Convertible 2012 0.04% Chrysler PT Cruiser Convertible 2008 0.03% Nissan 240SX Coupe 1998 0.03% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 BMW X5 SUV 2007 17.02% Suzuki SX4 Hatchback 2012 16.53% Geo Metro Convertible 1993 10.65% Nissan Juke Hatchback 2012 9.03% Honda Odyssey Minivan 2012 7.49% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Chevrolet HHR SS 2010 100.0% Dodge Magnum Wagon 2008 0.0% Dodge Journey SUV 2012 0.0% Buick Rainier SUV 2007 0.0% Dodge Charger SRT-8 2009 0.0% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 84.49% Bentley Continental Supersports Conv. Convertible 2012 5.27% Dodge Charger Sedan 2012 3.72% Chevrolet Corvette ZR1 2012 2.83% Eagle Talon Hatchback 1998 2.33% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.89% Chevrolet Silverado 1500 Regular Cab 2012 0.04% Dodge Ram Pickup 3500 Crew Cab 2010 0.01% Honda Odyssey Minivan 2012 0.01% Chrysler Town and Country Minivan 2012 0.01% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Hyundai Accent Sedan 2012 92.7% Hyundai Sonata Sedan 2012 2.25% Volkswagen Golf Hatchback 2012 1.66% Toyota Camry Sedan 2012 1.52% Honda Accord Sedan 2012 0.38% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 99.26% Rolls-Royce Ghost Sedan 2012 0.37% Rolls-Royce Phantom Sedan 2012 0.08% GMC Terrain SUV 2012 0.05% Audi A5 Coupe 2012 0.04% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Plymouth Neon Coupe 1999 47.93% Hyundai Elantra Touring Hatchback 2012 41.72% Chrysler 300 SRT-8 2010 7.83% Buick Rainier SUV 2007 1.23% Suzuki Kizashi Sedan 2012 0.67% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 94.23% BMW M5 Sedan 2010 1.02% Suzuki Kizashi Sedan 2012 0.84% Bugatti Veyron 16.4 Coupe 2009 0.75% Ford GT Coupe 2006 0.47% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Lamborghini Reventon Coupe 2008 44.64% Bugatti Veyron 16.4 Coupe 2009 16.61% Spyker C8 Convertible 2009 16.41% McLaren MP4-12C Coupe 2012 11.46% Ferrari 458 Italia Coupe 2012 1.42% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 29.06% Audi R8 Coupe 2012 28.7% Bugatti Veyron 16.4 Coupe 2009 20.71% Tesla Model S Sedan 2012 11.29% Hyundai Sonata Hybrid Sedan 2012 2.14% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Audi S5 Convertible 2012 38.59% Acura RL Sedan 2012 35.58% Audi 100 Wagon 1994 14.45% Jaguar XK XKR 2012 2.6% Suzuki SX4 Sedan 2012 1.05% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 99.47% GMC Acadia SUV 2012 0.44% Ford Ranger SuperCab 2011 0.04% Suzuki SX4 Hatchback 2012 0.02% Dodge Caliber Wagon 2007 0.01% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 87.12% Honda Accord Coupe 2012 8.99% Chevrolet Impala Sedan 2007 2.48% Mitsubishi Lancer Sedan 2012 0.65% Acura TSX Sedan 2012 0.3% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2007 48.04% Dodge Dakota Crew Cab 2010 45.18% GMC Terrain SUV 2012 1.48% Dodge Magnum Wagon 2008 1.47% Dodge Durango SUV 2012 0.79% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 99.89% Ferrari 458 Italia Coupe 2012 0.03% Aston Martin V8 Vantage Convertible 2012 0.03% Audi TT RS Coupe 2012 0.01% Ferrari 458 Italia Convertible 2012 0.01% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 99.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.16% Bugatti Veyron 16.4 Convertible 2009 0.08% Lamborghini Aventador Coupe 2012 0.03% Spyker C8 Coupe 2009 0.03% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 43.43% Ford F-150 Regular Cab 2007 23.8% Chevrolet Camaro Convertible 2012 11.78% Chrysler PT Cruiser Convertible 2008 4.2% HUMMER H2 SUT Crew Cab 2009 2.64% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.12% Honda Odyssey Minivan 2007 0.26% GMC Terrain SUV 2012 0.1% Scion xD Hatchback 2012 0.09% Hyundai Elantra Touring Hatchback 2012 0.08% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Aston Martin V8 Vantage Coupe 2012 10.82% Infiniti G Coupe IPL 2012 9.34% BMW M3 Coupe 2012 7.26% Nissan 240SX Coupe 1998 4.23% Hyundai Sonata Hybrid Sedan 2012 4.01% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 93.47% Ford Edge SUV 2012 1.58% Honda Odyssey Minivan 2012 1.33% Hyundai Accent Sedan 2012 1.28% Toyota Corolla Sedan 2012 0.65% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 15.58% Audi S6 Sedan 2011 15.43% Chrysler Aspen SUV 2009 4.85% BMW 3 Series Sedan 2012 4.58% Volvo 240 Sedan 1993 4.45% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 87.84% Hyundai Veloster Hatchback 2012 6.23% Chevrolet Corvette Convertible 2012 2.16% Spyker C8 Coupe 2009 0.9% McLaren MP4-12C Coupe 2012 0.61% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 98.69% BMW X6 SUV 2012 0.94% Eagle Talon Hatchback 1998 0.1% BMW X3 SUV 2012 0.06% Ford Fiesta Sedan 2012 0.04% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 41.88% Chevrolet Malibu Sedan 2007 32.38% Chevrolet Impala Sedan 2007 7.66% Plymouth Neon Coupe 1999 3.92% Volvo 240 Sedan 1993 3.71% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 29.28% Ford Edge SUV 2012 18.11% Nissan Leaf Hatchback 2012 9.26% FIAT 500 Abarth 2012 7.86% Spyker C8 Convertible 2009 4.63% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Hyundai Elantra Touring Hatchback 2012 36.77% Buick Enclave SUV 2012 27.19% Ford Mustang Convertible 2007 13.17% Volvo 240 Sedan 1993 5.23% Audi S6 Sedan 2011 5.21% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Bugatti Veyron 16.4 Coupe 2009 47.83% Bentley Continental Supersports Conv. Convertible 2012 6.83% Spyker C8 Coupe 2009 5.68% Lamborghini Aventador Coupe 2012 5.42% Ford GT Coupe 2006 3.61% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Toyota 4Runner SUV 2012 84.78% HUMMER H2 SUT Crew Cab 2009 4.66% Jeep Compass SUV 2012 2.98% Ford E-Series Wagon Van 2012 2.92% Cadillac Escalade EXT Crew Cab 2007 1.2% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Ford Mustang Convertible 2007 98.97% Eagle Talon Hatchback 1998 0.28% Chevrolet Camaro Convertible 2012 0.08% Mercedes-Benz 300-Class Convertible 1993 0.06% Nissan 240SX Coupe 1998 0.06% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 98.75% Chevrolet Express Cargo Van 2007 1.14% Chevrolet Express Van 2007 0.04% Ford E-Series Wagon Van 2012 0.03% Chevrolet Silverado 2500HD Regular Cab 2012 0.01% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Ford Fiesta Sedan 2012 70.0% Hyundai Veloster Hatchback 2012 28.88% Buick Regal GS 2012 0.38% Hyundai Tucson SUV 2012 0.19% Hyundai Azera Sedan 2012 0.14% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Suzuki Kizashi Sedan 2012 10.29% BMW 3 Series Wagon 2012 9.16% Chrysler Town and Country Minivan 2012 8.22% Mercedes-Benz E-Class Sedan 2012 5.89% Honda Odyssey Minivan 2012 5.86% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.5% Chevrolet Silverado 2500HD Regular Cab 2012 0.26% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.12% Chevrolet Express Cargo Van 2007 0.05% Chevrolet Express Van 2007 0.03% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Mitsubishi Lancer Sedan 2012 28.32% Chevrolet Impala Sedan 2007 15.21% Hyundai Sonata Sedan 2012 10.58% Ford Freestar Minivan 2007 7.99% Hyundai Sonata Hybrid Sedan 2012 7.57% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Ford F-150 Regular Cab 2007 93.63% Ford E-Series Wagon Van 2012 4.78% Dodge Ram Pickup 3500 Crew Cab 2010 0.63% Ford F-150 Regular Cab 2012 0.45% Ford Ranger SuperCab 2011 0.24% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 100.0% Jeep Liberty SUV 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% Nissan NV Passenger Van 2012 0.0% Jeep Wrangler SUV 2012 0.0% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Bentley Mulsanne Sedan 2011 99.4% Bentley Arnage Sedan 2009 0.27% BMW X5 SUV 2007 0.14% BMW X3 SUV 2012 0.09% Bentley Continental Supersports Conv. Convertible 2012 0.04% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Veracruz SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Toyota 4Runner SUV 2012 24.3% Chevrolet Tahoe Hybrid SUV 2012 19.23% BMW X6 SUV 2012 16.66% GMC Canyon Extended Cab 2012 13.85% Chevrolet Avalanche Crew Cab 2012 4.7% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 98.49% Land Rover Range Rover SUV 2012 0.5% Rolls-Royce Ghost Sedan 2012 0.35% Dodge Durango SUV 2012 0.21% Infiniti QX56 SUV 2011 0.18% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Plymouth Neon Coupe 1999 44.15% Chevrolet Express Van 2007 17.58% Nissan Leaf Hatchback 2012 9.23% Buick Rainier SUV 2007 3.35% Dodge Caravan Minivan 1997 3.08% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 91.55% Dodge Caliber Wagon 2007 6.28% Dodge Dakota Club Cab 2007 2.07% Dodge Journey SUV 2012 0.06% Isuzu Ascender SUV 2008 0.01% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.71% Chevrolet Corvette ZR1 2012 0.25% Chevrolet Monte Carlo Coupe 2007 0.02% Jaguar XK XKR 2012 0.01% Nissan Leaf Hatchback 2012 0.0% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.95% Chevrolet Silverado 1500 Regular Cab 2012 0.04% HUMMER H2 SUT Crew Cab 2009 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Isuzu Ascender SUV 2008 0.0% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 40.68% Infiniti G Coupe IPL 2012 34.76% Mercedes-Benz S-Class Sedan 2012 2.93% Suzuki Kizashi Sedan 2012 2.83% Cadillac CTS-V Sedan 2012 2.04% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 61.7% Bugatti Veyron 16.4 Convertible 2009 38.27% Mercedes-Benz SL-Class Coupe 2009 0.02% Spyker C8 Convertible 2009 0.01% Hyundai Veloster Hatchback 2012 0.0% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Hatchback 2012 66.58% Suzuki SX4 Sedan 2012 12.08% Volkswagen Beetle Hatchback 2012 10.37% Bentley Continental Flying Spur Sedan 2007 2.46% Daewoo Nubira Wagon 2002 2.03% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Chevrolet Corvette ZR1 2012 45.36% Mercedes-Benz S-Class Sedan 2012 15.99% Chevrolet Camaro Convertible 2012 13.19% Mercedes-Benz C-Class Sedan 2012 11.13% Nissan 240SX Coupe 1998 3.4% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Ford F-150 Regular Cab 2007 49.41% Dodge Ram Pickup 3500 Quad Cab 2009 18.04% Dodge Dakota Club Cab 2007 11.86% Chevrolet Silverado 1500 Extended Cab 2012 10.92% Lincoln Town Car Sedan 2011 3.64% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.99% Jeep Grand Cherokee SUV 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Toyota Sequoia SUV 2012 0.0% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 93.06% HUMMER H2 SUT Crew Cab 2009 6.12% GMC Canyon Extended Cab 2012 0.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.13% Ford F-450 Super Duty Crew Cab 2012 0.1% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 46.03% Jeep Compass SUV 2012 26.83% Jeep Wrangler SUV 2012 8.75% Dodge Durango SUV 2007 5.46% Jeep Liberty SUV 2012 3.28% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 97.06% Nissan 240SX Coupe 1998 1.58% Aston Martin V8 Vantage Coupe 2012 0.4% Hyundai Elantra Touring Hatchback 2012 0.17% Audi V8 Sedan 1994 0.16% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Jeep Grand Cherokee SUV 2012 92.03% Toyota Sequoia SUV 2012 1.2% Ford Freestar Minivan 2007 0.96% Dodge Ram Pickup 3500 Quad Cab 2009 0.62% Toyota 4Runner SUV 2012 0.61% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Maybach Landaulet Convertible 2012 86.64% Lamborghini Reventon Coupe 2008 1.57% FIAT 500 Abarth 2012 1.35% Ferrari FF Coupe 2012 0.96% Volkswagen Golf Hatchback 2012 0.93% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Ford F-150 Regular Cab 2007 41.57% Dodge Caravan Minivan 1997 12.86% Eagle Talon Hatchback 1998 11.15% Hyundai Tucson SUV 2012 6.17% Chevrolet Impala Sedan 2007 2.83% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Chrysler 300 SRT-8 2010 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Dodge Challenger SRT8 2011 99.62% FIAT 500 Abarth 2012 0.11% Dodge Charger Sedan 2012 0.08% Bugatti Veyron 16.4 Coupe 2009 0.05% Mitsubishi Lancer Sedan 2012 0.03% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 99.85% Ford Focus Sedan 2007 0.09% Hyundai Elantra Touring Hatchback 2012 0.01% Chevrolet Impala Sedan 2007 0.01% Daewoo Nubira Wagon 2002 0.01% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Nissan 240SX Coupe 1998 34.97% BMW X6 SUV 2012 10.95% Ferrari FF Coupe 2012 8.72% Hyundai Accent Sedan 2012 4.11% Dodge Caravan Minivan 1997 3.57% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 51.96% Hyundai Veloster Hatchback 2012 31.57% Geo Metro Convertible 1993 12.64% Acura Integra Type R 2001 1.76% Chevrolet Corvette ZR1 2012 0.46% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 97.16% Chevrolet Silverado 1500 Extended Cab 2012 1.8% Ford F-450 Super Duty Crew Cab 2012 0.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.16% Ford Ranger SuperCab 2011 0.1% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Dodge Caliber Wagon 2007 44.17% GMC Acadia SUV 2012 18.11% Ford Ranger SuperCab 2011 7.05% Cadillac SRX SUV 2012 5.89% Chrysler Town and Country Minivan 2012 3.19% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Lincoln Town Car Sedan 2011 68.89% Audi 100 Sedan 1994 13.74% Volvo 240 Sedan 1993 8.73% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.97% Chevrolet Impala Sedan 2007 0.96% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Bentley Mulsanne Sedan 2011 30.23% Rolls-Royce Phantom Sedan 2012 16.49% Rolls-Royce Ghost Sedan 2012 14.89% Bugatti Veyron 16.4 Convertible 2009 9.96% Audi R8 Coupe 2012 9.08% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Chevrolet Silverado 1500 Regular Cab 2012 67.76% Lincoln Town Car Sedan 2011 14.24% Chrysler 300 SRT-8 2010 5.36% Chevrolet Silverado 2500HD Regular Cab 2012 4.67% Chevrolet Monte Carlo Coupe 2007 3.91% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 BMW 6 Series Convertible 2007 31.06% Aston Martin Virage Coupe 2012 11.12% Aston Martin Virage Convertible 2012 9.2% Infiniti G Coupe IPL 2012 6.56% BMW 3 Series Wagon 2012 5.86% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 90.5% GMC Canyon Extended Cab 2012 7.6% HUMMER H3T Crew Cab 2010 1.34% Ford F-150 Regular Cab 2007 0.21% Ford Ranger SuperCab 2011 0.19% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 57.04% Bentley Continental GT Coupe 2007 16.51% Ferrari FF Coupe 2012 14.87% Ford GT Coupe 2006 3.54% Bentley Continental GT Coupe 2012 2.4% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Rolls-Royce Ghost Sedan 2012 62.68% Dodge Journey SUV 2012 5.42% Chevrolet TrailBlazer SS 2009 2.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.01% Rolls-Royce Phantom Sedan 2012 1.98% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Spyker C8 Convertible 2009 57.02% Volvo C30 Hatchback 2012 24.82% Nissan Juke Hatchback 2012 15.97% Spyker C8 Coupe 2009 0.62% Jeep Grand Cherokee SUV 2012 0.29% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 91.43% BMW 3 Series Sedan 2012 4.72% Ford Mustang Convertible 2007 0.48% BMW M6 Convertible 2010 0.34% Audi 100 Wagon 1994 0.29% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Plymouth Neon Coupe 1999 29.16% Mercedes-Benz Sprinter Van 2012 11.81% Dodge Caravan Minivan 1997 9.9% Audi V8 Sedan 1994 9.81% Hyundai Veracruz SUV 2012 6.68% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Silverado 1500 Extended Cab 2012 46.28% Dodge Sprinter Cargo Van 2009 23.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.43% Ford F-150 Regular Cab 2007 5.71% Dodge Ram Pickup 3500 Quad Cab 2009 3.17% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 93.18% Volvo C30 Hatchback 2012 4.7% Volkswagen Golf Hatchback 2012 0.8% Hyundai Elantra Touring Hatchback 2012 0.36% Dodge Caliber Wagon 2012 0.25% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 95.23% Chrysler 300 SRT-8 2010 1.74% Dodge Durango SUV 2007 1.21% Rolls-Royce Phantom Sedan 2012 0.98% Rolls-Royce Ghost Sedan 2012 0.22% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 93.74% Chevrolet Camaro Convertible 2012 1.14% Audi R8 Coupe 2012 0.78% Dodge Charger Sedan 2012 0.66% Dodge Magnum Wagon 2008 0.48% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bentley Continental Flying Spur Sedan 2007 36.79% Bentley Continental GT Coupe 2007 28.63% Suzuki Kizashi Sedan 2012 18.09% Infiniti G Coupe IPL 2012 4.95% Bentley Continental GT Coupe 2012 1.96% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Hyundai Sonata Sedan 2012 32.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 30.21% Hyundai Azera Sedan 2012 23.73% Hyundai Sonata Hybrid Sedan 2012 6.38% Jaguar XK XKR 2012 1.67% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H2 SUT Crew Cab 2009 29.18% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 17.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 15.44% Ford Ranger SuperCab 2011 7.99% Chevrolet Silverado 2500HD Regular Cab 2012 6.85% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.5% Hyundai Veloster Hatchback 2012 0.23% Bentley Continental Supersports Conv. Convertible 2012 0.05% Acura Integra Type R 2001 0.04% Maybach Landaulet Convertible 2012 0.03% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Sonata Sedan 2012 99.91% Honda Odyssey Minivan 2012 0.04% Hyundai Elantra Sedan 2007 0.03% Hyundai Azera Sedan 2012 0.01% Hyundai Sonata Hybrid Sedan 2012 0.0% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.95% Chevrolet Corvette ZR1 2012 0.03% Bugatti Veyron 16.4 Convertible 2009 0.01% Jaguar XK XKR 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H3T Crew Cab 2010 99.54% Dodge Ram Pickup 3500 Quad Cab 2009 0.29% HUMMER H2 SUT Crew Cab 2009 0.06% Dodge Dakota Crew Cab 2010 0.03% AM General Hummer SUV 2000 0.02% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Chevrolet Impala Sedan 2007 80.33% Daewoo Nubira Wagon 2002 10.41% Lincoln Town Car Sedan 2011 5.72% Honda Accord Sedan 2012 0.79% Suzuki SX4 Hatchback 2012 0.44% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 50.26% Volvo C30 Hatchback 2012 17.27% GMC Savana Van 2012 10.69% Chevrolet HHR SS 2010 9.0% Fisker Karma Sedan 2012 1.95% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.98% Dodge Sprinter Cargo Van 2009 0.02% Honda Accord Sedan 2012 0.0% Buick Rainier SUV 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 100.0% Chrysler Town and Country Minivan 2012 0.0% Chrysler Sebring Convertible 2010 0.0% Hyundai Azera Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 39.95% Nissan 240SX Coupe 1998 16.69% Lamborghini Reventon Coupe 2008 7.42% Mitsubishi Lancer Sedan 2012 4.86% Aston Martin V8 Vantage Coupe 2012 4.8% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 68.2% Toyota Corolla Sedan 2012 10.89% Hyundai Elantra Sedan 2007 7.9% Chevrolet Malibu Sedan 2007 6.11% Acura TSX Sedan 2012 2.39% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Ghost Sedan 2012 73.91% Rolls-Royce Phantom Sedan 2012 25.23% Dodge Charger Sedan 2012 0.5% Bentley Arnage Sedan 2009 0.13% Dodge Charger SRT-8 2009 0.06% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 66.26% BMW M5 Sedan 2010 32.24% BMW 6 Series Convertible 2007 0.21% BMW M6 Convertible 2010 0.13% Rolls-Royce Ghost Sedan 2012 0.12% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 69.58% Toyota Camry Sedan 2012 8.72% Chevrolet Sonic Sedan 2012 7.86% Chevrolet Camaro Convertible 2012 6.45% Nissan Leaf Hatchback 2012 1.22% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Acadia SUV 2012 23.17% GMC Yukon Hybrid SUV 2012 16.37% Chrysler Aspen SUV 2009 6.45% Buick Enclave SUV 2012 4.39% Volvo XC90 SUV 2007 4.24% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 BMW M3 Coupe 2012 99.1% BMW Z4 Convertible 2012 0.75% BMW 1 Series Coupe 2012 0.04% Dodge Charger Sedan 2012 0.03% BMW X3 SUV 2012 0.01% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Geo Metro Convertible 1993 8.91% Chevrolet Corvette Convertible 2012 4.0% Dodge Charger Sedan 2012 3.8% Ford GT Coupe 2006 3.77% Lamborghini Aventador Coupe 2012 3.66% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 92.29% Plymouth Neon Coupe 1999 2.11% Nissan 240SX Coupe 1998 2.0% Acura TSX Sedan 2012 1.1% Acura TL Sedan 2012 0.75% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Ford Freestar Minivan 2007 15.85% Hyundai Elantra Sedan 2007 13.88% Chevrolet Impala Sedan 2007 11.2% Chevrolet Malibu Sedan 2007 8.7% Lincoln Town Car Sedan 2011 5.86% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Bentley Arnage Sedan 2009 88.31% Bentley Continental Flying Spur Sedan 2007 8.13% Audi 100 Sedan 1994 1.25% Audi V8 Sedan 1994 0.99% Bentley Continental GT Coupe 2007 0.38% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 46.12% Chevrolet Express Cargo Van 2007 32.96% Chevrolet Express Van 2007 15.31% Buick Rainier SUV 2007 2.94% GMC Yukon Hybrid SUV 2012 1.11% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Bentley Continental Supersports Conv. Convertible 2012 72.73% Bentley Mulsanne Sedan 2011 9.59% Nissan NV Passenger Van 2012 4.32% Bentley Continental GT Coupe 2012 3.06% Bugatti Veyron 16.4 Convertible 2009 2.58% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Tahoe Hybrid SUV 2012 34.36% Chevrolet Silverado 1500 Extended Cab 2012 30.53% Chevrolet Avalanche Crew Cab 2012 27.82% Buick Rainier SUV 2007 4.41% Isuzu Ascender SUV 2008 0.99% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Spyker C8 Convertible 2009 93.75% Aston Martin V8 Vantage Convertible 2012 1.61% Bugatti Veyron 16.4 Coupe 2009 0.65% Suzuki Kizashi Sedan 2012 0.3% Audi RS 4 Convertible 2008 0.29% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 79.95% Audi 100 Sedan 1994 19.74% Volkswagen Golf Hatchback 1991 0.09% Audi 100 Wagon 1994 0.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Audi TT Hatchback 2011 88.93% Bentley Continental GT Coupe 2012 8.64% Audi TT RS Coupe 2012 0.96% Bentley Continental GT Coupe 2007 0.31% BMW ActiveHybrid 5 Sedan 2012 0.3% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Hyundai Santa Fe SUV 2012 28.4% Chevrolet Silverado 1500 Extended Cab 2012 16.43% Ford F-150 Regular Cab 2007 13.71% Ford Expedition EL SUV 2009 7.53% Ford F-150 Regular Cab 2012 7.45% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 55.88% Mercedes-Benz Sprinter Van 2012 40.5% Honda Accord Sedan 2012 1.68% Dodge Caravan Minivan 1997 0.62% Hyundai Veracruz SUV 2012 0.22% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 Chevrolet HHR SS 2010 92.56% GMC Savana Van 2012 7.42% Jeep Liberty SUV 2012 0.02% Chevrolet Tahoe Hybrid SUV 2012 0.0% Dodge Magnum Wagon 2008 0.0% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Cadillac CTS-V Sedan 2012 78.11% Chevrolet Corvette Convertible 2012 14.48% Hyundai Sonata Sedan 2012 2.29% Ferrari FF Coupe 2012 1.49% Hyundai Accent Sedan 2012 1.36% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 73.88% GMC Terrain SUV 2012 6.38% BMW X3 SUV 2012 5.11% Volvo XC90 SUV 2007 4.68% HUMMER H2 SUT Crew Cab 2009 3.03% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 99.43% Land Rover LR2 SUV 2012 0.21% Suzuki SX4 Hatchback 2012 0.11% Chevrolet HHR SS 2010 0.11% Hyundai Veloster Hatchback 2012 0.05% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Audi RS 4 Convertible 2008 19.3% Spyker C8 Convertible 2009 17.18% Jeep Compass SUV 2012 9.96% Audi S5 Convertible 2012 7.47% BMW X6 SUV 2012 6.38% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 96.32% Dodge Charger SRT-8 2009 1.29% Chrysler 300 SRT-8 2010 1.2% Chevrolet TrailBlazer SS 2009 0.46% Cadillac CTS-V Sedan 2012 0.33% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.94% Cadillac Escalade EXT Crew Cab 2007 0.02% Dodge Durango SUV 2007 0.01% Chrysler Town and Country Minivan 2012 0.01% Chevrolet Tahoe Hybrid SUV 2012 0.01% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Bentley Continental GT Coupe 2012 46.29% Bentley Mulsanne Sedan 2011 11.7% Mercedes-Benz 300-Class Convertible 1993 5.14% Bentley Continental GT Coupe 2007 3.24% Chevrolet Corvette ZR1 2012 3.18% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 21.73% Jeep Compass SUV 2012 18.16% GMC Terrain SUV 2012 17.09% Chrysler 300 SRT-8 2010 11.38% Suzuki Kizashi Sedan 2012 9.9% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 17.16% Nissan Leaf Hatchback 2012 15.32% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.21% Ferrari 458 Italia Coupe 2012 6.45% Rolls-Royce Ghost Sedan 2012 5.82% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 90.13% Hyundai Accent Sedan 2012 9.84% Hyundai Sonata Hybrid Sedan 2012 0.02% Hyundai Veloster Hatchback 2012 0.0% Toyota Camry Sedan 2012 0.0% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 97.3% Honda Odyssey Minivan 2012 2.54% Toyota 4Runner SUV 2012 0.11% Hyundai Sonata Sedan 2012 0.01% Toyota Camry Sedan 2012 0.01% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 83.77% Ford F-150 Regular Cab 2007 3.53% Scion xD Hatchback 2012 3.01% Dodge Caravan Minivan 1997 2.28% Chevrolet Traverse SUV 2012 1.66% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 77.55% Fisker Karma Sedan 2012 18.68% Jaguar XK XKR 2012 0.95% Acura ZDX Hatchback 2012 0.49% Hyundai Sonata Sedan 2012 0.43% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Canyon Extended Cab 2012 98.86% HUMMER H3T Crew Cab 2010 0.79% Chevrolet Silverado 1500 Extended Cab 2012 0.27% Dodge Ram Pickup 3500 Quad Cab 2009 0.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Honda Odyssey Minivan 2007 28.87% Honda Odyssey Minivan 2012 16.38% Mercedes-Benz 300-Class Convertible 1993 11.4% Chevrolet Malibu Sedan 2007 7.63% Acura TSX Sedan 2012 6.29% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 78.77% Infiniti QX56 SUV 2011 5.84% Chevrolet HHR SS 2010 2.89% BMW X6 SUV 2012 1.34% GMC Savana Van 2012 1.17% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 42.86% Dodge Caravan Minivan 1997 15.75% Hyundai Tucson SUV 2012 8.22% Plymouth Neon Coupe 1999 4.26% Daewoo Nubira Wagon 2002 4.16% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 89.59% Mercedes-Benz S-Class Sedan 2012 7.31% Infiniti QX56 SUV 2011 2.7% Toyota Sequoia SUV 2012 0.23% Dodge Ram Pickup 3500 Crew Cab 2010 0.05% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 96.29% Mazda Tribute SUV 2011 1.32% Dodge Ram Pickup 3500 Quad Cab 2009 1.08% Ford Ranger SuperCab 2011 0.53% Ford F-150 Regular Cab 2007 0.35% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Tesla Model S Sedan 2012 12.1% Hyundai Sonata Hybrid Sedan 2012 5.37% Mitsubishi Lancer Sedan 2012 4.88% Hyundai Azera Sedan 2012 4.64% Eagle Talon Hatchback 1998 4.5% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Ford E-Series Wagon Van 2012 19.31% Chevrolet TrailBlazer SS 2009 18.35% Chevrolet Silverado 2500HD Regular Cab 2012 16.98% Jeep Liberty SUV 2012 13.81% Chevrolet Silverado 1500 Regular Cab 2012 5.53% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 58.04% Audi S5 Convertible 2012 25.55% Chevrolet Corvette Convertible 2012 11.95% Acura TL Type-S 2008 4.17% Audi V8 Sedan 1994 0.07% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.71% Spyker C8 Convertible 2009 0.21% Bugatti Veyron 16.4 Coupe 2009 0.05% Spyker C8 Coupe 2009 0.02% GMC Savana Van 2012 0.0% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Chevrolet Malibu Hybrid Sedan 2010 67.32% Chevrolet Sonic Sedan 2012 7.26% Ford Focus Sedan 2007 6.7% Hyundai Sonata Sedan 2012 4.44% Honda Odyssey Minivan 2012 4.14% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.05% Hyundai Sonata Hybrid Sedan 2012 0.47% Aston Martin V8 Vantage Coupe 2012 0.22% Hyundai Veloster Hatchback 2012 0.14% Chevrolet Monte Carlo Coupe 2007 0.02% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Corvette Convertible 2012 96.84% Lamborghini Diablo Coupe 2001 0.8% Spyker C8 Convertible 2009 0.54% Chevrolet Cobalt SS 2010 0.45% smart fortwo Convertible 2012 0.33% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 79.13% Chevrolet Corvette Convertible 2012 14.52% Porsche Panamera Sedan 2012 2.63% Audi RS 4 Convertible 2008 1.96% Audi S5 Convertible 2012 1.1% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 90.07% GMC Savana Van 2012 4.58% Jeep Grand Cherokee SUV 2012 1.33% Ford Edge SUV 2012 0.75% AM General Hummer SUV 2000 0.41% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 100.0% Dodge Dakota Club Cab 2007 0.0% Audi 100 Sedan 1994 0.0% Audi 100 Wagon 1994 0.0% Isuzu Ascender SUV 2008 0.0% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Bentley Continental Flying Spur Sedan 2007 17.37% Mercedes-Benz E-Class Sedan 2012 13.82% BMW X3 SUV 2012 7.99% Hyundai Azera Sedan 2012 7.24% Acura RL Sedan 2012 5.24% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Acura Integra Type R 2001 15.19% Chevrolet Camaro Convertible 2012 12.86% Volvo 240 Sedan 1993 7.7% Maybach Landaulet Convertible 2012 4.44% Chevrolet Sonic Sedan 2012 3.74% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Dodge Durango SUV 2012 15.68% Buick Enclave SUV 2012 11.81% Hyundai Santa Fe SUV 2012 9.73% GMC Terrain SUV 2012 9.57% Cadillac Escalade EXT Crew Cab 2007 7.68% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 100.0% Hyundai Veracruz SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% GMC Terrain SUV 2012 0.0% Honda Odyssey Minivan 2007 0.0% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Ranger SuperCab 2011 53.99% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 25.15% Chevrolet Silverado 1500 Classic Extended Cab 2007 18.99% GMC Canyon Extended Cab 2012 0.73% Dodge Ram Pickup 3500 Quad Cab 2009 0.54% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.99% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Terrain SUV 2012 0.0% Nissan NV Passenger Van 2012 0.0% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Dakota Club Cab 2007 46.45% Dodge Dakota Crew Cab 2010 36.14% Dodge Durango SUV 2007 10.99% Chrysler Aspen SUV 2009 3.2% Dodge Durango SUV 2012 0.85% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Ford Freestar Minivan 2007 40.07% BMW X6 SUV 2012 10.9% Plymouth Neon Coupe 1999 10.21% Hyundai Elantra Sedan 2007 7.87% Chevrolet Monte Carlo Coupe 2007 4.68% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 61.44% Dodge Caliber Wagon 2007 30.41% BMW X6 SUV 2012 1.81% GMC Acadia SUV 2012 1.21% Chrysler Town and Country Minivan 2012 0.6% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 98.29% Bentley Arnage Sedan 2009 1.28% Bentley Continental Flying Spur Sedan 2007 0.43% Nissan NV Passenger Van 2012 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 94.07% GMC Canyon Extended Cab 2012 2.24% Land Rover LR2 SUV 2012 1.98% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.3% AM General Hummer SUV 2000 0.25% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 90.55% Chevrolet Express Cargo Van 2007 4.99% Chevrolet Express Van 2007 3.34% Ford Ranger SuperCab 2011 0.99% Buick Rainier SUV 2007 0.05% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Hyundai Tucson SUV 2012 11.56% Lamborghini Reventon Coupe 2008 11.2% Chrysler PT Cruiser Convertible 2008 8.73% Spyker C8 Convertible 2009 8.19% Aston Martin Virage Convertible 2012 6.23% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Hyundai Veracruz SUV 2012 40.92% Rolls-Royce Ghost Sedan 2012 5.94% Dodge Charger Sedan 2012 4.4% BMW X3 SUV 2012 3.61% Dodge Durango SUV 2012 3.57% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Dodge Dakota Crew Cab 2010 57.29% Jeep Compass SUV 2012 22.04% Jeep Grand Cherokee SUV 2012 6.98% Chevrolet Avalanche Crew Cab 2012 4.99% Rolls-Royce Ghost Sedan 2012 2.28% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 99.43% BMW M3 Coupe 2012 0.37% Ferrari 458 Italia Coupe 2012 0.15% Audi TT RS Coupe 2012 0.03% Ferrari California Convertible 2012 0.01% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Honda Odyssey Minivan 2012 33.66% Honda Accord Sedan 2012 21.06% Audi S5 Coupe 2012 15.88% Acura TSX Sedan 2012 3.4% Audi TT Hatchback 2011 3.32% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Chevrolet Sonic Sedan 2012 9.99% Hyundai Accent Sedan 2012 7.45% Chrysler 300 SRT-8 2010 7.08% Buick Regal GS 2012 3.82% Ford Edge SUV 2012 3.47% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Volvo XC90 SUV 2007 33.96% Ford Freestar Minivan 2007 26.48% Land Rover Range Rover SUV 2012 15.79% Mazda Tribute SUV 2011 5.77% Chrysler Town and Country Minivan 2012 5.61% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 BMW 3 Series Sedan 2012 12.56% Dodge Caliber Wagon 2007 10.82% BMW 3 Series Wagon 2012 6.01% Audi S4 Sedan 2012 5.61% Dodge Magnum Wagon 2008 5.25% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 100.0% Ford Edge SUV 2012 0.0% Hyundai Azera Sedan 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Nissan 240SX Coupe 1998 18.02% Volvo 240 Sedan 1993 16.84% BMW X5 SUV 2007 11.36% BMW 3 Series Wagon 2012 5.8% BMW Z4 Convertible 2012 3.81% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 83.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 8.49% Jaguar XK XKR 2012 1.41% Infiniti G Coupe IPL 2012 0.88% Nissan Leaf Hatchback 2012 0.86% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 99.65% Chevrolet Silverado 2500HD Regular Cab 2012 0.2% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.12% Dodge Ram Pickup 3500 Crew Cab 2010 0.02% Ford F-450 Super Duty Crew Cab 2012 0.0% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Hyundai Sonata Sedan 2012 64.06% Porsche Panamera Sedan 2012 7.81% Mercedes-Benz 300-Class Convertible 1993 7.65% Chevrolet Corvette ZR1 2012 6.94% BMW M5 Sedan 2010 1.75% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 86.79% Hyundai Sonata Hybrid Sedan 2012 8.63% Aston Martin V8 Vantage Coupe 2012 3.27% Volkswagen Golf Hatchback 2012 0.41% Hyundai Elantra Touring Hatchback 2012 0.12% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 48.74% Acura RL Sedan 2012 31.01% Mitsubishi Lancer Sedan 2012 3.77% Toyota Camry Sedan 2012 3.72% BMW 6 Series Convertible 2007 2.34% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 73.37% Acura TSX Sedan 2012 5.65% Toyota Corolla Sedan 2012 4.07% Chevrolet HHR SS 2010 2.7% Hyundai Accent Sedan 2012 2.36% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 99.99% Bentley Continental GT Coupe 2012 0.01% Buick Enclave SUV 2012 0.0% Bentley Continental GT Coupe 2007 0.0% Volkswagen Beetle Hatchback 2012 0.0% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Ford Edge SUV 2012 75.62% Hyundai Santa Fe SUV 2012 9.67% Ford Fiesta Sedan 2012 2.52% Honda Odyssey Minivan 2012 2.25% Hyundai Sonata Sedan 2012 1.84% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Hyundai Veloster Hatchback 2012 11.9% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.84% Buick Regal GS 2012 4.24% Ferrari FF Coupe 2012 4.12% Dodge Challenger SRT8 2011 3.65% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 99.95% FIAT 500 Abarth 2012 0.05% Bentley Continental GT Coupe 2012 0.0% GMC Savana Van 2012 0.0% Lamborghini Reventon Coupe 2008 0.0% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Audi S6 Sedan 2011 38.05% Audi TT Hatchback 2011 22.26% Bentley Arnage Sedan 2009 17.59% Nissan 240SX Coupe 1998 13.07% Chevrolet TrailBlazer SS 2009 3.82% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 98.49% Spyker C8 Coupe 2009 0.34% Lamborghini Aventador Coupe 2012 0.14% Fisker Karma Sedan 2012 0.13% McLaren MP4-12C Coupe 2012 0.12% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Nissan 240SX Coupe 1998 76.38% BMW M6 Convertible 2010 13.47% Dodge Journey SUV 2012 2.87% BMW 6 Series Convertible 2007 2.51% BMW M5 Sedan 2010 0.56% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 BMW 3 Series Wagon 2012 28.33% Acura RL Sedan 2012 8.88% Audi 100 Wagon 1994 8.81% BMW M3 Coupe 2012 7.72% BMW ActiveHybrid 5 Sedan 2012 5.94% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Chrysler Aspen SUV 2009 62.64% GMC Canyon Extended Cab 2012 10.87% Toyota Sequoia SUV 2012 7.33% Ford E-Series Wagon Van 2012 5.78% Land Rover Range Rover SUV 2012 3.22% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Honda Odyssey Minivan 2007 21.64% Scion xD Hatchback 2012 15.94% Hyundai Elantra Sedan 2007 11.79% Suzuki Aerio Sedan 2007 9.25% Ford Fiesta Sedan 2012 5.5% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 BMW 6 Series Convertible 2007 36.28% Mercedes-Benz SL-Class Coupe 2009 9.58% Spyker C8 Convertible 2009 5.66% BMW M6 Convertible 2010 5.64% Lamborghini Aventador Coupe 2012 4.48% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 96.67% Spyker C8 Coupe 2009 2.17% Lamborghini Diablo Coupe 2001 0.52% McLaren MP4-12C Coupe 2012 0.21% Aston Martin Virage Coupe 2012 0.11% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford F-150 Regular Cab 2007 0.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Dodge Dakota Club Cab 2007 0.0% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Suzuki SX4 Hatchback 2012 53.43% smart fortwo Convertible 2012 45.32% Geo Metro Convertible 1993 0.35% FIAT 500 Convertible 2012 0.28% Dodge Sprinter Cargo Van 2009 0.17% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 64.05% Hyundai Tucson SUV 2012 33.52% Hyundai Veracruz SUV 2012 0.85% Hyundai Santa Fe SUV 2012 0.52% GMC Acadia SUV 2012 0.4% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 98.0% Lamborghini Reventon Coupe 2008 0.55% Bugatti Veyron 16.4 Coupe 2009 0.52% smart fortwo Convertible 2012 0.15% Hyundai Sonata Hybrid Sedan 2012 0.09% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Impala Sedan 2007 52.99% Chevrolet Silverado 1500 Regular Cab 2012 30.24% Chevrolet TrailBlazer SS 2009 2.75% Chevrolet Sonic Sedan 2012 2.72% Scion xD Hatchback 2012 2.66% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 33.99% Infiniti G Coupe IPL 2012 21.49% Hyundai Azera Sedan 2012 18.11% Hyundai Veloster Hatchback 2012 4.49% Audi S5 Coupe 2012 4.38% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 94.93% Dodge Dakota Club Cab 2007 2.78% Audi 100 Wagon 1994 0.59% Ford Freestar Minivan 2007 0.39% Dodge Ram Pickup 3500 Quad Cab 2009 0.16% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Jeep Compass SUV 2012 69.68% Jeep Grand Cherokee SUV 2012 30.1% BMW X6 SUV 2012 0.12% BMW X3 SUV 2012 0.04% Bentley Arnage Sedan 2009 0.01% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Chevrolet TrailBlazer SS 2009 30.74% Hyundai Elantra Sedan 2007 15.52% Dodge Journey SUV 2012 15.33% Jaguar XK XKR 2012 9.71% Dodge Magnum Wagon 2008 8.97% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 18.08% Tesla Model S Sedan 2012 12.48% Hyundai Sonata Hybrid Sedan 2012 10.95% Spyker C8 Convertible 2009 8.47% Audi TTS Coupe 2012 7.73% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 90.28% BMW 6 Series Convertible 2007 5.06% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.38% Spyker C8 Convertible 2009 1.7% Mercedes-Benz SL-Class Coupe 2009 0.31% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Suzuki Kizashi Sedan 2012 30.57% Bentley Continental GT Coupe 2012 25.14% Bentley Continental GT Coupe 2007 12.75% Volvo C30 Hatchback 2012 3.67% Buick Regal GS 2012 2.32% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 39.54% Bentley Continental GT Coupe 2007 34.18% Infiniti G Coupe IPL 2012 22.73% Cadillac CTS-V Sedan 2012 0.76% Bentley Continental GT Coupe 2012 0.6% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 52.78% Chevrolet Silverado 2500HD Regular Cab 2012 31.77% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.76% Chevrolet Silverado 1500 Extended Cab 2012 2.45% GMC Canyon Extended Cab 2012 2.0% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 58.02% Bugatti Veyron 16.4 Coupe 2009 10.39% Aston Martin V8 Vantage Coupe 2012 7.34% Spyker C8 Convertible 2009 6.19% Chevrolet Corvette ZR1 2012 2.51% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 99.46% Cadillac SRX SUV 2012 0.27% Bentley Continental GT Coupe 2012 0.12% Ford GT Coupe 2006 0.02% Buick Regal GS 2012 0.02% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Dodge Ram Pickup 3500 Quad Cab 2009 73.11% Dodge Dakota Club Cab 2007 14.64% GMC Canyon Extended Cab 2012 2.81% Ford F-150 Regular Cab 2007 2.31% Audi 100 Sedan 1994 2.11% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Maybach Landaulet Convertible 2012 27.03% BMW Z4 Convertible 2012 26.8% Chevrolet Camaro Convertible 2012 12.71% Chrysler PT Cruiser Convertible 2008 4.62% AM General Hummer SUV 2000 4.61% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 BMW X3 SUV 2012 59.98% Dodge Magnum Wagon 2008 8.65% Jeep Compass SUV 2012 6.39% BMW X6 SUV 2012 4.83% Chevrolet Tahoe Hybrid SUV 2012 3.58% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Chevrolet Corvette ZR1 2012 70.19% FIAT 500 Abarth 2012 14.14% Dodge Challenger SRT8 2011 3.5% Dodge Charger Sedan 2012 2.45% Infiniti G Coupe IPL 2012 0.92% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 85.93% Mitsubishi Lancer Sedan 2012 3.55% Audi R8 Coupe 2012 3.2% Audi TT Hatchback 2011 2.79% Audi A5 Coupe 2012 2.35% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 40.86% Chevrolet Malibu Sedan 2007 37.34% Dodge Caravan Minivan 1997 17.36% Ford F-150 Regular Cab 2007 1.44% Hyundai Veracruz SUV 2012 0.32% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 52.43% Chevrolet Tahoe Hybrid SUV 2012 47.42% GMC Yukon Hybrid SUV 2012 0.09% Dodge Durango SUV 2012 0.03% Dodge Magnum Wagon 2008 0.01% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Nissan 240SX Coupe 1998 20.05% Infiniti G Coupe IPL 2012 9.13% Toyota Camry Sedan 2012 7.88% Chevrolet Malibu Hybrid Sedan 2010 7.07% Hyundai Accent Sedan 2012 5.33% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Jeep Liberty SUV 2012 38.49% Ford Edge SUV 2012 31.7% GMC Acadia SUV 2012 26.86% Hyundai Santa Fe SUV 2012 0.57% Toyota 4Runner SUV 2012 0.51% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Hyundai Accent Sedan 2012 12.85% BMW 1 Series Coupe 2012 11.18% Ford Focus Sedan 2007 9.39% Chevrolet Impala Sedan 2007 8.75% Acura TSX Sedan 2012 5.3% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 94.01% BMW 1 Series Coupe 2012 2.48% BMW X6 SUV 2012 0.9% BMW M3 Coupe 2012 0.75% BMW 1 Series Convertible 2012 0.52% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Chevrolet Malibu Sedan 2007 39.69% Jeep Compass SUV 2012 13.87% BMW X3 SUV 2012 11.45% BMW 3 Series Wagon 2012 8.13% Suzuki SX4 Hatchback 2012 4.31% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Bentley Mulsanne Sedan 2011 67.76% Rolls-Royce Phantom Sedan 2012 20.86% Rolls-Royce Ghost Sedan 2012 3.27% AM General Hummer SUV 2000 2.66% Bentley Arnage Sedan 2009 2.33% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Rolls-Royce Ghost Sedan 2012 78.56% BMW 3 Series Sedan 2012 19.97% Audi A5 Coupe 2012 0.9% Audi TTS Coupe 2012 0.26% Dodge Charger Sedan 2012 0.18% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 80.62% Cadillac CTS-V Sedan 2012 9.48% Bentley Continental GT Coupe 2012 6.8% GMC Yukon Hybrid SUV 2012 1.9% Bentley Continental Flying Spur Sedan 2007 0.53% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Hyundai Elantra Touring Hatchback 2012 34.18% Plymouth Neon Coupe 1999 18.23% Nissan 240SX Coupe 1998 14.94% Dodge Challenger SRT8 2011 9.33% Mercedes-Benz C-Class Sedan 2012 3.53% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 BMW 3 Series Sedan 2012 81.89% BMW 3 Series Wagon 2012 4.18% BMW 1 Series Coupe 2012 2.22% Volkswagen Golf Hatchback 2012 1.78% Audi TT Hatchback 2011 1.59% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 96.54% Rolls-Royce Ghost Sedan 2012 2.09% Dodge Magnum Wagon 2008 0.47% Audi S6 Sedan 2011 0.4% Infiniti QX56 SUV 2011 0.27% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 73.93% Rolls-Royce Ghost Sedan 2012 4.79% Dodge Durango SUV 2007 3.46% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.44% Rolls-Royce Phantom Sedan 2012 2.94% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 99.46% Acura TSX Sedan 2012 0.11% Chevrolet Malibu Sedan 2007 0.08% Hyundai Elantra Sedan 2007 0.07% Honda Accord Coupe 2012 0.06% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 68.8% Ford E-Series Wagon Van 2012 28.31% Isuzu Ascender SUV 2008 1.07% Toyota Sequoia SUV 2012 0.92% Land Rover Range Rover SUV 2012 0.54% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 41.25% Dodge Ram Pickup 3500 Quad Cab 2009 24.96% Chevrolet Silverado 1500 Extended Cab 2012 8.58% Chevrolet HHR SS 2010 4.63% Nissan NV Passenger Van 2012 3.68% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.62% Ford F-150 Regular Cab 2007 0.35% Dodge Dakota Club Cab 2007 0.01% Lincoln Town Car Sedan 2011 0.01% Jeep Patriot SUV 2012 0.0% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Nissan NV Passenger Van 2012 20.2% Isuzu Ascender SUV 2008 14.81% Dodge Dakota Crew Cab 2010 14.66% GMC Canyon Extended Cab 2012 14.65% Jeep Compass SUV 2012 11.34% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 GMC Yukon Hybrid SUV 2012 33.85% GMC Acadia SUV 2012 13.78% Rolls-Royce Ghost Sedan 2012 8.72% Jeep Patriot SUV 2012 6.32% Isuzu Ascender SUV 2008 4.9% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 87.92% Volvo XC90 SUV 2007 9.54% Chevrolet Silverado 1500 Extended Cab 2012 0.89% Chevrolet Avalanche Crew Cab 2012 0.67% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.43% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz 300-Class Convertible 1993 11.0% Honda Odyssey Minivan 2012 9.27% Honda Odyssey Minivan 2007 8.57% Hyundai Elantra Sedan 2007 7.8% Dodge Caravan Minivan 1997 5.03% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 93.36% Ford GT Coupe 2006 2.33% Volvo C30 Hatchback 2012 0.78% Scion xD Hatchback 2012 0.58% smart fortwo Convertible 2012 0.27% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chevrolet Impala Sedan 2007 89.99% Lincoln Town Car Sedan 2011 9.78% Volvo 240 Sedan 1993 0.09% Rolls-Royce Ghost Sedan 2012 0.08% Audi 100 Sedan 1994 0.05% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Dodge Caravan Minivan 1997 61.0% Tesla Model S Sedan 2012 20.55% Plymouth Neon Coupe 1999 7.17% Dodge Sprinter Cargo Van 2009 3.07% Hyundai Sonata Hybrid Sedan 2012 2.48% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 96.54% Hyundai Veracruz SUV 2012 3.35% Acura TL Sedan 2012 0.07% Acura ZDX Hatchback 2012 0.03% Hyundai Sonata Hybrid Sedan 2012 0.01% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Volvo C30 Hatchback 2012 82.44% Aston Martin Virage Coupe 2012 10.72% Hyundai Veloster Hatchback 2012 3.48% BMW M3 Coupe 2012 2.29% Spyker C8 Coupe 2009 0.26% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 97.6% Chevrolet Express Cargo Van 2007 1.39% Chevrolet Silverado 2500HD Regular Cab 2012 0.79% Chevrolet Express Van 2007 0.11% Chevrolet Silverado 1500 Regular Cab 2012 0.05% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Lamborghini Reventon Coupe 2008 27.33% Porsche Panamera Sedan 2012 24.64% Ferrari California Convertible 2012 3.47% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.46% Daewoo Nubira Wagon 2002 3.32% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Porsche Panamera Sedan 2012 43.49% Acura TSX Sedan 2012 12.6% Eagle Talon Hatchback 1998 6.14% Nissan 240SX Coupe 1998 5.04% Chevrolet Impala Sedan 2007 4.97% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 99.8% Chevrolet Traverse SUV 2012 0.1% Ford Edge SUV 2012 0.03% Honda Odyssey Minivan 2012 0.02% Hyundai Elantra Sedan 2007 0.02% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 76.56% Chevrolet Malibu Sedan 2007 20.61% Acura RL Sedan 2012 0.81% Honda Accord Coupe 2012 0.66% Toyota Camry Sedan 2012 0.22% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 34.36% Chevrolet Impala Sedan 2007 17.03% Honda Odyssey Minivan 2012 11.39% BMW 1 Series Convertible 2012 8.13% GMC Canyon Extended Cab 2012 6.93% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Mulsanne Sedan 2011 91.26% Bentley Continental GT Coupe 2012 6.24% Bentley Continental Supersports Conv. Convertible 2012 2.4% Ford GT Coupe 2006 0.08% BMW X6 SUV 2012 0.0% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Yukon Hybrid SUV 2012 64.7% Cadillac Escalade EXT Crew Cab 2007 35.3% Cadillac SRX SUV 2012 0.0% Chrysler 300 SRT-8 2010 0.0% Jeep Patriot SUV 2012 0.0% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Daewoo Nubira Wagon 2002 18.07% Volvo 240 Sedan 1993 10.86% Mercedes-Benz 300-Class Convertible 1993 8.3% Rolls-Royce Ghost Sedan 2012 7.92% Chevrolet Monte Carlo Coupe 2007 5.1% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 77.45% Infiniti G Coupe IPL 2012 6.15% Hyundai Sonata Sedan 2012 1.59% Chrysler Sebring Convertible 2010 0.96% Bentley Continental Flying Spur Sedan 2007 0.95% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Honda Odyssey Minivan 2012 39.2% BMW M3 Coupe 2012 13.81% Volkswagen Golf Hatchback 2012 13.47% Hyundai Sonata Hybrid Sedan 2012 6.27% Honda Odyssey Minivan 2007 6.17% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 57.04% Infiniti G Coupe IPL 2012 15.16% Audi S4 Sedan 2012 10.27% Buick Verano Sedan 2012 8.33% Toyota Camry Sedan 2012 2.58% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 44.55% GMC Yukon Hybrid SUV 2012 33.15% Jeep Patriot SUV 2012 3.71% Land Rover Range Rover SUV 2012 2.15% Rolls-Royce Phantom Sedan 2012 1.26% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Volvo 240 Sedan 1993 49.94% Audi V8 Sedan 1994 6.29% Mitsubishi Lancer Sedan 2012 6.06% HUMMER H3T Crew Cab 2010 4.78% Bentley Arnage Sedan 2009 4.54% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 24.39% Hyundai Sonata Hybrid Sedan 2012 7.26% Honda Accord Sedan 2012 6.8% Hyundai Sonata Sedan 2012 5.92% Honda Odyssey Minivan 2012 5.18% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 BMW X5 SUV 2007 88.01% Volkswagen Golf Hatchback 2012 11.25% BMW 3 Series Sedan 2012 0.19% Hyundai Santa Fe SUV 2012 0.13% Hyundai Veracruz SUV 2012 0.1% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 38.19% Volvo XC90 SUV 2007 36.45% Dodge Caliber Wagon 2007 13.52% BMW X6 SUV 2012 1.34% Acura ZDX Hatchback 2012 1.2% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 23.26% Chevrolet Silverado 1500 Extended Cab 2012 22.74% GMC Savana Van 2012 17.42% Chevrolet Silverado 1500 Classic Extended Cab 2007 15.54% GMC Canyon Extended Cab 2012 7.73% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Spyker C8 Coupe 2009 47.9% BMW X6 SUV 2012 14.01% Dodge Dakota Crew Cab 2010 8.26% Jeep Liberty SUV 2012 5.14% Hyundai Sonata Sedan 2012 4.71% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 88.8% GMC Yukon Hybrid SUV 2012 4.6% Mercedes-Benz S-Class Sedan 2012 1.71% Cadillac Escalade EXT Crew Cab 2007 1.06% Cadillac SRX SUV 2012 1.01% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Mercedes-Benz S-Class Sedan 2012 55.55% Chrysler Town and Country Minivan 2012 21.27% Chrysler Sebring Convertible 2010 9.23% Dodge Magnum Wagon 2008 0.81% Volkswagen Beetle Hatchback 2012 0.74% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Dakota Club Cab 2007 78.09% Dodge Durango SUV 2007 21.85% Dodge Caliber Wagon 2012 0.04% Chrysler Aspen SUV 2009 0.01% Dodge Caliber Wagon 2007 0.01% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Toyota Camry Sedan 2012 25.02% Infiniti G Coupe IPL 2012 19.26% Acura TL Sedan 2012 16.87% Toyota Corolla Sedan 2012 8.41% Hyundai Sonata Sedan 2012 7.84% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Lamborghini Reventon Coupe 2008 15.0% Aston Martin Virage Convertible 2012 9.58% Bugatti Veyron 16.4 Convertible 2009 7.45% Nissan Juke Hatchback 2012 4.77% Tesla Model S Sedan 2012 4.42% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Porsche Panamera Sedan 2012 67.15% Acura TL Sedan 2012 13.08% Hyundai Veracruz SUV 2012 12.42% Hyundai Sonata Sedan 2012 2.74% Acura TSX Sedan 2012 1.46% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 91.49% Hyundai Sonata Sedan 2012 4.8% Buick Regal GS 2012 1.97% Porsche Panamera Sedan 2012 0.54% Hyundai Sonata Hybrid Sedan 2012 0.51% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 46.44% Hyundai Azera Sedan 2012 12.06% Buick Regal GS 2012 4.15% Hyundai Sonata Sedan 2012 3.55% Spyker C8 Coupe 2009 3.27% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Flying Spur Sedan 2007 70.94% Ford GT Coupe 2006 18.66% Bentley Continental GT Coupe 2007 6.12% Chrysler 300 SRT-8 2010 2.2% Bentley Arnage Sedan 2009 1.12% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 72.07% HUMMER H3T Crew Cab 2010 22.64% HUMMER H2 SUT Crew Cab 2009 5.28% Jeep Wrangler SUV 2012 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 90.77% Plymouth Neon Coupe 1999 8.2% Buick Rainier SUV 2007 0.49% Chevrolet Impala Sedan 2007 0.39% Acura RL Sedan 2012 0.02% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Aventador Coupe 2012 99.78% Ferrari 458 Italia Convertible 2012 0.16% Ferrari 458 Italia Coupe 2012 0.06% Ferrari California Convertible 2012 0.0% Ford GT Coupe 2006 0.0% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Ford E-Series Wagon Van 2012 33.91% Isuzu Ascender SUV 2008 10.61% Ford F-150 Regular Cab 2007 10.22% GMC Canyon Extended Cab 2012 8.39% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.54% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Ford Focus Sedan 2007 37.61% Maybach Landaulet Convertible 2012 16.66% Acura Integra Type R 2001 9.72% Mercedes-Benz 300-Class Convertible 1993 7.11% Bentley Continental Flying Spur Sedan 2007 6.64% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bentley Mulsanne Sedan 2011 67.56% Cadillac CTS-V Sedan 2012 6.05% Porsche Panamera Sedan 2012 5.27% Volkswagen Beetle Hatchback 2012 4.1% Dodge Challenger SRT8 2011 3.67% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Jaguar XK XKR 2012 62.29% FIAT 500 Convertible 2012 8.71% Suzuki Kizashi Sedan 2012 7.29% Mercedes-Benz SL-Class Coupe 2009 6.12% BMW 3 Series Wagon 2012 5.31% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 78.8% GMC Savana Van 2012 21.06% Buick Rainier SUV 2007 0.06% Chevrolet Express Van 2007 0.04% Ford E-Series Wagon Van 2012 0.02% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Acura RL Sedan 2012 35.17% Audi 100 Sedan 1994 16.36% Honda Accord Coupe 2012 4.75% Lincoln Town Car Sedan 2011 3.33% Ram C/V Cargo Van Minivan 2012 3.14% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.66% Isuzu Ascender SUV 2008 0.21% Jeep Compass SUV 2012 0.12% Ram C/V Cargo Van Minivan 2012 0.01% Ford Freestar Minivan 2007 0.0% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.73% Ram C/V Cargo Van Minivan 2012 0.08% Honda Odyssey Minivan 2007 0.05% Daewoo Nubira Wagon 2002 0.02% Suzuki SX4 Sedan 2012 0.02% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Daewoo Nubira Wagon 2002 43.16% Aston Martin V8 Vantage Coupe 2012 24.01% Acura Integra Type R 2001 8.99% Plymouth Neon Coupe 1999 4.39% Chrysler PT Cruiser Convertible 2008 3.55% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 95.88% Honda Accord Coupe 2012 2.91% Chrysler Sebring Convertible 2010 0.56% Plymouth Neon Coupe 1999 0.26% Jaguar XK XKR 2012 0.17% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Honda Odyssey Minivan 2012 16.53% Acura ZDX Hatchback 2012 14.68% BMW X6 SUV 2012 13.86% Dodge Durango SUV 2012 9.55% Toyota 4Runner SUV 2012 8.97% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 84.21% Ford GT Coupe 2006 3.28% FIAT 500 Abarth 2012 1.56% Chevrolet Corvette ZR1 2012 1.08% Infiniti G Coupe IPL 2012 0.94% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 98.27% Jeep Patriot SUV 2012 1.73% Bentley Arnage Sedan 2009 0.0% Jeep Grand Cherokee SUV 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Ford F-150 Regular Cab 2007 24.94% Chrysler Aspen SUV 2009 7.64% Ford F-150 Regular Cab 2012 6.06% Chevrolet Silverado 1500 Regular Cab 2012 5.7% Dodge Durango SUV 2012 3.82% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 52.42% Nissan Juke Hatchback 2012 20.02% Audi S5 Convertible 2012 7.83% Chevrolet Corvette Convertible 2012 2.39% Honda Accord Sedan 2012 2.21% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.97% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.03% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Chevrolet Express Van 2007 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 Hyundai Veloster Hatchback 2012 35.7% Fisker Karma Sedan 2012 20.22% Suzuki Kizashi Sedan 2012 13.69% Volvo C30 Hatchback 2012 4.5% smart fortwo Convertible 2012 3.24% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 65.55% Jeep Compass SUV 2012 23.15% Bentley Arnage Sedan 2009 10.48% Jeep Grand Cherokee SUV 2012 0.71% Jeep Patriot SUV 2012 0.06% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 18.53% Dodge Caravan Minivan 1997 10.22% Chrysler PT Cruiser Convertible 2008 6.08% Dodge Durango SUV 2012 5.57% Chrysler Town and Country Minivan 2012 5.56% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Buick Regal GS 2012 89.4% BMW 1 Series Coupe 2012 8.12% BMW M3 Coupe 2012 1.33% Buick Verano Sedan 2012 0.35% Cadillac CTS-V Sedan 2012 0.3% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Bentley Mulsanne Sedan 2011 52.37% Ferrari FF Coupe 2012 7.18% Bentley Arnage Sedan 2009 5.71% Porsche Panamera Sedan 2012 5.66% Bentley Continental GT Coupe 2012 4.31% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 37.95% Dodge Dakota Club Cab 2007 24.84% Dodge Dakota Crew Cab 2010 19.83% Ford Freestar Minivan 2007 11.03% Chevrolet Avalanche Crew Cab 2012 2.67% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 34.39% Hyundai Veracruz SUV 2012 16.91% Ford Fiesta Sedan 2012 13.99% Chrysler Sebring Convertible 2010 4.47% Hyundai Santa Fe SUV 2012 3.75% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 74.01% Ferrari 458 Italia Convertible 2012 8.91% Chevrolet Corvette Convertible 2012 5.08% Ferrari 458 Italia Coupe 2012 1.93% Aston Martin Virage Coupe 2012 1.42% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Durango SUV 2007 0.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Acura RL Sedan 2012 62.18% BMW ActiveHybrid 5 Sedan 2012 7.09% Acura ZDX Hatchback 2012 6.97% Hyundai Azera Sedan 2012 5.12% Nissan Juke Hatchback 2012 2.42% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Audi R8 Coupe 2012 20.91% Bugatti Veyron 16.4 Coupe 2009 11.19% Spyker C8 Convertible 2009 8.34% Eagle Talon Hatchback 1998 5.14% Porsche Panamera Sedan 2012 4.07% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Toyota Corolla Sedan 2012 42.19% Dodge Caravan Minivan 1997 37.78% Honda Odyssey Minivan 2012 10.59% Chevrolet Malibu Sedan 2007 6.86% Honda Accord Coupe 2012 0.95% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 85.67% Audi V8 Sedan 1994 14.32% Volvo 240 Sedan 1993 0.01% Plymouth Neon Coupe 1999 0.0% Ford Ranger SuperCab 2011 0.0% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 Ford GT Coupe 2006 17.11% Cadillac CTS-V Sedan 2012 11.17% Bugatti Veyron 16.4 Convertible 2009 10.93% MINI Cooper Roadster Convertible 2012 9.05% Bentley Continental Supersports Conv. Convertible 2012 9.03% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 98.79% Audi RS 4 Convertible 2008 0.69% Audi TT Hatchback 2011 0.14% Dodge Ram Pickup 3500 Crew Cab 2010 0.07% Infiniti QX56 SUV 2011 0.06% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Mercedes-Benz E-Class Sedan 2012 33.1% Nissan 240SX Coupe 1998 15.36% Bentley Mulsanne Sedan 2011 14.31% Mercedes-Benz C-Class Sedan 2012 8.74% Bentley Continental Flying Spur Sedan 2007 3.07% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 BMW 6 Series Convertible 2007 64.57% Hyundai Veloster Hatchback 2012 17.17% Ford GT Coupe 2006 4.86% Dodge Charger Sedan 2012 2.0% Spyker C8 Convertible 2009 1.93% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 58.52% Acura TL Type-S 2008 32.35% Audi S4 Sedan 2007 1.63% Dodge Caravan Minivan 1997 1.41% Nissan 240SX Coupe 1998 1.17% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 78.43% Infiniti QX56 SUV 2011 11.85% BMW X6 SUV 2012 2.18% Buick Regal GS 2012 1.81% Honda Odyssey Minivan 2012 0.85% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 AM General Hummer SUV 2000 28.8% Bugatti Veyron 16.4 Convertible 2009 16.86% Maybach Landaulet Convertible 2012 10.19% Jeep Patriot SUV 2012 5.49% GMC Yukon Hybrid SUV 2012 3.39% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Chrysler Sebring Convertible 2010 96.24% Hyundai Sonata Hybrid Sedan 2012 2.69% Chevrolet Impala Sedan 2007 0.68% BMW M6 Convertible 2010 0.19% Nissan 240SX Coupe 1998 0.08% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 BMW 3 Series Sedan 2012 55.7% Audi TT RS Coupe 2012 43.45% Chevrolet HHR SS 2010 0.3% Audi R8 Coupe 2012 0.23% Dodge Magnum Wagon 2008 0.08% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 100.0% Porsche Panamera Sedan 2012 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Mercedes-Benz E-Class Sedan 2012 0.0% Chevrolet Corvette ZR1 2012 0.0% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Nissan NV Passenger Van 2012 26.91% Bentley Continental GT Coupe 2012 26.52% Ford GT Coupe 2006 10.96% GMC Yukon Hybrid SUV 2012 6.72% Bentley Continental GT Coupe 2007 5.31% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Bentley Continental Supersports Conv. Convertible 2012 43.3% Chevrolet Corvette Ron Fellows Edition Z06 2007 8.11% Chevrolet Express Van 2007 5.79% Dodge Challenger SRT8 2011 4.16% Hyundai Veloster Hatchback 2012 3.14% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 61.01% Volkswagen Golf Hatchback 2012 19.76% Cadillac SRX SUV 2012 10.43% Ford Fiesta Sedan 2012 2.48% Buick Enclave SUV 2012 1.52% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 FIAT 500 Abarth 2012 21.48% Dodge Journey SUV 2012 11.26% Jeep Liberty SUV 2012 10.76% Jeep Compass SUV 2012 8.04% Jeep Patriot SUV 2012 7.72% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.73% Nissan 240SX Coupe 1998 0.27% Toyota Camry Sedan 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Toyota Corolla Sedan 2012 0.0% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet HHR SS 2010 24.83% Buick Rainier SUV 2007 14.99% Jeep Liberty SUV 2012 7.28% Daewoo Nubira Wagon 2002 6.39% Volkswagen Golf Hatchback 1991 4.51% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 BMW 3 Series Wagon 2012 50.15% Eagle Talon Hatchback 1998 8.56% Nissan 240SX Coupe 1998 6.17% Chevrolet HHR SS 2010 5.88% Lamborghini Diablo Coupe 2001 5.18% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.97% Chrysler 300 SRT-8 2010 0.02% Ford F-150 Regular Cab 2007 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Audi 100 Sedan 1994 0.0% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Nissan 240SX Coupe 1998 72.12% Eagle Talon Hatchback 1998 4.56% Bentley Arnage Sedan 2009 4.27% BMW M6 Convertible 2010 3.82% BMW 3 Series Sedan 2012 3.37% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Porsche Panamera Sedan 2012 99.22% Acura TL Sedan 2012 0.21% BMW 3 Series Sedan 2012 0.18% Nissan 240SX Coupe 1998 0.13% Bentley Arnage Sedan 2009 0.12% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 98.03% Lincoln Town Car Sedan 2011 1.46% Plymouth Neon Coupe 1999 0.29% Mercedes-Benz 300-Class Convertible 1993 0.05% Chevrolet Impala Sedan 2007 0.05% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 94.79% Hyundai Tucson SUV 2012 2.84% Mitsubishi Lancer Sedan 2012 2.05% Hyundai Veloster Hatchback 2012 0.1% Hyundai Accent Sedan 2012 0.06% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Ferrari California Convertible 2012 47.11% Chevrolet Sonic Sedan 2012 6.37% Buick Regal GS 2012 4.13% Volvo C30 Hatchback 2012 3.17% Dodge Charger Sedan 2012 3.04% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 51.43% Mercedes-Benz E-Class Sedan 2012 47.85% Audi S4 Sedan 2007 0.45% Audi A5 Coupe 2012 0.12% Mercedes-Benz S-Class Sedan 2012 0.11% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 BMW M3 Coupe 2012 43.11% Nissan 240SX Coupe 1998 10.98% Acura TL Type-S 2008 6.68% Mercedes-Benz C-Class Sedan 2012 5.47% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.2% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Ferrari FF Coupe 2012 15.57% Aston Martin V8 Vantage Convertible 2012 15.04% FIAT 500 Convertible 2012 10.31% Ferrari 458 Italia Convertible 2012 9.05% Ford GT Coupe 2006 5.46% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 BMW X5 SUV 2007 21.02% Fisker Karma Sedan 2012 19.04% Acura ZDX Hatchback 2012 12.15% Audi S6 Sedan 2011 11.3% Bentley Arnage Sedan 2009 7.81% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 96.78% GMC Canyon Extended Cab 2012 1.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.34% Cadillac Escalade EXT Crew Cab 2007 0.19% GMC Yukon Hybrid SUV 2012 0.14% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.96% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.04% Dodge Charger Sedan 2012 0.0% Spyker C8 Coupe 2009 0.0% Lamborghini Aventador Coupe 2012 0.0% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 97.52% Volvo 240 Sedan 1993 0.82% Nissan NV Passenger Van 2012 0.32% Dodge Ram Pickup 3500 Crew Cab 2010 0.27% Chevrolet Express Cargo Van 2007 0.18% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 99.99% Hyundai Sonata Sedan 2012 0.01% Plymouth Neon Coupe 1999 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% Chevrolet Cobalt SS 2010 0.0% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 78.2% Chevrolet Traverse SUV 2012 14.25% Hyundai Veracruz SUV 2012 2.41% Volkswagen Golf Hatchback 2012 1.73% Buick Enclave SUV 2012 1.64% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Chevrolet Impala Sedan 2007 55.91% Honda Odyssey Minivan 2012 17.59% Porsche Panamera Sedan 2012 6.83% Chrysler 300 SRT-8 2010 6.03% Acura TL Sedan 2012 4.42% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 72.64% Chevrolet Malibu Sedan 2007 21.02% Suzuki SX4 Hatchback 2012 3.91% Nissan Juke Hatchback 2012 0.69% Chevrolet Traverse SUV 2012 0.53% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 smart fortwo Convertible 2012 22.25% GMC Savana Van 2012 14.72% Fisker Karma Sedan 2012 11.42% Volkswagen Beetle Hatchback 2012 5.95% MINI Cooper Roadster Convertible 2012 4.95% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Dodge Durango SUV 2012 60.13% Chevrolet Avalanche Crew Cab 2012 15.34% Dodge Dakota Crew Cab 2010 4.38% Land Rover Range Rover SUV 2012 4.06% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.62% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Porsche Panamera Sedan 2012 95.33% Jaguar XK XKR 2012 1.0% Acura TL Sedan 2012 0.84% Bentley Continental GT Coupe 2007 0.74% Infiniti G Coupe IPL 2012 0.5% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Hyundai Azera Sedan 2012 14.45% Chrysler Town and Country Minivan 2012 13.44% Chrysler PT Cruiser Convertible 2008 12.55% Infiniti QX56 SUV 2011 11.44% Mercedes-Benz S-Class Sedan 2012 3.97% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Volvo 240 Sedan 1993 37.35% Chrysler 300 SRT-8 2010 25.55% Audi S5 Coupe 2012 22.56% Audi S4 Sedan 2007 3.4% Bentley Arnage Sedan 2009 2.84% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 Lamborghini Gallardo LP 570-4 Superleggera 2012 79.11% AM General Hummer SUV 2000 13.38% Bentley Continental Supersports Conv. Convertible 2012 3.61% Daewoo Nubira Wagon 2002 0.61% Rolls-Royce Ghost Sedan 2012 0.45% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 99.95% Jeep Grand Cherokee SUV 2012 0.05% GMC Terrain SUV 2012 0.0% BMW X3 SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 37.69% Ford F-150 Regular Cab 2012 23.97% Dodge Caravan Minivan 1997 13.28% Ford F-150 Regular Cab 2007 10.58% Ford E-Series Wagon Van 2012 2.76% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Dodge Caravan Minivan 1997 99.11% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.45% Ford F-150 Regular Cab 2012 0.12% Dodge Dakota Crew Cab 2010 0.08% Chevrolet Silverado 1500 Regular Cab 2012 0.06% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Nissan 240SX Coupe 1998 13.43% Bentley Mulsanne Sedan 2011 7.79% Chevrolet Monte Carlo Coupe 2007 5.13% Acura RL Sedan 2012 4.15% Hyundai Sonata Sedan 2012 3.39% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 96.76% Nissan NV Passenger Van 2012 1.55% Ford F-150 Regular Cab 2012 0.78% Chevrolet Express Cargo Van 2007 0.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.14% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 49.24% Chevrolet Malibu Hybrid Sedan 2010 9.63% Chevrolet Impala Sedan 2007 7.09% Plymouth Neon Coupe 1999 6.54% Honda Accord Sedan 2012 6.35% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Toyota Camry Sedan 2012 55.83% Lamborghini Reventon Coupe 2008 12.35% Spyker C8 Convertible 2009 7.94% BMW M6 Convertible 2010 5.61% Chevrolet Sonic Sedan 2012 4.13% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Buick Enclave SUV 2012 39.71% Hyundai Tucson SUV 2012 36.04% Hyundai Elantra Touring Hatchback 2012 6.7% Chevrolet Impala Sedan 2007 5.9% Ford Fiesta Sedan 2012 3.39% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 Volvo C30 Hatchback 2012 18.32% BMW 1 Series Coupe 2012 16.6% Plymouth Neon Coupe 1999 16.14% Audi A5 Coupe 2012 8.09% Bentley Continental GT Coupe 2007 5.77% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 19.47% Bugatti Veyron 16.4 Convertible 2009 11.96% Ford GT Coupe 2006 7.7% Volvo 240 Sedan 1993 5.78% FIAT 500 Convertible 2012 5.46% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Acura ZDX Hatchback 2012 84.96% Hyundai Veracruz SUV 2012 6.67% Hyundai Santa Fe SUV 2012 3.76% Hyundai Tucson SUV 2012 1.37% Acura TSX Sedan 2012 0.71% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 95.17% Ford Freestar Minivan 2007 3.01% Chevrolet Monte Carlo Coupe 2007 0.23% Volvo XC90 SUV 2007 0.23% Chevrolet Malibu Sedan 2007 0.2% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Jeep Grand Cherokee SUV 2012 54.45% Cadillac SRX SUV 2012 34.16% Jeep Compass SUV 2012 3.52% BMW M6 Convertible 2010 3.01% Bentley Arnage Sedan 2009 1.94% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Leaf Hatchback 2012 100.0% Nissan Juke Hatchback 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Volvo C30 Hatchback 2012 0.0% Geo Metro Convertible 1993 0.0% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 BMW M5 Sedan 2010 68.75% Bugatti Veyron 16.4 Coupe 2009 19.05% Chevrolet Cobalt SS 2010 3.75% Mitsubishi Lancer Sedan 2012 2.82% Audi S4 Sedan 2007 1.53% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 23.91% Lamborghini Aventador Coupe 2012 11.32% Bugatti Veyron 16.4 Convertible 2009 9.83% BMW M6 Convertible 2010 7.32% BMW M3 Coupe 2012 5.66% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Mitsubishi Lancer Sedan 2012 51.57% Chevrolet Malibu Sedan 2007 42.2% Dodge Journey SUV 2012 3.24% Suzuki SX4 Hatchback 2012 1.35% Chevrolet Impala Sedan 2007 0.84% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 94.68% Acura RL Sedan 2012 3.1% Acura TL Sedan 2012 1.04% Honda Accord Sedan 2012 0.54% Acura ZDX Hatchback 2012 0.27% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 95.41% Chevrolet Silverado 1500 Regular Cab 2012 4.52% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Ford F-150 Regular Cab 2012 0.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Hyundai Elantra Sedan 2007 53.33% Acura TSX Sedan 2012 14.03% Chevrolet Malibu Sedan 2007 12.64% Honda Odyssey Minivan 2012 11.99% Toyota Corolla Sedan 2012 1.7% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Aston Martin Virage Coupe 2012 98.91% Chevrolet HHR SS 2010 1.05% Lamborghini Aventador Coupe 2012 0.02% BMW 1 Series Coupe 2012 0.01% McLaren MP4-12C Coupe 2012 0.01% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Dakota Crew Cab 2010 18.27% Dodge Caliber Wagon 2012 11.65% Jeep Liberty SUV 2012 7.19% Ford F-450 Super Duty Crew Cab 2012 7.11% Ford Ranger SuperCab 2011 5.9% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 95.7% Eagle Talon Hatchback 1998 3.54% Nissan 240SX Coupe 1998 0.66% Mercedes-Benz 300-Class Convertible 1993 0.07% Bentley Continental Supersports Conv. Convertible 2012 0.01% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Audi R8 Coupe 2012 96.3% Audi TTS Coupe 2012 2.66% Bugatti Veyron 16.4 Coupe 2009 0.49% Audi TT Hatchback 2011 0.37% Eagle Talon Hatchback 1998 0.07% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Ford Ranger SuperCab 2011 0.0% Chrysler Aspen SUV 2009 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 GMC Terrain SUV 2012 90.58% Rolls-Royce Ghost Sedan 2012 4.37% Rolls-Royce Phantom Sedan 2012 3.57% Audi R8 Coupe 2012 0.51% Volkswagen Golf Hatchback 1991 0.22% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Jeep Grand Cherokee SUV 2012 23.43% Jeep Compass SUV 2012 21.6% Isuzu Ascender SUV 2008 12.25% Dodge Journey SUV 2012 8.43% Chevrolet TrailBlazer SS 2009 6.18% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Volkswagen Golf Hatchback 2012 43.23% Hyundai Tucson SUV 2012 35.33% Hyundai Veracruz SUV 2012 10.58% Chevrolet Traverse SUV 2012 5.48% Hyundai Sonata Hybrid Sedan 2012 1.05% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Toyota Camry Sedan 2012 31.03% Lamborghini Diablo Coupe 2001 26.89% Spyker C8 Coupe 2009 12.56% Hyundai Veloster Hatchback 2012 8.53% Spyker C8 Convertible 2009 7.4% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 BMW 1 Series Convertible 2012 31.11% Buick Regal GS 2012 13.2% Bentley Continental GT Coupe 2012 10.36% Chevrolet Sonic Sedan 2012 8.03% BMW 1 Series Coupe 2012 7.04% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 67.16% Ford Ranger SuperCab 2011 9.05% Ford F-150 Regular Cab 2007 7.61% Volvo 240 Sedan 1993 5.46% Dodge Dakota Club Cab 2007 5.4% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Bentley Continental GT Coupe 2012 30.33% Jaguar XK XKR 2012 26.29% Infiniti G Coupe IPL 2012 18.04% BMW 1 Series Convertible 2012 14.74% Maybach Landaulet Convertible 2012 3.25% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Buick Rainier SUV 2007 19.68% Volvo XC90 SUV 2007 18.7% Jeep Patriot SUV 2012 16.25% GMC Yukon Hybrid SUV 2012 13.88% HUMMER H2 SUT Crew Cab 2009 4.15% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 2500HD Regular Cab 2012 29.23% Chevrolet Silverado 1500 Extended Cab 2012 28.57% Dodge Ram Pickup 3500 Quad Cab 2009 17.06% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.28% Chevrolet Silverado 1500 Regular Cab 2012 4.4% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 62.52% Plymouth Neon Coupe 1999 8.89% Mercedes-Benz C-Class Sedan 2012 7.03% Hyundai Elantra Touring Hatchback 2012 4.24% BMW X6 SUV 2012 4.13% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Hyundai Elantra Touring Hatchback 2012 29.61% Cadillac CTS-V Sedan 2012 12.25% Audi S6 Sedan 2011 11.18% Chrysler 300 SRT-8 2010 6.74% Volvo 240 Sedan 1993 6.21% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 BMW 1 Series Coupe 2012 87.28% BMW X3 SUV 2012 3.52% Bentley Continental GT Coupe 2012 2.93% Buick Verano Sedan 2012 2.53% Suzuki Kizashi Sedan 2012 1.76% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Plymouth Neon Coupe 1999 17.89% Jeep Liberty SUV 2012 5.84% Dodge Sprinter Cargo Van 2009 5.35% Ferrari FF Coupe 2012 5.3% Ford Freestar Minivan 2007 5.12% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 BMW M6 Convertible 2010 33.45% Nissan 240SX Coupe 1998 20.01% Audi S6 Sedan 2011 8.49% BMW 6 Series Convertible 2007 4.81% Audi S4 Sedan 2012 4.61% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 74.64% Dodge Sprinter Cargo Van 2009 11.86% Honda Odyssey Minivan 2007 7.04% Honda Accord Sedan 2012 3.68% Ram C/V Cargo Van Minivan 2012 2.24% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Hyundai Sonata Sedan 2012 20.82% Ferrari FF Coupe 2012 16.58% Chevrolet Impala Sedan 2007 7.58% BMW Z4 Convertible 2012 7.05% BMW M5 Sedan 2010 6.23% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 99.99% Acura TL Sedan 2012 0.0% Chevrolet Impala Sedan 2007 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 GMC Acadia SUV 2012 82.03% BMW X5 SUV 2007 10.62% Suzuki SX4 Hatchback 2012 3.08% Hyundai Santa Fe SUV 2012 2.33% Volkswagen Golf Hatchback 2012 1.42% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 BMW 3 Series Sedan 2012 89.97% BMW 1 Series Coupe 2012 2.18% Volvo 240 Sedan 1993 1.92% BMW 3 Series Wagon 2012 1.45% GMC Canyon Extended Cab 2012 0.43% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Honda Accord Sedan 2012 24.63% Daewoo Nubira Wagon 2002 23.9% Honda Odyssey Minivan 2012 8.63% BMW M5 Sedan 2010 8.47% Hyundai Sonata Hybrid Sedan 2012 2.38% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 GMC Canyon Extended Cab 2012 23.34% Cadillac Escalade EXT Crew Cab 2007 16.31% Ford F-150 Regular Cab 2012 11.45% Chevrolet Malibu Sedan 2007 9.5% Chevrolet Impala Sedan 2007 6.97% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 98.73% Cadillac Escalade EXT Crew Cab 2007 0.94% Jeep Patriot SUV 2012 0.17% Ford Ranger SuperCab 2011 0.1% Chevrolet Silverado 1500 Regular Cab 2012 0.03% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 97.72% Hyundai Veracruz SUV 2012 0.61% Honda Accord Sedan 2012 0.56% Chrysler Aspen SUV 2009 0.46% Hyundai Santa Fe SUV 2012 0.25% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Hyundai Veracruz SUV 2012 32.77% Hyundai Elantra Touring Hatchback 2012 20.81% Hyundai Accent Sedan 2012 14.83% Ford Fiesta Sedan 2012 7.28% Chevrolet Traverse SUV 2012 7.25% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Ferrari 458 Italia Coupe 2012 72.56% Cadillac CTS-V Sedan 2012 8.16% Chrysler 300 SRT-8 2010 3.48% Ferrari FF Coupe 2012 2.51% Dodge Charger SRT-8 2009 1.25% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Bentley Continental Supersports Conv. Convertible 2012 73.84% Lamborghini Aventador Coupe 2012 12.05% Lamborghini Reventon Coupe 2008 3.83% MINI Cooper Roadster Convertible 2012 2.9% Cadillac CTS-V Sedan 2012 1.27% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 98.66% Honda Odyssey Minivan 2012 0.92% Hyundai Sonata Sedan 2012 0.32% Ford Fiesta Sedan 2012 0.04% Hyundai Accent Sedan 2012 0.03% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Suzuki SX4 Hatchback 2012 99.12% Mazda Tribute SUV 2011 0.57% GMC Acadia SUV 2012 0.12% BMW X3 SUV 2012 0.11% Jeep Liberty SUV 2012 0.02% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 97.82% Chevrolet Silverado 1500 Regular Cab 2012 1.5% Chevrolet Silverado 1500 Extended Cab 2012 0.26% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.14% Dodge Dakota Club Cab 2007 0.08% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Honda Odyssey Minivan 2007 50.18% Acura RL Sedan 2012 19.1% Honda Odyssey Minivan 2012 17.16% Suzuki Aerio Sedan 2007 12.43% Suzuki SX4 Sedan 2012 0.46% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 50.67% Dodge Magnum Wagon 2008 34.68% BMW Z4 Convertible 2012 2.94% Nissan 240SX Coupe 1998 2.01% Dodge Charger Sedan 2012 1.06% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 97.67% Mercedes-Benz S-Class Sedan 2012 0.95% Mercedes-Benz SL-Class Coupe 2009 0.55% MINI Cooper Roadster Convertible 2012 0.15% Bentley Continental GT Coupe 2012 0.11% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Lincoln Town Car Sedan 2011 25.38% Chrysler 300 SRT-8 2010 13.59% Land Rover Range Rover SUV 2012 13.34% BMW 3 Series Wagon 2012 13.08% Chevrolet Malibu Sedan 2007 10.33% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.8% Mercedes-Benz S-Class Sedan 2012 0.12% Chrysler Crossfire Convertible 2008 0.05% Cadillac CTS-V Sedan 2012 0.01% Chevrolet Corvette ZR1 2012 0.0% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 Buick Regal GS 2012 32.04% BMW M5 Sedan 2010 10.26% Hyundai Sonata Hybrid Sedan 2012 7.53% Infiniti G Coupe IPL 2012 6.98% Buick Verano Sedan 2012 6.09% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 76.18% BMW 1 Series Convertible 2012 23.78% Hyundai Sonata Hybrid Sedan 2012 0.01% Bentley Continental GT Coupe 2007 0.0% BMW M6 Convertible 2010 0.0% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 82.51% Dodge Caliber Wagon 2007 3.8% Dodge Caravan Minivan 1997 3.27% GMC Canyon Extended Cab 2012 2.8% Toyota 4Runner SUV 2012 1.8% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 BMW 6 Series Convertible 2007 31.04% Hyundai Azera Sedan 2012 12.41% Bentley Continental GT Coupe 2012 10.53% BMW M6 Convertible 2010 9.91% Hyundai Genesis Sedan 2012 4.88% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 49.42% Mercedes-Benz E-Class Sedan 2012 16.38% Infiniti G Coupe IPL 2012 5.34% Acura TL Type-S 2008 4.84% Chrysler Crossfire Convertible 2008 3.56% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.56% Scion xD Hatchback 2012 0.36% Hyundai Tucson SUV 2012 0.04% Hyundai Veracruz SUV 2012 0.04% Acura TSX Sedan 2012 0.0% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Bentley Continental GT Coupe 2012 76.21% Ferrari California Convertible 2012 4.77% BMW 1 Series Coupe 2012 4.08% Hyundai Veloster Hatchback 2012 2.01% Ferrari 458 Italia Coupe 2012 1.9% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 88.89% Land Rover LR2 SUV 2012 4.03% Ford Edge SUV 2012 2.38% Hyundai Veracruz SUV 2012 1.76% Hyundai Sonata Sedan 2012 1.16% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 75.08% Lamborghini Aventador Coupe 2012 13.21% Bugatti Veyron 16.4 Coupe 2009 4.51% Bugatti Veyron 16.4 Convertible 2009 3.95% Audi TT RS Coupe 2012 1.57% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Hyundai Sonata Sedan 2012 17.62% Acura RL Sedan 2012 10.74% Hyundai Accent Sedan 2012 9.67% BMW M6 Convertible 2010 9.05% Audi TT Hatchback 2011 7.46% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Express Cargo Van 2007 62.33% Chevrolet Avalanche Crew Cab 2012 14.88% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.82% Ford Ranger SuperCab 2011 2.37% Jeep Patriot SUV 2012 1.06% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 52.24% Lamborghini Aventador Coupe 2012 30.15% Audi R8 Coupe 2012 8.82% Jeep Patriot SUV 2012 2.42% Chevrolet TrailBlazer SS 2009 1.81% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 51.41% Bugatti Veyron 16.4 Coupe 2009 17.12% Hyundai Veloster Hatchback 2012 10.4% Acura TL Sedan 2012 4.11% Audi R8 Coupe 2012 3.58% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 99.97% GMC Acadia SUV 2012 0.01% Mazda Tribute SUV 2011 0.0% Acura RL Sedan 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 100.0% Audi 100 Sedan 1994 0.0% Acura Integra Type R 2001 0.0% Volkswagen Beetle Hatchback 2012 0.0% Plymouth Neon Coupe 1999 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Diablo Coupe 2001 42.74% Dodge Charger Sedan 2012 27.05% Acura Integra Type R 2001 7.41% Ferrari California Convertible 2012 4.67% Hyundai Veloster Hatchback 2012 2.17% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Hyundai Sonata Hybrid Sedan 2012 60.15% Acura TL Sedan 2012 14.62% Infiniti G Coupe IPL 2012 5.91% Acura TSX Sedan 2012 4.94% Acura RL Sedan 2012 3.46% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 47.67% Scion xD Hatchback 2012 43.88% Hyundai Sonata Hybrid Sedan 2012 2.79% Hyundai Veracruz SUV 2012 1.26% Nissan Juke Hatchback 2012 1.08% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Bentley Continental GT Coupe 2012 42.08% Aston Martin Virage Coupe 2012 29.12% Aston Martin V8 Vantage Convertible 2012 7.73% Mercedes-Benz S-Class Sedan 2012 3.67% Chrysler 300 SRT-8 2010 2.95% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Dodge Caravan Minivan 1997 72.77% Chevrolet Silverado 2500HD Regular Cab 2012 8.03% GMC Yukon Hybrid SUV 2012 4.83% Ford Freestar Minivan 2007 4.29% Ford F-150 Regular Cab 2007 3.99% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 100.0% Plymouth Neon Coupe 1999 0.0% Nissan 240SX Coupe 1998 0.0% Ford Focus Sedan 2007 0.0% Buick Rainier SUV 2007 0.0% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 95.84% GMC Savana Van 2012 3.17% Chevrolet Silverado 1500 Regular Cab 2012 0.29% Chevrolet Express Van 2007 0.21% Nissan NV Passenger Van 2012 0.11% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 42.37% Bentley Continental GT Coupe 2012 11.99% Mercedes-Benz C-Class Sedan 2012 10.69% Bentley Continental GT Coupe 2007 9.52% BMW M6 Convertible 2010 9.01% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 82.96% Volkswagen Golf Hatchback 2012 2.43% Buick Rainier SUV 2007 2.13% Hyundai Elantra Touring Hatchback 2012 2.02% GMC Savana Van 2012 2.02% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 80.47% Volkswagen Golf Hatchback 2012 11.92% Ford Focus Sedan 2007 7.5% Bentley Continental Flying Spur Sedan 2007 0.03% Nissan 240SX Coupe 1998 0.03% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 99.63% Cadillac CTS-V Sedan 2012 0.37% Cadillac Escalade EXT Crew Cab 2007 0.0% GMC Acadia SUV 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 97.93% smart fortwo Convertible 2012 0.21% Infiniti G Coupe IPL 2012 0.19% Ferrari FF Coupe 2012 0.15% Aston Martin Virage Coupe 2012 0.12% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Aston Martin V8 Vantage Convertible 2012 50.58% Jaguar XK XKR 2012 25.88% Eagle Talon Hatchback 1998 6.62% Audi R8 Coupe 2012 3.7% Bugatti Veyron 16.4 Coupe 2009 2.7% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Lamborghini Reventon Coupe 2008 10.48% Chevrolet Corvette ZR1 2012 8.85% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.92% Bentley Continental Supersports Conv. Convertible 2012 7.6% Spyker C8 Convertible 2009 4.43% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Jeep Wrangler SUV 2012 44.38% Nissan Leaf Hatchback 2012 16.56% AM General Hummer SUV 2000 4.83% Daewoo Nubira Wagon 2002 2.47% BMW Z4 Convertible 2012 1.64% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Dodge Caliber Wagon 2012 26.59% Ford F-150 Regular Cab 2007 17.57% Hyundai Elantra Sedan 2007 12.94% Chevrolet Malibu Sedan 2007 10.51% Chrysler Town and Country Minivan 2012 10.17% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 89.54% Chevrolet Express Van 2007 10.21% GMC Savana Van 2012 0.25% Buick Rainier SUV 2007 0.0% Volvo 240 Sedan 1993 0.0% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 46.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 26.13% Lamborghini Aventador Coupe 2012 11.48% Hyundai Veloster Hatchback 2012 6.43% McLaren MP4-12C Coupe 2012 3.3% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Ford Fiesta Sedan 2012 40.01% Mitsubishi Lancer Sedan 2012 21.87% Hyundai Elantra Sedan 2007 11.76% Chevrolet Cobalt SS 2010 6.34% Scion xD Hatchback 2012 3.91% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Acura RL Sedan 2012 29.46% Hyundai Sonata Sedan 2012 27.54% Hyundai Azera Sedan 2012 19.88% Cadillac SRX SUV 2012 2.7% BMW X6 SUV 2012 1.68% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Hyundai Tucson SUV 2012 55.16% smart fortwo Convertible 2012 11.31% Suzuki SX4 Hatchback 2012 11.21% Ford Fiesta Sedan 2012 10.37% Nissan Juke Hatchback 2012 8.44% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 60.1% Spyker C8 Convertible 2009 17.21% Acura Integra Type R 2001 4.13% Bugatti Veyron 16.4 Coupe 2009 3.35% Acura ZDX Hatchback 2012 3.24% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Jeep Grand Cherokee SUV 2012 99.98% Dodge Caliber Wagon 2007 0.01% Ram C/V Cargo Van Minivan 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Dodge Caliber Wagon 2012 0.0% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 BMW 6 Series Convertible 2007 74.44% Jaguar XK XKR 2012 13.23% Infiniti G Coupe IPL 2012 1.37% Aston Martin Virage Convertible 2012 1.27% Aston Martin V8 Vantage Convertible 2012 1.09% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 50.94% Ferrari California Convertible 2012 17.16% Chevrolet Monte Carlo Coupe 2007 3.61% Volvo C30 Hatchback 2012 3.26% Chevrolet Cobalt SS 2010 2.72% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Toyota Camry Sedan 2012 39.16% Acura TL Sedan 2012 25.11% Toyota Corolla Sedan 2012 18.05% Chevrolet Malibu Sedan 2007 3.32% Nissan Juke Hatchback 2012 2.39% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 88.69% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.62% Chevrolet Corvette ZR1 2012 2.79% Chevrolet Corvette Convertible 2012 1.12% Lamborghini Diablo Coupe 2001 0.48% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Ford Focus Sedan 2007 44.83% Honda Accord Sedan 2012 33.22% Honda Odyssey Minivan 2007 5.77% Chevrolet Impala Sedan 2007 5.37% Chrysler Town and Country Minivan 2012 3.53% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 36.48% Chevrolet Express Van 2007 34.68% Chevrolet Express Cargo Van 2007 28.84% Ford E-Series Wagon Van 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Hyundai Accent Sedan 2012 39.26% BMW X6 SUV 2012 24.0% Hyundai Elantra Sedan 2007 11.51% Jaguar XK XKR 2012 4.17% Ford Edge SUV 2012 3.0% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 Aston Martin V8 Vantage Convertible 2012 34.38% Lamborghini Reventon Coupe 2008 16.23% BMW M6 Convertible 2010 11.53% Spyker C8 Convertible 2009 3.13% Acura RL Sedan 2012 2.91% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Fisker Karma Sedan 2012 44.2% Volkswagen Beetle Hatchback 2012 10.65% Ferrari FF Coupe 2012 8.42% Audi TTS Coupe 2012 4.11% Ferrari California Convertible 2012 2.62% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Spyker C8 Convertible 2009 59.54% Dodge Charger Sedan 2012 9.48% Hyundai Veloster Hatchback 2012 5.73% Spyker C8 Coupe 2009 2.79% Ferrari 458 Italia Coupe 2012 2.75% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 53.87% Dodge Charger Sedan 2012 36.98% Chevrolet Corvette Convertible 2012 8.12% Acura Integra Type R 2001 0.45% Ford Mustang Convertible 2007 0.14% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Bentley Mulsanne Sedan 2011 67.74% Rolls-Royce Phantom Sedan 2012 28.47% Rolls-Royce Ghost Sedan 2012 3.56% Cadillac CTS-V Sedan 2012 0.09% Bentley Arnage Sedan 2009 0.06% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi TT Hatchback 2011 81.21% Audi S4 Sedan 2007 9.8% Suzuki Kizashi Sedan 2012 2.88% Buick Regal GS 2012 1.63% Mitsubishi Lancer Sedan 2012 1.6% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Audi RS 4 Convertible 2008 35.39% BMW M3 Coupe 2012 8.41% BMW 1 Series Coupe 2012 6.31% Aston Martin Virage Coupe 2012 5.05% Lamborghini Diablo Coupe 2001 4.57% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Jaguar XK XKR 2012 42.26% BMW 3 Series Sedan 2012 11.68% Rolls-Royce Ghost Sedan 2012 8.47% Chevrolet Impala Sedan 2007 4.66% Jeep Patriot SUV 2012 3.87% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Hyundai Elantra Sedan 2007 38.27% Chevrolet Malibu Sedan 2007 19.27% Chevrolet Impala Sedan 2007 16.32% Chrysler Sebring Convertible 2010 8.57% Chevrolet Cobalt SS 2010 5.96% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 99.93% BMW M3 Coupe 2012 0.02% BMW 1 Series Coupe 2012 0.01% BMW 3 Series Sedan 2012 0.01% Ford GT Coupe 2006 0.01% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 74.94% Audi 100 Wagon 1994 12.13% Volkswagen Golf Hatchback 1991 9.14% GMC Savana Van 2012 1.48% Chevrolet Express Cargo Van 2007 0.55% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Nissan NV Passenger Van 2012 30.82% Dodge Dakota Crew Cab 2010 14.46% HUMMER H3T Crew Cab 2010 9.4% Dodge Dakota Club Cab 2007 6.88% GMC Savana Van 2012 4.4% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 HUMMER H3T Crew Cab 2010 81.89% GMC Canyon Extended Cab 2012 15.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.55% Chevrolet Silverado 2500HD Regular Cab 2012 0.45% Dodge Dakota Club Cab 2007 0.41% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.43% Jeep Wrangler SUV 2012 0.27% Jeep Patriot SUV 2012 0.21% Nissan NV Passenger Van 2012 0.05% Jeep Compass SUV 2012 0.03% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 37.49% Chevrolet Sonic Sedan 2012 9.6% Maybach Landaulet Convertible 2012 6.32% Audi RS 4 Convertible 2008 5.45% BMW M6 Convertible 2010 4.22% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Maybach Landaulet Convertible 2012 40.09% Bentley Arnage Sedan 2009 17.17% Dodge Journey SUV 2012 5.71% Rolls-Royce Phantom Sedan 2012 5.28% Chevrolet HHR SS 2010 2.9% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Infiniti G Coupe IPL 2012 59.94% Nissan 240SX Coupe 1998 31.5% Fisker Karma Sedan 2012 0.89% Dodge Challenger SRT8 2011 0.74% Aston Martin Virage Coupe 2012 0.63% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 38.06% Audi RS 4 Convertible 2008 15.52% Chevrolet Corvette ZR1 2012 9.19% Jaguar XK XKR 2012 8.31% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.33% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.99% Jeep Wrangler SUV 2012 0.01% Nissan NV Passenger Van 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% Jeep Patriot SUV 2012 0.0% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Chevrolet HHR SS 2010 98.94% Dodge Magnum Wagon 2008 0.94% Dodge Charger Sedan 2012 0.08% BMW 1 Series Convertible 2012 0.03% Dodge Charger SRT-8 2009 0.01% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Ford Edge SUV 2012 34.79% Dodge Challenger SRT8 2011 12.94% Jeep Liberty SUV 2012 8.73% HUMMER H2 SUT Crew Cab 2009 5.9% Jeep Patriot SUV 2012 5.04% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 95.98% Hyundai Azera Sedan 2012 2.98% Chevrolet Malibu Hybrid Sedan 2010 0.29% Toyota Camry Sedan 2012 0.27% Buick Verano Sedan 2012 0.09% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 99.55% Daewoo Nubira Wagon 2002 0.43% Dodge Caravan Minivan 1997 0.01% Ford Focus Sedan 2007 0.01% Nissan Leaf Hatchback 2012 0.0% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 BMW ActiveHybrid 5 Sedan 2012 28.97% Porsche Panamera Sedan 2012 17.93% Mitsubishi Lancer Sedan 2012 5.02% Hyundai Genesis Sedan 2012 4.49% Audi S4 Sedan 2012 3.84% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 76.04% Bentley Continental GT Coupe 2012 4.73% Mercedes-Benz E-Class Sedan 2012 2.07% Maybach Landaulet Convertible 2012 2.06% Lamborghini Reventon Coupe 2008 1.16% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 91.99% Suzuki Kizashi Sedan 2012 4.86% Mercedes-Benz S-Class Sedan 2012 0.82% Mercedes-Benz E-Class Sedan 2012 0.72% Hyundai Genesis Sedan 2012 0.64% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 GMC Yukon Hybrid SUV 2012 20.99% Ford Edge SUV 2012 11.07% Bentley Continental GT Coupe 2012 9.64% Cadillac SRX SUV 2012 9.42% Bentley Continental Flying Spur Sedan 2007 5.48% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 24.24% Daewoo Nubira Wagon 2002 13.4% Nissan 240SX Coupe 1998 9.29% BMW 3 Series Sedan 2012 8.87% Volkswagen Beetle Hatchback 2012 8.45% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Bugatti Veyron 16.4 Coupe 2009 48.44% Dodge Challenger SRT8 2011 17.87% Spyker C8 Convertible 2009 17.18% Mitsubishi Lancer Sedan 2012 7.59% FIAT 500 Abarth 2012 5.51% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Chevrolet Monte Carlo Coupe 2007 72.06% Bentley Continental GT Coupe 2007 5.08% Bugatti Veyron 16.4 Coupe 2009 1.77% Chrysler Sebring Convertible 2010 1.46% BMW X5 SUV 2007 1.42% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Aston Martin Virage Convertible 2012 32.14% Eagle Talon Hatchback 1998 22.42% Acura ZDX Hatchback 2012 7.82% Porsche Panamera Sedan 2012 5.55% Chrysler Crossfire Convertible 2008 5.53% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 11.94% Hyundai Veracruz SUV 2012 5.98% Volvo 240 Sedan 1993 5.07% Ferrari 458 Italia Convertible 2012 4.94% Mercedes-Benz SL-Class Coupe 2009 4.5% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.85% Bugatti Veyron 16.4 Coupe 2009 0.1% McLaren MP4-12C Coupe 2012 0.02% Spyker C8 Convertible 2009 0.01% Mitsubishi Lancer Sedan 2012 0.0% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Nissan Leaf Hatchback 2012 24.35% Volkswagen Beetle Hatchback 2012 12.86% Ferrari California Convertible 2012 10.54% Ferrari FF Coupe 2012 7.87% Audi TTS Coupe 2012 3.6% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 93.42% HUMMER H3T Crew Cab 2010 5.59% Chevrolet Silverado 2500HD Regular Cab 2012 0.18% Dodge Ram Pickup 3500 Crew Cab 2010 0.13% Dodge Ram Pickup 3500 Quad Cab 2009 0.13% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.98% Chevrolet Express Van 2007 0.02% Jeep Liberty SUV 2012 0.0% Buick Rainier SUV 2007 0.0% Chevrolet Express Cargo Van 2007 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Veracruz SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 98.78% BMW X5 SUV 2007 0.92% Jeep Compass SUV 2012 0.22% BMW X3 SUV 2012 0.06% Acura ZDX Hatchback 2012 0.01% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 85.12% Chrysler 300 SRT-8 2010 2.63% Mercedes-Benz SL-Class Coupe 2009 1.34% Bugatti Veyron 16.4 Coupe 2009 0.71% GMC Savana Van 2012 0.7% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 94.07% Buick Enclave SUV 2012 2.22% Cadillac CTS-V Sedan 2012 0.76% Bentley Continental Flying Spur Sedan 2007 0.66% Toyota 4Runner SUV 2012 0.42% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Bentley Continental GT Coupe 2012 42.69% Bentley Mulsanne Sedan 2011 24.39% Volkswagen Beetle Hatchback 2012 12.84% Mercedes-Benz E-Class Sedan 2012 2.32% Infiniti QX56 SUV 2011 2.08% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 92.95% Audi 100 Sedan 1994 3.51% Plymouth Neon Coupe 1999 2.59% Audi 100 Wagon 1994 0.5% Dodge Caravan Minivan 1997 0.19% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Honda Accord Sedan 2012 32.62% Acura TL Sedan 2012 14.58% Suzuki Kizashi Sedan 2012 10.46% Bentley Continental GT Coupe 2007 6.55% Chevrolet Sonic Sedan 2012 6.32% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.19% Hyundai Sonata Hybrid Sedan 2012 0.56% Infiniti G Coupe IPL 2012 0.11% Cadillac CTS-V Sedan 2012 0.04% Bentley Continental GT Coupe 2012 0.02% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 49.49% Lamborghini Diablo Coupe 2001 35.69% Chevrolet Corvette ZR1 2012 8.26% Geo Metro Convertible 1993 2.09% AM General Hummer SUV 2000 1.82% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Volkswagen Beetle Hatchback 2012 14.7% Bentley Continental GT Coupe 2012 12.93% Bentley Continental Flying Spur Sedan 2007 8.83% Chrysler PT Cruiser Convertible 2008 8.23% Suzuki Aerio Sedan 2007 7.39% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 67.1% Rolls-Royce Ghost Sedan 2012 26.69% Bentley Mulsanne Sedan 2011 1.89% Maybach Landaulet Convertible 2012 1.05% Buick Rainier SUV 2007 0.85% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 99.99% Chrysler Sebring Convertible 2010 0.01% Audi S4 Sedan 2007 0.0% Dodge Charger Sedan 2012 0.0% BMW X5 SUV 2007 0.0% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 30.57% Hyundai Sonata Hybrid Sedan 2012 29.45% Toyota 4Runner SUV 2012 7.09% Hyundai Santa Fe SUV 2012 5.05% Hyundai Tucson SUV 2012 4.26% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Yukon Hybrid SUV 2012 57.03% Buick Rainier SUV 2007 17.18% GMC Savana Van 2012 15.33% Cadillac Escalade EXT Crew Cab 2007 2.17% Daewoo Nubira Wagon 2002 1.36% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 82.37% Dodge Ram Pickup 3500 Quad Cab 2009 17.58% Ford F-450 Super Duty Crew Cab 2012 0.04% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Dodge Charger Sedan 2012 0.0% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 42.73% Dodge Caliber Wagon 2007 30.68% Dodge Durango SUV 2012 16.01% Chrysler Town and Country Minivan 2012 2.16% Hyundai Elantra Sedan 2007 1.65% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 99.85% HUMMER H2 SUT Crew Cab 2009 0.15% AM General Hummer SUV 2000 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Jeep Patriot SUV 2012 0.0% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Infiniti G Coupe IPL 2012 26.29% Acura RL Sedan 2012 8.08% Hyundai Veracruz SUV 2012 7.54% Bentley Continental GT Coupe 2007 5.23% GMC Terrain SUV 2012 4.38% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 Audi S5 Convertible 2012 21.07% BMW M5 Sedan 2010 17.08% BMW M6 Convertible 2010 12.64% Acura RL Sedan 2012 9.79% Mercedes-Benz 300-Class Convertible 1993 5.06% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Chevrolet Camaro Convertible 2012 32.44% BMW 6 Series Convertible 2007 27.81% Audi R8 Coupe 2012 8.7% Mercedes-Benz 300-Class Convertible 1993 6.96% Nissan 240SX Coupe 1998 4.61% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 92.74% Honda Odyssey Minivan 2007 3.61% Chrysler Town and Country Minivan 2012 3.13% Ram C/V Cargo Van Minivan 2012 0.38% Land Rover Range Rover SUV 2012 0.06% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 99.81% BMW 1 Series Coupe 2012 0.03% Hyundai Santa Fe SUV 2012 0.02% Dodge Challenger SRT8 2011 0.02% Spyker C8 Convertible 2009 0.02% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Bentley Continental Supersports Conv. Convertible 2012 82.72% Chevrolet Corvette Ron Fellows Edition Z06 2007 7.4% Ford GT Coupe 2006 2.73% Lamborghini Reventon Coupe 2008 2.2% Lamborghini Aventador Coupe 2012 1.65% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 63.94% Hyundai Veracruz SUV 2012 32.66% Bugatti Veyron 16.4 Convertible 2009 0.88% BMW X5 SUV 2007 0.47% Volkswagen Golf Hatchback 2012 0.46% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 36.73% BMW Z4 Convertible 2012 28.83% BMW M3 Coupe 2012 6.25% Hyundai Veloster Hatchback 2012 4.21% Chevrolet Corvette ZR1 2012 2.62% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 70.79% BMW ActiveHybrid 5 Sedan 2012 28.79% Chevrolet Malibu Hybrid Sedan 2010 0.13% Bentley Continental GT Coupe 2007 0.09% Bentley Arnage Sedan 2009 0.04% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 46.73% Volvo C30 Hatchback 2012 40.79% GMC Canyon Extended Cab 2012 3.65% Hyundai Elantra Touring Hatchback 2012 2.98% Buick Rainier SUV 2007 1.07% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Jeep Wrangler SUV 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 58.02% Chevrolet Monte Carlo Coupe 2007 40.26% Lincoln Town Car Sedan 2011 1.16% Chevrolet Impala Sedan 2007 0.26% Dodge Caravan Minivan 1997 0.09% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 57.14% Rolls-Royce Phantom Drophead Coupe Convertible 2012 22.35% Rolls-Royce Phantom Sedan 2012 7.78% Bentley Mulsanne Sedan 2011 4.98% Maybach Landaulet Convertible 2012 2.1% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Porsche Panamera Sedan 2012 99.85% Acura TL Sedan 2012 0.07% Audi S4 Sedan 2012 0.02% Honda Odyssey Minivan 2012 0.02% Audi TT Hatchback 2011 0.01% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 46.59% Mercedes-Benz S-Class Sedan 2012 44.38% Mercedes-Benz C-Class Sedan 2012 6.06% Porsche Panamera Sedan 2012 1.9% BMW 3 Series Sedan 2012 0.3% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 99.86% Dodge Dakota Crew Cab 2010 0.06% Honda Accord Coupe 2012 0.06% Dodge Journey SUV 2012 0.01% Honda Accord Sedan 2012 0.01% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Toyota 4Runner SUV 2012 55.01% Ford Edge SUV 2012 25.78% GMC Terrain SUV 2012 5.92% Hyundai Veracruz SUV 2012 3.41% Mazda Tribute SUV 2011 2.04% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Nissan 240SX Coupe 1998 27.85% BMW 3 Series Sedan 2012 20.92% Dodge Caravan Minivan 1997 10.41% Acura TL Sedan 2012 8.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.26% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.56% Toyota Corolla Sedan 2012 0.41% Dodge Caravan Minivan 1997 0.03% Ford Focus Sedan 2007 0.0% Chevrolet Impala Sedan 2007 0.0% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 HUMMER H3T Crew Cab 2010 100.0% GMC Savana Van 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 99.99% Hyundai Veloster Hatchback 2012 0.01% Bentley Continental Supersports Conv. Convertible 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Nissan Juke Hatchback 2012 0.0% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Hyundai Elantra Sedan 2007 23.74% Buick Verano Sedan 2012 12.71% Ferrari FF Coupe 2012 9.17% GMC Canyon Extended Cab 2012 8.88% Chevrolet Silverado 2500HD Regular Cab 2012 6.53% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.79% Ford F-150 Regular Cab 2007 0.07% Land Rover LR2 SUV 2012 0.07% GMC Terrain SUV 2012 0.04% Toyota 4Runner SUV 2012 0.02% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 30.63% Aston Martin Virage Convertible 2012 17.46% Bentley Arnage Sedan 2009 14.61% Fisker Karma Sedan 2012 7.97% FIAT 500 Abarth 2012 5.47% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Ford Edge SUV 2012 87.04% Hyundai Veracruz SUV 2012 5.64% Honda Odyssey Minivan 2012 1.6% Land Rover LR2 SUV 2012 1.32% Ford Fiesta Sedan 2012 1.01% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 10.19% Mercedes-Benz Sprinter Van 2012 6.23% Fisker Karma Sedan 2012 5.02% Jeep Grand Cherokee SUV 2012 4.77% BMW 3 Series Wagon 2012 4.46% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Ram C/V Cargo Van Minivan 2012 91.46% Chevrolet HHR SS 2010 0.98% Volvo C30 Hatchback 2012 0.87% Chrysler Town and Country Minivan 2012 0.74% Dodge Caliber Wagon 2012 0.64% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 BMW 6 Series Convertible 2007 16.28% Rolls-Royce Phantom Sedan 2012 11.94% Bentley Arnage Sedan 2009 6.72% Chevrolet Corvette ZR1 2012 5.29% Jaguar XK XKR 2012 3.64% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 92.09% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.3% Chevrolet Silverado 2500HD Regular Cab 2012 2.43% Chevrolet Silverado 1500 Extended Cab 2012 0.15% Chrysler Town and Country Minivan 2012 0.01% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 99.92% Nissan 240SX Coupe 1998 0.05% Hyundai Elantra Touring Hatchback 2012 0.03% Eagle Talon Hatchback 1998 0.0% Ford Focus Sedan 2007 0.0% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 36.78% Jeep Grand Cherokee SUV 2012 36.2% HUMMER H3T Crew Cab 2010 8.5% Acura ZDX Hatchback 2012 3.94% Dodge Durango SUV 2012 2.94% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Spyker C8 Convertible 2009 24.02% Chevrolet Corvette ZR1 2012 17.17% Ferrari California Convertible 2012 14.74% Scion xD Hatchback 2012 6.5% Bentley Continental Supersports Conv. Convertible 2012 3.7% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Hyundai Genesis Sedan 2012 75.04% BMW ActiveHybrid 5 Sedan 2012 22.75% Dodge Challenger SRT8 2011 1.0% Dodge Charger Sedan 2012 0.22% Audi S6 Sedan 2011 0.17% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 64.75% Daewoo Nubira Wagon 2002 18.92% Nissan 240SX Coupe 1998 5.16% BMW M5 Sedan 2010 2.03% Volkswagen Golf Hatchback 1991 1.66% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 98.83% Chrysler Town and Country Minivan 2012 1.13% Mercedes-Benz Sprinter Van 2012 0.02% Ford Freestar Minivan 2007 0.01% Dodge Caravan Minivan 1997 0.01% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Jaguar XK XKR 2012 29.04% BMW ActiveHybrid 5 Sedan 2012 18.44% Audi A5 Coupe 2012 7.81% Audi S4 Sedan 2007 6.63% Infiniti G Coupe IPL 2012 5.21% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 96.58% Ford Fiesta Sedan 2012 3.42% Volkswagen Golf Hatchback 2012 0.0% Hyundai Accent Sedan 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 56.43% Acura TL Type-S 2008 19.35% Toyota Camry Sedan 2012 15.35% Acura TL Sedan 2012 5.99% Chevrolet Impala Sedan 2007 2.1% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 66.37% Dodge Caliber Wagon 2007 27.03% Chevrolet Impala Sedan 2007 2.26% Daewoo Nubira Wagon 2002 1.02% Acura RL Sedan 2012 0.7% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Acura Integra Type R 2001 24.12% McLaren MP4-12C Coupe 2012 16.85% Aston Martin V8 Vantage Coupe 2012 8.09% Lamborghini Gallardo LP 570-4 Superleggera 2012 5.64% Audi S4 Sedan 2012 3.99% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 60.19% Chevrolet TrailBlazer SS 2009 23.05% Jeep Grand Cherokee SUV 2012 4.27% Chrysler 300 SRT-8 2010 1.86% Rolls-Royce Ghost Sedan 2012 1.24% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 99.94% Lamborghini Aventador Coupe 2012 0.03% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.02% Spyker C8 Convertible 2009 0.0% Aston Martin Virage Coupe 2012 0.0% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Bentley Mulsanne Sedan 2011 10.52% Volkswagen Golf Hatchback 1991 9.48% GMC Savana Van 2012 6.99% Dodge Challenger SRT8 2011 6.84% GMC Acadia SUV 2012 4.58% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 40.29% Spyker C8 Coupe 2009 17.62% Tesla Model S Sedan 2012 9.62% Infiniti G Coupe IPL 2012 6.29% Buick Regal GS 2012 4.13% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Toyota Corolla Sedan 2012 43.95% Scion xD Hatchback 2012 17.4% Plymouth Neon Coupe 1999 15.2% Dodge Charger SRT-8 2009 8.91% Hyundai Accent Sedan 2012 5.37% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Wagon 2012 46.77% BMW ActiveHybrid 5 Sedan 2012 26.11% BMW 3 Series Sedan 2012 4.19% BMW 6 Series Convertible 2007 4.07% Hyundai Genesis Sedan 2012 3.45% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 99.88% Bentley Continental Supersports Conv. Convertible 2012 0.05% Ford GT Coupe 2006 0.02% Dodge Charger Sedan 2012 0.01% Lamborghini Aventador Coupe 2012 0.01% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Hyundai Veloster Hatchback 2012 87.52% Aston Martin Virage Coupe 2012 4.54% McLaren MP4-12C Coupe 2012 3.52% Audi V8 Sedan 1994 1.55% BMW 1 Series Coupe 2012 0.71% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 BMW 3 Series Sedan 2012 14.5% Mercedes-Benz C-Class Sedan 2012 14.28% Infiniti G Coupe IPL 2012 7.59% Mercedes-Benz S-Class Sedan 2012 7.13% Toyota Camry Sedan 2012 6.94% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Porsche Panamera Sedan 2012 17.76% Aston Martin Virage Convertible 2012 17.12% Lamborghini Reventon Coupe 2008 14.39% Fisker Karma Sedan 2012 10.69% Aston Martin V8 Vantage Coupe 2012 9.44% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 100.0% Hyundai Elantra Touring Hatchback 2012 0.0% Dodge Caravan Minivan 1997 0.0% Ford Focus Sedan 2007 0.0% Eagle Talon Hatchback 1998 0.0% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Honda Odyssey Minivan 2012 59.18% Hyundai Azera Sedan 2012 25.55% Infiniti QX56 SUV 2011 2.39% Hyundai Sonata Sedan 2012 2.16% Honda Accord Sedan 2012 1.97% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 98.78% GMC Yukon Hybrid SUV 2012 0.77% Ford Expedition EL SUV 2009 0.24% Dodge Durango SUV 2012 0.09% Honda Odyssey Minivan 2012 0.03% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 McLaren MP4-12C Coupe 2012 39.37% Aston Martin V8 Vantage Coupe 2012 26.3% Ferrari FF Coupe 2012 10.66% Porsche Panamera Sedan 2012 10.38% Tesla Model S Sedan 2012 5.8% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Canyon Extended Cab 2012 0.0% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 98.98% Honda Accord Coupe 2012 0.66% Infiniti G Coupe IPL 2012 0.12% Hyundai Azera Sedan 2012 0.12% Hyundai Sonata Sedan 2012 0.07% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 BMW X6 SUV 2012 96.02% GMC Acadia SUV 2012 1.09% Chevrolet Sonic Sedan 2012 0.69% Jeep Compass SUV 2012 0.62% BMW X3 SUV 2012 0.28% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 100.0% Suzuki Kizashi Sedan 2012 0.0% BMW M6 Convertible 2010 0.0% Ford Fiesta Sedan 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Hyundai Veracruz SUV 2012 27.02% Toyota Camry Sedan 2012 21.47% Chevrolet Malibu Sedan 2007 11.96% Toyota Corolla Sedan 2012 9.72% Honda Odyssey Minivan 2007 5.31% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Audi S4 Sedan 2012 22.49% BMW 3 Series Wagon 2012 21.68% Acura TL Type-S 2008 13.09% Audi S4 Sedan 2007 12.52% Honda Odyssey Minivan 2007 4.89% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Rolls-Royce Phantom Sedan 2012 17.01% Audi RS 4 Convertible 2008 7.86% Chevrolet Camaro Convertible 2012 6.67% Bugatti Veyron 16.4 Convertible 2009 6.57% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.7% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari California Convertible 2012 43.49% Lamborghini Aventador Coupe 2012 31.34% Ferrari 458 Italia Coupe 2012 19.17% Spyker C8 Coupe 2009 1.47% Ferrari FF Coupe 2012 1.06% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Ford Fiesta Sedan 2012 38.69% Scion xD Hatchback 2012 29.27% smart fortwo Convertible 2012 8.89% Hyundai Sonata Sedan 2012 8.28% Hyundai Azera Sedan 2012 6.81% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Diablo Coupe 2001 95.68% Ford GT Coupe 2006 0.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.29% Bentley Arnage Sedan 2009 0.26% Eagle Talon Hatchback 1998 0.25% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 52.18% Chevrolet Silverado 1500 Extended Cab 2012 31.42% HUMMER H3T Crew Cab 2010 14.45% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.31% HUMMER H2 SUT Crew Cab 2009 0.41% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 BMW 3 Series Sedan 2012 94.51% Jeep Grand Cherokee SUV 2012 2.38% Honda Accord Coupe 2012 0.83% BMW X6 SUV 2012 0.76% Volvo C30 Hatchback 2012 0.42% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Scion xD Hatchback 2012 32.8% Ford Fiesta Sedan 2012 29.28% Dodge Caravan Minivan 1997 10.33% Chevrolet Impala Sedan 2007 9.07% Hyundai Tucson SUV 2012 7.01% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 74.67% Mercedes-Benz C-Class Sedan 2012 21.97% Cadillac CTS-V Sedan 2012 1.1% Bentley Mulsanne Sedan 2011 0.55% Toyota Sequoia SUV 2012 0.32% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Toyota 4Runner SUV 2012 19.44% Ford Expedition EL SUV 2009 12.43% Volvo XC90 SUV 2007 11.52% Jeep Patriot SUV 2012 7.74% Hyundai Santa Fe SUV 2012 6.34% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 95.35% Ferrari 458 Italia Coupe 2012 3.36% Ferrari California Convertible 2012 0.75% Chevrolet Corvette ZR1 2012 0.26% Chevrolet Corvette Convertible 2012 0.08% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Hyundai Sonata Sedan 2012 82.4% Ford Edge SUV 2012 7.14% Hyundai Sonata Hybrid Sedan 2012 4.67% Honda Odyssey Minivan 2012 2.71% Hyundai Azera Sedan 2012 1.35% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Nissan NV Passenger Van 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 89.85% Hyundai Veracruz SUV 2012 4.8% Buick Rainier SUV 2007 1.92% GMC Acadia SUV 2012 0.66% Jeep Grand Cherokee SUV 2012 0.61% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.93% GMC Savana Van 2012 0.06% Ford F-450 Super Duty Crew Cab 2012 0.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.96% Hyundai Santa Fe SUV 2012 0.02% Ford F-450 Super Duty Crew Cab 2012 0.02% Mazda Tribute SUV 2011 0.0% Cadillac SRX SUV 2012 0.0% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 100.0% Jeep Compass SUV 2012 0.0% BMW X6 SUV 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Nissan Juke Hatchback 2012 0.0% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Buick Regal GS 2012 98.08% Dodge Magnum Wagon 2008 0.66% GMC Terrain SUV 2012 0.53% Chrysler 300 SRT-8 2010 0.43% Ford Edge SUV 2012 0.13% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 GMC Yukon Hybrid SUV 2012 88.87% GMC Terrain SUV 2012 7.77% Jeep Grand Cherokee SUV 2012 1.33% Jeep Patriot SUV 2012 1.31% Dodge Dakota Club Cab 2007 0.28% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 77.91% Audi 100 Sedan 1994 5.29% Chevrolet Silverado 2500HD Regular Cab 2012 4.86% Chevrolet Silverado 1500 Regular Cab 2012 2.99% Ford Ranger SuperCab 2011 2.51% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Audi S6 Sedan 2011 41.02% Rolls-Royce Phantom Drophead Coupe Convertible 2012 27.6% Aston Martin V8 Vantage Convertible 2012 4.76% Rolls-Royce Phantom Sedan 2012 3.25% Bentley Continental GT Coupe 2007 3.0% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 51.83% Dodge Charger Sedan 2012 10.38% Ford GT Coupe 2006 7.15% McLaren MP4-12C Coupe 2012 6.93% Spyker C8 Coupe 2009 5.46% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 51.96% Chevrolet Avalanche Crew Cab 2012 31.62% Dodge Dakota Crew Cab 2010 8.82% Chevrolet Tahoe Hybrid SUV 2012 3.13% Chevrolet Silverado 1500 Extended Cab 2012 2.35% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% BMW X3 SUV 2012 0.0% BMW X6 SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Audi 100 Sedan 1994 27.24% Bentley Arnage Sedan 2009 13.72% Rolls-Royce Ghost Sedan 2012 10.78% Dodge Dakota Club Cab 2007 4.98% Chevrolet Silverado 1500 Regular Cab 2012 3.1% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 BMW 6 Series Convertible 2007 82.06% Acura TSX Sedan 2012 8.31% Honda Accord Sedan 2012 5.42% Volkswagen Golf Hatchback 2012 1.12% Hyundai Genesis Sedan 2012 0.57% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Ferrari 458 Italia Coupe 2012 26.17% Hyundai Sonata Hybrid Sedan 2012 16.97% Infiniti G Coupe IPL 2012 6.37% Chevrolet Cobalt SS 2010 5.07% Spyker C8 Coupe 2009 4.62% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 98.54% Chevrolet Silverado 1500 Extended Cab 2012 0.64% Chevrolet Silverado 2500HD Regular Cab 2012 0.47% Chevrolet Avalanche Crew Cab 2012 0.08% Suzuki Kizashi Sedan 2012 0.05% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Bentley Arnage Sedan 2009 0.0% Jeep Patriot SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 100.0% Toyota Corolla Sedan 2012 0.0% Acura TSX Sedan 2012 0.0% Ford Edge SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Chevrolet Traverse SUV 2012 49.21% Hyundai Santa Fe SUV 2012 35.34% Dodge Caravan Minivan 1997 3.06% Hyundai Veracruz SUV 2012 2.89% Dodge Sprinter Cargo Van 2009 2.53% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Volvo XC90 SUV 2007 0.0% Audi V8 Sedan 1994 0.0% Audi 100 Sedan 1994 0.0% Jeep Grand Cherokee SUV 2012 0.0% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Infiniti G Coupe IPL 2012 23.7% Chevrolet Camaro Convertible 2012 17.1% Hyundai Veracruz SUV 2012 10.65% BMW M6 Convertible 2010 8.14% Cadillac CTS-V Sedan 2012 4.65% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 GMC Acadia SUV 2012 33.52% Cadillac SRX SUV 2012 30.59% Toyota Sequoia SUV 2012 9.85% Chevrolet Traverse SUV 2012 6.6% Cadillac Escalade EXT Crew Cab 2007 6.53% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.52% Hyundai Accent Sedan 2012 0.46% Buick Verano Sedan 2012 0.01% BMW M5 Sedan 2010 0.01% Chevrolet Sonic Sedan 2012 0.0% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Ferrari 458 Italia Convertible 2012 15.68% Lamborghini Aventador Coupe 2012 14.29% Ferrari FF Coupe 2012 10.38% Ferrari California Convertible 2012 8.98% Dodge Charger Sedan 2012 6.19% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 32.83% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 31.18% Chevrolet Silverado 2500HD Regular Cab 2012 16.19% Chevrolet Silverado 1500 Regular Cab 2012 7.95% Dodge Dakota Club Cab 2007 4.24% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Aston Martin Virage Coupe 2012 27.36% Jaguar XK XKR 2012 16.4% Honda Accord Coupe 2012 8.66% Eagle Talon Hatchback 1998 7.53% Acura TSX Sedan 2012 4.01% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 BMW 6 Series Convertible 2007 15.44% Maybach Landaulet Convertible 2012 11.38% BMW 3 Series Wagon 2012 10.09% Volkswagen Golf Hatchback 2012 9.18% Daewoo Nubira Wagon 2002 5.92% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 HUMMER H3T Crew Cab 2010 62.62% Ford F-450 Super Duty Crew Cab 2012 7.68% HUMMER H2 SUT Crew Cab 2009 6.87% GMC Canyon Extended Cab 2012 5.05% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.16% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 99.83% Ferrari 458 Italia Convertible 2012 0.1% Audi TT RS Coupe 2012 0.07% Spyker C8 Convertible 2009 0.0% Ferrari 458 Italia Coupe 2012 0.0% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Hyundai Tucson SUV 2012 37.47% Hyundai Sonata Hybrid Sedan 2012 14.49% Honda Odyssey Minivan 2012 6.74% Chevrolet Traverse SUV 2012 5.84% Chevrolet Malibu Hybrid Sedan 2010 5.59% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Chevrolet Camaro Convertible 2012 29.25% BMW X6 SUV 2012 14.52% Chevrolet Silverado 2500HD Regular Cab 2012 13.05% MINI Cooper Roadster Convertible 2012 9.67% Spyker C8 Convertible 2009 6.26% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 100.0% Honda Accord Coupe 2012 0.0% Audi A5 Coupe 2012 0.0% Audi R8 Coupe 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Acura RL Sedan 2012 52.77% Buick Verano Sedan 2012 14.09% Honda Odyssey Minivan 2007 5.22% Chevrolet Malibu Hybrid Sedan 2010 3.46% Suzuki SX4 Sedan 2012 2.83% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 68.05% Ford F-150 Regular Cab 2007 10.3% Hyundai Santa Fe SUV 2012 8.16% Chevrolet Silverado 1500 Extended Cab 2012 1.86% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.55% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 96.94% Hyundai Sonata Sedan 2012 0.77% Toyota Camry Sedan 2012 0.73% Scion xD Hatchback 2012 0.47% Acura ZDX Hatchback 2012 0.29% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 10.74% Audi TT Hatchback 2011 10.11% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.53% Chevrolet Monte Carlo Coupe 2007 8.48% Acura TL Sedan 2012 8.03% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 BMW M3 Coupe 2012 92.53% Audi A5 Coupe 2012 1.93% BMW 3 Series Wagon 2012 0.9% Jaguar XK XKR 2012 0.77% BMW ActiveHybrid 5 Sedan 2012 0.39% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 53.56% Bentley Continental Supersports Conv. Convertible 2012 24.42% Hyundai Sonata Hybrid Sedan 2012 6.47% Ferrari 458 Italia Convertible 2012 4.77% Spyker C8 Coupe 2009 2.54% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 99.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.03% Chrysler Town and Country Minivan 2012 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% Chevrolet Impala Sedan 2007 0.0% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 92.13% Dodge Caravan Minivan 1997 3.54% Chevrolet Impala Sedan 2007 3.31% Chevrolet Traverse SUV 2012 0.62% Geo Metro Convertible 1993 0.22% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Spyker C8 Convertible 2009 85.21% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.61% Bugatti Veyron 16.4 Coupe 2009 1.95% Aston Martin V8 Vantage Coupe 2012 0.95% Spyker C8 Coupe 2009 0.94% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 28.66% Chevrolet Impala Sedan 2007 26.15% Honda Odyssey Minivan 2007 16.15% Honda Accord Sedan 2012 2.19% Ford Focus Sedan 2007 2.17% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Dodge Journey SUV 2012 41.58% Chrysler Sebring Convertible 2010 22.94% BMW M6 Convertible 2010 19.91% Hyundai Elantra Sedan 2007 3.94% Dodge Caravan Minivan 1997 1.64% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 86.15% Chrysler Town and Country Minivan 2012 5.24% Land Rover LR2 SUV 2012 3.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.88% Volvo XC90 SUV 2007 1.39% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Cadillac CTS-V Sedan 2012 30.1% Bentley Continental Flying Spur Sedan 2007 12.48% Rolls-Royce Phantom Sedan 2012 9.48% Bentley Mulsanne Sedan 2011 9.3% Buick Regal GS 2012 5.08% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.99% Volkswagen Golf Hatchback 1991 0.0% Volvo XC90 SUV 2007 0.0% Audi 100 Sedan 1994 0.0% GMC Savana Van 2012 0.0% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Hyundai Elantra Sedan 2007 31.94% Ferrari FF Coupe 2012 16.95% Hyundai Tucson SUV 2012 10.78% Hyundai Accent Sedan 2012 10.4% Ford Edge SUV 2012 8.27% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Hyundai Sonata Sedan 2012 45.99% Honda Odyssey Minivan 2012 37.21% Toyota Camry Sedan 2012 4.72% Hyundai Elantra Sedan 2007 4.19% Hyundai Genesis Sedan 2012 1.42% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 BMW X6 SUV 2012 18.53% BMW ActiveHybrid 5 Sedan 2012 12.4% Mercedes-Benz C-Class Sedan 2012 6.15% Hyundai Veracruz SUV 2012 3.8% BMW 1 Series Convertible 2012 3.64% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 34.75% Isuzu Ascender SUV 2008 9.29% Chevrolet Silverado 1500 Extended Cab 2012 8.93% Ford Expedition EL SUV 2009 8.19% Land Rover LR2 SUV 2012 3.45% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Dodge Durango SUV 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Infiniti QX56 SUV 2011 0.0% Cadillac SRX SUV 2012 0.0% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 87.47% Ford Ranger SuperCab 2011 6.43% Lincoln Town Car Sedan 2011 1.8% Chevrolet Avalanche Crew Cab 2012 0.66% Ford Edge SUV 2012 0.65% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Hyundai Santa Fe SUV 2012 81.33% Dodge Journey SUV 2012 3.01% Infiniti G Coupe IPL 2012 2.64% Hyundai Genesis Sedan 2012 1.72% Honda Accord Coupe 2012 1.01% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Volvo 240 Sedan 1993 34.7% Nissan Leaf Hatchback 2012 32.63% Honda Accord Sedan 2012 14.92% Aston Martin Virage Coupe 2012 4.31% Chevrolet Corvette ZR1 2012 3.92% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Audi TT Hatchback 2011 23.51% Rolls-Royce Ghost Sedan 2012 10.94% Porsche Panamera Sedan 2012 9.81% Aston Martin V8 Vantage Coupe 2012 7.07% Dodge Charger SRT-8 2009 5.52% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Chrysler 300 SRT-8 2010 69.56% Rolls-Royce Ghost Sedan 2012 6.75% Chevrolet HHR SS 2010 4.68% Volvo 240 Sedan 1993 4.35% Rolls-Royce Phantom Sedan 2012 3.7% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Hyundai Azera Sedan 2012 73.95% Toyota Corolla Sedan 2012 10.77% Volkswagen Beetle Hatchback 2012 5.01% Hyundai Sonata Sedan 2012 3.43% Buick Verano Sedan 2012 1.3% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Hyundai Sonata Hybrid Sedan 2012 93.27% Hyundai Azera Sedan 2012 5.16% Hyundai Sonata Sedan 2012 0.73% Infiniti G Coupe IPL 2012 0.37% Porsche Panamera Sedan 2012 0.13% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 BMW 1 Series Coupe 2012 29.55% Dodge Caliber Wagon 2012 19.68% Toyota Camry Sedan 2012 9.64% Honda Odyssey Minivan 2012 6.0% Acura TSX Sedan 2012 5.08% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Isuzu Ascender SUV 2008 77.3% Jeep Patriot SUV 2012 19.38% Jeep Liberty SUV 2012 3.03% Mazda Tribute SUV 2011 0.19% Chrysler Aspen SUV 2009 0.09% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Dodge Charger Sedan 2012 89.52% Plymouth Neon Coupe 1999 5.13% Hyundai Elantra Sedan 2007 2.56% Chevrolet Monte Carlo Coupe 2007 1.07% Toyota Corolla Sedan 2012 0.89% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Audi R8 Coupe 2012 52.97% Rolls-Royce Ghost Sedan 2012 26.16% Rolls-Royce Phantom Sedan 2012 10.5% Bugatti Veyron 16.4 Coupe 2009 4.35% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.61% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 82.48% Dodge Caravan Minivan 1997 11.78% Hyundai Elantra Touring Hatchback 2012 5.45% Suzuki SX4 Hatchback 2012 0.05% Hyundai Veracruz SUV 2012 0.04% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 62.51% Aston Martin Virage Coupe 2012 17.37% Ford GT Coupe 2006 12.02% Ferrari 458 Italia Coupe 2012 7.1% Chevrolet Corvette ZR1 2012 0.44% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Hyundai Sonata Sedan 2012 78.55% Honda Odyssey Minivan 2012 13.11% Toyota Corolla Sedan 2012 1.87% Hyundai Elantra Sedan 2007 1.64% Hyundai Santa Fe SUV 2012 1.57% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Spyker C8 Convertible 2009 94.61% Spyker C8 Coupe 2009 5.35% Bugatti Veyron 16.4 Coupe 2009 0.04% Lamborghini Reventon Coupe 2008 0.0% Lamborghini Aventador Coupe 2012 0.0% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 38.46% Mercedes-Benz C-Class Sedan 2012 24.21% Audi 100 Sedan 1994 11.84% Daewoo Nubira Wagon 2002 9.51% Mercedes-Benz E-Class Sedan 2012 3.16% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.0% Dodge Dakota Crew Cab 2010 0.25% Plymouth Neon Coupe 1999 0.18% Chevrolet Avalanche Crew Cab 2012 0.14% Chevrolet Silverado 1500 Regular Cab 2012 0.08% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 99.82% Chevrolet Avalanche Crew Cab 2012 0.05% Dodge Caravan Minivan 1997 0.05% Land Rover Range Rover SUV 2012 0.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.03% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.62% Dodge Caravan Minivan 1997 0.2% Honda Odyssey Minivan 2007 0.05% Dodge Sprinter Cargo Van 2009 0.02% Nissan 240SX Coupe 1998 0.02% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Buick Regal GS 2012 0.0% Honda Odyssey Minivan 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Ford Fiesta Sedan 2012 0.0% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 100.0% Audi S5 Coupe 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Audi S4 Sedan 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Dodge Magnum Wagon 2008 21.98% Chevrolet Monte Carlo Coupe 2007 9.13% Chevrolet Malibu Sedan 2007 7.71% Chevrolet Tahoe Hybrid SUV 2012 7.2% Chevrolet Impala Sedan 2007 6.65% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 76.3% Hyundai Veloster Hatchback 2012 10.38% Hyundai Tucson SUV 2012 8.61% Hyundai Sonata Hybrid Sedan 2012 1.79% Ford Edge SUV 2012 0.87% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 15.52% Audi S5 Coupe 2012 13.22% Audi TT Hatchback 2011 8.84% Audi S4 Sedan 2012 4.95% Chevrolet Avalanche Crew Cab 2012 3.09% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Jaguar XK XKR 2012 76.8% Dodge Challenger SRT8 2011 17.03% BMW 6 Series Convertible 2007 4.7% Dodge Charger Sedan 2012 0.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.48% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Ghost Sedan 2012 79.92% Rolls-Royce Phantom Sedan 2012 2.77% Volvo 240 Sedan 1993 1.57% GMC Terrain SUV 2012 1.39% BMW 3 Series Sedan 2012 1.23% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Chevrolet Impala Sedan 2007 83.1% Chevrolet Malibu Hybrid Sedan 2010 4.76% Honda Odyssey Minivan 2007 3.87% Toyota Camry Sedan 2012 2.05% Suzuki Kizashi Sedan 2012 1.96% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.97% Toyota Camry Sedan 2012 0.01% Acura TL Sedan 2012 0.01% Hyundai Veloster Hatchback 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Chevrolet Impala Sedan 2007 91.1% Lincoln Town Car Sedan 2011 5.59% Chevrolet Malibu Sedan 2007 3.1% Ford Freestar Minivan 2007 0.09% Daewoo Nubira Wagon 2002 0.03% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Honda Odyssey Minivan 2012 41.66% Hyundai Elantra Sedan 2007 28.95% Chevrolet Malibu Sedan 2007 19.08% Honda Odyssey Minivan 2007 4.04% Hyundai Sonata Sedan 2012 1.74% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Rolls-Royce Phantom Sedan 2012 11.55% Bentley Mulsanne Sedan 2011 8.52% Bentley Continental Flying Spur Sedan 2007 7.67% Bentley Arnage Sedan 2009 6.15% Rolls-Royce Ghost Sedan 2012 4.38% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 40.5% smart fortwo Convertible 2012 31.74% FIAT 500 Convertible 2012 10.3% Maybach Landaulet Convertible 2012 5.56% BMW 6 Series Convertible 2007 4.29% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Spyker C8 Coupe 2009 19.13% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.89% Hyundai Veloster Hatchback 2012 10.16% Audi R8 Coupe 2012 7.91% Bugatti Veyron 16.4 Coupe 2009 7.81% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 98.89% Chevrolet Tahoe Hybrid SUV 2012 1.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.09% GMC Yukon Hybrid SUV 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 47.01% Chevrolet Silverado 1500 Regular Cab 2012 37.97% GMC Canyon Extended Cab 2012 11.79% Dodge Dakota Crew Cab 2010 0.99% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.62% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.86% Volvo C30 Hatchback 2012 0.12% Hyundai Veloster Hatchback 2012 0.02% Lamborghini Diablo Coupe 2001 0.0% McLaren MP4-12C Coupe 2012 0.0% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 53.52% Toyota Camry Sedan 2012 25.81% Acura RL Sedan 2012 16.03% Acura ZDX Hatchback 2012 1.38% Bentley Continental GT Coupe 2007 0.67% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Acura TL Type-S 2008 82.76% Dodge Caravan Minivan 1997 15.05% Honda Accord Sedan 2012 0.67% Daewoo Nubira Wagon 2002 0.41% Chevrolet Corvette ZR1 2012 0.37% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 BMW 3 Series Wagon 2012 33.19% Audi V8 Sedan 1994 29.4% BMW 3 Series Sedan 2012 13.0% Bentley Arnage Sedan 2009 6.09% Mercedes-Benz C-Class Sedan 2012 4.95% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Daewoo Nubira Wagon 2002 28.54% BMW 3 Series Wagon 2012 23.63% Buick Enclave SUV 2012 15.19% Plymouth Neon Coupe 1999 5.59% Buick Rainier SUV 2007 4.74% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Toyota Camry Sedan 2012 33.82% Dodge Durango SUV 2012 17.44% Jeep Grand Cherokee SUV 2012 16.72% Suzuki Kizashi Sedan 2012 12.42% Nissan Juke Hatchback 2012 4.03% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 18.34% Maybach Landaulet Convertible 2012 15.12% FIAT 500 Convertible 2012 9.91% Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.19% Volkswagen Golf Hatchback 2012 5.14% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 79.0% Ferrari 458 Italia Coupe 2012 16.0% Dodge Charger Sedan 2012 4.58% Ferrari California Convertible 2012 0.14% Aston Martin V8 Vantage Coupe 2012 0.12% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 89.73% Porsche Panamera Sedan 2012 5.54% BMW X5 SUV 2007 1.37% Volkswagen Golf Hatchback 2012 0.41% Bentley Mulsanne Sedan 2011 0.36% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Ferrari 458 Italia Convertible 2012 34.31% Ferrari FF Coupe 2012 33.57% Lamborghini Aventador Coupe 2012 18.19% Ford GT Coupe 2006 1.9% Ferrari California Convertible 2012 1.56% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.99% Buick Rainier SUV 2007 0.0% Volvo 240 Sedan 1993 0.0% Isuzu Ascender SUV 2008 0.0% GMC Terrain SUV 2012 0.0% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Monte Carlo Coupe 2007 22.89% Toyota Camry Sedan 2012 11.61% BMW X6 SUV 2012 9.02% Dodge Durango SUV 2012 5.14% Acura TL Type-S 2008 3.64% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 Hyundai Veloster Hatchback 2012 27.4% Bentley Continental GT Coupe 2012 10.32% BMW X6 SUV 2012 6.9% Nissan 240SX Coupe 1998 4.22% Chevrolet Impala Sedan 2007 3.59% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Plymouth Neon Coupe 1999 8.26% Bentley Mulsanne Sedan 2011 7.95% Land Rover Range Rover SUV 2012 7.47% Fisker Karma Sedan 2012 7.07% Chevrolet TrailBlazer SS 2009 5.57% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 99.97% Nissan Juke Hatchback 2012 0.01% MINI Cooper Roadster Convertible 2012 0.01% Buick Verano Sedan 2012 0.0% Suzuki SX4 Sedan 2012 0.0% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Eagle Talon Hatchback 1998 34.59% Chevrolet Corvette ZR1 2012 21.04% Geo Metro Convertible 1993 20.92% Chevrolet Corvette Convertible 2012 7.13% Ferrari 458 Italia Coupe 2012 5.15% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Suzuki SX4 Hatchback 2012 51.11% Dodge Caliber Wagon 2007 12.38% Nissan Juke Hatchback 2012 8.14% Volvo C30 Hatchback 2012 3.67% Dodge Journey SUV 2012 3.64% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 86.63% GMC Yukon Hybrid SUV 2012 5.97% HUMMER H2 SUT Crew Cab 2009 2.5% Ford Ranger SuperCab 2011 2.42% Chevrolet Silverado 1500 Extended Cab 2012 0.84% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Suzuki Aerio Sedan 2007 99.56% Suzuki SX4 Sedan 2012 0.24% Honda Odyssey Minivan 2007 0.1% Suzuki SX4 Hatchback 2012 0.06% Volkswagen Golf Hatchback 2012 0.04% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 100.0% BMW X3 SUV 2012 0.0% BMW X5 SUV 2007 0.0% BMW 1 Series Coupe 2012 0.0% BMW 1 Series Convertible 2012 0.0% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.54% Jeep Compass SUV 2012 0.16% Spyker C8 Convertible 2009 0.12% Bugatti Veyron 16.4 Coupe 2009 0.02% Jeep Grand Cherokee SUV 2012 0.02% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 92.87% Chevrolet Silverado 1500 Regular Cab 2012 3.86% Chevrolet Avalanche Crew Cab 2012 1.37% GMC Yukon Hybrid SUV 2012 0.91% Cadillac Escalade EXT Crew Cab 2007 0.22% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz E-Class Sedan 2012 16.75% Mitsubishi Lancer Sedan 2012 14.02% Mercedes-Benz S-Class Sedan 2012 12.6% Chevrolet Malibu Hybrid Sedan 2010 11.49% Chrysler Sebring Convertible 2010 11.16% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Hyundai Veracruz SUV 2012 76.97% Acura TSX Sedan 2012 19.93% Hyundai Santa Fe SUV 2012 1.76% Hyundai Azera Sedan 2012 0.82% Hyundai Sonata Sedan 2012 0.18% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 39.17% Acura Integra Type R 2001 30.43% Aston Martin V8 Vantage Coupe 2012 18.24% Chevrolet Corvette ZR1 2012 1.88% Jaguar XK XKR 2012 1.87% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Buick Verano Sedan 2012 82.07% Chevrolet Sonic Sedan 2012 4.84% Acura RL Sedan 2012 1.79% Cadillac SRX SUV 2012 0.9% Mitsubishi Lancer Sedan 2012 0.89% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 34.28% Honda Accord Sedan 2012 22.41% Mercedes-Benz 300-Class Convertible 1993 5.58% Audi 100 Sedan 1994 4.71% Plymouth Neon Coupe 1999 4.52% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 42.44% Volvo 240 Sedan 1993 16.72% Ford Ranger SuperCab 2011 11.79% Ford F-150 Regular Cab 2007 9.06% Ford E-Series Wagon Van 2012 4.04% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 55.72% Chevrolet Silverado 2500HD Regular Cab 2012 39.28% Chevrolet Tahoe Hybrid SUV 2012 1.73% Land Rover Range Rover SUV 2012 0.92% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.42% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 34.33% Ferrari California Convertible 2012 15.54% Spyker C8 Convertible 2009 10.66% Volvo C30 Hatchback 2012 8.19% Ford GT Coupe 2006 6.31% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.93% BMW 3 Series Sedan 2012 0.04% Plymouth Neon Coupe 1999 0.01% Hyundai Elantra Sedan 2007 0.01% BMW M5 Sedan 2010 0.01% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 40.72% Chevrolet Silverado 1500 Regular Cab 2012 15.2% Ford F-150 Regular Cab 2007 11.48% Toyota Sequoia SUV 2012 5.12% Jeep Grand Cherokee SUV 2012 4.86% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2012 83.26% Bentley Continental GT Coupe 2007 11.5% BMW X3 SUV 2012 2.22% Suzuki Kizashi Sedan 2012 0.87% Chrysler 300 SRT-8 2010 0.59% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 18.01% Bentley Continental Flying Spur Sedan 2007 8.07% Bugatti Veyron 16.4 Coupe 2009 7.43% Dodge Challenger SRT8 2011 7.28% Ford Mustang Convertible 2007 7.15% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Jaguar XK XKR 2012 85.33% Chevrolet Corvette ZR1 2012 12.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.72% Chevrolet Malibu Sedan 2007 0.31% BMW 6 Series Convertible 2007 0.11% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Sedan 1994 79.9% Geo Metro Convertible 1993 3.17% Ferrari FF Coupe 2012 2.94% Nissan 240SX Coupe 1998 1.83% Dodge Caliber Wagon 2007 0.94% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 99.57% Dodge Caravan Minivan 1997 0.42% Chevrolet Sonic Sedan 2012 0.01% Chevrolet Impala Sedan 2007 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 13.2% Suzuki SX4 Sedan 2012 13.16% Honda Odyssey Minivan 2012 10.49% Hyundai Veracruz SUV 2012 9.18% Scion xD Hatchback 2012 8.61% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Chevrolet Silverado 1500 Classic Extended Cab 2007 90.6% Chevrolet Express Van 2007 5.74% Ford Focus Sedan 2007 1.25% Volvo 240 Sedan 1993 0.47% Jeep Liberty SUV 2012 0.43% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Ferrari 458 Italia Coupe 2012 34.72% FIAT 500 Abarth 2012 27.75% Fisker Karma Sedan 2012 9.45% Jaguar XK XKR 2012 7.43% Mercedes-Benz E-Class Sedan 2012 3.58% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Dodge Charger Sedan 2012 94.53% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.63% McLaren MP4-12C Coupe 2012 0.9% Spyker C8 Coupe 2009 0.86% Ferrari 458 Italia Coupe 2012 0.65% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Jaguar XK XKR 2012 66.48% Buick Verano Sedan 2012 9.79% Porsche Panamera Sedan 2012 5.8% BMW M3 Coupe 2012 5.3% Infiniti G Coupe IPL 2012 1.39% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Chrysler 300 SRT-8 2010 60.75% Dodge Challenger SRT8 2011 37.98% Mercedes-Benz S-Class Sedan 2012 0.83% Chevrolet TrailBlazer SS 2009 0.29% Audi S6 Sedan 2011 0.09% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 34.76% Rolls-Royce Phantom Sedan 2012 31.49% Bentley Continental GT Coupe 2012 13.84% Fisker Karma Sedan 2012 6.16% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.1% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Freestar Minivan 2007 83.3% Nissan NV Passenger Van 2012 14.75% Buick Rainier SUV 2007 0.3% GMC Canyon Extended Cab 2012 0.28% Chevrolet Tahoe Hybrid SUV 2012 0.19% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Dodge Durango SUV 2012 51.48% Infiniti QX56 SUV 2011 43.62% Toyota 4Runner SUV 2012 1.34% Toyota Sequoia SUV 2012 1.14% Dodge Ram Pickup 3500 Crew Cab 2010 0.49% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 21.74% Acura TL Type-S 2008 8.75% Buick Verano Sedan 2012 6.13% Audi 100 Wagon 1994 4.5% Chrysler Sebring Convertible 2010 4.02% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 90.23% Cadillac SRX SUV 2012 9.21% Chrysler Town and Country Minivan 2012 0.32% Lincoln Town Car Sedan 2011 0.17% Acura RL Sedan 2012 0.03% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 99.85% Mercedes-Benz S-Class Sedan 2012 0.05% Chrysler Aspen SUV 2009 0.05% Hyundai Genesis Sedan 2012 0.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.02% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 18.02% Jeep Patriot SUV 2012 17.89% GMC Savana Van 2012 7.59% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.15% Bentley Arnage Sedan 2009 4.0% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Hyundai Veracruz SUV 2012 59.72% Suzuki SX4 Hatchback 2012 22.98% Acura TSX Sedan 2012 8.41% Scion xD Hatchback 2012 5.54% Hyundai Santa Fe SUV 2012 2.08% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Chrysler Aspen SUV 2009 80.0% Mercedes-Benz E-Class Sedan 2012 9.9% Mercedes-Benz S-Class Sedan 2012 3.48% Land Rover Range Rover SUV 2012 1.43% Chrysler PT Cruiser Convertible 2008 1.4% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Isuzu Ascender SUV 2008 33.19% Dodge Caravan Minivan 1997 29.22% Chevrolet Silverado 1500 Regular Cab 2012 13.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.38% GMC Canyon Extended Cab 2012 6.87% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 86.65% Ford Freestar Minivan 2007 11.07% Plymouth Neon Coupe 1999 1.71% Daewoo Nubira Wagon 2002 0.42% Chevrolet Impala Sedan 2007 0.07% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.88% Dodge Sprinter Cargo Van 2009 0.12% Buick Rainier SUV 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Lamborghini Aventador Coupe 2012 20.38% Hyundai Veloster Hatchback 2012 17.98% Ferrari 458 Italia Coupe 2012 9.99% Bugatti Veyron 16.4 Convertible 2009 9.64% Lamborghini Reventon Coupe 2008 8.72% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 48.44% Eagle Talon Hatchback 1998 33.41% Hyundai Elantra Touring Hatchback 2012 14.04% Audi S6 Sedan 2011 2.55% Nissan 240SX Coupe 1998 1.12% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Audi V8 Sedan 1994 28.78% Dodge Durango SUV 2007 18.62% Chevrolet Malibu Sedan 2007 8.1% Aston Martin Virage Convertible 2012 4.78% Dodge Ram Pickup 3500 Crew Cab 2010 4.77% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 68.72% Dodge Caravan Minivan 1997 14.17% Hyundai Elantra Sedan 2007 10.05% Honda Odyssey Minivan 2012 2.48% Chevrolet Impala Sedan 2007 1.43% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 99.83% Chevrolet Malibu Sedan 2007 0.1% Buick Verano Sedan 2012 0.03% Hyundai Elantra Sedan 2007 0.02% Chrysler Town and Country Minivan 2012 0.01% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Geo Metro Convertible 1993 17.42% Lamborghini Gallardo LP 570-4 Superleggera 2012 9.08% Aston Martin V8 Vantage Coupe 2012 8.65% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.97% Lamborghini Diablo Coupe 2001 2.61% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Plymouth Neon Coupe 1999 68.49% Dodge Caravan Minivan 1997 7.89% Ford E-Series Wagon Van 2012 6.6% Eagle Talon Hatchback 1998 4.29% Scion xD Hatchback 2012 2.5% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 GMC Canyon Extended Cab 2012 20.99% Chevrolet Impala Sedan 2007 6.07% Honda Odyssey Minivan 2012 5.79% Audi 100 Sedan 1994 3.71% Honda Odyssey Minivan 2007 3.18% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Maybach Landaulet Convertible 2012 71.08% smart fortwo Convertible 2012 9.72% Bugatti Veyron 16.4 Convertible 2009 9.2% Nissan Leaf Hatchback 2012 4.04% Bentley Continental Supersports Conv. Convertible 2012 1.1% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Jeep Grand Cherokee SUV 2012 94.96% Jeep Liberty SUV 2012 2.93% HUMMER H3T Crew Cab 2010 0.55% BMW 3 Series Sedan 2012 0.48% Dodge Dakota Crew Cab 2010 0.32% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 56.55% Suzuki SX4 Sedan 2012 7.67% Buick Regal GS 2012 5.36% Lincoln Town Car Sedan 2011 2.8% Fisker Karma Sedan 2012 2.64% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Hyundai Azera Sedan 2012 94.51% Hyundai Sonata Hybrid Sedan 2012 2.07% Ford Fiesta Sedan 2012 0.87% Mercedes-Benz SL-Class Coupe 2009 0.78% Volkswagen Golf Hatchback 2012 0.62% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Ford GT Coupe 2006 75.06% Ferrari California Convertible 2012 22.61% Ferrari 458 Italia Convertible 2012 1.18% Ferrari FF Coupe 2012 0.45% Lamborghini Aventador Coupe 2012 0.3% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 29.03% Audi TTS Coupe 2012 24.41% Chevrolet Camaro Convertible 2012 19.79% BMW 1 Series Convertible 2012 3.21% Audi R8 Coupe 2012 3.2% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 73.02% BMW 3 Series Sedan 2012 22.55% Hyundai Elantra Sedan 2007 1.93% BMW M5 Sedan 2010 0.84% BMW 1 Series Coupe 2012 0.32% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 24.83% Plymouth Neon Coupe 1999 24.23% Ford Mustang Convertible 2007 19.72% Audi V8 Sedan 1994 4.94% Dodge Caravan Minivan 1997 3.87% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.99% Mercedes-Benz E-Class Sedan 2012 0.01% Cadillac CTS-V Sedan 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Chrysler Crossfire Convertible 2008 0.0% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Plymouth Neon Coupe 1999 66.86% Chevrolet Impala Sedan 2007 24.31% Nissan 240SX Coupe 1998 3.93% Eagle Talon Hatchback 1998 2.45% Ford Focus Sedan 2007 1.11% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 41.36% Chrysler Aspen SUV 2009 12.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.66% Chrysler Town and Country Minivan 2012 3.31% Toyota 4Runner SUV 2012 2.87% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 41.31% Dodge Charger Sedan 2012 40.27% Dodge Magnum Wagon 2008 9.0% Lamborghini Aventador Coupe 2012 7.06% Chevrolet HHR SS 2010 1.67% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Lincoln Town Car Sedan 2011 60.31% Volvo XC90 SUV 2007 22.83% Chevrolet Impala Sedan 2007 14.23% Chevrolet Malibu Sedan 2007 1.7% Rolls-Royce Ghost Sedan 2012 0.29% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 81.57% Buick Rainier SUV 2007 12.06% Chevrolet Tahoe Hybrid SUV 2012 2.05% Dodge Ram Pickup 3500 Quad Cab 2009 1.35% GMC Yukon Hybrid SUV 2012 1.31% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Porsche Panamera Sedan 2012 81.58% Jaguar XK XKR 2012 3.77% Chevrolet Corvette ZR1 2012 2.77% Eagle Talon Hatchback 1998 1.71% Plymouth Neon Coupe 1999 1.62% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 87.72% Hyundai Elantra Sedan 2007 3.57% BMW 1 Series Convertible 2012 1.89% Suzuki Aerio Sedan 2007 0.69% Mercedes-Benz 300-Class Convertible 1993 0.66% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Honda Odyssey Minivan 2012 27.46% Hyundai Sonata Hybrid Sedan 2012 24.87% Chevrolet Sonic Sedan 2012 5.66% Bentley Mulsanne Sedan 2011 4.98% Hyundai Sonata Sedan 2012 4.87% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.96% McLaren MP4-12C Coupe 2012 0.04% Audi R8 Coupe 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 95.21% Honda Accord Sedan 2012 3.83% Dodge Caliber Wagon 2007 0.57% Suzuki SX4 Hatchback 2012 0.1% Plymouth Neon Coupe 1999 0.06% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2012 38.49% Spyker C8 Convertible 2009 9.48% Chevrolet Sonic Sedan 2012 6.4% Bentley Continental Flying Spur Sedan 2007 5.81% Tesla Model S Sedan 2012 4.19% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz S-Class Sedan 2012 60.42% Chrysler Sebring Convertible 2010 26.02% Chrysler Crossfire Convertible 2008 11.16% Chrysler PT Cruiser Convertible 2008 1.63% Chrysler Aspen SUV 2009 0.31% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.99% Dodge Sprinter Cargo Van 2009 0.01% Ram C/V Cargo Van Minivan 2012 0.0% Dodge Caravan Minivan 1997 0.0% Buick Rainier SUV 2007 0.0% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 71.52% GMC Yukon Hybrid SUV 2012 27.93% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.23% Cadillac Escalade EXT Crew Cab 2007 0.11% Chevrolet Avalanche Crew Cab 2012 0.05% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 BMW 1 Series Coupe 2012 39.3% BMW X6 SUV 2012 14.25% Buick Verano Sedan 2012 10.23% Suzuki SX4 Hatchback 2012 7.2% Chevrolet Sonic Sedan 2012 4.08% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 99.93% Dodge Sprinter Cargo Van 2009 0.04% Hyundai Veracruz SUV 2012 0.01% Hyundai Santa Fe SUV 2012 0.01% Dodge Caravan Minivan 1997 0.0% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Suzuki SX4 Sedan 2012 9.15% MINI Cooper Roadster Convertible 2012 8.21% Nissan Leaf Hatchback 2012 7.4% Ford Fiesta Sedan 2012 5.77% Dodge Journey SUV 2012 4.99% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 70.98% Toyota Camry Sedan 2012 6.3% Ford Edge SUV 2012 5.78% Dodge Caravan Minivan 1997 4.11% Honda Odyssey Minivan 2012 2.9% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Toyota Camry Sedan 2012 58.07% Toyota Corolla Sedan 2012 41.91% Mitsubishi Lancer Sedan 2012 0.01% Ford Fiesta Sedan 2012 0.01% Scion xD Hatchback 2012 0.0% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 BMW X6 SUV 2012 34.4% Ford Edge SUV 2012 29.0% Ford Expedition EL SUV 2009 12.22% Volvo XC90 SUV 2007 7.15% GMC Yukon Hybrid SUV 2012 6.2% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Volkswagen Golf Hatchback 1991 47.26% Plymouth Neon Coupe 1999 40.95% Daewoo Nubira Wagon 2002 1.81% Dodge Challenger SRT8 2011 1.61% Ferrari FF Coupe 2012 1.31% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Audi S6 Sedan 2011 79.99% BMW 1 Series Convertible 2012 18.81% Audi A5 Coupe 2012 0.54% BMW ActiveHybrid 5 Sedan 2012 0.19% Audi RS 4 Convertible 2008 0.1% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 87.41% HUMMER H2 SUT Crew Cab 2009 12.59% AM General Hummer SUV 2000 0.0% Jeep Grand Cherokee SUV 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Dodge Ram Pickup 3500 Crew Cab 2010 34.47% Chevrolet Express Van 2007 31.32% GMC Canyon Extended Cab 2012 7.67% Ford F-150 Regular Cab 2007 6.58% Dodge Ram Pickup 3500 Quad Cab 2009 5.48% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 82.66% Lamborghini Aventador Coupe 2012 15.53% Ferrari 458 Italia Convertible 2012 1.26% Dodge Charger Sedan 2012 0.21% Bugatti Veyron 16.4 Coupe 2009 0.05% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 82.14% Hyundai Veloster Hatchback 2012 10.17% Toyota Camry Sedan 2012 2.4% Hyundai Accent Sedan 2012 2.4% Toyota Corolla Sedan 2012 1.32% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 smart fortwo Convertible 2012 16.39% Ford Fiesta Sedan 2012 8.28% Hyundai Sonata Hybrid Sedan 2012 7.63% Hyundai Sonata Sedan 2012 7.36% Acura ZDX Hatchback 2012 7.31% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.56% Bugatti Veyron 16.4 Coupe 2009 0.41% Audi R8 Coupe 2012 0.01% Mercedes-Benz C-Class Sedan 2012 0.0% Audi S4 Sedan 2012 0.0% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 94.72% Chevrolet Traverse SUV 2012 3.57% Acura ZDX Hatchback 2012 0.63% Hyundai Sonata Sedan 2012 0.49% Hyundai Veracruz SUV 2012 0.33% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Chrysler 300 SRT-8 2010 17.64% Chevrolet Impala Sedan 2007 8.45% Volvo 240 Sedan 1993 7.57% Lamborghini Reventon Coupe 2008 7.14% Nissan 240SX Coupe 1998 5.54% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 67.5% Plymouth Neon Coupe 1999 13.49% Geo Metro Convertible 1993 6.58% Dodge Caravan Minivan 1997 3.67% Jaguar XK XKR 2012 1.56% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 99.37% Plymouth Neon Coupe 1999 0.4% Ferrari California Convertible 2012 0.07% BMW 3 Series Sedan 2012 0.05% Honda Accord Coupe 2012 0.02% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 48.59% Audi S6 Sedan 2011 32.57% Mitsubishi Lancer Sedan 2012 11.0% Bentley Continental GT Coupe 2012 1.2% Chrysler PT Cruiser Convertible 2008 1.04% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Honda Odyssey Minivan 2012 23.15% Hyundai Sonata Hybrid Sedan 2012 9.54% Hyundai Genesis Sedan 2012 8.59% Volkswagen Golf Hatchback 1991 5.9% Mercedes-Benz SL-Class Coupe 2009 5.15% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Lamborghini Reventon Coupe 2008 33.71% Chevrolet Corvette ZR1 2012 28.19% Spyker C8 Convertible 2009 20.16% Aston Martin Virage Coupe 2012 3.82% Aston Martin Virage Convertible 2012 3.05% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Audi R8 Coupe 2012 60.86% Bugatti Veyron 16.4 Coupe 2009 20.41% Tesla Model S Sedan 2012 5.78% Fisker Karma Sedan 2012 2.6% Bugatti Veyron 16.4 Convertible 2009 1.6% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Toyota Camry Sedan 2012 77.65% Suzuki Kizashi Sedan 2012 3.56% Chevrolet Impala Sedan 2007 2.47% Honda Odyssey Minivan 2012 1.96% Acura TSX Sedan 2012 1.87% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Infiniti QX56 SUV 2011 19.95% Honda Odyssey Minivan 2007 16.53% Acura TSX Sedan 2012 7.8% Mercedes-Benz C-Class Sedan 2012 6.48% Ford Mustang Convertible 2007 5.39% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Acura RL Sedan 2012 15.59% Audi S5 Convertible 2012 10.09% Audi TTS Coupe 2012 7.67% Hyundai Azera Sedan 2012 4.63% Rolls-Royce Ghost Sedan 2012 4.4% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 38.76% Hyundai Azera Sedan 2012 20.48% Honda Odyssey Minivan 2012 13.25% Hyundai Elantra Sedan 2007 12.04% Acura TSX Sedan 2012 4.69% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 71.97% Dodge Caliber Wagon 2007 16.87% Dodge Caravan Minivan 1997 5.61% Dodge Dakota Club Cab 2007 1.85% Ford Freestar Minivan 2007 1.36% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 46.26% GMC Acadia SUV 2012 14.21% Chevrolet Silverado 2500HD Regular Cab 2012 8.75% GMC Yukon Hybrid SUV 2012 4.86% Land Rover LR2 SUV 2012 2.92% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 42.04% Suzuki Kizashi Sedan 2012 12.48% Chrysler Aspen SUV 2009 11.2% Rolls-Royce Phantom Sedan 2012 6.16% Dodge Dakota Crew Cab 2010 4.42% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 100.0% Chevrolet Impala Sedan 2007 0.0% Chrysler Sebring Convertible 2010 0.0% Dodge Magnum Wagon 2008 0.0% Hyundai Genesis Sedan 2012 0.0% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Hyundai Azera Sedan 2012 55.49% Land Rover Range Rover SUV 2012 30.48% Cadillac SRX SUV 2012 4.08% Infiniti QX56 SUV 2011 2.17% Ford Edge SUV 2012 1.18% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Durango SUV 2007 44.17% Dodge Ram Pickup 3500 Quad Cab 2009 28.31% Isuzu Ascender SUV 2008 13.91% Dodge Dakota Crew Cab 2010 6.2% Dodge Caliber Wagon 2007 2.91% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Ford Mustang Convertible 2007 16.06% Cadillac CTS-V Sedan 2012 15.51% Mercedes-Benz SL-Class Coupe 2009 8.54% Buick Enclave SUV 2012 4.82% Bentley Mulsanne Sedan 2011 4.14% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Aventador Coupe 2012 56.46% HUMMER H2 SUT Crew Cab 2009 23.69% Ferrari 458 Italia Convertible 2012 8.76% HUMMER H3T Crew Cab 2010 4.11% Hyundai Veloster Hatchback 2012 1.07% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Aston Martin Virage Convertible 2012 69.38% Ford GT Coupe 2006 15.23% Aston Martin Virage Coupe 2012 7.72% Jaguar XK XKR 2012 2.06% Lamborghini Reventon Coupe 2008 1.52% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 76.87% Dodge Charger Sedan 2012 13.12% Suzuki Kizashi Sedan 2012 8.66% Volvo C30 Hatchback 2012 0.65% Dodge Magnum Wagon 2008 0.42% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 15.13% Chevrolet Silverado 2500HD Regular Cab 2012 12.17% Ford Ranger SuperCab 2011 10.37% Chevrolet Express Cargo Van 2007 6.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.91% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 28.98% Lamborghini Reventon Coupe 2008 14.56% Audi S4 Sedan 2012 13.4% Fisker Karma Sedan 2012 3.66% Nissan 240SX Coupe 1998 2.71% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.89% Acura Integra Type R 2001 0.1% Volkswagen Golf Hatchback 1991 0.0% Audi 100 Sedan 1994 0.0% Plymouth Neon Coupe 1999 0.0% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Suzuki Kizashi Sedan 2012 15.57% Buick Verano Sedan 2012 6.76% Acura RL Sedan 2012 5.11% Acura TSX Sedan 2012 3.98% Infiniti G Coupe IPL 2012 3.95% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Chrysler Sebring Convertible 2010 65.18% Ram C/V Cargo Van Minivan 2012 22.39% Mercedes-Benz S-Class Sedan 2012 3.22% Chevrolet Malibu Sedan 2007 1.48% Lincoln Town Car Sedan 2011 1.24% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 60.79% Spyker C8 Coupe 2009 11.94% Scion xD Hatchback 2012 7.95% Aston Martin Virage Coupe 2012 4.13% Hyundai Sonata Hybrid Sedan 2012 2.66% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 73.83% Toyota Sequoia SUV 2012 23.98% Hyundai Santa Fe SUV 2012 0.89% Ford Edge SUV 2012 0.76% Land Rover LR2 SUV 2012 0.21% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Hyundai Elantra Sedan 2007 42.74% Dodge Caravan Minivan 1997 19.6% Honda Accord Coupe 2012 9.3% Jaguar XK XKR 2012 8.93% Acura TSX Sedan 2012 3.09% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 21.24% McLaren MP4-12C Coupe 2012 11.53% Ferrari 458 Italia Coupe 2012 10.26% Aston Martin Virage Convertible 2012 7.78% Aston Martin V8 Vantage Convertible 2012 7.45% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 88.15% Ford F-150 Regular Cab 2012 2.05% Dodge Sprinter Cargo Van 2009 1.91% Chevrolet Avalanche Crew Cab 2012 1.61% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.21% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 75.06% Nissan NV Passenger Van 2012 24.94% Ford F-150 Regular Cab 2012 0.01% Ford F-150 Regular Cab 2007 0.0% Chrysler Aspen SUV 2009 0.0% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 91.42% Audi S5 Coupe 2012 3.2% Audi S6 Sedan 2011 2.41% Audi S4 Sedan 2007 2.13% Buick Regal GS 2012 0.49% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 98.85% Chrysler Town and Country Minivan 2012 0.87% Chevrolet Silverado 1500 Regular Cab 2012 0.14% Ford F-150 Regular Cab 2012 0.08% Chrysler Sebring Convertible 2010 0.02% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 40.61% Audi S4 Sedan 2012 14.21% Audi RS 4 Convertible 2008 12.26% Audi TTS Coupe 2012 8.35% Audi S5 Coupe 2012 7.59% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Lamborghini Reventon Coupe 2008 14.59% Maybach Landaulet Convertible 2012 9.6% Bentley Mulsanne Sedan 2011 6.46% Volkswagen Beetle Hatchback 2012 5.45% BMW Z4 Convertible 2012 5.42% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 78.71% Bugatti Veyron 16.4 Coupe 2009 18.74% Chevrolet Camaro Convertible 2012 0.55% MINI Cooper Roadster Convertible 2012 0.47% Bentley Continental Supersports Conv. Convertible 2012 0.38% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 AM General Hummer SUV 2000 27.31% Nissan NV Passenger Van 2012 11.56% Ford F-450 Super Duty Crew Cab 2012 8.01% Ford E-Series Wagon Van 2012 6.63% Jeep Wrangler SUV 2012 4.39% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.8% Chevrolet Express Cargo Van 2007 0.1% Ford Expedition EL SUV 2009 0.02% GMC Yukon Hybrid SUV 2012 0.02% BMW X3 SUV 2012 0.02% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Audi S6 Sedan 2011 0.0% Jeep Grand Cherokee SUV 2012 0.0% Buick Regal GS 2012 0.0% Plymouth Neon Coupe 1999 0.0% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 77.37% Spyker C8 Convertible 2009 12.78% Bentley Continental GT Coupe 2012 3.57% Bugatti Veyron 16.4 Convertible 2009 2.64% Dodge Challenger SRT8 2011 0.98% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Acura TSX Sedan 2012 69.98% Hyundai Azera Sedan 2012 29.99% Toyota Camry Sedan 2012 0.01% Hyundai Sonata Sedan 2012 0.0% Hyundai Genesis Sedan 2012 0.0% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Acura TSX Sedan 2012 35.56% Volkswagen Beetle Hatchback 2012 23.06% Porsche Panamera Sedan 2012 16.56% Audi V8 Sedan 1994 4.88% Aston Martin Virage Coupe 2012 3.43% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Isuzu Ascender SUV 2008 27.4% Volvo XC90 SUV 2007 21.26% Toyota Sequoia SUV 2012 15.99% Ford Expedition EL SUV 2009 9.41% Chrysler Aspen SUV 2009 7.46% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 82.39% Rolls-Royce Ghost Sedan 2012 16.98% Honda Odyssey Minivan 2012 0.16% Infiniti G Coupe IPL 2012 0.12% Toyota Corolla Sedan 2012 0.06% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Porsche Panamera Sedan 2012 99.42% Audi RS 4 Convertible 2008 0.28% Jaguar XK XKR 2012 0.11% Audi TT Hatchback 2011 0.03% Audi A5 Coupe 2012 0.03% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 42.1% Chevrolet Silverado 1500 Extended Cab 2012 19.49% Chevrolet Silverado 1500 Regular Cab 2012 5.22% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.93% Chevrolet Tahoe Hybrid SUV 2012 2.84% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Chevrolet TrailBlazer SS 2009 28.2% GMC Canyon Extended Cab 2012 24.14% Toyota 4Runner SUV 2012 16.23% Dodge Ram Pickup 3500 Quad Cab 2009 6.24% Land Rover Range Rover SUV 2012 3.93% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Spyker C8 Convertible 2009 41.25% Spyker C8 Coupe 2009 18.73% McLaren MP4-12C Coupe 2012 10.62% Bugatti Veyron 16.4 Coupe 2009 9.89% Ferrari FF Coupe 2012 5.69% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 98.48% Dodge Dakota Club Cab 2007 1.17% Volkswagen Golf Hatchback 1991 0.19% Dodge Durango SUV 2007 0.04% GMC Canyon Extended Cab 2012 0.02% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Chevrolet Malibu Sedan 2007 79.3% Chevrolet Monte Carlo Coupe 2007 15.63% Dodge Caravan Minivan 1997 2.03% Acura TSX Sedan 2012 0.77% Chevrolet Impala Sedan 2007 0.69% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 79.43% Chevrolet Express Cargo Van 2007 12.05% Chevrolet Express Van 2007 8.52% Chevrolet Corvette ZR1 2012 0.0% Audi V8 Sedan 1994 0.0% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Buick Regal GS 2012 26.14% Infiniti G Coupe IPL 2012 10.85% Hyundai Veloster Hatchback 2012 10.52% Dodge Challenger SRT8 2011 6.65% BMW M3 Coupe 2012 5.76% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.97% Hyundai Veracruz SUV 2012 0.03% Hyundai Santa Fe SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 BMW 6 Series Convertible 2007 53.16% BMW 3 Series Sedan 2012 19.32% Nissan 240SX Coupe 1998 5.49% Rolls-Royce Ghost Sedan 2012 4.28% BMW M6 Convertible 2010 3.23% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.37% Dodge Caravan Minivan 1997 0.43% Ford Focus Sedan 2007 0.09% Lincoln Town Car Sedan 2011 0.04% Plymouth Neon Coupe 1999 0.02% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Audi TTS Coupe 2012 69.98% BMW X6 SUV 2012 10.78% Eagle Talon Hatchback 1998 5.49% Bentley Continental GT Coupe 2007 4.98% Bentley Continental GT Coupe 2012 1.66% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Toyota Corolla Sedan 2012 55.71% BMW M3 Coupe 2012 37.37% Dodge Charger SRT-8 2009 2.24% Suzuki SX4 Hatchback 2012 1.42% Mitsubishi Lancer Sedan 2012 0.55% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Porsche Panamera Sedan 2012 74.73% Hyundai Sonata Sedan 2012 13.33% Volkswagen Beetle Hatchback 2012 2.8% Nissan Juke Hatchback 2012 2.33% Dodge Challenger SRT8 2011 1.91% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Lamborghini Aventador Coupe 2012 77.23% Ford Edge SUV 2012 4.91% Mitsubishi Lancer Sedan 2012 4.25% McLaren MP4-12C Coupe 2012 3.18% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.13% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Nissan 240SX Coupe 1998 29.65% Volvo 240 Sedan 1993 16.06% Ford Focus Sedan 2007 8.75% Mercedes-Benz 300-Class Convertible 1993 6.59% Acura TL Type-S 2008 4.32% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Porsche Panamera Sedan 2012 49.94% Fisker Karma Sedan 2012 13.15% Infiniti G Coupe IPL 2012 9.2% Mitsubishi Lancer Sedan 2012 5.29% Chevrolet Corvette ZR1 2012 3.04% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Mazda Tribute SUV 2011 28.19% Dodge Durango SUV 2012 27.63% Chrysler Town and Country Minivan 2012 13.06% Chrysler Aspen SUV 2009 11.02% Rolls-Royce Ghost Sedan 2012 5.89% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 65.54% Toyota Camry Sedan 2012 33.99% Scion xD Hatchback 2012 0.35% Acura TSX Sedan 2012 0.09% Hyundai Accent Sedan 2012 0.02% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 47.51% Audi R8 Coupe 2012 25.39% Lamborghini Aventador Coupe 2012 5.66% Chevrolet Camaro Convertible 2012 5.32% Aston Martin V8 Vantage Coupe 2012 2.55% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 GMC Terrain SUV 2012 31.34% Dodge Charger Sedan 2012 30.23% Dodge Magnum Wagon 2008 8.41% Mitsubishi Lancer Sedan 2012 5.87% Dodge Caliber Wagon 2012 2.61% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 91.91% Hyundai Veracruz SUV 2012 6.33% Honda Odyssey Minivan 2012 1.66% Chevrolet Malibu Sedan 2007 0.04% Dodge Caravan Minivan 1997 0.03% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Hyundai Veloster Hatchback 2012 49.74% Buick Regal GS 2012 8.3% Hyundai Azera Sedan 2012 5.81% Infiniti QX56 SUV 2011 5.26% Acura ZDX Hatchback 2012 5.19% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.82% Buick Rainier SUV 2007 0.09% Hyundai Santa Fe SUV 2012 0.08% BMW X5 SUV 2007 0.0% Chrysler Town and Country Minivan 2012 0.0% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Audi TTS Coupe 2012 30.02% Hyundai Veracruz SUV 2012 11.17% Bugatti Veyron 16.4 Coupe 2009 7.55% Fisker Karma Sedan 2012 4.53% Mercedes-Benz Sprinter Van 2012 3.92% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Bentley Arnage Sedan 2009 39.7% Honda Accord Sedan 2012 34.1% Buick Rainier SUV 2007 3.5% Volkswagen Golf Hatchback 1991 3.17% Audi TTS Coupe 2012 2.94% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 87.66% Chevrolet Silverado 1500 Regular Cab 2012 8.01% Chevrolet Avalanche Crew Cab 2012 1.64% Dodge Dakota Crew Cab 2010 0.85% Dodge Ram Pickup 3500 Quad Cab 2009 0.26% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 75.58% Buick Regal GS 2012 15.97% Hyundai Accent Sedan 2012 2.79% Mitsubishi Lancer Sedan 2012 1.72% Hyundai Sonata Hybrid Sedan 2012 1.27% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Malibu Sedan 2007 41.77% Bentley Continental Supersports Conv. Convertible 2012 8.61% BMW 6 Series Convertible 2007 4.16% FIAT 500 Convertible 2012 4.09% Jaguar XK XKR 2012 3.71% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Bentley Arnage Sedan 2009 39.01% Jeep Grand Cherokee SUV 2012 31.32% HUMMER H3T Crew Cab 2010 19.09% BMW 3 Series Sedan 2012 5.09% BMW ActiveHybrid 5 Sedan 2012 2.76% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Audi R8 Coupe 2012 23.31% Dodge Ram Pickup 3500 Crew Cab 2010 8.75% Infiniti QX56 SUV 2011 4.59% BMW X3 SUV 2012 4.21% Chrysler 300 SRT-8 2010 3.1% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Audi S5 Convertible 2012 38.57% Audi RS 4 Convertible 2008 17.87% Audi V8 Sedan 1994 9.95% Ford Mustang Convertible 2007 8.54% Audi TT Hatchback 2011 4.88% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 61.71% Honda Odyssey Minivan 2007 24.3% BMW M5 Sedan 2010 2.96% GMC Terrain SUV 2012 2.4% Chevrolet Impala Sedan 2007 1.66% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Chrysler Sebring Convertible 2010 37.89% Jaguar XK XKR 2012 19.14% Suzuki Kizashi Sedan 2012 11.31% Dodge Charger Sedan 2012 9.13% Audi S4 Sedan 2007 7.77% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 99.19% Dodge Magnum Wagon 2008 0.39% Ford Freestar Minivan 2007 0.38% Dodge Caliber Wagon 2012 0.01% Dodge Journey SUV 2012 0.01% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X5 SUV 2007 72.52% BMW X6 SUV 2012 3.95% Cadillac SRX SUV 2012 2.84% BMW X3 SUV 2012 2.2% Volvo XC90 SUV 2007 1.56% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Porsche Panamera Sedan 2012 13.42% Chevrolet Corvette Convertible 2012 7.36% Volvo C30 Hatchback 2012 6.55% Chevrolet Corvette ZR1 2012 4.59% Dodge Sprinter Cargo Van 2009 3.8% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Honda Accord Sedan 2012 16.68% BMW 6 Series Convertible 2007 15.48% Hyundai Genesis Sedan 2012 7.23% Audi A5 Coupe 2012 5.69% Acura RL Sedan 2012 4.36% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Suzuki Kizashi Sedan 2012 51.77% Mitsubishi Lancer Sedan 2012 7.68% Tesla Model S Sedan 2012 7.0% Mercedes-Benz E-Class Sedan 2012 4.42% Volkswagen Beetle Hatchback 2012 3.38% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 AM General Hummer SUV 2000 49.0% Nissan NV Passenger Van 2012 5.28% Dodge Caravan Minivan 1997 4.31% Isuzu Ascender SUV 2008 3.81% Ford F-450 Super Duty Crew Cab 2012 3.23% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 97.25% Acura RL Sedan 2012 2.67% Acura TSX Sedan 2012 0.08% Acura TL Type-S 2008 0.0% Chevrolet Impala Sedan 2007 0.0% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 99.21% Nissan 240SX Coupe 1998 0.66% Plymouth Neon Coupe 1999 0.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Dodge Journey SUV 2012 0.02% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% Dodge Caravan Minivan 1997 0.0% Volvo XC90 SUV 2007 0.0% Jeep Compass SUV 2012 0.0% Acura RL Sedan 2012 0.0% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 BMW Z4 Convertible 2012 23.09% Chevrolet Sonic Sedan 2012 16.98% Hyundai Veloster Hatchback 2012 16.52% Hyundai Accent Sedan 2012 10.71% BMW 3 Series Sedan 2012 8.94% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Suzuki Kizashi Sedan 2012 15.9% Chevrolet Corvette ZR1 2012 15.83% Spyker C8 Convertible 2009 14.71% Nissan Juke Hatchback 2012 12.21% Jaguar XK XKR 2012 8.74% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Ford Mustang Convertible 2007 25.41% Bugatti Veyron 16.4 Coupe 2009 20.35% Dodge Charger Sedan 2012 17.46% Acura Integra Type R 2001 3.87% Chrysler 300 SRT-8 2010 3.71% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Audi R8 Coupe 2012 41.62% McLaren MP4-12C Coupe 2012 13.86% Aston Martin Virage Coupe 2012 13.5% Ferrari 458 Italia Coupe 2012 10.51% Bugatti Veyron 16.4 Coupe 2009 7.09% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Audi 100 Wagon 1994 27.44% Volkswagen Golf Hatchback 1991 12.81% Rolls-Royce Ghost Sedan 2012 8.29% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.46% Volvo 240 Sedan 1993 6.03% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.99% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Ford Expedition EL SUV 2009 0.0% Rolls-Royce Phantom Sedan 2012 0.0% Dodge Charger Sedan 2012 0.0% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 22.67% Chevrolet Malibu Sedan 2007 17.98% Ram C/V Cargo Van Minivan 2012 11.34% Lincoln Town Car Sedan 2011 7.8% BMW 3 Series Wagon 2012 6.18% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Mazda Tribute SUV 2011 10.52% Chevrolet Silverado 2500HD Regular Cab 2012 7.37% Dodge Sprinter Cargo Van 2009 7.28% Buick Rainier SUV 2007 5.89% Honda Odyssey Minivan 2012 5.11% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Sonata Sedan 2012 24.39% Hyundai Santa Fe SUV 2012 20.7% Ford Edge SUV 2012 10.54% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.07% GMC Terrain SUV 2012 4.05% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Mercedes-Benz 300-Class Convertible 1993 43.15% Porsche Panamera Sedan 2012 18.91% Aston Martin V8 Vantage Coupe 2012 15.73% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.7% Audi S6 Sedan 2011 1.5% \ No newline at end of file diff --git a/cars/lr-investigations/lr.ipynb b/cars/lr-investigations/lr.ipynb index 457c05c..40aee69 100644 --- a/cars/lr-investigations/lr.ipynb +++ b/cars/lr-investigations/lr.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "5c2606e4", + "id": "a677dbb1", "metadata": {}, "outputs": [], "source": [ @@ -14,11 +14,11 @@ }, { "cell_type": "markdown", - "id": "26bf4aa1", + "id": "49ba8631", "metadata": {}, "source": [ "# Fixed Learning Rate\n", - "80/10/10 Split, 200 epochs\n", + "80/10/10 Split, 100/200 epochs\n", "\n", "## Index\n", "0. learning rate\n", @@ -31,11 +31,11 @@ { "cell_type": "code", "execution_count": 2, - "id": "4ceac619", + "id": "4d96109f", "metadata": {}, "outputs": [], "source": [ - "fixed_results = np.array([\n", + "fixed_results_200e = np.array([\n", " [1e-6, 0.31, 2.84, 5.28, 0.67],\n", " [1e-5, 0.8, 2.59, 5.28, 0.55],\n", " [1e-4, 6.98, 17.23, 4.6, 7.41],\n", @@ -44,13 +44,24 @@ " [1e-2, 13.65, 30.02, 4.15, 17.46],\n", " [5e-2, 1.79, 6.73, 5.13, 1.78],\n", " [1e-1, 0.8, 2.78, 5.29, 0.55]\n", + "])\n", + "\n", + "fixed_results_100e = np.array([\n", + " [1e-6, 0.31, 2.9, 5.28, 0.67],\n", + " [1e-5, 0.8, 2.1, 5.28, 0.55],\n", + " [1e-4, 2.35, 8.28, 5.00, 2.63],\n", + " [1e-3, 18.47, 40.09, 4.55, 23.41],\n", + " [5e-3, 35.52, 63.19, 3.33, 40.93],\n", + " [1e-2, 22.42, 47.19, 3.59, 27.02],\n", + " [5e-2, 2.47, 9.02, 5.07, 2.14],\n", + " [1e-1, 0.8, 2.53, 5.28, 0.55]\n", "])" ] }, { "cell_type": "code", "execution_count": 3, - "id": "071aaf45", + "id": "345d4c52", "metadata": {}, "outputs": [ { @@ -67,9 +78,9 @@ } ], "source": [ - "plt.plot(fixed_results[:, 0], fixed_results[:, 1], 'x-', label=\"Top-1 Accuracy\")\n", - "plt.plot(fixed_results[:, 0], fixed_results[:, 2], 'x-', label=\"Top-5 Accuracy\")\n", - "plt.plot(fixed_results[:, 0], fixed_results[:, 4], 'x-', label=\"Final Val. Accuracy\")\n", + "plt.plot(fixed_results_200e[:, 0], fixed_results_200e[:, 1], 'x-', label=\"Top-1 Accuracy\")\n", + "plt.plot(fixed_results_200e[:, 0], fixed_results_200e[:, 2], 'x-', label=\"Top-5 Accuracy\")\n", + "plt.plot(fixed_results_200e[:, 0], fixed_results_200e[:, 4], 'x-', label=\"Final Val. Accuracy\")\n", "\n", "plt.ylim(0)\n", "\n", @@ -86,7 +97,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "80114709", + "id": "4fa68d02", "metadata": {}, "outputs": [ { @@ -103,7 +114,7 @@ } ], "source": [ - "plt.plot(fixed_results[:, 0], fixed_results[:, 3], 'x-', label=\"Final Validation Loss\")\n", + "plt.plot(fixed_results_200e[:, 0], fixed_results_200e[:, 3], 'x-', label=\"Final Validation Loss\")\n", "\n", "# plt.ylim(0)\n", "\n", @@ -119,7 +130,7 @@ }, { "cell_type": "markdown", - "id": "9ae7559e", + "id": "e57035e6", "metadata": {}, "source": [ "# Step-Down\n", @@ -138,7 +149,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "a1fea30c", + "id": "b7c2a026", "metadata": {}, "outputs": [], "source": [ @@ -153,12 +164,12 @@ { "cell_type": "code", "execution_count": 6, - "id": "7c134854", + "id": "53e815da", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABFAElEQVR4nO3deXxU1d348c83+0oSEogISBAXiqyCaBEFUZ7aWleKgrYuRay1WK1S66P9WevSuvC4VK1VWwU3IlitaF0eQZYqj+yrIJsEZQskJCEL2c/vj3NnMjOZJJOQmUmY7zuvec3c/Tt3Jt9z7rl3zhVjDEoppSJHVLgDUEopFVqa+JVSKsJo4ldKqQijiV8ppSKMJn6llIowmviVUirCaOIPIRHJEREjIjEBzHu9iHweirg6MrFeEZEiEVke7nhU8IjIPSLy93DHEQk08TdBRPJEpFpEsnzGr3GSd06YQvOMJUVEykTko3DHEkSjgfFAL2PMyPZYoYhMEZGvRaRURPJF5EMRSXWmzRSRh9pjO01s24hIufO5FYrIAhG5KljbCzCmgCskwWSM+ZMx5sZgrNtnv+8RkSdEJDrAZe8XkdeDEVe4aOJv3k5gsmtARAYBSeELp5EJQBUwXkSOC+WGQ5gk+gB5xpjy1i7oL0YRGQP8CZhsjEkFvge8ddRRts4QY0wKcCowE3hWRP4Q4hhCKtyFisO138cAVwE/D3M84WOM0YefB5AH/B5Y4TFuBnAvYIAcZ1wa8CpwENjlLBPlTIt2likAvgF+5Swb47HsP4B9wB7gISDamXY98HkLMX4GPAysBqb7TBsNLAWKge+A653xicD/OLGWAJ8748YCu/3sgwuc1/cDbwOvA4eBG4GRwP8529gHPAvEeSx/GvApcAjIB+4BjgMqgEyP+U539l+sz/anAJVAHVAG/NEZPxXY7qx3HnC8xzLG2c/bgJ1+9tl04F9N7M+bgBqg2tne+87444F/OjHuBH7tsYxrv7wFlDqfxZBmPjMDnOQz7ifO+8z02N485/1tB6Y64xOAI0CWM3wvUAt0cYYfBJ5yXs8EngP+7cS1DOjXREw5eHwvfaY19x3th/0OFmK/428A6T7fn98B67EVlJOc7VwHfOssc6/PvnzdJ6am5k0EZgFFwGbgLny+v83td2AO8JzH8NPY/5PDwCrgHGf8hc73ocb5TqwLYL+cBCzG/n8VAG+FO5812h/hDqCjPpwv7QXAFmytMBrYja2Beib+V4H3gFTny7oVmOJMuxn4GugNdAUW4p343wVeAJKB7sBy4BfOtOtpJvE7cdQDA4A7gfU+00qxRyuxQCYw1Jn2HLAI6Om8p1FAPIEl/hrgMuyRYiIwHDgLiHHe+2bgdmf+VOef4k5swkoFznSmfQj80mM7TwLPNPE+vfYDMM75ZzrdifsZYInHdIMtbLoCiX7Wdw42ef4ROBuI95k+E3jIYzgKmwjuA+KAE7GF+A989stPnH09HVs4xDbxfvwl/lhsAv+hM7wE+Kuz34ZiC5xxHtMmOK//F9jhs9zlHu+jEFs4x2CTcm4TMeXQdOJv7jt6ErYZLh7o5mz/KZ/vz1rs9z/RYzsvOcNDsAXC9zz2pW/ib2reR7DJNQPohS1cAkr8QH/sd/M3HtN/iv0/icF+Z/cDCb5xBbhfZmML5SjnMxwd7nzWaH+EO4CO+qAh8f8e+DO25P/U+WIY54sZja0NDPBY7hfAIuf1Z8DNHtP+y/UPBmQ7X+REj+mTgYXO6+tpPvH/HljrvO6JrRUPc4b/G3jXzzJR2KQ3xM+0sb7/ODRO/EuaiseZ53bXdp33sqaJ+a4CvnBeRzv/ZCObmNdrP2BrWY95DKdgE2+OM2xwkmQzcf4QeB97pFIGPEFDbW0m3on/TOBbn+X/G3jFY7986bOP9+HUGP1su1Hid8bvB67BJsk6INVj2p+Bmc7rB4G/ON+h/cBt2CToOhrI9Hgff/dYx4+Ar5uIKQc/ib+l76if9Vzm+Zk735+f+9lOL49xy4FJHvvSN/E3Na+78HWGb6TlxH8YKHdez8an0PeZvwjn/wSfxN/SfsFWBl/0jL2jPTpCu1tH9xq2JtMX+4F6ysLW1nZ5jNuFTcRgD9m/85nm0sdZdp+IuMZF+czfnGuxtSGMMXtEZDH2sHgNNnns8LNMFjZB+JsWCK/YROQUbNIcgT33EYOtHdNMDGCPkP4mIn2x7dwlxphAr9g5HtucAoAxpkxECrH7PM9fnL6MMR8BH4lIFHAeMBd7ZPeCn9n7AMeLSLHHuGjgPx7D7u0ZY+pFZLcTZ0BEJBZbYz7kLHfIGFPqMcsu7D4GW8t9AnvEswFbGfkH9shruzGm0GO5/R6vK7CFZGs0+x0VkWxsE8k52CO6KGzC9OTvs2hNXE3N6/u/Fcj/zenY7+REbGGZjE3giMh0bNPi8diCoQv2/8Wflv5378IW0MtFpAj4H2PMywHEFzJ6crcFxphd2EP3HwHv+EwuwNY2+3iMOwHb5ge25tfbZ5rLd9gvXZYxJt15dDHGnNZSTCIyCjgZ+G8R2S8i+7E106udk2jfYdtffRVg25L9TSvH48S1c8VDN595jM/w89imrJONMV2wbfiu/4TvsM0ijRhjKrFtrD8FfoYtXAO1F4/9LSLJ2EP0PR7z+MbplzGm3hizAHtkNrCJZb/DnitI93ikGmN+5DGP+zN2CpNeTpyBuhTb1LPcWa6r6yojh+d3aim2sLwcWGyM2eRM/xG2UGhPLX1H/4TdX4Ocz/+nNHz+LgF9Fm2wD7ufXXo3NaMnY83Bnpu6D0BEzsEm6yuBDGNMOrZ93vVe/H0nmtwvxpj9xpipxpjjsS0AfxWRk9ryJoNFE39gpmCbD7yuLDHG1GET2MMikioifYA7sCdAcab9WkR6iUgGcLfHsvuwbbT/IyJdRCRKRPo5V5205DpsTW8Atg14KDZxJWKbMd4ALhCRK0UkRkQyRWSoMaYeeBl4QkSOF5FoEfm+iMRjz00kiMhFTg3099i22+akYg+fy0SkP/BLj2kfAD1E5HYRiXf2z5ke01/FNuNcQusS/2zgBhEZ6sT9J2CZMSYvkIVF5FIRmSQiGc5vBEZir/L40pklH+8CazlQKiK/E5FEZ58NFJEzPOYZLiJXOIXu7dik8CUtEJGuInIN9rzLo8aYQmPMd9jk/mcRSRCRwdjv3+sAxpgK7FHVr2hI9Eux55OONvHHO9tMEJEE7L5o7juaim0qKxGRnsBvj3L7rTEHW/HJcLY9rZXLPwJMda6GS8UWvAeBGBG5D1vjd8kHcpxCvcX/XRGZKCKuQqkIW3DUt+1tBocm/gAYY3YYY1Y2MflWbG35G+wVMm9ikyvYpphPgHXY5gnfI4ZrsScMN2G/IG8DPZqLxfmHvBJ7MnS/x2MnNoFeZ4z5FlsDvBPbfLAWe3IM7MnHDcAKZ9qj2KuQSoBbgL9ja5fl2JPZzZkOXI09kfwSHpdFOk0V44GLsYfr27DNKq7pX2D/GVY7R1UBMcbMB/4f9iqbfdijl0mBLo/dz1OdeA5jE+rjxpg3nOn/AAaISLGI/Msp3H+MLVx3Yo+a/o69qsPlPex5iyLsEcwVxpiaZmJYJyJl2Ct2bsSeZLzPY/pkbBv3XuxJxD8479tlMbapYbnHcCq2SfJolGHPE7ge42j+O/pHbPNJCfbqId/vdzA9gP1+7gTmO3FVBbqwMWYDdn/9Fvs/+jG28rMLe1Ts2XQ013kuFBFXM2Nz++UMYJnzGc8DbjPGfNPK9xdU4pyMUCrkROQz4E1jTKf9taaI3I89WfvTcMcSyUTkl9gTv4EcMUc8rfGrsHCaSk4n9D+eUscAEekhImc7zSynYo9u3w13XJ2FXtWjQk5EZmEv/bvN5+oVpQIVh70Kqy/2stxc7G8fVAC0qUcppSKMNvUopVSE6RRNPVlZWSYnJ6dNy5aXl5OcnNy+AYWIxh4enTX2zho3aOzBsmrVqgJjjO/vcTpH4s/JyWHlyqaupmzeokWLGDt2bPsGFCIae3h01tg7a9ygsQeLiPi9VFqbeiLJ50/BTp9LvXcuseOVUhFDE38k6Xk6zL2+IfnvXGKHe54ezqiUUiHWKZp6VBsZA5XFUHag4XHaFfDGldC9PxzYDN+7GL5dBnvXQmwixCTYR2wCxCRCTHzz46MCuomRUqoD0cTf2RgDVaU2iZcfgLJ8KDton8tdCd4ZV34A6qr9rERg7xqIioWN74Cpa3s8UbF+CoQEhlVUQ153p9CIt9NiEzwKkKMYHxMP4tsXmFIqUJr4O4rq8kZJPGfncij9l0+SPwC1lY2XlyhI7gYp3SG5O3T7HqR0g5RsO5ziPAq/gfdvhRFTYOU/YOJMOOH7dp01lVB7BGqroMZ5rj3ijHceAY6vq9oH9bVOvH7m9/ceWiMmofVHJwGOTyn9Bgp6Ni6AomOPLuZg+Pwp21TX99yGcTuXwJ7VMPr2cEWlOjhN/MFUc8RJ2gcbkrbfmvpBqC5rtHgfBA5m2uSd0s0m6GQnmbsSeXJ3O5zUteVml51LbNKfONMmir7n2DZ+13B8avPLt8L6lq50MOaoChavAsS3wKoug4oCn+WdeeprW4x9BDTcVcCTRAdwRNKKo5ZACqOYBIhq5lSc67zNxJl22HXexjWslB+a+Furtto7kftL4q7hqhL/60jMcGri3aDn8MZJ3KmpL1nxFWPGnd9+se9Z3ZDkwT5PnGnHe9YYQ0HEJrvYBNuZdKjU1TZfaNRWsnHtSgaeelKj8U3N7x5fUdj0/EcjOt6jcPBTUHQ9EV6fwPCE4+Hz/TD0aji8F7bPt9+p5G6QnNUxj1hUWBybib+1h791tbaG6JnAvZK4R039iO8NhhzxaQ0J/LhB3s0rriTveo6JC+htmKivW/3Wm+Xvvfc9N/RJP5yiYyA6BeKbvulTwZ5YGDy2/bZpjD3XcpTNZ/7HO6/jUkgtz7NNfitftg9fiRlOIdDdFgQprkLB45HiPMel6HmUY9ixmfhdh78XP0Ny2UH44mlY/BgMmgif3OtRU3ceFYX4vVFQXIpHm/mptmnEM4m7aufJ3W0NTCl/RJwmnpbua9NGTvNOXp8ryTm4AC59DrJOaWhmLD8A5QVORcZ5nb8RvjkIlU0clcYkNhwppDgFRXL3xgVEcvfAmhlVhxK0xO90lerZ5e6J2FudveqMz8HeI/VKY0wT1eg2cjVhvHYFZ9R73A9j1Sv2C+2qiXc9EXqf6d1m7k7s3SGuY/4MWyk3jzb9vF315Iz9mfd5m5bUVjUUCp4PVwFRfgAO74F96+x4v+dIBJIy/RQQnkcVrmndIC7JzzpUKAUt8RtjtmDvWuS6f+sebH/ZdwMLjDGPiMjdzvDv2j2AvufCaZfBhrkw5Go4d7qTzPUQVh1DPM/b7FrU+vM2MfGQ1tM+WlJfb38X4lVAHGx8VLFnlX1d3USP23EpjQqInMIjkLjF44jCmZaQ3vzJbdUmoWrqOR/YYYzZJSKXAmOd8bOARQQj8e9cAjs+s4e/2z6BoZMh0989xpXqxEJ53iYqyjbrJHW1TZ8tqTnip4DwOaooyoPdK+hTXgC75vjZZgwkZfk0L3XzKSCyGoaD1Zx2jAlJf/wi8jL23qrPikixcxd7RESAItewzzI3ATcBZGdnD8/NzQ14e+lF6xmw6XE2Dfgtu2NPpFfNN+7h4ozB7fGWQqKsrIyUlKZPQnZkGnvodda4AcpKD5MRb4irLia2psTrueF1CbE1dji63t8PE6E2OpnquDSq49KpifV+ro5L8xpXG5PcLkf/HXm/n3feeauMMSN8xwc98YtIHPam0acZY/I9E78zvcgYk9HcOkaMGGFa1Tunx1U97p7zOuGPWjpyr38t0dhDr7PGDW2IvarMOXJwzkM0d1Rx5JD/dUTHNZyLcDU7NXVUkZTZ5OWwHXm/i4jfxB+Kpp4fYmv7+c5wvoj0MMbsE5EewIF236JetqjUsS3euSS3a9+W562rtVfuNVdAlB+0fVc12c0JkNjV71VNPfYegs1l3ie3447iaCIEv8YOReKfDMz2GJ4HXAc84jy/F4IYlFKRKjoGUrPtoyXGQNVhn8tffY8iDsL+jbaQqCzhVICtPrf7dV0O2+x5Cecow/dyWM9fY/c9Nyi/xg5q4heRZGA88AuP0Y8Ac0RkCrALuDKYMSilVMBEICHNPgK5GKS2mqUL3mfUoH7ezU6eRxYtXQ4rUbYpybNwOOFsePMqm/i/Ww5XzmrXFougJn5jTDmQ6TOuEHuVj1JKdW4xcVTHZ8LxQ1ue1xj7y3+vAqKg8VHF3tW20KipgK0fwxlT272Z+tj85a5SSnU0Ih6Xw57S/Lw7l8Dc62DQlfa3SAMuadfkr7+MUEqpjsTdpj8Lfviobdv3vHNeO9DEr5RSHUlzvei2E23qUUqpjiQEl6NrjV8ppSKMJn6llIowmviVUirCaOJXSqkIo4lfKaUijCZ+pZSKMJr4lVIqwmjiV0qpCKOJXymlIowmfqWUijCa+JVSKsJo4ldKqQijiV8ppSKMJn6llIowmviVUirCaOJXSqkIE9TELyLpIvK2iHwtIptF5Psi0lVEPhWRbc5zRjBjUEop5S3YNf6ngY+NMf2BIcBm4G5ggTHmZGCBM6yUUipEgpb4RSQNOBf4B4AxptoYUwxcCsxyZpsFXBasGJRSSjUmxpjgrFhkKPAisAlb218F3AbsMcakO/MIUOQa9ln+JuAmgOzs7OG5ubltiqOsrIyUlJQ2LRtuGnt4dNbYO2vcoLEHy3nnnbfKGDOi0QRjTFAewAigFjjTGX4aeBAo9pmvqKV1DR8+3LTVwoUL27xsuGns4dFZY++scRujsQcLsNL4yanBbOPfDew2xixzht8GTgfyRaQHgPN8IIgxKKWU8hG0xG+M2Q98JyKnOqPOxzb7zAOuc8ZdB7wXrBiUUko1FhPk9d8KvCEiccA3wA3YwmaOiEwBdgFXBjkGpZRSHoKa+I0xa7Ft/b7OD+Z2lVJKNU1/uauUUhFGE79SSkUYTfxKKRVhNPErpVSE0cSvlFIRRhO/UkpFGE38SikVYTTxK6VUhNHEr5RSEUYTv1JKRRhN/EopFWE08SulVITRxK+UUhFGE79SSkUYTfxKKRVhNPErpVSE0cSvlFIRRhO/UkpFGE38SikVYTTxK6VUhAnqzdZFJA8oBeqAWmPMCBHpCrwF5AB5wJXGmKJgxqGUUqpBKGr85xljhhpjRjjDdwMLjDEnAwucYRUCL298meX7lnuNW75vOS9vfDlMESmlwiEcTT2XArOc17OAy8IQQ0QamDmQ6Yun88WeLzhQcYBPd33KHYvvoG+XvpRWl1JRU0FlbSU19TXUm/pwh6sCoIW5agsxxgRv5SI7gSLAAC8YY14UkWJjTLozXYAi17DPsjcBNwFkZ2cPz83NbVMMZWVlpKSktO0NhFlbYq+qr6K4rpji2mL77Pm6tpiC2gIqTWXA64ty/kTE63U00V7joiQKQdyvqYeY6BivcVE480hU0+M8t+Uxzr3+JpZxj/cTp+86fWPyXWfVkSqSE5P9xtHce27qPQmC/aq3v62VW3nl4Cvc0O0Gjq89nr0xe93DpyScEpRtBkOk/Z+GynnnnbfKo7XFLdiJv6cxZo+IdAc+BW4F5nkmehEpMsZkNLeeESNGmJUrV7YphkWLFjF27Ng2LRtunrEbYyirKSO/PJ/8CufhvN5fsd/9urS6tNF6MuIzyE7OJjvJPnYe3smK/SsY3XM05/Q8h3pTT52pa/RcV994XL2p9xrvNa2+YZ78g/lkZGa4xze3Dddwo3nq66k1tV7jPbdfa2pD/Im0XbREEyVR3s9RDcNREkWMxNhpUX7mdcb7W8/h6sN8fehrukZ1pcgUccEJFzAgcwBp8Wmkx6d7PVLjUomOig737mjkWPk/7WhExG/iD+rJXWPMHuf5gIi8C4wE8kWkhzFmn4j0AA4EM4bOwBhDSVWJO6HvL99PfkU+6wrW8cb/vuFO8hW1FV7LCUJmYibZSdmckHoCZxx3hk3uTpI/Luk4uiV1IyEmwb3M8n3Lmb54Or8Y/AvmbJnDDafdwMgeI9v9PYXqn6GpAsl3vL9Cp6kCbvWa1QwaPMg97FX41Nf7Lahq62ubXH+TMfiJ13cbTcVZW1/rNa1LXBfyK/NJiE7gk7xP+HDnh373lyB0ie9Cenw6afFpZMRneBUQXoVFQkOBERcdF/TPUoVO0BK/iCQDUcaYUuf1fwEPAPOA64BHnOf3ghVDR1Bv6jlUecirhu6v1l5VV+W1XJRE0SWqCyckncBJ6Sdx9vFnc1zycV6JvVtiN2KjYwOOxZX0Z4yZwcgeIxl53Eiv4c7IVVsGoJ0qsuWJ5YzqOap9VhYCrs/1wrQLWVa5jGfHPMuAzAEUVxVTUlVCcVUxRZVF7tee4/Mr8tlStIWSqhKO1B5pchuJMYlehYO7wEjwLjA8C5Lk2OSgNXGpoxPMGn828K7zwccAbxpjPhaRFcAcEZkC7AKuDGIMQVVXX0fBkYJGSdwrsVfkU1vv3SQRExXjbnY5LfM0xp0wziuhZydlk5mYyedLPm/XWvPGwo1eSX5kj5HMGDODjYUbO23ij3SehXnFlgomnjrRqzDvndo74HVV1VVRXNlQMBRV+S8siiuL2Vu2l+KqYkqrSzH4by6OiYohLS6t0dGD7xFGRkIG+2v2c6jyEF3iuhATFdSGCEUQE78x5htgiJ/xhcD5wdou2CsdBmYO9Epmy/ctZ2PhRn4+8OcBraOmvoaDFQe929KdJhjXuIIjBdSZOq/l4qPj3Ul8WPdh3gndee6a0LWhlhpC/t77yB4jNel3Yp6F+aIti46qMI+Pjrff0eTsgJepq6/jcPXhhsKissi7kPAoRHYd3sW6qnUUVxU3qgwBPPzWwwCkxqU2OnrwKiwS7BGH53jP5kzVsmOyaHVdtjhjzAzAu1YEtmZzoPyAPSnaRE298Ehho5pMYkyiu7nlrB5nNbSlu5pgkrJJi0/Tw1sVMuEuzKOjoslIyCAjodnrM7wYY6iorXAXDMWVxfzf2v+jx4k9vAqM4spiCo4UsKN4B8VVxY3OcXlKiE5wHz00ec7C45GWkEZqbGrE/q8ek4nfVeu5beFt9Ijqwbe7v+XUjFN5fOXj5JfnU1TV+IfCqXGp7lp5/679GzW9ZCdnkxKbErFfFKXai4iQHJtMcmwyPVN6AlCzrYax3xvb7HLVddXeBYNnE1Sl97gt5Vvc05pqioqWaNLi05o/ye3TRJUWn0ZsVODn1TqqYzLxg03+mQmZbCvdRkJ0AtX11WQnZTM4a3CjppfspGySYpPCHbJSqhlx0XF0S+pGt6RuAS9Tb+oprS5t9gS367G7bDdfFXxFcVUx1fXVTa4zJTalobBISKOquIovl3/p9wS3q8BIjEkMuNLYHk3VLTlmE//yfcspri5mfJfxrKxayW9H/FbbspWKMFES5a6p9+nSJ6BljDEcqT3iPjfh95yFqxCpLGZ/1X6+3v41ZTVlTa4zLiquxRPcrtfdErtx5+I7eXzM45zV46xGTdXtocXELyKrgJexV+V0is7UXDvqiTFPULGlgkmnTur0ly22h78t3sHgXmmM6pflHrd0RwHrd5dw85h+YYxMtZV+pu1PREiKTSIpNokeKT1anN/1m5Wa+hqvZid/J7hdr7cXb6ekqoSSqpJGF4i4TP3fqcRHxxMfHc+TY59s19wVSI3/KuAGYIWIrAReAf7XBPMnv0epPa90OJYM7pXGtDfX8OzVwxjVL4ulOwrcw6pz8vxMAf1Mwyg2KpasxCyyErNantlRb+opqynzOkfhKjDm75rP6gOrmXTqpHbPWy0mfmPMduBeEfl/wI+xtf86EXkFeNoYc6hdI2oH4b7SoSOpravncGUtRRXVxMdEM2V0DlNnrWRETldW5B1iwum92LyvlE17DwNgDNQbezrMGDAY+2ycZ5958JjXc7lvv61macVmv8vZxfwvh7O9ep/lGuZvvBwecQa6HD7vz3O54uIjPLt5aaPlvF67l7PjPddX7zEvTe7PxuurN372gb9t+yxXW2e4+qVlRAvAcob1SWfxloPsLCgnJzOZPplJ9EhLJDpKL0zoaKIkii5xXegS14UTOME9fvm+5by0/iX3L+zP7XVuyGv8iMhgbK3/R8A/gTeA0cBnwNB2i0Y1qa7eUHKkhuKKaopdzxU1zsM1roaiimpnPvu6tNJ/fzaLtx4E4LUvdx11bCIgQJSI81qoN/VEf5fnMc4eQotrfo/xrnmg8TjXcgBRUTgdnnmsz8+6o5z5fce55sUZHyU+MTnrjhKIjY7yWs5zfb7LgTjjPOLzmscnDruI1/Y8l/O3vob35LOcs74VeYdY/W0xOZmJFJVX88oXeVTXNfSwGhcdRa+uie6CwPXcJzOZXhmJxEbrPZk6ilD8wj7QNv5i4B/A3cYYV98Cy0Tk7HaJIoLU1RsOH6nxTt5Hqp1EXUNJRTVFFXb6d/lHuG/5QoorqjncRAIHmwzSEmNJT4wlLSmOrslxnJiVTHpSHOlJdrzr9XeHKpjxv1uZOLwXb6/ezeMTBjOyb6ZNRB6JqVES80m4rqTTlI7ccVVLbOxnhTuMgC3dUcDcVbu5pF8sn++v5dmrh3Fm30z2H65kV0E5eYUV7DpUzq6CCvIKy/m/HYUcqWloV46OEnqmJzoFgatQSCYnM4neXZNIiO14nbody0LxC/tAavwTnV/hNmKMuaJdomhnoTjhVV9vOFzZULMuPlJDiet1RQ0lRxpeeyb5w5U1NHV2RAS6JMTaZJ0UR0qscGKvdDKS4mxiT4q1r51knuEk89SE2IAO45fuKODJ+dt4/qenM6pfFuO+192rzV91Pp5t+tXfbWTSuIFen2nP9ERGneS9jDGGg2VV7CqsIK+gnF2FFew6VMGuwnLeW7vX6yhRBI7rkuBVILgKiD6ZyaTEH7MXBoZNKJqqA/nUbhSRx4wxxQAikgHcaYz5fbtF0c5ac8Krvt5QWllL8RGnpu00lRSVNzSfeDaluF6XHGk6gQN0SYghPSmOjCRbC+/TNcn9Oj0xlozkWNITbRLPcMZ1SfRO4Lbm2X4n6dbvLvFK8qP6ZfHs1cNYv7tEE38n5fmZLvousM9UROiemkD31ATOyOnqNc0YQ3FFDXmF5Xx7qIK8Alsg5BWWM39zPgVl3te3Z6XE+xwpJLmPFtKTtEfPjiqQxP9DY8w9rgFjTJGI/AjosInf9eX/xWuryEmpZ/uClYw5JYu5K3fz0pJvbJPKkYYkX99MAk9NiGmoaSfG0ttJ4J7NJ64aumtcWmJgNfBQ83e0M6pflib9Tqy9P1MRISM5jozkOIad0LgbhtLKGnuE4NN8tHR7Ie+s3uM1b1piLDlOQeBZIPTJTCYrJU5/BR9GgST+aBGJd7Xti0giEB/csI7eqH5ZZCbHsaHA9u/xxfZC0p1adnqSTeDpib5JO9arXTwtMZYYPemllFtqQiwDe6YxsGdao2mVNXXOUUJ5Q8FQWMGa74r4YP1erwpWUly0V0FQWVBD3I4CcjKTOa5LAlEdsOJ0LAkk8b8BLHAu3wR7dc+sZubvEJbuKKC4ooYf9Ilh+UHhuWtO15qtUkGUEBvNKdmpnJKd2mhadW09e4qPkFdY3nDCubCcLfmlzN+cT02dYeZXywCIi4miT9ekRkcJfTKT6JmeqJWxdhDIdfyPish6GrpSftAY80lwwzo6rjb9v/70dKq/28h1/zVQT2IqFUZxMVH0zUqmb1YynOo9ra7e8M7HC+lx8mD3UYLrqOHz7QVU1jRclhoTJfTKSHQXCCd4FAy9uyYSH6NXIAUioFPyxpiPgI+CHEu7acsJL6VUeERHCd2Sohh9chaj8f7/NMZwoLTKq/nIdbSwelcRpVXeVyAdn5boc6TQcLSQFKdXILkEch3/WcAzwPeAOOwN7sqNMV2CHFub6UlMpY4NIkJ2lwSyuyRw5omZXtOMMRwqr3Zfiuq6AmnXoQo++Wo/h8q9r0DqnhpPTmYyJ2QmuY8SXMNpiZ2/q+XWCKQIfBaYBMwFRgDXAqcEMyillGqJiJCZEk9mSjyn+7kCqeRIDd96nGR2HTX8Z9tB3l7lfY/rjKTYRucTXMNdk4+9K5ACberZLiLRxpg64BURWQP8d3BDU0qptktLjGVQrzQG9Wp8BVJFda37dwrfejQfrcgr4r11e71+o5MaH+McJTR0d+Ea7p7a4S9w9CuQxF8hInHAWhF5DNgH6Gl1pVSnlRQXQ//jutD/uMYt1lW1dewuOtKo+WjTvsN88tV+aj2uS02IjSIr3jDg25UeRwm2gDg+veN2jBdI4v8ZNtFPA34D9AYmBLoBEYkGVgJ7jDE/FpG+QC6QCawCfmaMafp2N0opFULxMdH065ZCv24pjabV1tWzt7iy4SRzQTmrtn5LXmE5i7cepKq24Qqk2Gihd4b3CWZXodArI4m4GP/151B0OdNs4neS9p+MMdcAlcAf27CN24DNgKtofRR40hiTKyJ/A6YAz7dhvUopFVIx0VGckJnECZlJnHOyHbdo0QHGjh1Dfb0hv7SyUfNRXkEFy3ceory6oWO8KIHj0/33lto/OzXo981oNvEbY+pEpI+IxLWlVi4ivYCLgIeBO8SeIRkHXO3MMgu4H038SqlOLipK6JGWSI+0RL7fr/EVSIXl1Y2aj/IKK/j3hn0UV9R4zZ+RFMu1/1jOKdkp7C2u5K8/bd8foEpLN9ISkVexl3LOA8o93sgTLa5c5G3gz0AqMB24HvjSGHOSM7038JExZqCfZW8CbgLIzs4enpubG9g78lFWVkZKSuNDts5AYw+Pzhp7Z40bNPbyGsOBinryK5zncsPmQ7UcqoTxJ8RwzYC2nUQ+77zzVhljRviOD6SNf4fziMIm8ICIyI+BA8aYVSIyNtDlXIwxLwIvAowYMcK0tW/3zt8v/Nhwh9EmGnvodda4QWP35Wre+fW4E3h92bfc0Htgu9b4A+myoS3t+gBnA5c4PXkmYNv4nwbSRSTGGFML9AL2NLMOpZSKKJ5t+qP6ZXFWv8x273KmxcsyRWShiHzm+2hpOWPMfxtjehljcrA/APvMOUm8EPiJM9t1wHtHEb9SSh1TmrtvRnsJpKlnusfrBOylnE3fB7BlvwNyReQhYA32lo5KKaUITZczgTT1rPIZ9YWILG/NRowxi4BFzutvgPa7h5hSSqlWCaSTNs97s0UBw4HGv4FWSinVKQTS1LMKMIBgm3h2Yn90pZRSqhMKpKmnbygCUUopFRqBXNXzKxFJ9xjOEJFbghqVUkqpoAmkl82pxphi14AxpgiYGrSIlFJKBVUgiT9aPO5C4HTcFhe8kJRSSgVTICd3PwbeEpEXnOFfOOOUUkp1QoEk/t9hO0v7pTP8KfD3oEWklFIqqAJJ/InAS8aYv4G7qSceqAhmYEoppYIjkDb+Bdjk75IIzA9OOEoppYItkMSfYIwpcw04r5OCF5JSSqlgCiTxl4vI6a4BERkOHAleSEoppYIpkDb+24G5IrIX223DccBVwQxKKaVU8ATSZcMKEekPnOqM2gJ0bWYRpZRSHVggTT0YY2qA3cCZ2Gv41wQzKKWUUsHTbI1fRBKBS4GrgWHYe+5eBiwJemRKKaWCoskav4i8CWwFxgPPADlAkTFmkTGmPjThKaWUam/NNfUMAIqAzcBmY0wdtl9+pZRSnViTid8YMxS4Etu8M19EPgdSRSQ7RLEppZQKgmZP7hpjvjbG/MEY0x+4DZgFrBCRpSGJTimlVLsL6KoesDddN8ZMB/oAd7c0v4gkiMhyEVknIl+JyB+d8X1FZJmIbBeRt0REu3hWSqkQCjjxuxgrkKt6qoBxxpghwFDgQhE5C3gUeNIYcxL2HILev1cppUKo1Yk/UE4B4erjJ9Z5GGAc8LYzfhb28lCllFIhIsYE70IdpwvnVcBJwHPA48CXTm0fEekNfGSMGehn2Zuw9wEgOzt7eG5ubptiKCsrIyUlpW1vIMw09vDorLF31rhBYw+W8847b5UxZkSjCcaYgB7AWdhf7S4CLgt0OWfZdGAhMBrY7jG+N7CxpeWHDx9u2mrhwoVtXjbcNPbw6Kyxd9a4jdHYgwVYafzk1CZ/uSsixxlj9nuMugO4HNtR2zLgX4GWOsaYYhFZCHwfSBeRGGNMLdAL2BPoepRSSh295tr4/yYi94lIgjNcDPwEm/wPt7RiEekmIunO60TsL4A3Y2v+P3Fmuw54r02RK6WUapPmfsB1GbYztg9E5Fps98zxQCaBnZDtASwUkfXACuBTY8wH2Hv43iEi2511/eMo4ldKKdVKzXbSZox5X0Q+BG4B3gUeNoFdyokxZj22Yzff8d8AI9sQq1JKqXbQXCdtlzjt8h8DG7E3X7lURHJFpF+oAlRKKdW+mqvxP4StmScCnxhjRgJ3isjJwMPApBDEp5RSqp01l/hLgCuwN1Y/4BppjNmGJn2llOq0mruq53LsydcY7I1YlFJKHQOarPEbYwqwN2BRSil1DAlaXz1KKaU6Jk38SikVYTTxK6VUhNHEr5RSEUYTv1JKRRhN/EopFWE08SulVITRxK+UUhFGE79SSkUYTfxKKRVhNPErpVSE0cSvlFIRRhO/UkpFGE38SikVYTTxK6VUhAla4heR3iKyUEQ2ichXInKbM76riHwqItuc54xgxaCUUqqxYNb4a4E7jTEDgLOAX4nIAOBuYIEx5mRggTOslFIqRIKW+I0x+4wxq53XpcBmoCdwKTDLmW0WcFmwYlBKKdVYSNr4RSQHGAYsA7KNMfucSfuB7FDEoJRSyhJjTHA3IJICLAYeNsa8IyLFxph0j+lFxphG7fwichNwE0B2dvbw3NzcNm2/rKyMlJSUNi0bbhp7eHTW2Dtr3KCxB8t55523yhgzotEEY0zQHkAs8Alwh8e4LUAP53UPYEtL6xk+fLhpq4ULF7Z52XDT2MOjs8beWeM2RmMPFmCl8ZNTg3lVjwD/ADYbY57wmDQPuM55fR3wXrBiUEop1VhMENd9NvAzYIOIrHXG3QM8AswRkSnALuDKIMaglFLKR9ASvzHmc0CamHx+sLarlFKqecGs8QdVTU0Nu3fvprKystn50tLS2Lx5c4iial8ae9MSEhLo1asXsbGxQduGUseqTpv4d+/eTWpqKjk5OdjTCf6VlpaSmpoawsjaj8bunzGGwsJCdu/eTd++fYOyDaWOZZ22r57KykoyMzObTfrq2CQiZGZmtni0p5Tyr9MmfkCTfgTTz16ptuvUiV8ppVTrRUTi/9viHSzdUeA1bumOAv62eEeb11lYWMjQoUMZOnQoxx13HD179nQPV1dXt2md9957L7179w7oV4CXXXYZZ511Vpu2o5SKbBGR+Af3SmPam2vcyX/pjgKmvbmGwb3S2rzOzMxM1q5dy9q1a7n55pv5zW9+4x6Oi4tr0zovvvhili9f3uJ8xcXFrFq1ipKSEr755ps2bSsQtbW1QVu3Uip8Ou1VPZ7++P5XbNp72O+0uro6oqOj6Z4az7X/WE52l3jyD1dxUvcUnp6/jafnb/O73IDju/CHi09rVRwLFixg+vTp1NbWcsYZZ/D8888THx9PTk4OV155JR999BGJiYm8+eabnHTSSY2WD7QG/84773DxxReTnZ1Nbm4u99xzDwDbt2/n5ptv5uDBg0RHRzN37lz69evHo48+yuuvv05UVBQ//OEPeeSRRxg7diwzZsxgxIgRFBQUMGLECPLy8pg5cybvvPMOZWVl1NXV8e9//5tLL72UoqIiampqeOihh7j00ksBePXVV5kxYwYiwuDBg/nrX//K4MGD2bp1KwCHDx9myJAhbN26VS+7VKoDOSYSfyDSEmPJ7hLPnuJKeqYnkJbYvomosrKS66+/ngULFnDKKadw7bXX8vzzz3P77bfb7aelsWHDBl599VVuv/12PvjggzZva/bs2dx3331kZ2czYcIEd+K/5ppruPvuu7n88suprKykvr6ejz76iPfee49ly5aRlJTEoUOHWlz/6tWrWb9+PV27dqW2tpZ3332XLl26UFBQwFlnncUll1zCpk2beOihh1i6dClZWVkcOnSI1NRUxo4dy7///W/OP/98cnNzueKKKzTpK9XBHBOJv7mauet6clfzzq/HncTry77ltgtOZlS/rHaLoa6ujr59+3LKKacAcN111/Hcc8+5E//kyZPdz7/5zW/avJ38/Hy2bdvG6NGjERFiY2PZuHEjffr0Yc+ePVx++eWA/YETwPz587nhhhtISkoCoGvXri1uY/z48e75jDHcc889LFmyhKioKPbs2UN+fj6fffYZEydOJCsry2u9N954I4899hjnn38+r7zyCi+99FKb36tSKjgioo3flfSfvXoYd/zXqTx79TCvNv9Q8Lz8UESoq6tznwy+7777Al7PnDlzKCoqom/fvuTk5JCXl8fs2bNbHU9MTAz19fUAja6HT05Odr9+4403OHjwIKtWrWLt2rVkZ2c3e/382WefTV5eHv/5z3+oq6tj4MCBrY5NKRVcEZH41+8u4dmrh7lr+KP6ZfHs1cNYv7uk3bYRHR1NXl4e27dvB+C1115jzJgx7ulvvfWW+/n73/8+0dHR7pPBDzzwQMDbmT17Nh9//DF5eXnk5eWxatUqcnNzSU1NpVevXvzrX/8CoKqqioqKCsaPH88rr7xCRUUFgLupJycnh1WrVgHw9ttvN7m9kpISunfvTmxsLAsXLmTXrl0AjBs3jrlz51JYWOi1XoBrr72WKVOmcMMNNwT8vpRSoRMRif/mMf0aNeuM6pfFzWP6tds2EhISeOWVV5g4cSKDBg0iKiqKm2++2T29qKiIwYMH8/TTT/Pkk0/6Xcddd91Fr169qKiooFevXvzpT3/ymp6Xl8euXbu8TgL37duXtLQ0li1bxmuvvcZf/vIXBg8ezKhRo9i/fz8XXnghl1xyCSNGjGDo0KHMmDEDgOnTp/P8888zbNgwCgqaPvK55pprWLlyJYMGDeLVV1+lf//+AJx22mnce++9jBkzhiFDhnDHHXd4LVNcXOxu3lJKdTD+OunvaA9/N2LZtGlTQDciOHz4cEDzBVOfPn3MwYMHW71cR4i9LebOnWuuuuqqoG8n0O9Aa3XkG2s0p7PGbYzGHiw0cSOWY+Lkruo4br31Vj766CPmzJkT7lCUUk3QxB8CeXl54Q4hZJ555hnAXk2llOqYIqKNXymlVANN/EopFWE08SulVITRxK+UUhEmMk7ufv4U9Dwd+p7bMG7nEtizGkbf3qZVFhYWcv759p7x+/fvJzo6mm7dugGwfPnyNvXQOXbsWPbt20diYiJgO2Nr6vaFl112Gfv37+fLL79sU/xKqcgVtBq/iLwsIgdEZKPHuK4i8qmIbHOeM4K1fS89T4e519tkD/Z57vV2fBsFo1tmsF0kuNbjKkh8abfMSqmjEcymnpnAhT7j7gYWGGNOBhY4w0fvo7vhlYv8PhLf+gksehRSe8Brl8OTA+1zag87vonl+Kj1oS1YsIBhw4YxaNAgfv7zn1NVVQXY7hHuuusuBg0axMiRI93dOrSVq1vmSZMmkZub6x6/fft2LrjgAoYMGcLpp5/Ojh32RjOPPvoogwYNYsiQIdx9t31fY8eOZeXKlQAUFBSQk5MDwMyZM7nkkksYN24c559/PmVlZZx//vmcfvrpDBo0iPfee8+9vVdffZXBgwczZMgQfvazn1FaWkrfvn2pqakBbLfMnsNKqY4haInfGLME8O0D+FJglvN6FnBZsLbfSEK6TfYl39nnhPR2Xb2rW+a33nqLDRs2UFtby/PPP++e7uqWedq0ae4eO/254YYbGDp0KA8++CD2h3eNzZ49m8mTJzN58mSvDtquueYafvWrX7Fu3TqWLl1Kjx49vLplXrduHXfddVeL72X16tW8/fbbLF68mISEBN59911Wr17NwoULufPOOzHG8NVXX/HQQw/x2WefsW7dOp5++mmvbpkB7ZZZqQ4q1G382caYfc7r/UB2UzOKyE3ATQDZ2dksWrTIa3paWlrDj4RG39vkBl03Yon+9gsSPvglNWfdRuy616gceSt1J5zdfLQB/gipqqqK6upqTjjhBHr06EFpaSkTJ07kpZdeYsqUKRhjuPjiiyktLeXHP/4xt99+u98fOL3wwgscf/zxlJaW8tOf/pRu3bpxzTXXeM1z4MABtm7dypAhQxARoqOjWbZsGb1792b37t1ccMEFXuv+8MMPmTx5MnV1dZSWlhIbG0tpaSl1dXWUl5dTWlpKWVkZxhhKS0uprKxk7Nix7vlqamq4++67Wbp0qbtb5h07dvDhhx9y6aWXEh8f77Xeq6++mqeeeoqxY8fy97//nWeeeSZoP+aqrKxs9L1oD2VlZUFZb7B11rhBYw+1sJ3cNcYYEfFfpbXTXwReBBgxYoQZO3as1/TNmzc3eeLTU2lpKakFa+Dft8CVs4jvey6cegFJc6+HiTO9T/i2UXx8vDsJu2JKSkoiJiaG1NRURITU1FRSU1OpqakhKiqKpKQkhg8fDsAll1zCAw88wKmnngpAamoq1157LUuXLvXq6A1sU0xxcTGDBw8GbHPKvHnzuPvuu93b8RQXF0dCQkKj8fHx8SQmJpKamkpJSYl72YSEBNLT093zz5w5k5KSEtasWUNsbCw5OTnExMSQkJBAXFxco/WOHz+e6dOns3TpUgDOPPPMo96/TUlISGDYsGHtvt5Fixbh+33rDDpr3KCxh1qoL+fMF5EeAM7zgZBsdc9q7yTf91w7vGd1u23iaLtlrq2tdfeSWVNTwwcffMCAAQMabUe7ZVZKHa1QJ/55wHXO6+uA95qZt/2Mvr1xzb7vuW2+lNOfo+2Wuaqqih/84AcMHjyYoUOH0rNnT66//nqvebRbZqVUu/DXZWd7PIDZwD6gBtgNTAEysVfzbAPmA10DWZd2y9y5aLfM4dFZ4zZGYw8WQt0tszGmqere+cHapgo/7ZZZqY4vMn65G2baLbNSqiPRvnqUUirCaOJXSqkIo4lfKaUijCZ+pZSKMBGR+F/e+DLL9y33Grd833Je3vjyUa03OjqaoUOHuh95eXmMGjWqzeu7/vrrG/2YatasWY2uhy8oKKBbt27uTuB8zZw5k2nTpgW0zaeeeoqEhARKSkraFrRSqtOJiMQ/MHMg0xdPdyf/5fuWM33xdAZmDjyq9SYmJrp/fbt27VpycnLcXRW0l8svv5xPP/3U/ctbsL+0vfjii4mPjz/q9c+ePZszzjiDd95556jX1RRjDPX19UFbv1KqdY6JyzkfXf4oXx/62u80Vydt3ZK68YtPf0G3pG4crDjIiekn8vy653l+3fN+l+vftT+/G/m7VseSkpLi7rTp/vvvJysri40bNzJ8+HBef/11RIQHHniA999/nyNHjjBq1CheeOEFRMTv+rp06cKYMWN4//33ueqqqwDb6+W9997L+++/z0MPPUR1dTWZmZm88cYbZGc32e9dIzt27KCsrIy//vWvPPzww+4uFsrKyrj11ltZuXIlIsIf/vAHJkyYwMcff8w999xDXV0dWVlZLFiwgPvvv5+UlBSmT58OwMCBA/nggw8oKytjwoQJnHnmmaxatYoPP/yQRx55hBUrVnDkyBF+8pOf8Mc//hGAFStWcNttt1FeXk58fDwLFizgoosu4i9/+QtDhw4FYPTo0Tz33HMMGTKk1Z+JUspbRNT4AbrEdaFbUjf2le+jW1I3usR1Oep1HjlyxN3Mc/nllzeavmbNGp566ik2bdrEN998wxdffAHAtGnTWLFiBRs3buTIkSN88MEHzW5n8uTJ7n739+7dy9atWxk3bhyjR4/myy+/ZM2aNUyaNInHHnusVfHn5uYyadIkzjnnHLZs2UJ+fj4ADz74oLsb6fXr1zNu3DgOHjzI1KlT+ec//8m6deuYO3dui+vftm0bt9xyC1999RV9+vTh4YcfZuXKlaxfv57Fixezfv16qqurueqqq3j66adZt24d8+fPJzExkSlTpjBz5kwAtm7dSmVlpSZ9pdrJMVHjb65mXlpaSmpqqrt55xeDf8GcLXP45ZBfMrLHyKParquppykjR46kV69eAO5zAKNHj2bhwoU89thjVFRUcOjQIU477TQuvvjiJtdz0UUXccstt3D48GHmzJnDhAkTiI6OZvfu3Vx11VXs27eP6upq+vbt26r4Z8+ezbvvvktUVBQTJkxg7ty5TJs2jfnz53vd4CUjI4P333+fc889172Nrl27trj+Pn36ePUrNGfOHF588UVqa2vZt28fmzZtQkTo0aMHZ5xxBmCPcAAmTpzIgw8+yOOPP87LL7/cqN8ipVTbRUSN35X0Z4yZwbRh05gxZoZXm3+weLbBR0dHU1tbS2VlJbfccgtvv/02GzZsYOrUqVRWVja7nsTERC688ELeffddcnNz3Sd7b731VqZNm8aGDRt44YUXWlyPpw0bNrBt2zbGjx9PTk4Oubm5Xjd1CVRMTIxX+71nDMnJye7XO3fuZMaMGSxYsID169dz0UUXNRtvUlIS48eP57333mPOnDmN7kuglGq7iEj8Gws3MmPMDHcNf2SPkcwYM4ONhRtbWLL9uZJdVlYWZWVlzXaJ7Gny5Mk88cQT5Ofn8/3vfx+wXSb37NkTsFf/tMbs2bO5//773d077927l71797Jr1y7Gjx/Pc8895563qKiIs846iyVLlrBz507Au3vn1att99arV692T/d1+PBhkpOTSUtLIz8/n48++giAU089lX379rFixQrAHqG57vV744038utf/5ozzjiDjIzQ3J5ZqUgQEYn/5wN/3qhZZ2SPkfx84M9DHkt6ejpTp05l4MCB/OAHP3A3cbRk/Pjx7N27l6uuusp9Ivj+++9n4sSJDB8+nKysLL/LzZs3j/vuu6/R+Nzc3EbnJS6//HJyc3P5/e9/T1FREQMHDmTIkCEsXLiQbt268eKLL3LFFVcwZMgQ94nmCRMmuJurnn32WU455RS/cQwZMoRhw4bRv39/rr76as4+2979LC4ujrfeeotbb72VIUOGMH78eHfhOHz4cLp06aL9+ivV3vx12dnRHp29W+a2ivTY9+zZY04++WRTV1fnd7p2y+yts8ZtjMYeLDTRLXNE1PhV5/Pqq69y5pln8vDDDxMVpV9TpdrTMXFVjzr2XHvttVx77bXhDkOpY1KnrkrZIxkVifSzV6rtOm3iT0hIoLCwUBNABDLGUFhYSEJCQrhDUapT6rRNPb169WL37t0cPHiw2fkqKys7bYLQ2JuWkJDg/nGcUqp1Om3ij42NDeiXqosWLWLYsGEhiKj9aexKqWAIS1OPiFwoIltEZLuI3B2OGJRSKlKFPPGLSDTwHPBDYAAwWUQGhDoOpZSKVOGo8Y8EthtjvjHGVAO5wKVhiEMppSJSONr4ewLfeQzvBs70nUlEbgJucgbLRGRLG7eXBRS0cdlw09jDo7PG3lnjBo09WPr4G9lhT+4aY14EXjza9YjISmPMiHYIKeQ09vDorLF31rhBYw+1cDT17AF6ewz3csYppZQKgXAk/hXAySLSV0TigEnAvDDEoZRSESnkTT3GmFoRmQZ8AkQDLxtjvgriJo+6uSiMNPbw6Kyxd9a4QWMPKdEuD5RSKrJ02r56lFJKtY0mfqWUijDHTOJvqRsIETlXRFaLSK2I/CQcMTYlgNjvEJFNIrJeRBaIiN9rc0MtgLhvFpENIrJWRD7vSL/QDrTbEBGZICJGRDrM5XoB7PfrReSgs9/XisiN4YjTn0D2u4hc6XzfvxKRN0MdY1MC2O9PeuzzrSJSHIYwA+Pvtlyd7YE9SbwDOBGIA9YBA3zmyQEGA68CPwl3zK2M/TwgyXn9S+CtThJ3F4/XlwAfhzvuQGN35ksFlgBfAiPCHXcr9vv1wLPhjrWNsZ8MrAEynOHu4Y67Nd8Zj/lvxV64EvbY/T2OlRp/i91AGGPyjDHrgfpwBNiMQGJfaIypcAa/xP72IdwCifuwx2Ay0FGuJAi025AHgUeBylAG14LO3OVJILFPBZ4zxhQBGGMOhDjGprR2v08GZocksjY4VhK/v24geoYpltZqbexTgI+CGlFgAopbRH4lIjuAx4Bfhyi2lrQYu4icDvQ2xvw7lIEFINDvywSnafBtEentZ3o4BBL7KcApIvKFiHwpIheGLLrmBfx/6jTF9gU+C0FcbXKsJP6IICI/BUYAj4c7lkAZY54zxvQDfgf8PtzxBEJEooAngDvDHUsbvQ/kGGMGA58Cs8IcT2vEYJt7xmJrzS+JSHo4A2qDScDbxpi6cAfSlGMl8XfmbiACil1ELgDuBS4xxlSFKLbmtHaf5wKXBTOgVmgp9lRgILBIRPKAs4B5HeQEb4v73RhT6PEd+TswPESxtSSQ78xuYJ4xpsYYsxPYii0Iwq013/dJdOBmHuCYObkbA3yDPbxynXg5rYl5Z9KxTu62GDswDHti6eRwx9vKuE/2eH0xsDLccbf2++LMv4iOc3I3kP3ew+P15cCX4Y67FbFfCMxyXmdhm1cyO0Psznz9gTycH8d21EfYA2jHD+ZH2NrBDuBeZ9wD2BoywBnY2kQ5UAh8Fe6YWxH7fCAfWOs85oU75gDjfhr4yol5YXPJtaPF7jNvh0n8Ae73Pzv7fZ2z3/uHO+ZWxC7YZrZNwAZgUrhjbs13BrgfeCTcsbb00C4blFIqwhwrbfxKKaUCpIlfKaUijCZ+pZSKMJr4lVIqwmjiV0qpCKOJX3VKIlIW4u0tbaf1jBWREqcHx69FZEYAy1zWkXo2VZ2fJn6lABFp9jakxphR7bi5/xhjhmJ/mPdjETm7hfkvAzTxq3ajiV8dM0Skn4h8LCKrROQ/ItLfGX+xiCwTkTUiMl9Esp3x94vIayLyBfCaM/yyiCwSkW9E5Nce6y5znsc60992auxviIg4037kjFslIn8RkQ+ai9cYcwT747aezvJTRWSFiKwTkX+KSJKIjMJ2af24c5TQr6n3qVSgNPGrY8mLwK3GmOHAdOCvzvjPgbOMMcOwfQbd5bHMAOACY8xkZ7g/8ANsN7x/EJFYP9sZBtzuLHsicLaIJAAvAD90tt+tpWBFJAPbD80SZ9Q7xpgzjDFDgM3AFGPMUmAe8FtjzFBjzI5m3qdSAWn28FapzkJEUoBRwFynAg4Q7zz3At4SkR7YflZ2eiw6z6l5u/zb2A7OqkTkAJCN7erD03JjzG5nu2uxN/kpA74xtmMxsJ103dREuOeIyDps0n/KGLPfGT9QRB4C0oEU4JNWvk+lAqKJXx0rooBip+3c1zPAE8aYeSIyFtufiku5z7yePZ/W4f9/JJB5mvMfY8yPRaQv8KWIzDHGrMV2IHiZMWadiFyP7ZrYV3PvU6mAaFOPOiYYe7evnSIyEUCsIc7kNBq60L0uSCFsAU4UkRxn+KqWFnCODh7B3qsAbHfQ+5zmpWs8Zi11prX0PpUKiCZ+1Vklichuj8cd2GQ5xWlG+YqGW+Pdj20aWQUUBCMYp7noFuBjZzulQEkAi/4NONcpMP4fsAz4AvjaY55c4LfOyel+NP0+lQqI9s6pVDsRkRRjTJlzlc9zwDZjzJPhjkspX1rjV6r9THVO9n6FbV56IbzhKOWf1viVUirCaI1fKaUijCZ+pZSKMJr4lVIqwmjiV0qpCKOJXymlIsz/BzSpJVe2tJk3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABEQ0lEQVR4nO3deXxU5b348c8362RPSCAiIEHciqyCqEgFUW5trStFQVuXutRarFa51qv9WevS68J1qVqrtgpuRLBal6qtIMtVruyroCwSlC2QkIQsZH9+fzxnJjOTSTIJmZmE+b55zWvm7N85Gb7Pc55zznPEGINSSqnoERPpAJRSSoWXJn6llIoymviVUirKaOJXSqkoo4lfKaWijCZ+pZSKMpr4w0hE8kTEiEhcEPNeIyKfhSOurkysl0WkRESWRToeFToicreI/DXScUQDTfwtEJECEakVkRy/8aud5J0XodC8Y0kVkQoR+SjSsYTQWGAi0NcYM7ozVigi14nIVyJSLiKFIvKhiKQ502aKyIOdsZ0Wtm1EpNL5uxWLyHwRuTxU2wsypqArJKFkjPmjMeb6UKzbb7/vEpHHRSQ2yGXvE5HXQhFXpGjib912YKp7QESGAMmRC6eZSUANMFFEjgrnhsOYJPoDBcaYyvYuGChGERkH/BGYaoxJA74HvHnYUbbPMGNMKnAiMBN4RkR+H+YYwirShYrDvd/HAZcDP49wPJFjjNFXgBdQAPwOWO41bgZwD2CAPGdcBvAKsB/Y4SwT40yLdZYpAr4BfuUsG+e17N+APcAu4EEg1pl2DfBZGzF+CjwErAKm+00bCywBSoHvgGuc8UnA/zixlgGfOePGAzsD7INznc/3AW8BrwEHgeuB0cD/OdvYAzwDJHgtfzLwCXAAKATuBo4CqoBsr/lOcfZfvN/2rwOqgQagAviDM/4GYKuz3veAo72WMc5+3gJsD7DPpgP/aGF/3gjUAbXO9t53xh8N/N2JcTvwa69l3PvlTaDc+VsMa+VvZoDj/Mb9xPme2V7be8/5fluBG5zxLuAQkOMM3wPUA+nO8APAk87nmcCzwD+duJYCA1uIKQ+v36XftNZ+owOxv8Fi7G/8dSDT7/fzW2AdtoJynLOdq4FvnWXu8duXr/nF1NK8ScAsoATYBNyJ3++3tf0OzAGe9Rp+Cvv/5CCwEvi+M/485/dQ5/wm1gaxX44DFmH/fxUBb0Y6nzXbH5EOoKu+nB/tucDX2FphLLATWwP1TvyvAO8Cac6PdTNwnTPtJuAroB/QA1iAb+J/B3geSAF6AcuAXzjTrqGVxO/E0QgMAu4A1vlNK8cercQD2cBwZ9qzwEKgj/OdxgCJBJf464CLsUeKScBI4HQgzvnum4DbnPnTnP8Ud2ATVhpwmjPtQ+CXXtt5Ani6he/psx+ACc5/plOcuJ8GFntNN9jCpgeQFGB938cmzz8AZwKJftNnAg96DcdgE8G9QAJwLLYQ/4HffvmJs6+nYwuH+Ba+T6DEH49N4D90hhcDf3b223BsgTPBa9ok5/O/gW1+y13i9T2KsYVzHDYp57cQUx4tJ/7WfqPHYZvhEoGezvaf9Pv9rMH+/pO8tvOiMzwMWyB8z2tf+if+luZ9GJtcs4C+2MIlqMQPnIT9bf7Ga/pPsf9P4rC/2b2Ayz+uIPfLbGyhHOP8DcdGOp812x+RDqCrvmhK/L8D/htb8n/i/DCM88OMxdYGBnkt9wtgofP5U+Amr2n/4f4PBuQ6P+Qkr+lTgQXO52toPfH/DljjfO6DrRWPcIb/C3gnwDIx2KQ3LMC08f7/cWie+Be3FI8zz23u7TrfZXUL810OfO58jnX+k41uYV6f/YCtZT3qNZyKTbx5zrDBSZKtxPlD4H3skUoF8DhNtbWZ+Cb+04Bv/Zb/L+Blr/3yhd8+3oNTYwyw7WaJ3xm/F7gSmyQbgDSvaf8NzHQ+PwD8yfkN7QVuxSZB99FAttf3+KvXOn4EfNVCTHkESPxt/UYDrOdi77+58/v5eYDt9PUatwyY4rUv/RN/S/N6Cl9n+HraTvwHgUrn82z8Cn2/+Utw/p/gl/jb2i/YyuAL3rF3tVdXaHfr6l7F1mQGYP+g3nKwtbUdXuN2YBMx2EP27/ymufV3lt0jIu5xMX7zt+YqbG0IY8wuEVmEPSxejU0e2wIsk4NNEIGmBcMnNhE5AZs0R2HPfcRha8e0EgPYI6S/iMgAbDt3mTEm2Ct2jsY2pwBgjKkQkWLsPi8IFKc/Y8xHwEciEgOcDczFHtk9H2D2/sDRIlLqNS4W+F+vYc/2jDGNIrLTiTMoIhKPrTEfcJY7YIwp95plB3Yfg63lPo494lmPrYz8DXvktdUYU+y13F6vz1XYQrI9Wv2Nikgutonk+9gjuhhswvQW6G/Rnrhamtf//1Yw/29Owf4mJ2MLyxRsAkdEpmObFo/GFgzp2P8vgbT1f/dObAG9TERKgP8xxrwURHxhoyd322CM2YE9dP8R8Lbf5CJsbbO/17hjsG1+YGt+/fymuX2H/dHlGGMynVe6MebktmISkTHA8cB/icheEdmLrZle4ZxE+w7b/uqvCNuWHGhaJV4nrp0rHnr6zWP8hp/DNmUdb4xJx7bhu/8nfIdtFmnGGFONbWP9KfAzbOEarN147W8RScEeou/ymsc/zoCMMY3GmPnYI7PBLSz7HfZcQabXK80Y8yOveTx/Y6cw6evEGayLsE09y5zlerivMnJ4/6aWYAvLS4BFxpiNzvQfYQuFztTWb/SP2P01xPn7/5Smv79bUH+LDtiD3c9u/Vqa0Zux5mDPTd0LICLfxybry4AsY0wmtn3e/V0C/SZa3C/GmL3GmBuMMUdjWwD+LCLHdeRLhoom/uBch20+8LmyxBjTgE1gD4lImoj0B27HngDFmfZrEekrIlnAXV7L7sG20f6PiKSLSIyIDHSuOmnL1dia3iBsG/BwbOJKwjZjvA6cKyKXiUiciGSLyHBjTCPwEvC4iBwtIrEicoaIJGLPTbhE5HynBvo7bNtta9Kwh88VInIS8EuvaR8AvUXkNhFJdPbPaV7TX8E241xI+xL/bOBaERnuxP1HYKkxpiCYhUXkIhGZIiJZzj0Co7FXeXzhzFKIb4G1DCgXkd+KSJKzzwaLyKle84wUkUudQvc2bFL4gjaISA8RuRJ73uURY0yxMeY7bHL/bxFxichQ7O/vNQBjTBX2qOpXNCX6JdjzSYeb+BOdbbpExIXdF639RtOwTWVlItIH+M/D3H57zMFWfLKcbU9r5/IPAzc4V8OlYQve/UCciNyLrfG7FQJ5TqHe5v9dEZksIu5CqQRbcDR27GuGhib+IBhjthljVrQw+RZsbfkb7BUyb2CTK9immH8Ba7HNE/5HDFdhTxhuxP5A3gJ6txaL8x/yMuzJ0L1er+3YBHq1MeZbbA3wDmzzwRrsyTGwJx/XA8udaY9gr0IqA24G/oqtXVZiT2a3ZjpwBfZE8ot4XRbpNFVMBC7AHq5vwTaruKd/jv3PsMo5qgqKMWYe8P+wV9nswR69TAl2eex+vsGJ5yA2oT5mjHndmf43YJCIlIrIP5zC/cfYwnU79qjpr9irOtzexZ63KMEewVxqjKlrJYa1IlKBvWLneuxJxnu9pk/FtnHvxp5E/L3zvd0WYZsalnkNp2GbJA9HBfY8gfs1gdZ/o3/ANp+UYa8e8v99h9L92N/ndmCeE1dNsAsbY9Zj99d/Yv+Pfoyt/OzAHhV7Nx3Ndd6LRcTdzNjafjkVWOr8jd8DbjXGfNPO7xdS4pyMUCrsRORT4A1jTLe9W1NE7sOerP1ppGOJZiLyS+yJ32COmKOe1vhVRDhNJacQ/pun1BFARHqLyJlOM8uJ2KPbdyIdV3ehV/WosBORWdhL/271u3pFqWAlYK/CGoC9LDcfe++DCoI29SilVJTRph6llIoy3aKpJycnx+Tl5XVo2crKSlJSUjo3oDDR2COju8beXeMGjT1UVq5cWWSM8b8fp3sk/ry8PFasaOlqytYtXLiQ8ePHd25AYaKxR0Z3jb27xg0ae6iISMBLpbWpJ5p89iRs97vUe/tiO14pFTU08UeTPqfA3Guakv/2xXa4zymRjEopFWbdoqlHdZAxUF0KFfuaXidfCq9fBr1Ogn2b4HsXwLdLYfcaiE+COJd9xbsgLgniElsfHxPUQ4yUUl2IJv7uxhioKbdJvHIfVBRCxX77XulO8M64yn3QUBtgJQK7V0NMPGx4G0xDx+OJiQ9QILgYUVULBb2cQiPRTot3eRUghzE+LhHEvy8wpVSwNPF3FbWVzZJ43vZlUP4PvyS/D+qrmy8vMZDSE1J7QUov6Pk9SO0Jqbl2ONV5FX8D798Co66DFX+DyTPhmDPsOuuqof4Q1NdAnfNef8gZ77yCHN9Qswca6514A8wf6Du0R5yr/UcnQY5PLf8Givo0L4Bi4w8v5lD47EnbVDfgrKZx2xfDrlUw9rZIRaW6OE38oVR3yEna+5uSdsCa+n6orWi2eH8E9mfb5J3a0yboFCeZuxN5Si87nNyj7WaX7Ytt0p880yaKAd+3bfzu4cS01pdvh3VtXelgzGEVLD4FiH+BVVsBVUV+yzvzNNa3GfsoaHqqgDeJDeKIpB1HLcEURnEuiGnlVJz7vM3kmXbYfd7GPaxUAJr426u+1jeRB0ri7uGassDrSMpyauI9oc/I5kncqakvXv4l4yac03mx71rVlOTBvk+eacd71xjDQcQmu3iX7Uw6XBrqWy806qvZsGYFg088rtn4lub3jK8qbnn+wxGb6FU4BCgoehwLr01ipOto+GwvDL8CDu6GrfPsbyqlJ6TkdM0jFhURR2bib+/hb0O9rSF6J3CfJO5VUz/k/4AhR2JGUwI/aohv84o7ybvf4xKC+hom5qt2f/VWBfruA84Kf9KPpNg4iE2FxJYf+lS0Kx6Gju+8bRpjz7UcZvNZ4PHO54RU0ioLbJPfipfsy19SllMI9LIFQaq7UPB6pTrvCal6HuUIdmQmfvfh7wVPk1KxHz5/ChY9CkMmw7/u8aqpO6+qYgI+KCgh1avN/ETbNOKdxN2185RetgamVCAiThNPW8+16SCneaeg/2Xk7Z8PFz0LOSc0NTNW7oPKIqci43wu3ADf7IfqFo5K45KajhRSnYIipVfzAiKlV3DNjKpLCVnid7pK9e5y91jso85eccbnYZ+RepkxpoVqdAe5mzBevZRTG72eh7HyZfuDdtfEexwL/U7zbTP3JPZekNA1b8NWysOrTb9gRyN543/me96mLfU1TYWC98tdQFTug4O7YM9aOz7gORKB5OwABYT3UYV7Wk9ISA6wDhVOIUv8xpivsU8tcj+/dRe2v+y7gPnGmIdF5C5n+LedHsCAs+Dki2H9XBh2BZw13UnmegirjiDe5212LGz/eZu4RMjoY19taWy094X4FBD7mx9V7FppP9e20ON2QmqzAiKv+BAkfe11ROFMc2W2fnJbdUi4mnrOAbYZY3aIyEXAeGf8LGAhoUj82xfDtk/t4e+Wf8HwqZAd6BnjSnVj4TxvExNjm3WSe9imz7bUHQpQQPgdVZQUwM7l9K8sgh1zAmwzDpJz/JqXevoVEDlNw6FqTjvChKU/fhF5Cfts1WdEpNR5ij0iIkCJe9hvmRuBGwFyc3NH5ufnB729zJJ1DNr4GBsH/Sc744+lb903nuHSrKGd8ZXCoqKigtTUlk9CdmUae/h117gBKsoPkpVoSKgtJb6uzOe96XMZ8XV2OLYx0I2JUB+bQm1CBrUJmdTF+77XJmT4jKuPS+mUo/+uvN/PPvvslcaYUf7jQ574RSQB+9Dok40xhd6J35leYozJam0do0aNMu3qndPrqh5Pz3nd8KaWrtzrX1s09vDrrnFDB2KvqXCOHJzzEK0dVRw6EHgdsQlN5yLczU4tHVUkZ7d4OWxX3u8iEjDxh6Op54fY2n6hM1woIr2NMXtEpDewr9O3qJctKnVkS3Quye0xoO15G+rtlXutFRCV+23fVS12cwIk9Qh4VVPv3QdgU4Xvye2EwziaCMPd2OFI/FOB2V7D7wFXAw877++GIQalVLSKjYO0XPtqizFQc9Dv8lf/o4j9sHeDLSSqyzgRYLPf437dl8O2el7COcrwvxzW+27sAWeF5G7skCZ+EUkBJgK/8Br9MDBHRK4DdgCXhTIGpZQKmgi4MuwrmItB6mtZMv99xgwZ6Nvs5H1k0dblsBJjm5K8C4djzoQ3LreJ/7tlcNmsTm2xCGniN8ZUAtl+44qxV/kopVT3FpdAbWI2HD287XmNsXf++xQQRc2PKnavsoVGXRVs/hhOvaHTm6mPzDt3lVKqqxHxuhz2hNbn3b4Y5l4NQy6z9yINurBTk7/eGaGUUl2Jp01/FvzwEdu27/3kvE6giV8ppbqS1nrR7STa1KOUUl1JGC5H1xq/UkpFGU38SikVZTTxK6VUlNHEr5RSUUYTv1JKRRlN/EopFWU08SulVJTRxK+UUlFGE79SSkUZTfxKKRVlNPErpVSU0cSvlFJRRhO/UkpFGU38SikVZTTxK6VUlNHEr5RSUSakiV9EMkXkLRH5SkQ2icgZItJDRD4RkS3Oe1YoY1BKKeUr1DX+p4CPjTEnAcOATcBdwHxjzPHAfGdYKaVUmIQs8YtIBnAW8DcAY0ytMaYUuAiY5cw2C7g4VDEopZRqTowxoVmxyHDgBWAjtra/ErgV2GWMyXTmEaDEPey3/I3AjQC5ubkj8/PzOxRHRUUFqampHVo20jT2yOiusXfXuEFjD5Wzzz57pTFmVLMJxpiQvIBRQD1wmjP8FPAAUOo3X0lb6xo5cqTpqAULFnR42UjT2COju8beXeM2RmMPFWCFCZBTQ9nGvxPYaYxZ6gy/BZwCFIpIbwDnfV8IY1BKKeUnZInfGLMX+E5ETnRGnYNt9nkPuNoZdzXwbqhiUEop1VxciNd/C/C6iCQA3wDXYgubOSJyHbADuCzEMSillPIS0sRvjFmDbev3d04ot6uUUqpleueuUkpFGU38SikVZTTxK6VUlNHEr5RSUUYTv1JKRRlN/EopFWU08SulVJTRxK+UUlFGE79SSkUZTfxKKRVlNPErpVSU0cSvlFJRRhO/UkpFGU38SikVZTTxK6VUlNHEr5RSUUYTv1JKRRlN/EopFWU08SulVJTRxK+UUlEmpA9bF5ECoBxoAOqNMaNEpAfwJpAHFACXGWNKQhmHUkqpJuGo8Z9tjBlujBnlDN8FzDfGHA/Md4ZVGLy04SWW7VnmM27ZnmW8tOGlCEWklIqESDT1XATMcj7PAi6OQAxRaXD2YKYvms7nuz5nX9U+PtnxCbcvup0B6QMory2nqq6K6vpq6hrraDSNkQ5XBUELc9URYowJ3cpFtgMlgAGeN8a8ICKlxphMZ7oAJe5hv2VvBG4EyM3NHZmfn9+hGCoqKkhNTe3YF4iwjsRe01hDaUMppfWl9t37c30pRfVFVJvqoNcX4/wTEZ/PscT6jIuRGATxfKYR4mLjfMbF4MwjMS2P896W1zjP+ltYxjM+QJz+6/SPyX+dNYdqSElKCRhHa9+5pe8kCPan3vk2V2/m5f0vc23Pazm6/mh2x+32DJ/gOiEk2wyFaPt/Gi5nn332Sq/WFo9QJ/4+xphdItIL+AS4BXjPO9GLSIkxJqu19YwaNcqsWLGiQzEsXLiQ8ePHd2jZSPOO3RhDRV0FhZWFFFY5L+fz3qq9ns/lteXN1pOVmEVuSi65yfa1/eB2lu9dztg+Y/l+n+/TaBppMA3N3hsam49rNI0+432mNTbNU7i/kKzsLM/41rbhHm42T2Mj9abeZ7z39utNfZj/Ih0XK7HESIzve0zTcIzEECdxdlpMgHmd8YHWc7D2IF8d+IoeMT0oMSWce8y5DMoeREZiBpmJmT6vtIQ0YmNiI707mjlS/p92NSISMPGH9OSuMWaX875PRN4BRgOFItLbGLNHRHoD+0IZQ3dgjKGspsyT0PdW7qWwqpC1RWt5/d+ve5J8VX2Vz3KCkJ2UTW5yLsekHcOpR51qk7uT5I9KPoqeyT1xxbk8yyzbs4zpi6bzi6G/YM7Xc7j25GsZ3Xt0p3+ncP1naKlA8h8fqNBpqYBbtXoVQ4YO8Qz7FD6NjQELqvrG+hbX32IMAeL130ZLcdY31vtMS09Ip7C6EFesi38V/IsPt38YcH8JQnpiOpmJmWQkZpCVmOVTQPgUFq6mAiMhNiHkf0sVPiFL/CKSAsQYY8qdz/8B3A+8B1wNPOy8vxuqGLqCRtPIgeoDPjX0QLX2moYan+ViJIb0mHSOST6G4zKP48yjz+SolKN8EnvPpJ7Ex8YHHYs76c8YN4PRvUcz+qjRPsPdkbu2DEAnVWQrkyoZ02dM56wsDNx/1/MyzmNp9VKeGfcMg7IHUVpTSllNGaU1pZRUl3g+e48vrCrk65KvKasp41D9oRa3kRSX5FM4eAoMl2+B4V2QpMSnhKyJSx2eUNb4c4F3nD98HPCGMeZjEVkOzBGR64AdwGUhjCGkGhobKDpU1CyJ+yT2qkLqG32bJOJi4jzNLidnn8yEYyb4JPTc5Fyyk7L5bPFnnVpr3lC8wSfJj+49mhnjZrCheEO3TfzRzrswr/q6isknTvYpzPul9Qt6XTUNNZRWNxUMJTWBC4vS6lJ2V+ymtKaU8tpyDIGbi+Ni4shIyGh29OB/hJHlymJv3V4OVB8gPSGduJiQNkQoQpj4jTHfAMMCjC8GzgnVdsFe6TA4e7BPMlu2Zxkbijfw88E/D2oddY117K/a79uW7jTBuMcVHSqiwTT4LJcYm+hJ4iN6jfBN6M57D1ePplpqGAX67qN7j9ak3415F+YLv154WIV5Ymyi/Y2m5Aa9TENjAwdrDzYVFtUlvoWEVyGy4+AO1taspbSmtFllCOChNx8CIC0hrdnRg09h4bJHHN7jvZszVduOyKLVfdnijHEzAN9aEdiazb7KffakaAs19eJDxc1qMklxSZ7mltN7n97Ulu5ugknOJSMxQw9vVdhEujCPjYkly5VFlqvV6zN8GGOoqq/yFAyl1aX835r/o/exvX0KjNLqUooOFbGtdBulNaXNznF5c8W6PEcPLZ6z8HpluDJIi0+L2v+rR2Tid9d6bl1wK71jevPtzm85MetEHlvxGIWVhZTUNL9ROC0hzVMrP6nHSc2aXnJTckmNT43aH4pSnUVESIlPISU+hT6pfQCo21LH+O+Nb3W52oZa34LBuwmq2nfc15Vfe6a11BQVK7FkJGa0fpLbr4kqIzGD+Jjgz6t1VUdk4geb/LNd2Wwp34Ir1kVtYy25ybkMzRnarOklNzmX5PjkSIeslGpFQmwCPZN70jO5Z9DLNJpGymvLWz3B7X7trNjJl0VfUlpTSm1jbYvrTI1PbSosXBnUlNbwxbIvAp7gdhcYSXFJQVcaO6Opui1HbOJftmcZpbWlTEyfyIqaFfznqP/UtmylokyMxHhq6v3T+we1jDGGQ/WHPOcmAp6zcBci1aXsrdnLV1u/oqKuosV1JsQktHmC2/25Z1JP7lh0B4+Ne4zTe5/erKm6M7SZ+EVkJfAS9qqcbtGZmntHPT7ucaq+rmLKiVO6/WWLneEvi7YxtG8GYwbmeMYt2VbEup1l3DRuYAQjUx2lf9POJyIkxyeTHJ9M79Tebc7vvmelrrHOp9kp0Alu9+etpVspqymjrKas2QUibjf8+wYSYxNJjE3kifFPdGruCqbGfzlwLbBcRFYALwP/NqG85fcwdeaVDkeSoX0zmPbGap65YgRjBuawZFuRZ1h1T95/U0D/phEUHxNPTlIOOUk5bc/saDSNVNRV+JyjcBcY83bMY9W+VUw5cUqn5602E78xZitwj4j8P+DH2Np/g4i8DDxljDnQqRF1gkhf6dCV1Dc0crC6npKqWhLjYrlubB43zFrBqLweLC84wKRT+rJpTzkbdx8EwBhoNPZ0mDFgMPbdOO9+8+A1r/dy335by5KqTQGXs4sFXg5ne41+yzXN33w5vOIMdjn8vp/3cqWlh3hm05Jmy/l89ixnx3uvr9FrXlrcn83X12gC7INA2/Zbrr7BcMWLS4kVgGWM6J/Joq/3s72okrzsFPpnJ9M7I4nYGL0woauJkRjSE9JJT0jnGI7xjF+2ZxkvrnvRc4f9WX3PCnuNHxEZiq31/wj4O/A6MBb4FBjeadGoFjU0GsoO1VFaVUup+72qznm5x9VRUlXrzGc/l1cH7s9m0eb9ALz6xY7Djk0EBIgRcT4LjaaR2O8KvMbZQ2hxz+813j0PNB/nXg4gJganwzOv9QVYd4wzv/8497w442PELyZn3TEC8bExPst5r89/ORBnnFd8PvP4xWEX8dme93KB1tf0nfyWc9a3vOAAq74tJS87iZLKWl7+vIDahqYeVhNiY+jbI8lTELjf+2en0DcrifhYfSZTVxGOO+yDbeMvBf4G3GWMcfctsFREzuyUKKJIQ6Ph4KE63+R9qNZJ1HWUVdVSUmWnf1d4iHuXLaC0qpaDLSRwsMkgIymezKR4MpIT6JGSwLE5KWQmJ5CZbMe7P393oIoZ/97M5JF9eWvVTh6bNJTRA7JtIvJKTM2SmF/CdSedlnTljqvaYmM/PdJhBG3JtiLmrtzJhQPj+WxvPc9cMYLTBmSz92A1O4oqKSiuYseBSnYUVVFQXMn/bSvmUF1Tu3JsjNAnM8kpCNyFQgp52cn065GMK77rdep2JAvHHfbB1PgnO3fhNmOMubRTouhk4Tjh1dhoOFjdVLMuPVRHmftzVR1lh5o+eyf5g9V1tHR2RATSXfE2WScnkBovHNs3k6zkBJvYk+PtZyeZZznJPM0VH9Rh/JJtRTwxbwvP/fQUxgzMYcL3evm0+avux7tNv/a7DUyZMNjnb9onM4kxx/kuY4xhf0UNO4qrKCiqZEdxFTsOVLGjuJJ31+z2OUoUgaPSXT4FgruA6J+dQmriEXthYMSEo6k6mL/a9SLyqDGmFEBEsoA7jDG/67QoOll7Tng1NhrKq+spPeTUtJ2mkpLKpuYT76YU9+eyQy0ncIB0VxyZyQlkJdtaeP8eyZ7PmUnxZKXEk5lkk3iWMy49yTeB25pn552kW7ezzCfJjxmYwzNXjGDdzjJN/N2U99904XfB/U1FhF5pLnqluTg1r4fPNGMMpVV1FBRX8u2BKgqKbIFQUFzJvE2FFFX4Xt+ek5rod6SQ7DlayEzWHj27qmAS/w+NMXe7B4wxJSLyI6DLJn73j/8Xr64kL7WRrfNXMO6EHOau2MmLi7+xTSqHmpJ8YysJPM0V11TTToqnn5PAvZtP3DV097iMpOBq4OEW6GhnzMAcTfrdWGf/TUWErJQEslISGHFM824Yyqvr7BGCX/PRkq3FvL1ql8+8GUnx5DkFgXeB0D87hZzUBL0LPoKCSfyxIpLobtsXkSQgMbRhHb4xA3PITklgfZHt3+PzrcVkOrXszGSbwDOT/JN2vE+7eEZSPHF60kspjzRXPIP7ZDC4T0azadV1Dc5RQmVTwVBcxervSvhg3W6fClZyQqxPQVBdVEfCtiLyslM4Kt1FTBesOB1Jgkn8rwPzncs3wV7dM6uV+buEJduKKK2q4wf941i2X3j2ylO0ZqtUCLniYzkhN40TctOaTautb2RX6SEKiiubTjgXV/J1YTnzNhVS12CY+eVSABLiYujfI7nZUUL/7GT6ZCZpZawTBHMd/yMiso6mrpQfMMb8K7RhHR53m/6ff3oKtd9t4Or/GKwnMZWKoIS4GAbkpDAgJwVO9J3W0Gh4++MF9D5+qOcowX3U8NnWIqrrmi5LjYsR+mYleQqEY7wKhn49kkiM0yuQghHUKXljzEfARyGOpdN05ISXUioyYmOEnskxjD0+h7H4/v80xrCvvMan+ch9tLBqRwnlNb5XIB2dkeR3pNB0tJCcoFcguQVzHf/pwNPA94AE7APuKo0x6SGOrcP0JKZSRwYRITfdRW66i9OOzfaZZozhQGWt51JU9xVIOw5U8a8v93Kg0vcKpF5pieRlp3BMdrLnKME9nJHU/btabo9gisBngCnAXGAUcBVwQiiDUkqptogI2amJZKcmckqAK5DKDtXxrddJZvdRw/9u2c9bK32fcZ2VHN/sfIJ7uEfKkXcFUrBNPVtFJNYY0wC8LCKrgf8KbWhKKdVxGUnxDOmbwZC+za9Aqqqt99yn8K1X89HyghLeXbvb5x6dtMQ45yihqbsL93CvtC5/gWNAwST+KhFJANaIyKPAHkBPqyuluq3khDhOOiqdk45q3mJdU9/AzpJDzZqPNu45yL++3Eu913WprvgYchINg75d4XWUYAuIozO7bsd4wST+n2ET/TTgN0A/YFKwGxCRWGAFsMsY82MRGQDkA9nASuBnxpiWH3ejlFJhlBgXy8CeqQzsmdpsWn1DI7tLq5tOMhdVsnLztxQUV7Jo835q6puuQIqPFfpl+Z5gdhcKfbOSSYgLXH8OR5czrSZ+J2n/0RhzJVAN/KED27gV2AS4i9ZHgCeMMfki8hfgOuC5DqxXKaXCKi42hmOykzkmO5nvH2/HLVy4j/Hjx9HYaCgsr27WfFRQVMWy7QeorG3qGC9G4OjMwL2lnpSbFvLnZrSa+I0xDSLSX0QSOlIrF5G+wPnAQ8DtYs+QTACucGaZBdyHJn6lVDcXEyP0zkiid0YSZwxsfgVScWVts+ajguIq/rl+D6VVdT7zZyXHc9XflnFCbiq7S6v580879wZUaetBWiLyCvZSzveASq8v8nibKxd5C/hvIA2YDlwDfGGMOc6Z3g/4yBgzOMCyNwI3AuTm5o7Mz88P7hv5qaioIDW1+SFbd6CxR0Z3jb27xg0ae2WdYV9VI4VVznulYdOBeg5Uw8Rj4rhyUMdOIp999tkrjTGj/McH08a/zXnFYBN4UETkx8A+Y8xKERkf7HJuxpgXgBcARo0aZTrat3v37xd+fKTD6BCNPfy6a9ygsftzN+/8esIxvLb0W67tN7hTa/zBdNnQkXZ9gDOBC52ePF3YNv6ngEwRiTPG1AN9gV2trEMppaKKd5v+mIE5nD4wu9O7nGnzskwRWSAin/q/2lrOGPNfxpi+xpg87A1gnzoniRcAP3Fmuxp49zDiV0qpI0prz83oLME09Uz3+uzCXsrZ8nMA2/ZbIF9EHgRWYx/pqJRSivB0ORNMU89Kv1Gfi8iy9mzEGLMQWOh8/gbovGeIKaWUapdgOmnzfjZbDDASaH4PtFJKqW4hmKaelYABBNvEsx1705VSSqluKJimngHhCEQppVR4BHNVz69EJNNrOEtEbg5pVEoppUImmF42bzDGlLoHjDElwA0hi0gppVRIBZP4Y8XrKQROx20JoQtJKaVUKAVzcvdj4E0Red4Z/oUzTimlVDcUTOL/LbaztF86w58Afw1ZREoppUIqmMSfBLxojPkLeJp6EoGqUAamlFIqNIJp45+PTf5uScC80ISjlFIq1IJJ/C5jTIV7wPmcHLqQlFJKhVIwib9SRE5xD4jISOBQ6EJSSikVSsG08d8GzBWR3dhuG44CLg9lUEoppUInmC4blovIScCJzqivgR6tLKKUUqoLC6apB2NMHbATOA17Df/qUAallFIqdFqt8YtIEnARcAUwAvvM3YuBxSGPTCmlVEi0WOMXkTeAzcBE4GkgDygxxiw0xjSGJzyllFKdrbWmnkFACbAJ2GSMacD2y6+UUqobazHxG2OGA5dhm3fmichnQJqI5IYpNqWUUiHQ6sldY8xXxpjfG2NOAm4FZgHLRWRJWKJTSinV6YK6qgfsQ9eNMdOB/sBdbc0vIi4RWSYia0XkSxH5gzN+gIgsFZGtIvKmiGgXz0opFUZBJ343YwVzVU8NMMEYMwwYDpwnIqcDjwBPGGOOw55D0Of3KqVUGLU78QfLKSDcffzEOy8DTADecsbPwl4eqpRSKkzEmNBdqON04bwSOA54FngM+MKp7SMi/YCPjDGDAyx7I/Y5AOTm5o7Mz8/vUAwVFRWkpqZ27AtEmMYeGd019u4aN2jsoXL22WevNMaMajbBGBPUCzgde9fuQuDiYJdzls0EFgBjga1e4/sBG9pafuTIkaajFixY0OFlI01jj4zuGnt3jdsYjT1UgBUmQE5t8c5dETnKGLPXa9TtwCXYjtqWAv8IttQxxpSKyALgDCBTROKMMfVAX2BXsOtRSil1+Fpr4/+LiNwrIi5nuBT4CTb5H2xrxSLSU0Qync9J2DuAN2Fr/j9xZrsaeLdDkSullOqQ1m7guhjbGdsHInIVtnvmRCCb4E7I9gYWiMg6YDnwiTHmA+wzfG8Xka3Ouv52GPErpZRqp1Y7aTPGvC8iHwI3A+8AD5ngLuXEGLMO27Gb//hvgNEdiFUppVQnaK2TtguddvmPgQ3Yh69cJCL5IjIwXAEqpZTqXK3V+B/E1syTgH8ZY0YDd4jI8cBDwJQwxKeUUqqTtZb4y4BLsQ9W3+ceaYzZgiZ9pZTqtlq7qucS7MnXOOyDWJRSSh0BWqzxG2OKsA9gUUopdQQJWV89SimluiZN/EopFWU08SulVJTRxK+UUlFGE79SSkUZTfxKKRVlNPErpVSU0cSvlFJRRhO/UkpFGU38SikVZTTxK6VUlNHEr5RSUUYTv1JKRRlN/EopFWU08SulVJQJWeIXkX4iskBENorIlyJyqzO+h4h8IiJbnPesUMWglFKquVDW+OuBO4wxg4DTgV+JyCDgLmC+MeZ4YL4zrJRSKkxClviNMXuMMaucz+XAJqAPcBEwy5ltFnBxqGJQSinVXFja+EUkDxgBLAVyjTF7nEl7gdxwxKCUUsoSY0xoNyCSCiwCHjLGvC0ipcaYTK/pJcaYZu38InIjcCNAbm7uyPz8/A5tv6KigtTU1A4tG2kae2R019i7a9ygsYfK2WefvdIYM6rZBGNMyF5APPAv4HavcV8DvZ3PvYGv21rPyJEjTUctWLCgw8tGmsYeGd019u4atzEae6gAK0yAnBrKq3oE+BuwyRjzuNek94Crnc9XA++GKgallFLNxYVw3WcCPwPWi8gaZ9zdwMPAHBG5DtgBXBbCGJRSSvkJWeI3xnwGSAuTzwnVdpVSSrUulDX+kKqrq2Pnzp1UV1e3Ol9GRgabNm0KU1SdS2Nvmcvlom/fvsTHx4dsG0odqbpt4t+5cydpaWnk5eVhTycEVl5eTlpaWhgj6zwae2DGGIqLi9m5cycDBgwIyTaUOpJ12756qquryc7ObjXpqyOTiJCdnd3m0Z5SKrBum/gBTfpRTP/2SnVct078Siml2i8qEv9fFm1jybYin3FLthXxl0XbOrzO4uJihg8fzvDhwznqqKPo06ePZ7i2trZD67znnnvo169fUHcBXnzxxZx++ukd2o5SKrpFReIf2jeDaW+s9iT/JduKmPbGaob2zejwOrOzs1mzZg1r1qzhpptu4je/+Y1nOCEhoUPrvOCCC1i2bFmb85WWlrJy5UrKysr45ptvOrStYNTX14ds3UqpyOm2V/V4+8P7X7Jx98GA0xoaGoiNjaVXWiJX/W0ZuemJFB6s4bheqTw1bwtPzdsScLlBR6fz+wtOblcc8+fPZ/r06dTX13Pqqafy3HPPkZiYSF5eHpdddhkfffQRSUlJvPHGGxx33HHNlg+2Bv/2229zwQUXkJubS35+PnfffTcAW7du5aabbmL//v3ExsYyd+5cBg4cyCOPPMJrr71GTEwMP/zhD3n44YcZP348M2bMYNSoURQVFTFq1CgKCgqYOXMmb7/9NhUVFTQ0NPDPf/6Tiy66iJKSEurq6njwwQe56KKLAHjllVeYMWMGIsLQoUP585//zNChQ9m8eTMABw8eZNiwYWzevFkvu1SqCzkiEn8wMpLiyU1PZFdpNX0yXWQkdW4iqq6u5pprrmH+/PmccMIJXHXVVTz33HPcdtttdvsZGaxfv55XXnmF2267jQ8++KDD25o9ezb33nsvubm5TJo0yZP4r7zySu666y4uueQSqquraWxs5KOPPuLdd99l6dKlJCcnc+DAgTbXv2rVKtatW0ePHj2or6/nnXfeIT09naKiIk4//XQuvPBCNm7cyIMPPsiSJUvIycnhwIEDpKWlMX78eP75z39yzjnnkJ+fz6WXXqpJX6ku5ohI/K3VzN3Xk7ubd3494TheW/ott557PGMG5nRaDA0NDQwYMIATTjgBgKuvvppnn33Wk/inTp3qef/Nb37T4e0UFhayZcsWxo4di4gQHx/Phg0b6N+/P7t27eKSSy4B7A1OAPPmzePaa68lOTkZgB49erS5jYkTJ3rmM8Zw9913s3jxYmJiYti1axeFhYV8+umnTJ48mZycHJ/1Xn/99Tz66KOcc845vPzyy7z44osd/q5KqdCIijZ+d9J/5ooR3P4fJ/LMFSN82vzDwfvyQxGhoaHBczL43nvvDXo9c+bMoaSkhAEDBpCXl0dBQQGzZ89udzxxcXE0NjYCNLsePiUlxfP59ddfZ//+/axcuZI1a9aQm5vb6vXzZ555JgUFBfzv//4vDQ0NDB48uN2xKaVCKyoS/7qdZTxzxQhPDX/MwByeuWIE63aWddo2YmNjKSgoYOvWrQC8+uqrjBs3zjP9zTff9LyfccYZxMbGek4G33///UFvZ/bs2Xz88ccUFBRQUFDAypUryc/PJy0tjb59+/KPf/wDgJqaGqqqqpg4cSIvv/wyVVVVAJ6mnry8PFauXAnAW2+91eL2ysrK6NWrF/Hx8SxYsIAdO3YAMGHCBObOnUtxcbHPegGuuuoqrrvuOq699tqgv5dSKnyiIvHfNG5gs2adMQNzuGncwE7bhsvl4uWXX2by5MkMGTKEmJgYbrrpJs/0kpIShg4dylNPPcUTTzwRcB133nknffv2paqqir59+/LHP/7RZ3pBQQE7duzwOQk8YMAAMjIyWLp0Ka+++ip/+tOfGDp0KGPGjGHv3r2cd955XHjhhYwaNYrhw4czY8YMAKZPn85zzz3HiBEjKCpq+cjnyiuvZMWKFQwZMoRXXnmFk046CYCTTz6Ze+65h3HjxjFs2DBuv/12n2VKS0s9zVtKqS4mUCf9Xe0V6EEsGzduDOpBBAcPHgxqvlDq37+/2b9/f7uX6wqxd8TcuXPN5ZdfHvLtBPsbaK+u/GCN1nTXuI3R2EOFFh7EckSc3FVdxy233MJHH33EnDlzIh2KUqoFmvjDoKCgINIhhM3TTz8N2KuplFJdU1S08SullGqiiV8ppaKMJn6llIoymviVUirKRMfJ3c+ehD6nwICzmsZtXwy7VsHY2zq0yuLiYs45xz4zfu/evcTGxtKzZ08Ali1b1qEeOsePH8+ePXtISkoCbGdsLT2+8OKLL2bv3r188cUXHYpfKRW9QlbjF5GXRGSfiGzwGtdDRD4RkS3Oe1aotu+jzykw9xqb7MG+z73Gju+gUHTLDLaLBPd63AWJP+2WWSl1OELZ1DMTOM9v3F3AfGPM8cB8Z/jwfXQXvHx+wFfSmz+BhY9AWm949RJ4YrB9T+ttx7ewHB+1P7T58+czYsQIhgwZws9//nNqamoA2z3CnXfeyZAhQxg9erSnW4eOcnfLPGXKFPLz8z3jt27dyrnnnsuwYcM45ZRT2LbNPmjmkUceYciQIQwbNoy77rLfa/z48axYsQKAoqIi8vLyAJg5cyYXXnghEyZM4JxzzqGiooJzzjmHU045hSFDhvDuu+96tvfKK68wdOhQhg0bxs9+9jPKy8sZMGAAdXV1gO2W2XtYKdU1hCzxG2MWA/59AF8EzHI+zwIuDtX2m3Fl2mRf9p19d2V26urd3TK/+eabrF+/nvr6ep577jnPdHe3zNOmTfP02BnItddey/Dhw3nggQewN941N3v2bKZOncrUqVN9Omi78sor+dWvfsXatWtZsmQJvXv39umWee3atdx5551tfpdVq1bx1ltvsWjRIlwuF++88w6rVq1iwYIF3HHHHRhj+PLLL3nwwQf59NNPWbt2LU899ZRPt8yAdsusVBcV7jb+XGPMHufzXiC3pRlF5EbgRoDc3FwWLlzoMz0jI6PpJqGx97S4QfeDWGK//RzXB7+k7vRbiV/7KtWjb6HhmDNbjzbIm5Bqamqora3lmGOOoXfv3pSXlzN58mRefPFFrrvuOowxXHDBBZSXl/PjH/+Y2267LeANTs8//zxHH3005eXl/PSnP6Vnz55ceeWVPvPs27ePzZs3M2zYMESE2NhYli5dSr9+/di5cyfnnnuuz7o//PBDpk6dSkNDA+Xl5cTHx1NeXk5DQwOVlZWUl5dTUVGBMYby8nKqq6sZP368Z766ujruuusulixZ4umWedu2bXz44YdcdNFFJCYm+qz3iiuu4Mknn2T8+PH89a9/5emnnw7ZzVzV1dXNfhedoaKiIiTrDbXuGjdo7OEWsZO7xhgjIoGrtHb6C8ALAKNGjTLjx4/3mb5p06YWT3x6Ky8vJ61oNfzzZrhsFokDzoITzyV57jUweabvCd8OSkxM9CRhd0zJycnExcWRlpaGiJCWlkZaWhp1dXXExMSQnJzMyJEjAbjwwgu5//77OfHEEwFIS0vjqquuYsmSJT4dvYFtiiktLWXo0KGAbU557733uOuuuzzb8ZaQkIDL5Wo2PjExkaSkJNLS0igrK/Ms63K5yMzM9Mw/c+ZMysrKWL16NfHx8eTl5REXF4fL5SIhIaHZeidOnMj06dNZsmQJAKeddtph79+WuFwuRowY0enrXbhwIf6/t+6gu8YNGnu4hftyzkIR6Q3gvO8Ly1Z3rfJN8gPOssO7VnXaJg63W+b6+npPL5l1dXV88MEHDBo0qNl2tFtmpdThCnfifw+42vl8NfBuK/N2nrG3Na/ZDzirw5dyBnK43TLX1NTwgx/8gKFDhzJ8+HD69OnDNddc4zOPdsuslOoUgbrs7IwXMBvYA9QBO4HrgGzs1TxbgHlAj2DWpd0ydy/aLXNkdNe4jdHYQ4Vwd8tsjGmpundOqLapIk+7ZVaq64uOO3cjTLtlVkp1JdpXj1JKRRlN/EopFWU08SulVJTRxK+UUlEmKhL/SxteYtmeZT7jlu1ZxksbXjqs9cbGxjJ8+HDPq6CggDFjxnR4fddcc02zm6lmzZrV7Hr4oqIievbs6ekEzt/MmTOZNm1aUNt88skncblclJWVdSxopVS3ExWJf3D2YKYvmu5J/sv2LGP6oukMzh58WOtNSkry3H27Zs0a8vLyPF0VdJZLLrmETz75xHPnLdg7bS+44AISExMPe/2zZ8/m1FNP5e233z7sdbXEGENjY2PI1q+Uap8j4nLOR5Y9wlcHvgo4zd1JW8/knvzik1/QM7kn+6v2c2zmsTy39jmeW/tcwOVO6nESvx3923bHkpqa6um06b777iMnJ4cNGzYwcuRIXnvtNUSE+++/n/fff59Dhw4xZswYnn/+eUQk4PrS09MZN24c77//Ppdffjlge7285557eP/993nwwQepra0lOzub119/ndzcFvu9a2bbtm1UVFTw5z//mYceesjTxUJFRQW33HILK1asQET4/e9/z6RJk/j444+5++67aWhoICcnh/nz53PfffeRmprK9OnTARg8eDAffPABFRUVTJo0idNOO42VK1fy4Ycf8vDDD7N8+XIOHTrET37yE/7whz8AsHz5cm699VYqKytJTExk/vz5nH/++fzpT39i+PDhAIwdO5Znn32WYcOGtftvopTyFRU1foD0hHR6JvdkT+Ueeib3JD0h/bDXeejQIU8zzyWXXNJs+urVq3nyySfZuHEj33zzDZ9//jkA06ZNY/ny5WzYsIFDhw7xwQcftLqdqVOnevrd3717N5s3b2bChAmMHTuWL774gtWrVzNlyhQeffTRdsWfn5/PlClT+P73v8/XX39NYWEhAA888ICnG+l169YxYcIE9u/fzw033MDf//531q5dy9y5c9tc/5YtW7j55pv58ssv6d+/Pw899BArVqxg3bp1LFq0iHXr1lFbW8vll1/OU089xdq1a5k3bx5JSUlcd911zJw5E4DNmzdTXV2tSV+pTnJE1Phbq5mXl5eTlpbmad75xdBfMOfrOfxy2C8Z3Xv0YW3X3dTTktGjR9O3b18AzzmAsWPHsmDBAh599FGqqqo4cOAAJ598MhdccEGL6zn//PO5+eabOXjwIHPmzGHSpEnExsayc+dOLr/8cvbs2UNtbS0DBgxoV/yzZ8/mnXfeISYmhkmTJjF37lymTZvGvHnzfB7wkpWVxfvvv89ZZ53l2UaPHj3aXH///v19+hWaM2cOL7zwAvX19ezZs4eNGzciIvTu3ZtTTz0VsEc4AJMnT+aBBx7gscce46WXXmrWb5FSquOiosbvTvozxs1g2ohpzBg3w6fNP1S82+BjY2Opr6+nurqam2++mbfeeov169dzww03UF1d3ep6kpKSOO+883jnnXfIz8/3nOy95ZZbmDZtGuvXr+f5559vcz3e1q9fz5YtW5g4cSJ5eXnk5+f7PNQlWHFxcT7t994xpKSkeD5v376dGTNmMH/+fNatW8f555/farzJyclMnDiRd999lzlz5jR7LoFSquOiIvFvKN7AjHEzPDX80b1HM2PcDDYUb2hjyc7nTnY5OTlUVFS02iWyt6lTp/L4449TWFjIGWecAdguk/v06QPYq3/aY/bs2dx3332e7p13797N7t272bFjBxMnTuTZZ5/1zFtSUsLpp5/O4sWL2b59O+DbvfOqVbZ761WrVnmm+zt48CApKSlkZGRQWFjIRx99BMCJJ57Inj17WL58OWCP0NzP+r3++uv59a9/zamnnkpWVngez6xUNIiKxP/zwT9v1qwzuvdofj7452GPJTMzkxtuuIHBgwfzgx/8wNPE0ZaJEyeye/duLr/8cs+J4Pvuu4/JkyczcuRIcnJyAi733nvvce+99zYbn5+f3+y8xCWXXEJ+fj6/+93vKCkpYfDgwQwbNowFCxbQs2dPXnjhBS699FKGDRvmOdE8adIkT3PVM888wwknnBAwjmHDhjFixAhOOukkrrjiCs480z79LCEhgTfffJNbbrmFYcOGMXHiRE/hOHLkSNLT07Vff6U6W6AuO7vaq7t3y9xR0R77rl27zPHHH28aGhoCTtdumX1117iN0dhDhRa6ZY6KGr/qfl555RVOO+00HnroIWJi9GeqVGc6Iq7qUUeeq666iquuuirSYSh1ROrWVSl7JKOikf7tleq4bpv4XS4XxcXFmgCikDGG4uJiXC5XpENRqlvqtk09ffv2ZefOnezfv7/V+aqrq7ttgtDYW+ZyuTw3xyml2qfbJv74+Pig7lRduHAhI0aMCENEnU9jV0qFQkSaekTkPBH5WkS2ishdkYhBKaWiVdgTv4jEAs8CPwQGAVNFZFC441BKqWgViRr/aGCrMeYbY0wtkA9cFIE4lFIqKkWijb8P8J3X8E7gNP+ZRORG4EZnsEJEvu7g9nKAog4uG2kae2R019i7a9ygsYdK/0Aju+zJXWPMC8ALh7seEVlhjBnVCSGFncYeGd019u4aN2js4RaJpp5dQD+v4b7OOKWUUmEQicS/HDheRAaISAIwBXgvAnEopVRUCntTjzGmXkSmAf8CYoGXjDFfhnCTh91cFEEae2R019i7a9ygsYeVaJcHSikVXbptXz1KKaU6RhO/UkpFmSMm8bfVDYSInCUiq0SkXkR+EokYWxJE7LeLyEYRWSci80Uk4LW54RZE3DeJyHoRWSMin3WlO7SD7TZERCaJiBGRLnO5XhD7/RoR2e/s9zUicn0k4gwkmP0uIpc5v/cvReSNcMfYkiD2+xNe+3yziJRGIMzgBHosV3d7YU8SbwOOBRKAtcAgv3nygKHAK8BPIh1zO2M/G0h2Pv8SeLObxJ3u9flC4ONIxx1s7M58acBi4AtgVKTjbsd+vwZ4JtKxdjD244HVQJYz3CvScbfnN+M1/y3YC1ciHnug15FS42+zGwhjTIExZh3QGIkAWxFM7AuMMVXO4BfYex8iLZi4D3oNpgBd5UqCYLsNeQB4BKgOZ3Bt6M5dngQT+w3As8aYEgBjzL4wx9iS9u73qcDssETWAUdK4g/UDUSfCMXSXu2N/Trgo5BGFJyg4haRX4nINuBR4Ndhiq0tbcYuIqcA/Ywx/wxnYEEI9vcyyWkafEtE+gWYHgnBxH4CcIKIfC4iX4jIeWGLrnVB/z91mmIHAJ+GIa4OOVISf1QQkZ8Co4DHIh1LsIwxzxpjBgK/BX4X6XiCISIxwOPAHZGOpYPeB/KMMUOBT4BZEY6nPeKwzT3jsbXmF0UkM5IBdcAU4C1jTEOkA2nJkZL4u3M3EEHFLiLnAvcAFxpjasIUW2vau8/zgYtDGVA7tBV7GjAYWCgiBcDpwHtd5ARvm/vdGFPs9Rv5KzAyTLG1JZjfzE7gPWNMnTFmO7AZWxBEWnt+71Pows08wBFzcjcO+AZ7eOU+8XJyC/POpGud3G0zdmAE9sTS8ZGOt51xH+/1+QJgRaTjbu/vxZl/IV3n5G4w+7231+dLgC8iHXc7Yj8PmOV8zsE2r2R3h9id+U4CCnBuju2qr4gH0Il/mB9hawfbgHuccfdja8gAp2JrE5VAMfBlpGNuR+zzgEJgjfN6L9IxBxn3U8CXTswLWkuuXS12v3m7TOIPcr//t7Pf1zr7/aRIx9yO2AXbzLYRWA9MiXTM7fnNAPcBD0c61rZe2mWDUkpFmSOljV8ppVSQNPErpVSU0cSvlFJRRhO/UkpFGU38SikVZTTxq6gkIrki8oaIfCMiK0Xk/0TkkkjHpVQ4aOJXUUdEBPgHsNgYc6wxZiT2bsuu0PmdUiGniV9FowlArTHmL+4RxpgdxpinRSRPRP7XeXbDKhEZAyAi40VkkYi86xwlPCwiV4rIMueZAwOd+WaKyHNOB2PfOMu9JCKbRGSme3vOPCucPuf/EO4doKJb2B+2rlQXcDKwqoVp+4CJxphqETke2+eKu4+eYcD3gAPY2/f/aowZLSK3Yvtfv82ZLws4A/sMgveAM4HrgeUiMtwYswZ75+cBEYkF5ovIUGO7DVcq5LTGr6KeiDwrImtFZDkQj+0Rcj0wF/B+athyY8weYztA2wb82xm/HvugH7f3jb0lfj1QaIxZb4xpxHaj4J7vMhFZhX3oyMl+21EqpLTGr6LRl8Ak94Ax5lcikgOsAH6D7RdpGLZi5P0QFu9eURu9hhvx/b9UE2Aez3wiMgCYDpxqjClxmoBch/mdlAqa1vhVNPoUcInIL73GJTvvGcAep4b+M+wj9zpbOrazwDIRyQV+GIJtKNUirfGrqGOMMSJyMfCEiNwJ7Mcm4t9i2/7/LiJXAR874zt7+2tFZDXwFbbb4c87extKtUZ751RKqSijTT1KKRVlNPErpVSU0cSvlFJRRhO/UkpFGU38SikVZTTxK6VUlNHEr5RSUeb/Azht30gau+ynAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -178,7 +189,7 @@ "\n", "plt.title('Model Accuracy for Step Down Learning Rates')\n", "plt.ylabel('% Accuracy')\n", - "plt.xlabel('Learning Rate')\n", + "plt.xlabel('Gamma')\n", "\n", "plt.legend()\n", "# plt.xscale('log')\n", @@ -186,10 +197,323 @@ "plt.show()" ] }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a37bab2d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxo0lEQVR4nO3dd5wU9f3H8deH4452dOQCgnQEFJBuiUaMJmqisfcCimjUXxKjxhKTn8bEaJoxUWNFrEGwxBJLLIg/g0rvRTk6iPRyB1z9/P6YQZdzj9s7bm92797Px2MftzvznZn3zu7tZ+c7szPm7oiIiJRVL+oAIiKSmlQgREQkLhUIERGJSwVCRETiUoEQEZG4VCBERCQuFYgaYmZ5Zta1GuZzu5k9Ux2Zysx3hJl9FPO43Lxl21ZhWW+a2aVVnT4VmdlvzWyjma1L4jIOCl+XjGqe7369njXBzG41s8eizlHX1I86QG1jZsuBHKAkZnBPd89O8nIPBFYAB7t7bplxLwO57n5DovOrrrxmdjvQ3d0vipn3SdUx7zjLGgusdvfbkjH/fSz3IOB6oJO7r6+meTqwE9jzQ6Vid28BJPV9FCdHZ2AZkOnuxTW57Fjufley5l1mXW8DngdudPeSfU5I/Pd3baItiOQ4xd2zY25rk71Ad18DvAdcHDvczFoBJwNPJjtDHXYQsKkqxcHM9vUlrX/Me6hFldOluArWQU3pH34p+g5wLnBZxHlSggpEDTEzN7Pu4f2xZvaAmf3bzHaY2adm1i2m7X1mtsrMtpvZdDM7OsHFPEmZAgGcByxw97lmdrOZ5YbLXGBmpyeYt7WZvRrmmQJ0K9M2bl4zOxG4FTg37BqZHQ7/wMxGhffrmdltZrbCzNab2VNm1jwc1znMcamZrQy7cH6Z4Loo+3yuMLMlZrY5fC7tw+FmZveGy95uZnPN7NBw3MnhetphZmvM7BtbYGZ2PPAO0D58jmPD4aea2Xwz2xo+394x0yw3s5vMbA6Qn+gHZMz6qG9mrcxstZmdEo7LDp/fJeHjXmb2Tvh8F5vZOTHz2efrWYl12tzMHjezL8L189s93V9m1s3M3jezTeHr9qyZtdjHOui+r9faYrpWK3pfmFkjM3vSzLaY2UIz+4WZrU7kObn7EuC/wGEx86vs+3tf66W7mU0ys21h7uersu5rjLvrVo03YDlwfJzhTrApCjAW2AQMJejmexYYF9P2IqB1OO56YB3QMBx3O/BMOctuRLCJ/O2YYR8DPwvvnw20J/hicC6QD7QLx40APion7zhgPNAEOBRYU6ZtpfICHwCjwvuXAUuArgTdJy8BT4fjOoc5Hg2fW3+gAOhdzvMfC/w2zvDjgI3AQKAB8Hfgw3Dc94HpQAvAgN4x6+QL4OjwfktgYDnLPZaga2vP457huj0ByAR+ET7HrJj3yCygI9ConHl+tf5jhu1ZH/XDx98L13XbcB29EA5vAqwCRoavyYDw+fdJ5PXc1zLLjHsZeDicT1tgCnBlOK57+PwbAAcAHwJ/LfN/8tU6qOi1JuZ9lEDbu4FJ4WvWAZgT+/pU8L/ZK3zdr9uP9/e+1ss/gV8S/A82JOZ/NRVvkQeobbfwjZ8HbA1v/wqHly0Qj8VMczKwaB/z3EKwCRz3DVmm7WPAI+H9HkAh0LactrOAH4X3RxCnQAAZQBHQK2bcXZTzgZJIXvYuEO8BV8eMOzhcXv2YD4IOMeOnAOeVs9yxxC8QjwN/iHmcHS6jM0Hx+Aw4HKhXZrqVwJVAswpe82PZu0D8Chgf87gewYfwsTHvkcsqmKcD22PeR38jzoc1QbGbG86/dTjsXOD/yszvYeB/K/t6xltmODyH4EO5Ucyw84GJ5cznNGBmmf+Ty+IsJ+5rTfwCUV7bpcD3Y8aNouICsZ2gqDvBh3iDqry/K1ovwFPAI7HZU/mmLqbkOM3dW4S308ppE3u0y05idj6a2Q3hpvE2M9sKNAfaJLjsJ4GzzawhQXfT2x72jZvZJWY2K+z22Erw7bGi+R5A8GG9KmbYitgG+5m3fZn5rQiXlxMzrNx1VZVluHsewRbcge7+PnA/8ACw3sweMbNmYdMzCYr3irBb4IgqLq+UYP0dGNNmVdmJ4hgY8z76STltHiF4Hce6+6ZwWCdg2J7XOXxNLgS+RQKvZ4I6EWwdfRGzjIcJvjFjZjlmNi7sYtkOPMM33xPx1kFlXuvy2rYvM++E1nU4/bnAMIJv/0Cl39/7XC8EW5MGTAm7IFN6X4cKRIoJ+zd/AZwDtPRg5+Q2gjdVIj4CNgM/Itg0fjKcbyeCTfJrCb5ptgDmJTDfDUAxQVfAHgdVIq9XMP+1BP9UsfMuBr6sYLrK2GsZZtaEoMtgDYC7/83dBwF9CLqHbgyHT3X3HxH8c/+LoFumKsszgvW3JqZNReulQmG/9iME30qvtnCfEcEH4qSY4tLCgx3dP6aC17MSVhF8U24Ts4xm7n5IOP4ugufY192bEbwXy77X9nsdlOMLgq6lPTqW1zCWB8YTdMv+Gqr0/t7nenH3de5+hbu3J9g6fTDmdUs5KhCppynBP/AGoL6Z/Rpotu9JvubBduxTwD0E/eqvhaOaELyZNwCY2UiCb54Vza+EYL/A7WbW2Mz6AJdWIu+XQGczK++99k/gOjPrYmbZBB8sz3vVD6nMMLOGMbescBkjzewwM2sQLuNTd19uZkPMbJiZZRJ0MewGSs0sy8wuNLPm7l5E0AVRmmCG8cAPzOy74XyvJ/jQmFzF51SeWwle08uAPwJPhUXjdaCnmV1sZpnhbYiZ9U7g9SxPg9j1SvC6/gf4s5k1s+Bgg25m9p2wfVOCrtZtFhyCfWO1PvN9Gw/cYmYtw2VfW8np7wauMLNvUcn3t7t/wT7Wi5mdbWZ7itcWgtcv0fdVjVOBSD1vA28R9IuvIPjASmQTOdZTBN8Kn3f3AgB3XwD8meDb0ZdAX4KjNRJxLcHm9zqCfv4nKpF3Qvh3k5nNiDPvMcDTBDsxl4XT/0+CueK5GdgVc3vf3d8l2C/wIsG3y24ER3dB8M/+KME/6wqCrqc/huMuBpaHXSRXEXTTVMjdFxN8Y/47wc7hUwgOfS7cj+e1FzMbBPwcuCT80L+H4MPmZnffQbAD+zyCrZl14fgG4eT7ej3Lk8fe6/U44BIgC1hAsP5eANqF7e8g6LbZBvyboCjVlN8AqwneT++GuQoSndjd5xK8H2+kau/vfa2XIcCnZpYHvAr81N2XVvL51RgLd5yIiNRKZvZjgh3Y36mwsexFWxAiUquYWTszOyrs3jmYoIvv5ahzpaNU+AWjiEh1yiI4cqgLwSHC44AHowyUrtTFJCIicamLSURE4qpVXUxt2rTxzp07V2na/Px8mjRpUnHDFJSu2dM1Nyh7VJS9+k2fPn2jux8Qb1ytKhCdO3dm2rRpVZr2gw8+4Nhjj63eQDUkXbOna25Q9qgoe/Uzs3J/Sa8uJhERiUsFQkRE4lKBEBGRuFQgREQkLhUIERGJK2kFIjzr4xQzmx2e9/yOOG0amNnzFlwq8VMLLpC+Z9wt4fDFZvb9ZOUUEUlHD03KZXLuxr2GTc7dyEOTcqttGcncgigAjnP3/gTXdz3RzA4v0+ZyYIu7dwfuJTjjJOEpiM8DDgFOJDhnekYSs4qIpJV+HZpz7XMzvyoSk3M3cu1zM+nXoXm1LSNpv4MIr0uQFz7MDG9lz+vxI4JL9kFwStz7w4ur/IjgGs0FwDIzW0Jw/eaPk5VXRCSdHNmtDfdfMICrnp5O3wObs3DdDu6/YABHdkv0Yo4VS+q5mMJv/dMJrm38gLvfVGb8POBEd18dPs4luNzf7cAn7v5MOPxx4E13fyHOMkYDowFycnIGjRs3rkpZ8/LyyM6u7JUsU0O6Zk/X3KDsUVH2vc34spj7ZxZQCpzcpT7nHNygwmnKGj58+HR3HxxvXFJ/SR1eyOQwM2sBvGxmh7r7vGpexiMEl11k8ODBXtVfKqbqrxwTka7Z0zU3KHtUlP1rT3+8nL/PnE+9esaoIzvz0sw1XHT8odW6BVEjRzG5+1ZgIsH+hFhrCK8Xa2b1CS4Gvil2eKgDe1/PV0SkTiotde5+cxG/emU+9TOMxy4ZxG0/7MP9FwzYa59EdUjmUUwHhFsOmFkj4ARgUZlmr/L19XDPIrg8pIfDzwuPcuoC9ACmJCuriEg6KCwu5efjZ/HQpFwO69iCMSOGMLxXDvD1Pok5q7dV2/KS2cXUDngy3A9RDxjv7q+b2W+Aae7+KvA48HS4E3oz4XWC3X2+mY0nuKZrMXBN2F0lIlInbd9dxFVPT2dy7iZu/P7BXH1sN4Jjer52ZLc21drFlMyjmOYAA+IM/3XM/d3A2eVM/zvgd8nKJyKSLtZt282IJ6awZH0efz67P2cO6lAjy61Vp/sWEaltFq/bwYgnprBjdzFPjBzC0T3iXrohKVQgRERS1Me5mxj99DQaZWbw/JWHc0j76vsRXCJUIEREUtCrs9dyw/jZHNS6MU9eNpQDWzSq8QwqECIiKcTdefT/lnLXG4sY2rkVj14ymOaNMyPJogIhIpIiSkqdO19fwNjJy/lB33b8+Zz+NMyM7jR0KhAiIilgd1EJPxs3i7fmr+Pyb3fhlyf3pl49q3jCJFKBEBGJ2Jb8Qq54ahrTV27hth/0ZtTRXaOOBKhAiIhEatXmnVz6xBRWb9nF/ecP5Af92kUd6SsqECIiEZm3ZhsjnphKUUkpz1w+jKFdWkUdaS8qECIiEfhg8XqufnYGLRtnMW70MLq3bRp1pG9QgRARqWHjp63ilpfm0jOnKWNHDiGnWcOoI8WlAiEiUkPcnb+9t4R73/2Mo3u04cELB9K0YTS/cUiECoSISA0oKXVueWku46au4oyBB3LPmf3IzKiRS/JUmQqEiEiS5RcUc9/MAuZsWMX/HNedn5/Q8xun6k5FKhAiIkm0YUcBlz85lbkbSvjd6Ydy4bBOUUdKmAqEiEiSLN2Qx6VPTGHjjkJ+OrBBWhUHqKFrUouI1DXTV2zhzH9MZmdBCf8cfTiHtU2/7+MqECIi1ezt+eu44NFPaN4okxd/fCSHdWwRdaQqSb+SJiKSwp76eDm3vzqfvh1aMObSwbTObhB1pCpTgRARqQalpc4f3l7MQ5NyOb53W/5+/kAaZUV3qu7qoAIhIrKfCotL+cULs/nXrLVcOOwg7jj1EOqn+G8cEqECISKyH7bvLuKqp6czOXcTN37/YK4+tlta/MYhESoQIiJV9MW2XYx8YipL1ufxl3P6c8bADlFHqlYqECIiVbB43Q5GPDGFHbuLGTtyKN/u0SbqSNVOBUJEpJIm527kyqen0zgrg/FXHkGf9s2ijpQUKhAiIpXwyqw13DhhDp1aN2bsZUM5sEWjqCMljQqEiEgC3J1HPlzK799cxNAurXj04sE0b5y6p+quDioQIiIVKCl17nx9AWMnL+cH/drx57P70zAzvX/jkAgVCBGRfdhdVMLPxs3irfnrGPXtLtx6cm/q1asdh7FWRAVCRKQcW/ILGfXUNGas3MKvftiHy7/dJepINUoFQkQkjlWbd3LpE1NYvWUXD1wwkJP7tos6Uo1TgRARKWPu6m2MHDuVopJSnrl8GEO7tIo6UiRUIEREYkxcvJ5rnp1By8ZZjBs9jO5tm0YdKTIqECIiofFTV3HLy3M5OKcpY0cOoW2zhlFHipQKhIjUee7Ofe99zl/f/Zyje7ThHxcNIruBPh61BkSkTisqKeW2l+fx/LRVnDmwA3ef2ZfMWnCq7uqgAiEidVZ+QTHXPDeDDxZv4CfHdee6E3rWmlN1VwcVCBGpkzbsKOCysVOZv3Ybd53elwuGHRR1pJSTtAJhZh2Bp4AcwIFH3P2+Mm1aAmOAbsBu4DJ3nxeOWw7sAEqAYncfnKysIlK35G7IY8QTU9i4o5BHLxnMd3vnRB0pJSVzC6IYuN7dZ5hZU2C6mb3j7gti2twKzHL3082sF/AA8N2Y8cPdfWMSM4pIHTN9xWZGPTmNemaMG304/Tu2iDpSykranhh3/8LdZ4T3dwALgQPLNOsDvB+2WQR0NjOVchFJirfmreOCRz+leaNMXrr6SBWHCpi7J38hZp2BD4FD3X17zPC7gEbufp2ZDQUmA8PcfbqZLQO2EHRPPezuj5Qz79HAaICcnJxB48aNq1LGvLw8srOzqzRt1NI1e7rmBmWPyv5kf3dFEc8uLKRL83r8bFBDmmXV7M7oVF3vw4cPn15uF767J/UGZAPTgTPijGsGPAHMAp4GpgKHheMODP+2BWYDx1S0rEGDBnlVTZw4scrTRi1ds6drbndlj0pVspeUlPrv31jonW563S8fO9V3FhRXf7AEpOp6B6Z5OZ+pST2KycwygReBZ939pTjFaTswMmxrwDJgaThuTfh3vZm9DAwl2AoREUlIQXEJv3hhDq/MWstFhx/E7accQn39xiFhSVtT4Qf+48BCd/9LOW1amFlW+HAU8KG7bzezJuGObcysCfA9YF6ysopI7bNtVxEjxkzllVlr+cWJB3Pnjw5VcaikZG5BHAVcDMw1s1nhsFuBgwDc/SGgN/CkmTkwH7g8bJcDvBz+YKU+8Jy7v5XErCJSi3yxbRcjxkxl6cY87j23P6cP6BB1pLSUtALh7h8B+9wL5O4fAz3jDF8K9E9SNBGpxRat286IMVPJKyhm7MihHNW9TdSR0pZ+SS0itcbk3I1c+dR0GjfIYPyVR9CnfbOoI6U1FQgRqRVembWGGybMpnPrJoy9bCgHtmgUdaS0pwIhImnN3Xnkw6X8/s1FDOvSikcuHkzzxplRx6oVVCBEJG2VlDq/eW0+T368gh/2a8efz+lPg/oZUceqNVQgRCQt7S4q4afjZvL2/C+54ugu3HJSb+rV06m6q5MKhIiknS35hVz+5FRmrtrKr3/Yh8u+3SXqSLWSCoSIpJVVm3dy6ZgprN66iwcvGMhJfdtFHanWUoEQkbSxfFsJNzz4X4pKnGdHDWNI51ZRR6rVVCBEJC1MXLye30/ZTZumjRg3egjd2zaNOlKtpwIhIinv+akrufXleXTIrseEq4+kbbOGUUeqE1QgRCRluTt/ffdz7nvvc47peQDnH5Sv4lCDdGpDEUlJRSWl3PTiHO5773POGtSBxy8dTKP6Ooy1JmkLQkRSTn5BMVc/O4NJn23gJ9/twXXH9yA8u7PUIBUIEUkp63fs5rKxU1n4xQ5+f0Zfzh96UNSR6iwVCBFJGbkb8rh0zBQ25RXy6CWDOK5XTtSR6jQVCBFJCdNXbObyJ6eRYca40YfTv2OLqCPVeSoQIhK5t+at46fjZtK+RSPGjhxCp9ZNoo4kqECISMSenLyc21+bz2EdW/DYJYNpnd0g6kgSUoEQkUiUljr3vL2Ihyct5YQ+OfztvAE0ytKpulOJCoSI1LiC4hJunDCHV2ev5aLDD+KOUw8lQ6fqTjkqECJSo7btKuKqp6fz8dJN3HRiL676Tlf9xiFFqUCISI1Zu3UXI5+YytKNedx7bn9OH9Ah6kiyDyoQIlIjFq3bzogxU8kvKGbsyKEc1b1N1JGkAioQIpJ0k5ds5Mqnp9O4QQbjrzqC3u2aRR1JEqACISJJ9cqsNdwwYTZd2jRh7MihtG/RKOpIkiAVCBFJCnfn4Q+XcvebixjWpRWPXDKY5o0yo44llaACISLVrqTUueO1+Tz18QpO6d+eP53djwb19RuHdKMCISLVandRCT/550z+s+BLRh/TlZtP7EU9/cYhLalAiEi12ZxfyKgnpzJz1Vb+95Q+jDyqS9SRZD+oQIhItVi5aScjnpjC6q27ePCCgZzUt13UkWQ/qUCIyH6bs3orl42dSlGJ89yoYQzu3CrqSFINVCBEZL9MXLyea56dQcvGWYwbPZTubbOjjiTVRAVCRKrs+akrufXlefT6VlOeGDmEtk0bRh1JqpEKhIhUmrvz13c/5773PueYngfw4IUDyW6gj5PaRq+oiFRKUUkpt740lwnTV3P2oA7cdUZfMjPqRR1LkkAFQkQSll9QzNXPzmDSZxv4yXd7cN3xPXSq7lpMBUJEErJ+x24uGzuVhV/s4O4z+nLe0IOijiRJpgIhIhXK3ZDHpWOmsCmvkMcuGczwXm2jjiQ1IKGOQzNrYmb1wvs9zexUM9vnWbfMrKOZTTSzBWY238x+GqdNSzN72czmmNkUMzs0ZtyJZrbYzJaY2c2VfWJSdQ9NymVy7sa9hk3O3chDk3IjSiRRmrZ8M2f+YzK7i0p4/srDVRzqkET3LH0INDSzA4H/ABcDYyuYphi43t37AIcD15hZnzJtbgVmuXs/4BLgPgAzywAeAE4C+gDnx5lWkqRfh+Zc+9zMr4rE5NyNXPvcTPp1aB5xMqlpb837ggsf+5SWjbN46cdH0a9Di6gjSQ1KtIvJ3H2nmV0OPOjufzCzWfuawN2/AL4I7+8ws4XAgcCCmGZ9gLvDNovMrLOZ5QBdgSXuvhTAzMYBPyozrSTJkd3acP8FA7j6mRkM69qaybkbufWk3nRtk01hcSlZ9XXESl0w9r/LuOP1BRzWsQWPXzqEVk2yoo4kNczcveJGZjOBq4F7gcvdfb6ZzXX3vgktxKwzwVbIoe6+PWb4XUAjd7/OzIYCk4FhQBfgRHcfFba7GBjm7tfGmfdoYDRATk7OoHHjxiUS6Rvy8vLIzk7PX4AmI3teoXP9pJ0UlHxzXKP6kJ1pNM0qc8uEpllG9lePg7+N6hP3SBet82hUlL3UnQmfFfHmsiIGts3gyv4NaJCRGkcq1eb1HpXhw4dPd/fB8cYlugXxM+AW4OWwOHQFJiYyoZllAy8CP4stDqG7gfvCrZG5wEwgzkdS+dz9EeARgMGDB/uxxx5bmcm/8sEHH1DVaaOWjOwXPvoJBSU7OaV/Oz5YvIHLj+rCAc0asDmvkE35hWzZWcjm/OCWGw4rLC6NO6/MDKNl4yxaNfn61rpJFts2FDLokM60bLL3uJaNs1L+uPra+n4pKC7hhglzeHPZWi4+vBO3n3oIGSl0qu7aut5TVUIFwt0nAZMAwp3VG939JxVNF+7IfhF41t1fijPf7cDIsK0By4ClQCOgY0zTDsCaRLLK/vvrO5/x39xNnDWwA386p/9X+yDuv2AAFw7rFHcad2dnYclXRWNzflhIyv7dWcj8tdvZlFfA9t3F/GvJ/Ljza9awPq2zG9CycSatmjSgdZMsWoaFpezfVk2yaJyVoePx99O2XUVc+fQ0Plm6mZtO7MVV3+mqdVrHJVQgzOw54CqCb/dTgWZmdp+7/3Ef0xjwOLDQ3f9STpsWwE53LwRGAR+6+3Yzmwr0MLMuBIXhPOCCxJ+WVNXGvAIe/nApXdo04fdnBj2Ie/ZJzFm9jSO7tYk7nZnRpEF9mjSoT8dWjRNa1rvvT6TfkCPYkl/EpvwCNscpKJvzC1m9ZSdzVm9ly85Cikrid4lm1a8XFI3GWbTO/npLpLyC0qJxVkp9M47a2q27GPHEFJZtzOev5x7GaQMOjDqSpIBEu5j6hB/cFwJvAjcD04FyCwRwFMHRTnNjdmjfChwE4O4PAb2BJ83MgfnA5eG4YjO7FngbyADGuHv8r5pSbdyd216eR0mp8/DFg/bq5jmyW5tyi0NV1a9ntG3aMDzBW9OE8u0oKP66eOQVsjns6ootKJvzC1mxaSdb8gvZUVAcd15m0KJR5l5FI7aLq3X2ngLTgFbZWbRqnEWjrNp5ycxF67YzYsxU8guKGTtyKEd1r97XWdJXogUiM+wuOg24392Lwg/1crn7R8A+v6K5+8dAz3LGvQG8kWA+qQavzFrLW/PXcctJveiZU/EHdk0zM5o1zKRZw0w6tW6S0DQFxSVs3VnEpryweOwsZHNeAZt3FrE53GrZnF/Iso35TF8RbKWUlMZ/azfKzPiqiFCwm1e+nBW3sLRqEhSU5o0yU/5Sm5OXbOTKp6fTpEF9xl91BL3bNYs6kqSQRAvEw8ByYDbwoZl1AsrucJY0tm7bbn79yjwGdWrJqKO7Rh2n2jSon0FOswxymiV2GurSUmf77qK99qV8XVi+vr9ihzN1+WY25xeyszD+cRX1jG/snK/o1qB+zW2lvDJrDTdMmE2XNk0YO3Io7Vs0qrFlS3pIdCf134C/xQxaYWbDkxNJapq7c/NLcygsKeVPZ/ev033z9eoZLRoH+yi6HlB+u9gjUnYXlXyjoJTdQb85v5DP1+cF3WE7Cynv6PImWRlBl1aTBrQKd9C3alL279cFpVnD+gntSH5oUi79OjTnyG5tcHf+8UEu97y1iINaNWLCVUfSvNE+T4wgdVSiO6mbA/8LHBMOmgT8BtiWpFxSg56fuooPFm/gjlMPoUubxLpu5GsNMzNo36JRwt/AS0qdbbv2dHEFf+Md8bV+RwGL1+1gU34hBeUcQly/nn29E75x1lf7S8oeUtyiUSZXPzODv553GE8vLOT9lYvIyqjHnacdquIg5Uq0i2kMMA84J3x8MfAEcEYyQknNWbV5J3e+voAjurbm4sPjH8Iq1Sujnn29LyMB7s6uohI25QVbH3t20O+5H7uDfuHa7WzKL2TbrqK48xrxxFQAGmbW4/FLhnBUD+2QlvIlWiC6ufuZMY/vqOhUG5L6SkudX7wwBzPjD2f1S/kdqnWVmdE4qz6NWyV+CHFxSSlbdhYFRSRm38nrs9fy6bLNjD66q4qDVCjRArHLzL4dHpmEmR0F7EpeLKkJT328nI+XbuKeM/sm/MEj6aF+Rj0OaNqAA5o2gJxg2OTcjXy+Po9Tu2XyzKcrObxb62o/dFlql0QLxFXAU+G+CIAtwKXJiSQ1YemGPO5+axHDDz6AcwZ3rHgCSWuxv4YvXDWP84479KvHKhJSnoROeOPus929P9AP6OfuA4DjkppMkqak1Llhwmwa1M/g7jP76XQKdcCc1dv2Kgaxv44XKU+lrihX5mR7Pwf+Wq1ppEY8+n9LmbFyK/edd1jCvw+Q9HbVd7p9Y1gyfh0vtcv+nDJTXzvT0OJ1O/jLfz7jxEO+xan920cdR0RS2P4UiIovJCEppaiklOsnzKJpw/r89vRD1bUkIvu0zy4mM9tB/EJgBKfkljTywMQlzFuznYcuGkib7AZRxxGRFLfPAuHuqXfGNqmSeWu2cf/7SzjtsPaceGi7qOOISBpI7ct2SbUoKC7h5+Nn0To7iztOPTTqOCKSJip1FJOkp3vf+ZzPvszjiZFDaN5Y590RkcRoC6KWm75iC498mMt5Qzoy/OC2UccRkTSiAlGL7Sos4YYJs2nXvBG//EHvqOOISJpRF1Mtds9bi1i2MZ/nrhhG04bqWhKRytEWRC01OXcjYycvZ8SRnfVrWRGpEhWIWiivoJgbJ8yhS5sm3HRir6jjiEiaUhdTLfS7fy/gi227mHDVETTKqrlrHItI7aItiFrmg8Xr+eeUVVxxTFcGdWoVdRwRSWMqELXItp1F3PTiHHrmZHPd8T2jjiMiaU5dTLXI7a/NZ2NeIY9dMoSGmepaEpH9oy2IWuKteet4eeYarh3enb4dmlc8gYhIBVQgaoHthc4vX57LIe2bce1x3aOOIyK1hLqY0py789T8Anbsdp674jAyM1TzRaR66NMkzb06ey3TvizhuhN6cvC3dHZ2Eak+KhBp7Mvtu/n1K/Pp1rweo4/pGnUcEallVCDSlLtz84tzKCgu4Yp+Dciop8uHikj1UoFIUxOmrWbi4g3cdGIvvtVEL6OIVD99sqSh1Vt28pvXF3B411ZcekTnqOOISC2lApFmSkudX7wwB3fnj2f1p566lkQkSVQg0swzn65gcu4mbvthHzq2ahx1HBGpxVQg0siyjfn8/o1FfKfnAZw3pGPUcUSkllOBSBMlpc4NE2aTmWHcc2Y/zNS1JCLJpV9Sp4nHP1rK9BVbuPfc/nyrecOo44hIHaAtiDTw2Zc7+NPbn/H9Q3I47bADo44jInVE0gqEmXU0s4lmtsDM5pvZT+O0aW5mr5nZ7LDNyJhxJWY2K7y9mqycqa6opJTrx88mu2F9fnd6X3UtiUiNSWYXUzFwvbvPMLOmwHQze8fdF8S0uQZY4O6nmNkBwGIze9bdC4Fd7n5YEvOlhX98kMvcNdt48MKBtMluEHUcEalDkrYF4e5fuPuM8P4OYCFQtn/EgaYWfC3OBjYTFBYB5q3Zxt/e+5wfHdaek/u2izqOiNQx5u7JX4hZZ+BD4FB33x4zvCnwKtALaAqc6+7/DscVA7MICsbd7v6vcuY9GhgNkJOTM2jcuHFVypiXl0d2dnaVpk2GolLnjsm7yCuC3x7ViOys8ruWUi17otI1Nyh7VJS9+g0fPny6uw+OO9Ldk3oj2DKYDpwRZ9xZwL2AAd2BZUCzcNyB4d+uwHKgW0XLGjRokFfVxIkTqzxtMtzz5kLvdNPr/t7CdRW2TbXsiUrX3O7KHhVlr37ANC/nMzWpRzGZWSbwIvCsu78Up8lI4KUw55KwQPQCcPc14d+lwAfAgGRmTSUzVm7hoUm5nDu4I8f1yok6jojUUck8ismAx4GF7v6XcpqtBL4bts8BDgaWmllLM2sQDm8DHAUsKGcetcquwhJuGD+bds0bcdsPe0cdR0TqsGQexXQUcDEw18xmhcNuBQ4CcPeHgDuBsWY2l6Cb6SZ332hmRwIPm1kpQRG72/c++qnW+uPbi1m6MZ9nRw2jacPMqOOISB2WtALh7h8RfOjvq81a4Htxhk8G+iYpWsr6OHcTY/67jEuP6MRR3dtEHUdE6jj9kjpF5BUUc+MLs+ncujE3ndQr6jgiIjoXU6q4642FrNm6iwlXHkHjLL0sIhI9bUGkgEmfbeC5T1cy+uiuDO7cKuo4IiKACkTktu0q4qYX5tCjbTbXndAz6jgiIl9RX0bE7nhtPhvyCnjkkkE0zMyIOo6IyFe0BRGht+ev46UZa7hmeHf6dWgRdRwRkb2oQERkc34hv3x5Ln3aNePa4d2jjiMi8g3qYoqAu3Pbv+aybVcRz4waRlZ91WkRST36ZIrAa3O+4I2567juhJ70+lazqOOIiMSlAlHD1m/fza9fmcdhHVsw+uiuUccRESmXCkQNcndueWkuuwpL+PM5/amfodUvIqlLn1A1aML01by3aD03ndiLbgek3oVDRERiqUDUkDVbd3HnawsY1qUVI47sHHUcEZEKqUDUgNJS56YX5lDizp/O7k+9evs8ya2ISEpQgagBz366go+WbOS2H/ShY6vGUccREUmICkSSrdiUz11vLOKYngdw/tCOUccREUmYCkQSlZQ6N0yYTf0M454z+xJchVVEJD3ol9RJNOajZUxdvoW/nNOfds0bRR1HRKRStAWRJEvW7+CP/1nMCX1yOH3AgVHHERGpNBWIJCguKeXn42fTJCuDu05X15KIpCd1MSXBPz7IZc7qbTx44UAOaNog6jgiIlWiLYhqNn/tNv72/uec0r89J/dtF3UcEZEqU4GoRgXFJVw/fjYtGmfxm1MPiTqOiMh+URdTNfrbe5+zaN0OHr90MC2bZEUdR0Rkv2gLoprMXLmFf3yQy9mDOvDd3jlRxxER2W8qENVgd1EJ10+YzbeaNeRXp/SJOo6ISLVQF1M1+OPbi1m6IZ9nLh9Gs4aZUccREakW2oLYT58u3cSY/y7j4sM78e0ebaKOIyJSbVQg9kN+QTE3vDCbg1o15uaTekUdR0SkWqmLaT/c9cZCVm/Zxfgrj6BJA61KEaldtAVRRR9+toFnP13JqG93YUjnVlHHERGpdioQVbBtVxE3vTiH7m2zuf57B0cdR0QkKdQvUgW/eW0B63cU8NJFg2iYmRF1HBGRpNAWRCW9s+BLXpyxmquP7Ub/ji2ijiMikjQqEJWwOb+QW16aS+92zfif43pEHUdEJKnUxVQJv3plHtt2FfL05UPJqq/aKiK1mz7lEvTa7LX8e84X/Oz4nvRu1yzqOCIiSacCkYD1O3bzq1fm0b9jC648pmvUcUREakTSCoSZdTSziWa2wMzmm9lP47RpbmavmdnssM3ImHGXmtnn4e3SZOWsiLtz60tz2VVYwp/P7k/9DNVUEakbkrkPohi43t1nmFlTYLqZvePuC2LaXAMscPdTzOwAYLGZPQtkA/8LDAY8nPZVd9+SxLxxvThjDe8uXM9tP+hN97bZNb14EZHIJO3rsLt/4e4zwvs7gIXAgWWbAU3NzAiKwmaCwvJ94B133xwWhXeAE5OVtTxrt+7ijlfnM7RLKy47qktNL15EJFI1chSTmXUGBgCflhl1P/AqsBZoCpzr7qVmdiCwKqbdar5ZXJLK3bnpxTmUuPOns/pTr57V5OJFRCJn7p7cBZhlA5OA37n7S2XGnQUcBfwc6EawpdAfGA00dPffhu1+Bexy9z/Fmf/osD05OTmDxo0bV6WceXl5ZGd/3YX0/soinlpQyCV9sjjuoNS+xkPZ7OkiXXODskdF2avf8OHDp7v74Lgj3T1pNyATeBv4eTnj/w0cHfP4fWAocD7wcMzwh4HzK1reoEGDvKomTpz41f3lG/O896/e9Ise+8RLS0urPM+aEps9naRrbndlj4qyVz9gmpfzmZrMo5gMeBxY6O5/KafZSuC7Yfsc4GBgaVhUvmdmLc2sJfC9cFjSlZY6N06YQ4YZ95zZj+BpiIjUPcncB3EUcDEw18xmhcNuBQ4CcPeHgDuBsWY2FzDgJnffCGBmdwJTw+l+4+6bk5j1K2P+u4wpyzfzp7P7075Fo5pYpIhISkpagXD3jwg+9PfVZi3B1kG8cWOAMUmIVq4l63fwh7cXc3zvHM4cWKP7xEVEUo5+9RUqKXWuHz+bxlkZ3HXGoepaEpE6r04XiIcm5TI5dyMAbywrYvbqbVxyRCdemrEm4mQiItGr0wWiX4fmXPvcTP756Ur+taSIw7u24plPVtKvQ/Ooo4mIRK5On+77yG5t+Ou5hzFy7FQyDBat28GDFw7kyG5too4mIhK5Or0FATCoU0t6tM2msBQuObyTioOISKjOF4jZq7eyfkcBp3bL5JlPV361T0JEpK6r0wVicu5Grn1uJvdfMIAzemRx/wUDuPa5mSoSIiLU8QIxZ/U27r9gwFfdSkd2a8P9FwxgzuptEScTEYlend5JfdV3un1j2JHd2mg/hIgIdXwLQkREyqcCISIicalAiIhIXCoQIiISlwqEiIjElfRLjtYkM9sArKji5G2AdP0BRLpmT9fcoOxRUfbq18ndD4g3olYViP1hZtO8vOuyprh0zZ6uuUHZo6LsNUtdTCIiEpcKhIiIxKUC8bVHog6wH9I1e7rmBmWPirLXIO2DEBGRuLQFISIicalAiIhIXHWqQJjZiWa22MyWmNnNccYfY2YzzKzYzM6KImN5Esj+czNbYGZzzOw9M+sURc54Esh+lZnNNbNZZvaRmfWJImc8FWWPaXemmbmZpcxhjAms9xFmtiFc77PMbFQUOeNJZL2b2Tnhe36+mT1X0xnjSWCd3xuzvj8zs60RxEycu9eJG5AB5AJdgSxgNtCnTJvOQD/gKeCsqDNXMvtwoHF4/8fA81HnrkT2ZjH3TwXeijp3otnDdk2BD4FPgMFR567Eeh8B3B911ipm7wHMBFqGj9umQ+4y7f8HGBN17n3d6tIWxFBgibsvdfdCYBzwo9gG7r7c3ecApVEE3IdEsk90953hw0+ADjWcsTyJZN8e87AJkCpHTlSYPXQncA+wuybDVSDR7KkokexXAA+4+xYAd19fwxnjqew6Px/4Z40kq6K6VCAOBFbFPF4dDksHlc1+OfBmUhMlLqHsZnaNmeUCfwB+UkPZKlJhdjMbCHR093/XZLAEJPqeOTPslnzBzDrWTLQKJZK9J9DTzP5rZp+Y2Yk1lq58Cf+fhl3AXYD3ayBXldWlAlEnmNlFwGDgj1FnqQx3f8DduwE3AbdFnScRZlYP+AtwfdRZqug1oLO79wPeAZ6MOE9l1CfoZjqW4Jv4o2bWIspAlXQe8IK7l0QdZF/qUoFYA8R+Q+oQDksHCWU3s+OBXwKnuntBDWWrSGXX+zjgtGQGqoSKsjcFDgU+MLPlwOHAqymyo7rC9e7um2LeJ48Bg2ooW0USec+sBl519yJ3XwZ8RlAwolSZ9/p5pHj3ElCndlLXB5YSbNbt2YF0SDltx5JaO6krzA4MINhB1iPqvFXI3iPm/inAtKhzV/Y9E7b/gNTZSZ3Iem8Xc/904JOoc1ci+4nAk+H9NgRdO61TPXfYrhewnPCHyql8izxADb+AJxN808gFfhkO+w3BN26AIQTfTPKBTcD8qDNXIvu7wJfArPD2atSZK5H9PmB+mHvivj6EUy17mbYpUyASXO+/D9f77HC994o6cyWyG0H33gJgLnBe1JkTfb8AtwN3R501kZtOtSEiInHVpX0QIiJSCSoQIiISlwqEiIjEpQIhIiJxqUCIiEhcKhAi+2BmOWb2nJktNbPpZvaxmZ0edS6RmqACIVIOMzPgX8CH7t7V3QcR/AI2VU6EKJJUKhAi5TsOKHT3h/YMcPcV7v53M+tsZv8XXj9khpkdCWBmx5rZJDN7JdzquNvMLjSzKeE1L7qF7caa2T/CE80tDacbY2YLzWzsnuWFbaaF1zy4o6ZXgNRt9aMOIJLCDgFmlDNuPXCCu+82sx4E59XZcw6m/kBvYDPBqRcec/ehZvZTgmsA/Cxs1xI4guAaGK8CRwGjgKlmdpi7zyL4Ne5mM8sA3jOzfh6ckl4k6bQFIZIgM3vAzGab2VQgk+AMonOBCUDsVfCmuvsXHpwILxf4Tzh8LsFFqfZ4zYNTGcwFvnT3ue5eSnD6iz3tzjGzGQQXxzmkzHJEkkpbECLlmw+cueeBu19jZm2AacB1BOe+6k/wRSv2YkGxZ9ItjXlcyt7/cwVx2nzVzsy6ADcAQ9x9S9j11HA/n5NIwrQFIVK+94GGZvbjmGGNw7/NgS/Cb/wXE1xusro1Izhx5DYzywFOSsIyRMqlLQiRcri7m9lpwL1m9gtgA8EH9k0E+yZeNLNLgLfC4dW9/NlmNhNYRHA66/9W9zJE9kVncxURkbjUxSQiInGpQIiISFwqECIiEpcKhIiIxKUCISIicalAiIhIXCoQIiIS1/8DHNUsD59VYc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(step_down_results[:, 2], step_down_results[:, 5], 'x-', label=\"Final Validation Loss\")\n", + "\n", + "# plt.ylim(0)\n", + "\n", + "plt.title('Final Validation Loss for Fixed Learning Rates')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Gamma')\n", + "\n", + "# plt.legend()\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "080c7fcb", + "metadata": {}, + "source": [ + "# Exponential Decay\n", + "80/10/10 Split, 100 epochs\n", + "\n", + "## Index\n", + "0. learning rate\n", + "1. decay rate\n", + "2. top-1 accuracy\n", + "3. top-5 accuracy\n", + "4. last val loss\n", + "5. last val accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ab27ce49", + "metadata": {}, + "outputs": [], + "source": [ + "exp_results = np.array([\n", + " [1e-2, 0.70, 2.35, 8.09, 4.97, 2.75],\n", + " [1e-2, 0.80, 5.0, 15.57, 4.61, 7.23],\n", + " [1e-2, 0.90, 25.88, 52.5, 3.28, 29.17],\n", + " [1e-2, 0.925, 37.43, 63.37, 3.13, 40.81],\n", + " [1e-2, 0.95, 44.1, 71.22, 2.99, 48.84],\n", + " [1e-2, 0.98, 44.41, 71.83, 3.04, 47.61],\n", + " [1e-2, 0.99, 42.43, 69.55, 3.25, 45.47],\n", + " \n", + " [1e-1, 0.85, 12.91, 34.96, 3.85, 14.89],\n", + " [1e-1, 0.9, 0.8, 2.29, 5.29, 0.55]\n", + "])\n", + "two_results = 7" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "684e1744", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABh8UlEQVR4nO2dd3gU1deA35NGEgKhJoQiobeQhI6A0sWKWKhKsxfsWNGfqIiiqNj5LFSBAGJBFAtIQEEChN5rqAFCSEJC+uZ+f8xk2YSUDWSzKfd9nnl25paZc2Zm75nbzhWlFBqNRqPRALg4WwCNRqPRlB60UdBoNBqNFW0UNBqNRmNFGwWNRqPRWNFGQaPRaDRWtFHQaDQajRVtFByMiASKiBIRNzvSjhGRf0tCrtKMGMwUkTgR2eBsecoCInKdiOyzM22pf89E5BUR+cbZclREtFGwQUSiRCRdRGrlCt9iFuyBThLNVhYfEUkSkeXOlsWB9AD6A/WVUp2v9mQ2hjkp1zb06kV1DqY+TbOPlVL/KKVaFMN57f6IcSRKqclKqQcccW5Tv4vmO3BSRD4UEVc7804Uke8cIVdpQRuFyzkCDM8+EJG2gLfzxLmMu4A0oL+I1CnJC5dgQdEQiFJKXSxqxkJkrKaU8rHZFl65iJorxdkGxyREKeUD9ASGAvc5WZ5SgzYKlzMXGGVzPBqYY5tARHxFZI6IxIjIURF5VURczDhXEZkqIudE5DBwSx55vxWRaPMrZZK9Xyk28kwHtgP35jp3DxFZJyLxInJcRMaY4V4i8oEpa4KI/GuG9RKRE7nOESUi/cz9iSLyvYh8JyIXgDEi0llE/jOvES0in4mIh03+NiLyl4icF5EzZjNAHRFJFpGaNunam/fPPdf17we+Aa41v+TeMMMfFJGD5nmXikhdmzxKRB4XkQPAgSLcS0TEQ0S2isgT5rGriKwVkf/lugcLRSRRRDaLSIhN/lYiEm7ej10iMtAmbpaIfC4iv5p5I0SkiU18S5t7tU9EhtiTV0TWmMm2Zdd4cj9LEXlJRA6ZeXeLyB1FuS/53Kt8310RaSIif4tIrPnuzxORajZ5o0TkRRHZDlwUkabmcxstIsfMPBNs0lu/yOVS7SW/tF4iMluM5sY9IvJC7vc6P5RSB4G1QKjN+T4W4/9zQUQiReQ6M/xG4BVgqHnft9lxX5qKyGox/nfnRKT0f4gopfRmbkAU0A/YB7QCXIETGF+uCgg0080BfgaqAIHAfuB+M+4RYC/QAKgBrDLzupnxPwL/B1QG/IANwMNm3Bjg3wLkawhkAa2B54DtueISMWo57kBNINSM+xwIB+qZOnUDKgG9gBN53QNzfyKQAQzC+IDwAjoAXQE3U/c9wNNm+ipAtCmbp3ncxYz7DXjU5jofAZ/mo2eO+wD0Ac4B7U25PwXW2MQr4C/zfnvlcb5A22eQR3wQEGc+8wnAesA11z2427yv4zFqk+7mdhCjoPAw5UwEWph5ZwGxQGfzfs0Dwsy4ysBxYKwZ187UsXVheW10bmpznONZAoOBuuZzGwpcBAIKe88KulcU/O42xWjyqwTUBtYA03K9V1sx/hdeNtf52jwOwagBt7K579/lkim/tO8Cq4HqQH2MD6YTeemX+94BLTHe2Wds4u/F+P+4YbzLpwHP3HLZeV8WYLxTLhj/iR7OLucKLQedLUBp2rhkFF4F3gFuxChs3MwXKRCjUE3P/vOa+R4Gws39v4FHbOJuyP6TAf7my+xlEz8cWGXu5/tnNeNfBbaa+/UAC9DOPH4Z+DGPPC5ACkZ1OXdcr9x/Hi43Cmvyk8dM83T2dU1dtuSTbiiw1tx3Nf9onfNJm+M+AN8C79kc+2AU1IHmsQL6FCBjoJkmPtfWyibNcxgfA3FAM5vwicD6XPczGrjO3E4DLjbxC4CJ5v4s4BubuJuBvTb3459ccv4f8HpheW10ztco5HEPtgK3F/aekY9RoJB3N4/zDLJ9F8z36r48rlPfJmwDMMzmvuc2CvmlPQwMsIl7oJB7oYALGIZSmc+sUgHp4zD/P+QyCoXdF4wPyK9sZS/tW2lo2yuNzMX40mlErqYjoBbGF+JRm7CjGIU0GF9nx3PFZdPQzBstItlhLrnSF8QojK8llFInRWQ1RnPSFowvsEN55KmF8YWSV5w95JBNRJoDHwIdMfpa3IBIMzo/GcCoWU0XkUZACyBBKWXvyKK6wObsA6VUkojEYtzzqLzkzIdaSqnMfOJmA28DS5RSuZugrOdWSmWZTRPZzVfHlVJZNmlt3wUwjEY2yRgGDYx3oYuIxNvEu2G8e4XlLRQRGQU8i1GgYuatlW+Gwinw3RURf+BjDENZxYyLy3WOvJ5RUXTML23u/5w970J7jHd1MEZNozJG4Y6IjAfuN8+rgKrkf+8K+0+/ALwFbBCROOADpdQMO+RzGrpPIQ+UUkcxmghuBn7IFX0O4yu1oU3YNcBJcz8ao3C0jcvmOMaLV0spVc3cqiql2hQmk4h0A5oBL4vIaRE5DXQBRojRcXccaJJH1nNAaj5xF7HpRDfbQWvnSqNyHX+J0TzWTClVFaPpJPvfcBxonJf8SqlUYBFG1XwkOQu/wjiFzf0WkcoY1fuTNmlyy1lUvgCWAQNEpEeuOOvzFKPvqL4p0ymggRmWje27UBDHgdU270E1ZXR+P3pVWhgyNsT4eBgH1FRKVQN2cuk5XQmFvbuTMZ5BW/O9uDeP613tM8qPaIxnkk2D/BLaogwWAf8B2X1I12EU5EOA6ua9S+CSLrl1KPC+KKVOK6UeVErVxWhR+EJsRo2VRrRRyJ/7MZokcoyAUUpZMAq3t0WkivkHfBbIHqa2CHhSROqLSHXgJZu80cCfwAciUlVEXMwOup52yDMaoymrNUanWChGW7gXcBNGm3M/ERkiIm4iUlNEQs2v2BnAhyJSV4yO1GtFpBJGX4iniNwiRofvqxhtwgVRBaPqnSQiLQHbQmwZECAiT4tIJfP+dLGJn4PRdDGQohmFBcBYEQk15Z4MRCiloopwjnwRkZEYfSVjgCeB2SJi+8XaQUTuNI3v0xiFwHogAuOL9QURcReRXsBtQJgdl10GNBeRkWZedxHpJCKt7BT7DPkYYIyvXgXEmPqNxXhXikIlEfHM3szrFfTuVgGSgAQRqQc8X8TrXQ2LMD6WqpvXHlfE/O8CD4oxmq8KkIlx79zEGHBQ1SbtGSAw+0OgsP+0iAwWkWyDFYfxXGxrlqUObRTyQSl1SCm1KZ/oJzC+sg8D/wLzMQpeML7Q/gC2YTR55K5pjMLolNyN8ZJ8DwQUJIv5pxyC0TF72mY7glG4jlZKHcOo2TwHnMdoQw4xTzEe2AFsNOOmYLSDJwCPYYz2OWnqVNiojfHACIwO1a8B62gKpVQiRmfjbRhV/QNAb5v4tRh/iM1mbcwulFIrgNeAJRhfhU2AYfbmtyFecs5TeFZErgGmAaOUUklKqfnAJoyO8Gx+xugDiMOo5dyplMpQSqWbut6EUSP7wjzPXjt0SsTobxqGUeM4jfFcCjPK2UzEMF7xYjNqyTz3buADjC/gM0BbjBE2RSEJoy8qe+tDwe/uGxhNMgnAr1z+3juSNzHe2yPAClOuNHszK6V2YDQXP4/x3/0d44PpKEYt27Y5arH5Gysi2U2aBd2XTkCEiCQBS4GnlFKHi6hfiSJmZ4hGUyKIyN/AfKVUmZitKiITMTp07y0sraZ0ICKPYnRC21MD1+RC1xQ0JYaIdML4miz9Y7U1ZQYRCRCR7mbTTQuM2vKPzparrKJHH2lKBBGZjTFM8Smz6USjKS48MIbzNsIYahyG0ZSnuQJ085FGo9ForOjmI41Go9FYKRPNR7Vq1VKBgYFXlPfixYtUrly5eAVyMuVNJ61P6ae86VTe9IG8dYqMjDynlMo996hAyoRRCAwMZNOm/EaHFkx4eDi9evUqXoGcTHnTSetT+ilvOpU3fSBvnUTE7qHf2ejmI41Go9FY0UZBo9FoNFa0UdBoNBqNlTLRp5AXGRkZnDhxgtTU1ALT+fr6smfPnhKSqmQobzpdiT6enp7Ur18fd3f3whNrNBq7KbNG4cSJE1SpUoXAwEBsXNZeRmJiIlWqVClByRxPedOpqPoopYiNjeXEiRM0atTIgZJpNBWPMtt8lJqaSs2aNQs0CJryiYhQs2bNQmuJGk2p4t9pcGRNzrAja4zwUkSZNQqANggVGP3sNWWOeu1h8ZhLhuHIGuO4XntnSnUZZbb5SKPRaIrEv9OMArjR9ZfCjqyBk5uhx9PFf70sC6QlXtpcPeDaJ2DBcAgdDjt/gMGzcspTCtBG4QqJjY2lb9++AJw+fRpXV1dq1zYmDm7YsAEPD48in3PChAnMmTOHuLg4kpKSCkw7aNAgTp8+zfr164suvEZTEcn+Uh88yzjO/lLPPs4mKwvSk8zC/MKl39QLNoV8fuE2cekF/Ic3fA3XdIP6nR2j61VQIYzC9NWHCK7vS7cml5ZZXXfoHNtPJPBIz7xWqSycmjVrsnXrVgAmTpyIj48P48ePvyo5b7vtNsaNG0ezZs0KTBcfH09kZCQ+Pj4cPnyYxo3zW4Dr6sjMzMTNrUK8IpqKQKPrDQOwaBTtXWvAP8fBvw2sfMumkDc3e1YO9agClczNs6qx+daDSlXNzQzPTlOpKsQehlVvQdW6cGwdfNoO7vgKGl3naO3tpkL844Pr+zJu/hY+G9GObk1qse7QOetxcbJy5UrGjx9PZmYmnTp14ssvv6RSpUoEBgYyZMgQli9fjpeXF/Pnz6dp08uXae3atatd1/nll1+47bbb8Pf3JywsjFdeeQWAgwcP8sgjjxATE4OrqyuLFy+mSZMmTJkyhe+++w4XFxduuukm3n33XXr16sXUqVPp2LEj586do2PHjkRFRTFr1ix++OEHkpKSsFgs/Prrr9x+++3ExcWRkZHBpEmTuP322wGYM2cOU6dORUQIDg7miy++IDg4mP379+Pu7s6FCxcICQmxHms0TsfNCzJSqZpyCLxqgLiAhzdU8YdKvjkLeWthnke4hw+4uBbt2kfWwOp3YOh3hoH69yNY+SbMvhVC74Ub3gLvGo7Ruwg4zCiYi13YLqbSGGNx7DlmeCAQBQxRSsVdzbXe+GUXu09dyDPOYrHg6uqKX5VKjPp2A/5VK3HmQhpN/Xz4eMUBPl5xIM98retW5fXb2uQZlxepqamMGTOGlStX0rx5c0aNGsWXX37J008/DRhj8Xfs2MGcOXN4+umnWbZsWZH1zOb777/njTfewN/fn7vuustqFO655x5eeukl7rjjDlJTU8nKymL58uX8/PPPRERE4O3tzfnz5ws9/+bNm9m+fTs1atQgMzOTH3/8kapVq3Lu3Dm6du3KwIED2b17N5MmTWLdunXUqlWL8+fPU6VKFXr16sWvv/7KoEGDCAsL484779QGQVM62P0zfH8/KAsn6t5E/fgN0G9iybXpn9ycsw+hxzPgFwTrpsH2MNi/HAZMhuCh4MSBFA4bfaSU2qeUClVKhWIsip6MsRrSS8BKpVQzYCU2C9s7El8vd/yrVuJkfCr+VSvh61W8BZXFYqFRo0Y0b94cgNGjR7NmzaXhZ8OHD7f+/vfff1d8nTNnznDo0CF69OhB8+bNcXd3Z+fOnSQmJnLy5EnuuOMOwJjc5e3tzYoVKxg7dize3t4A1KhR+JdI//79remUUrzyyisEBwfTr18/Tp48yZkzZ/j7778ZPHgwtWrVynHeBx54gJkzZwIwc+ZMxo4de8W6ajTFglKw9hNYNApQMGQOB5s/YhTQtqOBHE2Ppy83QM37w5hf4eE1UKMJ/PgwfNIOtoXlTFeCQ1dLqvmoL3BIKXVURG4Hepnhs4Fw4MWrOXlBX/TZE6Oym4ye7NOU7yKO8VS/Zjn6GByN7RBKEcFisdChQwcABg4cyJtvvmnXeRYtWkR8fLx10taFCxdYsGABL71UNNvq5uZGVlYWwGXj/W3d786bN4+YmBgiIyNxd3cnMDCwwPkB3bt3JyoqivDwcCwWC0FBQUWSS6MpViyZsPx52DQD/NpA/zegWX84E36pj+HkZuePAPJvA/f9AZEz4M/XDOMQ9Q/c8hEcX593h7iDKCmjMAxYYO77K6Wizf3TgH9eGUTkIeAhAH9/f8LDw3PE+/r6kphY+KqOFouFlTuOM/7HPUy9oxWdA6sREuDN4/M2W4+vlrS0NNzc3Dhy5Ahbt26lSZMmzJgxgy5dupCYmIhSijlz5vDss88SFhZGp06dSE5O5p9//rGeI7cu+en23XffsXjxYq699loAoqKiGDhwIC+99BIBAQEsWLCAW2+9lbS0NCwWC927d2fKlCkMHDjQ2nxUo0YN6tWrx9q1a2nVqhXfffcdSikSExNJTU0lPT3dev0zZ85QrVo1UlNT+fPPPzl69ChJSUl06dKFESNG8OCDD1KzZk3reQGGDh3K8OHDeeGFF+x+Rvaky01qaupl70VpICkpqVTKdTWURZ1cM5NpvXsqNc9HcqzBnRxuPBJOusDJ8Fz6hEKp0a0pHh0/p9XuqVTf8h3pO5YiZLGrzYvEH82Co+H55iy2Z6SUcuiGsX7qOQxjABCfKz6usHN06NBB5Wb37t2XheXFhQsX1JfhB9XagzE5wtcejFFfhh+06xyF8frrr6v3339frVixQoWGhqqgoCA1duxYlZqaqpRSqmHDhuqFF15Qbdu2VR07dlQHDhzI8zzPP/+8qlevnhIRVa9ePfX666/niD9y5IiqW7euSkhIyBHerl07tX79erV//37Vu3dv1bZtW9W+fXt16NAhpZRS77zzjmrVqpUKCQlRL7/8slJKqT179qi2bduq0NBQNWHCBNWwYUOllFIzZ85Ujz/+uPXcMTExqmvXriooKEiNGTNGtWzZUh05ckQppdSsWbNUmzZtVHBwsBo9erQ1T3R0tPL09FRxcXF23b8LFy7YlS439r4DJc2qVaucLUKxU+Z0Sjip1BfdlZpYXamNMy6LLhP6LB6r1OtVlfrjVbuS56UTsEkVtcwuaoYiXwBuB/60Od4HBJj7AcC+ws5xtUbB2TRs2FDFxMQUntBOSoNOBbF48WJ177332p1eG4XST5nSKXq7UlNbKvV2PaUO/JVnklKvz+HVSk1ppNTKt4zfw6sLzVJcRqEkmo+Gc6npCGApMBp41/z9uQRk0JQQTzzxBMuXL+e3335ztiiaisiBv4z2d09fuO93qFMG+7RsJ9U1ut7YbI8djEONgohUBvoDD9sEvwssEpH7gaPAEEfKUBqIiopytgglxqeffupsETQVlY3fwm/PG522IxYaE8TKIrmHrpZwh7hDjYJS6iJQM1dYLMZoJI1Go7l6srJgxf9g3afQbADcPQMq+ThbqisnLz9M2TWGEqBCzGjWaDTllIwU+OEh2LMUOj0AN04BV12sXQ367mk0mrJJUgwsGAYnI+GGt+Hax506E7i8oI2CRqMpe8Tsh3l3Q9JZGDoXWt3mbInKDdooXCGOcJ3dq1cvoqOj8fLyAuDPP//Ez88vz7TadbamwhL1L4SNMNYnGPMr1O/gbInKFRXDKDhgcQ1HuM4Gw61Ex44dC0yjXWdrKizbwuDncVCjMdyzCKoHOluickeZXo7TbkpoGbyVK1fSrl072rZty3333UdaWhoAgYGBvPDCC7Rt25bOnTtz8ODBq7pOtuvsYcOGERZ2yXHWwYMH6devHyEhIbRv355Dhw4BMGXKFNq2bUtISIjVR1KvXr3YtGkTAOfOnSMwMBCAWbNmMXDgQPr06UPfvn1JSkqib9++tG/fnrZt2/Lzz5emlcyZM4fg4GBCQkIYOXIkiYmJNGrUiIyMDMDwy2R7rNFcMUpB+LuGT6BrusL9f2iD4CDKx2fg8pfg9I48o7wsmcZohCoBMPcO4zcxGmq3hPApxpYXddrCTe/aLUJxuc4eO3Ysrq6u3HXXXbz66qt5rkWsXWdrKhSZ6fDLk7BtAYQMh9s+AbeiN89q7KNi1BQAPKsZBiHhuPHrWa1YT18crrPnzZvHjh07+Oeff/jnn3+YO3fuZWm062xNhSIlDr670zAIvV6BQV9qg+BgykdNoYAv+hTTdba1yej6F2DTt9DrxRJ1l2uP6+x69eoBUKVKFUaMGMGGDRsYNWpUjvNo19maCkNcFMwbDOePGEtWhgx1tkQVgopRU7D1JdJngkMW13B1dSUqKsraXzB37lx69uxpjV+4cKH199prr8XV1ZWtW7eydetW3nzzTTIzMzl37hwAGRkZLFu2LM8CdcGCBSxZsoSoqCiioqKIjIwkLCyMKlWqUL9+fX766SfAcOednJxM//79mTlzJsnJyQDW5qPAwEAiIyMBozkqPxISEvDz88Pd3Z1Vq1Zx9OhRAPr06cPixYuJjY3NcV6AUaNGMWLECF1L0Fw5JzbB132NIaejftIGoQSpGEahIF8ixYSnpyczZ85k8ODBtG3bFhcXFx555BFrfFxcHMHBwXz88cd89NFHl+VPS0tjwIABBAcHExoaSr169XjwwQdzpImKiuLo0aN07tzZGtaoUSN8fX2JiIhg7ty5fPLJJwQHB9OtWzdOnz7NjTfeyMCBA+nYsSOhoaFMnToVgPHjx/Pll1/Srl07qzHKi3vuuYdNmzbRtm1b5syZQ8uWLQFo06YNEyZMoGfPnoSEhPDss8/myBMXF2dtMtNoCuTfaTk/0Hb/DDNuBGWB+/+CwB5OE61CUlS3qs7YtOvsnJQGnQpCu85e5WwRih2H6pTtJvpQuFJrPzHWEHijhlK7lzrskhXlGVFKXWdrKhDadbamyGTX3OcPMXwZuXrAsPnGspmaEkcbhRJAu87WaArhwinDIAB0e0obBCdSMfoUNBpN6eVYBPz8OLi4w3XPGYvXF+MgEE3R0EZBo9E4j/hjhmM7lQWDZ0Pf/zlkdKDGfrRR0Gg0ziEtEeYPM2Ys3/4FtLrFCHfA6ECN/eg+BY1GU/JkWWDJAxCzF+79Hpr0yRlfgiuNaXKiawpXgaurK6GhodYtKiqKbt26XfH5xowZc9lEstmzZ1823j82NpbatWtbHe7lZtasWYwbN86ua06bNg1PT08SEhKuTGiN5kpYMRH2/w43TbncIGicikONgohUE5HvRWSviOwRkWtFpIaI/CUiB8zf6o6UAWDGzhlsiN6QI2xD9AZm7JxxVef18vKyzkreunUrgYGBrFu37qrOmZs77riDv/76yzojGeCnn37itttuo1KlSld9/gULFtCpUyd++OGHqz5XfiilrC41NBq2fAfrPoFOD0LnBwtPrylRHF1T+Bj4XSnVEggB9gAvASuVUs2AleaxQwmqGcT41eOthmFD9AbGrx5PUM3i98vj42MsGB4eHk6vXr24++67admyJffccw/GXBJ488036dSpE0FBQTz00EPW8LyoWrUqPXv25JdffrGGLVmyhOHDh/PLL7/QpUsX2rVrR79+/Thz5kyRZD106BBJSUlMmjSJBQsWWMOTkpIYO3Ysbdu2JTg4mCVLlgDw+++/0759e0JCQqwLDE2cONE6SxogKCjI6oKjRYsWjBo1iqCgII4fP86jjz5Kx44dadOmDa+//ro1T2RkJN26dSMkJITOnTuTmJjI9ddfb12vAqBHjx5s27atSPppSiFH18EvT0PjXnCj/V6INSWHw/oURMQXuB4YA6CUSgfSReR2oJeZbDYQDrx4NdeasmEKe8/vzTPOYrEYq6J51+bhvx6mtndtYpJjaFytMV9u+5Ivt32ZZ76WNVryYueCxUpJSSE0NBQw3E38+OOPOeK3bNnCrl27qFu3Lt27d2ft2rX06NGDcePG8b///Q+AkSNHsmzZMm67Lf/lBIcPH868efMYOnQop06d4uDBg/Tp04cLFy6wfv16RIRvvvmG9957jw8++KBAmW0JCwtj2LBhXHfddezbt48zZ87g7+/PW2+9ZXX1DYaLjpiYGB588EHWrFlDo0aN7HLBfeDAAWbPnk3Xrl0BePvtt6lRowYWi4W+ffuyfft2WrZsydixY1m0aBGdOnXiwoULeHl5cf/99zNr1iymTZvG/v37SU1NJSQkxG7dNKWQ80cg7B5jHYTBswyX9ppShyNrCo2AGGCmiGwRkW9EpDLgr5SKNtOcBvwdKIOVqh5Vqe1dm+iL0dT2rk1Vj6pXfU7b5qPcBgGgc+fO1K9fHxcXF2ufA8CqVavo0qULbdu25e+//2bXrl0FXueWW25h7dq1XLhwgUWLFjFw4EBcXV05ceIEAwYMoG3btrz//vuFnic3CxYsYNiwYbi4uHDXXXexePFiAFasWMHjjz9uTVe9enXWr1/P9ddfb/XOao8L7oYNG1oNAhgeXtu3b0+7du3YtWsXu3fvZt++ffj7+9OpUyfAqBm5ubkxePBgli1bRkZGBjNmzGDMmDFF0k1Tyki9AAuGGUNPRywEL4e3GmuuEEeaajegPfCEUipCRD4mV1ORUkqJSJ5tJyLyEPAQgL+/P+Hh4TnifX19SUxMBOCxVo/lK0R2TSEyJpLXIl5jbMux/Hj4R0Y3H02H2gWv7Zp9/qKmSUxMJDk5GVdXV2u8xWIhKSmJmJgYHn30UVavXk39+vWZPHkyCQkJJCYmkpGRQUpKSp7n7Nu3L/Pnz2fevHlMmjSJxMREHnvsMcaNG8fNN9/MP//8wzvvvENiYiKpqamkp6cXKP+uXbs4cOAA/fr1AyA9PZ2GDRsyevRosrKySEpKypE/JSWFjIyMy85psVhyyJycnExSUhJgGM3s8KioKN577z3Cw8OpXr06jzzyCPHx8Vy8eBGlVJ6y9urVi7CwMBYuXMjq1asvS5OamnrZe1EaSEpKKpVyXQ1XpZOy0HbH21SPO8D24InE7zgOHC9O8YqMfkYFUFRnSfZuQB0gyub4OuBXYB8QYIYFAPsKO9fVOsSLOBWhrltwnYo4FaGUUpcdXymVK1fON2zVqlXqlltusYY//vjjaubMmSouLk75+fmp5ORklZiYqNq0aaNef/11pZRSo0ePVosXL87zWr/99psKDg5WgYGBKiEhQSmlVGhoqNq0aZNSSqkxY8aonj17KqWUmjlzpnr88ccLlP3ll19WkydPzhEWGBiooqKi1Isvvqieeuopa/j58+fV2bNnVf369dXhw4eVUkrFxsYqpZSaO3euGjp0qFJKqcjISOXi4qKOHDmijhw5otq0aWM9x9atW1VwcLCyWCzq9OnTys/PT82cOVOlpaWpwMBAtWHDBqWU8bwyMjKUUkpt2rRJBQQEqCFDhuSpg3aIV3JclU7LXzac3G38ttjkuVoqyjPiChziOaz5SCl1GjguIi3MoL7AbmApMNoMGw38nEf2YmVn7E6m9pxK5wDD5XTngM5M7TmVnbE7HX3py6hWrRoPPvggQUFBDBgwwNpsUhj9+/fn1KlTDB061Lpgz8SJExk8eDAdOnSwroCWm6VLl1r7L2wJCwuzrtKWzR133EFYWBivvvoqcXFxBAUFERISwqpVq6hduzZfffUVd955JyEhIQwdavi3v+uuuzh//jxt2rThs88+s648l5uQkBDatWtHy5YtGTFiBN27dwfAw8ODmTNn8sQTTxASEkL//v2ti/h06NCBqlWr6nUZyjKRs2D959DlUeh4n7Ol0dhDUa1IUTYgFNgEbAd+AqoDNTFGHR0AVgA1CjtPWXedXdyUN53y0+fkyZOqWbNmymKx5BmvawolxxXpdHiN4QJ77p1KZWYUu0xXQ0V5RpQ219lKqa1Axzyi+jryupqyz5w5c5gwYQIffvghLi56jmWZI/YQLBoJNZrA3TP0SKMyhH5SmlLJqFGjLlufWlNGSIk3RhohMCIMPH2dLZGmCJRpo6CUsravayoWqoAJfxonYsmE78cacxJG/Qw1GjtbIk0RKbP1ck9PT2JjY3XhUAFRShEbG4unp6ezRdHk5o9X4NDfcOuHENjd2dJoroAyW1OoX78+J06cICYmpsB0qamp5a7wKG86XYk+np6e1K9f30ESaa6Ijd/Ahv+Da8dBe930V1Yps0bB3d3dOru2IMLDw2nXrl0JSFRylDedyps+FZJDq+C3F6DZAOj/prOl0VwFZbb5SKPRlBLOHYTFo6F2C7jrG3BxdbZEmqtAGwWNRnPlpMTB/CHG+srDw8Dz6n2KaZxLmW0+0mg0TsaSAYtGQ8JxGLUUqjd0tkSaYkAbBY1GU3SUguUvwJHVMOhLaHitsyXSFBO6+Uij0RSdDV/DphnQ/WkIHeFsaTTFiDYKGo2maBxcCb+/CC1ugb6vF55eU6bQRkGj0dhPzD5YPBb82sCdX4H2S1Xu0E9Uo9HYR/J5mD8U3Dxg+AKo5ONsiTQOQBsFjUaTN/9OgyNrAJCsDFg4EhJOQOvboVoD58qmcRjaKGg0mryp1x4Wj4HDq2l24Cs4+i+4VTKMgqbcooekajSavGl0PQyeBfOHUjcjGdy8jGajRtc7WzKNA9E1BY1Gkz+xhyAj2di/dpw2CBUAbRQ0Gk3ebJ4Ly54GV3eOXnM3RM6w9jFoyi/aKGg0msvZOh+WjjN8Gg0L40jjkUZT0uIx2jCUc7RR0Gg0Odm2EH56zFg1bfgCaNbPCM/uYzi52aniaRyLQzuaRSQKSAQsQKZSqqOI1AAWAoFAFDBEKRXnSDk0Go2d7PgefnoEGl0HwxeCh3fO+EbX636Fck5J1BR6K6VClVIdzeOXgJVKqWbASvNYo9E4m10/wg8PwTXdDDfYuQ2CpkLgjOaj24HZ5v5sYJATZNBoNLbsXgrf3w8NOsOIheBR2dkSaZyEOHLhexE5AsQBCvg/pdRXIhKvlKpmxgsQl32cK+9DwEMA/v7+HcLCwq5IhqSkJHx8ytd0/PKmk9bHudQ8F0GbXVNIrNKU7cETsbhdXkMoazoVRnnTB/LWqXfv3pE2rTT2oZRy2AbUM3/9gG3A9UB8rjRxhZ2nQ4cO6kpZtWrVFectrZQ3nbQ+TmTvcqXeqKnUV32USknIN1mZ0ikfvt3xrYo4FaGUuqRPxKkI9e2Ob50oVfGR1zMCNqkiltsObT5SSp00f88CPwKdgTMiEgBg/p51pAwajSYfDqyARSOhThDcu6TcL6UZVDOI8avHsyF6AwAbojcwfvV4gmoGOVmy0oXDRh+JSGXARSmVaO7fALwJLAVGA++avz87SgaNRpMPh/6GsBFQuyWM/BG8qjlbIofTOaAzU3tO5Ym/nyAjMwPLMQvNqjXjx4M/8l/0f9TxrkOdype2qh5VMVq4KxaOHJLqD/xo3lQ3YL5S6ncR2QgsEpH7gaPAEAfKoNFocnN4NSwYDrWaw6ifwau6syUqEbJUFmtPrSU503Db0aRqE7zdvYk8E8nZ5LNYlCVHei83L/y9/fGv7H+Zwcg+9vGwv19ixs4ZBNUMonNAZ2vYhugN7IzdyX1B9xWPksWAw4yCUuowEJJHeCzQ11HX1Wg0BRD1r7EmQo0mhkHwruFsiUqEDEsGr617jV8P/4qHqwe9KvdiY+pGXunyCp0DOmPJshCbGsvpi6cvbcnG75mLZ/jv1H/EpMSgyDkwx8fdB39vf6uxyG1A/L398XY3Ou6zm6+m9pxK54DO1uarqT2nOuOW5Iv2kqrRVBSOroN5Q6B6Q8MgVK7pbIlKhMT0RJ5Z9QwRpyPwcvPi0z6fkrIvhaEthuYopP28/fDz9iO4dnCe58nIyuBc8jmrsbDdziSfYe/5vcSmxl6Wr6pHVauRCKkdwuN/P84tjW7h72N/W69dmtBGQaOpCByLgHmDwbcejP4FfGo7W6IS4fTF0zy28jGOxB/hxsAbGdx8MJ0DOhO+L9zax7AzdqddBbO7izsBPgEE+ATkmybdks6Z5DM5jEXu/dTMVJYcWEKL6i1oUq1JcapbLGijoNGUd05sgu/ugip1TIPg52yJSoQDcQd4dMWjJGUk8UW/L7i27rWXpekc0LlYv9Q9XD1oUKUBDarkvTLdhugNPLf6ORpWbci2mG3ctOQmnmz/JENbDsXdxb3Y5LgaCh2SKiKRIvK4iFSM3iiNpjxxMhLm3gGVaxkGoUodZ0tUImyI3sDo5aNRSjH7xtl5GgRnyDR+9Xg+6PkB3938HW91f4sMlcGUjVMY8ssQIqIjnC0iYJ+bi6FAXWCjiISJyACpiOO0NJqyxqmthkHwqg5jlkHVus6WqET49fCvPLziYfy8/fju5u9oUaOFs0UCYGfszhx9CIOaDmJ6v+kMbDyQlMwUHvjzAZ4Nf5bopGinyllo85FS6iAwQUReA24FZgAWEZkJfKyUOu9gGTUaTVGJ3g5zbodKvoZB8K3vbIkcjlKKmbtm8lHkR3T078i03tPwreTrbLGs5DXstEtAF7oEdCE1M5VZu2bx7Y5vWXVsFbc0voVXu76Kp5snULJDV+2a0SwiwcAHwPvAEmAwcAH423GiaTSaK+LMLsMgePjAmF+g2jXOlsjhWLIsTI6YzEeRH3Fj4I38X///K1UGoTA83Tx5JOQRlg5aSqhfKD8f+pmbltzEymMriYiOKNGZ14XWFEQkEogHvgVeUkqlmVERItLdgbJpNJqicnYPzB4Ibp6GQage6GyJHE5qZiovrnmRv4//zZg2Y3imwzO4SNlcPyzAJ4CZN85k9q7ZfBj5IU+vepoqHlWY1mtaiQ1dtefODVZK9VVKzbcxCAAope50kFwajaaoxOyD2beBi5vRZFSjsbMlcjhxqXE88OcDrDq+ipc6v8RzHZ/L1yBMX32IdYfO5Qhbd+gc01cfKglRi3T90W1Gc3/Q/QCMaDmiROcy2GMUHhCRatkHIlJdRCY5TiSNRlNkzh0wDAJijDKqWfrGvxc3xxOPM3L5SPbE7uGDXh9wT6t7CkwfXN+XcfO3WAvmdYfOMW7+FoLrO6aZKStLkZphISElg5jENOpW8+LR7zazcONxktMzC7z+hugNfL//ex4OfphF+xZZnfiVBPbMU7hJKfVK9oFSKk5EbgZedZxYGo3GbmIPGQYhywJjfoXazZ0tkcPZdW4Xj618DIuy8M2Ab2jn167QPN2a1OKzEe14fN5mWvhmsXNVJGO6NeREXApz1x8lPTPLuqVlWox9SxZpGcavEZ4zLjssr3wZlrzXqnlxyXZeX7oTFxGm39uBbk1q5Yi3dX/ROaAznet0znHsaOwxCq4iUim76UhEvIBKjhVLo9HYxfkjhkGwpMPoZeDX0tkSOZw1J9YwfvV4anjW4It+X9DY1/5msgbVvank5sL66AwAPluVd9ORm4vg4eZCJTcXPLI3Vxcqublaj30quVGpct5xl+Vzd6WSq3G8fGc0f+w6A8BrP+/k+QEtuKVtgNUja+6hq0WdeX212GMU5gErzSGoAGO5tJymRqNxFnFHDYOQkWw0Gfm3drZEDmfJ/iW8tf4tmldvzhf9vqCWV63CM5n8tiOa5xZtJTUji3Z+LhxKdOF/t7ama+OaRkHu6koldxfcXV1wdXHMVKx1h86xMSqOJ/o0ZebaKLKyFOPmb+HrBkd4+aaWdG1cM89hp8U987og7JmnMEVEtnPJs+lbSqk/HCuWRqMpkPjjMPtWSLtgGIQ6bZ0tkUNRSvHFti+Yvm063et158OeH1q9jxZGaoaFN5ftZn7EMVxdhGlDQ/FNOIBHgyDGzd/CZyPaXdaE4wiy+xCyr3dtk5qMm7eFh69vzNJtpxj21Xr6tvSjUa3K9Gnll0OmdYfOsf1EAo/0dHxfkV3jtpRSy5VS481NGwSNxpkknDRqCCkJMPInCLjMQ325IiMrg9fWvsb0bdO5o+kdfNrnU7sNwv4zidz+2VrmRxyjS6MazBrbidvb1QMu9TFsP5HgSPGtbD+RkMMAdWtSi8/uaUf1yh6sGt+LF29syYao83z77xHGztzIr9tPAY7vEM+NPfMUugKfAq0AD8AVuKiUKt9r92k0pZEL0YZBSI41DEK99s6WyKFczLjIs+HPsu7UOh4LeYxHQh6xazU0pRQLNx5n4i+7qOzhxuz7OtOz+eWeYbs1qVUitQQgz6982+s/2qsJwzo14LNVB5m9LorH529h5tooDsUk8fk97UtMTnv6FD4DhgGLgY7AKKD8D2/QaEobiWcMg5B0xlhCs34HZ0vkUGKSY3h85ePsj9vPm93e5I5md9iV70JqBq/8sINl26Pp3rQmHw0Jxa+qp4OlLR6qV/bgtVtbM6ZbIPfP3simo3Hc2+WaEjMIYH/z0UHAVSllUUrNBG50rFgajSYHSTGGQbhwCu75HhqUroVZipvD8Ye597d7iboQxWd9P7PbIGw9Hs8tn/zD8p2neX5AC+be16XMGARbjsclcy4pnbHdA/lt5+nLJr05EntqCski4gFsFZH3gGjsNCYajaYYuHgO5gyEhOOGQWjofDfQxUnutYs3n9nMoyseBWDmjTNpU7NNoefIylJ8/c9h3v9jH/5VPVn0cFc6NCybS43m7pDu39q/RDvE7SncR5rpxgEXgQbAXY4USqPRmCSfN5zbnT8CIxZCYPlzN5a9dvGG6A38GfUn9/9xP6mWVP537f/sMgjnktIYO2sj7yzfS79W/vz25HVl1iBAPh3SJdghXmBNQURcgclKqXuAVOCNol7APMcm4KRS6lYRaQSEATWBSGCkUiq9yJJrNOWd5PNGDSH2IAwPg0bXO1sih5A9OeuJv58gOTMZV3Hlo54f0adhn0Lzrj14jqcXbiUhJYO3BgVxb5dr7OqILs0U1iHtaAqsKSilLEBDs/noSnkK2GNzPAX4SCnVFIgD7r+Kc2s05ZOUeGOBnJh9MGweNOntbIkciqebJymZKQCMaTOmUIOQacni/T/2cu+3Efh6ufPz490Z2bVhmTcIpQF7mo8OA2tF5DUReTZ7s+fkIlIfuAX4xjwWoA/wvZlkNjCoyFJrNOWZ1AT47k5jXYSh86BpP2dL5FDOp55n3MpxCMKYNmP44cAPBTqAOxGXzNCv1vP5qkMM6dCApeO60ypAj5AvLkSpvJ02WROIvJ5XuFKq0KYkEfkeeAeoAowHxgDrzVoCItIAWK6Uumz1CBF5CHgIwN/fv0NYWFhhl8uTpKQkfHx8rihvaaW86aT1uYRrZjLB2ydSJfEQu9q8SGyt0jHKyFHPyKIsTI2eyomMEwytMZQeVXqwP3U/M2NmMrb2WJp75hz9vul0JjN2ppGlYEybSnSta89Ymcspb+8c5K1T7969I5VSHYt0IqWUQzaMpTu/MPd7AcuAWsBBmzQNgJ2FnatDhw7qSlm1atUV5y2tlDedtD4mqYlKfXODUm/UUGr30mKV6Wpx1DP6aNNHKmhWkPpw44c5wiNORahvd3xrPU5Jz1Sv/rhDNXxxmbrt039U1Lmkq7pueXvnlMpbJ2CTKmLZbc+M5lXAZdUJpVRhvUDdgYGmm21PoCrwMVBNRNyUUplAfeCkPcZLoynXpF+E+UPgxEa4ewa0us3ZEjmclUdX8u3ObxncfDDPdHwmR5ytA7iDZxMZN38Le08n8uB1jXh+QEs83PSoeEdhT91rvM2+J8Zw1MzCMimlXgZeBhCRXsB4pdQ9IrIYuBtjBNJo4OeiiazRlDPSk2H+UDj2H9z1DbQZ5GyJHE5UQhQT1k4gqGYQL3V+Kc80SikWR57g9Z934eXhyswxnejd0q+EJa142OMlNTJX0FoRuZplgF4EwszV27ZgrP2s0VRMMlIgbDgcXQt3fAVB5X8KUHJGMs+EP4OHiwcf9voQD9fLBzcmpmbw6k87+XnrKa5tXJNpw0LxL4Mzk8si9jQf2c4CcQE6AEVy16eUCgfCzf3DQOnoPdNonElGKoTdA4dXw6AvIXiwsyVyOEopJq6byOGEw/xf//8jwCeA6asPEVzf1zoOf/uJeB6cs4mzF9J4rn9zHuvd1GHrG2gux57mo0iMPgXBaDY6gp5boNFcHZlpsGgkHFoJt38OocOdLVGJMH/vfJZHLeep9k/RNaArcGnt5E+HtWPP6Qu8s3wPSsFrt7bmvh6NnCxxxcOe5iP9VDSa4iQzHRaNhgN/wm0fQ7t7nS1RibD5zGambpxKnwZ9uD/o0ndlthuHsTM3kpaZhbur8MU97enfpo4Tpa24FNqFLyKPi0g1m+PqIvKYQ6XSaMorlgz4fizsXw63fAgdxjhbohIhJjmG51Y/R70q9ZjUY9JlM49PnE8hLTMLMNw8aIPgPOwZ1/WgUio++0ApFQc86DCJNJryiiUDvr8P9i6Dm96HThWjFTYjK4Pxq8dzMeMiH/b6kCoeVXLEbz8Rzys/7sDNRRjXuwnzIo6VqKtoTU7sMQquYmPWTQd3V+MLSaOpeFgy4YeHYM9SGDAZujzkbIlKjI8iP2Lz2c1MvHYizavnnKF8/mI6983cSJZSfH5Pe8YPaMlnI9oxbv4WbRichD1G4XdgoYj0FZG+wAIzTKPR2EOWBX56BHb9AP3fgmsfd7ZEJcbvR35n7u653NPqHm5ufHOOuExLFk8s2ExcSgZv3t6GAWaTUUm7itbkxJ7RRy9i+CB61Dz+C9PBnUajKYQsC/z0GOxYDH1fh+5POluiEuNg3EH+t+5/tPNrx3Mdnrssfuqf+1l7MJb37gpmSKcGOeJK0lW0Jif2GAUv4Gul1HSwNh9VApIdKZhGU+bJyoKlT8L2MOj9Klxnl3PhckFSehLPhD+Dt5s3U3tOxd3VPUf87zujmb76EMM7X3OZQdA4F3uaj1ZiGIZsvIAVjhFHoyknZGXBsqdg63fQ8yXo+byzJSoxlFK8tvY1jiceZ2rPqfh553RNcfBsEs8t2kZIg2pMHNjaSVJq8sMeo+CplErKPjD3vR0nkkZTxlEKfnsONs+B68ZDr7x9+5RXZu2axYpjK3imwzN0rJPTa3NSWiYPz92Ep7sr0+9tTyU3VydJqckPe4zCRRFpn30gIh2AFMeJpNGUYZSi6cGvYdMM6P409HkVKtBqYBHREUzbPI0bGt7AqNajcsQppRi/aBtRscl8OqIdAb5e+ZxF40zs6VN4GlgsIqcwXF3UAYY6UiiNpkyiFPz+MvVP/grXjoN+EyuUQTh98TQvrHmBwKqBvNn9zcsmqE1ffZjfd51mws2tdCdyKcYeNxcbRaQl0MIM2gfUKCCLRlPxUAr+fBUivuREvduof8OkCmUQ0i3pPBf+HKmZqXx040dUdq+cI/7fA+d4/4+93BIcwAPXac85pRm7VqpQSmUAJ4AuGHMUtjhSKI2mTKEUrJgI/30GnR7kYNP7K5RBAHhv43tsP7edST0m0di3cY64E3HJPLFgM039fHjvruDLahCa0kWBRkFEvERkmIgsBXYAHwBvYayYptFolIK/J8HaadDxPrj5/QpnEJYeWsrCfQsZ02YM/Rv2zxGXmmHh0e82k2lRTL+3A5UrXdmaypqSI1+jICLzgf1Af+BTIBCIU0qFK6WySkY8jaaUs3oK/DMV2o+Cmz+ocAZh7/m9vPnfm3Sq04mn2j+VI04pxf9+3smOkwl8MCSExrV98jmLpjRRUE2hNRAH7AH2KKUs5LFWs0ZTYVn9PoS/A6H3wK0fg0vFWjc4IS2BZ1Y9g6+HL+9d/x5uLjlrAQs2HGfRphOM692UG7TX0zJDvnU5pVSo2cE8HFghIueAKiLir5Q6U2ISajSlkX8/glWTIHgYDPy0whmELJXFhH8ncDr5NDMHzKSWV87RRFuOxTFx6S6ub16bZ/o3z+csmtJIgW+yUmqvUup1pVRL4ClgNrBRRNaViHQaTWlk3adGx3LbwTDoC3CpeBOwvt7+NatPrOaFTi8Q6heaI+5cUhqPfrcZv6qV+GRYqF5Ks4xhd6+PUioSiBSR54HrHCeSRlOKWf+lMfS0zR0waHqFNAhrT67l862fc0vjWxjWYliOuExLFuPmbyYuOZ0lj3ajmrf2sl/WKHKdVxmsKSydiHiKyAYR2SYiu0TkDTO8kYhEiMhBEVkoIvqt0ZQNNnwNv78ErQbCnV+Da8UbSXMy6SQv/vMiTas35X9d/3fZ8NIpv+9l/eHzvH1HW4Lq+TpJSs3V4MiG0DSgj1IqBAgFbhSRrsAU4COlVFOMjuyKsfyUpmyz8Vv4bTy0vBXungG5vH5WBNIsaTyz6hmysrKY1msa3u45XaAt236Kr/85wsiuDbm7gx61XlZxmFEwaxTZjvTczU0BfYDvzfDZwCBHyaDRFAuRs+HXZ6H5TXD3zAppEAAmR0xmz/k9vN3jba6pek2OuP1nEnnh++20v6Yar92qPZ+WZUQp+0aZml/5EwFPYJpS6ic78rgCkUBT4HPgfWC9WUtARBoAy5VSQXnkfQhjcR/8/f07hIWF2SVnbpKSkvDxKV/jo8ubTqVZnzrRK2ix7zPO12jPzqCXUS6FG4TSrE9RWJGwgmsqXUNzz+asOreKHy7+QEfvjtTzqEc/337WdMkZijf+SyElE97o5kl1z9I/Equ8PCNb8tKpd+/ekUqpjvlkyRulVJ4bUCfX8SKMtRS8gR355cvnXNWAVUAP4KBNeANgZ2H5O3TooK6UVatWXXHe0kp506nU6rN1gVKv+yo1Z5BS6Sl2Zyu1+hSRiFMR6roF16mFexaq0FmhasjSIeq6BdepiFMR1jQWS5Z6YPZG1eTlX1XE4VgnSls0ysszsiUvnYBNqghltVKqwNFH00VkM/CeUioViAfuBrKAC0U0PPEisgq4FqgmIm5KqUwMdxkni3IujaZE2L4YfnoUGl0Pw+aDu6ezJSpx2vu3Z0DgAN6KeAtP8eTkxZN82PNDOgd0tqb5Ivwgf+0+w/9ubU3nRtpPZnkg33qeUmoQhuO7ZSIyCsOFdiWgJnb0A4hIbRGpZu57YbjL2INRY7jbTDYa+PlKhddoHMLOJfDjQ9CwOwwPA/eK5/d/85nNDFk2hLB9YdT3qU+qSmVYi2E5DMLq/TF88Nd+bg+ty9jugc4TVlOsFDZ57RdgAOAL/AjsV0p9opSKsePcAcAqEdkObAT+UkotA14EnhWRgxgG5turUUCjKVZ2/wxLHoQGXWHEQvCoWIsMnks5x4R/JzD699EkpifyWMhjXMy4yI2+N7Jo3yI2RG8A4Pj5ZJ4K20IL/yq8c2db7fm0HJFv85GIDASeATKBycBc4DUReQyYoJQ6VNCJlVLbgXZ5hB8GOl+eQ6NxMnuWwff3Qf2OcM8i8KhceJ5ygiXLwqL9i/h086ekWFK4P+h+2vu359V/X2Vqz6kk70tmcIvBjF89nsk93mPykgwsWYbnU2+PijdfozxTUE1hEnATMASYopSKV0o9B7wGvF0Swmk0Jca+5bB4DASEwj3fQ6UqzpaoxNgWs43hvw5ncsRkWtdszZKBS3i6w9McjD/I1J5TrU1GnQM6837P9/lw9Qp2R1/g42GhBNaqOIazolCQiU8A7sQYbXQ2O1ApdQAYll8mjabMsf9PWDQK6rSFkT+AZ1VnS1QixKXG8fHmj1lyYAl+Xn68f/37DAgcYG0Kui/ovsvy7I/yZ/OOdjzVtxl9WvqXtMiaEqAgo3AHhofUDGBEyYij0ZQwB1fAwnvBr5VpEMq/a4YslcWSA0v4ePPHJKUnMbr1aB4NffSyJTRzE3n0PG8u203vFrV5qm+zEpJWU9IU5Dr7HMbiOhpN+eTQKgi7B2o3h5E/gVd1Z0vkcHad28Wk9ZPYGbuTDv4dmNBlAs2q513AT199iOD6vnRrUov4tCxe+G4z1b09CKlfDRft+bTconuINBWTI2tgwXCo0QRG/gze5XuMfUJaAp9s/oTF+xdTw7MGk3tM5tbGtxY4aii4vi/j5m/h42GhfLE1jbhkhZeHK50bl+97VdHRRkFT8YhaC/OHQvVAGL0UKtd0tkQOI0tl8fPBn/ko8iMS0hMY0WoEj4c+ThWPwjvSuzWpxXt3B3P/7E2kZ2ZRuZIr0+/tQLcmtQrNqym7aKOgqVgcWw/zBoNvfdMglN8Cbu/5vby9/m22xmwltHYor3Z9lRY1WtiV15KlWLzpOFP/3Ed6prEk+/3dG2mDUAHQRkFTcTi+Ab67C6oGwOhfwMfP2RI5hAvpF/h8y+eE7QujWqVqvNX9LQY2GYiL2OeoLuJwLG/8spvd0Rdo7u9DemYWveoJ30Uco2uTmtowlHO0UdBUDE5EGgbBx88wCFXK30LySimWHV7GB5s+4HzqeYa0GMIT7Z7At5J9I6qOn0/mneV7+G3Haer6ejKuT1PmRxxj+sgOpB/fybA+QYybv4XPRrTThqEco42CpvxzagvMvcPoTB69DKrWdbZExc7+uP28vf5tNp/dTNtabfm83+e0qdnGrrwX0zL5IvwgX/9zBBeBZ/o156HrGzP7vyirAQg/bvQxfDaiHdtPJGijUI7RRkFTvoneBnMGgZevYRB86zlbomIlKT2JL7d9ybw98/Dx8OH1a1/nzmZ32tVUlJWl+GHLSd77fS9nE9MYFFqXF29qSYCv4QDwkZ5NLsvTrUktbRDKOdooaMovp3fAnNsNlxWjl0G1Bs6WqNhQSvF71O+8v/F9zqWc485md/J0+6ep5lnNrvyRR8/z5i+72XYigZAG1Zg+sgPtryn/8zQ0haONgqZ8cma3YRDcvY1RRtUbOluiYuNw/GEmR0wm4nQErWq0YlrvaQTXDrYr76n4FN5dvpel207hV6USHwwO4Y529fRkNI0VbRQ05Y+ze2H2beDqYXQq12jsbImKheSMZKZvn87cXXPxcvfi1S6vcnfzu3F1cS00b0q6hemrD/F/aw6hFDzRpymP9GxC5Uq6CNDkRL8RmvJFzH7DILi4Ggah5uXt4mUNpRQrjq1gyoYpnEk+w+1NbueZDs9Q06vwSXdKKZZuO8W7y/cSnZDKLW0DeOmmljSoUbHWidDYjzYKmvJD7CHDIKCMPoRaZd9p29ELR5kcMZl1p9bRvHpz3u/5Pu38LlumJE+2HY/njV92sflYPG3qVmXa0FC6NC6/s7c1xYM2CprywfnDMOtWyMqAMb9Cbftm7pZWUjJT+Hr718zaNYtKrpV4qfNLDG0xFDeXwv+yZy6kMuX3vfyw+SS1fDyYcldb7u7QAFfdb6CxA20UNGWfuCiYdRtkphpNRn6tnC3RFaOUYtXxVUzZMIVTF09xa+Nbea7jc9TyKnwYaGqGhW/+OcwX4YfItCge7tmYcb2bUsXTvQQk15QXtFHQlG3ijxkGIT3JMAh1gpwt0RVz/MJx3t34LmtOrKFptabMHDCTjnU6FppPKcXynad5+9c9nIxP4YbW/ky4pRUNa+pV0TRFRxsFTdkl4YTRZJSWAKOWQoB9wzJLG6mZqczYOYNvd3yLm4sb4zuOZ0SrEbi7FP6Fv/NkAm8u282GI+dpWacK8x/oQremenKZ5spxmFEQkQbAHMAfUMBXSqmPRaQGsBAIBKKAIUqpOEfJoSmnXDhlGISUOBj1E9QNdbZEV8SaE2t4J+IdTiSd4MbAGxnfcTz+lQtf5jImMY0P/tzHwk3HqeblzqRBQQzr1AA3V/uc3mk0+eHImkIm8JxSarOIVAEiReQvYAywUin1roi8BLwEvOhAOTTljcTThkG4eA5G/gj1OjhboiJzMukkUzZMYdXxVTTybcTXN3xN14CuheZLy7Qwa20Un/59kNQMC/d1b8STfZvh66X7DTTFg8OMglIqGog29xNFZA9QD7gd6GUmmw2Eo42Cxl6SzhrDTpPOwL0/QINOzpaoSKRb0pm1axZfb/8aEeHp9k8zqvUo3F0LLtSVUvy1+wxv/7aHo7HJ9Gnpx4RbWtGktk8JSa6pKIhSyvEXEQkE1gBBwDGlVDUzXIC47ONceR4CHgLw9/fvEBYWdkXXTkpKwsenfP1xyptO9urjnh5P6NZX8Uw9y/bg10moZp8X0JImP332pOxh8fnFxGTGEOodyh3V76CGW+FLW55IzGL+3jR2x2ZRt7IwvKUHbWuXbHdgRX3nyhJ56dS7d+9IpVThoxVsUUo5dAN8gEjgTvM4Pld8XGHn6NChg7pSVq1adcV5SyvlTSe79Ek6p9Tn1yr1lr9Sh9c4XKarIbc+0UnR6plVz6igWUHq5iU3q39O/GPXeWKT0tSEH7erRi8tU8ET/1Az/j2s0jMtDpC4cCrkO1fGyEsnYJMqYpnt0M8NEXEHlgDzlFI/mMFnRCRAKRUtIgHAWUfKoCkHJJ83nNudPwQjFkKj65wtkV1kWDKYu2cu07dNJ0tlMS50HGOCxlDJtVIh+bKY899RPl6xn4vpFkZ2bcjT/ZpTvbJHCUmuqcg4cvSRAN8Ce5RSH9pELQVGA++avz87SgZNOSAlDuYOgnP7YfgCaNzL2RLZxYboDbwd8TaHEw7Tq0EvXur8EvV8Cl/LYdW+s7y1bDeHYy5yXbNavHZra5r7VykBiTUaA0fWFLoDI4EdIrLVDHsFwxgsEpH7gaPAEAfKoCnLpMQbK6ad3QND50HTvs6WqFDOJp9lVswsIo9GUs+nHp/1+YyeDXoWmu/g2SQm/bqb8H0xNKpVmW9GdaRvKz+MbyuNpuRw5Oijf4H83ujS/+/WOJfUC8aayqd3wtC50PwGZ0tUIBlZGSzYs4Avtn1BWkYaj4Y8yn1B9+Hp5llgvoTkDKat3M/c/47i5e7KhJtbMbpbIB5uer6BxjnoGc2a0kdaIsy7G6K3wuDZ0OImZ0tUIJFnInk74m0OxB2gR70e9FF9GBw6uMA8mZYsFmw4xod/7Sc+JYNhna7huRuaU8un4P4GjcbRaKOgKV2kJcG8wXBiEwyeCa1udbZE+XIu5RwfRX7E0kNLCagcwLTe0+jToA+rV68uMN+/B87x1rLd7DuTSNfGNfjfrW1oXbdqCUmt0RSMNgqa0kP6RZg/FI5HwF3fQuvbnS1RnmRmZbJw30I+2/IZqZZUHmz7IA+0fQBv94IXrjly7iJv/7qHFXvO0KCGF9Pvbc+ANnV0v4GmVKGNgqZ0kJ4MC4bBsXVwx1cQdKezJcqTrWe38nbE2+w9v5euAV15pcsrNPJtVGCeC6kZfPb3QWauPYKHqwvPD2jB/T0a4ele+DKaGk1Jo42Cxjn8Ow3qtYdG1+NiSYewEXBkDbS5E4ILbo93BudTzzMtcho/HvwRP28/pvacyg0NbyjwK9+SpVi06Tgf/LmP2Ivp3N2+Ps8PaIFf1YI7nzUaZ6KNgsY51GsPi8fAnV/TZtc7cH4zePhAx7HOliwHliwLSw4s4ePNH5OckczYNmN5JOSRQpuK1h+O5c1fdrM7+gIdG1ZnxphOBNevVjJCazRXgTYKmpIlMw3O7ISYfRAQCvPupqbKAo/KxuS0Rtc7W0IrO8/tZNL6SeyK3UWnOp2Y0GUCTao1KTDP8fPJfLYllU2/r6euryefDG/HbcEBut9AU2bQRkHjOCyZELMXTm2GU1vg5GY4s8tYRxnAuyZUawhxR6Dr46XGIMSnxvPJlk/4fv/31PKqxZTrpnBTo5sKLNiT0jL5YtVBvvn3CKgsnunXnIeub4yXh+430JQttFHQFA9ZWYZvouzC/9RmiN4OmSlGfKWqxkI41z4GddsbzUfnj8D3Y4lqOITATd8aPo2caBiyVBY/HfyJjyI/IjE9kXtb38tjIY/h45G/N82sLMWSzSd47499xCSmMSi0LtdXi+POfs1KUHKNpvjQRkFTdJSChOOXCv9TW+DUNmNZTAA3L2NpzA5jjMK/bjuo0QRcbGbpHlkD34+FwbOIOppFYK+RRh/D4FlOMQx7YvcwKWIS22O2096vPa90eYUWNVoUmCfy6Hne+GU3208kENKgGv83sgPtr6lOeHh4yQit0TgAbRQ0hZN4JmcT0KktkHzOiHNxB/820PYuo/Cv2x5qtwTXQl6tk5svGYCj4cbv4FlGeAkahQvpF/hsy2cs3LeQapWq8XaPt7mt8W0FNhWdik/h3eV7WbrtFP5VK/HhkBAGhdbDxUX3G2jKPtooaHKSEpez8D+1BS6cNOLExSjwmw8wDEC99uAfBG5X4Jqhx9OXhzW6vsQMglKKXw7/wgebPiA+LZ6hLYYyrt04qnrkP7M4Jd3C9NWH+L81h1AKnujTlEd6NqFyJf030pQf9NtckUlLguhtZuG/2TAEcUcuxddoDNdce6kJqE4wVCr7q1XtO7+PyRGT2Xx2M8G1g/my35e0rtk63/RKKZZuO8W7y/cSnZDKLcEBvHxTS+pXL3hYqkZTFtFGoaKQkWqM/Mku/E9tgXP7QGUZ8VXrGx3B7UcaTUB1Q8GrujMlLnaS0pP4fOvnLNi7gCoeVXij2xsMajoIF8nfI+m24/G88csuNh+LJ6heVT4e1o7OjQpfQlOjKatoo1AesWRCzB6bJqDNcGa3zVDQWsbXf+vbL9UCfPycK7MDUUrx25HfmLppKrEpsQxuPpgn2z+JbyXffPOcuZDKlN/38sPmk9Ty8eC9u4K5q0N9XHW/gaaco41CWScrC2IP5mwCOr3DZiior/HV323cpY5g3/pQQSZTHYo/xNsRb7Px9Eba1GzDp30+JahWUL7pUzMsfPPPYb4IP0SmRfFwz8aM692UKp7uJSi1RuM8tFEoSygF8ceofXYt/PW3YQCit0HaBSPezQsCQgxXEXWzh4I2zjkUtIKQnJHM9G3Tmbt7Lt7u3rzW9TXuanYXri55TyZTSvHbjtNM/m0PJ+NTGNDGn1dubkXDmpVLWHKNxrloo1CaSTydczLYqS2QHEsbMIaC1gmCtoMvjQSq1aLwoaDlHKUUfx79k/c2vsfZ5LPc2exOnmr/FDU88+8H2HkygTeX7WbDkfO0rFOF+Q90oVvTWiUotUZTeqjYJUhpIvn8pSagU1sNQ5B4yogTF6jdCprfBPXaERmt6HDzqCsbClqOOZJwhHci3uG/6P9oWaMlH/T8gFC/0HzTxySm8cGf+1i46TjVvT2YNCiIYZ0a4OZa8WpWGk022ig4g7TES0NBs2sBcVGX4ms0gcDul5qAAoINh3EmieHh2iDYkJyRzNc7vmbWrll4uXrxcueXGdpiaL5NRWmZFmatjeLTvw+SmmHhvu6NeLJvM3y9dL+BRuMwoyAiM4BbgbNKqSAzrAawEAgEooAhSqk4R8lQKshINbyC2jYBxewDlBHv28Ao+NuPNpqAAkLBq5oTBS47KKX4+/jfTNkwheiL0QxsMpBnOjxDLa+8m36UUvy1+wxv/7aHo7HJ9Gnpx4RbWtGkdtmfe6HRFBeOrCnMAj4D5tiEvQSsVEq9KyIvmccvOlCGksWSAWf35BwJdHY3ZGUa8ZVrG1//be64VAvwqe1cmcsoxy8cZ/KGyfx78l+aVmvKrBtn0cG/Q77p956+wFvLdrP2YCxN/XyYfV9nejbX916jyY3DjIJSao2IBOYKvh3oZe7PBsIpq0bBOhTUZjLY6e2QmWrEe/oahX63Jy91BFetV2GGgjqK1MxUvt35LTN2zMDd1Z3nOz7P8FbDcXfJu+nn/MV0PvxrH/MjjlHF052Jt7Xmnq4Ncdf9BhpNnohSynEnN4zCMpvmo3ilVDVzX4C47OM88j4EPATg7+/fISws7IpkSEpKwsfnKpsHlMIz9SxVEg9QJfGg+XsIN4sxF8DiUonEKk1IrNKUxCrNSKzSjBSvOg4zAMWiUynCXn12Ju/k+7jvic2MpaN3RwZVH4SvW94T0DKzFCuPZfLzwXRSLdC7gRt3NPXAx8PxRrm8PR8ofzqVN30gb5169+4dqZTqWJTzOK2jWSmlRCRfi6SU+gr4CqBjx46qV69eV3Sd8PBwipz3QnTOJqBTWyDlvBHn6mE4gWt2j3UymGvtFlRzcaXaFUlYdK5Ip1JMYfqcSDzBlI1TCI8Jp7FvY97r8h6dAzrnm37V3rNM/nU3h2PSua5ZLV67tTXN/as4QPK8KW/PB8qfTuVNHyg+nUraKJwRkQClVLSIBABnHXIVm0XhrRxZYxTwub1zJp+3cQttGoLEaCNOXMGvFbS8+dLCMH5twM3DIWJrcpJmSWPmzpl8s+MbXMSFZzs8y72t7sXdNe+mooNnE3lr2R5W74+hUa3KfDu6I31a+umlMDWaIlDSRmEpMBp41/z92SFXyV4UfvAs4/jIGuN40BcQ9W/OkUC2Q0FrNoXA60x/QO2hTlvw0J4wncHak2uZHDGZY4nHuKHhDTzf6XnqVK6TZ9qE5Aw+WrGfueuP4u3uyoSbWzG6WyAebrrfQKMpKo4ckroAo1O5loicAF7HMAaLROR+4CgwxCEXz16wZeG9tPVqDP/shsp+MH8Yl4aCXgP12hmrg2V7BfXM30GapmSITormvY3vseLYCgKrBvJ//f6PbvW65Zk205LF/A3H+PCv/VxIyWBop2t47obm1PLRczg0mivFkaOPhucT1ddR18xBo+vBqwY147aAuzfUaWO4hc6eC6CHgjqVGTtnEFQzyNo3kGHJYFLEJJYeWoqbuPFkuycZ3WY0Hq55N9X9e+Acby7bxf4zSXRtXIP/3dqG1nXzXyBHo9HYR/md0XxkDaTEcaLebdSPWwfXPu7UReE1OQmqGcT41eOZ2nMq+1L2MemHSZxJPkO72u149/p3qetTN898R85d5O1f97Bizxka1PBi+r3tGdCmju430GiKifJpFLL7EIbO5eDRLOo3fMipi8JrICUzheiL0ZxKOmXdmlVvxkN/PYRFWXARF55q9xQPBD+QZ/4LqRl89vdBZq49goerCy/c2IL7ujfC0z1vVxYajebKKJ9GoZQsCl+RuJhxkVNJp4i+GM3JpJM5Cv9TF09xPvV8jvRuLm7U8a5DHe86nLx4kvuC7svTIFiyFIs2HWfqH/s4n5zO3e3r8/yAFvhV9Swp1TSaCkX5NApOXhS+PHIh/QLRSTYF/sWchX5CWkKO9B4uHtT1qUtA5QB61+hNXZ+6xlbZ+K3tVZvIM5GMXz2eG31vZMn+JVwbcG2O+QfrD8fy5i+72R19gY4NqzPrts60ra8HA2g0jqR8GgVNkVBKkZCWwMmLl3/hn0o6RXRSNIkZiTnyeLl5EVA5gLo+dWlbqy11fepSz6ceAT4B1POpRw3PGgWufbwheoO1TyF5XzKDWwy2HgdUCmLyb3tYvvM09ap58enwdtwaHKD7DTSaEkAbhQqAUorY1NjLv/BtmntSspfvNKnsXtn6Zd/Bv4NR4FcOsBb81StVv6pC+puNqxnb7DU6B3QmfF84nQM6c0+jCbzy268cOxKLqwjP9m/OQ9c31v0GGk0Joo1COSBLZRGTHGMt4K2/SZeO0yxpOfJU9ahKPZ96XFPlGroGdL2seaeqR1WHfpmPaTOWcfO30KLaObKU4p3f9vDVP5ko1ZlBoXV48aaWBPh6Oez6Go0mb7RRKANkZmUSkxxjLeDXxq9l1bpV1vb90xdPk5GVkSNPDc8aBFQOoFn1ZvSs3/NSoW8W/D4eJe8MLCtLkZiaSVxyOt4ebjxwXSMenL0JdyzEpx+mSe3KvD84hPbXVC9x2TQajYE2CqWAjKwMTl88nePLPrvAj74YzemLp7EoS448tdJrUdenLm1qtqF/w/7WL/zszl1vd8e551BKkZxuIS45nfjkDOKTM4z9lAziL6YTl5xBfEq6NTwh+zclg6x8XCDe0Nqf6fd2wMVF9xtoNM5EG4USIN2SflmTzqmLp6z7MSkxZKksa3pB8PP2o65PXUL9QnMU+HUr1+XA5gP0792/WGRLy7SYhXYG8cnp1t/4FLOgv2gU8LbxCckZpFuy8j1nZQ9Xqnl7UM3bnereHtSt5kV1c9/Xy/itXtmdY+dT+Oiv/VwXoFh3NI71R2Lp1iTvVdM0Gk3JoI1CMZCSmUJ0UrS1E9da+F80fmNSYnKkdxVX/L39qetTly4BXXK05df1qUsd7zr5egIFiJKoy8IsWYqElFwFe/YXfHLOgt326z453XL5BUw8XF2sBbuvtzuNalWmvblf3duD6t7u+HoZv9Ure1DNyx1fb3cquRXeMbzu0Dk+WXmAL+9tT/rxnYzoG8S4+Vv4bEQ7bRg0GieijYIdZE/Mshb4Nl/9+U3MCqgcQN3KdelRr8dlnbh+3n64ueR965VSJKVlcjoh2Vqg526m2XcklVlHNuQo5C+kZpDfekkugvHl7uVONW936lT1pEWdKpcKdvPX+iVf2Tj2cnd1WGfz9hMJVgMQfhy6NanFZyPasf1EgjYKGo0TKZdGIbezNTDGxe+M3cl9Qfddlv5C+oWcX/hmwV/YxKy6PnVpWbPlZc07tbxq4eriSmqGJUfBfjYmg/1HM4hLjrL5kr/UXJMdlplfwztQpZIbni5ZBLim4+vlTsMa3pcX7DZf8tW8PKji6Vbq2uof6dnksrBuTWppg6DROJlyaRQOn6jB19ue5eM+H6KUYuXRlbz8z6sE+dyCq8y+bHJWUkZSjvxebl7Wgj64djD+3gH4uvvh41obD2piyfAhISXTKMQTMjgcncHm5HTik9OIS95HfPJO4lPSSc3Iv93d090lRxt7c3+fS00xuQt2b3eqmWndXV3MFZZ6OPo2ajSaCki5NAo3N+vBsu2nePivR8hSFrKOGYXzxoSFbNwE3m6VqelZB193P9pUbUklauKaVROVUY2MtOokpXiQcD6THSnp/HMxg8S0TPPMseZ2CTcXsRba1b3dqV/dm7b1jCYYa6eqt7tNIW90wOoJWRqNpjRSLo1Ctya1+OKuITz4x0pcKu8nM6kZrkndSE3xJTO9OolZXpzJlUcEqnq6U93bgq+3hZo+HjT188kxWuZSIe9hGgJ3fCq5afcLGo2m3FAujQKAm/dh3L1PkRzTB8+aG7jWvz7Nq7bLVchfaq6p6uWOaylrd9doNJqSplwahQ3RG3jq72fh7EhurN6UNTEt2O7xGfe3/TBH57NGo9FoclIuVzb/dX8EKSdH8MVdQ7izmQdf3DWElJMj+HV/hLNF02g0mlJNuTQKAdzMF3cNsQ5vzO5jCOBmJ0um0Wg0pRunNB+JyI3Ax4Ar8I1S6t3iPL8eA6/RaDRXRonXFETEFfgcuAloDQwXkdYlLYdGo9FoLscZzUedgYNKqcNKqXQgDLjdCXJoNBqNJhfOaD6qBxy3OT4BdMmdSEQeAh4yD5NEZN8VXq8WcO4K85ZWyptOWp/ST3nTqbzpA3nr1LCoJym1Q1KVUl8BX13teURkk1KqYzGIVGoobzppfUo/5U2n8qYPFJ9Ozmg+Ogk0sDmub4ZpNBqNxsk4wyhsBJqJSCMR8QCGAUudIIdGo9FoclHizUdKqUwRGQf8gTEkdYZSapcDL3nVTVClkPKmk9an9FPedCpv+kAx6SQqv5VZNBqNRlPhKJczmjUajUZzZWijoNFoNBorZdooiMiNIrJPRA6KyEt5xH8kIlvNbb+IxNvEjRaRA+Y2ukQFz4er1MdiE1dqOu7t0OkaEVklIltEZLuI3GwT97KZb5+IDChZyfPmSvURkUARSbF5RtNLXvq8sUOnhiKy0tQnXETq28SVxf9RQfqUuv+RiMwQkbMisjOfeBGRT0x9t4tIe5u4oj8fpVSZ3DA6qQ8BjQEPYBvQuoD0T2B0agPUAA6bv9XN/eplVR/zOMnZz+RKdMLoHHvU3G8NRNnsbwMqAY3M87iWYX0CgZ3OfiZXqNNiYLS53weYa+6Xyf9RfvqYx6Xxf3Q90D6/9we4GVgOCNAViLia51OWawpFdZcxHFhg7g8A/lJKnVdKxQF/ATc6VNrCuRp9Siv26KSAqua+L3DK3L8dCFNKpSmljgAHzfM5k6vRp7Rij06tgb/N/VU28WX1f5SfPqUSpdQa4HwBSW4H5iiD9UA1EQngCp9PWTYKebnLqJdXQhFpiPG1mf0i2J23BLkafQA8RWSTiKwXkUEOk7Jo2KPTROBeETkB/IZRA7I3b0lzNfoANDKblVaLyHUOldR+7NFpG3CnuX8HUEVEatqZt6S5Gn2gdP6PCiM/na/o+ZRlo1AUhgHfK6UszhakmMhLn4bKmOI+ApgmIpf7Dy+dDAdmKaXqY1SD54pIWX4v89MnGrhGKdUOeBaYLyJVCzhPaWI80FNEtgA9MTwQlOX/UkH6lNX/UbFRlv98RXGXMYycTS2l0dXG1eiDUuqk+XsYCAfaFb+IRcYene4HFgEopf4DPDEce5XVZ5SnPmYzWKwZHonR7t3c4RIXTqE6KaVOKaXuNA3aBDMs3p68TuBq9Cmt/6PCyE/nK3s+zu5EuYrOFzeMjpNGXOpQapNHupZAFOZEPZsOmCMYnS/Vzf0aZVif6kAlc78WcIACOqlLk04YHWRjzP1WGG3wArQhZ0fzYZzf0Xw1+tTOlh+jE/Sks9+5IuhUC3Ax998G3jT3y+T/qAB9SuX/yJQnkPw7mm8hZ0fzhqt5Pk5X9ipv1M3Afoyvrglm2JvAQJs0E4F388h7H0bn5UFgrLN1uRp9gG7ADvMPsAO439m62KsTRqffWlP2rcANNnknmPn2ATc5W5er0Qe4C9hlhm0GbnO2LkXQ6W6zgNwPfJNdcJpxZe5/lJ8+pfV/hNEqEA1kYPQL3A88AjxixgvGwmWHTLk7Xs3z0W4uNBqNRmOlLPcpaDQajaaY0UZBo9FoNFa0UdBoNBqNFW0UNBqNRmNFGwWNRqPRWNFGQVPusPF0uUtEtonIc86YJS0iE0XkpCnLbhEZbkeep0XEuyTk02jyQg9J1ZQ7RCRJKeVj7vsB84G1SqnXS1iOiRheN6eKSDMgEqiplMooIE8UxjjzcyUjpUaTE11T0JRrlFJngYeAcabfeVcReV9ENpq+5x/OTisiL4rIDrN28a4Z9qCZdpuILBERbxGpIiJHRMTdTFPV9jgfOQ4AyRgzSxGRL03Ha7tE5A0z7EmgLrBKRFaZYTeIyH8isllEFouIj2PulEZjoI2CptyjDD82roAfxmzQBKVUJ6AT8KCINBKRmzBcEHdRSoUA75nZf1BKdTLD9mDMck3E8Itzi5lmmJmuoBpAe+CAaaTAmGnbEQjGcM4WrJT6BMMtRm+lVG8RqQW8CvRTSrUHNmE409NoHIabswXQaEqYG4BgEbnbPPYFmgH9gJlKqWQApVS2//ogEZkEVAN8gD/M8G+AF4CfgLHAg/lc7xkRGYvh/O42m/AhIvIQxn8wAMM9xvZcebua4WtFBAxfPv8VTV2Npmhoo6Ap94hIYwzXyGcx/MQ8oZT6I1ea/Jb7nAUMUkptE5ExQC8ApdRaMZbY7IXh6C7PpRKBj8w+hYHAt6Yr5gAM982dlFJxIjILw5vqZaJjLJJSaAe1RlNc6OYjTblGRGoD04HPlDGq4g/gUZv+gOYiUhljVaqx2SN/RKSGeYoqQLSZ/p5cp5+D0Yk9szA5lFJLMZp/RmOszHYRSBARf+Amm6SJ5jUB1gPdRaSpKVNlESkN7rY15RhdU9CUR7xEZCvgDmQCc4EPzbhvMNwQbxajTSYGoybwu4iEAptEJB1j1bRXgNeACDNdBJcKbIB5wCTsXxb1TQwj0grYAuzFWBlrrU2ar4DfReSU2a8wBlggIpXM+FcxvHtqNA5BD0nVaK4Qs1/idqXUSGfLotEUF7qmoNFcASLyKUazz83OlkWjKU50TUGj0Wg0VnRHs0aj0WisaKOg0Wg0GivaKGg0Go3GijYKGo1Go7GijYJGo9ForPw/l2KrVS1hGBMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(exp_results[:two_results, 1], exp_results[:two_results, 2], 'x-', label=\"Top-1 Accuracy\")\n", + "plt.plot(exp_results[:two_results, 1], exp_results[:two_results, 3], 'x-', label=\"Top-5 Accuracy\")\n", + "plt.plot(exp_results[:two_results, 1], exp_results[:two_results, 5], 'x-', label=\"Final Val. Accuracy\")\n", + "\n", + "plt.ylim(0)\n", + "\n", + "plt.title('Model Accuracy for Exponential Learning Rates')\n", + "plt.ylabel('% Accuracy')\n", + "plt.xlabel('Decay Rate')\n", + "\n", + "plt.legend()\n", + "# plt.xscale('log')\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "87ee3e82", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA72ElEQVR4nO3dd3hUZfbA8e9JDwRCSQiBUBM6BkIQC6sSbCgI664KCq4de3dVVtfC6m9ddZuiCGsHNWJdwIKFtooKBEjoSC8B6SX0wPn9cS84hJSZJJOZTM7neebJnVvPmTszJ/e+d+4rqooxxhjjrbBAB2CMMaZ6scJhjDHGJ1Y4jDHG+MQKhzHGGJ9Y4TDGGOMTKxzGGGN8YoWjCohIgYi0roT1PCEiYysjpiLrvVZEvvN4XmK8Rectx7a+EJFryrt8MBKRp0Rkq4hs8uM2mrv7JbyS11uh/VkVRORPIvJqoOMwv4oIdAChRERWA0nAEY/RbVU1zs/bbQqsAdqp6ooi0z4BVqjqA96ur7LiFZEngDRVHeKx7osqY93FbOtNYL2qPuqP9Zey3ebA/UALVd1cSetUYB9w7EdWhapaD/Dr+6iYOFoCq4BIVS2sym17UtX/89e6i7zWu4D3gT+q6pFSF6T493dNYUccle8SVY3zeOT7e4OqugH4Frjac7yINAAuBt7ydww1WHNgW3mKhoiU9o9bF4/3UL1yRxfkyngNqkoX95+lc4CBwPUBjifoWeGoAiKiIpLmDr8pIi+JyGciskdEfhKRVI95/y0i60Rkt4jkiMhZXm7mLYoUDmAQsEhV54vIwyKywt3mIhG51Mt4G4rIeDeemUBqkXmLjVdE+gB/Aga6p1hy3fFTReRGdzhMRB4VkTUisllE3haReHdaSzeOa0RkrXsq6BEvX4ui+dwkIstFZLubSxN3vIjIP91t7xaR+SLS2Z12sfs67RGRDSJy0hGbiJwHfA00cXN80x3fX0QWishON98OHsusFpGHRCQP2OvtF6fH6xEhIg1EZL2IXOJOi3Pz+4P7vL2IfO3mu1RErvBYT6n704fXNF5EXhORje7r89Sx02gikioik0Vkm7vf3hGReqW8Bmml7WvxOEVb1vtCRGJF5C0R2SEii0XkQRFZ701Oqroc+B7o6rE+X9/fpb0uaSIyTUR2uXG/X57XPiioqj0q6QGsBs4rZrziHNICvAlsA3rgnCp8B8j2mHcI0NCddj+wCYhxpz0BjC1h27E4h9q/8Rj3A3CPO3w50ATnn4WBwF4g2Z12LfBdCfFmA+OA2kBnYEOReX2KF5gK3OgOXw8sB1rjnIb5GBjjTmvpxvEfN7cuwEGgQwn5vwk8Vcz43sBWoBsQDbwITHenXQjkAPUAATp4vCYbgbPc4fpAtxK22wvnFNmx523d1/Z8IBJ40M0xyuM9Mg9oBsSWsM7jr7/HuGOvR4T7/AL3tW7kvkYfuuNrA+uA69x9kuHm39Gb/VnaNotM+wQY5a6nETATuNmdlubmHw0kAtOBfxX5nBx/Dcra13i8j7yY9xlgmrvPUoA8z/1Txmezvbvf763A+7u01+U94BGcz2AMHp/V6vYIeACh9HA/EAXATvfxqTu+aOF41WOZi4ElpaxzB86hdLFv1CLzvgqMdofbAIeARiXMOw8Y4A5fSzGFAwgHDgPtPab9HyV80XgTLycWjm+B2zymtXO3F+HxBZHiMX0mMKiE7b5J8YXjNeBZj+dx7jZa4hSVZcDpQFiR5dYCNwN1y9jnvTixcPwZGOfxPAzny7mXx3vk+jLWqcBuj/fRCxTzJY5TBOe762/ojhsI/K/I+kYBj/u6P4vbpjs+CefLOtZj3JXAlBLW81tgbpHPyfXFbKfYfU3xhaOkeVcCF3pMu5GyC8dunGKvOF/u0eV5f5f1ugBvA6M9Y6+uDztVVfl+q6r13MdvS5jH8+qbfXg0eorIA+4h9i4R2QnEAwlebvst4HIRicE5bTVJ3XPvIvIHEZnnnj7ZifPfZlnrTcT5El/nMW6N5wwVjLdJkfWtcbeX5DGuxNeqPNtQ1QKcI76mqjoZGAG8BGwWkdEiUted9fc4RX2Ne3rhjHJu7yjO69fUY551RRcqRjeP99FdJcwzGmc/vqmq29xxLYDTju1nd58MBhrjxf70Uguco6mNHtsYhfMfNiKSJCLZ7qma3cBYTn5PFPca+LKvS5q3SZF1e/Vau8sPBE7DOVoAfH5/l/q64Bx9CjDTPZVZbdtSrHAEEff86YPAFUB9dRpFd+G82bzxHbAdGIBziP2Wu94WOIf2d+D8Z1oPWODFercAhTinFI5p7kO8Wsb683E+bJ7rLgR+KWM5X5ywDRGpjXPqYQOAqr6gqplAR5zTTH90x89S1QE4H/pPcU7vlGd7gvP6bfCYp6zXpUzuefPROP/F3iZumxTOF+U0j6JTT50G9lspY3/6YB3Of9YJHtuoq6qd3On/h5PjKapaF+e9WPS9VuHXoAQbcU5RHdOspBk9qWMczundx6Bc7+9SXxdV3aSqN6lqE5yj2Zc99lu1YoUjuNTB+WBvASJE5DGgbumL/Eqd4+G3gb/hnLef4E6qjfMm3wIgItfh/Kda1vqO4LQ7PCEitUSkI3CND/H+ArQUkZLeZ+8B94pIKxGJw/nCeV/Lf+lnuIjEeDyi3G1cJyJdRSTa3cZPqrpaRE4VkdNEJBLnVMUB4KiIRInIYBGJV9XDOKcyjnoZwzigr4ic6673fpwvkxnlzKkkf8LZp9cDzwFvu8VkItBWRK4WkUj3caqIdPBif5Yk2vN1xdmvXwF/F5G64lzkkCoi57jz18E5ZbtLnEvF/1ipmZduHDBMROq7277Dx+WfAW4Skcb4+P5W1Y2U8rqIyOUicqyo7cDZf96+r4KKFY7gMgn4Eue8+xqcLzJvDrU9vY3zX+T7qnoQQFUXAX/H+W/qF+AUnKtHvHEHzmH8Jpx2hDd8iPcD9+82EZlTzLpfB8bgNJ6ucpe/08u4ivMwsN/jMVlVv8Fpd/gI57/RVJyrzcD5EvgPzod4Dc4prOfcaVcDq91TLbfgnO4pk6ouxfkP+0WcRulLcC7RPlSBvE4gIpnAfcAf3GLwN5wvoYdVdQ9Ow/kgnKOfTe70aHfx0vZnSQo48XXtDfwBiAIW4bx+HwLJ7vxP4pz+2QV8hlOsqspwYD3O++kbN66D3i6sqvNx3o9/pHzv79Jel1OBn0SkABgP3K2qK33MLyiI22hjjDEhR0RuxWk4P6fMmY3X7IjDGBMyRCRZRHq6p4na4Zwq/CTQcYWaYPjVpjHGVJYonCuZWuFcypwNvBzIgEKRnaoyxhjjEztVZYwxxichc6oqISFBW7ZsWe7l9+7dS+3atcuesZoItXwg9HIKtXwg9HIKtXzg5JxycnK2qmqiL+sImcLRsmVLZs+eXe7lp06dSq9evSovoAALtXwg9HIKtXwg9HIKtXzg5JxExOe7B9ipKmOMMT6xwmGMMcYnfi0c4tx3f757c72TziOJ4wVx+hLIE5FuHtOuEZGf3Yc3t0UwxhhTBaqijSNLVbeWMO0inNt/t8G5K+VInDt7NsC5DXR3nFsp5IjIeFXdUQXxGmOMKUWgT1UNAN5270z5I1BPRJJxOtj5WlW3u8Xia6BPIAM1xhjj8OsPAEVkFb/eBXKUqo4uMn0i8Iyqfuc+/xZ4CKdznBhVfcod/2dgv6o+X2T5ocBQgKSkpMzs7Gyf4vt85SFaxYfToWE4BQUFxMXFsXjbEVbtOsLFraPKkXHwOJZPKAm1nEItHwi9nEItHzg5p6ysrBxV7e7LOvx9quo3qrpBRBoBX4vIElWdXlkrdwvRaIDu3burr5fNRTXbyh3vzmXEVV2IW7eAqGad+c//5jLiqm6cmeptX0TBqSZcRljdhVo+EHo5hVo+UDk5+bVwqOqxznI2i8gnOP1sexaODZzY0UqKO24DzlGH5/iplR3fmakJjLgyg+vfnEVGgrBk+hxeGlz9i4YxxviT39o4RKS2iNQ5NozTR8CCIrONB/7gXl11OrDL7QxlEnCB2xlLfXfZSf6IM6V+LY4cUX7YeIQDh4/wxfxNzFy1naNH7R5exhhTHH8ecSQBnzg9ZxIBvKuqX4rILQCq+grwOU6/zstx+g2+zp22XUT+Asxy1zVcVbf7I8j1O/cRFxNBWp2j5G5VsmetZcyPa2hcN4Z+6cn069KELinxuHkYY0yN57fC4fZs1aWY8a94DCtwewnLv47TQ5zfzFjhtHG8NLgbh9w2jtvfmcPg05qzZFMBb/2wmle/W0WzBrH0S2/CJelN6JBcx4qIMaZGC5l7VZVH3vpdjLgqgzNTE5i6zmnzeGlwN/LW7+LVa7qza/9hvlq4iQl5Gxk9fSUjp64gNbG2U0S6NCGtUWhdbWGMMd6o0YXjlnNSTxp3ZmrC8cbx+NhILu/ejMu7N2NbwUG+XLiJCbn5vDD5Z/797c90SK5Lv/RkLklvQvOGtao6fGOMCYgaXTh80TAumsGntWDwaS34ZfcBPp+/kQm5+Tw3aSnPTVpKl2b1uCQ9mb7pySTHxwY6XGOM8RsrHOWQVDeG63q24rqerVi/Yx+f5W1kQl4+T322mKc+W0yPlg3o1yWZizonk1gnOtDhGmNMpbLCUUEp9Wtx8zmp3HxOKqu27mVibj4T8vJ57L8LeWL8Qs5MTaBfejJ9OjemXq3q/Wt0Y4wBKxyVqlVCbe48tw13ntuGpZv2MDEvnwm5+Tz88Xwe/XQBZ7dNpF96Mud3TKJOTGSgwzXGmHKxwuEn7RrXoV3jdtx3flsW5u9mQm4+E/M2MnnJZqIiwujdrhH9uiRzbvskYqPCAx2uMcZ4zQqHn4kInZvG07lpPA/1ac/cdTuYkLuRz+Zv5MuFm6gVFc55HZLol57MOe0SiY6wImKMCW5WOKpQWJiQ2aIBmS0a8Od+HZm5ajsT8vL5Yv5GxufmUycmggs7NaZfejI90xKIDA/0Xe+NMeZkVjgCJDxMOCO1IWekNuTJ/p34fvlWJuZtZNKCTXyYs576tSK56JRk+qUnc1qrhoSH2a/VjTHBwQpHEIgMD6NXu0b0ateIpy/tzPRlW5mQm8+nczfw7k9rSawTTd9TkrmkSzIZzeoTZkXEGBNAVjiCTHREOOd3TOL8jknsP3SEyUs2MyE3n3dnruXNGatpWi+Wvu6v1Ts3rWv3zTLGVDkrHEEsNiqcvu6v0fccOMw3i39hQu5GXv9uFaOnr6Rlw1rH75vVrnGdQIdrjKkhrHBUE3ViIrk0I4VLM1LYue8QkxZuYkLuRl6eupwRU5bTNimOfulN6JeeTOtEu/miMcZ/rHBUQ/VqRTHw1OYMPLU5W/Yc5MsFG5mQu5F/fL2Mf3y9jM5N69Ix7hBpXfaRUt9uvmiMqVxWOKq5xDrRXH1GS64+oyUbd+1375u1kXFLDzPub1Po1rwe/dKb0Dc9maS6MYEO1xgTAvxeOEQkHJgNbFDVfkWm/RPIcp/WAhqpaj132hFgvjttrar293es1V1yfCw3ntWaG89qzbjPJ7O1VnMm5G5k+MRF/OWzRZzWqgH90ptwUefGNIyzmy8aY8qnKo447gYWA3WLTlDVe48Ni8idQIbH5P2q2tXv0YWoRrXCuKJXGrf1SmP55oLj98169NMFPD5+IT3TnJsvXtipMfGxdt8sY4z3/PrTZBFJAfoCr3ox+5XAe/6Mp6ZKaxTHPee15Zv7zuHzu87i5rNbs2prAQ9+mMepT33DjW/N5r/zNrD3YGGgQzXGVAPidPvtp5WLfAj8FagDPFD0VJXHfC2AH4EUVT3ijisE5gGFwDOq+mkxyw0FhgIkJSVlZmdnlzvWgoIC4uJC52qksvJRVVbtPspPGwuZufEIOw4qUWHQpVE4PRpH0CUxnKjw4PqNSE3bR9VRqOUUavnAyTllZWXlqGp3X9bht1NVItIP2KyqOSLSq4zZBwEfHisarhaqukFEWgOTRWS+qq7wXEhVRwOjAbp37669epW1mZJNnTqViiwfbLzJJwu4Hjh6VJm9ZgcT8/L5fP5GZs07SO2ocC5w75t1VptEoiICf9+smriPqptQyynU8oHKycmfbRw9gf4icjEQA9QVkbGqOqSYeQcBt3uOUNUN7t+VIjIVp/1jxcmLmooKCxN6tGpAj1YNeKxfR35atZ0Jufl8sWATn8zdQHxsJH06NaZfl2TOaN2QCLv5ojE1mt8Kh6oOA4YBuEccDxRXNESkPVAf+MFjXH1gn6oeFJEEnCL0rL9iNb+KCA+jZ1oCPdMSGD6gM98t38JE9zbw789eR8PaUVzs3nzx1JYN7L5ZxtRAVf47DhEZDsxW1fHuqEFAtp7Y2NIBGCUiR3Ea8J9R1UVVHGqNFxURRu/2SfRun8SBw0eYunQLE/Ly+SBnHWN+XEPjujH0TXeKSNdm9ey+WcbUEFVSOFR1KjDVHX6syLQnipl/BnBKFYRmvBQTGU6fzo3p07kxew8W8q1788UxP6zhte9WkVI/1r1vVjIdk+3mi8aEMvvluPFZ7egI+ndpQv8uTdi1/zBfLdzExLyN/Od/K3ll2gpaJ9bmEreIpDWymy8aE2qscJgKiY+N5PLuzbi8ezO27z3Elws2MSE3nxcm/8y/v/2Z9o3rcEkX5+aLLRrWDnS4xphKYIXDVJoGtaO46rTmXHVaczbvPsDn8537Zj03aSnPTVpKl5T44/fNalIvNtDhGmPKyQqH8YtGdWO4tmcrru3Zig079/NZXj4Tcjfy9OeLefrzxZzasj790ptw8SnJJNax+2YZU51Y4TB+17ReLEPPTmXo2ams3rrXvW/WRh4fv5AnJyzkjNSG9EtvQp9OjalfOyrQ4RpjymC/5DJVqmVCbe7o3YZJ957NV/eezR1ZaeTvPMCwj+dz6tPfcN0bM/koZz17DhwG4JVpK5ixYusJ65ixYiuvTLPfghoTKHbEYQKmbVId7rugHfee35aF+buZkJfPxNyN3P9BLlGfhJHVLpG2SXW4/Z05vDS4G+AUjTvencuIqzLKWLsxxl+scJiAExE6N42nc9N4Hu7TnjlrdzIxL5/P8jYyaeEvRIWHce3rszgnJYyc/zlF48zUhECHbUyNZYXDBBURIbNFfTJb1OfRvh2ZuWo7E/PyeX/WOr5eU8htvVKtaBgTYNbGYYJWeJhwRmpD+qYnExMZDsCr361ixvKtZSxpjPEnKxwmqB1r0xj9h0z6p0ZyqPAoN749+6QGc2NM1bHCYYJa3vpdx9s0fpsWSVa7RA4WHuGL+ZsCHZoxNZYVDhPUbjnn1zaNMBH+NTCDpvVqMWnhJjbvORDg6IypmaxwmGolvlYko67OZM+BQm5/Zw6HjxwNdEjG1DhWOEy10yG5Ls/8/hRmrd7B058tDnQ4xtQ4djmuqZYGdG1K3vpdvPbdKtJT4vldt5RAh2RMjeH3Iw4RCReRuSIysZhp14rIFhGZ5z5u9Jh2jYj87D6u8Xecpvp5+KL2nNaqAcM+ns+CDbsCHY4xNUZVnKq6GyjtfML7qtrVfbwKICINgMeB04AewONuP+TGHBcZHsZLg7tRv1YUt4zNYcfeQ4EOyZgawa+FQ0RSgL7Aqz4ueiHwtapuV9UdwNdAn8qOz1R/CXHRjBzSjc27D3JX9lyOHNWyFzLGVIio+u+DJiIfAn8F6gAPqGq/ItOvdadvAZYB96rqOhF5AIhR1afc+f4M7FfV54ssPxQYCpCUlJSZnZ1d7lgLCgqIi4sr9/LBJtTygdJzmrruMG8uPES/1pFc1rZ63Jq9pu2j6ijU8oGTc8rKyspR1e6+rMNvjeMi0g/YrKo5ItKrhNkmAO+p6kERuRl4C+jt7TZUdTQwGqB79+7aq1dJmynb1KlTqcjywSbU8oHSc+oFHPw4j/dmrqPfmafQp3NyVYZWLjVtH1VHoZYPVE5O/jxV1RPoLyKrgWygt4iM9ZxBVbep6kH36atApju8AWjmMWuKO86YEj3RvxNdmtXj/nG5LN9cEOhwjAlZfiscqjpMVVNUtSUwCJisqkM85xERz38L+/NrI/ok4AIRqe82il/gjjOmRNER4Ywc3I2YyHCGjpl9vDMoY0zlqvIfAIrIcBHp7z69S0QWikgucBdwLYCqbgf+AsxyH8PdccaUqkm9WEZc1Y012/Zx/7hcjlpjuTGVrkoKh6pOPdYwrqqPqep4d3iYqnZS1S6qmqWqSzyWeV1V09zHG1URpwkNZ6Q2ZNhF7flq0S+MtC5mjal0dssRE5Ju+E0rLunShOe/Wsq0ZVsCHY4xIcUKhwlJIsLffn8K7ZLqcNd7c1m3fV+gQzImZFjhMCGrVlQEo67ORFW5eUwO+w8dCXRIxoQEKxwmpLVoWJt/D8pg8abd/OmT+fjzB6/G1BRWOEzIy2rfiHvPa8snczfw1ozVgQ7HmGrPCoepEe7ISuO8Do146rPFzFxlV3YbUxFWOEyNEBYm/GNgV5o1qMVt78xh0y7rdtaY8rLCYWqMujFOt7P7DhVy6zs5HCy0xnJjysMKh6lR2ibV4bnLujB37U7+MnFRoMMxplqywmFqnL7pydx8TmvG/riWcbPXBTocY6odKxymRvrjBe3omdaQRz9dQN76nYEOx5hqxQqHqZEiwsN48cpuJMZFc8uYHLYVHCx7IWMMYIXD1GANakfxypBMtu49xJ3vzaXwyNFAh2RMtWCFw9Rop6TE8/RvOzNjxTaem7Q00OEYUy1Y4TA13uXdmzHk9OaMmr6SiXn5gQ7HmKBnhcMY4LF+nejWvB4PfpjH0k17Ah2OMUHN74VDRMJFZK6ITCxm2n0iskhE8kTkWxFp4THtiIjMcx/j/R2nqdmiIsIYOSSTWlER3DI2h137rdtZY0pSFUccd/NrX+JFzQW6q2o68CHwrMe0/ara1X30L35xYypPUt0YRg7pxrrt+7jv/XnW7awxJfBr4RCRFKAv8Gpx01V1iqoe62HnRyDFn/EYU5ZTWzbgz/068u2Szbw4eXmgwzEmKIk/+ycQkQ+BvwJ1gAeO9TtewrwjgE2q+pT7vBCYBxQCz6jqp8UsMxQYCpCUlJSZnZ1d7lgLCgqIi4sr9/LBJtTygarLSVX5z/xD/JBfyN3dounaKMIv27F9FPxCLR84OaesrKwcVe3u00pU1S8PoB/wsjvcC5hYyrxDcI44oj3GNXX/tgZWA6mlbS8zM1MrYsqUKRVaPtiEWj6qVZvTvoOFetG/pmvnx7/UVVsK/LIN20fBL9TyUT05J2C2+vj97s9TVT2B/iKyGsgGeovI2KIzich5wCNAf1U9/vNdVd3g/l0JTAUy/BirMSeIjQpn1NWZhIcJN4/JYd+hwkCHZEzQ8FvhUNVhqpqiqi2BQcBkVR3iOY+IZACjcIrGZo/x9UUk2h1OwClCditTU6WaNajFC4MyWLZ5Dw99ZN3OGnNMlf+OQ0SGi8ixq6SeA+KAD4pcdtsBmC0iucAUnDYOKxymyp3dNpEHLmjHhNx8XvtuVaDDMSYo+KfVrwhVnYpzuglVfcxj/HklzD8DOKUqYjOmLLf1SiVv/U7++sUSOjapy5mpCYEOyZiAsl+OG1MGEeH5y7vQsmEt7nx3Lvk79wc6JGMCygqHMV6oExPJqKu7c7DwKLeOzeHAYet21tRcVjiM8VJaoziev7wLuet38cT4hYEOx5iAscJhjA/6dG7M7VmpZM9ax3sz1wY6HGMCwgqHMT667/x2nN02kcf/u5C5a3cEOhxjqpwVDmN8FB4mvDCoK0nx0dw6dg5b9li3s6ZmscJhTDnUq+V0O7tj3yHueHcOh63bWVODWOEwppw6NYnnmd+fwk+rtvPXz5cEOhxjqkyV/ADQmFB1aUYKuet28fr3q+jSLJ4BXZsGOiRj/M6OOIypoEf6dqBHywY89FEeizfuDnQ4xvidFQ5jKigyPIwRgzOIj43k5jE57Nx3KNAhGeNXVjiMqQSN6sTw8uBMNu7az93Z8zhi3c6aEGaFw5hKktmiPo9f0olpy7bwr2+WBTocY/zGq8IhIrVFJMwdbisi/UUk0r+hGVP9DD6tOVd0T+HFycv5auGmQIdjjF94e8QxHYgRkabAV8DVwJv+CsqY6kpEGD6gM+kp8dw3LpcVWwoCHZIxlc7bwiGqug/4HU4/4pcDnfwXljHVV0xkOCOHZBIVEcbNY3IoOGjdzprQ4nXhEJEzgMHAZ+64cC8XDBeRuSIysZhp0SLyvogsF5GfRKSlx7Rh7vilInKhl3EaExSa1otlxJUZrNxSwB8/yLVuZ01I8bZw3AMMAz5R1YUi0hqnS1dv3A0sLmHaDcAOVU0D/gn8DUBEOuL0U94J6AO8LCJeFSpjgsWZaQk8fFF7vliwiVHTVwY6HGMqjVeFQ1WnqWp/Vf2b20i+VVXvKms5EUkB+gKvljDLAOAtd/hD4FwREXd8tqoeVNVVwHKghzexGhNMbjqrNX3Tk3n2yyX87+ctgQ7HmEoh3hxCi8i7wC3AEWAWUBf4t6o+V8ZyHwJ/BeoAD6hqvyLTFwB9VHW9+3wFcBrwBPCjqo51x78GfKGqHxZZfigwFCApKSkzOzu7zFxKUlBQQFxcXLmXDzahlg9U35wOFCp/+XE/uw4qj58RS2It5/+16ppPaUItp1DLB07OKSsrK0dVu/u0ElUt8wHMc/8OBv4ORAJ5ZSzTD6chHaAXMLGYeRYAKR7PVwAJwAhgiMf414DLStteZmamVsSUKVMqtHywCbV8VKt3Tiu3FGjnx77Uvi9M1/2HClW1eudTklDLKdTyUT05J2C2elEHPB/etnFEur/b+C0wXlUPA2UdqvQE+ovIaiAb6C0iY4vMswFoBiAiEUA8sM1zvCvFHWdMtdQqoTb/GtSVBRt288gnC6yx3FRr3haOUcBqoDYwXURaAKXezU1Vh6lqiqq2xGnonqyqQ4rMNh64xh2+zJ1H3fGD3KuuWgFtgJlexmpMUDq3QxJ3n9uGj+asZ+yPawIdjjHl5m3j+Auq2lRVL3aPbtYAWeXZoIgMF5H+7tPXgIYishy4D3jY3d5CYBywCPgSuF1Vj5Rne8YEk7vPbUNWu0SenLCIn3fYW9pUT97eciReRP4hIrPdx99xjj68oqpT1W0YV9XHVHW8O3xAVS9X1TRV7aGqKz2WeVpVU1W1nap+4WNexgSlsDDhXwMzaFo/lhHzDrJ594FAh2SMz7w9VfU6sAe4wn3sBt7wV1DGhLL4WpGMujqT/YXKbe/M4VChdTtrqhdvC0eqqj6uqivdx5NAa38GZkwoa9+4Ltd3jmb2mh08/dmiQIdjjE+8LRz7ReQ3x56ISE9gv39CMqZmOD05ght/04q3fljDRznrAx2OMV7zts/xW4C3RSTefb6DX6+GMsaU08MXtWdB/i7+9Ml82jWuQ+em8WUvZEyAeXtVVa6qdgHSgXRVzQB6+zUyY2qAiPAwRlzVjQa1o7h5TA479lq3syb4+dQDoKruVtVjv9+4zw/xGFPjJMRFM3JIJlv2HOSu7LnW7awJehXpOlYqLQpjariuzerxl9924n8/b+X5r5YGOhxjSlWRwmH/FhlTiQae2pwrezRn5NQVfDF/Y6DDMaZEpTaOi8geii8QAsT6JSJjarAn+ndk8cbdPPBBLmmN4miTVCfQIRlzklKPOFS1jqrWLeZRR1W9vSLLGOOl6IhwRg7pRmxUODePyWH3gcOBDsmYk1TkVJUxxg+S42MZcVU31mzfx/3jcjlqjeUmyFjhMCYInd66IY9c3IGvF/3Cy1OXBzocY05ghcOYIHVdz5YM6NqEv3+9jKlLNwc6HGOOs8JhTJASEZ75XTrtkupwd/Y81m7bF+iQjAGscBgT1GKjwhl9dXdUlaFjZrP/kPXhYQLPCocxQa55w1r8+8oMlv6yh4c/zrNuZ03A+a1wiEiMiMwUkVwRWSgiTxYzzz9FZJ77WCYiOz2mHfGYNt5fcRpTHWS1a8R957Xlv/PyeeP71YEOx9Rw/vwtxkGgt6oWiEgk8J2IfKGqPx6bQVXvPTYsIncCGR7L71fVrn6Mz5hq5fasNPI27OLpzxfTsUldTm/dMNAhmRrKb0ccbt/kBe7TSPdR2jH2lcB7/orHmOouLEz4+xVdaNGgFne8O4dNu6zbWRMY4s/zpSISDuQAacBLqvpQCfO1AH4EUlT1iDuuEJgHFALPqOqnxSw3FBgKkJSUlJmdnV3uWAsKCoiLiyv38sEm1PKB0MupvPlsKDjKX37YT5O4MIadFkNkWPDcb9T2UfArmlNWVlaOqnb3aSWq6vcHUA+YAnQuYfpDwItFxjV1/7YGVuN0X1viNjIzM7UipkyZUqHlg02o5aMaejlVJJ/P8/K1xUMTddjHeZUXUCWwfRT8iuYEzFYfv9Or5KoqVd3pFo4+JcwyiCKnqVR1g/t3JTCVE9s/jKnRLjolmVvOSeXdn9by/qy1gQ7H1DD+vKoqUUTqucOxwPnAkmLmaw/UB37wGFdfRKLd4QSgJ7DIX7EaUx09cEFbfpOWwJ8/XUjuup2BDsfUIP484kgGpohIHjAL+FpVJ4rIcBHp7zHfICDbPWQ6pgMwW0RycY5UnlFVKxzGeIgID+OFKzNIrBPNLWNz2FpwMNAhmRrCb5fjqmoexZxeUtXHijx/oph5ZgCn+Cs2Y0JFg9pRjLo6k9+PnMGd785lzA09iAi33/Ua/7J3mDHVXOem8Tx96Sn8sHIbf/vypLPBxlQ664zJmBBwWWYKeet38p//rSI9pR6XdGkS6JBMCLMjDmNCxKN9O5LZoj4PfpjH0k17Ah2OCWFWOIwJEVERYbw8uBtxMRHcPGY2u/Zbt7PGP6xwGBNCkurGMHJwN9bv2M+978+zbmeNX1jhMCbEdG/ZgMcu6cjkJZt5YfLPgQ7HhCArHMaEoKtPb8HvujXlX9/8zLeLfwl0OCbEWOEwJgSJCP936Sl0alKXe96fx6qtewMdkgkhVjiMCVExkeG8MiST8DDhljE57D1YGOiQTIiwwmFMCGvWoBYvXpnBz5v38OBH1u2sqRxWOIwJcWe1SeSPF7bns7yNvPq/VYEOx4QAKxzG1AC3nNOaizo35q9fLGbG8q2BDsdUc1Y4jKkBRITnLu9C68Q47nhvLht27g90SKYas8JhTA0RFx3BqKszOVR4lFvH5nDg8JFAh2SqKSscxtQgqYlx/OOKLuSt38Vj/11gjeWmXKxwGFPDXNCpMXf2TmPc7PW8O9O6nTW+82fXsTEiMlNEckVkoYg8Wcw814rIFhGZ5z5u9Jh2jYj87D6u8VecxtRE95zXlnPaJvLE+IXMWbsj0OGYasafRxwHgd6q2gXoCvQRkdOLme99Ve3qPl4FEJEGwOPAaUAP4HERqe/HWI2pUcLDhH8P6kpyfCy3js1h854DgQ7JVCN+KxzqKHCfRroPb0+oXojTR/l2Vd0BfA308UOYxtRY9WpF8cqQTHbtP8wd78zl8JGjgQ7JVBPiz8YxEQkHcoA04CVVfajI9GuBvwJbgGXAvaq6TkQeAGJU9Sl3vj8D+1X1+SLLDwWGAiQlJWVmZ2eXO9aCggLi4uLKvXywCbV8IPRyCpZ8ZuQXMjrvIOe3iGBwh+gKrStYcqosoZYPnJxTVlZWjqp292klqur3B1APmAJ0LjK+IRDtDt8MTHaHHwAe9Zjvz8ADpW0jMzNTK2LKlCkVWj7YhFo+qqGXUzDl88T4BdrioYn68Zx1FVpPMOVUGUItH9WTcwJmq4/f6VVyVZWq7nQLR58i47ep6kH36atApju8AWjmMWuKO84Y4wd/urgDPVo1YNjH81mYvyvQ4Zgg58+rqhJFpJ47HAucDywpMk+yx9P+wGJ3eBJwgYjUdxvFL3DHGWP8IDI8jJeu6kZ8bCS3jM1h575DgQ7JBDF/HnEkA1NEJA+YhdPYPVFEhotIf3eeu9xLdXOBu4BrAVR1O/AXd7lZwHB3nDHGTxLrRDNySCabdh3grux5HLFuZ00JIvy1YlXNAzKKGf+Yx/AwYFgJy78OvO6v+IwxJ+vWvD5P9u/Mnz6Zzz+/XsYDF7YLdEgmCNkvx40xJ7iyRzMGdm/GiCnLmbRwU6DDMUHICocx5gQiwpMDOtElJZ77x+WyfHNB2QuZGsUKhzHmJDGR4Ywckkl0RBg3j5lNgXU7azxY4TDGFKtJvVhevCqDVVv38sC4XLuTrjnOCocxpkRnpiYw7KIOfLlwEyOnrQh0OCZIWOEwxpTqxrNa0S89mecnLWX6si2BDscEASscxphSiQjPXpZOm0Z1uCt7Luu27wt0SCbArHAYY8pUK8rpdvbIUeUW63a2xrPCYYzxSsuE2vx7UFcW5u/mTx/Pt8byGswKhzHGa73bJ3HPeW34eO4G3v5hTaDDMQFihcMY45O7erfh3PaN+MvERcxabbeQq4mscBhjfBIWJvxjYFdS6sdy2ztz+GW3dTtb01jhMMb4LD42klFXd2fvwUJue2cOhwqt29maxAqHMaZc2jWuw7OXpZOzZge3vzPnhGkzVmzlFfvBYMiywmGMKbd+6U3ol57M14t/4a+fO/2wzVixlTvenUt6SnyAozP+4rf+OIwxNcO/BnZl1da9jJq+kp8Sw1g7fS4jBmdwZmpCoEMzfuLPrmNjRGSmiOS6vfw9Wcw894nIIhHJE5FvRaSFx7QjIjLPfYz3V5zGmIqJCA/j7et70LhuNPO2HCUiXIgMt5MZ/vbKtBXMWLH1hHFVdYrQn3v3INBbVbsAXYE+InJ6kXnmAt1VNR34EHjWY9p+Ve3qPvpjjAlaS3/Zw6FCpVujcLYUHOTyV37g9nfn2O1J/Cg9JZ473p3LjOVO8ajKU4T+7DpWgWM9wES6Dy0yzxSPpz8CQ/wVjzHGP459YY0YnMGhdQvQxh247Z25fLVwE18v+oWbzmrFbb3SqB1tZ8Yr05mpCYy4KoPr3phFq4TabN5zkBFXVc0pQvHnbQNEJBzIAdKAl1T1oVLmHQFsUtWn3OeFwDygEHhGVT8tZpmhwFCApKSkzOzs7HLHWlBQQFxcXLmXDzahlg+EXk6hks/nKw/RKj6cDg3Dj+e0eNsRFmwtZPsB5YeNR4iPFi5rE0nPphGEiQQ6ZK8F+z7atv8oD0zbjwL9UyP5XZuoMpcpmlNWVlaOqnb3acOq6vcHUA+YAnQuYfoQnCOOaI9xTd2/rYHVQGpp28jMzNSKmDJlSoWWDzahlo9q6OUUavmoFp9TzprtOmDEd9rioYna94Xp+tPKbVUfWDkF+z668c1Z2uKhifr4f+drxvCv9PvlW8pcpmhOwGz18Tu9SlqwVHWnWzj6FJ0mIucBjwD9VfWgxzIb3L8rgalARlXEaoypXN2a1+fjW8/k34O6sq3gEFeM+oHb37H2j4qakJvP14t/oXf7RjzRvzMjrspw2jyKNJj7gz+vqkoUkXrucCxwPrCkyDwZwCicorHZY3x9EYl2hxOAnsAif8VqjPGvsDBhQNemTL6/F/ec14Zvl/zCuf+YxrNfLrH+zMvpje9XESYwfEAn4Nc2j7z1u/y+bX+2ViUDb7ntHGHAOFWdKCLDcQ6NxgPPAXHAB+Kc91yrzhVUHYBRInLUXfYZVbXCYUw1FxsVzj3ntWXgqc149sulvDx1BeNmr+fBC9vx+8wUwsOqT/tHIOXv3M+CDbsZeGpzUurXOj7+zNSEKmkc9+dVVXkUc3pJVR/zGD6vhGVnAKf4KzZjTGAlx8fyz4Fd+cMZLRg+cREPfpTHWz+s5rF+HTmtdcNAhxf0Rk5dgaLcnpUakO3br3SMMQGT4dH+sWPvIQaO/pFbx+awdpu1f5Qkf+d+3p+1jsu7NzvhaKMq2YXVxpiAEnHaPy7o2Jj//G8lI6eu4NvFm7nhrFbc1iuVOjGRgQ4xqLw8dTmKcluvwBxtgB1xGGOCRGxUOHed24YpD/SiX5dkRk5dQdbz03h/1lqOHLVuaiE4jjbACocxJsg0jo/hH1d05dPbe9K8QSwPfTSfS178jmEfzw/YvZmCxctTlwME9GgDrHAYY4JU12b1+OjWM3nhygx27jvEezPXcs3rM/l07gag5t2+PViONsDaOIwxQUxE6N+lCRd0TOI/01fy4uTl3PP+PN6asZpV2/by8uBuNeb27ceONm7PSgtwJHbEYYypBmIiw7nz3DZMfzCLDsl1mLtuJ/sOFjJnzQ72HQr9HxAeO9q4onszmtaLDXQ4VjiMMdXHyq0F/LL7IFed1hwFnv9qGWc/O5W3f1gd0v2eH2/bCIKjDbDCYYypJo7fvv2qDP7v0lN46/oe1I2JIKF2FI/9dyHn/WMa/523gaMhdgVWsB1tgBUOY0w1kbd+1wn9TZyZmsArV2cyIKMJb1x7KrWiwrk7ex59X/yOKUs3H7vLdrX30pTgOtoAaxw3xlQTt5xz8iWonvdmOqdtIhPy8vn7V8u47o1Z9GjVgIf6tCezRf2qDrXSbNi5n3Gzg+toA+yIwxgTIo7dgfeb+85h+IBOrNxSwO9HzuCmt2ez7Jc9gQ6vXF4OwqMNsMJhjAkxURFh/OGMlkz7Yxb3n9+WH1dso8+/pvPAB7ms3xH898B6ZdoKZqzYesLRxppte4Pqh45WOIwxIal2dAR3ntuGaQ9mccNvWjE+N5/ez0/jLxMXsX3voUCHV6L0lHjueHcuj326AIDTWzcMuh86WhuHMSakNagdxSN9O3Jtz1b8+5tlvPH9Kt6ftY6bzmrNjWe1onZ04L8G9x0qZOWWvSzfXMCKLQWkJdbm2yWbOaVpXR4fv/CEiwKCQeBfMWOMqQJN68Xy7GVdGHp2a56btJR/frOMMT+u5s7ebbiyR3OiIvx7AkZV2bb30PHisHyz81i5ZS8bdu4/Pl94mNCiYS3aNIpj/obd3NU7LaiKBvixcIhIDDAdiHa386GqPl5knmjgbSAT2AYMVNXV7rRhwA3AEeAuVZ3kr1iNMTVHWqM6jLq6O3PX7uBvXy7h8fELefW7ldx3flsGdGlKWAV7ITxyVFm/Y98JxWGFezSxa//h4/PVigonNTGOHq0akJpYm7RGcaQmxtGiYW1mr9nOHe/O5a7eaYz9aS2npzYMquLhzyOOg0BvVS0QkUjgOxH5QlV/9JjnBmCHqqaJyCDgb8BAEekIDAI6AU2Ab0Skraoe8WO8xpgaJKN5fd676XSm/7yVZ79cwr3v5zJq2kpOaVqXSzNSODPt1y/qGSu2krd+1wmXBB84fMQ5vbSl4PhRxIrNBazcuveEX7EnxEWTmlibfunJx4tDWqM4GteNKbZIef7Q8czUBE5PbXjC82Dgz65jFShwn0a6j6K/yBkAPOEOfwiMEKfz8QFAtqoeBFaJyHKgB/CDv+I1xtQ8IsI5bRM5Ky2Bz+Zv5O9fLeWDnA18MjefR/t2oCXw1cJN3P9BLgNPbcZTExexfItTJNbv2M+x3xiGCTRrUIu0xDjObptIWmIcqY3iSEuMI76Wbx1RFfdDxxFXZZC3flfQFA7x568rRSQcyAHSgJdU9aEi0xcAfVR1vft8BXAaTjH5UVXHuuNfA75Q1Q+LLD8UGAqQlJSUmZ2dXe5YCwoKiIuLK/fywSbU8oHQyynU8oHqn1PhUWX6+kI++vkQew9DhCiF+utRQVQYNK4dRnJtoUlcGMm1w0iOCyOplhAVXrFTXFWl6D7KysrKUdXuvqzDr43j7qmlriJSD/hERDqr6oJKXP9oYDRA9+7dtVevXuVe19SpU6nI8sEm1PKB0Msp1PKB0MjpPODhQ4Xc9NZsvl+xjd+kJXDDWa1IS4yjab3YCreBBFpl7KMq+R2Hqu4EpgB9ikzaADQDEJEIIB6nkfz4eFeKO84YY/xu3rqdLN60h/6pkSzauJvoiDCaNahV7YtGZfFb4RCRRPdIAxGJBc4HlhSZbTxwjTt8GTDZbRsZDwwSkWgRaQW0AWb6K1ZjjDnGs3H6d22iGHFVBne8O/ekbmtrMn8ecSQDU0QkD5gFfK2qE0VkuIj0d+d5DWjoNn7fBzwMoKoLgXHAIuBL4Ha7osoYUxVKa5w2Dn9eVZUHZBQz/jGP4QPA5SUs/zTwtL/iM8aY4pR1F15j96oyxhjjIyscxhhjfGKFwxhjjE+scBhjjPGJFQ5jjDE+8estR6qSiGwB1lRgFQlAKF2oHWr5QOjlFGr5QOjlFGr5wMk5tVDVRF9WEDKFo6JEZLav92sJZqGWD4ReTqGWD4ReTqGWD1ROTnaqyhhjjE+scBhjjPGJFY5fjQ50AJUs1PKB0Msp1PKB0Msp1PKBSsjJ2jiMMcb4xI44jDHG+MQKhzHGGJ+EfOEQkT4islRElovIw8VM/6eIzHMfy0Rkp8e0a0TkZ/dxTdFlA6WCOR3xmDa+SgMvgRf5NBeRKSIyV0TyRORij2nD3OWWisiFVRt5ycqbk4i0FJH9HvvolaqP/mRe5NNCRL51c5kqIike06rr56i0nILxc/S6iGx2u+QubrqIyAtuvnki0s1jmm/7SFVD9gGEAyuA1kAUkAt0LGX+O4HX3eEGwEr3b313uH51zsl9XhDoHHzNB6cx71Z3uCOw2mM4F4gGWrnrCa/mObUEFgQ6h3Lk8wFwjTvcGxjjDlfbz1FJObnPg+pz5MZ0NtCtpPcPcDHwBSDA6cBP5d1HoX7E0QNYrqorVfUQkA0MKGX+K4H33OELcTqf2q6qO4CvObnr20CoSE7ByJt8FKjrDscD+e7wACBbVQ+q6ipgubu+QKtITsHIm3w6ApPd4Ske06vz56iknIKSqk4HtpcyywDgbXX8CNQTkWTKsY9CvXA0BdZ5PF/vjjuJiLTA+a/12BvF62WrWEVyAogRkdki8qOI/NZvUXrPm3yeAIaIyHrgc5yjKG+XDYSK5ATQyj2FNU1EzvJrpN7xJp9c4Hfu8KVAHRFp6OWygVCRnCD4PkfeKClnn/dRqBcOXwwCPtTQ6qK2uJxaqHO7gauAf4nIyd2dBZ8rgTdVNQXncHuMiFT3925JOW0EmqtqBk53yu+KSN1S1hMsHgDOEZG5wDnABqC6f5ZKy6k6fo4qTXX/8JVlA9DM43mKO644gzjxlI4vy1aliuSEqm5w/64EplJM975VzJt8bsDpgx5V/QGIwblRW3XeR8Xm5J522+aOz8E5D9/W7xGXrsx8VDVfVX/nFrxH3HE7vVk2QCqSUzB+jrxRUs6+76NAN+j4ubEoAqehpxW/NoB1Kma+9sBq3B9EejQYrcJpLKrvDjeo5jnVB6Ld4QTgZ0ppWA+WfHAa9K51hzvgtAcI0IkTG8dXEhyN4xXJKfFYDjgNtxsC/b7zMp8EIMwdfhoY7g5X289RKTkF3efII+aWlNw43pcTG8dnlncfBTzRKnghLwaW4fzn9og7bjjQ32OeJ4Bniln2epwG1+XAdYHOpaI5AWcC890PyXzghkDn4k0+OI2U37txzwMu8Fj2EXe5pcBFgc6lojkBvwcWuuPmAJcEOhcv87nM/QJdBrx67IvVnVYtP0cl5RTEn6P3cE51HsZpp7gBuAW4xZ0uwEtuvvOB7uXdR3bLEWOMMT4J9TYOY4wxlcwKhzHGGJ9Y4TDGGOMTKxzGGGN8YoXDGGOMT6xwmBrJ4+6mC0UkV0TuD8Sv0UXkCRHZ4MaySESu9GKZe0SkVlXEZ0xx7HJcUyOJSIGqxrnDjYB3ge9V9fEqjuMJnDutPi8ibYAcoKGqHi5lmdU41+BvrZoojTmRHXGYGk9VNwNDgTvcPgvCReQ5EZnl9ltw87F5ReQhEZnvHqU84467yZ03V0Q+EpFaIlJHRFaJSKQ7T13P5yXE8TOwD+fXu4jISPdGegtF5El33F1AE2CKiExxx10gIj+IyBwR+UBE4vzzShnjsMJhDMfvORQONML5xe0uVT0VOBW4SURaichFOLemPk1VuwDPuot/rKqnuuMW4/ySeA/OPYz6uvMMcucr7UiiG/CzW8jA+TVzdyAd52Z76ar6As7tSbJUNUtEEoBHgfNUtRswG+fmiMb4TUSgAzAmCF0ApIvIZe7zeKANcB7whqruA1DVY30fdBaRp4B6QBwwyR3/KvAg8ClwHXBTCdu7V0Suw7mZ4SUe468QkaE4n9NknNuU5BVZ9nR3/PciAs59l37wLV1jfGOFwxhARFrj3DJ7M849fe5U1UlF5impa9o3gd+qaq6IXAv0AlDV78XpCrYXzo0Li+3SE/in28bRH3jNvUV3Ms5tvU9V1R0i8ibOHXRPCh2nE54yG9WNqSx2qsrUeCKSCLwCjFDnapFJwK0e7RNtRaQ2Ts9o1x27oklEGrirqANsdOcfXGT1b+M0vL9RVhyqOh7nVNM1OL0D7gV2iUgScJHHrHvcbQL8CPQUkTQ3ptoiEujbsJsQZ0ccpqaKFZF5QCRQCIwB/uFOexXn9tRzxDn/swXniOJLEekKzBaRQzg99/0J+DPwkzvfT/z6pQ7wDvAU3nffOxyn0HQA5gJLcHpn+95jntHAlyKS77ZzXAu8JyLR7vRHce7oaoxf2OW4xviR204yQFWvDnQsxlQWO+Iwxk9E5EWcU0wXBzoWYyqTHXEYY4zxiTWOG2OM8YkVDmOMMT6xwmGMMcYnVjiMMcb4xAqHMcYYn/w/E9xtOlog+IcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(exp_results[:two_results, 1], exp_results[:two_results, 4], 'x-', label=\"Final Validation Loss\")\n", + "\n", + "# plt.ylim(0)\n", + "\n", + "plt.title('Final Validation Loss for Fixed Learning Rates')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Decay Rate')\n", + "\n", + "# plt.legend()\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ce1b8019", + "metadata": {}, + "source": [ + "# Sigmoid Decay\n", + "80/10/10 Split, 100 epochs\n", + "\n", + "## Index\n", + "0. learning rate\n", + "1. step size\n", + "2. gamma\n", + "3. top-1 accuracy\n", + "4. top-5 accuracy\n", + "5. last val loss\n", + "6. last val accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c4c39704", + "metadata": {}, + "outputs": [], + "source": [ + "sig_results = np.array([\n", + " [1e-2, 50, 0.05, 46.94, 72.88, 2.79, 52.94],\n", + " [1e-2, 50, 0.1, 45.95, 73.63, 2.65, 51.29],\n", + " [1e-2, 50, 0.15, 41.94, 68.56, 2.94, 47.49],\n", + " [1e-2, 50, 0.2, 41.82, 68.13, 2.82, 45.16]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0a2e899f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABFY0lEQVR4nO2deXwV5fX/3yd7QjZIIIRFgqgosgqiIpWIUu0iaq27xa1aa7W1lq+12l9LXb5ftdRq1Vptq4gLEax7RatIpIqyLyIoa1AghC2EhOzJ+f0xk5t7k5vkhtybXLjn/XpNZnmeeZ7PzNycZ50zoqoYhmEYkUNUVwswDMMwOhcz/IZhGBGGGX7DMIwIwwy/YRhGhGGG3zAMI8Iww28YhhFhmOEPM0QkR0RURGICiHuNiHzcGbrCGXF4VkSKRWRxJ+T3NxH5f6HOp735ur+bYzpTU3sQkaNEpExEortaS6Rjhr8DiEiBiFSLSGaT4yvcf8KcLpLmrSXZ/Web29VaQsh4YBLQT1XHBiNBEbleRL4UkVIRKRKRd0QkBUBVb1LVe4ORT3voSL4iki8iPw62pvagql+rarKq1gU7bRGZ4f4vlonIPhF5X0SOD/DcgCtbRwpm+DvOFuDyhh0RGQYkdZ2cZlwEVAGTRKR3Z2bcif9IA4ACVT3Y3hP9aRSRCcD/AperagpwAvByh1Ue4YSB4XxIVZOBvsB24J9drCdsMcPfcZ4HpnjtXw3M9I4gImkiMlNEdovIVhH5rYhEuWHRIjJdRPaIyGbge37O/aeIFIrIdhG5r51N5auBvwGrgauapD1eRBaKyH4R+UZErnGPJ4rIn1ytJSLysXssV0S2NUmjQETOdrenicgrIvKCiBwArhGRsSLyqZtHoYg8LiJxXuef6NbO9rk167tEpLeIlItIhle8k9z7F9sk/+uBfwCnubW9P7jHbxCRjW66b4pIH69zVER+JiIbgA1+7tnJwKequgJAVfep6nOqWuqeP0NE7vNK7w732naIyI+9u1zcuH8Vkbmuvk/c63vE7Zr6UkRGeaV1gls73y8iX4jIZK+wpvn+j1e+1/l7+IEgIteJyDpXz3siMsAr7FH3t3FARJaJyLe8wvw973wRude9zlIR+Y+4LeKmNevW4rrhU9zf4F4R+X/ev7XWUNUKYDYw0iut74nTEj/gXs80r1MWuOv97jM6rbX7Ig5/FpFdbnqfi8jQdt/4rkRVbTnEBSgAzga+wqkVRgPbcGqgCuS48WYCbwApQA6wHrjeDbsJ+BLoD/QA5rvnxrjhrwFPAd2AXsBi4Cdu2DXAx63oGwDUA0OAXwGrm4SV4rRWYoEMYKQb9gSQj1NzigbGAfFALrDN3z1wt6cBNcAFOJWKRGA0cCoQ4177OuA2N34KUOhqS3D3T3HD3gF+6pXPn4HHWrhOn/sATAT2ACe5uh8DFniFK/C+e78T/aT3LaAC+ANwOhDfJHwGcJ+7fS6wEzgRp6X3gpv+MV5x97j3IQH4EKeVOMW9t/cB8924scBG4C4gzr2OUmBwC/kWAUPd38ZL3vn6uaZ84Md+jp/v5nmC+4x+Cyz0Cr/K/W3EuM9pJ5DQyvPOBzYBx3ntP+DGz8H3t91a3CFAGU43Xhww3c3r7Bauz/vedMOpkK3yCs8Fhrk6h7v37gJ/utq6L8A5wDIgHRA3TnZX26N22a6uFnA4LzQa/t8C/+f+M77v/lDU/UFFA9XAEK/zfgLku9sfAjd5hX274UcIZOF00yR6hV9Oo6G4htYN/2+Ble52X6AOGOXu/wZ4zc85UThGb4SfsFzaNvwLWtLjxrmtIV/3Wla0EO9S4BN3OxrH4IxtIa7PfcBp4j/ktZ/sGo0cd1+BiW3o/A7wFrAfxwA9DES7YTNoNDLPAP/ndd4xNDf8f/cKvxVY57U/DNjvbn/Lvc4or/BZwLQW8n3AK95xHJrhn4tbCfF6/uXAgBbSKW74bfh73m4+v/Xavxl4193Oobnhbynu74BZXmFJOP9HrRn+Svd51eMUrsNbeb6PAH/2p6ut+4JTIK/HqdBEtZRHOC/W1RMcngeuwDFAM5uEZeLU5LZ6HduKY4gB+gDfNAlrYIB7bqHb9N+PU/vvFaCuKcCLAKq6HfgIp+sHnBbGJj/nZOLUTP2FBYL3tSAix4nI2yKy0+0O+F83j9Y0gNNCGiIiA3EGbktUNdAZO33wuo+qWgbspfGeN9PZFFWdq6rn4bQKzsd5tv4GR5s+P3/pFnltV/jZT/ZOS1XrvcK9fyut5bvVT5xAGAA86vX72odTi+0LICJT3e6OEjc8jcbnB/6vd6fXdjmN1+ePluL6XJ+qluM8w9aYrqrpOIa8AhjcECAip4jIfLe7sASnpZ3pNxWHFu+Lqn4IPI7TMt4lIk+LSGob2sIKM/xBQFW34tQwvgu82iR4D05tc4DXsaNwBp/A6ero3ySsgW9wavyZqpruLqmqemJbmkRkHHAs8BvX6O4ETgGucPtYvwEG+Tl1D07NyV/YQbwGrsUZa+jZJI422X8SpyvrWFVNxenGEK/rO9qfflWtxOmnvQr4EU7hGig78LrfItINp7tiu1ecpjr9oqr1qjoPp2Xmrx+3EOjntd/fT5xA2QH0F3f8x8X7t9I035Z+N+3hG5yuw3SvJVFVF7r9+XcAlwDdXaNaQuPzgwDv4yHgc19FJBHnGbaJqn4N/ALHcCe6h18C3gT6q2oazrhXw3X4u4YW74ubx19UdTROl9RxwP+0+wq7EDP8weN6nO4Dn5kl6kxdmw3cLyIp7gDR7Th9wbhhPxeRfiLSHbjT69xC4D/An0QkVUSiRGSQOLNO2uJqnG6nITiDXCNxDFciTjfGi8DZInKJiMSISIaIjHRrm88AD4tIH3EGn08TkXic5m2CO1AWi9OVFN+GjhTgAFAmzvS6n3qFvQ1ki8htIhLv3p9TvMJn4tS0J9M+wz8LuFZERrq6/xdYpKoFgZwsIueLyGUi0t0dyBsLTAA+8xN9tpvXCSKSBHRkfv8inFrvHSISKyK5wHlAXgv5XiMiQ9x8fx9A+jEikuC1xOIYwN+IyIngmUxwsRs/BagFdrvn/g7orJrtK8B5IjJOnMkA0/AtcFpFVd/HKUhvdA+lAPtUtdJ9nld4Rd+N0z3kXQlp8b6IyMluCyIWpzJU6Z5/2GCGP0io6iZVXdpC8K04P5DNwMc4tY9n3LC/A+8Bq4DlNG8xTMEZ3FqL07/6CpDdmhYRScCppT2mqju9li04BvRqt1b0XZwBu33ASmCEm8RU4HNgiRv2IE5fZglOP+w/cGqhB3EGs1tjKs4/Wal7rZ5pkerMkpmEY9x24sywOdMr/BOcf6jlbqsqIFT1AxwD/C+cmuMg4LJAz8e5zze4eg7gFNJ/VNUX/eQ1F/gLzqD8RhoLh6p25NeQVjXOvfgOTsvrr8AUVf2yhXwfwWmJbHTXbfEkThdIw/Ksqr6G83zz3K64NW7+4Pwu38Up8LfiGLhWu8iChap+gfN/k4fzDMuAXbTvvv4RpxCNx/nd3iMipTjjB7O98ioH7gc+cbt2Tm3jvqTi/JaLce7LXjevwwZxBy4MIywRkQ+Bl1T1H12tJRBE5AQcIxGvqrVdredIQUSScQZuj3UrMEYHsBq/EbaIyMk4UzLD+uUpEbnQ7arqjlNLfMuMfscRkfNEJMkdo5mO0wot6FpVRwZm+I2wRESeAz7AmfNf2tV62uAnON0Qm3CmzP609ehGgJyP00+/A2eiwmVqXRRBwbp6DMMwIgyr8RuGYUQYXe1UKSAyMzM1Jyenq2UAcPDgQbp169bVMlol3DWGuz4wjcEg3PVB+GvsqL5ly5btUdWm79ocHi4bRo8ereHC/Pnzu1pCm4S7xnDXp2oag0G461MNf40d1QcsVXPZYHQZHz8CWxb4HtuywDluGEanYobf6Bz6ngRzrmk0/lsWOPt9T+pKVYYRkRwWffzt5uNHHIMy8IzGY1sWwPblMP62rlLVNdTXQ30N1NVAXTXU1zrrOvdYvXu8zj3uiesdv6aVsADTqq+BlN7w/IWcGpMG/y2FIRdAyTb4ehFkDIKkDJCA38o3DOMQOTINf0Pt8uIZjvFvqF1ePOPQ0lP1GK+YmjIo290OQ9gRg+vGb+e546sr4eN6Zz/4X7nzRaIhOg6iY50lKtbdj3HWUbGNYYk9ILUvCfu3QkI6rPkXfD67Ma34NMg4GnoMcgoCz/poSOoR2uswjAjiyDT8A89wjPxLl0L3HNi7EfqcBAsfh4//3MTAehvNFoxqfeNLmOMBPgmyXolqbiSj4yAqpsm2a2BjEyE+tUUDW1hYRP+jBjbG9z7XxzgHYKyb5u2zHQtR7egtdAvgggGXkLN7Hlz1CqQdBfs2wd5Njetti+GLV8HbO3Fid/8FQsYgSEgL8gMxjCObI9Pwg2P8exwNRWucmmZVKdRWNBq2mHiIT27dwPoxihs3b+WYwSd4xQ/QWLdocGMhqj1fUmybTfn59M/NDWqaHcar1VWwtZ6c3B81tsKOO6d5/NoqKC7wLRD2bYKCT2B1Ew8OSZleBcLRvgVDfEror80wDjOOXMO/ZQGUFsIZd8DSf8J3HvDt8z9EttXkc8zY3I7rizS2L2/setua39gq277c/3OJiYeeg52lKTUVsG9Lk5bCZtg8H1a95Bs3OctPgTAIegyEuPCdv20YoeTINPzeffoDz4CB3/LdNzoff4PqA884tOcRmwhZQ5ylKdUHYd9mZ/EuFDa8D2Uv+MZNyW65UDCMI5gj0/B71y6h7dqlceQQ1w16D3OWplSVNi8Q9m2CL9+B8j1eEYVT4zNg65Dm4wrdc5zWiGEcxhyZhj+YtUvjyCE+BbJHOEtTKvb7tBT2r1tI7+oyWPs6VBQ3xpMoSOvnZ6B5EHQf4IzZGEaYEzLDLyKD8fWjfjTOl29musdzcHxrX6KqxU3PN4xOJTHdmQbsvlD2Jfn0bhggL9/XpKXgrlfPgaqSxjQkGtKPal4gZBztzF6KPjLrWcbhR8h+iar6Fc53Xhs+yr0deA3nm7LzVPUBEbnT3f91qHQYRodJ6uEs/cb4HleF8r3NC4S9m+Drz6C6rDFuVKzTImg6FbXHIKcFEeSZXYbRGp1VBTkL2KSqW0XkfCDXPf4ckI8ZfuNwRAS6ZTrLUaf4hqlC2a7mBcK+zVDwX6gpb4wbHQfdBzYvEDIGQUqf9r0rYRgB0CkfYhGRZ3A+mP24iOxX1XT3uADFDftNzrkRuBEgKytrdF5eXsh1BkJZWRnJycldLaNVwl1juOuDEGtUJa56H0nlO0isKCSxYgeJFTtIKi8koXIn0fXVnqh1UXFUJGa7Sx8qErMpT3LW+6rjSE4J3/cUIv45B4GO6jvzzDOXqeqYpsdDbvhFJA7n02knqmqRt+F3w4tVtXtraYwZM0aXLl0aUp2Bkp+fT264vRzVhHDXGO76oAs11tfDge2+LYSGFkNxgfM2uUtdVALRPY9t/tJaj0GQ3KvL/R7Zc+44HdUnIn4Nf2d09XwHp7Zf5O4XiUi2qhaKSDbOt0oNwwCnWye9v7McnesbVl8HJd94CoTCVR/RL6kKdq6BL//t41qEuBTnfYRmA81NnOGZQ8OIpDMM/+XALK/9N4GrgQfc9RudoMEwDn+iop33CLrnAGexsfxY+jXUButqYf9WrxaC+47CjpWw9k1fZ33ezvCiYmDBH+HsaXDM2bB9GbwzFb7/iOOMMCramcIaFeNuRzceM0+qoaETCuOQGn4R6QZMAn7idfgBYLaIXA9sBS4JpQbDiAiiY5zafMYgOHaSb1htNez/2r8zvP3fAOoYe2/mXN12nhLlFgTehUKUp3A4rboWVnTzOeZTcPgrTDz7MX6OeYcFmqa3puY6exduhBXb28ivaT7tvYZoP3obwvwUnt7ehaHj3oX9EFLDr6oHgYwmx/bizPIxDKMziImDzGOcpSkNzvDyH3A8oh53Lgz+jtOtpPXOur7WaTHU17nr+sZ9T1h9kzh17Nuxneysnj7HfOPW+h6rr3X0eMKap9mYbwBpBsDxAF8F82a3F/FfqGg9PDeZ8VHxEJcAlz4f1BdQ7Y0Sw4hkYuKhrAi2fNTo0PC0nwXFyHyVn092Vw6cNis4an0LNK3j04WfcNopJ7dQmDTErQ288Gojv2YFnd/83HO3LyWmcBWMvD7oXgfM8BtGJHMkOzSMigKiWnWjUZXQ0x0zCTO2LIC1rzvfrlidB4PPDerzsDdDDCOSac2hodE1eH+7YuCVzvPw/l51EDDDbxiRzPjbmtckB55hUzm7kk4ojK2rxzAMI5zoBO/CVuM3DMOIMMzwG4ZhRBhm+A3DMCIMM/yGYRgRhhl+wzCMCMMMv2EYRoRhht8wDCPCMMNvGIYRYZjhNwzDiDDM8BuGYUQYZvgNwzAiDDP8hmEYEYYZfsMwjAjDDL9hGEaEYYbfMAwjwgip4ReRdBF5RUS+FJF1InKaiPQQkfdFZIO77h5KDYZhGIYvoa7xPwq8q6rHAyOAdcCdwDxVPRaY5+4bhmEYnUTIDL+IpAFnAP8EUNVqVd0PnA8850Z7DrggVBoMwzCM5oiqhiZhkZHA08BanNr+MuAXwHZVTXfjCFDcsN/k/BuBGwGysrJG5+XlhURneykrKyM5ObmrZbRKuGsMd31gGoNBuOuD8NfYUX1nnnnmMlUd0yxAVUOyAGOAWuAUd/9R4F5gf5N4xW2lNXr0aA0X5s+f39US2iTcNYa7PlXTGAzCXZ9q+GvsqD5gqfqxqaHs498GbFPVRe7+K8BJQJGIZAO4610h1GAYhmE0IWSGX1V3At+IyGD30Fk43T5vAle7x64G3giVBsMwDKM5MSFO/1bgRRGJAzYD1+IUNrNF5HpgK3BJiDUYhmEYXoTU8KvqSpy+/qacFcp8DcMwjJaxN3cNwzAiDDP8hmEYEYYZfsMwjAjDDL9hGEaEYYbfMAwjwjDDbxiGEWGY4TcMw4gwzPAbhmFEGGb4DcMwIgwz/IZhGBGGGX7DMIwIwwy/YRhGhHFEGv5n1jzD4sLFPscWFy7mmTXPdJEiwzCM8OGINPxDM4Yy9aOpfFb4GeAY/akfTWVoxtAuVmYYhtH1hNoff5cwNnss0ydM56YPbqJe66nXejISMvi/xf9HUmwSSTHuEtt8nRiT2Py413aN1nT15RmGYXSII9Lwg2P8x/cdz/xv5jMkYwiD0gZRXltOeU055bXl7K3cS3lNORW1FZTXlFNZVxlw2jHPx7RYMCTGJrZYqHjHbVrAJEQn4Hx73jAMI7QcsYZ/ceFiVu5ayU+G/4TZX83mV6N/xdjssS3Gr6uvcwoBr8LBs64tp6LGCVuzfg29+/duHqemnKLyIg7WHPTsV9RWoGhAegXxFATdYrv5b3k0bZm0EFZSW8LBmoMkxiQSJUdkb55hGB3giDT8DX360ydMZ2z2WMb2Huuz74/oqGiS45JJjktuNe38onxyT8oNSEe91lNZW+lTcPgtWLzWDS2Qhrj7KvexrWybT5w6rWsz79++9FsAEmMS/RYSnsKltdZJC62YmKj2/2yeWfMMQzOG+tz/xYWLWbN3DdcNva7d6RmGcegckYZ/zd41Pka+oc9/zd41rdb6g02URDnGMjYJEoOTpqpSU1/j07Joul61dhX9BvZr1mpp2C6rLmNX+S6fc6rrqwPWEBcV12rh0C2mW7PWSWl1KT+f/3NuGnETVMG7W97l/kX386cJfwrOjTEMI2COSMPvrwY5Nntspxr9UCEixEXHERcdR3e6+42T8k0KuUNz25VuTX2NT2vD00KpKW9eyPhrndSUU1xZ3Hh+bQUVtRXN8vnTUtfQ73S6t37z39+Q1S2LXkm9yErKIqtbFllJzn7vpN706taL+Oj49t4mwzBaIaSGX0QKgFKgDqhV1TEi0gN4GcgBCoBLVLU4lDqMtomNiiU2LpbUuNSgpVlXX0dlXaVP4fDCuhd4c9ObfKvvtxiSMYRd5bsoKi+ioKSARYWLKKspa5ZOenx6s0LBez8rKavNLjrDMBrpjBr/maq6x2v/TmCeqj4gIne6+7/uBB1GJxMdFU23qG50i+0GOH36/932X85NO5dFexZxzYnXNGuFHaw5SFF5EUUHizyFQtHBIorKnf01e9awr3Jfs7y6xXZrsVBo2E6PT7eZU4ZB13T1nA/kutvPAfmY4T/i8R5wL/+qnIsHX+x3wL1bbDeOTjuao9OObjGtqroqdpXvcgoGr0KhoZD4tPBT9lTsoV7rfc6Li4pzCoZujV1JTVsRmYmZREdFh+w+GEY4IKqBTTc8pMRFtgDFgAJPqerTIrJfVdPdcAGKG/abnHsjcCNAVlbW6Ly8vJDpbA9lZWUkJ4d3t0I4avyg5AOOij+K4xKO8+hbX7mer6u+5uy0s4OeX53WUVpXyv66/c5S27guqSvxbNdS63NeFFGkRqeSIilkxGWQHp1OWnQa6THppEc7S1pMGrESG3TN7SUcn7M34a4Pwl9jR/WdeeaZy1R1TNPjoTb8fVV1u4j0At4HbgXe9Db0IlKsqv5HKV3GjBmjS5cuDZnO9pCfn09ubm5Xy2iVcNcYLvpUleKqYp+WQ0Or4cvtX1IdX03RwSLKa8ubndsjoYffrqWGFkXvpN7ObK4QEi73sSXCXR+Ev8aO6hMRv4Y/pF09qrrdXe8SkdeAsUCRiGSraqGIZAO7QqnBMFpCROiR0IMeCT04vsfxPmHe/3Bl1WU+hULD9q7yXew8uJNVu1exv2p/s/STY5P9FgqesYekLNLi02zcweh0Qmb4RaQbEKWqpe72t4F7gDeBq4EH3PUbodJgGMGg4cW+QemDWoxTWVvJ7vLd7Czf2Tjm4DX+sLF4I7srdjd7kzs+Or5ZodB0/KFHQg8bdzCCSihr/FnAa25tJgZ4SVXfFZElwGwRuR7YClwSQg2G0SkkxCTQP7U//VP7txinpr6GvRV7fVsOXrOXVu5aSVF5EbX1vuMO0RJNz6SePl1Lvbv1Zs/BPaQWpTqD1Ym9iI3u+nEH4/AgZIZfVTcDI/wc3wucFap8DSNciY2KpXe33vTu1ht6+o9Tr/UUVxY3n9LqLhuKN/Dx9o89L8fNeHeG59yGcQd/U1kbCoym4w7mSiMyOSLf3P3bR5sY3i+NcYMyPccWbtrD6m0l3DSh5ea6YXQ1URJFRmIGGYkZDMkY4jeOqlJaU8q/8//NUSce1Wz8YXvZdlbsWkFJVUmzc1PiUnwKhdr6Wp5a9RQ3DLuB0/qexpaSLTy4+EH+OOGPob5Uows5Ig3/8H5p3PLSCh6/YhTjBmWycNMez75hHO6ICKlxqWTHZXN639NbjFdRW+F3xlJDK+Kr4q/YW7EXRXl0xaM8uuJRz7k3/udGkuOSSY1LdZb41Fa30+LSPPvJsck2JhHmHJGGf9ygTB6/YhTXP7eUAT2S2LLnIBOO68n8L3excONe4mKinCXaWcfHNF1H+4R7hx2sUSqq64iLiSI6ymZjGOFLYkwiA1IHMCB1QItxaupr2FO+h7+u/Cuvb3qd3H65nNz7ZA5UH2hcqpz1rvJdnu2a+pY/SCQIybHJxNbHkvVWVusFR5P9lLgUKzQ6gTYNv4gsA57BGZw9bHzqjBuUycCMbqwtPEBSXDSLtuzjvxv2UFVbR31HX12Y9y4AMVHiU4jExzYUFk7BEe9zzLcAiYuO9jkW3yydaL9pe+I1KaBioyWspwVa91t4EhsVyzel3/DRto8836740ZAfterQUFWprKv0FALehYP3/oZvNpCYlMiBqgNs2r/Jc7wtT7DJscntKiwatlPiUg7JZXgkEshduhS4FlgiIkuBZ4H/aCjf/AoCCzftYeeBSn4+8RheWPS1p9sHoLaunuq6eqpr66mq9V1X19VTVVPnCfeJU1fP2i/Xc1TO0VTV1nnCnXOapOmmU1ZV2ywd77Sr6+rbuJLAEMFTwEh9LcmfzvMtHJoVTt6FTrTfFpDvsehmx5un5caJjiKqSWvIu/ut4flY91vXcyjfrhARz3cesrpltZh2foX/l48qaytbLCz8bW8p2eLZrqqravV6usV2a1dhsatmF/sq95ESl0JsVOTMimrT8KvqRuBuEfl/wPdxav91IvIs8KiqNveY1cV4G5VxgzI5dVCGz35MdBQx0VEkxbU/7fzKLeTmBq+GWl+vTkHQpCBqLBjqqKpxCp1mBUhtnd8CrOCbbWT0zHTD6nwKp4PVvgVRlVc6VbX1BKs4b2gNeRcWCTFR/Oifi0mNVcpqF3P28Vms3XGA/eU1ZKcl0Cc9kZ7J8c0KDSN0dMW3KxJiEkiISaBXUq92n1tVV9VyS8PP9tYDWz3bLX1e9d6X7wUgKSYpoMLC33YwC43OmGkVULtIRIbj1Pq/C/wLeBEYD3wIjAyKkiCyeluJTw2/oc9/9bYSn66GcCAqSkiIiiYhNnj9mvn5u8nNbTaTtk1Uldp69dOSqfMpkJq2XBpaP1U+5/gWYFVu4bKu8ABb9pSTnhRD/vrdzP1ip4+GmCihd1oCfdISyU5PIDstkb7uOjvdOZ6eFBvW3VqHE4fbtyvio+PpmdSTnkktzIdtheq66mYFxKKVi+gzqI/fguPr0q85sPcApdWlfr8t4U1iTGLArYymg+JN378YmjHU0+oC31ZZsAi0j38/8E/gTlVtaGstEpGWpxR0If76jMcNygw7ox9uiAix0UJsdBTdQvDtk4aW2ORBsXy8U/jn1WMY0ieV7fsrKNxfSWFJBTtKKincX8GO/ZUs21rMzpJCapsMyiTGRnsKgYaWQh+3cGhYd4u3vl7Dl7joODITM8lMbLQD9RvryT0ht81za+pqKKkuCaiVcaD6ANvKtnn2Ayk0UuJSfAqFEzJO4OZ5N9M/pj+7d+7m4QkPB7UwDuS/42L3ZaxmqOoPgqbEOKLx7n6r/mYNl00c6tP9dmKfNL/n1dcre8qqnMKhpJIdXusdJZWsX7+b3WVVzbqo0hJjWywU+qYnkpWaQFyMfYjeCIzY6NhmhUag1NTVBDSW0bC9o2wHB6oPUFdfx8aqjVw2+LKgt8ACMfw/FpGHVHU/gIh0B36lqr8NqhLjiMa7+y3/m8C736KihF6pCfRKTaClYeDq2nqKDngVCiUVzvb+SnaUVLL862L2l/tOPxSBzOR4+riFg3fB0Cc9geLKeurr1cYbjA4TGx3reSkvUBq6d06OP5n3Ct5j0oBJnV7j/46q3tWwo6rFIvJdwAy/ETCh7H6Li4mif48k+vdo2Q1yeXUtO9zupML9lW4Lwiko1heVkv/Vbipq6nzO+Z8Fc8lKTaBveuN4Q5/0xvEHG28wQkHTjxZdOvjSNmdatZdADH+0iMQ39O2LSCJgX782DiuS4mI4plcyx/Ty/1ELVaWkosZTOOQvWU1yr/7OeEOJM95QdKCQmrrWxxuy0xsHo228wTgUvGda5X+VH5KZVoH8Il8E5rnTN8GZ3fNcUHI3jDBBREhPiiM9KY4hfVKJLoolN9fXR3/DeEPDAHTDuENhiTMY/VEA4w3Nxh3SEumdZuMNRiOdMdMqkHn8D4rIaho9at6rqu8FTYFhHCZ4jzeM7J/uN07DeEPjAHTjjKXt+/2PNwD0THHGG5yWQmPBkJ3udDVlJsebixAjaATUBlXVucDcEGsxjMOeQMcbPDOU9ld6CocdJRVs2FXKgg27Ka/2HW+IiRKyUhOcMQZ3MLpsVw01a4vITnMKBxtvMAIlkHn8pwKPAScAcUA0cFBVU0OszTCOSJLiYhjUM5lBPVsebzhQUesZgG58t6HCM0tpZ4kz3vDCusZvUSfERvkMPGenJzqtCK9xh6bjDeZDKfzojGcSSI3/ceAyYA4wBpgCHBeU3A3DaIaIkJYUS1pSLEP6+K9f1dcrb/5nPjknnuQZgN7RUFDsr2TBht3sKm0+3pCaEON2JTnjDbV1ymMfbuD2Scdx6tEZrPpmPw/M/ZK7vnsCX+48gCCIgOBMgXUVeh0TT5iz1RhvT0U92/dX+IQ3hIn7R/ykhXd6gt+8XBWN203Sokn8w6kl1Bl+rQLt6tkoItGqWgc8KyIrgN8ETYVhGO0iKkpIT4hiZP/0gMYbGgoE78JhxdfFFLvjDfe+vc7n3Dtf/Tw4Qj/6MDjpBImmBQOqRL3/TmMhQ/NCzKdQ8tr3Fy5uJN98mhdwQIuFlogQHx3FVf9YRGIMxMQs58mrTgqq54FADH+5iMQBK0XkIaAQsCkIhhHmtGe84bF5G3l95Xa+OyybySOyUQUFd62eloNzzNnxDmuIjxuuwJdffsngwYN90nLS0Mb4blwnDfXKo+W8fON4HdOWw5vm1aBj69av6X/UUZ64NL2OFu6D93U2zceJ46XbT7jSKFSbpeXsf7WzlA27yrhubN+gu5sJxPD/CMfQ3wL8EugPXBRUFYZhdAlJcTEUHXC6hhpcmF916lFBMTT5ZZvIPfmoIKgMHfn5O5tN2w0HvP1avb5yB2cPyQqq8W+15i4i0cD/qmqlqh5Q1T+o6u2uq+aAEJFoEVkhIm+7+wNFZJGIbBSRl93WhGEYXYB3//Ht3x7M41eM4paXVrBw056ulhaxeD+THxwbF5Jn0qrhd/v0B3TQOP8C8O5AfBD4s6oeAxQD13cgbcMwOkBrLsyNrqEznkkgXT2bgU9E5E3gYMNBVX24rRNFpB/wPeB+4HZxRjUmAle4UZ4DpgFPtk+2YRjBwFyYhx+d8UykrS8oisjv/R1X1T+0mbjIK8D/ASnAVOAa4DO3to+I9AfmqupQP+feCNwIkJWVNTovL6+t7DqFsrIykpP9z78OF8JdY7jrA9MYDMJdH4S/xo7qO/PMM5ep6phmAc7IdfAXnM80/tXdzgXeBjKBjV5x+gNr2kpr9OjRGi7Mnz+/qyW0SbhrDHd9qqYxGIS7PtXw19hRfcBS9WNTA3lzdz6NM5y8C4yJbZx6OjDZdeGcAKQCjwLpIhKjqrVAP2B7WxoMwzCM4BFIH/9Ur+0EnKmctW2dpKq/wX3JS0RygamqeqWIzAF+COQBVwNvtE+yYRiG0REC8c65rMmhT0RkcQfy/DWQJyL3AStwvuVrGIZhdBKBdPX08NqNAkYD/j+Q2gKqmg/ku9ubgeB+QNIwDMMImEC6epbh9PELThfPFmzuvWEYxmFLIF09AztDiGEYhtE5tOlsTUR+JiLpXvvdReTmkKoyDMMwQkYgXjZvUNX9DTuqWgzcEDJFhmEYRkgJxPBHi9dXDFzHbeZYzTAM4zAlkMHdd4GXReQpd/8n7jHDMAzjMCQQw/9rHJ85P3X33wf+ETJFhmEYRkgJxPAnAn9X1b+Bp6snHigPpTDDMAwjNATSxz8Px/g3kAh8EBo5hmEYRqgJxPAnqGpZw4673fJHPA3DMIywJhDDf1BETmrYEZHRQEXoJBmGYRihJJA+/tuAOSKyA8dtQ2/g0lCKMgzDMEJHIC4blojI8cBg99BXQI9WTjEMwzDCmEC6elDVGmAbcArOHP4VoRRlGIZhhI5Wa/wikgicj/Nx9FE43869AFgQcmWGYRhGSGixxi8iLwHrgUnAY0AOUKyq+apa3znyDMMwjGDTWlfPEKAYWAesU9U6/Hx71zAMwzi8aNHwq+pI4BKc7p0PRORjIEVEsjpJm2EYhhECWh3cVdUvVfX3qno88AvgOWCJiCzsFHWGYRhG0AlkHj/g+ej6MhH5H+BboZNkGIZhhJKApnN6ow5tzuoRkQQRWSwiq0TkCxH5g3t8oIgsEpGNIvKyiJhvf8MwjE6k3Ya/HVQBE1V1BDASOFdETgUeBP6sqsfgDB7bh9sNwzA6kZAZfrdl0ODcLdZdFJgIvOIefw7nvQDDMAyjkxDVwGZourX1aUAC8Iiqvh7AOdHAMuAY4Angj8Bnbm0fEekPzFXVoX7OvRHnAzBkZWWNzsvLC0hnqCkrKyM5ObmrZbRKuGsMd31gGoNBuOuD8NfYUX1nnnnmMlUd0yxAVf0uQO8m+7NxfPEnAZ+3dF4LaaUD84HxwEav4/2BNW2dP3r0aA0X5s+f39US2iTcNYa7PlXTGAzCXZ9q+GvsqD5gqfqxqa3N6vmbiCwHHlLVSmA/8EOgHjjQnlJHVfeLyHzgNCBdRGJUtRboB2xvT1qGYRhGx2jtBa4LcJyxvS0iU3DcM8cDGQTQLy8iPUUk3d1OxHH9sA6n5v9DN9rVwBuHKt4wDMNoP229wPUWcA6QBrwGrFfVv6jq7gDSzgbmi8hqYAnwvqq+jfPx9ttFZCNOIfLPjlyAYRiG0T5a7OoRkcnAL4Fa4H+B54H/JyI3A3er6qbWElbV1TgePZse3wyM7YhowzAM49BprY//PhwDnQi8p6pjgV+JyLHA/cBlnaDPMAzDCDKtGf4S4Ac4s3h2NRxU1Q2Y0TcMwzhsaa2P/0KcPvgYnA+xGIZhGEcALdb4VXUPzgdYDMMwjCOIUPrqMQzDMMIQM/yGYRgRhhl+wzCMCMMMv2EYRoRhht8wDCPCMMNvGIYRYZjhNwzDiDDM8BuGYUQYZvgNwzAiDDP8hmEYEYYZfsMwjAjDDL9hGEaEYYbfMAwjwjDDbxiGEWGY4TcMw4gwzPAbhmFEGCEz/CLSX0Tmi8haEflCRH7hHu8hIu+LyAZ33T1UGgzDMIzmhLLGXwv8SlWHAKcCPxORIcCdwDxVPRaY5+4bhmEYnUTIDL+qFqrqcne7FFgH9AXOB55zoz0HXBAqDYZhGEZzRFVDn4lIDrAAGAp8rarp7nEBihv2m5xzI3AjQFZW1ui8vLyQ6wyEsrIykpOTu1pGq4S7xnDXB6YxGIS7Pgh/jR3Vd+aZZy5T1THNAlQ1pAuQDCwDfuDu728SXtxWGqNHj9ZwYf78+V0toU3CXWO461M1jcEg3PWphr/GjuoDlqofmxrSWT0iEgv8C3hRVV91DxeJSLYbng3sCqUGwzAMw5dQzuoR4J/AOlV92CvoTeBqd/tq4I1QaTAMwzCaExPCtE8HfgR8LiIr3WN3AQ8As0XkemArcEkINRiGYRhNCJnhV9WPAWkh+KyOpl9TU8O2bduorKzsaFLtIi0tjXXr1nVqnu0l3DUGQ19CQgL9+vUjNjY2SKoMI3IIZY0/pGzbto2UlBRycnJwepU6h9LSUlJSUjotv0Mh3DV2VJ+qsnfvXrZt28bAgQODqMwwIoPD1mVDZWUlGRkZnWr0jfBARMjIyOj01p5hHCkctoYfMKMfwdizN4xD57A2/IZhGEb7iQjD/7ePNrFw0x6fYws37eFvH2065DT37t3LyJEjGTlyJL1796Zv376e/erq6kNK8+6776Z///4Bval3wQUXcOqppx5SPoZhRDYRYfiH90vjlpdWeIz/wk17uOWlFQzvl3bIaWZkZLBy5UpWrlzJTTfdxC9/+UvPflxc3CGled5557F48eI24+3fv59ly5ZRUlLC5s2bDymvQKitrQ1Z2oZhdB2H7aweb/7w1hes3XGg1Ti9UuKZ8s/FZKXGU3SgimN6JfPoBxt49IMNfuMP6ZPK7887sV065s2bx9SpU6mtreXkk0/mySefJD4+npycHC655BLmzp1LYmIiL730Esccc0yz8wOtwb/66qucd955ZGVlkZeXx1133QXAxo0buemmmygqKiI2NpY5c+YwaNAgHnzwQV544QWioqL4zne+wwMPPEBubi7Tp09nzJgx7NmzhzFjxlBQUMCMGTN49dVXKSsro66ujn//+9+cf/75FBcXU1NTw3333cf5558PwMyZM5k+fToiwvDhw/nrX//K8OHDWb9+PbGxsRw4cIARI0Z49g3DCA+OCMMfCGmJsWSlxrN9fyV90xNISwyuIaqsrOSaa65h3rx5HHfccUyZMoUnn3yS2267zck/LY3PP/+cmTNnctttt/H2228fcl6zZs3id7/7HVlZWVx00UUew3/llVdy5513cvbZZxMbG0t9fT1z587ljTfeYNGiRSQlJbFv374201++fDmrV6+mR48e1NbW8tprr5GamsqePXs49dRTmTx5MmvXruW+++5j4cKFZGZmsm/fPlJSUsjNzeXf//43F1xwAXl5efzgBz8wo28YYcYRYfgDqZk3dO/8fOIxvLDoa35x9rGMG5QZNA11dXUMHDiQ4447DoCrr76aJ554wmP4L7/8cs/6l7/85SHnU1RUxIYNGxg/fjwiQmxsLGvWrGHAgAFs376dCy+8kNLSUhISEgD44IMPuPbaa0lKSgKgR48ebeYxadIkTzxV5a677mLBggVERUWxfft2ioqK+PDDD7n44ovJzMz0SffHP/4xDz30EBdccAHPPvssf//73w/5Wg3DCA0R0cffYPQfv2IUt397MI9fMcqnz78z8J5+KCLU1dV5BoN/97vfBZzO7NmzKS4uZuDAgeTk5FBQUMCsWbParScmJob6+nqAZvPhu3Xr5tl+8cUX2b17N8uWLWPlypVkZWW1On/+9NNPp6CggPz8fOrq6hg6dGi7tRmGEVoiwvCv3lbC41eM8tTwxw3K5PErRrF6W0nQ8oiOjqagoICNGzcC8PzzzzNhwgRP+Msvv+xZn3baaURHR3sGg++5556A85k1axbvvvsuBQUFFBQUsGzZMvLy8khJSaFfv368/vrrAFRVVVFeXs6kSZN49tlnKS8vB/B09eTk5LBs2TIAXnnllRbzKykpoVevXsTGxjJ//ny2bt0KwMSJE5kzZw579+71SRdgypQpXHHFFVx77bUBX5dhGJ1HRBj+myYMatatM25QJjdNGBS0PBISEnj22We5+OKLGTZsGFFRUdx0002e8OLiYoYPH86jjz7Kn//8Z79p3HHHHfTr14/y8nL69evHtGnTfMILCgrYunWrzyDwwIEDSUtLY9GiRTz//PP85S9/4bTTTmPcuHHs3LmTc889l8mTJzNmzBhGjhzJ9OnTAZg6dSpPPvkko0aNYs+ells+V155JUuXLmXYsGHMnDmT448/HoATTzyRu+++mwkTJjBixAhuv/12n3OKi4s93VuGYYQZ/pz0h9vi70Msa9eu7dAHCg6VAwcOtPucAQMG6O7du0Ogxj+HojGYzJkzR6+66qoWw4OlL5S/gXD/QIdq+GsMd32q4a8xVB9iOSIGd43w4dZbb2Xu3Lm88847XS3FMIwWMMPfCRQUFHS1hE7jscce62oJhmG0QUT08RuGYRiNmOE3DMOIMMzwG4ZhRBhm+A3DMCKMyBjc/fgR6HsSDDyj8diWBbB9OYy/7ZCS3Lt3L2ed5Xw6eOfOnURHR9OzZ08AFi9efEgeOnNzcyksLCQxMRGA//znP/Tq1ctv3AsuuICdO3fy2WefHZJ+wzAil5AZfhF5Bvg+sEtVh7rHegAvAzlAAXCJqhaHSoOHvifBnGvg4hmO8d+yoHH/EGlwywwwbdo0kpOTmTp1aoelvvjii4wZM6bVOA1umZOTk9m8eTNHH310h/P1R21tLTExkVE3MIxIIpRdPTOAc5scuxOYp6rHAvPc/Y4z90549nstL/kPQko2PH8h/Hmos07Jdo63dM7c9kubN28eo0aNYtiwYVx33XVUVVUBjnuEO+64g2HDhjF27FiPW4dDpcEt82WXXUZeXp7n+MaNGzn77LMZN24cJ510Eps2OR+aefDBBxk2bBgjRozgzjud68rNzWXp0qUA7Nmzh5ycHABmzJjB5MmTmThxImeddRZlZWWcddZZnHTSSQwbNow33njDk9/MmTMZPnw4I0aM4Ec/+hGlpaUMHDiQmpoaAA4cOOCzbxhGeBAyw6+qC4CmPoDPB55zt58DLghV/s1ISHeMfck3zjohPajJN7hlfvnll/n888+pra3lySef9IQ3uGW+5ZZbPB47/XHttdcycuRI7r33XpwX75oza9YsLr/8ci6//HIfB21XXnklP/vZz1i4cCELFy4kOzvbxy3zqlWruOOOO9q8luXLl/PKK6/w0UcfkZCQwGuvvcby5cuZP38+v/rVr1BVvvjiC+677z4+/PBDVq1axaOPPurjlhkwt8yGEaZ0djs+S1UL3e2dQFZLEUXkRuBGgKysLPLz833C09LSKC0tdXbG391mxtFff0LC2z+l5tRfELvqeSrH3krdUae3flJD+l7U1dU15utSVVVFdXU1Rx11FNnZ2ZSWlnLxxRfz97//neuvvx5V5bzzzqO0tJTvf//73Hbbbc3SAHjqqafo06cPpaWlXHXVVfTq1YsrrrjCJ86uXbtYv349I0aMQESIjo5m0aJF9O/fn23btnH22WdTV1fnif/OO+9w+eWXe3THxsZSWlpKXV0dBw8epLS0lLKyMlSV0tJSKisryc3N9cSrqanhzjvvZOHChR63zJs2beKdd97h/PPPJz4+3ifdK664gkceeYSzzjqLf/zjHzz22GPNrtXfPTwUKisrm/0ugkVZWVnI0g4W4a4x3PVB+GsMlb4u68BVVRUR/1VaJ/xp4GmAMWPGaG5urk/4unXrSElJCSyzLQvg3zfDJc8RP/AMGHw2Sd59/u2gtLS0Wb7x8fEeI9wQlpSURExMDCkpKYgIKSkppKSkUFNTQ1RUFElJSYwePRqAyZMnc8899zB48GAAUlJSmDJlCkuXLm2W14wZM9i/fz/Dhw8HnO6UN998kzvvvNOTj7fGuLg4EhIS/GpOTEwkJSWFkpISz7kJCQmkp6d74s+YMYOSkhJWrFhBbGwsOTk5xMTEkJCQQFxcXLN0J02axNSpUz2eP0855ZSA7uGhkJCQwKhRozqcjj/y8/Np+psLN8JdY7jrg/DXGCp9nT2ds0hEsgHc9a5OyXX7cl8jP/AMZ3/78qBl0VG3zLW1tR4vmTU1Nbz99tt+fdmbW2bDMDpKZxv+N4Gr3e2rgTdaiRs8xt/WvGY/8IxDnsrpj466Za6qquKcc85h+PDhjBw5kr59+3LDDTf4xDG3zIZhBAV/LjuDsQCzgEKgBtgGXA9k4Mzm2QB8APQIJC1zy9w+zC1zxwl3d72q4a8x3PWphr/Gw84ts6q2VN07K1R5Gl2PuWU2jPDH3s7pBMwts2EY4YT56jEMw4gwzPAbhmFEGGb4DcMwIgwz/IZhGBFGRBj+Z9Y8w+LCxT7HFhcu5pk1z3Qo3ejoaEaOHOlZCgoKGDdu3CGnd8011zR7meq5555rNh9+z5499OzZ0+MErikvvvgit9xyS0B5PvLIIyQkJFBSUnJoog3DOOyICMM/NGMoUz+a6jH+iwsXM/WjqQzNaP5mbHtITEz0vH27cuVKcnJyWLhwYTAke7jwwgt5//33PW/egvOm7XnnnUd8fHyH0581axYnn3wyr776aofTaglVpb6+PmTpG4bRPo6I6ZwPLn6QL/d92Wqcnkk9+cn7P6FnUk92l+/m6PSjeXLVkzy56km/8Y/vcTy/HvvrdmtJTk72OFaaNm0amZmZrFmzhtGjR/PCCy8gItxzzz289dZbVFRUMG7cOJ566ilExG96qampTJgwgbfeeotLL70UcLxe3n333bz11lvcd999VFdXk5GRwYsvvkhWVot+75qxadMmysrK+Otf/8r999/vcbFQVlbGrbfeytKlSxERfv/733PRRRfx7rvvctddd1FXV0dmZibz5s1r9i2CoUOH8vbbbwNwzjnncMopp7Bs2TLeeecdHnjgAZYsWcLBgwe55JJL+MMf/gDAkiVL+MUvfsHBgweJj49n3rx5fO973+Mvf/kLI0eOBGD8+PE88cQTjBgxot3PxDAMXyKixg+QGpdKz6SeFB4spGdST1LjUjucZkVFhaeb58ILL2wWvmLFCh555BHWrl3L5s2b+eSTTwC45ZZbWLJkCWvWrKGiosJjKFvi8ssv9/jd37FjB+vXr2fixImMHz+ezz77jBUrVnDZZZfx0EMPtUt/Xl4el112Gd/61rf46quvKCoqAuDee+/1uJFevXo1EydOZPfu3dxwww3861//YtWqVcyZM6fN9Dds2MDNN9/MF198wYABA7j//vtZunQpn376KR999BGrV6+murqaSy+9lEcffZRVq1bxwQcfkJiYyPXXX8+MGTMAWL9+PZWVlWb0DSNIHBE1/kBq5g3dOz8Z/hNmfzWbn474KWOzx3Yo34aunpYYO3Ys/fr1A/CMAYwfP5758+fz0EMPUV5ezr59+zjxxBM577zzWkzne9/7HjfffDMHDhxg9uzZXHTRRURHR7Nt2zYuvfRSCgsLqa6uZuDAge3SP2vWLF577TWioqK46KKLmDNnDrfccgsffPCBzwdeunfvzltvvcUZZ5zhyaNHjx5tpj9gwAAfv0KzZ8/m6aefprq6mqKiItauXYuIkJ2dzcknnww4LRyAiy++mHvvvZc//vGPPPPMM1xzzTXtujbDMFrmiDD8bdFg9KdPmM7Y7LGM7T3WZz9UePfBR0dHU1tbS2VlJTfffDNLly6lf//+TJs2jcrKylbTSUxM5Nxzz+W1114jLy+Phx9+GHDcI9x+++1MnjzZ07UUKJ9//jkbNmxg0qRJAJ6CI9BB4QZiYmJ8+u+9r6Vbt26e7S1btjB9+nSWLFlCTEwMt956a6vXnZSUxKRJk3jjjTeYPXu2x5OoYRgdJyK6etbsXeNj5Mdmj2X6hOms2bum07U0GLvMzEzKyspadYnszeWXX87DDz9MUVERp512GuC4TO7bty/gzP5pD7NmzWLatGke9847duxgx44dbN26lUmTJvHEE0944hYXF3PqqaeyYMECtmzZAvi6d16+3HFvvXz5ck94Uw4cOEC3bt1IS0tj165dzJ07F4DBgwdTWFjIkiVLAMdXf21tLQA//vGP+fnPf87JJ59M9+7d23V9hmG0TEQY/uuGXtesZj82eyzXDb2u07Wkp6dzww03MHToUM455xxPF0dbTJo0iR07dnDppZd6BoKnTZvGxRdfzOjRo8nMzPR73ptvvsnvfve7Zsfz8vKajUtceOGF5OXl8dvf/pbi4mKGDh3KiBEjmD9/Pj179uTpp5/mBz/4ASNGjPAMNF900UWe7qrHH3+c4447zq+OESNGMGrUKI4//niuv/56Tj/d+fpZXFwcL7/8MrfeeisjRoxg0qRJnsJx9OjRpKamml9/wwg2/lx2httyuLtl7mzCXWOg+rZv367HHnus1tXV+Q03t8zzu1pCq4S7PtXw1xgqt8wRUeM3Dj9mzpzJKaecwv33309UlP1MDSOYRMTgrnH4MWXKFKZMmdLVMgzjiOSwrko5LRkjErFnbxiHzmFr+BMSEti7d68ZgAhEVdm7dy8JCQldLcUwDksO266efv36sW3bNnbv3t2p+VZWVoa9wQl3jcHQl5CQ4Hk5zjCM9nHYGv7Y2Nh2v6kaDPLz8xk1alSn59sewl1juOszjCOdLunqEZFzReQrEdkoInd2hQbDMIxIpdMNv4hEA08A3wGGAJeLyJDO1mEYhhGpdEWNfyywUVU3q2o1kAec3wU6DMMwIpKu6OPvC3zjtb8NOKVpJBG5EbjR3S0Tka86QVsgZAJ7ulpEG4S7xnDXB6YxGIS7Pgh/jR3VN8DfwbAd3FXVp4Gnu1pHU0RkqaqO6WodrRHuGsNdH5jGYBDu+iD8NYZKX1d09WwH+nvt93OPGYZhGJ1AVxj+JcCxIjJQROKAy4A3u0CHYRhGRNLpXT2qWisitwDvAdHAM6r6RWfr6ABh1/3kh3DXGO76wDQGg3DXB+GvMST6xFweGIZhRBaHra8ewzAM49Aww28YhhFhmOH3oi1XEiISLyIvu+GLRCTHK2y4iHwqIl+IyOciEhIvaYeqUURiReQ5V9s6EflNF+k7Q0SWi0itiPywSdjVIrLBXa4Ohb6OaBSRkV7PeLWIXBpO+rzCU0Vkm4g8Hgp9HdUoIkeJyH/c3+Fa7/+jMNH3kPuM14nIX6ThW6edr/F29/6sFpF5IjLAK6xj/yv+PssViQvOQPMm4GggDlgFDGkS52bgb+72ZcDL7nYMsBoY4e5nANFhpvEKIM/dTgIKgJwu0JcDDAdmAj/0Ot4D2Oyuu7vb3bvoHrak8TjgWHe7D1AIpIeLPq/wR4GXgMeDff+CoRHIBya528lAUrjoA8YBn7hpRAOfArlddA/PbLg3wE+9/pc7/L9iNf5GAnElcT7wnLv9CnCWWxv4NrBaVVcBqOpeVa0LM40KdBORGCARqAYOdLY+VS1Q1dVAfZNzzwHeV9V9qloMvA+cG2R9HdKoqutVdYO7vQPYBfQMF30AIjIayAL+E2RdQdHo+uWKUdX33XhlqloeLvpw/k8ScIxxPBALFAVZX6Aa53vdm89w3nmCIPyvmOFvxJ8rib4txVHVWqAEp3Z/HKAi8p7bfLwjDDW+AhzEqaV+DUxX1X1doC8U57aHoOQjImNxjMOmIOlq4JD1iUgU8CdgapA1NaUj9/A4YL+IvCoiK0Tkj+I4bgwLfar6KTAf5/+kEHhPVdcFWR+0X+P1wNxDPLcZZviDQwwwHrjSXV8oImd1raRmjAXqcLooBgK/EpGju1bS4YmIZAPPA9eqarNadxdyM/COqm7raiGtEAN8C6dwOhmnq+OarhTkjYgcA5yAU7vuC0wUkW91saargDHAH4OVphn+RgJxJeGJ43aZpAF7cUrcBaq6x22avQOcFGYarwDeVdUaVd2F048ZbB8gHXHH0VmuPDqUj4ikAv8G7lbVz4KsDTqm7zTgFhEpAKYDU0TkgeDKAzqmcRuw0u3iqAVeJ/j/Kx3RdyHwmdsFVYZTyz4tyPogQI0icjZwNzBZVavac25rmOFvJBBXEm8CDSPoPwQ+VGe05T1gmIgkucZ2ArA2zDR+DUwEEJFuwKnAl12gryXeA74tIt1FpDvOuMl7QdbXIY1u/NeAmar6Sgi0dUifql6pqkepag5OjXqmqobiQ0cdec5LgHQRaRgbmUjw/1c6ou9rYIKIxIhILM7/cii6etrUKCKjgKdwjP4ur6CO/68Ee7T6cF6A7wLrcfpt73aP3ePeeHAGfeYAG4HFwNFe514FfAGsAR4KN404syfmuBrXAv/TRfpOxqn1HcRpiXzhde51ru6NON0oXXUP/Wp0n3ENsNJrGRku+pqkcQ0hmtUThOc8CWcW3OfADCAuXPThzLZ5CsfYrwUe7sJ7+AHOwHLDb+3NYP2vmMsGwzCMCMO6egzDMCIMM/yGYRgRhhl+wzCMCMMMv2EYRoRhht8wDCPCMMNvRCQikiUiL4nIZhFZ5nrdvLCrdRlGZ2CG34g4XKd1r+O8bX20qo7GeYGmX6snGsYRghl+IxKZCFSr6t8aDqjqVlV9TERyROS/rrO95SIyDkBEckXkIxF5w20lPCAiV4rIYnG+cTDIjTdDRJ4Ukc/ceLki8ozr231GQ35unKWu3/c/dPYNMCKbTv/YumGEAScCy1sI24XjK75SRI4FZtHo02gEjgOvfTg+0P+hqmNF5BfArcBtbrzuOP5dJuO8hn868GNgiYiMVNWVOG9q7nM9U84TkeHquAk2jJBjNX4j4hGRJ0RklYgswfG//ncR+RzHxcUQr6hLVLVQHWdZm2j0ef85zoc9GnhLnVfiPweKVPVzdbx4fuEV7xIRWQ6swCmIvPMxjJBiNX4jEvkCuKhhR1V/JiKZwFLglzj+UUbgVIwqvc6r8tqu99qvx/d/qcpPHE88ERmI65ZYVYvdLqCQfKrTMPxhNX4jEvkQSBCRn3odS3LXaUChW0P/EY7TrmCTiuMcrEREsoDvhCAPw2gRq/EbEYeqqohcAPzZ/VrabhxD/Gucvv9/icgU4F33eLDzXyUiK3DcYn+D820Ew+g0zDunYRhGhGFdPYZhGBGGGX7DMIwIwwy/YRhGhGGG3zAMI8Iww28YhhFhmOE3DMOIMMzwG4ZhRBj/H1sG98TXIVYFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(sig_results[:, 2], sig_results[:, 3], 'x-', label=\"Top-1 Accuracy\")\n", + "plt.plot(sig_results[:, 2], sig_results[:, 4], 'x-', label=\"Top-5 Accuracy\")\n", + "plt.plot(sig_results[:, 2], sig_results[:, 6], 'x-', label=\"Final Val. Accuracy\")\n", + "\n", + "plt.ylim(0)\n", + "\n", + "plt.title('Model Accuracy for Sigmoid Learning Rates')\n", + "plt.ylabel('% Accuracy')\n", + "plt.xlabel('Gamma')\n", + "\n", + "plt.legend()\n", + "# plt.xscale('log')\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "53b1a3b8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+pklEQVR4nO3dd3wUdf7H8dcnHVLohN6bSA8dFBHhPP3ZEEVRsCMKHtbT09/15u88saECoiK2WFHOBigRRHrvhN57TWhpn98fM3hr3DSym9kkn+fjsY9sZr4z897Z8tkpO19RVYwxxpjcwrwOYIwxJjRZgTDGGOOXFQhjjDF+WYEwxhjjlxUIY4wxflmBMMYY45cViBIiIuki0iQA8/mTiLwTiEy55nu7iMzx+T/PvLnbnseyvhaR2853+lAkIn8TkUMisi+Iy2jgPi/hAZ5vsZ7PkiAiT4rIRK9zlDcRXgcoa0RkG5AIZPsMbqGqcUFebl1gO9BSVTfnGjcF2KyqjxZ2foHKKyJ/Apqp6q0+8/51IObtZ1mTgF2q+r/BmH8+y20APAI0VNUDAZqnAqeAcz9UylLVykBQX0d+cjQCtgKRqppVksv2par/CNa8c63r48AHwGOqmp3vhPh/fZcltgURHFepapzPbU+wF6iqu4HvgKG+w0WkKnAF8FawM5RjDYDD51McRCS/L2ntfV5Dlc87XYgrYB2UlPbul6I+wGDgTo/zhAQrECVERFREmrn3J4nIyyLypYikicgCEWnq0/YFEdkpIidEZImIXFTIxbxFrgIB3ASsVdVVIvKEiGx2l7lWRK4rZN5qIjLVzbMQaJqrrd+8InI58CQw2N01ssId/r2I3O3eDxOR/xWR7SJyQEQmi0gld1wjN8dtIrLD3YXzVCHXRe7Hc4+IbBKRI+5jqeMOFxF5zl32CRFZJSJt3HFXuOspTUR2i8gvtsBE5DJgBlDHfYyT3OFXi8gaETnmPt4LfKbZJiKPi8hK4GRhPyB91keEiFQVkV0icpU7Ls59fMPc/1uJyAz38W4QkRt95pPv81mEdVpJRF4Xkb3u+vnbud1fItJURGaKyGH3eXtXRCrnsw6a5fdci8+u1YJeFyJSQUTeEpGjIrJORH4rIrsK85hUdRPwI9DBZ35FfX3nt16aicgsETnu5v7gfNZ9iVFVuwXwBmwDLvMzXHE2RQEmAYeBrji7+d4Fkn3a3gpUc8c9AuwDYtxxfwLeyWPZFXA2kXv7DJsHPOjevwGog/PFYDBwEqjtjrsdmJNH3mTgQyAWaAPsztW2SHmB74G73ft3ApuAJji7Tz4F3nbHNXJzvOY+tvbAWeCCPB7/JOBvfoZfChwCOgHRwEvAbHfcr4AlQGVAgAt81sle4CL3fhWgUx7LvQRn19a5/1u467Y/EAn81n2MUT6vkeVAfaBCHvP8af37DDu3PiLc/we467qmu44+dofHAjuBO9znpKP7+FsX5vnMb5m5xk0BxrvzqQksBO51xzVzH380UAOYDTyf633y0zoo6LnG53VUiLZPA7Pc56wesNL3+SngvdnKfd4fKsbrO7/18j7wFM57MAaf92oo3jwPUNZu7gs/HTjm3j5zh+cuEBN9prkCWJ/PPI/ibAL7fUHmajsRmODebw5kADXzaLscuMa9fzt+CgQQDmQCrXzG/YM8PlAKk5efF4jvgPt9xrV0lxfh80FQz2f8QuCmPJY7Cf8F4nXgXz7/x7nLaIRTPFKB7kBYrul2APcCCQU855fw8wLxe+BDn//DcD6EL/F5jdxZwDwVOOHzOnoRPx/WOMVulTv/au6wwcAPueY3HvhjUZ9Pf8t0hyfifChX8Bl2M5CSx3yuBZblep/c6Wc5fp9r/BeIvNpuAX7lM+5uCi4QJ3CKuuJ8iEefz+u7oPUCTAYm+GYP5ZvtYgqOa1W1snu7No82vme7nMLn4KOIPOpuGh8XkWNAJaB6IZf9FnCDiMTg7G6apu6+cREZJiLL3d0ex3C+PRY03xo4H9Y7fYZt921QzLx1cs1vu7u8RJ9hea6r81mGqqbjbMHVVdWZwFjgZeCAiEwQkQS36fU4xXu7u1ugx3kuLwdn/dX1abMz90R+dPJ5Hf0mjzYTcJ7HSap62B3WEOh27nl2n5NbgFoU4vkspIY4W0d7fZYxHucbMyKSKCLJ7i6WE8A7/PI14W8dFOW5zqttnVzzLtS6dqcfDHTD+fYPFPn1ne96wdmaFGChuwsypI91WIEIMe7+zd8CNwJV1Dk4eRznRVUYc4AjwDU4m8ZvufNtiLNJPgrnm2ZlYHUh5nsQyMLZFXBOgyLk1QLmvwfnTeU77yxgfwHTFcXPliEisTi7DHYDqOqLqpoEtMbZPfSYO3yRql6D8+b+DGe3zPksT3DW326fNgWtlwK5+7Un4HwrvV/cY0Y4H4izfIpLZXUOdN9HAc9nEezE+aZc3WcZCap6oTv+HziPsa2qJuC8FnO/1oq9DvKwF2fX0jn182roSx0f4uyW/QOc1+s73/WiqvtU9R5VrYOzdfqKz/MWcqxAhJ54nDfwQSBCRP4AJOQ/yX+psx07Gfg/nP3q/3FHxeK8mA8CiMgdON88C5pfNs5xgT+JSEURaQ3cVoS8+4FGIpLXa+194CERaSwicTgfLB/o+Z9SGS4iMT63KHcZd4hIBxGJdpexQFW3iUgXEekmIpE4uxjOADkiEiUit4hIJVXNxNkFkVPIDB8CV4pIP3e+j+B8aMw9z8eUlydxntM7gWeAyW7R+AJoISJDRSTSvXURkQsK8XzmJdp3veI8r9OBZ0UkQZyTDZqKSB+3fTzOrtbj4pyC/VhAH3n+PgR+JyJV3GWPKuL0TwP3iEgtivj6VtW95LNeROQGETlXvI7iPH+FfV2VOCsQoWca8A3OfvHtOB9YhdlE9jUZ51vhB6p6FkBV1wLP4nw72g+0xTlbozBG4Wx+78PZz/9mEfJ+5P49LCJL/cz7DeBtnIOYW93pHyhkLn+eAE773Gaq6rc4xwU+wfl22RTn7C5w3uyv4bxZt+PsenrGHTcU2ObuIhmBs5umQKq6Aecb80s4B4evwjn1OaMYj+tnRCQJeBgY5n7o/x/Oh80TqpqGcwD7JpytmX3u+Gh38vyez7yk8/P1eikwDIgC1uKsv4+B2m77P+PstjkOfIlTlErKX4BdOK+nb91cZws7saquwnk9Psb5vb7zWy9dgAUikg5MBUar6pYiPr4SI+6BE2OMKZNE5D6cA9h9Cmxsfsa2IIwxZYqI1BaRXu7unZY4u/imeJ2rNAqFXzAaY0wgReGcOdQY5xThZOAVLwOVVraLyRhjjF+2i8kYY4xfQdvFJCL1cc6mScQ5u2KCqr6Qq00VnLNYmuKcHXCnqq52x20D0nCuipqlqp0LWmb16tW1UaNGAXwU5+/kyZPExsYW3NBDoZ4x1PNB6GcM9XxgGQOhOPmWLFlySFVr+B0ZrJ9o45zW1cm9H49zmljrXG2eAf7o3m8FfOczbhvOj00KvcykpCQNFSkpKV5HKFCoZwz1fKqhnzHU86laxkAoTj5gsZb0pTZUda+qLnXvpwHr+PmlBsD55epMt816nB+cJGKMMcZzJXKQWpxOR2YDbVT1hM/wf+Bc1OohEemK80vTbqq6RES28t9fGo5X1Ql5zHs4MBwgMTExKTk5ObgPppDS09OJiyvRvl2KLNQzhno+CP2MoZ4PLGMgFCdf3759l2heu/Dz2rQI1A3nF5tLgIF+xiXg/IpzOc6vaRcBHdxxdd2/NYEVwMUFLct2MRVNqGcM9XyqoZ8x1POpWsZACNYupqD+DsK9Ds0nwLuq+ouf2quzNXGH21Zwfhq/xR137kJqB8TpMrMrzlaIMcaYEhC0YxDuB/7rwDpVHZNHm8ruxdTAuWb7bFU9ISKxIhLvtonFua7M6mBlNcYY80vB3ILohXOxs1Uistwd9iTupYVVdRxO711vidNp+BrgLrddIjDFqTFEAO+p6jdBzGqMyce4WZtpV68SPZv+txuEuZsPsXLXcUb0Oa8eS00pELQCoapzKKCvAVWdh3P9/dzDt+B0I2iMCQHt6lVi1HvLGDukIz2bVmfu5kM//W/KLrsWkzGmQD2bVmfszR25Z/Jiru9Ujy9W7v2pWJiyyy61YYwplKwc5eTZbCbP207vZtWtOJQDViCMMQVSVf48dQ1hAtXjopi6Yg9PfLLy3OnqpoyyAmGMKdDLKZvYfOgkd/duzOzf9qV7k6okL9rJza/N51TG+fYOa0KdFQhjTL5ycpTJ87aTmBDNY5e3omJUBO/f052butRn/pYjXP/qPHYeOeV1TBMEViCMMfn6Zs0+DqSd5YlftyIy3PnIEBGevr4dk+7owu6jp7h67BzmbjrkcVITaFYgjDF5ys5RnpuRSrOacVzdPve1NuGSljX5fFRvqsdFM/SNhbwxZ6sdlyhDrEAYY/L0nxV72HggnQcva054mP+fNTWuHsuUkb3o16omf/liLY9+tJIzmdklnNQEgxUIY4xfWdk5vPDdRlrViueKNrXzbRsXHcG4W5N48LLmfLJ0F4PHz2Pv8dMllNQEixUIY4xfny7bzdZDJ3m4fwvC8th68BUWJjx4WQsmDE1i04F0rnrpRxZvO1ICSU2wWIEwxvxCRlYOL3y7kXb1KtG/ddH68BpwYS0+G9mL+JgIbn5tPu8u2B6klCbYrEAYY37hw8U72X3sNA/3b4F70cwiaZ4Yz2cje9GrWXWemrKa3326ioysnCAkNcFkBcIY8zNnMrMZO3MTSQ2r0KeF/77sC6NShUhev60L913SlPcX7mDIa/M5kHYmgElNsFmBMMb8zHsLdrDvxBkeGXB+Ww++wsOExy9vxdghHVmz5wRXv/QjK3YeC0xQE3RWIIwxPzmVkcUr32+mR5NqAb0Y3/+0q8Mn9/UkIly4Yfw8Pl6yK2DzNsFjBcIY85PJ87ZzKP0sjwz4RTctxda6TgJTR/Wmc8MqPPrRCv40dQ2Z2XZcIpRZfxDGGADSzmQyftZm+rSoQedGVYOyjKqxUUy+syv/+Go9b/y4lQ370hjSyH55HaqsQBhjAHjzx20cPZXJw/0Dv/XgKyI8jD9c1ZoL6yTwuymrSN2jNGlznAvrVArqck3R2S4mYwzHT2Xy2g9b6N86kfb1K5fIMq9PqsfHI3qgwPWvzmXqij0lslxTeFYgjDFMnLOFtDNZQd96yK1dvcr8sUcF2tatxG/eX8Y/v15Hdo7tcgoVViCMKeeOnMzgjTlbubJdbS6onVDiy68ULbx7d3du7d6A8bO2cMekRRw/lVniOcwvWYEwppwbP2szpzOzeeiy5p5liIoI42/XtuWfA9syb/Mhrn55Dqn70zzLYxxWIIwpxw6kneGtedu4pkNdmtWM9zoON3dtQPLw7pzKyOa6l39k2pp9Xkcq16xAGFOOvZKymcxsZXQ/77YecktqWJX/jOpNs8R47n17CWNmpJJjxyU8YQXCmHJqz7HTvLdgB4M61aNR9Viv4/xMrUoxfDC8O4OS6vHidxsZ/vYS0s7YcYmSFrQCISL1RSRFRNaKyBoRGe2nTRURmSIiK0VkoYi08Rl3uYhsEJFNIvJEsHIaU16NTdmEojzQr5nXUfyKiQznmUHt+NNVrUnZcIDrXpnLloPpXscqV4K5BZEFPKKqrYHuwEgRaZ2rzZPAclVtBwwDXgAQkXDgZeDXQGvgZj/TGmPO084jp/hw0U5u6tKAelUqeh0nTyLC7b0a885d3ThyMoNrXv6RlPUHvI5VbgStQKjqXlVd6t5PA9YBuXs9bw3MdNusBxqJSCLQFdikqltUNQNIBq4JVlZjypsXvttIWJgwsm9obj3k1qNpNaaO6kX9KhW5861FvPL9JlTtuESwlcgxCBFpBHQEFuQatQIY6LbpCjQE6uEUkp0+7Xbxy+JijDkPWw6m8+nSXQzt3pBalWK8jlNo9apU5JP7enJVuzr865sNjHpvGacysryOVaZJsKuwiMQBs4C/q+qnucYl4OxW6gisAloB9wDNgMtV9W633VCgm6qO8jP/4cBwgMTExKTk5OQgPprCS09PJy4uzusY+Qr1jKGeD0I/o79841acYemBbP59cUUSoovX30MgFHUdqipfb8vkow2Z1IsP4zcdo6lRMbjfdUvj81xYffv2XaKqnf2OVNWg3YBIYBrwcCHaCrANSAB6ANN8xv0O+F1B80hKStJQkZKS4nWEAoV6xlDPpxr6GXPnW7/3hDZ64gt9+ut13gTy43zX4fcbDmjbP36j7f88TedsPBjYULmUtue5KIDFmsdnajDPYhLgdWCdqo7Jo01lEYly/70bmK2qJ4BFQHMRaeyOvwmYGqysxpQXz3+bSmxUBMMvauJ1lGLr06IGU0f1pmZ8NMPeWMjrc7bacYkAC+Z2WS9gKHCpiCx3b1eIyAgRGeG2uQBYLSIbcM5YGg2gqlnAKJytj3XAh6q6JohZjSnzVu8+zter93Fn78ZUiY0qeIJSoFH1WD69vxeXXVCTv36xlkc+XMGZzGyvY5UZQesPQlXn4Ow2yq/NPMDv5SNV9SvgqyBEM6Zcem5GKpUqRHJX78ZeRwmouOgIXr0libEpmxgzI5VNB9MZd2sSdSpX8DpaqWe/pDamHFi24yjfrT/A8IubUKlCpNdxAi4sTPhNv+a8NqwzWw6e5Oqxc1i49YjXsUo9KxDGlANjZqRSNTaK23s28jpKUPVvnchnI3sSHxPJkNfm8/b87XZcohisQBhTxi3ceoQfNh7ivj5NiY0u+70MN6sZz2cje3FR8+r8/rPVPDllFWez7LjE+bACYUwZpqr8e/oGasRHc2v3hl7HKTGVKkQy8bYujOzblPcX7uTmCfM5cOKM17FKHSsQxpRhaw/nsHDrEUb1bUaFqHCv45So8DDhsV+14uUhnVi3N42rxs5h2Y6jXscqVaxAGFNGqSqfbsygTqUYbupa3+s4nrmyXW0+vb8nURFhDB4/nw8X7yx4IgNYgTCmzErZcIDNx3MYdWlzoiPK19ZDbhfUTmDqyN50aVyF3368kj9NXUNmdo7XsUKeFQhjyiBVZcyMVGpUEG7oXM/rOCGhSmwUb93RlXsuasykudu4deICDqef9TpWSLMCYUwZNG3NflbvPsE1zSKJDLe3+TkR4WE8dWVrnhvcnuU7j3H12B9Zvfu417FClr1yjCljcnKU52ak0qRGLD1ql/3TWs/HdR3r8fGInqgqg8bN5fPlu72OFJKsQBhTxnyxai8b9qfx4GUtCA/z/nLeoaptvUpMfaA37epWZnTycv751Tqyc+xHdb6sQBhThmRl5/D8jFRaJsbzP21rex0n5FWPi+adu7sxrEdDxs/ewu1vLuTYqQyvY4UMKxDGlCGfLd/DlkMneah/C8Js66FQoiLC+Ms1bXh6YFvmbznMNS//yIZ9aV7HCglWIIwpIzKzc3jhu1Ta1E3gVxcmeh2n1LmpawOSh/fgdEY2173yI9+s3ut1JM9ZgTCmjPho8S52HjnNI/1b4vTXZYoqqWEV/vNAb1okxjPinaWMmb6BnHJ8XMIKhDFlwJnMbF6auZGODSpzScsaXscp1RITYvjg3u7c2LkeL87cxPC3F3M6q3wWCTsHzpgyIHnhDvYeP8Mzg9rb1kMAREeE83/Xt6NN3Ur85T9rWbMDWrRPp2mNOK+jlSjbgjCmlDudkc3L32+mW+Oq9GpWzes4ZYaIMKxHI965uxvpGcq1Y39k5vr9XscqUVYgjCnl3pm/nYNpZ3lkgB17CIbuTarxp54VaFCtIne9tZixMzeWm06IrEAYU4qln83i1Vmbuah5dbo2rup1nDKrWoUwPh7Rk6vb1+Hf01MZ+d5STp7N8jpW0FmBMKYUe2vuNo6czOCRAS29jlLmVYgK5/nBHXjqigv4ZvU+rn91LjsOn/I6VlBZgTCmlDp+OpPxszbTr1VNOtSv7HWcckFEuOfiJky6oyt7j5/hqrFz+GHjQa9jBY0VCGNKqdfnbOXEmSwe6t/C6yjlzsUtajB1VC9qJcRw2xsLeW32ljJ5XMIKhDGl0NGTGbwxZyu/blOLNnUreR2nXGpYLZZP7+/JgNa1+PtX63jog+Wcycz2OlZAWYEwphQaP3sLJzNs68FrsdERvHprJx4d0ILPV+xh0Li57D522utYARO0AiEi9UUkRUTWisgaERntp00lEfmPiKxw29zhMy5bRJa7t6nBymlMaXMw7Sxvzd3G1e3r0CIx3us45Z6IMOrS5kwc1pnth05x9UtzWLDlsNexAiKYWxBZwCOq2hroDowUkda52owE1qpqe+AS4FkRiXLHnVbVDu7t6iDmNKZUGTdrM2ezshndr7nXUYyPfhckMmVkLypVjOSWiQuYPG9bqT8uEbQCoap7VXWpez8NWAfUzd0MiBfn1z1xwBGcwmKM8WPf8TO8PX8713eqR5NydtmH0qBZzTg+G9mLPi1q8IfP1/DEJ6s4m1V6j0uUyDEIEWkEdAQW5Bo1FrgA2AOsAkarao47LkZEFovIfBG5tiRyGhPqXk7ZRE6O8hvbeghZCTGRvDasMw9c2owPFu/kpgnz2X/ijNexzosEexNIROKAWcDfVfXTXOMGAb2Ah4GmwAygvaqeEJG6qrpbRJoAM4F+qrrZz/yHA8MBEhMTk5KTk4P6eAorPT2duLjQ/oYX6hlDPR+UbMZDp3N4fPZpLq4XwW0XRhdqGluHgXG+GRfty2LiqrNUiBBGdYymWeXwIKQr3jrs27fvElXt7HekqgbtBkQC04CH8xj/JXCRz/8zga5+2k0CBhW0vKSkJA0VKSkpXkcoUKhnDPV8qiWb8bcfrdDmT32le46dKvQ0tg4DozgZ1+09rhf930xt/uRXmrxwe+BC+ShOPmCx5vGZGsyzmAR4HVinqmPyaLYD6Oe2TwRaAltEpIqIRLvDq+NsZawNVlZjQt22Qyf5eOkuhnRtQO1KFbyOY4qgVa0Epo7qRbcmVXn8k1X84fPVZGbnFDxhCAhmfxC9gKHAKhFZ7g57EmgAoKrjgL8Ck0RkFSDA46p6SER6AuNFJAfnOMnTqmoFwpRbL3y3kchw4f6+Tb2OYs5D5YpRvHl7F/41bQMTZm9h/b40XrmlE9XjCrer0CtBKxCqOgfnQz+/NnuAAX6GzwXaBimaMaXKxv1pfLZ8N8MvakLN+Biv45jzFBEexpNXXEDr2gk8/slKrn5pDuOHdqZtvdD9Jbz9ktqYEPf8txupGBnOvX1s66EsuLZjXT65rycAg8bN5bNluz1OlDcrEMaEsLV7TvDlqr3c2bsxVWOjCp7AlApt6lZi6gO9aV+/Mg9+sJy/fbGWrBA8LmEFwpgQ9ty3qcTHRHB37yZeRzEBVj0umnfv7sZtPRoycc5Wbn9zEUdPZngd62esQBgTolbsPMaMtfsZflETKlWM9DqOCYLI8DD+fE0b/nV9OxZuPcLVL89h/b4TXsf6iRUIY0LUmBmpVKkYyR29G3sdxQTZjV3qk3xvd85m5jDwlbl8tWqv15EAKxDGhKTF244wK/Ug9/ZpSlx0MM9GN6GiU4MqfPFAb1rWiuf+d5fyzLT15OR4e7E/KxDGhKBnp6dSPS6aYT0aeh3FlKCaCTEkD+/O4M71eTllM3dPXsyJM5me5bECYUyImbvpEPO2HOb+S5pSMcq2Hsqb6Ihwnr6+LX+9tg2zUw9y7dgf2XQg3ZMsViCMCSGqyrMzUqmVEMOQbg28jmM8IiIM7d6Qd+/uxvHTmVz78o98u3Z/ieewAmFMCJmVepAl248y6tJmxEQG58qfpvTo1qQa/3mgN42rx3LP24t56buNJXpcwgqEMSFCVRkzI5V6VSpwY+f6XscxIaJO5Qp8NKIH13aoy7MzUrn/3aWkny2ZftWsQBgTImas3c/KXcf5Tb/mREXYW9P8V0xkOGNubM//XnkB09fuY+ArP7L98MmgL9dehcaEgJwcZ+uhcfVYBnbM3TOvMc5xibsvasLkO7txIO0sv3puNuNm/bwPtbmbD/1iWHFYgTAmBHy1ei/r96Xx4GXNiQi3t6XJW+/m1Zk6sjc14qN5+uv1PDllJarK3M2HGPXeMtoF8Oqwdg6dMR7LzlGe/3YjzWvG8T/t6ngdx5QCDapVZNpDF3PHm4t4b8FOZsUJp35Yysu3dKJn0+oBW459VTHGY1NX7GbTgXQe6t+C8LB8u1Ax5icVoyJIHt6dHk2qsTtduaVbg4AWB7ACYYynMrNzeP7bjbSuncDlF9byOo4pZeZtOcyG/Wlc1SSC9xbuZO7mQwGdvxUIYzz06dJdbD98iof7tyDMth5MEZw75jB2SEeubxHN2CEdGfXesoAWCSsQxnjkbFY2L363ifb1K9PvgppexzGlzMpdxxk7pONPu5V6Nq3O2CEdWbnreMCWYQepjfHIh4t2svvYaf45sC0itvVgimaEny5oezatbgepjSntzmRmMzZlE10aVeGi5oE9sGhMoFiBMMYD78zfzv4TZ3lkQEvbejAhywqEMSXs5Nksxs3aTK9m1ejepJrXcYzJkx2DMKaEvTVvG4fSMxjfv6XXUYzJV6G2IEQkVkTC3PstRORqEbFe1I0porQzmUyYvYW+LWuQ1LCK13GMyVdhdzHNBmJEpC4wHRgKTApWKGPKqjfmbOPYqUwetq0HUwoUtkCIqp4CBgKvqOoNwIX5TiBSX0RSRGStiKwRkdF+2lQSkf+IyAq3zR0+424TkY3u7baiPChjQtGxUxlM/GELv7owkbYBvKCaMcFS2GMQIiI9gFuAu9xhBXV3lQU8oqpLRSQeWCIiM1R1rU+bkcBaVb1KRGoAG0TkXSAO+CPQGVB32qmqerSQeY0JOa/9sIX0jCwe6t/C6yjGFEphtyAeBH4HTFHVNSLSBEjJbwJV3auqS937acA6IPeF7hWIF+c8vzjgCE5h+RUwQ1WPuEVhBnB5IbMaE3IOp5/lzR+3cWXb2rSqleB1HGMKRVSL1r+pe7A6TlVPFGGaRjjHMdr4TuduWUwFWgHxwGBV/VJEHgViVPVvbrvfA6dV9d9+5j0cGA6QmJiYlJycXKTHEyzp6enExcV5HSNfoZ4x1PNB4TMmrz/LtG1Z/L13BerEldzZ5WVpHXop1DMWJ1/fvn2XqGpnvyNVtcAb8B6QAMQCa4FdwGOFnDYOWAIM9DNuEPAcIEAzYKu7nEeB//Vp93vg0YKWlZSUpKEiJSXF6wgFCvWMoZ5PtXAZ9x8/rS2e+kof+mBZ0PPkVlbWoddCPWNx8gGLNY/P1MJ+lWmtzjf/a4GvgcY4ZzLlyz0V9hPgXVX91E+TO4BP3Zyb3ALRCtgN+PbaXs8dZkyp83LKJrJzlNH9mnsdxZgiKWyBiHQ/7K8FpqpqJs7xgzy5xxVeB9ap6pg8mu0A+rntE4GWwBZgGjBARKqISBVggDssoMbN2vyLS+MGuk9XU77tPnaa9xfu5IbO9WhYLdbrOMYUSWELxHhgG84uptki0hAo6BhEL5ytjEtFZLl7u0JERojICLfNX4GeIrIK+A54XFUPqeoRd9wi9/YXd1hAtatX6WfXTw9Gn66mfBs7cyMAoy61rQdT+hTqNFdVfRF40WfQdhHpW8A0c3COLeTXZg/O1oG/cW8AbxQm3/k6d/30e99ews1dGvDx0l0/u766McWx4/ApPlq8i1u6NaBu5QpexzGmyAp7qY1KIjJGRBa7t2dxtiZKvQtqJXAmI5sJP2zhuo51rTiYgHnhu42Ehwkj+zbzOoox56Wwu5jeANKAG93bCeDNYIUqSev2nSAmKpyIMOHNH7cydcUeryOZMmDTgXSmLNvFsB4NqZkQ43UcY85LYX9J3VRVr/f5/88isjwIeUrUuWMO44cmER0Rxq0TF/Bg8jIys7K5Pql+wTMwJg8vfLeRmMhwv71+GVNaFHYL4rSI9D73j4j0Ak4HJ1LJ8e3TNalhVT6+rydx0RH8/vM1rNtb6N8BGvMz6/ed4IuVe7i9ZyOqxUV7HceY81bYAjECeFlEtonINmAscG/QUpWQEX2a/uyYw4V1KjFlZC8qVYhk8Ph5LNlul34yRffcjFTioiIYfnETr6MYUyyFKhCqukJV2wPtgHaq2hG4NKjJPNK0RhwfjehB1dgohr6+gDkbDxU8kTGuVbuOM23Nfu66qDGVK0Z5HceYYinSRWFU9YT+91pKDwchT0ioV6UiH47oQYOqFblz0iKmr9nndSRTSoyZsYHKFSO5s3djr6MYU2zFuWpYme5pvWZ8DMnDu9O6TgL3vbuUKct2eR3JhLgl24+SsuEgwy9uQkKMdbhoSr/iFIiiXQa2FKpcMYp37+5Gt8ZVeeiDFbw9b5vXkUwIe25GKtVio7itRyOvoxgTEPkWCBFJE5ETfm5pQJ0Syuip2OgI3ri9C5ddkMjvP1/DK99v8jqSCUHztxxmzqZD3HdJU2KjC3v2uDGhLd8Coarxqprg5xavquXmXRATGc6rt3bi2g51+Nc3G3j66/XnLkNuDKrKmOmpJCZEc2v3hl7HMSZgys2HfHFFhocx5sYOxEZHMG7WZtLOZPLXa9oQFlamD8WYQvhh4yEWbjvCX6+5kJjIgnriNab0sAJRBGFhwt+ubUN8TCTjZm0m/WwW/76hPZHhJddDmAktqsqzM1KpW7kCN3axX9+bssUKRBGJCE/8uhUJFSL41zcbOHk2m7FDOto3x3JqxcFsVuw8xtMD2xIdYa8BU7bYV9/zdP8lzfjrNRfy7br93DlpESfPZnkdyZSwnBzl042ZNKxWkeuT6nkdx5iAswJRDEN7NOK5we1ZsPUIt0xcwLFTGV5HMiVo2pp97EjLYXS/5rab0ZRJ9qoupus61uPVWzqxds8JbpownwNpZ7yOZEpAdo4yZkYqtWOFazrU9TqOMUFhBSIABlxYizfv6MKOI6e4cdw8dh095XUkE2RfrNzDxgPpXNcsinA7k82UUVYgAqRXs+q8fVc3jpzM4IZx89ibnuN1JBMkWdk5PP/tRlrViqdzLTswbcouKxABlNSwCsnDe5CZncM/Fp5mzZ7jXkcyQfDpst1sPXSSh/u3IExs68GUXVYgAqx1nQQ+vLcHkWHCTRPms2T7Ea8jmQDKyMrhxe820q5eJfq3TvQ6jjFBZQUiCJrUiOOpbjHUiIvm1okL+WHjQa8jmQD5cPFOdh09zcP9WyC29WDKOCsQQVKtQhgf3NuDRtVjuWvSYr5ZbX1KlHZnMrMZO3MTSQ2r0KdFDa/jGBN0ViCCqEZ8NMn3dKdN3QTuf3cJHy+xPiVKs/cX7mDfiTM8YlsPppywAhFklSpG8vZd3ejZtDqPfrSCt+Zu8zqSOQ+nM7J5OWUzPZpUo2ez6gVPYEwZELQCISL1RSRFRNaKyBoRGe2nzWMisty9rRaRbBGp6o7bJiKr3HGLg5WzJMRGRzDxts4MaJ3IH6euYezMjXa58FJm8rxtHEo/yyMDWngdxZgSE8wtiCzgEVVtDXQHRopIa98GqvqMqnZQ1Q7A74BZqup72k9fd3znIOYsETGR4bxySycGdqzLv6enWp8SpUj62SzGzdrMxS1q0LlRVa/jGFNignY1V1XdC+x176eJyDqgLrA2j0luBt4PVp5QEBEexr9vaE9cTATjZ28h7WwWf72mjf0SN8S9OWcrR09l8kh/23ow5YuUxLdYEWkEzAbaqOoJP+MrAruAZue2IERkK3AUp+/r8ao6IY95DweGAyQmJiYlJycH5TEUVXp6OnFxcX7HqSqfbMzkiy2ZdK8dzt1to4nwoEjklzEUhEK+k5nKo7NO0apqOKM7xfxifChkzE+o5wPLGAjFyde3b98lee6lUdWg3oA4YAkwMJ82g4H/5BpW1/1bE1gBXFzQspKSkjRUpKSkFNjm1e83acPHv9A73lyopzOygh8ql8Jk9FIo5Pv3tPXa8PEvdM3u437Hh0LG/IR6PlXLGAjFyQcs1jw+U4N6FpOIRAKfAO+q6qf5NL2JXLuXVHW3+/cAMAXoGqycXhnRpyl/u7YNKRsOcPubC0m3PiVCypGTGbwxZytXtq1N6zoJXscxpsQF8ywmAV4H1qnqmHzaVQL6AJ/7DIsVkfhz94EBwOpgZfXSrd0b8vzgDizadpRbXpvP0ZPWp0SoGD97M6cys3nwsuZeRzHGE8HcgugFDAUu9TmV9QoRGSEiI3zaXQdMV9WTPsMSgTkisgJYCHypqt8EMaunrulQl/G3JrFuX5rTp8QJ61PCawfSzvDW3G1c26EuzRPjvY5jjCeCeRbTHKDAI6+qOgmYlGvYFqB9UIKFqMtaJzLpji7c89Zibhg/j3fu6kb9qhW9jlVuvfr9ZjKzldH9bOvBlF/2S+oQ0rNpdd65uxvHTmVyw7h5bDqQ5nWkcmnv8dO8O38HgzrVo1H1WK/jGOMZKxAhpmODKnxwb3eycpQbx89n9W7rU6KkjZ25CUV5oF8zr6MY4ykrECGoVa0EPh7RgwqR4dw8YT6LtlmfEiVl55FTfLh4J4O71KdeFdvFZ8o3KxAhqlH1WD4a0YMaCdEMfX0Bs1KtT4mS8OJ3GxERRvW1Yw/GWIEIYXUqV+DDe3vQpHocd7+1iK9X7fU6Upm25WA6ny7bza3dGlKr0i9/NW1MeWMFIsRVj4vm/eHdaV+vMiPfW8pHi3d6HanMeuG7jUSFh3HfJU29jmJMSLACUQpUqhDJ5Lu60qtZdR77eCVvzNnqdaQyJ3V/GlNX7OG2no2oER/tdRxjQoIViFKiYpTTp8TlF9biL1+s5YVvrU+JQHr+21RioyK49+ImXkcxJmRYgShFoiPCGTukI9d3qsdz36by9y/XWZEIgDV7jvPVqn3c2bsxVWKjvI5jTMgI2i+pTXBEhIfxzKB2xMdEMHHOVtLPZvH369panxLF8NyMVBJiIrird2OvoxgTUqxAlEJhYcIfr2pNQkwEL87cRPrZLMbc2IGoCNsgLKplO47y7boDPParllSqEOl1HGNCihWIUkpEeHhAS+JjIvn7V+s4eTaLV29NIiYy3OtopcqYGalUjY3i9p6NvI5iTMixr5yl3D0XN+GfA9vyfepBhr2xkLQzmV5HKjUWbj3CDxsPMaJPE2Kj7buSMblZgSgDbu7agBdu6sjS7Ue5ZeICjlifEgVSVZ6dvoEa8dEM7d7I6zjGhCQrEGXE1e3rMGFYEhv2pTF4/Dz2W58S+Zq7+TALth5h5CVNqRBlu+WM8ccKRBlyaatEJt3RlT3HTjNo3Fx2HD7ldaSQpKr8e/oG6lSK4eZuDbyOY0zIsgJRxvRoWo337ulO2pksbhg/l437rU+J3L7fcJBlO44x6tLmREfY1oMxebECUQa1r1+ZD4b3QBVuHD+PVbusT4lzVJVnZ2ygftUK3NC5ntdxjAlpViDKqJa14vloRA9ioyO4+bX5LNhy2OtIIWHamv2s3n2C0f1aEBluL39j8mPvkDKsYbVYPh7Rk1qVYhj2xkJS1h/wOpKncnKU52ak0qR6LNd2qON1HGNCnhWIMq5WpRg+GN6d5olx3DN5MV+s3ON1JM98uWovG/anMfqy5kTY1oMxBbJ3STlQLS6a9+7pTscGlfnN+8v4YNEOryOVuKzsHJ77NpWWifFc1c62HowpDCsQ5URCTCST7+zGRc1r8Pgnq5j4wxavI5Woz5fvYcvBkzzUvzlhdmFDYwrFCkQ5UiEqnNeGdebKtrX525frmLIxo1xcLjwzO4cXvtvIhXUS+NWFtbyOY0ypYQWinImKCOPFmztyY+d6fL45k79+sY6cnLJdJD5esosdR07xyIAWiNjWgzGFFbQCISL1RSRFRNaKyBoRGe2nzWMisty9rRaRbBGp6o67XEQ2iMgmEXkiWDnLo/Aw4emB7RjQMII3ftzK45+sJLuMFomzWdm89N1GOtSvTN+WNb2OY0ypEswtiCzgEVVtDXQHRopIa98GqvqMqnZQ1Q7A74BZqnpERMKBl4FfA62Bm3NPa4onLEy4uVUUo/s156Mlu3jg/aVkZOV4HSvgkhfuZM/xMzw6oKVtPRhTREErEKq6V1WXuvfTgHVA3XwmuRl4373fFdikqltUNQNIBq4JVtbySkR4qH8L/vfKC/hq1T7umbyY0xnZXscKmNMZ2YxN2UTXxlXp1aya13GMKXWkJA5SikgjYDbQRlVP+BlfEdgFNHO3IAYBl6vq3e74oUA3VR3lZ9rhwHCAxMTEpOTk5OA9kCJIT08nLi7O6xj58s04a1cmk1Zn0LxKGA92iqFipPfftou7Dr/emskHGzL4XdcYWlYNzjWXQv15DvV8YBkDoTj5+vbtu0RVO/sdqapBvQFxwBJgYD5tBgP/8fl/EDDR5/+hwNiClpWUlKShIiUlxesIBcqd8YsVe7TZk1/qlS/O1sPpZ70J5aM46zD9TKZ2/Mt0vXXi/MAF8iPUn+dQz6dqGQOhOPmAxZrHZ2pQz2ISkUjgE+BdVf00n6Y38d/dSwC7gfo+/9dzh5kgurJdbSYM68zG/encOH4e+46X3j4lJs3dxpGTGTzcv4XXUYwptYJ5FpMArwPrVHVMPu0qAX2Az30GLwKai0hjEYnCKSBTg5XV/FffljWZfGdX9h0/w6Bxc9l++KTXkYrsxJlMJszeQr9WNenYoIrXcYwptYK5BdELZ9fQpT6nsl4hIiNEZIRPu+uA6ar60yeRqmYBo4BpOAe3P1TVNUHManx0a1KN9+7pxsmzWdwwbh4b9pWuPiVe/2Erx09n8pBtPRhTLEHrqV1V5wAFHulU1UnAJD/DvwK+CngwUyjt6lXmw3t7cMvEBQyeMI+37uhK+/qVvY5VoKMnM3h9zlZ+3aYWbepW8jqOMaWa/ZLa5Kl5Yjwfj+hJQkwkQ16bz7zNod+nxIQftnAyI8u2HowJACsQJl8NqlXkoxE9qFO5Are/uZCZ6/d7HSlPh9LPMunHbVzVrg4tEuO9jmNMqWcFwhQoMSGGD+7tQcta8QyfvISpK0KzT4lXv9/M2axsHrysuddRjCkTrECYQqkaG8W7d3ejU8MqjE5exnsLQqtPiX3Hz/DO/O0M7FSPJjVC9wdNxpQmViBMocXHRDL5zq5c0qIGT05ZxYTZm72O9JOXUzaRnaOM7mdbD8YEihUIUyQxkeGMH9qZK9vV5h9frefZ6Rs871Ni19FTJC/awY1d6lO/akVPsxhTlgTtNFdTdkVFhPHiTR2Jj47gpZmbSDuTxR/+p7VnPbWNnbkJQRjVt5knyzemrLICYc5LeJjwz4FtiY+J4LUftpJ+NounB7YlIrxkN0q3HTrJR0t2MbR7Q+pUrlCiyzamrLMCYc6biPDkFRcQHxPJmBmppJ/J4oWbOxAdEZwrp/rz4ncbiQwX7u/btMSWaUx5YccgTLGICL/p15w//E9rvlmzj7vfWsypjKwSWfamA2lMWb6b23o0omZ8TIks05jyxAqECYg7ezfmX4Pa8eOmQwx7fSHHT2cGfZnPfbuRipHh3NvHth6MCQYrECZgbuxcn7FDOrFi1zFunjCfQ+lng7asdXtP8OXKvdzRqzFVY6OCthxjyjMrECagrmhbm4m3dWHLIadPib3HTwdlOWNmpBIfE8E9FzUJyvyNMVYgTBD0aVGDt+/qxsETZxn06jy2HQpsnxIrdx1jxtr93HNREypVjAzovI0x/2UFwgRFl0ZVeX94d05nZjNo3DzW7/tFV+TnbcyMVKpUjOSOXo0CNk9jzC9ZgTBB06ZuJT68tzsRYcLg8fNZtuNosee5ZPsRvt9wkHv7NCU+xrYejAkmKxAmqJrVjOejET2oXDGSWyYuYO7mQ8Wa37PTU6keF8WwHg0DlNAYkxcrECbo6letyEf39qBelQrc/uYivl17fn1KzN18iLmbD3P/Jc2oGGW/8TQm2KxAmBJRMyGGD4b34ILaCdz7zhI+X767SNOrKmOmp1IrIYYh3RoEKaUxxpcVCFNiqrh9SnRpVIUHP1jOuwu2F3ra2RsPsXj7UUZe2oyYyJK7lIcx5ZkVCFOi4qIjmHRHVy5tWZOnpqxm3KyC+5RQVZ6dvoG6lSswuHP9EkhpjAErEMYDMZHhjBuaxFXt6/D01+v51zfr8+1T4tt1B1i56zij+zUnKsJessaUFDvSZzwRGR7G84M7EBcdwSvfbyb9bBZ/uurCX/QpkZPjbD00qlaRgZ3qepTWmPLJCoTxTHiY8I/r2pAQE8H42VtIP5PFvwa1+1mfEl+v3sf6fWk8P7hDifc1YUx5ZwXCeEpEeOLXrUioEMkz0zaQfjaLl4Z0JDoinBxVnvs2leY147iqfR2voxpT7gTtK5mI1BeRFBFZKyJrRGR0Hu0uEZHlbptZPsO3icgqd9ziYOU03hMRRvZtxp+vvpDpa/dz/StzOZWRxfy92Ww6kM4VbWvz2g9bvI5pTLkTzC2ILOARVV0qIvHAEhGZoaprzzUQkcrAK8DlqrpDRGrmmkdfVS3eT29NqXFbz0bsO36GV2dt5pqxczienkGDqhV5e952xt7S0et4xpQ7QSsQqroX2OveTxORdUBdYK1PsyHAp6q6w213IFh5TOnw+K9bERMZznPfpgIQl53BhGFJ9Gxa3eNkxpQ/kt/phQFbiEgjYDbQRlVP+Ax/HogELgTigRdUdbI7bitwFFBgvKpOyGPew4HhAImJiUnJycnBeyBFkJ6eTlxcnNcx8hXKGSesPMPcPdlc3SSCgS2ivY6Tp1BehxD6+cAyBkJx8vXt23eJqnb2O1JVg3oD4oAlwEA/48YC84FYoDqwEWjhjqvr/q0JrAAuLmhZSUlJGipSUlK8jlCgUM3446aD2vEv0/WBCdO041+m64+bDnodKU+hug7PCfV8qpYxEIqTD1iseXymBvW8QRGJBD4B3lXVT/002QVMU9WT6hxrmA20B1DV3e7fA8AUoGsws5rQMHfzIUa9t4yxQzoysHkUY4d0ZNR7y4p9FVhjTNEF8ywmAV4H1qnqmDyafQ70FpEIEakIdAPWiUise2AbEYkFBgCrg5XVhI6Vu44zdkjHn4459GxanbFDOrJy13GPkxlT/gTzLKZewFBglYgsd4c9CTQAUNVxqrpORL4BVgI5wERVXS0iTYApTo0hAnhPVb8JYlYTIkb0afqLYT2bVreD1MZ4IJhnMc0BpBDtngGeyTVsC+6uJmOMMd6waxcYY4zxywqEMcYYv6xAGGOM8csKhDHGGL9K5JfUJUVEDgKF78cyuKoDoX7yfqhnDPV8EPoZQz0fWMZAKE6+hqpaw9+IMlUgQomILNa8fr4eIkI9Y6jng9DPGOr5wDIGQrDy2S4mY4wxflmBMMYY45cViODxe/XZEBPqGUM9H4R+xlDPB5YxEIKSz45BGGOM8cu2IIwxxvhlBcIYY4xfViDOg4hcLiIbRGSTiDzhZ3y0iHzgjl/g9qh3blw7EZknImtEZJWIxIRKPhGJFJG33FzrROR3gc5WhIwXi8hSEckSkUG5xt0mIhvd222hlE9EOvg8vytFZHAw8hUno8/4BBHZJSJjQy2fiDQQkenu63Ct73sohDL+y32e14nIi24XB15kfNhdRytF5DsRaegzrnjvlbx6ErJbnj3khQObgSZAFE5vd61ztbkfGOfevwn4wL0fgXNp8/bu/9WA8BDKNwRIdu9XBLYBjTxah42AdsBkYJDP8KrAFvdvFfd+lRDK1wJo7t6vg9Mve+VQWoc+418A3gPGhlo+4Hugv3s/DqgYShmBnsCP7jzCgXnAJR5l7Htu/QD3+byfi/1esS2IousKbFLVLaqaASQD1+Rqcw3wlnv/Y6Cf++1iALBSVVcAqOphVc0OoXwKxIpIBFAByABOEHgFZlTVbap6rp8QX78CZqjqEVU9CswALg+VfKqaqqob3ft7gAOA31+pepURQESSgERgehCyFSufiLQGIlR1htsuXVVPhVJGnPdKDM6HdjQQCez3KGOKz/qZD9Rz7xf7vWIFoujqAjt9/t/lDvPbRlWzgOM4WwstABWRae5m629DLN/HwEmcb707gH+r6hGPMgZj2sIKyDJEpCvOB8jmAOXydd4ZRSQMeBZ4NAi5zinOOmwBHBORT0VkmYg8IyLhAU9YjIyqOg9IwXmv7MXpOnldwBMWPeNdwNfnOe0vWIEoWRFAb+AW9+91ItLP20g/0xXIxtk10hh4RJze/UwRiUht4G3gDlX9xTd4j90PfKWqu7wOkocI4CKcAtYFZ/fK7V4Gyk1EmgEX4HxbrwtcKiIXeZzpVqAzuTpgKw4rEEW3G6jv8389d5jfNu7umkrAYZwKPltVD7mbhF8BnUIo3xDgG1XNVNUDOPtYg3H9mcJkDMa0hVWsZYhIAvAl8JSqzg9wtnOKk7EHMEpEtgH/BoaJyNOBjVesfLuA5e5ulSzgMwL/PoHiZbwOmO/u/krH+dbeI8D5oJAZReQy4CngalU9W5Rp82MFougWAc1FpLGIROEc5J2aq81U4NwZA4OAmeocNZoGtBWRiu4Hcx9gbQjl2wFcCiAisUB3YH2A8xU2Y16mAQNEpIqIVME5rjMtVPK57acAk1X14wDnCkhGVb1FVRuoaiOcb+mTVfUXZ8d4lc+dtrKInDt2cymBf58UN+MOoI+IRIhIJM57ORi7mArMKCIdgfE4xeGAz6jiv1cCfdS9PNyAK4BUnH3LT7nD/uI+QeAcvPoI2AQsBJr4THsrsAZYDfwrlPLhnC3ykZtvLfCYh+uwC843yZM4WzdrfKa9082+CWcXTsjkc5/fTGC5z61DKGXMNY/bCcJZTAF4jvvjnPG3CpgERIVSRpyzi8bjFIW1wBgP3yvf4hwgP/d6mxqo94pdasMYY4xftovJGGOMX1YgjDHG+GUFwhhjjF9WIIwxxvhlBcIYY4xfViCMyYeIJIrIeyKyRUSWuFdqvc7rXMaUBCsQxuTBvYDhZzi/fm+iqkk4P1Sql++ExpQRViCMydulQIaqjjs3QFW3q+pLItJIRH5wL7q4VER6AojIJSIyS0Q+d7c6nhaRW0RkoTj9bDR1200SkVdFZL7b7hIRecPtW2DSueW5bRa7/Q78uaRXgCnfIrwOYEwIuxBYmse4Azj9FZwRkebA+/z3ulXtcS7kdgTnGvwTVbWriIwGHgAedNtVwbl+z9U4l0/oBdwNLBKRDqq6HOeXs0fcq5l+JyLt1Ln8tDFBZ1sQxhSSiLwsIitEZBHO9f9fE5FVOJcnae3TdJGq7lXnommb+W+fC6twOqA55z/qXMpgFbBfVVepc+XXNT7tbhSRpcAynILluxxjgsq2IIzJ2xrg+nP/qOpIEakOLAYewrn+TXucL1pnfKY763M/x+f/HH7+njvrp81P7USkMe4lr1X1qLvrKeBd1BqTF9uCMCZvM4EYEbnPZ1hF928lYK/7jX8ozsXbAi0B5yJxx0UkEfh1EJZhTJ5sC8KYPKiqisi1wHNu738HcT6wH8c5NvGJiAwDvnGHB3r5K0RkGc4l13fi9M9hTImxq7kaY4zxy3YxGWOM8csKhDHGGL+sQBhjjPHLCoQxxhi/rEAYY4zxywqEMcYYv6xAGGOM8ev/AZjDu1RZVR0vAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(sig_results[:, 2], sig_results[:, 5], 'x-', label=\"Final Validation Loss\")\n", + "\n", + "# plt.ylim(0)\n", + "\n", + "plt.title('Final Validation Loss for Fixed Learning Rates')\n", + "plt.ylabel('Loss')\n", + "plt.xlabel('Gamma')\n", + "\n", + "# plt.legend()\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "82bd3a32", + "metadata": {}, + "source": [ + "# Best\n", + "\n", + "100 Epochs\n", + "\n", + "top-1 accuracy indexes: 1, 3, 2, 3" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c866fad2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAEWCAYAAAA3sa4JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABCPUlEQVR4nO3debxc8/3H8dc7sSQkEiJVpIQmqDXWUrSxFK0q+qO2tpai2tq6opTQatFFVRdFlah9CWkpUcTS1hZCrBWkFdQSsiFk+fz++H4nORkzc2eSO/fOTd7Px2Me98z3fM85nzN37p3PfM/3fL+KCMzMzMwa0a2zAzAzM7OuxwmEmZmZNcwJhJmZmTXMCYSZmZk1zAmEmZmZNcwJhJmZmTXMCYSZtRxJa0saK2mapKM7O55yks6T9MPOjqOjSfqBpAs7O44iSSFpUDvta7SkQ9u7bnuQNDCf6xL5+d8kHVjHdk9IGtqMmJxAWJcnaYKkdyVNl/SWpJskfaSd9rtjlXUH5ONNz8eeU3g+fQGONd8/hzbqHpTr7tPocbqQ7wN3RkTviPj1wuxI0r75d6my8iUkvSbpc43uMyKOiIgfLUxcjWjk/dFMEfGTiGjKh6ak3XPSOFXSG5LukLRGM47VmQq/y9L/iwmSjm90PxHxmYi4pI5660XE6AUKtg1OIGxRsVtE9AJWBl4Fzm3mwSLisojolY/5GeDl0vNc1kwHAm8CX2nycebTwR9eqwNPLMiGFeK8AegLfKqsfBcggFsa3H/3BYmr1XVmcpJbEIYD3wH6AGsAvwVmd1ZMHaBv/l+xH3CypF06O6BGOYGwRUpEzACuBdYtlUlaWtLPJf1X0qu5+blnXreipL9KmizpTUn3SOom6VJgNeAv+VvC9+uNQdIqkq6T9LqkF4pN8JK2kPRQ/pb1qqRf5lV355+T8/G2qrLv1UkfhIcDO0v6cGFd99zE/Fxu+h9TaomRtJ6k2/I5virpB7n8Ykk/LuxjqKSJhecTJB0n6THg7fyt/fjCMZ6UtGdZjIdJeqqwfhNJ35N0XVm9X0s6p8I53gFsB/wmvxZrSeojaXh+Tf8j6SRJ3XL9gyT9Q9LZkiYBw4r7y++Jq/lgwvUV4PKImCXpGkn/kzRF0t2S1ivEc7Gk30u6WdLbwHYVXrfDJI3Pr+9ISavk8g+0HKjQ9C1pkKS78nHfkHRV+evRlvza/FHSK5JekvTjUpIj6aP5m/ykvP/LJPUtbFv++x2U4z0w/728IenEQv1hkv5cdm7V6vaUdIlSq+BTkr5ffG+VGQK8EBG3RzItIq6LiP/mfVV9b2c7SnpW6e/4t9K81iZJh+TjvyXpVqW/odK6T0t6Or/+vwGK280917LzrZho1TpOLRHxL1KyvL7S/56T8nv8tfye71PlePNdQlGFv7tcPrclNe+/9Pc7SdLVklbI63pI+nMunyzpQUkrtRW8H3506QcwAdgxLy8DXAIML6w/GxgJrAD0Bv4C/DSv+ylwHrBkfmwLqHy/bRx/KDAxL3cDxgAnA0sBawLPAzvn9f8CvpyXewFb5uWBpG/DS7RxrB8CD+TlccB3Cuu+l8vWJv0j3Ajol8/5FdK3ux75+cfzNhcDP650LoXXYCzwEaBnLtsbWCWf6z7A28DKhXUvAZvnGAaRWhNWzvX65npLAK8Bm1Y5z9HAoYXnw4Ebc+wDgX8DX83rDgJmAUfl/fassL+tgamFc+gDvAsMyc8PyfteGvgVMLaw7cXAlLyPbvk1nPu6AdsDbwCb5O3PBe6u9nstnhtwBXBiYb/bVHk9qr4/gBHAH4BlgQ8BDwBfy+sGAZ/OcfUnJaq/qvb7LRzngvx8I+A94GO5/jDgz2UxVat7BnAXsDwwAHiMwnur7BzWBGaQ/la3A3qVra/43s7rAvgrqZVpNeB1YJe8bndgPPCx/N44CfhnXrciMA3Yi/S3/y3S++jQ8nOt9Dso+z1WPU6t32U+l62Bd4AdSO/D8fn16AVcD1xax/Er/t1V+P94DHBf/n0sTXrfXJHXfY30v3EZoDuwKbBczf9Hzfqn7ocfHfXIfyDTgcnATOBlYIO8TqQPro8W6m9F+rYDcBrpg2lQlf02mkB8HPhv2foTgD/l5buBU4EVy+rM98+hxrGeBY4t7PfRwrpngN0rbLMf8EiV/V1M2wnEIW3ENLZ0XOBW4Jgq9f4GHJaXPwc8WWOfxX+O3YH3gXUL678GjM7LB5W/5jVeu/3z8mHF166sXt/8u+hTeI2Gl9WZ+7oBfwTOKqzrld+HAyv9XsvObThwPjCgjdgrvj+AlUgf2j0LZfuR+o9U2s8exfdC+e+3cJwBhbIHgH3z8jA+mEBUqzs3cc7PD6VKApHXb0lqKXqdlExcTE4kqPLezuuCQuKV93F84T331cK6bqQP69VJLVD3FdYJmMiCJRBVj1PjdzkZeAt4Cjg6r7sd+Eah7tr5vbREG8ev9Xc3gXkJxFPADoV1Kxf2fwjwT2DDtv6WSg9fwrBFxR4R0Zf0Le5I4C6l5v3+pIx6TG6Wm0y65t0/b/czUsY/StLzWoDOTGVWB1YpHSsf7wekf/QAXwXWAp7OTYR1d+CTtDXp2vCVuehyYANJQ/LzjwDPVdi0Wnm9XiyL4ytKnd1K57c+6dtcW8e6BPhSXv4ScGmdx1+R9A3xP4Wy/wCrVouxiuHMu4zx5fy81Dx+Rm7WnUr6h1s6bj37X6UYW0RMByaVxVfN90kfXA8o9ZY/pI5tilYnvTavFH4ffyC1RCBpJUlX5ksbU4E/M/95QeVz+19h+R1SUlRNtbqrlO275u8oIu6LiC9GRH9SS+AnSa0z0PZ7uFoMqwPnFF6bN0mv96rl8UX6RK3nfVRJreNUs2JELB8RH4t5HYXney/l5SWY9/+jmnr/xlcHRhTifIrUz2Ql0t/jrcCVkl6WdJakJWvtzAmELVIiYnZEXE/6o9iG1LT8LrBeRPTNjz6ROzpGutb6nYhYE/g88G1JO5R2twAhvEhq3ehbePSOiM/m4z0bEfuR/sGfCVwradk6j3Ug6Z/SWEn/A+4vlJeO/dEqMa1ZZZ9vkxKskg9XqDM3tnxd9wJSktYvJ22PM+/acbUYIHVm3FDS+qQWiMuq1Cv3Bulb0uqFstVITbYfiLGGS4EdlPqXbFk4/v6kJugdSZc2Buby4l0btfb/cjG2/Pvsl+N7OxdXfI0j4n8RcVhErEJqVfmdGrsl8UVSC8SKhffbchFR6sPxkxz7BhGxHClxU9k+FuR9Xo9XSE3lJXXfGRURD5Ka79fPRbXeV7W8SLqcU/x77BkR/8zxzY0p95soxljP30Y9x2nEfO8l0vt8FqljeC31vj4vAp8pi7NHRLwUETMj4tSIWBf4BOlvtGZHbScQtkhRsjvpuutTETGH9IF3tqTSt7JVJe2clz+n1HFMpOvcs4E5eXevUv2Dt5oHgGlKHdN65m+360vaPB/vS5L657gm523mkJpt51Q7nqQewBdJnSeHFB5HAfvnjl0XAj+SNDi/DhtK6ke6PryypGOVOpT2lvTxvOuxwGclrZBbbI5t4/xKyc7rOa6DmfdPnhzDdyVtmmMYVOpMFvM6uF5O6sfx3zaORd5uNqlZ+vQc++rAt0nfpusWEROAe0n9Dm6LiNK31t6kD+FJpA+MnzSy37y/gyUNkbR03v7+iJgQEa+TEokv5ffCIRT+0UvaW1LpQ/Yt0ms7h+qWzp3deuT3xKvAKOAXkpbLneQ+KulThXObDkyRtCqpL0FHuRo4QdLy+dhHVqsoaRulToClv9F1SAn9fblKtfd2W87LMayX99tH0t553U3AepK+kP9+jmb+JGEs8ElJqyl1ZDxhAY/TiCuAb0laQ1Iv0nvpqoiY1cZ2Vf/uKsR5emmdpP75/yWStpO0gVIH3KmkpL3We9EJhC0y/qI0/sJU4HTgwIgo3QZ4HOkyxX25GffvpGuLAIPz8+mkDo6/i4g787qfAifl5r7v1hNE/rD7HLlXOenb84Wkb7aQbh18Isd6Dul68bsR8U6O+x/5eFuW7XoPUkvK8Pyt9X/5A/AiUhPnLsAvSf+0R+XX4Y+ka+PTSB3pdiM19T5L6qgG6Vv5o6Rm+1FAzbsAIuJJ4Bf5tXoV2AD4R2H9Nfk8Lid1ULuB1Hm15JK8Tb2XL0qOIn0jfJ6UBFyez71Rl5C+4Q0vlA0nNRW/BDzJvA+tukTE30mdW68jfav9KLBvocphpA/uScB6pOvMJZsD9+f3w0jSdeznaxxuOul9UHpsT/qWuFSO/S1SkrZyrn8qqXPnFNIH5vWNnNtCOo3Up+AF0t/YtaRErZLJpIRhXH4tbiF1Dj0rr6/43m4rgIgYQWrpuzL/7T9Ouu2aiHiD1PnwDNLvZjDzv5dvI/09PEbqGP3XBTlOgy4i/W3cTXrdZpDe+zXV8XdXcg7pfTZK0jTSe730ZeLDpN/RVNKljbto4++01NvczKzpJK0GPA18OCKmdnY81nEkfZ2UMH+qzcrWJbgFwsw6hNK4Dd8GrnTysOiTtLKkrfNllbVJtxGP6Oy4rP106rCoZrZ4yB0LXyVdKuhyI+7ZAlmKdEfIGqRLFFcCv+vMgKx9+RKGmZmZNcyXMMzMzKxhvoRhi6S+ffvGoEHtMsNv07399tssu+yynR1G3Rxvc3WleLtSrOB42zJmzJg38kBedXECYYuklVZaiYceeqizw6jL6NGjGTp0aGeHUTfH21xdKd6uFCs43rZI+k/btebxJQwzMzNrmBMIMzMza5gTCDMzM2uY+0CYmdlia+bMmUycOJEZM2Z0digf0KdPH5566ql232+PHj0YMGAASy5Zc7LNNjmBMDOzxdbEiRPp3bs3AwcOJM2p1zqmTZtG796923WfEcGkSZOYOHEia6yxxkLty5cwzMxssTVjxgz69evXcslDs0iiX79+7dLi4gTCzMwWa4tL8lDSXufrBMLMzMwa5j4Qtkh6d+ZsBh5/U2eHUZfvbDCLg7pIrOB4m62z4p3QY//GN1r7VBi2e/sH0yyV4t35anh5XnP+wF+/3K6HnHD0KjXXT3pzMjvscwQA/3t9Et27d6P/CssDcPvf/w7Txtd/sFU2BuDEE09k+PDhvPXWW0yfPn3BAq+DEwgzM7NO0m+Fvoy97UoAhv3iPHotuwzfPeIrAExbail4r/F97rbbbhx55JEMHjy4PUP9AF/CMDMzayG333M/G++0H1tuO5RDvj2M9957H4CBH9+V7//4V2ywwxfZYtcvM/6F/1bcfsstt2TllVduepxOIMzMzFrEjBnvc9C3hnHV78/gvntGM2vWbH4//Jq56/v07sW426/myIP24dhTft55geIEwszMrGXMnjObNVZbhbU+ujoAB+79Oe6+/+G56/fbY5f8c2f+NWZcp8RY4gTCzMysiyjegimJ2bNnM+TT+zLk0/ty8sknd2gs7kRpZmbWIrp3686EF19h/Av/ZaV1VuHS627mU1tuOnf9VSNHcfyRB3PVyFFstekGdO/efW4nzNJdGB3FCYSZmVnW1m2Xzdajx1L86ZensPfXjuP9OeLjG67FEV/ea+76t6ZMZcMdv8jSSy3FFb/9ScV9fP/73+fyyy/nnXfeYcCAARx66KEMGzas3WN1AmFmZtYChn3niLnLj4y6gmlLr0Lv9+Yfl+J7X/8KZ554TM39nHXWWZx11llNibHIfSDMzMysYW6BMDMz6wIm3N9aI6q6BcLMzMwa5gTCzMzMGuYEogVJOlHSE5IekzRW0sdz+YWS1m3ysW+W1LdC+TBJ361S/lKO81lJ1zc7RjMz63zuA9FiJG0FfA7YJCLek7QisBRARBza7ONHxGcXYLOzI+LnAJL2Ae6QtEFEvN6+0ZmZWatwAtF6VgbeiIj3ACLijdIKSaOB70bEQ5K+ChwHTAYeBd6LiCMlXQy8C2wMfAg4BPgKsBVwf0QclPe1H/ADQMBNEXFcLp8AbBYRb0g6ETgQeA14ERjTVvARcZWkXYH9gXMkbQr8EugFvAEcFBGvSBoEnAf0B2YDewOvAjcCywNLAidFxI2STgPejIhf5RhPB16LiHPqf1nNzOpw/tD23d/ho2uubnM67wUwdOhQXnnlFXr27AnAqFGj+NCHPrRA+6rFCUTrGQWcLOnfwN+BqyLirmIFSasAPwQ2AaYBd5CSiJLlSQnD54GRwNbAocCDkoaQEoIzgU2Bt4BRkvaIiBsKx9gU2BcYQnqfPEwdCUT2MLCOpCWBc4HdI+L13DpxOimpuQw4IyJGSOpBupz2PrBnREzNLS/3SRoJXARcD/xKUrcc1xZ1xmJm1rKaMZ03wGWXXcZmm23WXmFW5D4QLSYippM+2A8HXgeuknRQWbUtgLsi4s2ImAlcU7b+LxERwDjg1YgYFxFzgCeAgcDmwOiIeD0iZpE+zD9Zto9tgRER8U5ETCUlIvUqDda+NrA+cJukscBJwABJvYFVI2JEPucZEfFO3u4nkh4jJU+rAitFxARgkqSNgZ2ARyJiUgPxmJl1GQs7nXdHcQLRgiJidkSMjohTgCOB/2twF6WcdQ7z569z6JhWp42Bp0gJwRMRMSQ/NoiInWpsdwDpksamETGEdEmjR153IXAQcDCpRcLMbJHTXtN5H3zwwQwZMoQf/ehHpO+T7c8JRIuRtLakwYWiIcB/yqo9CHxK0vKSlqDxBOOBvP2KkroD+wF3ldW5G9hDUs/cYrBbnfH/H6mV4ArgGaB/7hiKpCUlrRcR04CJkvbI5UtLWgboQ+rbMFPSdsDqhV2PAHYhtZ7c2uD5mpl1Ce0xnfdll13GuHHjuOeee7jnnnu49NJLmxKrE4jW0wu4RNKTuSl/XWBYsUJEvAT8hJQI/AOYAEyp9wAR8QpwPHAnqe/EmIi4sazOw8BVef3fSElLNd8q3cYJfAnYPl8eeR/YCzhT0qPAWOATeZsvA0fnc/wn8GHSpZTNJI0jdfx8uhDP+zneqyNidr3nama2KKlnOu9VV10VgN69e7P//vvzwAMPNCUWd6JsMRExhnkfsuXrhhaeXh4R5+cWiBHADbnOQYX6E0h9EKiw7gpSK0H5MQYWlk8ndXqsFe8wyhKcsvVj+WD/CiLiWWD7CptsVWk/ufPklqS7NSqSdDip7wjL9+vPctXDNjNrSQs7nfesWbOYPHkyK664IjNnzuSvf/0rO+64Y1NidQLRdQ2TtCOpj8AocgKxKMoDU/2V1Knz2Wr1IuJ84HyA1dYc1JyLfma2aGvjtstmW9jpvN977z123nlnZs6cyezZs9lxxx057LDDmhKrE4guKiI+MCrkoioingTW7Ow4zMyaqT2m81522WUZM6beO+4XTtP6QEjaRdIzksZLOr5KnaUlXZXr3C9pYC7vJ+lOSdMl/abO422Z9zFW0lOShuXyoZIqXhJYWJIulvRCPubYPMYCSn6dz+sxSZtU2X5TSeNyvV+reHGr+jF3kfSApKfzMa+StFo7n1q7krRG/t2Mz/EuVaXeCbnOM5J2LpRPyK/TWEkPdVzkZmZWTVMSiNyz/7fAZ0idAPerMj/CV4G3ImIQcDZpcCOAGaSBkhr5ln0JcHi+/W994OpcPpQqfQrayfcKtymOzWWfAQbnx+HA76ts+3vgsELdXWodSNL6pIGZDoyIdfK5XkYa26GVnUka7noQaeCqr5ZXyO+PfYH1SK/D7/L7qGS7/Bo3d2QUM7MWNeH+m1gxj1LZCprVArEFMD4ins+9568Edq9Qb3fSBz/AtcAOkhQRb0fEvaREol4fAl6BueMoPJlbNI5g3l0C20rqL+k6SQ/mx9Ywd1KoSyX9S2lSqIW5aLQ7MDyS+4C+klYuVsjPl4uI+/KgT8OBPdrY73HATyLiqVJBRIyMiLvzPg/L5/RoPsdlcvnFkn4v6T5Jz+dWmYtyS83FhZimS/qZ0kRef5e0haTReZvP5zoDJd0j6eH8qJmc5VaV7Um/X0i/70rnuTtwZUS8FxEvAOPxaJNm1nTRtHESWlV7nW+zEohVSXMnlEzMZVXr5RERpwD9FvCYZwPPSBoh6WuSeuS7EM4jffsdEhH3AOfk55uTxk+4sLCPDUkfdluRhpNeBUBpFMVqTs+XKc6WtHT5eWWVzn/VXF6rTrn1SMNEV3N9RGweERuRBnIqftMvDW/9LdKokmfn/W1QuvQCLAvcERHrkYbI/jHwaWBP4LRc5zXg0xGxCbAP8OvSAaq8Tv2Ayfn3W+s8a71mQRpue0y+08LMrF30mPI8k96etdgkERHBpEmT6NGjR9uV27DIdKKMiNMkXUYaxGh/0uBIQytU3RFYt9DdYDlJvfLyjRHxLvCupDtJ34BvyJcKKjkB+B9ptszzSS0Ep1Wp264k9QNuB5YBzs+zYa4v6cdAX9J4EsUBl/4SEaE0xsKrETEu76c0vPVY0lwUt+T640gTdM3M2wzM5UsCv8lJx2xgrdIBarxOC2ubiHhJ0odIw2I/XWp1MTNbGAMePpOJHMfrfdZk3ij8rWHGku/TY+bk+jeY8lTbdYAePXowYMCABQuqoFkJxEvARwrPB+SyavUmKo1n0AdY4DkOIuI54PeSLgBezx+y5boBW0bEfJdHckJRnoLWTEnzgEwA70n6E/P6bNRz/i/l8lp1yj1BmkDr0TwXxBBJ3yUlCwAXA3tExKNK82cMLWxbz/DWM2NeGj63XkTMyb8fSC0YrwIbkV7Lti4zTSJdwlkit0K09V4omVsvD5xFRLwmaQQpsXMCYWYLbcn3J7PGfSd0dhgVjV77VDZ+5pT6NxhW93iC7aJZlzAeBAbn3vdLkTrHVZqMaSRpumhIIxbeEW20I0kaLukD18Yl7Vq4i2Ew6dvxZFJTfO9C1VHAUYXthhTW7S6pR048hlJ79MVSP4bSdf49gMcL5/UVJVsCUwrJBjA3+ZiqdPeISCMv3pj3d6SkIysc8izgREkfK5QtU1juDbyiNAvmAbViXwh9gFfy5FxfBrrXqpx/n3eSfr+Qft83Vqg6EthX6c6cNUi/wwckLas0lDaSliW1MD1eYXszM+tATUkg8jfNI0lN6E+Rhh9+AkDSaaUOecAfgX6SxgPfJg2vTK43AfglcJCkiYW7ODYE5r8xNvkyqQ/EWOBS4IA85PFfgD1LnSiBo0nDJT8m6UlSJ8uSx0gfdvcBP4qIl3MsY6uc6mW5eX8csCKpzwDAzcDzpI6AFwDfKJxXcV/fIPXBGA88RxoyGmAdKrTE5MsOxwDDlW51/AfwMeDyXOWHwP2k4a2fLt++nfwOOFBpaOp1gLdLK2q8TscB386/536k3zuSPi/pNID8/rgaeJJ0GeWb+fe3EnBvPt4DwE0RcUuFY5iZWQdqWh+IiLiZ9EFaXn5yYXkGVYYmLg6pXCJpOeDZiJhYof6+Vfbzb1LSUbRPlbAfi4ivVNjHkCr7rjQUc+lb9zerrBtSWH6IwlDTBQNJCVWl7W8Cbqqy7vdUuGW0geGtexWWh5Xto1f++Szzv57HFeoMqRLX81S4oyIiRlJomao0dHbedqNK+zUzs87TpTpRRsRUasyFsKiIiM91dgxmZma1tJlASPooMDEi3pM0lPTtc3hETG5uaB2r/Bu3mZmZVVdPH4jrgNmSBpFuVfwI8665m5mZ2WKongRiTu4UuSdwbkR8D1i5jW3MzMxsEVZPAjFT0n6k2+/+msuWbF5IZmZm1urqSSAOJg2BfHpEvJDv0b+0uWGZmZlZK2uzE2WelOo4YLX8/AXmzZppZmZmi6E2WyAk7UaaJ+GW/HyIpEqjSpqZmdliop5LGMNIgwBNBoiIscCaTYvIzMzMWl49A0nNjIgphdkrIU20ZNayei7ZnWfO2LWzw6jL6NGjmXDA0M4Oo26Ot7k6L94FmIhp9GjYr2MncFoojrdd1ZNAPCFpf6C7pMGkuST+2dywzMzMrJXVcwnjKGA90tTOVwBTgWObGJOZmZm1uHruwngHODE/zMzMzKonEJJ+FRHHSvoLEOXrI+LzFTYzMzOzxUCtFojSYFE/74hAzMzMrOuomkBExJi8+BDwbkTMAZDUHVi6A2IzMzOzFlVPJ8rbgWUKz3sCf29OOGZmZtYV1JNA9IiI6aUneXmZGvXNzMxsEVdPAvG2pE1KTyRtCrzbvJDMzMys1SniAzdYzF9B2hy4EngZEPBhYJ9CHwmzlrPamoOi2xfP6eww6vKdDWbxi3H1jOnWGhxvc7VnvBN67N8u+6lm9NqnMvSZU5p6jPa0yMU7rH1HqZQ0JiI2q7d+PeNAPChpHWDtXPRMRMxc0ADNzMys66s1DsT2EXGHpC+UrVpLEhFxfZNjMzMzsxZVqwXiU8AdwG4V1gXgBMLMzGwxVWsciFPyz4M7LhwzMzPrCmpdwvh2rQ0j4pftH46ZmZl1BbUuYfTusCjMzMysS6l1CePUjgzEzMzMuo42B5KSNEDSCEmv5cd1kgZ0RHBmZmbWmuoZifJPwEhglfz4Sy4zMzOzxVQ9CUT/iPhTRMzKj4uB/k2Oy8zMzFpYPQnEJElfktQ9P74ETGp2YGZmZta66kkgDgG+CPwPeAXYC/DYEGZmZouxmgmEpD2AvYHfRkT/iPhQROwREf/tkOi6EEmzJY0tPI7v7JiqkXSspGUKz2+W1LeNbSZIWrFK+bj8eFLSjyX1aELYZmbWQmoNJPU7YD3gn8CPJG0RET/qsMi6nncjYkhnB1GnY4E/A+8ARMRnF3J/20XEG5J6AecDfwAOXMh9mplZC6vVAvFJYPuIOAEYCuzREQEtSiT1kfSMpLXz8yskHZaXp0s6W9ITkm6X1D+XD5F0n6TH8u2zy+fy0ZLOlPSApH9L2jaXd5f0M0kP5m2+lsuH5m2ulfS0pMuUHE26m+ZOSXfmunNbFyTdIGlMjuvwRs43IqYDRwB7SFoh7+97hdjmji0i6Su57FFJl+ay3STdL+kRSX+XtJKkbpKeLbw+3SSNLz03M7POUSuBeD8iZgNExDuAOiakLqtn2SWMfSJiCnAkcLGkfYHlI+KCXH9Z4KGIWA+4CyhN+j4cOC4iNgTGFcoBloiILUgtCKXyrwJTImJzYHPgMElr5HUb57rrAmsCW0fEr4GXSa0G21U4j0MiYlNgM+BoSf0aeREiYirwAjBY0k7AYGALYAiwqaRPSloPOImUoG4EHJM3vxfYMiI2Bq4Evh8Rc0itJQfkOjsCj0bE643EZWZm7avWUNbrSHosLwv4aH4uIPIHnM1T8RJGRNwmaW/gt8BGhVVzgKvy8p+B6yX1AfpGxF25/BLgmsI2pRlQxwAD8/JOwIaS9srP+5A+tN8HHoiIiQCSxuZt7m3jPI6WtGde/kjeV6N33ZSSzZ3y45H8vFfe30bANRHxBkBEvJnXDwCukrQysBQpEQG4CLgR+BWpU6/HITEz62S1EoiPdVgUizBJ3Uiv5TvA8sDEKlWjjt29l3/OZt7vTsBREXFr2XGHFuqXb1Mt1qGkb/hbRcQ7kkYDDXWIlNSblKj8O8f204j4Q1mdo6psfi7wy4gYmWMZBhARL0p6VdL2pNaMA6psb2ZmHaTqJYyI+E+tR0cG2cV9C3gK2B/4k6Qlc3k30i2x5HX35kseb5X6NwBfJl3eqOVW4Oul/UpaS9KybWwzjcqTpfUB3srJwzrAlm3sZz65E+XvgBsi4q0c2yG5HEmrSvoQcAewd+nySKm/RD7+S3m5vBPmhaSWmmtKl9bMzKzz1PxGag3pmS8TlNxCamo/FNgiIqZJupt07f8U4G1gC0knAa8B++TtDgTOy7dZPk/bY25cSPrG/7AkAa/TdofX84FbJL1c1g/iFuAISU8BzwD3tbGfkjvzsbsBI4AfAUTEKEkfA/6VVjMd+FJEPCHpdOAuSbNJlzgOIrU4XCPpLVKSsUbhGCNJr6cvX5iZtQAnEO0kIrpXWfWxQp1vl23z7fLKETGWCt/8I2JoYfkNch+I3MnwB/lRNDo/StscWVg+l3S5oPR8YGG7z1Q6ibI6bZYX1p8DnFOh/BJSH49i2Y2kvg6VbETqPPl0tWPlu0YOB1i+X3+WqxWYmZktlHpGokRSz9KtiGYdTWlQruuAE2rVi4jzI2KziNis13JOH8zMmqme6bx3A8aSmrdL4xSMbHJci7yI6NXZMXQVEXFGRKweEW3dQWJmZh2knhaIYaSe75NhbhP7GtWrm5mZ2aKungRiZr47oKieWw6tDpJ2yaNVjleV+TMkLS3pqlznfkkDc3k/SXcqjWr5mzqPd7GkF/JgV49K2qGObcr7VzSkWvwV6h0j6fE8CuaxhfLS6JxjJT0kaYuFicfMzBZePQnEE5L2B7pLGizpXNL8GLaQJHUnDTD1GdJokftJWrdC1a+Sbq8cBJwNnJnLZwA/BL7b4KG/lwe9OhY4r476C5VAUD3+uSStDxxGau3aCPicpEF59VnAqTnmk/NzMzPrRPUkEEeRJtV6D7gCmEr64LGFtwUwPiKej4j3ScM3716h3u7Mu2PhWmAHSYqIt3O/gBkLePx/AauWnqjCPBiSzmDeMN2X5bIvKc3JMVbSH3IiVEvF+MvqfAy4PyLeiYhZpPEvvpDXBcy9qaIPaShuMzPrRG0mEPkf+okRsXnu4X5iRCzoB5bNb1XgxcLziRQ+0CvVyx+uU4CG5qioYhfghsLzD8yDERHHk4fpjogD8rgO+5Dm1RhCGuHyAABJF0rabAHjfxzYNl+WWQb4LGkobUgJ688kvQj8nDbuxjAzs+arNZ33X6jR1yEiPt+UiKwj/EzST0hzT2xVKK9nHowdgE2BB3MjQk/SQFhExKELGlBEPCXpTGAUaZCtsaTkBODrwLci4jpJXwT+SBpy28zMOkmtgaR+3mFRLL5eYt63bEgf6C/VqDdR0hKkZvxGJ7gq+l5EXJvnpLiINEvmUOqbB0PAJXma93rVFX9E/JGUHJATnNK8IQcyb8bOa0ijb5qZWSeqNRfGXbUeHRnkIuxB0rTXa0haCtiXNGRzuZHMmxtiL+COiKh5J4yk4XXcrfAboJuknak9D8bMwhwetwN75TktkLSCpNXbOE5d8Rf2uRqp/8PledXLwKfy8vbAs20cz8zMmqzNoawlvUCFSxkRsWZTIlqMRMQsSUeSJp3qDlwUEU8ASDoNeCgiRpK+lV8qaTzwJinRINebQOpguJSkPYCdIuJJYEPa6GwYESHpx8D3SX0Oqs2DcT7wmKSHcz+Ik4BRSjONzgS+CfxH0oXAeRHxUNmhKsYvaRXgwoj4bK53ndIEWzOBb0bE5Fx+GHBObr2YQR6u2szMOk89c2EUO8X1APYGVqhS1xoUETcDN1coP7mwPIP0ulfafmB5maTlgGcj4gNTh0fEQWXPryMNEw3V58E4Djiu8Pwq4KoK9Sr2gagWf0S8TEpcSs+3La+Ty+8l9bswM7MWUc9dGJMKj5ci4lfArs0PzRZUREyNiIoJh5mZWXuo5xLGJoWn3UgtEp7F08zMbDFWTyLwi8LyLGAC8MWmRGNmZmZdQpsJRERs1xGBmJmZWddRayCpb9faMCJ+2f7hmJmZWVdQqwWid/65NrA588Yn2A14oJlBmZmZWWurmkBExKkAku4GNomIafn5MOCmDonOzMzMWlI9s3GuBLxfeP5+LjMzM7PFVD13YQwHHpA0Ij/fg3lTM5u1pJ5LdueZM7rGcCWjR49mwgFDOzuMujne5mrfeKe0036qGD0a9mvyMdqT421X9dyFcbqkvwGlUQIPjohHmhuWmZmZtbJ6LmEALANMjYhzSDMqrtHEmMzMzKzFtZlASDqFNA9CafrmJYE/NzMoMzMza231tEDsCXweeBvmToDUu+YWZmZmtkirJ4F4PyKCPKW3pGWbG5KZmZm1unoSiKsl/QHoK+kw4O/ABc0Ny8zMzFpZPXdh/FzSp4GppFEpT46I25oemZmZmbWsuqblzgmDkwYzMzMD6rsL4wuSnpU0RdJUSdMkTe2I4MzMzKw1KfWPrFFBGg/sFhFPdUxIZgtvtTUHRbcvntPZYdTlOxvM4hfj6moMbAmOt7k6It4JPfZvl/2MXvtUhj5zSrvsqyMsUvEOa/8RKiWNiYjN6q1fTyfKV508mJmZWVHVNFfSF/LiQ5KuAm4A3iutj4jrmxuamZmZtapa7WS7FZbfAXYqPA/ACYSZmdliqmoCEREHd2QgZmZm1nXUcxfGJZL6Fp4vL+mipkZlZmZmLa2eTpQbRsTk0pOIeAvYuGkRmZmZWcurJ4HoJmn50hNJK1DnAFRmZma2aKonEfgF8C9J1wAC9gJOb2pUZmZm1tLqmQtjuKSHgO1Jd198ISKebHpkZmZm1rKqXsKQtIykJQFywnAbsBSwTgfFZmZmZi2qVh+IW4CBAJIGAf8C1gS+KemM5odmZmZmrapWArF8RDyblw8EroiIo4DPALs2PTIzMzNrWbUSiOIsW9uTp/OOiPeBOc0MytqfpBMlPSHpMUljJX08lx8raZl2OsZBkl6X9EiewfVWSZ9oj32bmVlrqdWJ8jFJPwdeAgYBowCKg0pZ1yBpK+BzwCYR8Z6kFUn9WQCOBf5MGq68PVwVEUfm424HXC9pO0/IZma2aKnVAnEY8AapH8ROEVH6gFkX+HmT47L2tTLwRkS8BxARb0TEy5KOBlYB7pR0J4CknST9S9LDkq6R1CuXT5B0lqRxkh7I/WJqiog7gfOBw/M+hki6L7eCjMijmn5I0pi8fiNJIWm1/Py53Jn3Ykm/lvRPSc9L2qsJr5GZmTWgagIREe9GxBkRcUxEPFoo/2dEXNox4Vk7GQV8RNK/Jf1O0qcAIuLXwMvAdhGxXW6ZOAnYMSI2AR4Cvl3Yz5SI2AD4DfCrOo/9MPPu3BkOHBcRGwLjgFMi4jWgh6TlgG3zMbeVtDrwWiFxXRnYhtSS4k68ZmadrJ6RKK2Li4jpwKakloDXgaskHVSh6pakFqZ/SBpL6jy7emH9FYWfW9V5eAFI6gP0jYi7cvklwCfz8j+BrfPzn+Sf2wL3FPZzQ0TMybcUr1Tnsc3MrEk8JPViIiJmA6OB0ZLGkZKDi8uqCbgtIvartpsqy7VsDLTV/+FuUsKwOnAjcFze/02FOu+VxWlmZp3ILRCLAUlrSxpcKBoC/CcvTwN65+X7gK1L/RskLStprcJ2+xR+/quO436K1OpxQURMAd6StG1e/WWg1BpxD/Al4NmImAO8CXwWuLfukzQzsw7VZguEpL/wwW+bU0jXqv8QETOaEZi1q17AufkOmlnAeHLHRlInx1skvZz7QRwEXCFp6bz+JODfeXl5SY+RWgOqtVLsI2kbYBngBeD/CndgHAicl28bfR44GCAiJkgSqSUCUuIwIM/8amZmLaieSxjPA/2Zd/17H9K31rWAC0jfJK2FRcQYoOJ4DBFxLnBu4fkdwOZVdvWziDiuxnEu5oOXRYrrx5L6WVRa95HC8k9IfSFKzw8qq9ur0j4kHU5OjJbv15/lqgViZmYLrZ4E4hMRUfxA+YukByNic0lPNCsws0ZFxPmkFhVWW3NQvX00zMxsAdTTB6JX6b58gLxc+gb4flOispYTEQMj4o3OjsPMzFpDPS0Q3wHulfQcqff7GsA3JC1LuhXPzMzMFjNttkBExM3AYNKQx8cAa0fETRHxdkT8akEOKmkXSc9IGi/p+Cp1lpZ0Va5zv6SBubyfpDslTZf0mzqPt2Xex1hJT0kalsuHNmuuBklr5GOOz+exVIU6W+SYxkp6VNKeubxHHu3x0Tx/xal1HvNLeZTHJ/K2F7b60OOSNs2jW47Po01+4BbN/HuaUnitTu6MWM3MbJ56b+PcFFgP2Aj4oqSvLOgBJXUHfkua1XNdYD9J61ao+lXgrYgYBJwNnJnLZwA/BL7bwGEvAQ6PiCHA+sDVuXwoVToXtoMzgbNz/G+Rzqfc48BmOa5dgD9IWoJ0l8P2EbER6ZbLXSRV7HxYImkX4FvAZyJiPWAT0gBNrT7o0u9Jw6YPzo9dqtS7JyKG5MdpHRadmZlV1GYCIelS0twX25B6528ObLYQx9wCGB8Rz+eZPa8Edq9Qb3fmXSK5FthBknLLx72kRKJeHwJegTSgUkQ8mVs0jgC+lb/Vbiupv6TrJD2YH1sDSBom6VKlOSKelXRYrYPlb9Hb57jJ57FHeb2IeCciZuWnPci3y0YyPZcvmR9tdQo8EfhuRLxUOM+LIuKZHNPJ+Zwel3R+6Zu+pNGSzpb0UG6d2VzS9fk8f5zrDJT0tNKcFP+WdJmkHSX9I9fbItfbIr9GjyjNW7F2G6/TysByEXFfRARpqOsPvE5mZtZ66ukDsRmwbv4H3x5WBV4sPJ8IfLxWvYiYJWkK0I80wVejzgaekTQauAW4JI89cB4wPSJ+DiDpclKrwb25s+itwMfyPjYk3YK4LPCIpJvyhFRjcwtCUT9gciE5mJjP5wOUptW+iDQK45dL2+SWmjGkmVB/GxH3t3GO65HmnajmN6Vv7jkp/Bzwl7zu/YjYTNIxpJEgNyUN5vScpLNznUHA3sAhwIPA/qSk8vPAD0gf/E8D2+bf146kWzH/T9IqwIUR8dmymFbNr01J1dcJ2ErSo6S5O74bEb4DyMysE9VzCeNx4MPNDqSZ8gfnZqRJpfYnJRGV7Aj8RmkeiJHAcsqzUQI35gnG3gDuJLWkUCF5aDS2+/Mlh82BEyT1yOWz874HAFtIWr/efUraILeqPCepNHrkdrlPxjhS68h6hU1G5p/jgCci4pU8c+fzQGl8hhciYlweKfIJ4PacVI4jzdgK0Ae4RtLjpKRtvXwuL1dIHhrxMLB6vqRzLnDDQuzLzMzaQT0JxIrAk5JulTSy9FiIY77EvA8lSB+QL9Wql/sF9AEmLehBI+K5iPg9sAOwkaR+Fap1A7YsXGtftXApobwFplaLzCSgb44bqp9jMb6ngOmkPhrF8smkhKVa34CSJ0j9Hsgf9EOAvwE9c1LyO2CvPJvmBaRLJiWleSbmMP+cE3OY10pVXv5ehTo/Au6MiPWB3cqOUclLpNempOLrFBFTS7+H3Kl3SaWZQ83MrJPUk0AMIzVP/wT4ReGxoB4EBue7FJYC9mXeN+CikaShjwH2Au5o6zKKpOGl6/Fl5bsWevcPBmYDk5l/HghILRRHFbYbUli3e747oh+p8+WD1eLIcd6Z4yafx40V4lqjlGQoTV+9DjAh98Xom8t7Ap8mXR5A0k+V79Yo81Pg55KKH8g988/SB/kbuUVlL5qjD/MSgIPaqhwRrwBTle6SEfAVKr9OHy702diC9L5d4GTSzMwWXpt9IArTL7eLfH38SFL/gu7ARaXr2ZJOAx6KiJHAH4FLJY0nXY/ft7QPSROA5YClJO0B7JSned6QdI283JeBsyW9Q5oL4oCImK00z8e1knYnJQ5HA79Vmu9hCdLcDEfkfTxGSgpWBH4UES/nWCr1gYA0o+SVuSPiI/l8kPR50p0XJ5P6EBwvaSbpm/w3IuINSRsCl+R+EN2AqyPir3m/G1Ah4YqImyX1B/6Wt5tMuvx0a0RMlnRBfv4/aiQ/C+msHPdJFGbSrNEHAuAbpOGve5JaTP6Wtzkin9d5pITn65JmAe8C+7ZjnxwzM1sAVRMISfdGxDaSpjF/c71IX7IXeKqB3Ax9c4XykwvLM0id9iptP7BCvMuRZnOcWKH+vuVlufzfpKSjaJ9KdYHHIuIDt69W6wMREc+T+0mUlY8kJwARcSlwaYU6j5Gmwa5kyYioOBNmRFxClcG9IuIk0sRY5eVDC8ujSVN+f2AdhUsrUZibIiImlNbluIqzd56Uy18mza5ZKa6HKLtsk8vPKyz/BqhrzA8zM+sYVROIiNgm/+xdrU4riYipVEk4FiURsXNnx2BmZlbPbZylWwpXKtaPiP82K6hWExHDOjsGMzOzVtJmAiHpKOAU4FXSdXpIlzTKm/7NzMxsMVFPC0Rp/gv3ejczMzOgvts4XwSmNDsQMzMz6zrqaYF4Hhgt6SYKgwlFxC+bFpWZmZm1tHoSiP/mx1L5YWZmZou5mglEvvtirYg4oIPiMTMzsy6gZgKRR2tcXdJSkabeNusSei7ZnWfO2LWzw6jL6NGjmXDA0M4Oo26Ot7k6Jt526tY2ejTs14W6yDnedlVvH4h/5Am03i4Vug+EmZnZ4queBOK5/OjG/BNPmZmZ2WKqnsm0Tu2IQMzMzKzrqGckyv7A94H1mDctNBGxfRPjMjMzsxZWz0BSlwFPA2sApwITaN500GZmZtYF1JNA9IuIPwIzI+KuiDgEcOuDmZnZYqyeTpQz889XJO0KvAys0LyQzMzMrNXVk0D8WFIf4DvAucBywLeaGpWZmZm1tHruwvhrXpwCbNfccMzMzKwrqOcujLWA3wMrRcT6kjYEPh8RP256dGYL6N2Zsxl4/E2dHUZdvrPBLA7qIrGC4y03ocf+7bvDtU+FYbu37z6bpSvFCgse77DWHQ2yM9XTifIC4ARyX4iIeAzYt5lBmZmZWWurJ4FYJiIeKCub1YxgzMzMrGuoJ4F4Q9JHgQCQtBfwSlOjMjMzs5ZWz10Y3wTOB9aR9BLwAuDpvc3MzBZjbbZARMTzEbEj0B9YJyK2AfZsemRmZmbWsuq5hAFARLwdEdPy0283KR4zMzPrAupOIMqoXaMwMzOzLmVBE4ho1yjMzMysS6naiVLSNConCgJ6Ni0iMzMza3lVE4iI6N2RgZiZmVnXsaCXMMzMzGwx5gTCzMzMGuYEwppC0mxJYwuPgZL+2U77niBpxfbYl5mZLZh6RqI0WxDvRsSQsrJPdEYgZmbW/twCYR1G0vT8c09JtytZWdK/JX1YUn9J10l6MD+2zvX7SRol6QlJF+JxSMzMOp0TCGuWnoXLFyOKKyJiBGlCtm+Spos/JSL+B5wDnB0RmwP/B1yYNzkFuDci1gNGAKt11EmYmVllvoRhzVLpEkbRUcDjwH0RcUUu2xFYV5rbwLCcpF7AJ4EvAETETZLeak7IZmZWLycQ1lkGAHOAlSR1i4g5pBaxLSNiRrFiIaEwM7MW4UsY1uEkLQFcBOwHPMW8ydlGkVomSvWG5MW7gf1z2WeA5TsqVjMzq8wJhHWGHwD3RMS9pOThUEkfA44GNpP0mKQngSNy/VOBT0p6gnQp47+dEbSZmc3jSxjWFBHRq1pZRJxWKJsGrFOotk+F7SYBO7V1TEmHA4cDLN+vP8s1HraZmdXJLRC2yIiI8yNis4jYrNdyTh/MzJrJCYSZmZk1zAmEmZmZNcwJhLUrSbtIekbSeEnHV1i/tKSr8vr7JQ0srDshlz8jaedC+QRJ4/KgVA910KmYmVkN7kRp7UZSd+C3wKeBicCDkkZGxJOFal8F3oqIQZL2Bc4E9pG0LrAvsB6wCvB3SWtFxOy83XYR8UaHnYyZmdXkFghrT1sA4yPi+Yh4H7gS2L2szu7AJXn5WmAHpZGidgeujIj3IuIFYHzen5mZtSAnENaeVgVeLDyfmMsq1omIWcAUoF8b2wYwStKYfKummZl1Ml/CsK5gm4h4SdKHgNskPR0Rd3d2UGZmizO3QFh7egn4SOH5gFxWsU4e0roPMKnWthFR+vkaaTZOX9owM+tkTiCsPT0IDJa0hqSlSJ0iR5bVGQkcmJf3Au6IiMjl++a7NNYABgMPSFpWUm8AScuSRqR8vAPOxczMavAlDGs3ETFL0pHArUB34KKIeELSacBDETES+CNwqaTxwJukJINc72rgSWAW8M2ImC1pJWBEnpFzCeDyiLilw0/OzMzm4wTC2lVE3AzcXFZ2cmF5BrB3lW1PB04vK3se2Kj9IzUzs4XhSxhmZmbWMCcQZmZm1jAnEGZmZtYwJxBmZmbWMCcQZmZm1jAnEGZmZtYwJxBmZmbWMCcQZmZm1jAPJGWLpJ5LdueZM3bt7DDqMnr0aCYcMLSzw6ib4y03pX13N3o07NfO+2yWrhQrdL14W5xbIMzMzKxhTiDMzMysYU4gzMzMrGFOIMzMzKxhTiDMzMysYU4gzMzMrGFOIMzMzKxhTiDMzMysYU4gzMzMrGGKiM6OwazdSZoGPNPZcdRpReCNzg6iAY63ubpSvF0pVnC8bVk9IvrXW9lDWdui6pmI2Kyzg6iHpIe6SqzgeJutK8XblWIFx9vefAnDzMzMGuYEwszMzBrmBMIWVed3dgAN6EqxguNttq4Ub1eKFRxvu3InSjMzM2uYWyDMzMysYU4gzMzMrGFOIGyRImkXSc9IGi/p+M6Op5ykiyS9JunxQtkKkm6T9Gz+uXxnxlgk6SOS7pT0pKQnJB2Ty1suZkk9JD0g6dEc66m5fA1J9+f3xFWSlursWIskdZf0iKS/5uctG6+kCZLGSRor6aFc1nLvhRJJfSVdK+lpSU9J2qoV45W0dn5NS4+pko5txViLnEDYIkNSd+C3wGeAdYH9JK3buVF9wMXALmVlxwO3R8Rg4Pb8vFXMAr4TEesCWwLfzK9pK8b8HrB9RGwEDAF2kbQlcCZwdkQMAt4Cvtp5IVZ0DPBU4Xmrx7tdRAwpjE/Qiu+FknOAWyJiHWAj0uvccvFGxDP5NR0CbAq8A4ygBWMtcgJhi5ItgPER8XxEvA9cCezeyTHNJyLuBt4sK94duCQvXwLs0ZEx1RIRr0TEw3l5Gukf8Kq0YMyRTM9Pl8yPALYHrs3lLRFriaQBwK7Ahfm5aOF4q2i59wKApD7AJ4E/AkTE+xExmRaNt2AH4LmI+A8tHqsTCFuUrAq8WHg+MZe1upUi4pW8/D9gpc4MphpJA4GNgftp0Zjz5YCxwGvAbcBzwOSImJWrtNp74lfA94E5+Xk/WjveAEZJGiPp8FzWku8FYA3gdeBP+RLRhZKWpXXjLdkXuCIvt3SsTiDMWkik+6pb7t5qSb2A64BjI2JqcV0rxRwRs3Mz8ABSi9Q6nRtRdZI+B7wWEWM6O5YGbBMRm5AuE35T0ieLK1vpvUCaqmET4PcRsTHwNmWXAFosXnJ/l88D15Sva7VYwQmELVpeAj5SeD4gl7W6VyWtDJB/vtbJ8cxH0pKk5OGyiLg+F7d0zLmp+k5gK6CvpNK8P630ntga+LykCaTLbduTrtm3arxExEv552uka/Rb0LrvhYnAxIi4Pz+/lpRQtGq8kBKzhyPi1fy8lWN1AmGLlAeBwbkX+1KkpsCRnRxTPUYCB+blA4EbOzGW+eRr8n8EnoqIXxZWtVzMkvpL6puXewKfJvXZuBPYK1driVgBIuKEiBgQEQNJ79U7IuIAWjReSctK6l1aBnYCHqcF3wsAEfE/4EVJa+eiHYAnadF4s/2Yd/kCWjtWj0RpixZJnyVdV+4OXBQRp3duRPOTdAUwlDRN76vAKcANwNXAasB/gC9GRHlHy04haRvgHmAc867T/4DUD6KlYpa0IamjWXfSl6OrI+I0SWuSvuGvADwCfCki3uu8SD9I0lDguxHxuVaNN8c1Ij9dArg8Ik6X1I8Wey+USBpC6qC6FPA8cDD5vUGLxZuTsv8Ca0bElFzWsq8tOIEwMzOzBeBLGGZmZtYwJxBmZmbWMCcQZmZm1jAnEGZmZtYwJxBmZmbWMCcQZrZIyeNB3CvpcUl7FMpvlLRKhfonFmZBnF1YPrqBY/6gjfVDJIWk8onUzLos38ZpZouU/MH/JnA9cHNEDJW0G7BpRAxrY9vpEdFrAY5ZcztJZwKfAJ6PiAOr1VtYkrpHxOxm7d+syC0QZraomQksAywNzM7DQh8LnFXvDvKkXD+T9KCkxyR9LZevLOnu3ELxuKRtJZ0B9Mxll1XYl4C9gYOAT0vqUVh3nKRxkh7N+0HSIEl/z2UPS/qopKGS/lrY7jeSDsrLEySdKelhYG9Jh+W4H5V0naRlcr2VJI3I5Y9K+oSk0yQdW9jv6ZKOqfd1ssXbEm1XMTPrUi7Pj8OB44BvAJdGxDsN7OOrwJSI2FzS0sA/JI0CvgDcmkdg7A4sExH3SDoyT+JVySeAFyLiOUmjSdN3XyfpM6Tpmj8eEe9IWiHXvww4IyJG5GSjG/PP8VLJpDzJFZL6RcQFefnH+VzOBX4N3BURe+bYewEvk1pqfiWpG2lI7S0aeJ1sMeYEwswWKXkY4F0BJC1PmoFxT0kXAMsDv4iIf7Wxm52ADSWV5qToAwwmzbdykdIEYzdExNg6QtqPNDQ1+edXSJOT7Qj8qZTYRMSbea6JVSNiRC6bkc+jrWNcVVhePycOfUlJwq25fPt8bPJljinAFEmTJG1Mmir6kYiYVMc5mTmBMLNF2g+B00kf4veSZmS8Hti5je0EHBURt35gRZrCelfgYkm/jIjhVXeSvun/H7C7pBPzfvuVJqVqwCzmv+Tco2z924Xli4E9IuLRfJljaBv7vpB0eeXDwEUNxmWLMfeBMLNFkqTBwICIGE3qEzEHCKBnHZvfCnw9tzQgaa08G+XqwKv5EsGFpOmhAWaW6pbZAXgsIj4SEQMjYnVS68OewG3AwYU+CitExDRgYunuEUlL5/X/AdbNz/vm/VbTG3glx3NAofx24Ot5v90l9cnlI4BdgM2Z11ph1iYnEGa2qDodODEvX0H68HwQOKeObS8kTf38sKTHgT+QWmyHAo9KegTYp7Cv84HHKnSi3I95M1iWXAfsFxG3kKZrfkjSWOC7ef2XgaMlPQb8E/hwRLxImpXx8fzzkRqx/5A0W+o/gKcL5ccA20kaB4wB1gWIiPdJU4hf7Ts4rBG+jdPMbDGWO08+DOwdEc92djzWdbgFwsxsMSVpXWA8cLuTB2uUWyDMzMysYW6BMDMzs4Y5gTAzM7OGOYEwMzOzhjmBMDMzs4Y5gTAzM7OG/T8vn7JCSHp1TQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "best_top_1_results = list()\n", + "best_labels = list()\n", + "\n", + "# Fixed\n", + "b_fixed = fixed_results_100e[np.argmax(fixed_results_100e[:, 1])]\n", + "best_top_1_results.append(b_fixed[1:3])\n", + "best_labels.append(f'Fixed\\n{b_fixed[0]}')\n", + "\n", + "# Step Down\n", + "b_sd = step_down_results[np.argmax(step_down_results[:, 3])]\n", + "best_top_1_results.append(b_sd[3:5])\n", + "best_labels.append(f'Step Down\\n{b_sd[0]}, Step: {b_sd[1]}, Gamma: {b_sd[2]}')\n", + "\n", + "# Exp\n", + "b_exp = exp_results[np.argmax(exp_results[:, 2])]\n", + "best_top_1_results.append(b_exp[2:4])\n", + "best_labels.append(f'Exponential Decay\\n{b_exp[0]}, Rate: {b_exp[1]}')\n", + "\n", + "# Sig\n", + "b_sig = sig_results[np.argmax(sig_results[:, 3])]\n", + "best_top_1_results.append(b_sig[3:5])\n", + "best_labels.append(f'Sigmoid Decay\\n{b_sig[0]}, Step: {b_sig[1]}, Gamma: {b_sig[2]}')\n", + "\n", + "# print(best_top_1_results)\n", + "# print(best_labels)\n", + "# print(best_top_1_results)\n", + "plt.barh(range(len(best_labels)), [i[0] for i in best_top_1_results], tick_label=best_labels, label='Top-1')\n", + "plt.barh(range(len(best_labels)), [i[1] - i[0] for i in best_top_1_results], tick_label=best_labels, label='Top-5', left=[i[0] for i in best_top_1_results])\n", + "\n", + "plt.legend()\n", + "plt.grid(axis='x')\n", + "plt.title('Best Test Accuracy for Various Learning Schedule Policies')\n", + "plt.xlabel('% Test Accuracy')\n", + "plt.ylabel('Learning Schedule Policies')\n", + "plt.show()" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "914e9081", + "id": "39bd3540", "metadata": {}, "outputs": [], "source": [] diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.05/caffe_output.log b/cars/lr-investigations/sigmoid/1e-2/50_0.05/caffe_output.log new file mode 100644 index 0000000..44a60a9 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.05/caffe_output.log @@ -0,0 +1,4567 @@ +I0407 22:24:16.383111 32718 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-222415-72b6/solver.prototxt +I0407 22:24:16.383256 32718 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 22:24:16.383261 32718 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 22:24:16.383323 32718 caffe.cpp:218] Using GPUs 1 +I0407 22:24:16.425405 32718 caffe.cpp:223] GPU 1: GeForce RTX 2080 +I0407 22:24:16.785578 32718 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "sigmoid" +gamma: -0.00049019611 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 5100 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 1 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 22:24:16.786384 32718 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 22:24:16.786985 32718 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 22:24:16.786998 32718 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 22:24:16.787122 32718 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 22:24:16.787212 32718 layer_factory.hpp:77] Creating layer train-data +I0407 22:24:16.788659 32718 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db +I0407 22:24:16.789345 32718 net.cpp:84] Creating Layer train-data +I0407 22:24:16.789355 32718 net.cpp:380] train-data -> data +I0407 22:24:16.789376 32718 net.cpp:380] train-data -> label +I0407 22:24:16.789386 32718 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0407 22:24:16.793639 32718 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 22:24:16.921115 32718 net.cpp:122] Setting up train-data +I0407 22:24:16.921134 32718 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 22:24:16.921139 32718 net.cpp:129] Top shape: 128 (128) +I0407 22:24:16.921142 32718 net.cpp:137] Memory required for data: 79149056 +I0407 22:24:16.921151 32718 layer_factory.hpp:77] Creating layer conv1 +I0407 22:24:16.921171 32718 net.cpp:84] Creating Layer conv1 +I0407 22:24:16.921176 32718 net.cpp:406] conv1 <- data +I0407 22:24:16.921188 32718 net.cpp:380] conv1 -> conv1 +I0407 22:24:17.783514 32718 net.cpp:122] Setting up conv1 +I0407 22:24:17.783531 32718 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:24:17.783535 32718 net.cpp:137] Memory required for data: 227833856 +I0407 22:24:17.783555 32718 layer_factory.hpp:77] Creating layer relu1 +I0407 22:24:17.783565 32718 net.cpp:84] Creating Layer relu1 +I0407 22:24:17.783567 32718 net.cpp:406] relu1 <- conv1 +I0407 22:24:17.783573 32718 net.cpp:367] relu1 -> conv1 (in-place) +I0407 22:24:17.783888 32718 net.cpp:122] Setting up relu1 +I0407 22:24:17.783897 32718 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:24:17.783900 32718 net.cpp:137] Memory required for data: 376518656 +I0407 22:24:17.783903 32718 layer_factory.hpp:77] Creating layer norm1 +I0407 22:24:17.783911 32718 net.cpp:84] Creating Layer norm1 +I0407 22:24:17.783929 32718 net.cpp:406] norm1 <- conv1 +I0407 22:24:17.783936 32718 net.cpp:380] norm1 -> norm1 +I0407 22:24:17.784480 32718 net.cpp:122] Setting up norm1 +I0407 22:24:17.784490 32718 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:24:17.784493 32718 net.cpp:137] Memory required for data: 525203456 +I0407 22:24:17.784497 32718 layer_factory.hpp:77] Creating layer pool1 +I0407 22:24:17.784504 32718 net.cpp:84] Creating Layer pool1 +I0407 22:24:17.784507 32718 net.cpp:406] pool1 <- norm1 +I0407 22:24:17.784512 32718 net.cpp:380] pool1 -> pool1 +I0407 22:24:17.784548 32718 net.cpp:122] Setting up pool1 +I0407 22:24:17.784554 32718 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 22:24:17.784556 32718 net.cpp:137] Memory required for data: 561035264 +I0407 22:24:17.784559 32718 layer_factory.hpp:77] Creating layer conv2 +I0407 22:24:17.784567 32718 net.cpp:84] Creating Layer conv2 +I0407 22:24:17.784570 32718 net.cpp:406] conv2 <- pool1 +I0407 22:24:17.784574 32718 net.cpp:380] conv2 -> conv2 +I0407 22:24:17.792659 32718 net.cpp:122] Setting up conv2 +I0407 22:24:17.792675 32718 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:24:17.792678 32718 net.cpp:137] Memory required for data: 656586752 +I0407 22:24:17.792688 32718 layer_factory.hpp:77] Creating layer relu2 +I0407 22:24:17.792695 32718 net.cpp:84] Creating Layer relu2 +I0407 22:24:17.792698 32718 net.cpp:406] relu2 <- conv2 +I0407 22:24:17.792702 32718 net.cpp:367] relu2 -> conv2 (in-place) +I0407 22:24:17.793268 32718 net.cpp:122] Setting up relu2 +I0407 22:24:17.793279 32718 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:24:17.793282 32718 net.cpp:137] Memory required for data: 752138240 +I0407 22:24:17.793285 32718 layer_factory.hpp:77] Creating layer norm2 +I0407 22:24:17.793292 32718 net.cpp:84] Creating Layer norm2 +I0407 22:24:17.793294 32718 net.cpp:406] norm2 <- conv2 +I0407 22:24:17.793300 32718 net.cpp:380] norm2 -> norm2 +I0407 22:24:17.793694 32718 net.cpp:122] Setting up norm2 +I0407 22:24:17.793702 32718 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:24:17.793705 32718 net.cpp:137] Memory required for data: 847689728 +I0407 22:24:17.793709 32718 layer_factory.hpp:77] Creating layer pool2 +I0407 22:24:17.793716 32718 net.cpp:84] Creating Layer pool2 +I0407 22:24:17.793720 32718 net.cpp:406] pool2 <- norm2 +I0407 22:24:17.793725 32718 net.cpp:380] pool2 -> pool2 +I0407 22:24:17.793751 32718 net.cpp:122] Setting up pool2 +I0407 22:24:17.793756 32718 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:24:17.793759 32718 net.cpp:137] Memory required for data: 869840896 +I0407 22:24:17.793761 32718 layer_factory.hpp:77] Creating layer conv3 +I0407 22:24:17.793771 32718 net.cpp:84] Creating Layer conv3 +I0407 22:24:17.793773 32718 net.cpp:406] conv3 <- pool2 +I0407 22:24:17.793779 32718 net.cpp:380] conv3 -> conv3 +I0407 22:24:17.804400 32718 net.cpp:122] Setting up conv3 +I0407 22:24:17.804414 32718 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:17.804416 32718 net.cpp:137] Memory required for data: 903067648 +I0407 22:24:17.804425 32718 layer_factory.hpp:77] Creating layer relu3 +I0407 22:24:17.804432 32718 net.cpp:84] Creating Layer relu3 +I0407 22:24:17.804436 32718 net.cpp:406] relu3 <- conv3 +I0407 22:24:17.804440 32718 net.cpp:367] relu3 -> conv3 (in-place) +I0407 22:24:17.805012 32718 net.cpp:122] Setting up relu3 +I0407 22:24:17.805022 32718 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:17.805024 32718 net.cpp:137] Memory required for data: 936294400 +I0407 22:24:17.805027 32718 layer_factory.hpp:77] Creating layer conv4 +I0407 22:24:17.805037 32718 net.cpp:84] Creating Layer conv4 +I0407 22:24:17.805040 32718 net.cpp:406] conv4 <- conv3 +I0407 22:24:17.805047 32718 net.cpp:380] conv4 -> conv4 +I0407 22:24:17.816521 32718 net.cpp:122] Setting up conv4 +I0407 22:24:17.816535 32718 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:17.816540 32718 net.cpp:137] Memory required for data: 969521152 +I0407 22:24:17.816546 32718 layer_factory.hpp:77] Creating layer relu4 +I0407 22:24:17.816555 32718 net.cpp:84] Creating Layer relu4 +I0407 22:24:17.816572 32718 net.cpp:406] relu4 <- conv4 +I0407 22:24:17.816578 32718 net.cpp:367] relu4 -> conv4 (in-place) +I0407 22:24:17.817134 32718 net.cpp:122] Setting up relu4 +I0407 22:24:17.817145 32718 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:17.817148 32718 net.cpp:137] Memory required for data: 1002747904 +I0407 22:24:17.817152 32718 layer_factory.hpp:77] Creating layer conv5 +I0407 22:24:17.817162 32718 net.cpp:84] Creating Layer conv5 +I0407 22:24:17.817165 32718 net.cpp:406] conv5 <- conv4 +I0407 22:24:17.817170 32718 net.cpp:380] conv5 -> conv5 +I0407 22:24:17.829231 32718 net.cpp:122] Setting up conv5 +I0407 22:24:17.829248 32718 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:24:17.829252 32718 net.cpp:137] Memory required for data: 1024899072 +I0407 22:24:17.829267 32718 layer_factory.hpp:77] Creating layer relu5 +I0407 22:24:17.829277 32718 net.cpp:84] Creating Layer relu5 +I0407 22:24:17.829282 32718 net.cpp:406] relu5 <- conv5 +I0407 22:24:17.829289 32718 net.cpp:367] relu5 -> conv5 (in-place) +I0407 22:24:17.830013 32718 net.cpp:122] Setting up relu5 +I0407 22:24:17.830025 32718 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:24:17.830029 32718 net.cpp:137] Memory required for data: 1047050240 +I0407 22:24:17.830034 32718 layer_factory.hpp:77] Creating layer pool5 +I0407 22:24:17.830041 32718 net.cpp:84] Creating Layer pool5 +I0407 22:24:17.830045 32718 net.cpp:406] pool5 <- conv5 +I0407 22:24:17.830054 32718 net.cpp:380] pool5 -> pool5 +I0407 22:24:17.830098 32718 net.cpp:122] Setting up pool5 +I0407 22:24:17.830106 32718 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 22:24:17.830109 32718 net.cpp:137] Memory required for data: 1051768832 +I0407 22:24:17.830112 32718 layer_factory.hpp:77] Creating layer fc6 +I0407 22:24:17.830124 32718 net.cpp:84] Creating Layer fc6 +I0407 22:24:17.830128 32718 net.cpp:406] fc6 <- pool5 +I0407 22:24:17.830134 32718 net.cpp:380] fc6 -> fc6 +I0407 22:24:18.338637 32718 net.cpp:122] Setting up fc6 +I0407 22:24:18.338660 32718 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:18.338663 32718 net.cpp:137] Memory required for data: 1053865984 +I0407 22:24:18.338675 32718 layer_factory.hpp:77] Creating layer relu6 +I0407 22:24:18.338685 32718 net.cpp:84] Creating Layer relu6 +I0407 22:24:18.338690 32718 net.cpp:406] relu6 <- fc6 +I0407 22:24:18.338697 32718 net.cpp:367] relu6 -> fc6 (in-place) +I0407 22:24:18.339670 32718 net.cpp:122] Setting up relu6 +I0407 22:24:18.339682 32718 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:18.339686 32718 net.cpp:137] Memory required for data: 1055963136 +I0407 22:24:18.339690 32718 layer_factory.hpp:77] Creating layer drop6 +I0407 22:24:18.339699 32718 net.cpp:84] Creating Layer drop6 +I0407 22:24:18.339702 32718 net.cpp:406] drop6 <- fc6 +I0407 22:24:18.339710 32718 net.cpp:367] drop6 -> fc6 (in-place) +I0407 22:24:18.339741 32718 net.cpp:122] Setting up drop6 +I0407 22:24:18.339747 32718 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:18.339751 32718 net.cpp:137] Memory required for data: 1058060288 +I0407 22:24:18.339754 32718 layer_factory.hpp:77] Creating layer fc7 +I0407 22:24:18.339766 32718 net.cpp:84] Creating Layer fc7 +I0407 22:24:18.339769 32718 net.cpp:406] fc7 <- fc6 +I0407 22:24:18.339776 32718 net.cpp:380] fc7 -> fc7 +I0407 22:24:18.561173 32718 net.cpp:122] Setting up fc7 +I0407 22:24:18.561195 32718 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:18.561199 32718 net.cpp:137] Memory required for data: 1060157440 +I0407 22:24:18.561211 32718 layer_factory.hpp:77] Creating layer relu7 +I0407 22:24:18.561223 32718 net.cpp:84] Creating Layer relu7 +I0407 22:24:18.561228 32718 net.cpp:406] relu7 <- fc7 +I0407 22:24:18.561236 32718 net.cpp:367] relu7 -> fc7 (in-place) +I0407 22:24:18.561866 32718 net.cpp:122] Setting up relu7 +I0407 22:24:18.561875 32718 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:18.561878 32718 net.cpp:137] Memory required for data: 1062254592 +I0407 22:24:18.561882 32718 layer_factory.hpp:77] Creating layer drop7 +I0407 22:24:18.561890 32718 net.cpp:84] Creating Layer drop7 +I0407 22:24:18.561910 32718 net.cpp:406] drop7 <- fc7 +I0407 22:24:18.561919 32718 net.cpp:367] drop7 -> fc7 (in-place) +I0407 22:24:18.561947 32718 net.cpp:122] Setting up drop7 +I0407 22:24:18.561954 32718 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:18.561956 32718 net.cpp:137] Memory required for data: 1064351744 +I0407 22:24:18.561960 32718 layer_factory.hpp:77] Creating layer fc8 +I0407 22:24:18.561969 32718 net.cpp:84] Creating Layer fc8 +I0407 22:24:18.561971 32718 net.cpp:406] fc8 <- fc7 +I0407 22:24:18.561978 32718 net.cpp:380] fc8 -> fc8 +I0407 22:24:18.572631 32718 net.cpp:122] Setting up fc8 +I0407 22:24:18.572643 32718 net.cpp:129] Top shape: 128 196 (25088) +I0407 22:24:18.572645 32718 net.cpp:137] Memory required for data: 1064452096 +I0407 22:24:18.572652 32718 layer_factory.hpp:77] Creating layer loss +I0407 22:24:18.572660 32718 net.cpp:84] Creating Layer loss +I0407 22:24:18.572664 32718 net.cpp:406] loss <- fc8 +I0407 22:24:18.572669 32718 net.cpp:406] loss <- label +I0407 22:24:18.572679 32718 net.cpp:380] loss -> loss +I0407 22:24:18.572688 32718 layer_factory.hpp:77] Creating layer loss +I0407 22:24:18.573508 32718 net.cpp:122] Setting up loss +I0407 22:24:18.573519 32718 net.cpp:129] Top shape: (1) +I0407 22:24:18.573523 32718 net.cpp:132] with loss weight 1 +I0407 22:24:18.573544 32718 net.cpp:137] Memory required for data: 1064452100 +I0407 22:24:18.573549 32718 net.cpp:198] loss needs backward computation. +I0407 22:24:18.573556 32718 net.cpp:198] fc8 needs backward computation. +I0407 22:24:18.573560 32718 net.cpp:198] drop7 needs backward computation. +I0407 22:24:18.573563 32718 net.cpp:198] relu7 needs backward computation. +I0407 22:24:18.573566 32718 net.cpp:198] fc7 needs backward computation. +I0407 22:24:18.573570 32718 net.cpp:198] drop6 needs backward computation. +I0407 22:24:18.573575 32718 net.cpp:198] relu6 needs backward computation. +I0407 22:24:18.573577 32718 net.cpp:198] fc6 needs backward computation. +I0407 22:24:18.573581 32718 net.cpp:198] pool5 needs backward computation. +I0407 22:24:18.573585 32718 net.cpp:198] relu5 needs backward computation. +I0407 22:24:18.573588 32718 net.cpp:198] conv5 needs backward computation. +I0407 22:24:18.573592 32718 net.cpp:198] relu4 needs backward computation. +I0407 22:24:18.573596 32718 net.cpp:198] conv4 needs backward computation. +I0407 22:24:18.573599 32718 net.cpp:198] relu3 needs backward computation. +I0407 22:24:18.573603 32718 net.cpp:198] conv3 needs backward computation. +I0407 22:24:18.573607 32718 net.cpp:198] pool2 needs backward computation. +I0407 22:24:18.573611 32718 net.cpp:198] norm2 needs backward computation. +I0407 22:24:18.573614 32718 net.cpp:198] relu2 needs backward computation. +I0407 22:24:18.573618 32718 net.cpp:198] conv2 needs backward computation. +I0407 22:24:18.573622 32718 net.cpp:198] pool1 needs backward computation. +I0407 22:24:18.573626 32718 net.cpp:198] norm1 needs backward computation. +I0407 22:24:18.573629 32718 net.cpp:198] relu1 needs backward computation. +I0407 22:24:18.573633 32718 net.cpp:198] conv1 needs backward computation. +I0407 22:24:18.573637 32718 net.cpp:200] train-data does not need backward computation. +I0407 22:24:18.573640 32718 net.cpp:242] This network produces output loss +I0407 22:24:18.573658 32718 net.cpp:255] Network initialization done. +I0407 22:24:18.574224 32718 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 22:24:18.574262 32718 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 22:24:18.574456 32718 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 22:24:18.574579 32718 layer_factory.hpp:77] Creating layer val-data +I0407 22:24:18.576093 32718 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db +I0407 22:24:18.576725 32718 net.cpp:84] Creating Layer val-data +I0407 22:24:18.576735 32718 net.cpp:380] val-data -> data +I0407 22:24:18.576747 32718 net.cpp:380] val-data -> label +I0407 22:24:18.576756 32718 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0407 22:24:18.581146 32718 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 22:24:18.619853 32718 net.cpp:122] Setting up val-data +I0407 22:24:18.619871 32718 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 22:24:18.619875 32718 net.cpp:129] Top shape: 32 (32) +I0407 22:24:18.619877 32718 net.cpp:137] Memory required for data: 19787264 +I0407 22:24:18.619884 32718 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 22:24:18.619895 32718 net.cpp:84] Creating Layer label_val-data_1_split +I0407 22:24:18.619899 32718 net.cpp:406] label_val-data_1_split <- label +I0407 22:24:18.619905 32718 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 22:24:18.619915 32718 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 22:24:18.619967 32718 net.cpp:122] Setting up label_val-data_1_split +I0407 22:24:18.619972 32718 net.cpp:129] Top shape: 32 (32) +I0407 22:24:18.619976 32718 net.cpp:129] Top shape: 32 (32) +I0407 22:24:18.619978 32718 net.cpp:137] Memory required for data: 19787520 +I0407 22:24:18.619980 32718 layer_factory.hpp:77] Creating layer conv1 +I0407 22:24:18.619992 32718 net.cpp:84] Creating Layer conv1 +I0407 22:24:18.619994 32718 net.cpp:406] conv1 <- data +I0407 22:24:18.619999 32718 net.cpp:380] conv1 -> conv1 +I0407 22:24:18.623205 32718 net.cpp:122] Setting up conv1 +I0407 22:24:18.623215 32718 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:24:18.623219 32718 net.cpp:137] Memory required for data: 56958720 +I0407 22:24:18.623229 32718 layer_factory.hpp:77] Creating layer relu1 +I0407 22:24:18.623234 32718 net.cpp:84] Creating Layer relu1 +I0407 22:24:18.623236 32718 net.cpp:406] relu1 <- conv1 +I0407 22:24:18.623241 32718 net.cpp:367] relu1 -> conv1 (in-place) +I0407 22:24:18.623569 32718 net.cpp:122] Setting up relu1 +I0407 22:24:18.623579 32718 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:24:18.623580 32718 net.cpp:137] Memory required for data: 94129920 +I0407 22:24:18.623584 32718 layer_factory.hpp:77] Creating layer norm1 +I0407 22:24:18.623591 32718 net.cpp:84] Creating Layer norm1 +I0407 22:24:18.623594 32718 net.cpp:406] norm1 <- conv1 +I0407 22:24:18.623600 32718 net.cpp:380] norm1 -> norm1 +I0407 22:24:18.624128 32718 net.cpp:122] Setting up norm1 +I0407 22:24:18.624138 32718 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:24:18.624140 32718 net.cpp:137] Memory required for data: 131301120 +I0407 22:24:18.624143 32718 layer_factory.hpp:77] Creating layer pool1 +I0407 22:24:18.624150 32718 net.cpp:84] Creating Layer pool1 +I0407 22:24:18.624153 32718 net.cpp:406] pool1 <- norm1 +I0407 22:24:18.624158 32718 net.cpp:380] pool1 -> pool1 +I0407 22:24:18.624182 32718 net.cpp:122] Setting up pool1 +I0407 22:24:18.624187 32718 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 22:24:18.624189 32718 net.cpp:137] Memory required for data: 140259072 +I0407 22:24:18.624192 32718 layer_factory.hpp:77] Creating layer conv2 +I0407 22:24:18.624199 32718 net.cpp:84] Creating Layer conv2 +I0407 22:24:18.624202 32718 net.cpp:406] conv2 <- pool1 +I0407 22:24:18.624222 32718 net.cpp:380] conv2 -> conv2 +I0407 22:24:18.633859 32718 net.cpp:122] Setting up conv2 +I0407 22:24:18.633873 32718 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:24:18.633877 32718 net.cpp:137] Memory required for data: 164146944 +I0407 22:24:18.633885 32718 layer_factory.hpp:77] Creating layer relu2 +I0407 22:24:18.633893 32718 net.cpp:84] Creating Layer relu2 +I0407 22:24:18.633895 32718 net.cpp:406] relu2 <- conv2 +I0407 22:24:18.633903 32718 net.cpp:367] relu2 -> conv2 (in-place) +I0407 22:24:18.634476 32718 net.cpp:122] Setting up relu2 +I0407 22:24:18.634485 32718 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:24:18.634488 32718 net.cpp:137] Memory required for data: 188034816 +I0407 22:24:18.634491 32718 layer_factory.hpp:77] Creating layer norm2 +I0407 22:24:18.634501 32718 net.cpp:84] Creating Layer norm2 +I0407 22:24:18.634505 32718 net.cpp:406] norm2 <- conv2 +I0407 22:24:18.634510 32718 net.cpp:380] norm2 -> norm2 +I0407 22:24:18.635298 32718 net.cpp:122] Setting up norm2 +I0407 22:24:18.635308 32718 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:24:18.635311 32718 net.cpp:137] Memory required for data: 211922688 +I0407 22:24:18.635314 32718 layer_factory.hpp:77] Creating layer pool2 +I0407 22:24:18.635320 32718 net.cpp:84] Creating Layer pool2 +I0407 22:24:18.635324 32718 net.cpp:406] pool2 <- norm2 +I0407 22:24:18.635329 32718 net.cpp:380] pool2 -> pool2 +I0407 22:24:18.635360 32718 net.cpp:122] Setting up pool2 +I0407 22:24:18.635365 32718 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:24:18.635366 32718 net.cpp:137] Memory required for data: 217460480 +I0407 22:24:18.635370 32718 layer_factory.hpp:77] Creating layer conv3 +I0407 22:24:18.635380 32718 net.cpp:84] Creating Layer conv3 +I0407 22:24:18.635381 32718 net.cpp:406] conv3 <- pool2 +I0407 22:24:18.635386 32718 net.cpp:380] conv3 -> conv3 +I0407 22:24:18.647136 32718 net.cpp:122] Setting up conv3 +I0407 22:24:18.647153 32718 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:18.647157 32718 net.cpp:137] Memory required for data: 225767168 +I0407 22:24:18.647167 32718 layer_factory.hpp:77] Creating layer relu3 +I0407 22:24:18.647176 32718 net.cpp:84] Creating Layer relu3 +I0407 22:24:18.647178 32718 net.cpp:406] relu3 <- conv3 +I0407 22:24:18.647184 32718 net.cpp:367] relu3 -> conv3 (in-place) +I0407 22:24:18.647795 32718 net.cpp:122] Setting up relu3 +I0407 22:24:18.647806 32718 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:18.647809 32718 net.cpp:137] Memory required for data: 234073856 +I0407 22:24:18.647812 32718 layer_factory.hpp:77] Creating layer conv4 +I0407 22:24:18.647822 32718 net.cpp:84] Creating Layer conv4 +I0407 22:24:18.647825 32718 net.cpp:406] conv4 <- conv3 +I0407 22:24:18.647831 32718 net.cpp:380] conv4 -> conv4 +I0407 22:24:18.658180 32718 net.cpp:122] Setting up conv4 +I0407 22:24:18.658193 32718 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:18.658196 32718 net.cpp:137] Memory required for data: 242380544 +I0407 22:24:18.658203 32718 layer_factory.hpp:77] Creating layer relu4 +I0407 22:24:18.658211 32718 net.cpp:84] Creating Layer relu4 +I0407 22:24:18.658215 32718 net.cpp:406] relu4 <- conv4 +I0407 22:24:18.658219 32718 net.cpp:367] relu4 -> conv4 (in-place) +I0407 22:24:18.658596 32718 net.cpp:122] Setting up relu4 +I0407 22:24:18.658608 32718 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:18.658612 32718 net.cpp:137] Memory required for data: 250687232 +I0407 22:24:18.658614 32718 layer_factory.hpp:77] Creating layer conv5 +I0407 22:24:18.658623 32718 net.cpp:84] Creating Layer conv5 +I0407 22:24:18.658627 32718 net.cpp:406] conv5 <- conv4 +I0407 22:24:18.658632 32718 net.cpp:380] conv5 -> conv5 +I0407 22:24:18.668480 32718 net.cpp:122] Setting up conv5 +I0407 22:24:18.668495 32718 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:24:18.668498 32718 net.cpp:137] Memory required for data: 256225024 +I0407 22:24:18.668511 32718 layer_factory.hpp:77] Creating layer relu5 +I0407 22:24:18.668519 32718 net.cpp:84] Creating Layer relu5 +I0407 22:24:18.668546 32718 net.cpp:406] relu5 <- conv5 +I0407 22:24:18.668552 32718 net.cpp:367] relu5 -> conv5 (in-place) +I0407 22:24:18.669122 32718 net.cpp:122] Setting up relu5 +I0407 22:24:18.669133 32718 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:24:18.669137 32718 net.cpp:137] Memory required for data: 261762816 +I0407 22:24:18.669139 32718 layer_factory.hpp:77] Creating layer pool5 +I0407 22:24:18.669149 32718 net.cpp:84] Creating Layer pool5 +I0407 22:24:18.669152 32718 net.cpp:406] pool5 <- conv5 +I0407 22:24:18.669157 32718 net.cpp:380] pool5 -> pool5 +I0407 22:24:18.669193 32718 net.cpp:122] Setting up pool5 +I0407 22:24:18.669198 32718 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 22:24:18.669201 32718 net.cpp:137] Memory required for data: 262942464 +I0407 22:24:18.669203 32718 layer_factory.hpp:77] Creating layer fc6 +I0407 22:24:18.669209 32718 net.cpp:84] Creating Layer fc6 +I0407 22:24:18.669212 32718 net.cpp:406] fc6 <- pool5 +I0407 22:24:18.669219 32718 net.cpp:380] fc6 -> fc6 +I0407 22:24:19.039827 32718 net.cpp:122] Setting up fc6 +I0407 22:24:19.039849 32718 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:19.039851 32718 net.cpp:137] Memory required for data: 263466752 +I0407 22:24:19.039860 32718 layer_factory.hpp:77] Creating layer relu6 +I0407 22:24:19.039867 32718 net.cpp:84] Creating Layer relu6 +I0407 22:24:19.039871 32718 net.cpp:406] relu6 <- fc6 +I0407 22:24:19.039878 32718 net.cpp:367] relu6 -> fc6 (in-place) +I0407 22:24:19.040699 32718 net.cpp:122] Setting up relu6 +I0407 22:24:19.040710 32718 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:19.040714 32718 net.cpp:137] Memory required for data: 263991040 +I0407 22:24:19.040716 32718 layer_factory.hpp:77] Creating layer drop6 +I0407 22:24:19.040724 32718 net.cpp:84] Creating Layer drop6 +I0407 22:24:19.040726 32718 net.cpp:406] drop6 <- fc6 +I0407 22:24:19.040730 32718 net.cpp:367] drop6 -> fc6 (in-place) +I0407 22:24:19.040755 32718 net.cpp:122] Setting up drop6 +I0407 22:24:19.040760 32718 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:19.040762 32718 net.cpp:137] Memory required for data: 264515328 +I0407 22:24:19.040766 32718 layer_factory.hpp:77] Creating layer fc7 +I0407 22:24:19.040772 32718 net.cpp:84] Creating Layer fc7 +I0407 22:24:19.040776 32718 net.cpp:406] fc7 <- fc6 +I0407 22:24:19.040781 32718 net.cpp:380] fc7 -> fc7 +I0407 22:24:19.195336 32718 net.cpp:122] Setting up fc7 +I0407 22:24:19.195355 32718 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:19.195359 32718 net.cpp:137] Memory required for data: 265039616 +I0407 22:24:19.195369 32718 layer_factory.hpp:77] Creating layer relu7 +I0407 22:24:19.195377 32718 net.cpp:84] Creating Layer relu7 +I0407 22:24:19.195381 32718 net.cpp:406] relu7 <- fc7 +I0407 22:24:19.195387 32718 net.cpp:367] relu7 -> fc7 (in-place) +I0407 22:24:19.195897 32718 net.cpp:122] Setting up relu7 +I0407 22:24:19.195905 32718 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:19.195909 32718 net.cpp:137] Memory required for data: 265563904 +I0407 22:24:19.195910 32718 layer_factory.hpp:77] Creating layer drop7 +I0407 22:24:19.195919 32718 net.cpp:84] Creating Layer drop7 +I0407 22:24:19.195922 32718 net.cpp:406] drop7 <- fc7 +I0407 22:24:19.195926 32718 net.cpp:367] drop7 -> fc7 (in-place) +I0407 22:24:19.195950 32718 net.cpp:122] Setting up drop7 +I0407 22:24:19.195953 32718 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:19.195956 32718 net.cpp:137] Memory required for data: 266088192 +I0407 22:24:19.195958 32718 layer_factory.hpp:77] Creating layer fc8 +I0407 22:24:19.195966 32718 net.cpp:84] Creating Layer fc8 +I0407 22:24:19.195967 32718 net.cpp:406] fc8 <- fc7 +I0407 22:24:19.195973 32718 net.cpp:380] fc8 -> fc8 +I0407 22:24:19.203724 32718 net.cpp:122] Setting up fc8 +I0407 22:24:19.203734 32718 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:24:19.203737 32718 net.cpp:137] Memory required for data: 266113280 +I0407 22:24:19.203742 32718 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 22:24:19.203748 32718 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 22:24:19.203750 32718 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 22:24:19.203768 32718 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 22:24:19.203774 32718 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 22:24:19.203802 32718 net.cpp:122] Setting up fc8_fc8_0_split +I0407 22:24:19.203807 32718 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:24:19.203810 32718 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:24:19.203812 32718 net.cpp:137] Memory required for data: 266163456 +I0407 22:24:19.203814 32718 layer_factory.hpp:77] Creating layer accuracy +I0407 22:24:19.203821 32718 net.cpp:84] Creating Layer accuracy +I0407 22:24:19.203824 32718 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 22:24:19.203827 32718 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 22:24:19.203832 32718 net.cpp:380] accuracy -> accuracy +I0407 22:24:19.203840 32718 net.cpp:122] Setting up accuracy +I0407 22:24:19.203842 32718 net.cpp:129] Top shape: (1) +I0407 22:24:19.203845 32718 net.cpp:137] Memory required for data: 266163460 +I0407 22:24:19.203846 32718 layer_factory.hpp:77] Creating layer loss +I0407 22:24:19.203851 32718 net.cpp:84] Creating Layer loss +I0407 22:24:19.203853 32718 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 22:24:19.203856 32718 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 22:24:19.203860 32718 net.cpp:380] loss -> loss +I0407 22:24:19.203866 32718 layer_factory.hpp:77] Creating layer loss +I0407 22:24:19.204516 32718 net.cpp:122] Setting up loss +I0407 22:24:19.204524 32718 net.cpp:129] Top shape: (1) +I0407 22:24:19.204526 32718 net.cpp:132] with loss weight 1 +I0407 22:24:19.204535 32718 net.cpp:137] Memory required for data: 266163464 +I0407 22:24:19.204538 32718 net.cpp:198] loss needs backward computation. +I0407 22:24:19.204542 32718 net.cpp:200] accuracy does not need backward computation. +I0407 22:24:19.204545 32718 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 22:24:19.204548 32718 net.cpp:198] fc8 needs backward computation. +I0407 22:24:19.204550 32718 net.cpp:198] drop7 needs backward computation. +I0407 22:24:19.204553 32718 net.cpp:198] relu7 needs backward computation. +I0407 22:24:19.204555 32718 net.cpp:198] fc7 needs backward computation. +I0407 22:24:19.204558 32718 net.cpp:198] drop6 needs backward computation. +I0407 22:24:19.204560 32718 net.cpp:198] relu6 needs backward computation. +I0407 22:24:19.204563 32718 net.cpp:198] fc6 needs backward computation. +I0407 22:24:19.204566 32718 net.cpp:198] pool5 needs backward computation. +I0407 22:24:19.204569 32718 net.cpp:198] relu5 needs backward computation. +I0407 22:24:19.204573 32718 net.cpp:198] conv5 needs backward computation. +I0407 22:24:19.204576 32718 net.cpp:198] relu4 needs backward computation. +I0407 22:24:19.204579 32718 net.cpp:198] conv4 needs backward computation. +I0407 22:24:19.204581 32718 net.cpp:198] relu3 needs backward computation. +I0407 22:24:19.204584 32718 net.cpp:198] conv3 needs backward computation. +I0407 22:24:19.204587 32718 net.cpp:198] pool2 needs backward computation. +I0407 22:24:19.204591 32718 net.cpp:198] norm2 needs backward computation. +I0407 22:24:19.204592 32718 net.cpp:198] relu2 needs backward computation. +I0407 22:24:19.204596 32718 net.cpp:198] conv2 needs backward computation. +I0407 22:24:19.204597 32718 net.cpp:198] pool1 needs backward computation. +I0407 22:24:19.204600 32718 net.cpp:198] norm1 needs backward computation. +I0407 22:24:19.204602 32718 net.cpp:198] relu1 needs backward computation. +I0407 22:24:19.204605 32718 net.cpp:198] conv1 needs backward computation. +I0407 22:24:19.204608 32718 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 22:24:19.204612 32718 net.cpp:200] val-data does not need backward computation. +I0407 22:24:19.204613 32718 net.cpp:242] This network produces output accuracy +I0407 22:24:19.204617 32718 net.cpp:242] This network produces output loss +I0407 22:24:19.204632 32718 net.cpp:255] Network initialization done. +I0407 22:24:19.204696 32718 solver.cpp:56] Solver scaffolding done. +I0407 22:24:19.205014 32718 caffe.cpp:248] Starting Optimization +I0407 22:24:19.205030 32718 solver.cpp:272] Solving +I0407 22:24:19.205034 32718 solver.cpp:273] Learning Rate Policy: sigmoid +I0407 22:24:19.206583 32718 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 22:24:19.206590 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:24:19.297063 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:24:23.493813 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:23.538113 32718 solver.cpp:397] Test net output #0: accuracy = 0.00367647 +I0407 22:24:23.538159 32718 solver.cpp:397] Test net output #1: loss = 5.27868 (* 1 = 5.27868 loss) +I0407 22:24:23.636787 32718 solver.cpp:218] Iteration 0 (-1.10703e-43 iter/s, 4.43171s/12 iters), loss = 5.28151 +I0407 22:24:23.638348 32718 solver.cpp:237] Train net output #0: loss = 5.28151 (* 1 = 5.28151 loss) +I0407 22:24:23.638383 32718 sgd_solver.cpp:105] Iteration 0, lr = 0.00924142 +I0407 22:24:27.326468 32718 solver.cpp:218] Iteration 12 (3.25371 iter/s, 3.6881s/12 iters), loss = 5.28284 +I0407 22:24:27.326503 32718 solver.cpp:237] Train net output #0: loss = 5.28284 (* 1 = 5.28284 loss) +I0407 22:24:27.326511 32718 sgd_solver.cpp:105] Iteration 12, lr = 0.00923728 +I0407 22:24:32.202330 32718 solver.cpp:218] Iteration 24 (2.46114 iter/s, 4.8758s/12 iters), loss = 5.28408 +I0407 22:24:32.202378 32718 solver.cpp:237] Train net output #0: loss = 5.28408 (* 1 = 5.28408 loss) +I0407 22:24:32.202387 32718 sgd_solver.cpp:105] Iteration 24, lr = 0.00923313 +I0407 22:24:37.074025 32718 solver.cpp:218] Iteration 36 (2.46324 iter/s, 4.87162s/12 iters), loss = 5.27463 +I0407 22:24:37.074060 32718 solver.cpp:237] Train net output #0: loss = 5.27463 (* 1 = 5.27463 loss) +I0407 22:24:37.074069 32718 sgd_solver.cpp:105] Iteration 36, lr = 0.00922895 +I0407 22:24:41.933892 32718 solver.cpp:218] Iteration 48 (2.46923 iter/s, 4.85981s/12 iters), loss = 5.28514 +I0407 22:24:41.933923 32718 solver.cpp:237] Train net output #0: loss = 5.28514 (* 1 = 5.28514 loss) +I0407 22:24:41.933930 32718 sgd_solver.cpp:105] Iteration 48, lr = 0.00922476 +I0407 22:24:46.773737 32718 solver.cpp:218] Iteration 60 (2.47944 iter/s, 4.83979s/12 iters), loss = 5.27958 +I0407 22:24:46.773897 32718 solver.cpp:237] Train net output #0: loss = 5.27958 (* 1 = 5.27958 loss) +I0407 22:24:46.773906 32718 sgd_solver.cpp:105] Iteration 60, lr = 0.00922054 +I0407 22:24:51.659129 32718 solver.cpp:218] Iteration 72 (2.45639 iter/s, 4.88521s/12 iters), loss = 5.30799 +I0407 22:24:51.659162 32718 solver.cpp:237] Train net output #0: loss = 5.30799 (* 1 = 5.30799 loss) +I0407 22:24:51.659169 32718 sgd_solver.cpp:105] Iteration 72, lr = 0.0092163 +I0407 22:24:56.470335 32718 solver.cpp:218] Iteration 84 (2.49421 iter/s, 4.81114s/12 iters), loss = 5.30394 +I0407 22:24:56.470371 32718 solver.cpp:237] Train net output #0: loss = 5.30394 (* 1 = 5.30394 loss) +I0407 22:24:56.470379 32718 sgd_solver.cpp:105] Iteration 84, lr = 0.00921204 +I0407 22:25:01.413249 32718 solver.cpp:218] Iteration 96 (2.42775 iter/s, 4.94285s/12 iters), loss = 5.29844 +I0407 22:25:01.413287 32718 solver.cpp:237] Train net output #0: loss = 5.29844 (* 1 = 5.29844 loss) +I0407 22:25:01.413295 32718 sgd_solver.cpp:105] Iteration 96, lr = 0.00920776 +I0407 22:25:03.093621 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:03.395242 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 22:25:06.580042 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 22:25:08.940768 32718 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 22:25:08.940786 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:25:13.647437 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:13.734531 32718 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0407 22:25:13.734575 32718 solver.cpp:397] Test net output #1: loss = 5.28267 (* 1 = 5.28267 loss) +I0407 22:25:15.583377 32718 solver.cpp:218] Iteration 108 (0.846858 iter/s, 14.17s/12 iters), loss = 5.27993 +I0407 22:25:15.583429 32718 solver.cpp:237] Train net output #0: loss = 5.27993 (* 1 = 5.27993 loss) +I0407 22:25:15.583438 32718 sgd_solver.cpp:105] Iteration 108, lr = 0.00920346 +I0407 22:25:20.529230 32718 solver.cpp:218] Iteration 120 (2.42632 iter/s, 4.94577s/12 iters), loss = 5.25569 +I0407 22:25:20.529386 32718 solver.cpp:237] Train net output #0: loss = 5.25569 (* 1 = 5.25569 loss) +I0407 22:25:20.529395 32718 sgd_solver.cpp:105] Iteration 120, lr = 0.00919914 +I0407 22:25:25.475067 32718 solver.cpp:218] Iteration 132 (2.42637 iter/s, 4.94566s/12 iters), loss = 5.27161 +I0407 22:25:25.475108 32718 solver.cpp:237] Train net output #0: loss = 5.27161 (* 1 = 5.27161 loss) +I0407 22:25:25.475117 32718 sgd_solver.cpp:105] Iteration 132, lr = 0.00919479 +I0407 22:25:30.485555 32718 solver.cpp:218] Iteration 144 (2.39501 iter/s, 5.01042s/12 iters), loss = 5.20478 +I0407 22:25:30.485597 32718 solver.cpp:237] Train net output #0: loss = 5.20478 (* 1 = 5.20478 loss) +I0407 22:25:30.485606 32718 sgd_solver.cpp:105] Iteration 144, lr = 0.00919043 +I0407 22:25:35.626868 32718 solver.cpp:218] Iteration 156 (2.33407 iter/s, 5.14124s/12 iters), loss = 5.19318 +I0407 22:25:35.626904 32718 solver.cpp:237] Train net output #0: loss = 5.19318 (* 1 = 5.19318 loss) +I0407 22:25:35.626911 32718 sgd_solver.cpp:105] Iteration 156, lr = 0.00918604 +I0407 22:25:40.659317 32718 solver.cpp:218] Iteration 168 (2.38456 iter/s, 5.03238s/12 iters), loss = 5.2191 +I0407 22:25:40.659354 32718 solver.cpp:237] Train net output #0: loss = 5.2191 (* 1 = 5.2191 loss) +I0407 22:25:40.659363 32718 sgd_solver.cpp:105] Iteration 168, lr = 0.00918163 +I0407 22:25:45.628757 32718 solver.cpp:218] Iteration 180 (2.41479 iter/s, 4.96938s/12 iters), loss = 5.23434 +I0407 22:25:45.628795 32718 solver.cpp:237] Train net output #0: loss = 5.23434 (* 1 = 5.23434 loss) +I0407 22:25:45.628803 32718 sgd_solver.cpp:105] Iteration 180, lr = 0.0091772 +I0407 22:25:50.596285 32718 solver.cpp:218] Iteration 192 (2.41572 iter/s, 4.96746s/12 iters), loss = 5.27376 +I0407 22:25:50.596400 32718 solver.cpp:237] Train net output #0: loss = 5.27376 (* 1 = 5.27376 loss) +I0407 22:25:50.596407 32718 sgd_solver.cpp:105] Iteration 192, lr = 0.00917275 +I0407 22:25:54.409615 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:55.068599 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 22:25:58.716253 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 22:26:01.446503 32718 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 22:26:01.446521 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:26:06.091583 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:06.227525 32718 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0407 22:26:06.227573 32718 solver.cpp:397] Test net output #1: loss = 5.17027 (* 1 = 5.17027 loss) +I0407 22:26:06.324076 32718 solver.cpp:218] Iteration 204 (0.762989 iter/s, 15.7276s/12 iters), loss = 5.21906 +I0407 22:26:06.324115 32718 solver.cpp:237] Train net output #0: loss = 5.21906 (* 1 = 5.21906 loss) +I0407 22:26:06.324122 32718 sgd_solver.cpp:105] Iteration 204, lr = 0.00916827 +I0407 22:26:10.407316 32718 solver.cpp:218] Iteration 216 (2.93889 iter/s, 4.08317s/12 iters), loss = 5.25391 +I0407 22:26:10.407352 32718 solver.cpp:237] Train net output #0: loss = 5.25391 (* 1 = 5.25391 loss) +I0407 22:26:10.407361 32718 sgd_solver.cpp:105] Iteration 216, lr = 0.00916378 +I0407 22:26:15.357630 32718 solver.cpp:218] Iteration 228 (2.42412 iter/s, 4.95025s/12 iters), loss = 5.18612 +I0407 22:26:15.357666 32718 solver.cpp:237] Train net output #0: loss = 5.18612 (* 1 = 5.18612 loss) +I0407 22:26:15.357674 32718 sgd_solver.cpp:105] Iteration 228, lr = 0.00915926 +I0407 22:26:20.237766 32718 solver.cpp:218] Iteration 240 (2.45898 iter/s, 4.88007s/12 iters), loss = 5.15336 +I0407 22:26:20.237805 32718 solver.cpp:237] Train net output #0: loss = 5.15336 (* 1 = 5.15336 loss) +I0407 22:26:20.237813 32718 sgd_solver.cpp:105] Iteration 240, lr = 0.00915472 +I0407 22:26:25.209236 32718 solver.cpp:218] Iteration 252 (2.41381 iter/s, 4.9714s/12 iters), loss = 5.17207 +I0407 22:26:25.209373 32718 solver.cpp:237] Train net output #0: loss = 5.17207 (* 1 = 5.17207 loss) +I0407 22:26:25.209386 32718 sgd_solver.cpp:105] Iteration 252, lr = 0.00915015 +I0407 22:26:30.141425 32718 solver.cpp:218] Iteration 264 (2.43308 iter/s, 4.93203s/12 iters), loss = 5.15642 +I0407 22:26:30.141463 32718 solver.cpp:237] Train net output #0: loss = 5.15642 (* 1 = 5.15642 loss) +I0407 22:26:30.141470 32718 sgd_solver.cpp:105] Iteration 264, lr = 0.00914557 +I0407 22:26:35.110734 32718 solver.cpp:218] Iteration 276 (2.41486 iter/s, 4.96924s/12 iters), loss = 5.14071 +I0407 22:26:35.110778 32718 solver.cpp:237] Train net output #0: loss = 5.14071 (* 1 = 5.14071 loss) +I0407 22:26:35.110786 32718 sgd_solver.cpp:105] Iteration 276, lr = 0.00914096 +I0407 22:26:40.089454 32718 solver.cpp:218] Iteration 288 (2.4103 iter/s, 4.97864s/12 iters), loss = 5.14392 +I0407 22:26:40.089499 32718 solver.cpp:237] Train net output #0: loss = 5.14392 (* 1 = 5.14392 loss) +I0407 22:26:40.089509 32718 sgd_solver.cpp:105] Iteration 288, lr = 0.00913633 +I0407 22:26:44.981642 32718 solver.cpp:218] Iteration 300 (2.45293 iter/s, 4.8921s/12 iters), loss = 5.1393 +I0407 22:26:44.981696 32718 solver.cpp:237] Train net output #0: loss = 5.1393 (* 1 = 5.1393 loss) +I0407 22:26:44.981709 32718 sgd_solver.cpp:105] Iteration 300, lr = 0.00913168 +I0407 22:26:45.936774 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:46.952330 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 22:26:50.848235 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 22:26:54.679260 32718 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 22:26:54.679277 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:26:59.216290 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:59.380146 32718 solver.cpp:397] Test net output #0: accuracy = 0.0128676 +I0407 22:26:59.380193 32718 solver.cpp:397] Test net output #1: loss = 5.14151 (* 1 = 5.14151 loss) +I0407 22:27:01.177523 32718 solver.cpp:218] Iteration 312 (0.740935 iter/s, 16.1958s/12 iters), loss = 5.17723 +I0407 22:27:01.177567 32718 solver.cpp:237] Train net output #0: loss = 5.17723 (* 1 = 5.17723 loss) +I0407 22:27:01.177575 32718 sgd_solver.cpp:105] Iteration 312, lr = 0.009127 +I0407 22:27:06.122674 32718 solver.cpp:218] Iteration 324 (2.42665 iter/s, 4.94508s/12 iters), loss = 5.11914 +I0407 22:27:06.122712 32718 solver.cpp:237] Train net output #0: loss = 5.11914 (* 1 = 5.11914 loss) +I0407 22:27:06.122720 32718 sgd_solver.cpp:105] Iteration 324, lr = 0.0091223 +I0407 22:27:11.066164 32718 solver.cpp:218] Iteration 336 (2.42747 iter/s, 4.94341s/12 iters), loss = 5.16921 +I0407 22:27:11.066215 32718 solver.cpp:237] Train net output #0: loss = 5.16921 (* 1 = 5.16921 loss) +I0407 22:27:11.066227 32718 sgd_solver.cpp:105] Iteration 336, lr = 0.00911758 +I0407 22:27:15.982884 32718 solver.cpp:218] Iteration 348 (2.44069 iter/s, 4.91664s/12 iters), loss = 5.14046 +I0407 22:27:15.982929 32718 solver.cpp:237] Train net output #0: loss = 5.14046 (* 1 = 5.14046 loss) +I0407 22:27:15.982939 32718 sgd_solver.cpp:105] Iteration 348, lr = 0.00911284 +I0407 22:27:20.935897 32718 solver.cpp:218] Iteration 360 (2.42281 iter/s, 4.95293s/12 iters), loss = 5.09642 +I0407 22:27:20.935941 32718 solver.cpp:237] Train net output #0: loss = 5.09642 (* 1 = 5.09642 loss) +I0407 22:27:20.935950 32718 sgd_solver.cpp:105] Iteration 360, lr = 0.00910807 +I0407 22:27:25.865448 32718 solver.cpp:218] Iteration 372 (2.43434 iter/s, 4.92947s/12 iters), loss = 5.21648 +I0407 22:27:25.865489 32718 solver.cpp:237] Train net output #0: loss = 5.21648 (* 1 = 5.21648 loss) +I0407 22:27:25.865496 32718 sgd_solver.cpp:105] Iteration 372, lr = 0.00910328 +I0407 22:27:30.819808 32718 solver.cpp:218] Iteration 384 (2.42215 iter/s, 4.95428s/12 iters), loss = 5.12993 +I0407 22:27:30.819979 32718 solver.cpp:237] Train net output #0: loss = 5.12993 (* 1 = 5.12993 loss) +I0407 22:27:30.819990 32718 sgd_solver.cpp:105] Iteration 384, lr = 0.00909847 +I0407 22:27:35.763106 32718 solver.cpp:218] Iteration 396 (2.42763 iter/s, 4.9431s/12 iters), loss = 5.18298 +I0407 22:27:35.763154 32718 solver.cpp:237] Train net output #0: loss = 5.18298 (* 1 = 5.18298 loss) +I0407 22:27:35.763164 32718 sgd_solver.cpp:105] Iteration 396, lr = 0.00909363 +I0407 22:27:38.848598 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:40.222198 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 22:27:43.311239 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 22:27:45.888810 32718 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 22:27:45.888828 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:27:50.503528 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:50.726682 32718 solver.cpp:397] Test net output #0: accuracy = 0.0159314 +I0407 22:27:50.726713 32718 solver.cpp:397] Test net output #1: loss = 5.08323 (* 1 = 5.08323 loss) +I0407 22:27:50.823464 32718 solver.cpp:218] Iteration 408 (0.7968 iter/s, 15.0602s/12 iters), loss = 5.10292 +I0407 22:27:50.823529 32718 solver.cpp:237] Train net output #0: loss = 5.10292 (* 1 = 5.10292 loss) +I0407 22:27:50.823541 32718 sgd_solver.cpp:105] Iteration 408, lr = 0.00908877 +I0407 22:27:54.985101 32718 solver.cpp:218] Iteration 420 (2.88354 iter/s, 4.16155s/12 iters), loss = 4.97895 +I0407 22:27:54.985132 32718 solver.cpp:237] Train net output #0: loss = 4.97895 (* 1 = 4.97895 loss) +I0407 22:27:54.985139 32718 sgd_solver.cpp:105] Iteration 420, lr = 0.00908389 +I0407 22:27:59.961405 32718 solver.cpp:218] Iteration 432 (2.41146 iter/s, 4.97624s/12 iters), loss = 5.11216 +I0407 22:27:59.961439 32718 solver.cpp:237] Train net output #0: loss = 5.11216 (* 1 = 5.11216 loss) +I0407 22:27:59.961447 32718 sgd_solver.cpp:105] Iteration 432, lr = 0.00907898 +I0407 22:28:04.903988 32718 solver.cpp:218] Iteration 444 (2.42791 iter/s, 4.94252s/12 iters), loss = 5.03089 +I0407 22:28:04.904109 32718 solver.cpp:237] Train net output #0: loss = 5.03089 (* 1 = 5.03089 loss) +I0407 22:28:04.904119 32718 sgd_solver.cpp:105] Iteration 444, lr = 0.00907405 +I0407 22:28:09.870734 32718 solver.cpp:218] Iteration 456 (2.41614 iter/s, 4.9666s/12 iters), loss = 5.08423 +I0407 22:28:09.870770 32718 solver.cpp:237] Train net output #0: loss = 5.08423 (* 1 = 5.08423 loss) +I0407 22:28:09.870779 32718 sgd_solver.cpp:105] Iteration 456, lr = 0.0090691 +I0407 22:28:14.820003 32718 solver.cpp:218] Iteration 468 (2.42463 iter/s, 4.9492s/12 iters), loss = 5.17968 +I0407 22:28:14.820041 32718 solver.cpp:237] Train net output #0: loss = 5.17968 (* 1 = 5.17968 loss) +I0407 22:28:14.820048 32718 sgd_solver.cpp:105] Iteration 468, lr = 0.00906412 +I0407 22:28:19.729722 32718 solver.cpp:218] Iteration 480 (2.44417 iter/s, 4.90965s/12 iters), loss = 5.11416 +I0407 22:28:19.729756 32718 solver.cpp:237] Train net output #0: loss = 5.11416 (* 1 = 5.11416 loss) +I0407 22:28:19.729763 32718 sgd_solver.cpp:105] Iteration 480, lr = 0.00905912 +I0407 22:28:24.707805 32718 solver.cpp:218] Iteration 492 (2.4106 iter/s, 4.97802s/12 iters), loss = 5.04651 +I0407 22:28:24.707841 32718 solver.cpp:237] Train net output #0: loss = 5.04651 (* 1 = 5.04651 loss) +I0407 22:28:24.707850 32718 sgd_solver.cpp:105] Iteration 492, lr = 0.00905409 +I0407 22:28:29.665148 32718 solver.cpp:218] Iteration 504 (2.42069 iter/s, 4.95727s/12 iters), loss = 5.08827 +I0407 22:28:29.665194 32718 solver.cpp:237] Train net output #0: loss = 5.08827 (* 1 = 5.08827 loss) +I0407 22:28:29.665202 32718 sgd_solver.cpp:105] Iteration 504, lr = 0.00904904 +I0407 22:28:29.902094 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:31.673784 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 22:28:34.796123 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 22:28:37.168210 32718 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 22:28:37.168334 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:28:41.685386 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:41.944061 32718 solver.cpp:397] Test net output #0: accuracy = 0.0171569 +I0407 22:28:41.944103 32718 solver.cpp:397] Test net output #1: loss = 5.04099 (* 1 = 5.04099 loss) +I0407 22:28:43.763214 32718 solver.cpp:218] Iteration 516 (0.851187 iter/s, 14.098s/12 iters), loss = 5.06556 +I0407 22:28:43.763252 32718 solver.cpp:237] Train net output #0: loss = 5.06556 (* 1 = 5.06556 loss) +I0407 22:28:43.763259 32718 sgd_solver.cpp:105] Iteration 516, lr = 0.00904397 +I0407 22:28:48.978235 32718 solver.cpp:218] Iteration 528 (2.30108 iter/s, 5.21494s/12 iters), loss = 5.03872 +I0407 22:28:48.978274 32718 solver.cpp:237] Train net output #0: loss = 5.03872 (* 1 = 5.03872 loss) +I0407 22:28:48.978282 32718 sgd_solver.cpp:105] Iteration 528, lr = 0.00903887 +I0407 22:28:53.905882 32718 solver.cpp:218] Iteration 540 (2.43528 iter/s, 4.92757s/12 iters), loss = 4.93665 +I0407 22:28:53.905920 32718 solver.cpp:237] Train net output #0: loss = 4.93665 (* 1 = 4.93665 loss) +I0407 22:28:53.905928 32718 sgd_solver.cpp:105] Iteration 540, lr = 0.00903374 +I0407 22:28:58.838658 32718 solver.cpp:218] Iteration 552 (2.43274 iter/s, 4.9327s/12 iters), loss = 4.92024 +I0407 22:28:58.838699 32718 solver.cpp:237] Train net output #0: loss = 4.92024 (* 1 = 4.92024 loss) +I0407 22:28:58.838708 32718 sgd_solver.cpp:105] Iteration 552, lr = 0.0090286 +I0407 22:29:03.792587 32718 solver.cpp:218] Iteration 564 (2.42236 iter/s, 4.95385s/12 iters), loss = 4.97967 +I0407 22:29:03.792634 32718 solver.cpp:237] Train net output #0: loss = 4.97967 (* 1 = 4.97967 loss) +I0407 22:29:03.792641 32718 sgd_solver.cpp:105] Iteration 564, lr = 0.00902343 +I0407 22:29:08.748046 32718 solver.cpp:218] Iteration 576 (2.42161 iter/s, 4.95538s/12 iters), loss = 5.11028 +I0407 22:29:08.748200 32718 solver.cpp:237] Train net output #0: loss = 5.11028 (* 1 = 5.11028 loss) +I0407 22:29:08.748216 32718 sgd_solver.cpp:105] Iteration 576, lr = 0.00901823 +I0407 22:29:13.680965 32718 solver.cpp:218] Iteration 588 (2.43272 iter/s, 4.93275s/12 iters), loss = 4.97683 +I0407 22:29:13.681002 32718 solver.cpp:237] Train net output #0: loss = 4.97683 (* 1 = 4.97683 loss) +I0407 22:29:13.681011 32718 sgd_solver.cpp:105] Iteration 588, lr = 0.00901301 +I0407 22:29:18.639714 32718 solver.cpp:218] Iteration 600 (2.42 iter/s, 4.95868s/12 iters), loss = 5.03846 +I0407 22:29:18.639750 32718 solver.cpp:237] Train net output #0: loss = 5.03846 (* 1 = 5.03846 loss) +I0407 22:29:18.639757 32718 sgd_solver.cpp:105] Iteration 600, lr = 0.00900776 +I0407 22:29:20.989476 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:23.101315 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 22:29:26.194169 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 22:29:28.567265 32718 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 22:29:28.567282 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:29:32.814745 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:33.102975 32718 solver.cpp:397] Test net output #0: accuracy = 0.0238971 +I0407 22:29:33.103022 32718 solver.cpp:397] Test net output #1: loss = 4.96967 (* 1 = 4.96967 loss) +I0407 22:29:33.197422 32718 solver.cpp:218] Iteration 612 (0.824312 iter/s, 14.5576s/12 iters), loss = 4.88951 +I0407 22:29:33.197481 32718 solver.cpp:237] Train net output #0: loss = 4.88951 (* 1 = 4.88951 loss) +I0407 22:29:33.197492 32718 sgd_solver.cpp:105] Iteration 612, lr = 0.00900249 +I0407 22:29:37.286150 32718 solver.cpp:218] Iteration 624 (2.93496 iter/s, 4.08865s/12 iters), loss = 5.07539 +I0407 22:29:37.286185 32718 solver.cpp:237] Train net output #0: loss = 5.07539 (* 1 = 5.07539 loss) +I0407 22:29:37.286192 32718 sgd_solver.cpp:105] Iteration 624, lr = 0.0089972 +I0407 22:29:42.217469 32718 solver.cpp:218] Iteration 636 (2.43346 iter/s, 4.93125s/12 iters), loss = 4.95142 +I0407 22:29:42.217617 32718 solver.cpp:237] Train net output #0: loss = 4.95142 (* 1 = 4.95142 loss) +I0407 22:29:42.217626 32718 sgd_solver.cpp:105] Iteration 636, lr = 0.00899188 +I0407 22:29:47.165823 32718 solver.cpp:218] Iteration 648 (2.42514 iter/s, 4.94817s/12 iters), loss = 4.97638 +I0407 22:29:47.165865 32718 solver.cpp:237] Train net output #0: loss = 4.97638 (* 1 = 4.97638 loss) +I0407 22:29:47.165874 32718 sgd_solver.cpp:105] Iteration 648, lr = 0.00898654 +I0407 22:29:52.121062 32718 solver.cpp:218] Iteration 660 (2.42172 iter/s, 4.95516s/12 iters), loss = 4.91372 +I0407 22:29:52.121105 32718 solver.cpp:237] Train net output #0: loss = 4.91372 (* 1 = 4.91372 loss) +I0407 22:29:52.121114 32718 sgd_solver.cpp:105] Iteration 660, lr = 0.00898117 +I0407 22:29:57.103801 32718 solver.cpp:218] Iteration 672 (2.40835 iter/s, 4.98266s/12 iters), loss = 5.07359 +I0407 22:29:57.103842 32718 solver.cpp:237] Train net output #0: loss = 5.07359 (* 1 = 5.07359 loss) +I0407 22:29:57.103850 32718 sgd_solver.cpp:105] Iteration 672, lr = 0.00897577 +I0407 22:30:02.064760 32718 solver.cpp:218] Iteration 684 (2.41892 iter/s, 4.96089s/12 iters), loss = 4.95895 +I0407 22:30:02.064795 32718 solver.cpp:237] Train net output #0: loss = 4.95895 (* 1 = 4.95895 loss) +I0407 22:30:02.064802 32718 sgd_solver.cpp:105] Iteration 684, lr = 0.00897035 +I0407 22:30:02.838140 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:30:07.018224 32718 solver.cpp:218] Iteration 696 (2.42258 iter/s, 4.95339s/12 iters), loss = 4.87447 +I0407 22:30:07.018268 32718 solver.cpp:237] Train net output #0: loss = 4.87447 (* 1 = 4.87447 loss) +I0407 22:30:07.018276 32718 sgd_solver.cpp:105] Iteration 696, lr = 0.0089649 +I0407 22:30:11.589746 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:11.961447 32718 solver.cpp:218] Iteration 708 (2.4276 iter/s, 4.94314s/12 iters), loss = 4.96902 +I0407 22:30:11.961484 32718 solver.cpp:237] Train net output #0: loss = 4.96902 (* 1 = 4.96902 loss) +I0407 22:30:11.961491 32718 sgd_solver.cpp:105] Iteration 708, lr = 0.00895943 +I0407 22:30:13.956066 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 22:30:17.058223 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 22:30:19.418498 32718 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 22:30:19.418515 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:30:23.767225 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:24.088006 32718 solver.cpp:397] Test net output #0: accuracy = 0.0373775 +I0407 22:30:24.088042 32718 solver.cpp:397] Test net output #1: loss = 4.88481 (* 1 = 4.88481 loss) +I0407 22:30:25.924598 32718 solver.cpp:218] Iteration 720 (0.859411 iter/s, 13.9631s/12 iters), loss = 4.92455 +I0407 22:30:25.924633 32718 solver.cpp:237] Train net output #0: loss = 4.92455 (* 1 = 4.92455 loss) +I0407 22:30:25.924640 32718 sgd_solver.cpp:105] Iteration 720, lr = 0.00895394 +I0407 22:30:30.948073 32718 solver.cpp:218] Iteration 732 (2.38882 iter/s, 5.0234s/12 iters), loss = 4.9177 +I0407 22:30:30.948118 32718 solver.cpp:237] Train net output #0: loss = 4.9177 (* 1 = 4.9177 loss) +I0407 22:30:30.948127 32718 sgd_solver.cpp:105] Iteration 732, lr = 0.00894841 +I0407 22:30:35.885535 32718 solver.cpp:218] Iteration 744 (2.43043 iter/s, 4.93739s/12 iters), loss = 4.87621 +I0407 22:30:35.885565 32718 solver.cpp:237] Train net output #0: loss = 4.87621 (* 1 = 4.87621 loss) +I0407 22:30:35.885572 32718 sgd_solver.cpp:105] Iteration 744, lr = 0.00894287 +I0407 22:30:40.911123 32718 solver.cpp:218] Iteration 756 (2.38781 iter/s, 5.02552s/12 iters), loss = 4.72471 +I0407 22:30:40.911162 32718 solver.cpp:237] Train net output #0: loss = 4.72471 (* 1 = 4.72471 loss) +I0407 22:30:40.911170 32718 sgd_solver.cpp:105] Iteration 756, lr = 0.00893729 +I0407 22:30:45.838423 32718 solver.cpp:218] Iteration 768 (2.43545 iter/s, 4.92723s/12 iters), loss = 4.77262 +I0407 22:30:45.838572 32718 solver.cpp:237] Train net output #0: loss = 4.77262 (* 1 = 4.77262 loss) +I0407 22:30:45.838582 32718 sgd_solver.cpp:105] Iteration 768, lr = 0.00893169 +I0407 22:30:50.832401 32718 solver.cpp:218] Iteration 780 (2.40298 iter/s, 4.9938s/12 iters), loss = 4.75694 +I0407 22:30:50.832442 32718 solver.cpp:237] Train net output #0: loss = 4.75694 (* 1 = 4.75694 loss) +I0407 22:30:50.832449 32718 sgd_solver.cpp:105] Iteration 780, lr = 0.00892607 +I0407 22:30:55.710747 32718 solver.cpp:218] Iteration 792 (2.45989 iter/s, 4.87827s/12 iters), loss = 4.9219 +I0407 22:30:55.710789 32718 solver.cpp:237] Train net output #0: loss = 4.9219 (* 1 = 4.9219 loss) +I0407 22:30:55.710798 32718 sgd_solver.cpp:105] Iteration 792, lr = 0.00892041 +I0407 22:31:00.659060 32718 solver.cpp:218] Iteration 804 (2.4251 iter/s, 4.94824s/12 iters), loss = 4.72537 +I0407 22:31:00.659093 32718 solver.cpp:237] Train net output #0: loss = 4.72537 (* 1 = 4.72537 loss) +I0407 22:31:00.659101 32718 sgd_solver.cpp:105] Iteration 804, lr = 0.00891474 +I0407 22:31:02.368046 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:05.103698 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 22:31:08.604208 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 22:31:12.030726 32718 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 22:31:12.030745 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:31:16.312139 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:16.670011 32718 solver.cpp:397] Test net output #0: accuracy = 0.0422794 +I0407 22:31:16.670058 32718 solver.cpp:397] Test net output #1: loss = 4.76732 (* 1 = 4.76732 loss) +I0407 22:31:16.767180 32718 solver.cpp:218] Iteration 816 (0.744971 iter/s, 16.108s/12 iters), loss = 4.66682 +I0407 22:31:16.767259 32718 solver.cpp:237] Train net output #0: loss = 4.66682 (* 1 = 4.66682 loss) +I0407 22:31:16.767274 32718 sgd_solver.cpp:105] Iteration 816, lr = 0.00890903 +I0407 22:31:20.919405 32718 solver.cpp:218] Iteration 828 (2.89009 iter/s, 4.15212s/12 iters), loss = 4.67913 +I0407 22:31:20.919445 32718 solver.cpp:237] Train net output #0: loss = 4.67913 (* 1 = 4.67913 loss) +I0407 22:31:20.919453 32718 sgd_solver.cpp:105] Iteration 828, lr = 0.0089033 +I0407 22:31:25.834317 32718 solver.cpp:218] Iteration 840 (2.44159 iter/s, 4.91484s/12 iters), loss = 4.70798 +I0407 22:31:25.834362 32718 solver.cpp:237] Train net output #0: loss = 4.70798 (* 1 = 4.70798 loss) +I0407 22:31:25.834370 32718 sgd_solver.cpp:105] Iteration 840, lr = 0.00889754 +I0407 22:31:30.791115 32718 solver.cpp:218] Iteration 852 (2.42096 iter/s, 4.95672s/12 iters), loss = 4.66097 +I0407 22:31:30.791155 32718 solver.cpp:237] Train net output #0: loss = 4.66097 (* 1 = 4.66097 loss) +I0407 22:31:30.791163 32718 sgd_solver.cpp:105] Iteration 852, lr = 0.00889176 +I0407 22:31:35.789028 32718 solver.cpp:218] Iteration 864 (2.40104 iter/s, 4.99784s/12 iters), loss = 4.70034 +I0407 22:31:35.789064 32718 solver.cpp:237] Train net output #0: loss = 4.70034 (* 1 = 4.70034 loss) +I0407 22:31:35.789072 32718 sgd_solver.cpp:105] Iteration 864, lr = 0.00888595 +I0407 22:31:40.777957 32718 solver.cpp:218] Iteration 876 (2.40536 iter/s, 4.98886s/12 iters), loss = 4.72219 +I0407 22:31:40.777993 32718 solver.cpp:237] Train net output #0: loss = 4.72219 (* 1 = 4.72219 loss) +I0407 22:31:40.778000 32718 sgd_solver.cpp:105] Iteration 876, lr = 0.00888011 +I0407 22:31:45.727178 32718 solver.cpp:218] Iteration 888 (2.42466 iter/s, 4.94915s/12 iters), loss = 4.78573 +I0407 22:31:45.727222 32718 solver.cpp:237] Train net output #0: loss = 4.78573 (* 1 = 4.78573 loss) +I0407 22:31:45.727231 32718 sgd_solver.cpp:105] Iteration 888, lr = 0.00887425 +I0407 22:31:50.702023 32718 solver.cpp:218] Iteration 900 (2.41217 iter/s, 4.97476s/12 iters), loss = 4.63705 +I0407 22:31:50.702199 32718 solver.cpp:237] Train net output #0: loss = 4.63705 (* 1 = 4.63705 loss) +I0407 22:31:50.702210 32718 sgd_solver.cpp:105] Iteration 900, lr = 0.00886836 +I0407 22:31:54.533360 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:55.624693 32718 solver.cpp:218] Iteration 912 (2.43781 iter/s, 4.92246s/12 iters), loss = 4.71126 +I0407 22:31:55.624750 32718 solver.cpp:237] Train net output #0: loss = 4.71126 (* 1 = 4.71126 loss) +I0407 22:31:55.624761 32718 sgd_solver.cpp:105] Iteration 912, lr = 0.00886244 +I0407 22:31:57.634676 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 22:32:00.708396 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 22:32:03.062122 32718 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 22:32:03.062140 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:32:07.493194 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:07.943686 32718 solver.cpp:397] Test net output #0: accuracy = 0.0502451 +I0407 22:32:07.943722 32718 solver.cpp:397] Test net output #1: loss = 4.62058 (* 1 = 4.62058 loss) +I0407 22:32:09.751595 32718 solver.cpp:218] Iteration 924 (0.84945 iter/s, 14.1268s/12 iters), loss = 4.53119 +I0407 22:32:09.751642 32718 solver.cpp:237] Train net output #0: loss = 4.53119 (* 1 = 4.53119 loss) +I0407 22:32:09.751652 32718 sgd_solver.cpp:105] Iteration 924, lr = 0.0088565 +I0407 22:32:14.689116 32718 solver.cpp:218] Iteration 936 (2.43041 iter/s, 4.93744s/12 iters), loss = 4.48044 +I0407 22:32:14.689155 32718 solver.cpp:237] Train net output #0: loss = 4.48044 (* 1 = 4.48044 loss) +I0407 22:32:14.689162 32718 sgd_solver.cpp:105] Iteration 936, lr = 0.00885053 +I0407 22:32:19.634963 32718 solver.cpp:218] Iteration 948 (2.42631 iter/s, 4.94578s/12 iters), loss = 4.6518 +I0407 22:32:19.634999 32718 solver.cpp:237] Train net output #0: loss = 4.6518 (* 1 = 4.6518 loss) +I0407 22:32:19.635005 32718 sgd_solver.cpp:105] Iteration 948, lr = 0.00884453 +I0407 22:32:24.580896 32718 solver.cpp:218] Iteration 960 (2.42627 iter/s, 4.94587s/12 iters), loss = 4.4934 +I0407 22:32:24.581023 32718 solver.cpp:237] Train net output #0: loss = 4.4934 (* 1 = 4.4934 loss) +I0407 22:32:24.581032 32718 sgd_solver.cpp:105] Iteration 960, lr = 0.00883851 +I0407 22:32:29.538648 32718 solver.cpp:218] Iteration 972 (2.42053 iter/s, 4.95759s/12 iters), loss = 4.53482 +I0407 22:32:29.538683 32718 solver.cpp:237] Train net output #0: loss = 4.53482 (* 1 = 4.53482 loss) +I0407 22:32:29.538691 32718 sgd_solver.cpp:105] Iteration 972, lr = 0.00883245 +I0407 22:32:34.459743 32718 solver.cpp:218] Iteration 984 (2.43852 iter/s, 4.92103s/12 iters), loss = 4.41537 +I0407 22:32:34.459780 32718 solver.cpp:237] Train net output #0: loss = 4.41537 (* 1 = 4.41537 loss) +I0407 22:32:34.459789 32718 sgd_solver.cpp:105] Iteration 984, lr = 0.00882638 +I0407 22:32:39.427188 32718 solver.cpp:218] Iteration 996 (2.41576 iter/s, 4.96738s/12 iters), loss = 4.60143 +I0407 22:32:39.427233 32718 solver.cpp:237] Train net output #0: loss = 4.60143 (* 1 = 4.60143 loss) +I0407 22:32:39.427242 32718 sgd_solver.cpp:105] Iteration 996, lr = 0.00882027 +I0407 22:32:44.373071 32718 solver.cpp:218] Iteration 1008 (2.4263 iter/s, 4.94581s/12 iters), loss = 4.31286 +I0407 22:32:44.373111 32718 solver.cpp:237] Train net output #0: loss = 4.31286 (* 1 = 4.31286 loss) +I0407 22:32:44.373118 32718 sgd_solver.cpp:105] Iteration 1008, lr = 0.00881413 +I0407 22:32:45.383245 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:48.844039 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 22:32:54.890285 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 22:32:57.802506 32718 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 22:32:57.802522 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:33:02.215684 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:02.701782 32718 solver.cpp:397] Test net output #0: accuracy = 0.0637255 +I0407 22:33:02.701817 32718 solver.cpp:397] Test net output #1: loss = 4.47732 (* 1 = 4.47732 loss) +I0407 22:33:02.798458 32718 solver.cpp:218] Iteration 1020 (0.65128 iter/s, 18.4253s/12 iters), loss = 4.454 +I0407 22:33:02.798504 32718 solver.cpp:237] Train net output #0: loss = 4.454 (* 1 = 4.454 loss) +I0407 22:33:02.798513 32718 sgd_solver.cpp:105] Iteration 1020, lr = 0.00880797 +I0407 22:33:06.957454 32718 solver.cpp:218] Iteration 1032 (2.88537 iter/s, 4.15892s/12 iters), loss = 4.24542 +I0407 22:33:06.957494 32718 solver.cpp:237] Train net output #0: loss = 4.24542 (* 1 = 4.24542 loss) +I0407 22:33:06.957502 32718 sgd_solver.cpp:105] Iteration 1032, lr = 0.00880178 +I0407 22:33:11.864286 32718 solver.cpp:218] Iteration 1044 (2.44561 iter/s, 4.90676s/12 iters), loss = 4.35913 +I0407 22:33:11.864322 32718 solver.cpp:237] Train net output #0: loss = 4.35913 (* 1 = 4.35913 loss) +I0407 22:33:11.864329 32718 sgd_solver.cpp:105] Iteration 1044, lr = 0.00879556 +I0407 22:33:16.821100 32718 solver.cpp:218] Iteration 1056 (2.42094 iter/s, 4.95674s/12 iters), loss = 4.29029 +I0407 22:33:16.821141 32718 solver.cpp:237] Train net output #0: loss = 4.29029 (* 1 = 4.29029 loss) +I0407 22:33:16.821149 32718 sgd_solver.cpp:105] Iteration 1056, lr = 0.00878932 +I0407 22:33:21.757622 32718 solver.cpp:218] Iteration 1068 (2.4309 iter/s, 4.93645s/12 iters), loss = 4.24287 +I0407 22:33:21.757663 32718 solver.cpp:237] Train net output #0: loss = 4.24287 (* 1 = 4.24287 loss) +I0407 22:33:21.757671 32718 sgd_solver.cpp:105] Iteration 1068, lr = 0.00878304 +I0407 22:33:26.720907 32718 solver.cpp:218] Iteration 1080 (2.41779 iter/s, 4.96321s/12 iters), loss = 4.49787 +I0407 22:33:26.721024 32718 solver.cpp:237] Train net output #0: loss = 4.49787 (* 1 = 4.49787 loss) +I0407 22:33:26.721031 32718 sgd_solver.cpp:105] Iteration 1080, lr = 0.00877674 +I0407 22:33:31.710100 32718 solver.cpp:218] Iteration 1092 (2.40527 iter/s, 4.98905s/12 iters), loss = 4.2338 +I0407 22:33:31.710145 32718 solver.cpp:237] Train net output #0: loss = 4.2338 (* 1 = 4.2338 loss) +I0407 22:33:31.710152 32718 sgd_solver.cpp:105] Iteration 1092, lr = 0.00877041 +I0407 22:33:36.630374 32718 solver.cpp:218] Iteration 1104 (2.43893 iter/s, 4.9202s/12 iters), loss = 4.51252 +I0407 22:33:36.630409 32718 solver.cpp:237] Train net output #0: loss = 4.51252 (* 1 = 4.51252 loss) +I0407 22:33:36.630415 32718 sgd_solver.cpp:105] Iteration 1104, lr = 0.00876406 +I0407 22:33:39.748641 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:41.571635 32718 solver.cpp:218] Iteration 1116 (2.42856 iter/s, 4.94119s/12 iters), loss = 4.19061 +I0407 22:33:41.571677 32718 solver.cpp:237] Train net output #0: loss = 4.19061 (* 1 = 4.19061 loss) +I0407 22:33:41.571686 32718 sgd_solver.cpp:105] Iteration 1116, lr = 0.00875767 +I0407 22:33:43.574613 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 22:33:47.353632 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 22:33:50.571671 32718 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 22:33:50.571687 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:33:54.725750 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:55.213781 32718 solver.cpp:397] Test net output #0: accuracy = 0.0833333 +I0407 22:33:55.213809 32718 solver.cpp:397] Test net output #1: loss = 4.30915 (* 1 = 4.30915 loss) +I0407 22:33:57.018309 32718 solver.cpp:218] Iteration 1128 (0.776872 iter/s, 15.4466s/12 iters), loss = 4.00429 +I0407 22:33:57.018469 32718 solver.cpp:237] Train net output #0: loss = 4.00429 (* 1 = 4.00429 loss) +I0407 22:33:57.018479 32718 sgd_solver.cpp:105] Iteration 1128, lr = 0.00875126 +I0407 22:34:01.885866 32718 solver.cpp:218] Iteration 1140 (2.4654 iter/s, 4.86737s/12 iters), loss = 4.53239 +I0407 22:34:01.885906 32718 solver.cpp:237] Train net output #0: loss = 4.53239 (* 1 = 4.53239 loss) +I0407 22:34:01.885915 32718 sgd_solver.cpp:105] Iteration 1140, lr = 0.00874481 +I0407 22:34:06.744552 32718 solver.cpp:218] Iteration 1152 (2.46984 iter/s, 4.85861s/12 iters), loss = 4.23879 +I0407 22:34:06.744591 32718 solver.cpp:237] Train net output #0: loss = 4.23879 (* 1 = 4.23879 loss) +I0407 22:34:06.744599 32718 sgd_solver.cpp:105] Iteration 1152, lr = 0.00873834 +I0407 22:34:11.709749 32718 solver.cpp:218] Iteration 1164 (2.41686 iter/s, 4.96513s/12 iters), loss = 4.05462 +I0407 22:34:11.709791 32718 solver.cpp:237] Train net output #0: loss = 4.05462 (* 1 = 4.05462 loss) +I0407 22:34:11.709800 32718 sgd_solver.cpp:105] Iteration 1164, lr = 0.00873184 +I0407 22:34:16.635529 32718 solver.cpp:218] Iteration 1176 (2.4362 iter/s, 4.9257s/12 iters), loss = 4.46448 +I0407 22:34:16.635573 32718 solver.cpp:237] Train net output #0: loss = 4.46448 (* 1 = 4.46448 loss) +I0407 22:34:16.635581 32718 sgd_solver.cpp:105] Iteration 1176, lr = 0.00872531 +I0407 22:34:21.594543 32718 solver.cpp:218] Iteration 1188 (2.41987 iter/s, 4.95894s/12 iters), loss = 4.05199 +I0407 22:34:21.594588 32718 solver.cpp:237] Train net output #0: loss = 4.05199 (* 1 = 4.05199 loss) +I0407 22:34:21.594596 32718 sgd_solver.cpp:105] Iteration 1188, lr = 0.00871876 +I0407 22:34:26.540733 32718 solver.cpp:218] Iteration 1200 (2.42615 iter/s, 4.94612s/12 iters), loss = 4.23265 +I0407 22:34:26.540771 32718 solver.cpp:237] Train net output #0: loss = 4.23265 (* 1 = 4.23265 loss) +I0407 22:34:26.540779 32718 sgd_solver.cpp:105] Iteration 1200, lr = 0.00871217 +I0407 22:34:31.512609 32718 solver.cpp:218] Iteration 1212 (2.41361 iter/s, 4.97181s/12 iters), loss = 4.04413 +I0407 22:34:31.512722 32718 solver.cpp:237] Train net output #0: loss = 4.04413 (* 1 = 4.04413 loss) +I0407 22:34:31.512730 32718 sgd_solver.cpp:105] Iteration 1212, lr = 0.00870556 +I0407 22:34:31.777479 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:35.976207 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 22:34:40.415661 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 22:34:44.576165 32718 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 22:34:44.576184 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:34:48.534942 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:49.060077 32718 solver.cpp:397] Test net output #0: accuracy = 0.0906863 +I0407 22:34:49.060123 32718 solver.cpp:397] Test net output #1: loss = 4.13307 (* 1 = 4.13307 loss) +I0407 22:34:49.156730 32718 solver.cpp:218] Iteration 1224 (0.68012 iter/s, 17.6439s/12 iters), loss = 4.21512 +I0407 22:34:49.156772 32718 solver.cpp:237] Train net output #0: loss = 4.21512 (* 1 = 4.21512 loss) +I0407 22:34:49.156780 32718 sgd_solver.cpp:105] Iteration 1224, lr = 0.00869892 +I0407 22:34:53.220782 32718 solver.cpp:218] Iteration 1236 (2.95277 iter/s, 4.06398s/12 iters), loss = 4.17272 +I0407 22:34:53.220819 32718 solver.cpp:237] Train net output #0: loss = 4.17272 (* 1 = 4.17272 loss) +I0407 22:34:53.220827 32718 sgd_solver.cpp:105] Iteration 1236, lr = 0.00869224 +I0407 22:34:58.171124 32718 solver.cpp:218] Iteration 1248 (2.42411 iter/s, 4.95027s/12 iters), loss = 4.02225 +I0407 22:34:58.171166 32718 solver.cpp:237] Train net output #0: loss = 4.02225 (* 1 = 4.02225 loss) +I0407 22:34:58.171175 32718 sgd_solver.cpp:105] Iteration 1248, lr = 0.00868554 +I0407 22:35:03.117488 32718 solver.cpp:218] Iteration 1260 (2.42606 iter/s, 4.94629s/12 iters), loss = 3.89349 +I0407 22:35:03.117645 32718 solver.cpp:237] Train net output #0: loss = 3.89349 (* 1 = 3.89349 loss) +I0407 22:35:03.117653 32718 sgd_solver.cpp:105] Iteration 1260, lr = 0.00867881 +I0407 22:35:08.079311 32718 solver.cpp:218] Iteration 1272 (2.41856 iter/s, 4.96164s/12 iters), loss = 3.91077 +I0407 22:35:08.079355 32718 solver.cpp:237] Train net output #0: loss = 3.91077 (* 1 = 3.91077 loss) +I0407 22:35:08.079365 32718 sgd_solver.cpp:105] Iteration 1272, lr = 0.00867205 +I0407 22:35:13.026973 32718 solver.cpp:218] Iteration 1284 (2.42543 iter/s, 4.94758s/12 iters), loss = 4.23755 +I0407 22:35:13.027017 32718 solver.cpp:237] Train net output #0: loss = 4.23755 (* 1 = 4.23755 loss) +I0407 22:35:13.027025 32718 sgd_solver.cpp:105] Iteration 1284, lr = 0.00866526 +I0407 22:35:17.993613 32718 solver.cpp:218] Iteration 1296 (2.41616 iter/s, 4.96656s/12 iters), loss = 4.1147 +I0407 22:35:17.993657 32718 solver.cpp:237] Train net output #0: loss = 4.1147 (* 1 = 4.1147 loss) +I0407 22:35:17.993667 32718 sgd_solver.cpp:105] Iteration 1296, lr = 0.00865845 +I0407 22:35:22.929260 32718 solver.cpp:218] Iteration 1308 (2.43133 iter/s, 4.93557s/12 iters), loss = 3.96399 +I0407 22:35:22.929299 32718 solver.cpp:237] Train net output #0: loss = 3.96399 (* 1 = 3.96399 loss) +I0407 22:35:22.929307 32718 sgd_solver.cpp:105] Iteration 1308, lr = 0.0086516 +I0407 22:35:25.403167 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:27.855942 32718 solver.cpp:218] Iteration 1320 (2.43575 iter/s, 4.92661s/12 iters), loss = 4.15645 +I0407 22:35:27.855983 32718 solver.cpp:237] Train net output #0: loss = 4.15645 (* 1 = 4.15645 loss) +I0407 22:35:27.855991 32718 sgd_solver.cpp:105] Iteration 1320, lr = 0.00864472 +I0407 22:35:29.872501 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 22:35:32.937275 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 22:35:35.965188 32718 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 22:35:35.965291 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:35:39.824936 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:40.392226 32718 solver.cpp:397] Test net output #0: accuracy = 0.118873 +I0407 22:35:40.392258 32718 solver.cpp:397] Test net output #1: loss = 4.00358 (* 1 = 4.00358 loss) +I0407 22:35:42.194470 32718 solver.cpp:218] Iteration 1332 (0.836912 iter/s, 14.3384s/12 iters), loss = 3.8528 +I0407 22:35:42.194514 32718 solver.cpp:237] Train net output #0: loss = 3.8528 (* 1 = 3.8528 loss) +I0407 22:35:42.194522 32718 sgd_solver.cpp:105] Iteration 1332, lr = 0.00863781 +I0407 22:35:47.177865 32718 solver.cpp:218] Iteration 1344 (2.40803 iter/s, 4.98332s/12 iters), loss = 3.88903 +I0407 22:35:47.177903 32718 solver.cpp:237] Train net output #0: loss = 3.88903 (* 1 = 3.88903 loss) +I0407 22:35:47.177911 32718 sgd_solver.cpp:105] Iteration 1344, lr = 0.00863088 +I0407 22:35:52.167709 32718 solver.cpp:218] Iteration 1356 (2.40492 iter/s, 4.98978s/12 iters), loss = 4.08996 +I0407 22:35:52.167744 32718 solver.cpp:237] Train net output #0: loss = 4.08996 (* 1 = 4.08996 loss) +I0407 22:35:52.167752 32718 sgd_solver.cpp:105] Iteration 1356, lr = 0.00862391 +I0407 22:35:57.140062 32718 solver.cpp:218] Iteration 1368 (2.41338 iter/s, 4.97229s/12 iters), loss = 4.07329 +I0407 22:35:57.140096 32718 solver.cpp:237] Train net output #0: loss = 4.07329 (* 1 = 4.07329 loss) +I0407 22:35:57.140103 32718 sgd_solver.cpp:105] Iteration 1368, lr = 0.00861692 +I0407 22:35:58.315660 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:36:02.075942 32718 solver.cpp:218] Iteration 1380 (2.43121 iter/s, 4.93581s/12 iters), loss = 3.9894 +I0407 22:36:02.075978 32718 solver.cpp:237] Train net output #0: loss = 3.9894 (* 1 = 3.9894 loss) +I0407 22:36:02.075984 32718 sgd_solver.cpp:105] Iteration 1380, lr = 0.00860989 +I0407 22:36:07.048841 32718 solver.cpp:218] Iteration 1392 (2.41311 iter/s, 4.97283s/12 iters), loss = 3.99872 +I0407 22:36:07.048986 32718 solver.cpp:237] Train net output #0: loss = 3.99872 (* 1 = 3.99872 loss) +I0407 22:36:07.048995 32718 sgd_solver.cpp:105] Iteration 1392, lr = 0.00860284 +I0407 22:36:12.029186 32718 solver.cpp:218] Iteration 1404 (2.40956 iter/s, 4.98017s/12 iters), loss = 3.73593 +I0407 22:36:12.029232 32718 solver.cpp:237] Train net output #0: loss = 3.73593 (* 1 = 3.73593 loss) +I0407 22:36:12.029240 32718 sgd_solver.cpp:105] Iteration 1404, lr = 0.00859575 +I0407 22:36:16.610504 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:16.953045 32718 solver.cpp:218] Iteration 1416 (2.43715 iter/s, 4.92378s/12 iters), loss = 3.75344 +I0407 22:36:16.953088 32718 solver.cpp:237] Train net output #0: loss = 3.75344 (* 1 = 3.75344 loss) +I0407 22:36:16.953097 32718 sgd_solver.cpp:105] Iteration 1416, lr = 0.00858863 +I0407 22:36:21.464995 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 22:36:24.561509 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 22:36:26.980370 32718 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 22:36:26.980387 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:36:31.142457 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:31.796398 32718 solver.cpp:397] Test net output #0: accuracy = 0.13174 +I0407 22:36:31.796433 32718 solver.cpp:397] Test net output #1: loss = 3.88545 (* 1 = 3.88545 loss) +I0407 22:36:31.892727 32718 solver.cpp:218] Iteration 1428 (0.803236 iter/s, 14.9396s/12 iters), loss = 3.56096 +I0407 22:36:31.892762 32718 solver.cpp:237] Train net output #0: loss = 3.56096 (* 1 = 3.56096 loss) +I0407 22:36:31.892771 32718 sgd_solver.cpp:105] Iteration 1428, lr = 0.00858149 +I0407 22:36:35.954787 32718 solver.cpp:218] Iteration 1440 (2.95421 iter/s, 4.062s/12 iters), loss = 3.77939 +I0407 22:36:35.954828 32718 solver.cpp:237] Train net output #0: loss = 3.77939 (* 1 = 3.77939 loss) +I0407 22:36:35.954836 32718 sgd_solver.cpp:105] Iteration 1440, lr = 0.00857431 +I0407 22:36:40.872854 32718 solver.cpp:218] Iteration 1452 (2.44002 iter/s, 4.918s/12 iters), loss = 3.65816 +I0407 22:36:40.872982 32718 solver.cpp:237] Train net output #0: loss = 3.65816 (* 1 = 3.65816 loss) +I0407 22:36:40.872990 32718 sgd_solver.cpp:105] Iteration 1452, lr = 0.00856711 +I0407 22:36:45.865687 32718 solver.cpp:218] Iteration 1464 (2.40352 iter/s, 4.99267s/12 iters), loss = 3.62403 +I0407 22:36:45.865729 32718 solver.cpp:237] Train net output #0: loss = 3.62403 (* 1 = 3.62403 loss) +I0407 22:36:45.865737 32718 sgd_solver.cpp:105] Iteration 1464, lr = 0.00855987 +I0407 22:36:50.852176 32718 solver.cpp:218] Iteration 1476 (2.40654 iter/s, 4.98642s/12 iters), loss = 3.5241 +I0407 22:36:50.852213 32718 solver.cpp:237] Train net output #0: loss = 3.5241 (* 1 = 3.5241 loss) +I0407 22:36:50.852221 32718 sgd_solver.cpp:105] Iteration 1476, lr = 0.00855261 +I0407 22:36:55.748873 32718 solver.cpp:218] Iteration 1488 (2.45067 iter/s, 4.89663s/12 iters), loss = 3.93632 +I0407 22:36:55.748914 32718 solver.cpp:237] Train net output #0: loss = 3.93632 (* 1 = 3.93632 loss) +I0407 22:36:55.748922 32718 sgd_solver.cpp:105] Iteration 1488, lr = 0.00854531 +I0407 22:37:00.690063 32718 solver.cpp:218] Iteration 1500 (2.4286 iter/s, 4.94112s/12 iters), loss = 3.66003 +I0407 22:37:00.690100 32718 solver.cpp:237] Train net output #0: loss = 3.66003 (* 1 = 3.66003 loss) +I0407 22:37:00.690109 32718 sgd_solver.cpp:105] Iteration 1500, lr = 0.00853798 +I0407 22:37:05.629386 32718 solver.cpp:218] Iteration 1512 (2.42952 iter/s, 4.93925s/12 iters), loss = 3.36186 +I0407 22:37:05.629434 32718 solver.cpp:237] Train net output #0: loss = 3.36186 (* 1 = 3.36186 loss) +I0407 22:37:05.629442 32718 sgd_solver.cpp:105] Iteration 1512, lr = 0.00853062 +I0407 22:37:07.391831 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:10.579365 32718 solver.cpp:218] Iteration 1524 (2.42429 iter/s, 4.9499s/12 iters), loss = 3.33303 +I0407 22:37:10.579408 32718 solver.cpp:237] Train net output #0: loss = 3.33303 (* 1 = 3.33303 loss) +I0407 22:37:10.579416 32718 sgd_solver.cpp:105] Iteration 1524, lr = 0.00852323 +I0407 22:37:12.594175 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 22:37:16.783109 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 22:37:19.156656 32718 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 22:37:19.156674 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:37:23.224967 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:23.932369 32718 solver.cpp:397] Test net output #0: accuracy = 0.140319 +I0407 22:37:23.932421 32718 solver.cpp:397] Test net output #1: loss = 3.88279 (* 1 = 3.88279 loss) +I0407 22:37:25.731144 32718 solver.cpp:218] Iteration 1536 (0.791992 iter/s, 15.1517s/12 iters), loss = 3.55672 +I0407 22:37:25.731184 32718 solver.cpp:237] Train net output #0: loss = 3.55672 (* 1 = 3.55672 loss) +I0407 22:37:25.731192 32718 sgd_solver.cpp:105] Iteration 1536, lr = 0.00851581 +I0407 22:37:30.692394 32718 solver.cpp:218] Iteration 1548 (2.41878 iter/s, 4.96118s/12 iters), loss = 3.67465 +I0407 22:37:30.692428 32718 solver.cpp:237] Train net output #0: loss = 3.67465 (* 1 = 3.67465 loss) +I0407 22:37:30.692435 32718 sgd_solver.cpp:105] Iteration 1548, lr = 0.00850836 +I0407 22:37:35.621446 32718 solver.cpp:218] Iteration 1560 (2.43458 iter/s, 4.92898s/12 iters), loss = 3.37963 +I0407 22:37:35.621481 32718 solver.cpp:237] Train net output #0: loss = 3.37963 (* 1 = 3.37963 loss) +I0407 22:37:35.621488 32718 sgd_solver.cpp:105] Iteration 1560, lr = 0.00850088 +I0407 22:37:40.582684 32718 solver.cpp:218] Iteration 1572 (2.41878 iter/s, 4.96117s/12 iters), loss = 3.41866 +I0407 22:37:40.582726 32718 solver.cpp:237] Train net output #0: loss = 3.41866 (* 1 = 3.41866 loss) +I0407 22:37:40.582733 32718 sgd_solver.cpp:105] Iteration 1572, lr = 0.00849337 +I0407 22:37:45.569906 32718 solver.cpp:218] Iteration 1584 (2.40618 iter/s, 4.98715s/12 iters), loss = 3.33332 +I0407 22:37:45.570041 32718 solver.cpp:237] Train net output #0: loss = 3.33332 (* 1 = 3.33332 loss) +I0407 22:37:45.570050 32718 sgd_solver.cpp:105] Iteration 1584, lr = 0.00848583 +I0407 22:37:50.490465 32718 solver.cpp:218] Iteration 1596 (2.43883 iter/s, 4.9204s/12 iters), loss = 3.3939 +I0407 22:37:50.490501 32718 solver.cpp:237] Train net output #0: loss = 3.3939 (* 1 = 3.3939 loss) +I0407 22:37:50.490509 32718 sgd_solver.cpp:105] Iteration 1596, lr = 0.00847826 +I0407 22:37:55.464103 32718 solver.cpp:218] Iteration 1608 (2.41275 iter/s, 4.97357s/12 iters), loss = 3.45044 +I0407 22:37:55.464148 32718 solver.cpp:237] Train net output #0: loss = 3.45044 (* 1 = 3.45044 loss) +I0407 22:37:55.464156 32718 sgd_solver.cpp:105] Iteration 1608, lr = 0.00847065 +I0407 22:37:59.337863 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:00.410293 32718 solver.cpp:218] Iteration 1620 (2.42615 iter/s, 4.94612s/12 iters), loss = 3.38673 +I0407 22:38:00.410331 32718 solver.cpp:237] Train net output #0: loss = 3.38673 (* 1 = 3.38673 loss) +I0407 22:38:00.410339 32718 sgd_solver.cpp:105] Iteration 1620, lr = 0.00846301 +I0407 22:38:04.941121 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 22:38:09.083304 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 22:38:12.883882 32718 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 22:38:12.883898 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:38:16.870803 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:17.560134 32718 solver.cpp:397] Test net output #0: accuracy = 0.177083 +I0407 22:38:17.560180 32718 solver.cpp:397] Test net output #1: loss = 3.65227 (* 1 = 3.65227 loss) +I0407 22:38:17.656723 32718 solver.cpp:218] Iteration 1632 (0.6958 iter/s, 17.2463s/12 iters), loss = 3.34763 +I0407 22:38:17.656761 32718 solver.cpp:237] Train net output #0: loss = 3.34763 (* 1 = 3.34763 loss) +I0407 22:38:17.656769 32718 sgd_solver.cpp:105] Iteration 1632, lr = 0.00845535 +I0407 22:38:22.081954 32718 solver.cpp:218] Iteration 1644 (2.71176 iter/s, 4.42516s/12 iters), loss = 3.30512 +I0407 22:38:22.081990 32718 solver.cpp:237] Train net output #0: loss = 3.30512 (* 1 = 3.30512 loss) +I0407 22:38:22.081998 32718 sgd_solver.cpp:105] Iteration 1644, lr = 0.00844765 +I0407 22:38:27.033080 32718 solver.cpp:218] Iteration 1656 (2.42372 iter/s, 4.95106s/12 iters), loss = 3.28916 +I0407 22:38:27.033121 32718 solver.cpp:237] Train net output #0: loss = 3.28916 (* 1 = 3.28916 loss) +I0407 22:38:27.033130 32718 sgd_solver.cpp:105] Iteration 1656, lr = 0.00843992 +I0407 22:38:31.997357 32718 solver.cpp:218] Iteration 1668 (2.41731 iter/s, 4.9642s/12 iters), loss = 3.39747 +I0407 22:38:31.997400 32718 solver.cpp:237] Train net output #0: loss = 3.39747 (* 1 = 3.39747 loss) +I0407 22:38:31.997408 32718 sgd_solver.cpp:105] Iteration 1668, lr = 0.00843216 +I0407 22:38:36.939025 32718 solver.cpp:218] Iteration 1680 (2.42837 iter/s, 4.94159s/12 iters), loss = 3.22271 +I0407 22:38:36.939072 32718 solver.cpp:237] Train net output #0: loss = 3.22271 (* 1 = 3.22271 loss) +I0407 22:38:36.939079 32718 sgd_solver.cpp:105] Iteration 1680, lr = 0.00842437 +I0407 22:38:41.912058 32718 solver.cpp:218] Iteration 1692 (2.41305 iter/s, 4.97296s/12 iters), loss = 3.24803 +I0407 22:38:41.912102 32718 solver.cpp:237] Train net output #0: loss = 3.24803 (* 1 = 3.24803 loss) +I0407 22:38:41.912111 32718 sgd_solver.cpp:105] Iteration 1692, lr = 0.00841654 +I0407 22:38:46.899116 32718 solver.cpp:218] Iteration 1704 (2.40626 iter/s, 4.98698s/12 iters), loss = 3.19492 +I0407 22:38:46.899277 32718 solver.cpp:237] Train net output #0: loss = 3.19492 (* 1 = 3.19492 loss) +I0407 22:38:46.899286 32718 sgd_solver.cpp:105] Iteration 1704, lr = 0.00840869 +I0407 22:38:51.763013 32718 solver.cpp:218] Iteration 1716 (2.46725 iter/s, 4.86371s/12 iters), loss = 2.82959 +I0407 22:38:51.763051 32718 solver.cpp:237] Train net output #0: loss = 2.82959 (* 1 = 2.82959 loss) +I0407 22:38:51.763059 32718 sgd_solver.cpp:105] Iteration 1716, lr = 0.0084008 +I0407 22:38:52.779515 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:56.749512 32718 solver.cpp:218] Iteration 1728 (2.40653 iter/s, 4.98643s/12 iters), loss = 3.52787 +I0407 22:38:56.749557 32718 solver.cpp:237] Train net output #0: loss = 3.52787 (* 1 = 3.52787 loss) +I0407 22:38:56.749564 32718 sgd_solver.cpp:105] Iteration 1728, lr = 0.00839288 +I0407 22:38:58.815310 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 22:39:02.868106 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 22:39:05.674124 32718 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 22:39:05.674141 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:39:09.666818 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:10.448235 32718 solver.cpp:397] Test net output #0: accuracy = 0.18076 +I0407 22:39:10.448287 32718 solver.cpp:397] Test net output #1: loss = 3.63194 (* 1 = 3.63194 loss) +I0407 22:39:12.248204 32718 solver.cpp:218] Iteration 1740 (0.774264 iter/s, 15.4986s/12 iters), loss = 2.90149 +I0407 22:39:12.248245 32718 solver.cpp:237] Train net output #0: loss = 2.90149 (* 1 = 2.90149 loss) +I0407 22:39:12.248252 32718 sgd_solver.cpp:105] Iteration 1740, lr = 0.00838493 +I0407 22:39:17.151182 32718 solver.cpp:218] Iteration 1752 (2.44753 iter/s, 4.9029s/12 iters), loss = 3.00702 +I0407 22:39:17.151340 32718 solver.cpp:237] Train net output #0: loss = 3.00702 (* 1 = 3.00702 loss) +I0407 22:39:17.151350 32718 sgd_solver.cpp:105] Iteration 1752, lr = 0.00837695 +I0407 22:39:22.119837 32718 solver.cpp:218] Iteration 1764 (2.41523 iter/s, 4.96846s/12 iters), loss = 2.97984 +I0407 22:39:22.119880 32718 solver.cpp:237] Train net output #0: loss = 2.97984 (* 1 = 2.97984 loss) +I0407 22:39:22.119889 32718 sgd_solver.cpp:105] Iteration 1764, lr = 0.00836894 +I0407 22:39:27.080416 32718 solver.cpp:218] Iteration 1776 (2.41911 iter/s, 4.9605s/12 iters), loss = 2.79101 +I0407 22:39:27.080459 32718 solver.cpp:237] Train net output #0: loss = 2.79101 (* 1 = 2.79101 loss) +I0407 22:39:27.080467 32718 sgd_solver.cpp:105] Iteration 1776, lr = 0.00836089 +I0407 22:39:32.025652 32718 solver.cpp:218] Iteration 1788 (2.42661 iter/s, 4.94516s/12 iters), loss = 3.0808 +I0407 22:39:32.025696 32718 solver.cpp:237] Train net output #0: loss = 3.0808 (* 1 = 3.0808 loss) +I0407 22:39:32.025704 32718 sgd_solver.cpp:105] Iteration 1788, lr = 0.00835281 +I0407 22:39:36.891175 32718 solver.cpp:218] Iteration 1800 (2.46637 iter/s, 4.86545s/12 iters), loss = 3.02408 +I0407 22:39:36.891223 32718 solver.cpp:237] Train net output #0: loss = 3.02408 (* 1 = 3.02408 loss) +I0407 22:39:36.891232 32718 sgd_solver.cpp:105] Iteration 1800, lr = 0.0083447 +I0407 22:39:41.841094 32718 solver.cpp:218] Iteration 1812 (2.42432 iter/s, 4.94984s/12 iters), loss = 3.11118 +I0407 22:39:41.841143 32718 solver.cpp:237] Train net output #0: loss = 3.11118 (* 1 = 3.11118 loss) +I0407 22:39:41.841156 32718 sgd_solver.cpp:105] Iteration 1812, lr = 0.00833656 +I0407 22:39:44.906080 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:46.714905 32718 solver.cpp:218] Iteration 1824 (2.46218 iter/s, 4.87374s/12 iters), loss = 3.23447 +I0407 22:39:46.714941 32718 solver.cpp:237] Train net output #0: loss = 3.23447 (* 1 = 3.23447 loss) +I0407 22:39:46.714949 32718 sgd_solver.cpp:105] Iteration 1824, lr = 0.00832839 +I0407 22:39:51.229867 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 22:39:54.290324 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 22:39:56.932878 32718 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 22:39:56.932894 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:40:00.893101 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:01.733244 32718 solver.cpp:397] Test net output #0: accuracy = 0.218137 +I0407 22:40:01.733290 32718 solver.cpp:397] Test net output #1: loss = 3.47165 (* 1 = 3.47165 loss) +I0407 22:40:01.829928 32718 solver.cpp:218] Iteration 1836 (0.793917 iter/s, 15.1149s/12 iters), loss = 3.23783 +I0407 22:40:01.829973 32718 solver.cpp:237] Train net output #0: loss = 3.23783 (* 1 = 3.23783 loss) +I0407 22:40:01.829982 32718 sgd_solver.cpp:105] Iteration 1836, lr = 0.00832018 +I0407 22:40:05.969295 32718 solver.cpp:218] Iteration 1848 (2.89904 iter/s, 4.1393s/12 iters), loss = 3.13732 +I0407 22:40:05.969331 32718 solver.cpp:237] Train net output #0: loss = 3.13732 (* 1 = 3.13732 loss) +I0407 22:40:05.969339 32718 sgd_solver.cpp:105] Iteration 1848, lr = 0.00831195 +I0407 22:40:10.847697 32718 solver.cpp:218] Iteration 1860 (2.45985 iter/s, 4.87834s/12 iters), loss = 2.79795 +I0407 22:40:10.847733 32718 solver.cpp:237] Train net output #0: loss = 2.79795 (* 1 = 2.79795 loss) +I0407 22:40:10.847741 32718 sgd_solver.cpp:105] Iteration 1860, lr = 0.00830368 +I0407 22:40:15.812120 32718 solver.cpp:218] Iteration 1872 (2.41723 iter/s, 4.96435s/12 iters), loss = 2.82708 +I0407 22:40:15.812157 32718 solver.cpp:237] Train net output #0: loss = 2.82708 (* 1 = 2.82708 loss) +I0407 22:40:15.812165 32718 sgd_solver.cpp:105] Iteration 1872, lr = 0.00829537 +I0407 22:40:20.749773 32718 solver.cpp:218] Iteration 1884 (2.43034 iter/s, 4.93758s/12 iters), loss = 3.00315 +I0407 22:40:20.749815 32718 solver.cpp:237] Train net output #0: loss = 3.00315 (* 1 = 3.00315 loss) +I0407 22:40:20.749823 32718 sgd_solver.cpp:105] Iteration 1884, lr = 0.00828704 +I0407 22:40:25.755820 32718 solver.cpp:218] Iteration 1896 (2.39714 iter/s, 5.00598s/12 iters), loss = 2.93889 +I0407 22:40:25.755947 32718 solver.cpp:237] Train net output #0: loss = 2.93889 (* 1 = 2.93889 loss) +I0407 22:40:25.755955 32718 sgd_solver.cpp:105] Iteration 1896, lr = 0.00827867 +I0407 22:40:30.754053 32718 solver.cpp:218] Iteration 1908 (2.40092 iter/s, 4.99808s/12 iters), loss = 2.76566 +I0407 22:40:30.754088 32718 solver.cpp:237] Train net output #0: loss = 2.76566 (* 1 = 2.76566 loss) +I0407 22:40:30.754096 32718 sgd_solver.cpp:105] Iteration 1908, lr = 0.00827028 +I0407 22:40:35.705019 32718 solver.cpp:218] Iteration 1920 (2.4238 iter/s, 4.9509s/12 iters), loss = 2.61135 +I0407 22:40:35.705054 32718 solver.cpp:237] Train net output #0: loss = 2.61135 (* 1 = 2.61135 loss) +I0407 22:40:35.705062 32718 sgd_solver.cpp:105] Iteration 1920, lr = 0.00826184 +I0407 22:40:36.000196 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:40.610100 32718 solver.cpp:218] Iteration 1932 (2.44648 iter/s, 4.90501s/12 iters), loss = 3.06587 +I0407 22:40:40.610142 32718 solver.cpp:237] Train net output #0: loss = 3.06587 (* 1 = 3.06587 loss) +I0407 22:40:40.610152 32718 sgd_solver.cpp:105] Iteration 1932, lr = 0.00825338 +I0407 22:40:42.614002 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 22:40:45.683290 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 22:40:48.068747 32718 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 22:40:48.068766 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:40:51.806787 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:52.615928 32718 solver.cpp:397] Test net output #0: accuracy = 0.223039 +I0407 22:40:52.615976 32718 solver.cpp:397] Test net output #1: loss = 3.42089 (* 1 = 3.42089 loss) +I0407 22:40:54.520617 32718 solver.cpp:218] Iteration 1944 (0.862663 iter/s, 13.9104s/12 iters), loss = 3.02763 +I0407 22:40:54.520656 32718 solver.cpp:237] Train net output #0: loss = 3.02763 (* 1 = 3.02763 loss) +I0407 22:40:54.520664 32718 sgd_solver.cpp:105] Iteration 1944, lr = 0.00824489 +I0407 22:40:59.459337 32718 solver.cpp:218] Iteration 1956 (2.42982 iter/s, 4.93865s/12 iters), loss = 2.82791 +I0407 22:40:59.459486 32718 solver.cpp:237] Train net output #0: loss = 2.82791 (* 1 = 2.82791 loss) +I0407 22:40:59.459496 32718 sgd_solver.cpp:105] Iteration 1956, lr = 0.00823636 +I0407 22:41:04.388952 32718 solver.cpp:218] Iteration 1968 (2.43435 iter/s, 4.92944s/12 iters), loss = 2.55981 +I0407 22:41:04.388998 32718 solver.cpp:237] Train net output #0: loss = 2.55981 (* 1 = 2.55981 loss) +I0407 22:41:04.389008 32718 sgd_solver.cpp:105] Iteration 1968, lr = 0.0082278 +I0407 22:41:09.339820 32718 solver.cpp:218] Iteration 1980 (2.42386 iter/s, 4.95079s/12 iters), loss = 2.6496 +I0407 22:41:09.339864 32718 solver.cpp:237] Train net output #0: loss = 2.6496 (* 1 = 2.6496 loss) +I0407 22:41:09.339874 32718 sgd_solver.cpp:105] Iteration 1980, lr = 0.0082192 +I0407 22:41:14.263540 32718 solver.cpp:218] Iteration 1992 (2.43722 iter/s, 4.92364s/12 iters), loss = 2.91698 +I0407 22:41:14.263586 32718 solver.cpp:237] Train net output #0: loss = 2.91698 (* 1 = 2.91698 loss) +I0407 22:41:14.263593 32718 sgd_solver.cpp:105] Iteration 1992, lr = 0.00821058 +I0407 22:41:19.214309 32718 solver.cpp:218] Iteration 2004 (2.4239 iter/s, 4.95069s/12 iters), loss = 2.69779 +I0407 22:41:19.214354 32718 solver.cpp:237] Train net output #0: loss = 2.69779 (* 1 = 2.69779 loss) +I0407 22:41:19.214361 32718 sgd_solver.cpp:105] Iteration 2004, lr = 0.00820192 +I0407 22:41:24.168289 32718 solver.cpp:218] Iteration 2016 (2.42233 iter/s, 4.95391s/12 iters), loss = 2.54172 +I0407 22:41:24.168330 32718 solver.cpp:237] Train net output #0: loss = 2.54172 (* 1 = 2.54172 loss) +I0407 22:41:24.168339 32718 sgd_solver.cpp:105] Iteration 2016, lr = 0.00819323 +I0407 22:41:26.664943 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:29.069224 32718 solver.cpp:218] Iteration 2028 (2.44855 iter/s, 4.90086s/12 iters), loss = 2.86535 +I0407 22:41:29.069259 32718 solver.cpp:237] Train net output #0: loss = 2.86535 (* 1 = 2.86535 loss) +I0407 22:41:29.069267 32718 sgd_solver.cpp:105] Iteration 2028, lr = 0.0081845 +I0407 22:41:33.589319 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 22:41:36.716941 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 22:41:39.078771 32718 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 22:41:39.078789 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:41:42.940378 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:43.866166 32718 solver.cpp:397] Test net output #0: accuracy = 0.261642 +I0407 22:41:43.866211 32718 solver.cpp:397] Test net output #1: loss = 3.17958 (* 1 = 3.17958 loss) +I0407 22:41:43.962868 32718 solver.cpp:218] Iteration 2040 (0.805718 iter/s, 14.8935s/12 iters), loss = 2.6993 +I0407 22:41:43.962915 32718 solver.cpp:237] Train net output #0: loss = 2.6993 (* 1 = 2.6993 loss) +I0407 22:41:43.962924 32718 sgd_solver.cpp:105] Iteration 2040, lr = 0.00817574 +I0407 22:41:48.139313 32718 solver.cpp:218] Iteration 2052 (2.87331 iter/s, 4.17637s/12 iters), loss = 2.79864 +I0407 22:41:48.139350 32718 solver.cpp:237] Train net output #0: loss = 2.79864 (* 1 = 2.79864 loss) +I0407 22:41:48.139359 32718 sgd_solver.cpp:105] Iteration 2052, lr = 0.00816695 +I0407 22:41:49.722298 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:41:53.057178 32718 solver.cpp:218] Iteration 2064 (2.44012 iter/s, 4.9178s/12 iters), loss = 3.0835 +I0407 22:41:53.057216 32718 solver.cpp:237] Train net output #0: loss = 3.0835 (* 1 = 3.0835 loss) +I0407 22:41:53.057224 32718 sgd_solver.cpp:105] Iteration 2064, lr = 0.00815813 +I0407 22:41:58.044848 32718 solver.cpp:218] Iteration 2076 (2.40597 iter/s, 4.9876s/12 iters), loss = 2.87891 +I0407 22:41:58.044890 32718 solver.cpp:237] Train net output #0: loss = 2.87891 (* 1 = 2.87891 loss) +I0407 22:41:58.044898 32718 sgd_solver.cpp:105] Iteration 2076, lr = 0.00814928 +I0407 22:42:03.016794 32718 solver.cpp:218] Iteration 2088 (2.41358 iter/s, 4.97187s/12 iters), loss = 2.82663 +I0407 22:42:03.016949 32718 solver.cpp:237] Train net output #0: loss = 2.82663 (* 1 = 2.82663 loss) +I0407 22:42:03.016959 32718 sgd_solver.cpp:105] Iteration 2088, lr = 0.00814039 +I0407 22:42:07.930090 32718 solver.cpp:218] Iteration 2100 (2.44245 iter/s, 4.91311s/12 iters), loss = 2.77649 +I0407 22:42:07.930233 32718 solver.cpp:237] Train net output #0: loss = 2.77649 (* 1 = 2.77649 loss) +I0407 22:42:07.930243 32718 sgd_solver.cpp:105] Iteration 2100, lr = 0.00813147 +I0407 22:42:12.914160 32718 solver.cpp:218] Iteration 2112 (2.40776 iter/s, 4.98389s/12 iters), loss = 2.50972 +I0407 22:42:12.914203 32718 solver.cpp:237] Train net output #0: loss = 2.50972 (* 1 = 2.50972 loss) +I0407 22:42:12.914211 32718 sgd_solver.cpp:105] Iteration 2112, lr = 0.00812251 +I0407 22:42:17.505807 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:17.819054 32718 solver.cpp:218] Iteration 2124 (2.44657 iter/s, 4.90482s/12 iters), loss = 2.62927 +I0407 22:42:17.819092 32718 solver.cpp:237] Train net output #0: loss = 2.62927 (* 1 = 2.62927 loss) +I0407 22:42:17.819099 32718 sgd_solver.cpp:105] Iteration 2124, lr = 0.00811353 +I0407 22:42:22.794150 32718 solver.cpp:218] Iteration 2136 (2.41205 iter/s, 4.97501s/12 iters), loss = 2.72927 +I0407 22:42:22.794210 32718 solver.cpp:237] Train net output #0: loss = 2.72927 (* 1 = 2.72927 loss) +I0407 22:42:22.794222 32718 sgd_solver.cpp:105] Iteration 2136, lr = 0.00810451 +I0407 22:42:24.826797 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 22:42:28.642627 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 22:42:31.062428 32718 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 22:42:31.062448 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:42:34.801800 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:35.690441 32718 solver.cpp:397] Test net output #0: accuracy = 0.273897 +I0407 22:42:35.690490 32718 solver.cpp:397] Test net output #1: loss = 3.09691 (* 1 = 3.09691 loss) +I0407 22:42:37.515280 32718 solver.cpp:218] Iteration 2148 (0.815161 iter/s, 14.721s/12 iters), loss = 2.55026 +I0407 22:42:37.515323 32718 solver.cpp:237] Train net output #0: loss = 2.55026 (* 1 = 2.55026 loss) +I0407 22:42:37.515332 32718 sgd_solver.cpp:105] Iteration 2148, lr = 0.00809545 +I0407 22:42:42.398885 32718 solver.cpp:218] Iteration 2160 (2.45724 iter/s, 4.88354s/12 iters), loss = 2.60942 +I0407 22:42:42.399041 32718 solver.cpp:237] Train net output #0: loss = 2.60942 (* 1 = 2.60942 loss) +I0407 22:42:42.399050 32718 sgd_solver.cpp:105] Iteration 2160, lr = 0.00808637 +I0407 22:42:47.330412 32718 solver.cpp:218] Iteration 2172 (2.43341 iter/s, 4.93134s/12 iters), loss = 2.30428 +I0407 22:42:47.330447 32718 solver.cpp:237] Train net output #0: loss = 2.30428 (* 1 = 2.30428 loss) +I0407 22:42:47.330456 32718 sgd_solver.cpp:105] Iteration 2172, lr = 0.00807725 +I0407 22:42:52.281327 32718 solver.cpp:218] Iteration 2184 (2.42383 iter/s, 4.95085s/12 iters), loss = 2.39968 +I0407 22:42:52.281364 32718 solver.cpp:237] Train net output #0: loss = 2.39968 (* 1 = 2.39968 loss) +I0407 22:42:52.281373 32718 sgd_solver.cpp:105] Iteration 2184, lr = 0.0080681 +I0407 22:42:57.207302 32718 solver.cpp:218] Iteration 2196 (2.4361 iter/s, 4.92591s/12 iters), loss = 2.70207 +I0407 22:42:57.207340 32718 solver.cpp:237] Train net output #0: loss = 2.70207 (* 1 = 2.70207 loss) +I0407 22:42:57.207347 32718 sgd_solver.cpp:105] Iteration 2196, lr = 0.00805891 +I0407 22:43:02.154894 32718 solver.cpp:218] Iteration 2208 (2.42546 iter/s, 4.94752s/12 iters), loss = 2.61052 +I0407 22:43:02.154933 32718 solver.cpp:237] Train net output #0: loss = 2.61052 (* 1 = 2.61052 loss) +I0407 22:43:02.154942 32718 sgd_solver.cpp:105] Iteration 2208, lr = 0.00804969 +I0407 22:43:07.101501 32718 solver.cpp:218] Iteration 2220 (2.42594 iter/s, 4.94654s/12 iters), loss = 2.17268 +I0407 22:43:07.101539 32718 solver.cpp:237] Train net output #0: loss = 2.17268 (* 1 = 2.17268 loss) +I0407 22:43:07.101547 32718 sgd_solver.cpp:105] Iteration 2220, lr = 0.00804044 +I0407 22:43:08.816439 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:11.900522 32718 solver.cpp:218] Iteration 2232 (2.50055 iter/s, 4.79895s/12 iters), loss = 2.23806 +I0407 22:43:11.900564 32718 solver.cpp:237] Train net output #0: loss = 2.23806 (* 1 = 2.23806 loss) +I0407 22:43:11.900573 32718 sgd_solver.cpp:105] Iteration 2232, lr = 0.00803116 +I0407 22:43:16.409530 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 22:43:19.516086 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 22:43:21.890020 32718 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 22:43:21.890038 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:43:25.494992 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:26.432512 32718 solver.cpp:397] Test net output #0: accuracy = 0.275735 +I0407 22:43:26.432559 32718 solver.cpp:397] Test net output #1: loss = 3.14145 (* 1 = 3.14145 loss) +I0407 22:43:26.529023 32718 solver.cpp:218] Iteration 2244 (0.820322 iter/s, 14.6284s/12 iters), loss = 2.51047 +I0407 22:43:26.529064 32718 solver.cpp:237] Train net output #0: loss = 2.51047 (* 1 = 2.51047 loss) +I0407 22:43:26.529072 32718 sgd_solver.cpp:105] Iteration 2244, lr = 0.00802184 +I0407 22:43:30.630712 32718 solver.cpp:218] Iteration 2256 (2.92568 iter/s, 4.10162s/12 iters), loss = 2.56473 +I0407 22:43:30.630753 32718 solver.cpp:237] Train net output #0: loss = 2.56473 (* 1 = 2.56473 loss) +I0407 22:43:30.630760 32718 sgd_solver.cpp:105] Iteration 2256, lr = 0.00801249 +I0407 22:43:35.586402 32718 solver.cpp:218] Iteration 2268 (2.42149 iter/s, 4.95562s/12 iters), loss = 2.47402 +I0407 22:43:35.586441 32718 solver.cpp:237] Train net output #0: loss = 2.47402 (* 1 = 2.47402 loss) +I0407 22:43:35.586447 32718 sgd_solver.cpp:105] Iteration 2268, lr = 0.0080031 +I0407 22:43:40.544595 32718 solver.cpp:218] Iteration 2280 (2.42027 iter/s, 4.95813s/12 iters), loss = 2.46765 +I0407 22:43:40.544629 32718 solver.cpp:237] Train net output #0: loss = 2.46765 (* 1 = 2.46765 loss) +I0407 22:43:40.544636 32718 sgd_solver.cpp:105] Iteration 2280, lr = 0.00799369 +I0407 22:43:45.568703 32718 solver.cpp:218] Iteration 2292 (2.38852 iter/s, 5.02404s/12 iters), loss = 2.70167 +I0407 22:43:45.568743 32718 solver.cpp:237] Train net output #0: loss = 2.70167 (* 1 = 2.70167 loss) +I0407 22:43:45.568753 32718 sgd_solver.cpp:105] Iteration 2292, lr = 0.00798424 +I0407 22:43:50.497917 32718 solver.cpp:218] Iteration 2304 (2.4345 iter/s, 4.92914s/12 iters), loss = 2.03311 +I0407 22:43:50.498087 32718 solver.cpp:237] Train net output #0: loss = 2.03311 (* 1 = 2.03311 loss) +I0407 22:43:50.498096 32718 sgd_solver.cpp:105] Iteration 2304, lr = 0.00797475 +I0407 22:43:55.487020 32718 solver.cpp:218] Iteration 2316 (2.40534 iter/s, 4.9889s/12 iters), loss = 2.3157 +I0407 22:43:55.487062 32718 solver.cpp:237] Train net output #0: loss = 2.3157 (* 1 = 2.3157 loss) +I0407 22:43:55.487071 32718 sgd_solver.cpp:105] Iteration 2316, lr = 0.00796523 +I0407 22:43:59.383646 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:00.408308 32718 solver.cpp:218] Iteration 2328 (2.43842 iter/s, 4.92122s/12 iters), loss = 2.35682 +I0407 22:44:00.408345 32718 solver.cpp:237] Train net output #0: loss = 2.35682 (* 1 = 2.35682 loss) +I0407 22:44:00.408354 32718 sgd_solver.cpp:105] Iteration 2328, lr = 0.00795568 +I0407 22:44:05.285558 32718 solver.cpp:218] Iteration 2340 (2.46044 iter/s, 4.87718s/12 iters), loss = 2.53659 +I0407 22:44:05.285599 32718 solver.cpp:237] Train net output #0: loss = 2.53659 (* 1 = 2.53659 loss) +I0407 22:44:05.285609 32718 sgd_solver.cpp:105] Iteration 2340, lr = 0.0079461 +I0407 22:44:07.204391 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 22:44:10.265241 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 22:44:12.679236 32718 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 22:44:12.679255 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:44:16.243657 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:17.212121 32718 solver.cpp:397] Test net output #0: accuracy = 0.287377 +I0407 22:44:17.212164 32718 solver.cpp:397] Test net output #1: loss = 3.20327 (* 1 = 3.20327 loss) +I0407 22:44:18.997097 32718 solver.cpp:218] Iteration 2352 (0.875182 iter/s, 13.7114s/12 iters), loss = 2.38624 +I0407 22:44:18.997138 32718 solver.cpp:237] Train net output #0: loss = 2.38624 (* 1 = 2.38624 loss) +I0407 22:44:18.997145 32718 sgd_solver.cpp:105] Iteration 2352, lr = 0.00793648 +I0407 22:44:23.917798 32718 solver.cpp:218] Iteration 2364 (2.43871 iter/s, 4.92063s/12 iters), loss = 2.38485 +I0407 22:44:23.917935 32718 solver.cpp:237] Train net output #0: loss = 2.38485 (* 1 = 2.38485 loss) +I0407 22:44:23.917945 32718 sgd_solver.cpp:105] Iteration 2364, lr = 0.00792683 +I0407 22:44:28.874704 32718 solver.cpp:218] Iteration 2376 (2.42095 iter/s, 4.95673s/12 iters), loss = 2.56849 +I0407 22:44:28.874750 32718 solver.cpp:237] Train net output #0: loss = 2.56849 (* 1 = 2.56849 loss) +I0407 22:44:28.874758 32718 sgd_solver.cpp:105] Iteration 2376, lr = 0.00791715 +I0407 22:44:33.807695 32718 solver.cpp:218] Iteration 2388 (2.43264 iter/s, 4.93291s/12 iters), loss = 2.2302 +I0407 22:44:33.807737 32718 solver.cpp:237] Train net output #0: loss = 2.2302 (* 1 = 2.2302 loss) +I0407 22:44:33.807745 32718 sgd_solver.cpp:105] Iteration 2388, lr = 0.00790743 +I0407 22:44:38.764708 32718 solver.cpp:218] Iteration 2400 (2.42085 iter/s, 4.95694s/12 iters), loss = 2.49791 +I0407 22:44:38.764744 32718 solver.cpp:237] Train net output #0: loss = 2.49791 (* 1 = 2.49791 loss) +I0407 22:44:38.764752 32718 sgd_solver.cpp:105] Iteration 2400, lr = 0.00789768 +I0407 22:44:43.708248 32718 solver.cpp:218] Iteration 2412 (2.42744 iter/s, 4.94347s/12 iters), loss = 2.23743 +I0407 22:44:43.708289 32718 solver.cpp:237] Train net output #0: loss = 2.23743 (* 1 = 2.23743 loss) +I0407 22:44:43.708298 32718 sgd_solver.cpp:105] Iteration 2412, lr = 0.0078879 +I0407 22:44:48.674571 32718 solver.cpp:218] Iteration 2424 (2.41631 iter/s, 4.96625s/12 iters), loss = 2.15714 +I0407 22:44:48.674612 32718 solver.cpp:237] Train net output #0: loss = 2.15714 (* 1 = 2.15714 loss) +I0407 22:44:48.674620 32718 sgd_solver.cpp:105] Iteration 2424, lr = 0.00787808 +I0407 22:44:49.720793 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:53.530654 32718 solver.cpp:218] Iteration 2436 (2.47116 iter/s, 4.85602s/12 iters), loss = 2.08225 +I0407 22:44:53.530690 32718 solver.cpp:237] Train net output #0: loss = 2.08225 (* 1 = 2.08225 loss) +I0407 22:44:53.530699 32718 sgd_solver.cpp:105] Iteration 2436, lr = 0.00786823 +I0407 22:44:58.040483 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 22:45:01.106876 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 22:45:03.463975 32718 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 22:45:03.463997 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:45:07.205883 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:08.286285 32718 solver.cpp:397] Test net output #0: accuracy = 0.293505 +I0407 22:45:08.286332 32718 solver.cpp:397] Test net output #1: loss = 3.04017 (* 1 = 3.04017 loss) +I0407 22:45:08.383071 32718 solver.cpp:218] Iteration 2448 (0.807955 iter/s, 14.8523s/12 iters), loss = 2.14156 +I0407 22:45:08.383111 32718 solver.cpp:237] Train net output #0: loss = 2.14156 (* 1 = 2.14156 loss) +I0407 22:45:08.383121 32718 sgd_solver.cpp:105] Iteration 2448, lr = 0.00785835 +I0407 22:45:12.498962 32718 solver.cpp:218] Iteration 2460 (2.91558 iter/s, 4.11582s/12 iters), loss = 2.14884 +I0407 22:45:12.499007 32718 solver.cpp:237] Train net output #0: loss = 2.14884 (* 1 = 2.14884 loss) +I0407 22:45:12.499015 32718 sgd_solver.cpp:105] Iteration 2460, lr = 0.00784843 +I0407 22:45:17.440325 32718 solver.cpp:218] Iteration 2472 (2.42852 iter/s, 4.94129s/12 iters), loss = 2.17274 +I0407 22:45:17.440368 32718 solver.cpp:237] Train net output #0: loss = 2.17274 (* 1 = 2.17274 loss) +I0407 22:45:17.440377 32718 sgd_solver.cpp:105] Iteration 2472, lr = 0.00783848 +I0407 22:45:22.412487 32718 solver.cpp:218] Iteration 2484 (2.41347 iter/s, 4.97208s/12 iters), loss = 2.23155 +I0407 22:45:22.412531 32718 solver.cpp:237] Train net output #0: loss = 2.23155 (* 1 = 2.23155 loss) +I0407 22:45:22.412540 32718 sgd_solver.cpp:105] Iteration 2484, lr = 0.0078285 +I0407 22:45:27.356674 32718 solver.cpp:218] Iteration 2496 (2.42713 iter/s, 4.94411s/12 iters), loss = 2.21864 +I0407 22:45:27.356719 32718 solver.cpp:237] Train net output #0: loss = 2.21864 (* 1 = 2.21864 loss) +I0407 22:45:27.356729 32718 sgd_solver.cpp:105] Iteration 2496, lr = 0.00781848 +I0407 22:45:32.314697 32718 solver.cpp:218] Iteration 2508 (2.42036 iter/s, 4.95794s/12 iters), loss = 2.23207 +I0407 22:45:32.314826 32718 solver.cpp:237] Train net output #0: loss = 2.23207 (* 1 = 2.23207 loss) +I0407 22:45:32.314836 32718 sgd_solver.cpp:105] Iteration 2508, lr = 0.00780843 +I0407 22:45:37.281098 32718 solver.cpp:218] Iteration 2520 (2.41631 iter/s, 4.96625s/12 iters), loss = 1.9509 +I0407 22:45:37.281134 32718 solver.cpp:237] Train net output #0: loss = 1.9509 (* 1 = 1.9509 loss) +I0407 22:45:37.281141 32718 sgd_solver.cpp:105] Iteration 2520, lr = 0.00779835 +I0407 22:45:40.440004 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:42.194798 32718 solver.cpp:218] Iteration 2532 (2.44218 iter/s, 4.91364s/12 iters), loss = 2.04131 +I0407 22:45:42.194837 32718 solver.cpp:237] Train net output #0: loss = 2.04131 (* 1 = 2.04131 loss) +I0407 22:45:42.194845 32718 sgd_solver.cpp:105] Iteration 2532, lr = 0.00778824 +I0407 22:45:47.168742 32718 solver.cpp:218] Iteration 2544 (2.4126 iter/s, 4.97388s/12 iters), loss = 1.95753 +I0407 22:45:47.168781 32718 solver.cpp:237] Train net output #0: loss = 1.95753 (* 1 = 1.95753 loss) +I0407 22:45:47.168788 32718 sgd_solver.cpp:105] Iteration 2544, lr = 0.00777809 +I0407 22:45:49.177714 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 22:45:52.290043 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 22:45:54.684875 32718 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 22:45:54.684891 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:45:58.100086 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:59.144412 32718 solver.cpp:397] Test net output #0: accuracy = 0.314338 +I0407 22:45:59.144445 32718 solver.cpp:397] Test net output #1: loss = 3.03587 (* 1 = 3.03587 loss) +I0407 22:46:00.882170 32718 solver.cpp:218] Iteration 2556 (0.875061 iter/s, 13.7133s/12 iters), loss = 2.20723 +I0407 22:46:00.882208 32718 solver.cpp:237] Train net output #0: loss = 2.20723 (* 1 = 2.20723 loss) +I0407 22:46:00.882216 32718 sgd_solver.cpp:105] Iteration 2556, lr = 0.0077679 +I0407 22:46:05.827148 32718 solver.cpp:218] Iteration 2568 (2.42674 iter/s, 4.94491s/12 iters), loss = 1.91202 +I0407 22:46:05.827329 32718 solver.cpp:237] Train net output #0: loss = 1.91202 (* 1 = 1.91202 loss) +I0407 22:46:05.827339 32718 sgd_solver.cpp:105] Iteration 2568, lr = 0.00775769 +I0407 22:46:10.761914 32718 solver.cpp:218] Iteration 2580 (2.43183 iter/s, 4.93456s/12 iters), loss = 1.85921 +I0407 22:46:10.761947 32718 solver.cpp:237] Train net output #0: loss = 1.85921 (* 1 = 1.85921 loss) +I0407 22:46:10.761955 32718 sgd_solver.cpp:105] Iteration 2580, lr = 0.00774744 +I0407 22:46:15.721495 32718 solver.cpp:218] Iteration 2592 (2.41959 iter/s, 4.95952s/12 iters), loss = 1.99507 +I0407 22:46:15.721527 32718 solver.cpp:237] Train net output #0: loss = 1.99507 (* 1 = 1.99507 loss) +I0407 22:46:15.721534 32718 sgd_solver.cpp:105] Iteration 2592, lr = 0.00773716 +I0407 22:46:20.649705 32718 solver.cpp:218] Iteration 2604 (2.43499 iter/s, 4.92815s/12 iters), loss = 1.89453 +I0407 22:46:20.649745 32718 solver.cpp:237] Train net output #0: loss = 1.89453 (* 1 = 1.89453 loss) +I0407 22:46:20.649753 32718 sgd_solver.cpp:105] Iteration 2604, lr = 0.00772684 +I0407 22:46:25.631953 32718 solver.cpp:218] Iteration 2616 (2.40859 iter/s, 4.98217s/12 iters), loss = 1.88389 +I0407 22:46:25.631997 32718 solver.cpp:237] Train net output #0: loss = 1.88389 (* 1 = 1.88389 loss) +I0407 22:46:25.632005 32718 sgd_solver.cpp:105] Iteration 2616, lr = 0.00771649 +I0407 22:46:30.619535 32718 solver.cpp:218] Iteration 2628 (2.40601 iter/s, 4.98751s/12 iters), loss = 1.76822 +I0407 22:46:30.619576 32718 solver.cpp:237] Train net output #0: loss = 1.76822 (* 1 = 1.76822 loss) +I0407 22:46:30.619586 32718 sgd_solver.cpp:105] Iteration 2628, lr = 0.00770611 +I0407 22:46:31.036866 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:35.522833 32718 solver.cpp:218] Iteration 2640 (2.44737 iter/s, 4.90323s/12 iters), loss = 2.1878 +I0407 22:46:35.522876 32718 solver.cpp:237] Train net output #0: loss = 2.1878 (* 1 = 2.1878 loss) +I0407 22:46:35.522884 32718 sgd_solver.cpp:105] Iteration 2640, lr = 0.0076957 +I0407 22:46:39.952543 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 22:46:44.212869 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 22:46:46.976444 32718 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 22:46:46.976464 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:46:50.691797 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:51.774435 32718 solver.cpp:397] Test net output #0: accuracy = 0.321691 +I0407 22:46:51.774482 32718 solver.cpp:397] Test net output #1: loss = 2.84975 (* 1 = 2.84975 loss) +I0407 22:46:51.871850 32718 solver.cpp:218] Iteration 2652 (0.733994 iter/s, 16.3489s/12 iters), loss = 2.00297 +I0407 22:46:51.871896 32718 solver.cpp:237] Train net output #0: loss = 2.00297 (* 1 = 2.00297 loss) +I0407 22:46:51.871906 32718 sgd_solver.cpp:105] Iteration 2652, lr = 0.00768525 +I0407 22:46:55.999414 32718 solver.cpp:218] Iteration 2664 (2.90734 iter/s, 4.12749s/12 iters), loss = 1.80672 +I0407 22:46:55.999452 32718 solver.cpp:237] Train net output #0: loss = 1.80672 (* 1 = 1.80672 loss) +I0407 22:46:55.999460 32718 sgd_solver.cpp:105] Iteration 2664, lr = 0.00767477 +I0407 22:47:00.879544 32718 solver.cpp:218] Iteration 2676 (2.45899 iter/s, 4.88005s/12 iters), loss = 1.83451 +I0407 22:47:00.879585 32718 solver.cpp:237] Train net output #0: loss = 1.83451 (* 1 = 1.83451 loss) +I0407 22:47:00.879593 32718 sgd_solver.cpp:105] Iteration 2676, lr = 0.00766425 +I0407 22:47:05.845233 32718 solver.cpp:218] Iteration 2688 (2.41662 iter/s, 4.96562s/12 iters), loss = 2.34123 +I0407 22:47:05.845273 32718 solver.cpp:237] Train net output #0: loss = 2.34123 (* 1 = 2.34123 loss) +I0407 22:47:05.845279 32718 sgd_solver.cpp:105] Iteration 2688, lr = 0.00765371 +I0407 22:47:10.751636 32718 solver.cpp:218] Iteration 2700 (2.44582 iter/s, 4.90633s/12 iters), loss = 2.12386 +I0407 22:47:10.751770 32718 solver.cpp:237] Train net output #0: loss = 2.12386 (* 1 = 2.12386 loss) +I0407 22:47:10.751777 32718 sgd_solver.cpp:105] Iteration 2700, lr = 0.00764313 +I0407 22:47:15.734814 32718 solver.cpp:218] Iteration 2712 (2.40818 iter/s, 4.98302s/12 iters), loss = 2.02711 +I0407 22:47:15.734853 32718 solver.cpp:237] Train net output #0: loss = 2.02711 (* 1 = 2.02711 loss) +I0407 22:47:15.734860 32718 sgd_solver.cpp:105] Iteration 2712, lr = 0.00763251 +I0407 22:47:20.700928 32718 solver.cpp:218] Iteration 2724 (2.41641 iter/s, 4.96605s/12 iters), loss = 1.58037 +I0407 22:47:20.700968 32718 solver.cpp:237] Train net output #0: loss = 1.58037 (* 1 = 1.58037 loss) +I0407 22:47:20.700976 32718 sgd_solver.cpp:105] Iteration 2724, lr = 0.00762187 +I0407 22:47:23.233436 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:25.624454 32718 solver.cpp:218] Iteration 2736 (2.43731 iter/s, 4.92346s/12 iters), loss = 1.64928 +I0407 22:47:25.624486 32718 solver.cpp:237] Train net output #0: loss = 1.64928 (* 1 = 1.64928 loss) +I0407 22:47:25.624493 32718 sgd_solver.cpp:105] Iteration 2736, lr = 0.00761119 +I0407 22:47:30.553952 32718 solver.cpp:218] Iteration 2748 (2.43435 iter/s, 4.92944s/12 iters), loss = 1.75914 +I0407 22:47:30.553987 32718 solver.cpp:237] Train net output #0: loss = 1.75914 (* 1 = 1.75914 loss) +I0407 22:47:30.553993 32718 sgd_solver.cpp:105] Iteration 2748, lr = 0.00760048 +I0407 22:47:32.554169 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 22:47:35.626262 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 22:47:38.021140 32718 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 22:47:38.021158 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:47:41.372622 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:47:41.633307 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:42.778806 32718 solver.cpp:397] Test net output #0: accuracy = 0.327206 +I0407 22:47:42.778862 32718 solver.cpp:397] Test net output #1: loss = 2.96049 (* 1 = 2.96049 loss) +I0407 22:47:44.596410 32718 solver.cpp:218] Iteration 2760 (0.854557 iter/s, 14.0424s/12 iters), loss = 1.86 +I0407 22:47:44.596446 32718 solver.cpp:237] Train net output #0: loss = 1.86 (* 1 = 1.86 loss) +I0407 22:47:44.596454 32718 sgd_solver.cpp:105] Iteration 2760, lr = 0.00758973 +I0407 22:47:49.536922 32718 solver.cpp:218] Iteration 2772 (2.42893 iter/s, 4.94045s/12 iters), loss = 1.92635 +I0407 22:47:49.536952 32718 solver.cpp:237] Train net output #0: loss = 1.92635 (* 1 = 1.92635 loss) +I0407 22:47:49.536957 32718 sgd_solver.cpp:105] Iteration 2772, lr = 0.00757896 +I0407 22:47:54.518067 32718 solver.cpp:218] Iteration 2784 (2.40912 iter/s, 4.98108s/12 iters), loss = 2.12919 +I0407 22:47:54.518111 32718 solver.cpp:237] Train net output #0: loss = 2.12919 (* 1 = 2.12919 loss) +I0407 22:47:54.518119 32718 sgd_solver.cpp:105] Iteration 2784, lr = 0.00756815 +I0407 22:47:59.482039 32718 solver.cpp:218] Iteration 2796 (2.41746 iter/s, 4.96389s/12 iters), loss = 1.9212 +I0407 22:47:59.482082 32718 solver.cpp:237] Train net output #0: loss = 1.9212 (* 1 = 1.9212 loss) +I0407 22:47:59.482091 32718 sgd_solver.cpp:105] Iteration 2796, lr = 0.0075573 +I0407 22:48:04.387315 32718 solver.cpp:218] Iteration 2808 (2.44638 iter/s, 4.90521s/12 iters), loss = 2.01565 +I0407 22:48:04.387356 32718 solver.cpp:237] Train net output #0: loss = 2.01565 (* 1 = 2.01565 loss) +I0407 22:48:04.387364 32718 sgd_solver.cpp:105] Iteration 2808, lr = 0.00754643 +I0407 22:48:09.339597 32718 solver.cpp:218] Iteration 2820 (2.42317 iter/s, 4.9522s/12 iters), loss = 1.71174 +I0407 22:48:09.339658 32718 solver.cpp:237] Train net output #0: loss = 1.71174 (* 1 = 1.71174 loss) +I0407 22:48:09.339671 32718 sgd_solver.cpp:105] Iteration 2820, lr = 0.00753552 +I0407 22:48:13.971949 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:14.258059 32718 solver.cpp:218] Iteration 2832 (2.43983 iter/s, 4.91838s/12 iters), loss = 1.60749 +I0407 22:48:14.258097 32718 solver.cpp:237] Train net output #0: loss = 1.60749 (* 1 = 1.60749 loss) +I0407 22:48:14.258105 32718 sgd_solver.cpp:105] Iteration 2832, lr = 0.00752458 +I0407 22:48:19.193333 32718 solver.cpp:218] Iteration 2844 (2.43151 iter/s, 4.93521s/12 iters), loss = 2.12352 +I0407 22:48:19.193369 32718 solver.cpp:237] Train net output #0: loss = 2.12352 (* 1 = 2.12352 loss) +I0407 22:48:19.193378 32718 sgd_solver.cpp:105] Iteration 2844, lr = 0.00751361 +I0407 22:48:23.679064 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 22:48:26.797078 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 22:48:29.223147 32718 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 22:48:29.223163 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:48:32.682091 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:33.853653 32718 solver.cpp:397] Test net output #0: accuracy = 0.33027 +I0407 22:48:33.853699 32718 solver.cpp:397] Test net output #1: loss = 2.91847 (* 1 = 2.91847 loss) +I0407 22:48:33.950435 32718 solver.cpp:218] Iteration 2856 (0.813173 iter/s, 14.757s/12 iters), loss = 1.60135 +I0407 22:48:33.950476 32718 solver.cpp:237] Train net output #0: loss = 1.60135 (* 1 = 1.60135 loss) +I0407 22:48:33.950484 32718 sgd_solver.cpp:105] Iteration 2856, lr = 0.0075026 +I0407 22:48:38.088042 32718 solver.cpp:218] Iteration 2868 (2.90027 iter/s, 4.13754s/12 iters), loss = 1.70943 +I0407 22:48:38.088079 32718 solver.cpp:237] Train net output #0: loss = 1.70943 (* 1 = 1.70943 loss) +I0407 22:48:38.088086 32718 sgd_solver.cpp:105] Iteration 2868, lr = 0.00749156 +I0407 22:48:43.039762 32718 solver.cpp:218] Iteration 2880 (2.42344 iter/s, 4.95164s/12 iters), loss = 1.91921 +I0407 22:48:43.039809 32718 solver.cpp:237] Train net output #0: loss = 1.91921 (* 1 = 1.91921 loss) +I0407 22:48:43.039817 32718 sgd_solver.cpp:105] Iteration 2880, lr = 0.00748049 +I0407 22:48:48.000026 32718 solver.cpp:218] Iteration 2892 (2.41926 iter/s, 4.96019s/12 iters), loss = 2.16244 +I0407 22:48:48.000150 32718 solver.cpp:237] Train net output #0: loss = 2.16244 (* 1 = 2.16244 loss) +I0407 22:48:48.000159 32718 sgd_solver.cpp:105] Iteration 2892, lr = 0.00746939 +I0407 22:48:52.938210 32718 solver.cpp:218] Iteration 2904 (2.43012 iter/s, 4.93804s/12 iters), loss = 1.60149 +I0407 22:48:52.938246 32718 solver.cpp:237] Train net output #0: loss = 1.60149 (* 1 = 1.60149 loss) +I0407 22:48:52.938253 32718 sgd_solver.cpp:105] Iteration 2904, lr = 0.00745825 +I0407 22:48:57.919857 32718 solver.cpp:218] Iteration 2916 (2.40887 iter/s, 4.98158s/12 iters), loss = 1.3959 +I0407 22:48:57.919891 32718 solver.cpp:237] Train net output #0: loss = 1.3959 (* 1 = 1.3959 loss) +I0407 22:48:57.919899 32718 sgd_solver.cpp:105] Iteration 2916, lr = 0.00744709 +I0407 22:49:02.885677 32718 solver.cpp:218] Iteration 2928 (2.41655 iter/s, 4.96575s/12 iters), loss = 1.1766 +I0407 22:49:02.885715 32718 solver.cpp:237] Train net output #0: loss = 1.1766 (* 1 = 1.1766 loss) +I0407 22:49:02.885725 32718 sgd_solver.cpp:105] Iteration 2928, lr = 0.00743589 +I0407 22:49:04.684976 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:07.786634 32718 solver.cpp:218] Iteration 2940 (2.44854 iter/s, 4.90089s/12 iters), loss = 2.06634 +I0407 22:49:07.786670 32718 solver.cpp:237] Train net output #0: loss = 2.06634 (* 1 = 2.06634 loss) +I0407 22:49:07.786677 32718 sgd_solver.cpp:105] Iteration 2940, lr = 0.00742466 +I0407 22:49:12.755826 32718 solver.cpp:218] Iteration 2952 (2.41491 iter/s, 4.96912s/12 iters), loss = 1.74018 +I0407 22:49:12.755869 32718 solver.cpp:237] Train net output #0: loss = 1.74018 (* 1 = 1.74018 loss) +I0407 22:49:12.755877 32718 sgd_solver.cpp:105] Iteration 2952, lr = 0.00741339 +I0407 22:49:14.755533 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 22:49:17.865705 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 22:49:20.234443 32718 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 22:49:20.234560 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:49:23.756774 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:25.071326 32718 solver.cpp:397] Test net output #0: accuracy = 0.348039 +I0407 22:49:25.071370 32718 solver.cpp:397] Test net output #1: loss = 2.84812 (* 1 = 2.84812 loss) +I0407 22:49:26.865653 32718 solver.cpp:218] Iteration 2964 (0.850477 iter/s, 14.1097s/12 iters), loss = 1.95347 +I0407 22:49:26.865695 32718 solver.cpp:237] Train net output #0: loss = 1.95347 (* 1 = 1.95347 loss) +I0407 22:49:26.865705 32718 sgd_solver.cpp:105] Iteration 2964, lr = 0.0074021 +I0407 22:49:31.821452 32718 solver.cpp:218] Iteration 2976 (2.42144 iter/s, 4.95572s/12 iters), loss = 1.40954 +I0407 22:49:31.821497 32718 solver.cpp:237] Train net output #0: loss = 1.40954 (* 1 = 1.40954 loss) +I0407 22:49:31.821506 32718 sgd_solver.cpp:105] Iteration 2976, lr = 0.00739077 +I0407 22:49:36.746484 32718 solver.cpp:218] Iteration 2988 (2.43657 iter/s, 4.92496s/12 iters), loss = 1.85518 +I0407 22:49:36.746521 32718 solver.cpp:237] Train net output #0: loss = 1.85518 (* 1 = 1.85518 loss) +I0407 22:49:36.746529 32718 sgd_solver.cpp:105] Iteration 2988, lr = 0.00737941 +I0407 22:49:41.719965 32718 solver.cpp:218] Iteration 3000 (2.41283 iter/s, 4.97342s/12 iters), loss = 1.63097 +I0407 22:49:41.720006 32718 solver.cpp:237] Train net output #0: loss = 1.63097 (* 1 = 1.63097 loss) +I0407 22:49:41.720014 32718 sgd_solver.cpp:105] Iteration 3000, lr = 0.00736802 +I0407 22:49:46.627593 32718 solver.cpp:218] Iteration 3012 (2.44521 iter/s, 4.90755s/12 iters), loss = 1.36271 +I0407 22:49:46.627638 32718 solver.cpp:237] Train net output #0: loss = 1.36271 (* 1 = 1.36271 loss) +I0407 22:49:46.627646 32718 sgd_solver.cpp:105] Iteration 3012, lr = 0.0073566 +I0407 22:49:51.593964 32718 solver.cpp:218] Iteration 3024 (2.41629 iter/s, 4.9663s/12 iters), loss = 1.34942 +I0407 22:49:51.594095 32718 solver.cpp:237] Train net output #0: loss = 1.34942 (* 1 = 1.34942 loss) +I0407 22:49:51.594105 32718 sgd_solver.cpp:105] Iteration 3024, lr = 0.00734514 +I0407 22:49:55.493008 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:56.496172 32718 solver.cpp:218] Iteration 3036 (2.44796 iter/s, 4.90205s/12 iters), loss = 1.55244 +I0407 22:49:56.496214 32718 solver.cpp:237] Train net output #0: loss = 1.55244 (* 1 = 1.55244 loss) +I0407 22:49:56.496222 32718 sgd_solver.cpp:105] Iteration 3036, lr = 0.00733365 +I0407 22:50:01.475682 32718 solver.cpp:218] Iteration 3048 (2.40991 iter/s, 4.97944s/12 iters), loss = 1.44558 +I0407 22:50:01.475719 32718 solver.cpp:237] Train net output #0: loss = 1.44558 (* 1 = 1.44558 loss) +I0407 22:50:01.475728 32718 sgd_solver.cpp:105] Iteration 3048, lr = 0.00732214 +I0407 22:50:05.961091 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 22:50:09.029673 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 22:50:11.385665 32718 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 22:50:11.385684 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:50:14.826184 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:16.170195 32718 solver.cpp:397] Test net output #0: accuracy = 0.335172 +I0407 22:50:16.170222 32718 solver.cpp:397] Test net output #1: loss = 2.98123 (* 1 = 2.98123 loss) +I0407 22:50:16.266790 32718 solver.cpp:218] Iteration 3060 (0.811303 iter/s, 14.791s/12 iters), loss = 1.5745 +I0407 22:50:16.266836 32718 solver.cpp:237] Train net output #0: loss = 1.5745 (* 1 = 1.5745 loss) +I0407 22:50:16.266844 32718 sgd_solver.cpp:105] Iteration 3060, lr = 0.00731059 +I0407 22:50:20.371874 32718 solver.cpp:218] Iteration 3072 (2.92326 iter/s, 4.10501s/12 iters), loss = 1.8227 +I0407 22:50:20.371918 32718 solver.cpp:237] Train net output #0: loss = 1.8227 (* 1 = 1.8227 loss) +I0407 22:50:20.371927 32718 sgd_solver.cpp:105] Iteration 3072, lr = 0.007299 +I0407 22:50:25.329890 32718 solver.cpp:218] Iteration 3084 (2.42036 iter/s, 4.95794s/12 iters), loss = 1.50174 +I0407 22:50:25.330070 32718 solver.cpp:237] Train net output #0: loss = 1.50174 (* 1 = 1.50174 loss) +I0407 22:50:25.330080 32718 sgd_solver.cpp:105] Iteration 3084, lr = 0.00728739 +I0407 22:50:30.263015 32718 solver.cpp:218] Iteration 3096 (2.43263 iter/s, 4.93292s/12 iters), loss = 1.39029 +I0407 22:50:30.263051 32718 solver.cpp:237] Train net output #0: loss = 1.39029 (* 1 = 1.39029 loss) +I0407 22:50:30.263057 32718 sgd_solver.cpp:105] Iteration 3096, lr = 0.00727575 +I0407 22:50:35.159974 32718 solver.cpp:218] Iteration 3108 (2.45053 iter/s, 4.89689s/12 iters), loss = 1.81271 +I0407 22:50:35.160015 32718 solver.cpp:237] Train net output #0: loss = 1.81271 (* 1 = 1.81271 loss) +I0407 22:50:35.160023 32718 sgd_solver.cpp:105] Iteration 3108, lr = 0.00726407 +I0407 22:50:40.087992 32718 solver.cpp:218] Iteration 3120 (2.43509 iter/s, 4.92795s/12 iters), loss = 1.44887 +I0407 22:50:40.088027 32718 solver.cpp:237] Train net output #0: loss = 1.44887 (* 1 = 1.44887 loss) +I0407 22:50:40.088033 32718 sgd_solver.cpp:105] Iteration 3120, lr = 0.00725237 +I0407 22:50:45.043825 32718 solver.cpp:218] Iteration 3132 (2.42142 iter/s, 4.95577s/12 iters), loss = 1.34386 +I0407 22:50:45.043862 32718 solver.cpp:237] Train net output #0: loss = 1.34386 (* 1 = 1.34386 loss) +I0407 22:50:45.043871 32718 sgd_solver.cpp:105] Iteration 3132, lr = 0.00724063 +I0407 22:50:46.115679 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:49.935926 32718 solver.cpp:218] Iteration 3144 (2.45297 iter/s, 4.89204s/12 iters), loss = 1.23913 +I0407 22:50:49.935961 32718 solver.cpp:237] Train net output #0: loss = 1.23913 (* 1 = 1.23913 loss) +I0407 22:50:49.935968 32718 sgd_solver.cpp:105] Iteration 3144, lr = 0.00722886 +I0407 22:50:54.895689 32718 solver.cpp:218] Iteration 3156 (2.4195 iter/s, 4.9597s/12 iters), loss = 1.55236 +I0407 22:50:54.895725 32718 solver.cpp:237] Train net output #0: loss = 1.55236 (* 1 = 1.55236 loss) +I0407 22:50:54.895732 32718 sgd_solver.cpp:105] Iteration 3156, lr = 0.00721706 +I0407 22:50:56.883164 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 22:51:00.017869 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 22:51:02.380328 32718 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 22:51:02.380345 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:51:05.759923 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:07.153890 32718 solver.cpp:397] Test net output #0: accuracy = 0.323529 +I0407 22:51:07.153928 32718 solver.cpp:397] Test net output #1: loss = 2.9741 (* 1 = 2.9741 loss) +I0407 22:51:08.957288 32718 solver.cpp:218] Iteration 3168 (0.853394 iter/s, 14.0615s/12 iters), loss = 1.21294 +I0407 22:51:08.957330 32718 solver.cpp:237] Train net output #0: loss = 1.21294 (* 1 = 1.21294 loss) +I0407 22:51:08.957340 32718 sgd_solver.cpp:105] Iteration 3168, lr = 0.00720523 +I0407 22:51:13.865893 32718 solver.cpp:218] Iteration 3180 (2.44472 iter/s, 4.90853s/12 iters), loss = 1.25424 +I0407 22:51:13.865936 32718 solver.cpp:237] Train net output #0: loss = 1.25424 (* 1 = 1.25424 loss) +I0407 22:51:13.865943 32718 sgd_solver.cpp:105] Iteration 3180, lr = 0.00719337 +I0407 22:51:18.830358 32718 solver.cpp:218] Iteration 3192 (2.41721 iter/s, 4.96439s/12 iters), loss = 1.47882 +I0407 22:51:18.830394 32718 solver.cpp:237] Train net output #0: loss = 1.47882 (* 1 = 1.47882 loss) +I0407 22:51:18.830401 32718 sgd_solver.cpp:105] Iteration 3192, lr = 0.00718148 +I0407 22:51:23.765771 32718 solver.cpp:218] Iteration 3204 (2.43144 iter/s, 4.93535s/12 iters), loss = 1.61445 +I0407 22:51:23.765810 32718 solver.cpp:237] Train net output #0: loss = 1.61445 (* 1 = 1.61445 loss) +I0407 22:51:23.765820 32718 sgd_solver.cpp:105] Iteration 3204, lr = 0.00716956 +I0407 22:51:28.730113 32718 solver.cpp:218] Iteration 3216 (2.41728 iter/s, 4.96427s/12 iters), loss = 1.11018 +I0407 22:51:28.730268 32718 solver.cpp:237] Train net output #0: loss = 1.11018 (* 1 = 1.11018 loss) +I0407 22:51:28.730278 32718 sgd_solver.cpp:105] Iteration 3216, lr = 0.00715761 +I0407 22:51:33.652433 32718 solver.cpp:218] Iteration 3228 (2.43797 iter/s, 4.92213s/12 iters), loss = 1.17618 +I0407 22:51:33.652491 32718 solver.cpp:237] Train net output #0: loss = 1.17618 (* 1 = 1.17618 loss) +I0407 22:51:33.652504 32718 sgd_solver.cpp:105] Iteration 3228, lr = 0.00714562 +I0407 22:51:36.877039 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:38.608722 32718 solver.cpp:218] Iteration 3240 (2.42121 iter/s, 4.9562s/12 iters), loss = 1.32637 +I0407 22:51:38.608763 32718 solver.cpp:237] Train net output #0: loss = 1.32637 (* 1 = 1.32637 loss) +I0407 22:51:38.608772 32718 sgd_solver.cpp:105] Iteration 3240, lr = 0.00713361 +I0407 22:51:43.541678 32718 solver.cpp:218] Iteration 3252 (2.43265 iter/s, 4.93289s/12 iters), loss = 1.21438 +I0407 22:51:43.541714 32718 solver.cpp:237] Train net output #0: loss = 1.21438 (* 1 = 1.21438 loss) +I0407 22:51:43.541721 32718 sgd_solver.cpp:105] Iteration 3252, lr = 0.00712157 +I0407 22:51:48.051538 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 22:51:51.376585 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 22:51:53.788971 32718 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 22:51:53.788990 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:51:57.123473 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:58.473462 32718 solver.cpp:397] Test net output #0: accuracy = 0.352941 +I0407 22:51:58.473510 32718 solver.cpp:397] Test net output #1: loss = 2.90155 (* 1 = 2.90155 loss) +I0407 22:51:58.568980 32718 solver.cpp:218] Iteration 3264 (0.798552 iter/s, 15.0272s/12 iters), loss = 1.30138 +I0407 22:51:58.569028 32718 solver.cpp:237] Train net output #0: loss = 1.30138 (* 1 = 1.30138 loss) +I0407 22:51:58.569036 32718 sgd_solver.cpp:105] Iteration 3264, lr = 0.00710949 +I0407 22:52:02.700711 32718 solver.cpp:218] Iteration 3276 (2.9044 iter/s, 4.13166s/12 iters), loss = 1.31484 +I0407 22:52:02.700826 32718 solver.cpp:237] Train net output #0: loss = 1.31484 (* 1 = 1.31484 loss) +I0407 22:52:02.700835 32718 sgd_solver.cpp:105] Iteration 3276, lr = 0.00709739 +I0407 22:52:07.694125 32718 solver.cpp:218] Iteration 3288 (2.40323 iter/s, 4.99327s/12 iters), loss = 1.10653 +I0407 22:52:07.694164 32718 solver.cpp:237] Train net output #0: loss = 1.10653 (* 1 = 1.10653 loss) +I0407 22:52:07.694172 32718 sgd_solver.cpp:105] Iteration 3288, lr = 0.00708526 +I0407 22:52:12.679921 32718 solver.cpp:218] Iteration 3300 (2.40687 iter/s, 4.98573s/12 iters), loss = 1.35511 +I0407 22:52:12.679957 32718 solver.cpp:237] Train net output #0: loss = 1.35511 (* 1 = 1.35511 loss) +I0407 22:52:12.679965 32718 sgd_solver.cpp:105] Iteration 3300, lr = 0.0070731 +I0407 22:52:17.620538 32718 solver.cpp:218] Iteration 3312 (2.42888 iter/s, 4.94055s/12 iters), loss = 1.49553 +I0407 22:52:17.620575 32718 solver.cpp:237] Train net output #0: loss = 1.49553 (* 1 = 1.49553 loss) +I0407 22:52:17.620584 32718 sgd_solver.cpp:105] Iteration 3312, lr = 0.0070609 +I0407 22:52:22.566428 32718 solver.cpp:218] Iteration 3324 (2.42629 iter/s, 4.94582s/12 iters), loss = 1.49163 +I0407 22:52:22.566466 32718 solver.cpp:237] Train net output #0: loss = 1.49163 (* 1 = 1.49163 loss) +I0407 22:52:22.566473 32718 sgd_solver.cpp:105] Iteration 3324, lr = 0.00704868 +I0407 22:52:27.508591 32718 solver.cpp:218] Iteration 3336 (2.42812 iter/s, 4.94209s/12 iters), loss = 1.20858 +I0407 22:52:27.508633 32718 solver.cpp:237] Train net output #0: loss = 1.20858 (* 1 = 1.20858 loss) +I0407 22:52:27.508642 32718 sgd_solver.cpp:105] Iteration 3336, lr = 0.00703643 +I0407 22:52:27.957657 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:32.443492 32718 solver.cpp:218] Iteration 3348 (2.4317 iter/s, 4.93483s/12 iters), loss = 1.54842 +I0407 22:52:32.443534 32718 solver.cpp:237] Train net output #0: loss = 1.54842 (* 1 = 1.54842 loss) +I0407 22:52:32.443543 32718 sgd_solver.cpp:105] Iteration 3348, lr = 0.00702415 +I0407 22:52:37.413424 32718 solver.cpp:218] Iteration 3360 (2.41455 iter/s, 4.96986s/12 iters), loss = 1.38588 +I0407 22:52:37.413532 32718 solver.cpp:237] Train net output #0: loss = 1.38588 (* 1 = 1.38588 loss) +I0407 22:52:37.413540 32718 sgd_solver.cpp:105] Iteration 3360, lr = 0.00701184 +I0407 22:52:39.414008 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 22:52:43.833631 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 22:52:47.050057 32718 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 22:52:47.050078 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:52:50.160955 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:51.515159 32718 solver.cpp:397] Test net output #0: accuracy = 0.340074 +I0407 22:52:51.515233 32718 solver.cpp:397] Test net output #1: loss = 2.85935 (* 1 = 2.85935 loss) +I0407 22:52:53.302055 32718 solver.cpp:218] Iteration 3372 (0.755265 iter/s, 15.8885s/12 iters), loss = 1.26435 +I0407 22:52:53.302088 32718 solver.cpp:237] Train net output #0: loss = 1.26435 (* 1 = 1.26435 loss) +I0407 22:52:53.302095 32718 sgd_solver.cpp:105] Iteration 3372, lr = 0.0069995 +I0407 22:52:58.265169 32718 solver.cpp:218] Iteration 3384 (2.41787 iter/s, 4.96305s/12 iters), loss = 1.23419 +I0407 22:52:58.265202 32718 solver.cpp:237] Train net output #0: loss = 1.23419 (* 1 = 1.23419 loss) +I0407 22:52:58.265209 32718 sgd_solver.cpp:105] Iteration 3384, lr = 0.00698713 +I0407 22:53:03.216053 32718 solver.cpp:218] Iteration 3396 (2.42384 iter/s, 4.95082s/12 iters), loss = 1.3397 +I0407 22:53:03.216082 32718 solver.cpp:237] Train net output #0: loss = 1.3397 (* 1 = 1.3397 loss) +I0407 22:53:03.216089 32718 sgd_solver.cpp:105] Iteration 3396, lr = 0.00697473 +I0407 22:53:08.140911 32718 solver.cpp:218] Iteration 3408 (2.43665 iter/s, 4.9248s/12 iters), loss = 1.24972 +I0407 22:53:08.141018 32718 solver.cpp:237] Train net output #0: loss = 1.24972 (* 1 = 1.24972 loss) +I0407 22:53:08.141026 32718 sgd_solver.cpp:105] Iteration 3408, lr = 0.00696231 +I0407 22:53:13.093631 32718 solver.cpp:218] Iteration 3420 (2.42298 iter/s, 4.95258s/12 iters), loss = 1.22369 +I0407 22:53:13.093667 32718 solver.cpp:237] Train net output #0: loss = 1.22369 (* 1 = 1.22369 loss) +I0407 22:53:13.093674 32718 sgd_solver.cpp:105] Iteration 3420, lr = 0.00694985 +I0407 22:53:18.011979 32718 solver.cpp:218] Iteration 3432 (2.43987 iter/s, 4.91829s/12 iters), loss = 1.31111 +I0407 22:53:18.012013 32718 solver.cpp:237] Train net output #0: loss = 1.31111 (* 1 = 1.31111 loss) +I0407 22:53:18.012019 32718 sgd_solver.cpp:105] Iteration 3432, lr = 0.00693737 +I0407 22:53:20.563860 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:22.960076 32718 solver.cpp:218] Iteration 3444 (2.42521 iter/s, 4.94803s/12 iters), loss = 1.27195 +I0407 22:53:22.960114 32718 solver.cpp:237] Train net output #0: loss = 1.27195 (* 1 = 1.27195 loss) +I0407 22:53:22.960120 32718 sgd_solver.cpp:105] Iteration 3444, lr = 0.00692485 +I0407 22:53:27.889295 32718 solver.cpp:218] Iteration 3456 (2.4345 iter/s, 4.92915s/12 iters), loss = 1.34395 +I0407 22:53:27.889336 32718 solver.cpp:237] Train net output #0: loss = 1.34395 (* 1 = 1.34395 loss) +I0407 22:53:27.889344 32718 sgd_solver.cpp:105] Iteration 3456, lr = 0.00691231 +I0407 22:53:32.386034 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 22:53:37.078589 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 22:53:40.596930 32718 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 22:53:40.596987 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:53:41.013741 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:53:43.955284 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:45.505234 32718 solver.cpp:397] Test net output #0: accuracy = 0.362745 +I0407 22:53:45.505280 32718 solver.cpp:397] Test net output #1: loss = 2.78083 (* 1 = 2.78083 loss) +I0407 22:53:45.601858 32718 solver.cpp:218] Iteration 3468 (0.677489 iter/s, 17.7125s/12 iters), loss = 1.22972 +I0407 22:53:45.601899 32718 solver.cpp:237] Train net output #0: loss = 1.22972 (* 1 = 1.22972 loss) +I0407 22:53:45.601907 32718 sgd_solver.cpp:105] Iteration 3468, lr = 0.00689974 +I0407 22:53:49.661754 32718 solver.cpp:218] Iteration 3480 (2.95579 iter/s, 4.05982s/12 iters), loss = 1.16343 +I0407 22:53:49.661798 32718 solver.cpp:237] Train net output #0: loss = 1.16343 (* 1 = 1.16343 loss) +I0407 22:53:49.661806 32718 sgd_solver.cpp:105] Iteration 3480, lr = 0.00688715 +I0407 22:53:54.599104 32718 solver.cpp:218] Iteration 3492 (2.43049 iter/s, 4.93728s/12 iters), loss = 0.962498 +I0407 22:53:54.599141 32718 solver.cpp:237] Train net output #0: loss = 0.962498 (* 1 = 0.962498 loss) +I0407 22:53:54.599148 32718 sgd_solver.cpp:105] Iteration 3492, lr = 0.00687452 +I0407 22:53:59.590759 32718 solver.cpp:218] Iteration 3504 (2.40404 iter/s, 4.99159s/12 iters), loss = 1.44779 +I0407 22:53:59.590801 32718 solver.cpp:237] Train net output #0: loss = 1.44779 (* 1 = 1.44779 loss) +I0407 22:53:59.590811 32718 sgd_solver.cpp:105] Iteration 3504, lr = 0.00686187 +I0407 22:54:04.505568 32718 solver.cpp:218] Iteration 3516 (2.44164 iter/s, 4.91474s/12 iters), loss = 1.18196 +I0407 22:54:04.505602 32718 solver.cpp:237] Train net output #0: loss = 1.18196 (* 1 = 1.18196 loss) +I0407 22:54:04.505609 32718 sgd_solver.cpp:105] Iteration 3516, lr = 0.00684919 +I0407 22:54:09.491995 32718 solver.cpp:218] Iteration 3528 (2.40656 iter/s, 4.98636s/12 iters), loss = 1.08436 +I0407 22:54:09.492031 32718 solver.cpp:237] Train net output #0: loss = 1.08436 (* 1 = 1.08436 loss) +I0407 22:54:09.492039 32718 sgd_solver.cpp:105] Iteration 3528, lr = 0.00683648 +I0407 22:54:14.080852 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:14.337935 32718 solver.cpp:218] Iteration 3540 (2.47633 iter/s, 4.84587s/12 iters), loss = 0.946487 +I0407 22:54:14.337970 32718 solver.cpp:237] Train net output #0: loss = 0.946487 (* 1 = 0.946487 loss) +I0407 22:54:14.337977 32718 sgd_solver.cpp:105] Iteration 3540, lr = 0.00682375 +I0407 22:54:19.303233 32718 solver.cpp:218] Iteration 3552 (2.41681 iter/s, 4.96523s/12 iters), loss = 1.0789 +I0407 22:54:19.303265 32718 solver.cpp:237] Train net output #0: loss = 1.0789 (* 1 = 1.0789 loss) +I0407 22:54:19.303272 32718 sgd_solver.cpp:105] Iteration 3552, lr = 0.00681098 +I0407 22:54:24.240447 32718 solver.cpp:218] Iteration 3564 (2.43055 iter/s, 4.93716s/12 iters), loss = 0.889279 +I0407 22:54:24.240481 32718 solver.cpp:237] Train net output #0: loss = 0.889279 (* 1 = 0.889279 loss) +I0407 22:54:24.240489 32718 sgd_solver.cpp:105] Iteration 3564, lr = 0.00679819 +I0407 22:54:26.266434 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 22:54:29.358181 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 22:54:32.322702 32718 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 22:54:32.322719 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:54:35.307337 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:36.798521 32718 solver.cpp:397] Test net output #0: accuracy = 0.353554 +I0407 22:54:36.798566 32718 solver.cpp:397] Test net output #1: loss = 3.00005 (* 1 = 3.00005 loss) +I0407 22:54:38.582823 32718 solver.cpp:218] Iteration 3576 (0.836687 iter/s, 14.3423s/12 iters), loss = 1.22438 +I0407 22:54:38.582865 32718 solver.cpp:237] Train net output #0: loss = 1.22438 (* 1 = 1.22438 loss) +I0407 22:54:38.582872 32718 sgd_solver.cpp:105] Iteration 3576, lr = 0.00678538 +I0407 22:54:43.511123 32718 solver.cpp:218] Iteration 3588 (2.43495 iter/s, 4.92823s/12 iters), loss = 1.06235 +I0407 22:54:43.511160 32718 solver.cpp:237] Train net output #0: loss = 1.06235 (* 1 = 1.06235 loss) +I0407 22:54:43.511168 32718 sgd_solver.cpp:105] Iteration 3588, lr = 0.00677253 +I0407 22:54:48.482667 32718 solver.cpp:218] Iteration 3600 (2.41377 iter/s, 4.97148s/12 iters), loss = 1.41386 +I0407 22:54:48.482818 32718 solver.cpp:237] Train net output #0: loss = 1.41386 (* 1 = 1.41386 loss) +I0407 22:54:48.482827 32718 sgd_solver.cpp:105] Iteration 3600, lr = 0.00675966 +I0407 22:54:53.517355 32718 solver.cpp:218] Iteration 3612 (2.38355 iter/s, 5.03451s/12 iters), loss = 1.2517 +I0407 22:54:53.517393 32718 solver.cpp:237] Train net output #0: loss = 1.2517 (* 1 = 1.2517 loss) +I0407 22:54:53.517401 32718 sgd_solver.cpp:105] Iteration 3612, lr = 0.00674676 +I0407 22:54:58.510754 32718 solver.cpp:218] Iteration 3624 (2.4032 iter/s, 4.99333s/12 iters), loss = 0.942894 +I0407 22:54:58.510790 32718 solver.cpp:237] Train net output #0: loss = 0.942894 (* 1 = 0.942894 loss) +I0407 22:54:58.510798 32718 sgd_solver.cpp:105] Iteration 3624, lr = 0.00673384 +I0407 22:55:03.459013 32718 solver.cpp:218] Iteration 3636 (2.42513 iter/s, 4.94819s/12 iters), loss = 0.923541 +I0407 22:55:03.459051 32718 solver.cpp:237] Train net output #0: loss = 0.923541 (* 1 = 0.923541 loss) +I0407 22:55:03.459060 32718 sgd_solver.cpp:105] Iteration 3636, lr = 0.00672089 +I0407 22:55:05.343448 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:08.449609 32718 solver.cpp:218] Iteration 3648 (2.40455 iter/s, 4.99053s/12 iters), loss = 1.21268 +I0407 22:55:08.449636 32718 solver.cpp:237] Train net output #0: loss = 1.21268 (* 1 = 1.21268 loss) +I0407 22:55:08.449642 32718 sgd_solver.cpp:105] Iteration 3648, lr = 0.00670791 +I0407 22:55:13.479907 32718 solver.cpp:218] Iteration 3660 (2.38558 iter/s, 5.03023s/12 iters), loss = 1.03576 +I0407 22:55:13.479951 32718 solver.cpp:237] Train net output #0: loss = 1.03576 (* 1 = 1.03576 loss) +I0407 22:55:13.479959 32718 sgd_solver.cpp:105] Iteration 3660, lr = 0.00669491 +I0407 22:55:17.977111 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 22:55:21.080324 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 22:55:23.475968 32718 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 22:55:23.475986 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:55:26.619868 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:28.110383 32718 solver.cpp:397] Test net output #0: accuracy = 0.382966 +I0407 22:55:28.110430 32718 solver.cpp:397] Test net output #1: loss = 2.79243 (* 1 = 2.79243 loss) +I0407 22:55:28.207072 32718 solver.cpp:218] Iteration 3672 (0.814827 iter/s, 14.7271s/12 iters), loss = 1.0235 +I0407 22:55:28.207130 32718 solver.cpp:237] Train net output #0: loss = 1.0235 (* 1 = 1.0235 loss) +I0407 22:55:28.207142 32718 sgd_solver.cpp:105] Iteration 3672, lr = 0.00668188 +I0407 22:55:32.320886 32718 solver.cpp:218] Iteration 3684 (2.91706 iter/s, 4.11374s/12 iters), loss = 1.02783 +I0407 22:55:32.320921 32718 solver.cpp:237] Train net output #0: loss = 1.02783 (* 1 = 1.02783 loss) +I0407 22:55:32.320930 32718 sgd_solver.cpp:105] Iteration 3684, lr = 0.00666882 +I0407 22:55:37.253809 32718 solver.cpp:218] Iteration 3696 (2.43267 iter/s, 4.93286s/12 iters), loss = 0.99319 +I0407 22:55:37.253849 32718 solver.cpp:237] Train net output #0: loss = 0.99319 (* 1 = 0.99319 loss) +I0407 22:55:37.253855 32718 sgd_solver.cpp:105] Iteration 3696, lr = 0.00665574 +I0407 22:55:42.422322 32718 solver.cpp:218] Iteration 3708 (2.32178 iter/s, 5.16844s/12 iters), loss = 1.07129 +I0407 22:55:42.422363 32718 solver.cpp:237] Train net output #0: loss = 1.07129 (* 1 = 1.07129 loss) +I0407 22:55:42.422371 32718 sgd_solver.cpp:105] Iteration 3708, lr = 0.00664264 +I0407 22:55:47.430461 32718 solver.cpp:218] Iteration 3720 (2.39613 iter/s, 5.00807s/12 iters), loss = 0.816455 +I0407 22:55:47.430507 32718 solver.cpp:237] Train net output #0: loss = 0.816455 (* 1 = 0.816455 loss) +I0407 22:55:47.430516 32718 sgd_solver.cpp:105] Iteration 3720, lr = 0.00662951 +I0407 22:55:52.389318 32718 solver.cpp:218] Iteration 3732 (2.41995 iter/s, 4.95878s/12 iters), loss = 1.08382 +I0407 22:55:52.389467 32718 solver.cpp:237] Train net output #0: loss = 1.08382 (* 1 = 1.08382 loss) +I0407 22:55:52.389477 32718 sgd_solver.cpp:105] Iteration 3732, lr = 0.00661635 +I0407 22:55:56.350759 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:57.318233 32718 solver.cpp:218] Iteration 3744 (2.4347 iter/s, 4.92874s/12 iters), loss = 1.15315 +I0407 22:55:57.318276 32718 solver.cpp:237] Train net output #0: loss = 1.15315 (* 1 = 1.15315 loss) +I0407 22:55:57.318285 32718 sgd_solver.cpp:105] Iteration 3744, lr = 0.00660317 +I0407 22:56:02.297087 32718 solver.cpp:218] Iteration 3756 (2.41023 iter/s, 4.97878s/12 iters), loss = 0.993454 +I0407 22:56:02.297123 32718 solver.cpp:237] Train net output #0: loss = 0.993454 (* 1 = 0.993454 loss) +I0407 22:56:02.297132 32718 sgd_solver.cpp:105] Iteration 3756, lr = 0.00658996 +I0407 22:56:07.273684 32718 solver.cpp:218] Iteration 3768 (2.41132 iter/s, 4.97653s/12 iters), loss = 1.13791 +I0407 22:56:07.273721 32718 solver.cpp:237] Train net output #0: loss = 1.13791 (* 1 = 1.13791 loss) +I0407 22:56:07.273730 32718 sgd_solver.cpp:105] Iteration 3768, lr = 0.00657673 +I0407 22:56:09.293299 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 22:56:12.397639 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 22:56:14.799185 32718 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 22:56:14.799207 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:56:17.710839 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:19.233510 32718 solver.cpp:397] Test net output #0: accuracy = 0.34375 +I0407 22:56:19.233557 32718 solver.cpp:397] Test net output #1: loss = 2.9181 (* 1 = 2.9181 loss) +I0407 22:56:21.045267 32718 solver.cpp:218] Iteration 3780 (0.871365 iter/s, 13.7715s/12 iters), loss = 1.31191 +I0407 22:56:21.045307 32718 solver.cpp:237] Train net output #0: loss = 1.31191 (* 1 = 1.31191 loss) +I0407 22:56:21.045315 32718 sgd_solver.cpp:105] Iteration 3780, lr = 0.00656347 +I0407 22:56:26.021593 32718 solver.cpp:218] Iteration 3792 (2.41145 iter/s, 4.97625s/12 iters), loss = 0.899677 +I0407 22:56:26.021687 32718 solver.cpp:237] Train net output #0: loss = 0.899677 (* 1 = 0.899677 loss) +I0407 22:56:26.021695 32718 sgd_solver.cpp:105] Iteration 3792, lr = 0.00655019 +I0407 22:56:31.061904 32718 solver.cpp:218] Iteration 3804 (2.38086 iter/s, 5.04019s/12 iters), loss = 0.903151 +I0407 22:56:31.061942 32718 solver.cpp:237] Train net output #0: loss = 0.903151 (* 1 = 0.903151 loss) +I0407 22:56:31.061950 32718 sgd_solver.cpp:105] Iteration 3804, lr = 0.00653689 +I0407 22:56:35.997985 32718 solver.cpp:218] Iteration 3816 (2.43111 iter/s, 4.93601s/12 iters), loss = 1.02435 +I0407 22:56:35.998026 32718 solver.cpp:237] Train net output #0: loss = 1.02435 (* 1 = 1.02435 loss) +I0407 22:56:35.998034 32718 sgd_solver.cpp:105] Iteration 3816, lr = 0.00652356 +I0407 22:56:40.977126 32718 solver.cpp:218] Iteration 3828 (2.41009 iter/s, 4.97907s/12 iters), loss = 0.857411 +I0407 22:56:40.977169 32718 solver.cpp:237] Train net output #0: loss = 0.857411 (* 1 = 0.857411 loss) +I0407 22:56:40.977177 32718 sgd_solver.cpp:105] Iteration 3828, lr = 0.00651021 +I0407 22:56:45.948088 32718 solver.cpp:218] Iteration 3840 (2.41406 iter/s, 4.97089s/12 iters), loss = 0.889354 +I0407 22:56:45.948133 32718 solver.cpp:237] Train net output #0: loss = 0.889354 (* 1 = 0.889354 loss) +I0407 22:56:45.948143 32718 sgd_solver.cpp:105] Iteration 3840, lr = 0.00649683 +I0407 22:56:47.054481 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:50.849339 32718 solver.cpp:218] Iteration 3852 (2.44839 iter/s, 4.90117s/12 iters), loss = 1.06307 +I0407 22:56:50.849385 32718 solver.cpp:237] Train net output #0: loss = 1.06307 (* 1 = 1.06307 loss) +I0407 22:56:50.849392 32718 sgd_solver.cpp:105] Iteration 3852, lr = 0.00648343 +I0407 22:56:55.796479 32718 solver.cpp:218] Iteration 3864 (2.42568 iter/s, 4.94707s/12 iters), loss = 0.775202 +I0407 22:56:55.796519 32718 solver.cpp:237] Train net output #0: loss = 0.775202 (* 1 = 0.775202 loss) +I0407 22:56:55.796526 32718 sgd_solver.cpp:105] Iteration 3864, lr = 0.00647001 +I0407 22:57:00.257714 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 22:57:03.327404 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 22:57:05.697715 32718 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 22:57:05.697732 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:57:08.759795 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:10.310288 32718 solver.cpp:397] Test net output #0: accuracy = 0.36826 +I0407 22:57:10.310334 32718 solver.cpp:397] Test net output #1: loss = 2.94577 (* 1 = 2.94577 loss) +I0407 22:57:10.406980 32718 solver.cpp:218] Iteration 3876 (0.821332 iter/s, 14.6104s/12 iters), loss = 1.09111 +I0407 22:57:10.407024 32718 solver.cpp:237] Train net output #0: loss = 1.09111 (* 1 = 1.09111 loss) +I0407 22:57:10.407033 32718 sgd_solver.cpp:105] Iteration 3876, lr = 0.00645656 +I0407 22:57:14.519975 32718 solver.cpp:218] Iteration 3888 (2.91763 iter/s, 4.11292s/12 iters), loss = 0.703704 +I0407 22:57:14.520020 32718 solver.cpp:237] Train net output #0: loss = 0.703704 (* 1 = 0.703704 loss) +I0407 22:57:14.520027 32718 sgd_solver.cpp:105] Iteration 3888, lr = 0.00644309 +I0407 22:57:19.443481 32718 solver.cpp:218] Iteration 3900 (2.43732 iter/s, 4.92343s/12 iters), loss = 0.842711 +I0407 22:57:19.443527 32718 solver.cpp:237] Train net output #0: loss = 0.842711 (* 1 = 0.842711 loss) +I0407 22:57:19.443536 32718 sgd_solver.cpp:105] Iteration 3900, lr = 0.0064296 +I0407 22:57:24.411145 32718 solver.cpp:218] Iteration 3912 (2.41566 iter/s, 4.96759s/12 iters), loss = 1.09325 +I0407 22:57:24.411185 32718 solver.cpp:237] Train net output #0: loss = 1.09325 (* 1 = 1.09325 loss) +I0407 22:57:24.411192 32718 sgd_solver.cpp:105] Iteration 3912, lr = 0.00641609 +I0407 22:57:29.317859 32718 solver.cpp:218] Iteration 3924 (2.44566 iter/s, 4.90664s/12 iters), loss = 0.913379 +I0407 22:57:29.317903 32718 solver.cpp:237] Train net output #0: loss = 0.913379 (* 1 = 0.913379 loss) +I0407 22:57:29.317910 32718 sgd_solver.cpp:105] Iteration 3924, lr = 0.00640255 +I0407 22:57:34.265446 32718 solver.cpp:218] Iteration 3936 (2.42546 iter/s, 4.94752s/12 iters), loss = 0.838419 +I0407 22:57:34.265554 32718 solver.cpp:237] Train net output #0: loss = 0.838419 (* 1 = 0.838419 loss) +I0407 22:57:34.265563 32718 sgd_solver.cpp:105] Iteration 3936, lr = 0.00638899 +I0407 22:57:37.569576 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:39.169837 32718 solver.cpp:218] Iteration 3948 (2.44685 iter/s, 4.90426s/12 iters), loss = 0.937886 +I0407 22:57:39.169874 32718 solver.cpp:237] Train net output #0: loss = 0.937886 (* 1 = 0.937886 loss) +I0407 22:57:39.169883 32718 sgd_solver.cpp:105] Iteration 3948, lr = 0.00637541 +I0407 22:57:44.129997 32718 solver.cpp:218] Iteration 3960 (2.41931 iter/s, 4.9601s/12 iters), loss = 1.05682 +I0407 22:57:44.130033 32718 solver.cpp:237] Train net output #0: loss = 1.05682 (* 1 = 1.05682 loss) +I0407 22:57:44.130041 32718 sgd_solver.cpp:105] Iteration 3960, lr = 0.0063618 +I0407 22:57:49.078214 32718 solver.cpp:218] Iteration 3972 (2.42515 iter/s, 4.94816s/12 iters), loss = 0.911508 +I0407 22:57:49.078254 32718 solver.cpp:237] Train net output #0: loss = 0.911508 (* 1 = 0.911508 loss) +I0407 22:57:49.078263 32718 sgd_solver.cpp:105] Iteration 3972, lr = 0.00634818 +I0407 22:57:51.071239 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 22:57:54.171285 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 22:57:56.548487 32718 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 22:57:56.548506 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:57:59.401404 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:01.060564 32718 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0407 22:58:01.060607 32718 solver.cpp:397] Test net output #1: loss = 2.77958 (* 1 = 2.77958 loss) +I0407 22:58:02.853452 32718 solver.cpp:218] Iteration 3984 (0.871134 iter/s, 13.7751s/12 iters), loss = 0.874666 +I0407 22:58:02.853500 32718 solver.cpp:237] Train net output #0: loss = 0.874666 (* 1 = 0.874666 loss) +I0407 22:58:02.853509 32718 sgd_solver.cpp:105] Iteration 3984, lr = 0.00633453 +I0407 22:58:07.810863 32718 solver.cpp:218] Iteration 3996 (2.42065 iter/s, 4.95734s/12 iters), loss = 0.90057 +I0407 22:58:07.811015 32718 solver.cpp:237] Train net output #0: loss = 0.90057 (* 1 = 0.90057 loss) +I0407 22:58:07.811024 32718 sgd_solver.cpp:105] Iteration 3996, lr = 0.00632086 +I0407 22:58:12.730525 32718 solver.cpp:218] Iteration 4008 (2.43928 iter/s, 4.91949s/12 iters), loss = 0.759469 +I0407 22:58:12.730562 32718 solver.cpp:237] Train net output #0: loss = 0.759469 (* 1 = 0.759469 loss) +I0407 22:58:12.730571 32718 sgd_solver.cpp:105] Iteration 4008, lr = 0.00630717 +I0407 22:58:17.689056 32718 solver.cpp:218] Iteration 4020 (2.4201 iter/s, 4.95847s/12 iters), loss = 0.932925 +I0407 22:58:17.689097 32718 solver.cpp:237] Train net output #0: loss = 0.932925 (* 1 = 0.932925 loss) +I0407 22:58:17.689105 32718 sgd_solver.cpp:105] Iteration 4020, lr = 0.00629346 +I0407 22:58:22.645659 32718 solver.cpp:218] Iteration 4032 (2.42105 iter/s, 4.95653s/12 iters), loss = 0.827329 +I0407 22:58:22.645705 32718 solver.cpp:237] Train net output #0: loss = 0.827329 (* 1 = 0.827329 loss) +I0407 22:58:22.645715 32718 sgd_solver.cpp:105] Iteration 4032, lr = 0.00627973 +I0407 22:58:27.645452 32718 solver.cpp:218] Iteration 4044 (2.40013 iter/s, 4.99972s/12 iters), loss = 0.766334 +I0407 22:58:27.645493 32718 solver.cpp:237] Train net output #0: loss = 0.766334 (* 1 = 0.766334 loss) +I0407 22:58:27.645503 32718 sgd_solver.cpp:105] Iteration 4044, lr = 0.00626597 +I0407 22:58:28.122980 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:32.596467 32718 solver.cpp:218] Iteration 4056 (2.42378 iter/s, 4.95094s/12 iters), loss = 1.38067 +I0407 22:58:32.596510 32718 solver.cpp:237] Train net output #0: loss = 1.38067 (* 1 = 1.38067 loss) +I0407 22:58:32.596519 32718 sgd_solver.cpp:105] Iteration 4056, lr = 0.0062522 +I0407 22:58:37.556883 32718 solver.cpp:218] Iteration 4068 (2.41919 iter/s, 4.96035s/12 iters), loss = 0.668496 +I0407 22:58:37.556919 32718 solver.cpp:237] Train net output #0: loss = 0.668496 (* 1 = 0.668496 loss) +I0407 22:58:37.556927 32718 sgd_solver.cpp:105] Iteration 4068, lr = 0.00623841 +I0407 22:58:41.886654 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 22:58:44.973259 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 22:58:47.386766 32718 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 22:58:47.386783 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:58:50.407755 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:52.182080 32718 solver.cpp:397] Test net output #0: accuracy = 0.389706 +I0407 22:58:52.182124 32718 solver.cpp:397] Test net output #1: loss = 2.79132 (* 1 = 2.79132 loss) +I0407 22:58:52.278614 32718 solver.cpp:218] Iteration 4080 (0.815126 iter/s, 14.7216s/12 iters), loss = 0.790554 +I0407 22:58:52.278656 32718 solver.cpp:237] Train net output #0: loss = 0.790554 (* 1 = 0.790554 loss) +I0407 22:58:52.278664 32718 sgd_solver.cpp:105] Iteration 4080, lr = 0.00622459 +I0407 22:58:56.447135 32718 solver.cpp:218] Iteration 4092 (2.87877 iter/s, 4.16845s/12 iters), loss = 0.772398 +I0407 22:58:56.447180 32718 solver.cpp:237] Train net output #0: loss = 0.772398 (* 1 = 0.772398 loss) +I0407 22:58:56.447188 32718 sgd_solver.cpp:105] Iteration 4092, lr = 0.00621076 +I0407 22:59:01.408865 32718 solver.cpp:218] Iteration 4104 (2.41855 iter/s, 4.96165s/12 iters), loss = 0.895351 +I0407 22:59:01.408910 32718 solver.cpp:237] Train net output #0: loss = 0.895351 (* 1 = 0.895351 loss) +I0407 22:59:01.408918 32718 sgd_solver.cpp:105] Iteration 4104, lr = 0.00619691 +I0407 22:59:06.416368 32718 solver.cpp:218] Iteration 4116 (2.39644 iter/s, 5.00744s/12 iters), loss = 0.930109 +I0407 22:59:06.416404 32718 solver.cpp:237] Train net output #0: loss = 0.930109 (* 1 = 0.930109 loss) +I0407 22:59:06.416410 32718 sgd_solver.cpp:105] Iteration 4116, lr = 0.00618303 +I0407 22:59:11.425076 32718 solver.cpp:218] Iteration 4128 (2.39586 iter/s, 5.00864s/12 iters), loss = 0.828333 +I0407 22:59:11.425115 32718 solver.cpp:237] Train net output #0: loss = 0.828333 (* 1 = 0.828333 loss) +I0407 22:59:11.425123 32718 sgd_solver.cpp:105] Iteration 4128, lr = 0.00616914 +I0407 22:59:16.396162 32718 solver.cpp:218] Iteration 4140 (2.41399 iter/s, 4.97102s/12 iters), loss = 0.717254 +I0407 22:59:16.396288 32718 solver.cpp:237] Train net output #0: loss = 0.717254 (* 1 = 0.717254 loss) +I0407 22:59:16.396298 32718 sgd_solver.cpp:105] Iteration 4140, lr = 0.00615523 +I0407 22:59:18.979099 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:21.298804 32718 solver.cpp:218] Iteration 4152 (2.44774 iter/s, 4.90249s/12 iters), loss = 0.589708 +I0407 22:59:21.298848 32718 solver.cpp:237] Train net output #0: loss = 0.589708 (* 1 = 0.589708 loss) +I0407 22:59:21.298856 32718 sgd_solver.cpp:105] Iteration 4152, lr = 0.0061413 +I0407 22:59:22.879806 32718 blocking_queue.cpp:49] Waiting for data +I0407 22:59:26.259426 32718 solver.cpp:218] Iteration 4164 (2.41908 iter/s, 4.96055s/12 iters), loss = 0.813596 +I0407 22:59:26.259462 32718 solver.cpp:237] Train net output #0: loss = 0.813596 (* 1 = 0.813596 loss) +I0407 22:59:26.259470 32718 sgd_solver.cpp:105] Iteration 4164, lr = 0.00612735 +I0407 22:59:31.168186 32718 solver.cpp:218] Iteration 4176 (2.44464 iter/s, 4.9087s/12 iters), loss = 0.762031 +I0407 22:59:31.168223 32718 solver.cpp:237] Train net output #0: loss = 0.762031 (* 1 = 0.762031 loss) +I0407 22:59:31.168231 32718 sgd_solver.cpp:105] Iteration 4176, lr = 0.00611338 +I0407 22:59:33.154845 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 22:59:36.246282 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 22:59:38.665925 32718 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 22:59:38.665942 32718 net.cpp:676] Ignoring source layer train-data +I0407 22:59:41.713333 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:43.471762 32718 solver.cpp:397] Test net output #0: accuracy = 0.408088 +I0407 22:59:43.471807 32718 solver.cpp:397] Test net output #1: loss = 2.74274 (* 1 = 2.74274 loss) +I0407 22:59:45.302588 32718 solver.cpp:218] Iteration 4188 (0.848998 iter/s, 14.1343s/12 iters), loss = 0.863449 +I0407 22:59:45.302626 32718 solver.cpp:237] Train net output #0: loss = 0.863449 (* 1 = 0.863449 loss) +I0407 22:59:45.302634 32718 sgd_solver.cpp:105] Iteration 4188, lr = 0.0060994 +I0407 22:59:50.294224 32718 solver.cpp:218] Iteration 4200 (2.40405 iter/s, 4.99157s/12 iters), loss = 0.815781 +I0407 22:59:50.294365 32718 solver.cpp:237] Train net output #0: loss = 0.815781 (* 1 = 0.815781 loss) +I0407 22:59:50.294374 32718 sgd_solver.cpp:105] Iteration 4200, lr = 0.00608539 +I0407 22:59:55.295661 32718 solver.cpp:218] Iteration 4212 (2.39939 iter/s, 5.00128s/12 iters), loss = 0.703529 +I0407 22:59:55.295696 32718 solver.cpp:237] Train net output #0: loss = 0.703529 (* 1 = 0.703529 loss) +I0407 22:59:55.295704 32718 sgd_solver.cpp:105] Iteration 4212, lr = 0.00607137 +I0407 23:00:00.130764 32718 solver.cpp:218] Iteration 4224 (2.48188 iter/s, 4.83504s/12 iters), loss = 1.201 +I0407 23:00:00.130812 32718 solver.cpp:237] Train net output #0: loss = 1.201 (* 1 = 1.201 loss) +I0407 23:00:00.130820 32718 sgd_solver.cpp:105] Iteration 4224, lr = 0.00605733 +I0407 23:00:05.104816 32718 solver.cpp:218] Iteration 4236 (2.41256 iter/s, 4.97398s/12 iters), loss = 0.931851 +I0407 23:00:05.104857 32718 solver.cpp:237] Train net output #0: loss = 0.931851 (* 1 = 0.931851 loss) +I0407 23:00:05.104866 32718 sgd_solver.cpp:105] Iteration 4236, lr = 0.00604327 +I0407 23:00:09.773797 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:10.000805 32718 solver.cpp:218] Iteration 4248 (2.45102 iter/s, 4.89592s/12 iters), loss = 0.908264 +I0407 23:00:10.000850 32718 solver.cpp:237] Train net output #0: loss = 0.908264 (* 1 = 0.908264 loss) +I0407 23:00:10.000859 32718 sgd_solver.cpp:105] Iteration 4248, lr = 0.0060292 +I0407 23:00:14.977360 32718 solver.cpp:218] Iteration 4260 (2.41135 iter/s, 4.97647s/12 iters), loss = 0.847157 +I0407 23:00:14.977416 32718 solver.cpp:237] Train net output #0: loss = 0.847157 (* 1 = 0.847157 loss) +I0407 23:00:14.977429 32718 sgd_solver.cpp:105] Iteration 4260, lr = 0.00601511 +I0407 23:00:19.932128 32718 solver.cpp:218] Iteration 4272 (2.42195 iter/s, 4.95469s/12 iters), loss = 0.730753 +I0407 23:00:19.932165 32718 solver.cpp:237] Train net output #0: loss = 0.730753 (* 1 = 0.730753 loss) +I0407 23:00:19.932173 32718 sgd_solver.cpp:105] Iteration 4272, lr = 0.006001 +I0407 23:00:24.420094 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 23:00:28.620337 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 23:00:31.011293 32718 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 23:00:31.011312 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:00:33.930657 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:35.785959 32718 solver.cpp:397] Test net output #0: accuracy = 0.410539 +I0407 23:00:35.786006 32718 solver.cpp:397] Test net output #1: loss = 2.73907 (* 1 = 2.73907 loss) +I0407 23:00:35.882639 32718 solver.cpp:218] Iteration 4284 (0.752331 iter/s, 15.9504s/12 iters), loss = 0.644884 +I0407 23:00:35.882684 32718 solver.cpp:237] Train net output #0: loss = 0.644884 (* 1 = 0.644884 loss) +I0407 23:00:35.882694 32718 sgd_solver.cpp:105] Iteration 4284, lr = 0.00598688 +I0407 23:00:40.104425 32718 solver.cpp:218] Iteration 4296 (2.84244 iter/s, 4.22172s/12 iters), loss = 0.434566 +I0407 23:00:40.104462 32718 solver.cpp:237] Train net output #0: loss = 0.434566 (* 1 = 0.434566 loss) +I0407 23:00:40.104470 32718 sgd_solver.cpp:105] Iteration 4296, lr = 0.00597274 +I0407 23:00:45.109764 32718 solver.cpp:218] Iteration 4308 (2.39747 iter/s, 5.00527s/12 iters), loss = 0.694076 +I0407 23:00:45.109804 32718 solver.cpp:237] Train net output #0: loss = 0.694076 (* 1 = 0.694076 loss) +I0407 23:00:45.109814 32718 sgd_solver.cpp:105] Iteration 4308, lr = 0.00595858 +I0407 23:00:50.037951 32718 solver.cpp:218] Iteration 4320 (2.43501 iter/s, 4.92812s/12 iters), loss = 0.752912 +I0407 23:00:50.037992 32718 solver.cpp:237] Train net output #0: loss = 0.752912 (* 1 = 0.752912 loss) +I0407 23:00:50.037999 32718 sgd_solver.cpp:105] Iteration 4320, lr = 0.0059444 +I0407 23:00:55.023200 32718 solver.cpp:218] Iteration 4332 (2.40714 iter/s, 4.98517s/12 iters), loss = 0.653205 +I0407 23:00:55.023346 32718 solver.cpp:237] Train net output #0: loss = 0.653205 (* 1 = 0.653205 loss) +I0407 23:00:55.023356 32718 sgd_solver.cpp:105] Iteration 4332, lr = 0.00593022 +I0407 23:00:59.997934 32718 solver.cpp:218] Iteration 4344 (2.41227 iter/s, 4.97456s/12 iters), loss = 0.69018 +I0407 23:00:59.997979 32718 solver.cpp:237] Train net output #0: loss = 0.69018 (* 1 = 0.69018 loss) +I0407 23:00:59.997987 32718 sgd_solver.cpp:105] Iteration 4344, lr = 0.00591601 +I0407 23:01:01.859086 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:04.912873 32718 solver.cpp:218] Iteration 4356 (2.44157 iter/s, 4.91486s/12 iters), loss = 0.616321 +I0407 23:01:04.912916 32718 solver.cpp:237] Train net output #0: loss = 0.616321 (* 1 = 0.616321 loss) +I0407 23:01:04.912925 32718 sgd_solver.cpp:105] Iteration 4356, lr = 0.00590179 +I0407 23:01:09.817785 32718 solver.cpp:218] Iteration 4368 (2.44656 iter/s, 4.90484s/12 iters), loss = 0.800664 +I0407 23:01:09.817832 32718 solver.cpp:237] Train net output #0: loss = 0.800664 (* 1 = 0.800664 loss) +I0407 23:01:09.817842 32718 sgd_solver.cpp:105] Iteration 4368, lr = 0.00588756 +I0407 23:01:14.855509 32718 solver.cpp:218] Iteration 4380 (2.38206 iter/s, 5.03765s/12 iters), loss = 0.723156 +I0407 23:01:14.855546 32718 solver.cpp:237] Train net output #0: loss = 0.723156 (* 1 = 0.723156 loss) +I0407 23:01:14.855554 32718 sgd_solver.cpp:105] Iteration 4380, lr = 0.00587331 +I0407 23:01:16.915756 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 23:01:21.259976 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 23:01:26.594055 32718 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 23:01:26.594163 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:01:29.356676 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:31.120225 32718 solver.cpp:397] Test net output #0: accuracy = 0.422181 +I0407 23:01:31.120250 32718 solver.cpp:397] Test net output #1: loss = 2.79237 (* 1 = 2.79237 loss) +I0407 23:01:32.925869 32718 solver.cpp:218] Iteration 4392 (0.664075 iter/s, 18.0703s/12 iters), loss = 0.539267 +I0407 23:01:32.925915 32718 solver.cpp:237] Train net output #0: loss = 0.539267 (* 1 = 0.539267 loss) +I0407 23:01:32.925925 32718 sgd_solver.cpp:105] Iteration 4392, lr = 0.00585904 +I0407 23:01:37.875988 32718 solver.cpp:218] Iteration 4404 (2.42422 iter/s, 4.95005s/12 iters), loss = 0.9484 +I0407 23:01:37.876026 32718 solver.cpp:237] Train net output #0: loss = 0.9484 (* 1 = 0.9484 loss) +I0407 23:01:37.876034 32718 sgd_solver.cpp:105] Iteration 4404, lr = 0.00584476 +I0407 23:01:42.843683 32718 solver.cpp:218] Iteration 4416 (2.41564 iter/s, 4.96763s/12 iters), loss = 0.566697 +I0407 23:01:42.843726 32718 solver.cpp:237] Train net output #0: loss = 0.566697 (* 1 = 0.566697 loss) +I0407 23:01:42.843735 32718 sgd_solver.cpp:105] Iteration 4416, lr = 0.00583047 +I0407 23:01:47.753899 32718 solver.cpp:218] Iteration 4428 (2.44392 iter/s, 4.91014s/12 iters), loss = 0.639526 +I0407 23:01:47.753939 32718 solver.cpp:237] Train net output #0: loss = 0.639526 (* 1 = 0.639526 loss) +I0407 23:01:47.753947 32718 sgd_solver.cpp:105] Iteration 4428, lr = 0.00581616 +I0407 23:01:52.736768 32718 solver.cpp:218] Iteration 4440 (2.40829 iter/s, 4.9828s/12 iters), loss = 0.573495 +I0407 23:01:52.736809 32718 solver.cpp:237] Train net output #0: loss = 0.573495 (* 1 = 0.573495 loss) +I0407 23:01:52.736816 32718 sgd_solver.cpp:105] Iteration 4440, lr = 0.00580184 +I0407 23:01:56.702853 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:57.655265 32718 solver.cpp:218] Iteration 4452 (2.4398 iter/s, 4.91843s/12 iters), loss = 0.500764 +I0407 23:01:57.655305 32718 solver.cpp:237] Train net output #0: loss = 0.500764 (* 1 = 0.500764 loss) +I0407 23:01:57.655313 32718 sgd_solver.cpp:105] Iteration 4452, lr = 0.00578751 +I0407 23:02:02.644146 32718 solver.cpp:218] Iteration 4464 (2.40538 iter/s, 4.98882s/12 iters), loss = 0.650251 +I0407 23:02:02.644181 32718 solver.cpp:237] Train net output #0: loss = 0.650251 (* 1 = 0.650251 loss) +I0407 23:02:02.644188 32718 sgd_solver.cpp:105] Iteration 4464, lr = 0.00577316 +I0407 23:02:07.613387 32718 solver.cpp:218] Iteration 4476 (2.41489 iter/s, 4.96918s/12 iters), loss = 0.619571 +I0407 23:02:07.613430 32718 solver.cpp:237] Train net output #0: loss = 0.619571 (* 1 = 0.619571 loss) +I0407 23:02:07.613438 32718 sgd_solver.cpp:105] Iteration 4476, lr = 0.0057588 +I0407 23:02:12.074224 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 23:02:15.175438 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 23:02:17.970979 32718 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 23:02:17.970999 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:02:20.814456 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:22.767851 32718 solver.cpp:397] Test net output #0: accuracy = 0.417279 +I0407 23:02:22.767894 32718 solver.cpp:397] Test net output #1: loss = 2.79697 (* 1 = 2.79697 loss) +I0407 23:02:22.864405 32718 solver.cpp:218] Iteration 4488 (0.786838 iter/s, 15.2509s/12 iters), loss = 0.639104 +I0407 23:02:22.864452 32718 solver.cpp:237] Train net output #0: loss = 0.639104 (* 1 = 0.639104 loss) +I0407 23:02:22.864459 32718 sgd_solver.cpp:105] Iteration 4488, lr = 0.00574443 +I0407 23:02:26.995247 32718 solver.cpp:218] Iteration 4500 (2.90503 iter/s, 4.13077s/12 iters), loss = 0.435451 +I0407 23:02:26.995370 32718 solver.cpp:237] Train net output #0: loss = 0.435451 (* 1 = 0.435451 loss) +I0407 23:02:26.995381 32718 sgd_solver.cpp:105] Iteration 4500, lr = 0.00573004 +I0407 23:02:31.949501 32718 solver.cpp:218] Iteration 4512 (2.42223 iter/s, 4.95411s/12 iters), loss = 0.708946 +I0407 23:02:31.949538 32718 solver.cpp:237] Train net output #0: loss = 0.708946 (* 1 = 0.708946 loss) +I0407 23:02:31.949546 32718 sgd_solver.cpp:105] Iteration 4512, lr = 0.00571564 +I0407 23:02:36.875913 32718 solver.cpp:218] Iteration 4524 (2.43588 iter/s, 4.92635s/12 iters), loss = 0.600295 +I0407 23:02:36.875958 32718 solver.cpp:237] Train net output #0: loss = 0.600295 (* 1 = 0.600295 loss) +I0407 23:02:36.875967 32718 sgd_solver.cpp:105] Iteration 4524, lr = 0.00570123 +I0407 23:02:41.861909 32718 solver.cpp:218] Iteration 4536 (2.40678 iter/s, 4.98592s/12 iters), loss = 0.966789 +I0407 23:02:41.861949 32718 solver.cpp:237] Train net output #0: loss = 0.966789 (* 1 = 0.966789 loss) +I0407 23:02:41.861958 32718 sgd_solver.cpp:105] Iteration 4536, lr = 0.00568681 +I0407 23:02:46.830744 32718 solver.cpp:218] Iteration 4548 (2.41509 iter/s, 4.96877s/12 iters), loss = 0.534585 +I0407 23:02:46.830782 32718 solver.cpp:237] Train net output #0: loss = 0.534585 (* 1 = 0.534585 loss) +I0407 23:02:46.830791 32718 sgd_solver.cpp:105] Iteration 4548, lr = 0.00567237 +I0407 23:02:48.055864 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:51.728072 32718 solver.cpp:218] Iteration 4560 (2.45035 iter/s, 4.89726s/12 iters), loss = 0.482049 +I0407 23:02:51.728122 32718 solver.cpp:237] Train net output #0: loss = 0.482049 (* 1 = 0.482049 loss) +I0407 23:02:51.728130 32718 sgd_solver.cpp:105] Iteration 4560, lr = 0.00565793 +I0407 23:02:56.703907 32718 solver.cpp:218] Iteration 4572 (2.41169 iter/s, 4.97576s/12 iters), loss = 0.567612 +I0407 23:02:56.703944 32718 solver.cpp:237] Train net output #0: loss = 0.567611 (* 1 = 0.567611 loss) +I0407 23:02:56.703953 32718 sgd_solver.cpp:105] Iteration 4572, lr = 0.00564347 +I0407 23:03:01.606660 32718 solver.cpp:218] Iteration 4584 (2.44764 iter/s, 4.90269s/12 iters), loss = 0.442943 +I0407 23:03:01.606818 32718 solver.cpp:237] Train net output #0: loss = 0.442943 (* 1 = 0.442943 loss) +I0407 23:03:01.606828 32718 sgd_solver.cpp:105] Iteration 4584, lr = 0.005629 +I0407 23:03:03.605697 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 23:03:07.125408 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 23:03:10.836084 32718 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 23:03:10.836103 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:03:13.623032 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:15.589386 32718 solver.cpp:397] Test net output #0: accuracy = 0.408088 +I0407 23:03:15.589423 32718 solver.cpp:397] Test net output #1: loss = 2.83106 (* 1 = 2.83106 loss) +I0407 23:03:17.390148 32718 solver.cpp:218] Iteration 4596 (0.760299 iter/s, 15.7833s/12 iters), loss = 0.398185 +I0407 23:03:17.390197 32718 solver.cpp:237] Train net output #0: loss = 0.398185 (* 1 = 0.398185 loss) +I0407 23:03:17.390204 32718 sgd_solver.cpp:105] Iteration 4596, lr = 0.00561452 +I0407 23:03:22.318971 32718 solver.cpp:218] Iteration 4608 (2.4347 iter/s, 4.92875s/12 iters), loss = 0.518338 +I0407 23:03:22.319010 32718 solver.cpp:237] Train net output #0: loss = 0.518338 (* 1 = 0.518338 loss) +I0407 23:03:22.319017 32718 sgd_solver.cpp:105] Iteration 4608, lr = 0.00560004 +I0407 23:03:27.283866 32718 solver.cpp:218] Iteration 4620 (2.417 iter/s, 4.96482s/12 iters), loss = 0.712403 +I0407 23:03:27.283907 32718 solver.cpp:237] Train net output #0: loss = 0.712403 (* 1 = 0.712403 loss) +I0407 23:03:27.283915 32718 sgd_solver.cpp:105] Iteration 4620, lr = 0.00558554 +I0407 23:03:32.209993 32718 solver.cpp:218] Iteration 4632 (2.43602 iter/s, 4.92606s/12 iters), loss = 0.29218 +I0407 23:03:32.210111 32718 solver.cpp:237] Train net output #0: loss = 0.29218 (* 1 = 0.29218 loss) +I0407 23:03:32.210119 32718 sgd_solver.cpp:105] Iteration 4632, lr = 0.00557103 +I0407 23:03:37.158493 32718 solver.cpp:218] Iteration 4644 (2.42505 iter/s, 4.94836s/12 iters), loss = 0.497633 +I0407 23:03:37.158531 32718 solver.cpp:237] Train net output #0: loss = 0.497633 (* 1 = 0.497633 loss) +I0407 23:03:37.158540 32718 sgd_solver.cpp:105] Iteration 4644, lr = 0.00555651 +I0407 23:03:40.493163 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:42.099344 32718 solver.cpp:218] Iteration 4656 (2.42877 iter/s, 4.94078s/12 iters), loss = 0.366723 +I0407 23:03:42.099380 32718 solver.cpp:237] Train net output #0: loss = 0.366723 (* 1 = 0.366723 loss) +I0407 23:03:42.099387 32718 sgd_solver.cpp:105] Iteration 4656, lr = 0.00554198 +I0407 23:03:47.038570 32718 solver.cpp:218] Iteration 4668 (2.42956 iter/s, 4.93916s/12 iters), loss = 0.430308 +I0407 23:03:47.038612 32718 solver.cpp:237] Train net output #0: loss = 0.430308 (* 1 = 0.430308 loss) +I0407 23:03:47.038620 32718 sgd_solver.cpp:105] Iteration 4668, lr = 0.00552744 +I0407 23:03:52.000350 32718 solver.cpp:218] Iteration 4680 (2.41852 iter/s, 4.96171s/12 iters), loss = 0.452207 +I0407 23:03:52.000392 32718 solver.cpp:237] Train net output #0: loss = 0.452207 (* 1 = 0.452207 loss) +I0407 23:03:52.000399 32718 sgd_solver.cpp:105] Iteration 4680, lr = 0.0055129 +I0407 23:03:56.458542 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 23:03:59.556593 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 23:04:01.919319 32718 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 23:04:01.919338 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:04:04.639719 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:06.527236 32718 solver.cpp:397] Test net output #0: accuracy = 0.433824 +I0407 23:04:06.527281 32718 solver.cpp:397] Test net output #1: loss = 2.7845 (* 1 = 2.7845 loss) +I0407 23:04:06.624274 32718 solver.cpp:218] Iteration 4692 (0.820579 iter/s, 14.6238s/12 iters), loss = 0.56411 +I0407 23:04:06.624318 32718 solver.cpp:237] Train net output #0: loss = 0.56411 (* 1 = 0.56411 loss) +I0407 23:04:06.624327 32718 sgd_solver.cpp:105] Iteration 4692, lr = 0.00549834 +I0407 23:04:10.766512 32718 solver.cpp:218] Iteration 4704 (2.89703 iter/s, 4.14217s/12 iters), loss = 0.517035 +I0407 23:04:10.766551 32718 solver.cpp:237] Train net output #0: loss = 0.517035 (* 1 = 0.517035 loss) +I0407 23:04:10.766559 32718 sgd_solver.cpp:105] Iteration 4704, lr = 0.00548378 +I0407 23:04:15.643218 32718 solver.cpp:218] Iteration 4716 (2.46071 iter/s, 4.87664s/12 iters), loss = 0.327994 +I0407 23:04:15.643257 32718 solver.cpp:237] Train net output #0: loss = 0.327994 (* 1 = 0.327994 loss) +I0407 23:04:15.643265 32718 sgd_solver.cpp:105] Iteration 4716, lr = 0.0054692 +I0407 23:04:20.541070 32718 solver.cpp:218] Iteration 4728 (2.45009 iter/s, 4.89778s/12 iters), loss = 0.425193 +I0407 23:04:20.541111 32718 solver.cpp:237] Train net output #0: loss = 0.425193 (* 1 = 0.425193 loss) +I0407 23:04:20.541119 32718 sgd_solver.cpp:105] Iteration 4728, lr = 0.00545462 +I0407 23:04:25.471937 32718 solver.cpp:218] Iteration 4740 (2.43369 iter/s, 4.93079s/12 iters), loss = 0.519157 +I0407 23:04:25.471982 32718 solver.cpp:237] Train net output #0: loss = 0.519157 (* 1 = 0.519157 loss) +I0407 23:04:25.471990 32718 sgd_solver.cpp:105] Iteration 4740, lr = 0.00544003 +I0407 23:04:30.441917 32718 solver.cpp:218] Iteration 4752 (2.41453 iter/s, 4.9699s/12 iters), loss = 0.628195 +I0407 23:04:30.441962 32718 solver.cpp:237] Train net output #0: loss = 0.628194 (* 1 = 0.628194 loss) +I0407 23:04:30.441969 32718 sgd_solver.cpp:105] Iteration 4752, lr = 0.00542544 +I0407 23:04:30.949649 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:35.296705 32718 solver.cpp:218] Iteration 4764 (2.47183 iter/s, 4.85471s/12 iters), loss = 0.506479 +I0407 23:04:35.296859 32718 solver.cpp:237] Train net output #0: loss = 0.506479 (* 1 = 0.506479 loss) +I0407 23:04:35.296869 32718 sgd_solver.cpp:105] Iteration 4764, lr = 0.00541084 +I0407 23:04:40.283408 32718 solver.cpp:218] Iteration 4776 (2.40649 iter/s, 4.98652s/12 iters), loss = 0.498028 +I0407 23:04:40.283457 32718 solver.cpp:237] Train net output #0: loss = 0.498027 (* 1 = 0.498027 loss) +I0407 23:04:40.283464 32718 sgd_solver.cpp:105] Iteration 4776, lr = 0.00539623 +I0407 23:04:45.202618 32718 solver.cpp:218] Iteration 4788 (2.43945 iter/s, 4.91914s/12 iters), loss = 0.584043 +I0407 23:04:45.202657 32718 solver.cpp:237] Train net output #0: loss = 0.584043 (* 1 = 0.584043 loss) +I0407 23:04:45.202666 32718 sgd_solver.cpp:105] Iteration 4788, lr = 0.00538161 +I0407 23:04:47.204723 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 23:04:50.288926 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 23:04:53.779008 32718 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 23:04:53.779024 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:04:56.564221 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:58.719349 32718 solver.cpp:397] Test net output #0: accuracy = 0.415441 +I0407 23:04:58.719390 32718 solver.cpp:397] Test net output #1: loss = 2.8976 (* 1 = 2.8976 loss) +I0407 23:05:00.505964 32718 solver.cpp:218] Iteration 4800 (0.784147 iter/s, 15.3032s/12 iters), loss = 0.443823 +I0407 23:05:00.506009 32718 solver.cpp:237] Train net output #0: loss = 0.443823 (* 1 = 0.443823 loss) +I0407 23:05:00.506017 32718 sgd_solver.cpp:105] Iteration 4800, lr = 0.00536699 +I0407 23:05:05.472918 32718 solver.cpp:218] Iteration 4812 (2.416 iter/s, 4.96688s/12 iters), loss = 0.598662 +I0407 23:05:05.473043 32718 solver.cpp:237] Train net output #0: loss = 0.598662 (* 1 = 0.598662 loss) +I0407 23:05:05.473052 32718 sgd_solver.cpp:105] Iteration 4812, lr = 0.00535236 +I0407 23:05:10.432941 32718 solver.cpp:218] Iteration 4824 (2.41942 iter/s, 4.95987s/12 iters), loss = 0.72441 +I0407 23:05:10.432981 32718 solver.cpp:237] Train net output #0: loss = 0.72441 (* 1 = 0.72441 loss) +I0407 23:05:10.432989 32718 sgd_solver.cpp:105] Iteration 4824, lr = 0.00533772 +I0407 23:05:15.363165 32718 solver.cpp:218] Iteration 4836 (2.434 iter/s, 4.93015s/12 iters), loss = 0.400541 +I0407 23:05:15.363214 32718 solver.cpp:237] Train net output #0: loss = 0.400541 (* 1 = 0.400541 loss) +I0407 23:05:15.363221 32718 sgd_solver.cpp:105] Iteration 4836, lr = 0.00532308 +I0407 23:05:17.382731 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:05:20.327533 32718 solver.cpp:218] Iteration 4848 (2.41726 iter/s, 4.96429s/12 iters), loss = 0.511023 +I0407 23:05:20.327577 32718 solver.cpp:237] Train net output #0: loss = 0.511022 (* 1 = 0.511022 loss) +I0407 23:05:20.327585 32718 sgd_solver.cpp:105] Iteration 4848, lr = 0.00530843 +I0407 23:05:22.946800 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:25.240224 32718 solver.cpp:218] Iteration 4860 (2.44269 iter/s, 4.91262s/12 iters), loss = 0.370205 +I0407 23:05:25.240267 32718 solver.cpp:237] Train net output #0: loss = 0.370205 (* 1 = 0.370205 loss) +I0407 23:05:25.240276 32718 sgd_solver.cpp:105] Iteration 4860, lr = 0.00529378 +I0407 23:05:30.218160 32718 solver.cpp:218] Iteration 4872 (2.41067 iter/s, 4.97786s/12 iters), loss = 0.438118 +I0407 23:05:30.218207 32718 solver.cpp:237] Train net output #0: loss = 0.438117 (* 1 = 0.438117 loss) +I0407 23:05:30.218215 32718 sgd_solver.cpp:105] Iteration 4872, lr = 0.00527912 +I0407 23:05:35.198772 32718 solver.cpp:218] Iteration 4884 (2.40938 iter/s, 4.98054s/12 iters), loss = 0.654821 +I0407 23:05:35.198809 32718 solver.cpp:237] Train net output #0: loss = 0.654821 (* 1 = 0.654821 loss) +I0407 23:05:35.198817 32718 sgd_solver.cpp:105] Iteration 4884, lr = 0.00526446 +I0407 23:05:39.656437 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 23:05:43.221417 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 23:05:46.158545 32718 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 23:05:46.158561 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:05:48.760529 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:50.732287 32718 solver.cpp:397] Test net output #0: accuracy = 0.428922 +I0407 23:05:50.732334 32718 solver.cpp:397] Test net output #1: loss = 2.91033 (* 1 = 2.91033 loss) +I0407 23:05:50.828876 32718 solver.cpp:218] Iteration 4896 (0.767754 iter/s, 15.63s/12 iters), loss = 0.60927 +I0407 23:05:50.828918 32718 solver.cpp:237] Train net output #0: loss = 0.609269 (* 1 = 0.609269 loss) +I0407 23:05:50.828927 32718 sgd_solver.cpp:105] Iteration 4896, lr = 0.00524979 +I0407 23:05:54.946517 32718 solver.cpp:218] Iteration 4908 (2.91434 iter/s, 4.11757s/12 iters), loss = 0.41203 +I0407 23:05:54.946555 32718 solver.cpp:237] Train net output #0: loss = 0.41203 (* 1 = 0.41203 loss) +I0407 23:05:54.946563 32718 sgd_solver.cpp:105] Iteration 4908, lr = 0.00523512 +I0407 23:05:59.941251 32718 solver.cpp:218] Iteration 4920 (2.40256 iter/s, 4.99467s/12 iters), loss = 0.700749 +I0407 23:05:59.941294 32718 solver.cpp:237] Train net output #0: loss = 0.700749 (* 1 = 0.700749 loss) +I0407 23:05:59.941303 32718 sgd_solver.cpp:105] Iteration 4920, lr = 0.00522045 +I0407 23:06:04.867993 32718 solver.cpp:218] Iteration 4932 (2.43572 iter/s, 4.92667s/12 iters), loss = 0.374582 +I0407 23:06:04.868037 32718 solver.cpp:237] Train net output #0: loss = 0.374582 (* 1 = 0.374582 loss) +I0407 23:06:04.868046 32718 sgd_solver.cpp:105] Iteration 4932, lr = 0.00520577 +I0407 23:06:09.868149 32718 solver.cpp:218] Iteration 4944 (2.39996 iter/s, 5.00008s/12 iters), loss = 0.638677 +I0407 23:06:09.868275 32718 solver.cpp:237] Train net output #0: loss = 0.638677 (* 1 = 0.638677 loss) +I0407 23:06:09.868284 32718 sgd_solver.cpp:105] Iteration 4944, lr = 0.00519108 +I0407 23:06:14.613795 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:14.810921 32718 solver.cpp:218] Iteration 4956 (2.42787 iter/s, 4.94261s/12 iters), loss = 0.297619 +I0407 23:06:14.810966 32718 solver.cpp:237] Train net output #0: loss = 0.297619 (* 1 = 0.297619 loss) +I0407 23:06:14.810973 32718 sgd_solver.cpp:105] Iteration 4956, lr = 0.0051764 +I0407 23:06:19.724983 32718 solver.cpp:218] Iteration 4968 (2.44201 iter/s, 4.91399s/12 iters), loss = 0.284668 +I0407 23:06:19.725028 32718 solver.cpp:237] Train net output #0: loss = 0.284668 (* 1 = 0.284668 loss) +I0407 23:06:19.725035 32718 sgd_solver.cpp:105] Iteration 4968, lr = 0.00516171 +I0407 23:06:24.686628 32718 solver.cpp:218] Iteration 4980 (2.41859 iter/s, 4.96157s/12 iters), loss = 0.341253 +I0407 23:06:24.686666 32718 solver.cpp:237] Train net output #0: loss = 0.341253 (* 1 = 0.341253 loss) +I0407 23:06:24.686676 32718 sgd_solver.cpp:105] Iteration 4980, lr = 0.00514702 +I0407 23:06:29.631749 32718 solver.cpp:218] Iteration 4992 (2.42667 iter/s, 4.94505s/12 iters), loss = 0.480901 +I0407 23:06:29.631803 32718 solver.cpp:237] Train net output #0: loss = 0.480901 (* 1 = 0.480901 loss) +I0407 23:06:29.631814 32718 sgd_solver.cpp:105] Iteration 4992, lr = 0.00513232 +I0407 23:06:31.653298 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 23:06:35.957798 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 23:06:39.281777 32718 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 23:06:39.281797 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:06:41.937072 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:44.005645 32718 solver.cpp:397] Test net output #0: accuracy = 0.41973 +I0407 23:06:44.005693 32718 solver.cpp:397] Test net output #1: loss = 2.95927 (* 1 = 2.95927 loss) +I0407 23:06:45.821683 32718 solver.cpp:218] Iteration 5004 (0.741206 iter/s, 16.1898s/12 iters), loss = 0.487982 +I0407 23:06:45.821722 32718 solver.cpp:237] Train net output #0: loss = 0.487982 (* 1 = 0.487982 loss) +I0407 23:06:45.821729 32718 sgd_solver.cpp:105] Iteration 5004, lr = 0.00511763 +I0407 23:06:50.739399 32718 solver.cpp:218] Iteration 5016 (2.44019 iter/s, 4.91765s/12 iters), loss = 0.548959 +I0407 23:06:50.739441 32718 solver.cpp:237] Train net output #0: loss = 0.548959 (* 1 = 0.548959 loss) +I0407 23:06:50.739450 32718 sgd_solver.cpp:105] Iteration 5016, lr = 0.00510293 +I0407 23:06:55.697069 32718 solver.cpp:218] Iteration 5028 (2.42053 iter/s, 4.95759s/12 iters), loss = 0.653746 +I0407 23:06:55.697109 32718 solver.cpp:237] Train net output #0: loss = 0.653746 (* 1 = 0.653746 loss) +I0407 23:06:55.697118 32718 sgd_solver.cpp:105] Iteration 5028, lr = 0.00508823 +I0407 23:07:00.642675 32718 solver.cpp:218] Iteration 5040 (2.42643 iter/s, 4.94553s/12 iters), loss = 0.375206 +I0407 23:07:00.642719 32718 solver.cpp:237] Train net output #0: loss = 0.375206 (* 1 = 0.375206 loss) +I0407 23:07:00.642727 32718 sgd_solver.cpp:105] Iteration 5040, lr = 0.00507352 +I0407 23:07:05.591671 32718 solver.cpp:218] Iteration 5052 (2.42477 iter/s, 4.94892s/12 iters), loss = 0.382983 +I0407 23:07:05.591714 32718 solver.cpp:237] Train net output #0: loss = 0.382983 (* 1 = 0.382983 loss) +I0407 23:07:05.591722 32718 sgd_solver.cpp:105] Iteration 5052, lr = 0.00505882 +I0407 23:07:07.485702 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:10.546347 32718 solver.cpp:218] Iteration 5064 (2.42199 iter/s, 4.9546s/12 iters), loss = 0.390391 +I0407 23:07:10.546389 32718 solver.cpp:237] Train net output #0: loss = 0.390391 (* 1 = 0.390391 loss) +I0407 23:07:10.546397 32718 sgd_solver.cpp:105] Iteration 5064, lr = 0.00504412 +I0407 23:07:15.509038 32718 solver.cpp:218] Iteration 5076 (2.41808 iter/s, 4.96262s/12 iters), loss = 0.328596 +I0407 23:07:15.509148 32718 solver.cpp:237] Train net output #0: loss = 0.328596 (* 1 = 0.328596 loss) +I0407 23:07:15.509157 32718 sgd_solver.cpp:105] Iteration 5076, lr = 0.00502941 +I0407 23:07:20.398095 32718 solver.cpp:218] Iteration 5088 (2.45453 iter/s, 4.88892s/12 iters), loss = 0.409389 +I0407 23:07:20.398137 32718 solver.cpp:237] Train net output #0: loss = 0.409389 (* 1 = 0.409389 loss) +I0407 23:07:20.398145 32718 sgd_solver.cpp:105] Iteration 5088, lr = 0.00501471 +I0407 23:07:24.890956 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 23:07:28.048857 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 23:07:30.412568 32718 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 23:07:30.412586 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:07:32.849118 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:34.928006 32718 solver.cpp:397] Test net output #0: accuracy = 0.43076 +I0407 23:07:34.928050 32718 solver.cpp:397] Test net output #1: loss = 2.93126 (* 1 = 2.93126 loss) +I0407 23:07:35.024629 32718 solver.cpp:218] Iteration 5100 (0.820433 iter/s, 14.6264s/12 iters), loss = 0.425887 +I0407 23:07:35.024677 32718 solver.cpp:237] Train net output #0: loss = 0.425887 (* 1 = 0.425887 loss) +I0407 23:07:35.024685 32718 sgd_solver.cpp:105] Iteration 5100, lr = 0.005 +I0407 23:07:39.146726 32718 solver.cpp:218] Iteration 5112 (2.91119 iter/s, 4.12203s/12 iters), loss = 0.254823 +I0407 23:07:39.146762 32718 solver.cpp:237] Train net output #0: loss = 0.254823 (* 1 = 0.254823 loss) +I0407 23:07:39.146770 32718 sgd_solver.cpp:105] Iteration 5112, lr = 0.00498529 +I0407 23:07:44.164055 32718 solver.cpp:218] Iteration 5124 (2.39174 iter/s, 5.01727s/12 iters), loss = 0.297174 +I0407 23:07:44.164091 32718 solver.cpp:237] Train net output #0: loss = 0.297174 (* 1 = 0.297174 loss) +I0407 23:07:44.164098 32718 sgd_solver.cpp:105] Iteration 5124, lr = 0.00497059 +I0407 23:07:49.090473 32718 solver.cpp:218] Iteration 5136 (2.43588 iter/s, 4.92636s/12 iters), loss = 0.373092 +I0407 23:07:49.090610 32718 solver.cpp:237] Train net output #0: loss = 0.373092 (* 1 = 0.373092 loss) +I0407 23:07:49.090620 32718 sgd_solver.cpp:105] Iteration 5136, lr = 0.00495588 +I0407 23:07:54.058779 32718 solver.cpp:218] Iteration 5148 (2.41539 iter/s, 4.96814s/12 iters), loss = 0.292399 +I0407 23:07:54.058818 32718 solver.cpp:237] Train net output #0: loss = 0.292399 (* 1 = 0.292399 loss) +I0407 23:07:54.058825 32718 sgd_solver.cpp:105] Iteration 5148, lr = 0.00494118 +I0407 23:07:58.043524 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:58.992844 32718 solver.cpp:218] Iteration 5160 (2.4321 iter/s, 4.934s/12 iters), loss = 0.405414 +I0407 23:07:58.992879 32718 solver.cpp:237] Train net output #0: loss = 0.405414 (* 1 = 0.405414 loss) +I0407 23:07:58.992887 32718 sgd_solver.cpp:105] Iteration 5160, lr = 0.00492648 +I0407 23:08:03.951501 32718 solver.cpp:218] Iteration 5172 (2.42004 iter/s, 4.9586s/12 iters), loss = 0.363661 +I0407 23:08:03.951536 32718 solver.cpp:237] Train net output #0: loss = 0.363661 (* 1 = 0.363661 loss) +I0407 23:08:03.951543 32718 sgd_solver.cpp:105] Iteration 5172, lr = 0.00491177 +I0407 23:08:08.912097 32718 solver.cpp:218] Iteration 5184 (2.41909 iter/s, 4.96054s/12 iters), loss = 0.29121 +I0407 23:08:08.912132 32718 solver.cpp:237] Train net output #0: loss = 0.29121 (* 1 = 0.29121 loss) +I0407 23:08:08.912138 32718 sgd_solver.cpp:105] Iteration 5184, lr = 0.00489707 +I0407 23:08:13.829212 32718 solver.cpp:218] Iteration 5196 (2.44049 iter/s, 4.91705s/12 iters), loss = 0.463122 +I0407 23:08:13.829252 32718 solver.cpp:237] Train net output #0: loss = 0.463122 (* 1 = 0.463122 loss) +I0407 23:08:13.829259 32718 sgd_solver.cpp:105] Iteration 5196, lr = 0.00488237 +I0407 23:08:15.816865 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 23:08:22.020715 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 23:08:25.170593 32718 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 23:08:25.170612 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:08:27.693085 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:29.939458 32718 solver.cpp:397] Test net output #0: accuracy = 0.436887 +I0407 23:08:29.939491 32718 solver.cpp:397] Test net output #1: loss = 2.78722 (* 1 = 2.78722 loss) +I0407 23:08:31.737849 32718 solver.cpp:218] Iteration 5208 (0.670072 iter/s, 17.9085s/12 iters), loss = 0.345822 +I0407 23:08:31.737888 32718 solver.cpp:237] Train net output #0: loss = 0.345822 (* 1 = 0.345822 loss) +I0407 23:08:31.737896 32718 sgd_solver.cpp:105] Iteration 5208, lr = 0.00486768 +I0407 23:08:36.681128 32718 solver.cpp:218] Iteration 5220 (2.42757 iter/s, 4.94321s/12 iters), loss = 0.286507 +I0407 23:08:36.681169 32718 solver.cpp:237] Train net output #0: loss = 0.286507 (* 1 = 0.286507 loss) +I0407 23:08:36.681176 32718 sgd_solver.cpp:105] Iteration 5220, lr = 0.00485298 +I0407 23:08:41.628785 32718 solver.cpp:218] Iteration 5232 (2.42543 iter/s, 4.94759s/12 iters), loss = 0.292695 +I0407 23:08:41.628823 32718 solver.cpp:237] Train net output #0: loss = 0.292695 (* 1 = 0.292695 loss) +I0407 23:08:41.628829 32718 sgd_solver.cpp:105] Iteration 5232, lr = 0.00483829 +I0407 23:08:46.558115 32718 solver.cpp:218] Iteration 5244 (2.43444 iter/s, 4.92926s/12 iters), loss = 0.444686 +I0407 23:08:46.558156 32718 solver.cpp:237] Train net output #0: loss = 0.444686 (* 1 = 0.444686 loss) +I0407 23:08:46.558164 32718 sgd_solver.cpp:105] Iteration 5244, lr = 0.0048236 +I0407 23:08:51.514271 32718 solver.cpp:218] Iteration 5256 (2.42127 iter/s, 4.95609s/12 iters), loss = 0.32136 +I0407 23:08:51.514312 32718 solver.cpp:237] Train net output #0: loss = 0.32136 (* 1 = 0.32136 loss) +I0407 23:08:51.514320 32718 sgd_solver.cpp:105] Iteration 5256, lr = 0.00480892 +I0407 23:08:52.770236 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:56.407001 32718 solver.cpp:218] Iteration 5268 (2.45265 iter/s, 4.89266s/12 iters), loss = 0.241507 +I0407 23:08:56.407038 32718 solver.cpp:237] Train net output #0: loss = 0.241507 (* 1 = 0.241507 loss) +I0407 23:08:56.407045 32718 sgd_solver.cpp:105] Iteration 5268, lr = 0.00479423 +I0407 23:09:01.381428 32718 solver.cpp:218] Iteration 5280 (2.41237 iter/s, 4.97436s/12 iters), loss = 0.373735 +I0407 23:09:01.381464 32718 solver.cpp:237] Train net output #0: loss = 0.373735 (* 1 = 0.373735 loss) +I0407 23:09:01.381471 32718 sgd_solver.cpp:105] Iteration 5280, lr = 0.00477955 +I0407 23:09:06.282075 32718 solver.cpp:218] Iteration 5292 (2.44869 iter/s, 4.90058s/12 iters), loss = 0.403954 +I0407 23:09:06.282121 32718 solver.cpp:237] Train net output #0: loss = 0.403954 (* 1 = 0.403954 loss) +I0407 23:09:06.282128 32718 sgd_solver.cpp:105] Iteration 5292, lr = 0.00476488 +I0407 23:09:10.746160 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 23:09:14.793373 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 23:09:17.443181 32718 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 23:09:17.443207 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:09:19.768565 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:21.897176 32718 solver.cpp:397] Test net output #0: accuracy = 0.439951 +I0407 23:09:21.897223 32718 solver.cpp:397] Test net output #1: loss = 2.78545 (* 1 = 2.78545 loss) +I0407 23:09:21.992007 32718 solver.cpp:218] Iteration 5304 (0.763853 iter/s, 15.7098s/12 iters), loss = 0.304116 +I0407 23:09:21.992050 32718 solver.cpp:237] Train net output #0: loss = 0.304116 (* 1 = 0.304116 loss) +I0407 23:09:21.992059 32718 sgd_solver.cpp:105] Iteration 5304, lr = 0.00475021 +I0407 23:09:26.118074 32718 solver.cpp:218] Iteration 5316 (2.90839 iter/s, 4.12599s/12 iters), loss = 0.434034 +I0407 23:09:26.118202 32718 solver.cpp:237] Train net output #0: loss = 0.434034 (* 1 = 0.434034 loss) +I0407 23:09:26.118211 32718 sgd_solver.cpp:105] Iteration 5316, lr = 0.00473554 +I0407 23:09:31.048571 32718 solver.cpp:218] Iteration 5328 (2.43391 iter/s, 4.93034s/12 iters), loss = 0.568243 +I0407 23:09:31.048616 32718 solver.cpp:237] Train net output #0: loss = 0.568243 (* 1 = 0.568243 loss) +I0407 23:09:31.048624 32718 sgd_solver.cpp:105] Iteration 5328, lr = 0.00472088 +I0407 23:09:36.006762 32718 solver.cpp:218] Iteration 5340 (2.42027 iter/s, 4.95811s/12 iters), loss = 0.420622 +I0407 23:09:36.006806 32718 solver.cpp:237] Train net output #0: loss = 0.420622 (* 1 = 0.420622 loss) +I0407 23:09:36.006814 32718 sgd_solver.cpp:105] Iteration 5340, lr = 0.00470622 +I0407 23:09:40.921124 32718 solver.cpp:218] Iteration 5352 (2.44186 iter/s, 4.91429s/12 iters), loss = 0.349743 +I0407 23:09:40.921169 32718 solver.cpp:237] Train net output #0: loss = 0.349743 (* 1 = 0.349743 loss) +I0407 23:09:40.921176 32718 sgd_solver.cpp:105] Iteration 5352, lr = 0.00469157 +I0407 23:09:44.324905 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:45.861876 32718 solver.cpp:218] Iteration 5364 (2.42882 iter/s, 4.94068s/12 iters), loss = 0.222427 +I0407 23:09:45.861918 32718 solver.cpp:237] Train net output #0: loss = 0.222427 (* 1 = 0.222427 loss) +I0407 23:09:45.861927 32718 sgd_solver.cpp:105] Iteration 5364, lr = 0.00467692 +I0407 23:09:50.819523 32718 solver.cpp:218] Iteration 5376 (2.42054 iter/s, 4.95758s/12 iters), loss = 0.326973 +I0407 23:09:50.819564 32718 solver.cpp:237] Train net output #0: loss = 0.326973 (* 1 = 0.326973 loss) +I0407 23:09:50.819572 32718 sgd_solver.cpp:105] Iteration 5376, lr = 0.00466228 +I0407 23:09:55.762467 32718 solver.cpp:218] Iteration 5388 (2.42774 iter/s, 4.94287s/12 iters), loss = 0.44894 +I0407 23:09:55.762509 32718 solver.cpp:237] Train net output #0: loss = 0.44894 (* 1 = 0.44894 loss) +I0407 23:09:55.762517 32718 sgd_solver.cpp:105] Iteration 5388, lr = 0.00464764 +I0407 23:10:00.679491 32718 solver.cpp:218] Iteration 5400 (2.44053 iter/s, 4.91696s/12 iters), loss = 0.238558 +I0407 23:10:00.679677 32718 solver.cpp:237] Train net output #0: loss = 0.238558 (* 1 = 0.238558 loss) +I0407 23:10:00.679687 32718 sgd_solver.cpp:105] Iteration 5400, lr = 0.00463301 +I0407 23:10:02.707530 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 23:10:06.600695 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 23:10:09.414106 32718 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 23:10:09.414129 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:10:11.673431 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:13.838254 32718 solver.cpp:397] Test net output #0: accuracy = 0.443627 +I0407 23:10:13.838300 32718 solver.cpp:397] Test net output #1: loss = 2.79847 (* 1 = 2.79847 loss) +I0407 23:10:15.643445 32718 solver.cpp:218] Iteration 5412 (0.80194 iter/s, 14.9637s/12 iters), loss = 0.241674 +I0407 23:10:15.643491 32718 solver.cpp:237] Train net output #0: loss = 0.241674 (* 1 = 0.241674 loss) +I0407 23:10:15.643497 32718 sgd_solver.cpp:105] Iteration 5412, lr = 0.00461839 +I0407 23:10:20.568766 32718 solver.cpp:218] Iteration 5424 (2.43643 iter/s, 4.92524s/12 iters), loss = 0.262982 +I0407 23:10:20.568801 32718 solver.cpp:237] Train net output #0: loss = 0.262982 (* 1 = 0.262982 loss) +I0407 23:10:20.568809 32718 sgd_solver.cpp:105] Iteration 5424, lr = 0.00460377 +I0407 23:10:25.457125 32718 solver.cpp:218] Iteration 5436 (2.45485 iter/s, 4.88829s/12 iters), loss = 0.221008 +I0407 23:10:25.457183 32718 solver.cpp:237] Train net output #0: loss = 0.221008 (* 1 = 0.221008 loss) +I0407 23:10:25.457199 32718 sgd_solver.cpp:105] Iteration 5436, lr = 0.00458916 +I0407 23:10:30.413357 32718 solver.cpp:218] Iteration 5448 (2.42123 iter/s, 4.95615s/12 iters), loss = 0.298621 +I0407 23:10:30.413386 32718 solver.cpp:237] Train net output #0: loss = 0.298621 (* 1 = 0.298621 loss) +I0407 23:10:30.413393 32718 sgd_solver.cpp:105] Iteration 5448, lr = 0.00457456 +I0407 23:10:35.387322 32718 solver.cpp:218] Iteration 5460 (2.41259 iter/s, 4.9739s/12 iters), loss = 0.364903 +I0407 23:10:35.387426 32718 solver.cpp:237] Train net output #0: loss = 0.364903 (* 1 = 0.364903 loss) +I0407 23:10:35.387435 32718 sgd_solver.cpp:105] Iteration 5460, lr = 0.00455996 +I0407 23:10:35.923907 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:40.241354 32718 solver.cpp:218] Iteration 5472 (2.47224 iter/s, 4.85391s/12 iters), loss = 0.387594 +I0407 23:10:40.241389 32718 solver.cpp:237] Train net output #0: loss = 0.387594 (* 1 = 0.387594 loss) +I0407 23:10:40.241397 32718 sgd_solver.cpp:105] Iteration 5472, lr = 0.00454538 +I0407 23:10:45.204176 32718 solver.cpp:218] Iteration 5484 (2.41801 iter/s, 4.96276s/12 iters), loss = 0.525348 +I0407 23:10:45.204213 32718 solver.cpp:237] Train net output #0: loss = 0.525348 (* 1 = 0.525348 loss) +I0407 23:10:45.204221 32718 sgd_solver.cpp:105] Iteration 5484, lr = 0.0045308 +I0407 23:10:50.121773 32718 solver.cpp:218] Iteration 5496 (2.44025 iter/s, 4.91753s/12 iters), loss = 0.260814 +I0407 23:10:50.121814 32718 solver.cpp:237] Train net output #0: loss = 0.260814 (* 1 = 0.260814 loss) +I0407 23:10:50.121822 32718 sgd_solver.cpp:105] Iteration 5496, lr = 0.00451622 +I0407 23:10:54.631959 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 23:10:57.711582 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 23:11:00.134660 32718 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 23:11:00.134678 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:11:02.532910 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:04.780833 32718 solver.cpp:397] Test net output #0: accuracy = 0.427696 +I0407 23:11:04.780879 32718 solver.cpp:397] Test net output #1: loss = 2.8752 (* 1 = 2.8752 loss) +I0407 23:11:04.877516 32718 solver.cpp:218] Iteration 5508 (0.813248 iter/s, 14.7556s/12 iters), loss = 0.332867 +I0407 23:11:04.877558 32718 solver.cpp:237] Train net output #0: loss = 0.332867 (* 1 = 0.332867 loss) +I0407 23:11:04.877568 32718 sgd_solver.cpp:105] Iteration 5508, lr = 0.00450166 +I0407 23:11:09.000705 32718 solver.cpp:218] Iteration 5520 (2.91041 iter/s, 4.12312s/12 iters), loss = 0.170182 +I0407 23:11:09.001951 32718 solver.cpp:237] Train net output #0: loss = 0.170182 (* 1 = 0.170182 loss) +I0407 23:11:09.001961 32718 sgd_solver.cpp:105] Iteration 5520, lr = 0.0044871 +I0407 23:11:11.418459 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:11:13.965103 32718 solver.cpp:218] Iteration 5532 (2.41783 iter/s, 4.96312s/12 iters), loss = 0.446527 +I0407 23:11:13.965148 32718 solver.cpp:237] Train net output #0: loss = 0.446527 (* 1 = 0.446527 loss) +I0407 23:11:13.965157 32718 sgd_solver.cpp:105] Iteration 5532, lr = 0.00447256 +I0407 23:11:18.882711 32718 solver.cpp:218] Iteration 5544 (2.44025 iter/s, 4.91753s/12 iters), loss = 0.234371 +I0407 23:11:18.882756 32718 solver.cpp:237] Train net output #0: loss = 0.234371 (* 1 = 0.234371 loss) +I0407 23:11:18.882764 32718 sgd_solver.cpp:105] Iteration 5544, lr = 0.00445802 +I0407 23:11:23.840610 32718 solver.cpp:218] Iteration 5556 (2.42042 iter/s, 4.95782s/12 iters), loss = 0.343967 +I0407 23:11:23.840653 32718 solver.cpp:237] Train net output #0: loss = 0.343967 (* 1 = 0.343967 loss) +I0407 23:11:23.840662 32718 sgd_solver.cpp:105] Iteration 5556, lr = 0.00444349 +I0407 23:11:26.482266 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:28.744062 32718 solver.cpp:218] Iteration 5568 (2.44729 iter/s, 4.90338s/12 iters), loss = 0.263888 +I0407 23:11:28.744104 32718 solver.cpp:237] Train net output #0: loss = 0.263888 (* 1 = 0.263888 loss) +I0407 23:11:28.744112 32718 sgd_solver.cpp:105] Iteration 5568, lr = 0.00442897 +I0407 23:11:33.660988 32718 solver.cpp:218] Iteration 5580 (2.44059 iter/s, 4.91685s/12 iters), loss = 0.448642 +I0407 23:11:33.661033 32718 solver.cpp:237] Train net output #0: loss = 0.448642 (* 1 = 0.448642 loss) +I0407 23:11:33.661042 32718 sgd_solver.cpp:105] Iteration 5580, lr = 0.00441446 +I0407 23:11:38.521337 32718 solver.cpp:218] Iteration 5592 (2.469 iter/s, 4.86027s/12 iters), loss = 0.379519 +I0407 23:11:38.521378 32718 solver.cpp:237] Train net output #0: loss = 0.379518 (* 1 = 0.379518 loss) +I0407 23:11:38.521386 32718 sgd_solver.cpp:105] Iteration 5592, lr = 0.00439996 +I0407 23:11:43.376650 32718 solver.cpp:218] Iteration 5604 (2.47155 iter/s, 4.85525s/12 iters), loss = 0.271301 +I0407 23:11:43.376801 32718 solver.cpp:237] Train net output #0: loss = 0.271301 (* 1 = 0.271301 loss) +I0407 23:11:43.376811 32718 sgd_solver.cpp:105] Iteration 5604, lr = 0.00438548 +I0407 23:11:45.383113 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 23:11:48.457963 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 23:11:51.990648 32718 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 23:11:51.990675 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:11:54.304101 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:56.553200 32718 solver.cpp:397] Test net output #0: accuracy = 0.443015 +I0407 23:11:56.553246 32718 solver.cpp:397] Test net output #1: loss = 2.88567 (* 1 = 2.88567 loss) +I0407 23:11:58.358603 32718 solver.cpp:218] Iteration 5616 (0.800975 iter/s, 14.9817s/12 iters), loss = 0.173353 +I0407 23:11:58.358650 32718 solver.cpp:237] Train net output #0: loss = 0.173353 (* 1 = 0.173353 loss) +I0407 23:11:58.358659 32718 sgd_solver.cpp:105] Iteration 5616, lr = 0.004371 +I0407 23:12:03.290107 32718 solver.cpp:218] Iteration 5628 (2.43337 iter/s, 4.93143s/12 iters), loss = 0.285058 +I0407 23:12:03.290140 32718 solver.cpp:237] Train net output #0: loss = 0.285058 (* 1 = 0.285058 loss) +I0407 23:12:03.290148 32718 sgd_solver.cpp:105] Iteration 5628, lr = 0.00435653 +I0407 23:12:08.233584 32718 solver.cpp:218] Iteration 5640 (2.42747 iter/s, 4.94341s/12 iters), loss = 0.464369 +I0407 23:12:08.233621 32718 solver.cpp:237] Train net output #0: loss = 0.464369 (* 1 = 0.464369 loss) +I0407 23:12:08.233629 32718 sgd_solver.cpp:105] Iteration 5640, lr = 0.00434207 +I0407 23:12:13.186333 32718 solver.cpp:218] Iteration 5652 (2.42293 iter/s, 4.95268s/12 iters), loss = 0.389239 +I0407 23:12:13.186374 32718 solver.cpp:237] Train net output #0: loss = 0.389239 (* 1 = 0.389239 loss) +I0407 23:12:13.186383 32718 sgd_solver.cpp:105] Iteration 5652, lr = 0.00432763 +I0407 23:12:17.964275 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:18.132974 32718 solver.cpp:218] Iteration 5664 (2.42592 iter/s, 4.94657s/12 iters), loss = 0.162345 +I0407 23:12:18.133016 32718 solver.cpp:237] Train net output #0: loss = 0.162345 (* 1 = 0.162345 loss) +I0407 23:12:18.133025 32718 sgd_solver.cpp:105] Iteration 5664, lr = 0.00431319 +I0407 23:12:23.066098 32718 solver.cpp:218] Iteration 5676 (2.43257 iter/s, 4.93305s/12 iters), loss = 0.335337 +I0407 23:12:23.066143 32718 solver.cpp:237] Train net output #0: loss = 0.335337 (* 1 = 0.335337 loss) +I0407 23:12:23.066151 32718 sgd_solver.cpp:105] Iteration 5676, lr = 0.00429877 +I0407 23:12:28.067782 32718 solver.cpp:218] Iteration 5688 (2.39923 iter/s, 5.00161s/12 iters), loss = 0.333068 +I0407 23:12:28.067817 32718 solver.cpp:237] Train net output #0: loss = 0.333068 (* 1 = 0.333068 loss) +I0407 23:12:28.067824 32718 sgd_solver.cpp:105] Iteration 5688, lr = 0.00428436 +I0407 23:12:33.112319 32718 solver.cpp:218] Iteration 5700 (2.37884 iter/s, 5.04447s/12 iters), loss = 0.260753 +I0407 23:12:33.112360 32718 solver.cpp:237] Train net output #0: loss = 0.260753 (* 1 = 0.260753 loss) +I0407 23:12:33.112367 32718 sgd_solver.cpp:105] Iteration 5700, lr = 0.00426996 +I0407 23:12:37.631028 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 23:12:40.682340 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 23:12:43.045485 32718 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 23:12:43.045502 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:12:45.240324 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:47.510076 32718 solver.cpp:397] Test net output #0: accuracy = 0.45098 +I0407 23:12:47.510109 32718 solver.cpp:397] Test net output #1: loss = 2.82659 (* 1 = 2.82659 loss) +I0407 23:12:47.604308 32718 solver.cpp:218] Iteration 5712 (0.82805 iter/s, 14.4919s/12 iters), loss = 0.210606 +I0407 23:12:47.604383 32718 solver.cpp:237] Train net output #0: loss = 0.210606 (* 1 = 0.210606 loss) +I0407 23:12:47.604399 32718 sgd_solver.cpp:105] Iteration 5712, lr = 0.00425557 +I0407 23:12:51.745806 32718 solver.cpp:218] Iteration 5724 (2.89756 iter/s, 4.14141s/12 iters), loss = 0.29118 +I0407 23:12:51.745931 32718 solver.cpp:237] Train net output #0: loss = 0.29118 (* 1 = 0.29118 loss) +I0407 23:12:51.745940 32718 sgd_solver.cpp:105] Iteration 5724, lr = 0.0042412 +I0407 23:12:56.670980 32718 solver.cpp:218] Iteration 5736 (2.43653 iter/s, 4.92503s/12 iters), loss = 0.279082 +I0407 23:12:56.671016 32718 solver.cpp:237] Train net output #0: loss = 0.279082 (* 1 = 0.279082 loss) +I0407 23:12:56.671025 32718 sgd_solver.cpp:105] Iteration 5736, lr = 0.00422684 +I0407 23:13:01.636137 32718 solver.cpp:218] Iteration 5748 (2.41687 iter/s, 4.96509s/12 iters), loss = 0.266268 +I0407 23:13:01.636173 32718 solver.cpp:237] Train net output #0: loss = 0.266268 (* 1 = 0.266268 loss) +I0407 23:13:01.636180 32718 sgd_solver.cpp:105] Iteration 5748, lr = 0.00421249 +I0407 23:13:06.575747 32718 solver.cpp:218] Iteration 5760 (2.42937 iter/s, 4.93955s/12 iters), loss = 0.274327 +I0407 23:13:06.575783 32718 solver.cpp:237] Train net output #0: loss = 0.274327 (* 1 = 0.274327 loss) +I0407 23:13:06.575790 32718 sgd_solver.cpp:105] Iteration 5760, lr = 0.00419816 +I0407 23:13:08.540534 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:11.538125 32718 solver.cpp:218] Iteration 5772 (2.41823 iter/s, 4.96231s/12 iters), loss = 0.243624 +I0407 23:13:11.538173 32718 solver.cpp:237] Train net output #0: loss = 0.243624 (* 1 = 0.243624 loss) +I0407 23:13:11.538182 32718 sgd_solver.cpp:105] Iteration 5772, lr = 0.00418384 +I0407 23:13:16.494931 32718 solver.cpp:218] Iteration 5784 (2.42095 iter/s, 4.95673s/12 iters), loss = 0.254016 +I0407 23:13:16.494976 32718 solver.cpp:237] Train net output #0: loss = 0.254016 (* 1 = 0.254016 loss) +I0407 23:13:16.494984 32718 sgd_solver.cpp:105] Iteration 5784, lr = 0.00416953 +I0407 23:13:21.415496 32718 solver.cpp:218] Iteration 5796 (2.43878 iter/s, 4.92049s/12 iters), loss = 0.18623 +I0407 23:13:21.415534 32718 solver.cpp:237] Train net output #0: loss = 0.18623 (* 1 = 0.18623 loss) +I0407 23:13:21.415541 32718 sgd_solver.cpp:105] Iteration 5796, lr = 0.00415524 +I0407 23:13:26.363279 32718 solver.cpp:218] Iteration 5808 (2.42536 iter/s, 4.94771s/12 iters), loss = 0.238115 +I0407 23:13:26.363384 32718 solver.cpp:237] Train net output #0: loss = 0.238114 (* 1 = 0.238114 loss) +I0407 23:13:26.363394 32718 sgd_solver.cpp:105] Iteration 5808, lr = 0.00414096 +I0407 23:13:28.375028 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 23:13:31.536496 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 23:13:34.931814 32718 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 23:13:34.931833 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:13:37.187229 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:39.699745 32718 solver.cpp:397] Test net output #0: accuracy = 0.456495 +I0407 23:13:39.699771 32718 solver.cpp:397] Test net output #1: loss = 2.89816 (* 1 = 2.89816 loss) +I0407 23:13:41.424921 32718 solver.cpp:218] Iteration 5820 (0.796734 iter/s, 15.0615s/12 iters), loss = 0.327538 +I0407 23:13:41.424962 32718 solver.cpp:237] Train net output #0: loss = 0.327538 (* 1 = 0.327538 loss) +I0407 23:13:41.424970 32718 sgd_solver.cpp:105] Iteration 5820, lr = 0.00412669 +I0407 23:13:46.373013 32718 solver.cpp:218] Iteration 5832 (2.42521 iter/s, 4.94802s/12 iters), loss = 0.220175 +I0407 23:13:46.373052 32718 solver.cpp:237] Train net output #0: loss = 0.220175 (* 1 = 0.220175 loss) +I0407 23:13:46.373060 32718 sgd_solver.cpp:105] Iteration 5832, lr = 0.00411244 +I0407 23:13:51.339320 32718 solver.cpp:218] Iteration 5844 (2.41631 iter/s, 4.96624s/12 iters), loss = 0.316349 +I0407 23:13:51.339356 32718 solver.cpp:237] Train net output #0: loss = 0.316349 (* 1 = 0.316349 loss) +I0407 23:13:51.339363 32718 sgd_solver.cpp:105] Iteration 5844, lr = 0.00409821 +I0407 23:13:56.343976 32718 solver.cpp:218] Iteration 5856 (2.3978 iter/s, 5.00459s/12 iters), loss = 0.412847 +I0407 23:13:56.344022 32718 solver.cpp:237] Train net output #0: loss = 0.412847 (* 1 = 0.412847 loss) +I0407 23:13:56.344029 32718 sgd_solver.cpp:105] Iteration 5856, lr = 0.00408399 +I0407 23:14:00.474251 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:01.259037 32718 solver.cpp:218] Iteration 5868 (2.44152 iter/s, 4.91498s/12 iters), loss = 0.118479 +I0407 23:14:01.259092 32718 solver.cpp:237] Train net output #0: loss = 0.118479 (* 1 = 0.118479 loss) +I0407 23:14:01.259102 32718 sgd_solver.cpp:105] Iteration 5868, lr = 0.00406978 +I0407 23:14:06.184521 32718 solver.cpp:218] Iteration 5880 (2.43635 iter/s, 4.9254s/12 iters), loss = 0.168854 +I0407 23:14:06.184561 32718 solver.cpp:237] Train net output #0: loss = 0.168854 (* 1 = 0.168854 loss) +I0407 23:14:06.184571 32718 sgd_solver.cpp:105] Iteration 5880, lr = 0.0040556 +I0407 23:14:11.070025 32718 solver.cpp:218] Iteration 5892 (2.45628 iter/s, 4.88544s/12 iters), loss = 0.309822 +I0407 23:14:11.070062 32718 solver.cpp:237] Train net output #0: loss = 0.309822 (* 1 = 0.309822 loss) +I0407 23:14:11.070071 32718 sgd_solver.cpp:105] Iteration 5892, lr = 0.00404142 +I0407 23:14:16.049135 32718 solver.cpp:218] Iteration 5904 (2.4101 iter/s, 4.97904s/12 iters), loss = 0.271018 +I0407 23:14:16.049185 32718 solver.cpp:237] Train net output #0: loss = 0.271018 (* 1 = 0.271018 loss) +I0407 23:14:16.049196 32718 sgd_solver.cpp:105] Iteration 5904, lr = 0.00402726 +I0407 23:14:20.491441 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 23:14:23.560115 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 23:14:25.929137 32718 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 23:14:25.929157 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:14:28.143687 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:30.692936 32718 solver.cpp:397] Test net output #0: accuracy = 0.441176 +I0407 23:14:30.693089 32718 solver.cpp:397] Test net output #1: loss = 2.88824 (* 1 = 2.88824 loss) +I0407 23:14:30.790127 32718 solver.cpp:218] Iteration 5916 (0.814062 iter/s, 14.7409s/12 iters), loss = 0.274278 +I0407 23:14:30.790171 32718 solver.cpp:237] Train net output #0: loss = 0.274278 (* 1 = 0.274278 loss) +I0407 23:14:30.790179 32718 sgd_solver.cpp:105] Iteration 5916, lr = 0.00401312 +I0407 23:14:34.933090 32718 solver.cpp:218] Iteration 5928 (2.89653 iter/s, 4.14289s/12 iters), loss = 0.301839 +I0407 23:14:34.933135 32718 solver.cpp:237] Train net output #0: loss = 0.301839 (* 1 = 0.301839 loss) +I0407 23:14:34.933143 32718 sgd_solver.cpp:105] Iteration 5928, lr = 0.003999 +I0407 23:14:39.845438 32718 solver.cpp:218] Iteration 5940 (2.44286 iter/s, 4.91227s/12 iters), loss = 0.313832 +I0407 23:14:39.845481 32718 solver.cpp:237] Train net output #0: loss = 0.313832 (* 1 = 0.313832 loss) +I0407 23:14:39.845490 32718 sgd_solver.cpp:105] Iteration 5940, lr = 0.00398489 +I0407 23:14:44.808274 32718 solver.cpp:218] Iteration 5952 (2.41801 iter/s, 4.96276s/12 iters), loss = 0.208369 +I0407 23:14:44.808322 32718 solver.cpp:237] Train net output #0: loss = 0.208369 (* 1 = 0.208369 loss) +I0407 23:14:44.808331 32718 sgd_solver.cpp:105] Iteration 5952, lr = 0.0039708 +I0407 23:14:49.728799 32718 solver.cpp:218] Iteration 5964 (2.4388 iter/s, 4.92045s/12 iters), loss = 0.103257 +I0407 23:14:49.728842 32718 solver.cpp:237] Train net output #0: loss = 0.103257 (* 1 = 0.103257 loss) +I0407 23:14:49.728852 32718 sgd_solver.cpp:105] Iteration 5964, lr = 0.00395672 +I0407 23:14:51.017771 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:54.673429 32718 solver.cpp:218] Iteration 5976 (2.42691 iter/s, 4.94456s/12 iters), loss = 0.182879 +I0407 23:14:54.673472 32718 solver.cpp:237] Train net output #0: loss = 0.182878 (* 1 = 0.182878 loss) +I0407 23:14:54.673481 32718 sgd_solver.cpp:105] Iteration 5976, lr = 0.00394267 +I0407 23:14:59.552677 32718 solver.cpp:218] Iteration 5988 (2.45943 iter/s, 4.87917s/12 iters), loss = 0.231374 +I0407 23:14:59.552723 32718 solver.cpp:237] Train net output #0: loss = 0.231374 (* 1 = 0.231374 loss) +I0407 23:14:59.552731 32718 sgd_solver.cpp:105] Iteration 5988, lr = 0.00392863 +I0407 23:15:04.466414 32718 solver.cpp:218] Iteration 6000 (2.44217 iter/s, 4.91367s/12 iters), loss = 0.0500223 +I0407 23:15:04.466567 32718 solver.cpp:237] Train net output #0: loss = 0.0500223 (* 1 = 0.0500223 loss) +I0407 23:15:04.466579 32718 sgd_solver.cpp:105] Iteration 6000, lr = 0.00391461 +I0407 23:15:09.438127 32718 solver.cpp:218] Iteration 6012 (2.41374 iter/s, 4.97153s/12 iters), loss = 0.406675 +I0407 23:15:09.438167 32718 solver.cpp:237] Train net output #0: loss = 0.406674 (* 1 = 0.406674 loss) +I0407 23:15:09.438176 32718 sgd_solver.cpp:105] Iteration 6012, lr = 0.0039006 +I0407 23:15:11.447216 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 23:15:14.912168 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 23:15:18.773993 32718 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 23:15:18.774011 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:15:20.843447 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:23.254165 32718 solver.cpp:397] Test net output #0: accuracy = 0.446078 +I0407 23:15:23.254209 32718 solver.cpp:397] Test net output #1: loss = 2.91095 (* 1 = 2.91095 loss) +I0407 23:15:25.055048 32718 solver.cpp:218] Iteration 6024 (0.768402 iter/s, 15.6168s/12 iters), loss = 0.191863 +I0407 23:15:25.055092 32718 solver.cpp:237] Train net output #0: loss = 0.191863 (* 1 = 0.191863 loss) +I0407 23:15:25.055100 32718 sgd_solver.cpp:105] Iteration 6024, lr = 0.00388662 +I0407 23:15:29.987507 32718 solver.cpp:218] Iteration 6036 (2.4329 iter/s, 4.93239s/12 iters), loss = 0.159178 +I0407 23:15:29.987547 32718 solver.cpp:237] Train net output #0: loss = 0.159178 (* 1 = 0.159178 loss) +I0407 23:15:29.987556 32718 sgd_solver.cpp:105] Iteration 6036, lr = 0.00387265 +I0407 23:15:34.941915 32718 solver.cpp:218] Iteration 6048 (2.42212 iter/s, 4.95433s/12 iters), loss = 0.299724 +I0407 23:15:34.942035 32718 solver.cpp:237] Train net output #0: loss = 0.299724 (* 1 = 0.299724 loss) +I0407 23:15:34.942044 32718 sgd_solver.cpp:105] Iteration 6048, lr = 0.0038587 +I0407 23:15:39.889956 32718 solver.cpp:218] Iteration 6060 (2.42527 iter/s, 4.9479s/12 iters), loss = 0.28043 +I0407 23:15:39.889992 32718 solver.cpp:237] Train net output #0: loss = 0.28043 (* 1 = 0.28043 loss) +I0407 23:15:39.889999 32718 sgd_solver.cpp:105] Iteration 6060, lr = 0.00384477 +I0407 23:15:43.231225 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:44.736285 32718 solver.cpp:218] Iteration 6072 (2.47613 iter/s, 4.84627s/12 iters), loss = 0.196045 +I0407 23:15:44.736325 32718 solver.cpp:237] Train net output #0: loss = 0.196045 (* 1 = 0.196045 loss) +I0407 23:15:44.736332 32718 sgd_solver.cpp:105] Iteration 6072, lr = 0.00383086 +I0407 23:15:49.610525 32718 solver.cpp:218] Iteration 6084 (2.46196 iter/s, 4.87417s/12 iters), loss = 0.168103 +I0407 23:15:49.610569 32718 solver.cpp:237] Train net output #0: loss = 0.168103 (* 1 = 0.168103 loss) +I0407 23:15:49.610577 32718 sgd_solver.cpp:105] Iteration 6084, lr = 0.00381697 +I0407 23:15:54.529460 32718 solver.cpp:218] Iteration 6096 (2.43959 iter/s, 4.91886s/12 iters), loss = 0.26628 +I0407 23:15:54.529497 32718 solver.cpp:237] Train net output #0: loss = 0.26628 (* 1 = 0.26628 loss) +I0407 23:15:54.529505 32718 sgd_solver.cpp:105] Iteration 6096, lr = 0.00380309 +I0407 23:15:59.475039 32718 solver.cpp:218] Iteration 6108 (2.42644 iter/s, 4.94552s/12 iters), loss = 0.143022 +I0407 23:15:59.475076 32718 solver.cpp:237] Train net output #0: loss = 0.143022 (* 1 = 0.143022 loss) +I0407 23:15:59.475085 32718 sgd_solver.cpp:105] Iteration 6108, lr = 0.00378924 +I0407 23:16:03.951313 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 23:16:07.593971 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 23:16:09.990262 32718 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 23:16:09.990280 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:16:12.122649 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:14.769440 32718 solver.cpp:397] Test net output #0: accuracy = 0.460172 +I0407 23:16:14.769476 32718 solver.cpp:397] Test net output #1: loss = 2.84229 (* 1 = 2.84229 loss) +I0407 23:16:14.866214 32718 solver.cpp:218] Iteration 6120 (0.779673 iter/s, 15.3911s/12 iters), loss = 0.167414 +I0407 23:16:14.866262 32718 solver.cpp:237] Train net output #0: loss = 0.167414 (* 1 = 0.167414 loss) +I0407 23:16:14.866271 32718 sgd_solver.cpp:105] Iteration 6120, lr = 0.00377541 +I0407 23:16:18.975874 32718 solver.cpp:218] Iteration 6132 (2.92 iter/s, 4.10959s/12 iters), loss = 0.112383 +I0407 23:16:18.975922 32718 solver.cpp:237] Train net output #0: loss = 0.112383 (* 1 = 0.112383 loss) +I0407 23:16:18.975934 32718 sgd_solver.cpp:105] Iteration 6132, lr = 0.00376159 +I0407 23:16:23.887446 32718 solver.cpp:218] Iteration 6144 (2.44325 iter/s, 4.9115s/12 iters), loss = 0.197079 +I0407 23:16:23.887488 32718 solver.cpp:237] Train net output #0: loss = 0.197079 (* 1 = 0.197079 loss) +I0407 23:16:23.887496 32718 sgd_solver.cpp:105] Iteration 6144, lr = 0.0037478 +I0407 23:16:28.862318 32718 solver.cpp:218] Iteration 6156 (2.41216 iter/s, 4.97479s/12 iters), loss = 0.143775 +I0407 23:16:28.862362 32718 solver.cpp:237] Train net output #0: loss = 0.143775 (* 1 = 0.143775 loss) +I0407 23:16:28.862371 32718 sgd_solver.cpp:105] Iteration 6156, lr = 0.00373403 +I0407 23:16:33.781985 32718 solver.cpp:218] Iteration 6168 (2.43923 iter/s, 4.91959s/12 iters), loss = 0.156323 +I0407 23:16:33.782027 32718 solver.cpp:237] Train net output #0: loss = 0.156323 (* 1 = 0.156323 loss) +I0407 23:16:33.782034 32718 sgd_solver.cpp:105] Iteration 6168, lr = 0.00372027 +I0407 23:16:34.359953 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:38.734321 32718 solver.cpp:218] Iteration 6180 (2.42314 iter/s, 4.95226s/12 iters), loss = 0.267027 +I0407 23:16:38.734441 32718 solver.cpp:237] Train net output #0: loss = 0.267027 (* 1 = 0.267027 loss) +I0407 23:16:38.734450 32718 sgd_solver.cpp:105] Iteration 6180, lr = 0.00370654 +I0407 23:16:43.701599 32718 solver.cpp:218] Iteration 6192 (2.41588 iter/s, 4.96713s/12 iters), loss = 0.26648 +I0407 23:16:43.701644 32718 solver.cpp:237] Train net output #0: loss = 0.26648 (* 1 = 0.26648 loss) +I0407 23:16:43.701653 32718 sgd_solver.cpp:105] Iteration 6192, lr = 0.00369283 +I0407 23:16:48.617102 32718 solver.cpp:218] Iteration 6204 (2.4413 iter/s, 4.91542s/12 iters), loss = 0.133198 +I0407 23:16:48.617149 32718 solver.cpp:237] Train net output #0: loss = 0.133198 (* 1 = 0.133198 loss) +I0407 23:16:48.617158 32718 sgd_solver.cpp:105] Iteration 6204, lr = 0.00367914 +I0407 23:16:53.587695 32718 solver.cpp:218] Iteration 6216 (2.41424 iter/s, 4.97051s/12 iters), loss = 0.162873 +I0407 23:16:53.587738 32718 solver.cpp:237] Train net output #0: loss = 0.162873 (* 1 = 0.162873 loss) +I0407 23:16:53.587747 32718 sgd_solver.cpp:105] Iteration 6216, lr = 0.00366547 +I0407 23:16:55.595649 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 23:17:01.375563 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 23:17:05.785441 32718 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 23:17:05.785466 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:17:07.948206 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:09.312353 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:17:10.505215 32718 solver.cpp:397] Test net output #0: accuracy = 0.459559 +I0407 23:17:10.505261 32718 solver.cpp:397] Test net output #1: loss = 2.90079 (* 1 = 2.90079 loss) +I0407 23:17:12.283193 32718 solver.cpp:218] Iteration 6228 (0.641869 iter/s, 18.6954s/12 iters), loss = 0.157468 +I0407 23:17:12.283234 32718 solver.cpp:237] Train net output #0: loss = 0.157468 (* 1 = 0.157468 loss) +I0407 23:17:12.283241 32718 sgd_solver.cpp:105] Iteration 6228, lr = 0.00365182 +I0407 23:17:17.210988 32718 solver.cpp:218] Iteration 6240 (2.4352 iter/s, 4.92773s/12 iters), loss = 0.222618 +I0407 23:17:17.211028 32718 solver.cpp:237] Train net output #0: loss = 0.222617 (* 1 = 0.222617 loss) +I0407 23:17:17.211036 32718 sgd_solver.cpp:105] Iteration 6240, lr = 0.0036382 +I0407 23:17:22.172529 32718 solver.cpp:218] Iteration 6252 (2.41864 iter/s, 4.96148s/12 iters), loss = 0.220498 +I0407 23:17:22.172566 32718 solver.cpp:237] Train net output #0: loss = 0.220498 (* 1 = 0.220498 loss) +I0407 23:17:22.172574 32718 sgd_solver.cpp:105] Iteration 6252, lr = 0.00362459 +I0407 23:17:27.139919 32718 solver.cpp:218] Iteration 6264 (2.41579 iter/s, 4.96732s/12 iters), loss = 0.13747 +I0407 23:17:27.139961 32718 solver.cpp:237] Train net output #0: loss = 0.13747 (* 1 = 0.13747 loss) +I0407 23:17:27.139971 32718 sgd_solver.cpp:105] Iteration 6264, lr = 0.00361101 +I0407 23:17:29.811056 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:32.041991 32718 solver.cpp:218] Iteration 6276 (2.44798 iter/s, 4.90201s/12 iters), loss = 0.146256 +I0407 23:17:32.042028 32718 solver.cpp:237] Train net output #0: loss = 0.146256 (* 1 = 0.146256 loss) +I0407 23:17:32.042037 32718 sgd_solver.cpp:105] Iteration 6276, lr = 0.00359745 +I0407 23:17:37.000116 32718 solver.cpp:218] Iteration 6288 (2.4203 iter/s, 4.95806s/12 iters), loss = 0.266033 +I0407 23:17:37.000162 32718 solver.cpp:237] Train net output #0: loss = 0.266033 (* 1 = 0.266033 loss) +I0407 23:17:37.000171 32718 sgd_solver.cpp:105] Iteration 6288, lr = 0.00358391 +I0407 23:17:41.924182 32718 solver.cpp:218] Iteration 6300 (2.43705 iter/s, 4.92399s/12 iters), loss = 0.06875 +I0407 23:17:41.924294 32718 solver.cpp:237] Train net output #0: loss = 0.0687499 (* 1 = 0.0687499 loss) +I0407 23:17:41.924304 32718 sgd_solver.cpp:105] Iteration 6300, lr = 0.0035704 +I0407 23:17:46.875741 32718 solver.cpp:218] Iteration 6312 (2.42355 iter/s, 4.95142s/12 iters), loss = 0.260799 +I0407 23:17:46.875777 32718 solver.cpp:237] Train net output #0: loss = 0.260799 (* 1 = 0.260799 loss) +I0407 23:17:46.875785 32718 sgd_solver.cpp:105] Iteration 6312, lr = 0.00355691 +I0407 23:17:51.358108 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 23:17:55.069451 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 23:17:58.096220 32718 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 23:17:58.096241 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:18:00.133919 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:02.864054 32718 solver.cpp:397] Test net output #0: accuracy = 0.46875 +I0407 23:18:02.864099 32718 solver.cpp:397] Test net output #1: loss = 2.82694 (* 1 = 2.82694 loss) +I0407 23:18:02.960659 32718 solver.cpp:218] Iteration 6324 (0.746045 iter/s, 16.0848s/12 iters), loss = 0.144369 +I0407 23:18:02.960705 32718 solver.cpp:237] Train net output #0: loss = 0.144369 (* 1 = 0.144369 loss) +I0407 23:18:02.960712 32718 sgd_solver.cpp:105] Iteration 6324, lr = 0.00354344 +I0407 23:18:07.078264 32718 solver.cpp:218] Iteration 6336 (2.91437 iter/s, 4.11753s/12 iters), loss = 0.295891 +I0407 23:18:07.078303 32718 solver.cpp:237] Train net output #0: loss = 0.295891 (* 1 = 0.295891 loss) +I0407 23:18:07.078312 32718 sgd_solver.cpp:105] Iteration 6336, lr = 0.00352999 +I0407 23:18:11.976161 32718 solver.cpp:218] Iteration 6348 (2.45007 iter/s, 4.89782s/12 iters), loss = 0.280723 +I0407 23:18:11.976296 32718 solver.cpp:237] Train net output #0: loss = 0.280723 (* 1 = 0.280723 loss) +I0407 23:18:11.976306 32718 sgd_solver.cpp:105] Iteration 6348, lr = 0.00351657 +I0407 23:18:16.919184 32718 solver.cpp:218] Iteration 6360 (2.42775 iter/s, 4.94285s/12 iters), loss = 0.297817 +I0407 23:18:16.919248 32718 solver.cpp:237] Train net output #0: loss = 0.297817 (* 1 = 0.297817 loss) +I0407 23:18:16.919260 32718 sgd_solver.cpp:105] Iteration 6360, lr = 0.00350317 +I0407 23:18:21.730629 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:21.871112 32718 solver.cpp:218] Iteration 6372 (2.42334 iter/s, 4.95183s/12 iters), loss = 0.289159 +I0407 23:18:21.871170 32718 solver.cpp:237] Train net output #0: loss = 0.289159 (* 1 = 0.289159 loss) +I0407 23:18:21.871181 32718 sgd_solver.cpp:105] Iteration 6372, lr = 0.00348979 +I0407 23:18:26.787182 32718 solver.cpp:218] Iteration 6384 (2.44102 iter/s, 4.91598s/12 iters), loss = 0.197895 +I0407 23:18:26.787235 32718 solver.cpp:237] Train net output #0: loss = 0.197895 (* 1 = 0.197895 loss) +I0407 23:18:26.787243 32718 sgd_solver.cpp:105] Iteration 6384, lr = 0.00347644 +I0407 23:18:31.755342 32718 solver.cpp:218] Iteration 6396 (2.41542 iter/s, 4.96808s/12 iters), loss = 0.074853 +I0407 23:18:31.755390 32718 solver.cpp:237] Train net output #0: loss = 0.0748529 (* 1 = 0.0748529 loss) +I0407 23:18:31.755400 32718 sgd_solver.cpp:105] Iteration 6396, lr = 0.00346311 +I0407 23:18:36.670437 32718 solver.cpp:218] Iteration 6408 (2.4415 iter/s, 4.91501s/12 iters), loss = 0.210529 +I0407 23:18:36.670482 32718 solver.cpp:237] Train net output #0: loss = 0.210529 (* 1 = 0.210529 loss) +I0407 23:18:36.670490 32718 sgd_solver.cpp:105] Iteration 6408, lr = 0.00344981 +I0407 23:18:41.641657 32718 solver.cpp:218] Iteration 6420 (2.41393 iter/s, 4.97114s/12 iters), loss = 0.141338 +I0407 23:18:41.641702 32718 solver.cpp:237] Train net output #0: loss = 0.141338 (* 1 = 0.141338 loss) +I0407 23:18:41.641711 32718 sgd_solver.cpp:105] Iteration 6420, lr = 0.00343653 +I0407 23:18:43.638267 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 23:18:47.799854 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 23:18:52.114337 32718 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 23:18:52.114356 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:18:54.101518 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:56.890308 32718 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0407 23:18:56.890357 32718 solver.cpp:397] Test net output #1: loss = 2.83904 (* 1 = 2.83904 loss) +I0407 23:18:58.693482 32718 solver.cpp:218] Iteration 6432 (0.703741 iter/s, 17.0517s/12 iters), loss = 0.17615 +I0407 23:18:58.693521 32718 solver.cpp:237] Train net output #0: loss = 0.17615 (* 1 = 0.17615 loss) +I0407 23:18:58.693529 32718 sgd_solver.cpp:105] Iteration 6432, lr = 0.00342327 +I0407 23:19:03.641363 32718 solver.cpp:218] Iteration 6444 (2.42532 iter/s, 4.94781s/12 iters), loss = 0.0698032 +I0407 23:19:03.641409 32718 solver.cpp:237] Train net output #0: loss = 0.0698032 (* 1 = 0.0698032 loss) +I0407 23:19:03.641418 32718 sgd_solver.cpp:105] Iteration 6444, lr = 0.00341004 +I0407 23:19:08.582726 32718 solver.cpp:218] Iteration 6456 (2.42852 iter/s, 4.94128s/12 iters), loss = 0.132315 +I0407 23:19:08.582769 32718 solver.cpp:237] Train net output #0: loss = 0.132315 (* 1 = 0.132315 loss) +I0407 23:19:08.582778 32718 sgd_solver.cpp:105] Iteration 6456, lr = 0.00339683 +I0407 23:19:13.541826 32718 solver.cpp:218] Iteration 6468 (2.41983 iter/s, 4.95902s/12 iters), loss = 0.114162 +I0407 23:19:13.541868 32718 solver.cpp:237] Train net output #0: loss = 0.114162 (* 1 = 0.114162 loss) +I0407 23:19:13.541877 32718 sgd_solver.cpp:105] Iteration 6468, lr = 0.00338365 +I0407 23:19:15.488256 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:18.443581 32718 solver.cpp:218] Iteration 6480 (2.44814 iter/s, 4.90168s/12 iters), loss = 0.203358 +I0407 23:19:18.443625 32718 solver.cpp:237] Train net output #0: loss = 0.203358 (* 1 = 0.203358 loss) +I0407 23:19:18.443634 32718 sgd_solver.cpp:105] Iteration 6480, lr = 0.00337049 +I0407 23:19:23.395584 32718 solver.cpp:218] Iteration 6492 (2.4233 iter/s, 4.95193s/12 iters), loss = 0.227772 +I0407 23:19:23.395623 32718 solver.cpp:237] Train net output #0: loss = 0.227772 (* 1 = 0.227772 loss) +I0407 23:19:23.395632 32718 sgd_solver.cpp:105] Iteration 6492, lr = 0.00335736 +I0407 23:19:28.307530 32718 solver.cpp:218] Iteration 6504 (2.44306 iter/s, 4.91188s/12 iters), loss = 0.22279 +I0407 23:19:28.307570 32718 solver.cpp:237] Train net output #0: loss = 0.22279 (* 1 = 0.22279 loss) +I0407 23:19:28.307579 32718 sgd_solver.cpp:105] Iteration 6504, lr = 0.00334426 +I0407 23:19:33.265372 32718 solver.cpp:218] Iteration 6516 (2.42044 iter/s, 4.95777s/12 iters), loss = 0.136096 +I0407 23:19:33.265415 32718 solver.cpp:237] Train net output #0: loss = 0.136096 (* 1 = 0.136096 loss) +I0407 23:19:33.265424 32718 sgd_solver.cpp:105] Iteration 6516, lr = 0.00333118 +I0407 23:19:37.734728 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 23:19:40.805294 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 23:19:43.175177 32718 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 23:19:43.175204 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:19:45.058631 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:47.678129 32718 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0407 23:19:47.678287 32718 solver.cpp:397] Test net output #1: loss = 2.79208 (* 1 = 2.79208 loss) +I0407 23:19:47.774708 32718 solver.cpp:218] Iteration 6528 (0.82706 iter/s, 14.5092s/12 iters), loss = 0.145186 +I0407 23:19:47.774750 32718 solver.cpp:237] Train net output #0: loss = 0.145186 (* 1 = 0.145186 loss) +I0407 23:19:47.774760 32718 sgd_solver.cpp:105] Iteration 6528, lr = 0.00331812 +I0407 23:19:51.907079 32718 solver.cpp:218] Iteration 6540 (2.90395 iter/s, 4.1323s/12 iters), loss = 0.117267 +I0407 23:19:51.907121 32718 solver.cpp:237] Train net output #0: loss = 0.117267 (* 1 = 0.117267 loss) +I0407 23:19:51.907130 32718 sgd_solver.cpp:105] Iteration 6540, lr = 0.00330509 +I0407 23:19:56.850056 32718 solver.cpp:218] Iteration 6552 (2.42772 iter/s, 4.94291s/12 iters), loss = 0.141742 +I0407 23:19:56.850093 32718 solver.cpp:237] Train net output #0: loss = 0.141742 (* 1 = 0.141742 loss) +I0407 23:19:56.850100 32718 sgd_solver.cpp:105] Iteration 6552, lr = 0.00329209 +I0407 23:20:01.838418 32718 solver.cpp:218] Iteration 6564 (2.40563 iter/s, 4.9883s/12 iters), loss = 0.0873375 +I0407 23:20:01.838455 32718 solver.cpp:237] Train net output #0: loss = 0.0873375 (* 1 = 0.0873375 loss) +I0407 23:20:01.838464 32718 sgd_solver.cpp:105] Iteration 6564, lr = 0.00327911 +I0407 23:20:05.982697 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:06.738075 32718 solver.cpp:218] Iteration 6576 (2.44919 iter/s, 4.89959s/12 iters), loss = 0.150235 +I0407 23:20:06.738116 32718 solver.cpp:237] Train net output #0: loss = 0.150235 (* 1 = 0.150235 loss) +I0407 23:20:06.738123 32718 sgd_solver.cpp:105] Iteration 6576, lr = 0.00326616 +I0407 23:20:11.728776 32718 solver.cpp:218] Iteration 6588 (2.4045 iter/s, 4.99063s/12 iters), loss = 0.150185 +I0407 23:20:11.728816 32718 solver.cpp:237] Train net output #0: loss = 0.150185 (* 1 = 0.150185 loss) +I0407 23:20:11.728824 32718 sgd_solver.cpp:105] Iteration 6588, lr = 0.00325324 +I0407 23:20:16.671105 32718 solver.cpp:218] Iteration 6600 (2.42804 iter/s, 4.94226s/12 iters), loss = 0.102571 +I0407 23:20:16.671152 32718 solver.cpp:237] Train net output #0: loss = 0.102571 (* 1 = 0.102571 loss) +I0407 23:20:16.671160 32718 sgd_solver.cpp:105] Iteration 6600, lr = 0.00324034 +I0407 23:20:21.619982 32718 solver.cpp:218] Iteration 6612 (2.42483 iter/s, 4.9488s/12 iters), loss = 0.112732 +I0407 23:20:21.620138 32718 solver.cpp:237] Train net output #0: loss = 0.112732 (* 1 = 0.112732 loss) +I0407 23:20:21.620148 32718 sgd_solver.cpp:105] Iteration 6612, lr = 0.00322747 +I0407 23:20:26.595379 32718 solver.cpp:218] Iteration 6624 (2.41196 iter/s, 4.9752s/12 iters), loss = 0.117559 +I0407 23:20:26.595427 32718 solver.cpp:237] Train net output #0: loss = 0.117559 (* 1 = 0.117559 loss) +I0407 23:20:26.595434 32718 sgd_solver.cpp:105] Iteration 6624, lr = 0.00321462 +I0407 23:20:28.591533 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 23:20:32.785874 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 23:20:35.998574 32718 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 23:20:35.998591 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:20:37.923302 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:40.594611 32718 solver.cpp:397] Test net output #0: accuracy = 0.481618 +I0407 23:20:40.594655 32718 solver.cpp:397] Test net output #1: loss = 2.86071 (* 1 = 2.86071 loss) +I0407 23:20:42.372614 32718 solver.cpp:218] Iteration 6636 (0.760594 iter/s, 15.7771s/12 iters), loss = 0.100096 +I0407 23:20:42.372650 32718 solver.cpp:237] Train net output #0: loss = 0.100096 (* 1 = 0.100096 loss) +I0407 23:20:42.372658 32718 sgd_solver.cpp:105] Iteration 6636, lr = 0.00320181 +I0407 23:20:47.337990 32718 solver.cpp:218] Iteration 6648 (2.41677 iter/s, 4.96531s/12 iters), loss = 0.187368 +I0407 23:20:47.338027 32718 solver.cpp:237] Train net output #0: loss = 0.187368 (* 1 = 0.187368 loss) +I0407 23:20:47.338035 32718 sgd_solver.cpp:105] Iteration 6648, lr = 0.00318902 +I0407 23:20:52.302371 32718 solver.cpp:218] Iteration 6660 (2.41725 iter/s, 4.96432s/12 iters), loss = 0.21011 +I0407 23:20:52.302495 32718 solver.cpp:237] Train net output #0: loss = 0.21011 (* 1 = 0.21011 loss) +I0407 23:20:52.302502 32718 sgd_solver.cpp:105] Iteration 6660, lr = 0.00317625 +I0407 23:20:57.248811 32718 solver.cpp:218] Iteration 6672 (2.42606 iter/s, 4.94629s/12 iters), loss = 0.150732 +I0407 23:20:57.248847 32718 solver.cpp:237] Train net output #0: loss = 0.150732 (* 1 = 0.150732 loss) +I0407 23:20:57.248854 32718 sgd_solver.cpp:105] Iteration 6672, lr = 0.00316352 +I0407 23:20:58.570346 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:02.223121 32718 solver.cpp:218] Iteration 6684 (2.41243 iter/s, 4.97425s/12 iters), loss = 0.109327 +I0407 23:21:02.223158 32718 solver.cpp:237] Train net output #0: loss = 0.109327 (* 1 = 0.109327 loss) +I0407 23:21:02.223166 32718 sgd_solver.cpp:105] Iteration 6684, lr = 0.00315081 +I0407 23:21:07.222260 32718 solver.cpp:218] Iteration 6696 (2.40044 iter/s, 4.99907s/12 iters), loss = 0.181092 +I0407 23:21:07.222297 32718 solver.cpp:237] Train net output #0: loss = 0.181092 (* 1 = 0.181092 loss) +I0407 23:21:07.222306 32718 sgd_solver.cpp:105] Iteration 6696, lr = 0.00313813 +I0407 23:21:12.125809 32718 solver.cpp:218] Iteration 6708 (2.44724 iter/s, 4.90348s/12 iters), loss = 0.0909493 +I0407 23:21:12.125849 32718 solver.cpp:237] Train net output #0: loss = 0.0909493 (* 1 = 0.0909493 loss) +I0407 23:21:12.125855 32718 sgd_solver.cpp:105] Iteration 6708, lr = 0.00312548 +I0407 23:21:17.084897 32718 solver.cpp:218] Iteration 6720 (2.41983 iter/s, 4.95902s/12 iters), loss = 0.0625245 +I0407 23:21:17.084936 32718 solver.cpp:237] Train net output #0: loss = 0.0625245 (* 1 = 0.0625245 loss) +I0407 23:21:17.084944 32718 sgd_solver.cpp:105] Iteration 6720, lr = 0.00311285 +I0407 23:21:21.545794 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 23:21:24.614598 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 23:21:26.981302 32718 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 23:21:26.981318 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:21:28.750092 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:31.460608 32718 solver.cpp:397] Test net output #0: accuracy = 0.473652 +I0407 23:21:31.460655 32718 solver.cpp:397] Test net output #1: loss = 2.84236 (* 1 = 2.84236 loss) +I0407 23:21:31.557365 32718 solver.cpp:218] Iteration 6732 (0.829166 iter/s, 14.4724s/12 iters), loss = 0.120756 +I0407 23:21:31.557411 32718 solver.cpp:237] Train net output #0: loss = 0.120756 (* 1 = 0.120756 loss) +I0407 23:21:31.557420 32718 sgd_solver.cpp:105] Iteration 6732, lr = 0.00310026 +I0407 23:21:35.628823 32718 solver.cpp:218] Iteration 6744 (2.9474 iter/s, 4.07139s/12 iters), loss = 0.158553 +I0407 23:21:35.628859 32718 solver.cpp:237] Train net output #0: loss = 0.158553 (* 1 = 0.158553 loss) +I0407 23:21:35.628868 32718 sgd_solver.cpp:105] Iteration 6744, lr = 0.00308769 +I0407 23:21:40.560073 32718 solver.cpp:218] Iteration 6756 (2.43349 iter/s, 4.93118s/12 iters), loss = 0.168803 +I0407 23:21:40.560112 32718 solver.cpp:237] Train net output #0: loss = 0.168803 (* 1 = 0.168803 loss) +I0407 23:21:40.560122 32718 sgd_solver.cpp:105] Iteration 6756, lr = 0.00307515 +I0407 23:21:45.500576 32718 solver.cpp:218] Iteration 6768 (2.42894 iter/s, 4.94043s/12 iters), loss = 0.0999142 +I0407 23:21:45.500620 32718 solver.cpp:237] Train net output #0: loss = 0.0999142 (* 1 = 0.0999142 loss) +I0407 23:21:45.500628 32718 sgd_solver.cpp:105] Iteration 6768, lr = 0.00306263 +I0407 23:21:48.936156 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:50.446470 32718 solver.cpp:218] Iteration 6780 (2.42629 iter/s, 4.94582s/12 iters), loss = 0.107978 +I0407 23:21:50.446512 32718 solver.cpp:237] Train net output #0: loss = 0.107978 (* 1 = 0.107978 loss) +I0407 23:21:50.446521 32718 sgd_solver.cpp:105] Iteration 6780, lr = 0.00305015 +I0407 23:21:55.380384 32718 solver.cpp:218] Iteration 6792 (2.43218 iter/s, 4.93384s/12 iters), loss = 0.128956 +I0407 23:21:55.380527 32718 solver.cpp:237] Train net output #0: loss = 0.128956 (* 1 = 0.128956 loss) +I0407 23:21:55.380537 32718 sgd_solver.cpp:105] Iteration 6792, lr = 0.00303769 +I0407 23:22:00.325978 32718 solver.cpp:218] Iteration 6804 (2.42648 iter/s, 4.94543s/12 iters), loss = 0.13304 +I0407 23:22:00.326015 32718 solver.cpp:237] Train net output #0: loss = 0.13304 (* 1 = 0.13304 loss) +I0407 23:22:00.326023 32718 sgd_solver.cpp:105] Iteration 6804, lr = 0.00302527 +I0407 23:22:05.264951 32718 solver.cpp:218] Iteration 6816 (2.42969 iter/s, 4.93891s/12 iters), loss = 0.0618262 +I0407 23:22:05.264984 32718 solver.cpp:237] Train net output #0: loss = 0.0618262 (* 1 = 0.0618262 loss) +I0407 23:22:05.264991 32718 sgd_solver.cpp:105] Iteration 6816, lr = 0.00301287 +I0407 23:22:10.241096 32718 solver.cpp:218] Iteration 6828 (2.41154 iter/s, 4.97607s/12 iters), loss = 0.0591927 +I0407 23:22:10.241153 32718 solver.cpp:237] Train net output #0: loss = 0.0591928 (* 1 = 0.0591928 loss) +I0407 23:22:10.241166 32718 sgd_solver.cpp:105] Iteration 6828, lr = 0.0030005 +I0407 23:22:12.231320 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 23:22:15.736647 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 23:22:19.130089 32718 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 23:22:19.130105 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:22:20.965101 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:23.864514 32718 solver.cpp:397] Test net output #0: accuracy = 0.484681 +I0407 23:22:23.864560 32718 solver.cpp:397] Test net output #1: loss = 2.85453 (* 1 = 2.85453 loss) +I0407 23:22:25.783458 32718 solver.cpp:218] Iteration 6840 (0.772089 iter/s, 15.5422s/12 iters), loss = 0.340952 +I0407 23:22:25.783599 32718 solver.cpp:237] Train net output #0: loss = 0.340952 (* 1 = 0.340952 loss) +I0407 23:22:25.783609 32718 sgd_solver.cpp:105] Iteration 6840, lr = 0.00298816 +I0407 23:22:30.798733 32718 solver.cpp:218] Iteration 6852 (2.39277 iter/s, 5.01511s/12 iters), loss = 0.0890957 +I0407 23:22:30.798771 32718 solver.cpp:237] Train net output #0: loss = 0.0890958 (* 1 = 0.0890958 loss) +I0407 23:22:30.798780 32718 sgd_solver.cpp:105] Iteration 6852, lr = 0.00297585 +I0407 23:22:35.896039 32718 solver.cpp:218] Iteration 6864 (2.35422 iter/s, 5.09723s/12 iters), loss = 0.0726074 +I0407 23:22:35.896082 32718 solver.cpp:237] Train net output #0: loss = 0.0726074 (* 1 = 0.0726074 loss) +I0407 23:22:35.896090 32718 sgd_solver.cpp:105] Iteration 6864, lr = 0.00296357 +I0407 23:22:40.820291 32718 solver.cpp:218] Iteration 6876 (2.43696 iter/s, 4.92417s/12 iters), loss = 0.11508 +I0407 23:22:40.820334 32718 solver.cpp:237] Train net output #0: loss = 0.11508 (* 1 = 0.11508 loss) +I0407 23:22:40.820343 32718 sgd_solver.cpp:105] Iteration 6876, lr = 0.00295132 +I0407 23:22:41.356704 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:45.663805 32718 solver.cpp:218] Iteration 6888 (2.47758 iter/s, 4.84344s/12 iters), loss = 0.0966519 +I0407 23:22:45.663841 32718 solver.cpp:237] Train net output #0: loss = 0.0966519 (* 1 = 0.0966519 loss) +I0407 23:22:45.663849 32718 sgd_solver.cpp:105] Iteration 6888, lr = 0.0029391 +I0407 23:22:50.638397 32718 solver.cpp:218] Iteration 6900 (2.41229 iter/s, 4.97453s/12 iters), loss = 0.0803192 +I0407 23:22:50.638439 32718 solver.cpp:237] Train net output #0: loss = 0.0803192 (* 1 = 0.0803192 loss) +I0407 23:22:50.638447 32718 sgd_solver.cpp:105] Iteration 6900, lr = 0.0029269 +I0407 23:22:55.562803 32718 solver.cpp:218] Iteration 6912 (2.43688 iter/s, 4.92434s/12 iters), loss = 0.108753 +I0407 23:22:55.562836 32718 solver.cpp:237] Train net output #0: loss = 0.108753 (* 1 = 0.108753 loss) +I0407 23:22:55.562844 32718 sgd_solver.cpp:105] Iteration 6912, lr = 0.00291474 +I0407 23:23:00.538659 32718 solver.cpp:218] Iteration 6924 (2.41167 iter/s, 4.9758s/12 iters), loss = 0.067289 +I0407 23:23:00.538811 32718 solver.cpp:237] Train net output #0: loss = 0.067289 (* 1 = 0.067289 loss) +I0407 23:23:00.538822 32718 sgd_solver.cpp:105] Iteration 6924, lr = 0.00290261 +I0407 23:23:05.048343 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 23:23:08.113930 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 23:23:10.529723 32718 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 23:23:10.529740 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:23:11.143926 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:23:12.257228 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:15.045269 32718 solver.cpp:397] Test net output #0: accuracy = 0.485294 +I0407 23:23:15.045315 32718 solver.cpp:397] Test net output #1: loss = 2.85075 (* 1 = 2.85075 loss) +I0407 23:23:15.141888 32718 solver.cpp:218] Iteration 6936 (0.821748 iter/s, 14.603s/12 iters), loss = 0.201052 +I0407 23:23:15.141933 32718 solver.cpp:237] Train net output #0: loss = 0.201052 (* 1 = 0.201052 loss) +I0407 23:23:15.141942 32718 sgd_solver.cpp:105] Iteration 6936, lr = 0.0028905 +I0407 23:23:19.228102 32718 solver.cpp:218] Iteration 6948 (2.93676 iter/s, 4.08614s/12 iters), loss = 0.0758336 +I0407 23:23:19.228144 32718 solver.cpp:237] Train net output #0: loss = 0.0758336 (* 1 = 0.0758336 loss) +I0407 23:23:19.228152 32718 sgd_solver.cpp:105] Iteration 6948, lr = 0.00287843 +I0407 23:23:24.195787 32718 solver.cpp:218] Iteration 6960 (2.41565 iter/s, 4.9676s/12 iters), loss = 0.117501 +I0407 23:23:24.195854 32718 solver.cpp:237] Train net output #0: loss = 0.117501 (* 1 = 0.117501 loss) +I0407 23:23:24.195866 32718 sgd_solver.cpp:105] Iteration 6960, lr = 0.00286639 +I0407 23:23:29.119216 32718 solver.cpp:218] Iteration 6972 (2.43737 iter/s, 4.92333s/12 iters), loss = 0.119741 +I0407 23:23:29.119262 32718 solver.cpp:237] Train net output #0: loss = 0.119741 (* 1 = 0.119741 loss) +I0407 23:23:29.119271 32718 sgd_solver.cpp:105] Iteration 6972, lr = 0.00285438 +I0407 23:23:31.832007 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:34.069370 32718 solver.cpp:218] Iteration 6984 (2.42421 iter/s, 4.95007s/12 iters), loss = 0.0629897 +I0407 23:23:34.069415 32718 solver.cpp:237] Train net output #0: loss = 0.0629897 (* 1 = 0.0629897 loss) +I0407 23:23:34.069424 32718 sgd_solver.cpp:105] Iteration 6984, lr = 0.00284239 +I0407 23:23:38.998080 32718 solver.cpp:218] Iteration 6996 (2.43475 iter/s, 4.92864s/12 iters), loss = 0.133893 +I0407 23:23:38.998119 32718 solver.cpp:237] Train net output #0: loss = 0.133893 (* 1 = 0.133893 loss) +I0407 23:23:38.998127 32718 sgd_solver.cpp:105] Iteration 6996, lr = 0.00283044 +I0407 23:23:43.943845 32718 solver.cpp:218] Iteration 7008 (2.42635 iter/s, 4.9457s/12 iters), loss = 0.0614158 +I0407 23:23:43.943883 32718 solver.cpp:237] Train net output #0: loss = 0.0614158 (* 1 = 0.0614158 loss) +I0407 23:23:43.943892 32718 sgd_solver.cpp:105] Iteration 7008, lr = 0.00281852 +I0407 23:23:48.847092 32718 solver.cpp:218] Iteration 7020 (2.44739 iter/s, 4.90318s/12 iters), loss = 0.114955 +I0407 23:23:48.847142 32718 solver.cpp:237] Train net output #0: loss = 0.114955 (* 1 = 0.114955 loss) +I0407 23:23:48.847151 32718 sgd_solver.cpp:105] Iteration 7020, lr = 0.00280663 +I0407 23:23:53.808979 32718 solver.cpp:218] Iteration 7032 (2.41847 iter/s, 4.96181s/12 iters), loss = 0.131383 +I0407 23:23:53.809022 32718 solver.cpp:237] Train net output #0: loss = 0.131383 (* 1 = 0.131383 loss) +I0407 23:23:53.809031 32718 sgd_solver.cpp:105] Iteration 7032, lr = 0.00279477 +I0407 23:23:55.874150 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 23:24:00.121731 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 23:24:03.466851 32718 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 23:24:03.466948 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:24:05.207357 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:08.223698 32718 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 23:24:08.223739 32718 solver.cpp:397] Test net output #1: loss = 2.88694 (* 1 = 2.88694 loss) +I0407 23:24:10.035498 32718 solver.cpp:218] Iteration 7044 (0.739535 iter/s, 16.2264s/12 iters), loss = 0.113657 +I0407 23:24:10.035540 32718 solver.cpp:237] Train net output #0: loss = 0.113657 (* 1 = 0.113657 loss) +I0407 23:24:10.035548 32718 sgd_solver.cpp:105] Iteration 7044, lr = 0.00278294 +I0407 23:24:14.949920 32718 solver.cpp:218] Iteration 7056 (2.44183 iter/s, 4.91435s/12 iters), loss = 0.182145 +I0407 23:24:14.949960 32718 solver.cpp:237] Train net output #0: loss = 0.182145 (* 1 = 0.182145 loss) +I0407 23:24:14.949970 32718 sgd_solver.cpp:105] Iteration 7056, lr = 0.00277114 +I0407 23:24:19.941880 32718 solver.cpp:218] Iteration 7068 (2.4039 iter/s, 4.99189s/12 iters), loss = 0.108546 +I0407 23:24:19.941926 32718 solver.cpp:237] Train net output #0: loss = 0.108546 (* 1 = 0.108546 loss) +I0407 23:24:19.941934 32718 sgd_solver.cpp:105] Iteration 7068, lr = 0.00275937 +I0407 23:24:24.754539 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:24.865255 32718 solver.cpp:218] Iteration 7080 (2.43739 iter/s, 4.9233s/12 iters), loss = 0.270629 +I0407 23:24:24.865296 32718 solver.cpp:237] Train net output #0: loss = 0.270629 (* 1 = 0.270629 loss) +I0407 23:24:24.865305 32718 sgd_solver.cpp:105] Iteration 7080, lr = 0.00274763 +I0407 23:24:29.842873 32718 solver.cpp:218] Iteration 7092 (2.41083 iter/s, 4.97755s/12 iters), loss = 0.106521 +I0407 23:24:29.842916 32718 solver.cpp:237] Train net output #0: loss = 0.10652 (* 1 = 0.10652 loss) +I0407 23:24:29.842923 32718 sgd_solver.cpp:105] Iteration 7092, lr = 0.00273593 +I0407 23:24:34.837683 32718 solver.cpp:218] Iteration 7104 (2.40253 iter/s, 4.99474s/12 iters), loss = 0.210721 +I0407 23:24:34.837810 32718 solver.cpp:237] Train net output #0: loss = 0.210721 (* 1 = 0.210721 loss) +I0407 23:24:34.837818 32718 sgd_solver.cpp:105] Iteration 7104, lr = 0.00272425 +I0407 23:24:39.752970 32718 solver.cpp:218] Iteration 7116 (2.44144 iter/s, 4.91513s/12 iters), loss = 0.137267 +I0407 23:24:39.753013 32718 solver.cpp:237] Train net output #0: loss = 0.137267 (* 1 = 0.137267 loss) +I0407 23:24:39.753023 32718 sgd_solver.cpp:105] Iteration 7116, lr = 0.00271261 +I0407 23:24:44.735502 32718 solver.cpp:218] Iteration 7128 (2.40845 iter/s, 4.98245s/12 iters), loss = 0.104648 +I0407 23:24:44.735539 32718 solver.cpp:237] Train net output #0: loss = 0.104648 (* 1 = 0.104648 loss) +I0407 23:24:44.735548 32718 sgd_solver.cpp:105] Iteration 7128, lr = 0.002701 +I0407 23:24:49.267112 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 23:24:52.378823 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 23:24:54.787854 32718 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 23:24:54.787871 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:24:56.418367 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:59.238323 32718 solver.cpp:397] Test net output #0: accuracy = 0.500613 +I0407 23:24:59.238370 32718 solver.cpp:397] Test net output #1: loss = 2.79921 (* 1 = 2.79921 loss) +I0407 23:24:59.334833 32718 solver.cpp:218] Iteration 7140 (0.821961 iter/s, 14.5992s/12 iters), loss = 0.134791 +I0407 23:24:59.334872 32718 solver.cpp:237] Train net output #0: loss = 0.13479 (* 1 = 0.13479 loss) +I0407 23:24:59.334879 32718 sgd_solver.cpp:105] Iteration 7140, lr = 0.00268941 +I0407 23:25:03.460888 32718 solver.cpp:218] Iteration 7152 (2.90839 iter/s, 4.12599s/12 iters), loss = 0.0898209 +I0407 23:25:03.460927 32718 solver.cpp:237] Train net output #0: loss = 0.0898209 (* 1 = 0.0898209 loss) +I0407 23:25:03.460935 32718 sgd_solver.cpp:105] Iteration 7152, lr = 0.00267786 +I0407 23:25:08.415722 32718 solver.cpp:218] Iteration 7164 (2.42191 iter/s, 4.95477s/12 iters), loss = 0.11443 +I0407 23:25:08.415858 32718 solver.cpp:237] Train net output #0: loss = 0.11443 (* 1 = 0.11443 loss) +I0407 23:25:08.415866 32718 sgd_solver.cpp:105] Iteration 7164, lr = 0.00266635 +I0407 23:25:13.383999 32718 solver.cpp:218] Iteration 7176 (2.41541 iter/s, 4.96811s/12 iters), loss = 0.0832127 +I0407 23:25:13.384044 32718 solver.cpp:237] Train net output #0: loss = 0.0832127 (* 1 = 0.0832127 loss) +I0407 23:25:13.384052 32718 sgd_solver.cpp:105] Iteration 7176, lr = 0.00265486 +I0407 23:25:15.500808 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:18.378773 32718 solver.cpp:218] Iteration 7188 (2.40255 iter/s, 4.9947s/12 iters), loss = 0.13745 +I0407 23:25:18.378818 32718 solver.cpp:237] Train net output #0: loss = 0.13745 (* 1 = 0.13745 loss) +I0407 23:25:18.378826 32718 sgd_solver.cpp:105] Iteration 7188, lr = 0.0026434 +I0407 23:25:23.361120 32718 solver.cpp:218] Iteration 7200 (2.40854 iter/s, 4.98228s/12 iters), loss = 0.153436 +I0407 23:25:23.361158 32718 solver.cpp:237] Train net output #0: loss = 0.153436 (* 1 = 0.153436 loss) +I0407 23:25:23.361166 32718 sgd_solver.cpp:105] Iteration 7200, lr = 0.00263198 +I0407 23:25:28.316924 32718 solver.cpp:218] Iteration 7212 (2.42144 iter/s, 4.95574s/12 iters), loss = 0.122278 +I0407 23:25:28.316964 32718 solver.cpp:237] Train net output #0: loss = 0.122278 (* 1 = 0.122278 loss) +I0407 23:25:28.316972 32718 sgd_solver.cpp:105] Iteration 7212, lr = 0.00262059 +I0407 23:25:33.221151 32718 solver.cpp:218] Iteration 7224 (2.4469 iter/s, 4.90416s/12 iters), loss = 0.0875321 +I0407 23:25:33.221187 32718 solver.cpp:237] Train net output #0: loss = 0.0875322 (* 1 = 0.0875322 loss) +I0407 23:25:33.221194 32718 sgd_solver.cpp:105] Iteration 7224, lr = 0.00260923 +I0407 23:25:38.182601 32718 solver.cpp:218] Iteration 7236 (2.41868 iter/s, 4.96139s/12 iters), loss = 0.047358 +I0407 23:25:38.182639 32718 solver.cpp:237] Train net output #0: loss = 0.047358 (* 1 = 0.047358 loss) +I0407 23:25:38.182646 32718 sgd_solver.cpp:105] Iteration 7236, lr = 0.0025979 +I0407 23:25:40.184844 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 23:25:43.866883 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 23:25:46.901350 32718 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 23:25:46.901368 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:25:48.418316 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:51.270036 32718 solver.cpp:397] Test net output #0: accuracy = 0.503676 +I0407 23:25:51.270079 32718 solver.cpp:397] Test net output #1: loss = 2.80472 (* 1 = 2.80472 loss) +I0407 23:25:53.076879 32718 solver.cpp:218] Iteration 7248 (0.805684 iter/s, 14.8942s/12 iters), loss = 0.0971339 +I0407 23:25:53.076918 32718 solver.cpp:237] Train net output #0: loss = 0.0971339 (* 1 = 0.0971339 loss) +I0407 23:25:53.076926 32718 sgd_solver.cpp:105] Iteration 7248, lr = 0.00258661 +I0407 23:25:57.998442 32718 solver.cpp:218] Iteration 7260 (2.43829 iter/s, 4.92149s/12 iters), loss = 0.106712 +I0407 23:25:57.998486 32718 solver.cpp:237] Train net output #0: loss = 0.106712 (* 1 = 0.106712 loss) +I0407 23:25:57.998495 32718 sgd_solver.cpp:105] Iteration 7260, lr = 0.00257534 +I0407 23:26:02.965097 32718 solver.cpp:218] Iteration 7272 (2.41615 iter/s, 4.96658s/12 iters), loss = 0.134101 +I0407 23:26:02.965142 32718 solver.cpp:237] Train net output #0: loss = 0.134101 (* 1 = 0.134101 loss) +I0407 23:26:02.965152 32718 sgd_solver.cpp:105] Iteration 7272, lr = 0.00256411 +I0407 23:26:07.129315 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:07.868561 32718 solver.cpp:218] Iteration 7284 (2.44729 iter/s, 4.90338s/12 iters), loss = 0.186677 +I0407 23:26:07.868611 32718 solver.cpp:237] Train net output #0: loss = 0.186677 (* 1 = 0.186677 loss) +I0407 23:26:07.868620 32718 sgd_solver.cpp:105] Iteration 7284, lr = 0.00255291 +I0407 23:26:12.838802 32718 solver.cpp:218] Iteration 7296 (2.41441 iter/s, 4.97016s/12 iters), loss = 0.0552554 +I0407 23:26:12.838924 32718 solver.cpp:237] Train net output #0: loss = 0.0552554 (* 1 = 0.0552554 loss) +I0407 23:26:12.838933 32718 sgd_solver.cpp:105] Iteration 7296, lr = 0.00254174 +I0407 23:26:17.793177 32718 solver.cpp:218] Iteration 7308 (2.42218 iter/s, 4.95422s/12 iters), loss = 0.121566 +I0407 23:26:17.793220 32718 solver.cpp:237] Train net output #0: loss = 0.121566 (* 1 = 0.121566 loss) +I0407 23:26:17.793228 32718 sgd_solver.cpp:105] Iteration 7308, lr = 0.00253061 +I0407 23:26:22.697803 32718 solver.cpp:218] Iteration 7320 (2.44671 iter/s, 4.90455s/12 iters), loss = 0.040907 +I0407 23:26:22.697845 32718 solver.cpp:237] Train net output #0: loss = 0.040907 (* 1 = 0.040907 loss) +I0407 23:26:22.697854 32718 sgd_solver.cpp:105] Iteration 7320, lr = 0.00251951 +I0407 23:26:27.648636 32718 solver.cpp:218] Iteration 7332 (2.42387 iter/s, 4.95076s/12 iters), loss = 0.0392373 +I0407 23:26:27.648681 32718 solver.cpp:237] Train net output #0: loss = 0.0392373 (* 1 = 0.0392373 loss) +I0407 23:26:27.648690 32718 sgd_solver.cpp:105] Iteration 7332, lr = 0.00250844 +I0407 23:26:32.110550 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 23:26:36.499876 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 23:26:38.873983 32718 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 23:26:38.874004 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:26:40.502009 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:43.665222 32718 solver.cpp:397] Test net output #0: accuracy = 0.495711 +I0407 23:26:43.665395 32718 solver.cpp:397] Test net output #1: loss = 2.84463 (* 1 = 2.84463 loss) +I0407 23:26:43.761756 32718 solver.cpp:218] Iteration 7344 (0.74474 iter/s, 16.113s/12 iters), loss = 0.223308 +I0407 23:26:43.761799 32718 solver.cpp:237] Train net output #0: loss = 0.223308 (* 1 = 0.223308 loss) +I0407 23:26:43.761808 32718 sgd_solver.cpp:105] Iteration 7344, lr = 0.0024974 +I0407 23:26:47.876760 32718 solver.cpp:218] Iteration 7356 (2.91621 iter/s, 4.11493s/12 iters), loss = 0.178581 +I0407 23:26:47.876798 32718 solver.cpp:237] Train net output #0: loss = 0.178581 (* 1 = 0.178581 loss) +I0407 23:26:47.876806 32718 sgd_solver.cpp:105] Iteration 7356, lr = 0.00248639 +I0407 23:26:52.851467 32718 solver.cpp:218] Iteration 7368 (2.41223 iter/s, 4.97464s/12 iters), loss = 0.0528688 +I0407 23:26:52.851505 32718 solver.cpp:237] Train net output #0: loss = 0.0528688 (* 1 = 0.0528688 loss) +I0407 23:26:52.851511 32718 sgd_solver.cpp:105] Iteration 7368, lr = 0.00247542 +I0407 23:26:57.793015 32718 solver.cpp:218] Iteration 7380 (2.42842 iter/s, 4.94149s/12 iters), loss = 0.115768 +I0407 23:26:57.793057 32718 solver.cpp:237] Train net output #0: loss = 0.115768 (* 1 = 0.115768 loss) +I0407 23:26:57.793064 32718 sgd_solver.cpp:105] Iteration 7380, lr = 0.00246448 +I0407 23:26:59.148586 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:02.709689 32718 solver.cpp:218] Iteration 7392 (2.44071 iter/s, 4.9166s/12 iters), loss = 0.0857693 +I0407 23:27:02.709729 32718 solver.cpp:237] Train net output #0: loss = 0.0857694 (* 1 = 0.0857694 loss) +I0407 23:27:02.709736 32718 sgd_solver.cpp:105] Iteration 7392, lr = 0.00245357 +I0407 23:27:07.769726 32718 solver.cpp:218] Iteration 7404 (2.37156 iter/s, 5.05997s/12 iters), loss = 0.102597 +I0407 23:27:07.769767 32718 solver.cpp:237] Train net output #0: loss = 0.102597 (* 1 = 0.102597 loss) +I0407 23:27:07.769773 32718 sgd_solver.cpp:105] Iteration 7404, lr = 0.0024427 +I0407 23:27:12.716094 32718 solver.cpp:218] Iteration 7416 (2.42606 iter/s, 4.9463s/12 iters), loss = 0.0567761 +I0407 23:27:12.716126 32718 solver.cpp:237] Train net output #0: loss = 0.0567761 (* 1 = 0.0567761 loss) +I0407 23:27:12.716135 32718 sgd_solver.cpp:105] Iteration 7416, lr = 0.00243185 +I0407 23:27:17.631129 32718 solver.cpp:218] Iteration 7428 (2.44152 iter/s, 4.91496s/12 iters), loss = 0.0970025 +I0407 23:27:17.631294 32718 solver.cpp:237] Train net output #0: loss = 0.0970025 (* 1 = 0.0970025 loss) +I0407 23:27:17.631304 32718 sgd_solver.cpp:105] Iteration 7428, lr = 0.00242104 +I0407 23:27:22.602633 32718 solver.cpp:218] Iteration 7440 (2.41385 iter/s, 4.97132s/12 iters), loss = 0.0537865 +I0407 23:27:22.602676 32718 solver.cpp:237] Train net output #0: loss = 0.0537865 (* 1 = 0.0537865 loss) +I0407 23:27:22.602685 32718 sgd_solver.cpp:105] Iteration 7440, lr = 0.00241027 +I0407 23:27:24.601308 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 23:27:30.291127 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 23:27:38.422639 32718 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 23:27:38.422659 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:27:39.990347 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:43.207396 32718 solver.cpp:397] Test net output #0: accuracy = 0.501838 +I0407 23:27:43.207443 32718 solver.cpp:397] Test net output #1: loss = 2.85095 (* 1 = 2.85095 loss) +I0407 23:27:44.961833 32718 solver.cpp:218] Iteration 7452 (0.536695 iter/s, 22.3591s/12 iters), loss = 0.0709224 +I0407 23:27:44.961877 32718 solver.cpp:237] Train net output #0: loss = 0.0709224 (* 1 = 0.0709224 loss) +I0407 23:27:44.961885 32718 sgd_solver.cpp:105] Iteration 7452, lr = 0.00239952 +I0407 23:27:49.821792 32718 solver.cpp:218] Iteration 7464 (2.46919 iter/s, 4.85988s/12 iters), loss = 0.0165189 +I0407 23:27:49.821913 32718 solver.cpp:237] Train net output #0: loss = 0.0165189 (* 1 = 0.0165189 loss) +I0407 23:27:49.821921 32718 sgd_solver.cpp:105] Iteration 7464, lr = 0.00238881 +I0407 23:27:54.814180 32718 solver.cpp:218] Iteration 7476 (2.40373 iter/s, 4.99224s/12 iters), loss = 0.0916946 +I0407 23:27:54.814222 32718 solver.cpp:237] Train net output #0: loss = 0.0916947 (* 1 = 0.0916947 loss) +I0407 23:27:54.814231 32718 sgd_solver.cpp:105] Iteration 7476, lr = 0.00237813 +I0407 23:27:58.311432 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:59.764204 32718 solver.cpp:218] Iteration 7488 (2.42427 iter/s, 4.94995s/12 iters), loss = 0.118324 +I0407 23:27:59.764251 32718 solver.cpp:237] Train net output #0: loss = 0.118324 (* 1 = 0.118324 loss) +I0407 23:27:59.764261 32718 sgd_solver.cpp:105] Iteration 7488, lr = 0.00236749 +I0407 23:28:04.728385 32718 solver.cpp:218] Iteration 7500 (2.41736 iter/s, 4.9641s/12 iters), loss = 0.0415497 +I0407 23:28:04.728446 32718 solver.cpp:237] Train net output #0: loss = 0.0415497 (* 1 = 0.0415497 loss) +I0407 23:28:04.728456 32718 sgd_solver.cpp:105] Iteration 7500, lr = 0.00235687 +I0407 23:28:09.701154 32718 solver.cpp:218] Iteration 7512 (2.41319 iter/s, 4.97267s/12 iters), loss = 0.105863 +I0407 23:28:09.701221 32718 solver.cpp:237] Train net output #0: loss = 0.105863 (* 1 = 0.105863 loss) +I0407 23:28:09.701236 32718 sgd_solver.cpp:105] Iteration 7512, lr = 0.00234629 +I0407 23:28:14.659559 32718 solver.cpp:218] Iteration 7524 (2.42018 iter/s, 4.95832s/12 iters), loss = 0.058018 +I0407 23:28:14.659596 32718 solver.cpp:237] Train net output #0: loss = 0.058018 (* 1 = 0.058018 loss) +I0407 23:28:14.659605 32718 sgd_solver.cpp:105] Iteration 7524, lr = 0.00233575 +I0407 23:28:19.576568 32718 solver.cpp:218] Iteration 7536 (2.44054 iter/s, 4.91694s/12 iters), loss = 0.0480961 +I0407 23:28:19.576613 32718 solver.cpp:237] Train net output #0: loss = 0.0480961 (* 1 = 0.0480961 loss) +I0407 23:28:19.576622 32718 sgd_solver.cpp:105] Iteration 7536, lr = 0.00232523 +I0407 23:28:24.062072 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 23:28:27.140717 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 23:28:31.570619 32718 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 23:28:31.570638 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:28:33.096066 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:36.341048 32718 solver.cpp:397] Test net output #0: accuracy = 0.494485 +I0407 23:28:36.341094 32718 solver.cpp:397] Test net output #1: loss = 2.80866 (* 1 = 2.80866 loss) +I0407 23:28:36.437490 32718 solver.cpp:218] Iteration 7548 (0.711709 iter/s, 16.8608s/12 iters), loss = 0.0705691 +I0407 23:28:36.437534 32718 solver.cpp:237] Train net output #0: loss = 0.0705692 (* 1 = 0.0705692 loss) +I0407 23:28:36.437543 32718 sgd_solver.cpp:105] Iteration 7548, lr = 0.00231475 +I0407 23:28:40.690182 32718 solver.cpp:218] Iteration 7560 (2.82179 iter/s, 4.25262s/12 iters), loss = 0.0629695 +I0407 23:28:40.690217 32718 solver.cpp:237] Train net output #0: loss = 0.0629695 (* 1 = 0.0629695 loss) +I0407 23:28:40.690224 32718 sgd_solver.cpp:105] Iteration 7560, lr = 0.0023043 +I0407 23:28:45.604382 32718 solver.cpp:218] Iteration 7572 (2.44194 iter/s, 4.91413s/12 iters), loss = 0.101887 +I0407 23:28:45.604421 32718 solver.cpp:237] Train net output #0: loss = 0.101887 (* 1 = 0.101887 loss) +I0407 23:28:45.604429 32718 sgd_solver.cpp:105] Iteration 7572, lr = 0.00229389 +I0407 23:28:50.485589 32718 solver.cpp:218] Iteration 7584 (2.45844 iter/s, 4.88114s/12 iters), loss = 0.0507761 +I0407 23:28:50.485625 32718 solver.cpp:237] Train net output #0: loss = 0.0507762 (* 1 = 0.0507762 loss) +I0407 23:28:50.485631 32718 sgd_solver.cpp:105] Iteration 7584, lr = 0.00228351 +I0407 23:28:51.110430 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:55.343086 32718 solver.cpp:218] Iteration 7596 (2.47044 iter/s, 4.85743s/12 iters), loss = 0.0418113 +I0407 23:28:55.343225 32718 solver.cpp:237] Train net output #0: loss = 0.0418113 (* 1 = 0.0418113 loss) +I0407 23:28:55.343235 32718 sgd_solver.cpp:105] Iteration 7596, lr = 0.00227316 +I0407 23:29:00.306589 32718 solver.cpp:218] Iteration 7608 (2.41773 iter/s, 4.96334s/12 iters), loss = 0.0875035 +I0407 23:29:00.306625 32718 solver.cpp:237] Train net output #0: loss = 0.0875035 (* 1 = 0.0875035 loss) +I0407 23:29:00.306632 32718 sgd_solver.cpp:105] Iteration 7608, lr = 0.00226284 +I0407 23:29:05.158555 32718 solver.cpp:218] Iteration 7620 (2.47326 iter/s, 4.8519s/12 iters), loss = 0.0716875 +I0407 23:29:05.158597 32718 solver.cpp:237] Train net output #0: loss = 0.0716875 (* 1 = 0.0716875 loss) +I0407 23:29:05.158605 32718 sgd_solver.cpp:105] Iteration 7620, lr = 0.00225256 +I0407 23:29:07.459026 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:29:09.986678 32718 solver.cpp:218] Iteration 7632 (2.48548 iter/s, 4.82805s/12 iters), loss = 0.201693 +I0407 23:29:09.986719 32718 solver.cpp:237] Train net output #0: loss = 0.201693 (* 1 = 0.201693 loss) +I0407 23:29:09.986728 32718 sgd_solver.cpp:105] Iteration 7632, lr = 0.00224231 +I0407 23:29:14.917007 32718 solver.cpp:218] Iteration 7644 (2.43395 iter/s, 4.93026s/12 iters), loss = 0.0860038 +I0407 23:29:14.917045 32718 solver.cpp:237] Train net output #0: loss = 0.0860039 (* 1 = 0.0860039 loss) +I0407 23:29:14.917053 32718 sgd_solver.cpp:105] Iteration 7644, lr = 0.0022321 +I0407 23:29:16.944692 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 23:29:20.964367 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 23:29:23.341696 32718 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 23:29:23.341715 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:29:24.812958 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:29:28.116366 32718 solver.cpp:397] Test net output #0: accuracy = 0.518995 +I0407 23:29:28.116559 32718 solver.cpp:397] Test net output #1: loss = 2.8182 (* 1 = 2.8182 loss) +I0407 23:29:29.742660 32718 solver.cpp:218] Iteration 7656 (0.809413 iter/s, 14.8256s/12 iters), loss = 0.0483912 +I0407 23:29:29.742700 32718 solver.cpp:237] Train net output #0: loss = 0.0483913 (* 1 = 0.0483913 loss) +I0407 23:29:29.742708 32718 sgd_solver.cpp:105] Iteration 7656, lr = 0.00222191 +I0407 23:29:34.696342 32718 solver.cpp:218] Iteration 7668 (2.42247 iter/s, 4.95362s/12 iters), loss = 0.0741889 +I0407 23:29:34.696386 32718 solver.cpp:237] Train net output #0: loss = 0.0741889 (* 1 = 0.0741889 loss) +I0407 23:29:34.696396 32718 sgd_solver.cpp:105] Iteration 7668, lr = 0.00221176 +I0407 23:29:39.642192 32718 solver.cpp:218] Iteration 7680 (2.42631 iter/s, 4.94578s/12 iters), loss = 0.137655 +I0407 23:29:39.642226 32718 solver.cpp:237] Train net output #0: loss = 0.137655 (* 1 = 0.137655 loss) +I0407 23:29:39.642235 32718 sgd_solver.cpp:105] Iteration 7680, lr = 0.00220165 +I0407 23:29:42.407531 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:29:44.579221 32718 solver.cpp:218] Iteration 7692 (2.43065 iter/s, 4.93696s/12 iters), loss = 0.0649138 +I0407 23:29:44.579258 32718 solver.cpp:237] Train net output #0: loss = 0.0649138 (* 1 = 0.0649138 loss) +I0407 23:29:44.579267 32718 sgd_solver.cpp:105] Iteration 7692, lr = 0.00219157 +I0407 23:29:49.504514 32718 solver.cpp:218] Iteration 7704 (2.43644 iter/s, 4.92522s/12 iters), loss = 0.0865833 +I0407 23:29:49.504551 32718 solver.cpp:237] Train net output #0: loss = 0.0865833 (* 1 = 0.0865833 loss) +I0407 23:29:49.504559 32718 sgd_solver.cpp:105] Iteration 7704, lr = 0.00218152 +I0407 23:29:54.412103 32718 solver.cpp:218] Iteration 7716 (2.44523 iter/s, 4.90752s/12 iters), loss = 0.124941 +I0407 23:29:54.412144 32718 solver.cpp:237] Train net output #0: loss = 0.124941 (* 1 = 0.124941 loss) +I0407 23:29:54.412151 32718 sgd_solver.cpp:105] Iteration 7716, lr = 0.0021715 +I0407 23:29:59.310616 32718 solver.cpp:218] Iteration 7728 (2.44976 iter/s, 4.89844s/12 iters), loss = 0.0743926 +I0407 23:29:59.310752 32718 solver.cpp:237] Train net output #0: loss = 0.0743926 (* 1 = 0.0743926 loss) +I0407 23:29:59.310762 32718 sgd_solver.cpp:105] Iteration 7728, lr = 0.00216152 +I0407 23:30:04.192813 32718 solver.cpp:218] Iteration 7740 (2.45799 iter/s, 4.88203s/12 iters), loss = 0.0718537 +I0407 23:30:04.192855 32718 solver.cpp:237] Train net output #0: loss = 0.0718537 (* 1 = 0.0718537 loss) +I0407 23:30:04.192863 32718 sgd_solver.cpp:105] Iteration 7740, lr = 0.00215157 +I0407 23:30:08.699014 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 23:30:11.778038 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 23:30:14.138590 32718 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 23:30:14.138609 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:30:15.473364 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:18.589434 32718 solver.cpp:397] Test net output #0: accuracy = 0.507353 +I0407 23:30:18.589481 32718 solver.cpp:397] Test net output #1: loss = 2.84532 (* 1 = 2.84532 loss) +I0407 23:30:18.686097 32718 solver.cpp:218] Iteration 7752 (0.827975 iter/s, 14.4932s/12 iters), loss = 0.113427 +I0407 23:30:18.686144 32718 solver.cpp:237] Train net output #0: loss = 0.113427 (* 1 = 0.113427 loss) +I0407 23:30:18.686154 32718 sgd_solver.cpp:105] Iteration 7752, lr = 0.00214165 +I0407 23:30:22.859874 32718 solver.cpp:218] Iteration 7764 (2.87514 iter/s, 4.17371s/12 iters), loss = 0.0972985 +I0407 23:30:22.859910 32718 solver.cpp:237] Train net output #0: loss = 0.0972986 (* 1 = 0.0972986 loss) +I0407 23:30:22.859917 32718 sgd_solver.cpp:105] Iteration 7764, lr = 0.00213177 +I0407 23:30:27.848109 32718 solver.cpp:218] Iteration 7776 (2.40569 iter/s, 4.98817s/12 iters), loss = 0.0598435 +I0407 23:30:27.848148 32718 solver.cpp:237] Train net output #0: loss = 0.0598435 (* 1 = 0.0598435 loss) +I0407 23:30:27.848156 32718 sgd_solver.cpp:105] Iteration 7776, lr = 0.00212192 +I0407 23:30:32.792856 32718 solver.cpp:218] Iteration 7788 (2.42685 iter/s, 4.94468s/12 iters), loss = 0.10543 +I0407 23:30:32.793018 32718 solver.cpp:237] Train net output #0: loss = 0.10543 (* 1 = 0.10543 loss) +I0407 23:30:32.793028 32718 sgd_solver.cpp:105] Iteration 7788, lr = 0.0021121 +I0407 23:30:32.799363 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:37.736706 32718 solver.cpp:218] Iteration 7800 (2.42735 iter/s, 4.94366s/12 iters), loss = 0.0466201 +I0407 23:30:37.736747 32718 solver.cpp:237] Train net output #0: loss = 0.0466202 (* 1 = 0.0466202 loss) +I0407 23:30:37.736757 32718 sgd_solver.cpp:105] Iteration 7800, lr = 0.00210232 +I0407 23:30:42.737802 32718 solver.cpp:218] Iteration 7812 (2.39951 iter/s, 5.00103s/12 iters), loss = 0.0811311 +I0407 23:30:42.737838 32718 solver.cpp:237] Train net output #0: loss = 0.0811311 (* 1 = 0.0811311 loss) +I0407 23:30:42.737845 32718 sgd_solver.cpp:105] Iteration 7812, lr = 0.00209257 +I0407 23:30:47.643776 32718 solver.cpp:218] Iteration 7824 (2.44603 iter/s, 4.90591s/12 iters), loss = 0.0237032 +I0407 23:30:47.643819 32718 solver.cpp:237] Train net output #0: loss = 0.0237032 (* 1 = 0.0237032 loss) +I0407 23:30:47.643827 32718 sgd_solver.cpp:105] Iteration 7824, lr = 0.00208285 +I0407 23:30:52.620106 32718 solver.cpp:218] Iteration 7836 (2.41145 iter/s, 4.97626s/12 iters), loss = 0.094964 +I0407 23:30:52.620146 32718 solver.cpp:237] Train net output #0: loss = 0.094964 (* 1 = 0.094964 loss) +I0407 23:30:52.620154 32718 sgd_solver.cpp:105] Iteration 7836, lr = 0.00207317 +I0407 23:30:57.579599 32718 solver.cpp:218] Iteration 7848 (2.41964 iter/s, 4.95942s/12 iters), loss = 0.0558626 +I0407 23:30:57.579638 32718 solver.cpp:237] Train net output #0: loss = 0.0558626 (* 1 = 0.0558626 loss) +I0407 23:30:57.579645 32718 sgd_solver.cpp:105] Iteration 7848, lr = 0.00206352 +I0407 23:30:59.577098 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 23:31:02.931596 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 23:31:05.290840 32718 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 23:31:05.290863 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:31:06.685976 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:31:10.090133 32718 solver.cpp:397] Test net output #0: accuracy = 0.505515 +I0407 23:31:10.090179 32718 solver.cpp:397] Test net output #1: loss = 2.79477 (* 1 = 2.79477 loss) +I0407 23:31:11.877815 32718 solver.cpp:218] Iteration 7860 (0.839271 iter/s, 14.2981s/12 iters), loss = 0.0776179 +I0407 23:31:11.877853 32718 solver.cpp:237] Train net output #0: loss = 0.0776179 (* 1 = 0.0776179 loss) +I0407 23:31:11.877861 32718 sgd_solver.cpp:105] Iteration 7860, lr = 0.0020539 +I0407 23:31:16.742660 32718 solver.cpp:218] Iteration 7872 (2.46671 iter/s, 4.86478s/12 iters), loss = 0.0271532 +I0407 23:31:16.742699 32718 solver.cpp:237] Train net output #0: loss = 0.0271532 (* 1 = 0.0271532 loss) +I0407 23:31:16.742707 32718 sgd_solver.cpp:105] Iteration 7872, lr = 0.00204432 +I0407 23:31:21.704392 32718 solver.cpp:218] Iteration 7884 (2.41854 iter/s, 4.96166s/12 iters), loss = 0.1019 +I0407 23:31:21.704432 32718 solver.cpp:237] Train net output #0: loss = 0.1019 (* 1 = 0.1019 loss) +I0407 23:31:21.704440 32718 sgd_solver.cpp:105] Iteration 7884, lr = 0.00203477 +I0407 23:31:23.803752 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:31:26.600383 32718 solver.cpp:218] Iteration 7896 (2.45102 iter/s, 4.89592s/12 iters), loss = 0.00943052 +I0407 23:31:26.600423 32718 solver.cpp:237] Train net output #0: loss = 0.00943052 (* 1 = 0.00943052 loss) +I0407 23:31:26.600431 32718 sgd_solver.cpp:105] Iteration 7896, lr = 0.00202525 +I0407 23:31:31.556986 32718 solver.cpp:218] Iteration 7908 (2.42105 iter/s, 4.95654s/12 iters), loss = 0.11285 +I0407 23:31:31.557024 32718 solver.cpp:237] Train net output #0: loss = 0.11285 (* 1 = 0.11285 loss) +I0407 23:31:31.557031 32718 sgd_solver.cpp:105] Iteration 7908, lr = 0.00201576 +I0407 23:31:36.473986 32718 solver.cpp:218] Iteration 7920 (2.44055 iter/s, 4.91693s/12 iters), loss = 0.0438029 +I0407 23:31:36.474140 32718 solver.cpp:237] Train net output #0: loss = 0.0438029 (* 1 = 0.0438029 loss) +I0407 23:31:36.474149 32718 sgd_solver.cpp:105] Iteration 7920, lr = 0.00200631 +I0407 23:31:41.404525 32718 solver.cpp:218] Iteration 7932 (2.4339 iter/s, 4.93036s/12 iters), loss = 0.147764 +I0407 23:31:41.404567 32718 solver.cpp:237] Train net output #0: loss = 0.147764 (* 1 = 0.147764 loss) +I0407 23:31:41.404577 32718 sgd_solver.cpp:105] Iteration 7932, lr = 0.0019969 +I0407 23:31:46.347259 32718 solver.cpp:218] Iteration 7944 (2.42784 iter/s, 4.94266s/12 iters), loss = 0.0208504 +I0407 23:31:46.347303 32718 solver.cpp:237] Train net output #0: loss = 0.0208504 (* 1 = 0.0208504 loss) +I0407 23:31:46.347311 32718 sgd_solver.cpp:105] Iteration 7944, lr = 0.00198751 +I0407 23:31:50.843536 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 23:31:55.410605 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 23:31:57.819490 32718 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 23:31:57.819509 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:31:59.169695 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:02.617864 32718 solver.cpp:397] Test net output #0: accuracy = 0.507353 +I0407 23:32:02.617910 32718 solver.cpp:397] Test net output #1: loss = 2.84066 (* 1 = 2.84066 loss) +I0407 23:32:02.714484 32718 solver.cpp:218] Iteration 7956 (0.733177 iter/s, 16.3671s/12 iters), loss = 0.0710412 +I0407 23:32:02.714529 32718 solver.cpp:237] Train net output #0: loss = 0.0710412 (* 1 = 0.0710412 loss) +I0407 23:32:02.714537 32718 sgd_solver.cpp:105] Iteration 7956, lr = 0.00197816 +I0407 23:32:06.774744 32718 solver.cpp:218] Iteration 7968 (2.95553 iter/s, 4.06019s/12 iters), loss = 0.0304347 +I0407 23:32:06.774880 32718 solver.cpp:237] Train net output #0: loss = 0.0304347 (* 1 = 0.0304347 loss) +I0407 23:32:06.774895 32718 sgd_solver.cpp:105] Iteration 7968, lr = 0.00196884 +I0407 23:32:11.713455 32718 solver.cpp:218] Iteration 7980 (2.42986 iter/s, 4.93855s/12 iters), loss = 0.107225 +I0407 23:32:11.713493 32718 solver.cpp:237] Train net output #0: loss = 0.107225 (* 1 = 0.107225 loss) +I0407 23:32:11.713501 32718 sgd_solver.cpp:105] Iteration 7980, lr = 0.00195956 +I0407 23:32:15.949095 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:16.595329 32718 solver.cpp:218] Iteration 7992 (2.45811 iter/s, 4.88181s/12 iters), loss = 0.102656 +I0407 23:32:16.595377 32718 solver.cpp:237] Train net output #0: loss = 0.102656 (* 1 = 0.102656 loss) +I0407 23:32:16.595389 32718 sgd_solver.cpp:105] Iteration 7992, lr = 0.00195031 +I0407 23:32:21.561530 32718 solver.cpp:218] Iteration 8004 (2.41637 iter/s, 4.96613s/12 iters), loss = 0.0455987 +I0407 23:32:21.561571 32718 solver.cpp:237] Train net output #0: loss = 0.0455987 (* 1 = 0.0455987 loss) +I0407 23:32:21.561579 32718 sgd_solver.cpp:105] Iteration 8004, lr = 0.00194109 +I0407 23:32:26.518941 32718 solver.cpp:218] Iteration 8016 (2.42065 iter/s, 4.95735s/12 iters), loss = 0.114773 +I0407 23:32:26.518973 32718 solver.cpp:237] Train net output #0: loss = 0.114773 (* 1 = 0.114773 loss) +I0407 23:32:26.518980 32718 sgd_solver.cpp:105] Iteration 8016, lr = 0.0019319 +I0407 23:32:31.392602 32718 solver.cpp:218] Iteration 8028 (2.46224 iter/s, 4.8736s/12 iters), loss = 0.0809719 +I0407 23:32:31.392642 32718 solver.cpp:237] Train net output #0: loss = 0.0809719 (* 1 = 0.0809719 loss) +I0407 23:32:31.392649 32718 sgd_solver.cpp:105] Iteration 8028, lr = 0.00192275 +I0407 23:32:36.333784 32718 solver.cpp:218] Iteration 8040 (2.4286 iter/s, 4.94112s/12 iters), loss = 0.0703065 +I0407 23:32:36.333819 32718 solver.cpp:237] Train net output #0: loss = 0.0703065 (* 1 = 0.0703065 loss) +I0407 23:32:36.333827 32718 sgd_solver.cpp:105] Iteration 8040, lr = 0.00191363 +I0407 23:32:41.278009 32718 solver.cpp:218] Iteration 8052 (2.4271 iter/s, 4.94417s/12 iters), loss = 0.0635816 +I0407 23:32:41.278146 32718 solver.cpp:237] Train net output #0: loss = 0.0635816 (* 1 = 0.0635816 loss) +I0407 23:32:41.278154 32718 sgd_solver.cpp:105] Iteration 8052, lr = 0.00190455 +I0407 23:32:43.294237 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 23:32:46.367888 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 23:32:48.725754 32718 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 23:32:48.725771 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:32:50.009716 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:53.231387 32718 solver.cpp:397] Test net output #0: accuracy = 0.512868 +I0407 23:32:53.231428 32718 solver.cpp:397] Test net output #1: loss = 2.76861 (* 1 = 2.76861 loss) +I0407 23:32:55.016433 32718 solver.cpp:218] Iteration 8064 (0.873475 iter/s, 13.7382s/12 iters), loss = 0.112795 +I0407 23:32:55.016476 32718 solver.cpp:237] Train net output #0: loss = 0.112795 (* 1 = 0.112795 loss) +I0407 23:32:55.016484 32718 sgd_solver.cpp:105] Iteration 8064, lr = 0.00189549 +I0407 23:32:59.971485 32718 solver.cpp:218] Iteration 8076 (2.42181 iter/s, 4.95497s/12 iters), loss = 0.0679882 +I0407 23:32:59.971547 32718 solver.cpp:237] Train net output #0: loss = 0.0679882 (* 1 = 0.0679882 loss) +I0407 23:32:59.971560 32718 sgd_solver.cpp:105] Iteration 8076, lr = 0.00188647 +I0407 23:33:05.006857 32718 solver.cpp:218] Iteration 8088 (2.38318 iter/s, 5.03528s/12 iters), loss = 0.0525046 +I0407 23:33:05.006894 32718 solver.cpp:237] Train net output #0: loss = 0.0525046 (* 1 = 0.0525046 loss) +I0407 23:33:05.006903 32718 sgd_solver.cpp:105] Iteration 8088, lr = 0.00187749 +I0407 23:33:06.384248 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:09.933284 32718 solver.cpp:218] Iteration 8100 (2.43588 iter/s, 4.92636s/12 iters), loss = 0.135005 +I0407 23:33:09.933323 32718 solver.cpp:237] Train net output #0: loss = 0.135005 (* 1 = 0.135005 loss) +I0407 23:33:09.933331 32718 sgd_solver.cpp:105] Iteration 8100, lr = 0.00186853 +I0407 23:33:14.877136 32718 solver.cpp:218] Iteration 8112 (2.42729 iter/s, 4.94378s/12 iters), loss = 0.0279139 +I0407 23:33:14.877261 32718 solver.cpp:237] Train net output #0: loss = 0.0279139 (* 1 = 0.0279139 loss) +I0407 23:33:14.877271 32718 sgd_solver.cpp:105] Iteration 8112, lr = 0.00185961 +I0407 23:33:19.743958 32718 solver.cpp:218] Iteration 8124 (2.46575 iter/s, 4.86667s/12 iters), loss = 0.0432566 +I0407 23:33:19.743996 32718 solver.cpp:237] Train net output #0: loss = 0.0432566 (* 1 = 0.0432566 loss) +I0407 23:33:19.744004 32718 sgd_solver.cpp:105] Iteration 8124, lr = 0.00185072 +I0407 23:33:24.706105 32718 solver.cpp:218] Iteration 8136 (2.41834 iter/s, 4.96207s/12 iters), loss = 0.150013 +I0407 23:33:24.706148 32718 solver.cpp:237] Train net output #0: loss = 0.150013 (* 1 = 0.150013 loss) +I0407 23:33:24.706157 32718 sgd_solver.cpp:105] Iteration 8136, lr = 0.00184187 +I0407 23:33:29.659191 32718 solver.cpp:218] Iteration 8148 (2.42277 iter/s, 4.95301s/12 iters), loss = 0.0107595 +I0407 23:33:29.659240 32718 solver.cpp:237] Train net output #0: loss = 0.0107596 (* 1 = 0.0107596 loss) +I0407 23:33:29.659248 32718 sgd_solver.cpp:105] Iteration 8148, lr = 0.00183304 +I0407 23:33:34.139111 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 23:33:37.256503 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 23:33:39.619148 32718 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 23:33:39.619166 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:33:40.817606 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:44.069480 32718 solver.cpp:397] Test net output #0: accuracy = 0.51348 +I0407 23:33:44.069511 32718 solver.cpp:397] Test net output #1: loss = 2.81277 (* 1 = 2.81277 loss) +I0407 23:33:44.165827 32718 solver.cpp:218] Iteration 8160 (0.827214 iter/s, 14.5065s/12 iters), loss = 0.0985616 +I0407 23:33:44.165876 32718 solver.cpp:237] Train net output #0: loss = 0.0985617 (* 1 = 0.0985617 loss) +I0407 23:33:44.165884 32718 sgd_solver.cpp:105] Iteration 8160, lr = 0.00182425 +I0407 23:33:48.278046 32718 solver.cpp:218] Iteration 8172 (2.91819 iter/s, 4.11214s/12 iters), loss = 0.0317634 +I0407 23:33:48.278203 32718 solver.cpp:237] Train net output #0: loss = 0.0317634 (* 1 = 0.0317634 loss) +I0407 23:33:48.278213 32718 sgd_solver.cpp:105] Iteration 8172, lr = 0.0018155 +I0407 23:33:53.245088 32718 solver.cpp:218] Iteration 8184 (2.41601 iter/s, 4.96686s/12 iters), loss = 0.104974 +I0407 23:33:53.245128 32718 solver.cpp:237] Train net output #0: loss = 0.104974 (* 1 = 0.104974 loss) +I0407 23:33:53.245136 32718 sgd_solver.cpp:105] Iteration 8184, lr = 0.00180677 +I0407 23:33:56.680718 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:58.094657 32718 solver.cpp:218] Iteration 8196 (2.47448 iter/s, 4.84949s/12 iters), loss = 0.0346849 +I0407 23:33:58.094703 32718 solver.cpp:237] Train net output #0: loss = 0.0346849 (* 1 = 0.0346849 loss) +I0407 23:33:58.094712 32718 sgd_solver.cpp:105] Iteration 8196, lr = 0.00179808 +I0407 23:34:03.068048 32718 solver.cpp:218] Iteration 8208 (2.41288 iter/s, 4.97331s/12 iters), loss = 0.104151 +I0407 23:34:03.068090 32718 solver.cpp:237] Train net output #0: loss = 0.104151 (* 1 = 0.104151 loss) +I0407 23:34:03.068099 32718 sgd_solver.cpp:105] Iteration 8208, lr = 0.00178942 +I0407 23:34:08.013190 32718 solver.cpp:218] Iteration 8220 (2.42666 iter/s, 4.94507s/12 iters), loss = 0.014001 +I0407 23:34:08.013233 32718 solver.cpp:237] Train net output #0: loss = 0.014001 (* 1 = 0.014001 loss) +I0407 23:34:08.013242 32718 sgd_solver.cpp:105] Iteration 8220, lr = 0.0017808 +I0407 23:34:12.960093 32718 solver.cpp:218] Iteration 8232 (2.4258 iter/s, 4.94683s/12 iters), loss = 0.0792821 +I0407 23:34:12.960137 32718 solver.cpp:237] Train net output #0: loss = 0.0792821 (* 1 = 0.0792821 loss) +I0407 23:34:12.960146 32718 sgd_solver.cpp:105] Iteration 8232, lr = 0.0017722 +I0407 23:34:17.891216 32718 solver.cpp:218] Iteration 8244 (2.43356 iter/s, 4.93105s/12 iters), loss = 0.0224014 +I0407 23:34:17.891261 32718 solver.cpp:237] Train net output #0: loss = 0.0224014 (* 1 = 0.0224014 loss) +I0407 23:34:17.891269 32718 sgd_solver.cpp:105] Iteration 8244, lr = 0.00176364 +I0407 23:34:22.857656 32718 solver.cpp:218] Iteration 8256 (2.41626 iter/s, 4.96636s/12 iters), loss = 0.0610395 +I0407 23:34:22.857806 32718 solver.cpp:237] Train net output #0: loss = 0.0610395 (* 1 = 0.0610395 loss) +I0407 23:34:22.857815 32718 sgd_solver.cpp:105] Iteration 8256, lr = 0.00175511 +I0407 23:34:24.867961 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 23:34:27.936203 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 23:34:30.311393 32718 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 23:34:30.311409 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:34:31.484871 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:34.804189 32718 solver.cpp:397] Test net output #0: accuracy = 0.523284 +I0407 23:34:34.804234 32718 solver.cpp:397] Test net output #1: loss = 2.82128 (* 1 = 2.82128 loss) +I0407 23:34:36.605682 32718 solver.cpp:218] Iteration 8268 (0.872865 iter/s, 13.7478s/12 iters), loss = 0.0567808 +I0407 23:34:36.605718 32718 solver.cpp:237] Train net output #0: loss = 0.0567808 (* 1 = 0.0567808 loss) +I0407 23:34:36.605726 32718 sgd_solver.cpp:105] Iteration 8268, lr = 0.00174662 +I0407 23:34:41.596124 32718 solver.cpp:218] Iteration 8280 (2.40463 iter/s, 4.99038s/12 iters), loss = 0.0803485 +I0407 23:34:41.596170 32718 solver.cpp:237] Train net output #0: loss = 0.0803485 (* 1 = 0.0803485 loss) +I0407 23:34:41.596179 32718 sgd_solver.cpp:105] Iteration 8280, lr = 0.00173816 +I0407 23:34:46.496624 32718 solver.cpp:218] Iteration 8292 (2.44877 iter/s, 4.90042s/12 iters), loss = 0.148516 +I0407 23:34:46.496675 32718 solver.cpp:237] Train net output #0: loss = 0.148516 (* 1 = 0.148516 loss) +I0407 23:34:46.496685 32718 sgd_solver.cpp:105] Iteration 8292, lr = 0.00172972 +I0407 23:34:47.093199 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:51.399471 32718 solver.cpp:218] Iteration 8304 (2.4476 iter/s, 4.90277s/12 iters), loss = 0.0943353 +I0407 23:34:51.399503 32718 solver.cpp:237] Train net output #0: loss = 0.0943353 (* 1 = 0.0943353 loss) +I0407 23:34:51.399513 32718 sgd_solver.cpp:105] Iteration 8304, lr = 0.00172133 +I0407 23:34:54.233000 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:34:56.369274 32718 solver.cpp:218] Iteration 8316 (2.41461 iter/s, 4.96974s/12 iters), loss = 0.0180675 +I0407 23:34:56.369313 32718 solver.cpp:237] Train net output #0: loss = 0.0180675 (* 1 = 0.0180675 loss) +I0407 23:34:56.369321 32718 sgd_solver.cpp:105] Iteration 8316, lr = 0.00171296 +I0407 23:35:01.255679 32718 solver.cpp:218] Iteration 8328 (2.45583 iter/s, 4.88633s/12 iters), loss = 0.0904267 +I0407 23:35:01.255719 32718 solver.cpp:237] Train net output #0: loss = 0.0904268 (* 1 = 0.0904268 loss) +I0407 23:35:01.255728 32718 sgd_solver.cpp:105] Iteration 8328, lr = 0.00170462 +I0407 23:35:06.194988 32718 solver.cpp:218] Iteration 8340 (2.42952 iter/s, 4.93924s/12 iters), loss = 0.0874588 +I0407 23:35:06.195042 32718 solver.cpp:237] Train net output #0: loss = 0.0874588 (* 1 = 0.0874588 loss) +I0407 23:35:06.195055 32718 sgd_solver.cpp:105] Iteration 8340, lr = 0.00169632 +I0407 23:35:11.162539 32718 solver.cpp:218] Iteration 8352 (2.41572 iter/s, 4.96747s/12 iters), loss = 0.0708697 +I0407 23:35:11.162582 32718 solver.cpp:237] Train net output #0: loss = 0.0708697 (* 1 = 0.0708697 loss) +I0407 23:35:11.162591 32718 sgd_solver.cpp:105] Iteration 8352, lr = 0.00168805 +I0407 23:35:15.676337 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 23:35:18.739502 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 23:35:21.102090 32718 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 23:35:21.102106 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:35:22.275034 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:25.708307 32718 solver.cpp:397] Test net output #0: accuracy = 0.515319 +I0407 23:35:25.708483 32718 solver.cpp:397] Test net output #1: loss = 2.75555 (* 1 = 2.75555 loss) +I0407 23:35:25.805297 32718 solver.cpp:218] Iteration 8364 (0.819524 iter/s, 14.6427s/12 iters), loss = 0.033332 +I0407 23:35:25.805342 32718 solver.cpp:237] Train net output #0: loss = 0.033332 (* 1 = 0.033332 loss) +I0407 23:35:25.805351 32718 sgd_solver.cpp:105] Iteration 8364, lr = 0.00167982 +I0407 23:35:29.895164 32718 solver.cpp:218] Iteration 8376 (2.93413 iter/s, 4.08979s/12 iters), loss = 0.132225 +I0407 23:35:29.895212 32718 solver.cpp:237] Train net output #0: loss = 0.132225 (* 1 = 0.132225 loss) +I0407 23:35:29.895221 32718 sgd_solver.cpp:105] Iteration 8376, lr = 0.00167161 +I0407 23:35:34.868137 32718 solver.cpp:218] Iteration 8388 (2.41308 iter/s, 4.97289s/12 iters), loss = 0.0358579 +I0407 23:35:34.868181 32718 solver.cpp:237] Train net output #0: loss = 0.035858 (* 1 = 0.035858 loss) +I0407 23:35:34.868189 32718 sgd_solver.cpp:105] Iteration 8388, lr = 0.00166344 +I0407 23:35:37.651650 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:39.819361 32718 solver.cpp:218] Iteration 8400 (2.42368 iter/s, 4.95115s/12 iters), loss = 0.0718623 +I0407 23:35:39.819406 32718 solver.cpp:237] Train net output #0: loss = 0.0718623 (* 1 = 0.0718623 loss) +I0407 23:35:39.819414 32718 sgd_solver.cpp:105] Iteration 8400, lr = 0.0016553 +I0407 23:35:44.782763 32718 solver.cpp:218] Iteration 8412 (2.41773 iter/s, 4.96333s/12 iters), loss = 0.0449645 +I0407 23:35:44.782799 32718 solver.cpp:237] Train net output #0: loss = 0.0449645 (* 1 = 0.0449645 loss) +I0407 23:35:44.782806 32718 sgd_solver.cpp:105] Iteration 8412, lr = 0.00164719 +I0407 23:35:49.769816 32718 solver.cpp:218] Iteration 8424 (2.40626 iter/s, 4.98699s/12 iters), loss = 0.0347374 +I0407 23:35:49.769855 32718 solver.cpp:237] Train net output #0: loss = 0.0347374 (* 1 = 0.0347374 loss) +I0407 23:35:49.769861 32718 sgd_solver.cpp:105] Iteration 8424, lr = 0.00163911 +I0407 23:35:54.746101 32718 solver.cpp:218] Iteration 8436 (2.41147 iter/s, 4.97622s/12 iters), loss = 0.133465 +I0407 23:35:54.746140 32718 solver.cpp:237] Train net output #0: loss = 0.133465 (* 1 = 0.133465 loss) +I0407 23:35:54.746146 32718 sgd_solver.cpp:105] Iteration 8436, lr = 0.00163106 +I0407 23:35:59.681851 32718 solver.cpp:218] Iteration 8448 (2.43127 iter/s, 4.93569s/12 iters), loss = 0.0754896 +I0407 23:35:59.681959 32718 solver.cpp:237] Train net output #0: loss = 0.0754896 (* 1 = 0.0754896 loss) +I0407 23:35:59.681967 32718 sgd_solver.cpp:105] Iteration 8448, lr = 0.00162305 +I0407 23:36:04.713295 32718 solver.cpp:218] Iteration 8460 (2.38506 iter/s, 5.03131s/12 iters), loss = 0.0994054 +I0407 23:36:04.713335 32718 solver.cpp:237] Train net output #0: loss = 0.0994054 (* 1 = 0.0994054 loss) +I0407 23:36:04.713342 32718 sgd_solver.cpp:105] Iteration 8460, lr = 0.00161507 +I0407 23:36:06.725461 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 23:36:09.872121 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 23:36:12.748955 32718 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 23:36:12.748972 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:36:13.876993 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:36:17.248435 32718 solver.cpp:397] Test net output #0: accuracy = 0.508578 +I0407 23:36:17.248466 32718 solver.cpp:397] Test net output #1: loss = 2.81187 (* 1 = 2.81187 loss) +I0407 23:36:19.030795 32718 solver.cpp:218] Iteration 8472 (0.83814 iter/s, 14.3174s/12 iters), loss = 0.0183983 +I0407 23:36:19.030833 32718 solver.cpp:237] Train net output #0: loss = 0.0183983 (* 1 = 0.0183983 loss) +I0407 23:36:19.030840 32718 sgd_solver.cpp:105] Iteration 8472, lr = 0.00160712 +I0407 23:36:24.000020 32718 solver.cpp:218] Iteration 8484 (2.4149 iter/s, 4.96916s/12 iters), loss = 0.0611635 +I0407 23:36:24.000059 32718 solver.cpp:237] Train net output #0: loss = 0.0611635 (* 1 = 0.0611635 loss) +I0407 23:36:24.000067 32718 sgd_solver.cpp:105] Iteration 8484, lr = 0.0015992 +I0407 23:36:28.946864 32718 solver.cpp:218] Iteration 8496 (2.42582 iter/s, 4.94677s/12 iters), loss = 0.0346841 +I0407 23:36:28.946900 32718 solver.cpp:237] Train net output #0: loss = 0.0346841 (* 1 = 0.0346841 loss) +I0407 23:36:28.946908 32718 sgd_solver.cpp:105] Iteration 8496, lr = 0.00159131 +I0407 23:36:28.983279 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:36:33.909817 32718 solver.cpp:218] Iteration 8508 (2.41795 iter/s, 4.96289s/12 iters), loss = 0.0663393 +I0407 23:36:33.909958 32718 solver.cpp:237] Train net output #0: loss = 0.0663393 (* 1 = 0.0663393 loss) +I0407 23:36:33.909968 32718 sgd_solver.cpp:105] Iteration 8508, lr = 0.00158346 +I0407 23:36:38.954478 32718 solver.cpp:218] Iteration 8520 (2.37883 iter/s, 5.04449s/12 iters), loss = 0.0824151 +I0407 23:36:38.954519 32718 solver.cpp:237] Train net output #0: loss = 0.0824151 (* 1 = 0.0824151 loss) +I0407 23:36:38.954526 32718 sgd_solver.cpp:105] Iteration 8520, lr = 0.00157563 +I0407 23:36:43.931820 32718 solver.cpp:218] Iteration 8532 (2.41096 iter/s, 4.97727s/12 iters), loss = 0.0836602 +I0407 23:36:43.931864 32718 solver.cpp:237] Train net output #0: loss = 0.0836602 (* 1 = 0.0836602 loss) +I0407 23:36:43.931872 32718 sgd_solver.cpp:105] Iteration 8532, lr = 0.00156784 +I0407 23:36:48.911784 32718 solver.cpp:218] Iteration 8544 (2.40969 iter/s, 4.97989s/12 iters), loss = 0.0315724 +I0407 23:36:48.911825 32718 solver.cpp:237] Train net output #0: loss = 0.0315724 (* 1 = 0.0315724 loss) +I0407 23:36:48.911834 32718 sgd_solver.cpp:105] Iteration 8544, lr = 0.00156008 +I0407 23:36:53.832823 32718 solver.cpp:218] Iteration 8556 (2.43855 iter/s, 4.92096s/12 iters), loss = 0.0556315 +I0407 23:36:53.832868 32718 solver.cpp:237] Train net output #0: loss = 0.0556316 (* 1 = 0.0556316 loss) +I0407 23:36:53.832876 32718 sgd_solver.cpp:105] Iteration 8556, lr = 0.00155235 +I0407 23:36:58.277418 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 23:37:01.352035 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 23:37:03.773746 32718 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 23:37:03.773763 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:37:04.858407 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:08.354027 32718 solver.cpp:397] Test net output #0: accuracy = 0.516544 +I0407 23:37:08.354074 32718 solver.cpp:397] Test net output #1: loss = 2.79796 (* 1 = 2.79796 loss) +I0407 23:37:08.450420 32718 solver.cpp:218] Iteration 8568 (0.820934 iter/s, 14.6175s/12 iters), loss = 0.0609294 +I0407 23:37:08.450461 32718 solver.cpp:237] Train net output #0: loss = 0.0609294 (* 1 = 0.0609294 loss) +I0407 23:37:08.450469 32718 sgd_solver.cpp:105] Iteration 8568, lr = 0.00154465 +I0407 23:37:12.585425 32718 solver.cpp:218] Iteration 8580 (2.9021 iter/s, 4.13494s/12 iters), loss = 0.058905 +I0407 23:37:12.585465 32718 solver.cpp:237] Train net output #0: loss = 0.058905 (* 1 = 0.058905 loss) +I0407 23:37:12.585474 32718 sgd_solver.cpp:105] Iteration 8580, lr = 0.00153699 +I0407 23:37:17.566839 32718 solver.cpp:218] Iteration 8592 (2.40901 iter/s, 4.9813s/12 iters), loss = 0.0319104 +I0407 23:37:17.566877 32718 solver.cpp:237] Train net output #0: loss = 0.0319104 (* 1 = 0.0319104 loss) +I0407 23:37:17.566885 32718 sgd_solver.cpp:105] Iteration 8592, lr = 0.00152935 +I0407 23:37:19.736083 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:22.504155 32718 solver.cpp:218] Iteration 8604 (2.4305 iter/s, 4.93725s/12 iters), loss = 0.0561022 +I0407 23:37:22.504197 32718 solver.cpp:237] Train net output #0: loss = 0.0561022 (* 1 = 0.0561022 loss) +I0407 23:37:22.504205 32718 sgd_solver.cpp:105] Iteration 8604, lr = 0.00152174 +I0407 23:37:27.429584 32718 solver.cpp:218] Iteration 8616 (2.43637 iter/s, 4.92536s/12 iters), loss = 0.0601061 +I0407 23:37:27.429625 32718 solver.cpp:237] Train net output #0: loss = 0.0601061 (* 1 = 0.0601061 loss) +I0407 23:37:27.429633 32718 sgd_solver.cpp:105] Iteration 8616, lr = 0.00151417 +I0407 23:37:32.373746 32718 solver.cpp:218] Iteration 8628 (2.42714 iter/s, 4.94409s/12 iters), loss = 0.0105092 +I0407 23:37:32.373793 32718 solver.cpp:237] Train net output #0: loss = 0.0105092 (* 1 = 0.0105092 loss) +I0407 23:37:32.373803 32718 sgd_solver.cpp:105] Iteration 8628, lr = 0.00150663 +I0407 23:37:37.278228 32718 solver.cpp:218] Iteration 8640 (2.44678 iter/s, 4.90441s/12 iters), loss = 0.0920459 +I0407 23:37:37.278383 32718 solver.cpp:237] Train net output #0: loss = 0.0920459 (* 1 = 0.0920459 loss) +I0407 23:37:37.278393 32718 sgd_solver.cpp:105] Iteration 8640, lr = 0.00149912 +I0407 23:37:42.233026 32718 solver.cpp:218] Iteration 8652 (2.42198 iter/s, 4.95462s/12 iters), loss = 0.0173894 +I0407 23:37:42.233060 32718 solver.cpp:237] Train net output #0: loss = 0.0173894 (* 1 = 0.0173894 loss) +I0407 23:37:42.233069 32718 sgd_solver.cpp:105] Iteration 8652, lr = 0.00149164 +I0407 23:37:47.166700 32718 solver.cpp:218] Iteration 8664 (2.4323 iter/s, 4.93361s/12 iters), loss = 0.0192104 +I0407 23:37:47.166736 32718 solver.cpp:237] Train net output #0: loss = 0.0192104 (* 1 = 0.0192104 loss) +I0407 23:37:47.166743 32718 sgd_solver.cpp:105] Iteration 8664, lr = 0.00148419 +I0407 23:37:49.194670 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 23:37:52.292817 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 23:37:54.663678 32718 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 23:37:54.663697 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:37:55.728580 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:59.422531 32718 solver.cpp:397] Test net output #0: accuracy = 0.518995 +I0407 23:37:59.422576 32718 solver.cpp:397] Test net output #1: loss = 2.79232 (* 1 = 2.79232 loss) +I0407 23:38:01.220362 32718 solver.cpp:218] Iteration 8676 (0.853875 iter/s, 14.0536s/12 iters), loss = 0.0465351 +I0407 23:38:01.220402 32718 solver.cpp:237] Train net output #0: loss = 0.0465352 (* 1 = 0.0465352 loss) +I0407 23:38:01.220410 32718 sgd_solver.cpp:105] Iteration 8676, lr = 0.00147677 +I0407 23:38:06.184197 32718 solver.cpp:218] Iteration 8688 (2.41752 iter/s, 4.96377s/12 iters), loss = 0.0372439 +I0407 23:38:06.184238 32718 solver.cpp:237] Train net output #0: loss = 0.0372439 (* 1 = 0.0372439 loss) +I0407 23:38:06.184247 32718 sgd_solver.cpp:105] Iteration 8688, lr = 0.00146938 +I0407 23:38:10.449720 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:11.074203 32718 solver.cpp:218] Iteration 8700 (2.45402 iter/s, 4.88993s/12 iters), loss = 0.119389 +I0407 23:38:11.074245 32718 solver.cpp:237] Train net output #0: loss = 0.119389 (* 1 = 0.119389 loss) +I0407 23:38:11.074254 32718 sgd_solver.cpp:105] Iteration 8700, lr = 0.00146202 +I0407 23:38:16.028534 32718 solver.cpp:218] Iteration 8712 (2.42216 iter/s, 4.95425s/12 iters), loss = 0.0215071 +I0407 23:38:16.028595 32718 solver.cpp:237] Train net output #0: loss = 0.0215071 (* 1 = 0.0215071 loss) +I0407 23:38:16.028607 32718 sgd_solver.cpp:105] Iteration 8712, lr = 0.00145469 +I0407 23:38:20.957219 32718 solver.cpp:218] Iteration 8724 (2.43477 iter/s, 4.9286s/12 iters), loss = 0.0322 +I0407 23:38:20.957262 32718 solver.cpp:237] Train net output #0: loss = 0.0322 (* 1 = 0.0322 loss) +I0407 23:38:20.957271 32718 sgd_solver.cpp:105] Iteration 8724, lr = 0.00144739 +I0407 23:38:25.890267 32718 solver.cpp:218] Iteration 8736 (2.43261 iter/s, 4.93298s/12 iters), loss = 0.0650152 +I0407 23:38:25.890307 32718 solver.cpp:237] Train net output #0: loss = 0.0650152 (* 1 = 0.0650152 loss) +I0407 23:38:25.890316 32718 sgd_solver.cpp:105] Iteration 8736, lr = 0.00144013 +I0407 23:38:30.829855 32718 solver.cpp:218] Iteration 8748 (2.42939 iter/s, 4.93951s/12 iters), loss = 0.0915179 +I0407 23:38:30.829916 32718 solver.cpp:237] Train net output #0: loss = 0.0915179 (* 1 = 0.0915179 loss) +I0407 23:38:30.829928 32718 sgd_solver.cpp:105] Iteration 8748, lr = 0.00143289 +I0407 23:38:35.769670 32718 solver.cpp:218] Iteration 8760 (2.42929 iter/s, 4.93972s/12 iters), loss = 0.0781322 +I0407 23:38:35.769732 32718 solver.cpp:237] Train net output #0: loss = 0.0781322 (* 1 = 0.0781322 loss) +I0407 23:38:35.769747 32718 sgd_solver.cpp:105] Iteration 8760, lr = 0.00142569 +I0407 23:38:40.261694 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 23:38:43.352938 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 23:38:45.782883 32718 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 23:38:45.782907 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:38:46.778859 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:50.554893 32718 solver.cpp:397] Test net output #0: accuracy = 0.514706 +I0407 23:38:50.554937 32718 solver.cpp:397] Test net output #1: loss = 2.83378 (* 1 = 2.83378 loss) +I0407 23:38:50.651532 32718 solver.cpp:218] Iteration 8772 (0.806357 iter/s, 14.8818s/12 iters), loss = 0.0507861 +I0407 23:38:50.651568 32718 solver.cpp:237] Train net output #0: loss = 0.0507861 (* 1 = 0.0507861 loss) +I0407 23:38:50.651576 32718 sgd_solver.cpp:105] Iteration 8772, lr = 0.00141851 +I0407 23:38:54.804577 32718 solver.cpp:218] Iteration 8784 (2.88949 iter/s, 4.15299s/12 iters), loss = 0.0349711 +I0407 23:38:54.804615 32718 solver.cpp:237] Train net output #0: loss = 0.0349711 (* 1 = 0.0349711 loss) +I0407 23:38:54.804625 32718 sgd_solver.cpp:105] Iteration 8784, lr = 0.00141136 +I0407 23:38:59.720044 32718 solver.cpp:218] Iteration 8796 (2.44131 iter/s, 4.9154s/12 iters), loss = 0.0364367 +I0407 23:38:59.720083 32718 solver.cpp:237] Train net output #0: loss = 0.0364366 (* 1 = 0.0364366 loss) +I0407 23:38:59.720090 32718 sgd_solver.cpp:105] Iteration 8796, lr = 0.00140425 +I0407 23:39:01.127498 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:04.655663 32718 solver.cpp:218] Iteration 8808 (2.43134 iter/s, 4.93555s/12 iters), loss = 0.0669116 +I0407 23:39:04.655707 32718 solver.cpp:237] Train net output #0: loss = 0.0669116 (* 1 = 0.0669116 loss) +I0407 23:39:04.655716 32718 sgd_solver.cpp:105] Iteration 8808, lr = 0.00139716 +I0407 23:39:09.482682 32718 solver.cpp:218] Iteration 8820 (2.48604 iter/s, 4.82695s/12 iters), loss = 0.0406679 +I0407 23:39:09.482728 32718 solver.cpp:237] Train net output #0: loss = 0.0406679 (* 1 = 0.0406679 loss) +I0407 23:39:09.482735 32718 sgd_solver.cpp:105] Iteration 8820, lr = 0.00139011 +I0407 23:39:14.400549 32718 solver.cpp:218] Iteration 8832 (2.44012 iter/s, 4.91779s/12 iters), loss = 0.015536 +I0407 23:39:14.400674 32718 solver.cpp:237] Train net output #0: loss = 0.015536 (* 1 = 0.015536 loss) +I0407 23:39:14.400684 32718 sgd_solver.cpp:105] Iteration 8832, lr = 0.00138308 +I0407 23:39:19.339470 32718 solver.cpp:218] Iteration 8844 (2.42976 iter/s, 4.93875s/12 iters), loss = 0.0663258 +I0407 23:39:19.339543 32718 solver.cpp:237] Train net output #0: loss = 0.0663258 (* 1 = 0.0663258 loss) +I0407 23:39:19.339560 32718 sgd_solver.cpp:105] Iteration 8844, lr = 0.00137609 +I0407 23:39:24.270880 32718 solver.cpp:218] Iteration 8856 (2.43343 iter/s, 4.93132s/12 iters), loss = 0.0655622 +I0407 23:39:24.270917 32718 solver.cpp:237] Train net output #0: loss = 0.0655622 (* 1 = 0.0655622 loss) +I0407 23:39:24.270925 32718 sgd_solver.cpp:105] Iteration 8856, lr = 0.00136912 +I0407 23:39:29.238554 32718 solver.cpp:218] Iteration 8868 (2.41565 iter/s, 4.96761s/12 iters), loss = 0.0869624 +I0407 23:39:29.238596 32718 solver.cpp:237] Train net output #0: loss = 0.0869624 (* 1 = 0.0869624 loss) +I0407 23:39:29.238605 32718 sgd_solver.cpp:105] Iteration 8868, lr = 0.00136219 +I0407 23:39:31.219712 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 23:39:34.352921 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 23:39:36.714447 32718 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 23:39:36.714468 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:39:37.733788 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:41.514204 32718 solver.cpp:397] Test net output #0: accuracy = 0.515931 +I0407 23:39:41.514250 32718 solver.cpp:397] Test net output #1: loss = 2.81598 (* 1 = 2.81598 loss) +I0407 23:39:43.340344 32718 solver.cpp:218] Iteration 8880 (0.850962 iter/s, 14.1017s/12 iters), loss = 0.0340876 +I0407 23:39:43.340389 32718 solver.cpp:237] Train net output #0: loss = 0.0340876 (* 1 = 0.0340876 loss) +I0407 23:39:43.340396 32718 sgd_solver.cpp:105] Iteration 8880, lr = 0.00135528 +I0407 23:39:48.295449 32718 solver.cpp:218] Iteration 8892 (2.42178 iter/s, 4.95504s/12 iters), loss = 0.0359496 +I0407 23:39:48.295603 32718 solver.cpp:237] Train net output #0: loss = 0.0359496 (* 1 = 0.0359496 loss) +I0407 23:39:48.295612 32718 sgd_solver.cpp:105] Iteration 8892, lr = 0.0013484 +I0407 23:39:51.814965 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:53.197837 32718 solver.cpp:218] Iteration 8904 (2.44788 iter/s, 4.90221s/12 iters), loss = 0.0281389 +I0407 23:39:53.197877 32718 solver.cpp:237] Train net output #0: loss = 0.0281389 (* 1 = 0.0281389 loss) +I0407 23:39:53.197886 32718 sgd_solver.cpp:105] Iteration 8904, lr = 0.00134155 +I0407 23:39:58.082294 32718 solver.cpp:218] Iteration 8916 (2.45681 iter/s, 4.88439s/12 iters), loss = 0.0163322 +I0407 23:39:58.082336 32718 solver.cpp:237] Train net output #0: loss = 0.0163322 (* 1 = 0.0163322 loss) +I0407 23:39:58.082345 32718 sgd_solver.cpp:105] Iteration 8916, lr = 0.00133474 +I0407 23:40:03.042747 32718 solver.cpp:218] Iteration 8928 (2.41917 iter/s, 4.96038s/12 iters), loss = 0.0217027 +I0407 23:40:03.042793 32718 solver.cpp:237] Train net output #0: loss = 0.0217027 (* 1 = 0.0217027 loss) +I0407 23:40:03.042800 32718 sgd_solver.cpp:105] Iteration 8928, lr = 0.00132795 +I0407 23:40:07.836047 32718 solver.cpp:218] Iteration 8940 (2.50353 iter/s, 4.79322s/12 iters), loss = 0.0185085 +I0407 23:40:07.836092 32718 solver.cpp:237] Train net output #0: loss = 0.0185085 (* 1 = 0.0185085 loss) +I0407 23:40:07.836102 32718 sgd_solver.cpp:105] Iteration 8940, lr = 0.00132119 +I0407 23:40:12.765722 32718 solver.cpp:218] Iteration 8952 (2.43428 iter/s, 4.92959s/12 iters), loss = 0.0124033 +I0407 23:40:12.765767 32718 solver.cpp:237] Train net output #0: loss = 0.0124033 (* 1 = 0.0124033 loss) +I0407 23:40:12.765775 32718 sgd_solver.cpp:105] Iteration 8952, lr = 0.00131446 +I0407 23:40:17.720571 32718 solver.cpp:218] Iteration 8964 (2.42191 iter/s, 4.95477s/12 iters), loss = 0.0166354 +I0407 23:40:17.720613 32718 solver.cpp:237] Train net output #0: loss = 0.0166354 (* 1 = 0.0166354 loss) +I0407 23:40:17.720621 32718 sgd_solver.cpp:105] Iteration 8964, lr = 0.00130776 +I0407 23:40:22.178328 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 23:40:25.235649 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 23:40:27.630434 32718 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 23:40:27.630455 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:40:28.567384 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:32.227674 32718 solver.cpp:397] Test net output #0: accuracy = 0.51777 +I0407 23:40:32.227720 32718 solver.cpp:397] Test net output #1: loss = 2.8108 (* 1 = 2.8108 loss) +I0407 23:40:32.324296 32718 solver.cpp:218] Iteration 8976 (0.821714 iter/s, 14.6036s/12 iters), loss = 0.00865678 +I0407 23:40:32.324334 32718 solver.cpp:237] Train net output #0: loss = 0.00865678 (* 1 = 0.00865678 loss) +I0407 23:40:32.324342 32718 sgd_solver.cpp:105] Iteration 8976, lr = 0.00130108 +I0407 23:40:36.464102 32718 solver.cpp:218] Iteration 8988 (2.89873 iter/s, 4.13974s/12 iters), loss = 0.10419 +I0407 23:40:36.464138 32718 solver.cpp:237] Train net output #0: loss = 0.10419 (* 1 = 0.10419 loss) +I0407 23:40:36.464148 32718 sgd_solver.cpp:105] Iteration 8988, lr = 0.00129444 +I0407 23:40:39.684715 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:40:41.423506 32718 solver.cpp:218] Iteration 9000 (2.41968 iter/s, 4.95934s/12 iters), loss = 0.0271623 +I0407 23:40:41.423553 32718 solver.cpp:237] Train net output #0: loss = 0.0271623 (* 1 = 0.0271623 loss) +I0407 23:40:41.423563 32718 sgd_solver.cpp:105] Iteration 9000, lr = 0.00128783 +I0407 23:40:42.105378 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:46.321892 32718 solver.cpp:218] Iteration 9012 (2.44982 iter/s, 4.89831s/12 iters), loss = 0.0165763 +I0407 23:40:46.321930 32718 solver.cpp:237] Train net output #0: loss = 0.0165763 (* 1 = 0.0165763 loss) +I0407 23:40:46.321938 32718 sgd_solver.cpp:105] Iteration 9012, lr = 0.00128124 +I0407 23:40:51.295207 32718 solver.cpp:218] Iteration 9024 (2.41291 iter/s, 4.97324s/12 iters), loss = 0.120441 +I0407 23:40:51.295249 32718 solver.cpp:237] Train net output #0: loss = 0.120441 (* 1 = 0.120441 loss) +I0407 23:40:51.295258 32718 sgd_solver.cpp:105] Iteration 9024, lr = 0.00127468 +I0407 23:40:56.202802 32718 solver.cpp:218] Iteration 9036 (2.44523 iter/s, 4.90752s/12 iters), loss = 0.00395652 +I0407 23:40:56.202951 32718 solver.cpp:237] Train net output #0: loss = 0.00395651 (* 1 = 0.00395651 loss) +I0407 23:40:56.202960 32718 sgd_solver.cpp:105] Iteration 9036, lr = 0.00126816 +I0407 23:41:01.169106 32718 solver.cpp:218] Iteration 9048 (2.41637 iter/s, 4.96613s/12 iters), loss = 0.115286 +I0407 23:41:01.169142 32718 solver.cpp:237] Train net output #0: loss = 0.115286 (* 1 = 0.115286 loss) +I0407 23:41:01.169149 32718 sgd_solver.cpp:105] Iteration 9048, lr = 0.00126166 +I0407 23:41:06.093072 32718 solver.cpp:218] Iteration 9060 (2.43709 iter/s, 4.9239s/12 iters), loss = 0.0570471 +I0407 23:41:06.093111 32718 solver.cpp:237] Train net output #0: loss = 0.0570471 (* 1 = 0.0570471 loss) +I0407 23:41:06.093118 32718 sgd_solver.cpp:105] Iteration 9060, lr = 0.00125519 +I0407 23:41:11.050027 32718 solver.cpp:218] Iteration 9072 (2.42087 iter/s, 4.95689s/12 iters), loss = 0.0518132 +I0407 23:41:11.050065 32718 solver.cpp:237] Train net output #0: loss = 0.0518132 (* 1 = 0.0518132 loss) +I0407 23:41:11.050074 32718 sgd_solver.cpp:105] Iteration 9072, lr = 0.00124874 +I0407 23:41:13.031411 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 23:41:16.125417 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 23:41:18.484460 32718 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 23:41:18.484483 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:41:19.349367 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:23.248847 32718 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:41:23.248893 32718 solver.cpp:397] Test net output #1: loss = 2.80493 (* 1 = 2.80493 loss) +I0407 23:41:25.082944 32718 solver.cpp:218] Iteration 9084 (0.855138 iter/s, 14.0328s/12 iters), loss = 0.0412173 +I0407 23:41:25.082991 32718 solver.cpp:237] Train net output #0: loss = 0.0412173 (* 1 = 0.0412173 loss) +I0407 23:41:25.082998 32718 sgd_solver.cpp:105] Iteration 9084, lr = 0.00124233 +I0407 23:41:30.013756 32718 solver.cpp:218] Iteration 9096 (2.43371 iter/s, 4.93074s/12 iters), loss = 0.0353497 +I0407 23:41:30.013887 32718 solver.cpp:237] Train net output #0: loss = 0.0353497 (* 1 = 0.0353497 loss) +I0407 23:41:30.013896 32718 sgd_solver.cpp:105] Iteration 9096, lr = 0.00123594 +I0407 23:41:32.925017 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:34.953727 32718 solver.cpp:218] Iteration 9108 (2.42924 iter/s, 4.93982s/12 iters), loss = 0.0233563 +I0407 23:41:34.953765 32718 solver.cpp:237] Train net output #0: loss = 0.0233563 (* 1 = 0.0233563 loss) +I0407 23:41:34.953773 32718 sgd_solver.cpp:105] Iteration 9108, lr = 0.00122959 +I0407 23:41:39.802487 32718 solver.cpp:218] Iteration 9120 (2.4749 iter/s, 4.84869s/12 iters), loss = 0.0878657 +I0407 23:41:39.802533 32718 solver.cpp:237] Train net output #0: loss = 0.0878657 (* 1 = 0.0878657 loss) +I0407 23:41:39.802542 32718 sgd_solver.cpp:105] Iteration 9120, lr = 0.00122326 +I0407 23:41:44.669121 32718 solver.cpp:218] Iteration 9132 (2.46581 iter/s, 4.86656s/12 iters), loss = 0.0417881 +I0407 23:41:44.669163 32718 solver.cpp:237] Train net output #0: loss = 0.041788 (* 1 = 0.041788 loss) +I0407 23:41:44.669171 32718 sgd_solver.cpp:105] Iteration 9132, lr = 0.00121696 +I0407 23:41:49.536437 32718 solver.cpp:218] Iteration 9144 (2.46546 iter/s, 4.86724s/12 iters), loss = 0.0411171 +I0407 23:41:49.536474 32718 solver.cpp:237] Train net output #0: loss = 0.0411171 (* 1 = 0.0411171 loss) +I0407 23:41:49.536482 32718 sgd_solver.cpp:105] Iteration 9144, lr = 0.00121068 +I0407 23:41:54.491355 32718 solver.cpp:218] Iteration 9156 (2.42187 iter/s, 4.95486s/12 iters), loss = 0.106168 +I0407 23:41:54.491391 32718 solver.cpp:237] Train net output #0: loss = 0.106168 (* 1 = 0.106168 loss) +I0407 23:41:54.491398 32718 sgd_solver.cpp:105] Iteration 9156, lr = 0.00120444 +I0407 23:41:59.421644 32718 solver.cpp:218] Iteration 9168 (2.43397 iter/s, 4.93023s/12 iters), loss = 0.0113136 +I0407 23:41:59.421679 32718 solver.cpp:237] Train net output #0: loss = 0.0113135 (* 1 = 0.0113135 loss) +I0407 23:41:59.421687 32718 sgd_solver.cpp:105] Iteration 9168, lr = 0.00119822 +I0407 23:42:03.885854 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 23:42:07.002938 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 23:42:09.375034 32718 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 23:42:09.375051 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:42:10.219146 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:42:14.036113 32718 solver.cpp:397] Test net output #0: accuracy = 0.521446 +I0407 23:42:14.036157 32718 solver.cpp:397] Test net output #1: loss = 2.84495 (* 1 = 2.84495 loss) +I0407 23:42:14.132789 32718 solver.cpp:218] Iteration 9180 (0.815713 iter/s, 14.7111s/12 iters), loss = 0.0274543 +I0407 23:42:14.132833 32718 solver.cpp:237] Train net output #0: loss = 0.0274542 (* 1 = 0.0274542 loss) +I0407 23:42:14.132840 32718 sgd_solver.cpp:105] Iteration 9180, lr = 0.00119203 +I0407 23:42:18.273212 32718 solver.cpp:218] Iteration 9192 (2.8983 iter/s, 4.14036s/12 iters), loss = 0.0339462 +I0407 23:42:18.273253 32718 solver.cpp:237] Train net output #0: loss = 0.0339462 (* 1 = 0.0339462 loss) +I0407 23:42:18.273262 32718 sgd_solver.cpp:105] Iteration 9192, lr = 0.00118587 +I0407 23:42:23.219928 32718 solver.cpp:218] Iteration 9204 (2.42589 iter/s, 4.94665s/12 iters), loss = 0.107338 +I0407 23:42:23.219964 32718 solver.cpp:237] Train net output #0: loss = 0.107338 (* 1 = 0.107338 loss) +I0407 23:42:23.219971 32718 sgd_solver.cpp:105] Iteration 9204, lr = 0.00117973 +I0407 23:42:23.283663 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:42:28.321540 32718 solver.cpp:218] Iteration 9216 (2.35223 iter/s, 5.10155s/12 iters), loss = 0.0490973 +I0407 23:42:28.321575 32718 solver.cpp:237] Train net output #0: loss = 0.0490973 (* 1 = 0.0490973 loss) +I0407 23:42:28.321583 32718 sgd_solver.cpp:105] Iteration 9216, lr = 0.00117362 +I0407 23:42:33.292084 32718 solver.cpp:218] Iteration 9228 (2.41425 iter/s, 4.97048s/12 iters), loss = 0.0149973 +I0407 23:42:33.292121 32718 solver.cpp:237] Train net output #0: loss = 0.0149973 (* 1 = 0.0149973 loss) +I0407 23:42:33.292129 32718 sgd_solver.cpp:105] Iteration 9228, lr = 0.00116755 +I0407 23:42:38.367978 32718 solver.cpp:218] Iteration 9240 (2.36415 iter/s, 5.07583s/12 iters), loss = 0.0299915 +I0407 23:42:38.368098 32718 solver.cpp:237] Train net output #0: loss = 0.0299914 (* 1 = 0.0299914 loss) +I0407 23:42:38.368106 32718 sgd_solver.cpp:105] Iteration 9240, lr = 0.00116149 +I0407 23:42:43.383854 32718 solver.cpp:218] Iteration 9252 (2.39248 iter/s, 5.01572s/12 iters), loss = 0.0300962 +I0407 23:42:43.383908 32718 solver.cpp:237] Train net output #0: loss = 0.0300962 (* 1 = 0.0300962 loss) +I0407 23:42:43.383920 32718 sgd_solver.cpp:105] Iteration 9252, lr = 0.00115547 +I0407 23:42:48.360719 32718 solver.cpp:218] Iteration 9264 (2.41119 iter/s, 4.97679s/12 iters), loss = 0.0489489 +I0407 23:42:48.360759 32718 solver.cpp:237] Train net output #0: loss = 0.0489488 (* 1 = 0.0489488 loss) +I0407 23:42:48.360767 32718 sgd_solver.cpp:105] Iteration 9264, lr = 0.00114947 +I0407 23:42:53.291676 32718 solver.cpp:218] Iteration 9276 (2.43364 iter/s, 4.93089s/12 iters), loss = 0.0374232 +I0407 23:42:53.291714 32718 solver.cpp:237] Train net output #0: loss = 0.0374232 (* 1 = 0.0374232 loss) +I0407 23:42:53.291723 32718 sgd_solver.cpp:105] Iteration 9276, lr = 0.0011435 +I0407 23:42:55.274129 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 23:42:58.378386 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 23:43:02.747026 32718 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 23:43:02.747051 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:43:03.554188 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:07.812903 32718 solver.cpp:397] Test net output #0: accuracy = 0.521446 +I0407 23:43:07.812948 32718 solver.cpp:397] Test net output #1: loss = 2.80924 (* 1 = 2.80924 loss) +I0407 23:43:09.618925 32718 solver.cpp:218] Iteration 9288 (0.734972 iter/s, 16.3272s/12 iters), loss = 0.107651 +I0407 23:43:09.619081 32718 solver.cpp:237] Train net output #0: loss = 0.107651 (* 1 = 0.107651 loss) +I0407 23:43:09.619091 32718 sgd_solver.cpp:105] Iteration 9288, lr = 0.00113756 +I0407 23:43:14.578058 32718 solver.cpp:218] Iteration 9300 (2.41986 iter/s, 4.95895s/12 iters), loss = 0.0827954 +I0407 23:43:14.578095 32718 solver.cpp:237] Train net output #0: loss = 0.0827954 (* 1 = 0.0827954 loss) +I0407 23:43:14.578102 32718 sgd_solver.cpp:105] Iteration 9300, lr = 0.00113164 +I0407 23:43:16.740684 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:19.481873 32718 solver.cpp:218] Iteration 9312 (2.44711 iter/s, 4.90375s/12 iters), loss = 0.04508 +I0407 23:43:19.481914 32718 solver.cpp:237] Train net output #0: loss = 0.04508 (* 1 = 0.04508 loss) +I0407 23:43:19.481921 32718 sgd_solver.cpp:105] Iteration 9312, lr = 0.00112575 +I0407 23:43:24.366003 32718 solver.cpp:218] Iteration 9324 (2.45697 iter/s, 4.88406s/12 iters), loss = 0.0169742 +I0407 23:43:24.366040 32718 solver.cpp:237] Train net output #0: loss = 0.0169741 (* 1 = 0.0169741 loss) +I0407 23:43:24.366047 32718 sgd_solver.cpp:105] Iteration 9324, lr = 0.00111989 +I0407 23:43:29.280457 32718 solver.cpp:218] Iteration 9336 (2.44181 iter/s, 4.91439s/12 iters), loss = 0.0123409 +I0407 23:43:29.280495 32718 solver.cpp:237] Train net output #0: loss = 0.0123409 (* 1 = 0.0123409 loss) +I0407 23:43:29.280503 32718 sgd_solver.cpp:105] Iteration 9336, lr = 0.00111405 +I0407 23:43:34.227820 32718 solver.cpp:218] Iteration 9348 (2.42557 iter/s, 4.9473s/12 iters), loss = 0.00830755 +I0407 23:43:34.227861 32718 solver.cpp:237] Train net output #0: loss = 0.00830751 (* 1 = 0.00830751 loss) +I0407 23:43:34.227870 32718 sgd_solver.cpp:105] Iteration 9348, lr = 0.00110824 +I0407 23:43:39.158942 32718 solver.cpp:218] Iteration 9360 (2.43356 iter/s, 4.93105s/12 iters), loss = 0.069061 +I0407 23:43:39.158978 32718 solver.cpp:237] Train net output #0: loss = 0.069061 (* 1 = 0.069061 loss) +I0407 23:43:39.158985 32718 sgd_solver.cpp:105] Iteration 9360, lr = 0.00110246 +I0407 23:43:44.143079 32718 solver.cpp:218] Iteration 9372 (2.40767 iter/s, 4.98407s/12 iters), loss = 0.0300276 +I0407 23:43:44.143224 32718 solver.cpp:237] Train net output #0: loss = 0.0300276 (* 1 = 0.0300276 loss) +I0407 23:43:44.143234 32718 sgd_solver.cpp:105] Iteration 9372, lr = 0.0010967 +I0407 23:43:48.581149 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 23:43:51.668951 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 23:43:54.417860 32718 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 23:43:54.417876 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:43:55.226420 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:59.556788 32718 solver.cpp:397] Test net output #0: accuracy = 0.521446 +I0407 23:43:59.556834 32718 solver.cpp:397] Test net output #1: loss = 2.82249 (* 1 = 2.82249 loss) +I0407 23:43:59.653492 32718 solver.cpp:218] Iteration 9384 (0.773684 iter/s, 15.5102s/12 iters), loss = 0.0118996 +I0407 23:43:59.653537 32718 solver.cpp:237] Train net output #0: loss = 0.0118996 (* 1 = 0.0118996 loss) +I0407 23:43:59.653545 32718 sgd_solver.cpp:105] Iteration 9384, lr = 0.00109097 +I0407 23:44:03.867031 32718 solver.cpp:218] Iteration 9396 (2.84801 iter/s, 4.21346s/12 iters), loss = 0.0595221 +I0407 23:44:03.867077 32718 solver.cpp:237] Train net output #0: loss = 0.059522 (* 1 = 0.059522 loss) +I0407 23:44:03.867085 32718 sgd_solver.cpp:105] Iteration 9396, lr = 0.00108526 +I0407 23:44:08.166199 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:08.810914 32718 solver.cpp:218] Iteration 9408 (2.42728 iter/s, 4.94381s/12 iters), loss = 0.0303462 +I0407 23:44:08.810961 32718 solver.cpp:237] Train net output #0: loss = 0.0303462 (* 1 = 0.0303462 loss) +I0407 23:44:08.810968 32718 sgd_solver.cpp:105] Iteration 9408, lr = 0.00107959 +I0407 23:44:13.744577 32718 solver.cpp:218] Iteration 9420 (2.43231 iter/s, 4.93358s/12 iters), loss = 0.00565969 +I0407 23:44:13.744626 32718 solver.cpp:237] Train net output #0: loss = 0.00565967 (* 1 = 0.00565967 loss) +I0407 23:44:13.744635 32718 sgd_solver.cpp:105] Iteration 9420, lr = 0.00107393 +I0407 23:44:18.712467 32718 solver.cpp:218] Iteration 9432 (2.41555 iter/s, 4.96781s/12 iters), loss = 0.0331987 +I0407 23:44:18.712633 32718 solver.cpp:237] Train net output #0: loss = 0.0331987 (* 1 = 0.0331987 loss) +I0407 23:44:18.712643 32718 sgd_solver.cpp:105] Iteration 9432, lr = 0.00106831 +I0407 23:44:23.643535 32718 solver.cpp:218] Iteration 9444 (2.43365 iter/s, 4.93087s/12 iters), loss = 0.00688609 +I0407 23:44:23.643580 32718 solver.cpp:237] Train net output #0: loss = 0.0068861 (* 1 = 0.0068861 loss) +I0407 23:44:23.643589 32718 sgd_solver.cpp:105] Iteration 9444, lr = 0.00106271 +I0407 23:44:28.623422 32718 solver.cpp:218] Iteration 9456 (2.40973 iter/s, 4.97981s/12 iters), loss = 0.0729163 +I0407 23:44:28.623466 32718 solver.cpp:237] Train net output #0: loss = 0.0729163 (* 1 = 0.0729163 loss) +I0407 23:44:28.623474 32718 sgd_solver.cpp:105] Iteration 9456, lr = 0.00105713 +I0407 23:44:33.590502 32718 solver.cpp:218] Iteration 9468 (2.41594 iter/s, 4.96701s/12 iters), loss = 0.0553833 +I0407 23:44:33.590545 32718 solver.cpp:237] Train net output #0: loss = 0.0553833 (* 1 = 0.0553833 loss) +I0407 23:44:33.590553 32718 sgd_solver.cpp:105] Iteration 9468, lr = 0.00105159 +I0407 23:44:38.531157 32718 solver.cpp:218] Iteration 9480 (2.42886 iter/s, 4.94059s/12 iters), loss = 0.0285038 +I0407 23:44:38.531205 32718 solver.cpp:237] Train net output #0: loss = 0.0285038 (* 1 = 0.0285038 loss) +I0407 23:44:38.531215 32718 sgd_solver.cpp:105] Iteration 9480, lr = 0.00104606 +I0407 23:44:40.569171 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 23:44:43.518057 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 23:44:46.636442 32718 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 23:44:46.636458 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:44:47.393323 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:51.378134 32718 solver.cpp:397] Test net output #0: accuracy = 0.521446 +I0407 23:44:51.378279 32718 solver.cpp:397] Test net output #1: loss = 2.79851 (* 1 = 2.79851 loss) +I0407 23:44:53.193543 32718 solver.cpp:218] Iteration 9492 (0.818427 iter/s, 14.6623s/12 iters), loss = 0.0783576 +I0407 23:44:53.193594 32718 solver.cpp:237] Train net output #0: loss = 0.0783576 (* 1 = 0.0783576 loss) +I0407 23:44:53.193603 32718 sgd_solver.cpp:105] Iteration 9492, lr = 0.00104057 +I0407 23:44:58.140126 32718 solver.cpp:218] Iteration 9504 (2.42596 iter/s, 4.9465s/12 iters), loss = 0.0129336 +I0407 23:44:58.140167 32718 solver.cpp:237] Train net output #0: loss = 0.0129336 (* 1 = 0.0129336 loss) +I0407 23:44:58.140175 32718 sgd_solver.cpp:105] Iteration 9504, lr = 0.0010351 +I0407 23:44:59.573988 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:03.034271 32718 solver.cpp:218] Iteration 9516 (2.45194 iter/s, 4.89408s/12 iters), loss = 0.0337759 +I0407 23:45:03.034308 32718 solver.cpp:237] Train net output #0: loss = 0.0337759 (* 1 = 0.0337759 loss) +I0407 23:45:03.034317 32718 sgd_solver.cpp:105] Iteration 9516, lr = 0.00102965 +I0407 23:45:07.999087 32718 solver.cpp:218] Iteration 9528 (2.41704 iter/s, 4.96475s/12 iters), loss = 0.0438171 +I0407 23:45:07.999125 32718 solver.cpp:237] Train net output #0: loss = 0.0438171 (* 1 = 0.0438171 loss) +I0407 23:45:07.999131 32718 sgd_solver.cpp:105] Iteration 9528, lr = 0.00102423 +I0407 23:45:12.924742 32718 solver.cpp:218] Iteration 9540 (2.43626 iter/s, 4.92558s/12 iters), loss = 0.0157008 +I0407 23:45:12.924785 32718 solver.cpp:237] Train net output #0: loss = 0.0157008 (* 1 = 0.0157008 loss) +I0407 23:45:12.924793 32718 sgd_solver.cpp:105] Iteration 9540, lr = 0.00101883 +I0407 23:45:17.887499 32718 solver.cpp:218] Iteration 9552 (2.41805 iter/s, 4.96268s/12 iters), loss = 0.050874 +I0407 23:45:17.887542 32718 solver.cpp:237] Train net output #0: loss = 0.050874 (* 1 = 0.050874 loss) +I0407 23:45:17.887550 32718 sgd_solver.cpp:105] Iteration 9552, lr = 0.00101346 +I0407 23:45:22.868276 32718 solver.cpp:218] Iteration 9564 (2.4093 iter/s, 4.98071s/12 iters), loss = 0.0219514 +I0407 23:45:22.868424 32718 solver.cpp:237] Train net output #0: loss = 0.0219514 (* 1 = 0.0219514 loss) +I0407 23:45:22.868433 32718 sgd_solver.cpp:105] Iteration 9564, lr = 0.00100812 +I0407 23:45:27.868288 32718 solver.cpp:218] Iteration 9576 (2.40008 iter/s, 4.99984s/12 iters), loss = 0.0153725 +I0407 23:45:27.868328 32718 solver.cpp:237] Train net output #0: loss = 0.0153726 (* 1 = 0.0153726 loss) +I0407 23:45:27.868335 32718 sgd_solver.cpp:105] Iteration 9576, lr = 0.0010028 +I0407 23:45:32.254173 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 23:45:35.328761 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 23:45:38.083140 32718 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 23:45:38.083158 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:45:38.687618 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:42.516052 32718 solver.cpp:397] Test net output #0: accuracy = 0.519608 +I0407 23:45:42.516099 32718 solver.cpp:397] Test net output #1: loss = 2.84287 (* 1 = 2.84287 loss) +I0407 23:45:42.612843 32718 solver.cpp:218] Iteration 9588 (0.813865 iter/s, 14.7445s/12 iters), loss = 0.0210052 +I0407 23:45:42.612888 32718 solver.cpp:237] Train net output #0: loss = 0.0210053 (* 1 = 0.0210053 loss) +I0407 23:45:42.612897 32718 sgd_solver.cpp:105] Iteration 9588, lr = 0.000997505 +I0407 23:45:46.764995 32718 solver.cpp:218] Iteration 9600 (2.89012 iter/s, 4.15208s/12 iters), loss = 0.015546 +I0407 23:45:46.765041 32718 solver.cpp:237] Train net output #0: loss = 0.015546 (* 1 = 0.015546 loss) +I0407 23:45:46.765049 32718 sgd_solver.cpp:105] Iteration 9600, lr = 0.000992235 +I0407 23:45:50.310437 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:51.666844 32718 solver.cpp:218] Iteration 9612 (2.44809 iter/s, 4.90178s/12 iters), loss = 0.072204 +I0407 23:45:51.666880 32718 solver.cpp:237] Train net output #0: loss = 0.072204 (* 1 = 0.072204 loss) +I0407 23:45:51.666889 32718 sgd_solver.cpp:105] Iteration 9612, lr = 0.00098699 +I0407 23:45:56.628681 32718 solver.cpp:218] Iteration 9624 (2.41849 iter/s, 4.96177s/12 iters), loss = 0.00457142 +I0407 23:45:56.628845 32718 solver.cpp:237] Train net output #0: loss = 0.00457145 (* 1 = 0.00457145 loss) +I0407 23:45:56.628855 32718 sgd_solver.cpp:105] Iteration 9624, lr = 0.000981769 +I0407 23:46:01.545886 32718 solver.cpp:218] Iteration 9636 (2.44051 iter/s, 4.91701s/12 iters), loss = 0.00935571 +I0407 23:46:01.545928 32718 solver.cpp:237] Train net output #0: loss = 0.00935574 (* 1 = 0.00935574 loss) +I0407 23:46:01.545938 32718 sgd_solver.cpp:105] Iteration 9636, lr = 0.000976573 +I0407 23:46:06.486418 32718 solver.cpp:218] Iteration 9648 (2.42893 iter/s, 4.94046s/12 iters), loss = 0.055027 +I0407 23:46:06.486461 32718 solver.cpp:237] Train net output #0: loss = 0.055027 (* 1 = 0.055027 loss) +I0407 23:46:06.486469 32718 sgd_solver.cpp:105] Iteration 9648, lr = 0.000971402 +I0407 23:46:11.429988 32718 solver.cpp:218] Iteration 9660 (2.42743 iter/s, 4.9435s/12 iters), loss = 0.0393004 +I0407 23:46:11.430033 32718 solver.cpp:237] Train net output #0: loss = 0.0393004 (* 1 = 0.0393004 loss) +I0407 23:46:11.430042 32718 sgd_solver.cpp:105] Iteration 9660, lr = 0.000966255 +I0407 23:46:16.382328 32718 solver.cpp:218] Iteration 9672 (2.42313 iter/s, 4.95226s/12 iters), loss = 0.0538814 +I0407 23:46:16.382372 32718 solver.cpp:237] Train net output #0: loss = 0.0538814 (* 1 = 0.0538814 loss) +I0407 23:46:16.382380 32718 sgd_solver.cpp:105] Iteration 9672, lr = 0.000961133 +I0407 23:46:21.302594 32718 solver.cpp:218] Iteration 9684 (2.43893 iter/s, 4.92019s/12 iters), loss = 0.0142846 +I0407 23:46:21.302640 32718 solver.cpp:237] Train net output #0: loss = 0.0142846 (* 1 = 0.0142846 loss) +I0407 23:46:21.302649 32718 sgd_solver.cpp:105] Iteration 9684, lr = 0.000956035 +I0407 23:46:23.331111 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 23:46:26.426443 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 23:46:28.843072 32718 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 23:46:28.843165 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:46:29.431917 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:32.327981 32718 blocking_queue.cpp:49] Waiting for data +I0407 23:46:33.417241 32718 solver.cpp:397] Test net output #0: accuracy = 0.530637 +I0407 23:46:33.417289 32718 solver.cpp:397] Test net output #1: loss = 2.82594 (* 1 = 2.82594 loss) +I0407 23:46:35.253907 32718 solver.cpp:218] Iteration 9696 (0.86014 iter/s, 13.9512s/12 iters), loss = 0.0387199 +I0407 23:46:35.253952 32718 solver.cpp:237] Train net output #0: loss = 0.0387199 (* 1 = 0.0387199 loss) +I0407 23:46:35.253960 32718 sgd_solver.cpp:105] Iteration 9696, lr = 0.000950961 +I0407 23:46:40.188733 32718 solver.cpp:218] Iteration 9708 (2.43173 iter/s, 4.93476s/12 iters), loss = 0.0589518 +I0407 23:46:40.188769 32718 solver.cpp:237] Train net output #0: loss = 0.0589518 (* 1 = 0.0589518 loss) +I0407 23:46:40.188777 32718 sgd_solver.cpp:105] Iteration 9708, lr = 0.000945911 +I0407 23:46:40.901515 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:45.131048 32718 solver.cpp:218] Iteration 9720 (2.42804 iter/s, 4.94225s/12 iters), loss = 0.0709656 +I0407 23:46:45.131089 32718 solver.cpp:237] Train net output #0: loss = 0.0709656 (* 1 = 0.0709656 loss) +I0407 23:46:45.131098 32718 sgd_solver.cpp:105] Iteration 9720, lr = 0.000940885 +I0407 23:46:50.061707 32718 solver.cpp:218] Iteration 9732 (2.43379 iter/s, 4.93059s/12 iters), loss = 0.00944918 +I0407 23:46:50.061744 32718 solver.cpp:237] Train net output #0: loss = 0.00944921 (* 1 = 0.00944921 loss) +I0407 23:46:50.061753 32718 sgd_solver.cpp:105] Iteration 9732, lr = 0.000935883 +I0407 23:46:55.006196 32718 solver.cpp:218] Iteration 9744 (2.42698 iter/s, 4.94442s/12 iters), loss = 0.0036025 +I0407 23:46:55.006234 32718 solver.cpp:237] Train net output #0: loss = 0.00360253 (* 1 = 0.00360253 loss) +I0407 23:46:55.006242 32718 sgd_solver.cpp:105] Iteration 9744, lr = 0.000930905 +I0407 23:46:59.925755 32718 solver.cpp:218] Iteration 9756 (2.43928 iter/s, 4.91949s/12 iters), loss = 0.0469583 +I0407 23:46:59.925904 32718 solver.cpp:237] Train net output #0: loss = 0.0469583 (* 1 = 0.0469583 loss) +I0407 23:46:59.925913 32718 sgd_solver.cpp:105] Iteration 9756, lr = 0.00092595 +I0407 23:47:04.878888 32718 solver.cpp:218] Iteration 9768 (2.42279 iter/s, 4.95296s/12 iters), loss = 0.0298527 +I0407 23:47:04.878927 32718 solver.cpp:237] Train net output #0: loss = 0.0298528 (* 1 = 0.0298528 loss) +I0407 23:47:04.878937 32718 sgd_solver.cpp:105] Iteration 9768, lr = 0.00092102 +I0407 23:47:09.822983 32718 solver.cpp:218] Iteration 9780 (2.42717 iter/s, 4.94402s/12 iters), loss = 0.00533896 +I0407 23:47:09.823025 32718 solver.cpp:237] Train net output #0: loss = 0.005339 (* 1 = 0.005339 loss) +I0407 23:47:09.823033 32718 sgd_solver.cpp:105] Iteration 9780, lr = 0.000916113 +I0407 23:47:14.282982 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 23:47:17.137629 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 23:47:19.504146 32718 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 23:47:19.504163 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:47:20.044433 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:47:23.948315 32718 solver.cpp:397] Test net output #0: accuracy = 0.525123 +I0407 23:47:23.948359 32718 solver.cpp:397] Test net output #1: loss = 2.80552 (* 1 = 2.80552 loss) +I0407 23:47:24.043119 32718 solver.cpp:218] Iteration 9792 (0.84388 iter/s, 14.22s/12 iters), loss = 0.0119279 +I0407 23:47:24.043165 32718 solver.cpp:237] Train net output #0: loss = 0.0119279 (* 1 = 0.0119279 loss) +I0407 23:47:24.043174 32718 sgd_solver.cpp:105] Iteration 9792, lr = 0.000911229 +I0407 23:47:28.164856 32718 solver.cpp:218] Iteration 9804 (2.91144 iter/s, 4.12167s/12 iters), loss = 0.0275094 +I0407 23:47:28.164892 32718 solver.cpp:237] Train net output #0: loss = 0.0275095 (* 1 = 0.0275095 loss) +I0407 23:47:28.164901 32718 sgd_solver.cpp:105] Iteration 9804, lr = 0.000906369 +I0407 23:47:31.089529 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:47:33.074146 32718 solver.cpp:218] Iteration 9816 (2.44438 iter/s, 4.90923s/12 iters), loss = 0.0195011 +I0407 23:47:33.074184 32718 solver.cpp:237] Train net output #0: loss = 0.0195011 (* 1 = 0.0195011 loss) +I0407 23:47:33.074193 32718 sgd_solver.cpp:105] Iteration 9816, lr = 0.000901533 +I0407 23:47:38.032040 32718 solver.cpp:218] Iteration 9828 (2.42041 iter/s, 4.95783s/12 iters), loss = 0.0180341 +I0407 23:47:38.032074 32718 solver.cpp:237] Train net output #0: loss = 0.0180341 (* 1 = 0.0180341 loss) +I0407 23:47:38.032084 32718 sgd_solver.cpp:105] Iteration 9828, lr = 0.000896719 +I0407 23:47:42.950951 32718 solver.cpp:218] Iteration 9840 (2.4396 iter/s, 4.91884s/12 iters), loss = 0.0168049 +I0407 23:47:42.950989 32718 solver.cpp:237] Train net output #0: loss = 0.0168049 (* 1 = 0.0168049 loss) +I0407 23:47:42.950997 32718 sgd_solver.cpp:105] Iteration 9840, lr = 0.000891929 +I0407 23:47:47.902271 32718 solver.cpp:218] Iteration 9852 (2.42363 iter/s, 4.95125s/12 iters), loss = 0.0448971 +I0407 23:47:47.902307 32718 solver.cpp:237] Train net output #0: loss = 0.0448971 (* 1 = 0.0448971 loss) +I0407 23:47:47.902313 32718 sgd_solver.cpp:105] Iteration 9852, lr = 0.000887162 +I0407 23:47:52.830657 32718 solver.cpp:218] Iteration 9864 (2.4349 iter/s, 4.92833s/12 iters), loss = 0.0377048 +I0407 23:47:52.830693 32718 solver.cpp:237] Train net output #0: loss = 0.0377049 (* 1 = 0.0377049 loss) +I0407 23:47:52.830699 32718 sgd_solver.cpp:105] Iteration 9864, lr = 0.000882418 +I0407 23:47:57.837020 32718 solver.cpp:218] Iteration 9876 (2.39698 iter/s, 5.0063s/12 iters), loss = 0.00539715 +I0407 23:47:57.837060 32718 solver.cpp:237] Train net output #0: loss = 0.00539719 (* 1 = 0.00539719 loss) +I0407 23:47:57.837069 32718 sgd_solver.cpp:105] Iteration 9876, lr = 0.000877697 +I0407 23:48:02.804754 32718 solver.cpp:218] Iteration 9888 (2.41562 iter/s, 4.96767s/12 iters), loss = 0.0555708 +I0407 23:48:02.804905 32718 solver.cpp:237] Train net output #0: loss = 0.0555709 (* 1 = 0.0555709 loss) +I0407 23:48:02.804915 32718 sgd_solver.cpp:105] Iteration 9888, lr = 0.000872998 +I0407 23:48:04.765662 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 23:48:07.896140 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 23:48:10.271648 32718 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 23:48:10.271667 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:48:10.819119 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:48:15.090669 32718 solver.cpp:397] Test net output #0: accuracy = 0.528799 +I0407 23:48:15.090714 32718 solver.cpp:397] Test net output #1: loss = 2.79589 (* 1 = 2.79589 loss) +I0407 23:48:16.901855 32718 solver.cpp:218] Iteration 9900 (0.851251 iter/s, 14.0969s/12 iters), loss = 0.0274475 +I0407 23:48:16.901901 32718 solver.cpp:237] Train net output #0: loss = 0.0274475 (* 1 = 0.0274475 loss) +I0407 23:48:16.901909 32718 sgd_solver.cpp:105] Iteration 9900, lr = 0.000868323 +I0407 23:48:21.868470 32718 solver.cpp:218] Iteration 9912 (2.41617 iter/s, 4.96655s/12 iters), loss = 0.0954231 +I0407 23:48:21.868506 32718 solver.cpp:237] Train net output #0: loss = 0.0954232 (* 1 = 0.0954232 loss) +I0407 23:48:21.868513 32718 sgd_solver.cpp:105] Iteration 9912, lr = 0.00086367 +I0407 23:48:21.960600 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:48:26.755844 32718 solver.cpp:218] Iteration 9924 (2.45534 iter/s, 4.88731s/12 iters), loss = 0.0261711 +I0407 23:48:26.755887 32718 solver.cpp:237] Train net output #0: loss = 0.0261711 (* 1 = 0.0261711 loss) +I0407 23:48:26.755897 32718 sgd_solver.cpp:105] Iteration 9924, lr = 0.000859039 +I0407 23:48:31.749814 32718 solver.cpp:218] Iteration 9936 (2.40293 iter/s, 4.9939s/12 iters), loss = 0.0490789 +I0407 23:48:31.749861 32718 solver.cpp:237] Train net output #0: loss = 0.0490789 (* 1 = 0.0490789 loss) +I0407 23:48:31.749871 32718 sgd_solver.cpp:105] Iteration 9936, lr = 0.000854432 +I0407 23:48:36.665983 32718 solver.cpp:218] Iteration 9948 (2.44096 iter/s, 4.91609s/12 iters), loss = 0.0320697 +I0407 23:48:36.666121 32718 solver.cpp:237] Train net output #0: loss = 0.0320697 (* 1 = 0.0320697 loss) +I0407 23:48:36.666131 32718 sgd_solver.cpp:105] Iteration 9948, lr = 0.000849846 +I0407 23:48:41.550279 32718 solver.cpp:218] Iteration 9960 (2.45694 iter/s, 4.88413s/12 iters), loss = 0.0269977 +I0407 23:48:41.550323 32718 solver.cpp:237] Train net output #0: loss = 0.0269978 (* 1 = 0.0269978 loss) +I0407 23:48:41.550331 32718 sgd_solver.cpp:105] Iteration 9960, lr = 0.000845283 +I0407 23:48:46.491263 32718 solver.cpp:218] Iteration 9972 (2.4287 iter/s, 4.94091s/12 iters), loss = 0.0114788 +I0407 23:48:46.491307 32718 solver.cpp:237] Train net output #0: loss = 0.0114788 (* 1 = 0.0114788 loss) +I0407 23:48:46.491315 32718 sgd_solver.cpp:105] Iteration 9972, lr = 0.000840742 +I0407 23:48:51.460572 32718 solver.cpp:218] Iteration 9984 (2.41486 iter/s, 4.96923s/12 iters), loss = 0.0830278 +I0407 23:48:51.460618 32718 solver.cpp:237] Train net output #0: loss = 0.0830279 (* 1 = 0.0830279 loss) +I0407 23:48:51.460625 32718 sgd_solver.cpp:105] Iteration 9984, lr = 0.000836223 +I0407 23:48:55.913259 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 23:48:58.985496 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 23:49:01.354072 32718 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 23:49:01.354089 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:49:01.829361 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:06.010347 32718 solver.cpp:397] Test net output #0: accuracy = 0.530025 +I0407 23:49:06.010392 32718 solver.cpp:397] Test net output #1: loss = 2.8151 (* 1 = 2.8151 loss) +I0407 23:49:06.106715 32718 solver.cpp:218] Iteration 9996 (0.819334 iter/s, 14.646s/12 iters), loss = 0.030846 +I0407 23:49:06.106756 32718 solver.cpp:237] Train net output #0: loss = 0.0308461 (* 1 = 0.0308461 loss) +I0407 23:49:06.106765 32718 sgd_solver.cpp:105] Iteration 9996, lr = 0.000831727 +I0407 23:49:10.155211 32718 solver.cpp:218] Iteration 10008 (2.96412 iter/s, 4.04842s/12 iters), loss = 0.0255459 +I0407 23:49:10.155325 32718 solver.cpp:237] Train net output #0: loss = 0.0255459 (* 1 = 0.0255459 loss) +I0407 23:49:10.155335 32718 sgd_solver.cpp:105] Iteration 10008, lr = 0.000827252 +I0407 23:49:12.349050 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:15.072634 32718 solver.cpp:218] Iteration 10020 (2.44037 iter/s, 4.91728s/12 iters), loss = 0.00413825 +I0407 23:49:15.072674 32718 solver.cpp:237] Train net output #0: loss = 0.00413828 (* 1 = 0.00413828 loss) +I0407 23:49:15.072682 32718 sgd_solver.cpp:105] Iteration 10020, lr = 0.0008228 +I0407 23:49:20.096818 32718 solver.cpp:218] Iteration 10032 (2.38848 iter/s, 5.02411s/12 iters), loss = 0.123191 +I0407 23:49:20.096861 32718 solver.cpp:237] Train net output #0: loss = 0.123191 (* 1 = 0.123191 loss) +I0407 23:49:20.096869 32718 sgd_solver.cpp:105] Iteration 10032, lr = 0.000818369 +I0407 23:49:25.047973 32718 solver.cpp:218] Iteration 10044 (2.42372 iter/s, 4.95108s/12 iters), loss = 0.044477 +I0407 23:49:25.048018 32718 solver.cpp:237] Train net output #0: loss = 0.0444771 (* 1 = 0.0444771 loss) +I0407 23:49:25.048027 32718 sgd_solver.cpp:105] Iteration 10044, lr = 0.00081396 +I0407 23:49:29.969295 32718 solver.cpp:218] Iteration 10056 (2.43841 iter/s, 4.92125s/12 iters), loss = 0.020237 +I0407 23:49:29.969347 32718 solver.cpp:237] Train net output #0: loss = 0.020237 (* 1 = 0.020237 loss) +I0407 23:49:29.969354 32718 sgd_solver.cpp:105] Iteration 10056, lr = 0.000809572 +I0407 23:49:34.934468 32718 solver.cpp:218] Iteration 10068 (2.41687 iter/s, 4.96509s/12 iters), loss = 0.0674384 +I0407 23:49:34.934509 32718 solver.cpp:237] Train net output #0: loss = 0.0674384 (* 1 = 0.0674384 loss) +I0407 23:49:34.934518 32718 sgd_solver.cpp:105] Iteration 10068, lr = 0.000805206 +I0407 23:49:39.868515 32718 solver.cpp:218] Iteration 10080 (2.43212 iter/s, 4.93398s/12 iters), loss = 0.0161841 +I0407 23:49:39.868556 32718 solver.cpp:237] Train net output #0: loss = 0.0161841 (* 1 = 0.0161841 loss) +I0407 23:49:39.868564 32718 sgd_solver.cpp:105] Iteration 10080, lr = 0.000800862 +I0407 23:49:44.813542 32718 solver.cpp:218] Iteration 10092 (2.42672 iter/s, 4.94496s/12 iters), loss = 0.049747 +I0407 23:49:44.813673 32718 solver.cpp:237] Train net output #0: loss = 0.049747 (* 1 = 0.049747 loss) +I0407 23:49:44.813681 32718 sgd_solver.cpp:105] Iteration 10092, lr = 0.000796539 +I0407 23:49:46.819715 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 23:49:49.956627 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 23:49:52.354790 32718 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 23:49:52.354807 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:49:52.759898 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:57.080415 32718 solver.cpp:397] Test net output #0: accuracy = 0.534926 +I0407 23:49:57.080459 32718 solver.cpp:397] Test net output #1: loss = 2.7924 (* 1 = 2.7924 loss) +I0407 23:49:58.888387 32718 solver.cpp:218] Iteration 10104 (0.852596 iter/s, 14.0747s/12 iters), loss = 0.0350366 +I0407 23:49:58.888435 32718 solver.cpp:237] Train net output #0: loss = 0.0350367 (* 1 = 0.0350367 loss) +I0407 23:49:58.888443 32718 sgd_solver.cpp:105] Iteration 10104, lr = 0.000792237 +I0407 23:50:03.278091 32725 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:50:03.890576 32718 solver.cpp:218] Iteration 10116 (2.39898 iter/s, 5.00212s/12 iters), loss = 0.0464235 +I0407 23:50:03.890609 32718 solver.cpp:237] Train net output #0: loss = 0.0464236 (* 1 = 0.0464236 loss) +I0407 23:50:03.890616 32718 sgd_solver.cpp:105] Iteration 10116, lr = 0.000787957 +I0407 23:50:08.795544 32718 solver.cpp:218] Iteration 10128 (2.44653 iter/s, 4.90491s/12 iters), loss = 0.0182167 +I0407 23:50:08.795580 32718 solver.cpp:237] Train net output #0: loss = 0.0182168 (* 1 = 0.0182168 loss) +I0407 23:50:08.795588 32718 sgd_solver.cpp:105] Iteration 10128, lr = 0.000783698 +I0407 23:50:13.628290 32718 solver.cpp:218] Iteration 10140 (2.48309 iter/s, 4.83269s/12 iters), loss = 0.0469299 +I0407 23:50:13.628324 32718 solver.cpp:237] Train net output #0: loss = 0.0469299 (* 1 = 0.0469299 loss) +I0407 23:50:13.628331 32718 sgd_solver.cpp:105] Iteration 10140, lr = 0.000779459 +I0407 23:50:18.446642 32718 solver.cpp:218] Iteration 10152 (2.49051 iter/s, 4.81829s/12 iters), loss = 0.0719232 +I0407 23:50:18.446786 32718 solver.cpp:237] Train net output #0: loss = 0.0719232 (* 1 = 0.0719232 loss) +I0407 23:50:18.446795 32718 sgd_solver.cpp:105] Iteration 10152, lr = 0.000775242 +I0407 23:50:23.279631 32718 solver.cpp:218] Iteration 10164 (2.48302 iter/s, 4.83282s/12 iters), loss = 0.0898683 +I0407 23:50:23.279665 32718 solver.cpp:237] Train net output #0: loss = 0.0898683 (* 1 = 0.0898683 loss) +I0407 23:50:23.279673 32718 sgd_solver.cpp:105] Iteration 10164, lr = 0.000771046 +I0407 23:50:28.095840 32718 solver.cpp:218] Iteration 10176 (2.49162 iter/s, 4.81615s/12 iters), loss = 0.0536779 +I0407 23:50:28.095877 32718 solver.cpp:237] Train net output #0: loss = 0.053678 (* 1 = 0.053678 loss) +I0407 23:50:28.095885 32718 sgd_solver.cpp:105] Iteration 10176, lr = 0.00076687 +I0407 23:50:32.928413 32718 solver.cpp:218] Iteration 10188 (2.48318 iter/s, 4.83251s/12 iters), loss = 0.0339025 +I0407 23:50:32.928448 32718 solver.cpp:237] Train net output #0: loss = 0.0339026 (* 1 = 0.0339026 loss) +I0407 23:50:32.928457 32718 sgd_solver.cpp:105] Iteration 10188, lr = 0.000762716 +I0407 23:50:37.338142 32718 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 23:50:40.418303 32718 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 23:50:42.814378 32718 solver.cpp:310] Iteration 10200, loss = 0.00940958 +I0407 23:50:42.814400 32718 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 23:50:42.814405 32718 net.cpp:676] Ignoring source layer train-data +I0407 23:50:43.212003 32736 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:50:47.592864 32718 solver.cpp:397] Test net output #0: accuracy = 0.529412 +I0407 23:50:47.592909 32718 solver.cpp:397] Test net output #1: loss = 2.79391 (* 1 = 2.79391 loss) +I0407 23:50:47.592921 32718 solver.cpp:315] Optimization Done. +I0407 23:50:47.592931 32718 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.05/conf.csv b/cars/lr-investigations/sigmoid/1e-2/50_0.05/conf.csv new file mode 100644 index 0000000..7637484 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.05/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Acura RL Sedan 2012,0,3,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Acura TL Sedan 2012,0,1,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Acura TL Type-S 2008,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura TSX Sedan 2012,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Acura Integra Type R 2001,1,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin V8 Vantage Convertible 2012,1,0,0,0,0,0,0,2,1,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,7,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.25 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Audi TT Hatchback 2011,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,1,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW X6 SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0.5556 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.25 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Regal GS 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.3333 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.2857 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.75 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Cobalt SS 2010,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,1,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.7143 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0.4 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3077 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.9 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5455 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5455 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.9231 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6154 +HUMMER H3T Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Accord Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.6667 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5714 +Hyundai Elantra Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.5 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.2 +Hyundai Genesis Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4444 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.5 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Infiniti G Coupe IPL 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.6364 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.4 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.4286 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8889 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.4444 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Nissan NV Passenger Van 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5455 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1875 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3571 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0.25 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4167 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,1,0,0,0,1,0,0,0,0,0,0,0,0,0.3846 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0.8182 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0.5714 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,5,0,1,0,1,0,0,0,0,0.3846 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,6,0,0,0,0,0,0,0,0.5 +Volkswagen Golf Hatchback 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0.4615 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0.5714 +Volkswagen Beetle Hatchback 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0.4545 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0.5 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0.75 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0.625 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0.6154 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.05/large.png b/cars/lr-investigations/sigmoid/1e-2/50_0.05/large.png new file mode 100644 index 0000000000000000000000000000000000000000..1f7755478dd167bd523952451d750dbbc7a2f7ce GIT binary patch literal 109889 zcmc$`Wmr{h*ENhHf}|+jDN1*TAOh0e-67?cE@`Agy1PNTLAp0x(jeX4@GcbZ=Xu}z zg6sSD?c*@u*sIQS#+YM{xxPw@3nIW`!9qYlAbb$wmxh3N!UF*TNdWT{_zlT+XCUy; zBapNpA4CBdXASt_i2<(|F9bwU5Zt8}6!7yi3n3*C1O#I9?Vm^O=2^NB5I5-`_<3b* z)iWPv_MhR zmxZNGf-kSS_Y9-q$CM$GAO7DnKs<|L?D3qDh)PyuMXsaMI2yMw4{99_35)Cd#BKgd zw#CfG3}lwL?JCSErsI^40E`+M*2lqdn9;%bz)vFB6u?a3gO^-K*zs%k&aEfTuicVq}fHz-T zwFc4Yw5_f&I^%PX=L({lidjtxb~i!q4Kz}jL04obGh zdaDO>qUry7jQ?C-VHk7x>zZ4;L5x?%UI`s4-Eu>Al&Ss~%BVBe>XzXFND)=DH!I&B z(UWHSU&{FW`S^-y6=v$$L{30XVT>@C(u$ekvEXkHWYGAK zQaV5XvuEKtOY`JUtezhq@q*aM`iX$#vp-m+PhW%&+Y!*jDS`oqCX$< zA;rt2FWM{yfA;6Uz6t!g%`5Y6sg^LX6JFfeQ1~ZGXUVrkVc&sW{imaxdfw{nxj*)e z_t^Sh`~QD`6YGEMEaUdJTg99HV=4dlH-TRV)YScFEvB|S@76Nw+y9rVph#|#eEcVS z{C$;v#Y=)etC2zvtPJdH>lfw!Wx0Rv$M8Sb&cazVqq$od{&XBa{C~X)u+U^$4=nV5 z95meMUl;d(uDyg|<3RX#JC}ZM=f7M93Wej@C(ulr#{>Jf#kJxOHQ50K>J1B&-M@p>SR@2|G9fqvIsJ|xmO?%TB4eKcA&%IAG9=I zyNXDtsMVN&>ussv{Wc&B_u$PnTMzr7@B34Aj1`t2-I^i?Af%w6=J z|K`21rk!v$0GEnJP?9KU-oxUFG%-(#7PjEZu2AnfzLr5I)ST_(^c6wk>!0mg{e|k# zEK`=(N-5W=JhM=TBLL>=Rw|C@kX-xmkfY_F`r*rFJh+&ES=^aO7ho-~lOEo%12dZU z-v9AlRJ{L~3=#SNzvc>e7t5sHv@byat5f{TV}_qCw9gQCo;qErTany_ll@Flbe?+U za>(gd;HI)28UdRX*28?LQ>SKioDaebiM+0D5AKBM&hg+$l}6Fk4@<7#nz+7@u-#zI zTE@JWPi^vYxBvQlVOO&mjb6^_-p@^hs2XSd(4oQSI4B6POCp_*`9lt8i{pR~O5sKRVi6|BuYSH9$PHT(fVOxtQxEGF$ z-QZxvbbG5Piv3gQK{TmEG`aII+(sZ`BNEY(g+Uswkzc7!uOx9Al~)-LHba3UYT=0s zq|wDwqAOc?)dCcL=F|Q&*tCWH0)&ymhU!f2bBD#TfMx&vp>k7|`x8HKGpsAWVU}Rs zQ_&xb4Cn-R5X}5z|Lht3S#4;hC@PP0^}ds%b2Gu^=bdO8wPo4d7 zIYy^UM5BEt^p*TjxIUGmSdv<-iA1X$6Df~mdx%Kn76x9M@zh|>AvS*98f%VMf7FON zHW#>)(5y2gPh=vaI!onTz{<6PNmw;ee1qYv8lDumgmAx^DD=Y*7o#@ZLcS=6_cZ>> z{ZI-_!=51=8IbQ{+M_ONt$6*Taiv4QbuI|1n{7^_$e3>gSh_n96VK0zH#MF*?U1n| zmp3^+o#W5G*5D@R_t5Nl52ZnT)S5VHd3*q}*dTMsPWA78c|TU5vA`tJ9261R%U(O% zYtwrh8O5IUa_Bvki`0UF4!L&Rjc~#zh0Et^*n+7t%{dmNENx#s2)}d(bl8VIM=76l z^a`H9H^UJjp9+msaGuZvGv3hMt?8N!G_inv@8u6{jFF+Ls+HFxm$FphMy#ksGyxXe zCBNQ8wj%AdjOEJG1eLy13;ERljQll%RKTo)%F_8K;ywNxw!T^C5|F?5O=X_W{m}1m z3~!%Qw1{?wdbHfaD$~yrS$%SWZ$C(BnwBo1oUm2DNlWXI_wb~563?!MQ|*hWV)_^# zBD$rPC#6t4tr?xkifFdwPJX{7YUz%ONEij34U|62eF}A<_j!^LQON$KQWG6-Lo!%I-tvRPp75EkJe>~o8eP7 zCO&FRJ*+|p;pbetSJz6jST)BA?i^(~Ij+O`FTOsDEN^GaH_6s0;=F#27h4XSYl9~+ zX&-Lc9W7=lm1z(2=^D=|F+O0+TYR<2mo7z+nA1uL+KSrgEnY&*h|aHx@j#53Itwwm zyKMS6nG=PlYpWQ&@3DnO&X|%H2r6_gC{4pYyu8 z`g#+Eho@7oln;xq-3#Ui!W;ePSX#J}u`S-ZRiVTt@6-LlygKKuPa4myK@Z@~rSj8( zN_!ObsuTutk2O+?PdH3T_~hPa)TUpv&QjTiM*J0ACccn0C1KWp5vf;AHuV6M>Rm9HXY@KB<()2IvlTEd5vbu4RI=lS-ld6whUico4fM@{jZ@S zLy1>WJHsfQ4_0Z7^pMh`GuKJta!nb9Sa{;`DVEv!7+*4zmq&f+s2&PdHp&2T;{iLG zVg{F8sqW64ggJY02XcJjuoEI=Dy*wf3lk663rs;_ST!=KA)k_v0?n%s1X;KP)70Mms(ClP zf{aq%9>?am)5UGQ+T`sBsw%RYrL)4mOF&R~e)x8_hME+$)=Ngla4KxaM(U8;!@fdX zpVquRCj-J_9$=2anhyjGG9+J zRbJ+wtt(=|T0V$46)!uyGj|EwSG=rSzLb|CW1{(&PB(|xXVoZghdSr6O|8wt6nuY% z8e8YzpCi&!h-Poy?i3cOb)DfPB-SS>=u~4($%Y`Y@?E5dOXD)&WVuzVGs1oS^M5o*^E8f|0?n1#lb=3A{ng@noYy1dmsLv;)hyXwMd%gH zX|0prKVA@)>Fq4KPZF?poSfWY#x60t@h#8RAP6irJIoBKX)S@bOUyw{TP3xvo~avx z&GC48ZR(=9{IA^LKPo^=s1GAr)4mSWY{rnB4vD?jF)v4%FOd_D|B zobDK@Pg?EOwod%$40oupOU3TBv&Do6L>*%ugW1j)jsas~a-di)Gt-G}rBqSt5KJK# zByV#46&L5rx4$m7+U1_v8m_}KMPTAfBTET-+swbSMdxlo0vDEj{TD-c^lEa^*$JVc&vBLQ(|hDaL9;C2Zi}Pp>&$Ji4{xFzMN0ValEkXb?_Ue>p|hn z;rCi-JWwWPRP2KdQO8F@GR_CzB?Td!y;PsFdexZH1IA4 zyvy(*c1S0J?yI20Z!E4X#A=x@ z{45_!5gQTr5!y~EZ$ikg#%MR@@=N;ezFcyZYhl*1B6+D;!Y~jw(Re>(ri09Xg2uD( zoJH^Pa?P~y&j5#gnDH%bWW~sMdHjG}!R*C@cN{sB%EJXd&^0_hoso`iV_>Ie?JTo? z9sU@bAAY*Q(iIY!^Zw zbit)eHM$$BcV4#tI;1toXmNQ%34ime9L{wIHkRVPGc>%mzYF5Z`vygL;I>2_|l?QfWT=VV}1|{WXZfPYP>HKS7;S!_;r&23jEYCUW3e>@a7UbF*1#YrjL^h~m)*mS- z*PfZ#pw<1Mc&Ge~()k+~jfQ>(g2&=)2ox)3j?Dcu}9vFf{wh zgeJ!DjRb$Pom3%9?ZC-FWGm5Kfa&)ACWo_i!6hUlue88C4#OdTQeRdc5NbR^QamVC z_bAmv5*Yjz5TlU$%Z2etcDRtp77BUSUAe(j)ezFj=UA!(b;;KxG$#^Dfd?AVemZaL z&$>&~IrH7u^6U2;v{%FkxE(&xH_ZGOV3$NMpHyzCV+Q7ELZuc;|y#|PjM znSZFG*ww>4OrJmLH@hNzo<4f}4StQYsBum+3_tZNYg0w*_ zf@a6i$Y>MmTphlJXI6*1_%H9m7!$D0v|O?B?MhU}F(K9&W32NQ#q4+@!tHb=VItCe zl+s8xPl1vo>*kpo1&yG^uzsamiM}mkt`aXU&6cVLF4tvy=D*R?r2RmwnRi39lA_~$ z;uJF`sbkr<(*51)hR&+qctvYC-?+TRswTJ;#JcW%^rbu86)1%XbM`p0#=P#ja2y7dXJI8QqsMLz~ zK2_bYRNKsXS&nBKZgWWS4P{!Q;p0e-7X?X+Foj3?)jZ{XW@h#zoi^5giBP4s1;IBm zZ1gCZ?Xoh0E`u0H3*twT3|27Ue0szin;B>eLJX}Dv?ShU1lw2Tspp&%L={;Nh6Z45 z;Iq{U;S1I6u$H-|G;k#f#}E}NDix+9758*La@Q)wJLFAUwZuU^NJ{}kXjdh}hN{PK z%drJ9l+D#A^uSC!mJ^7tWYWF=VMAIM1lfXXL99*FRz+JK%$%GjS|F1F&4&p46)wjM4Gm_pf`3v~%AkL1(5GLUUIwWe z(~6aV<9s|tR&5jnZC>o1Zw6FuySLhIXSx8}1@&;7=JqU2W6N4?n*~BV145|WMA!`h z=x8_S2i83diOF>wV>SvHH?Hdit4LDv8Wl$^|hc}DMmnDL|Q{y&_m`vne zi=N52QiPmOP8{od4A}f(3ONw8PEs`EDRf8>Lq8$b&0hrh({_p`oRga7+M?^-q$n_zY#nBcyq}& z^lI^b31Yd6oqh+2)DO7G|6+uVBRcM5gn<_P(lChU%Kh`sSNvs8sv?HLAQn%GUoa`y zJ;N;Qx-3y{4+M?Jk-WGqpJ_9@p0_YUyjY0PZu+8rp7Hbw*$?1M*_=$~n*uc@)^GB~ZY}S@&kesR>^W=+5 z_R1{1)^WMt1vPjXB)jD=x!e3Pb+%FAXa}sIcSGw7Z$#0xdAf~UMbMdu)6%r|Qsb)6 zdNP(pbJf_U;*6Mvpl>bHt=Wb+?nj_8R0cmsI=tRq*Q1(9kU-q^}Jp4Ng+V##*4 z@M(2>9zvGeP9#VLQ3u@*|JNc=U1JQ_BP#o!KgwRi^zpSrZA9kitpksp^#g(wc4#@G zcY7{lRx*>z_F>{pdD}l*@6jU!!*?|wF-Fz}BLTsOP;EU|M{?ZR>d-JBdS;awaawSg5=1L$_r&}JuMRKoI>cv_X1gd1DeyG7rSKA4-Rs2R90FVHXe@lyReq=-2l!C6^I)e%$J=lo(F);JDs`3zc{W^RVZ=jB)o*bcXw1Gk2k&5BvuLM0@a>U_-M z^GC^%I4Oefu_gCtN%S*Mk%7)#9Ucp$i=|I2{iB0vGp4OJF1sh|Q4U$BT=ZF}z^fd6~-+;drOebv)ydIAA81NIn&*+7^}z8liw7tbe*M6hoeJn zY$AXHv$=eaHY7>uwKLGd>B#m`+kN8|rQ+DquJr~_(465wXMqpIp=7CE!+yH4_o(u_ z3|C^cx8V66Mj9SFu9*V4KrgnQ*~lyBil-Mr8Cjqk4P{b#QQX3{2^gT=lMA{_mMM~( ztwB(W8$@Qmei!Du==k3EkOjQ&$v8=1OxI=UiErq=usdsL-qMmU6i&O$Pox=Gw$s>T zDG|gT<1r*IQm}S-&QRs#9yIHdVZ!3v+gs?r(;}=RBtp?huVTbcQWFl|EF#XO0~CZ8 z%G)k`8|Bz@?h}e~eAa@)@axTDqkkP7zV>{9r>&(TS!tn$QozzUfOo8@ zJ&}R{ATyKajGF$1g+&y~*hoe%~V-l3-MG#C@FC<+B>xN0AvMZ7RKvV<|tcRX@@ zx0IwZtz^gFKSAuM7&YjSWENJgcNaqz9*Otl)%gL~R7Qo$207Q}mG(vB%XLSals7pT z_|)Ut;8oqC`)#!FbU^b-hW_?1X=vhC4iV)YRnfQ$V3#U5)F5!$dtm{fDWnDx`M zUM?vf_Q5GQ5;9f)!(VyyBd+e%f*mnx-XoTc%U6mu8$Rq3qQdVl8yDB78q`F5-URn| z-ruFm_vpDy8k}==&EMTa$jnVOoRhl*a5u~?9k!@q20cZcCRorm^U?uG-V0x4K@sU@ z;V__#>EViOw!1V13y;RLnzl6jT+o-mNN^Ie;B#%mz7xn~dtEM|MNjRJxw<%i8}}+E z*5RQAXj_1e{{|H5I&1QEX{|$tj2Ze+Wf$E>;a(ij=oxv5Zj6!Y>!FctBZq|?jzq0f ze3>bxljY0)AGQ8R9{9gvF;Gserg0uLv#06luDTixAy=G4k$a?(jqx=ITm{D^_(L`_ zj5zr*<4X#<2!;;+r{6rFx#un}JXN0xgdm$|J^Arwa_v{V4L?vfYf}9x04`%>n+ApT zewPOlADN!yMfL6BkrB)zKj-qE8Z>SRzgH})S{{w-{P&}m0M5|Ds;|vZqXE`fE&^Aj zn1!cqv6N$&uJosBrRwI&o$}Bc$WmmaoFo`8sZE2-ch=pbu%y6L^$a|SI3iLdJcEJd zZWOPfl1EDPU4D(;=(IP!T=o}-x;LpBQrn1Mgh%jEM^d!sD`c-CxEQ!f@Vw6}GBi|_2r75W z`Ltkg$S{OayK+`WX7UJH*5n=Y?fVkYyJ=pJ@UciABT5=*jX2xXFOE-@X5H^0w+2%D zbYSp+*k+9ki}1=8RLK`en76JC0Qi=dM$7(>UGMGb-CDypCV!xkJzsxq(mMPcIl0l8 zGV~-NHBf8B1!OkZt<5>QEzD@}=OOrA0YOiEDC(X!ozb4PmGf#PrIBT`9<%cY;cz1F z0*^HOASs5os>xq{jQ3wf;9Uz$Z=25p3KxHIwENc=sPV)*)6Fkk^(K*`k)NaCczipA zXV^!bm?QR(?NT<6uunn{wbsxU__@Mz!rzxM(tFpn@&z(9Vb^WPvkTq9-N` z11HtK+CNoMEH*PX8)pQpaV!HY$-@T^0-a^<^OH42F0&+ducu4(;(2y0c7_q>B+|zT znQe_yv2(D(QY(00$v)8}+)3i%fpGCUiCi{I6I`5&gXy;GZx6JHe}*tyK;a7-0$!qS zicnFD5QW9AExEH|8Jy)sV6;jx z4tI!ehz4cz1Wk{WAm$y9xa18eKBEdFwgB+cbBKig-CBXj8kaq}9o*aL@HCsFDP^S@ z_49C5ZvfJYd826}<@*No<++2_$-@;aY1QcC6U2`bHlhGRn|RRjp+vWYk(Ya7PY#hZ zSCVy|7N+7tlo7JMtJznwflk{Ho4r#3w(YrhnPTx$Qq`lVGW`m+q09EPhfmtmaiAPi z!g)H%7hG%(F^4E16y6F0%ixI^O}XGWGyl@)wnuDxa?-oLEN?}go$CF!llqzr5SadG zu{Qb=L~ZVYRIn2W6_ntP?rp`_{#34~PI<+ve$juJT!_tJ$2%_Q(kUj{VGRCI)~a<674}( z)ION|F$%M9q#wf+jE4u%c|UFmiYzLag43WX!3)a~YEZ<|!q`gk(JKCkl)dkrGcI}D zJ)6dO5w$wT&rbieIb>5XqtbC`abW{HQsI$1yM4=WmLa$}&u0t@i7oKjKAfG*8btl< zw;=z2W!yhH{aXQaR=MfHjB~mA$W&y#&o}ovS;*nJ-6#B`i5|hiCdfeG69k)^auXZ4 zm~-fYUpK&Kt^RW{1?anFi!0qjoNJTW5wdF^hahnCyGK=F^p}@cQ?UTtJw!5xGYkXPz+@~-1uKEHmIVGf9VhbmpLG9!l;-QQ?9W!JvHewc z&WRR~5-hGY%-tP0-|rmKr-?WLEAVe8@Rf64eGSU!q^7|`5ZxnQn!{XQo&O}*Xj)z; z#u}FvID?od#PIiiCvN5H;TmLG60Xe}OFojIr)itGUtaEwJ@&qMv?e8l#Qp_f9<#PZ z`Z{8u7K)5l2&eYeq*YIUa^4C7NHW(j371gsNi~3OjPeJ6Bpmfl&>q|&*CJQNtwymr zyT$UiLxs_N#yrdXW+#SsCXUNh!VTzezBu%mxy*a{O-s@@_wPsB~X^6pOnvNMxb59njche89`qsLkvpHV0tZojsJ9DTw)jtGZ zqU2loqVmx5){5Oezc}7pmnNmBEOA{sY_K7q;%a6anjE*!N~hb_R2@5f<^ktFFH-EH+b(C=d>5)f$I!YqwEsV68 zq%eTdZ*q!BjBT>}=U)Wn9^^v@E*9o{$CbdpVawrbOJ2+t>I-&*k>toB6tKq41{1G4 zJyPgEwxUj<@JKfITi5@Vt^!CN?y7Uw@0!cfEyum&PJaeX*4r|DZo90O*A#ZQPD3tA zHh&69))P$(D)tshlGGm^e@YB;-52YlD`h zrnWBomA^@=@UagOrhdLg2t()5SHH>mS%Ve={b5~M!(%t{FC;rv5N|H}ddf|DC`y>K zChIFF7^nZ#X(_7V-Wx{XO9GSgvVyOON4Z%C=W<8V7&}egak<`!2XAp$bOOkYD~Bk4 zlosXCO8MKH5QhQOFY)@q_ z(r6&Q2M^v_kOn?0cEyQ_7kNnX`Zd80yU*g4oqcm!xts&xk)+L!@W2iMe1g)S_^imK zO4EXyS!yr-d4fjyE0r@Ph6cKV7#$=z)BXm@WugYN=5@x^`ep1=%`ofWM>%Yn)W>*O z<5(^{bPzlvC z^6Z|C3%U}NIiw*c8<(2=uL%8nVB;-C^ez7~fPFyc5{D@hy*Hyei-~ougZ%4Lvek4~ zWr590kRNlFll){HIkFV^W+Pscvni*K7iigz7w<$deA2oZ(50NPe~u)oRKVl(8-SoG`d4)ums6rd=CR?NNQFQ>CvYxWz)jQ@Z#O>+Hp3< zd|kLWVj4u#w7PJ8q(Om#h#KcMTPD;tcK@J%u}Y;KPl2sL^3S@ZdXS2Kf}frs51-;yK4hMP-40f4!7e;#X zxz&530=ht$frSBqm)!`brN~td=T}3| z*Hrwd{X2AXJS&`u&I&}g$@7C_ALfnkLe7#W9IkrLvi!_ia6Y=eFY6$BPXTaw+SR=l_c-N`gEJ^YQN`bnNnm4M(Hsm zkTVuXnHT4*p$X|$X&md;Osr}uR;YJ;(8><;klDH_^EB_3RR0E7Z*5*UZ&ZjW)-agF zssuR+9#K<$$i`fMJql2xzY~T4stSSLEZe%{)TJc`gA2U=$C%`{6ze4z`0cEUpW&(g zC-LLnXB;cJI!0~xv%)|cO1b6iK^Zom_bO{m-dPlG$S!DpsX<--#39TXf7bLG@#@t{GZlmRe<~%Zi66Inl*I9jEHfjPfeN4* zp`pv0hTgGfSuQ-A&HuP!K3Kwx#oujRNxkAyk08OLdPR7BwAe7*&Qc>toHH<~7;?>+ zpt$RC2ESFNR~TI~=zTxHj-1p2i!eoYd(!Vq5YqHreix^5+N(Uu)3^O~IjaBU&~Y6d zP{>3h_g87jIa;-2uGa!8^knVsJqsvkH#6NTm!=~l0h$b?G<+mPALXAWoVYixalcu%x9 z67%C37Xtt&h#T3ZJiz=}70}0YhX!ST-l9P{lz0#C&)Gp_)E{#LXYg)}<@6V2q^QW@ zaj|9Th^h2$lx$t*E^M!4vjrOR-6lVLBR{cx&_oo((%IZoMm%O1NU~ zj3@UGc-}TG%EW`R&482ab*?JcP+%#T`Ns>|XwQQ^|F(6>dw)X>uz1r;8dGmPvD{o- z&0nu|%)^QJhUu=8b^>Xx14+`O8B7hklh;p|yl6&>O119y0zmr{&Ge_y4#C|}MP|?3 z%T3V&Y8c<|(X>K=4ns=0`E|YSc>I0B2Qf%~@Dt`s=^zZNC4_h9A zo0k)&;?+++59caMFmbEJeIK7vW`8hnh1>1)PP;8l0-+r!ugGtp8@kVEO7_;y2PaOy z{mHDqr{sjS$>tFp0;3pA*UH`3SBaJ3jRIvahzdLO+6w{ca_xsQxyKL#b~Bd-LyFSjqsG`bbWi{h5ZfvJ)sm z&FqTn6LGit`S6bWw?h=ivNZ~jNoVW5=a1>$qFqUk>0aUkN-N1Ps%K!nj}tC9HHa6~ zptCVdIt-AM3ZvaG4iMZfK;I9P7+EoNZI5j=ENoBMq*^YuogNpP|Gk%V4FGm5_aKp% zXxA|R=x*kSmWp7iL5wYNHYiuk+Q+vFqNoxGmZ<%JNkv;*5Z<^T=N4*o~xM&uR4ZwePHYF_-VG*irZ z9n5aO`9V~=gp;!s8R^DyV?BS~`uali2%2@nuSAx3IMnO@Ot5{-r@v@wgWe0GYXxY|#WF36@WuY$%Fw@}S>fKKoDXTvZooAazN_O82` zgU#R7DiB%BP;i$j{7G|*CjibAn1$nw7xeUIz1iUl5S};Q+=^>kiDIB4QRGHHH966+ zz1kVG963?Y>R@>{%-S5E9Jq)UD3d6odOuxuJ8GRnV*R23A2&PDDp!CN|9omzFLOiz z>iPTxtPRi_T3_7)u+?1Gs6vX`k@b3|VGEHX%P$U5R-MPx=5}l`@c(K- z2M{2zKha}9PgF zU1#?wT_g1!0+)MBs#qEG@?A##2=rPW=cL)Z*q*J9U^^(&AJYO^ueTlJ`GJ`@He6L$ zkjTX!&R`?A8Vz~+I@&yj^U^FW0mOzT{*(#W6WLN9GuI%RQ$?z;UjzNyVy;Yltwg3m z6L{@@{G;#zP!&p6y}(8F<+xyCA)c>^AHurPqst^9XM{zvc94t@(qP5=VDw=42vqyT}G|nAwUVmVw|66YdUp`lG;GFImyYnxFdy)=wLAkiM^+;#sMG zd(alTO3_`^&4HwBxzzC-^mOW^mHx7rIhVD_s80%HZOlHp>2sh178JIJRaf0l`5RAs z;eJ0@e%Nk7bG;KYr_K&0J|3XGp*8pk&_BzY!(9Dak368f=PxREinMoNZ?%W_=jq=W za`eM#DEJ7##+ZU$>*iNJbDCD1q2IhRn5-m%Dajh%ZvoBMg>s3AoYX8-Ik+3+6B;Y( zUJ1V!_m?2I26(*CFK%oTSx;pQsF54g%OOQ7@a0c#>MauwZp`u~qJ030F(7y@jK)dza$WI54Xq$geZ)Y86#vr)$c9cg@ja@U&Izy5Zr5$ zxOr=OvtZFZaLB|}A!hp72qzypbFRB#q4)N2Jox9X%}#O;A|vZnbya4I@9FIVW01g1 zezmGaXZ!aLyNrm6v@=u7zO5v)-N`RffmwMtvKSiQ13G8dssWY9uMiF#=i`tHX|cwxWc#^q*#?Pmii+7?tKWaqi96H|1&lrMgBq7 z_?wq_6Aj{q2gf;+VB#{<@Bq-2kp)@r7qHeL7i>(ouz`R?RM$CL0T~NVS)6Y^agPKE zs+RzC_7bJq4!#x=57-+5|JNgTu(K~(UB+No&h;2o7ywqGtg=NDvz9#gzM%P3~B zXtZS?w7rU?DKxk(QQW`$S~78G*lLgr4-M zWZt2xy&UT{{-a%zUFZl!D;!0I)8`H(?A4J){(jQ3OoKQM~ua($Nl8-DQ zIHRypae9Nydl|n<_;t+|k)o)dl7;oFb^9{4mU_5Mu3Fso8*-Qk@f4?#!uqpdZEEMk zrYxwA%@slf>0xw{t=*K0mTb@xwoklzMT^V)YlHNnSP(F2J3?2XgvSuE!+-Lu#A2xi z4#+63fRxS*T$<)j!nxP}k~Qjc|J0{X_iWoSMl z&M=P)Jjjd>vQen_`*o-bx_cE;JS+znPgW0k?{pkjw|dSgmBWPPs>f~T&5jKazQ*aD z>>S^;T|myZznjLFZttVH#K|0CM`)K0njc9oTxeQD&k@Kn%l2gr9Sj|&(T4|O5|((c*+6y-SFVi$S>KzlZ45~2P|973zhDM@+EEuPEa3bYbpRm!ML$3lEIxx=jLuQ@v+Gq3S8pfbJeT@M3#CG@>9kiF##j8sjL^ z%3&9vKeKd_5X{&ycr>m{F!hv*Y&_YzG4H4Ueq+RNGq7ALUvKoT=*?hz-}RJNrBl1? zz~b%f^ez77kwv=Il`i&{rp^=w5%|LhBrjL!vV)jeK`lYP3Luc>T(wD0j zb{c7EnVO^hN!|*bul9yl#VFj9l=8IAL;wgCM)Tznq~j0)qi)qvj%~@UeY?*6K&1OhQN|I z(&NwhnND{=XJuhMAz-*lvDS`<@7 zUYd=JE|!X2IbN`*eLz91-_>0iSFm(RKL=5H+GAO`sQ`&-X1?W&1yjjMboRgBXjwDhKt9y zJ9zosu;qE%+TUHa`wg*6tzOg@DCo$-pCnv8s%4QdSGs7#R~a67*XE=$OiS!QZDNV3 z3U(2<6V=on=8e7V zT8chQlK^_U0`m^an92}aqLDasB#A{C zYNtO9lrH?=MPE_aE--DjH#(wbsc?g~{#wWKgpF$V`e@qn#*PYzy9@ENN5vRoumsLB z{JxEB0bt(r@4|{@=BVX3$7%@=NK1d8y)0}u>DWp(l1(@woFO|!@9&QXwL|o{cd`vfD)GU(ftw;Id%4D zJlvH509U@~E%%I7wI@KryBsGcaEL{hiCga>)SD7U3-pXB9XD}mX-mVZpiV8W(Qe<} zFk3M0`92mYO68zp>xU&s-WHvy28OqQpl6y+p%>z=rM3B+DwBx!*pLnUv80AgKt!^k z^(`jBb;U*1K)|l%YN+9sYO+`cHKd#{lxb6g{E@u9g|cN}UUz*eM9kghude%G4NSPi+cd(>7q62fRb{7>(=0P-RtNIj=Y zmHJzV3v4(MZo=iWTQ#4M#Im7OE)nx48*F6#GnE8PfcbH(&_>@r{}{bKLI~(j7EZj+ z3E9bI1K>;!=6frD<%&GVeDQU*@Dvxh5qUWwqUM$6(981{! z4-L$pIR~^UqZq_s@v!S)@vB18>C~_k=!la{>x9YFPM?eAGQRi5!nGjUdgA3 zwXS3z7nE@p^oMg4etb*abg7Wd|F2Qfx1PJ2Ad|)?(0buQ);K*4AB>%;&76za#iMv0 zNl@9tW@Ba>tI8t2!fkOSnWb_HO2Yx#WZ3_lCvWMxFXTc0(_+fj=H8FKp087V#SH=I zhB?r)bfg7daI2hP;zeKhV4-{Nu($;I)mOg;O#}+=*w^(cowWu2{BPB`LOH$Ak2Ec6 ztF7>}+d*!VYv2WVu)!PlOmqeU+#<`s5OUSD+NXobdq*gQl0&C5w8kvO8oP8<*)m$<3D``tX4 z;dplPQF%HJwWs{5JtQHSBClO$aPJUlWB9ByG@ZJDi~4iU#Iv3F6LtMZzg%bWX%nSr zWyU0!43vWpW)DR&7WX3}V^xabK0(bF3~fuV6y97_vqvcW0|w?rj=p%Y+d6U{6;vG3 z_*nF_T|^m)=5d?iW~ehhxE&IEwi{IC2YqWHo6B)(3tu-?z-Am4s<>f8jy56_)f%(T z!K&$j<4^?zvnI zxCYmq0hl4nCx2pTvg0t!Q)RC|l47{(rns7SYdxyuNATkg4#*iP1mSduPk;trSLJco zwzxvK3iZV~{S?y$b>7bkSX4gpD2Fl?ju~U{z75d$8Qu$TP?!2MbqO2nQV)H7-2xAf zxuatKR4*Fkt!}xXOG`l1vOk$-y}uxO+F>IAO)+ZNR(8rJuzLa3D9L0q1kh4y1eoRA z1DW|m-u4(=xkSV_Upihy!DXm@NuEV)t%O>nHQFM9PhiFf>T!C4jbzIInV)fc%bsQ# zJ~1_-igV}$(+X$QIO=SA-$p&`pubdD1{ie3WT*f$Rz%P^;`~1YLG{wHjjpV7VT3F?;#dvjP8r|1e z-OZiq2tK&~!_`{`H2J?_-ztJihzdB77LgvxK$;0iiF8XDgdp9c5dj6HYs7|xG$`Gm zNDhXyE7;IUAhSx1L2mD5Y?Bvk z7clBQzx?p)%X057uaMONr>)gts@%~<=#c<$;)=)$MTXd5{jKYwUiTqgmjb=} z5oMFt#jE9_6rFH(^nM!`iTu?~ z5#(Gk)&?7NaPR7}_ZgOx+ZZL^ z6|9}@E*J|HO|buWwB&Ur==Xg|38oA7Ou3x2p3X%1rgy*1u3U_K-Tmq-nk&&;m!r3@ zX)s@{L0@Z{E$AEBanITheKw^QywZ7GLzW&qQyet88EmJ%?~snW#NT>#%#Zvb+h8p$ z;cYidWM7-1Z5<*R&en|li&J>C`Fn()YFs$zB8~Q6zl4{jUo+(g&*QtYW$UB&V$A+3 zWtJzOxc=Y)PSYb!4Hl|}Jmh#9WOHBCT37iFB(h;~iyKEgqV zb;srZO$>fvMN!=9T9)Wmr+03fNO;>QxHEeR_u|xp-6g!mpWxJXYPdf*wKdviK_YAM zGzY24{WkecIaiC@I~%HVM>TDP#{8gcJ6jK8vc6(7ouGeoOK0c3n~TA`LN|4+T1M-5 z&TgCYD%FC=JjV-|MXY(w{uUUo{qJ}9#aKIHCc~}P?}WoG*~;5XhEw6;BP$HUawbOX z-O&`)W1tE1NOTFf$)X9dnf&$6xOLm#Y+C^+s@F`TIUA$(aEkL6PHK-bJ!I)=sZGWg0jNNhJ}V`Pz)pNRRW%XB)mgs_Fw% z{h49Y7Q7@DklV=e1KgrK4c#RGUpgEbZoo{`E4^03%3B^?e7@g3(xNlXS(l~Ju6Rr1K zki_i$lV)di>6qsoWnIC@l|FM>W+x5&?UeySavhy_E%e8VAp11zYry7s8`*krSH_eR z(G2tm?91eBS&Yyh47h&l{tf0y#{e>gWQ6@OgNg*DUJUk2^rFTPAM=Rh+{?$D#JHj_`;gV+?#KPb7rhx#uaqt83;w)f6N3n z6nI4JYIM$iRYQ;`FyW{1$v~IE<2iz!0l2r38Dd0u1n86GkG`vpT`TnZ*Kg{ z@}C{H;lc@F(2*uLwK*wPvgjw2AmKgH!&^IWJNR5WQ0Ip?f%#qL*NS6L-}Nc zH`UGIN@=`zK;Jxz&#^ z$v6#n>2g)-fqfXHz=-TJW4z(x4YhG#~wwc^0LAgm%NUF)p zm+`*{kCI}HOqxMENbIoJK7NhS*Z26O+S^3XBkrv#McF1ph)W8VB)^tqyq+0DBXN%C z*xa(%?kt}Q5aldj<;?Mk63!6-9R2MDupDRh)k{T+dhLH?>GXFmA}0i5jc+w3uT#mv z*DS`Er>;q3eoO2Iyz7BAd(5Mr)ds?UTII=v)Mkvk+%Q%@(*BuDs6MM@yr(uBZg;dA zH;nt7a3(#$V6{RDdQt74p4eMcje%aWx45q793W)N%GY2@WqO(>D^y^tDJf)`xy=+K zdw3ZqS(_w$0f%?cW?w=TA3eeLLwCl<6p9kHOW)oLXgPdoKkX(mz7Sq_R1Guwx%h+e zayj*Ol$s{0vArt4Tjx#$+l=gL7%&@z^cs)u6p1IhQWtKOoImU@5@|O~ITj5A+SKf9 zF~W_x7*cAm!uMI)do~nSZ4FMrPFrJA_Son5RSp7~-?M#iDiR9LLT~vz|p#Sbxu&B(sswH9e9h}PiCbRml5R0YVniX7~1-N z6Ah#rAJXt!7(zmKP#|2q2Bcz?)V#x?QM1F5JICQK^Wyz{2$Z(!jyM5$c!rI3=<8zr zuFKBIGH_NLi!Mh%pfAFBb-%w}`TNaUPnL*2jonrSNs1PH%nx(_GdI4xmQKxk5a_9^ ziG;Hu!INQ0yWxYsh@yZU;M4aQ|Cp$#5)1k}%%8r}4T$AzJPZ+{eaiC$0+l7<++Lcd zR)=}&4QSV8>yM4}|4Dq#tSJ*c7#P+0+l;Ee^jYoX%+9YY+P(sJ-u{>nf9``fXTSE} zGtS%*eNZX3DkyklYWcs}ub~~p8%!a-H3~#fowc4gW!a5^J@PsXk%6Do%Igdc-BSbj zoh?&Z6wCymMFVH0h_aKwjj61z(R8x#n#-%aXsVyrad(!?X8zzUo1xeLEmw0Zs))xX z9|}yo9Qs^o44sL|Ce}Z*6xqokIDH|}z5i<_)=NDubwZ3~d6}CvKe%?~?1XumlKEe5 zjBh5DV>GG^WL_pblc?a^N134)Y?fX%B%+=fc$dTH8v z`=F7WSN35Q50_UQ&8G3Q2i0<7bDb7_SsT3FZrZE$2=kyXWwYpCo2G`T>68W7{!^nP z*6-#uYX0*xR1I@QwD?(cSiv71UFkjPi(===@w$EsREybR?HC<#PwJhhlDfs00n+sM zXkkaQsl#jkxH8uO7)*|mMOO$Bk$)_m7d;zF%K=eX(<=xuJZ}ETAsEIkIZfo)x-OAq zo9wRBGIh#wtiBa)Vm+IE;Y81NEihnmd)w`L-Ik($naM50YRKYEgz#rv1JA# z`&@}5^>b&K*ROwKz-;Ro$XyJyz$UeOBUvT@xFVD0mKl%{DWRT&jlXrI(kgd{LoM7f zGv8B{ShnQWAn{(KgR)+ItI^40>%VVci2u3uVRxCJht%2>*87}robe(UXj43MNH2#s z-2Xj%nCgqyEr7G#Kz1zLYzn^ibWG6+_XKJ=ROTmDgt#+NVQn2)r;H<^MQs8SsfF{3 z0D$P?M{{`Et)642?Y)JMes5AMEE#>qn8c|NmzEq%SGc+i3F`j)+TGrWt5VgjxhU=; zGs6SH)bo0yseNr+0>NDiU#>C0>)g#r<4&DskCGzR;a2lP@3*j$? z;6Tp%dFrMca}v(HfxD}6kL#o&<>$Mug&uCVEd*-eTGG{tNH)Cxs=S`jm@*B?h7PQh%^rzJ_qY0cwM;A#5m@&|Lc{TQ-1wc~_H)m&f9r z0D#QfeJiKPnU0k?I{!rW>*cT4Qhh50UKoAyI2r%uu|Kw=ogZF5+A=IFOJj@QLU2?% zowqDI0nrNCu5X5%U!TQHcr_obE4&VKdm~^c0n%>IaQT|-V``cU>Nvq&W;Ax9XXs5Z zromDvCaaXB*-->o64eHzf|Tk_U3$ud-7K!&Js+Q*d%tqJp($~5!+0q}s(c;n$9rO* z{_$8-Stk9DLh>*7*2|v@D4**OFBYt|g(3H&ZqXXw99p~!*?G`GzbdEG$Z~6~$soy? zqq1v#>NzKFo4^0H7>RPjsK}<%9-e=a+x@gCBomrL&_8x7)Z=vkhG2_kcJdTq0TE^i z%30Ax98KY=J@w<)rwRnMY@8yrNNY0Owk(X=L-NpoGXgkj9$7bE zisOzXM9>HX+|#fzrX& za+{hPk!*S7`Tv$JPP=Un!f@j%-`)bP(a-k;*^wgV;Eo*hKCk8H(+I}+U;U6fw*s{^ zLj(ZWbaxs#Fuy3uw%GItH{VfdE>e3pik`hwh&cwBGkpHjKz8$8JiuLMNi*_mgim|H}qsx5KuE(6#dJQ}EJUf=EljYp!y!NW@XWR=Iy-{bdeB))VCcJMUVit}AExXy*8a z#N^}Q`p>QEVkLaXyKjzuSUc*}CwhlvPc80Nh zaE*`0SP8kLD){X8>w&l{o@WP~jNX)Nc@wRZBsG@6Sv=$^+iVG%%5LN1Pot_2acL3{ z00A}pQIh}o+0*h#=34g#as`u{9RRniI6i518;kd!lu7f^Gt*1HsykNfP_uJt+^{-c zMKkOya?9j+X%R_AnoC#50J`qQ2h5s&c<(|(R}X&**Z~OtTZfZWL~UstX4;36I;>}q z{j~S7ZpZ5Nzb^E8(p-skrcTw-ngMR%NP&IJtC{+@f^~$q)8-mn;(=6ew|ztsdVoz6 z=)`s6h~;a)!v!!a%T14t#t$$0^$#sqw#?T~iD<<-X16JX9wm#R`md3@ifuud0HDM{2jh7ooh2Jgx~ccGX4BoL0r?B~BwaEph?f+m0|w^7iclKU^RqPyBa zB*TCgqVkbs?Q*$R2W{bxKLN>E)Ph43I+f_F_v{ z4d>JdOs;#Z{`_K|YkIioaU^r@<)$`wQG_cmuPt%VdIsJqclRf!%{M6t6<|((@u;VfD(O$*~9VaeIPq9itHGF4pA^%B_ zs47cy`ijo(!eU#CG$hrNYUi-a=kTUP?~&fwE+sIy@fV=Beb3vGVt^y-r~IjA`k^(i zdNf^%w1Ntvm~kiFaIwsvMU1AO8uuu>E2!Hd_*ykRTIH3}sR-usy3aa}#bd3J6_7{( zT0vz;w+CGtBO8A?4g`}11I1EO=>?dhl2!YPSEp|D0aw$!?XRD>Yf1FyGLok=zK&G5 z_S)cluYs8FF#$2u<=ac_IA4=a0M2)Q$V;L$tI-A``30lWEW%uDq9C=)j;g=!oUZ4WOfU=yRI4UEI&wI1vSW;j zUE&cYTU@XPy<2KYGV*%Oa)Ci87N8g1Q?h)ZDE>7dX zgYjg+A&8H3{tXgVH1V`Dy#HzK6_9%Cb(1@_bD@>yZEcUp`b$GA=jSM@GxGGS4c^}_ zP0tdXsieP9;n{9<(fJ`7IprVh;PhJ{Uft2969DF+ zV#tm8AryBmrlaTRz#QYCXI1#QFSR?yKJVCo%^$3;LDk?8O}ks4#Q@X!;oZ1 zbc;iQKp^qd?sd#~)yd>$CKb-snEZ}*ET*_B_IGq21t3xWpX{#+>l5#ql>TXd@(C|{ zLEaap?ZXKjKi38)-nt-}~VcKduLdDmBSqvL|z@0YYf8N2WhZ?za5lFOdp zAREwcHtl+prMY0NH0#>=tukBRuZ#>)eGlswQ>643yUK;m?pNnDnRhe%#;wbC{ZaJk z{b?U_qKC}aCju5JNuI!WOtwI~?Le*KA{WtfQ_4c`ZY<3cTxwJ;HM;hPvZv6ci zz&eI>0o2CbgP`AnZrQrrp*)(mwQ9rzh~)sMv^f${6x!H0{Z%c^EW2}vkYlWm@p_+E zzff z{ZN*}^}&$|NkfCrX#C##hp8Ly`bhXS_t;ldz>O+Sg=YQG^lA?Bq$h-~0z!BrG{g8v98PUn-vh{d z+13`_4vj|);tY_PWU2PK!NNVwo!XJhO+}^6pD>pl*DfzIF80$DHgCn`${7pD9-lh-TddVZ+Jg0pV8s6BZTWK27h1$}!P zcWUS^Eu&H?8<90%ShV7O#zCi!dGLVN(``(ze?(W@BYIYJqy~VnD+OqTBiYcAbmb8r z0LM&$nXyHi*ym`SuFY$jz<_!|1{}#aJu?5uBN2XGxL=lAr|#$-j_ot`7rlN(AbILM ztmxnxjc`TvU%5z27U$VL3(1w{5~n; zWQ%6M2vJt#L<(Gsf0RGU>2Gsg@v8D`Z+@I&^&-%_6}@|N6ewe*6ihFj+wJDi_yH2B zSdmxOcOafK%V_s~;H0?k;7fkcfZ}BKC&hc>9_$qAEVXU3_ zr<~>XbBRw5l&hr$%DZ$lPHWprnUl{X%B3%qQS|YG0CoBkAe}6@pH1Sd0 zeIruNIpj3mLCIkB>}i0v5lAk8F`p^k=cH$2Qlzb3GkGad?i6+*`v8`DZ;N$b+0N*F z#O>sux}=H{Ma_tR9us=gaf^?5E_SSGkU7d((+=GLaumT5(d!mj2F#&$-jahv7Mv7G zg&5wD3C+zi>AjUCcAg;9)OCI)fyeGsG5Ij40L!xS(ZEYmF(83_sT^@)vdHxXN(>Ci`#E=h8GEjhyCyf$9TP(uw za({&K^iH@%B2lJc54ubOTF9HB>t8ptF8F?2cB6+Qq zhD2i+W>HAVU6G+gnUEK1FC%D?j%sOn$)f4Ozm{_DquT%Dj%y-D*As0V=-fQ1t=b)} z2YT6fiL8Y=E4s3_zmwJlS}>55JsLVJ^yesaF>VXU5a5y_|8Q6?ngd9x`^w8N32eIP z+*=-t17g`z+%rJ5FZ`w?ZaeeZ>Dz!upVGUu+@ogiKNS--Nv8|95BE9q^6}L(W_|Eg z9w)u&mvGAV!~e;MXO&aN&C^}BW~mo58g1l4mtyS69Mfo~_frU#C*NdcH%|Srrn1~U zFpbQU2RnX{*S*zfItOU;rhPWyR4bq5uPSt$PMi3>oZt`bj2f)W5S@UF79*82Q^Bb< zPx2*L&2H&pWuU;eB+IZbZl)5A*R2C?ErkHM?&<7q&r`IqMrZ^}1%2nd%sVX9&|N7- z>G-!!wD3W}a5pS&Y3W-b{||BSA?w4uj;}2HXd#`eJ9`_qT%YW=InfrlP24{`O(l#1 zb!W7|JD;!GC>bov)_rYYPgI(HecE{0W8stM;OC#{WlwEhUR`j}>M7TL<*FoHc62~F zn$DqRS=4C%lVAN!9-Fd;-Se@wynZ2lT*4Sb({@)QKSp2uvDG6q&~E9U>9MZAnSIk2 zDqtA@AjQ<9&TgVHV5#gLSrD26uf+6qxyguw~?78vfuDIBC zskwZ}HyJgGc+3^t=UC@^Fatxo#yX@}8T553Fadg8zWnjDw^XeAvon^rtzSA;k%(wW ztGMny4c^{Mu*)}~`5NundF(Mkrla^kbTY?xb8Bsy6YwK>Mx<3e#dTRb#)Jrl*IM$g zb(iTQ-cm1V+&2}PtXAnyO~{F2uoXGRAT)v^Gq`se+C(ib$2fL{MYd3E8GpBNqYtx> zIo@X5cf2oAij+BfG&cqfGRZ*dyRyFVjMr@}6(5*zrFR7*IXe>XHU!=^kP6JtRBN`* zPuxUZK9{}#GC+0ImUM|FH*Nv2ds%X$$_4AbJa#mZT0}{wmiR~qLJ#VL z3_W=M^~K1GO81vmeo$rCb)_U|a`5pHffoud7Xrfv$grWcm05{*T1EuJJG4UAPiQfm z(^VD_YW;SUnJKDDzXD#9*GtjQ-3u%j0ZR5a!}d{`>IWdBt);m*R;cMkRu@hNs4V?U zzhhBS!wY2-UWK;Up#tsXs0_+_o;a$TFgbq573Yx2v@vAU6gQGn=1J}oTkTjz@T{6y zwtUV=$Cvjy^tp?VjpPDlBclVsstnR&cU!axcE@z^Cr*n%C$iebq5SVcQG`?n}Fd;`0#Jf3belUIL)W~PU-jnY$mEg<)^0gt*XLV3Y(|S z;D#$I*5GdP(*o8UVVgS>?3FyZsdIy6N>c76gW7^-30>y^M>|T~6~S1Aa!>uxr@S%r z@~BJDTJ_^?T?vZ*>~xNEl_nr#$mEw?a;r!2FwM-mdzY=KCdzNRC!ULUsF%97{Aoa* z_2=tw7s!0njRKypq6GFcdBm$k0wI~6-C~_|9~k92IsQ~j{>Wt$a07xeM( z>{ofIzn=D+!H#Gzd;0Ds1*x{rD)d=8dZ=Ohb-MxEI$1T11CYV%oM-q%-qU^8Fm@sQ zP~)-d7Eu(~d&55O9N%D;foTB;7;&NKDp+apN1uIku`|5@3a7I9@qtvUU*oFD zC`jR$$`3Y}vc|IcES4e`;T5*@dyxo14rI)5Kr|7?r_^>zqkqIw{1Uc90VS(&2Vus7 z-R6+doHZeuFIO-VrA#L`bOfdvsre7ewA8tk51Gxfte~#*9_LjAeL01i+N5(EIJZ5;EuGBj?g~D{Mqs*06oUhw` z8h@4|X{Hx&j*5#&6PS;MQ{!yNy18~7=+qE#7^M!qzotk{2*xbG-{Nzi{Sk#o-Iy*^#r$KzDd zUt@C+EO6UzbtC0(na_dOQSJ}Oam*mRU){=vpXjT~q3F2>bQnVVFK&?M0Ee-Qmjul@CJ4~*bH5s^@do*vh zx3dEd= zJ6h~%nN$c~Xv4~90M2Nj2F1$1Hd%POzvZ1Kr7pU%x1qIAUch#(LMoD8F4raqTK~*D z@bx*3Lf&BBo^LD_d;L9B%$|Ln$8za=qrz_uLH+&R5}c!sqTG!#WwEPALx<16lu$`h zj%f-Oo7V&dscPOZe#LRV-9)N%lgd& z!nx{?Qo8Dyt(M~jJmR*Y#x+ZDIESL5@$y)8jfJi%v_fQa7s_gg>C*WWd&N9JYPMUa zB_9MWJ-3JN?yjuHSet01fOx56P8}?lg}Dc6X53Qx6)|Z4(ZdjWSuF8o#COd@m}J-X z4coGf39}cj@lE!zvuZktyRkSHUT56X^_LN)I!8TUMgAP@h2A;zYzB!{wf>3{fjOo; z7+O0k9)0-?z9jfARQMZ`sU4N_kaV0a{z^*+~e6z()~%1jSsRA zwJb#B`9w1{$v!>A;450Gc+yzSthuMmv_hudZxf5z0bCg)ZZ1!K$1Xv($ZCY#Tk2$j zBh4x7GEXr-vqHH{jwVOS7)}gcql+ZO8_xhp&rEf}^L)zNnKMmUESx`o$;wJaj`dnz z(b4?c*OGl6`TJSR7AY4Lk6mvf?>$NP0>&gw2?i+I+tbr}I~p(|c*|-gqnkEPC0toA z+Hd#f&C<`5E{oo2R2*`0DyZ&fmhZ1GOMBn7GenI)5G!d0)ooKb>0drF0-?r~{y*{zOIE88v zbPo9!+1g;_pm<_OG8`;_19kgw7v`ns*%lYsTL{vW$txrv%TJi;KPDYWteFrab!>2ks#!1|D(a zy&TP}>l==exFCQhUu}kU>cL&k#;<)pIZE;icr1-yv8Qu@{`?80+a*GecNci4yB7zC zF$xiX@Lur~EcJ1n`2#{Q^GsTMVJ*SDxCu{k4pIP75=CBXW4q9^a`Z;oLwiB9h9_kL zf^Yg;Z*5a;RxcnJKjDm*5#5S%Sz9nkMydRKg(%Mrj}X}3MeK8`!7Yhdee&^)ckrUG zDty08Moc07SguJ~)N+M{Y(I6Oiw_X=4PtOeOD&$dlQ<#ETKq@pn-@Xq7vRi4HYN{<#(=hWO-27ee5p@(H1DvqpnVyhip4g|;8LZjA>F?<& ziWMSq)&m)kC1!v2L@@g zQ6E2J*v`F_Um5V&i`RT9A`e}R@-IGw&?xRN`#P6M5dt*6$Ct{rG#VUgVk zy3pA6t>dX|C&1Hz^$8*oNf_Etj>J}pip&FS~=_0Ym55F9LAW@~YomQ+Or>^pn2eqPe)|G(v1^k$f)g$F`-?8kqLmNpdh zVFJH)HvX{VO^&rQV#ro+JQ&U}+%!odYLuH|dvvZ5eV6}0@=WhDA!c^$0bfD}kq9r^ z#b6^J6`Ma~#h0}->4LxN<^|iadnY?~x8i_FP+uvz?ki-ZW4eclwI;=2egIn&%<-33 z3-M5sWB{^oD6Z943v2RKqZcDlTlR$R!Q-gXFQ|NQbz`b;L|ET+e0g}^bnFr(zN|^W zL4u(|da1BOa~>xsG4M12{+_f-VncR?(VRoLbAuWe8W^ng9#>RXizFuF?rmRjwnrJc z7Y(X1AeJ(HBwozF>H5h6550Vwp8nI)IDM0LiFCN?uL0e^$>rZnV+*XF$*?L`f3~wL zMAEnAz2^WO=(Kfz5nzl57W>xO>DAvh5Inh6IaC?Jgv$?q_dY=`h~Nj0i;Hew?eTUv zG_}8hKKAm|e9?K*=(#RuMBaSzLKjEW@mx6Gl$gtMQpNOf1>#c^@-*=O z81nI^4=d{|$GTFOTJ~UH*J1tq5Z7FlC1PxOjKDaaI}kL{QTPLev78u~^#3sUU5P1U z<{7EPsKKVtE>Vzeh_e%UI)hjtK1Zlmxjm>f%1vDqYK2FU#~D%#%^7*--~}WS%;vJ? z@s4X|L#FtBu77?!>p!&`Nyl;2dLv#K4-6!9?JZ-46n0(2-Oc1!6581R(Q8Jx-tRW~9`YqoR%bvdK zRK8%}8S_|N_K=&5gVlsu&+iK+p`Z1Hb(PT=6AoAu?S0lh`bDzY754Sfpv5Zce{tl` zVg`ZD49)@){ZZJ^JQQqj*`TrY^d#z$U47Ic?D_l0@jCkgx3rtzil6(OnqJi63n??+W#Q=ox6yKT9wqq=B}e%RRivcD%@a0QVmI(v{dm5TwpVmfqyu9yesA>FKJfY2YL592k z%6W6sU*P8UrJ|$r#@zA9zL&R$L=0+(;Onc3ba$Dpm9(~nQK31~hfB|`1$#Cg1Pb$O zvs&n|$8Y=cdUi)Y!xMB=*kaQqr#}(WGQvX}?^S$FGpVn13pYjzcZcay7wkdr28lYi@F!##eG8m1HHNb18{p2~i#{;&%{eo`{4C zqy8-FF*%?H-V)7|mnw!Z3%|B#?;78JmHeak=5yh7;rvK%-UXEw9cm~2(j>mwbDPz` z5khhwh41%mh&XiFk1%0u`F*hHtoUz>kMAgmS4enKHQ5i?s_Iv{%QSj#RyQ@VHN|Up z#8;p{O1X+P81>5ZdjuE4TvTG;IYG?R@-Ff)-J;^pW^=G{=$DVNEUj1!4*q0W-CV2( zxd<0cN$8zVdb0GJw;tRTzpz=jrNt#PrZm7*YHgsZS+wil39=h+($)4U2Re>yLZW!@ zhGYWhF7)%2g6+!6pEG+0w`g)WpB&Dg6YoMh18eVZ_wQ$F;CLOqpDTyX&+V3gvJePX z`I^SedZktc503$*Bg^@xpRP8>E{`6G@Cn@e(3w<1b)Y+MoMUW?9Z2w+&rQ|J2y}eY z6B*-cgDDR1?(INq0NIBWXY&{~0~%e;1MuJBW=@kVc6F;6y+vM3M= zldYdicp!8g5y63>){fyaw(xhUjO;JX*Jw$`YgCyYz2HzurtS$%5!kpQHj~Znp0U+{C?AVo6bVEi-LO)~{)~RkxrE;So2E=d2X{ zQ_A9`IQqG0?ISo}sb0q~wyU)7Z5$lz8pqe1A&r{BVuVXZAA1Dzph#mI7CExq90O{k8dwf{zAW#8Vy|urn{yW_k!{c z-fzCX8_Yw3yCWFogr%0XhQ2XJ3UW7ASBKkB#D<%8qujJKupb^)dSE{!Sm;_h;SZCq zw1d`Lx=m~5)q%}`5~NL8M{6*wTTQ+^8%b{`gHikT>)YBcZ{=hz>1!AH6VTiQ1Sy&$ zfUh)0*jQPo3fxXyh@cOZ8DPLyw`7kp+?%x%512StTRz;X|BCJy+1J%~(TvcQ4`A&b zP>ubiW_`Z2=*J_JI#xoETe!H;aK?Patkr8-N09@fZPk-<+Klytz3ipFIWV5< zspl~2YdJixzJ|%RK64LLIXeZCKr7X-F1(QEew1pic1#6h8=#xA)pnNPe`566N1yZOaIs-md&sN#3AX0^ z)HIvd$_61LB~zz?y)*yBC}L>AtrPV5@jK!>O_vhbutST_%!7KVS}I%qVglXDQ+Ss~JxOeQ@37fR-RP&T{Rp8q>3$Zpw+CC{bP-YJ)&6oR04Y+8>eGREd+Nh@kwX zx}W)Ybu_NA@EV74fneuY#cxgg0w88QdXQWlthHUz6A7k;r5Kn$?@^5IGmQn=xW+9^ zj4GQSp*B*Ar_49qZr4A2bK`tJVXNzbP#xB+DxSTzE7)|Wy99unz?BJDmIYm|ZDtge zi&IGYO@nRwy9~CJYcnJzA1mp9n{p67#w)v~dw2_>#WQ_lDHTY}9B}YcA#sjkk*%9YKq`UgjCl9V&lF*p+-bNxZ$RU*a5qc>D4o zvPqgt0(1!3qA&=|>jKtPAG(8ozANg>sc-J% zr127JUX{JVab+uUheZ*$;`51B-d>em4eLr3g|&}6eFb|3hTjmAy92s)Jzuc`m7lDZ z!@S<8v4&`Zy@d(=Rmu&}k9uB3$Mrl=R9VPk7q`y3#MmPcxA?iB?NpK#n>EyOzs5(gqP9I#mcjFPd2&r$t0~D z9dQI{m91%aUCB+zS-ExD+xay=1V3{_sT-ec6XxE=9a)q1G3-%e^EA{-;yd_@vVAQ@ z>an4LQ(VbHc=-$Tw#W12Uh$Z(f&=F79rLmcbXc#=>i$^Dem5~|Wyjal)D{nV#jTcX z-F=59hJt~qz?e}{@q7LYT_}g*UHCbCs?k#DY(HMJy?No^D}B$pxJRk1Gj?9OLK#** zbxm{ek(q2Yr&-bPJ}O1n6F(P1r2ZqFjh$GK0b+GRI1;ztYB3;?*xjgDVJCK z0^3!pbo$#9H(Z}I9~DifyHP}7w_wVZ1rdSy53~jpXSX-hvtbCk2s>vRX`{b5GC<;t*8#N%WI}*(zO0;c_KHKy} zCpB$TCuaXW8{SfRfl6bsrvr9&;~W?i^Qtr6Y)YVm;VgWhs&OjTbm}V*j)Bt6rEHxv zyXC#JN84E_H+6UKD!xutT6Q8_d@V-1C{{=ZJt*nB8IO#^&%;^bhjo~E z(^OraS*I{0H+|os&yt=BL>)#>f0sQdMQ1c8GZ6z4xZVmE_vqg0`|2m;9jK9~Ws{M1 zHr{>s^KgS}qVQ4v(y#Kfv$V9H1rA6pR{dv2B9I7v;jA}0?Jk>1Mf&-8sJOh_{}*hH zZDRG^@Xdt@I^DS8`XaaV|XSb=Z0k^)tl+`?%^TpIdW`;RL39V zCpd?k6lYxs+}nS8>=E$~%e#UDLu6rHjz*|A)`^PWnY-Bf`SyAvk0;XfZ%+k< z@yFQVgJtq1v$lh$1U#Jl)fR_^GVii)a)Nins2E3b;R*?geoZ)wJwuB9w}aQ_q%SSfQND2 zhi_~33z(R~0*joZL*sZQlrWWY^HY}=(o!lD@jQNlS-4oi+Pxcd28SZGE1z3VRP^19 z+gPF@Gmd`<=yf(U7GeSJO5`#Y+6wpl5Cj~>f7%R}-!39@ir$*>KDb(p zVE!DMez+Lnb=R8T6KilvjaijK)ZHF_Z&49HZ+ZlWRuNM84r6yZ($+}qPV zM6O1vRsB zIoypB>^L^9a!Gbua+h*;uLWzF9$RG9Zx3Cb_&wpG};jk#`(*C~W%i)Of6QZx0x#c4MBD|^1wD~qPn z5-~JPl)_Z%HP=%RY{DUGKG(WKEBv6KYw)kjfG;T^VMASr%;Aq0=ST%LZT;g65$||_ zXY-R;TIa*U48R|ka53~+O_+(~OzYgNML5?%7ar=Yl>bpIDiJ9vtoD2OWFc9jb`Fh3 zAEvSKTD~+A=WwH1309{l;^M|b#&loCQEg|a1po52{z`9^8`nV3h{bRzQW*bUl~GVW z&(wL$XXpB}<-EfQyU+ zDgnXDCN=wErG};LmwZyJfZ(o>R?oP8@r2KK80V`vXf+4-JW_CyN!@5XWoRqS=7(~IZ~4Y^pOUez5=->q{S z((!A2u)a|7D)g}ciwrwpbEH>}eh8Zd7VZX9jqf`~0n3X<#b9xa5A|A(TFH3VpM$;{ zSt^AB_>O|&YE_J;ZsUY^f^7-ndn5wXRw4b{*S{=WKnRv~LKZsvN=R&|Yi{3aIg_uj z+WYK?(W_J3bZokIJB%KQFgvxc5uM;(A1W8xUu9sIxzf_`a6Qyr71!GS(MIxTAI}SQ zFInu0U-z-+cDCVgk@{|{97%WB|EwpPL+5q8Af;8W2t(z#=CuRZeqPZ;=MBkXcCJ(3 zO6kG%8>9AgzT=nK%&#zeRFqBJuNxzpmnEX2Zvg)EfXwU6-LQ0%>a&d{woChwp8QK6 zV8sI!-7OUiG^s}Apr zjx!dPKQ9xW(gMFWQLNSJkCrjXdJ+8Ey?iiqHcr8FWVi2ktd-(5Xp6mAl^T8Y|JEuVu=Va<)69}{AKNn{3A$xEIsK855g%Vr*0@N< zMiAeyBs&b)sf_-YbFRE=pQ6a6tiAV(r&~%P7)t^hJDSK)!tbxaf(4=y^747rbe9Y9#7@%h_pjV4`Vgy-Ka15 zr;f%h@vXI!ABUP21-IjSTHBF)>@CCUSeLC)oZt!W z7A&|0x8MYKm*DR1gb)ZG2(AHwySu~0-QC^YxlPv2K4A zf1{d?c#}>KM;s+A#Ru|I2GV^Q+ERDpA@UYNjZ+zm?n@o^zy=PxJ>lDOC~{Go?}rBG z_$w7O;0Xy7*SfcEtMFJQTs}m{IK-2Q5H2QkK2&fw^;9PhHKj3!GRr*I(g4M@5=$gG zt;Oy7l?2%L6!5$TAQ6vT#zo%InHKSqLiCLaJb^Un7`>;C^(+L7v5H}Vt$9OI^ z;0bM#&qbSoEw5>QmQC#IzDezoH{P4%2%g_#izk_-5VOwJ~YE|-CLNV zyFs;%`n4nkLN*pNb$WxRO1m20C^=4XP#|`~6}P~>Cq5wJ^E%L+Umokn$`ke|72DN^ zij75aS6n`T5ke$PJ_1mfog7syrm%R$Q1J3M8eLxZBwT=nQD80oY!eBlMt*4DO#DP0{ItxobpRNj@rZkBr25lN)P!kb}luuHksDb5Em zahQvMbX_zSCeg6`O34aJ>kP&gq_5Z0FoaT`GdW*dpN`bS1iIRzwi%ryoVWkITCj07UB!8wvk4 z0`gwwo&S&ZRt5v`l9Y@e!9(k7v32g0G1P7)Osd@F$6POMKV1qikfEl=E%^H7-Cnz@ zuk|ytzo2_PU*y503uOlLNsluNF)3*hut63bpat(sguvprx7$}AJn6YD@(L!ZNuEVy z_i2PO+qD+{3bP(oP_H+ZVHID+W&zVvXJx+rT-@*N=dw@fvkFpH*OciSORgzCG8Yv# znm#gUkZ%xdbNNC-{bo#tW4Y17ch1W1^N`vcGuF-Or|s#4s#Pa$aDUyg3To#Pd+(B~ z`W#U2-Q~NL8k50RyV!FR2^J+%((>X79a)g9pk)UKkDPCjb=^S##78bTMZJsPL{C4C zqbETK)$tXykDAkh)1vMOZG3|kxu*;|FPojOZrq#zZj_sdcL+qVSJ2Eax{OQ&i&>Nc z^z-7o*0k{T&7{#{J(Y5Q-McJ2;Ekjw(Ysbg@K&`4Mhb#X zWPK|L$3XUSH!JIZxCdyBiKS(K>8<0!HOl+`n`Xu8><|T&aBqHMbX~mMIyNyrIX}Ee zN=OL>SZXnz*nEF>|JNJ+-Z3XqkvgEELkcRfhHUnEePe{rcx<#X{0#Zz0)8_6>{uq` zY=67$@pwCyesT26eH(LI#Hh8Z?$r+aN1}f4e>1T3DZn6fHvn9t;bGd0hC4Yk@7`Nm{#$@=RLSN0Ez8M#<42dQ<<>*N;Em;9wSZ3k&~4 zV+Sj790BI+s{E4%zmafP(t5+j-)GQ=db;qJp4&L&1fD~#6t_6~kD<=-0IMMSDxl+c z>_1(B)o7%$TTkeHUqE{Y$pTAny8X7i)}IgS{Tu$ROyoVc0NzXyJT2gm}8e zGkJsm=cQ<_ak99E3kq@|@w}PYvGKgwC`DGTxBW_vN475;IEb__nPWA#!A1li^kHX?~dZ*&WCYv9^>mVkoY!o|ocT2ff) zh`bOgR(eb<;*uX?+!`V^1Uy^ocsT?&DA!yD;$Z&XcNXoU?qI}zykrPu*%V67p|pHd zv?;LC7S;-|wftU(^bt<>P3Pf5PeaH1HwXiVZZB&BUd~bHW8yQ7*|Iveo6*U|_5OhR zk;?rg)M>1%AiKn`#?#*FV$~%vZ!zHh=QHgh z;)b>=0ZS9uN|PK$3vgq+*n(;rnbin=dXhJ-tqA*da`paVtWn)!iN9~;WU8hElfef| zOoPVt7rBJ&oB*9YsH#_BT@Jp-JR0`rq*Sm{qy$7Mg2AJX-TUkew3MNx$A?QYgqw+JvAC2q3QWeje4+! z&k^BMg?gX$GtU6@lk7ca+Xr=&dClRdLrbr?CUi2$n%npNHAL;tTQ+UoO`wUH^%p{8 zfaYyL{QL+(&<%(w0Ol0kgnj{I^@l6k69v2`?LyU2wOx1K*Em)%Zl>;Rj0Xly6B|hl zP7#rxqZajbOu;=}zw4M+m=w|HFK{5_&i8sMVE$XzUY1k|{7dU0w}32T*TG1^p*SeM(~eL0LU(9{USO_XFzAZkNy`e8?Yx^_RM3Cd2`7yEP;rMJHlp zHEtoIXkL;;_y_`ATigV zP_N}K%k3JEP?w7FPBJz=@(k3CeQu{ug2wVd4-J3}XEe^?+^m^C`-yj80;fy(e4U(*&?6tcb3xO<%MqS6A>} zORUu6+`a5BhkjWhht3U$RrLH+->OWYdfuefP7>su0cII``% zWj$jt#Cq%G#%Zf{EVaJMPcQqI9>kfzoTr4`UZ;e(CG?VjdZ!`y`5-)9Nlv5;Rsv#M z#o`PZ;GqI`2=QE=;CS$JOoT3)bg>|gG>bqc+$|9|XE05)+3AM6p#zNHDZAZsz^&-V z0x;h3pjWAEC!u9dLJPFW3p^HYeU1L#oJ_!0KKh!DC&ss= z@U=)ReqS&IQo;p7z_+>;))GYJ8ge&;t9^?`A#&%{uj@`yaY!GT;L8j8hBN(usr^l| zu>v9Qmd2jYh}{}afWjr{h@HcyJLIfga9I^!27jz8?S|hEX3_7%FxYqH!4%+-L`nd1 z`U=2F1c%-`BQ2%HRZWOETb&-PkiKlF9UGlx_}mym^r`KG_$hTf6lcjX%Ye}KIlv$e z0HgV9-EaNpRz7Y|lm9Xz?z?r+H&^N0OS#h*IV!=%%!uu9O&+huWINyuwz`*1mkrsw z+4xGhMVRqya?A&oNnOtd)`IX;Xs79Vi90xeVg^H`>n<;Cb9#6QFGCN@;~0s?S?-NI zm-ulC*w5>wPtP94TgJyr2NZbay=1FitOEm!QPMKb71xGah+T^_+kT_|1Fa+tU&T)c zlC8TbTQ_R_!Vr>m7q;SGZNR$o=9y@Tk7cG8f69`wD{irlbx3e%%p4d98og%UY0vql ze0lcWv>~I%;O>@f@z_1?T%S$g8sHU{A*O7GLA4^FZwR#=JjAfoRoxTt?0eEZ%?f&$t)d3kn{UX z`uCL7d?*L~=S=Z8^}EChr_*Sy6;)1ApQ6$5)SK5PZ!sU`D#opuG8#8bMy4>j9Nq~*! zOdb(f3m~THIv?Lw37ug#W6pxGXZ~EKvuO|UJZjQ;@5qu6Dx;lgQw>}B27 zrrB)rL;RPv6u)n6=^C4Zc6%?zlD=nM*dhQbCUEFRQ@r}o>&ES$Q!Gw=qqU0 zDqmwYqV0>3rj+b?#G(eV0;r>EJN>w%?@h8&34Wr|yPtQ1`4kzBqo4B`46A!fDyCQS z-XNTwpxE6=+S7Mz`+2!>!Pui7Q*g~`At{+=)R;W3>FZtFJ=EzfAY>cdfN;v3xol0- zaIm36_7~OXxFRND60GbuBixf_oLKzwjv*adCgZd(u*N2hFYPa+yTKNgPvXHRZz}E*~;#+(3pgo?imU1y(0u` zSE{tYS&MNbczNY!ll9QPNN#$${aH%3fxMYI>5d11Bo!2E!wBLT#eWIQmAQA%SsY2# zX}3|c8-YdC$s-!tWnsjMaQeBPD_dPhs~_a0J@zu}8_P+HE ztr}6?%&ryhUeeMxe?VEw-@_D8LfSZjrIzGq;+O=aSopQ1O+7m3OtD~T{W1rOOZtT` z=?yE&mw#`T@E-jpzeUEGwWY_ctQK+SoOWbzLB-kJtqzCLTwo(bp|d^BZ+afGSJ9XB z*QEi+Idu9bB3dd37`c*$I(_7kNp{FC{vrPx4MQRWy+2pFk;j?ASTy*;XLcUAaN8*C z-Tf(Wbr#%?5v)bWcaVM1Y7#Terc6{vx_wdM5;WDMD-W=jt1(<~sCIF2#I{axi95?} zobR~XPTcf#tGidO@BIctoOI`wk0u{o?+^J_dcf0H69gW0w$jBeky}NG_MWn){mh7V zy~z|NEEu{T{GLAjS z3|>r*NOHU7>?7B(4sMs9cDTPl%YHjJ8!m(oTh!0fZ{`O_1-lZSA^%D>tj^x=h^X#< zc8M_*y#||77!*kE0~X>9jS9a{ppaoU#m?%mKF#gBnd!7FY3>lpC@G({ViF?hxLjbU zys{SISKvLxU3D-I@nBDRayU737|7AmV*{4$l~F=dAz~;NqrZ8{L0Pc$#?+_D8t`K~ zU!s6lHh*LqsL?Wt&%c$2du+k^`egn!@M5ul(cp(>X;i7#Y50fRwdO>EAqSQyacJ3T z%VE9ME}qXXfry8n%+&oOiPAD%uk=ElN`h_uyy5UT(e%} zKLk%V&JrwH*ywy-AMIRdg7#{DnwUP^J|#2 zFh7caAtcrJJ7f`?b@0^_735fe!MY^+3BecgmG&V5DJ~T|_nV=dB6J?|jN}}N%_!eSrwACk$j5~^6(2gcUpV9@-WwO z1`4I*>y#Lp-k99<$$nW-^W&W9_Jdv5$M!1%8^n*8y=osOOf~0G(_lG2#CEQ<(rfn% z!AAtEJo@2*_SK0-l}r&YJRx$Y+VB}SP-sf3!Ht1Vv{CUzWD+M%^OVB-GHQj73<;+N z9`(D1k+eDAf&344hb@K9@)npKX8PaPNc=;3tv+D4m{I+M$&Cu69mjZf>}Zc)vv zi@r9qn9n!f>iHH9h}9aVe;LEhpX zepK{#$n`F0Cmms}uuZ;U=NCpgQP}F7OSkx4eoMw7^P$w5!;Xm09GQlyam6mXYy_SF zU&a4~6TrQxl=thD)+++8t%ri?D{`CVz(DU;DZWMTB{lP7!Z$Z$DCPRl&oRWv`+BR% z6J*f&mtjJ^QPo)Sj9sVD!QNoQDw^OoNxCYIfm_x%!~|Zz4Y=aPXtp-ZdzHJJ3IPiOh8D z2z_O3$ET{D-r;k(3CdhesK@LLGjO6=w`>Pui2vpEf&1=7ogf*#L852K1{D041ssE8 z@y+H9IA%0yoc$N9E`eCH&|70JIUG%uX)aImXasS`Heg$xRxrqUes-%3#*rUvoJOGq zv=yLOsVdUPNHhnQ5=6#DRl^~@8~7jW;3O&+*v4Pm&SgtuL*{WCPG&&B(u~N)t9T3^B#wUNm)je&L>NhzaxD59uWQV zg%NrR5g2O1MbOQ<)0LdYnQ$+`t#7ev9jQk4CDIQk1qP#ihibrThDSlath@s1K46;9 z%)iJP*6RPURt9JOYr!#J4!M`GJ5^>TF!92G`@MXBxTMe ze;)Ry9XTr>iAbruujX3bA-d%FoXZq{j#O$;bw1DVfl|rvcEHUh5#cSBw&L)s?`+&X z2H!zS+0J(nbb;&t`Q&EWZ*3cGuP*R{k&HQZdwn&y&|Y11jlAE|L+;psee-S?i!JO( zjWLMfY5vVKXC51_YPi>xxG~a$5jf$!8DDcsY@r5@B4L$Poz9!FGlledp}U#Vec#Dw zM}EvCEXbCH?0YP)+!GF$NRkV4^AsPS`z5=mS6`4Q&Nous4IXg<164RaT) z&oh{OC~KC>YY4^( z^fCXJj$gUk#D=JKErcC!8_Lsas!J>kpyB(nBC8KI!lzhyEt zH}`ZbM7!I!R~|-;R5SNom}=rnZ7!|D`BmLtlVZ(t8_hBr{eCuN*qWOkwXB(X0|d!XmTA znMbDlm9D7`jQd7sW1b-KxbFn!G2)PtGj;AXrq zSJb>~_QbULMsaBrV5M=QN!IP&xd)fKN7p;1Sc$H-RPcVw;q2={{Kd&zVt(9q9c_Y(w6|$UfAA z`OrDa;Q9-UZ8e#D@=SQC**k3m0oVtIy6-C8oZxA&c9r^}sgooue0$f-ut*a6T37Go z>H?NfuPV-ch3+Rr-Z6gR&z27U{yK61mL@c1QJzu-o zsKnd>0+1WiyTJMwTq1?@juJijmAV%LN*$tAB>w*uEeY}pyJUg)0EY$Pn@iaDI zAq{4c(4l=$rsSQ|GC~$5=FZSM)G7%YrwD`QXe#q9SA`=Zx`uJTDu=u3GF9Fv< zl3Y~gdFGKq!o{B744{==7zLd3SQdy+$CdTjIk%v)o8xy*w!ju7V_|yW{}^^tx=)F& zR|o~jWWH0xtKFj{_5s(M6lPuKK%C(~q1t-zOnt7dLp7oVaD+eU{$DqLCH;f5&1wd= zhrLy&<8+j(c?gLGD&1wKTAY=TQfRWvu^Wf?(hS=x=fpDE%_Z~B)4OcE3ioe+M&e+L zq3r!)`f>PQA{@a4ICMZrs|t1CAGxRGtjMIP<5-&_J4t_TGJO+)kJk~e8e64IRIi&X zQmfF$s?Fjto~6>>Q8IU%;G4t`4Je_K9;uKCc@aw)H7RcZNlC2mIt~6Xa%=Ov`qmh| zVQ;C(KIMGqTYpXB2gg(K$OFE}Q&6I^Owe{)S!U~3xB5Z&alSFDK)j3U>awVPk6X|W ztDF1(9V`O(0>3TrWb$FZB_i7aPx_qi`LgOW#d^o7ggJge7oJN}Y6qvuqwCs7fJOaA zhB@Mqhe*|v5&Cf{;fsR~UW5gIf;l~>H^S5*Gw=P`!?|AXaVx^5Z;k9&QRuqau;@0d z*_U%XYH(ApU!2&PM-kvyUSC8u-3wI0df}h={&)NX+`oLW3`Pr=FViEg>uE;Wam^+^ zx?h&JtQj*SRi8D?-CG|!wpPZ!(J*=MVm>5QA~{SSbymjA+ig!*47{fT-Jdfxp@l@M zbf1z{@O=jPW^eDOXffx{2E=Qgl1`$&ED(bGV_*lmSK=LpcB_u{4*GHVQY!l{+N~Bn zdMly%GKoDnBc0PNnO|?6CcVdo{I4sl z7bTcR1+|)?g2_~??#r&3!t3`c(C1>_5_P#&rWMC$C zK-Ly%Lh`sfA27tSC$A-!-YGFC3R~su*H?&njU!-`{a9);VQn|yAM9wX;#vjL_;;{e zm0~rw10|8TDUNt3T`(~*R*(=+m-38rV6Ostv$>odZi2)IhreifQZ-Gv(jTR~eyC9};$)80H7bgKsxMH;oC_qu#9q9hLg6(R$*u{PyW{LA;4E9F3BGhSOTzW1B|!- zapC?6ONVm@NBi7{_wxo=J&MxJY`DjWEG*6)RxMWP7$3G+B>Tcg(Xt$yp3t;_{3sB)A>YUJggtuKmRl(!kBfC14}s)OEi6N@kyg z-8k6EX;zFmkD=1dqZbP=PaP>-gmsvs;Kt`EWkpny;@HWL38`Cv{0>l}Hj`J}0qE?svjics(yc_J>*Q$$!@SX3?B?-sCaGRDkQ>2p`)Oi+k+9bs(_o{QpsuVT@+)C*(=3p=KB_?OU4w;lo+i5C zSMehsKzKj!ufQsSsP$L+@{+a42P4dVsm{W9vJ>^>G^#p^-+W6HF5Awu ztPvHxA2@w+VjoScQ)KZ&6mMHdoMzosqq+A$U;hR~S@<~bcPixAay?#usZha>|JzMjQYPyX9Wz5TZ->0G%D(O3y5ytH%AgwKyTJ*8F=pS~aAZn%Mt zWY7g;Pf2vQShzUgN;e6qJ#4>J5Ks=Op6|bAnaWR~9LxTts@SyAy-5V39_B^qMgm9X zTHbbF^utXV{172(0!~i7zo-$Fl`RQF`!whn`s=MUrNcj2gx`6q5gUxlg{f~uv02Gn zWo?&K=55RPUZPIcf!OO9)Ce1P9DbYj^>3>PrJfEqmSHB|nqL~46Mh+|iqjaB0U)>5 z`KS^r-btXj5l@ybjgmNR7QKy5RTeH$1pY10Oe1zYyHpKMnFRskE#2brZI<<0GlSRy zDG%M6GV1lGWb9461evXqs-FLZCI01Ug2E-EslR1o%~nxPcdwi$aW?hz6Cdp*INNW! z7S2`^p*%7UhgJ?tl_|$@d!O9b-I$zG9B{e{S25FTF!Gzn(PYyfFV%j=-G(bi>&GMT zJuaTK5_LAl;eEy7jBV;nBF7Y_uWnU5b@(~WuL)-+AV*Do-0nv%)P+4C(Tnw$PyUlk zZf0R?E#+mO+n8Li$i9`TZNZ~A*F=)0-iHcy+5KoNtzI^HQ7H)Bj)r~Y`q?H) z>zRYae&Jm2z~KcS9<|hl8F(6l`+3g0|5VF~Ez+AW;J;MQ|7ft7Z88a^cWIbz%DIwl z*SZ*TIhM$=@}Cg#f9cL7Q?3e^=l$$OfU)<(y&TGdr@6KgowjfoS_ryak;`u1+)MOf zHHu1MW$_j3L(}SylX}vlS|g|B>N;cm2w|yk55k+8^u;D{wfCclV~l6=l%Akun>}R# zGYP|AnTu8RDW~78$63~N7O(JMDRDjBF@OKZGh)uFm(c3Wm)}G+hm9m*!w5A545OOhI6gJKXBmX>qg>A=l(0Z#G%3fCYf{mZ*JXo|2 zZ20c6eDLz|G~faK)-W9TdBL|;Ki=;<`pgB^hZ#O2uP`X`Tpq+t4vRIO{)1fq&S76( z5-5(0k3Xze(yG<;U+7~5x%En654+X4O!a!6-|F5NFcm+n=uUQ17c)g38bqivzIt%2 zII3wzt=$t_+2HmYCj_%j$*;-f1rnw8Pb)?A^)R3eT|b*=$igIO^p8;WOPMxA1=Z6# zWIa*KnZwk#9*nknup<``=^ES)jLrXK7KGKePRdSFbRO1SC2e}8+@~y;f#9YXGSKe2 zrsDK&xu4N`*LbpzW4;g{ws8#AH80QFC|O={d0Zk?A4B0dLm?l=c2{mC_>;h{M(dVH ztC$IduJ+Nx*9RTloR1diwsQ@4S)~0sWO<~L7Ni(_i)^kNl7PpFIh`fJIUg@{dI{=BJIP^M_+MGF&tCxEAatgQ5ZlPv zboY@}j;yiOBG{eRciseY5jK}x;M3F~V+x}AJ<*~}NaVxKAUY@Su5*)+6z1yxQ_~2T zB85e017wf6Gf8wB3g27vR27>W;Y%OF2Ciq+j4kV_&Ao76675Jh`wE@qR@vMYA_ zJjY04vhfyu%%G19%kzjE1*;r;&%| zk}8nSC6JiU#>iZlPY`5bkRO#`WSTqh2XH;<%KsDk`xE-cOX#nze=AV(`e4D{f&|vs;Mz_B`0v5()0pPh`NvzeNbF=&}2Ze1bF|94Ch!=$#8gtJOS6wyfvmmLS!ESP^B4krt& z8zH!$9P%*uY+iFb`7OB;o$d$G;bLc?#U$mb-WpD(=G za#wuik+2nc+m*~972LT9lKMTQ3|IIsawPZttiZ|y`AWo*4W7m4O=rME)Gu$lEgCcZ zZFIuPcv}V(W}#od+Igu5ej+VDnt<7q2I`m*K!DgK7{J!yfSqS1 zs+idWg;2sw)doQqW}V*W^dm<#k;faId!dBWyj?@T7MQ*2`OJC@ItFNK{DOU>p7JCY z8E}iL#XWI9Y=Ev9>W6;GD**ajYaw1;%*ud}cKO~u} zTCz#<^31pA;t~$kMwPtYolG&%+_O9Bksl8^8W4#{$3|X>Z`Ar&7QGg80bO2cxbe3B zI64no%1f64C2wazEJSkPLuUE;W3ySZ4C%o#vZrUP!z0Q-0CK`760Su=C98sawq8Wc z64MIhaRm|4yh;bJadn_7h|5T>+Vn$cd=0n>TfrChl2<9ftowINNU{9pMnTte8lzyW&T8Jk ziNluWpAIty@*rv-IH_mhur%6xTEfR=>HG+vWk}J5%==3Za4a80blPlCf}JbTi9Lee zvGK~8&83&v+caImKq_S-h$jVj1sT)tir7-78yvdbJGeoO_=78^unY0f^ zTlM6EoqmYy6f+`Q#7Mot=CDnN4}JCzI;(z1Q=NS!gj54GND_G3; zGatF3R-iJnS&dERUR^IOnS}dGnt`lMasO>uP;;8L*%2XH{gW9|f6m9`K5NDdo2Rl` z!#Ekw(1J_;2iFU-NfgC>!;cz0|evsK68zG@F$ zF5@*opv8FvXT;_qX+2}fmB5zTAe{J(dwXK$KTcrX>`sk1SCvH;=@}u+1Ht*^T#`T2 z$@EnZToqrVjE~xI)OR+#zl{?5?Rq05h_u6xPhZt%(VBf~Q_N`GI~GYg8H&d+7wjIG z8cYsq#g-d!ndQY@ukw5C^{BZdFCEvlk81=`%%WxXABAt0J z;xpPXAWd>4;bXXA4TeG1zbdPD&ASky#`#`|O1s)`utbn#=>C8o)G zP%g;n(+E&3E596Q!&WwfTwo=1wGFd2lJcbM1OGqp3EeiG$4{*yiD-&!vFeR%Y+9F^ z5{##fK$Awj6nYIVvj83Yu{s&`$?i2!LjCJJeumY0?o~~m`b%(DB5&kAXlGJRA15uh zn-7I^KhfyF2Nx1@xer`;_OUY)yam9(BnJ64%1gm5&!YPr{;c_R5*9fs=)aRL01yo7 zNlcZdPE39KT3{67R=MT}Izw1&QBa12Q4_84>fK^K21A5Ka7i{rf%ixHE{B@unst!} zhE-TrZVm)ESeF$r__gXUVr4XHtiNu|$W)z*&D{BT)1ZQtN4#dIl%4h5a%f5|fAC>` z8@PL2Zb>13toBlT6c#@1`jby5=`(Ib#nx7OA+Z*!wVM?f>}B#Y9&FK5DHo zt%)8~nSTG$4|hVNa4WHCPlrinO!>MMaJ{~HZ1o+!2c;AFZE@E#eT#Imr|1)Wa{}z( zBs5*nVxUcX(AxHT*W1UD)fE889)Zk%T;1v2!c2&!hI!ur#vbNCXo{dWF1XTQ;g^uc zjm4p>8-^?Z-sHs4h4OdO3^>NC=s`#bKi@grxFGwQ*cIGH+}5YXivoGp0z*C?@?D zVOo8_nLbAmQ{mb_&# z$p;k z*_R+STqOaxA5n>w2hSxJz5*p#hlUnJ^68J4?iL_3>;IFPZO&moJQ1Jl6SQ8)GE%L2 zJ!qZ0xftLlXai#`vc~e{kvA%U-emprZUc zf{jD>Kg(CC&)p4}FdM-hSG9^Tv(V}Lr<5nX)_g4M+wOO|IyRVbe&&?OW%#sjaY>&3 z<0CK^X=9%I671p9dHuaIZd{9l1j?cNa;37=H|(mE_jO+F=)zogJpWJ zZ>2w=njIf5%3W%|-6{rcE*E`RuA#^{OqVxrw71wuv7p-jr;`k_|N2ER+W?&=f)B;> zTf^O@;Ne-9wUUmcX&p1F9ItBd$Lj6}MV!CT(=FLhHjbF#TFMOD9g)W5k4c?38`kWnCYDyI9 z5Ldg?DF`?@JCEzT{NtGKv-mnk+x9kTZ%nFR4MM?v*)}OP^q1+DoBF3*>&@)@JBb&- z%T{6~n8??88Un~S5rlvgn$$Fk@MtaW;r1~^j~Vo+g)nujP_#VsIEs+aY;Q(0LFFuU zDG9U!);rp0jb6M6WDphiza=ss8^~2deblcR?p})*X57EQ=gHVNouE=gpH9uPu&#YD zU~=nHnKX9(CP@bTGHcVs88k$$t^`9xU7-*X00~)VNtf(U|GicGtLO)$H(F@^+WRj^ z;$!sjOCQ_gtLCI;mCfkCC68g&F^R%N3cp2Z zn+-g?_V^5~tXV6-mprO8d=**!!-nFO5y3zDqpN5xB3)f%{29239Vkbi0j<}wk^FJ- zsTAuv(lq%%CQ0v76KB_7y>eAzocDCFk#b|KQN9Q2Z>Q@2^gxj?OZhuaaBBzp7oZ^S z)_Wzk($AZ(B^+o+u!N@L{W%f;luC+&+H_^XEKI;e`oJFfAR)|J(5;rdMqU~RHmCOD zlkl5qH_3I+$aH{?8e{j>t3!mto3)Q@^T!HTe}h(@hP1&T5sOEDNa-Dt*ko|fBA{>g#O~+J zVmc2}N=f}Pr(qHo#RR#e@FtJzL><$sz=lV9Bb5L9^{`s7l?0z{2t`d;?5)HT{XXyx zj+!ryU`Y)5ygXI-hgYK$pG+NI?xOPb_^IVGW^IG2(1oRfd=;~dy0t_3)w+#l-KL;3m_%es!L|nho4@e=)?^xt)8Av?Ow38pA}{uZ&^+@$L9H z{+ABE32ESI+SvK$c6S|H?K2N0n!JrJ%G{ILInH%JSF9+5UtOh_6OY#?he?+h+9*Bu zRaAr=dU5v?@f+GGH3}be8kK>I9?ZY_hZcwvXt8Y^Qk zRc|Ro4*qRC?3e(2Z6&3+Rkj8q2@3)`xLaxaZAJc%vEGPt%|M3lI2DF0O9VCTq3uO8 zjaYaC^h~3j%(n)ULo+V%KMULbuen&m@|VEI$3A!{=(Wd^2YQxy&T=^Gjak3`tUlKr zdTEI&iemCZ#2>R3E9I=p(^6S^^RKqPDiyGIt4k)d5~guV7+2ZaiL22Xcb zEYH=-FXfD?*1ktcBK+57=CS-?@v6upA0lrAeXNyHcArg60bU`!(WfR zBP@CQ8mjrhhEi*czR@`-e&Ep3;cqHKSku_Gk~$mf|L!dKB){i71Nv8MLEIse+8He4 zmD?g0gR2@B>dk@YN?3SnsO%+E37cv{I00{>5-aapY@P8;vrW|OIJct%v_9{D#PZfD zB{jZYL5iY`9iBV+G0?-rJ|m&iB0Dy|sr6#B-8vU2=y#e2)gV$J#84&Im+nS-)7fbV z4VNbg02PS|I2>E+hhY1<3fbRAv4{S*2m&n%mSJrh>{6ha8Vo9Rq@71Z+iU%l9V%@E zAceJkN~#|eeIjSbaQz9j;Al?30#Etv`&Ct6{F_bVe|S%z;}B>UDW`+EcL58$iuaQ* zrLx`jOdlT<__?-~&U=q6LT`y{CaGC+LC;SJG}y55_96enPZ4K?N~S_Ij)HTzcj7a0 zEt_*){h-GEs5PKnfd+JOnTe8oH~ta?l#%nR^XeX4gA+s>kX(F!BT(i4K6gn2+k;mp zz(7Y}lOHdhUp5w)*D|b39ailI%gROIAjaXW2O|&3`Q46DHkOS-&-kh#0a^W_+AvhD9 z49YO&CtBIDWN7SWWK(9znS&jNOSe;^DGt-ymF?sa{NtbBxw0HPJSg#H=LX;32E)LG zWDl=sHnL*fL_2BWVi(!`dxs`V~t(YlgpNIoF@w%PQ)XtZq;w2j_&g( zl(qZTwkI)!_=oh(Iq{v3%kGwL$!@R{L?%pW)`QM47#>nQW`O|)Tszv zPIy7U%e!|?QsKVKHIlS=Inug^4)*cl8q6ai@}>4(OrwHt&I+< z4BnR-Q=g2}wZ@X)#gp+u-1VLQuAaoig{_oA|U#Q<9VGT?%j-`_JCJvlVrWjseU|n zCMCUc8r9lA=y&Y_rWu!nR~rrP2Kqb$hq#bd`;5shNb2;Vf$Xuy;6(blczbp#3Fo`6NtUQV7HrBt(h}rlaa3| zKaQE#N~Qd~X}~v0w!p$Y(MRh4r*&Zhn=EX+U$wDs3eq|ShNl^=*5%#F@@Q*U8rbwx zv57l+N&5V`4m*3#?9rn$8>Y=d(OuL{q#YT`mDv~OF8D-w@#}7kkqQYBmf*oG3{7bi zY(5j-C7dKfQNQ@ufrlCk0@l2!or}*q)5Z0;id%n+LIK@AJHm|Hcq;l-0&S>w zYPa33w>Bd5IvN?l#iw?|3P9gJ){RHmY)bb@g!Uq?a_fbdyZ+1|-83h+n5Zs+C&D?FNiXIzr?sN%*E>SGxY_`j3h^S&SE@>^;j_~z>%NE-Mg`f?x zV{0umt~+0)8)V^phK!g}u2F>^{&%e<8pJz{k6Lsq$-Nuj83L&I!U>?g>j>g+6V9P} zQIelwM$VWWJ}t4@-D1WBsa1IK=f}{0-ljMAqj&00kThTiB2cZnBSXhRMHm2KRs^Z= zImDV<@G@#u6_0hn>)kKS1Sfkt2~m2oej2(Iu(YLucBJq(!y`#*q2D5rib7T!VbD@}Qs|3f?yW7v;X&zZ*uq(yh3k8Ruau#1i4o`h`lqoE+A;l0)5n26GTjG8cz z47d}NhlIEo#0dt3tVMsLNlE40p&_htc>Z3xZ_)|79&Ot{l7M~l|MB&f0a4L540zpz<2=n7zRHOQ9*s}EUp;b6BdhmREeZ*4ObAl0 z9r%2Q)cnH8i`%E~XzW6>Q?y5FgVD>7KF!?gWlXWyqUk0toQ#U>31U2c2JwdR< zDlwz=Ld*9E>>=1;I2l9C{?D`)$sY449}woD;A2N(wdvMQyZjqp4xc#m~h7&rc(au7mm2Po^L2bklQYP z4!eQ~l<5K6+hwCJ>Ca01p~c>uk5pAfBP6CsHH+5v8Ef{j@3ht!Bo0vKcA8KrS3G#w z6w8g1qnx-b{I4o5+AcDFHn&ME_huF{*$E(`Jr=31FbsSh+9uf+BYh=My;IV44UOQC zS{A~8VJ+WLR8#ng^vjGIPMvb4Adlm=%=>L8jq1xU_4b^4o(ewa>QU$n|0P=kDmHaw z2@i49A5GYGFuC@V&)2Vn3>uTNAQf-h#~fjksdCgeEHj*Njwyo{C2X)%<+^!0i-+Wd zfr-B|)++OVT|eiO(QCcjCly(IxJci6TROjzY?`i{?y1sqK>I%at2x3Pe*LT8<%3Id z<+9kC*eBXSNnMQfqKLS@(?S;M=Ev#au`Qa^3OZWnW{{21D`#y0A`0{^BIShV@({L)3b5@KAVdx z#UFY=+w6jr3Q{xvzT@}{K^O3YM$8hf(pRs~rnPc#JBhBGoxE)Dkzfuw8XCdxTv8Z< z;-GS41DC+4DmN*j`Lm7sxW2VhoUwkVU#w>m);~1I_xfXq>M<&j_Ev`eJ(U_#u6sVG zxLTh2#<7u6A!z81?LB%6-rnxV&azG?Z*|t#ifFM12LHI>uxGgzy!gGsT#$Zus7V7e zuX6CMY-Q6H6nyoCk(4`^U_Q5WJs5ySeW;?D)>)=&g zZeFv0zGt4KtCZ?$VxOLxYh;Qq#>tR$R(p3q6sp|>1Z2F&xK_x2*Ra-XoQ{v<4&ryK zCwyeJf(2J+FHUGcFEASXVI}c2*Kw4NdGs5HTf5TBlW=U{x+O6zocq#Q9&zGMs|f<@ zyZW@I6nNYE!_KA&pnK(1rMwZpF$Iu>|2YyxuFGC&Y=)bk`|971} zul13g)+x~lEZ|xR0xtKOH0`Rx84+4*qam2}xtes-tEyr!BAq7aK)sUna*#$FXELip zCPg^W=U}w35{RFd?E{Nb#?qNAd9tcDtBd6oLhSNeNicOI^O}kOFn0~Vi`qr=uNFRb zhPEH?5F;8DQei1X4vQHHnT7-!w{7PFe$W?|fm?(O7{KbuU`8-y_ z*bBz>StYDz4rG{gX;VGaRrzcg9`TKX7wrC1D}i4WlglpCuYnfzrzhum>9H^P=4n%h!MCY450|;7`E;BHaPu^4DN!xLf zDy>+A4X~9d6apUtq0U@j5U_<@hR|iD0<(?xZ^Ih#;UAo){AW^$*Qa`~d<%!t(I?oS zwik8AiG7ELr&}-e7@W^v;c=xK1(?sj7q2v#Y})&*PC!z$k0lbKM5-J?3xE_@pE*~6&sHRCuL4Tr?*%3zW3ej#>(=jc7cdjAvn}1Hr(GFgCYQkD z{UZG3G4n`%%t)o+HRGGI;p&betCOIl!g`P7a)KS$khZKnS(Tz-dJCOd&HRh5S7^li z{fP9=FZJ$hvF@CE11++#W)tvIuKoY_KBGG;4VbC4*Klc*BCAA`3PhfKJhRn4rXo!O z56(_Q8}QA;$X!)l!Ry?7Cs%$YWu9`UhZ-73Yn#=$mZ)~FKhhiJ-2?OkO9ysBlUJb* zy}2rmAyhi)pEv6RG5W*uo08ut@W#-bLJpy$HD;xI!MZ-epDkS^yWtTcb2+cN4iu?( z>N4cE*S0aE8F#`7&M!L$o%iyqOlhteoezG+fE|=h%5&n`9a`igvCxfV`vI9Nr`#{x zs54{bUK;^Kj@$gf%NAdzNF(rYMoO}93>smZQ$PK7BNV9uRRY5QYu!VO&LCVn5`G=K zUU8duoE2@wZubLqp{pb&)rZi^zO?sC--F>j5z&&j8XR1n=fvJx(yvt%>bi#axWnBA zBiqPNn`Y-2rJs*c=^%EvOF8IPnt?cyROCd|Cd4lOLCOEQ-t`kP9{?WZk=~+Qwvbv+ z{WCJ{8M2oqE*lXlxyr?HI3lV8k=MrNj$9YkZV{%@Nt{sU8a3L=5d3vrTL-w!i1ADL&LB6bm3d8s3 z^0RTR?o)Dac$ zDoBNtPhC5>`ojN@_bFT@?J{j23}D~J#19ICaKCz-9!`V+zC3?AvGdUy*x!)vSlQEN zvcXQ7y@vYOG*-qeUTVtWRi?mZ1X5YF<@bsgTaI`PjTJqzjN$Ei+2R0{05PkSS}c0y zMxhhMk8nz4UO}F=3*nz-30g+2PubjiMT7D1xLiasV7k?At_2$CLSb! zLvIhy=#u8IGcMn5ltKLbU%wA{7rHNOV;nO_9$q}Tr_Mu;^+<05D4W59^8f8P~5-JIYfB#(yPH8P|s{G&mVYSb>a%iA!pMr_bj8;7hPvsOn|M#aK4#%gW} z)Wlo*rB-S(G&4BlfcR0Og><*!NPh~C;8QEuRS(!@`p3sN4~(sSYl)6PahBfk_B_cU zJ67FCSTTu36sWwlJY~(^AY+VKxcBKjgmNI&X?k#q$Mtd6kgZ3KdE!^Gm0_L-sUD`) zE5Fu^?>8Ncn|uv*ti{Hzr9mdX5}1EE@BfdPD%x9*G<&zPc=s?+*BFo0W{EuJqc4D~jThr=pV`c}3B2sD8Y`SBr!B48VPso+0Q@n!- zd*d%db+$H$4~45D+5X8LcQNJ*^Y@F5VNg0!w5<)i_{(+nM@!mk*{avlytmVtlD{_NR>stwXN_N2snLs?-2!=IWR%KkLt&{ zjM6N;dT9q*&)*?#2Vp+SYh>J6B#@gr;m zNl$(>qXEHR&GH{!j|1keDFb|)V-`t_Fb9!u-eAEEdw{QCMK zyyF3w@B<)bX#JX4pL<%{G%ySxwkRr<*Oi3Yv&f?a8(z2ufm}`)!tYqG+MhgTa9tE- ze&Bm-hG8S6P4#B#r_&7o=@I>6k1UQ0f!oENDbRoGaq<0y6GOahy|Rf|P!dZYhz&ku zVXxxQrE{GcgF4F*9xQ*?|u{Rqt@2!3|CS_3p_hhT2{!Ngy0q;W2{(t2l!>B z3K>67VlNU;JhU-#bJqG^_mY6OzSLBYRd>#HEI(P-4Sp5nhU+sKoeA8z>dJZln@0Rp zIc=Y;#N&RP=S+t@HQ7?M$3VXYyi9*D$RHg=uBF9=Z-dS1SyL8D^)Da>YZkEr2O%9& z&bt*JP^B8g;-o(GJ9~sQ^jNafqfOGWqIhwz^E(jhZ{fYe6xmcKia$E={=SXeeCJqX z;TnI`dQPf&zADUfxWvPAskf`9qyEKPRv1IlzoC)=Y=rXKv1LgeM*x-)u*(ah@x)Ph zZl#%Rgz1;)m5En#?DN~B82V})PMURk+ObBkTFsl$Ka66~EFr=Tm^VrT#SpJ61%AC~ zWv&-O$W0v(jh0%t)79K8WlJW`wz@@cLJ#3iG&u9>mNF^pJ?JEARHJ{!{SSN}7g?0&Y<}V_z7K4RK{-?ap?R-r>{omT$9 zON0qO`qIC023ne&I|bkq=RUGOb^D=pogUlFbGSyz`vxTHyq>3pa=m~kGR9;Nc5l%#jH_+TjP$Fut`sL2 zd;Il-rVk->@(R3}?=PRO4|`XtvTB&4s_-d}uGr|qB7_Bei0*#EiKx0*_Xqtdo>%|* zn^UaUX-~di!rL)yfl~rs4w2j$KL655UY?oxqrkzdc)5090|-2_;=+*PWlA7&SuP~c z1)VF-WaKdRa*TzG9r`~Xd^NVxR@l2H1IBOC17U+;*Ph%)s}T;y z7m)J7>+jN^mA*yX?lVT*y)?wkCijUz*bCEn=i2h!Q&n&II^?C!K~KA~DW2ReTiph& z5o#%&mRj@Chj`6j8Rr@uZCFwj zqlJ8NgET<4^Tv>GJMgPWu}<$Hdi0q!Gl6Vkr+%bUXK_oBkWs$l=jOF_3C9na z@LL2@-Rt$pW}23qNEO`{E*nE+HLDqUabL}Y zxU!AhGgBX2Sh}8*@0<1ncm2#tl%dxPJ#(?<>CmBK`o}B3=Q*DmL}TdLmyWjQ3uKh{ z3#R`Vv`~YFoL=z{lzt44bJ5pVG4GTlu4 z3u1)<6baXv{YjRF!wH3ciMe;7xPo^#zE^ICFPBlgDa7HIQ3&4?(nHFv;e-1&cPt6N zHKSz@<-xpmQP5U~v7P5A8VWlZEwY*~}k?d^+}d-$Tf@w$1O>k2hS*n}-~T`6H}AY53te@G$1fX$j8{aZm-(7r$ly|M}#Q8y9l86eCE{fOjpH^pL<;Fy&SbeCl%D3t;HnZDMw9ErOpejC{gaL)n*cjEK&M=sKfCu{3r#CmalSuy!qPt`j$&uF!NKtaVAnRxy#F z3WSu2D9ZfoHnPR;Y1*-FPAbEla6qD8)+nl=8cz^y6MjaYS^e|mr4|hfwMe&gTWu@5K${(U^`5;gXTm`MBl7ySL_ib{zTntw)7eu;4niin z&-^DPQBmSc;@zHTn9u?eCoJ`&!H?&iS! zAHB>|gLXzIC&UZ^sD)m_4}RW^lQ>nU;s`$vcZD-vAVsQ#6a(6ilulI5y5Inc z$2w>l?pO)YFQm`Vu95RYLR~zBP^XMO*nZ;Ck*Mjp$kwy3!^oXRqI}9XMhG4FaBOOe zEfJF902X8NRut0oO$T++B*Hh=L{I^;kG(Xof(SPih*~4#{!K4oYI#~D96s4VRla;@1MTCg`2w_pl$GVB=xm5E>Cl2oz`=4 z9`v#8%J2L-sV_ZCD_$IKv=JGrdr6u-H?F$*@toFvmn4G;_ftQqI_1CYFTXuYk##TP zuA%8z#Qbd^Pu4l^I>~l%_SGLFq+N7eaty<*-V{tP%`xMqNA=^{Af$2a9Ll^`X4fJ5 zP?V4SY695A2LQ{3$ zzU2ed6Rtl$I4RlIl@wV`wYLswq7sE5Z;q1}Ml7t?%<#deilJqmnBP=*Bzb^H+m=tw zlDGsszvo91^)?dT+C>-OsKm7QaAlG8TqFd}O8UQDi7{Idgu*H`=Quy>;V9>y=DG)R zibq}X9Dmc4)~KA_fM)cVRAH43dnW4OVidsRAZTZAODENh#dlQf)$wmhea(7&X9c`hd`@0I>r!R6Z!60gWD%=i zW9?li-{R73MQ>Ercr#wZfmt}8H`VX&KrU{mYt2(G6KaInrF+o?VgPFY7Bg2QC0^%_ z6Mk#j2$KX0SSY2CwBa4yXC7!urH95Yd7N=}_Yav9#vn+db@=H8*;j)h!7+YYniI6P zwc9trs7Gv>+xAg-Lb_?0R+B+}8edt|8^gX%z8K88KAa!>;&s&QWav+dJx5TEXE&ZH zoA0dm)vbKagC}iyJhjmhDzIf)}(HZ;za%-_4c}=J7vqkT2{B^ zc&Z)@&_mZ%Pk@C6+s3f>Ct2d~yM0P~Pn%$f*>pX{OOB$b4NGw*Q_39jz<|F_cuA7% z#~L7YARj>#E2LWMwTt#1JFS}MqEH!B%=(73`gX9>bntX#8C!Ge3(RfP8cTzN$n&wP zLX}=kG_}_2L$fwg%!g2T+?egtdMfKSNwg3b@&{cX{ZoJbFQ~Z9+=jIqI8AEQXrCZ7 z!l-3345NsHIe9FdSH*|zOAcZGz%Y0&LI!M)I$KHV; zrj3S9_o31B{mlLlwdJK73^~p8$8Wb}Tq)Z=+b>BN-_$X>)dqRu4K_ZS?G28k@X%Tq z$`kHT!^`_i*#Zf%p~RJN6+aZRZ;+@Kc990Ixcw`9Ek+{&`Y~50JJdTTSKeomPwtd$ z7WU;wrBZ1OhDB69y)5~cA-?UOPEXi9`0)Kk)QU;C ze$ZLCssrtfG(Fnc(K_4u_1WS%>CEkzH26H7FvWC-A2JU8irb6dxySL;AY!%x9%TvV z+c4Mn(~<*T30nQFNnwzToe)NG7K*JpI@0T$UXL+ODk@b1p&#PLL~n4q zV(N%qd(ugEEUP2_cO5GlAAP&$e;*(B6-1t78`bpmT;a6lN5~}=G1jb2Pa2BF5Rp?@ zDC$AzMP~pP8*62-fK4?8_e%MQ6ry@HhTFJYM(?3SI~s~Ow^f}T0jqJE1= zOjrqwPf=+!UpJGG`zgzcvpm~DUh=ny7!(fjq-Bje33&qHBLd|?piFJp=~6QTBCSw* zV=au->l|JH_f6sj3?@Fw(CkR#6{lZ$w`$M$)N`1E<* zjFvI3s%-mB5G zN~vD!so{=hO6F3U(h%^KGrj~K>r3dvwQo2w)baTG>5)S=cQ_IDPsSF1R&|x*k;61@ z`VK8Tf%z6mSZ1&%lPV{6)td2R1n)vAKm<+c#ZShwl;X|~_^p3ax&bN*RBi#1ZSUEj zj(jyRpE>kz){Tzvb|x8YbW~ z4o(o8ej$VLgzod#)FEWlXGn>k=GQD*R%c-ktVXK7PEvwE9F?WnD-^#8qJVI^Dan7u zpAHjGzszl9ZCnT(R5$BJ8Ov2F$uB!nwpEw)eb*2VkkOeH3wv?CmLIAxXj9!m!l{)Bwk=Rkdhj!xF@W7$p zzX0|7+rE@+i#U$E^x9n;`SSwszzguPQU3;?&r48dPfA;tX4?Jb+pQWAu?KPZIN=p60^gqZhX4Tp5Uh%h2Jh6N(ZWCywkiqbI)X@I z-pH&nVI3{`la!gLZ#*AlXLE4>$iqeg)7Nn$U#}u%lz< zReh$?+?4EIlPL3E)A;I8Qp~7OXACvt>dHG-qR|wGE5_tL=6LLCLNmp4kz?va$e~LY zzTCw(Dy5-K7ux%m;2mf)xNLT2A0jqCcW%_$#5r=PPeew|qHwzq-?ULzn1F{%tFtQ< z_qukzY+F6wIW5kQE>*42GH7p{A8hUF%Zd?y;PCR9SiQQzj{~6cOSkq~hgL&a9r{_) z?gg-hh!EFR--?3j&X|2LW{Ws|8=^5+F3u%&>*f@^Si@O}#%%dyW*s)`xUB=NU%Qpv;$!)^J4{5sB(I(mS}B#uYF+#`g83bs&cxIrWZZD zAnZZ@Q(y-;Mk{DO?V10L`OovTsLl79735lK;>P!i?{Srh0;yMe`5E>kGJRPLU9Vx>toHey0 zT|Q@1`n;myGW9$qR<@DDk=(3oEIK##*lxC+2;vN=!fBhQ?@=~qHPbH) zH*v@6$~h#T#k7kW7bTXAoA#&dOg|hOFb`Mgcol$-YSwxmJ=jZdziHJ-wlOy|;K$m< z*bR$u9lU`1%;OIhtRA9nxl1)2LxQ~AZQTP24gIZYqKN7ZeDx6~2ZQsGXy`3R5VEz( zho-DR+FnFWJTYIl_S6!e>ycIpPLVo}DwT5k1!ZBeV#C|>?Z`I>DXRv5wXna>3h?_- z^Qrde)Q<+}SUxob{Qm9HY75p;=IfyeN?%zu3)eQ!#2;tFUmTsaK0op!8G2@-PS)U` zuc4|x;q?u2rk^_ux)x5C>QpkF{*n&+@fTAB7>Tq7iNFL8XBg|BPOofx-9Z3y6|dbp zyBRxCh;;@Pl>V?ETUnfJY%q`t4i@M0CBnw&s~^0cubmfMW0#@|=7RXII(66hwEXmd z%J#ZkKXSAF`d&KOJ9&TpqDFh4Sv=z7dh~`@ZQ=-|GA^W}cxl{@)z>ZC6t0>B9KK#d zuEg)G*whbX$EoN!Rf(uuau%g*m_+b!<``fkjSwk)s4&TD!}io+=W+31X32fihUZ{p z{5X6_`f2zj@rtDP#MaZ2Fl}Fv=O9j4?yl;|id6S_?TfrfmeK+B(v|Mgw5f!%Yj$!V z*H8=jiVX>CP&I~7CE?IDAJdL{dm80Rj9*tKNt)Z|D`Ez*?{r zwM_HI$G$kKtOi~7dyV)~czi+zOW{E<#> z^3$97v+o?;ZJ?9y*mn4GVWHHXF4Zn!6I@cA=xKzWrAD?HrGn(X;d(W)iefc|6OD1o zyw31@RpoC0lCt`j8gYkml?od2<#cSIcBSX1@N5DTuIw$fzP?r4EVwL210S1Z}ccHPTM=zP9nbyPLHGck~-TcjaA_ z5t;UTt8u>_ome)*PeTA2A?XkJzY<8#Elm7H{^m)Up0($|Uz;j-Rxb zV$KOBa3(kqLa>;n7)wU6S1IQXP!av1tRuZY!~S(2E-=p{ZE)aZxIte_BH_30R9q#h z{k_PpX2&wTHcV!Fv$S$YQxOC7zwi5S*b7f!!oxVU>5Zwlw-KTVD=R*4-vj=7H)i6G zkT~wCUZ)TWDAb_f{%2|%Je{Cn0x7(6L->^~CPZn5L*h)!y(rlW1D;6}T45JWfCwr5 zOVj~D7Hm`b3G4@7gg)FUhUy(>g$-C29tS6}v|CzY{`3or=`xdvYyS@2yO;{WO!M%q z6-?0qe z84ElX_qBVk$^Ef;DA`8c1toR+0G@;5`78k|Y){aA4X_PlO#YBx&BSIYE=0!yD&<@@ zUSQH;X#BiYKQ8aU4^Or%bnE8Y)7M+Xq(K}-V;z=5a^eQTDtVY2Hy;kCcx zszt9e0uKT(9bGRE_+3@>#x4nU&J_qDEl-+s>BoGX=2vj6r~k-J|C1N|Qi>X`Z@h{G zOcPPugAMF{?s$0r0Y17S?jS1lmvwC~TNY{fUV?$EO!rPSRNw)KPwO^m z&MokbgKZz642-4Ly~r#^mARRn9{;*~?=oIVK}3kc25b1210YIJew@d0dg@PfBt+~ z5}XNvGXZ~ci!J@83c5VfDIZKV2nCXk?)oah31LE0Txv0=>N`!ffJ3v?o+moA3Q&NV)Y z8MJx-Af}oM{agQ-W$>7gA1`On`xZ08+F?UT_p-u>eQ#B-*)1T{@xr|67Yy|Ny}FLN z7J3#DAQ%}$TiTTY$nX4UQlZ#71LYB+sm{3-MuG_O&lvC9Xk+U3zBA%QXOX`n9;of+ zP#d&uA!S~kPvlPxrM=CfZ{m@vMXPi4qvkWg=0mZ4_#ZP$n$A1lKJq<9NbA!xq$EcX z1$vG8CFsa2-Je=Q$z~8m#OuLoCuRl@|J~G!k07RksioOYDnD6McX@YPA;--I@y3dR z2Iq%Zr4PcgYFDBXU3`Q-YJ~XD8Vw3U-}!OnO3Oy1W;u#th3Q^^W9YJ`Bn_TcNwMvA z%9W4jkFRJAmc27tb|v(1NG|D6CTkmH4X>IUSXXI`C(}UYzg*%;I+}7GtJ8Q2AqV0xfbT-xfUbNUEBVx ze{6c-5clpnp!v< zvPm-m)#5ex>|=>j$ZlH|9>y`$rY8XOLS+sEg2d^;;mI1>O_>;-b53;tJqG{@DPwrk zjh{h`2+^_Bm`nN7PJUUkYuiZ$c3SRJd`8{@eEK&fL3MSw`MOzy?m1^0%nMC>s|(X6 z5!c_H>U58^#|*O)3>=CuVm+lniF&G(KMNCf%_)KMUpe}L8f1$=n4@z78x!&np3`bh z?)`U7fsJ<}77(vT88b}SEencWgcC<25i&mO3E#uTa$>IhNqhm_#r@2_nykcw*7F|) zx_i4Dv%2gRMTJ|x92Y%hZMqO9wk`>kWp+XvVacd|@x)Y6nCN$-Fi#|;R2fuHN_0}B zFgkygBYDLDWWky6T<-OYJ zC0(?)K~)!+C5?$Ru_Q?g#!fk;j&uZ0L7X}UMu<)E3FfZE3rR_^`?}3B=ey*J=Y0Tm z6p5lt`XKlXOZN;4VA>A^*P79M5OT9P@5n8r;=eA^GjOe68ycPpJzy$W212g=t_Gz1 zIMeWt7mD!ZmsV@LDoa`fk@8d;XSj!PBmqWO6h*fW-NkdgyUbx5K zZ5L8&4vsc9&u@jqN-ev*{HX$hrZ=5P6yh9OhK>$)Sgd}LvpJnSNsW%sn(1L_l3?A4 zcsyE%&oxPM@3UBMkGz2lt{PU&{?^?UX{hxYyV1&8(r40x(=P07AdTW!(%RjF26raw zpVhp24<{Ur9#fk_zNlCXMr$L*^VxC8IEp!&5T*{L`cZSMt-%Is2T0-xqMh#DNUD@Q zg$U8uNGz#bQAmc^Hz&t%9Ky?DVk7uW*)G62{hHfbjUy@DnyyMns7yzrH|eGt`s8e3 zm-LUIIf1^_`$Q@i@T4KGrEeAlxbCqbi*Rm>d`c zB0fXMrtLrK4qwiiZp)=LfHadOsBUA80iid7OB>JlJNyI{3BT$;~ z#25?`HO{z9C|+LIf6o+&8DG!h3P-0dcIHQ!(K30}=dBy5HI26>{NE7O_cG3l@a5|X ztl56tv_W3jccKwi+Fc2x{VgQx07c4_4Sii)X;(z2d+Db2)|mh8az=}kjMt(Q)U@iu z4r(YcL+FeSw)i<*(n-1{_q^%u2Yr#=3mJLXo>R4UEaUcs`RFC(bP&j#=%W-_PR$(tSa2dJ--c?Ps0JNejVV z$F|aNi;&q_J6z8BiNdK>NP41e)wa&*ucI3#o#-o8iSyflfb2KD!fWkL3=KhgFvxh= z>S#+BX-O{zB-{As^Mm4cXCKmBJc>KdADu^xDnLm(gRvgcUC87<-lZGkez;RIL2K~j z&uT)~wLX7yZjOM%o|nWGP7DX#d>G&(U#_`K<{8Actx!&{U`sYw(gH*ZU$lLGnXc1S z9z;&!ms-wlCGQZYZq;v?{pgR(5v2irzw5<7(>GwIqO|Qj5~yM=epl7GGh3n14_*ZH zKVC#31wUQk+B8(n{k%Pu?vj6*wzflQJ<3JR`V+=2;$2J9=!kD9f9qV zje_5l`wr=wab$no@fwM-B6mZ2moNQQ`d+LdRe!?pV5Lx>K4q*F2qU$nUc*1FH53qz zs-Af-Dg=RbKzxQ4pzR|bp&GufIibCN8BJ5T>5Uik`PeD;Q_|E|p4-|h`(razd@wvs zERPsEIb-9lPR`6_Xm!@|#pZr|jL*Ob)?G~9#)bWe_|_zKZb+vb?ddVqAB7w(LOb=vtO(C7nmEoI-NbP%zg z#@oc+BYXhC-BDy@&)ar4GkFtIEYYBNns z7@!rtJtm$c^;M&iDYOHO z*Hf6dfp~7nT!=O92DQtDDgg;Is>$s1Uqw-{SIiBdCJq4T{j=hMcp-e!8RqN4q*}0f z8C|)Yav`RcYoE;HCuVlWA6zUe$JHAeN$T*mi&zva9@r)7f)I|ps;@}Ye69-&F;-K0 zqQz;FzTHLoYQYmhP3rher&iU})r3oKbI}?nRSm;65}?@`xhrUYxz+>_<&advB37|B zt&yg>4U?CPO9xZyS=l*emYR1PEWGGUVSY6srWgVZZBFR1X&LvoUKQ z(Vp#x#abcD2|P}^YhY%?ES^q2bbe+3O5irR)D+f(wFkGsGu>w2pUE~>)1to$&*HhoCFka4j)9)OAG=81ujk`wvkIfI#jl&m^Hds;b zgA{$w%^NTZqfSmO@OQryq>4Dc`-I=-G>qA_t4RpLWbr0~l%OJ|_AE9*_IW6W!QGzc z-4VlUo;v!XEiNhQB*bobDc0RqhRTJrP5ioo%1(JQt|{BrFAN`Dog)C&;yvr z0AIpQ{Go6JLC%~JG8*a%!5Sw;hc=j@(SuB*eS7d(N8eOHbQnfnVBZbkAW@Y-_F%4Xt$$;ToeV zm=f2I|>r&rvJ+xlJh-1jasYwT z1VT`CDQS8usvy6>nEClArNiD zf%;vK8J@F1#9(w(KWKKScq><(>X_3ixtJ48GU2h}4lW6_cq8#Z%6>w6@v3RBQYEn$}L2p*k041yE7rEqTPts&-_tkN-0x?+{ zD;(I$1z=Eg{Bt}tyl?!zRVPG~kwRdOqk&+ASWmp3a|2)yB27))uqLP?wG;lK?;`}? zeS4-jiTN{?3koFPC((ps@Y_kttC#i^`TUykp{WelGGNM(SlOSozg{v{c^`B4%OV^e! z097JGU$*}$mFqyhR{tH3v!PxTO}f!5agAc{xw(lIOr(=t9y<_j?nYie=FJN>H1%4g zcW&(NA(wdCWr$tL2a9WTG7|BViwCF57O%^LwKo;#csj+QWwauqCf$kLFr`>5dC}sb z?RK}84l*Y5L>-F{Tu(~A%d&JWmD(j_Z(Azn8$+>%cEmT~@ZQI_WI>3kFc6fVs`Vh4 z;PJLP>@!+~V~;6K@yXxx;C9~tW6f8YbMso;j#)KqOWha#rd)*_F7P&a{=VH!Iw7?Y0;xZ$ER$oO$=y ztjcfC`{`W6JR}GCaUg`se)drY;lHIQ5FH91vdafj) zPPHp=BRl4YET@tsO4GO3lakSvY4p*}D?HspX1rY?-=(U$Gia>(0e3)floag50vC8Z zG_(Q_6|9bZds5ROPGS?gCM`1+iZGXycG;H9`3slrn?@4L<)iQ-Lw?mhr?%!6aqg=m z%@Vwny0lsxe8RopXk!Plkw}$f^gz1uaz}`j0z6};wH7)s4$&*4skzCarq!OZ{tsg5 z!V5FUMM$?75p|qd>9YqM4bsssojqqHqr2mp9i4i6u0VPDB{%Pdg0Q;W;X+-cJ>!J8 z+wi>MW93z0&jx-=9~?6i3##j2qu9umM4=Oo>vDlteLliZv-@Fg)obAVc*=PqlCGSW z#hB4Mc)VZ1UF`qrpgn03ih*qeS?0l@u4h)U=$aE+gx1yz&;MWnBh55_Rk4}md{8N# zxZ9q;CZ#ug+QY9*y|mr-e`nSL`uzLBbQ7BMp8Z<#631F{`cd{()RkA{-UGVJC+oLy zU;rTdpK5WhgD6e5TO@=@O zLjb#KxN9B(AyU}dQ}c&+w9&6E8E@!a~#MdUj|ha zBRQ`rz1?C;(`Q}qZT7N6f#QXE2($#MK#kHLL7W-^Wvra>jGXT~lHMLSezG+2!k4`@ z-OHDaW|9z15MDt=)qb?FFR7^MMO6#NT;$oqi=!`UV-Yo;Kk>|2>$Cj9$S4EXxvj1C zkM-tcv_K9aU=dkxeu!RXE+)ZgSw_;dbppDhXf%gct6R^x-gPy7kMNs?4ShRFuEVJG zO{UD*%+48_H&wjq)cy3V`$Sdqk*C^+E{}vTs~oZd$JVKz5rhTF&e>$+lZ21^wVpRM zbOU-M9sN-xVU*30FBIVk6!P|i{ECN`cv}sM<69$Y5iDo015mztggC_1(L=m|8bD z-^&?QqK4>L|3Fo#EZcJcrn$FE4=*X(#Hk?sZ`wF!BF~tpZYc_0P+3?iH6n zhY~!*J%%a15wbG7pJ?#=uemV71fT|fh;fh|Z@gaWpCT^jOp0_rb87~Kq4RAzrr|S% zEdBFc?b}jSBd1m047Y$+5tR%X*7g0el)JX67iLbnotrzkTE*C4uI^(K+CBUsxbj?78yvjt^ta zX`~62#v`krE)V38b#gDmuNmy{>FySE+%8JCLnGCBQelsh_U?|Or>*-h_y*L<(RFU> z)hlaTnXy>?>dhi5m_Q2^$G*p8x zdV?+(ab$_gI%ud&r*(~D&RPgy5?3Z)$6Dk`A+&oFVLOCc;*_&MiLDmTuVA9n`N=%m z#`mXm&F?zcR_|E%RoThoNRd5=O(JvdB;oRp_ybT|T{+gNSTJqXk z1OM$T$l~GDijELbqJ0j=F$Varw*v|(YbQs;%cq%RkBfan*uTMs=S(?m4gCvyFagND zx(}9ltD_yz3J3yes(mUjRFTd?2mfxy4tK7hAp}6<^d*S~*u@`?5>hM3D(V9#T#E9u zpGickbaEqaCBJ=kw57XL{HX@ycqw)=B@(T$2S`fSkmRriz|%Wrd!<0@6@O;3Benl@ zubCj%JE88IY5egrpi{=YU!xwuDRGL-bS*Bbp5GUw)D^mxIc#>JtLD$@q+D3Mu*BgK z!au94vy)*dz;&TWd0br_5WDxfx-%~pCqSalA-(HHxv*;MBw*rbArBRybcobIzbi4y z%J-<2OoE(yVcEVcO0tG~RUhj=hJr!_O6$lwk5q!$9tq9mR@P1-D(Ha$>A$0v4kZyq z`{Cv#+W9dndojMn5Bz_Wy#-Jl>)I_GCjc!Z3NqdO`XlREi@um66F@%?%IkoQ0O#<}bJZns z2(*k@0x_u)c_f^9w_k6xbRGY+@<2SuW}koz({Jjs!Q_CNT~w=ExH#2>8IaiN)~X7O z{`O-H{xK}yeBU575qttUF{sDRdL1aS1|$&*7n)oPGfYr-e1V#_=sjYAy^-i+Kay%k zs#k092#{R^Jr>s4Q%5I3R*~&3C7JW~uV;L*n_ z3MMadmE5EZ+#iekPU9bY;bN7{$-9=TA~YQqDc6L)4iwebpQep5Wc)Oaa5}e*60YK= zO9sQ@PkoNOdCvJAdjK*(Wibs33&kHnyTQ$Om!OZnXKnxRG-5#N@f^Q3|IB-)pMs>y-(N^-dwa1^{~D{}J#Vq-Uvb za}#+(`#m}4;TU8E0s#h9RH9ap8O$6*_)`4lXX$Ye?cH3P5!!T2?suma-$Rk)!7HFn z$!Ob%Uv+=wuqV;nwaa6L`#2%P^iHoDa8&l@@Bw1Rm{(!J$M820eM2xK#EEGDNZ}p# ztc-(6epI}9FDEVauHFsTx4>^?<*Qd~MwA=*)Dx+>vY85xWXR3h@*@1B<$5?<5~D{; z^Tw~|r@^&PIRLb8Q7RDtgixw-ZXSIK8D6tJZUkI$b^>v*CQwbUKy>Q)c~(bt$7tuS zGo{jz0N3W_G|_mlNv9wTU>r+b4(lb+zfWoVpRz~5s+3njO6L?3Tt;nPetmV<*1i(x zGO!=09G_eKWc=@~ ztyC`TaAv86%$8n${0mSUJwdh9lzIcTM#r?EA#{WE*U(J&SosArBS|IB9B~~mr6La? zw?a9KRDMO)=uj9|ZjyiFW{0`ADJZl6S5-bkHD%Gx~(2|OD{ zIRT0~hSbiWDY*8j?@-%Qy3VC03|hPe@SIgXJbQ zp#0={6QZJxNh{vfimLN#2hMz&B7hv?<6k(E?DW9?80_KJ(vhZq1%I*5;m0uqcaMR? zU&YGqwJ{+eANv>BgO@M*=&B5{$y9xPMoV3gQ zdDh=sBd^0$+C)!{KSn+Vs4`m2K010j-v1bEk&2MvlX0qk^i6d$*nV&Es;04NDS-im5jbKO@-#HY06>^dhxd-!1duC%Z7SnOY0(A> zyov7S-us>$851m{EPwl=9Xiqu4P2A)s7&*tRWjutE5Q8rZOQu~R@1Bp2b zqY0`X$v;}Ln_`vDTa%~G^Z*Akb<1P#DJ1u@*GH%KXAb4B zcj@iDw*U$kd-o7(YcuCD-IEl!p0#1;$QcC>W}5pMjqaGTr5{k^goRhj(T~1@+kgx| zftXPK(vF=P&4?olO9(<-3jme+UjW3_cXOaPW5*%FFN8*Yv4SDh15l8KB(+_YCfm4X zG{saime(zZ*~4T^1L~bY?{%(9kZxzQ;5L{SB(H4zn%p~~FU1r^^dp*ZevZXZe5GH` zDv=+!hehnpR`c>{vU}H3@(9-@gXu|``bAZkQxR}XSg}u?=+v@ z=;AT)TfH1RmtVEr84i8Jl31(f<`g(&@Q=X*m_4KT#g2uwS^cVHG+>iL^hbvJr4*Qja&e-4V{{e?pgot@agp^`vCB5@xYphCAbl<; zm>!#}<@P&}vjN)zH(W>EGCX&ukHy0p{sAaetsyk(T0{dF#~ZGNdpB_w&R9tmDm3Dn z885opb@fLBmpB00|&)i!LZGih88LRVcQQQ~TnDhHh=q^lz?_r(3 zy7vVL!l(r$plZDn;?nI~)PK7SfWHtoL-~f4NW|1-kp=zFt@CDvmhsIzm*KxViWU2* z=93fnIT3((hW*sF3*ef>AN4|@?&PQ!X%gI3xNQqR6i#SgUc2uM)YebdeeBJU`-|G+ zy5F@@Z`om#8fO}}DRIh{VU6Z4+vNNxAp6d^r*1M{PT^{$Xsh>R*h`M&y=FD3Da}5k zbqnSAanB#B`pu<&_x0rGMJ^31*r{j_VA|(Ij@31$E!iE7&Tj{oA!`yH#Z zWiy7VAM3jS7Xhf22dEZp!2kCG!~ysYMVKGI=C=E~c&T|}_Ek^e8=$?Uw0!iyyW`RO z&Rh%7PGDuS1>*p5SDoQ^{aMW4_w@Q^N9C;hqS-((o00ht>_^L~_;GzZ7bh`(sV%Pw zl=l*!fxt|TZJV5LbimL!b8eo;Q?i^FPNGSAQB$f z!PPQ@G|!&20tE_tT<5<5p4SHKcoL5evYljT!OjyIU!?Ga$7OJ|hvEY$)rj3n#BgFI z(!b8Y+2ll)_X)A+0IWZHtVkn1NG6EFda~WC;qOP_Hh1Qg z+~nVq1Qx|Qb9*(>+~di=m#(MJ5hM}(G|*3*D9@%25->-MZ1L4(KYsOTB~rBA$Gj;S z`u=9z9zq!imDgy+L5j)uP20)p2geF#!LQGvOnSjsm`Ui!uo8SJCW{{mbP`G2E9HR8 zVE|E+X zrZ?w@-EJJveLFK%N8Jh2DdkC6sYvFnKgpkCpI!7tNAjUh6dhI!SGAmU+bR6=+E7bT zLcr^IsH6OqbDo=+XDH)Hdny@z^C#>oNFp#P)s zy}%NiM-*pj*Swjo$TU}|5bKv(B_DMQy>oRPxM%$b3i(iIL6FyC6hi7^Be5iNTHD0xNAs-~zZno1@8 z)y}CJ+zxIW7j+dVF~@GUD(J|_4tL^3Rt6=>8F%AsLQv8eGXNoaE#Iu2m5Lq@`;kj+ zV#7JZ=Tj48aRBF->1ZVJ8qp0(Ve9#*<79*&Os$s{Tk`+6^h}#LAHm#^evdwuR&!bo zLu?^>5)bzuC~L52?{>FHBHD0+W)k0SMfNg{E8p*w%!Nt#q8^5TT7$}eCpp*-(mf;( zt=xiW-s%ywOr2HJ=H!ed5K0)5d;!BaK? zKv~F=#nV|YNz<&WN)(GL{km)S?=c01#jt!3dam_xK%u_UXmkVrfHkfM-ykQfBXlEv zN@5~u%sO4BGs(@Jl{ds2W^%Jw5E2R_j$a19rG2qaBa^44HpAu!FvVzDCZjOI#?Ln5 z{U+%!u6tGn?K{mTRrlRK?H_3oFINc0xUAZnhi1B4>E<{~gB47l^mFkZ^nH$-Ggq@& ziV)nkQ#?G@SVQn(DJ^$xO4w4g-Exc|)iNP1@4v9tew6Z%I^{L)YIj?Cx9O~Tk{)!I4e1N z6|1Z3_(%=w0U7b1f6N6vtBpUm-a&fT*QyB8GPIoiX}-Bv<4=obN!35UOv#-3~Lk&c{e zY6Gn4%0mS4U%#kz%{O!*fmBrUQZG_nA zoTf8TQ#Aq)D_^(Htvm+3%%U71sRwRSFvT3xkM7#La+#h#@8zuxy<`4m!&(F=+2!N4 z`v5iUO;01$S2)%NDXwdZ^J@?IYd(3r86w#&%}Dz&R+K~+*?H&kh89F4)|^{dNM9Xg ze`WJvQ^~Ak1ey8G3@RDdhEHv9xoc$27MSfXD>~Agm!MrbJ)b&BtkUWu@e|gUsR)2i zJEo2(+y`3;X72HYbi41>9htC<*H@`DyGUietH5ycVUuC(k5hwQ3Ig5UWEz_OesBYs zpSq6M==`;duz;7guM5d75Xbr6>~{KI>w~^DBRcoEFCzIUKAtM=;&V^Y;q1P*U`tHD zt|dwL5Uip ziTr;QJTP8zwW*wRC4=WNcarxH%Ki0i*^nZ?oW3yoQZhZvZ7hw0vNzlPcdjUT#*nm% z%y|EIPa?Kbc|hB;NKaohRdNfb=5%-LFYpGGmuM@zpp3||zbPIh-=_BDE-*lx=N{R=r?u92RfASu2l6TASl>d<-b2joAts&Xkw zF@nR;o!KZJBsAri8-u*z>7!V(HB&T|r1DlOn2FdZ#jwi~V{Xi7?k0crr^Pz0*ZDqkz-oo2MQd~t*f@1ImA-xH?~ zN6BzH|A`)WCMs8fg=|%l9&t?<{AKwkY$gOsTfGhYMQB3Bf z`lbPL%?G(OwkH6IHVy}c1XvMtR1e>vs931lsy;~iczLX6`iA7>nqqJ~zjQIgwPv93 zu#oMB=S{I+d@Up+(YQz9`HmG-r;gC`W7!ucZ&G~lM3-~vTOtDl4R{zQ#BEaUswzIdojBw8Kts@n)+kRjUi!~4w$|Hd!8rFrtZ*~ZixKvJ+=2Cnnk~b{|q(T z`+IZQYh3@hRIdyi6dUO;lc5sayj3qU`S{}o6NGTKV(<%2PV3uD9FtSZcPCq%t$Ce! z$LNhO?6BhiJN7230Bdq~ng%6(??XNZqcu5bP?_;%%_=axx?xo&k{oW4zN({$q)c#y z@>++FSl)SEM59n|Di40u@%g6yOFOxaJtuZQJ*%pXPtdIL@D#|&u0`f24q?if&L^-p zoxGe|GM_ygyDR`wcLx2)v@Tc!M!|jt_YU#{bX><^VF+s=-8*6~7!79_ab_iX2ELH02U1N>8H*Bs5#i55dCRRh%@d?knkbb7 z0Qzs!H~O-^o8;U)8oU|$q?H6RAH6u9P(YvmmVI8tZRh(<@6izag~mzK>7bBr19uzR z9gW45Oz|e zNp-BG4gPRRB9LTzBGMNYI%Ig1Nt#TrhmoZ}gBg_`FOZr9D=j9IG0hd)6YJMx$#q)yISRho}A^8r&_!5!}I7|f@Vc{@=2ckmCUI`r|p1B@)UPPseZ+? z%myGA%D$21a3;Hg`}S<#`+(bh3eE?Q6ZG>vIKxSd5|xkKdghUrE?T~lhxHnKW-n;w zkAT}>nO}iOFL!R%NVeA^Xz4R3pqEUdV3e?6>{!CQ*wP^Z%?iyKs<^DfwUJYU28i-H zmA?8_v@lO9%?exC*qMY^Fjer2yGl~))KMU35e38>l}4#xAiPve@+$F7<}>I;KR#7I zfz*0E`S4FIxa^gcI0I$JhTI=f3b9ZV?zntE+uLw%L8nusOapN;u=n}zn>f)>%FB>% z!ac&Zr@jMl52vM@rGuZs6L@vSAv?_B%}Z{2q+w)k)ITV{PE1^luVl>JjqN86J=4B2 zwqpw~$0mb!d?V4c*y38n*$KM=DK8Do%9y&AWV}Xgd8=_0e;QsbU$>(7l!15+;hg+J zzV&H+r^j&vg7%UPO($ZMzSBQf9Hl(l#JZs$Fc(j%0q=_Eq*#JdNEfv zQ{ljp|1=w*D?sY&E*2wpiH|evZ@TYVqP^uVttOhE`uK2Hpg1US2w$p_>TlNVoU}|2 z`FKLLl2~pz{GQt0Tjuk?6ArZ^xM&LE>KAwiqj|wW7!%9q=L|bW9NT5%RZ-_yxZKFe zH#0Q)Vy~#bi(BZTa`D5WwEZ8%hAfy7f%i9tA(nOyT9;1wdPP{*0j(LC2Z;UXmKBj( zZ;c)8y-nYH<1|CN2?Z?dI4qL&L?uj1CoVUNFm!m`?RTa6v!(u`*1^>BXc2(w3FJxw zR>L9@#$rI5mKVQf>6>^986|bGMNAZ@RrGO_L2rJG0x78=OA`iTNJMg^y3JB(u>b-u ziWsg7$b$|7xU+OFS@kBgyxufIIr!YisNyd)+!Vg)HMoHx%+9{8lomKAySb{=nPe*- zrg~u{-rat;8_kqjhi{qdjwW>+kPv}9P zD0kzAaSWk+sn*vka@}s67I38hO8}Cb<8X zN7VaPl*SLUOjAvv0jSIK?O*tHUqob8p*WLTgkk>GkHLir3Y`|J(L0%090KGqUC1SL zmMikL%E*+LVZ1qHSh5Ccmobr*#WJ&y1ehrOw1#^Xsyrt`h2iTvx_(33_cJbn$!V(L z!dZwtJ!9yxGZVUxbf^IJxdK4E)TzwC;i40P8_uUK)LO^$7<{o2A1?P#D(Gggj-0of^y`fs z2l?4>7-^v?CbDKG7WoW{t~wTai;s-kq5=~eqv6uL1{S8{lj~i|TfJLXDYe3;@kp1C5SD%w-EjF)l}lxQEX=-7ld&@%$0U3|K6nJPjG&)BxmJ88Tw*L= z+(MO5p$9+lv%D)7ibN(gGdscJ64G|r9Hb|0FPd7NmNdTC|1;$#L3*zq;Mfvi@gHKj-rU%WUus2n3i^=J{@Vo{B=DCgQy=61YE zN^EjwQD+d~Py*4AVsX++@6EKT(JncRTu#YN30`9pal4{E_024ox2zt!ZL(F!S^iYL z2~MUQ$ahyL>nzA#Z7i!qJ7(37)4ku2g!jB1nf1e2xxKa{m(dcA=LPv?2q!twZhKnQ z9`+`ZAgoMjJzyW4z2KT@kiE&5m-V(LR?D-08c8c{4vhqdC1S{ojwXj{TA9htja=i| zDj6if=rn>ib(ZI>KaTcimaW z!dmz!v>)jWk{YGJ2?&>w#)LdwJL$DV7jN#dhy8P_OZmzZ%MnqX{P0 z9*15cP9O)1+a-AZSc$)^zLb1>gm9++IqX43r;Nk}bNRk4wf$>REMEn{1M2>r`tku} zocgrC0ab!rc3<2Isc0+3b>z+SFjk3Lu|v&)nEPDqX?NTY!Sy}{Oik(ym!3hR3U`q| z##PQ00kcqe#PRuv)CGkZyBdub^yFE@x!^xx7Xs0N*K$5wr7P$Hacc23_6WT8hOosX;A_aV1>qvvYug3-KG9EFMR0UZO# zlhQTb`XI@rS9Wo-w~_&XpeiFOU!6tQJ9H4b$d%h8>3e$2AN%PGMX!7_YvgYu8{jCn zb8PKi8wpLWcS^l^B&nCCSTIvnY!)k*E7XM8FItW{ZphMb%2W(b@9|NBO(*y00&o81 zQO4xZdj@#_jJw0aUP@{+QDt%bz3`u1NX}4x@zK|#fQDbF%`Tq8_NNQaT{lSbD*_T*Ctz!m%U zbOc?)K;KpO6_^Rp?ZJ7hY|b5_J}BeTF|juip^|6XuD2s~wcsOk(l%1@S}1ELT|Mnj zV!7&YOxJ8()B}?icBhz~LRWRJO?{#6`G#j_hEm1B=eWl2rdI?`@cp9zn(VC4@H&;K zgxNUAJ^1s{NOWBMy_Mh{o)p9wL~}dj@>eo1YS2FNqiSJ~Sgf z>fMNxM4^V!N7gO9q$hp)6)lZZjK#GmXt!co0y0829rXG;*?@~yfo*rM|CI_(Hu&TB z;a3yQ(AH6md#mNCJ9Dj!Q$tuSg9&T! zi+aHsTAGUy6Tu}owY&NMIxJTf_D-{I{`ALZcFo}dR@8xgE#Z% z`|0O&5c>Ybs$o#OWU#-QC;J z9dEllz3`@{DF7DXre}rz!)BQEp*+VDk|@(^cXAtXao&GIMytmlr4Hep^lq0_-sptC z2Joj&@3=kz+%f&6OC^YW%~3^QS75`+@03`eS}3v5Q58@@@%=# z`dBz6b0jI!@y5f-4TAsZ1aC$|>XRftg;0D3OOl{VKEA~{G4UF2M`BgQn8w{TeU)$k zbi|VdOvNq3S0y+>zS0T!cPcdB+2Y;4>kd!2pCC->KAnC$z+$xwRm|LJgsMA6jk&Br1&jUJ|p8Z(+kWq*?ys#I?1z@W^=VHkf+ z|Ml!`x)J!}F$wM+VBbz%Tmkg#i5QcgUf(mY#ND{qQP;WoQmYB1UC6Vn$m!>}Muv+O z?@2>iL*-aJ3kJUme#tdp@&D>O=Gl+7gO zfK9N|Dj;CUD*1r6mu5onm_6liH=SObFBO39PCqhh{>Tw>O}=e)@*c)lZv0|cdWT!1 z*jg#^+1?+iiC3EWtU!1*rNT4RlksbU=t<+C2OmkK_8Q+Zg=O*aimjlSjgs!ZKjui@ zT9zOdET%>uAeB3UCPM1EE_g7(BqwZc>#;;CcOK$(aedY?BzC{U(8&(V-JZm+OogFC zhRLdUDfkzkzN=t%`@vu*@Q?wWl1EP0WBPk2g6}s32ly@ofl#rHu z_3qs(Y{)P)WL_v(zM6ApSRmx?r~=9*d3)W5rI*8i@USHo$uB;0C^>IeIdvTs}Q`?+KCrrWMGaPg>+Zt>3JH-bC20qCN(Hkx6LC9EARb*09&z z|I1mV=Lk9w#TUJ@kG>D0D`<_MGL&%3Vt0&7o!2-l^0!|b3HiL!I(7^iVaFOgefn6u zAOsofd|i)0{u1Xo7M1go=l=s^853EuhuKAx=GCXP^LKd zc8;%t)`3@@e_h6NtPlNObVv6|%Ov^i-~G~kH7dFAXo=%tA_)KCJB zfYNB3t62T>P3?IiV&Ye6(0Y}mq~|e@PRkB%ydY{j8KV6){B*gUN7I%B% zPVhyru}3}LOhXkBd^xBt#)+k$%W>4W(3t?B67e>p?=>m>uHT=TlX75qe~_)Li)k~G zw zt3sZ1t{J9GxGj-c64@&qwM!*qn~|ft5MY^I`WH4QypeEq6#s#&?k`VVU81P#BaK4c zpUjj&mPMadmgRD^)oUr-m4r{M7xMuv922C0(yFoOg=>N1 z2Z;&}qDRXFyy`yU=ro9Fn!A!yjQ09TMysQ{-{5a@s^`&OD-Q4W1s9rsSrdJI1B>$u z=^a$K$54xv1T9?d-u_x6th09vAq2=EG})E|S_$|G9Mh z@ozo5Fh{#T3_0Dp@pFi4dXp(?_Y|S}2D*1Nb`<^EsQoKmntoBdGSQObdAhe|t$BVE zwI@dWql;m$sDiER_5S%uDlPJwPxV3(B!v7F#aYW6uR|?S>BsDjNRv7#-1L}m@Nfn? z+m>mV{l*xE%^ICQ57KH{I93iHUwpw65o-I1o+q?AX)$MUa;hG%G22nR8dW26-iOC) ziQdo<{r=~{N$R|hz?(KdSYe4%;MD79;+9}-&%gp9vZHq+$yv!X3inG`+`jqBUaKn8 z9DQzCs7w45+;cQ7J+r;f3fSC}ap0N|$J2uFtvlu<3y0@9evh0>+x6F?lnC43Eb+WX zoj-^)rV$U`AzUsN8+tj*yad(1%oxtV&D7`8TtYg!da0xs(T@*t94(Mpx?&-#by5hw z!SnaeP+mio_j;BrNh!iF5zM{I^YbS*g{t;tibH{qEh@&W3baE)xJ%@!TFBuZk0}Yp zpEv)uHgklC?m`dRoMAHXJ$cFH+V4XA6=U<~7Pb~!J^yC!_E(jAbA%~nW|%C!M6BEO z`9uzpcTU0KC{NLo(K&)(l@iAk@>6^V@l;kUb+WZn>iyxX<4M9;7=qa?{$P-3S*t|L z+Rj(mG+1OMm{U7<%P7tah7DOce8zN(5U0r!eXe7Tza-fD6Kx%Rf%NXL%V%eQyuh$1 zhcs599Df@OKk}N#i>oBp=K}oJ^o_B6-y@+yb;!Z$XHV*w(#h!YvI+tTULRbOdR|R3 zHVMY993b;IQ;BDHn6ZjuXq^VL^53H`tbh;I6qR0DVa&G2WO?Zm!Hir+<}jZczx%NH z$8SZgSYpGUQ`o%|9UkacUhv-N(9osyC2qrK)3Ru6e+U}t`HA0kOVeid>#T%>_|^_o zg$TsKM@WkwBr|j-l*k=RoZ<=WMa}>$Y|Wnw4MSQuE|+crS$sD(BPn}-ieEA=}<3fMv@aV$!&<10*NP$M397VrQMDrb>O=vGUq?bM@5>e z>RdR&CGV+!C>ZbcFOOha{d&Xj6=UIyMACq{5VE{z9b>|7cW7Jca4b{Vh(}tK2Z3;= z91EQxr)x6zK?Q&Qsw!;}=xarDla1e*ygc#qz43$>`}uUYFcXG5vE^=)2<|hXQCc47 z7!<3FXwmY1XtPbef-%p`Vf!D`_#P~iwr1eSQ)L^fhw)u+zCtc#xx~g0d?YTL%Br1r zdOg|OB)UAmU4q1k$dMMb$9qW@gdzMAUmtOAN1Q~X2bt_l&er}VC`u;e9@z0KR&2)2I~f#ch+xbXT7nZ1sYP{67QDtFV&p**gwGnz8%0lV2d!=<4F zzv4SZ9#2myekv(959A(hB+)p9QRal5%L_LpVLS$RKZMo!W6oZbkqLdgAMJl6zou3> ztzg10%9j(W%3=eUl-}a^;cA296ULX#5=UFTedu^QG3XRF{k-oC8+In0OeRlnTy(IS z5+HluY&AcKSPBGjg6g~$KPjetr|;jYI&mH%Xj;q>US)m47N?Z`>d(F< z!=UiBkC@CjsP*#_^V)p7ni?3VjxqT3$%vR3H%}{4d+Z>r7y(2WHj4%QRPPWJYtUF2>yNrnSOa~MMO44yw*P`otRYHM^Qc7>-IJUyIm*d z8lA<8^fmbpuhG=#%^2Mb~yRXM7>|;yUpWQ@0iYjG+`f z$2sC0i%K+Z1Uo@X1i6(^TS%kT2le3Nj%OHx*NIg28&RAC5zIV3N7k&Y6L~pCZ$Ab7 zXK?`o>68)~iE5(Y6<8d;Xy1u;@(YEzUgl|cj8J(LvXG&NZ)CX)H;n=B{~W0QJy-vI z$ugfOZFK!Mn@RFR#HcqedqS+zw15}aS)@iq3UV#+&$F%`FEmRRExqk$=bh=xo(LoJ z{^CI6+qXVlDU)Qr)z4WhO~;8we30NmIHwwL%zED;-%(Gv z=gKvfVd>rO`Y$W*zsBCbFXPo64P){fqo;xY+|l@rl&|92h=Tcd6*4TwFlOt}e}Ca0 zlkx9gV#^VvqZ}rDSkn8u5g5Y49k$F5JJVm=la%>;-@kt*qx>QD=r~8Jc6kl8X5-W* z_8n((S8PZr$fH+n8jDHe_u-F;PV2ae?$&#sN`tzzVUDk4t^_IrYHo{8wV(Lx=L1GR z@xAoLgAds~Ss=}y;#*vK;r-fBVX}5W=$5ztR_-%FSHj)Sm$v@n02>U2BQNV|uQ6Da z2|a9ibsL`RsNEhe<4)atHC}zF2Wc!-LLb~vFKq}ySGMj5WV6aUu*W-pT3aMdx3B6| z$T3GHb1m53SBUL=f8!RGu#wlp@s+lTQycbOtnvi8IdJyH@%QaDL(PUIUEr}PJdlM} zJ=a~gIBA8lSn}FW)=F)?1Us5-NNJ=(6=;T1p6~$OWPx@V=;1@y6QF37GAqsg(K^{JFRX^*6 zf5RZkF?eBUdtz$pKm1mc8@R8ZYS86ncWKh;H|kmL&ypKG7pN|RI>P*D6DPJ(D$xuF z)~D47-p;;Y>AjtuuNl!bCFn{D;ejNwS9aafgHM$PIlfY{^IECe*ty<=>qL!lp1rUA z>c|eEDD(jY(=oc|qDT01jwn`UG+dW(Od|)xJMuT%F zK9_y?I5f7F)wgO!_3Nax7|0=QK6<_PnF%j36Ba?ZaknmXknsuc>z`shnZSlCQ887j zb=cY$U_cPbUg&3HpD;6!R37Y0J^RAwrH%z>qV&dX+=_&CAd9GvNqaEUPZI92ksx8pIl_zdyxn#5pYc|Q6O``qU-2y@sEUy(ctQo4=*=_ zr9bxqnCnGZdXzW@zA=x19vX8{cWoqJrH=FJ?0RZU5J@EF#!shx!Qjv`29Rx^h=KMz zy=MW7O!Td`hmr+X14l*5(YnMgUtCeLPM)P(P02XahSGP{Kfo)kN~OwanEUiY_j4k? zA}uHvOr74&lU($o*!0gO7CfXu)UOVv|*J7DO+CwbJ{ zu}^G%61_lLAl?2B#e3`K2)Kmok8`w^?jz1nf$=_AW}wG=tI&RdP}zM*ayeY8LtG7BR;E-!bentS2!c=Xu%R2kU*3Cuf=shVsG6GXW%rY||FM zx!>)0alot#IpXBL3#u3fChn7SyW7{HR_Nztjwi;ey!8IZYkqs#$bW4z4JLoQPzCSS)oO#f zCQnMhOiNt&w)p(7V}3kv9qHleA$^{6TbB_l(#3d9#edzshwML(VdZIe+Av7ev5WnJ z7dn9M9=2Gany#}DmY5yo5CBbZNaX6!IM8s~AO z|9T1W7yoHEDyCgs@-zrqrs=93{ARbo5u%|^?{f4j3|CJpI4UivPDS4Re$Eeypx;a{7C!z2u%bg5y9DLECee`pK~Swa2^Xmy(X4 z^4z@Zyy7|;u(!_y{nGmBc{ruZo=v>xDdnX4dkC0WJ$Wd8e_MyNKwbfCf#2;|O{JZ= z;w5U^XxxY^*XnBnN!T>myAAm@st=jG`K#j|UX-$xGVo>UU*tov> zr_o`uzrK=$YAf_1F~VfjJj1J9F8U;B=8ffjlRjqcg6EX07E1{Q1eU3hV(O$f<~mQB zZedb&uzJ}60Y;yGnkfXbTXEb5tRL6UuJ+7zC{`g^uY_Mpz*>NU%0pA@4U3SXg$*n& zKnfq6!K2B9XB9W>$3?zUra@Y#&mxn#GDAtF%(|7S-^?`Xd+N!U zEA+C#?nYY)nKtD2g>8SotV{A=3+Q30bx|2~#f<0PIkynn@X`^r5KXx6MIKo3kTs-A zO>DrDLXsvO^NU5Ub0rEkH}&RLyhX!LJvUXx$Hm^=N(eN%Nf zHuz}!=wgf1wYSFiL>lSQ8aIOim;YLk40*kTC|H@hQDaqt(#T zOw!)%SWRAap~PK_X*pl(J`sE(QPZ(xqtIC@;=tlsL;6)?Zp}?fwQGiB3>Lnhe)!e3 z<5uPR94pNwUury?gxpTwLHZo4-2flaPn-&I;+p{+t!EX3(NJDjjM=qt$|HG}3dMg0 zrXm2aD>j>eU_%x|+m!ArToN8H-mMjV9}y<{b15gUDroCzn`;Xd4NpuMbDk;~BwxHs zdrWoy=dg2pCXwb2D!hC6jm{@y(s(Poc#~jD9n$RGa9Z&WzQw=w`0-{ViR%6p#o99r zUan$V`ezAVzQ^B|(cPcpJnTmgLtqvN%LwgqOB?go$mr~UfoFH(2&OX?TB6?s1u;!;gjb z3_aa$sr<5ko;gX%N}>*`7U<#bErj@jAq@NHu*?AtPS*DrV#L?ydLHMi$j4MJeT(>J zTN`X7QjU8pQqqFd0`Ad;a7A4UZ!kj((WHsvgf;g#=zYr}+h)kbAf?oV@lGp+C*?OQ z>4E|5@~K?|&+!bipG+SP$VL9{#rMDtE%HRyd?4H@wv3LY ztg&-iKNn>`eiRt&AxXIv)MWNSivRhjvQFLtU zX?n0IN{i%w+e3N$44{=uf9_4XZpy1 zC!_nO5ZI1Im)KI$cHpU@oOK1q^%(bKDexO(x%kw0(}9~%(B>wje`1DTEZ_9a;5fGC z38y*}xa~@%LLjsQSC;%3?&m@KVIB3qO^oddT1Ucn5%y5#Ypav8ZOoM%)xXKHT#|di zBJhY$to615W%KhO3w+qC+`@p8Hb=_QNkP&}zv?PpVfT`oeqnZ~)J5Mx{S? z*Kzy6c1Y~HOp`Bf`9ltyO=hRzi$Ni2JZq5+}oU08yR@o6yC{m_AN-f?$eG!QuVEB znmKwuzyy{-VM5CdevY!l{`Vn8{pyXNq|TR1q=2L+U8w#?n8@0wET7waqDm`uiT1ZE zcl~YIUwoze1Im&3A!UQpcD9Qc9b%3hWqzOJ0))8Dcr(^K{8SngO%;a0Y)fXjjnL7P z`xb2qi01jk(hOu~K}XF!)jNNaO$#;bS+nHGAh$xkiM*53-@97Z({K_>1OLwfUy93# z4@hihB84}$tY(r1p4KH0I7mZdyrr=&Nv%HOqY1ayT))Ky}Vo3Qo?T)b-KzY-lRi z*5c*aG&U+k(j#D5)0${l0sjlasFlCJESY8Sfy+kkO1*%D0mP@y9s;;Un`YEc@6% z7#P#anwCgO=>w|gmmGnRSQg*0bOx@D+7heW>vTR+l4|eO+;|enB?!;%F2NsvEM(^# z+B7X{bzEIqb-6a_vJ~H7T=Bm}^4r)fcljZ>e5`3;6>rcaw%bSqXt7eHP^3tqXmKf4C`|gk_ui3bo_S`z z4j+Ic!Syal1s(#O0>UhcN78?3@2w z{4Oz~6I`Gf=KnFU1YX{(#~JdEL!+dyU{06jHlPX`Op!VBJzo-?-2PEb_DSQN+m}A0 zu(P|+j^hg4r$Q2j!&C{3C#y2Zvc1Do;J{v(A0;3&e5;Fo^!0 zjUjwgxI)ed5q@Iwtz{&loem-)i$e#IO2)>L&sGY3h{z(@*`*DR!0AU`CfOpB@Ef}Y zr$}~gLX>v2A3{bDfz$wV@#NKd&dBu``T zs6u8iWJi`+SgRcZJ&~P);=8MSTy901~QjP4$1>Cft9dwuTsZLStCcJ588Lg z8fp)@rXsQBGn7KFB336ZAraD%=?+DIwl4z7TTrA(=kWJzC5yXvU7@=rg_g@~UP*zQ zBa8H&<%jWw2YOP{1S6`Wk1&iC^0P!)gePCM0h{t&PFY3#_evxmI+<3puQa=MsD1ol zFm~hxYyyXHd;KFXba*N46H}$sH2pdME0>Jq&17kEpN_Xqz42ntLm8yKf45&CUP(Is zQGQ%3Qm0VJe}TxX3B{Yq`0`75b)R3} z7??JX1G%aK&g(vINHW@(y)Gh0WwO_;E9$LmD!9!c3*zQaC0-pIQ36fC3H--~Kh3jO z{W5>!$0@I2ZjFzTjp~gSk#ayr)6Uwg8%d9^Ou%ZQ^<7x-TaKI@IE8O7>bL!^ zwu7tF+~m--puqRlx*StcQ>>7CcP^nK7w;TJ?D$;BdsW7qk-E`$sO8aKNn4UE0J%_i z{AoWuGdE%IbN3LGJn<%zw|Ts4^!VZm3uEjqIrxuwo*$qhP*Sd&{>%BVCR$GVS9{_l zxotVm*yNb<{Ypf_s?KO9{eR|p;xU^lKHRbiaTvO#1p!x{&|3Vg<_#a`okN7(BGGS6 z1N;R6ml1ICDn4C7A#h*UX(#%z6lnL_g?xM;Y%3#CN=^Ht_`rSdvCqrGEcR-ZRQqHW z3>%5}=X!}x^y9wNhL-6EysGBG``X3YW4YBeHudgDTFF;b+fJZZ0qWm zYDC}_Y1MO%gNsl6w(g|fKFTt7o$9#L8(wBFe&L$NtmCtL=O1oHT z?U6;+yNQMFNY@l>TVzj$_@ zO*imXulo{dnnGv1SHK*UpI=ixL4|e|L29a1S#MMl12haLmoZJntZER{w{)rbFeQ2D zD5>z?q2~H2{^9XNWsR@<*&Q;(TBgJ~^U>?MEsrn-vmMLy%+pR#)Tm7IeEN_>;}=0TQm zr%8xfc_f^~>1?}(CKcms?Fr-GW5RZP3W=3`jdD>GArVkOQ@^(pfKj@p55%Cz4cH|G zMgXNZuW#6B9Jo+D?m8;GYf@<e6rrvc zP3cPGA-p76W~j^uztsbGiZeY~(jO|b7CuGr`J4wTOtYsD4QloC{y>C9k4uL(hEISdTka^Q)TQh>NFs$%E9s!?vRDy1FoFDG z#ST5VB5-Kwxxx}-s+f-a?tK3Fbq{Wx8xYhVJ1x4CvmK&xe|Fd7oikyMQVV&r&ZmUp1peCNDd*~f+$tx?zT zF1c`y3}|wD1iT)i1M4qgZyg39H_+mlg*mNLmp@c7DCaiutOOohGgxRnK1e$YKx8Eo zdk=@7K9<2)QCnL_+hBR&`P^Z^S9pzUqf+$ugEhroL)-OwG(l>Q3H|5MJo+~srTbRp zy}2I)XkU2OfQ8P1i)E7K7ind;h-!ShY|*cA)bgNL%dVQtZo*pkpB`~$KGV3(GPCgS zxa7vct`9jr?KX-2qO1SVI*g0w9?#C#Y`6P+dXz7%XH^j>uGl3fhfu}BUgg2e!_;~4 zCd2O0GrGFAPK$s}gaT2fo$#84xc?a(p6ez)tbC38U<3pX4T?m@VG!bx`>W!Uh(9Y` z#m&`JiOPv_%6e*7oyFNvW8szE7xhj<8%wrcRmC`9Pt7;~)^G=X*fzM_`~7I%T%d^0 zc4MLV4D(x;;a|50bYy63s|BR2rUdkMVS%rSqF zpT{o^Y)e|JE|{{dLRHB(5ef#ymKDD)R9r3HW>?YaWqZ*91BzAixEC^Y zves)dxb!I+B?V}zxODyYI{GaACYd)HjK41O*cwskU#!;QtzT*r(DOYtC6_ebqcq+# zTl~;cHK;rl^BokH##^p;b|qT<>`!QW!1N<@lq9!y%=Hj-!-e~h)aiXBdm8nEr#~L; z`TeJ~!4O;8%^%Owgpfflb9N z5Pl694}jT}IHjB#$lMPtk?oa6cu4x^2LJgcf)tPEi4+I1#ap36iZQJ5dqth!onETF z&qe3TG2$kbRii_jjIL;{2#29ZfmVs2_@J=9Cpf}_NZ$2^D?X-_Zi=n@mw&#&@5?WU z4zqbFVNd#29=xv{cDSU+Mv{hffvdEPlF66xT0`-9^SV%`qhS6bhBB25-dXsR+#0n0 zM5rP<*=KE&O8?4sU{Uesp~45%u@n6EQzx>}>|dhU4d=_j&ShSl$Mu zn_J@<)w-%*ab03n_wEP1Gw3g|BH+Q51+(}edKwh3ytm`|6oS#r4fLOf1gn3&QJlf2 z{Ia?iity(*?pXP3c*{%%+Xv!yi zP?m&{9)=f9C`o4}F5&zPcjhgY_3%cR*BcAT^5n3kcfb`hXV;rWwX=FLZ>~!@kw&nQ ziJ-Z~Td~qlaV538p;3sHy0hb;J(pK$NBq4QP6B<#DN49wabB|5y@CtWy76=n?IFUf zGB_JFirtT|WYc~SA{~?~I8;Sxe_Oh2cM{lZPYMxg z#+~&}0_+Awc% z_x-1lw1Fx1)_-+@V(j654?E4#Sqp|%KOE$DI8EKdmJsPDAE{7U*k12>e>^?b63~_z z3V8Ztd{>w&?0ASaNzDcwActI^q*J;SjU~qmf(CHgSY0as@y_S4Y=2P`h`gzQ0I_b8 z>ager()}o-sBe?Av|^i!YHa3cp-(23&eD}PmX1=1h|MUhPuB9ir-ZV(8!C;4#OFG6 z#V}*RdgpS0VnK+H30RB{SW&7NARV%C-*o(@SMQCUzNP1B zb=pjTL(6jT|H`qbOUMTc=VQ{P zTLv@Aj8f|#)s1W#ln#MP<@fqZC(@A+2o9q0$p*>vot5&F4YDGl6?$B6QnWCKNrT}y z5MSID5q_6PbJD;i7;ZV8t zC;OIETz?7^K1o13#>k?;vETxYIEiC6_8hXnpLyJ!4xNIj8o*i4f|S)g4gYG!4AXyS zUnKby)Fi=wkZ!le5?L=G7%yTit~m8)ORTt{A%+Ca14A|$XZ8_H2iDFiUpPaRY7_~t zXS@V)4_u)qCnJ8uN1xgBdB9Sovm%5~Qy%{0OVVtolRfrtktd46ki|nDORJOb6Sy$q zUFU^k_fLngcC&q{Bdi!<(^9;yt5r~aQBRo1`)S1?UV3-op-_3CSTB&n+b^2XhwEF} zwX}LT88+UneXr$>MsUn%JZ5RKC5YVWVeE+UE_(%fyKBO&1B->y_K}htuvlx9Bn{05 z(9Lj`r)&O|bNT_Y~$ilM0;c|6EhhGA&9o3Q$zR|tjkE>oZH;u`)j21rC?rO4#~+`ukXU@ z<2}dl5d;Q-TgMQF_l14v_ZwWP`~1`%JtbVED&yP7XzcF$B;kg_6o>clcbg^V+Z1N=Zb?_%R{{Hr0 zY=6o3S)@kF+z!GlWZ!#8S{tjy;2Mm5)01q@7S z!F1+K6tF^8a%eKL@mnV@&{6j$C zlAN=2POjFlKoOZ$~V#)4|_i-MFQ{IDV^;z?q)evjvR6diSaxZ zpU%7s<_$B+KloE_Tv1JDZdsG;AR%s>6YPCg$Nx$P3mMl{$N%%-XJ%_XbqDuF)#gPk zC|1}+x+GVxgj4+~h$NQ|RDKz}umb{?eQv=mRb`8I8NvZCRCWNqnCVl9L)NOP7Y z>VYU*@?{jwL1xJD2YQl^E26RT21=Qo+Rh?*SzK{}UJRA+mtCF=3aQuUo2IA=p!?m8n!OjeojitdeZG7k|X1 z;wgcwlH>@V$KR}B_D2)29k6tRaR6*0avzu{vsP4#`McApjeQ+49ypFLtFQQdNP#}Diu>{GkG zP0@zciE)_U6W`ozz45$RmJK-SCJlIg?9tI~lV5IUGj=Q~{IuHP=UF!wdlu%7Mka8$ z)7HY{!`($s5AAKL?{3JXa?jNx?1ey8S1q5CNc`n&Ccp-y`&B_sPm-P(z;Wov6Ab}@ZExAtr z7K8j_FqP>dr@1Dmi4GG=Dp?nGz1>c(Iw+LT8nEfz<;7kr^24qftQ9vWJi91fti69> z`okX-jix9W`SyOV$kXMZOf1Fk+G2B&M;`V(_t0gWS;#{Dg)Wgd2|$Mc?JGAQ7a#YR z6u{E5o}fAPO*h|iJyi}yKlUJI)(WZWxZv}_CuZ0fL_xC!_PrhuqNiUPd((S;ViT9F z`HX~^|CMYR(NTLKZx`17)S8Vl@N=HvCB=T(<4DI?N*0Dm@@e2eq;;;AgkDu1GN3x| zbsU)jdx8~VN@ZjMEurQ$w?86fVc^dbk3s4tRH}KyvO_106A?9SNjmv?o_$S z4@L}O(W3SWj(-XftG_+P4Wyy+znJ6o+nFe0*6c$sIYE76cK zx#LO+u*~2SXHFH8iPY(zx<9%U8b~!j00A~HzioGPD{Z!Y-@7UbpAI`rtJ(5aO0)QY za#3*6Ae=A2$7xR6+t|nfY4Ju(a2;E*m_9C@AVhR+#VU5^qc4ckNgm2B*9d?xjW;5( zFj7DAbpLoX0k-;R#x)m&iGO_R3}DQ1k3>k@MC{-qAN)V@5+B`s-2W}UVU8vCNx!>rfS=_Gy$dTE$7VKzT|5$16>r~z%T1NQapk=N}4pszzv_=)V z9*u9YzF9^SD$@`LN0XzZ--q%H9N6J zms3{AOSqI<8+qaJhsxEtRlat~W5FuEO@*jaZX5xOCj2p>EKVs4_o9^=&9xXl%2KTP zXioW3>-K*#$}bYYD7o7j^T%__di|do>54-50r9%UeEHb&k2$=nqDy7VPJh7U`Ukhr zd~=|gU^h^Bc-6>E5$#728M;IQ>8WhYCGlV5tKmWk_=9+LaY{Jy=pb+_%o>4#w-JGE z_2zw9kTiRSyEMH0CWFqLw2&xwfgTG)aB|%kL+)h}k8xr~K2Culi$D07=uW^ahnl_| zW`K)agC?&LaVU;AEjcphI#E~W;QnKI$cq`Is@!*QXv=VrZ@QWkY_57()Z9~)F9Ors ziiuJB-$>IRI;yv+IYYDOuhuo}%(ngA$2%-+EMi9P3KTf++0rrFlFWQ_M)duXme1(Z z&w>;<@4A$mcu!s*evpmD!*lcZ?L};Ct5sm*S#QoWBdDpVcbl8<5{>^kQY9q>jNK5u zXZU2Kj#leu=VzM@4S5_&lipZeGO5)8{>guxXp?y1gEv}@;`Hw5~)s$JItx|F1bl2HG#BY>?q!Rual~lP$>%7 zZ)`E48$UvBoaNobn0Vie-=W`xS^kmFA=u*PuSI-Ey2mcxT)TF2jX4E5N((a=q}T2| z+;V-NUGbW7*~ZuBocg-N#P;<92%@N>Q1=j@Wf{Xb-M#Bq5vB3aa_#n3lt$}2rAr`u zI0w_Hp8wQ*ACl;rS$cN&f$>lzvIk3=@(CwOTE_op2iOG5OoC-!mu}HB<=RK7=29=R zeGxk0x+drYF|`h34JK{wJ~V4sr=5D941I*EwxwxF3x`L5wFkU0Wx8;P=rJNOF$nzC zrQzKBKO_rPG z#?KO03Bi*C|C&~rVj61BcFA$MwO)^8zxad%>n>q+GKSmV_`+E7=^|3sDHcOb&fpCD zK4sZmRsQ8afU)ss#pJYZ$0pFe}xpQX{6J;#Gl4 zGR;VRhO^!1}7!hwD~IfL%kLm*)I2x7r(;}9Os9q!86^JlIy3Rx-7r{}_)TncUi zSg`%o8Gy)*-gArq2uo|vDg+{pcFA|DB^wb!o4iH|c{ar{48m1p@AK)68e|6^Abw;* zVWPAXiGU_`lcn{5FBNSHcO-5B5FyO91tTz+7-Upxow$b7QuOZRv6T^78$G{p+QF+{ z(Gbrq#WPM8q+vH0RsJaW?^%FK?26iD_4!`r?h^#TAS;pOE!92ENHDDJBr2EJm;UDSrK924&$)*5h z`{P-BWOGR}7V4-A0Ab)p0OwOh2QN!c9+9t#4)bG0Go{JlipHBoiyF-K%jU*<<@#YJ4}Zn&7&pMMu5Ng|ES-OO2&@_DCbAwG!u z^KlaYp@-pP+2SfaI?tvX4+6hE;2HB(j6}i5G^ebzj+>zK535Qw_ios{r)=kl- zQluq?!r$FNTOSGEGW}Dg!YGLRiLBYD! z7<+oZ8YLJ0;7s^Px;b-(Ek;@>FcQKWDkDx54}maGX)v0sfAp_KgPw8!UMGmG7cK2# z_$%l{r2B^YO#bK%Xmk^HBO@9fK$8Jj5DGujRCFv!f*=>9{dvmH@#YkUJ%e(HnDS%tC5VUpl{i#E&65PiaxZ#J5oLTn3CUkV{%k!fRjvRvW7Y~jr zIESZ^PW(;ATCO0W0f0}ElR)l~U}-$@HK{fDY`|)ecPR>M9tbAuOd@POUj;5aURAMQ zIz_`QSRX*rqks~WOJw66;ivegHg#nBbq0ZWKMr*I1&>0xe<{5uvCKt@UHV< z*)b1zF+8)O2wi!BDzGTo0^%EP0{^JKQe05A`3@=p#5`-1TdiQ3OGuHFF3{ z5NMYbxbZ2TW#|?IJ*I6R40O!{Z*wW9x>xk-^~NCdp7h15pqKbeFr!Lo;4@?UL>J zPp_af+bCr3jYmj@B$_;KPzy~K?v}u(cC2`6i>8m>X}k+%fOS+EfA~mgT0<%(59Us5 zpQwN8+JbLK*OuIhEPF(s^O=VPq_L3$gFK7E<@(%EGDGdx`-<1>6xZL8o?88_0y!@uK~AG`nbzbifIEXc`}%*@f1f(9LFKv?DZJEYOU+B{{(ftihWd1aL8w-w6CylG^no>AQqMMx2#&5m~hWOzQK(&(_n zdS(cJVWz>qW*TzQgJR@M}h%tG?i&xbQ z*uk`og2b@2_T4WGFULKnUMg`;Qme!gf1iv^Tu(HKEkBsjW?2&h(xsjyI3n^_D!nT) zTiF+=(O6ILHu*{}4?{ha>GPUbYfUkSO{-bMEmW5SJnJ18>swjhXsjQ%%9!_l0uA%f zIo3P2bvs(ll0+Msee$aLqea?+JrRZaS!Ud$ka(vG=ab~fT)Wo3_oeEP9oVx60)W>AJo@QC9%*uC+XyNXd=DcFh*RDhJxiuVkaR)vdO8`!v0)+ZS%>~1l$O%E96nMA!X{veRwR>&o72Y8WyY(B>4 zYA1d7S!-|24CXNiPQE`aMq$oaw8|~gk;l$54CWvBA(z!g)9Stm4l*+(F^CP zKg`2Z6P)-wjNxW7!e>Qbnu3!TJmz`HAX_j=@_Db(M{MV+{XrghSHJY2B=-}z9)L)l ztUpd94nGzD8D+3Nf&xtjlV-4;%>7x3dhT!&ZTLFUodcqIaHKpmg8@CJnx(=ss~hNm z+YjX8y)Vw|hqow=_k}`6la+}z!~2H)syr2NFNX#4kKm;f0=Xb!HoC8JEzx2_S`7qO zd`J81yiewNq5iJ!G%2Lh)RU{6UnB=OX!ce~Ph%rPG`mo#3a;=AVaZi4i>@8~_Z(-i zF8o*#rdI6qdd#iC-&$7%9ayHqE#E&|M9jcjd9HZIq5`t8mk`vE1;%bP*h>pL{i4oM z`$HZF=RkTJI-1)jJagf}ZZ{t0!ZfLI0U<@)KH)Cv-35UHxn~7|ytX_`z}w}^%iemi ztiGUNxV2L{2BDN|S7<`lwP#AF{C}2IzOZj!kEPg*A+vDLA>kP4P8W=JIZBp-VS z2}1#saj513|J$$E4pCmEuQHZd{?!&ylc+3<%If~3PW=7&KLK3-r~yp;ps7gEdxj5< zRR6uN!GE+j_#eNX@w>Qlw&?aJU;Z06{T(^sBj2F^;dlQh222Azo<^hj;&Jg&+2;Q} zusVnJmuJH+Y+dt$fFr*vNS+s<=sFew@Kqb2IBH?0_!oTs&OX8mz2t!sUG?{$3J zlYRqC^`B;6)JW(R9ArHGLj$*&#X&y&>69Nk)j^q=XKwsG$17lSWV@-^{j38`ZeF__S+;` z*;G*@Rgl0|)8i0x(PGiBy`~(bY?Yy`PREzLHDxY*Ti41)b|uuQ&073no=}aj05#}Y zDoAzLhY@2VGur*D+3Mk>L97e9+S)0plTXW(e*o;+I@&+jv$@Q<-us}?OLQ6&eZP*Y zo-Ea$p6ZKOJhrEfwfK0>QMntT&W9#DoTzsTs>!{Y9eZN@aXK|l((BTbTb-RX((kUXcnF@?zY!#Y+a9(YZMo?j+ zsM=?l&fR53dj@ZPEp7TxJm{0z9$w)wC)-c+vQk7SL=~gHr9kz~>HWwteQO`|wPd+( zo!7$`vJ+Vf&=Q<|k(Ldthq?-&u_TE6p=*!gMwLe&RhyU`#)sF+Q{$g^_6kBx=MMPY zXl!$gEkJ_KQPY*X^(3^1;jsRNv7JO{w*QaeGaVKmyU}a-qIm1b0yZi?S-|_ zC*Tsijs^7&o&Gg{y^xbwL1EPYSDI1NZ${jzvKY{Gs?F7;)q8d}IH4N<@YtL>o?<8C z`Iml;y<;Op4bJ#^LIaBKo@V&^j4LCNyJtAuh1++xolVS~z&&%M+v*3P8O6W8?xfD< z2zuFWVNdbK_lAzeM?w;X)q2n+zwN5xFElGKQujYC^Da{Us#dS_zSCsR{z{Ng>O{J) z`?GP)V#ju2K<!#&SdX+_p=N!HNJ@S>Hsy63lDTXb?gEiJ@OyDRKi|IS9Mv9fhoZ{C2Rrb*FtzT# za5~GS8+vh+u=cyv9%rYuq!HArle;dU4C`Nb?i>Y;_}vy7H}F0#&`>0R_vBS}@AZk4 z&-6cG|34o%DnCB{clH$2gi@FP%Z^5)YSaJABoRJAsaF4K3jY_L9+lVq|NEk$9mDqX zzvsbt-g(sbcCYlC-8f749Xym#PPMK!-OBlzv{J|OdfTd4k4t}tWsx=e-QK3;gCmRI zyu!yL{2xnttSNtqd?6=Tdl71{=#M563bC0`kNenRt@r63snhAAp!=^nJhOsdjIOe( z1ec6y?{DKmvoIf;dS4}t7xk=cOmxWm6enYyHqfIE4TiaYS<{4QUgeyT`g9!jB*UaI zt*BOI1LvBo8hz930F_v^&jV_+53z{ZAT5_xwfA?iD@UH_eWEBu%aik;b4}SgyeI!Q zSQ9xw2zk<~`eyV>e{3#R<}AuS<86T>%Amj*=SE_U*=*xbH1G#}N1QOgmC6=X_HSq^ zAik%n08#VH9iR7AbBAptnab7x#qUX%ocA^{%Wd#C&Z*TrcFt z#7+aI|@M(JxQ_jcUXI&+*cH;52so3XmuA|CW0;`;u)V*dyj!1*)Y6(mAkN zb+a`QP{c2D^OQuVBREB`0J&n$;q+3>h5YB8%o=p>G51c&QzZ4=4-2n783W=gTxS$* z{qgO?(A)RT(=BQvcW}b$e{Q|>Z)#R{WU#VS)0f@vAwT7azIHCD?ybRg3AVQs4oNZ0 zOft2z#5+9Q<(;!dwOHlEZ8>7uNmbQ0oloe64@s*3>y&4&X41a7Efyi6f1XOn=5feD zv%Vj@l5vJ{*98tr{<$z`eG?&SpRrfzH}d<<5fatd;7v>g3fpdz+iQtPagk?jpz)tT z0>x~!t4FyqzF-nUG8}#D({1agY3}bV-0{3t7b2aETQ6L%B#mjW-tPC17QF7Pk(~=` zzmu=|yN+%CVt1(0iFJpXTAv*=7;Kjudexcrbm#C9gi|UPFpMwLLt72n^KF!$YhSeZ zjhX2ooy!~7d1=4LKrAy~*J+yTMfz#%(DlQtiaA^|H(W{mg;1(S=4`-^IBS||S)IR_ z_#9Vmw8VqI)!O^439lo2AN^+J2c4Sd9a~^;C7c|$Ol64~T=ZSZ z8bCLI|D4i)+69aZVi!?I^)NPsrTZjc+=(K2$ ziRxDmxs5@a#irLr$Hz;?rI(rEG8UmI_h|9mps^6Hj6(zprwz`4`jwu&G+3KL@v;{@FbR-YaW!^=0tB;Nu1+JnIf zdP*o`KB9GUvp)G3m>f*_o3Ifh%S#Kr#`NPHf-%PO-pgXiQ@NbX-|Ew)Np{fvvRoTD zh1ZMmfxtzcc8rWCyoa>V}XIvJS=_LGA}hetPS$$yh514o(TX(0+k?;)QW< zzsH|;GYU2&4c`^@eEJMqp1A?`mXMSuytug4xyxKUb?jHmrDLCWlS4gUc#0*(Y1V6b zwyW8C9HFCc{I0$--t+Dzid=u?Hcr7}UVh0*8a~kvZhP6hs25KpqP=tj9sRWY;i$5L z_PD(7yryeVw{HUi#pPFWWN3Zk)S+s2K=5=VTK(%B5qk>;Q?p_Vv27L|6U_rM;{hTm zXC3@Une%3aCLKajwwP}g%%g4HuRlNx6(=*9DT7f@d{BuQjh@0PtkggczMwB&*9fs^ z#!VH7jp`Z;s$X`C$Ni&Mov6^jI~l9QEiwFk-w>YGAikfsDfV%vV84DV4;4zcjbR)YSBunp$RBSy;u2 zh2&snM#f_Zq=Ydn=I8i(+vu*g(h{6w)Ir^`=bfYcBZ~AHkm&bQRJ8iY%p6!@l`G;1 z=o$#5pG(HrcI4)p4KZbE&yLKRTU(dpXK)yve+p@risi6+qN_{Z&ATn7DQpyGtNwi} zJ?`b(JaRTeBO?k%Mw$33a&q#@$gTqYHZ=2*A_QCw>l-I0Cw2@mi}4QM8`{GtZB`1~ zmIzoq;VlMp)qOW-+Vq?KFu^OHDJpu&3Y^}djkAXJLBUTp>yRSkuv8RmQ;_9T8VXe# z%-0U7uYW8R`$&2yG^Ve=KP)u#&32Cf>Dk#?Wob9x{pcz)>d7p?cgV0+LGTU)U$r2Z$}Mu)GrL~MIoiqXk+L2?;xIoP zFE8S7urkFMxt#v_E0*EU2IOg(^L)&!?uNtA4mf0wnuotG=!YVh5}9HglvB)-QF33; zfcggLF>!*!Av-rIBJQt1AdRPygeEp9*1`RdH8CgtbABS#wnVpgbv5sMHm@#fF5FKR zW~Qcgs4>!8uwYq zX<1qDOi4q-RMW98DO~4Zxma;#snJIq94bShBl7a{q0!M9k_KsBUhtpN(w4Adf=+#! z{&`|dv48hRkzKFCqs@%>Qo>M*BHYF4mVm++y%gZh!o7mSF=Y47sclChSZ#Vt&BWzd zB)X~Q^UBJ~@~GLwS*w$iDRx%Ja1#;&1Jngy`oJS1Qjn279ty?(6iaPEc;^nho12@a zq*17d#o^)M&0DwJ^Yin;D+?!eh$R*lW@l5owOJFX?B216zIc&gYHUo@qvpx?aLL-k z(-Um0pB>t;U_r2*Wm8iV`0)+OmroYpyNs$T9vm`GC|XWj6$*W{EFwx@DGI%+?+S56jIT4` zmsq%`|MuIrX9L~coC(EGXjeYYk{!vTLxec_=W@RE_EZ(TdgVFf>_{&b=lX#=a%xHk z5r>{49?l*khcbR_W5XK!Nao3EqK=4@gN=jJTJM4IsfT=?5e|7S;)dsE1~}wFUGRo| zLxwsH+^(*!OGi@=3LXzGdewYJG03?Q*)ot-bz@JgtNQHd(B~y~xAnSAKb133nN*ki;m@Y}3W`*1A|9`>#MA4pf1fxk#<6j^Nvv#TQ zZ*o}E9cOh0jLz~jYibs#5)WuP08H84+Z!w~K$P%N0eGO+<+!oGShBf=ho}P|3lGol z%^MgH=0YtaKU+L|hH-Lw3So#5#44GcpQogvg0HQu1?RmPL~W{%DN#{T+-@DO!TYq{ z`S|f;R(!k-uW^vfpzv}?OmSS~V}mC%a~UP7_UQrj9?`7D4Oo8Vsr?1kYfm*M--1BI z^nc56iHV7o{N=alLm}LnOu6UPc=4ff^N;a(NwJr|J`Np04dxM-YJrX4k*oQ>7hMWT zT~Q+EdQ@e9ruyYYMohVCrNzyMWtt{j9VfC-O_y1}^V%gekW> zMkS7qBv=!FYP5HDDsTz6Yk+h$TAG&j1SA+LrpFQz{)}O2Khu2Ts$QZ+R8Y-(e9qNy z?jQglK`sN zO(8g`28M>2rMVdy-`EWvnN05N*lAJ}D=I5zm45B&g0dUn-13nao12>hC{O+A)7x0s z*bx7&cL1$Hp^D&{g_G8fzlnYS0O^<|w|)~SNlL;^{GN-H7Hd>Hvi!$qCc?&sPP{u5 z;6-?NcmSb1?TSBHczSqDt*_^sb)bZ2FbD{c0;IaJyE{-~K(j}fLwSq1rn(w>C^;A5 z70h}Kh5~1}%nE#;5X)FwGlK*c)_sHL=3rR2g`*?qMLrXZxr}eOkdgIu8esd}-`j#@ zw%zeY@Dc?TfSkFw%vzvBEFd5Nak0LuO14}O_2gH~Z=CYzkY`1oS~m-~8H^yb8R!(4 zs%aM3VY_~UCblPX?q`>fLd37VWn=r(jp=nQm5FsCPX@&NI!{p?az+Aaht9LK1;3L2 zM{y49^uLdDy4D}x^Pf`^wAEO{)lSCbn!OR@mlmoIjhYhpdH2A_4W-UK8`JTpz-HH6 zNFm>PlGE2V^mXG1S_wg0G`?E+VrDgN{H~?p+zfd;`iV>QQGOiyM@DA+XU6HZv8z3yw#FZ919jF z+uMoOommVA%U>8&V-Jw{Pwyj13P?4@%|H5>5$M3>e;N3=J>!&Y6&tl?Sde;Ar`x#v zYN2PB?D+v;j_ zNJFpSS#q!#EHYg3oA*^_1AS$q6Sf#^<*skYEf-0gC#h!NND#@h3)U{^#r%*qE8w|hk3wzYd3JiA`-p4FS@ zXkdDuWhDzFE9W$?Adxt*G<`JFwQfKmIqG?Wf{LFULXeeZgq6qV5XQp>u zSQr>dqovw)u3*z1*{`TdMKcQmloLTC-MG-30)DfRW*s>kzS$f9uqVUyc^9>inNQ&k zIUAfA3uahw)Tv)gG@AnhE5PKf2T2^$b1k~d1L}n@MkzGMo>`w;?aB$KAR;bPVl^~0 zEcB;`fP&R&cL~(Ar~tBf`T91Ejj4n40OGyUn3L0%e&+)$qKF297|FrWFPA8<6QG%r z-^8?wB2>g^dwW~qB5y}uQQ{%=37or_QlzirToD}|j;kC^mL(5rHXIHd50i>2$1=h6xR{daN0>dSU#xB(hpNUpqAk$ zzmYiM%KE*0&CzjjvYx3zw0xIgs7l(7!`s{Y-o1O@s9F0jN>a}pIW4VVP*Eu=**L2e zzmJT}D$UK*4JOE587W4hre2FcS6FW6BjR$HC8DuaQc=k+eQ(C3=6MPG_v_u^z!uTb z(Oqs)d9mZBo_-k;2fBkhLa&=vV3QdxS)cBGuP=2;QR1Ao-2>kSn9IMRSrRxz+-4oF z2|a<$J6(Bx;yjj%$74fW?b)YzI-kkq$Zzk6R*!&U}Mk02|Pri;}t?FB6nE6c{50wYbxBIm>CiZHUqOW#~J2=yr z9*(H=eU}=9Z7yHUr)s5>m?GJFD7+-v&G>VnvlqR8xh?-7V@0;*@fXIo4c_(?lJ`jX z4&~tYt!vmsLN;WlMkq2wzW6D%@b~(gpf|B*9a`CT!oZgT{goTMJeuw zo)(n6=;$bZA2MDtNDasaWbPa5Q_tzYS$%~ba-%fmeS7WX=G}`Fw0f_Op49uUcO~@M zRQ>*sfo+vLDv>|jOhR;(_P#pOtnzmqzaYsw+c90CAJ5c^DlEezbnO;?Ni$S`^^PU9 z^KrJP?|!b@{Q_QC@zR%2-@ShYS`L7L@vem1=#Zf`Wn@`}2|gM&WInvRq^9M_jyDHEksw3FGR8=RvkU9^1v<$(8MFF=T4i-AV4To{J#d z+$!6(eQ!Bhh>Px4jT$g`>V+O&Y-iDiNkr6D?;-lhwjRv`^2wIYnS!lAhadl)#2CN} z@dX9U7gZIpDwhMkDsv(V-enby2AI3BT2NRGZeGSU6?cRpG-s35m2L@##-XYozEh%2 zOpVVHV={70tM%t+_kH=ZBC4GQ)->V+_p#3F6|~RZ5^9CC?c*cdW6W>NuMkz;(j|x- zC7IsraTSER)wLlL_HRBPUoSUQqBuKw;^7p0bu=^B!C^L@X>8S9^)|EFUC3rJoVugo z_|x0*EO5SXrP(lA;DnLrWYslk@KjTFazj>WOAK9BU;SdUEbKZnA)2h5oN_CyeEZVCg&J=A<;{^iU(1OO!j>E9>9@^`s+HdT61Iqg% z5H$fuq_uDCkCis9-x>Biu`uk6x8A!$>MJSBqsn8Wytkg&>f$4_P0vWb!k^ zoJIlKkj(P{F5H}^IOIY7ZUi&tc@IdmZG#g)y}sb#mN;ZzBo;#M+q`2O`HrE5w2Xk`)uppR`uTa(bECEdPtNtp$*Gp0MaQ+}RnEoUeCr;b z`{iyEvgK0(lO)fTdrAHfcm{fU1?R$Ui2Shz^ky*&=%QVXO-RU-G>H82<>^3aOpKGT z9ji2e>ZW7k;~JpKk(7`S)YD4_xeyBrEA+#MEJ=e$dxU7{h`8L*-xByX7UBxUt7Zfa zOfBh^6RNOCd(QBf;t#PNbpNwCV#^-DM$oPQ}z73k`CT%Sm1c-%)!DiSN@Z zz`G-Y78K(q(l3P`LBFcScJ%;f<&A@|Fu zIWLY*mTN6rrNy*GxhYhs(jc0Ig}5j2jMoS?(VIkTZBqR1z}*A>V`t5*^{pAi8NX*k za4E|&fl#r*+h}NWGMG4F<~>~p=ENP!BqSu=@f7rAYI~^`6$)MuD$dq;iY{7?hd;+> zWiaO=P&WEX$L}|CUsZb-|GJ`KOw(@`$&@Xm8k%b(2l|V+X|6q3<6pCU&9yIC?X;Jz z>afYp>pWV_X*1=o`f?hp8giz7q?BifYrLFt1nW|>`K6@oN0;30I&2(QmH-XvYOdsU zr)nc^U3%@ds$8_zUN7qoAkHximyEy%ls zxxj5sD@AOMLfXKQn~xK6x&BRx+8j3-4aoFS3m%z1j%qLahE*n0twhSMD5v1=c6K1E zvD=~4e!siHN0V@)Z!oIBvW=T4=i$~vaWq6XQvC;{p2eewg>d{C)z56Lwh9I1DOEwd{tpZ^wHBB2oh1f;H} z7E{UJ4)GY39YSXWT1~)e$Vl&q?-qlBm{r3=jvGD}W2HYDkVwsUde!2%cBHBuTLYpo zS>SYU=;Gl%LgSDv$ES1(`IZlZwT)$C-!)Rcnmx7wjZ81t81v?ISgkl*?#uX^iu`m#?qdvWP&iKrFpbNOpQ-q=-51 z$|mkTeAG4ZhNH&?n>Rm4hrgrEMzlHAnP%zCL;w-V=I zX@2k4HT@|!--jA0T8`!4UUBrTBaX`!?W?u*{=!N%UyV)MCmzLb4e>diY6pzVJaP6? zntE;JJFnjA#%5@Yd2)d;?==4^mh2sm!-frB465 zH|lD^Lp^AQTr}^iA`pFBg9tBVDi9zT=;=||jJh7{=p=!Ak3z)xti&ROgzrK`7wT5l7PU0XB7h7fT1WsCVuwrvrs@@Y;p|shjIfXp zpg!m3=hLsmjecn-6D%F;_SpLRM)K_^-A&1v0n87FRVgqRurpq=`Zc~4(l}l$xw#M% zkd!3kc(f)cXoFB{h?_NkRYd#2Tiw89u!W6%Yby9r_wMC*s*ZVFO z1&4`FZas{>z;%*%upU{m#C6T!HcY`1QxxMgH*fem{s_dKTDFj4vm4LqYf6V%-UmlJ z=jcA`S4CA-KMxOB5M5U%>$LgW31(+!0plgCr1T!_$GfZgBeR#?pcKepNuNH6M77hi z>dSX)a`|>>3=9lpS^SgN<+Gl80|Nb*FJGX$f_d0bS3C`}D5`qv9|g#e%#R#>$-7~P zf5_(4An;2g8W$E8-eY7O1pAwlLqAY@_wL;b9{CT+JO(^Q(ZFmnHm*AP#P=iD}$18JEXjT2lE#V4ZP zh)y!}QE$T|A*IMB@`GAxX&^hwDU|)Siwhng9S^L5zHMh03C2v7Dq*a7?iGVG|Z${y(xAgSLYLfos7F-3Ak!iTO+^a8B3f6O& z#?t@?B)wiYIl|YO2!=S)EaGcktyA)vUju?^m_jg`*lYsZGbK*tA($RofqV~?0rr7= z`Ey$RS1Ub%3jP)fq|R)NZ%xRlYEd66spJO+M$f9wtBzUDf;OX1<_t8>M|Ow9t3>&R z2>!GtRsw)P63DZrV;?>cfWL68*ckmvYmir0&;GlIG70C^hNt2kmErH7O0@2cxUic( zIBIO#OSDT^acw`mq2lJm-nZ3nC*Aq!&vS!Dj#)dsnwnac1t^U!qZJ1qpC-5*@87@A zvS4Fl1BI@rhi+eKMMVWTw~^uD9?i`n7xXU`6&X9b65xwgIEY99HC(*Pr|K^2_NA9P zmOwy}1TP&KwWeZK`d7Zz#0N`fE^7GxC?nVyeZLbod^>#i*QqwVc)jQzsz^Qzsb*i+ z#QHqx5@}Y*HKL=_w|0O2Gq^vbPs}GPSsyS$O`aj58czJKoje(4AB_Jp9w!|q5teiV zMnP$8Z=qNCl1}tRB}|hvz#%0i9Vi7K0sLM6mc_ba6k$u+0Y0p!v~ATw z+~zwIx2@+**W|Ax$9PqvhjUVzeug$Brft=u<%X)95VU0CM+k4#xnZ^ou|~FDTa>Q8 z;76nn>hH1F1RIx)u#*u0pMdp>zP4h~RfBB_@tslkP{|uvaf;U-rCBppu44gSllz(a zmv=3>n`S;1FDJeVYe=^Dt^$ruKVUJ=-=dKK(Pb0KNPqV2y&aXifD+K7HWJuytbq|x zX`X_OSqhiH%wQyOe|rjWV7--2;D;8nqP?gr0YZg~$Pc?;_3YX5-w*vSRV4r9menti zMjZYM{i}@EG-akeg^^zOcu6}5wHb$qUU+6tJ8c;sOQ&|nPN^ZD`@Mf7#(=nI>h#s* z_q;Y0qio^ZYZ&(Lu3D92$QEr>CuFx<`W{{H;(bj%Q&)p?PgrgO#`I`H-*pIjOh2=CKVcd0=9V&U8uxJ-9& z@09XH>!2!+`f^K6wE_6c8~fVOB3!Bmp$0A}N0jb*%?D~JylXI}A&)|!H`Q`qD`l&UW zerb+H74El9l5%E+^p-aQMKSaq;50M9kqqlN<1CPJVX8*Bqs(+T(L5ozPg39H+Bp(#&3tSQ86=P{N6uvaLf_!;P*lH@9K;t zuDrOuvn2iIZk!CB!_`D23hsdOWmYQ9Qk10D!!VRxTFA;n)GQ)=MwhB^xk&XBBW^C5;G*@d2F}WiI{7_+j8q5D+-7*hEPr z9C&9FgNlvsYh`|4?yrsFD_nxPjO7IZCd83mb>^>435mJ{r6R^Dd#=9TSl3LUlk1z+ z7t}?>3F}$lBz6Yf=6g!Y{;;S={5lyxHznRQh|j&?)tlp*mtP3U7=ZK)sbXYbGX9*M&5R>AU%<@ zu6h4mpZ|(hKjdObYa09R-5n|#8sOWxPfmU#Gcywa9R0c<8z6{`wq$&hJ2)Ore|9nk zOEhkSUQHJa%ll?&)O37vfcReSG%@jYxXkKD!kvzEs@FHs%#(>SFbfsF#j%3khLQ*+ zF_Omfg314$k-Ok|TBq%k@coI;xB%LjJGG4@l;tY7Lipo($_rj`rST<&5Qaq*B1BhV zjqG_5EEU!dKkyn2stduLlOf3oHp_-(`FzB*5xR){h&0X3FQi{Ux$O${Kr8H~r#x0@ zD-nw4m-HxEOY;$0MeGAm;)y5N0a@ZUI0!pwwd^TTW0YN_N>rx$RS%Ed^bU<|LJlyK z&9nwJ9c*6cd^k8bKKN`#WX#OZ0MCwyMwBsHDi%U=36Ocrhnax@cyLu9ElkJ8k|KhO zmSu6gyPOWTSHCT|#p@O}C`cZf^ic(p@IAlA9q|v#Lp>KH4F!6Qt%vY5XO+=dOJR$B z#gWsD&ZjSfEzfT|!#xyXvp$9=gzwe901#leSI7AiyGSiKCwd};2 z^T>=BPK0|pvu`uz7;M|S>T$+Mi&KixXVu$-zk8UVFcaaBrWq`!aI?QBzxTC5HEPMc z`+HzEf5q*(J15Cz*YJsQ$)LfTNMw?W)DNhIUo|W7K*%3`-ptwca^c$RQTsq_2nuR` zo9G`?M}oO!=@}ZN1M`cT86ivAC8zsyr5q6dQPcCYQ-EOZF)@j0X^~`QWdXRD`uVeB ziG{Ru5Gb-%FO?l?aK^)830_{p^Q^o)<$u8Q`}ghv7={EkQCV3z?YgS00OlP+jG52P zf~z>2^$*8vB#kIUDEg!+#3g9T9XF?+kV2i>cF_C8c3&Nye+(gbIuel_l93x85fS#T zIh95^?7!=xu|>e$q4%m>r2+*+&FKRi0JdLS1oJ$>$?s z3%=dY?(+pMWk*if7?n?w^y-eQ(_EMTaQBi5=>+_epBJc$6Sq zQ7W9R%EB53;!5Ut$}awF?YesHK3F5<1>q2=q1D#_6-gSJYX#S zr|o7~GNozlgNay@!(((voJ$glRol998+yV4nUf>_uE5-h-@Ze2e()7Kqt=?R2^!~g53)Cf7Zz8j%v9H~K z(B@Wmq(-dGbM%}D^R*ZEckNozkT!w5;7rKxQrgF?tfv>o2H?QCzEBccZ^FZ|KwK2> zMz|76CAtwz{=w0J4EH+&8u*;t@T5$#{AQ~^K(5g#K(z!_hqgm|JBj2X?qYPP2 zv*{ky~XG~R^gdST)~Ot2_+4}fD&KOQ(Bg~mZ{vt$v$e+ zu5z0hX4ey7b1DWkyl!hC{!J7VU|)&^@hhuzwYOmo@J}3O@+Y_M zEDcBk9t#-PZla_6UbuA0iw};EvrBh(ezryaN=?4LzTB4@I-smG{{eV*7W zNNCn`xk|sPt_#8~35~X|OqFy%MSa<`Pje_m@7zFLa8ShwPj+~GYjZ|?bk?aAZa_jt z=83#~I3Vi`tZ@hl1E%$c=9x>h{@i2z_iee*A5tXW;EYi$9Zj8_os!ZX;2Ek#B`wS& z$yLuVCJl=B$sydzvaV`riYreZn<@03R06MB)Dj`iAU0n$vCJ5O_PhCn zbmV%U6{TT?O0lT+k$-WbAHr%GBwU~96kl+>B#zMtA4vi7ho7H6%L3dukm0F;2fW0h z&NVNBPhl*GmDg8wVOC+-I}8+46aGqWI+%gndpi|O?uq%bF`Xo}@NG>cq4f5Pe`>)`s9;g$L? z9IO@s7WiEr9}AYves?pjTcYj?g&YgU`{R)Q9$0isCyarT@uA4;$`e=+iDf`9%kA5@ z?J{kenw<2ysq~4>UVY~(#U7ObsK?2PXgb)`}cc+)8E1(_v*U-wdDoeR&bc&t}7Awe#>|+*aQ-ijNCmj zlQp$U9M$b*g7L%Mc+S)K{>?A4`3s|K4F3mXaTEt;4ro>QGiEQHBcn`!5s%|BvC4Zi zMK^BsumYj4de_|s+brdeH5*scNmKi{j^NYr?lR_#)yiCBnG!{!NN2~4_%{Unkz)xZ zoq{{5Xg!()7TJqO;EFSn7g>>Y6HSmN@UIOa7~M5qybkh_AKoIAlsrh3nb60M97%{F zcBxra6CUro5gqcrUAf12EO<`8zOV9|uu98C%f&AjTjrr<3>Ojm?5SPmN1!Dxq^z0! z57`!UH308v=U?%GPquVfWv_|tako8%vB1kyFLmK<`Xmv-?6mU&Ylg%ArX86=iVCu!)iSL!3Cw$D!P@UdMe zIV~b0+^z2@|4ChKmpjiXzFVs$88Ad$$EZ2#&*oIMc@}k5DLkh`>ZQYhm0S~g*Yu6@ zAFW?6B%cg*SJ#7;z8~SU*9zp?XW^S1ch<|16i!J+{PHpHGTx)B7Z%|CbPbuFGuXoE z4R*DDF!j}n#fdO@MbF&iqk~ZX~!Xd6m zss-6r51yNsla!*N&AG$A!`Lk5Ut*mo~^WH)uNV?*kxLo@P)?({^*~3y^huw9?WrgD@sg-I8*HcbpQ3e(fq%bZ#e<{q%#nmnH)05UR@E zAR%dQmXwBGz-KizuH!6S0cJT$4GWG%ou$(eRTIKjXwMD_FMGX?&+-xvdQ+5HQ6Wg6 zU9V~Hc>FUDRtS1CBFU^5!+GPUvNsbLG?kl}_8G$fbdR)6PAS z9EEcsTQiP$At>01QkGhb`5=+LF6c#qyhiRJObuCrDkCgY4mH9y{?ZXkM256+bhXjs zvW*$qEir@W1N{8`8>pk8)MvK7{V%v{C%4e1FCeM9Jvo*=PEt-5qAQ$A6RkmjtEh`? z{Lvj5!j~TyuYkM?Xa^l!*kZ$-9+XV3^^Q&pHyI}JG%WKgi53`!vsK1Fxbl;BW5uM0f|pFACaow9i^IhR+y3sV{A}L6zsk1=WkDrx|7agQt>#~q z{_DVSA*FQ%icYi^skKqG_lSRvis?s^5I}F(@moBYj5!yUC8fM!pessld2oWbLTAN$ zNO`#jm;(SWR0e&&!B=qL(OU_BvL9<#eR#^a@@3UuOy>1%{sjIk{$(AUv!XMmd)bT% zhF2Vgsm4AsqlgH3+8~5gZ0TrD>TUfFrptg0M4ADow(71*-3eTtt0hzSvKud~dU|&|reDx92xf z3Edq2W4mG@yl)rzZ-|JOeer){<@}E??sfm_a8bR7-zl{$Df_!BXDnVmjXDOcvqeMR zttLvxM~iCg`VH@WYu#>AD-m;yRsJ{n8kg)@_bYl*3yPVE*-O^SD%C42s1qbz(M0b8 z4{Yt$(iUS~JoV*Hhp_=TF~-H(bsAr>kzf%*Hn#ofs`mT;X$AXQ!q7XIkn z8#G?B&w2tBkP_bx%;&exifIQo2twG%OV=iTiPV+Adzqn5I3j=tx)o+V{czcwejhP4 zYa*pPtoiKixoaQc_LK29T$FQU8DgPX4t7!tEUL_gH@#yVxV^W%Fq}j)^uN)1^;1ZH`&I2&tqSRY z1F$jgVs5PMImoHXWn4QKH3>lj8souHdC1F3XBqnlyncs3ZpM7Zwk(V6>l#x|rR|~` zxs-V2E-a%u{hlEj{WujBkbZcx>T{K)#S-v;*$#D3U4((gIicXlz)C1uM9qR1; z&Ez$hBSX<^T3Sk;CFhkp{Ym8R5|svTP~IGyfGV8!RoJw7#-JPrTh~- z#M~Se1%xka5-8X2*cJT>y)VyPppJTNz{qH6ha&_PlRIc@b(_kP&1>uwsL3%ywX$@^ zMsMZIkenN>bE^a9FfivLEGo)3E34JG-E`z&QJB@X zp8YH>|^QX#FkfRKq?lkENZfbZh+mMU2g3@%`Vo@^HZR8=(EB zaC?-n?Dza~w1kit6B85U40Qf~ObNU%BrL4N!!zU9O|bG&?&5}ye+1QWJ?Kl_UxVxgV`Aq^{S0o=ZON%=N%Pu1)Q_-;ae>?c( zxB3*NskfWU{bC$~=NoIvibJ2xS-*AHv@EQ?ddSGR1c-a?uGW~i#Y|$0F#%nZ+10XgqZd2%Ul94aEom7x>eKhW28nKCrW;n%bo`=icqRSO z^t-mY)-GB-i;(<6hJN)~qXOr{^r%hShMwy^_0vPxW!NYy|crb6x)3+g{XrXN}--JnkY zbbQQT8<_vx@uAC&AA*(;;&0=mQQ=ID!4A{Ou{>{aIm2nVE%B=1_Ve=O=$c)Fclj2zFO zV69IKwPshChJ@=7^T6>aV=MTSXQM9nT%pb4{eRl#T%2hV36;k}i75U0_3HqTlm3O7 zq&RO9*dOj9yHm#&=)BE)>({6$`Nn%0vO&g15F)@#NT(vQxM}PrlB?=Jg3kMWC-7J% z4-AS(`>q`j{R*`SUY&JZ`eBD)tFq4ChPWn;X_fapaZ1Qi)r;}RJ6jwcutA6HL%T({ zH*M|7ec(|Wf@UnC?De)CJ(*-zqa=tK@!M75=y_7kh#c`#2EXSo18N8d8`Go?pYb1t zxsUptzxoz6;E7OLZ(Ve3OnktdQ%`#If$ctQzLqm@H{Jkx4eXM~Ep>Yit0f%~t9|^D z)gDcOIj6uCHhE$dAph>=Tei*f2(-yMyU9bYQc3Uy5mk(dkLf$>+ZwrR%ZMkrMfqcC zu=JR4T2pu)m2rV82rhY0&wgijZJRa&8>V!~U|9pX8{-e0S0-83 zQ(l!X2E>MHf5_Lm3abp;yF=PlM9U+jJ$(CduBpX<1#yHkS}IKCn-^;O6g&~)n=AOd z)Jn^jGKLdL=PX(pq9FHyDlE-p7%P54$6r)R3Wc%aCzj?*tLqpF`V2snqH2yfb>j)Z zG%rbfSP<#On+-pKKuoaD%eKOL&k`l#E0@y|viNLk8r7#kd#T@Lw{zQix8RBKfK_Jjt{XANLAxs< zi0fX%qs(-8u zmweQlyUT8(NUWCYK?sEzc;M41!_eo+8rTS^Y0(GJ7=mWMZWtNQ@{__WkPpiJzL$tk|6e z7$H3HRMU|%O^p?FHZ?BC7!=r?JzA>sMthBBldFoI6wPv{9@ecHXXTD3kCkwOi%Ad> zDto??ksPeu5U~nqO_mN|KFwX^T+EFq*r@Vu=Wb8By!K%gfoj{x>D=Sh-GQxN!;!29 zrS$Q=MnAk{n482$)rbG!xxh28zZzb(#E`o1mV4r)?`&Hylo+*()V!yAF^;FY^4S~h*mn2f>^p|i#Oc>+#00;4^ZJfJU0QT2 z(8$IEjhDVwTEFJicOJa?u*;_1X81LzT4JP(m`-+~V5OUj(TZ^_`7Ge8`IfDO@rRoT z*~Iqxsdc1JEM0zn2fPAsaiyd3Nnf!ka{E;7-l)-;a5qt-tf85b0@k>!h&=1%!w=EN zwC!uONh+v&iAHcCzaPsrrq&S|u0V1mKdVv@&v+AkPgv_?m&nHB#K)xO73U~3-ZK27 zAA(|4EalojQ>)GlUwYO|>jk-}T49mOi0|PHKU4K;a#5c6--YV`{wN#kbTs;#F*Vj_ z!#6g*tus>=keS-FW>k*c>Xs2mOZ?D4W`Fmc&N8XAF=p-lf%E1h+j&6t6Kw=0^qFZj zRXIPead^mzI5*M?nW`9f8R$E^uw)?`UXFC5rKb-Bg8;>ml)E(%ak^;X5HAOVHC+zU zyO;rZsp>Z<>A2^BDm6^hb-Y4W?-pwFS&06MhC!CfNBSb^Q&hh-P zk5)$CjAL2$h+g7|?xk?vQfmJc$_u6T3azqbXJqw?*sIDwy_a8%+sOCNXtxoZh0cgr&=S21a!+c0A zx#H6cm-^|i`ZT^j!@c3=mTleI*|1>4QF{q;8!A++zUr$6fv!VK2Hg&3!CVykz3i;9 zKGwg|C;sK2F+wXOIk+plIZMx%{pnv$tP3{q@v!|y23mM`Kl%f6chMVjwnMjhk`&2Z z241T>PDprc*y9y1UTa$ah{)wK-S?m4hHPXm;ObBX@v6SUSYLP4zB0_nIk4SDHZ|7s zq<1NQNWhhq2Zq&H74gj$(Cb;F%&lnYI760!wZI_kRU3LkfQk%|u5@oAZ?(MB{dmw* zee0lqNBs2mJ`KuZP=iZg&T7kDr2{?n?e#B?PL9)Aaw>~h1oT0d7KP+B5m=Ox49y$k z^zL4%tRaF!#7@m*4;mdIW*5KzBb(TM8{rUX2q|t{aM>9z0xl=L!;80ov5RC3infIk z9lScuoY{d}^y@V3T)KZ*bT92tBx6vzd$B#r7`Y7uu5G+7(B1IMi10+dam{?~6CkJ# zj-q&p?&U&L(-4l}^#(W8DizBZX0M$%5UDxPdfXI<&xV1AmjNiGU(I$il5aD1Ke_zA zNy(y`SOgUetjZ`|9qLiNEj~xcV^2>b6@AgSED=GYyR*=HX)gbGO92ObsGcdKy9TPY zYC~n1zqRH-T~JX`>)US#E|q6h;-vFo2BeaveM~BUP2hD$k)VSep78On>M)UN<75w{psE@=LlY6%w5nY-VvjV$5_YaL73Tm=AhNgk8Nk zbv}Hl(usDeg9^ZncjVslucW#~Wk8%U_M~quDvsi0J@)_c^%ibXzU#X_jYuhqNY?;@ zbayHtr6AIw4Ba^(4Fb{wNDM7VBPl}+DM*LXFr+j?Hw^K6S)aAm@!k8k_x=YsI3}KX zpZh+q^ICJDfc)a~Kx%beJ<)bDd{w$5TB)$=^Unt&R>Kpz==gB#*W)Koa&vNIQyMGi zJsX`u>W|lIhsT1n`8YfE6u5#yMYQKT0hx`?G>7TV&HeT7Qlu2E5I*jYdrT+ir*Tdv zHO7YjL4L-M2gqz;{|<`}E+i)zSpFCKiJE0h_}9y%>)}!RPsH}yu$f2eS42X~?*9fv z7wc8}kbJZcR^3BG7!*PE<08zuI0F76dQNWeU8zo;HdZWYs%DQu&Puqx;XyRc6VqwDzOQZL9&p`9FWB z8+Z=Qj35?Y_<5+v%ClaUmUqN28QU|*Wh#D$i~biaiWs65!05O<{XtuN58HFsVfy2Z z>DhHj9MxrQ+qGLcO_}Itwntf=Wga!W=e~g+Of&ESlvRc0 zl#tUK{?B1ES;W_`n80}?)oKA;7%;Daha7y4wCsF6&-D76Bha=2+}8QQBh0r)y)Q%-)cnT>XC!p;fHZ|H;$=i1$Bn>WzPec`v?I{I7@- z&bY{le|Kl>2|eG@Y#eo3NV8zBhMBeXT;~1)p#fZH_ChJE0@z-*I7v7f1u#c)M7qcL zROB~@{kRe|E?It$*5p>a#=2aJ(9UY}p=b_w;=aYx9QLIOpgLk(ep##N{1suZqH_1s z{zTc2RL?_f|4OB;F+GTL*K#Btm_CmYhz=P|HPivGg$;J$Qp@t*Xnt5r|0Rjre74)O z26GPwAzS-fv69;BIsowl9<&!1+s~aR!bROSU?sEtbtwjTF33(KFLSP=SSN5vdac## zcYKG&6os~UW9hjG?f0|E4!vVIP+$C|9Y{-kOt|3;L|DZ$0OI}ez8SwSvIAQbE$~wpfz0x z`ql($Ivjm|=Yfb}wWIlChXaJ@fh9VAq15LrDUcNoR5u~K5H6V?i^x4ZbOpjv|0c^{ zsjBKAC&tD|edE1Px2HoA$nb6lSOpOOIRE}TCy)6T&#+_(68}4drmg>A=^Z01I^%tt0L6s`I~RJkG1#x*uNtybpe2 zv1Kr+LFpSQZToCY<}pOG1=x+~$W+MpWj!|DGWgGtmW&@*FH^V1YW1u9Z%*YN zoAr0f|B`kYx0Wir(s$sLIX`7LLs6MK-)_HMjN`h*<$_i{)H@SdjL~mfCk(pUxg_A? z8B7h`@AGa;vx^RZ>=4U3)K(q84@qwe?$N+Y$aSDFqV2r?@bIG~AJO~Ubc|uESZuNd z-mPBOyE76?fyR;>yuv#hf1)=i9gLUt#{|Jo_`aT@0qly!Mx*`vZ^7 zCRwks(jm7ayaB;DBFUt@!6Y)@$CDhJAdmJp9=1JV*5U1}8L9uX{HC(wo-L@Ur0;R~ zs;$*$vCnXZwZTQKH*AZmn?axF6$@MlIJa%zYjt-iw=q=fe&ZHeL9Iq1+2&)Ncy6EE z*@WWM0&pluTlJ*wEMt=HBMO&EF^0ef|D?9_Zsh5Ec=V6FOguH(Y0DBz6iJT1eIrL< z53=4r)bDDOzO23!dqA>=LBEhsNMg(3P!WS=()z$__XPuTuxz5_5Kja#Tf%`IS?$rT zvYmICgAjm!oBaXiS|gn>d~HHST=N8xN@K*!#Mmz~NlWcx$z7N9xrmDf63r`6&mey- z4;*l8N*U3pZlkydrsjxmM`4-a`E1-eac<1RIv#_3Me7W+;$OM3xZ6WNHQ^+M-zoaV zVc3YEvzz;p{GDDsnakI$D7Iqutnt}E3&Cn>0A7to}a3ijZ0or7(GMcf9u9-klDO1@{Lsd@`Ks7 zk@1qOtAC6n{XMFj=d;fSs-AB=hLNz zsTVZ|aJar3Y!57on0kxAh<9ze=GIvtSMK03X?hyJ?KDLD$Tt78KEXj|v) zgi6a>HcCay$-oZZb-w1ZCNq1fT#w?7MLKz5SsSH-13d$4#O1U5hG!F+BLdRClDir1 zYyj@?TPRFd+w|Ak_8`Z>%CX!ipA(pw{xxmj|6Qo20(l3`UcM}*%jX~dqO=nc1~f1h30n;ov^#-+=0iytET%J8zzHgD)klu2^f3X zWfZ`Z=#$6qNuD7?ENFz_sDZULJ*8JiN`-tg3c`ggXYkGfO%bP>V< z+y9~tjKLF|>EN3=&wU9cd%AyIb-jBz<9`6ZDHxE2O5O`k*CjQ3U+#cWAcKbZ6J8z1 zI<%Rg{n0Uatj6XU5Fnt8iK5p3=wr&dNd1jOEX$4c5q81*uiTjZW1=njd5}jw)-F?K zXk%^(g_ckndoKuACAi=+>{3Yshi=OGsTB{9$k#%1-bb3VufK5z1L8^|&U)T4#^U9@ z?->mYnIU+zIO#R9qN;-$&Ym4p)M~_>pY7tB-_ei98?*n5?Bd`LX1m*k+|-~BUR*so z-;LYb2cFEmHqhbDNZq>PbqS8m*|6|%zzm1^znS5#N&Ydz-9;6V8jtkO{T@}G4!04G z294`twfYxiZ`1=XedWbPSP(8_$jIREro6<=O@2Ji>lxv$iR^gx>vtSO0tE*tyQAcT zU+RdxE;26r@kS;nA(uO*s(8md*~S!l4~q9TCpR)BT>Y_3#7ns=8NlJ8B9_z*WS_R- z3>8)QPd=@1y{=#%As2R~lMcwO`nFWX9P=VF0jH{}?dL=In6}iw7#EQauVEjkAN1x3?)XiK7b)f-YwnF|3U{0h zBTO6_AW>x9=xG{dmmNqJgCcR5a3p3iuxV{jtZ^g)Bzmt+6OI$cwlwg|GATtbT5Ku z_lIAbyZn(%)}H_KS1MDZo#ZN(T0L6Cw&}nH0-vCPVE^b;TUEo71Xi34yfLFv9%T*~ z4TcmMR~^FE?sP;RkH^WY;rRQWskBUxJ2~A@*IokATEUdbBWbGh%ZG~;NVB&z4%Ek4 zw$!}h^A3*D+pG_yNS}>DwqFiAFCJPm{1s(hXv>4kRe-MDSXBjfJ*Re^_nZ`+l@8^5 z$UeEiD^TZtUub!;@X78~Q`1{e)5s8eeWbLQruw7v`$M04+cZ48hCQMFx3NFw=B;2- zeWh3hpX#uGn@9G9Y2=ccrHZ8gmjfSX*7de=`mNwW9(wFvCrWS9%jtR2#0q@8=y6SP z(Nx06d$reyctz(tp%utQ&CY^!D*h*02Z=qZwR@vf{~_SPsXvIK*5M{py5nYU zTznrv7)Y1_mm=L=B}t?HK!aI~Mxq;|$hdIP50AAu*ewa~&smnw>aV=Wr*1+Yiazzc z@7(0@dt14nGoYc2`x)}oRm1^>M#PR8%4q5ftx5|J60G#2QKBm36w z&ZNeXP#^mRRas`4#0-3%Y#S6O%@{fDY?WJ}s>wvCVvpKG{m8#Xg$`pP0WqjWISF<^ zHT$osgW6Ah`e$^*Vruta*N|uQf46cZ1WCBDF8H?3E0E(u(hv#Fy^? z`ugL43O}lkPEKDeWGSwz!1D&g7nxqoe)=~dGP2}yQ+WhDlAL8a(`U&nduK=t_$`8G zaumg_!{a&EMTOSh8r9#(XVje1l+D0j$!KSD?&zHyan$uIl%4wa9T8&@{vC91ViF#G zZ)}O5n3NO>^ohLvKT2v1D!+P(=xS-@{!=32{`wR#zxzWlD!@>s1t0dLbx;_Zj6hVY zFQ%t#usMKAZ%`EDxKBErvN8AOjASYwEdFJMf~FF;uRY8Cg<6tB+S+ohk7rG;2I8|y}yXN?@T_zN|>Q#b}l`Q-{@#r+N>zMd~T)+%eY7S+c|)E8kfo(s}u8Wz)6sQ+?6h z%J={9)#d)E;NhD{o*nNhBKouB4E8eC>W-FLTQ{~Q<-fj(Re@}1WujwSN#At8Sn3R7 z`};MK?&pes;)#F|^H1w(jVtFW)01nA#VTx}l7ywA4p7>jK=za|8DKhW^EavQ59jcs6)r}|>7 z{HG$7_Q2f5{!sEDo^{l@ZnQ7y5WGT!46pArXwL{=D03F(XZiJtlR^r6Ht~H~Yqlfx z+rGBL5|1v1qtnNRa|<#0gu7R#4F^^#E%8cnhfl8dKNw4gM#r>S!7=^J!SKAafE~*| zbGJ21Rj51}TiTx+r)j*2YNHiXxLmFMpL2RcnYD%Gz-}ds1?hZK@N$WrWv9bY(t+u>P3*r$b;fo&a4Fx8xlmwyT#iON(mA$yVTpAc2K&UFz#| zW9S@PnriSXfjxX~|0kjc!VGQKPuAV*H`Sl+y0=`&kQ4q*e!qjDw$EFe5b)4{Q8*o` z#T8Z5Pq6fil@%|==N4 zc575q<`)55Mj)et!KwFDIY>VXyzJBmWmh!8fUN}_Ps1_MQnIEL>(K*v(BT);xx=sl zaVSR6fO1hW+%MBD`kPO+qX}HZcUYKV5YnUYTdN%&d&DIp?8J3d;@u_g1Ce)F(2n16 ztNOX**aALE2`V0Ngr)`|-b8NGF|u0n=Mv$^kShD0LQa|?tDf#QoS`>V2{6$nQ~yxaTK z9ijK#8*DT^M~C9xF_+>R6&J1q`!U*3xddJf_df-hp9eZsm6h8r*0c9qRjAy!>w6l0 zca35G?1T~0dOv@~rd{6M*I@VXNWG(epy*BBSj5Cs$cD2R)7bm&&sRfYZtWU)BJ0Ew zr0a@VNQO!VAc$ZLMCqGcC!TXWGdmm6qJRLrH>K*afZ*wcTa9P*`*#QE0cPezWqY7_JjYshPzDB9bBi2HWm)wl6T z`%2f~KWL5JX zOK~RXcVb%@NXmCJdJXpp6=Fx!+4m@Mn-ez@1lIf;`Z00+x4qdA+V6x4Wd$>{Zp@=;uw&vsrBcXPT^Tmxm4d&tk~U#XD{#Bg>ODxP)Jhia@&3zE$$&>ss)qP= zK5Y#6jki0^0%F{NhjPzYkpQOwMcB3J;+_oTvJFd!l`I~v+MOI7w!D}T&DCavJZhY! zVjVJajt+j>U9DU2>i&EA$KS?{ZjcVD2JN3>CqBq4ok^?pb}i&OIQgd6D4ul_>S}0p z4~{=16NiTlxQeo^(Fmo>1(VPZTw*AMIMA|)_;a6Ay2&`V`u;6dZIw5@wFD*D;_17( zTw7^GL>pKG#%aD>2zvIi3$+T*3cCZj2j@TW z@S(Sad;p5n>mxf)ST5;1(jj`Q%zPVxLk}WVzM?<4M||&>e#ej&q8cjpE&UhpA6xT( zU9Qu_S}5biL*+J5UK_L5_z_QYzxL#SD!HjRVyk35TZwHV`WS-u)PfO`WYI56`4+)H zAiOBmE3AB4b?sYP0SqvX9~qD$7tcpTq7fqr_J3RoLy{AsFPRGSMqvu)8QdG^bkXa_yI=VD@#-dYNf~ z;bYN@5LW{W+=29g~X-{djhN zsUDmsv;eG;-0QE7yD>9vvz^8d00qhU@oD0?3uLjrzcWPAzSRuT*gtjL-Npsy9FJv5)(%tKXXq7(yc=31TbE1oTc3#zG$~dv*#FfoJwlnet zGUszqUI~Z5Zr|SZ_|vlfOJ^9lS>1t)S%;RfGXs)z$X1bGP67C5|3cLdS63wBO0x6GVgf4l%p0S1hQ%HnDM zY|aMHFIzTEu_aphVp%8xXD@EYPsJYi!QQO*CBcW)E=&eNhSrYWDrcu1 zg%D+lt`ZR46Wo0*1&k(}(CH|Q5Te7BtopaO!Xsye9o-WR)W9rL#;&~P!;t)h-15+* zRQFuS+)Ko`u^k_v04rl!~Q7EMHN=)d4#YEQ2kKM2@#_mZsQ>iB-b8Hkya zL2Z?@!MiC6WIqU!>v^#7fV?P=b^GF1&*7fvFVl&9Q#xWIsfXvx?Rs>t4Zml*yDmdy zZ!OoJxR7v8sqmUR8jsB5fq8DN9Hi9s(-^=dE#L#l>Kt_tcv6B0rkE_yGlGfO%i_1h zQ4YN58O`y0<~+0n&9q+;fD-(rt&l5F9a^|4eDJU642J#8bYg|UTArU7DZ_eVtBzn27EHa|XoOpV;Ss$6vcgx`>Q zf97THA+~-PLphB{J{1k(Q2vn6OMKJDxI~lN`;g9Y04PKFRdSTJyV09t;$HYFFBLyLbNjEgY)Q zzw?iFL$fI!r8Kexh0s#Fw+Go@JX0Y`XF^S}B(^Za{>}@O-C!6d%S(I5YQ>-$da8kj68gF+)Hx5`emNL z^nvUlwY%a_KhFxpZK*Y|s%!A!mgtONmYr>H0CWGLz^*-dJ1{nyP`CIWOeDsLdM4~! zY=T>R7UZiyqvL?bHLCt?a_if*rukpkvxioeuN zXTR-Qrpe)D-l|_zaAWGmH5w3`fNgqMl*V_UM-^P$yT2P4LY~)AQPyctistJC;r2E_ zft*BI+GPV%WA4J~br_H>(Oy44y+-OV$OY?Fqa!#WP`3`gqSYS0N(OJq0^*X^Sw*~2 zGTBRD-F4pj=%(V2Y`U9CY%J4S-P0@Y>+EqgR&UZ*8p&%j8MTzUzP`B93l|L^ou-i^ z4N@!@8!UUK!OQRH!i!4_{zjZ%!p1C6`nuA}x3bqQG%5^Ack98-=944CtpzwRBfRp3 zbkBcRolC*-eAijgHqB?XJT_kVVF^MQgQ_052ee{6IBk<(J`iHqm4QcPI{fA~WayH{ zljO(o8aZvK6l`)tcSJh{o;mTw&c$~|#A+=FRqs}`lmPR{5TL=(WPLl8(1^5vg`&+= zn5q|#I-SKOXs6LHb0>|nBC*qNh}9Ii)fSw8jn~VHMR7v=oCuWRnclWbm9P<%9Q zm^NIMRVctwM`JA#d zJn7fU^qcJg8;STEhj`n`sn(Mjv5NN}>Ki0J3$EsW=UM7FCUwcV3Y=+PnK7@>=}*}P znSNd&b{Rv~iI|9?$%X8S*meC}laMSD0ohj&nuS|0a#5ojzm5#1oAyDn_$m`(C;c8+*nH7H>HW@|}f8?qk``!VlswFlDftf7nz2 zmZ?}~`lzFjr-m~q=wYv0AeA}nGw6|hehjrpN&9qhVdJz)kb%SXil7|ljv5A zuo-&yWrW_bOp}I=E;ikk`+Kn4uKoEAK8v<5AA@jRE+57~;JfFSB)-|#&D`VhEW~y8^{cPVzFNg)+49bJ zcz?GQ=r#65Gc1t97#Bs)?|k|~*0*~Tw}|Q-j-Gz z&XX5zj;%@CLY_9jiL*~^;|~;HRd>MP!+a`f8ypAA(LT|u40g3(OE%_ho{-U|gMR^*NNP{Q~mmxdNXr~`;g2HdQMFa(3)Av^26G8DH zc=i2xE7xT`I3d?OfR3Zq>DIw?&eNKzjwmuq=Gt3G)>Ww>yg$tqa{6Vvoj7|Tr-0My ziA9NQm${5|7_~G)Zf^Q99sD*+aogtU45+vK(UFCk0ao?;Qfwf`wMoQkd5T>t#m%lKlr<Qlce< z=p=`+Gfx&%It{;`ERUKrE(>lQ%B_1@TEXMMf~k(?7aS_T7y-7@zgL@ zn)oa<^uulrX1!DsPmA;iEa%I=1&@wZsEa>+9@N&-$(<*xLYU7DS!!QUgTz+G4DD}k zTpAO^se2*Eb{7@r`Nt`E0#_sy1fDZa8SWHhvPB5S`Th8W565R|c>&-#H5relF5%CU z7D`g8hT(;vG&lnG=ZEv-;+tQhO zx9GBNcv(-OKSTJ9?1bYv!sDJKbu7(7hJl9!0^X}sblyjeD~F#8V`h!tEn`yi zLq~04Gf|^e|Yu`lK|j5vTduKGTs6AoXWi?Cz+}yBX*gos?oy z6BSRk(GiR3h#%`Ug@}1-zj?kRlGR3Nd!$qqSeK=p-KKQHnv*S*b5cK`_oJ`#0X}!( z!0mEJI7h`)PA`U@4i8hWygin4yN%6&~&d8OT!uBk$rfDYU!6()3J*Y{DPko?N6Dd z>20zzb2v{D-h6DVhejF*DW_193^Gp2!#sFzmoID^qLw|X*wd?pi!+rndTU>{m`V`* z=$n-GUp=@>K)emq#_RA5T@5`)r3B~*lx>3x!f^s`RQY*( z%U4l}4-7YBGBh=K#BE&HKcRa&xJH*@Y2^E%O6=w3=fw1)-$-F>f- z>z}qUc+Z4RJZ7u+p8UblpMdls0dcED0CHcXHmMB9%-~fp8QEhQz!AphcA}P4`m06Z z0p&$Bm|f4HB?`v6^8(9@t=W$(YdC=JIlpevLgK)HxDhB-X#HBu7M6^I%ThSVgWI}c zRm`aW?zK#Ja8ZgCBNJIo6)q)gi(O$2ud@sm)3a7#3GaD3@WYscqFlrgT`JpyO+5w* z>~ei6m{Kf8v6cK%bjYNr6)*p}8BnyP(h^!y!U5&<@?cs7Nj*@0Z(QmsA{1-sVx>XZBO#wvf&bk7ZN3!0@A-~ zdWV^o1NlS~zKgN!DYdrwm&`tf#d1SpjN@mihYV@^#5j;Y`uJ0{@v^meWaLxR($Fh!)v5-tm2j z4C`f06tnuyKe1|!l<(wDcK$Z?ETuRjpvvX?=oe%%udp--rh0u|CX@FNVKmfK%$Jvc z)YDque@FLJ^nv~_j}RIC#=l-{+WvKQ>P_m#gz!}-ZKTO7XopMKD_;%C^6LTNKu@Ls z&E#i7tJyL)+B+J5Bkf~+)_x1PfP3Qgu2HrrsRII&b+e>*Yz96% zXM(0+p!P3|(F4+Mf&jErCh5ci;5{DdM?!@Q3=6GSyI|Bzfqy`F6lZNh4jgA>dqoNj zgmQ~lV|HGaKjc^FNgAgp>-tx8daajx=pE)GdQy6|U73bI7RlxHNN?r&;RJVsatBvw zzv`n$D>MUd`nS2I4?lR&Zf*Q08@#kS&O5Aa*yTpt)nuFAdy%>Ut&m-{m}=BoH|9O0 z8KAErs6Cs^UJmdY8@@GLfkH2*^`^VN^Q#kc-(z(LRnPw+l#%mJ;*(YVxTtn~-#UA< zg*Iq*Gokp$Zcq4o)xFt9X7BspoQ)wiH)$Jp6$RDR)iHHor4l_^ ze0!(L@F@1C!RO;wMuSh;c4n$-5^#dR7m)(6Dn?b(G^U!@+xaMrai0zI3O6N$v(ba{B+wwY8 z1T^P^hZ~%JEab93uEofK0)5ny{inNvbm-~Fu(T>OHto^9^R3vAArJJm4$h;y(>+>L zA1t;w?b->phNM1_mcx}-Jf$oaKTj~16F=mKe#t&c%BFEmtiShG8S53Aj7^_z&5<&6 zn}|uq3D|eZX$#00`H{YZ=^Nn1rBMl~wvnqCa1bb2bm`djR+GT|mXfs}^dxm#N`}?M ziBeA;J1rie-+VyPTV8nOIe7?u)Imz;6<(2xqTgTJF3v5?|Ds0Dzs4+XmkZI6RZRxX z-OgQmIU!Im&i^jNg)}U)m7V*O{v#_&NmDw^yh=UFyMM2rNXA<ez<_SvNZuABz#2lc2Wr1YH$|iYhh02bGxxnd* zO(T*gQW7RIz&qk)#Px_wH@Z=NP}&WI`Ldy_VQW%!;R_Ts_SYtA96mMZan^;50dKQYy7LG6C3@RTD=EVr<1i_n}sRSl-RpdA0^0)>>P7m0FwixqQ5_kd?X>L zEQ6l^*IcHmqEYb6QK~%!WrT8JOBMT0^{1}!IOu9{Dq6JG2DMjk#=B(LFbc%bNnBLnW$RRfl<+bVmV2@w#SP%dTNe5; zF0>n~K+4Kh{LxFxH)4rxxdZZ#4*iV)4oZ}jMn{05K;{#$A|1bYCYQB$bFSehtX#P= zY<^Q_siBv&OOD2Zs zzh$1J)$JEpxLoDpTriUPT0Q{10t{%{Dvg5^e%)@0zdNQF<#l17+e6<0bqXYPt>v@9 zadnoZ%K^sHm=rNi)A$Zntn>-4b-jFIX_@XV!bV$`w@2@w#eG)I%O9sB+_zdY&m0iM zH!B(`WlqVf4^K8oT75D48@)GEr+Q;4Os{T2#gj=+BDLQYEf@4;79}Cyl~izP|5@D) znhmYJEhDps<|x?pw!Kbpo@oZQk=*!ro~~zVyJbDexk@MEeGc>Y1bPCs@MsR5RG_bR zT}cV(a40E>XUTBk>1PUf!i_Uce$2i&VYD?O|^Q_ zz`F<4p(QKjmH1pF_^?{%KaEju!%Z@TR|JK4ssGr0>Z@3K<>*p=pQe6>Oe^?4AW6~V z2@lDriCwSx@#pHz(SiACoNXItrg^s{gL*tk>1^f~jUUes5tq^>2Uj4=`1X!ZBCH!) z3f0j$Vh~6TspaxOD%_#p_bPDtV0iQP1>oYipV~J-lw{QCWs4LP~;*+ILNl<}}~y?+3sx+g_G z_~0!)t=iiSGxX8uL~H-)vG1pVuj~i9z2vH(gjSz~JZa7*(a7baR!b?CX@jB-QY%oKNl|i}u;8 zJF7%5I(m@woH49_GV(E*z0B=<{@cK{&_r4$e}^tAK+R9x>d@cB>!-ZY_2zgu*)wGC zLP}1^Nc2Lj#33c8oS#_Sie(6np;5eS&tYP6sa@HCusyB9kvtxqemKqd3y+wzAf~;TKYmKfk>=$^bx{c$01f5_&u}mF3kI4GJIpyUT>0Eh zh`9BDhTF8$jY65_hKiV--*-yp*^dTCyIGLX3_|${OGG2$_biEzs;Gtz#QpXQdK^D3 z558h#O`;;p(mVbQdvkp?+*~2<<;Xl}{GvK>2QO~d-wcep>NE_QSNw7Jr_-iT~GBr*dY(XcR<<}-l%QGM*E4yLV0wOf$dBS&Hae-))y$>Kd1uS0Ubda#-t zQMY($UNI^3oh?GyLWEp*27trCtdX-q5LWCO&2`^M45vwKdnGd7_)h0_pz36`rq8H`_W%wLa@C))-{Gnv0dM}exQx|8(NC8Ol}^NeC2_PaRC z`mgCoKZQ;Z))+gXXX+@%aEYIs?S!P}T=swMN=jO8MfWcTH11scuc(pCck|HEP;diJ7ry~u{J zA+ZcA@%u)+$U4N1EyPhDivhd3OHf$Hq+CZGcf9+Qw$xQpP|-5c=&%L7xCBJm#_c6x z>Wj8Wi*5^lpw?x|Y^w!oS3dC6I++!31i1Wq5>z*WZ!Zt6x6Wp}_I}++Buq;oB0V=} zl2Hpat$j7W4fvPUEHzF@H!9#cH^A!kT8(zIMrHqHaCWT3wrJw&b21v}WK;4xnTV3B zGM?<~>b?eMunn{nrxvh;e!2ez>9Ky0VK8#AOQV`>1GKc?2R@f}M{9!|ZO&^j2ZZ5h zQuFn);}vt)Q_&&V(;zl(+QQg$GHUA5g8EF?Nc3i7W++kR!klAS)E5agS4huI`v>8O zt9}N#8?Mc5IPHpnb#r+e!Y&vGwhBvG^8<4eRqDIzznv9z!Dv;ol6)0l1dTo?*6Mw|zk574Ff4|vl|GflJJKeA8 zu?E_-U6ztOa*Qxb+pfcq39t1`2(RmkGL27JRqVT6=j^MAUSg~MsUG3-YKhN4)@>G# zV5PHcsb=ihg227OkedlYXDWr#87*k)Yh^KnH!@}F5y-+RY(yH+sCxARcQ}hoY6R-2SFfv<8=cghp z=&v%%7g}$j{Y{y`A7?toK`9h1XGbqX3-J|Gbj`d%9WdtY?(w=)IrEZERbkTO;QqCf z2{=jXwOFnHEBmlXqk#e%K1YXaMJ(Gf>*v}dM2}y1;Co#fI`qphO)A5hT@F4+#iynh z6}TgN2g-hFQ%t7QvS3re4l_+s%gLPkwC)jbE6?K*SoW4-)@|>h75z!?LRc;HEw*q0Nl8C$1qa;FT++CwCy@-!VTvh$k^CuPOQ zW}9lBXhbQVAp_^zirYlXP97&_eBk#hy4I^}RdP-nelzgTGvIsOd%zT=yZ$}UVy&0p zTC;81Zg@h77QjPmIC;dqfA?-do(WJJ#iuj7=KU&13>!JOT1{39$4pZKwc~g6?4tar zaN+v$Aw`S>0UPN~48*b8V=C?Ib6g7X+>VDv4_s3;3PdDW4c#Xa^l7VEX7@r{QCfbn zy(crdRqW6klbfQGB8Ov*GN=VRqtt+nm97BD;8lUwtKbTNG%B)--uzolrz_s7zC+KA z>gJIuxv@_@U7<088b1f0-7j@${#Yu_A6`m{&HvgLuuhFPuAahOCKb!jjQKBWxhgUbmgI80_mD#8^{ zPq7`RFpfu2Z8B&X!`lfP1ahemTerzv!rJ%6v>wAgloii}f8WE%l{rX39}5(uhpvuX zv)wje1<#y6WK=2=I_K~2hRqt^SbNU3Y4}TD7)uNZCSr6*QSZHJC(;FTU3-|9Yh&xe zPPtXTgMPD`uGjl_7yFm4?1%{pE#SfmxF?GWg71@kiO&i0<$|rvKW!Lo0?&{MsrI+@ zLw|%5;q1+MIpxVgEfW{qm83g4Ytx+B6QafXgIfcAmgH#C*i7mN1;e zZ+->{sS2XM7VD%+JORi2SlC!D)5RxNICIrYPkfuvcEG9~Yp!~r>PPiso2U2ENl>xISNp*J<_VO%le!E<#t3Rvv`Gah&n~|^i z~?s-C(xrln9#F2=9_zhaeV9#_oDPXsbIo8BVB-fSvEO>?gE^Up&jEZpGoU2 z>(w#_DUDvd%?lA!Cf_G|~-r+qsy}}>)+6Wl7#yO!A2^JhOChs{@pbqUT z8ZAV#po?T8`~2lgz!Is0p&%|(-lK*Ad+1y*icdk4C=P#Vo+-7t*b-3XQioLI4}@ws zz4!iVQ1QGbW<_Iv>Ghj8K^~}y_gCi!Px*2^RK3B@to`laHU`>dAbX|j^pQupu9;0_ z+;k-GQ`}GHL>_+EqIw1aRcVPs+r{Q|clAdrV-B`CypCB8KTw2M_SC$pZSU)M&>1eI zzXQtrgHHR|+D=boEhu@%CL}VP^Zj#O_$8LlMdBc6>4f$aqUaUB4UTCG(qX#K&64j} z76hWydQ%XCLtqAOIWET54rFUf^Zb|-jO1p8T~j#CtxE&m>0T#QJs^3$2RnhhabcZQ zBzPhWfBv~ib7yDEwjp#S#|zk@^5(2#=p>`+S2n6hKUhSh6Lr$2$ku|V!!lRiLT5?X zz1fKi+Umwo>n*Va?>#OwztL_-Fy>#=sS(osU-CEoiT%8c}D%2y*^sWe|op+ zbnh%uA7k=PP?M$k)}saEt#Y8dIedNfTCh-fa;@@i4BK+Hl&XOC1=cI|6e_m$%z?*Al5eYh`E0>sU$1cakrr!PFz&?7S0*WWmo)jFKV4=W zC#UarH^zl5(5)tFC^XXr)ZKHLiHbM)ea@LxVBciF{8e9tW>`N2xJ51YT65u1q;(2oZVPCw;O~@)brZSmElEv+XhRpP3M+~fuD5R6_-o6Cyc$?P5Y4q%1e;2 zv4oN|5jE0Ch>T1p?;y9a?`>X*TmDMPz)M(o4_R_dK_-eNuuzRO9Go2M&}!;7V5cDl z(}5v^$C;M0yvB6$uCogXw;&~kZ7`0}8l9Bx&Uc>CE@PHIZb^u5rF_iwIX&Bfvx3Nb z+(e>l@;P-a9o%*|DPc&wn-eSHDF;zB=Im({Uz>-gciTff=+?*kRs5Y3c8NlhxP$c_ zG~%5>FB(id~h)Vdj4graAV9QMa>;8cm=^yWV$xgN)uU!TWplzjBC@R~B4n z6)UP6wVEsZc`l8=E2MP##7cY>>@p611w1k}bcuv-r!gSd>fQdfJ<{RTAgk+pQpKN> zNco_URLYp;k-Nqe$1ux|idJ`mom?<{ch^%QQD2fjQ7&1zhe4+=Ve}&hnWRXMGRcEryV^f>3q0= zgkGU|^3G=#zDj0&CiqHcn85NZE=4C`qTSz*BQ2Fqhsu67;u)6AeZQdRIR~Z0AHsZl zVV?-98v=`c0-b$nYofgC7@9fhh+oO}vRo73VEiF!wIdczh9i*>7=>f9y&{>i7z6t7 zg&}f z9}Wz&`26+~kp;`Cm_YdppE1ikM)8qp8UkGo4%0}={@ib2}Dzo z(3F8{Y{8x}nX@~|_SgQ^I0}jF(JQZ@S6r@z2Ch$gjy+3z+TPx%Q;xm*J!)TGen6Iy zC}-s+B)obv)zbZ8-1{VDvKGF;P_vLL9jjFnZWO;ty=Sx^Yrw<^me4>~F%yX2S=aS$ z(I1V??Z=;sVQ#nDHPmpo(^^^Lb{NO!gyE=J=m#BfK5gi~RX8Q(D2&Fjo8?mBeD*95 zNCqO)AG-P_fs+qCz^LxE?c*i2`LpVd&}%9#%tRm`p~*5JnAp?}A}GRHV8LKfwW7hc zN)S;@J{84VXQ@2yWY-i-l^c1gKf`pvL8DT+vRY#zeVm16nDdnO)xPzG-h9G&LX*OcKX@7X+L6O>SfE{I$3zJP-a-PMj<&dhFrV=82bYyd{{$e>YM^bX~9Js9DR3 zIg@vKeOBxuWi~%i!kUW_5@e$3LtC9v=e`JX3Y_)h8*PPO5#Ay%WdId`D6UQqC;p~n z-`jW7S+B`@dLQ@R;ey-cdP&*snFSN3_X!w!3@l)N45R$i$jA|m30c*3EpZNY3lj+3 zdX!0Mu_{r*k2L$Z(qQe+pB@Z3OW#h5U&Yn#juziaE3Zc#d<1f;vAOS(h4yFJzuZt1QCNG(LVL^=ed zU352`Ki>EIynDZA?{l4RUKbx&vgZ877-Np%lMdR^BX2qKvtj3Z^bc(qC_^wtfGg0T zQ|WB1f8Aw!fetUB49DV&jbu$--m^NldpmK-f@VA17kgB;tpDDUaae&ovz9gfNEE^5 zEH7E03GiLj(4Pl|jZr3jPplo{;B3FQ!@>QDfvWV8b$uY+^jI&cGVc9BnW3 zc68YsidkP(k3a@^ov8cyz@9Rni}|sWBbmttSmS^h>3eY_qrBZv461GfwSZd;DoF** zuZi1_<{okO6%2r(+kwQN9^SwmXTjYN1tcBJ#Zp7+C955AyuRc_{t&lw2V|opJwt(T4a{?H+2}i2_Ql?Mkw-9tiH`!8;#ejO| zxpBQuroD&Rd&-ugGFHlG977X$ahZPvDF4*U7d4r7MYONbs(;1GZse($mytelrdB#g z8o_|U;GxnETj_P6gs#*dd_?9wMmDtmenb|OzOn)@Y{$pe;=SMc=fsU`FWvpl^}3bI zbMRN91MORcw*O_BHZY~Trc0Gpfmb+bd(eR;6w-_jHlytxaHD0XMNw*ab+iJa`4ccq64>tyF1s}`T1;? zyRoqw;()oeU60t@!sr3KZyw^}u(T!fLM!aSMAk^VsDnBX3p((ou&}T)H`jgb)WFOJ z&C<+*$c^P)u2Eij?qBP?)w$s!DZs=CaJ@RdrMWA2`5Vx~(a4{C3rw5>u5a*o8rK9` zB8P@zfdp})yCjc7!T5y)ZXp0WN3dfBelk-whpPu5*9 z{O{%Ip+FN1rbsHHMG|WrMi2B?M92#5!!mEZ@nKPlzI>6)ZEbItdZOSkmXmvhg`Jxe z1qy=0G$-1sV|kPl+R6xqmk<|+QBz+AwNSRt>+}@*X1}Cg+47n7NiV~oyx2P{F%-3m zbPC2+tmxj$0}+a{GBf_e+$Pz@+*N~s0m{5d72j~k)6x6mjUKB9y!df11q*r}yImBB z`3Fa+Ctt#oCuXqzd2nEC6WS58j1>N^C8O}-f$53l(f(=z!pzu8WZF7>2%1$*vF$xj%Q zHKl?|1MN1pGnn-W4U;8i@SZNXB_9go0Nzm^p_IrM!n53|39fiX42$Og<>WZiI6wLn zIQ@Ehl$4wi`p!%ebgL6(wX?{{cp*IlQOv;SDj0_bR;5V(hPfB#FUVQIGy08RA-e#@ zZ!SX{>|@J)0c3=SheVc)g2tJ-K3g+9yBYYP_^4Y}%Lia7CU(BpS}!UK?xwoH27ZJ8 zchf#taHBwOGPhEHNSlSu{SiVl&EFKP|2738UFU*|YPeLWGFZafLUAOvET% z&oWS!20cX!g4K?N`#1Ht{EL@)?f;D0n}Y`>qzEF`<=9cnrgXj{TX`ku3sZk5S5TBl zZts#OY+Zb448y8`Xlwg1JXuAb$oRbQly`&L@Xz;Y6nu|LmIQ$$KaGjyfXBN(gdEHN z7k{9dW?I+*sq31)7ds=sieQDlC^KMG!1}%?(eC%uWWYcu*}FV^nMR@3cbn&FhWF05 z(b?<)!@Ky`>${*$Ug~2<^RG@kw2LEseSPifVek)+kDAN;$8W@T64!Og*67902!_zn zCe8v7ey+~L^O#=)?^~EjEv~~t`3u*1l%bp^5Jn7~{681c!KhXRQu_N#;FRTCQ{4JC8WuBo%6QF|GqQ4cSS`#9p}#T`29s2Py&3I8y*}we2Xq}& zjRs*Hv$=A;+rHn8-AcFuhd84$4dKS}_}kgz5C{$}oK0z(hkd=)eLxh9fVFC3pnM=q{$RW_&=7N1jFxNR#+)_x~+9 zoymdZ>CU@fO6kLR$uAMpDPQCj&(A%2l$ZgF4ujm`btZ0Z-2VO*+!_1-VLJ4S`^Kpv z2?oG2f-D{#U>`BTfwa){=*vP+S9~YadWOze_Zh<05eMe$=ZL@yhAjc-vGnzA%H60> zhkD$PEQUYC5tdn8dxM-_JI~&Ozf@gfa|>`o5jm`7ACOas#muw9%sq~0)SRryf&!Zo z(HDMH+<{eebt{&*IXTr|a)a?{9kR2l+>8?bsHv$XWMq^B&VYY&1-SDVqxIq+5w6>C zXfS6vnX2iO$hL(AuJD#!U6!yLZtn0lSv~+}#2yEHk&U=;PScIA5>M`h0o%-PE}=kR zn7fT{AeZGUzuSVtZzp-RAIUq|sNe60C_Z_Z9HI@_hij(8+7S+$t_xBXus5PenB7Uj z>N8_Nb|T5rll`tX(Z|cf01-_A&$C?Gm31);56Vrf~^=9PSPhaKFm%kN;@ZWUT>Z~ zJ8FqVN!TTlJZv5$@*d(_a?nA}%taqBT%_VcowT5;>bQ?Kv?1HrjbSEb*(GTD^DsSr zFdFX~6&>Sosl!t(@Q%EeYW-Vjp$FHXZWg+CWIdq*V_}b05XNrv_els0_?}o<>b%G2 zeBU~c-M-{%&kQ>=$`u{SrqOh|JREoUjsL zbb0m_`J*Or+H>63iN{l{!diuN@H-X=I}3}~{dQf%gMDCJ&z0v`7h z6oxcliR3^Ol${(ls{s!>3TJ|MrfovY!?*E!j-?T?pCC63aP*X?C6;9?ZpcKTn)rd} zpt1b@f<^btd68(~AQD*{BBzMOZgkd&xd*r%LK3QfeQs1oz}raUHwQHfr8&(hw^1!S zJc#&SL*vb+f}kJ7_>szG)ZY~itg05%4t&389F{7UW$SWSDs@P5^5in~oc29dRCt%A zcuf0UQbAn1J`}zpBfxBW zq7t{|7`{R-zvg8*&2+>?pD`WUcNa{lv-*8YjQ&Z_{4nI-S9WwgJ*GU3pJSAvuSwnx zmdWbgZANb~8C(qh5ivQtMA748urCMK4_ zX@&0R?>~#lF&YF7d(m)t;+*63WqLG{JqiBkX?#yUHB`h1R=D%~9vL%1&-z#p3BHSr zuY^!JEpZZKFRARv0+y%KdWd#V&mgRoz)%hOGMzbmm{7@mtjU=0;c>%zUuCB><-#uN z=Whwv8iNs>WUx~CR$I2b&+zLAhr4f~!$+SGSI+3z>TiA1J32Z7jv_ws%-mBp0bYK4 zW<*#Y0<+28$HI`Y*}TupXQ?>fOG$k=SZJt}w%q4FN0<($giMs^V7qe`)u=;TNNw(v zb8&;@n`7m>zC<2~Q`fWEZMvG*X*{23&1{Y7vXhzSkF`Ezq9?6O#@9s484g5Tz!*Ga zJq|6u2ST4`CQ&Az+6+l-s`Kj*wVoVkBM^zi!u5-=Pu|OcRs#;cAv+j#y?z`d6}&y< z?)3ZfMj?K$EDr0E?f4mI;Wioau3??TD>2)5 ze->7a(B(ngWbj&4HyH4*NO7rVN=rh51f^oP5IwbDSH{sY4wqw51S1c}lk2m%R%@w} z06uC=hdaNrwtR0)NL8A(Nq!8C2i`(&vU|}wKRAdkNM3$H{xY+@Y{m7=GpvO&JPh14 zL!~u+DZr_ugCji)I7yjsmGCN%cbq+md4u@kh?Ij03p#$wz3b$!Jus6x9!iSeP}@jAd= zMQbW=y#b7q57R9MPGb$4o!32Mi$unQJ~vV)5vY_4j%VQlMZH5JFpE*P37$%Og?aWB zVOI!4q20he=PlsI2FPT!V15XEM*=By>IeZ=g@z=@yE(&GF>XKt=&0bK3}`Y6@x=`TKz?y9-|&R zF(iMb#W(m5)3V;{XJ*}=QYq1_N-H;>&XO%LykaM$6n7$bw7kt!wS5JOwS8n5gZA+?FKd6Ik0x`tylxB99A zY}$tXAi$sW#mBI;REmV6DJ4C9-%MXyyDW}Z)uy|FxMvmlxh9gY(o{k=&9+(m>{F#_ zXt4pZV(Q}4<4i0+Vw*Nm^r9!>Hjbe|Fhx^r5couWHu}wRH#jU@ss&-O@&|5Ghv-wa z(2)_?-L9o!`f1rPf$4SXKbEaPV6!mD^^j)wEd#?(GIQa~eO$a&%0RRh`Sr%-17&lIX=!w!G+hoW%2ZmKu$b?x+u%C&!$Ng(s1dn|flZf$)#kt8=r*8>JM zo5yJYh@IFw5t{(Qiz0w0TC>G*NT=7|&g|m*Mu;pS%del@b9fv{)k9IJ`cBi4VP~qc zh&aKxUuC!%ef0e49G{u*g?uACv|4@Enf>EaSygrE#=|+y?}nRM2;?Y{ zEw8K?xQC6U{gWUK6uADuK`JgT&C4NsY4g<|{jx^lo1xciOnN0GUe;Y6b)EPmveZAq zLs0;gcCgOp%Q!5q2x(Jye<3Y>crtO;b`<#rIOS?7e(VaZ@a`m1ZUB9&EOECbLa@hud@3Eq%3G8Zo@IKU`+R((>r|i!Q!LRB1|6 z^+M6N+}txlL=pY{F;todt?w^jEuUd|&wIcb=P_pDuH^P!vhD{7$AeRqpSyZsmE&Op z^en04Q&v#pZFr6+rD4|AoKn*L_7%vTnjQ~TC3f*OG2`AWQkuqVSiU$4W6PjRn5ByA zq{!`5BjP|5hm{xJhoWc&hkLx&j=9SNjpd6xpS(i!#V9&jUszw&aruR+Ks+N&0!@o{ z6pb@K32vYWfXJ9h)M&AqZ?)34t($SGP}K67z72WE_>ssTMIr+8#{;XN)~+#&d=qay zS|G+ej6I%U`K?~#tsD6%?Ccbi7as4nu*rZT_}ev+6UxnwF_^5bDh{Wj@x=7a$>nne zEV>2>M>kJ}5(P5e=&Rrm60pf@!?|Qj zWq`Tt&{DUA4Mm;}WAvKvx@DhCjg?In$eAn$!=zDla0SEDH%-~2ge875l?x*Xr;qwt zOCSMz`e%I5tglCTitM?=1~<-4h1Rv)eKlN**8O3!^AyPuOLA`;X2pE~X_g8Cw>7Yw zC&33MDude3gX@0eIXN;8YHN)N3a&=?x|B4-2@*nVDts)eh?A0Ik+KdP$fA~LHtIc@ zHIzag@SI?Wc_ktO)A^-q)8SUFOLTe{-{i-~L%b2R6Eto)4x>VU<=^VFCYPzONXOb2Nyvm)55sWFOI{m9!#TC7inIDQ1tl8@fVDV{t+M>%Mq**%X*8 ze>k0xQlU&XY8wvnqOqhSy1+f1p!Mz!V)& z>-ru0kw01$lkkp}i>@CzTx5UlMq0Rvg}gI06xOPw&3WWq-zhS8ECX^SU2 zqotw}6chyI<>N||!};;!s^}FE>ZPr%{rEt04*aXV40!Z7GuU21>M24;);4KS#Qy^p zO)XfphjqY59V8i9+u};WNvJ%8h+lT-9_n?E1Mim;8cdVk;qxH!e$e^xC9tfl&LF;5(9ujRos$;<2OCJ4AW zqK+fx_5#E@3-_N~&W$o0FVwXNhlvERbY8nk7&sK)MQtftBQYWA7MifulNSlY_$<>? zF!l&LE}_kYI}ur69Rd#uHQY`-PC8b5Zbu3W3JQvebY8=jLD8`yO!!pm!{LUF32glh zVRr2!Hv^Ii&j0=ih7Hn#;df8Z&VJTmfM8IBe#Z3M&W1GLd>B@6H?}|90N3Ies05lrg{LaxijjinMS!KQbA1{C1r`e zCL{Y*r!bz^`8zXruv>Dl)c~|zt(}3c7#6c$b~BP!0e;&-pj48CG`b!QG7Br5Yf|h3 zGTP2c@h?H?$~f30*4{jNZQCB1bB!|i%|mKDEJb-)AQn+Ip6%SoUAfbf?}DJ;zbOXe zHyKD%zQN%u03lQI>rsmpS5YhcFvrs_s2mU*@S!nn-5xmHunB#=I)8I<@auQM zfbb=%eh+u$JDE$EiqZrp`wpAruY{YE!o+Zb!l+)Bg0G+BeAIOPnd@1N+*69WDhrW` z(G9M#os|)s{}7ry5rNm{paV5ii6U}QbGpZ@m(Q1E!B&BYMtSgpgwUNIQne}Ui%z5b zs&uq&-c7%|`5l>(Ah_c-+d$clCO%M!4nz@N%4m_T>_?GYl1oe*ggd+-Tl|e8a#w|k zx8}#@eNV$zK!mx3v#9-~owuFj3X8lm#aTu-uUWOluOF@1S?QsNBhzc14H%*rGe(X<% zCfnPhMp>sh%t=V6$EO2He(Vo#Hr1c&k)?XX_Ph>TTC3vFlIX~P3z?-#syC7pwMgYx z5pv6f^v#`Jz}DWqy4fEEU+f2CA9KUJ<#g0wwN^NTNl9H?SP~Si&Mtv|`&E+L zzo$+6>|LUp%mjS9@R0krMQSIpbLGd_nme@RGiLo8fwI0Tf+fwUDF7~pe0+(E02FaP z=B58Q&{Y`SH`5%4R67pQSNvEOCauLM*;#wrc4C<2?Tt55Wv8m={?Q4ty~6~!bCs0T zEOY!U#<7H2Tb3!J)+g!?1fHHYHa1=~)KpfgNvHhkfzB3D&!zof3@6;9*-`FSiN3(T zk2`A}K1~Y8;?=J+OrHOw+>P4i1tdL&w{BER0zXQAg1=}`{pMbJlYaMOp^Gez{I53@H$8E*z;4Q-D+%~vVP`d;q-Ec7?=IR zy@1NnNWQ6&07z9Q*#SXqpn;iss$k2c%|*!h2?bp47F^XcwW|7S7RBDV*|n&mTOw$G zj*t2rT$CUVC7yZ%I@FcZ==5sOsplZx#O&o%7Gqa7DZ z0JAPvjL?P0)02bXJEb~_fh3Xe@Jx=ZN5@yLZAkQ~uLiz;T*1l>ip_lgmcFhxKHJS@ zb~*5aJB$d;!B0JX>P0#gt^@o44z@$W!-z+G_kt+h*2)NE7=+3QG-m&N#ajddMl_aZ zRGk}PwkPpRIN%DA_%|M!;$jsUe>dEmEkwv9&Yw}izUr8-s917R%F1e}(rrAoP#z)6n6ru*>oi)`h*utca{D|1mP2tB)z zNuRV-TBmVkk`xopQ+xBQiR+r21EZOBYO&P+s#QZ~or0@M@-i-_pnx364@2zkPGhGO zF#q$s*Hf;9&4mMu9ngp#Rj}ZHVFNbM%-);`;=@@ONGd`MDG?=`({L>j*pnQnZ1L9(qzjC zujRp6V_c@+;1u!%buWh$5)%{g1=3P|bNY8Wdzmt)+W1~+Et8f*10fxMZtm}kjeEFL z^ozCjr_17>_99gRS#NyW{v7@sA$&vJnERIQeaC5C1=k!11LFwISb1|2$;nfDjDX;a z54g4BFnWUbx?B`q|?A2KE@e&E^Zz4Qal5p~jq z63?!#uFHnQS^3AYl2_k7uL&L4FU${VpSX(0inb&YL_<2_eSXUIAeop@uj3S;XDGO` z89XvO&zVUPj0W1XGbn$A#v)G6=Hf^Yr_i&1_W^G;F{_4wgNB4+msz zKHibfBm0titwYOmArfIA*K(x;DPeffQ>>Jq**7i!-dUobYp$@3(-U(@`+g{M`jmt@ zjxAh8UA^$SXqa18zG{37Gh|fa4;u0OB=jQmG*sbhP*i*y;ZD%n0q9=ksbq*vF*vCA ztweyK2N_`rEfJ~+j!v^$M^w+y+ordv#Brs)oI#sU2ns)G$pRh}LV**=$^Yj|@�A z*WknL`7C3Nd2K&L6P#6E-zSFDrT5*xsriaSMkw+}Bt5ti2zd)EXrRaZiglA=IQY3b5Puw%tzy0@EV;x8iQjBve_F9S{3 z3iOR-H+xdGESddq0pl3!z@VyeZL}l@@hHI?Sg z1YwpPWCjK&vjg@T^K%uj(oz-{G-qdLD(dRRaS4h9`#}bp%laWmiP{8*2(V@N`b2^n zudCz)205PL&RSu7w>Y6M-BLMXqqW%UO_G4E6o>?eI=#voFy(|6%wmfD!)Xf_y0{ zpxu~1Ubo$(ir7L+wLMQo70#<;Q>SWPU%)KK!e-&x=CF#8LJT!^ z2^#a!A9LflM4IsoUF*YkzHcmD-0OC}=%^?$n~F`WT%lDb<*Eov$ZSwq?77*GkL#Vg z8iNSPat3FGs=6Tx6uXW-K3^e;x-YA5!}yrFw?Pw-DKNmz)B33SX{h0!WX?*`OnPBq z(uxX(A4;X8BO}0EsHy2-Okfw0d2MON2TZ> zvgqvUXS^E5M)0LoKLEfU370#=nW#f6E9uQ9 z7x`~P`GByvBpeihfOkucI3ETSrIyod5%Y_*QwbRfff5@TSCn}@SKO_;{xW~ofRw8b z2vTYOUbd!HTp;8Ui1>C~$G+m7X#GLnS=VYLD?W0WIzRI}H6yqDXE&(-F85v&h1b!V zoF$hX|Ishj;;hlfRC6WKuTqqpw)f?`oFh0{(i@?(2^$?`vvXQ3Q`OV>D zkSU~*?8HVb&7~S1D{>*jX0gue+sTuU_ei!`PcC7f}5ojzh`B7RBE=2!fP@bIP+IeaIVEisDeDV^fL2=P#1+uY|g z3GL3XSOSMGK0x5$`+x|uD_Fv>+8>sCDo^1^SSn=nWnC}3`3;YMTO~6o(ck91m1%C?K0cJZy!eiehJNi&VpOdSil3O4RhGVVB1N_?X|eBf&sz63+XYqi zK$jY0#PE^vdb2xk)`?o91S8vWBF7Dn6K2ZW7L2<0F6-C)q?~U1`W0fvIB(>N&bf;= zlQHHF3j?DOKen^IU1ChO#V;m}{&Ff<<{0rjcJxC~=7x#OP(3VQj@;>X%MDQnQN)$1ysJ; z1b~nrzH6wiTY8$mX8>3dFk7Ni{OuFE*OFR#n0w)=GK(Ghs-FUYa46dZ`xf_&o8OO` zqwD*>BkZiC%SlfTFqT!dCs$BvIJSV_@=gEVTM2+~mkL0y7ET%=)|S5*$aep(Bbe@p zK-Nx~x|&)D5by%PUpP28e=s;vQ5xY8e%5HQd_Qb_IM9>Z@j7i5tDIdCN1Tij`H6yI zWs8rw;mNxe(!v-|1{3IRpvCH!nN-u7ThiEwr;@V$KK z!qg@;KmkNejJ@aeeAP_xc=C-V`K6r3;cp!~_*B#HGh@!(;#Lns!tIpmfjfFMc&L{0 z&1UQ0h2pB!_oGjbVC}fq&sdPO)B5pgka5OT9X}j(r(LuDW(N(pQDr?lumUz~vsOD6 z1SC}b90XO4@b(P(aR32T5G&=tgEcOY>Y?@?_t zVmi|lIZU*y9sPP*eJbi9a?mcxH_hXRV9&W@aoP7R0WsBYj;D{<$h1kuD=?sf`+_%} zG!ftJ8$&_#8+=U0-Iwh0Teozr*LQfWUrL>%A@<9ucAV3vGG7+^Mq1^E!fYR9ZTkR* z`ipzP3g7r+$T2!Nu_pMT5OFfgBU>%%wv$uWJ1^8!Z;; zGt38|3k1S=JeQ(3|HNyBZn5=t8PYLXYLOB+V=%)B|5mK{>8nD{0NX`^B*KO-2Ct0v~JZ zT&+9FD9hT!F*rU75E;RclE8F6Yp)+R1=C4G>-T6W^OM&tK6OE?CjzIEK290lXO6Y? zT1PM7!ob~TYxYG*w2Mv|%>pnQWzo^!RdgVRAhbfAB;{MNM>ekuC9PuC7atNUL-r4D z9?0CfHE=F`FWmja$g6c_chs!XaF=%e+6& znNwN#834_$+s;^UUEQV}o>KCa&E^Bbh6#85#s`yU4|g!a;#UA2tSrv-;bJpsguI=u zaiuY*f$j*pas zM!%2#cb;rl4U~*`E2pcN1RnlB*3b^|4F#+-Jbp&sRqyiW4F^ zX~Z_jdQ*ayk`HOlYi(^626g$II*jU4^V0IznX};G;XSUTx@C-QLm-v$H3q)Jd}Db$ z3E?j_cX(iwK-vMBXjlIme>h) z^=o0*cS2djnsT1xXK3E`Ln(YRYTJA#UnFDKn#b|r%r~x7XpNC@Ct@<1F8W>|N%2ZV z3uv}@7=oOnGPgr}gIx|9AHA*(idhjz5EZ&L-0c%aFsUZhNMgHYQPv*FRP-&jeq0bi z@9w zIq!kITJL+ierm=X95h$ikgLDJhHO;bPI{w^f6{*__5M?6+94C~wau(E*ymFGp+odf zz^tmr1JoD)QvNJ>Cs!n&a_Txg4#-QE(L#bO_;*T){sITnm^>Sd`*2EFFQ1y%{KNwvk5Foi za&w`L_)gQqk(}n{M^Z0maByN}apJQhEV85DEynDWg5H;|fC$J(1wh9s4ARupgdk-q z4)6#G8D0)C&Cbr=Em&GscG8*?B1a4_?Ck7RQkjGP#}xjn-d2;Y*Sl{D82>O^^j*BU zxQ`eU<9B8-@r1l}ZBS(2=u>@PLpd+iX{_oYOs?J4ml^%}V&7va^_)}D9K4gf2 zVNhBB`~oB)I~vTRj7Uo6nBui^m+JG4T9&Ll0xessDgxFw5V8BKzWcl43FumVl$9GI z=V^rX1G-=VZo()+Lt<*~B^x?c3H8CXTEZ-mHMTRxNOxsuM2%aO#V2Q<V)$7hL`zL{U8u2E;^C^)Q^cGgOAe+eZa zfp7LPBQW|F*Z$ObKU}^PLrci)GDJd6_IDr;0nbTNx$~|v__KUWP^d0(4Zd~xhDp4i zGGmmPYw~WzmPh>yZ&zTt z_wYORkPI}=5$4vo4B8D?seSBe&@2+F!X-4|o=%z+(_)eNDU&UC1#OoOG%S&YxAO}| zb7DcI9GlI@RPyfjI_@;iDm0xJC-5vrrhY9}3-pzyeF>YI05bWjk}&Hy9m*-UkU#6B z0z6Zt@#&?m_=Gr;84T&R658Q14RUEM2Ur=k5T9$+4Cpxq9;E!!h+49-IevYQ!e+Pm zNj_{+S-r`M#~us&6$u?6A!yf+6^tP;_$zIOrwFMW%Sz76ed zQ)!0u>eaU#KDYJ#<$+^|J9mI|PQ2>s`eF#?4y;AjxmD_@Si7u(SnqTlwS5TV{jEf9 zk^s>m@aAUw{bAMy-rJwGrC;2Ymsshb{Lyd1U#exC^WRn^ID^TN9drDnPy(3nH;#^K z;~l)(EVA)3`v#>u((C{k304s>@BopoLBq*(RlvRF;J`8)j008&qFpp;=~fJuFr!Ao zOU7c8+k<3&fxy7Pi~V_JU|IfmCs-JC`8jaXO`;5Wdw1hikRI!r$okX?8(wm#{L`$< z=XbHlby4Mj6b?))?h_hL+5^V7>1k|0FzW1PXOuTxct&X^7U51g@I=+zfraxWp)rNb z@RgrmYQy_Y8wZZFEg6%?^MUgZSGiKP;c0NFaJ9F%yhjLBiwXsi-8%rqzGaf%P#s=zT|w`+>8H1{G_mD z^_Cgd-F?pU7lJOqsZq5Y=>oc&G&~g(Sl)^3ZPhnCdRx2T76@*oup}#-nuuyH`ps>R zl!+J&Y7*1wRVzO-VD#Ilpi2b&let$b=X=?v3zCIZiXICE9YIJ zd=Ka6m4@vD{r8MmSlawb<>bn3KwKY2)4`vjHOitQM1!i|CIE(DMWR~l_D`rckD4Zf z7_bCdU$)m{b zMsjxCU_@Yk$nyjzK%3p&F4Q4S&9|D}@3G_wBRSfRzWjh z!qrxWdTz0zR89r3v-7EPjj0P4Gj%^R8-Up2oN7HZCk0=E>pVM`Fn4VpcfuTM~6`V zn5~{%DxNg<{j(0NR#@EGh&V{uANCU5hMm?luO$27{L(QO}%(Y%vPuUnJ z7TsLc+g1&uwjF`Pfz^S)!EtQfbIkP_#93$}^X#x}@EUVE4LguGkemJT7XDr>Kp^m`=^Z7+=Sxvv^dNMPFueW4!rR@O zZyM|S9l@=WFv4vrT|Y4K94u`+#*0oNrIn4U|<}QR&2LT5K3|r8vxbTDgnwkS)-uFMh<|90%+p@Ng_vk zOVH5(DA2|S;ODac(8wWi#4kInth~I0fk6(?2a^8Ly!+%D^rD+wwtxc>VB$&5s1;Wp ziRzD#FJT0fItLfhoLjGUE&7A9(_L1oFq|Q%fsN_ zKwJu{Qvq1vU?n?LbFEgw^pwI~5;?bkkoy81;Vxc-q>+x15rv(dy}Z))ellE78W`{m zQ>AI9HMF(&&9XByE8_m@+W&umJrKXo*U-l~u=WP<8a6zT?e|h#5v`L5KLfQ`8+++q zXLKycl)t6UsHaA3vtvA&{1w+qXHAO+qOOq}wtp-`o^5fzxuzp>xgyFw@v6it6?r1c zdvMJ5(VF%|V!J1+oc>OKU4iiT8=db5)(LlE02@KyDOV!Od8)V7NftyZtUSzchZ)=& zn`4E29IP~#d|u^s`gU&Dx_RoT1whQaq7zSq)_3MTv3kC&~?BJoMp!Zclve7fqOLTyMp%R|@*x}bm`1m5t4HLcm zC86(W840h3O=_U&QVSTZ2l{!=C~$UOs$K5yiFO41{U9Iz8GFkBc*ADndsN0dn7)y+XGutw>U|iWsvZ%Sv3vFac zfxVS!3h<;aT5CbUr8M(oJ>>zG~qZ*R9 z$m_(*56E?u2G`ce0K0T`ArAF?VgC#1GHupv(gS?|T3g=1HfMPgDjTO!eX5WLLBRG3 zyc(BZHg|e;CFShQ=5x8RoYn*f5C7-?0CJSk)iq80wAev2On8Agi2X9eNjCn)nt#6` zO8YbKxyep8HST(~L+)eRcfMq1+U)V=ev>ISl0W@BMo_MuW?9sx6QJ)d0fG-jb*OJ!ccGahA#o7Ph4HIEAY6HXu^WGUB*Oaeu z`}Xdy9sxtYr^pw`xsT+JH|&AQ|5eGK1&tlcfa3Oq(RL;el%yH#3C>>I?Qa8sI?nGy zujGw)dsUvPWH}k>9b>uxpxME6r)yYa?d{yd!J>GX# zR%G(!4aWN!^-=cYZaVvF=RKpBKX2KWFL2@E;lQ^8?EOENBH? z_m916boL}JAL84`wE!bW{Dt`iB4$~V)@{`=gC z7y$A9=Ty~k8*}zH;U8&9Eub=ymz5R!@SzB(djQ;*n3V;{3_w(TPJk+b6Sqe1bB6|) zf{qGW=XEer*Zjh7C`q1|t4~65zY%mf3A7%xPJeEdq7lBY_fY9I>@cX(QGm*E&OTNK zlz79=+#%WWcLHBll_lvbnlmxF;L4~#zcvT{uTzQFkN)8OGN`p*C=Vx42|fM1M@5Ff zEQ0`0M32Sh-^k@H59X-d6+oClfJm^9G_8;txYCf6|Ip|3{g59q{ZitCclKk?)Tk^% zg7Z6mnAFl%VMxC z_^xAhc$_L-iL2#(VsY;=$I1)?+7l%?JciIWRVyEAg>JF8^#~Mz;J_1N+ zZRsI}q#q4{7Q60Qe#cg3Wa}bpHe4WBD2Zbpp4Srhhi9aV!4Pibubv7eY-|>oovu=T z>B-*DgfW5Z`dx=RkPrv?NpaT0>(xAp=LfZxAWmt-jqGuFpZn(t;&38m!qV0XGirj> z-cZD;9$<-u^tZKf%7{xF8ynx;5Z@Zm{mT5$OyjWSM&Tw?1PTd(frEnsPbXUh=KhWx zC-Nbe-P;3D&-@;9VL+F8{RW7ozT@SYeY$TamSjckgP=4L(Yeozs>AH>T>**1JMNy(mhAmTmJtqV&$OC_~rns~zwZ0eyj>mxQ5k&7~ z8-K|P_%Ns>n#7Ned@;Ms)pEIzQ-h_rl#pdHTtgm3u1v_Oav4<9e)UY;61$QDkBA72 zQj)-%6;vkPU-qw+n%3$K_yD!kn>V#Ba2as)9j5=2{Y zmI#)NbiDp=mRx2n<3&heIxgYqz7Gyr2P)ZE(>BWbAfo2r$XB|c{4|*R)(Th;)SMzh z>9sKDQKIgeoL6Yo$$Uz$jzbeEx->BsvR>FRU|R9S@)@=@mxhf-;M%gv2oKvEU?i|y z&5qsH31fS_Wvgi+UcB~rPKgK3aH2PLeuxknQT<9+Gh=)82uc!?t9f}31X|z>y)aH-^5y7##X)AnA102KE@sC1sv=p_ENI-rAt&(j@kO!_ zcMzZCZ*4BTD6m)`_>=yXLrJZw-#zU48r0F8k=rk2a3tp}b{6|Cbb6qV#;7tkS1&__ znH-}wOAN|oe_;^}>Yf=>VA^NQj;p2*VFZ6Qe*f03>@E1WjDX2Icc#WjJL4`}ru>V% zPfJS+01mm!CW(C5{#LD=cUeo)z)${x7}#D^6nc7u8ygz{Wtozb6Z7Q@^(^P&WIPlf zJ)oxj@*aExAM^?1H8*tR9a5W9&(&Kf+-{5uvO=Q;zM+xu2x=f2sIU}ttLX6Fof))C zfJ3p>Qb?K_85PxAFFLwvyJN^E{r>@QlCI{+)BY=k`@htye|d<=atDuEt}}**o7V|X zoC!^sUM~D6=YcQMw0TDmRh=3MW7kT{r&wk{MF!Bl5%2`EBo=m|?i&LLY9WoL%YBgv zt0x~hSt|NMnPg8vz<2S|{ShVR^J_q=y(&QFWx<`$ zquC|OX_9nRFE_@!1-JfrGB^MeB04|iWhZ%F5)F`owCIhU9vSY=!LlS#z}H`n2$;1- zqS`$nRDZ>a3>@^5(U+6umidhE~_k zmPQk-iTD3i2K9#jegp_y$LPPHecu0V&e4qu#FM#Iaj%vU71N^aba{2sPXZ}G1D@=R z2SO#Y0t8-HD0Kc)&OEPf2;kBcCy8@!3p*gh8aF zq<^w>18bH1@qLI zDgL!@ZO~7jLSLgvh2aM(+3(IFy^NTU9iZhvhAT&dS&!iWlpmU?)ChhB%S!N$v>06v zko^*0^UVGUsBV?|qT>)+pYBxHJCv|m+209>3jtBnqx<2yI8b^!m?WwpOD(3E-AoOq z#W;a+ai5ctu-@R}0z)e;Bl5Og{tvPtC73IFHaVH6TiPEt5}wiZQQ*vH=sPky!P*;` zjAo>hBY;tWEj6emxgXo}RL8DikkZ*TtXDeWm4(M+U}Q}En}e0r$4L5JODkrt{$CR1 zzek!8;D)Oi8`tG`xS}Vw+uGUvgFZ^DswO^>pAWyVDBi+!9MbMQ-O_nz_}vF} zX5RCu@A~~QYg}vAAn-irzW2WN>$HqX%t^-He1!~I zE5CM$weQ+XffweUN7Zm1_XjgQw9nE+&S#cPnKnk_t!V8h6xIAhqB&2Brjjl1O%yoe z)yy{5VlV5DDnEa>s^KyB4DkX?ssblT%UsWWL>Zl1XZH@WB!R`wg}mn{o+%)Y9eEN6 zJ{xz*EsycEexc2pk9*`f#DT{Ph`TsoJ2S$+$pj|+NabP(p+(+t7!XDrMHL>L zsT$fW5EP;uFHU*=?(!#4MRjk}(eGCGXIj}Mm|sOX>g(F1xnYz=@NyMS5jUoXUcHV< z_8Y#TdGF)BQ8&73R@R%335wJ39|a-#Ju~Z$V~c~>XRpfpW4Z$e?tS|LNrDKYxQUE3c-l3rc7;cA)ax62`o^nXL9cEmSR6 zr*_=*?VAmB-dIqt0QX7lVB)y`$$?i+2u6;QYn(&UYB&vkt_n*>S%B;*QzP11G)8iA z@(nC3KR{4SQQS2hdsYMulO*G7g26N?U^=x`m$2b}>PEIobsD?Q8lhh>$zO*^np}#& z$(wElyGgHW`Q-Klf5=XVt;-4%GcqoQQpwHZ!831ka_b|?RRwS~RME%ViYKFKT~u_??$KPzAKHnx_n$$FB;zx*(F$b2e>;C#4xFani*%J3}!`Lc@&=?WQt%J zqdcI8`ad01^_Qhq8VAz?ESjH4jD>FA&6tqF6rorsdFAOu471|T=hEmHwcQn#o zmLEz7P5L#Atr3WmwS{(G6&X2y;f{9@NDzBUw|!6$GmNQI>u;g@b@PlcRw`kY-o>n* zk5a5!*aMXzYGVtn(Di6}lR8Up$eTZtT6>B0peIRH{g^~SM{@!aQc~ zNd1ZhgWQ^xl-w_YoN^zeGl-|Z@KxshrnRJPQt;an_`!UKYM|rjOGXBm9(}H=(x8BK zcgui2iMsI-(f{J%OXMac(*_}c25hUKSpKp~ER0)PY=bOL)1asH?mNY8rss0cvnD$( zcB;Vmze0pF6FO}9zB5N^CA@WxBB(KP{9#Lh@QxLs%;x%TNI^jgotmwIt zbs;waHeZ!C{*V$*H`L!I_Nz)mX%3QS*Y3ltzSf?A;$R>FpW#_cx@6=& zSE-JC{Q0>{>*7B@<=He1UIJ6w2d@WU&ghJ#BdTi~WiG4^+%cDR;s;C@dqc)&$vPih zCP#jg<%PN@kr1)}MKJkahkNLML4Nff+2R%|y69&oUjc$Pk=bKedti*vPtZ$y2C3kE z?UHX!vI%B>{tN`>sESIWM&Iip5s)%Fvz82Sgy&RRDO7v1bNrsWA#@Z8YZ=So4y_0Y zjemX8-|SsqeqU+%`lS(uia$pt*IDm`iV zu%K9BzQmUOQa7yzV`GB2=ra6V!EE}=5+!F2YR(+|MI&QT-0?Jp%|^A2TDf+f4uTY- zwq-{=%Y?XgB@ujQw3!|`Qi!R9r>>jZJX0bs%N=sd+IY6$u(@i(bQU%uoE-o)N z;@9}sXI=J(fmhArH0GP62~jCb2$5vaAx-#v``hRDqhksI$*ZlAg;8n-OZ@&} zKxTV9PSD>r(^S9*pRXbG5RrUaTZ8SQEt69a0=?K!8Co3&Q7H#Sc{w?X;vMG4$H(^> z8G))16x9&(55WXsDW0imbVeZ1TDd@Yc=zts6(bL^MaVY{e+E@~DjwI45XQ2oU8&kW~`%rXaq3nV8jF7Lmd3!5p9OD2;4RV(?^ zdsJ1q?=nSRLC_?X7f(TDHu9&FzF)M)5F&)`{zrM)oy7ydJ7ult2+ z;?6#6+|i7q(^1gl!C@jsJfG5fgM$!`oeeUE7pKJ~g?oZ8=YIy#>z{;sRKP{si7t#7 z(GidEJ%>%3RTkIy0$mv+m`6B}p%BBzI(}?Sanw)IBrMD^0@;#Edg2`~aEW~m1KUFJ;z1KLdi_w*^pesYQn zeNSak)wzug;Pficaf8_s{33?CT3eqAIxdpZ+g1L>3-^*FiX+DUNT5F5yK-6DCViv< z)1TB{rk81-zZzG+F7riNst5-7;mw zVR7)itEWK-9&?hq>|4`Ows|omP$;lfYv`N-j`)j9TM*@LE)t8>Rm8^bR-*l|1vIEb#(rrCxmzCHr1tW^O4lLE?2&!7n{P z5jlxI*q>HVQ=>%ztEyV^zQ-5ta%xmi|&F1;FrQjP)x%%Ec-(<^%_5(ZuR;*~>Fy-YoE_bTCz}|z9 z5}Qd^8z(w?vc9uIvOOK0u;md;)jo1<5VdqNs-mp^&3?QjqwsdYc|_=?TPaZvKKqco zX&^Yc{%Ouws5IgF-@6^Nt{U%d@Po>~j4fB^e7q^p5RUJ4Y=z8WrGlPSl9QF!e(9e0 zqtK+W3C-HhzA>A`_=SYtTDI`lw+E|l!!$;TcXs>ucAiS@U2BP)wrKX-&o7Bs0i{dg z(WsmYf*`q6ix1w@Il9Z+%52VtIABaakNRux`_^KH8IcU)`!7S$%5Hl065=11{ zm8=`;Eo-E0tRhW(xTbYX7s=_sR=+VCcJ6P^3X5)dlOa`SQU;cT;Q3&FGnwF9xu87%_e!rnFB0a1sbl0@~^xT~8_2W0@ zRfAWi5B2Qb=!=8GWFo4NP_C~Stj*4T3VqB_Nk{s?%1EIrS?d2! zQKo6Ogt@_iAGEesoTqm3GcoEljip^TZgnZ zY2OM8e~ey#U-CkrNg&>{!s?Mu`H7EtZe7cRV~0erJjn3=xjpga%#h-|BnVL&0|>AI5NK$4n&XQKJ(&Bme-N(mPjUhUR{9 zQmvV?8^00bQG2QB_)R^maKpPYJUiq=D-{UdSg2QCT|E#%Kn=dmZ}FzO(BZKUHj>+Y zm}7BU(6ZO;tMXhR8oqKDHNdCkSP}yorr?Ln<2io%F~2n}Qil5AX^Ut#g&q?49n$z3 z9Bu8t?g8qQ*^Ym8rq)w4{OlvlEG#Ne_CGc}U+AuWkyhFUbR1s|=M%2t*G`q|>`K$) zQ30DE8sVS5ku~pO=*_{bgn>^CNGRRX4RKc@`O@c;4pLh?0x*gDp>Rq^5f&4ap>FHo zc9emu6^*&%PEHldE^TjLDo_?5Kgl07B2W2u+e*)^`VT(JG#kvBHTbMdD01>}fX$(5`$o5j z@ccqZyjhXUP)(a8c{LT{*o`bk-k4k>8|sgHPURz!2!V*|dQLAT{KLhbuv*GOmhx5e^&71V4TzwK<1y)yD2Ma%vtPg@D7Xs8cmxZ>F1; zs9=qA>!5KUiBZ?vu=e*IZ4<>#Ih0Lkk?7emsDv)tDvXGNRowV-a)sP!l__qMme&3R zrauJ+iO@8_~?Kw10y35>#AXN@a6hFEwZe`ip=%+8vdka?DdV?b# z@(}n>Ef!vWrwCDD_XYP_?Q#|Ce>kJioOS24YmRbhu-`k{;;^6fR^2>PH%JUUQvI)W z?rU;QvWc^<43OYIPM{aw&@>_62vFhDB7Lflc22*<_}KGu<~1qY0ssBC8JeuYBqrvw znK=dGXXN=h)}p^f`p?C-o8Ne4mTc|qhuT&0YZpipxp~6=dyic2okOnexz{sD8$I)5 zk_~>bgZLj#ATzL5FzemD_3=k#3aVls-poe6M%l45ug6pjN4q+~kvs5Gl!lV88HQp; zGv_jDoxLh8Mm)!W?xA@fj3Vr6y^CAR9!+BDkqg1P6IcsYoG0k)URD=qxizFmvq&=` zie9#SDd|!VzA?pkQ15jU;rb%En|s>2fG|GPlQQ?QnV$y2Gn=M0AwXb+n-@F^%B?f$ z00AomZT=)FU!Rg2sG}L>$RIp;xbbP?XoMinPP*7tAw%WLEyr?k)1cHLa&P_(_$kIS z8Vcl4PVokj_*~-azt&}DN_d9b0c9I7PuQHCNmf?%z*5a$q=$TR@>u5+Wy<=rr_L$d z?c4B;n;MUgCZ0V*=lDAt>~R^@q-{^!;|lDFubu@!E-tpE(mzCUcSRkGNl6JSF7``L zF(i;&p!)|@x;QS~+vxme?+PeY1MyXV%XItUGr~+Ul@faTUQx*e$&IM8u@!nNK?}J+Yk{p#c&kbO*~A&=9m)P&YI|jU?EjmLRwZyUQ&$~ zoS#Pb5qlbzi5dQC$3IJza_QI7y%@&<`9V0ItiFewD&|VVgZlFV&lc9-|LY`-2UDr1 zKKkrsm6es?kIYx3sFvi<+dDfu60)*@4%d|4yKWmwjtkKE9n={9ujB^@tS{;yVhc*- zwaU$*ov|oEDo7a9is&DB4kbI00kFKZbLi0Sll8`Wud|tCQO2Zzqup;chq@&OT!Wm{ zQ`v(HN;&)(O^{K&a|oikWtR)P@e4jb{BZf;(R*zn8t+C9rHq>oIGiu`8j3Pd40_Qo z$g#UG{QCti9A>_#=?zw{wu&Yt6l9P*yEmnK;KiyK>h?l>?e0wlmmiQg%G@`Y!;GYe z_q2l_`fyp;%zUbb2wULjBM^UcZYO3FtDFgY?bn3{Xw#$p4Y zqTAjQ>SVgWp}(se&=b?%B%`BB9=zNr210g5JF*d)n6Ao$U;)B=eAwIj9HC@r0N_+B z8Rz{gx2fmMH!(?BUY(OV)+1~jGQVL6VCwNanSPy!+gme@Z&s%31ziqINeMlHN78Ba z)WYSon5cbbwmx(KHrzIK$t=YfBAQS?VaE;}2>mcaDqazgY&kpMT*ManH}$Z&^;C`_ za2#NhI5;@hjD9>;b#p%ld`44>v$nT>HgQf3JhEN1#+3QVxC!#t>xiFb- ztl>otP@C)WebLO*nHjzT1M`o2YSzf{4c{t3K+^GopHN#2NJpBzQn(P2NlwnrKS$6t zz0qvR!PVOhlHPJ%HS8ZVOnvV0;#cy|bcJ+1Zd;-UZrapWrLI9paJ1uSq4-+hTQAQvPbN2bz5_J_Tr~TXDzJ*kk?av{~q1 zRT>TX$Wa1rxqp-PzmxfXlq5oXL0ZIOisM{7MHyA~Xd+4WZ)rb!5LYBo`NH=L-Tgf0 zs)ME@>#nKcX^uF@PY*!6&i-qFeEz>Pl|556-ibks;3@quKM$cyy>>0WLsC>oX{d?J zix1yPzE57>LS6Z}mQDze9YRZzwf&=HmfhJ6$Y|qCqg5LT)@D$CP2}PcOl?Ve?%-zT zAcJDDDZmuP5;D;drM74NRIUqw!j~VzHXI;uYUNUU78tMl^)Fmt$zqLYD!~X{j{Pps zYm74sP&}Nq>>rn0^eSTvrky2QUK&FkULx&cf2e1Gc$6>J^G*uYy}kZkC7L#|@&jTz zkjVg;J4h0nL7U#{U{?0XQ*#Z>JK440bdbiAdJn{^Bjf*@*0OF@qEB8?wLqhc`P`HP zPM{HiM!&_}B&WGs2wRP#LAieWd;4&6a|Go9b`J16d!x7lWr#Ahey1cWGymxvxn)Qp z{lAi6{-5Nwo?-Co25n zU3kSU%-V-~;Ybq>&w^wU*?DAWmp)lAFHf>%O0G6!e@2Syi%aEEp||_Q&31r^->%>A zwmb}X-FYMSwbrE$fAYCaHRQ#8ro1NmtyXd=5_f;>v%Y4&O`LW#}=BddmzO&~x6VG9Rgo~BWJx_0L)l9m4 z3KNIcd@X$;5ytxrfgYBrsZn8TGwqWTcg(6j||Mv8wL%q)w06`yOgH=eAIIU*yWDEou| z`lOLWRR$4c9n8tyE8J9@F$*BZ&w`F8qt8L1N_}!z78RW!kWMjG^Md${KSV*H9UG%1 zC-&(J(C|(Xz6`+_(4F5LuPXn#GwVJ>Psd!UySRU*AX;08v{u%&#f2!FOJk*L4T)2^ z-hUXv=HI@yS%2vPX10Gy6X+bR6J-uQ=}qFBiTkV{Q}2y#N4$UeX$xnAWd)+Q#Ju`6 zNl`?BemK_wOY$LoXZ*s1y&X6_vY_d^ZvY8~s4`CfQJP5VJt?_-{`um=RI&xhnycWX z@1cQXPIBv7tX%6W1LA`06-nBc0axylU^WK3j>pn%!+m|&Q&aHri{~)Oze&siyeQf| zgtidzy?fcZYVpVCNyx>E3rg-=BZ{M zkeMSnuIXD}ca*To$pz`g)}3}pT?M}gdB@gM-esVlP@560DK&@M>?ywqs7jSRU5`B< zPjtt5Yh=;&u=emtWu4E}C6ECYlt@Ut^}kDqA~=zOHTvl6j$Q-p5LIfvM43F#+}O7o zOf$Sg{b3q2w$uL7xT<}0t-aoqQRN1_bny5G?fxbbpGB779<5r=Ox9mZIVU^Xv!8kU zvthVk2;;Gitkk%q-s~Bna>iOjZ6xL?1Nb@ZsIE*J!b=f}80=;C_V%k1r$EoEH|2B$ zZPQU1wP$mA7H`E~8m-~o=p32`pqX2ryY6IWZHyi|KK{$Z(XpxcFB8WvttOgZc7YVQ zKJu}z1|t6q{G*4#nYX{)1mUkpMD^EhZXxMTp^R%oq8;`x{k>aByo2eNd96nojF=ugcpxDoqXZgnH#dF-MMMIRF}U)^ z{lGV_UUyy&d=Gc8iRPj9I^$XI4Q>jzA=C6NsoY4lG`@)PK7zyXZQ5VaJYsLbK5#Ml zL{8DV!KU-wCraitWzM3HFH-|NDp4o~nC#juSX{s5kQs`Jr*zN8Zxu)0k&As08*v{@ z)z}hi4PMqsbXqD;`EJ+2r8&QSL!2Y2$pPS-5You3T5Ton6@|(==~^Z7>3gjr6|{Y= zVSa*)4^QOGU$aU<+ySQ8|Dkix-y%oZ4|<+NuchTJG@zVu`r)dknB&5JdGn7)cnw69 zsQ(QCy+}@YM*Kyi;hi9y^77;Pf;DUpYqq_|8HDJ?6<&j?^(%KCVUa`ta}#hu z{{A@t-TIvdBnKq4 zWJ>ZI0bswhFzdeN*)6~&aj*{D1G!nv;6D76I^Mz0%y@6}Qo6b2JKC$U*3k&<)D!J6 z)b<7AkZ#aWr2gXM{&MO5o+f#DZ3-UpYy3xT;1Zh6uGgiStyoZNfQ3ZQgvxSC0jgZc zGf`-Nh)NFO)N~=q=jfiUz^TKZ^y}kR3x?ql(OX)aWU6F>s2E?ceuUnGZ8t0XSNgxkegkKUR;zJ;Q;2($ZoAe)$U3^Qp{pA6_0i5B zNiVfZ`y-}{NCEa+#Zdkn8n+c(MCFgqP5=;A5V>}6t@&W9 zootGpjk*QW=YyD~VRNk)RpvFxfI*&e4zH$=|8O{vHw24e5Eq}{PS}mh?o9XpJ@BVz zY|rl>;NlB95H&o(jop><&Sytn^nPlxMyT^4)O*G9LIni(*?ZERdI{=)B%hzs;Qr`H zjSa%M5I9sDLLoomzsqq^P4G%xEJBRcQ5CTr!KsSVbB!P5pV9l0z#h`h&ZF1!Il2nV ztCxbqys+uQ4slb+7ddg#ZXlKs^0j~eal10EUJsKUp~B92oUlI6 zpohJAc@0FWTTrLcx4k`Wep;GiwkB_#sb6UiCFi$d@Ai zP$*+kr!MIn^J)*dn|woacb`y(mD#oV&&EATi!x~Z^w8}?g`5>%a{vxZ2uqcaF!prD|WD+w>OgY@5CSA@7q`}#Ey zTl;j`Q$UWs>$`@AC+>*}5vP?gh{aufd~@IZjI85t<`(GQ-UxcO%jWCOPBF$vV#{(P ziyYT)h|tjBfG#F&Qg%eEl2TCg!Ou_RU0j*-@W;-zJB7;Zz7P~o&&yCWg1UNar$g3; zsthJ?H1!oXVms!J1uuNm<@cQyVB!aCC6wGo>}9>TnQmBNpDG*jPiQ0uFeMU)Ub8ZI z+dMq+refyv^!9of>>&EKtVJhprr=@2%Pcjbmk;d5B2G(3H1T9k3;-vCV>i;dEkEr# zv5DeR8dUbjM%zpEA2wS5E0PNsYkTLfoN(r71jHTwt$5eU4oyH(qqs@S9X;ji=0l+$ z@cP}s%DOc)!t{mqZaOvM9FOfH=_11=H~)C<5O-G0&rgWSV^;9&X*BClJzQ1nbB9o1 z^~x61)UaN1iZ2>HNj%gNrR$ODVe{x3^g&<{yS;x1v+mtnE1b+0O-IG=bz34luLPl5 zO;C!A830cWsnYT6cER1QB7dYa=d<48&yIJYp`5xH?2M%y%+D2BmA!C8>XHHy5Sh&^ zZk)ewTPF#}$cuw)=a5K#2N7+S3Y=3ob*{4sl%Vf9x-nDRiT|)(KMX!XWw@?}5*${j z5hFaQGM<6h39%dy@YpdKB0R0~eb6Ft?Ib+m&nOHS-myNP{lRJ?=10)j>m%eZFo;FI&II1`09pb1;v ziqEoC3f6KEi=DKQicUW`EOZ=`MIO_BT?7cvE3TQlx0Y8irrN6exnRu~^Gl-D8bi;h zb&-;+FUSB2ntA)Gp#&en(gQDR^$3bt{)q81MHb=sbNO6iXzY5D`KX}eQe+|q2#0g& z#bJ+K&Av|F9m!7`lh{Q-o`PPi{g)LLv5VKAhYXB07utH@4N@RK7j3wu}sI{$}= znrlWzS{r&?>dX(W1uXZ=d``$g$QWCSLP{PxX=H(yPmf^fcAwPO!xbiH@CI@IN! zZuP++>QFO!S@15&of*^9SXSxY9`kG5KLQxNK%CWr!e~7vPa($9p6pCzU<2$WFBVgP zL8xj-@_#K;V*u11^9O8QX0i5r+K$;4i9x@*$e>w5mg-Hk$iSGBAm_`q!PrK!#Wk(yE3{F0UDv9+(X(zm7y$`-x(bq)V$}&E#ImwwQ_A+=L7(eOtvzAL zf72vfV|K}L9m>ypaVRLl1_zaZu0~em+#KBMPzLh{)3BkKGqFyx>Vo`OyH9!S9N{0` z;|Y`8kNgu5n?G(pdJXlgLqhc6xr1Dt>zn#CRO(wedc(}wBBBeV@43p99^Zf;w$wa8 zVKa+6*L%Al7yd+85m5(}dJVMs&g>V#Gww5xlcb~nNI2o*M8C8z+_>s=Xb`CjU@*6~ zMiPB?qjrIXsTGgEDD_zE-B6CICXi0fKc;b=#G z;S<+qoSMdG&@#ZpiLpx0tq6$+R=;7_L7_+Sbia9n%nJ2RuQT#dyUNTZyBCHI8nS;5 zAs#O82-w;4mVxluV7Vd?1KL{$uFvMcjJc)m9Iu?+JgVmqf1&o=3V3JrT|_BQ4&jed zaX!#p!hAbE3+nZg)X#_LGQ+4g`!9kQG_BJ!b30907!{fn@IVY%cTPJ*GBb8Vj7?F)ztOt#Hlga#ea6sDpyJ}K~b-z6!HTh8@gmv93V77GJxU0 zlSJK~F8m}AKvLr(4LjvoSYu%OLm+2Pl1RimNn3he$H|EgTmBjF$bZ~@s)t&yRn;`! z=1d>sOS)Px$l2N13pGUy%xrDshmMvxNGD$$jxPCtdT+bMCvatX?NcbxpT67NoH@-Q z@>NW5UP=l@O)VK}XI2lbyrz&45;8I}Ab+z$BjW$ZSpcGgUa{r)8V>}Onp0ztg<-GP z%-&sPMINJTL{ms<+-*^YMh%};S1Z=z&3`5SYav6uvmVtf^wj&Uyr;h2r)WdlhMPWn z9SdB)(i_4P*ok19#9-e-$z^>)n14#_#*C1x1r+pKD$vuV&|7VtG;fp(vRt4?j}ALi zO6wV=1$US8h0oPKYi^N~sD(?Bhq+hZJ#_!@E^NL>w&p&*8m}Xf+M|?-M;)Vx?1x`N zQ6e>K@+%BkkFoGc@4$ias|XP)hX*m;O1wD6ER8=#hg3L4>~LzoqwQg%;~T%QId_pM z$|hh#Y|lCj4^EnF8ZPka%kx2ZzmD==l{n0~0EN)=V=~wjdSbZd19ipznx8n^6)QFe z1~LtkLrw`4M05U;xyV?>_H!{SqB2f1noLe~D!MBS z+WyRAbfEk5Tn=fc8$i#|StHHO?B9a~#916y*csv7!jjbSgKYHkOYU4I@!sN29^`-U zx#Ui?^3Um!Pv11aN1-{Y5zc5C$4pmpZ@E@4?biFH@iCF2g~a}Ba3xLNL@bp$&1e10 zl9Qf^gT7nheGcHynP}zZO2qIV&q>^fLDnHIS*p!oiVCL-} z{i~5iF4G%K0lYLm+vj9te`kdHU#P zklD-%A1G7L7M z%?x!>&#v|F)TTwiX4h}R3qFsv-pw>wjPWA$9QWSAb_;T5J@*?(xj@6v4Qwr&5Ls1k zU#JI__s;zs)3a%fyXAy{Ow>L|%&8goC|nJHv+=+}9;_`$sg93dTC%15_!Y zF3wNWR9V|vd!mZ!@6g>Ha=IMZIO6G)uwMB&jG;RLA!)yUID9I*2pF%MVHduDY^)?Q ze1TXwxL{UrYNz_iqkEv|uA={bs}&!7&0XA>0!Fc=YnQkhFSpB|xHkbgpJp+}!f1K7 zW;_E17(1ITG@lm1MZPoGBvok$EfdTIV+1r9hdbwS{s%+`;nIGBuw?$fGS3f^P&>MrE#I<_7L1MDg{WJ zI?+CJyQV`NVdlq2k2{O$=HF&MxUtJ&`ON?N@oEk|vFK%yW+|yOke6YCGEJRwXTd=_ zA+6$`o63E0%YfkJKbTZGe`%d=s{qEvrD)|(zoNwUe+B!@y$Uvwu`&Zch!QdUH!B4Hu@?8i#`E2fA*gLdG;u4w| z?3N$S)sP$~^(wyNBlyZ_^?&uP#XUIYtIc{RY2f=shg_u9-lp zea>m!L^dvCd0R?M{FC+IXGB23f3zH#S!@{s0_q@I2ys1}O7DP_2E^!_Xi40U#@1SQ zLt?&0tFO&*&NdFegZR^tSf@V;T(t7?x%-i?M zTt}2b{J!#P=DzTe9o;@)BJt`X8T24TZ32i==?+VB_Lhr=d{g45uB*M&Q!{>1=IRO>1<7!Q2<~>zILEp7$W~AhM zNQRwL+I+}iK)j+}W%41*mAU~hxlH67V=sbJ*lqVu8_ykdWxSY#GR&vE3{mKV&`Z*x z!;8+RodHiX`n6#3bITg3Qi8Nq#9?-$BZ`Y}mW_ zVZ}i)#m9ST*{fbDm_fY`UeI^YQX@Zr{s|Ec#uA4)WONTMFR5DyhsJ_DcA zJsf;cxz97gEHv>N=c!MA2BMSf-uo(MZ;@2@q9Iw(k+WAwFDTckFe9~U5n7?zT^#lK zOm|M;PBdq)6(!^S3oH9uTBJ4Y%sM6V)8pSY`1Y{Df*RD)g9DfR01O?Cun&;aevAjP zV9q_L4jvuz>ACXE$V(mV~qcH7_s4gHfY0MC*n`6NkH2_`*eU9{ocum)68dSnuGKp?Z!LkFz#nR zx{M%Th9alyPW8}iwQx=@?c}Kl`%`tH{wHPX9dSu~`cKkqKNQz4Y*BpHg9kEDBO;(I zSU@d`@NOt32RHKeGDNr*9&7u$Qf>05uh}Zo zUy3iE-$gi+_PA($l{pfPntX4@@sD|U;F;EUbVvk~@u>hF4`D@RdOC&$&3@h4u8Nc} zoEbV-ARF%2d)?vu)*ar=#f?w0zWHYgr@)P=I8KN@sPwA+D~Z#;1ULai$G>t~7>C`4;B3w|@=>Tur$*d?A{Z>p|@CoE+cwQF+WmJk=B&@6%qg zG?x%bg^q#bcm0ftqj;c(#?FUgHRtZCN@P8MKr}w{HnY=3FRj{jt~w7mUa^KyK)h6Y zvnQFOXrDCoD!JObAG{T|-s`Z6Y-c^8C=-0*tZTDi^J^$?osFK*?L^aDLp?q3fXsn} zdsE`Njn=~z-)THh97l*~4u7azXckIc3sTI0qRc zq;q=SCvk39%o|Pe`Pkz^N=pIf3Y{MV&%??+dKv=gbPYNL>qQ6GNN^H#J|?5+TsUV; zHV9kEal6^W*1`X@v)~iR?|7_${pNU6eLI2RhGh7=f(SpuMm z^{%6*oaQDyE`&>p;0AIazPswrdf|b5;V}0IYV~Hp1+44Di>m{@j!GLRw(V92pRcD$ zA7^+&$BAcetDIw!FR;`#Y;%EChj8@M=m+_NHkr++(RkP5*d9MOBSH$zCZ<96MMYw9 zwm>1MBMu70_V8CFH8%^F8(v3Kqs?UV(DPb-HQncGBQc?!&QRU`usC~s5VNB!YB{g$ zliDdzQ95187*=ShQ)$4`fZ~EF4|XP}V-!zkm4wO9NI?SEPt+C_t@prmQYwKcISuQp z?3LAPgJCxn&WJFLE|C6}^*z69Gw86mxOf8g#_?9L$opT7WV&~=++IE^Ea1Mdhu^QA zYcY$JZB;Gr9o{2(T(LZVhiSS{^T12wE@y>Gb*H67>iwL%$=@w^VIp`ukcXW_1T%RW z@FYGenbHrZG_}vC@n-L92(~wLKS(;wf6JUh1$jrG#cF6HuW3AuU@Vsv#O zQl={Un$s1di`3)G`wD-%>o0$?cwpg6 zngW*naQMKH;1_tdmPi{vdpbhuKkr8zNYFZWY0;D`KC-HbMK5>;b=ctcxJ)l@HH($A zh`Lt9>;@&XLfP3fJ>HU4oeq-qR}|VWew?88xcQ;Am587&c8%k~Yo|)?lwS9e2k7Pb z5=yoC%pH9;c>PAYmW>0`R(zyN-yY`e3{U8{dp6`;^*h{^N5*ZI;5#hV7aM}C7G&t@sLZvx~dLY zXjfRR8tAYU6_Tx3nuhj%<|&0w%k<8w4C<$1S`s7t5hNdtaROXm`fUeKFPTLrTYnrz z_S)(W5dUp}&S0~XQxvx|O>tnsz#zE8aRK+>za`~tCnWls7Tga{e%Q{m&U+bsYA_J- zUZ(LrH%)oP%B}b9E?8^}wyq&(2;SB@;KXOg!|j)!U);=AeZIX{Y`3R_y2IoG&D5HS&oyL=_3#Ur zRHKKEb@b;u4z!!RUf7qTX)Xkp(i8r%9;RCELJLt!dX7TN-)eU@Pqas4UM|#c!>yas z2%j|o$4`qYw`{XJKI8V`eDgYe-5o)zo`JT;ni?cD|LlF*hz-d^=VQ(KwfQ>e;m5kS z%VZnV4*fY`X^3yt7euIjrxCZBvNzRgmewj~wrt*D-fF6Vz{Kcv{Vucu6nw($-uE;J z2wA7zBL-S(7z&zPM4WehL?sA${k1AKM2H7yk?ntNiVd={c^RHaRaaNHz4H^oI1s9R zR%*m3imyNc;Krpj~3Z3{I4X% zqTTN7V$;R_c%8WYIBMYv=^!(giu<;$cDR|9=*I$xsixYKHPttxd)tH|C>X*jUTU!d z_6uRRPgBebre6`czKrC*BYjbRQ_#G3hyriB;w(>au!Nu(GM^SDoGbD02?+0Az0V1% z*TzB=YgVT-=&>fRvqq3sh&}5;GJG7|f)C|IoyB$ELpY7#!>3lZ! zZRaO5!_1&ORmF=h8*=G+WcPE#oJ%)qFpJIW(+q>YB{4?I4;V&wg6vcSWvwr(oaM~m zlS7x<=)N4PoVRpVJ884Xbb2{lrW6`(il0Jnqz??92)9z0_!f;AeW<0q<@eVwo8)d;S6dn1SY%BPZs7;g0`olQBckoiG4Zo#x7aY zU;fbJ4RG%&UpkXLkaWeG>C-Ng{^*gHgngP@*4+UoBGT+E*s)ySY;I&XwS4LE08YN5 z1uM?9s9;Vd3ms+ukf)1sT8>;R;`M&nWJ~H|^`>l7HCT}bQiUJH0yntT*Xhd~xaLV@ ze;K`?%}qw$lg?A@YnIcQwV^2uc)0S*^xV=3CD^G2VSLX>@PFj)3d?Z=l{sK~@+@-s zRr~%^jb0(B=Ub?EEflAI;qj1JO8eJ@fmn|+ZEsT-Q9-Du53_uM)ptgn8|s!UMiQF4 zeM1k%WdZYICUa491`TDpbmu1UES5aDU96G%EP(}v!4iOQqr}e(EBBS56|{`kQr%T0 zqwqexWEVR~oUb~Z+jiH;U*#m68X*xNw{+2Kk9o6s z0~PP>oHpY0=c0fDWP;j)R<2aMmw~t7L)GB~Tg8&^jUl^ait>fo4~`c~wM$@7(=s+M zf}8H{evv_znO%e$Mw{_Y=^fFsp0d0g4Wk!rK(w}bZd;6K)#14j6TL5=Rd5A!6JYsG z&@)nkjmAm(zIAzPuMHxFI0|lP|0L5}A)V3V+TPs}+ieZKk#H@T2W1ov4Yw#w@2d`j zPrIm|S|z1pk*arB&hSt0{nSGI8~o#@&9*G8O8J`|aChzNr%b65g!ibpeW=0qe`vZt zMDCfwM>^nlZ>!`|qXd`HoYwtLaqEJ>hM%em+F9k=wI6%fpXyT>o)wjB&@$(s5}|!Q zk&Q;hYN?4Gp=lJe7ICUNYzmTB-2XD#!;wJ5jN?L!sL_+E~VRMh)sSq+A z$0QlMcz&Eck(S~x@WA>0LUsJ-^Fu>rpK_@-r^EJ6tnyc1McX7SLs^q-ZeMiV2k|Tl zzNk*K&4Tc`oRG0q_nuq#R(-$DpR=mEc6Mdc zy?W_fbB;L%z%;ntq5Fz7PP6LQl|@Ty)!MN?lX~jDY5EwMx|E_-@x{w-kLE@yy@Ew2 zvqtGDlc65~Hon}6zjl7>xQdqD+qke{|Jfm3m})c@1CclEw9_v->+O_7?p+b2!?+6 zej*fkm+&O0FyK*pd--X&vV#Gk`7NyTBIAVaApeSHJI`#Z%w#%k(?2!?1*eNJVy0~G z4ZGDYxe{Gv;Cs9N>CElj(&{Xc5(93Gjf%q!)gL72n=3#C-ISE8=Jt2N%IYI2mp;G* zQDLK8%ffPFQa*PO|1w2bSvAMuttyWjI6u(FFa{mCk+bO^AC zxHKniF0SvQ70 zf*b~0+oy;A0LU~N*gE`xypMM(t#%#9U%NT_xXT*|2F7Z+;xAc9heuH`lO!Rn8Xp60 z&3qOkgwDjrn)n4;9QKw_|2QAQy7CQgZ6TtUBtRw+S5>V{wq@V)O+R9#RsTBvMFC(r z2H8MMq!p{R05aQXG$?Lse*1e?hw!4qkX5Y7sl?yzaCGQ+uvQN;BU571D`NYF;OX*;^1CLSy-o!CV5qOa*NsLE0f7WC`s; z)obP0;Kv6XdQ0&vuf~XJq7|qw;D~0~_^Th&(q2#iiWRlut8f4HIMe?IfT3+KPn)c* z2;q#i<>DEwu!I8RAPVACa=TFBnrRolVg8sg#jOoCf%M4WaUQ&3OsAw^ZKwSnYQYbj z9SRt(ucA$ap0-w3o(PplOrdX{op{yDPcFl1n%2@pEy7Q)#;XCbo{%2!qo{xaV$5uj z*MR%iujS6VlD+F2jwi>k3_L^Lick-Hpw4T8Tb=4ZHEag$)9xy3rc@_%qD9X2IQW}| zXG%8oC3+jj>#YW^=B=cBj$UP0mkp9X^u!D4w&2m~*dUhh|B`Zvo4NvjLML7n&M zS-?zvRkePQS|igx?L4opmo)616L|z;#QSty*_YXwpU9<2C~~Zr$B`~o zyrY_bK%IoKYYhog23yUV4&1RDKsE3ByjodCqZ6rnLs?fzr~Ywc@gk-|T|npfZQ=Un zrpF>#f_S~pIHJNat?k+)oq}hk8~d$&haCh7F!=?H%HM3&{4le8hiPRJS4ctPd?#`4 zt%yPbgTgY!?IymtTTvvPLw_;if73iM>cC0yOyw@SGkQ)WcsN)D>?(+9 z9PmPCdn$Ha!{fK;_cP&OhE0X+z4VifiS~)|<-Qfa&@-l!FmP(}@sVinqk`~)HrqHW z?D_d|E+G?;Wt`~W^ar5*oBW7O+$6x)=|q2oreXb?<(Oq@&T;Aouc>fTEv z5NtKWrbcn@`1#sxVAWgRy`-p1w_xfs^b`9v`dwl^Cfy1o4twrABnFC^wV^BwGz!2I zdyf-_gmFnOA2D6+XzKTG;o~7m9YTr&OX$9vF(*_J{RfXk7|o z(1$K{ms-PKOM6FpuS6B*{{~Zd!ZNRA3fc>}QFGi@yKvUiu=1h_31S^xJH_Nptvtbi>D$B>P7#J6xdjfwD`pehS+3 zne7BT8P7-Sr>R@cBpd7WHQJD{ijLaXdQlDbk>Awqgc-<4JCw#Dg}YUdIw}oks`S;v zw>UgfyLY|ooCLM6r^~pgOZ=0vA^r%d(FZFwJAuJc@ zoBm(aq^2FHO2X0WMEhty3rsu7eD#AP$_xOm2;d3(Qz_GHi4VNj z%rGh9;ZXnp9C@SwGJRu1u;*mmV*%ZRSHcD#nNT;3 zpwjFYKUgg^dmx|uCgdMnX3SjOpP#uLeIlJ(ctgc;_7bwaP?yT4Zw5$&hEPTqkKL^m z1NS;_=ILk6iNO(^dR=3rLiLh-T1y}eztO;lTWV>&HE-yY28YMepmLy+8t52-xB!5p zyGcuvb{9ti4h`8(SAqFNa7_Coy7?C{^G(q=;%h=JIa2YyH#ZUA9+U~naoA2RH!c%_ zbknUW1?(~c<}c>S7;h*kPd53P=fvl$pM-lA4JG=nEuu)@r9Y<8C`YH>0A|PedTt9{ zTKz6|6&sVB-U2^asOT0a@BxV zW)fStQ0FhwMAVRE`4P|Mt+{M5qcR*vfu~Ayx-Ucx{jb?KZDzRxf-={Je6&yYw)#yy{K6y|Kkj6Hg1g)IA<)9tT86NEUye2M}ZDAFC3Ymjes z3K~R9ug$-mp_dn?&^z%TdK&r zo;0q+E~{7V^UBV(lEnD=FBhGQz7-B7yyUg1Td2YjQucBYQV!9rMt=T6taf>odf*w^Kqq)5-OR^AhD2@}qVv^|c z5d}Owe1AA=KiT8IxN(#+D?GuHs3bE92k89P)Mb*M(lypW+$^#LPmHbcEc2ohSUe;; z+Vj^((Jzmj+2$~#+68RViN|Ku|Wy+Qv$70oWm8plx@Jb*-dc{nE8Dt+O~ z%tORxDuUji8BdBYeOa0}fs)|x2GCgi zdp#&O?GeriH4^fX3a2}i22jTxzr@ex$hIrTQ9UkZpia}mW#bvebW-*t{6XI?+X>lx z?Pg~#Jdjq_!g~GVBs`hN+)C{K!Ve@kpvTGie6BWC6r4WW*{OQtp>r^koAD|>s%8z? z6&s$JfYDmBlYe(?MSt;;8S*));B7erTn5@ttxms6m0lu=+?tXfn+M-n4_hN>%JrXQ zHg|d_Rh3JvGmO)xfvt2N!0cDvA3%4}0JXxNgB9p6fHJHn486{+Ngp}l2nRA zuFOP`%Z3-uS;tj05L3LG6gpbIO|{$L(Wuler0H%uC`tzsx*{?*EgVMn|UBQ13X558pG1S^I`z_ zMkgppobB_lz;@tvt0I~Wl!Pv|&q(|=3=-*5s-3cwZjYR!|cr0V_DcAl2N zA>-h{O6Rmv0W$m?Kob&rdYQze6jw5I-B1YFUv~zh7(ga$sex;NsL1fhh=_FPj^)vu zpvsof#rA;fxd=51r|P$FWIzh&#c}=Q_JWR$y3`2bYLiv}a2y37tP&;1)GAIy^-0Fe z7%sL_$D|t`x^WU1e_pxhBgK+U0<@!0-4ardmuESVe$R$#qrsH^pUxfnhZV*-|rD>s>vk+#Mjn zxDNfk_33PU(4IjwB?3WLx36IVfQ+7(yu*Wm(x~i;sWHSf5T9yqQ!4NeYI<84dS>k| zZVLu0G56cutGe}df6L<=5S0K*N#+lRrawC7F-30A?q$U2{}`=-Sw?R1E_?i6;SB_s z5&kQOsK9Y|s~|y9h0#6<;JKS8ub0`zvnSRk$p|q#(ycd{)L>*InA8JpE%9dmETy`- z0c55dhqVaxNL){Bk(1p=ghl>)LGd|7-PV5;C%|{2zJHP)@AY?r1=6nnD|2LsObrt6 zock^Na2LC*J`&OH{=D?J-&S|%h6n~%2aNH)&)b=cBsk0)e`8OJW*TZT#E;63y7+t3 zhghpw6tz}|RJIBrhDVoH-LnYIpWCa6QFIKz>;c&AA&(A-Yk6V&Okk+#B=V?di`C+~ z#{F!Yqd7oZkc-F0v{<9V#LjY6YH)n-%w5iK;wWgArDe)|C4DtVLfDa$66VLt`d?u+ zT$)DeScLwHC$%BjiSUP&i$YE2ol1cPp$5o$ZZwNjU6w`%C)o;C>&K-igFu$@+MOlm zNbd=2-Du0B3oA#5!J{C&?<844RApW%85^IHznb+w5Vd2<{g{w)EOO7%jtz*6>gfn} zsNb?XlfUVR^uWc=-Flu_&{mkVsgt3uUs%*9=)NOdy-f)lKmr|X4Y@PSXQkqJMcr0x zax~{_^S-|eO)HaTw}}~u=?7=m^53PVn9iq=BoJJOK6fH#$sGLh^wnYQSGP{*X@Ri? zR`ZCPn-$;)o=!YBspIQzRaYL3u)}lG_jLgHzu$XqtuAga{8kysXNkx_dmB~Y52{QL zxs={U`Yj@0{9>9Plxyc?=V4wHD$x5xY>sOdP-$qSgwTByRfQE^X*ehD{9=FNHMZ3{ zQp*t~Sf#P3s_($}d(bI&x^=`&%wyTpXJ%sqe?lSJY87wC@aeVpHbsYI=cca}pr}t| zbFKgzlpAOS~b z!yR>^ypEqQF~FPO*R={XTot*bTQL{sz!!@1Ma04a-Q)#aD-ogBJeRh!ND#4=D6NG^ zm2`dEGh1OdG=vuVYlf8G{ie|XS~SgH-+%a*B{#lxm2Nrh-TVbiPN}})1KOvv%H|6A zt)(=>fAI7yXRn%$$&0ijqYSQwgp)glKq<}lH%jN}@G%|W2O0|S`{b%0>k>L95x|=h zyihNh(^*qAQGffLM)W*yQ=Z{e&bR|KkQQ>@nQkBl%32{fa)-WSBx_cv_q61Pp%%Y% z^luc7gEAsV``vFAHKwt~)um2dK^c*dUqv7-vpO^OS6uF)bM3r89C>vR>U=U?3@J|f z5K`UjzxXHmll6~eeq*h0lBcHIuBNYod-m&7V7Z~VHinVc7iu8tp{8-db)g1srOlhZ z<@a>JQ-IuFa}J*&O0PnJWLRDjyoiNCn*(LEdV4>O%w%Bvv1iHQJn&IT zd^{+t>jf6i$;a0LJzqIIJ^mxTTDb9_Ms8VtOT)>*jL zGS_JW&u}d*ELzqfQhQj7T+&Z(=4R9m{f6XPuOau5E@ej1?4JkO6;h<%{W7U`os-g4 zKkhF=iUHYb?K<+7OrNMifTrbcB1#Ns%&zF|K-lAi6TD1YRemJCg^KzT8Ki$np2Vyf zFn`o=#0Wwnq5umH#!^84GhYQB(kyCgsjx8fK5R@3ZF3XJgDq66sp0w~VR>m96m#_~ zi%pZ)2XR(4D>`EmYBXx;z2*Sq4e%_A5on!z_K?MhTUJ4J8$gM@K7t6@Gr0^urhU3YTYqAtx&NA6m|SbkC_!wz`BWw&;zTLHL#po1A8U2;gPrEhW@H0{$d$6p-V0K2; zNb2MJ*q17acUah=GA_hVOaP`cA?I&94x-T?hDykdj#cLP1}K)vnv?|BwT-%82qx5{ zD`l=P8t&RBEUbsvyOD9PAV*yt)~6IJT_?Afnvzd|^=l{tXb)f-G0u(9u;RI~^QD$% z0yB#J5$g6lMMq&}xN6XF;r^S~*6xyXU>hAbzc(j!M~8k&kEE^0J_gk2lD+7Zq{3kJ zL+kSH^B!gM4R_N-eoSS+9X+rh4Y#Zl3vyXSa)6Ld=JwmZ@(B;tTA@7Mp)gKhxOUp& z<2(pieST+=eJ?9PJUIXTE3`xmm@ofrm3hej#~t+l!H*9Q0rwPOYOM`DWAPjYDJB6j z>`Yf^nWc}wo;ha-z$}0dMuvgMNB6l^*NQGmwa#GRal=3y>i@T1B_YFFtRzeb`DiaS z^G$G-8?LkBK#I7wz*!xj4VVi3xZ!Z`MzG4Xpk*_=$qC4*=ekO}eGi~DQv)ca=r^8xKeH#LM+EXtalRs9d!hST z-hk@!{Uid?U}%AQm3aJXq!OK2QeR^ZzrWMhgWhxt8+@vbVrVyW_G9g5aE4C3!Hp{$ z-(UDyuGVi>;;1ysVNmRAZWB0Ca9+ss`fiH-&S@*Es)x4m%Br>8O@7{T5r~>h4)Ifx z29&?|OB)A3jRJf?dB73j^rO>HF@y>SnjiL2us~T{r@v)H2JTH-__&{n35y0>dJPK? z(tni=%!iD-LY+o+1sW}n7_gCnKD8%>!6Q&l0B$u5IQ@YS_jq-@;m-Bh5d8nnp(T@ic@)^|Jm9Tf?5M?OPuML!&&1F9DY$o<@Bq6q1WY<2gB8od%e?ytY* zM|8N!fX_|w=;f~nbDyP;2~gI{(;9fEd^lA8*KLQ`$5f7U#2UTefC$Lnl)^04L^5O= z+l;UQ6_M|T{Z~vWPT9NmHM>@@okkph4otQnc%#|h9)_K!bE%&*(a1`@xe%kuS-2a{(@(W;mp)@|}Gv0WU zxH&E_KMiRM_baJ{71MhVzHcE6_z>fLerGRMlZ``-bQ&-c&@i;wbw2yfsQX@=Bmmo0 zOm@PW;qg{?-Xi@GUuaGPQ8@Fqq!KqWEda4M~M-V`+RFlyB&&ECm zHldKY4uO{YBL}rf&zr{el{dHE@?>V+Eu=+vgO=9&{>ll1Ba0LFhZP-r+TN#XF}h=`nM&~3faEhAu2^{CA}rw*uz=NlNT65Mcfm6YE=nKv}8--+od_`Y@s zpu5Hji`l?&o5lc~kAEBnrK<}5x4g9D>T>rrkt{_w^s!sgE%_5k@O@U(3Jg#W`K;@P z8d4T9U!GAhf#Ea{CYh7FV(_#g^+fM=VxdlY*bvhAE-nu!afOG!uXl(ojvsfga248=&1?@c2P?99ed*J->+!)+w>K zq#T~3%REMS(ofTV0yjfwq)zrd|Mb1|23d=OqX%IHg>)aD$X4oAHGXUix#ehQCwM|W zQT53?IXqfZ{(>EiTCLpT{W!wyaF2L>b6B25^{BmMZ`SYT>O97{jH=zqtkF9-nD zLWF}8$k7KiK3bi)ey==w`+EW?N9?mOZG3;xH+N6`y{HbfY`IP}ySQ(A%Kr_+Hgtee zNS{yL0p4w({k%`=Y)5xi88SFiQrLD948}|rZJ8JBAb)TB$P9tSFzM+b16 z2)Y>$(HZ%;q8D4pDNoxIifk35m8g6cX9f4iAJaZ9q+0hSh@Z8!+HT|>2p&k2`ma|^ zSpci=d0SpxU_ygqQ{I^9R-Zc*0*lYC%$kI$0TbNs<_F{5;9%qlEW30XrVyMTnBV`W zviSSJQ@!sJT;9UJ+;#?BHU+?j^Y7LE5Hqr+{6RI*H%?(Q*s<%D!sZz67Wm)Opvj?e z_TwKmHSxS}yjd@!Peg@(DMLzOQ%D#3=44rLQi@ZO3Q!So75}M#K(>_p@7T&-11xpP z8SJ^PTb(=iYtgDDRW?nJ=AryW0Z6^dL%u!0AIg((c2Z2)u7w`SGyShkm=Kw!jBjrJ z>hEX030^xUgI5NzGjTBW{d4yFVZ(VNH-~q4tNFx44P#l|!K{hAKJLY2#Ds3b{@;yC z58S|aYGx()E}V(frCI@okp3{u(OXy;!#^(qmC#EXh5%fQ-m#01OeD93?m*Jh`Pw9o zl^P-pEo=`+@O&?aO7HiWU0I0sH#8nz(+O|B%^nC^k-UOM#dRm{RhB}<1a3pXv}nb_#tfFZNMJEsLL@Rx;k3lB!gG#t`}tqB-2umfUL5^V+C_+fNo;*RWV@0& zIqe~>KSfO00UD%42AhQ&r_;U~A{^28q(2Cs->hZ3;N*%JL_9S+M*f@aZSFwLzwqlg zLA=^;GF&2OiM>v8FnO6Lasv2`vNXU6I+GE0%>7wKl!B0GBF5|>uyDhez zo;A;;P1sfgap4s1%kwycK495+FL;y^)MV_mYQ?cVs1|}#3@|~Y{KM{o|3*e$FTid^ zj^m_I$!%W+En#9Y-+)bmm23zafxj{>o>Y|i70|3G{22Jn{XuvctV8>n-af)Xd4B0h z8wHqxDV&b@GpaLAX#$>{{tyA<`TxB-#JhZn{{6WoUY19-=H1%nVcJjJF+7ZzF&>Jz zqM~uD@nOEyVhE%MlgsIaQ{Agxow(k(7P15AF}c*@0Ho5|(*F(IJink`s62gc=U4KD zZU;!8B`;`3E4^;sonVQrs)o4Xv`^^yA(Gp=YdmX4+xaswpEp#hAy5=56-q3u#nr_G z@YB+#nEH*NInzw`^}idD3kscHX|lNc=_l=B!lA+8;t8lQWBi+^dcZVAz3E*(gnqtU zGjx6EPbjgm=4hQL;0%Do?_%eJszoC!DYKEBn3#PZ#m97|>=sV&uvHSab7Yj1#4zM2 z`Ay4DMOeTH=DlYTbml+Ja^>2KNwXpTCmcn7=mXsUA*ZeiPscfFbG)-~$u18_GIQQR z&$E5*lc?Vf@^zLc(TQlFGf`e?fN7sRS!g8gNJP(^Vbva(I?w&zTr7E?O1m^F>037f zCg+dEg-Z@)7UPgoXk;Sy&ykd#4{gfQ*|EM?jZv<*ndBYM(=zN$+;`Kq{Vloo$w50) z=+3y=S#OvoM-$tkYfu^GLdC^cQEM<9zktEZJ7w!Nb3+XzI|606`~C0_V?uv)kp_vc z7Qe-GLiw2#EQonbR#HuKF^+U%UQ;C407SyYlWCor;+yTsfz+QTrl43n6H&;m??l+m zcg<(X*E+t-n?Q{L%&J~Jj5AS3>4uRTW;oA`&XRa}^>El|;lX{xUm-*39RD7=FZ&B% z%oO5N)(CMy&J-J*+rs_CKC^o}Mr<_vx=)!#XwFs;71n?D#!4jO2S#1|@j(3YF2pB> zQL1U*?aPdjD6ij7Z~Vbuk-ht5`K&*NaU=2Bep`WJ8^;?)PsjKPa{q?$7kI$Zhh~9evt${kIu;4GSMtLzRUORnEEor_Z>vtWFS7;{R2eoWxZ{i`4 zX<6e!!Xk3=;ukt{WY{prCG145t5IRuv_>X9bYLtYfmfdh2Kc<5Fx5joZ(A%L2oiKS z)$LJwdz?4l_fHGulubV=)4IzA56VZ&O1joyvBdTSUSn*9RgmE0mW3?-#6-vaK3?7t zn}hn25i!KP00ws%6TATZ+A=sXoNf^C*NkF-ak- z3*DD}pbhHTM_br%l!C8&d>Ea-?zrK-!CLS>rfpa$F6yC^;q69l#9>l^k8#pZ0um7Q z5ITt_sodz@&~c5tqA&F+k(3vWS?TsfU=nHkF2Ab_e<^)VNu)gML%Z=l9Ft8B#q0{` z_a#mA7aQ+L{cXrmD7>s(e~GnOl?_p!oCei~35;oc$}Cqa5^q&o(Mh?GSe-9_B1>fs zVd|16=CVX&tl$*qGx`qFW{Iw-IH*c2k5|wNF`tcph27VS;A3>ao6lV`YL;?Pvp>kTC>sWg{NDlQk=&d#8r=rN>x zXu9v*k{Xfb0dt)mNuqb)VoXp zE_E0AlPiToa;w|(<&;mJ(OT)x3SI4OP0IP|JJKp{Vs0R{zc4V+N3R-rqIr&WlSgJH z9EpbZuDiBZ72*MbkC_Jyl)RYOCqYVdwz6QV@GUAIju}13wBeiWxzylCv*3qRY?Foi zM!-47VHCZLh|fvCp|cz~A31sEdS~0RPp%*nef~V+-RzPB8}=E8{X!%Dt{egfRQbZ6 zav&Tat8mEGR55HcV|+1h`StL7y>Rk7-)exkoCQJBbKQq_MQt$OpDnP@4+ho)vFBAp zVz-Hys7h+tQ$auI99?i&&V#O}&({y`995%GWQA-Arp|+}iO49vG2nIzFUHa`G=syT ze~tzBF`$&Bc7~MWEmAfwgWrhn^Y5#vw#-JR96rxMmyg{H6O!3_y{&CN!Y6P>7Y{>> zo`dQkBNMxJG+p`}89`LcH-0T{Ue)2gtKQ*#?6kzRB46b(Lo=96?JWaiTVR0fQqa@( z)ZzX{T~c?}*A*=+p;SQXVK@_&lFWv3KzHDUY@~az%SSs@PdFO#5!u5sjWS!xAjZw5 z2q``IfdaI%pxnH@^2M(lOw^-iO3=yW&+n_{fYRGiNbMjC zE4m?kHFVv?tGohjb(RD{)9VhevP;TP>gtam*rx~4BJ_fTVO3E4W6~p&ABn(*>G){t z=O(>u8^Q^ZTTlz8k&ui5uhY2GBjKE0RGoBd|AEwH8%{dmZMpn-UBTv_WF$&>&;1@} z!CdJEVk<;Nxw%~9Ny46%y9j*!>1owsImo$Fj5%oSbRQ(+=#31An*E4MyJo0Cjvu(| z8ckwS*uttY4((Dv9aaTr82|XH%|X`3XCdw=uO7dG&ejNWx@(bt5(VcaT2(Fdo;rmL zj^;v{DFj#;rb$&aRs&bxKsN65Mv!62NgIK_r#71?@b;|Ba|?lc3qQP)+gr!eR<5Eo zhz1rYbZYPV^sjJ?XrSm1Xbg8_O@m>T!fm6>{23rNjV;3acDUW=jW}#_=EzV&DN@~X&aD@lAZqLr z+n49~nLbEBNqbdCdChcwssu>LN@-sF6Zi8#;Uy;~p0Zzf48;ul~H z!{=`p@*BkstE5%UNJvhq0^PKQ>MypqoQDpH74vemq52SS02~L+i?jUlNLQj4Vaclu zsYvuyucCkUWo8^{F%9}~f^d-HH`cbjBrh#<7Ma*-Ge;7E#$08uN$9rFCg(^S>jg8> z1db?c2jafvM1E~7%)rYYVKvB6wL(%3W;gS)tN9Kt^7$jF(lhUdH0@FarTmqO4l?uB z)eR%KA0__UI?|BlbFGzajry5fWuIqtLk^oH)u0-3c}YK4^QsAa@w6yUYdR>+vQfYK zp|voxTHUNi<)+m8!#pWq&P1TC5Gp@iy-o=&QrRy~x|WNGWgJ%`Q@b0yk~X=ZsZjK! z)&54Gz<5Jin2!B-nHA|(JR!U<+F^^l3Mc|C*A5pA)&FPG!o-Itfv>6t)=;*N^irjd z42m!zC76-*=Boi}VU*%lVkPcpxrdFS^S41|hMeL>hkr=Qx@NPOTnj#{mfu=gd3<6@ zGpnTkU|?A)Rk^Z(qeGy)v5{inDm9dRH|+U zYzAfC*8&`+=ZTn11%pGG7-w^iCga!N5-rYw6-48Y930C zhS0~=*=#rbY?3>-dh!2ugDHeFk|Ce2buHNYc`oZIF+F`o?N#lI(*qYLtKgVP@5qbV z9VgOnvd@?Tnf#9S)l#{!u8{2_eqx8NmXawaJWJ2Xe&6^d~6*Qi;q#Z=TAy98u$}#euwcmIz!=_AT04#awoy{f;e` zVbF78d&1|^&c)4zq*ZYbJa+nLP!yP2<2QW?hvJKnGJ|*bjl7B_!MShSIUW_GDIKJK z8x+J|G{<)z_$GKNCbKQYUxooy~QQRm*2s^E%i|^Fx4SGbNRSznzpD+HZ3X1-updPB6 zt?v01H&`|b`$p@xqv_X{74#6k+L_jLS$ml21?`xt69sOJsc3uVvoaJ7yGpB2HjWR$ zC08E4M{5VZ!t78XTc#|ZKYGETqPh9?2FU^B{&^yYBySru_p^fKFP>_qEcS11f`iCc zHhh}xs(+ohP0K}`#6H#S-B+_Hbj4}oqTk1s{k5l&E=xKx+WR|klT7U?bC)}{YVL>L z61y2SXBsOU1&RKHa%`#>lI~j8!^L2jh|R1im+y%`Ge!(6WQ-y?8FRDHtNo810{eVI zJ4FnihQJwJ4i%KX2iTHeqHp4#`Fa@iW0^+`JX%UvO26Q{$&PA^C0DWAT#Lj%(O*Ml zm3x)-(k>#S@z$EZnHjgRn_--3-T*Q3g)GU30S8m-lEIST2weJ;>-jnz^b9;fBt}CI4-=bnHly@w@H5cFm8^e&9TPWf<&RdrlQLa>0@T369AUkI zE?(LX^M2;^GJnI+7_I0VOXk807O*Ls%FH}q^DyQGZLJ>36{wB{?zo&VEW_2i5o+@l zY#t~8{p}k0{NPk9chZedPGj87olQ#W@gHI#%m%55K))|&74`~Zkj?VuFbRP6$2bas$KqV5)Lus8MYW=97ZI6KyLYiUJqqFO?qq$=z`g zUj@`MMvh#^DrkaK>Bf%0J1EsllEEvP#+2BZPet9Mh1v}g=~2Lp%chvFK*-J{4ClqW zS{hqlcwy>Mwm=|7-OfDtoVI%5gCPBtkt4gc!tstYS%Ul1VH2|Kd{6I7p5GmqzfQm~ z;YyYuKF-*sb2$ow{BQWt#al4@Y2r6z$j)7F?DT9CMT-DQj5XzA$FxIDg3sV}=<>K& z0tAUq%p}{wz0coju~t>NsL|ro48&xNU#B<$Jl!-Jl%lK&CC3`)sU#j-GJG z1f_?E@}`@MB_4Z17+J8%&OQ&M2FE)FgTlO8#D^v)*IFKc<1Ym2yJi1JYT)m?+a#l` zWN73vf?Ij-Eo-ls8cD=Zjv$;_Q~f)ISipIRly&c~tt^k|v&1x6KMnYhs`&;YP+<+Ndhd=p*o>f2G9?`@ zLaUs?Ggsm|RQT(6^~AfRj@!@!`tc7d+La&t)w+{EKsm+pJ*a#*qm86Va|;oc6VI5h z_LpB;k)$QD%$fM8%?=I7mhXTCH}lg-UFnnhi4>VNHockFc0~R^woPsC&&k+7O%O zDJQbCx8z>Gzx70nI_#>{m(as_-6~Xa{O~K$anb26Bkq2kXqLq@^z4N3FAxCo!H)Pr zZ7AJh^8z+SrB(=k)y`EK;EWT?GSc9YomWIJGjF3*(8K7`!c5pygid(Ad#zaR?&A~3 zd1T+L)nrx^M}NC@QTDkizEjvbTUKO+wI#23i^(l31bTL5rD9SM{))HMOWk3Re_ym| z#9Mb?5Uqf>n@8g@VQxKk^7A9kv;wO9rNg`(5Dxta1$5_^+PW3$HJN-!f`V-5(%h+p z_;7cI*8}Iyu2^qEdt$}KtE$_~s=j9L`hG*z2-ur86y_9Pn7x?AE3b>wt*iURFV07I z6xQ9;a4!1keS0_%iE1az&k!|7R5`BgBaULHvT`1taO~2(DyOo^SWei|%q0(_)30kd zJ3qJUyg5 z+|8AKXqkVzp7ZYRmhpk+{p>jGj&kek-|Phj#KNYH2LSZh&F_f>toz^02valWnY^bd zae>)BC%ghS$@N$4UCCE;Y1$QJ{RK&VLO#~$uMbTlOR6eiH2SL{N^%*ij&dhKZ@<%m zpgM6?RMX6#v;T-b^S-r=*kNO!`Ae8TohlN95vYdrIyrti^uxR^@bRUvDHZK{l&>;C z{#Dvn%uE?uLqo9iX8yK72pnUrH;I>4ee&dqJ45R+oye$0qpIv zb%b7F=4!*oiA4WV7^^07zve4{yCt%9=AUJ-f($49RWE#@*DJEMzB$jo(7btvG7hR|Ty8eZ)gL8-`k12Uk%FDrYT zHXw_sHz-+1MWErdTgtWmA*!K(pit(=O7k2@|B0iO?&4-hr^J9Y;UL+SYE<+;*wpq!;uK|V|$TK{SN$UegGVAY0HAfwehX zgV^(Y(~^}D9EC-w4tA#qE}QF0)`#v7?U9@HL`T$Enx)89|FR09PXf* zY^rdr|DrCUEo@K&Pa(g?_U5tkT(siDPI*>=x$Xr|)w}!iS#aBp*u0 zHz!(jd>fuB;xLfQC;y)7^hn$dK?WY%{2{X?cR2w$D+9{PJgEJ?af4Y(Ws2;H!pHo-BQW4yFM-5M)!XBGQ+b~++FVv zKjYBFRnXrF_#bk_f_blL+?Z#CdVWgu6a;B7!tmi0T_oVBxz~co9(6|?bRBS5C=hTx z>PIMn=ttg1Bw#h$O#t>!&Fk3{cYG4OaD#OhB5U~*iDK8aSkP+64yOJ?!7rJ0$g~>0$<`xYf+&ZJctgl7?-?Q^oiweaPUhb`$*{0vFwkMq;_R)o9J=)h$;yp!9RcE z%^p+Fhcm&D z>(;9ZW#~4FOhk>$!PkHw*Bcv>Z<3FBIu5Z53BU zRBE$OxjH}}0}}QcH7NH7{V1{+7IetY&dy)g%>f{NznM4j=kMnY9d@KQTZ_pTsprF& z?-j3xWGjS<#rfM5H8)%7ak#oB^MW-r2Rga88CYs555^#Gq<=9AXga_YE4eco?x*kp zD^n`>uNyBjChdhhFq&H3LhK~#M~+U(o#D_337eMbL6xD-nL<%aTHLaj^eHKJzFX&p zwm8k2HfD!Eu(h8re>%UEIB)|^J2${_co_=pu@_*5H$3}b0Q3E${TE3OkMKueJ zwm_915Hj@@KN)6Ig+sH0-HxeBTS+-^3#bFuDibiAOcK$4n2x6fWAoq7AY&3T&W^67 z#^OdXq7+gvvHjZphx^b2(v3;m@Yxq3Lf(v!++3ZrvBdY4w(NwDrOOk9iud5E#UB^3x6a7|svOga$EL(Jpyr-lA?K5`9*l!o;XA3#B`!bNTS0_A z!^$Ff*8DNY0*)y4(aYv9p*L<4nokR4^^gU>B)-lJtw(9AGqNIId3&+|3nE1d_iOWSf`dCSZtaGSPWdF(%`-YLT9XMjk`Xh^eZ5=^30V+@;UH)?6R5h{XZILAZ z`FnzX(ln`l$D8C@v8Yl({gBV(vPF_F!64GWo5v<~AQVg*VFV-+a(1Q2^n*5Gx2-aB zHf?+8Oc`{&Z4Mtt+wxM^$hGTAAK`c758F$SHDI5~E4L2Cwgi)^$i8$?27S zG`KIPpHfl??`^&>a26%s;DJ zw@!#Z?9J0l2!9Pywjd_*-S8bF#Ivw}pTWb~??GUcnSs|izxWXm|KvK2hCw{kYWjv*BoE_v$lG5 zy6nE1**FPvduUAf=nb#4ipRIVC#sHD5poCLRS{lK?mTYx37uyafAt+u#MWOmjMNU- zonKf*%qFv#QPMJgcLOE=26C?@oiOp|$)R)ykfjaKZQ(Gm-;Ps@$ z8lJ3Q-TQ|uIkr6Bdhrh=Hvd74>XX^Y18K>r`z-oja$8;9SVJSniH|#E!j|02h3AuuAhDYm6x%oF!&EIDBO5Uwy-K<90Hy5`VR74l1|^c2sZW~ z391Q!uPnyDP@lKEj@l4w4-{{uXf8;2JjUZC(n9|5cu;n6f5cP%wjM)kx2wx2D5zh> z7t!IQlJ^g1)5Z&!G+$8gRxUm>)x4?a>@#;kp#>ts;U#``YT~~A@pVB!cpLMI6pe>h zPdVnYjrym-vAp`txT&S}d_JG_IQXJjI!?DDMu?Q*{I(e^%7ypO@BmJWmfxy>Cn!vZ zZF3NcX~--lr2p{p)Q;{Gc_^xH=kNS&qZlO``j}yEN;wovanz=K|NAEY1~u<}{rUo| zU;DooJ|khi_R5C5S+WTL%Rop`8hbB1u{0`~3Y7p6{I5v%j~LTmDLEKkts<^qF`^5U zg86<>k}Uh2SF!sl`j~ILO?0uE8>)*7UFAN91XF!UdGG4O@3437o$3InjJ$VL6ngDh0} zowf1sF@57M;&27n!SmHt4HCo!(#q zm5^JV*nszi0N79P?^jmU;BsJTUodM*)!K9lJJ+4c_RasV^1d=E$}Vh|5|tDwX^;*< z=|%-f32CGmKpJV7VaS&fBn6~J5FENYq-5ys7?BtmI%dd$^Z0(}tnXXv{5jt`>-;+V z@67Y;z3*r5eb;qgTb1bP9`TP;AzaYZj0Eer>~kffR_wcyqbqIo!zj68pYg7l^Io21 zNw@EUWkcR|jyJ5DlD55ZM!wnIQT>e7o%GBT8os5r^`RNe*t9|VZdMj3PKz{EgS#`ka&+$H8G^y;!E>Yt2cAs zN8F;7`>%~0Pc^v!o<2x0uWYQsu6#Iw!BZe%t+^icSYCKqcCnq(&gUDZ+`px7DIP2&;!P=fBV#(l7Bq>^GZI zD25i&J@*%QP$c;Bn^#}_MwI}&ILDZ9FaR#uRtu-+9Zu zuR4`{NAKZLeKT+m5^s-BIk|RWgGS6H$v5R_0;6lqFew$G>Bnkve!;Q|z?EQ?fI>MK z_(L=~7Rs^BQw=k;Yhjd+LeyN!CEkz=<{o6bS4i-mhI;4nD9WNliB)x{jD5eWDj9L{ z)-B}%@uMAo#8VgmZ$mz65|9K1Y$$Ka5K(Or1o{T%0Db=Gg*z0|ch0HR|zL zH#kOpFP4rSG$TqQGTqir_mTgi)v5lL6Ry8B9!F8Vc6kvyI^)YhhdC{~yxuMBnb<~2 zZHjSdYRAuv_yT)HkQ;#9meMo4ze!Y&;A5)W8iP4nUP}J?`1#YQ7BwXoo?30lCsEeN zt7U-MihV&e02~*8S}*gycQ;9h3GPA_Nj`eI$+L|xj2cRyGKu!#Iezy)116rLt_y(; zd)X-0rc>d#VR%>pZ5x^IYr1CyDauMaRz369Z%SA#3K}hwNgPoz1h|ECs*9if&5hHE zh=Ld2^=xUYx0KI}8wrO+5h$VPfxPy3S@``M5|mOTp|z7PiG4y$&)$^EXEUI*wyk0M zaS|1^xTMV4r+nvI0QtDO?5_CY4V}%j2YbEJhX16VkHB_-mzkQvsxCZpqM4&NM^CUn@60rxa$R2Fbro6=Y>;4(MWT>0N>vbPqDlR`A0|rk zNSq>CZ)$C77^r;pZk{O(Lsz6cbl~aFP39wcb7!);$5x5Bv_Op)uHki8yD;WwGl~!! z=&7=r6-2T)Z8u)^KYQ0(sy)DbF93W7>y>WT{WjzG z%R5Dk;V}es9KRlv%g?c`v4QE!(>S%|cbecjO#XBgM5vx9Rgt)-m6wbjDwp_4Z)s~- z#%4snujf;IEO%}3dUOA^$<$N1RM+<$^_n+zl~nHgwcDWl#*NRZ@@n>RANq!q0Eo-} zllwXY)vU0^*L!MC*}bK%TJhD=%BdldqR8!mu1P1VoXWnWTEmZ20YQ+EUNBi{_{^uK z_kg{c(Rr)@>*J^lK6m*@=BxHVnH$aIAt4l6`p736-jT9y!(3tNY^7XRodph5_MGuzx{x0WSJ_6xyNgz zMoOS2Oa+5lL{ikBjj%59)GKfdAbcduV2NQ_?eB&3czY9c$HbJwq>d<emjt7^t5L(IVz0*iwdjFGkcWi8Va#%VS)8 z^Kd23?WwOn^Oa)=eu6dd@C-wKs2`iCTXF&@Rv)%HiH(!A=RJUHJnb<-SC@!a#u%P# zGcElhRL<|7E@FC-VqCJMXfg)YredjD&Uq!?TQa8Z)PGuNj&*i%n?l$D37g{Njq^k- z7jEc34v-(b!}aLjo|~0q*HmO`NXDs&&4It+C?&i8 zanV8sV?qQXmdOzkQG_=6;(yaFe`c z86Vn$x=f1?kg6P#PyS-w@5eh@lKP2}dx+xl8QpGq$>>GE?)E{2+9Xo5MfQ=|pV*Rz zzd9?Q5gW16!Pq=LsOyz~db&_z!m3FF99@JsypI;~Nt5GYVJTEW<(c=7RxlppM!Me< zJIF4<$cFRoSLRkT5lm5d37x99j4i(kbnVPjeDe3+A3ecJ!>17=a)RHoxVczCsQ1Ma zN`lkk+w!jp$&++N9>#F=%kxG5K^-m6RrbG(Dzf%=eAYC67kAa0LG!Q41!RgQ$%D@o zuYcWDc&f2MP9k_3NI%C9Jd)qh!F-Fh zyp53AZ^D;Y@lF}w4CdkI?->iihyZu-SZ@tyaHU^we@nM`>E$Kz_Y&(A#hc?;%WFIj z507({QKyq9JWu{&gR%`M@An624Jat5OqK?;20ejo2k! zzDGv(b3H*J{`Pw8R#a+(9H8rdB<}Jk=r|?s*An8U0eD0*@ce1f>x{77U6*CZLHplf zW0u_KaBKFK8nb{t0h$JYPLRyB(M?QhLwii_jFCC;@WrQ3pR6|E6^iqP#KP&x@?*oyx|7aVOfGhtW4bBZDa{uGcN!oxO|JNyd{5TINjlY|R-F-L0h)(bA zRT5FT;Zi)%xm~-+zkQFuR05LEk~)@PZpB7jHQWw7t=|X+1Zf|CsiBR$n=5mv^1Rh% z>u>1fZv%f6`#_zARH@R8-Oh~0I za6_;s;_|2CZSz8>tmU~P?(BDH;}(9c!&z76DD+_81C?~*hbSy&9K#W}4ence=GQOL zj68yjL6;!20bf9QQk+o;!CWus#>M=Gk0MLJQC1&xNuma^95g4l=anmT2?UTW^c36* z(s38QCCWct(ssp5<2v~|OTN*Yc=M0Rdn<^P#%85*$F6(oah_R(w?%XS7x!zQvQgeD zOxCKONIKhsHNpdNsmxLfk;tF+xRs_J_3t>03M-zh9vt>dT!*akl{K&+?vz$LSg+MP3e0RS)b$$|s+Mt-Gg5`#u|Mt{MVnw35mqYsq~WI8iyR#VPd3{#^rT zpvc!}a_^U50+_wi+?=tlbSNA%%;{i6+sb8WoB*Q?$M*}^7~Jy+aMFVmEskYr4d9)X zyW3hWoPEnbJ8(irM<9t6c#O+2>CzHSjOiEJC0;*MFmkRQ=_)Hnhvt6LMvwN7;jbL8 zxX?1Q>(v9$9SLx!bhdWDC^|LkB<$aDc6eT06$T@A`?=0s4@|E5p%-0PdB5THi?6}e zTVd%RVm(7LV5-7Hj~#<(ge7PT<^}W)<}EB@4Yaok+M)P0uPvgIZFZHobX79!T$zP) z34Ccp(w0&RA&p(aKNyG5Oj|iSR$`w>23y zKZ}9cF9^Hmw+zpl4!6p#zQ4lyePJGZ16kQVdP4_)n>^(am?DE}ZKpGCuc{@C{(OeT zjJ{=CZoE0_qAyfPf{l{rbb84mF(MWcr%6``fjIR&S@C9fNO}KpIPKhhS<6!)LfW>; zk%1RG0y;Vee_mE88klkK3wFn4KMq1eh8mz6$eWE0v(;Lyha<4=i2Oaw7 z{5W|P45Y38sGoJwa|n%ep~CuSHt{b~W^na{(_BY;i`+dAF2naWsasYKA|Wegj}phc zagC_MByxmZ-+XgLuX?AG0hH4m4k=M2Q*JFQb?bI2)X;9_R(UxYu(a-_$$as#;<${M!em}Jvw-HjjDvwc ztsB-Na*^J#zCK;XeP4qmH5O67OEvZGVV%dl-|=rhkS=7vO??#^Vw2cz!+GJxzI{*_2*jMvBNLWqRb zR5GK>Ld9rfo7>?>f=9bznH)`}qj*f3Yybjac*+NFj1~)2WC?xK(oeS#WQsJQ@U|Go z5c|~R6lk@NaxdX+$aTd&t&}8zZcrIN0D4LqC6rqpS-be^Ue=1j5I&|N)J*-C7#N1a1!F88Mhq+A?C)8r1FhMGF%dR@^~GF-ln z%piGBXQ+E?FPC9GiWjKu`G6c3sj>DU4kfK(3c@?Ch7`_^8HU8`X;Yx>~FdF-}c{CqW>l_0HrGrggO618Ab>GCpFIhg?9e`wLLgEBGTb1jn}BMPw)y4xK;pXPGCQYwodhf#0a(;N_wM=UQ)Mm}2wRGeQ6t z`ES-gy3Ky6jVM8^?B`&_nxV3qpy3nqs6iU%qngZiywZ1N-RuJTW()Mb)+?QEUB9{0 z*k)|ed6EL)QxB>jDD|zmGM;RL&iIJq@JE8Dj$;kL)NuPZ=Pde2pXM@JlywqMV9~c9Z`0-|2JKnv=o;HMA&s>}Dwq-SfZL|j0pyj145Nj1x&b86;C9AYVRr@#I zap|2Jx$%91!Nr{778X3Q` z^HfDHs+H^E9c|b;yDL+fdlh)3-1+c%q*U4|=AHHCP{k6$0L3(vc+u_Tvg|4h$P@9e zJjZ8B@DNN>NoW^d;oLy{rQ?QQ)fs)pc~VSt+SJ}=wo4Wkk=q(46nV|`?i;Q>4BGZz z);I@t1pEVP;~{-;h!m}(<=FGgfv(=yE|5(R+wTjTV{Up&sWFbT?1Nx|P9gGbg|s<; zg4ikj{I3q|HAQyTAXh>|toke>4B7c8;kr1TZN0UbdH-ogXn#i&$ptLI3cAWLe|jiN zHHg6SjD1T?`X{bcq9)GZx_ z_on)CxM(Dppm}YmO3KVEx^5CcoGl&9E|bV6*HJK7ve;_65u%zwzFdX^1hefq2glea&sS?3;(cQChPqFO zKYll^QfG=qWhb4;3R9j`yEzgXcI>m2JmbSR(eSn2ah-%Nv7_e0y23c4te56?Lx)7ml)UE z+>O(q@=l|Jvrp^7iz2~Z!-G$c^Sp0b$y#R{irHXLbie(AkwWw~1T}ggvB;8@wV0b> z?j%f7pGP|YsYlMaI|s|&-%~>@6k$H$o4EgO!}KF`n^(&UFq2OG$h}{g?oU8#ml%95 zl@lbU;lRaG#AkvQAcrAa-DAP_h>>%2oP2RENs(87wdH`g>}9U2MUh$U@joNL1pX}8tw3WDWYxH{D+?*t5^1baM2T!_)YjL zjEpDZDVZ8&N(j;rG?EqZU9=I^ePEn0***q>-I%)1dQ|2&JqUpJo-)sRq{WI4Zn2sFU4lSGY^)bmMEo*)*K#RCIg#g(ZZg{92M|)i{NHX zf$qgH(7b2mkojfI)Jy|@YCU@PxC76nj&m((n54d#@wHjJMEnM*-a8&SBHb<)9IyC< zsxNOTR@7ENGkkBMZM29YH2@w!Z+z27;`7P3n5s{=hxN%!GkgD`w{4)v{eY|!>4Pun z8`eWx9I`cx{bA!h=9i(iR(UeI$agjrvuu74ByH!fJ#^JdH5DDD z9WN>Ws&vTp!I+nPT6Zz%GEl4>c4o}}B9Glg=FR+4(mUY%_}BfWAEzJxLZnZZqMIXB z_3CAfpzY>D;e#hRbZ)(%DPNnJuiMcHRf{Q=0VdQ<(oW5Kuek` zP8F0GwVWSiG)hnUyI@)m;SR`1tUo;o&KBtb9JGN)ayYPVY?UD#&x%Q;(O}big z9wU}RQLwlWX&C|S89@4Co zVs117;ORYE;j(3oPhJ)&l79O=XY{+l7M;PVt#TP&T7Bfh&`qn}$!HIlkMuf!qbu~| z-4yZ+a2Z{f{e7t>osv?Ackx~oC?*Lpe2vapW>cd0{2TZQyv`1^XNa7jY%?k5H>f)F zF0C?6g$H;(n>7&VVJJpTtOk)>xV!e8C|HCJtJ$ZP4(yW}-|R6K%C%BbkL>ZRw304a zm?X@cje0rJB#Ju5^M!4;HlMT*J9BBO%o0afl!J_1_{F>;-^yFrLpJ*N>I>OU)<|{- zM|&!WFW^|I!}%3Cv6w&8n{p0@da-7X^wyb5aHjqE`LOh*U^}{VWPH;_Y}IlDMZg_W z;0tpORT)df=m>6DjpXd;cpw;f%H372k^)^II{{@_?*4dCOtb^*UlZ8jc`cEqKN#QB zY@dwAZ8iGi=cu?k{V(5ec7%)Av5v^t>%&6Z6{Y7V_Bn37obZ)iU40B7r|53l>5W(u zW6{C%P@m>jMqzA5DXBwHN#&SL^dx5{&p(5b<5%>zCSx zx>ty>tC^h*KZAUs>L|y@f8B&34dKjUqtDByzjRNaMQ>Aznf|U<(n&+c*_Y!sc}kM6 zV{y?A@Bdnm4j~#42Ykb^k*=D6*lN_K*@{JAPk1BS`kL7=#FHs)Oo#tYX;^Q!BvqgU zu?b=&I@|9!vC)U!P|&=B$W5c#DTdG1zgA14n|tI<`X8zJfZlIbv`odsw5CC|6wL=z zm~ldICYYsU{%~5@RxYPtHT<->ig0LBxN1K-FC3?zIH{7zaC<8IV33SMZEDhBLhx?F zO6NlcgnnLlU=g{{&+IF&2Ww3WYjnmp!@35~_4CfKC5b#&dl9L|ZMLN92TLKFx*-^Q zCSHdiDDz=Ak-$}g3)%$s@?6iPX>Z}Z0Q&2PX3NGox37H0tJTCic`F-}z*z$OEEs&- zg?pC6hbp3xGDa(rO{PhcK)(C8V^>O)wkZs%f_PkYR>WAwkz`NEw*AUN_Fx9aAk+P) zz2AkOk@8Q!tKG^nF>W*f*fQ+XtuMoTc7K3XW$GEnN zv*}ryK>*4A9O-#%aBpO3#iY+7Rxe^8Pw-XG?AkVe7lRiMG$F3m$oO zlR#Twb0Um3kqbljZO@-xItgHk%tP`T=aN6famKPji3BYjlzk3aU2gzG>(2aU!-;k& zEaG+g6K~#KjLp@G(|k-@9)89NlBB|(3jbo+y7$TOKbQKUQNl?{Uup$}yZdFb4(ID$ zmW}9FHhOc4(~Na3?#awty~#Vk;7g9L^A?^b;QTfuD&B(kGA-``RG=uIo}2;>1Lthdq2Eiu->+s0k^!5R~!cwM7Cw zQI)-g^oP9fKTiBCTWo@QWJ(h=t$QL*#@MH-ah6p?EVCWA!0rc#12M1gemf~YD%alM zY7B|h&fLrl@K9v{3H&ef>_$$cY?-<_p)D;4jpx2EVoBIKXRY;?&F}*DKotvf5B>6+ zmIida^_p?Wd|%ksIvA!jiaj!x8%e+|Egi9w^xFl4$+oB}UiMWASN_tHiHRnp5sw7| zso8GdX5?M38awP<^HiDe9fVTK*!J~|s zbMG0wBD31-#x;akpGg-g5V-I>f{%#bOKmm|=&>p5d0ZCcOUZ0GfA!lEa9|UUY#)lF zA$t+(8}hPuoBeisFNJD8qp~#o_UF-vZR1c<_^nay{l8uOmn47-&HrNY{eKs!z`0RK qiXvTqN3W@Z12nZ)T1pi!t-}8MaTOMvTNcq>&h_UY9oGN)rvCwTPfalZ literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.1/caffe_output.log b/cars/lr-investigations/sigmoid/1e-2/50_0.1/caffe_output.log new file mode 100644 index 0000000..7c83177 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.1/caffe_output.log @@ -0,0 +1,4567 @@ +I0407 22:23:37.799357 32630 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-222336-31fc/solver.prototxt +I0407 22:23:37.799742 32630 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 22:23:37.799748 32630 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 22:23:37.799806 32630 caffe.cpp:218] Using GPUs 0 +I0407 22:23:37.848248 32630 caffe.cpp:223] GPU 0: GeForce RTX 2080 +I0407 22:23:42.800009 32630 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "sigmoid" +gamma: -0.00098039221 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 5100 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 0 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 22:23:42.801707 32630 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 22:23:42.803831 32630 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 22:23:42.803846 32630 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 22:23:42.803966 32630 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 22:23:42.804054 32630 layer_factory.hpp:77] Creating layer train-data +I0407 22:23:42.809190 32630 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db +I0407 22:23:42.810515 32630 net.cpp:84] Creating Layer train-data +I0407 22:23:42.810525 32630 net.cpp:380] train-data -> data +I0407 22:23:42.810557 32630 net.cpp:380] train-data -> label +I0407 22:23:42.810570 32630 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0407 22:23:42.837807 32630 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 22:23:42.965687 32630 net.cpp:122] Setting up train-data +I0407 22:23:42.965711 32630 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 22:23:42.965715 32630 net.cpp:129] Top shape: 128 (128) +I0407 22:23:42.965718 32630 net.cpp:137] Memory required for data: 79149056 +I0407 22:23:42.965726 32630 layer_factory.hpp:77] Creating layer conv1 +I0407 22:23:42.965764 32630 net.cpp:84] Creating Layer conv1 +I0407 22:23:42.965770 32630 net.cpp:406] conv1 <- data +I0407 22:23:42.965781 32630 net.cpp:380] conv1 -> conv1 +I0407 22:23:44.462642 32630 net.cpp:122] Setting up conv1 +I0407 22:23:44.462661 32630 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:23:44.462664 32630 net.cpp:137] Memory required for data: 227833856 +I0407 22:23:44.462683 32630 layer_factory.hpp:77] Creating layer relu1 +I0407 22:23:44.462692 32630 net.cpp:84] Creating Layer relu1 +I0407 22:23:44.462697 32630 net.cpp:406] relu1 <- conv1 +I0407 22:23:44.462702 32630 net.cpp:367] relu1 -> conv1 (in-place) +I0407 22:23:44.463037 32630 net.cpp:122] Setting up relu1 +I0407 22:23:44.463047 32630 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:23:44.463049 32630 net.cpp:137] Memory required for data: 376518656 +I0407 22:23:44.463052 32630 layer_factory.hpp:77] Creating layer norm1 +I0407 22:23:44.463060 32630 net.cpp:84] Creating Layer norm1 +I0407 22:23:44.463078 32630 net.cpp:406] norm1 <- conv1 +I0407 22:23:44.463084 32630 net.cpp:380] norm1 -> norm1 +I0407 22:23:44.463654 32630 net.cpp:122] Setting up norm1 +I0407 22:23:44.463665 32630 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:23:44.463667 32630 net.cpp:137] Memory required for data: 525203456 +I0407 22:23:44.463670 32630 layer_factory.hpp:77] Creating layer pool1 +I0407 22:23:44.463678 32630 net.cpp:84] Creating Layer pool1 +I0407 22:23:44.463681 32630 net.cpp:406] pool1 <- norm1 +I0407 22:23:44.463685 32630 net.cpp:380] pool1 -> pool1 +I0407 22:23:44.463729 32630 net.cpp:122] Setting up pool1 +I0407 22:23:44.463734 32630 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 22:23:44.463737 32630 net.cpp:137] Memory required for data: 561035264 +I0407 22:23:44.463740 32630 layer_factory.hpp:77] Creating layer conv2 +I0407 22:23:44.463748 32630 net.cpp:84] Creating Layer conv2 +I0407 22:23:44.463752 32630 net.cpp:406] conv2 <- pool1 +I0407 22:23:44.463757 32630 net.cpp:380] conv2 -> conv2 +I0407 22:23:44.476099 32630 net.cpp:122] Setting up conv2 +I0407 22:23:44.476110 32630 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:23:44.476114 32630 net.cpp:137] Memory required for data: 656586752 +I0407 22:23:44.476121 32630 layer_factory.hpp:77] Creating layer relu2 +I0407 22:23:44.476127 32630 net.cpp:84] Creating Layer relu2 +I0407 22:23:44.476131 32630 net.cpp:406] relu2 <- conv2 +I0407 22:23:44.476137 32630 net.cpp:367] relu2 -> conv2 (in-place) +I0407 22:23:44.476750 32630 net.cpp:122] Setting up relu2 +I0407 22:23:44.476759 32630 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:23:44.476763 32630 net.cpp:137] Memory required for data: 752138240 +I0407 22:23:44.476765 32630 layer_factory.hpp:77] Creating layer norm2 +I0407 22:23:44.476773 32630 net.cpp:84] Creating Layer norm2 +I0407 22:23:44.476776 32630 net.cpp:406] norm2 <- conv2 +I0407 22:23:44.476780 32630 net.cpp:380] norm2 -> norm2 +I0407 22:23:44.477172 32630 net.cpp:122] Setting up norm2 +I0407 22:23:44.477183 32630 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:23:44.477186 32630 net.cpp:137] Memory required for data: 847689728 +I0407 22:23:44.477190 32630 layer_factory.hpp:77] Creating layer pool2 +I0407 22:23:44.477196 32630 net.cpp:84] Creating Layer pool2 +I0407 22:23:44.477198 32630 net.cpp:406] pool2 <- norm2 +I0407 22:23:44.477203 32630 net.cpp:380] pool2 -> pool2 +I0407 22:23:44.477231 32630 net.cpp:122] Setting up pool2 +I0407 22:23:44.477236 32630 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:23:44.477239 32630 net.cpp:137] Memory required for data: 869840896 +I0407 22:23:44.477241 32630 layer_factory.hpp:77] Creating layer conv3 +I0407 22:23:44.477252 32630 net.cpp:84] Creating Layer conv3 +I0407 22:23:44.477254 32630 net.cpp:406] conv3 <- pool2 +I0407 22:23:44.477258 32630 net.cpp:380] conv3 -> conv3 +I0407 22:23:44.488667 32630 net.cpp:122] Setting up conv3 +I0407 22:23:44.488678 32630 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:23:44.488682 32630 net.cpp:137] Memory required for data: 903067648 +I0407 22:23:44.488689 32630 layer_factory.hpp:77] Creating layer relu3 +I0407 22:23:44.488694 32630 net.cpp:84] Creating Layer relu3 +I0407 22:23:44.488698 32630 net.cpp:406] relu3 <- conv3 +I0407 22:23:44.488703 32630 net.cpp:367] relu3 -> conv3 (in-place) +I0407 22:23:44.489284 32630 net.cpp:122] Setting up relu3 +I0407 22:23:44.489293 32630 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:23:44.489295 32630 net.cpp:137] Memory required for data: 936294400 +I0407 22:23:44.489298 32630 layer_factory.hpp:77] Creating layer conv4 +I0407 22:23:44.489308 32630 net.cpp:84] Creating Layer conv4 +I0407 22:23:44.489311 32630 net.cpp:406] conv4 <- conv3 +I0407 22:23:44.489317 32630 net.cpp:380] conv4 -> conv4 +I0407 22:23:44.500768 32630 net.cpp:122] Setting up conv4 +I0407 22:23:44.500782 32630 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:23:44.500785 32630 net.cpp:137] Memory required for data: 969521152 +I0407 22:23:44.500792 32630 layer_factory.hpp:77] Creating layer relu4 +I0407 22:23:44.500798 32630 net.cpp:84] Creating Layer relu4 +I0407 22:23:44.500816 32630 net.cpp:406] relu4 <- conv4 +I0407 22:23:44.500823 32630 net.cpp:367] relu4 -> conv4 (in-place) +I0407 22:23:44.501421 32630 net.cpp:122] Setting up relu4 +I0407 22:23:44.501430 32630 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:23:44.501433 32630 net.cpp:137] Memory required for data: 1002747904 +I0407 22:23:44.501436 32630 layer_factory.hpp:77] Creating layer conv5 +I0407 22:23:44.501446 32630 net.cpp:84] Creating Layer conv5 +I0407 22:23:44.501449 32630 net.cpp:406] conv5 <- conv4 +I0407 22:23:44.501457 32630 net.cpp:380] conv5 -> conv5 +I0407 22:23:44.510877 32630 net.cpp:122] Setting up conv5 +I0407 22:23:44.510890 32630 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:23:44.510892 32630 net.cpp:137] Memory required for data: 1024899072 +I0407 22:23:44.510905 32630 layer_factory.hpp:77] Creating layer relu5 +I0407 22:23:44.510910 32630 net.cpp:84] Creating Layer relu5 +I0407 22:23:44.510915 32630 net.cpp:406] relu5 <- conv5 +I0407 22:23:44.510918 32630 net.cpp:367] relu5 -> conv5 (in-place) +I0407 22:23:44.511484 32630 net.cpp:122] Setting up relu5 +I0407 22:23:44.511495 32630 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:23:44.511498 32630 net.cpp:137] Memory required for data: 1047050240 +I0407 22:23:44.511502 32630 layer_factory.hpp:77] Creating layer pool5 +I0407 22:23:44.511507 32630 net.cpp:84] Creating Layer pool5 +I0407 22:23:44.511510 32630 net.cpp:406] pool5 <- conv5 +I0407 22:23:44.511514 32630 net.cpp:380] pool5 -> pool5 +I0407 22:23:44.511552 32630 net.cpp:122] Setting up pool5 +I0407 22:23:44.511557 32630 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 22:23:44.511559 32630 net.cpp:137] Memory required for data: 1051768832 +I0407 22:23:44.511562 32630 layer_factory.hpp:77] Creating layer fc6 +I0407 22:23:44.511572 32630 net.cpp:84] Creating Layer fc6 +I0407 22:23:44.511575 32630 net.cpp:406] fc6 <- pool5 +I0407 22:23:44.511579 32630 net.cpp:380] fc6 -> fc6 +I0407 22:23:44.856149 32630 net.cpp:122] Setting up fc6 +I0407 22:23:44.856168 32630 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:23:44.856171 32630 net.cpp:137] Memory required for data: 1053865984 +I0407 22:23:44.856180 32630 layer_factory.hpp:77] Creating layer relu6 +I0407 22:23:44.856189 32630 net.cpp:84] Creating Layer relu6 +I0407 22:23:44.856192 32630 net.cpp:406] relu6 <- fc6 +I0407 22:23:44.856199 32630 net.cpp:367] relu6 -> fc6 (in-place) +I0407 22:23:44.856938 32630 net.cpp:122] Setting up relu6 +I0407 22:23:44.856947 32630 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:23:44.856950 32630 net.cpp:137] Memory required for data: 1055963136 +I0407 22:23:44.856953 32630 layer_factory.hpp:77] Creating layer drop6 +I0407 22:23:44.856959 32630 net.cpp:84] Creating Layer drop6 +I0407 22:23:44.856962 32630 net.cpp:406] drop6 <- fc6 +I0407 22:23:44.856967 32630 net.cpp:367] drop6 -> fc6 (in-place) +I0407 22:23:44.856993 32630 net.cpp:122] Setting up drop6 +I0407 22:23:44.856998 32630 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:23:44.857000 32630 net.cpp:137] Memory required for data: 1058060288 +I0407 22:23:44.857003 32630 layer_factory.hpp:77] Creating layer fc7 +I0407 22:23:44.857009 32630 net.cpp:84] Creating Layer fc7 +I0407 22:23:44.857012 32630 net.cpp:406] fc7 <- fc6 +I0407 22:23:44.857017 32630 net.cpp:380] fc7 -> fc7 +I0407 22:23:45.009280 32630 net.cpp:122] Setting up fc7 +I0407 22:23:45.009300 32630 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:23:45.009305 32630 net.cpp:137] Memory required for data: 1060157440 +I0407 22:23:45.009312 32630 layer_factory.hpp:77] Creating layer relu7 +I0407 22:23:45.009320 32630 net.cpp:84] Creating Layer relu7 +I0407 22:23:45.009325 32630 net.cpp:406] relu7 <- fc7 +I0407 22:23:45.009330 32630 net.cpp:367] relu7 -> fc7 (in-place) +I0407 22:23:45.009804 32630 net.cpp:122] Setting up relu7 +I0407 22:23:45.009814 32630 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:23:45.009816 32630 net.cpp:137] Memory required for data: 1062254592 +I0407 22:23:45.009819 32630 layer_factory.hpp:77] Creating layer drop7 +I0407 22:23:45.009825 32630 net.cpp:84] Creating Layer drop7 +I0407 22:23:45.009841 32630 net.cpp:406] drop7 <- fc7 +I0407 22:23:45.009845 32630 net.cpp:367] drop7 -> fc7 (in-place) +I0407 22:23:45.009868 32630 net.cpp:122] Setting up drop7 +I0407 22:23:45.009873 32630 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:23:45.009876 32630 net.cpp:137] Memory required for data: 1064351744 +I0407 22:23:45.009878 32630 layer_factory.hpp:77] Creating layer fc8 +I0407 22:23:45.009886 32630 net.cpp:84] Creating Layer fc8 +I0407 22:23:45.009888 32630 net.cpp:406] fc8 <- fc7 +I0407 22:23:45.009892 32630 net.cpp:380] fc8 -> fc8 +I0407 22:23:45.017489 32630 net.cpp:122] Setting up fc8 +I0407 22:23:45.017498 32630 net.cpp:129] Top shape: 128 196 (25088) +I0407 22:23:45.017501 32630 net.cpp:137] Memory required for data: 1064452096 +I0407 22:23:45.017506 32630 layer_factory.hpp:77] Creating layer loss +I0407 22:23:45.019939 32630 net.cpp:84] Creating Layer loss +I0407 22:23:45.019955 32630 net.cpp:406] loss <- fc8 +I0407 22:23:45.019966 32630 net.cpp:406] loss <- label +I0407 22:23:45.019980 32630 net.cpp:380] loss -> loss +I0407 22:23:45.019999 32630 layer_factory.hpp:77] Creating layer loss +I0407 22:23:45.021165 32630 net.cpp:122] Setting up loss +I0407 22:23:45.021174 32630 net.cpp:129] Top shape: (1) +I0407 22:23:45.021178 32630 net.cpp:132] with loss weight 1 +I0407 22:23:45.021195 32630 net.cpp:137] Memory required for data: 1064452100 +I0407 22:23:45.021198 32630 net.cpp:198] loss needs backward computation. +I0407 22:23:45.021204 32630 net.cpp:198] fc8 needs backward computation. +I0407 22:23:45.021207 32630 net.cpp:198] drop7 needs backward computation. +I0407 22:23:45.021209 32630 net.cpp:198] relu7 needs backward computation. +I0407 22:23:45.021212 32630 net.cpp:198] fc7 needs backward computation. +I0407 22:23:45.021214 32630 net.cpp:198] drop6 needs backward computation. +I0407 22:23:45.021217 32630 net.cpp:198] relu6 needs backward computation. +I0407 22:23:45.021219 32630 net.cpp:198] fc6 needs backward computation. +I0407 22:23:45.021222 32630 net.cpp:198] pool5 needs backward computation. +I0407 22:23:45.021225 32630 net.cpp:198] relu5 needs backward computation. +I0407 22:23:45.021227 32630 net.cpp:198] conv5 needs backward computation. +I0407 22:23:45.021230 32630 net.cpp:198] relu4 needs backward computation. +I0407 22:23:45.021232 32630 net.cpp:198] conv4 needs backward computation. +I0407 22:23:45.021235 32630 net.cpp:198] relu3 needs backward computation. +I0407 22:23:45.021239 32630 net.cpp:198] conv3 needs backward computation. +I0407 22:23:45.021241 32630 net.cpp:198] pool2 needs backward computation. +I0407 22:23:45.021243 32630 net.cpp:198] norm2 needs backward computation. +I0407 22:23:45.021246 32630 net.cpp:198] relu2 needs backward computation. +I0407 22:23:45.021248 32630 net.cpp:198] conv2 needs backward computation. +I0407 22:23:45.021251 32630 net.cpp:198] pool1 needs backward computation. +I0407 22:23:45.021255 32630 net.cpp:198] norm1 needs backward computation. +I0407 22:23:45.021257 32630 net.cpp:198] relu1 needs backward computation. +I0407 22:23:45.021260 32630 net.cpp:198] conv1 needs backward computation. +I0407 22:23:45.021262 32630 net.cpp:200] train-data does not need backward computation. +I0407 22:23:45.021265 32630 net.cpp:242] This network produces output loss +I0407 22:23:45.021279 32630 net.cpp:255] Network initialization done. +I0407 22:23:45.022007 32630 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 22:23:45.022038 32630 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 22:23:45.022166 32630 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 22:23:45.022261 32630 layer_factory.hpp:77] Creating layer val-data +I0407 22:23:45.026412 32630 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db +I0407 22:23:45.041004 32630 net.cpp:84] Creating Layer val-data +I0407 22:23:45.041035 32630 net.cpp:380] val-data -> data +I0407 22:23:45.041056 32630 net.cpp:380] val-data -> label +I0407 22:23:45.041072 32630 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0407 22:23:45.058750 32630 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 22:23:45.094960 32630 net.cpp:122] Setting up val-data +I0407 22:23:45.094985 32630 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 22:23:45.094988 32630 net.cpp:129] Top shape: 32 (32) +I0407 22:23:45.094991 32630 net.cpp:137] Memory required for data: 19787264 +I0407 22:23:45.094997 32630 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 22:23:45.095008 32630 net.cpp:84] Creating Layer label_val-data_1_split +I0407 22:23:45.095012 32630 net.cpp:406] label_val-data_1_split <- label +I0407 22:23:45.095018 32630 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 22:23:45.095027 32630 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 22:23:45.095072 32630 net.cpp:122] Setting up label_val-data_1_split +I0407 22:23:45.095078 32630 net.cpp:129] Top shape: 32 (32) +I0407 22:23:45.095082 32630 net.cpp:129] Top shape: 32 (32) +I0407 22:23:45.095083 32630 net.cpp:137] Memory required for data: 19787520 +I0407 22:23:45.095086 32630 layer_factory.hpp:77] Creating layer conv1 +I0407 22:23:45.095096 32630 net.cpp:84] Creating Layer conv1 +I0407 22:23:45.095099 32630 net.cpp:406] conv1 <- data +I0407 22:23:45.095104 32630 net.cpp:380] conv1 -> conv1 +I0407 22:23:45.098523 32630 net.cpp:122] Setting up conv1 +I0407 22:23:45.098534 32630 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:23:45.098537 32630 net.cpp:137] Memory required for data: 56958720 +I0407 22:23:45.098547 32630 layer_factory.hpp:77] Creating layer relu1 +I0407 22:23:45.098553 32630 net.cpp:84] Creating Layer relu1 +I0407 22:23:45.098556 32630 net.cpp:406] relu1 <- conv1 +I0407 22:23:45.098560 32630 net.cpp:367] relu1 -> conv1 (in-place) +I0407 22:23:45.098889 32630 net.cpp:122] Setting up relu1 +I0407 22:23:45.098899 32630 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:23:45.098901 32630 net.cpp:137] Memory required for data: 94129920 +I0407 22:23:45.098904 32630 layer_factory.hpp:77] Creating layer norm1 +I0407 22:23:45.098912 32630 net.cpp:84] Creating Layer norm1 +I0407 22:23:45.098915 32630 net.cpp:406] norm1 <- conv1 +I0407 22:23:45.098920 32630 net.cpp:380] norm1 -> norm1 +I0407 22:23:45.099491 32630 net.cpp:122] Setting up norm1 +I0407 22:23:45.099501 32630 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:23:45.099504 32630 net.cpp:137] Memory required for data: 131301120 +I0407 22:23:45.099507 32630 layer_factory.hpp:77] Creating layer pool1 +I0407 22:23:45.099514 32630 net.cpp:84] Creating Layer pool1 +I0407 22:23:45.099517 32630 net.cpp:406] pool1 <- norm1 +I0407 22:23:45.099522 32630 net.cpp:380] pool1 -> pool1 +I0407 22:23:45.099547 32630 net.cpp:122] Setting up pool1 +I0407 22:23:45.099552 32630 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 22:23:45.099555 32630 net.cpp:137] Memory required for data: 140259072 +I0407 22:23:45.099557 32630 layer_factory.hpp:77] Creating layer conv2 +I0407 22:23:45.099565 32630 net.cpp:84] Creating Layer conv2 +I0407 22:23:45.099567 32630 net.cpp:406] conv2 <- pool1 +I0407 22:23:45.099591 32630 net.cpp:380] conv2 -> conv2 +I0407 22:23:45.109513 32630 net.cpp:122] Setting up conv2 +I0407 22:23:45.109529 32630 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:23:45.109532 32630 net.cpp:137] Memory required for data: 164146944 +I0407 22:23:45.109542 32630 layer_factory.hpp:77] Creating layer relu2 +I0407 22:23:45.109549 32630 net.cpp:84] Creating Layer relu2 +I0407 22:23:45.109553 32630 net.cpp:406] relu2 <- conv2 +I0407 22:23:45.109560 32630 net.cpp:367] relu2 -> conv2 (in-place) +I0407 22:23:45.110158 32630 net.cpp:122] Setting up relu2 +I0407 22:23:45.110167 32630 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:23:45.110170 32630 net.cpp:137] Memory required for data: 188034816 +I0407 22:23:45.110173 32630 layer_factory.hpp:77] Creating layer norm2 +I0407 22:23:45.110184 32630 net.cpp:84] Creating Layer norm2 +I0407 22:23:45.110188 32630 net.cpp:406] norm2 <- conv2 +I0407 22:23:45.110193 32630 net.cpp:380] norm2 -> norm2 +I0407 22:23:45.111004 32630 net.cpp:122] Setting up norm2 +I0407 22:23:45.111014 32630 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:23:45.111017 32630 net.cpp:137] Memory required for data: 211922688 +I0407 22:23:45.111021 32630 layer_factory.hpp:77] Creating layer pool2 +I0407 22:23:45.111029 32630 net.cpp:84] Creating Layer pool2 +I0407 22:23:45.111032 32630 net.cpp:406] pool2 <- norm2 +I0407 22:23:45.111037 32630 net.cpp:380] pool2 -> pool2 +I0407 22:23:45.111065 32630 net.cpp:122] Setting up pool2 +I0407 22:23:45.111070 32630 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:23:45.111073 32630 net.cpp:137] Memory required for data: 217460480 +I0407 22:23:45.111075 32630 layer_factory.hpp:77] Creating layer conv3 +I0407 22:23:45.111084 32630 net.cpp:84] Creating Layer conv3 +I0407 22:23:45.111088 32630 net.cpp:406] conv3 <- pool2 +I0407 22:23:45.111093 32630 net.cpp:380] conv3 -> conv3 +I0407 22:23:45.122920 32630 net.cpp:122] Setting up conv3 +I0407 22:23:45.122934 32630 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:23:45.122937 32630 net.cpp:137] Memory required for data: 225767168 +I0407 22:23:45.122947 32630 layer_factory.hpp:77] Creating layer relu3 +I0407 22:23:45.122958 32630 net.cpp:84] Creating Layer relu3 +I0407 22:23:45.122961 32630 net.cpp:406] relu3 <- conv3 +I0407 22:23:45.122967 32630 net.cpp:367] relu3 -> conv3 (in-place) +I0407 22:23:45.123594 32630 net.cpp:122] Setting up relu3 +I0407 22:23:45.123603 32630 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:23:45.123606 32630 net.cpp:137] Memory required for data: 234073856 +I0407 22:23:45.123610 32630 layer_factory.hpp:77] Creating layer conv4 +I0407 22:23:45.123620 32630 net.cpp:84] Creating Layer conv4 +I0407 22:23:45.123622 32630 net.cpp:406] conv4 <- conv3 +I0407 22:23:45.123628 32630 net.cpp:380] conv4 -> conv4 +I0407 22:23:45.133639 32630 net.cpp:122] Setting up conv4 +I0407 22:23:45.133661 32630 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:23:45.133663 32630 net.cpp:137] Memory required for data: 242380544 +I0407 22:23:45.133668 32630 layer_factory.hpp:77] Creating layer relu4 +I0407 22:23:45.133673 32630 net.cpp:84] Creating Layer relu4 +I0407 22:23:45.133677 32630 net.cpp:406] relu4 <- conv4 +I0407 22:23:45.133683 32630 net.cpp:367] relu4 -> conv4 (in-place) +I0407 22:23:45.134188 32630 net.cpp:122] Setting up relu4 +I0407 22:23:45.134198 32630 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:23:45.134202 32630 net.cpp:137] Memory required for data: 250687232 +I0407 22:23:45.134205 32630 layer_factory.hpp:77] Creating layer conv5 +I0407 22:23:45.134214 32630 net.cpp:84] Creating Layer conv5 +I0407 22:23:45.134218 32630 net.cpp:406] conv5 <- conv4 +I0407 22:23:45.134225 32630 net.cpp:380] conv5 -> conv5 +I0407 22:23:45.143997 32630 net.cpp:122] Setting up conv5 +I0407 22:23:45.144009 32630 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:23:45.144012 32630 net.cpp:137] Memory required for data: 256225024 +I0407 22:23:45.144022 32630 layer_factory.hpp:77] Creating layer relu5 +I0407 22:23:45.144029 32630 net.cpp:84] Creating Layer relu5 +I0407 22:23:45.144047 32630 net.cpp:406] relu5 <- conv5 +I0407 22:23:45.144052 32630 net.cpp:367] relu5 -> conv5 (in-place) +I0407 22:23:45.144623 32630 net.cpp:122] Setting up relu5 +I0407 22:23:45.144632 32630 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:23:45.144635 32630 net.cpp:137] Memory required for data: 261762816 +I0407 22:23:45.144639 32630 layer_factory.hpp:77] Creating layer pool5 +I0407 22:23:45.144649 32630 net.cpp:84] Creating Layer pool5 +I0407 22:23:45.144651 32630 net.cpp:406] pool5 <- conv5 +I0407 22:23:45.144656 32630 net.cpp:380] pool5 -> pool5 +I0407 22:23:45.144691 32630 net.cpp:122] Setting up pool5 +I0407 22:23:45.144696 32630 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 22:23:45.144699 32630 net.cpp:137] Memory required for data: 262942464 +I0407 22:23:45.144702 32630 layer_factory.hpp:77] Creating layer fc6 +I0407 22:23:45.144709 32630 net.cpp:84] Creating Layer fc6 +I0407 22:23:45.144712 32630 net.cpp:406] fc6 <- pool5 +I0407 22:23:45.144716 32630 net.cpp:380] fc6 -> fc6 +I0407 22:23:45.502180 32630 net.cpp:122] Setting up fc6 +I0407 22:23:45.502200 32630 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:23:45.502203 32630 net.cpp:137] Memory required for data: 263466752 +I0407 22:23:45.502211 32630 layer_factory.hpp:77] Creating layer relu6 +I0407 22:23:45.502219 32630 net.cpp:84] Creating Layer relu6 +I0407 22:23:45.502223 32630 net.cpp:406] relu6 <- fc6 +I0407 22:23:45.502229 32630 net.cpp:367] relu6 -> fc6 (in-place) +I0407 22:23:45.503008 32630 net.cpp:122] Setting up relu6 +I0407 22:23:45.503017 32630 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:23:45.503021 32630 net.cpp:137] Memory required for data: 263991040 +I0407 22:23:45.503023 32630 layer_factory.hpp:77] Creating layer drop6 +I0407 22:23:45.503029 32630 net.cpp:84] Creating Layer drop6 +I0407 22:23:45.503032 32630 net.cpp:406] drop6 <- fc6 +I0407 22:23:45.503038 32630 net.cpp:367] drop6 -> fc6 (in-place) +I0407 22:23:45.503058 32630 net.cpp:122] Setting up drop6 +I0407 22:23:45.503063 32630 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:23:45.503065 32630 net.cpp:137] Memory required for data: 264515328 +I0407 22:23:45.503068 32630 layer_factory.hpp:77] Creating layer fc7 +I0407 22:23:45.503077 32630 net.cpp:84] Creating Layer fc7 +I0407 22:23:45.503078 32630 net.cpp:406] fc7 <- fc6 +I0407 22:23:45.503084 32630 net.cpp:380] fc7 -> fc7 +I0407 22:23:45.656311 32630 net.cpp:122] Setting up fc7 +I0407 22:23:45.656329 32630 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:23:45.656333 32630 net.cpp:137] Memory required for data: 265039616 +I0407 22:23:45.656342 32630 layer_factory.hpp:77] Creating layer relu7 +I0407 22:23:45.656352 32630 net.cpp:84] Creating Layer relu7 +I0407 22:23:45.656355 32630 net.cpp:406] relu7 <- fc7 +I0407 22:23:45.656360 32630 net.cpp:367] relu7 -> fc7 (in-place) +I0407 22:23:45.656836 32630 net.cpp:122] Setting up relu7 +I0407 22:23:45.656852 32630 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:23:45.656854 32630 net.cpp:137] Memory required for data: 265563904 +I0407 22:23:45.656857 32630 layer_factory.hpp:77] Creating layer drop7 +I0407 22:23:45.656863 32630 net.cpp:84] Creating Layer drop7 +I0407 22:23:45.656867 32630 net.cpp:406] drop7 <- fc7 +I0407 22:23:45.656872 32630 net.cpp:367] drop7 -> fc7 (in-place) +I0407 22:23:45.656895 32630 net.cpp:122] Setting up drop7 +I0407 22:23:45.656900 32630 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:23:45.656903 32630 net.cpp:137] Memory required for data: 266088192 +I0407 22:23:45.656905 32630 layer_factory.hpp:77] Creating layer fc8 +I0407 22:23:45.656913 32630 net.cpp:84] Creating Layer fc8 +I0407 22:23:45.656916 32630 net.cpp:406] fc8 <- fc7 +I0407 22:23:45.656920 32630 net.cpp:380] fc8 -> fc8 +I0407 22:23:45.664587 32630 net.cpp:122] Setting up fc8 +I0407 22:23:45.664597 32630 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:23:45.664598 32630 net.cpp:137] Memory required for data: 266113280 +I0407 22:23:45.664604 32630 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 22:23:45.664609 32630 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 22:23:45.664613 32630 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 22:23:45.664630 32630 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 22:23:45.664636 32630 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 22:23:45.664664 32630 net.cpp:122] Setting up fc8_fc8_0_split +I0407 22:23:45.664669 32630 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:23:45.664670 32630 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:23:45.664674 32630 net.cpp:137] Memory required for data: 266163456 +I0407 22:23:45.664675 32630 layer_factory.hpp:77] Creating layer accuracy +I0407 22:23:45.664680 32630 net.cpp:84] Creating Layer accuracy +I0407 22:23:45.664683 32630 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 22:23:45.664687 32630 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 22:23:45.664692 32630 net.cpp:380] accuracy -> accuracy +I0407 22:23:45.664698 32630 net.cpp:122] Setting up accuracy +I0407 22:23:45.664702 32630 net.cpp:129] Top shape: (1) +I0407 22:23:45.664705 32630 net.cpp:137] Memory required for data: 266163460 +I0407 22:23:45.664706 32630 layer_factory.hpp:77] Creating layer loss +I0407 22:23:45.664710 32630 net.cpp:84] Creating Layer loss +I0407 22:23:45.664713 32630 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 22:23:45.664716 32630 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 22:23:45.664721 32630 net.cpp:380] loss -> loss +I0407 22:23:45.664726 32630 layer_factory.hpp:77] Creating layer loss +I0407 22:23:45.665416 32630 net.cpp:122] Setting up loss +I0407 22:23:45.665426 32630 net.cpp:129] Top shape: (1) +I0407 22:23:45.665427 32630 net.cpp:132] with loss weight 1 +I0407 22:23:45.665437 32630 net.cpp:137] Memory required for data: 266163464 +I0407 22:23:45.665441 32630 net.cpp:198] loss needs backward computation. +I0407 22:23:45.665444 32630 net.cpp:200] accuracy does not need backward computation. +I0407 22:23:45.665448 32630 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 22:23:45.665452 32630 net.cpp:198] fc8 needs backward computation. +I0407 22:23:45.665455 32630 net.cpp:198] drop7 needs backward computation. +I0407 22:23:45.665457 32630 net.cpp:198] relu7 needs backward computation. +I0407 22:23:45.665459 32630 net.cpp:198] fc7 needs backward computation. +I0407 22:23:45.665462 32630 net.cpp:198] drop6 needs backward computation. +I0407 22:23:45.665465 32630 net.cpp:198] relu6 needs backward computation. +I0407 22:23:45.665467 32630 net.cpp:198] fc6 needs backward computation. +I0407 22:23:45.665470 32630 net.cpp:198] pool5 needs backward computation. +I0407 22:23:45.665473 32630 net.cpp:198] relu5 needs backward computation. +I0407 22:23:45.665477 32630 net.cpp:198] conv5 needs backward computation. +I0407 22:23:45.665478 32630 net.cpp:198] relu4 needs backward computation. +I0407 22:23:45.665482 32630 net.cpp:198] conv4 needs backward computation. +I0407 22:23:45.665483 32630 net.cpp:198] relu3 needs backward computation. +I0407 22:23:45.665486 32630 net.cpp:198] conv3 needs backward computation. +I0407 22:23:45.665489 32630 net.cpp:198] pool2 needs backward computation. +I0407 22:23:45.665493 32630 net.cpp:198] norm2 needs backward computation. +I0407 22:23:45.665495 32630 net.cpp:198] relu2 needs backward computation. +I0407 22:23:45.665498 32630 net.cpp:198] conv2 needs backward computation. +I0407 22:23:45.665500 32630 net.cpp:198] pool1 needs backward computation. +I0407 22:23:45.665503 32630 net.cpp:198] norm1 needs backward computation. +I0407 22:23:45.665505 32630 net.cpp:198] relu1 needs backward computation. +I0407 22:23:45.665508 32630 net.cpp:198] conv1 needs backward computation. +I0407 22:23:45.665511 32630 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 22:23:45.665514 32630 net.cpp:200] val-data does not need backward computation. +I0407 22:23:45.665518 32630 net.cpp:242] This network produces output accuracy +I0407 22:23:45.665520 32630 net.cpp:242] This network produces output loss +I0407 22:23:45.665535 32630 net.cpp:255] Network initialization done. +I0407 22:23:45.665599 32630 solver.cpp:56] Solver scaffolding done. +I0407 22:23:45.665920 32630 caffe.cpp:248] Starting Optimization +I0407 22:23:45.665937 32630 solver.cpp:272] Solving +I0407 22:23:45.665939 32630 solver.cpp:273] Learning Rate Policy: sigmoid +I0407 22:23:45.667598 32630 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 22:23:45.667608 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:23:45.757809 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:23:49.918274 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:23:49.962021 32630 solver.cpp:397] Test net output #0: accuracy = 0.00367647 +I0407 22:23:49.962056 32630 solver.cpp:397] Test net output #1: loss = 5.2771 (* 1 = 5.2771 loss) +I0407 22:23:50.063127 32630 solver.cpp:218] Iteration 0 (-1.10529e-14 iter/s, 4.39715s/12 iters), loss = 5.28929 +I0407 22:23:50.064667 32630 solver.cpp:237] Train net output #0: loss = 5.28929 (* 1 = 5.28929 loss) +I0407 22:23:50.064697 32630 sgd_solver.cpp:105] Iteration 0, lr = 0.00993307 +I0407 22:23:53.704421 32630 solver.cpp:218] Iteration 12 (3.29694 iter/s, 3.63974s/12 iters), loss = 5.29262 +I0407 22:23:53.704452 32630 solver.cpp:237] Train net output #0: loss = 5.29262 (* 1 = 5.29262 loss) +I0407 22:23:53.704459 32630 sgd_solver.cpp:105] Iteration 12, lr = 0.00993228 +I0407 22:23:58.475715 32630 solver.cpp:218] Iteration 24 (2.51506 iter/s, 4.77125s/12 iters), loss = 5.29405 +I0407 22:23:58.475749 32630 solver.cpp:237] Train net output #0: loss = 5.29405 (* 1 = 5.29405 loss) +I0407 22:23:58.475755 32630 sgd_solver.cpp:105] Iteration 24, lr = 0.00993149 +I0407 22:24:03.235833 32630 solver.cpp:218] Iteration 36 (2.52097 iter/s, 4.76007s/12 iters), loss = 5.27586 +I0407 22:24:03.235867 32630 solver.cpp:237] Train net output #0: loss = 5.27586 (* 1 = 5.27586 loss) +I0407 22:24:03.235875 32630 sgd_solver.cpp:105] Iteration 36, lr = 0.00993068 +I0407 22:24:08.111627 32630 solver.cpp:218] Iteration 48 (2.46116 iter/s, 4.87575s/12 iters), loss = 5.28053 +I0407 22:24:08.111691 32630 solver.cpp:237] Train net output #0: loss = 5.28053 (* 1 = 5.28053 loss) +I0407 22:24:08.111701 32630 sgd_solver.cpp:105] Iteration 48, lr = 0.00992987 +I0407 22:24:12.871659 32630 solver.cpp:218] Iteration 60 (2.52103 iter/s, 4.75995s/12 iters), loss = 5.28088 +I0407 22:24:12.871692 32630 solver.cpp:237] Train net output #0: loss = 5.28088 (* 1 = 5.28088 loss) +I0407 22:24:12.871699 32630 sgd_solver.cpp:105] Iteration 60, lr = 0.00992905 +I0407 22:24:17.660882 32630 solver.cpp:218] Iteration 72 (2.50566 iter/s, 4.78916s/12 iters), loss = 5.28857 +I0407 22:24:17.660928 32630 solver.cpp:237] Train net output #0: loss = 5.28857 (* 1 = 5.28857 loss) +I0407 22:24:17.660938 32630 sgd_solver.cpp:105] Iteration 72, lr = 0.00992821 +I0407 22:24:22.607657 32630 solver.cpp:218] Iteration 84 (2.42585 iter/s, 4.94671s/12 iters), loss = 5.30566 +I0407 22:24:22.607693 32630 solver.cpp:237] Train net output #0: loss = 5.30566 (* 1 = 5.30566 loss) +I0407 22:24:22.607702 32630 sgd_solver.cpp:105] Iteration 84, lr = 0.00992737 +I0407 22:24:27.471622 32630 solver.cpp:218] Iteration 96 (2.46715 iter/s, 4.8639s/12 iters), loss = 5.2803 +I0407 22:24:27.471659 32630 solver.cpp:237] Train net output #0: loss = 5.2803 (* 1 = 5.2803 loss) +I0407 22:24:27.471668 32630 sgd_solver.cpp:105] Iteration 96, lr = 0.00992651 +I0407 22:24:29.112035 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:29.405450 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 22:24:32.552940 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 22:24:34.986977 32630 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 22:24:34.986995 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:24:39.743496 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:24:39.832427 32630 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0407 22:24:39.832473 32630 solver.cpp:397] Test net output #1: loss = 5.28642 (* 1 = 5.28642 loss) +I0407 22:24:41.597070 32630 solver.cpp:218] Iteration 108 (0.849535 iter/s, 14.1254s/12 iters), loss = 5.29324 +I0407 22:24:41.597107 32630 solver.cpp:237] Train net output #0: loss = 5.29324 (* 1 = 5.29324 loss) +I0407 22:24:41.597116 32630 sgd_solver.cpp:105] Iteration 108, lr = 0.00992565 +I0407 22:24:46.509053 32630 solver.cpp:218] Iteration 120 (2.44304 iter/s, 4.91192s/12 iters), loss = 5.26269 +I0407 22:24:46.509089 32630 solver.cpp:237] Train net output #0: loss = 5.26269 (* 1 = 5.26269 loss) +I0407 22:24:46.509096 32630 sgd_solver.cpp:105] Iteration 120, lr = 0.00992478 +I0407 22:24:51.324216 32630 solver.cpp:218] Iteration 132 (2.49216 iter/s, 4.8151s/12 iters), loss = 5.2905 +I0407 22:24:51.324252 32630 solver.cpp:237] Train net output #0: loss = 5.2905 (* 1 = 5.2905 loss) +I0407 22:24:51.324260 32630 sgd_solver.cpp:105] Iteration 132, lr = 0.00992389 +I0407 22:24:56.164413 32630 solver.cpp:218] Iteration 144 (2.47927 iter/s, 4.84014s/12 iters), loss = 5.27839 +I0407 22:24:56.164449 32630 solver.cpp:237] Train net output #0: loss = 5.27839 (* 1 = 5.27839 loss) +I0407 22:24:56.164458 32630 sgd_solver.cpp:105] Iteration 144, lr = 0.009923 +I0407 22:25:01.201314 32630 solver.cpp:218] Iteration 156 (2.38245 iter/s, 5.03684s/12 iters), loss = 5.28008 +I0407 22:25:01.201359 32630 solver.cpp:237] Train net output #0: loss = 5.28008 (* 1 = 5.28008 loss) +I0407 22:25:01.201367 32630 sgd_solver.cpp:105] Iteration 156, lr = 0.0099221 +I0407 22:25:06.078928 32630 solver.cpp:218] Iteration 168 (2.46025 iter/s, 4.87755s/12 iters), loss = 5.28077 +I0407 22:25:06.078964 32630 solver.cpp:237] Train net output #0: loss = 5.28077 (* 1 = 5.28077 loss) +I0407 22:25:06.078972 32630 sgd_solver.cpp:105] Iteration 168, lr = 0.00992118 +I0407 22:25:10.976097 32630 solver.cpp:218] Iteration 180 (2.45043 iter/s, 4.89711s/12 iters), loss = 5.25998 +I0407 22:25:10.976233 32630 solver.cpp:237] Train net output #0: loss = 5.25998 (* 1 = 5.25998 loss) +I0407 22:25:10.976241 32630 sgd_solver.cpp:105] Iteration 180, lr = 0.00992026 +I0407 22:25:15.934857 32630 solver.cpp:218] Iteration 192 (2.42004 iter/s, 4.9586s/12 iters), loss = 5.31123 +I0407 22:25:15.934898 32630 solver.cpp:237] Train net output #0: loss = 5.31123 (* 1 = 5.31123 loss) +I0407 22:25:15.934906 32630 sgd_solver.cpp:105] Iteration 192, lr = 0.00991932 +I0407 22:25:19.713043 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:20.369163 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 22:25:23.468806 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 22:25:25.835417 32630 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 22:25:25.835436 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:25:30.502734 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:30.638267 32630 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0407 22:25:30.638310 32630 solver.cpp:397] Test net output #1: loss = 5.19916 (* 1 = 5.19916 loss) +I0407 22:25:30.735139 32630 solver.cpp:218] Iteration 204 (0.8108 iter/s, 14.8002s/12 iters), loss = 5.26302 +I0407 22:25:30.735184 32630 solver.cpp:237] Train net output #0: loss = 5.26302 (* 1 = 5.26302 loss) +I0407 22:25:30.735193 32630 sgd_solver.cpp:105] Iteration 204, lr = 0.00991837 +I0407 22:25:34.850286 32630 solver.cpp:218] Iteration 216 (2.91611 iter/s, 4.11508s/12 iters), loss = 5.27377 +I0407 22:25:34.850329 32630 solver.cpp:237] Train net output #0: loss = 5.27377 (* 1 = 5.27377 loss) +I0407 22:25:34.850337 32630 sgd_solver.cpp:105] Iteration 216, lr = 0.00991742 +I0407 22:25:39.829335 32630 solver.cpp:218] Iteration 228 (2.41013 iter/s, 4.97898s/12 iters), loss = 5.14682 +I0407 22:25:39.829372 32630 solver.cpp:237] Train net output #0: loss = 5.14682 (* 1 = 5.14682 loss) +I0407 22:25:39.829380 32630 sgd_solver.cpp:105] Iteration 228, lr = 0.00991645 +I0407 22:25:44.693403 32630 solver.cpp:218] Iteration 240 (2.46711 iter/s, 4.864s/12 iters), loss = 5.18232 +I0407 22:25:44.693570 32630 solver.cpp:237] Train net output #0: loss = 5.18232 (* 1 = 5.18232 loss) +I0407 22:25:44.693580 32630 sgd_solver.cpp:105] Iteration 240, lr = 0.00991547 +I0407 22:25:49.618160 32630 solver.cpp:218] Iteration 252 (2.43676 iter/s, 4.92456s/12 iters), loss = 5.1962 +I0407 22:25:49.618203 32630 solver.cpp:237] Train net output #0: loss = 5.1962 (* 1 = 5.1962 loss) +I0407 22:25:49.618211 32630 sgd_solver.cpp:105] Iteration 252, lr = 0.00991447 +I0407 22:25:54.578457 32630 solver.cpp:218] Iteration 264 (2.41924 iter/s, 4.96023s/12 iters), loss = 5.18281 +I0407 22:25:54.578496 32630 solver.cpp:237] Train net output #0: loss = 5.18281 (* 1 = 5.18281 loss) +I0407 22:25:54.578505 32630 sgd_solver.cpp:105] Iteration 264, lr = 0.00991347 +I0407 22:25:59.529109 32630 solver.cpp:218] Iteration 276 (2.42395 iter/s, 4.95059s/12 iters), loss = 5.09301 +I0407 22:25:59.529150 32630 solver.cpp:237] Train net output #0: loss = 5.09301 (* 1 = 5.09301 loss) +I0407 22:25:59.529157 32630 sgd_solver.cpp:105] Iteration 276, lr = 0.00991246 +I0407 22:26:04.402521 32630 solver.cpp:218] Iteration 288 (2.46237 iter/s, 4.87334s/12 iters), loss = 5.16152 +I0407 22:26:04.402563 32630 solver.cpp:237] Train net output #0: loss = 5.16152 (* 1 = 5.16152 loss) +I0407 22:26:04.402572 32630 sgd_solver.cpp:105] Iteration 288, lr = 0.00991143 +I0407 22:26:09.225162 32630 solver.cpp:218] Iteration 300 (2.4883 iter/s, 4.82257s/12 iters), loss = 5.1042 +I0407 22:26:09.225206 32630 solver.cpp:237] Train net output #0: loss = 5.1042 (* 1 = 5.1042 loss) +I0407 22:26:09.225214 32630 sgd_solver.cpp:105] Iteration 300, lr = 0.00991039 +I0407 22:26:10.184805 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:11.201387 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 22:26:14.249469 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 22:26:16.610075 32630 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 22:26:16.610168 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:26:21.116782 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:21.278002 32630 solver.cpp:397] Test net output #0: accuracy = 0.00980392 +I0407 22:26:21.278040 32630 solver.cpp:397] Test net output #1: loss = 5.14414 (* 1 = 5.14414 loss) +I0407 22:26:23.073014 32630 solver.cpp:218] Iteration 312 (0.866566 iter/s, 13.8478s/12 iters), loss = 5.16694 +I0407 22:26:23.073050 32630 solver.cpp:237] Train net output #0: loss = 5.16694 (* 1 = 5.16694 loss) +I0407 22:26:23.073056 32630 sgd_solver.cpp:105] Iteration 312, lr = 0.00990934 +I0407 22:26:28.008111 32630 solver.cpp:218] Iteration 324 (2.43159 iter/s, 4.93504s/12 iters), loss = 5.09503 +I0407 22:26:28.008145 32630 solver.cpp:237] Train net output #0: loss = 5.09503 (* 1 = 5.09503 loss) +I0407 22:26:28.008152 32630 sgd_solver.cpp:105] Iteration 324, lr = 0.00990828 +I0407 22:26:32.948916 32630 solver.cpp:218] Iteration 336 (2.42878 iter/s, 4.94075s/12 iters), loss = 5.15933 +I0407 22:26:32.948954 32630 solver.cpp:237] Train net output #0: loss = 5.15933 (* 1 = 5.15933 loss) +I0407 22:26:32.948962 32630 sgd_solver.cpp:105] Iteration 336, lr = 0.0099072 +I0407 22:26:37.857434 32630 solver.cpp:218] Iteration 348 (2.44476 iter/s, 4.90845s/12 iters), loss = 5.15098 +I0407 22:26:37.857473 32630 solver.cpp:237] Train net output #0: loss = 5.15098 (* 1 = 5.15098 loss) +I0407 22:26:37.857481 32630 sgd_solver.cpp:105] Iteration 348, lr = 0.00990611 +I0407 22:26:42.816913 32630 solver.cpp:218] Iteration 360 (2.41964 iter/s, 4.95941s/12 iters), loss = 5.04957 +I0407 22:26:42.816958 32630 solver.cpp:237] Train net output #0: loss = 5.04957 (* 1 = 5.04957 loss) +I0407 22:26:42.816967 32630 sgd_solver.cpp:105] Iteration 360, lr = 0.00990501 +I0407 22:26:47.743891 32630 solver.cpp:218] Iteration 372 (2.43561 iter/s, 4.9269s/12 iters), loss = 5.23546 +I0407 22:26:47.744030 32630 solver.cpp:237] Train net output #0: loss = 5.23546 (* 1 = 5.23546 loss) +I0407 22:26:47.744040 32630 sgd_solver.cpp:105] Iteration 372, lr = 0.0099039 +I0407 22:26:52.710860 32630 solver.cpp:218] Iteration 384 (2.41604 iter/s, 4.96681s/12 iters), loss = 5.13032 +I0407 22:26:52.710892 32630 solver.cpp:237] Train net output #0: loss = 5.13032 (* 1 = 5.13032 loss) +I0407 22:26:52.710899 32630 sgd_solver.cpp:105] Iteration 384, lr = 0.00990277 +I0407 22:26:57.659742 32630 solver.cpp:218] Iteration 396 (2.42482 iter/s, 4.94882s/12 iters), loss = 5.20701 +I0407 22:26:57.659780 32630 solver.cpp:237] Train net output #0: loss = 5.20701 (* 1 = 5.20701 loss) +I0407 22:26:57.659788 32630 sgd_solver.cpp:105] Iteration 396, lr = 0.00990163 +I0407 22:27:00.738824 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:02.111680 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 22:27:05.180388 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 22:27:07.537379 32630 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 22:27:07.537397 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:27:12.044344 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:12.252913 32630 solver.cpp:397] Test net output #0: accuracy = 0.0159314 +I0407 22:27:12.252961 32630 solver.cpp:397] Test net output #1: loss = 5.09571 (* 1 = 5.09571 loss) +I0407 22:27:12.349915 32630 solver.cpp:218] Iteration 408 (0.816878 iter/s, 14.6901s/12 iters), loss = 5.10496 +I0407 22:27:12.349961 32630 solver.cpp:237] Train net output #0: loss = 5.10496 (* 1 = 5.10496 loss) +I0407 22:27:12.349968 32630 sgd_solver.cpp:105] Iteration 408, lr = 0.00990048 +I0407 22:27:16.477254 32630 solver.cpp:218] Iteration 420 (2.90749 iter/s, 4.12727s/12 iters), loss = 4.99653 +I0407 22:27:16.477296 32630 solver.cpp:237] Train net output #0: loss = 4.99653 (* 1 = 4.99653 loss) +I0407 22:27:16.477304 32630 sgd_solver.cpp:105] Iteration 420, lr = 0.00989932 +I0407 22:27:21.432039 32630 solver.cpp:218] Iteration 432 (2.42194 iter/s, 4.95471s/12 iters), loss = 5.18675 +I0407 22:27:21.432190 32630 solver.cpp:237] Train net output #0: loss = 5.18675 (* 1 = 5.18675 loss) +I0407 22:27:21.432199 32630 sgd_solver.cpp:105] Iteration 432, lr = 0.00989814 +I0407 22:27:26.383031 32630 solver.cpp:218] Iteration 444 (2.42384 iter/s, 4.95081s/12 iters), loss = 4.99221 +I0407 22:27:26.383074 32630 solver.cpp:237] Train net output #0: loss = 4.99221 (* 1 = 4.99221 loss) +I0407 22:27:26.383082 32630 sgd_solver.cpp:105] Iteration 444, lr = 0.00989694 +I0407 22:27:31.350642 32630 solver.cpp:218] Iteration 456 (2.41568 iter/s, 4.96754s/12 iters), loss = 5.02981 +I0407 22:27:31.350689 32630 solver.cpp:237] Train net output #0: loss = 5.02981 (* 1 = 5.02981 loss) +I0407 22:27:31.350698 32630 sgd_solver.cpp:105] Iteration 456, lr = 0.00989574 +I0407 22:27:36.305060 32630 solver.cpp:218] Iteration 468 (2.42212 iter/s, 4.95434s/12 iters), loss = 5.17422 +I0407 22:27:36.305101 32630 solver.cpp:237] Train net output #0: loss = 5.17422 (* 1 = 5.17422 loss) +I0407 22:27:36.305109 32630 sgd_solver.cpp:105] Iteration 468, lr = 0.00989452 +I0407 22:27:41.221860 32630 solver.cpp:218] Iteration 480 (2.44065 iter/s, 4.91673s/12 iters), loss = 5.15422 +I0407 22:27:41.221906 32630 solver.cpp:237] Train net output #0: loss = 5.15422 (* 1 = 5.15422 loss) +I0407 22:27:41.221915 32630 sgd_solver.cpp:105] Iteration 480, lr = 0.00989328 +I0407 22:27:46.205981 32630 solver.cpp:218] Iteration 492 (2.40769 iter/s, 4.98404s/12 iters), loss = 5.06232 +I0407 22:27:46.206040 32630 solver.cpp:237] Train net output #0: loss = 5.06232 (* 1 = 5.06232 loss) +I0407 22:27:46.206053 32630 sgd_solver.cpp:105] Iteration 492, lr = 0.00989203 +I0407 22:27:51.099326 32630 solver.cpp:218] Iteration 504 (2.45235 iter/s, 4.89326s/12 iters), loss = 5.11733 +I0407 22:27:51.099370 32630 solver.cpp:237] Train net output #0: loss = 5.11733 (* 1 = 5.11733 loss) +I0407 22:27:51.099378 32630 sgd_solver.cpp:105] Iteration 504, lr = 0.00989077 +I0407 22:27:51.337069 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:53.085551 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 22:27:57.130225 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 22:28:00.425987 32630 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 22:28:00.426003 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:28:04.774462 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:05.015400 32630 solver.cpp:397] Test net output #0: accuracy = 0.0214461 +I0407 22:28:05.015448 32630 solver.cpp:397] Test net output #1: loss = 5.042 (* 1 = 5.042 loss) +I0407 22:28:06.795569 32630 solver.cpp:218] Iteration 516 (0.764519 iter/s, 15.6961s/12 iters), loss = 5.07318 +I0407 22:28:06.795615 32630 solver.cpp:237] Train net output #0: loss = 5.07318 (* 1 = 5.07318 loss) +I0407 22:28:06.795624 32630 sgd_solver.cpp:105] Iteration 516, lr = 0.00988949 +I0407 22:28:11.773789 32630 solver.cpp:218] Iteration 528 (2.41054 iter/s, 4.97814s/12 iters), loss = 5.04808 +I0407 22:28:11.773834 32630 solver.cpp:237] Train net output #0: loss = 5.04808 (* 1 = 5.04808 loss) +I0407 22:28:11.773842 32630 sgd_solver.cpp:105] Iteration 528, lr = 0.0098882 +I0407 22:28:16.690349 32630 solver.cpp:218] Iteration 540 (2.44077 iter/s, 4.91649s/12 iters), loss = 4.97116 +I0407 22:28:16.690392 32630 solver.cpp:237] Train net output #0: loss = 4.97116 (* 1 = 4.97116 loss) +I0407 22:28:16.690400 32630 sgd_solver.cpp:105] Iteration 540, lr = 0.00988689 +I0407 22:28:21.667021 32630 solver.cpp:218] Iteration 552 (2.41129 iter/s, 4.97659s/12 iters), loss = 4.93715 +I0407 22:28:21.667078 32630 solver.cpp:237] Train net output #0: loss = 4.93715 (* 1 = 4.93715 loss) +I0407 22:28:21.667093 32630 sgd_solver.cpp:105] Iteration 552, lr = 0.00988556 +I0407 22:28:26.640506 32630 solver.cpp:218] Iteration 564 (2.41283 iter/s, 4.97341s/12 iters), loss = 5.05124 +I0407 22:28:26.640627 32630 solver.cpp:237] Train net output #0: loss = 5.05124 (* 1 = 5.05124 loss) +I0407 22:28:26.640636 32630 sgd_solver.cpp:105] Iteration 564, lr = 0.00988423 +I0407 22:28:31.573940 32630 solver.cpp:218] Iteration 576 (2.43245 iter/s, 4.93329s/12 iters), loss = 5.10147 +I0407 22:28:31.573978 32630 solver.cpp:237] Train net output #0: loss = 5.10147 (* 1 = 5.10147 loss) +I0407 22:28:31.573987 32630 sgd_solver.cpp:105] Iteration 576, lr = 0.00988287 +I0407 22:28:36.548557 32630 solver.cpp:218] Iteration 588 (2.41228 iter/s, 4.97455s/12 iters), loss = 5.03908 +I0407 22:28:36.548594 32630 solver.cpp:237] Train net output #0: loss = 5.03908 (* 1 = 5.03908 loss) +I0407 22:28:36.548604 32630 sgd_solver.cpp:105] Iteration 588, lr = 0.0098815 +I0407 22:28:41.515055 32630 solver.cpp:218] Iteration 600 (2.41622 iter/s, 4.96643s/12 iters), loss = 5.00796 +I0407 22:28:41.515096 32630 solver.cpp:237] Train net output #0: loss = 5.00796 (* 1 = 5.00796 loss) +I0407 22:28:41.515105 32630 sgd_solver.cpp:105] Iteration 600, lr = 0.00988012 +I0407 22:28:43.864809 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:45.967629 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 22:28:50.011026 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 22:28:52.644457 32630 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 22:28:52.644476 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:28:57.123625 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:57.414582 32630 solver.cpp:397] Test net output #0: accuracy = 0.0269608 +I0407 22:28:57.414624 32630 solver.cpp:397] Test net output #1: loss = 4.9833 (* 1 = 4.9833 loss) +I0407 22:28:57.509948 32630 solver.cpp:218] Iteration 612 (0.750244 iter/s, 15.9948s/12 iters), loss = 4.90642 +I0407 22:28:57.509990 32630 solver.cpp:237] Train net output #0: loss = 4.90642 (* 1 = 4.90642 loss) +I0407 22:28:57.509999 32630 sgd_solver.cpp:105] Iteration 612, lr = 0.00987872 +I0407 22:29:01.647078 32630 solver.cpp:218] Iteration 624 (2.90061 iter/s, 4.13706s/12 iters), loss = 5.07496 +I0407 22:29:01.647116 32630 solver.cpp:237] Train net output #0: loss = 5.07496 (* 1 = 5.07496 loss) +I0407 22:29:01.647125 32630 sgd_solver.cpp:105] Iteration 624, lr = 0.0098773 +I0407 22:29:06.573174 32630 solver.cpp:218] Iteration 636 (2.43604 iter/s, 4.92603s/12 iters), loss = 4.98338 +I0407 22:29:06.573227 32630 solver.cpp:237] Train net output #0: loss = 4.98338 (* 1 = 4.98338 loss) +I0407 22:29:06.573235 32630 sgd_solver.cpp:105] Iteration 636, lr = 0.00987586 +I0407 22:29:11.527595 32630 solver.cpp:218] Iteration 648 (2.42212 iter/s, 4.95434s/12 iters), loss = 5.03096 +I0407 22:29:11.527633 32630 solver.cpp:237] Train net output #0: loss = 5.03096 (* 1 = 5.03096 loss) +I0407 22:29:11.527642 32630 sgd_solver.cpp:105] Iteration 648, lr = 0.00987441 +I0407 22:29:16.507794 32630 solver.cpp:218] Iteration 660 (2.40957 iter/s, 4.98014s/12 iters), loss = 4.94279 +I0407 22:29:16.507829 32630 solver.cpp:237] Train net output #0: loss = 4.94279 (* 1 = 4.94279 loss) +I0407 22:29:16.507838 32630 sgd_solver.cpp:105] Iteration 660, lr = 0.00987295 +I0407 22:29:21.453572 32630 solver.cpp:218] Iteration 672 (2.42634 iter/s, 4.94572s/12 iters), loss = 5.08332 +I0407 22:29:21.453610 32630 solver.cpp:237] Train net output #0: loss = 5.08332 (* 1 = 5.08332 loss) +I0407 22:29:21.453619 32630 sgd_solver.cpp:105] Iteration 672, lr = 0.00987146 +I0407 22:29:26.403364 32630 solver.cpp:218] Iteration 684 (2.42438 iter/s, 4.94972s/12 iters), loss = 4.92193 +I0407 22:29:26.403404 32630 solver.cpp:237] Train net output #0: loss = 4.92193 (* 1 = 4.92193 loss) +I0407 22:29:26.403412 32630 sgd_solver.cpp:105] Iteration 684, lr = 0.00986996 +I0407 22:29:27.179772 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:29:31.385473 32630 solver.cpp:218] Iteration 696 (2.40865 iter/s, 4.98204s/12 iters), loss = 4.88782 +I0407 22:29:31.385514 32630 solver.cpp:237] Train net output #0: loss = 4.88782 (* 1 = 4.88782 loss) +I0407 22:29:31.385521 32630 sgd_solver.cpp:105] Iteration 696, lr = 0.00986844 +I0407 22:29:35.925900 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:36.296869 32630 solver.cpp:218] Iteration 708 (2.44333 iter/s, 4.91132s/12 iters), loss = 5.00372 +I0407 22:29:36.296914 32630 solver.cpp:237] Train net output #0: loss = 5.00372 (* 1 = 5.00372 loss) +I0407 22:29:36.296922 32630 sgd_solver.cpp:105] Iteration 708, lr = 0.00986691 +I0407 22:29:38.285908 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 22:29:43.232342 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 22:29:45.878559 32630 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 22:29:45.878576 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:29:50.332115 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:50.678540 32630 solver.cpp:397] Test net output #0: accuracy = 0.0324755 +I0407 22:29:50.678570 32630 solver.cpp:397] Test net output #1: loss = 4.89545 (* 1 = 4.89545 loss) +I0407 22:29:52.485925 32630 solver.cpp:218] Iteration 720 (0.741246 iter/s, 16.189s/12 iters), loss = 4.87644 +I0407 22:29:52.485963 32630 solver.cpp:237] Train net output #0: loss = 4.87644 (* 1 = 4.87644 loss) +I0407 22:29:52.485971 32630 sgd_solver.cpp:105] Iteration 720, lr = 0.00986535 +I0407 22:29:57.435667 32630 solver.cpp:218] Iteration 732 (2.4244 iter/s, 4.94968s/12 iters), loss = 4.83924 +I0407 22:29:57.435793 32630 solver.cpp:237] Train net output #0: loss = 4.83924 (* 1 = 4.83924 loss) +I0407 22:29:57.435802 32630 sgd_solver.cpp:105] Iteration 732, lr = 0.00986378 +I0407 22:30:02.396407 32630 solver.cpp:218] Iteration 744 (2.41907 iter/s, 4.96059s/12 iters), loss = 4.8695 +I0407 22:30:02.396446 32630 solver.cpp:237] Train net output #0: loss = 4.8695 (* 1 = 4.8695 loss) +I0407 22:30:02.396456 32630 sgd_solver.cpp:105] Iteration 744, lr = 0.00986219 +I0407 22:30:07.324587 32630 solver.cpp:218] Iteration 756 (2.43501 iter/s, 4.92812s/12 iters), loss = 4.71158 +I0407 22:30:07.324626 32630 solver.cpp:237] Train net output #0: loss = 4.71158 (* 1 = 4.71158 loss) +I0407 22:30:07.324635 32630 sgd_solver.cpp:105] Iteration 756, lr = 0.00986058 +I0407 22:30:12.279808 32630 solver.cpp:218] Iteration 768 (2.42172 iter/s, 4.95516s/12 iters), loss = 4.76272 +I0407 22:30:12.279844 32630 solver.cpp:237] Train net output #0: loss = 4.76272 (* 1 = 4.76272 loss) +I0407 22:30:12.279852 32630 sgd_solver.cpp:105] Iteration 768, lr = 0.00985895 +I0407 22:30:17.233062 32630 solver.cpp:218] Iteration 780 (2.42269 iter/s, 4.95318s/12 iters), loss = 4.73001 +I0407 22:30:17.233108 32630 solver.cpp:237] Train net output #0: loss = 4.73001 (* 1 = 4.73001 loss) +I0407 22:30:17.233114 32630 sgd_solver.cpp:105] Iteration 780, lr = 0.00985731 +I0407 22:30:22.182235 32630 solver.cpp:218] Iteration 792 (2.42468 iter/s, 4.9491s/12 iters), loss = 4.95322 +I0407 22:30:22.182274 32630 solver.cpp:237] Train net output #0: loss = 4.95322 (* 1 = 4.95322 loss) +I0407 22:30:22.182282 32630 sgd_solver.cpp:105] Iteration 792, lr = 0.00985565 +I0407 22:30:27.148242 32630 solver.cpp:218] Iteration 804 (2.41646 iter/s, 4.96595s/12 iters), loss = 4.82918 +I0407 22:30:27.148274 32630 solver.cpp:237] Train net output #0: loss = 4.82918 (* 1 = 4.82918 loss) +I0407 22:30:27.148281 32630 sgd_solver.cpp:105] Iteration 804, lr = 0.00985396 +I0407 22:30:28.856561 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:31.587872 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 22:30:34.671656 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 22:30:37.040253 32630 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 22:30:37.040272 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:30:41.471899 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:41.861286 32630 solver.cpp:397] Test net output #0: accuracy = 0.0367647 +I0407 22:30:41.861328 32630 solver.cpp:397] Test net output #1: loss = 4.79705 (* 1 = 4.79705 loss) +I0407 22:30:41.958242 32630 solver.cpp:218] Iteration 816 (0.810268 iter/s, 14.8099s/12 iters), loss = 4.66458 +I0407 22:30:41.958287 32630 solver.cpp:237] Train net output #0: loss = 4.66458 (* 1 = 4.66458 loss) +I0407 22:30:41.958294 32630 sgd_solver.cpp:105] Iteration 816, lr = 0.00985226 +I0407 22:30:46.096824 32630 solver.cpp:218] Iteration 828 (2.89959 iter/s, 4.13852s/12 iters), loss = 4.75391 +I0407 22:30:46.096861 32630 solver.cpp:237] Train net output #0: loss = 4.75391 (* 1 = 4.75391 loss) +I0407 22:30:46.096869 32630 sgd_solver.cpp:105] Iteration 828, lr = 0.00985054 +I0407 22:30:51.050282 32630 solver.cpp:218] Iteration 840 (2.42258 iter/s, 4.9534s/12 iters), loss = 4.68392 +I0407 22:30:51.050318 32630 solver.cpp:237] Train net output #0: loss = 4.68392 (* 1 = 4.68392 loss) +I0407 22:30:51.050325 32630 sgd_solver.cpp:105] Iteration 840, lr = 0.00984879 +I0407 22:30:55.963047 32630 solver.cpp:218] Iteration 852 (2.44265 iter/s, 4.9127s/12 iters), loss = 4.72274 +I0407 22:30:55.963083 32630 solver.cpp:237] Train net output #0: loss = 4.72274 (* 1 = 4.72274 loss) +I0407 22:30:55.963090 32630 sgd_solver.cpp:105] Iteration 852, lr = 0.00984703 +I0407 22:31:00.926002 32630 solver.cpp:218] Iteration 864 (2.41795 iter/s, 4.96289s/12 iters), loss = 4.62525 +I0407 22:31:00.926124 32630 solver.cpp:237] Train net output #0: loss = 4.62525 (* 1 = 4.62525 loss) +I0407 22:31:00.926133 32630 sgd_solver.cpp:105] Iteration 864, lr = 0.00984525 +I0407 22:31:05.865512 32630 solver.cpp:218] Iteration 876 (2.42947 iter/s, 4.93936s/12 iters), loss = 4.73948 +I0407 22:31:05.865558 32630 solver.cpp:237] Train net output #0: loss = 4.73948 (* 1 = 4.73948 loss) +I0407 22:31:05.865566 32630 sgd_solver.cpp:105] Iteration 876, lr = 0.00984345 +I0407 22:31:10.813848 32630 solver.cpp:218] Iteration 888 (2.42509 iter/s, 4.94827s/12 iters), loss = 4.78858 +I0407 22:31:10.813879 32630 solver.cpp:237] Train net output #0: loss = 4.78858 (* 1 = 4.78858 loss) +I0407 22:31:10.813886 32630 sgd_solver.cpp:105] Iteration 888, lr = 0.00984162 +I0407 22:31:15.748224 32630 solver.cpp:218] Iteration 900 (2.43195 iter/s, 4.93432s/12 iters), loss = 4.82479 +I0407 22:31:15.748260 32630 solver.cpp:237] Train net output #0: loss = 4.82479 (* 1 = 4.82479 loss) +I0407 22:31:15.748267 32630 sgd_solver.cpp:105] Iteration 900, lr = 0.00983978 +I0407 22:31:19.601855 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:20.686017 32630 solver.cpp:218] Iteration 912 (2.43027 iter/s, 4.93773s/12 iters), loss = 4.6406 +I0407 22:31:20.686051 32630 solver.cpp:237] Train net output #0: loss = 4.6406 (* 1 = 4.6406 loss) +I0407 22:31:20.686058 32630 sgd_solver.cpp:105] Iteration 912, lr = 0.00983792 +I0407 22:31:22.685317 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 22:31:25.760833 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 22:31:28.119572 32630 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 22:31:28.119590 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:31:32.283607 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:32.688292 32630 solver.cpp:397] Test net output #0: accuracy = 0.0435049 +I0407 22:31:32.688334 32630 solver.cpp:397] Test net output #1: loss = 4.66447 (* 1 = 4.66447 loss) +I0407 22:31:34.527607 32630 solver.cpp:218] Iteration 924 (0.866958 iter/s, 13.8415s/12 iters), loss = 4.57701 +I0407 22:31:34.527648 32630 solver.cpp:237] Train net output #0: loss = 4.57701 (* 1 = 4.57701 loss) +I0407 22:31:34.527655 32630 sgd_solver.cpp:105] Iteration 924, lr = 0.00983603 +I0407 22:31:39.528481 32630 solver.cpp:218] Iteration 936 (2.39961 iter/s, 5.00081s/12 iters), loss = 4.55114 +I0407 22:31:39.528512 32630 solver.cpp:237] Train net output #0: loss = 4.55114 (* 1 = 4.55114 loss) +I0407 22:31:39.528518 32630 sgd_solver.cpp:105] Iteration 936, lr = 0.00983412 +I0407 22:31:44.445807 32630 solver.cpp:218] Iteration 948 (2.44038 iter/s, 4.91727s/12 iters), loss = 4.69513 +I0407 22:31:44.445842 32630 solver.cpp:237] Train net output #0: loss = 4.69513 (* 1 = 4.69513 loss) +I0407 22:31:44.445847 32630 sgd_solver.cpp:105] Iteration 948, lr = 0.00983219 +I0407 22:31:49.403265 32630 solver.cpp:218] Iteration 960 (2.42063 iter/s, 4.9574s/12 iters), loss = 4.65633 +I0407 22:31:49.403297 32630 solver.cpp:237] Train net output #0: loss = 4.65633 (* 1 = 4.65633 loss) +I0407 22:31:49.403303 32630 sgd_solver.cpp:105] Iteration 960, lr = 0.00983024 +I0407 22:31:54.320956 32630 solver.cpp:218] Iteration 972 (2.4402 iter/s, 4.91763s/12 iters), loss = 4.73484 +I0407 22:31:54.320992 32630 solver.cpp:237] Train net output #0: loss = 4.73484 (* 1 = 4.73484 loss) +I0407 22:31:54.321000 32630 sgd_solver.cpp:105] Iteration 972, lr = 0.00982826 +I0407 22:31:59.275014 32630 solver.cpp:218] Iteration 984 (2.42229 iter/s, 4.954s/12 iters), loss = 4.49626 +I0407 22:31:59.275049 32630 solver.cpp:237] Train net output #0: loss = 4.49626 (* 1 = 4.49626 loss) +I0407 22:31:59.275056 32630 sgd_solver.cpp:105] Iteration 984, lr = 0.00982627 +I0407 22:32:04.207350 32630 solver.cpp:218] Iteration 996 (2.43296 iter/s, 4.93227s/12 iters), loss = 4.48456 +I0407 22:32:04.207481 32630 solver.cpp:237] Train net output #0: loss = 4.48456 (* 1 = 4.48456 loss) +I0407 22:32:04.207490 32630 sgd_solver.cpp:105] Iteration 996, lr = 0.00982425 +I0407 22:32:09.189595 32630 solver.cpp:218] Iteration 1008 (2.40863 iter/s, 4.98209s/12 iters), loss = 4.2377 +I0407 22:32:09.189636 32630 solver.cpp:237] Train net output #0: loss = 4.2377 (* 1 = 4.2377 loss) +I0407 22:32:09.189644 32630 sgd_solver.cpp:105] Iteration 1008, lr = 0.0098222 +I0407 22:32:10.172454 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:13.635721 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 22:32:16.717221 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 22:32:19.076360 32630 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 22:32:19.076377 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:32:23.382781 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:23.858155 32630 solver.cpp:397] Test net output #0: accuracy = 0.057598 +I0407 22:32:23.858202 32630 solver.cpp:397] Test net output #1: loss = 4.54605 (* 1 = 4.54605 loss) +I0407 22:32:23.955083 32630 solver.cpp:218] Iteration 1020 (0.812711 iter/s, 14.7654s/12 iters), loss = 4.60759 +I0407 22:32:23.955132 32630 solver.cpp:237] Train net output #0: loss = 4.60759 (* 1 = 4.60759 loss) +I0407 22:32:23.955140 32630 sgd_solver.cpp:105] Iteration 1020, lr = 0.00982014 +I0407 22:32:28.146368 32630 solver.cpp:218] Iteration 1032 (2.86314 iter/s, 4.19121s/12 iters), loss = 4.29653 +I0407 22:32:28.146418 32630 solver.cpp:237] Train net output #0: loss = 4.29653 (* 1 = 4.29653 loss) +I0407 22:32:28.146427 32630 sgd_solver.cpp:105] Iteration 1032, lr = 0.00981805 +I0407 22:32:33.126966 32630 solver.cpp:218] Iteration 1044 (2.40939 iter/s, 4.98052s/12 iters), loss = 4.42217 +I0407 22:32:33.127010 32630 solver.cpp:237] Train net output #0: loss = 4.42217 (* 1 = 4.42217 loss) +I0407 22:32:33.127018 32630 sgd_solver.cpp:105] Iteration 1044, lr = 0.00981593 +I0407 22:32:38.115330 32630 solver.cpp:218] Iteration 1056 (2.40563 iter/s, 4.98829s/12 iters), loss = 4.36267 +I0407 22:32:38.115473 32630 solver.cpp:237] Train net output #0: loss = 4.36267 (* 1 = 4.36267 loss) +I0407 22:32:38.115483 32630 sgd_solver.cpp:105] Iteration 1056, lr = 0.0098138 +I0407 22:32:43.101743 32630 solver.cpp:218] Iteration 1068 (2.40662 iter/s, 4.98625s/12 iters), loss = 4.23802 +I0407 22:32:43.101779 32630 solver.cpp:237] Train net output #0: loss = 4.23802 (* 1 = 4.23802 loss) +I0407 22:32:43.101788 32630 sgd_solver.cpp:105] Iteration 1068, lr = 0.00981163 +I0407 22:32:48.195793 32630 solver.cpp:218] Iteration 1080 (2.35572 iter/s, 5.09398s/12 iters), loss = 4.51089 +I0407 22:32:48.195839 32630 solver.cpp:237] Train net output #0: loss = 4.51089 (* 1 = 4.51089 loss) +I0407 22:32:48.195847 32630 sgd_solver.cpp:105] Iteration 1080, lr = 0.00980945 +I0407 22:32:53.301321 32630 solver.cpp:218] Iteration 1092 (2.35043 iter/s, 5.10546s/12 iters), loss = 4.2764 +I0407 22:32:53.301365 32630 solver.cpp:237] Train net output #0: loss = 4.2764 (* 1 = 4.2764 loss) +I0407 22:32:53.301373 32630 sgd_solver.cpp:105] Iteration 1092, lr = 0.00980724 +I0407 22:32:58.251711 32630 solver.cpp:218] Iteration 1104 (2.42408 iter/s, 4.95032s/12 iters), loss = 4.58349 +I0407 22:32:58.251747 32630 solver.cpp:237] Train net output #0: loss = 4.58349 (* 1 = 4.58349 loss) +I0407 22:32:58.251755 32630 sgd_solver.cpp:105] Iteration 1104, lr = 0.009805 +I0407 22:33:01.352502 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:03.179216 32630 solver.cpp:218] Iteration 1116 (2.43534 iter/s, 4.92744s/12 iters), loss = 4.30696 +I0407 22:33:03.179256 32630 solver.cpp:237] Train net output #0: loss = 4.30696 (* 1 = 4.30696 loss) +I0407 22:33:03.179263 32630 sgd_solver.cpp:105] Iteration 1116, lr = 0.00980274 +I0407 22:33:05.179874 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 22:33:08.296227 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 22:33:10.663409 32630 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 22:33:10.663426 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:33:14.875491 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:15.383787 32630 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0407 22:33:15.383834 32630 solver.cpp:397] Test net output #1: loss = 4.29891 (* 1 = 4.29891 loss) +I0407 22:33:17.185256 32630 solver.cpp:218] Iteration 1128 (0.856779 iter/s, 14.006s/12 iters), loss = 4.17549 +I0407 22:33:17.185297 32630 solver.cpp:237] Train net output #0: loss = 4.17549 (* 1 = 4.17549 loss) +I0407 22:33:17.185303 32630 sgd_solver.cpp:105] Iteration 1128, lr = 0.00980045 +I0407 22:33:22.049448 32630 solver.cpp:218] Iteration 1140 (2.46704 iter/s, 4.86412s/12 iters), loss = 4.37727 +I0407 22:33:22.049490 32630 solver.cpp:237] Train net output #0: loss = 4.37727 (* 1 = 4.37727 loss) +I0407 22:33:22.049499 32630 sgd_solver.cpp:105] Iteration 1140, lr = 0.00979814 +I0407 22:33:26.908551 32630 solver.cpp:218] Iteration 1152 (2.46963 iter/s, 4.85903s/12 iters), loss = 4.15014 +I0407 22:33:26.908596 32630 solver.cpp:237] Train net output #0: loss = 4.15014 (* 1 = 4.15014 loss) +I0407 22:33:26.908604 32630 sgd_solver.cpp:105] Iteration 1152, lr = 0.0097958 +I0407 22:33:31.881536 32630 solver.cpp:218] Iteration 1164 (2.41307 iter/s, 4.97291s/12 iters), loss = 4.12757 +I0407 22:33:31.881580 32630 solver.cpp:237] Train net output #0: loss = 4.12757 (* 1 = 4.12757 loss) +I0407 22:33:31.881589 32630 sgd_solver.cpp:105] Iteration 1164, lr = 0.00979343 +I0407 22:33:36.814168 32630 solver.cpp:218] Iteration 1176 (2.43281 iter/s, 4.93256s/12 iters), loss = 4.28083 +I0407 22:33:36.814211 32630 solver.cpp:237] Train net output #0: loss = 4.28083 (* 1 = 4.28083 loss) +I0407 22:33:36.814219 32630 sgd_solver.cpp:105] Iteration 1176, lr = 0.00979104 +I0407 22:33:41.741133 32630 solver.cpp:218] Iteration 1188 (2.43561 iter/s, 4.92689s/12 iters), loss = 4.10831 +I0407 22:33:41.741298 32630 solver.cpp:237] Train net output #0: loss = 4.10831 (* 1 = 4.10831 loss) +I0407 22:33:41.741307 32630 sgd_solver.cpp:105] Iteration 1188, lr = 0.00978861 +I0407 22:33:46.712427 32630 solver.cpp:218] Iteration 1200 (2.41395 iter/s, 4.97111s/12 iters), loss = 4.23766 +I0407 22:33:46.712463 32630 solver.cpp:237] Train net output #0: loss = 4.23766 (* 1 = 4.23766 loss) +I0407 22:33:46.712471 32630 sgd_solver.cpp:105] Iteration 1200, lr = 0.00978617 +I0407 22:33:51.648252 32630 solver.cpp:218] Iteration 1212 (2.43124 iter/s, 4.93576s/12 iters), loss = 4.20473 +I0407 22:33:51.648293 32630 solver.cpp:237] Train net output #0: loss = 4.20473 (* 1 = 4.20473 loss) +I0407 22:33:51.648300 32630 sgd_solver.cpp:105] Iteration 1212, lr = 0.00978369 +I0407 22:33:51.914099 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:56.123358 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 22:33:59.199687 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 22:34:01.621654 32630 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 22:34:01.621671 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:34:05.782886 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:06.360237 32630 solver.cpp:397] Test net output #0: accuracy = 0.0906863 +I0407 22:34:06.360272 32630 solver.cpp:397] Test net output #1: loss = 4.16041 (* 1 = 4.16041 loss) +I0407 22:34:06.456871 32630 solver.cpp:218] Iteration 1224 (0.810344 iter/s, 14.8085s/12 iters), loss = 4.24456 +I0407 22:34:06.456914 32630 solver.cpp:237] Train net output #0: loss = 4.24456 (* 1 = 4.24456 loss) +I0407 22:34:06.456923 32630 sgd_solver.cpp:105] Iteration 1224, lr = 0.00978119 +I0407 22:34:10.575367 32630 solver.cpp:218] Iteration 1236 (2.91373 iter/s, 4.11843s/12 iters), loss = 4.09472 +I0407 22:34:10.575408 32630 solver.cpp:237] Train net output #0: loss = 4.09472 (* 1 = 4.09472 loss) +I0407 22:34:10.575417 32630 sgd_solver.cpp:105] Iteration 1236, lr = 0.00977866 +I0407 22:34:15.523221 32630 solver.cpp:218] Iteration 1248 (2.42533 iter/s, 4.94779s/12 iters), loss = 3.95764 +I0407 22:34:15.523345 32630 solver.cpp:237] Train net output #0: loss = 3.95764 (* 1 = 3.95764 loss) +I0407 22:34:15.523355 32630 sgd_solver.cpp:105] Iteration 1248, lr = 0.00977609 +I0407 22:34:20.460590 32630 solver.cpp:218] Iteration 1260 (2.43052 iter/s, 4.93722s/12 iters), loss = 3.8974 +I0407 22:34:20.460629 32630 solver.cpp:237] Train net output #0: loss = 3.8974 (* 1 = 3.8974 loss) +I0407 22:34:20.460637 32630 sgd_solver.cpp:105] Iteration 1260, lr = 0.0097735 +I0407 22:34:25.415231 32630 solver.cpp:218] Iteration 1272 (2.422 iter/s, 4.95458s/12 iters), loss = 3.86341 +I0407 22:34:25.415273 32630 solver.cpp:237] Train net output #0: loss = 3.86341 (* 1 = 3.86341 loss) +I0407 22:34:25.415282 32630 sgd_solver.cpp:105] Iteration 1272, lr = 0.00977089 +I0407 22:34:30.319756 32630 solver.cpp:218] Iteration 1284 (2.44676 iter/s, 4.90445s/12 iters), loss = 4.00851 +I0407 22:34:30.319799 32630 solver.cpp:237] Train net output #0: loss = 4.00851 (* 1 = 4.00851 loss) +I0407 22:34:30.319808 32630 sgd_solver.cpp:105] Iteration 1284, lr = 0.00976824 +I0407 22:34:35.284938 32630 solver.cpp:218] Iteration 1296 (2.41686 iter/s, 4.96511s/12 iters), loss = 4.21315 +I0407 22:34:35.284976 32630 solver.cpp:237] Train net output #0: loss = 4.21315 (* 1 = 4.21315 loss) +I0407 22:34:35.284983 32630 sgd_solver.cpp:105] Iteration 1296, lr = 0.00976556 +I0407 22:34:40.257035 32630 solver.cpp:218] Iteration 1308 (2.4135 iter/s, 4.97203s/12 iters), loss = 4.09765 +I0407 22:34:40.257081 32630 solver.cpp:237] Train net output #0: loss = 4.09765 (* 1 = 4.09765 loss) +I0407 22:34:40.257091 32630 sgd_solver.cpp:105] Iteration 1308, lr = 0.00976285 +I0407 22:34:42.728397 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:45.173231 32630 solver.cpp:218] Iteration 1320 (2.44095 iter/s, 4.91612s/12 iters), loss = 3.9907 +I0407 22:34:45.173274 32630 solver.cpp:237] Train net output #0: loss = 3.9907 (* 1 = 3.9907 loss) +I0407 22:34:45.173281 32630 sgd_solver.cpp:105] Iteration 1320, lr = 0.00976011 +I0407 22:34:47.180701 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 22:34:50.246990 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 22:34:52.607774 32630 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 22:34:52.607792 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:34:56.769423 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:57.389204 32630 solver.cpp:397] Test net output #0: accuracy = 0.109069 +I0407 22:34:57.389233 32630 solver.cpp:397] Test net output #1: loss = 4.02983 (* 1 = 4.02983 loss) +I0407 22:34:59.192781 32630 solver.cpp:218] Iteration 1332 (0.855953 iter/s, 14.0195s/12 iters), loss = 3.9059 +I0407 22:34:59.192818 32630 solver.cpp:237] Train net output #0: loss = 3.9059 (* 1 = 3.9059 loss) +I0407 22:34:59.192826 32630 sgd_solver.cpp:105] Iteration 1332, lr = 0.00975734 +I0407 22:35:04.116137 32630 solver.cpp:218] Iteration 1344 (2.43739 iter/s, 4.92329s/12 iters), loss = 3.86136 +I0407 22:35:04.116178 32630 solver.cpp:237] Train net output #0: loss = 3.86136 (* 1 = 3.86136 loss) +I0407 22:35:04.116185 32630 sgd_solver.cpp:105] Iteration 1344, lr = 0.00975454 +I0407 22:35:09.067528 32630 solver.cpp:218] Iteration 1356 (2.42359 iter/s, 4.95133s/12 iters), loss = 4.08586 +I0407 22:35:09.067564 32630 solver.cpp:237] Train net output #0: loss = 4.08586 (* 1 = 4.08586 loss) +I0407 22:35:09.067571 32630 sgd_solver.cpp:105] Iteration 1356, lr = 0.00975171 +I0407 22:35:14.039502 32630 solver.cpp:218] Iteration 1368 (2.41356 iter/s, 4.97191s/12 iters), loss = 3.91133 +I0407 22:35:14.039538 32630 solver.cpp:237] Train net output #0: loss = 3.91133 (* 1 = 3.91133 loss) +I0407 22:35:14.039546 32630 sgd_solver.cpp:105] Iteration 1368, lr = 0.00974884 +I0407 22:35:15.215027 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:35:18.963997 32630 solver.cpp:218] Iteration 1380 (2.43683 iter/s, 4.92443s/12 iters), loss = 4.05052 +I0407 22:35:18.964116 32630 solver.cpp:237] Train net output #0: loss = 4.05052 (* 1 = 4.05052 loss) +I0407 22:35:18.964124 32630 sgd_solver.cpp:105] Iteration 1380, lr = 0.00974595 +I0407 22:35:23.907119 32630 solver.cpp:218] Iteration 1392 (2.42768 iter/s, 4.94298s/12 iters), loss = 4.13553 +I0407 22:35:23.907155 32630 solver.cpp:237] Train net output #0: loss = 4.13553 (* 1 = 4.13553 loss) +I0407 22:35:23.907161 32630 sgd_solver.cpp:105] Iteration 1392, lr = 0.00974302 +I0407 22:35:28.874513 32630 solver.cpp:218] Iteration 1404 (2.41578 iter/s, 4.96733s/12 iters), loss = 3.92709 +I0407 22:35:28.874558 32630 solver.cpp:237] Train net output #0: loss = 3.92709 (* 1 = 3.92709 loss) +I0407 22:35:28.874567 32630 sgd_solver.cpp:105] Iteration 1404, lr = 0.00974005 +I0407 22:35:33.484171 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:33.825662 32630 solver.cpp:218] Iteration 1416 (2.42371 iter/s, 4.95108s/12 iters), loss = 3.86134 +I0407 22:35:33.825700 32630 solver.cpp:237] Train net output #0: loss = 3.86134 (* 1 = 3.86134 loss) +I0407 22:35:33.825708 32630 sgd_solver.cpp:105] Iteration 1416, lr = 0.00973706 +I0407 22:35:38.286581 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 22:35:42.488749 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 22:35:44.851284 32630 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 22:35:44.851301 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:35:48.952097 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:49.558961 32630 solver.cpp:397] Test net output #0: accuracy = 0.112745 +I0407 22:35:49.559124 32630 solver.cpp:397] Test net output #1: loss = 3.98051 (* 1 = 3.98051 loss) +I0407 22:35:49.655807 32630 solver.cpp:218] Iteration 1428 (0.758052 iter/s, 15.83s/12 iters), loss = 3.77237 +I0407 22:35:49.655845 32630 solver.cpp:237] Train net output #0: loss = 3.77237 (* 1 = 3.77237 loss) +I0407 22:35:49.655853 32630 sgd_solver.cpp:105] Iteration 1428, lr = 0.00973403 +I0407 22:35:53.719720 32630 solver.cpp:218] Iteration 1440 (2.95286 iter/s, 4.06385s/12 iters), loss = 3.74143 +I0407 22:35:53.719765 32630 solver.cpp:237] Train net output #0: loss = 3.74143 (* 1 = 3.74143 loss) +I0407 22:35:53.719774 32630 sgd_solver.cpp:105] Iteration 1440, lr = 0.00973097 +I0407 22:35:58.639462 32630 solver.cpp:218] Iteration 1452 (2.43919 iter/s, 4.91967s/12 iters), loss = 4.09729 +I0407 22:35:58.639504 32630 solver.cpp:237] Train net output #0: loss = 4.09729 (* 1 = 4.09729 loss) +I0407 22:35:58.639513 32630 sgd_solver.cpp:105] Iteration 1452, lr = 0.00972787 +I0407 22:36:03.604781 32630 solver.cpp:218] Iteration 1464 (2.4168 iter/s, 4.96525s/12 iters), loss = 3.58546 +I0407 22:36:03.604825 32630 solver.cpp:237] Train net output #0: loss = 3.58546 (* 1 = 3.58546 loss) +I0407 22:36:03.604832 32630 sgd_solver.cpp:105] Iteration 1464, lr = 0.00972474 +I0407 22:36:08.562065 32630 solver.cpp:218] Iteration 1476 (2.42071 iter/s, 4.95721s/12 iters), loss = 3.52757 +I0407 22:36:08.562101 32630 solver.cpp:237] Train net output #0: loss = 3.52757 (* 1 = 3.52757 loss) +I0407 22:36:08.562109 32630 sgd_solver.cpp:105] Iteration 1476, lr = 0.00972157 +I0407 22:36:13.489329 32630 solver.cpp:218] Iteration 1488 (2.43547 iter/s, 4.92719s/12 iters), loss = 3.88124 +I0407 22:36:13.489388 32630 solver.cpp:237] Train net output #0: loss = 3.88124 (* 1 = 3.88124 loss) +I0407 22:36:13.489399 32630 sgd_solver.cpp:105] Iteration 1488, lr = 0.00971837 +I0407 22:36:18.435710 32630 solver.cpp:218] Iteration 1500 (2.42605 iter/s, 4.9463s/12 iters), loss = 3.90182 +I0407 22:36:18.435745 32630 solver.cpp:237] Train net output #0: loss = 3.90182 (* 1 = 3.90182 loss) +I0407 22:36:18.435753 32630 sgd_solver.cpp:105] Iteration 1500, lr = 0.00971513 +I0407 22:36:23.356792 32630 solver.cpp:218] Iteration 1512 (2.43851 iter/s, 4.92103s/12 iters), loss = 3.69841 +I0407 22:36:23.356907 32630 solver.cpp:237] Train net output #0: loss = 3.69841 (* 1 = 3.69841 loss) +I0407 22:36:23.356916 32630 sgd_solver.cpp:105] Iteration 1512, lr = 0.00971186 +I0407 22:36:25.099973 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:28.238459 32630 solver.cpp:218] Iteration 1524 (2.45825 iter/s, 4.88153s/12 iters), loss = 3.43463 +I0407 22:36:28.238499 32630 solver.cpp:237] Train net output #0: loss = 3.43463 (* 1 = 3.43463 loss) +I0407 22:36:28.238507 32630 sgd_solver.cpp:105] Iteration 1524, lr = 0.00970855 +I0407 22:36:30.271250 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 22:36:34.070756 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 22:36:37.957499 32630 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 22:36:37.957517 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:36:42.052000 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:42.760319 32630 solver.cpp:397] Test net output #0: accuracy = 0.120098 +I0407 22:36:42.760365 32630 solver.cpp:397] Test net output #1: loss = 3.95919 (* 1 = 3.95919 loss) +I0407 22:36:44.580201 32630 solver.cpp:218] Iteration 1536 (0.73432 iter/s, 16.3417s/12 iters), loss = 3.54588 +I0407 22:36:44.580240 32630 solver.cpp:237] Train net output #0: loss = 3.54588 (* 1 = 3.54588 loss) +I0407 22:36:44.580246 32630 sgd_solver.cpp:105] Iteration 1536, lr = 0.0097052 +I0407 22:36:49.489341 32630 solver.cpp:218] Iteration 1548 (2.44445 iter/s, 4.90907s/12 iters), loss = 3.77016 +I0407 22:36:49.489384 32630 solver.cpp:237] Train net output #0: loss = 3.77016 (* 1 = 3.77016 loss) +I0407 22:36:49.489393 32630 sgd_solver.cpp:105] Iteration 1548, lr = 0.00970181 +I0407 22:36:54.435628 32630 solver.cpp:218] Iteration 1560 (2.4261 iter/s, 4.94622s/12 iters), loss = 3.5905 +I0407 22:36:54.435778 32630 solver.cpp:237] Train net output #0: loss = 3.5905 (* 1 = 3.5905 loss) +I0407 22:36:54.435788 32630 sgd_solver.cpp:105] Iteration 1560, lr = 0.00969839 +I0407 22:36:59.362934 32630 solver.cpp:218] Iteration 1572 (2.43549 iter/s, 4.92714s/12 iters), loss = 3.46125 +I0407 22:36:59.362969 32630 solver.cpp:237] Train net output #0: loss = 3.46125 (* 1 = 3.46125 loss) +I0407 22:36:59.362978 32630 sgd_solver.cpp:105] Iteration 1572, lr = 0.00969493 +I0407 22:37:04.336442 32630 solver.cpp:218] Iteration 1584 (2.41281 iter/s, 4.97345s/12 iters), loss = 3.70852 +I0407 22:37:04.336480 32630 solver.cpp:237] Train net output #0: loss = 3.70852 (* 1 = 3.70852 loss) +I0407 22:37:04.336488 32630 sgd_solver.cpp:105] Iteration 1584, lr = 0.00969143 +I0407 22:37:09.242467 32630 solver.cpp:218] Iteration 1596 (2.446 iter/s, 4.90596s/12 iters), loss = 3.48352 +I0407 22:37:09.242509 32630 solver.cpp:237] Train net output #0: loss = 3.48352 (* 1 = 3.48352 loss) +I0407 22:37:09.242517 32630 sgd_solver.cpp:105] Iteration 1596, lr = 0.00968789 +I0407 22:37:14.229894 32630 solver.cpp:218] Iteration 1608 (2.40608 iter/s, 4.98737s/12 iters), loss = 3.47608 +I0407 22:37:14.229928 32630 solver.cpp:237] Train net output #0: loss = 3.47608 (* 1 = 3.47608 loss) +I0407 22:37:14.229934 32630 sgd_solver.cpp:105] Iteration 1608, lr = 0.00968432 +I0407 22:37:18.169414 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:19.227159 32630 solver.cpp:218] Iteration 1620 (2.40134 iter/s, 4.99721s/12 iters), loss = 3.57487 +I0407 22:37:19.227195 32630 solver.cpp:237] Train net output #0: loss = 3.57487 (* 1 = 3.57487 loss) +I0407 22:37:19.227206 32630 sgd_solver.cpp:105] Iteration 1620, lr = 0.0096807 +I0407 22:37:23.701702 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 22:37:26.842382 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 22:37:30.822645 32630 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 22:37:30.822664 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:37:34.821251 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:35.511315 32630 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0407 22:37:35.511354 32630 solver.cpp:397] Test net output #1: loss = 3.8218 (* 1 = 3.8218 loss) +I0407 22:37:35.608111 32630 solver.cpp:218] Iteration 1632 (0.732562 iter/s, 16.3809s/12 iters), loss = 3.53794 +I0407 22:37:35.608155 32630 solver.cpp:237] Train net output #0: loss = 3.53794 (* 1 = 3.53794 loss) +I0407 22:37:35.608162 32630 sgd_solver.cpp:105] Iteration 1632, lr = 0.00967705 +I0407 22:37:39.740252 32630 solver.cpp:218] Iteration 1644 (2.90411 iter/s, 4.13208s/12 iters), loss = 3.26289 +I0407 22:37:39.740290 32630 solver.cpp:237] Train net output #0: loss = 3.26289 (* 1 = 3.26289 loss) +I0407 22:37:39.740298 32630 sgd_solver.cpp:105] Iteration 1644, lr = 0.00967335 +I0407 22:37:44.674691 32630 solver.cpp:218] Iteration 1656 (2.43192 iter/s, 4.93438s/12 iters), loss = 3.38381 +I0407 22:37:44.674726 32630 solver.cpp:237] Train net output #0: loss = 3.38381 (* 1 = 3.38381 loss) +I0407 22:37:44.674734 32630 sgd_solver.cpp:105] Iteration 1656, lr = 0.00966961 +I0407 22:37:49.612341 32630 solver.cpp:218] Iteration 1668 (2.43034 iter/s, 4.93759s/12 iters), loss = 3.52195 +I0407 22:37:49.612375 32630 solver.cpp:237] Train net output #0: loss = 3.52195 (* 1 = 3.52195 loss) +I0407 22:37:49.612382 32630 sgd_solver.cpp:105] Iteration 1668, lr = 0.00966583 +I0407 22:37:54.566047 32630 solver.cpp:218] Iteration 1680 (2.42246 iter/s, 4.95365s/12 iters), loss = 3.21694 +I0407 22:37:54.566084 32630 solver.cpp:237] Train net output #0: loss = 3.21694 (* 1 = 3.21694 loss) +I0407 22:37:54.566092 32630 sgd_solver.cpp:105] Iteration 1680, lr = 0.00966201 +I0407 22:37:59.486860 32630 solver.cpp:218] Iteration 1692 (2.43865 iter/s, 4.92075s/12 iters), loss = 3.18413 +I0407 22:37:59.486994 32630 solver.cpp:237] Train net output #0: loss = 3.18413 (* 1 = 3.18413 loss) +I0407 22:37:59.487004 32630 sgd_solver.cpp:105] Iteration 1692, lr = 0.00965815 +I0407 22:38:04.448376 32630 solver.cpp:218] Iteration 1704 (2.41869 iter/s, 4.96136s/12 iters), loss = 3.12174 +I0407 22:38:04.448421 32630 solver.cpp:237] Train net output #0: loss = 3.12174 (* 1 = 3.12174 loss) +I0407 22:38:04.448429 32630 sgd_solver.cpp:105] Iteration 1704, lr = 0.00965424 +I0407 22:38:09.343493 32630 solver.cpp:218] Iteration 1716 (2.45146 iter/s, 4.89504s/12 iters), loss = 2.97912 +I0407 22:38:09.343538 32630 solver.cpp:237] Train net output #0: loss = 2.97912 (* 1 = 2.97912 loss) +I0407 22:38:09.343546 32630 sgd_solver.cpp:105] Iteration 1716, lr = 0.00965029 +I0407 22:38:10.379976 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:14.324098 32630 solver.cpp:218] Iteration 1728 (2.40938 iter/s, 4.98053s/12 iters), loss = 3.51021 +I0407 22:38:14.324133 32630 solver.cpp:237] Train net output #0: loss = 3.51021 (* 1 = 3.51021 loss) +I0407 22:38:14.324141 32630 sgd_solver.cpp:105] Iteration 1728, lr = 0.0096463 +I0407 22:38:16.331110 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 22:38:19.569924 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 22:38:22.039463 32630 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 22:38:22.039484 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:38:26.029758 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:26.810990 32630 solver.cpp:397] Test net output #0: accuracy = 0.166667 +I0407 22:38:26.811034 32630 solver.cpp:397] Test net output #1: loss = 3.73198 (* 1 = 3.73198 loss) +I0407 22:38:28.615207 32630 solver.cpp:218] Iteration 1740 (0.839688 iter/s, 14.291s/12 iters), loss = 3.19454 +I0407 22:38:28.615247 32630 solver.cpp:237] Train net output #0: loss = 3.19454 (* 1 = 3.19454 loss) +I0407 22:38:28.615255 32630 sgd_solver.cpp:105] Iteration 1740, lr = 0.00964226 +I0407 22:38:33.511845 32630 solver.cpp:218] Iteration 1752 (2.45069 iter/s, 4.89657s/12 iters), loss = 3.07872 +I0407 22:38:33.511960 32630 solver.cpp:237] Train net output #0: loss = 3.07872 (* 1 = 3.07872 loss) +I0407 22:38:33.511968 32630 sgd_solver.cpp:105] Iteration 1752, lr = 0.00963818 +I0407 22:38:38.464370 32630 solver.cpp:218] Iteration 1764 (2.42308 iter/s, 4.95238s/12 iters), loss = 3.08041 +I0407 22:38:38.464412 32630 solver.cpp:237] Train net output #0: loss = 3.08041 (* 1 = 3.08041 loss) +I0407 22:38:38.464421 32630 sgd_solver.cpp:105] Iteration 1764, lr = 0.00963406 +I0407 22:38:43.379341 32630 solver.cpp:218] Iteration 1776 (2.44155 iter/s, 4.91491s/12 iters), loss = 2.9186 +I0407 22:38:43.379384 32630 solver.cpp:237] Train net output #0: loss = 2.9186 (* 1 = 2.9186 loss) +I0407 22:38:43.379391 32630 sgd_solver.cpp:105] Iteration 1776, lr = 0.00962989 +I0407 22:38:48.349622 32630 solver.cpp:218] Iteration 1788 (2.41438 iter/s, 4.97021s/12 iters), loss = 3.25673 +I0407 22:38:48.349664 32630 solver.cpp:237] Train net output #0: loss = 3.25673 (* 1 = 3.25673 loss) +I0407 22:38:48.349673 32630 sgd_solver.cpp:105] Iteration 1788, lr = 0.00962567 +I0407 22:38:53.279384 32630 solver.cpp:218] Iteration 1800 (2.43423 iter/s, 4.92969s/12 iters), loss = 2.92711 +I0407 22:38:53.279422 32630 solver.cpp:237] Train net output #0: loss = 2.92711 (* 1 = 2.92711 loss) +I0407 22:38:53.279430 32630 sgd_solver.cpp:105] Iteration 1800, lr = 0.00962141 +I0407 22:38:58.213575 32630 solver.cpp:218] Iteration 1812 (2.43204 iter/s, 4.93413s/12 iters), loss = 3.67551 +I0407 22:38:58.213615 32630 solver.cpp:237] Train net output #0: loss = 3.67551 (* 1 = 3.67551 loss) +I0407 22:38:58.213624 32630 sgd_solver.cpp:105] Iteration 1812, lr = 0.0096171 +I0407 22:39:01.288349 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:03.068991 32630 solver.cpp:218] Iteration 1824 (2.4715 iter/s, 4.85535s/12 iters), loss = 3.23985 +I0407 22:39:03.069036 32630 solver.cpp:237] Train net output #0: loss = 3.23985 (* 1 = 3.23985 loss) +I0407 22:39:03.069042 32630 sgd_solver.cpp:105] Iteration 1824, lr = 0.00961275 +I0407 22:39:07.567631 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 22:39:10.734463 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 22:39:14.289350 32630 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 22:39:14.289366 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:39:18.232897 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:19.065892 32630 solver.cpp:397] Test net output #0: accuracy = 0.183824 +I0407 22:39:19.065922 32630 solver.cpp:397] Test net output #1: loss = 3.63909 (* 1 = 3.63909 loss) +I0407 22:39:19.161469 32630 solver.cpp:218] Iteration 1836 (0.745694 iter/s, 16.0924s/12 iters), loss = 3.10921 +I0407 22:39:19.161510 32630 solver.cpp:237] Train net output #0: loss = 3.10921 (* 1 = 3.10921 loss) +I0407 22:39:19.161518 32630 sgd_solver.cpp:105] Iteration 1836, lr = 0.00960834 +I0407 22:39:23.294744 32630 solver.cpp:218] Iteration 1848 (2.90331 iter/s, 4.13321s/12 iters), loss = 3.09783 +I0407 22:39:23.294780 32630 solver.cpp:237] Train net output #0: loss = 3.09783 (* 1 = 3.09783 loss) +I0407 22:39:23.294787 32630 sgd_solver.cpp:105] Iteration 1848, lr = 0.00960389 +I0407 22:39:28.135136 32630 solver.cpp:218] Iteration 1860 (2.47917 iter/s, 4.84033s/12 iters), loss = 2.82753 +I0407 22:39:28.135174 32630 solver.cpp:237] Train net output #0: loss = 2.82753 (* 1 = 2.82753 loss) +I0407 22:39:28.135182 32630 sgd_solver.cpp:105] Iteration 1860, lr = 0.00959939 +I0407 22:39:33.072353 32630 solver.cpp:218] Iteration 1872 (2.43055 iter/s, 4.93715s/12 iters), loss = 3.0286 +I0407 22:39:33.072394 32630 solver.cpp:237] Train net output #0: loss = 3.0286 (* 1 = 3.0286 loss) +I0407 22:39:33.072402 32630 sgd_solver.cpp:105] Iteration 1872, lr = 0.00959484 +I0407 22:39:38.033691 32630 solver.cpp:218] Iteration 1884 (2.41873 iter/s, 4.96127s/12 iters), loss = 3.25917 +I0407 22:39:38.033838 32630 solver.cpp:237] Train net output #0: loss = 3.25917 (* 1 = 3.25917 loss) +I0407 22:39:38.033847 32630 sgd_solver.cpp:105] Iteration 1884, lr = 0.00959024 +I0407 22:39:42.950832 32630 solver.cpp:218] Iteration 1896 (2.44053 iter/s, 4.91697s/12 iters), loss = 3.18158 +I0407 22:39:42.950875 32630 solver.cpp:237] Train net output #0: loss = 3.18158 (* 1 = 3.18158 loss) +I0407 22:39:42.950882 32630 sgd_solver.cpp:105] Iteration 1896, lr = 0.0095856 +I0407 22:39:47.932015 32630 solver.cpp:218] Iteration 1908 (2.4091 iter/s, 4.98112s/12 iters), loss = 3.14333 +I0407 22:39:47.932051 32630 solver.cpp:237] Train net output #0: loss = 3.14333 (* 1 = 3.14333 loss) +I0407 22:39:47.932058 32630 sgd_solver.cpp:105] Iteration 1908, lr = 0.0095809 +I0407 22:39:52.876130 32630 solver.cpp:218] Iteration 1920 (2.42716 iter/s, 4.94406s/12 iters), loss = 3.03418 +I0407 22:39:52.876165 32630 solver.cpp:237] Train net output #0: loss = 3.03418 (* 1 = 3.03418 loss) +I0407 22:39:52.876173 32630 sgd_solver.cpp:105] Iteration 1920, lr = 0.00957615 +I0407 22:39:53.171228 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:57.783803 32630 solver.cpp:218] Iteration 1932 (2.44518 iter/s, 4.90762s/12 iters), loss = 3.38318 +I0407 22:39:57.783841 32630 solver.cpp:237] Train net output #0: loss = 3.38318 (* 1 = 3.38318 loss) +I0407 22:39:57.783849 32630 sgd_solver.cpp:105] Iteration 1932, lr = 0.00957135 +I0407 22:39:59.789041 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 22:40:03.655289 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 22:40:06.017980 32630 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 22:40:06.017997 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:40:09.940968 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:10.813423 32630 solver.cpp:397] Test net output #0: accuracy = 0.20098 +I0407 22:40:10.813467 32630 solver.cpp:397] Test net output #1: loss = 3.51773 (* 1 = 3.51773 loss) +I0407 22:40:12.622952 32630 solver.cpp:218] Iteration 1944 (0.808677 iter/s, 14.8391s/12 iters), loss = 3.07854 +I0407 22:40:12.622992 32630 solver.cpp:237] Train net output #0: loss = 3.07854 (* 1 = 3.07854 loss) +I0407 22:40:12.623000 32630 sgd_solver.cpp:105] Iteration 1944, lr = 0.00956649 +I0407 22:40:17.525207 32630 solver.cpp:218] Iteration 1956 (2.44789 iter/s, 4.90219s/12 iters), loss = 2.93089 +I0407 22:40:17.525244 32630 solver.cpp:237] Train net output #0: loss = 2.93089 (* 1 = 2.93089 loss) +I0407 22:40:17.525252 32630 sgd_solver.cpp:105] Iteration 1956, lr = 0.00956159 +I0407 22:40:22.498236 32630 solver.cpp:218] Iteration 1968 (2.41305 iter/s, 4.97297s/12 iters), loss = 2.7476 +I0407 22:40:22.498275 32630 solver.cpp:237] Train net output #0: loss = 2.7476 (* 1 = 2.7476 loss) +I0407 22:40:22.498281 32630 sgd_solver.cpp:105] Iteration 1968, lr = 0.00955663 +I0407 22:40:27.457639 32630 solver.cpp:218] Iteration 1980 (2.41967 iter/s, 4.95934s/12 iters), loss = 2.99884 +I0407 22:40:27.457674 32630 solver.cpp:237] Train net output #0: loss = 2.99884 (* 1 = 2.99884 loss) +I0407 22:40:27.457681 32630 sgd_solver.cpp:105] Iteration 1980, lr = 0.00955162 +I0407 22:40:32.442898 32630 solver.cpp:218] Iteration 1992 (2.40713 iter/s, 4.9852s/12 iters), loss = 2.95156 +I0407 22:40:32.442943 32630 solver.cpp:237] Train net output #0: loss = 2.95156 (* 1 = 2.95156 loss) +I0407 22:40:32.442951 32630 sgd_solver.cpp:105] Iteration 1992, lr = 0.00954655 +I0407 22:40:37.431617 32630 solver.cpp:218] Iteration 2004 (2.40546 iter/s, 4.98865s/12 iters), loss = 2.90869 +I0407 22:40:37.431659 32630 solver.cpp:237] Train net output #0: loss = 2.90869 (* 1 = 2.90869 loss) +I0407 22:40:37.431668 32630 sgd_solver.cpp:105] Iteration 2004, lr = 0.00954143 +I0407 22:40:42.388677 32630 solver.cpp:218] Iteration 2016 (2.42082 iter/s, 4.95699s/12 iters), loss = 2.88222 +I0407 22:40:42.388799 32630 solver.cpp:237] Train net output #0: loss = 2.88222 (* 1 = 2.88222 loss) +I0407 22:40:42.388808 32630 sgd_solver.cpp:105] Iteration 2016, lr = 0.00953626 +I0407 22:40:44.879971 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:47.283229 32630 solver.cpp:218] Iteration 2028 (2.45178 iter/s, 4.89441s/12 iters), loss = 3.07218 +I0407 22:40:47.283272 32630 solver.cpp:237] Train net output #0: loss = 3.07218 (* 1 = 3.07218 loss) +I0407 22:40:47.283282 32630 sgd_solver.cpp:105] Iteration 2028, lr = 0.00953103 +I0407 22:40:51.765890 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 22:40:55.503212 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 22:40:58.686507 32630 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 22:40:58.686527 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:41:02.503486 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:03.360817 32630 solver.cpp:397] Test net output #0: accuracy = 0.20527 +I0407 22:41:03.360865 32630 solver.cpp:397] Test net output #1: loss = 3.45559 (* 1 = 3.45559 loss) +I0407 22:41:03.457465 32630 solver.cpp:218] Iteration 2040 (0.741925 iter/s, 16.1741s/12 iters), loss = 3.06067 +I0407 22:41:03.457515 32630 solver.cpp:237] Train net output #0: loss = 3.06067 (* 1 = 3.06067 loss) +I0407 22:41:03.457523 32630 sgd_solver.cpp:105] Iteration 2040, lr = 0.00952574 +I0407 22:41:07.562410 32630 solver.cpp:218] Iteration 2052 (2.92336 iter/s, 4.10487s/12 iters), loss = 2.77774 +I0407 22:41:07.562459 32630 solver.cpp:237] Train net output #0: loss = 2.77774 (* 1 = 2.77774 loss) +I0407 22:41:07.562469 32630 sgd_solver.cpp:105] Iteration 2052, lr = 0.0095204 +I0407 22:41:09.142943 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:41:12.457713 32630 solver.cpp:218] Iteration 2064 (2.45137 iter/s, 4.89523s/12 iters), loss = 2.99322 +I0407 22:41:12.457844 32630 solver.cpp:237] Train net output #0: loss = 2.99322 (* 1 = 2.99322 loss) +I0407 22:41:12.457855 32630 sgd_solver.cpp:105] Iteration 2064, lr = 0.009515 +I0407 22:41:17.432986 32630 solver.cpp:218] Iteration 2076 (2.412 iter/s, 4.97512s/12 iters), loss = 2.94359 +I0407 22:41:17.433030 32630 solver.cpp:237] Train net output #0: loss = 2.94359 (* 1 = 2.94359 loss) +I0407 22:41:17.433038 32630 sgd_solver.cpp:105] Iteration 2076, lr = 0.00950954 +I0407 22:41:22.389730 32630 solver.cpp:218] Iteration 2088 (2.42098 iter/s, 4.95668s/12 iters), loss = 2.84899 +I0407 22:41:22.389765 32630 solver.cpp:237] Train net output #0: loss = 2.84899 (* 1 = 2.84899 loss) +I0407 22:41:22.389772 32630 sgd_solver.cpp:105] Iteration 2088, lr = 0.00950402 +I0407 22:41:27.291538 32630 solver.cpp:218] Iteration 2100 (2.44811 iter/s, 4.90175s/12 iters), loss = 2.84521 +I0407 22:41:27.291575 32630 solver.cpp:237] Train net output #0: loss = 2.84521 (* 1 = 2.84521 loss) +I0407 22:41:27.291584 32630 sgd_solver.cpp:105] Iteration 2100, lr = 0.00949845 +I0407 22:41:32.282135 32630 solver.cpp:218] Iteration 2112 (2.40455 iter/s, 4.99053s/12 iters), loss = 3.09904 +I0407 22:41:32.282176 32630 solver.cpp:237] Train net output #0: loss = 3.09904 (* 1 = 3.09904 loss) +I0407 22:41:32.282184 32630 sgd_solver.cpp:105] Iteration 2112, lr = 0.00949281 +I0407 22:41:36.926910 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:37.249805 32630 solver.cpp:218] Iteration 2124 (2.41565 iter/s, 4.96761s/12 iters), loss = 3.11618 +I0407 22:41:37.249837 32630 solver.cpp:237] Train net output #0: loss = 3.11618 (* 1 = 3.11618 loss) +I0407 22:41:37.249845 32630 sgd_solver.cpp:105] Iteration 2124, lr = 0.00948712 +I0407 22:41:42.187449 32630 solver.cpp:218] Iteration 2136 (2.43034 iter/s, 4.93759s/12 iters), loss = 2.62174 +I0407 22:41:42.187486 32630 solver.cpp:237] Train net output #0: loss = 2.62174 (* 1 = 2.62174 loss) +I0407 22:41:42.187494 32630 sgd_solver.cpp:105] Iteration 2136, lr = 0.00948136 +I0407 22:41:44.189776 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 22:41:47.316608 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 22:41:51.034309 32630 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 22:41:51.034327 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:41:54.853327 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:55.817178 32630 solver.cpp:397] Test net output #0: accuracy = 0.237745 +I0407 22:41:55.817224 32630 solver.cpp:397] Test net output #1: loss = 3.29893 (* 1 = 3.29893 loss) +I0407 22:41:57.613212 32630 solver.cpp:218] Iteration 2148 (0.777924 iter/s, 15.4257s/12 iters), loss = 2.75054 +I0407 22:41:57.613248 32630 solver.cpp:237] Train net output #0: loss = 2.75054 (* 1 = 2.75054 loss) +I0407 22:41:57.613255 32630 sgd_solver.cpp:105] Iteration 2148, lr = 0.00947555 +I0407 22:42:02.510550 32630 solver.cpp:218] Iteration 2160 (2.45034 iter/s, 4.89728s/12 iters), loss = 2.98076 +I0407 22:42:02.510591 32630 solver.cpp:237] Train net output #0: loss = 2.98076 (* 1 = 2.98076 loss) +I0407 22:42:02.510599 32630 sgd_solver.cpp:105] Iteration 2160, lr = 0.00946967 +I0407 22:42:07.465492 32630 solver.cpp:218] Iteration 2172 (2.42186 iter/s, 4.95488s/12 iters), loss = 2.4108 +I0407 22:42:07.465531 32630 solver.cpp:237] Train net output #0: loss = 2.4108 (* 1 = 2.4108 loss) +I0407 22:42:07.465540 32630 sgd_solver.cpp:105] Iteration 2172, lr = 0.00946373 +I0407 22:42:12.378535 32630 solver.cpp:218] Iteration 2184 (2.44251 iter/s, 4.91297s/12 iters), loss = 2.53181 +I0407 22:42:12.378579 32630 solver.cpp:237] Train net output #0: loss = 2.53181 (* 1 = 2.53181 loss) +I0407 22:42:12.378587 32630 sgd_solver.cpp:105] Iteration 2184, lr = 0.00945773 +I0407 22:42:17.287701 32630 solver.cpp:218] Iteration 2196 (2.44445 iter/s, 4.90909s/12 iters), loss = 2.80544 +I0407 22:42:17.287873 32630 solver.cpp:237] Train net output #0: loss = 2.80544 (* 1 = 2.80544 loss) +I0407 22:42:17.287883 32630 sgd_solver.cpp:105] Iteration 2196, lr = 0.00945166 +I0407 22:42:22.220067 32630 solver.cpp:218] Iteration 2208 (2.43301 iter/s, 4.93217s/12 iters), loss = 2.70512 +I0407 22:42:22.220108 32630 solver.cpp:237] Train net output #0: loss = 2.70512 (* 1 = 2.70512 loss) +I0407 22:42:22.220118 32630 sgd_solver.cpp:105] Iteration 2208, lr = 0.00944554 +I0407 22:42:27.190296 32630 solver.cpp:218] Iteration 2220 (2.41441 iter/s, 4.97017s/12 iters), loss = 2.39649 +I0407 22:42:27.190335 32630 solver.cpp:237] Train net output #0: loss = 2.39649 (* 1 = 2.39649 loss) +I0407 22:42:27.190343 32630 sgd_solver.cpp:105] Iteration 2220, lr = 0.00943934 +I0407 22:42:28.961112 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:32.087404 32630 solver.cpp:218] Iteration 2232 (2.45046 iter/s, 4.89704s/12 iters), loss = 2.36818 +I0407 22:42:32.087441 32630 solver.cpp:237] Train net output #0: loss = 2.36818 (* 1 = 2.36818 loss) +I0407 22:42:32.087450 32630 sgd_solver.cpp:105] Iteration 2232, lr = 0.00943308 +I0407 22:42:36.584026 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 22:42:39.668439 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 22:42:44.357836 32630 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 22:42:44.357863 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:42:48.174384 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:49.197623 32630 solver.cpp:397] Test net output #0: accuracy = 0.221201 +I0407 22:42:49.197669 32630 solver.cpp:397] Test net output #1: loss = 3.41852 (* 1 = 3.41852 loss) +I0407 22:42:49.294950 32630 solver.cpp:218] Iteration 2244 (0.697373 iter/s, 17.2074s/12 iters), loss = 2.79711 +I0407 22:42:49.295015 32630 solver.cpp:237] Train net output #0: loss = 2.79711 (* 1 = 2.79711 loss) +I0407 22:42:49.295027 32630 sgd_solver.cpp:105] Iteration 2244, lr = 0.00942676 +I0407 22:42:53.383842 32630 solver.cpp:218] Iteration 2256 (2.93484 iter/s, 4.08881s/12 iters), loss = 2.70147 +I0407 22:42:53.383885 32630 solver.cpp:237] Train net output #0: loss = 2.70147 (* 1 = 2.70147 loss) +I0407 22:42:53.383893 32630 sgd_solver.cpp:105] Iteration 2256, lr = 0.00942037 +I0407 22:42:58.312240 32630 solver.cpp:218] Iteration 2268 (2.4349 iter/s, 4.92833s/12 iters), loss = 2.55845 +I0407 22:42:58.312285 32630 solver.cpp:237] Train net output #0: loss = 2.55845 (* 1 = 2.55845 loss) +I0407 22:42:58.312294 32630 sgd_solver.cpp:105] Iteration 2268, lr = 0.00941391 +I0407 22:43:03.246194 32630 solver.cpp:218] Iteration 2280 (2.43216 iter/s, 4.93388s/12 iters), loss = 2.62222 +I0407 22:43:03.246237 32630 solver.cpp:237] Train net output #0: loss = 2.62222 (* 1 = 2.62222 loss) +I0407 22:43:03.246245 32630 sgd_solver.cpp:105] Iteration 2280, lr = 0.00940739 +I0407 22:43:08.200165 32630 solver.cpp:218] Iteration 2292 (2.42234 iter/s, 4.9539s/12 iters), loss = 2.56837 +I0407 22:43:08.200206 32630 solver.cpp:237] Train net output #0: loss = 2.56837 (* 1 = 2.56837 loss) +I0407 22:43:08.200215 32630 sgd_solver.cpp:105] Iteration 2292, lr = 0.00940079 +I0407 22:43:13.099092 32630 solver.cpp:218] Iteration 2304 (2.44955 iter/s, 4.89886s/12 iters), loss = 2.60211 +I0407 22:43:13.099129 32630 solver.cpp:237] Train net output #0: loss = 2.60211 (* 1 = 2.60211 loss) +I0407 22:43:13.099136 32630 sgd_solver.cpp:105] Iteration 2304, lr = 0.00939413 +I0407 22:43:18.061039 32630 solver.cpp:218] Iteration 2316 (2.41843 iter/s, 4.96189s/12 iters), loss = 2.47484 +I0407 22:43:18.061079 32630 solver.cpp:237] Train net output #0: loss = 2.47484 (* 1 = 2.47484 loss) +I0407 22:43:18.061087 32630 sgd_solver.cpp:105] Iteration 2316, lr = 0.0093874 +I0407 22:43:21.927819 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:22.952311 32630 solver.cpp:218] Iteration 2328 (2.45339 iter/s, 4.8912s/12 iters), loss = 2.97736 +I0407 22:43:22.952353 32630 solver.cpp:237] Train net output #0: loss = 2.97736 (* 1 = 2.97736 loss) +I0407 22:43:22.952361 32630 sgd_solver.cpp:105] Iteration 2328, lr = 0.0093806 +I0407 22:43:27.915187 32630 solver.cpp:218] Iteration 2340 (2.41799 iter/s, 4.9628s/12 iters), loss = 2.78303 +I0407 22:43:27.915241 32630 solver.cpp:237] Train net output #0: loss = 2.78303 (* 1 = 2.78303 loss) +I0407 22:43:27.915249 32630 sgd_solver.cpp:105] Iteration 2340, lr = 0.00937373 +I0407 22:43:29.859577 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 22:43:32.962327 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 22:43:35.336520 32630 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 22:43:35.336537 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:43:38.836552 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:39.800710 32630 solver.cpp:397] Test net output #0: accuracy = 0.246324 +I0407 22:43:39.800745 32630 solver.cpp:397] Test net output #1: loss = 3.24294 (* 1 = 3.24294 loss) +I0407 22:43:41.648492 32630 solver.cpp:218] Iteration 2352 (0.873794 iter/s, 13.7332s/12 iters), loss = 2.25159 +I0407 22:43:41.648540 32630 solver.cpp:237] Train net output #0: loss = 2.25159 (* 1 = 2.25159 loss) +I0407 22:43:41.648547 32630 sgd_solver.cpp:105] Iteration 2352, lr = 0.00936679 +I0407 22:43:46.588266 32630 solver.cpp:218] Iteration 2364 (2.4293 iter/s, 4.9397s/12 iters), loss = 2.64679 +I0407 22:43:46.588307 32630 solver.cpp:237] Train net output #0: loss = 2.64679 (* 1 = 2.64679 loss) +I0407 22:43:46.588315 32630 sgd_solver.cpp:105] Iteration 2364, lr = 0.00935977 +I0407 22:43:51.525230 32630 solver.cpp:218] Iteration 2376 (2.43068 iter/s, 4.9369s/12 iters), loss = 2.38605 +I0407 22:43:51.525274 32630 solver.cpp:237] Train net output #0: loss = 2.38605 (* 1 = 2.38605 loss) +I0407 22:43:51.525282 32630 sgd_solver.cpp:105] Iteration 2376, lr = 0.00935269 +I0407 22:43:56.478209 32630 solver.cpp:218] Iteration 2388 (2.42282 iter/s, 4.9529s/12 iters), loss = 2.166 +I0407 22:43:56.478312 32630 solver.cpp:237] Train net output #0: loss = 2.166 (* 1 = 2.166 loss) +I0407 22:43:56.478322 32630 sgd_solver.cpp:105] Iteration 2388, lr = 0.00934553 +I0407 22:44:01.386307 32630 solver.cpp:218] Iteration 2400 (2.445 iter/s, 4.90798s/12 iters), loss = 2.47351 +I0407 22:44:01.386340 32630 solver.cpp:237] Train net output #0: loss = 2.47351 (* 1 = 2.47351 loss) +I0407 22:44:01.386348 32630 sgd_solver.cpp:105] Iteration 2400, lr = 0.0093383 +I0407 22:44:06.337186 32630 solver.cpp:218] Iteration 2412 (2.42384 iter/s, 4.95082s/12 iters), loss = 2.49034 +I0407 22:44:06.337229 32630 solver.cpp:237] Train net output #0: loss = 2.49034 (* 1 = 2.49034 loss) +I0407 22:44:06.337237 32630 sgd_solver.cpp:105] Iteration 2412, lr = 0.00933099 +I0407 22:44:11.263628 32630 solver.cpp:218] Iteration 2424 (2.43587 iter/s, 4.92637s/12 iters), loss = 2.45254 +I0407 22:44:11.263665 32630 solver.cpp:237] Train net output #0: loss = 2.45254 (* 1 = 2.45254 loss) +I0407 22:44:11.263674 32630 sgd_solver.cpp:105] Iteration 2424, lr = 0.00932361 +I0407 22:44:12.304093 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:16.183334 32630 solver.cpp:218] Iteration 2436 (2.4392 iter/s, 4.91964s/12 iters), loss = 2.4583 +I0407 22:44:16.183378 32630 solver.cpp:237] Train net output #0: loss = 2.4583 (* 1 = 2.4583 loss) +I0407 22:44:16.183387 32630 sgd_solver.cpp:105] Iteration 2436, lr = 0.00931615 +I0407 22:44:20.684319 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 22:44:23.780629 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 22:44:26.142082 32630 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 22:44:26.142098 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:44:29.904667 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:30.997407 32630 solver.cpp:397] Test net output #0: accuracy = 0.259191 +I0407 22:44:30.997453 32630 solver.cpp:397] Test net output #1: loss = 3.17438 (* 1 = 3.17438 loss) +I0407 22:44:31.093835 32630 solver.cpp:218] Iteration 2448 (0.804807 iter/s, 14.9104s/12 iters), loss = 2.22352 +I0407 22:44:31.093880 32630 solver.cpp:237] Train net output #0: loss = 2.22352 (* 1 = 2.22352 loss) +I0407 22:44:31.093888 32630 sgd_solver.cpp:105] Iteration 2448, lr = 0.00930862 +I0407 22:44:35.149550 32630 solver.cpp:218] Iteration 2460 (2.95884 iter/s, 4.05565s/12 iters), loss = 2.4092 +I0407 22:44:35.149596 32630 solver.cpp:237] Train net output #0: loss = 2.4092 (* 1 = 2.4092 loss) +I0407 22:44:35.149605 32630 sgd_solver.cpp:105] Iteration 2460, lr = 0.00930101 +I0407 22:44:40.071333 32630 solver.cpp:218] Iteration 2472 (2.43818 iter/s, 4.92171s/12 iters), loss = 2.49063 +I0407 22:44:40.071378 32630 solver.cpp:237] Train net output #0: loss = 2.49063 (* 1 = 2.49063 loss) +I0407 22:44:40.071386 32630 sgd_solver.cpp:105] Iteration 2472, lr = 0.00929332 +I0407 22:44:45.027468 32630 solver.cpp:218] Iteration 2484 (2.42128 iter/s, 4.95606s/12 iters), loss = 2.47852 +I0407 22:44:45.027526 32630 solver.cpp:237] Train net output #0: loss = 2.47852 (* 1 = 2.47852 loss) +I0407 22:44:45.027539 32630 sgd_solver.cpp:105] Iteration 2484, lr = 0.00928555 +I0407 22:44:49.994884 32630 solver.cpp:218] Iteration 2496 (2.41578 iter/s, 4.96734s/12 iters), loss = 2.29955 +I0407 22:44:49.994920 32630 solver.cpp:237] Train net output #0: loss = 2.29955 (* 1 = 2.29955 loss) +I0407 22:44:49.994927 32630 sgd_solver.cpp:105] Iteration 2496, lr = 0.00927771 +I0407 22:44:54.903867 32630 solver.cpp:218] Iteration 2508 (2.44453 iter/s, 4.90892s/12 iters), loss = 2.21139 +I0407 22:44:54.903906 32630 solver.cpp:237] Train net output #0: loss = 2.21139 (* 1 = 2.21139 loss) +I0407 22:44:54.903915 32630 sgd_solver.cpp:105] Iteration 2508, lr = 0.00926979 +I0407 22:44:59.856935 32630 solver.cpp:218] Iteration 2520 (2.42277 iter/s, 4.953s/12 iters), loss = 2.50407 +I0407 22:44:59.856972 32630 solver.cpp:237] Train net output #0: loss = 2.50407 (* 1 = 2.50407 loss) +I0407 22:44:59.856981 32630 sgd_solver.cpp:105] Iteration 2520, lr = 0.00926178 +I0407 22:45:03.005616 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:04.756197 32630 solver.cpp:218] Iteration 2532 (2.44938 iter/s, 4.8992s/12 iters), loss = 2.01872 +I0407 22:45:04.756239 32630 solver.cpp:237] Train net output #0: loss = 2.01872 (* 1 = 2.01872 loss) +I0407 22:45:04.756247 32630 sgd_solver.cpp:105] Iteration 2532, lr = 0.0092537 +I0407 22:45:09.712107 32630 solver.cpp:218] Iteration 2544 (2.42139 iter/s, 4.95584s/12 iters), loss = 2.3426 +I0407 22:45:09.712152 32630 solver.cpp:237] Train net output #0: loss = 2.3426 (* 1 = 2.3426 loss) +I0407 22:45:09.712160 32630 sgd_solver.cpp:105] Iteration 2544, lr = 0.00924553 +I0407 22:45:11.711771 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 22:45:14.822945 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 22:45:17.185724 32630 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 22:45:17.185742 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:45:20.835059 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:21.966197 32630 solver.cpp:397] Test net output #0: accuracy = 0.291054 +I0407 22:45:21.966229 32630 solver.cpp:397] Test net output #1: loss = 3.11836 (* 1 = 3.11836 loss) +I0407 22:45:23.756964 32630 solver.cpp:218] Iteration 2556 (0.854411 iter/s, 14.0448s/12 iters), loss = 2.43726 +I0407 22:45:23.757009 32630 solver.cpp:237] Train net output #0: loss = 2.43726 (* 1 = 2.43726 loss) +I0407 22:45:23.757017 32630 sgd_solver.cpp:105] Iteration 2556, lr = 0.00923728 +I0407 22:45:28.658139 32630 solver.cpp:218] Iteration 2568 (2.44843 iter/s, 4.90111s/12 iters), loss = 2.01815 +I0407 22:45:28.658181 32630 solver.cpp:237] Train net output #0: loss = 2.01815 (* 1 = 2.01815 loss) +I0407 22:45:28.658190 32630 sgd_solver.cpp:105] Iteration 2568, lr = 0.00922895 +I0407 22:45:33.630492 32630 solver.cpp:218] Iteration 2580 (2.41338 iter/s, 4.97228s/12 iters), loss = 1.86068 +I0407 22:45:33.630631 32630 solver.cpp:237] Train net output #0: loss = 1.86068 (* 1 = 1.86068 loss) +I0407 22:45:33.630641 32630 sgd_solver.cpp:105] Iteration 2580, lr = 0.00922054 +I0407 22:45:38.569696 32630 solver.cpp:218] Iteration 2592 (2.42962 iter/s, 4.93904s/12 iters), loss = 2.35292 +I0407 22:45:38.569739 32630 solver.cpp:237] Train net output #0: loss = 2.35292 (* 1 = 2.35292 loss) +I0407 22:45:38.569747 32630 sgd_solver.cpp:105] Iteration 2592, lr = 0.00921204 +I0407 22:45:43.508360 32630 solver.cpp:218] Iteration 2604 (2.42984 iter/s, 4.93859s/12 iters), loss = 2.1932 +I0407 22:45:43.508409 32630 solver.cpp:237] Train net output #0: loss = 2.1932 (* 1 = 2.1932 loss) +I0407 22:45:43.508417 32630 sgd_solver.cpp:105] Iteration 2604, lr = 0.00920346 +I0407 22:45:48.465348 32630 solver.cpp:218] Iteration 2616 (2.42086 iter/s, 4.95691s/12 iters), loss = 2.21695 +I0407 22:45:48.465389 32630 solver.cpp:237] Train net output #0: loss = 2.21695 (* 1 = 2.21695 loss) +I0407 22:45:48.465396 32630 sgd_solver.cpp:105] Iteration 2616, lr = 0.00919479 +I0407 22:45:53.409449 32630 solver.cpp:218] Iteration 2628 (2.42717 iter/s, 4.94404s/12 iters), loss = 1.97336 +I0407 22:45:53.409487 32630 solver.cpp:237] Train net output #0: loss = 1.97336 (* 1 = 1.97336 loss) +I0407 22:45:53.409494 32630 sgd_solver.cpp:105] Iteration 2628, lr = 0.00918604 +I0407 22:45:53.826707 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:58.309293 32630 solver.cpp:218] Iteration 2640 (2.44909 iter/s, 4.89978s/12 iters), loss = 2.11128 +I0407 22:45:58.309332 32630 solver.cpp:237] Train net output #0: loss = 2.11128 (* 1 = 2.11128 loss) +I0407 22:45:58.309341 32630 sgd_solver.cpp:105] Iteration 2640, lr = 0.0091772 +I0407 22:46:02.807010 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 22:46:05.878386 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 22:46:09.143713 32630 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 22:46:09.143730 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:46:12.776010 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:13.951436 32630 solver.cpp:397] Test net output #0: accuracy = 0.301471 +I0407 22:46:13.951483 32630 solver.cpp:397] Test net output #1: loss = 3.0622 (* 1 = 3.0622 loss) +I0407 22:46:14.049971 32630 solver.cpp:218] Iteration 2652 (0.76236 iter/s, 15.7406s/12 iters), loss = 2.29148 +I0407 22:46:14.050009 32630 solver.cpp:237] Train net output #0: loss = 2.29148 (* 1 = 2.29148 loss) +I0407 22:46:14.050016 32630 sgd_solver.cpp:105] Iteration 2652, lr = 0.00916827 +I0407 22:46:18.143697 32630 solver.cpp:218] Iteration 2664 (2.93136 iter/s, 4.09367s/12 iters), loss = 2.02614 +I0407 22:46:18.143731 32630 solver.cpp:237] Train net output #0: loss = 2.02614 (* 1 = 2.02614 loss) +I0407 22:46:18.143738 32630 sgd_solver.cpp:105] Iteration 2664, lr = 0.00915926 +I0407 22:46:23.062305 32630 solver.cpp:218] Iteration 2676 (2.43975 iter/s, 4.91855s/12 iters), loss = 1.80384 +I0407 22:46:23.062351 32630 solver.cpp:237] Train net output #0: loss = 1.80384 (* 1 = 1.80384 loss) +I0407 22:46:23.062359 32630 sgd_solver.cpp:105] Iteration 2676, lr = 0.00915015 +I0407 22:46:28.007035 32630 solver.cpp:218] Iteration 2688 (2.42686 iter/s, 4.94466s/12 iters), loss = 1.89776 +I0407 22:46:28.007072 32630 solver.cpp:237] Train net output #0: loss = 1.89776 (* 1 = 1.89776 loss) +I0407 22:46:28.007079 32630 sgd_solver.cpp:105] Iteration 2688, lr = 0.00914096 +I0407 22:46:32.952062 32630 solver.cpp:218] Iteration 2700 (2.42671 iter/s, 4.94496s/12 iters), loss = 2.06142 +I0407 22:46:32.952106 32630 solver.cpp:237] Train net output #0: loss = 2.06142 (* 1 = 2.06142 loss) +I0407 22:46:32.952114 32630 sgd_solver.cpp:105] Iteration 2700, lr = 0.00913168 +I0407 22:46:37.873955 32630 solver.cpp:218] Iteration 2712 (2.43812 iter/s, 4.92182s/12 iters), loss = 2.22882 +I0407 22:46:37.874402 32630 solver.cpp:237] Train net output #0: loss = 2.22882 (* 1 = 2.22882 loss) +I0407 22:46:37.874415 32630 sgd_solver.cpp:105] Iteration 2712, lr = 0.0091223 +I0407 22:46:42.830372 32630 solver.cpp:218] Iteration 2724 (2.42133 iter/s, 4.95595s/12 iters), loss = 1.95962 +I0407 22:46:42.830413 32630 solver.cpp:237] Train net output #0: loss = 1.95962 (* 1 = 1.95962 loss) +I0407 22:46:42.830426 32630 sgd_solver.cpp:105] Iteration 2724, lr = 0.00911284 +I0407 22:46:45.352396 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:47.734264 32630 solver.cpp:218] Iteration 2736 (2.44707 iter/s, 4.90383s/12 iters), loss = 1.87029 +I0407 22:46:47.734302 32630 solver.cpp:237] Train net output #0: loss = 1.87029 (* 1 = 1.87029 loss) +I0407 22:46:47.734309 32630 sgd_solver.cpp:105] Iteration 2736, lr = 0.00910328 +I0407 22:46:52.672071 32630 solver.cpp:218] Iteration 2748 (2.43026 iter/s, 4.93775s/12 iters), loss = 1.99638 +I0407 22:46:52.672108 32630 solver.cpp:237] Train net output #0: loss = 1.99638 (* 1 = 1.99638 loss) +I0407 22:46:52.672116 32630 sgd_solver.cpp:105] Iteration 2748, lr = 0.00909363 +I0407 22:46:54.691484 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 22:46:57.832520 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 22:47:00.352543 32630 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 22:47:00.352561 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:47:03.463786 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:47:03.711181 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:04.845276 32630 solver.cpp:397] Test net output #0: accuracy = 0.300245 +I0407 22:47:04.845304 32630 solver.cpp:397] Test net output #1: loss = 3.11314 (* 1 = 3.11314 loss) +I0407 22:47:06.646411 32630 solver.cpp:218] Iteration 2760 (0.858722 iter/s, 13.9743s/12 iters), loss = 2.05709 +I0407 22:47:06.646450 32630 solver.cpp:237] Train net output #0: loss = 2.05709 (* 1 = 2.05709 loss) +I0407 22:47:06.646457 32630 sgd_solver.cpp:105] Iteration 2760, lr = 0.00908389 +I0407 22:47:11.590440 32630 solver.cpp:218] Iteration 2772 (2.4272 iter/s, 4.94397s/12 iters), loss = 2.29343 +I0407 22:47:11.590556 32630 solver.cpp:237] Train net output #0: loss = 2.29343 (* 1 = 2.29343 loss) +I0407 22:47:11.590565 32630 sgd_solver.cpp:105] Iteration 2772, lr = 0.00907405 +I0407 22:47:16.543840 32630 solver.cpp:218] Iteration 2784 (2.42265 iter/s, 4.95326s/12 iters), loss = 2.20299 +I0407 22:47:16.543876 32630 solver.cpp:237] Train net output #0: loss = 2.20299 (* 1 = 2.20299 loss) +I0407 22:47:16.543884 32630 sgd_solver.cpp:105] Iteration 2784, lr = 0.00906412 +I0407 22:47:21.502215 32630 solver.cpp:218] Iteration 2796 (2.42018 iter/s, 4.95832s/12 iters), loss = 2.01832 +I0407 22:47:21.502250 32630 solver.cpp:237] Train net output #0: loss = 2.01832 (* 1 = 2.01832 loss) +I0407 22:47:21.502257 32630 sgd_solver.cpp:105] Iteration 2796, lr = 0.00905409 +I0407 22:47:26.400142 32630 solver.cpp:218] Iteration 2808 (2.45005 iter/s, 4.89786s/12 iters), loss = 2.06727 +I0407 22:47:26.400179 32630 solver.cpp:237] Train net output #0: loss = 2.06727 (* 1 = 2.06727 loss) +I0407 22:47:26.400187 32630 sgd_solver.cpp:105] Iteration 2808, lr = 0.00904397 +I0407 22:47:31.404006 32630 solver.cpp:218] Iteration 2820 (2.39818 iter/s, 5.0038s/12 iters), loss = 2.11019 +I0407 22:47:31.404049 32630 solver.cpp:237] Train net output #0: loss = 2.11019 (* 1 = 2.11019 loss) +I0407 22:47:31.404057 32630 sgd_solver.cpp:105] Iteration 2820, lr = 0.00903374 +I0407 22:47:36.057941 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:36.349608 32630 solver.cpp:218] Iteration 2832 (2.42643 iter/s, 4.94553s/12 iters), loss = 1.70498 +I0407 22:47:36.349648 32630 solver.cpp:237] Train net output #0: loss = 1.70498 (* 1 = 1.70498 loss) +I0407 22:47:36.349656 32630 sgd_solver.cpp:105] Iteration 2832, lr = 0.00902343 +I0407 22:47:41.270246 32630 solver.cpp:218] Iteration 2844 (2.43874 iter/s, 4.92057s/12 iters), loss = 1.96084 +I0407 22:47:41.270287 32630 solver.cpp:237] Train net output #0: loss = 1.96084 (* 1 = 1.96084 loss) +I0407 22:47:41.270294 32630 sgd_solver.cpp:105] Iteration 2844, lr = 0.00901301 +I0407 22:47:45.784463 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 22:47:48.857923 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 22:47:53.287953 32630 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 22:47:53.287973 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:47:56.615052 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:57.784018 32630 solver.cpp:397] Test net output #0: accuracy = 0.306373 +I0407 22:47:57.784049 32630 solver.cpp:397] Test net output #1: loss = 3.03018 (* 1 = 3.03018 loss) +I0407 22:47:57.880479 32630 solver.cpp:218] Iteration 2856 (0.72245 iter/s, 16.6101s/12 iters), loss = 2.1366 +I0407 22:47:57.880523 32630 solver.cpp:237] Train net output #0: loss = 2.1366 (* 1 = 2.1366 loss) +I0407 22:47:57.880532 32630 sgd_solver.cpp:105] Iteration 2856, lr = 0.00900249 +I0407 22:48:02.002707 32630 solver.cpp:218] Iteration 2868 (2.9111 iter/s, 4.12216s/12 iters), loss = 1.85432 +I0407 22:48:02.002751 32630 solver.cpp:237] Train net output #0: loss = 1.85432 (* 1 = 1.85432 loss) +I0407 22:48:02.002759 32630 sgd_solver.cpp:105] Iteration 2868, lr = 0.00899188 +I0407 22:48:06.971217 32630 solver.cpp:218] Iteration 2880 (2.41525 iter/s, 4.96843s/12 iters), loss = 1.85195 +I0407 22:48:06.971259 32630 solver.cpp:237] Train net output #0: loss = 1.85195 (* 1 = 1.85195 loss) +I0407 22:48:06.971268 32630 sgd_solver.cpp:105] Iteration 2880, lr = 0.00898117 +I0407 22:48:11.885145 32630 solver.cpp:218] Iteration 2892 (2.44207 iter/s, 4.91386s/12 iters), loss = 2.11268 +I0407 22:48:11.885190 32630 solver.cpp:237] Train net output #0: loss = 2.11268 (* 1 = 2.11268 loss) +I0407 22:48:11.885197 32630 sgd_solver.cpp:105] Iteration 2892, lr = 0.00897035 +I0407 22:48:16.845564 32630 solver.cpp:218] Iteration 2904 (2.41918 iter/s, 4.96035s/12 iters), loss = 1.81511 +I0407 22:48:16.845690 32630 solver.cpp:237] Train net output #0: loss = 1.81511 (* 1 = 1.81511 loss) +I0407 22:48:16.845698 32630 sgd_solver.cpp:105] Iteration 2904, lr = 0.00895943 +I0407 22:48:21.773164 32630 solver.cpp:218] Iteration 2916 (2.43534 iter/s, 4.92745s/12 iters), loss = 1.94715 +I0407 22:48:21.773203 32630 solver.cpp:237] Train net output #0: loss = 1.94715 (* 1 = 1.94715 loss) +I0407 22:48:21.773211 32630 sgd_solver.cpp:105] Iteration 2916, lr = 0.00894841 +I0407 22:48:26.838032 32630 solver.cpp:218] Iteration 2928 (2.36929 iter/s, 5.0648s/12 iters), loss = 1.75508 +I0407 22:48:26.838078 32630 solver.cpp:237] Train net output #0: loss = 1.75508 (* 1 = 1.75508 loss) +I0407 22:48:26.838085 32630 sgd_solver.cpp:105] Iteration 2928, lr = 0.00893729 +I0407 22:48:28.630952 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:31.727720 32630 solver.cpp:218] Iteration 2940 (2.45418 iter/s, 4.88962s/12 iters), loss = 1.64563 +I0407 22:48:31.727759 32630 solver.cpp:237] Train net output #0: loss = 1.64563 (* 1 = 1.64563 loss) +I0407 22:48:31.727767 32630 sgd_solver.cpp:105] Iteration 2940, lr = 0.00892607 +I0407 22:48:36.709837 32630 solver.cpp:218] Iteration 2952 (2.40865 iter/s, 4.98205s/12 iters), loss = 2.04485 +I0407 22:48:36.709882 32630 solver.cpp:237] Train net output #0: loss = 2.04485 (* 1 = 2.04485 loss) +I0407 22:48:36.709890 32630 sgd_solver.cpp:105] Iteration 2952, lr = 0.00891474 +I0407 22:48:38.705655 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 22:48:42.878336 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 22:48:45.268970 32630 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 22:48:45.268988 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:48:48.652045 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:49.864370 32630 solver.cpp:397] Test net output #0: accuracy = 0.301471 +I0407 22:48:49.864418 32630 solver.cpp:397] Test net output #1: loss = 3.09974 (* 1 = 3.09974 loss) +I0407 22:48:51.659907 32630 solver.cpp:218] Iteration 2964 (0.802676 iter/s, 14.95s/12 iters), loss = 1.75246 +I0407 22:48:51.659943 32630 solver.cpp:237] Train net output #0: loss = 1.75246 (* 1 = 1.75246 loss) +I0407 22:48:51.659951 32630 sgd_solver.cpp:105] Iteration 2964, lr = 0.0089033 +I0407 22:48:56.738945 32630 solver.cpp:218] Iteration 2976 (2.36268 iter/s, 5.07897s/12 iters), loss = 1.87103 +I0407 22:48:56.738986 32630 solver.cpp:237] Train net output #0: loss = 1.87103 (* 1 = 1.87103 loss) +I0407 22:48:56.738994 32630 sgd_solver.cpp:105] Iteration 2976, lr = 0.00889176 +I0407 22:49:01.705376 32630 solver.cpp:218] Iteration 2988 (2.41625 iter/s, 4.96637s/12 iters), loss = 2.03851 +I0407 22:49:01.705418 32630 solver.cpp:237] Train net output #0: loss = 2.03851 (* 1 = 2.03851 loss) +I0407 22:49:01.705426 32630 sgd_solver.cpp:105] Iteration 2988, lr = 0.00888011 +I0407 22:49:06.792191 32630 solver.cpp:218] Iteration 3000 (2.35907 iter/s, 5.08675s/12 iters), loss = 1.8769 +I0407 22:49:06.792227 32630 solver.cpp:237] Train net output #0: loss = 1.8769 (* 1 = 1.8769 loss) +I0407 22:49:06.792235 32630 sgd_solver.cpp:105] Iteration 3000, lr = 0.00886836 +I0407 22:49:11.793871 32630 solver.cpp:218] Iteration 3012 (2.39922 iter/s, 5.00162s/12 iters), loss = 1.76595 +I0407 22:49:11.793911 32630 solver.cpp:237] Train net output #0: loss = 1.76595 (* 1 = 1.76595 loss) +I0407 22:49:11.793920 32630 sgd_solver.cpp:105] Iteration 3012, lr = 0.0088565 +I0407 22:49:16.779709 32630 solver.cpp:218] Iteration 3024 (2.40685 iter/s, 4.98577s/12 iters), loss = 2.00779 +I0407 22:49:16.779759 32630 solver.cpp:237] Train net output #0: loss = 2.00779 (* 1 = 2.00779 loss) +I0407 22:49:16.779770 32630 sgd_solver.cpp:105] Iteration 3024, lr = 0.00884453 +I0407 22:49:20.696244 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:21.719072 32630 solver.cpp:218] Iteration 3036 (2.4295 iter/s, 4.93929s/12 iters), loss = 1.71166 +I0407 22:49:21.719110 32630 solver.cpp:237] Train net output #0: loss = 1.71166 (* 1 = 1.71166 loss) +I0407 22:49:21.719117 32630 sgd_solver.cpp:105] Iteration 3036, lr = 0.00883245 +I0407 22:49:26.683254 32630 solver.cpp:218] Iteration 3048 (2.41735 iter/s, 4.96412s/12 iters), loss = 1.52375 +I0407 22:49:26.683290 32630 solver.cpp:237] Train net output #0: loss = 1.52375 (* 1 = 1.52375 loss) +I0407 22:49:26.683297 32630 sgd_solver.cpp:105] Iteration 3048, lr = 0.00882027 +I0407 22:49:31.233001 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 22:49:37.465943 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 22:49:40.834702 32630 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 22:49:40.834719 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:49:44.270676 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:45.586910 32630 solver.cpp:397] Test net output #0: accuracy = 0.31924 +I0407 22:49:45.586952 32630 solver.cpp:397] Test net output #1: loss = 3.10223 (* 1 = 3.10223 loss) +I0407 22:49:45.683310 32630 solver.cpp:218] Iteration 3060 (0.63158 iter/s, 19s/12 iters), loss = 1.19274 +I0407 22:49:45.683357 32630 solver.cpp:237] Train net output #0: loss = 1.19274 (* 1 = 1.19274 loss) +I0407 22:49:45.683365 32630 sgd_solver.cpp:105] Iteration 3060, lr = 0.00880797 +I0407 22:49:49.774181 32630 solver.cpp:218] Iteration 3072 (2.93341 iter/s, 4.0908s/12 iters), loss = 1.87007 +I0407 22:49:49.774224 32630 solver.cpp:237] Train net output #0: loss = 1.87007 (* 1 = 1.87007 loss) +I0407 22:49:49.774232 32630 sgd_solver.cpp:105] Iteration 3072, lr = 0.00879556 +I0407 22:49:54.736603 32630 solver.cpp:218] Iteration 3084 (2.41821 iter/s, 4.96235s/12 iters), loss = 1.84587 +I0407 22:49:54.736748 32630 solver.cpp:237] Train net output #0: loss = 1.84587 (* 1 = 1.84587 loss) +I0407 22:49:54.736757 32630 sgd_solver.cpp:105] Iteration 3084, lr = 0.00878304 +I0407 22:49:59.665477 32630 solver.cpp:218] Iteration 3096 (2.43472 iter/s, 4.9287s/12 iters), loss = 1.68176 +I0407 22:49:59.665522 32630 solver.cpp:237] Train net output #0: loss = 1.68176 (* 1 = 1.68176 loss) +I0407 22:49:59.665530 32630 sgd_solver.cpp:105] Iteration 3096, lr = 0.00877041 +I0407 22:50:04.572294 32630 solver.cpp:218] Iteration 3108 (2.44561 iter/s, 4.90675s/12 iters), loss = 1.89923 +I0407 22:50:04.572331 32630 solver.cpp:237] Train net output #0: loss = 1.89923 (* 1 = 1.89923 loss) +I0407 22:50:04.572338 32630 sgd_solver.cpp:105] Iteration 3108, lr = 0.00875767 +I0407 22:50:09.502185 32630 solver.cpp:218] Iteration 3120 (2.43416 iter/s, 4.92983s/12 iters), loss = 1.77277 +I0407 22:50:09.502218 32630 solver.cpp:237] Train net output #0: loss = 1.77277 (* 1 = 1.77277 loss) +I0407 22:50:09.502224 32630 sgd_solver.cpp:105] Iteration 3120, lr = 0.00874481 +I0407 22:50:14.514711 32630 solver.cpp:218] Iteration 3132 (2.39403 iter/s, 5.01247s/12 iters), loss = 1.48847 +I0407 22:50:14.514748 32630 solver.cpp:237] Train net output #0: loss = 1.48847 (* 1 = 1.48847 loss) +I0407 22:50:14.514756 32630 sgd_solver.cpp:105] Iteration 3132, lr = 0.00873184 +I0407 22:50:15.586302 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:19.405823 32630 solver.cpp:218] Iteration 3144 (2.45346 iter/s, 4.89105s/12 iters), loss = 1.63578 +I0407 22:50:19.405858 32630 solver.cpp:237] Train net output #0: loss = 1.63578 (* 1 = 1.63578 loss) +I0407 22:50:19.405865 32630 sgd_solver.cpp:105] Iteration 3144, lr = 0.00871876 +I0407 22:50:24.377153 32630 solver.cpp:218] Iteration 3156 (2.41387 iter/s, 4.97127s/12 iters), loss = 1.7746 +I0407 22:50:24.377192 32630 solver.cpp:237] Train net output #0: loss = 1.7746 (* 1 = 1.7746 loss) +I0407 22:50:24.377198 32630 sgd_solver.cpp:105] Iteration 3156, lr = 0.00870556 +I0407 22:50:26.361721 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 22:50:29.417098 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 22:50:32.019665 32630 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 22:50:32.019685 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:50:35.407573 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:36.798807 32630 solver.cpp:397] Test net output #0: accuracy = 0.3125 +I0407 22:50:36.798854 32630 solver.cpp:397] Test net output #1: loss = 2.95207 (* 1 = 2.95207 loss) +I0407 22:50:38.596510 32630 solver.cpp:218] Iteration 3168 (0.843925 iter/s, 14.2193s/12 iters), loss = 1.63294 +I0407 22:50:38.596558 32630 solver.cpp:237] Train net output #0: loss = 1.63294 (* 1 = 1.63294 loss) +I0407 22:50:38.596566 32630 sgd_solver.cpp:105] Iteration 3168, lr = 0.00869224 +I0407 22:50:43.552016 32630 solver.cpp:218] Iteration 3180 (2.42158 iter/s, 4.95544s/12 iters), loss = 1.63398 +I0407 22:50:43.552058 32630 solver.cpp:237] Train net output #0: loss = 1.63398 (* 1 = 1.63398 loss) +I0407 22:50:43.552067 32630 sgd_solver.cpp:105] Iteration 3180, lr = 0.00867881 +I0407 22:50:48.491398 32630 solver.cpp:218] Iteration 3192 (2.42949 iter/s, 4.93931s/12 iters), loss = 1.68775 +I0407 22:50:48.491444 32630 solver.cpp:237] Train net output #0: loss = 1.68775 (* 1 = 1.68775 loss) +I0407 22:50:48.491452 32630 sgd_solver.cpp:105] Iteration 3192, lr = 0.00866526 +I0407 22:50:53.455505 32630 solver.cpp:218] Iteration 3204 (2.41739 iter/s, 4.96404s/12 iters), loss = 1.69725 +I0407 22:50:53.455541 32630 solver.cpp:237] Train net output #0: loss = 1.69725 (* 1 = 1.69725 loss) +I0407 22:50:53.455549 32630 sgd_solver.cpp:105] Iteration 3204, lr = 0.0086516 +I0407 22:50:58.360855 32630 solver.cpp:218] Iteration 3216 (2.44634 iter/s, 4.90529s/12 iters), loss = 1.3881 +I0407 22:50:58.361011 32630 solver.cpp:237] Train net output #0: loss = 1.3881 (* 1 = 1.3881 loss) +I0407 22:50:58.361019 32630 sgd_solver.cpp:105] Iteration 3216, lr = 0.00863781 +I0407 22:51:03.322393 32630 solver.cpp:218] Iteration 3228 (2.41869 iter/s, 4.96136s/12 iters), loss = 1.38263 +I0407 22:51:03.322428 32630 solver.cpp:237] Train net output #0: loss = 1.38263 (* 1 = 1.38263 loss) +I0407 22:51:03.322436 32630 sgd_solver.cpp:105] Iteration 3228, lr = 0.00862391 +I0407 22:51:06.515534 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:08.246268 32630 solver.cpp:218] Iteration 3240 (2.43714 iter/s, 4.92381s/12 iters), loss = 1.56599 +I0407 22:51:08.246305 32630 solver.cpp:237] Train net output #0: loss = 1.56599 (* 1 = 1.56599 loss) +I0407 22:51:08.246313 32630 sgd_solver.cpp:105] Iteration 3240, lr = 0.00860989 +I0407 22:51:13.219252 32630 solver.cpp:218] Iteration 3252 (2.41307 iter/s, 4.97292s/12 iters), loss = 1.44458 +I0407 22:51:13.219297 32630 solver.cpp:237] Train net output #0: loss = 1.44458 (* 1 = 1.44458 loss) +I0407 22:51:13.219306 32630 sgd_solver.cpp:105] Iteration 3252, lr = 0.00859575 +I0407 22:51:17.693850 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 22:51:21.864061 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 22:51:24.232970 32630 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 22:51:24.232988 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:51:27.525182 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:28.849555 32630 solver.cpp:397] Test net output #0: accuracy = 0.320466 +I0407 22:51:28.849640 32630 solver.cpp:397] Test net output #1: loss = 3.12643 (* 1 = 3.12643 loss) +I0407 22:51:28.946223 32630 solver.cpp:218] Iteration 3264 (0.763025 iter/s, 15.7269s/12 iters), loss = 1.37661 +I0407 22:51:28.946269 32630 solver.cpp:237] Train net output #0: loss = 1.37661 (* 1 = 1.37661 loss) +I0407 22:51:28.946276 32630 sgd_solver.cpp:105] Iteration 3264, lr = 0.00858149 +I0407 22:51:33.097916 32630 solver.cpp:218] Iteration 3276 (2.89044 iter/s, 4.15162s/12 iters), loss = 1.52166 +I0407 22:51:33.097961 32630 solver.cpp:237] Train net output #0: loss = 1.52166 (* 1 = 1.52166 loss) +I0407 22:51:33.097970 32630 sgd_solver.cpp:105] Iteration 3276, lr = 0.00856711 +I0407 22:51:38.046408 32630 solver.cpp:218] Iteration 3288 (2.42501 iter/s, 4.94842s/12 iters), loss = 1.54008 +I0407 22:51:38.046449 32630 solver.cpp:237] Train net output #0: loss = 1.54008 (* 1 = 1.54008 loss) +I0407 22:51:38.046458 32630 sgd_solver.cpp:105] Iteration 3288, lr = 0.00855261 +I0407 22:51:42.964848 32630 solver.cpp:218] Iteration 3300 (2.43983 iter/s, 4.91837s/12 iters), loss = 1.47197 +I0407 22:51:42.964884 32630 solver.cpp:237] Train net output #0: loss = 1.47197 (* 1 = 1.47197 loss) +I0407 22:51:42.964892 32630 sgd_solver.cpp:105] Iteration 3300, lr = 0.00853798 +I0407 22:51:47.883301 32630 solver.cpp:218] Iteration 3312 (2.43982 iter/s, 4.91839s/12 iters), loss = 1.7227 +I0407 22:51:47.883338 32630 solver.cpp:237] Train net output #0: loss = 1.7227 (* 1 = 1.7227 loss) +I0407 22:51:47.883347 32630 sgd_solver.cpp:105] Iteration 3312, lr = 0.00852323 +I0407 22:51:52.926980 32630 solver.cpp:218] Iteration 3324 (2.37925 iter/s, 5.04361s/12 iters), loss = 1.31541 +I0407 22:51:52.927034 32630 solver.cpp:237] Train net output #0: loss = 1.31541 (* 1 = 1.31541 loss) +I0407 22:51:52.927047 32630 sgd_solver.cpp:105] Iteration 3324, lr = 0.00850836 +I0407 22:51:57.885764 32630 solver.cpp:218] Iteration 3336 (2.41998 iter/s, 4.95871s/12 iters), loss = 1.61057 +I0407 22:51:57.885802 32630 solver.cpp:237] Train net output #0: loss = 1.61057 (* 1 = 1.61057 loss) +I0407 22:51:57.885808 32630 sgd_solver.cpp:105] Iteration 3336, lr = 0.00849337 +I0407 22:51:58.345217 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:02.898627 32630 solver.cpp:218] Iteration 3348 (2.39387 iter/s, 5.0128s/12 iters), loss = 1.76625 +I0407 22:52:02.898773 32630 solver.cpp:237] Train net output #0: loss = 1.76625 (* 1 = 1.76625 loss) +I0407 22:52:02.898782 32630 sgd_solver.cpp:105] Iteration 3348, lr = 0.00847826 +I0407 22:52:07.892351 32630 solver.cpp:218] Iteration 3360 (2.4031 iter/s, 4.99356s/12 iters), loss = 1.75907 +I0407 22:52:07.892395 32630 solver.cpp:237] Train net output #0: loss = 1.75907 (* 1 = 1.75907 loss) +I0407 22:52:07.892402 32630 sgd_solver.cpp:105] Iteration 3360, lr = 0.00846301 +I0407 22:52:09.947333 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 22:52:13.090550 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 22:52:15.482164 32630 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 22:52:15.482183 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:52:18.860574 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:20.270895 32630 solver.cpp:397] Test net output #0: accuracy = 0.337623 +I0407 22:52:20.270937 32630 solver.cpp:397] Test net output #1: loss = 2.96607 (* 1 = 2.96607 loss) +I0407 22:52:22.060320 32630 solver.cpp:218] Iteration 3372 (0.846986 iter/s, 14.1679s/12 iters), loss = 1.69042 +I0407 22:52:22.060359 32630 solver.cpp:237] Train net output #0: loss = 1.69042 (* 1 = 1.69042 loss) +I0407 22:52:22.060365 32630 sgd_solver.cpp:105] Iteration 3372, lr = 0.00844765 +I0407 22:52:27.016407 32630 solver.cpp:218] Iteration 3384 (2.4213 iter/s, 4.95602s/12 iters), loss = 1.72411 +I0407 22:52:27.016444 32630 solver.cpp:237] Train net output #0: loss = 1.72411 (* 1 = 1.72411 loss) +I0407 22:52:27.016451 32630 sgd_solver.cpp:105] Iteration 3384, lr = 0.00843216 +I0407 22:52:32.003963 32630 solver.cpp:218] Iteration 3396 (2.40602 iter/s, 4.9875s/12 iters), loss = 1.38633 +I0407 22:52:32.003996 32630 solver.cpp:237] Train net output #0: loss = 1.38633 (* 1 = 1.38633 loss) +I0407 22:52:32.004004 32630 sgd_solver.cpp:105] Iteration 3396, lr = 0.00841654 +I0407 22:52:36.925855 32630 solver.cpp:218] Iteration 3408 (2.43812 iter/s, 4.92183s/12 iters), loss = 1.53347 +I0407 22:52:36.925977 32630 solver.cpp:237] Train net output #0: loss = 1.53347 (* 1 = 1.53347 loss) +I0407 22:52:36.925987 32630 sgd_solver.cpp:105] Iteration 3408, lr = 0.0084008 +I0407 22:52:41.869009 32630 solver.cpp:218] Iteration 3420 (2.42767 iter/s, 4.94302s/12 iters), loss = 1.46937 +I0407 22:52:41.869042 32630 solver.cpp:237] Train net output #0: loss = 1.46937 (* 1 = 1.46937 loss) +I0407 22:52:41.869050 32630 sgd_solver.cpp:105] Iteration 3420, lr = 0.00838493 +I0407 22:52:46.795030 32630 solver.cpp:218] Iteration 3432 (2.43607 iter/s, 4.92597s/12 iters), loss = 1.21461 +I0407 22:52:46.795058 32630 solver.cpp:237] Train net output #0: loss = 1.21461 (* 1 = 1.21461 loss) +I0407 22:52:46.795065 32630 sgd_solver.cpp:105] Iteration 3432, lr = 0.00836894 +I0407 22:52:49.347558 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:51.748000 32630 solver.cpp:218] Iteration 3444 (2.42282 iter/s, 4.95291s/12 iters), loss = 1.44261 +I0407 22:52:51.748037 32630 solver.cpp:237] Train net output #0: loss = 1.44261 (* 1 = 1.44261 loss) +I0407 22:52:51.748044 32630 sgd_solver.cpp:105] Iteration 3444, lr = 0.00835281 +I0407 22:52:56.629101 32630 solver.cpp:218] Iteration 3456 (2.45849 iter/s, 4.88104s/12 iters), loss = 1.60038 +I0407 22:52:56.629137 32630 solver.cpp:237] Train net output #0: loss = 1.60038 (* 1 = 1.60038 loss) +I0407 22:52:56.629144 32630 sgd_solver.cpp:105] Iteration 3456, lr = 0.00833656 +I0407 22:53:01.101480 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 22:53:04.824043 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 22:53:07.223172 32630 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 22:53:07.223284 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:53:07.673624 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:53:10.582602 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:12.116539 32630 solver.cpp:397] Test net output #0: accuracy = 0.336397 +I0407 22:53:12.116570 32630 solver.cpp:397] Test net output #1: loss = 2.9656 (* 1 = 2.9656 loss) +I0407 22:53:12.213085 32630 solver.cpp:218] Iteration 3468 (0.770025 iter/s, 15.5839s/12 iters), loss = 1.33373 +I0407 22:53:12.213125 32630 solver.cpp:237] Train net output #0: loss = 1.33373 (* 1 = 1.33373 loss) +I0407 22:53:12.213132 32630 sgd_solver.cpp:105] Iteration 3468, lr = 0.00832018 +I0407 22:53:16.256486 32630 solver.cpp:218] Iteration 3480 (2.96785 iter/s, 4.04333s/12 iters), loss = 1.80184 +I0407 22:53:16.256531 32630 solver.cpp:237] Train net output #0: loss = 1.80184 (* 1 = 1.80184 loss) +I0407 22:53:16.256538 32630 sgd_solver.cpp:105] Iteration 3480, lr = 0.00830368 +I0407 22:53:21.193442 32630 solver.cpp:218] Iteration 3492 (2.43068 iter/s, 4.93689s/12 iters), loss = 1.46356 +I0407 22:53:21.193480 32630 solver.cpp:237] Train net output #0: loss = 1.46356 (* 1 = 1.46356 loss) +I0407 22:53:21.193488 32630 sgd_solver.cpp:105] Iteration 3492, lr = 0.00828704 +I0407 22:53:26.153349 32630 solver.cpp:218] Iteration 3504 (2.41943 iter/s, 4.95984s/12 iters), loss = 1.5128 +I0407 22:53:26.153393 32630 solver.cpp:237] Train net output #0: loss = 1.5128 (* 1 = 1.5128 loss) +I0407 22:53:26.153401 32630 sgd_solver.cpp:105] Iteration 3504, lr = 0.00827028 +I0407 22:53:31.057011 32630 solver.cpp:218] Iteration 3516 (2.44718 iter/s, 4.9036s/12 iters), loss = 1.35339 +I0407 22:53:31.057046 32630 solver.cpp:237] Train net output #0: loss = 1.35339 (* 1 = 1.35339 loss) +I0407 22:53:31.057054 32630 sgd_solver.cpp:105] Iteration 3516, lr = 0.00825338 +I0407 22:53:36.005028 32630 solver.cpp:218] Iteration 3528 (2.42524 iter/s, 4.94796s/12 iters), loss = 1.38388 +I0407 22:53:36.005064 32630 solver.cpp:237] Train net output #0: loss = 1.38388 (* 1 = 1.38388 loss) +I0407 22:53:36.005071 32630 sgd_solver.cpp:105] Iteration 3528, lr = 0.00823636 +I0407 22:53:40.590451 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:40.846956 32630 solver.cpp:218] Iteration 3540 (2.47838 iter/s, 4.84187s/12 iters), loss = 1.27423 +I0407 22:53:40.846995 32630 solver.cpp:237] Train net output #0: loss = 1.27423 (* 1 = 1.27423 loss) +I0407 22:53:40.847003 32630 sgd_solver.cpp:105] Iteration 3540, lr = 0.0082192 +I0407 22:53:45.767418 32630 solver.cpp:218] Iteration 3552 (2.43883 iter/s, 4.9204s/12 iters), loss = 1.60277 +I0407 22:53:45.767458 32630 solver.cpp:237] Train net output #0: loss = 1.60277 (* 1 = 1.60277 loss) +I0407 22:53:45.767465 32630 sgd_solver.cpp:105] Iteration 3552, lr = 0.00820192 +I0407 22:53:50.751489 32630 solver.cpp:218] Iteration 3564 (2.4077 iter/s, 4.984s/12 iters), loss = 1.21059 +I0407 22:53:50.751533 32630 solver.cpp:237] Train net output #0: loss = 1.21059 (* 1 = 1.21059 loss) +I0407 22:53:50.751541 32630 sgd_solver.cpp:105] Iteration 3564, lr = 0.0081845 +I0407 22:53:52.752192 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 22:53:55.852995 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 22:53:58.222214 32630 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 22:53:58.222232 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:54:01.249871 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:02.691108 32630 solver.cpp:397] Test net output #0: accuracy = 0.367647 +I0407 22:54:02.691154 32630 solver.cpp:397] Test net output #1: loss = 2.85638 (* 1 = 2.85638 loss) +I0407 22:54:04.481917 32630 solver.cpp:218] Iteration 3576 (0.873977 iter/s, 13.7303s/12 iters), loss = 1.61064 +I0407 22:54:04.481957 32630 solver.cpp:237] Train net output #0: loss = 1.61064 (* 1 = 1.61064 loss) +I0407 22:54:04.481966 32630 sgd_solver.cpp:105] Iteration 3576, lr = 0.00816695 +I0407 22:54:09.448817 32630 solver.cpp:218] Iteration 3588 (2.41602 iter/s, 4.96684s/12 iters), loss = 1.33162 +I0407 22:54:09.448855 32630 solver.cpp:237] Train net output #0: loss = 1.33162 (* 1 = 1.33162 loss) +I0407 22:54:09.448863 32630 sgd_solver.cpp:105] Iteration 3588, lr = 0.00814928 +I0407 22:54:14.406585 32630 solver.cpp:218] Iteration 3600 (2.42048 iter/s, 4.9577s/12 iters), loss = 1.42644 +I0407 22:54:14.406720 32630 solver.cpp:237] Train net output #0: loss = 1.42644 (* 1 = 1.42644 loss) +I0407 22:54:14.406730 32630 sgd_solver.cpp:105] Iteration 3600, lr = 0.00813147 +I0407 22:54:19.347730 32630 solver.cpp:218] Iteration 3612 (2.42866 iter/s, 4.94099s/12 iters), loss = 1.31007 +I0407 22:54:19.347766 32630 solver.cpp:237] Train net output #0: loss = 1.31007 (* 1 = 1.31007 loss) +I0407 22:54:19.347774 32630 sgd_solver.cpp:105] Iteration 3612, lr = 0.00811353 +I0407 22:54:24.308944 32630 solver.cpp:218] Iteration 3624 (2.4188 iter/s, 4.96115s/12 iters), loss = 1.77015 +I0407 22:54:24.308987 32630 solver.cpp:237] Train net output #0: loss = 1.77015 (* 1 = 1.77015 loss) +I0407 22:54:24.308995 32630 sgd_solver.cpp:105] Iteration 3624, lr = 0.00809545 +I0407 22:54:29.242241 32630 solver.cpp:218] Iteration 3636 (2.43248 iter/s, 4.93323s/12 iters), loss = 1.26622 +I0407 22:54:29.242281 32630 solver.cpp:237] Train net output #0: loss = 1.26622 (* 1 = 1.26622 loss) +I0407 22:54:29.242290 32630 sgd_solver.cpp:105] Iteration 3636, lr = 0.00807725 +I0407 22:54:31.090328 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:34.177558 32630 solver.cpp:218] Iteration 3648 (2.43149 iter/s, 4.93525s/12 iters), loss = 1.38292 +I0407 22:54:34.177599 32630 solver.cpp:237] Train net output #0: loss = 1.38292 (* 1 = 1.38292 loss) +I0407 22:54:34.177608 32630 sgd_solver.cpp:105] Iteration 3648, lr = 0.00805891 +I0407 22:54:39.104988 32630 solver.cpp:218] Iteration 3660 (2.43538 iter/s, 4.92736s/12 iters), loss = 1.2022 +I0407 22:54:39.105033 32630 solver.cpp:237] Train net output #0: loss = 1.2022 (* 1 = 1.2022 loss) +I0407 22:54:39.105041 32630 sgd_solver.cpp:105] Iteration 3660, lr = 0.00804044 +I0407 22:54:43.587764 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 22:54:46.775077 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 22:54:49.153676 32630 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 22:54:49.153693 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:54:52.311308 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:53.919260 32630 solver.cpp:397] Test net output #0: accuracy = 0.371936 +I0407 22:54:53.919294 32630 solver.cpp:397] Test net output #1: loss = 2.79562 (* 1 = 2.79562 loss) +I0407 22:54:54.015836 32630 solver.cpp:218] Iteration 3672 (0.804788 iter/s, 14.9108s/12 iters), loss = 1.47715 +I0407 22:54:54.015882 32630 solver.cpp:237] Train net output #0: loss = 1.47715 (* 1 = 1.47715 loss) +I0407 22:54:54.015889 32630 sgd_solver.cpp:105] Iteration 3672, lr = 0.00802184 +I0407 22:54:58.140897 32630 solver.cpp:218] Iteration 3684 (2.9091 iter/s, 4.12499s/12 iters), loss = 1.24611 +I0407 22:54:58.140931 32630 solver.cpp:237] Train net output #0: loss = 1.24611 (* 1 = 1.24611 loss) +I0407 22:54:58.140938 32630 sgd_solver.cpp:105] Iteration 3684, lr = 0.0080031 +I0407 22:55:03.109270 32630 solver.cpp:218] Iteration 3696 (2.41531 iter/s, 4.96832s/12 iters), loss = 1.31248 +I0407 22:55:03.109309 32630 solver.cpp:237] Train net output #0: loss = 1.31248 (* 1 = 1.31248 loss) +I0407 22:55:03.109316 32630 sgd_solver.cpp:105] Iteration 3696, lr = 0.00798424 +I0407 22:55:08.047905 32630 solver.cpp:218] Iteration 3708 (2.42985 iter/s, 4.93858s/12 iters), loss = 1.28864 +I0407 22:55:08.047936 32630 solver.cpp:237] Train net output #0: loss = 1.28864 (* 1 = 1.28864 loss) +I0407 22:55:08.047945 32630 sgd_solver.cpp:105] Iteration 3708, lr = 0.00796523 +I0407 22:55:13.006157 32630 solver.cpp:218] Iteration 3720 (2.42023 iter/s, 4.9582s/12 iters), loss = 1.07115 +I0407 22:55:13.006207 32630 solver.cpp:237] Train net output #0: loss = 1.07115 (* 1 = 1.07115 loss) +I0407 22:55:13.006214 32630 sgd_solver.cpp:105] Iteration 3720, lr = 0.0079461 +I0407 22:55:17.969554 32630 solver.cpp:218] Iteration 3732 (2.41774 iter/s, 4.96331s/12 iters), loss = 1.0109 +I0407 22:55:17.969714 32630 solver.cpp:237] Train net output #0: loss = 1.0109 (* 1 = 1.0109 loss) +I0407 22:55:17.969724 32630 sgd_solver.cpp:105] Iteration 3732, lr = 0.00792683 +I0407 22:55:21.923161 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:22.887673 32630 solver.cpp:218] Iteration 3744 (2.44005 iter/s, 4.91794s/12 iters), loss = 1.28563 +I0407 22:55:22.887715 32630 solver.cpp:237] Train net output #0: loss = 1.28563 (* 1 = 1.28563 loss) +I0407 22:55:22.887723 32630 sgd_solver.cpp:105] Iteration 3744, lr = 0.00790743 +I0407 22:55:27.859378 32630 solver.cpp:218] Iteration 3756 (2.41369 iter/s, 4.97164s/12 iters), loss = 1.25515 +I0407 22:55:27.859412 32630 solver.cpp:237] Train net output #0: loss = 1.25515 (* 1 = 1.25515 loss) +I0407 22:55:27.859419 32630 sgd_solver.cpp:105] Iteration 3756, lr = 0.0078879 +I0407 22:55:32.788530 32630 solver.cpp:218] Iteration 3768 (2.43452 iter/s, 4.9291s/12 iters), loss = 0.965295 +I0407 22:55:32.788570 32630 solver.cpp:237] Train net output #0: loss = 0.965295 (* 1 = 0.965295 loss) +I0407 22:55:32.788578 32630 sgd_solver.cpp:105] Iteration 3768, lr = 0.00786823 +I0407 22:55:34.789212 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 22:55:37.877588 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 22:55:40.282856 32630 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 22:55:40.282873 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:55:43.211943 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:44.731922 32630 solver.cpp:397] Test net output #0: accuracy = 0.358456 +I0407 22:55:44.731959 32630 solver.cpp:397] Test net output #1: loss = 2.83387 (* 1 = 2.83387 loss) +I0407 22:55:46.526682 32630 solver.cpp:218] Iteration 3780 (0.873485 iter/s, 13.7381s/12 iters), loss = 1.17134 +I0407 22:55:46.526722 32630 solver.cpp:237] Train net output #0: loss = 1.17134 (* 1 = 1.17134 loss) +I0407 22:55:46.526731 32630 sgd_solver.cpp:105] Iteration 3780, lr = 0.00784843 +I0407 22:55:51.459218 32630 solver.cpp:218] Iteration 3792 (2.43286 iter/s, 4.93247s/12 iters), loss = 1.3535 +I0407 22:55:51.459344 32630 solver.cpp:237] Train net output #0: loss = 1.3535 (* 1 = 1.3535 loss) +I0407 22:55:51.459353 32630 sgd_solver.cpp:105] Iteration 3792, lr = 0.0078285 +I0407 22:55:56.393240 32630 solver.cpp:218] Iteration 3804 (2.43217 iter/s, 4.93387s/12 iters), loss = 1.37407 +I0407 22:55:56.393281 32630 solver.cpp:237] Train net output #0: loss = 1.37407 (* 1 = 1.37407 loss) +I0407 22:55:56.393290 32630 sgd_solver.cpp:105] Iteration 3804, lr = 0.00780843 +I0407 22:56:01.311959 32630 solver.cpp:218] Iteration 3816 (2.43969 iter/s, 4.91865s/12 iters), loss = 1.17847 +I0407 22:56:01.312005 32630 solver.cpp:237] Train net output #0: loss = 1.17847 (* 1 = 1.17847 loss) +I0407 22:56:01.312013 32630 sgd_solver.cpp:105] Iteration 3816, lr = 0.00778824 +I0407 22:56:06.270771 32630 solver.cpp:218] Iteration 3828 (2.41997 iter/s, 4.95874s/12 iters), loss = 1.4979 +I0407 22:56:06.270810 32630 solver.cpp:237] Train net output #0: loss = 1.4979 (* 1 = 1.4979 loss) +I0407 22:56:06.270818 32630 sgd_solver.cpp:105] Iteration 3828, lr = 0.0077679 +I0407 22:56:11.203299 32630 solver.cpp:218] Iteration 3840 (2.43286 iter/s, 4.93247s/12 iters), loss = 0.926461 +I0407 22:56:11.203336 32630 solver.cpp:237] Train net output #0: loss = 0.926461 (* 1 = 0.926461 loss) +I0407 22:56:11.203343 32630 sgd_solver.cpp:105] Iteration 3840, lr = 0.00774744 +I0407 22:56:12.304634 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:16.051720 32630 solver.cpp:218] Iteration 3852 (2.47507 iter/s, 4.84835s/12 iters), loss = 1.04951 +I0407 22:56:16.051760 32630 solver.cpp:237] Train net output #0: loss = 1.04951 (* 1 = 1.04951 loss) +I0407 22:56:16.051769 32630 sgd_solver.cpp:105] Iteration 3852, lr = 0.00772684 +I0407 22:56:21.019420 32630 solver.cpp:218] Iteration 3864 (2.41563 iter/s, 4.96764s/12 iters), loss = 1.238 +I0407 22:56:21.019455 32630 solver.cpp:237] Train net output #0: loss = 1.238 (* 1 = 1.238 loss) +I0407 22:56:21.019464 32630 sgd_solver.cpp:105] Iteration 3864, lr = 0.00770611 +I0407 22:56:25.462188 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 22:56:28.873371 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 22:56:31.258677 32630 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 22:56:31.258694 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:56:34.252403 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:35.825103 32630 solver.cpp:397] Test net output #0: accuracy = 0.379902 +I0407 22:56:35.825152 32630 solver.cpp:397] Test net output #1: loss = 2.85921 (* 1 = 2.85921 loss) +I0407 22:56:35.921710 32630 solver.cpp:218] Iteration 3876 (0.80525 iter/s, 14.9022s/12 iters), loss = 0.916137 +I0407 22:56:35.921749 32630 solver.cpp:237] Train net output #0: loss = 0.916137 (* 1 = 0.916137 loss) +I0407 22:56:35.921757 32630 sgd_solver.cpp:105] Iteration 3876, lr = 0.00768525 +I0407 22:56:40.068537 32630 solver.cpp:218] Iteration 3888 (2.89382 iter/s, 4.14677s/12 iters), loss = 0.847256 +I0407 22:56:40.068579 32630 solver.cpp:237] Train net output #0: loss = 0.847256 (* 1 = 0.847256 loss) +I0407 22:56:40.068588 32630 sgd_solver.cpp:105] Iteration 3888, lr = 0.00766425 +I0407 22:56:44.990269 32630 solver.cpp:218] Iteration 3900 (2.4382 iter/s, 4.92167s/12 iters), loss = 1.10191 +I0407 22:56:44.990307 32630 solver.cpp:237] Train net output #0: loss = 1.10191 (* 1 = 1.10191 loss) +I0407 22:56:44.990314 32630 sgd_solver.cpp:105] Iteration 3900, lr = 0.00764313 +I0407 22:56:49.950932 32630 solver.cpp:218] Iteration 3912 (2.41906 iter/s, 4.96061s/12 iters), loss = 1.11148 +I0407 22:56:49.950960 32630 solver.cpp:237] Train net output #0: loss = 1.11148 (* 1 = 1.11148 loss) +I0407 22:56:49.950968 32630 sgd_solver.cpp:105] Iteration 3912, lr = 0.00762187 +I0407 22:56:54.857874 32630 solver.cpp:218] Iteration 3924 (2.44554 iter/s, 4.90689s/12 iters), loss = 1.23274 +I0407 22:56:54.857916 32630 solver.cpp:237] Train net output #0: loss = 1.23274 (* 1 = 1.23274 loss) +I0407 22:56:54.857924 32630 sgd_solver.cpp:105] Iteration 3924, lr = 0.00760048 +I0407 22:56:59.821532 32630 solver.cpp:218] Iteration 3936 (2.4176 iter/s, 4.9636s/12 iters), loss = 1.36749 +I0407 22:56:59.821652 32630 solver.cpp:237] Train net output #0: loss = 1.36749 (* 1 = 1.36749 loss) +I0407 22:56:59.821662 32630 sgd_solver.cpp:105] Iteration 3936, lr = 0.00757896 +I0407 22:57:03.127794 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:04.725620 32630 solver.cpp:218] Iteration 3948 (2.44701 iter/s, 4.90395s/12 iters), loss = 1.13259 +I0407 22:57:04.725653 32630 solver.cpp:237] Train net output #0: loss = 1.13259 (* 1 = 1.13259 loss) +I0407 22:57:04.725659 32630 sgd_solver.cpp:105] Iteration 3948, lr = 0.0075573 +I0407 22:57:09.689190 32630 solver.cpp:218] Iteration 3960 (2.41764 iter/s, 4.96352s/12 iters), loss = 1.0598 +I0407 22:57:09.689235 32630 solver.cpp:237] Train net output #0: loss = 1.0598 (* 1 = 1.0598 loss) +I0407 22:57:09.689242 32630 sgd_solver.cpp:105] Iteration 3960, lr = 0.00753552 +I0407 22:57:14.612028 32630 solver.cpp:218] Iteration 3972 (2.43765 iter/s, 4.92277s/12 iters), loss = 1.15815 +I0407 22:57:14.612066 32630 solver.cpp:237] Train net output #0: loss = 1.15815 (* 1 = 1.15815 loss) +I0407 22:57:14.612074 32630 sgd_solver.cpp:105] Iteration 3972, lr = 0.00751361 +I0407 22:57:16.622279 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 22:57:19.737484 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 22:57:22.106856 32630 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 22:57:22.106876 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:57:25.244402 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:26.864971 32630 solver.cpp:397] Test net output #0: accuracy = 0.366422 +I0407 22:57:26.865017 32630 solver.cpp:397] Test net output #1: loss = 2.93016 (* 1 = 2.93016 loss) +I0407 22:57:28.740375 32630 solver.cpp:218] Iteration 3984 (0.849361 iter/s, 14.1283s/12 iters), loss = 0.982663 +I0407 22:57:28.740419 32630 solver.cpp:237] Train net output #0: loss = 0.982663 (* 1 = 0.982663 loss) +I0407 22:57:28.740427 32630 sgd_solver.cpp:105] Iteration 3984, lr = 0.00749156 +I0407 22:57:33.665573 32630 solver.cpp:218] Iteration 3996 (2.43648 iter/s, 4.92513s/12 iters), loss = 0.638433 +I0407 22:57:33.665725 32630 solver.cpp:237] Train net output #0: loss = 0.638433 (* 1 = 0.638433 loss) +I0407 22:57:33.665735 32630 sgd_solver.cpp:105] Iteration 3996, lr = 0.00746939 +I0407 22:57:38.617841 32630 solver.cpp:218] Iteration 4008 (2.42322 iter/s, 4.9521s/12 iters), loss = 1.15734 +I0407 22:57:38.617882 32630 solver.cpp:237] Train net output #0: loss = 1.15734 (* 1 = 1.15734 loss) +I0407 22:57:38.617892 32630 sgd_solver.cpp:105] Iteration 4008, lr = 0.00744709 +I0407 22:57:43.466588 32630 solver.cpp:218] Iteration 4020 (2.4749 iter/s, 4.84868s/12 iters), loss = 0.941064 +I0407 22:57:43.466637 32630 solver.cpp:237] Train net output #0: loss = 0.941064 (* 1 = 0.941064 loss) +I0407 22:57:43.466646 32630 sgd_solver.cpp:105] Iteration 4020, lr = 0.00742466 +I0407 22:57:48.343425 32630 solver.cpp:218] Iteration 4032 (2.46065 iter/s, 4.87677s/12 iters), loss = 0.775982 +I0407 22:57:48.343463 32630 solver.cpp:237] Train net output #0: loss = 0.775982 (* 1 = 0.775982 loss) +I0407 22:57:48.343472 32630 sgd_solver.cpp:105] Iteration 4032, lr = 0.0074021 +I0407 22:57:53.334736 32630 solver.cpp:218] Iteration 4044 (2.40421 iter/s, 4.99125s/12 iters), loss = 0.889268 +I0407 22:57:53.334776 32630 solver.cpp:237] Train net output #0: loss = 0.889268 (* 1 = 0.889268 loss) +I0407 22:57:53.334784 32630 sgd_solver.cpp:105] Iteration 4044, lr = 0.00737941 +I0407 22:57:53.853026 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:58.354319 32630 solver.cpp:218] Iteration 4056 (2.39067 iter/s, 5.01952s/12 iters), loss = 1.22813 +I0407 22:57:58.354362 32630 solver.cpp:237] Train net output #0: loss = 1.22813 (* 1 = 1.22813 loss) +I0407 22:57:58.354370 32630 sgd_solver.cpp:105] Iteration 4056, lr = 0.0073566 +I0407 22:58:03.360251 32630 solver.cpp:218] Iteration 4068 (2.39719 iter/s, 5.00587s/12 iters), loss = 1.03936 +I0407 22:58:03.360285 32630 solver.cpp:237] Train net output #0: loss = 1.03936 (* 1 = 1.03936 loss) +I0407 22:58:03.360292 32630 sgd_solver.cpp:105] Iteration 4068, lr = 0.00733365 +I0407 22:58:07.839172 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 22:58:11.867249 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 22:58:14.771380 32630 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 22:58:14.771399 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:58:17.734855 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:19.402184 32630 solver.cpp:397] Test net output #0: accuracy = 0.384804 +I0407 22:58:19.402212 32630 solver.cpp:397] Test net output #1: loss = 2.84745 (* 1 = 2.84745 loss) +I0407 22:58:19.498530 32630 solver.cpp:218] Iteration 4080 (0.743577 iter/s, 16.1382s/12 iters), loss = 0.836888 +I0407 22:58:19.498574 32630 solver.cpp:237] Train net output #0: loss = 0.836888 (* 1 = 0.836888 loss) +I0407 22:58:19.498584 32630 sgd_solver.cpp:105] Iteration 4080, lr = 0.00731059 +I0407 22:58:23.650465 32630 solver.cpp:218] Iteration 4092 (2.89027 iter/s, 4.15186s/12 iters), loss = 0.918298 +I0407 22:58:23.650511 32630 solver.cpp:237] Train net output #0: loss = 0.918298 (* 1 = 0.918298 loss) +I0407 22:58:23.650519 32630 sgd_solver.cpp:105] Iteration 4092, lr = 0.00728739 +I0407 22:58:28.614652 32630 solver.cpp:218] Iteration 4104 (2.41735 iter/s, 4.96411s/12 iters), loss = 0.972846 +I0407 22:58:28.614692 32630 solver.cpp:237] Train net output #0: loss = 0.972846 (* 1 = 0.972846 loss) +I0407 22:58:28.614701 32630 sgd_solver.cpp:105] Iteration 4104, lr = 0.00726407 +I0407 22:58:33.585424 32630 solver.cpp:218] Iteration 4116 (2.41414 iter/s, 4.97071s/12 iters), loss = 0.808429 +I0407 22:58:33.585469 32630 solver.cpp:237] Train net output #0: loss = 0.808429 (* 1 = 0.808429 loss) +I0407 22:58:33.585477 32630 sgd_solver.cpp:105] Iteration 4116, lr = 0.00724063 +I0407 22:58:38.527962 32630 solver.cpp:218] Iteration 4128 (2.42793 iter/s, 4.94247s/12 iters), loss = 0.824188 +I0407 22:58:38.528121 32630 solver.cpp:237] Train net output #0: loss = 0.824188 (* 1 = 0.824188 loss) +I0407 22:58:38.528131 32630 sgd_solver.cpp:105] Iteration 4128, lr = 0.00721706 +I0407 22:58:43.479380 32630 solver.cpp:218] Iteration 4140 (2.42363 iter/s, 4.95124s/12 iters), loss = 0.8841 +I0407 22:58:43.479422 32630 solver.cpp:237] Train net output #0: loss = 0.8841 (* 1 = 0.8841 loss) +I0407 22:58:43.479432 32630 sgd_solver.cpp:105] Iteration 4140, lr = 0.00719337 +I0407 22:58:46.078459 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:48.459573 32630 solver.cpp:218] Iteration 4152 (2.40958 iter/s, 4.98012s/12 iters), loss = 0.977604 +I0407 22:58:48.459614 32630 solver.cpp:237] Train net output #0: loss = 0.977604 (* 1 = 0.977604 loss) +I0407 22:58:48.459622 32630 sgd_solver.cpp:105] Iteration 4152, lr = 0.00716956 +I0407 22:58:50.054976 32630 blocking_queue.cpp:49] Waiting for data +I0407 22:58:53.427366 32630 solver.cpp:218] Iteration 4164 (2.41559 iter/s, 4.96772s/12 iters), loss = 0.889625 +I0407 22:58:53.427409 32630 solver.cpp:237] Train net output #0: loss = 0.889625 (* 1 = 0.889625 loss) +I0407 22:58:53.427417 32630 sgd_solver.cpp:105] Iteration 4164, lr = 0.00714562 +I0407 22:58:58.400943 32630 solver.cpp:218] Iteration 4176 (2.41278 iter/s, 4.97351s/12 iters), loss = 1.02461 +I0407 22:58:58.400987 32630 solver.cpp:237] Train net output #0: loss = 1.02461 (* 1 = 1.02461 loss) +I0407 22:58:58.400996 32630 sgd_solver.cpp:105] Iteration 4176, lr = 0.00712157 +I0407 22:59:00.423928 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 22:59:04.681496 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 22:59:07.812940 32630 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 22:59:07.812963 32630 net.cpp:676] Ignoring source layer train-data +I0407 22:59:10.773202 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:12.595748 32630 solver.cpp:397] Test net output #0: accuracy = 0.365809 +I0407 22:59:12.595808 32630 solver.cpp:397] Test net output #1: loss = 2.91308 (* 1 = 2.91308 loss) +I0407 22:59:14.388799 32630 solver.cpp:218] Iteration 4188 (0.750574 iter/s, 15.9878s/12 iters), loss = 0.87236 +I0407 22:59:14.388840 32630 solver.cpp:237] Train net output #0: loss = 0.87236 (* 1 = 0.87236 loss) +I0407 22:59:14.388849 32630 sgd_solver.cpp:105] Iteration 4188, lr = 0.00709739 +I0407 22:59:19.364482 32630 solver.cpp:218] Iteration 4200 (2.41176 iter/s, 4.97562s/12 iters), loss = 0.912499 +I0407 22:59:19.364531 32630 solver.cpp:237] Train net output #0: loss = 0.912499 (* 1 = 0.912499 loss) +I0407 22:59:19.364538 32630 sgd_solver.cpp:105] Iteration 4200, lr = 0.0070731 +I0407 22:59:24.332147 32630 solver.cpp:218] Iteration 4212 (2.41566 iter/s, 4.9676s/12 iters), loss = 1.08597 +I0407 22:59:24.332190 32630 solver.cpp:237] Train net output #0: loss = 1.08597 (* 1 = 1.08597 loss) +I0407 22:59:24.332199 32630 sgd_solver.cpp:105] Iteration 4212, lr = 0.00704868 +I0407 22:59:29.230628 32630 solver.cpp:218] Iteration 4224 (2.44977 iter/s, 4.89841s/12 iters), loss = 0.956956 +I0407 22:59:29.230675 32630 solver.cpp:237] Train net output #0: loss = 0.956956 (* 1 = 0.956956 loss) +I0407 22:59:29.230682 32630 sgd_solver.cpp:105] Iteration 4224, lr = 0.00702415 +I0407 22:59:34.187008 32630 solver.cpp:218] Iteration 4236 (2.42116 iter/s, 4.95631s/12 iters), loss = 0.763088 +I0407 22:59:34.187049 32630 solver.cpp:237] Train net output #0: loss = 0.763088 (* 1 = 0.763088 loss) +I0407 22:59:34.187057 32630 sgd_solver.cpp:105] Iteration 4236, lr = 0.0069995 +I0407 22:59:38.915836 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:39.141502 32630 solver.cpp:218] Iteration 4248 (2.42207 iter/s, 4.95443s/12 iters), loss = 0.992411 +I0407 22:59:39.141539 32630 solver.cpp:237] Train net output #0: loss = 0.992411 (* 1 = 0.992411 loss) +I0407 22:59:39.141547 32630 sgd_solver.cpp:105] Iteration 4248, lr = 0.00697473 +I0407 22:59:44.068506 32630 solver.cpp:218] Iteration 4260 (2.43559 iter/s, 4.92695s/12 iters), loss = 0.754796 +I0407 22:59:44.068650 32630 solver.cpp:237] Train net output #0: loss = 0.754796 (* 1 = 0.754796 loss) +I0407 22:59:44.068660 32630 sgd_solver.cpp:105] Iteration 4260, lr = 0.00694985 +I0407 22:59:49.063661 32630 solver.cpp:218] Iteration 4272 (2.40241 iter/s, 4.99499s/12 iters), loss = 0.791177 +I0407 22:59:49.063696 32630 solver.cpp:237] Train net output #0: loss = 0.791177 (* 1 = 0.791177 loss) +I0407 22:59:49.063704 32630 sgd_solver.cpp:105] Iteration 4272, lr = 0.00692485 +I0407 22:59:53.571666 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 22:59:56.648403 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 22:59:59.224673 32630 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 22:59:59.224690 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:00:01.932096 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:03.699419 32630 solver.cpp:397] Test net output #0: accuracy = 0.386029 +I0407 23:00:03.699465 32630 solver.cpp:397] Test net output #1: loss = 2.87579 (* 1 = 2.87579 loss) +I0407 23:00:03.795962 32630 solver.cpp:218] Iteration 4284 (0.814541 iter/s, 14.7322s/12 iters), loss = 0.832962 +I0407 23:00:03.796023 32630 solver.cpp:237] Train net output #0: loss = 0.832962 (* 1 = 0.832962 loss) +I0407 23:00:03.796036 32630 sgd_solver.cpp:105] Iteration 4284, lr = 0.00689974 +I0407 23:00:07.876863 32630 solver.cpp:218] Iteration 4296 (2.94058 iter/s, 4.08082s/12 iters), loss = 0.40211 +I0407 23:00:07.876912 32630 solver.cpp:237] Train net output #0: loss = 0.40211 (* 1 = 0.40211 loss) +I0407 23:00:07.876921 32630 sgd_solver.cpp:105] Iteration 4296, lr = 0.00687452 +I0407 23:00:12.789921 32630 solver.cpp:218] Iteration 4308 (2.44251 iter/s, 4.91298s/12 iters), loss = 0.838466 +I0407 23:00:12.789964 32630 solver.cpp:237] Train net output #0: loss = 0.838467 (* 1 = 0.838467 loss) +I0407 23:00:12.789973 32630 sgd_solver.cpp:105] Iteration 4308, lr = 0.00684919 +I0407 23:00:17.732658 32630 solver.cpp:218] Iteration 4320 (2.42784 iter/s, 4.94267s/12 iters), loss = 1.0913 +I0407 23:00:17.732796 32630 solver.cpp:237] Train net output #0: loss = 1.0913 (* 1 = 1.0913 loss) +I0407 23:00:17.732806 32630 sgd_solver.cpp:105] Iteration 4320, lr = 0.00682375 +I0407 23:00:22.595458 32630 solver.cpp:218] Iteration 4332 (2.46779 iter/s, 4.86264s/12 iters), loss = 0.830482 +I0407 23:00:22.595494 32630 solver.cpp:237] Train net output #0: loss = 0.830482 (* 1 = 0.830482 loss) +I0407 23:00:22.595501 32630 sgd_solver.cpp:105] Iteration 4332, lr = 0.00679819 +I0407 23:00:27.519277 32630 solver.cpp:218] Iteration 4344 (2.43716 iter/s, 4.92376s/12 iters), loss = 0.979705 +I0407 23:00:27.519312 32630 solver.cpp:237] Train net output #0: loss = 0.979705 (* 1 = 0.979705 loss) +I0407 23:00:27.519320 32630 sgd_solver.cpp:105] Iteration 4344, lr = 0.00677253 +I0407 23:00:29.414057 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:32.451340 32630 solver.cpp:218] Iteration 4356 (2.43309 iter/s, 4.93201s/12 iters), loss = 0.774675 +I0407 23:00:32.451381 32630 solver.cpp:237] Train net output #0: loss = 0.774675 (* 1 = 0.774675 loss) +I0407 23:00:32.451390 32630 sgd_solver.cpp:105] Iteration 4356, lr = 0.00674676 +I0407 23:00:37.379042 32630 solver.cpp:218] Iteration 4368 (2.43525 iter/s, 4.92763s/12 iters), loss = 0.878049 +I0407 23:00:37.379087 32630 solver.cpp:237] Train net output #0: loss = 0.878049 (* 1 = 0.878049 loss) +I0407 23:00:37.379096 32630 sgd_solver.cpp:105] Iteration 4368, lr = 0.00672089 +I0407 23:00:42.264570 32630 solver.cpp:218] Iteration 4380 (2.45627 iter/s, 4.88546s/12 iters), loss = 0.903578 +I0407 23:00:42.264617 32630 solver.cpp:237] Train net output #0: loss = 0.903578 (* 1 = 0.903578 loss) +I0407 23:00:42.264626 32630 sgd_solver.cpp:105] Iteration 4380, lr = 0.00669491 +I0407 23:00:44.197108 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 23:00:47.250316 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 23:00:49.623143 32630 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 23:00:49.623268 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:00:52.490849 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:54.394279 32630 solver.cpp:397] Test net output #0: accuracy = 0.382353 +I0407 23:00:54.394325 32630 solver.cpp:397] Test net output #1: loss = 2.80704 (* 1 = 2.80704 loss) +I0407 23:00:56.197000 32630 solver.cpp:218] Iteration 4392 (0.861305 iter/s, 13.9323s/12 iters), loss = 0.748026 +I0407 23:00:56.197038 32630 solver.cpp:237] Train net output #0: loss = 0.748026 (* 1 = 0.748026 loss) +I0407 23:00:56.197047 32630 sgd_solver.cpp:105] Iteration 4392, lr = 0.00666882 +I0407 23:01:01.161180 32630 solver.cpp:218] Iteration 4404 (2.41735 iter/s, 4.96412s/12 iters), loss = 0.988188 +I0407 23:01:01.161221 32630 solver.cpp:237] Train net output #0: loss = 0.988188 (* 1 = 0.988188 loss) +I0407 23:01:01.161228 32630 sgd_solver.cpp:105] Iteration 4404, lr = 0.00664264 +I0407 23:01:06.087353 32630 solver.cpp:218] Iteration 4416 (2.436 iter/s, 4.92611s/12 iters), loss = 0.66077 +I0407 23:01:06.087390 32630 solver.cpp:237] Train net output #0: loss = 0.66077 (* 1 = 0.66077 loss) +I0407 23:01:06.087397 32630 sgd_solver.cpp:105] Iteration 4416, lr = 0.00661635 +I0407 23:01:11.043082 32630 solver.cpp:218] Iteration 4428 (2.42147 iter/s, 4.95567s/12 iters), loss = 0.692481 +I0407 23:01:11.043116 32630 solver.cpp:237] Train net output #0: loss = 0.692481 (* 1 = 0.692481 loss) +I0407 23:01:11.043123 32630 sgd_solver.cpp:105] Iteration 4428, lr = 0.00658996 +I0407 23:01:15.974242 32630 solver.cpp:218] Iteration 4440 (2.43354 iter/s, 4.9311s/12 iters), loss = 0.633179 +I0407 23:01:15.974283 32630 solver.cpp:237] Train net output #0: loss = 0.63318 (* 1 = 0.63318 loss) +I0407 23:01:15.974292 32630 sgd_solver.cpp:105] Iteration 4440, lr = 0.00656347 +I0407 23:01:19.972242 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:20.905673 32630 solver.cpp:218] Iteration 4452 (2.4334 iter/s, 4.93137s/12 iters), loss = 0.89545 +I0407 23:01:20.905709 32630 solver.cpp:237] Train net output #0: loss = 0.89545 (* 1 = 0.89545 loss) +I0407 23:01:20.905716 32630 sgd_solver.cpp:105] Iteration 4452, lr = 0.00653689 +I0407 23:01:25.823837 32630 solver.cpp:218] Iteration 4464 (2.43996 iter/s, 4.91811s/12 iters), loss = 0.691098 +I0407 23:01:25.823869 32630 solver.cpp:237] Train net output #0: loss = 0.691098 (* 1 = 0.691098 loss) +I0407 23:01:25.823875 32630 sgd_solver.cpp:105] Iteration 4464, lr = 0.00651021 +I0407 23:01:30.773166 32630 solver.cpp:218] Iteration 4476 (2.4246 iter/s, 4.94927s/12 iters), loss = 1.0124 +I0407 23:01:30.773200 32630 solver.cpp:237] Train net output #0: loss = 1.0124 (* 1 = 1.0124 loss) +I0407 23:01:30.773207 32630 sgd_solver.cpp:105] Iteration 4476, lr = 0.00648343 +I0407 23:01:35.238348 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 23:01:38.333978 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 23:01:40.693187 32630 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 23:01:40.693207 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:01:43.369087 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:45.168027 32630 solver.cpp:397] Test net output #0: accuracy = 0.385417 +I0407 23:01:45.168067 32630 solver.cpp:397] Test net output #1: loss = 2.90809 (* 1 = 2.90809 loss) +I0407 23:01:45.265321 32630 solver.cpp:218] Iteration 4488 (0.828038 iter/s, 14.4921s/12 iters), loss = 0.945162 +I0407 23:01:45.265362 32630 solver.cpp:237] Train net output #0: loss = 0.945162 (* 1 = 0.945162 loss) +I0407 23:01:45.265370 32630 sgd_solver.cpp:105] Iteration 4488, lr = 0.00645656 +I0407 23:01:49.403914 32630 solver.cpp:218] Iteration 4500 (2.89958 iter/s, 4.13853s/12 iters), loss = 0.751505 +I0407 23:01:49.403952 32630 solver.cpp:237] Train net output #0: loss = 0.751505 (* 1 = 0.751505 loss) +I0407 23:01:49.403965 32630 sgd_solver.cpp:105] Iteration 4500, lr = 0.0064296 +I0407 23:01:54.344540 32630 solver.cpp:218] Iteration 4512 (2.42887 iter/s, 4.94057s/12 iters), loss = 0.607413 +I0407 23:01:54.344703 32630 solver.cpp:237] Train net output #0: loss = 0.607413 (* 1 = 0.607413 loss) +I0407 23:01:54.344712 32630 sgd_solver.cpp:105] Iteration 4512, lr = 0.00640255 +I0407 23:01:59.312129 32630 solver.cpp:218] Iteration 4524 (2.41575 iter/s, 4.96741s/12 iters), loss = 0.700027 +I0407 23:01:59.312165 32630 solver.cpp:237] Train net output #0: loss = 0.700028 (* 1 = 0.700028 loss) +I0407 23:01:59.312172 32630 sgd_solver.cpp:105] Iteration 4524, lr = 0.00637541 +I0407 23:02:04.272354 32630 solver.cpp:218] Iteration 4536 (2.41927 iter/s, 4.96017s/12 iters), loss = 0.64298 +I0407 23:02:04.272389 32630 solver.cpp:237] Train net output #0: loss = 0.64298 (* 1 = 0.64298 loss) +I0407 23:02:04.272397 32630 sgd_solver.cpp:105] Iteration 4536, lr = 0.00634818 +I0407 23:02:09.231420 32630 solver.cpp:218] Iteration 4548 (2.41984 iter/s, 4.95901s/12 iters), loss = 0.720819 +I0407 23:02:09.231456 32630 solver.cpp:237] Train net output #0: loss = 0.720819 (* 1 = 0.720819 loss) +I0407 23:02:09.231462 32630 sgd_solver.cpp:105] Iteration 4548, lr = 0.00632086 +I0407 23:02:10.455515 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:14.130278 32630 solver.cpp:218] Iteration 4560 (2.44958 iter/s, 4.8988s/12 iters), loss = 0.706228 +I0407 23:02:14.130329 32630 solver.cpp:237] Train net output #0: loss = 0.706228 (* 1 = 0.706228 loss) +I0407 23:02:14.130337 32630 sgd_solver.cpp:105] Iteration 4560, lr = 0.00629346 +I0407 23:02:19.107851 32630 solver.cpp:218] Iteration 4572 (2.41085 iter/s, 4.9775s/12 iters), loss = 0.75829 +I0407 23:02:19.107890 32630 solver.cpp:237] Train net output #0: loss = 0.75829 (* 1 = 0.75829 loss) +I0407 23:02:19.107898 32630 sgd_solver.cpp:105] Iteration 4572, lr = 0.00626597 +I0407 23:02:24.030411 32630 solver.cpp:218] Iteration 4584 (2.43779 iter/s, 4.9225s/12 iters), loss = 0.563994 +I0407 23:02:24.030452 32630 solver.cpp:237] Train net output #0: loss = 0.563995 (* 1 = 0.563995 loss) +I0407 23:02:24.030459 32630 sgd_solver.cpp:105] Iteration 4584, lr = 0.00623841 +I0407 23:02:26.039194 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 23:02:29.131367 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 23:02:31.525600 32630 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 23:02:31.525619 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:02:34.310842 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:36.282436 32630 solver.cpp:397] Test net output #0: accuracy = 0.396446 +I0407 23:02:36.282483 32630 solver.cpp:397] Test net output #1: loss = 2.95542 (* 1 = 2.95542 loss) +I0407 23:02:38.076895 32630 solver.cpp:218] Iteration 4596 (0.854311 iter/s, 14.0464s/12 iters), loss = 0.737204 +I0407 23:02:38.076936 32630 solver.cpp:237] Train net output #0: loss = 0.737204 (* 1 = 0.737204 loss) +I0407 23:02:38.076944 32630 sgd_solver.cpp:105] Iteration 4596, lr = 0.00621076 +I0407 23:02:43.009312 32630 solver.cpp:218] Iteration 4608 (2.43292 iter/s, 4.93235s/12 iters), loss = 0.687537 +I0407 23:02:43.009357 32630 solver.cpp:237] Train net output #0: loss = 0.687538 (* 1 = 0.687538 loss) +I0407 23:02:43.009366 32630 sgd_solver.cpp:105] Iteration 4608, lr = 0.00618303 +I0407 23:02:47.971469 32630 solver.cpp:218] Iteration 4620 (2.41833 iter/s, 4.96209s/12 iters), loss = 0.574458 +I0407 23:02:47.971508 32630 solver.cpp:237] Train net output #0: loss = 0.574458 (* 1 = 0.574458 loss) +I0407 23:02:47.971516 32630 sgd_solver.cpp:105] Iteration 4620, lr = 0.00615523 +I0407 23:02:52.826398 32630 solver.cpp:218] Iteration 4632 (2.47175 iter/s, 4.85487s/12 iters), loss = 0.734354 +I0407 23:02:52.826436 32630 solver.cpp:237] Train net output #0: loss = 0.734354 (* 1 = 0.734354 loss) +I0407 23:02:52.826444 32630 sgd_solver.cpp:105] Iteration 4632, lr = 0.00612735 +I0407 23:02:57.749452 32630 solver.cpp:218] Iteration 4644 (2.43754 iter/s, 4.923s/12 iters), loss = 0.617531 +I0407 23:02:57.749572 32630 solver.cpp:237] Train net output #0: loss = 0.617531 (* 1 = 0.617531 loss) +I0407 23:02:57.749580 32630 sgd_solver.cpp:105] Iteration 4644, lr = 0.0060994 +I0407 23:03:01.125425 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:02.691268 32630 solver.cpp:218] Iteration 4656 (2.42833 iter/s, 4.94168s/12 iters), loss = 0.490399 +I0407 23:03:02.691308 32630 solver.cpp:237] Train net output #0: loss = 0.490399 (* 1 = 0.490399 loss) +I0407 23:03:02.691315 32630 sgd_solver.cpp:105] Iteration 4656, lr = 0.00607137 +I0407 23:03:07.629637 32630 solver.cpp:218] Iteration 4668 (2.42998 iter/s, 4.93831s/12 iters), loss = 0.610106 +I0407 23:03:07.629678 32630 solver.cpp:237] Train net output #0: loss = 0.610107 (* 1 = 0.610107 loss) +I0407 23:03:07.629685 32630 sgd_solver.cpp:105] Iteration 4668, lr = 0.00604327 +I0407 23:03:12.580178 32630 solver.cpp:218] Iteration 4680 (2.42401 iter/s, 4.95048s/12 iters), loss = 0.545254 +I0407 23:03:12.580219 32630 solver.cpp:237] Train net output #0: loss = 0.545254 (* 1 = 0.545254 loss) +I0407 23:03:12.580226 32630 sgd_solver.cpp:105] Iteration 4680, lr = 0.00601511 +I0407 23:03:17.025393 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 23:03:21.709723 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 23:03:24.090966 32630 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 23:03:24.090984 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:03:26.735436 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:28.623858 32630 solver.cpp:397] Test net output #0: accuracy = 0.397672 +I0407 23:03:28.624012 32630 solver.cpp:397] Test net output #1: loss = 2.90221 (* 1 = 2.90221 loss) +I0407 23:03:28.718082 32630 solver.cpp:218] Iteration 4692 (0.743595 iter/s, 16.1378s/12 iters), loss = 0.924601 +I0407 23:03:28.718137 32630 solver.cpp:237] Train net output #0: loss = 0.924601 (* 1 = 0.924601 loss) +I0407 23:03:28.718145 32630 sgd_solver.cpp:105] Iteration 4692, lr = 0.00598688 +I0407 23:03:32.897882 32630 solver.cpp:218] Iteration 4704 (2.871 iter/s, 4.17972s/12 iters), loss = 0.5664 +I0407 23:03:32.897923 32630 solver.cpp:237] Train net output #0: loss = 0.5664 (* 1 = 0.5664 loss) +I0407 23:03:32.897931 32630 sgd_solver.cpp:105] Iteration 4704, lr = 0.00595858 +I0407 23:03:37.865976 32630 solver.cpp:218] Iteration 4716 (2.41544 iter/s, 4.96803s/12 iters), loss = 0.663533 +I0407 23:03:37.866024 32630 solver.cpp:237] Train net output #0: loss = 0.663534 (* 1 = 0.663534 loss) +I0407 23:03:37.866031 32630 sgd_solver.cpp:105] Iteration 4716, lr = 0.00593022 +I0407 23:03:42.731460 32630 solver.cpp:218] Iteration 4728 (2.46639 iter/s, 4.86541s/12 iters), loss = 0.527464 +I0407 23:03:42.731504 32630 solver.cpp:237] Train net output #0: loss = 0.527465 (* 1 = 0.527465 loss) +I0407 23:03:42.731513 32630 sgd_solver.cpp:105] Iteration 4728, lr = 0.00590179 +I0407 23:03:47.620899 32630 solver.cpp:218] Iteration 4740 (2.4543 iter/s, 4.88938s/12 iters), loss = 0.726684 +I0407 23:03:47.620939 32630 solver.cpp:237] Train net output #0: loss = 0.726684 (* 1 = 0.726684 loss) +I0407 23:03:47.620949 32630 sgd_solver.cpp:105] Iteration 4740, lr = 0.00587331 +I0407 23:03:52.591079 32630 solver.cpp:218] Iteration 4752 (2.41443 iter/s, 4.97012s/12 iters), loss = 0.497329 +I0407 23:03:52.591120 32630 solver.cpp:237] Train net output #0: loss = 0.497329 (* 1 = 0.497329 loss) +I0407 23:03:52.591127 32630 sgd_solver.cpp:105] Iteration 4752, lr = 0.00584476 +I0407 23:03:53.099107 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:57.500396 32630 solver.cpp:218] Iteration 4764 (2.44436 iter/s, 4.90926s/12 iters), loss = 0.567307 +I0407 23:03:57.500435 32630 solver.cpp:237] Train net output #0: loss = 0.567307 (* 1 = 0.567307 loss) +I0407 23:03:57.500443 32630 sgd_solver.cpp:105] Iteration 4764, lr = 0.00581616 +I0407 23:04:02.489694 32630 solver.cpp:218] Iteration 4776 (2.40518 iter/s, 4.98923s/12 iters), loss = 0.684307 +I0407 23:04:02.489873 32630 solver.cpp:237] Train net output #0: loss = 0.684308 (* 1 = 0.684308 loss) +I0407 23:04:02.489883 32630 sgd_solver.cpp:105] Iteration 4776, lr = 0.00578751 +I0407 23:04:07.425282 32630 solver.cpp:218] Iteration 4788 (2.43142 iter/s, 4.93539s/12 iters), loss = 0.469574 +I0407 23:04:07.425314 32630 solver.cpp:237] Train net output #0: loss = 0.469574 (* 1 = 0.469574 loss) +I0407 23:04:07.425321 32630 sgd_solver.cpp:105] Iteration 4788, lr = 0.0057588 +I0407 23:04:09.462152 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 23:04:13.053560 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 23:04:16.592828 32630 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 23:04:16.592846 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:04:19.289084 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:21.375295 32630 solver.cpp:397] Test net output #0: accuracy = 0.393995 +I0407 23:04:21.375344 32630 solver.cpp:397] Test net output #1: loss = 2.91389 (* 1 = 2.91389 loss) +I0407 23:04:23.199126 32630 solver.cpp:218] Iteration 4800 (0.760757 iter/s, 15.7738s/12 iters), loss = 0.415224 +I0407 23:04:23.199169 32630 solver.cpp:237] Train net output #0: loss = 0.415224 (* 1 = 0.415224 loss) +I0407 23:04:23.199177 32630 sgd_solver.cpp:105] Iteration 4800, lr = 0.00573004 +I0407 23:04:28.153806 32630 solver.cpp:218] Iteration 4812 (2.42199 iter/s, 4.95461s/12 iters), loss = 0.493974 +I0407 23:04:28.153851 32630 solver.cpp:237] Train net output #0: loss = 0.493974 (* 1 = 0.493974 loss) +I0407 23:04:28.153859 32630 sgd_solver.cpp:105] Iteration 4812, lr = 0.00570123 +I0407 23:04:33.068375 32630 solver.cpp:218] Iteration 4824 (2.44175 iter/s, 4.9145s/12 iters), loss = 0.639088 +I0407 23:04:33.068511 32630 solver.cpp:237] Train net output #0: loss = 0.639088 (* 1 = 0.639088 loss) +I0407 23:04:33.068521 32630 sgd_solver.cpp:105] Iteration 4824, lr = 0.00567237 +I0407 23:04:38.002735 32630 solver.cpp:218] Iteration 4836 (2.432 iter/s, 4.93421s/12 iters), loss = 0.315968 +I0407 23:04:38.002774 32630 solver.cpp:237] Train net output #0: loss = 0.315968 (* 1 = 0.315968 loss) +I0407 23:04:38.002781 32630 sgd_solver.cpp:105] Iteration 4836, lr = 0.00564347 +I0407 23:04:40.008819 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:04:42.918839 32630 solver.cpp:218] Iteration 4848 (2.44099 iter/s, 4.91604s/12 iters), loss = 0.553912 +I0407 23:04:42.918877 32630 solver.cpp:237] Train net output #0: loss = 0.553912 (* 1 = 0.553912 loss) +I0407 23:04:42.918885 32630 sgd_solver.cpp:105] Iteration 4848, lr = 0.00561452 +I0407 23:04:45.546139 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:47.884836 32630 solver.cpp:218] Iteration 4860 (2.41647 iter/s, 4.96593s/12 iters), loss = 0.514736 +I0407 23:04:47.884883 32630 solver.cpp:237] Train net output #0: loss = 0.514736 (* 1 = 0.514736 loss) +I0407 23:04:47.884892 32630 sgd_solver.cpp:105] Iteration 4860, lr = 0.00558554 +I0407 23:04:52.805550 32630 solver.cpp:218] Iteration 4872 (2.4387 iter/s, 4.92065s/12 iters), loss = 0.477373 +I0407 23:04:52.805586 32630 solver.cpp:237] Train net output #0: loss = 0.477373 (* 1 = 0.477373 loss) +I0407 23:04:52.805594 32630 sgd_solver.cpp:105] Iteration 4872, lr = 0.00555651 +I0407 23:04:57.756021 32630 solver.cpp:218] Iteration 4884 (2.42404 iter/s, 4.95041s/12 iters), loss = 0.578615 +I0407 23:04:57.756065 32630 solver.cpp:237] Train net output #0: loss = 0.578615 (* 1 = 0.578615 loss) +I0407 23:04:57.756075 32630 sgd_solver.cpp:105] Iteration 4884, lr = 0.00552744 +I0407 23:05:02.150195 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 23:05:05.196697 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 23:05:07.655752 32630 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 23:05:07.655771 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:05:10.242790 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:12.212568 32630 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0407 23:05:12.212615 32630 solver.cpp:397] Test net output #1: loss = 2.85025 (* 1 = 2.85025 loss) +I0407 23:05:12.308005 32630 solver.cpp:218] Iteration 4896 (0.824635 iter/s, 14.5519s/12 iters), loss = 0.704783 +I0407 23:05:12.308053 32630 solver.cpp:237] Train net output #0: loss = 0.704783 (* 1 = 0.704783 loss) +I0407 23:05:12.308060 32630 sgd_solver.cpp:105] Iteration 4896, lr = 0.00549834 +I0407 23:05:16.444525 32630 solver.cpp:218] Iteration 4908 (2.90104 iter/s, 4.13645s/12 iters), loss = 0.46891 +I0407 23:05:16.444564 32630 solver.cpp:237] Train net output #0: loss = 0.46891 (* 1 = 0.46891 loss) +I0407 23:05:16.444572 32630 sgd_solver.cpp:105] Iteration 4908, lr = 0.0054692 +I0407 23:05:21.365272 32630 solver.cpp:218] Iteration 4920 (2.43868 iter/s, 4.92069s/12 iters), loss = 0.576338 +I0407 23:05:21.365307 32630 solver.cpp:237] Train net output #0: loss = 0.576338 (* 1 = 0.576338 loss) +I0407 23:05:21.365315 32630 sgd_solver.cpp:105] Iteration 4920, lr = 0.00544003 +I0407 23:05:26.304960 32630 solver.cpp:218] Iteration 4932 (2.42933 iter/s, 4.93963s/12 iters), loss = 0.644546 +I0407 23:05:26.304997 32630 solver.cpp:237] Train net output #0: loss = 0.644546 (* 1 = 0.644546 loss) +I0407 23:05:26.305004 32630 sgd_solver.cpp:105] Iteration 4932, lr = 0.00541084 +I0407 23:05:31.246634 32630 solver.cpp:218] Iteration 4944 (2.42836 iter/s, 4.94162s/12 iters), loss = 0.546721 +I0407 23:05:31.246675 32630 solver.cpp:237] Train net output #0: loss = 0.546721 (* 1 = 0.546721 loss) +I0407 23:05:31.246682 32630 sgd_solver.cpp:105] Iteration 4944, lr = 0.00538161 +I0407 23:05:35.990813 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:36.187580 32630 solver.cpp:218] Iteration 4956 (2.42871 iter/s, 4.94088s/12 iters), loss = 0.746736 +I0407 23:05:36.187618 32630 solver.cpp:237] Train net output #0: loss = 0.746736 (* 1 = 0.746736 loss) +I0407 23:05:36.187625 32630 sgd_solver.cpp:105] Iteration 4956, lr = 0.00535236 +I0407 23:05:41.093897 32630 solver.cpp:218] Iteration 4968 (2.44586 iter/s, 4.90626s/12 iters), loss = 0.481071 +I0407 23:05:41.093937 32630 solver.cpp:237] Train net output #0: loss = 0.481071 (* 1 = 0.481071 loss) +I0407 23:05:41.093945 32630 sgd_solver.cpp:105] Iteration 4968, lr = 0.00532308 +I0407 23:05:46.060242 32630 solver.cpp:218] Iteration 4980 (2.41629 iter/s, 4.96628s/12 iters), loss = 0.555358 +I0407 23:05:46.060281 32630 solver.cpp:237] Train net output #0: loss = 0.555358 (* 1 = 0.555358 loss) +I0407 23:05:46.060289 32630 sgd_solver.cpp:105] Iteration 4980, lr = 0.00529378 +I0407 23:05:50.955626 32630 solver.cpp:218] Iteration 4992 (2.45132 iter/s, 4.89532s/12 iters), loss = 0.414539 +I0407 23:05:50.955670 32630 solver.cpp:237] Train net output #0: loss = 0.414539 (* 1 = 0.414539 loss) +I0407 23:05:50.955679 32630 sgd_solver.cpp:105] Iteration 4992, lr = 0.00526446 +I0407 23:05:52.948011 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 23:05:56.008431 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 23:05:58.400816 32630 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 23:05:58.400835 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:06:00.930581 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:02.924768 32630 solver.cpp:397] Test net output #0: accuracy = 0.374387 +I0407 23:06:02.924811 32630 solver.cpp:397] Test net output #1: loss = 2.98533 (* 1 = 2.98533 loss) +I0407 23:06:04.726768 32630 solver.cpp:218] Iteration 5004 (0.871393 iter/s, 13.7711s/12 iters), loss = 0.421938 +I0407 23:06:04.726807 32630 solver.cpp:237] Train net output #0: loss = 0.421938 (* 1 = 0.421938 loss) +I0407 23:06:04.726816 32630 sgd_solver.cpp:105] Iteration 5004, lr = 0.00523512 +I0407 23:06:09.652258 32630 solver.cpp:218] Iteration 5016 (2.43634 iter/s, 4.92543s/12 iters), loss = 0.384636 +I0407 23:06:09.652424 32630 solver.cpp:237] Train net output #0: loss = 0.384636 (* 1 = 0.384636 loss) +I0407 23:06:09.652433 32630 sgd_solver.cpp:105] Iteration 5016, lr = 0.00520577 +I0407 23:06:14.615826 32630 solver.cpp:218] Iteration 5028 (2.4177 iter/s, 4.96339s/12 iters), loss = 0.418031 +I0407 23:06:14.615861 32630 solver.cpp:237] Train net output #0: loss = 0.418032 (* 1 = 0.418032 loss) +I0407 23:06:14.615870 32630 sgd_solver.cpp:105] Iteration 5028, lr = 0.0051764 +I0407 23:06:19.487200 32630 solver.cpp:218] Iteration 5040 (2.4634 iter/s, 4.87131s/12 iters), loss = 0.401169 +I0407 23:06:19.487244 32630 solver.cpp:237] Train net output #0: loss = 0.401169 (* 1 = 0.401169 loss) +I0407 23:06:19.487252 32630 sgd_solver.cpp:105] Iteration 5040, lr = 0.00514702 +I0407 23:06:24.457127 32630 solver.cpp:218] Iteration 5052 (2.41455 iter/s, 4.96986s/12 iters), loss = 0.418256 +I0407 23:06:24.457165 32630 solver.cpp:237] Train net output #0: loss = 0.418256 (* 1 = 0.418256 loss) +I0407 23:06:24.457173 32630 sgd_solver.cpp:105] Iteration 5052, lr = 0.00511763 +I0407 23:06:26.349159 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:29.364220 32630 solver.cpp:218] Iteration 5064 (2.44547 iter/s, 4.90703s/12 iters), loss = 0.297284 +I0407 23:06:29.364264 32630 solver.cpp:237] Train net output #0: loss = 0.297284 (* 1 = 0.297284 loss) +I0407 23:06:29.364271 32630 sgd_solver.cpp:105] Iteration 5064, lr = 0.00508823 +I0407 23:06:34.334156 32630 solver.cpp:218] Iteration 5076 (2.41455 iter/s, 4.96987s/12 iters), loss = 0.356673 +I0407 23:06:34.334192 32630 solver.cpp:237] Train net output #0: loss = 0.356673 (* 1 = 0.356673 loss) +I0407 23:06:34.334200 32630 sgd_solver.cpp:105] Iteration 5076, lr = 0.00505882 +I0407 23:06:39.298523 32630 solver.cpp:218] Iteration 5088 (2.41725 iter/s, 4.96431s/12 iters), loss = 0.62362 +I0407 23:06:39.298560 32630 solver.cpp:237] Train net output #0: loss = 0.62362 (* 1 = 0.62362 loss) +I0407 23:06:39.298568 32630 sgd_solver.cpp:105] Iteration 5088, lr = 0.00502941 +I0407 23:06:43.768501 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 23:06:46.826606 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 23:06:49.255009 32630 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 23:06:49.255030 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:06:51.836350 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:54.050631 32630 solver.cpp:397] Test net output #0: accuracy = 0.401961 +I0407 23:06:54.050678 32630 solver.cpp:397] Test net output #1: loss = 2.92173 (* 1 = 2.92173 loss) +I0407 23:06:54.147034 32630 solver.cpp:218] Iteration 5100 (0.808166 iter/s, 14.8484s/12 iters), loss = 0.407574 +I0407 23:06:54.147075 32630 solver.cpp:237] Train net output #0: loss = 0.407574 (* 1 = 0.407574 loss) +I0407 23:06:54.147083 32630 sgd_solver.cpp:105] Iteration 5100, lr = 0.005 +I0407 23:06:58.306756 32630 solver.cpp:218] Iteration 5112 (2.88485 iter/s, 4.15966s/12 iters), loss = 0.758972 +I0407 23:06:58.306797 32630 solver.cpp:237] Train net output #0: loss = 0.758972 (* 1 = 0.758972 loss) +I0407 23:06:58.306805 32630 sgd_solver.cpp:105] Iteration 5112, lr = 0.00497059 +I0407 23:07:03.276583 32630 solver.cpp:218] Iteration 5124 (2.4146 iter/s, 4.96976s/12 iters), loss = 0.473309 +I0407 23:07:03.276630 32630 solver.cpp:237] Train net output #0: loss = 0.473309 (* 1 = 0.473309 loss) +I0407 23:07:03.276639 32630 sgd_solver.cpp:105] Iteration 5124, lr = 0.00494118 +I0407 23:07:08.185995 32630 solver.cpp:218] Iteration 5136 (2.44432 iter/s, 4.90934s/12 iters), loss = 0.389804 +I0407 23:07:08.186033 32630 solver.cpp:237] Train net output #0: loss = 0.389804 (* 1 = 0.389804 loss) +I0407 23:07:08.186041 32630 sgd_solver.cpp:105] Iteration 5136, lr = 0.00491177 +I0407 23:07:13.162955 32630 solver.cpp:218] Iteration 5148 (2.41114 iter/s, 4.97689s/12 iters), loss = 0.52869 +I0407 23:07:13.162998 32630 solver.cpp:237] Train net output #0: loss = 0.52869 (* 1 = 0.52869 loss) +I0407 23:07:13.163007 32630 sgd_solver.cpp:105] Iteration 5148, lr = 0.00488237 +I0407 23:07:17.151145 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:18.060211 32630 solver.cpp:218] Iteration 5160 (2.45038 iter/s, 4.89719s/12 iters), loss = 0.511335 +I0407 23:07:18.060250 32630 solver.cpp:237] Train net output #0: loss = 0.511335 (* 1 = 0.511335 loss) +I0407 23:07:18.060257 32630 sgd_solver.cpp:105] Iteration 5160, lr = 0.00485298 +I0407 23:07:23.021261 32630 solver.cpp:218] Iteration 5172 (2.41887 iter/s, 4.96099s/12 iters), loss = 0.389516 +I0407 23:07:23.021301 32630 solver.cpp:237] Train net output #0: loss = 0.389516 (* 1 = 0.389516 loss) +I0407 23:07:23.021309 32630 sgd_solver.cpp:105] Iteration 5172, lr = 0.0048236 +I0407 23:07:27.987849 32630 solver.cpp:218] Iteration 5184 (2.41618 iter/s, 4.96652s/12 iters), loss = 0.377012 +I0407 23:07:27.987900 32630 solver.cpp:237] Train net output #0: loss = 0.377012 (* 1 = 0.377012 loss) +I0407 23:07:27.987907 32630 sgd_solver.cpp:105] Iteration 5184, lr = 0.00479423 +I0407 23:07:32.921205 32630 solver.cpp:218] Iteration 5196 (2.43246 iter/s, 4.93329s/12 iters), loss = 0.385583 +I0407 23:07:32.921245 32630 solver.cpp:237] Train net output #0: loss = 0.385583 (* 1 = 0.385583 loss) +I0407 23:07:32.921253 32630 sgd_solver.cpp:105] Iteration 5196, lr = 0.00476488 +I0407 23:07:34.908740 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 23:07:38.017591 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 23:07:40.459828 32630 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 23:07:40.459843 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:07:43.024741 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:45.305747 32630 solver.cpp:397] Test net output #0: accuracy = 0.409926 +I0407 23:07:45.305792 32630 solver.cpp:397] Test net output #1: loss = 2.87912 (* 1 = 2.87912 loss) +I0407 23:07:47.107985 32630 solver.cpp:218] Iteration 5208 (0.845863 iter/s, 14.1867s/12 iters), loss = 0.367558 +I0407 23:07:47.108028 32630 solver.cpp:237] Train net output #0: loss = 0.367558 (* 1 = 0.367558 loss) +I0407 23:07:47.108036 32630 sgd_solver.cpp:105] Iteration 5208, lr = 0.00473554 +I0407 23:07:52.040139 32630 solver.cpp:218] Iteration 5220 (2.43305 iter/s, 4.93208s/12 iters), loss = 0.354348 +I0407 23:07:52.040285 32630 solver.cpp:237] Train net output #0: loss = 0.354348 (* 1 = 0.354348 loss) +I0407 23:07:52.040295 32630 sgd_solver.cpp:105] Iteration 5220, lr = 0.00470622 +I0407 23:07:56.992437 32630 solver.cpp:218] Iteration 5232 (2.4232 iter/s, 4.95213s/12 iters), loss = 0.334578 +I0407 23:07:56.992482 32630 solver.cpp:237] Train net output #0: loss = 0.334578 (* 1 = 0.334578 loss) +I0407 23:07:56.992491 32630 sgd_solver.cpp:105] Iteration 5232, lr = 0.00467692 +I0407 23:08:01.938920 32630 solver.cpp:218] Iteration 5244 (2.426 iter/s, 4.94641s/12 iters), loss = 0.511284 +I0407 23:08:01.938963 32630 solver.cpp:237] Train net output #0: loss = 0.511284 (* 1 = 0.511284 loss) +I0407 23:08:01.938971 32630 sgd_solver.cpp:105] Iteration 5244, lr = 0.00464764 +I0407 23:08:06.900256 32630 solver.cpp:218] Iteration 5256 (2.41873 iter/s, 4.96127s/12 iters), loss = 0.256644 +I0407 23:08:06.900295 32630 solver.cpp:237] Train net output #0: loss = 0.256644 (* 1 = 0.256644 loss) +I0407 23:08:06.900302 32630 sgd_solver.cpp:105] Iteration 5256, lr = 0.00461839 +I0407 23:08:08.162717 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:11.821367 32630 solver.cpp:218] Iteration 5268 (2.43851 iter/s, 4.92104s/12 iters), loss = 0.311893 +I0407 23:08:11.821409 32630 solver.cpp:237] Train net output #0: loss = 0.311893 (* 1 = 0.311893 loss) +I0407 23:08:11.821419 32630 sgd_solver.cpp:105] Iteration 5268, lr = 0.00458916 +I0407 23:08:16.789007 32630 solver.cpp:218] Iteration 5280 (2.41567 iter/s, 4.96756s/12 iters), loss = 0.320743 +I0407 23:08:16.789053 32630 solver.cpp:237] Train net output #0: loss = 0.320743 (* 1 = 0.320743 loss) +I0407 23:08:16.789062 32630 sgd_solver.cpp:105] Iteration 5280, lr = 0.00455996 +I0407 23:08:21.734149 32630 solver.cpp:218] Iteration 5292 (2.42666 iter/s, 4.94507s/12 iters), loss = 0.408387 +I0407 23:08:21.734196 32630 solver.cpp:237] Train net output #0: loss = 0.408387 (* 1 = 0.408387 loss) +I0407 23:08:21.734205 32630 sgd_solver.cpp:105] Iteration 5292, lr = 0.0045308 +I0407 23:08:26.179678 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 23:08:29.361143 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 23:08:31.727080 32630 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 23:08:31.727099 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:08:34.119668 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:36.236162 32630 solver.cpp:397] Test net output #0: accuracy = 0.401961 +I0407 23:08:36.236198 32630 solver.cpp:397] Test net output #1: loss = 2.94082 (* 1 = 2.94082 loss) +I0407 23:08:36.332711 32630 solver.cpp:218] Iteration 5304 (0.822004 iter/s, 14.5985s/12 iters), loss = 0.357037 +I0407 23:08:36.332759 32630 solver.cpp:237] Train net output #0: loss = 0.357038 (* 1 = 0.357038 loss) +I0407 23:08:36.332769 32630 sgd_solver.cpp:105] Iteration 5304, lr = 0.00450166 +I0407 23:08:40.456334 32630 solver.cpp:218] Iteration 5316 (2.91011 iter/s, 4.12355s/12 iters), loss = 0.386331 +I0407 23:08:40.456377 32630 solver.cpp:237] Train net output #0: loss = 0.386331 (* 1 = 0.386331 loss) +I0407 23:08:40.456385 32630 sgd_solver.cpp:105] Iteration 5316, lr = 0.00447256 +I0407 23:08:45.414089 32630 solver.cpp:218] Iteration 5328 (2.42048 iter/s, 4.95769s/12 iters), loss = 0.679533 +I0407 23:08:45.414137 32630 solver.cpp:237] Train net output #0: loss = 0.679533 (* 1 = 0.679533 loss) +I0407 23:08:45.414145 32630 sgd_solver.cpp:105] Iteration 5328, lr = 0.00444349 +I0407 23:08:50.345170 32630 solver.cpp:218] Iteration 5340 (2.43358 iter/s, 4.93101s/12 iters), loss = 0.415245 +I0407 23:08:50.345214 32630 solver.cpp:237] Train net output #0: loss = 0.415245 (* 1 = 0.415245 loss) +I0407 23:08:50.345223 32630 sgd_solver.cpp:105] Iteration 5340, lr = 0.00441446 +I0407 23:08:55.298256 32630 solver.cpp:218] Iteration 5352 (2.42276 iter/s, 4.95302s/12 iters), loss = 0.334418 +I0407 23:08:55.298290 32630 solver.cpp:237] Train net output #0: loss = 0.334418 (* 1 = 0.334418 loss) +I0407 23:08:55.298296 32630 sgd_solver.cpp:105] Iteration 5352, lr = 0.00438548 +I0407 23:08:58.657238 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:00.194974 32630 solver.cpp:218] Iteration 5364 (2.45065 iter/s, 4.89666s/12 iters), loss = 0.199413 +I0407 23:09:00.195012 32630 solver.cpp:237] Train net output #0: loss = 0.199414 (* 1 = 0.199414 loss) +I0407 23:09:00.195020 32630 sgd_solver.cpp:105] Iteration 5364, lr = 0.00435653 +I0407 23:09:05.180253 32630 solver.cpp:218] Iteration 5376 (2.40712 iter/s, 4.98521s/12 iters), loss = 0.397679 +I0407 23:09:05.180294 32630 solver.cpp:237] Train net output #0: loss = 0.397679 (* 1 = 0.397679 loss) +I0407 23:09:05.180301 32630 sgd_solver.cpp:105] Iteration 5376, lr = 0.00432763 +I0407 23:09:10.159044 32630 solver.cpp:218] Iteration 5388 (2.41025 iter/s, 4.97873s/12 iters), loss = 0.251672 +I0407 23:09:10.159087 32630 solver.cpp:237] Train net output #0: loss = 0.251672 (* 1 = 0.251672 loss) +I0407 23:09:10.159096 32630 sgd_solver.cpp:105] Iteration 5388, lr = 0.00429877 +I0407 23:09:15.260094 32630 solver.cpp:218] Iteration 5400 (2.35249 iter/s, 5.10099s/12 iters), loss = 0.288328 +I0407 23:09:15.260151 32630 solver.cpp:237] Train net output #0: loss = 0.288328 (* 1 = 0.288328 loss) +I0407 23:09:15.260160 32630 sgd_solver.cpp:105] Iteration 5400, lr = 0.00426996 +I0407 23:09:17.322901 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 23:09:20.727919 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 23:09:23.466168 32630 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 23:09:23.466185 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:09:25.728317 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:27.888648 32630 solver.cpp:397] Test net output #0: accuracy = 0.424632 +I0407 23:09:27.888695 32630 solver.cpp:397] Test net output #1: loss = 2.93936 (* 1 = 2.93936 loss) +I0407 23:09:29.695688 32630 solver.cpp:218] Iteration 5412 (0.831284 iter/s, 14.4355s/12 iters), loss = 0.337827 +I0407 23:09:29.695802 32630 solver.cpp:237] Train net output #0: loss = 0.337827 (* 1 = 0.337827 loss) +I0407 23:09:29.695811 32630 sgd_solver.cpp:105] Iteration 5412, lr = 0.0042412 +I0407 23:09:34.620031 32630 solver.cpp:218] Iteration 5424 (2.43694 iter/s, 4.92421s/12 iters), loss = 0.441344 +I0407 23:09:34.620074 32630 solver.cpp:237] Train net output #0: loss = 0.441344 (* 1 = 0.441344 loss) +I0407 23:09:34.620082 32630 sgd_solver.cpp:105] Iteration 5424, lr = 0.00421249 +I0407 23:09:39.592972 32630 solver.cpp:218] Iteration 5436 (2.41309 iter/s, 4.97287s/12 iters), loss = 0.274199 +I0407 23:09:39.593021 32630 solver.cpp:237] Train net output #0: loss = 0.274199 (* 1 = 0.274199 loss) +I0407 23:09:39.593030 32630 sgd_solver.cpp:105] Iteration 5436, lr = 0.00418384 +I0407 23:09:44.528867 32630 solver.cpp:218] Iteration 5448 (2.43121 iter/s, 4.93582s/12 iters), loss = 0.435709 +I0407 23:09:44.528913 32630 solver.cpp:237] Train net output #0: loss = 0.435709 (* 1 = 0.435709 loss) +I0407 23:09:44.528920 32630 sgd_solver.cpp:105] Iteration 5448, lr = 0.00415524 +I0407 23:09:49.489794 32630 solver.cpp:218] Iteration 5460 (2.41894 iter/s, 4.96085s/12 iters), loss = 0.32687 +I0407 23:09:49.489838 32630 solver.cpp:237] Train net output #0: loss = 0.32687 (* 1 = 0.32687 loss) +I0407 23:09:49.489847 32630 sgd_solver.cpp:105] Iteration 5460, lr = 0.00412669 +I0407 23:09:50.024614 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:54.384008 32630 solver.cpp:218] Iteration 5472 (2.45191 iter/s, 4.89415s/12 iters), loss = 0.374327 +I0407 23:09:54.384048 32630 solver.cpp:237] Train net output #0: loss = 0.374327 (* 1 = 0.374327 loss) +I0407 23:09:54.384057 32630 sgd_solver.cpp:105] Iteration 5472, lr = 0.00409821 +I0407 23:09:59.346232 32630 solver.cpp:218] Iteration 5484 (2.4183 iter/s, 4.96216s/12 iters), loss = 0.308039 +I0407 23:09:59.346276 32630 solver.cpp:237] Train net output #0: loss = 0.308039 (* 1 = 0.308039 loss) +I0407 23:09:59.346285 32630 sgd_solver.cpp:105] Iteration 5484, lr = 0.00406978 +I0407 23:10:04.242523 32630 solver.cpp:218] Iteration 5496 (2.45087 iter/s, 4.89623s/12 iters), loss = 0.372102 +I0407 23:10:04.242681 32630 solver.cpp:237] Train net output #0: loss = 0.372102 (* 1 = 0.372102 loss) +I0407 23:10:04.242691 32630 sgd_solver.cpp:105] Iteration 5496, lr = 0.00404142 +I0407 23:10:08.748993 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 23:10:15.039423 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 23:10:18.259003 32630 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 23:10:18.259021 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:10:20.559877 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:22.799249 32630 solver.cpp:397] Test net output #0: accuracy = 0.424632 +I0407 23:10:22.799295 32630 solver.cpp:397] Test net output #1: loss = 2.82094 (* 1 = 2.82094 loss) +I0407 23:10:22.895788 32630 solver.cpp:218] Iteration 5508 (0.643326 iter/s, 18.6531s/12 iters), loss = 0.283622 +I0407 23:10:22.895848 32630 solver.cpp:237] Train net output #0: loss = 0.283622 (* 1 = 0.283622 loss) +I0407 23:10:22.895855 32630 sgd_solver.cpp:105] Iteration 5508, lr = 0.00401312 +I0407 23:10:27.046664 32630 solver.cpp:218] Iteration 5520 (2.89101 iter/s, 4.1508s/12 iters), loss = 0.327509 +I0407 23:10:27.046701 32630 solver.cpp:237] Train net output #0: loss = 0.327509 (* 1 = 0.327509 loss) +I0407 23:10:27.046710 32630 sgd_solver.cpp:105] Iteration 5520, lr = 0.00398489 +I0407 23:10:29.468945 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:10:31.987160 32630 solver.cpp:218] Iteration 5532 (2.42893 iter/s, 4.94044s/12 iters), loss = 0.369201 +I0407 23:10:31.987201 32630 solver.cpp:237] Train net output #0: loss = 0.369201 (* 1 = 0.369201 loss) +I0407 23:10:31.987210 32630 sgd_solver.cpp:105] Iteration 5532, lr = 0.00395672 +I0407 23:10:36.957388 32630 solver.cpp:218] Iteration 5544 (2.4144 iter/s, 4.97017s/12 iters), loss = 0.259542 +I0407 23:10:36.957509 32630 solver.cpp:237] Train net output #0: loss = 0.259543 (* 1 = 0.259543 loss) +I0407 23:10:36.957517 32630 sgd_solver.cpp:105] Iteration 5544, lr = 0.00392863 +I0407 23:10:41.941227 32630 solver.cpp:218] Iteration 5556 (2.40785 iter/s, 4.9837s/12 iters), loss = 0.380843 +I0407 23:10:41.941268 32630 solver.cpp:237] Train net output #0: loss = 0.380843 (* 1 = 0.380843 loss) +I0407 23:10:41.941277 32630 sgd_solver.cpp:105] Iteration 5556, lr = 0.0039006 +I0407 23:10:44.603715 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:46.876853 32630 solver.cpp:218] Iteration 5568 (2.43134 iter/s, 4.93556s/12 iters), loss = 0.154861 +I0407 23:10:46.876895 32630 solver.cpp:237] Train net output #0: loss = 0.154861 (* 1 = 0.154861 loss) +I0407 23:10:46.876904 32630 sgd_solver.cpp:105] Iteration 5568, lr = 0.00387265 +I0407 23:10:51.712280 32630 solver.cpp:218] Iteration 5580 (2.48171 iter/s, 4.83537s/12 iters), loss = 0.253599 +I0407 23:10:51.712318 32630 solver.cpp:237] Train net output #0: loss = 0.253599 (* 1 = 0.253599 loss) +I0407 23:10:51.712327 32630 sgd_solver.cpp:105] Iteration 5580, lr = 0.00384477 +I0407 23:10:56.668159 32630 solver.cpp:218] Iteration 5592 (2.4214 iter/s, 4.95582s/12 iters), loss = 0.297287 +I0407 23:10:56.668200 32630 solver.cpp:237] Train net output #0: loss = 0.297288 (* 1 = 0.297288 loss) +I0407 23:10:56.668207 32630 sgd_solver.cpp:105] Iteration 5592, lr = 0.00381697 +I0407 23:11:01.564110 32630 solver.cpp:218] Iteration 5604 (2.45104 iter/s, 4.89589s/12 iters), loss = 0.2891 +I0407 23:11:01.564147 32630 solver.cpp:237] Train net output #0: loss = 0.2891 (* 1 = 0.2891 loss) +I0407 23:11:01.564154 32630 sgd_solver.cpp:105] Iteration 5604, lr = 0.00378924 +I0407 23:11:03.612816 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 23:11:08.081938 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 23:11:12.376035 32630 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 23:11:12.376053 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:11:14.718719 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:17.147356 32630 solver.cpp:397] Test net output #0: accuracy = 0.427696 +I0407 23:11:17.147399 32630 solver.cpp:397] Test net output #1: loss = 2.88569 (* 1 = 2.88569 loss) +I0407 23:11:18.976583 32630 solver.cpp:218] Iteration 5616 (0.689165 iter/s, 17.4124s/12 iters), loss = 0.389081 +I0407 23:11:18.976629 32630 solver.cpp:237] Train net output #0: loss = 0.389081 (* 1 = 0.389081 loss) +I0407 23:11:18.976640 32630 sgd_solver.cpp:105] Iteration 5616, lr = 0.00376159 +I0407 23:11:23.952834 32630 solver.cpp:218] Iteration 5628 (2.41149 iter/s, 4.97618s/12 iters), loss = 0.235206 +I0407 23:11:23.952878 32630 solver.cpp:237] Train net output #0: loss = 0.235206 (* 1 = 0.235206 loss) +I0407 23:11:23.952886 32630 sgd_solver.cpp:105] Iteration 5628, lr = 0.00373403 +I0407 23:11:28.847556 32630 solver.cpp:218] Iteration 5640 (2.45166 iter/s, 4.89465s/12 iters), loss = 0.279091 +I0407 23:11:28.847602 32630 solver.cpp:237] Train net output #0: loss = 0.279092 (* 1 = 0.279092 loss) +I0407 23:11:28.847610 32630 sgd_solver.cpp:105] Iteration 5640, lr = 0.00370654 +I0407 23:11:33.825698 32630 solver.cpp:218] Iteration 5652 (2.41057 iter/s, 4.97807s/12 iters), loss = 0.2019 +I0407 23:11:33.825742 32630 solver.cpp:237] Train net output #0: loss = 0.2019 (* 1 = 0.2019 loss) +I0407 23:11:33.825752 32630 sgd_solver.cpp:105] Iteration 5652, lr = 0.00367914 +I0407 23:11:38.555131 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:38.723349 32630 solver.cpp:218] Iteration 5664 (2.45019 iter/s, 4.89758s/12 iters), loss = 0.178053 +I0407 23:11:38.723395 32630 solver.cpp:237] Train net output #0: loss = 0.178053 (* 1 = 0.178053 loss) +I0407 23:11:38.723404 32630 sgd_solver.cpp:105] Iteration 5664, lr = 0.00365182 +I0407 23:11:43.670672 32630 solver.cpp:218] Iteration 5676 (2.42559 iter/s, 4.94725s/12 iters), loss = 0.183607 +I0407 23:11:43.670717 32630 solver.cpp:237] Train net output #0: loss = 0.183607 (* 1 = 0.183607 loss) +I0407 23:11:43.670725 32630 sgd_solver.cpp:105] Iteration 5676, lr = 0.00362459 +I0407 23:11:48.641757 32630 solver.cpp:218] Iteration 5688 (2.414 iter/s, 4.97101s/12 iters), loss = 0.252277 +I0407 23:11:48.641798 32630 solver.cpp:237] Train net output #0: loss = 0.252278 (* 1 = 0.252278 loss) +I0407 23:11:48.641805 32630 sgd_solver.cpp:105] Iteration 5688, lr = 0.00359745 +I0407 23:11:53.590389 32630 solver.cpp:218] Iteration 5700 (2.42494 iter/s, 4.94857s/12 iters), loss = 0.342034 +I0407 23:11:53.590427 32630 solver.cpp:237] Train net output #0: loss = 0.342034 (* 1 = 0.342034 loss) +I0407 23:11:53.590435 32630 sgd_solver.cpp:105] Iteration 5700, lr = 0.0035704 +I0407 23:11:58.078619 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 23:12:01.180346 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 23:12:03.543393 32630 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 23:12:03.543411 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:12:05.853240 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:08.322969 32630 solver.cpp:397] Test net output #0: accuracy = 0.431373 +I0407 23:12:08.323016 32630 solver.cpp:397] Test net output #1: loss = 2.90856 (* 1 = 2.90856 loss) +I0407 23:12:08.419436 32630 solver.cpp:218] Iteration 5712 (0.809227 iter/s, 14.829s/12 iters), loss = 0.338592 +I0407 23:12:08.419482 32630 solver.cpp:237] Train net output #0: loss = 0.338592 (* 1 = 0.338592 loss) +I0407 23:12:08.419492 32630 sgd_solver.cpp:105] Iteration 5712, lr = 0.00354344 +I0407 23:12:12.533506 32630 solver.cpp:218] Iteration 5724 (2.91687 iter/s, 4.114s/12 iters), loss = 0.287865 +I0407 23:12:12.533668 32630 solver.cpp:237] Train net output #0: loss = 0.287865 (* 1 = 0.287865 loss) +I0407 23:12:12.533677 32630 sgd_solver.cpp:105] Iteration 5724, lr = 0.00351657 +I0407 23:12:17.540165 32630 solver.cpp:218] Iteration 5736 (2.3969 iter/s, 5.00647s/12 iters), loss = 0.239864 +I0407 23:12:17.540210 32630 solver.cpp:237] Train net output #0: loss = 0.239864 (* 1 = 0.239864 loss) +I0407 23:12:17.540218 32630 sgd_solver.cpp:105] Iteration 5736, lr = 0.00348979 +I0407 23:12:22.511516 32630 solver.cpp:218] Iteration 5748 (2.41387 iter/s, 4.97128s/12 iters), loss = 0.234648 +I0407 23:12:22.511562 32630 solver.cpp:237] Train net output #0: loss = 0.234648 (* 1 = 0.234648 loss) +I0407 23:12:22.511570 32630 sgd_solver.cpp:105] Iteration 5748, lr = 0.00346311 +I0407 23:12:27.677620 32630 solver.cpp:218] Iteration 5760 (2.32286 iter/s, 5.16604s/12 iters), loss = 0.201537 +I0407 23:12:27.677654 32630 solver.cpp:237] Train net output #0: loss = 0.201537 (* 1 = 0.201537 loss) +I0407 23:12:27.677661 32630 sgd_solver.cpp:105] Iteration 5760, lr = 0.00343653 +I0407 23:12:29.632239 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:32.632493 32630 solver.cpp:218] Iteration 5772 (2.42189 iter/s, 4.95482s/12 iters), loss = 0.196661 +I0407 23:12:32.632532 32630 solver.cpp:237] Train net output #0: loss = 0.196661 (* 1 = 0.196661 loss) +I0407 23:12:32.632539 32630 sgd_solver.cpp:105] Iteration 5772, lr = 0.00341004 +I0407 23:12:37.593488 32630 solver.cpp:218] Iteration 5784 (2.4189 iter/s, 4.96093s/12 iters), loss = 0.125648 +I0407 23:12:37.593531 32630 solver.cpp:237] Train net output #0: loss = 0.125648 (* 1 = 0.125648 loss) +I0407 23:12:37.593539 32630 sgd_solver.cpp:105] Iteration 5784, lr = 0.00338365 +I0407 23:12:42.513221 32630 solver.cpp:218] Iteration 5796 (2.43919 iter/s, 4.91967s/12 iters), loss = 0.212764 +I0407 23:12:42.513254 32630 solver.cpp:237] Train net output #0: loss = 0.212764 (* 1 = 0.212764 loss) +I0407 23:12:42.513262 32630 sgd_solver.cpp:105] Iteration 5796, lr = 0.00335736 +I0407 23:12:47.461710 32630 solver.cpp:218] Iteration 5808 (2.42501 iter/s, 4.94843s/12 iters), loss = 0.191752 +I0407 23:12:47.461838 32630 solver.cpp:237] Train net output #0: loss = 0.191752 (* 1 = 0.191752 loss) +I0407 23:12:47.461848 32630 sgd_solver.cpp:105] Iteration 5808, lr = 0.00333118 +I0407 23:12:49.415690 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 23:12:52.484990 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 23:12:54.842042 32630 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 23:12:54.842058 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:12:57.082741 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:59.603353 32630 solver.cpp:397] Test net output #0: accuracy = 0.447304 +I0407 23:12:59.603397 32630 solver.cpp:397] Test net output #1: loss = 2.80261 (* 1 = 2.80261 loss) +I0407 23:13:01.431561 32630 solver.cpp:218] Iteration 5820 (0.859003 iter/s, 13.9697s/12 iters), loss = 0.217997 +I0407 23:13:01.431607 32630 solver.cpp:237] Train net output #0: loss = 0.217997 (* 1 = 0.217997 loss) +I0407 23:13:01.431617 32630 sgd_solver.cpp:105] Iteration 5820, lr = 0.00330509 +I0407 23:13:06.459422 32630 solver.cpp:218] Iteration 5832 (2.38673 iter/s, 5.02779s/12 iters), loss = 0.291184 +I0407 23:13:06.459467 32630 solver.cpp:237] Train net output #0: loss = 0.291184 (* 1 = 0.291184 loss) +I0407 23:13:06.459475 32630 sgd_solver.cpp:105] Iteration 5832, lr = 0.00327911 +I0407 23:13:11.404408 32630 solver.cpp:218] Iteration 5844 (2.42673 iter/s, 4.94492s/12 iters), loss = 0.240729 +I0407 23:13:11.404446 32630 solver.cpp:237] Train net output #0: loss = 0.240729 (* 1 = 0.240729 loss) +I0407 23:13:11.404454 32630 sgd_solver.cpp:105] Iteration 5844, lr = 0.00325324 +I0407 23:13:16.381588 32630 solver.cpp:218] Iteration 5856 (2.41104 iter/s, 4.97711s/12 iters), loss = 0.09877 +I0407 23:13:16.381635 32630 solver.cpp:237] Train net output #0: loss = 0.0987701 (* 1 = 0.0987701 loss) +I0407 23:13:16.381644 32630 sgd_solver.cpp:105] Iteration 5856, lr = 0.00322747 +I0407 23:13:20.538652 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:21.322307 32630 solver.cpp:218] Iteration 5868 (2.42883 iter/s, 4.94065s/12 iters), loss = 0.26235 +I0407 23:13:21.322345 32630 solver.cpp:237] Train net output #0: loss = 0.26235 (* 1 = 0.26235 loss) +I0407 23:13:21.322352 32630 sgd_solver.cpp:105] Iteration 5868, lr = 0.00320181 +I0407 23:13:26.245432 32630 solver.cpp:218] Iteration 5880 (2.43751 iter/s, 4.92306s/12 iters), loss = 0.0904097 +I0407 23:13:26.245477 32630 solver.cpp:237] Train net output #0: loss = 0.0904098 (* 1 = 0.0904098 loss) +I0407 23:13:26.245486 32630 sgd_solver.cpp:105] Iteration 5880, lr = 0.00317625 +I0407 23:13:31.183244 32630 solver.cpp:218] Iteration 5892 (2.43027 iter/s, 4.93773s/12 iters), loss = 0.182121 +I0407 23:13:31.183310 32630 solver.cpp:237] Train net output #0: loss = 0.182121 (* 1 = 0.182121 loss) +I0407 23:13:31.183332 32630 sgd_solver.cpp:105] Iteration 5892, lr = 0.00315081 +I0407 23:13:36.153270 32630 solver.cpp:218] Iteration 5904 (2.41451 iter/s, 4.96994s/12 iters), loss = 0.135214 +I0407 23:13:36.153311 32630 solver.cpp:237] Train net output #0: loss = 0.135214 (* 1 = 0.135214 loss) +I0407 23:13:36.153319 32630 sgd_solver.cpp:105] Iteration 5904, lr = 0.00312548 +I0407 23:13:40.574394 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 23:13:43.665359 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 23:13:46.033555 32630 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 23:13:46.033576 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:13:48.256042 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:50.809868 32630 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 23:13:50.810034 32630 solver.cpp:397] Test net output #1: loss = 2.74255 (* 1 = 2.74255 loss) +I0407 23:13:50.905469 32630 solver.cpp:218] Iteration 5916 (0.813443 iter/s, 14.7521s/12 iters), loss = 0.114982 +I0407 23:13:50.905519 32630 solver.cpp:237] Train net output #0: loss = 0.114982 (* 1 = 0.114982 loss) +I0407 23:13:50.905530 32630 sgd_solver.cpp:105] Iteration 5916, lr = 0.00310026 +I0407 23:13:55.044503 32630 solver.cpp:218] Iteration 5928 (2.89927 iter/s, 4.13897s/12 iters), loss = 0.19918 +I0407 23:13:55.044539 32630 solver.cpp:237] Train net output #0: loss = 0.199181 (* 1 = 0.199181 loss) +I0407 23:13:55.044548 32630 sgd_solver.cpp:105] Iteration 5928, lr = 0.00307515 +I0407 23:13:59.901856 32630 solver.cpp:218] Iteration 5940 (2.47051 iter/s, 4.85729s/12 iters), loss = 0.252885 +I0407 23:13:59.901897 32630 solver.cpp:237] Train net output #0: loss = 0.252885 (* 1 = 0.252885 loss) +I0407 23:13:59.901906 32630 sgd_solver.cpp:105] Iteration 5940, lr = 0.00305015 +I0407 23:14:04.844769 32630 solver.cpp:218] Iteration 5952 (2.42775 iter/s, 4.94285s/12 iters), loss = 0.163826 +I0407 23:14:04.844815 32630 solver.cpp:237] Train net output #0: loss = 0.163826 (* 1 = 0.163826 loss) +I0407 23:14:04.844823 32630 sgd_solver.cpp:105] Iteration 5952, lr = 0.00302527 +I0407 23:14:09.779356 32630 solver.cpp:218] Iteration 5964 (2.43185 iter/s, 4.93452s/12 iters), loss = 0.120886 +I0407 23:14:09.779402 32630 solver.cpp:237] Train net output #0: loss = 0.120886 (* 1 = 0.120886 loss) +I0407 23:14:09.779410 32630 sgd_solver.cpp:105] Iteration 5964, lr = 0.0030005 +I0407 23:14:11.066004 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:14.673125 32630 solver.cpp:218] Iteration 5976 (2.45213 iter/s, 4.8937s/12 iters), loss = 0.136716 +I0407 23:14:14.673161 32630 solver.cpp:237] Train net output #0: loss = 0.136716 (* 1 = 0.136716 loss) +I0407 23:14:14.673171 32630 sgd_solver.cpp:105] Iteration 5976, lr = 0.00297585 +I0407 23:14:19.649051 32630 solver.cpp:218] Iteration 5988 (2.41164 iter/s, 4.97587s/12 iters), loss = 0.245523 +I0407 23:14:19.649091 32630 solver.cpp:237] Train net output #0: loss = 0.245523 (* 1 = 0.245523 loss) +I0407 23:14:19.649098 32630 sgd_solver.cpp:105] Iteration 5988, lr = 0.00295132 +I0407 23:14:24.606978 32630 solver.cpp:218] Iteration 6000 (2.4204 iter/s, 4.95786s/12 iters), loss = 0.131554 +I0407 23:14:24.607146 32630 solver.cpp:237] Train net output #0: loss = 0.131555 (* 1 = 0.131555 loss) +I0407 23:14:24.607156 32630 sgd_solver.cpp:105] Iteration 6000, lr = 0.0029269 +I0407 23:14:29.526057 32630 solver.cpp:218] Iteration 6012 (2.43958 iter/s, 4.91888s/12 iters), loss = 0.244287 +I0407 23:14:29.526096 32630 solver.cpp:237] Train net output #0: loss = 0.244287 (* 1 = 0.244287 loss) +I0407 23:14:29.526105 32630 sgd_solver.cpp:105] Iteration 6012, lr = 0.00290261 +I0407 23:14:31.528834 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 23:14:34.630041 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 23:14:37.041446 32630 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 23:14:37.041465 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:14:39.238718 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:41.845261 32630 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 23:14:41.845307 32630 solver.cpp:397] Test net output #1: loss = 2.69147 (* 1 = 2.69147 loss) +I0407 23:14:43.648082 32630 solver.cpp:218] Iteration 6024 (0.849742 iter/s, 14.1219s/12 iters), loss = 0.216977 +I0407 23:14:43.648129 32630 solver.cpp:237] Train net output #0: loss = 0.216977 (* 1 = 0.216977 loss) +I0407 23:14:43.648137 32630 sgd_solver.cpp:105] Iteration 6024, lr = 0.00287843 +I0407 23:14:48.864740 32630 solver.cpp:218] Iteration 6036 (2.30035 iter/s, 5.21659s/12 iters), loss = 0.240166 +I0407 23:14:48.864778 32630 solver.cpp:237] Train net output #0: loss = 0.240166 (* 1 = 0.240166 loss) +I0407 23:14:48.864784 32630 sgd_solver.cpp:105] Iteration 6036, lr = 0.00285438 +I0407 23:14:53.919997 32630 solver.cpp:218] Iteration 6048 (2.3738 iter/s, 5.05519s/12 iters), loss = 0.22263 +I0407 23:14:53.920043 32630 solver.cpp:237] Train net output #0: loss = 0.22263 (* 1 = 0.22263 loss) +I0407 23:14:53.920051 32630 sgd_solver.cpp:105] Iteration 6048, lr = 0.00283044 +I0407 23:14:58.939011 32630 solver.cpp:218] Iteration 6060 (2.39094 iter/s, 5.01895s/12 iters), loss = 0.296393 +I0407 23:14:58.939131 32630 solver.cpp:237] Train net output #0: loss = 0.296393 (* 1 = 0.296393 loss) +I0407 23:14:58.939141 32630 sgd_solver.cpp:105] Iteration 6060, lr = 0.00280663 +I0407 23:15:02.487731 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:04.009662 32630 solver.cpp:218] Iteration 6072 (2.36662 iter/s, 5.07051s/12 iters), loss = 0.22179 +I0407 23:15:04.009698 32630 solver.cpp:237] Train net output #0: loss = 0.22179 (* 1 = 0.22179 loss) +I0407 23:15:04.009706 32630 sgd_solver.cpp:105] Iteration 6072, lr = 0.00278294 +I0407 23:15:09.009851 32630 solver.cpp:218] Iteration 6084 (2.39994 iter/s, 5.00013s/12 iters), loss = 0.184837 +I0407 23:15:09.009888 32630 solver.cpp:237] Train net output #0: loss = 0.184837 (* 1 = 0.184837 loss) +I0407 23:15:09.009896 32630 sgd_solver.cpp:105] Iteration 6084, lr = 0.00275937 +I0407 23:15:13.971344 32630 solver.cpp:218] Iteration 6096 (2.41865 iter/s, 4.96144s/12 iters), loss = 0.099539 +I0407 23:15:13.971380 32630 solver.cpp:237] Train net output #0: loss = 0.0995391 (* 1 = 0.0995391 loss) +I0407 23:15:13.971387 32630 sgd_solver.cpp:105] Iteration 6096, lr = 0.00273593 +I0407 23:15:18.866788 32630 solver.cpp:218] Iteration 6108 (2.45129 iter/s, 4.89538s/12 iters), loss = 0.193947 +I0407 23:15:18.866832 32630 solver.cpp:237] Train net output #0: loss = 0.193947 (* 1 = 0.193947 loss) +I0407 23:15:18.866840 32630 sgd_solver.cpp:105] Iteration 6108, lr = 0.00271261 +I0407 23:15:23.418817 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 23:15:26.513098 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 23:15:28.890282 32630 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 23:15:28.890300 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:15:31.022603 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:33.670274 32630 solver.cpp:397] Test net output #0: accuracy = 0.458946 +I0407 23:15:33.670310 32630 solver.cpp:397] Test net output #1: loss = 2.76314 (* 1 = 2.76314 loss) +I0407 23:15:33.766921 32630 solver.cpp:218] Iteration 6120 (0.805367 iter/s, 14.9s/12 iters), loss = 0.134445 +I0407 23:15:33.766979 32630 solver.cpp:237] Train net output #0: loss = 0.134445 (* 1 = 0.134445 loss) +I0407 23:15:33.766990 32630 sgd_solver.cpp:105] Iteration 6120, lr = 0.00268941 +I0407 23:15:37.906749 32630 solver.cpp:218] Iteration 6132 (2.89873 iter/s, 4.13975s/12 iters), loss = 0.282288 +I0407 23:15:37.906795 32630 solver.cpp:237] Train net output #0: loss = 0.282288 (* 1 = 0.282288 loss) +I0407 23:15:37.906803 32630 sgd_solver.cpp:105] Iteration 6132, lr = 0.00266635 +I0407 23:15:42.861343 32630 solver.cpp:218] Iteration 6144 (2.42203 iter/s, 4.95452s/12 iters), loss = 0.112969 +I0407 23:15:42.861387 32630 solver.cpp:237] Train net output #0: loss = 0.112969 (* 1 = 0.112969 loss) +I0407 23:15:42.861394 32630 sgd_solver.cpp:105] Iteration 6144, lr = 0.0026434 +I0407 23:15:47.793215 32630 solver.cpp:218] Iteration 6156 (2.43319 iter/s, 4.9318s/12 iters), loss = 0.256742 +I0407 23:15:47.793260 32630 solver.cpp:237] Train net output #0: loss = 0.256742 (* 1 = 0.256742 loss) +I0407 23:15:47.793269 32630 sgd_solver.cpp:105] Iteration 6156, lr = 0.00262059 +I0407 23:15:52.759963 32630 solver.cpp:218] Iteration 6168 (2.4161 iter/s, 4.96668s/12 iters), loss = 0.168612 +I0407 23:15:52.760008 32630 solver.cpp:237] Train net output #0: loss = 0.168613 (* 1 = 0.168613 loss) +I0407 23:15:52.760016 32630 sgd_solver.cpp:105] Iteration 6168, lr = 0.0025979 +I0407 23:15:53.324499 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:57.657058 32630 solver.cpp:218] Iteration 6180 (2.45047 iter/s, 4.89702s/12 iters), loss = 0.245709 +I0407 23:15:57.657105 32630 solver.cpp:237] Train net output #0: loss = 0.245709 (* 1 = 0.245709 loss) +I0407 23:15:57.657114 32630 sgd_solver.cpp:105] Iteration 6180, lr = 0.00257534 +I0407 23:16:02.620612 32630 solver.cpp:218] Iteration 6192 (2.41766 iter/s, 4.96349s/12 iters), loss = 0.0813222 +I0407 23:16:02.620754 32630 solver.cpp:237] Train net output #0: loss = 0.0813223 (* 1 = 0.0813223 loss) +I0407 23:16:02.620762 32630 sgd_solver.cpp:105] Iteration 6192, lr = 0.00255291 +I0407 23:16:07.541999 32630 solver.cpp:218] Iteration 6204 (2.43842 iter/s, 4.92122s/12 iters), loss = 0.128616 +I0407 23:16:07.542047 32630 solver.cpp:237] Train net output #0: loss = 0.128616 (* 1 = 0.128616 loss) +I0407 23:16:07.542054 32630 sgd_solver.cpp:105] Iteration 6204, lr = 0.00253061 +I0407 23:16:12.518280 32630 solver.cpp:218] Iteration 6216 (2.41147 iter/s, 4.97621s/12 iters), loss = 0.0869789 +I0407 23:16:12.518322 32630 solver.cpp:237] Train net output #0: loss = 0.086979 (* 1 = 0.086979 loss) +I0407 23:16:12.518332 32630 sgd_solver.cpp:105] Iteration 6216, lr = 0.00250844 +I0407 23:16:14.527710 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 23:16:17.632257 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 23:16:20.011678 32630 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 23:16:20.011696 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:16:22.001348 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:23.305171 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:16:24.505213 32630 solver.cpp:397] Test net output #0: accuracy = 0.467524 +I0407 23:16:24.505240 32630 solver.cpp:397] Test net output #1: loss = 2.66715 (* 1 = 2.66715 loss) +I0407 23:16:26.270257 32630 solver.cpp:218] Iteration 6228 (0.872607 iter/s, 13.7519s/12 iters), loss = 0.111481 +I0407 23:16:26.270303 32630 solver.cpp:237] Train net output #0: loss = 0.111481 (* 1 = 0.111481 loss) +I0407 23:16:26.270311 32630 sgd_solver.cpp:105] Iteration 6228, lr = 0.00248639 +I0407 23:16:31.231995 32630 solver.cpp:218] Iteration 6240 (2.41854 iter/s, 4.96167s/12 iters), loss = 0.287332 +I0407 23:16:31.232040 32630 solver.cpp:237] Train net output #0: loss = 0.287332 (* 1 = 0.287332 loss) +I0407 23:16:31.232049 32630 sgd_solver.cpp:105] Iteration 6240, lr = 0.00246448 +I0407 23:16:36.184646 32630 solver.cpp:218] Iteration 6252 (2.42298 iter/s, 4.95258s/12 iters), loss = 0.203633 +I0407 23:16:36.184808 32630 solver.cpp:237] Train net output #0: loss = 0.203633 (* 1 = 0.203633 loss) +I0407 23:16:36.184818 32630 sgd_solver.cpp:105] Iteration 6252, lr = 0.0024427 +I0407 23:16:41.116281 32630 solver.cpp:218] Iteration 6264 (2.43336 iter/s, 4.93145s/12 iters), loss = 0.195806 +I0407 23:16:41.116317 32630 solver.cpp:237] Train net output #0: loss = 0.195806 (* 1 = 0.195806 loss) +I0407 23:16:41.116325 32630 sgd_solver.cpp:105] Iteration 6264, lr = 0.00242104 +I0407 23:16:43.807682 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:46.079286 32630 solver.cpp:218] Iteration 6276 (2.41792 iter/s, 4.96294s/12 iters), loss = 0.155129 +I0407 23:16:46.079329 32630 solver.cpp:237] Train net output #0: loss = 0.155129 (* 1 = 0.155129 loss) +I0407 23:16:46.079336 32630 sgd_solver.cpp:105] Iteration 6276, lr = 0.00239952 +I0407 23:16:51.019984 32630 solver.cpp:218] Iteration 6288 (2.42884 iter/s, 4.94064s/12 iters), loss = 0.107155 +I0407 23:16:51.020017 32630 solver.cpp:237] Train net output #0: loss = 0.107155 (* 1 = 0.107155 loss) +I0407 23:16:51.020025 32630 sgd_solver.cpp:105] Iteration 6288, lr = 0.00237813 +I0407 23:16:55.986208 32630 solver.cpp:218] Iteration 6300 (2.41635 iter/s, 4.96617s/12 iters), loss = 0.094955 +I0407 23:16:55.986254 32630 solver.cpp:237] Train net output #0: loss = 0.0949551 (* 1 = 0.0949551 loss) +I0407 23:16:55.986263 32630 sgd_solver.cpp:105] Iteration 6300, lr = 0.00235687 +I0407 23:17:00.955581 32630 solver.cpp:218] Iteration 6312 (2.41482 iter/s, 4.96931s/12 iters), loss = 0.293861 +I0407 23:17:00.955619 32630 solver.cpp:237] Train net output #0: loss = 0.293861 (* 1 = 0.293861 loss) +I0407 23:17:00.955626 32630 sgd_solver.cpp:105] Iteration 6312, lr = 0.00233575 +I0407 23:17:05.521580 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 23:17:09.856520 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 23:17:12.217772 32630 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 23:17:12.217789 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:17:14.258008 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:16.988256 32630 solver.cpp:397] Test net output #0: accuracy = 0.479167 +I0407 23:17:16.988296 32630 solver.cpp:397] Test net output #1: loss = 2.71418 (* 1 = 2.71418 loss) +I0407 23:17:17.084707 32630 solver.cpp:218] Iteration 6324 (0.744 iter/s, 16.129s/12 iters), loss = 0.140256 +I0407 23:17:17.084751 32630 solver.cpp:237] Train net output #0: loss = 0.140256 (* 1 = 0.140256 loss) +I0407 23:17:17.084760 32630 sgd_solver.cpp:105] Iteration 6324, lr = 0.00231475 +I0407 23:17:21.256675 32630 solver.cpp:218] Iteration 6336 (2.87639 iter/s, 4.1719s/12 iters), loss = 0.180038 +I0407 23:17:21.256721 32630 solver.cpp:237] Train net output #0: loss = 0.180038 (* 1 = 0.180038 loss) +I0407 23:17:21.256731 32630 sgd_solver.cpp:105] Iteration 6336, lr = 0.00229389 +I0407 23:17:26.156461 32630 solver.cpp:218] Iteration 6348 (2.44912 iter/s, 4.89971s/12 iters), loss = 0.106015 +I0407 23:17:26.156507 32630 solver.cpp:237] Train net output #0: loss = 0.106015 (* 1 = 0.106015 loss) +I0407 23:17:26.156514 32630 sgd_solver.cpp:105] Iteration 6348, lr = 0.00227316 +I0407 23:17:31.140516 32630 solver.cpp:218] Iteration 6360 (2.40771 iter/s, 4.98399s/12 iters), loss = 0.126248 +I0407 23:17:31.140552 32630 solver.cpp:237] Train net output #0: loss = 0.126248 (* 1 = 0.126248 loss) +I0407 23:17:31.140559 32630 sgd_solver.cpp:105] Iteration 6360, lr = 0.00225256 +I0407 23:17:35.913484 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:36.054109 32630 solver.cpp:218] Iteration 6372 (2.44224 iter/s, 4.91353s/12 iters), loss = 0.146312 +I0407 23:17:36.054152 32630 solver.cpp:237] Train net output #0: loss = 0.146312 (* 1 = 0.146312 loss) +I0407 23:17:36.054160 32630 sgd_solver.cpp:105] Iteration 6372, lr = 0.0022321 +I0407 23:17:41.033164 32630 solver.cpp:218] Iteration 6384 (2.41013 iter/s, 4.97899s/12 iters), loss = 0.0843984 +I0407 23:17:41.033289 32630 solver.cpp:237] Train net output #0: loss = 0.0843984 (* 1 = 0.0843984 loss) +I0407 23:17:41.033298 32630 sgd_solver.cpp:105] Iteration 6384, lr = 0.00221176 +I0407 23:17:45.983116 32630 solver.cpp:218] Iteration 6396 (2.42434 iter/s, 4.9498s/12 iters), loss = 0.161126 +I0407 23:17:45.983163 32630 solver.cpp:237] Train net output #0: loss = 0.161127 (* 1 = 0.161127 loss) +I0407 23:17:45.983175 32630 sgd_solver.cpp:105] Iteration 6396, lr = 0.00219157 +I0407 23:17:50.895797 32630 solver.cpp:218] Iteration 6408 (2.44269 iter/s, 4.91261s/12 iters), loss = 0.184945 +I0407 23:17:50.895838 32630 solver.cpp:237] Train net output #0: loss = 0.184945 (* 1 = 0.184945 loss) +I0407 23:17:50.895846 32630 sgd_solver.cpp:105] Iteration 6408, lr = 0.0021715 +I0407 23:17:55.852922 32630 solver.cpp:218] Iteration 6420 (2.42079 iter/s, 4.95706s/12 iters), loss = 0.213449 +I0407 23:17:55.852963 32630 solver.cpp:237] Train net output #0: loss = 0.213449 (* 1 = 0.213449 loss) +I0407 23:17:55.852972 32630 sgd_solver.cpp:105] Iteration 6420, lr = 0.00215157 +I0407 23:17:57.845588 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 23:18:01.794996 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 23:18:04.725694 32630 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 23:18:04.725713 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:18:06.754902 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:09.551754 32630 solver.cpp:397] Test net output #0: accuracy = 0.487132 +I0407 23:18:09.551801 32630 solver.cpp:397] Test net output #1: loss = 2.66618 (* 1 = 2.66618 loss) +I0407 23:18:11.357193 32630 solver.cpp:218] Iteration 6432 (0.773984 iter/s, 15.5042s/12 iters), loss = 0.121844 +I0407 23:18:11.357314 32630 solver.cpp:237] Train net output #0: loss = 0.121844 (* 1 = 0.121844 loss) +I0407 23:18:11.357323 32630 sgd_solver.cpp:105] Iteration 6432, lr = 0.00213177 +I0407 23:18:16.278786 32630 solver.cpp:218] Iteration 6444 (2.4383 iter/s, 4.92145s/12 iters), loss = 0.191933 +I0407 23:18:16.278825 32630 solver.cpp:237] Train net output #0: loss = 0.191933 (* 1 = 0.191933 loss) +I0407 23:18:16.278831 32630 sgd_solver.cpp:105] Iteration 6444, lr = 0.0021121 +I0407 23:18:21.242471 32630 solver.cpp:218] Iteration 6456 (2.41759 iter/s, 4.96363s/12 iters), loss = 0.177719 +I0407 23:18:21.242511 32630 solver.cpp:237] Train net output #0: loss = 0.177719 (* 1 = 0.177719 loss) +I0407 23:18:21.242517 32630 sgd_solver.cpp:105] Iteration 6456, lr = 0.00209257 +I0407 23:18:26.202880 32630 solver.cpp:218] Iteration 6468 (2.41919 iter/s, 4.96035s/12 iters), loss = 0.156836 +I0407 23:18:26.202915 32630 solver.cpp:237] Train net output #0: loss = 0.156836 (* 1 = 0.156836 loss) +I0407 23:18:26.202924 32630 sgd_solver.cpp:105] Iteration 6468, lr = 0.00207317 +I0407 23:18:28.146759 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:31.097934 32630 solver.cpp:218] Iteration 6480 (2.45149 iter/s, 4.89499s/12 iters), loss = 0.225684 +I0407 23:18:31.097980 32630 solver.cpp:237] Train net output #0: loss = 0.225684 (* 1 = 0.225684 loss) +I0407 23:18:31.097990 32630 sgd_solver.cpp:105] Iteration 6480, lr = 0.0020539 +I0407 23:18:36.042343 32630 solver.cpp:218] Iteration 6492 (2.42702 iter/s, 4.94434s/12 iters), loss = 0.0892352 +I0407 23:18:36.042388 32630 solver.cpp:237] Train net output #0: loss = 0.0892353 (* 1 = 0.0892353 loss) +I0407 23:18:36.042397 32630 sgd_solver.cpp:105] Iteration 6492, lr = 0.00203477 +I0407 23:18:40.974571 32630 solver.cpp:218] Iteration 6504 (2.43301 iter/s, 4.93216s/12 iters), loss = 0.13083 +I0407 23:18:40.974608 32630 solver.cpp:237] Train net output #0: loss = 0.130831 (* 1 = 0.130831 loss) +I0407 23:18:40.974615 32630 sgd_solver.cpp:105] Iteration 6504, lr = 0.00201576 +I0407 23:18:45.891248 32630 solver.cpp:218] Iteration 6516 (2.4407 iter/s, 4.91662s/12 iters), loss = 0.199545 +I0407 23:18:45.892366 32630 solver.cpp:237] Train net output #0: loss = 0.199545 (* 1 = 0.199545 loss) +I0407 23:18:45.892375 32630 sgd_solver.cpp:105] Iteration 6516, lr = 0.0019969 +I0407 23:18:50.395193 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 23:18:56.826164 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 23:19:00.391258 32630 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 23:19:00.391274 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:19:02.176669 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:04.762917 32630 solver.cpp:397] Test net output #0: accuracy = 0.481618 +I0407 23:19:04.762964 32630 solver.cpp:397] Test net output #1: loss = 2.65087 (* 1 = 2.65087 loss) +I0407 23:19:04.859727 32630 solver.cpp:218] Iteration 6528 (0.632667 iter/s, 18.9673s/12 iters), loss = 0.12976 +I0407 23:19:04.859769 32630 solver.cpp:237] Train net output #0: loss = 0.12976 (* 1 = 0.12976 loss) +I0407 23:19:04.859778 32630 sgd_solver.cpp:105] Iteration 6528, lr = 0.00197816 +I0407 23:19:08.865764 32630 solver.cpp:218] Iteration 6540 (2.99553 iter/s, 4.00598s/12 iters), loss = 0.106015 +I0407 23:19:08.865806 32630 solver.cpp:237] Train net output #0: loss = 0.106015 (* 1 = 0.106015 loss) +I0407 23:19:08.865813 32630 sgd_solver.cpp:105] Iteration 6540, lr = 0.00195956 +I0407 23:19:13.762013 32630 solver.cpp:218] Iteration 6552 (2.45089 iter/s, 4.89618s/12 iters), loss = 0.108962 +I0407 23:19:13.762053 32630 solver.cpp:237] Train net output #0: loss = 0.108962 (* 1 = 0.108962 loss) +I0407 23:19:13.762060 32630 sgd_solver.cpp:105] Iteration 6552, lr = 0.00194109 +I0407 23:19:18.674839 32630 solver.cpp:218] Iteration 6564 (2.44262 iter/s, 4.91276s/12 iters), loss = 0.0997367 +I0407 23:19:18.674958 32630 solver.cpp:237] Train net output #0: loss = 0.0997368 (* 1 = 0.0997368 loss) +I0407 23:19:18.674968 32630 sgd_solver.cpp:105] Iteration 6564, lr = 0.00192275 +I0407 23:19:22.823482 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:23.577116 32630 solver.cpp:218] Iteration 6576 (2.44791 iter/s, 4.90213s/12 iters), loss = 0.0492391 +I0407 23:19:23.577155 32630 solver.cpp:237] Train net output #0: loss = 0.0492392 (* 1 = 0.0492392 loss) +I0407 23:19:23.577163 32630 sgd_solver.cpp:105] Iteration 6576, lr = 0.00190455 +I0407 23:19:28.505815 32630 solver.cpp:218] Iteration 6588 (2.43475 iter/s, 4.92864s/12 iters), loss = 0.178427 +I0407 23:19:28.505854 32630 solver.cpp:237] Train net output #0: loss = 0.178427 (* 1 = 0.178427 loss) +I0407 23:19:28.505862 32630 sgd_solver.cpp:105] Iteration 6588, lr = 0.00188647 +I0407 23:19:33.457095 32630 solver.cpp:218] Iteration 6600 (2.42365 iter/s, 4.95122s/12 iters), loss = 0.106841 +I0407 23:19:33.457132 32630 solver.cpp:237] Train net output #0: loss = 0.106841 (* 1 = 0.106841 loss) +I0407 23:19:33.457139 32630 sgd_solver.cpp:105] Iteration 6600, lr = 0.00186853 +I0407 23:19:38.361138 32630 solver.cpp:218] Iteration 6612 (2.44699 iter/s, 4.90398s/12 iters), loss = 0.209935 +I0407 23:19:38.361184 32630 solver.cpp:237] Train net output #0: loss = 0.209935 (* 1 = 0.209935 loss) +I0407 23:19:38.361192 32630 sgd_solver.cpp:105] Iteration 6612, lr = 0.00185072 +I0407 23:19:43.328382 32630 solver.cpp:218] Iteration 6624 (2.41586 iter/s, 4.96717s/12 iters), loss = 0.269754 +I0407 23:19:43.328423 32630 solver.cpp:237] Train net output #0: loss = 0.269754 (* 1 = 0.269754 loss) +I0407 23:19:43.328430 32630 sgd_solver.cpp:105] Iteration 6624, lr = 0.00183304 +I0407 23:19:45.320191 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 23:19:48.482017 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 23:19:51.527653 32630 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 23:19:51.527777 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:19:53.441804 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:56.295320 32630 solver.cpp:397] Test net output #0: accuracy = 0.483456 +I0407 23:19:56.295384 32630 solver.cpp:397] Test net output #1: loss = 2.60381 (* 1 = 2.60381 loss) +I0407 23:19:58.152578 32630 solver.cpp:218] Iteration 6636 (0.809492 iter/s, 14.8241s/12 iters), loss = 0.0806369 +I0407 23:19:58.152618 32630 solver.cpp:237] Train net output #0: loss = 0.080637 (* 1 = 0.080637 loss) +I0407 23:19:58.152626 32630 sgd_solver.cpp:105] Iteration 6636, lr = 0.0018155 +I0407 23:20:03.166476 32630 solver.cpp:218] Iteration 6648 (2.39338 iter/s, 5.01384s/12 iters), loss = 0.217974 +I0407 23:20:03.166514 32630 solver.cpp:237] Train net output #0: loss = 0.217974 (* 1 = 0.217974 loss) +I0407 23:20:03.166522 32630 sgd_solver.cpp:105] Iteration 6648, lr = 0.00179808 +I0407 23:20:08.133195 32630 solver.cpp:218] Iteration 6660 (2.41611 iter/s, 4.96666s/12 iters), loss = 0.189752 +I0407 23:20:08.133239 32630 solver.cpp:237] Train net output #0: loss = 0.189752 (* 1 = 0.189752 loss) +I0407 23:20:08.133246 32630 sgd_solver.cpp:105] Iteration 6660, lr = 0.0017808 +I0407 23:20:13.137756 32630 solver.cpp:218] Iteration 6672 (2.39785 iter/s, 5.00449s/12 iters), loss = 0.168352 +I0407 23:20:13.137801 32630 solver.cpp:237] Train net output #0: loss = 0.168353 (* 1 = 0.168353 loss) +I0407 23:20:13.137809 32630 sgd_solver.cpp:105] Iteration 6672, lr = 0.00176364 +I0407 23:20:14.456140 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:18.086900 32630 solver.cpp:218] Iteration 6684 (2.4247 iter/s, 4.94907s/12 iters), loss = 0.293341 +I0407 23:20:18.086943 32630 solver.cpp:237] Train net output #0: loss = 0.293341 (* 1 = 0.293341 loss) +I0407 23:20:18.086952 32630 sgd_solver.cpp:105] Iteration 6684, lr = 0.00174662 +I0407 23:20:23.080322 32630 solver.cpp:218] Iteration 6696 (2.40319 iter/s, 4.99336s/12 iters), loss = 0.15187 +I0407 23:20:23.080435 32630 solver.cpp:237] Train net output #0: loss = 0.15187 (* 1 = 0.15187 loss) +I0407 23:20:23.080443 32630 sgd_solver.cpp:105] Iteration 6696, lr = 0.00172972 +I0407 23:20:28.030498 32630 solver.cpp:218] Iteration 6708 (2.42422 iter/s, 4.95004s/12 iters), loss = 0.119747 +I0407 23:20:28.030535 32630 solver.cpp:237] Train net output #0: loss = 0.119747 (* 1 = 0.119747 loss) +I0407 23:20:28.030542 32630 sgd_solver.cpp:105] Iteration 6708, lr = 0.00171296 +I0407 23:20:32.843031 32630 solver.cpp:218] Iteration 6720 (2.49352 iter/s, 4.81247s/12 iters), loss = 0.0673343 +I0407 23:20:32.843077 32630 solver.cpp:237] Train net output #0: loss = 0.0673344 (* 1 = 0.0673344 loss) +I0407 23:20:32.843086 32630 sgd_solver.cpp:105] Iteration 6720, lr = 0.00169632 +I0407 23:20:37.333999 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 23:20:41.457238 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 23:20:45.119169 32630 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 23:20:45.119186 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:20:47.013442 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:49.934832 32630 solver.cpp:397] Test net output #0: accuracy = 0.488971 +I0407 23:20:49.934875 32630 solver.cpp:397] Test net output #1: loss = 2.64869 (* 1 = 2.64869 loss) +I0407 23:20:50.031317 32630 solver.cpp:218] Iteration 6732 (0.698154 iter/s, 17.1882s/12 iters), loss = 0.106626 +I0407 23:20:50.031363 32630 solver.cpp:237] Train net output #0: loss = 0.106626 (* 1 = 0.106626 loss) +I0407 23:20:50.031371 32630 sgd_solver.cpp:105] Iteration 6732, lr = 0.00167982 +I0407 23:20:54.150264 32630 solver.cpp:218] Iteration 6744 (2.91342 iter/s, 4.11887s/12 iters), loss = 0.122684 +I0407 23:20:54.152467 32630 solver.cpp:237] Train net output #0: loss = 0.122685 (* 1 = 0.122685 loss) +I0407 23:20:54.152479 32630 sgd_solver.cpp:105] Iteration 6744, lr = 0.00166344 +I0407 23:20:59.109439 32630 solver.cpp:218] Iteration 6756 (2.42084 iter/s, 4.95695s/12 iters), loss = 0.119896 +I0407 23:20:59.109490 32630 solver.cpp:237] Train net output #0: loss = 0.119896 (* 1 = 0.119896 loss) +I0407 23:20:59.109503 32630 sgd_solver.cpp:105] Iteration 6756, lr = 0.00164719 +I0407 23:21:04.032042 32630 solver.cpp:218] Iteration 6768 (2.43777 iter/s, 4.92252s/12 iters), loss = 0.168955 +I0407 23:21:04.032088 32630 solver.cpp:237] Train net output #0: loss = 0.168955 (* 1 = 0.168955 loss) +I0407 23:21:04.032097 32630 sgd_solver.cpp:105] Iteration 6768, lr = 0.00163106 +I0407 23:21:07.438324 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:08.935534 32630 solver.cpp:218] Iteration 6780 (2.44727 iter/s, 4.90342s/12 iters), loss = 0.139274 +I0407 23:21:08.935580 32630 solver.cpp:237] Train net output #0: loss = 0.139275 (* 1 = 0.139275 loss) +I0407 23:21:08.935588 32630 sgd_solver.cpp:105] Iteration 6780, lr = 0.00161507 +I0407 23:21:13.867606 32630 solver.cpp:218] Iteration 6792 (2.43309 iter/s, 4.932s/12 iters), loss = 0.0746083 +I0407 23:21:13.867651 32630 solver.cpp:237] Train net output #0: loss = 0.0746084 (* 1 = 0.0746084 loss) +I0407 23:21:13.867660 32630 sgd_solver.cpp:105] Iteration 6792, lr = 0.0015992 +I0407 23:21:18.821882 32630 solver.cpp:218] Iteration 6804 (2.42219 iter/s, 4.9542s/12 iters), loss = 0.106704 +I0407 23:21:18.821930 32630 solver.cpp:237] Train net output #0: loss = 0.106704 (* 1 = 0.106704 loss) +I0407 23:21:18.821938 32630 sgd_solver.cpp:105] Iteration 6804, lr = 0.00158346 +I0407 23:21:23.731523 32630 solver.cpp:218] Iteration 6816 (2.44421 iter/s, 4.90957s/12 iters), loss = 0.0913889 +I0407 23:21:23.731560 32630 solver.cpp:237] Train net output #0: loss = 0.091389 (* 1 = 0.091389 loss) +I0407 23:21:23.731568 32630 sgd_solver.cpp:105] Iteration 6816, lr = 0.00156784 +I0407 23:21:28.722896 32630 solver.cpp:218] Iteration 6828 (2.40418 iter/s, 4.99131s/12 iters), loss = 0.0601485 +I0407 23:21:28.723027 32630 solver.cpp:237] Train net output #0: loss = 0.0601487 (* 1 = 0.0601487 loss) +I0407 23:21:28.723037 32630 sgd_solver.cpp:105] Iteration 6828, lr = 0.00155235 +I0407 23:21:30.733860 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 23:21:33.866998 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 23:21:36.689688 32630 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 23:21:36.689707 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:21:38.534741 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:41.298635 32630 solver.cpp:397] Test net output #0: accuracy = 0.492647 +I0407 23:21:41.298683 32630 solver.cpp:397] Test net output #1: loss = 2.63418 (* 1 = 2.63418 loss) +I0407 23:21:43.121775 32630 solver.cpp:218] Iteration 6840 (0.833408 iter/s, 14.3987s/12 iters), loss = 0.0940911 +I0407 23:21:43.121820 32630 solver.cpp:237] Train net output #0: loss = 0.0940912 (* 1 = 0.0940912 loss) +I0407 23:21:43.121829 32630 sgd_solver.cpp:105] Iteration 6840, lr = 0.00153699 +I0407 23:21:48.164372 32630 solver.cpp:218] Iteration 6852 (2.37976 iter/s, 5.04252s/12 iters), loss = 0.107204 +I0407 23:21:48.164420 32630 solver.cpp:237] Train net output #0: loss = 0.107205 (* 1 = 0.107205 loss) +I0407 23:21:48.164429 32630 sgd_solver.cpp:105] Iteration 6852, lr = 0.00152174 +I0407 23:21:53.115087 32630 solver.cpp:218] Iteration 6864 (2.42393 iter/s, 4.95064s/12 iters), loss = 0.0512534 +I0407 23:21:53.115128 32630 solver.cpp:237] Train net output #0: loss = 0.0512535 (* 1 = 0.0512535 loss) +I0407 23:21:53.115135 32630 sgd_solver.cpp:105] Iteration 6864, lr = 0.00150663 +I0407 23:21:58.095202 32630 solver.cpp:218] Iteration 6876 (2.40962 iter/s, 4.98005s/12 iters), loss = 0.129175 +I0407 23:21:58.095249 32630 solver.cpp:237] Train net output #0: loss = 0.129176 (* 1 = 0.129176 loss) +I0407 23:21:58.095258 32630 sgd_solver.cpp:105] Iteration 6876, lr = 0.00149164 +I0407 23:21:58.717859 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:03.200423 32630 solver.cpp:218] Iteration 6888 (2.35057 iter/s, 5.10515s/12 iters), loss = 0.077988 +I0407 23:22:03.200542 32630 solver.cpp:237] Train net output #0: loss = 0.0779881 (* 1 = 0.0779881 loss) +I0407 23:22:03.200551 32630 sgd_solver.cpp:105] Iteration 6888, lr = 0.00147677 +I0407 23:22:08.251842 32630 solver.cpp:218] Iteration 6900 (2.37564 iter/s, 5.05127s/12 iters), loss = 0.176305 +I0407 23:22:08.251888 32630 solver.cpp:237] Train net output #0: loss = 0.176305 (* 1 = 0.176305 loss) +I0407 23:22:08.251896 32630 sgd_solver.cpp:105] Iteration 6900, lr = 0.00146202 +I0407 23:22:13.227296 32630 solver.cpp:218] Iteration 6912 (2.41187 iter/s, 4.97539s/12 iters), loss = 0.0527119 +I0407 23:22:13.227340 32630 solver.cpp:237] Train net output #0: loss = 0.052712 (* 1 = 0.052712 loss) +I0407 23:22:13.227349 32630 sgd_solver.cpp:105] Iteration 6912, lr = 0.00144739 +I0407 23:22:18.202028 32630 solver.cpp:218] Iteration 6924 (2.41222 iter/s, 4.97467s/12 iters), loss = 0.274352 +I0407 23:22:18.202064 32630 solver.cpp:237] Train net output #0: loss = 0.274353 (* 1 = 0.274353 loss) +I0407 23:22:18.202072 32630 sgd_solver.cpp:105] Iteration 6924, lr = 0.00143289 +I0407 23:22:22.681102 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 23:22:25.853468 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 23:22:28.211946 32630 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 23:22:28.211961 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:22:28.825445 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:22:29.943033 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:32.720432 32630 solver.cpp:397] Test net output #0: accuracy = 0.495098 +I0407 23:22:32.720477 32630 solver.cpp:397] Test net output #1: loss = 2.65932 (* 1 = 2.65932 loss) +I0407 23:22:32.817128 32630 solver.cpp:218] Iteration 6936 (0.821073 iter/s, 14.615s/12 iters), loss = 0.140918 +I0407 23:22:32.817175 32630 solver.cpp:237] Train net output #0: loss = 0.140918 (* 1 = 0.140918 loss) +I0407 23:22:32.817184 32630 sgd_solver.cpp:105] Iteration 6936, lr = 0.00141851 +I0407 23:22:36.892808 32630 solver.cpp:218] Iteration 6948 (2.94435 iter/s, 4.0756s/12 iters), loss = 0.265386 +I0407 23:22:36.892938 32630 solver.cpp:237] Train net output #0: loss = 0.265386 (* 1 = 0.265386 loss) +I0407 23:22:36.892947 32630 sgd_solver.cpp:105] Iteration 6948, lr = 0.00140425 +I0407 23:22:41.815196 32630 solver.cpp:218] Iteration 6960 (2.43792 iter/s, 4.92224s/12 iters), loss = 0.0713736 +I0407 23:22:41.815240 32630 solver.cpp:237] Train net output #0: loss = 0.0713738 (* 1 = 0.0713738 loss) +I0407 23:22:41.815249 32630 sgd_solver.cpp:105] Iteration 6960, lr = 0.00139011 +I0407 23:22:46.786257 32630 solver.cpp:218] Iteration 6972 (2.41401 iter/s, 4.97099s/12 iters), loss = 0.151701 +I0407 23:22:46.786295 32630 solver.cpp:237] Train net output #0: loss = 0.151701 (* 1 = 0.151701 loss) +I0407 23:22:46.786303 32630 sgd_solver.cpp:105] Iteration 6972, lr = 0.00137609 +I0407 23:22:49.497942 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:51.756862 32630 solver.cpp:218] Iteration 6984 (2.41422 iter/s, 4.97054s/12 iters), loss = 0.126587 +I0407 23:22:51.756908 32630 solver.cpp:237] Train net output #0: loss = 0.126587 (* 1 = 0.126587 loss) +I0407 23:22:51.756916 32630 sgd_solver.cpp:105] Iteration 6984, lr = 0.00136219 +I0407 23:22:56.706028 32630 solver.cpp:218] Iteration 6996 (2.42469 iter/s, 4.94909s/12 iters), loss = 0.122096 +I0407 23:22:56.706080 32630 solver.cpp:237] Train net output #0: loss = 0.122096 (* 1 = 0.122096 loss) +I0407 23:22:56.706090 32630 sgd_solver.cpp:105] Iteration 6996, lr = 0.0013484 +I0407 23:23:01.656845 32630 solver.cpp:218] Iteration 7008 (2.42388 iter/s, 4.95074s/12 iters), loss = 0.0601943 +I0407 23:23:01.656891 32630 solver.cpp:237] Train net output #0: loss = 0.0601944 (* 1 = 0.0601944 loss) +I0407 23:23:01.656899 32630 sgd_solver.cpp:105] Iteration 7008, lr = 0.00133474 +I0407 23:23:06.563345 32630 solver.cpp:218] Iteration 7020 (2.44577 iter/s, 4.90643s/12 iters), loss = 0.210623 +I0407 23:23:06.563388 32630 solver.cpp:237] Train net output #0: loss = 0.210623 (* 1 = 0.210623 loss) +I0407 23:23:06.563397 32630 sgd_solver.cpp:105] Iteration 7020, lr = 0.00132119 +I0407 23:23:11.578918 32630 solver.cpp:218] Iteration 7032 (2.39258 iter/s, 5.0155s/12 iters), loss = 0.153301 +I0407 23:23:11.579077 32630 solver.cpp:237] Train net output #0: loss = 0.153301 (* 1 = 0.153301 loss) +I0407 23:23:11.579085 32630 sgd_solver.cpp:105] Iteration 7032, lr = 0.00130776 +I0407 23:23:13.667977 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 23:23:16.732033 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 23:23:19.087260 32630 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 23:23:19.087280 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:23:20.825062 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:23.938248 32630 solver.cpp:397] Test net output #0: accuracy = 0.501225 +I0407 23:23:23.938297 32630 solver.cpp:397] Test net output #1: loss = 2.62896 (* 1 = 2.62896 loss) +I0407 23:23:25.741089 32630 solver.cpp:218] Iteration 7044 (0.84734 iter/s, 14.162s/12 iters), loss = 0.0395202 +I0407 23:23:25.741135 32630 solver.cpp:237] Train net output #0: loss = 0.0395203 (* 1 = 0.0395203 loss) +I0407 23:23:25.741143 32630 sgd_solver.cpp:105] Iteration 7044, lr = 0.00129444 +I0407 23:23:30.647058 32630 solver.cpp:218] Iteration 7056 (2.44604 iter/s, 4.9059s/12 iters), loss = 0.0686275 +I0407 23:23:30.647106 32630 solver.cpp:237] Train net output #0: loss = 0.0686277 (* 1 = 0.0686277 loss) +I0407 23:23:30.647115 32630 sgd_solver.cpp:105] Iteration 7056, lr = 0.00128124 +I0407 23:23:35.619102 32630 solver.cpp:218] Iteration 7068 (2.41353 iter/s, 4.97197s/12 iters), loss = 0.129978 +I0407 23:23:35.619143 32630 solver.cpp:237] Train net output #0: loss = 0.129979 (* 1 = 0.129979 loss) +I0407 23:23:35.619153 32630 sgd_solver.cpp:105] Iteration 7068, lr = 0.00126816 +I0407 23:23:40.430033 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:40.540024 32630 solver.cpp:218] Iteration 7080 (2.4386 iter/s, 4.92086s/12 iters), loss = 0.199802 +I0407 23:23:40.540060 32630 solver.cpp:237] Train net output #0: loss = 0.199802 (* 1 = 0.199802 loss) +I0407 23:23:40.540068 32630 sgd_solver.cpp:105] Iteration 7080, lr = 0.00125519 +I0407 23:23:45.425249 32630 solver.cpp:218] Iteration 7092 (2.45642 iter/s, 4.88516s/12 iters), loss = 0.0521977 +I0407 23:23:45.425387 32630 solver.cpp:237] Train net output #0: loss = 0.0521978 (* 1 = 0.0521978 loss) +I0407 23:23:45.425396 32630 sgd_solver.cpp:105] Iteration 7092, lr = 0.00124233 +I0407 23:23:50.361363 32630 solver.cpp:218] Iteration 7104 (2.43114 iter/s, 4.93595s/12 iters), loss = 0.0623749 +I0407 23:23:50.361407 32630 solver.cpp:237] Train net output #0: loss = 0.062375 (* 1 = 0.062375 loss) +I0407 23:23:50.361414 32630 sgd_solver.cpp:105] Iteration 7104, lr = 0.00122959 +I0407 23:23:55.283996 32630 solver.cpp:218] Iteration 7116 (2.43775 iter/s, 4.92256s/12 iters), loss = 0.0981473 +I0407 23:23:55.284040 32630 solver.cpp:237] Train net output #0: loss = 0.0981474 (* 1 = 0.0981474 loss) +I0407 23:23:55.284049 32630 sgd_solver.cpp:105] Iteration 7116, lr = 0.00121696 +I0407 23:24:00.229327 32630 solver.cpp:218] Iteration 7128 (2.42657 iter/s, 4.94526s/12 iters), loss = 0.107294 +I0407 23:24:00.229372 32630 solver.cpp:237] Train net output #0: loss = 0.107294 (* 1 = 0.107294 loss) +I0407 23:24:00.229379 32630 sgd_solver.cpp:105] Iteration 7128, lr = 0.00120444 +I0407 23:24:04.728545 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 23:24:08.711441 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 23:24:11.071544 32630 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 23:24:11.071563 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:24:12.789069 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:15.873718 32630 solver.cpp:397] Test net output #0: accuracy = 0.498162 +I0407 23:24:15.873914 32630 solver.cpp:397] Test net output #1: loss = 2.66261 (* 1 = 2.66261 loss) +I0407 23:24:15.970429 32630 solver.cpp:218] Iteration 7140 (0.76234 iter/s, 15.741s/12 iters), loss = 0.03908 +I0407 23:24:15.970495 32630 solver.cpp:237] Train net output #0: loss = 0.0390801 (* 1 = 0.0390801 loss) +I0407 23:24:15.970507 32630 sgd_solver.cpp:105] Iteration 7140, lr = 0.00119203 +I0407 23:24:20.086684 32630 solver.cpp:218] Iteration 7152 (2.91533 iter/s, 4.11617s/12 iters), loss = 0.117106 +I0407 23:24:20.086722 32630 solver.cpp:237] Train net output #0: loss = 0.117106 (* 1 = 0.117106 loss) +I0407 23:24:20.086731 32630 sgd_solver.cpp:105] Iteration 7152, lr = 0.00117973 +I0407 23:24:24.996002 32630 solver.cpp:218] Iteration 7164 (2.44436 iter/s, 4.90926s/12 iters), loss = 0.105561 +I0407 23:24:24.996055 32630 solver.cpp:237] Train net output #0: loss = 0.105561 (* 1 = 0.105561 loss) +I0407 23:24:24.996063 32630 sgd_solver.cpp:105] Iteration 7164, lr = 0.00116755 +I0407 23:24:29.955384 32630 solver.cpp:218] Iteration 7176 (2.41969 iter/s, 4.95931s/12 iters), loss = 0.163709 +I0407 23:24:29.955418 32630 solver.cpp:237] Train net output #0: loss = 0.163709 (* 1 = 0.163709 loss) +I0407 23:24:29.955426 32630 sgd_solver.cpp:105] Iteration 7176, lr = 0.00115547 +I0407 23:24:32.025667 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:34.865015 32630 solver.cpp:218] Iteration 7188 (2.4442 iter/s, 4.90957s/12 iters), loss = 0.0568543 +I0407 23:24:34.865051 32630 solver.cpp:237] Train net output #0: loss = 0.0568544 (* 1 = 0.0568544 loss) +I0407 23:24:34.865058 32630 sgd_solver.cpp:105] Iteration 7188, lr = 0.0011435 +I0407 23:24:39.837218 32630 solver.cpp:218] Iteration 7200 (2.41345 iter/s, 4.97214s/12 iters), loss = 0.0538703 +I0407 23:24:39.837263 32630 solver.cpp:237] Train net output #0: loss = 0.0538704 (* 1 = 0.0538704 loss) +I0407 23:24:39.837272 32630 sgd_solver.cpp:105] Iteration 7200, lr = 0.00113164 +I0407 23:24:44.804478 32630 solver.cpp:218] Iteration 7212 (2.41585 iter/s, 4.96719s/12 iters), loss = 0.0886614 +I0407 23:24:44.804520 32630 solver.cpp:237] Train net output #0: loss = 0.0886615 (* 1 = 0.0886615 loss) +I0407 23:24:44.804528 32630 sgd_solver.cpp:105] Iteration 7212, lr = 0.00111989 +I0407 23:24:49.738994 32630 solver.cpp:218] Iteration 7224 (2.43188 iter/s, 4.93445s/12 iters), loss = 0.0960281 +I0407 23:24:49.739130 32630 solver.cpp:237] Train net output #0: loss = 0.0960282 (* 1 = 0.0960282 loss) +I0407 23:24:49.739138 32630 sgd_solver.cpp:105] Iteration 7224, lr = 0.00110824 +I0407 23:24:54.711258 32630 solver.cpp:218] Iteration 7236 (2.41346 iter/s, 4.97211s/12 iters), loss = 0.0432394 +I0407 23:24:54.711295 32630 solver.cpp:237] Train net output #0: loss = 0.0432395 (* 1 = 0.0432395 loss) +I0407 23:24:54.711303 32630 sgd_solver.cpp:105] Iteration 7236, lr = 0.0010967 +I0407 23:24:56.748838 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 23:24:59.826944 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 23:25:02.204095 32630 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 23:25:02.204115 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:25:03.859048 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:06.984787 32630 solver.cpp:397] Test net output #0: accuracy = 0.502451 +I0407 23:25:06.984833 32630 solver.cpp:397] Test net output #1: loss = 2.65509 (* 1 = 2.65509 loss) +I0407 23:25:08.805855 32630 solver.cpp:218] Iteration 7248 (0.851395 iter/s, 14.0945s/12 iters), loss = 0.0507637 +I0407 23:25:08.805892 32630 solver.cpp:237] Train net output #0: loss = 0.0507638 (* 1 = 0.0507638 loss) +I0407 23:25:08.805899 32630 sgd_solver.cpp:105] Iteration 7248, lr = 0.00108526 +I0407 23:25:13.768316 32630 solver.cpp:218] Iteration 7260 (2.41818 iter/s, 4.9624s/12 iters), loss = 0.0801947 +I0407 23:25:13.768350 32630 solver.cpp:237] Train net output #0: loss = 0.0801948 (* 1 = 0.0801948 loss) +I0407 23:25:13.768357 32630 sgd_solver.cpp:105] Iteration 7260, lr = 0.00107393 +I0407 23:25:18.704921 32630 solver.cpp:218] Iteration 7272 (2.43085 iter/s, 4.93655s/12 iters), loss = 0.0618976 +I0407 23:25:18.704957 32630 solver.cpp:237] Train net output #0: loss = 0.0618976 (* 1 = 0.0618976 loss) +I0407 23:25:18.704965 32630 sgd_solver.cpp:105] Iteration 7272, lr = 0.00106271 +I0407 23:25:22.926466 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:23.652441 32630 solver.cpp:218] Iteration 7284 (2.42549 iter/s, 4.94746s/12 iters), loss = 0.0392592 +I0407 23:25:23.652479 32630 solver.cpp:237] Train net output #0: loss = 0.0392593 (* 1 = 0.0392593 loss) +I0407 23:25:23.652487 32630 sgd_solver.cpp:105] Iteration 7284, lr = 0.00105159 +I0407 23:25:28.577070 32630 solver.cpp:218] Iteration 7296 (2.43676 iter/s, 4.92457s/12 iters), loss = 0.0688824 +I0407 23:25:28.577109 32630 solver.cpp:237] Train net output #0: loss = 0.0688825 (* 1 = 0.0688825 loss) +I0407 23:25:28.577116 32630 sgd_solver.cpp:105] Iteration 7296, lr = 0.00104057 +I0407 23:25:33.523471 32630 solver.cpp:218] Iteration 7308 (2.42604 iter/s, 4.94634s/12 iters), loss = 0.106905 +I0407 23:25:33.523516 32630 solver.cpp:237] Train net output #0: loss = 0.106905 (* 1 = 0.106905 loss) +I0407 23:25:33.523524 32630 sgd_solver.cpp:105] Iteration 7308, lr = 0.00102965 +I0407 23:25:38.333315 32630 solver.cpp:218] Iteration 7320 (2.49492 iter/s, 4.80978s/12 iters), loss = 0.0533732 +I0407 23:25:38.333364 32630 solver.cpp:237] Train net output #0: loss = 0.0533733 (* 1 = 0.0533733 loss) +I0407 23:25:38.333371 32630 sgd_solver.cpp:105] Iteration 7320, lr = 0.00101883 +I0407 23:25:43.262671 32630 solver.cpp:218] Iteration 7332 (2.43443 iter/s, 4.92929s/12 iters), loss = 0.0943866 +I0407 23:25:43.262708 32630 solver.cpp:237] Train net output #0: loss = 0.0943866 (* 1 = 0.0943866 loss) +I0407 23:25:43.262717 32630 sgd_solver.cpp:105] Iteration 7332, lr = 0.00100812 +I0407 23:25:47.757692 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 23:25:51.005221 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 23:25:53.359584 32630 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 23:25:53.359686 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:25:54.897217 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:57.811322 32630 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:25:57.811358 32630 solver.cpp:397] Test net output #1: loss = 2.66022 (* 1 = 2.66022 loss) +I0407 23:25:57.908053 32630 solver.cpp:218] Iteration 7344 (0.819376 iter/s, 14.6453s/12 iters), loss = 0.0913434 +I0407 23:25:57.908128 32630 solver.cpp:237] Train net output #0: loss = 0.0913434 (* 1 = 0.0913434 loss) +I0407 23:25:57.908143 32630 sgd_solver.cpp:105] Iteration 7344, lr = 0.000997505 +I0407 23:26:02.042335 32630 solver.cpp:218] Iteration 7356 (2.90266 iter/s, 4.13413s/12 iters), loss = 0.0645521 +I0407 23:26:02.042392 32630 solver.cpp:237] Train net output #0: loss = 0.0645522 (* 1 = 0.0645522 loss) +I0407 23:26:02.042402 32630 sgd_solver.cpp:105] Iteration 7356, lr = 0.00098699 +I0407 23:26:06.961817 32630 solver.cpp:218] Iteration 7368 (2.43932 iter/s, 4.9194s/12 iters), loss = 0.0214652 +I0407 23:26:06.961858 32630 solver.cpp:237] Train net output #0: loss = 0.0214653 (* 1 = 0.0214653 loss) +I0407 23:26:06.961864 32630 sgd_solver.cpp:105] Iteration 7368, lr = 0.000976573 +I0407 23:26:11.925750 32630 solver.cpp:218] Iteration 7380 (2.41747 iter/s, 4.96387s/12 iters), loss = 0.0564919 +I0407 23:26:11.925792 32630 solver.cpp:237] Train net output #0: loss = 0.0564919 (* 1 = 0.0564919 loss) +I0407 23:26:11.925804 32630 sgd_solver.cpp:105] Iteration 7380, lr = 0.000966255 +I0407 23:26:13.271765 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:16.814935 32630 solver.cpp:218] Iteration 7392 (2.45443 iter/s, 4.88912s/12 iters), loss = 0.0194148 +I0407 23:26:16.814982 32630 solver.cpp:237] Train net output #0: loss = 0.0194148 (* 1 = 0.0194148 loss) +I0407 23:26:16.814991 32630 sgd_solver.cpp:105] Iteration 7392, lr = 0.000956035 +I0407 23:26:21.791299 32630 solver.cpp:218] Iteration 7404 (2.41143 iter/s, 4.97629s/12 iters), loss = 0.166782 +I0407 23:26:21.791344 32630 solver.cpp:237] Train net output #0: loss = 0.166782 (* 1 = 0.166782 loss) +I0407 23:26:21.791352 32630 sgd_solver.cpp:105] Iteration 7404, lr = 0.000945911 +I0407 23:26:26.689499 32630 solver.cpp:218] Iteration 7416 (2.44992 iter/s, 4.89813s/12 iters), loss = 0.0346203 +I0407 23:26:26.689690 32630 solver.cpp:237] Train net output #0: loss = 0.0346203 (* 1 = 0.0346203 loss) +I0407 23:26:26.689702 32630 sgd_solver.cpp:105] Iteration 7416, lr = 0.000935883 +I0407 23:26:31.638315 32630 solver.cpp:218] Iteration 7428 (2.42493 iter/s, 4.9486s/12 iters), loss = 0.0635721 +I0407 23:26:31.638360 32630 solver.cpp:237] Train net output #0: loss = 0.0635721 (* 1 = 0.0635721 loss) +I0407 23:26:31.638367 32630 sgd_solver.cpp:105] Iteration 7428, lr = 0.00092595 +I0407 23:26:36.765297 32630 solver.cpp:218] Iteration 7440 (2.34059 iter/s, 5.12691s/12 iters), loss = 0.068862 +I0407 23:26:36.765345 32630 solver.cpp:237] Train net output #0: loss = 0.068862 (* 1 = 0.068862 loss) +I0407 23:26:36.765354 32630 sgd_solver.cpp:105] Iteration 7440, lr = 0.000916113 +I0407 23:26:38.778666 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 23:26:41.893988 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 23:26:44.265722 32630 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 23:26:44.265739 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:26:45.714542 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:48.867270 32630 solver.cpp:397] Test net output #0: accuracy = 0.499387 +I0407 23:26:48.867317 32630 solver.cpp:397] Test net output #1: loss = 2.66041 (* 1 = 2.66041 loss) +I0407 23:26:50.674741 32630 solver.cpp:218] Iteration 7452 (0.862729 iter/s, 13.9094s/12 iters), loss = 0.130915 +I0407 23:26:50.674787 32630 solver.cpp:237] Train net output #0: loss = 0.130915 (* 1 = 0.130915 loss) +I0407 23:26:50.674794 32630 sgd_solver.cpp:105] Iteration 7452, lr = 0.000906369 +I0407 23:26:55.629942 32630 solver.cpp:218] Iteration 7464 (2.42173 iter/s, 4.95513s/12 iters), loss = 0.0268599 +I0407 23:26:55.629981 32630 solver.cpp:237] Train net output #0: loss = 0.0268599 (* 1 = 0.0268599 loss) +I0407 23:26:55.629990 32630 sgd_solver.cpp:105] Iteration 7464, lr = 0.000896719 +I0407 23:27:00.596865 32630 solver.cpp:218] Iteration 7476 (2.41601 iter/s, 4.96686s/12 iters), loss = 0.0738801 +I0407 23:27:00.596985 32630 solver.cpp:237] Train net output #0: loss = 0.0738801 (* 1 = 0.0738801 loss) +I0407 23:27:00.596994 32630 sgd_solver.cpp:105] Iteration 7476, lr = 0.000887162 +I0407 23:27:04.061743 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:05.504997 32630 solver.cpp:218] Iteration 7488 (2.44499 iter/s, 4.90799s/12 iters), loss = 0.105515 +I0407 23:27:05.505035 32630 solver.cpp:237] Train net output #0: loss = 0.105515 (* 1 = 0.105515 loss) +I0407 23:27:05.505043 32630 sgd_solver.cpp:105] Iteration 7488, lr = 0.000877697 +I0407 23:27:10.468173 32630 solver.cpp:218] Iteration 7500 (2.41784 iter/s, 4.96311s/12 iters), loss = 0.116839 +I0407 23:27:10.468215 32630 solver.cpp:237] Train net output #0: loss = 0.116839 (* 1 = 0.116839 loss) +I0407 23:27:10.468223 32630 sgd_solver.cpp:105] Iteration 7500, lr = 0.000868323 +I0407 23:27:15.384044 32630 solver.cpp:218] Iteration 7512 (2.44111 iter/s, 4.91581s/12 iters), loss = 0.0915584 +I0407 23:27:15.384089 32630 solver.cpp:237] Train net output #0: loss = 0.0915584 (* 1 = 0.0915584 loss) +I0407 23:27:15.384097 32630 sgd_solver.cpp:105] Iteration 7512, lr = 0.000859039 +I0407 23:27:20.341643 32630 solver.cpp:218] Iteration 7524 (2.42056 iter/s, 4.95753s/12 iters), loss = 0.118833 +I0407 23:27:20.341684 32630 solver.cpp:237] Train net output #0: loss = 0.118833 (* 1 = 0.118833 loss) +I0407 23:27:20.341692 32630 sgd_solver.cpp:105] Iteration 7524, lr = 0.000849846 +I0407 23:27:25.268838 32630 solver.cpp:218] Iteration 7536 (2.4355 iter/s, 4.92713s/12 iters), loss = 0.0610378 +I0407 23:27:25.268887 32630 solver.cpp:237] Train net output #0: loss = 0.0610379 (* 1 = 0.0610379 loss) +I0407 23:27:25.268895 32630 sgd_solver.cpp:105] Iteration 7536, lr = 0.000840742 +I0407 23:27:29.755973 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 23:27:38.568802 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 23:27:42.733479 32630 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 23:27:42.733495 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:27:44.252243 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:47.275795 32630 solver.cpp:397] Test net output #0: accuracy = 0.507966 +I0407 23:27:47.275842 32630 solver.cpp:397] Test net output #1: loss = 2.66672 (* 1 = 2.66672 loss) +I0407 23:27:47.372259 32630 solver.cpp:218] Iteration 7548 (0.542905 iter/s, 22.1033s/12 iters), loss = 0.0934237 +I0407 23:27:47.372305 32630 solver.cpp:237] Train net output #0: loss = 0.0934237 (* 1 = 0.0934237 loss) +I0407 23:27:47.372313 32630 sgd_solver.cpp:105] Iteration 7548, lr = 0.000831727 +I0407 23:27:51.501442 32630 solver.cpp:218] Iteration 7560 (2.90619 iter/s, 4.12912s/12 iters), loss = 0.0647124 +I0407 23:27:51.501478 32630 solver.cpp:237] Train net output #0: loss = 0.0647124 (* 1 = 0.0647124 loss) +I0407 23:27:51.501485 32630 sgd_solver.cpp:105] Iteration 7560, lr = 0.0008228 +I0407 23:27:56.445634 32630 solver.cpp:218] Iteration 7572 (2.42712 iter/s, 4.94413s/12 iters), loss = 0.0898006 +I0407 23:27:56.445684 32630 solver.cpp:237] Train net output #0: loss = 0.0898006 (* 1 = 0.0898006 loss) +I0407 23:27:56.445693 32630 sgd_solver.cpp:105] Iteration 7572, lr = 0.00081396 +I0407 23:28:01.400068 32630 solver.cpp:218] Iteration 7584 (2.42211 iter/s, 4.95436s/12 iters), loss = 0.0574981 +I0407 23:28:01.400104 32630 solver.cpp:237] Train net output #0: loss = 0.0574981 (* 1 = 0.0574981 loss) +I0407 23:28:01.400111 32630 sgd_solver.cpp:105] Iteration 7584, lr = 0.000805206 +I0407 23:28:02.022544 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:06.305809 32630 solver.cpp:218] Iteration 7596 (2.44614 iter/s, 4.90568s/12 iters), loss = 0.0558913 +I0407 23:28:06.305847 32630 solver.cpp:237] Train net output #0: loss = 0.0558913 (* 1 = 0.0558913 loss) +I0407 23:28:06.305855 32630 sgd_solver.cpp:105] Iteration 7596, lr = 0.000796539 +I0407 23:28:11.251663 32630 solver.cpp:218] Iteration 7608 (2.4263 iter/s, 4.94579s/12 iters), loss = 0.0264154 +I0407 23:28:11.251791 32630 solver.cpp:237] Train net output #0: loss = 0.0264154 (* 1 = 0.0264154 loss) +I0407 23:28:11.251799 32630 sgd_solver.cpp:105] Iteration 7608, lr = 0.000787957 +I0407 23:28:16.112398 32630 solver.cpp:218] Iteration 7620 (2.46884 iter/s, 4.86058s/12 iters), loss = 0.045664 +I0407 23:28:16.112439 32630 solver.cpp:237] Train net output #0: loss = 0.045664 (* 1 = 0.045664 loss) +I0407 23:28:16.112447 32630 sgd_solver.cpp:105] Iteration 7620, lr = 0.000779459 +I0407 23:28:18.479072 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:28:21.006513 32630 solver.cpp:218] Iteration 7632 (2.45195 iter/s, 4.89405s/12 iters), loss = 0.222131 +I0407 23:28:21.006551 32630 solver.cpp:237] Train net output #0: loss = 0.222131 (* 1 = 0.222131 loss) +I0407 23:28:21.006559 32630 sgd_solver.cpp:105] Iteration 7632, lr = 0.000771046 +I0407 23:28:25.969905 32630 solver.cpp:218] Iteration 7644 (2.41773 iter/s, 4.96333s/12 iters), loss = 0.0483886 +I0407 23:28:25.969938 32630 solver.cpp:237] Train net output #0: loss = 0.0483886 (* 1 = 0.0483886 loss) +I0407 23:28:25.969945 32630 sgd_solver.cpp:105] Iteration 7644, lr = 0.000762716 +I0407 23:28:27.967869 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 23:28:34.129714 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 23:28:36.951304 32630 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 23:28:36.951324 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:28:38.444695 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:41.743960 32630 solver.cpp:397] Test net output #0: accuracy = 0.514093 +I0407 23:28:41.744163 32630 solver.cpp:397] Test net output #1: loss = 2.67849 (* 1 = 2.67849 loss) +I0407 23:28:43.447240 32630 solver.cpp:218] Iteration 7656 (0.686607 iter/s, 17.4772s/12 iters), loss = 0.0436079 +I0407 23:28:43.447284 32630 solver.cpp:237] Train net output #0: loss = 0.0436079 (* 1 = 0.0436079 loss) +I0407 23:28:43.447293 32630 sgd_solver.cpp:105] Iteration 7656, lr = 0.000754468 +I0407 23:28:48.396241 32630 solver.cpp:218] Iteration 7668 (2.42476 iter/s, 4.94894s/12 iters), loss = 0.0613563 +I0407 23:28:48.396275 32630 solver.cpp:237] Train net output #0: loss = 0.0613563 (* 1 = 0.0613563 loss) +I0407 23:28:48.396281 32630 sgd_solver.cpp:105] Iteration 7668, lr = 0.000746303 +I0407 23:28:53.365283 32630 solver.cpp:218] Iteration 7680 (2.41498 iter/s, 4.96898s/12 iters), loss = 0.0430957 +I0407 23:28:53.365324 32630 solver.cpp:237] Train net output #0: loss = 0.0430957 (* 1 = 0.0430957 loss) +I0407 23:28:53.365330 32630 sgd_solver.cpp:105] Iteration 7680, lr = 0.000738218 +I0407 23:28:56.118458 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:58.295619 32630 solver.cpp:218] Iteration 7692 (2.43394 iter/s, 4.93027s/12 iters), loss = 0.15368 +I0407 23:28:58.295665 32630 solver.cpp:237] Train net output #0: loss = 0.15368 (* 1 = 0.15368 loss) +I0407 23:28:58.295673 32630 sgd_solver.cpp:105] Iteration 7692, lr = 0.000730215 +I0407 23:29:03.257486 32630 solver.cpp:218] Iteration 7704 (2.41848 iter/s, 4.9618s/12 iters), loss = 0.0413929 +I0407 23:29:03.257531 32630 solver.cpp:237] Train net output #0: loss = 0.0413929 (* 1 = 0.0413929 loss) +I0407 23:29:03.257540 32630 sgd_solver.cpp:105] Iteration 7704, lr = 0.000722291 +I0407 23:29:08.172782 32630 solver.cpp:218] Iteration 7716 (2.44139 iter/s, 4.91523s/12 iters), loss = 0.0924805 +I0407 23:29:08.172827 32630 solver.cpp:237] Train net output #0: loss = 0.0924805 (* 1 = 0.0924805 loss) +I0407 23:29:08.172835 32630 sgd_solver.cpp:105] Iteration 7716, lr = 0.000714447 +I0407 23:29:13.108151 32630 solver.cpp:218] Iteration 7728 (2.43146 iter/s, 4.9353s/12 iters), loss = 0.0950282 +I0407 23:29:13.108285 32630 solver.cpp:237] Train net output #0: loss = 0.0950282 (* 1 = 0.0950282 loss) +I0407 23:29:13.108294 32630 sgd_solver.cpp:105] Iteration 7728, lr = 0.000706682 +I0407 23:29:18.041615 32630 solver.cpp:218] Iteration 7740 (2.43245 iter/s, 4.93331s/12 iters), loss = 0.123003 +I0407 23:29:18.041656 32630 solver.cpp:237] Train net output #0: loss = 0.123003 (* 1 = 0.123003 loss) +I0407 23:29:18.041664 32630 sgd_solver.cpp:105] Iteration 7740, lr = 0.000698994 +I0407 23:29:22.539405 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 23:29:25.857072 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 23:29:28.220628 32630 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 23:29:28.220649 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:29:29.561590 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:29:32.655750 32630 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:29:32.655797 32630 solver.cpp:397] Test net output #1: loss = 2.66137 (* 1 = 2.66137 loss) +I0407 23:29:32.750394 32630 solver.cpp:218] Iteration 7752 (0.815844 iter/s, 14.7087s/12 iters), loss = 0.101475 +I0407 23:29:32.750437 32630 solver.cpp:237] Train net output #0: loss = 0.101475 (* 1 = 0.101475 loss) +I0407 23:29:32.750445 32630 sgd_solver.cpp:105] Iteration 7752, lr = 0.000691384 +I0407 23:29:36.821720 32630 solver.cpp:218] Iteration 7764 (2.94749 iter/s, 4.07126s/12 iters), loss = 0.0834518 +I0407 23:29:36.821763 32630 solver.cpp:237] Train net output #0: loss = 0.0834518 (* 1 = 0.0834518 loss) +I0407 23:29:36.821771 32630 sgd_solver.cpp:105] Iteration 7764, lr = 0.000683851 +I0407 23:29:41.782092 32630 solver.cpp:218] Iteration 7776 (2.4192 iter/s, 4.96031s/12 iters), loss = 0.0626199 +I0407 23:29:41.782130 32630 solver.cpp:237] Train net output #0: loss = 0.0626199 (* 1 = 0.0626199 loss) +I0407 23:29:41.782137 32630 sgd_solver.cpp:105] Iteration 7776, lr = 0.000676394 +I0407 23:29:46.729460 32630 solver.cpp:218] Iteration 7788 (2.42556 iter/s, 4.94731s/12 iters), loss = 0.0190625 +I0407 23:29:46.729614 32630 solver.cpp:237] Train net output #0: loss = 0.0190625 (* 1 = 0.0190625 loss) +I0407 23:29:46.729622 32630 sgd_solver.cpp:105] Iteration 7788, lr = 0.000669012 +I0407 23:29:46.735792 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:29:51.647275 32630 solver.cpp:218] Iteration 7800 (2.4402 iter/s, 4.91764s/12 iters), loss = 0.0842227 +I0407 23:29:51.647316 32630 solver.cpp:237] Train net output #0: loss = 0.0842226 (* 1 = 0.0842226 loss) +I0407 23:29:51.647325 32630 sgd_solver.cpp:105] Iteration 7800, lr = 0.000661705 +I0407 23:29:56.615599 32630 solver.cpp:218] Iteration 7812 (2.41534 iter/s, 4.96825s/12 iters), loss = 0.0917963 +I0407 23:29:56.615648 32630 solver.cpp:237] Train net output #0: loss = 0.0917963 (* 1 = 0.0917963 loss) +I0407 23:29:56.615656 32630 sgd_solver.cpp:105] Iteration 7812, lr = 0.000654472 +I0407 23:30:01.513811 32630 solver.cpp:218] Iteration 7824 (2.44991 iter/s, 4.89814s/12 iters), loss = 0.135433 +I0407 23:30:01.513854 32630 solver.cpp:237] Train net output #0: loss = 0.135433 (* 1 = 0.135433 loss) +I0407 23:30:01.513861 32630 sgd_solver.cpp:105] Iteration 7824, lr = 0.000647313 +I0407 23:30:06.493211 32630 solver.cpp:218] Iteration 7836 (2.40996 iter/s, 4.97933s/12 iters), loss = 0.129445 +I0407 23:30:06.493257 32630 solver.cpp:237] Train net output #0: loss = 0.129445 (* 1 = 0.129445 loss) +I0407 23:30:06.493265 32630 sgd_solver.cpp:105] Iteration 7836, lr = 0.000640227 +I0407 23:30:11.430065 32630 solver.cpp:218] Iteration 7848 (2.43073 iter/s, 4.93678s/12 iters), loss = 0.021146 +I0407 23:30:11.430109 32630 solver.cpp:237] Train net output #0: loss = 0.021146 (* 1 = 0.021146 loss) +I0407 23:30:11.430119 32630 sgd_solver.cpp:105] Iteration 7848, lr = 0.000633213 +I0407 23:30:13.452039 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 23:30:17.221787 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 23:30:20.643501 32630 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 23:30:20.643522 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:30:22.028160 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:25.431963 32630 solver.cpp:397] Test net output #0: accuracy = 0.507966 +I0407 23:30:25.431990 32630 solver.cpp:397] Test net output #1: loss = 2.66546 (* 1 = 2.66546 loss) +I0407 23:30:27.223505 32630 solver.cpp:218] Iteration 7860 (0.759814 iter/s, 15.7933s/12 iters), loss = 0.106889 +I0407 23:30:27.223551 32630 solver.cpp:237] Train net output #0: loss = 0.106889 (* 1 = 0.106889 loss) +I0407 23:30:27.223559 32630 sgd_solver.cpp:105] Iteration 7860, lr = 0.000626271 +I0407 23:30:32.092607 32630 solver.cpp:218] Iteration 7872 (2.46456 iter/s, 4.86903s/12 iters), loss = 0.127841 +I0407 23:30:32.092653 32630 solver.cpp:237] Train net output #0: loss = 0.12784 (* 1 = 0.12784 loss) +I0407 23:30:32.092661 32630 sgd_solver.cpp:105] Iteration 7872, lr = 0.0006194 +I0407 23:30:37.042572 32630 solver.cpp:218] Iteration 7884 (2.42429 iter/s, 4.9499s/12 iters), loss = 0.117973 +I0407 23:30:37.042618 32630 solver.cpp:237] Train net output #0: loss = 0.117973 (* 1 = 0.117973 loss) +I0407 23:30:37.042625 32630 sgd_solver.cpp:105] Iteration 7884, lr = 0.0006126 +I0407 23:30:39.158147 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:41.990255 32630 solver.cpp:218] Iteration 7896 (2.42541 iter/s, 4.94761s/12 iters), loss = 0.0763213 +I0407 23:30:41.990299 32630 solver.cpp:237] Train net output #0: loss = 0.0763213 (* 1 = 0.0763213 loss) +I0407 23:30:41.990307 32630 sgd_solver.cpp:105] Iteration 7896, lr = 0.000605869 +I0407 23:30:46.917245 32630 solver.cpp:218] Iteration 7908 (2.4356 iter/s, 4.92692s/12 iters), loss = 0.0647647 +I0407 23:30:46.917289 32630 solver.cpp:237] Train net output #0: loss = 0.0647647 (* 1 = 0.0647647 loss) +I0407 23:30:46.917297 32630 sgd_solver.cpp:105] Iteration 7908, lr = 0.000599207 +I0407 23:30:51.878913 32630 solver.cpp:218] Iteration 7920 (2.41858 iter/s, 4.96159s/12 iters), loss = 0.0866002 +I0407 23:30:51.879065 32630 solver.cpp:237] Train net output #0: loss = 0.0866002 (* 1 = 0.0866002 loss) +I0407 23:30:51.879074 32630 sgd_solver.cpp:105] Iteration 7920, lr = 0.000592615 +I0407 23:30:56.799852 32630 solver.cpp:218] Iteration 7932 (2.43865 iter/s, 4.92076s/12 iters), loss = 0.0493649 +I0407 23:30:56.799897 32630 solver.cpp:237] Train net output #0: loss = 0.0493649 (* 1 = 0.0493649 loss) +I0407 23:30:56.799906 32630 sgd_solver.cpp:105] Iteration 7932, lr = 0.00058609 +I0407 23:31:01.774381 32630 solver.cpp:218] Iteration 7944 (2.41232 iter/s, 4.97446s/12 iters), loss = 0.0586754 +I0407 23:31:01.774420 32630 solver.cpp:237] Train net output #0: loss = 0.0586754 (* 1 = 0.0586754 loss) +I0407 23:31:01.774428 32630 sgd_solver.cpp:105] Iteration 7944, lr = 0.000579632 +I0407 23:31:06.191246 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 23:31:09.305048 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 23:31:11.679018 32630 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 23:31:11.679035 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:31:13.042456 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:31:16.475878 32630 solver.cpp:397] Test net output #0: accuracy = 0.506127 +I0407 23:31:16.475924 32630 solver.cpp:397] Test net output #1: loss = 2.66076 (* 1 = 2.66076 loss) +I0407 23:31:16.572438 32630 solver.cpp:218] Iteration 7956 (0.810922 iter/s, 14.798s/12 iters), loss = 0.0337216 +I0407 23:31:16.572484 32630 solver.cpp:237] Train net output #0: loss = 0.0337216 (* 1 = 0.0337216 loss) +I0407 23:31:16.572494 32630 sgd_solver.cpp:105] Iteration 7956, lr = 0.000573242 +I0407 23:31:20.673632 32630 solver.cpp:218] Iteration 7968 (2.92603 iter/s, 4.10112s/12 iters), loss = 0.0637961 +I0407 23:31:20.673678 32630 solver.cpp:237] Train net output #0: loss = 0.0637961 (* 1 = 0.0637961 loss) +I0407 23:31:20.673687 32630 sgd_solver.cpp:105] Iteration 7968, lr = 0.000566917 +I0407 23:31:25.632460 32630 solver.cpp:218] Iteration 7980 (2.41996 iter/s, 4.95876s/12 iters), loss = 0.0721287 +I0407 23:31:25.632586 32630 solver.cpp:237] Train net output #0: loss = 0.0721287 (* 1 = 0.0721287 loss) +I0407 23:31:25.632594 32630 sgd_solver.cpp:105] Iteration 7980, lr = 0.000560659 +I0407 23:31:29.856927 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:31:30.557070 32630 solver.cpp:218] Iteration 7992 (2.43681 iter/s, 4.92446s/12 iters), loss = 0.103308 +I0407 23:31:30.557113 32630 solver.cpp:237] Train net output #0: loss = 0.103308 (* 1 = 0.103308 loss) +I0407 23:31:30.557122 32630 sgd_solver.cpp:105] Iteration 7992, lr = 0.000554465 +I0407 23:31:35.500185 32630 solver.cpp:218] Iteration 8004 (2.42765 iter/s, 4.94305s/12 iters), loss = 0.0757612 +I0407 23:31:35.500231 32630 solver.cpp:237] Train net output #0: loss = 0.0757612 (* 1 = 0.0757612 loss) +I0407 23:31:35.500239 32630 sgd_solver.cpp:105] Iteration 8004, lr = 0.000548335 +I0407 23:31:40.434691 32630 solver.cpp:218] Iteration 8016 (2.43189 iter/s, 4.93444s/12 iters), loss = 0.017908 +I0407 23:31:40.434736 32630 solver.cpp:237] Train net output #0: loss = 0.0179079 (* 1 = 0.0179079 loss) +I0407 23:31:40.434746 32630 sgd_solver.cpp:105] Iteration 8016, lr = 0.00054227 +I0407 23:31:45.378432 32630 solver.cpp:218] Iteration 8028 (2.42735 iter/s, 4.94367s/12 iters), loss = 0.0436473 +I0407 23:31:45.378476 32630 solver.cpp:237] Train net output #0: loss = 0.0436472 (* 1 = 0.0436472 loss) +I0407 23:31:45.378484 32630 sgd_solver.cpp:105] Iteration 8028, lr = 0.000536268 +I0407 23:31:50.313261 32630 solver.cpp:218] Iteration 8040 (2.43173 iter/s, 4.93476s/12 iters), loss = 0.0887869 +I0407 23:31:50.313306 32630 solver.cpp:237] Train net output #0: loss = 0.0887868 (* 1 = 0.0887868 loss) +I0407 23:31:50.313314 32630 sgd_solver.cpp:105] Iteration 8040, lr = 0.000530328 +I0407 23:31:55.266261 32630 solver.cpp:218] Iteration 8052 (2.42281 iter/s, 4.95292s/12 iters), loss = 0.0877403 +I0407 23:31:55.266306 32630 solver.cpp:237] Train net output #0: loss = 0.0877403 (* 1 = 0.0877403 loss) +I0407 23:31:55.266314 32630 sgd_solver.cpp:105] Iteration 8052, lr = 0.000524451 +I0407 23:31:57.274132 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 23:32:00.478018 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 23:32:02.849624 32630 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 23:32:02.849643 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:32:04.182971 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:07.613569 32630 solver.cpp:397] Test net output #0: accuracy = 0.503064 +I0407 23:32:07.613615 32630 solver.cpp:397] Test net output #1: loss = 2.65947 (* 1 = 2.65947 loss) +I0407 23:32:09.408682 32630 solver.cpp:218] Iteration 8064 (0.848516 iter/s, 14.1423s/12 iters), loss = 0.0988063 +I0407 23:32:09.408730 32630 solver.cpp:237] Train net output #0: loss = 0.0988062 (* 1 = 0.0988062 loss) +I0407 23:32:09.408738 32630 sgd_solver.cpp:105] Iteration 8064, lr = 0.000518635 +I0407 23:32:14.507802 32630 solver.cpp:218] Iteration 8076 (2.35338 iter/s, 5.09904s/12 iters), loss = 0.0686613 +I0407 23:32:14.507843 32630 solver.cpp:237] Train net output #0: loss = 0.0686613 (* 1 = 0.0686613 loss) +I0407 23:32:14.507851 32630 sgd_solver.cpp:105] Iteration 8076, lr = 0.000512881 +I0407 23:32:19.484999 32630 solver.cpp:218] Iteration 8088 (2.41103 iter/s, 4.97713s/12 iters), loss = 0.0568011 +I0407 23:32:19.485040 32630 solver.cpp:237] Train net output #0: loss = 0.0568011 (* 1 = 0.0568011 loss) +I0407 23:32:19.485049 32630 sgd_solver.cpp:105] Iteration 8088, lr = 0.000507186 +I0407 23:32:20.873087 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:24.451143 32630 solver.cpp:218] Iteration 8100 (2.41639 iter/s, 4.96608s/12 iters), loss = 0.0408048 +I0407 23:32:24.451179 32630 solver.cpp:237] Train net output #0: loss = 0.0408047 (* 1 = 0.0408047 loss) +I0407 23:32:24.451185 32630 sgd_solver.cpp:105] Iteration 8100, lr = 0.000501552 +I0407 23:32:29.437595 32630 solver.cpp:218] Iteration 8112 (2.40655 iter/s, 4.98639s/12 iters), loss = 0.0798503 +I0407 23:32:29.437722 32630 solver.cpp:237] Train net output #0: loss = 0.0798502 (* 1 = 0.0798502 loss) +I0407 23:32:29.437732 32630 sgd_solver.cpp:105] Iteration 8112, lr = 0.000495977 +I0407 23:32:34.319020 32630 solver.cpp:218] Iteration 8124 (2.45837 iter/s, 4.88128s/12 iters), loss = 0.138307 +I0407 23:32:34.319067 32630 solver.cpp:237] Train net output #0: loss = 0.138307 (* 1 = 0.138307 loss) +I0407 23:32:34.319075 32630 sgd_solver.cpp:105] Iteration 8124, lr = 0.00049046 +I0407 23:32:39.199438 32630 solver.cpp:218] Iteration 8136 (2.45884 iter/s, 4.88035s/12 iters), loss = 0.0620447 +I0407 23:32:39.199472 32630 solver.cpp:237] Train net output #0: loss = 0.0620446 (* 1 = 0.0620446 loss) +I0407 23:32:39.199479 32630 sgd_solver.cpp:105] Iteration 8136, lr = 0.000485002 +I0407 23:32:44.179436 32630 solver.cpp:218] Iteration 8148 (2.40967 iter/s, 4.97994s/12 iters), loss = 0.0474826 +I0407 23:32:44.179477 32630 solver.cpp:237] Train net output #0: loss = 0.0474825 (* 1 = 0.0474825 loss) +I0407 23:32:44.179484 32630 sgd_solver.cpp:105] Iteration 8148, lr = 0.000479602 +I0407 23:32:48.665597 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 23:32:51.762431 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 23:32:54.133421 32630 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 23:32:54.133440 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:32:55.399099 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:58.918359 32630 solver.cpp:397] Test net output #0: accuracy = 0.503676 +I0407 23:32:58.918401 32630 solver.cpp:397] Test net output #1: loss = 2.67266 (* 1 = 2.67266 loss) +I0407 23:32:59.014955 32630 solver.cpp:218] Iteration 8160 (0.808874 iter/s, 14.8354s/12 iters), loss = 0.0758822 +I0407 23:32:59.015002 32630 solver.cpp:237] Train net output #0: loss = 0.0758821 (* 1 = 0.0758821 loss) +I0407 23:32:59.015012 32630 sgd_solver.cpp:105] Iteration 8160, lr = 0.000474259 +I0407 23:33:03.200888 32630 solver.cpp:218] Iteration 8172 (2.86679 iter/s, 4.18587s/12 iters), loss = 0.148623 +I0407 23:33:03.201043 32630 solver.cpp:237] Train net output #0: loss = 0.148623 (* 1 = 0.148623 loss) +I0407 23:33:03.201053 32630 sgd_solver.cpp:105] Iteration 8172, lr = 0.000468972 +I0407 23:33:08.147173 32630 solver.cpp:218] Iteration 8184 (2.42615 iter/s, 4.94611s/12 iters), loss = 0.181369 +I0407 23:33:08.147215 32630 solver.cpp:237] Train net output #0: loss = 0.181369 (* 1 = 0.181369 loss) +I0407 23:33:08.147224 32630 sgd_solver.cpp:105] Iteration 8184, lr = 0.000463741 +I0407 23:33:11.664322 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:13.088483 32630 solver.cpp:218] Iteration 8196 (2.42854 iter/s, 4.94124s/12 iters), loss = 0.0950348 +I0407 23:33:13.088532 32630 solver.cpp:237] Train net output #0: loss = 0.0950348 (* 1 = 0.0950348 loss) +I0407 23:33:13.088541 32630 sgd_solver.cpp:105] Iteration 8196, lr = 0.000458566 +I0407 23:33:18.027793 32630 solver.cpp:218] Iteration 8208 (2.42952 iter/s, 4.93924s/12 iters), loss = 0.067754 +I0407 23:33:18.027833 32630 solver.cpp:237] Train net output #0: loss = 0.0677539 (* 1 = 0.0677539 loss) +I0407 23:33:18.027842 32630 sgd_solver.cpp:105] Iteration 8208, lr = 0.000453446 +I0407 23:33:22.987546 32630 solver.cpp:218] Iteration 8220 (2.4195 iter/s, 4.95969s/12 iters), loss = 0.0528595 +I0407 23:33:22.987581 32630 solver.cpp:237] Train net output #0: loss = 0.0528595 (* 1 = 0.0528595 loss) +I0407 23:33:22.987587 32630 sgd_solver.cpp:105] Iteration 8220, lr = 0.00044838 +I0407 23:33:27.895623 32630 solver.cpp:218] Iteration 8232 (2.44498 iter/s, 4.90802s/12 iters), loss = 0.0115796 +I0407 23:33:27.895660 32630 solver.cpp:237] Train net output #0: loss = 0.0115796 (* 1 = 0.0115796 loss) +I0407 23:33:27.895668 32630 sgd_solver.cpp:105] Iteration 8232, lr = 0.000443369 +I0407 23:33:32.871810 32630 solver.cpp:218] Iteration 8244 (2.41151 iter/s, 4.97613s/12 iters), loss = 0.0163949 +I0407 23:33:32.871846 32630 solver.cpp:237] Train net output #0: loss = 0.0163949 (* 1 = 0.0163949 loss) +I0407 23:33:32.871853 32630 sgd_solver.cpp:105] Iteration 8244, lr = 0.000438411 +I0407 23:33:37.870590 32630 solver.cpp:218] Iteration 8256 (2.40061 iter/s, 4.99872s/12 iters), loss = 0.0437822 +I0407 23:33:37.871349 32630 solver.cpp:237] Train net output #0: loss = 0.0437821 (* 1 = 0.0437821 loss) +I0407 23:33:37.871359 32630 sgd_solver.cpp:105] Iteration 8256, lr = 0.000433505 +I0407 23:33:40.006248 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 23:33:43.089083 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 23:33:45.450527 32630 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 23:33:45.450544 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:33:46.585908 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:49.876438 32630 solver.cpp:397] Test net output #0: accuracy = 0.501225 +I0407 23:33:49.876466 32630 solver.cpp:397] Test net output #1: loss = 2.65789 (* 1 = 2.65789 loss) +I0407 23:33:51.607054 32630 solver.cpp:218] Iteration 8268 (0.873637 iter/s, 13.7357s/12 iters), loss = 0.107425 +I0407 23:33:51.607090 32630 solver.cpp:237] Train net output #0: loss = 0.107425 (* 1 = 0.107425 loss) +I0407 23:33:51.607097 32630 sgd_solver.cpp:105] Iteration 8268, lr = 0.000428653 +I0407 23:33:56.700590 32630 solver.cpp:218] Iteration 8280 (2.35595 iter/s, 5.09348s/12 iters), loss = 0.0543054 +I0407 23:33:56.700628 32630 solver.cpp:237] Train net output #0: loss = 0.0543054 (* 1 = 0.0543054 loss) +I0407 23:33:56.700636 32630 sgd_solver.cpp:105] Iteration 8280, lr = 0.000423852 +I0407 23:34:01.714349 32630 solver.cpp:218] Iteration 8292 (2.39344 iter/s, 5.0137s/12 iters), loss = 0.0600634 +I0407 23:34:01.714390 32630 solver.cpp:237] Train net output #0: loss = 0.0600633 (* 1 = 0.0600633 loss) +I0407 23:34:01.714397 32630 sgd_solver.cpp:105] Iteration 8292, lr = 0.000419102 +I0407 23:34:02.403152 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:06.675969 32630 solver.cpp:218] Iteration 8304 (2.4186 iter/s, 4.96155s/12 iters), loss = 0.0373632 +I0407 23:34:06.676012 32630 solver.cpp:237] Train net output #0: loss = 0.0373632 (* 1 = 0.0373632 loss) +I0407 23:34:06.676019 32630 sgd_solver.cpp:105] Iteration 8304, lr = 0.000414404 +I0407 23:34:09.506132 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:34:11.636195 32630 solver.cpp:218] Iteration 8316 (2.41928 iter/s, 4.96016s/12 iters), loss = 0.0591317 +I0407 23:34:11.636246 32630 solver.cpp:237] Train net output #0: loss = 0.0591317 (* 1 = 0.0591317 loss) +I0407 23:34:11.636255 32630 sgd_solver.cpp:105] Iteration 8316, lr = 0.000409755 +I0407 23:34:16.492945 32630 solver.cpp:218] Iteration 8328 (2.47082 iter/s, 4.85668s/12 iters), loss = 0.114231 +I0407 23:34:16.492981 32630 solver.cpp:237] Train net output #0: loss = 0.114231 (* 1 = 0.114231 loss) +I0407 23:34:16.492988 32630 sgd_solver.cpp:105] Iteration 8328, lr = 0.000405157 +I0407 23:34:21.411953 32630 solver.cpp:218] Iteration 8340 (2.43955 iter/s, 4.91895s/12 iters), loss = 0.110084 +I0407 23:34:21.411989 32630 solver.cpp:237] Train net output #0: loss = 0.110084 (* 1 = 0.110084 loss) +I0407 23:34:21.411996 32630 sgd_solver.cpp:105] Iteration 8340, lr = 0.000400608 +I0407 23:34:26.362444 32630 solver.cpp:218] Iteration 8352 (2.42403 iter/s, 4.95044s/12 iters), loss = 0.0490323 +I0407 23:34:26.362478 32630 solver.cpp:237] Train net output #0: loss = 0.0490323 (* 1 = 0.0490323 loss) +I0407 23:34:26.362484 32630 sgd_solver.cpp:105] Iteration 8352, lr = 0.000396108 +I0407 23:34:30.848655 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 23:34:33.922518 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 23:34:36.420946 32630 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 23:34:36.420964 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:34:37.593732 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:40.933341 32630 solver.cpp:397] Test net output #0: accuracy = 0.504289 +I0407 23:34:40.933521 32630 solver.cpp:397] Test net output #1: loss = 2.67186 (* 1 = 2.67186 loss) +I0407 23:34:41.030205 32630 solver.cpp:218] Iteration 8364 (0.818125 iter/s, 14.6677s/12 iters), loss = 0.0190848 +I0407 23:34:41.030249 32630 solver.cpp:237] Train net output #0: loss = 0.0190847 (* 1 = 0.0190847 loss) +I0407 23:34:41.030257 32630 sgd_solver.cpp:105] Iteration 8364, lr = 0.000391657 +I0407 23:34:45.137334 32630 solver.cpp:218] Iteration 8376 (2.9218 iter/s, 4.10706s/12 iters), loss = 0.117558 +I0407 23:34:45.137370 32630 solver.cpp:237] Train net output #0: loss = 0.117558 (* 1 = 0.117558 loss) +I0407 23:34:45.137377 32630 sgd_solver.cpp:105] Iteration 8376, lr = 0.000387254 +I0407 23:34:50.089759 32630 solver.cpp:218] Iteration 8388 (2.42308 iter/s, 4.95237s/12 iters), loss = 0.0588717 +I0407 23:34:50.089799 32630 solver.cpp:237] Train net output #0: loss = 0.0588716 (* 1 = 0.0588716 loss) +I0407 23:34:50.089807 32630 sgd_solver.cpp:105] Iteration 8388, lr = 0.000382898 +I0407 23:34:52.842685 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:54.981846 32630 solver.cpp:218] Iteration 8400 (2.45297 iter/s, 4.89202s/12 iters), loss = 0.0916427 +I0407 23:34:54.981891 32630 solver.cpp:237] Train net output #0: loss = 0.0916426 (* 1 = 0.0916426 loss) +I0407 23:34:54.981899 32630 sgd_solver.cpp:105] Iteration 8400, lr = 0.000378589 +I0407 23:34:59.944725 32630 solver.cpp:218] Iteration 8412 (2.41798 iter/s, 4.96281s/12 iters), loss = 0.047099 +I0407 23:34:59.944766 32630 solver.cpp:237] Train net output #0: loss = 0.047099 (* 1 = 0.047099 loss) +I0407 23:34:59.944773 32630 sgd_solver.cpp:105] Iteration 8412, lr = 0.000374327 +I0407 23:35:04.861016 32630 solver.cpp:218] Iteration 8424 (2.4409 iter/s, 4.91622s/12 iters), loss = 0.105046 +I0407 23:35:04.861061 32630 solver.cpp:237] Train net output #0: loss = 0.105046 (* 1 = 0.105046 loss) +I0407 23:35:04.861070 32630 sgd_solver.cpp:105] Iteration 8424, lr = 0.000370111 +I0407 23:35:09.801426 32630 solver.cpp:218] Iteration 8436 (2.42898 iter/s, 4.94034s/12 iters), loss = 0.063297 +I0407 23:35:09.801468 32630 solver.cpp:237] Train net output #0: loss = 0.063297 (* 1 = 0.063297 loss) +I0407 23:35:09.801476 32630 sgd_solver.cpp:105] Iteration 8436, lr = 0.000365941 +I0407 23:35:14.739413 32630 solver.cpp:218] Iteration 8448 (2.43017 iter/s, 4.93792s/12 iters), loss = 0.0427842 +I0407 23:35:14.739538 32630 solver.cpp:237] Train net output #0: loss = 0.0427842 (* 1 = 0.0427842 loss) +I0407 23:35:14.739547 32630 sgd_solver.cpp:105] Iteration 8448, lr = 0.000361816 +I0407 23:35:19.695379 32630 solver.cpp:218] Iteration 8460 (2.42139 iter/s, 4.95582s/12 iters), loss = 0.0863513 +I0407 23:35:19.695413 32630 solver.cpp:237] Train net output #0: loss = 0.0863512 (* 1 = 0.0863512 loss) +I0407 23:35:19.695420 32630 sgd_solver.cpp:105] Iteration 8460, lr = 0.000357735 +I0407 23:35:21.722411 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 23:35:24.791986 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 23:35:27.211367 32630 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 23:35:27.211387 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:35:28.303035 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:31.946280 32630 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:35:31.946326 32630 solver.cpp:397] Test net output #1: loss = 2.64589 (* 1 = 2.64589 loss) +I0407 23:35:33.724174 32630 solver.cpp:218] Iteration 8472 (0.855388 iter/s, 14.0287s/12 iters), loss = 0.0630996 +I0407 23:35:33.724212 32630 solver.cpp:237] Train net output #0: loss = 0.0630995 (* 1 = 0.0630995 loss) +I0407 23:35:33.724221 32630 sgd_solver.cpp:105] Iteration 8472, lr = 0.000353699 +I0407 23:35:38.675314 32630 solver.cpp:218] Iteration 8484 (2.42372 iter/s, 4.95108s/12 iters), loss = 0.0670938 +I0407 23:35:38.675352 32630 solver.cpp:237] Train net output #0: loss = 0.0670938 (* 1 = 0.0670938 loss) +I0407 23:35:38.675360 32630 sgd_solver.cpp:105] Iteration 8484, lr = 0.000349707 +I0407 23:35:43.601791 32630 solver.cpp:218] Iteration 8496 (2.43585 iter/s, 4.92641s/12 iters), loss = 0.103399 +I0407 23:35:43.601843 32630 solver.cpp:237] Train net output #0: loss = 0.103399 (* 1 = 0.103399 loss) +I0407 23:35:43.601857 32630 sgd_solver.cpp:105] Iteration 8496, lr = 0.000345759 +I0407 23:35:43.638207 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:48.554540 32630 solver.cpp:218] Iteration 8508 (2.42294 iter/s, 4.95267s/12 iters), loss = 0.0481589 +I0407 23:35:48.554738 32630 solver.cpp:237] Train net output #0: loss = 0.0481589 (* 1 = 0.0481589 loss) +I0407 23:35:48.554752 32630 sgd_solver.cpp:105] Iteration 8508, lr = 0.000341853 +I0407 23:35:53.517627 32630 solver.cpp:218] Iteration 8520 (2.41795 iter/s, 4.96287s/12 iters), loss = 0.0687039 +I0407 23:35:53.517664 32630 solver.cpp:237] Train net output #0: loss = 0.0687038 (* 1 = 0.0687038 loss) +I0407 23:35:53.517671 32630 sgd_solver.cpp:105] Iteration 8520, lr = 0.00033799 +I0407 23:35:58.480284 32630 solver.cpp:218] Iteration 8532 (2.41809 iter/s, 4.96259s/12 iters), loss = 0.183256 +I0407 23:35:58.480325 32630 solver.cpp:237] Train net output #0: loss = 0.183256 (* 1 = 0.183256 loss) +I0407 23:35:58.480334 32630 sgd_solver.cpp:105] Iteration 8532, lr = 0.000334169 +I0407 23:36:03.450582 32630 solver.cpp:218] Iteration 8544 (2.41437 iter/s, 4.97024s/12 iters), loss = 0.017986 +I0407 23:36:03.450618 32630 solver.cpp:237] Train net output #0: loss = 0.017986 (* 1 = 0.017986 loss) +I0407 23:36:03.450626 32630 sgd_solver.cpp:105] Iteration 8544, lr = 0.00033039 +I0407 23:36:08.404639 32630 solver.cpp:218] Iteration 8556 (2.42229 iter/s, 4.954s/12 iters), loss = 0.0767222 +I0407 23:36:08.404678 32630 solver.cpp:237] Train net output #0: loss = 0.0767222 (* 1 = 0.0767222 loss) +I0407 23:36:08.404686 32630 sgd_solver.cpp:105] Iteration 8556, lr = 0.000326652 +I0407 23:36:12.909257 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 23:36:16.025971 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 23:36:18.472465 32630 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 23:36:18.472482 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:36:19.500334 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:36:22.923050 32630 solver.cpp:397] Test net output #0: accuracy = 0.511642 +I0407 23:36:22.923101 32630 solver.cpp:397] Test net output #1: loss = 2.66731 (* 1 = 2.66731 loss) +I0407 23:36:23.019747 32630 solver.cpp:218] Iteration 8568 (0.821073 iter/s, 14.615s/12 iters), loss = 0.0561312 +I0407 23:36:23.019800 32630 solver.cpp:237] Train net output #0: loss = 0.0561311 (* 1 = 0.0561311 loss) +I0407 23:36:23.019809 32630 sgd_solver.cpp:105] Iteration 8568, lr = 0.000322955 +I0407 23:36:27.208911 32630 solver.cpp:218] Iteration 8580 (2.86458 iter/s, 4.18909s/12 iters), loss = 0.0742672 +I0407 23:36:27.208946 32630 solver.cpp:237] Train net output #0: loss = 0.0742671 (* 1 = 0.0742671 loss) +I0407 23:36:27.208954 32630 sgd_solver.cpp:105] Iteration 8580, lr = 0.000319298 +I0407 23:36:32.140097 32630 solver.cpp:218] Iteration 8592 (2.43352 iter/s, 4.93113s/12 iters), loss = 0.100952 +I0407 23:36:32.140134 32630 solver.cpp:237] Train net output #0: loss = 0.100952 (* 1 = 0.100952 loss) +I0407 23:36:32.140142 32630 sgd_solver.cpp:105] Iteration 8592, lr = 0.000315681 +I0407 23:36:34.290133 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:36:37.099313 32630 solver.cpp:218] Iteration 8604 (2.41977 iter/s, 4.95915s/12 iters), loss = 0.0121064 +I0407 23:36:37.099360 32630 solver.cpp:237] Train net output #0: loss = 0.0121064 (* 1 = 0.0121064 loss) +I0407 23:36:37.099368 32630 sgd_solver.cpp:105] Iteration 8604, lr = 0.000312105 +I0407 23:36:42.035849 32630 solver.cpp:218] Iteration 8616 (2.43089 iter/s, 4.93647s/12 iters), loss = 0.0399671 +I0407 23:36:42.035893 32630 solver.cpp:237] Train net output #0: loss = 0.0399671 (* 1 = 0.0399671 loss) +I0407 23:36:42.035902 32630 sgd_solver.cpp:105] Iteration 8616, lr = 0.000308567 +I0407 23:36:46.994621 32630 solver.cpp:218] Iteration 8628 (2.41999 iter/s, 4.95871s/12 iters), loss = 0.0473402 +I0407 23:36:46.994658 32630 solver.cpp:237] Train net output #0: loss = 0.0473401 (* 1 = 0.0473401 loss) +I0407 23:36:46.994665 32630 sgd_solver.cpp:105] Iteration 8628, lr = 0.000305068 +I0407 23:36:51.906780 32630 solver.cpp:218] Iteration 8640 (2.44295 iter/s, 4.9121s/12 iters), loss = 0.167398 +I0407 23:36:51.906930 32630 solver.cpp:237] Train net output #0: loss = 0.167398 (* 1 = 0.167398 loss) +I0407 23:36:51.906940 32630 sgd_solver.cpp:105] Iteration 8640, lr = 0.000301608 +I0407 23:36:56.883675 32630 solver.cpp:218] Iteration 8652 (2.41122 iter/s, 4.97673s/12 iters), loss = 0.036586 +I0407 23:36:56.883711 32630 solver.cpp:237] Train net output #0: loss = 0.0365859 (* 1 = 0.0365859 loss) +I0407 23:36:56.883718 32630 sgd_solver.cpp:105] Iteration 8652, lr = 0.000298185 +I0407 23:37:01.855108 32630 solver.cpp:218] Iteration 8664 (2.41382 iter/s, 4.97138s/12 iters), loss = 0.064607 +I0407 23:37:01.855144 32630 solver.cpp:237] Train net output #0: loss = 0.064607 (* 1 = 0.064607 loss) +I0407 23:37:01.855151 32630 sgd_solver.cpp:105] Iteration 8664, lr = 0.000294801 +I0407 23:37:03.848764 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 23:37:06.910699 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 23:37:09.269863 32630 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 23:37:09.269876 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:37:10.325544 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:13.951545 32630 solver.cpp:397] Test net output #0: accuracy = 0.511642 +I0407 23:37:13.951588 32630 solver.cpp:397] Test net output #1: loss = 2.64441 (* 1 = 2.64441 loss) +I0407 23:37:15.704519 32630 solver.cpp:218] Iteration 8676 (0.866468 iter/s, 13.8493s/12 iters), loss = 0.117348 +I0407 23:37:15.704561 32630 solver.cpp:237] Train net output #0: loss = 0.117348 (* 1 = 0.117348 loss) +I0407 23:37:15.704569 32630 sgd_solver.cpp:105] Iteration 8676, lr = 0.000291453 +I0407 23:37:20.651645 32630 solver.cpp:218] Iteration 8688 (2.42568 iter/s, 4.94706s/12 iters), loss = 0.0643133 +I0407 23:37:20.651690 32630 solver.cpp:237] Train net output #0: loss = 0.0643132 (* 1 = 0.0643132 loss) +I0407 23:37:20.651698 32630 sgd_solver.cpp:105] Iteration 8688, lr = 0.000288143 +I0407 23:37:24.922271 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:25.538017 32630 solver.cpp:218] Iteration 8700 (2.45585 iter/s, 4.8863s/12 iters), loss = 0.0502378 +I0407 23:37:25.538059 32630 solver.cpp:237] Train net output #0: loss = 0.0502377 (* 1 = 0.0502377 loss) +I0407 23:37:25.538069 32630 sgd_solver.cpp:105] Iteration 8700, lr = 0.000284869 +I0407 23:37:30.467945 32630 solver.cpp:218] Iteration 8712 (2.43415 iter/s, 4.92986s/12 iters), loss = 0.0622677 +I0407 23:37:30.467990 32630 solver.cpp:237] Train net output #0: loss = 0.0622677 (* 1 = 0.0622677 loss) +I0407 23:37:30.467999 32630 sgd_solver.cpp:105] Iteration 8712, lr = 0.000281631 +I0407 23:37:35.433233 32630 solver.cpp:218] Iteration 8724 (2.41681 iter/s, 4.96522s/12 iters), loss = 0.0915436 +I0407 23:37:35.433279 32630 solver.cpp:237] Train net output #0: loss = 0.0915435 (* 1 = 0.0915435 loss) +I0407 23:37:35.433285 32630 sgd_solver.cpp:105] Iteration 8724, lr = 0.000278428 +I0407 23:37:40.347271 32630 solver.cpp:218] Iteration 8736 (2.44202 iter/s, 4.91397s/12 iters), loss = 0.0172269 +I0407 23:37:40.347321 32630 solver.cpp:237] Train net output #0: loss = 0.0172269 (* 1 = 0.0172269 loss) +I0407 23:37:40.347329 32630 sgd_solver.cpp:105] Iteration 8736, lr = 0.000275262 +I0407 23:37:45.309561 32630 solver.cpp:218] Iteration 8748 (2.41828 iter/s, 4.96221s/12 iters), loss = 0.0581039 +I0407 23:37:45.309607 32630 solver.cpp:237] Train net output #0: loss = 0.0581039 (* 1 = 0.0581039 loss) +I0407 23:37:45.309615 32630 sgd_solver.cpp:105] Iteration 8748, lr = 0.00027213 +I0407 23:37:50.267830 32630 solver.cpp:218] Iteration 8760 (2.42023 iter/s, 4.9582s/12 iters), loss = 0.0943516 +I0407 23:37:50.267868 32630 solver.cpp:237] Train net output #0: loss = 0.0943516 (* 1 = 0.0943516 loss) +I0407 23:37:50.267877 32630 sgd_solver.cpp:105] Iteration 8760, lr = 0.000269033 +I0407 23:37:54.741963 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 23:37:57.831542 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 23:38:00.251113 32630 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 23:38:00.251130 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:38:01.200594 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:04.707350 32630 solver.cpp:397] Test net output #0: accuracy = 0.510417 +I0407 23:38:04.707397 32630 solver.cpp:397] Test net output #1: loss = 2.65427 (* 1 = 2.65427 loss) +I0407 23:38:04.804049 32630 solver.cpp:218] Iteration 8772 (0.825529 iter/s, 14.5361s/12 iters), loss = 0.0676042 +I0407 23:38:04.804097 32630 solver.cpp:237] Train net output #0: loss = 0.0676041 (* 1 = 0.0676041 loss) +I0407 23:38:04.804106 32630 sgd_solver.cpp:105] Iteration 8772, lr = 0.00026597 +I0407 23:38:08.932951 32630 solver.cpp:218] Iteration 8784 (2.90639 iter/s, 4.12883s/12 iters), loss = 0.131528 +I0407 23:38:08.933003 32630 solver.cpp:237] Train net output #0: loss = 0.131528 (* 1 = 0.131528 loss) +I0407 23:38:08.933017 32630 sgd_solver.cpp:105] Iteration 8784, lr = 0.000262941 +I0407 23:38:13.884203 32630 solver.cpp:218] Iteration 8796 (2.42366 iter/s, 4.95118s/12 iters), loss = 0.0815396 +I0407 23:38:13.884241 32630 solver.cpp:237] Train net output #0: loss = 0.0815395 (* 1 = 0.0815395 loss) +I0407 23:38:13.884249 32630 sgd_solver.cpp:105] Iteration 8796, lr = 0.000259946 +I0407 23:38:15.290150 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:18.778561 32630 solver.cpp:218] Iteration 8808 (2.45184 iter/s, 4.89428s/12 iters), loss = 0.0236104 +I0407 23:38:18.778625 32630 solver.cpp:237] Train net output #0: loss = 0.0236103 (* 1 = 0.0236103 loss) +I0407 23:38:18.778636 32630 sgd_solver.cpp:105] Iteration 8808, lr = 0.000256983 +I0407 23:38:23.634285 32630 solver.cpp:218] Iteration 8820 (2.47136 iter/s, 4.85563s/12 iters), loss = 0.0359844 +I0407 23:38:23.634336 32630 solver.cpp:237] Train net output #0: loss = 0.0359843 (* 1 = 0.0359843 loss) +I0407 23:38:23.634348 32630 sgd_solver.cpp:105] Iteration 8820, lr = 0.000254054 +I0407 23:38:28.580340 32630 solver.cpp:218] Iteration 8832 (2.42621 iter/s, 4.94598s/12 iters), loss = 0.0808497 +I0407 23:38:28.580468 32630 solver.cpp:237] Train net output #0: loss = 0.0808497 (* 1 = 0.0808497 loss) +I0407 23:38:28.580477 32630 sgd_solver.cpp:105] Iteration 8832, lr = 0.000251157 +I0407 23:38:33.435498 32630 solver.cpp:218] Iteration 8844 (2.47167 iter/s, 4.85501s/12 iters), loss = 0.153475 +I0407 23:38:33.435537 32630 solver.cpp:237] Train net output #0: loss = 0.153475 (* 1 = 0.153475 loss) +I0407 23:38:33.435545 32630 sgd_solver.cpp:105] Iteration 8844, lr = 0.000248293 +I0407 23:38:38.406239 32630 solver.cpp:218] Iteration 8856 (2.41416 iter/s, 4.97067s/12 iters), loss = 0.0225847 +I0407 23:38:38.406284 32630 solver.cpp:237] Train net output #0: loss = 0.0225846 (* 1 = 0.0225846 loss) +I0407 23:38:38.406292 32630 sgd_solver.cpp:105] Iteration 8856, lr = 0.00024546 +I0407 23:38:43.344175 32630 solver.cpp:218] Iteration 8868 (2.4302 iter/s, 4.93786s/12 iters), loss = 0.0927806 +I0407 23:38:43.344224 32630 solver.cpp:237] Train net output #0: loss = 0.0927805 (* 1 = 0.0927805 loss) +I0407 23:38:43.344233 32630 sgd_solver.cpp:105] Iteration 8868, lr = 0.000242659 +I0407 23:38:45.329372 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 23:38:48.494735 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 23:38:50.854533 32630 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 23:38:50.854552 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:38:51.823354 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:55.709355 32630 solver.cpp:397] Test net output #0: accuracy = 0.511029 +I0407 23:38:55.709408 32630 solver.cpp:397] Test net output #1: loss = 2.66033 (* 1 = 2.66033 loss) +I0407 23:38:57.516650 32630 solver.cpp:218] Iteration 8880 (0.846717 iter/s, 14.1724s/12 iters), loss = 0.0457909 +I0407 23:38:57.516691 32630 solver.cpp:237] Train net output #0: loss = 0.0457909 (* 1 = 0.0457909 loss) +I0407 23:38:57.516700 32630 sgd_solver.cpp:105] Iteration 8880, lr = 0.000239889 +I0407 23:39:02.449744 32630 solver.cpp:218] Iteration 8892 (2.43258 iter/s, 4.93303s/12 iters), loss = 0.016709 +I0407 23:39:02.449923 32630 solver.cpp:237] Train net output #0: loss = 0.0167089 (* 1 = 0.0167089 loss) +I0407 23:39:02.449931 32630 sgd_solver.cpp:105] Iteration 8892, lr = 0.00023715 +I0407 23:39:05.997406 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:07.378334 32630 solver.cpp:218] Iteration 8904 (2.43487 iter/s, 4.92839s/12 iters), loss = 0.0400892 +I0407 23:39:07.378378 32630 solver.cpp:237] Train net output #0: loss = 0.0400892 (* 1 = 0.0400892 loss) +I0407 23:39:07.378386 32630 sgd_solver.cpp:105] Iteration 8904, lr = 0.000234441 +I0407 23:39:12.252578 32630 solver.cpp:218] Iteration 8916 (2.46196 iter/s, 4.87417s/12 iters), loss = 0.0500018 +I0407 23:39:12.252621 32630 solver.cpp:237] Train net output #0: loss = 0.0500018 (* 1 = 0.0500018 loss) +I0407 23:39:12.252629 32630 sgd_solver.cpp:105] Iteration 8916, lr = 0.000231763 +I0407 23:39:17.184985 32630 solver.cpp:218] Iteration 8928 (2.43292 iter/s, 4.93234s/12 iters), loss = 0.0171391 +I0407 23:39:17.185030 32630 solver.cpp:237] Train net output #0: loss = 0.017139 (* 1 = 0.017139 loss) +I0407 23:39:17.185039 32630 sgd_solver.cpp:105] Iteration 8928, lr = 0.000229114 +I0407 23:39:22.010857 32630 solver.cpp:218] Iteration 8940 (2.48663 iter/s, 4.8258s/12 iters), loss = 0.0421466 +I0407 23:39:22.010900 32630 solver.cpp:237] Train net output #0: loss = 0.0421465 (* 1 = 0.0421465 loss) +I0407 23:39:22.010910 32630 sgd_solver.cpp:105] Iteration 8940, lr = 0.000226495 +I0407 23:39:26.960765 32630 solver.cpp:218] Iteration 8952 (2.42432 iter/s, 4.94984s/12 iters), loss = 0.0183309 +I0407 23:39:26.960809 32630 solver.cpp:237] Train net output #0: loss = 0.0183308 (* 1 = 0.0183308 loss) +I0407 23:39:26.960817 32630 sgd_solver.cpp:105] Iteration 8952, lr = 0.000223906 +I0407 23:39:31.910868 32630 solver.cpp:218] Iteration 8964 (2.42423 iter/s, 4.95004s/12 iters), loss = 0.175569 +I0407 23:39:31.910912 32630 solver.cpp:237] Train net output #0: loss = 0.175569 (* 1 = 0.175569 loss) +I0407 23:39:31.910919 32630 sgd_solver.cpp:105] Iteration 8964, lr = 0.000221345 +I0407 23:39:36.367957 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 23:39:39.491264 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 23:39:41.863301 32630 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 23:39:41.863319 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:39:42.790280 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:46.543979 32630 solver.cpp:397] Test net output #0: accuracy = 0.509191 +I0407 23:39:46.544028 32630 solver.cpp:397] Test net output #1: loss = 2.65242 (* 1 = 2.65242 loss) +I0407 23:39:46.642335 32630 solver.cpp:218] Iteration 8976 (0.814588 iter/s, 14.7314s/12 iters), loss = 0.0362251 +I0407 23:39:46.642385 32630 solver.cpp:237] Train net output #0: loss = 0.0362251 (* 1 = 0.0362251 loss) +I0407 23:39:46.642392 32630 sgd_solver.cpp:105] Iteration 8976, lr = 0.000218813 +I0407 23:39:50.836831 32630 solver.cpp:218] Iteration 8988 (2.86094 iter/s, 4.19443s/12 iters), loss = 0.0659257 +I0407 23:39:50.836870 32630 solver.cpp:237] Train net output #0: loss = 0.0659257 (* 1 = 0.0659257 loss) +I0407 23:39:50.836879 32630 sgd_solver.cpp:105] Iteration 8988, lr = 0.000216309 +I0407 23:39:54.066435 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:39:55.779124 32630 solver.cpp:218] Iteration 9000 (2.42805 iter/s, 4.94223s/12 iters), loss = 0.0407439 +I0407 23:39:55.779168 32630 solver.cpp:237] Train net output #0: loss = 0.0407438 (* 1 = 0.0407438 loss) +I0407 23:39:55.779176 32630 sgd_solver.cpp:105] Iteration 9000, lr = 0.000213833 +I0407 23:39:56.461503 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:00.722045 32630 solver.cpp:218] Iteration 9012 (2.42775 iter/s, 4.94285s/12 iters), loss = 0.0751957 +I0407 23:40:00.722086 32630 solver.cpp:237] Train net output #0: loss = 0.0751957 (* 1 = 0.0751957 loss) +I0407 23:40:00.722093 32630 sgd_solver.cpp:105] Iteration 9012, lr = 0.000211385 +I0407 23:40:05.673146 32630 solver.cpp:218] Iteration 9024 (2.42374 iter/s, 4.95104s/12 iters), loss = 0.139546 +I0407 23:40:05.673185 32630 solver.cpp:237] Train net output #0: loss = 0.139546 (* 1 = 0.139546 loss) +I0407 23:40:05.673192 32630 sgd_solver.cpp:105] Iteration 9024, lr = 0.000208964 +I0407 23:40:10.579916 32630 solver.cpp:218] Iteration 9036 (2.44563 iter/s, 4.90671s/12 iters), loss = 0.10658 +I0407 23:40:10.580046 32630 solver.cpp:237] Train net output #0: loss = 0.10658 (* 1 = 0.10658 loss) +I0407 23:40:10.580055 32630 sgd_solver.cpp:105] Iteration 9036, lr = 0.000206571 +I0407 23:40:15.492542 32630 solver.cpp:218] Iteration 9048 (2.44276 iter/s, 4.91248s/12 iters), loss = 0.0112996 +I0407 23:40:15.492580 32630 solver.cpp:237] Train net output #0: loss = 0.0112995 (* 1 = 0.0112995 loss) +I0407 23:40:15.492588 32630 sgd_solver.cpp:105] Iteration 9048, lr = 0.000204204 +I0407 23:40:20.439352 32630 solver.cpp:218] Iteration 9060 (2.42583 iter/s, 4.94675s/12 iters), loss = 0.037109 +I0407 23:40:20.439390 32630 solver.cpp:237] Train net output #0: loss = 0.0371089 (* 1 = 0.0371089 loss) +I0407 23:40:20.439399 32630 sgd_solver.cpp:105] Iteration 9060, lr = 0.000201864 +I0407 23:40:25.364567 32630 solver.cpp:218] Iteration 9072 (2.43648 iter/s, 4.92514s/12 iters), loss = 0.0376304 +I0407 23:40:25.364624 32630 solver.cpp:237] Train net output #0: loss = 0.0376304 (* 1 = 0.0376304 loss) +I0407 23:40:25.364634 32630 sgd_solver.cpp:105] Iteration 9072, lr = 0.00019955 +I0407 23:40:27.389348 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 23:40:30.446408 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 23:40:32.810492 32630 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 23:40:32.810509 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:40:33.619385 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:37.270795 32630 solver.cpp:397] Test net output #0: accuracy = 0.511642 +I0407 23:40:37.270840 32630 solver.cpp:397] Test net output #1: loss = 2.64884 (* 1 = 2.64884 loss) +I0407 23:40:39.073122 32630 solver.cpp:218] Iteration 9084 (0.875372 iter/s, 13.7085s/12 iters), loss = 0.115883 +I0407 23:40:39.073184 32630 solver.cpp:237] Train net output #0: loss = 0.115883 (* 1 = 0.115883 loss) +I0407 23:40:39.073194 32630 sgd_solver.cpp:105] Iteration 9084, lr = 0.000197262 +I0407 23:40:44.021222 32630 solver.cpp:218] Iteration 9096 (2.42522 iter/s, 4.948s/12 iters), loss = 0.049159 +I0407 23:40:44.021394 32630 solver.cpp:237] Train net output #0: loss = 0.049159 (* 1 = 0.049159 loss) +I0407 23:40:44.021412 32630 sgd_solver.cpp:105] Iteration 9096, lr = 0.000195 +I0407 23:40:46.928186 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:48.980216 32630 solver.cpp:218] Iteration 9108 (2.41994 iter/s, 4.9588s/12 iters), loss = 0.0456034 +I0407 23:40:48.980259 32630 solver.cpp:237] Train net output #0: loss = 0.0456034 (* 1 = 0.0456034 loss) +I0407 23:40:48.980268 32630 sgd_solver.cpp:105] Iteration 9108, lr = 0.000192763 +I0407 23:40:53.844868 32630 solver.cpp:218] Iteration 9120 (2.46681 iter/s, 4.86459s/12 iters), loss = 0.0678677 +I0407 23:40:53.844913 32630 solver.cpp:237] Train net output #0: loss = 0.0678676 (* 1 = 0.0678676 loss) +I0407 23:40:53.844921 32630 sgd_solver.cpp:105] Iteration 9120, lr = 0.000190552 +I0407 23:40:58.800710 32630 solver.cpp:218] Iteration 9132 (2.42142 iter/s, 4.95577s/12 iters), loss = 0.0655116 +I0407 23:40:58.800756 32630 solver.cpp:237] Train net output #0: loss = 0.0655115 (* 1 = 0.0655115 loss) +I0407 23:40:58.800765 32630 sgd_solver.cpp:105] Iteration 9132, lr = 0.000188365 +I0407 23:41:03.713071 32630 solver.cpp:218] Iteration 9144 (2.44285 iter/s, 4.91229s/12 iters), loss = 0.0431078 +I0407 23:41:03.713116 32630 solver.cpp:237] Train net output #0: loss = 0.0431078 (* 1 = 0.0431078 loss) +I0407 23:41:03.713124 32630 sgd_solver.cpp:105] Iteration 9144, lr = 0.000186203 +I0407 23:41:08.701304 32630 solver.cpp:218] Iteration 9156 (2.4057 iter/s, 4.98816s/12 iters), loss = 0.0945231 +I0407 23:41:08.701347 32630 solver.cpp:237] Train net output #0: loss = 0.0945231 (* 1 = 0.0945231 loss) +I0407 23:41:08.701356 32630 sgd_solver.cpp:105] Iteration 9156, lr = 0.000184065 +I0407 23:41:13.626143 32630 solver.cpp:218] Iteration 9168 (2.43666 iter/s, 4.92477s/12 iters), loss = 0.0396213 +I0407 23:41:13.626189 32630 solver.cpp:237] Train net output #0: loss = 0.0396212 (* 1 = 0.0396212 loss) +I0407 23:41:13.626197 32630 sgd_solver.cpp:105] Iteration 9168, lr = 0.000181952 +I0407 23:41:18.112866 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 23:41:21.219511 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 23:41:24.783604 32630 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 23:41:24.783622 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:41:25.612195 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:29.557747 32630 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:41:29.557798 32630 solver.cpp:397] Test net output #1: loss = 2.66577 (* 1 = 2.66577 loss) +I0407 23:41:29.654493 32630 solver.cpp:218] Iteration 9180 (0.748678 iter/s, 16.0283s/12 iters), loss = 0.0674636 +I0407 23:41:29.654541 32630 solver.cpp:237] Train net output #0: loss = 0.0674635 (* 1 = 0.0674635 loss) +I0407 23:41:29.654548 32630 sgd_solver.cpp:105] Iteration 9180, lr = 0.000179862 +I0407 23:41:33.809854 32630 solver.cpp:218] Iteration 9192 (2.88788 iter/s, 4.15529s/12 iters), loss = 0.0362483 +I0407 23:41:33.809891 32630 solver.cpp:237] Train net output #0: loss = 0.0362483 (* 1 = 0.0362483 loss) +I0407 23:41:33.809900 32630 sgd_solver.cpp:105] Iteration 9192, lr = 0.000177796 +I0407 23:41:38.725903 32630 solver.cpp:218] Iteration 9204 (2.44102 iter/s, 4.91598s/12 iters), loss = 0.0927871 +I0407 23:41:38.725945 32630 solver.cpp:237] Train net output #0: loss = 0.0927871 (* 1 = 0.0927871 loss) +I0407 23:41:38.725953 32630 sgd_solver.cpp:105] Iteration 9204, lr = 0.000175753 +I0407 23:41:38.789403 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:43.590519 32630 solver.cpp:218] Iteration 9216 (2.46683 iter/s, 4.86455s/12 iters), loss = 0.0525951 +I0407 23:41:43.590564 32630 solver.cpp:237] Train net output #0: loss = 0.0525951 (* 1 = 0.0525951 loss) +I0407 23:41:43.590571 32630 sgd_solver.cpp:105] Iteration 9216, lr = 0.000173733 +I0407 23:41:48.551800 32630 solver.cpp:218] Iteration 9228 (2.41876 iter/s, 4.96121s/12 iters), loss = 0.034247 +I0407 23:41:48.551985 32630 solver.cpp:237] Train net output #0: loss = 0.034247 (* 1 = 0.034247 loss) +I0407 23:41:48.551995 32630 sgd_solver.cpp:105] Iteration 9228, lr = 0.000171736 +I0407 23:41:53.449784 32630 solver.cpp:218] Iteration 9240 (2.45009 iter/s, 4.89778s/12 iters), loss = 0.114687 +I0407 23:41:53.449826 32630 solver.cpp:237] Train net output #0: loss = 0.114687 (* 1 = 0.114687 loss) +I0407 23:41:53.449833 32630 sgd_solver.cpp:105] Iteration 9240, lr = 0.000169762 +I0407 23:41:58.427978 32630 solver.cpp:218] Iteration 9252 (2.41055 iter/s, 4.97813s/12 iters), loss = 0.0306272 +I0407 23:41:58.428021 32630 solver.cpp:237] Train net output #0: loss = 0.0306271 (* 1 = 0.0306271 loss) +I0407 23:41:58.428030 32630 sgd_solver.cpp:105] Iteration 9252, lr = 0.000167809 +I0407 23:42:03.356667 32630 solver.cpp:218] Iteration 9264 (2.43476 iter/s, 4.92862s/12 iters), loss = 0.0234608 +I0407 23:42:03.356710 32630 solver.cpp:237] Train net output #0: loss = 0.0234607 (* 1 = 0.0234607 loss) +I0407 23:42:03.356719 32630 sgd_solver.cpp:105] Iteration 9264, lr = 0.000165879 +I0407 23:42:08.321187 32630 solver.cpp:218] Iteration 9276 (2.41718 iter/s, 4.96445s/12 iters), loss = 0.0848576 +I0407 23:42:08.321225 32630 solver.cpp:237] Train net output #0: loss = 0.0848575 (* 1 = 0.0848575 loss) +I0407 23:42:08.321233 32630 sgd_solver.cpp:105] Iteration 9276, lr = 0.000163971 +I0407 23:42:10.302265 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 23:42:13.420120 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 23:42:15.840852 32630 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 23:42:15.840868 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:42:16.569237 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:42:20.273072 32630 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:42:20.273262 32630 solver.cpp:397] Test net output #1: loss = 2.65715 (* 1 = 2.65715 loss) +I0407 23:42:22.177382 32630 solver.cpp:218] Iteration 9288 (0.866043 iter/s, 13.8561s/12 iters), loss = 0.0970101 +I0407 23:42:22.177424 32630 solver.cpp:237] Train net output #0: loss = 0.09701 (* 1 = 0.09701 loss) +I0407 23:42:22.177433 32630 sgd_solver.cpp:105] Iteration 9288, lr = 0.000162084 +I0407 23:42:27.133107 32630 solver.cpp:218] Iteration 9300 (2.42147 iter/s, 4.95566s/12 iters), loss = 0.037268 +I0407 23:42:27.133147 32630 solver.cpp:237] Train net output #0: loss = 0.0372679 (* 1 = 0.0372679 loss) +I0407 23:42:27.133157 32630 sgd_solver.cpp:105] Iteration 9300, lr = 0.000160219 +I0407 23:42:29.303882 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:42:32.063252 32630 solver.cpp:218] Iteration 9312 (2.43404 iter/s, 4.93007s/12 iters), loss = 0.0684319 +I0407 23:42:32.063395 32630 solver.cpp:237] Train net output #0: loss = 0.0684318 (* 1 = 0.0684318 loss) +I0407 23:42:32.063408 32630 sgd_solver.cpp:105] Iteration 9312, lr = 0.000158375 +I0407 23:42:37.026273 32630 solver.cpp:218] Iteration 9324 (2.41796 iter/s, 4.96286s/12 iters), loss = 0.0699506 +I0407 23:42:37.026319 32630 solver.cpp:237] Train net output #0: loss = 0.0699505 (* 1 = 0.0699505 loss) +I0407 23:42:37.026327 32630 sgd_solver.cpp:105] Iteration 9324, lr = 0.000156551 +I0407 23:42:41.932219 32630 solver.cpp:218] Iteration 9336 (2.44605 iter/s, 4.90588s/12 iters), loss = 0.0273675 +I0407 23:42:41.932263 32630 solver.cpp:237] Train net output #0: loss = 0.0273674 (* 1 = 0.0273674 loss) +I0407 23:42:41.932271 32630 sgd_solver.cpp:105] Iteration 9336, lr = 0.000154749 +I0407 23:42:46.876255 32630 solver.cpp:218] Iteration 9348 (2.4272 iter/s, 4.94396s/12 iters), loss = 0.0873491 +I0407 23:42:46.876298 32630 solver.cpp:237] Train net output #0: loss = 0.087349 (* 1 = 0.087349 loss) +I0407 23:42:46.876307 32630 sgd_solver.cpp:105] Iteration 9348, lr = 0.000152967 +I0407 23:42:51.828816 32630 solver.cpp:218] Iteration 9360 (2.42302 iter/s, 4.95249s/12 iters), loss = 0.0541085 +I0407 23:42:51.828941 32630 solver.cpp:237] Train net output #0: loss = 0.0541084 (* 1 = 0.0541084 loss) +I0407 23:42:51.828950 32630 sgd_solver.cpp:105] Iteration 9360, lr = 0.000151205 +I0407 23:42:56.817979 32630 solver.cpp:218] Iteration 9372 (2.40528 iter/s, 4.98902s/12 iters), loss = 0.0119304 +I0407 23:42:56.818017 32630 solver.cpp:237] Train net output #0: loss = 0.0119303 (* 1 = 0.0119303 loss) +I0407 23:42:56.818024 32630 sgd_solver.cpp:105] Iteration 9372, lr = 0.000149463 +I0407 23:43:01.308861 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 23:43:04.875916 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 23:43:07.260272 32630 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 23:43:07.260290 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:43:07.999428 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:12.033370 32630 solver.cpp:397] Test net output #0: accuracy = 0.511029 +I0407 23:43:12.033408 32630 solver.cpp:397] Test net output #1: loss = 2.65479 (* 1 = 2.65479 loss) +I0407 23:43:12.131965 32630 solver.cpp:218] Iteration 9384 (0.783601 iter/s, 15.3139s/12 iters), loss = 0.041313 +I0407 23:43:12.132006 32630 solver.cpp:237] Train net output #0: loss = 0.041313 (* 1 = 0.041313 loss) +I0407 23:43:12.132014 32630 sgd_solver.cpp:105] Iteration 9384, lr = 0.00014774 +I0407 23:43:16.284554 32630 solver.cpp:218] Iteration 9396 (2.88981 iter/s, 4.15253s/12 iters), loss = 0.0236129 +I0407 23:43:16.284591 32630 solver.cpp:237] Train net output #0: loss = 0.0236129 (* 1 = 0.0236129 loss) +I0407 23:43:16.284598 32630 sgd_solver.cpp:105] Iteration 9396, lr = 0.000146038 +I0407 23:43:20.547292 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:21.192818 32630 solver.cpp:218] Iteration 9408 (2.44489 iter/s, 4.9082s/12 iters), loss = 0.0682674 +I0407 23:43:21.192862 32630 solver.cpp:237] Train net output #0: loss = 0.0682673 (* 1 = 0.0682673 loss) +I0407 23:43:21.192869 32630 sgd_solver.cpp:105] Iteration 9408, lr = 0.000144354 +I0407 23:43:26.156523 32630 solver.cpp:218] Iteration 9420 (2.41758 iter/s, 4.96363s/12 iters), loss = 0.0330941 +I0407 23:43:26.156682 32630 solver.cpp:237] Train net output #0: loss = 0.033094 (* 1 = 0.033094 loss) +I0407 23:43:26.156692 32630 sgd_solver.cpp:105] Iteration 9420, lr = 0.00014269 +I0407 23:43:31.086170 32630 solver.cpp:218] Iteration 9432 (2.43434 iter/s, 4.92947s/12 iters), loss = 0.0403497 +I0407 23:43:31.086212 32630 solver.cpp:237] Train net output #0: loss = 0.0403496 (* 1 = 0.0403496 loss) +I0407 23:43:31.086220 32630 sgd_solver.cpp:105] Iteration 9432, lr = 0.000141045 +I0407 23:43:36.017868 32630 solver.cpp:218] Iteration 9444 (2.43327 iter/s, 4.93163s/12 iters), loss = 0.122136 +I0407 23:43:36.017912 32630 solver.cpp:237] Train net output #0: loss = 0.122135 (* 1 = 0.122135 loss) +I0407 23:43:36.017920 32630 sgd_solver.cpp:105] Iteration 9444, lr = 0.000139418 +I0407 23:43:40.943380 32630 solver.cpp:218] Iteration 9456 (2.43633 iter/s, 4.92544s/12 iters), loss = 0.0579911 +I0407 23:43:40.943423 32630 solver.cpp:237] Train net output #0: loss = 0.057991 (* 1 = 0.057991 loss) +I0407 23:43:40.943431 32630 sgd_solver.cpp:105] Iteration 9456, lr = 0.00013781 +I0407 23:43:45.892644 32630 solver.cpp:218] Iteration 9468 (2.42464 iter/s, 4.9492s/12 iters), loss = 0.0828357 +I0407 23:43:45.892688 32630 solver.cpp:237] Train net output #0: loss = 0.0828356 (* 1 = 0.0828356 loss) +I0407 23:43:45.892695 32630 sgd_solver.cpp:105] Iteration 9468, lr = 0.00013622 +I0407 23:43:50.851137 32630 solver.cpp:218] Iteration 9480 (2.42012 iter/s, 4.95843s/12 iters), loss = 0.06491 +I0407 23:43:50.851177 32630 solver.cpp:237] Train net output #0: loss = 0.0649099 (* 1 = 0.0649099 loss) +I0407 23:43:50.851186 32630 sgd_solver.cpp:105] Iteration 9480, lr = 0.000134648 +I0407 23:43:52.840368 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 23:43:56.386835 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 23:43:58.764467 32630 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 23:43:58.764485 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:43:59.456658 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:03.543588 32630 solver.cpp:397] Test net output #0: accuracy = 0.505515 +I0407 23:44:03.543633 32630 solver.cpp:397] Test net output #1: loss = 2.66122 (* 1 = 2.66122 loss) +I0407 23:44:05.353220 32630 solver.cpp:218] Iteration 9492 (0.827472 iter/s, 14.502s/12 iters), loss = 0.0771121 +I0407 23:44:05.353269 32630 solver.cpp:237] Train net output #0: loss = 0.0771121 (* 1 = 0.0771121 loss) +I0407 23:44:05.353277 32630 sgd_solver.cpp:105] Iteration 9492, lr = 0.000133094 +I0407 23:44:10.281978 32630 solver.cpp:218] Iteration 9504 (2.43473 iter/s, 4.92868s/12 iters), loss = 0.0298683 +I0407 23:44:10.282021 32630 solver.cpp:237] Train net output #0: loss = 0.0298682 (* 1 = 0.0298682 loss) +I0407 23:44:10.282029 32630 sgd_solver.cpp:105] Iteration 9504, lr = 0.000131558 +I0407 23:44:11.730106 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:15.219847 32630 solver.cpp:218] Iteration 9516 (2.43023 iter/s, 4.9378s/12 iters), loss = 0.0678127 +I0407 23:44:15.219892 32630 solver.cpp:237] Train net output #0: loss = 0.0678126 (* 1 = 0.0678126 loss) +I0407 23:44:15.219899 32630 sgd_solver.cpp:105] Iteration 9516, lr = 0.00013004 +I0407 23:44:20.146921 32630 solver.cpp:218] Iteration 9528 (2.43556 iter/s, 4.927s/12 iters), loss = 0.0193209 +I0407 23:44:20.146963 32630 solver.cpp:237] Train net output #0: loss = 0.0193208 (* 1 = 0.0193208 loss) +I0407 23:44:20.146972 32630 sgd_solver.cpp:105] Iteration 9528, lr = 0.000128538 +I0407 23:44:25.090209 32630 solver.cpp:218] Iteration 9540 (2.42757 iter/s, 4.94322s/12 iters), loss = 0.0894914 +I0407 23:44:25.090253 32630 solver.cpp:237] Train net output #0: loss = 0.0894913 (* 1 = 0.0894913 loss) +I0407 23:44:25.090260 32630 sgd_solver.cpp:105] Iteration 9540, lr = 0.000127054 +I0407 23:44:30.000193 32630 solver.cpp:218] Iteration 9552 (2.44404 iter/s, 4.90991s/12 iters), loss = 0.0904803 +I0407 23:44:30.000355 32630 solver.cpp:237] Train net output #0: loss = 0.0904802 (* 1 = 0.0904802 loss) +I0407 23:44:30.000365 32630 sgd_solver.cpp:105] Iteration 9552, lr = 0.000125587 +I0407 23:44:34.970496 32630 solver.cpp:218] Iteration 9564 (2.41443 iter/s, 4.97012s/12 iters), loss = 0.0341282 +I0407 23:44:34.970533 32630 solver.cpp:237] Train net output #0: loss = 0.0341281 (* 1 = 0.0341281 loss) +I0407 23:44:34.970541 32630 sgd_solver.cpp:105] Iteration 9564, lr = 0.000124136 +I0407 23:44:39.846477 32630 solver.cpp:218] Iteration 9576 (2.46108 iter/s, 4.87592s/12 iters), loss = 0.0718796 +I0407 23:44:39.846520 32630 solver.cpp:237] Train net output #0: loss = 0.0718795 (* 1 = 0.0718795 loss) +I0407 23:44:39.846529 32630 sgd_solver.cpp:105] Iteration 9576, lr = 0.000122702 +I0407 23:44:44.292634 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 23:44:48.237898 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 23:44:50.605324 32630 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 23:44:50.605341 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:44:51.226402 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:55.275629 32630 solver.cpp:397] Test net output #0: accuracy = 0.50674 +I0407 23:44:55.275673 32630 solver.cpp:397] Test net output #1: loss = 2.6702 (* 1 = 2.6702 loss) +I0407 23:44:55.372355 32630 solver.cpp:218] Iteration 9588 (0.772908 iter/s, 15.5258s/12 iters), loss = 0.0222479 +I0407 23:44:55.372400 32630 solver.cpp:237] Train net output #0: loss = 0.0222479 (* 1 = 0.0222479 loss) +I0407 23:44:55.372407 32630 sgd_solver.cpp:105] Iteration 9588, lr = 0.000121284 +I0407 23:44:59.491202 32630 solver.cpp:218] Iteration 9600 (2.91349 iter/s, 4.11877s/12 iters), loss = 0.0306 +I0407 23:44:59.491248 32630 solver.cpp:237] Train net output #0: loss = 0.0305999 (* 1 = 0.0305999 loss) +I0407 23:44:59.491256 32630 sgd_solver.cpp:105] Iteration 9600, lr = 0.000119883 +I0407 23:45:03.048686 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:04.506121 32630 solver.cpp:218] Iteration 9612 (2.3929 iter/s, 5.01485s/12 iters), loss = 0.0349701 +I0407 23:45:04.506165 32630 solver.cpp:237] Train net output #0: loss = 0.0349701 (* 1 = 0.0349701 loss) +I0407 23:45:04.506172 32630 sgd_solver.cpp:105] Iteration 9612, lr = 0.000118497 +I0407 23:45:09.564028 32630 solver.cpp:218] Iteration 9624 (2.37256 iter/s, 5.05784s/12 iters), loss = 0.034242 +I0407 23:45:09.564065 32630 solver.cpp:237] Train net output #0: loss = 0.0342419 (* 1 = 0.0342419 loss) +I0407 23:45:09.564072 32630 sgd_solver.cpp:105] Iteration 9624, lr = 0.000117128 +I0407 23:45:14.509053 32630 solver.cpp:218] Iteration 9636 (2.42671 iter/s, 4.94497s/12 iters), loss = 0.0380647 +I0407 23:45:14.509088 32630 solver.cpp:237] Train net output #0: loss = 0.0380646 (* 1 = 0.0380646 loss) +I0407 23:45:14.509095 32630 sgd_solver.cpp:105] Iteration 9636, lr = 0.000115774 +I0407 23:45:19.463089 32630 solver.cpp:218] Iteration 9648 (2.4223 iter/s, 4.95398s/12 iters), loss = 0.0673966 +I0407 23:45:19.463125 32630 solver.cpp:237] Train net output #0: loss = 0.0673965 (* 1 = 0.0673965 loss) +I0407 23:45:19.463132 32630 sgd_solver.cpp:105] Iteration 9648, lr = 0.000114435 +I0407 23:45:24.568270 32630 solver.cpp:218] Iteration 9660 (2.35058 iter/s, 5.10512s/12 iters), loss = 0.0176776 +I0407 23:45:24.568312 32630 solver.cpp:237] Train net output #0: loss = 0.0176775 (* 1 = 0.0176775 loss) +I0407 23:45:24.568320 32630 sgd_solver.cpp:105] Iteration 9660, lr = 0.000113112 +I0407 23:45:29.540815 32630 solver.cpp:218] Iteration 9672 (2.41328 iter/s, 4.97248s/12 iters), loss = 0.0269072 +I0407 23:45:29.540861 32630 solver.cpp:237] Train net output #0: loss = 0.0269072 (* 1 = 0.0269072 loss) +I0407 23:45:29.540870 32630 sgd_solver.cpp:105] Iteration 9672, lr = 0.000111804 +I0407 23:45:34.482578 32630 solver.cpp:218] Iteration 9684 (2.42832 iter/s, 4.94169s/12 iters), loss = 0.0781199 +I0407 23:45:34.482714 32630 solver.cpp:237] Train net output #0: loss = 0.0781199 (* 1 = 0.0781199 loss) +I0407 23:45:34.482722 32630 sgd_solver.cpp:105] Iteration 9684, lr = 0.00011051 +I0407 23:45:36.481518 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 23:45:40.078088 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 23:45:42.448740 32630 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 23:45:42.448758 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:45:43.028736 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:45.908221 32630 blocking_queue.cpp:49] Waiting for data +I0407 23:45:46.921663 32630 solver.cpp:397] Test net output #0: accuracy = 0.508578 +I0407 23:45:46.921715 32630 solver.cpp:397] Test net output #1: loss = 2.66006 (* 1 = 2.66006 loss) +I0407 23:45:48.711364 32630 solver.cpp:218] Iteration 9696 (0.843371 iter/s, 14.2286s/12 iters), loss = 0.0667951 +I0407 23:45:48.711416 32630 solver.cpp:237] Train net output #0: loss = 0.066795 (* 1 = 0.066795 loss) +I0407 23:45:48.711427 32630 sgd_solver.cpp:105] Iteration 9696, lr = 0.000109232 +I0407 23:45:53.814709 32630 solver.cpp:218] Iteration 9708 (2.35144 iter/s, 5.10326s/12 iters), loss = 0.121356 +I0407 23:45:53.814779 32630 solver.cpp:237] Train net output #0: loss = 0.121356 (* 1 = 0.121356 loss) +I0407 23:45:53.814795 32630 sgd_solver.cpp:105] Iteration 9708, lr = 0.000107968 +I0407 23:45:54.577520 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:58.841002 32630 solver.cpp:218] Iteration 9720 (2.38749 iter/s, 5.02621s/12 iters), loss = 0.0249229 +I0407 23:45:58.841046 32630 solver.cpp:237] Train net output #0: loss = 0.0249229 (* 1 = 0.0249229 loss) +I0407 23:45:58.841055 32630 sgd_solver.cpp:105] Iteration 9720, lr = 0.000106719 +I0407 23:46:03.885165 32630 solver.cpp:218] Iteration 9732 (2.37902 iter/s, 5.0441s/12 iters), loss = 0.112337 +I0407 23:46:03.885203 32630 solver.cpp:237] Train net output #0: loss = 0.112337 (* 1 = 0.112337 loss) +I0407 23:46:03.885210 32630 sgd_solver.cpp:105] Iteration 9732, lr = 0.000105484 +I0407 23:46:08.873390 32630 solver.cpp:218] Iteration 9744 (2.40569 iter/s, 4.98817s/12 iters), loss = 0.018029 +I0407 23:46:08.873534 32630 solver.cpp:237] Train net output #0: loss = 0.0180289 (* 1 = 0.0180289 loss) +I0407 23:46:08.873544 32630 sgd_solver.cpp:105] Iteration 9744, lr = 0.000104263 +I0407 23:46:13.790165 32630 solver.cpp:218] Iteration 9756 (2.44071 iter/s, 4.91661s/12 iters), loss = 0.0987479 +I0407 23:46:13.790201 32630 solver.cpp:237] Train net output #0: loss = 0.0987478 (* 1 = 0.0987478 loss) +I0407 23:46:13.790210 32630 sgd_solver.cpp:105] Iteration 9756, lr = 0.000103056 +I0407 23:46:18.833611 32630 solver.cpp:218] Iteration 9768 (2.37935 iter/s, 5.04339s/12 iters), loss = 0.0368257 +I0407 23:46:18.833644 32630 solver.cpp:237] Train net output #0: loss = 0.0368256 (* 1 = 0.0368256 loss) +I0407 23:46:18.833652 32630 sgd_solver.cpp:105] Iteration 9768, lr = 0.000101863 +I0407 23:46:23.896857 32630 solver.cpp:218] Iteration 9780 (2.37005 iter/s, 5.06318s/12 iters), loss = 0.0496726 +I0407 23:46:23.896903 32630 solver.cpp:237] Train net output #0: loss = 0.0496725 (* 1 = 0.0496725 loss) +I0407 23:46:23.896911 32630 sgd_solver.cpp:105] Iteration 9780, lr = 0.000100684 +I0407 23:46:28.353284 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 23:46:31.544875 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 23:46:33.903055 32630 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 23:46:33.903074 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:46:34.478695 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:38.708446 32630 solver.cpp:397] Test net output #0: accuracy = 0.507353 +I0407 23:46:38.708480 32630 solver.cpp:397] Test net output #1: loss = 2.66044 (* 1 = 2.66044 loss) +I0407 23:46:38.804895 32630 solver.cpp:218] Iteration 9792 (0.80494 iter/s, 14.9079s/12 iters), loss = 0.0634868 +I0407 23:46:38.804937 32630 solver.cpp:237] Train net output #0: loss = 0.0634868 (* 1 = 0.0634868 loss) +I0407 23:46:38.804945 32630 sgd_solver.cpp:105] Iteration 9792, lr = 9.9518e-05 +I0407 23:46:42.900038 32630 solver.cpp:218] Iteration 9804 (2.93035 iter/s, 4.09508s/12 iters), loss = 0.201427 +I0407 23:46:42.900198 32630 solver.cpp:237] Train net output #0: loss = 0.201426 (* 1 = 0.201426 loss) +I0407 23:46:42.900208 32630 sgd_solver.cpp:105] Iteration 9804, lr = 9.83655e-05 +I0407 23:46:45.807844 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:47.792650 32630 solver.cpp:218] Iteration 9816 (2.45277 iter/s, 4.89243s/12 iters), loss = 0.0903435 +I0407 23:46:47.792691 32630 solver.cpp:237] Train net output #0: loss = 0.0903434 (* 1 = 0.0903434 loss) +I0407 23:46:47.792699 32630 sgd_solver.cpp:105] Iteration 9816, lr = 9.72262e-05 +I0407 23:46:52.759701 32630 solver.cpp:218] Iteration 9828 (2.41596 iter/s, 4.96697s/12 iters), loss = 0.0674689 +I0407 23:46:52.759757 32630 solver.cpp:237] Train net output #0: loss = 0.0674689 (* 1 = 0.0674689 loss) +I0407 23:46:52.759768 32630 sgd_solver.cpp:105] Iteration 9828, lr = 9.61e-05 +I0407 23:46:57.687654 32630 solver.cpp:218] Iteration 9840 (2.43513 iter/s, 4.92788s/12 iters), loss = 0.0983326 +I0407 23:46:57.687697 32630 solver.cpp:237] Train net output #0: loss = 0.0983325 (* 1 = 0.0983325 loss) +I0407 23:46:57.687705 32630 sgd_solver.cpp:105] Iteration 9840, lr = 9.49867e-05 +I0407 23:47:02.624157 32630 solver.cpp:218] Iteration 9852 (2.4309 iter/s, 4.93644s/12 iters), loss = 0.0888279 +I0407 23:47:02.624202 32630 solver.cpp:237] Train net output #0: loss = 0.0888278 (* 1 = 0.0888278 loss) +I0407 23:47:02.624209 32630 sgd_solver.cpp:105] Iteration 9852, lr = 9.38862e-05 +I0407 23:47:07.606860 32630 solver.cpp:218] Iteration 9864 (2.40837 iter/s, 4.98263s/12 iters), loss = 0.0662115 +I0407 23:47:07.606904 32630 solver.cpp:237] Train net output #0: loss = 0.0662115 (* 1 = 0.0662115 loss) +I0407 23:47:07.606914 32630 sgd_solver.cpp:105] Iteration 9864, lr = 9.27983e-05 +I0407 23:47:12.527909 32630 solver.cpp:218] Iteration 9876 (2.43854 iter/s, 4.92098s/12 iters), loss = 0.0477574 +I0407 23:47:12.527951 32630 solver.cpp:237] Train net output #0: loss = 0.0477573 (* 1 = 0.0477573 loss) +I0407 23:47:12.527959 32630 sgd_solver.cpp:105] Iteration 9876, lr = 9.1723e-05 +I0407 23:47:17.475152 32630 solver.cpp:218] Iteration 9888 (2.42563 iter/s, 4.94717s/12 iters), loss = 0.0227088 +I0407 23:47:17.475288 32630 solver.cpp:237] Train net output #0: loss = 0.0227088 (* 1 = 0.0227088 loss) +I0407 23:47:17.475298 32630 sgd_solver.cpp:105] Iteration 9888, lr = 9.06599e-05 +I0407 23:47:19.480993 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 23:47:22.571905 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 23:47:24.938266 32630 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 23:47:24.938283 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:47:25.467118 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:47:29.736100 32630 solver.cpp:397] Test net output #0: accuracy = 0.50674 +I0407 23:47:29.736147 32630 solver.cpp:397] Test net output #1: loss = 2.65164 (* 1 = 2.65164 loss) +I0407 23:47:31.546203 32630 solver.cpp:218] Iteration 9900 (0.852825 iter/s, 14.0709s/12 iters), loss = 0.0101211 +I0407 23:47:31.546242 32630 solver.cpp:237] Train net output #0: loss = 0.0101211 (* 1 = 0.0101211 loss) +I0407 23:47:31.546250 32630 sgd_solver.cpp:105] Iteration 9900, lr = 8.96091e-05 +I0407 23:47:36.462031 32630 solver.cpp:218] Iteration 9912 (2.44112 iter/s, 4.91577s/12 iters), loss = 0.0435068 +I0407 23:47:36.462077 32630 solver.cpp:237] Train net output #0: loss = 0.0435068 (* 1 = 0.0435068 loss) +I0407 23:47:36.462086 32630 sgd_solver.cpp:105] Iteration 9912, lr = 8.85703e-05 +I0407 23:47:36.565547 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:47:41.416558 32630 solver.cpp:218] Iteration 9924 (2.42206 iter/s, 4.95446s/12 iters), loss = 0.0676373 +I0407 23:47:41.416602 32630 solver.cpp:237] Train net output #0: loss = 0.0676372 (* 1 = 0.0676372 loss) +I0407 23:47:41.416610 32630 sgd_solver.cpp:105] Iteration 9924, lr = 8.75435e-05 +I0407 23:47:46.343010 32630 solver.cpp:218] Iteration 9936 (2.43586 iter/s, 4.92639s/12 iters), loss = 0.0593084 +I0407 23:47:46.343051 32630 solver.cpp:237] Train net output #0: loss = 0.0593084 (* 1 = 0.0593084 loss) +I0407 23:47:46.343060 32630 sgd_solver.cpp:105] Iteration 9936, lr = 8.65284e-05 +I0407 23:47:51.233373 32630 solver.cpp:218] Iteration 9948 (2.45384 iter/s, 4.8903s/12 iters), loss = 0.0950921 +I0407 23:47:51.233497 32630 solver.cpp:237] Train net output #0: loss = 0.0950921 (* 1 = 0.0950921 loss) +I0407 23:47:51.233506 32630 sgd_solver.cpp:105] Iteration 9948, lr = 8.55251e-05 +I0407 23:47:56.132727 32630 solver.cpp:218] Iteration 9960 (2.44937 iter/s, 4.89921s/12 iters), loss = 0.0389494 +I0407 23:47:56.132761 32630 solver.cpp:237] Train net output #0: loss = 0.0389494 (* 1 = 0.0389494 loss) +I0407 23:47:56.132768 32630 sgd_solver.cpp:105] Iteration 9960, lr = 8.45333e-05 +I0407 23:48:01.161621 32630 solver.cpp:218] Iteration 9972 (2.38624 iter/s, 5.02883s/12 iters), loss = 0.0156351 +I0407 23:48:01.161662 32630 solver.cpp:237] Train net output #0: loss = 0.0156351 (* 1 = 0.0156351 loss) +I0407 23:48:01.161671 32630 sgd_solver.cpp:105] Iteration 9972, lr = 8.35528e-05 +I0407 23:48:06.103644 32630 solver.cpp:218] Iteration 9984 (2.42819 iter/s, 4.94196s/12 iters), loss = 0.0391874 +I0407 23:48:06.103682 32630 solver.cpp:237] Train net output #0: loss = 0.0391874 (* 1 = 0.0391874 loss) +I0407 23:48:06.103690 32630 sgd_solver.cpp:105] Iteration 9984, lr = 8.25837e-05 +I0407 23:48:10.538573 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 23:48:13.601444 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 23:48:15.998070 32630 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 23:48:15.998087 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:48:16.471092 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:48:20.606441 32630 solver.cpp:397] Test net output #0: accuracy = 0.509804 +I0407 23:48:20.606472 32630 solver.cpp:397] Test net output #1: loss = 2.66407 (* 1 = 2.66407 loss) +I0407 23:48:20.702932 32630 solver.cpp:218] Iteration 9996 (0.821963 iter/s, 14.5992s/12 iters), loss = 0.0518736 +I0407 23:48:20.702976 32630 solver.cpp:237] Train net output #0: loss = 0.0518736 (* 1 = 0.0518736 loss) +I0407 23:48:20.702984 32630 sgd_solver.cpp:105] Iteration 9996, lr = 8.16257e-05 +I0407 23:48:24.908707 32630 solver.cpp:218] Iteration 10008 (2.85326 iter/s, 4.20571s/12 iters), loss = 0.0284873 +I0407 23:48:24.908869 32630 solver.cpp:237] Train net output #0: loss = 0.0284873 (* 1 = 0.0284873 loss) +I0407 23:48:24.908879 32630 sgd_solver.cpp:105] Iteration 10008, lr = 8.06787e-05 +I0407 23:48:27.138221 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:48:29.906857 32630 solver.cpp:218] Iteration 10020 (2.40097 iter/s, 4.99797s/12 iters), loss = 0.0500137 +I0407 23:48:29.906891 32630 solver.cpp:237] Train net output #0: loss = 0.0500137 (* 1 = 0.0500137 loss) +I0407 23:48:29.906898 32630 sgd_solver.cpp:105] Iteration 10020, lr = 7.97426e-05 +I0407 23:48:34.828866 32630 solver.cpp:218] Iteration 10032 (2.43806 iter/s, 4.92195s/12 iters), loss = 0.0227617 +I0407 23:48:34.828907 32630 solver.cpp:237] Train net output #0: loss = 0.0227616 (* 1 = 0.0227616 loss) +I0407 23:48:34.828914 32630 sgd_solver.cpp:105] Iteration 10032, lr = 7.88173e-05 +I0407 23:48:39.775643 32630 solver.cpp:218] Iteration 10044 (2.42585 iter/s, 4.94672s/12 iters), loss = 0.0961335 +I0407 23:48:39.775683 32630 solver.cpp:237] Train net output #0: loss = 0.0961334 (* 1 = 0.0961334 loss) +I0407 23:48:39.775691 32630 sgd_solver.cpp:105] Iteration 10044, lr = 7.79027e-05 +I0407 23:48:44.674268 32630 solver.cpp:218] Iteration 10056 (2.4497 iter/s, 4.89856s/12 iters), loss = 0.053444 +I0407 23:48:44.674304 32630 solver.cpp:237] Train net output #0: loss = 0.0534439 (* 1 = 0.0534439 loss) +I0407 23:48:44.674312 32630 sgd_solver.cpp:105] Iteration 10056, lr = 7.69986e-05 +I0407 23:48:49.632948 32630 solver.cpp:218] Iteration 10068 (2.42003 iter/s, 4.95861s/12 iters), loss = 0.0545082 +I0407 23:48:49.632993 32630 solver.cpp:237] Train net output #0: loss = 0.0545081 (* 1 = 0.0545081 loss) +I0407 23:48:49.633002 32630 sgd_solver.cpp:105] Iteration 10068, lr = 7.61049e-05 +I0407 23:48:54.586618 32630 solver.cpp:218] Iteration 10080 (2.42248 iter/s, 4.9536s/12 iters), loss = 0.0329978 +I0407 23:48:54.586663 32630 solver.cpp:237] Train net output #0: loss = 0.0329978 (* 1 = 0.0329978 loss) +I0407 23:48:54.586670 32630 sgd_solver.cpp:105] Iteration 10080, lr = 7.52215e-05 +I0407 23:48:59.530165 32630 solver.cpp:218] Iteration 10092 (2.42744 iter/s, 4.94348s/12 iters), loss = 0.0862569 +I0407 23:48:59.530292 32630 solver.cpp:237] Train net output #0: loss = 0.0862568 (* 1 = 0.0862568 loss) +I0407 23:48:59.530301 32630 sgd_solver.cpp:105] Iteration 10092, lr = 7.43482e-05 +I0407 23:49:01.534687 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 23:49:04.663394 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 23:49:07.046499 32630 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 23:49:07.046520 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:49:07.454871 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:11.652364 32630 solver.cpp:397] Test net output #0: accuracy = 0.511642 +I0407 23:49:11.652407 32630 solver.cpp:397] Test net output #1: loss = 2.65173 (* 1 = 2.65173 loss) +I0407 23:49:13.492377 32630 solver.cpp:218] Iteration 10104 (0.859473 iter/s, 13.962s/12 iters), loss = 0.0387208 +I0407 23:49:13.492424 32630 solver.cpp:237] Train net output #0: loss = 0.0387207 (* 1 = 0.0387207 loss) +I0407 23:49:13.492431 32630 sgd_solver.cpp:105] Iteration 10104, lr = 7.3485e-05 +I0407 23:49:17.766703 32645 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:18.378244 32630 solver.cpp:218] Iteration 10116 (2.4561 iter/s, 4.8858s/12 iters), loss = 0.0313864 +I0407 23:49:18.378283 32630 solver.cpp:237] Train net output #0: loss = 0.0313864 (* 1 = 0.0313864 loss) +I0407 23:49:18.378290 32630 sgd_solver.cpp:105] Iteration 10116, lr = 7.26318e-05 +I0407 23:49:23.297039 32630 solver.cpp:218] Iteration 10128 (2.43965 iter/s, 4.91873s/12 iters), loss = 0.0329079 +I0407 23:49:23.297089 32630 solver.cpp:237] Train net output #0: loss = 0.0329078 (* 1 = 0.0329078 loss) +I0407 23:49:23.297098 32630 sgd_solver.cpp:105] Iteration 10128, lr = 7.17885e-05 +I0407 23:49:28.254313 32630 solver.cpp:218] Iteration 10140 (2.42072 iter/s, 4.9572s/12 iters), loss = 0.0264461 +I0407 23:49:28.254351 32630 solver.cpp:237] Train net output #0: loss = 0.026446 (* 1 = 0.026446 loss) +I0407 23:49:28.254359 32630 sgd_solver.cpp:105] Iteration 10140, lr = 7.09548e-05 +I0407 23:49:33.101836 32630 solver.cpp:218] Iteration 10152 (2.47553 iter/s, 4.84745s/12 iters), loss = 0.117458 +I0407 23:49:33.101994 32630 solver.cpp:237] Train net output #0: loss = 0.117458 (* 1 = 0.117458 loss) +I0407 23:49:33.102003 32630 sgd_solver.cpp:105] Iteration 10152, lr = 7.01307e-05 +I0407 23:49:38.026508 32630 solver.cpp:218] Iteration 10164 (2.4368 iter/s, 4.92448s/12 iters), loss = 0.0693973 +I0407 23:49:38.026557 32630 solver.cpp:237] Train net output #0: loss = 0.0693972 (* 1 = 0.0693972 loss) +I0407 23:49:38.026569 32630 sgd_solver.cpp:105] Iteration 10164, lr = 6.93162e-05 +I0407 23:49:42.986879 32630 solver.cpp:218] Iteration 10176 (2.41921 iter/s, 4.9603s/12 iters), loss = 0.0370818 +I0407 23:49:42.986923 32630 solver.cpp:237] Train net output #0: loss = 0.0370818 (* 1 = 0.0370818 loss) +I0407 23:49:42.986932 32630 sgd_solver.cpp:105] Iteration 10176, lr = 6.8511e-05 +I0407 23:49:47.910176 32630 solver.cpp:218] Iteration 10188 (2.43743 iter/s, 4.92323s/12 iters), loss = 0.0608822 +I0407 23:49:47.910215 32630 solver.cpp:237] Train net output #0: loss = 0.0608821 (* 1 = 0.0608821 loss) +I0407 23:49:47.910223 32630 sgd_solver.cpp:105] Iteration 10188, lr = 6.77152e-05 +I0407 23:49:52.407008 32630 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 23:49:55.497314 32630 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 23:49:57.894382 32630 solver.cpp:310] Iteration 10200, loss = 0.0752417 +I0407 23:49:57.894408 32630 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 23:49:57.894412 32630 net.cpp:676] Ignoring source layer train-data +I0407 23:49:58.251549 32652 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:50:02.543491 32630 solver.cpp:397] Test net output #0: accuracy = 0.512868 +I0407 23:50:02.543534 32630 solver.cpp:397] Test net output #1: loss = 2.64572 (* 1 = 2.64572 loss) +I0407 23:50:02.543542 32630 solver.cpp:315] Optimization Done. +I0407 23:50:02.543548 32630 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.1/conf.csv b/cars/lr-investigations/sigmoid/1e-2/50_0.1/conf.csv new file mode 100644 index 0000000..8835b13 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.1/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura RL Sedan 2012,1,3,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Acura TL Sedan 2012,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Acura TL Type-S 2008,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6667 +Acura TSX Sedan 2012,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Acura Integra Type R 2001,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Acura ZDX Hatchback 2012,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi TTS Coupe 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW 1 Series Convertible 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW X6 SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3846 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.4286 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.6 +Cadillac SRX SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.3333 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Impala Sedan 2007,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.1111 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.375 +Chevrolet Cobalt SS 2010,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Town and Country Minivan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Daewoo Nubira Wagon 2002,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6154 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.9 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.5556 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,0,1,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6154 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4167 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5385 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.2857 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.5714 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.75 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.5714 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.4 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.5455 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.4286 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7143 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.375 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mercedes-Benz SL-Class Coupe 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Mercedes-Benz E-Class Sedan 2012,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.6364 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3125 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0.375 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.25 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.5 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.3333 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0.4 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,1,0,0,0,0,0,0,0,0,0.4615 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0.9091 +Toyota Camry Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0.1429 +Toyota Corolla Sedan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0.3846 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,7,0,0,0,0,0,0,0,0.5833 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0.5385 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0.4286 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0.3636 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0.3333 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0.75 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0.75 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0.7692 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.1/large.png b/cars/lr-investigations/sigmoid/1e-2/50_0.1/large.png new file mode 100644 index 0000000000000000000000000000000000000000..06872faf1f35750c1afe082b431ef6adf219cb76 GIT binary patch literal 109053 zcmdqJby$?$+CGeu3KA+^5~7mQ-7!d~fOJcPFm#A?4u}XyDIpCa0@9KL(%m49L&wnZ zyGMAQz4yBx*x%pZ9ETDIbI)4q>hn6U6{4g7x^tW4HWCujooCV#Do98u;z&rylo)8h zZv@MUe*s@^II4iekP5rVegi+Cn2XAbA|Vw+Fi#9ofuC>LOKUkIAz?Qn{@sAuWt$)& zoo7Ci5LI*4Tb)EVP?sD-`?dc$NJK3Amf(F~CDeD+*&hw+(UjGcG<3mhs8t`ORjt2Q zzArs5y!i&L=?yB18tr{iJ{57rWn3}$!)|VK=5ksp?x?3vHs;K_6C7D^w-*DGSlFj| z_SPp8?R;YzXON&|{0<$g|MkCvBsqWny#z5SQZT^Jvaj7p}^u8u?6tf~lOS?*pBoIB#Z1-35 z8{y(7n{7iS`Ac^opb3SQ4`8oPaIF2=kY|j6N(m$7cBw)%s`0*V9X|xj3@F&2LWtv` zSRKY_i>$~yGMs*rj=mv>nmkevrnZoF)7VY1dl#+PH?WpWG3ASRYQD(D2vO{_{hYWYJhzS!*ZF_lZJ3RsK-^wjk}q z9P7aD<(MYKo`-l^1c|9)-IjZzuurWw+U2<%T8@|51WcKCCvqzar_)wG_#E}7?bmzO zqYg&qm``lIg}VG+QlFn9@BHV7UF;|pjHb-0`}9?rZB(Td^DJKac^FhjP@L9qPueLY z{RAu$V~fQj+R0?+@)J*>d^X|E%v`7?m2`P@!&KckBKCI{eEW z{0jM7ytyixSfAMHZF>>2`KJxCA}d;dl(}5QzrIt`0+wd_CONe8LahJr)|5X_R%pKF z$^TNw*ajnv*jvu@T>q{s|M5`QSzETtWi(Bi1Yf@B83@F)<-VvE|D&?~dBC3&8Oa&> zZ(Y26{(m3GwTqsR54`;F?}=EKI;3pc{6E)k#OnVOg&#lhZ&Ub>?Ew}d@Nd$-jS%DY zi>_+Bv}Qb)7^+Lv%FX}(a_CA423bZ|NE`U|BLeZu4Q9(2{?A1_a1&pC_`d`s5gS`! z)S9-H3!C>Ot&`RlrXr3B`cC13m0+#=DfD`+3C9i);4`Kq@f(zVVtnoLjhmyII{R6@UOM%b2suAA;+0C%h-L@>z@hf>0V!VOqfTti2GM+ml*AzE*0nkV%sapVn3H zR-dx0+F$ZVK@;e5;m{tbBNe=i2Pzb2e_0RyGxf?;E)I6u8*}7^2^6oMYO8vkO*$<#fi{6$;2*w9=4ADp)SNpf#M~^uWxknz zx8yYgzvNtKTaKXZ$8^*ZJ=9P(5>qtzoCps-1A?0waQ z)7sXl+KsRBcvRqwP4F+b;`zPQ7L^dUR)>5IV`pnNAO7ezRXyB{>RY`AMyO79WIeoA zV>oVuC%k?7fSf5MCE&y0%|XuQBMF{5bzKv)B^c&B=C#f}7g%i+T0idCFIkl5=cK-z zan#veEEqY$_dZ1kft1#!;U(6-(P2nIN2&BF^NUM!KZ@me=HJZzn5f%Nn_Et0^_bN2 ziU@7I)(~RLd@V(q*!;Q9g#9HHLH3iQ82PcUUz1qngKj5mtBz!P>fY%M>PQl(K4^6J z5V;Vnn)=#@aGoG>raXsm`5r=F|Kg($G}tjNzrz;P9!|-(;PB=YM0;hBvf=3XhtFF@ z)vgejP_7qJmh+x`#no|%Od2Irc&te^>fJM_7ON0>b;M+-!FtQ;<|;7jyqI@JjoFJi zN2nD?7*XCukZX0wKZh&q`4!%=ou|U3WOMGb*2`;6?}-M>WNR;++-|)QxPBDCN3n_@eObJN#m<*l`gEqgSU{a z(Ne{k(iOg$vZ+qib=ckr&-$yAJy-n+dj-{#vtPn^+NZBf$g44ktIlrBqd)jEbQ5d! zn3QAytG6!9zLVhA_I_iX9gj97wA_7PS?4en_2uy@1oqhYLg&)9JM~ znF=hzOrN%e?4i-2GJ%YE_2^Zfgi$R?v^iIZ=nP8{flV20VWam&Z>0DP#ucsw+se}n zs(heJfIJuxMyY$)EjGusW&fk1z?R}fO^}w-hIByWW8J>WhcrQM$F-1~!DOa7vDY}l zTCD`Sa#0ashtO;e-6K`PI5~ou-4x_S0>{{@ug?I!e>8u=aZVn38 zY@Q-}ZJyTI)}J#U-{*W|X)xJ4-MjzBZfmMD`O9Wb*waIWgt<8p>05D?C#7>=gi72X z4E$HyNYO5vbjv)DFF)JIa`V9Lc}RErGV%QUC-F2s)$mpyH40X(3Y>uvY4a1L>h2L+ z1`IUxdEJVyc0{4hLpB`j8=R}c83*aZU+T%G-amON&* zx3l(EakZKiD;Rv7xgpWW#s$K%=V@ZJ6g-jI!dfZ@=pS}o4Ap1w3%GpC2{*a@+}b*y zBKp=9iEOQjedT^X{;e>o0BODye+Dz1Pq(QQDiZEQmBB>?e?oa#OSfR9LK&%f#pVEXcEN!iJg%=ZzCO?uH~@srSKB#rv~#SHjFAJjb!y^&$-ihWoy zxQja8KJ45SWg7u+RW)pmYW?znOlY0{>#mhHWn5VvWCRWG<@67|ui_V{ zeCyik?gMWm@DWBYtG2J8xD2t$#6T(ZD8qCS#-14N!BG@Zz56o5rfR%$wqm)N#RP}! z#@=?kC+9*VobLP?p2Sp=WdQ1LcI~jr!RXkSEYM}jpf;w7^`xa|U4A!Vtx0oGgshd< z`#niz-qiL(l))4`L73L#=&iy=3wM*4*`UtCTAK+ExlXBsnnI&}Y{P3)U;^>btyTPD zR|k6#*4mUBxhdnAR8XFA%lb-Gav$CyFJ9|2n~0=uX0K^T>*3xKnqeAvxMurE#pWSM zEFG_=En3`RA?_i0_S6y2^-pH(1izkE8VXM(lxvYQ+`QUHL5N+ASewwfQ^tu{uq=xr z6|^cUa=oKdwaJOAf~diB{nFEJq+Dh)bY5HwIxzJ{*LE2g4V`y&=zM>PlgN%F9lB-iHp4%`W_L<4)Wj1&#KknOQX5y=mwq3 zvYX9)$(l9CkNG&lMYemfPCUA#PO&uW_88$SAs5^9R0fhcL)Q8GNrH>!WD4y=>2Hi+ z{!|RyI92eyiXa+&5tT8n(`=@FS1h)-MWTAoy*Ss081MSn#yn)VRmX34)M%RR*@MY4Jga4jj*bb!nKTPVK|OF=6}v}460Dw%wtT7Ay=@Lwx_miRU3Q7yg4@xI?Fx1YQy=@>uK&h0*wD_m^svw0NwBPH1;NT~pIgj9&c zoAXSiTZ7DPuaC4Ha5_4BEgO43ZjkZWc1!0FtOA-z<(o1$-W}F!Zgx%B@Av^=2U*$X zJ7eF|6&=C%4eM_#k8!AwQzn<)J%*U(u2?x|Wjk0q@oaxx{hWPx=-WCWjFh7tNOP=- z{@?*B)ty=q%^hxBf*m@`Z*FLVMpFU$(rmA`cZ!AD3VL%nz1I^ho`L-9JQ3mE_6u)+Gx3inf?a6eF@{77W ziV8KW?OS4E5LmRVW|T17;5zG6YWALMoOQqKrHe#;H)kZxMu+2&{qvnWDcfkJ3aidY zWuaxp(GJa0UV8Xsn*zJ9cM3mrAcw-=+(RJD7G71~JrlGXwbk2aCKsCjF$4#ft407L_e~z;lz_u z{?P>vL4RB8Xm)ovvQe|NJ!OUpG)g@@NpspQ7WRQ@vn?~#V1bEYYX{CAT?uzEA&2>S zg0SDLocWt2Pm4-)P9AC8Z)OgxW;MU}nPs}bEUDGuU;rO>lyH41zfevD;1unwcWZV# zqPD_z;kRLjc0*Kx3>wMptcNcH!DcKL6@^wbSigrflRa87B^IZAc~TCLw%Jx@L>8In zCC||Tt&~t&JH&`Jo)=pQ**^YW_pDyhEaLmg*Qt^mh6_KStgc=dMg_nj-^>H%wYg9J z6A*c>SFlU3FtWP8U#0#Gwp<`7=#i&0YO&}#EB-yJUvQ{s6J*fDhBADNcjHy~5n4UG zt~ljkT^vK#hd}}Jl<(aty!WmzhTp8x(VU8}Bh$4QzohZX!BD|{0`bXA6w(PtO~hG_ zeq`~LzD9CF{@C$R%7JAp#i&V8d?$#@xQE-%@bn>Eo%fCiY6SOnX0zn&A=7 zC($$4^F`a`{@h6KcNc!ORn@H~l^Juv+3XJhBj3xU>e4AGFxyiUFDC8AMOBD=RGJeM z+#^ytSXgz;Y@O4sqnBEvoH}~bsd4Z*T${b=@hEqh8_#|M+qmhaZojmWYXcLFYEGy#ZMh{1dA$_L2*q=` zw4V28T4Yc>6Qv=H$G{_oH7u$zdM}T zFOfQ04b2L>)|BZ1ki9lfZqlwQB5|#kKSKfj;3UT-nfPR#QnPFggV|b_aORWmf%5_d z%J3noDA*kN&{ulg8~s&(V(!xI(U6vLVIjRY`rPZF{;|Q$l{qiC`i0NS4F&MvSj>Gm ze8RMa_sqT7mT}s<=}01g-fY)Om9RXO&~MLhn0iG?afO|Sbnt^GR^6`}`vXdiy3b!S z*@$^7U_|(MX_1$XPyI$1)xwC)QuD8IboaT;?~y=dyfxOHGQO^mRCB9ampJUe!<~xj z;JFFq+RX!V>ik2}Z0{jWpdKOjSv!{%KJK^{ssk|IpB315XzWjUBL;h){C*iIR8j$f z>P%w8*=!}f6|y;hst%vL*)#gN$UW$0m{isEj_!XXei=6_D;<%&%p58C!{~rw1?)7I zQi-R}IO^+{lW-Io<~V!_6sP6BZjQRWjDQY+e55x^T^IbWxM~vA7wu6UOJU(w?+RNH z?zNd9^DKD1fo=;d-{L5!E2sc9A>4MP{zX}Ki?z5vIxbb? zbB);bt8b2y$v3TmVPI}+EFJRBNRRKa%r8BMPEBOG+Riw_D*F@btQ$VfX}Ql^G`c^s{Xw^wq6449W$z6{Fvc>WYFkX6=w7QDNvBX|=4sEWN;Gu5f*?(mcYk;yU2X)$wUTq5uhZf^wUPNVeG{!(R(YZQ($b336Oo07R#)MYi??-saj0lo5 z`FMbqws{WpthXeAk8cnMr`Nps`Zmcrooay2x%W*1J3;H@3Lzovl{!yB?EDH8s@{IQ z*GeY>^Bx0t3c}13z3t*UwqLI^SsKE01qU53JahJ|8Cy2B5I1il4b1IfbCJDh$LN?b z0$yq8r0^Y3TyaU}iDRxNu8{1 zguSVfC@=z~@qqJXZRO{b=u{u0Mj3KhH1u6y|iKM&h*SU|I&m1=#&H41t22HCIP|rxjAae zEO*W~y`>hkZ&lg8cvh{lrBf)Kiu(K5vxyl``PWfKl^=_e@sk7q#oVu~(l*zVJargv z7j+vD4sQ(1s5VU$6)m zvj7i5tyfz{!)!%aVCL7V+(I#t=kto*c*RF6h*<<$Nglm00{P`$GSG;qq0+0~VRb*` zx!OAPew#*xw>8e;m9y)2Qfme45wRrW6Z~ITJPZ(jnzt*)R80=%`|$6Y0OG;5CK$+c z3_->&Qbb+inf4uKcD-|kA*xh>GEwu3nj`e|zIXlc8Z>~hVC$NsJ5~=(Ir#TS#n}2_ z3l!Q%%+T*=f@`u7M^xA$Lp}?HfY>L3i-u=kfA~Ga#V+9xk=~Go8>O$BytKG9E7J91 z;N?Ln3B%zb&->_f^vlShJld`!FpXd~P?o|y_iPNlpN>qNZ4r%03;#0Yz1zN}LQEi@ z`~6`EIy|BM;aVE*=khiiQu4yc1nllx3U2k?r(F%ZgHnqLFs{WM8J4H_fb(roX13QDavx{q`Br`NR$YmrlHzZ?AqYBO$aIyISNV zHNUvfINfdQe>4)uur%T4M2|$v2`ZB(%8nG{ z!!J3qBKS{|%3u3SVIfw_Jhte9ty6K3=7g`EBkf!rjnPL6|V9fplhR&3p8Rd1sdGjzvzRRanR&kS48$Jw zHsub`WU(0*R-(y9yJ^KFB645}KY&;XR$+KR0y-*>_z&axR7MSa-C^0Z%6zL7$IvpG6hg?AM(NBQSQBS!q0wmfS z5>)dA6^ZIp64F#nIU0U?t$ePZ;Aw3w$aMm*LFgRfO0Q2X9zwHr!|!Gh`W$HEi}{n8 z%3WBI6CJ>o5IX$jqH&{1JN&$~Ro?CmIn?=AoS)rC#k@+`QC*i^1`-JDhu zu8^Ev>GGFsVgJTO`b*3d>_7m)0n z^?eArWfI!AyrORFDPwxURRWuTj^_wE$#z@85@)~p3!yJ_N+dvrWsKvPH&;92u<3GO zTy)OiU+R7%b*&P;eUDic!Y@zOM;t-DHfafffJ%S0zu5mg#Tfa;+?t{8?T)>JSECAE zXdFeo*kG}hY%Ln<_F^0sCbu?0Q9PNEuJ-{_WG|L`JNfg>pGx;qm~|QfYR2OHKkW z?4Yf|Cf8iLWj!$pynK@<|D50EN6~P(KgNyqrP#%d2b!EsUxyUO<4t;a1F3 zP5rGe|BlIk=`~Wq^#lBw&<88X?9QEX__`H-e~c8iKEBZg?Hi~F8|JFHOdHIjijAZj zMqbilLlAtCH|4q^@j_;w1Q}?3sCpa)?(T{k?JoBgKIE{qb24kYOXT7>Jbp)QhmC~# zX&nLfXUZm2^6D@uC%S8d4ysin?fQ-q?y~y^dXxBxr@*)>PW7|%sN>fmkDjEwRKaE4 z*2qnBmyZt<1oZ)3uw=Tr2kh2dfu-bu_&&O?B}0OGD;!XsuL`75Y)n-Xe4bKQTl~uc z)dAlq&Mxk56%Uv)_Y;oo)O{yKVA8DJD5`PMY6d(3dc}RaBN8f3YHHs}y{46#nyOmE;v9D_1ss zEDMhNTaTPWLjW|SEA#2ALUYJGVVyu=hZ~|-5?qkgl{kDy6_myBLH|?alQW-Onq=Oq zO+6>66YEo`rAXCFa7RZQ@U|PBXxZuXfjlGa0T-swVa)0;BME@#U?+VvnyJKO-_{>! zt)jP2#LIu@T`M{9svYB~X$9yGjmKfT(yd%jXY6{gkCak!MXS&RCJ;VztQ5xS zum;R8L}GFmpn~z)6cQ>q%bGH+j=)!eCqV{FUe{2 z+5mwlCpZFo7*K=m4pBX+``cduA(EWr*$hH>HYamw8J`LG<9JVp2GweQDpIw$#sC2l zo{W4+R_(BP0A?XSsVLZ6bZ>^DRk~J6AAD=m(O?HNZsoG4k^Bt!<7^I17FrixC|_>+ zDt$j!Wgwr+@Z+x^{>H2Mfwhfp4PROw;ymfD^n{=1>64d?;$Vx`Hgm18?OfQ&kqmSb*IZ0riV^+8z_k-h2)YeXG zg9tKvlr`k}PI902E4$fmjh3rVW> zL^HbNF!D>0+=zRnWj&D&D}@M$Gx79D`)+CPQ$i~< z(t{%+MRqC;VXPN5GQF4jZ|@K6;@Jaa^6e^6q#8!4+f+sy${z27>L@gDuzw`iBTZ^d#hCU`zE-+(ByGfL{0$dl)k@rQ77~?=3E8(MAkVMdI_j1paYJ8zQwDK z!f|L^R`+b=6)xnYo7r06yz_-MfBfezN5>s|Nhq2o*S68b6u*?Nxc37D!a`2YLvciN z@@AikhJjGArKkb$N^46m?K(!YyITpb7chPd;YN>n*~Yn0ZlpdVII(la-T-L0VqotM z6IxdgM?`_MA#hg;F;cnuPjdnLn7kS0DN%OUx+gVyF+TxJvM$4jD5PVF9SVNa^*WT+ zvbc7X!Q{Lm_sTLW8ZWd}-nWtbXZw#T!;=gChPbv-5eKkd^Cdv25rQv2>l{Gw00_zbYV^P=Mx}eDlfciGlPS5RfR}m>(;Q5WGz#*)}mv>6QS$%^1h~ zJ|Vr^nw)fS008A!FO^*xK?GLT$(kMLAVaiGA+PV1LV@kIue0g3n>N(AM}$|hA-Z#U zj-$C60JG>?3o}jouFwoo&<+7uk8o)jN@ll&-d4UI9PFB^aGzG@d99`OO0EcrIJ!OS zDCawkgYg1a6HX9$Xz=LD9;~Fnbgd4pxxGjIeY}qz(REE_ z|E+R}7~x-(9D4jM*Z8#VnhIL|Ejx6HRwVXO{} zjp{t3U>@Dn3eVl+=U!$z6dKOgo7lZtXL|1^g)}GCLYNTqG0DhA=+2fk#JpEv#m$6P zH^OtJ?vc00&79F3*cRABWk7kAFX?l)PW2-f_0ne5YoE=QE83|vfQ{KlBU=j>u933Y znNq7h>PG{ocxCX9Nv8On{yt{4oOulHe3nvkDpGIMy0+B34B%`$TR$8;>*$}6Um}K< z2r{|EGd}$3>7rPn5+05Amz1Z`!FSsB{l%@v*+fgQcx!Va=5bDy=b zeskKYxl{_|m6^=3+JH{{4B)JS7&T&r&-`sb3z&#vmo)=FpjqQd$h@3~` zHYwiPo%4zE26Z0lr{|iuWvhyk0E>r}s?g6e>BHNUi1kjZKd|VId+h<{+eou)M?7-8 zH~v{HeHX3pwA|ln>sj|&BGFUGeN)0(8d<9-w^K{ktDNPfChUK$S%~9hrfN*tn_NQp=?LV;K?@b4-fF>XQN+)(WFvk&OH24e4%9cw~$eP7`G2C3^rJXzH|2-10EFIlA zsXR99I~dKn1*zqQJh(dhj}FiurCTIh^61<2uiVY^NiHWu11qsBOKiLc4}51cy28Q_ zKln1nYk9)Z!)c9Z$C(1fdhz=##ZYb5&=OU-6o&HH5K$IUKMa_ z3*E&bm~b!uYJ3F-6KjjsCatr^xswjXV3c6-u#iWziW%!VRS~_9S9ZNae&1(KB`NqD zc#4uIsYw%&p_=vM5h{5Lr47DK3{i>d`Vo^hiBFYMZw%L^zHZjWnVAXG*0S4sUv*I) zsA~ZO2#X!K^!x4{<%!ucTMgPu-d^+ORqlQnhc;sNyI6k_zUhMzZr5~@=}5TF8pu5o z-rxfmI{%@@_~%H`vy`g#@7hJjA^DRrX_2vb{LWXETe(QhQHb%e9|w}|()eOp&SBo} zN0ukW&CIV`ds#{<_*^uY7KK~yj1_`VGc(59Emhc7jZK>(C$E?pO8M!f z>6ic(?5gF?cP$kewagXzkgU1*_<=q}j!B;;lgV+?T|F62|huAka^tXbCVG}k&bHyKpGj=p|m zoj?+Va+C)R1l!#f4${5pz~cWMv&}B_B#Fd*{#{U1c7ik(S&(h2OQW#Q(IY+mJw83n zlbdK=M8Tj%;k3wpZu#NvBG;=kE7c0Sk23hG7S8k(=cn!&=1aMb79Z)2v-FrO=jym! zl$Xr83vwdYlOi zuW%@U-0;(g`gXLsy{XhntpV0$>Zpk)BMm4yCf;4XkGNW$w9#D@Kw{j$Z%$iohVL0}uTJY}^) zC2g*gDfhw5&5@fuB4FkcDTzh^E4W|bcF2=rL8x$M=S_FSRf!eR@FKfd)m4dy+42=$ z3eVE5rqb|!4VycSB(RdupsRDY*y%|V1!Z7(P+MI(dhYCr&rEp)I<7JkQl0P=Avx$g zpJE)KZSke-_vx$(B^7p=1`$zJbxQ=I&TMWmauURS3lke(CP7dmEpfn4Tn!kdUt@dRHN+Nlg84&&#a z2pNhlC>FL6rejR`Sg1~WZI(lSFLN@-wZmn_o~JWqVe4>q4Yq6@dE|pxo|CTXY&#PW zh2(=Sg%v(X6NiYssQ0Nr#F#$9KGmM}?FdwN@qL2k7Z2Y`J>{#yR5jt6Pv5kg zUN%K;ASS8aIcLp&G4OaMXSlxFuai3ZVX!cefln$O$ko7}Rxb&`lNI9~m9!egjZl-pg^pC&D0$t>>e?4)*JS8Go{QfA^`SNDC{MAPK(PO~adxHDTrs>Szfb~1 z+>lCdz4ozqClC&J-D&-Rcf^J99(PhdQ3yIDFWKz=q1slGG$IEQbCL+A7%iii46SEJ zr{NYR+|WB=cIRF#puE6@a>)S7j54p|u^Vf=n~xnwX#VFS5qxe0tBdd4Q2s4ns4y30 zlj_zUm}+TTXA9uUN>BLcBs1s*M8WEBpx&kud*41Wey9iTTDZiy@JWH{j_zlgsza6( z-iQ~iF2uUdj_+gSR=Z1Hdd%_2aq($R%J`bhjiwxBlWZXd>9Pqha~yHv)93n3byxeI zKQp91b5$LxmPw8}7RiQlZ0)L6=7sjWJEpC;TFJeDPFH!>8%Z@xHE6>D@5#VAo3FQT zd@N7i#0GQYmD9C|5!u_O1L|u%X|`anUXfHVNf_uTH8WCS-FO4~YWub}@{&5$lQ+k& z60*EKZpREMHdOlMf4S(SsM7)*bW^d<2F)!kFy-GdYj&pv`NpLFD-1s(#Vro_pP<^L zHTGt_&npj(uQ1}KI5I-z}+(e5%zd4?cn%uuG8Bt&9SD-GN*%Fc+xjK3F|bQ zcY(<-H~5Oi)uc(b%mr?cY2(B*^a$TNp1!ILF;CSBJ{EXu<5^zqT0w!o?z-nN!LdST zE%cRmNg~;A|EMlVq)z1Y@gHBSeAohvYSJe-8Yi8Kk->a8#ctwJkbEq1lWA*}iWwW+ zZCw;(meVvK5~`f1;mGa9kd29(jdp`P;69&kcewCN%Lu6Zr-a*z+6jP|WK&WYB`@Ti zlef1@%|3hoQ^3K36y<<_pn}YFHS7gd>1Nx*)Q`5Ml?UMABBH(1r{O2Yw4YA|C57iY zt_jP30)ky~sP<4^B#p(Wy9vKNqiX8tgiB&YzSn(Qo~#f)VPN8rb5C7O^BsLK$}zg} zT77AJg&Q3r*U;11PV;U_xO&T@@!tgS~++?T*J=3~on}BWPz5{sJ#omgy$G9+{twkEfzx!t?^FOgfYin%CGR*3Qo*(J>MDXx&Ew)dPu-@?w=gIWgxhmxRt2fKk ziD?Yq`)g3tKSvijmGj-IUz)7_3u#v9BDg_;Oh0rbyGu6LZmu@>!R*qeDr&Tk_bL6^ z;qTOV9*=as+O2lF(~iDtrAXD6)*!Ax2GyISSlP?SF8=-zEC?2;vY;io-|IR^sDkUZ z@J2&T)TFIf5l`)y`xIld7hr2$iZu2iBEYIODKv8@jUP0zmWh7nb9oWxq(<&SuAmC- zXZ`pask-MF6&Pg#Xebh9JQcm4 z@;KO^D?T)m{QQUFxOZPSj~70Z-_NVe-3TK(Q`zJ(z&IOplaVUpt7Nd$Na){MA9P6v z|5$?wJeXz4=i@?#oE{OK?F{=2a9)DRqzKc=#z+n|PN&&T;H^n#M&Dkg4)33b$G}H_ zU!#kEy^lr=c~?vH$!}Eipm(t+p4~5bqHGEpmIxQ4xrxOYvJ(Lw)T4Q9SXjM zGphfQpDxs>I!uz(A9WBc>$l#Gr=|-$VKJ=oN^^tAHh4LQR%La0-7cWfHr5{#8Wg6j z`@yd&a0M)O!FN!9)_9zn*=qTyouGPPAM+S6e1CvEk1Kict&CyskKZSCESG&_{_^}7vmgZBfkE{K4Ys}F%N z??%5*$m_~tp3H2i)hvIM`GdJ?SF3ay44X9ZlG(S8N3}^0#ocRx zSw$jBdzSaAi=k9uEh{*0|6JGO6bBG2k|?EDI@gfp7W5^T)sj+7yKg(ZEq3(KZN4Gk zZ9yt%ugos4Fbgf+Gly9T+x@7Cc|W)2mI!EKmdsI*KZ^fy^x9Qb*P%?dG*4{s;`J$xTK202SFtcz>F{Q-Xbo5Ieg&-G4?=D?|cWG3v zGWFd$vaD3&8hO&t$EO&|7DQt;A&7Bj(>weV>f6i%|kBOhg~0a9r32A&_dj|#dgDaPD+BnajD6PuqB4&xD%YBN_t7znLqlRDD-*Z5! zV1RxOB*JcFx>m-k#zl+Z0k{45F^tWU#Nbx0Dn)&>bD^`N4>9{AlfX>ku2yfM1vo;e zWI^j(mwkssZkj_^f2-*V54FSTcQ229V(JguZ!jecovzX>aDqGY3uPbkpE-8pGV|aU z^!FkR$tfBE3do24LJ2v_^sJG278Li$pkpJFTj^h-vOTjOCx_bcl;3L6?bjo(;SBv| z?m9B>*nW7p@H#aW*-Lv^J$<0VI%zWFGvE2}A?q@wm0gVoD0LCGJTJ(cgBXkgRSAa5 z8Z$Sqt=WOB*EGqxg(8(PK{H*c8%;CejYkPr#p#qH;*tGdDR${n5q%I#W1am?#N4@; zqoJcn<%5=Ep*k{FZLHs{4QIdhQp0#QWZnwws799$D#XbPMHNkyU;1r+QTxQ+(7HJ{1fvG7Swc+Uhf>p+uROu}`c7(nZcVwuB%A0h z0Q(Qi;b>{kGr7qm<%y&TMFB*V$UK?(95$!0_19d$e>#so_v>&-~Vh98P9mtSbMT zJ^Tk*Um7lGa5)e%z{4nKVOo-q~jR^l`@~>RZ03BE-66P>`Xl^ z_`46K<4Ped`RK<6hb728r4|{rFT9&1njTO;7K2z*olzZycX2q&bN|CNPzYWf{XP6* z?cEheuHV4iwSHYKyX|`KeR2}1>^V|yCn;;c&3oFv37}O$tqJxZC_j*ntJWwStqyqB z!9A+Cml$Bu4;%mKI4>5YR9TSIRm)Z{B4 z?h$x8kD3Qt;b*n@tQ}+i=FJ)^nTMMe&E-s|Hk=QgDFWT$KVZ9B@1Gb+?Hooik@*SX z?rH*pDnAsw=T2S$w?usq??b&6&s7?gjR=w#bx#EY*EQru*77}qk?mUcU=s5ZyZQ_sALZKZWv+=U zct=u<8d*6eQ~fC%)&F30*=)(7JL-ZG$*o(OtlF#Y+8fUWw4C0WkXQW^ z;{zBl|8t9$2YqgvWhkUM2DoPD&n${z67jcC>j2qA-O!|JvXiBv^K7f;gfAvHhsbq; z#y*v9&Ai6h5=$kte?G63i?@QFC*0GWHoFP_zxUJq;e-O{fdsyYnrk*fZect2!$C7k zn~mk#wasPeO-Jl-2q0U98DIb+2;eno5=()}$+jgWnfL zHrpICRI`6C+VR5J!)ZxcbNsSrQ16)`+=^T`;w8px?MY>8;S%QEw6J9h$(xHKtz%R^ zkIoIf`t-BaTx~_Q33Acf%gV657ClK%}0F|dbi=cDO>6Sgp z&0>aEeROG@az2kohV@imwrE=-6C3Wel zRb}$1*vq$aklbO|Em2sHW`<->T9|OPwKS4mjtr)S`XXE!F#9mR#wDAPZx(((GaD-- z#4@p!3w8n#^m*`*9W|ONnrP7RUFBk!6er0{E`dhQPQwu-Dx&Bg@9VqJg+V|U?0_p? z++MM~PWnwu^Qiq-k(Uo}0fm%vpwP}_P4b316sU?^cPXg|omc;f#VhfYtIilyE19Zs8#@RY zAoxox3^=k6&-&aN-^Bm`rZ+WDh!189DVBSy%PNOfb2bK*d5UCjn9dJdZ7%IKw*G7@ zp@{C*K&Pnv9t(GV@4mjD7qi(4j9G7eL=vv{_A-Z?GflZmGqokSYbe62`-?f;o(xgG zfRvSv%_e0#?hd~7a6C*rFo2_5#w8r&&0dNv_ay@OG!Mj0PRo&XS!N$UGp_B#b^|(_ zj1#Yv2*nr!JPX_wpm!co!~x-BBJpbqHo)Jx>(Oq3FV+O4UmDtbKMUD_WFiAbb#c9; zTFRebLGMIgsKq1=j2NGu!bjVf6a+H5IfA?nHuohMM?6K6J-D^Ol*g3}oe4ihZc~xN zoRpSI?wZda3Y1gzjXVc+=s$N({}B4pfTw$Z)R*-#<1fmr;V=Wb$uP}#%<|Omgc#jB z&pJEmzi$lZ?X>et06=-TX^7mjq&BP!^WZAQVej1TT&`>MMAb2bcgowM0Za`vy4RH*aRiyP!XC zKsF=5Cp1mVb)vVur;hB`WgGk~tbA@b;&_mgSBSsg@w2~XIh5H6xZ1#%0NglG0puzD zk~S+V>>r)ub)Vka+;M*k=`um5-TW~pm0weG>IC7gTpFcuQPum$&riN_X(bbWezs;A zyleUM|FQKJZc&9@+qa5x z07DHO-^TkszV|(z_xS^0X7*gO_gd#V&)?c{g`mf9S&LOZ^epI?s4W^ZI6vxRAIZ}s z+m)LSB!e|P438z+w))R(EUEimc7#k6o=b9Rgh&jc#T<24?1jMT^LJB)6wU!;%Ui>A zJ*udY#gCPA!!Ytrj-(Ij+Jqv_*De~=a{Y4c&6amqcY0T%_wIx!0ZsJXssA<3@J~mF z=;oVR=gmM2-L_vtx~^0?53YI9MKJ_%r}frKl?C#mvZQ6d3Q+bRu)MIF_R!CGSUI^@ zb-M@`d`&-ZDDJ|U#|1olH07-*_m9d*n=5u-o+Qm+TKT)b4;~~9#tGpqK*W>$Zzcl6 z^*(9<9Lcv7O(iY37_3lTdI?MfvQ#UqjUXbGB@3WGE&5UNvoeL*J{)xSDxCmXu>b|z zU$YKWL&;dfkox1h-2>%D(8w$>p<9&=ZW|7qqLyXr#AGq_t+ zdUqYB3Cw~rdUwdT#@r=pI1d-lqv8OK$R!2a^hRW1Od(8Vfpd!pu9#sxVYEF#<=B}( zr*{(67xKTIaj3KTUjn-Hy~1Iv$>VAKiOMkG)Tl67KgSQlbJz}UHQ0NxeoxsMA-2!P z(s{e8a{V{(1(9T5+@`lsh)ed6)K{Yirna3~CfX7#vkllziyh1Bx$JbTv-|n~xo@q7 zuQ53>dItlcGP&;OfNC0{zOK|MoHD5?)3D9-x5W0YQIflj{(9&Vi>8? zq}AmKR?cd)cus&H2xhx@;y-^)oM*`YQnc%)pn7F+aJbV7A=19i#nug!T=3yi@{e?Z z19J)y2HZrG1C7!^i48NGbp0RM3@v_6*%r?b7ZL@|4TmU+*nN_tsSU8NF6HV!u?8~7 zDj?in$=elRX6az4oY3mO;n0{@}^!|U}(bfJhIrm68CQZX3B;z zuiI^JPQRCiS6+e1bw@gF?|I%A0wv@9$lZo)0jOuoZ&}#O%yXA&44RiOf`$=R z33J5${=XBJWn-kGI7QTeNmUuIBUB(gieGR8aO9o+BPSKu#C!`Kz}ODy_&ru~$j9>2 ziK9uf@jnkBkMIQ~55a3e-sXdJYTcFFRlZnDc5uv|XNX_fR>wpGFc&)LtD=B=$z26` zT16)(Wj~`DOV|e-m1Bt+3j^V!oSD-Pd_4v|yw@t;^maFuKRdjIoZWXe`l>+IXgTHr zoQeDc17=-qviO^A*2F7K5ohD~B2<{vepY)92m3`>8sdKx{)QI4)F#Ek1Rcv;LF;jG z>M9-SOe?c&oJ#-djlTIT%(OkPW8Hl3Xc^__$RsKmx8-*0?%&)(=Rr+-c6NbZxJxw@ z(;CjOn2M31yhvLKm}fuSEO-qY&yT`4C^RUnIE^ zFamM&drSJA2XH(;zk3dnh8h2FCquSHpG93*{OCCDd5sratnvWip*=Cle~!gHlTIT| zpSNrf5lnMWbx8nUF|c+6Nx*5m&nB(6fJL}95A72BGhtykje{mq05a^mX}7gw?|D~w zqH}R@Qm34)Va^N;ly!yG@rp~`(_%2PfUwxpd;4d3R!=E6L84*@AgL54SJwCU^|zfU za>nnEvnc2m4BPpPo*MTpsvW?)pzmDz6#zG85Kw`ydJZ|=V9!<)4iA8;P+OWTN`}Ql z8QZtm-);iS*SCl?LjO(lA>Q6uRNmW3G$Wyo(|9VEF|qgknxqDjNccX8k6|Yo9lVEW zF{_Pl-pvPulZ&>0O3&yM;RuikA44uhRWN3iE^{pCm8=IrKB z)123*n>IJ0B~tV6Kn%OnG&N@q!L}&PmUSs0Q_OJ#**;(G5F%&0|lj(?Ee6|FWOe4dnXvIu7$$v2^5euyc}N*?5)*_chq{=-8H zR`mAo{?7M_R^haLrh^HgtUABo5{We2%VP6|O9ZQ1Bg+Qo+|-8j{e*$XZ+%#6JSMDr z2=zZS7HEa}-(#I5bkpX}MNdfXzk4HK4CxnvOLR0WhuG=^UPA&5p9L1YZB5?*)4mmo z%YoAlEoP20B#7@aO`=PrNL`RYfeu7#UIwSJDS_xxUf0!Sf z9qe6tO}S919!A%&*uz5LZI2&t3DhpT|ot=MQWq!JeL%7Mj@OU?Hh~d>lN` zUNh+%&W5TlKrG}K)1s%!h*PN`yQ9nm-z5`u7a|-8%NiWuF^$MUHLy{V&G_zuz}^8clkx#d?QXCW?!shSm1Q zcgbxVZ)MRmbyk-5VK7#pxR7Xn0@~Q_w-7{;L}!vg-GRo9f|*w5=;$UB2`3it;7mYN zFc0>gSdU|7=wJRwcH;Et)}Om>ACw(@I~5{nX(+p@$;2laBxTaq!gMav;9t;f?iInl z=0=T9cz7CC6BEPSWENKAi*&v&-^A1SQ`ayye+jV{8+!;axR^PeIS-KQcN1ELZ+7(^ z|3{+rts;i7G_~j*5K%wDaq>xd6`1paCGDS$8~906Q10mZsfyA*UKE`oyAv?7^y@i# zg{0?tZ{-;6CMOe9*2$*(Co)XT!BC`{LP4z=qUq+dnfR+7?lkK)I9@kaP&5Nrs-r3E z#vz&q$(2lqkrQ&a;?L%jBuE%JC+^dOl7rX%_T~vc2>CU4^#XoZ2Af(Rslp#}98@a(YiU=i z-%(t=!yWa3`u;wg|I4Sz^ybRK8SI$N{B9hs#* zj|7EsjUVtG|l{6uM;XrXkx!K}96`1ZQqA<+SGd6AibV zZ|7A#|B-T_;#Se;WMv1Ur{#}U5%-%a?%NFj&5j#kloOJldA-2IdimrqFm|^}^r^wS zT>_)`-865TQ$Yf$ra=4Yez`?RvY|uH4}iba$MjbE%AHt!e)Lb=6xQzDC1kZ9ix#d9 zNm%dHf4NQX_aJXOD~gTwT&g8iTQ0Ts0;Wg6)K(&!G*TV!`Qhc!Bzz>LQn`1Y0x2Ep ze|V$3b{764v~}T6(>b#5Zl?$klyl7kP)K;b)+15yA226FR#>n1&FS2Q1HCuJSx4x# z?@3At<0tH-2=kjzs8ZppSRr~`C$-p^cN4dP>y6{6SIaKM+Hd`*SnH{+0>@Xlp=80{ z%kJ6Z;WHEMIfC9x!!b7;s|$uZd}R`UymyIZ{-fTy7ozNF|@u44e+#M+InXo=;oFj!Qk74!s#P{ICU8YH5 zdmZU}9Gj4@6Ek9ug=NP3Id5b0R>u*k*KT-&cc#qojLq%|lAo-kM$vms&b>UwkQTW( z_tFDo2`YCX0D>Z~;h`^g&f-Oj)K-(9U_EOYwGa8CRH^&QL(xYgg6T(ZxQ8)nKikH3 z@%KElm4EE$$;b|P+<}7v;ogzc&$wMA*35oo;y>fp=z1#;d878?eoS@jKGfc_fyVKB z_%SHHz^<`*=Z2uk{`(2Eu4vT&;3-+y>}wmJIcJ&>BdDURP@SA*?igijXvPimpBlfG z)r%ctef@PDpo#XCbi`^ORP-k7%9DJ?W-)W${mQSz-6b<{p8DoHeC%tWyBR3=gO%|T zVxn89@3IRT0Q)?BD){c$Z|UGYbp^>6l%80n_+_CSz6osh>>06$MbosX_TiVmmxgN3 zj8yhY&Wen={MO_8i-%)^yp65LaYC=AE{{`oupE3Zt`FAvVX(XS)ff3_p<{vH=HFM-fEIYtbIDsI!M#8^v7XcUeA#zSXI%Thy!jE= z$5g4fvZV*)!>;y`%t4Xyg5UxdtMYb(PhY7joR7xqjt@yEGF%2q@NLgFsyN`@16pP< zy$~?*>mB?rKFC)>9_TfSf=NKjsxNZmyemH&@`G4O@-FY@@Zxg#pSg;SV+@*Hnz1dI zq~eU4)S_c#mzn=*IJagB|5NpDR;}8s{Ws2MgCd^fVB(`e0Q7y|hN@QR3x}K665cb#nlQYbe1k-DDX?~$qTbbiYy-q)YPr>nOCVx@ZR zrPpI4NL+az29QXY#yAi0)k6nVy7q#%pTLY1LEWSnxzKu)D!#_dr zO2@CcPh!0kjQ)I=e#CnDP^WNW*6E6aKauS7nGb#QgUtRx_lHtplsqL!9Cz(Si6Q6N zTx8Z}z#9aTx-;emQBu=ff~~cU8UB3XdBICFs^+eziynYO+gvH7e%Mt zMQ^T(!7*zffoC`56|iolX?u&$Af&?zI3-&G|WPbQ%33 zK4D1e+oQ>>KdIby0*!Jndm-pQmwCPD$IYDa$cNogG)I8?6;ey}oWhcQ`B)QvC;aA~ zIh7mR`fElk9T7qe`E%J5x)LrtBXuw%S)5nD}6Ylw>b8v>7&u#Fz>~*qY|W< zKk38W%dzxn=Uz|5g*#M4Dj`jw;z+?+Z-E60mS@ynJlFM~{HrU*gHUvi+06|Fl8M4T zAD?|IxkMPPFYYcZDp5c1^cPDw z@^0(Y49?ixA7fscv`_UbUDp$ENr*pEcj_tx+>#xOWAfmzNq~{45#a<;6Mp3%)u;{L zGKU6!;KDQkx}hgWSmK(7L;@4rp>k*j{gxkh?!^}4%MZd89v$22lb2oaL7;US&sbM) z)&&jJIYd!vD7{44j_mGL9u9o7iZ+=y23$c)K*Ly|Be~wXRu~cJHt#DJic{dagL?>7*~^WGKGnhc4LhO}yk1Rv-Kk+d zQ3EUd3D~}(b8NKyy)55ECU~avj22Q+50dPcL{`NT*130VhPC-WgOr&nsZSkUg^kKF zI6z+uaK+{)PLT$~msdy~!;>q9O5$;aR|r0z*U|g$UEaKV{CP?d@6WuyZU)#vs>&Dv zN*I=MQ!|>?_;TQPXYnK9iseVkC+bt1hMuw=X5)O+%@;ES!%^Sl-r4MIV$Jk4KfGEb z5uxiSQw;8Yh*+#|dj^t<(Rsg*-f!bp+}uv#Z4AQB)h0B*p}4JpEzUNn8`a1zONu}% z=EF!Alr~*@w*L~n9yos>j5%*DToVM-{?wUFvLa&AcJ`D|DPJAiNz<5emb}C=6gyr2 z5^#IH1PG!M8h2f`r}a&q<~z@FEH^T}zdSGmY!iTc;OtHCiJhSy>h=xf6>X)ApJ%~= z&ZD7C_%p1I->VKUy?6*ZRJI1dK)T9ondr)L`l9yaV#=R|pqGgx^ch}jcTKvBX(E}C z@3jnVmoH)ldR@nC<^%*eyd@cZDDIu+0LDrc{1xb{m&O3uBRdvx>cw02IREvd8?^Fk z1_W8s$KotM)_T*fmo{>7aV*xC4u3to&7)58VkmidiXAsFs>pMmIoRTswldm^sDRJx z{t~PXk%f4}cM8kjlwgY(o$*gl=!Q(`me(?!GJvY6fnpmFMXS_{J=$quG{vUC`RrW} zP$uc&#HgDl=*D{>zkrtD_c&);yk_pX!0>!;Y#{UEA1lLialcVvB)akR-8NP-OOa>A zLCIoxl?~~;`TAC8((8cvO|f}wz2^Mm+EZJE<;cxdg80;8U+rUU-XUTgUh<=>-d#c+ zqUF~h&eTfHX9zHjxpfboGL6MN`x9`Lh-RWAZq*SMx4y?1}#8g~{9FdB?8x zjYdBo<6}EeD=if`%CJdnPVPf{)18dT{RyVLSbpkb`61h-qhN^Fy(Qyx(k*w^enM11YJm1dXOm+P$j{SX2&j_d&aT*lzVaNl>_B(vg@R(* zzMqK3Oh)^#;~!mH771WN=G3)h-=W^ovN+WGn~y5~mTm|?-2_aYiiNdfO;RGk zcz}c2nFy77x#>645Z^_@6wG%Q%{3xcwFYc0pyH#Syi8{hBqlq}%W}Kfd4l^Ve>Ohn z740xEOI?OS!Wo9T6F^5&bxT@f!7=c0XdFhVloOG}+Hf?h|7zmik*DZKarg2I(_Y*Y zdp)X*>-M5Pqt3Klx4(yDQJT7?Pz?Y_sd4wl@@7v?L7Veo+(d(Ag1*OuTW!s8Q%~QZ zcr_|ApM25q@V(#kvM!hmpFDtna!7>>?`>@C+^%K^RO;Sn8SRMW*UshGBQ*ZB3YNqr zncytvnB1Nea(F7`xOy#pPc&WkNxb*&h>sq=t}=_=?c=V68>6(X&ENSQdioxo5qm$z z{`_9d{sSvlW==tV)I`e3VhjdU=_~^zdJ7+^cPd;tcXTF^Q>=y&8`++zMyLFWPV+GP#E{_xPj9CO%@d+-w`~v-6OJl)uo& zRWpVrg^A(Eem)vTZ-O&W!rtk&y)|zI`s`jO@zeCjm`jHxKRnL7A&nmv)-fH;48KKp zV9>efS0!O&T1o?jqh{j#SSJw5DEsn-35A;Bv>cLsiixv5PKiDP5?|blBjksm`V2#E z%Bb{G18R_g;)?4|XEfK07~BI;`Muot{E1hFf!;{-=1Wy&e|d!6_>-p{g6;JH>rFu9 zr3AzE0q^Zq(WJT#?~u{vtxsKCE(g`z=$<5pq$m3%)6>oU_l(R7pFS+e<0w^mK^mC+ zm0RlrCq$jA%&<4K5v6w zl${DXvktA=D<<9EMN|~-5L1m+g3Dx9k)C0RrN5{Api(DRxKRr*wbC$SQkTO^o$q!p zYJFupO zyNxz-85DF^ks@X7t016}w>N(udMs_|?Js*MneeD*(9E?v%S!X-d!Cfl*Zvz|WiPfk z>lv(q=?)lvJedTe6-`^Ok1yxwW3>dI@ez3uT)VPx2Bn+g6y_ui8f5<5ll~~mtdqFg|41)Si?+O{d3!_%I~MDje#z@`pys?X_SkWlTex)>8if}X`S5GZ z2qvAYioM0+?5E{?t(w;FAcidQRpyy^$!WH^QO&z*-1Pwkt16g&v^~9jZZeCv<7BOV zImHh)0mM+7-6BBz4+rf0nV_`OdyqZgc*|*_5mqq2=pV4PgiKRO#h4CleIMaV-mVsz zbB1JC897|PFeB)KK#k~M5Va@fXw4Z81DGYP8LR>I{uQ-b<%vXj_VxVVZ>0|%^jyh=`?_yY& z>KKTr=QAkxxYw+YF};-N;{pibm`c5@1<0b~7*8=M?@wiw8q(lY2BlY_{R`(5h`3#{ zrmQdmEARzL$XMg#Y#-A2F3&!zXtg_J?iuru_ZLm0;_Ryd{OPtDdsiIbzlE|x11XpU z|GsYgL7Aqb2X^QzLxvP)Y=IHNxLP%}x}vHgxjKt{vK+4&7g2*y?o0!B7aCC&xKcvE z*=UxDeaLd5OU7t+MY-wXGmSUV8+C(iDZiZ}yUsy1!XUjcYEH!JB>>jtZgG*fFF#$< zZLB@-BxthC86Fs$&*&;IHoI2_KdTkt4E+$05#CUI=4j-23oI!CLQL7uzQCgGGcCL# zeABOM?);q$16LgX0wcecP9wtz{q0}Spz{#pZAAy1)i4_W(%t$$Zwie$%p}41wZBm~ z-fOg#!RDvYafDHRuv07Hw`AdQ#H)3p>Fw#`!k<4iJ?u*5#hA~oN67SJ-lph>t##R4 zShaja*vgnJI`k<<&b7$sIdY~MCd<@AuM)eWI0enF#6iEG53)aSC=bu3*Br;?aBg=y zJQgd8eW}vVgKV}{5gaR^5ZSL1*}uxH{vFTovx4PAwa93)hATUjZpZ#w9D3lzEXl_`@eokxdL4LOPttpKq5c=K^$f>CDDo9B? zJgx7_`1Vwuu|Pa@Dxm_W8F^vw@&o1G=^INUL9&|ahN{2fp`W!HDDIsujeg6B&+6Iu z2}r#t1gr_S=FU~n(D1TCAWH64b{HkH*i+`E*#7wi?!8O{77smlC_)Zu%iMCPz7#jl ze`N&Zi@j66WBR-|8|vwAIk;$tEBspNx$-~_6e$ym2YXON0j4l`sem&}G4OV$$8CvW z!FsccVaYT+8hCMFP5&G!RU4`PI(X0LPa}K`!Pl4}Wydr4h=x$nuW>6t_vQuw! zN)4$+sQM&kkHsPc^THZRC_vO?=2*UM_ym9S>zK}y80!;I#zTi+rjE@_W61S4gP)Y+ z3DFwwni3C%Co*)BfVX*DI;vi=d2?D`2D}t_do|@it)FA3z#Gcl{C6MfyiRt?LXM>H zG8gK&B#*ZEIGU*m{LwS2MA(ySmuiqXO^)QfE^fs2rFqf=7D>5xODZqDVxxl*2YtpU z7r5fI_|yF6SHrsOT&}Xb!J`ck#!hh1E5^=O{88IlS#AAHjo%2~EnE^1>H1q=gm3Ek zzwwT$DSa{0t3R>e@=ZHC`S)i{M(n_0hfpmjA_rQ}9maAUyp@inx8#6Oj6r(nyFI68 z9V>aN{xsD_#ca|9x`L(g#@Xdc!2^-v)E{_Esjha@pOR61lk<#5RcPx|K3Y2Bf_#71 zlW~9B7d$h{vtSD;n^rN|2!`H*VZ{Z>kDqu)LiWDo=64h51qg0DAQpQ1r;hy9>C1yZZr#)})-#?0x}Nq1zbd5EkNQ7Bk1XMXzvvtm3tX?e zF4;#ehXqR0^|I@o+dB z>z!YD`Ngfx*-Q6Cv5zihzYDLXbe$ELytrViQbf#o<1{*f7==!PZhs^YpILBXD+d0BCL$9rSm_WkcPforNIi#9<^#BV6 za^3m1wQJ}W>b59&#@Y(Yuy1G1h$)lqp5W&BIH*ilSjvMR1)NMoQ>c{M`O*6=+*a2A zcF-$gEwyplQ5<4RcE>->Z3ufHob9u6^RRSY`Qy%<+$ODXw?@y;Z-I^eIJVr9fQ61! z!!al79^5OhG$$u9vFRfM4j9DppZ|z2MS5eoX1H=r3{tXacQ zOZ>ru+rG2IPK?RYcTOcM(Y``D_QT9bMCrHzqj#jx!k*LI=suB~ALO2lB4T)4t{Zy- z*D#`)64e$}Z9EL`@@a$)wx<+LvkvJ{D;?>^BylONms>O6DNZO&%zbjVj4|yVPx)Q_ z$2Hd9G`H0x#CDGaoql_j=3~8-wRJSb8_PQTa_>63a$NyI6?Jo8ieEsg|CkhqX&VnrKn72bW-2X7(>HFH{M%_mwxX-G9iJ3X0dO~Le@I+lzi znDyn4B&-UHB0J?>S4gB-nt%1RAN&#IxBLwoq*iVGY6oj`5H{Akz{@0HC)B7iSbV-% zf45xec4`;W7N)S0K;@tkM5hx=D=hFae2uN<@BzV}$Appu>^cur+CIcty*lV7~DqE&||A2_5>#{ciVK5UqyI=q3V4 zX$H}G*kJ=1{Ez>%bB)XV5Jc=R-Q|FK!@ULjt=~9qNlAi7Pbr7$8_!B)%FYcRNs{81 z;Z&ddp)3lqh`jR)SSK7Mwg5mSJ9CMag%vpxVYFDMEMF8`D%7!xgF7XN5iySUS*tYB z#lj)cx-|kf0s~$1eB#aGmpalb%sPIrZ^YI%3=*hr8j#I!2M+OPEUKSlf-{YbZmNdm zJwKYxj@Z{8A-*AzJO0HJR=E-n0=}9eSt?M^n!K8*CAWsN9Tn%}>l9A7G{N2F6K%s|_MZl$Wd$%qvJ7R29zexyC z=(UZe*ZhV8h){jqMj$V*W-i`ZO*57?Z4frq>jv|@oRoK)FxzYThx6hng} z3!3K1^B=qQJX`U=$KTR*r{i?tEMM;-5`Mb?AS-NiqN4p6a{-jR>VueD8hWPhPm-G6 zSu7F4BQ(NfC;ePlDU+|FbxG-ho*$YbiIp3ktBxbY5(Z_}v^^G9N2&WW%zGoF4PWo; zaS==3?jK#O&Z}(%R8qZhzxZ{nGuoojgOCohUT-D2({=6f2FYfB;!l5i%=jSAu`G&x zrdyc}^VZ|#fjHXI{P9<0@uZPS(DP}PwIQ#TW0^gS?7&;BIRUI!eE3_=;UJb=@h8pf z|F!cJxsv$uV~^mTNki!o7JYy>_NjZg2+t6Oxp_iYuP2iGcqUq@7V0Q};-Di#Vc~mS zE4YGgH)EdjJqSyum%y?G@|Df}nkzC4KX!F$2_2Y=W_K zR{Fwd1eXe*WTua%h${x{)RnJ>qebNt(v#e!n~7NO2tCIx8UHoooPTXkisx_s=1vVNb%~%{UpqMXQ=W^hhFJ>q3 zT<>m16}ZaLX+j=1z8B?701f1)$%N7JCh^{V;S#umRtorKoD2U00w{c!Utw37ZSz*{ zw$pDa7h$g3^bx+_<11W&evWQ@v>pey`yLycreJQ}AGay=qvooqB;olF!0~w4;iz2D zCa;pJ*Xv%gs4@7A2@Jv1(2{yB3Uz#HKKZkP;pRim-?F7(bim(PK?{;KKl=@E#8S1{ z)=vO0%kwkE)JvhnZ%e>JWU6~B_}jm-fjU;LU0M}5<-Q9~rYU3$(KNb*8W@M4x^!>H zss4<|C{D&upnTM5Y7w^wr;|6lt1#;K9~5b#@Vk5$!2)bz%z4!zbR2Dmlk^(FvD z33ZG3%vZD&X7l-(e2ZBeyYe@Lv?T@&qZvE;(~1W51b1iM?rtz(Lom;&R6A|;5)KxY zTK5Bg#Lxs{!~HBqZC1L5kBOv|Ax_=N2y^t)n1P{R`sI&0?k1s^t3;9QVW87}X=mS^ zn*0O6*IK?@)&wfqopIKw?0>#yMf}dZ8$7mGwPb)DqeC}}SXJ*GO-M0yY`cgY*3zpM zuzGhLeIBT*sX8@LQbE?6l_Lc~2D_w89u+&)T0Q)jF#Hq4$Pja1@Im~`ZBeeQhWRHG zIz6$&5=?(@e3FDKjX(8&_~i$8O*KH;@rY2gH{f;$MY2okDkUdVtTp+JB)Lk%h;peg zHiYo1;(j!YgIYp}r@15>!-+blt(r#wq4Ugg+UVpxJ>2_2_Q;BOGo9|ZE53+yRQcRk0R@* zLHuhR9wF6_#vCwW_b76o6__>U3Fu?~0au1o`s>{>FhDC(GOJCv9BH%EG@Ow61n>M< z-enEcOt5wXVYslJ;uukCW`Jf^jKo5_E^|uNlksJT0fPCV)1+(5cO67II}ZWitnUKW zZ?Tr83`{H9X1P}xvn)EjGDz0u#hCmf{s6N7Z%;@jP5#h1-(+2HruiE zoWtzCl%ft-Dv=haa>=tezqxH$t-&wi%$aqzNoYICnAX&#=Na786u+chll%P=HNX9l zrEeX#GW8c3Lc8r5yQ4>^C(wV|2s@=_(uzW&#ZEp_*(=7=r!G5CG#>Fckcv*2*t`r< zMw|8Xu%~C1SIhC*&d7Km7(NwLIHWV-B8VpA{wSmdty?G@MLFct!}e9uW0W{Fw18V< z%QV!C?J_>o@yUI_GDpqn-!5_X^mG`hT0*U#uGeav;=#%iuDAMMFZRLC{q}7sA_)gi zA4;M<1?D3sq^YdrXX>cDhJ?BkYYj{~jINa=lA?0oD-&01(jNeGR4k={^pfN~utiyu z#0Ybri)}}%2q*R8_iB;eFC?SprkIj=)c?29s-I0wtOlm$Z}}#+SJP%W zmu^;VNqxpU!G$*b(G3Fd9peSJZK zdn=f?C0rPOe#98fmPp9ss~bN5LiE8rp}Tk20PFe!ziix_St$}jO!IB@_Cz@32g-4J z&waT(Yxzv-zt&@z`6s9S{M_>qEIO1dN#*kk`d=h%7!Y*^!1cA3b8y%}U*cqa^~Oy| zhenccLK1G^xv%1Ovf$O#+b|glz-F&u+YhAunxy}2S<(OFJ7Bn3rP&x(6ahukv7w!v z|0vN5WOmEH42xH}?egluT7kY?Naab4y|w78gNJ?*SNO`QSKoCh%Z?J_&(}tkhqP%V zQwy=z@~@8u0|n!RY5U@iP6cYS+X1UHK$F4>;xSIEHc1v?_5qv-LQv@fKmwudp=f@< z+evKn1Rpg!Jqzzsc11_z>qKfpH8je{N^O;=<3;n+zoX@5e z^BxC1Zv|||{LYSx3Fk;f1Nfoq>wI(L&fgE*V5Z&pJf|B53Wbz*K#gmboqX<+BD~t( z>%(I19yS;NCVIUxXtZn3UwCArRunmN(Y`#NH0f-#dG*etM_-}w3$3>#BIVcHEG<{| zdnmKo#TT{N6m=@%>03=8Z$Z!&*oI1CW#q*Sj|yB6ql!A^I>oYD$KL03YAFS8e4vFTKvtJFif*RpRMMQ0IS& zt@nr@P)!q~U{H3wg+GLpI3LK26&TF#<3Ha*hNx(Dt<3$>wb@-0CRz|2ll}1BF8;=C zNw{6Y?-JyZ-=M<#rxa$okThTnER|RHj~4jt21G8@MT{^j0%Pp_nY+2xhoT(h6N?iMm*E1_kMjf;7*-HOXn{iL9faANzb+qgrE!YUwlpR z;a1t4uJhW0_Ra&yTo^cR3g;+h#X zj@l+pQhwABSW%n#GY8ZuXvXaW!$yzo^U@Nf<65_LcDeS=G|8FrCk1RL-@tq(myvSV1D99>+ zXCJS%42}=F&TE`W2B!$zP?4?+Me7N7|@h?4-gN<1H)+_N<2mG)u32;k2IAeQM>PJ?4 zVY`&|ZPo%fJ83$Ad3o;AZ+!U^XqFroarO7{qDL(LeMTl)sZ-ru8dOQd>@kC*>Ob!( z7C9eT51}9p!h{?XxfKDH^r<(nqbRSgr3 zb+^APjn_mi{~WZR{uJrz2LbZu$ZsXgD#hba^a)<4IG>eog~UrcP-vIY)$Qo85DzA& zkQF**-^uTu3M=#jB|PI*<q?_r$WDDm;e8ZJ!iPbGr7x-xB-?rRJUGCiq$Z+>oeEK zD`NGN6}{ZH*YLfT=2^76Jv3j>7!+QIL#8Fc(vX+fng2H9==T3P7!?*R7!XN~PoANh zL+lG?`2zJcHYSZ8;KORR-gK`Om}_uoXkQnQvxZx-A#h8X8xwm@MZfYkJb+e}gE=QO zskBQH=I%3f_^tS_=A7TnT-Hd%kt#+f#06jZ)!~uUIS598>~HF9SN7&jW3?W7@r%te z2lx;@Qn4y+Wx>Z+=`9O*3pkaC4665$n{}wtGi}1e4`Tu*m&ISgYi7m@=M#rysql{| zj4=Q6bU=Eq6S1fok@_<+C^Qo>xyYa$8~s^?HRAC7>GbM9(lhEd+p- zDi$ig_w$J(L$Wtzg&%a$|15TV0>r;HKB*RjB1X4ct`W*pF z>2IsIy5tu?(xIU}9;hPTHZmW)rAdm0L%$=D#uN>-jPd4IR_GIwkPNDYh~gjpx~W0X zY|{fXZJz4}&DVJo1yN*K*-C`s>5fkJzk!|bFNuOY*u9Bcas7Q8`6;s{m96V1yA}uFptI%h}Zwurnm5J!HYDPI=Fx&5vy@k094JQatHNh+m!l z>ev@caao*c5HfZ`@)U+UV0OROkIFtBjeOc6jqlzBJX`d2)?chf-bm*9@1jOPw!>$G z-C@P<%HMUKjfNDygeqvOJL7FLOVs1TXt1fch+2MvfV0a7wt0F+!zJOfcVb5an|m5=B>ZI> z0vsQrW**5E6)z&+FRgF1FecLNKquk&8F&~`yDjK&QWMD{GB_0EIr6#61;^&Srdhct zNVMy9MC_YA0lvtgIte3| zH?OH51DOXro^L`aDVlhYC_qaIh?+zLo*53m9&_`N$tF^M+9z-69M&`Hx$D4bN^c!3 z=PfGnbv!@C0A>+*_bzfX;z*56V8E?<6BeFg2+ZrQUr-rb#t4+&cH1a4dker|8@7#Z zBYF^~qG;fw`nYWuLEdq?PJF83DLXrby_AxUnvD|7mvcYYNvKqykPn1%IRS|mfH0P8 znQOX6Mdt*c)Vg2mn)4L7lGEvF*~-P}&K;XA1T9!ssmMJB+T$HhPGqUC)}GDl?kw|7 z3$vS6fWAk*={_!X0puc9ZtKp>{7!w{ejXNH+Ra=2qloHo1My&A0f1C?O{SHa8Y`wu4xZI&0rG)T*onu=b>jlJdl?~g6e^!l8ztf!u-c=~ZI*c)*nr}25-FDl9l>b-+U{qjZ=bW1;6(mzSPxgUgIc4T-d_O~U{%l%%S7ERZP{E~au4{YSil5uTS z3h>{(KpSTB)Epd-$<;9P0e5=g42^;7We;r^hP=EVONK}lEqaW_C{hAuGl05UL=ip% zcgVNImQypV>#cH7ELMJq$&f1gFtJ;|G{c^lWwc`KU}c4v!>XGc^m1$QkErzNs~-Sp z5asjCE5rN(4ovGI2fVN|&lCGOE#VD^!2q7OMa_6OB@39n5Wt_Yvsx)^(QxTI=VnJN zVsyvvY~KHw^)LJL_68i8SzUX$9uLBe2Kvxz(cE1uzdr52^(*e&IonzT&>?jCaEkmY>^kfuV57<(|BSYS=6zf|3_Txd=_F6}0%>WJ{INeeok=A|U zaw~=vVE8~;KvILX+uHebl%ku51Q`Simh?laotzisu6IH%XJ#v4PoP(Sd-b6CLF3ew z)QQ8CUK886UNY#~7>+61>pU2d(00T%pYdUpG;)NcG3o95{)mFjTTi8zkI6J0Lpe4h zTkoe%M#~k(XOB?j@usF}e+72TnEfqH){qSs2bO;#>~yvkkMChst2|T)AgORQdnh|8 zbJ7z>=(v7-T-;NsK5}jDd%;_mHK*JUB-Mv??#30k{DN^-h47FqqJS=>YRI&gvOOYKb645 zUZ`B6@+e?9<;hK~FZ75_sR&Qj&v}NYT2MfxNp0T|^WI^c z0W9}LDLhG_)mwu7zYh?Lb2I2Qz4|_%Sw|}ka0bzC(C{eeYUZ4WSjG4#jr8jmbbb*(XB28W?f%z;t>m$k-KGK ztlN$UPXZxxG-GmQC+{GXxZ4DN?x z?**ZMFZ?!>*Pb$t{R1cDJz;(0$6Ni)3`UuYU$w&mvEtJmSd2R{{mqFtWK<;=vf!_^ znohO#>+l_<$Ln_Q%BUl+ch)zr!Oi)E+l|c=7vhG3st@{m+?w3iK#Aaz0sX$AL1|6H z1Oer#xJ;4Fv^5v4uvczHaE%OQRq8@wT|D_Sw$8C;(UNrLAhGSI^g)Th1uY;kQ0<5t zM$Y+84hZPr@|RtRp?K8(Kfb;?tjeuLF(q*J<)+#ubp!lp|~ z8cFHy`X2P0^Ty}<`;Y6|!1L_2X3gAl&%I_k{MgFh5N)`qMaZkze)y7&p0;iy_oje& zgDzQG81x!r-)~ME{WCRP(i4Xs;fyId>DFSPyXWVmiL!9?Kzg1E=$>mVcZJXSdUlHg zMO!&PBLwmM1iGtua@9b2^xk;U2nKeZAm#3Ux(QTiFlLFXLkl~2{+1BL*rIp2@47=d zC~eCPBhkIRUxIB(sdrK0LV-!3E-YlF`SaAM(|-t|{plYU#3@negc53YUjFl%!lD7+(swUiYM?lT2s0W&+K-S2=rj zEwX%yq(jEQ7U%52RPr%$oiEIHI?f>DqpMH_c<$9*C; zIdcKM_3^{WcttEI=Vo9SJWZxMrO1!4oAuOZK!Cpgn6d}SY7fwZ4Xj@#N>rXqxN@iD z@O0j6mEGWUnK7r7=8(#gbYnS-j#o+xs$<7%KdYe=dtd-sHg&~Ki>g5Yb;TXOS9F5v zZjak_cXhf;rV?M5*1Y30lgpDsnl3fsGtATCNjo(j{;BMesFH^6ZO3p)yRFxccIa6YP`ubk7+c>SU9g=wrS)exH0DP~hra zOo{1>3d)#YjLKZVKc8?vSG`)WmAmmqb1P`F?>0*wl1%YgKi=Z*-`a4%^ZR=JX_WCu z)g`U@sA~asGKzvqo8j!_nz1ZD?eg$)s;E+7=&Gq)9k3 z`<)02yH+3E<6^_njZB-9?r^mQUWaf}8*w2C*f8--9^^VFq>-Im)AXwDvy#cSVWQ{) zqiO#dj6m6OcOt9jzUb;DMwv+$1Pu3a9PEvps&+d!!k0TQU&T^KblRC?LtBG&?TW7} zCygW-e@P$DGu%xj;zfbA$3 z#Aj6d*WJD+Y?k`5SxCW{m0Ebb-mD195O8pY;(xOp{EE|EG3)fhj<*sp!G<@2t zdJ++K*XLp6nvgYPy`CH?rM=&l!peT{j?Zgnp%|XcEV%3%mvcDmG23Sbtt;&O z&hZ=K{zP|pcGiv5&eT8FI{6QnPpKOe=oqYh;@fSdI;A0`&7GV5hZ7)o9cHlZc<8hc zOS_)#SzHZQdQuG<{e+FIc8s*KD?cBoUfP?9Mi(M%zA6Vg4<3qysRCUGJoXZ%D~!Y1 z4$5b8CW1c`IDT!GKP$2RJ0%{wD1X*bZ;zT-{?Vrysmea=prPaCC*8Z~$88!1oF>M0 zOT$)v-1nRsx=B3#xW2+45hmp`*(A|NawrkDMTrH4-IkAq&1?4L7E9rIM)0(oujBFT zuc_PH`pZ$%AXXnHw6rT&D=xXt>?d{a#hSTJZl(QW4c#8{lizzJ;t+jn6Q zfQsT=jv$$~8S?tXUWyS)@IGcf1ob`|#5Y~)BtO(vd2}$V{^IY`dGVvCtD?}$C_D;+ zP$v)8tc=u@SWr1B^u6=M)?V#+p#c{DD7Rm}6tORYsdj84U1bw+2YZK74&9xMmecM) zkeg`1x~j#K7XxY)mY8~~zFg!c_6~dNX1n|;Q{nbUHKK8&Zvx{dN=R(T0Hyfb*W#&3(ZtxA3q9KB7Fu1-?TaB1I1B2%nAvmtO-LLQosS@!f_OaR*08S?CRLb(25XMz>sa z>C}}?DA*DBfC{*GR6F_2+Id49C}hRdl&i5-0)d`UYHjMRF~6#3=9kKK4%m4eGkP{z zk@*oM1bC80Qwm$02Pd?8vc_$_Kr@Y(&D?&^uH3!5>{?a3&mbO-vk2oj(+EiCzj-CH zAJj~@^Ti23jx1pnwEX7$ErwBS8+u>5nvNpO>R{L1PUwdf}mg zA!LdZ0hBM4?*+XtA+W`d?;-BIpC`nPdB13Xzf=GUFcKAqR<2ITdDy#mfDnJaXUr(L zhx8npR$SQYuw69ZIhwUpK%C#BFKcb{;;_E+i)OijTg%k6_QAroh0P1IO{AR2vo-9W zz06~=CPuyes9-IQq=CVR>FEOSg_ib4XOxRdSfF`26BxTziXXwp8^f{N<}#etB|#E;NLj2G{HYgG!S^ zxbtQ7uYd6S3s$X}!kHizC-BvBQ8Gk)X(N!F>TA_W5_xG&TQY!cg1Ft!^3vInTj^t= zT<`}*9%w-vlPKoR&;6*FsCuPZoo(GKEB)kCP$PxrD^qFnQ+*~z89F7nm~?Z?gnQB3 zC>{-bQRRc|qHRC^dLh}SI^9bGrZwu>bQJ|CUh`*M{0A|-W*=3kCtxG8z$Iugh= zau~ix=H)QF`ZQIt+^`Z;sj+tN@4hyb#_M<|7r~`KA1w>{*Z2Pp4oD#I=YuSN5NUXI z+rQpx^Ri2kEDDR62+}EIDvN%{RU<1u=)YFJm>TCB0@)&2w0|Lwd`n5TxE%WQ8+5O- zG?F#VlC^TJ6`7u!4GI`xvnbWTInv7|gbY%;rgFpZm`w6a*JYLln}>oa!(2!1a@Sm7 zy6#B}<&sU>YzSer&|aH>qdpHZc9u)HwRDn$BQo%)7*SvqH>if;_fRRqnLLM$Y21$yDaM-E*_i!`Ma67BMf{y2jRPKy-_4g`}4l z5z&E}qGmo+ygY6@EVQ#RS+!f73}Xi0v7K5OO>J2lS+aiT3gpj)85mFu+-IHa8mppG zDkMQ|eZgg(mSiqS4`DV4B^uppzcAzdMh%38rlF4nIE(7la7xk-$-7pcpw-qWQIcMu zILI1##i)g&etRx&ul2qJo1G14siMP>*asD zlZj+RZGq{K_ea$fKi)`&C*+wE#HV_uhUQ_TlDsefx%S(3+S9!Zx;1GG70#U-Xm)~k z()RlMRHe5;lCQ^qd^u(<{dqQkuZOuU=Z||>_5jKIx`yM6=)3jY)V~}XJUh(iAE1xV zL;BM2r#X4dF;sAxTwsnCgjcrpyY@SwQleo)eUTPUQJAg>W>wx5q^|zrzRWX1Oh`@+&(TXz3RuFX<)xxSO*UVfAl|DlE*as5Dy%?)qA(~Haj&m-OGM11 z!iJnY&?qcazEwNUFi)0agJPu4X>tss(ZE{NlIH>oY1X-V59xAmffgI7Q(faM(r7x` z1XY$}qSG*W$;@DE6N-pzQ>kt^ITt#IG&j~lo*kp^Nh@p;^8lsgwnaX01VV*cxuKu& z$|y2Rk<(0rsAdu>vu;_G9OsvyAT``>0UPq2D;#`YdiPk8EIbY2MVjpOzW8oazN4=^ zdQ5&5mR5TBe+7vU%%IL3sF5D1AN2t?0+57SFmF307cGT*e>Ut=-E=6v`1)T_V8T$S zJ|L;+9b**6hs(_amL<1&_`*#Mp(!!x*jyF{z2gUC+gN!u$--XP2GrQyw`R93sm9#AOb@! z5LNv0#o$WSI?63S<*$vF62?l-}xIXRH1gmE@wQcl0}wLd1SPM1hp<4V<$Jd|)gI8jAQYM+gM| zUm-})-{ff3LDz{~czRumFNG4k-gQhquJUEo2aPPaVYj_mQgqy~=C&zyn`ASwgupb@ zpoIo4Z(}`%Mg7Y_xRX=&@5SE04N`>-%wjdm(9H0MaT|Iz5DLlZW77ue7Z8m;KFxi- z@)zO&&SFqOen@ei2^U@pb{OD>7(ymd62JmU(9yC#aH?mvd0Qo zW7KtEA_*OF6EGC*0i64uY+Pt<6zfox%xV$B`wKah`j^2sCTG+iw|wU$wW`(_8yT>S z@%vFlWZfeEimr^k*h55>JOg~aTvQVW5GqlpVzm%m(2vTnX`FX_0CM^(x&n}e_X+)k zMbTvs;>w@_t2uYRKi;bC`aFf6Ob2%YnK?nuvcNlM{fD}WbLfueOsVscCia2)q@!61%L<4lU1!BV^1UbG26va3;qaUmke;M*s)eVBtBN}lX zi{qlj4)JNo|G%MNndTyPTBC3NUdA&`v|_R*I_aeSV&YyBlpQ*_6gSP%g9Q{U9m+^? zBhjF+2dYN5yl|3tmFw?)C2_%8U3aIXN4KI~pzxYPC*p29hz=Y?x#nSPF4j-rt7Xjq z_xT%zh|C4pJARdm%KPUfO1c+Ma0z@8@b^k@y$UL3v*lX9Rn+Sx(YvZDntCm~WPaz@rr! zm(c^xqbyC%cI*VN(aAnf3{18guoU|YOAuj!52xuTPVO7Vm8IscPvG0>L&!|t7k9j1 zkIdu~=8ksUuzAE_oUK&aB{ib3jnIGJRz_lGEoQ=sABm{Np@Y3GE6(HdNHR=K7yZ_?A>+S zKNo0)>vJUM+jZB>@=3ppI8L>`)-?}3Hb1kP?)60oBq4&ruFbBHN>N+8sPUv$#Ljy3}XzFo&|5|uZuY3+gJZcuN}0l;m_jWUD1)8dnf6HKHc1V`2c`4LAdI8QrUccji&Z-8+-grXzi z0)!5+PT7w%*xyP!ezI!h-+KvGt?O$ueV7}CeTK07%$y%Vt`p_T3HxY+IPH10&JAIe z87^w4AwgB2T*^5|!mGf3PN>MGb_3$z|FCTZs-K^YNA=mw+}w{A%L2u?jy5cE}wyWbx~jntVf! z*SFNWZ)^NR^kZ|RdsY{F#dNiPt#|b2O+z(F?mEoWN1Cb=R-*}Yqf2~ZFN~Fi0Umy& zs}1{=`c12bQ&PL_9;AI4`AH_i>y%B(0U zPkUum+jTW|r?K?pVo9WjC;TLGx}4 z1@9=q{^D4_VspLaJv=Xr-L5AZc1K;QP3Ne~1P2L^fOItZoE0UX7^R?d4f73pg@-@$ zT<2Y*rPbb`!!AnRd=q!m{-An(q0^fc0IT(|z~E6r*vnQcp{YPL9Z9FbVV}HoOmxcO zeS~aTDmutzJ3wOFqrL@#Hv!mpGb)+4CR26vC5@O4C0vsY=GX?Z=TL^^s1`FAdir)MTep&L-o+biFt+8p9;$3O+ z9F|^@B@K8d;MaW}O5g|g=m@l*^=bf62;J8jcy(SEx6ge+bJt zMS&O$e!q`P)+?f?fkO8c&ffD$o+Sh$ml>Y(X=(L z@@GDBQVb(_^N#k}*G|~%S*V3$s-rXe+7!v?E(d%^PqXpfl50+&UU?>r=7SQ8r zAf&+3@&43FBqV3%mT%ZHmAzrB%=1ccv1KnX;h##(ToZaC3ZQYJYKbj{2blbdw%VTi zcq2L9RAovZA6cih!EyQ(W$2O5pSmuJ^pY94KZJ6%2B zohQprUx+Vqigska*vR@pFy8LOK3=I=*oIxJvhvf-=ybG(pQ!HRp!a^jC2wCccq?ef z-Nzm2XlAXeJ2J5F5Kr(?xT`BAu+;)82{Nvn)`AbE(hue85N#H4kWdC6?Ck4BIqu-P z?IFKd_u)`K;ad}N?7z1Yo)t#%zU?LLN7HZbbZ~D6HGSg&mw_321GKBR;hlQ5mdRGm z;NYM{kAfAr6`li&`{^3~s(^}V-(dC|SEsokY-U8Vul1vk-oE!k+B249< z(+*+Zb$ssNjdZbPX z+=siXLzP?uD%aewoy#`c6yN6sneo1~)k*gFO2t`pN7kSJXnf%Bo@J`iBV$bC-#t8*={vjmSW=VtYL9zYm52}GmOW57xWg`oI(JeF5=~!{6-hcY<4BN zjNlp z!MwT=YjHG4fh(C7>=-Z9GLz6a`ildSazH^5uC$AThAH$A+rFWvFxI~$63Kh=7IPh*>|1L zVK?_sK~Bc}4^* zE>@(~Z~US*8Ha{sLgQ-8^uC|&B;`B!34mWfGU`uYx?ft6#?+Fo290#}`&t|2^5A}W z+ea%S;N!}T+Nvxd@kvTMhwPkf?Dpk~O7miwAu=6wN3x(`)3#);EAsq!5fv1X8#J2n zBm@+N;z1gMT16%DYm3$i_55UZ@m=}zBcrLrq2u?b7hxQgmNU3ph_Pin-`#&y#ndKm zVpCmdJ}iWeV(KuorTG;jgJKev?QDyex1@s?8igpCCB{zBzt*4x>ereHaU zL*!j#g5zrPx-cA`kzj13&e1LpWW$kscxL70bSxVj7nzetKZPvKk?mjmpcv!LKNODo zl-gm?{)66Vn3*Dr1URY+E#)__K71T2<&;F*W0!!l8{9oxlFu3g0SfR!`nOiL5&W(S z=LO-B7a)U`qf=rO5T`0ZPZr6p(|XUsc-Mts;E8(RydSg(?I1SW0d3seHAtSED|&o5@1dF_z6Jz^m~?wavqDwGqOVWv^+p{K0bm?M*Gq zto;`z+aWOd7Ey8*zKPedQGQk5Mc1BDUHcKoT_!3&OS=XMHkem9%K`=WuSdEdEY``5 zq7fuyQbsnzsFZpTHbo!q#?#jfSBlyMn(&%++DiiSGs5&WEQ^z=8zFI;sfMbqEsXlT z!6@%vKE70~HK#W1$sJu2N<=XG6j|B`k+yx(#HqH&=0%}Y&EWWzb0;^)GF0lGp@zQn z-PB$RdVQJP6s1tfA$`sD<-fT2f1}drh(YfMH(1`&v9gpX?Ii8*dcharf|0G>r&L6A z*Jtg1RCXP$z)hlu)?yvvA!g9_sF6!!u{2yxpbKvty*Ub<7SvfB&nQ02Y1H?Ja$tuQ z*eBD)-RgBf8E80M>$;CzFGrTKe2ynb#WoSN5t%$C1|;6zZB>Yu-q(e?fhfLw?h7wInbT{o$;OF`lI7#IYk9%kP8U_o%>Jf(f{0TDiv70ENcBHM&+=gQ4_73LV_7 z0Dq$2wWI%FKmgp4SxYGCx8sr;qA9)F%r-9IYehT0+1(6X**Q{FV6q?RF`n!dN%d?Q z31YL2eEzT^X@06h2PM^~Ru8x&%c(SCkRm?$R{L6z{phR1W0GC$ZD1(B*>b5d0k>$d zc|<`bOh>!U$n!iM(z;<<3RB#(XQ7}%`iI=bH|d6}(gAxMg#H8c&afF?S%GCss_v!+ z%B$O@PmJkcGWZw#=t2COUwaE)na++@Q*@5Ge_0A&i5aS`yE^8&fRA|pHVq&eQ6u(G zjb>p%ANMjCcf~#+K&5xLam9Y)0 zX3b?vvIljdb_`d4JafPDX~2rx9L@0B*vo@ntH{ttyE55?Um38FwR3yJCQPi`zn=Wo zM2tSaB^;U=o=EW;8{mtXSTM1fp?@A5=9=3Ob0Id}_^t$+b+tc2e(g-TG`vMRT4V=v zPV`>#yCp7Ahaz5U3B(A(C^Grkc*5_(ZoH=WTTdrLW;Fw;j2?A&a26QIgnq2N@V)&cC znEl}S(NZ?c{9avh`<`j6sSPK7hYPEcC&J~a?8pq3p?jjg_yWgCOP~WcwGDK^aqPF` zzK|4i=awyy5nZ`r&;~#+i|fZXpKZFv?Sw*jy38s;L7tAsE})NGy~y0)+_mVZpUQ=f z4*#S4_>?VdIpe8yiUHNP*KZ8bObWpOSg^nlT70}Qnok|829FLak+tR=BtmmJq&JDw z1;?D*>JU8P%U&yY+|y%gP52&QA;+oAqFp3goDP02bu6Z*oCONk4NNfm}#)Zbq6S>PMkTmziIgwx?=b z=O_A*$z6wBvfQ(4&-Uwh6iQpQWN)UCL{+0jCJ=XI%E+kmQ>%VzY;IB?F5h6I+-efj zy$ZF3jT-VN4OWtmX*GxXRPkXgIx&EN)s(bAr}mCY1dc*zPS52b9985+oUY%d7~C&N zNd5KiiYgibltm2>QUC6b7#&J>+R!k!-5+9n3!TkBGcry5F^v{h zVC$IFT0T&4(kuG*!ybB@{HL6!z__dqL7^26#JCEk=f@3m@Vv-8R3IoQa1Y|UkZim&i9;PQ=@e8k2 zLu<$w$TJgL!FO%R=A=zxDq`r$uFXe3+W1#FWU@24Yz$dMzXVZRt%?js#r@<>bMNHyjQk02HNd! z#wOlJJ}5Rom-gNR@i%~k2ym7m!K32;UakJi&l5a(PcaDz5aC22d3Tpwj8=UqZDTJ5 z+u%o)61{_(%bz&oJoil}0Xx!?;$OP65vdI;aDv+#STX54B=)B7P>gZY(Ftrc&wnM!kBn+>#c@x9`Xxg;0El-II!9tp>t?9| zXU8aODT#sgsAKfY@F|Eocg%jXficWnJ~Y~OY2b5iZYMBn->5d>A|jUaqsAC z1gG#VB?>w%e9l*7?^j2E1V(0rca-`So`A^)dTnzLG;8yHIy3QkC~Q8YDp1W^B=~gt zbnbYfM`GKiucl#qdw_ART3>OA|3~NW+lK$eDgdH`Rm>np%)_sf?Bn^JUXRjzS6_8} zI#+X<6Lfp<)WsoGlTMRB)wdi;Xy^<> z%T8*9N*X1rCDS*=ld<87DrB+l4tv4&(Pa?=^@@nr)Hg-lAJ~9si_;R55u~lVm*X8@ z?^I)}%h7WE{f({rW!bq5Ucoq#G` zgf61}_PEqJ`5ZMEWL}6mp5EFUr)a+&p@0O!=1;NAm;n(xFr~6fH1tqLa4>Ttsej=+ zl)Y(epi;f7Kdv%(S_Kr(1evG6u{d4yMpmAWsFz}my3JmX zU$5@X=Q`dfJS0#ENl6q!<3#~^1m3Wh|H#ag7752Fv&PtCRjJrh(maQs{c+ya;$W8XDjkF6QGK@asu_)! zHu!1ZqL>XMu4q>_un)c9Qdhuz**kG80D)W|41NGdz&sU!ouWQRFX9>P#ku8EkTFCSF%H2zTCm4<#;L=QZU09GK8z}_j7aX3pnGp#$?7rC81d9)Ix&w z=M|9Q`?gKFRo5MTSkgfhJXnpOa2A>uswK=?XE8gk{X6009#NRKDAKTJFJO-b^}C{| z0-*-ieL*)0a7pO@o9c=ZPRbKs}|*5?$#(p=Pvw z+f{B62qb_)3Ql6 zJ|#0MqtDJ;pViMpo%28}9%#5%E8j5JliAgtA-e z3N59@rkKWcl-PcWA%(~ZO-V@>^V%iUvH|@o5_(2hfIrbY4ZIYC%j@pFM~J@l zd9AAu{8S2ys#b~kyY^W~0kdh(qVZ{0;|r}QyfJPrKdpkSBb;5M&7xn*SUGBO0C;7O zd1aT@Y(5v(aqSX}lhr^lBEF~~lrnFo3xD)~V;kv6VbjF{&{oiZZb9MT98SFJs6V9? z-e502wl-cpZAgT`uLsRw*&u3&XLWN9UPNBB6=ue>idcFt@azZZ7DEYt-jOix*&_W7 zVEzd_e`TFf)uhqZj&TDUfDVwClim@%{e1kzmG4&)HJU@}7;6Cu1N9o8p$R{7L7%iH zOQO(62X2E0lQK)IOo#1$KngLaLsG|nu=nkXDk!#H8*e0C3_n4mF*9M@$^iSPBU|$^;mLiuUa|60{1JpLBsswy8k0q z#>dBldf!sZGdq@PlN5b@(VuT;Q1-4bz5rCn>iOf-$_`1rFXJp`hNbM6u<5I1ubjE) zbd%YoHLjH8ycnte7^e!iVaUx+7$0|xDtAIu9h|09#$0D#SJ+L2Kl%%x%FhIjsEd+I zv+bkKdr4@U)8k}Ud~@Y`Pf{-E0q-bW$2KCLp|=y&t%XJa%r}VUpyKp0Ck0zZS9|8@ zC+2)j=7cdGo>8=r^;?*$jo-O`^Le+cAR{0|qSZgmX_}*BdfpET#Hs22+ft)8F#gU~ zWke9oZ6kVaf?ni5c8V(-@5$f7DWa{-jhr8k9L0ES5jCrU*YUj*ljC1#dv`~x?dWDI zC}{H2-bQ^WKXyRL-xyJJa!QN#sN1XbDBF8P#iVohveID1XVjaOIJ>Xe6P;2X2n7yL z3B=&POGE!7z5grA3dU|bzeF}Q9VmES&o(kFzlayc!Jy2L#LV5hw8!lR<2X1=xQmkc zq;fie338#;mmbkMR$7x+H7nE8G-pmw+1QK2#Sj(CD0}4{P}&Gp3f?jmXBACdzS1lB z$20$9q2HZYf|)f;wNnaFx4vg&%a=taCl6?G_fqQSsrAZa{!EkxZ55aYG;PqK^;`CQ zN5!YqrRYlv#~?vjOV0J5ipM9%hkWosysDzD+IM#y%in?mef^a;Vh=L@lQ;%r>&`0F|DJ*s5krB2RKr`5DtJbkyP?jlyGEt2a54333^3aIE_wV1bCDMVrt{!i4dxUEA z=1gRSxOSQpjD4CJkH>#x1Y+d$(K}z_T^0(|1FYffD8!)zq)li1;rDBfmE++q`NRM} zuwA~d!4mlH%O4No$VQRxYgyEkL5hZH)2JlGHFMjq;GfUm+A86Egz>Hn@LlWP&}u#` zNZqKu-WZ%zeoQ^wl^@i>sM_triC;h303?5_Md7q!kMCIKnM)UJUhm4lGWft>(!+zn zlW_P>nmtFk&>p#aM3$=&uP()P|K$Hi0L?pMIVw85#_(DeR-Ur`wEzP;ri zW)%g>HnrMUqyK`h3K9E)ol4~Q zwjdDyvn|Qkwow8hA-u8S51XmanMW99f|W$pFW=u7?Y_BH!Ezu4C1cqkk*~C_%qT-_ z9l4vkcc0;t#mt}-rV)P7=3EZwWbr0F9tjbeRbn1d8SyC3pc)jD4#<+0?q%(?{nGUU zL0on%A>x0f8NYQ{GO~yUHzu?(InpnE=c+@%*G}?dEGs!!f%KhW)q<^~b%klKOQo*_ z*4dR`ncA7l@}=LP8Y}bzq)Jo*8(V$1Pa**QAo&k8$u{2Is!<(fXSTc)tPBTdf3y($ zzn%_+r*s!eDL?a2KHUo{AEg5_fR5^7ynN(xu4xF?yHyqSa>YVA3M) zosp{z157)l-lbsfRuCZIAxUf94+E^4`7bp6D|>s=mI2@Cud?J`Ebrim2ESPkmB%eh zGXm1SgsLI^d#4u5TWq6cNb(P*5xOdp5&9gi|8b52D;sBmZ zD}AQMKYOH_5zhpT$#Y70924u$5XXZP2ds5m@Bcz!UpI2pEo7~?3FhZ?6RtsX5k0P2 zBDA{8+Y9Wf2iR_gD@fM~lS$$CI`Kl0!XBO$&;7zmgWf*RlT6#U+~o=AW4UFfvwXQ= z_LYfm4WnE@Q?VkLSwXPwDSK#(_h4@uj%&ErxVXrcXT^eC6G?w#Ci2 zsraT=#aHaczcUiyC-49$%F8`;ZUg|7$Idjyk|+>c8rTCAHooo#0?Z?z_~Eq(Cx>&p zD?E6XDFUq)Xy%@ROCPY-Iwi!ji!9Ctq?5Ed1n~xy$2@>kf!zF>%-M`L|3}k0zv1Zi!vYFSj{$@A}j2CE&8z%Zc=?(G?V~IW%zYz=O(jz}+ z!TGH}M=L%63 z#~eHqirwFL!1s&<2n!FeKx+;oQ#t_8XlY-=lQ(^Rc_1^A3@42MKbQ&RJ~8~<11NbY zpA9b9H!W6QIi1d@ioN=z`Ad7$kM4e^Ba`8N`y;DM>m2ykJ;`$EbJ6{chA z^P>~8OaK)%{Tlj0KmqV=$A=R}j z5HPjW@!KQsXvX)bYFadWN!iwn=-8&ZG{fdCAefs>idAm*;ckk0G~IqLE62mIt5XACbC?eS*Ri4Llboh{==XCjs`1SU@_jyR(!&3P{8o)o8=-;9ebrBT zZhLorrYpPLEvPQn9Eh(S&(rnDUlA-GLNoYbHoa|YtK44QQln~>$=gsHJxCkWB`b;2 zTRZWZ8}^{thww>qYPM9oAPkQ|0vS!4U>Tndru?W7i0-)`dM@hGbg8eSx8=E$Rn3jL z2p;V@dZh3DWLO~*w4=r}&B|+fn)h7qbR5m6{cR_Y3e#MfHj}w7{vROsmIGop3s&#^ z&+(5_pD_6)2j*dizmD}UVRpY2epP|Y=RKo`Mnv$I6+b4^TpUoDYPzcI&OG z3_N&*VDKmS=~3HKD+*Li-fQ4o-pe$wxk+(Z@O6-U>Ah&ybS;StZ*)y6g~6(-24iq7 zU1A_MZ8P)vYSTIq)jW1<%Nckoos|{_i)p1^>f4>@RDRw5G|L;G&R_vn^8QIaEarqx z!R*854=@=9fAF*zdWcWg0@{u%#Rg5JvMBYLtYdg^Sy3j&y00pK0vauoa!YCXUy!Jd zlWBuvrMAPFL&}_IY{P9OzP{$*eW!H;{b^mJ3=k{**D9w`U2B$g42| zh41*Gf|yVC7&9DuXUdK?mwAu7Vt0?m`Ic*WVBAZJy;KTMoWm7ydU5WH5TXtf9ryj(I-F&BmS|ACF`)NDXJGSSIG+=u6UBQs+R z=juRFt9^TF^0tDp(qM)#T8usIeeiQuMrrv0Q6EmnzYwM^DEqkYp)>dxKA3R{O>X+e59OkfXLh z`>Q{5TX)uJ(9bm^rz^F<#M}_y?;FRRAUN-z@zqi}^r)Qv$a@&>v1gv#EKu?EZb$LI znv(~IN62Z{QVv^(%)5b(!E_xvvSJv`QIwp;iL!3->VJL;z@tZD5YP%htBm4W?AQcM zYeH4zJ4Hk&%JeJ&sO<5O-pM!P11=5> zM`iQ&E*k$_OTqkudH#J_?kUgSGZqR*)uEj5Vp2*p=R_xXv=__=Y;iAgK|XZHy=kmk z7$Z3OG!vLh!3FZ7)V})A-96v9?#f~jvaV?#Ynbo{m)Ohv>k^%uU^)hnDFQ^F_ADmJ zC;T4OEEClNo@`zI*wcFYhNI+$4`=D5zfOAj+ke!c)e)Zu9{aVQNR*wMrE&2T<)Hao zdo%604}iKywbX}uJe`%(k~1w+8&tHJ;S|RbZdLq&JKcLb16m%-ATF&-u|M zI}7UIkX)7z-Hv<38JeUhq(p1ov*=L|q6)s{*fa?BIyOQ0d}+bFod(fvA0NTHwQit~ zZY~W3!ZS`TPQ#M2j%!=ARrFl?ia+Iv#wUb_Q0pl`sqiqS?WDjzJ3{fRb->T;q#=cT}Xjo%Xb z9#WXH&Swb<&*X0*fNL+GS3gD5(R;4hJ3rlxyfAXp&N11b3Sr z&M&7ozH;G?ELAC?>ylw*dYHw1U$M4n)F&wmD9lys3NgdBTSm^utI`k6_$m>t-dkgs zBE9NYZJS!i+HB9@$uki%8!x`d?uZtDoKrX-BYxj&{@Y@ke*7gDF^rG>JXg6<9tZZ7 z9V(A&V@V{UWaSoNWirTVe`PUQgKlkQTQd#GoHl=x(AUC}_a>`fxIY@R4w0%1UFu@> z)5g1jT>o92d?H-@U>1fnCMQZm;ATOompIWMz~5gtN1n>p7~9yU1(32!Dff}Gnx9b1 z8e-B&G+-4n)dBHb-NruPG`f>TXH&{jf#(iz4=WtY!5!25$Sh_Eo4ri-0krD>n?AXk z_CW$v0jwhFdL_uo0wcgb)~u_YIkeO-PWXOuu~pB^Rp#c?KfH5)>~YlVdiD0Rfh)QD zyzwiw(WNIT7@(#h|JU+F19b{*KH*=d>qP=6BI`+1Q^)Nzjacn<2p-Yy(Xi1(9-i~1 zWCZS$zmASq6e>oUYLQhcq*j@z^Jb4|_tj5i|m>LMQM3XjWMl zrhO+s*Ac@!7!Ke9>;iO(Y&%kpDLxPlbb-694<66Cs^ntI`m$tX68g(fK-sGU+;|BS zL#Sn6i$^~1_my+?YVc=hX!6JI{Fu%%-Rsb9A^Q5*i2n*}UsW;yD6p!>{`UO|k|r!- zl)PS@1);NIBs*J9TALgOClm9NFRLnZEyQs&X{IatdW?os0C`DP84rbIk1Z>IjVA4W zAsPmTD8KIBCMExb9UmHh@->W@+VDKk#2Cr8)T_g{VN6w*{5bRSQy_wjj2Dc=eFL?icx z^h_^aIAo{Ryc8_w3ZQ?F22dJ8eEL8mPJI|);im0wNBqf7I5;J5 zI+V(sO~IDT2}nm1t@Ml@ePH7bUO)5t@d~8syfF3u`1;C#s@APt1x2O1L!_ixbR!Cq z(%qc`0@5wgCEX!NmvpCeBi#*3N+WsSh3@m6y^s6;;^$({`NkN}cq04JOJqy3bD&{m zxvof!B)%}^V;7Qtg~ky|P99Vesmf|Mvm}%x6;szSl);+2Bu4DSGa{UKTE=Yq6jVFQ z`$?Nhj}-a7L+L()1ImSH2N%9yz=XWc zHebuWta6f;gsZcSE+HW<$w)%ylM(I)M=zJdKP4#`|}=PMn74O9vX`Yr|WudNBfC@^T(Ut>l%4vd_#m#x;VJ%DnhY!7C!3en`) zML~;V{rJzd0 zcE|*%;8SSBgs4<%aW3>5X!M)@PLGsEWd*mM&BU* zT8|2@VJ2Dc$4!!O;@t-%&)Bx8;=Emj14TKW9u;GiI0h@_2j(x4T8mLmu<1hvMcPqs z96ojT$4AxUNH^>~iSJ|L>a3y8*yN43_}7PLd7&b9D=QksrMnSj2#DXu1p4olo^yZe z$_DJ}9gei58wo-2cR<(=lhan?!_fcm`|M}4aYQt2R||`oif~Cf*_lZ>g=1HrnBJcg zg5u6un_@sm^W$05I_@;vb4i(xF&$1NuG%M=JoiKXc+df$4_AM~YQGMUyXk>>89nMM z^`@#?e0O;Lw2^AM9@~!B{Nx278)xn~xrNtFt-k(cYVi7KR#d8tiYICJ%q$xEqhje; zEV>$vksP;|Kroi@e<&!UxSx6vR_F|2s> zubjL$?3_<6hxzA)0-PCs(RMy|q-ABGnpC+c_^n0P&|AV_aoDYraE7k!@!?p363D<`j+){HY+{w~5>0Z;=6G_&(ZUqNx^%Hox z3iDyl^DLv=WC{g(P2eSTN0EQmPX8I>adj-V5iib|dsHD>}c=bIF)nJz1cnn#3)6Ngm;qe08C)4%ZPLzt}q=sXr^Rp%Gy#w?{daKa_ zSE<}itPnhC?I^A`@9^>C`IB*aSJ;4m`*OcvXPe-b)Udm<2wq19K<*%*bdADUj-4|M z^X;OVyX#;pUYlLlI7t#cNr{aUdxzV%XU&jw`aSv0rVX@Ev?t*sJ0H;0sSl9gq?#^{ zc^NQH5_VmF_vWW161z|@9^G~N;1=*OD0$_U?A7tdF~qGr_vJ-wPUte>1=&6m)2ZQ9 zb|$1;(lLl0Fi4i~hLAhD!1<@cQ!Ppb8)nlrLBxd5 zr~*a2p4r)!ZNqJtb`k@PTKGQM!58wqw+F6@;9neF?NCV0f}&m22l!`s`XX_&eXek# zEc4kT^v}L%Z9XQ`tDAB)QOr)?RGmVIkAz2gchFKl zmq+#UkU!&Qk_P=*)FO1BwEWxC{VHYwaZguz3^EiPI?B?ac=D#^bq5L0b%YgZw5LR8 zo_F79rPeikPUBlU_0i%d2s!6+5Y|&XP7tW`{5Xm*f+#;-YTYeg%Xkir(M~i8lz9PU zk51wro8r|N>t+>%Dgg$;z`yqfO86F6ij^F$NMHi;key*Z0~YMV;mm+qzri4Wsg-DtxCsMS~Qz=8r@V$Iu=&@gq=0It42#M7FrNe~ zn0W0>X@|-JJLcpS3e%O=%9DxS*Itt$&3S`sUlT|-tyP*U^0o0e-kLvFv!dD1 zrCorfGO)lk(>}9fVK9?@5zKelXX&^ zc>@sijbC@-1U2lP9gKetHPMUDj0pFO=F)8uOy^tP*k$>3Mz8t)^&z$NKZ9=FzCnKX z@ycj93Dc!Im%hP@bhCC?E&*aM|D90F*j{r6cO@c&c?Fu(ra6Oy<)7aZt$%!)4eEoY`Ik}aguNXemau;>$|$`(|fVKSwy_(M}kAGg=bcp4&pcpi(!hc6iz1G5hNR6 z<9P7nZt{5T`$cSw9*vkmkt8ZGVy+q1qObUP5>0wym$4pB3XS^siCh59K# zBJ;K8|CJ=FpV_`S=+*Z&?N}$xjKL0vd;XrranZKb1(M1^%B*2lrS<;oCAw3R=~$+$ zBD5~dXOA)D@!W)TV*cT+smgs)L))K5w6`?Z$iZ zJ>GKm_}C2K!6-4?Tny9MS(cbpSnU7*7hl${b9D-&%4t$AY1Z0yLnsWL!nRWCyQOp~ z2?Smv<7c={0<$OD8HQHr~r~Q9EL<_tk?5BwrrN_!BAeNz(%c!QuseO3@`~f;po!8u3e?jnN)t3+G!}EA44^MPS8Fl zou2{V(p*D`)GM?1D^s*;iTOtFGqT;Rf(TZOBfczLsQ&9i{Hk4)5S3h?%+I5vIvp>*CnQpj1A@^I_? z1@6U!{V+E9zkad;@}LEj?IfgoK0nZ7pDV@LLEu|gVAYooXX*?q0QGpeW;~uA<UZdKH88;OHO$*#%^Qm5R^Iie{l&-Y3b6g@^5Tf-{A~I z+1SCp)$HNwH@;zh55QNNap|^aqwv3@mv0 zKl_+8)MPm5_c@j`0>*^5iMeu?fxo^nUT-xZL5>}!O;HTY+0U9uXpK}sc}PCm9Qu0@ z)r>Y0lFK>*2ahuRy~{F*a@O@f^2Gjw2Xq-BdD$)W2&Q%#^ol1FS!Y8GLuS#PK%Wme z5vgH5nD|op@4SJBMD3CnaTD^bvv9SEp+g8G@GAH zu8!BxUC>nU5C4s5rB5+jLImaOmD>WrlvhIGC{jT=9#HPJr9}9MfR4vfE4hY9;)D?A z%A=A9OW!I&&J-^gf!~;J(zpT=a5h#$(={ zw$IVQwor6J-BPNPa^MPV{u=lHtvO$Pjqr5RAA2^%C2yyq>-7DUev%?4qq+o4bs*zw z?Ng9W*k^Arxj0Fi4fX;rZk)P&JQvV z>GQt8OBi;Jmke0zrmr?jpB}fRC>LWEN@A~W3*fM~58mwfKqktu=tGi;2`1%^$v5IS zjlDlm)P=3=r;e{^nE7(+8C&+6PZQH3G)~8itv1I?{-O6TUex@4Hw8rZB?_2E8oB`cnkO)<*JY&TMiS5&8=yWs}&6 zk1My?9D+1?XX%|^{*PNM#WsQBdSr8kR0vTjGd2wO7^Yg&`hLAJBTKZaV;**y644SSt|LO=8zzzaNH?rnpm)$Q`<0 ze=rUkY>HxzDI4&zyaye81fkMeKFlD|z1?d9(25P^RBiA_-N8GjpnA>3~le1 zh=kSAF-YH|KL*PzHu~Xyf6Bw|6l`mkLYC$J(gvzFx0_i-Sdbw4(%Lf9d~>9po4>k-g>rrz%UlFW zPNZQ5o0fzuT@BY=Gxcf^zD4jvTNf$hBEBzd@PAb1Y1)Dvp75Fc@57edhsz#jNkuZ? zvKiM9w)K5sWrh5rCaB0_H=xJa5G)Sd0rUHB0_fjdX=SQ1YGL(-B{B~Tg%jhp-8f=J z;L2tA0*u^N*BAH8IHL_bcxl8het51wRaUyj&p4@}RSV+3B`6`J#fdpyQ0Scd*Q)lK z_{!ZKOCc*kY*;IS8)16;t{9I@81~n6_!|tAP;l-1m<;Qi4bRZceLHWDTjw(y9M!=K z=Jco|MAsT}@uR^k!v&`-ySYHeqX_J3?VY!_pk}EqusG4K`pabU|2VMPUhR+d?qzYs z3`@!bKcEH^;zVCGVaEVO=sWlC>JlB(|7oL#@?&QVxZ$LYMK_P_;lE-QAMsa;Dr;i(3vgEDGu=HsiH!J(R$VgmjA6vZk?_c&4!&=t>}L2ur*WRbWt!z zlY#6XpmNONStSBCdtY(AHo(t-flIl${++RS6O0UtW-y=}_s z1M6MA6)QxoOE(1ejwE!b<4FIi;>pzG0Z4D?|J+r#mSNvdwmiIqtzZE%!qVyact!6Z zw8;~`Vw4D%mY83=9)*RYGw?d$YCqjBFh@=6*!4{vs=~`_GkAC!?+pg4kP1fRwzRJ4 z9AhVKmhUC>;}?jb^=ck6l+PsxN^+n3yJZFamK6p*xIOs6bADdK8G{(!85{5ru>|&{ zne;%DJDKlnfBiZ&vHkw6NBHH>?31RegpV3Bcztv3_e3xv+pVpT+f(KFcs%rn%1rH` zoy5qCtHgY8iI;8vFNpQa>68|0Lr}G*;ITyJd7iC1SkKXwxa2NVFtKOT{IN-51K0fK zC_SnaI28rdY6s^9M52Q~8VV(Y!wmeJAdWldCppR#3P<@qu^9SRyPG5TI8IHTp6_fb zqyO7iWXc+;w|>@x$0l^;5YV;;~6I8bwUnv zZ+d>@Hieex|9wkOXp7M{n{fRP?c}e;DBfN(c}~D|h&R=AX_t1v_pI#hGoR@LmAk-i zP8nbS&5J6y>Wo-pUs3g5^myV|`MD_~YX<{`89VBm3G)pl7%z`Zp2p0M=8?z7w6{?O zuu~<5ofWYhTphqxUtYBX@z~2@VzCb_`~@?I>jo~{renPX+PwkdG=JP2OiGiW=@{9C za9b{>8+)dpbgcwOqvEjcW0E9Sa3Py=jh>sRk@b}=3zu6K%sR*+7C!I2zXa+S{q+o- z_3HQSxw_SRZD0Hj?ekOKev6VU;;h;@rr6h*H}Z$>Rdar|cjJr$0G+;71;!Bz3*e!% zJbK|L{X7Z3bQySMUI6#axVK~<;*sCh5#XX$pFakNowzw-qe{K>v1hV~luPdE5}L-q z8JmF=+&({bo7I3JOZm>u$Q6E$to@@f? zX0fH*%7$aFl(B8OZ7Ch4B2T(6mg}h31E+C0?mGN+lEA9$#W)GC4~a4%uvoGD6GOMT z=pogMWhQE~JF~+A%g%Q1OZ2vat*y^?6q{=zOWC_V7vG(5y2eW?d6H*G1RPOVUwk1s z&W};%%QcoCv>}iOv$N3Tn1F!Oo4F84hm$EntQTvYhl&>~t5XVe3obBWD6a!vj+s8d z!%-X0eOiLP?RDo47%T}1Dp)C8UtDot)?T9`CyAm%r?PTYlUJV)(o`&2to$VJxYdxu zPq>w0l6lNLQNvG6(hjRC{?(Uag+56_%=Jd&IF-BF24#l6hD2>?!>zq3f!x3yU}Ed) z>g6ioe;26QEmL0e9>O$HP(cq2KZU+^@Nsc=C)>*~YOvcCQ#wr_d?`h!wFN8md zwPVQ4h0Ev6I&0}r$)UswsKsB3PhqzjVMBNB0dG#yj{DPvBVMH+H<7*CZx=(FLm9rx z!SLL1zK~iE?}_t<}9kA2<%8F3B-YU^n7QzOVzzzWl6??$q?!Fy%s=F5Wbi_ z>hF?iqRk26|L!J|05`THtfoFzF=)TrO`4aWCxg#S|sMR*uYXA@QDGs?Y!B^%~z-94oOm<_}%Oa@G%r;inT_&VTiX;&z z<{ADa4tn>C1(Z99x*31XIBJs1?c)u#jl82$e-Q^}dnMf((-DaqMJ6F1N}2CIw*X#= z>C(3J<7)5`2@;lhzSEHuOD*$}3M$5e{o#aSs_g zm)N`{I=kITm&}HN?$`6=ct=cdW3os66UU2Ta}xh2z&MzUBueO_VJ5S+oe2YyZzP2@joz8wodqG3{x{Zx}oy_ z++2dOoYjB$)dDk#&nrN7j#W-S;#I>)pe!T^OdIZ^6x{*FUFEo+cAHhc?;o&P45wGl z<^ph1y)ZbUT@)o*{H3~pv7Z7G3U(n~!cLz_SBYv|g}9UW=Po=#O?<@`Hli&fgdNr^7dO<}Yd3pmFIJ!GQ-k@$8DH~xAAkr1>>n6V}Wq)}j z209`IMvj4CU&2HmRe{8&k+awcLdz)GZlouxj5ldJueisDD!KR{+Io%&1ycBx(=P zuQ>%d{r4BjQ*hnI{4s~RxGkF|OR`uSunE^ttyb<%=$#aQU!-B5nVKx9<}jFT>M;gM z2M^v&F^|qJjlKtJ-d%JIM&l%ZLrzr=9*l>U#bw+DeT6Qs9!RJ3PFHe_B;luDmTx{j zZ)&)Ma`_pVAOj=VFMExXfjm3;hB>M3f>jnwb{OD)xk~@HA;GrBF8YZvIZaNd2cEu< z-gSQSN4DnS9UG&E7ReW>PS5=5u)A@4i72Rms* zz#f*P+D)@>lF<05pb14IN1ftcNp=Jp=IZm8z8+1qCW-SDgUG0E2@so+HmoP{dWC$? zy9unCoKKqgaT~NQa7rF^Z~7C>xi=EWmlJzfatG)0jDGPWv5?-G~_rO?LFwZ8TMxY~6xfnDSQ$Nk+D*YZD6D?SESU95G)BZcd$^{^C} zzyD?oA)ePT(%0UUXa2*fcDp44iWM|Ufc#dN4(<7`6;Pl56h64tf~VDSrC@5QPnefG zP59)(Ktcs|(7x7S*fK$OSsm(8BZsDZandw!FOZOmG8nWMcb`15Woxy+dmvx~YW1IpSMZFA(d{5cJcGs~ZMAt&vUlm`0s7c*aY^n}8E zRZmUjt0Ks(?`jNv!p{C$GeM%>Fv{qnNw}QLcA16?`tdTdXy9VkP$N)yn zx^9M)8U|zeBdCwcfQ@C)a0JG2!CIa?(zgPkH!=R5T{yKBH-3s=5_p_~h zPwt)3mh^z%iCn$kifNK_^!1afzA!P@nl+9Out( zaJ|^a>JDBm^yJ2;9~10Qk<}YO{V3Fx8g|rvHXz2C{F)(r-!V;_Wvq9KOOZ^7Tz+=9 z;8TyL8~zF)V-Evr?P&fJfh^ljeC==U;dX0%A9nJ(Xm8;hT8-PKyG(;cMF=zQ3R@kV z-A5tpq4e-qi2)z>^!27vq436u#jrR9vBFE(kUYN?fRbYQ**q5uy2=yHi~Fg2xl$?# zaRP_Y+0s0*iF{Q$uKXi3zXY1@j((RjqkWPszjFe z^4OIg1hE%k7m{>7e$xl@Y4zK8%-6wEsNL{pRE69*mf;Xb>o)`npDqZhCi2mJm5UFX z=B3kZl>+qn`jRZHLCIGAt(XTj?2No(t|%goE|O?QL9Q(^A_et#_{S{>^$SwEWlYxu zELdsizG7#1_s;V!W1e>~B)LFX3MILGuj`;?7LXN=O|@XC%)- zCVGM2_JVmr@RwTB_eKGLFx<#){y=VoMOXkxro5>P1QoVISsUZZM3Z<13Z_WH_G0#M z3I&jJZ#}H3r_c|MWBoRpiVk8B1x^7nU>G}AL7w66c) zt>3opPa)BPVS6x@lCbaIc>xm|B0AzP?a-qJE9&=C}U4bNo~X%-mL7-&uEWxt$kB$@``o5;cB;4vvbJpQUfvR zvkZ{(PQ(UfKq+jhOaCA!LTjp$q&_0D8A}H&AS4ftrhH}QyW~SVvzQlpEX2c)!X}u+ zE!4H+NFh<7(82`=#SARBrbM^3Fo+}EOoNM62}Z_2POd@d&V8M^bU3jEj`fT|g2Okb z9Qjb{y6|$_>{=F6aB2xrr&Mp|3#fl|%9R5^|DkkINgOEB^b{>RaHaAN&ovA%&Bx)- zM8+lo{;~q0f{Q{5Nb-E&8-o&-GZJ}%#%YQnj)tN<#9@unG6qR)(Ph zp6S5oT}yu`R}ibu{qo6cd^c(%UT0E<*Rrr{z4y6{f*l<+jrYnrlj_=sq;B~$A)iuS z<*i(kjOz_s+CGBcS;?<`$2WX%I<7KS=CU-=uTrx2{^>d}Ivbp57QOg6$TiT7;jOm3 ziF_=Ss)k?I+WB{4&+UGbG7bp}S4@RRA;8to6wW+Y8v<7EjZN7PD#IEy z=$g9w6TfgTimm8*=p;_3vvGlmhI%o&<@WrYy}41bU>^3I;7pe!JI>i0Jy&Gn6K9H7 zZkQ&TScVI-9e~bbAtCt)bL*rH!`DH`fG-{~9q=}W3zVu0Z$(bObZ_aCN;LDA2tSk% zz|5$W7Yazl*-bm|x7^;>-;^gIP)Pc0In**8OML@>BRtnUeeGwP4ucD+9Zh#@F>oAd z86HU?dLy|nW@@7Lf)e#zPn4jjYR&6xfHLxW_?)gvPP|lv3Vm!3dbDSLv>x@xl^>*m zKpL9&QNryqKT8-x3Me|9(CkDlbL(7FD>&(CCI7esE29H%GT-HHn)zI#5>$zu1d-kz zkZEs*N-?y7NnTq#<_hm}>ye$GkVMW;=kM+%@7v!pL7M6-dhqaIN@~JhjJP2C-8`Dmxo_qi)2lQhhApqO>ZL zS7}-K`v~|}?{9O$3HWAlsf12X&qE!UF8x)C*(l;meDf~Pj8K2RAer1N!lBgv85M?+?B0hM>z9`oeWR=0Op+$*_CeCZ@oz z{ivfzlX}r!JAnIX^>ZEK4m<{R1a=IfKTEf6Fh<1JvF6oQ(q8+9f#m{%jFs@XZLX8y zOFrnVQt6gm4QNf;OH22aX;;6ea_F7c;%*CAE0wbv)%@W#+!qQjP^jNkUo56FaB=1M zF$3G|LgcB4;dO+Wwr1Fz%;JfVdM`nXZf5H`d%ouE*IqnAP(ZX%OL!3>HzErejVQ1t z=RU7sj;%3BUEd!|o*S+xQQacDcpHu@!Q7^rbo^0lt7K`BdU%1@1wT7-ryFx)a&x!w z71XMIpVVr1{#h`>bCozZg4M%)C|m@dqmSnwuqU+0|Ni4tbTLfCi%q-xBxASPSF8i6 z!$-6;F@)A1tJy#I*-B$GMTXbR%?HpJ;3ajVaOHpDP;1qd;H~yD!+IxMW#fdnD}!T& zw3TN0IbXYi7p}a>r(}c}9ne{94<5mL<-yjDWyYyEhSEt3dibpQElq6!pQ>Fx_*(sBV8pg9qWfk07 zHg9gPKQB8X!Mq2yY?K zS4`nXdeRE01lu#-6dGlmg$L|Ep{5o)9$4sV30GZUF*EJ6`NMgJ;Qzc(L2_oPaSjGZ zv!~>cJ}i*H@i*Ra%*O-1LeH}F%^X#bbQW<}#@=e$rLF!xjQ#8lrktO)RP#IN9^`rJ zZHE-$vKFce9?#PFEw(oCga)p$C_U-co3+fslS&b5XK6B6Xzx*F9joE(h_&#;kgY47 zZH=v5y)tOgnmt()uje=SGckQ#VUudS5esCWPv#fC^mVQF1O2mb;s`pChvsBD+^%e| zLrx~7m+0?6F|<|=xqn_uL-$)p*dt=%5N5hvkvP-{K3dEPVC{Pw1$ba zJ5Xd0WEk$C(dNBa4g*0#(D@aBUlBVa*Cdc!^eAr9$0Cvo?;klrdtcgQ=!_y=1~gMb z`Jvs_XHZV>AmL(-ck_?Ekg7dTU>dI6Ks%#_l6w)O@%#EsdQ~#W{3i5Ot==24#Ay{4 zv&TK0MsE$Y`6H8S4BtpWo9rel&S16+J{B(CLy2vY(S-M+z2(MQfIY_FUp83#!@+4l zU!brP==MKf>+qtFd^_B~vOb`p)MBVB*-iLj^A7^VH0?2yx*Qka}@{@OT}dpX%|1JA~IuOp92wR7O2(caBP;ZepEeOvfgcY6W- zz$fYX`BW^rKkW2<;hCjtCQMN_2Fm9&_{wMv;F`tU+IfSge~ss6rykr?#AmrV59%$3 zKp-#=QDcAweG%(s6+Neu61GSG+q&UKcSE}Krfa=`;4&TB9cKNFB-16gbsw&v)}ubd z!lC*Y$*!T!jFN6=?P)$=be1D0F{i{S!M$IlY}9SD-%N`&f^hWx6vl4?_M@Wb1mYDmv00nI-f^;Ar zd)`=!Zo%RCF>jvohwk{#A07`o>kpvsJE#Val*LxPRNcTQ&H5XKSNpNvXV(G*5EbX; z)xm(%fYkm8*Y2}FRPgBUsZ5iVo;!1W=Up()an&^pkmg$IP~Lv5XHDs-uxc-i~tUaSKk&w5KC z<>NNg_dnJ3`deY9{2Ai^<?;ExAWM6^L#JVS+WzK|%N&aQyCw-0!bq0BIm4&a5fL$7uON?9s<+}e*O!upm+(Bm zxP@o=az<~WTlLeitG^J+;oq#A{+6^t!zZF6^nUZA99dS_G56L9_}(YE{ao+nFpfL% z9rvGQqm`=A9RBLIQ0B%ljBzXB76W7o17k+N-{9U{%$2hJd~SVT$>E9p8_hu8%A$VCMymBhLKwvRmYAIH>i&c6&JF0||q zVlas?Zxtc|Ex_{9EcN1rxtBqP#WYGszJnbsusKJz6~Wn%V)S~(#><-&03VzEId^78 z4l{NkbtN9N#(;9f!U@yZvfU5x_>}l=)~X)oV^Il0OPTcCKQT67(wk|piZ7r^SvqWTQkI6uichKQl3Y>!)kkS@G9Bow|@N(r)z*XkbPv@SVwn-=pFP}4{ zkO$bpJXmAu)Az6nd11nJOgqnsTU0rG1%`|!4Y{~a5K7fzCnp^`D~!b~w|8A6^tD-@ zxodhnj8r0Sv(PST>pVQo$)Fqh+dLiy&0CAH7E+pxk845~J1%*ck>#%ia17yz1V#`$ zlnt_xazV;v^y@IKuP{LF@~T`3$kH$hZDB-AKD%`g(z~Gr^Hk<*t0HZiDWu_%AB3Zi zF|dqNuvgIfEsFXxbyZp*{kW)to(jI-yzi-ty$kj>fwmD7YOlG zr%~)x^v1kz8-<*sf{}~yT;H7K~ zELgs?>0gcx66_y;eF~C3lLh{^VnKdrmVqcCB_9{ki;Oi)d^KfOcb{5n3CwhNVn0Kp z`!l)1E)8g9JbPxt1RgMQgE?L{q7S?jm#MVH*224kFYp(ktO5nR zIZ!dX0_uHL3D`gUlTrH%GKez8GtNl(es;23euogx6K)ApV8|&Nz`jPG=iAs{S@6vED+&gc@t5ZUvK7q)2_b1u(c)8)z)2BJa8` zZR4^(Fy=yrLSk_o2@#}IuNE*eoy8?FvzkgJv9wiGR_KpXywl^@Wz#f7`ymTp&=AdG&lfl*r#D^!-J zLVMdmc0lTSUOr*plk&DZ*YUf}v3uK3*~@)XpRY=v*xCWbq9V5Ir#&e<;Lb zFUm7a1!Z^??`?;k#}FCSTMyuV92Ma^bPE>LQkn#5j615e8}C)tU+l~+6m_h~voDsO zVjIr%#6t19%-a~SRh3-F^_#n$_Feo~67KH%3bM`66I#SdQ^KK5fdXNjpk0*hJ|H5a10R)N z)I+t((|bMLJ)b6Bwh=1{2b=;VOllsFmCb;r)Z(a-L1(x~f6`-_4ts~+Hz4R#_p)yX zU`da)*rwy;OBXk>b~f>EYQa27G7weGNT1T6P5-AZa8r_0B?@sfb08Rrl{nG=p0Z*_ zZfB~XcwEX89hLXT|F7T;u=iZs8L1e4?YYU+p)y?YB+!ViT0y+@Q2;v}LwNa9l5MAMSuqL`^hh@xT{gD{R(NHP z>U)DyGw*RmciFQ>IxfPJONfl+Sw8PV1DZ{xeNf~3sFgb!pBe*~jl521arE_ec;%`@ zbA2egI7^-O`YEask_jJf^*Wgy8LjB=%Je>#_sxYNhSGNC8jj`g*J@5{Y?KiG_@-nv z_Ll@3R^BtJXJ2L}!%4&jKRk$#WBHKuG60W5ZwwLLsxOnBWYB@m!kTw?VDjEu0-gsG z9<`F?V7e@qVd<6sy`jA)a5m+AepfxR_xAOU5lcNgRc%H*X1D8)+ zLiuW&@pC1yRP#Oy^_hz~VaoYbq$AUut037FWTD?N+$h@YRTOTzG`Ulua4Fdd>+X#^ zeM)lUBW=2QzqOd>`55clZ6Cs7{F6;`uFOoMc&`T;p#HN^5D-fnI=0fyS8#RY16gAk z`t=b+ocJbonY;rqfxotQahl$b)#e!J-7BnF@k6KHL!OH6y6GCsKipXhuzi1@%wGan zxEKjc)mR9D-FX1QlU5leEUW&3l*!3YF-s~Tjoj!!a-_OzCY?1DjFL~wBQvZNwo_sg zAk$jIdI{irc_m@}+2EaOr)79v4mXzbdVUm=OLOhO!|uz5^h`Wjr2%W}zcquue0mW4 z3&h*AkzoW7?=#DJB6C1<&^lF{f6aQ%u@n$}?L(SNH{cd~d1^uL*PdLnW8u!0D=T>X z30VK;rbsFga)!U}WH9w2FeB*%!3cr+Q`I|V+)3SN@_B{<5xMrlTs+w>k!Ig!Ww6&R zRrnBr50u)`tAGtUVKvPYp`O8fl;t66)x@^V*W$G%#kO<-)}cZF)J;NB!$oMGOB1#z zw{HFOokt*lWDXqU?a~c2Yr=&{W)eUl4?+Sjop%Grb8w$vJRWUy1NPq>82HwYx*gvh zI1iK9zEX#L@!qtMxwwqBkcl?R=8UQ5GMbF4QT)GKVMz>?Ll4YQXEm*WTLyP^? z2gARIk~C>vZ^owed7k(FL*^T^E_m3#4%o+U;DpCJYGdJ+6TrMkLO&aro|NgmQBI{y zze8Pdsy&J+Fh2sDjISVDgJCY$rmocDPPe3CHcl4;ReoqBWP5H7n(HYH_PDyb9AwId zycuJuc_X%^=J-8NlnoA$9@@@+u#HM$<~#9(rf*GhRbS2tn?P(Rcdwl*CTpv6{xN-o zLg-ip9$NR@T~NnPBw<7M;J|bZ*gvnWVHznpJ|W{{T#qNdB^A}=V%m?1u+R2NZ0HXN<}A4Ove!N z09hA$4{-Np4`fH>;sN!;Ix$XDkDtB5GKyONM#ZQf%}Oh=0+uRLuDveHxE5lyAqzN* z-nA9qpedODAU0tYjA`eDc02m0G}LSYG?$j9ZwH*<-9J%#MWfCYTZ26enZ3}-2hNG+ z-&&}=8pXC=l?AUR*Y?c7i_S<~{TN+*eh57oWqk*Gg|4H&oc0yFY8dSTNqlLDK%%cT zOU{QRrw3D%lKD-qOmiJi zS9-iBG0BYOU8^oVadF=Jn?>PX!V!ObxU zt2Wn;lCXIiue-uNzpzg$`k9|@PKxD4@QrlJtLV+9K8{Ju7-{2==5SNI55)e* zh#tB{TDq9DqOO4*%DQ98bo!>@d%t^zSP91*a2(nn z+&beOMOyU~N4pCsxH#V0?rtyBV=O;LC+iTHI%Hsf07lFJ-ad0%(Y3n=)kwuN)nnwn zcd}pmh{Zmr9e(jT?pfN}bAoi~sm<)Te{h_j8HpQ=^kTdCWyiqDVt@IxRJo*apubtO z3`8C0@jzi#n&rstGMc27%eY!fd;;VY^s6#zJm9DX^<#=H3T->qd{SzpJY;~9A7jT` zhSUjMuf{K#FbFAo0&uNpwX20f55G-*$J97lcbz@GQsd3C|FTa($N8{u)6ssdyYJrg z*kH}e@mPuUACuAqLh3Tt^Z0(2`WwsBVX*)|`e{u`L1ccCidm?5)J;Bn)o=C|_b|-F zw4gVDCD+mMEBBGRTM7t61ZVx)1F9F3Ke=3H9St3*KYIl1=Y56)fN{pao1zby|Of=45QfRnwL6nc(&3v{;OarWw2H88=T-h&T3*O>S)wA9urjq zuFjiy!G1f((@p$A)s1Ht*uhuk1nvuOL;;-o5M-BlmE|&f3DSoYRvL|WdU&V=0e-Bk zNNGm0hlz2LZYn(vxHJb}Es)y}d_1Qf{i+fR#$G0Eq)MZafW_VZ-z;t@b1%jtJKbyW z;;wZf2+Z`nz`kQQ9h3+)1^R1S)@P_2y6pLM?B&uK9kd};fmBMswlAr-vOhQkZ{8Wv(fBT9 zu}z4jjc@lO4d7|!~ir&5rU_5LZI(ikpT zz_9$vSDq2(XG&8r~lnJK)2Af42*%E zKs;*h1RhB411^$wWKeu;7b?i}<8Z*X5X7C%1VGn-wU*F$A>CJ$BYQ)?T9xzdJF>iE z)Y%qZVacyL!i8$;5c}7GaRFTF{PdWkWc(x({gfMFylOY%g$41+>&^>X!&2|cYb?S& zdvb{C@pj((DFJQ#5ua;7twy(S*Bpi#jF0a#n(sWq*_g!Ki9^#Ta`4Y704*`$Q+Xwk z3^0dmE5J50oy{sTRz69hFiK(*PFmB zaDn)qkpO}#*F#Zmx4YzEk@b#G-fdOk(e1rqYn|& z(tpOr6SEDuncnO0jA=CX78*ZvBi*)_{E=qx1(f?~PK9smgz_}0@0p{t<%jDB`k_!o zt`@|OU6=+06DYR6YoC0piL=)mN=!8L{PaOCQOPp;_M^lWqMb)rTXCB;qdAY8I`VYa+NzoAH=b@wti%?X z1s$xdMr8l^P^zaPlVegeHWl?2P-@|%rRLH?SO42W4Z4KaQ&n#s0I!hAA7r1GS!&EB zPhC6-LabGfpZ7vNfBs5ONqfUL+QbEPaEj$w^&Os-BXe$T1-(nH+KGpp`mOgh<|~mC zM$4)A@Fza3;J{T0R=jc2m8S29?>>@5D*3*UN4fiL4i~G}#Xgu6Dz80kzhF8?IiJ?x zjE)MN@6R*tM|Coflf1_@_q7ZyA;2Jbe?RzUVw)q9>Fb2VX+H4}FY6`gc5&13hZU^X zfbc0hd3?gCyi{YFxPJjxGt(cyLMRIrnP`>;DEgp{%)^f-5z33zF1aN{DW=<2gd zh|yw*X8rV57gc#ac8tia3t`&i(<_w-mM(JdD-Vc3={1_CLwTiX0t!H=sUTDo6)L8V zOp%@>(O9r~*+Y0~wZuQ{Fzs>_ykERuH*$6(8R&*XB7qEeHY_ClGv2^1f!c_XZrTk| zppf6c(_JkrwD{7SxcEBgz3o9sPFL<2h=@rOT2Ec{ET_rrw0UaAF&UeCgm~FaencaBJS)ybCm$!WMgC=-~0%38-GgSpl*j z#U9LF<^8Wj>J!m}KN%q)Md<(7yK8K43XE+%T=vWk;CzV3_kOaavy&rub{O86o>`(u zTk&ddZKt4fN4bS`?OoddolBT3jCZv)xge!92;h@M#GqjRYGS4NqJDp0JF!BOoWMUm z?L*;)e)Ucb&g{s9{OTB&YP*ZB@?$}Zpx0M@WoGeD6>0LOp0<@}?-y?&=cf1_ULnBj zTpo06C#N6d^!GvRKu1=r$rw~l5_sCMGWZkdrm>4mtS)&$eph+Wa2M@P9qyWlH9w9p zQPp0Wg2w(|*>g}unJ0j5=tm4BLSNr^_jnkmb9s<@QMxZq3zxI~^u5FINZtw&5c~h1 zIMFGjR`bKmD=To`W?geUIWz$dYPJ}uI|y5f*7g`!@UZ{!ti(hkF~E1i)&l9P4FPWf(9o* z@Zb_$f(CaF?(P~SIKd&f1b24{?(XjH)<{G17W?eI?>+B(Ki{A3@TGh8Ts3ReEEzQ_ zCOJK11fY|%a0h3ky&T$}O?to?ejK@zU=j7SSIn6nhJD8OQ>T1H__-bjV7~3ad*&Pe7qyzZl3eZ^$@t2js3O-BImmba$C*g`ES6aW#BA&~dvv>ylCW@Imyd|_0 zl6G$ZjsVQw0%%JltFI09R@K<#WKN-JW}xBPEL((_y$`hc(M@fAfkZKU<`giB7WTi? z=srR)O%gJq7R)P(W5K`*G+`cR+t(Wv4%`PTY1U01qoKN?LpsYfKUsunoeBD~i zz&+^2*bji7iAdE79uMg(tKS|^7gSjxZI3Wrdi8s)mG3Gt!+INeeQ-e?B`fzbe@8MP#ULL5NRXR}$9MY-%9 zcc$ryZ`{S2I4Mn$sA0k32x_URjChg0a1)xk^+}Z62PMqbQiq%T(@~@y;k@K+0n6h_8i!64| zx?h|gHrA!yYkG)%F0q+E2jc9as_Yz3i$nAq7v^IV6)L2hFx@H_*k z`lsT;1$u{Fv9nuqH&uDT{MDa;wl)RcO`++^4?J8>QJ3SEO; zJOW`vz|P>I$yDAVTL&xoV2hnk6MUyCjx0{Lvc^!rS+pvihrsR-M6(gKSDF&53&4v8aTmVCHfW)7mnRC zP8yB99d5DJB2VQwX3jkM)Z7R&^8UM>7)#9k+vBjIPUmv|s|!=Rz#=!>n4u8FK3o1Sms)A$)BOM%jP*D7U1bRd!4Mr=r|YQ{aCG zL)S=#$VBh=7rcIO_PHrjE9o2qz*+(wyveslLyL^t1DCC!ojgao{3Img41)R>W)EAnCe;zOr>uM zw0jBND*Pqq!}?i-4lrA!Ji2~QSGjf~Y~Wi^h#YX7(XXff|%}QHoj0U`Cmc8P` z;Nw%NmM&cCz(HaI5Y#~TjrGGwH_c=B-)`NSYM@w=Z})t)chAF(rJ~n`xBGeE7L~ry zyU$-2iYM?gG?)ACFA?B&{|7Vi!1XD@iElsi2~K+(Em_)M`~ zTU~C=fAQ=u#17eKOVFaO`}??Tt(}Y_Dd4Q;tXLt>xfDh=nN!Q{eNpb7Ke(Vix;UwN z($7P#1wwgN+Px?ZYaoz^4l&POzB<95z^1CDXUPwC(84t>wxQjdzXlro)k7rB%{<$H ziUa)f)3;Jn2O&)Zpg>D!0w4~=G_h2Z<;4wD9POBMI3K`VBsx#I{>DKickhDPbPA>| z=@XmAFL4$jAc*Lns7NEte$5U0T>XE?YVG6fGxKbA z%-Yi2WUHzQnduz5U+zteA^KfjDJup!>EI)iu(umZ*3ZX7-MUaJ^Sh)sG9!$z`<~ao zv9)Ju^6@p0P9&kCwGKOWA61agIJlsAju6Mbn+N z8=AkQD@S>ho9ZxZz?|3gjkK1ZmV0#{Q|ykhSe7!zftvF+X?uG8^Mct@YmbI&0%zZ< zAtSQ6cex?BuUAd_6JKD`tMlndyD%iFYFnEU4a9fH^SnXhS9-J9jWZPh@nX5a$-}0V zO8@gym4s(IH4_kvhSAW-S!&cA;mS}fxZJp2Du4kiBCzC|s5(^gaYD?%Ci~}7#(N+W zFrhLN*N|fMI1Hp7bW@iCKKC_Gmqb6VuMGeO_%AckU6N2OV9FJa)jHc?^7edOvT-`s zQ`xP>S}gObw2I#Fzd{SFL|o4NERU1~KA`y6;;Q^1(DCP=YSo(FCLG3_`$TQ3WINLO z-uU4a^QwX)o5AW|%}uO@f^Xi$N=Nl`a468@xKl3vyrXvVO-$Wgz@wykvsX3NOCohk zpvo)i>7Bm)MI>I%GE^c;6Zvyp6INp?f!nFgO71SjmPblP4)zQ_(~2o&$#fqAGhY(L zXnD`K$J!H-%fYTksPNf~TCYY|-MUidLR%Z_=9BTOOnE2p+%CbMDp0OflFeqKsGL3K zPqGSB)KN>6OZwqGvho8U%V3O?ZrUnV)|XJowBk+uXg*eh&jt{B5dnjTNArsI!qF9I zK%Z-*0tj%jfmYdUVG)Xpsf8jLSRki!>Fo3ua9v1Lom$<9e)N#e^_W1jm8qsRdFMlH z6DuW>Gtpn(EcFZ~6F@|$Yz9ti0qBKhXu0qHV^)%9bYHde(`gF*kll-bT|GnaWRe?& zs(jXg)6jxrZ4f|tDZwYGj?g*r1v^+a<=bGslxTQt?O2>Xn4lB~g{Zv48Sy`lBH?in zwNOG}GKs=%f9zr7Zbh*D_SB)M!)RI}fxR~bi_cMj9Z0)0*E53CuZ}x4EBgDsKS}?y zZgIj-ZF?SK%}}oRaM5Pvn2t)%;DnBG-UGiP7Z#hPYY*&6WUwWkil`d{uDSB%2MU_N z!SWS4cBz71arHj$ZfoV7fCLWhagot*`HTv2x(F7AfYz*o=a)+6O5a$mCGGKD*+LsT zPRt~8>ODI8Zwr1M8u(r-yEh=ikb}k{&5&(mAfpHC>+Dvjs6P5G8wAKy83R>+u^cvuk2?au=V%NrAdK?`)#X{r~cM z${V`BAG#{3eog^?;fn1ASn4XoAPh(&&yq#BYTPJB^AXDfAgS}@%&y*hShholjPi5Y zpdOa22pT*{ol(_0c0|eCbXRse9ArmPJ>4vuPp`ArrRlWTEmc8P`F!nj5B@5St_w>6 zyKm7@U^HU+2Kh=qDq%SMLVl}Li_CzY9XwA#f8I|qvhy7StM}PNVbXR&6Y0}>8Y~c} zHd(Iar|~(*1MF#~>NjYHtr%C;RaHI_tD)(WRk+o!XnDI|GfLrOrxp5_ClU$-x<9|f zt&??aVN<)JKq-;6h=Eb9FgN$}E(W^!S}MJXft=9hEThUs%p0U0UCgkwBp!&xtWS z3U-@k^LSHec@mdX(C=Oc69zb+3K;F)(Vo4q-%+UvywrdmNX6Q*)NKTgC4|j}>f$T_ z=U9O__eK(mKDP%!!PHyaJLdC%3!#nEc3&ijL5n1dj9v|RXsb7j#=NWLX-1S0U^)Mv zagm|GM7!Fe5TGw|BZGYfP=AGvqvcz$GRdz?|o&&e0+h(Rr5-J;;}y$H8E2NSY{DSN`EfxEWt zwzz)(7^JbsDr(J`j>P>~5XEQKwx=Ow{ldW*Ua?AG%=$$lKtb5M@$5aY1ga8l{*qa( zcDe(w!tf`XF!mo1OkL7{#$x@E-~a@1{`hWU14Xhp#}^uga|21HITxQf97Rwn-wj?x z+&Xti68n3r6tGQ<4UNkthTu_7*ZJJr0MpVDkHRyE&56Mh*qyohZ9w@;URQ`X%veA^ zB?DG&*@JPA9_lO5V>+16tTN(Cdj42xW|VGXx;x`A z#lF#p1ut@BL5W=n;d|+Nzi_w*=0arWUfkPK202J!@4-`K4|9vugohjV$?0F%Y&C9& z{Ul5xN^8-1TrOMnQK(^Mzc?ZTV#jxRFnwW}aV$Wa$)DS~L3NU(pO~JmDC_M~FR^ue zwJOES%nG#*bM>W4o^2i_lvvFhpt$ew(8#ESWT3iiwskq;ePP;E<^Y<5lPEmkv{TV} zl_bTSx_WPtKOZ{Rb#-?w^c>&5EsfH27rT9;96r|W&5%*;kmuVt^hP^M<))D(T>7Kj z35rEpXu*~QkeazIyh{XHR<_g!NVcvpCE&R10SZ5h6o896w!lTehdM2#OC=YjD8A3g z>S#S_Xqp-OqG9wb7YS=dWq1@S)^QH#zQ(Fn)?s5vf7?@h7IKfqkXV}V>SS9OXU1NP z`18Yq8QjpAMRtU%C04U_w;gifO*ZSdfh=;XX?s-s8=3-E=~XkcP>=0*zg(@rPySHQoG+#ci*-s>wu!wwwt8pyY0dQWql{Y4a zAY*V3NcTNzSVB5WUTp7}D0yv5k0GzvFW4|)fDS2uD|P_h0f+Wz?;IF!iy+TL_0FKE zM@RyV_Go^t3hUu6gAwEz8O#Nlx?9}eOLx{9MA~bl%2$`Y-zklvr`S(Vt9w(A&+l(j zm?22ZoiCpqWURlFaGsUx?PJAFr=e@Ag7xIdRX<+G=aV)T{m2kcivom(xS%PO20~w# zC8#r}SJ-WDr5mwcT5W*7tJQmePzvZ`IwXt>%TP|+4EkTi1%RQ4z+a3&aiY{`)(awLX~{Z`fy#mAZ7u!sCUP z{e{B{x~*;6TbgMw+eEBf_S2BeR{P5Ca>zvF*T&%}FYP2y_Mm5{BCn{gqc)|Rwbou) zt;Q{!fk;8OiE$$Fwirmj0Vmy$V9x^^WOkxh25T>-=T0kcAc|c5OD2bT!E*pdMl`@h;G-2^pt_ zTa^we+pm3k5*d@G(}P`fH3LJ%SYF5BOD|FUW7Y!JtP$aCHxyIfsDAfol19hQ;CdPt zNF9L~KLd%v)D&-4v)aWNi>D5ouMX&7U(w#*Ot8+MZCsLyxAh>ab>5Mak4i8`mIng} zXGdZVjw6fTt^v4X99IP2p461?e#J;aQ_*$f_uVdTTd_mW^j4mZ3j>Y&ufEY-7&7;* zCX_x_*|y#_Twh=kO5|PxjYeb3zG9T+IJ#p%AZ<+1(Erj|wUSzJ)2sDhf1SXdQvsLVsQ~+s^4a7b=UT&O_2q`A5670eRQT(w|3!b)3J+nqXXY| zO1sK2sU4Nkf3^5Q4lvqFeB9k`EGfL=O?F=(?CzVpn>^DzKXV5ESOGh@Y+c@Bn^@sk zVn@eEervH*jjZiyQ1cqK@33s0&rQW2!N_C`VkqNfs`epsY-g2+nWQj&H!&yRljd_w z)dD-vCAg*8oA`SobReXmDh88hOz5$t~yBqS!Xxbsi3BD%7DUe z6x6pEux1CTg7hPX0~Klf%i`UB=UaGORnv*o!^srFpsAaUZ$hxd$g(3r{e$~V@QHfQuWCo9>1KD z-oqd&c35ZIwI`|UQw#dDW{ude$mgWEP@qBiVvTq%c**{1FR#l~rP%Kmp~3U;3BRIL zPdLifucj%|%ALACfYPS!L7wtxjLh!mK(}amS~Wt%frkj2w5c0*Evxr#)oibWq_+;k z7C(NKRVAatH?J=KN5KH@nT_YgazFhF#$;4s(9D)Zi0ao2e>7h8KJeqKd;- z4+{lLL2Z%hg1VSsHcmxN&i28O#>Ry&eb3}O$-EK|J2Xnpg zTJM;16BzJK;X=F)n>=@9aKZq}%SeUJ9!Swz!`o_N1XOBTNVZf#!$*1~w~ayeUjS3e zL~@JOfcx2xuhUzf`GR3*Qs&*ob@~ZDF@%;{tQ~kf?2)q;&q5$IPZyE5AQ52v_6djl z+I?0xY>pd~aOu-qcv*Lb?)J9o=0k}Z82`sw2^qoLM&Y2jNQ=>jiZ$EOhVLuri60?Q zGHgo2+$fhiATR?+-tqFi-Rpx!8(a0Oqw2PHO^UAICp!~d9Ix({J10mySJ=tMairjy zWOUR(h#j%KOQ)#|VI>tZpZ3RC(l~@-F=AbwmPc+n?dk!c9?N#SX_foYJMZv2{oMVf zSU2k>X(|)H34%z1<=#4;01U@cYKbqXJ9kyB)E1sHZ9JBbJi3=4AtvFzB5hu9!iw27 z0ZV(|m!s4T5q^$UIr^{;VulV&VmA6=sLsZ$Tt?NF_Wu2a_N}aGc zqK(Ab3C?42sPU@!UmyBz{n|dbi~q)g^_WRC%{E+Z1>n>s2}WYu#ktJAN|^o_+|w8i z*r|8kc&33!SfJb_C00$T^q^ziu1)Q}o|un&$e9IOCOt9K<_Gt8{W&*x=WE*f&f!Su zc+8{cgF?#*jNQ&Zqf>8wo7Vr{GI#qO62m4__><7m^fB7t03`z6r67zUVq4{uHI{nn z{?Sm~lmBzlvqA)>LXBNaZUVs?3VdyuZk7{^x4OS z4J&nItAo!Mb!Ga2qTW0{q85!JodWa`)No4mzKBVK4=CpfEW+Ll9Y+3D&NEp_bTugD zGw0SQ7X$QZqP!6=kkGpiW8pBH%XXdH>Q!VDchRruyA6a*cdFG;X=xJpp9P70U7x)6mjQUIbsZxIr=xfxwzMnhCw z3~7wYbiO)Tz#)m8SCnNUVS+^#JeWg_?E!+nRiP)D$I0I&$ouNa$YWBnQ92OPMEm(m zanrY6Q7$i^I!*>tU2LBdjx*HmjM~1B95paq+*94xeZ5`!)RC%(T}ED)3vF+(5BDH! zp@&3}LQwJovLBl$B zJW;+0nOr8nf9<=00&+i|$QHlNeqKTnVbV4?>wDj!MZN>l5=t4WklxtYXCLar8B@Qp zQx@jObeQJ)h4EEssJ~HhrlJhJXwS}r5llycpK_xuz3Un)Nv6mgm_RgPPmxUe4lC|< zvymcc=&9Yki=w z`loC`;F<<#`~8DugFhB`Rjx4hf?eMXL;Mb@q12#zlgYN{nDtc@5nO*s*Vm8wKudz9 zW2K(2KdWSxFSVwyj3PPEW<|mmA}M{t zo>~Bb8gcwIag4ba_S8Ez@(JSf+e-xN@xG$u_v~5e{k)AjB>)S+#papPjrgupJ|=9b za)PBXsz5Z9@t)-2YkCIh^G6FFN_tDQwKw?h)0lhtFBRy)7QLqt#T$FiAfYQ9W8)Eb z((Be5$d8*kornwGk&oG~q@V-Y zHT4XC%@5`Ft@EI;`^tk63Jm?4E##AR;Wz$H`h`+;vTB)UmJy*H`rx@=uHYE#Vi}a8 zU<##qGunEGblA>r(G|8s@s4lTdEF{fG`|1#$cgrXVz8o zVk-)LBx%OO{cGB^*(~X!cZk`aO6i3eZM@d-OvcNnP;I*f)+%Rc*cOXmG`}jth%#)X z+ake;laOwE9<_sX_DZT9Mh9NUIK-qr%W`;})ZXd21XxI_-`J48f2 zmG$6aF)^^yKh}&+jp@Z*eslBF-TEC*v~%q&!VOvo$}`<~lfXh5D7(J?r-!%p+!9|p zt@V%oPQ=;jhaUh>OPclXrcqZX-goHo*HzzfFE{J0$IGa&4xiqJ6*{O1(T0!FdRmM2 zQQICzX%QCO78vpRz8VqhR8!<^n46?kEF2%)m|28$jU74;pz5N$`GbE_8PL4O6x@0E zOUX&Epjm-4_31bK&S0^Fb=<)7CH%tLxTP}eg^q&Z)mFx=U=4c8UKP^iHL@O~RY80$ zF>#dFsYjs8+iLTLGEQAuLh49w>lUyZemc19JvGv4=%cV`eq??#(>r0Z%3JMdoHh!D z+bovW6YX}i#y?M6-mWSA6WXJfhrh|bW_f$zH#Eh03L7HiGm-_M35h$h7YqLBG5>_d zh-UI?6GqGE+=!@>n#9kOL1?@~oW#0&i_tSDzp(YN6LRU_%n;AFxS7QpEO;Tm!qiwp z!iW~s`CV7+;;8!D1r9@OlH!;CGrocu23~~85JreCmfxF(Z^z3xD;+h^%bs;~kZ>8F zlO+D3qXaZN_BdI(7#HX1A(^4Cy=mp0g_8X{)ZAsF23D+g2grYJ045nb&UJZPAfY$XXeD)O7yGM z$hg<;C@`OnBrP;kTF$+xMw-6StZN7L5UfXSN<|-szk9MIr4;LL&FYYMYo?n*C*9%1 z2|$CgD9mVYQs!^&Fq!899il_SbXYKHM!z0A^4-c}V2Hj`LzzcE#`L#qmfY(E(r5cF zzacO%D2ih5k0444Hc3m$Bx<%LoqCxAbnDJR^D?ihALflVcmqF~XJC{Ck~&$!Uw&i5 zSVkRcUh`2q3N6XXUGq|w|9so2Hs7-UmXLAxQcSlp6q%l%mRIy0v9+oO|=xF zaF9P9`l)k3v6Owx)Ah(om&6j-_Z>pmq{t~KH_6vrISWd^K-?50>HTgc6sbGn1L~oz zJ>ZePL7yTepP`CKXyglkf+4CEQ(i6q5uEj1x8h>u-I}~zz#5w$LQmPd*`iL)@z46z z7dpsmK3zm-1e|7uKKBE>s{J_6t&+_wj@Y-ls&rRp_UYv*&o`0WBn2oUs9iW2MUx%U z6Or$UTDA99&bQ_WRDZqwQ@%5jFAU#|#)QVoav7JK6~RhErG46>|Ld{H+(djTYaw+5 z+TMvw(gT2N7ExjizX@ypd`#gV?+|&Fu(R?Oc1o`O;X+Vw|JOy=)y|W);8E(&%Awvx zM%A}xjAtir`H{W`af;SJFR0@cE)v2uPfa5s+0k%MoPCC|=_)!o9#-O7z-a09$|W}f zXMLeRCPIbz<@}53zVrLgVx#@WtKf7(p1p?zC0-}5v=Wd=gNQ^2I#Js_8Hefyo<4wMTvBD5C# zX-kXTYLZLXmt%R`LSBvkkVbC7I*?p|$R&ZEq2JYX^ID75Z?cj-ga~}HW z-|sB`(RjtV87i1tYNZCF$4raILMk)ol>WyDxMpph{YTA=IcdIP}%WJHiw5@0^sux(=ezm~_nF z`OuyNR_7;TOE2g57-L`mq8^}>tB4&}jhy}{Z#OD0EYbP}@dQ2iKKqSgSxPRLTMh^3 z>9GNRKmOL!V~L6!ZnwW>?B`TF1loi~qrIlczV7s_AEgILgp1>V@{ z?|ivWmHoYR9BSmoq4WWUxj*=XJ09kD=AD>0$DaCqy_A?8`%_}$iO2%hJ-dl~dkFF# zovcxw3(^%6nWhZMRgmb`*VD1zrhYT`yTv3MwAuOLe}F4W)RJK|AiW&0_g|r(^g8>f()0>_z02@Ha;G;IziB7q<5FkNAQ$KYS2@q)IU4s zYzXMr8fP%1-Wh-9|Ex`kgF0>z_x${{Vn`T=ZE+S?)E4zRQ5W0$l$mQYNgno;`d9Yc zFp)x3A|bb$JT!j03tAa_1X{pNjf6}ImKeh)e-f7u+fdcuNb^W|Ejqo;=T<}$=dSX& z@VLEpooo{cw}T~){^GSp`PB@cl*f}e^b=#Y4idiQaaxRDPrC=@Ulsh_of59vmChVX z5YSYi7`Xd;7Q2(a3;4I)n;(d`o}jfbEaI^+Z>TzT8&)up&4vb1N^uYSARktwhC3z& zP@B+7d%d>GLI?6I+}K z#L2YE|L37}@%Wz|MJ3GQt7%Y*W*SK)f_>B3zJ$|r)>+%@++Q(hiO^F%{5SCumpAQr zr7Mr82yes*8>0B&$3jCc-Ystlp0TS|bl}OfwcT zz2IXVMrO~@ev^a(10nLenEr7(?u!ak3{)`5KX2D@d}<)$2+xXqK?cS_)M13F1zeZR zdW%D&sWvz~4m#a1!u2S8R!^lRl0@v?qs#z8bo?_YmJ{Sen`KT7S@cl7Ao3ZKXP`_Y z>uqrVDo4qYJyj1h08%g!%+kNe81kAL^d8#_kPbo&bK5g_iR$KuSVS`TFp&330H22H# zKgYipDl!=azlN4m>!9=e7VGTwarA0Hwp|OqLaSrCeNFqu_i@7j=G9wvGPs-`e+R=Q zUp=rkhjC_l*}{7@%v;d#TvsqvUZ{<@ZD)00?u1)2F%`S>5sduUYCbr9Z6Z%ZH@(W;KL7i z{Le;&V^o)}2yP9*DKO&DwI~N9G04uvO}!dN$#B` z0~_WXsWVv1`x~U#R;vjF;C;TOAoS^ZMH@#Swghjdb-%ZAIaaJKFL2RSm^gH85d=Tj z^9Qy|02$uJy_-;4?C~%U+WxA6R72!2SoZ0zHj4A@$Mr{I zb6*?VF$G|jn=7ef66+TC5T%U2E}IH{&69$!D&E2JT|Il&+fjh1!8+&hvbI#CpG8m3 z`)OYAGS)27Vxy>VCp?|TV{hXNZ|hC!5`zl#qsBd>%PvLtrC=(Knwkid3LoA9HM0co zGa5C=DN-6AH-1IM{Td5ZlcxTgm<jE@0blfIpWR*e{g2;iUNi)ObOjChCpoM`_jf!dPQ526rk&`S_l9Bk zsgcUi)x=-ZGJE1pOO~9~AZ9b*DpeGv4L?9Ks^SOxpvv=X*yX3oD*mDOnts)H%b%Pp z9v^%yx-=#q?}%=+d61V-*$1nA7N~Wbj04h7U_2oM_1j(+=Bu>Rt&lbKxkk;s-u<)o z{n1TK80en4&c`Cuww7ZntCep8C72C&sVKT~x8G!$!uh}vO_8Q78`TGgc8xy?J9|#T`w&UUbV5bx)rjU1^pb{J!_w z-U^|uttp*FZ$N|lt9@3feI7r|m#u-XdoG`s_ZwOT5$++$s7`C2XVFfA%6^{5(QXCp z9D%O=>Rca62}$({meU~+#ovY}c~4bB@ZY{PQUhC7=6ME^G8~}I=+Dz2@6^kX)!hOO zA@2CJhTg?x3Bl@zl-z$QY{tSv5NR(F;fERPxvTB9>Y5~04nz>O%}Op9glz3XPa3LA zdtK!*E$*DoM854GNqjqT2C6>fOD|ugPXQ6mWlvXltGnZ0O-`)-;+Y8fid-1eb35A) z-K+NPNuRphO@JoP#jt6-bze|lT+R)OW5qGH1@dq-8Yrrwl9$Ro{~*O#;ISSKQ549DH|G zSD-<{|HNSb9g+PLnB}6z6lOG)8~uH`mo?x-Jrs0)y+zD4B%P#}pgRug?&1^YIrjg5 zzhO!de^BJV;pV{mXGsB3rsH1&|6QR3Y|p>{4)}o8Dvn$ji*?Jb2)^?S%N-n{urmbA zce~4v!#6mVM-aK8t>fsj9&d1`1442D1hY`6~17*k8o2y-%e%=+UdLckl?O*^Q4{ z7Z10G0;Tl}GSFu(MRQs>LU2 zz)>jO=b1Yi!?V8iw_2KG^-5G4Oex?ZfDK~ld@@w4%&RQWzUNn$VOp1bRxeH z^s1PNJK(=lTp@V+p*EOX(!W5{=oGCqS0UDf=y_4}>y+s0i7NNBTzWK73na)>sG(V^;gJNE(k<+_L{I=WJrfSUT9jzq z=lwjqU2ehrgG|vcx#3%q(dikbp=`|=@%QiI3lqwtByTwUyvA>)OG~1eeM;%(wq6HS z7#KZ{c$Y}0>d-`0HP6_+6Lx=7d|nlOCr84P*G%jzuhtsRJ9+bBjFEDUL0Y%|^zT4| zs{SBV=%^TTb#L7}7vPdV{#-koRZc@l9`?||nMm@wB`W;85DeT31q)PgCapR>OMOBm zYSU{c+QbHZB_I&h7N0;aY^a??hcyY~!P_{40%uwz)z5l96xbyhal-Wo`5k=(Chx#LnPa~ z*9hRuqXLiLLMr9S)ISb~Yz{ncC`!6P@hF{q`$BocSU!5=uW4%!E83ZXMa2{*;12PL z6F4a}8fV9e-gzJc%M1FsR5gnQn;1GAiY6Q7HSY9I+D9S5=A%>Tbb|OzO^Cv=M!-Da z;fe%QUUqMaUs|2z09)TpJ)d)yWr3RhPlHY>2JA;RWbuY}BouY_7T6FX3v`O^Jb0O5G({BI;Rd1Izmid(6=b%KK`LqBZLUyc%ch>tT zsroVCd+|>saE2gGCDz1pF{8rzy{9{jn zSQGi3@V~Y#MoA9&Z=(*_IR!zc|M}eiWu^WfU+U+QqoO^%2^qs_qSHA$wmKE237z7- za#cf)M#7mhow)f~S(G~MQI7QvT@u%~Gy`=7HhE*dtvEDJpIiHAw)isJzs&L^*MIK3 zpKH@8Hi?$vG`-LzQNmXyUVOn|Mgcl3(riaTC5I(9(>1$fRpa+mn6=YbGPCL z2r$Bvcx9r0ZLIj*##L9@Ux!{!wZN;HWcVC?Zlk~4bw^p#|8?->_$BP5q?|9||*Z|B~3tOH|I^Tk-$#OCsOKqGPQ?|2-00VKa0$@;qRR z`CK)zOFX1k7Vv6oB%K3;bv0(vStciEv#&g<%}dYgLGj0N-u6XYst+c}F|0oP5{aG? zH+xcHgG)LoG>OR6F)byINj`g=K*TGXfkWFTlb#Ud{Zz(tvr}xOc*2y#Y@XRHX7~i^ zB3=4d?L$yoWsvX7+f@c-`R?kPogg)7qd3n8zA?$0vBNb=X69yC7vLOSXJWjBHQ8jD zJjrMco6oji%9=6-@KdHfbS2UsP;=Q|ixeqYn@9PzJsIk@>hAg&XD|DBRq{Na5+zk1 zdbxqJs5MO8j_Xru#xKuD40h%VRj3a$PIOugNE)_{@|!hJ>i>OwF(k_|g=JFtNQns{ z{VNz&(cf@YachnRAnVK0T&~&b4~Dgavk$G4;|k>oUG_CQnbR5EA0kYC_D}4(--eHp zDp%#yvS~kBCB-Bq(?eL20C{P5XOJFHFHA0{=1rLVD(=ZaljBI9(mbEY=F z(~d6$GyWq-aoPO25K?WylS=ZcyW6uNoHG26uuoq0RW~`0drgr!_E*-8j%tCPp6gNJ zL@^9(H$g_*>q-)1rU^}3D3h*D^7d6SQpL|XIXP@Y2X&(%f>5_a&q)LW=Qr_+BWOzY zIVX;~(RF;2vx{O@x6$pb#x3E8{7Tp*3)E71+N8Gu=prNmp1U|U{V8j$A+sO;Syl{O zDCwT>Tv6w0VDlhOh6dyFMZAPB&k2#@MIGJUGOn4mMNCG?lfV~b$=GsjT@tP&lkE{J zkL?&F=G?+si8_L1#u<;>!O8@J*zwsylorRpE?K5?D&Tj5aIK znVrW!;idAbdEd@ax;Z#hhZDN`wmgnBFaPeUcAoN1(&G7^{m&jp5ux@(aaNnHRSJ;I zs%a^aWVW!l3pDO}RG(!CXucN$u1%)-JMCF7sI!W%6C zne|>5EziQQ5211_Q8+5Uk*<@5&o5kQYPEuUN zWgd<`P;5nMyp@#PC6!P%ldy7>3Jx!)SM7aEKq+h=*dLN->EGNv23BaGQZaugy*TKIlQh`k zQnvm6_nktdgmnfb*MhT%W@65c^{mBvAB(b@bX=;^h~GQXTWa^WcpRKl(EO~TVV^e2 zB>uSvN6L4?;`y)8w=RE_H)xW1RZni;6{=k1&RNKRC>>*$IH^|lr0!U-{X|i5=9rag z_BCGq>C3=~LGJ)dImaMl{tAOC_D@IS3Sfw;&Vmxvtu!4XZOr2_s-|O0jDxSB&fi<~ zfh!AFh#RGwT<|!0;5S_V$rfS_7{G9Je^~I?&H=b0JvEIcbAz@;27{`KFAQ#nL3fV_ zlZ(u9i^=dI?M4N0;kfj=?Wg#737@4Ijyt?z7lQVE&A=%7zM;msjVI_e~N?ob@@3* z_C^GA*xLVQi&15We>s}=H*nZ_sXTHc~}cUF{%aMmKOLJSq(C-B7Tn7zy60OGEepM=!76Kk}9J1>}p4ON)U(7O2^WGGop8 z3Y!`s5Al=H*SQ- zZ*F)N(%RIbHXu1Pnccsh+QIz6BUmTJsszaa3Hr7EKZeK=1$de!Uv)sUjO#hS@1|4- zQs?PyI06W6>ks-?+E8J!ur3jafF+v-zv{*crb3e-Nf0n~6HU|1uA{=vmv}04PrB`N zzki&$C!?myX=~K^naZ7=*p>fws3Xsxdv>63c73{Y0ymjOsgJG$7_IT}M9Ak>u&r_X z@gKix52^<(rp8s<;>9E}=-!2{vTp`eVpn$5v{uM54Xf_GZrE`($+s(!P2To{a5W8Y z(f92LOugoEyo}O$UP|$ax4Nliu2`eS)7($w?Yr%VP>N-Sz?6u8+2tzZf@|3Sa|q+B zQ)!rQBn9Az!Vftl8SrdFe%k!=``v&(NSKoZ{}F;oAVFhVmoz95WuPC9^+|L7;hgB} z5kVhLfME!sR(zj z1$PC&r$Uc$sktw(EL)>{k7_e*#+X!?v}m6LG4u+W{TMBPhjY^|o(OGcWWQlZ-}KL; z;}WQkKuSa+hs)IU>Kha`iB7n{YucEWV^(@kf$?9?PSJI6Ox7Ihg^aqT{*_P;=_6iq zSVwAg3mT0I( zT&ri5tLRC6ivIJazb??~av)mP@F=>J`>iDFgApk9wL0{*Uy_qFHx+N6-GRgrrgSj{ z6+M+<%HPXuf&$$6RQO;*sH4dGHq|`;BEIV*mlfU<-(X)n+g>aX3fHM0WWinK{VUR) z4b9#ngUdzrpY!vbp(x!LFd=MzntHJ9F9jC#JhClGcE3koa*?pC|(UFe6AyQl4jQc{kspi2G1q^GKJ3YSUw zKee58Sd(qo@YzO;9^EiPKsuyr^i-6_(G#RY8kBIOkya!mL>g(Sk&ciS5Rh(=1_cQP zgl|00dwjm$(BNGp+B5uQ=t@=i62e%dVGs32K}MzY0HZ zJJ~YHel%JP(^`)oC0*^=^1Xsv@~-y$hxj%){lU3Oj8DbQ1#86$Ns2x#C&eX&Bl>VE z7<3?ECHCdVjWWAWhGNmNGHGrg5x)?#tKLrlJtkPyv@&_COqt4!8CHAKAp8(oi4?He z({A$9p+&V4RSKq#T&~9Zby(XHRBA%}7cZ?$6?U1x-0Av6t6=&9PF`59qjUVhMp)}2 zd?~KojFBl@#jJ&a?mK;d|QfO-+_dPsZ-(8 z6Hf0dr=P(-kygZ?n~ruQTM7yYHElN?d_5!>;l&?eBUdal&7`|9(k_Vx0OGJ$RwC^=1ARG8y@q*0h7bcOinHp%1_tp&NEpsk)~yzD;=C8 zYYUoO0`CqQxtuie8CTe9zOx;ca;e`sTJUwqAB^`>I(b&6I=9uJZJtZsDJ*{cra#dr zGMj@Ged;%Ln)jo3A7scd{_fPqy4I2fIhPVq@0^GjB$?>4%vZGJSkI_4>s4!U$rE0v zYbpw%R2*p!;hW!FY9&RiAucQo+lOn%7TzE(p!AjJAN%O6y<~8EgIY6~TM;`3qUY58 zWSk#XuQmb0GXe8M;MLbF<|1PzY^Of$SOki(0|117JM99fg7Ttk*lWf;n$YPswgUi& z@<#b{>nVVUGDJ^DsnuPrgyD$GG(O$*8MGX_?CP+}#%L4Y`g-R+O9SUyWHp#HS$T(& zoiK(mi!=2uk4JmPm)`P~1MiaUB&$FoZ}fgSl3DU(`anI|(d0#|7^>WbrF>k(1+g}x5OR+BnEU{Ne0H9f;kOZiBl%?-v>O`Y-UlE|#J>AE@j z+zca9d9oK~*h#|WmxMq>p*#+aZ8`+IkF~_Wk^G^myp!oQM5#<#m)LVxq6ZMTUg}l- zl}1I@;XBW>aH0z;$(|u2p9X-BID|5qa1z#9_<+1~p`(#0IMUEkYgKm={Dp>1~l@LEX)izOP<@X(p_I(Y4b7V?C zTfI~KFy{PjQJLE6H`GB_b}+%4z%RJvHhg81E;Ut6OIW(omSnQ!VD)c$QlIOm?yU=Q8NOR;Te3k8REt99c+%y2DIZ;OWP z61D|5K&xFH%+r#lQE!ODQ6q1;*mL#UjjCv+~!f^WgKHL1f zBs&g-s8i9)XqMM$8GIlKwp}7y02=LErz#}`*bCH}ZI4tM4L`Y8;D@FooR<;ZF}rN)hD@uFLMBfnY>mNg>WEY-B3ujr$3p!asB$Cc-r4 z4m)=F9R^P@JVLx!&KM2VHW^(dTJ4>wi)BD0sPc5vt{}Qr?WSrhpObTrT69^6RtHn0 zA_=48`R7`-5$fr3Q>HDhUbC04^3N+0TZY|TUfb^6Km0mjBu5)aCnXp1j?6ewrz1m} z>3OqeWZj*?+b3_O3JdPNW@eNrDk0dNplw?yn9UW}EHqZ$`KoQn;@hWh&3#cKagMCm zElh2Ylqf1Reu>niB50kOL0@A#Vl4Suaodm)dao^gBE2Ut$R^gNsR>AUIpehZ`yY-GB?#C_saPwo6Z_ z!b;UxRfUo~Y7|i!UkOvW7q`*zg~Z{sU|xPw7(|tgvj|3uo+F=kYz=VeiJ=1vCJX7o z&p78{iVw(zh8VyXiFN&5s85Zc!@eszb{pVbiG+PRxpr&e`W;Qrsovcz%{I}NpbD?$ zEfKjzFQbPg9jC-nTgvYVSNJU61LhE!b=)vnmuLtZAUV(4Jab(eLih8{4-c~sd%6!| zOItNod_i3eRP?Uz(Ga!18S&i#)1wo?_5*h+oG`~o`HuzB_7OG~Zpes_I|~bdM+^vm zA&g6Fg0)RIC0-fT+^g=M9I9TtWc&H*Ah-QcXyvVZLc(%gJrVrWcWup@BUvEalZV?0 z*%&@Iyi^sU#t^P34xvC)xVU|%*OMq*@w4;HZLe~Z_)7(fI%Y9J8T-{!o6P*)&Xs+x zUR$5|0bxi#2k$F?bPHxX$iHPN;sE_VAfnIS_=m;eU6s49IZI7dYk$&XYVHt@gA+G=G4DDW+*Rtx}uaMvPnW5E>vt?X_1d&gLB#k3#3qo(;Q>KfWiK zN~>hLUj3P+&16p5`V5jeB-(?vPK?)c+bq3BmF~bb|LgHsxDVle&L8j()j9|2cc#_s z+uJ&93dRSlzQrw?xDfZN0_;b85iy8i+#9f1DsKY|xsWE#1GC~FilqeeK=^LLQ5<2* zWxTTGfKZ}tQkuGN$RY|YS8DD$ERZ0VqUQttff~eMDCN_1k&n^jC2{9U)L#iOaMT+59({1Vl!)S6na5 z|0y#-h6Nh1=NCcA9pdx)w@{P1=DE#npK<4fM(n*Zscs5tx~i?UY-8e3bqPc!E}61z zb|XeNEDnW1+J}ov4&W)kU3eN9vYv)^i{Qc}=4sd?P-vJ^gy`^+(OmA?+$3+c8k!$O z^?6+#cd5iXwh2rsLRFT3QJw_Pabam(5lng$kt)*7gAI|R;oT*^PepF=+Fem8oZC5R zJ^;%UzTv<3oSqKBhQwyS+UXI}8@cPO<+v=hZY#z?8r2xHcRflDFQqT%)Cwmxc_!^c zdn~H?eP&f#`w1na37H39q2ubRq`j@Td-Zt!1=N0TiQfwrY|lDhKE|Tq{4Erfa0r~F z`)jm-G)6Cb+3mVc9y_^JjFQV<)A19ajYSufUE z7g<`;e$^yc#ly$XN`#d`l-V)uvSJU!EF2ec!J?Xq2Rh4-xVxvPLy5;;#}b9(`$g1) zEu0{d1ip9d&~R19_!H9MGZHQ>eAR5XT^g|3Sy^CBhZJXfc>W{P93(6OEj+Y4f;EPn zL|L`C6Tn@jfN$Jg==uj3`t?DZS*q@4N}|&gGH}HO9)nMo!ctt?6Vx9UsV)iFD)E0C zTV8*3FFxFDX8yhUn-Brs^AX0kZ~@rLE!+M4>Q+2MAm7ct?M5Rq=y?V@&^V(yd96C(K_QQf`B-Co6g{b2_ z_sXs+5w%2v!3w7ez%s_p}?a|jE5Z!0^9JC z>Y55IsMs{xjB{u?D1|`phs>wI*AK0)*QS80kyJ_^l~fLR!%?}R$oi2_Eec3CnPqP4t%ESGu(AiI3*iAM@_ zb6YN|dH84~ktzup{63-p{gBxvtUpT6QyQujPG1f+QEfdEf>i2-yz3YqqY9un_I|%8 zrO1GgVfXPj!v+&nN~uq@D6bp%SI|FP(#G8iN$w;#KLDPF3Y9Z;8N3VW4=$bZpNEn_oKJ4*+_N^9rcP=I=vmf3SsGUD zMtMW?81)HE_ZRslWw6*Mn;oIQeD%~q<)=%CETJWj1TqDFojhE1 z4iBt~@B*Gin##=|i`OIL(b7Voqnbz;e0rRHKIn2AFBXW%cO<1vG$vU!Tc_|F)@0)R z-ZbZt$Vm~f0gYo_Tt!U6E@3aI)o?>_482L#HOCQM?`A`$G83vl6GW5uyuyd3_PtOs zqORsbFCQj0S`-MwJmTDxfHJALNW_?k+%%;==s^DZ@cUh}B&<|*Jgl-|+6Dy$9(EHR z-h(zQ2UH8D0CG+ zL|+EY6EBFOhbVGO_7Fk41ak=PK}05#&$+Sz=h#67j*TE6ruoc51cKYv6&udGJ$aoBNX z`Re*?WNadDO!n%d8m`nBJo5~5*E|{eq8rO<>d}knziZr^B`18+`>+osbn>-$jCAtS zSmLty)`GuQ?i%$2$FA`jaimiwi%$6LDfP^_orN)y@oFWq40Uo@8)zEgW{E-Y(&Z5(YcV9QhB_F*epE0&6B%jKKAiwJzd2xq0#Oht|p#GwCWR0kb$n$4q=W)9Fa`));njz?}8&g$UP~6 zyjlaV0!1iyD?u(SnA=RGEDFENJMd#PCN`md=6JYOEdfN2`+akmtXlhBb7_oO_@pB6+^}$Zf0(`r<5)F%UVIGD>5-f%6xYH zqrRq@&hJ%2V|hXn3$N1;F38!(h^A$;GYcgPbIb59Fm3gym?zvdmJ;(bXj^4+_iw}f z#3l-?6lCk$Jd2p81vHoOjN3bFUFW&O-4`L@OR&7x|Zh~9uTO9`Jhh-4=B|LPV<$gwH7?B2~(mj zIuCnn@SUOsd!FMTnnDYf6%AF8_^I&yDbw^2=s$84Na8daT*B+9r0<}S?Gdfc(u{wJ z8A z5FoGJ)<`Cl4k#w(1m8|G))cAkN1<$W-?NfW0H(r!*6P*Mj6po1r$~;S6#`$>tsz6} z9NLEcc-WJl?ld>M5M(t1r&;>(Ec8z=Z()$mUmY3s@kz%Zw}*@hJf6l7cGDqzpzWF* zQllfDhl(ng9S@y}MeW5e^S;DWbYh*06>Ccw>*< zcz#y-tY9kH9twF<=+E@vA`$7n>t6F7XI0?zq`)TdfIxBwHiW_e#DQn$K_~1@4mQcd zGN~eXbB_LChNAe&7kLKeUjya{=*1y<$c0tkUR5UDvQvpa)6(wB|K3R&HSzv$h`zx>O^H>)c(M-j~&HnHrD&69xuFzT`7YEn7vr)z-k&L_N0A7{fMTu&Rk>NIO>>z(wod`- zv24{^=$6>21)`IPK(b2ER|0qOXtvNhMPkxwWUCR~p)t>FNEILwIUz1l?UA>~QGuc9 zk9PDi!;*GX$XYg)~@%C!S4O!6;5MB6k&NKP^-JIfB={VsyKT$Zs1!sVrYO-HJyIEPwLYkf;WM_8S$hPztC=dARW;F1#V`RmAJz~lF|gl#L)ysp#O z{qL@tOk|4+ADwZP2IuJrUcAumo>^NnMKFVk-Hf>uV5MtU*|vyQdOymAvxk`Qo5u_q z9vZ;UPsB*|S%m0BM)mRI@1e4{t9P(+TC%9E#~Re2gy5EqYUN?fU*xs8ab<=vQTi_r zozf4RgFEdtIBy&iUFJ-b3oU zSX6+GhKPAMcr(OyKst{+dZTEZ>a^aCivY6^=Em3b+LULA`~6SVoL6Om@&}Lc@Z%r| ze_dfeG2zQ?TPj!DN`CS{&4dFVdv&?yvNgN$Yr1D{HGTIJqgziTljB`9{3`r~)I8$L zL%0|oQZb!9OCB81tjrRT*ajqzy?`_w268nD8*oQOX;ucq_cKcqE<*d#&9l74Uf;W> z;*xXDwILF_Rlty(kt2{FwZ4OvoMici`pqJf;CU7qy8Z0>`vI}nw}@df_1(s)T?}Wk zkkt^9wHMGW#H3W93x)5A7F!n%3hcbgCm;h0X zS`C7W$z!-7jL%0w6-?~^rIx@q>mrkqpd(_$B>f-bMtoEv{FrrixI};4{ZaKalYkYg z{#l*m=wi=vB}L&dqe+G^p#yG`G9&WHNpYQwTj+- z=}Sh9cs;$zTt;GBx=KggiC%;9Vo88peVq)_&S?yDA3+y-37!#Z<+K(o=qH>AtTW(1 zO-r!`{hb7#acvQ|16M%SPo_)9o5_Tvr=QNU^mfb=o;|4~_2;I!p||mA$F+JQ`Vbkg z6!b~LZJINZsbWO=Lmh?L&AbI0&bP6t8HIiLU;fFD%Q4`R;|J&reNEkcvrU9I@~hJu zqF9O{4{Fkk;A~i)6O+4#zD&i`wAL)S1oQ3Rj?WYNlJ0AgR6(}=-!PjOHEa(+itQ>?}XNYEkw3bv=NE}EN4gsC6wRcjv%R8{7aJWlzMr+6? z?NtXo`)%)Ab>Qo!M>HXxWlo1`NpN}^*aK~$M76P1s@!DVU(MspP)nksmzpqrHpFq# zYh_c8w=WtbKdh6}Y|C^~@guX*+g2B4qU#7s#_#MJ;Jfr(--$Ki9S?Q5 z&>gZGxHj&OV=JowHh?3@G~Kifg$BTaM)Dk*^RgxgjS9uq;L)=}3?aMtQ)2W&)xZwv zgfJ8^meKp+oz`Bp=%(OHJ>gZxjvnMJtBb`TF0p@4OiDsXFAuxgAio zST+LBJ38_$pI&Q0#uTI3l3zsdg!Aw*-s#f31GbJs0r5xw}EKrbn_6$J$`(Bmb84h^gp5yev;pU}&pbxpcp z7L2rok;j9lNi!ZWgz6IG3Lu!Ej6V8q@52T^{^8~4)hVj3j9D(`8H}V%s5Kph<>v@w z@E8>&0h*HQIzEh8dmF87GoOg79V#B|IUF|%oaQ1C>m=O)Jnqq1VI`iA%9x#Dbtv+u zh}!lK`>Qj(EQ|O9i#xL7xPTsG-AF2}9rHcDYY2jR=Ryq?J0$Nk1;Cb@PyhP(S?bJG zuFw7Ab`uW=nG9r9FVdhd>F{wIXEheZ$Zcg<_K(*sD9Pl$M-=}jD zx0}1KPa*Ua`Nca!U@ls?IvlMRcJx(6b`mVQrCy-VP?x>HQDhM<98DCqHrlfhz|H*L z)z;Kj%-vk}puv;CAa95KaA;e>!J0=OoV#}-6;+QS&mAz0a8gQWq;rDK9R2NGCW=TqLXL z=KfIc)<($>Kf4Nx{=pDKp-jq-v(PNLre6(5*uWithpMsEh+)HY$F$YvFEwM3cyfcWrSb!6aBE@ zEgBZ?Zahis5jzdV#Z^)y>`9tkcqXDFSj{IC9(tk4@}8_fUs;3hSTej3SL?x4Rr%=q z=~ql=`-dNiyU*9A;gyyfi#kf2^BL_Z1P}lWGl^Cz5>DP6qW_NCZa*9Xq}UC2Nw(+< zSEs76m%mB!M>q4$v%qH3zmuGyGnza&3||uMoHLI42WWAQ!ur&h0@yj{S4_2-WEn=} zXIXu*fiHL8D?x+ae}O_XcJnx()#-r}llS{%+#Q?CnZYI%XlXT;wO|do5~2a^%xyoD zeWLedZninPDe=1?a6khcWOimKCE`4vjgunxVRdzaxRD)}@tOl%SIIx~r zHO7am;kte0mtJz zO#~$}3BBSy%|qZxM~=GsXEJ((M|zLysf(Xypcz%wK#@vQA740fG3(svVa-?QEaSlAymf<2A@ijj8YU;B{f`pMrv4IoZ|&M&5E&Zw3A~**Hyv2lA#WE zxCkHq0Znk&+T(qPMIuFqqU)}<7Q%7+fXF;k#Z!B>S=B|1XEVfRhiYkNZ2c#PT@{ZOMxusr9l0Ie<| zKji@&uQulLGvw=T%yKNJJ^l0Txp!mMUTxOU8kMoMdn|PX?X7QB+1njww?rFuNTu2@ zZICZj*}|EF`p;4mMc;c=0c7cc#O-l5&?pHg47p715(}pn{C(t3$O(xY^3?i?g%TWE zpqO%PQK4Sq{4#mqfsV8%-t0SQfH)x+<3vE!(^y!E!olajeRv+^NS|n#%xr?eyU`s( ziQJ)k0FlT&h|U1Ta&ZSdhM?s$5YoxAEH1h5-1x3~s;#)A5e7+2x8&kXx}P$~Pb(kI zg`XLAImO-`bN-k|ip6+8o(cJUYXi)45RNz)h7?GvDtD{3{#qH3{82WO=*G?K7yf5{ zx7<(cMJ$))oV&N7E;8ZAR)*B3_Kw0hJ>fX-#-HeVOPkMgr_v?dS0?Gf(^?nHS6tsX z(tp7)UYtlx(vY0EV|nrQB9?pKPh`sGg>ieszfO5~XS~cJe^uM*+m>%F+rBo@Bb%=m z?f1rL9;^K4ZYuwS~R55fNfVfp7g|BZXm+{q`ASrCL_88ooB zVj}+j=UyKF6J@m74tugwY$cQVpE#O3TfF}lvH5Sr#7irle_-3-+1~z5b0K4Qkr?hk z6ZoGtK_guZ()=vSjNKv8NBH#DkJq1fZ{Q!+nu}ZulReMc86slrHfcLi4D`6R&*6#} z2Lavtw$`D%90+-_W0FcVyJR~54+BUYMEP4rP9FzM5nr*J@3SAB%`gjAS?_K9DG0Jd z(x%-xW){DpV@feCCJ^A~s^^U>m$crVPl4_-`j zba^oqld`Oy5Da-VDO#%>#yc?N@RO-q8IEt9$S^Qud_Z`C@`YU1!nj@9QjF)2{efBx~lV)=}CsGQBLF#0s@y5#u=hRJKcDrLB-p?FYLV9*FWM2uy3=@-)0Brt%DjXSC>~0sI^2f!liJek5oK0}; z>8Y*V>ahVjWuYP=pKeRUohZ)HP~9eF|HktbA zSKJ#udhJ(F1Nm@Mf191#;4rf6Nkvu4vsu;z9*S0^Sd@3ehsojl&1r&_TS%if1{+mL zOlXxmdtm{gqE;PP!wm-9MJd+&Jzn9hEg|^H zV@4EiF;UEhgo>*W;r>m-_@r#}MczZ)mpHgp!aKBvHY@)eZ+}D?PW!lbAV6m0QL`E+ zzJ;#^W5+=Qk4mZH?R5jRcc@1aa`%k;B4G~H%!PY+T+E49pZn# zdHnyG-ujP>f#rG2QR@J49`2#wq!7z8vxF z&e8)PY(BYro{ZtG*x)w?eht9|H95ESgBu!jE>&bN40tb{Lo;6vM^?Fe7>bB1@nx&7 z&PC%SyGvX5j{>n#CD*%exA2Ep#Bk%~r!Ii|zc734qmmU~xkn$^MUAhs2BAw~JGH(a zHW{k?8w06axp8vzll{Y#w~=0cIQS(u*p`}G?GTZY8D!m5K0U4)0`~oA<5Vy7iL$Fl zz*G^p(WgE$*fB3}_(|HNJMcqz%1#!fcDd?4U^KX9+~>2iF-dH~`#n*V!fLM4b=iu1cUW4JEd#o#UmdkJbW=L3{o^Jb{q*PS> zkkigTN^?bsP{J@{z8We_9`B0YT)B- zx+@NS0CN_cp;RsV6-|x4Gkp4Fk~*k!djjMsm7A$#$h#9%Z}cD~V?<-{th(4hpul3F zZth;p&_bI<(EyjJLlZ-Jj+l0uxIYPDVxd7>-sEkX-eGHMlP9K1)=v`T?2Su)>wE2T zWi(3fi8YW$n>a+P>>T(jxYfCL>SPoWttTJl*P7MaR>-&8JV!IHxmP>%JJr$lGxWiF`4B%p0RYug1SFkBkPX$3-9iQr~{yb`u`RBK^leIc7hd z=-Y8Rs9Nxl$!LQ=2`OY|e~xOohxtvIe58L6zUmj|o>^-9av`Ppz*7?MTzl@ga0AluQILmt=AEf{zG7(s0!>fz!B9F-{=5b)=Q)VVpH*= zn6y$sc8_jY)UI?#n&-4EUyZ8XhTg#z!%K-IFj7XpRcs1uR`Cl8o5-bP4xzsVGpGN6G+ zQCFuE*G$%wzGl`{G|1vMLwvvywuWKAd)>SK46{r34;eROO#E+o`={Oi?9q4yIC}&C zBi&XSj~mV;@0%j<@FXjB)tX*H5Ivi_0VQ>P=_j)ZMDql@V&oUfvC8=p?1K)>4$_p* zIeq3!jKwDWjNK&@3*=Nxh<(L4#fp(4D5uCnK(WU5A%*49%UmEdsR;!qnbZ7C}O)KymU3nESTk6rCpdX z5as5|M}tPMyBdQ@CEd$!$Bn}$OdFlV=));CVmf>af*^fSZ_vZr=_i9iWnp@a@9lDyV$3epo0+rO)9To(dvS9fzSKpdd=+fgF8%vM)w7b z6omBmOBbSiGQ-UzoXRrcf7qY@*SR9PCpcRW8BI2q z{9$kH;EaVBb`9~a6>6{}#J^R9>Du?Rnkw(_+1`e_t3&Oz(r5~Yn;(R^88vsfjl=(> z+tY-<9#bj#fFCH~FGvz5ddf&ssPF_lV8A z-GnhIKicAV+lX?gj=G-jGt6kH6=WFOmC@wXD6mvy=8z%g8Fhc+A zsEKLi#rwqW{6Fq_Aa*wo8YLRUdm$!67Ad4)LTM{q?FEKuv!f|hYUPoYb;?iI-yir; z+F4r^|146Te>rJ*T(<)@%E=wqGl$$v4Fa0&ssFvL#~(^+RG4Bq&hd`skhWu$;$~-u tAF2HpsNNQruKo{Y{lB0wdDPagiPXurE-HAEwD54RyP6L*D%Fso{|EVk$3y@C literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.1/pred.csv b/cars/lr-investigations/sigmoid/1e-2/50_0.1/pred.csv new file mode 100644 index 0000000..71734d2 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.1/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Mazda Tribute SUV 2011 49.69% Jeep Compass SUV 2012 24.43% Jeep Grand Cherokee SUV 2012 7.56% GMC Acadia SUV 2012 5.73% Land Rover LR2 SUV 2012 1.92% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Honda Odyssey Minivan 2007 16.72% Honda Accord Sedan 2012 5.6% Chevrolet Impala Sedan 2007 3.94% BMW ActiveHybrid 5 Sedan 2012 3.89% Chevrolet Malibu Hybrid Sedan 2010 3.22% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Maybach Landaulet Convertible 2012 65.89% Mercedes-Benz C-Class Sedan 2012 21.65% Hyundai Veloster Hatchback 2012 1.39% BMW M5 Sedan 2010 1.37% BMW 1 Series Convertible 2012 1.2% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 GMC Terrain SUV 2012 65.48% Cadillac SRX SUV 2012 10.95% Bentley Continental GT Coupe 2007 9.68% Ford Edge SUV 2012 5.14% GMC Acadia SUV 2012 4.62% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Chrysler 300 SRT-8 2010 60.58% Chevrolet Sonic Sedan 2012 33.79% Acura TL Type-S 2008 4.04% Cadillac CTS-V Sedan 2012 1.0% Suzuki Kizashi Sedan 2012 0.16% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 37.58% Volkswagen Golf Hatchback 1991 32.08% Audi 100 Wagon 1994 17.71% Audi 100 Sedan 1994 12.28% Plymouth Neon Coupe 1999 0.31% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Audi S6 Sedan 2011 60.01% Audi TT Hatchback 2011 28.48% BMW 3 Series Sedan 2012 5.12% Audi R8 Coupe 2012 2.53% Audi S4 Sedan 2012 0.71% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Mazda Tribute SUV 2011 92.62% GMC Terrain SUV 2012 3.03% BMW X5 SUV 2007 2.19% Hyundai Tucson SUV 2012 0.31% Jeep Grand Cherokee SUV 2012 0.29% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 26.06% Dodge Challenger SRT8 2011 7.06% HUMMER H3T Crew Cab 2010 6.05% Dodge Dakota Club Cab 2007 5.71% Chevrolet Silverado 1500 Extended Cab 2012 4.28% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 100.0% Lamborghini Reventon Coupe 2008 0.0% Spyker C8 Convertible 2009 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Audi S5 Coupe 2012 45.39% Audi S6 Sedan 2011 17.84% Audi A5 Coupe 2012 13.5% Audi S4 Sedan 2012 5.74% Audi S4 Sedan 2007 4.36% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Nissan 240SX Coupe 1998 63.99% Volkswagen Golf Hatchback 2012 13.07% Acura TL Sedan 2012 6.44% Chevrolet Monte Carlo Coupe 2007 2.56% Hyundai Tucson SUV 2012 2.29% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 46.31% Chevrolet Silverado 1500 Regular Cab 2012 24.08% Ford Ranger SuperCab 2011 22.75% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.94% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 93.89% Jeep Liberty SUV 2012 1.46% Buick Rainier SUV 2007 1.06% Jeep Patriot SUV 2012 0.95% Dodge Dakota Crew Cab 2010 0.7% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 49.96% Ford Focus Sedan 2007 29.18% Honda Accord Sedan 2012 5.63% Volvo XC90 SUV 2007 2.5% Mercedes-Benz 300-Class Convertible 1993 2.15% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 81.77% Chevrolet Silverado 2500HD Regular Cab 2012 17.91% Chevrolet Silverado 1500 Extended Cab 2012 0.2% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.12% GMC Canyon Extended Cab 2012 0.0% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Ford Edge SUV 2012 71.52% Chevrolet Silverado 2500HD Regular Cab 2012 10.72% Chevrolet Silverado 1500 Regular Cab 2012 5.26% HUMMER H3T Crew Cab 2010 4.37% Chevrolet Avalanche Crew Cab 2012 3.09% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Hyundai Veracruz SUV 2012 50.4% Nissan Juke Hatchback 2012 36.57% Hyundai Tucson SUV 2012 6.7% Mazda Tribute SUV 2011 4.36% Chevrolet Traverse SUV 2012 1.4% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 28.28% BMW 1 Series Convertible 2012 23.25% Audi S5 Convertible 2012 15.81% Audi RS 4 Convertible 2008 10.69% Audi S4 Sedan 2007 6.71% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% smart fortwo Convertible 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 99.98% Audi S5 Coupe 2012 0.02% Audi S4 Sedan 2012 0.0% Audi S5 Convertible 2012 0.0% Audi S4 Sedan 2007 0.0% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Toyota Sequoia SUV 2012 41.56% Mazda Tribute SUV 2011 12.41% BMW X5 SUV 2007 4.82% Cadillac SRX SUV 2012 4.25% Volvo XC90 SUV 2007 3.65% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 54.72% Suzuki SX4 Sedan 2012 20.0% Dodge Caravan Minivan 1997 6.58% Chevrolet Cobalt SS 2010 4.03% Chevrolet Monte Carlo Coupe 2007 3.95% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Suzuki SX4 Sedan 2012 42.92% Audi S4 Sedan 2007 24.53% Audi S5 Coupe 2012 6.99% Suzuki Aerio Sedan 2007 6.43% Mitsubishi Lancer Sedan 2012 3.13% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 96.05% Audi S5 Convertible 2012 2.7% Audi TT Hatchback 2011 0.94% Audi RS 4 Convertible 2008 0.11% Audi TTS Coupe 2012 0.06% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 100.0% Bentley Arnage Sedan 2009 0.0% Hyundai Genesis Sedan 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% Audi S6 Sedan 2011 0.0% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.72% Volvo XC90 SUV 2007 0.16% Buick Enclave SUV 2012 0.07% Mazda Tribute SUV 2011 0.03% GMC Canyon Extended Cab 2012 0.0% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 87.51% Ford GT Coupe 2006 9.23% Lamborghini Aventador Coupe 2012 2.77% Ferrari 458 Italia Convertible 2012 0.22% Ferrari 458 Italia Coupe 2012 0.08% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.99% GMC Yukon Hybrid SUV 2012 0.0% Dodge Magnum Wagon 2008 0.0% Ford F-150 Regular Cab 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Hyundai Elantra Touring Hatchback 2012 34.95% Daewoo Nubira Wagon 2002 24.16% Chrysler Town and Country Minivan 2012 19.82% Ram C/V Cargo Van Minivan 2012 13.38% Nissan NV Passenger Van 2012 1.75% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi S5 Convertible 2012 49.75% Audi TTS Coupe 2012 36.34% Audi TT Hatchback 2011 5.69% Audi S6 Sedan 2011 4.75% Audi A5 Coupe 2012 1.65% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 100.0% Acura Integra Type R 2001 0.0% Ford Mustang Convertible 2007 0.0% Audi 100 Sedan 1994 0.0% Cadillac CTS-V Sedan 2012 0.0% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 98.69% Chevrolet Silverado 1500 Regular Cab 2012 0.59% Chevrolet Silverado 1500 Extended Cab 2012 0.56% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.05% Dodge Ram Pickup 3500 Quad Cab 2009 0.05% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 86.79% Honda Accord Sedan 2012 11.71% Hyundai Elantra Sedan 2007 0.49% Ford Focus Sedan 2007 0.25% Toyota Camry Sedan 2012 0.17% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 52.97% Lamborghini Aventador Coupe 2012 44.62% McLaren MP4-12C Coupe 2012 2.32% Lamborghini Reventon Coupe 2008 0.03% Audi TT RS Coupe 2012 0.03% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.93% Audi A5 Coupe 2012 0.03% Toyota Camry Sedan 2012 0.01% BMW X3 SUV 2012 0.01% Chevrolet Malibu Sedan 2007 0.0% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 42.25% Honda Odyssey Minivan 2012 20.81% Chrysler Aspen SUV 2009 12.34% Honda Odyssey Minivan 2007 5.85% Chrysler PT Cruiser Convertible 2008 4.38% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 100.0% Dodge Journey SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% Dodge Magnum Wagon 2008 0.0% Dodge Durango SUV 2007 0.0% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 84.31% Ford F-150 Regular Cab 2007 4.38% Dodge Ram Pickup 3500 Quad Cab 2009 4.03% Dodge Dakota Crew Cab 2010 3.64% GMC Canyon Extended Cab 2012 2.23% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 18.51% Hyundai Sonata Sedan 2012 18.11% Acura RL Sedan 2012 16.06% Dodge Caliber Wagon 2007 10.59% Chevrolet Cobalt SS 2010 9.56% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 65.07% Jaguar XK XKR 2012 8.29% Nissan 240SX Coupe 1998 5.53% Chevrolet Corvette ZR1 2012 4.72% Chevrolet Camaro Convertible 2012 3.72% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Audi R8 Coupe 2012 48.6% Lamborghini Aventador Coupe 2012 43.38% Aston Martin V8 Vantage Coupe 2012 1.88% HUMMER H3T Crew Cab 2010 1.31% Chevrolet Corvette ZR1 2012 1.21% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 13.05% Audi TTS Coupe 2012 11.67% Hyundai Veloster Hatchback 2012 8.93% Fisker Karma Sedan 2012 6.18% Dodge Challenger SRT8 2011 6.02% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Ford Freestar Minivan 2007 11.84% Cadillac Escalade EXT Crew Cab 2007 9.66% GMC Canyon Extended Cab 2012 7.75% Isuzu Ascender SUV 2008 5.63% GMC Acadia SUV 2012 4.96% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Land Rover LR2 SUV 2012 22.01% Suzuki SX4 Hatchback 2012 15.95% GMC Acadia SUV 2012 13.66% Ram C/V Cargo Van Minivan 2012 11.32% Suzuki SX4 Sedan 2012 7.21% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Volvo 240 Sedan 1993 24.71% Bentley Continental Flying Spur Sedan 2007 15.81% Rolls-Royce Phantom Drophead Coupe Convertible 2012 13.54% Rolls-Royce Phantom Sedan 2012 6.9% Volkswagen Golf Hatchback 1991 5.28% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.16% Dodge Caliber Wagon 2012 0.62% Dodge Dakota Crew Cab 2010 0.15% Dodge Durango SUV 2012 0.03% Dodge Dakota Club Cab 2007 0.03% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 84.06% Audi 100 Sedan 1994 7.94% Audi V8 Sedan 1994 6.62% Daewoo Nubira Wagon 2002 1.27% Plymouth Neon Coupe 1999 0.04% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 93.48% Chevrolet Corvette Convertible 2012 1.91% Jaguar XK XKR 2012 0.89% Volvo C30 Hatchback 2012 0.83% Dodge Charger SRT-8 2009 0.42% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 100.0% Scion xD Hatchback 2012 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% smart fortwo Convertible 2012 0.0% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Extended Cab 2012 53.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 26.64% Chevrolet Avalanche Crew Cab 2012 10.35% GMC Terrain SUV 2012 4.29% Ford F-150 Regular Cab 2007 2.28% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 52.83% Lamborghini Aventador Coupe 2012 11.53% Bugatti Veyron 16.4 Coupe 2009 8.06% McLaren MP4-12C Coupe 2012 6.25% Lamborghini Reventon Coupe 2008 6.0% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 43.39% Dodge Ram Pickup 3500 Quad Cab 2009 36.04% Ford Ranger SuperCab 2011 15.82% Dodge Dakota Club Cab 2007 3.05% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.91% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Porsche Panamera Sedan 2012 44.91% Ford Mustang Convertible 2007 20.61% BMW 6 Series Convertible 2007 8.78% Acura TL Type-S 2008 3.76% Lamborghini Reventon Coupe 2008 1.95% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.23% Mercedes-Benz S-Class Sedan 2012 0.47% Dodge Magnum Wagon 2008 0.1% Buick Verano Sedan 2012 0.08% Hyundai Azera Sedan 2012 0.05% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 71.89% Chevrolet Express Cargo Van 2007 27.86% Chevrolet Express Van 2007 0.25% Ford Ranger SuperCab 2011 0.0% Audi V8 Sedan 1994 0.0% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Volvo 240 Sedan 1993 37.18% Buick Enclave SUV 2012 9.97% Audi V8 Sedan 1994 8.14% Plymouth Neon Coupe 1999 7.52% BMW ActiveHybrid 5 Sedan 2012 5.1% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 100.0% Dodge Magnum Wagon 2008 0.0% Volkswagen Beetle Hatchback 2012 0.0% Chevrolet Cobalt SS 2010 0.0% Dodge Journey SUV 2012 0.0% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 80.42% Mitsubishi Lancer Sedan 2012 18.38% Audi A5 Coupe 2012 0.98% BMW Z4 Convertible 2012 0.13% BMW 3 Series Sedan 2012 0.05% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 84.64% Suzuki Aerio Sedan 2007 9.45% Mercedes-Benz S-Class Sedan 2012 2.82% Suzuki SX4 Sedan 2012 0.77% Cadillac CTS-V Sedan 2012 0.59% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 MINI Cooper Roadster Convertible 2012 51.92% Spyker C8 Coupe 2009 26.8% Porsche Panamera Sedan 2012 3.42% Spyker C8 Convertible 2009 2.69% Dodge Challenger SRT8 2011 2.18% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 99.87% Hyundai Sonata Hybrid Sedan 2012 0.1% Honda Odyssey Minivan 2012 0.02% Ford Edge SUV 2012 0.01% Hyundai Elantra Sedan 2007 0.01% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 48.84% Aston Martin V8 Vantage Convertible 2012 22.6% Bugatti Veyron 16.4 Coupe 2009 12.86% Aston Martin Virage Convertible 2012 8.31% Aston Martin V8 Vantage Coupe 2012 2.66% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 84.57% Ferrari 458 Italia Coupe 2012 5.05% Aston Martin V8 Vantage Coupe 2012 4.48% Ferrari FF Coupe 2012 2.02% McLaren MP4-12C Coupe 2012 1.15% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 36.24% Spyker C8 Coupe 2009 22.09% Aston Martin V8 Vantage Coupe 2012 15.71% Hyundai Veloster Hatchback 2012 3.63% McLaren MP4-12C Coupe 2012 3.07% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Chevrolet Monte Carlo Coupe 2007 94.93% Suzuki Aerio Sedan 2007 2.62% Aston Martin Virage Coupe 2012 0.59% BMW M5 Sedan 2010 0.3% Suzuki Kizashi Sedan 2012 0.27% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Nissan Leaf Hatchback 2012 94.75% Ford Fiesta Sedan 2012 1.48% Suzuki SX4 Sedan 2012 0.47% Porsche Panamera Sedan 2012 0.45% Daewoo Nubira Wagon 2002 0.37% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 Mercedes-Benz E-Class Sedan 2012 36.77% Audi S4 Sedan 2007 21.59% Dodge Charger Sedan 2012 10.72% BMW 3 Series Wagon 2012 9.47% Hyundai Genesis Sedan 2012 3.74% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi RS 4 Convertible 2008 82.84% Audi S6 Sedan 2011 10.68% Audi S5 Convertible 2012 2.1% Audi S4 Sedan 2007 1.85% Audi A5 Coupe 2012 1.46% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 83.83% Dodge Magnum Wagon 2008 4.9% Dodge Charger Sedan 2012 4.1% Mercedes-Benz S-Class Sedan 2012 2.99% Hyundai Genesis Sedan 2012 1.7% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 99.99% Volkswagen Golf Hatchback 1991 0.0% Jeep Patriot SUV 2012 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Ford Mustang Convertible 2007 0.0% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 99.33% Chevrolet Corvette ZR1 2012 0.27% BMW M5 Sedan 2010 0.25% Porsche Panamera Sedan 2012 0.07% Tesla Model S Sedan 2012 0.02% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 89.8% Chevrolet Traverse SUV 2012 9.16% BMW X6 SUV 2012 0.8% Hyundai Veracruz SUV 2012 0.18% Hyundai Santa Fe SUV 2012 0.01% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 90.81% Volkswagen Golf Hatchback 1991 4.33% Audi 100 Sedan 1994 2.48% Mercedes-Benz Sprinter Van 2012 0.43% Land Rover Range Rover SUV 2012 0.43% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 76.99% Chevrolet Silverado 2500HD Regular Cab 2012 13.14% Chevrolet Silverado 1500 Regular Cab 2012 8.16% Chevrolet Silverado 1500 Extended Cab 2012 1.47% Dodge Ram Pickup 3500 Crew Cab 2010 0.12% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Toyota Sequoia SUV 2012 70.29% Hyundai Santa Fe SUV 2012 17.86% Hyundai Azera Sedan 2012 4.01% Hyundai Tucson SUV 2012 1.28% Mercedes-Benz Sprinter Van 2012 1.08% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Hyundai Genesis Sedan 2012 24.97% Mercedes-Benz E-Class Sedan 2012 11.61% Dodge Durango SUV 2012 10.52% Mercedes-Benz S-Class Sedan 2012 7.46% Audi TTS Coupe 2012 6.5% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 66.91% Nissan Leaf Hatchback 2012 13.1% Hyundai Elantra Touring Hatchback 2012 9.34% Mitsubishi Lancer Sedan 2012 3.32% Dodge Caliber Wagon 2012 2.63% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 99.09% Chevrolet Impala Sedan 2007 0.36% Chevrolet Cobalt SS 2010 0.18% Plymouth Neon Coupe 1999 0.17% Toyota Corolla Sedan 2012 0.08% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 92.17% Audi 100 Wagon 1994 7.83% Audi 100 Sedan 1994 0.0% Dodge Dakota Club Cab 2007 0.0% Volvo 240 Sedan 1993 0.0% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz S-Class Sedan 2012 22.89% Chrysler Sebring Convertible 2010 21.23% Honda Accord Sedan 2012 18.83% Chrysler PT Cruiser Convertible 2008 17.15% Chrysler Aspen SUV 2009 8.94% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 100.0% Bentley Continental GT Coupe 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Bentley Continental GT Coupe 2007 0.0% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Hyundai Veracruz SUV 2012 95.06% Buick Verano Sedan 2012 2.68% Acura ZDX Hatchback 2012 1.01% Honda Odyssey Minivan 2012 0.44% Hyundai Tucson SUV 2012 0.29% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford F-150 Regular Cab 2007 0.0% Audi 100 Sedan 1994 0.0% Ford F-150 Regular Cab 2012 0.0% Chevrolet Express Cargo Van 2007 0.0% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW M3 Coupe 2012 46.06% BMW M5 Sedan 2010 31.15% BMW ActiveHybrid 5 Sedan 2012 16.28% Acura TL Type-S 2008 2.47% Audi S4 Sedan 2007 1.3% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 37.58% Hyundai Santa Fe SUV 2012 19.3% Ford Fiesta Sedan 2012 15.22% Hyundai Tucson SUV 2012 8.28% Hyundai Veracruz SUV 2012 4.33% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 84.79% Cadillac CTS-V Sedan 2012 3.29% Honda Odyssey Minivan 2012 2.47% Chevrolet HHR SS 2010 1.87% Chevrolet Sonic Sedan 2012 1.67% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 91.3% Audi TT Hatchback 2011 3.36% Audi S5 Coupe 2012 2.25% Audi TTS Coupe 2012 2.03% Audi S5 Convertible 2012 0.31% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Bugatti Veyron 16.4 Coupe 2009 41.77% Chevrolet Corvette ZR1 2012 37.88% Nissan Juke Hatchback 2012 4.47% Jeep Patriot SUV 2012 1.57% Mercedes-Benz SL-Class Coupe 2009 1.56% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Audi V8 Sedan 1994 56.08% Mercedes-Benz 300-Class Convertible 1993 43.4% Plymouth Neon Coupe 1999 0.18% Eagle Talon Hatchback 1998 0.14% Audi 100 Sedan 1994 0.12% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Lamborghini Diablo Coupe 2001 42.81% Ford GT Coupe 2006 36.29% Rolls-Royce Phantom Drophead Coupe Convertible 2012 9.38% Nissan NV Passenger Van 2012 7.81% Spyker C8 Convertible 2009 1.26% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Dodge Durango SUV 2012 45.89% Jeep Grand Cherokee SUV 2012 17.62% HUMMER H2 SUT Crew Cab 2009 11.88% Dodge Ram Pickup 3500 Quad Cab 2009 6.87% Dodge Caliber Wagon 2012 4.97% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 98.27% Audi S5 Convertible 2012 0.92% Audi S5 Coupe 2012 0.52% Audi A5 Coupe 2012 0.25% Audi RS 4 Convertible 2008 0.01% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Bugatti Veyron 16.4 Coupe 2009 33.19% AM General Hummer SUV 2000 16.17% Bentley Arnage Sedan 2009 7.7% Nissan NV Passenger Van 2012 5.91% FIAT 500 Abarth 2012 5.36% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Acura RL Sedan 2012 39.81% BMW 3 Series Sedan 2012 20.74% Audi 100 Wagon 1994 20.2% Chevrolet Impala Sedan 2007 3.59% Audi S5 Coupe 2012 3.58% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Jeep Patriot SUV 2012 23.59% Chevrolet Corvette ZR1 2012 18.09% FIAT 500 Abarth 2012 9.68% HUMMER H3T Crew Cab 2010 4.64% Ford GT Coupe 2006 4.45% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette ZR1 2012 39.52% Bugatti Veyron 16.4 Coupe 2009 21.61% Audi RS 4 Convertible 2008 17.54% Hyundai Veloster Hatchback 2012 5.17% Lamborghini Diablo Coupe 2001 4.21% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 BMW 3 Series Sedan 2012 49.37% Chevrolet Camaro Convertible 2012 12.15% Audi S5 Coupe 2012 11.65% Audi A5 Coupe 2012 6.56% Audi TTS Coupe 2012 3.91% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz S-Class Sedan 2012 96.2% Chrysler Crossfire Convertible 2008 3.01% Chrysler Sebring Convertible 2010 0.58% Chevrolet Camaro Convertible 2012 0.17% Dodge Challenger SRT8 2011 0.03% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 97.07% Dodge Ram Pickup 3500 Crew Cab 2010 2.93% Dodge Dakota Club Cab 2007 0.0% Dodge Dakota Crew Cab 2010 0.0% GMC Canyon Extended Cab 2012 0.0% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW M3 Coupe 2012 95.29% BMW ActiveHybrid 5 Sedan 2012 3.37% BMW M5 Sedan 2010 0.61% Mercedes-Benz E-Class Sedan 2012 0.19% Mercedes-Benz C-Class Sedan 2012 0.18% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 21.0% Honda Accord Sedan 2012 11.81% Bentley Continental GT Coupe 2007 11.33% Acura TL Sedan 2012 9.0% Suzuki Kizashi Sedan 2012 5.91% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 87.13% Chevrolet Silverado 1500 Regular Cab 2012 5.93% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.54% GMC Canyon Extended Cab 2012 1.16% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.47% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 99.57% Mercedes-Benz S-Class Sedan 2012 0.37% Acura TL Type-S 2008 0.04% Hyundai Azera Sedan 2012 0.01% BMW M6 Convertible 2010 0.0% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Volvo 240 Sedan 1993 46.24% Audi 100 Wagon 1994 31.59% Chevrolet Malibu Sedan 2007 7.93% Volkswagen Golf Hatchback 1991 7.81% Daewoo Nubira Wagon 2002 1.96% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.8% Audi 100 Sedan 1994 0.19% Ford Mustang Convertible 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% Audi 100 Wagon 1994 0.0% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 98.22% Bugatti Veyron 16.4 Convertible 2009 0.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.51% Bugatti Veyron 16.4 Coupe 2009 0.23% Chevrolet Camaro Convertible 2012 0.2% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 99.99% Ford Expedition EL SUV 2009 0.01% Dodge Durango SUV 2007 0.0% Ford Freestar Minivan 2007 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Nissan Juke Hatchback 2012 17.32% GMC Acadia SUV 2012 12.11% Ford F-150 Regular Cab 2007 7.66% Suzuki SX4 Hatchback 2012 7.31% Toyota 4Runner SUV 2012 5.88% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 62.67% Daewoo Nubira Wagon 2002 36.29% Chevrolet Impala Sedan 2007 0.47% Suzuki Aerio Sedan 2007 0.36% Plymouth Neon Coupe 1999 0.14% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.88% Bugatti Veyron 16.4 Coupe 2009 0.08% Bugatti Veyron 16.4 Convertible 2009 0.02% Cadillac CTS-V Sedan 2012 0.01% Bentley Mulsanne Sedan 2011 0.0% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 100.0% Hyundai Veracruz SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Acura ZDX Hatchback 2012 0.0% Ford Fiesta Sedan 2012 0.0% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.14% Audi RS 4 Convertible 2008 0.4% Audi S4 Sedan 2012 0.15% Lamborghini Diablo Coupe 2001 0.06% Ferrari 458 Italia Convertible 2012 0.04% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Hyundai Genesis Sedan 2012 56.39% Honda Accord Coupe 2012 35.35% Honda Accord Sedan 2012 8.12% Acura RL Sedan 2012 0.05% Acura TL Type-S 2008 0.04% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 90.35% Mercedes-Benz Sprinter Van 2012 9.59% Dodge Ram Pickup 3500 Quad Cab 2009 0.03% Ram C/V Cargo Van Minivan 2012 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 84.52% Ford F-450 Super Duty Crew Cab 2012 15.44% Ford Expedition EL SUV 2009 0.03% Ford E-Series Wagon Van 2012 0.01% Ford Ranger SuperCab 2011 0.01% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Spyker C8 Convertible 2009 45.11% Spyker C8 Coupe 2009 21.89% Lamborghini Reventon Coupe 2008 12.59% Lamborghini Diablo Coupe 2001 6.48% Tesla Model S Sedan 2012 2.73% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 100.0% Acura ZDX Hatchback 2012 0.0% Infiniti G Coupe IPL 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Lamborghini Reventon Coupe 2008 0.0% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 83.42% Mercedes-Benz E-Class Sedan 2012 5.61% Dodge Magnum Wagon 2008 3.0% Maybach Landaulet Convertible 2012 1.96% Cadillac CTS-V Sedan 2012 0.96% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 94.88% Plymouth Neon Coupe 1999 4.62% Ford Freestar Minivan 2007 0.47% Chevrolet Malibu Sedan 2007 0.01% Daewoo Nubira Wagon 2002 0.0% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Dodge Challenger SRT8 2011 0.0% Lamborghini Reventon Coupe 2008 0.0% Hyundai Veloster Hatchback 2012 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Suzuki Kizashi Sedan 2012 35.18% Eagle Talon Hatchback 1998 18.13% Suzuki Aerio Sedan 2007 16.32% BMW Z4 Convertible 2012 4.62% Mitsubishi Lancer Sedan 2012 2.76% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Nissan Juke Hatchback 2012 74.18% Bentley Arnage Sedan 2009 8.0% Audi R8 Coupe 2012 6.94% Bugatti Veyron 16.4 Coupe 2009 5.3% Suzuki SX4 Sedan 2012 3.74% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.97% Toyota Sequoia SUV 2012 0.03% Infiniti QX56 SUV 2011 0.0% Land Rover Range Rover SUV 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 92.49% Hyundai Elantra Touring Hatchback 2012 4.97% Ram C/V Cargo Van Minivan 2012 0.52% Chevrolet Malibu Sedan 2007 0.27% Daewoo Nubira Wagon 2002 0.24% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Audi V8 Sedan 1994 72.58% Dodge Challenger SRT8 2011 8.33% Acura Integra Type R 2001 6.11% Eagle Talon Hatchback 1998 2.34% Bugatti Veyron 16.4 Coupe 2009 1.73% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 100.0% Ford Fiesta Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% Nissan Leaf Hatchback 2012 0.0% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 36.88% Chevrolet Impala Sedan 2007 33.35% Chevrolet Monte Carlo Coupe 2007 21.38% Plymouth Neon Coupe 1999 3.62% Acura RL Sedan 2012 0.86% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 98.78% Mercedes-Benz SL-Class Coupe 2009 0.9% GMC Terrain SUV 2012 0.19% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.04% Bentley Continental Supersports Conv. Convertible 2012 0.03% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.98% FIAT 500 Convertible 2012 0.01% Ford Fiesta Sedan 2012 0.01% Chrysler PT Cruiser Convertible 2008 0.0% Geo Metro Convertible 1993 0.0% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 74.15% GMC Yukon Hybrid SUV 2012 9.66% Jeep Patriot SUV 2012 6.66% Chrysler 300 SRT-8 2010 4.86% Jeep Compass SUV 2012 1.41% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 75.69% Ford Ranger SuperCab 2011 14.84% Dodge Dakota Club Cab 2007 2.54% Isuzu Ascender SUV 2008 2.16% Chevrolet Silverado 1500 Regular Cab 2012 1.66% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 97.92% Dodge Caliber Wagon 2012 2.08% Dodge Journey SUV 2012 0.0% Suzuki SX4 Sedan 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.44% Chevrolet Cobalt SS 2010 0.43% Lamborghini Diablo Coupe 2001 0.05% Chevrolet Corvette Convertible 2012 0.04% Dodge Charger Sedan 2012 0.02% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 100.0% Honda Odyssey Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Aston Martin V8 Vantage Convertible 2012 35.4% BMW M6 Convertible 2010 29.69% Chevrolet Cobalt SS 2010 8.04% Eagle Talon Hatchback 1998 4.36% Jaguar XK XKR 2012 4.3% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 BMW Z4 Convertible 2012 54.31% Acura TSX Sedan 2012 6.77% Acura RL Sedan 2012 6.66% Eagle Talon Hatchback 1998 5.76% Acura Integra Type R 2001 3.15% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 HUMMER H3T Crew Cab 2010 65.63% AM General Hummer SUV 2000 6.39% Bugatti Veyron 16.4 Coupe 2009 5.81% Dodge Challenger SRT8 2011 3.46% Lamborghini Reventon Coupe 2008 3.01% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 97.98% Jeep Wrangler SUV 2012 0.99% Ford Expedition EL SUV 2009 0.56% HUMMER H2 SUT Crew Cab 2009 0.31% Ford Edge SUV 2012 0.05% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 41.08% Chevrolet Monte Carlo Coupe 2007 20.27% Cadillac CTS-V Sedan 2012 12.35% Dodge Magnum Wagon 2008 9.38% Chevrolet HHR SS 2010 6.13% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 52.43% Bentley Mulsanne Sedan 2011 37.91% Cadillac CTS-V Sedan 2012 4.6% Nissan NV Passenger Van 2012 2.44% Bentley Continental Supersports Conv. Convertible 2012 0.92% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 100.0% Dodge Charger Sedan 2012 0.0% Dodge Dakota Club Cab 2007 0.0% Honda Accord Coupe 2012 0.0% Dodge Charger SRT-8 2009 0.0% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 70.89% GMC Acadia SUV 2012 8.69% Toyota Sequoia SUV 2012 6.21% BMW X5 SUV 2007 4.75% Jeep Compass SUV 2012 2.17% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Bentley Arnage Sedan 2009 75.38% GMC Yukon Hybrid SUV 2012 4.11% Jeep Patriot SUV 2012 3.05% Audi 100 Wagon 1994 1.98% FIAT 500 Abarth 2012 1.78% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 54.55% Chevrolet Express Van 2007 33.06% GMC Savana Van 2012 12.38% Volvo 240 Sedan 1993 0.01% Daewoo Nubira Wagon 2002 0.0% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Dodge Ram Pickup 3500 Quad Cab 2009 64.91% Dodge Sprinter Cargo Van 2009 21.45% Dodge Durango SUV 2007 3.46% Volkswagen Golf Hatchback 1991 1.44% Nissan Juke Hatchback 2012 1.02% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 84.96% Cadillac Escalade EXT Crew Cab 2007 13.48% Chevrolet Tahoe Hybrid SUV 2012 0.59% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.39% Chevrolet Silverado 2500HD Regular Cab 2012 0.22% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.26% Volkswagen Golf Hatchback 1991 0.46% Plymouth Neon Coupe 1999 0.22% Nissan 240SX Coupe 1998 0.02% Ford Focus Sedan 2007 0.01% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 98.16% Geo Metro Convertible 1993 1.54% Volkswagen Golf Hatchback 1991 0.18% Ford Mustang Convertible 2007 0.06% Chrysler Crossfire Convertible 2008 0.02% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 73.05% Volvo XC90 SUV 2007 18.4% Dodge Dakota Club Cab 2007 3.07% HUMMER H3T Crew Cab 2010 1.47% Lincoln Town Car Sedan 2011 1.45% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Audi S5 Coupe 2012 12.46% Chevrolet Camaro Convertible 2012 11.77% Ford Mustang Convertible 2007 11.0% Buick Verano Sedan 2012 7.34% Honda Accord Coupe 2012 6.17% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 82.12% Honda Odyssey Minivan 2007 8.5% Daewoo Nubira Wagon 2002 4.72% Hyundai Elantra Touring Hatchback 2012 4.55% Ram C/V Cargo Van Minivan 2012 0.08% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 38.31% Dodge Charger SRT-8 2009 23.91% Ford Mustang Convertible 2007 8.02% Dodge Charger Sedan 2012 4.01% Chevrolet Camaro Convertible 2012 3.61% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 96.84% Jeep Compass SUV 2012 1.45% BMW X3 SUV 2012 0.88% BMW X6 SUV 2012 0.19% Bentley Arnage Sedan 2009 0.12% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 38.62% Buick Regal GS 2012 21.4% Infiniti G Coupe IPL 2012 12.57% Jaguar XK XKR 2012 6.21% Suzuki Kizashi Sedan 2012 2.64% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 30.27% Chevrolet Silverado 1500 Classic Extended Cab 2007 22.54% Chevrolet Silverado 1500 Extended Cab 2012 16.03% Chevrolet Tahoe Hybrid SUV 2012 12.21% Chevrolet TrailBlazer SS 2009 10.11% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 McLaren MP4-12C Coupe 2012 76.04% Aston Martin V8 Vantage Coupe 2012 10.5% Hyundai Veloster Hatchback 2012 5.4% Lamborghini Diablo Coupe 2001 3.85% Chevrolet Corvette Convertible 2012 1.46% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Dodge Magnum Wagon 2008 36.91% Ferrari 458 Italia Coupe 2012 15.66% BMW 3 Series Wagon 2012 9.5% Ferrari 458 Italia Convertible 2012 8.31% Dodge Challenger SRT8 2011 3.26% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 99.93% Chrysler Town and Country Minivan 2012 0.03% Acura TL Type-S 2008 0.01% Honda Accord Coupe 2012 0.01% Chevrolet Malibu Sedan 2007 0.01% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 78.1% BMW Z4 Convertible 2012 16.91% Hyundai Sonata Sedan 2012 0.88% BMW 1 Series Convertible 2012 0.5% Volkswagen Golf Hatchback 2012 0.45% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.99% GMC Yukon Hybrid SUV 2012 0.01% Dodge Durango SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% GMC Acadia SUV 2012 0.0% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Mercedes-Benz 300-Class Convertible 1993 27.26% Audi V8 Sedan 1994 12.87% Eagle Talon Hatchback 1998 9.9% Volvo 240 Sedan 1993 5.34% BMW M6 Convertible 2010 4.99% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 56.74% GMC Canyon Extended Cab 2012 9.84% Toyota 4Runner SUV 2012 7.8% MINI Cooper Roadster Convertible 2012 4.89% Jeep Grand Cherokee SUV 2012 2.78% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 100.0% Honda Accord Coupe 2012 0.0% Honda Accord Sedan 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% Chrysler Crossfire Convertible 2008 0.0% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 97.36% Toyota 4Runner SUV 2012 1.43% Jeep Wrangler SUV 2012 0.76% GMC Yukon Hybrid SUV 2012 0.09% Jeep Grand Cherokee SUV 2012 0.08% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 72.89% Ford Ranger SuperCab 2011 16.4% Dodge Dakota Club Cab 2007 6.05% Volvo 240 Sedan 1993 3.55% Audi V8 Sedan 1994 0.27% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 99.65% Volvo XC90 SUV 2007 0.15% Dodge Ram Pickup 3500 Crew Cab 2010 0.13% Toyota Sequoia SUV 2012 0.03% Infiniti QX56 SUV 2011 0.02% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 29.3% Spyker C8 Convertible 2009 13.04% Audi S5 Convertible 2012 11.57% Mercedes-Benz SL-Class Coupe 2009 9.39% Porsche Panamera Sedan 2012 4.82% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 99.99% Bentley Continental GT Coupe 2012 0.01% BMW 1 Series Coupe 2012 0.0% Aston Martin Virage Coupe 2012 0.0% BMW Z4 Convertible 2012 0.0% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 100.0% Acura TSX Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% Acura TL Sedan 2012 0.0% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Audi S4 Sedan 2012 28.16% Acura TSX Sedan 2012 22.02% BMW ActiveHybrid 5 Sedan 2012 20.42% BMW 3 Series Sedan 2012 11.56% Audi S6 Sedan 2011 8.17% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 96.95% Bentley Continental GT Coupe 2007 1.61% Buick Verano Sedan 2012 0.97% Mercedes-Benz S-Class Sedan 2012 0.2% Dodge Magnum Wagon 2008 0.09% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 90.68% Ford Mustang Convertible 2007 2.79% Jeep Patriot SUV 2012 0.88% Audi 100 Sedan 1994 0.51% Volvo 240 Sedan 1993 0.47% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Hyundai Elantra Touring Hatchback 2012 99.68% Toyota Corolla Sedan 2012 0.07% Hyundai Accent Sedan 2012 0.07% Dodge Journey SUV 2012 0.04% Mitsubishi Lancer Sedan 2012 0.03% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 BMW ActiveHybrid 5 Sedan 2012 44.21% Chevrolet Silverado 1500 Extended Cab 2012 23.06% Honda Accord Sedan 2012 8.96% BMW X3 SUV 2012 7.06% Ram C/V Cargo Van Minivan 2012 5.07% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 99.73% Ferrari 458 Italia Convertible 2012 0.24% Acura Integra Type R 2001 0.01% Ferrari 458 Italia Coupe 2012 0.01% Chevrolet Corvette Convertible 2012 0.01% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 99.86% Chevrolet Malibu Hybrid Sedan 2010 0.03% Buick Verano Sedan 2012 0.02% Honda Accord Coupe 2012 0.02% Hyundai Elantra Sedan 2007 0.01% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 99.97% Dodge Caliber Wagon 2007 0.02% Mercedes-Benz C-Class Sedan 2012 0.0% Volvo 240 Sedan 1993 0.0% Jeep Grand Cherokee SUV 2012 0.0% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 BMW 6 Series Convertible 2007 65.91% Bentley Continental GT Coupe 2007 21.8% BMW M5 Sedan 2010 5.37% Tesla Model S Sedan 2012 2.11% Bentley Mulsanne Sedan 2011 1.44% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 84.85% BMW X3 SUV 2012 7.96% Audi TT Hatchback 2011 3.43% Hyundai Tucson SUV 2012 2.02% Cadillac SRX SUV 2012 0.54% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 93.06% Honda Accord Sedan 2012 3.09% Hyundai Elantra Sedan 2007 1.56% Chevrolet Malibu Sedan 2007 0.88% Hyundai Santa Fe SUV 2012 0.5% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 86.5% Audi TTS Coupe 2012 9.76% Audi S5 Convertible 2012 1.15% Audi TT RS Coupe 2012 0.71% Buick Regal GS 2012 0.5% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 FIAT 500 Convertible 2012 99.95% Suzuki Kizashi Sedan 2012 0.01% MINI Cooper Roadster Convertible 2012 0.01% Audi S6 Sedan 2011 0.0% Nissan Leaf Hatchback 2012 0.0% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Yukon Hybrid SUV 2012 55.7% Ford F-150 Regular Cab 2012 29.79% Chevrolet Silverado 1500 Extended Cab 2012 8.41% Dodge Dakota Club Cab 2007 3.69% Ford F-150 Regular Cab 2007 1.45% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 McLaren MP4-12C Coupe 2012 63.02% Chevrolet Corvette Convertible 2012 30.61% Lamborghini Diablo Coupe 2001 3.56% Chevrolet Camaro Convertible 2012 1.19% Aston Martin V8 Vantage Coupe 2012 1.01% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford E-Series Wagon Van 2012 0.0% Dodge Dakota Club Cab 2007 0.0% Chrysler Aspen SUV 2009 0.0% Ford F-150 Regular Cab 2012 0.0% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Suzuki Kizashi Sedan 2012 31.2% Hyundai Elantra Touring Hatchback 2012 21.85% Lincoln Town Car Sedan 2011 9.72% Scion xD Hatchback 2012 6.55% Dodge Caliber Wagon 2012 3.32% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 99.5% Rolls-Royce Phantom Sedan 2012 0.42% Rolls-Royce Ghost Sedan 2012 0.06% Chrysler 300 SRT-8 2010 0.01% Bentley Mulsanne Sedan 2011 0.0% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 98.51% Nissan Leaf Hatchback 2012 1.41% Toyota Camry Sedan 2012 0.07% Honda Accord Coupe 2012 0.01% Hyundai Accent Sedan 2012 0.0% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 35.04% Acura ZDX Hatchback 2012 15.28% Hyundai Elantra Touring Hatchback 2012 11.97% Suzuki Kizashi Sedan 2012 11.55% Chevrolet Sonic Sedan 2012 5.35% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Mazda Tribute SUV 2011 46.19% Daewoo Nubira Wagon 2002 38.76% Suzuki SX4 Hatchback 2012 5.56% Scion xD Hatchback 2012 2.93% Hyundai Elantra Touring Hatchback 2012 1.94% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Convertible 2012 43.87% McLaren MP4-12C Coupe 2012 14.72% Aston Martin V8 Vantage Coupe 2012 3.68% Lamborghini Reventon Coupe 2008 3.43% Ferrari 458 Italia Coupe 2012 3.19% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 60.16% Chevrolet Silverado 1500 Extended Cab 2012 19.6% Chevrolet Silverado 2500HD Regular Cab 2012 10.13% Chevrolet Silverado 1500 Regular Cab 2012 9.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.73% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% FIAT 500 Convertible 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Spyker C8 Coupe 2009 0.0% Acura ZDX Hatchback 2012 0.0% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 73.67% Dodge Journey SUV 2012 16.87% Suzuki SX4 Hatchback 2012 4.43% Hyundai Tucson SUV 2012 3.26% Chevrolet Traverse SUV 2012 1.52% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Toyota Camry Sedan 2012 37.06% Hyundai Veracruz SUV 2012 22.02% Honda Odyssey Minivan 2012 8.95% Honda Accord Sedan 2012 8.64% Ford Edge SUV 2012 7.2% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.94% Buick Regal GS 2012 0.02% Hyundai Accent Sedan 2012 0.01% Infiniti G Coupe IPL 2012 0.01% Hyundai Sonata Sedan 2012 0.01% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 34.91% GMC Yukon Hybrid SUV 2012 30.43% Chevrolet Silverado 1500 Regular Cab 2012 8.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.96% Land Rover Range Rover SUV 2012 4.42% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Nissan Juke Hatchback 2012 93.9% BMW X6 SUV 2012 3.1% BMW 3 Series Sedan 2012 2.77% BMW 1 Series Coupe 2012 0.13% Hyundai Tucson SUV 2012 0.02% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 Infiniti G Coupe IPL 2012 86.83% Porsche Panamera Sedan 2012 8.48% Jaguar XK XKR 2012 1.66% Chevrolet Impala Sedan 2007 1.04% Nissan 240SX Coupe 1998 0.38% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Jeep Patriot SUV 2012 78.84% GMC Terrain SUV 2012 8.23% Chevrolet Tahoe Hybrid SUV 2012 2.58% Ford Edge SUV 2012 2.1% GMC Acadia SUV 2012 1.55% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Spyker C8 Convertible 2009 45.9% Spyker C8 Coupe 2009 23.61% Acura Integra Type R 2001 21.31% McLaren MP4-12C Coupe 2012 5.85% Bugatti Veyron 16.4 Coupe 2009 0.63% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 95.3% Chevrolet Express Van 2007 3.39% Chevrolet Express Cargo Van 2007 1.31% Audi V8 Sedan 1994 0.0% Acura Integra Type R 2001 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Sonic Sedan 2012 42.48% Buick Verano Sedan 2012 31.06% Acura ZDX Hatchback 2012 16.9% Hyundai Azera Sedan 2012 5.95% Hyundai Sonata Hybrid Sedan 2012 1.63% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 64.34% McLaren MP4-12C Coupe 2012 25.5% Ferrari 458 Italia Convertible 2012 2.03% Ford Mustang Convertible 2007 1.33% Aston Martin Virage Coupe 2012 1.13% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Chrysler 300 SRT-8 2010 38.23% Mercedes-Benz 300-Class Convertible 1993 26.79% Bentley Continental Supersports Conv. Convertible 2012 20.5% Chevrolet Camaro Convertible 2012 6.08% Mercedes-Benz SL-Class Coupe 2009 2.81% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 98.11% GMC Yukon Hybrid SUV 2012 1.85% Chrysler Town and Country Minivan 2012 0.03% Chevrolet Tahoe Hybrid SUV 2012 0.01% Dodge Caliber Wagon 2012 0.0% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 81.5% Spyker C8 Coupe 2009 10.95% Hyundai Veloster Hatchback 2012 6.39% Spyker C8 Convertible 2009 0.59% Volvo C30 Hatchback 2012 0.41% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.33% GMC Yukon Hybrid SUV 2012 0.47% Ford F-150 Regular Cab 2007 0.12% Ford E-Series Wagon Van 2012 0.05% Ford F-450 Super Duty Crew Cab 2012 0.01% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 100.0% Dodge Charger SRT-8 2009 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Buick Verano Sedan 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.92% Aston Martin V8 Vantage Coupe 2012 0.04% McLaren MP4-12C Coupe 2012 0.03% Spyker C8 Coupe 2009 0.0% Hyundai Veloster Hatchback 2012 0.0% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Hyundai Accent Sedan 2012 97.75% Toyota Camry Sedan 2012 1.15% Hyundai Sonata Hybrid Sedan 2012 0.55% Ford Fiesta Sedan 2012 0.53% Toyota Corolla Sedan 2012 0.01% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 50.51% Fisker Karma Sedan 2012 14.36% Aston Martin V8 Vantage Convertible 2012 14.27% Tesla Model S Sedan 2012 7.41% Rolls-Royce Phantom Sedan 2012 4.05% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Toyota Camry Sedan 2012 50.01% Suzuki SX4 Sedan 2012 27.79% Chevrolet Impala Sedan 2007 10.42% Buick Verano Sedan 2012 8.54% Acura ZDX Hatchback 2012 1.55% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Aston Martin V8 Vantage Convertible 2012 29.74% Aston Martin V8 Vantage Coupe 2012 21.32% Bentley Continental GT Coupe 2007 8.87% Lamborghini Reventon Coupe 2008 5.85% Bentley Continental GT Coupe 2012 4.33% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Suzuki Kizashi Sedan 2012 67.36% Ford Mustang Convertible 2007 8.19% GMC Savana Van 2012 4.72% Acura Integra Type R 2001 3.99% Volvo XC90 SUV 2007 3.86% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 90.24% Ford Fiesta Sedan 2012 9.62% Toyota Corolla Sedan 2012 0.13% Hyundai Tucson SUV 2012 0.01% Suzuki SX4 Hatchback 2012 0.0% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.98% Dodge Dakota Crew Cab 2010 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Jeep Compass SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.86% Chevrolet Express Van 2007 0.14% Chevrolet Express Cargo Van 2007 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Nissan Juke Hatchback 2012 0.0% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 BMW 1 Series Coupe 2012 81.96% Mitsubishi Lancer Sedan 2012 7.26% Volvo C30 Hatchback 2012 3.55% Aston Martin Virage Coupe 2012 2.08% Dodge Charger SRT-8 2009 1.62% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 93.97% Ford F-150 Regular Cab 2012 6.01% Toyota Sequoia SUV 2012 0.01% Ford Expedition EL SUV 2009 0.0% Mercedes-Benz E-Class Sedan 2012 0.0% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.99% Geo Metro Convertible 1993 0.0% FIAT 500 Convertible 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Audi RS 4 Convertible 2008 0.0% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Canyon Extended Cab 2012 76.95% Chevrolet Silverado 1500 Extended Cab 2012 22.21% Chevrolet Silverado 1500 Regular Cab 2012 0.49% Chevrolet Silverado 2500HD Regular Cab 2012 0.28% Ford F-150 Regular Cab 2007 0.05% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 86.79% Audi S6 Sedan 2011 8.66% Audi S5 Coupe 2012 2.72% Audi TT Hatchback 2011 1.26% Audi S5 Convertible 2012 0.42% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 68.87% Rolls-Royce Phantom Sedan 2012 28.42% Rolls-Royce Ghost Sedan 2012 1.3% BMW ActiveHybrid 5 Sedan 2012 0.84% BMW 3 Series Wagon 2012 0.31% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 93.79% Bugatti Veyron 16.4 Convertible 2009 4.26% Lamborghini Aventador Coupe 2012 1.46% Bugatti Veyron 16.4 Coupe 2009 0.18% Bentley Arnage Sedan 2009 0.13% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Ford E-Series Wagon Van 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Durango SUV 2007 0.0% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Audi A5 Coupe 2012 48.32% Audi S4 Sedan 2007 36.43% Audi TTS Coupe 2012 11.19% Rolls-Royce Ghost Sedan 2012 0.77% Mitsubishi Lancer Sedan 2012 0.76% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 100.0% GMC Acadia SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Buick Enclave SUV 2012 0.0% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 87.02% GMC Acadia SUV 2012 4.25% Audi 100 Sedan 1994 3.61% Volvo 240 Sedan 1993 2.15% Jeep Grand Cherokee SUV 2012 1.44% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 56.21% Ford Focus Sedan 2007 8.51% Ford Freestar Minivan 2007 5.69% Chevrolet Malibu Hybrid Sedan 2010 3.98% Chevrolet Express Van 2007 1.88% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 99.01% Ford Focus Sedan 2007 0.54% Daewoo Nubira Wagon 2002 0.36% Nissan 240SX Coupe 1998 0.05% Eagle Talon Hatchback 1998 0.02% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 42.84% Land Rover Range Rover SUV 2012 21.37% Ford Expedition EL SUV 2009 16.64% Mercedes-Benz C-Class Sedan 2012 7.82% Cadillac Escalade EXT Crew Cab 2007 2.87% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 93.25% Chevrolet Monte Carlo Coupe 2007 2.82% Lincoln Town Car Sedan 2011 2.14% Chevrolet Malibu Sedan 2007 0.78% Honda Accord Sedan 2012 0.51% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 93.08% BMW 1 Series Convertible 2012 6.33% Chevrolet Camaro Convertible 2012 0.37% Ferrari 458 Italia Convertible 2012 0.17% Acura TSX Sedan 2012 0.01% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 75.4% Infiniti QX56 SUV 2011 22.47% Dodge Durango SUV 2007 1.01% Chevrolet TrailBlazer SS 2009 0.38% Chevrolet Avalanche Crew Cab 2012 0.16% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Chevrolet Sonic Sedan 2012 40.7% Fisker Karma Sedan 2012 25.71% Buick Regal GS 2012 12.46% Hyundai Azera Sedan 2012 9.66% Acura ZDX Hatchback 2012 1.9% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 86.85% Honda Odyssey Minivan 2007 3.36% Infiniti QX56 SUV 2011 2.05% Hyundai Azera Sedan 2012 1.37% Honda Odyssey Minivan 2012 1.34% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 35.52% Dodge Magnum Wagon 2008 16.08% Dodge Challenger SRT8 2011 4.33% Porsche Panamera Sedan 2012 3.98% BMW 1 Series Coupe 2012 3.81% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 43.11% Jeep Patriot SUV 2012 27.92% HUMMER H3T Crew Cab 2010 27.64% HUMMER H2 SUT Crew Cab 2009 1.27% Jeep Grand Cherokee SUV 2012 0.02% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 100.0% Nissan 240SX Coupe 1998 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Audi TT Hatchback 2011 0.0% Volkswagen Golf Hatchback 2012 0.0% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 96.08% Dodge Sprinter Cargo Van 2009 3.75% GMC Savana Van 2012 0.11% Chevrolet Express Van 2007 0.01% Audi V8 Sedan 1994 0.01% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% FIAT 500 Convertible 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Chevrolet Sonic Sedan 2012 0.0% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Nissan NV Passenger Van 2012 31.72% Rolls-Royce Phantom Sedan 2012 20.77% Mercedes-Benz S-Class Sedan 2012 11.6% Ford E-Series Wagon Van 2012 4.15% Bentley Mulsanne Sedan 2011 3.72% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 42.63% Chevrolet Silverado 1500 Regular Cab 2012 14.95% Chevrolet Silverado 1500 Extended Cab 2012 12.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.34% GMC Canyon Extended Cab 2012 8.17% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.31% Aston Martin V8 Vantage Coupe 2012 0.2% Ferrari 458 Italia Convertible 2012 0.13% Spyker C8 Coupe 2009 0.08% Lamborghini Diablo Coupe 2001 0.06% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 99.99% Audi 100 Sedan 1994 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Volvo 240 Sedan 1993 0.0% Ford Ranger SuperCab 2011 0.0% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Infiniti QX56 SUV 2011 55.76% GMC Acadia SUV 2012 28.54% Buick Enclave SUV 2012 6.66% Toyota Sequoia SUV 2012 4.31% Mazda Tribute SUV 2011 3.18% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 57.05% Chevrolet Cobalt SS 2010 18.99% Hyundai Accent Sedan 2012 11.59% Toyota Camry Sedan 2012 2.42% Honda Accord Coupe 2012 1.99% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 99.97% Audi S4 Sedan 2007 0.02% Acura TL Type-S 2008 0.01% BMW M3 Coupe 2012 0.0% Toyota Corolla Sedan 2012 0.0% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Volkswagen Golf Hatchback 2012 89.18% Ram C/V Cargo Van Minivan 2012 2.75% Chrysler Town and Country Minivan 2012 2.42% Dodge Durango SUV 2012 1.08% GMC Savana Van 2012 0.68% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 96.96% Chevrolet Corvette ZR1 2012 1.79% Tesla Model S Sedan 2012 0.18% Cadillac CTS-V Sedan 2012 0.14% Acura TL Sedan 2012 0.12% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Ford F-150 Regular Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford Ranger SuperCab 2011 0.0% Ford E-Series Wagon Van 2012 0.0% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 60.19% Bugatti Veyron 16.4 Coupe 2009 13.76% MINI Cooper Roadster Convertible 2012 13.59% Audi TT Hatchback 2011 8.13% Audi TTS Coupe 2012 2.36% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 99.65% Lamborghini Aventador Coupe 2012 0.33% Ferrari California Convertible 2012 0.01% Spyker C8 Convertible 2009 0.01% Ferrari 458 Italia Convertible 2012 0.0% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Audi S5 Coupe 2012 69.16% Chrysler 300 SRT-8 2010 12.71% Acura TL Type-S 2008 5.43% Dodge Ram Pickup 3500 Quad Cab 2009 2.62% Isuzu Ascender SUV 2008 1.74% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 27.82% Bugatti Veyron 16.4 Convertible 2009 22.11% Acura Integra Type R 2001 19.57% Spyker C8 Coupe 2009 6.64% Spyker C8 Convertible 2009 2.78% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 50.15% GMC Canyon Extended Cab 2012 41.32% HUMMER H2 SUT Crew Cab 2009 2.68% Ford Ranger SuperCab 2011 2.51% Dodge Dakota Club Cab 2007 1.22% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 99.98% Rolls-Royce Ghost Sedan 2012 0.01% Bentley Continental GT Coupe 2007 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% Buick Verano Sedan 2012 0.0% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.97% Dodge Caliber Wagon 2012 0.01% Ram C/V Cargo Van Minivan 2012 0.01% Chrysler Sebring Convertible 2010 0.0% Hyundai Elantra Sedan 2007 0.0% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Bentley Continental GT Coupe 2007 75.12% Bugatti Veyron 16.4 Coupe 2009 12.11% Ferrari FF Coupe 2012 4.28% Nissan Juke Hatchback 2012 2.82% Chevrolet Corvette ZR1 2012 1.07% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 100.0% Ford Focus Sedan 2007 0.0% Suzuki Aerio Sedan 2007 0.0% Hyundai Accent Sedan 2012 0.0% Nissan 240SX Coupe 1998 0.0% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Ford F-150 Regular Cab 2007 59.61% Toyota Camry Sedan 2012 13.23% GMC Canyon Extended Cab 2012 6.27% BMW X3 SUV 2012 5.66% BMW X6 SUV 2012 4.39% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Mercedes-Benz S-Class Sedan 2012 94.44% Ford Mustang Convertible 2007 1.13% BMW 3 Series Sedan 2012 0.97% Mercedes-Benz 300-Class Convertible 1993 0.78% Audi V8 Sedan 1994 0.69% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 98.82% Dodge Dakota Crew Cab 2010 1.15% Dodge Journey SUV 2012 0.02% Mazda Tribute SUV 2011 0.0% Ford Freestar Minivan 2007 0.0% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Audi V8 Sedan 1994 16.34% Audi 100 Wagon 1994 10.94% BMW M6 Convertible 2010 4.97% BMW 3 Series Sedan 2012 4.78% Nissan 240SX Coupe 1998 4.28% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 84.31% Bentley Continental GT Coupe 2007 15.69% Bentley Continental Flying Spur Sedan 2007 0.0% Buick Verano Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 100.0% Bentley Continental GT Coupe 2007 0.0% Suzuki SX4 Hatchback 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% Audi 100 Sedan 1994 0.0% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 99.96% Audi V8 Sedan 1994 0.04% Nissan 240SX Coupe 1998 0.0% Audi 100 Wagon 1994 0.0% BMW 1 Series Convertible 2012 0.0% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 17.07% BMW 6 Series Convertible 2007 15.06% Acura ZDX Hatchback 2012 12.28% Chevrolet Corvette Convertible 2012 10.29% Bentley Continental GT Coupe 2007 6.15% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 67.8% Chrysler Aspen SUV 2009 20.63% Ford Expedition EL SUV 2009 8.93% Toyota 4Runner SUV 2012 1.05% Toyota Sequoia SUV 2012 0.91% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chrysler Aspen SUV 2009 51.34% Chevrolet Silverado 1500 Extended Cab 2012 19.61% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.07% Ford Expedition EL SUV 2009 3.46% Dodge Ram Pickup 3500 Crew Cab 2010 2.81% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Chevrolet Sonic Sedan 2012 63.77% Suzuki Kizashi Sedan 2012 12.82% Mitsubishi Lancer Sedan 2012 5.96% Hyundai Accent Sedan 2012 3.75% Buick Verano Sedan 2012 3.08% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 77.36% Hyundai Elantra Sedan 2007 20.86% Chevrolet Malibu Hybrid Sedan 2010 1.75% Hyundai Azera Sedan 2012 0.02% Chrysler Sebring Convertible 2010 0.01% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 94.84% Ford Fiesta Sedan 2012 3.89% Chevrolet Sonic Sedan 2012 0.76% Hyundai Accent Sedan 2012 0.34% Hyundai Veloster Hatchback 2012 0.06% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Nissan NV Passenger Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Chevrolet Express Van 2007 90.8% Dodge Caravan Minivan 1997 5.53% Chevrolet Silverado 1500 Extended Cab 2012 1.16% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.61% Chevrolet Avalanche Crew Cab 2012 0.27% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.99% Ford Expedition EL SUV 2009 0.0% Land Rover LR2 SUV 2012 0.0% Infiniti QX56 SUV 2011 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 93.08% Toyota Corolla Sedan 2012 6.59% Hyundai Accent Sedan 2012 0.14% Ford Fiesta Sedan 2012 0.11% Scion xD Hatchback 2012 0.02% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2007 96.01% Chevrolet Silverado 1500 Regular Cab 2012 1.63% Chevrolet Silverado 2500HD Regular Cab 2012 1.5% Chevrolet Silverado 1500 Extended Cab 2012 0.25% Dodge Ram Pickup 3500 Crew Cab 2010 0.15% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 85.28% Chevrolet Silverado 1500 Extended Cab 2012 10.54% GMC Canyon Extended Cab 2012 2.24% Chevrolet Silverado 1500 Regular Cab 2012 1.53% Dodge Dakota Club Cab 2007 0.18% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 49.84% Chrysler Crossfire Convertible 2008 32.44% BMW 6 Series Convertible 2007 4.97% Bentley Mulsanne Sedan 2011 2.42% Fisker Karma Sedan 2012 2.07% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 63.95% Hyundai Elantra Sedan 2007 19.59% Honda Accord Coupe 2012 4.18% Ford F-150 Regular Cab 2007 2.73% Ford Freestar Minivan 2007 1.99% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Bugatti Veyron 16.4 Coupe 2009 87.02% Chevrolet Corvette ZR1 2012 5.44% Aston Martin V8 Vantage Coupe 2012 2.61% Dodge Challenger SRT8 2011 2.37% Audi TT RS Coupe 2012 0.58% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 40.18% Chevrolet TrailBlazer SS 2009 34.78% Jeep Compass SUV 2012 4.37% Cadillac Escalade EXT Crew Cab 2007 4.28% HUMMER H3T Crew Cab 2010 3.9% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 100.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 BMW M6 Convertible 2010 26.7% Audi TTS Coupe 2012 22.98% Audi RS 4 Convertible 2008 21.6% Audi TT Hatchback 2011 16.33% BMW Z4 Convertible 2012 2.54% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 99.83% FIAT 500 Convertible 2012 0.07% Nissan Juke Hatchback 2012 0.04% Bugatti Veyron 16.4 Convertible 2009 0.02% Spyker C8 Coupe 2009 0.02% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Cadillac Escalade EXT Crew Cab 2007 49.19% Chevrolet Avalanche Crew Cab 2012 36.72% Chevrolet TrailBlazer SS 2009 11.35% Ford Expedition EL SUV 2009 1.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.41% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 100.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Chrysler Aspen SUV 2009 0.0% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Toyota Camry Sedan 2012 35.28% Hyundai Accent Sedan 2012 15.42% Hyundai Veloster Hatchback 2012 14.18% Volvo C30 Hatchback 2012 13.21% Toyota Corolla Sedan 2012 5.14% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 100.0% Maybach Landaulet Convertible 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Chrysler 300 SRT-8 2010 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 99.73% Dodge Caliber Wagon 2012 0.12% Mercedes-Benz C-Class Sedan 2012 0.05% Volvo C30 Hatchback 2012 0.03% BMW 1 Series Coupe 2012 0.02% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 GMC Terrain SUV 2012 32.41% Chrysler PT Cruiser Convertible 2008 27.75% Mazda Tribute SUV 2011 18.97% Chrysler Sebring Convertible 2010 14.81% Dodge Caliber Wagon 2012 2.6% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Chrysler Crossfire Convertible 2008 76.61% Honda Accord Sedan 2012 11.44% Chrysler Sebring Convertible 2010 6.27% Honda Accord Coupe 2012 1.59% Dodge Journey SUV 2012 1.11% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.84% Ford Expedition EL SUV 2009 0.09% Hyundai Santa Fe SUV 2012 0.05% Chrysler PT Cruiser Convertible 2008 0.01% Mazda Tribute SUV 2011 0.0% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 49.99% Dodge Charger Sedan 2012 17.09% BMW M3 Coupe 2012 8.58% Infiniti G Coupe IPL 2012 5.77% Suzuki Kizashi Sedan 2012 3.8% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 67.37% BMW Z4 Convertible 2012 13.84% Mercedes-Benz Sprinter Van 2012 4.68% Fisker Karma Sedan 2012 4.27% FIAT 500 Convertible 2012 2.49% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 BMW M3 Coupe 2012 88.27% BMW M5 Sedan 2010 10.1% Nissan 240SX Coupe 1998 0.7% Audi 100 Wagon 1994 0.3% Plymouth Neon Coupe 1999 0.12% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 100.0% Audi S4 Sedan 2012 0.0% Audi S4 Sedan 2007 0.0% Ferrari 458 Italia Convertible 2012 0.0% BMW Z4 Convertible 2012 0.0% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 50.45% Geo Metro Convertible 1993 40.66% Ford Freestar Minivan 2007 6.88% Chevrolet Monte Carlo Coupe 2007 0.97% Ford Mustang Convertible 2007 0.91% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 88.93% Dodge Caliber Wagon 2012 9.97% Dodge Journey SUV 2012 0.86% Cadillac SRX SUV 2012 0.12% Cadillac Escalade EXT Crew Cab 2007 0.03% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 BMW 3 Series Wagon 2012 41.16% BMW M3 Coupe 2012 30.88% BMW 1 Series Coupe 2012 14.14% Suzuki Kizashi Sedan 2012 1.33% BMW ActiveHybrid 5 Sedan 2012 1.13% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 65.79% Mercedes-Benz S-Class Sedan 2012 23.51% Mercedes-Benz C-Class Sedan 2012 6.76% Audi S4 Sedan 2007 2.27% Acura TL Type-S 2008 1.17% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 51.64% Dodge Durango SUV 2007 42.65% Chrysler Aspen SUV 2009 3.47% GMC Acadia SUV 2012 0.69% Mercedes-Benz 300-Class Convertible 1993 0.25% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Mazda Tribute SUV 2011 67.28% Ram C/V Cargo Van Minivan 2012 11.5% Daewoo Nubira Wagon 2002 3.62% Scion xD Hatchback 2012 2.95% Suzuki SX4 Hatchback 2012 2.13% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 100.0% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Continental GT Coupe 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Chevrolet Malibu Hybrid Sedan 2010 0.0% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 35.16% Chevrolet Avalanche Crew Cab 2012 30.81% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.29% Chevrolet Silverado 1500 Extended Cab 2012 7.6% Ford F-150 Regular Cab 2012 3.77% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 97.32% Audi TT Hatchback 2011 2.14% Audi A5 Coupe 2012 0.29% Audi TT RS Coupe 2012 0.09% Audi S5 Coupe 2012 0.09% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 64.63% Dodge Dakota Club Cab 2007 35.32% Chevrolet Silverado 1500 Regular Cab 2012 0.05% Lincoln Town Car Sedan 2011 0.0% GMC Canyon Extended Cab 2012 0.0% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Jeep Patriot SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% Ford E-Series Wagon Van 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 87.09% Mercedes-Benz 300-Class Convertible 1993 8.14% Volvo 240 Sedan 1993 1.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.77% Rolls-Royce Phantom Sedan 2012 0.62% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 87.13% Buick Regal GS 2012 12.34% Chevrolet Sonic Sedan 2012 0.16% Suzuki Kizashi Sedan 2012 0.14% Mitsubishi Lancer Sedan 2012 0.09% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Avalanche Crew Cab 2012 74.16% Chevrolet Silverado 1500 Regular Cab 2012 17.95% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.14% Chevrolet Silverado 1500 Extended Cab 2012 1.88% Dodge Dakota Crew Cab 2010 1.3% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 100.0% Dodge Caliber Wagon 2007 0.0% Dodge Magnum Wagon 2008 0.0% Ford Freestar Minivan 2007 0.0% Dodge Journey SUV 2012 0.0% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 97.21% Aston Martin Virage Coupe 2012 1.97% Mitsubishi Lancer Sedan 2012 0.21% Lamborghini Diablo Coupe 2001 0.11% Hyundai Veloster Hatchback 2012 0.09% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 Suzuki SX4 Sedan 2012 75.33% Chevrolet Malibu Sedan 2007 2.94% Daewoo Nubira Wagon 2002 2.8% GMC Acadia SUV 2012 2.55% Chrysler PT Cruiser Convertible 2008 2.01% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Toyota Camry Sedan 2012 26.72% Volkswagen Golf Hatchback 2012 22.06% Chevrolet Malibu Sedan 2007 14.25% Acura TL Type-S 2008 11.79% Mitsubishi Lancer Sedan 2012 6.16% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 100.0% Dodge Charger Sedan 2012 0.0% Dodge Caliber Wagon 2012 0.0% Dodge Durango SUV 2007 0.0% Dodge Dakota Crew Cab 2010 0.0% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari California Convertible 2012 63.0% Ford GT Coupe 2006 13.5% Ferrari 458 Italia Convertible 2012 13.26% Ferrari 458 Italia Coupe 2012 9.39% Chevrolet Corvette Convertible 2012 0.29% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 BMW ActiveHybrid 5 Sedan 2012 27.88% Audi RS 4 Convertible 2008 14.54% Audi S5 Convertible 2012 10.86% Audi S6 Sedan 2011 9.93% Infiniti G Coupe IPL 2012 6.71% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 GMC Savana Van 2012 41.21% Chevrolet Express Cargo Van 2007 30.26% Chevrolet Express Van 2007 19.38% Audi V8 Sedan 1994 5.71% Volkswagen Golf Hatchback 1991 1.71% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.27% Jeep Liberty SUV 2012 0.26% Jeep Patriot SUV 2012 0.12% Bentley Arnage Sedan 2009 0.09% Ford Ranger SuperCab 2011 0.08% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Nissan Juke Hatchback 2012 63.34% FIAT 500 Abarth 2012 26.38% Dodge Journey SUV 2012 2.54% Jeep Compass SUV 2012 2.09% Ferrari FF Coupe 2012 1.37% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Maybach Landaulet Convertible 2012 90.83% Chevrolet Sonic Sedan 2012 2.32% FIAT 500 Convertible 2012 2.02% Nissan Leaf Hatchback 2012 0.96% Bugatti Veyron 16.4 Convertible 2009 0.88% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 93.95% Audi S5 Coupe 2012 5.38% Porsche Panamera Sedan 2012 0.29% Fisker Karma Sedan 2012 0.09% Chevrolet Camaro Convertible 2012 0.07% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 99.97% Acura RL Sedan 2012 0.03% Acura ZDX Hatchback 2012 0.0% Toyota Camry Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 100.0% Lamborghini Aventador Coupe 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% Eagle Talon Hatchback 1998 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Audi 100 Wagon 1994 72.24% Audi 100 Sedan 1994 22.83% Audi V8 Sedan 1994 4.12% Mercedes-Benz 300-Class Convertible 1993 0.33% Volvo 240 Sedan 1993 0.28% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 99.71% Chrysler Town and Country Minivan 2012 0.27% Suzuki SX4 Sedan 2012 0.01% Dodge Caliber Wagon 2012 0.01% Cadillac Escalade EXT Crew Cab 2007 0.01% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 93.22% Ferrari California Convertible 2012 2.21% Audi S5 Convertible 2012 1.53% Ford Fiesta Sedan 2012 1.17% Chevrolet Camaro Convertible 2012 0.59% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 99.85% Toyota Corolla Sedan 2012 0.15% Toyota Camry Sedan 2012 0.0% Honda Accord Coupe 2012 0.0% Dodge Magnum Wagon 2008 0.0% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 99.57% Dodge Charger SRT-8 2009 0.22% Dodge Challenger SRT8 2011 0.07% Dodge Dakota Crew Cab 2010 0.07% Nissan 240SX Coupe 1998 0.05% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Ford F-150 Regular Cab 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford Expedition EL SUV 2009 0.0% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 96.57% BMW X6 SUV 2012 2.4% BMW 1 Series Coupe 2012 0.63% GMC Acadia SUV 2012 0.12% BMW X5 SUV 2007 0.09% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 96.19% HUMMER H2 SUT Crew Cab 2009 2.41% HUMMER H3T Crew Cab 2010 1.38% Ford GT Coupe 2006 0.01% Lamborghini Diablo Coupe 2001 0.0% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 91.65% Jeep Patriot SUV 2012 5.73% Volvo XC90 SUV 2007 2.28% Rolls-Royce Phantom Sedan 2012 0.2% Volkswagen Golf Hatchback 1991 0.06% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Ford Focus Sedan 2007 69.27% Plymouth Neon Coupe 1999 27.54% Daewoo Nubira Wagon 2002 2.24% Chevrolet Impala Sedan 2007 0.78% Suzuki Aerio Sedan 2007 0.13% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 100.0% Chevrolet HHR SS 2010 0.0% Suzuki Kizashi Sedan 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% Dodge Charger SRT-8 2009 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Suzuki Kizashi Sedan 2012 27.81% Cadillac CTS-V Sedan 2012 13.53% Volkswagen Beetle Hatchback 2012 10.73% Chevrolet Cobalt SS 2010 9.07% Toyota Camry Sedan 2012 6.91% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 93.4% Dodge Durango SUV 2007 5.99% Jeep Patriot SUV 2012 0.28% Ford Freestar Minivan 2007 0.21% Isuzu Ascender SUV 2008 0.04% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Lincoln Town Car Sedan 2011 82.96% Mercedes-Benz 300-Class Convertible 1993 9.76% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.02% Audi 100 Wagon 1994 1.47% Chrysler Sebring Convertible 2010 1.24% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 71.21% Spyker C8 Convertible 2009 28.79% Hyundai Veloster Hatchback 2012 0.0% Fisker Karma Sedan 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Dodge Caliber Wagon 2012 99.58% Dodge Caliber Wagon 2007 0.32% Chrysler Town and Country Minivan 2012 0.07% Dodge Durango SUV 2007 0.02% Chrysler Aspen SUV 2009 0.0% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.21% Spyker C8 Coupe 2009 0.67% Bugatti Veyron 16.4 Coupe 2009 0.03% Lamborghini Reventon Coupe 2008 0.01% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.01% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% Ford F-150 Regular Cab 2012 0.0% Infiniti QX56 SUV 2011 0.0% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Audi V8 Sedan 1994 58.65% Volvo 240 Sedan 1993 32.23% Audi 100 Sedan 1994 6.41% Bentley Arnage Sedan 2009 1.55% Ford Mustang Convertible 2007 0.36% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 99.98% Dodge Durango SUV 2012 0.01% Hyundai Santa Fe SUV 2012 0.01% Ford Expedition EL SUV 2009 0.0% Jeep Grand Cherokee SUV 2012 0.0% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 99.5% Ford F-450 Super Duty Crew Cab 2012 0.19% Ford Ranger SuperCab 2011 0.12% Chevrolet Silverado 1500 Regular Cab 2012 0.05% Chevrolet Silverado 1500 Extended Cab 2012 0.04% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 67.3% Jeep Patriot SUV 2012 23.16% Chrysler Aspen SUV 2009 5.46% Isuzu Ascender SUV 2008 1.69% Buick Rainier SUV 2007 0.76% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 99.69% Ford Freestar Minivan 2007 0.16% Volvo 240 Sedan 1993 0.03% Volkswagen Golf Hatchback 1991 0.03% Lincoln Town Car Sedan 2011 0.02% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 99.72% Bentley Continental GT Coupe 2007 0.18% Bentley Continental GT Coupe 2012 0.06% Bentley Mulsanne Sedan 2011 0.03% Volkswagen Beetle Hatchback 2012 0.0% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 85.22% Land Rover LR2 SUV 2012 13.1% Chrysler Town and Country Minivan 2012 1.14% Ford Freestar Minivan 2007 0.27% Chevrolet Tahoe Hybrid SUV 2012 0.13% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Mazda Tribute SUV 2011 0.0% Infiniti QX56 SUV 2011 0.0% Ford Expedition EL SUV 2009 0.0% Chrysler Aspen SUV 2009 0.0% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 52.19% Audi RS 4 Convertible 2008 46.14% Audi S4 Sedan 2012 1.29% BMW Z4 Convertible 2012 0.32% Spyker C8 Coupe 2009 0.01% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 49.73% Hyundai Genesis Sedan 2012 31.98% Mercedes-Benz E-Class Sedan 2012 7.53% Mercedes-Benz Sprinter Van 2012 1.28% Hyundai Sonata Sedan 2012 1.08% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 100.0% Porsche Panamera Sedan 2012 0.0% Nissan Juke Hatchback 2012 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Ferrari 458 Italia Coupe 2012 0.0% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Ford E-Series Wagon Van 2012 55.33% Nissan NV Passenger Van 2012 26.13% Ford F-150 Regular Cab 2007 8.38% Ford F-150 Regular Cab 2012 4.9% Dodge Ram Pickup 3500 Quad Cab 2009 3.91% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Hyundai Veracruz SUV 2012 27.35% Chevrolet Impala Sedan 2007 19.93% Ford GT Coupe 2006 8.48% Ford Edge SUV 2012 8.17% Suzuki SX4 Sedan 2012 5.79% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 94.69% Dodge Caravan Minivan 1997 2.82% Hyundai Elantra Sedan 2007 1.34% Ram C/V Cargo Van Minivan 2012 0.72% Volvo 240 Sedan 1993 0.2% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 98.89% MINI Cooper Roadster Convertible 2012 0.43% Audi TT Hatchback 2011 0.27% Mercedes-Benz C-Class Sedan 2012 0.13% Mitsubishi Lancer Sedan 2012 0.08% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.96% Ford Edge SUV 2012 0.01% Toyota Sequoia SUV 2012 0.01% Dodge Durango SUV 2012 0.01% Chevrolet Traverse SUV 2012 0.0% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 87.73% Lincoln Town Car Sedan 2011 4.66% Maybach Landaulet Convertible 2012 3.38% Rolls-Royce Phantom Sedan 2012 2.4% Rolls-Royce Ghost Sedan 2012 1.51% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 37.42% Audi S5 Convertible 2012 22.72% Chrysler Crossfire Convertible 2008 19.95% Acura RL Sedan 2012 11.28% Audi A5 Coupe 2012 4.17% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.17% Chevrolet Express Cargo Van 2007 0.83% Chevrolet Express Van 2007 0.0% Ford Ranger SuperCab 2011 0.0% Audi 100 Sedan 1994 0.0% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Nissan Juke Hatchback 2012 99.98% Mazda Tribute SUV 2011 0.01% Audi 100 Wagon 1994 0.0% GMC Acadia SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Mitsubishi Lancer Sedan 2012 45.0% Lamborghini Reventon Coupe 2008 7.31% Acura TL Sedan 2012 5.59% Daewoo Nubira Wagon 2002 4.32% BMW ActiveHybrid 5 Sedan 2012 4.22% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Lincoln Town Car Sedan 2011 38.66% Dodge Caravan Minivan 1997 12.64% Land Rover LR2 SUV 2012 7.54% Honda Odyssey Minivan 2012 7.13% Honda Accord Sedan 2012 4.78% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Chevrolet Silverado 2500HD Regular Cab 2012 83.45% Chevrolet Silverado 1500 Regular Cab 2012 4.71% AM General Hummer SUV 2000 4.03% Jeep Wrangler SUV 2012 1.33% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.96% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Daewoo Nubira Wagon 2002 42.05% Chevrolet Malibu Sedan 2007 39.77% Dodge Caliber Wagon 2012 5.94% Chrysler 300 SRT-8 2010 3.75% Mercedes-Benz C-Class Sedan 2012 1.72% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 20.01% Hyundai Azera Sedan 2012 12.76% Audi S5 Convertible 2012 9.45% Acura RL Sedan 2012 7.7% Mercedes-Benz S-Class Sedan 2012 5.49% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 55.29% Mercedes-Benz 300-Class Convertible 1993 37.77% Nissan 240SX Coupe 1998 2.68% Lincoln Town Car Sedan 2011 2.0% Eagle Talon Hatchback 1998 0.71% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Volvo C30 Hatchback 2012 62.76% Hyundai Elantra Touring Hatchback 2012 37.23% Volvo XC90 SUV 2007 0.0% Suzuki SX4 Hatchback 2012 0.0% FIAT 500 Convertible 2012 0.0% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 99.76% Bugatti Veyron 16.4 Convertible 2009 0.21% MINI Cooper Roadster Convertible 2012 0.01% Bentley Continental Supersports Conv. Convertible 2012 0.01% Audi TT Hatchback 2011 0.0% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 79.05% Suzuki Kizashi Sedan 2012 3.09% BMW ActiveHybrid 5 Sedan 2012 2.02% Audi S4 Sedan 2007 1.88% Chrysler Sebring Convertible 2010 1.81% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 66.89% Buick Verano Sedan 2012 5.13% BMW 1 Series Convertible 2012 3.32% Suzuki Kizashi Sedan 2012 2.79% BMW M5 Sedan 2010 2.24% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% Volvo XC90 SUV 2007 0.0% Jeep Compass SUV 2012 0.0% Ford Freestar Minivan 2007 0.0% Chrysler Town and Country Minivan 2012 0.0% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 95.27% Audi S6 Sedan 2011 2.47% Mercedes-Benz E-Class Sedan 2012 1.65% Hyundai Genesis Sedan 2012 0.34% Mercedes-Benz C-Class Sedan 2012 0.12% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 BMW 1 Series Convertible 2012 97.16% Audi RS 4 Convertible 2008 1.43% Audi TT RS Coupe 2012 0.38% Audi S5 Convertible 2012 0.33% Audi A5 Coupe 2012 0.14% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% GMC Yukon Hybrid SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Dodge Charger Sedan 2012 40.56% Jaguar XK XKR 2012 35.87% Audi R8 Coupe 2012 9.33% Aston Martin V8 Vantage Convertible 2012 3.36% Hyundai Azera Sedan 2012 1.84% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 79.96% Chevrolet Camaro Convertible 2012 6.35% Lamborghini Aventador Coupe 2012 6.05% Spyker C8 Convertible 2009 1.54% Aston Martin V8 Vantage Coupe 2012 1.21% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Ford Ranger SuperCab 2011 0.0% GMC Terrain SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 99.96% Audi S4 Sedan 2007 0.04% Audi S6 Sedan 2011 0.0% Audi S5 Convertible 2012 0.0% Audi S5 Coupe 2012 0.0% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.53% Jeep Compass SUV 2012 0.47% GMC Acadia SUV 2012 0.0% GMC Terrain SUV 2012 0.0% BMW X3 SUV 2012 0.0% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 51.63% Acura RL Sedan 2012 16.28% Hyundai Accent Sedan 2012 10.19% Hyundai Elantra Sedan 2007 4.63% Mitsubishi Lancer Sedan 2012 4.35% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Ford Expedition EL SUV 2009 0.0% Chrysler Aspen SUV 2009 0.0% Infiniti QX56 SUV 2011 0.0% Hyundai Santa Fe SUV 2012 0.0% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Hyundai Tucson SUV 2012 30.85% Honda Accord Sedan 2012 26.41% Chevrolet Malibu Hybrid Sedan 2010 7.58% Land Rover Range Rover SUV 2012 3.99% Chevrolet Impala Sedan 2007 3.41% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.95% Jeep Wrangler SUV 2012 0.04% Jeep Compass SUV 2012 0.01% Jeep Liberty SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 71.63% Jeep Patriot SUV 2012 15.95% Ford Edge SUV 2012 6.36% Dodge Durango SUV 2007 2.47% Chevrolet Avalanche Crew Cab 2012 0.92% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Audi TTS Coupe 2012 55.94% Tesla Model S Sedan 2012 20.99% Fisker Karma Sedan 2012 7.29% Audi S5 Coupe 2012 4.37% BMW M6 Convertible 2010 4.33% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Ford GT Coupe 2006 48.29% Spyker C8 Coupe 2009 16.56% Lamborghini Diablo Coupe 2001 3.65% Bugatti Veyron 16.4 Coupe 2009 3.62% Chevrolet Sonic Sedan 2012 3.28% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 BMW 3 Series Sedan 2012 31.7% Ford Mustang Convertible 2007 8.04% Chevrolet Camaro Convertible 2012 8.01% Volkswagen Beetle Hatchback 2012 6.23% Audi S5 Convertible 2012 6.07% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Hyundai Santa Fe SUV 2012 63.65% Dodge Durango SUV 2007 17.23% GMC Terrain SUV 2012 14.66% Scion xD Hatchback 2012 0.99% Dodge Durango SUV 2012 0.88% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 100.0% Bentley Continental Flying Spur Sedan 2007 0.0% Daewoo Nubira Wagon 2002 0.0% Nissan Leaf Hatchback 2012 0.0% Tesla Model S Sedan 2012 0.0% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 99.99% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.01% Lamborghini Aventador Coupe 2012 0.0% HUMMER H3T Crew Cab 2010 0.0% Audi TTS Coupe 2012 0.0% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 98.64% Dodge Sprinter Cargo Van 2009 1.27% Ford Freestar Minivan 2007 0.02% Volkswagen Golf Hatchback 1991 0.01% Chevrolet Express Van 2007 0.01% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Buick Enclave SUV 2012 37.88% BMW X6 SUV 2012 20.91% Buick Verano Sedan 2012 16.05% Hyundai Veracruz SUV 2012 6.54% Cadillac Escalade EXT Crew Cab 2007 3.05% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 89.62% Lamborghini Aventador Coupe 2012 10.32% Lamborghini Diablo Coupe 2001 0.02% Aston Martin Virage Coupe 2012 0.02% Ferrari 458 Italia Coupe 2012 0.01% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 100.0% GMC Canyon Extended Cab 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% GMC Terrain SUV 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 64.73% BMW 1 Series Convertible 2012 10.11% Ford Mustang Convertible 2007 8.74% Audi S5 Convertible 2012 5.04% Honda Accord Coupe 2012 4.41% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 91.4% Bentley Continental Supersports Conv. Convertible 2012 3.11% Chrysler 300 SRT-8 2010 1.02% Maybach Landaulet Convertible 2012 0.84% Bentley Mulsanne Sedan 2011 0.49% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Toyota Camry Sedan 2012 45.53% Hyundai Elantra Sedan 2007 14.95% Acura RL Sedan 2012 12.38% Hyundai Accent Sedan 2012 9.15% Toyota Corolla Sedan 2012 7.81% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 100.0% Volkswagen Golf Hatchback 1991 0.0% Audi 100 Wagon 1994 0.0% Bentley Arnage Sedan 2009 0.0% Buick Rainier SUV 2007 0.0% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Nissan Juke Hatchback 2012 59.89% Hyundai Tucson SUV 2012 21.64% Hyundai Sonata Sedan 2012 6.05% Suzuki SX4 Hatchback 2012 4.12% Acura RL Sedan 2012 2.8% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 HUMMER H2 SUT Crew Cab 2009 36.32% Chevrolet Silverado 1500 Regular Cab 2012 16.8% Chevrolet Silverado 2500HD Regular Cab 2012 7.7% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 7.61% HUMMER H3T Crew Cab 2010 5.23% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 75.03% BMW ActiveHybrid 5 Sedan 2012 8.19% Audi 100 Wagon 1994 3.42% Hyundai Genesis Sedan 2012 3.42% Audi R8 Coupe 2012 2.61% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Hyundai Sonata Sedan 2012 34.75% Land Rover Range Rover SUV 2012 8.97% Hyundai Genesis Sedan 2012 6.25% Mercedes-Benz C-Class Sedan 2012 3.85% Chevrolet TrailBlazer SS 2009 3.69% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 99.98% Jeep Grand Cherokee SUV 2012 0.02% Jeep Patriot SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% Mazda Tribute SUV 2011 0.0% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Chrysler Sebring Convertible 2010 90.19% Mercedes-Benz S-Class Sedan 2012 2.23% Dodge Challenger SRT8 2011 2.12% Chrysler Crossfire Convertible 2008 1.56% Audi 100 Sedan 1994 1.55% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 68.94% Ferrari 458 Italia Convertible 2012 12.79% McLaren MP4-12C Coupe 2012 7.11% Mercedes-Benz SL-Class Coupe 2009 4.41% Spyker C8 Coupe 2009 1.68% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 57.51% Chevrolet TrailBlazer SS 2009 16.63% Dodge Challenger SRT8 2011 8.77% Bentley Arnage Sedan 2009 6.48% Cadillac CTS-V Sedan 2012 2.56% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford E-Series Wagon Van 2012 88.02% Ford Expedition EL SUV 2009 4.97% Isuzu Ascender SUV 2008 1.79% Land Rover Range Rover SUV 2012 0.69% Ford F-150 Regular Cab 2012 0.59% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 BMW 1 Series Convertible 2012 87.79% Audi S5 Convertible 2012 3.27% Mercedes-Benz E-Class Sedan 2012 0.86% BMW ActiveHybrid 5 Sedan 2012 0.84% Mercedes-Benz C-Class Sedan 2012 0.75% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Audi S4 Sedan 2007 37.9% Cadillac SRX SUV 2012 12.13% BMW X3 SUV 2012 11.41% Cadillac CTS-V Sedan 2012 9.66% Buick Verano Sedan 2012 5.17% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.98% Cadillac CTS-V Sedan 2012 0.02% Audi TT RS Coupe 2012 0.0% Audi TT Hatchback 2011 0.0% Mercedes-Benz Sprinter Van 2012 0.0% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Durango SUV 2007 77.89% Scion xD Hatchback 2012 5.88% Chevrolet Avalanche Crew Cab 2012 5.74% Chevrolet Malibu Hybrid Sedan 2010 2.6% Volvo XC90 SUV 2007 2.36% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Convertible 2012 95.97% Aston Martin V8 Vantage Coupe 2012 4.03% Aston Martin Virage Convertible 2012 0.0% Aston Martin Virage Coupe 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 98.25% Toyota Corolla Sedan 2012 0.97% Toyota Camry Sedan 2012 0.18% BMW 1 Series Coupe 2012 0.15% Ferrari FF Coupe 2012 0.06% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Van 2007 70.83% Chevrolet Express Cargo Van 2007 25.78% GMC Savana Van 2012 3.39% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 96.55% Acura RL Sedan 2012 1.29% BMW 1 Series Coupe 2012 0.44% Mercedes-Benz S-Class Sedan 2012 0.29% Suzuki SX4 Sedan 2012 0.2% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 99.69% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.31% Rolls-Royce Ghost Sedan 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.96% Ford Ranger SuperCab 2011 0.04% GMC Terrain SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford E-Series Wagon Van 2012 36.34% GMC Canyon Extended Cab 2012 26.23% Ford Ranger SuperCab 2011 22.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 13.75% GMC Savana Van 2012 0.61% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 57.72% Jeep Grand Cherokee SUV 2012 26.78% Ford Ranger SuperCab 2011 10.79% Dodge Ram Pickup 3500 Crew Cab 2010 0.78% Toyota 4Runner SUV 2012 0.68% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Chrysler 300 SRT-8 2010 72.38% Fisker Karma Sedan 2012 9.41% Rolls-Royce Ghost Sedan 2012 5.22% Land Rover Range Rover SUV 2012 3.03% Acura TL Sedan 2012 1.95% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 97.37% Toyota Camry Sedan 2012 2.49% Chevrolet Monte Carlo Coupe 2007 0.06% Chevrolet Impala Sedan 2007 0.04% Honda Accord Sedan 2012 0.03% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 100.0% GMC Acadia SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Lincoln Town Car Sedan 2011 0.0% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.87% Mercedes-Benz SL-Class Coupe 2009 0.07% Lamborghini Aventador Coupe 2012 0.04% Bugatti Veyron 16.4 Coupe 2009 0.01% Spyker C8 Convertible 2009 0.01% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 45.3% Aston Martin Virage Coupe 2012 16.68% Lamborghini Aventador Coupe 2012 12.03% Bugatti Veyron 16.4 Coupe 2009 6.77% Audi TTS Coupe 2012 3.88% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Audi S4 Sedan 2007 29.07% BMW ActiveHybrid 5 Sedan 2012 19.84% Jaguar XK XKR 2012 7.13% BMW M5 Sedan 2010 6.93% Acura TL Type-S 2008 6.04% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 94.39% Bugatti Veyron 16.4 Coupe 2009 4.57% Lamborghini Reventon Coupe 2008 0.32% McLaren MP4-12C Coupe 2012 0.31% Bugatti Veyron 16.4 Convertible 2009 0.26% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Hyundai Veracruz SUV 2012 43.0% Chevrolet Impala Sedan 2007 19.55% Hyundai Tucson SUV 2012 6.54% Chevrolet Traverse SUV 2012 5.51% Buick Enclave SUV 2012 4.16% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 76.23% BMW 3 Series Sedan 2012 9.33% BMW 3 Series Wagon 2012 3.46% Volkswagen Golf Hatchback 1991 2.48% Mercedes-Benz C-Class Sedan 2012 2.37% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Hyundai Genesis Sedan 2012 84.24% Dodge Journey SUV 2012 5.26% Chrysler PT Cruiser Convertible 2008 2.42% Hyundai Azera Sedan 2012 1.5% Volkswagen Golf Hatchback 2012 1.06% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 100.0% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Continental GT Coupe 2007 0.0% Bentley Arnage Sedan 2009 0.0% Bentley Continental GT Coupe 2012 0.0% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Spyker C8 Convertible 2009 57.17% Spyker C8 Coupe 2009 16.89% Jeep Wrangler SUV 2012 9.28% Hyundai Veloster Hatchback 2012 2.94% Dodge Challenger SRT8 2011 1.85% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.98% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.02% Lamborghini Aventador Coupe 2012 0.0% Audi TTS Coupe 2012 0.0% Ford GT Coupe 2006 0.0% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 99.62% Nissan Leaf Hatchback 2012 0.34% Nissan Juke Hatchback 2012 0.01% Hyundai Veracruz SUV 2012 0.01% Scion xD Hatchback 2012 0.0% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 96.55% Chevrolet TrailBlazer SS 2009 1.67% Land Rover Range Rover SUV 2012 0.6% Hyundai Azera Sedan 2012 0.14% Dodge Caravan Minivan 1997 0.14% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 99.24% Hyundai Genesis Sedan 2012 0.44% Dodge Journey SUV 2012 0.05% Tesla Model S Sedan 2012 0.04% Hyundai Elantra Sedan 2007 0.04% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 100.0% Chevrolet Cobalt SS 2010 0.0% Lamborghini Diablo Coupe 2001 0.0% Geo Metro Convertible 1993 0.0% Chevrolet Corvette Convertible 2012 0.0% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Volvo C30 Hatchback 2012 33.93% Ford GT Coupe 2006 28.12% Cadillac CTS-V Sedan 2012 12.36% Suzuki Kizashi Sedan 2012 12.33% Volkswagen Beetle Hatchback 2012 2.11% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 69.84% Ford F-150 Regular Cab 2012 24.97% Chevrolet Silverado 2500HD Regular Cab 2012 1.91% Chevrolet Silverado 1500 Regular Cab 2012 1.63% GMC Canyon Extended Cab 2012 1.2% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 67.91% Audi S5 Coupe 2012 8.61% Audi A5 Coupe 2012 6.12% BMW M3 Coupe 2012 2.88% Audi TT RS Coupe 2012 2.56% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 100.0% Cadillac SRX SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Dodge Durango SUV 2012 0.0% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 95.29% Aston Martin V8 Vantage Coupe 2012 3.73% BMW 6 Series Convertible 2007 0.38% Aston Martin Virage Convertible 2012 0.26% Aston Martin V8 Vantage Convertible 2012 0.15% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 67.41% Honda Odyssey Minivan 2007 24.53% BMW X6 SUV 2012 5.53% Chevrolet Impala Sedan 2007 0.9% BMW X5 SUV 2007 0.52% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Suzuki Kizashi Sedan 2012 51.98% Chevrolet Sonic Sedan 2012 29.48% Volvo C30 Hatchback 2012 14.56% Dodge Charger Sedan 2012 1.1% Cadillac CTS-V Sedan 2012 0.71% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 89.83% Chevrolet Corvette Convertible 2012 5.33% Ferrari 458 Italia Convertible 2012 4.81% Chevrolet Cobalt SS 2010 0.01% Aston Martin V8 Vantage Coupe 2012 0.0% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 94.28% Rolls-Royce Phantom Sedan 2012 2.48% Audi TTS Coupe 2012 0.61% BMW M6 Convertible 2010 0.5% Audi RS 4 Convertible 2008 0.26% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Spyker C8 Coupe 2009 62.05% Bugatti Veyron 16.4 Coupe 2009 14.0% Aston Martin Virage Coupe 2012 9.38% McLaren MP4-12C Coupe 2012 3.71% Spyker C8 Convertible 2009 2.87% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 65.56% GMC Savana Van 2012 30.23% Chevrolet Express Van 2007 4.13% Chevrolet Silverado 2500HD Regular Cab 2012 0.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 49.54% GMC Acadia SUV 2012 24.62% Toyota Sequoia SUV 2012 17.68% Bentley Mulsanne Sedan 2011 2.48% Cadillac CTS-V Sedan 2012 1.33% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 23.31% Chevrolet Corvette ZR1 2012 16.38% McLaren MP4-12C Coupe 2012 10.42% Mitsubishi Lancer Sedan 2012 8.75% Eagle Talon Hatchback 1998 6.39% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Isuzu Ascender SUV 2008 56.46% Dodge Dakota Crew Cab 2010 42.87% Jeep Wrangler SUV 2012 0.31% Lincoln Town Car Sedan 2011 0.05% GMC Canyon Extended Cab 2012 0.03% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 97.29% AM General Hummer SUV 2000 2.32% Nissan NV Passenger Van 2012 0.33% Jeep Patriot SUV 2012 0.03% GMC Yukon Hybrid SUV 2012 0.02% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 47.5% Ford Freestar Minivan 2007 11.67% Chevrolet Traverse SUV 2012 4.73% Volkswagen Golf Hatchback 1991 4.01% Plymouth Neon Coupe 1999 3.54% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Audi V8 Sedan 1994 42.28% Nissan 240SX Coupe 1998 30.54% Audi 100 Wagon 1994 14.54% Audi 100 Sedan 1994 5.98% Volvo 240 Sedan 1993 3.61% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Hyundai Genesis Sedan 2012 56.83% Hyundai Azera Sedan 2012 36.75% Mercedes-Benz C-Class Sedan 2012 3.26% Ford F-450 Super Duty Crew Cab 2012 1.64% Chrysler PT Cruiser Convertible 2008 0.34% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 29.95% Audi S6 Sedan 2011 18.11% Eagle Talon Hatchback 1998 12.85% Audi RS 4 Convertible 2008 10.3% Plymouth Neon Coupe 1999 8.6% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 89.21% Audi 100 Wagon 1994 6.32% Audi V8 Sedan 1994 2.55% Mercedes-Benz Sprinter Van 2012 1.67% Volkswagen Golf Hatchback 1991 0.19% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 BMW X5 SUV 2007 27.44% Buick Rainier SUV 2007 25.9% Jeep Liberty SUV 2012 21.17% Volvo 240 Sedan 1993 10.53% Bentley Arnage Sedan 2009 3.1% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Dodge Ram Pickup 3500 Crew Cab 2010 39.41% Mercedes-Benz SL-Class Coupe 2009 9.08% Mercedes-Benz C-Class Sedan 2012 7.71% Ford F-450 Super Duty Crew Cab 2012 4.71% Audi V8 Sedan 1994 4.23% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Chevrolet Corvette ZR1 2012 94.09% Porsche Panamera Sedan 2012 1.62% Ford GT Coupe 2006 1.01% Bugatti Veyron 16.4 Coupe 2009 0.58% Jaguar XK XKR 2012 0.42% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 97.34% Honda Odyssey Minivan 2012 1.17% Buick Enclave SUV 2012 1.15% Hyundai Elantra Sedan 2007 0.17% Chevrolet Malibu Hybrid Sedan 2010 0.05% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 98.42% Jeep Wrangler SUV 2012 1.57% GMC Yukon Hybrid SUV 2012 0.01% Jeep Liberty SUV 2012 0.0% Buick Enclave SUV 2012 0.0% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.29% Isuzu Ascender SUV 2008 0.33% Dodge Dakota Crew Cab 2010 0.13% HUMMER H2 SUT Crew Cab 2009 0.1% Jeep Wrangler SUV 2012 0.07% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 87.17% Audi TT Hatchback 2011 12.16% Audi S5 Coupe 2012 0.46% Audi S5 Convertible 2012 0.16% Mercedes-Benz E-Class Sedan 2012 0.02% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 98.25% GMC Terrain SUV 2012 1.52% GMC Acadia SUV 2012 0.05% Ford F-150 Regular Cab 2007 0.05% Suzuki SX4 Hatchback 2012 0.02% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Cobalt SS 2010 87.66% Hyundai Elantra Sedan 2007 4.02% Honda Odyssey Minivan 2007 2.5% Chevrolet Monte Carlo Coupe 2007 1.98% Chevrolet Malibu Sedan 2007 1.49% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 83.55% Acura RL Sedan 2012 5.95% Bugatti Veyron 16.4 Coupe 2009 4.89% Acura ZDX Hatchback 2012 1.26% Hyundai Azera Sedan 2012 0.99% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 89.02% Ford Fiesta Sedan 2012 6.58% Chrysler PT Cruiser Convertible 2008 2.4% smart fortwo Convertible 2012 0.7% Hyundai Tucson SUV 2012 0.69% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 Audi TT RS Coupe 2012 54.26% BMW 1 Series Convertible 2012 15.43% Spyker C8 Coupe 2009 7.58% BMW Z4 Convertible 2012 6.25% Mercedes-Benz E-Class Sedan 2012 3.88% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Ford Fiesta Sedan 2012 52.98% Hyundai Sonata Hybrid Sedan 2012 28.18% Hyundai Accent Sedan 2012 13.79% Hyundai Veloster Hatchback 2012 1.89% Toyota Camry Sedan 2012 1.28% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 18.15% Lamborghini Reventon Coupe 2008 13.3% Audi R8 Coupe 2012 6.74% Acura TL Type-S 2008 5.94% Rolls-Royce Ghost Sedan 2012 5.23% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Mitsubishi Lancer Sedan 2012 29.2% BMW Z4 Convertible 2012 14.72% Bentley Continental GT Coupe 2012 11.67% Jaguar XK XKR 2012 9.78% Chrysler 300 SRT-8 2010 8.47% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 88.77% Dodge Ram Pickup 3500 Quad Cab 2009 3.39% Chevrolet Silverado 1500 Extended Cab 2012 3.21% GMC Canyon Extended Cab 2012 2.19% Jeep Wrangler SUV 2012 1.12% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Acura ZDX Hatchback 2012 32.01% Buick Verano Sedan 2012 23.48% Audi S5 Coupe 2012 17.21% Acura RL Sedan 2012 11.4% Audi TTS Coupe 2012 4.56% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 90.19% Chevrolet Monte Carlo Coupe 2007 8.01% Ford Focus Sedan 2007 1.15% Chevrolet Cobalt SS 2010 0.5% Chevrolet Impala Sedan 2007 0.09% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 69.93% Suzuki SX4 Hatchback 2012 16.02% Chrysler Town and Country Minivan 2012 3.5% Dodge Journey SUV 2012 2.96% Ram C/V Cargo Van Minivan 2012 1.55% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 BMW 3 Series Sedan 2012 93.95% Mercedes-Benz S-Class Sedan 2012 2.28% Mercedes-Benz C-Class Sedan 2012 1.44% Honda Accord Coupe 2012 1.16% Audi V8 Sedan 1994 0.22% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 99.96% Acura ZDX Hatchback 2012 0.02% Acura TL Sedan 2012 0.01% Audi S5 Convertible 2012 0.0% BMW 3 Series Wagon 2012 0.0% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi TTS Coupe 2012 99.98% Audi A5 Coupe 2012 0.01% Audi S4 Sedan 2012 0.01% Audi S6 Sedan 2011 0.0% Audi S5 Coupe 2012 0.0% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Porsche Panamera Sedan 2012 40.79% Eagle Talon Hatchback 1998 30.38% Ford Focus Sedan 2007 16.47% Jaguar XK XKR 2012 4.36% Plymouth Neon Coupe 1999 1.47% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.58% Hyundai Azera Sedan 2012 0.42% Hyundai Sonata Sedan 2012 0.0% Hyundai Genesis Sedan 2012 0.0% Mercedes-Benz E-Class Sedan 2012 0.0% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 100.0% GMC Yukon Hybrid SUV 2012 0.0% Ford Ranger SuperCab 2011 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 95.36% Mercedes-Benz C-Class Sedan 2012 2.61% Chrysler Sebring Convertible 2010 2.0% Chrysler Crossfire Convertible 2008 0.02% Mercedes-Benz E-Class Sedan 2012 0.01% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.9% Hyundai Santa Fe SUV 2012 0.06% Ford Edge SUV 2012 0.02% Ford Expedition EL SUV 2009 0.01% Volvo XC90 SUV 2007 0.01% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 99.36% BMW 1 Series Coupe 2012 0.54% Suzuki SX4 Hatchback 2012 0.04% Chevrolet Sonic Sedan 2012 0.03% Mitsubishi Lancer Sedan 2012 0.01% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Bentley Continental Supersports Conv. Convertible 2012 48.98% Ferrari 458 Italia Convertible 2012 15.24% Mercedes-Benz 300-Class Convertible 1993 8.08% Hyundai Elantra Sedan 2007 3.48% Ford F-150 Regular Cab 2007 2.95% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Lamborghini Aventador Coupe 2012 61.5% BMW M6 Convertible 2010 11.79% BMW 6 Series Convertible 2007 10.79% Audi R8 Coupe 2012 4.9% Jaguar XK XKR 2012 3.05% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet HHR SS 2010 78.65% Honda Accord Coupe 2012 12.11% Dodge Caliber Wagon 2007 2.12% Chevrolet Cobalt SS 2010 1.05% Volkswagen Beetle Hatchback 2012 0.9% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 94.94% Dodge Dakota Club Cab 2007 2.36% Dodge Dakota Crew Cab 2010 1.43% Dodge Ram Pickup 3500 Crew Cab 2010 0.99% Dodge Caliber Wagon 2012 0.13% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Tesla Model S Sedan 2012 49.69% Audi S5 Coupe 2012 36.81% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.82% Audi TTS Coupe 2012 2.59% BMW M3 Coupe 2012 2.55% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Audi R8 Coupe 2012 94.99% Ford Edge SUV 2012 2.33% Nissan Juke Hatchback 2012 1.46% Dodge Charger Sedan 2012 0.41% GMC Terrain SUV 2012 0.19% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 GMC Terrain SUV 2012 99.26% Land Rover LR2 SUV 2012 0.28% BMW X3 SUV 2012 0.22% Mazda Tribute SUV 2011 0.11% Jeep Compass SUV 2012 0.07% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 93.97% Chrysler PT Cruiser Convertible 2008 1.77% Chevrolet HHR SS 2010 0.83% Infiniti G Coupe IPL 2012 0.69% Ford Expedition EL SUV 2009 0.62% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Canyon Extended Cab 2012 55.31% Chevrolet Silverado 2500HD Regular Cab 2012 13.88% Ford F-150 Regular Cab 2012 11.26% GMC Savana Van 2012 10.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.38% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 29.43% Chevrolet Traverse SUV 2012 15.24% Dodge Journey SUV 2012 9.6% BMW X6 SUV 2012 9.51% Buick Enclave SUV 2012 6.05% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Mercedes-Benz 300-Class Convertible 1993 28.65% Acura TL Type-S 2008 27.02% BMW M6 Convertible 2010 9.53% BMW 1 Series Coupe 2012 5.51% Audi V8 Sedan 1994 3.67% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 BMW M3 Coupe 2012 88.9% BMW M5 Sedan 2010 8.95% BMW 1 Series Coupe 2012 1.83% Dodge Magnum Wagon 2008 0.17% Volvo C30 Hatchback 2012 0.15% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 100.0% Audi A5 Coupe 2012 0.0% Buick Verano Sedan 2012 0.0% BMW X6 SUV 2012 0.0% Ford Edge SUV 2012 0.0% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 98.63% Audi TTS Coupe 2012 0.75% Audi TT RS Coupe 2012 0.56% Audi R8 Coupe 2012 0.04% Audi A5 Coupe 2012 0.01% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 51.54% Spyker C8 Convertible 2009 23.78% Lamborghini Reventon Coupe 2008 5.88% Bugatti Veyron 16.4 Convertible 2009 4.55% Mercedes-Benz SL-Class Coupe 2009 2.09% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Dodge Dakota Crew Cab 2010 33.18% Chevrolet TrailBlazer SS 2009 29.98% BMW X6 SUV 2012 14.01% Dodge Ram Pickup 3500 Quad Cab 2009 11.14% Buick Enclave SUV 2012 5.34% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 54.65% GMC Canyon Extended Cab 2012 33.76% Dodge Ram Pickup 3500 Quad Cab 2009 4.66% Ford F-150 Regular Cab 2007 2.91% Dodge Dakota Club Cab 2007 1.21% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Jeep Liberty SUV 2012 96.5% Jeep Patriot SUV 2012 3.46% Chevrolet Tahoe Hybrid SUV 2012 0.02% Chevrolet Avalanche Crew Cab 2012 0.01% Isuzu Ascender SUV 2008 0.01% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 98.42% Fisker Karma Sedan 2012 1.3% Buick Regal GS 2012 0.07% Ferrari FF Coupe 2012 0.07% Audi TTS Coupe 2012 0.06% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 45.31% Toyota Corolla Sedan 2012 27.36% Ford Fiesta Sedan 2012 19.11% Mercedes-Benz C-Class Sedan 2012 4.08% Hyundai Elantra Touring Hatchback 2012 1.67% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 75.79% Bugatti Veyron 16.4 Coupe 2009 16.19% Spyker C8 Convertible 2009 7.7% Lamborghini Aventador Coupe 2012 0.18% Bentley Continental Flying Spur Sedan 2007 0.09% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Canyon Extended Cab 2012 55.76% Volvo XC90 SUV 2007 23.3% Dodge Caliber Wagon 2012 12.66% Audi 100 Sedan 1994 2.28% Audi V8 Sedan 1994 1.59% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.46% Lincoln Town Car Sedan 2011 0.28% Daewoo Nubira Wagon 2002 0.13% Chevrolet Impala Sedan 2007 0.1% Buick Rainier SUV 2007 0.02% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 BMW 3 Series Sedan 2012 25.57% Ferrari FF Coupe 2012 10.69% Lamborghini Aventador Coupe 2012 9.85% McLaren MP4-12C Coupe 2012 8.2% Ferrari 458 Italia Coupe 2012 5.45% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Chevrolet HHR SS 2010 99.95% Chrysler Aspen SUV 2009 0.02% Volkswagen Golf Hatchback 1991 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% Jeep Liberty SUV 2012 0.01% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Rolls-Royce Ghost Sedan 2012 33.5% Audi S5 Convertible 2012 13.81% Audi S5 Coupe 2012 8.14% Audi A5 Coupe 2012 5.92% Jeep Compass SUV 2012 5.6% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% BMW X5 SUV 2007 0.0% BMW X3 SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.98% Ford E-Series Wagon Van 2012 0.01% Dodge Ram Pickup 3500 Crew Cab 2010 0.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 100.0% Acura RL Sedan 2012 0.0% Porsche Panamera Sedan 2012 0.0% BMW M5 Sedan 2010 0.0% Buick Regal GS 2012 0.0% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.95% Jeep Liberty SUV 2012 0.04% Jeep Compass SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Hyundai Elantra Sedan 2007 80.08% Acura TL Type-S 2008 3.47% Hyundai Sonata Sedan 2012 3.39% Chevrolet Cobalt SS 2010 2.61% Hyundai Azera Sedan 2012 1.27% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 50.18% Audi S5 Coupe 2012 43.06% Mercedes-Benz E-Class Sedan 2012 2.23% Audi A5 Coupe 2012 2.09% Audi S4 Sedan 2007 1.71% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 58.2% Jeep Compass SUV 2012 40.13% GMC Acadia SUV 2012 0.82% Jeep Patriot SUV 2012 0.48% BMW X6 SUV 2012 0.2% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chevrolet Malibu Sedan 2007 91.21% Acura TSX Sedan 2012 4.69% Dodge Magnum Wagon 2008 2.65% Chevrolet Silverado 1500 Extended Cab 2012 0.69% Honda Accord Sedan 2012 0.29% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Dodge Caliber Wagon 2012 34.04% BMW X3 SUV 2012 33.7% Chrysler Town and Country Minivan 2012 11.49% Dodge Durango SUV 2012 3.48% Toyota Sequoia SUV 2012 2.59% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 96.93% Toyota Camry Sedan 2012 2.24% Ford Fiesta Sedan 2012 0.53% Hyundai Accent Sedan 2012 0.25% Suzuki Aerio Sedan 2007 0.04% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Mercedes-Benz 300-Class Convertible 1993 74.56% Volvo 240 Sedan 1993 24.57% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.46% Volkswagen Golf Hatchback 1991 0.28% Chrysler 300 SRT-8 2010 0.02% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 100.0% Dodge Caliber Wagon 2012 0.0% Dodge Caravan Minivan 1997 0.0% Chrysler Town and Country Minivan 2012 0.0% Honda Odyssey Minivan 2007 0.0% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Dodge Journey SUV 2012 28.82% GMC Terrain SUV 2012 11.69% Mazda Tribute SUV 2011 8.65% Land Rover LR2 SUV 2012 6.17% Land Rover Range Rover SUV 2012 4.63% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 100.0% Audi S5 Convertible 2012 0.0% Audi A5 Coupe 2012 0.0% Audi S5 Coupe 2012 0.0% Audi S4 Sedan 2007 0.0% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 70.88% Volkswagen Beetle Hatchback 2012 11.62% Volkswagen Golf Hatchback 2012 11.32% smart fortwo Convertible 2012 1.49% BMW X5 SUV 2007 0.74% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 66.85% GMC Acadia SUV 2012 15.42% Chevrolet Traverse SUV 2012 7.72% Buick Enclave SUV 2012 3.23% Nissan Leaf Hatchback 2012 2.08% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Dodge Challenger SRT8 2011 17.29% Dodge Charger SRT-8 2009 16.71% Aston Martin V8 Vantage Coupe 2012 11.22% Fisker Karma Sedan 2012 9.63% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.19% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Chevrolet Camaro Convertible 2012 49.07% Chevrolet Cobalt SS 2010 18.1% Ford GT Coupe 2006 7.4% Ford Mustang Convertible 2007 3.39% Nissan 240SX Coupe 1998 2.95% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Mercedes-Benz 300-Class Convertible 1993 17.23% Ford GT Coupe 2006 14.3% Audi 100 Wagon 1994 7.6% Lincoln Town Car Sedan 2011 3.9% Volkswagen Golf Hatchback 1991 3.48% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.93% Ford Expedition EL SUV 2009 0.03% Infiniti QX56 SUV 2011 0.02% Mercedes-Benz E-Class Sedan 2012 0.02% Ford F-150 Regular Cab 2012 0.01% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Spyker C8 Coupe 2009 23.45% Hyundai Veloster Hatchback 2012 15.5% McLaren MP4-12C Coupe 2012 8.19% Dodge Charger Sedan 2012 7.94% Aston Martin Virage Coupe 2012 7.0% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.8% Ford Edge SUV 2012 0.2% Honda Odyssey Minivan 2012 0.0% Hyundai Accent Sedan 2012 0.0% GMC Terrain SUV 2012 0.0% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 79.21% GMC Terrain SUV 2012 11.13% Toyota 4Runner SUV 2012 7.7% Ford Edge SUV 2012 0.97% Chevrolet Avalanche Crew Cab 2012 0.3% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 77.83% GMC Terrain SUV 2012 11.72% Ford Edge SUV 2012 10.27% BMW X5 SUV 2007 0.13% Cadillac SRX SUV 2012 0.02% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 51.38% AM General Hummer SUV 2000 27.48% Nissan NV Passenger Van 2012 11.59% MINI Cooper Roadster Convertible 2012 3.58% Bentley Mulsanne Sedan 2011 1.69% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Dodge Durango SUV 2007 29.38% Jeep Patriot SUV 2012 17.87% Volvo XC90 SUV 2007 12.91% Isuzu Ascender SUV 2008 9.63% Volvo 240 Sedan 1993 8.11% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 63.0% Dodge Ram Pickup 3500 Crew Cab 2010 36.98% Chevrolet Silverado 2500HD Regular Cab 2012 0.01% Dodge Dakota Crew Cab 2010 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Infiniti QX56 SUV 2011 65.74% Cadillac SRX SUV 2012 11.08% Dodge Charger Sedan 2012 9.34% Mercedes-Benz E-Class Sedan 2012 5.45% Hyundai Sonata Sedan 2012 1.72% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 90.53% GMC Acadia SUV 2012 2.57% Buick Enclave SUV 2012 2.35% Toyota Sequoia SUV 2012 2.14% Cadillac SRX SUV 2012 1.6% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 72.38% McLaren MP4-12C Coupe 2012 13.84% Spyker C8 Coupe 2009 4.45% Audi TTS Coupe 2012 4.29% Mitsubishi Lancer Sedan 2012 3.21% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Audi S5 Coupe 2012 85.44% Audi RS 4 Convertible 2008 8.87% Audi A5 Coupe 2012 3.03% Audi S4 Sedan 2007 1.28% Audi TTS Coupe 2012 1.06% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 96.76% BMW M3 Coupe 2012 2.69% Dodge Charger Sedan 2012 0.2% Audi TTS Coupe 2012 0.18% Hyundai Veloster Hatchback 2012 0.08% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Geo Metro Convertible 1993 69.64% Mercedes-Benz 300-Class Convertible 1993 20.93% Audi S4 Sedan 2007 5.93% Chrysler Sebring Convertible 2010 1.61% Chrysler Crossfire Convertible 2008 0.5% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Audi 100 Wagon 1994 99.86% Volkswagen Golf Hatchback 1991 0.14% Daewoo Nubira Wagon 2002 0.0% Plymouth Neon Coupe 1999 0.0% Suzuki Aerio Sedan 2007 0.0% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 99.3% Bentley Continental GT Coupe 2007 0.7% Bentley Continental GT Coupe 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 100.0% GMC Savana Van 2012 0.0% Chevrolet Express Van 2007 0.0% Nissan NV Passenger Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% GMC Savana Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% Chrysler Aspen SUV 2009 0.0% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Jaguar XK XKR 2012 19.88% Fisker Karma Sedan 2012 13.61% Spyker C8 Coupe 2009 11.34% Buick Verano Sedan 2012 10.04% Dodge Challenger SRT8 2011 7.52% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 94.12% Volvo C30 Hatchback 2012 1.92% Honda Accord Coupe 2012 1.41% Nissan Juke Hatchback 2012 0.57% Hyundai Veracruz SUV 2012 0.4% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 99.8% Acura RL Sedan 2012 0.07% Chevrolet Monte Carlo Coupe 2007 0.04% Mitsubishi Lancer Sedan 2012 0.02% Infiniti G Coupe IPL 2012 0.01% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 BMW 3 Series Sedan 2012 75.34% BMW Z4 Convertible 2012 7.77% BMW M6 Convertible 2010 5.01% Chevrolet Camaro Convertible 2012 2.81% Audi A5 Coupe 2012 2.41% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Ford Freestar Minivan 2007 35.89% Dodge Dakota Crew Cab 2010 27.91% Audi V8 Sedan 1994 18.44% Jeep Grand Cherokee SUV 2012 5.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.48% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Dodge Magnum Wagon 2008 65.21% Chevrolet HHR SS 2010 25.71% Cadillac CTS-V Sedan 2012 4.96% Dodge Charger Sedan 2012 1.86% Mercedes-Benz S-Class Sedan 2012 0.94% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% Suzuki Aerio Sedan 2007 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Ford Fiesta Sedan 2012 0.0% FIAT 500 Convertible 2012 0.0% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 100.0% Nissan NV Passenger Van 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Ford Ranger SuperCab 2011 0.0% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 56.92% Ferrari California Convertible 2012 39.68% Ferrari FF Coupe 2012 2.6% Ferrari 458 Italia Convertible 2012 0.32% Chevrolet Corvette Convertible 2012 0.14% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Chevrolet Sonic Sedan 2012 91.75% Toyota Corolla Sedan 2012 1.88% Hyundai Accent Sedan 2012 1.86% Dodge Journey SUV 2012 0.93% Dodge Charger Sedan 2012 0.56% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 Bugatti Veyron 16.4 Convertible 2009 38.71% Nissan Leaf Hatchback 2012 16.29% Chevrolet Express Cargo Van 2007 8.92% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.19% Lamborghini Reventon Coupe 2008 3.69% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 99.94% Chevrolet Traverse SUV 2012 0.03% Chevrolet Camaro Convertible 2012 0.03% Chevrolet Malibu Hybrid Sedan 2010 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 BMW 6 Series Convertible 2007 40.4% BMW Z4 Convertible 2012 20.87% Bugatti Veyron 16.4 Convertible 2009 10.64% Aston Martin Virage Convertible 2012 3.66% BMW M3 Coupe 2012 3.15% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Buick Verano Sedan 2012 68.5% Chevrolet TrailBlazer SS 2009 30.13% BMW X6 SUV 2012 0.83% Nissan Juke Hatchback 2012 0.22% Hyundai Elantra Sedan 2007 0.12% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chrysler Town and Country Minivan 2012 43.1% Dodge Caliber Wagon 2012 33.72% Ram C/V Cargo Van Minivan 2012 13.5% Ford Expedition EL SUV 2009 3.9% Ford Freestar Minivan 2007 2.13% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 81.8% Chrysler Town and Country Minivan 2012 6.13% Volvo XC90 SUV 2007 5.79% Mercedes-Benz Sprinter Van 2012 0.71% Land Rover LR2 SUV 2012 0.57% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Aston Martin Virage Convertible 2012 38.22% Aston Martin V8 Vantage Coupe 2012 25.63% Fisker Karma Sedan 2012 8.85% Ferrari FF Coupe 2012 4.95% Jaguar XK XKR 2012 4.46% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Audi R8 Coupe 2012 27.71% Rolls-Royce Ghost Sedan 2012 24.24% Nissan 240SX Coupe 1998 18.58% BMW 3 Series Sedan 2012 10.08% Mercedes-Benz 300-Class Convertible 1993 4.7% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Hyundai Veloster Hatchback 2012 53.66% Volvo C30 Hatchback 2012 42.0% Spyker C8 Coupe 2009 1.31% Audi TTS Coupe 2012 0.53% Mitsubishi Lancer Sedan 2012 0.37% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Hyundai Sonata Hybrid Sedan 2012 99.42% Acura TSX Sedan 2012 0.23% Audi TT RS Coupe 2012 0.15% Jaguar XK XKR 2012 0.04% BMW 1 Series Coupe 2012 0.04% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Nissan Leaf Hatchback 2012 23.61% Ferrari California Convertible 2012 15.01% Acura Integra Type R 2001 5.03% Porsche Panamera Sedan 2012 4.96% Chevrolet Malibu Sedan 2007 4.6% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Chevrolet Avalanche Crew Cab 2012 95.2% Ford Freestar Minivan 2007 2.12% Dodge Caliber Wagon 2012 1.57% Dodge Durango SUV 2012 0.28% Dodge Caliber Wagon 2007 0.17% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 98.22% Dodge Challenger SRT8 2011 0.74% Chevrolet Cobalt SS 2010 0.46% Chevrolet Corvette ZR1 2012 0.25% Chrysler 300 SRT-8 2010 0.14% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Hyundai Veracruz SUV 2012 40.66% GMC Canyon Extended Cab 2012 10.76% Ford Edge SUV 2012 6.35% Volvo XC90 SUV 2007 6.17% HUMMER H2 SUT Crew Cab 2009 5.43% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 98.81% Mercedes-Benz E-Class Sedan 2012 1.19% Toyota Sequoia SUV 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 94.28% Nissan Juke Hatchback 2012 1.94% Jeep Compass SUV 2012 0.86% Nissan Leaf Hatchback 2012 0.84% Scion xD Hatchback 2012 0.71% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Audi TTS Coupe 2012 25.29% Bugatti Veyron 16.4 Coupe 2009 14.26% Audi S5 Coupe 2012 8.78% Ford GT Coupe 2006 7.8% Fisker Karma Sedan 2012 7.51% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental GT Coupe 2007 29.89% Bentley Continental Flying Spur Sedan 2007 17.22% Bentley Arnage Sedan 2009 11.36% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.37% Cadillac CTS-V Sedan 2012 4.92% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 BMW M6 Convertible 2010 15.78% Lamborghini Reventon Coupe 2008 8.25% Nissan NV Passenger Van 2012 7.29% GMC Yukon Hybrid SUV 2012 6.68% Ford E-Series Wagon Van 2012 3.88% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 73.82% Chevrolet Impala Sedan 2007 10.64% Chevrolet Malibu Sedan 2007 9.96% Dodge Caliber Wagon 2012 2.92% Chrysler PT Cruiser Convertible 2008 0.48% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Toyota Corolla Sedan 2012 67.87% Toyota Camry Sedan 2012 28.4% Hyundai Sonata Hybrid Sedan 2012 2.81% Hyundai Accent Sedan 2012 0.75% Infiniti G Coupe IPL 2012 0.16% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Eagle Talon Hatchback 1998 91.41% BMW 6 Series Convertible 2007 2.25% Ferrari California Convertible 2012 1.61% Chrysler Crossfire Convertible 2008 1.51% Mercedes-Benz 300-Class Convertible 1993 1.41% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 98.19% Audi TT Hatchback 2011 1.81% Audi R8 Coupe 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Audi S5 Coupe 2012 0.0% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Ford Freestar Minivan 2007 43.67% Dodge Durango SUV 2012 26.26% Volvo 240 Sedan 1993 5.87% Buick Enclave SUV 2012 4.9% Volvo XC90 SUV 2007 4.28% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 99.19% Rolls-Royce Phantom Sedan 2012 0.47% Chrysler 300 SRT-8 2010 0.28% Jeep Liberty SUV 2012 0.01% Dodge Durango SUV 2007 0.01% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 47.74% Chevrolet Malibu Sedan 2007 19.8% Chevrolet Malibu Hybrid Sedan 2010 8.44% Suzuki SX4 Sedan 2012 7.47% Honda Accord Sedan 2012 4.8% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 97.35% Chevrolet Tahoe Hybrid SUV 2012 1.35% Dodge Durango SUV 2012 1.23% Dodge Dakota Club Cab 2007 0.05% Dodge Dakota Crew Cab 2010 0.01% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 smart fortwo Convertible 2012 42.38% Volvo C30 Hatchback 2012 19.07% Mazda Tribute SUV 2011 17.28% Scion xD Hatchback 2012 5.0% Hyundai Veloster Hatchback 2012 2.26% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Lamborghini Aventador Coupe 2012 21.3% BMW M6 Convertible 2010 19.23% Aston Martin Virage Convertible 2012 13.09% Eagle Talon Hatchback 1998 2.82% BMW 6 Series Convertible 2007 2.51% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Rolls-Royce Phantom Drophead Coupe Convertible 2012 18.79% Bentley Mulsanne Sedan 2011 14.34% Audi S5 Coupe 2012 10.11% BMW M6 Convertible 2010 7.83% Audi RS 4 Convertible 2008 6.25% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 GMC Acadia SUV 2012 43.37% Land Rover LR2 SUV 2012 26.26% Cadillac Escalade EXT Crew Cab 2007 13.79% Ford Expedition EL SUV 2009 4.07% Suzuki SX4 Sedan 2012 2.38% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Chevrolet Camaro Convertible 2012 81.16% Mercedes-Benz 300-Class Convertible 1993 6.6% Nissan 240SX Coupe 1998 5.05% Bentley Continental GT Coupe 2007 1.46% Hyundai Veloster Hatchback 2012 1.37% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 62.34% Dodge Ram Pickup 3500 Quad Cab 2009 37.63% Dodge Dakota Crew Cab 2010 0.02% Isuzu Ascender SUV 2008 0.0% Dodge Dakota Club Cab 2007 0.0% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Ford Focus Sedan 2007 93.88% Daewoo Nubira Wagon 2002 5.82% Suzuki Aerio Sedan 2007 0.16% Chevrolet Impala Sedan 2007 0.12% Acura Integra Type R 2001 0.01% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Land Rover LR2 SUV 2012 70.1% Chevrolet HHR SS 2010 12.31% Toyota 4Runner SUV 2012 9.99% Ford Edge SUV 2012 3.61% Ford Expedition EL SUV 2009 1.95% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Acura ZDX Hatchback 2012 79.41% BMW X6 SUV 2012 14.7% Buick Verano Sedan 2012 3.07% Chevrolet Traverse SUV 2012 1.3% Jeep Grand Cherokee SUV 2012 0.55% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 BMW X6 SUV 2012 32.89% HUMMER H2 SUT Crew Cab 2009 14.74% Toyota 4Runner SUV 2012 7.15% smart fortwo Convertible 2012 6.68% Jeep Wrangler SUV 2012 4.25% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Audi RS 4 Convertible 2008 74.95% Audi S6 Sedan 2011 13.68% Audi S5 Coupe 2012 3.03% Audi S4 Sedan 2012 2.64% Audi A5 Coupe 2012 1.46% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 84.81% Ford Ranger SuperCab 2011 12.58% Toyota 4Runner SUV 2012 0.7% Ford F-150 Regular Cab 2007 0.63% GMC Yukon Hybrid SUV 2012 0.41% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Audi S5 Convertible 2012 90.82% Acura RL Sedan 2012 3.51% BMW 1 Series Convertible 2012 1.44% Audi S5 Coupe 2012 1.2% Audi S4 Sedan 2007 1.0% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Jaguar XK XKR 2012 21.44% Chevrolet HHR SS 2010 12.29% Chevrolet Cobalt SS 2010 9.12% Nissan Juke Hatchback 2012 7.95% Suzuki Kizashi Sedan 2012 4.91% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Ford GT Coupe 2006 88.23% Audi V8 Sedan 1994 3.69% Nissan 240SX Coupe 1998 1.71% Mercedes-Benz 300-Class Convertible 1993 1.45% Plymouth Neon Coupe 1999 1.14% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 BMW Z4 Convertible 2012 38.81% FIAT 500 Convertible 2012 26.32% Aston Martin V8 Vantage Convertible 2012 18.25% Audi TT RS Coupe 2012 3.12% Jaguar XK XKR 2012 2.65% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 76.54% Jeep Patriot SUV 2012 13.74% HUMMER H2 SUT Crew Cab 2009 7.23% AM General Hummer SUV 2000 2.27% GMC Canyon Extended Cab 2012 0.2% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 70.93% Dodge Dakota Crew Cab 2010 22.12% Dodge Caliber Wagon 2012 6.67% Ram C/V Cargo Van Minivan 2012 0.09% Isuzu Ascender SUV 2008 0.07% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 99.99% Scion xD Hatchback 2012 0.01% Acura Integra Type R 2001 0.0% Acura ZDX Hatchback 2012 0.0% Maybach Landaulet Convertible 2012 0.0% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 32.35% Lamborghini Reventon Coupe 2008 9.9% Dodge Charger SRT-8 2009 9.79% Audi TTS Coupe 2012 9.69% Rolls-Royce Phantom Sedan 2012 9.13% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 56.36% Land Rover Range Rover SUV 2012 28.95% Chrysler Town and Country Minivan 2012 5.61% Cadillac SRX SUV 2012 2.87% Chevrolet Tahoe Hybrid SUV 2012 2.01% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 98.16% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.27% Chevrolet Tahoe Hybrid SUV 2012 0.17% Chevrolet Silverado 1500 Regular Cab 2012 0.11% Chevrolet TrailBlazer SS 2009 0.1% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 75.47% Nissan Juke Hatchback 2012 23.93% Chevrolet Traverse SUV 2012 0.31% Nissan Leaf Hatchback 2012 0.15% Suzuki SX4 Hatchback 2012 0.05% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.99% Jaguar XK XKR 2012 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% Spyker C8 Convertible 2009 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Eagle Talon Hatchback 1998 33.7% Ford Focus Sedan 2007 20.17% Chevrolet Impala Sedan 2007 12.9% Audi 100 Wagon 1994 7.31% Geo Metro Convertible 1993 4.63% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 99.98% BMW X5 SUV 2007 0.02% BMW X3 SUV 2012 0.01% Jeep Compass SUV 2012 0.0% Volvo XC90 SUV 2007 0.0% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Chrysler Sebring Convertible 2010 69.19% Chrysler Crossfire Convertible 2008 25.13% Dodge Charger SRT-8 2009 2.24% Dodge Magnum Wagon 2008 1.41% Mercedes-Benz S-Class Sedan 2012 0.49% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 100.0% Chevrolet Malibu Sedan 2007 0.0% Honda Odyssey Minivan 2012 0.0% Buick Verano Sedan 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 89.31% Ford Fiesta Sedan 2012 1.24% Acura Integra Type R 2001 0.94% Hyundai Veloster Hatchback 2012 0.89% Chrysler Crossfire Convertible 2008 0.64% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.99% Ford F-450 Super Duty Crew Cab 2012 0.01% Ford E-Series Wagon Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% GMC Canyon Extended Cab 2012 0.0% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.89% Dodge Caravan Minivan 1997 0.07% Eagle Talon Hatchback 1998 0.02% Chevrolet Impala Sedan 2007 0.01% Lincoln Town Car Sedan 2011 0.0% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 99.94% Ford Fiesta Sedan 2012 0.04% Hyundai Elantra Touring Hatchback 2012 0.02% Bugatti Veyron 16.4 Convertible 2009 0.0% Spyker C8 Coupe 2009 0.0% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 66.34% Ford Freestar Minivan 2007 33.47% Dodge Caravan Minivan 1997 0.13% Daewoo Nubira Wagon 2002 0.04% Geo Metro Convertible 1993 0.02% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Bentley Mulsanne Sedan 2011 38.05% GMC Acadia SUV 2012 6.08% Rolls-Royce Phantom Sedan 2012 4.43% Ford F-450 Super Duty Crew Cab 2012 3.84% Ford Edge SUV 2012 2.99% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 GMC Savana Van 2012 94.31% Chevrolet Express Van 2007 5.18% Chevrolet Express Cargo Van 2007 0.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.03% Ford Ranger SuperCab 2011 0.01% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 Jeep Compass SUV 2012 51.53% BMW X3 SUV 2012 45.8% Volvo C30 Hatchback 2012 0.85% Dodge Caliber Wagon 2012 0.4% Mazda Tribute SUV 2011 0.29% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 27.28% Acura TL Type-S 2008 14.93% BMW 3 Series Sedan 2012 12.44% Chrysler 300 SRT-8 2010 10.18% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.59% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Land Rover LR2 SUV 2012 60.45% Mercedes-Benz 300-Class Convertible 1993 13.67% Porsche Panamera Sedan 2012 5.23% Chrysler Town and Country Minivan 2012 3.07% Honda Odyssey Minivan 2007 1.81% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 76.38% Ford E-Series Wagon Van 2012 15.11% Ford Ranger SuperCab 2011 5.86% Dodge Dakota Club Cab 2007 0.79% Dodge Ram Pickup 3500 Quad Cab 2009 0.58% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Fisker Karma Sedan 2012 86.81% Rolls-Royce Ghost Sedan 2012 7.75% Rolls-Royce Phantom Sedan 2012 3.37% Chrysler 300 SRT-8 2010 1.89% Audi R8 Coupe 2012 0.12% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 20.55% Audi TTS Coupe 2012 20.42% Audi TT Hatchback 2011 4.43% Audi S4 Sedan 2007 3.87% Cadillac CTS-V Sedan 2012 3.3% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 100.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Dodge Charger Sedan 2012 0.0% Nissan 240SX Coupe 1998 0.0% Chevrolet Corvette Convertible 2012 0.0% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 96.69% Dodge Charger Sedan 2012 2.58% Chevrolet Cobalt SS 2010 0.2% Acura Integra Type R 2001 0.2% McLaren MP4-12C Coupe 2012 0.14% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 79.83% Mercedes-Benz C-Class Sedan 2012 14.15% Mitsubishi Lancer Sedan 2012 1.99% Audi S6 Sedan 2011 1.15% Hyundai Elantra Touring Hatchback 2012 0.96% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 77.91% Toyota Sequoia SUV 2012 11.0% Chevrolet Traverse SUV 2012 8.06% Dodge Durango SUV 2007 0.71% Hyundai Santa Fe SUV 2012 0.7% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 49.22% Chevrolet Silverado 1500 Regular Cab 2012 39.62% Chevrolet HHR SS 2010 3.97% Chevrolet TrailBlazer SS 2009 1.44% Chevrolet Silverado 1500 Extended Cab 2012 1.35% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 99.71% Ford Expedition EL SUV 2009 0.24% Land Rover Range Rover SUV 2012 0.05% Toyota Sequoia SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet Silverado 2500HD Regular Cab 2012 21.65% Ford Ranger SuperCab 2011 18.39% Ford E-Series Wagon Van 2012 8.27% Chevrolet Express Van 2007 6.16% HUMMER H2 SUT Crew Cab 2009 4.62% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 96.81% Ferrari FF Coupe 2012 2.77% Ferrari 458 Italia Coupe 2012 0.22% Suzuki Kizashi Sedan 2012 0.08% Toyota Camry Sedan 2012 0.06% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 HUMMER H2 SUT Crew Cab 2009 74.68% Dodge Ram Pickup 3500 Crew Cab 2010 5.07% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.61% Dodge Ram Pickup 3500 Quad Cab 2009 4.51% Chevrolet Silverado 2500HD Regular Cab 2012 3.64% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 84.12% Jaguar XK XKR 2012 15.43% Porsche Panamera Sedan 2012 0.11% Dodge Challenger SRT8 2011 0.09% Ferrari 458 Italia Convertible 2012 0.06% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 97.49% Chevrolet Camaro Convertible 2012 2.18% Ferrari 458 Italia Convertible 2012 0.11% Chevrolet Corvette ZR1 2012 0.07% Ferrari 458 Italia Coupe 2012 0.05% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Jeep Grand Cherokee SUV 2012 62.02% Nissan NV Passenger Van 2012 6.71% FIAT 500 Convertible 2012 6.26% Jeep Compass SUV 2012 5.66% Chrysler PT Cruiser Convertible 2008 4.33% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Buick Regal GS 2012 61.24% Infiniti QX56 SUV 2011 12.06% Hyundai Veloster Hatchback 2012 9.74% Buick Verano Sedan 2012 9.28% Acura TL Sedan 2012 3.89% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 BMW 1 Series Convertible 2012 68.41% Dodge Caliber Wagon 2007 13.35% Ford Mustang Convertible 2007 10.64% Honda Accord Coupe 2012 6.23% Chevrolet TrailBlazer SS 2009 0.73% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Ford Fiesta Sedan 2012 40.02% Hyundai Elantra Sedan 2007 15.83% Chrysler Crossfire Convertible 2008 10.27% Chevrolet Corvette Convertible 2012 8.83% Chevrolet Monte Carlo Coupe 2007 7.11% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 31.48% BMW 6 Series Convertible 2007 22.06% Hyundai Azera Sedan 2012 11.65% Porsche Panamera Sedan 2012 9.63% Aston Martin Virage Convertible 2012 7.53% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 50.23% Hyundai Genesis Sedan 2012 19.28% smart fortwo Convertible 2012 8.44% Mercedes-Benz C-Class Sedan 2012 3.0% Chevrolet Traverse SUV 2012 2.39% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% GMC Yukon Hybrid SUV 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Land Rover LR2 SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Scion xD Hatchback 2012 94.36% Ford Fiesta Sedan 2012 5.46% Suzuki Aerio Sedan 2007 0.17% Hyundai Accent Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 16.17% Chevrolet Impala Sedan 2007 13.11% Toyota Camry Sedan 2012 12.1% Acura Integra Type R 2001 10.2% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.09% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler Sebring Convertible 2010 58.34% Mercedes-Benz S-Class Sedan 2012 12.83% Mercedes-Benz 300-Class Convertible 1993 7.46% Chrysler Crossfire Convertible 2008 6.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.94% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Coupe 2012 82.93% Lamborghini Diablo Coupe 2001 16.7% Chevrolet Corvette Convertible 2012 0.18% Aston Martin V8 Vantage Convertible 2012 0.08% Dodge Charger Sedan 2012 0.03% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 99.96% Hyundai Sonata Hybrid Sedan 2012 0.03% Hyundai Azera Sedan 2012 0.0% Acura RL Sedan 2012 0.0% Acura TL Sedan 2012 0.0% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 55.28% Rolls-Royce Ghost Sedan 2012 17.5% BMW X3 SUV 2012 11.39% Audi S6 Sedan 2011 5.36% Buick Regal GS 2012 4.35% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 100.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% Honda Odyssey Minivan 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Jaguar XK XKR 2012 49.95% Aston Martin Virage Convertible 2012 20.97% Aston Martin V8 Vantage Coupe 2012 14.75% Aston Martin V8 Vantage Convertible 2012 11.62% Audi TT RS Coupe 2012 1.27% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 25.6% Chevrolet Corvette ZR1 2012 23.98% Audi V8 Sedan 1994 9.52% Ford GT Coupe 2006 4.63% Ford Mustang Convertible 2007 3.91% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 54.69% Mercedes-Benz SL-Class Coupe 2009 22.34% Lamborghini Reventon Coupe 2008 7.9% Chrysler 300 SRT-8 2010 6.44% Spyker C8 Convertible 2009 3.59% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 70.22% Dodge Charger SRT-8 2009 9.0% Chevrolet TrailBlazer SS 2009 7.11% Audi TTS Coupe 2012 4.92% Dodge Charger Sedan 2012 2.48% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 70.93% Dodge Dakota Crew Cab 2010 22.12% Dodge Caliber Wagon 2012 6.67% Ram C/V Cargo Van Minivan 2012 0.09% Isuzu Ascender SUV 2008 0.07% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 96.66% Toyota Sequoia SUV 2012 1.28% Bentley Mulsanne Sedan 2011 0.96% Dodge Challenger SRT8 2011 0.42% Dodge Durango SUV 2012 0.22% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 100.0% Ford Edge SUV 2012 0.0% Chevrolet Malibu Hybrid Sedan 2010 0.0% Toyota Corolla Sedan 2012 0.0% Toyota Camry Sedan 2012 0.0% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 99.99% Bentley Continental GT Coupe 2007 0.01% Audi S4 Sedan 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 55.3% Mercedes-Benz SL-Class Coupe 2009 39.32% MINI Cooper Roadster Convertible 2012 1.4% Bugatti Veyron 16.4 Convertible 2009 1.28% Rolls-Royce Ghost Sedan 2012 0.51% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Jeep Wrangler SUV 2012 93.39% AM General Hummer SUV 2000 6.49% Ford E-Series Wagon Van 2012 0.08% Jeep Patriot SUV 2012 0.03% Nissan NV Passenger Van 2012 0.0% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Nissan NV Passenger Van 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Jeep Compass SUV 2012 0.0% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 30.39% Ford GT Coupe 2006 23.38% Spyker C8 Coupe 2009 20.24% Hyundai Veloster Hatchback 2012 6.27% McLaren MP4-12C Coupe 2012 5.75% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 37.95% Buick Verano Sedan 2012 21.13% Acura RL Sedan 2012 18.86% Acura ZDX Hatchback 2012 4.78% Audi S5 Coupe 2012 4.33% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Hyundai Genesis Sedan 2012 32.88% Honda Odyssey Minivan 2012 26.48% Acura RL Sedan 2012 3.96% Hyundai Sonata Sedan 2012 3.71% Hyundai Elantra Touring Hatchback 2012 3.3% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.52% Mercedes-Benz C-Class Sedan 2012 0.31% Bentley Continental Supersports Conv. Convertible 2012 0.07% BMW M6 Convertible 2010 0.03% Mercedes-Benz E-Class Sedan 2012 0.01% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 84.84% Jaguar XK XKR 2012 5.07% Aston Martin V8 Vantage Convertible 2012 4.82% Chevrolet Camaro Convertible 2012 2.16% BMW M3 Coupe 2012 0.96% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 99.97% Ford Fiesta Sedan 2012 0.03% Hyundai Veloster Hatchback 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Scion xD Hatchback 2012 0.0% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Audi R8 Coupe 2012 36.25% Lamborghini Reventon Coupe 2008 15.08% Mitsubishi Lancer Sedan 2012 9.15% Mercedes-Benz SL-Class Coupe 2009 8.73% Bugatti Veyron 16.4 Convertible 2009 8.48% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Isuzu Ascender SUV 2008 32.54% Rolls-Royce Ghost Sedan 2012 30.98% Jeep Compass SUV 2012 20.06% BMW X3 SUV 2012 5.81% BMW 3 Series Sedan 2012 2.89% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 53.64% Ford Freestar Minivan 2007 43.13% Ram C/V Cargo Van Minivan 2012 1.27% Chrysler Town and Country Minivan 2012 1.0% Honda Odyssey Minivan 2007 0.57% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 36.79% Audi 100 Sedan 1994 35.33% Nissan 240SX Coupe 1998 11.54% Dodge Sprinter Cargo Van 2009 1.6% Nissan Juke Hatchback 2012 1.18% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 GMC Canyon Extended Cab 2012 46.31% Chevrolet Silverado 1500 Extended Cab 2012 26.22% Dodge Dakota Club Cab 2007 17.97% Chevrolet Silverado 1500 Regular Cab 2012 8.42% Ford F-150 Regular Cab 2012 0.48% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 45.66% Chevrolet Silverado 2500HD Regular Cab 2012 23.33% Chevrolet Avalanche Crew Cab 2012 19.3% Chevrolet Silverado 1500 Regular Cab 2012 3.76% Chevrolet Silverado 1500 Extended Cab 2012 1.39% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Audi R8 Coupe 2012 15.11% Aston Martin Virage Coupe 2012 7.88% Hyundai Azera Sedan 2012 7.06% Porsche Panamera Sedan 2012 5.95% FIAT 500 Abarth 2012 5.21% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 92.39% Nissan 240SX Coupe 1998 3.39% BMW M6 Convertible 2010 1.61% Eagle Talon Hatchback 1998 1.41% Acura TL Type-S 2008 0.78% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Audi S4 Sedan 2007 52.16% Bentley Continental GT Coupe 2007 7.18% Mercedes-Benz 300-Class Convertible 1993 3.46% Acura RL Sedan 2012 3.15% Audi S6 Sedan 2011 2.13% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Nissan Juke Hatchback 2012 93.37% Hyundai Tucson SUV 2012 4.27% Suzuki SX4 Hatchback 2012 1.7% BMW X6 SUV 2012 0.19% Chevrolet Sonic Sedan 2012 0.12% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 99.89% Toyota Corolla Sedan 2012 0.07% Ferrari 458 Italia Coupe 2012 0.02% Chevrolet Impala Sedan 2007 0.01% Plymouth Neon Coupe 1999 0.01% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 Chevrolet Traverse SUV 2012 75.15% BMW X5 SUV 2007 22.26% Jeep Grand Cherokee SUV 2012 2.03% Ram C/V Cargo Van Minivan 2012 0.23% Volvo XC90 SUV 2007 0.12% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 91.42% HUMMER H2 SUT Crew Cab 2009 5.89% HUMMER H3T Crew Cab 2010 2.24% Hyundai Veracruz SUV 2012 0.22% Ford Edge SUV 2012 0.07% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Toyota Corolla Sedan 2012 76.57% Chevrolet Sonic Sedan 2012 18.13% Volkswagen Beetle Hatchback 2012 2.75% Hyundai Elantra Touring Hatchback 2012 0.32% Scion xD Hatchback 2012 0.32% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Buick Verano Sedan 2012 79.62% Chrysler Sebring Convertible 2010 8.54% Hyundai Elantra Sedan 2007 4.72% Acura TL Sedan 2012 1.23% Porsche Panamera Sedan 2012 1.1% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Leaf Hatchback 2012 95.63% Suzuki Aerio Sedan 2007 0.23% Chevrolet Sonic Sedan 2012 0.2% Acura Integra Type R 2001 0.17% Suzuki SX4 Sedan 2012 0.16% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Audi TT Hatchback 2011 25.71% Hyundai Elantra Touring Hatchback 2012 11.1% Eagle Talon Hatchback 1998 7.79% Mercedes-Benz SL-Class Coupe 2009 5.61% Chevrolet Monte Carlo Coupe 2007 3.97% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.98% Chrysler Aspen SUV 2009 0.01% Dodge Durango SUV 2012 0.01% Chevrolet Tahoe Hybrid SUV 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Honda Accord Coupe 2012 82.86% Nissan 240SX Coupe 1998 16.06% BMW 3 Series Sedan 2012 0.39% Dodge Charger Sedan 2012 0.27% Chevrolet Monte Carlo Coupe 2007 0.06% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 96.74% Ford Focus Sedan 2007 3.25% Chevrolet Camaro Convertible 2012 0.0% Nissan 240SX Coupe 1998 0.0% Chevrolet Impala Sedan 2007 0.0% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Infiniti G Coupe IPL 2012 96.11% Suzuki Kizashi Sedan 2012 1.61% BMW 1 Series Convertible 2012 0.48% Toyota Corolla Sedan 2012 0.34% BMW M5 Sedan 2010 0.29% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 90.85% Aston Martin V8 Vantage Convertible 2012 8.21% BMW M5 Sedan 2010 0.57% Jaguar XK XKR 2012 0.12% Acura TL Sedan 2012 0.05% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Ferrari 458 Italia Coupe 2012 61.28% Lamborghini Diablo Coupe 2001 38.61% Acura Integra Type R 2001 0.07% Ferrari 458 Italia Convertible 2012 0.02% Dodge Charger Sedan 2012 0.01% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Audi R8 Coupe 2012 55.38% FIAT 500 Abarth 2012 20.69% Ford E-Series Wagon Van 2012 8.67% Chrysler 300 SRT-8 2010 8.47% Lamborghini Reventon Coupe 2008 1.19% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Daewoo Nubira Wagon 2002 91.2% Suzuki Aerio Sedan 2007 5.35% Plymouth Neon Coupe 1999 1.38% Honda Accord Sedan 2012 0.59% Volkswagen Golf Hatchback 2012 0.53% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Toyota Camry Sedan 2012 54.79% Mercedes-Benz C-Class Sedan 2012 10.46% Toyota Corolla Sedan 2012 6.44% Suzuki Aerio Sedan 2007 6.19% BMW M5 Sedan 2010 4.51% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 99.98% Fisker Karma Sedan 2012 0.01% Ferrari 458 Italia Convertible 2012 0.01% Chevrolet Corvette ZR1 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 49.83% Toyota 4Runner SUV 2012 28.59% Chevrolet Malibu Sedan 2007 3.44% Mazda Tribute SUV 2011 3.29% GMC Terrain SUV 2012 3.14% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Buick Verano Sedan 2012 27.87% Hyundai Veracruz SUV 2012 17.43% Dodge Durango SUV 2007 8.53% Volkswagen Golf Hatchback 2012 8.26% Infiniti QX56 SUV 2011 8.2% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.74% Ford E-Series Wagon Van 2012 0.25% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Ferrari FF Coupe 2012 95.7% Ford Mustang Convertible 2007 2.15% Suzuki SX4 Hatchback 2012 1.09% BMW 1 Series Convertible 2012 0.38% Dodge Caliber Wagon 2012 0.12% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Chevrolet Sonic Sedan 2012 19.98% Acura ZDX Hatchback 2012 9.05% Aston Martin Virage Convertible 2012 8.93% BMW 3 Series Wagon 2012 6.57% Jaguar XK XKR 2012 6.52% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 92.28% Audi V8 Sedan 1994 7.18% Audi 100 Wagon 1994 0.46% Volvo 240 Sedan 1993 0.01% Daewoo Nubira Wagon 2002 0.01% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 95.91% Aston Martin V8 Vantage Coupe 2012 2.01% Dodge Challenger SRT8 2011 0.75% Chevrolet Corvette ZR1 2012 0.26% Bugatti Veyron 16.4 Coupe 2009 0.23% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Aston Martin V8 Vantage Coupe 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Dodge Challenger SRT8 2011 0.0% McLaren MP4-12C Coupe 2012 0.0% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 HUMMER H3T Crew Cab 2010 47.96% Bugatti Veyron 16.4 Convertible 2009 8.09% Volvo 240 Sedan 1993 5.52% Ford Ranger SuperCab 2011 3.89% AM General Hummer SUV 2000 3.76% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Volkswagen Golf Hatchback 1991 0.0% Buick Rainier SUV 2007 0.0% GMC Savana Van 2012 0.0% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.04% Dodge Ram Pickup 3500 Quad Cab 2009 0.44% Ferrari FF Coupe 2012 0.16% HUMMER H3T Crew Cab 2010 0.1% HUMMER H2 SUT Crew Cab 2009 0.06% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Toyota Camry Sedan 2012 92.4% Hyundai Veloster Hatchback 2012 4.32% Ferrari FF Coupe 2012 2.1% BMW 3 Series Sedan 2012 0.24% Audi TT Hatchback 2011 0.19% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 90.55% FIAT 500 Convertible 2012 7.58% Bugatti Veyron 16.4 Convertible 2009 1.06% Chrysler Crossfire Convertible 2008 0.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.2% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Dodge Sprinter Cargo Van 2009 0.0% Suzuki Aerio Sedan 2007 0.0% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 96.01% Spyker C8 Convertible 2009 2.45% Lamborghini Diablo Coupe 2001 0.84% Spyker C8 Coupe 2009 0.32% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.17% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 98.89% Mercedes-Benz Sprinter Van 2012 1.11% Audi 100 Sedan 1994 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Chevrolet Traverse SUV 2012 35.69% Mercedes-Benz Sprinter Van 2012 11.02% Dodge Sprinter Cargo Van 2009 8.9% Acura ZDX Hatchback 2012 8.43% Nissan Leaf Hatchback 2012 8.24% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Nissan 240SX Coupe 1998 51.46% Hyundai Accent Sedan 2012 25.42% Hyundai Genesis Sedan 2012 10.46% Jaguar XK XKR 2012 6.26% Mercedes-Benz SL-Class Coupe 2009 2.55% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.01% Lamborghini Reventon Coupe 2008 0.01% Bugatti Veyron 16.4 Convertible 2009 0.01% Rolls-Royce Phantom Sedan 2012 0.01% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 78.92% Dodge Caliber Wagon 2007 20.95% Dodge Durango SUV 2007 0.05% Chrysler Town and Country Minivan 2012 0.05% Mercedes-Benz 300-Class Convertible 1993 0.01% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 99.97% Acura TL Sedan 2012 0.02% Acura RL Sedan 2012 0.0% Acura TL Type-S 2008 0.0% Toyota Camry Sedan 2012 0.0% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 60.87% Mercedes-Benz SL-Class Coupe 2009 21.9% Audi TT RS Coupe 2012 14.75% Audi TT Hatchback 2011 0.53% Bugatti Veyron 16.4 Coupe 2009 0.44% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 100.0% Audi A5 Coupe 2012 0.0% Audi S5 Coupe 2012 0.0% Audi RS 4 Convertible 2008 0.0% Audi S4 Sedan 2007 0.0% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 41.04% Audi S4 Sedan 2012 22.33% Audi TT Hatchback 2011 18.28% Audi S5 Coupe 2012 6.73% Dodge Challenger SRT8 2011 4.4% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.94% Ford F-150 Regular Cab 2007 0.03% Chevrolet Malibu Sedan 2007 0.03% Hyundai Santa Fe SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Aston Martin V8 Vantage Convertible 2012 63.98% Ford GT Coupe 2006 12.47% Ferrari 458 Italia Coupe 2012 8.59% Bugatti Veyron 16.4 Coupe 2009 7.36% Plymouth Neon Coupe 1999 4.28% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 98.99% BMW X3 SUV 2012 0.49% Audi V8 Sedan 1994 0.3% BMW X6 SUV 2012 0.2% Mercedes-Benz Sprinter Van 2012 0.01% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 BMW M6 Convertible 2010 34.9% Eagle Talon Hatchback 1998 17.89% Audi R8 Coupe 2012 16.95% Aston Martin V8 Vantage Convertible 2012 4.55% Nissan 240SX Coupe 1998 3.62% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Volvo C30 Hatchback 2012 95.3% Hyundai Elantra Touring Hatchback 2012 3.09% Infiniti QX56 SUV 2011 0.46% Hyundai Santa Fe SUV 2012 0.36% Nissan Juke Hatchback 2012 0.22% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 90.96% Audi A5 Coupe 2012 2.65% Audi TTS Coupe 2012 2.19% Audi RS 4 Convertible 2008 1.84% Aston Martin Virage Convertible 2012 1.13% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Ford F-450 Super Duty Crew Cab 2012 68.21% Chevrolet Silverado 2500HD Regular Cab 2012 16.79% Chevrolet Avalanche Crew Cab 2012 10.13% Ford Edge SUV 2012 1.15% Chevrolet Silverado 1500 Regular Cab 2012 1.0% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 84.41% Bugatti Veyron 16.4 Convertible 2009 15.58% Mercedes-Benz SL-Class Coupe 2009 0.0% Ford GT Coupe 2006 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 97.96% Volvo 240 Sedan 1993 1.46% Isuzu Ascender SUV 2008 0.49% Dodge Dakota Crew Cab 2010 0.03% Ford Freestar Minivan 2007 0.02% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 98.74% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.65% BMW ActiveHybrid 5 Sedan 2012 0.21% Chevrolet Camaro Convertible 2012 0.07% Bentley Continental Supersports Conv. Convertible 2012 0.06% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Ferrari 458 Italia Convertible 2012 36.08% Ferrari 458 Italia Coupe 2012 18.82% BMW 3 Series Sedan 2012 10.44% BMW Z4 Convertible 2012 9.96% Chevrolet Camaro Convertible 2012 3.89% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 99.94% Chevrolet Malibu Hybrid Sedan 2010 0.03% Aston Martin Virage Convertible 2012 0.03% Chrysler Sebring Convertible 2010 0.0% Honda Accord Sedan 2012 0.0% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 98.25% Mercedes-Benz 300-Class Convertible 1993 1.27% Audi 100 Sedan 1994 0.47% Ford Ranger SuperCab 2011 0.0% Dodge Caravan Minivan 1997 0.0% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 95.91% Dodge Ram Pickup 3500 Quad Cab 2009 3.89% Dodge Dakota Crew Cab 2010 0.14% Isuzu Ascender SUV 2008 0.02% Dodge Durango SUV 2007 0.01% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Charger SRT-8 2009 98.22% Dodge Magnum Wagon 2008 1.45% Dodge Charger Sedan 2012 0.21% Dodge Challenger SRT8 2011 0.1% Chevrolet Cobalt SS 2010 0.01% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Dodge Charger Sedan 2012 95.53% Ferrari 458 Italia Coupe 2012 0.77% Audi S5 Coupe 2012 0.75% BMW Z4 Convertible 2012 0.53% Audi TTS Coupe 2012 0.39% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 20.69% Chrysler Aspen SUV 2009 11.02% Chevrolet Malibu Sedan 2007 6.8% Dodge Durango SUV 2012 6.18% Dodge Durango SUV 2007 5.44% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Buick Regal GS 2012 49.62% Tesla Model S Sedan 2012 49.16% Fisker Karma Sedan 2012 0.7% Audi R8 Coupe 2012 0.47% Audi TT RS Coupe 2012 0.04% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 31.77% Toyota Sequoia SUV 2012 26.61% BMW X3 SUV 2012 6.81% BMW X6 SUV 2012 5.59% Acura ZDX Hatchback 2012 5.42% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz Sprinter Van 2012 62.41% Audi 100 Sedan 1994 22.19% Audi V8 Sedan 1994 9.51% BMW ActiveHybrid 5 Sedan 2012 3.06% Ram C/V Cargo Van Minivan 2012 0.74% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 85.23% Buick Rainier SUV 2007 5.41% Volkswagen Golf Hatchback 1991 4.98% Suzuki Kizashi Sedan 2012 0.29% Jeep Grand Cherokee SUV 2012 0.25% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Aston Martin V8 Vantage Coupe 2012 67.41% Rolls-Royce Phantom Sedan 2012 15.3% Lamborghini Reventon Coupe 2008 3.45% Ford GT Coupe 2006 1.95% Ford Edge SUV 2012 1.92% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.61% Mercedes-Benz 300-Class Convertible 1993 0.34% Eagle Talon Hatchback 1998 0.04% Chevrolet Corvette Convertible 2012 0.01% Chrysler Crossfire Convertible 2008 0.0% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 54.95% Audi V8 Sedan 1994 9.53% Ford GT Coupe 2006 8.08% Mercedes-Benz 300-Class Convertible 1993 5.71% Bentley Mulsanne Sedan 2011 3.2% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Infiniti G Coupe IPL 2012 77.48% Bentley Continental GT Coupe 2012 10.19% Aston Martin Virage Coupe 2012 4.96% BMW M5 Sedan 2010 1.34% Suzuki Kizashi Sedan 2012 1.18% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 100.0% Chevrolet Avalanche Crew Cab 2012 0.0% Dodge Caravan Minivan 1997 0.0% GMC Canyon Extended Cab 2012 0.0% Daewoo Nubira Wagon 2002 0.0% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Hyundai Veracruz SUV 2012 79.8% Bentley Arnage Sedan 2009 10.85% BMW 3 Series Sedan 2012 3.08% Volvo XC90 SUV 2007 1.85% Audi 100 Wagon 1994 1.29% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Mercedes-Benz S-Class Sedan 2012 23.69% Ford Mustang Convertible 2007 22.5% BMW 3 Series Sedan 2012 12.64% Chevrolet HHR SS 2010 8.01% Hyundai Elantra Touring Hatchback 2012 2.59% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Chevrolet Avalanche Crew Cab 2012 96.04% Dodge Durango SUV 2007 1.69% Chevrolet TrailBlazer SS 2009 0.98% Chrysler Aspen SUV 2009 0.5% GMC Terrain SUV 2012 0.18% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 BMW X6 SUV 2012 67.58% Buick Regal GS 2012 16.32% Suzuki Kizashi Sedan 2012 9.51% Buick Verano Sedan 2012 5.74% BMW X3 SUV 2012 0.51% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 BMW 3 Series Wagon 2012 34.97% Porsche Panamera Sedan 2012 21.08% Land Rover Range Rover SUV 2012 16.53% Audi TTS Coupe 2012 6.57% Land Rover LR2 SUV 2012 4.09% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 91.96% Ferrari 458 Italia Convertible 2012 8.0% Ferrari California Convertible 2012 0.03% Chevrolet Corvette Convertible 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 71.02% Audi S4 Sedan 2007 8.28% Audi 100 Wagon 1994 6.43% Chevrolet Impala Sedan 2007 3.04% BMW M5 Sedan 2010 1.54% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Mercedes-Benz E-Class Sedan 2012 43.91% Hyundai Azera Sedan 2012 35.98% Hyundai Genesis Sedan 2012 6.21% Mercedes-Benz Sprinter Van 2012 2.72% Toyota Sequoia SUV 2012 2.4% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2012 99.15% Dodge Magnum Wagon 2008 0.66% Chrysler Aspen SUV 2009 0.06% Dodge Durango SUV 2007 0.05% Chevrolet Tahoe Hybrid SUV 2012 0.04% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 99.94% Dodge Magnum Wagon 2008 0.03% Cadillac Escalade EXT Crew Cab 2007 0.01% Chrysler Town and Country Minivan 2012 0.01% Mercedes-Benz E-Class Sedan 2012 0.0% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Spyker C8 Coupe 2009 57.83% Ferrari California Convertible 2012 14.75% Jaguar XK XKR 2012 6.06% Ferrari 458 Italia Coupe 2012 4.92% Scion xD Hatchback 2012 3.15% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Jeep Patriot SUV 2012 69.58% Dodge Durango SUV 2007 14.58% Buick Enclave SUV 2012 5.09% Isuzu Ascender SUV 2008 2.88% Bentley Arnage Sedan 2009 2.53% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 73.78% BMW 1 Series Coupe 2012 14.95% BMW 3 Series Wagon 2012 3.6% BMW 3 Series Sedan 2012 2.13% Audi S5 Coupe 2012 1.44% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 71.92% Mercedes-Benz 300-Class Convertible 1993 27.99% Chevrolet Malibu Sedan 2007 0.06% Chrysler Sebring Convertible 2010 0.01% Chevrolet Impala Sedan 2007 0.0% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Audi S4 Sedan 2012 74.11% Volvo C30 Hatchback 2012 21.39% Mitsubishi Lancer Sedan 2012 2.03% BMW 1 Series Coupe 2012 1.01% Audi S4 Sedan 2007 0.81% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Ford GT Coupe 2006 96.33% Spyker C8 Convertible 2009 2.52% McLaren MP4-12C Coupe 2012 0.61% Lamborghini Diablo Coupe 2001 0.39% Bugatti Veyron 16.4 Coupe 2009 0.14% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Ford GT Coupe 2006 0.0% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 BMW 6 Series Convertible 2007 68.16% Chrysler 300 SRT-8 2010 19.81% Audi R8 Coupe 2012 2.46% Chevrolet Silverado 1500 Regular Cab 2012 1.36% Audi S4 Sedan 2012 1.12% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.98% Mercedes-Benz SL-Class Coupe 2009 0.01% Bugatti Veyron 16.4 Convertible 2009 0.0% Aston Martin Virage Convertible 2012 0.0% Ford Fiesta Sedan 2012 0.0% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 53.51% Jaguar XK XKR 2012 39.34% Aston Martin Virage Convertible 2012 6.65% Aston Martin V8 Vantage Convertible 2012 0.4% Spyker C8 Coupe 2009 0.06% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.71% GMC Savana Van 2012 0.29% Chevrolet Express Van 2007 0.0% Nissan NV Passenger Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Honda Odyssey Minivan 2007 69.33% Honda Odyssey Minivan 2012 15.69% Chevrolet Impala Sedan 2007 5.34% Lincoln Town Car Sedan 2011 1.95% Dodge Caravan Minivan 1997 1.22% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 34.14% Dodge Journey SUV 2012 13.37% BMW X6 SUV 2012 11.31% Jeep Grand Cherokee SUV 2012 9.33% Dodge Caliber Wagon 2007 4.98% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Cadillac CTS-V Sedan 2012 36.93% Chrysler 300 SRT-8 2010 28.63% Rolls-Royce Phantom Sedan 2012 6.78% Nissan NV Passenger Van 2012 5.47% GMC Terrain SUV 2012 2.44% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 99.98% Plymouth Neon Coupe 1999 0.01% Chevrolet Sonic Sedan 2012 0.0% Chevrolet TrailBlazer SS 2009 0.0% Chevrolet Impala Sedan 2007 0.0% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 69.09% Aston Martin V8 Vantage Coupe 2012 30.33% Chevrolet Monte Carlo Coupe 2007 0.1% Bugatti Veyron 16.4 Coupe 2009 0.09% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.09% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 89.29% Ferrari 458 Italia Coupe 2012 1.99% FIAT 500 Convertible 2012 1.94% Ferrari 458 Italia Convertible 2012 1.9% Aston Martin V8 Vantage Convertible 2012 1.82% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Nissan Leaf Hatchback 2012 65.83% Porsche Panamera Sedan 2012 22.75% Jaguar XK XKR 2012 5.46% Chevrolet Corvette Convertible 2012 2.85% Chevrolet Corvette ZR1 2012 1.36% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 73.08% Dodge Charger SRT-8 2009 26.91% Dodge Charger Sedan 2012 0.0% Chevrolet HHR SS 2010 0.0% Dodge Durango SUV 2012 0.0% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 72.75% Ferrari 458 Italia Convertible 2012 25.88% Ferrari 458 Italia Coupe 2012 0.8% Chevrolet Corvette ZR1 2012 0.23% Chevrolet Camaro Convertible 2012 0.14% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 100.0% Chrysler Aspen SUV 2009 0.0% Volkswagen Golf Hatchback 1991 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Hyundai Genesis Sedan 2012 98.48% Hyundai Sonata Sedan 2012 0.7% Hyundai Azera Sedan 2012 0.6% Honda Accord Sedan 2012 0.09% Honda Odyssey Minivan 2012 0.09% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 99.96% Rolls-Royce Phantom Sedan 2012 0.02% Bentley Continental Supersports Conv. Convertible 2012 0.01% BMW ActiveHybrid 5 Sedan 2012 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Nissan 240SX Coupe 1998 45.43% Ford Mustang Convertible 2007 33.43% Plymouth Neon Coupe 1999 13.77% Audi V8 Sedan 1994 3.15% Acura Integra Type R 2001 0.66% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 79.41% Ferrari 458 Italia Coupe 2012 9.4% Ford Mustang Convertible 2007 5.03% Ford GT Coupe 2006 1.84% Chevrolet Corvette ZR1 2012 1.19% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Lamborghini Reventon Coupe 2008 79.59% Lamborghini Aventador Coupe 2012 11.75% McLaren MP4-12C Coupe 2012 3.5% Spyker C8 Convertible 2009 2.82% Bugatti Veyron 16.4 Coupe 2009 1.92% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 87.49% Bugatti Veyron 16.4 Coupe 2009 4.8% Bugatti Veyron 16.4 Convertible 2009 2.91% Audi R8 Coupe 2012 1.74% Audi TTS Coupe 2012 1.15% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Audi 100 Wagon 1994 57.15% Mercedes-Benz 300-Class Convertible 1993 20.65% BMW 1 Series Convertible 2012 4.52% Volvo XC90 SUV 2007 4.05% Volvo 240 Sedan 1993 1.49% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 99.9% Volvo 240 Sedan 1993 0.05% Volvo XC90 SUV 2007 0.03% Mazda Tribute SUV 2011 0.01% Volkswagen Golf Hatchback 1991 0.01% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Honda Accord Coupe 2012 83.67% Hyundai Genesis Sedan 2012 7.51% Chevrolet Monte Carlo Coupe 2007 4.48% Honda Accord Sedan 2012 3.78% Dodge Journey SUV 2012 0.38% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2012 45.45% Dodge Durango SUV 2007 20.32% Dodge Caliber Wagon 2012 8.65% Dodge Magnum Wagon 2008 7.89% Dodge Charger SRT-8 2009 6.08% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 91.25% Jaguar XK XKR 2012 5.48% Aston Martin V8 Vantage Convertible 2012 2.12% Ferrari California Convertible 2012 0.82% Ferrari 458 Italia Coupe 2012 0.1% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 69.9% Bugatti Veyron 16.4 Coupe 2009 21.84% Bugatti Veyron 16.4 Convertible 2009 5.38% Spyker C8 Coupe 2009 1.02% Mercedes-Benz SL-Class Coupe 2009 0.89% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 60.12% HUMMER H3T Crew Cab 2010 35.51% Dodge Ram Pickup 3500 Crew Cab 2010 1.26% Chevrolet Express Van 2007 0.8% Bentley Continental Supersports Conv. Convertible 2012 0.52% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 98.11% Scion xD Hatchback 2012 1.71% smart fortwo Convertible 2012 0.17% Land Rover LR2 SUV 2012 0.01% Ford Edge SUV 2012 0.01% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Audi S5 Coupe 2012 18.96% Audi TTS Coupe 2012 12.98% Mitsubishi Lancer Sedan 2012 8.85% Audi S4 Sedan 2012 7.32% BMW M3 Coupe 2012 4.3% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 99.42% Hyundai Accent Sedan 2012 0.47% Hyundai Veloster Hatchback 2012 0.02% Ford Edge SUV 2012 0.02% Volkswagen Golf Hatchback 2012 0.02% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 23.02% Ford F-150 Regular Cab 2012 22.34% Dodge Dakota Club Cab 2007 10.36% Ford Ranger SuperCab 2011 6.82% HUMMER H3T Crew Cab 2010 6.3% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 97.14% Geo Metro Convertible 1993 1.32% Lamborghini Diablo Coupe 2001 1.0% Chevrolet Corvette Convertible 2012 0.15% Chevrolet Cobalt SS 2010 0.09% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Honda Accord Sedan 2012 16.39% Audi S5 Coupe 2012 15.3% BMW X3 SUV 2012 11.32% Audi TT Hatchback 2011 10.46% Acura ZDX Hatchback 2012 8.87% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Impala Sedan 2007 60.24% Chevrolet Monte Carlo Coupe 2007 22.11% Chevrolet Malibu Sedan 2007 9.05% Eagle Talon Hatchback 1998 3.47% Nissan 240SX Coupe 1998 1.14% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 FIAT 500 Abarth 2012 96.57% Ferrari FF Coupe 2012 1.17% Volvo C30 Hatchback 2012 1.07% Lamborghini Aventador Coupe 2012 0.46% Bugatti Veyron 16.4 Coupe 2009 0.28% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 24.53% Chrysler PT Cruiser Convertible 2008 17.11% Volvo XC90 SUV 2007 4.68% Volvo 240 Sedan 1993 4.48% GMC Savana Van 2012 2.76% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 38.31% Bugatti Veyron 16.4 Coupe 2009 13.72% AM General Hummer SUV 2000 4.71% Dodge Challenger SRT8 2011 4.34% GMC Savana Van 2012 2.59% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 HUMMER H2 SUT Crew Cab 2009 36.02% Infiniti QX56 SUV 2011 26.5% Toyota 4Runner SUV 2012 24.97% Cadillac CTS-V Sedan 2012 5.16% Chevrolet TrailBlazer SS 2009 1.2% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 91.47% Ford Mustang Convertible 2007 5.91% Audi 100 Sedan 1994 2.15% Audi V8 Sedan 1994 0.17% Audi 100 Wagon 1994 0.07% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Cargo Van 2007 92.14% GMC Savana Van 2012 1.73% Chevrolet Silverado 2500HD Regular Cab 2012 1.62% Chevrolet Express Van 2007 1.53% Ford F-150 Regular Cab 2012 1.21% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Ford Fiesta Sedan 2012 76.87% Buick Regal GS 2012 13.05% Acura Integra Type R 2001 1.96% Buick Verano Sedan 2012 1.43% Hyundai Veloster Hatchback 2012 1.25% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Chrysler PT Cruiser Convertible 2008 14.59% Volkswagen Beetle Hatchback 2012 11.55% Chevrolet Corvette Convertible 2012 8.36% Toyota Corolla Sedan 2012 7.6% Chevrolet Monte Carlo Coupe 2007 5.08% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 100.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% Chevrolet Express Van 2007 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Buick Verano Sedan 2012 50.21% Honda Accord Coupe 2012 15.06% BMW X6 SUV 2012 7.56% Hyundai Sonata Hybrid Sedan 2012 3.13% Hyundai Tucson SUV 2012 2.54% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 88.37% Ford E-Series Wagon Van 2012 11.13% Ford F-150 Regular Cab 2012 0.46% GMC Canyon Extended Cab 2012 0.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.02% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 100.0% Jeep Wrangler SUV 2012 0.0% Nissan NV Passenger Van 2012 0.0% Jeep Liberty SUV 2012 0.0% AM General Hummer SUV 2000 0.0% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 71.21% BMW X3 SUV 2012 21.25% BMW X5 SUV 2007 4.39% Bentley Arnage Sedan 2009 2.42% Jeep Compass SUV 2012 0.44% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Land Rover LR2 SUV 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Toyota Corolla Sedan 2012 0.0% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Toyota 4Runner SUV 2012 47.21% Chevrolet Avalanche Crew Cab 2012 28.92% Chevrolet Tahoe Hybrid SUV 2012 3.94% Cadillac Escalade EXT Crew Cab 2007 3.59% HUMMER H2 SUT Crew Cab 2009 2.09% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Toyota 4Runner SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Ford Edge SUV 2012 0.0% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Chevrolet Malibu Hybrid Sedan 2010 64.98% Chevrolet Sonic Sedan 2012 17.65% Hyundai Elantra Sedan 2007 3.38% Suzuki SX4 Hatchback 2012 3.09% Chevrolet Impala Sedan 2007 2.35% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Club Cab 2007 60.28% Dodge Dakota Crew Cab 2010 39.4% Dodge Caliber Wagon 2007 0.27% Dodge Caliber Wagon 2012 0.03% Dodge Durango SUV 2007 0.02% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.76% Jaguar XK XKR 2012 0.17% Chevrolet Corvette ZR1 2012 0.07% Aston Martin Virage Convertible 2012 0.0% Eagle Talon Hatchback 1998 0.0% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.99% Chevrolet Avalanche Crew Cab 2012 0.01% Jeep Grand Cherokee SUV 2012 0.0% Isuzu Ascender SUV 2008 0.0% Toyota 4Runner SUV 2012 0.0% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Mitsubishi Lancer Sedan 2012 21.86% BMW M6 Convertible 2010 17.15% MINI Cooper Roadster Convertible 2012 14.96% Bugatti Veyron 16.4 Convertible 2009 13.81% Chevrolet Camaro Convertible 2012 12.8% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 99.91% Bugatti Veyron 16.4 Convertible 2009 0.08% Mercedes-Benz SL-Class Coupe 2009 0.01% Ford GT Coupe 2006 0.0% Lamborghini Aventador Coupe 2012 0.0% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Hatchback 2012 88.73% Daewoo Nubira Wagon 2002 3.66% Suzuki SX4 Sedan 2012 3.04% Dodge Caliber Wagon 2007 0.89% Nissan Juke Hatchback 2012 0.84% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 94.73% Chevrolet Camaro Convertible 2012 0.89% Dodge Challenger SRT8 2011 0.41% Mercedes-Benz 300-Class Convertible 1993 0.4% Hyundai Genesis Sedan 2012 0.39% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Ford F-150 Regular Cab 2007 76.97% Chevrolet Silverado 1500 Extended Cab 2012 18.13% Dodge Ram Pickup 3500 Quad Cab 2009 1.72% Ford Ranger SuperCab 2011 0.95% Dodge Dakota Club Cab 2007 0.79% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 100.0% Chevrolet Traverse SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Cadillac SRX SUV 2012 0.0% Dodge Caliber Wagon 2012 0.0% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 99.79% AM General Hummer SUV 2000 0.18% HUMMER H3T Crew Cab 2010 0.02% Jeep Wrangler SUV 2012 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Jeep Wrangler SUV 2012 41.76% Nissan NV Passenger Van 2012 9.13% Bentley Arnage Sedan 2009 8.83% Spyker C8 Coupe 2009 6.51% AM General Hummer SUV 2000 6.05% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 24.51% Volkswagen Golf Hatchback 1991 21.44% Audi V8 Sedan 1994 13.57% Eagle Talon Hatchback 1998 9.29% Plymouth Neon Coupe 1999 7.66% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 93.54% Dodge Caliber Wagon 2012 2.06% Dodge Durango SUV 2007 1.14% Chrysler PT Cruiser Convertible 2008 0.58% Chevrolet Avalanche Crew Cab 2012 0.48% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Buick Verano Sedan 2012 40.82% Acura ZDX Hatchback 2012 38.73% Hyundai Veloster Hatchback 2012 2.72% Acura RL Sedan 2012 2.48% Acura TL Sedan 2012 1.86% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Hyundai Veracruz SUV 2012 89.76% Cadillac SRX SUV 2012 2.93% Ford Focus Sedan 2007 2.03% Chevrolet Impala Sedan 2007 1.02% Chevrolet Traverse SUV 2012 0.83% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Volvo XC90 SUV 2007 0.0% GMC Acadia SUV 2012 0.0% Ford Edge SUV 2012 0.0% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 47.43% Audi V8 Sedan 1994 15.08% Plymouth Neon Coupe 1999 7.22% Volvo 240 Sedan 1993 3.39% Mercedes-Benz 300-Class Convertible 1993 2.98% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 88.64% Plymouth Neon Coupe 1999 11.35% Daewoo Nubira Wagon 2002 0.01% Suzuki Aerio Sedan 2007 0.0% Chrysler Sebring Convertible 2010 0.0% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Hyundai Veloster Hatchback 2012 44.02% Toyota Corolla Sedan 2012 18.63% Suzuki SX4 Sedan 2012 14.13% BMW X6 SUV 2012 7.57% Buick Verano Sedan 2012 6.33% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Chrysler Crossfire Convertible 2008 0.0% Chrysler Sebring Convertible 2010 0.0% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.64% GMC Canyon Extended Cab 2012 0.29% Ford F-450 Super Duty Crew Cab 2012 0.02% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Dodge Caliber Wagon 2007 56.92% Dodge Durango SUV 2007 21.74% Dodge Caliber Wagon 2012 11.06% Dodge Journey SUV 2012 6.21% GMC Acadia SUV 2012 2.51% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Volvo 240 Sedan 1993 19.97% Ford GT Coupe 2006 11.38% Audi 100 Wagon 1994 10.11% Bentley Continental GT Coupe 2007 10.06% Mercedes-Benz 300-Class Convertible 1993 5.54% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 98.9% Bugatti Veyron 16.4 Convertible 2009 0.73% Bugatti Veyron 16.4 Coupe 2009 0.35% Mercedes-Benz SL-Class Coupe 2009 0.01% Lamborghini Aventador Coupe 2012 0.0% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 96.27% Dodge Magnum Wagon 2008 2.68% Chevrolet Malibu Sedan 2007 0.66% Chevrolet Monte Carlo Coupe 2007 0.14% Lincoln Town Car Sedan 2011 0.09% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Mercedes-Benz 300-Class Convertible 1993 58.05% Honda Accord Sedan 2012 18.02% BMW 3 Series Wagon 2012 5.9% Acura TL Type-S 2008 3.41% Chevrolet Malibu Sedan 2007 2.11% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 50.96% GMC Canyon Extended Cab 2012 23.11% Ford F-150 Regular Cab 2012 12.69% Dodge Dakota Club Cab 2007 6.41% Chevrolet Silverado 1500 Regular Cab 2012 3.41% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 56.71% Bentley Continental GT Coupe 2012 20.58% Ford GT Coupe 2006 5.5% Lamborghini Reventon Coupe 2008 5.21% Bentley Continental GT Coupe 2007 2.32% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Rolls-Royce Ghost Sedan 2012 87.06% Dodge Journey SUV 2012 8.35% Cadillac CTS-V Sedan 2012 2.88% Chevrolet Sonic Sedan 2012 1.44% GMC Terrain SUV 2012 0.16% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Spyker C8 Coupe 2009 47.64% Spyker C8 Convertible 2009 18.02% Dodge Challenger SRT8 2011 8.53% Bugatti Veyron 16.4 Coupe 2009 7.64% Chevrolet Corvette ZR1 2012 7.03% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Audi V8 Sedan 1994 11.54% Nissan 240SX Coupe 1998 7.67% BMW M5 Sedan 2010 5.48% BMW 1 Series Coupe 2012 5.44% Chevrolet Camaro Convertible 2012 3.87% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Hyundai Veracruz SUV 2012 35.59% Nissan 240SX Coupe 1998 17.43% Hyundai Tucson SUV 2012 11.39% Acura TL Sedan 2012 7.38% Hyundai Genesis Sedan 2012 5.44% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 92.78% Volkswagen Golf Hatchback 1991 3.46% BMW 3 Series Sedan 2012 1.53% Dodge Ram Pickup 3500 Quad Cab 2009 1.37% Ford Mustang Convertible 2007 0.28% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 99.36% Dodge Caliber Wagon 2007 0.38% Hyundai Elantra Touring Hatchback 2012 0.17% Mitsubishi Lancer Sedan 2012 0.07% Chrysler PT Cruiser Convertible 2008 0.01% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Ford Expedition EL SUV 2009 0.0% Chrysler 300 SRT-8 2010 0.0% Dodge Dakota Crew Cab 2010 0.0% AM General Hummer SUV 2000 0.0% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 100.0% Ferrari 458 Italia Coupe 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Ferrari 458 Italia Convertible 2012 0.0% BMW 3 Series Sedan 2012 0.0% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bentley Continental GT Coupe 2007 65.8% Audi RS 4 Convertible 2008 9.97% Chrysler 300 SRT-8 2010 6.64% Audi S4 Sedan 2007 3.41% Chevrolet Cobalt SS 2010 2.99% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Acura TL Sedan 2012 66.94% Acura TSX Sedan 2012 28.3% Chevrolet Impala Sedan 2007 1.65% Chevrolet Monte Carlo Coupe 2007 0.61% Toyota Camry Sedan 2012 0.42% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H2 SUT Crew Cab 2009 59.17% Jeep Wrangler SUV 2012 37.21% AM General Hummer SUV 2000 0.98% Ford F-150 Regular Cab 2007 0.95% GMC Canyon Extended Cab 2012 0.41% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 98.31% Lamborghini Reventon Coupe 2008 0.56% Acura Integra Type R 2001 0.24% Dodge Challenger SRT8 2011 0.15% Aston Martin V8 Vantage Convertible 2012 0.06% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Sonata Sedan 2012 99.96% Honda Odyssey Minivan 2012 0.04% Hyundai Elantra Sedan 2007 0.0% Hyundai Veracruz SUV 2012 0.0% Honda Accord Sedan 2012 0.0% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 100.0% Chevrolet Corvette ZR1 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% Fisker Karma Sedan 2012 0.0% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H3T Crew Cab 2010 53.34% HUMMER H2 SUT Crew Cab 2009 25.69% Dodge Ram Pickup 3500 Quad Cab 2009 14.06% Dodge Ram Pickup 3500 Crew Cab 2010 3.76% AM General Hummer SUV 2000 0.87% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Volvo XC90 SUV 2007 75.81% Mazda Tribute SUV 2011 2.26% Daewoo Nubira Wagon 2002 2.17% Cadillac SRX SUV 2012 2.04% Buick Enclave SUV 2012 1.83% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 30.53% Ford Mustang Convertible 2007 18.37% Acura Integra Type R 2001 17.53% Dodge Challenger SRT8 2011 11.46% Hyundai Veloster Hatchback 2012 6.64% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.99% Dodge Sprinter Cargo Van 2009 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Audi 100 Sedan 1994 0.0% BMW X5 SUV 2007 0.0% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 100.0% Hyundai Sonata Sedan 2012 0.0% Hyundai Azera Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% Buick Verano Sedan 2012 0.0% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Mitsubishi Lancer Sedan 2012 32.52% Hyundai Genesis Sedan 2012 22.44% Aston Martin V8 Vantage Coupe 2012 10.31% Chevrolet Cobalt SS 2010 5.26% BMW 6 Series Convertible 2007 3.48% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 54.66% Hyundai Elantra Sedan 2007 15.14% Honda Accord Sedan 2012 10.85% Chevrolet Malibu Sedan 2007 6.24% Hyundai Sonata Sedan 2012 5.75% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 83.47% Rolls-Royce Ghost Sedan 2012 15.76% Bentley Arnage Sedan 2009 0.21% BMW 3 Series Wagon 2012 0.11% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.1% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 BMW M6 Convertible 2010 48.91% Audi R8 Coupe 2012 15.91% BMW M5 Sedan 2010 14.16% BMW M3 Coupe 2012 11.39% BMW 6 Series Convertible 2007 7.68% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 83.1% Chevrolet Cobalt SS 2010 11.93% Acura ZDX Hatchback 2012 1.1% Hyundai Veloster Hatchback 2012 0.81% Lamborghini Diablo Coupe 2001 0.81% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 GMC Acadia SUV 2012 50.07% Chrysler Aspen SUV 2009 19.55% Buick Enclave SUV 2012 3.95% Chrysler Town and Country Minivan 2012 3.52% Hyundai Santa Fe SUV 2012 2.66% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 96.75% Dodge Charger Sedan 2012 1.31% Acura Integra Type R 2001 0.94% Ford Mustang Convertible 2007 0.88% BMW M3 Coupe 2012 0.07% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 BMW 1 Series Coupe 2012 56.13% BMW X6 SUV 2012 20.63% Hyundai Veloster Hatchback 2012 3.73% Chevrolet Corvette Convertible 2012 2.07% Mitsubishi Lancer Sedan 2012 2.05% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Chevrolet Monte Carlo Coupe 2007 99.17% Plymouth Neon Coupe 1999 0.64% Chevrolet Impala Sedan 2007 0.16% Geo Metro Convertible 1993 0.02% Nissan 240SX Coupe 1998 0.01% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Acura TSX Sedan 2012 16.27% Acura ZDX Hatchback 2012 7.28% Eagle Talon Hatchback 1998 6.74% Suzuki SX4 Sedan 2012 5.51% Hyundai Veracruz SUV 2012 4.33% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 99.27% Ford F-150 Regular Cab 2007 0.27% Audi 100 Sedan 1994 0.2% GMC Canyon Extended Cab 2012 0.09% Volkswagen Golf Hatchback 1991 0.07% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 92.21% Chevrolet Express Cargo Van 2007 7.66% GMC Savana Van 2012 0.13% Nissan Juke Hatchback 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Chevrolet Camaro Convertible 2012 19.23% BMW Z4 Convertible 2012 11.05% Bentley Continental GT Coupe 2007 8.49% Ford GT Coupe 2006 7.9% Bentley Continental GT Coupe 2012 7.58% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 91.63% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.98% GMC Canyon Extended Cab 2012 2.59% Chevrolet Silverado 1500 Regular Cab 2012 1.95% Chevrolet Silverado 2500HD Regular Cab 2012 0.23% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Tesla Model S Sedan 2012 70.57% Aston Martin Virage Convertible 2012 18.83% Ferrari FF Coupe 2012 2.59% Infiniti G Coupe IPL 2012 0.91% Audi TTS Coupe 2012 0.9% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.64% Audi 100 Sedan 1994 0.26% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.09% Volkswagen Golf Hatchback 1991 0.0% Ford Mustang Convertible 2007 0.0% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Audi TT RS Coupe 2012 37.91% Audi TT Hatchback 2011 15.95% Hyundai Sonata Sedan 2012 15.11% Volkswagen Beetle Hatchback 2012 6.97% Mercedes-Benz E-Class Sedan 2012 4.76% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 85.69% Isuzu Ascender SUV 2008 7.76% Ford Ranger SuperCab 2011 1.99% Dodge Dakota Club Cab 2007 1.25% Chrysler Aspen SUV 2009 0.71% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 99.84% Mercedes-Benz Sprinter Van 2012 0.16% Ram C/V Cargo Van Minivan 2012 0.0% Dodge Caravan Minivan 1997 0.0% Suzuki Aerio Sedan 2007 0.0% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.77% Volkswagen Golf Hatchback 1991 0.14% Chevrolet Express Van 2007 0.06% Chevrolet Express Cargo Van 2007 0.02% Chrysler PT Cruiser Convertible 2008 0.0% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Volkswagen Beetle Hatchback 2012 39.94% Ferrari FF Coupe 2012 25.84% Hyundai Genesis Sedan 2012 8.23% BMW 1 Series Coupe 2012 6.8% BMW 3 Series Sedan 2012 6.41% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 60.17% Volvo XC90 SUV 2007 34.45% GMC Terrain SUV 2012 2.19% Jeep Liberty SUV 2012 0.64% Toyota 4Runner SUV 2012 0.31% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 84.78% Chevrolet Avalanche Crew Cab 2012 4.08% HUMMER H3T Crew Cab 2010 3.64% Hyundai Veloster Hatchback 2012 3.47% Volvo XC90 SUV 2007 2.09% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Nissan Juke Hatchback 2012 23.75% Audi S5 Convertible 2012 14.85% Bugatti Veyron 16.4 Coupe 2009 5.86% Nissan Leaf Hatchback 2012 5.57% smart fortwo Convertible 2012 5.56% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 92.0% Dodge Challenger SRT8 2011 6.52% Chevrolet TrailBlazer SS 2009 1.4% Chevrolet Camaro Convertible 2012 0.05% Dodge Charger Sedan 2012 0.01% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.99% Chevrolet Tahoe Hybrid SUV 2012 0.01% Dodge Caliber Wagon 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 81.27% Nissan Juke Hatchback 2012 3.26% Bentley Continental GT Coupe 2007 2.5% FIAT 500 Abarth 2012 1.15% Rolls-Royce Phantom Sedan 2012 0.97% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 BMW X6 SUV 2012 64.24% Jeep Compass SUV 2012 28.02% Jeep Grand Cherokee SUV 2012 3.58% BMW X5 SUV 2007 3.52% Buick Verano Sedan 2012 0.45% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 27.82% Maybach Landaulet Convertible 2012 16.83% Dodge Durango SUV 2012 9.57% Dodge Challenger SRT8 2011 6.89% Land Rover LR2 SUV 2012 3.25% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Hyundai Accent Sedan 2012 90.87% Ford Fiesta Sedan 2012 8.16% Scion xD Hatchback 2012 0.97% Toyota Corolla Sedan 2012 0.0% Suzuki Aerio Sedan 2007 0.0% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% Toyota Corolla Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% Land Rover LR2 SUV 2012 0.0% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Ram Pickup 3500 Crew Cab 2010 18.51% GMC Canyon Extended Cab 2012 18.46% AM General Hummer SUV 2000 17.42% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.2% Chevrolet Silverado 1500 Regular Cab 2012 5.32% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Jaguar XK XKR 2012 35.72% Bugatti Veyron 16.4 Coupe 2009 14.03% Spyker C8 Coupe 2009 8.97% Hyundai Veloster Hatchback 2012 5.04% Audi TTS Coupe 2012 4.92% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 GMC Canyon Extended Cab 2012 97.65% Chevrolet Silverado 1500 Extended Cab 2012 1.84% Ford F-150 Regular Cab 2007 0.48% HUMMER H3T Crew Cab 2010 0.03% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Ford Fiesta Sedan 2012 29.31% Hyundai Veloster Hatchback 2012 14.53% Chrysler Sebring Convertible 2010 5.77% Hyundai Tucson SUV 2012 4.97% Buick Verano Sedan 2012 4.44% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 71.46% Hyundai Veracruz SUV 2012 7.87% Land Rover LR2 SUV 2012 5.98% BMW X6 SUV 2012 5.14% Acura TSX Sedan 2012 2.19% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.96% Toyota Camry Sedan 2012 0.02% Chevrolet Impala Sedan 2007 0.0% Acura ZDX Hatchback 2012 0.0% Ford Focus Sedan 2007 0.0% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 96.12% Dodge Dakota Crew Cab 2010 3.83% Dodge Journey SUV 2012 0.01% Dodge Charger Sedan 2012 0.01% Dodge Dakota Club Cab 2007 0.01% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 100.0% Ford F-150 Regular Cab 2012 0.0% Nissan NV Passenger Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 65.08% Nissan 240SX Coupe 1998 5.55% Mitsubishi Lancer Sedan 2012 4.98% Acura ZDX Hatchback 2012 4.08% Hyundai Elantra Touring Hatchback 2012 3.31% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 GMC Canyon Extended Cab 2012 42.16% Dodge Sprinter Cargo Van 2009 19.8% HUMMER H2 SUT Crew Cab 2009 17.75% Toyota 4Runner SUV 2012 3.4% Audi 100 Wagon 1994 2.12% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 100.0% Chevrolet Corvette Convertible 2012 0.0% Porsche Panamera Sedan 2012 0.0% Acura TL Type-S 2008 0.0% Fisker Karma Sedan 2012 0.0% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Spyker C8 Coupe 2009 72.35% FIAT 500 Abarth 2012 13.43% Spyker C8 Convertible 2009 11.03% Nissan Juke Hatchback 2012 0.54% Bugatti Veyron 16.4 Coupe 2009 0.41% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 87.41% Bentley Continental GT Coupe 2007 10.57% Tesla Model S Sedan 2012 0.86% Ford Focus Sedan 2007 0.83% Chevrolet Malibu Hybrid Sedan 2010 0.14% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 100.0% Dodge Charger SRT-8 2009 0.0% Ferrari 458 Italia Coupe 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 96.66% Chevrolet Corvette Convertible 2012 1.68% Chrysler Crossfire Convertible 2008 0.92% Chevrolet Cobalt SS 2010 0.25% Dodge Challenger SRT8 2011 0.19% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 84.63% Chevrolet Corvette Convertible 2012 14.58% Porsche Panamera Sedan 2012 0.52% Aston Martin V8 Vantage Coupe 2012 0.08% Bugatti Veyron 16.4 Coupe 2009 0.04% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 47.11% Chrysler Aspen SUV 2009 9.84% Chevrolet Avalanche Crew Cab 2012 7.27% GMC Terrain SUV 2012 6.31% Ford Edge SUV 2012 4.69% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 100.0% Isuzu Ascender SUV 2008 0.0% HUMMER H3T Crew Cab 2010 0.0% Dodge Dakota Club Cab 2007 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz S-Class Sedan 2012 43.96% Mercedes-Benz E-Class Sedan 2012 31.52% Hyundai Azera Sedan 2012 17.6% BMW 6 Series Convertible 2007 1.79% Infiniti QX56 SUV 2011 1.03% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Acura Integra Type R 2001 89.17% Ford Fiesta Sedan 2012 6.93% Bugatti Veyron 16.4 Convertible 2009 2.34% Hyundai Elantra Touring Hatchback 2012 0.57% Suzuki Aerio Sedan 2007 0.14% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Jeep Liberty SUV 2012 20.4% Dodge Durango SUV 2012 19.06% Buick Rainier SUV 2007 13.63% Buick Enclave SUV 2012 10.45% Dodge Durango SUV 2007 9.8% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 100.0% Land Rover LR2 SUV 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Dodge Journey SUV 2012 0.0% GMC Terrain SUV 2012 0.0% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Ranger SuperCab 2011 84.45% Ford F-450 Super Duty Crew Cab 2012 5.98% Ford F-150 Regular Cab 2012 3.88% Ford Expedition EL SUV 2009 3.55% GMC Canyon Extended Cab 2012 1.2% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 100.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Canyon Extended Cab 2012 0.0% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 93.74% Dodge Dakota Crew Cab 2010 5.87% Dodge Dakota Club Cab 2007 0.18% Chrysler Aspen SUV 2009 0.09% Dodge Caliber Wagon 2012 0.08% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Honda Accord Coupe 2012 25.45% BMW 1 Series Convertible 2012 24.61% Hyundai Elantra Sedan 2007 18.46% BMW 1 Series Coupe 2012 5.33% Hyundai Accent Sedan 2012 3.15% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 57.96% Dodge Caliber Wagon 2007 18.1% GMC Acadia SUV 2012 14.83% Dodge Caliber Wagon 2012 5.65% Dodge Ram Pickup 3500 Quad Cab 2009 0.73% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 88.73% Bentley Arnage Sedan 2009 6.03% Bentley Continental Flying Spur Sedan 2007 3.76% Rolls-Royce Phantom Sedan 2012 1.31% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.16% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Chevrolet Silverado 1500 Extended Cab 2012 77.67% HUMMER H3T Crew Cab 2010 22.13% Dodge Dakota Club Cab 2007 0.17% Dodge Charger SRT-8 2009 0.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 99.32% Chevrolet Express Cargo Van 2007 0.61% Chevrolet Express Van 2007 0.07% Audi V8 Sedan 1994 0.0% Ford Ranger SuperCab 2011 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 BMW 6 Series Convertible 2007 71.23% Aston Martin V8 Vantage Convertible 2012 13.5% Tesla Model S Sedan 2012 8.34% Aston Martin V8 Vantage Coupe 2012 5.84% Aston Martin Virage Convertible 2012 0.27% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 92.21% Jeep Grand Cherokee SUV 2012 4.33% BMW X3 SUV 2012 1.73% Dodge Caliber Wagon 2012 0.32% GMC Terrain SUV 2012 0.31% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 100.0% Jeep Compass SUV 2012 0.0% BMW X3 SUV 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% Dodge Durango SUV 2012 0.0% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Ferrari California Convertible 2012 68.83% Ferrari 458 Italia Coupe 2012 12.74% Lamborghini Aventador Coupe 2012 11.91% Ferrari 458 Italia Convertible 2012 4.33% Audi TT RS Coupe 2012 1.97% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Hyundai Santa Fe SUV 2012 8.74% Acura ZDX Hatchback 2012 8.08% Audi V8 Sedan 1994 5.7% Toyota Sequoia SUV 2012 5.48% GMC Yukon Hybrid SUV 2012 5.2% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Ferrari 458 Italia Convertible 2012 25.31% Dodge Challenger SRT8 2011 15.61% Ferrari 458 Italia Coupe 2012 10.48% Spyker C8 Coupe 2009 6.61% Spyker C8 Convertible 2009 5.38% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Chrysler Town and Country Minivan 2012 89.64% Ford Freestar Minivan 2007 4.86% Ram C/V Cargo Van Minivan 2012 3.49% Honda Odyssey Minivan 2007 0.99% Daewoo Nubira Wagon 2002 0.67% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Nissan 240SX Coupe 1998 23.44% Plymouth Neon Coupe 1999 19.32% BMW 3 Series Sedan 2012 15.56% Audi 100 Wagon 1994 10.42% Dodge Caravan Minivan 1997 6.15% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 100.0% Buick Regal GS 2012 0.0% Ford Edge SUV 2012 0.0% Hyundai Accent Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Nissan Leaf Hatchback 2012 52.41% Porsche Panamera Sedan 2012 12.35% Lincoln Town Car Sedan 2011 5.45% Plymouth Neon Coupe 1999 5.43% Daewoo Nubira Wagon 2002 4.82% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 97.65% FIAT 500 Convertible 2012 0.51% Audi 100 Sedan 1994 0.39% Bentley Continental Supersports Conv. Convertible 2012 0.35% Dodge Sprinter Cargo Van 2009 0.3% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 99.31% Chevrolet Silverado 2500HD Regular Cab 2012 0.53% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Chevrolet Silverado 1500 Extended Cab 2012 0.02% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 BMW 1 Series Coupe 2012 85.35% Audi S4 Sedan 2007 4.74% Bentley Continental GT Coupe 2007 4.7% Ford GT Coupe 2006 1.1% Mitsubishi Lancer Sedan 2012 0.64% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 100.0% Audi TT Hatchback 2011 0.0% Cadillac CTS-V Sedan 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Acura RL Sedan 2012 56.09% Mitsubishi Lancer Sedan 2012 19.09% BMW M5 Sedan 2010 4.2% Suzuki Kizashi Sedan 2012 3.0% BMW 1 Series Coupe 2012 2.62% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.99% Hyundai Azera Sedan 2012 0.0% Mercedes-Benz S-Class Sedan 2012 0.0% Hyundai Genesis Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 84.29% Bentley Continental GT Coupe 2007 14.8% Buick Verano Sedan 2012 0.48% Volkswagen Beetle Hatchback 2012 0.3% Bentley Continental GT Coupe 2012 0.07% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Ford Edge SUV 2012 79.69% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.97% Honda Odyssey Minivan 2012 5.61% Chevrolet Avalanche Crew Cab 2012 3.8% Chevrolet Silverado 1500 Regular Cab 2012 2.07% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 7.04% Audi TT Hatchback 2011 6.76% Aston Martin Virage Coupe 2012 6.3% Jaguar XK XKR 2012 5.6% Porsche Panamera Sedan 2012 5.56% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 FIAT 500 Abarth 2012 96.15% Spyker C8 Convertible 2009 3.77% Bentley Arnage Sedan 2009 0.02% Spyker C8 Coupe 2009 0.02% Bentley Continental GT Coupe 2012 0.02% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Chevrolet Camaro Convertible 2012 62.12% Audi S5 Coupe 2012 22.62% Audi TT Hatchback 2011 5.31% Audi TTS Coupe 2012 4.07% Audi A5 Coupe 2012 3.93% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 98.71% Ferrari California Convertible 2012 0.8% Ferrari 458 Italia Coupe 2012 0.1% Ferrari 458 Italia Convertible 2012 0.07% Volkswagen Beetle Hatchback 2012 0.07% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 99.1% Audi R8 Coupe 2012 0.41% BMW Z4 Convertible 2012 0.25% BMW 6 Series Convertible 2007 0.07% Audi S4 Sedan 2007 0.05% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Suzuki SX4 Sedan 2012 86.59% Buick Verano Sedan 2012 4.59% Ram C/V Cargo Van Minivan 2012 4.4% Chrysler Town and Country Minivan 2012 2.28% Dodge Magnum Wagon 2008 0.95% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Cadillac Escalade EXT Crew Cab 2007 95.28% Ford Expedition EL SUV 2009 1.64% Ford F-450 Super Duty Crew Cab 2012 1.44% Chevrolet Tahoe Hybrid SUV 2012 0.93% Toyota Sequoia SUV 2012 0.24% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 93.26% Hyundai Accent Sedan 2012 4.49% Toyota Corolla Sedan 2012 2.02% Hyundai Elantra Sedan 2007 0.19% Scion xD Hatchback 2012 0.03% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Audi S5 Coupe 2012 18.62% Mercedes-Benz C-Class Sedan 2012 16.91% Audi R8 Coupe 2012 11.0% Audi TTS Coupe 2012 10.76% Infiniti G Coupe IPL 2012 8.86% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 98.01% BMW Z4 Convertible 2012 1.68% Hyundai Elantra Touring Hatchback 2012 0.09% Acura Integra Type R 2001 0.05% Aston Martin V8 Vantage Coupe 2012 0.03% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Volvo XC90 SUV 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 99.58% FIAT 500 Convertible 2012 0.42% Suzuki SX4 Hatchback 2012 0.0% Geo Metro Convertible 1993 0.0% Nissan Juke Hatchback 2012 0.0% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 98.32% Hyundai Tucson SUV 2012 1.56% Toyota 4Runner SUV 2012 0.07% Hyundai Santa Fe SUV 2012 0.03% Toyota Sequoia SUV 2012 0.01% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 48.86% Spyker C8 Coupe 2009 37.61% Infiniti G Coupe IPL 2012 6.96% Lamborghini Aventador Coupe 2012 1.77% Lamborghini Reventon Coupe 2008 1.53% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Cadillac Escalade EXT Crew Cab 2007 38.43% Chrysler 300 SRT-8 2010 29.13% Hyundai Veracruz SUV 2012 7.08% Ford Focus Sedan 2007 2.22% Chevrolet Sonic Sedan 2012 2.08% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Audi A5 Coupe 2012 44.97% BMW 1 Series Convertible 2012 25.33% Buick Verano Sedan 2012 10.66% Audi S5 Convertible 2012 4.36% Audi S5 Coupe 2012 2.23% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 86.28% Dodge Dakota Club Cab 2007 13.58% Dodge Durango SUV 2007 0.13% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.98% Jeep Compass SUV 2012 0.02% BMW X5 SUV 2007 0.0% Mazda Tribute SUV 2011 0.0% BMW X3 SUV 2012 0.0% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Hyundai Elantra Sedan 2007 93.21% Dodge Journey SUV 2012 1.88% Nissan Juke Hatchback 2012 1.77% Honda Odyssey Minivan 2012 1.02% Dodge Durango SUV 2007 0.48% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Hyundai Tucson SUV 2012 42.76% Scion xD Hatchback 2012 37.95% Ford Fiesta Sedan 2012 4.88% Chevrolet Sonic Sedan 2012 1.47% Hyundai Veloster Hatchback 2012 1.1% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 AM General Hummer SUV 2000 52.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 29.55% Mercedes-Benz E-Class Sedan 2012 12.56% Mercedes-Benz SL-Class Coupe 2009 3.07% Infiniti G Coupe IPL 2012 0.53% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 74.48% Bentley Continental GT Coupe 2012 23.51% Suzuki Kizashi Sedan 2012 0.81% BMW 1 Series Coupe 2012 0.79% Bentley Continental Supersports Conv. Convertible 2012 0.18% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 97.6% Bentley Continental Flying Spur Sedan 2007 1.85% Bentley Continental GT Coupe 2012 0.21% Bentley Mulsanne Sedan 2011 0.17% BMW M5 Sedan 2010 0.07% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 99.82% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.18% Ford Ranger SuperCab 2011 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Lamborghini Reventon Coupe 2008 73.7% Audi S4 Sedan 2012 9.88% Acura Integra Type R 2001 7.2% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.86% Lamborghini Diablo Coupe 2001 1.86% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 100.0% Cadillac SRX SUV 2012 0.0% Chevrolet Malibu Hybrid Sedan 2010 0.0% Suzuki Kizashi Sedan 2012 0.0% Infiniti G Coupe IPL 2012 0.0% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 76.48% Volvo XC90 SUV 2007 8.24% Ford Freestar Minivan 2007 7.5% Dodge Dakota Crew Cab 2010 3.27% Isuzu Ascender SUV 2008 1.31% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Chrysler Crossfire Convertible 2008 89.88% Mercedes-Benz 300-Class Convertible 1993 3.54% Chrysler PT Cruiser Convertible 2008 2.79% Acura Integra Type R 2001 1.19% Ford Mustang Convertible 2007 0.86% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Tahoe Hybrid SUV 2012 98.49% Cadillac Escalade EXT Crew Cab 2007 0.52% Isuzu Ascender SUV 2008 0.34% Chevrolet Avalanche Crew Cab 2012 0.33% GMC Yukon Hybrid SUV 2012 0.24% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Chevrolet Camaro Convertible 2012 57.81% Aston Martin Virage Convertible 2012 17.07% Tesla Model S Sedan 2012 4.46% Dodge Challenger SRT8 2011 4.12% BMW M6 Convertible 2010 3.46% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 99.99% Mitsubishi Lancer Sedan 2012 0.01% Audi TT Hatchback 2011 0.0% Lamborghini Aventador Coupe 2012 0.0% Audi R8 Coupe 2012 0.0% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 96.13% Dodge Caravan Minivan 1997 1.44% Chevrolet Malibu Sedan 2007 0.79% Chevrolet Impala Sedan 2007 0.66% Mercedes-Benz 300-Class Convertible 1993 0.39% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.8% GMC Yukon Hybrid SUV 2012 0.15% Chevrolet Tahoe Hybrid SUV 2012 0.04% Dodge Magnum Wagon 2008 0.0% Dodge Durango SUV 2012 0.0% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Buick Regal GS 2012 43.04% Hyundai Sonata Sedan 2012 21.63% Tesla Model S Sedan 2012 15.95% BMW X6 SUV 2012 8.48% Ferrari FF Coupe 2012 1.93% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Ford Edge SUV 2012 95.25% Chevrolet Avalanche Crew Cab 2012 1.39% Hyundai Veracruz SUV 2012 0.6% GMC Acadia SUV 2012 0.58% Land Rover Range Rover SUV 2012 0.26% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Ford Focus Sedan 2007 82.61% Plymouth Neon Coupe 1999 6.14% Hyundai Elantra Sedan 2007 4.84% Chevrolet Impala Sedan 2007 3.05% Honda Accord Coupe 2012 1.15% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 93.12% BMW M6 Convertible 2010 2.72% BMW 6 Series Convertible 2007 1.77% BMW M3 Coupe 2012 0.84% BMW 1 Series Convertible 2012 0.28% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Jeep Patriot SUV 2012 44.12% Ford Mustang Convertible 2007 13.69% Ford Focus Sedan 2007 9.09% Jeep Liberty SUV 2012 5.61% Chevrolet TrailBlazer SS 2009 5.57% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 14.89% Jeep Liberty SUV 2012 11.7% Chevrolet HHR SS 2010 10.15% Dodge Charger SRT-8 2009 9.07% Dodge Challenger SRT8 2011 6.34% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 89.41% BMW 6 Series Convertible 2007 5.55% Audi R8 Coupe 2012 2.34% Audi S5 Coupe 2012 0.63% BMW 3 Series Sedan 2012 0.56% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 99.99% AM General Hummer SUV 2000 0.01% Bentley Continental GT Coupe 2007 0.0% Ford GT Coupe 2006 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 39.85% Acura Integra Type R 2001 14.05% Eagle Talon Hatchback 1998 9.85% Mercedes-Benz S-Class Sedan 2012 6.93% Hyundai Elantra Sedan 2007 3.73% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Audi S5 Convertible 2012 28.79% Audi TTS Coupe 2012 26.41% Audi TT Hatchback 2011 12.76% Audi RS 4 Convertible 2008 12.13% Audi S6 Sedan 2011 4.89% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 98.75% Audi S5 Coupe 2012 0.42% Audi S6 Sedan 2011 0.35% Audi S4 Sedan 2007 0.34% Audi S4 Sedan 2012 0.07% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Ford Expedition EL SUV 2009 66.98% GMC Acadia SUV 2012 18.32% GMC Terrain SUV 2012 6.81% Land Rover LR2 SUV 2012 3.36% Dodge Durango SUV 2007 1.55% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 99.18% Honda Accord Coupe 2012 0.64% Acura TSX Sedan 2012 0.06% Chevrolet Impala Sedan 2007 0.06% Hyundai Veracruz SUV 2012 0.02% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 97.96% Ford E-Series Wagon Van 2012 1.77% Land Rover Range Rover SUV 2012 0.12% Ford F-450 Super Duty Crew Cab 2012 0.08% Nissan NV Passenger Van 2012 0.02% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 57.76% Dodge Ram Pickup 3500 Quad Cab 2009 16.65% Volvo 240 Sedan 1993 4.74% Nissan NV Passenger Van 2012 3.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.82% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.88% Audi 100 Wagon 1994 0.09% Audi 100 Sedan 1994 0.01% Lincoln Town Car Sedan 2011 0.01% Bentley Arnage Sedan 2009 0.0% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 87.82% GMC Canyon Extended Cab 2012 7.08% Buick Rainier SUV 2007 2.19% HUMMER H2 SUT Crew Cab 2009 0.65% Dodge Dakota Crew Cab 2010 0.58% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Land Rover LR2 SUV 2012 39.87% GMC Yukon Hybrid SUV 2012 28.94% Ford Expedition EL SUV 2009 11.38% Ford F-450 Super Duty Crew Cab 2012 6.8% Cadillac SRX SUV 2012 4.72% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 97.71% Buick Rainier SUV 2007 0.98% Ford Freestar Minivan 2007 0.89% Chevrolet Avalanche Crew Cab 2012 0.18% Dodge Dakota Crew Cab 2010 0.14% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz 300-Class Convertible 1993 46.68% Chevrolet Camaro Convertible 2012 18.32% Aston Martin V8 Vantage Convertible 2012 14.53% BMW M6 Convertible 2010 6.2% Nissan 240SX Coupe 1998 2.93% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% smart fortwo Convertible 2012 0.0% Scion xD Hatchback 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Volvo C30 Hatchback 2012 0.0% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 85.18% Volvo 240 Sedan 1993 8.47% Ford Freestar Minivan 2007 2.67% Chevrolet Monte Carlo Coupe 2007 1.6% Buick Enclave SUV 2012 0.52% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 97.16% McLaren MP4-12C Coupe 2012 2.25% Lamborghini Aventador Coupe 2012 0.34% Aston Martin Virage Coupe 2012 0.09% BMW M3 Coupe 2012 0.04% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 90.67% Acura TSX Sedan 2012 9.16% Honda Accord Coupe 2012 0.13% Acura RL Sedan 2012 0.02% Toyota Camry Sedan 2012 0.01% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 BMW M3 Coupe 2012 52.48% Dodge Charger Sedan 2012 17.45% Hyundai Veloster Hatchback 2012 12.12% Spyker C8 Coupe 2009 10.62% Lamborghini Diablo Coupe 2001 2.7% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 41.84% Ford F-150 Regular Cab 2007 12.9% Chevrolet Silverado 2500HD Regular Cab 2012 12.76% Audi 100 Sedan 1994 7.24% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.36% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Lamborghini Reventon Coupe 2008 31.49% Chrysler Crossfire Convertible 2008 9.13% BMW 6 Series Convertible 2007 8.04% Daewoo Nubira Wagon 2002 6.95% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.17% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Hyundai Santa Fe SUV 2012 94.46% Chevrolet Traverse SUV 2012 3.23% Buick Enclave SUV 2012 0.76% Hyundai Veracruz SUV 2012 0.51% Scion xD Hatchback 2012 0.23% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 99.85% Chevrolet Traverse SUV 2012 0.11% Hyundai Tucson SUV 2012 0.03% Nissan Juke Hatchback 2012 0.0% Scion xD Hatchback 2012 0.0% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 82.61% Acura RL Sedan 2012 8.2% Chevrolet Malibu Sedan 2007 3.56% Acura ZDX Hatchback 2012 1.28% Honda Accord Coupe 2012 1.03% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 89.95% Suzuki SX4 Hatchback 2012 5.1% Buick Enclave SUV 2012 1.48% Dodge Caliber Wagon 2012 0.85% Chevrolet Traverse SUV 2012 0.5% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 96.73% Bentley Continental GT Coupe 2012 1.82% Buick Regal GS 2012 0.52% Maybach Landaulet Convertible 2012 0.27% Jeep Grand Cherokee SUV 2012 0.11% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 100.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Cadillac SRX SUV 2012 0.0% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Nissan 240SX Coupe 1998 96.09% Mercedes-Benz 300-Class Convertible 1993 0.79% Chevrolet Monte Carlo Coupe 2007 0.68% Daewoo Nubira Wagon 2002 0.62% Scion xD Hatchback 2012 0.45% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 99.34% Mercedes-Benz S-Class Sedan 2012 0.12% Chrysler Sebring Convertible 2010 0.11% Maybach Landaulet Convertible 2012 0.1% Mercedes-Benz E-Class Sedan 2012 0.07% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Honda Odyssey Minivan 2012 46.26% Toyota Corolla Sedan 2012 28.71% BMW M3 Coupe 2012 11.01% Acura RL Sedan 2012 3.28% Hyundai Genesis Sedan 2012 1.72% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 87.52% Toyota Camry Sedan 2012 10.11% Hyundai Sonata Hybrid Sedan 2012 0.89% Buick Verano Sedan 2012 0.77% Acura RL Sedan 2012 0.33% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Land Rover Range Rover SUV 2012 57.4% Jeep Patriot SUV 2012 18.49% GMC Yukon Hybrid SUV 2012 6.16% Land Rover LR2 SUV 2012 2.58% Chevrolet TrailBlazer SS 2009 2.43% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Volvo 240 Sedan 1993 19.96% Audi V8 Sedan 1994 15.05% Bugatti Veyron 16.4 Coupe 2009 12.56% Volkswagen Golf Hatchback 1991 6.23% Audi 100 Wagon 1994 6.1% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Mercedes-Benz E-Class Sedan 2012 28.63% Maybach Landaulet Convertible 2012 17.65% Hyundai Azera Sedan 2012 9.7% Hyundai Veloster Hatchback 2012 8.02% Chevrolet Malibu Hybrid Sedan 2010 5.1% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 45.26% BMW 3 Series Wagon 2012 9.65% BMW X5 SUV 2007 8.17% Hyundai Veloster Hatchback 2012 6.44% Jaguar XK XKR 2012 4.1% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Volvo XC90 SUV 2007 71.36% HUMMER H3T Crew Cab 2010 27.69% HUMMER H2 SUT Crew Cab 2009 0.75% Chevrolet Tahoe Hybrid SUV 2012 0.05% Chevrolet Silverado 1500 Extended Cab 2012 0.05% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 57.1% Chevrolet Silverado 1500 Extended Cab 2012 37.46% HUMMER H3T Crew Cab 2010 3.84% GMC Canyon Extended Cab 2012 1.47% Dodge Dakota Club Cab 2007 0.07% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 46.14% BMW X6 SUV 2012 26.18% Dodge Ram Pickup 3500 Quad Cab 2009 4.72% Jeep Grand Cherokee SUV 2012 4.57% Jeep Compass SUV 2012 2.67% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 71.01% Nissan NV Passenger Van 2012 4.71% Mercedes-Benz C-Class Sedan 2012 3.68% FIAT 500 Abarth 2012 3.64% Cadillac Escalade EXT Crew Cab 2007 2.8% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 75.57% Chrysler Sebring Convertible 2010 23.43% Chevrolet Malibu Hybrid Sedan 2010 0.2% Chrysler Town and Country Minivan 2012 0.19% Suzuki Aerio Sedan 2007 0.15% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 100.0% Chrysler Aspen SUV 2009 0.0% Dodge Dakota Club Cab 2007 0.0% Dodge Dakota Crew Cab 2010 0.0% Dodge Caliber Wagon 2012 0.0% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 91.51% Hyundai Sonata Hybrid Sedan 2012 3.98% Acura RL Sedan 2012 1.89% Hyundai Accent Sedan 2012 0.74% Chevrolet Monte Carlo Coupe 2007 0.7% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 97.33% Bugatti Veyron 16.4 Coupe 2009 1.64% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.23% MINI Cooper Roadster Convertible 2012 0.18% Audi S5 Convertible 2012 0.13% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Fisker Karma Sedan 2012 34.56% Toyota Camry Sedan 2012 12.57% Audi TT Hatchback 2011 10.15% BMW ActiveHybrid 5 Sedan 2012 7.57% Mitsubishi Lancer Sedan 2012 7.04% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Infiniti QX56 SUV 2011 72.3% Buick Regal GS 2012 21.1% Porsche Panamera Sedan 2012 5.02% Honda Odyssey Minivan 2012 1.46% BMW ActiveHybrid 5 Sedan 2012 0.02% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 71.07% Hyundai Azera Sedan 2012 8.07% Infiniti G Coupe IPL 2012 4.22% Jaguar XK XKR 2012 3.14% Hyundai Sonata Sedan 2012 1.4% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 99.09% Chrysler 300 SRT-8 2010 0.31% Mercedes-Benz 300-Class Convertible 1993 0.25% Mercedes-Benz SL-Class Coupe 2009 0.13% Dodge Challenger SRT8 2011 0.04% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.99% Jeep Wrangler SUV 2012 0.01% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 99.99% Chevrolet Impala Sedan 2007 0.01% Plymouth Neon Coupe 1999 0.0% Suzuki Aerio Sedan 2007 0.0% Daewoo Nubira Wagon 2002 0.0% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Coupe 2012 100.0% Ferrari 458 Italia Convertible 2012 0.0% Ferrari FF Coupe 2012 0.0% Ferrari California Convertible 2012 0.0% Ford GT Coupe 2006 0.0% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 50.42% Isuzu Ascender SUV 2008 8.63% HUMMER H3T Crew Cab 2010 8.56% AM General Hummer SUV 2000 4.89% Dodge Ram Pickup 3500 Crew Cab 2010 4.24% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Chevrolet Cobalt SS 2010 67.67% Ford Focus Sedan 2007 13.52% Nissan 240SX Coupe 1998 7.9% Chrysler Sebring Convertible 2010 2.01% Acura Integra Type R 2001 1.98% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bentley Continental GT Coupe 2007 70.55% Volkswagen Beetle Hatchback 2012 12.76% Cadillac CTS-V Sedan 2012 8.78% Bentley Continental GT Coupe 2012 4.35% Bentley Mulsanne Sedan 2011 0.76% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Chevrolet Malibu Hybrid Sedan 2010 61.93% Hyundai Azera Sedan 2012 10.5% Ferrari 458 Italia Convertible 2012 9.79% Bugatti Veyron 16.4 Coupe 2009 3.72% Chrysler Sebring Convertible 2010 2.39% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.99% Chevrolet Express Van 2007 0.01% GMC Savana Van 2012 0.01% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Acura RL Sedan 2012 98.68% Honda Accord Sedan 2012 0.82% Infiniti QX56 SUV 2011 0.11% Acura TSX Sedan 2012 0.08% Acura ZDX Hatchback 2012 0.06% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 52.96% GMC Acadia SUV 2012 31.61% Jeep Compass SUV 2012 6.59% Chevrolet Tahoe Hybrid SUV 2012 5.57% Toyota 4Runner SUV 2012 2.31% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 95.15% Ram C/V Cargo Van Minivan 2012 2.42% Mercedes-Benz E-Class Sedan 2012 1.0% Suzuki SX4 Sedan 2012 0.64% Chevrolet Malibu Hybrid Sedan 2010 0.38% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Daewoo Nubira Wagon 2002 83.08% Plymouth Neon Coupe 1999 15.05% Acura Integra Type R 2001 0.53% Porsche Panamera Sedan 2012 0.46% Eagle Talon Hatchback 1998 0.36% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Honda Accord Coupe 2012 84.6% Chevrolet Corvette ZR1 2012 4.94% Volkswagen Beetle Hatchback 2012 2.74% Jaguar XK XKR 2012 1.86% Ford Fiesta Sedan 2012 1.73% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 28.43% Dodge Durango SUV 2012 13.18% Land Rover LR2 SUV 2012 12.5% Volvo XC90 SUV 2007 9.39% BMW X3 SUV 2012 8.54% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Ferrari FF Coupe 2012 69.55% Chevrolet Cobalt SS 2010 9.48% Hyundai Sonata Sedan 2012 8.39% Ferrari 458 Italia Coupe 2012 3.96% Hyundai Sonata Hybrid Sedan 2012 1.36% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% Bentley Arnage Sedan 2009 0.0% Jeep Compass SUV 2012 0.0% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Chrysler Aspen SUV 2009 97.16% Chrysler PT Cruiser Convertible 2008 2.3% GMC Yukon Hybrid SUV 2012 0.14% Ford Expedition EL SUV 2009 0.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.07% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Audi S5 Convertible 2012 38.86% Volkswagen Golf Hatchback 2012 18.01% Nissan Leaf Hatchback 2012 10.91% Nissan Juke Hatchback 2012 7.7% Suzuki SX4 Sedan 2012 4.8% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.37% GMC Canyon Extended Cab 2012 0.43% Ford Ranger SuperCab 2011 0.15% Dodge Ram Pickup 3500 Quad Cab 2009 0.05% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 58.61% smart fortwo Convertible 2012 18.65% Volvo C30 Hatchback 2012 9.19% Hyundai Veloster Hatchback 2012 4.9% Nissan Juke Hatchback 2012 2.27% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.57% Bentley Arnage Sedan 2009 0.43% Jeep Compass SUV 2012 0.01% Jeep Patriot SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 smart fortwo Convertible 2012 25.22% Land Rover LR2 SUV 2012 12.71% Hyundai Elantra Touring Hatchback 2012 10.34% Land Rover Range Rover SUV 2012 6.97% Ford Fiesta Sedan 2012 5.98% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Chevrolet Sonic Sedan 2012 75.17% Buick Regal GS 2012 23.31% Suzuki Kizashi Sedan 2012 0.94% Buick Verano Sedan 2012 0.29% Suzuki SX4 Sedan 2012 0.07% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 17.69% Aston Martin Virage Coupe 2012 12.67% Aston Martin V8 Vantage Coupe 2012 11.01% Eagle Talon Hatchback 1998 5.26% Audi S5 Coupe 2012 5.22% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 47.04% Chrysler Aspen SUV 2009 12.03% Dodge Durango SUV 2007 11.36% Dodge Caliber Wagon 2007 6.15% Dodge Dakota Club Cab 2007 5.76% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 100.0% Hyundai Tucson SUV 2012 0.0% GMC Acadia SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Ford Mustang Convertible 2007 63.57% Ferrari 458 Italia Coupe 2012 13.52% Chevrolet Corvette Convertible 2012 10.91% Chevrolet Camaro Convertible 2012 4.28% Honda Accord Coupe 2012 2.17% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Durango SUV 2007 0.0% Dodge Dakota Crew Cab 2010 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Hyundai Azera Sedan 2012 38.19% Hyundai Genesis Sedan 2012 14.74% smart fortwo Convertible 2012 14.32% Mercedes-Benz E-Class Sedan 2012 13.13% Suzuki SX4 Sedan 2012 7.67% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Audi TTS Coupe 2012 16.3% Mercedes-Benz SL-Class Coupe 2009 16.12% Bugatti Veyron 16.4 Coupe 2009 15.19% Audi R8 Coupe 2012 7.29% Lamborghini Reventon Coupe 2008 6.46% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 90.28% Chevrolet Avalanche Crew Cab 2012 8.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.2% Chevrolet Tahoe Hybrid SUV 2012 0.2% Toyota Corolla Sedan 2012 0.16% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 93.04% Audi V8 Sedan 1994 6.71% Ford Ranger SuperCab 2011 0.18% GMC Canyon Extended Cab 2012 0.02% Audi 100 Wagon 1994 0.02% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.69% MINI Cooper Roadster Convertible 2012 0.17% Dodge Caliber Wagon 2012 0.02% Suzuki Kizashi Sedan 2012 0.02% Nissan Leaf Hatchback 2012 0.02% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 97.17% Audi S5 Coupe 2012 0.79% Audi S4 Sedan 2012 0.71% Audi RS 4 Convertible 2008 0.47% Dodge Charger Sedan 2012 0.28% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Jaguar XK XKR 2012 31.42% Mercedes-Benz C-Class Sedan 2012 13.19% Chevrolet Cobalt SS 2010 5.08% Audi S4 Sedan 2007 4.31% Hyundai Genesis Sedan 2012 4.04% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 GMC Terrain SUV 2012 74.03% Nissan NV Passenger Van 2012 12.56% Ford F-150 Regular Cab 2012 3.64% Hyundai Elantra Touring Hatchback 2012 1.98% Suzuki Kizashi Sedan 2012 1.29% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 70.75% Chevrolet Corvette ZR1 2012 28.04% Porsche Panamera Sedan 2012 1.04% BMW M5 Sedan 2010 0.06% Chevrolet Corvette Convertible 2012 0.04% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 65.92% BMW ActiveHybrid 5 Sedan 2012 15.42% MINI Cooper Roadster Convertible 2012 6.38% Bugatti Veyron 16.4 Convertible 2009 4.68% Acura ZDX Hatchback 2012 1.81% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 26.42% Bentley Mulsanne Sedan 2011 11.15% Ford GT Coupe 2006 10.82% Chevrolet Camaro Convertible 2012 8.36% Nissan NV Passenger Van 2012 7.93% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Jaguar XK XKR 2012 42.05% BMW M6 Convertible 2010 36.39% Chrysler Sebring Convertible 2010 17.04% Acura TL Type-S 2008 2.08% Nissan 240SX Coupe 1998 0.97% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 BMW 3 Series Sedan 2012 99.36% Ferrari 458 Italia Coupe 2012 0.29% Audi TT RS Coupe 2012 0.15% Honda Accord Coupe 2012 0.07% Chevrolet Corvette Convertible 2012 0.05% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 100.0% Lamborghini Aventador Coupe 2012 0.0% Lamborghini Reventon Coupe 2008 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% BMW M6 Convertible 2010 0.0% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Bentley Continental GT Coupe 2007 87.55% Ford GT Coupe 2006 6.09% Chrysler 300 SRT-8 2010 2.73% Bentley Arnage Sedan 2009 2.14% Bentley Continental Flying Spur Sedan 2007 0.61% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Convertible 2012 78.08% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.19% Lamborghini Reventon Coupe 2008 6.98% Aston Martin Virage Convertible 2012 2.23% Lamborghini Aventador Coupe 2012 1.75% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 87.27% Hyundai Tucson SUV 2012 3.36% Hyundai Veracruz SUV 2012 2.23% Nissan Juke Hatchback 2012 0.72% GMC Acadia SUV 2012 0.71% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Nissan Leaf Hatchback 2012 74.21% Jeep Patriot SUV 2012 9.45% Hyundai Genesis Sedan 2012 3.09% Ford GT Coupe 2006 2.88% Dodge Charger Sedan 2012 2.41% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.94% Toyota Camry Sedan 2012 0.05% Acura TL Sedan 2012 0.01% Audi TT Hatchback 2011 0.0% Acura TSX Sedan 2012 0.0% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Volkswagen Golf Hatchback 1991 81.57% Audi 100 Wagon 1994 8.96% Land Rover Range Rover SUV 2012 2.75% Buick Rainier SUV 2007 1.67% Volvo XC90 SUV 2007 0.88% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Plymouth Neon Coupe 1999 65.28% Lamborghini Diablo Coupe 2001 12.98% BMW 3 Series Wagon 2012 6.82% Scion xD Hatchback 2012 3.86% Ford Focus Sedan 2007 3.49% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 88.12% Bentley Arnage Sedan 2009 10.37% Rolls-Royce Phantom Sedan 2012 0.62% Jeep Patriot SUV 2012 0.38% Volkswagen Golf Hatchback 1991 0.14% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Nissan 240SX Coupe 1998 47.62% Eagle Talon Hatchback 1998 27.82% Acura TL Type-S 2008 8.58% Ferrari FF Coupe 2012 6.38% Audi V8 Sedan 1994 2.31% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Sedan 2012 64.93% BMW 3 Series Wagon 2012 14.57% Acura TL Sedan 2012 5.58% Chevrolet Impala Sedan 2007 4.05% Fisker Karma Sedan 2012 2.82% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 85.13% Plymouth Neon Coupe 1999 10.44% Audi V8 Sedan 1994 2.52% Audi 100 Sedan 1994 1.14% Nissan 240SX Coupe 1998 0.17% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 99.98% Hyundai Tucson SUV 2012 0.02% Hyundai Veloster Hatchback 2012 0.01% Hyundai Accent Sedan 2012 0.0% Scion xD Hatchback 2012 0.0% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 36.24% Suzuki SX4 Sedan 2012 23.9% Chevrolet Sonic Sedan 2012 16.8% Volvo C30 Hatchback 2012 8.04% Scion xD Hatchback 2012 3.28% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Audi S5 Convertible 2012 70.87% Audi S5 Coupe 2012 15.46% Audi S4 Sedan 2007 13.42% Audi A5 Coupe 2012 0.22% Audi S6 Sedan 2011 0.02% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 30.98% Mercedes-Benz S-Class Sedan 2012 10.43% Acura TL Type-S 2008 8.25% Chrysler Sebring Convertible 2010 5.56% Cadillac CTS-V Sedan 2012 5.23% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Spyker C8 Coupe 2009 54.67% Ferrari 458 Italia Coupe 2012 10.87% Aston Martin Virage Convertible 2012 8.31% Ferrari FF Coupe 2012 6.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.33% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Daewoo Nubira Wagon 2002 38.29% Acura ZDX Hatchback 2012 26.69% Chrysler Crossfire Convertible 2008 16.27% Chevrolet Monte Carlo Coupe 2007 10.2% Geo Metro Convertible 1993 4.72% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 55.85% Dodge Dakota Club Cab 2007 33.87% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.36% Chevrolet Silverado 2500HD Regular Cab 2012 1.09% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 62.62% Ferrari 458 Italia Convertible 2012 24.54% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.41% Chevrolet Corvette Convertible 2012 3.18% Aston Martin V8 Vantage Coupe 2012 1.81% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.81% Nissan NV Passenger Van 2012 0.92% Chevrolet Express Cargo Van 2007 0.22% Ford E-Series Wagon Van 2012 0.01% Chevrolet Express Van 2007 0.01% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 99.98% Hyundai Elantra Sedan 2007 0.01% Toyota Camry Sedan 2012 0.0% Acura RL Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 94.8% Hyundai Tucson SUV 2012 2.99% Nissan Juke Hatchback 2012 1.15% Hyundai Veracruz SUV 2012 1.04% GMC Acadia SUV 2012 0.01% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Dodge Charger SRT-8 2009 89.21% Acura TL Sedan 2012 3.17% Chrysler 300 SRT-8 2010 1.55% Plymouth Neon Coupe 1999 1.35% Honda Accord Coupe 2012 0.92% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 89.13% Chevrolet Malibu Sedan 2007 6.81% Hyundai Elantra Sedan 2007 3.77% Suzuki SX4 Hatchback 2012 0.16% Chevrolet Monte Carlo Coupe 2007 0.09% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Mercedes-Benz E-Class Sedan 2012 28.83% Audi TT RS Coupe 2012 14.75% Volkswagen Beetle Hatchback 2012 9.91% Dodge Challenger SRT8 2011 6.57% Audi TTS Coupe 2012 6.48% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Chevrolet Avalanche Crew Cab 2012 94.31% Dodge Durango SUV 2012 2.1% Chevrolet Tahoe Hybrid SUV 2012 2.05% Chevrolet TrailBlazer SS 2009 0.69% Land Rover Range Rover SUV 2012 0.61% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Audi S5 Coupe 2012 82.19% Audi TTS Coupe 2012 12.32% Rolls-Royce Ghost Sedan 2012 1.08% Buick Verano Sedan 2012 0.6% Ferrari FF Coupe 2012 0.5% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 98.84% Hyundai Azera Sedan 2012 0.63% Mercedes-Benz E-Class Sedan 2012 0.39% Cadillac SRX SUV 2012 0.04% Honda Odyssey Minivan 2007 0.03% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 99.61% Audi S4 Sedan 2007 0.26% Audi RS 4 Convertible 2008 0.06% Audi S5 Coupe 2012 0.02% Audi S4 Sedan 2012 0.02% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.83% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.04% Bentley Continental Supersports Conv. Convertible 2012 0.03% Rolls-Royce Phantom Sedan 2012 0.03% Maybach Landaulet Convertible 2012 0.01% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% BMW X3 SUV 2012 0.0% Isuzu Ascender SUV 2008 0.0% Jeep Patriot SUV 2012 0.0% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chrysler Aspen SUV 2009 60.73% Dodge Durango SUV 2007 30.38% GMC Yukon Hybrid SUV 2012 5.49% Ford F-150 Regular Cab 2007 1.63% Dodge Dakota Club Cab 2007 1.03% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Dodge Caravan Minivan 1997 54.33% Ford Freestar Minivan 2007 22.97% Chrysler Aspen SUV 2009 4.44% GMC Canyon Extended Cab 2012 2.66% Isuzu Ascender SUV 2008 2.08% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Rolls-Royce Phantom Sedan 2012 21.34% Mercedes-Benz SL-Class Coupe 2009 12.46% Bentley Continental Supersports Conv. Convertible 2012 12.21% BMW ActiveHybrid 5 Sedan 2012 8.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 7.58% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 82.31% GMC Savana Van 2012 12.18% Nissan NV Passenger Van 2012 4.17% Chevrolet Express Van 2007 1.28% Chevrolet Impala Sedan 2007 0.03% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Mitsubishi Lancer Sedan 2012 46.58% Chevrolet Monte Carlo Coupe 2007 36.98% Chevrolet Impala Sedan 2007 6.04% Aston Martin Virage Convertible 2012 2.97% Chevrolet Camaro Convertible 2012 1.79% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 Toyota Camry Sedan 2012 72.64% Chevrolet Cobalt SS 2010 14.33% Chevrolet Impala Sedan 2007 5.41% Acura Integra Type R 2001 4.71% Lamborghini Reventon Coupe 2008 0.59% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Land Rover Range Rover SUV 2012 53.47% Hyundai Tucson SUV 2012 11.8% Mazda Tribute SUV 2011 9.59% Ford Focus Sedan 2007 6.04% Hyundai Veracruz SUV 2012 5.29% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 BMW 1 Series Coupe 2012 62.41% Audi A5 Coupe 2012 11.58% Audi S4 Sedan 2012 10.25% Bentley Continental GT Coupe 2007 3.42% Audi S5 Convertible 2012 2.98% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 99.99% Ford Mustang Convertible 2007 0.0% Audi 100 Sedan 1994 0.0% Daewoo Nubira Wagon 2002 0.0% Plymouth Neon Coupe 1999 0.0% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Toyota Sequoia SUV 2012 41.85% Mitsubishi Lancer Sedan 2012 18.57% Hyundai Santa Fe SUV 2012 16.07% Acura ZDX Hatchback 2012 8.01% Hyundai Veracruz SUV 2012 5.61% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 100.0% Chevrolet Malibu Sedan 2007 0.0% Ford Freestar Minivan 2007 0.0% Chevrolet Impala Sedan 2007 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Bentley Arnage Sedan 2009 88.27% Volkswagen Golf Hatchback 1991 5.55% Bentley Mulsanne Sedan 2011 0.99% Bentley Continental Flying Spur Sedan 2007 0.65% Jeep Grand Cherokee SUV 2012 0.52% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Leaf Hatchback 2012 98.15% Nissan Juke Hatchback 2012 1.61% Porsche Panamera Sedan 2012 0.09% Chevrolet Corvette ZR1 2012 0.05% smart fortwo Convertible 2012 0.04% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Audi S4 Sedan 2007 53.88% Mitsubishi Lancer Sedan 2012 22.47% Audi S6 Sedan 2011 9.41% Audi TT Hatchback 2011 4.58% BMW M5 Sedan 2010 3.37% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 65.18% BMW Z4 Convertible 2012 20.37% BMW 1 Series Convertible 2012 7.41% Chevrolet Camaro Convertible 2012 2.78% Bugatti Veyron 16.4 Convertible 2009 2.59% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 98.43% Chevrolet Impala Sedan 2007 0.74% Mitsubishi Lancer Sedan 2012 0.2% Daewoo Nubira Wagon 2002 0.17% Suzuki SX4 Hatchback 2012 0.16% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Acura TL Sedan 2012 47.77% Acura TSX Sedan 2012 39.27% Acura RL Sedan 2012 12.23% Acura ZDX Hatchback 2012 0.73% Suzuki SX4 Sedan 2012 0.0% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 81.69% Chevrolet Silverado 2500HD Regular Cab 2012 15.36% Chevrolet Silverado 1500 Extended Cab 2012 2.32% GMC Canyon Extended Cab 2012 0.5% Ford F-150 Regular Cab 2012 0.09% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 42.66% Chevrolet Malibu Sedan 2007 28.62% Toyota Camry Sedan 2012 21.77% Suzuki SX4 Sedan 2012 1.96% Hyundai Elantra Sedan 2007 1.72% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Aston Martin Virage Coupe 2012 60.58% Dodge Charger SRT-8 2009 29.51% Chevrolet HHR SS 2010 5.73% Ford F-150 Regular Cab 2007 1.66% Dodge Magnum Wagon 2008 1.04% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 25.15% Dodge Caliber Wagon 2012 20.39% Chevrolet Malibu Sedan 2007 14.16% Mercedes-Benz C-Class Sedan 2012 6.82% Lincoln Town Car Sedan 2011 4.56% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 96.27% Eagle Talon Hatchback 1998 2.52% BMW M6 Convertible 2010 0.97% BMW 6 Series Convertible 2007 0.09% Audi R8 Coupe 2012 0.07% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Audi R8 Coupe 2012 61.83% Chevrolet Camaro Convertible 2012 14.74% BMW Z4 Convertible 2012 7.91% Spyker C8 Convertible 2009 3.95% Bugatti Veyron 16.4 Coupe 2009 3.22% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Nissan NV Passenger Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% Volvo XC90 SUV 2007 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Buick Regal GS 2012 88.7% Bentley Continental GT Coupe 2007 2.47% Volvo C30 Hatchback 2012 1.56% GMC Terrain SUV 2012 1.27% Dodge Magnum Wagon 2008 1.12% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Jeep Grand Cherokee SUV 2012 74.16% Jeep Liberty SUV 2012 9.56% Dodge Durango SUV 2007 2.66% Toyota Sequoia SUV 2012 2.56% BMW X3 SUV 2012 2.05% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 99.98% Chevrolet Traverse SUV 2012 0.01% Hyundai Veracruz SUV 2012 0.0% Ford Fiesta Sedan 2012 0.0% Volkswagen Golf Hatchback 2012 0.0% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Aston Martin V8 Vantage Convertible 2012 15.58% Jaguar XK XKR 2012 11.51% Acura Integra Type R 2001 11.3% Chevrolet Cobalt SS 2010 11.25% Audi S4 Sedan 2012 9.81% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 BMW 1 Series Coupe 2012 94.47% BMW M5 Sedan 2010 3.9% BMW X6 SUV 2012 1.19% BMW M3 Coupe 2012 0.19% BMW 1 Series Convertible 2012 0.09% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Volvo 240 Sedan 1993 70.18% Jeep Patriot SUV 2012 16.85% Buick Enclave SUV 2012 9.51% Hyundai Elantra Touring Hatchback 2012 1.12% Ford GT Coupe 2006 0.26% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 BMW 6 Series Convertible 2007 43.43% Infiniti G Coupe IPL 2012 16.04% Aston Martin Virage Convertible 2012 15.33% Chevrolet Camaro Convertible 2012 12.85% BMW 1 Series Convertible 2012 7.33% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Jeep Patriot SUV 2012 42.58% Dodge Durango SUV 2007 12.44% Dodge Ram Pickup 3500 Quad Cab 2009 7.73% Jeep Compass SUV 2012 5.92% Dodge Dakota Club Cab 2007 5.22% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Volvo XC90 SUV 2007 42.95% BMW 3 Series Sedan 2012 29.85% Dodge Ram Pickup 3500 Quad Cab 2009 9.67% Hyundai Veracruz SUV 2012 3.75% Audi 100 Wagon 1994 2.75% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 78.34% Mercedes-Benz S-Class Sedan 2012 16.95% Ford Focus Sedan 2007 2.81% Audi S6 Sedan 2011 0.88% Suzuki Kizashi Sedan 2012 0.3% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Audi S6 Sedan 2011 26.08% Land Rover Range Rover SUV 2012 6.34% Bentley Mulsanne Sedan 2011 5.31% Dodge Charger SRT-8 2009 4.6% Acura TL Type-S 2008 4.11% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Buick Verano Sedan 2012 63.86% BMW 1 Series Coupe 2012 19.67% Suzuki SX4 Sedan 2012 7.84% Suzuki Kizashi Sedan 2012 4.57% BMW X3 SUV 2012 1.42% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Plymouth Neon Coupe 1999 17.6% BMW M6 Convertible 2010 11.02% Jeep Liberty SUV 2012 7.69% Lamborghini Aventador Coupe 2012 4.88% FIAT 500 Abarth 2012 4.29% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 76.47% Chevrolet Camaro Convertible 2012 19.42% Eagle Talon Hatchback 1998 3.27% Audi TT Hatchback 2011 0.25% Chevrolet Corvette Convertible 2012 0.22% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 98.38% Mercedes-Benz Sprinter Van 2012 1.62% Ram C/V Cargo Van Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% Nissan NV Passenger Van 2012 0.0% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 92.93% Mercedes-Benz 300-Class Convertible 1993 2.45% Volvo C30 Hatchback 2012 0.92% Buick Regal GS 2012 0.66% Chrysler PT Cruiser Convertible 2008 0.62% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 75.24% Acura TL Sedan 2012 24.76% Acura ZDX Hatchback 2012 0.0% Acura RL Sedan 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Jeep Liberty SUV 2012 55.58% Hyundai Santa Fe SUV 2012 13.89% Toyota Sequoia SUV 2012 5.8% Chevrolet HHR SS 2010 4.11% Suzuki SX4 Hatchback 2012 3.87% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Mercedes-Benz C-Class Sedan 2012 66.7% Hyundai Genesis Sedan 2012 16.59% Mercedes-Benz E-Class Sedan 2012 10.15% Mercedes-Benz SL-Class Coupe 2009 5.67% Mercedes-Benz S-Class Sedan 2012 0.19% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Audi S6 Sedan 2011 81.37% Bentley Continental Flying Spur Sedan 2007 12.29% Buick Verano Sedan 2012 0.88% Toyota Camry Sedan 2012 0.72% BMW ActiveHybrid 5 Sedan 2012 0.51% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 56.73% Chevrolet Silverado 2500HD Regular Cab 2012 19.95% Chevrolet Avalanche Crew Cab 2012 5.36% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.42% Dodge Ram Pickup 3500 Quad Cab 2009 2.74% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Dodge Dakota Club Cab 2007 0.0% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% BMW X3 SUV 2012 0.0% Mazda Tribute SUV 2011 0.0% Chrysler Aspen SUV 2009 0.0% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 99.99% Chevrolet Traverse SUV 2012 0.01% Hyundai Veracruz SUV 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Cadillac SRX SUV 2012 0.0% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 Dodge Journey SUV 2012 40.05% Suzuki SX4 Hatchback 2012 11.5% Suzuki SX4 Sedan 2012 11.11% Hyundai Accent Sedan 2012 6.5% Chevrolet Sonic Sedan 2012 2.95% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 52.4% Lamborghini Aventador Coupe 2012 23.72% Aston Martin V8 Vantage Coupe 2012 6.58% Audi R8 Coupe 2012 4.09% Jaguar XK XKR 2012 3.06% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 99.86% Hyundai Accent Sedan 2012 0.1% Hyundai Sonata Hybrid Sedan 2012 0.04% Hyundai Elantra Touring Hatchback 2012 0.0% Hyundai Tucson SUV 2012 0.0% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.97% Toyota 4Runner SUV 2012 0.01% Volvo XC90 SUV 2007 0.01% Suzuki SX4 Hatchback 2012 0.0% Scion xD Hatchback 2012 0.0% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 84.18% Chevrolet Silverado 2500HD Regular Cab 2012 10.97% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.22% Dodge Dakota Club Cab 2007 1.67% Chevrolet Silverado 1500 Extended Cab 2012 0.82% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 100.0% Suzuki SX4 Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% Audi S4 Sedan 2007 0.0% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 99.74% BMW 1 Series Convertible 2012 0.06% Chrysler PT Cruiser Convertible 2008 0.05% Audi 100 Wagon 1994 0.04% BMW 3 Series Sedan 2012 0.04% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 96.31% Mercedes-Benz SL-Class Coupe 2009 3.22% Chevrolet Camaro Convertible 2012 0.28% Cadillac SRX SUV 2012 0.07% MINI Cooper Roadster Convertible 2012 0.05% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 90.4% Lincoln Town Car Sedan 2011 5.18% Chevrolet Monte Carlo Coupe 2007 2.57% Dodge Magnum Wagon 2008 0.47% Buick Enclave SUV 2012 0.43% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 93.07% Chrysler Crossfire Convertible 2008 2.38% Hyundai Azera Sedan 2012 1.97% Hyundai Sonata Sedan 2012 1.34% Hyundai Genesis Sedan 2012 1.02% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 96.83% Infiniti G Coupe IPL 2012 0.93% BMW M3 Coupe 2012 0.72% Volvo C30 Hatchback 2012 0.32% Mitsubishi Lancer Sedan 2012 0.29% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 49.31% BMW 1 Series Convertible 2012 46.25% Jaguar XK XKR 2012 2.81% BMW M6 Convertible 2010 0.48% Chevrolet Cobalt SS 2010 0.44% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 59.81% GMC Canyon Extended Cab 2012 26.46% Dodge Ram Pickup 3500 Quad Cab 2009 5.29% Ford F-150 Regular Cab 2007 1.33% Toyota 4Runner SUV 2012 0.99% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 95.69% Spyker C8 Convertible 2009 1.22% Bentley Continental GT Coupe 2007 0.36% Ford GT Coupe 2006 0.36% Mitsubishi Lancer Sedan 2012 0.35% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 86.48% Mercedes-Benz C-Class Sedan 2012 5.7% Mercedes-Benz S-Class Sedan 2012 2.72% Chrysler Crossfire Convertible 2008 1.49% Volkswagen Golf Hatchback 1991 1.45% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 100.0% Hyundai Tucson SUV 2012 0.0% Scion xD Hatchback 2012 0.0% Toyota Sequoia SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 Buick Regal GS 2012 23.5% Suzuki Kizashi Sedan 2012 8.42% BMW Z4 Convertible 2012 8.32% Ferrari California Convertible 2012 7.19% Cadillac CTS-V Sedan 2012 6.74% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 99.7% Honda Odyssey Minivan 2007 0.11% Hyundai Veracruz SUV 2012 0.1% Hyundai Elantra Sedan 2007 0.07% Honda Accord Sedan 2012 0.01% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.97% Lamborghini Aventador Coupe 2012 0.03% Audi R8 Coupe 2012 0.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Chevrolet Corvette Convertible 2012 44.1% Audi TT Hatchback 2011 16.32% BMW M6 Convertible 2010 15.12% Audi RS 4 Convertible 2008 10.64% Audi S5 Convertible 2012 5.11% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 98.13% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.7% Chevrolet Silverado 2500HD Regular Cab 2012 0.55% Ford Edge SUV 2012 0.19% Ford Ranger SuperCab 2011 0.08% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chevrolet Corvette ZR1 2012 88.63% Chrysler 300 SRT-8 2010 7.62% Fisker Karma Sedan 2012 2.1% Aston Martin V8 Vantage Coupe 2012 0.5% Porsche Panamera Sedan 2012 0.37% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.65% BMW Z4 Convertible 2012 0.19% Mitsubishi Lancer Sedan 2012 0.04% Daewoo Nubira Wagon 2002 0.02% Chevrolet Impala Sedan 2007 0.02% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% GMC Acadia SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 100.0% Audi 100 Sedan 1994 0.0% Audi 100 Wagon 1994 0.0% Volkswagen Golf Hatchback 1991 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Diablo Coupe 2001 96.34% Ferrari California Convertible 2012 3.35% Dodge Charger Sedan 2012 0.18% McLaren MP4-12C Coupe 2012 0.09% Acura Integra Type R 2001 0.01% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 87.26% Acura TSX Sedan 2012 4.54% Audi TT RS Coupe 2012 1.97% BMW M3 Coupe 2012 1.57% BMW 6 Series Convertible 2007 0.77% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 97.6% Scion xD Hatchback 2012 2.26% Chevrolet Traverse SUV 2012 0.13% Hyundai Sonata Hybrid Sedan 2012 0.01% Hyundai Veracruz SUV 2012 0.0% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 59.8% Bentley Continental GT Coupe 2007 12.05% Bentley Continental GT Coupe 2012 7.35% BMW M5 Sedan 2010 4.72% Infiniti G Coupe IPL 2012 4.09% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Regular Cab 2012 41.53% GMC Canyon Extended Cab 2012 30.41% Ford F-150 Regular Cab 2007 8.75% Chevrolet Silverado 2500HD Regular Cab 2012 7.09% Dodge Ram Pickup 3500 Quad Cab 2009 4.11% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 99.65% Ford Focus Sedan 2007 0.23% Plymouth Neon Coupe 1999 0.09% Volkswagen Golf Hatchback 2012 0.01% Buick Enclave SUV 2012 0.01% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 99.4% GMC Savana Van 2012 0.57% Chevrolet Express Van 2007 0.03% Nissan NV Passenger Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 84.24% Audi 100 Wagon 1994 10.54% Volkswagen Golf Hatchback 1991 2.23% Audi V8 Sedan 1994 1.47% BMW M6 Convertible 2010 0.7% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Chrysler Sebring Convertible 2010 67.16% Buick Enclave SUV 2012 22.23% Suzuki Aerio Sedan 2007 2.49% Dodge Caliber Wagon 2012 1.45% Ford Focus Sedan 2007 0.95% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.79% Ford Focus Sedan 2007 0.18% Daewoo Nubira Wagon 2002 0.01% Acura TL Sedan 2012 0.01% Suzuki Kizashi Sedan 2012 0.01% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 100.0% Cadillac CTS-V Sedan 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 93.9% McLaren MP4-12C Coupe 2012 3.37% Aston Martin V8 Vantage Coupe 2012 0.89% HUMMER H2 SUT Crew Cab 2009 0.8% Spyker C8 Coupe 2009 0.61% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Eagle Talon Hatchback 1998 95.05% Audi R8 Coupe 2012 4.05% Nissan 240SX Coupe 1998 0.4% Aston Martin V8 Vantage Convertible 2012 0.25% Aston Martin V8 Vantage Coupe 2012 0.1% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 AM General Hummer SUV 2000 46.25% Lamborghini Diablo Coupe 2001 10.67% Chevrolet Cobalt SS 2010 5.91% Nissan NV Passenger Van 2012 5.19% Chevrolet Sonic Sedan 2012 3.83% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 98.54% Bentley Arnage Sedan 2009 0.91% Jeep Grand Cherokee SUV 2012 0.33% GMC Yukon Hybrid SUV 2012 0.1% Jeep Compass SUV 2012 0.07% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Acura RL Sedan 2012 15.13% Dodge Magnum Wagon 2008 13.26% Mercedes-Benz 300-Class Convertible 1993 12.15% Dodge Durango SUV 2007 9.73% Dodge Caliber Wagon 2012 6.15% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 97.63% Chevrolet Express Van 2007 1.47% GMC Savana Van 2012 0.9% Volkswagen Golf Hatchback 1991 0.0% Ford Ranger SuperCab 2011 0.0% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 McLaren MP4-12C Coupe 2012 94.26% Lamborghini Diablo Coupe 2001 5.2% Acura Integra Type R 2001 0.35% Bugatti Veyron 16.4 Coupe 2009 0.08% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.05% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Hyundai Elantra Sedan 2007 20.2% Mitsubishi Lancer Sedan 2012 19.86% Chevrolet Cobalt SS 2010 18.99% BMW 1 Series Coupe 2012 7.16% BMW X6 SUV 2012 6.21% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Mercedes-Benz C-Class Sedan 2012 18.79% Dodge Durango SUV 2012 10.67% Suzuki Aerio Sedan 2007 6.99% Volkswagen Golf Hatchback 2012 6.67% Dodge Journey SUV 2012 6.18% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Nissan Leaf Hatchback 2012 38.39% Hyundai Tucson SUV 2012 36.28% Chevrolet Traverse SUV 2012 10.87% Nissan Juke Hatchback 2012 6.4% FIAT 500 Convertible 2012 2.87% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 99.17% Acura TSX Sedan 2012 0.68% Hyundai Veloster Hatchback 2012 0.03% Acura RL Sedan 2012 0.02% Ferrari FF Coupe 2012 0.02% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Jeep Grand Cherokee SUV 2012 41.69% Dodge Caliber Wagon 2007 23.3% Dodge Caliber Wagon 2012 15.8% BMW 1 Series Convertible 2012 6.08% Chrysler Crossfire Convertible 2008 5.85% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 BMW M6 Convertible 2010 27.46% Audi S6 Sedan 2011 19.35% Audi S5 Convertible 2012 10.05% Audi S4 Sedan 2012 7.92% BMW M5 Sedan 2010 5.59% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 31.51% Ferrari FF Coupe 2012 29.64% Ferrari California Convertible 2012 15.32% Aston Martin Virage Coupe 2012 7.13% Chevrolet Corvette ZR1 2012 2.66% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Acura TSX Sedan 2012 97.81% Acura TL Sedan 2012 0.93% Chevrolet Malibu Sedan 2007 0.22% Chevrolet Cobalt SS 2010 0.15% Acura RL Sedan 2012 0.13% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 92.12% Ford Mustang Convertible 2007 2.92% Chevrolet Camaro Convertible 2012 1.52% Lamborghini Diablo Coupe 2001 1.22% BMW Z4 Convertible 2012 1.21% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Hyundai Elantra Sedan 2007 37.83% Chevrolet Impala Sedan 2007 33.55% Honda Accord Sedan 2012 8.14% Ford Focus Sedan 2007 5.63% Chrysler Sebring Convertible 2010 3.99% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 92.86% Chevrolet Express Cargo Van 2007 7.12% GMC Savana Van 2012 0.02% Dodge Sprinter Cargo Van 2009 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Ford Freestar Minivan 2007 93.01% Chevrolet TrailBlazer SS 2009 4.92% Hyundai Elantra Sedan 2007 1.96% BMW X6 SUV 2012 0.02% Buick Rainier SUV 2007 0.02% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 99.69% Infiniti G Coupe IPL 2012 0.1% Chevrolet Camaro Convertible 2012 0.05% Aston Martin V8 Vantage Convertible 2012 0.05% Audi RS 4 Convertible 2008 0.02% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 72.62% Chevrolet Corvette Convertible 2012 6.81% Acura TL Type-S 2008 5.16% Fisker Karma Sedan 2012 3.36% Chevrolet Corvette ZR1 2012 1.59% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 66.67% Audi S5 Convertible 2012 8.75% Audi TTS Coupe 2012 5.43% Audi S4 Sedan 2007 5.31% Spyker C8 Convertible 2009 3.08% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 97.88% Lamborghini Diablo Coupe 2001 2.07% Dodge Charger Sedan 2012 0.03% Chevrolet Cobalt SS 2010 0.02% Chevrolet Corvette Convertible 2012 0.0% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Jeep Patriot SUV 2012 43.12% Rolls-Royce Phantom Sedan 2012 37.49% GMC Yukon Hybrid SUV 2012 9.48% Land Rover Range Rover SUV 2012 5.09% Dodge Charger Sedan 2012 0.78% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi A5 Coupe 2012 90.97% Audi S4 Sedan 2007 4.76% Audi S4 Sedan 2012 2.79% Audi RS 4 Convertible 2008 0.89% Audi S6 Sedan 2011 0.2% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Audi RS 4 Convertible 2008 94.47% BMW Z4 Convertible 2012 2.68% Lamborghini Diablo Coupe 2001 0.82% McLaren MP4-12C Coupe 2012 0.47% Chrysler Crossfire Convertible 2008 0.3% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Jeep Liberty SUV 2012 61.33% Jeep Compass SUV 2012 22.97% Jeep Grand Cherokee SUV 2012 3.78% Dodge Journey SUV 2012 1.48% Jeep Wrangler SUV 2012 1.42% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Sedan 2007 51.64% Hyundai Elantra Sedan 2007 33.92% Chevrolet Cobalt SS 2010 4.41% Chrysler Sebring Convertible 2010 1.45% Honda Odyssey Minivan 2012 1.3% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 99.0% BMW 3 Series Sedan 2012 0.93% Ferrari 458 Italia Convertible 2012 0.02% Dodge Charger SRT-8 2009 0.01% Chevrolet Sonic Sedan 2012 0.01% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 100.0% Daewoo Nubira Wagon 2002 0.0% Volkswagen Golf Hatchback 1991 0.0% Plymouth Neon Coupe 1999 0.0% Dodge Caravan Minivan 1997 0.0% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 36.09% Chevrolet Silverado 1500 Extended Cab 2012 15.02% Dodge Dakota Crew Cab 2010 13.38% Isuzu Ascender SUV 2008 12.26% HUMMER H3T Crew Cab 2010 10.91% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Canyon Extended Cab 2012 71.81% Jeep Wrangler SUV 2012 17.38% HUMMER H3T Crew Cab 2010 5.59% HUMMER H2 SUT Crew Cab 2009 2.37% AM General Hummer SUV 2000 1.52% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 70.24% Jeep Patriot SUV 2012 29.75% Jeep Wrangler SUV 2012 0.01% Jeep Grand Cherokee SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Audi A5 Coupe 2012 24.9% Ferrari FF Coupe 2012 22.32% BMW ActiveHybrid 5 Sedan 2012 21.93% Mercedes-Benz E-Class Sedan 2012 4.95% BMW 3 Series Sedan 2012 3.93% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Mercedes-Benz 300-Class Convertible 1993 37.36% Chevrolet Monte Carlo Coupe 2007 32.84% Ford F-150 Regular Cab 2007 8.03% Nissan 240SX Coupe 1998 6.07% BMW X6 SUV 2012 3.65% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Acura TL Type-S 2008 31.5% Audi 100 Sedan 1994 20.66% Acura ZDX Hatchback 2012 20.48% Nissan 240SX Coupe 1998 15.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.31% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 54.63% Chevrolet Corvette ZR1 2012 44.9% Chevrolet Corvette Convertible 2012 0.3% Jaguar XK XKR 2012 0.05% Ferrari California Convertible 2012 0.05% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% Jeep Wrangler SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Jeep Patriot SUV 2012 0.0% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 65.43% Chevrolet TrailBlazer SS 2009 25.44% Dodge Caliber Wagon 2012 1.98% Dodge Journey SUV 2012 1.55% Chrysler Sebring Convertible 2010 1.27% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Chrysler 300 SRT-8 2010 16.14% Ford F-450 Super Duty Crew Cab 2012 14.69% Rolls-Royce Phantom Sedan 2012 14.22% Ford GT Coupe 2006 10.11% Ford Edge SUV 2012 9.18% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 94.13% Acura RL Sedan 2012 3.67% Hyundai Azera Sedan 2012 0.94% BMW ActiveHybrid 5 Sedan 2012 0.82% Honda Odyssey Minivan 2012 0.15% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 74.68% Plymouth Neon Coupe 1999 20.25% Ford Focus Sedan 2007 4.28% Chevrolet Impala Sedan 2007 0.32% Nissan 240SX Coupe 1998 0.19% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Rolls-Royce Ghost Sedan 2012 52.37% Mercedes-Benz 300-Class Convertible 1993 11.9% Chrysler 300 SRT-8 2010 9.38% Rolls-Royce Phantom Sedan 2012 6.42% Bugatti Veyron 16.4 Coupe 2009 2.82% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Arnage Sedan 2009 67.91% Bentley Continental Supersports Conv. Convertible 2012 18.63% Bentley Continental GT Coupe 2007 1.78% BMW ActiveHybrid 5 Sedan 2012 1.43% Audi V8 Sedan 1994 1.41% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 81.25% Cadillac SRX SUV 2012 7.92% Hyundai Genesis Sedan 2012 2.35% Mercedes-Benz E-Class Sedan 2012 2.14% Suzuki SX4 Hatchback 2012 2.08% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Ford Edge SUV 2012 57.7% Ford Mustang Convertible 2007 10.47% Bentley Continental Flying Spur Sedan 2007 6.67% Bentley Arnage Sedan 2009 3.22% Chevrolet Avalanche Crew Cab 2012 3.08% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 98.7% Audi 100 Sedan 1994 0.36% Lincoln Town Car Sedan 2011 0.25% Plymouth Neon Coupe 1999 0.12% Ford E-Series Wagon Van 2012 0.08% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Bugatti Veyron 16.4 Coupe 2009 67.11% McLaren MP4-12C Coupe 2012 18.33% Aston Martin Virage Coupe 2012 8.83% Audi R8 Coupe 2012 1.28% Audi TTS Coupe 2012 1.22% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Nissan 240SX Coupe 1998 82.8% BMW 3 Series Sedan 2012 7.04% Eagle Talon Hatchback 1998 4.51% Chevrolet Monte Carlo Coupe 2007 2.12% Plymouth Neon Coupe 1999 0.8% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 53.99% Acura ZDX Hatchback 2012 14.16% Hyundai Tucson SUV 2012 5.0% Hyundai Veracruz SUV 2012 4.75% Acura TL Sedan 2012 2.7% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 27.69% Infiniti G Coupe IPL 2012 23.64% Acura TL Type-S 2008 4.08% Porsche Panamera Sedan 2012 3.3% BMW 6 Series Convertible 2007 2.65% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 100.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Lamborghini Reventon Coupe 2008 0.0% Mitsubishi Lancer Sedan 2012 0.0% Bentley Continental GT Coupe 2012 0.0% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 65.26% Jaguar XK XKR 2012 4.28% Infiniti G Coupe IPL 2012 4.26% MINI Cooper Roadster Convertible 2012 3.83% Ferrari FF Coupe 2012 2.7% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.47% Ford F-150 Regular Cab 2012 0.53% Ford F-450 Super Duty Crew Cab 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.41% Chevrolet Express Van 2007 1.59% Chevrolet Express Cargo Van 2007 0.0% Volvo C30 Hatchback 2012 0.0% Jeep Liberty SUV 2012 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Land Rover LR2 SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 100.0% Acura ZDX Hatchback 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Dodge Durango SUV 2012 0.0% BMW X3 SUV 2012 0.0% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.57% Mercedes-Benz C-Class Sedan 2012 0.19% Audi R8 Coupe 2012 0.07% BMW 3 Series Sedan 2012 0.04% Mercedes-Benz SL-Class Coupe 2009 0.03% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.99% Buick Enclave SUV 2012 0.0% Hyundai Tucson SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 40.01% Hyundai Azera Sedan 2012 12.54% Mercedes-Benz E-Class Sedan 2012 11.48% Chevrolet Malibu Hybrid Sedan 2010 6.59% Bentley Continental GT Coupe 2007 3.47% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 97.17% Dodge Sprinter Cargo Van 2009 0.5% Acura TL Type-S 2008 0.27% Volkswagen Golf Hatchback 1991 0.26% Ford Mustang Convertible 2007 0.24% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Dodge Durango SUV 2007 57.58% Chevrolet Impala Sedan 2007 25.85% Ford Mustang Convertible 2007 4.11% Ford F-150 Regular Cab 2007 2.18% Chevrolet Avalanche Crew Cab 2012 1.84% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 100.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Audi TT RS Coupe 2012 0.0% Tesla Model S Sedan 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 79.49% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.61% Chevrolet Corvette Convertible 2012 7.44% AM General Hummer SUV 2000 1.81% Acura Integra Type R 2001 0.29% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 85.46% Chrysler PT Cruiser Convertible 2008 5.23% Bentley Continental Supersports Conv. Convertible 2012 5.05% Audi 100 Sedan 1994 1.45% Mercedes-Benz 300-Class Convertible 1993 1.21% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Jeep Liberty SUV 2012 86.87% Maybach Landaulet Convertible 2012 2.26% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.94% GMC Savana Van 2012 1.88% Dodge Sprinter Cargo Van 2009 1.82% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 97.05% Audi S4 Sedan 2007 1.36% BMW 1 Series Convertible 2012 0.43% BMW ActiveHybrid 5 Sedan 2012 0.37% Chrysler Sebring Convertible 2010 0.35% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 Buick Enclave SUV 2012 47.46% Hyundai Tucson SUV 2012 11.37% Chevrolet Traverse SUV 2012 10.43% GMC Terrain SUV 2012 3.02% Bentley Mulsanne Sedan 2011 2.36% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Yukon Hybrid SUV 2012 99.44% Cadillac Escalade EXT Crew Cab 2007 0.5% Cadillac SRX SUV 2012 0.02% Chevrolet Avalanche Crew Cab 2012 0.02% Chevrolet Tahoe Hybrid SUV 2012 0.01% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.22% Dodge Dakota Club Cab 2007 0.11% Ford F-150 Regular Cab 2007 0.1% Ford F-150 Regular Cab 2012 0.09% Dodge Ram Pickup 3500 Crew Cab 2010 0.08% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 97.59% Hyundai Elantra Sedan 2007 0.83% Suzuki SX4 Hatchback 2012 0.52% Dodge Durango SUV 2012 0.33% Volvo C30 Hatchback 2012 0.16% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 99.93% HUMMER H2 SUT Crew Cab 2009 0.07% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% AM General Hummer SUV 2000 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Hyundai Veloster Hatchback 2012 49.74% Spyker C8 Coupe 2009 9.61% Buick Regal GS 2012 9.14% Ford Edge SUV 2012 6.79% Buick Verano Sedan 2012 4.44% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 93.1% Infiniti G Coupe IPL 2012 6.67% Spyker C8 Convertible 2009 0.13% Audi RS 4 Convertible 2008 0.02% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 82.78% Chevrolet Camaro Convertible 2012 5.47% BMW M5 Sedan 2010 4.59% BMW 6 Series Convertible 2007 3.16% Chrysler Crossfire Convertible 2008 1.25% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 52.49% Chrysler Town and Country Minivan 2012 27.07% Ram C/V Cargo Van Minivan 2012 11.88% Suzuki Aerio Sedan 2007 8.24% Chevrolet Malibu Sedan 2007 0.14% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 88.91% Lamborghini Diablo Coupe 2001 5.46% Ford Fiesta Sedan 2012 2.18% Audi S4 Sedan 2012 0.82% McLaren MP4-12C Coupe 2012 0.74% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 63.63% Aston Martin V8 Vantage Convertible 2012 34.28% Chevrolet Camaro Convertible 2012 0.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.53% Bentley Continental Supersports Conv. Convertible 2012 0.32% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 59.83% Chevrolet Sonic Sedan 2012 9.79% smart fortwo Convertible 2012 8.73% Mitsubishi Lancer Sedan 2012 4.54% Ford GT Coupe 2006 4.26% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 91.84% BMW Z4 Convertible 2012 1.93% Jaguar XK XKR 2012 1.34% Ferrari 458 Italia Coupe 2012 1.08% Ferrari 458 Italia Convertible 2012 0.75% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Rolls-Royce Phantom Sedan 2012 85.28% Bentley Mulsanne Sedan 2011 9.6% BMW ActiveHybrid 5 Sedan 2012 4.99% Mercedes-Benz S-Class Sedan 2012 0.06% Bentley Arnage Sedan 2009 0.03% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.39% Hyundai Elantra Touring Hatchback 2012 0.3% FIAT 500 Abarth 2012 0.11% Volvo C30 Hatchback 2012 0.03% Ford Edge SUV 2012 0.03% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% Jeep Wrangler SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Lamborghini Diablo Coupe 2001 0.0% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 97.89% Chevrolet Impala Sedan 2007 1.82% Chevrolet Monte Carlo Coupe 2007 0.26% Lincoln Town Car Sedan 2011 0.01% Chevrolet Avalanche Crew Cab 2012 0.01% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 99.76% Buick Regal GS 2012 0.24% BMW M3 Coupe 2012 0.0% Audi TT RS Coupe 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Porsche Panamera Sedan 2012 99.85% Chevrolet Corvette ZR1 2012 0.04% Audi S5 Convertible 2012 0.03% Acura RL Sedan 2012 0.02% Jaguar XK XKR 2012 0.02% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 67.65% Mercedes-Benz E-Class Sedan 2012 30.42% Mercedes-Benz C-Class Sedan 2012 1.42% Chrysler Crossfire Convertible 2008 0.5% Hyundai Genesis Sedan 2012 0.01% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 100.0% Toyota Corolla Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% Honda Odyssey Minivan 2007 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 GMC Terrain SUV 2012 79.74% Ford Edge SUV 2012 19.27% Mazda Tribute SUV 2011 0.65% Land Rover LR2 SUV 2012 0.2% Toyota 4Runner SUV 2012 0.13% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 Suzuki Kizashi Sedan 2012 47.95% BMW 6 Series Convertible 2007 34.97% Chevrolet Sonic Sedan 2012 2.12% Audi RS 4 Convertible 2008 1.83% Mercedes-Benz 300-Class Convertible 1993 1.71% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 45.5% Plymouth Neon Coupe 1999 21.68% Toyota Corolla Sedan 2012 15.37% Hyundai Elantra Sedan 2007 10.12% Ford Focus Sedan 2007 4.57% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 HUMMER H3T Crew Cab 2010 97.44% Jeep Wrangler SUV 2012 1.33% GMC Savana Van 2012 0.21% HUMMER H2 SUT Crew Cab 2009 0.18% Dodge Ram Pickup 3500 Quad Cab 2009 0.17% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Acura Integra Type R 2001 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Chevrolet Corvette ZR1 2012 0.0% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 59.27% Chrysler 300 SRT-8 2010 16.22% Chevrolet Camaro Convertible 2012 7.99% Buick Verano Sedan 2012 5.31% Ferrari FF Coupe 2012 4.4% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.91% GMC Yukon Hybrid SUV 2012 0.09% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 32.71% Chevrolet Camaro Convertible 2012 26.56% Porsche Panamera Sedan 2012 23.79% Fisker Karma Sedan 2012 5.86% Aston Martin Virage Convertible 2012 4.39% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 99.98% Ford Edge SUV 2012 0.01% GMC Terrain SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% Land Rover Range Rover SUV 2012 0.0% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 Jeep Compass SUV 2012 32.89% Acura ZDX Hatchback 2012 10.54% Toyota 4Runner SUV 2012 8.75% BMW X6 SUV 2012 5.36% HUMMER H3T Crew Cab 2010 4.92% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Suzuki SX4 Sedan 2012 46.6% Scion xD Hatchback 2012 12.76% Dodge Caliber Wagon 2012 8.32% Dodge Magnum Wagon 2008 8.05% Chevrolet Malibu Sedan 2007 5.57% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Audi RS 4 Convertible 2008 9.71% Mercedes-Benz C-Class Sedan 2012 8.07% Audi S5 Convertible 2012 7.2% Porsche Panamera Sedan 2012 6.55% Chrysler 300 SRT-8 2010 5.74% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 46.75% Chevrolet Silverado 1500 Regular Cab 2012 28.9% Chevrolet Silverado 1500 Extended Cab 2012 6.68% Chrysler Aspen SUV 2009 3.29% Chevrolet Avalanche Crew Cab 2012 2.78% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 50.3% Nissan 240SX Coupe 1998 47.3% Hyundai Elantra Touring Hatchback 2012 1.54% Eagle Talon Hatchback 1998 0.23% Audi V8 Sedan 1994 0.17% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Jeep Grand Cherokee SUV 2012 50.28% HUMMER H2 SUT Crew Cab 2009 16.8% Jeep Compass SUV 2012 14.63% Nissan Leaf Hatchback 2012 6.3% Nissan Juke Hatchback 2012 4.31% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Spyker C8 Coupe 2009 43.32% Bentley Continental Supersports Conv. Convertible 2012 38.15% Jaguar XK XKR 2012 4.58% Chevrolet Corvette ZR1 2012 3.44% Chevrolet Corvette Convertible 2012 2.4% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 49.4% BMW 6 Series Convertible 2007 24.92% Dodge Challenger SRT8 2011 7.36% BMW M6 Convertible 2010 4.57% Bentley Continental Supersports Conv. Convertible 2012 3.35% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 BMW M5 Sedan 2010 63.06% Audi 100 Wagon 1994 32.7% Lincoln Town Car Sedan 2011 1.73% Nissan 240SX Coupe 1998 0.81% Mercedes-Benz 300-Class Convertible 1993 0.59% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 99.99% Ford Freestar Minivan 2007 0.01% Chrysler Town and Country Minivan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% Dodge Caravan Minivan 1997 0.0% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Acura RL Sedan 2012 41.01% Chevrolet Impala Sedan 2007 15.4% Honda Accord Coupe 2012 11.13% Audi TTS Coupe 2012 7.56% BMW 3 Series Wagon 2012 6.18% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 97.89% Ford Fiesta Sedan 2012 2.11% Hyundai Accent Sedan 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 35.0% Acura TSX Sedan 2012 31.74% Acura TL Sedan 2012 28.61% Audi S4 Sedan 2007 1.34% Jaguar XK XKR 2012 1.24% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 57.23% Volvo 240 Sedan 1993 14.44% Daewoo Nubira Wagon 2002 14.12% GMC Canyon Extended Cab 2012 5.25% Ram C/V Cargo Van Minivan 2012 2.86% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 88.37% Acura Integra Type R 2001 5.39% Geo Metro Convertible 1993 3.13% Audi RS 4 Convertible 2008 1.02% Chevrolet Cobalt SS 2010 0.74% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.79% Chevrolet Avalanche Crew Cab 2012 0.16% Chevrolet TrailBlazer SS 2009 0.05% Dodge Journey SUV 2012 0.0% Dodge Durango SUV 2007 0.0% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 100.0% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% Hyundai Veloster Hatchback 2012 0.0% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Gallardo LP 570-4 Superleggera 2012 50.58% Mazda Tribute SUV 2011 15.67% Land Rover Range Rover SUV 2012 6.7% Hyundai Veloster Hatchback 2012 4.15% Volkswagen Golf Hatchback 1991 3.49% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Jaguar XK XKR 2012 31.26% Dodge Challenger SRT8 2011 25.59% Bugatti Veyron 16.4 Coupe 2009 8.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.73% Nissan Juke Hatchback 2012 3.73% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Sonic Sedan 2012 65.09% Mitsubishi Lancer Sedan 2012 19.28% Toyota Corolla Sedan 2012 13.3% Hyundai Accent Sedan 2012 1.33% Suzuki Kizashi Sedan 2012 0.25% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 89.15% BMW 3 Series Sedan 2012 4.07% Hyundai Genesis Sedan 2012 3.68% Audi S6 Sedan 2011 0.93% BMW 3 Series Wagon 2012 0.43% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 99.99% Ferrari 458 Italia Coupe 2012 0.01% Cadillac CTS-V Sedan 2012 0.0% Audi TT RS Coupe 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Hyundai Veloster Hatchback 2012 92.23% Land Rover LR2 SUV 2012 3.97% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.15% Audi TTS Coupe 2012 0.83% Mercedes-Benz SL-Class Coupe 2009 0.69% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Toyota Corolla Sedan 2012 43.3% Mitsubishi Lancer Sedan 2012 18.79% Toyota Camry Sedan 2012 10.71% Hyundai Accent Sedan 2012 8.01% Mercedes-Benz C-Class Sedan 2012 2.49% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 30.61% Jaguar XK XKR 2012 19.71% Fisker Karma Sedan 2012 15.3% Aston Martin Virage Convertible 2012 8.38% Aston Martin V8 Vantage Convertible 2012 6.6% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 100.0% Nissan 240SX Coupe 1998 0.0% Eagle Talon Hatchback 1998 0.0% Ford Focus Sedan 2007 0.0% Daewoo Nubira Wagon 2002 0.0% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Infiniti QX56 SUV 2011 79.75% Hyundai Azera Sedan 2012 8.47% Acura ZDX Hatchback 2012 3.42% Maybach Landaulet Convertible 2012 1.97% Mercedes-Benz E-Class Sedan 2012 1.3% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.34% Toyota Sequoia SUV 2012 0.26% Ram C/V Cargo Van Minivan 2012 0.08% Dodge Durango SUV 2012 0.07% Cadillac Escalade EXT Crew Cab 2007 0.07% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 46.43% Ferrari FF Coupe 2012 23.83% Tesla Model S Sedan 2012 10.57% Chevrolet Corvette ZR1 2012 6.83% Volkswagen Beetle Hatchback 2012 3.9% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Ford F-150 Regular Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Ford E-Series Wagon Van 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 98.79% Dodge Journey SUV 2012 0.45% Toyota Camry Sedan 2012 0.2% Volkswagen Golf Hatchback 2012 0.17% Honda Accord Coupe 2012 0.1% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 BMW X6 SUV 2012 51.82% Nissan Juke Hatchback 2012 21.98% Chevrolet Sonic Sedan 2012 7.43% Jeep Compass SUV 2012 2.79% Buick Verano Sedan 2012 2.63% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 100.0% Suzuki SX4 Hatchback 2012 0.0% Dodge Durango SUV 2012 0.0% Nissan 240SX Coupe 1998 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 88.38% Chevrolet Impala Sedan 2007 6.92% Hyundai Elantra Sedan 2007 3.69% Chevrolet Monte Carlo Coupe 2007 0.92% Suzuki SX4 Sedan 2012 0.07% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Porsche Panamera Sedan 2012 75.3% Audi S4 Sedan 2012 5.95% BMW 3 Series Wagon 2012 3.5% Buick Regal GS 2012 2.91% Audi S4 Sedan 2007 2.31% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 99.04% BMW Z4 Convertible 2012 0.46% Audi S5 Convertible 2012 0.23% BMW M6 Convertible 2010 0.09% BMW 6 Series Convertible 2007 0.03% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari 458 Italia Coupe 2012 77.86% Ferrari California Convertible 2012 17.49% Ferrari 458 Italia Convertible 2012 1.02% BMW Z4 Convertible 2012 0.86% Chevrolet Camaro Convertible 2012 0.67% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Acura TSX Sedan 2012 42.62% Acura ZDX Hatchback 2012 30.15% Hyundai Azera Sedan 2012 7.4% Acura TL Sedan 2012 4.09% Ford Fiesta Sedan 2012 3.34% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 59.83% smart fortwo Convertible 2012 17.58% Lamborghini Diablo Coupe 2001 7.43% Dodge Challenger SRT8 2011 3.39% Chevrolet Corvette Convertible 2012 3.18% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 62.18% HUMMER H2 SUT Crew Cab 2009 19.37% Jeep Wrangler SUV 2012 10.21% HUMMER H3T Crew Cab 2010 6.97% Chevrolet Silverado 1500 Extended Cab 2012 0.8% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Jeep Grand Cherokee SUV 2012 52.54% Nissan Juke Hatchback 2012 39.47% Jeep Compass SUV 2012 3.12% BMW X6 SUV 2012 1.03% Ford Ranger SuperCab 2011 0.92% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Ford Focus Sedan 2007 20.08% Chevrolet Impala Sedan 2007 17.05% Buick Verano Sedan 2012 10.99% Acura TSX Sedan 2012 9.45% Honda Accord Sedan 2012 9.16% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 99.59% Mercedes-Benz C-Class Sedan 2012 0.18% Mercedes-Benz E-Class Sedan 2012 0.12% Dodge Ram Pickup 3500 Crew Cab 2010 0.04% Chrysler Aspen SUV 2009 0.01% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 50.17% Dodge Ram Pickup 3500 Quad Cab 2009 20.09% HUMMER H3T Crew Cab 2010 9.7% HUMMER H2 SUT Crew Cab 2009 6.1% AM General Hummer SUV 2000 2.58% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette ZR1 2012 91.75% Ferrari 458 Italia Convertible 2012 8.03% Ferrari California Convertible 2012 0.12% Ferrari 458 Italia Coupe 2012 0.05% Aston Martin V8 Vantage Coupe 2012 0.02% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.93% Land Rover LR2 SUV 2012 0.04% Honda Odyssey Minivan 2012 0.01% Hyundai Sonata Hybrid Sedan 2012 0.01% Ford Fiesta Sedan 2012 0.01% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% Jeep Wrangler SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Nissan NV Passenger Van 2012 0.0% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 35.83% Jeep Grand Cherokee SUV 2012 20.86% Cadillac SRX SUV 2012 6.09% BMW X5 SUV 2007 5.67% Chevrolet Traverse SUV 2012 4.51% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.93% GMC Savana Van 2012 0.03% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.02% Chrysler Aspen SUV 2009 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.93% Hyundai Santa Fe SUV 2012 0.06% Dodge Durango SUV 2012 0.0% Dodge Journey SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 99.84% BMW X6 SUV 2012 0.08% Buick Regal GS 2012 0.03% Jeep Compass SUV 2012 0.02% BMW X5 SUV 2007 0.02% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.9% Ford Edge SUV 2012 0.04% Volvo C30 Hatchback 2012 0.02% Cadillac CTS-V Sedan 2012 0.0% Buick Verano Sedan 2012 0.0% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 GMC Terrain SUV 2012 45.99% GMC Yukon Hybrid SUV 2012 37.02% Jeep Patriot SUV 2012 10.98% Jeep Compass SUV 2012 2.95% Jeep Grand Cherokee SUV 2012 2.89% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 58.18% GMC Canyon Extended Cab 2012 22.47% Chevrolet Silverado 1500 Regular Cab 2012 7.15% Jeep Wrangler SUV 2012 1.37% HUMMER H2 SUT Crew Cab 2009 1.36% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Volvo 240 Sedan 1993 86.76% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.14% Aston Martin V8 Vantage Coupe 2012 3.07% Rolls-Royce Phantom Sedan 2012 0.81% Dodge Challenger SRT8 2011 0.59% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 92.74% Dodge Charger Sedan 2012 2.58% Ford Mustang Convertible 2007 0.54% Chevrolet Corvette ZR1 2012 0.48% Dodge Challenger SRT8 2011 0.46% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Chevrolet Avalanche Crew Cab 2012 40.3% Chevrolet Tahoe Hybrid SUV 2012 26.6% Jeep Liberty SUV 2012 12.83% Chrysler Aspen SUV 2009 6.53% Cadillac Escalade EXT Crew Cab 2007 3.47% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 99.75% Chevrolet Sonic Sedan 2012 0.18% BMW M3 Coupe 2012 0.03% BMW 1 Series Coupe 2012 0.01% BMW 1 Series Convertible 2012 0.01% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 32.39% Jeep Compass SUV 2012 30.79% BMW X3 SUV 2012 16.4% BMW X6 SUV 2012 2.31% GMC Yukon Hybrid SUV 2012 1.86% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 BMW 6 Series Convertible 2007 43.82% Honda Odyssey Minivan 2012 13.41% Chevrolet Malibu Hybrid Sedan 2010 5.42% Mercedes-Benz E-Class Sedan 2012 4.53% Honda Accord Sedan 2012 3.09% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Ferrari 458 Italia Coupe 2012 21.45% Chevrolet Camaro Convertible 2012 19.51% Chevrolet Cobalt SS 2010 16.8% Buick Regal GS 2012 10.51% Audi R8 Coupe 2012 8.18% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 50.45% Chevrolet Silverado 1500 Regular Cab 2012 18.25% Chevrolet TrailBlazer SS 2009 17.64% Chrysler Sebring Convertible 2010 5.97% Dodge Caliber Wagon 2007 1.34% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% Bentley Arnage Sedan 2009 0.0% Jeep Wrangler SUV 2012 0.0% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Corolla Sedan 2012 86.77% Toyota Camry Sedan 2012 13.23% Acura TSX Sedan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% Mitsubishi Lancer Sedan 2012 0.0% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.86% Ford Fiesta Sedan 2012 0.04% Hyundai Tucson SUV 2012 0.03% Ford Edge SUV 2012 0.03% Chevrolet Traverse SUV 2012 0.02% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 99.99% Ford Ranger SuperCab 2011 0.01% Nissan NV Passenger Van 2012 0.0% Audi 100 Sedan 1994 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 BMW M6 Convertible 2010 63.28% Chevrolet Camaro Convertible 2012 9.72% Audi R8 Coupe 2012 5.14% Rolls-Royce Ghost Sedan 2012 3.06% Fisker Karma Sedan 2012 2.28% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Dodge Dakota Crew Cab 2010 45.71% GMC Acadia SUV 2012 14.83% Hyundai Veracruz SUV 2012 10.99% Toyota Sequoia SUV 2012 7.01% Ford Expedition EL SUV 2009 6.57% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Buick Regal GS 2012 57.76% Volvo C30 Hatchback 2012 10.67% Buick Verano Sedan 2012 7.02% Hyundai Accent Sedan 2012 5.94% Acura RL Sedan 2012 2.89% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Dodge Charger Sedan 2012 15.71% Hyundai Azera Sedan 2012 10.53% Buick Regal GS 2012 8.37% Jaguar XK XKR 2012 5.39% FIAT 500 Abarth 2012 5.3% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 32.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 29.92% Chevrolet Silverado 1500 Extended Cab 2012 22.99% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.64% Chevrolet Silverado 1500 Regular Cab 2012 1.88% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Acura TL Sedan 2012 48.71% Hyundai Genesis Sedan 2012 34.97% Hyundai Azera Sedan 2012 8.52% Acura TSX Sedan 2012 3.01% Hyundai Sonata Sedan 2012 1.42% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 20.48% BMW 6 Series Convertible 2007 16.18% Bentley Continental GT Coupe 2007 7.3% Bentley Continental Flying Spur Sedan 2007 4.45% Nissan Leaf Hatchback 2012 4.43% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Buick Enclave SUV 2012 40.56% Chevrolet Tahoe Hybrid SUV 2012 15.49% Isuzu Ascender SUV 2008 9.77% Chevrolet TrailBlazer SS 2009 9.74% Buick Rainier SUV 2007 5.61% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 99.92% Ferrari 458 Italia Convertible 2012 0.07% Audi TT RS Coupe 2012 0.01% Bugatti Veyron 16.4 Coupe 2009 0.0% Ferrari 458 Italia Coupe 2012 0.0% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 59.18% Hyundai Sonata Sedan 2012 14.7% Hyundai Tucson SUV 2012 6.06% Honda Odyssey Minivan 2012 3.95% Mitsubishi Lancer Sedan 2012 2.48% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Ford GT Coupe 2006 39.07% Acura ZDX Hatchback 2012 18.46% Volkswagen Golf Hatchback 2012 7.25% Bugatti Veyron 16.4 Coupe 2009 4.28% BMW Z4 Convertible 2012 3.99% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 99.99% Audi R8 Coupe 2012 0.01% Tesla Model S Sedan 2012 0.0% Audi TTS Coupe 2012 0.0% BMW M6 Convertible 2010 0.0% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 99.63% BMW 1 Series Coupe 2012 0.24% Suzuki SX4 Sedan 2012 0.04% Suzuki Aerio Sedan 2007 0.03% Acura ZDX Hatchback 2012 0.02% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 92.51% Ford F-150 Regular Cab 2012 4.87% Chevrolet Silverado 1500 Regular Cab 2012 0.94% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.44% Dodge Dakota Club Cab 2007 0.37% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 99.76% Hyundai Sonata Sedan 2012 0.17% Acura TL Sedan 2012 0.05% Hyundai Elantra Sedan 2007 0.01% Acura ZDX Hatchback 2012 0.0% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 88.3% Aston Martin V8 Vantage Convertible 2012 3.5% Chevrolet Monte Carlo Coupe 2007 3.19% Hyundai Veloster Hatchback 2012 0.65% Bugatti Veyron 16.4 Coupe 2009 0.6% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 37.53% BMW M3 Coupe 2012 24.33% BMW 6 Series Convertible 2007 16.93% Aston Martin Virage Coupe 2012 9.55% Jaguar XK XKR 2012 6.44% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 98.32% Ferrari 458 Italia Convertible 2012 0.8% Chevrolet Corvette ZR1 2012 0.41% Spyker C8 Coupe 2009 0.19% Ford GT Coupe 2006 0.06% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 100.0% Chevrolet Impala Sedan 2007 0.0% Volkswagen Beetle Hatchback 2012 0.0% Geo Metro Convertible 1993 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 89.36% Dodge Caravan Minivan 1997 4.97% Chevrolet Traverse SUV 2012 2.49% Suzuki SX4 Sedan 2012 2.39% Chevrolet Impala Sedan 2007 0.24% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Audi R8 Coupe 2012 17.93% Hyundai Elantra Touring Hatchback 2012 10.57% Honda Accord Coupe 2012 9.2% Eagle Talon Hatchback 1998 7.25% Audi TTS Coupe 2012 5.94% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2012 44.56% Honda Odyssey Minivan 2007 37.93% Honda Accord Sedan 2012 8.43% Chevrolet Cobalt SS 2010 4.65% Hyundai Elantra Sedan 2007 1.82% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Hyundai Veloster Hatchback 2012 84.86% Hyundai Azera Sedan 2012 12.24% BMW M6 Convertible 2010 1.35% Chevrolet Cobalt SS 2010 0.66% Ford Mustang Convertible 2007 0.46% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 99.37% Chrysler Town and Country Minivan 2012 0.54% Land Rover LR2 SUV 2012 0.04% Dodge Magnum Wagon 2008 0.01% Mercedes-Benz S-Class Sedan 2012 0.01% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Rolls-Royce Phantom Sedan 2012 31.87% Maybach Landaulet Convertible 2012 13.2% Nissan NV Passenger Van 2012 9.44% Mazda Tribute SUV 2011 7.53% Chrysler Town and Country Minivan 2012 6.29% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 94.61% Audi 100 Sedan 1994 5.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% Volvo XC90 SUV 2007 0.01% Ford Ranger SuperCab 2011 0.0% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Tesla Model S Sedan 2012 48.73% Ferrari 458 Italia Coupe 2012 17.28% Nissan Juke Hatchback 2012 6.76% Suzuki SX4 Hatchback 2012 5.54% Ferrari FF Coupe 2012 4.85% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 50.71% Hyundai Azera Sedan 2012 43.77% Buick Verano Sedan 2012 1.2% Hyundai Sonata Sedan 2012 0.69% Dodge Challenger SRT8 2011 0.53% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Mercedes-Benz C-Class Sedan 2012 55.56% BMW M5 Sedan 2010 9.26% Honda Accord Sedan 2012 5.58% Acura TSX Sedan 2012 4.11% Honda Accord Coupe 2012 3.92% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 99.77% Chrysler Crossfire Convertible 2008 0.11% Audi 100 Sedan 1994 0.07% Hyundai Genesis Sedan 2012 0.02% Ford Expedition EL SUV 2009 0.01% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.92% Ford Expedition EL SUV 2009 0.04% Toyota 4Runner SUV 2012 0.03% Infiniti QX56 SUV 2011 0.0% Cadillac SRX SUV 2012 0.0% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford Ranger SuperCab 2011 73.05% Chevrolet Silverado 2500HD Regular Cab 2012 26.38% Dodge Dakota Club Cab 2007 0.19% Chevrolet Avalanche Crew Cab 2012 0.12% Chrysler Aspen SUV 2009 0.05% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 90.81% Infiniti G Coupe IPL 2012 7.15% Dodge Journey SUV 2012 0.59% Volkswagen Golf Hatchback 2012 0.35% Hyundai Santa Fe SUV 2012 0.17% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 72.01% Ferrari 458 Italia Convertible 2012 19.58% Aston Martin V8 Vantage Coupe 2012 7.54% Jaguar XK XKR 2012 0.55% Eagle Talon Hatchback 1998 0.15% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Buick Regal GS 2012 75.99% Infiniti G Coupe IPL 2012 13.06% Audi TT Hatchback 2011 8.02% Cadillac CTS-V Sedan 2012 1.03% Rolls-Royce Ghost Sedan 2012 0.68% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 98.06% Bentley Arnage Sedan 2009 1.91% Bentley Continental Flying Spur Sedan 2007 0.01% Bentley Mulsanne Sedan 2011 0.01% Volvo 240 Sedan 1993 0.0% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Hyundai Elantra Sedan 2007 63.51% Buick Verano Sedan 2012 22.58% Toyota Corolla Sedan 2012 10.68% Toyota Camry Sedan 2012 1.33% Chevrolet Malibu Hybrid Sedan 2010 0.51% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Hyundai Sonata Hybrid Sedan 2012 44.01% Chevrolet Sonic Sedan 2012 29.98% Buick Regal GS 2012 6.91% MINI Cooper Roadster Convertible 2012 2.66% Dodge Caliber Wagon 2012 2.11% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 BMW 1 Series Coupe 2012 28.51% Audi S5 Coupe 2012 18.5% Chevrolet Sonic Sedan 2012 15.29% Buick Verano Sedan 2012 10.16% Suzuki Kizashi Sedan 2012 6.05% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Isuzu Ascender SUV 2008 77.77% Jeep Patriot SUV 2012 14.62% Jeep Liberty SUV 2012 7.13% Chrysler Aspen SUV 2009 0.25% Land Rover LR2 SUV 2012 0.1% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Volkswagen Golf Hatchback 2012 44.31% Toyota Corolla Sedan 2012 43.99% Hyundai Elantra Sedan 2007 6.03% Ford Focus Sedan 2007 3.58% Hyundai Elantra Touring Hatchback 2012 1.07% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Spyker C8 Coupe 2009 71.92% Audi R8 Coupe 2012 9.34% Bugatti Veyron 16.4 Coupe 2009 5.18% Bentley Continental Supersports Conv. Convertible 2012 2.49% Mercedes-Benz 300-Class Convertible 1993 1.95% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Acura Integra Type R 2001 40.0% Hyundai Elantra Touring Hatchback 2012 20.72% Bugatti Veyron 16.4 Coupe 2009 8.58% Audi RS 4 Convertible 2008 6.74% Nissan 240SX Coupe 1998 4.04% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ford GT Coupe 2006 65.74% Ferrari 458 Italia Coupe 2012 19.49% Lamborghini Aventador Coupe 2012 8.84% Chevrolet Corvette ZR1 2012 4.85% Spyker C8 Coupe 2009 0.46% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Hyundai Sonata Sedan 2012 97.04% Honda Odyssey Minivan 2012 1.4% Hyundai Sonata Hybrid Sedan 2012 0.72% Ford Edge SUV 2012 0.55% Hyundai Accent Sedan 2012 0.15% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 99.99% Lamborghini Aventador Coupe 2012 0.01% McLaren MP4-12C Coupe 2012 0.0% Spyker C8 Convertible 2009 0.0% Lamborghini Reventon Coupe 2008 0.0% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Mercedes-Benz C-Class Sedan 2012 87.83% BMW M5 Sedan 2010 4.57% Toyota Corolla Sedan 2012 1.16% Daewoo Nubira Wagon 2002 1.0% Acura Integra Type R 2001 0.89% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Ford F-150 Regular Cab 2007 0.0% Honda Odyssey Minivan 2007 0.0% Dodge Sprinter Cargo Van 2009 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 86.34% Chevrolet Tahoe Hybrid SUV 2012 12.09% Chevrolet TrailBlazer SS 2009 1.18% Ford Expedition EL SUV 2009 0.24% Dodge Durango SUV 2012 0.09% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 100.0% Ford Focus Sedan 2007 0.0% Chevrolet Camaro Convertible 2012 0.0% Nissan 240SX Coupe 1998 0.0% Cadillac CTS-V Sedan 2012 0.0% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Accent Sedan 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Ford Fiesta Sedan 2012 0.0% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 100.0% Audi RS 4 Convertible 2008 0.0% Audi S5 Convertible 2012 0.0% Chrysler 300 SRT-8 2010 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Audi S4 Sedan 2007 80.26% Mercedes-Benz 300-Class Convertible 1993 12.92% Chrysler PT Cruiser Convertible 2008 1.74% Chevrolet Malibu Hybrid Sedan 2010 1.66% Dodge Magnum Wagon 2008 1.56% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Tucson SUV 2012 71.15% Hyundai Veloster Hatchback 2012 10.48% Hyundai Veracruz SUV 2012 7.47% Ford Edge SUV 2012 4.86% Scion xD Hatchback 2012 4.18% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 63.22% Audi A5 Coupe 2012 33.38% Audi S4 Sedan 2012 3.11% Audi TT Hatchback 2011 0.11% Audi S5 Convertible 2012 0.1% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 99.99% Jaguar XK XKR 2012 0.0% Porsche Panamera Sedan 2012 0.0% Chevrolet Corvette ZR1 2012 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Chrysler 300 SRT-8 2010 74.14% Rolls-Royce Phantom Sedan 2012 11.99% Rolls-Royce Ghost Sedan 2012 9.05% Dodge Charger SRT-8 2009 0.89% Chrysler Crossfire Convertible 2008 0.79% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 41.65% Ford Focus Sedan 2007 20.07% Acura TSX Sedan 2012 18.61% Chevrolet Impala Sedan 2007 14.57% Chevrolet Malibu Hybrid Sedan 2010 1.73% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.49% Buick Regal GS 2012 0.26% Mitsubishi Lancer Sedan 2012 0.08% Hyundai Accent Sedan 2012 0.06% BMW ActiveHybrid 5 Sedan 2012 0.02% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 99.98% Chevrolet Malibu Sedan 2007 0.01% Chevrolet Impala Sedan 2007 0.01% Mercedes-Benz 300-Class Convertible 1993 0.0% Audi 100 Wagon 1994 0.0% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 99.99% Lincoln Town Car Sedan 2011 0.01% Chevrolet Monte Carlo Coupe 2007 0.0% Chevrolet Impala Sedan 2007 0.0% Hyundai Elantra Sedan 2007 0.0% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Maybach Landaulet Convertible 2012 87.59% Chevrolet Sonic Sedan 2012 3.29% Mercedes-Benz S-Class Sedan 2012 2.57% Rolls-Royce Phantom Sedan 2012 2.46% Mercedes-Benz C-Class Sedan 2012 1.07% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.7% Maybach Landaulet Convertible 2012 0.19% MINI Cooper Roadster Convertible 2012 0.05% Chrysler PT Cruiser Convertible 2008 0.04% smart fortwo Convertible 2012 0.01% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 59.77% Chevrolet Corvette Convertible 2012 18.98% Spyker C8 Coupe 2009 4.91% Ferrari 458 Italia Convertible 2012 3.9% Aston Martin V8 Vantage Convertible 2012 3.87% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 72.36% Chevrolet Tahoe Hybrid SUV 2012 27.62% GMC Yukon Hybrid SUV 2012 0.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Isuzu Ascender SUV 2008 0.0% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 72.4% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 14.08% Chevrolet Silverado 1500 Regular Cab 2012 12.53% GMC Canyon Extended Cab 2012 0.55% Chevrolet Silverado 2500HD Regular Cab 2012 0.31% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.91% Spyker C8 Coupe 2009 0.07% Hyundai Veloster Hatchback 2012 0.01% Volvo C30 Hatchback 2012 0.0% Spyker C8 Convertible 2009 0.0% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Acura TSX Sedan 2012 31.98% Acura RL Sedan 2012 31.09% Honda Accord Sedan 2012 6.77% Mercedes-Benz E-Class Sedan 2012 4.58% Suzuki Aerio Sedan 2007 4.19% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Chevrolet Corvette ZR1 2012 72.16% Acura TL Type-S 2008 18.6% Porsche Panamera Sedan 2012 3.04% Ford Focus Sedan 2007 2.12% Daewoo Nubira Wagon 2002 1.99% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Audi 100 Wagon 1994 50.33% GMC Canyon Extended Cab 2012 36.55% Volvo 240 Sedan 1993 9.29% Audi 100 Sedan 1994 2.33% Audi V8 Sedan 1994 0.72% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Dodge Caliber Wagon 2007 70.6% Dodge Caliber Wagon 2012 16.44% Cadillac SRX SUV 2012 2.71% Suzuki SX4 Hatchback 2012 2.19% Dodge Journey SUV 2012 1.64% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Dodge Durango SUV 2012 62.05% Toyota Camry Sedan 2012 20.14% Acura ZDX Hatchback 2012 9.58% Nissan Leaf Hatchback 2012 2.68% Hyundai Sonata Sedan 2012 1.53% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Bentley Mulsanne Sedan 2011 15.17% Porsche Panamera Sedan 2012 12.08% Mercedes-Benz 300-Class Convertible 1993 11.7% AM General Hummer SUV 2000 10.64% Lamborghini Reventon Coupe 2008 9.65% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 99.97% Ferrari 458 Italia Coupe 2012 0.02% Ferrari FF Coupe 2012 0.0% Ferrari California Convertible 2012 0.0% Spyker C8 Coupe 2009 0.0% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Acura ZDX Hatchback 2012 43.19% Audi S5 Coupe 2012 9.9% Buick Verano Sedan 2012 6.74% Bentley Mulsanne Sedan 2011 3.2% Audi 100 Wagon 1994 2.01% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Ferrari 458 Italia Convertible 2012 37.61% Ford GT Coupe 2006 22.14% Spyker C8 Coupe 2009 4.48% Eagle Talon Hatchback 1998 2.91% Chevrolet Corvette Convertible 2012 2.54% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 100.0% GMC Terrain SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Camaro Convertible 2012 38.19% Audi TTS Coupe 2012 11.93% Audi S5 Convertible 2012 8.74% Suzuki SX4 Sedan 2012 7.85% Ford Mustang Convertible 2007 6.01% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 59.6% Hyundai Veloster Hatchback 2012 21.17% BMW X6 SUV 2012 17.97% Chevrolet Cobalt SS 2010 0.25% Nissan Juke Hatchback 2012 0.25% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Chrysler PT Cruiser Convertible 2008 37.48% Land Rover LR2 SUV 2012 32.48% Cadillac SRX SUV 2012 6.57% MINI Cooper Roadster Convertible 2012 5.22% Land Rover Range Rover SUV 2012 2.1% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Sedan 2012 68.27% Suzuki Kizashi Sedan 2012 29.16% Suzuki SX4 Hatchback 2012 1.03% Chevrolet Sonic Sedan 2012 0.54% Mitsubishi Lancer Sedan 2012 0.33% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette Convertible 2012 83.73% Ferrari 458 Italia Convertible 2012 9.95% Chevrolet Camaro Convertible 2012 2.91% Ferrari California Convertible 2012 2.66% Aston Martin V8 Vantage Coupe 2012 0.22% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Suzuki SX4 Hatchback 2012 39.76% Dodge Caliber Wagon 2012 28.09% Dodge Caliber Wagon 2007 13.64% Nissan Juke Hatchback 2012 10.93% Dodge Journey SUV 2012 5.17% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 100.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Suzuki Aerio Sedan 2007 98.16% Suzuki SX4 Sedan 2012 1.82% Volkswagen Golf Hatchback 2012 0.02% Suzuki SX4 Hatchback 2012 0.0% BMW 1 Series Coupe 2012 0.0% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 100.0% BMW X3 SUV 2012 0.0% BMW 1 Series Convertible 2012 0.0% Jeep Compass SUV 2012 0.0% BMW 1 Series Coupe 2012 0.0% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.99% Bentley Mulsanne Sedan 2011 0.01% Bugatti Veyron 16.4 Convertible 2009 0.0% Cadillac CTS-V Sedan 2012 0.0% Ford GT Coupe 2006 0.0% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 40.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 20.34% Chevrolet Silverado 1500 Regular Cab 2012 19.61% GMC Canyon Extended Cab 2012 7.42% Chevrolet Silverado 2500HD Regular Cab 2012 6.41% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Hyundai Genesis Sedan 2012 82.55% Infiniti G Coupe IPL 2012 7.55% Mercedes-Benz E-Class Sedan 2012 3.74% Chrysler Crossfire Convertible 2008 3.52% Mercedes-Benz C-Class Sedan 2012 2.13% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Hyundai Veracruz SUV 2012 72.91% Toyota Camry Sedan 2012 19.81% Hyundai Santa Fe SUV 2012 1.78% Acura TSX Sedan 2012 1.69% Toyota Corolla Sedan 2012 1.1% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 46.2% Acura Integra Type R 2001 43.54% Chevrolet Corvette ZR1 2012 7.95% Aston Martin V8 Vantage Coupe 2012 0.9% Lamborghini Diablo Coupe 2001 0.54% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 66.47% Chevrolet Sonic Sedan 2012 26.18% Dodge Durango SUV 2012 3.55% Nissan Juke Hatchback 2012 1.01% Dodge Caliber Wagon 2012 0.59% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 40.55% Chrysler Aspen SUV 2009 37.83% Chevrolet Traverse SUV 2012 7.94% Hyundai Santa Fe SUV 2012 2.53% Mercedes-Benz Sprinter Van 2012 1.34% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Volvo 240 Sedan 1993 94.13% Volkswagen Golf Hatchback 1991 3.16% Ford F-150 Regular Cab 2007 1.33% Mercedes-Benz 300-Class Convertible 1993 0.99% Jeep Patriot SUV 2012 0.14% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 99.7% Chevrolet Avalanche Crew Cab 2012 0.29% Chevrolet Tahoe Hybrid SUV 2012 0.01% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 79.63% Ferrari 458 Italia Coupe 2012 11.69% Chevrolet Corvette ZR1 2012 3.18% Ferrari California Convertible 2012 2.44% Spyker C8 Coupe 2009 1.02% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.69% BMW 3 Series Sedan 2012 0.21% Hyundai Elantra Sedan 2007 0.09% Plymouth Neon Coupe 1999 0.0% Hyundai Accent Sedan 2012 0.0% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Dodge Durango SUV 2007 95.57% Dodge Caliber Wagon 2012 1.82% Cadillac Escalade EXT Crew Cab 2007 1.28% Chrysler Aspen SUV 2009 0.48% Toyota Sequoia SUV 2012 0.23% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 99.96% BMW 1 Series Coupe 2012 0.03% Bentley Continental GT Coupe 2012 0.0% Buick Verano Sedan 2012 0.0% Ford GT Coupe 2006 0.0% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Hyundai Veloster Hatchback 2012 30.34% Bentley Continental Flying Spur Sedan 2007 21.56% Chevrolet Impala Sedan 2007 7.18% Daewoo Nubira Wagon 2002 4.5% Honda Accord Coupe 2012 4.19% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Jaguar XK XKR 2012 99.72% Mercedes-Benz SL-Class Coupe 2009 0.08% Acura TL Type-S 2008 0.03% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.03% Aston Martin Virage Convertible 2012 0.03% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Nissan 240SX Coupe 1998 83.94% Audi 100 Sedan 1994 7.33% Mercedes-Benz 300-Class Convertible 1993 3.77% Aston Martin V8 Vantage Convertible 2012 1.1% Audi 100 Wagon 1994 0.92% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 68.16% Nissan 240SX Coupe 1998 29.43% Hyundai Elantra Touring Hatchback 2012 1.83% Chevrolet Sonic Sedan 2012 0.2% Eagle Talon Hatchback 1998 0.13% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 97.19% Hyundai Veloster Hatchback 2012 2.35% Scion xD Hatchback 2012 0.12% Mazda Tribute SUV 2011 0.06% Mitsubishi Lancer Sedan 2012 0.06% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 82.19% Audi V8 Sedan 1994 11.01% Volkswagen Golf Hatchback 1991 4.1% Ford Focus Sedan 2007 0.51% Plymouth Neon Coupe 1999 0.44% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Mercedes-Benz E-Class Sedan 2012 51.29% Audi S4 Sedan 2007 22.11% Dodge Charger Sedan 2012 8.24% Jaguar XK XKR 2012 5.31% Audi RS 4 Convertible 2008 3.38% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Chevrolet Corvette Convertible 2012 30.71% Lamborghini Gallardo LP 570-4 Superleggera 2012 24.91% Chevrolet Silverado 1500 Regular Cab 2012 20.19% Spyker C8 Coupe 2009 4.15% Dodge Charger Sedan 2012 3.68% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Chevrolet Corvette ZR1 2012 54.65% Jaguar XK XKR 2012 25.69% BMW 6 Series Convertible 2007 11.12% Chrysler Crossfire Convertible 2008 3.58% Eagle Talon Hatchback 1998 1.18% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 96.62% Dodge Challenger SRT8 2011 3.15% Chrysler 300 SRT-8 2010 0.11% Chevrolet TrailBlazer SS 2009 0.08% Dodge Magnum Wagon 2008 0.03% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 92.79% Rolls-Royce Phantom Sedan 2012 3.21% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.1% Bentley Continental Supersports Conv. Convertible 2012 0.66% Rolls-Royce Ghost Sedan 2012 0.29% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Freestar Minivan 2007 87.13% Plymouth Neon Coupe 1999 11.33% Hyundai Elantra Sedan 2007 0.89% Dodge Caravan Minivan 1997 0.14% Honda Odyssey Minivan 2007 0.1% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Dodge Durango SUV 2012 85.25% Infiniti QX56 SUV 2011 5.83% Dodge Durango SUV 2007 4.66% BMW X3 SUV 2012 1.23% Dodge Caliber Wagon 2012 0.87% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Mercedes-Benz SL-Class Coupe 2009 26.83% Volkswagen Beetle Hatchback 2012 23.13% Volkswagen Golf Hatchback 2012 13.43% Chevrolet Corvette Convertible 2012 13.04% Chevrolet Corvette ZR1 2012 7.7% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 100.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Cadillac SRX SUV 2012 0.0% Dodge Magnum Wagon 2008 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 99.91% Hyundai Genesis Sedan 2012 0.07% Hyundai Sonata Sedan 2012 0.02% Chrysler PT Cruiser Convertible 2008 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 99.98% GMC Canyon Extended Cab 2012 0.01% AM General Hummer SUV 2000 0.01% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 99.9% Suzuki SX4 Sedan 2012 0.08% Scion xD Hatchback 2012 0.02% Suzuki Aerio Sedan 2007 0.0% Hyundai Veracruz SUV 2012 0.0% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 63.82% Mercedes-Benz Sprinter Van 2012 20.61% Chrysler Aspen SUV 2009 13.39% GMC Acadia SUV 2012 0.8% Chevrolet Traverse SUV 2012 0.52% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Jeep Wrangler SUV 2012 37.48% GMC Canyon Extended Cab 2012 29.65% Jeep Patriot SUV 2012 14.05% Volvo XC90 SUV 2007 6.63% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.92% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 71.41% Chevrolet Impala Sedan 2007 14.93% Ford Freestar Minivan 2007 12.72% Geo Metro Convertible 1993 0.47% Chrysler PT Cruiser Convertible 2008 0.25% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Audi 100 Sedan 1994 0.0% Volkswagen Golf Hatchback 1991 0.0% Buick Rainier SUV 2007 0.0% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Acura TSX Sedan 2012 82.67% Chevrolet Malibu Sedan 2007 4.54% BMW M5 Sedan 2010 2.83% Acura RL Sedan 2012 1.23% Buick Verano Sedan 2012 0.88% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 63.83% Eagle Talon Hatchback 1998 16.7% Ford Focus Sedan 2007 6.51% Chevrolet Monte Carlo Coupe 2007 3.46% Audi V8 Sedan 1994 2.79% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Dodge Durango SUV 2007 55.53% Fisker Karma Sedan 2012 11.23% Chevrolet Corvette ZR1 2012 8.65% Chevrolet Malibu Sedan 2007 2.39% Nissan Juke Hatchback 2012 1.74% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.8% Chevrolet Traverse SUV 2012 0.06% Hyundai Elantra Sedan 2007 0.06% Honda Odyssey Minivan 2007 0.04% Volvo 240 Sedan 1993 0.01% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 100.0% Suzuki Aerio Sedan 2007 0.0% Suzuki SX4 Hatchback 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% Buick Verano Sedan 2012 0.0% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 91.78% Chevrolet Corvette ZR1 2012 5.76% Lamborghini Diablo Coupe 2001 1.68% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.34% Aston Martin V8 Vantage Convertible 2012 0.18% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Scion xD Hatchback 2012 98.21% Plymouth Neon Coupe 1999 0.77% Chevrolet Express Cargo Van 2007 0.33% Eagle Talon Hatchback 1998 0.28% Daewoo Nubira Wagon 2002 0.18% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Buick Enclave SUV 2012 24.63% GMC Canyon Extended Cab 2012 7.64% Volvo 240 Sedan 1993 7.5% Hyundai Veracruz SUV 2012 4.98% Buick Rainier SUV 2007 3.98% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 97.94% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.5% FIAT 500 Convertible 2012 0.33% Maybach Landaulet Convertible 2012 0.29% Bentley Continental GT Coupe 2007 0.21% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Jeep Liberty SUV 2012 65.33% Jeep Patriot SUV 2012 30.91% Jeep Compass SUV 2012 2.06% Dodge Durango SUV 2007 0.29% Volvo 240 Sedan 1993 0.25% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Volkswagen Beetle Hatchback 2012 36.04% Chevrolet Malibu Hybrid Sedan 2010 23.02% Bentley Continental Flying Spur Sedan 2007 20.61% Acura ZDX Hatchback 2012 10.16% Daewoo Nubira Wagon 2002 3.57% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Hyundai Genesis Sedan 2012 31.49% Rolls-Royce Phantom Sedan 2012 27.04% Land Rover LR2 SUV 2012 14.01% Mercedes-Benz Sprinter Van 2012 5.41% Honda Odyssey Minivan 2012 4.39% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Hyundai Sonata Sedan 2012 37.12% Ford GT Coupe 2006 18.54% Hyundai Elantra Sedan 2007 4.44% Ford Edge SUV 2012 3.52% Acura RL Sedan 2012 2.91% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Mercedes-Benz Sprinter Van 2012 66.38% GMC Savana Van 2012 18.55% Dodge Sprinter Cargo Van 2009 2.86% Chevrolet Express Cargo Van 2007 2.76% Chevrolet Avalanche Crew Cab 2012 2.26% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 88.95% BMW 3 Series Sedan 2012 7.33% BMW 1 Series Coupe 2012 3.27% Spyker C8 Coupe 2009 0.08% Chevrolet Sonic Sedan 2012 0.08% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 39.69% Volkswagen Golf Hatchback 1991 26.95% Plymouth Neon Coupe 1999 14.02% Audi 100 Wagon 1994 13.06% Suzuki Aerio Sedan 2007 3.16% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 100.0% Mercedes-Benz E-Class Sedan 2012 0.0% Audi S6 Sedan 2011 0.0% Audi S4 Sedan 2007 0.0% Cadillac CTS-V Sedan 2012 0.0% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 47.14% Nissan 240SX Coupe 1998 44.57% Dodge Charger Sedan 2012 2.5% Honda Accord Coupe 2012 0.85% BMW 3 Series Sedan 2012 0.75% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 92.73% Chevrolet Silverado 1500 Extended Cab 2012 3.06% Chevrolet Avalanche Crew Cab 2012 1.49% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.37% GMC Yukon Hybrid SUV 2012 0.38% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 100.0% Dodge Charger Sedan 2012 0.0% Dodge Magnum Wagon 2008 0.0% BMW M3 Coupe 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.99% Dodge Magnum Wagon 2008 0.0% Audi 100 Wagon 1994 0.0% Volvo 240 Sedan 1993 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 99.67% Chevrolet Tahoe Hybrid SUV 2012 0.23% Jeep Wrangler SUV 2012 0.04% Isuzu Ascender SUV 2008 0.03% Jeep Liberty SUV 2012 0.03% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 33.02% Plymouth Neon Coupe 1999 22.36% Audi 100 Wagon 1994 8.38% Eagle Talon Hatchback 1998 5.81% Lincoln Town Car Sedan 2011 3.05% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.92% Mercedes-Benz 300-Class Convertible 1993 0.08% Chrysler PT Cruiser Convertible 2008 0.0% Ford Mustang Convertible 2007 0.0% Ford F-150 Regular Cab 2007 0.0% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Ford Fiesta Sedan 2012 71.73% Hyundai Veloster Hatchback 2012 12.47% Hyundai Sonata Hybrid Sedan 2012 4.74% Hyundai Elantra Touring Hatchback 2012 1.53% Hyundai Accent Sedan 2012 1.37% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Audi TTS Coupe 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% BMW M3 Coupe 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 98.05% Plymouth Neon Coupe 1999 1.48% Ford Freestar Minivan 2007 0.44% Ford Focus Sedan 2007 0.02% Ram C/V Cargo Van Minivan 2012 0.01% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 32.94% Cadillac CTS-V Sedan 2012 21.02% Bentley Continental GT Coupe 2012 8.24% Bentley Continental Flying Spur Sedan 2007 7.07% Suzuki Kizashi Sedan 2012 6.34% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Chrysler Crossfire Convertible 2008 99.88% Chrysler Sebring Convertible 2010 0.09% Mercedes-Benz S-Class Sedan 2012 0.02% Chrysler PT Cruiser Convertible 2008 0.0% Mercedes-Benz E-Class Sedan 2012 0.0% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Audi 100 Sedan 1994 0.0% Audi TT Hatchback 2011 0.0% Dodge Caravan Minivan 1997 0.0% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 81.17% Chevrolet Tahoe Hybrid SUV 2012 11.74% Isuzu Ascender SUV 2008 5.93% Jeep Patriot SUV 2012 1.0% Chevrolet Avalanche Crew Cab 2012 0.09% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 BMW X6 SUV 2012 34.72% Suzuki SX4 Hatchback 2012 16.32% Chevrolet Sonic Sedan 2012 12.43% Mitsubishi Lancer Sedan 2012 4.65% Buick Verano Sedan 2012 4.1% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 89.08% Mercedes-Benz Sprinter Van 2012 10.85% Chevrolet Traverse SUV 2012 0.02% Volkswagen Golf Hatchback 1991 0.02% Audi 100 Sedan 1994 0.01% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 80.75% Land Rover LR2 SUV 2012 15.77% Land Rover Range Rover SUV 2012 1.4% Chevrolet Sonic Sedan 2012 0.66% MINI Cooper Roadster Convertible 2012 0.52% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 77.8% Chrysler PT Cruiser Convertible 2008 20.84% Chevrolet Avalanche Crew Cab 2012 0.74% Land Rover Range Rover SUV 2012 0.27% Chrysler Aspen SUV 2009 0.1% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 98.71% Toyota Camry Sedan 2012 1.28% Suzuki Aerio Sedan 2007 0.0% Hyundai Accent Sedan 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Volvo XC90 SUV 2007 37.41% Acura ZDX Hatchback 2012 37.08% Audi 100 Wagon 1994 21.27% Cadillac SRX SUV 2012 1.58% Buick Verano Sedan 2012 0.87% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Plymouth Neon Coupe 1999 73.27% Chevrolet Sonic Sedan 2012 5.68% Ferrari FF Coupe 2012 3.63% Hyundai Tucson SUV 2012 3.53% Volvo C30 Hatchback 2012 3.31% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Audi S6 Sedan 2011 59.39% Audi S4 Sedan 2012 25.55% Audi S5 Coupe 2012 6.94% Audi A5 Coupe 2012 6.56% Audi S5 Convertible 2012 1.17% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 95.11% HUMMER H3T Crew Cab 2010 4.53% Jeep Grand Cherokee SUV 2012 0.36% Jeep Compass SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 97.79% GMC Canyon Extended Cab 2012 1.07% Ford F-150 Regular Cab 2012 0.6% Dodge Durango SUV 2007 0.16% Ford Edge SUV 2012 0.08% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 100.0% Ferrari 458 Italia Convertible 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% Chevrolet Camaro Convertible 2012 0.0% Audi TTS Coupe 2012 0.0% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Toyota Corolla Sedan 2012 98.37% Hyundai Accent Sedan 2012 1.4% Toyota Camry Sedan 2012 0.16% Chevrolet Cobalt SS 2010 0.01% Honda Odyssey Minivan 2012 0.01% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Hyundai Veracruz SUV 2012 9.92% Suzuki SX4 Sedan 2012 7.12% Chrysler Town and Country Minivan 2012 7.07% BMW X3 SUV 2012 7.05% Toyota Camry Sedan 2012 3.66% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.99% Audi R8 Coupe 2012 0.01% Audi S4 Sedan 2012 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 99.4% Hyundai Sonata Sedan 2012 0.3% Chevrolet Traverse SUV 2012 0.22% Hyundai Veracruz SUV 2012 0.04% Ford Fiesta Sedan 2012 0.03% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 91.96% Chevrolet Camaro Convertible 2012 5.04% Ford Mustang Convertible 2007 0.45% Audi V8 Sedan 1994 0.41% Plymouth Neon Coupe 1999 0.39% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Eagle Talon Hatchback 1998 50.14% Plymouth Neon Coupe 1999 26.65% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.5% Suzuki Kizashi Sedan 2012 1.92% Daewoo Nubira Wagon 2002 1.79% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 BMW 3 Series Sedan 2012 46.95% Ferrari 458 Italia Coupe 2012 20.38% Ferrari FF Coupe 2012 14.45% Honda Accord Coupe 2012 6.03% Dodge Magnum Wagon 2008 4.17% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 86.26% Mitsubishi Lancer Sedan 2012 9.7% Audi RS 4 Convertible 2008 1.5% Audi A5 Coupe 2012 1.19% Audi S4 Sedan 2012 0.84% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 45.46% Acura TL Type-S 2008 6.31% Honda Accord Sedan 2012 6.14% Mercedes-Benz S-Class Sedan 2012 3.59% Nissan 240SX Coupe 1998 3.18% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 52.63% Chevrolet Corvette ZR1 2012 39.59% Bentley Continental GT Coupe 2007 4.33% Eagle Talon Hatchback 1998 1.29% Aston Martin Virage Convertible 2012 0.54% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 McLaren MP4-12C Coupe 2012 15.55% Audi R8 Coupe 2012 14.14% Chevrolet Corvette ZR1 2012 7.0% Lamborghini Reventon Coupe 2008 5.45% Aston Martin V8 Vantage Coupe 2012 5.41% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Hyundai Elantra Touring Hatchback 2012 40.22% Hyundai Veloster Hatchback 2012 12.62% Chevrolet Monte Carlo Coupe 2007 9.87% Chevrolet Malibu Hybrid Sedan 2010 6.64% Mitsubishi Lancer Sedan 2012 4.27% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 BMW 6 Series Convertible 2007 79.81% BMW 3 Series Wagon 2012 5.15% Fisker Karma Sedan 2012 3.31% BMW M6 Convertible 2010 1.15% Mercedes-Benz E-Class Sedan 2012 1.09% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Chevrolet Corvette ZR1 2012 10.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 9.19% Fisker Karma Sedan 2012 6.85% Mercedes-Benz SL-Class Coupe 2009 6.49% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.99% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Hyundai Azera Sedan 2012 62.09% Acura ZDX Hatchback 2012 17.53% Honda Odyssey Minivan 2012 12.22% Buick Verano Sedan 2012 5.57% Hyundai Sonata Sedan 2012 0.89% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Ford GT Coupe 2006 73.42% Lamborghini Diablo Coupe 2001 6.43% Suzuki SX4 Hatchback 2012 5.15% Dodge Caliber Wagon 2012 4.99% Volvo C30 Hatchback 2012 4.74% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Malibu Sedan 2007 23.74% Chevrolet HHR SS 2010 12.51% Chevrolet Avalanche Crew Cab 2012 11.38% Dodge Magnum Wagon 2008 9.44% Chevrolet TrailBlazer SS 2009 5.49% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Dodge Dakota Club Cab 2007 26.78% Mercedes-Benz 300-Class Convertible 1993 20.89% Audi 100 Wagon 1994 10.07% Lincoln Town Car Sedan 2011 7.16% Volvo 240 Sedan 1993 4.82% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 100.0% Buick Verano Sedan 2012 0.0% Honda Accord Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Chevrolet Impala Sedan 2007 0.0% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Ford Expedition EL SUV 2009 91.04% Land Rover LR2 SUV 2012 5.96% Land Rover Range Rover SUV 2012 1.55% Hyundai Tucson SUV 2012 0.87% Cadillac SRX SUV 2012 0.15% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.91% GMC Canyon Extended Cab 2012 0.04% Dodge Ram Pickup 3500 Crew Cab 2010 0.03% Dodge Dakota Crew Cab 2010 0.02% Ford F-450 Super Duty Crew Cab 2012 0.0% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Volvo 240 Sedan 1993 35.91% Ford Ranger SuperCab 2011 12.62% Ford Mustang Convertible 2007 10.83% Buick Enclave SUV 2012 8.18% Land Rover Range Rover SUV 2012 7.2% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 93.84% Lamborghini Aventador Coupe 2012 3.1% Chevrolet Corvette ZR1 2012 1.37% Ferrari 458 Italia Coupe 2012 1.25% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.2% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 57.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 23.74% Bugatti Veyron 16.4 Convertible 2009 13.57% McLaren MP4-12C Coupe 2012 1.47% Audi R8 Coupe 2012 0.55% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 97.84% Dodge Caliber Wagon 2012 2.12% Dodge Magnum Wagon 2008 0.03% Dodge Journey SUV 2012 0.0% Dodge Charger Sedan 2012 0.0% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 18.1% GMC Savana Van 2012 14.79% Chevrolet Silverado 2500HD Regular Cab 2012 12.85% Chevrolet Express Van 2007 7.22% Chevrolet Express Cargo Van 2007 5.6% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Chevrolet Corvette ZR1 2012 58.59% Aston Martin V8 Vantage Coupe 2012 17.95% Jaguar XK XKR 2012 4.62% Bugatti Veyron 16.4 Coupe 2009 4.23% Dodge Challenger SRT8 2011 2.92% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Acura Integra Type R 2001 0.0% Ford Mustang Convertible 2007 0.0% Plymouth Neon Coupe 1999 0.0% Lamborghini Diablo Coupe 2001 0.0% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Suzuki Kizashi Sedan 2012 20.31% Hyundai Sonata Hybrid Sedan 2012 6.09% Bentley Mulsanne Sedan 2011 5.52% Bentley Continental GT Coupe 2012 4.88% Buick Verano Sedan 2012 3.4% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Chrysler Sebring Convertible 2010 90.28% Lincoln Town Car Sedan 2011 5.71% Mercedes-Benz 300-Class Convertible 1993 1.31% Mercedes-Benz S-Class Sedan 2012 1.16% Maybach Landaulet Convertible 2012 0.61% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 70.25% Volvo C30 Hatchback 2012 13.22% Spyker C8 Coupe 2009 4.31% Hyundai Elantra Touring Hatchback 2012 3.38% Chevrolet Cobalt SS 2010 1.32% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.9% Toyota Sequoia SUV 2012 0.08% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% Ford Edge SUV 2012 0.0% Chrysler Aspen SUV 2009 0.0% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Acura TL Type-S 2008 19.89% Hyundai Genesis Sedan 2012 14.39% Chevrolet Malibu Hybrid Sedan 2010 8.78% Hyundai Elantra Sedan 2007 7.3% BMW 3 Series Wagon 2012 4.31% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 96.33% Aston Martin V8 Vantage Coupe 2012 3.65% Aston Martin Virage Convertible 2012 0.01% Fisker Karma Sedan 2012 0.01% Lamborghini Reventon Coupe 2008 0.0% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Nissan NV Passenger Van 2012 99.46% Ford E-Series Wagon Van 2012 0.21% Chevrolet Express Cargo Van 2007 0.12% Ford F-150 Regular Cab 2012 0.1% Dodge Sprinter Cargo Van 2009 0.06% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% GMC Savana Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 86.95% Audi S4 Sedan 2007 11.94% Audi S6 Sedan 2011 0.87% Audi S4 Sedan 2012 0.24% Audi S5 Coupe 2012 0.0% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 87.55% Ford Expedition EL SUV 2009 5.34% Land Rover Range Rover SUV 2012 1.71% Chevrolet Silverado 1500 Regular Cab 2012 0.57% Dodge Ram Pickup 3500 Crew Cab 2010 0.5% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 70.71% Audi TTS Coupe 2012 21.3% Audi RS 4 Convertible 2008 6.49% Audi S4 Sedan 2012 0.75% Audi S5 Coupe 2012 0.24% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Maybach Landaulet Convertible 2012 50.58% Mercedes-Benz E-Class Sedan 2012 26.09% BMW ActiveHybrid 5 Sedan 2012 12.74% BMW 3 Series Sedan 2012 5.87% Mercedes-Benz S-Class Sedan 2012 1.01% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 91.56% Bugatti Veyron 16.4 Convertible 2009 8.43% Hyundai Veloster Hatchback 2012 0.01% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Lamborghini Aventador Coupe 2012 96.25% Audi TT RS Coupe 2012 1.08% Bugatti Veyron 16.4 Coupe 2009 0.88% Bugatti Veyron 16.4 Convertible 2009 0.87% MINI Cooper Roadster Convertible 2012 0.38% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 Audi 100 Wagon 1994 43.89% Audi V8 Sedan 1994 24.31% GMC Savana Van 2012 15.76% Audi 100 Sedan 1994 5.61% Dodge Ram Pickup 3500 Quad Cab 2009 5.38% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Nissan Leaf Hatchback 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Acura ZDX Hatchback 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Bentley Continental GT Coupe 2012 74.89% Lamborghini Reventon Coupe 2008 23.15% Spyker C8 Convertible 2009 1.2% Bugatti Veyron 16.4 Coupe 2009 0.25% Bugatti Veyron 16.4 Convertible 2009 0.15% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 93.97% Hyundai Genesis Sedan 2012 3.22% Hyundai Sonata Sedan 2012 2.26% Mercedes-Benz C-Class Sedan 2012 0.26% Mercedes-Benz S-Class Sedan 2012 0.09% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Volkswagen Beetle Hatchback 2012 45.89% Buick Verano Sedan 2012 17.62% Mitsubishi Lancer Sedan 2012 5.14% Hyundai Veracruz SUV 2012 5.02% Honda Accord Sedan 2012 3.88% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Traverse SUV 2012 77.34% Toyota Sequoia SUV 2012 16.81% GMC Acadia SUV 2012 1.84% Jeep Grand Cherokee SUV 2012 0.68% Volvo XC90 SUV 2007 0.67% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Chevrolet Malibu Sedan 2007 30.86% Toyota Corolla Sedan 2012 30.22% Audi A5 Coupe 2012 16.28% Toyota Camry Sedan 2012 3.78% Honda Accord Coupe 2012 2.18% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Audi TT Hatchback 2011 40.87% Porsche Panamera Sedan 2012 26.94% Audi S5 Convertible 2012 10.77% Jaguar XK XKR 2012 7.55% Audi TT RS Coupe 2012 4.58% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Dodge Caravan Minivan 1997 44.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 22.18% Chevrolet Silverado 1500 Extended Cab 2012 14.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 11.21% Chrysler PT Cruiser Convertible 2008 5.77% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 85.48% Infiniti QX56 SUV 2011 12.89% BMW X6 SUV 2012 0.77% Volvo 240 Sedan 1993 0.27% BMW X3 SUV 2012 0.22% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 98.08% Spyker C8 Convertible 2009 1.16% Ford GT Coupe 2006 0.2% Bugatti Veyron 16.4 Coupe 2009 0.18% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.13% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 99.84% Dodge Durango SUV 2007 0.1% Dodge Dakota Club Cab 2007 0.06% Dodge Caliber Wagon 2007 0.0% Mazda Tribute SUV 2011 0.0% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 65.48% Lincoln Town Car Sedan 2011 12.74% Chevrolet Malibu Sedan 2007 12.28% Chrysler PT Cruiser Convertible 2008 6.05% Chevrolet Avalanche Crew Cab 2012 0.82% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 93.83% Chevrolet Express Cargo Van 2007 4.58% GMC Savana Van 2012 1.18% Plymouth Neon Coupe 1999 0.33% Audi V8 Sedan 1994 0.04% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Tesla Model S Sedan 2012 34.23% Buick Regal GS 2012 24.13% Infiniti G Coupe IPL 2012 5.29% BMW M5 Sedan 2010 2.91% Bugatti Veyron 16.4 Convertible 2009 2.58% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 87.07% Honda Odyssey Minivan 2012 12.79% Ford Expedition EL SUV 2009 0.07% Honda Odyssey Minivan 2007 0.03% Land Rover LR2 SUV 2012 0.03% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 48.37% Hyundai Genesis Sedan 2012 25.73% Chrysler Crossfire Convertible 2008 19.02% Aston Martin Virage Convertible 2012 4.61% Tesla Model S Sedan 2012 0.87% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.99% Lincoln Town Car Sedan 2011 0.01% Volvo XC90 SUV 2007 0.0% Ford Focus Sedan 2007 0.0% Audi 100 Sedan 1994 0.0% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Acura ZDX Hatchback 2012 29.76% Chrysler Crossfire Convertible 2008 24.78% Audi S5 Coupe 2012 18.17% Ford Mustang Convertible 2007 7.55% Fisker Karma Sedan 2012 2.28% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Suzuki SX4 Sedan 2012 57.52% BMW M3 Coupe 2012 33.32% Dodge Journey SUV 2012 5.07% Chevrolet HHR SS 2010 1.44% Suzuki SX4 Hatchback 2012 1.13% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 99.32% Buick Regal GS 2012 0.19% Porsche Panamera Sedan 2012 0.18% Audi TT Hatchback 2011 0.07% Audi S5 Coupe 2012 0.06% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Jeep Wrangler SUV 2012 60.11% Ford Edge SUV 2012 15.74% Chevrolet Silverado 1500 Regular Cab 2012 9.28% AM General Hummer SUV 2000 6.39% GMC Terrain SUV 2012 1.87% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Nissan 240SX Coupe 1998 78.75% Audi V8 Sedan 1994 14.38% Volkswagen Golf Hatchback 1991 3.45% Mercedes-Benz 300-Class Convertible 1993 1.69% Audi 100 Wagon 1994 0.89% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Chevrolet Corvette ZR1 2012 21.32% Honda Accord Coupe 2012 21.29% Jaguar XK XKR 2012 13.5% Aston Martin V8 Vantage Coupe 2012 8.68% Chevrolet Cobalt SS 2010 3.95% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 36.25% Buick Rainier SUV 2007 10.52% Chrysler Aspen SUV 2009 8.99% GMC Yukon Hybrid SUV 2012 8.47% Dodge Durango SUV 2007 8.2% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 99.97% Toyota Camry Sedan 2012 0.02% Hyundai Accent Sedan 2012 0.01% Suzuki Aerio Sedan 2007 0.0% Scion xD Hatchback 2012 0.0% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 99.63% Chevrolet Camaro Convertible 2012 0.16% Lamborghini Reventon Coupe 2008 0.04% Bugatti Veyron 16.4 Coupe 2009 0.03% Audi V8 Sedan 1994 0.03% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Audi A5 Coupe 2012 58.13% Honda Accord Coupe 2012 19.38% Dodge Durango SUV 2012 3.27% Dodge Charger Sedan 2012 3.12% Ford Expedition EL SUV 2009 2.69% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 100.0% Honda Odyssey Minivan 2012 0.0% Toyota Corolla Sedan 2012 0.0% Ford Edge SUV 2012 0.0% Hyundai Genesis Sedan 2012 0.0% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Aston Martin Virage Coupe 2012 19.58% BMW M6 Convertible 2010 11.17% Dodge Challenger SRT8 2011 9.06% Acura ZDX Hatchback 2012 7.77% Volkswagen Golf Hatchback 2012 6.53% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.98% Dodge Sprinter Cargo Van 2009 0.02% Ram C/V Cargo Van Minivan 2012 0.01% Nissan NV Passenger Van 2012 0.0% GMC Savana Van 2012 0.0% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Nissan 240SX Coupe 1998 8.43% Aston Martin Virage Convertible 2012 8.02% Aston Martin V8 Vantage Coupe 2012 7.8% Rolls-Royce Ghost Sedan 2012 6.67% Fisker Karma Sedan 2012 5.98% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Volkswagen Golf Hatchback 1991 98.05% Honda Accord Sedan 2012 0.41% Daewoo Nubira Wagon 2002 0.34% Audi 100 Sedan 1994 0.25% Mercedes-Benz Sprinter Van 2012 0.19% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Ford Edge SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Toyota 4Runner SUV 2012 0.0% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 64.15% Tesla Model S Sedan 2012 11.82% Acura TL Sedan 2012 5.61% BMW Z4 Convertible 2012 3.29% Dodge Charger Sedan 2012 3.04% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Suzuki Kizashi Sedan 2012 14.91% Rolls-Royce Phantom Drophead Coupe Convertible 2012 13.68% Mercedes-Benz 300-Class Convertible 1993 9.68% Hyundai Elantra Sedan 2007 8.88% BMW 6 Series Convertible 2007 7.07% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Jeep Grand Cherokee SUV 2012 55.99% Chevrolet Sonic Sedan 2012 17.73% Bentley Arnage Sedan 2009 3.8% BMW X5 SUV 2007 3.56% Volvo XC90 SUV 2007 2.68% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Maybach Landaulet Convertible 2012 68.59% Bentley Continental Supersports Conv. Convertible 2012 5.65% Jaguar XK XKR 2012 3.15% MINI Cooper Roadster Convertible 2012 2.97% Mercedes-Benz E-Class Sedan 2012 2.2% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Hyundai Elantra Touring Hatchback 2012 30.67% Audi A5 Coupe 2012 21.57% Audi S5 Convertible 2012 13.12% Mercedes-Benz SL-Class Coupe 2009 10.21% Audi RS 4 Convertible 2008 5.41% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 76.85% Honda Odyssey Minivan 2012 11.43% Audi 100 Wagon 1994 3.97% Dodge Durango SUV 2012 1.78% BMW M5 Sedan 2010 1.45% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Chrysler Sebring Convertible 2010 83.82% Buick Verano Sedan 2012 9.2% Dodge Charger Sedan 2012 1.81% Chevrolet Malibu Hybrid Sedan 2010 1.07% Jaguar XK XKR 2012 0.92% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 96.52% Dodge Caliber Wagon 2012 3.45% Suzuki SX4 Sedan 2012 0.01% Suzuki SX4 Hatchback 2012 0.0% Ford Freestar Minivan 2007 0.0% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 86.59% BMW X5 SUV 2007 1.79% BMW M5 Sedan 2010 0.88% Acura RL Sedan 2012 0.47% Hyundai Accent Sedan 2012 0.45% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Mercedes-Benz 300-Class Convertible 1993 17.64% Bentley Continental GT Coupe 2007 8.73% Volkswagen Beetle Hatchback 2012 6.41% BMW 6 Series Convertible 2007 3.51% Dodge Charger Sedan 2012 3.22% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 49.42% Honda Accord Sedan 2012 7.53% Acura TL Sedan 2012 6.48% Audi S4 Sedan 2012 4.78% Mercedes-Benz C-Class Sedan 2012 3.98% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 67.11% Toyota Camry Sedan 2012 9.29% Toyota Corolla Sedan 2012 4.85% Ford Fiesta Sedan 2012 2.79% Suzuki Kizashi Sedan 2012 2.76% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 AM General Hummer SUV 2000 45.26% Mazda Tribute SUV 2011 4.61% Dodge Challenger SRT8 2011 3.23% Land Rover LR2 SUV 2012 2.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.09% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 99.83% Acura RL Sedan 2012 0.17% Acura TSX Sedan 2012 0.0% Acura ZDX Hatchback 2012 0.0% Acura TL Type-S 2008 0.0% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 99.81% Plymouth Neon Coupe 1999 0.12% Nissan 240SX Coupe 1998 0.06% Eagle Talon Hatchback 1998 0.0% BMW X5 SUV 2007 0.0% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% Dodge Magnum Wagon 2008 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 81.01% Toyota Camry Sedan 2012 17.88% Audi TT Hatchback 2011 0.41% Toyota Corolla Sedan 2012 0.17% Mitsubishi Lancer Sedan 2012 0.12% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Nissan Juke Hatchback 2012 36.68% Aston Martin Virage Convertible 2012 22.73% Spyker C8 Coupe 2009 10.14% Suzuki Kizashi Sedan 2012 7.25% BMW M5 Sedan 2010 5.58% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 91.29% Bentley Continental GT Coupe 2012 3.65% Lamborghini Aventador Coupe 2012 0.85% Audi R8 Coupe 2012 0.79% Audi TTS Coupe 2012 0.75% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette ZR1 2012 35.48% Ferrari 458 Italia Coupe 2012 22.22% Aston Martin Virage Coupe 2012 16.07% Bugatti Veyron 16.4 Coupe 2009 10.01% Ferrari California Convertible 2012 5.33% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Rolls-Royce Phantom Drophead Coupe Convertible 2012 86.49% Mercedes-Benz 300-Class Convertible 1993 7.07% Audi 100 Wagon 1994 3.18% Volvo 240 Sedan 1993 1.23% Volkswagen Golf Hatchback 1991 0.54% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% Dodge Durango SUV 2007 0.0% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Malibu Sedan 2007 55.33% Lincoln Town Car Sedan 2011 42.97% Chevrolet Impala Sedan 2007 1.6% Chevrolet Monte Carlo Coupe 2007 0.04% Dodge Magnum Wagon 2008 0.04% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Chrysler Aspen SUV 2009 23.11% Dodge Sprinter Cargo Van 2009 19.96% Chevrolet Tahoe Hybrid SUV 2012 7.28% Honda Accord Sedan 2012 5.44% Toyota Sequoia SUV 2012 5.0% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Traverse SUV 2012 54.01% Hyundai Sonata Sedan 2012 15.53% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 9.21% Ford Edge SUV 2012 6.24% Mercedes-Benz C-Class Sedan 2012 4.11% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 83.17% Rolls-Royce Ghost Sedan 2012 11.95% BMW M6 Convertible 2010 0.85% Aston Martin V8 Vantage Coupe 2012 0.8% Rolls-Royce Phantom Sedan 2012 0.62% \ No newline at end of file diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.1/small.png b/cars/lr-investigations/sigmoid/1e-2/50_0.1/small.png new file mode 100644 index 0000000000000000000000000000000000000000..db6330f4066272923c4b84dcd1873398dbbf8275 GIT binary patch literal 104192 zcmcG01z45cwl$I>Ac9DTv?8s5v~)@d(j_2L(p}Ob4N_9luxXL*1}W+8?(X{62EOl} z`<-*oIrske@;pB5z1_in*IaXsImVdFS4K(%?H>L;7#J8dF;PJ|7#MgQ7#P^qyNKYC zk6M)-;MW~XIT3!C+%Ccua0gzW?=>F`OhFLJxi$j0k8CEYYzYH%zXAI1PK#-VE)2|7 zs+b_3yq(7S1d^75P&v}Js{=VQB{Do5K0IG=ApfhBjA4S;cO2Cf71f)5pxnDxy7^@x zbGU-)2`-kSP?D$&rX1rP1WdPJL}bt4$;pdFsn*vPrmO71yH^_(4El>|q#fMs(I;IU zY*Gr?kI8O+3`zAb!av{qe50X*eI6S@s)A#rOZKk#VQlQak&S0+TJbU^>(a(0-Uhk{ zir~#pC#jnk&tASTj)@Qhax<4Fc{1dlf&yMdvi)5RxraQhYV2@xB+6d`R-GQP@)SRq z+kk&ONBRx$oJv9)jd`U({wslWrvlDV6;zTS(YF8;yIEtu{CO_zldNDKuXHW z*NWvqceLI>*QbAgas9(0_F^&$#d9l%f4(Z&DlXuse0JRv&$md}g01o$QALQE1`#^# zCv;I7XI%A+2TWQLhG+2=wbQUg>W8boV{J_-H(=&7+z{@H(Y2!*wP0h&2 z_)W}lpGJ1>}rNNyhMj6>!H|^t{_g-Z3ktUhbZdKDB#qaeY zJcbFSv`K*nYeVETG~$u?#UFaeoCSqPe;PczPr~DG(3iG?&-_JgY?qwZepgprKv-Nt zLcq%EXSvPA#f3E;p7v0#`tT1u6#BAxOgjgMRTbu55fW!lJ`cp1pM6q&EV}T>quJ^e z*yO_gwV&?5S<&H<^74{sx?Zp}2NL;JJD)*cAm*?k@!9$a3R z%3Mbg^e_zD8e5(R z7Z}nztZ*2)w`d7!gt)c-W?Q{rv69ZQ+Ht5nm@Zzf7h6l5I)imEIhhXlY7$Mz~2p_dA7Y+UzaZjC(jXyh% zN^M)4m{56?WgTItDIeyz)z+l?P_XQMB94@5n~hNgXG)#$uU{WCFi5Lc8SdV1RZr5jD>}Td>{cjI=Z@q zFf<6t%F4{l&9wum!mw~~vY3Q|h`HrChxCT+x}>@g5_hSM(T41CvQMxV(Q?|-wI+W3 zc#qOPx@B53ERf9F(%l{8h7cyY^oa<5Pjrd($&=4+2oGDoOO8gkA?(2;A~NS|!LHQ) zDr&EF-_fmoYyy7U51TRu?OWq1F$Ph%Mx1$6)z%k0I5b17XF{)wn7Sh+RTq(LraMew zxXwb2NkF3dd1tlqVKeU!EP^q6Ex!Cn;hUA|SDVBB4(ZB9$kK?a_(kR85m(DM-0;^; z+)sl_FB3z)maI#Jk0(7S^)@eoVot2fYkl1~{JEz;B|A=v$+KtAtkLjZ@4{kXW3OW3 z3B`-H6+Ihb#FMa~7ajXm71>ee;$feX_ssrVD`BW5-zK_6!gn2?Is`+@(6BI!hYyn_ zbW=P%;Tv08)-ds2BkIe_%07AW zNSORKL@Vm2$=kOPxunUIR8(a2^iq+nq6Gy7qT=Gcl+5^NXe~&8rX%P#xlItVS&XHx zZnIR*tUP73cZRYqLvNEGj!sXK5cn_(WFkt^`1LD^W{A|UM((UmQn4lq_As^EV0qlO zy}P%E@!$cBzJ7C4=VNvOCnu-rjg1_m*1Nr(p~VLW2VRkpk-3!QqDjTEv4qEGXAKPv z0z;u8(50iWvNAW99b&+f#^m@Fl_U~G42fHtwd*2WPn3!~*z4C6n2*?MS}`@thVm>9C7yPWGR;1uTx$DxbZV*+_8=D=F>vceLG0mapo@{A0czt;HrIRrDkWxV`5?|7Zes3 z6@BI8R7oGwqicr!=#iJZJ1od-V$#xzCaNkb5Tn))z12^jJ_XNw`s~>olbDEzG^5rh zn5bdJoxgtdvgrP7Y!qy4YFfd>dkS)sn3x!NrcTYwv6h+JZ5dMWszdmrIz2+fxqUQ4 zAr?Z>_khK3UAf9`=N+xePtl>^5Q@ZPipH=D*EXdAvFK9$B6f<*C<^^hqoIKTg`rRk z3Oo%L7amwx*y;6-(o#GM{m(%`=#^DfAf)-qm3xb;tE;zncYBL;;l=tR!ouKOU0v<$ z?3PuSG0)HzLp%fN>FHNbDd)uaMeyG2FZT!(S*jCuM|*I;Ftj{BKgU&K^tHM_%*PmH z_0hxK9o%(8{gq+@R#93@>oFV(Rq*|6wF*>PTxmqq-eRzXJ{O34qMDIl_k(l~f$nbD zXrHPVe|*_+aH(4b8;z+CC~6N`boA1AOk2|Q4kowef1>uBzPMfUA~jA_`V=y2mi!mx z;yF6mE<#-^sog`7(d7tHj{;F+juaK>UPbXpoA_l1g<5~mA+-q`6E2spiR1qgi@_(|=rgUc<^7++uo zHlX)MP*78oQ&9!)JE4DoinP zc6OdwSV%Q$yBnH8M@@}%d3m|Lz5TmLm*SA1gB+PiT}`e3K%zO!GmtrLxhL7jaH(9E zm9xdNdF=uBPf%g^W#4#_Sw-+<>ooi0iRiz4=@3%(zZIK!mslm)4|$ysC%RybrsbN%$H^= zeeqKI_%Qgh1~V~=zSmrudAa)^dp~=klVO8}T8>(`pObe#+DEoWLCNfejEt>~050}& zO3*-skpC2ZpufU>cMPlXw$mrdKElmmMPUPL)NOX5mZY4Vstc&3I$~W224lZ|iG$P> zRte+fK443nd5lvp4;w`KDN@#I z#lR&}IV6+4j)m17d?q8Q4}%F2S4D(1@bb0_#e5YYcd%)N|% zj^y~EfARR_gehMObA>S916<5;L<9tI7Z&fU*cgB}@wK(D5V0j66DgJ1fV3EoihG?N z(V^M3njQ{iac6&D{s_s@4S^Zm(crdfLyI|~j_F6yrtHXM^BGItxq|MnkPyY}?%NVy zBn_S*VC(!K9rj+#)h{87Q|(6|qAq8JQ;2ALw;q%Jw*ZX={lAg-eCoWg9rWik?GDnh z)FC12Q2{u!8jY_tr`!;DdA|&2D=AzJY(*cx;877 zex_IF0+Fkh);7H&x484Im=>uW{e$WfaXRO$QBJrJXG0|1q)2!j;`$KMr7UJzk-Z0% z6eW>p zbH?Y%%`UmCYqULGhx`1!KYd7uH#$im2Dva;7CJ`82VqpN-GhRHz!L0lPN){;R8&-4 zFUR59kTfV!A3uJCml|6rbDSg*Pf5K(8;vtWSlfgua{ae|Ndf21G;mKIl#0 z5fJL2_$F8uv~}`h9GrVY5y})VsXSPiBeILajTCdWnIruC{0vpgjzZaQItpmV>Fd9^ zvXTjf=!|cl@ax}El{34B-b`eL@@S1k)WcjTex5t(*LB&a}H0y%sn{$E47jWA`zi^cD zweQeCX!`Bh^x3{DL}cp7DlnoVoY4y?c%g6dIKo`oZ$3ShT(Uae*8Un9X=&hzeBG5= zd`V^(7Z(qXj7-l}rw?F!D=Uj}(__@8Vo;6LxYqo_sZYgd4*eMMGbb;PAyODOJ1Gg4 zot@p#kUdg3$^*d0`Nc)Z(=#=E?ZDaDcP!V1eiE2_=62{tAR& zZ(pCnSVTm`Dn9eKpQhqp=Hdb}^nU&NB|nyyYQ0UX(ZUD%48yVPY+7g?PA@h$HwQcB zOF)2-oLuMnd*+Df3-4u0DKkh>PRbpd&|&t zzPfOq)RO6{fF;V-)YJOtZgi2^7FV{tu}kM+I1!cyN{fu1LaGD%?2>8K`QbeFyZum8 zCfy#krM2SHlf> zcU!pNRl7LZ5mW=~Lw52vI60^gaRL)z@?ezc8Pp+p<5$n^4o|V9=)IoMWC<1+VY-NF z21IXFeJZUQIaLpcso}WO7k`3WQjOz*$6(U9kHhv(@eso~;^tFTAVaaD;cr?_Aw){~ zt6pVUkZx6tqEJp7HOb{+*c>sKUEPi_JGK>db&K!4aN!H;)9dlc&tPn+T`RdZ@M0&| ztWrp5_*dOv_qWYkzH9Mb+|Lr>m1tJ2X}zCSgoY9l_oS;owKxEosI#F_a`7F%$R1;2 z@=4V19>U&EaL*EY4`dSbhaBJ5l&GyJo*n)UEI4Z!4|;~EmMHP|;{0sp>qk~j!IzQ! z_h>)&Lb%3B4jy1Tmp__IQ1Y?QyZW+swWY7N*K8`vsgyFg*WN`4qA?^Y!Y9F&@ONr) z=YQr(-X03RhxWiv!mfK@H#axXJ-y<{x7Yxnf(wsP6bdegp?KI?9TB@@?mDdU+gRF$&YsKaOOW?)U81J^&I8PV2HZHQPVvOA-$h zlU6)x>z4D(IT?jXp`rezK|P%E{VRq_{>hTcNiXRu>Y0HhIy)a8^r_!NX8hmhMvza0 z^h%c+;JJRViqVA(pDWVGYnD8Gt~vU7-2K$C_G5R42>&SQS4ED=nR?WJP5|uUP6cs1 z{Ilt6D|s~y%e;1{bb0*MpY$*Ekb{5~ zvp;-8ib>&*9{@+uF)?BMZDt7t+{CcyOCEqQJT}oQ?gV*qyHBb+Wc~2*L&_y`qD!-K zgn8tZ2RA9rbL_tLwTIFZ`pjbj+?+j^@hRbL$kG z<6p^+TA!*PUgR$!9XpiI{(N};du-~>z=?esX|^W1wQ-QKD1OD+V;)}#5oNCngO-_^ z&7NC0CCCE4!(6#T|K#OTh#wO9YT($+?7Ur81$wdTr!1bDdo_BO-WNh=JL0p?qDWXs z%Hp$T)(3VM&|KdScD%o3Qz47DBv|+AA6@F=up{Xv!lM@-{9_6Ue$ljBwLxC$VE?*5 zur9|`DXqw5-o%))^eA%ygTRLPx4t1~p)1T}jeRzKvX&#_v5b5*Sv(`=?+zQ~Dyl5MW)|fv@jMZa zrw`VezegspC<2~IYQxvh8*vTumPrqg!cY^PC_}`>|DsVo9%6O09*Dt5{(Gq8{o6XR zOX`^r^PuHWXWq>dj7Q;zN6z7|>eE~k0>-Eh-uMy=iLoDjro6#GXB>QHqz^My-BvCL zChH55LriGTY&Y^G4xEeEo~sofGM|?oi4f9r``d<1HYEl4<&(J}*bt9qPFn6YhRw{U z+}|-Wq!(}B*do(@p-e)#_Pf>Yhs_U%3kp1G3wm9B{j6Bhn`EM@Y;U|N5En9!@PwAO zpOX1YN5t0~U-|SFpSF_U^0oox z5+nnpg&47)CVXt?a;P*?gt8`N;ildItmqTgI5=@+`7##9Q1 zX($MejrEU;!UZf6B?ZM}9v%(AA~C=8`|^dKkIxMt{FLoo7EGBrS)EVwtI!lH zRZ9l7zWioNO8yR|+14GV;VaLZ?XHup>B_LK245HIcK~>Caa_udv(B>Gl@HF#Kgr3s z5;$sY7BNfNze{!hZa+(HH|OEnZNrmh)Qd+pS8ElY|{fkWw4fh%xnb6ps=vui7wI-_EJ`xUFt=oy;xqHAWe z@7yUDc1JlZ$)LCnfuydSHxyRc3|NVU``SbvNa$}J<5~At?>g8W$W*+3k&==G|L_#4 zc3=cwW+cKKmtEv#(G3FmY-kAywT2}cfr>_Otb?Nt%=qoG&8pS%+I2702T++E`P@6=o=@`tIFlaRF`VJn7CV}A&P9;Z^Q#3j)%W6N}cABSBGgsf6HRdwq4ff zX0N75ju(y+hRREZK5r{pTU~`f*)LQEpmyE4bH~hPGsWCIOzeMwDC6k0%cWa6=Kg8^ zW{uA6PyPuT9-HG^g~&us(5fnc_&@Fy2A=fZ<>loC+yz-2oXvv{^0=|@-ycJ%3=d`l zRRB32;^MXf@;(Lb*%06{n#1mR{GZKM#{;S0m_^O|bv>BtH zWm*3quPkN5yb||9b%Pk<_AsfuB?Uhz!blzR;^j&Wy2+k~SgD;26yZ9AK97x+pvxo6 zzIv`2cN-s&!JSBFaqwCn&X{%jZ zTia(}-yT3>@bkmY&dq^_l**$pBjX7c7S=L8v$%spx#3u^+@_Ka_Wx{40_EpE(NoT( zpj8R3dy52K$9aubsNoqQ1eNPd-#+5f4- z{&M1I8T}@<_I*SgmG6b>{st!o!(R)K5%ehSoJYu+6Vt)HIDZVye#Dv!R7%gTV%a`R4lJTiZ_E#L9x zxZCuqj?L9Mx$E}AEdkw}rM>aaoeY{IftgLt-%Tg*3W~}KzL5_#o5#dV$=|8MFN$=w zRIP0(EZtnzj5!@Mw{Lp0pI#jlK`K!oy<38sQ`Hc)A=`?Y27;QJM2XJ-p5FL2;n%;G zC7^m^L?ZQZ!%*LABK=>-HKjEi#Y+`6)qNtJVgKia07PBq4{J?g@n6>PzuS;2?!OFt zkMq_1(~U~rk9Yn5`+mA#BZed;a-VR>k_@nseenE)g$o4BWcb6s^4)oa3MUT#NL@k3 z6V!p!QE1t<3A+JtNr3^-CndL&u09#HBp0`&PK$6T0}t4?r^l3Gdegi0W|ZT6z8*pwR9l< zu(7cX6qAyYf(V@jQs-!~es?^$&1yW%=ugNl2UMM8k)Y;aQh`5tM_85-F>WWbcebYL z5Ltx<@6c?N2QHH;=T-~SN<0Q-JaCm^`}eD-E~@BR0umBP%5ArDffAgnUID?026`zR zA0MBYwKb@|SPTpd1I1lk=S6zh$boHI0saf~^WceP-fc=ieuJ1SOiC@;;2q zeYJhLM^%hRD`t|ey7oCRf+CGz?~O$R-f5L3xnQR5X~dAcr&XcU0hgM*x9X%XpS@7( zuZr#c`E-nBqKvMM&MCh$*K(4I`y2HnWv&?_ zYG~vFJq|Ql5FqXw*<_LGY)sXVczL1161qx%`&a~&?tseIir_UB^m)sc~Zjkj6x7hBy)XzU(>SjC(|3G^_Z|m%Ro%}Ka?nV2x zR?Q4!riHN_`ZoGkDJaQQNhUo6DG}A&WZ0L6M4;#->tV1%?dg88cpBZy>B&y~T}Rix zj|bNon~ZsEw#m=P#xj2|G)HNp4Vb8;oaLA_DUH4kIi(yHoU_F}*4EJhm8;?0bdj-0 zJ@pA~PHif~xw~b8Z#~jZ0i=sqKj>Sge*#s?A9!+4GM-Br0hh4qW6g!lg_LTKoz5mc zZGZ;M8rfY8Z-gERH<3Z*F4!u5kvmy$v`zCWWfKRnf{4Q3gnO!HC{u(|;*2K=`B|YU zoIQU=f^#v|{Uj^9EPLFe+Fc~*i8>@FDWCVA?NoN4^!;^rlFgWu|GGg`2aYGc(3yp$ zCGy9QVY<5f{bKkmypNBMYsbb^hk`LuVkk}4*49uM7>r+N%G6v=U?nty)^N7pZya zt=jeb4r;0aq8)Hdf*eTekE295N{guKQ$cUH3)3D z_P#)EJ6zn{0~d7~T8Y;6W^Wp;Xi-(u-al0m(or7fpDxH896<#nq-JqiB^&JEen9l+ zQd{CdF4h_WBy4y`1Ko@oi+kqNq8oIHG~y14c2ffxG{FMgoRk4s8 zaAG2m#~#x9dDwl2gUutX&(7Gl_0>QFD+(oX*Q=L{q)Kt<#e`nu4U0}9P1CS=;#;E1 z(jzl{X1Yr?OytM1w0K9TQsyyP-7vX4uC-T9@4zC>1iJQW(36W{BnLqTDiI z7!A7=bG{jYdsTS*ohpFkO~3F5YTJ1+ zAf_b#-l77##+t1g`%er<2B6rH)iD|Xs`^`8daKfZDYwDmZSIGa&yBgpdvT^8wtzBV zc5xiG-A43~(b8%Il}ak&iteQj9?iX+GHi&9FXzyN@7QH2+L8Wb&{$0kkt(|JpGaxL z@TksfnKFWOHT0WWoK4%{W08j++BcpX!0kX&|8XxV?u=GuW6EXSHkTa= zjRc&0*$)WjE^mSM6e6@w7`FeAPV?{v?T__Wd!WQbXrGgxmfnfZRQ;qp)0!cbk*I-^ zt?KpLd|`Iov)w1of48B*>b1#2_<|k73Ag%9?nx@nAVR{?wDfN2l>K2B-)qsHlx8Vqw#BbIG8lR5>2KHCfx-1oZ`& zfG$oCfL{3}CML#kEI9anb=iqI)JF9$u|+}iWR@?VLPDIXEij!JUZ z(u?(#KJz-M5t#~%bQZ?&Bn_^P7G*hvumkk`01FEq>aY+H-r3!iGg({jkmq|JG986F z*sAmc>&-vF6B8A-J~cHpfGoV;ynLGvt=50GYp5*#;$%dhQIa*~m35R0DaTiO&K7lo zJ(^#57M~onTEV!_?|ds%o5-G_(5DDZ2bR4$?z4<3?jWUmq)MxqCZbE&SrUv zBO(qf(W+KLN=i!L`VzLcF9Spe)}u$6!0hvLlS-g@tj3l19tsNRyU5U4=C8M&f~;)f z=-bUI-TQz|4~vQMtE}V#1ji%bcD(gNXx4fCwEmo3*vPkmz0+#fZf^OW%#*C2kF2%M z14##15YVcD^>4V~M=6`QMYns)4DzSIIYDE;d}5ibYwjf;nYokf@B6%7IjAUf_*zU1 zbcEu{%F%{nKYzXekNs=opUBxg`eo(2EMsDCwdZsqPFq-20*Q?2$_%38YCTxc8!~>M zqCAu0K9C14v5Y#L=(*hx>WrMHLT?>#)nc=em6Cdsf|X@lBam+zog%ai=0u%B{}>fh zWWoK=9i^Ag2-yPq9`#clJC@C4-*H+`=Gk_(T}rw&8?DX%5(inV<0(8!30WPeL?CxnwsR;AA1^=%ptc@v&Z_x*hc zjMu!zG$!&~_*cbu!?ULSicH7*iup&P5DpCv?Wgo>uF)K65t)DMQ(RZy_8PYCFDN7Rzi(Y67GwlUjkL71wQD|((&If~Q8np$ z#417VGQ|S}HblnUM%h?MJ})29A1SO3YGc$tM3-qJ5_+$}j%dxUN`&%JLhSm=^&f(6 z%0#Lz#L53VIl*9cO8#{U2K*M`JU%n@%%?l{f92;j_sW)84Sj>dM7AEYycPkW<+oTHpCR+|?L(8-)na|5f8Xk$09? zT}fmzvo78w!-&E2%c`lwH#K&K(+k&w1md$f9h>>%GVucj6$o)rFAOk&BNpf`skU2_ z5R-|CiEB?^iDr!ps0ikkmTyc5Ffo%rJphyk#KiG%JrmS}25+>6)(~=#dR{o}e?Y}! z7QD6fK`qG7SLd}VZ8mV>&m33rWf3%OHTQRWi0)E9)^>%BpV+1SczlY86*<)1_v*kJ zIJ`lM195!!-aU7yyNNUzkSUqP);5cIbcLd3l88pSwA9qp*4I`q3*g56Q`lOWtl~Vs z$dLdsf6dNayIVoC$htCK$Bl83S6HxWs=d5QSNJGacD@YR;N+mtL?U?RU`li7mOkeg zgqmSD`~d`LMox@KrYUvU`uTQr$8xm$^p;l&WC8w;PIjkbMhi?@c> z&4~g&{eB&?a&qp#U=92M!0;z7D;r`s_DlSufKkN7*->(Sz6>y(C@3hb{(W*Lcb@ob zZq|kdz#lH72g_@2d*1tk_S&xMZ>9|Hq_2=0ivBaA?H?xK)ArL0>wm|11Y3l%*BtkG zS0Gu|#x5#1lg>f&MHt78UO_|+R<(k0W*%mLbJc6s*-|#vo*nTxK5)jZVP;jg^HRV56~Mp6btoe52fT<^pINWp02&Gbe%a%YBMm#)s~E=Bb0Uq`H$9F)oAMm7qt>1}E`7D}VGXyNx{u8Y<^aq8 zc@P74x6kH81#r30$LE%Q_>fP3XUljzrbjQolW|)NCU|m*pxwyw!iieLp_Vy3<0B$ z#MYHeIwM|Sg)7wd4Lt0A?JVW|$Z_|G@e203%Jnb-Mxp4Lj?}vM8;4Vf4l=D^vr5U~ z>e`rMr&b2l2~L{x3$#AoxWM#x@%43~9;c``#Sst6JXzkb32N$)E&P}f6cpYQq9raO zuM(FNi3N=)`(KjIh^(FI+F{{|_@!*!}iri9oaPX(&V>@uQ+NNn~Xzn2(AONTzdMhr= zUvpq@*VMQ^e4Y*1)#1K2}wyoHMLk^fqAE+6Y}+I3b4Q&5(J`yO|G5^ zfsH@elvamqq#jh{Gts?`TpjybAa=_;hlGG!VY3jF?L{H=fh3< zP6b_So7e`t{8dqhMX?GXu*PCzuK6qI>zZ1sW;S$%;XPN9PpS6fzX#o&udqZ6RsJ6l zg*LQjXgw0mIy2d3*-?G%Dk0cz3qg`104i(etaz14`{9^()6e9cEF50sv*>I7=(X1xT)fYcE-9ax71%`q zo%I3qC9qD94vs|E6nBu-G2vy06zFmQ6F!*hDo|5XlmDBMm9?!csGsQ?ngpMDX0p;X z9ILp&``t{GjW&N3NPE|u%_6F2=9Xc?o|?{3U9C@c`P}(QE>~61YUv$?KOQ z{dsuzooJ);;Z5VNB1V&bjJl(tn5C?LroTm(f>dPj8h5!^Ni0oZk*}Mw#JdA}s;Y9F zHj4<*ING(ctc!hqI$QJHd*&C@ZXfL(M6D5=F&SkA&dj-nIb!b`9~S0V)mXo)^HY-B z(%w&Iu=b$Lfur8kEOsxa@VXK-_@I-su_;F4+g{mwOwSlreSL$DrPUeXyjuDV9-Elp zDvJJ2!shAEKKh`SR?ESlae}(ipcu)bh4Y(C`)#Z6myH>^E^*U6J$m%$Z`s(+_IA+U zshFD=T(hwuz+5o2zNocC$u5E)dSXd2*zwIRQ!>*Mn5_C2|DgBqhm!p`KeA_0A&=~u zUcRyy+PKr&U;V~hd)ccTejLX-L4^!zW*CmCQ5>>y`fraCM9B|-xEVG1LGMd3_YdZV zRNkDTK~0Hw5JmFFOl#C@`r;+C&+O3BG?|L1hTI3ASz+aKJjyILHj@7^VQWhp$50xK z?S?1yoWm)tt7~y9>?}E}B!;7lOU=K8^)fZkz(|4-HnN|JdxNyaM#et&3PX);CH`C<3YXqm?XoYKi8qgZNjRm=wELLh zyNSF4q`QAV>VJzy%!Lca4SG`3EUnF(1#nP%DW?w--k42`z79;s#{yeN?R1Bkit1-wx~ zKlyFt!rL50Mxh8MumPcp(N-Z`d^JlWYjLo>^EU>&@?}BM(Z*WvEpPY;+fz_WI6<^y zm|$eq;Atqge5g~a3ZbDRy^9N+%and+HK(nyCYMW-j5RHl3nPY)IDVG{7tIGOaT;+$ z1blC#`z>?&Jb~3N&emwxd%j2nObI2wfyYUTe5uXFnk1fFW!8h67bT=#kE;hz7#1)p|Q>B=&U3pI4PfHc`Luo+l2 zb0l7w3o%too?wEy{&<)gcPYWD`q$dcl#2<_Cl;5F>%3mKPh%k(XU7-!ikgu!Gh;s2 z@9L*)v12MWvDBRM4B)h+6Jd!wnx1sA15*63>Mj9jXnlFnFMX@4otgH&M!&2YTCvkv zBT%|nGQ9YBwn=Qw*2TS}#!@)5X>CisA^IAB_+$LU_WHa&6J+U$y1;d`n4m#FeY*~U z#b^dYJwwMq5Rq)@h3f$dgRmtLj}tB!zJ=PDa}BDErjF5gH-_^hSiFx`z7*L?{!Tq* zO*3sYnVLwG2yA1~+7hAe=fz6UxXh$4;`X_(9O-HGUrlv--VQY=r%{B=9BxhJ?RvFx z*f0m4=LX-->9MRZ;w9gBX}6D#0O0b;r6ezy(uyA+S1Tbv#2UG1y!JG-4E?trvN$-9e`jKclV?m|1mFmG zuDW}!8tDW~WyOfII`Lj0k*M!tXs{nWf+}}r)&QtneEpcdeB(Aq>Pp;0z~Nsc`vF-P zlaU)+n%i`*=qCOyaUj&p%ENMyD{HI0HxRQkvXDUP@bSeZ_uh#L0ucOFRmP8S| z>Sd&QRL-rg9w(4K{H6DUB+NT{a!igdOG6vA5^J`J`9JxG`t6)fWjeT%^XQ8@S~z)| z&)T-K)Two;1nd>cMq|lZIYlY0_sxy$yc>6F|CKw{51A+kpfi$D^rCHi_ zbV@tv>FLQ)L-HKS0OfQ`6)%~SYUwQ&ur>xzCw*pP(|udDIVnBCI>LP;Hg4X(q4cnG zDmeIk+~p7^&QS$!AyU^MrIvk%#d*k?&mXT6-`^_YIp*3kcuIvbCiEK{W2=`Dl=L1W@OZ`(}=(MuQXt@ zEltwmzvcnK0C4}xzTsngovqxQ?s>WjA=-qWgn)zhtvYdp^5fa#)tHtwQGN_>YUB@Y zNDm??>9L~5oL#~L$t&%M%6v2D7{trrm`ER8C-YW0?KWCBpv=iiEXF8NdoC_Sq8PH> z-UVl8DFC4_89yA~c&TRS>MNunMm$?s_Tt8T&H)S>8J&1sc8p-|E?HtRimjM|^_oIFK+C=LN^uSY11uoaKEUZZ{9InGKa!$jH@g6y6}H3!tHjuFbA|0sDsR zyWat_=tsV%^e);4;M`|!kcZq@}y$1JEW%BJ@PDmr0q zH!Sbw1%{%lJvvtYvxNNk-O?|}++_YAqjb0BszukplY8v>9@9mWri_w` z>(Xa!(#zxNK}NfZ65}u7^Y4_34e)r*=LFQ@j!RE#ry59B5LTAw#*i!#JL_0H@_O_G zte1b29)!Ok?1XYYfV;8YurTl}`10jTa6&@Rr%y0o6r}C);!L6X0k{=$JNsGoqFxIi z?bfz7**ERr4s;}&8ld{uBTKz^E&n`)V4Xeynwp?v<$pL_I1UjHcALV}k9tx^G5dD6 z#rx^i4SA^BudoAEKLe|NUZ4=4y&G`ngUzv1(|Of^V$P89qvv|GqdShKgADHTU%goW zkRpO|^iOGN<^Sbu8f*xWvJcS`|FQkj9p`?Fq5EanLDEiYzz;^b^Jtx6H1Bq=nGgW` zfKBO3RsBc9bECCoi_3tNAQ>syo0htjTKbEbN?+-=%)7Y(PsdX@B4efzNuEuf(^ei^ z#m)Acx7mOex<%AKkm#IFbH)QTo?Uo#$js7;_ZW3TwnUEQkE=G^M=!*|pFp*UhxHY& z!p8OQ+TU=jApe01TQKakxrtgHEj0QMsLfC(`F|;7T@%?rR&Fs#zpL7t1=T-GYlV@2rjCZEuE zkCa`x3hxy%Ui7U*9rnCHb=H5<6~sldMOl-6Ybz^4fYvcfFe3$KnpWk;9;|QqqWB!j zwSanRH&8o*a@fJ8N2S5FBxG0a0I@K)XJWp`+`m&zeztubv^xwL7M6tnwbJ#M_EjNb z3h!p@7m|@7^CuS^QvFdwBOY)bU;O+AF0RGDYh}U0g8ALMcUGAjrS|V$Cl!9yJo^5< zas1A_=j6lf(XzZ1Ip;iz%HDM+)W7RZwT#K6VE;N1Rp!>$m64q-S!AN3@(obcqKuNG ztk0fF0OASr;X@1@9N@l686H-mpriyRA_QD`&w11#BvIk_q(2irETUqeq0f5NXzJKs zkeU6AiEz~3EdACt#^C}~c|*jp5fsz&SV)9uRHmOQjN&XITbjgmry0?x!>X+TIn zkUPQgq_94>$YMcvS3b4f2nyjlJc>L#+HQfe#5bgB&koSp|AsL#2_YiaUHWXukp0|M zxxU^U#XM=sw_Kh)j{<#a<5DW}+xx%UH~*P7ssQvh7z(R#VJR$Z#l4-Q*} znRLf<1KGf2IA0r=z4ub!zG2)ysad1(W%~PGkuiQ8lkw3(ovzUpg-uT*QI($6fycARa*TfJ! z5hplqgC#7;=UFZXK&W>LH3FOGsfXq|(K5@^Sdm{j)zG1ct@v2K-Ya9TnCT5;Xqxi5 zA~H?5Vuh`Qm3QV-zO$+B%0QD<%6&r&67hm{DSCy|Ju01c_3LS^P6G8@o9X3mmRGXM z2%C4O-1ibLklAV;dicek;jvX$;jxRTlu!odRWQVVJI9KR%jT^HHi9NUWCn=NwRF#{ ztOEc3C41(G!S1($ADfc1&_Q1Itrwj2a(z2R-P84HdMqSg`%nd66kA*694Xd-6P^;% ziWh+B*V@Tqo5^Q{6{#?rdT?k-mwjwb9e?41#N#{W6Eij9&#+42q*lUBfG$Y2EY}`z z58tZ>?FyJL@+hmly=rJ1uS`yOjU}ftjMg~+Gof@Xx;>?#kuyK^!`~dI!o1_{aF5(d@x_@kIzM%L$e1td2_{E z9}CCFBQj6R|7JGwW`5~!XCsS0E~2yl^?aKEZsf$p(0_Wq%{TiCU<>D}dSGWvj_u#4 z03Bjv(web#5d8KhjoKrjuwOr(-oSJbvJk+FWx6z~Zbo`q;dMPNofSqORDnEGi2W|^ zbxKBVf1J^$#KhAEO2asM;sDAu%U(^QvoS|ivr8~vKe1fX9}zKfLaB5zM%-b)p*T-y zF!~Tz8QYw183CC1kzAcV6;%wb-lU2m4H`K`IEn6@iztru85()+>@{#E2x9UB!wNB( z+f%r}_&D8eolsXM3Dt1u>W4=XRB|P-eP=_)B%=NJ7qHG|!WkD6wB-(E+Mr5HE}OnC zU2fH67sBHq^}7%VqMvQmRt`uoO-a?({Q@(-*Y=H8MhSXeG-`z7v(Bljx}5lbARZOiIG7R`0m0cSiJ zR%U_dz7$yBjJ>EH4ATT0eg)v1Fo2={I4Q)WUA+C-jsbu9=+h)yMFusl7q~7OA5XIf z8jM_99D6E&h{#@!j;;3ME?X6W2c0WXe^JqE4$22x<96QkEbFPBk=ySo=ib||5yTqrqJZ{vhV({eNB9gD(m z6LeR2{t=qLD(9y|0=1XFPWd_s$_w7dNhIsyx7!&PJp2mgTyD-)VFE2x=HXJL)>Iw; z{{9g^v|kVV-l+a;gIe^odtV!{c@8K0^&a|MpDj=0lYiZ;s*oQEHs@V>B@(BG)9ukirG#AK!n8?Mg|NFn;8tOR zT*1*FRZw#zi%zBh7?xjY-~it0Z2F(x8iJh|Kx)Nst{_6A{Vd^g)NDN`-J6O}eXwm{ zp~ZLXcszGtkf(F{X=Qn}MKz+L$_Tf9T-m4P2%*4I zT6g~+mqEr(n2~|fvqzafe6pU;5=SGN9-a1;e9J1W#ATqa_Gc@uPBdDL0SaA_aZ;K1 zGl_wYy8yb~uy*}CKMlDQZJiAC@m%&XslmA_xsk#@b<>>B`oSme*Y`gI$McPI8Xw*b zX#T-C62D7zcJi?Kb(0)zqeTon!L7D4-tU&4@>BnM?$jDF3<+^&Bun_QJhcz))4WD% z^TAgFM)u_nv+=S=T1wN5>TfhH!+1V+PXuzhl)@!X5d`#X1vRU$ZPo+va9 z0xMLpdyJ$gn8`lbJMa4_GuXNddK;I(Avd@~0&w*TRRv#T`Hm*tYU^@KX0MexyD&*U zPG$x9n}a3-v?0OtuM=X5wpw|{k2?d7pKegA!$F7V#`iZ~7e%O9z5h3-&DN%4Vn~o~ zM2p$2$AzNI6{RoF*po7>|3h%>J43_N%IK{SQqr*AJI+i!gL*TqLksjPI?5j3L2MyO zJMhR>r@rIebu=S)#$;qgQd+K5I7pR3RDbB-usVD<)T1s$j5KUtb`Fre2DWSM9!*FE z7GvT!-oK<`ahu`{mt~Ekfzgc@WeGU41k-CPU-o?ZJu7(_%?|6A4JM^|~a;mD- z!WUe#Y_kVbn_0e|Gd+zAv4w(=q+&6P`zmmEZMB4QkPeFT9z_%mzG^^?c>(_#Oy9^7 zFrDpx10PnBl2}<^TC@-u@ANb&*T0_E;R0?5Q4Iwh2fav0&&uHinXTZeElYNVh^@1{ zrohcm$+BHYZ9RwNz#Y$1iI;}`*$<+E`gz*F6%Zspf_8kZHs7zMhc2CWSFhkt95Uw4 zXDysg9M{q)2Plz&Av!KVm1^7_I^JdEc6E8Esf+V|EmY@`Lg2&MSleFv(+tZ$ZHzjv ze~UG*OjMK@s@mFa%De+}NG=zr0GT&+cD^n$5fw$6a$SG9eR%lRWUNqM8YFRoe@wd6 zMWo!#FU)%9p|U##?JGdX51oN~gVt#$9#}H~YA~@h6qdaMs z?A)=TW}twarbeDXu&!dV2b2h6`X^h1*2uZMm>&d_wZR@P3>&cLyIo!2MFLFX&) zgF|*qTE`2he<`W^PKJB@^jJh2r9}6LDU9K`WSLWR+Fue`EzM2nb7=-Uf- z-uFDsh(Sef<(2h$vA&x7z+W$T*B8*JunI;9#j-z^AyRE#Kh`STDa3&s9BlYi2v4L+ z)LyY(Henyz?moB@)C*_1YRKf4YRc-xN z7aiyZssq@QHkqr5{S_a@@_(9gEVTS1CL*m z>zB6SxNCz8(}4`(y0(?SAvOC*Eb@ZaN6($Yu}HvOVmJmKhmRs^i|6>i-M;;vJa58n zl`hf)0n|!j)8hiuN|{_yLxU<<-o81-4fz?d>%mX1Z?P1_?7y}0{@#{s7y&;+4Fhkz zM7{EnMbXazQ=Ys3LpU1f6(~17&6x*sQ2(NW;-j{%xOZX|EKGgp{obGC)w^}0t{m`@ ziQP1q|663@zwW+QfS~((Z4DqgF=hREIsTh%`IjN2&{;{AzbY3)8^s_U2Gq6y2|(_% zUdH(;yHogGUXIx;gkHpL00$tr4gK=*FxYC~qVvKK(=P`7u*QwN)lMHfDH12C9~&@^C$grAX@dUE9c_7j!>jrX&@65A zEG@5Rcq6eo&C29D;#E@qBQdd*2bU;j{mXXlC0s$u~lu>n(l~A(BNb zh-}|YJ&(8#n@SGy$c)lqF+q%5m%h9HdUgjvlVf-S@dp`-pP2hWtpzL{CgiJjM1Cr9 ze)-d?`vFyOk6m=QKh{hQIFtbCwQkI-cs3m<0bls*^&TIJ-(G2jo#$f_dt0@o1(QJ2 zVZ2J2Eag#Q%vR)J^rSqE*8f(iy5*(X-&|k)(|Z?Vi2rkB(Ug__@E6ELi4c6Jl-RKuIp@iJ&mxeaNXFme=|;VpGK|z0WS8>gRA)d(_Yc!GRyY<8}b{k2o&Y# z`dSR-hSBFwpY;nG~lNRJ{y_P)zk-r!}3RpYMs3khGE=ljevfk zD2sOsllYsBo?!>joilkUEMe~sBj#Q6!(d5N4$xHF$dZi!Y>RYW^(32w&=@afFVBtj zaHoE)$;CBChmNl&oyKE60AwY`!*u<7+IiZa!@AjLD~{26>E{MY*HpLvDhC-WYbacd z$U|i_#y?2B!inrH_&hkC_aPWMe`FfjLTb`J&F<7{Ex6b*>Y$;>kff>`O>4+s$;oun z0(9a5E{VgS$lUo(ahgT%%YWWvK&~q1UD`l(nO#B&lo0@p-LJpM5NW*FMn7Gz&COe0%Twub6+12x*Y_sBnY{!R&DUy9 zj(GqIg424Js9XNkf8EFalL*PT{M#Znl>s0)14oSiMkj9REwu14v3ca=paBZ8+wnbMN72|Q-IUe~q6M-Lw!eLvaX+@F$g%aqFD?j?+n3CS?)G8Ds-KqT zq&yW-ht*KI&+TXSc`n$r^6lW+_jN?(IU5`MEx#g1R;3jtcuA$MsoK0fXkj{GS?M&~ zNw$>x6LKh;vIYcE_Ddl*A8Z>Na3Te{Iwmmnj=n+7;c4Rg?dRzuRpC+ZGFKhp;SlR0|fG zRvL^UAAi{>FA;C_JG}2yc1kZkdqhF>aKablLxgOm0nG)`;CgH%hso}KYy+D8p9j^& zwgiesCB1XD7Mhxn5ntr$oi|e5mwhYdqv}Lv+J&ZI4oP^c;z>hTB`%G zPQCml+%61gwF2yUDca zua!+Y(wqJ#lY{8?>G*Gcs|(B#S>x&HXnzq6D-In9{~$>I<^emmZp4KujE*>cpI+0bg3?IkhQu-LgcJ}g#*r1O>AQk!3e)#F zW`6=r`-H6c{{7{2y7&8?WQ7!uY~72R)t{*@Ra7M{onXQc9%x9WUm-q|@JPZT z;>P(aPKV1iIp2%P>T?>x3(jRh;O3z3o+`dI2Z-_a0YdS}h$&xd4qrS_HL+fJ@qtq7 z|AJUtMl$fV{SWNytys$kji3QVz{45aSL?>a=sI^=^PLyg~mPR`ji5`T1UyxlLg= z#YY~7wSM4MCCc|hRf}MACpTKDm;L_rEUnv|z7c=yJrpAAl^=j`+D8FJBsnC!@Nr_P$WR>J|1IKAK z6lDO3??A*l@PA-A`j+)Kf~w1Sn?U_jV4jo@CIC-v-yt7A5EQC0jtb?N)o>|lG|4pw zlia6R1xN7D3Wqt)6vrg9!rJyfhquZeL(b{gwFqjY=*G2l-+aQRBBkeeOi=CbQ8;6= z6jtik)Te6s4k!ojS0k^((r`VtJZ4YST9lM$B9>lTBPPGq3Gp{#kKAUvfybU#-ckVm zZQkmQ%b1;f?R_P!LFqEu>Ot-4I-Zd4x81ts^1bpXZ62a7{aR}L@`qHMa96oD($7XM zdl>xvi_Ia=EcyUKj1Lo1O3P8ut%0@r9^BD(#(VUig4>oS@Z=iP@}U&*;JA&}01uYt z{^@hahYKYO8@uBMNf{`%srXfrfRzc3Z+lMf8<4e3MyV&OVpTFN_rE>bhZ)hVTROSC zZ~dBX%EN2Ll$y2;e|d3!)E?o_FX}6V(*13FerIEI{y~Tj!36W-^pxc|N5nu0P^-8t zScxc%GSkT>h3kCbBK~ z{EHh)$X#CTm$qv-)i%z7K%tj|fPwGPUtmiO;1LjYG<>IebL2!`W=)aGVI-i*S>}7u z8FKBfiTG`LeqqC4z4tFLDr{rQXA6LvU5a=WaDrM?0MZWjH^qP)6&N2fiPD*rld2C&~L7RoM^zV5Ac*dgX&#l}9oloago6RBmIpDW<6rCyj z-*_e@x!gk7;!LRr@erqe-?@}yx+GRo4Y!26BOY`(63TZJ)Rs*=k5UvSQ;V~q=u$<} z74&u{C}&8^n)BXkbn`9D^}R>q2rks2)4@%>&73b)!Io?3lA&)iVbv-AzYRqjJ;yiw zW@L;dUEd>u%N9(?XKgv=(&m?Te@7pvxHg1JhzTAE&k0-#xV}dQ14y~$a=e(OsDp(j zAmrP@mjG#w$5T2K4Z0lhYhcwi#^sHHyZZTQCv^lX+eG$1-y0toJRP+5DY!B(v%_HLYOh_AP64bi5`8xst za5%uq6YYX)cZN&{OwSV9JVXACF z)llY;#5I0==n?R^I%D77gXz1eVO&G$@#tRGXCOCZZ)5jO@}}hKD9-OT+f8S9`CZrF zIA+I;%L|#C6i@)|^+g7s+;cO3X!zpf?WHdOz{5Vs7C`5nuz&PgRYdIO$ z&pNE=98pl5hXvHd9OTta`v6;uT)&K9210~umL~TV>%p3-!^i%_PnsOkR$qW(=FdqU z&W~+FOm%roSARyc zFn69KUV-yqY=oHVptDatLn}js3*b8ajykGt-{t_4BpS1SJJmBlj^xchAoqs<$#9r$ z7{OR7go@jz zGz^QRG=Kbd)xj0{8q{U!ru^~;%931+o!`hs zTLQ#5=y2B`{6UPy0A2Wdzu4s`F;0}JJ{tO`Z)sb|wju2?X(DhqXkp}lR3?{%re&#B z_3$?&^CsVxa(zuBfny}S8J%D8QOe7I7bcqQTOCA`zrJzLIbA;w_%V{xS_!iP-O7t3 zPLo~rhi?e+>^LZmDoLG8&*i>I|KNN1H;y)QT0~tCrxP1-TZ5@GGKdT)x{wb!dzs~@ zu0{zL`I4Ob*UeAHqx$6G{8zTM(N!}Ie@Ue0uMO432`#>Kp+wcLo{U08Kmh^vXyRw} zTvo!O958w)qGdnnAG$rS;`eOO;~j3JowKDk#^21D_P4FUrOiz-y@z;Ia2 z^U$bIBuerdn2WiqO%pLps9e>lsk2}Frw2VcP04zJ^RSHv%0ChEwrJL85{uo}O`>Fa zmW5OMor4hi)oMrA?x1b^CUo3h10__Dn^KVAKow5G52GR0ncCLP34|nuv)fzkb2L;X z6Xb|bI`HO$?)5zTq2kVDQjiDt2c>sdb0?QrxklH-p2NIbO0z|9iNEfv_IppIPhN_m3|;$o zG0BJs5L8(V{jXK0SIV>1AUJrnZ<^s-h zjZpm}?7@wXYiH!GocOLKa!b1*e(!D%Td|)1%NDurD&xVdSj8%^{O$2&CS5IFU0~&P zH^alk>9h7%X>vW^AL<{Sz4a8`v~M%-G`U(hIz0&sSPp;*FJOPj8;#3NzS+cV@Xaxo zu&PA{IE%iXXrT~8xjsK)H4f+>ko`meCIO9o5V=05m@?gD&Xqyuj>1i+!z?1VrC`$Y zXSKV~faOR3g6ZC*pxk*(GoKmFSyIp+S3+UFSI&*%-~Gf$ zDHpuTr-$9(#t{2c4kmf=g2Z#3q<3**B<2nT?{fc3mH3N=k>d{U&6?>2N zQutpV^p$ZlKV(pQRL^h|uZg?}+&o9KkO^2KT`56dlXW0Z zeja{UxrlH2beXzyN_4s<={FK~`D)gXI8FEYgpPxc60-PW4@7|fLk}X-G_)u+yYNZv zF|W7ghgCfarB78_#v|bgP6&_ci5Y+O%L*h}-_<*= z+m!$EGF;jzz>*7M2z5I=!>)wwum-hD_g1>WNI`wbPX^3E5DZG-4YPB#xqi=V4?S};81nZa{P@+LW~ww` zPR(Byl4rW?0u~S=^Sq+&^)Vd(;-=8FRCo~tfmHa@;v(!29F-WF2DWMaWz#52g^X5O zU~nwu?wOA{8iynk9(k9s`|8^X^ir%B+i{WyGcY|+A>p9*jmqpQ4=VBciak*Oh07}p z?84H@%QJpI{-g904&=1M*(>I*vSSrn1A|!@+V6!?Y$}pOYb(VFUq_UszsY9hWqt^= z6b9>!Ai=5ock_&DjMHt0#caH$AkY!jb79uzlx)cfgnBTeTldMu)jQij`I+w-Dn{xS zpA;55z(4aZ#a=q?viGjj2T}Mil|7ck!#fswT=_cM3<2=lddASx%-DPCir_{okN9Wp zHGnP!m1c3p+z=)GEZ7M_a$q;}Q*qVct3bcA%MYAKiJFU}r+!ljdZCW~gEBoqj0M*# zOBmVa6)tHYj$7Ta^OS zRUbI@po{TJTtT^(X&Jgy70wqg#U5OI*1gMU))^lVbw!5bUP*8#x_lTJC1;&|WzOUg z-Js4nUw$+!PiHceAt|);a})?zNrF-Tx79FPXIy^8{MD1yW!8;gnra=KnC4cu@ArA> zXD`FJreclql)YKTo2cs3%+6#@D0mbbzY(e;dPGXD9&Y3YIJWyyWU|-S%-GRUvBR7_FiuM^hFPd=O%w6Hit9yCAtO3O!j@-KG-djUMJ_E5i!)-iv9{lF84Z2NjXnyTul2(sPNPQmzlLjyIy z1exR?dk7?9zSjA^h)&eb#a`eorz6#OEf6VTQT$dCz>f zLx&+NiM(4KX(REjY%Ta+FaOsFQI&JS$3}aTHLq(LeHQ; zIT-gAThH!D<{Y`rofNwgJ4slpk~EXvf|ByA_eQAs#S^IFko;j_I;2Q)<7r$W)&n-x zq5z!nazd|oP*P#GsW(BCR{+7w73(iF%c|rtWVwxbV5COEKQf~GrLYi6Y7UyEL*`k^XX@D1bntA_C=w3KiGs&s63ZU0;au8eC-%m=$rf^>W6ca;mm(}|J6`O0D4 zUDGo!@mV$T%~!Uy`DVuw^P3wc0o6EUD^KgC?X7?Mf2KH6MUt4+LMw^`(u)JpoA@C* zB}r1fM<}s-wr4tJoukB09O#2;d}9cs9>4JAgdEXKAW&qz@XYG@5?OHc3{DH>$P}EF zPwdyFtwrFNTZ@&_x@Q{KPj|6gx~xgN)9hEJv=?k{3w-PiZ$sRr^Y{0GSXqbF(B5+%R=wATaD zD0}wqIjnkFbc&s1PYK?7B=SC+=^eKtV}LJ1Cm2 zKU|Ekx_aQndAl42KIv7C?yM{Z>v5>|bt3{)-RMmSJTI}*?!Kz>4akM(u~WxRKV*%r z{``rWqujNeAaH(Vz507x@rP=+vmXW|dGTnmSP7J)uZ^2KM^qEgVlv&!nU&DC{d(i+ zQQssdAeiz&*u$@lC7+K_vn{Qhvlc1Q12b(h>X`T;To@g5W}5`AqmSIW21i1`h~p9= z+k1Vq-y%%D*3AO6EhuquVFHUqp39%@Oz~Z7jOWu9yxtGjj>>h;9VLt<$%R~+rR2pl zW)eD!lpaSr$a?8B@=ttwi0{_z{Pd>{DYhloYd!bg`e&zH)5-g~;1|9DNG8vEJ%|d| z`Exv^-OmzCn5Q<6;aA(U_IJzcG`LRvRIq~O+cLx9fQ9&X`uaxr)vp=Ombj{>le(IM*DO^_(%7vBthZMoE1LAsSl|PuQOuTj%iW$N@#`0?wY@JnWIdT)nXkJl{r6 zLS3=U_&j&?jkc!M<_-U)t>KJqXLGXM3II!>0Hn6@S;}!*Jf^v8zkX;TlwoX}YX#7~&>pOy|Jio;BvT`=c=100ZfrPet7Dw+D%D_7Q}0W)$=n2zmR8Fg=_W zRH!D-M<`Rdfhnf8{EB?exx8Dfxde^Ka9w@ir5|s$5l-Q}R55052k#J^()`R^Op1)d ztO;D*DZ)RihkLj>7(0i4+!fd}%bO9O#bz6S1Qx@ zz5CthC!6HK?l0l*IPvjFUnQMvWOI|eikqf%Q`}qPxT=36ZmM{wt#wpHtVsJL=%G(9 z7E{xHHQ@v`x?93M!y0O#Wm3dG9oW`6J0vTz`qJu(V5Jglue4L^_G{IFa7CZ>G8TV9)@?w0}dfW};^jW96a1^;? z8iJpO1^5Nv)kj}UdQeAQoMqxqA^bVS>8Zj5*{fg3e;tZejc0wVF{kc;=!^DnAt^4q zCZCiRslkXzNR>k%TCI8lYRia%1nDJLoe}IhC|3+Ox#VA4ufSrGX{+A)Bu|Z zXaxRn=F>>XXom-!ijq`3aEp{rQ)2alkhYqSMM5#K0pjc4ZW*<<=_$N#Ui7iBl2DtktK##i?G}NG?o*&Ps(N`G znw-Y4!WUm`Xi1z}+%raG=QWwUJxEKDm3Bi1+yi+R%apGtEIFJ$nDZcLtZ1~0en~@| zG9t~LKs~%&y)&8#J4S~>?dLL$O@a1L&FRJ0F%7I_T3#Zy38rDNnKM=G$wquUI|Up+ zpAMbtVp{PD$^4zZVCX9hDc%k6N(gV}kC~_IItSQeY1s67GCg(=z1{_&Gz@e)hfh+i zyapc{SWAPg?7Z7W78618IomPC2@NhrMMssf847``y5uHjFPPC2Y~q<*R;dk!<~Z#^ zNJd);>8?IB9nHsl3})aUtao<(bzq(J}YT5-zaOdb=Uo#3fIdUWJQYGo_UNDw~ z&4?d*^&+`vDcHx&UUMrM6YXI7>;GU!#4=NQY&FH%HM8ke_E^5QugNYh%{w^h9eNwD zLObnvhP=?5@e39o7AvM4D)i22PT#POJ=jFRm z!+LiDB2w`0pcs<3XIW@;MG!}j&r#~60L}a-RCb~Ka`0%4Z(ct2s(vi<{dHegA|les zn^ktzOt=Uv$T~tGJ;sN&lx1Sz)78{zr&D`ivW%XpgFgw9MNeeSUEdkStnHq&N@kcq zEBKY&S)Pg1(N#=#|3U|znd_l!-1KGun}QzlYim1m)_X?eChK5-C5zRqo4nfB2VcN^ z%FMBJqAgd5H?pa-U%vlInK_k^w#8@Na=2*h+bNXfS70yWT?y3d@w80EgYdqWu{xwE zOO1r4PkmFdXwn9%uY57cj_MVXqG>iQo~;Mdz;toEP!F|m1bO-Bx9I}4v=F3$@iYs= z84CVGzMPn&zM_+9_2y`rGokiOt4I;Yd@k*-rmKwAhy0_sD#~JJhZOS zZJ8A8sSqx7F28~EhrmgYvX(V@L#CRof-_pj*{NpYt0Qg)v9$6V2ckY$HAk?61+1_j3&1|I}sSkB>V-q)b(#m;0^c*4b~;*Cv)J|v9*kdd#_E^nS&uuMeD8g z&uE>tvgJh~26AM4a1mM9}Z6Aw!&n%zJ zjsvAp=P=lC^M?+~dPZZXX8k$N7V?vT#E;|Ny^4aCto+Au6nO6dJm&AUh~wNP*iV15 z>x(KknnV6&mA3faZ^DiF)H|dM{&NS6x3yq{iul|u?pJ>3fK55VAEnf-)C|}GOS{|A zqdsXR={%Fnv-B*q3L40W?&#)RQQPB}5Fk6uzk21#R`R6d1!A|EdlR;id~UWD+-ID( zW>x(WsMfZHfTpKMbuY{ZxPb)0D0A->vuVOzROorQK;gWsDc@@*D<|D1YqnAe{5#Qel@}PsO?T(iiUIZ6t)fSL;0}AW#i%sS#2awRU+f2 z1d0FD0VYur^{oLQwBF{j=iJh(eI(y1%HFN=#4_C}=ln#0r<+!%0w}iCVa{Sz_)4P$ zH5{{_27R~zRLS=678}SERaRUdA;Fw)bhQF#1)T&9NM7PB0FUl*Sym2BVvIQA|8t=kFi1le{0JqT1WZjO+x<*q3X&6IctA7~@A*k7p4#3tGL`bmcUmlM8(r_PAtr zFyh+ww}Uxl^Qn?Bpsq*ArHzT7xg{gIwM{*Ye*49UL-zTNwr9@_#T&KkQjNu1MexDXlLRx22tB zoqh*|{Z3D`mDUf0Vps2-+_=JYiQ)HjSWtkwL(?z2^rU9bZoATR*+W#X$(ls_w$IC7 z<_qizOu6M*EIRAl^p?2>Uj^m8K*4WLs&BT`{2+$=Po=J;01ZDsp0sC|j0BBDQCQK_ zzxRL;Mn;Q?qK23n;Yrdt`l|wCA_qit@HX+oa4sL1* zj^ikd-8@xhP_?-!4cd89YG6wtQ#}li##1T2gP7|aZPyJ#JzlOj$^w9Xy_hvp_Z15ox=R=h)x&&oxS%HyXuhTobQAuiJ53;WM# zr%yj}jeo~{L?}FbBjf8|%dgc@KDHE$ug8h``Wp^sC5c&7ZIMo?zc*L+>O$?5x4u?& zLLe$W`RNs5oZAViR{{F+C-V{63rw-mrp1jq)u7kCXfM0e&!Yx)AZ<#hw(@FSNS8qP zrOy^i{{vpaYY4As#y`B|{P47SRP6YmW9G)_Tt zzXq`=DE}qf;wLTFX1OEx6y<5o?+HQ{%^y?>o;G7kce+5A=LOPSz8`-zz?O9%(4u-q z{>;L$-p3nQ5NFC=p9Z9Zmr9n8g z*wv4`jox$y_~}EQbpZKp)n6-$6<8QdOH07MgQ$oVI2T?`2qOdyoWCJVG`Fc2+w|Z2 zj2k2VC5iv2BF6})|DmmsZ2(hegH(TaVS zuD>ne&}O;rB~ z@Kmd*wC}}tp>B=%>8FG5j@k>Kv31o!b!Uv+)#Fyh2+IXcm!8b0Y%Yzrn#|S;yX~#~ z{075>%o8>UV4oTrUa^kK#fFB&fhF^p)Dqj=;ape?sTLHz^5`jWv_@|U*f7yI>>+Jq zN%z;DL#W2u!Xnk-b$=_G!yW;bB$!oklBA!T`%Rr$QqWdYFu6;Jn{8b{E++A|jlZ#E z>Wz_Yu!J73+hzPZC+^PkGI}{9+&=%oI(A?ygcw!DW|-LjDBo`-d8iAJ~BU04xkzeJ;L0ari+9>onjqqJwRF_bya{ zH^M?x_@u5#0cjEuGHQM8c_TB8u*$}iW|zjX5~y)(iC!7!q{2l~z1#Kd1o|s?0@fRi zRZ*N_hyJwwVc+T4zGi&I*wTJPjOeRZHO#j7yE*|e^H^Wy6(NQ<$MGO}sB$9fa>a_w z#JQ2+ib&PfGQizn>(0g!q}B;o^{z??W{hY2JwUgsflh&EF{b?SX#_7FsM5Nb0%!#w zBfXBGMGf?a7?;SRWHYUbqTf4kxTZZjpZLJ8j{wm_n%BbElxEfmNjbkl`FsQ&0rC^- zot?`3X9<`D!IpKuEJL?6b3`7aUa75EjEwZ%p1V#*Nm_IUJ@kCmOsv7b($uqd%;oRN zi|S)}V?Vz9;e>U8RcP>-_H6ZjeFV#mz@=l2sSIQN9r9OoIytPauFp-I+*5u{#M{%D z`^fWkCtl?2%HCXMHsPd%MpkrOyi?Mt*rHMcUTmZbB>Fa^Sf{akYlkd}r{s#dWo>gejpa@hnofUG1HXRV z>2#KxWI8E%fj7#u4`D*HyQ>5DKM)iwlq@TL-@H7Qun~rHV5EF=m!XmHW-Xp6P%yxQ zPmMTx3pf|PfNfU{y>5|W2z%So)3zz zlf0-~+1l}@qEFJ9xvMBttrr>P4;Dyvg}I3eD~_-zk~2s8D5X8WU$cmpanU_NK~yoH zRV;3)?Lz*XRfxWxT>+z=D`+B(_T$IoysG8eI@5*hBQ?y8Kq)u21fB7qu;~81MJY>Q zVW)~LMa|i1RP@=CC;8oD+pBBAf{sEoCRfy;{6{7?XXq4O?OUfQJ_9XHhHI>}Ob6YE zXY=8lY41guTyA{G8gg^S1?9kE3MwDKr)LEaAY`(iYg~A(|ABd!=(q!_?YC(|ur=|M zhK@?_{~lTre!l3 zPGsl99d9a1;7K$r3$Q&u{$5G2e;0hXgr@vwI||2HxJw}7!EQMY5eW#3X+3=V7ig0K zq3Jrly-FI(xo5^+(beCm|pKJ;t?j3tz2e*5oHB6Qg&N;BygSFG-B4uLT6K8hLN>8Ih~}h$K!xrLOHc(7rhosKSK7@C@--0V>+V~ zptfp^$T4=i=i~cZdrtHzOFOo}!>$O^!9fLm=R#`USh=nsS-Wz$WIy@9897T0r&Mvtf-haA_< zqTkhFqz~=HD@#d(+8zcD0FX8pw4R#rEg4sNQl_eu%FA4m0`OEM^ z(4&=|g6d^o^YN?)dnH%8qY`TTfKgIUH!&|``h~_N0=HMuRYyR*H~sYGHNvXDev^23JRo1$N^G4qrN#i0@>h(gaN2cnbia<_Jx<;N;}{;NlArC zy6%r72vd|$7z%67j*br|iUfc6!{Kdw<%1h)_9$UlL&}JR`WeM1lLRExwO0MIUEGxf z{s=3Tp~Bj%l<|U8{Q7`$-$nO$Gw)L!2N6P}YR!@UO1f=Zl1-ML&+!SlXtKCLt_b9Z zOtbEGLL)ST=qoe$r%!iRR#x)(5wx`KVDHz3fCS?86?j@&0ICskEI!&>&zv#@_=EjZ z2J5JH&0JGbP>}HTO^g1H2^E#IoBI;tj4P`8n(&`Z<);0n3(tfG45Z;{N%9Q0B--@A z-fhOI;`#)YfA&aSu#BEbHSkrO;}hTq>jjY9H73Mpzc#r<+;WIojO6$Z5U#H42E2&* zN>Q+~c8(H1lLA9M$k1$Q2UnFuQy!)m2C`o zMK{I}^kM63Q1vQbb+xF%hEAX@X7i7nxrzE?^y@Tq{R2EF+lNlgz-a6PsSfQVJ)kc8 z9_Zu(8T4_ej?PhnNBlFhn421*PGQ5mRkM_~ET-v!#J*Sn(Ys4rLBlisse>w>{oN5T zu6!;y(wTpyo8umB^%SUqbd}H=%sng1b?fo6_F{%^JJ7p;s@UUojGS?OUAyJ)z<8){ z(Re-ldjOwq3E1!9wK^MzCo7XX!dd>SMa|xAcOcm z6K~u$?b{T^HP!E2Y#t_lH_lu*)H%t!`0OJG_WPfHKVn%2qx$WHXjl03ea>{NdfOt` z8$LQ(`bOfhz8bQeCBt(T9+^wyrtaqM?*zCt0Huv4+9b@_&8T4>*fE?j~f5iz3U@R?Xk#E@LGxo)-H?65d_v=Jw<#(Fz zA`RIUK>t);jXoJbG)g|{9bE8n3@g16?b^d_qaus ze7~GO+P&U)cxAx<7W+<1^#_Cp|9oZnAW%B3;~ED*U^*duPoh5=qBjV`9jtbp+AAcPx z$Ie>%HZ&{-oVU~0SS;9pai_9&c%CnQ$$*N2zAtUVJc6~Iq3}3%sQl^glg{O2ZiHj? z6V+~W#b63PTuOBfjemid)6=OnHQP`2fKBjIr;Bi#&d3LKsTt|Xs&qUCuuN0YbO4h0 zXc}*&@#rL<8h?Dn8>~YYwMr5<$57Fh3&sr4rQ9WMnnhjoSY&VqOw`=zw63vbzB6w^ zG34k=J4I${u*S2fPk+Qp?^1Zwz_`wd*|IzKfh88{HYuXS_z<1-Gjz?=Y8_Y)_XU0z zS{B#mWDi6HlCWsNjINGMYr2BCwsD#`WJP*996%9*^OmqolYBNJ*S6t{Uuq&#Jhp_Eaf_kE>Alh{FuVR-tr>Vb%RPWrs&;NN@Skz3aY4m&XjO>puF#(iH zcT6s}$b+zd46OBKdXc5>wI$7#StvcoIZ&%7n-C>H8l8&&SeIj5+aj+@k+HnPamVXZ zf0I-v%j5}AA$;paYc@O1wQEr3G$$2m^l+D_jGm>>(^0$R?;cJ~Qj5db`}76(}@Xwz=qo>Py@dUP^^S1sRz!l0x;k z0%E;jVX}{TlCYeWtxUGt2G=U^dhu4?o@d(+dlh~tYxUp zdx=+pKM)nr+2RRON%{I)rx89&5jv zYGalH-Vd6zHWJp2YynA2vBObmLdPXwrDKd>7|w}h@!_#Xl3ws_b=Ax-u}GS6`R^=; z^8P~3{702x)hRpQJn{|A)57LVe~=0=-vXhF&}0gkBiup_ut`Yhi<60J14svh^2JgX~yih71*Q$K=Dk%WGjvICkw}qf!36*N6A|ymzj{YW2(H( ztWtKbWMJXOMRJ$e8A7iY{Xir-z)YkC;&2v!=MUrUKXy%zelD<_n&?3Ra82h<^q`yO zza)s(h^4%<{~(0D{KVy^wlM!*)r9#x3B37W$=ReXiUlGfQ?C#|U1&;LNEuie>Tegqs zOMUQ+jVbt!B5udu4Rr&{$*%uNcIESH?~k+o$71$nNA@wrCG=;~7b z$jltC>fIjfn5nWQgW638D{<9g0jNA+4CnB_r{|Pend+Z5cwoQefUQqz<6H#P)PL8L zWge&^c&AE485GlD6jSXVfUol*8n-fu`f1bh#SUDs@CEP|q|>|h^}%3g;}LLT^5>c= z7MUh2cg23&v^@7<@NIpXOt$PMUsEit^jOJ5%sRp$e$7X3AF&0k?jHjM!+TYNcbUI1 zlaIO(lu-B*&ZXMo+EG5{6IpoW`@ko9TT<(!9 z^!;@3+f6etPF;Yy%sacC*BC43oIXF9$6sh)if{d6QqNYZ5H=2qEOE^7Zj)AV+VWEz zzPLs#3%xd*r=02R$0bhNf89U8NLrz>_9axSOx*qjTOr%~H9X7TYu^P6SF)kESZT

B92c3#|l@G}K&qKyiX!^Q!*1^Y-fMoT!nIrX`T=sK)2qaZDMR?`I2D{Q|oQ zb98tebWbnSJGw=0{Z}^hxkH~(_)SX)=!G`ICoZc%HT}q}7;0SrOb3k*mikV(1qj^Y z*2@8G_BJqt>2Gjha{RP%T(jM+JDLY2e2Cf{-_8zk=Db?3zR6o@{*huSC?>XRa^zyC zgz?nb?smUR@PqJ^Ft1tj(1B}L6)psNJ-({Z zcQrclhP!)`-@V4`cdex5QWfK@n=GbTMd+{e}!Et3j1?S0`B)=NS@c|a)ZWo9izJ0j#+0b&au6dGSNc1(tp3+O?d_OwIt@|a; z=hF0x0!ki1mUnugl&Rz9qV#MW>>8N>9K7fv0R zHES9O;#3E(7~0t0#gpDK?(uR?JQ;-yDT~B0nuh7*g#eLvm8OXP zcd^X}7i0~kGah;a0)5xMP@q|f7&X*__{BccWjggvN9JE2a!u1UJKg4i z-Pbvu6`ZQd9bhGpUn6Cy$nxpKIVr5* z!W9-5I%huV5q@$>MIrm`%VYo{7ku$mR!$P9)UKb!%bA&8CURh&(`&ud3QgT7E zz`!gLZsT#|S$(%;+-)$=$7ysZWvm>l)r>UiQrP)d?_dXK?tHLt?!=|=V<6oq{`unG z?6F;|FylaTQFG-M_FK^dPp-d>ywXbcP&cwJ&ilpqJUlf+7zA8jBb%`go(tBzRx^y4 zE|p<4alASL1F*E)Sog+`5r}e52XLxrfe*xFeh5AV9yo63gT&^2+uCsRJ+FRNiMZ8; z^?AZQq-pUam!1!W8qu_o)MHh%PEQ=nL81wM_tYD#p1~UI%mu1!k>2RknPrVWQMdHF zce*~~Q3Q66`gu8f0!Fr{J;K&zaprY~WO_r-A_sHn^@*OXZ9hw_B$NPZ-z~Aba{!l9 z?PmSnonS-psyCtQeh{P0i`5(VYV)$j#%p7PInS9Wn_fLVlD@cRg|e7z<*I%5&cbPo z<2jLS%_G;N>7-?~kRZ5` z6s>N(Pc4Frr^LMkqN0iR_AR#`R4=_Lp<;Dx1qIcM{EMs&@RoV706F@LN$+?+zX8bC z>;@Yz@xJ+?#AatFWDy!phjk*E=4=yE^kDO}qI8)oMzKG;wD79vH3`h=f_WTv%CA-B|%ESz*}+@ zWY#CI#~LhooYbW+^ywIBT+z3E);48~H?sx-^R-?myeo|}UgbNgU=#-MdQcNUw|eY!qZ-IFl~6gKKVo0XWBOnTnY^e!Zi-E z23$M0UhSvQ8fq|f^ucfTJFVmq7Z?_#OY(<0}a z>*DHBj%@tG!8W8=N;ySYBb9*OSI9W0i*;b^eW#Pc0Q{pMq8k#fAx>9_S|pZ;wAMd zV4TNwZ~4(gI;QXI)aF6VrG zbJ-ugOw`;LNR9fD@=MT&SF8qq)YFap?M2K_5TZd;Tp&dinXhQuPg0TDU&E2GlF%sy zmX^DsdQoVbrazh*Kn>ku32395%!xh`@((mbyis~OXg=d*M0}i*DiFrOU!;OHtaLKT z1uk&%ckcF$*1^aV-+&eBoNhn{Sdzf`^W~|r;poywHEWWnyy3t9ooB7>sZyBy#+A~y z**h<-f!FV`dy#B4LnVCtayBu|Z3n!zgyzd|LPl=wd~H`1xi}7eEe8AL2D+)3og16) zF(9qIit(!@jPz$tn|1m+Y|VnrFYt4oV-)@hzqN!0jSie5h+zZ1-T=xzbG`w50O-)0 z17y83sz(L!dt%pa?_+<$vEq)<)n(x-yAj0pgvTf8C36nEy#lWG7o{Qs!V7EsYE++} zkebBtLj}AFYNTT)kcI!e3O}<=*R4zt@{SsM{iWS{M@sQJn?h<%{NaKQg0j2-ua*R9 z4Jjq2xgIOp!~ImbhUY8O2?I@ie{bcx!{n?wU8?xR1=aXBIpwnVdO_kw5!0n8gKeb2 zBnwKp_p~i?TYlE(Dj#Sw_ck$;JEea5cvk zWNa#?p5I2^JBXDp0a67uavASoI!ezRpRj7%g1Q!SDMobZR@%UJnc?UCc#Z_pSo#Dj z=E_NM-Jjjfg5+1y5ERM4H2;_f&apq<(f6s&i67OIaix|9TymzE<9b|`UrmeRMyZfC@E0{6M(1`a=HW$sx135@~8Xor1LS2A~}7G`ha zpyCYnskru=4TDEjS&LaNG)2*u{DIXPXQLBTl6w)o*KBA>!l~=JLBO@MOUE*O4pNkk z0J{QUSSu&FqY<53T$VIvZR{cR2+XC2YkRWqI{*~FYKamwhVe?k(mC(yAE~(=FwGvO(JlwuDrZ# z^jbPAuXsl?7^aNUmu3N4*bO=MC%Wq!!l6VbJm#UM!(7{gHJdMw+~@WQ!Zz0WCFOPK z&6z(g6NiFHDTT;oKkirSHIugpy_iH@Ay~=M(D#}>F{$*&S8UGO+m~^2m85Me!Z5QE zwKSud6%TZb-!|O)*$tvY$GZxG*@V#4LHuV+Z(gmbdmkv_{sWA>4*NTs~x|e@?g2hpi6&WTDlU>^2+ILRrB_RU{Dt|H*b5-bGdK*65I-H z#CeIy+ox@*P2KKp^u0aW*EJWW9(yXfW<;q!Ci1P&CMM$zQe~>DVh3oQI+b9D#8wq7 zNf{VvvKE6L(^*AkT3$1$00l_d^}wEHhNTh~2x5QntomA5idhJTg>?WM%cW`G*+u|X z2T+pp(PGWVA1KG`%~B203N{@k{qw-nbBZqZBhv? z%~1Z?^&h{lxaZxmIOt->De>0U!>ar-Z4r;0?%RB!0`wx=Yq!StIL$q0>8?mUB6^kD z*7n6>Y%KpacHF=a1Gs-i6VfvFS4wu&Egv4Ni8On)khyI%IXH4;OD;ygFi+o|H=Y+- z-ZYjBU1F>Ynj*q;etM0g>xAey$2xj#_hD4VuAr^JtfcD4y`uWA@|4^`E$3A2x1UB2 z`q&J{$kn)w!6-oibVK9^&wP8WbKXtM-V0+hD39$IOnqwJ&zxZ#D%}d71k~+;DV! zA#r=ku27Es3X=2KmIlRs{q~bEgP+#^X7;Xc?M!VoIU|E_DJKslGM& zZ1F7Kzj{*4Np#*kDy48B{#GHgeE1upmYreNwlZXt)hHzFM7)j6_NAlHya6$0>Zh&jKQ5c-7;Jlpz9l zxP!6|E8+KV)HbY_N#|lHbsv?msH{`M<&HmpZG&HdX)ca&kdLPj$WRvC`$9?CYJSUJ zVis#tSyU_KZ~R%&$(gJ9c-yAQBvDCEIP;Q8PCGoNL8sw*9s!%)v@UF$B@U^SvLNw5 z9a0->v+?W)>EKa3pn6ZLCPfLpN>TGKZs-z|36;^()NwM98j=pGh+*oxVu3NPHw}8S z?gM$fma1nMtRtn9wUuQWvc{2qP5V{9H~cfjr3}qA72VJHuiLz57uQoAbIGIxMMT+hSJyNp%{0jWk)!2He`l;`3vx=7}balDH0Nw-_?x9cV;7)`%9J*nE8Zvhyd1Pbsf^t_VA}L>yw^d6x*0XrcW&uWjN(K zsQmkHwj^=yNb2cW@MWnt?Je5N1dmdr+e<&kBBNiMDr>8%=Oe~2{*+>m60cBQD8YM@@Q9>3sD&b?$tWo!g; z&yG#Z9mqWQgmod+7tJeK%Z~WQxr=jfX`S#lMh=}%i#`s*nfik4xbGcxyYAFk`1qg*#^!;IlB#RoEN6RKnQ{iI zTywmo29z$|JCM4bu%EyYW2KN7acMom?K+R$?g3>b^AlME9JV%!*4Xh#=&#vUm?*L& z1XIDA5;}FGtHYW5>b(NMRCTI-QR1W&=m$nEV?!s3=`L{9S3W}kyZd$ z1&05y+n|cha!6KJ-I&Qrx7ep9=gAS6rT(dv_4}dA6?PovUJ=%~9Ll@{G2O4iE6+Ec z55YaAU8k;;GB8WEi%W}=uH6SMo-NxzO3*bKkgYJ`|EdYN;+}1Nhwbe=3tLlrqt?Q$ zy;J|nH*27~B*%)m=4Y_&_eKBEnL3QFatGBs2b~aamYlqY?*NHKPFI18bl_a&?2qI| z{JwiOh~oYZeQ|t{mou`z7`ANi%OVf8iwgEKA3VDU|LbH2xYFNms|4DDIGk2adR zcydg8q1ydq`hDhmNOY!9e6=(y`{3~FC4O}#jJ-kACJ118a%E=;fkbOeDh)T9EDMFf zBBFzrmeQ8qujIG3>Sn399L&m}Sa=_K2^5Y;&6)f;h8w9$%ovI4A6a!~X%2lyp{?hT zqYv{(#C1-~d5kp9W#FMV1 zQ+*knghU#aCMo%zPb=?wlubX;c&|f#EAm`>6*kp72|Q->0L?x0i2>Sn zxr)7|lb;i@=5LPJKzP9Qj^#|)*DT`*^b=tDhk{TNP7M>DH@xF&pue+JQng5i7gaSQ zJZwZA^mUK-H@2DLB&}cnJg7@cUZu>vmZ_()y+@UbKs;xgmgZGvoIGdot}|G@PJTwZ zJ#$|O{ldV0-32C!k|n5FEzqj(6b3ycEwStIOq z1`}?VPV^BvlV9#I_1Q>A@I)=kUP}%Nd}Pf!%&0xgaw*)1BlEcbra3dY3zK%Uk?a2) zNoSxF+)=UY;IkyAL&1%MjDm8NPG-soB(eMIsHo(P#V$}X30W0$G`W8%TZ0;pgj!8Q z@o}L$-G94Y(^0~i#9%P@^j$*%R-j=ps#5sDjM4Kgq1FR_Y!%`Ag$e~Ohj=H~fhp3z zwsy|aWAJ};nr`B~(~BHMy(vxf2B*Z1$pD_`#ctDjK)=TzXLm3`z1VqlYA6_G5;K9t ze^$AbYiY3H%Q9i<9OOG@mcP%Sq~D{LoEw(me4`@;vG1i)3X@YsX(>HmhzG(>rRC=* zva+%&+0n=8727PJeX66-s{Rx)@@V{++(vR{fAL?^+MKZ{0q@QK<9Hx@q;?toY4hvB~W87||8}^S&ObFF;B`(4v&bFbqauIuY z;l?`T@%#}oQI|k#k|IjiOiD`fTH6KmfNZANfXnY1_S?5bY^L>*k*N6viZ&$ALHLkhq0$oM8WYJGAI%|5}7UROMWFe+X35J zEPqdR`{~FOO0yR4{c0Y*!tFgQ4nNBBIUDmIbk|9V6hCn7vkDqu6Mp>xNp{*A63$H* zrQ-D|2fGfVjRxGzR79}gs7XXxthE0SB+G-IeE zq64?wpA?**SXL0AF%Dsl$Dzl(bu(%)`Qg7qVy)kITR_#U!a!~@9s1S+vp?_u{oSaM zD#o>nQ+|9TPNp$bNc0*uEn{qqt(Ahu*0l?*WOwvxV|Xnc5y^+f`Tf)9;1N#SdFDtW zUiG>GIRNU%Ww%bWZZgo#8vFhGBv0G*3KdC6PPNFo4$a8O=sS<=hoIm(q&KM_SXq@% zbbv57*RT=lr=^aLZE2QNP!bA`AfoOAw?n`7QQG15>c=B!QlS+(>Q#gniO9V#I7BA^ zuL5Sy#~hB9FR`McVzog@=`;Rdor$opuou9={t^XNVsB3mDI=o-@H~K_dMDt#trjuT z=NMcj?ZGUahN-A5O;9%%&%V!)P*=V#@|iEwNAtnCS68eknj6wgPTY6eJK)BB;lV6C zq*2~ynP!cd!1 zM5kzB8n@w(Oc*t25(j>PFYmy2&(r1t8pR2jvVBBh1a&1El(07nbGs!*vZ8Sr03J=!91v<9sN9Y(t6|zTC0b zadbA$=!Tx>pDFFuzVLq;s$;7Qe}&e=bffsi9r1G%>A5ER4A>ndpw>Nb5?1KsD>%^; zOuJWt;jkeka5_nueVF|#Ivn1-qr!I#*{*MLj%!b9P#`-O?)T=V2_R(A4!Gc!|IBB8 zor#h(`%CI@zAHc42Tn}vGp9f^U1s{b2>V@m@j@uil9Qh_E^?aVleS{SM^AzeuC9voyigXayd7Mb+{L-qd=0a4Q5;W?5HiD%g*C=hzpcyB_OtE zELLl1Xy~%NthiXo;?+YvRMs+5D;M0f&_#c1irVLGZUW|_e%4yP4+L2)pu?7mt=#Gh!b>m-$$-&Fc~K3yhK9hEV*e{g6>#L21JIxZDp z*5i_s3$$taT??;NKsb?3iFC^N4PIn7hIj(fE1uakWl$McEru`#>v6}w~ zGCJS9F16nxbWTu`!)?Jbaicn8>HmR_?y7xsbVr7vMw(gfzCJr!2-s6*rlzFq>}tTC z0&ZXpjEtx{hzR$B4zK^x2@kYvrdM5Ah1wcSd^dXC zARK+^<>;wQ%~0NypPSLQs&XEO-mNX>gHOWNbX0)PZQh&8iL6)DDj8C zQteq$PGguji<4&_WBmGm96ptZPmkH&Nf2?xKBVzjhLo+roQ!=e;jwI`Lx=5XgL%B9 z{ImjAzA)+SyAG#OWI1O|EIzWWvp$g7697jh+r2!@xm@*;5$kM!N4U3Si3)ZTx8~Ph z;q_%ggzQ9Y7G+|98LgPuZu|@ir()IY)bq`aj*`}q2U8m;KZd06NJ&zRIKNtzK$8+S zlwbyl_n`qgYo*MIDjg)hYoKQTaT0R02)8P(AA>HjUao{clrb?V{A>3(IAE-vf|@3% z8M>W1rJfRa2q^EAm2!J;4@bABwS>RTZ!TupV*Tu%htqCoGSF=Eja3?TGrJvX&XBY9 z_VpQ07b%svI_WuE3%VekPsLo#pd1iZ=->LrT!<-qNAS~q)zH+$El|k#w!Ur%RBkLh zyyBa(tSrY-k5YCf=;z-kk2iAbKff+!SwMSocq$;X20o`7ZBtG-QVTIPx6vpp3S2TRP?X%lfVZ;PyFj)F55=loX%1FSG`zv7)pAso*_h%|a(^$5{2 z68Vm&u-n_)@9PNO&4dS_vP*yZ6ua8+5_fDdV9Ub75*`tu!oWK9oyCON=hk6{yr#)@ zIhG)1X%B3^1giyPR}j-sQo_9?sxh#t?2TnyrO-@hFr|OiYWox+DLCAfR8jWpf-c<5 z#@%SsWX)upY!5o5lb@%UVtoDNBGotDe zWz3KsV$V2C^_!@>bhx&?tmjWB5d}9um`W zfYiZHi}^=R@aW`?Ufnq7nY!VRYkLBxI7bDkQ=`o+weCQuBO4li*~Y&f_D!vAZU5Am zFEmjEi}-j4VPWS2e;EI(_>a+RR)V!hJ3D2AY_5*PA6uIiPp)xTzOZb0wOaq&g=7D! zYwN@!a6Uk>kBZ6OpHqz-srN`!QgW~w_UPN@SgOpQI^(yxzRvM3+jnHnJuA9>rSb3w zUk^wn@DW?p1PL7xAp`yv0rmirr@-^egv()L3Y=+bc%yB&)F2f4fr9%OVXLk0cHL|J z25zR(*`kEwzV5Su({Ca4Q+pav4se2}-!xhS)!P$2bzDA;L*Bnh*}gr6ASShK&-kbH zY#lD>XX4fms?#5ETbgYq+m_)%W3AeJTuK?%!N3(hKol81a@JL1=W(7kTCy`AP#MkT zZ>m_js2X0%ckpJd!Tx)|6r!sJ135V(n0odNwa<*JO*9vGp8vHNKm(pM$*Tr7|y#)OC^p( zKO|-&l43DCy9c?t2Io23y>1YX?WbjA>NGVT%3hU|6hFpS;stll zDEUqiwsP`KHan5A#r%S}k=gT~ZhDCM`1AJdL2&%+Ghr#0e=}ozktJC{rWAlC9OPV7 z{@`>+5{O2EYo}v|80i!fUFwPFu_a=7|?8&*sf2&L)>x_E(xEu93wNi-~glS734r4^$e4Cle9m%1ehhj}cRD?VbfObSL zw%&l1(rh5>=q7ccy?7WfMrd&Kz^@RFA2>t)1Nbb;>x-h!He~=s;(^C*D=Rr|3sIEZ>_)a|q@|Q@%^smUB9~zny1@vA1tewdW&i zaPM6LSIVm9K@ZwP0UZH8`pEDk^;DZ`H#}g4_$_2N-XP&a(az-a5yE2`$VTBuiPQR; z=M{ks}oBq#|LIw{RGxMhm zDmJOy`lp8*ijN=PLLhRa`{;H?%j?CIIe85Y4SrAYcfe00w9T#u1vfSPV|&ZNbT|WB zAt52mmFv{3T$V?$AscO_9U*LXGAhmS^$)KL1e3x6H{=aNEBIrr%xDzI6Pw#1C+Ar% z>gVq6ZamHR)6`GVFeqKu#h#)fdT;@cK?Hz*Sb01tM;IJ7W&Qex_6hfD3&1DKHiE0a zAWLNpn!^{Gvds{nrogcw#?$&7%#EQC<$WMF96>BDLi+iqsq>ATp~*r_t8nGy(p zgY@dv#0duQ9oqsx52yq(PIKS5k)U?c*XE9aM*=t)BG^H4GPF!GCV>2H#dZ4;5{a&R{X#HC((yXT=22 zJ%^ztaPK%S((61$&Um`$AF#{kZzk-&-5X-C{wCZ~d=R+2hA$Y`0Du5;a_5(GK=S{@ z!feYZi}QMS+a#ysoO^dlmNVZ-4iRu0eTExs`UKcE@1a`FT-(Fy&rugB8wtyB$|Qwk zWg#RlCUUz_d6jVFxK^Q_l|@92|B*5)zP`~#-!5lcJfD7gr1|7GCvli{fo8pHH%Wa} zh%2J!0MXrqR#!KJ3X66q z_ku3Vmc0l0|6M2==O5#|rN-c!1P6SB6bKQ3MQv(kM#jyp1lFcV zWE*bdl^~vGp7n6)2>w0@`xKrm#R9^DfK02hZ>0I3fCrD z%8yQslG^tet0dl+`bFK|#)G&qYXv*~)or_whKNRY%dQXM}NJ*CtOjbbwsLzNxhPTkM0tMP<{vZ>XX(8 zoor+hvN%DR4q4Bi8yJ%eN+a8YbgHaG2J&u5HvY>4?E)7%!?iOCs9hf^^=2M$&c#+x z1_X7(;=ie966A2#TPHjv4@^>DepM_A%Shx5WZ=m1?*mS#wek`5!dL6fOi@YDV*}gn z=LV|Xp{GV*amC^=*lHQ$d(o0#=<=zEku6H>Z?%pbdwCbLHum9O;sLmUA``>*KcKmi zK;OMGaJc?#5{j~NHJO3!fQBSjJ6di*J@z0kz6bJ}*ndE};2AuO{HK8I)_vn;^ZWp@9LZHv6Z? z$7wuq8D$;{y7%;;_lqEuELQahspIg4;eZYZIx3G&n^wxD{WB!G;kDAm-TnQ(FTuNa zFX&8AP|#)j(XZ~$uK20c)YJ%$j`TVQ=>HAo?Yb-reFo?a&-B>X*Dk<~a$tLA@Vd_$ zlh{!LA|K?ZfGkd1b@Q0v<6KGK;b&{fmYyQ)dUtqTG0E@bqlzl9$x37(Y1KCJ8 zqBH&!ol|j9m{HilAt3DgF69KTR4~wje#;tE*mXLv1O`d1a9Vd~uPkqM}FYH*r=lFff-dfYI+B0M!cD{;AYf7EGk! zi6ciurCCFF;o?(45iBq39id;U^?M2nJjHgZ=g#$uK)N;fvFAcB z6&1hNT)OU|fybNvE$Kb`rnyUY+1B%T{s~p=xh(gY1?Ysh9_mkacrVLy8~g8>sLENK zw^fD-P)4`Q=CVEFESOxbLhds#9NWa7{XKE~G)vJxlJN%$@8Kfh5a>8Lb}@kE1sl z3`Ggkjxk$FD1x?(B7-ax9upNh%o3N#;(Me9sHi7JS!}!~T~#Li!0{4Z@&N-)Grt{n z+XA=WuM^DB0pqNJ`;$B^cg_;L*843WSAIVmI&N{V$t2^N-3Lnd8rfm%2E1brrGJ&e zoczzU1&}lIu`+Mxe2r{3V#^3D9*G*Sa7=ii*tM0EFlA(Af$>Ngv|<6U0()b#Yq zZvHtTCL24a1~hL@H^S)jl`axfQVwnqn-nL$0&(-6>HmXBK_7ZuFA}BIbgC8RD%(RM zAzngZn0qw)>dgh?z`th$V?1gmeSb8}8sjIl(OSd+!-Ege)CZH2L|hZag*=v&(#*KL z1mRAZ1MEN%K3V#POyMuV@2kjO?=UbMReS?Wl)7G4obO*#Q}gn`|F4oR90*kR;g^zb zT>?Og|2^R#^rQXzw%@Ms;|8|(y*X~{-FeRlnvP+3X+vELT*2HXE=;bJo$xl*VD=-b zldkdSNr}ye$gT2U;BDTht=(@Ac{~na0e9G!(3(2WBZ@`nhn2&#p=Yh`&JG+6cExkk( z{!i^PgN*!Wj-B^ZU$@+Wf=|v^vw&s9(rIoJqD4j9-POhHx~~d{sG}jB?!xO2&*5uM zD4W|8k;xG~NP2IOXNRsmkD(p>s>#n!oSyGMI;dS zP`Z8#*DgfY*T!{|C&{g{l^Z8R~KKyUpC~`!FGj4`fD}zx?6_+sSCzw z0K*tsPoG8rsNn}UIMYoM^Gx(X|UM_F*3kD(&+ z>8v=od}d$1cL@X6H_EzJ!OYCeYi)MA_H2llM(IDriTrE+KX2jxs7;%|nDbJbjBMK9 zvub#HHu?F-KEP#g9nmxzzR{HWe#8eGO!-E)(lBrsrwND+!;Vi#02W+gW@dD4?Z+A5 zCi1Y7Om8@k4!QBZ`qxU%PL9UPwjDYgQ>SDg<|95H%e7A|IX^Pm=gJ?fA{sDP0D9wA zLI)5GB@zcfB`mzL6A!(%Cu@j>jE;?|GqB16n9FKIQ_~2!9mhYEuI8KD_$F3X*4Q6E zO0-Q25)ICw%e!=|R13 z3A`@u7S~!(?>6-8de^-kV$7cHsgzoj2kV}-k(yr^4}iFnld~EuVK8p@nG_(?b1fkY ziqi=Qz=h+=c`PB zzyDhTf(WHNiDLDoPs&PB=N}H-5C)qTg}wE-CV?+NS&C0&Kw}IE4K>=IE`EhxUmj+O zsa1Bm8!B`iBcW5ze~DZEBrX~du9*kZv;3~l+juz&e4D1$-FK%5)kae!aq#wEbpBxG z{j|?y2QbfTFtA4a%bJ$@+X2)LX&aE<{5uEGD;OIazsA8S1YQn{NuS}Z!;w2r6MR1! z&6gC8LASctWWrcAjQIJuJDhNZ_NCeojF^~<$lnQPHZ!<9f$*4ny0Q7ZZ}yc5riO?NV@Zk4 zr3uO%pGNDCkdUh;u20H=L7PskOVUJyDJenI9jl%3RuNkMNu8#EKAwBOPhlROoy zKGch#_;**L^QwW$*{tJZYkVWD7r5NSh~Brv14w2(XJBkf%9oxVvA=VtDaW6+!$Vtu z&QVoY-}g;RJ9rcj8KvlC{<9Pm1OqTo$#HRk)6=Q|ef4*2{Z}TEPWZQ>y&fMn*@wqv zj5rAGXC%ncE^q7j4B*#Hb~j{%j35_X80A0T^7aR+ipI;KW?M~donQ1rU;V&aN?>Oe zp-Ge%B0PAk0|8D8r1g@yhUxhM;310C4)71ZJnOSzqd=HZ3(*dv)o$dv*)*bqV%)br z+w)#?wxTZ2_0O|z3}i$5&cvCtBRU6EK*nEvc)Z1+7$8MIhHLkGeY=BKwqacS{GU28 z4h%Gybx3=tCtnE^A|#$G4P6Ty5w3pcNAD-R!^A3`ufBx=V*WZLo>~X>SSlXh%{X;> z+IBU6$hGlzHQZY64`?qeLHJw6_RdR^4uy0U=Hr0kBImlH3k=Y2fhTfEAm-W!HcPl9%26 z^!5sxa_}^okUQvjr6o@kv9EVU7>ftt1$Z2IKPs~uYm|IxSE!Kj8W*={EFO`}^+}IwD3BEK6eXczJst%rT`ZV(|>6=jt?k_7Ys$@)_gj5}}9z0=K%rL1_c) z0kCicAZ#+Pl|0<-Boq==iULuN%rjpke>C|Xow=BbH=3_4Fb)C{nFzl<6uR^`lI%_+ z(XR*jcOGo`&O2T4MDkqY>zB3To|qGM=3vf2;|$Is;@m4RLk{_gzq{}mb*?;`;iDEC3jC$Sz8)Nmr1q%V^2Qe_ozk?7^LV}7>ST+LY3N$0UN++fYmLS(ex1~zGa z^YQH9_)FxAGnNF`VJ>6;LdEjkWW~=-c+ZKa38BgMh~ddWB0t`V5F^a zC*$o?qjN0NEaZv)cBf*heb**{;_lv4uc8Y4ZgGxqQ8vTj=*qyU@^=mW%p|0k=;;&y z{~eD{GXVw@_{W}4b8%uUA`KbH=IM#NP`Hji~MDrml4Or=i=7RB0w7|0pErUR0}WU=^^s zxaPg*W!Pr}){23788-5L<)cvPeX5M?Gr&Rf{&?!N~}CgI|8xr zAJM5b>g0v1*I(;H|My~@v{;Amen1tCci}5o5D|(g60zMC>nmgBV8XiX%Iq1u9vb~2 zzDEHM^FO1i*&^IgAMNZuMg_Gw0b;wb&`1*4${kiTP2Kps&9!A($(Q8kBE0ruHo%>= z+0%Xa08nedNaI%DtUmbhUu|Fg8Rm{O>HlZZo*MKB(>@f7Cb(v7A#&EB?`!+8Udd^} z&rFB^%L`P#1s%@u4WO&6^`hT_U}7v2l3;RddjQ7M!l-64v|?@%y#E zYl9}&=B7=PldV16!`<)xrHJUwIlINV85rK{q@uigCya9|HemJqLi!ocBQc`&74MAG zFrH^6^M%>V1U19VC&2+^mnF$E(&OoO$7L*kIjGMHaEyM~jdW;S&q#*n8QKrr>l{ZX z5p7uCub}`T;yni8DVl@UuN;#AjB>&?ow|VM$K`68u3&FBWyz~643N%D(96ct1?)lk zLEKy(fIh7##>IFuSVE+K(P!k58Aktz)W}2>K`*USq=P-E=ijh^FloTK zitnNn9_+gmAoz?7=cYt+B-R51JEn{#@4&^pF%IUA2w<7R*TJE0zMk`QTrR+OD-eY9 zcqk4tnNv7+_sJ34+$Hyg7j+)Z$bNbt`aRK!k`iOpo%+JFg)bW})>?T5bS@ms>e#E1 zEW~DhXR~KHJ^j#TEH?i87x)|DHm?0F3s18h&4zhhxOuEpvaSPgEr9s%!6H-f52$EQn|>yeO{$o9zF(`+r#n+Tq!pZT87N5 zgXp(~=+KzR8PIela)`ul5OF)f0dYr?U(h2XT7tJxkF^u$0iw`%->x*fPCYE>U+g(c zn1zQ7+k(U`FV7Rf`-_My#Y7qrh7LJ+z*};v2_XnXQ>dquvKp`vfG3|;t{a+c2BFy= zt(p5|inc^PB2{TXlf~_inmb&%bD!y4`{~{-;y=x=6~fLwKFPTtIkjzerqUV6P6}ix zNmJ!IL!DzJ9rUv(<=k#ZPhI{Ud7a9D`qnmVPHv1|dFhc&iX_`gZQ|R?zD~OHfyQ3* z+vAS&gbF<6ZnSRH;+I7?a|8hh8TmMcFtmkNObwv52Mzi)1WFk9$r>OOjM!)au`Vo? zq|}!uVSyVG3Lz$H>>lo;3Qvv2GIS*|K!rO`qamA^3-7VmChh}z`>TJRAuF@yO)Lq< z$dTRP_$R=(jha6(=I8f_S5Hr`jx1@x-!jgQ1UfB-cN8pB4?QykIy?AxJk z&^d7pY{mbZb-J{4^jAehkNg2b=Zo3?Yp3HJHh(W_OWExH@f!9-P&*J{7q?oXBbwkM)|{#Pl}TCE>F|PK;8(L_H1Yi#Y~SK4}kC7nmmq|NN%` zru;85NPDy~=UseN`L-4L4N#+<{+Xr!ca0u#sbwBdC7BL>xmUw+@+%CAgc_iAO-xKI zVnYzjLg%v4#5fu#B07`4Ctki)XEkq&4+%1+uon^aTh-2w4xkP0x)e0i=~){i$|Z@g zXkW^;&$5gFaAH85SXA_)Y?|y?SYV(_mAO*;r~gd@0r)s2F14@Dr-@oa26p|wDh54O zt6XzgX=!0|^MZfTp})n%>G0KQ_f|l|K6=F|7MS2mI1Tcx^q|)D(4`Zow(iO zyEQb^b0bkhYeo=`x}E4o+&zdKYj$t5WNy}QNYEdgwI(kde_i)-xMSA6efcVG^dp2> z2yi&>G5$JMzOs4Kz)_tGPUQT=ZO37}o}%&s7YvYr-eS+fGK zqeO10lhf0qsuU`SJ2+JGnBd~-H`vjE=Lnu!S{NOz(nijv10`4`b$WNy=G8Sh$Ae#n zLxMH^FNj#I4#T{(UJ3}3kh?2$*X<^93W}@ts|z+P&G@@~f1nmsXq#di7#OtK=jC1+ z|2ED2cN~vR=h#O7-xO_*%MMO2jO_muvPmwUp;Z21n>mGH^pPQIAcjC7uP`va#Kgq# zn8c>Pa;CmiD{F>$&63`F@OHc_+#}{`uNEFsygpJFd|hS!AfT$wTb}z#(+72U_PB2@ zbxeb1AQ??-aDDI}3G+l?NBy#RkO`|6g|jr8%Rk+TC(w`k(%tAgVZ;EES0~n4G&D3o zS*If;6!0(j1hlrl1~qh0eEedpEjP<&&3R@&yt3;wNr?g{f_p2UkaJZ+vY7h&bUmeQ=f=kYOS1ix~6)O5ff*=oTl|Sbt zD$*y0m(r74V6)O0y6iD>sU1W)<6=FE<*Q}9qCo-S<)Qs&5>Gs$sCh|4_V-L2QeIE{ zq9*FR$VWPVM!7ge#OsC{8X8(uQle}@*z&PFg$G7pctAz+DoI_{!V{zR-3k8#Gi=&NO%)F^nrwiFhX;OSprC*)E-rpiq5WUwP20@D=%hOJbe|vRJG*Fx zBZI|~jG^gAKxBZKVTyMGtB4K<@#cuVkLD>JbsG13dusLYwMhil_dwP6c4Tn&)e=_X zSiRVMGkrNu^2$d{!KWkCR;Mdmx&1ZyHWPL}RxyKKhZAnmOGccNvK2GJzvYiz1-NrT zxpBn}o?NMu`p&7H;cUj_!~w;IAOQltR#o|(@y@7F@zX30Q}%+-c8p^2W-sZ}#T zstGP6X1ml=S3`kK$_ikpaUdYz$jw?{Ks-#z{QB~Q@@>laSv$ajGFC= zF|WbI(QvgZcLvt}+|NF0F*JqqX^kqwB)BFlZ(tW$k?esc|!8^O_zhKzzujn^Lz~!6$UnIZrhf5{sg!3KpM70Y4 zCk4D0^yIsrn5>&xElGrj#i`REmR{hSo`U&>dFJrUcN+8bF3g9J);%Nq-1J*ysXae=;Mgf1VBQDF zoqAmKyxe?|HrD}pZbG0t99afoTV9O}_t3OHN+^u3GXWvtV%>HVR%>hPM(f2X*-hK; zU09ay;gj0r_?YatUw$IECYF;N@jV?^K$d(gI%f%kfZ67RCjEt!2cfeIyV7QQCN#GW zmgd3j+DmX@fdG3 zN2C#tn-kldHUmpsxSHI55*g6r2^7LE?HUR9q!$+9$FD*;r`z_aHz#E$I7e}ov1+VH z_l7=4{2qtA93iR`|JO8Rz~-Nm+6h6cmt7`>ZeYJXkPYAcHK_f8>WATm>lHxwf&zy@ z${_?wWciH6csDSs+dvR)c=oYN%s-~MAP$Gxd^wK(fSY3zb!JH{?To5r9A|}(ctrqr z8$wz`laNHuz>uE#d30)!Xc=?O2f^UEP?|;P=z9a*C(~{BH+yQpR5!5*H#KwlV`bZ( zC+_m%A~@@nmEn5(KW4YZVDG@IqF;rbVc{js-hT*OkODbga*g7fqWkTtgKDw;&q<38 zceqJzpk}D}Um6?wbPJd;`ExXOA`l8<9Y5TOV*x@BC0?<1%kIJ?(9J*DbtRt=Fe{J` zk~e-L>RF;I-L}=9{DKdE^u(}U<=i9>>Hc{B+OV&;lS$}lvIU|B({0{Inaf{+5denn zJU>DXLnr!CgW-EVk-Dg<^89O+{Ccfb4KMsYrGWsqRB-opJKhZRhffK`L;VtkZ~X$< zQx=&w%yN;?P;1%l8<{gQ5i;x0TFBczyD1}SVlIZJ_Uehp5p|gMF$={7-5tqZ(o~`A zR(XsK?!A)Y83coWFeSRr#YK=I5w5~QN-A^%?<$Xk3orHIlzHLBIMgTkBO&Pt!B{P@ z0Lmrv;tUDSDW87M>*T z)ZnmhHyhZI;I{<-FUOa79*0TX@9NCPdT#uX`P!6X3vMM6ju)7LIF!ZOCR`Du3fSq5cEy}Gax8|pgH3@|aB%1r9!MkGUfKithT8c4 zIUWXxE}&dp5|7`C%#XBT2IkGJacuHq^IknVZiZM+_ISFOICG6+BldXU+?=Yh+oC_R z;k8O5h%K{v`7#&u3jea4%-#zR_RbiFAs>)c#fiVpcg88*Wq=OKC7|hEaoVWyKRk4G zh)FsTPPF0M(~@Z7wJWLOK?6SM7bx6^lmdZg>O%vIWoyFsDb9>DAnf?>@?%Ezu*S>LlySa<*}66Ay32y(%EX{dQlO>zU`!5bqSM z4DyT`JFZ;!?)4YCHv7!Y8Iy4vvUEr;@w{G%y398_m+xm1FkwWTW>dvN^K?NStsCP$ z#6o7hO0}K9{;NuZXybj3R_>1%$KD`LkC<4SdoSgnYViFKDVxrbxuj5CGD1xi3Z$Xm znK0YSM?>tu&3=!C1r)TQZ(Dx-{4^XKs{ZZg2fXyKR?LKAkkD@auYN(xSOAwJ7)Rqa;%-`BjoRiN`(7m+zoTC^4u17gS1-)WK%h6P zyj*2#d_s45JT=$l*QuhE22P#-GJ^GMMM*#09F6`&&&cLV^1cLXXmiq-&ZH8AtmjIQ z^CNDcRo;{mAt*hEq)7;T6I|4#+KlXc#M$${NpHKeYW^W}+b0>&bGK~|JIoKV9Dg?D z@ibB(yWGnuJKh_*tUW6fsda!MI7{0p^kp|n+WeF)P*$2awy8!-p+6X@7Vh z2CrL!wQ0dYGRCL%PANO)#DO%o?{x{1J7Q&gb9B@97?^Tfg;%uscW!o6J{CL~zX_u#IfC3UaK0p*~A9$o{d40NtgJuyj z@Mh1OlMVdV8oY)E8f|(ofIUI=>9bWs#X~I&Z{fIn_ICQRXbR46g4SY+4YnK3$7e(% z;!_{l`Oj?`E{|lf^-pd2ik<0i4tUmxdzC!;?nEi-ken2uzx^yV@%npbi&*KN$0X&# z1VIsaPU(;Bs|bJYmNRYMuqEgDiTCAn+aJ>jS^-DjkNYhyi-EC5 zVBD?g*-LlKmq)U*?xYi4>Cp_STY8!Gw7)6PUR6v&0_L%{>@-&$Quzcv7p|F3y1)4! z>?e^F@Cy9@aWUDQVQ9NK4{He_A^hoxQ86TPw)7`J<*aVg0x~0fwBN@N^k?nOpMUit07 zQYKM$J2*gs33Ke)QPD_nCZRj*46*EgR(+fnyQW#S#~zi{MWO-At7Ez@jk_y=z%)c* zX^_>o;;9Z04H!c{7#T0XA!S^mf;JQ7ymM}$@dB?hTE?UQj_uK9&C)@NosowS+3$I#kZ)NH3&ywork-mTO-Cq4Hl7;pKI(N`$u)%*Q>V_ z$)&s1&unci=o%WC59k_gu3Y?}W#-kb0k+@taLHfDyC*z*txC@GySGEp;I0h?V*tl$ zNVL}PNNFE@1c`?k+r)D3rEWhV@0sSRI4miF%w(x2!m!<+ zCEa&VV7Ka&OSUt=;_mzo`pSX%+dussi2|?vmwO_nO@;i(|BDhU0g$;l>PzeSS z{lMfaeQ9PYpyk|JZJX)|g`yxol5A?VyPV=z7uWkQ_|NI)#*eXi;6=z^hlt(k%NyIn z9l}dN!t(e^I#?zinCDx%Gofc;LSAla9;HYq4~`HM{?fQg9llSfAFL6CZ7WDvo;=NZ zH##NU@9)3^Y&WBx5{AZx&hvM8C4LhYpAS1Xd_I+Hj$kX~1a@zN+YRH0N`QF|7rzf+qn20EL6I=qsi ze*`Nf;i*u<1V#7}^AS9X7}t>zyHp#Y=bY_fKHpr;t@~XK)gOnc>#f<3IWD0@d=J*H zm>^Jx1~nT`!sZQn4QNf_&TJ@mro$&Di`ksk4qw1u|#gXdw*S{_shi@=|B zkC|CaP3;};k7}&VpEp}QI|***A(x#A=XqKT2qt8(jK9Mu-evtAVZ0`uym|9RNgHLmiDPfCM}mw0GPE%C*uob zNFp)WMP-atOGwsi+y>jYf1h9zZHt#1B8QPJr%tNv{R@0PxbX#n-^MAi@*66+8`Cjt={P+QU zW)R~9zvI$T6YSwM*e}x;y`P(84yepll)@Wxo zWPN0+-0Q{>KzP7A@94&}r5hf)&`xUh_zkY0X*<}mp47N07Bl9pt>AuMgN1GDwvD7EK{P^k&sOhI^i*6lOl%zsjPxcsIrczgFd z6C$~np3zMPgjk9%T`HP_5-7A3`8Ay%`@l!){z3lD>Y243W`hg$_P3&zU32dk(H2=Z zwp`Nfu1JI{h0ZR#WJ6j@yvLgp2KmeSrB%ZWU~O+2}fgA*b0>Laj9a6jdhGfAx&RIXjkmXlx~)3JBL_R2arl3D;wIw1=c&D|B0; zCMKCvHJ+ZHFuA?Vaf@%I@hNWTXtGRd1sBnm8`I6r;DU4a@Hl7+e*>8}H&XQd-6$GT zP&)xUgNUwf5^!L5h7tRL@GU6K`wDH5II-ZLQdCrQu&Q8QTB^Rni?s9v16uk_C*uNn zM9+9C3hv-#v%~T7^70P~YVYdGO&ipg3$A8xs4T*yR82bKDYQ{$UC>pBI`TG_}jNDYx+;$F1M8pB|JeM2<~1MDk|Z>8kk^yEomgT7E;&L z735OAx>AO565Z}@fw1qlXjfl4GkS?RI`Y@S%wwI5>OQ~_fJ#oU9O_jayQQX9 zzK*W>uzILv*#0_Q1R}`!0>M5eRW-FdjtxJM9BeTxQ&$Twouo0U|J17gI(fzy1Py)* zNni>nUt@Pc0mo24ZWtvGslc>neBTH28c4bU@0tI1l_Q2Bi%7cY_`ezC;E)frF04)3 z=acP0IN-Ng^jG_rU{J*0U&33X!UUH5PHHec>^Su zAdmHbyXQi`GW;GI);hgvW-Kp4E@S9Ie?a$>&WUU-O~qe)t60PpiXIKfLHKG1Na+6p zeaKh5+QQ{8Wq(@by{51c4}STgs^X)Z*&OuYOY zc8>yHN^`2$qqFWOC3}wrG2{_M2ldFK3O3$xo=2SVBlR9ps6i#*JqDzrp%+iRklhiz zt&k9eUf44ZaCE-V`5Y(^v@`$0y!=}TYqgl>(0$2OAT8NTwahFz#Y8)GYsO3!Wl&z8 z<=CFe+~kQshk6!2UVH}~)t;Gh$AO{_7(*x|9kdhU@G{d{5fk+QR$dZDKU z_212S%eFh=Cmppy)KA&`UTw{W2F{-TNLTCK{*78V-JxVW>`0fDT7O|Le6RU!a z+2#WTBIXi9q&7dx$GD5MBiF)UVUBI2Sdqw{Y_sQ?m3HN z{E_*|gzujoh+h|kObUY?4m>b>opk!q?~5Vu$jqhahe^Z&@t@IY}Au`JsuOHlY;<8IPZ}+?t)o;W%Vd@^C*z|-7r}n_) z(}y$iI~~f$VG?xhRekkQz}`U4IR$DD5iRix#=B0b4!5k5xsNDK1k13CO+ty9?P+6PH1t+QmA&9sJNY65UCQO3pM%8x)6AsW$K6kV zA`?~qns~(6*=B#%c0);wr6vs4dEbL)tMJ*wa*cbw7o@Br(EBZDpwc=a0WSCGgn`Tm_?al*k$~lrWYivLv_4vv z50zOo0}%&cy30w*z*Z<69n}P2R~bO$`)gKM6uWQ;(%fjXCqHf9yUGxu9EA>+|m`TWPOPA&Et;l3K}P`0%wVSn+?&BHoQ(bF2Q zt4nbF?Hn9H&$u2ukO5OgWE7NDkMRsi9N_yVxO2y^ww4=Aw8M!xP{Cacq78`!wn%kg zOU&=e%3K2q$@;)u#-q&Zv{~5PEdYF9xD*uFl$4YX*%x)(TzJ-cLKFs92e0`(I&yh+ zut~ntcjL5PN=!?yc8ey`Mg49Xm5xT@3T>R1>WlJGzVa>K-CrBtpXrwZ>Eew_WB>me z?ev>RJ&Fb@d+vb~P6E@v6%`gY=i*l|Xzq*q;1*Za7VBOlvjqoO8lqNS-YX_E< zN2@zqwo?^C87hlXM8I92nDcn6$1Ti~=ZmB6BX|*>TL&abyZHV_Fap6yMRq?%4(-Mr zFT&+$myTcn@i% zW(0(|1!*x6Rd~Hca_#W%=;+|KX>sX0S2tQNY1ypG{}>W{L!u9*_<}4rIYS}E`8uJn zK+zRJ{?y2bIzK;uh!~Q8X#_-q2#?{+U!%IFS_qR2`P;;|GVzJpQNhYFyxRF{LoZXA z3&oiS$nSljg+`M3T0CS-S%{o44n?o?cqTT%4v`oWk*skaX{D^QI@udMQ+{InL;;ub9Yu!l9* zxlW!XHKv5XTEiTSC;0DtD_R#ELX6>{xAAnC%O=l{>*IR#^fS|L*m$Vx}eG>zd`Mn|o=Jy&* z=31QV#y}5{NEokQckWxvQD?xgWfBM&u;X42BO0qj`cJMNM}*{l>n9n0N)CNuIup{P zhc`YB`nZ(gXeT2#<%=RZ_yNpF0)CAw(e>C;UX;iCtPY~~uw>zvZy~pppI?}sQemQ3 z#HCl(Lfk2nHfXjDvvH%V@oD+NwvlE>!cEOj6g4dJtz$_@FlO*Xd<*FU8RcK*cm5A_ zmSN3^$6H!0K~KyLUZ>a!a$~+{AK*R|zIMgOd}aJYvmJV^5@@$*8EZR|;P()Cr;>Oc zlPP`;YZZDCCI6X40}iNjh=o{ zICb4jS=`@$otc#d;<56-bsyUS|8fCzEO7n}2%>CF^5d2maA0dhtQDmW{KD0?Y4fy^ zBf2*}dN}dPHJ!(WkS=#S-ZYP>aYZL-XCX4!WuNqXE1vA2mYmfg2yOP3Ctq%;Y0_S0Gp|T4B=Y0TaRXs7|77+X_-g0h*P&-^AP!*b@hO)UUJLz7 zi?s)0wZr3%y;zRth;$PO4Uca+TeAYS;~;Q%@j|%DZ$Sx#6h45d92mK{3*F}b!;p>s z`S;P5N!-68(?`yiXGN!6sBV1-h!pNU@$;uSpEk zEFdUB(E_wuvIo3PD}1aeZ+wpfM65C^ADhoQ^&%a5Sm!5%Geh-IX;YBL%wo$6G`qF| z&>U_55v-FGALhCImTX!Zo2xx1baNwMvbIse-{R=(z=npkd^9&7Mw56yZ-r>z`A zo|~H=2=!A;RZ7RbEz#ZAB7o-(-K(>Z1wC)T$k{{V0#SL>?cxi{H6YZ1h|;9V!M)_+1Vpv!YBl$H3#7B*zJIq&wK(5aq~RS3?r zB2%mqBJ;Ovcc-l_bVYx%ph%V;?}g`^R^4wVx;lkaz>N#hvUNM}SF4bv^IugF?r1o# z7L4qV;O~qjR7b)iHNUDO+v)>?)xnnX+}tuS2KN4OnXfR)bM%O+wjM;c|5+a;neFB* z-DhF~uao!>XJTuqMkAFEAX0F>`w_}?hz2wj4|1d0S!;uMG2RdY+mG3I=A=;PSJsI2b z9vgGtc*#mb0L2lhCutDLGo5UpvWZ`8VYZ~V7`O4U=l8lS!DrREk3de?ySum?DkVtb< z@d8T~F1g(_6&)nhB_B7qeoX&zf>)FeBiUGl+$7`_hcf^-mX@?N5~FwkdeHWHne4oF@R$WUWF)S<`u61u?GJCjUhfVhjJX&7OdcU(B8*Dw_ zd<(4eI-Jj8^m!h4G3W>)Lfci+Q4BW%3g&$Hstj`RUJ^NmfMoL+Zz{Ha?d8zRhKFX4 zDN-NdnPG4E7+p5>Y2KXrhDwqZ84_enmsz>XQ%6;vis(eY zcSPYY$7w{Ae>}1umRSJr{}8Ih1%YOjCg)>4Gz3331cr0s+Ep~e1?B@(+-Q3|6Qb`G zu@LA;P622a_}IQia9p~vv8k#;S9tI;MLYHis^{9gu6+AYB!?t@vx0M+ez`$GPvN78e6be=^xu#9C?cO?GC@#1=jSIZ92^ z!2#>AopMM9(G1+;JGl!6N?Ej)8+@*q;0=z2@Ek_>#RZ2N(;Oi9MfpdYVU`u^YeHLw zgD3ngx^=Lfb?S;|il{G-J8I5-f zJ7v8R#{K?+r;nxk&12!{Ha+U@3;^*;B?7A{xP@kn_d3Bn;7fNinL~a(B9~)hU+d z+RI;1P8hVmxV|i*Hy?5_TNj*i=6OIYnnFcKmucz~U`>e%=$^+XuV!lEi+oVnHackv z@W);mid^S)kD^;G0Wuv4!-^`FeN{&hojF)12TN>>c6sH_apV>^7HH4+B~S>&s#N1_ zL>NvZ+?&g`LFg!kdkjRJHolq*0 zjn|C_;9YwABG$Z<*)V|Da7Q+8hYlCM;q)@*W&wkpb z37h)b1z*`$eiu@~<&_5}yEkd{tcTXg}_2B;46E z!FDV8K^J8y&V<3bF5Zu7sl-`owb>_a#)itZkZYYH&~=67!g?LJ{m`M6C#~$MNnUC2 z&mQA%8#5}c*z>NA*10W3DI@gtOzIlSAcm{f^`Py&JlJ!Q5X{dH-@rp^=QEZP3kDr$?%M{u0#6iAL1$E3wYLt}oS^T9r@@7LDHUl$;J z54r%|vhM^Ofy@4f^Lpxdew}Hfgq$(u>S)aIb**1mOCT%MZmUi(Akoy6+Dd}G67#q{b$mqu3$jt8j-EMUA3=*7EbK#X3@L>y0 zI-#Nlpsg)~4r#8(x-f)>MX*v!+6HhFV7W~naj92ufp0;!Kfr;n&_`RVs+8vE2lH8L z2-H_Rr~wOI70OsmK+%!iSlnx@G7o1Wj96K*B5}Q7Vqt-vRi}9~-I)|WOv=grcUKLc z(R^SC4)0H^={xpu;}$(7u@hw*5Dy;04-cN8tyKxV_`FPcwY2mrATSm;Mv^gMvdQbv zrqD$JkWWCL>b936?xBwlS7n*m$V@(6m;%Kc&#=XG31#nTU~gBg{xg@uhg~|f`p2!G zAV5$kc2H+Q-{@^wXc7VM;@8h`QE>>_5;UlsXg8~>9ArHAlRVf6o(rbvs(aCji;DX8 z-9qbP+kFUq*K($Tlt4*rc|zc@iT3(?)3T4A&uD@7S`&h3vd{)C4R1oHq>})}-6#ki zj%Tfi5JAjUOL_flrO4#L=kVfgb&SxhC&WNTgSOcv-oo_~Si9?>I#TJ`dFxhd1Kch# zbhn7P_ICJ+R?8_F+E4r!ueS2q1Bp|+qJi4EYAUVU*p0M)i8Xq{r1XhWllMn1;5(g? z%oIO{^T{uGT1-n2C&?HUX=!%vMqU~@C%?g(HX&(Vv$*q6pJ2p>;of~|;uZ6^Q)BAR zck6N9&UH{$QyNs=9?9WgINZvn91qDqp9xS6E1gt_+j|z?XcVpAc_|)4;9|tC zo-xco9hhO?RiuT;wy_W6bu)@7{cK)-C|Ohm6T8z5L%GQg9}EF4MEW;WR%c*|4NgtjaGm^-A0t+~>lbzV-(~q;@~Xdyct!NAYaeDsOZN>uDB^5m1 zB04K!smedjP)fxNZkUy8Lc}g-08Zu9`Q zrOYWiaD$aRYRTov7ZDrcML9c}iTiQZJ8#wKQTRngv{#nT%AHu@=l8SnnVE%w|;lK_twqr{p!a%TK_Y20CMeO2qd zGo!?oZ|Dy-g_;`QBEGW6=4Iu|FEH$ROamcJdgp!4OpCMTNT$lNTz!|UwPM;*x#*MU zsA^_}ZvE#M2cq@`5>g$Z1^POEtBUkG#@BREo@>HW8J|HpC8Q4v(5nNLc)uyCqLk(}pfjVr?X1tEU8SeR*TBUXdy&)Y-6_A?VtU0pbwLZdQGc-(`4xUsv1EHrh`V(G@mDGU z9isF$PK4144OK z%*#r1^LucAp>K@o76W?zgLNm_KZi(3*UBCS-2Y87l+}VUiTw#nQj(=y*`2 zp8MOxZ4Sj@5BjA)*!v}{bjI9$*T*^Pp;tU}9 z^{X=iYjsUUV4g`Bwv=dRVA$rkI9z{JaysUuxxWx=U|n3J^06|Vq^2V$Jxy~mRByCy zz{T70sFfYleOvZ?Ho(B}knyf>`I$Hz?1Cd5bD(WblfmhIr%jD&i`Svr`q)3f9f5PH<-l z8K?8EWzk-_xL^|Kv+H_@wSzwpL)plEd}hhNanK=fNF22hI?1;Z5f+eGYzV>JiB}_a zbQuG58$E>d&wjehb*6m00qb@_Xwy=W1>gLxu6|Yc&lYJ1DV|;w41$?xNeX4N+zv>- z_f-nY!q1Jh*n(%BsTVnj71L<$T8s_!|JEmrK?Mc5#+`CI=!mC4-96ao=Ja}{rM8w& zsy_$Yn0aSEW#8r3{> zU?Pcdl==i27#y5o<1ELKu`t|=Pbl+UXW4n`YYcxezN4DkztV+_fs|h4;Goj+*`ARf z-~Uk0V?I0mT0ECDP>1G+(bp3C4a?IF<#^W8f`@5c17~6Ic`)&75XU{MFI4g*>TmMqlh)X=S zP2jzA@d@VDb@oJY2ni1_Axb47HFJ@eaxkJB65Y%!+i_rB+%79*VNX^|4IT+YOxD4k z_;Vq{J;MCimhIl58&z+wcgfN1N%sf*u_&1k{9|7n(8RT*7vCTltl7X}BA1R+x1n}l zxdud^%dJdfd8P0Q^RZX!HjD(yD1X^}1`lF8E`3wvIIz4263|A_Y|-<*wLZ9akoAuF zr`|YUTGys<*oSNn97O<@qxu!shU1igHQ?VS`#@Dr=2sgtq?(lg>*+{tl9Put-g@s` z08x_tlNau`_`UZnWRK)(i2wJPKIyne-HjUT6xwL`;>QAH4p)2(Gvo9RDQW9-qv*&d z#L_h&yTXxSm(3h22Qzg?^M5Xr;zO-OZ{|FQe1H9=MY-;>SQ@3 z=pE)|m4@B_%{j1fQH7-Z+6PBJ&hYH-`{3Z9ufY)IXISUQwaWUtCy!bry-@W9utrNo zJ-j7kQj4>8~SCF#c_R7@kWx~Vlv14H#f|Ek}RvR-`0LEBpqqkO1ytEXTsHZie&$Q)K7JTdC1`112Tdk+w_Oy8?&Bm;KDJX+mEuzvwl|GVS-S2{0u zF-9L*p9shO}c~<@!v*VP7x8~zcKWx3mO85ucVR2I&8@=lR7>U)s-tu zH_6{yR;YFSaQ=(50DpDi=5%>QPucK0w{NGxcesFXhvciF(tJC^@gs@4ZdylKRi|Rq zrptQB=;$d{)Ik|nzPX{x%3vt;29UOIldOcwS|Va@RizpGAmb~z8RK8>H&@kKuDZfU zUt=bov92RzCFiwzne9GMW0jVc238G-903Oj)@Z^lp32zVGo|z&*s~XZDE8t+FiT`SGZ;S%K|A3Z7HUG?^oocW;WQ}2alrJWT{Fz-_~f@G_K6yJpWRj*jE zwD?y%k(?^V<)3!cI;WfVZlGDuKC%qg7F1XQlq`_qS?k#jVTVI0HeOhKraMNp7d0SW9x=y?biv~84Jclxj z6wr{&gF|?xz7P?LnDT-1R(#l-&*VRfLU^VRXCSyxDD)Siy!}TPR!Cwfe6s901#8GG z$hl^b4eyqi6z}fZ{RaMm-*%crB6?O6lKWm%w9rTANZZRJoG>BsJjiFZU24J`-*O59 zUvvkwhz}sdzx3(?sdy8Q|3Q-cn-^B-hK^h8Z?>$9qD3C-FAyZ}iN(=rb1j5)*klWs z-jKY7cYHL`0<$N4F zZF>q(Gb0IZP)R5wQsFb#*YFKNa9Zs!K9RU&#B5$kk->B$;ENnZ9PFWfZMGq5<3j;g z)q>Oe8ht`C%8{T)+hM(T@vg6$k>58J8Wl+&HCT76d+W$FSt^Y zV3mzv6O!hIHLX`$#iN!liQb$gxj1$o2TZ7P6CtAsHU)67Zy>marM&f>ez z8}H8})rk17WaZp;B^&Akd1P`up4)sZ>K%ZyrjNH0BrcKjjt!}A64$tAfu{1qOE$FC zjE=MNo)!_(e7ZGKtotB$*8(k?~{N%}7E zL?;Y$X1?g+2}HS_Hq~U#ixrRW%QUqMeo_KQ)03%2Ti>Q#Va!m>R!U>qsy&bG60KpA zumUc^*){&>p+2SZbN48P1jk%fO@HEnS8;DQE$031rzgX!H;{JZm-HKs+qoK=t!iMj zPhU(K2~Y+sK%$_O09=sg{SobXD z5)kj!dBzhI{4cQR9t$YB8ppK?U3N&E&-coA^O+P{#C%}|6Ik*RUM*$uAqr<;ex`=t zIiis8qHPnJwu0ifIWvV5a zj1AP^HY5Y~c>4Qy%+>3I{#uqKmF&tM`ge(oh|me`msFKTwH*8Nj<`BqnDc@;G+(jp z7Q1r@3@=wGyoL~<(J7~G^C3Ml0qh=3!m9C9x<^ae=W&+uB`r%o z?)&+0wXT5fjyxK!+S)+t}b~ck$m+>gy$xNUpi!QU$X=#wc`Qk%azFKNwc~qKzhqaebMQh2C zSj^vWb!*FoHjF)q)Gq8v0)DoHE-I{dwB2eHNWISn3KH)QVWx0fMWyyVyDF2Zg2|?M z#kG?$y!axZnLkZQwzIS8Jx!PtieNC(T<{+q*^TNPsph8KqUIR+NpvOA`PdOAj9g@z zw`p0y>xp3X-73XP`kSYH5$fhQ&yRJ0AqQeBM4C2th{?dVCqedFEF2s&z(Kt(ir`C^ zK;_3zQ%Yr$=efn&zeh9SHf6Ye+!b)Vc)2>}4|(X$t7+zJhKb!3I+i)6UefR5YS%#} zWZmF0=`2TK*oR*UaG(4;P=-dkHn0-n>0BI*fb#swz(p9z{rYv`Czf+|!w+dsK62m~ zJpTIWfymkJ@D{IsQF)s%3X>JTz$fK94m|=pU*Bas)I2*Cf0leuTnO?ih)rxqgJWnT6>~610m3IPmu{gwKouGnz z^U73*47@NV_F?!BE)}Kd9m<0!;m%iTh(w*a>&T3?mpCl_q@iHXp9S&d;zhYjr zNoy!4A>B(>w97OWds-|6{gnR{Pxq6IE+crRw-!Q*3!S6X2rYZy6XG4VC#(36KbPf0 zJbYQ9w-o$=(PHL-#_9{Tu}W%1j|%aUN-7`Rn}vFpGI(+BP0EdHCni-Y62;1G-^R$t zaD0$|Mo|1H=&setK^Vco)wRr{f%JkkkVV7IDDKB*X~OSH@83tnOGQW-Le;$*LN%E_ zpXA>93bsR^*?a4FqP}>Q$^;>s*}!;Bj*wJA#Jy#E-~-n}Q{=v0ZTV7f@0DSzW#ioJ zlC@uBq{JLzI91t6bBgaQYKVfM!>2UQ&m5G^$YP<0)BSwpa4#Z#e8gZ4@%ecThfTh` zVcWauBkmHTt^BYojySPs0+lS|S$Zs#%Vabp-9`J-sCRet{4VyNC#ZTQE!8q-ox8ob zG7G=VVJ41e!7opqe?>?yq7z&G29mQVKR>d`n{w2a{D3r9YCHO{G5Qv5arcp=FWn)X zwV!3WGWB%3m-(Fov*z)+(!1+DGzHl>i1*6Ut zeQqy*2Qu5GXCb5d3(me5?TtTfPd0kiDVWhcN-2yYDvU85i&4pBzmJKt)0MfxD*vU9 zsz5pA!iuTsSb(ytQu?^Eb+-2TsW2w`TCQMQ9Z0X7suP=CI=EoI2;V5uW?@`ZG__-6 z!k0MO@J&9e3fXph)ukcNeFv8$t;B-I%ozumlY;cnzTE!Fg8;VOw*e+6FvjCk=I~Gm z9d1qGMxGnJPsy3jqO6A2JC^WqYM)KCtFA3XQ3Y8Xltn#Yi7VoZZ`fw~ZXa$N;jY+R zYyRfa+EL6G9ZopEwO)z`=={5&sq5F|G~tMi$t+WY4&Ny!U%R#O z=@>Y5F5K>o>`&bE*iZe~xuiR4Uy8{FIm-Xc65xuTv{$*cp=XwC$3I%j?tn9;Q;z|L zNyab5f}2cbiY+;M9^8|rs%JR!p2{)9#_C$%8FmY@_!-@zHXHqX%;9brU|uL~CGmf) zg98HxF|+l;VwhUHdOUmk3?NQ}@!kyw!oi2Vkgus>MYqZqjV8Uol4U3w@3;Hk@1fKk zkY-e77Gb0ycTQ)Lq?q-6;5_Y{NwV*UZj{ckH*-=mkV^1FX#y# zAuVIIX4y9GGw!n2#d(Ex45pCVii~*Fnv8MpuRfQ1eMl}4h~HB;s%?Xen~by*q#S*E z>n+KK)AZN)SlGL*w^Rd?HK}7W53p}eN!{+cZyCd5E@wUA?&@W-$rJWOeM?w<%4mOt zp@2Q%b(MJM6rZ`{+{Z|gXi{0QApZNQDrx_?MP#%kAN`pBfartBu+?#tX_F1{s)9y* ztf)2V;)2c?>4yDeWPwaXX<2Ez?|oxO>Qbfz_b(vSB8)c?dc-uP($%F$VcjtU72Bz) zYHezKM=2bdIJ`WxBcnWHBSts(lOAznW`M?515cih9y8K2F67-BdC7JeyvIexH-+7p z9NTWyteHok!?qiv+OR*U7DR|~zt5qst;gnk??lN&9Ewp;J=PPpolxc;bi zh60oI@zYSYPOM&FC*`bujO>8csgEX?S~4|so{|>6TdaXas&|SQRF(M7qqJp;N7lQ? ziKq+gxbCq=3>cfnPoFfA=x5ItcYcUUI05nqN5(d-9z?n}&4)y~QH=FoT5(`_B7L*h z$?AQYcAwMqo5zJxd3@iZq=$hz`&tvRybcZ(eMecdCQbVk@&EAlmO*hv-L`0O_ap=h z4#C|TcZUQG?(XjH!6CT2ySozz?(PJ4ckU+n&Z+lKz5D*$s=KSYx|^c+T6@Wyb4?k; zo!&`z4KxFx-yQeU3FHmhH1*{$!ItwO)&JtiH5>U(+?>!%#e4 zs8emEizp{ zhqgX6xKxig74K)!LoFvjzODywIK&<{#{lJ1DB5?Aj^m!R&4+_#DH6W)le^E&Fgey^ zw9uF`zCiWteCQn&5df%dI;#4HZoCc}tFfb{>lZl2Oem$EPXV)^ehEyZs?B%_ok>Za zcJhe?5dU!Gl5{S#ymc+!UF@gv4f0$Ea^E{H_~#!(1wnYNth);fQFX5S0$KR$nuxTG zKylE?+-E-ofeT16A^|r^tJLwmW%zQS+;{y|^A(q~xH+?b31#cip$kd=0f-W<@W+!& zDk9blTs(Cc{2lc`d!ZvK$EGu#D-1|oPIs+s|>kJf&lneF<%9T5!7;p|2PclJN^T>J7l%n+#_ znyHX#%ckoNO_|$_UD$K48(8fme&J%F`uJ7=fQfUkgJ;8n6{pBn@OlX2VHWyU$FN-Z zjLTtr?d3JqKnUAZ-~Md&%)@ycqKG^+{{vVs-(7qBL2+`_tEz1fk?y+NoUzAXF=CF| zjawEh876B%oT-p>!j(6qaqKRd^L07+$hZz|Q2pmllLz5uzqY~%bsnmIo&sTHEtE|p zScKUQ+4|cM$YX4+mM!n}EyDu}Ai=S)s*K;)1N|!Yb(CR_H;v+QY_jB#Sx8B1fD#em z9;9zDN18)4gGFpjpyr@twzfpTi=WC?O>UV6;`5RPhkwiEZOOm5uD{#bI|)8t{L}u% z40V>Q@4?>6Ui1+~Mj_m>R09(8EurE9T9S_+3R|Qc;PH-~7G)0iWYA<3Yx#r^zWGu( zY6_J1wz@>$*cm2R?+yp~oU=hZ)`OoXm^q=7i`%HL5tlv~D_eS5*f!o%9XGT~zh9AU zY0@}nr5{ff`!m@6Kh~9|9|9wx+vcJ4!@4TjPWAE~-4x6|1`m^%^~P2tZ-3#p9D3t% z0*CtRsJzjw1or~f>p`LI;&YF2j&V$<_5{__K^K44^D*A(JM@qU7DMlC*O)0(INN2< ze!jLJ!BXA&2K)vNNFZZ9o+Y6m0E=d`-sHK?vuHd6IfH5j#9U3MdEw+f+1a~VB=Up- zI6%9Myoz3bF2|ccHXh~800&I-rKq+GS(Df%Ixn_*u~eo~n4L7H?^+r}xyyefWzrQ| zHkZ02wMZ+qQuf3n;EhNKY92GUOyMN~>Xco$swjdks|A>|sac}j(|8&h&4+{V-p5oJ zKmEAh3$kj;U15>Fi!=AOik*QnN%2Zyv<@I)RqdA+bpcD)-nMjY+{;yBk|*8Ne|&SrBj zPB;j)N|#>sWF~Wd3NO(!1VF@~jGQ+vGeY4x+JXu*BFwtEOw!%qcK>0H?w$ld+E%D2 zJ#is+-Ha>wH4XP=0mN2~KDKIKe*YKu_lO%ahXxFad%W_qq!YPz#32;Bg(g5BwYT;J zIb8c}$O)Q*eCT5z!H<->hLLH(VL$w4ah173vc@i(a@0ckI{$<}y7h9#MgJgMoHh6a zJKun{H{bJ}5KX~rU)hY<2a3$z9tC*O0WW;u#Vael=S(!HFNdE0-^J6m?41@!`d{f{ zsYE>=A653ybh(m#76hGEECm3^rE5FPUpJE_&gz%_AQID9hahZjX4BrICCC-u=c_>* zjs7(njHx>ua)RDL+he>(N%~_g-s1TCa@;u_*N* zV~)O(+1KlH3Mz(k@tJLWpA9%seO+U;@cz85mJ}1(5OWk8?YiML7coO#Qtlof9mKhL zSb-g-9lgCqKizTnRGaY%f6SvzD2{=rxSq($jtFGhYu4e$>ep`JKbFgsV}v$q1=+2D zOy_c9KOpX!VVH?itDIE+2!3d2x~q!TkBu>&VT}x-IhItQ@=Ue+@THoRN>rlOY%0Ap zGb)uP=2tgb6Talhhx^Y*cGZ7G(Vry(utm2Y8#bbA>KKxm;P9?t<_aG(7blu-3Xdbl zZT|=B#jmi7p%_jbaoP2%U}$iJY@ZYx(PKL?9{;c8Xee41Um1_kXTAn%!ArH_f3mYk z0dh?Nj3J;}OUM@TNLKU@Vg`uf1ujzO}9TG+SFeFAkBoVO{ zq`ks{UKGmCOIX*jR|}rc*`C_`)28^C>x`8IBv~0!Kk%XrR^!znA_j7Aq%6AKkBgqy zD~jLEx433s7HogSs}o=L*u`$bJ6b80Uc`Z?hJ~vfs3#ZB+t|0Zd%P1dIr(|xV3LHnstjKaNv7QK_-MSSaG%SIzDX)5sH@(ph>ehrO`e9EVUf)#*f*Ig2~5qxPvzB5N0BR1BTeEMV+o`GF?PXS7CDCcw<52C@#_OAN6$x z;vTQul#NuV&$pP90a?f<33^@g*wNN10PV}%tB-{kfRqK=?+&!e+gsFnq@aL`U~fDk zp|`$0UBnZ`na3Lj+pGZpar9eHHFIk)Q$L}6}_C=3AOXwg96MgoS%lIT`438smNX&Pqb4#e^hz3Gpwq&K~%h^ zhOaEn5n}Y1$%gmSEc(wN0>o#?P{?F%G5Y6mC89mbDO{2#!7RwONdqiX4Q8mTva4mI z>|`|xJByB=~-&F1{FW3NQo9BGnAgfek{CnU;DEym-))r~(!Yq5MeiljWl zIKyi!OYXSiIM>UwXp%syMWHvE3vGl@kxH|}Fty!PfM?FD?oiy*lVsi=aCo{hiXtpX z5W}(kStANDeJ#~6GeSg~Ye;E}tA%)sVE)OQO=!!&o>JYM9%P~E{`pB-qbbUtR5P}Y z_sEudPmQ?Ntl);fcDD`zkv0)s{c9_Pw<-A}{HX*?^A&`|4arM91b(v!cufu&o-3|l0hM1Tb2QT)f@k%nBtF& zAu*(X05WzXu@&2f2RFfBAh)vxXg(in%Nct71St7Y36N{~{c+v8_o z3}e)h8roB`Rh7oZBBqqtVFwL};*iZTjs_WDyheTqd$UfoY|hMlw@PS~E5=vnD#o1M z5qoEhZ)$D}Id3XOiU~*XynkI+thn|YU`4TCqb>fESehOMPZBXe89S$;@Y9$Yj!O(E zYvqK)75jryL^&CA+EkYID9LcG#S0+QGj5!$kfJXAh$v=qc-AvSEH^b)^u-fzH0fv- zr8HW;a;!F;VPm3&hby{Hh;=&Mi!`dh&fE2LHXD&~|3h-;^m;FN20%^JbKW^MQi}dw z_jRLh)W%f*-e|3JiSG6nHXZF-3V};-#OFE`Rlp3FSd!h_JHxSn#I)U+p~JcWSZ6jy z*w%n3v***fDEAT%(@D#(A0Mc$wv`)J98-XVf#^du&+Uq~8&#kZ1Hc;#_%oDnI9GmD zMRrL-PQFz$#?#YwyBZpShnMi29Ur~^@RLH`x*uz_rc!=NoN%L*!2eubcsynH&qD$Q4mRir7T^(*csxL+rlwc#u##jY?g5Vq0uHOWvD2TYWoc-ghE-Rpo0FB$&)lix zK{-3ILb)hBcLbk3uD$^eY`xwIW`8(~G{$|4d(wI-;}AbwX)yE=@iW(_^YimWZnt_M zqc&#pH#))N{cZ+OvMveWP4QGcpY@;sU#7fXF7cP$FGpOH&NSN&cIS)--6Lj*Qq3Ms z8gkx{1gRLDG`Yf6tbH3<+e^d4- zo}|jC1)%!Ppf!b-JVKn}oopylVSV|}U4xTD{sDpl-~UGof0>bhKdbt81>_He|B|Ak z<0edRHKbiCSP~C3i{nMJ)(bgJIAf8qLJ+D!ssodMs?zGTABVX`}dqsDOX$W9J zm7M}(CmqTnS?Y1R=V4oPGS==&Q{4t}B>eP&^^~KzeXt7J>tvxp+GrUj;#MUsVdRu{ z)lRK&!z^|y(9pE^l={ZvQmljHNyVyg%%#H`2O1Mw`ti@K8!c)E%Ak)*iyH+!xv!rp z#z45vMNhGg-f4Bx;(gzDAV;80i7qvA5I2}b$}(}W4g?z9V{1DV85Q=IUaPWF6X`Hy zqZV$rc%4m3J@?cJe9NiU!ow$@y9Fv;%$wR{KkB{YCIycvp2|bq5E((x_t;vfYNANX zol16yYSU8BIkh|LdwIkPGA7ow-Gc6#jMi9xk#HF|$wYQ2=~dl~hTY-RIzgQ_(aen3 z4cZ7Y4SIClIK?|2>&mSR(mvL^q>kWYe# zdmIL2hJP!CoZYok!WAfIy@iM zQ@|Czakje_c=IArHh0*H&w|HfRL14$5lg%{b_1_{zA*cNKzCBGZdQ@-NX@QP#di>8 zZ2SaecFnGJw;Agf(#ZCm)5q-WvN^KH`a$(kd~61p_2=$3Ae!=?oDC+;L4aR6N7mOO zesgxi7&X6ixgTKZTzs_it>ay2AX^H(b9t*Y0vOpkABBfLJ%`+3;z3%6!7c9@!(=fb z!()rS-fM+4wUxO^TU^o{{VV9}DM^6P*o}}yJ=lS%T=_NB&f@3jYr#+o#AFX*=g2@HEU08L$QIf5<( zaJBV`qnP%JJFdVlv2u%`DQabnq=@y-vFS-Gta}1)xSl?@N>cSVyhOfDaB0RKZo4+#9G{3 zmb}CIh64bOe^bjxhZDc32bdS^^szk#Yj{EuL;P1uRmXLk&Ko_D52&5U?Dl2d56lnu zLpUz=&mKu)b?Xx$EzErzzuBGXJ|UK-UV@l9QiQYuj9ijs$QYHDxj4p?_gK8vW6v&h ztCv5f++|99F;J?K~HA#p;%lxgKSrGa0Iw|S)YZ5 zohdT3+ut#hRtE50kHU6XOHSqqM>sP?SNusY`rOzPHL28uPSwk)*!&&jpIk*E9h>`l zHyGt@#ZP4eJeK6#st$VM5^WajTh@tz?U{F~lcDI;_kC=EPItdFPV7#lWzBYZoDp5S zveY_DFefd}40H#CjwfZm;9P@P(*q+5E??FJBt=aO83pqY3zb@9cv~vtt zZ~^LS&*N~@=>sq;`pZ_4S}Dj6$$%Cpw$rl4CD2=A4Z8fVEzvLeB73OtPanSFg^m8j zI0n9(qW$kw=Kn*X{h$1^Y74+k0$_7rvDhtWUi(Nfq)tv;QoKW(Q*79J{C!!P!4AqvC{E)Wbj_w_g3Q{q- z)9-s3yLXSs^%_s+Ez*8VB)~luA^twwV(bSy2F#L~_z-vM8CA4U>J2{<>hm9+%hB<- zW>u~m?o#z|^kUkC0BN3m!=hu=n}!6JoGnD@lo)=d$G$)47>k72xhcob1PqGoH;zo; zjg{Z`-RunHY{GM|Cxa3%vpC*uZ)!n;Zhwy~b_v34=_F6+@ndIhkdm3vj$YhnuK7?! z{PNzgJ4^<02``-BWIzAENXB(6p}Qj!JT+OnKa&!Dt_L;_{@xsrU~g@7sR;an(LwrP zY$!~uig%Em&45jHJ@~qsdVRe%_j34GQ&eBSRULXyOq8Pwjq=r!o&n=2bPN!e0B_sf zn%m}IgMd#$GXDlT{Z0RXrvL0{x2al;Gr8J7-yW7K1&dr!4^cwDEf1=HLl$?R=+5P{ zrP(`{5*mka%3}LPDz$u9xw0JvU~(zl)k!ShRoDyJPZ;U^%~7$mZ9`uyIbHG>diogt zZ_^gOHU1HcLuB8*RV1t4$IiGFGxnZCM#P?FDn!j|yR0F^;>W8a&$c3Q8<7+6dbW+M zeem%gx`?J|p=Bw4I%z6&{*rU&@{Te1X-ZJ_o^CuFm%=h@VHm1R`BJeVZ z4#|*nAxI+~b>gmxWJO5NwaDz!NHVG^?3j&Jp{czLjzsu1FN!vOwwxdXL8 z!0^6Z_avQJi7wcN4kO2fRwkl;Z5niRiSG*v{{BQrC0MrLLrFJV3Y9J3XJfX=z8qg3lWZs>O>g#}W<*e+F$33$m#}~$UGm|{ zb#`1rrKl_#w6vR$J#!g0Gw<vXPm2Ntpkg!l-^g&rkt3! zv9Sj)YORde4Zel89V|evi~1Qga&P>5Z%~AwfHSxNxbAebF{DFZPFW6uMH*$1Ny%`@ zbb0(1v0yYVPGD}LbzC<+{|Na|Ycg4(!+)NuT^DEpTkUw>VH?G8ux7LzS^cCnxcLTN zVS%o5*8Q^)&S-X1&Vu=dR>bHR`?_CU6Q3*OaGOEXtr8&Fe2Wmnq0g6O{Y0!>z0@ur z@jixK<7b3(P%w}M{d@EQJU;|w6$eR{QB9suyM(a~_br#{+Ud+i&G6<~&^&g@)x*vx zbWNR?xCN}J=zH9>3EHVo_6~s%X$+u>5|8B%KEdmm@7(WiuCutBSLOkyeZv+B&2`8+jH$*?{*OLMXo1HkwLePBDuuGrdt;}hGVX0OQvbV z`1n3>ziNts7)Z1s9qyJMWYhUJNmLX6@5lWhXv{r$%oMs!{T1;vnVGc7ef?t!W(Q|{ z`(W4zK0`S&OYtV*g8Pt5wD+I%Xa5}jhM0QuHFR>#zwC181l5pIiK}u>{NCuD8RrNg(GC# z-vc({dA!u&wkS+?<3;6ms~?Un`9D2qjt6>xmRH_{xAwY1@szuVn9O;I8goYOPxdsS z2NNwxM%z_J(V#op$N?Hh#lbe4{pZ}7m;unv!^Mzjj_+1aWj1~V7>!TQMyw~I`}dy; zew~KnFdI?g2A}qt+RE44@DBhDRwnG*?873$GOPXP2G)Ss5~&q&gK>P?r}k_JhcAV~tr z5B3|+Y(C*LXjYK_y<2wsTX*7_lbnxp5avB9!QEsPl9oR=8wyTS`2R{5&=$f1;aM1l z-;#9F6MF`#Tu41QB*xJru#vBoawdi$hqL}iu9l+!RZWRs*Cr#h@as3i{a9P=jpPew6ZG<%!{wl-)?ng^Z&*E`kc)YW{LxiNLO-zQE(R>GThSp{Um z9y0TAa7vaR>Ld!J-y7P5kP!1Cpw{NnenYpwu`=&@`;nyl#u0n)|H5T`sIYAy-QQUF zHTJN4Y9d6B<=5Fp9*RSZcTdyMBxH{py1iJWY&r%*J;l03CFPP?S@0B`eK4+#_{*|6TzLpff1i}iPOGQ$4dptv;GyA zcDgQ+g`132Xnj;gJn=n##P~X2obMI0)L6;;ZN`dAzbjj3G1P-ax=jIjicyyMtkR92 z5(ey3)*>*(tt^DL;MFnJQAt0GrdoSl43Ylo@`;%@065HT~jTu+Zi^y9S8 zppYvc=9)W!8~dj^3Bs=9FBV^f@Bi4Y9|hBBB37Q}*w`Z_5J1ge0e7$9WMt0y^dBNPa0)1){&tGB&Kr<(Ww2}P;bvMaSasO5aHvptA(y*6beYHkuQQ;t|}8iO~VZbe`IRwow`<6 z;aawfinb-w!;Ck?EoVu%u8j5**%)TG)x}Mjj#{*#uy2-ba?0yQOV2g!#h3wUY;AWj z0-CSXegaQh8=oD=6N{3ejGXyAMQLd{Fyn;N z4<9qFD{n{{S?}HmYwP?BZ@ssiCxnjx!DbA(pa>ioy}YnREtFXsq6h>n zXZ1C5x|F@DpNm@hd%BAK$mTd}Fbs)VsXvybmAMve;U!yxC_0Su%`^ z0S&r>dJgOSzQ|id{rl}W`XE}Vk)V=$YZfaxeX-p8lB!d{)X}gb;h|pL{=4?W-GL<& zu5B^BmDJc#e})uah)?m0}@g> z2iU(RRa3(sS7Y-(ou+#!!%&dSk58}a&)$h7D~rVi?qcAC+uGnuRTHcZoIcU^* zLTW}qz#^MY=@e6x{IE*xhS4H>I?EysXeIRVCYozjY8j1Etx##Hf2tEG>NI|DY;5u? zf;YV{GW7S?Z(ar&a0ukTh|N@eEkV&~(ZRt{1U3CNqqH!q>0|jHEl$C`Y7^ zn@pk?QRtolJ$q(J@!M<$stE2cHd$iwl2U6&&GcQ%1KxnyqGF6i z8{sJ$niZ*4GB`9e*g=E8c3f^#_R{pW7C_*-l7GPVX|M0=G}uAggIoC5x(>OhnigDn zj`VVtXAq}%b(_*gh2V|ODmZR2z3z5y8ty;=E3_mujj$*GsYQynmo$lt=3|sHa_pujTCgc`2*;IvydxU?S)!{<}=cY zjiaGW`)8AyI4k{E(gAvMn+O&>Hc>VtEK5cK@zbr7WOebHgsVII;ouA(EE^{KPW~MY z2x42Ffwefc}sQ6v{658A@%7HfR`&ynXFTMigFCZCx;*_Nl4au#(ci(jPM z@*vmOhe8JFYvuNb8OyWD#4NTfmfh2usl?c)QtnnCx_sHqLq<(BxNjvtkl7>X7FERG zk5I}Bnfxj?g3ZBdTYhEfOY&SfpIk;JaFLXDIcYEUpoLZXcG97qJCRZ7i}6#Fbienn%*EhHwkAJGlC!R8cCwp@1%u#0DrwxtN0OU@4q zCTLHIhp0O-Cd3F?BGk>q8b{ZzA)`DC7NW|b0q0i#r=p3k&czZi*gs@Se6?!avSdve zxf-35Pm~D>A<2~R&g%l*{S4X3?C-V#cxYrJHhRU ztq+vPG^{x|ji8~-{3ez4T^Kbz9_4bem{TRw@R)NyB3okD(t0g(MS51Dtv~R;R)g zW5MFxp|#&r7Q2T7?!n9No1#>SMfUjwb(FBFvA+9J0CR+|nt1Riz zKf{QH$0vWRlP#;;JIh~eoS0vo*Z3Z{gFm_h7L)sxE-gsHDC6?i*c^*opg=?T7vU=G`Em@kJHn=~I> zAQ6o>(9DMjrzF{KCa>#XjsYo+%6R1!MVrOq?;Z}h{cer&)X1GpYKcJx+x0`#& zIKc-PzS%r&Zq@LS9Z!UmkH)49JRn3inTQ@=alkFO^AnOpq$EWcnz5fAbo+15@E6{nr4l-D;`4C~`Kw$)9|dfz1WQF2?jkl3mJ}txL(!Gf%QFc(%|u`Ugd4M_jM&7TI$tW?gFV zo8_-BgH0#cxHd>Jv9ALT-7I{>@<#OL8ap8F-yb!&0UP35hyJHwtCx$)6ZT1*SPY^l z4i+#KP@mpv?{|mj+iW&dA|kIAa|l{I`Tar((oSK(_}tXAE`oy>$dkbI^Rwp93+3-B z{AprMU#tk$BBIfwpVF1MJmK^62ARackti=mevUnAj{O6An0yvtA>Q^Oa0p!I@_3wT z)}m^5eTxoNw0h-#d>k^hz7z1XH2tRf$K&dC#{}*>Gm9n+p1$*NVWl?UW-F&+B++h5 zc&52puvGqY=n|JJU1fL2xj!&o_uRO=ntJc2awgZ!Oz=m9zyXc^Ti$el5{|22dj4$D ztvzea#88<-uni;;#}{0R2m+FlTfDjAn{OcQpN?0f8*q8eUPmNxWCtc5Lbx*7NCk^C z*R}2M4Ui0);i3;Q+^mWTC0{8ou2!%23#Va?kBw&((==i`G8Q!}wmEH;bP`U*cqtrA zV%CvNvZo#&qfdwL?bYU--Z*%=APt1m6Wms?CGv6(OQS4sR6h-qXTPD^r?>O5wpj0b_r0i zLv)dnKMR15DhF*c)qUYn3xzN`1iV>Jr@dR*0yb;iAp;|+{sHov(&a4&{j4jyeuz~R zQ-F7*0+dIBT~i#9f(9i~R+Q_%-`Oe)E}xJX9=L8EJwxoNmlu~S&YzPTI@`)j3fTGC z=x)~$R;~jH>6Zor0&pZ^)p(3_?%{c>uwfZcQi(Z}=4O;bfLmi*8Cc>Il^~m{Z!kFe zwLjR971bG-^QW$Qzvz#N30c%YVyHUMZwRDetrjO#EHgm7I#*BGtH#c z6(2Y?EA5_gTQ#`;Mu|M!-`7k}4Qd{i9J@`Rk|N+I#X_&(l^f{Tp!4C#_~dMU8cNEy zf9fp{W!j8s+yS2!KDZmF3eJB*?555ic!|hJ45!ZU+goDPp_~}feynBZTpR#An3#DB z+Gw!gX&|?{ZK8XgcR{r}G@?setfKVHExnn4UfV0dV1d&ezK}HR{yU13i?Bb71kA4C z2rMb-X_3Uf4lWh%%JI$Nor?##Q;I)c=W_7mIz1q)q4lay(y%qMe#$XL8;1w8(yF_Oi;mJWct~Cf22?*>kT7T1SOZ$T)%{6Pxie zsaea25+g8Zp8?B|LGa$wUl*vlUIitdr7H?*Q`i`Bb-V^0uu*jRQ#7c8;Q;Q> zX4l!Q=Xi(yiCx}U zN!=*dwH;E;K2txLh0Z52%O3g5E76jfwDqstV4H*QC3B(56*RwE=;YQDCeS22O*}dh zV2lL_yF!v~-_`ISOT99c6up7|OrQd;V4<8J>Q(L6i#kt*mBZWb8uG(?P&%Bchy>kC ziBj9A{YR|udT?NXs`ioC_0D&tLxW#U^3(BSw?l5KRyxnwd}7_Cb`(jtFC?X*2w4b= zWn9{xi*IRGRpCJ zvR!NOK~}@u!PdDgc8APHzSJA`ZNTZ@M7l^>#xZY@*L)s)0>oWO-_+SmixClp$cNTA zz(HnycTafa+EF0Lx$mXZ^P}l|S$$hRu7*;O-zb5v^oLXf%AR)*eq4PCqt7IR#^C5- zpWt1pDV$NcEOsKQ|uSesmargbhx@S$ilYcQr6h4=y} zg=|uKY#+2L*ihS9*eHDw!YG%0u8O?T19#c{ay(?#xp$b6iBP=J1$XFDQ3q#?JG{Un zqeW-@U1YMySeY`UF1oAVLoNaxkLI;}hVZ)f5D`TTRpC!m*pbdBzRkwoccNz2t>#I$ znJ8D}k0cyg@7Xs|uCZl9@Ebe$XVMUSvS195KxV<$miB`HF;MaO!v0D8^wq*~hcf!$ zXi|&sH#n{ttbn~SJ>XnVjPr;}e=+#dJs=eO2B#~;%=Km@MoTW<;ok?$XsUz5fig2E zzms>pE7BqGfEhpyWt1M~6K=zcYKG?YKtx^~9tP?!R---{S!UoO{BRR%O6{jJHeN80XXt%?X z{l9h#wB4^zALagec)@|g?cQPu4;=0bhqVyt{<#;yg}zq*W5NV-D;jF1#M)>(iWIhl zXrND*p^)DK-vvMi(BLGiwDC*WsInjzJx${zVG%Hy+zH)4?e1JDCw^?Bu4;|F(Pq24sBLU#o)x)6t+6CIxZguX)usf2#SY z+=6d0dHXY$So8i4oGLM|JS6COJ>d-n6nLyz2s~2%ZcV|)P{Y{x2yQCLr}MQA&Vbit zyY8}@-@HSgB57{vglx^(Ba}7!Q-aK$1@mHlKm*5RgE6t*o`!u7GHlx z%5c@OpPj?qEFH>WQAy=GANO`%N#A~m^Ug~^;wRqDJybvIeOs#f4z(X|!G-?W^epy1 zAY`@7&VkG(71k35H!&bq9mC5R#^v1pdF`oB$NjY{CF*_83*nm!T7(mr{cCSU4 z2-1#sGOZRgw+2sAak*RFDoUb(;h1H7zL4)1)rLhNf@SKHSxBTB9;BiSkN$U&s`ZAOA?TVa*78gsL0W?m} z#DUEwE7@7P-E}*6_Ov?nz~p2PqPNnezQ7-xWnug47{3BWY0q^^4(8_*I{O32`bj!= z--z*|Ynrr^InJJ*KTjx5U|E!(AoQx@?80sLEUh7OYx9p%T7emryCWf4|9wThfEQ?* z=V{aL5{MKOtR(AQk$<6o7fF*6AbL7H?qP_W+n$Ga==iyF6(d0^;?LMF>DE1r)y)CR z-}d!^_Kj=J%%IKj!9P&4s8=SFu*<6vYge4ASeCPTO~aVLGuS1~occ_Q6oRrQ88RP! zE@Yy76IUYOhk0M^GaXMGx3m%-ItK>{T3>q*-K{t;odRdB8@uHI^GnOhbvz*J3 z7t7=aNABR&43JN7O|})|MN(5X*pDW6b*o>81T3XxYL(m~AYTWsZ%99O1xTAqB|lYu*6F^ zVD*Nzh^|ydFf)o3#L7M&1fQTzimS44xhe-*QW8p&6=SQN56Ff(ltGaft(+Y}Bz9MGb;@L@yu#W&8C&N4aalxP4@&WnsS zybk}4$2F9%OUqN{M0TcJFOOX*=a{eeZqv-y+md`bOU2X;0^hVSQ*?qGgHc=0 zog_U@%me~=p0@T6PPBcQ&-Wt3de5g=8VEhW{Ve|W0+1#XGX!DRF z7>JeNa2S{>UH&0SN->>a6D&l}3|!S)9#2KJ1%bXLfbGNea=vi)`J+2D9yO3R-8{zV29=RKR4z*tEE}6T1OSGH#4g{#9dDAGrlBR1xhb{Otx$%2wz{SUT6mCtasZ5&($ml zZu4;;SMI?$3L9xA23zeB*PwCh>oVFLZadEBvg2c#-VE`tX0a#4}1QRcE?y50kh%teg)BCM!KW;&Vn~xtpmU0G21tao5 z_#3;Mix9n-??A3V_F&2hZeH@c8S?n>QvlFVN*&UR4uXf&5oPY&esnKIXP1g zM(U;}?vG3e3^X=pU_;dhWEr<_**)b}Kyt{uvI98#tteI6iV+P;@hb!!aG2S50;_oy z$oo(X$-G)hklpnFVC2|H976=;q}CKlT~Nr=pp9!NC(d0 zmBtd_)%pF0JY=ne{N6^lsl9YO?2!@WR22YzrqA7Py#2eS)Fe>hM1st9!{q&+3ZCN5 z3X~=5raZhMORAeQF_A%8P;|B7Ag`R-**^m`1$+3zx1 zrrlmZ@-;HFz03L7&9*=6(^3JZI$CYiDBT~HRW5xy9G>a8*4GC&L#BbZY*|0xz!1)Z zF4XA!zA%Q*S7Oqf9~_<~&k%wxcNiw08d{eeoIi`NvN;+>j^g`Bi%cG?fKclPsbDPk zM;jvSwjVNzTXK3OmbBkWV$zGjo21I_9TiyT9W3Cncy;(#l)AwAqM$kNUd%ux! z^N2^twK%g=WD!X`1m5%5YzdWqk1B@19BcK!wZf}cq0(4p;e_)_4lb%LW!z>=|Gc{&}TuYz=^z`*Bp7}6}0 zgSUTZJ-2fl{^&&`iAuQ593Oqm@cE1D zPgq~SeN29Dvy)I82zk?-dD))>ebUwMGoWry^cnD`fCk?^h@!?YupOxbsA^!g%-tK> zW=~4>Fz=PAz2QyWjfZI%76(&BNzOr%j%q}f&V#$AMZ;uH-T28w^_HNYkxaA&u>IpDn=_0uGRL&;4ue zkTx|Fam--m>ew~zl{l|u)8e)K{2djy+VP@U_Ld%p=!2^ndcPAzv?Nb8f9;N7+E)cn zaY>R!``Oi#B96;*F13)w`XaE(jb&$c>Tp-11#v7MAp~oAhaP>ifwULeoa(F*i+0QLz%d(>+ zwKycIzZ^fEn-k1!bBpn*Xa2W_LJdgXW873$%aGC5=dd^6*dFEiJAcV(ra^886rNUVwT0?-ue=GkMUdDmybOTz6VP5!I0A=_s9nd_dEs+k-AqjZ*$*H%x_P> z!ydmq@=owngEB=fWx^`NDK1C-N$+J`f-fsA7V%n|lD&WNx~i}ctF$GQH2L?yZ5ne8 zplsIu_8rI6BJ$IHf4x6qVc}b4>OMf=grqetv#CP*s5$Y0^OXc~k`KApVl|8&4`!-s zy?+%CG;9(cRV6kdpBb`xCk;z0CA{PRdaz#s6<9oKEk4AXW%n{!RA+msFDl4(!e{J1 zR~f3&e|wZ-NI4hMC121Po+u$=LCwy?8gZO8o|>@wn0AT7JL#NH8dibZbT}C%Na(7D zjCQMB7UtkHvN*As^sQ>h;-Mc<%{O#_x9fX9%YPv*6YCHRFsy4Au4l?B->4Gi?3svoIk`Zmn&kSY*9=X?(9VL#H^eQc!r9OB$Cpmj z@4s{o5pMAL4RUFw;#5_r5UdMI;yG0(HqJCw%@>muqT_dCb;N$kd}Qtj=4{yboF=as zGABuvVn^OJ)Ka^6k5zL-#KeEXCeg`CK9uUFDn|M#kEZscxG6tt9zp%74-(droH8cU zUsfmdA8EH|TqR`exnxXzwcyo648Q6P?(hM(O&0o z{v$q+dw0dI!H~({(20yIfrqgVgt>`EF!w*)pq>m9U(*l&1mm%6)B8(w(8QVNxvpDy z)PJt#7HK-#jS)>@(E2!~Ajm5|RuF8fB`Lpj6V;=lDiX#tB_EfQ2{vjAaFW%3=#-%F zTmt8jA^UP_bzMUxt=~go$TSW8?lXnZCeDH8i>zW1iyZjo3WO8kwg&TNn?3LG<3y@u zzK|e^_#T;_sm}j2LtVaHP{En&_PC$T8AByHaTlmT^RqX(GCqVZ&G|kqx=Y9u46`|6 z9c^e|?07YvMuLX7^TmQ%Nr;6gp+>traIH7yUztjDinlP#gTmsU8*T!4o|>YB*0Xut zmYoF&b5$^dWWj(|9X2qQ=Y7xM+mPjwZVVp)8aV-^xWEqYO$+T;S%14yR^^_gWo*Nf zCM%wMFZa;20PO&e=d{$h$l~0UGI2(;A6n3%Ch`8O48k_y%D5KZUkO-1of3=qp48 z9S+{F7Y{sq0x*o*fqE=KAkeRgi3s%he$(as7w5Q(TF{C*i?r{p-L+vc_%bz!cE5)M z`oq5dzJ$c|a*`Y=8QIcDuACo;b1VXwc~oZR-G`ii2oX{mXwm2slLjPHl$EaSl z5fQV`0_{tz^00Xg#wv}K{1r4Xm(-6iZ&^KdTm&Z{P%18WAxxwj6*-WDOCCXa zwnNyiT5HdCmv#20#}#4O^a-+0Sl4`rDs=tyuw)?Xp7Tf(PwRlk+AAJP`79nOUSfR6%JStbG8Iyc^Ja z&DA>xt;`IwR%7!?%_0aBF{@Kwfe(SlGS1(8G!aC~&{trj5xnDOxZN!2q%4yumzpTF z40Q7qUpwv4?pG;#o5I)0&EUA#yuO2k3Hdcn9CM^eHoZhV~(O3n9`Whk@e!q zRSUt$6v;2k5z*Ojs>(UcE5>>EoE^s}U{wS7Obamd4oei1vt5>Gi=S zKR@><4kOkz)-}5@)G^zAEb zyNNf2G#lQ@+4+)2j-(>sj1g;`&?@wwrFD?ZipZ1^TQ!CIKjZ9MLTDeO#n#}xwo<;6 z+uLTr_`m`4UEkI_7M1YD;!z+(9WGpy{wA?bm>OR5sbHLMY!PKK6HBSh(1AfkN+(ZM zwa|6-D9_l{SMn9V_%dv{X2yn|P)w2b$n~7^7^-m z2?4d<5Xbvtn6bV#YogS|EEPm)DXaIryR)v~{-8r-4YmI|xvbBi!>hjDG0wOKbrAIM zKAAL^_r$UPXkZnDR>^(Ac0OYc-NIHaicCQat$jM5$rx6jkoty)i>~5BW9AC*7xIgL?qlM^PIyHEVsp z!PWahf%8dfT*tYKLXy!Q?XHJi^Vc;oVxfYk(LkvkY{2{B!|Wy*7-~5Y{fB4x`>n(% zb3JkAu;D(4%_h$`0|@8EsCM97CZWh`!WOjKoRMvFtQjsUpfJ~4QS0U)uw&%rFpLW> zaKT9AmL#*Ah`5V7?0N6KPJ}TL6L0WMImF~XVI`Mz5w0R-o6WCgP_m_cM`7_7_;gm` zJhVruGlc{lnO?8~=l5_8E9*3@o)w$vggXHpvQF`wOghpWmuSkF zXe-Y2$(AP^=*)j^$*Z}M`sr(>Y*xB&rM>#uC~|BOMo6I~ty$$b7?WrXhXOiAy~*10 zuZ1n&N|+l8CdA&nUykJm_JV`>nnN7tjji$ud5GS1Hd8s~KeAy{F_`Yf@U&5(@hYPl zs?N&mk{*sx5#LevWg0anU5(dC(TiH?MrM(+APPR<9yE~cBat4&5NsSPOV@{(pQufG zf1K?bYrk6KIlpfW2ff)k3^$NYwhn*QX`6cp6PckY9sOM zGM{4E7`os1A{G?2b=X_P#r#}@tRp{zWh{g$Kh1iAfDbMz3iHjMy`MK;hTxJ1Ht<5Q z`Lfw0O8-JOu6 z7qDaRtY6B0>{b2#+pgsP`qJ;bKNPM9Pa$xpLRmQbvx8-S%rcA+@tDq=U5;9;1$cB= z)MEHAF>)DXs@Ta$x;ugWUbaCxQ7tXu^iC z5itS!b_R|7=t*gCv*oKcGeb{~!N%YpnJ! zXF~Y;*v0nSXJWo@F4{TK3n|Znz9(xmwwfOY?ivBdC^iy1%JHrU*9F z<}vmpXi6DHcPq3d&D9=G)y)1@2CdRK@^%x?2zV6ip`oSzvV<_4oo&}{%k5h<=5CiR zRN|Ctjq8u4{WxO;-&`LzI*ziUF|WGwbxR3DRaf^Bb8UP?G;A=K$n-pz(J;_fWK?q! z{}H)^%#rV16U)mRu^UM+^V+=gA|s@p28@7F&1z@f1oEIf|M+A$6h$qe;*s%zv4F1T zq^Ihosf#x^7MZs5puTV6Y0|keSTXJwh&LU$q-y< zZ=OQ4`c%C8h=lRUL;NqqO5ufq+XnOgt{lX*EUUBnN!HHv*c^qy>{~M(K!&do%fih~R*tMu1T|Cqo zZ4pxXrt-&n$}DWVYvk3fO2v_StbbcfsQy5|-*wZ4)}8(@0TAZNAP}2wcJA4T+q!Rh z%8QHHz3MI8xD=Z2qUib&b-znl(Dx82^*zaujT%ZoZED>4GFPO(?eL z)T8}aP&$5;2q&EsG;Uq1$ilyhmq^@r#GmTiXnweP76R{Oa_XKKs_8Ya0-VXN&|?Bw`yFe+Xl zgZ$siKFfoHo%`J^u7_c+2nxZuw9pQZnioS;5NiDU?YGjwXlJ^Ts?N#qDcI5ooI4S5 z(iCnH5lgomD9K2cGaV5grp`X~i3ea55~#bVx_YBRw8Az&er$-)<31fv&`7h5(FpsZ zALIZ|tM1&wPoU~d-3|tv-y>S7rVrdYhheyKaYBUSf^_*M_s>)V3FC_yBAvKii5^owqAbg;ptyTL1dgLn`4&+3sC5!$Nhv`n zwQ;B>LH*$t?(foeC|@x{#_J|qv-r8g`z*J7G4J^d#C-M!}Obq ztZOSfCfP^)0W8`@KN5EuWY$&T37bNx;yJz=EB^IylIqOnmQAL(Ko_R|M#=bemciT; zEVqxVMNy;QC?QL4t$k|zB-ksh5J2qpy6*mErD}TC-r_KH@ohB|JP&7I*b2!-mQ8LS zbF35C=87$*A-f^sAw6Ysg@0$fj>+n%p;G(ba=4Y5Ss(X2Ju%ooeRr+4{V1tDH}q&X zsPN?U>B*{(tVwjPPOjXWLjOmAp1Nxc1{8^sRA_iMS!hj_@|Jh?X>H z>+W4m{q`oxb|KtVq)J%>0c8XyHjTHQw0*sK)NJ!TM)Tg zFoq(?*Ocxt?T)vRyp7|Z+{u67+Ei?1?jA3xD` zi61{3WYo$S{TdT4s3tl>Uz?muD;yea)6dg)zGGJchb-U8iTf;AlDC)=p2PKLg%m|l zC(rpNHakP@ae&a?R?W`1aav>-TDr&4+tcP##6Q>ta&6ygm61CwXlm;4!SO8H_2_a= zw!OU?aZ&g4%#1uY%1>ir57Zwja(hpt!!S0fJzg59xKg~Vw;K6iA7xJe1!P|WM_a{g zmwit#uu6XZ)!Y6XD|DE@J91?=;g)p+7kV#=$MfwJ+rB;X@OpXCt)%EfN0({FeMx5Z zeR`_{joDhv2z`&AroS6^gj?SJM!UUa!r|41Qu*^93%Bk^3GsNJR}p z+jo79ZF&X*JTh0Zc+N`*WAI|J*~2*YeIq*o(>Tqv5}LOG5L;6SZDbqDD!}y2%^PPK z?&ORa6@D)EQPt!f%Yo`-=m|P^obIT>@49`QF~{jl{)vj0+g)pskH&36rBmGZ)}`uG z^8RGcqmDMNRi4;Uv4tqVNt?drs9r2UO1qb0MHl1%omFRfbD}In#3z-~CQG*XK|Z1mE#K#38}yRr!EOC^yIw`qp^dETNIz^<;co-R z-xe9>u$#bkJM8^ezRL4;(TzC|mA=j$rRfNso76p7Zh@=FGx``%t$!kA^S*jh&|B_6 zTV{L@$S%MuxVTs~43^f_4-3{I-Z@ZLn2ZcJ+D+W)VzGmymAB4aU?)W2K1EhXBh-^X9^1i8se|lrC+V(1EpRo!Kq3(kKw=30P z)-G)U(1U#l#CodtwcVgW7oSJtQ_?{aGL8B2q_nnH5~;z!kkjvo7c=G+wWse`QD?1J zTs8cz^ruPoU+x4@XCEaxIlm9elum`T2G>&4lZS~V|e?7Fbr zc8rea=AGPkb1JT=^C5SGNc`4|^I7{~qPJ=P^_}N1 zTjiLo_41N66f_B=6x^KL>}rw;6a%r%$34<^Z_hk(F0?X8FlK-j)U4gdVP_LBUJ{dA z%*PWdCclKw^0*q8kuxp0jz!@!Ox77>*t@v=={E|N-ePQ~piQ<1QjgBQhUHYqM)8PB zH{A6@4;keu9GjuuPh?1-Kpn#hp>?=@j?KRY3}Su#SKNv(I?vH!DyP{Y@YQJh9eX{ zF3_$T#I*lv+yCN3KPsBG-0Dnq^^3o=Y(Wj{Yw0?iImN6Vb8T;9_nQwok2q*uCLr~H zWBgD%<$(^Mq3Z6I=El6ACe7AF#at8YrJC9%{)7?pE?XinhieW=;wPwKz9TD2D&T!6HbJ#C z83(Zu&bDO2InFGE)OAj~iHnx)n@KZ)gYx0k9^X&)IUhb;vp$wqyvw=2BhmUmb z>$2(Q4!zh8L#p5h{U0|9Y9kw)qjgS2mD?9WFLL9cD~u@{@x zdOa)Eu5gdJ!51@TRFm!z;y^MAaz*+4C0+i`5E|v!4rNG(w@V#PkqyrM@zSbh^3aR-kVu$f8Q#?<*UF%iNPGSh)csw`7@tb^hDX#LH)F7m1X||FQ2Spa( zPbNY-z_nWlQ0-a3(Vu!kr^p+X_MyS+A@=+v6dWezG>stv6qD!>F*bh=Ml6s636t3j zi$fVVQ%W5il`;*6zTE2A7n`(MVq`MDQ&$nR>B#pZ-k}3_RB@9Jcx$yTPq9kxUPWi; zBAC0V+1gj%a8&Mh07E~!UR&k(P;B{M>dcYB2W=W#bpT6W&#D0Wli{;nE4xJL&Sh$@Dk&KO(UpG!5&%wvR`fq;zy1$+ ht^RK!71W^@)N)qy4muO5*NFg8Q+}yb{oE@2-vDySY_tFX literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.15/caffe_output.log b/cars/lr-investigations/sigmoid/1e-2/50_0.15/caffe_output.log new file mode 100644 index 0000000..26994a2 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.15/caffe_output.log @@ -0,0 +1,4567 @@ +I0408 19:18:24.449684 5931 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210408-191822-3c4c/solver.prototxt +I0408 19:18:24.449854 5931 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0408 19:18:24.449860 5931 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0408 19:18:24.449932 5931 caffe.cpp:218] Using GPUs 0 +I0408 19:18:24.497622 5931 caffe.cpp:223] GPU 0: GeForce RTX 2080 +I0408 19:18:24.941783 5931 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "sigmoid" +gamma: -0.0014705883 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 5100 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 0 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0408 19:18:24.942917 5931 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0408 19:18:24.944129 5931 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0408 19:18:24.944144 5931 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0408 19:18:24.944264 5931 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 19:18:24.944351 5931 layer_factory.hpp:77] Creating layer train-data +I0408 19:18:25.053862 5931 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db +I0408 19:18:25.055430 5931 net.cpp:84] Creating Layer train-data +I0408 19:18:25.055464 5931 net.cpp:380] train-data -> data +I0408 19:18:25.055506 5931 net.cpp:380] train-data -> label +I0408 19:18:25.055532 5931 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0408 19:18:25.065255 5931 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 19:18:25.220326 5931 net.cpp:122] Setting up train-data +I0408 19:18:25.220352 5931 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 19:18:25.220357 5931 net.cpp:129] Top shape: 128 (128) +I0408 19:18:25.220360 5931 net.cpp:137] Memory required for data: 79149056 +I0408 19:18:25.220371 5931 layer_factory.hpp:77] Creating layer conv1 +I0408 19:18:25.220393 5931 net.cpp:84] Creating Layer conv1 +I0408 19:18:25.220399 5931 net.cpp:406] conv1 <- data +I0408 19:18:25.220412 5931 net.cpp:380] conv1 -> conv1 +I0408 19:18:26.108603 5931 net.cpp:122] Setting up conv1 +I0408 19:18:26.108624 5931 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 19:18:26.108628 5931 net.cpp:137] Memory required for data: 227833856 +I0408 19:18:26.108647 5931 layer_factory.hpp:77] Creating layer relu1 +I0408 19:18:26.108656 5931 net.cpp:84] Creating Layer relu1 +I0408 19:18:26.108660 5931 net.cpp:406] relu1 <- conv1 +I0408 19:18:26.108665 5931 net.cpp:367] relu1 -> conv1 (in-place) +I0408 19:18:26.108984 5931 net.cpp:122] Setting up relu1 +I0408 19:18:26.108994 5931 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 19:18:26.108996 5931 net.cpp:137] Memory required for data: 376518656 +I0408 19:18:26.108999 5931 layer_factory.hpp:77] Creating layer norm1 +I0408 19:18:26.109007 5931 net.cpp:84] Creating Layer norm1 +I0408 19:18:26.109040 5931 net.cpp:406] norm1 <- conv1 +I0408 19:18:26.109045 5931 net.cpp:380] norm1 -> norm1 +I0408 19:18:26.109565 5931 net.cpp:122] Setting up norm1 +I0408 19:18:26.109575 5931 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 19:18:26.109577 5931 net.cpp:137] Memory required for data: 525203456 +I0408 19:18:26.109580 5931 layer_factory.hpp:77] Creating layer pool1 +I0408 19:18:26.109586 5931 net.cpp:84] Creating Layer pool1 +I0408 19:18:26.109589 5931 net.cpp:406] pool1 <- norm1 +I0408 19:18:26.109594 5931 net.cpp:380] pool1 -> pool1 +I0408 19:18:26.109624 5931 net.cpp:122] Setting up pool1 +I0408 19:18:26.109629 5931 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 19:18:26.109632 5931 net.cpp:137] Memory required for data: 561035264 +I0408 19:18:26.109634 5931 layer_factory.hpp:77] Creating layer conv2 +I0408 19:18:26.109643 5931 net.cpp:84] Creating Layer conv2 +I0408 19:18:26.109647 5931 net.cpp:406] conv2 <- pool1 +I0408 19:18:26.109650 5931 net.cpp:380] conv2 -> conv2 +I0408 19:18:26.117425 5931 net.cpp:122] Setting up conv2 +I0408 19:18:26.117436 5931 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 19:18:26.117439 5931 net.cpp:137] Memory required for data: 656586752 +I0408 19:18:26.117447 5931 layer_factory.hpp:77] Creating layer relu2 +I0408 19:18:26.117453 5931 net.cpp:84] Creating Layer relu2 +I0408 19:18:26.117456 5931 net.cpp:406] relu2 <- conv2 +I0408 19:18:26.117460 5931 net.cpp:367] relu2 -> conv2 (in-place) +I0408 19:18:26.118005 5931 net.cpp:122] Setting up relu2 +I0408 19:18:26.118014 5931 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 19:18:26.118017 5931 net.cpp:137] Memory required for data: 752138240 +I0408 19:18:26.118021 5931 layer_factory.hpp:77] Creating layer norm2 +I0408 19:18:26.118027 5931 net.cpp:84] Creating Layer norm2 +I0408 19:18:26.118031 5931 net.cpp:406] norm2 <- conv2 +I0408 19:18:26.118034 5931 net.cpp:380] norm2 -> norm2 +I0408 19:18:26.118404 5931 net.cpp:122] Setting up norm2 +I0408 19:18:26.118413 5931 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 19:18:26.118415 5931 net.cpp:137] Memory required for data: 847689728 +I0408 19:18:26.118418 5931 layer_factory.hpp:77] Creating layer pool2 +I0408 19:18:26.118427 5931 net.cpp:84] Creating Layer pool2 +I0408 19:18:26.118429 5931 net.cpp:406] pool2 <- norm2 +I0408 19:18:26.118433 5931 net.cpp:380] pool2 -> pool2 +I0408 19:18:26.118459 5931 net.cpp:122] Setting up pool2 +I0408 19:18:26.118464 5931 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 19:18:26.118466 5931 net.cpp:137] Memory required for data: 869840896 +I0408 19:18:26.118469 5931 layer_factory.hpp:77] Creating layer conv3 +I0408 19:18:26.118477 5931 net.cpp:84] Creating Layer conv3 +I0408 19:18:26.118480 5931 net.cpp:406] conv3 <- pool2 +I0408 19:18:26.118484 5931 net.cpp:380] conv3 -> conv3 +I0408 19:18:26.128641 5931 net.cpp:122] Setting up conv3 +I0408 19:18:26.128651 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:18:26.128654 5931 net.cpp:137] Memory required for data: 903067648 +I0408 19:18:26.128662 5931 layer_factory.hpp:77] Creating layer relu3 +I0408 19:18:26.128667 5931 net.cpp:84] Creating Layer relu3 +I0408 19:18:26.128670 5931 net.cpp:406] relu3 <- conv3 +I0408 19:18:26.128676 5931 net.cpp:367] relu3 -> conv3 (in-place) +I0408 19:18:26.129232 5931 net.cpp:122] Setting up relu3 +I0408 19:18:26.129243 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:18:26.129245 5931 net.cpp:137] Memory required for data: 936294400 +I0408 19:18:26.129248 5931 layer_factory.hpp:77] Creating layer conv4 +I0408 19:18:26.129257 5931 net.cpp:84] Creating Layer conv4 +I0408 19:18:26.129261 5931 net.cpp:406] conv4 <- conv3 +I0408 19:18:26.129266 5931 net.cpp:380] conv4 -> conv4 +I0408 19:18:26.140365 5931 net.cpp:122] Setting up conv4 +I0408 19:18:26.140377 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:18:26.140380 5931 net.cpp:137] Memory required for data: 969521152 +I0408 19:18:26.140386 5931 layer_factory.hpp:77] Creating layer relu4 +I0408 19:18:26.140393 5931 net.cpp:84] Creating Layer relu4 +I0408 19:18:26.140413 5931 net.cpp:406] relu4 <- conv4 +I0408 19:18:26.140419 5931 net.cpp:367] relu4 -> conv4 (in-place) +I0408 19:18:26.140949 5931 net.cpp:122] Setting up relu4 +I0408 19:18:26.140956 5931 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 19:18:26.140959 5931 net.cpp:137] Memory required for data: 1002747904 +I0408 19:18:26.140962 5931 layer_factory.hpp:77] Creating layer conv5 +I0408 19:18:26.140971 5931 net.cpp:84] Creating Layer conv5 +I0408 19:18:26.140974 5931 net.cpp:406] conv5 <- conv4 +I0408 19:18:26.140980 5931 net.cpp:380] conv5 -> conv5 +I0408 19:18:26.150013 5931 net.cpp:122] Setting up conv5 +I0408 19:18:26.150025 5931 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 19:18:26.150028 5931 net.cpp:137] Memory required for data: 1024899072 +I0408 19:18:26.150038 5931 layer_factory.hpp:77] Creating layer relu5 +I0408 19:18:26.150043 5931 net.cpp:84] Creating Layer relu5 +I0408 19:18:26.150046 5931 net.cpp:406] relu5 <- conv5 +I0408 19:18:26.150053 5931 net.cpp:367] relu5 -> conv5 (in-place) +I0408 19:18:26.150632 5931 net.cpp:122] Setting up relu5 +I0408 19:18:26.150642 5931 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 19:18:26.150645 5931 net.cpp:137] Memory required for data: 1047050240 +I0408 19:18:26.150648 5931 layer_factory.hpp:77] Creating layer pool5 +I0408 19:18:26.150653 5931 net.cpp:84] Creating Layer pool5 +I0408 19:18:26.150656 5931 net.cpp:406] pool5 <- conv5 +I0408 19:18:26.150663 5931 net.cpp:380] pool5 -> pool5 +I0408 19:18:26.150697 5931 net.cpp:122] Setting up pool5 +I0408 19:18:26.150702 5931 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 19:18:26.150704 5931 net.cpp:137] Memory required for data: 1051768832 +I0408 19:18:26.150707 5931 layer_factory.hpp:77] Creating layer fc6 +I0408 19:18:26.150717 5931 net.cpp:84] Creating Layer fc6 +I0408 19:18:26.150720 5931 net.cpp:406] fc6 <- pool5 +I0408 19:18:26.150725 5931 net.cpp:380] fc6 -> fc6 +I0408 19:18:26.492550 5931 net.cpp:122] Setting up fc6 +I0408 19:18:26.492571 5931 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:18:26.492574 5931 net.cpp:137] Memory required for data: 1053865984 +I0408 19:18:26.492583 5931 layer_factory.hpp:77] Creating layer relu6 +I0408 19:18:26.492590 5931 net.cpp:84] Creating Layer relu6 +I0408 19:18:26.492594 5931 net.cpp:406] relu6 <- fc6 +I0408 19:18:26.492599 5931 net.cpp:367] relu6 -> fc6 (in-place) +I0408 19:18:26.493383 5931 net.cpp:122] Setting up relu6 +I0408 19:18:26.493393 5931 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:18:26.493396 5931 net.cpp:137] Memory required for data: 1055963136 +I0408 19:18:26.493399 5931 layer_factory.hpp:77] Creating layer drop6 +I0408 19:18:26.493405 5931 net.cpp:84] Creating Layer drop6 +I0408 19:18:26.493408 5931 net.cpp:406] drop6 <- fc6 +I0408 19:18:26.493412 5931 net.cpp:367] drop6 -> fc6 (in-place) +I0408 19:18:26.493438 5931 net.cpp:122] Setting up drop6 +I0408 19:18:26.493443 5931 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:18:26.493444 5931 net.cpp:137] Memory required for data: 1058060288 +I0408 19:18:26.493448 5931 layer_factory.hpp:77] Creating layer fc7 +I0408 19:18:26.493454 5931 net.cpp:84] Creating Layer fc7 +I0408 19:18:26.493458 5931 net.cpp:406] fc7 <- fc6 +I0408 19:18:26.493461 5931 net.cpp:380] fc7 -> fc7 +I0408 19:18:26.644878 5931 net.cpp:122] Setting up fc7 +I0408 19:18:26.644897 5931 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:18:26.644901 5931 net.cpp:137] Memory required for data: 1060157440 +I0408 19:18:26.644909 5931 layer_factory.hpp:77] Creating layer relu7 +I0408 19:18:26.644917 5931 net.cpp:84] Creating Layer relu7 +I0408 19:18:26.644920 5931 net.cpp:406] relu7 <- fc7 +I0408 19:18:26.644928 5931 net.cpp:367] relu7 -> fc7 (in-place) +I0408 19:18:26.645399 5931 net.cpp:122] Setting up relu7 +I0408 19:18:26.645408 5931 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:18:26.645411 5931 net.cpp:137] Memory required for data: 1062254592 +I0408 19:18:26.645413 5931 layer_factory.hpp:77] Creating layer drop7 +I0408 19:18:26.645419 5931 net.cpp:84] Creating Layer drop7 +I0408 19:18:26.645442 5931 net.cpp:406] drop7 <- fc7 +I0408 19:18:26.645447 5931 net.cpp:367] drop7 -> fc7 (in-place) +I0408 19:18:26.645468 5931 net.cpp:122] Setting up drop7 +I0408 19:18:26.645474 5931 net.cpp:129] Top shape: 128 4096 (524288) +I0408 19:18:26.645478 5931 net.cpp:137] Memory required for data: 1064351744 +I0408 19:18:26.645479 5931 layer_factory.hpp:77] Creating layer fc8 +I0408 19:18:26.645485 5931 net.cpp:84] Creating Layer fc8 +I0408 19:18:26.645488 5931 net.cpp:406] fc8 <- fc7 +I0408 19:18:26.645493 5931 net.cpp:380] fc8 -> fc8 +I0408 19:18:26.652873 5931 net.cpp:122] Setting up fc8 +I0408 19:18:26.652881 5931 net.cpp:129] Top shape: 128 196 (25088) +I0408 19:18:26.652884 5931 net.cpp:137] Memory required for data: 1064452096 +I0408 19:18:26.652889 5931 layer_factory.hpp:77] Creating layer loss +I0408 19:18:26.652894 5931 net.cpp:84] Creating Layer loss +I0408 19:18:26.652897 5931 net.cpp:406] loss <- fc8 +I0408 19:18:26.652900 5931 net.cpp:406] loss <- label +I0408 19:18:26.652906 5931 net.cpp:380] loss -> loss +I0408 19:18:26.652915 5931 layer_factory.hpp:77] Creating layer loss +I0408 19:18:26.653544 5931 net.cpp:122] Setting up loss +I0408 19:18:26.653553 5931 net.cpp:129] Top shape: (1) +I0408 19:18:26.653554 5931 net.cpp:132] with loss weight 1 +I0408 19:18:26.653573 5931 net.cpp:137] Memory required for data: 1064452100 +I0408 19:18:26.653575 5931 net.cpp:198] loss needs backward computation. +I0408 19:18:26.653581 5931 net.cpp:198] fc8 needs backward computation. +I0408 19:18:26.653584 5931 net.cpp:198] drop7 needs backward computation. +I0408 19:18:26.653586 5931 net.cpp:198] relu7 needs backward computation. +I0408 19:18:26.653589 5931 net.cpp:198] fc7 needs backward computation. +I0408 19:18:26.653591 5931 net.cpp:198] drop6 needs backward computation. +I0408 19:18:26.653594 5931 net.cpp:198] relu6 needs backward computation. +I0408 19:18:26.653596 5931 net.cpp:198] fc6 needs backward computation. +I0408 19:18:26.653599 5931 net.cpp:198] pool5 needs backward computation. +I0408 19:18:26.653601 5931 net.cpp:198] relu5 needs backward computation. +I0408 19:18:26.653604 5931 net.cpp:198] conv5 needs backward computation. +I0408 19:18:26.653607 5931 net.cpp:198] relu4 needs backward computation. +I0408 19:18:26.653609 5931 net.cpp:198] conv4 needs backward computation. +I0408 19:18:26.653612 5931 net.cpp:198] relu3 needs backward computation. +I0408 19:18:26.653615 5931 net.cpp:198] conv3 needs backward computation. +I0408 19:18:26.653617 5931 net.cpp:198] pool2 needs backward computation. +I0408 19:18:26.653620 5931 net.cpp:198] norm2 needs backward computation. +I0408 19:18:26.653623 5931 net.cpp:198] relu2 needs backward computation. +I0408 19:18:26.653625 5931 net.cpp:198] conv2 needs backward computation. +I0408 19:18:26.653628 5931 net.cpp:198] pool1 needs backward computation. +I0408 19:18:26.653632 5931 net.cpp:198] norm1 needs backward computation. +I0408 19:18:26.653635 5931 net.cpp:198] relu1 needs backward computation. +I0408 19:18:26.653637 5931 net.cpp:198] conv1 needs backward computation. +I0408 19:18:26.653641 5931 net.cpp:200] train-data does not need backward computation. +I0408 19:18:26.653643 5931 net.cpp:242] This network produces output loss +I0408 19:18:26.653656 5931 net.cpp:255] Network initialization done. +I0408 19:18:26.654724 5931 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 19:18:26.654752 5931 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 19:18:26.654878 5931 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 19:18:26.654975 5931 layer_factory.hpp:77] Creating layer val-data +I0408 19:18:26.679214 5931 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db +I0408 19:18:26.682032 5931 net.cpp:84] Creating Layer val-data +I0408 19:18:26.682065 5931 net.cpp:380] val-data -> data +I0408 19:18:26.682086 5931 net.cpp:380] val-data -> label +I0408 19:18:26.682106 5931 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0408 19:18:26.689946 5931 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 19:18:26.726176 5931 net.cpp:122] Setting up val-data +I0408 19:18:26.726198 5931 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 19:18:26.726202 5931 net.cpp:129] Top shape: 32 (32) +I0408 19:18:26.726204 5931 net.cpp:137] Memory required for data: 19787264 +I0408 19:18:26.726210 5931 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 19:18:26.726222 5931 net.cpp:84] Creating Layer label_val-data_1_split +I0408 19:18:26.726225 5931 net.cpp:406] label_val-data_1_split <- label +I0408 19:18:26.726231 5931 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 19:18:26.726240 5931 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 19:18:26.726277 5931 net.cpp:122] Setting up label_val-data_1_split +I0408 19:18:26.726282 5931 net.cpp:129] Top shape: 32 (32) +I0408 19:18:26.726285 5931 net.cpp:129] Top shape: 32 (32) +I0408 19:18:26.726287 5931 net.cpp:137] Memory required for data: 19787520 +I0408 19:18:26.726289 5931 layer_factory.hpp:77] Creating layer conv1 +I0408 19:18:26.726300 5931 net.cpp:84] Creating Layer conv1 +I0408 19:18:26.726302 5931 net.cpp:406] conv1 <- data +I0408 19:18:26.726307 5931 net.cpp:380] conv1 -> conv1 +I0408 19:18:26.729629 5931 net.cpp:122] Setting up conv1 +I0408 19:18:26.729640 5931 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 19:18:26.729642 5931 net.cpp:137] Memory required for data: 56958720 +I0408 19:18:26.729651 5931 layer_factory.hpp:77] Creating layer relu1 +I0408 19:18:26.729657 5931 net.cpp:84] Creating Layer relu1 +I0408 19:18:26.729660 5931 net.cpp:406] relu1 <- conv1 +I0408 19:18:26.729665 5931 net.cpp:367] relu1 -> conv1 (in-place) +I0408 19:18:26.729977 5931 net.cpp:122] Setting up relu1 +I0408 19:18:26.729986 5931 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 19:18:26.729990 5931 net.cpp:137] Memory required for data: 94129920 +I0408 19:18:26.729992 5931 layer_factory.hpp:77] Creating layer norm1 +I0408 19:18:26.730000 5931 net.cpp:84] Creating Layer norm1 +I0408 19:18:26.730002 5931 net.cpp:406] norm1 <- conv1 +I0408 19:18:26.730007 5931 net.cpp:380] norm1 -> norm1 +I0408 19:18:26.730517 5931 net.cpp:122] Setting up norm1 +I0408 19:18:26.730527 5931 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 19:18:26.730530 5931 net.cpp:137] Memory required for data: 131301120 +I0408 19:18:26.730532 5931 layer_factory.hpp:77] Creating layer pool1 +I0408 19:18:26.730538 5931 net.cpp:84] Creating Layer pool1 +I0408 19:18:26.730541 5931 net.cpp:406] pool1 <- norm1 +I0408 19:18:26.730546 5931 net.cpp:380] pool1 -> pool1 +I0408 19:18:26.730571 5931 net.cpp:122] Setting up pool1 +I0408 19:18:26.730574 5931 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 19:18:26.730577 5931 net.cpp:137] Memory required for data: 140259072 +I0408 19:18:26.730579 5931 layer_factory.hpp:77] Creating layer conv2 +I0408 19:18:26.730587 5931 net.cpp:84] Creating Layer conv2 +I0408 19:18:26.730589 5931 net.cpp:406] conv2 <- pool1 +I0408 19:18:26.730613 5931 net.cpp:380] conv2 -> conv2 +I0408 19:18:26.740005 5931 net.cpp:122] Setting up conv2 +I0408 19:18:26.740015 5931 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 19:18:26.740018 5931 net.cpp:137] Memory required for data: 164146944 +I0408 19:18:26.740026 5931 layer_factory.hpp:77] Creating layer relu2 +I0408 19:18:26.740033 5931 net.cpp:84] Creating Layer relu2 +I0408 19:18:26.740036 5931 net.cpp:406] relu2 <- conv2 +I0408 19:18:26.740041 5931 net.cpp:367] relu2 -> conv2 (in-place) +I0408 19:18:26.740607 5931 net.cpp:122] Setting up relu2 +I0408 19:18:26.740615 5931 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 19:18:26.740617 5931 net.cpp:137] Memory required for data: 188034816 +I0408 19:18:26.740620 5931 layer_factory.hpp:77] Creating layer norm2 +I0408 19:18:26.740628 5931 net.cpp:84] Creating Layer norm2 +I0408 19:18:26.740631 5931 net.cpp:406] norm2 <- conv2 +I0408 19:18:26.740638 5931 net.cpp:380] norm2 -> norm2 +I0408 19:18:26.741400 5931 net.cpp:122] Setting up norm2 +I0408 19:18:26.741410 5931 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 19:18:26.741412 5931 net.cpp:137] Memory required for data: 211922688 +I0408 19:18:26.741415 5931 layer_factory.hpp:77] Creating layer pool2 +I0408 19:18:26.741421 5931 net.cpp:84] Creating Layer pool2 +I0408 19:18:26.741425 5931 net.cpp:406] pool2 <- norm2 +I0408 19:18:26.741428 5931 net.cpp:380] pool2 -> pool2 +I0408 19:18:26.741456 5931 net.cpp:122] Setting up pool2 +I0408 19:18:26.741461 5931 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 19:18:26.741462 5931 net.cpp:137] Memory required for data: 217460480 +I0408 19:18:26.741466 5931 layer_factory.hpp:77] Creating layer conv3 +I0408 19:18:26.741474 5931 net.cpp:84] Creating Layer conv3 +I0408 19:18:26.741477 5931 net.cpp:406] conv3 <- pool2 +I0408 19:18:26.741482 5931 net.cpp:380] conv3 -> conv3 +I0408 19:18:26.752660 5931 net.cpp:122] Setting up conv3 +I0408 19:18:26.752671 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:18:26.752674 5931 net.cpp:137] Memory required for data: 225767168 +I0408 19:18:26.752686 5931 layer_factory.hpp:77] Creating layer relu3 +I0408 19:18:26.752691 5931 net.cpp:84] Creating Layer relu3 +I0408 19:18:26.752694 5931 net.cpp:406] relu3 <- conv3 +I0408 19:18:26.752699 5931 net.cpp:367] relu3 -> conv3 (in-place) +I0408 19:18:26.753315 5931 net.cpp:122] Setting up relu3 +I0408 19:18:26.753324 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:18:26.753327 5931 net.cpp:137] Memory required for data: 234073856 +I0408 19:18:26.753330 5931 layer_factory.hpp:77] Creating layer conv4 +I0408 19:18:26.753340 5931 net.cpp:84] Creating Layer conv4 +I0408 19:18:26.753342 5931 net.cpp:406] conv4 <- conv3 +I0408 19:18:26.753350 5931 net.cpp:380] conv4 -> conv4 +I0408 19:18:26.763305 5931 net.cpp:122] Setting up conv4 +I0408 19:18:26.763316 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:18:26.763319 5931 net.cpp:137] Memory required for data: 242380544 +I0408 19:18:26.763325 5931 layer_factory.hpp:77] Creating layer relu4 +I0408 19:18:26.763331 5931 net.cpp:84] Creating Layer relu4 +I0408 19:18:26.763334 5931 net.cpp:406] relu4 <- conv4 +I0408 19:18:26.763340 5931 net.cpp:367] relu4 -> conv4 (in-place) +I0408 19:18:26.763721 5931 net.cpp:122] Setting up relu4 +I0408 19:18:26.763729 5931 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 19:18:26.763732 5931 net.cpp:137] Memory required for data: 250687232 +I0408 19:18:26.763736 5931 layer_factory.hpp:77] Creating layer conv5 +I0408 19:18:26.763747 5931 net.cpp:84] Creating Layer conv5 +I0408 19:18:26.763751 5931 net.cpp:406] conv5 <- conv4 +I0408 19:18:26.763756 5931 net.cpp:380] conv5 -> conv5 +I0408 19:18:26.772959 5931 net.cpp:122] Setting up conv5 +I0408 19:18:26.772970 5931 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 19:18:26.772974 5931 net.cpp:137] Memory required for data: 256225024 +I0408 19:18:26.772984 5931 layer_factory.hpp:77] Creating layer relu5 +I0408 19:18:26.772989 5931 net.cpp:84] Creating Layer relu5 +I0408 19:18:26.773010 5931 net.cpp:406] relu5 <- conv5 +I0408 19:18:26.773015 5931 net.cpp:367] relu5 -> conv5 (in-place) +I0408 19:18:26.773561 5931 net.cpp:122] Setting up relu5 +I0408 19:18:26.773571 5931 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 19:18:26.773573 5931 net.cpp:137] Memory required for data: 261762816 +I0408 19:18:26.773576 5931 layer_factory.hpp:77] Creating layer pool5 +I0408 19:18:26.773586 5931 net.cpp:84] Creating Layer pool5 +I0408 19:18:26.773589 5931 net.cpp:406] pool5 <- conv5 +I0408 19:18:26.773594 5931 net.cpp:380] pool5 -> pool5 +I0408 19:18:26.773627 5931 net.cpp:122] Setting up pool5 +I0408 19:18:26.773633 5931 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 19:18:26.773635 5931 net.cpp:137] Memory required for data: 262942464 +I0408 19:18:26.773638 5931 layer_factory.hpp:77] Creating layer fc6 +I0408 19:18:26.773643 5931 net.cpp:84] Creating Layer fc6 +I0408 19:18:26.773646 5931 net.cpp:406] fc6 <- pool5 +I0408 19:18:26.773651 5931 net.cpp:380] fc6 -> fc6 +I0408 19:18:27.114794 5931 net.cpp:122] Setting up fc6 +I0408 19:18:27.114814 5931 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:18:27.114816 5931 net.cpp:137] Memory required for data: 263466752 +I0408 19:18:27.114825 5931 layer_factory.hpp:77] Creating layer relu6 +I0408 19:18:27.114833 5931 net.cpp:84] Creating Layer relu6 +I0408 19:18:27.114837 5931 net.cpp:406] relu6 <- fc6 +I0408 19:18:27.114842 5931 net.cpp:367] relu6 -> fc6 (in-place) +I0408 19:18:27.115625 5931 net.cpp:122] Setting up relu6 +I0408 19:18:27.115634 5931 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:18:27.115638 5931 net.cpp:137] Memory required for data: 263991040 +I0408 19:18:27.115640 5931 layer_factory.hpp:77] Creating layer drop6 +I0408 19:18:27.115648 5931 net.cpp:84] Creating Layer drop6 +I0408 19:18:27.115650 5931 net.cpp:406] drop6 <- fc6 +I0408 19:18:27.115655 5931 net.cpp:367] drop6 -> fc6 (in-place) +I0408 19:18:27.115677 5931 net.cpp:122] Setting up drop6 +I0408 19:18:27.115681 5931 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:18:27.115684 5931 net.cpp:137] Memory required for data: 264515328 +I0408 19:18:27.115686 5931 layer_factory.hpp:77] Creating layer fc7 +I0408 19:18:27.115694 5931 net.cpp:84] Creating Layer fc7 +I0408 19:18:27.115696 5931 net.cpp:406] fc7 <- fc6 +I0408 19:18:27.115700 5931 net.cpp:380] fc7 -> fc7 +I0408 19:18:27.265542 5931 net.cpp:122] Setting up fc7 +I0408 19:18:27.265564 5931 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:18:27.265568 5931 net.cpp:137] Memory required for data: 265039616 +I0408 19:18:27.265575 5931 layer_factory.hpp:77] Creating layer relu7 +I0408 19:18:27.265583 5931 net.cpp:84] Creating Layer relu7 +I0408 19:18:27.265588 5931 net.cpp:406] relu7 <- fc7 +I0408 19:18:27.265594 5931 net.cpp:367] relu7 -> fc7 (in-place) +I0408 19:18:27.266093 5931 net.cpp:122] Setting up relu7 +I0408 19:18:27.266101 5931 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:18:27.266103 5931 net.cpp:137] Memory required for data: 265563904 +I0408 19:18:27.266106 5931 layer_factory.hpp:77] Creating layer drop7 +I0408 19:18:27.266113 5931 net.cpp:84] Creating Layer drop7 +I0408 19:18:27.266115 5931 net.cpp:406] drop7 <- fc7 +I0408 19:18:27.266121 5931 net.cpp:367] drop7 -> fc7 (in-place) +I0408 19:18:27.266142 5931 net.cpp:122] Setting up drop7 +I0408 19:18:27.266147 5931 net.cpp:129] Top shape: 32 4096 (131072) +I0408 19:18:27.266149 5931 net.cpp:137] Memory required for data: 266088192 +I0408 19:18:27.266152 5931 layer_factory.hpp:77] Creating layer fc8 +I0408 19:18:27.266160 5931 net.cpp:84] Creating Layer fc8 +I0408 19:18:27.266162 5931 net.cpp:406] fc8 <- fc7 +I0408 19:18:27.266167 5931 net.cpp:380] fc8 -> fc8 +I0408 19:18:27.273520 5931 net.cpp:122] Setting up fc8 +I0408 19:18:27.273530 5931 net.cpp:129] Top shape: 32 196 (6272) +I0408 19:18:27.273532 5931 net.cpp:137] Memory required for data: 266113280 +I0408 19:18:27.273537 5931 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 19:18:27.273542 5931 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 19:18:27.273547 5931 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 19:18:27.273569 5931 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 19:18:27.273576 5931 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 19:18:27.273602 5931 net.cpp:122] Setting up fc8_fc8_0_split +I0408 19:18:27.273607 5931 net.cpp:129] Top shape: 32 196 (6272) +I0408 19:18:27.273609 5931 net.cpp:129] Top shape: 32 196 (6272) +I0408 19:18:27.273612 5931 net.cpp:137] Memory required for data: 266163456 +I0408 19:18:27.273614 5931 layer_factory.hpp:77] Creating layer accuracy +I0408 19:18:27.273620 5931 net.cpp:84] Creating Layer accuracy +I0408 19:18:27.273622 5931 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 19:18:27.273627 5931 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 19:18:27.273631 5931 net.cpp:380] accuracy -> accuracy +I0408 19:18:27.273638 5931 net.cpp:122] Setting up accuracy +I0408 19:18:27.273640 5931 net.cpp:129] Top shape: (1) +I0408 19:18:27.273643 5931 net.cpp:137] Memory required for data: 266163460 +I0408 19:18:27.273645 5931 layer_factory.hpp:77] Creating layer loss +I0408 19:18:27.273649 5931 net.cpp:84] Creating Layer loss +I0408 19:18:27.273651 5931 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 19:18:27.273655 5931 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 19:18:27.273658 5931 net.cpp:380] loss -> loss +I0408 19:18:27.273664 5931 layer_factory.hpp:77] Creating layer loss +I0408 19:18:27.274297 5931 net.cpp:122] Setting up loss +I0408 19:18:27.274305 5931 net.cpp:129] Top shape: (1) +I0408 19:18:27.274308 5931 net.cpp:132] with loss weight 1 +I0408 19:18:27.274317 5931 net.cpp:137] Memory required for data: 266163464 +I0408 19:18:27.274320 5931 net.cpp:198] loss needs backward computation. +I0408 19:18:27.274324 5931 net.cpp:200] accuracy does not need backward computation. +I0408 19:18:27.274327 5931 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 19:18:27.274330 5931 net.cpp:198] fc8 needs backward computation. +I0408 19:18:27.274333 5931 net.cpp:198] drop7 needs backward computation. +I0408 19:18:27.274335 5931 net.cpp:198] relu7 needs backward computation. +I0408 19:18:27.274338 5931 net.cpp:198] fc7 needs backward computation. +I0408 19:18:27.274340 5931 net.cpp:198] drop6 needs backward computation. +I0408 19:18:27.274343 5931 net.cpp:198] relu6 needs backward computation. +I0408 19:18:27.274344 5931 net.cpp:198] fc6 needs backward computation. +I0408 19:18:27.274348 5931 net.cpp:198] pool5 needs backward computation. +I0408 19:18:27.274350 5931 net.cpp:198] relu5 needs backward computation. +I0408 19:18:27.274353 5931 net.cpp:198] conv5 needs backward computation. +I0408 19:18:27.274355 5931 net.cpp:198] relu4 needs backward computation. +I0408 19:18:27.274358 5931 net.cpp:198] conv4 needs backward computation. +I0408 19:18:27.274360 5931 net.cpp:198] relu3 needs backward computation. +I0408 19:18:27.274363 5931 net.cpp:198] conv3 needs backward computation. +I0408 19:18:27.274366 5931 net.cpp:198] pool2 needs backward computation. +I0408 19:18:27.274369 5931 net.cpp:198] norm2 needs backward computation. +I0408 19:18:27.274371 5931 net.cpp:198] relu2 needs backward computation. +I0408 19:18:27.274374 5931 net.cpp:198] conv2 needs backward computation. +I0408 19:18:27.274376 5931 net.cpp:198] pool1 needs backward computation. +I0408 19:18:27.274379 5931 net.cpp:198] norm1 needs backward computation. +I0408 19:18:27.274381 5931 net.cpp:198] relu1 needs backward computation. +I0408 19:18:27.274384 5931 net.cpp:198] conv1 needs backward computation. +I0408 19:18:27.274389 5931 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 19:18:27.274392 5931 net.cpp:200] val-data does not need backward computation. +I0408 19:18:27.274394 5931 net.cpp:242] This network produces output accuracy +I0408 19:18:27.274397 5931 net.cpp:242] This network produces output loss +I0408 19:18:27.274412 5931 net.cpp:255] Network initialization done. +I0408 19:18:27.274475 5931 solver.cpp:56] Solver scaffolding done. +I0408 19:18:27.274785 5931 caffe.cpp:248] Starting Optimization +I0408 19:18:27.274792 5931 solver.cpp:272] Solving +I0408 19:18:27.274803 5931 solver.cpp:273] Learning Rate Policy: sigmoid +I0408 19:18:27.276445 5931 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 19:18:27.276455 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:18:27.361034 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:18:31.480471 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:18:31.524021 5931 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 19:18:31.524065 5931 solver.cpp:397] Test net output #1: loss = 5.28176 (* 1 = 5.28176 loss) +I0408 19:18:31.622799 5931 solver.cpp:218] Iteration 0 (0 iter/s, 4.34797s/12 iters), loss = 5.28295 +I0408 19:18:31.624333 5931 solver.cpp:237] Train net output #0: loss = 5.28295 (* 1 = 5.28295 loss) +I0408 19:18:31.624364 5931 sgd_solver.cpp:105] Iteration 0, lr = 0.00999447 +I0408 19:18:35.279364 5931 solver.cpp:218] Iteration 12 (3.28315 iter/s, 3.65502s/12 iters), loss = 5.27251 +I0408 19:18:35.279397 5931 solver.cpp:237] Train net output #0: loss = 5.27251 (* 1 = 5.27251 loss) +I0408 19:18:35.279403 5931 sgd_solver.cpp:105] Iteration 12, lr = 0.00999437 +I0408 19:18:40.076592 5931 solver.cpp:218] Iteration 24 (2.50147 iter/s, 4.79718s/12 iters), loss = 5.28835 +I0408 19:18:40.076625 5931 solver.cpp:237] Train net output #0: loss = 5.28835 (* 1 = 5.28835 loss) +I0408 19:18:40.076632 5931 sgd_solver.cpp:105] Iteration 24, lr = 0.00999427 +I0408 19:18:44.938189 5931 solver.cpp:218] Iteration 36 (2.46835 iter/s, 4.86155s/12 iters), loss = 5.28317 +I0408 19:18:44.938223 5931 solver.cpp:237] Train net output #0: loss = 5.28317 (* 1 = 5.28317 loss) +I0408 19:18:44.938231 5931 sgd_solver.cpp:105] Iteration 36, lr = 0.00999417 +I0408 19:18:49.746843 5931 solver.cpp:218] Iteration 48 (2.49552 iter/s, 4.80861s/12 iters), loss = 5.2705 +I0408 19:18:49.746876 5931 solver.cpp:237] Train net output #0: loss = 5.2705 (* 1 = 5.2705 loss) +I0408 19:18:49.746883 5931 sgd_solver.cpp:105] Iteration 48, lr = 0.00999407 +I0408 19:18:54.571940 5931 solver.cpp:218] Iteration 60 (2.48702 iter/s, 4.82506s/12 iters), loss = 5.28049 +I0408 19:18:54.572134 5931 solver.cpp:237] Train net output #0: loss = 5.28049 (* 1 = 5.28049 loss) +I0408 19:18:54.572144 5931 sgd_solver.cpp:105] Iteration 60, lr = 0.00999396 +I0408 19:18:59.412802 5931 solver.cpp:218] Iteration 72 (2.479 iter/s, 4.84066s/12 iters), loss = 5.29263 +I0408 19:18:59.412834 5931 solver.cpp:237] Train net output #0: loss = 5.29263 (* 1 = 5.29263 loss) +I0408 19:18:59.412842 5931 sgd_solver.cpp:105] Iteration 72, lr = 0.00999385 +I0408 19:19:04.212456 5931 solver.cpp:218] Iteration 84 (2.5002 iter/s, 4.79961s/12 iters), loss = 5.30485 +I0408 19:19:04.212488 5931 solver.cpp:237] Train net output #0: loss = 5.30485 (* 1 = 5.30485 loss) +I0408 19:19:04.212496 5931 sgd_solver.cpp:105] Iteration 84, lr = 0.00999375 +I0408 19:19:09.074090 5931 solver.cpp:218] Iteration 96 (2.46833 iter/s, 4.86159s/12 iters), loss = 5.28237 +I0408 19:19:09.074122 5931 solver.cpp:237] Train net output #0: loss = 5.28237 (* 1 = 5.28237 loss) +I0408 19:19:09.074129 5931 sgd_solver.cpp:105] Iteration 96, lr = 0.00999363 +I0408 19:19:10.680305 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:19:10.966989 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 19:19:14.918813 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 19:19:18.626622 5931 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 19:19:18.626652 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:19:23.331385 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:19:23.418673 5931 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 19:19:23.418720 5931 solver.cpp:397] Test net output #1: loss = 5.2855 (* 1 = 5.2855 loss) +I0408 19:19:25.223667 5931 solver.cpp:218] Iteration 108 (0.743056 iter/s, 16.1495s/12 iters), loss = 5.29071 +I0408 19:19:25.223839 5931 solver.cpp:237] Train net output #0: loss = 5.29071 (* 1 = 5.29071 loss) +I0408 19:19:25.223847 5931 sgd_solver.cpp:105] Iteration 108, lr = 0.00999352 +I0408 19:19:30.006146 5931 solver.cpp:218] Iteration 120 (2.50926 iter/s, 4.78229s/12 iters), loss = 5.26548 +I0408 19:19:30.006178 5931 solver.cpp:237] Train net output #0: loss = 5.26548 (* 1 = 5.26548 loss) +I0408 19:19:30.006186 5931 sgd_solver.cpp:105] Iteration 120, lr = 0.00999341 +I0408 19:19:34.754223 5931 solver.cpp:218] Iteration 132 (2.52736 iter/s, 4.74803s/12 iters), loss = 5.28124 +I0408 19:19:34.754256 5931 solver.cpp:237] Train net output #0: loss = 5.28124 (* 1 = 5.28124 loss) +I0408 19:19:34.754262 5931 sgd_solver.cpp:105] Iteration 132, lr = 0.00999329 +I0408 19:19:39.628005 5931 solver.cpp:218] Iteration 144 (2.46218 iter/s, 4.87374s/12 iters), loss = 5.25093 +I0408 19:19:39.628041 5931 solver.cpp:237] Train net output #0: loss = 5.25093 (* 1 = 5.25093 loss) +I0408 19:19:39.628048 5931 sgd_solver.cpp:105] Iteration 144, lr = 0.00999317 +I0408 19:19:44.452972 5931 solver.cpp:218] Iteration 156 (2.48709 iter/s, 4.82492s/12 iters), loss = 5.20436 +I0408 19:19:44.453006 5931 solver.cpp:237] Train net output #0: loss = 5.20436 (* 1 = 5.20436 loss) +I0408 19:19:44.453013 5931 sgd_solver.cpp:105] Iteration 156, lr = 0.00999305 +I0408 19:19:49.198729 5931 solver.cpp:218] Iteration 168 (2.5286 iter/s, 4.74571s/12 iters), loss = 5.24019 +I0408 19:19:49.198760 5931 solver.cpp:237] Train net output #0: loss = 5.24019 (* 1 = 5.24019 loss) +I0408 19:19:49.198768 5931 sgd_solver.cpp:105] Iteration 168, lr = 0.00999292 +I0408 19:19:53.912940 5931 solver.cpp:218] Iteration 180 (2.54552 iter/s, 4.71416s/12 iters), loss = 5.29033 +I0408 19:19:53.912971 5931 solver.cpp:237] Train net output #0: loss = 5.29033 (* 1 = 5.29033 loss) +I0408 19:19:53.912979 5931 sgd_solver.cpp:105] Iteration 180, lr = 0.0099928 +I0408 19:19:58.812431 5931 solver.cpp:218] Iteration 192 (2.44926 iter/s, 4.89944s/12 iters), loss = 5.28427 +I0408 19:19:58.812494 5931 solver.cpp:237] Train net output #0: loss = 5.28427 (* 1 = 5.28427 loss) +I0408 19:19:58.812501 5931 sgd_solver.cpp:105] Iteration 192, lr = 0.00999267 +I0408 19:20:02.444236 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:20:03.076654 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 19:20:06.254990 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 19:20:11.386488 5931 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 19:20:11.386515 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:20:16.055007 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:20:16.190394 5931 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0408 19:20:16.190443 5931 solver.cpp:397] Test net output #1: loss = 5.18632 (* 1 = 5.18632 loss) +I0408 19:20:16.287061 5931 solver.cpp:218] Iteration 204 (0.686714 iter/s, 17.4745s/12 iters), loss = 5.23933 +I0408 19:20:16.287097 5931 solver.cpp:237] Train net output #0: loss = 5.23933 (* 1 = 5.23933 loss) +I0408 19:20:16.287104 5931 sgd_solver.cpp:105] Iteration 204, lr = 0.00999254 +I0408 19:20:20.233229 5931 solver.cpp:218] Iteration 216 (3.04097 iter/s, 3.94611s/12 iters), loss = 5.22555 +I0408 19:20:20.233261 5931 solver.cpp:237] Train net output #0: loss = 5.22555 (* 1 = 5.22555 loss) +I0408 19:20:20.233269 5931 sgd_solver.cpp:105] Iteration 216, lr = 0.00999241 +I0408 19:20:25.074522 5931 solver.cpp:218] Iteration 228 (2.4787 iter/s, 4.84124s/12 iters), loss = 5.16378 +I0408 19:20:25.074554 5931 solver.cpp:237] Train net output #0: loss = 5.16378 (* 1 = 5.16378 loss) +I0408 19:20:25.074561 5931 sgd_solver.cpp:105] Iteration 228, lr = 0.00999227 +I0408 19:20:29.879467 5931 solver.cpp:218] Iteration 240 (2.49745 iter/s, 4.8049s/12 iters), loss = 5.17308 +I0408 19:20:29.879568 5931 solver.cpp:237] Train net output #0: loss = 5.17308 (* 1 = 5.17308 loss) +I0408 19:20:29.879577 5931 sgd_solver.cpp:105] Iteration 240, lr = 0.00999213 +I0408 19:20:34.743187 5931 solver.cpp:218] Iteration 252 (2.46731 iter/s, 4.8636s/12 iters), loss = 5.17189 +I0408 19:20:34.743230 5931 solver.cpp:237] Train net output #0: loss = 5.17189 (* 1 = 5.17189 loss) +I0408 19:20:34.743238 5931 sgd_solver.cpp:105] Iteration 252, lr = 0.00999199 +I0408 19:20:39.547736 5931 solver.cpp:218] Iteration 264 (2.49766 iter/s, 4.80449s/12 iters), loss = 5.16305 +I0408 19:20:39.547771 5931 solver.cpp:237] Train net output #0: loss = 5.16305 (* 1 = 5.16305 loss) +I0408 19:20:39.547778 5931 sgd_solver.cpp:105] Iteration 264, lr = 0.00999185 +I0408 19:20:44.371253 5931 solver.cpp:218] Iteration 276 (2.48784 iter/s, 4.82347s/12 iters), loss = 5.10665 +I0408 19:20:44.371286 5931 solver.cpp:237] Train net output #0: loss = 5.10665 (* 1 = 5.10665 loss) +I0408 19:20:44.371294 5931 sgd_solver.cpp:105] Iteration 276, lr = 0.00999171 +I0408 19:20:49.226384 5931 solver.cpp:218] Iteration 288 (2.47164 iter/s, 4.85508s/12 iters), loss = 5.14506 +I0408 19:20:49.226415 5931 solver.cpp:237] Train net output #0: loss = 5.14506 (* 1 = 5.14506 loss) +I0408 19:20:49.226423 5931 sgd_solver.cpp:105] Iteration 288, lr = 0.00999156 +I0408 19:20:54.035475 5931 solver.cpp:218] Iteration 300 (2.4953 iter/s, 4.80904s/12 iters), loss = 5.10509 +I0408 19:20:54.035509 5931 solver.cpp:237] Train net output #0: loss = 5.10509 (* 1 = 5.10509 loss) +I0408 19:20:54.035517 5931 sgd_solver.cpp:105] Iteration 300, lr = 0.00999141 +I0408 19:20:54.972564 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:20:55.973624 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 19:20:59.798215 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 19:21:03.743253 5931 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 19:21:03.743312 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:21:08.346855 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:21:08.521420 5931 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0408 19:21:08.521468 5931 solver.cpp:397] Test net output #1: loss = 5.13568 (* 1 = 5.13568 loss) +I0408 19:21:10.260635 5931 solver.cpp:218] Iteration 312 (0.739595 iter/s, 16.2251s/12 iters), loss = 5.16162 +I0408 19:21:10.260668 5931 solver.cpp:237] Train net output #0: loss = 5.16162 (* 1 = 5.16162 loss) +I0408 19:21:10.260676 5931 sgd_solver.cpp:105] Iteration 312, lr = 0.00999126 +I0408 19:21:15.022380 5931 solver.cpp:218] Iteration 324 (2.52011 iter/s, 4.7617s/12 iters), loss = 5.08379 +I0408 19:21:15.022413 5931 solver.cpp:237] Train net output #0: loss = 5.08379 (* 1 = 5.08379 loss) +I0408 19:21:15.022420 5931 sgd_solver.cpp:105] Iteration 324, lr = 0.0099911 +I0408 19:21:19.710613 5931 solver.cpp:218] Iteration 336 (2.55963 iter/s, 4.68818s/12 iters), loss = 5.11962 +I0408 19:21:19.710644 5931 solver.cpp:237] Train net output #0: loss = 5.11962 (* 1 = 5.11962 loss) +I0408 19:21:19.710652 5931 sgd_solver.cpp:105] Iteration 336, lr = 0.00999094 +I0408 19:21:24.437058 5931 solver.cpp:218] Iteration 348 (2.53893 iter/s, 4.72639s/12 iters), loss = 5.13996 +I0408 19:21:24.437091 5931 solver.cpp:237] Train net output #0: loss = 5.13996 (* 1 = 5.13996 loss) +I0408 19:21:24.437098 5931 sgd_solver.cpp:105] Iteration 348, lr = 0.00999078 +I0408 19:21:29.245507 5931 solver.cpp:218] Iteration 360 (2.49563 iter/s, 4.8084s/12 iters), loss = 5.07686 +I0408 19:21:29.245541 5931 solver.cpp:237] Train net output #0: loss = 5.07686 (* 1 = 5.07686 loss) +I0408 19:21:29.245548 5931 sgd_solver.cpp:105] Iteration 360, lr = 0.00999062 +I0408 19:21:34.064729 5931 solver.cpp:218] Iteration 372 (2.49006 iter/s, 4.81917s/12 iters), loss = 5.18514 +I0408 19:21:34.064841 5931 solver.cpp:237] Train net output #0: loss = 5.18514 (* 1 = 5.18514 loss) +I0408 19:21:34.064849 5931 sgd_solver.cpp:105] Iteration 372, lr = 0.00999045 +I0408 19:21:38.920732 5931 solver.cpp:218] Iteration 384 (2.47123 iter/s, 4.85588s/12 iters), loss = 5.086 +I0408 19:21:38.920764 5931 solver.cpp:237] Train net output #0: loss = 5.086 (* 1 = 5.086 loss) +I0408 19:21:38.920773 5931 sgd_solver.cpp:105] Iteration 384, lr = 0.00999028 +I0408 19:21:43.717406 5931 solver.cpp:218] Iteration 396 (2.50176 iter/s, 4.79662s/12 iters), loss = 5.20769 +I0408 19:21:43.717439 5931 solver.cpp:237] Train net output #0: loss = 5.20769 (* 1 = 5.20769 loss) +I0408 19:21:43.717447 5931 sgd_solver.cpp:105] Iteration 396, lr = 0.00999011 +I0408 19:21:46.675863 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:21:47.996348 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 19:21:51.933189 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 19:21:55.538669 5931 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 19:21:55.538694 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:22:00.023007 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:22:00.220916 5931 solver.cpp:397] Test net output #0: accuracy = 0.0171569 +I0408 19:22:00.220963 5931 solver.cpp:397] Test net output #1: loss = 5.0719 (* 1 = 5.0719 loss) +I0408 19:22:00.317713 5931 solver.cpp:218] Iteration 408 (0.722881 iter/s, 16.6002s/12 iters), loss = 5.11971 +I0408 19:22:00.317749 5931 solver.cpp:237] Train net output #0: loss = 5.11971 (* 1 = 5.11971 loss) +I0408 19:22:00.317757 5931 sgd_solver.cpp:105] Iteration 408, lr = 0.00998993 +I0408 19:22:04.270629 5931 solver.cpp:218] Iteration 420 (3.03577 iter/s, 3.95286s/12 iters), loss = 4.97193 +I0408 19:22:04.270743 5931 solver.cpp:237] Train net output #0: loss = 4.97193 (* 1 = 4.97193 loss) +I0408 19:22:04.270751 5931 sgd_solver.cpp:105] Iteration 420, lr = 0.00998975 +I0408 19:22:09.049351 5931 solver.cpp:218] Iteration 432 (2.5112 iter/s, 4.77859s/12 iters), loss = 5.19053 +I0408 19:22:09.049384 5931 solver.cpp:237] Train net output #0: loss = 5.19053 (* 1 = 5.19053 loss) +I0408 19:22:09.049391 5931 sgd_solver.cpp:105] Iteration 432, lr = 0.00998957 +I0408 19:22:13.900709 5931 solver.cpp:218] Iteration 444 (2.47356 iter/s, 4.8513s/12 iters), loss = 4.94635 +I0408 19:22:13.900743 5931 solver.cpp:237] Train net output #0: loss = 4.94635 (* 1 = 4.94635 loss) +I0408 19:22:13.900749 5931 sgd_solver.cpp:105] Iteration 444, lr = 0.00998939 +I0408 19:22:18.695047 5931 solver.cpp:218] Iteration 456 (2.50298 iter/s, 4.79428s/12 iters), loss = 5.04596 +I0408 19:22:18.695080 5931 solver.cpp:237] Train net output #0: loss = 5.04596 (* 1 = 5.04596 loss) +I0408 19:22:18.695088 5931 sgd_solver.cpp:105] Iteration 456, lr = 0.0099892 +I0408 19:22:23.567930 5931 solver.cpp:218] Iteration 468 (2.46263 iter/s, 4.87283s/12 iters), loss = 5.18983 +I0408 19:22:23.567965 5931 solver.cpp:237] Train net output #0: loss = 5.18983 (* 1 = 5.18983 loss) +I0408 19:22:23.567972 5931 sgd_solver.cpp:105] Iteration 468, lr = 0.009989 +I0408 19:22:28.354305 5931 solver.cpp:218] Iteration 480 (2.50715 iter/s, 4.78632s/12 iters), loss = 5.14115 +I0408 19:22:28.354339 5931 solver.cpp:237] Train net output #0: loss = 5.14115 (* 1 = 5.14115 loss) +I0408 19:22:28.354346 5931 sgd_solver.cpp:105] Iteration 480, lr = 0.00998881 +I0408 19:22:33.187806 5931 solver.cpp:218] Iteration 492 (2.4827 iter/s, 4.83345s/12 iters), loss = 4.98217 +I0408 19:22:33.187840 5931 solver.cpp:237] Train net output #0: loss = 4.98217 (* 1 = 4.98217 loss) +I0408 19:22:33.187849 5931 sgd_solver.cpp:105] Iteration 492, lr = 0.00998861 +I0408 19:22:37.910627 5931 solver.cpp:218] Iteration 504 (2.54088 iter/s, 4.72277s/12 iters), loss = 5.09303 +I0408 19:22:37.910740 5931 solver.cpp:237] Train net output #0: loss = 5.09303 (* 1 = 5.09303 loss) +I0408 19:22:37.910749 5931 sgd_solver.cpp:105] Iteration 504, lr = 0.00998841 +I0408 19:22:38.143754 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:22:39.814267 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 19:22:42.878676 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 19:22:45.222062 5931 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 19:22:45.222088 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:22:49.748190 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:22:50.006605 5931 solver.cpp:397] Test net output #0: accuracy = 0.0202206 +I0408 19:22:50.006655 5931 solver.cpp:397] Test net output #1: loss = 5.0364 (* 1 = 5.0364 loss) +I0408 19:22:51.750349 5931 solver.cpp:218] Iteration 516 (0.867079 iter/s, 13.8396s/12 iters), loss = 5.03107 +I0408 19:22:51.750383 5931 solver.cpp:237] Train net output #0: loss = 5.03107 (* 1 = 5.03107 loss) +I0408 19:22:51.750391 5931 sgd_solver.cpp:105] Iteration 516, lr = 0.0099882 +I0408 19:22:56.681389 5931 solver.cpp:218] Iteration 528 (2.43359 iter/s, 4.93099s/12 iters), loss = 5.02173 +I0408 19:22:56.681422 5931 solver.cpp:237] Train net output #0: loss = 5.02173 (* 1 = 5.02173 loss) +I0408 19:22:56.681429 5931 sgd_solver.cpp:105] Iteration 528, lr = 0.00998799 +I0408 19:23:01.372756 5931 solver.cpp:218] Iteration 540 (2.55792 iter/s, 4.69132s/12 iters), loss = 4.91073 +I0408 19:23:01.372787 5931 solver.cpp:237] Train net output #0: loss = 4.91073 (* 1 = 4.91073 loss) +I0408 19:23:01.372794 5931 sgd_solver.cpp:105] Iteration 540, lr = 0.00998778 +I0408 19:23:06.196326 5931 solver.cpp:218] Iteration 552 (2.48781 iter/s, 4.82352s/12 iters), loss = 4.9294 +I0408 19:23:06.196359 5931 solver.cpp:237] Train net output #0: loss = 4.9294 (* 1 = 4.9294 loss) +I0408 19:23:06.196367 5931 sgd_solver.cpp:105] Iteration 552, lr = 0.00998756 +I0408 19:23:11.011468 5931 solver.cpp:218] Iteration 564 (2.49217 iter/s, 4.81509s/12 iters), loss = 4.97653 +I0408 19:23:11.011628 5931 solver.cpp:237] Train net output #0: loss = 4.97653 (* 1 = 4.97653 loss) +I0408 19:23:11.011638 5931 sgd_solver.cpp:105] Iteration 564, lr = 0.00998734 +I0408 19:23:15.825018 5931 solver.cpp:218] Iteration 576 (2.49305 iter/s, 4.81337s/12 iters), loss = 5.0284 +I0408 19:23:15.825050 5931 solver.cpp:237] Train net output #0: loss = 5.0284 (* 1 = 5.0284 loss) +I0408 19:23:15.825057 5931 sgd_solver.cpp:105] Iteration 576, lr = 0.00998711 +I0408 19:23:20.682231 5931 solver.cpp:218] Iteration 588 (2.47058 iter/s, 4.85716s/12 iters), loss = 5.00584 +I0408 19:23:20.682265 5931 solver.cpp:237] Train net output #0: loss = 5.00584 (* 1 = 5.00584 loss) +I0408 19:23:20.682272 5931 sgd_solver.cpp:105] Iteration 588, lr = 0.00998688 +I0408 19:23:25.456974 5931 solver.cpp:218] Iteration 600 (2.51325 iter/s, 4.77469s/12 iters), loss = 4.98288 +I0408 19:23:25.457005 5931 solver.cpp:237] Train net output #0: loss = 4.98288 (* 1 = 4.98288 loss) +I0408 19:23:25.457012 5931 sgd_solver.cpp:105] Iteration 600, lr = 0.00998665 +I0408 19:23:27.761816 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:23:29.842723 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 19:23:32.922132 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 19:23:35.313571 5931 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 19:23:35.313597 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:23:39.431644 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:23:39.706440 5931 solver.cpp:397] Test net output #0: accuracy = 0.0294118 +I0408 19:23:39.706486 5931 solver.cpp:397] Test net output #1: loss = 4.974 (* 1 = 4.974 loss) +I0408 19:23:39.802424 5931 solver.cpp:218] Iteration 612 (0.836506 iter/s, 14.3454s/12 iters), loss = 4.9078 +I0408 19:23:39.802459 5931 solver.cpp:237] Train net output #0: loss = 4.9078 (* 1 = 4.9078 loss) +I0408 19:23:39.802465 5931 sgd_solver.cpp:105] Iteration 612, lr = 0.00998641 +I0408 19:23:43.752210 5931 solver.cpp:218] Iteration 624 (3.03818 iter/s, 3.94974s/12 iters), loss = 4.96202 +I0408 19:23:43.752331 5931 solver.cpp:237] Train net output #0: loss = 4.96202 (* 1 = 4.96202 loss) +I0408 19:23:43.752339 5931 sgd_solver.cpp:105] Iteration 624, lr = 0.00998617 +I0408 19:23:48.610968 5931 solver.cpp:218] Iteration 636 (2.46984 iter/s, 4.85862s/12 iters), loss = 4.91441 +I0408 19:23:48.611001 5931 solver.cpp:237] Train net output #0: loss = 4.91441 (* 1 = 4.91441 loss) +I0408 19:23:48.611008 5931 sgd_solver.cpp:105] Iteration 636, lr = 0.00998593 +I0408 19:23:53.405874 5931 solver.cpp:218] Iteration 648 (2.50268 iter/s, 4.79485s/12 iters), loss = 4.86356 +I0408 19:23:53.405907 5931 solver.cpp:237] Train net output #0: loss = 4.86356 (* 1 = 4.86356 loss) +I0408 19:23:53.405915 5931 sgd_solver.cpp:105] Iteration 648, lr = 0.00998568 +I0408 19:23:58.145263 5931 solver.cpp:218] Iteration 660 (2.532 iter/s, 4.73934s/12 iters), loss = 4.92028 +I0408 19:23:58.145295 5931 solver.cpp:237] Train net output #0: loss = 4.92028 (* 1 = 4.92028 loss) +I0408 19:23:58.145303 5931 sgd_solver.cpp:105] Iteration 660, lr = 0.00998542 +I0408 19:24:02.881536 5931 solver.cpp:218] Iteration 672 (2.53367 iter/s, 4.73622s/12 iters), loss = 5.03567 +I0408 19:24:02.881568 5931 solver.cpp:237] Train net output #0: loss = 5.03567 (* 1 = 5.03567 loss) +I0408 19:24:02.881575 5931 sgd_solver.cpp:105] Iteration 672, lr = 0.00998516 +I0408 19:24:07.724680 5931 solver.cpp:218] Iteration 684 (2.47776 iter/s, 4.84309s/12 iters), loss = 4.91484 +I0408 19:24:07.724710 5931 solver.cpp:237] Train net output #0: loss = 4.91484 (* 1 = 4.91484 loss) +I0408 19:24:07.724718 5931 sgd_solver.cpp:105] Iteration 684, lr = 0.0099849 +I0408 19:24:08.479023 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:24:12.546566 5931 solver.cpp:218] Iteration 696 (2.48868 iter/s, 4.82183s/12 iters), loss = 4.79349 +I0408 19:24:12.546597 5931 solver.cpp:237] Train net output #0: loss = 4.79349 (* 1 = 4.79349 loss) +I0408 19:24:12.546605 5931 sgd_solver.cpp:105] Iteration 696, lr = 0.00998463 +I0408 19:24:16.985522 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:24:17.344061 5931 solver.cpp:218] Iteration 708 (2.50133 iter/s, 4.79745s/12 iters), loss = 4.92898 +I0408 19:24:17.344095 5931 solver.cpp:237] Train net output #0: loss = 4.92898 (* 1 = 4.92898 loss) +I0408 19:24:17.344102 5931 sgd_solver.cpp:105] Iteration 708, lr = 0.00998436 +I0408 19:24:19.250128 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 19:24:22.327769 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 19:24:24.716590 5931 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 19:24:24.716616 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:24:29.146328 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:24:29.492427 5931 solver.cpp:397] Test net output #0: accuracy = 0.0379902 +I0408 19:24:29.492476 5931 solver.cpp:397] Test net output #1: loss = 4.8577 (* 1 = 4.8577 loss) +I0408 19:24:31.225651 5931 solver.cpp:218] Iteration 720 (0.864459 iter/s, 13.8815s/12 iters), loss = 4.90879 +I0408 19:24:31.225687 5931 solver.cpp:237] Train net output #0: loss = 4.90879 (* 1 = 4.90879 loss) +I0408 19:24:31.225693 5931 sgd_solver.cpp:105] Iteration 720, lr = 0.00998408 +I0408 19:24:36.191231 5931 solver.cpp:218] Iteration 732 (2.41666 iter/s, 4.96553s/12 iters), loss = 4.87671 +I0408 19:24:36.191263 5931 solver.cpp:237] Train net output #0: loss = 4.87671 (* 1 = 4.87671 loss) +I0408 19:24:36.191272 5931 sgd_solver.cpp:105] Iteration 732, lr = 0.0099838 +I0408 19:24:40.888144 5931 solver.cpp:218] Iteration 744 (2.5549 iter/s, 4.69686s/12 iters), loss = 4.79004 +I0408 19:24:40.888176 5931 solver.cpp:237] Train net output #0: loss = 4.79004 (* 1 = 4.79004 loss) +I0408 19:24:40.888185 5931 sgd_solver.cpp:105] Iteration 744, lr = 0.00998351 +I0408 19:24:45.717201 5931 solver.cpp:218] Iteration 756 (2.48498 iter/s, 4.82901s/12 iters), loss = 4.66244 +I0408 19:24:45.717236 5931 solver.cpp:237] Train net output #0: loss = 4.66244 (* 1 = 4.66244 loss) +I0408 19:24:45.717242 5931 sgd_solver.cpp:105] Iteration 756, lr = 0.00998322 +I0408 19:24:50.528672 5931 solver.cpp:218] Iteration 768 (2.49407 iter/s, 4.81142s/12 iters), loss = 4.77981 +I0408 19:24:50.528767 5931 solver.cpp:237] Train net output #0: loss = 4.77981 (* 1 = 4.77981 loss) +I0408 19:24:50.528776 5931 sgd_solver.cpp:105] Iteration 768, lr = 0.00998292 +I0408 19:24:55.357666 5931 solver.cpp:218] Iteration 780 (2.48505 iter/s, 4.82888s/12 iters), loss = 4.63616 +I0408 19:24:55.357698 5931 solver.cpp:237] Train net output #0: loss = 4.63616 (* 1 = 4.63616 loss) +I0408 19:24:55.357705 5931 sgd_solver.cpp:105] Iteration 780, lr = 0.00998261 +I0408 19:25:00.137574 5931 solver.cpp:218] Iteration 792 (2.51054 iter/s, 4.77986s/12 iters), loss = 4.91283 +I0408 19:25:00.137607 5931 solver.cpp:237] Train net output #0: loss = 4.91283 (* 1 = 4.91283 loss) +I0408 19:25:00.137615 5931 sgd_solver.cpp:105] Iteration 792, lr = 0.0099823 +I0408 19:25:04.845707 5931 solver.cpp:218] Iteration 804 (2.54881 iter/s, 4.70808s/12 iters), loss = 4.5747 +I0408 19:25:04.845741 5931 solver.cpp:237] Train net output #0: loss = 4.5747 (* 1 = 4.5747 loss) +I0408 19:25:04.845748 5931 sgd_solver.cpp:105] Iteration 804, lr = 0.00998199 +I0408 19:25:06.497603 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:25:09.153486 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 19:25:12.720693 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 19:25:15.837437 5931 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 19:25:15.837462 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:25:20.236233 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:25:20.625757 5931 solver.cpp:397] Test net output #0: accuracy = 0.0484069 +I0408 19:25:20.625912 5931 solver.cpp:397] Test net output #1: loss = 4.7259 (* 1 = 4.7259 loss) +I0408 19:25:20.722509 5931 solver.cpp:218] Iteration 816 (0.755823 iter/s, 15.8767s/12 iters), loss = 4.54968 +I0408 19:25:20.722545 5931 solver.cpp:237] Train net output #0: loss = 4.54968 (* 1 = 4.54968 loss) +I0408 19:25:20.722553 5931 sgd_solver.cpp:105] Iteration 816, lr = 0.00998167 +I0408 19:25:24.725463 5931 solver.cpp:218] Iteration 828 (2.99783 iter/s, 4.0029s/12 iters), loss = 4.72748 +I0408 19:25:24.725497 5931 solver.cpp:237] Train net output #0: loss = 4.72748 (* 1 = 4.72748 loss) +I0408 19:25:24.725503 5931 sgd_solver.cpp:105] Iteration 828, lr = 0.00998134 +I0408 19:25:29.566557 5931 solver.cpp:218] Iteration 840 (2.47881 iter/s, 4.84104s/12 iters), loss = 4.75735 +I0408 19:25:29.566589 5931 solver.cpp:237] Train net output #0: loss = 4.75735 (* 1 = 4.75735 loss) +I0408 19:25:29.566597 5931 sgd_solver.cpp:105] Iteration 840, lr = 0.00998101 +I0408 19:25:34.401502 5931 solver.cpp:218] Iteration 852 (2.48196 iter/s, 4.83489s/12 iters), loss = 4.60554 +I0408 19:25:34.401535 5931 solver.cpp:237] Train net output #0: loss = 4.60554 (* 1 = 4.60554 loss) +I0408 19:25:34.401541 5931 sgd_solver.cpp:105] Iteration 852, lr = 0.00998068 +I0408 19:25:39.185503 5931 solver.cpp:218] Iteration 864 (2.50838 iter/s, 4.78396s/12 iters), loss = 4.61728 +I0408 19:25:39.185534 5931 solver.cpp:237] Train net output #0: loss = 4.61728 (* 1 = 4.61728 loss) +I0408 19:25:39.185542 5931 sgd_solver.cpp:105] Iteration 864, lr = 0.00998033 +I0408 19:25:44.053187 5931 solver.cpp:218] Iteration 876 (2.46526 iter/s, 4.86764s/12 iters), loss = 4.79955 +I0408 19:25:44.053221 5931 solver.cpp:237] Train net output #0: loss = 4.79955 (* 1 = 4.79955 loss) +I0408 19:25:44.053228 5931 sgd_solver.cpp:105] Iteration 876, lr = 0.00997998 +I0408 19:25:48.871539 5931 solver.cpp:218] Iteration 888 (2.4905 iter/s, 4.81831s/12 iters), loss = 4.68932 +I0408 19:25:48.871577 5931 solver.cpp:237] Train net output #0: loss = 4.68932 (* 1 = 4.68932 loss) +I0408 19:25:48.871583 5931 sgd_solver.cpp:105] Iteration 888, lr = 0.00997963 +I0408 19:25:53.694054 5931 solver.cpp:218] Iteration 900 (2.48835 iter/s, 4.82246s/12 iters), loss = 4.69012 +I0408 19:25:53.694150 5931 solver.cpp:237] Train net output #0: loss = 4.69012 (* 1 = 4.69012 loss) +I0408 19:25:53.694159 5931 sgd_solver.cpp:105] Iteration 900, lr = 0.00997927 +I0408 19:25:57.404742 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:25:58.480036 5931 solver.cpp:218] Iteration 912 (2.50738 iter/s, 4.78587s/12 iters), loss = 4.74772 +I0408 19:25:58.480067 5931 solver.cpp:237] Train net output #0: loss = 4.74772 (* 1 = 4.74772 loss) +I0408 19:25:58.480073 5931 sgd_solver.cpp:105] Iteration 912, lr = 0.0099789 +I0408 19:26:00.446987 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 19:26:04.944500 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 19:26:08.822530 5931 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 19:26:08.822556 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:26:13.159917 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:26:13.597429 5931 solver.cpp:397] Test net output #0: accuracy = 0.0594363 +I0408 19:26:13.597478 5931 solver.cpp:397] Test net output #1: loss = 4.59275 (* 1 = 4.59275 loss) +I0408 19:26:15.348654 5931 solver.cpp:218] Iteration 924 (0.711382 iter/s, 16.8686s/12 iters), loss = 4.54142 +I0408 19:26:15.348688 5931 solver.cpp:237] Train net output #0: loss = 4.54142 (* 1 = 4.54142 loss) +I0408 19:26:15.348696 5931 sgd_solver.cpp:105] Iteration 924, lr = 0.00997852 +I0408 19:26:20.200681 5931 solver.cpp:218] Iteration 936 (2.47322 iter/s, 4.85198s/12 iters), loss = 4.51866 +I0408 19:26:20.200713 5931 solver.cpp:237] Train net output #0: loss = 4.51866 (* 1 = 4.51866 loss) +I0408 19:26:20.200721 5931 sgd_solver.cpp:105] Iteration 936, lr = 0.00997814 +I0408 19:26:25.017448 5931 solver.cpp:218] Iteration 948 (2.49132 iter/s, 4.81672s/12 iters), loss = 4.6412 +I0408 19:26:25.017563 5931 solver.cpp:237] Train net output #0: loss = 4.6412 (* 1 = 4.6412 loss) +I0408 19:26:25.017572 5931 sgd_solver.cpp:105] Iteration 948, lr = 0.00997775 +I0408 19:26:29.824128 5931 solver.cpp:218] Iteration 960 (2.49659 iter/s, 4.80655s/12 iters), loss = 4.44454 +I0408 19:26:29.824162 5931 solver.cpp:237] Train net output #0: loss = 4.44454 (* 1 = 4.44454 loss) +I0408 19:26:29.824168 5931 sgd_solver.cpp:105] Iteration 960, lr = 0.00997736 +I0408 19:26:34.682168 5931 solver.cpp:218] Iteration 972 (2.47016 iter/s, 4.85799s/12 iters), loss = 4.76845 +I0408 19:26:34.682201 5931 solver.cpp:237] Train net output #0: loss = 4.76845 (* 1 = 4.76845 loss) +I0408 19:26:34.682209 5931 sgd_solver.cpp:105] Iteration 972, lr = 0.00997696 +I0408 19:26:39.445036 5931 solver.cpp:218] Iteration 984 (2.51952 iter/s, 4.76282s/12 iters), loss = 4.44885 +I0408 19:26:39.445070 5931 solver.cpp:237] Train net output #0: loss = 4.44885 (* 1 = 4.44885 loss) +I0408 19:26:39.445076 5931 sgd_solver.cpp:105] Iteration 984, lr = 0.00997655 +I0408 19:26:44.169898 5931 solver.cpp:218] Iteration 996 (2.53978 iter/s, 4.72481s/12 iters), loss = 4.53855 +I0408 19:26:44.169931 5931 solver.cpp:237] Train net output #0: loss = 4.53855 (* 1 = 4.53855 loss) +I0408 19:26:44.169939 5931 sgd_solver.cpp:105] Iteration 996, lr = 0.00997613 +I0408 19:26:48.878381 5931 solver.cpp:218] Iteration 1008 (2.54862 iter/s, 4.70843s/12 iters), loss = 4.18505 +I0408 19:26:48.878413 5931 solver.cpp:237] Train net output #0: loss = 4.18505 (* 1 = 4.18505 loss) +I0408 19:26:48.878420 5931 sgd_solver.cpp:105] Iteration 1008, lr = 0.00997571 +I0408 19:26:49.816838 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:26:53.120780 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 19:26:57.055611 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 19:27:00.477900 5931 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 19:27:00.477926 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:27:04.784061 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:27:05.260186 5931 solver.cpp:397] Test net output #0: accuracy = 0.0747549 +I0408 19:27:05.260236 5931 solver.cpp:397] Test net output #1: loss = 4.40519 (* 1 = 4.40519 loss) +I0408 19:27:05.356878 5931 solver.cpp:218] Iteration 1020 (0.728225 iter/s, 16.4784s/12 iters), loss = 4.49982 +I0408 19:27:05.356943 5931 solver.cpp:237] Train net output #0: loss = 4.49982 (* 1 = 4.49982 loss) +I0408 19:27:05.356959 5931 sgd_solver.cpp:105] Iteration 1020, lr = 0.00997527 +I0408 19:27:09.317698 5931 solver.cpp:218] Iteration 1032 (3.02973 iter/s, 3.96075s/12 iters), loss = 4.26781 +I0408 19:27:09.317731 5931 solver.cpp:237] Train net output #0: loss = 4.26781 (* 1 = 4.26781 loss) +I0408 19:27:09.317739 5931 sgd_solver.cpp:105] Iteration 1032, lr = 0.00997483 +I0408 19:27:14.076663 5931 solver.cpp:218] Iteration 1044 (2.52158 iter/s, 4.75892s/12 iters), loss = 4.45317 +I0408 19:27:14.076696 5931 solver.cpp:237] Train net output #0: loss = 4.45317 (* 1 = 4.45317 loss) +I0408 19:27:14.076704 5931 sgd_solver.cpp:105] Iteration 1044, lr = 0.00997439 +I0408 19:27:18.810415 5931 solver.cpp:218] Iteration 1056 (2.53501 iter/s, 4.7337s/12 iters), loss = 4.21486 +I0408 19:27:18.810446 5931 solver.cpp:237] Train net output #0: loss = 4.21486 (* 1 = 4.21486 loss) +I0408 19:27:18.810453 5931 sgd_solver.cpp:105] Iteration 1056, lr = 0.00997393 +I0408 19:27:23.534380 5931 solver.cpp:218] Iteration 1068 (2.54026 iter/s, 4.72392s/12 iters), loss = 4.14842 +I0408 19:27:23.534413 5931 solver.cpp:237] Train net output #0: loss = 4.14842 (* 1 = 4.14842 loss) +I0408 19:27:23.534420 5931 sgd_solver.cpp:105] Iteration 1068, lr = 0.00997347 +I0408 19:27:28.362879 5931 solver.cpp:218] Iteration 1080 (2.48527 iter/s, 4.82845s/12 iters), loss = 4.40467 +I0408 19:27:28.363003 5931 solver.cpp:237] Train net output #0: loss = 4.40467 (* 1 = 4.40467 loss) +I0408 19:27:28.363013 5931 sgd_solver.cpp:105] Iteration 1080, lr = 0.009973 +I0408 19:27:33.067231 5931 solver.cpp:218] Iteration 1092 (2.5509 iter/s, 4.70422s/12 iters), loss = 3.98863 +I0408 19:27:33.067265 5931 solver.cpp:237] Train net output #0: loss = 3.98863 (* 1 = 3.98863 loss) +I0408 19:27:33.067271 5931 sgd_solver.cpp:105] Iteration 1092, lr = 0.00997252 +I0408 19:27:37.823047 5931 solver.cpp:218] Iteration 1104 (2.52325 iter/s, 4.75577s/12 iters), loss = 4.40003 +I0408 19:27:37.823081 5931 solver.cpp:237] Train net output #0: loss = 4.40003 (* 1 = 4.40003 loss) +I0408 19:27:37.823087 5931 sgd_solver.cpp:105] Iteration 1104, lr = 0.00997203 +I0408 19:27:40.877550 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:27:42.666611 5931 solver.cpp:218] Iteration 1116 (2.47754 iter/s, 4.84352s/12 iters), loss = 4.22214 +I0408 19:27:42.666643 5931 solver.cpp:237] Train net output #0: loss = 4.22214 (* 1 = 4.22214 loss) +I0408 19:27:42.666651 5931 sgd_solver.cpp:105] Iteration 1116, lr = 0.00997153 +I0408 19:27:44.644829 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 19:27:47.716501 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 19:27:50.066706 5931 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 19:27:50.066731 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:27:54.317313 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:27:54.843360 5931 solver.cpp:397] Test net output #0: accuracy = 0.0784314 +I0408 19:27:54.843410 5931 solver.cpp:397] Test net output #1: loss = 4.3162 (* 1 = 4.3162 loss) +I0408 19:27:56.585356 5931 solver.cpp:218] Iteration 1128 (0.86215 iter/s, 13.9187s/12 iters), loss = 4.01441 +I0408 19:27:56.585391 5931 solver.cpp:237] Train net output #0: loss = 4.01441 (* 1 = 4.01441 loss) +I0408 19:27:56.585398 5931 sgd_solver.cpp:105] Iteration 1128, lr = 0.00997103 +I0408 19:28:01.254228 5931 solver.cpp:218] Iteration 1140 (2.57024 iter/s, 4.66882s/12 iters), loss = 4.28376 +I0408 19:28:01.254341 5931 solver.cpp:237] Train net output #0: loss = 4.28376 (* 1 = 4.28376 loss) +I0408 19:28:01.254350 5931 sgd_solver.cpp:105] Iteration 1140, lr = 0.00997052 +I0408 19:28:05.964165 5931 solver.cpp:218] Iteration 1152 (2.54787 iter/s, 4.70981s/12 iters), loss = 4.05672 +I0408 19:28:05.964198 5931 solver.cpp:237] Train net output #0: loss = 4.05672 (* 1 = 4.05672 loss) +I0408 19:28:05.964206 5931 sgd_solver.cpp:105] Iteration 1152, lr = 0.00996999 +I0408 19:28:10.807466 5931 solver.cpp:218] Iteration 1164 (2.47767 iter/s, 4.84325s/12 iters), loss = 3.97635 +I0408 19:28:10.807499 5931 solver.cpp:237] Train net output #0: loss = 3.97635 (* 1 = 3.97635 loss) +I0408 19:28:10.807507 5931 sgd_solver.cpp:105] Iteration 1164, lr = 0.00996946 +I0408 19:28:15.634007 5931 solver.cpp:218] Iteration 1176 (2.48628 iter/s, 4.82649s/12 iters), loss = 4.24351 +I0408 19:28:15.634042 5931 solver.cpp:237] Train net output #0: loss = 4.24351 (* 1 = 4.24351 loss) +I0408 19:28:15.634048 5931 sgd_solver.cpp:105] Iteration 1176, lr = 0.00996892 +I0408 19:28:20.310830 5931 solver.cpp:218] Iteration 1188 (2.56587 iter/s, 4.67678s/12 iters), loss = 4.11137 +I0408 19:28:20.310863 5931 solver.cpp:237] Train net output #0: loss = 4.11137 (* 1 = 4.11137 loss) +I0408 19:28:20.310870 5931 sgd_solver.cpp:105] Iteration 1188, lr = 0.00996837 +I0408 19:28:25.095845 5931 solver.cpp:218] Iteration 1200 (2.50785 iter/s, 4.78497s/12 iters), loss = 4.17805 +I0408 19:28:25.095880 5931 solver.cpp:237] Train net output #0: loss = 4.17805 (* 1 = 4.17805 loss) +I0408 19:28:25.095886 5931 sgd_solver.cpp:105] Iteration 1200, lr = 0.0099678 +I0408 19:28:29.917023 5931 solver.cpp:218] Iteration 1212 (2.48904 iter/s, 4.82113s/12 iters), loss = 4.00441 +I0408 19:28:29.917057 5931 solver.cpp:237] Train net output #0: loss = 4.00441 (* 1 = 4.00441 loss) +I0408 19:28:29.917065 5931 sgd_solver.cpp:105] Iteration 1212, lr = 0.00996723 +I0408 19:28:30.167395 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:28:34.273356 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 19:28:37.399178 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 19:28:40.098701 5931 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 19:28:40.098726 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:28:44.134161 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:28:44.632582 5931 solver.cpp:397] Test net output #0: accuracy = 0.0992647 +I0408 19:28:44.632620 5931 solver.cpp:397] Test net output #1: loss = 4.12533 (* 1 = 4.12533 loss) +I0408 19:28:44.726790 5931 solver.cpp:218] Iteration 1224 (0.810279 iter/s, 14.8097s/12 iters), loss = 3.99823 +I0408 19:28:44.726825 5931 solver.cpp:237] Train net output #0: loss = 3.99823 (* 1 = 3.99823 loss) +I0408 19:28:44.726833 5931 sgd_solver.cpp:105] Iteration 1224, lr = 0.00996665 +I0408 19:28:48.689040 5931 solver.cpp:218] Iteration 1236 (3.02862 iter/s, 3.9622s/12 iters), loss = 4.017 +I0408 19:28:48.689074 5931 solver.cpp:237] Train net output #0: loss = 4.017 (* 1 = 4.017 loss) +I0408 19:28:48.689081 5931 sgd_solver.cpp:105] Iteration 1236, lr = 0.00996606 +I0408 19:28:53.398548 5931 solver.cpp:218] Iteration 1248 (2.54807 iter/s, 4.70946s/12 iters), loss = 3.93097 +I0408 19:28:53.398581 5931 solver.cpp:237] Train net output #0: loss = 3.93097 (* 1 = 3.93097 loss) +I0408 19:28:53.398589 5931 sgd_solver.cpp:105] Iteration 1248, lr = 0.00996546 +I0408 19:28:58.114282 5931 solver.cpp:218] Iteration 1260 (2.5447 iter/s, 4.71568s/12 iters), loss = 3.84744 +I0408 19:28:58.114315 5931 solver.cpp:237] Train net output #0: loss = 3.84744 (* 1 = 3.84744 loss) +I0408 19:28:58.114323 5931 sgd_solver.cpp:105] Iteration 1260, lr = 0.00996485 +I0408 19:29:02.877190 5931 solver.cpp:218] Iteration 1272 (2.5195 iter/s, 4.76286s/12 iters), loss = 3.93239 +I0408 19:29:02.877223 5931 solver.cpp:237] Train net output #0: loss = 3.93239 (* 1 = 3.93239 loss) +I0408 19:29:02.877231 5931 sgd_solver.cpp:105] Iteration 1272, lr = 0.00996422 +I0408 19:29:07.687041 5931 solver.cpp:218] Iteration 1284 (2.49491 iter/s, 4.80979s/12 iters), loss = 3.95677 +I0408 19:29:07.687211 5931 solver.cpp:237] Train net output #0: loss = 3.95677 (* 1 = 3.95677 loss) +I0408 19:29:07.687220 5931 sgd_solver.cpp:105] Iteration 1284, lr = 0.00996359 +I0408 19:29:12.539284 5931 solver.cpp:218] Iteration 1296 (2.47317 iter/s, 4.85206s/12 iters), loss = 3.9259 +I0408 19:29:12.539316 5931 solver.cpp:237] Train net output #0: loss = 3.9259 (* 1 = 3.9259 loss) +I0408 19:29:12.539324 5931 sgd_solver.cpp:105] Iteration 1296, lr = 0.00996294 +I0408 19:29:17.358345 5931 solver.cpp:218] Iteration 1308 (2.49014 iter/s, 4.81901s/12 iters), loss = 4.21108 +I0408 19:29:17.358376 5931 solver.cpp:237] Train net output #0: loss = 4.21108 (* 1 = 4.21108 loss) +I0408 19:29:17.358384 5931 sgd_solver.cpp:105] Iteration 1308, lr = 0.00996228 +I0408 19:29:19.779569 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:29:22.175256 5931 solver.cpp:218] Iteration 1320 (2.49125 iter/s, 4.81686s/12 iters), loss = 3.90153 +I0408 19:29:22.175287 5931 solver.cpp:237] Train net output #0: loss = 3.90153 (* 1 = 3.90153 loss) +I0408 19:29:22.175295 5931 sgd_solver.cpp:105] Iteration 1320, lr = 0.00996161 +I0408 19:29:24.158465 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 19:29:27.417311 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 19:29:29.780164 5931 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 19:29:29.780189 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:29:33.940455 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:29:34.560994 5931 solver.cpp:397] Test net output #0: accuracy = 0.110907 +I0408 19:29:34.561043 5931 solver.cpp:397] Test net output #1: loss = 4.0578 (* 1 = 4.0578 loss) +I0408 19:29:36.313087 5931 solver.cpp:218] Iteration 1332 (0.84879 iter/s, 14.1378s/12 iters), loss = 3.98789 +I0408 19:29:36.313122 5931 solver.cpp:237] Train net output #0: loss = 3.98789 (* 1 = 3.98789 loss) +I0408 19:29:36.313129 5931 sgd_solver.cpp:105] Iteration 1332, lr = 0.00996093 +I0408 19:29:41.041668 5931 solver.cpp:218] Iteration 1344 (2.53779 iter/s, 4.72853s/12 iters), loss = 3.82301 +I0408 19:29:41.041780 5931 solver.cpp:237] Train net output #0: loss = 3.82301 (* 1 = 3.82301 loss) +I0408 19:29:41.041788 5931 sgd_solver.cpp:105] Iteration 1344, lr = 0.00996024 +I0408 19:29:45.875771 5931 solver.cpp:218] Iteration 1356 (2.48243 iter/s, 4.83398s/12 iters), loss = 3.95784 +I0408 19:29:45.875804 5931 solver.cpp:237] Train net output #0: loss = 3.95784 (* 1 = 3.95784 loss) +I0408 19:29:45.875811 5931 sgd_solver.cpp:105] Iteration 1356, lr = 0.00995954 +I0408 19:29:50.694695 5931 solver.cpp:218] Iteration 1368 (2.49021 iter/s, 4.81887s/12 iters), loss = 3.92292 +I0408 19:29:50.694728 5931 solver.cpp:237] Train net output #0: loss = 3.92292 (* 1 = 3.92292 loss) +I0408 19:29:50.694736 5931 sgd_solver.cpp:105] Iteration 1368, lr = 0.00995882 +I0408 19:29:51.847590 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:29:55.541841 5931 solver.cpp:218] Iteration 1380 (2.47571 iter/s, 4.8471s/12 iters), loss = 3.93092 +I0408 19:29:55.541872 5931 solver.cpp:237] Train net output #0: loss = 3.93092 (* 1 = 3.93092 loss) +I0408 19:29:55.541879 5931 sgd_solver.cpp:105] Iteration 1380, lr = 0.00995809 +I0408 19:30:00.364908 5931 solver.cpp:218] Iteration 1392 (2.48807 iter/s, 4.82302s/12 iters), loss = 3.91716 +I0408 19:30:00.364941 5931 solver.cpp:237] Train net output #0: loss = 3.91716 (* 1 = 3.91716 loss) +I0408 19:30:00.364949 5931 sgd_solver.cpp:105] Iteration 1392, lr = 0.00995735 +I0408 19:30:05.166183 5931 solver.cpp:218] Iteration 1404 (2.49936 iter/s, 4.80123s/12 iters), loss = 3.8919 +I0408 19:30:05.166216 5931 solver.cpp:237] Train net output #0: loss = 3.8919 (* 1 = 3.8919 loss) +I0408 19:30:05.166224 5931 sgd_solver.cpp:105] Iteration 1404, lr = 0.00995659 +I0408 19:30:09.664080 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:30:09.995765 5931 solver.cpp:218] Iteration 1416 (2.48471 iter/s, 4.82954s/12 iters), loss = 3.79788 +I0408 19:30:09.995796 5931 solver.cpp:237] Train net output #0: loss = 3.79788 (* 1 = 3.79788 loss) +I0408 19:30:09.995805 5931 sgd_solver.cpp:105] Iteration 1416, lr = 0.00995582 +I0408 19:30:14.373322 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 19:30:17.932387 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 19:30:21.376196 5931 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 19:30:21.376222 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:30:25.092309 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:30:25.672089 5931 solver.cpp:397] Test net output #0: accuracy = 0.147672 +I0408 19:30:25.672135 5931 solver.cpp:397] Test net output #1: loss = 3.93032 (* 1 = 3.93032 loss) +I0408 19:30:25.768970 5931 solver.cpp:218] Iteration 1428 (0.760787 iter/s, 15.7732s/12 iters), loss = 3.58445 +I0408 19:30:25.769007 5931 solver.cpp:237] Train net output #0: loss = 3.58445 (* 1 = 3.58445 loss) +I0408 19:30:25.769016 5931 sgd_solver.cpp:105] Iteration 1428, lr = 0.00995504 +I0408 19:30:29.690510 5931 solver.cpp:218] Iteration 1440 (3.06006 iter/s, 3.92149s/12 iters), loss = 3.86636 +I0408 19:30:29.690541 5931 solver.cpp:237] Train net output #0: loss = 3.86636 (* 1 = 3.86636 loss) +I0408 19:30:29.690548 5931 sgd_solver.cpp:105] Iteration 1440, lr = 0.00995424 +I0408 19:30:34.516654 5931 solver.cpp:218] Iteration 1452 (2.48648 iter/s, 4.8261s/12 iters), loss = 3.72832 +I0408 19:30:34.516685 5931 solver.cpp:237] Train net output #0: loss = 3.72832 (* 1 = 3.72832 loss) +I0408 19:30:34.516692 5931 sgd_solver.cpp:105] Iteration 1452, lr = 0.00995343 +I0408 19:30:39.351946 5931 solver.cpp:218] Iteration 1464 (2.48178 iter/s, 4.83525s/12 iters), loss = 3.48909 +I0408 19:30:39.351979 5931 solver.cpp:237] Train net output #0: loss = 3.48909 (* 1 = 3.48909 loss) +I0408 19:30:39.351986 5931 sgd_solver.cpp:105] Iteration 1464, lr = 0.0099526 +I0408 19:30:44.138279 5931 solver.cpp:218] Iteration 1476 (2.50716 iter/s, 4.78628s/12 iters), loss = 3.24151 +I0408 19:30:44.138309 5931 solver.cpp:237] Train net output #0: loss = 3.24151 (* 1 = 3.24151 loss) +I0408 19:30:44.138316 5931 sgd_solver.cpp:105] Iteration 1476, lr = 0.00995176 +I0408 19:30:48.998698 5931 solver.cpp:218] Iteration 1488 (2.46895 iter/s, 4.86037s/12 iters), loss = 3.81638 +I0408 19:30:48.998778 5931 solver.cpp:237] Train net output #0: loss = 3.81638 (* 1 = 3.81638 loss) +I0408 19:30:48.998787 5931 sgd_solver.cpp:105] Iteration 1488, lr = 0.00995091 +I0408 19:30:53.806434 5931 solver.cpp:218] Iteration 1500 (2.49603 iter/s, 4.80764s/12 iters), loss = 3.75439 +I0408 19:30:53.806466 5931 solver.cpp:237] Train net output #0: loss = 3.75439 (* 1 = 3.75439 loss) +I0408 19:30:53.806473 5931 sgd_solver.cpp:105] Iteration 1500, lr = 0.00995004 +I0408 19:30:58.645150 5931 solver.cpp:218] Iteration 1512 (2.48002 iter/s, 4.83867s/12 iters), loss = 3.55017 +I0408 19:30:58.645182 5931 solver.cpp:237] Train net output #0: loss = 3.55017 (* 1 = 3.55017 loss) +I0408 19:30:58.645190 5931 sgd_solver.cpp:105] Iteration 1512, lr = 0.00994916 +I0408 19:31:00.358456 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:31:03.461797 5931 solver.cpp:218] Iteration 1524 (2.49138 iter/s, 4.8166s/12 iters), loss = 3.38095 +I0408 19:31:03.461830 5931 solver.cpp:237] Train net output #0: loss = 3.38095 (* 1 = 3.38095 loss) +I0408 19:31:03.461838 5931 sgd_solver.cpp:105] Iteration 1524, lr = 0.00994825 +I0408 19:31:05.401121 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 19:31:08.559868 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 19:31:11.015883 5931 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 19:31:11.015908 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:31:15.093099 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:31:15.801059 5931 solver.cpp:397] Test net output #0: accuracy = 0.151348 +I0408 19:31:15.801107 5931 solver.cpp:397] Test net output #1: loss = 3.8383 (* 1 = 3.8383 loss) +I0408 19:31:17.549612 5931 solver.cpp:218] Iteration 1536 (0.851803 iter/s, 14.0878s/12 iters), loss = 3.32331 +I0408 19:31:17.549647 5931 solver.cpp:237] Train net output #0: loss = 3.32331 (* 1 = 3.32331 loss) +I0408 19:31:17.549655 5931 sgd_solver.cpp:105] Iteration 1536, lr = 0.00994734 +I0408 19:31:22.316493 5931 solver.cpp:218] Iteration 1548 (2.5174 iter/s, 4.76683s/12 iters), loss = 3.63964 +I0408 19:31:22.316589 5931 solver.cpp:237] Train net output #0: loss = 3.63964 (* 1 = 3.63964 loss) +I0408 19:31:22.316597 5931 sgd_solver.cpp:105] Iteration 1548, lr = 0.00994641 +I0408 19:31:27.176549 5931 solver.cpp:218] Iteration 1560 (2.46916 iter/s, 4.85994s/12 iters), loss = 3.61762 +I0408 19:31:27.176589 5931 solver.cpp:237] Train net output #0: loss = 3.61762 (* 1 = 3.61762 loss) +I0408 19:31:27.176599 5931 sgd_solver.cpp:105] Iteration 1560, lr = 0.00994546 +I0408 19:31:31.988277 5931 solver.cpp:218] Iteration 1572 (2.49393 iter/s, 4.81168s/12 iters), loss = 3.54953 +I0408 19:31:31.988310 5931 solver.cpp:237] Train net output #0: loss = 3.54953 (* 1 = 3.54953 loss) +I0408 19:31:31.988317 5931 sgd_solver.cpp:105] Iteration 1572, lr = 0.00994449 +I0408 19:31:36.815892 5931 solver.cpp:218] Iteration 1584 (2.48572 iter/s, 4.82757s/12 iters), loss = 3.58744 +I0408 19:31:36.815925 5931 solver.cpp:237] Train net output #0: loss = 3.58744 (* 1 = 3.58744 loss) +I0408 19:31:36.815932 5931 sgd_solver.cpp:105] Iteration 1584, lr = 0.00994351 +I0408 19:31:41.654845 5931 solver.cpp:218] Iteration 1596 (2.4799 iter/s, 4.8389s/12 iters), loss = 3.3441 +I0408 19:31:41.654878 5931 solver.cpp:237] Train net output #0: loss = 3.3441 (* 1 = 3.3441 loss) +I0408 19:31:41.654886 5931 sgd_solver.cpp:105] Iteration 1596, lr = 0.00994251 +I0408 19:31:46.467761 5931 solver.cpp:218] Iteration 1608 (2.49332 iter/s, 4.81287s/12 iters), loss = 3.51845 +I0408 19:31:46.467793 5931 solver.cpp:237] Train net output #0: loss = 3.51845 (* 1 = 3.51845 loss) +I0408 19:31:46.467800 5931 sgd_solver.cpp:105] Iteration 1608, lr = 0.00994149 +I0408 19:31:50.230473 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:31:51.266613 5931 solver.cpp:218] Iteration 1620 (2.50062 iter/s, 4.7988s/12 iters), loss = 3.50903 +I0408 19:31:51.266644 5931 solver.cpp:237] Train net output #0: loss = 3.50903 (* 1 = 3.50903 loss) +I0408 19:31:51.266650 5931 sgd_solver.cpp:105] Iteration 1620, lr = 0.00994046 +I0408 19:31:55.654479 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 19:31:59.062194 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 19:32:01.440238 5931 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 19:32:01.440263 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:32:05.372561 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:32:06.031466 5931 solver.cpp:397] Test net output #0: accuracy = 0.169118 +I0408 19:32:06.031518 5931 solver.cpp:397] Test net output #1: loss = 3.69719 (* 1 = 3.69719 loss) +I0408 19:32:06.128342 5931 solver.cpp:218] Iteration 1632 (0.807446 iter/s, 14.8617s/12 iters), loss = 3.43845 +I0408 19:32:06.128376 5931 solver.cpp:237] Train net output #0: loss = 3.43845 (* 1 = 3.43845 loss) +I0408 19:32:06.128383 5931 sgd_solver.cpp:105] Iteration 1632, lr = 0.0099394 +I0408 19:32:10.138854 5931 solver.cpp:218] Iteration 1644 (2.99217 iter/s, 4.01046s/12 iters), loss = 3.37178 +I0408 19:32:10.138888 5931 solver.cpp:237] Train net output #0: loss = 3.37178 (* 1 = 3.37178 loss) +I0408 19:32:10.138895 5931 sgd_solver.cpp:105] Iteration 1644, lr = 0.00993833 +I0408 19:32:14.988745 5931 solver.cpp:218] Iteration 1656 (2.47431 iter/s, 4.84984s/12 iters), loss = 3.56193 +I0408 19:32:14.988777 5931 solver.cpp:237] Train net output #0: loss = 3.56193 (* 1 = 3.56193 loss) +I0408 19:32:14.988785 5931 sgd_solver.cpp:105] Iteration 1656, lr = 0.00993724 +I0408 19:32:19.787761 5931 solver.cpp:218] Iteration 1668 (2.50054 iter/s, 4.79897s/12 iters), loss = 3.47631 +I0408 19:32:19.787796 5931 solver.cpp:237] Train net output #0: loss = 3.47631 (* 1 = 3.47631 loss) +I0408 19:32:19.787802 5931 sgd_solver.cpp:105] Iteration 1668, lr = 0.00993613 +I0408 19:32:24.646354 5931 solver.cpp:218] Iteration 1680 (2.46988 iter/s, 4.85854s/12 iters), loss = 3.37645 +I0408 19:32:24.646387 5931 solver.cpp:237] Train net output #0: loss = 3.37645 (* 1 = 3.37645 loss) +I0408 19:32:24.646394 5931 sgd_solver.cpp:105] Iteration 1680, lr = 0.009935 +I0408 19:32:29.447304 5931 solver.cpp:218] Iteration 1692 (2.49953 iter/s, 4.80091s/12 iters), loss = 3.39719 +I0408 19:32:29.447455 5931 solver.cpp:237] Train net output #0: loss = 3.39719 (* 1 = 3.39719 loss) +I0408 19:32:29.447464 5931 sgd_solver.cpp:105] Iteration 1692, lr = 0.00993385 +I0408 19:32:34.264837 5931 solver.cpp:218] Iteration 1704 (2.49099 iter/s, 4.81737s/12 iters), loss = 3.34932 +I0408 19:32:34.264868 5931 solver.cpp:237] Train net output #0: loss = 3.34932 (* 1 = 3.34932 loss) +I0408 19:32:34.264876 5931 sgd_solver.cpp:105] Iteration 1704, lr = 0.00993268 +I0408 19:32:39.113759 5931 solver.cpp:218] Iteration 1716 (2.4748 iter/s, 4.84888s/12 iters), loss = 3.22958 +I0408 19:32:39.113791 5931 solver.cpp:237] Train net output #0: loss = 3.22958 (* 1 = 3.22958 loss) +I0408 19:32:39.113799 5931 sgd_solver.cpp:105] Iteration 1716, lr = 0.00993149 +I0408 19:32:40.085196 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:32:43.809278 5931 solver.cpp:218] Iteration 1728 (2.55565 iter/s, 4.69547s/12 iters), loss = 3.49653 +I0408 19:32:43.809309 5931 solver.cpp:237] Train net output #0: loss = 3.49653 (* 1 = 3.49653 loss) +I0408 19:32:43.809316 5931 sgd_solver.cpp:105] Iteration 1728, lr = 0.00993028 +I0408 19:32:45.728770 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 19:32:49.598235 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 19:32:52.771811 5931 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 19:32:52.771843 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:32:56.773375 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:32:57.491618 5931 solver.cpp:397] Test net output #0: accuracy = 0.171569 +I0408 19:32:57.491664 5931 solver.cpp:397] Test net output #1: loss = 3.65161 (* 1 = 3.65161 loss) +I0408 19:32:59.232687 5931 solver.cpp:218] Iteration 1740 (0.778041 iter/s, 15.4233s/12 iters), loss = 3.07183 +I0408 19:32:59.232722 5931 solver.cpp:237] Train net output #0: loss = 3.07183 (* 1 = 3.07183 loss) +I0408 19:32:59.232728 5931 sgd_solver.cpp:105] Iteration 1740, lr = 0.00992905 +I0408 19:33:04.007655 5931 solver.cpp:218] Iteration 1752 (2.51313 iter/s, 4.77492s/12 iters), loss = 3.11234 +I0408 19:33:04.007719 5931 solver.cpp:237] Train net output #0: loss = 3.11234 (* 1 = 3.11234 loss) +I0408 19:33:04.007726 5931 sgd_solver.cpp:105] Iteration 1752, lr = 0.00992779 +I0408 19:33:08.821727 5931 solver.cpp:218] Iteration 1764 (2.49273 iter/s, 4.81399s/12 iters), loss = 3.10957 +I0408 19:33:08.821759 5931 solver.cpp:237] Train net output #0: loss = 3.10957 (* 1 = 3.10957 loss) +I0408 19:33:08.821768 5931 sgd_solver.cpp:105] Iteration 1764, lr = 0.00992651 +I0408 19:33:13.658185 5931 solver.cpp:218] Iteration 1776 (2.48118 iter/s, 4.8364s/12 iters), loss = 3.0906 +I0408 19:33:13.658222 5931 solver.cpp:237] Train net output #0: loss = 3.0906 (* 1 = 3.0906 loss) +I0408 19:33:13.658232 5931 sgd_solver.cpp:105] Iteration 1776, lr = 0.00992522 +I0408 19:33:18.465909 5931 solver.cpp:218] Iteration 1788 (2.49601 iter/s, 4.80767s/12 iters), loss = 3.15253 +I0408 19:33:18.465941 5931 solver.cpp:237] Train net output #0: loss = 3.15253 (* 1 = 3.15253 loss) +I0408 19:33:18.465948 5931 sgd_solver.cpp:105] Iteration 1788, lr = 0.00992389 +I0408 19:33:23.173699 5931 solver.cpp:218] Iteration 1800 (2.54899 iter/s, 4.70774s/12 iters), loss = 3.20365 +I0408 19:33:23.173732 5931 solver.cpp:237] Train net output #0: loss = 3.20365 (* 1 = 3.20365 loss) +I0408 19:33:23.173739 5931 sgd_solver.cpp:105] Iteration 1800, lr = 0.00992255 +I0408 19:33:27.911000 5931 solver.cpp:218] Iteration 1812 (2.53311 iter/s, 4.73725s/12 iters), loss = 3.05909 +I0408 19:33:27.911033 5931 solver.cpp:237] Train net output #0: loss = 3.05909 (* 1 = 3.05909 loss) +I0408 19:33:27.911041 5931 sgd_solver.cpp:105] Iteration 1812, lr = 0.00992118 +I0408 19:33:30.985661 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:33:32.758126 5931 solver.cpp:218] Iteration 1824 (2.47572 iter/s, 4.84707s/12 iters), loss = 3.19891 +I0408 19:33:32.758165 5931 solver.cpp:237] Train net output #0: loss = 3.19891 (* 1 = 3.19891 loss) +I0408 19:33:32.758174 5931 sgd_solver.cpp:105] Iteration 1824, lr = 0.00991979 +I0408 19:33:37.122134 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 19:33:40.229362 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 19:33:42.619299 5931 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 19:33:42.619326 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:33:46.569561 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:33:47.401554 5931 solver.cpp:397] Test net output #0: accuracy = 0.215074 +I0408 19:33:47.401603 5931 solver.cpp:397] Test net output #1: loss = 3.46741 (* 1 = 3.46741 loss) +I0408 19:33:47.498178 5931 solver.cpp:218] Iteration 1836 (0.814112 iter/s, 14.74s/12 iters), loss = 2.86189 +I0408 19:33:47.498212 5931 solver.cpp:237] Train net output #0: loss = 2.86189 (* 1 = 2.86189 loss) +I0408 19:33:47.498220 5931 sgd_solver.cpp:105] Iteration 1836, lr = 0.00991837 +I0408 19:33:51.509824 5931 solver.cpp:218] Iteration 1848 (2.99133 iter/s, 4.01159s/12 iters), loss = 3.34784 +I0408 19:33:51.509856 5931 solver.cpp:237] Train net output #0: loss = 3.34784 (* 1 = 3.34784 loss) +I0408 19:33:51.509863 5931 sgd_solver.cpp:105] Iteration 1848, lr = 0.00991693 +I0408 19:33:56.234838 5931 solver.cpp:218] Iteration 1860 (2.5397 iter/s, 4.72496s/12 iters), loss = 2.74712 +I0408 19:33:56.234870 5931 solver.cpp:237] Train net output #0: loss = 2.74712 (* 1 = 2.74712 loss) +I0408 19:33:56.234877 5931 sgd_solver.cpp:105] Iteration 1860, lr = 0.00991547 +I0408 19:34:01.099488 5931 solver.cpp:218] Iteration 1872 (2.4668 iter/s, 4.8646s/12 iters), loss = 3.01523 +I0408 19:34:01.099522 5931 solver.cpp:237] Train net output #0: loss = 3.01523 (* 1 = 3.01523 loss) +I0408 19:34:01.099529 5931 sgd_solver.cpp:105] Iteration 1872, lr = 0.00991397 +I0408 19:34:05.898860 5931 solver.cpp:218] Iteration 1884 (2.50035 iter/s, 4.79932s/12 iters), loss = 2.90075 +I0408 19:34:05.898892 5931 solver.cpp:237] Train net output #0: loss = 2.90075 (* 1 = 2.90075 loss) +I0408 19:34:05.898900 5931 sgd_solver.cpp:105] Iteration 1884, lr = 0.00991246 +I0408 19:34:10.701092 5931 solver.cpp:218] Iteration 1896 (2.49886 iter/s, 4.80218s/12 iters), loss = 3.16211 +I0408 19:34:10.701175 5931 solver.cpp:237] Train net output #0: loss = 3.16211 (* 1 = 3.16211 loss) +I0408 19:34:10.701184 5931 sgd_solver.cpp:105] Iteration 1896, lr = 0.00991091 +I0408 19:34:15.439218 5931 solver.cpp:218] Iteration 1908 (2.5327 iter/s, 4.73802s/12 iters), loss = 2.95688 +I0408 19:34:15.439251 5931 solver.cpp:237] Train net output #0: loss = 2.95688 (* 1 = 2.95688 loss) +I0408 19:34:15.439258 5931 sgd_solver.cpp:105] Iteration 1908, lr = 0.00990934 +I0408 19:34:20.175232 5931 solver.cpp:218] Iteration 1920 (2.5338 iter/s, 4.73597s/12 iters), loss = 2.60159 +I0408 19:34:20.175266 5931 solver.cpp:237] Train net output #0: loss = 2.60159 (* 1 = 2.60159 loss) +I0408 19:34:20.175273 5931 sgd_solver.cpp:105] Iteration 1920, lr = 0.00990774 +I0408 19:34:20.454672 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:34:24.921419 5931 solver.cpp:218] Iteration 1932 (2.52837 iter/s, 4.74614s/12 iters), loss = 2.84615 +I0408 19:34:24.921450 5931 solver.cpp:237] Train net output #0: loss = 2.84615 (* 1 = 2.84615 loss) +I0408 19:34:24.921458 5931 sgd_solver.cpp:105] Iteration 1932, lr = 0.00990611 +I0408 19:34:26.842355 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 19:34:31.252169 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 19:34:34.107241 5931 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 19:34:34.107267 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:34:37.813169 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:34:38.583055 5931 solver.cpp:397] Test net output #0: accuracy = 0.250613 +I0408 19:34:38.583102 5931 solver.cpp:397] Test net output #1: loss = 3.32955 (* 1 = 3.32955 loss) +I0408 19:34:40.330612 5931 solver.cpp:218] Iteration 1944 (0.778759 iter/s, 15.4091s/12 iters), loss = 2.86624 +I0408 19:34:40.330647 5931 solver.cpp:237] Train net output #0: loss = 2.86624 (* 1 = 2.86624 loss) +I0408 19:34:40.330655 5931 sgd_solver.cpp:105] Iteration 1944, lr = 0.00990446 +I0408 19:34:45.128799 5931 solver.cpp:218] Iteration 1956 (2.50097 iter/s, 4.79813s/12 iters), loss = 2.95158 +I0408 19:34:45.128897 5931 solver.cpp:237] Train net output #0: loss = 2.95158 (* 1 = 2.95158 loss) +I0408 19:34:45.128906 5931 sgd_solver.cpp:105] Iteration 1956, lr = 0.00990277 +I0408 19:34:49.935156 5931 solver.cpp:218] Iteration 1968 (2.49675 iter/s, 4.80624s/12 iters), loss = 2.89945 +I0408 19:34:49.935189 5931 solver.cpp:237] Train net output #0: loss = 2.89945 (* 1 = 2.89945 loss) +I0408 19:34:49.935201 5931 sgd_solver.cpp:105] Iteration 1968, lr = 0.00990106 +I0408 19:34:54.782119 5931 solver.cpp:218] Iteration 1980 (2.4758 iter/s, 4.84691s/12 iters), loss = 3.08024 +I0408 19:34:54.782150 5931 solver.cpp:237] Train net output #0: loss = 3.08024 (* 1 = 3.08024 loss) +I0408 19:34:54.782157 5931 sgd_solver.cpp:105] Iteration 1980, lr = 0.00989932 +I0408 19:34:59.596925 5931 solver.cpp:218] Iteration 1992 (2.49234 iter/s, 4.81476s/12 iters), loss = 2.72169 +I0408 19:34:59.596957 5931 solver.cpp:237] Train net output #0: loss = 2.72169 (* 1 = 2.72169 loss) +I0408 19:34:59.596964 5931 sgd_solver.cpp:105] Iteration 1992, lr = 0.00989754 +I0408 19:35:04.417912 5931 solver.cpp:218] Iteration 2004 (2.48914 iter/s, 4.82094s/12 iters), loss = 3.02805 +I0408 19:35:04.417945 5931 solver.cpp:237] Train net output #0: loss = 3.02805 (* 1 = 3.02805 loss) +I0408 19:35:04.417953 5931 sgd_solver.cpp:105] Iteration 2004, lr = 0.00989574 +I0408 19:35:09.239106 5931 solver.cpp:218] Iteration 2016 (2.48904 iter/s, 4.82114s/12 iters), loss = 2.80974 +I0408 19:35:09.239137 5931 solver.cpp:237] Train net output #0: loss = 2.80974 (* 1 = 2.80974 loss) +I0408 19:35:09.239145 5931 sgd_solver.cpp:105] Iteration 2016, lr = 0.0098939 +I0408 19:35:11.691733 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:35:14.059460 5931 solver.cpp:218] Iteration 2028 (2.48947 iter/s, 4.82031s/12 iters), loss = 2.81692 +I0408 19:35:14.059494 5931 solver.cpp:237] Train net output #0: loss = 2.81692 (* 1 = 2.81692 loss) +I0408 19:35:14.059501 5931 sgd_solver.cpp:105] Iteration 2028, lr = 0.00989203 +I0408 19:35:18.420747 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 19:35:21.535476 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 19:35:23.890939 5931 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 19:35:23.890964 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:35:27.673660 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:35:28.489058 5931 solver.cpp:397] Test net output #0: accuracy = 0.247549 +I0408 19:35:28.489105 5931 solver.cpp:397] Test net output #1: loss = 3.2654 (* 1 = 3.2654 loss) +I0408 19:35:28.585580 5931 solver.cpp:218] Iteration 2040 (0.826102 iter/s, 14.5261s/12 iters), loss = 2.46278 +I0408 19:35:28.585616 5931 solver.cpp:237] Train net output #0: loss = 2.46278 (* 1 = 2.46278 loss) +I0408 19:35:28.585624 5931 sgd_solver.cpp:105] Iteration 2040, lr = 0.00989013 +I0408 19:35:32.526542 5931 solver.cpp:218] Iteration 2052 (3.04498 iter/s, 3.94091s/12 iters), loss = 2.50297 +I0408 19:35:32.526576 5931 solver.cpp:237] Train net output #0: loss = 2.50297 (* 1 = 2.50297 loss) +I0408 19:35:32.526583 5931 sgd_solver.cpp:105] Iteration 2052, lr = 0.0098882 +I0408 19:35:34.071233 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:35:37.352569 5931 solver.cpp:218] Iteration 2064 (2.48654 iter/s, 4.82597s/12 iters), loss = 2.77328 +I0408 19:35:37.352603 5931 solver.cpp:237] Train net output #0: loss = 2.77328 (* 1 = 2.77328 loss) +I0408 19:35:37.352612 5931 sgd_solver.cpp:105] Iteration 2064, lr = 0.00988623 +I0408 19:35:42.184135 5931 solver.cpp:218] Iteration 2076 (2.48369 iter/s, 4.83151s/12 iters), loss = 3.06107 +I0408 19:35:42.184167 5931 solver.cpp:237] Train net output #0: loss = 3.06107 (* 1 = 3.06107 loss) +I0408 19:35:42.184175 5931 sgd_solver.cpp:105] Iteration 2076, lr = 0.00988423 +I0408 19:35:47.002928 5931 solver.cpp:218] Iteration 2088 (2.49028 iter/s, 4.81874s/12 iters), loss = 2.7561 +I0408 19:35:47.002959 5931 solver.cpp:237] Train net output #0: loss = 2.7561 (* 1 = 2.7561 loss) +I0408 19:35:47.002966 5931 sgd_solver.cpp:105] Iteration 2088, lr = 0.00988219 +I0408 19:35:51.845197 5931 solver.cpp:218] Iteration 2100 (2.4782 iter/s, 4.84222s/12 iters), loss = 3.08235 +I0408 19:35:51.845311 5931 solver.cpp:237] Train net output #0: loss = 3.08235 (* 1 = 3.08235 loss) +I0408 19:35:51.845320 5931 sgd_solver.cpp:105] Iteration 2100, lr = 0.00988012 +I0408 19:35:56.654162 5931 solver.cpp:218] Iteration 2112 (2.49541 iter/s, 4.80884s/12 iters), loss = 2.67728 +I0408 19:35:56.654194 5931 solver.cpp:237] Train net output #0: loss = 2.67728 (* 1 = 2.67728 loss) +I0408 19:35:56.654202 5931 sgd_solver.cpp:105] Iteration 2112, lr = 0.00987801 +I0408 19:36:01.161051 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:36:01.465315 5931 solver.cpp:218] Iteration 2124 (2.49423 iter/s, 4.8111s/12 iters), loss = 2.80512 +I0408 19:36:01.465348 5931 solver.cpp:237] Train net output #0: loss = 2.80512 (* 1 = 2.80512 loss) +I0408 19:36:01.465355 5931 sgd_solver.cpp:105] Iteration 2124, lr = 0.00987586 +I0408 19:36:06.319355 5931 solver.cpp:218] Iteration 2136 (2.47219 iter/s, 4.85399s/12 iters), loss = 2.77417 +I0408 19:36:06.319389 5931 solver.cpp:237] Train net output #0: loss = 2.77417 (* 1 = 2.77417 loss) +I0408 19:36:06.319397 5931 sgd_solver.cpp:105] Iteration 2136, lr = 0.00987368 +I0408 19:36:08.286396 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 19:36:12.828195 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 19:36:16.146903 5931 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 19:36:16.146927 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:36:19.974332 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:36:20.933254 5931 solver.cpp:397] Test net output #0: accuracy = 0.260417 +I0408 19:36:20.933305 5931 solver.cpp:397] Test net output #1: loss = 3.20332 (* 1 = 3.20332 loss) +I0408 19:36:22.666127 5931 solver.cpp:218] Iteration 2148 (0.734093 iter/s, 16.3467s/12 iters), loss = 2.68131 +I0408 19:36:22.666224 5931 solver.cpp:237] Train net output #0: loss = 2.68131 (* 1 = 2.68131 loss) +I0408 19:36:22.666231 5931 sgd_solver.cpp:105] Iteration 2148, lr = 0.00987146 +I0408 19:36:27.497283 5931 solver.cpp:218] Iteration 2160 (2.48394 iter/s, 4.83104s/12 iters), loss = 2.86201 +I0408 19:36:27.497313 5931 solver.cpp:237] Train net output #0: loss = 2.86201 (* 1 = 2.86201 loss) +I0408 19:36:27.497321 5931 sgd_solver.cpp:105] Iteration 2160, lr = 0.0098692 +I0408 19:36:32.218503 5931 solver.cpp:218] Iteration 2172 (2.54174 iter/s, 4.72117s/12 iters), loss = 2.36904 +I0408 19:36:32.218535 5931 solver.cpp:237] Train net output #0: loss = 2.36904 (* 1 = 2.36904 loss) +I0408 19:36:32.218542 5931 sgd_solver.cpp:105] Iteration 2172, lr = 0.00986691 +I0408 19:36:37.064347 5931 solver.cpp:218] Iteration 2184 (2.47637 iter/s, 4.8458s/12 iters), loss = 2.74273 +I0408 19:36:37.064381 5931 solver.cpp:237] Train net output #0: loss = 2.74273 (* 1 = 2.74273 loss) +I0408 19:36:37.064388 5931 sgd_solver.cpp:105] Iteration 2184, lr = 0.00986457 +I0408 19:36:41.861943 5931 solver.cpp:218] Iteration 2196 (2.50128 iter/s, 4.79754s/12 iters), loss = 2.70727 +I0408 19:36:41.861982 5931 solver.cpp:237] Train net output #0: loss = 2.70727 (* 1 = 2.70727 loss) +I0408 19:36:41.861989 5931 sgd_solver.cpp:105] Iteration 2196, lr = 0.00986219 +I0408 19:36:46.725137 5931 solver.cpp:218] Iteration 2208 (2.46754 iter/s, 4.86314s/12 iters), loss = 2.45504 +I0408 19:36:46.725169 5931 solver.cpp:237] Train net output #0: loss = 2.45504 (* 1 = 2.45504 loss) +I0408 19:36:46.725176 5931 sgd_solver.cpp:105] Iteration 2208, lr = 0.00985977 +I0408 19:36:51.556500 5931 solver.cpp:218] Iteration 2220 (2.4838 iter/s, 4.83131s/12 iters), loss = 2.17187 +I0408 19:36:51.556535 5931 solver.cpp:237] Train net output #0: loss = 2.17187 (* 1 = 2.17187 loss) +I0408 19:36:51.556541 5931 sgd_solver.cpp:105] Iteration 2220, lr = 0.00985731 +I0408 19:36:53.334318 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:36:56.352470 5931 solver.cpp:218] Iteration 2232 (2.50213 iter/s, 4.79592s/12 iters), loss = 2.53691 +I0408 19:36:56.352502 5931 solver.cpp:237] Train net output #0: loss = 2.53691 (* 1 = 2.53691 loss) +I0408 19:36:56.352510 5931 sgd_solver.cpp:105] Iteration 2232, lr = 0.00985481 +I0408 19:37:00.755615 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 19:37:04.455587 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 19:37:08.158442 5931 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 19:37:08.158468 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:37:11.810256 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:37:12.704125 5931 solver.cpp:397] Test net output #0: accuracy = 0.268382 +I0408 19:37:12.704172 5931 solver.cpp:397] Test net output #1: loss = 3.21659 (* 1 = 3.21659 loss) +I0408 19:37:12.800781 5931 solver.cpp:218] Iteration 2244 (0.729561 iter/s, 16.4482s/12 iters), loss = 2.4143 +I0408 19:37:12.800817 5931 solver.cpp:237] Train net output #0: loss = 2.4143 (* 1 = 2.4143 loss) +I0408 19:37:12.800823 5931 sgd_solver.cpp:105] Iteration 2244, lr = 0.00985226 +I0408 19:37:16.744585 5931 solver.cpp:218] Iteration 2256 (3.04279 iter/s, 3.94375s/12 iters), loss = 2.91359 +I0408 19:37:16.744616 5931 solver.cpp:237] Train net output #0: loss = 2.91359 (* 1 = 2.91359 loss) +I0408 19:37:16.744623 5931 sgd_solver.cpp:105] Iteration 2256, lr = 0.00984967 +I0408 19:37:21.441716 5931 solver.cpp:218] Iteration 2268 (2.55478 iter/s, 4.69709s/12 iters), loss = 2.59858 +I0408 19:37:21.441749 5931 solver.cpp:237] Train net output #0: loss = 2.59858 (* 1 = 2.59858 loss) +I0408 19:37:21.441757 5931 sgd_solver.cpp:105] Iteration 2268, lr = 0.00984703 +I0408 19:37:26.183737 5931 solver.cpp:218] Iteration 2280 (2.53059 iter/s, 4.74197s/12 iters), loss = 2.49528 +I0408 19:37:26.183881 5931 solver.cpp:237] Train net output #0: loss = 2.49528 (* 1 = 2.49528 loss) +I0408 19:37:26.183888 5931 sgd_solver.cpp:105] Iteration 2280, lr = 0.00984435 +I0408 19:37:30.962338 5931 solver.cpp:218] Iteration 2292 (2.51128 iter/s, 4.77844s/12 iters), loss = 2.65525 +I0408 19:37:30.962371 5931 solver.cpp:237] Train net output #0: loss = 2.65525 (* 1 = 2.65525 loss) +I0408 19:37:30.962378 5931 sgd_solver.cpp:105] Iteration 2292, lr = 0.00984162 +I0408 19:37:35.800585 5931 solver.cpp:218] Iteration 2304 (2.48026 iter/s, 4.83819s/12 iters), loss = 2.33193 +I0408 19:37:35.800616 5931 solver.cpp:237] Train net output #0: loss = 2.33193 (* 1 = 2.33193 loss) +I0408 19:37:35.800623 5931 sgd_solver.cpp:105] Iteration 2304, lr = 0.00983885 +I0408 19:37:40.615244 5931 solver.cpp:218] Iteration 2316 (2.49241 iter/s, 4.81461s/12 iters), loss = 2.69005 +I0408 19:37:40.615276 5931 solver.cpp:237] Train net output #0: loss = 2.69005 (* 1 = 2.69005 loss) +I0408 19:37:40.615283 5931 sgd_solver.cpp:105] Iteration 2316, lr = 0.00983603 +I0408 19:37:44.414597 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:37:45.413044 5931 solver.cpp:218] Iteration 2328 (2.50117 iter/s, 4.79775s/12 iters), loss = 2.54279 +I0408 19:37:45.413077 5931 solver.cpp:237] Train net output #0: loss = 2.54279 (* 1 = 2.54279 loss) +I0408 19:37:45.413085 5931 sgd_solver.cpp:105] Iteration 2328, lr = 0.00983316 +I0408 19:37:50.190591 5931 solver.cpp:218] Iteration 2340 (2.51178 iter/s, 4.7775s/12 iters), loss = 2.13108 +I0408 19:37:50.190623 5931 solver.cpp:237] Train net output #0: loss = 2.13108 (* 1 = 2.13108 loss) +I0408 19:37:50.190631 5931 sgd_solver.cpp:105] Iteration 2340, lr = 0.00983024 +I0408 19:37:52.105490 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 19:37:56.466341 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 19:38:00.425770 5931 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 19:38:00.425797 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:38:04.165217 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:38:05.218755 5931 solver.cpp:397] Test net output #0: accuracy = 0.291054 +I0408 19:38:05.218803 5931 solver.cpp:397] Test net output #1: loss = 3.09828 (* 1 = 3.09828 loss) +I0408 19:38:06.946848 5931 solver.cpp:218] Iteration 2352 (0.716153 iter/s, 16.7562s/12 iters), loss = 2.09273 +I0408 19:38:06.946883 5931 solver.cpp:237] Train net output #0: loss = 2.09273 (* 1 = 2.09273 loss) +I0408 19:38:06.946890 5931 sgd_solver.cpp:105] Iteration 2352, lr = 0.00982727 +I0408 19:38:11.682466 5931 solver.cpp:218] Iteration 2364 (2.53401 iter/s, 4.73557s/12 iters), loss = 2.62565 +I0408 19:38:11.682499 5931 solver.cpp:237] Train net output #0: loss = 2.62565 (* 1 = 2.62565 loss) +I0408 19:38:11.682507 5931 sgd_solver.cpp:105] Iteration 2364, lr = 0.00982425 +I0408 19:38:16.418247 5931 solver.cpp:218] Iteration 2376 (2.53393 iter/s, 4.73573s/12 iters), loss = 2.42592 +I0408 19:38:16.418280 5931 solver.cpp:237] Train net output #0: loss = 2.42592 (* 1 = 2.42592 loss) +I0408 19:38:16.418288 5931 sgd_solver.cpp:105] Iteration 2376, lr = 0.00982117 +I0408 19:38:21.135447 5931 solver.cpp:218] Iteration 2388 (2.54391 iter/s, 4.71715s/12 iters), loss = 2.04437 +I0408 19:38:21.135479 5931 solver.cpp:237] Train net output #0: loss = 2.04437 (* 1 = 2.04437 loss) +I0408 19:38:21.135488 5931 sgd_solver.cpp:105] Iteration 2388, lr = 0.00981805 +I0408 19:38:25.843243 5931 solver.cpp:218] Iteration 2400 (2.54899 iter/s, 4.70775s/12 iters), loss = 2.67607 +I0408 19:38:25.843276 5931 solver.cpp:237] Train net output #0: loss = 2.67607 (* 1 = 2.67607 loss) +I0408 19:38:25.843282 5931 sgd_solver.cpp:105] Iteration 2400, lr = 0.00981487 +I0408 19:38:30.684999 5931 solver.cpp:218] Iteration 2412 (2.47846 iter/s, 4.84171s/12 iters), loss = 2.51547 +I0408 19:38:30.685060 5931 solver.cpp:237] Train net output #0: loss = 2.51547 (* 1 = 2.51547 loss) +I0408 19:38:30.685068 5931 sgd_solver.cpp:105] Iteration 2412, lr = 0.00981163 +I0408 19:38:35.506407 5931 solver.cpp:218] Iteration 2424 (2.48894 iter/s, 4.82133s/12 iters), loss = 2.0959 +I0408 19:38:35.506438 5931 solver.cpp:237] Train net output #0: loss = 2.0959 (* 1 = 2.0959 loss) +I0408 19:38:35.506446 5931 sgd_solver.cpp:105] Iteration 2424, lr = 0.00980834 +I0408 19:38:36.524883 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:38:40.325289 5931 solver.cpp:218] Iteration 2436 (2.49023 iter/s, 4.81883s/12 iters), loss = 2.52854 +I0408 19:38:40.325320 5931 solver.cpp:237] Train net output #0: loss = 2.52854 (* 1 = 2.52854 loss) +I0408 19:38:40.325327 5931 sgd_solver.cpp:105] Iteration 2436, lr = 0.009805 +I0408 19:38:44.699910 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 19:38:47.811446 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 19:38:51.583385 5931 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 19:38:51.583411 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:38:55.286252 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:38:56.372520 5931 solver.cpp:397] Test net output #0: accuracy = 0.261029 +I0408 19:38:56.372570 5931 solver.cpp:397] Test net output #1: loss = 3.26117 (* 1 = 3.26117 loss) +I0408 19:38:56.469086 5931 solver.cpp:218] Iteration 2448 (0.743322 iter/s, 16.1437s/12 iters), loss = 2.36564 +I0408 19:38:56.469121 5931 solver.cpp:237] Train net output #0: loss = 2.36564 (* 1 = 2.36564 loss) +I0408 19:38:56.469130 5931 sgd_solver.cpp:105] Iteration 2448, lr = 0.0098016 +I0408 19:39:00.398000 5931 solver.cpp:218] Iteration 2460 (3.05432 iter/s, 3.92886s/12 iters), loss = 2.11892 +I0408 19:39:00.398033 5931 solver.cpp:237] Train net output #0: loss = 2.11892 (* 1 = 2.11892 loss) +I0408 19:39:00.398041 5931 sgd_solver.cpp:105] Iteration 2460, lr = 0.00979814 +I0408 19:39:05.224330 5931 solver.cpp:218] Iteration 2472 (2.48639 iter/s, 4.82628s/12 iters), loss = 2.2783 +I0408 19:39:05.224480 5931 solver.cpp:237] Train net output #0: loss = 2.2783 (* 1 = 2.2783 loss) +I0408 19:39:05.224489 5931 sgd_solver.cpp:105] Iteration 2472, lr = 0.00979462 +I0408 19:39:10.044690 5931 solver.cpp:218] Iteration 2484 (2.48953 iter/s, 4.8202s/12 iters), loss = 2.22805 +I0408 19:39:10.044723 5931 solver.cpp:237] Train net output #0: loss = 2.22805 (* 1 = 2.22805 loss) +I0408 19:39:10.044731 5931 sgd_solver.cpp:105] Iteration 2484, lr = 0.00979104 +I0408 19:39:14.883322 5931 solver.cpp:218] Iteration 2496 (2.48007 iter/s, 4.83858s/12 iters), loss = 2.4572 +I0408 19:39:14.883355 5931 solver.cpp:237] Train net output #0: loss = 2.4572 (* 1 = 2.4572 loss) +I0408 19:39:14.883363 5931 sgd_solver.cpp:105] Iteration 2496, lr = 0.00978739 +I0408 19:39:19.597734 5931 solver.cpp:218] Iteration 2508 (2.54541 iter/s, 4.71436s/12 iters), loss = 2.26248 +I0408 19:39:19.597765 5931 solver.cpp:237] Train net output #0: loss = 2.26248 (* 1 = 2.26248 loss) +I0408 19:39:19.597774 5931 sgd_solver.cpp:105] Iteration 2508, lr = 0.00978369 +I0408 19:39:24.329479 5931 solver.cpp:218] Iteration 2520 (2.53609 iter/s, 4.7317s/12 iters), loss = 2.41503 +I0408 19:39:24.329511 5931 solver.cpp:237] Train net output #0: loss = 2.41503 (* 1 = 2.41503 loss) +I0408 19:39:24.329519 5931 sgd_solver.cpp:105] Iteration 2520, lr = 0.00977992 +I0408 19:39:27.438206 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:39:29.116416 5931 solver.cpp:218] Iteration 2532 (2.50685 iter/s, 4.78689s/12 iters), loss = 2.17744 +I0408 19:39:29.116447 5931 solver.cpp:237] Train net output #0: loss = 2.17744 (* 1 = 2.17744 loss) +I0408 19:39:29.116456 5931 sgd_solver.cpp:105] Iteration 2532, lr = 0.00977609 +I0408 19:39:33.828629 5931 solver.cpp:218] Iteration 2544 (2.5466 iter/s, 4.71216s/12 iters), loss = 2.1308 +I0408 19:39:33.828660 5931 solver.cpp:237] Train net output #0: loss = 2.1308 (* 1 = 2.1308 loss) +I0408 19:39:33.828668 5931 sgd_solver.cpp:105] Iteration 2544, lr = 0.0097722 +I0408 19:39:35.752049 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 19:39:39.296643 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 19:39:43.053663 5931 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 19:39:43.053689 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:39:46.706526 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:39:47.837779 5931 solver.cpp:397] Test net output #0: accuracy = 0.279412 +I0408 19:39:47.837814 5931 solver.cpp:397] Test net output #1: loss = 3.14504 (* 1 = 3.14504 loss) +I0408 19:39:49.572825 5931 solver.cpp:218] Iteration 2556 (0.762189 iter/s, 15.7441s/12 iters), loss = 2.27666 +I0408 19:39:49.572860 5931 solver.cpp:237] Train net output #0: loss = 2.27666 (* 1 = 2.27666 loss) +I0408 19:39:49.572866 5931 sgd_solver.cpp:105] Iteration 2556, lr = 0.00976824 +I0408 19:39:54.265280 5931 solver.cpp:218] Iteration 2568 (2.55733 iter/s, 4.6924s/12 iters), loss = 1.93333 +I0408 19:39:54.265313 5931 solver.cpp:237] Train net output #0: loss = 1.93333 (* 1 = 1.93333 loss) +I0408 19:39:54.265321 5931 sgd_solver.cpp:105] Iteration 2568, lr = 0.00976421 +I0408 19:39:59.105406 5931 solver.cpp:218] Iteration 2580 (2.4793 iter/s, 4.84008s/12 iters), loss = 2.34647 +I0408 19:39:59.105438 5931 solver.cpp:237] Train net output #0: loss = 2.34647 (* 1 = 2.34647 loss) +I0408 19:39:59.105446 5931 sgd_solver.cpp:105] Iteration 2580, lr = 0.00976011 +I0408 19:40:03.930449 5931 solver.cpp:218] Iteration 2592 (2.48705 iter/s, 4.82499s/12 iters), loss = 2.18032 +I0408 19:40:03.930482 5931 solver.cpp:237] Train net output #0: loss = 2.18032 (* 1 = 2.18032 loss) +I0408 19:40:03.930490 5931 sgd_solver.cpp:105] Iteration 2592, lr = 0.00975594 +I0408 19:40:08.696230 5931 solver.cpp:218] Iteration 2604 (2.51798 iter/s, 4.76573s/12 iters), loss = 1.88009 +I0408 19:40:08.696292 5931 solver.cpp:237] Train net output #0: loss = 1.88009 (* 1 = 1.88009 loss) +I0408 19:40:08.696300 5931 sgd_solver.cpp:105] Iteration 2604, lr = 0.00975171 +I0408 19:40:13.425879 5931 solver.cpp:218] Iteration 2616 (2.53723 iter/s, 4.72957s/12 iters), loss = 2.32095 +I0408 19:40:13.425911 5931 solver.cpp:237] Train net output #0: loss = 2.32095 (* 1 = 2.32095 loss) +I0408 19:40:13.425920 5931 sgd_solver.cpp:105] Iteration 2616, lr = 0.0097474 +I0408 19:40:18.192402 5931 solver.cpp:218] Iteration 2628 (2.51759 iter/s, 4.76647s/12 iters), loss = 1.6661 +I0408 19:40:18.192435 5931 solver.cpp:237] Train net output #0: loss = 1.6661 (* 1 = 1.6661 loss) +I0408 19:40:18.192445 5931 sgd_solver.cpp:105] Iteration 2628, lr = 0.00974302 +I0408 19:40:18.605332 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:40:22.923465 5931 solver.cpp:218] Iteration 2640 (2.53645 iter/s, 4.73101s/12 iters), loss = 2.2403 +I0408 19:40:22.923498 5931 solver.cpp:237] Train net output #0: loss = 2.2403 (* 1 = 2.2403 loss) +I0408 19:40:22.923506 5931 sgd_solver.cpp:105] Iteration 2640, lr = 0.00973856 +I0408 19:40:27.205996 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 19:40:30.316349 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 19:40:32.719694 5931 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 19:40:32.719720 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:40:36.343957 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:40:37.515556 5931 solver.cpp:397] Test net output #0: accuracy = 0.299632 +I0408 19:40:37.515604 5931 solver.cpp:397] Test net output #1: loss = 3.10295 (* 1 = 3.10295 loss) +I0408 19:40:37.612187 5931 solver.cpp:218] Iteration 2652 (0.816957 iter/s, 14.6887s/12 iters), loss = 2.08837 +I0408 19:40:37.612224 5931 solver.cpp:237] Train net output #0: loss = 2.08837 (* 1 = 2.08837 loss) +I0408 19:40:37.612233 5931 sgd_solver.cpp:105] Iteration 2652, lr = 0.00973403 +I0408 19:40:41.535809 5931 solver.cpp:218] Iteration 2664 (3.05844 iter/s, 3.92357s/12 iters), loss = 2.09268 +I0408 19:40:41.535895 5931 solver.cpp:237] Train net output #0: loss = 2.09268 (* 1 = 2.09268 loss) +I0408 19:40:41.535904 5931 sgd_solver.cpp:105] Iteration 2664, lr = 0.00972942 +I0408 19:40:46.220741 5931 solver.cpp:218] Iteration 2676 (2.56146 iter/s, 4.68483s/12 iters), loss = 2.20134 +I0408 19:40:46.220779 5931 solver.cpp:237] Train net output #0: loss = 2.20134 (* 1 = 2.20134 loss) +I0408 19:40:46.220786 5931 sgd_solver.cpp:105] Iteration 2676, lr = 0.00972474 +I0408 19:40:50.991250 5931 solver.cpp:218] Iteration 2688 (2.51548 iter/s, 4.77045s/12 iters), loss = 1.93849 +I0408 19:40:50.991283 5931 solver.cpp:237] Train net output #0: loss = 1.93849 (* 1 = 1.93849 loss) +I0408 19:40:50.991290 5931 sgd_solver.cpp:105] Iteration 2688, lr = 0.00971997 +I0408 19:40:55.791440 5931 solver.cpp:218] Iteration 2700 (2.49993 iter/s, 4.80014s/12 iters), loss = 2.49127 +I0408 19:40:55.791472 5931 solver.cpp:237] Train net output #0: loss = 2.49127 (* 1 = 2.49127 loss) +I0408 19:40:55.791481 5931 sgd_solver.cpp:105] Iteration 2700, lr = 0.00971513 +I0408 19:41:00.645083 5931 solver.cpp:218] Iteration 2712 (2.4724 iter/s, 4.85359s/12 iters), loss = 1.76925 +I0408 19:41:00.645114 5931 solver.cpp:237] Train net output #0: loss = 1.76925 (* 1 = 1.76925 loss) +I0408 19:41:00.645121 5931 sgd_solver.cpp:105] Iteration 2712, lr = 0.00971021 +I0408 19:41:05.480443 5931 solver.cpp:218] Iteration 2724 (2.48174 iter/s, 4.83531s/12 iters), loss = 2.10723 +I0408 19:41:05.480477 5931 solver.cpp:237] Train net output #0: loss = 2.10723 (* 1 = 2.10723 loss) +I0408 19:41:05.480485 5931 sgd_solver.cpp:105] Iteration 2724, lr = 0.0097052 +I0408 19:41:07.949951 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:41:10.299273 5931 solver.cpp:218] Iteration 2736 (2.49026 iter/s, 4.81878s/12 iters), loss = 2.00742 +I0408 19:41:10.299306 5931 solver.cpp:237] Train net output #0: loss = 2.00742 (* 1 = 2.00742 loss) +I0408 19:41:10.299314 5931 sgd_solver.cpp:105] Iteration 2736, lr = 0.00970011 +I0408 19:41:15.002141 5931 solver.cpp:218] Iteration 2748 (2.55166 iter/s, 4.70282s/12 iters), loss = 2.10363 +I0408 19:41:15.002265 5931 solver.cpp:237] Train net output #0: loss = 2.10363 (* 1 = 2.10363 loss) +I0408 19:41:15.002276 5931 sgd_solver.cpp:105] Iteration 2748, lr = 0.00969493 +I0408 19:41:16.908144 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 19:41:20.002602 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 19:41:22.363296 5931 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 19:41:22.363322 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:41:25.672354 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:41:25.941510 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:41:27.165488 5931 solver.cpp:397] Test net output #0: accuracy = 0.304534 +I0408 19:41:27.165537 5931 solver.cpp:397] Test net output #1: loss = 3.14128 (* 1 = 3.14128 loss) +I0408 19:41:28.895112 5931 solver.cpp:218] Iteration 2760 (0.863755 iter/s, 13.8928s/12 iters), loss = 2.21353 +I0408 19:41:28.895148 5931 solver.cpp:237] Train net output #0: loss = 2.21353 (* 1 = 2.21353 loss) +I0408 19:41:28.895156 5931 sgd_solver.cpp:105] Iteration 2760, lr = 0.00968967 +I0408 19:41:33.600862 5931 solver.cpp:218] Iteration 2772 (2.5501 iter/s, 4.70569s/12 iters), loss = 2.35685 +I0408 19:41:33.600893 5931 solver.cpp:237] Train net output #0: loss = 2.35685 (* 1 = 2.35685 loss) +I0408 19:41:33.600899 5931 sgd_solver.cpp:105] Iteration 2772, lr = 0.00968432 +I0408 19:41:38.433198 5931 solver.cpp:218] Iteration 2784 (2.4833 iter/s, 4.83229s/12 iters), loss = 2.39505 +I0408 19:41:38.433231 5931 solver.cpp:237] Train net output #0: loss = 2.39505 (* 1 = 2.39505 loss) +I0408 19:41:38.433239 5931 sgd_solver.cpp:105] Iteration 2784, lr = 0.00967888 +I0408 19:41:43.245333 5931 solver.cpp:218] Iteration 2796 (2.49372 iter/s, 4.81208s/12 iters), loss = 2.36989 +I0408 19:41:43.245365 5931 solver.cpp:237] Train net output #0: loss = 2.36989 (* 1 = 2.36989 loss) +I0408 19:41:43.245373 5931 sgd_solver.cpp:105] Iteration 2796, lr = 0.00967335 +I0408 19:41:48.024652 5931 solver.cpp:218] Iteration 2808 (2.51084 iter/s, 4.77927s/12 iters), loss = 2.06494 +I0408 19:41:48.024744 5931 solver.cpp:237] Train net output #0: loss = 2.06494 (* 1 = 2.06494 loss) +I0408 19:41:48.024751 5931 sgd_solver.cpp:105] Iteration 2808, lr = 0.00966773 +I0408 19:41:52.757622 5931 solver.cpp:218] Iteration 2820 (2.53546 iter/s, 4.73286s/12 iters), loss = 1.86764 +I0408 19:41:52.757655 5931 solver.cpp:237] Train net output #0: loss = 1.86764 (* 1 = 1.86764 loss) +I0408 19:41:52.757663 5931 sgd_solver.cpp:105] Iteration 2820, lr = 0.00966201 +I0408 19:41:57.236042 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:41:57.524037 5931 solver.cpp:218] Iteration 2832 (2.51764 iter/s, 4.76636s/12 iters), loss = 2.05133 +I0408 19:41:57.524070 5931 solver.cpp:237] Train net output #0: loss = 2.05133 (* 1 = 2.05133 loss) +I0408 19:41:57.524078 5931 sgd_solver.cpp:105] Iteration 2832, lr = 0.0096562 +I0408 19:42:02.363499 5931 solver.cpp:218] Iteration 2844 (2.47964 iter/s, 4.83941s/12 iters), loss = 1.95991 +I0408 19:42:02.363533 5931 solver.cpp:237] Train net output #0: loss = 1.95991 (* 1 = 1.95991 loss) +I0408 19:42:02.363539 5931 sgd_solver.cpp:105] Iteration 2844, lr = 0.00965029 +I0408 19:42:06.726016 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 19:42:09.833176 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 19:42:12.193868 5931 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 19:42:12.193894 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:42:15.723096 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:42:16.981695 5931 solver.cpp:397] Test net output #0: accuracy = 0.297181 +I0408 19:42:16.981742 5931 solver.cpp:397] Test net output #1: loss = 3.13355 (* 1 = 3.13355 loss) +I0408 19:42:17.078207 5931 solver.cpp:218] Iteration 2856 (0.815514 iter/s, 14.7146s/12 iters), loss = 2.0758 +I0408 19:42:17.078250 5931 solver.cpp:237] Train net output #0: loss = 2.0758 (* 1 = 2.0758 loss) +I0408 19:42:17.078258 5931 sgd_solver.cpp:105] Iteration 2856, lr = 0.00964429 +I0408 19:42:21.052358 5931 solver.cpp:218] Iteration 2868 (3.01956 iter/s, 3.97409s/12 iters), loss = 1.90546 +I0408 19:42:21.052421 5931 solver.cpp:237] Train net output #0: loss = 1.90546 (* 1 = 1.90546 loss) +I0408 19:42:21.052429 5931 sgd_solver.cpp:105] Iteration 2868, lr = 0.00963818 +I0408 19:42:25.862953 5931 solver.cpp:218] Iteration 2880 (2.49453 iter/s, 4.81052s/12 iters), loss = 1.88721 +I0408 19:42:25.862985 5931 solver.cpp:237] Train net output #0: loss = 1.88721 (* 1 = 1.88721 loss) +I0408 19:42:25.862993 5931 sgd_solver.cpp:105] Iteration 2880, lr = 0.00963198 +I0408 19:42:30.681690 5931 solver.cpp:218] Iteration 2892 (2.49031 iter/s, 4.81869s/12 iters), loss = 2.44913 +I0408 19:42:30.681722 5931 solver.cpp:237] Train net output #0: loss = 2.44913 (* 1 = 2.44913 loss) +I0408 19:42:30.681730 5931 sgd_solver.cpp:105] Iteration 2892, lr = 0.00962567 +I0408 19:42:35.491722 5931 solver.cpp:218] Iteration 2904 (2.49481 iter/s, 4.80998s/12 iters), loss = 1.8989 +I0408 19:42:35.491755 5931 solver.cpp:237] Train net output #0: loss = 1.8989 (* 1 = 1.8989 loss) +I0408 19:42:35.491762 5931 sgd_solver.cpp:105] Iteration 2904, lr = 0.00961926 +I0408 19:42:40.336444 5931 solver.cpp:218] Iteration 2916 (2.47695 iter/s, 4.84467s/12 iters), loss = 1.77333 +I0408 19:42:40.336477 5931 solver.cpp:237] Train net output #0: loss = 1.77333 (* 1 = 1.77333 loss) +I0408 19:42:40.336484 5931 sgd_solver.cpp:105] Iteration 2916, lr = 0.00961275 +I0408 19:42:45.114996 5931 solver.cpp:218] Iteration 2928 (2.51125 iter/s, 4.7785s/12 iters), loss = 1.6426 +I0408 19:42:45.115029 5931 solver.cpp:237] Train net output #0: loss = 1.6426 (* 1 = 1.6426 loss) +I0408 19:42:45.115037 5931 sgd_solver.cpp:105] Iteration 2928, lr = 0.00960612 +I0408 19:42:46.835109 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:42:49.806344 5931 solver.cpp:218] Iteration 2940 (2.55793 iter/s, 4.6913s/12 iters), loss = 1.95866 +I0408 19:42:49.806378 5931 solver.cpp:237] Train net output #0: loss = 1.95866 (* 1 = 1.95866 loss) +I0408 19:42:49.806385 5931 sgd_solver.cpp:105] Iteration 2940, lr = 0.00959939 +I0408 19:42:54.622810 5931 solver.cpp:218] Iteration 2952 (2.49148 iter/s, 4.81641s/12 iters), loss = 1.89963 +I0408 19:42:54.622961 5931 solver.cpp:237] Train net output #0: loss = 1.89963 (* 1 = 1.89963 loss) +I0408 19:42:54.622969 5931 sgd_solver.cpp:105] Iteration 2952, lr = 0.00959255 +I0408 19:42:56.586161 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 19:43:01.326535 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 19:43:05.371796 5931 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 19:43:05.371821 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:43:08.856606 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:43:10.169764 5931 solver.cpp:397] Test net output #0: accuracy = 0.315564 +I0408 19:43:10.169813 5931 solver.cpp:397] Test net output #1: loss = 3.04869 (* 1 = 3.04869 loss) +I0408 19:43:11.911417 5931 solver.cpp:218] Iteration 2964 (0.694106 iter/s, 17.2884s/12 iters), loss = 2.17748 +I0408 19:43:11.911453 5931 solver.cpp:237] Train net output #0: loss = 2.17748 (* 1 = 2.17748 loss) +I0408 19:43:11.911459 5931 sgd_solver.cpp:105] Iteration 2964, lr = 0.0095856 +I0408 19:43:16.705067 5931 solver.cpp:218] Iteration 2976 (2.50334 iter/s, 4.7936s/12 iters), loss = 1.79911 +I0408 19:43:16.705098 5931 solver.cpp:237] Train net output #0: loss = 1.79911 (* 1 = 1.79911 loss) +I0408 19:43:16.705106 5931 sgd_solver.cpp:105] Iteration 2976, lr = 0.00957853 +I0408 19:43:21.536164 5931 solver.cpp:218] Iteration 2988 (2.48393 iter/s, 4.83105s/12 iters), loss = 2.20402 +I0408 19:43:21.536198 5931 solver.cpp:237] Train net output #0: loss = 2.20402 (* 1 = 2.20402 loss) +I0408 19:43:21.536206 5931 sgd_solver.cpp:105] Iteration 2988, lr = 0.00957135 +I0408 19:43:26.366717 5931 solver.cpp:218] Iteration 3000 (2.48422 iter/s, 4.8305s/12 iters), loss = 2.03664 +I0408 19:43:26.366832 5931 solver.cpp:237] Train net output #0: loss = 2.03664 (* 1 = 2.03664 loss) +I0408 19:43:26.366840 5931 sgd_solver.cpp:105] Iteration 3000, lr = 0.00956405 +I0408 19:43:31.202358 5931 solver.cpp:218] Iteration 3012 (2.48164 iter/s, 4.83551s/12 iters), loss = 1.75509 +I0408 19:43:31.202389 5931 solver.cpp:237] Train net output #0: loss = 1.75509 (* 1 = 1.75509 loss) +I0408 19:43:31.202395 5931 sgd_solver.cpp:105] Iteration 3012, lr = 0.00955663 +I0408 19:43:36.020627 5931 solver.cpp:218] Iteration 3024 (2.49055 iter/s, 4.81822s/12 iters), loss = 2.015 +I0408 19:43:36.020660 5931 solver.cpp:237] Train net output #0: loss = 2.015 (* 1 = 2.015 loss) +I0408 19:43:36.020668 5931 sgd_solver.cpp:105] Iteration 3024, lr = 0.00954909 +I0408 19:43:39.807835 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:43:40.797749 5931 solver.cpp:218] Iteration 3036 (2.512 iter/s, 4.77707s/12 iters), loss = 1.56338 +I0408 19:43:40.797780 5931 solver.cpp:237] Train net output #0: loss = 1.56338 (* 1 = 1.56338 loss) +I0408 19:43:40.797787 5931 sgd_solver.cpp:105] Iteration 3036, lr = 0.00954143 +I0408 19:43:45.662631 5931 solver.cpp:218] Iteration 3048 (2.46668 iter/s, 4.86483s/12 iters), loss = 1.99556 +I0408 19:43:45.662663 5931 solver.cpp:237] Train net output #0: loss = 1.99556 (* 1 = 1.99556 loss) +I0408 19:43:45.662670 5931 sgd_solver.cpp:105] Iteration 3048, lr = 0.00953365 +I0408 19:43:50.008245 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 19:43:53.197582 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 19:43:55.828387 5931 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 19:43:55.828413 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:43:59.266371 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:44:00.614713 5931 solver.cpp:397] Test net output #0: accuracy = 0.304534 +I0408 19:44:00.614761 5931 solver.cpp:397] Test net output #1: loss = 3.11495 (* 1 = 3.11495 loss) +I0408 19:44:00.711243 5931 solver.cpp:218] Iteration 3060 (0.797419 iter/s, 15.0485s/12 iters), loss = 1.87507 +I0408 19:44:00.711282 5931 solver.cpp:237] Train net output #0: loss = 1.87507 (* 1 = 1.87507 loss) +I0408 19:44:00.711289 5931 sgd_solver.cpp:105] Iteration 3060, lr = 0.00952574 +I0408 19:44:04.732054 5931 solver.cpp:218] Iteration 3072 (2.98451 iter/s, 4.02076s/12 iters), loss = 1.79878 +I0408 19:44:04.732087 5931 solver.cpp:237] Train net output #0: loss = 1.79878 (* 1 = 1.79878 loss) +I0408 19:44:04.732095 5931 sgd_solver.cpp:105] Iteration 3072, lr = 0.00951771 +I0408 19:44:09.751900 5931 solver.cpp:218] Iteration 3084 (2.39054 iter/s, 5.0198s/12 iters), loss = 1.55169 +I0408 19:44:09.751935 5931 solver.cpp:237] Train net output #0: loss = 1.55169 (* 1 = 1.55169 loss) +I0408 19:44:09.751942 5931 sgd_solver.cpp:105] Iteration 3084, lr = 0.00950954 +I0408 19:44:14.572896 5931 solver.cpp:218] Iteration 3096 (2.48914 iter/s, 4.82094s/12 iters), loss = 1.60376 +I0408 19:44:14.572928 5931 solver.cpp:237] Train net output #0: loss = 1.60376 (* 1 = 1.60376 loss) +I0408 19:44:14.572935 5931 sgd_solver.cpp:105] Iteration 3096, lr = 0.00950124 +I0408 19:44:19.430220 5931 solver.cpp:218] Iteration 3108 (2.47052 iter/s, 4.85727s/12 iters), loss = 1.71824 +I0408 19:44:19.430253 5931 solver.cpp:237] Train net output #0: loss = 1.71824 (* 1 = 1.71824 loss) +I0408 19:44:19.430259 5931 sgd_solver.cpp:105] Iteration 3108, lr = 0.00949281 +I0408 19:44:24.271450 5931 solver.cpp:218] Iteration 3120 (2.47873 iter/s, 4.84118s/12 iters), loss = 1.6159 +I0408 19:44:24.271484 5931 solver.cpp:237] Train net output #0: loss = 1.6159 (* 1 = 1.6159 loss) +I0408 19:44:24.271492 5931 sgd_solver.cpp:105] Iteration 3120, lr = 0.00948425 +I0408 19:44:29.070111 5931 solver.cpp:218] Iteration 3132 (2.50073 iter/s, 4.79861s/12 iters), loss = 1.71648 +I0408 19:44:29.070153 5931 solver.cpp:237] Train net output #0: loss = 1.71648 (* 1 = 1.71648 loss) +I0408 19:44:29.070164 5931 sgd_solver.cpp:105] Iteration 3132, lr = 0.00947555 +I0408 19:44:30.114615 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:44:33.914194 5931 solver.cpp:218] Iteration 3144 (2.47728 iter/s, 4.84402s/12 iters), loss = 1.68917 +I0408 19:44:33.914227 5931 solver.cpp:237] Train net output #0: loss = 1.68917 (* 1 = 1.68917 loss) +I0408 19:44:33.914234 5931 sgd_solver.cpp:105] Iteration 3144, lr = 0.00946671 +I0408 19:44:38.717455 5931 solver.cpp:218] Iteration 3156 (2.49833 iter/s, 4.80321s/12 iters), loss = 1.64058 +I0408 19:44:38.717487 5931 solver.cpp:237] Train net output #0: loss = 1.64058 (* 1 = 1.64058 loss) +I0408 19:44:38.717495 5931 sgd_solver.cpp:105] Iteration 3156, lr = 0.00945773 +I0408 19:44:40.669191 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 19:44:43.773061 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 19:44:46.127104 5931 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 19:44:46.127130 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:44:49.515609 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:44:50.915791 5931 solver.cpp:397] Test net output #0: accuracy = 0.302696 +I0408 19:44:50.915838 5931 solver.cpp:397] Test net output #1: loss = 3.20776 (* 1 = 3.20776 loss) +I0408 19:44:52.678568 5931 solver.cpp:218] Iteration 3168 (0.859534 iter/s, 13.961s/12 iters), loss = 1.9325 +I0408 19:44:52.678601 5931 solver.cpp:237] Train net output #0: loss = 1.9325 (* 1 = 1.9325 loss) +I0408 19:44:52.678608 5931 sgd_solver.cpp:105] Iteration 3168, lr = 0.00944861 +I0408 19:44:57.391702 5931 solver.cpp:218] Iteration 3180 (2.5461 iter/s, 4.71308s/12 iters), loss = 1.52427 +I0408 19:44:57.391734 5931 solver.cpp:237] Train net output #0: loss = 1.52427 (* 1 = 1.52427 loss) +I0408 19:44:57.391742 5931 sgd_solver.cpp:105] Iteration 3180, lr = 0.00943934 +I0408 19:45:02.252027 5931 solver.cpp:218] Iteration 3192 (2.469 iter/s, 4.86028s/12 iters), loss = 1.31882 +I0408 19:45:02.252187 5931 solver.cpp:237] Train net output #0: loss = 1.31882 (* 1 = 1.31882 loss) +I0408 19:45:02.252197 5931 sgd_solver.cpp:105] Iteration 3192, lr = 0.00942993 +I0408 19:45:07.063972 5931 solver.cpp:218] Iteration 3204 (2.49388 iter/s, 4.81177s/12 iters), loss = 1.77936 +I0408 19:45:07.064008 5931 solver.cpp:237] Train net output #0: loss = 1.77936 (* 1 = 1.77936 loss) +I0408 19:45:07.064016 5931 sgd_solver.cpp:105] Iteration 3204, lr = 0.00942037 +I0408 19:45:11.773883 5931 solver.cpp:218] Iteration 3216 (2.54785 iter/s, 4.70986s/12 iters), loss = 2.16366 +I0408 19:45:11.773916 5931 solver.cpp:237] Train net output #0: loss = 2.16366 (* 1 = 2.16366 loss) +I0408 19:45:11.773922 5931 sgd_solver.cpp:105] Iteration 3216, lr = 0.00941066 +I0408 19:45:16.527292 5931 solver.cpp:218] Iteration 3228 (2.52453 iter/s, 4.75336s/12 iters), loss = 1.4334 +I0408 19:45:16.527325 5931 solver.cpp:237] Train net output #0: loss = 1.4334 (* 1 = 1.4334 loss) +I0408 19:45:16.527333 5931 sgd_solver.cpp:105] Iteration 3228, lr = 0.00940079 +I0408 19:45:19.651507 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:45:21.341858 5931 solver.cpp:218] Iteration 3240 (2.49246 iter/s, 4.81451s/12 iters), loss = 1.77559 +I0408 19:45:21.341892 5931 solver.cpp:237] Train net output #0: loss = 1.77559 (* 1 = 1.77559 loss) +I0408 19:45:21.341899 5931 sgd_solver.cpp:105] Iteration 3240, lr = 0.00939077 +I0408 19:45:26.192190 5931 solver.cpp:218] Iteration 3252 (2.47408 iter/s, 4.85028s/12 iters), loss = 1.76575 +I0408 19:45:26.192222 5931 solver.cpp:237] Train net output #0: loss = 1.76575 (* 1 = 1.76575 loss) +I0408 19:45:26.192229 5931 sgd_solver.cpp:105] Iteration 3252, lr = 0.0093806 +I0408 19:45:30.558578 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 19:45:33.679528 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 19:45:36.046247 5931 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 19:45:36.046272 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:45:39.288388 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:45:40.548239 5931 solver.cpp:397] Test net output #0: accuracy = 0.305147 +I0408 19:45:40.548285 5931 solver.cpp:397] Test net output #1: loss = 3.17492 (* 1 = 3.17492 loss) +I0408 19:45:40.644657 5931 solver.cpp:218] Iteration 3264 (0.830312 iter/s, 14.4524s/12 iters), loss = 1.67337 +I0408 19:45:40.644690 5931 solver.cpp:237] Train net output #0: loss = 1.67337 (* 1 = 1.67337 loss) +I0408 19:45:40.644698 5931 sgd_solver.cpp:105] Iteration 3264, lr = 0.00937027 +I0408 19:45:44.655725 5931 solver.cpp:218] Iteration 3276 (2.99176 iter/s, 4.01102s/12 iters), loss = 1.63598 +I0408 19:45:44.655757 5931 solver.cpp:237] Train net output #0: loss = 1.63598 (* 1 = 1.63598 loss) +I0408 19:45:44.655766 5931 sgd_solver.cpp:105] Iteration 3276, lr = 0.00935977 +I0408 19:45:49.491142 5931 solver.cpp:218] Iteration 3288 (2.48172 iter/s, 4.83536s/12 iters), loss = 2.06538 +I0408 19:45:49.491174 5931 solver.cpp:237] Train net output #0: loss = 2.06538 (* 1 = 2.06538 loss) +I0408 19:45:49.491183 5931 sgd_solver.cpp:105] Iteration 3288, lr = 0.00934912 +I0408 19:45:54.329195 5931 solver.cpp:218] Iteration 3300 (2.48036 iter/s, 4.838s/12 iters), loss = 1.66721 +I0408 19:45:54.329227 5931 solver.cpp:237] Train net output #0: loss = 1.66721 (* 1 = 1.66721 loss) +I0408 19:45:54.329234 5931 sgd_solver.cpp:105] Iteration 3300, lr = 0.0093383 +I0408 19:45:59.100371 5931 solver.cpp:218] Iteration 3312 (2.51513 iter/s, 4.77113s/12 iters), loss = 1.60572 +I0408 19:45:59.100404 5931 solver.cpp:237] Train net output #0: loss = 1.60572 (* 1 = 1.60572 loss) +I0408 19:45:59.100411 5931 sgd_solver.cpp:105] Iteration 3312, lr = 0.00932731 +I0408 19:46:03.838589 5931 solver.cpp:218] Iteration 3324 (2.53263 iter/s, 4.73817s/12 iters), loss = 1.81534 +I0408 19:46:03.838733 5931 solver.cpp:237] Train net output #0: loss = 1.81534 (* 1 = 1.81534 loss) +I0408 19:46:03.838742 5931 sgd_solver.cpp:105] Iteration 3324, lr = 0.00931615 +I0408 19:46:08.586114 5931 solver.cpp:218] Iteration 3336 (2.52772 iter/s, 4.74736s/12 iters), loss = 1.4701 +I0408 19:46:08.586148 5931 solver.cpp:237] Train net output #0: loss = 1.4701 (* 1 = 1.4701 loss) +I0408 19:46:08.586154 5931 sgd_solver.cpp:105] Iteration 3336, lr = 0.00930482 +I0408 19:46:09.028456 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:46:13.432662 5931 solver.cpp:218] Iteration 3348 (2.47602 iter/s, 4.8465s/12 iters), loss = 1.9405 +I0408 19:46:13.432693 5931 solver.cpp:237] Train net output #0: loss = 1.9405 (* 1 = 1.9405 loss) +I0408 19:46:13.432701 5931 sgd_solver.cpp:105] Iteration 3348, lr = 0.00929332 +I0408 19:46:18.253808 5931 solver.cpp:218] Iteration 3360 (2.48906 iter/s, 4.8211s/12 iters), loss = 1.74063 +I0408 19:46:18.253841 5931 solver.cpp:237] Train net output #0: loss = 1.74063 (* 1 = 1.74063 loss) +I0408 19:46:18.253849 5931 sgd_solver.cpp:105] Iteration 3360, lr = 0.00928164 +I0408 19:46:20.218148 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 19:46:25.278501 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 19:46:27.712607 5931 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 19:46:27.712633 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:46:31.026484 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:46:32.495137 5931 solver.cpp:397] Test net output #0: accuracy = 0.326593 +I0408 19:46:32.495187 5931 solver.cpp:397] Test net output #1: loss = 3.11988 (* 1 = 3.11988 loss) +I0408 19:46:34.225756 5931 solver.cpp:218] Iteration 3372 (0.75132 iter/s, 15.9719s/12 iters), loss = 1.5596 +I0408 19:46:34.225870 5931 solver.cpp:237] Train net output #0: loss = 1.5596 (* 1 = 1.5596 loss) +I0408 19:46:34.225879 5931 sgd_solver.cpp:105] Iteration 3372, lr = 0.00926979 +I0408 19:46:38.943619 5931 solver.cpp:218] Iteration 3384 (2.54359 iter/s, 4.71773s/12 iters), loss = 1.47987 +I0408 19:46:38.943650 5931 solver.cpp:237] Train net output #0: loss = 1.47987 (* 1 = 1.47987 loss) +I0408 19:46:38.943658 5931 sgd_solver.cpp:105] Iteration 3384, lr = 0.00925775 +I0408 19:46:43.769683 5931 solver.cpp:218] Iteration 3396 (2.48652 iter/s, 4.82601s/12 iters), loss = 1.71752 +I0408 19:46:43.769716 5931 solver.cpp:237] Train net output #0: loss = 1.71752 (* 1 = 1.71752 loss) +I0408 19:46:43.769723 5931 sgd_solver.cpp:105] Iteration 3396, lr = 0.00924553 +I0408 19:46:48.562824 5931 solver.cpp:218] Iteration 3408 (2.50361 iter/s, 4.79309s/12 iters), loss = 1.7134 +I0408 19:46:48.562856 5931 solver.cpp:237] Train net output #0: loss = 1.7134 (* 1 = 1.7134 loss) +I0408 19:46:48.562865 5931 sgd_solver.cpp:105] Iteration 3408, lr = 0.00923313 +I0408 19:46:53.416544 5931 solver.cpp:218] Iteration 3420 (2.47236 iter/s, 4.85367s/12 iters), loss = 1.47257 +I0408 19:46:53.416576 5931 solver.cpp:237] Train net output #0: loss = 1.47257 (* 1 = 1.47257 loss) +I0408 19:46:53.416584 5931 sgd_solver.cpp:105] Iteration 3420, lr = 0.00922054 +I0408 19:46:58.229673 5931 solver.cpp:218] Iteration 3432 (2.49321 iter/s, 4.81308s/12 iters), loss = 1.59194 +I0408 19:46:58.229705 5931 solver.cpp:237] Train net output #0: loss = 1.59194 (* 1 = 1.59194 loss) +I0408 19:46:58.229712 5931 sgd_solver.cpp:105] Iteration 3432, lr = 0.00920776 +I0408 19:47:00.729575 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:47:03.033624 5931 solver.cpp:218] Iteration 3444 (2.49797 iter/s, 4.8039s/12 iters), loss = 1.63615 +I0408 19:47:03.033656 5931 solver.cpp:237] Train net output #0: loss = 1.63615 (* 1 = 1.63615 loss) +I0408 19:47:03.033664 5931 sgd_solver.cpp:105] Iteration 3444, lr = 0.00919479 +I0408 19:47:07.872620 5931 solver.cpp:218] Iteration 3456 (2.47988 iter/s, 4.83894s/12 iters), loss = 1.51587 +I0408 19:47:07.872754 5931 solver.cpp:237] Train net output #0: loss = 1.51587 (* 1 = 1.51587 loss) +I0408 19:47:07.872764 5931 sgd_solver.cpp:105] Iteration 3456, lr = 0.00918163 +I0408 19:47:12.244850 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 19:47:15.369820 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 19:47:18.078097 5931 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 19:47:18.078123 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:47:18.488811 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:47:21.336710 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:47:22.859947 5931 solver.cpp:397] Test net output #0: accuracy = 0.307598 +I0408 19:47:22.859997 5931 solver.cpp:397] Test net output #1: loss = 3.1532 (* 1 = 3.1532 loss) +I0408 19:47:22.956562 5931 solver.cpp:218] Iteration 3468 (0.795557 iter/s, 15.0838s/12 iters), loss = 1.41851 +I0408 19:47:22.956595 5931 solver.cpp:237] Train net output #0: loss = 1.41851 (* 1 = 1.41851 loss) +I0408 19:47:22.956604 5931 sgd_solver.cpp:105] Iteration 3468, lr = 0.00916827 +I0408 19:47:26.932937 5931 solver.cpp:218] Iteration 3480 (3.01786 iter/s, 3.97632s/12 iters), loss = 1.7508 +I0408 19:47:26.932971 5931 solver.cpp:237] Train net output #0: loss = 1.7508 (* 1 = 1.7508 loss) +I0408 19:47:26.932978 5931 sgd_solver.cpp:105] Iteration 3480, lr = 0.00915472 +I0408 19:47:31.775795 5931 solver.cpp:218] Iteration 3492 (2.4779 iter/s, 4.84281s/12 iters), loss = 1.47012 +I0408 19:47:31.775828 5931 solver.cpp:237] Train net output #0: loss = 1.47012 (* 1 = 1.47012 loss) +I0408 19:47:31.775835 5931 sgd_solver.cpp:105] Iteration 3492, lr = 0.00914096 +I0408 19:47:36.610395 5931 solver.cpp:218] Iteration 3504 (2.48213 iter/s, 4.83455s/12 iters), loss = 1.83011 +I0408 19:47:36.610428 5931 solver.cpp:237] Train net output #0: loss = 1.83011 (* 1 = 1.83011 loss) +I0408 19:47:36.610436 5931 sgd_solver.cpp:105] Iteration 3504, lr = 0.009127 +I0408 19:47:41.412057 5931 solver.cpp:218] Iteration 3516 (2.49916 iter/s, 4.80161s/12 iters), loss = 1.63459 +I0408 19:47:41.412117 5931 solver.cpp:237] Train net output #0: loss = 1.63459 (* 1 = 1.63459 loss) +I0408 19:47:41.412125 5931 sgd_solver.cpp:105] Iteration 3516, lr = 0.00911284 +I0408 19:47:46.240335 5931 solver.cpp:218] Iteration 3528 (2.4854 iter/s, 4.8282s/12 iters), loss = 1.61359 +I0408 19:47:46.240367 5931 solver.cpp:237] Train net output #0: loss = 1.61359 (* 1 = 1.61359 loss) +I0408 19:47:46.240375 5931 sgd_solver.cpp:105] Iteration 3528, lr = 0.00909847 +I0408 19:47:50.826333 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:47:51.086673 5931 solver.cpp:218] Iteration 3540 (2.47612 iter/s, 4.84628s/12 iters), loss = 1.62708 +I0408 19:47:51.086705 5931 solver.cpp:237] Train net output #0: loss = 1.62708 (* 1 = 1.62708 loss) +I0408 19:47:51.086712 5931 sgd_solver.cpp:105] Iteration 3540, lr = 0.00908389 +I0408 19:47:55.882212 5931 solver.cpp:218] Iteration 3552 (2.50235 iter/s, 4.79549s/12 iters), loss = 1.44678 +I0408 19:47:55.882243 5931 solver.cpp:237] Train net output #0: loss = 1.44678 (* 1 = 1.44678 loss) +I0408 19:47:55.882251 5931 sgd_solver.cpp:105] Iteration 3552, lr = 0.0090691 +I0408 19:48:00.728989 5931 solver.cpp:218] Iteration 3564 (2.4759 iter/s, 4.84673s/12 iters), loss = 1.43815 +I0408 19:48:00.729022 5931 solver.cpp:237] Train net output #0: loss = 1.43815 (* 1 = 1.43815 loss) +I0408 19:48:00.729029 5931 sgd_solver.cpp:105] Iteration 3564, lr = 0.00905409 +I0408 19:48:02.638224 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 19:48:05.781563 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 19:48:08.133029 5931 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 19:48:08.133054 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:48:11.157994 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:48:12.570896 5931 solver.cpp:397] Test net output #0: accuracy = 0.310049 +I0408 19:48:12.571038 5931 solver.cpp:397] Test net output #1: loss = 3.2581 (* 1 = 3.2581 loss) +I0408 19:48:14.329645 5931 solver.cpp:218] Iteration 3576 (0.882315 iter/s, 13.6006s/12 iters), loss = 1.72021 +I0408 19:48:14.329681 5931 solver.cpp:237] Train net output #0: loss = 1.72021 (* 1 = 1.72021 loss) +I0408 19:48:14.329689 5931 sgd_solver.cpp:105] Iteration 3576, lr = 0.00903887 +I0408 19:48:19.218842 5931 solver.cpp:218] Iteration 3588 (2.45442 iter/s, 4.88914s/12 iters), loss = 1.27849 +I0408 19:48:19.218873 5931 solver.cpp:237] Train net output #0: loss = 1.27849 (* 1 = 1.27849 loss) +I0408 19:48:19.218881 5931 sgd_solver.cpp:105] Iteration 3588, lr = 0.00902343 +I0408 19:48:24.058223 5931 solver.cpp:218] Iteration 3600 (2.47968 iter/s, 4.83933s/12 iters), loss = 1.77975 +I0408 19:48:24.058259 5931 solver.cpp:237] Train net output #0: loss = 1.77975 (* 1 = 1.77975 loss) +I0408 19:48:24.058267 5931 sgd_solver.cpp:105] Iteration 3600, lr = 0.00900776 +I0408 19:48:28.948431 5931 solver.cpp:218] Iteration 3612 (2.45391 iter/s, 4.89015s/12 iters), loss = 1.53952 +I0408 19:48:28.948463 5931 solver.cpp:237] Train net output #0: loss = 1.53952 (* 1 = 1.53952 loss) +I0408 19:48:28.948470 5931 sgd_solver.cpp:105] Iteration 3612, lr = 0.00899188 +I0408 19:48:33.720458 5931 solver.cpp:218] Iteration 3624 (2.51468 iter/s, 4.77198s/12 iters), loss = 1.45971 +I0408 19:48:33.720490 5931 solver.cpp:237] Train net output #0: loss = 1.45971 (* 1 = 1.45971 loss) +I0408 19:48:33.720499 5931 sgd_solver.cpp:105] Iteration 3624, lr = 0.00897577 +I0408 19:48:38.524768 5931 solver.cpp:218] Iteration 3636 (2.49778 iter/s, 4.80426s/12 iters), loss = 1.53678 +I0408 19:48:38.524801 5931 solver.cpp:237] Train net output #0: loss = 1.53678 (* 1 = 1.53678 loss) +I0408 19:48:38.524809 5931 sgd_solver.cpp:105] Iteration 3636, lr = 0.00895943 +I0408 19:48:40.311872 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:48:43.320030 5931 solver.cpp:218] Iteration 3648 (2.5025 iter/s, 4.79521s/12 iters), loss = 1.70507 +I0408 19:48:43.320152 5931 solver.cpp:237] Train net output #0: loss = 1.70507 (* 1 = 1.70507 loss) +I0408 19:48:43.320160 5931 sgd_solver.cpp:105] Iteration 3648, lr = 0.00894287 +I0408 19:48:48.164324 5931 solver.cpp:218] Iteration 3660 (2.47721 iter/s, 4.84416s/12 iters), loss = 1.51504 +I0408 19:48:48.164356 5931 solver.cpp:237] Train net output #0: loss = 1.51504 (* 1 = 1.51504 loss) +I0408 19:48:48.164364 5931 sgd_solver.cpp:105] Iteration 3660, lr = 0.00892607 +I0408 19:48:52.532120 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 19:48:55.760816 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 19:48:59.361902 5931 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 19:48:59.361930 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:49:02.542757 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:49:04.150705 5931 solver.cpp:397] Test net output #0: accuracy = 0.301471 +I0408 19:49:04.150753 5931 solver.cpp:397] Test net output #1: loss = 3.16574 (* 1 = 3.16574 loss) +I0408 19:49:04.247330 5931 solver.cpp:218] Iteration 3672 (0.746132 iter/s, 16.0829s/12 iters), loss = 1.50581 +I0408 19:49:04.247367 5931 solver.cpp:237] Train net output #0: loss = 1.50581 (* 1 = 1.50581 loss) +I0408 19:49:04.247375 5931 sgd_solver.cpp:105] Iteration 3672, lr = 0.00890903 +I0408 19:49:08.198350 5931 solver.cpp:218] Iteration 3684 (3.03723 iter/s, 3.95097s/12 iters), loss = 1.53007 +I0408 19:49:08.198383 5931 solver.cpp:237] Train net output #0: loss = 1.53007 (* 1 = 1.53007 loss) +I0408 19:49:08.198390 5931 sgd_solver.cpp:105] Iteration 3684, lr = 0.00889176 +I0408 19:49:13.105240 5931 solver.cpp:218] Iteration 3696 (2.44557 iter/s, 4.90684s/12 iters), loss = 1.48696 +I0408 19:49:13.105274 5931 solver.cpp:237] Train net output #0: loss = 1.48696 (* 1 = 1.48696 loss) +I0408 19:49:13.105281 5931 sgd_solver.cpp:105] Iteration 3696, lr = 0.00887425 +I0408 19:49:18.319669 5931 solver.cpp:218] Iteration 3708 (2.30133 iter/s, 5.21438s/12 iters), loss = 1.29337 +I0408 19:49:18.319816 5931 solver.cpp:237] Train net output #0: loss = 1.29337 (* 1 = 1.29337 loss) +I0408 19:49:18.319825 5931 sgd_solver.cpp:105] Iteration 3708, lr = 0.0088565 +I0408 19:49:23.147174 5931 solver.cpp:218] Iteration 3720 (2.48584 iter/s, 4.82734s/12 iters), loss = 1.27008 +I0408 19:49:23.147210 5931 solver.cpp:237] Train net output #0: loss = 1.27008 (* 1 = 1.27008 loss) +I0408 19:49:23.147218 5931 sgd_solver.cpp:105] Iteration 3720, lr = 0.00883851 +I0408 19:49:28.101531 5931 solver.cpp:218] Iteration 3732 (2.42214 iter/s, 4.9543s/12 iters), loss = 1.60349 +I0408 19:49:28.101565 5931 solver.cpp:237] Train net output #0: loss = 1.60349 (* 1 = 1.60349 loss) +I0408 19:49:28.101572 5931 sgd_solver.cpp:105] Iteration 3732, lr = 0.00882027 +I0408 19:49:32.338606 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:49:33.317809 5931 solver.cpp:218] Iteration 3744 (2.30051 iter/s, 5.21622s/12 iters), loss = 1.43698 +I0408 19:49:33.317842 5931 solver.cpp:237] Train net output #0: loss = 1.43698 (* 1 = 1.43698 loss) +I0408 19:49:33.317848 5931 sgd_solver.cpp:105] Iteration 3744, lr = 0.00880178 +I0408 19:49:38.240744 5931 solver.cpp:218] Iteration 3756 (2.4376 iter/s, 4.92288s/12 iters), loss = 1.32667 +I0408 19:49:38.240777 5931 solver.cpp:237] Train net output #0: loss = 1.32667 (* 1 = 1.32667 loss) +I0408 19:49:38.240784 5931 sgd_solver.cpp:105] Iteration 3756, lr = 0.00878304 +I0408 19:49:43.331405 5931 solver.cpp:218] Iteration 3768 (2.35728 iter/s, 5.09061s/12 iters), loss = 1.68272 +I0408 19:49:43.331440 5931 solver.cpp:237] Train net output #0: loss = 1.68272 (* 1 = 1.68272 loss) +I0408 19:49:43.331449 5931 sgd_solver.cpp:105] Iteration 3768, lr = 0.00876406 +I0408 19:49:45.337543 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 19:49:48.459075 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 19:49:50.860807 5931 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 19:49:50.860832 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:49:53.999948 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:49:55.646855 5931 solver.cpp:397] Test net output #0: accuracy = 0.311274 +I0408 19:49:55.646905 5931 solver.cpp:397] Test net output #1: loss = 3.21819 (* 1 = 3.21819 loss) +I0408 19:49:57.460376 5931 solver.cpp:218] Iteration 3780 (0.849323 iter/s, 14.1289s/12 iters), loss = 1.88812 +I0408 19:49:57.460409 5931 solver.cpp:237] Train net output #0: loss = 1.88812 (* 1 = 1.88812 loss) +I0408 19:49:57.460417 5931 sgd_solver.cpp:105] Iteration 3780, lr = 0.00874481 +I0408 19:50:02.648438 5931 solver.cpp:218] Iteration 3792 (2.31303 iter/s, 5.18801s/12 iters), loss = 1.4342 +I0408 19:50:02.648470 5931 solver.cpp:237] Train net output #0: loss = 1.4342 (* 1 = 1.4342 loss) +I0408 19:50:02.648478 5931 sgd_solver.cpp:105] Iteration 3792, lr = 0.00872531 +I0408 19:50:07.744280 5931 solver.cpp:218] Iteration 3804 (2.35489 iter/s, 5.09579s/12 iters), loss = 1.38925 +I0408 19:50:07.744313 5931 solver.cpp:237] Train net output #0: loss = 1.38925 (* 1 = 1.38925 loss) +I0408 19:50:07.744320 5931 sgd_solver.cpp:105] Iteration 3804, lr = 0.00870556 +I0408 19:50:12.683784 5931 solver.cpp:218] Iteration 3816 (2.42942 iter/s, 4.93945s/12 iters), loss = 1.59515 +I0408 19:50:12.683817 5931 solver.cpp:237] Train net output #0: loss = 1.59515 (* 1 = 1.59515 loss) +I0408 19:50:12.683825 5931 sgd_solver.cpp:105] Iteration 3816, lr = 0.00868554 +I0408 19:50:17.720166 5931 solver.cpp:218] Iteration 3828 (2.38269 iter/s, 5.03633s/12 iters), loss = 1.28719 +I0408 19:50:17.720198 5931 solver.cpp:237] Train net output #0: loss = 1.28719 (* 1 = 1.28719 loss) +I0408 19:50:17.720206 5931 sgd_solver.cpp:105] Iteration 3828, lr = 0.00866526 +I0408 19:50:22.454062 5931 solver.cpp:218] Iteration 3840 (2.53494 iter/s, 4.73385s/12 iters), loss = 1.09634 +I0408 19:50:22.454161 5931 solver.cpp:237] Train net output #0: loss = 1.09634 (* 1 = 1.09634 loss) +I0408 19:50:22.454170 5931 sgd_solver.cpp:105] Iteration 3840, lr = 0.00864472 +I0408 19:50:23.531124 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:50:27.468495 5931 solver.cpp:218] Iteration 3852 (2.39315 iter/s, 5.01432s/12 iters), loss = 1.3781 +I0408 19:50:27.468528 5931 solver.cpp:237] Train net output #0: loss = 1.3781 (* 1 = 1.3781 loss) +I0408 19:50:27.468535 5931 sgd_solver.cpp:105] Iteration 3852, lr = 0.00862391 +I0408 19:50:32.496354 5931 solver.cpp:218] Iteration 3864 (2.38673 iter/s, 5.02781s/12 iters), loss = 1.64849 +I0408 19:50:32.496387 5931 solver.cpp:237] Train net output #0: loss = 1.64849 (* 1 = 1.64849 loss) +I0408 19:50:32.496393 5931 sgd_solver.cpp:105] Iteration 3864, lr = 0.00860284 +I0408 19:50:36.962940 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 19:50:43.248865 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 19:50:46.601116 5931 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 19:50:46.601143 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:50:49.554091 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:50:51.058842 5931 solver.cpp:397] Test net output #0: accuracy = 0.309436 +I0408 19:50:51.058890 5931 solver.cpp:397] Test net output #1: loss = 3.10056 (* 1 = 3.10056 loss) +I0408 19:50:51.154953 5931 solver.cpp:218] Iteration 3876 (0.643138 iter/s, 18.6585s/12 iters), loss = 1.65166 +I0408 19:50:51.154989 5931 solver.cpp:237] Train net output #0: loss = 1.65166 (* 1 = 1.65166 loss) +I0408 19:50:51.154996 5931 sgd_solver.cpp:105] Iteration 3876, lr = 0.00858149 +I0408 19:50:55.377822 5931 solver.cpp:218] Iteration 3888 (2.84171 iter/s, 4.22282s/12 iters), loss = 1.34599 +I0408 19:50:55.377936 5931 solver.cpp:237] Train net output #0: loss = 1.34599 (* 1 = 1.34599 loss) +I0408 19:50:55.377945 5931 sgd_solver.cpp:105] Iteration 3888, lr = 0.00855987 +I0408 19:51:00.326395 5931 solver.cpp:218] Iteration 3900 (2.42501 iter/s, 4.94844s/12 iters), loss = 1.4676 +I0408 19:51:00.326428 5931 solver.cpp:237] Train net output #0: loss = 1.4676 (* 1 = 1.4676 loss) +I0408 19:51:00.326436 5931 sgd_solver.cpp:105] Iteration 3900, lr = 0.00853798 +I0408 19:51:05.088506 5931 solver.cpp:218] Iteration 3912 (2.51992 iter/s, 4.76206s/12 iters), loss = 1.47221 +I0408 19:51:05.088539 5931 solver.cpp:237] Train net output #0: loss = 1.47221 (* 1 = 1.47221 loss) +I0408 19:51:05.088547 5931 sgd_solver.cpp:105] Iteration 3912, lr = 0.00851581 +I0408 19:51:09.952258 5931 solver.cpp:218] Iteration 3924 (2.46726 iter/s, 4.8637s/12 iters), loss = 1.06335 +I0408 19:51:09.952292 5931 solver.cpp:237] Train net output #0: loss = 1.06335 (* 1 = 1.06335 loss) +I0408 19:51:09.952299 5931 sgd_solver.cpp:105] Iteration 3924, lr = 0.00849337 +I0408 19:51:14.762267 5931 solver.cpp:218] Iteration 3936 (2.49483 iter/s, 4.80996s/12 iters), loss = 1.12105 +I0408 19:51:14.762300 5931 solver.cpp:237] Train net output #0: loss = 1.12105 (* 1 = 1.12105 loss) +I0408 19:51:14.762306 5931 sgd_solver.cpp:105] Iteration 3936, lr = 0.00847065 +I0408 19:51:18.042289 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:51:19.569290 5931 solver.cpp:218] Iteration 3948 (2.49638 iter/s, 4.80697s/12 iters), loss = 1.08098 +I0408 19:51:19.569322 5931 solver.cpp:237] Train net output #0: loss = 1.08098 (* 1 = 1.08098 loss) +I0408 19:51:19.569329 5931 sgd_solver.cpp:105] Iteration 3948, lr = 0.00844765 +I0408 19:51:24.511744 5931 solver.cpp:218] Iteration 3960 (2.42797 iter/s, 4.9424s/12 iters), loss = 1.03392 +I0408 19:51:24.511776 5931 solver.cpp:237] Train net output #0: loss = 1.03392 (* 1 = 1.03392 loss) +I0408 19:51:24.511785 5931 sgd_solver.cpp:105] Iteration 3960, lr = 0.00842437 +I0408 19:51:29.277631 5931 solver.cpp:218] Iteration 3972 (2.51792 iter/s, 4.76583s/12 iters), loss = 1.32092 +I0408 19:51:29.277729 5931 solver.cpp:237] Train net output #0: loss = 1.32092 (* 1 = 1.32092 loss) +I0408 19:51:29.277737 5931 sgd_solver.cpp:105] Iteration 3972, lr = 0.0084008 +I0408 19:51:31.184481 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 19:51:35.462579 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 19:51:39.070483 5931 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 19:51:39.070508 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:51:42.083915 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:51:43.615447 5931 solver.cpp:397] Test net output #0: accuracy = 0.319853 +I0408 19:51:43.615491 5931 solver.cpp:397] Test net output #1: loss = 3.16041 (* 1 = 3.16041 loss) +I0408 19:51:45.347700 5931 solver.cpp:218] Iteration 3984 (0.746736 iter/s, 16.0699s/12 iters), loss = 1.26151 +I0408 19:51:45.347735 5931 solver.cpp:237] Train net output #0: loss = 1.26151 (* 1 = 1.26151 loss) +I0408 19:51:45.347743 5931 sgd_solver.cpp:105] Iteration 3984, lr = 0.00837695 +I0408 19:51:50.108656 5931 solver.cpp:218] Iteration 3996 (2.52053 iter/s, 4.7609s/12 iters), loss = 1.12289 +I0408 19:51:50.108688 5931 solver.cpp:237] Train net output #0: loss = 1.12289 (* 1 = 1.12289 loss) +I0408 19:51:50.108697 5931 sgd_solver.cpp:105] Iteration 3996, lr = 0.00835281 +I0408 19:51:54.968400 5931 solver.cpp:218] Iteration 4008 (2.46929 iter/s, 4.85969s/12 iters), loss = 1.05794 +I0408 19:51:54.968433 5931 solver.cpp:237] Train net output #0: loss = 1.05794 (* 1 = 1.05794 loss) +I0408 19:51:54.968441 5931 sgd_solver.cpp:105] Iteration 4008, lr = 0.00832839 +I0408 19:51:59.785013 5931 solver.cpp:218] Iteration 4020 (2.49141 iter/s, 4.81655s/12 iters), loss = 1.72157 +I0408 19:51:59.785156 5931 solver.cpp:237] Train net output #0: loss = 1.72157 (* 1 = 1.72157 loss) +I0408 19:51:59.785166 5931 sgd_solver.cpp:105] Iteration 4020, lr = 0.00830368 +I0408 19:52:04.579777 5931 solver.cpp:218] Iteration 4032 (2.50281 iter/s, 4.79461s/12 iters), loss = 1.51982 +I0408 19:52:04.579810 5931 solver.cpp:237] Train net output #0: loss = 1.51982 (* 1 = 1.51982 loss) +I0408 19:52:04.579818 5931 sgd_solver.cpp:105] Iteration 4032, lr = 0.00827867 +I0408 19:52:09.430395 5931 solver.cpp:218] Iteration 4044 (2.47394 iter/s, 4.85057s/12 iters), loss = 1.51046 +I0408 19:52:09.430428 5931 solver.cpp:237] Train net output #0: loss = 1.51046 (* 1 = 1.51046 loss) +I0408 19:52:09.430436 5931 sgd_solver.cpp:105] Iteration 4044, lr = 0.00825338 +I0408 19:52:09.891220 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:52:14.253439 5931 solver.cpp:218] Iteration 4056 (2.48808 iter/s, 4.82299s/12 iters), loss = 1.26421 +I0408 19:52:14.253471 5931 solver.cpp:237] Train net output #0: loss = 1.26421 (* 1 = 1.26421 loss) +I0408 19:52:14.253479 5931 sgd_solver.cpp:105] Iteration 4056, lr = 0.0082278 +I0408 19:52:19.074704 5931 solver.cpp:218] Iteration 4068 (2.489 iter/s, 4.82121s/12 iters), loss = 1.41095 +I0408 19:52:19.074736 5931 solver.cpp:237] Train net output #0: loss = 1.41095 (* 1 = 1.41095 loss) +I0408 19:52:19.074743 5931 sgd_solver.cpp:105] Iteration 4068, lr = 0.00820192 +I0408 19:52:23.444603 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 19:52:27.382596 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 19:52:30.613588 5931 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 19:52:30.613692 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:52:33.622864 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:52:35.396471 5931 solver.cpp:397] Test net output #0: accuracy = 0.318627 +I0408 19:52:35.396518 5931 solver.cpp:397] Test net output #1: loss = 3.22433 (* 1 = 3.22433 loss) +I0408 19:52:35.491971 5931 solver.cpp:218] Iteration 4080 (0.730941 iter/s, 16.4172s/12 iters), loss = 1.20716 +I0408 19:52:35.492003 5931 solver.cpp:237] Train net output #0: loss = 1.20716 (* 1 = 1.20716 loss) +I0408 19:52:35.492012 5931 sgd_solver.cpp:105] Iteration 4080, lr = 0.00817574 +I0408 19:52:39.484777 5931 solver.cpp:218] Iteration 4092 (3.00544 iter/s, 3.99276s/12 iters), loss = 1.16726 +I0408 19:52:39.484810 5931 solver.cpp:237] Train net output #0: loss = 1.16726 (* 1 = 1.16726 loss) +I0408 19:52:39.484817 5931 sgd_solver.cpp:105] Iteration 4092, lr = 0.00814928 +I0408 19:52:44.207520 5931 solver.cpp:218] Iteration 4104 (2.54092 iter/s, 4.72269s/12 iters), loss = 1.12696 +I0408 19:52:44.207551 5931 solver.cpp:237] Train net output #0: loss = 1.12696 (* 1 = 1.12696 loss) +I0408 19:52:44.207558 5931 sgd_solver.cpp:105] Iteration 4104, lr = 0.00812251 +I0408 19:52:49.030146 5931 solver.cpp:218] Iteration 4116 (2.4883 iter/s, 4.82258s/12 iters), loss = 1.44622 +I0408 19:52:49.030179 5931 solver.cpp:237] Train net output #0: loss = 1.44622 (* 1 = 1.44622 loss) +I0408 19:52:49.030186 5931 sgd_solver.cpp:105] Iteration 4116, lr = 0.00809545 +I0408 19:52:53.846629 5931 solver.cpp:218] Iteration 4128 (2.49147 iter/s, 4.81643s/12 iters), loss = 1.02868 +I0408 19:52:53.846660 5931 solver.cpp:237] Train net output #0: loss = 1.02868 (* 1 = 1.02868 loss) +I0408 19:52:53.846668 5931 sgd_solver.cpp:105] Iteration 4128, lr = 0.0080681 +I0408 19:52:58.672061 5931 solver.cpp:218] Iteration 4140 (2.48685 iter/s, 4.82538s/12 iters), loss = 0.857603 +I0408 19:52:58.672096 5931 solver.cpp:237] Train net output #0: loss = 0.857603 (* 1 = 0.857603 loss) +I0408 19:52:58.672103 5931 sgd_solver.cpp:105] Iteration 4140, lr = 0.00804044 +I0408 19:53:01.218135 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:53:03.513885 5931 solver.cpp:218] Iteration 4152 (2.47843 iter/s, 4.84177s/12 iters), loss = 1.2021 +I0408 19:53:03.513918 5931 solver.cpp:237] Train net output #0: loss = 1.2021 (* 1 = 1.2021 loss) +I0408 19:53:03.513926 5931 sgd_solver.cpp:105] Iteration 4152, lr = 0.00801249 +I0408 19:53:05.051857 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:53:08.323308 5931 solver.cpp:218] Iteration 4164 (2.49513 iter/s, 4.80937s/12 iters), loss = 1.05113 +I0408 19:53:08.323340 5931 solver.cpp:237] Train net output #0: loss = 1.05113 (* 1 = 1.05113 loss) +I0408 19:53:08.323348 5931 sgd_solver.cpp:105] Iteration 4164, lr = 0.00798423 +I0408 19:53:13.149473 5931 solver.cpp:218] Iteration 4176 (2.48647 iter/s, 4.82611s/12 iters), loss = 1.49781 +I0408 19:53:13.149504 5931 solver.cpp:237] Train net output #0: loss = 1.49781 (* 1 = 1.49781 loss) +I0408 19:53:13.149513 5931 sgd_solver.cpp:105] Iteration 4176, lr = 0.00795568 +I0408 19:53:15.104741 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 19:53:18.211241 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 19:53:21.356909 5931 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 19:53:21.356935 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:53:24.319149 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:53:26.146239 5931 solver.cpp:397] Test net output #0: accuracy = 0.334559 +I0408 19:53:26.146286 5931 solver.cpp:397] Test net output #1: loss = 3.12765 (* 1 = 3.12765 loss) +I0408 19:53:27.883332 5931 solver.cpp:218] Iteration 4188 (0.814454 iter/s, 14.7338s/12 iters), loss = 1.58775 +I0408 19:53:27.883365 5931 solver.cpp:237] Train net output #0: loss = 1.58775 (* 1 = 1.58775 loss) +I0408 19:53:27.883373 5931 sgd_solver.cpp:105] Iteration 4188, lr = 0.00792683 +I0408 19:53:32.615044 5931 solver.cpp:218] Iteration 4200 (2.53611 iter/s, 4.73166s/12 iters), loss = 1.11497 +I0408 19:53:32.615140 5931 solver.cpp:237] Train net output #0: loss = 1.11497 (* 1 = 1.11497 loss) +I0408 19:53:32.615149 5931 sgd_solver.cpp:105] Iteration 4200, lr = 0.00789768 +I0408 19:53:37.447885 5931 solver.cpp:218] Iteration 4212 (2.48307 iter/s, 4.83273s/12 iters), loss = 1.23404 +I0408 19:53:37.447923 5931 solver.cpp:237] Train net output #0: loss = 1.23404 (* 1 = 1.23404 loss) +I0408 19:53:37.447930 5931 sgd_solver.cpp:105] Iteration 4212, lr = 0.00786823 +I0408 19:53:42.283274 5931 solver.cpp:218] Iteration 4224 (2.48173 iter/s, 4.83533s/12 iters), loss = 1.34776 +I0408 19:53:42.283313 5931 solver.cpp:237] Train net output #0: loss = 1.34776 (* 1 = 1.34776 loss) +I0408 19:53:42.283322 5931 sgd_solver.cpp:105] Iteration 4224, lr = 0.00783848 +I0408 19:53:47.100708 5931 solver.cpp:218] Iteration 4236 (2.49098 iter/s, 4.81738s/12 iters), loss = 1.16645 +I0408 19:53:47.100744 5931 solver.cpp:237] Train net output #0: loss = 1.16645 (* 1 = 1.16645 loss) +I0408 19:53:47.100752 5931 sgd_solver.cpp:105] Iteration 4236, lr = 0.00780843 +I0408 19:53:51.677166 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:53:51.894517 5931 solver.cpp:218] Iteration 4248 (2.50326 iter/s, 4.79375s/12 iters), loss = 1.18824 +I0408 19:53:51.894551 5931 solver.cpp:237] Train net output #0: loss = 1.18824 (* 1 = 1.18824 loss) +I0408 19:53:51.894559 5931 sgd_solver.cpp:105] Iteration 4248, lr = 0.00777809 +I0408 19:53:56.592785 5931 solver.cpp:218] Iteration 4260 (2.55416 iter/s, 4.69821s/12 iters), loss = 0.948969 +I0408 19:53:56.592819 5931 solver.cpp:237] Train net output #0: loss = 0.948969 (* 1 = 0.948969 loss) +I0408 19:53:56.592828 5931 sgd_solver.cpp:105] Iteration 4260, lr = 0.00774744 +I0408 19:54:01.379490 5931 solver.cpp:218] Iteration 4272 (2.50697 iter/s, 4.78665s/12 iters), loss = 1.01914 +I0408 19:54:01.379523 5931 solver.cpp:237] Train net output #0: loss = 1.01914 (* 1 = 1.01914 loss) +I0408 19:54:01.379537 5931 sgd_solver.cpp:105] Iteration 4272, lr = 0.00771649 +I0408 19:54:05.751072 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 19:54:08.864266 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 19:54:11.218518 5931 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 19:54:11.218544 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:54:14.140738 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:54:15.999917 5931 solver.cpp:397] Test net output #0: accuracy = 0.333333 +I0408 19:54:15.999966 5931 solver.cpp:397] Test net output #1: loss = 3.15961 (* 1 = 3.15961 loss) +I0408 19:54:16.096501 5931 solver.cpp:218] Iteration 4284 (0.815387 iter/s, 14.7169s/12 iters), loss = 1.12854 +I0408 19:54:16.096539 5931 solver.cpp:237] Train net output #0: loss = 1.12854 (* 1 = 1.12854 loss) +I0408 19:54:16.096546 5931 sgd_solver.cpp:105] Iteration 4284, lr = 0.00768525 +I0408 19:54:20.038765 5931 solver.cpp:218] Iteration 4296 (3.04398 iter/s, 3.94221s/12 iters), loss = 0.818015 +I0408 19:54:20.038800 5931 solver.cpp:237] Train net output #0: loss = 0.818015 (* 1 = 0.818015 loss) +I0408 19:54:20.038807 5931 sgd_solver.cpp:105] Iteration 4296, lr = 0.00765371 +I0408 19:54:24.915174 5931 solver.cpp:218] Iteration 4308 (2.46085 iter/s, 4.87636s/12 iters), loss = 1.00404 +I0408 19:54:24.915211 5931 solver.cpp:237] Train net output #0: loss = 1.00404 (* 1 = 1.00404 loss) +I0408 19:54:24.915220 5931 sgd_solver.cpp:105] Iteration 4308, lr = 0.00762187 +I0408 19:54:29.693827 5931 solver.cpp:218] Iteration 4320 (2.5112 iter/s, 4.7786s/12 iters), loss = 1.52882 +I0408 19:54:29.693866 5931 solver.cpp:237] Train net output #0: loss = 1.52882 (* 1 = 1.52882 loss) +I0408 19:54:29.693873 5931 sgd_solver.cpp:105] Iteration 4320, lr = 0.00758973 +I0408 19:54:34.529711 5931 solver.cpp:218] Iteration 4332 (2.48148 iter/s, 4.83583s/12 iters), loss = 0.943072 +I0408 19:54:34.529744 5931 solver.cpp:237] Train net output #0: loss = 0.943072 (* 1 = 0.943072 loss) +I0408 19:54:34.529752 5931 sgd_solver.cpp:105] Iteration 4332, lr = 0.0075573 +I0408 19:54:39.350107 5931 solver.cpp:218] Iteration 4344 (2.48945 iter/s, 4.82034s/12 iters), loss = 0.936029 +I0408 19:54:39.350203 5931 solver.cpp:237] Train net output #0: loss = 0.936029 (* 1 = 0.936029 loss) +I0408 19:54:39.350210 5931 sgd_solver.cpp:105] Iteration 4344, lr = 0.00752458 +I0408 19:54:41.174686 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:54:44.188874 5931 solver.cpp:218] Iteration 4356 (2.48003 iter/s, 4.83866s/12 iters), loss = 0.903117 +I0408 19:54:44.188907 5931 solver.cpp:237] Train net output #0: loss = 0.903117 (* 1 = 0.903117 loss) +I0408 19:54:44.188915 5931 sgd_solver.cpp:105] Iteration 4356, lr = 0.00749156 +I0408 19:54:49.023360 5931 solver.cpp:218] Iteration 4368 (2.48219 iter/s, 4.83444s/12 iters), loss = 0.822737 +I0408 19:54:49.023396 5931 solver.cpp:237] Train net output #0: loss = 0.822737 (* 1 = 0.822737 loss) +I0408 19:54:49.023403 5931 sgd_solver.cpp:105] Iteration 4368, lr = 0.00745825 +I0408 19:54:53.842201 5931 solver.cpp:218] Iteration 4380 (2.49025 iter/s, 4.81879s/12 iters), loss = 1.03773 +I0408 19:54:53.842233 5931 solver.cpp:237] Train net output #0: loss = 1.03773 (* 1 = 1.03773 loss) +I0408 19:54:53.842242 5931 sgd_solver.cpp:105] Iteration 4380, lr = 0.00742466 +I0408 19:54:55.795584 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 19:54:58.951737 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 19:55:01.310107 5931 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 19:55:01.310133 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:55:04.183652 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:55:06.091280 5931 solver.cpp:397] Test net output #0: accuracy = 0.356005 +I0408 19:55:06.091329 5931 solver.cpp:397] Test net output #1: loss = 3.1704 (* 1 = 3.1704 loss) +I0408 19:55:07.817795 5931 solver.cpp:218] Iteration 4392 (0.858644 iter/s, 13.9755s/12 iters), loss = 1.31783 +I0408 19:55:07.817829 5931 solver.cpp:237] Train net output #0: loss = 1.31783 (* 1 = 1.31783 loss) +I0408 19:55:07.817836 5931 sgd_solver.cpp:105] Iteration 4392, lr = 0.00739077 +I0408 19:55:12.546609 5931 solver.cpp:218] Iteration 4404 (2.53766 iter/s, 4.72876s/12 iters), loss = 1.02119 +I0408 19:55:12.546726 5931 solver.cpp:237] Train net output #0: loss = 1.02119 (* 1 = 1.02119 loss) +I0408 19:55:12.546736 5931 sgd_solver.cpp:105] Iteration 4404, lr = 0.00735659 +I0408 19:55:17.353472 5931 solver.cpp:218] Iteration 4416 (2.4965 iter/s, 4.80673s/12 iters), loss = 0.814722 +I0408 19:55:17.353507 5931 solver.cpp:237] Train net output #0: loss = 0.814722 (* 1 = 0.814722 loss) +I0408 19:55:17.353513 5931 sgd_solver.cpp:105] Iteration 4416, lr = 0.00732214 +I0408 19:55:22.153848 5931 solver.cpp:218] Iteration 4428 (2.49983 iter/s, 4.80032s/12 iters), loss = 1.015 +I0408 19:55:22.153882 5931 solver.cpp:237] Train net output #0: loss = 1.015 (* 1 = 1.015 loss) +I0408 19:55:22.153889 5931 sgd_solver.cpp:105] Iteration 4428, lr = 0.00728739 +I0408 19:55:27.004606 5931 solver.cpp:218] Iteration 4440 (2.47387 iter/s, 4.8507s/12 iters), loss = 0.763155 +I0408 19:55:27.004639 5931 solver.cpp:237] Train net output #0: loss = 0.763155 (* 1 = 0.763155 loss) +I0408 19:55:27.004647 5931 sgd_solver.cpp:105] Iteration 4440, lr = 0.00725237 +I0408 19:55:30.844806 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:55:31.781582 5931 solver.cpp:218] Iteration 4452 (2.51208 iter/s, 4.77693s/12 iters), loss = 1.22367 +I0408 19:55:31.781615 5931 solver.cpp:237] Train net output #0: loss = 1.22367 (* 1 = 1.22367 loss) +I0408 19:55:31.781622 5931 sgd_solver.cpp:105] Iteration 4452, lr = 0.00721706 +I0408 19:55:36.626356 5931 solver.cpp:218] Iteration 4464 (2.47692 iter/s, 4.84472s/12 iters), loss = 0.884745 +I0408 19:55:36.626389 5931 solver.cpp:237] Train net output #0: loss = 0.884745 (* 1 = 0.884745 loss) +I0408 19:55:36.626396 5931 sgd_solver.cpp:105] Iteration 4464, lr = 0.00718148 +I0408 19:55:41.471554 5931 solver.cpp:218] Iteration 4476 (2.4767 iter/s, 4.84515s/12 iters), loss = 1.01609 +I0408 19:55:41.471591 5931 solver.cpp:237] Train net output #0: loss = 1.01609 (* 1 = 1.01609 loss) +I0408 19:55:41.471598 5931 sgd_solver.cpp:105] Iteration 4476, lr = 0.00714562 +I0408 19:55:45.798264 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 19:55:50.364996 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 19:55:54.690732 5931 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 19:55:54.690758 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:55:57.342164 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:55:59.059446 5931 solver.cpp:397] Test net output #0: accuracy = 0.355392 +I0408 19:55:59.059492 5931 solver.cpp:397] Test net output #1: loss = 3.15389 (* 1 = 3.15389 loss) +I0408 19:55:59.155997 5931 solver.cpp:218] Iteration 4488 (0.678566 iter/s, 17.6844s/12 iters), loss = 0.974825 +I0408 19:55:59.156036 5931 solver.cpp:237] Train net output #0: loss = 0.974825 (* 1 = 0.974825 loss) +I0408 19:55:59.156044 5931 sgd_solver.cpp:105] Iteration 4488, lr = 0.00710949 +I0408 19:56:03.140056 5931 solver.cpp:218] Iteration 4500 (3.01204 iter/s, 3.98401s/12 iters), loss = 0.633073 +I0408 19:56:03.140089 5931 solver.cpp:237] Train net output #0: loss = 0.633073 (* 1 = 0.633073 loss) +I0408 19:56:03.140096 5931 sgd_solver.cpp:105] Iteration 4500, lr = 0.0070731 +I0408 19:56:07.953107 5931 solver.cpp:218] Iteration 4512 (2.49325 iter/s, 4.813s/12 iters), loss = 1.14185 +I0408 19:56:07.953140 5931 solver.cpp:237] Train net output #0: loss = 1.14185 (* 1 = 1.14185 loss) +I0408 19:56:07.953146 5931 sgd_solver.cpp:105] Iteration 4512, lr = 0.00703643 +I0408 19:56:12.695410 5931 solver.cpp:218] Iteration 4524 (2.53044 iter/s, 4.74226s/12 iters), loss = 0.898067 +I0408 19:56:12.695443 5931 solver.cpp:237] Train net output #0: loss = 0.898067 (* 1 = 0.898067 loss) +I0408 19:56:12.695451 5931 sgd_solver.cpp:105] Iteration 4524, lr = 0.0069995 +I0408 19:56:17.414057 5931 solver.cpp:218] Iteration 4536 (2.54313 iter/s, 4.71859s/12 iters), loss = 0.961567 +I0408 19:56:17.414170 5931 solver.cpp:237] Train net output #0: loss = 0.961567 (* 1 = 0.961567 loss) +I0408 19:56:17.414178 5931 sgd_solver.cpp:105] Iteration 4536, lr = 0.00696231 +I0408 19:56:22.266469 5931 solver.cpp:218] Iteration 4548 (2.47306 iter/s, 4.85228s/12 iters), loss = 0.867192 +I0408 19:56:22.266503 5931 solver.cpp:237] Train net output #0: loss = 0.867192 (* 1 = 0.867192 loss) +I0408 19:56:22.266511 5931 sgd_solver.cpp:105] Iteration 4548, lr = 0.00692485 +I0408 19:56:23.464895 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:56:27.076748 5931 solver.cpp:218] Iteration 4560 (2.49468 iter/s, 4.81023s/12 iters), loss = 0.710486 +I0408 19:56:27.076783 5931 solver.cpp:237] Train net output #0: loss = 0.710486 (* 1 = 0.710486 loss) +I0408 19:56:27.076790 5931 sgd_solver.cpp:105] Iteration 4560, lr = 0.00688715 +I0408 19:56:31.882838 5931 solver.cpp:218] Iteration 4572 (2.49686 iter/s, 4.80604s/12 iters), loss = 1.12257 +I0408 19:56:31.882871 5931 solver.cpp:237] Train net output #0: loss = 1.12257 (* 1 = 1.12257 loss) +I0408 19:56:31.882879 5931 sgd_solver.cpp:105] Iteration 4572, lr = 0.00684919 +I0408 19:56:36.728086 5931 solver.cpp:218] Iteration 4584 (2.47668 iter/s, 4.8452s/12 iters), loss = 0.863892 +I0408 19:56:36.728121 5931 solver.cpp:237] Train net output #0: loss = 0.863892 (* 1 = 0.863892 loss) +I0408 19:56:36.728129 5931 sgd_solver.cpp:105] Iteration 4584, lr = 0.00681098 +I0408 19:56:38.636687 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 19:56:41.710852 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 19:56:44.117866 5931 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 19:56:44.117893 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:56:46.795609 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:56:48.566730 5931 solver.cpp:397] Test net output #0: accuracy = 0.334559 +I0408 19:56:48.566929 5931 solver.cpp:397] Test net output #1: loss = 3.32809 (* 1 = 3.32809 loss) +I0408 19:56:50.305078 5931 solver.cpp:218] Iteration 4596 (0.883853 iter/s, 13.5769s/12 iters), loss = 0.809408 +I0408 19:56:50.305111 5931 solver.cpp:237] Train net output #0: loss = 0.809408 (* 1 = 0.809408 loss) +I0408 19:56:50.305119 5931 sgd_solver.cpp:105] Iteration 4596, lr = 0.00677253 +I0408 19:56:55.022451 5931 solver.cpp:218] Iteration 4608 (2.54382 iter/s, 4.71732s/12 iters), loss = 0.797493 +I0408 19:56:55.022485 5931 solver.cpp:237] Train net output #0: loss = 0.797493 (* 1 = 0.797493 loss) +I0408 19:56:55.022493 5931 sgd_solver.cpp:105] Iteration 4608, lr = 0.00673384 +I0408 19:56:59.836619 5931 solver.cpp:218] Iteration 4620 (2.49267 iter/s, 4.81411s/12 iters), loss = 0.639119 +I0408 19:56:59.836655 5931 solver.cpp:237] Train net output #0: loss = 0.639119 (* 1 = 0.639119 loss) +I0408 19:56:59.836663 5931 sgd_solver.cpp:105] Iteration 4620, lr = 0.00669491 +I0408 19:57:04.672621 5931 solver.cpp:218] Iteration 4632 (2.48142 iter/s, 4.83595s/12 iters), loss = 0.945835 +I0408 19:57:04.672653 5931 solver.cpp:237] Train net output #0: loss = 0.945835 (* 1 = 0.945835 loss) +I0408 19:57:04.672660 5931 sgd_solver.cpp:105] Iteration 4632, lr = 0.00665574 +I0408 19:57:09.468278 5931 solver.cpp:218] Iteration 4644 (2.50229 iter/s, 4.79561s/12 iters), loss = 0.889238 +I0408 19:57:09.468318 5931 solver.cpp:237] Train net output #0: loss = 0.889238 (* 1 = 0.889238 loss) +I0408 19:57:09.468325 5931 sgd_solver.cpp:105] Iteration 4644, lr = 0.00661635 +I0408 19:57:12.734026 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:57:14.285780 5931 solver.cpp:218] Iteration 4656 (2.49095 iter/s, 4.81744s/12 iters), loss = 0.531205 +I0408 19:57:14.285813 5931 solver.cpp:237] Train net output #0: loss = 0.531205 (* 1 = 0.531205 loss) +I0408 19:57:14.285821 5931 sgd_solver.cpp:105] Iteration 4656, lr = 0.00657673 +I0408 19:57:19.116061 5931 solver.cpp:218] Iteration 4668 (2.48435 iter/s, 4.83023s/12 iters), loss = 0.886806 +I0408 19:57:19.116168 5931 solver.cpp:237] Train net output #0: loss = 0.886806 (* 1 = 0.886806 loss) +I0408 19:57:19.116176 5931 sgd_solver.cpp:105] Iteration 4668, lr = 0.00653689 +I0408 19:57:23.938036 5931 solver.cpp:218] Iteration 4680 (2.48867 iter/s, 4.82185s/12 iters), loss = 0.736363 +I0408 19:57:23.938071 5931 solver.cpp:237] Train net output #0: loss = 0.736363 (* 1 = 0.736363 loss) +I0408 19:57:23.938079 5931 sgd_solver.cpp:105] Iteration 4680, lr = 0.00649683 +I0408 19:57:28.323472 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 19:57:31.685166 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 19:57:35.143018 5931 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 19:57:35.143043 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:57:37.875829 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:57:39.681412 5931 solver.cpp:397] Test net output #0: accuracy = 0.356005 +I0408 19:57:39.681458 5931 solver.cpp:397] Test net output #1: loss = 3.22998 (* 1 = 3.22998 loss) +I0408 19:57:39.777456 5931 solver.cpp:218] Iteration 4692 (0.757607 iter/s, 15.8393s/12 iters), loss = 0.746475 +I0408 19:57:39.777491 5931 solver.cpp:237] Train net output #0: loss = 0.746475 (* 1 = 0.746475 loss) +I0408 19:57:39.777499 5931 sgd_solver.cpp:105] Iteration 4692, lr = 0.00645656 +I0408 19:57:43.748168 5931 solver.cpp:218] Iteration 4704 (3.02217 iter/s, 3.97066s/12 iters), loss = 0.52389 +I0408 19:57:43.748203 5931 solver.cpp:237] Train net output #0: loss = 0.52389 (* 1 = 0.52389 loss) +I0408 19:57:43.748211 5931 sgd_solver.cpp:105] Iteration 4704, lr = 0.00641609 +I0408 19:57:48.453466 5931 solver.cpp:218] Iteration 4716 (2.55035 iter/s, 4.70525s/12 iters), loss = 0.84353 +I0408 19:57:48.453501 5931 solver.cpp:237] Train net output #0: loss = 0.84353 (* 1 = 0.84353 loss) +I0408 19:57:48.453508 5931 sgd_solver.cpp:105] Iteration 4716, lr = 0.00637541 +I0408 19:57:53.071825 5931 solver.cpp:218] Iteration 4728 (2.59835 iter/s, 4.61831s/12 iters), loss = 0.841287 +I0408 19:57:53.071966 5931 solver.cpp:237] Train net output #0: loss = 0.841287 (* 1 = 0.841287 loss) +I0408 19:57:53.071975 5931 sgd_solver.cpp:105] Iteration 4728, lr = 0.00633453 +I0408 19:57:57.738499 5931 solver.cpp:218] Iteration 4740 (2.57151 iter/s, 4.66652s/12 iters), loss = 1.11174 +I0408 19:57:57.738533 5931 solver.cpp:237] Train net output #0: loss = 1.11174 (* 1 = 1.11174 loss) +I0408 19:57:57.738539 5931 sgd_solver.cpp:105] Iteration 4740, lr = 0.00629346 +I0408 19:58:02.526955 5931 solver.cpp:218] Iteration 4752 (2.50605 iter/s, 4.7884s/12 iters), loss = 0.946293 +I0408 19:58:02.526988 5931 solver.cpp:237] Train net output #0: loss = 0.946293 (* 1 = 0.946293 loss) +I0408 19:58:02.526995 5931 sgd_solver.cpp:105] Iteration 4752, lr = 0.0062522 +I0408 19:58:03.022832 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:58:07.375183 5931 solver.cpp:218] Iteration 4764 (2.47516 iter/s, 4.84818s/12 iters), loss = 0.730234 +I0408 19:58:07.375226 5931 solver.cpp:237] Train net output #0: loss = 0.730234 (* 1 = 0.730234 loss) +I0408 19:58:07.375234 5931 sgd_solver.cpp:105] Iteration 4764, lr = 0.00621076 +I0408 19:58:12.188254 5931 solver.cpp:218] Iteration 4776 (2.49324 iter/s, 4.81301s/12 iters), loss = 0.814758 +I0408 19:58:12.188288 5931 solver.cpp:237] Train net output #0: loss = 0.814758 (* 1 = 0.814758 loss) +I0408 19:58:12.188297 5931 sgd_solver.cpp:105] Iteration 4776, lr = 0.00616914 +I0408 19:58:16.879282 5931 solver.cpp:218] Iteration 4788 (2.55811 iter/s, 4.69097s/12 iters), loss = 0.799296 +I0408 19:58:16.879320 5931 solver.cpp:237] Train net output #0: loss = 0.799296 (* 1 = 0.799296 loss) +I0408 19:58:16.879328 5931 sgd_solver.cpp:105] Iteration 4788, lr = 0.00612735 +I0408 19:58:18.734681 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 19:58:21.814431 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 19:58:24.162583 5931 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 19:58:24.162703 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:58:26.857852 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:58:28.950800 5931 solver.cpp:397] Test net output #0: accuracy = 0.381127 +I0408 19:58:28.950847 5931 solver.cpp:397] Test net output #1: loss = 3.08625 (* 1 = 3.08625 loss) +I0408 19:58:30.704238 5931 solver.cpp:218] Iteration 4800 (0.868 iter/s, 13.8249s/12 iters), loss = 0.727426 +I0408 19:58:30.704275 5931 solver.cpp:237] Train net output #0: loss = 0.727426 (* 1 = 0.727426 loss) +I0408 19:58:30.704283 5931 sgd_solver.cpp:105] Iteration 4800, lr = 0.00608539 +I0408 19:58:35.521260 5931 solver.cpp:218] Iteration 4812 (2.49119 iter/s, 4.81697s/12 iters), loss = 0.721816 +I0408 19:58:35.521292 5931 solver.cpp:237] Train net output #0: loss = 0.721816 (* 1 = 0.721816 loss) +I0408 19:58:35.521299 5931 sgd_solver.cpp:105] Iteration 4812, lr = 0.00604327 +I0408 19:58:40.327932 5931 solver.cpp:218] Iteration 4824 (2.49656 iter/s, 4.80662s/12 iters), loss = 0.820893 +I0408 19:58:40.327966 5931 solver.cpp:237] Train net output #0: loss = 0.820893 (* 1 = 0.820893 loss) +I0408 19:58:40.327973 5931 sgd_solver.cpp:105] Iteration 4824, lr = 0.006001 +I0408 19:58:45.205153 5931 solver.cpp:218] Iteration 4836 (2.46044 iter/s, 4.87717s/12 iters), loss = 0.868211 +I0408 19:58:45.205188 5931 solver.cpp:237] Train net output #0: loss = 0.868211 (* 1 = 0.868211 loss) +I0408 19:58:45.205195 5931 sgd_solver.cpp:105] Iteration 4836, lr = 0.00595858 +I0408 19:58:47.119526 5931 blocking_queue.cpp:49] Waiting for data +I0408 19:58:49.932314 5931 solver.cpp:218] Iteration 4848 (2.53855 iter/s, 4.72711s/12 iters), loss = 0.686241 +I0408 19:58:49.932351 5931 solver.cpp:237] Train net output #0: loss = 0.686241 (* 1 = 0.686241 loss) +I0408 19:58:49.932358 5931 sgd_solver.cpp:105] Iteration 4848, lr = 0.00591601 +I0408 19:58:52.499554 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:58:54.765101 5931 solver.cpp:218] Iteration 4860 (2.48307 iter/s, 4.83273s/12 iters), loss = 0.885092 +I0408 19:58:54.765272 5931 solver.cpp:237] Train net output #0: loss = 0.885092 (* 1 = 0.885092 loss) +I0408 19:58:54.765281 5931 sgd_solver.cpp:105] Iteration 4860, lr = 0.00587331 +I0408 19:58:59.631913 5931 solver.cpp:218] Iteration 4872 (2.46577 iter/s, 4.86663s/12 iters), loss = 0.51506 +I0408 19:58:59.631947 5931 solver.cpp:237] Train net output #0: loss = 0.51506 (* 1 = 0.51506 loss) +I0408 19:58:59.631954 5931 sgd_solver.cpp:105] Iteration 4872, lr = 0.00583047 +I0408 19:59:04.325546 5931 solver.cpp:218] Iteration 4884 (2.55668 iter/s, 4.69358s/12 iters), loss = 0.599404 +I0408 19:59:04.325579 5931 solver.cpp:237] Train net output #0: loss = 0.599404 (* 1 = 0.599404 loss) +I0408 19:59:04.325587 5931 sgd_solver.cpp:105] Iteration 4884, lr = 0.00578751 +I0408 19:59:08.589504 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 19:59:11.674010 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 19:59:14.433045 5931 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 19:59:14.433071 5931 net.cpp:676] Ignoring source layer train-data +I0408 19:59:17.024758 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:59:18.908504 5931 solver.cpp:397] Test net output #0: accuracy = 0.369485 +I0408 19:59:18.908550 5931 solver.cpp:397] Test net output #1: loss = 3.09063 (* 1 = 3.09063 loss) +I0408 19:59:19.004987 5931 solver.cpp:218] Iteration 4896 (0.817474 iter/s, 14.6794s/12 iters), loss = 0.846195 +I0408 19:59:19.005020 5931 solver.cpp:237] Train net output #0: loss = 0.846195 (* 1 = 0.846195 loss) +I0408 19:59:19.005029 5931 sgd_solver.cpp:105] Iteration 4896, lr = 0.00574443 +I0408 19:59:22.952045 5931 solver.cpp:218] Iteration 4908 (3.04028 iter/s, 3.94701s/12 iters), loss = 0.778551 +I0408 19:59:22.952078 5931 solver.cpp:237] Train net output #0: loss = 0.778551 (* 1 = 0.778551 loss) +I0408 19:59:22.952086 5931 sgd_solver.cpp:105] Iteration 4908, lr = 0.00570123 +I0408 19:59:27.776707 5931 solver.cpp:218] Iteration 4920 (2.48725 iter/s, 4.82461s/12 iters), loss = 0.583149 +I0408 19:59:27.776824 5931 solver.cpp:237] Train net output #0: loss = 0.583149 (* 1 = 0.583149 loss) +I0408 19:59:27.776834 5931 sgd_solver.cpp:105] Iteration 4920, lr = 0.00565793 +I0408 19:59:32.576397 5931 solver.cpp:218] Iteration 4932 (2.50023 iter/s, 4.79956s/12 iters), loss = 0.656009 +I0408 19:59:32.576431 5931 solver.cpp:237] Train net output #0: loss = 0.656009 (* 1 = 0.656009 loss) +I0408 19:59:32.576438 5931 sgd_solver.cpp:105] Iteration 4932, lr = 0.00561452 +I0408 19:59:37.400527 5931 solver.cpp:218] Iteration 4944 (2.48752 iter/s, 4.82408s/12 iters), loss = 0.690486 +I0408 19:59:37.400559 5931 solver.cpp:237] Train net output #0: loss = 0.690486 (* 1 = 0.690486 loss) +I0408 19:59:37.400566 5931 sgd_solver.cpp:105] Iteration 4944, lr = 0.00557103 +I0408 19:59:42.040854 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 19:59:42.241802 5931 solver.cpp:218] Iteration 4956 (2.47871 iter/s, 4.84123s/12 iters), loss = 0.462403 +I0408 19:59:42.241835 5931 solver.cpp:237] Train net output #0: loss = 0.462403 (* 1 = 0.462403 loss) +I0408 19:59:42.241842 5931 sgd_solver.cpp:105] Iteration 4956, lr = 0.00552744 +I0408 19:59:47.055979 5931 solver.cpp:218] Iteration 4968 (2.49267 iter/s, 4.81412s/12 iters), loss = 0.487629 +I0408 19:59:47.056013 5931 solver.cpp:237] Train net output #0: loss = 0.487629 (* 1 = 0.487629 loss) +I0408 19:59:47.056020 5931 sgd_solver.cpp:105] Iteration 4968, lr = 0.00548378 +I0408 19:59:51.887815 5931 solver.cpp:218] Iteration 4980 (2.48356 iter/s, 4.83178s/12 iters), loss = 0.614614 +I0408 19:59:51.887849 5931 solver.cpp:237] Train net output #0: loss = 0.614614 (* 1 = 0.614614 loss) +I0408 19:59:51.887856 5931 sgd_solver.cpp:105] Iteration 4980, lr = 0.00544003 +I0408 19:59:56.714779 5931 solver.cpp:218] Iteration 4992 (2.48606 iter/s, 4.82691s/12 iters), loss = 0.696353 +I0408 19:59:56.714812 5931 solver.cpp:237] Train net output #0: loss = 0.696353 (* 1 = 0.696353 loss) +I0408 19:59:56.714819 5931 sgd_solver.cpp:105] Iteration 4992, lr = 0.00539623 +I0408 19:59:58.674933 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 20:00:02.304445 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 20:00:05.357527 5931 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 20:00:05.357553 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:00:07.975019 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:00:10.141289 5931 solver.cpp:397] Test net output #0: accuracy = 0.393382 +I0408 20:00:10.141338 5931 solver.cpp:397] Test net output #1: loss = 2.94133 (* 1 = 2.94133 loss) +I0408 20:00:11.897152 5931 solver.cpp:218] Iteration 5004 (0.790394 iter/s, 15.1823s/12 iters), loss = 0.448587 +I0408 20:00:11.897186 5931 solver.cpp:237] Train net output #0: loss = 0.448587 (* 1 = 0.448587 loss) +I0408 20:00:11.897194 5931 sgd_solver.cpp:105] Iteration 5004, lr = 0.00535236 +I0408 20:00:16.596283 5931 solver.cpp:218] Iteration 5016 (2.55369 iter/s, 4.69908s/12 iters), loss = 0.512112 +I0408 20:00:16.596315 5931 solver.cpp:237] Train net output #0: loss = 0.512112 (* 1 = 0.512112 loss) +I0408 20:00:16.596323 5931 sgd_solver.cpp:105] Iteration 5016, lr = 0.00530843 +I0408 20:00:21.437103 5931 solver.cpp:218] Iteration 5028 (2.47895 iter/s, 4.84076s/12 iters), loss = 0.606361 +I0408 20:00:21.437135 5931 solver.cpp:237] Train net output #0: loss = 0.606361 (* 1 = 0.606361 loss) +I0408 20:00:21.437142 5931 sgd_solver.cpp:105] Iteration 5028, lr = 0.00526446 +I0408 20:00:26.239049 5931 solver.cpp:218] Iteration 5040 (2.49901 iter/s, 4.80189s/12 iters), loss = 0.518664 +I0408 20:00:26.239081 5931 solver.cpp:237] Train net output #0: loss = 0.518664 (* 1 = 0.518664 loss) +I0408 20:00:26.239089 5931 sgd_solver.cpp:105] Iteration 5040, lr = 0.00522045 +I0408 20:00:31.066817 5931 solver.cpp:218] Iteration 5052 (2.48565 iter/s, 4.82772s/12 iters), loss = 0.538114 +I0408 20:00:31.066933 5931 solver.cpp:237] Train net output #0: loss = 0.538114 (* 1 = 0.538114 loss) +I0408 20:00:31.066942 5931 sgd_solver.cpp:105] Iteration 5052, lr = 0.0051764 +I0408 20:00:32.919497 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:00:35.912753 5931 solver.cpp:218] Iteration 5064 (2.47637 iter/s, 4.8458s/12 iters), loss = 0.602735 +I0408 20:00:35.912787 5931 solver.cpp:237] Train net output #0: loss = 0.602735 (* 1 = 0.602735 loss) +I0408 20:00:35.912794 5931 sgd_solver.cpp:105] Iteration 5064, lr = 0.00513232 +I0408 20:00:40.712847 5931 solver.cpp:218] Iteration 5076 (2.49998 iter/s, 4.80004s/12 iters), loss = 0.549402 +I0408 20:00:40.712882 5931 solver.cpp:237] Train net output #0: loss = 0.549402 (* 1 = 0.549402 loss) +I0408 20:00:40.712889 5931 sgd_solver.cpp:105] Iteration 5076, lr = 0.00508823 +I0408 20:00:45.574056 5931 solver.cpp:218] Iteration 5088 (2.46855 iter/s, 4.86115s/12 iters), loss = 0.573379 +I0408 20:00:45.574090 5931 solver.cpp:237] Train net output #0: loss = 0.573379 (* 1 = 0.573379 loss) +I0408 20:00:45.574097 5931 sgd_solver.cpp:105] Iteration 5088, lr = 0.00504412 +I0408 20:00:49.930560 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 20:00:53.030486 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 20:00:55.385972 5931 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 20:00:55.385998 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:00:57.971072 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:01:00.195363 5931 solver.cpp:397] Test net output #0: accuracy = 0.389093 +I0408 20:01:00.195411 5931 solver.cpp:397] Test net output #1: loss = 3.09837 (* 1 = 3.09837 loss) +I0408 20:01:00.291934 5931 solver.cpp:218] Iteration 5100 (0.815339 iter/s, 14.7178s/12 iters), loss = 0.460532 +I0408 20:01:00.291967 5931 solver.cpp:237] Train net output #0: loss = 0.460532 (* 1 = 0.460532 loss) +I0408 20:01:00.291975 5931 sgd_solver.cpp:105] Iteration 5100, lr = 0.005 +I0408 20:01:04.238128 5931 solver.cpp:218] Iteration 5112 (3.04095 iter/s, 3.94614s/12 iters), loss = 0.593658 +I0408 20:01:04.238225 5931 solver.cpp:237] Train net output #0: loss = 0.593658 (* 1 = 0.593658 loss) +I0408 20:01:04.238234 5931 sgd_solver.cpp:105] Iteration 5112, lr = 0.00495588 +I0408 20:01:09.069818 5931 solver.cpp:218] Iteration 5124 (2.48366 iter/s, 4.83157s/12 iters), loss = 0.505945 +I0408 20:01:09.069852 5931 solver.cpp:237] Train net output #0: loss = 0.505945 (* 1 = 0.505945 loss) +I0408 20:01:09.069859 5931 sgd_solver.cpp:105] Iteration 5124, lr = 0.00491177 +I0408 20:01:13.903571 5931 solver.cpp:218] Iteration 5136 (2.48257 iter/s, 4.8337s/12 iters), loss = 0.41879 +I0408 20:01:13.903610 5931 solver.cpp:237] Train net output #0: loss = 0.41879 (* 1 = 0.41879 loss) +I0408 20:01:13.903618 5931 sgd_solver.cpp:105] Iteration 5136, lr = 0.00486768 +I0408 20:01:18.712028 5931 solver.cpp:218] Iteration 5148 (2.49563 iter/s, 4.8084s/12 iters), loss = 0.677808 +I0408 20:01:18.712064 5931 solver.cpp:237] Train net output #0: loss = 0.677808 (* 1 = 0.677808 loss) +I0408 20:01:18.712071 5931 sgd_solver.cpp:105] Iteration 5148, lr = 0.0048236 +I0408 20:01:22.598358 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:01:23.493361 5931 solver.cpp:218] Iteration 5160 (2.50979 iter/s, 4.78128s/12 iters), loss = 0.488419 +I0408 20:01:23.493396 5931 solver.cpp:237] Train net output #0: loss = 0.488419 (* 1 = 0.488419 loss) +I0408 20:01:23.493403 5931 sgd_solver.cpp:105] Iteration 5160, lr = 0.00477955 +I0408 20:01:28.229866 5931 solver.cpp:218] Iteration 5172 (2.53354 iter/s, 4.73645s/12 iters), loss = 0.445747 +I0408 20:01:28.229899 5931 solver.cpp:237] Train net output #0: loss = 0.445747 (* 1 = 0.445747 loss) +I0408 20:01:28.229907 5931 sgd_solver.cpp:105] Iteration 5172, lr = 0.00473554 +I0408 20:01:32.978571 5931 solver.cpp:218] Iteration 5184 (2.52703 iter/s, 4.74865s/12 iters), loss = 0.474229 +I0408 20:01:32.978605 5931 solver.cpp:237] Train net output #0: loss = 0.474229 (* 1 = 0.474229 loss) +I0408 20:01:32.978612 5931 sgd_solver.cpp:105] Iteration 5184, lr = 0.00469157 +I0408 20:01:37.835505 5931 solver.cpp:218] Iteration 5196 (2.47072 iter/s, 4.85688s/12 iters), loss = 0.384813 +I0408 20:01:37.835578 5931 solver.cpp:237] Train net output #0: loss = 0.384813 (* 1 = 0.384813 loss) +I0408 20:01:37.835587 5931 sgd_solver.cpp:105] Iteration 5196, lr = 0.00464764 +I0408 20:01:39.758060 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 20:01:43.882413 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 20:01:46.231945 5931 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 20:01:46.231971 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:01:48.557762 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:01:50.546787 5931 solver.cpp:397] Test net output #0: accuracy = 0.413603 +I0408 20:01:50.546830 5931 solver.cpp:397] Test net output #1: loss = 2.96037 (* 1 = 2.96037 loss) +I0408 20:01:52.254446 5931 solver.cpp:218] Iteration 5208 (0.832245 iter/s, 14.4188s/12 iters), loss = 0.342959 +I0408 20:01:52.254482 5931 solver.cpp:237] Train net output #0: loss = 0.342959 (* 1 = 0.342959 loss) +I0408 20:01:52.254489 5931 sgd_solver.cpp:105] Iteration 5208, lr = 0.00460377 +I0408 20:01:57.084659 5931 solver.cpp:218] Iteration 5220 (2.48439 iter/s, 4.83016s/12 iters), loss = 0.519105 +I0408 20:01:57.084692 5931 solver.cpp:237] Train net output #0: loss = 0.519105 (* 1 = 0.519105 loss) +I0408 20:01:57.084699 5931 sgd_solver.cpp:105] Iteration 5220, lr = 0.00455996 +I0408 20:02:01.927886 5931 solver.cpp:218] Iteration 5232 (2.47772 iter/s, 4.84317s/12 iters), loss = 0.528687 +I0408 20:02:01.927917 5931 solver.cpp:237] Train net output #0: loss = 0.528687 (* 1 = 0.528687 loss) +I0408 20:02:01.927925 5931 sgd_solver.cpp:105] Iteration 5232, lr = 0.00451622 +I0408 20:02:06.745537 5931 solver.cpp:218] Iteration 5244 (2.49087 iter/s, 4.8176s/12 iters), loss = 0.379963 +I0408 20:02:06.745573 5931 solver.cpp:237] Train net output #0: loss = 0.379963 (* 1 = 0.379963 loss) +I0408 20:02:06.745580 5931 sgd_solver.cpp:105] Iteration 5244, lr = 0.00447256 +I0408 20:02:11.576947 5931 solver.cpp:218] Iteration 5256 (2.48378 iter/s, 4.83135s/12 iters), loss = 0.365287 +I0408 20:02:11.577044 5931 solver.cpp:237] Train net output #0: loss = 0.365287 (* 1 = 0.365287 loss) +I0408 20:02:11.577052 5931 sgd_solver.cpp:105] Iteration 5256, lr = 0.00442897 +I0408 20:02:12.810026 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:02:16.390740 5931 solver.cpp:218] Iteration 5268 (2.4929 iter/s, 4.81368s/12 iters), loss = 0.504454 +I0408 20:02:16.390772 5931 solver.cpp:237] Train net output #0: loss = 0.504454 (* 1 = 0.504454 loss) +I0408 20:02:16.390779 5931 sgd_solver.cpp:105] Iteration 5268, lr = 0.00438548 +I0408 20:02:21.235987 5931 solver.cpp:218] Iteration 5280 (2.47668 iter/s, 4.8452s/12 iters), loss = 0.491741 +I0408 20:02:21.236021 5931 solver.cpp:237] Train net output #0: loss = 0.491741 (* 1 = 0.491741 loss) +I0408 20:02:21.236028 5931 sgd_solver.cpp:105] Iteration 5280, lr = 0.00434207 +I0408 20:02:26.121444 5931 solver.cpp:218] Iteration 5292 (2.4563 iter/s, 4.8854s/12 iters), loss = 0.278349 +I0408 20:02:26.121479 5931 solver.cpp:237] Train net output #0: loss = 0.278349 (* 1 = 0.278349 loss) +I0408 20:02:26.121485 5931 sgd_solver.cpp:105] Iteration 5292, lr = 0.00429877 +I0408 20:02:30.450222 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 20:02:33.558655 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 20:02:36.403622 5931 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 20:02:36.403647 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:02:38.815709 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:02:40.847920 5931 solver.cpp:397] Test net output #0: accuracy = 0.401961 +I0408 20:02:40.847965 5931 solver.cpp:397] Test net output #1: loss = 2.96069 (* 1 = 2.96069 loss) +I0408 20:02:40.944459 5931 solver.cpp:218] Iteration 5304 (0.809556 iter/s, 14.8229s/12 iters), loss = 0.346396 +I0408 20:02:40.944495 5931 solver.cpp:237] Train net output #0: loss = 0.346396 (* 1 = 0.346396 loss) +I0408 20:02:40.944502 5931 sgd_solver.cpp:105] Iteration 5304, lr = 0.00425557 +I0408 20:02:44.917454 5931 solver.cpp:218] Iteration 5316 (3.02043 iter/s, 3.97294s/12 iters), loss = 0.626065 +I0408 20:02:44.917577 5931 solver.cpp:237] Train net output #0: loss = 0.626065 (* 1 = 0.626065 loss) +I0408 20:02:44.917587 5931 sgd_solver.cpp:105] Iteration 5316, lr = 0.00421249 +I0408 20:02:49.761301 5931 solver.cpp:218] Iteration 5328 (2.47744 iter/s, 4.8437s/12 iters), loss = 0.433611 +I0408 20:02:49.761333 5931 solver.cpp:237] Train net output #0: loss = 0.433611 (* 1 = 0.433611 loss) +I0408 20:02:49.761341 5931 sgd_solver.cpp:105] Iteration 5328, lr = 0.00416953 +I0408 20:02:54.616887 5931 solver.cpp:218] Iteration 5340 (2.47141 iter/s, 4.85553s/12 iters), loss = 0.35842 +I0408 20:02:54.616920 5931 solver.cpp:237] Train net output #0: loss = 0.35842 (* 1 = 0.35842 loss) +I0408 20:02:54.616927 5931 sgd_solver.cpp:105] Iteration 5340, lr = 0.00412669 +I0408 20:02:59.486536 5931 solver.cpp:218] Iteration 5352 (2.46427 iter/s, 4.86959s/12 iters), loss = 0.56464 +I0408 20:02:59.486569 5931 solver.cpp:237] Train net output #0: loss = 0.56464 (* 1 = 0.56464 loss) +I0408 20:02:59.486577 5931 sgd_solver.cpp:105] Iteration 5352, lr = 0.00408399 +I0408 20:03:02.958838 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:03:04.533740 5931 solver.cpp:218] Iteration 5364 (2.37758 iter/s, 5.04715s/12 iters), loss = 0.295886 +I0408 20:03:04.533774 5931 solver.cpp:237] Train net output #0: loss = 0.295886 (* 1 = 0.295886 loss) +I0408 20:03:04.533782 5931 sgd_solver.cpp:105] Iteration 5364, lr = 0.00404142 +I0408 20:03:09.331681 5931 solver.cpp:218] Iteration 5376 (2.5011 iter/s, 4.79789s/12 iters), loss = 0.46485 +I0408 20:03:09.331713 5931 solver.cpp:237] Train net output #0: loss = 0.46485 (* 1 = 0.46485 loss) +I0408 20:03:09.331720 5931 sgd_solver.cpp:105] Iteration 5376, lr = 0.003999 +I0408 20:03:14.089387 5931 solver.cpp:218] Iteration 5388 (2.52225 iter/s, 4.75765s/12 iters), loss = 0.409785 +I0408 20:03:14.089427 5931 solver.cpp:237] Train net output #0: loss = 0.409785 (* 1 = 0.409785 loss) +I0408 20:03:14.089435 5931 sgd_solver.cpp:105] Iteration 5388, lr = 0.00395672 +I0408 20:03:18.976068 5931 solver.cpp:218] Iteration 5400 (2.45568 iter/s, 4.88662s/12 iters), loss = 0.420254 +I0408 20:03:18.976166 5931 solver.cpp:237] Train net output #0: loss = 0.420254 (* 1 = 0.420254 loss) +I0408 20:03:18.976174 5931 sgd_solver.cpp:105] Iteration 5400, lr = 0.00391461 +I0408 20:03:20.995224 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 20:03:26.019547 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 20:03:28.409253 5931 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 20:03:28.409279 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:03:30.809617 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:03:32.884824 5931 solver.cpp:397] Test net output #0: accuracy = 0.425858 +I0408 20:03:32.884868 5931 solver.cpp:397] Test net output #1: loss = 2.97192 (* 1 = 2.97192 loss) +I0408 20:03:34.627386 5931 solver.cpp:218] Iteration 5412 (0.766715 iter/s, 15.6512s/12 iters), loss = 0.174743 +I0408 20:03:34.627424 5931 solver.cpp:237] Train net output #0: loss = 0.174743 (* 1 = 0.174743 loss) +I0408 20:03:34.627430 5931 sgd_solver.cpp:105] Iteration 5412, lr = 0.00387265 +I0408 20:03:39.410715 5931 solver.cpp:218] Iteration 5424 (2.50874 iter/s, 4.78328s/12 iters), loss = 0.30676 +I0408 20:03:39.410749 5931 solver.cpp:237] Train net output #0: loss = 0.30676 (* 1 = 0.30676 loss) +I0408 20:03:39.410756 5931 sgd_solver.cpp:105] Iteration 5424, lr = 0.00383086 +I0408 20:03:44.213932 5931 solver.cpp:218] Iteration 5436 (2.49836 iter/s, 4.80316s/12 iters), loss = 0.451519 +I0408 20:03:44.213963 5931 solver.cpp:237] Train net output #0: loss = 0.451519 (* 1 = 0.451519 loss) +I0408 20:03:44.213971 5931 sgd_solver.cpp:105] Iteration 5436, lr = 0.00378924 +I0408 20:03:49.087755 5931 solver.cpp:218] Iteration 5448 (2.46216 iter/s, 4.87377s/12 iters), loss = 0.460821 +I0408 20:03:49.087873 5931 solver.cpp:237] Train net output #0: loss = 0.460821 (* 1 = 0.460821 loss) +I0408 20:03:49.087882 5931 sgd_solver.cpp:105] Iteration 5448, lr = 0.0037478 +I0408 20:03:53.884119 5931 solver.cpp:218] Iteration 5460 (2.50196 iter/s, 4.79623s/12 iters), loss = 0.266154 +I0408 20:03:53.884153 5931 solver.cpp:237] Train net output #0: loss = 0.266154 (* 1 = 0.266154 loss) +I0408 20:03:53.884160 5931 sgd_solver.cpp:105] Iteration 5460, lr = 0.00370654 +I0408 20:03:54.407403 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:03:58.746989 5931 solver.cpp:218] Iteration 5472 (2.4677 iter/s, 4.86282s/12 iters), loss = 0.157723 +I0408 20:03:58.747025 5931 solver.cpp:237] Train net output #0: loss = 0.157723 (* 1 = 0.157723 loss) +I0408 20:03:58.747032 5931 sgd_solver.cpp:105] Iteration 5472, lr = 0.00366547 +I0408 20:04:03.634888 5931 solver.cpp:218] Iteration 5484 (2.45507 iter/s, 4.88784s/12 iters), loss = 0.346608 +I0408 20:04:03.634922 5931 solver.cpp:237] Train net output #0: loss = 0.346608 (* 1 = 0.346608 loss) +I0408 20:04:03.634930 5931 sgd_solver.cpp:105] Iteration 5484, lr = 0.00362459 +I0408 20:04:08.462983 5931 solver.cpp:218] Iteration 5496 (2.48548 iter/s, 4.82804s/12 iters), loss = 0.400039 +I0408 20:04:08.463017 5931 solver.cpp:237] Train net output #0: loss = 0.400039 (* 1 = 0.400039 loss) +I0408 20:04:08.463025 5931 sgd_solver.cpp:105] Iteration 5496, lr = 0.00358391 +I0408 20:04:13.081629 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 20:04:17.910331 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 20:04:21.824476 5931 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 20:04:21.824579 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:04:24.084301 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:04:26.196768 5931 solver.cpp:397] Test net output #0: accuracy = 0.403799 +I0408 20:04:26.196815 5931 solver.cpp:397] Test net output #1: loss = 3.01402 (* 1 = 3.01402 loss) +I0408 20:04:26.293203 5931 solver.cpp:218] Iteration 5508 (0.673018 iter/s, 17.8301s/12 iters), loss = 0.346051 +I0408 20:04:26.293237 5931 solver.cpp:237] Train net output #0: loss = 0.346051 (* 1 = 0.346051 loss) +I0408 20:04:26.293246 5931 sgd_solver.cpp:105] Iteration 5508, lr = 0.00354344 +I0408 20:04:30.263195 5931 solver.cpp:218] Iteration 5520 (3.02272 iter/s, 3.96994s/12 iters), loss = 0.30861 +I0408 20:04:30.263234 5931 solver.cpp:237] Train net output #0: loss = 0.30861 (* 1 = 0.30861 loss) +I0408 20:04:30.263242 5931 sgd_solver.cpp:105] Iteration 5520, lr = 0.00350317 +I0408 20:04:32.619812 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:04:35.097795 5931 solver.cpp:218] Iteration 5532 (2.48214 iter/s, 4.83454s/12 iters), loss = 0.256705 +I0408 20:04:35.097831 5931 solver.cpp:237] Train net output #0: loss = 0.256705 (* 1 = 0.256705 loss) +I0408 20:04:35.097838 5931 sgd_solver.cpp:105] Iteration 5532, lr = 0.00346311 +I0408 20:04:39.922616 5931 solver.cpp:218] Iteration 5544 (2.48717 iter/s, 4.82476s/12 iters), loss = 0.22492 +I0408 20:04:39.922650 5931 solver.cpp:237] Train net output #0: loss = 0.22492 (* 1 = 0.22492 loss) +I0408 20:04:39.922657 5931 sgd_solver.cpp:105] Iteration 5544, lr = 0.00342327 +I0408 20:04:44.774231 5931 solver.cpp:218] Iteration 5556 (2.47343 iter/s, 4.85156s/12 iters), loss = 0.265254 +I0408 20:04:44.774267 5931 solver.cpp:237] Train net output #0: loss = 0.265254 (* 1 = 0.265254 loss) +I0408 20:04:44.774274 5931 sgd_solver.cpp:105] Iteration 5556, lr = 0.00338365 +I0408 20:04:47.413537 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:04:49.695631 5931 solver.cpp:218] Iteration 5568 (2.43836 iter/s, 4.92135s/12 iters), loss = 0.337113 +I0408 20:04:49.695665 5931 solver.cpp:237] Train net output #0: loss = 0.337113 (* 1 = 0.337113 loss) +I0408 20:04:49.695673 5931 sgd_solver.cpp:105] Iteration 5568, lr = 0.00334426 +I0408 20:04:54.732162 5931 solver.cpp:218] Iteration 5580 (2.38262 iter/s, 5.03648s/12 iters), loss = 0.372072 +I0408 20:04:54.732277 5931 solver.cpp:237] Train net output #0: loss = 0.372072 (* 1 = 0.372072 loss) +I0408 20:04:54.732285 5931 sgd_solver.cpp:105] Iteration 5580, lr = 0.00330509 +I0408 20:04:59.478559 5931 solver.cpp:218] Iteration 5592 (2.5283 iter/s, 4.74626s/12 iters), loss = 0.271403 +I0408 20:04:59.478591 5931 solver.cpp:237] Train net output #0: loss = 0.271403 (* 1 = 0.271403 loss) +I0408 20:04:59.478600 5931 sgd_solver.cpp:105] Iteration 5592, lr = 0.00326616 +I0408 20:05:04.204401 5931 solver.cpp:218] Iteration 5604 (2.53926 iter/s, 4.72579s/12 iters), loss = 0.422858 +I0408 20:05:04.204433 5931 solver.cpp:237] Train net output #0: loss = 0.422858 (* 1 = 0.422858 loss) +I0408 20:05:04.204442 5931 sgd_solver.cpp:105] Iteration 5604, lr = 0.00322747 +I0408 20:05:06.134773 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 20:05:09.229415 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 20:05:12.079964 5931 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 20:05:12.079990 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:05:14.428975 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:05:16.864751 5931 solver.cpp:397] Test net output #0: accuracy = 0.43076 +I0408 20:05:16.864795 5931 solver.cpp:397] Test net output #1: loss = 3.02431 (* 1 = 3.02431 loss) +I0408 20:05:18.668787 5931 solver.cpp:218] Iteration 5616 (0.829628 iter/s, 14.4643s/12 iters), loss = 0.315521 +I0408 20:05:18.668820 5931 solver.cpp:237] Train net output #0: loss = 0.315521 (* 1 = 0.315521 loss) +I0408 20:05:18.668828 5931 sgd_solver.cpp:105] Iteration 5616, lr = 0.00318902 +I0408 20:05:23.579398 5931 solver.cpp:218] Iteration 5628 (2.44371 iter/s, 4.91056s/12 iters), loss = 0.263526 +I0408 20:05:23.579432 5931 solver.cpp:237] Train net output #0: loss = 0.263526 (* 1 = 0.263526 loss) +I0408 20:05:23.579439 5931 sgd_solver.cpp:105] Iteration 5628, lr = 0.00315081 +I0408 20:05:28.361833 5931 solver.cpp:218] Iteration 5640 (2.50921 iter/s, 4.78238s/12 iters), loss = 0.4336 +I0408 20:05:28.361928 5931 solver.cpp:237] Train net output #0: loss = 0.4336 (* 1 = 0.4336 loss) +I0408 20:05:28.361937 5931 sgd_solver.cpp:105] Iteration 5640, lr = 0.00311285 +I0408 20:05:33.196039 5931 solver.cpp:218] Iteration 5652 (2.48237 iter/s, 4.83409s/12 iters), loss = 0.296835 +I0408 20:05:33.196074 5931 solver.cpp:237] Train net output #0: loss = 0.296835 (* 1 = 0.296835 loss) +I0408 20:05:33.196082 5931 sgd_solver.cpp:105] Iteration 5652, lr = 0.00307515 +I0408 20:05:37.867424 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:05:38.030833 5931 solver.cpp:218] Iteration 5664 (2.48204 iter/s, 4.83474s/12 iters), loss = 0.219908 +I0408 20:05:38.030866 5931 solver.cpp:237] Train net output #0: loss = 0.219908 (* 1 = 0.219908 loss) +I0408 20:05:38.030874 5931 sgd_solver.cpp:105] Iteration 5664, lr = 0.00303769 +I0408 20:05:42.785985 5931 solver.cpp:218] Iteration 5676 (2.52361 iter/s, 4.75509s/12 iters), loss = 0.22732 +I0408 20:05:42.786017 5931 solver.cpp:237] Train net output #0: loss = 0.22732 (* 1 = 0.22732 loss) +I0408 20:05:42.786024 5931 sgd_solver.cpp:105] Iteration 5676, lr = 0.0030005 +I0408 20:05:47.514586 5931 solver.cpp:218] Iteration 5688 (2.53778 iter/s, 4.72855s/12 iters), loss = 0.247547 +I0408 20:05:47.514621 5931 solver.cpp:237] Train net output #0: loss = 0.247547 (* 1 = 0.247547 loss) +I0408 20:05:47.514627 5931 sgd_solver.cpp:105] Iteration 5688, lr = 0.00296357 +I0408 20:05:52.313370 5931 solver.cpp:218] Iteration 5700 (2.50066 iter/s, 4.79873s/12 iters), loss = 0.507992 +I0408 20:05:52.313402 5931 solver.cpp:237] Train net output #0: loss = 0.507992 (* 1 = 0.507992 loss) +I0408 20:05:52.313410 5931 sgd_solver.cpp:105] Iteration 5700, lr = 0.0029269 +I0408 20:05:56.715853 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 20:05:59.803385 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 20:06:02.159986 5931 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 20:06:02.160013 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:06:04.469571 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:06:06.941562 5931 solver.cpp:397] Test net output #0: accuracy = 0.432598 +I0408 20:06:06.941609 5931 solver.cpp:397] Test net output #1: loss = 2.99721 (* 1 = 2.99721 loss) +I0408 20:06:07.038086 5931 solver.cpp:218] Iteration 5712 (0.81496 iter/s, 14.7246s/12 iters), loss = 0.273816 +I0408 20:06:07.038122 5931 solver.cpp:237] Train net output #0: loss = 0.273816 (* 1 = 0.273816 loss) +I0408 20:06:07.038130 5931 sgd_solver.cpp:105] Iteration 5712, lr = 0.0028905 +I0408 20:06:10.987726 5931 solver.cpp:218] Iteration 5724 (3.03829 iter/s, 3.94959s/12 iters), loss = 0.308905 +I0408 20:06:10.987766 5931 solver.cpp:237] Train net output #0: loss = 0.308905 (* 1 = 0.308905 loss) +I0408 20:06:10.987773 5931 sgd_solver.cpp:105] Iteration 5724, lr = 0.00285438 +I0408 20:06:15.823117 5931 solver.cpp:218] Iteration 5736 (2.48174 iter/s, 4.83533s/12 iters), loss = 0.238564 +I0408 20:06:15.823148 5931 solver.cpp:237] Train net output #0: loss = 0.238564 (* 1 = 0.238564 loss) +I0408 20:06:15.823155 5931 sgd_solver.cpp:105] Iteration 5736, lr = 0.00281852 +I0408 20:06:20.558178 5931 solver.cpp:218] Iteration 5748 (2.53431 iter/s, 4.73501s/12 iters), loss = 0.37392 +I0408 20:06:20.558212 5931 solver.cpp:237] Train net output #0: loss = 0.37392 (* 1 = 0.37392 loss) +I0408 20:06:20.558218 5931 sgd_solver.cpp:105] Iteration 5748, lr = 0.00278294 +I0408 20:06:25.366329 5931 solver.cpp:218] Iteration 5760 (2.49579 iter/s, 4.8081s/12 iters), loss = 0.236158 +I0408 20:06:25.366362 5931 solver.cpp:237] Train net output #0: loss = 0.236158 (* 1 = 0.236158 loss) +I0408 20:06:25.366370 5931 sgd_solver.cpp:105] Iteration 5760, lr = 0.00274763 +I0408 20:06:27.197660 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:06:30.052968 5931 solver.cpp:218] Iteration 5772 (2.5605 iter/s, 4.68658s/12 iters), loss = 0.269355 +I0408 20:06:30.053064 5931 solver.cpp:237] Train net output #0: loss = 0.269355 (* 1 = 0.269355 loss) +I0408 20:06:30.053073 5931 sgd_solver.cpp:105] Iteration 5772, lr = 0.00271261 +I0408 20:06:34.871819 5931 solver.cpp:218] Iteration 5784 (2.49028 iter/s, 4.81874s/12 iters), loss = 0.193116 +I0408 20:06:34.871857 5931 solver.cpp:237] Train net output #0: loss = 0.193116 (* 1 = 0.193116 loss) +I0408 20:06:34.871865 5931 sgd_solver.cpp:105] Iteration 5784, lr = 0.00267786 +I0408 20:06:39.647927 5931 solver.cpp:218] Iteration 5796 (2.51254 iter/s, 4.77605s/12 iters), loss = 0.346414 +I0408 20:06:39.647960 5931 solver.cpp:237] Train net output #0: loss = 0.346414 (* 1 = 0.346414 loss) +I0408 20:06:39.647969 5931 sgd_solver.cpp:105] Iteration 5796, lr = 0.0026434 +I0408 20:06:44.419777 5931 solver.cpp:218] Iteration 5808 (2.51478 iter/s, 4.7718s/12 iters), loss = 0.126896 +I0408 20:06:44.419811 5931 solver.cpp:237] Train net output #0: loss = 0.126896 (* 1 = 0.126896 loss) +I0408 20:06:44.419819 5931 sgd_solver.cpp:105] Iteration 5808, lr = 0.00260923 +I0408 20:06:46.393946 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 20:06:49.537226 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 20:06:51.899366 5931 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 20:06:51.899394 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:06:54.154704 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:06:56.675269 5931 solver.cpp:397] Test net output #0: accuracy = 0.431373 +I0408 20:06:56.675318 5931 solver.cpp:397] Test net output #1: loss = 3.00631 (* 1 = 3.00631 loss) +I0408 20:06:58.406922 5931 solver.cpp:218] Iteration 5820 (0.857935 iter/s, 13.9871s/12 iters), loss = 0.235076 +I0408 20:06:58.406956 5931 solver.cpp:237] Train net output #0: loss = 0.235076 (* 1 = 0.235076 loss) +I0408 20:06:58.406963 5931 sgd_solver.cpp:105] Iteration 5820, lr = 0.00257534 +I0408 20:07:03.232364 5931 solver.cpp:218] Iteration 5832 (2.48685 iter/s, 4.82539s/12 iters), loss = 0.257338 +I0408 20:07:03.232488 5931 solver.cpp:237] Train net output #0: loss = 0.257338 (* 1 = 0.257338 loss) +I0408 20:07:03.232497 5931 sgd_solver.cpp:105] Iteration 5832, lr = 0.00254174 +I0408 20:07:07.941685 5931 solver.cpp:218] Iteration 5844 (2.54821 iter/s, 4.70918s/12 iters), loss = 0.215022 +I0408 20:07:07.941718 5931 solver.cpp:237] Train net output #0: loss = 0.215022 (* 1 = 0.215022 loss) +I0408 20:07:07.941725 5931 sgd_solver.cpp:105] Iteration 5844, lr = 0.00250844 +I0408 20:07:12.774667 5931 solver.cpp:218] Iteration 5856 (2.48297 iter/s, 4.83293s/12 iters), loss = 0.332472 +I0408 20:07:12.774700 5931 solver.cpp:237] Train net output #0: loss = 0.332472 (* 1 = 0.332472 loss) +I0408 20:07:12.774708 5931 sgd_solver.cpp:105] Iteration 5856, lr = 0.00247542 +I0408 20:07:16.788264 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:07:17.561910 5931 solver.cpp:218] Iteration 5868 (2.50669 iter/s, 4.78719s/12 iters), loss = 0.208182 +I0408 20:07:17.561944 5931 solver.cpp:237] Train net output #0: loss = 0.208182 (* 1 = 0.208182 loss) +I0408 20:07:17.561950 5931 sgd_solver.cpp:105] Iteration 5868, lr = 0.0024427 +I0408 20:07:22.426555 5931 solver.cpp:218] Iteration 5880 (2.46681 iter/s, 4.86459s/12 iters), loss = 0.115693 +I0408 20:07:22.426589 5931 solver.cpp:237] Train net output #0: loss = 0.115693 (* 1 = 0.115693 loss) +I0408 20:07:22.426597 5931 sgd_solver.cpp:105] Iteration 5880, lr = 0.00241027 +I0408 20:07:27.271683 5931 solver.cpp:218] Iteration 5892 (2.47674 iter/s, 4.84508s/12 iters), loss = 0.207036 +I0408 20:07:27.271718 5931 solver.cpp:237] Train net output #0: loss = 0.207036 (* 1 = 0.207036 loss) +I0408 20:07:27.271725 5931 sgd_solver.cpp:105] Iteration 5892, lr = 0.00237813 +I0408 20:07:31.975659 5931 solver.cpp:218] Iteration 5904 (2.55106 iter/s, 4.70392s/12 iters), loss = 0.200547 +I0408 20:07:31.975694 5931 solver.cpp:237] Train net output #0: loss = 0.200547 (* 1 = 0.200547 loss) +I0408 20:07:31.975701 5931 sgd_solver.cpp:105] Iteration 5904, lr = 0.00234629 +I0408 20:07:36.291177 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 20:07:39.393429 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 20:07:41.748649 5931 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 20:07:41.748672 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:07:43.738060 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:07:45.996183 5931 solver.cpp:397] Test net output #0: accuracy = 0.431373 +I0408 20:07:45.996230 5931 solver.cpp:397] Test net output #1: loss = 2.95003 (* 1 = 2.95003 loss) +I0408 20:07:46.091876 5931 solver.cpp:218] Iteration 5916 (0.85009 iter/s, 14.1161s/12 iters), loss = 0.168647 +I0408 20:07:46.091912 5931 solver.cpp:237] Train net output #0: loss = 0.168647 (* 1 = 0.168647 loss) +I0408 20:07:46.091919 5931 sgd_solver.cpp:105] Iteration 5916, lr = 0.00231475 +I0408 20:07:50.096832 5931 solver.cpp:218] Iteration 5928 (2.99633 iter/s, 4.0049s/12 iters), loss = 0.225836 +I0408 20:07:50.096865 5931 solver.cpp:237] Train net output #0: loss = 0.225836 (* 1 = 0.225836 loss) +I0408 20:07:50.096873 5931 sgd_solver.cpp:105] Iteration 5928, lr = 0.00228351 +I0408 20:07:54.831508 5931 solver.cpp:218] Iteration 5940 (2.53452 iter/s, 4.73462s/12 iters), loss = 0.144558 +I0408 20:07:54.831547 5931 solver.cpp:237] Train net output #0: loss = 0.144558 (* 1 = 0.144558 loss) +I0408 20:07:54.831555 5931 sgd_solver.cpp:105] Iteration 5940, lr = 0.00225256 +I0408 20:07:59.687925 5931 solver.cpp:218] Iteration 5952 (2.47098 iter/s, 4.85637s/12 iters), loss = 0.186715 +I0408 20:07:59.687958 5931 solver.cpp:237] Train net output #0: loss = 0.186715 (* 1 = 0.186715 loss) +I0408 20:07:59.687965 5931 sgd_solver.cpp:105] Iteration 5952, lr = 0.00222191 +I0408 20:08:04.500212 5931 solver.cpp:218] Iteration 5964 (2.49364 iter/s, 4.81224s/12 iters), loss = 0.196992 +I0408 20:08:04.500248 5931 solver.cpp:237] Train net output #0: loss = 0.196992 (* 1 = 0.196992 loss) +I0408 20:08:04.500257 5931 sgd_solver.cpp:105] Iteration 5964, lr = 0.00219157 +I0408 20:08:05.781056 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:08:09.352057 5931 solver.cpp:218] Iteration 5976 (2.47332 iter/s, 4.85179s/12 iters), loss = 0.200582 +I0408 20:08:09.352170 5931 solver.cpp:237] Train net output #0: loss = 0.200582 (* 1 = 0.200582 loss) +I0408 20:08:09.352180 5931 sgd_solver.cpp:105] Iteration 5976, lr = 0.00216152 +I0408 20:08:14.136185 5931 solver.cpp:218] Iteration 5988 (2.50836 iter/s, 4.784s/12 iters), loss = 0.277873 +I0408 20:08:14.136219 5931 solver.cpp:237] Train net output #0: loss = 0.277873 (* 1 = 0.277873 loss) +I0408 20:08:14.136227 5931 sgd_solver.cpp:105] Iteration 5988, lr = 0.00213177 +I0408 20:08:18.979646 5931 solver.cpp:218] Iteration 6000 (2.47759 iter/s, 4.84341s/12 iters), loss = 0.259368 +I0408 20:08:18.979686 5931 solver.cpp:237] Train net output #0: loss = 0.259368 (* 1 = 0.259368 loss) +I0408 20:08:18.979693 5931 sgd_solver.cpp:105] Iteration 6000, lr = 0.00210232 +I0408 20:08:23.802606 5931 solver.cpp:218] Iteration 6012 (2.48813 iter/s, 4.8229s/12 iters), loss = 0.0745169 +I0408 20:08:23.802641 5931 solver.cpp:237] Train net output #0: loss = 0.0745169 (* 1 = 0.0745169 loss) +I0408 20:08:23.802649 5931 sgd_solver.cpp:105] Iteration 6012, lr = 0.00207317 +I0408 20:08:25.763334 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 20:08:28.903297 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 20:08:31.259670 5931 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 20:08:31.259696 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:08:33.308152 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:08:35.620275 5931 solver.cpp:397] Test net output #0: accuracy = 0.443627 +I0408 20:08:35.620321 5931 solver.cpp:397] Test net output #1: loss = 2.99605 (* 1 = 2.99605 loss) +I0408 20:08:37.351923 5931 solver.cpp:218] Iteration 6024 (0.885658 iter/s, 13.5492s/12 iters), loss = 0.246775 +I0408 20:08:37.351958 5931 solver.cpp:237] Train net output #0: loss = 0.246775 (* 1 = 0.246775 loss) +I0408 20:08:37.351965 5931 sgd_solver.cpp:105] Iteration 6024, lr = 0.00204432 +I0408 20:08:42.124806 5931 solver.cpp:218] Iteration 6036 (2.51423 iter/s, 4.77283s/12 iters), loss = 0.3277 +I0408 20:08:42.124923 5931 solver.cpp:237] Train net output #0: loss = 0.3277 (* 1 = 0.3277 loss) +I0408 20:08:42.124933 5931 sgd_solver.cpp:105] Iteration 6036, lr = 0.00201576 +I0408 20:08:46.855738 5931 solver.cpp:218] Iteration 6048 (2.53657 iter/s, 4.7308s/12 iters), loss = 0.256331 +I0408 20:08:46.855770 5931 solver.cpp:237] Train net output #0: loss = 0.256331 (* 1 = 0.256331 loss) +I0408 20:08:46.855777 5931 sgd_solver.cpp:105] Iteration 6048, lr = 0.00198751 +I0408 20:08:51.761030 5931 solver.cpp:218] Iteration 6060 (2.44636 iter/s, 4.90524s/12 iters), loss = 0.116351 +I0408 20:08:51.761065 5931 solver.cpp:237] Train net output #0: loss = 0.116351 (* 1 = 0.116351 loss) +I0408 20:08:51.761072 5931 sgd_solver.cpp:105] Iteration 6060, lr = 0.00195956 +I0408 20:08:55.074321 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:08:56.574128 5931 solver.cpp:218] Iteration 6072 (2.49322 iter/s, 4.81304s/12 iters), loss = 0.162984 +I0408 20:08:56.574162 5931 solver.cpp:237] Train net output #0: loss = 0.162984 (* 1 = 0.162984 loss) +I0408 20:08:56.574168 5931 sgd_solver.cpp:105] Iteration 6072, lr = 0.0019319 +I0408 20:09:01.385977 5931 solver.cpp:218] Iteration 6084 (2.49387 iter/s, 4.81179s/12 iters), loss = 0.124318 +I0408 20:09:01.386009 5931 solver.cpp:237] Train net output #0: loss = 0.124318 (* 1 = 0.124318 loss) +I0408 20:09:01.386018 5931 sgd_solver.cpp:105] Iteration 6084, lr = 0.00190455 +I0408 20:09:06.322439 5931 solver.cpp:218] Iteration 6096 (2.43092 iter/s, 4.93641s/12 iters), loss = 0.245757 +I0408 20:09:06.322474 5931 solver.cpp:237] Train net output #0: loss = 0.245757 (* 1 = 0.245757 loss) +I0408 20:09:06.322480 5931 sgd_solver.cpp:105] Iteration 6096, lr = 0.00187749 +I0408 20:09:11.060858 5931 solver.cpp:218] Iteration 6108 (2.53252 iter/s, 4.73836s/12 iters), loss = 0.205739 +I0408 20:09:11.060889 5931 solver.cpp:237] Train net output #0: loss = 0.205739 (* 1 = 0.205739 loss) +I0408 20:09:11.060897 5931 sgd_solver.cpp:105] Iteration 6108, lr = 0.00185072 +I0408 20:09:15.463348 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 20:09:20.048437 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 20:09:22.424505 5931 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 20:09:22.424536 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:09:24.564239 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:09:27.215373 5931 solver.cpp:397] Test net output #0: accuracy = 0.443015 +I0408 20:09:27.215422 5931 solver.cpp:397] Test net output #1: loss = 2.9398 (* 1 = 2.9398 loss) +I0408 20:09:27.312129 5931 solver.cpp:218] Iteration 6120 (0.738407 iter/s, 16.2512s/12 iters), loss = 0.191523 +I0408 20:09:27.312165 5931 solver.cpp:237] Train net output #0: loss = 0.191523 (* 1 = 0.191523 loss) +I0408 20:09:27.312172 5931 sgd_solver.cpp:105] Iteration 6120, lr = 0.00182426 +I0408 20:09:31.356608 5931 solver.cpp:218] Iteration 6132 (2.96705 iter/s, 4.04443s/12 iters), loss = 0.266697 +I0408 20:09:31.356642 5931 solver.cpp:237] Train net output #0: loss = 0.266697 (* 1 = 0.266697 loss) +I0408 20:09:31.356650 5931 sgd_solver.cpp:105] Iteration 6132, lr = 0.00179808 +I0408 20:09:36.217468 5931 solver.cpp:218] Iteration 6144 (2.46873 iter/s, 4.86081s/12 iters), loss = 0.370711 +I0408 20:09:36.217499 5931 solver.cpp:237] Train net output #0: loss = 0.370711 (* 1 = 0.370711 loss) +I0408 20:09:36.217507 5931 sgd_solver.cpp:105] Iteration 6144, lr = 0.0017722 +I0408 20:09:41.051517 5931 solver.cpp:218] Iteration 6156 (2.48242 iter/s, 4.834s/12 iters), loss = 0.210087 +I0408 20:09:41.051555 5931 solver.cpp:237] Train net output #0: loss = 0.210087 (* 1 = 0.210087 loss) +I0408 20:09:41.051563 5931 sgd_solver.cpp:105] Iteration 6156, lr = 0.00174662 +I0408 20:09:45.965445 5931 solver.cpp:218] Iteration 6168 (2.44207 iter/s, 4.91387s/12 iters), loss = 0.181852 +I0408 20:09:45.965509 5931 solver.cpp:237] Train net output #0: loss = 0.181852 (* 1 = 0.181852 loss) +I0408 20:09:45.965517 5931 sgd_solver.cpp:105] Iteration 6168, lr = 0.00172133 +I0408 20:09:46.504793 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:09:50.758802 5931 solver.cpp:218] Iteration 6180 (2.50351 iter/s, 4.79328s/12 iters), loss = 0.147821 +I0408 20:09:50.758837 5931 solver.cpp:237] Train net output #0: loss = 0.147821 (* 1 = 0.147821 loss) +I0408 20:09:50.758846 5931 sgd_solver.cpp:105] Iteration 6180, lr = 0.00169632 +I0408 20:09:55.686964 5931 solver.cpp:218] Iteration 6192 (2.43501 iter/s, 4.92811s/12 iters), loss = 0.123501 +I0408 20:09:55.687000 5931 solver.cpp:237] Train net output #0: loss = 0.123501 (* 1 = 0.123501 loss) +I0408 20:09:55.687006 5931 sgd_solver.cpp:105] Iteration 6192, lr = 0.00167161 +I0408 20:10:00.510259 5931 solver.cpp:218] Iteration 6204 (2.48795 iter/s, 4.82324s/12 iters), loss = 0.128774 +I0408 20:10:00.510293 5931 solver.cpp:237] Train net output #0: loss = 0.128774 (* 1 = 0.128774 loss) +I0408 20:10:00.510300 5931 sgd_solver.cpp:105] Iteration 6204, lr = 0.00164719 +I0408 20:10:05.372558 5931 solver.cpp:218] Iteration 6216 (2.468 iter/s, 4.86225s/12 iters), loss = 0.334978 +I0408 20:10:05.372594 5931 solver.cpp:237] Train net output #0: loss = 0.334978 (* 1 = 0.334978 loss) +I0408 20:10:05.372602 5931 sgd_solver.cpp:105] Iteration 6216, lr = 0.00162305 +I0408 20:10:07.284966 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 20:10:10.440666 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 20:10:12.825141 5931 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 20:10:12.825167 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:10:14.862123 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:10:16.104339 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:10:17.241958 5931 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0408 20:10:17.242003 5931 solver.cpp:397] Test net output #1: loss = 2.95634 (* 1 = 2.95634 loss) +I0408 20:10:18.974587 5931 solver.cpp:218] Iteration 6228 (0.882226 iter/s, 13.602s/12 iters), loss = 0.153808 +I0408 20:10:18.974622 5931 solver.cpp:237] Train net output #0: loss = 0.153808 (* 1 = 0.153808 loss) +I0408 20:10:18.974629 5931 sgd_solver.cpp:105] Iteration 6228, lr = 0.0015992 +I0408 20:10:23.851501 5931 solver.cpp:218] Iteration 6240 (2.4606 iter/s, 4.87686s/12 iters), loss = 0.0711555 +I0408 20:10:23.851536 5931 solver.cpp:237] Train net output #0: loss = 0.0711555 (* 1 = 0.0711555 loss) +I0408 20:10:23.851544 5931 sgd_solver.cpp:105] Iteration 6240, lr = 0.00157563 +I0408 20:10:28.754727 5931 solver.cpp:218] Iteration 6252 (2.4474 iter/s, 4.90317s/12 iters), loss = 0.170034 +I0408 20:10:28.754760 5931 solver.cpp:237] Train net output #0: loss = 0.170034 (* 1 = 0.170034 loss) +I0408 20:10:28.754767 5931 sgd_solver.cpp:105] Iteration 6252, lr = 0.00155235 +I0408 20:10:33.615926 5931 solver.cpp:218] Iteration 6264 (2.46855 iter/s, 4.86115s/12 iters), loss = 0.160324 +I0408 20:10:33.615958 5931 solver.cpp:237] Train net output #0: loss = 0.160324 (* 1 = 0.160324 loss) +I0408 20:10:33.615967 5931 sgd_solver.cpp:105] Iteration 6264, lr = 0.00152935 +I0408 20:10:36.205178 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:10:38.488222 5931 solver.cpp:218] Iteration 6276 (2.46293 iter/s, 4.87224s/12 iters), loss = 0.0757003 +I0408 20:10:38.488255 5931 solver.cpp:237] Train net output #0: loss = 0.0757003 (* 1 = 0.0757003 loss) +I0408 20:10:38.488262 5931 sgd_solver.cpp:105] Iteration 6276, lr = 0.00150663 +I0408 20:10:43.354019 5931 solver.cpp:218] Iteration 6288 (2.46622 iter/s, 4.86575s/12 iters), loss = 0.136363 +I0408 20:10:43.354053 5931 solver.cpp:237] Train net output #0: loss = 0.136363 (* 1 = 0.136363 loss) +I0408 20:10:43.354061 5931 sgd_solver.cpp:105] Iteration 6288, lr = 0.00148419 +I0408 20:10:48.155094 5931 solver.cpp:218] Iteration 6300 (2.49947 iter/s, 4.80102s/12 iters), loss = 0.14871 +I0408 20:10:48.155211 5931 solver.cpp:237] Train net output #0: loss = 0.14871 (* 1 = 0.14871 loss) +I0408 20:10:48.155220 5931 sgd_solver.cpp:105] Iteration 6300, lr = 0.00146202 +I0408 20:10:53.068392 5931 solver.cpp:218] Iteration 6312 (2.44242 iter/s, 4.91316s/12 iters), loss = 0.180014 +I0408 20:10:53.068423 5931 solver.cpp:237] Train net output #0: loss = 0.180014 (* 1 = 0.180014 loss) +I0408 20:10:53.068431 5931 sgd_solver.cpp:105] Iteration 6312, lr = 0.00144013 +I0408 20:10:57.431567 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 20:11:01.525633 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 20:11:04.830422 5931 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 20:11:04.830447 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:11:06.871363 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:11:09.605623 5931 solver.cpp:397] Test net output #0: accuracy = 0.456495 +I0408 20:11:09.605669 5931 solver.cpp:397] Test net output #1: loss = 2.96024 (* 1 = 2.96024 loss) +I0408 20:11:09.702230 5931 solver.cpp:218] Iteration 6324 (0.721424 iter/s, 16.6338s/12 iters), loss = 0.168762 +I0408 20:11:09.702267 5931 solver.cpp:237] Train net output #0: loss = 0.168762 (* 1 = 0.168762 loss) +I0408 20:11:09.702275 5931 sgd_solver.cpp:105] Iteration 6324, lr = 0.00141851 +I0408 20:11:13.726189 5931 solver.cpp:218] Iteration 6336 (2.98218 iter/s, 4.0239s/12 iters), loss = 0.102495 +I0408 20:11:13.726224 5931 solver.cpp:237] Train net output #0: loss = 0.102495 (* 1 = 0.102495 loss) +I0408 20:11:13.726231 5931 sgd_solver.cpp:105] Iteration 6336, lr = 0.00139716 +I0408 20:11:18.546707 5931 solver.cpp:218] Iteration 6348 (2.48939 iter/s, 4.82046s/12 iters), loss = 0.230752 +I0408 20:11:18.546805 5931 solver.cpp:237] Train net output #0: loss = 0.230752 (* 1 = 0.230752 loss) +I0408 20:11:18.546814 5931 sgd_solver.cpp:105] Iteration 6348, lr = 0.00137609 +I0408 20:11:23.428619 5931 solver.cpp:218] Iteration 6360 (2.45811 iter/s, 4.8818s/12 iters), loss = 0.318958 +I0408 20:11:23.428651 5931 solver.cpp:237] Train net output #0: loss = 0.318958 (* 1 = 0.318958 loss) +I0408 20:11:23.428659 5931 sgd_solver.cpp:105] Iteration 6360, lr = 0.00135528 +I0408 20:11:28.053357 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:11:28.190143 5931 solver.cpp:218] Iteration 6372 (2.52023 iter/s, 4.76147s/12 iters), loss = 0.15347 +I0408 20:11:28.190173 5931 solver.cpp:237] Train net output #0: loss = 0.15347 (* 1 = 0.15347 loss) +I0408 20:11:28.190181 5931 sgd_solver.cpp:105] Iteration 6372, lr = 0.00133474 +I0408 20:11:33.026971 5931 solver.cpp:218] Iteration 6384 (2.48099 iter/s, 4.83678s/12 iters), loss = 0.0793962 +I0408 20:11:33.027004 5931 solver.cpp:237] Train net output #0: loss = 0.0793962 (* 1 = 0.0793962 loss) +I0408 20:11:33.027011 5931 sgd_solver.cpp:105] Iteration 6384, lr = 0.00131446 +I0408 20:11:37.895071 5931 solver.cpp:218] Iteration 6396 (2.46505 iter/s, 4.86805s/12 iters), loss = 0.177293 +I0408 20:11:37.895103 5931 solver.cpp:237] Train net output #0: loss = 0.177293 (* 1 = 0.177293 loss) +I0408 20:11:37.895112 5931 sgd_solver.cpp:105] Iteration 6396, lr = 0.00129444 +I0408 20:11:42.710003 5931 solver.cpp:218] Iteration 6408 (2.49227 iter/s, 4.81488s/12 iters), loss = 0.165544 +I0408 20:11:42.710036 5931 solver.cpp:237] Train net output #0: loss = 0.165544 (* 1 = 0.165544 loss) +I0408 20:11:42.710043 5931 sgd_solver.cpp:105] Iteration 6408, lr = 0.00127468 +I0408 20:11:47.520005 5931 solver.cpp:218] Iteration 6420 (2.49483 iter/s, 4.80995s/12 iters), loss = 0.125816 +I0408 20:11:47.520040 5931 solver.cpp:237] Train net output #0: loss = 0.125816 (* 1 = 0.125816 loss) +I0408 20:11:47.520047 5931 sgd_solver.cpp:105] Iteration 6420, lr = 0.00125519 +I0408 20:11:49.422883 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 20:11:53.252032 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 20:11:56.711493 5931 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 20:11:56.711521 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:11:58.702052 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:12:01.492951 5931 solver.cpp:397] Test net output #0: accuracy = 0.458333 +I0408 20:12:01.492997 5931 solver.cpp:397] Test net output #1: loss = 3.00246 (* 1 = 3.00246 loss) +I0408 20:12:03.239104 5931 solver.cpp:218] Iteration 6432 (0.763406 iter/s, 15.719s/12 iters), loss = 0.196917 +I0408 20:12:03.239140 5931 solver.cpp:237] Train net output #0: loss = 0.196917 (* 1 = 0.196917 loss) +I0408 20:12:03.239148 5931 sgd_solver.cpp:105] Iteration 6432, lr = 0.00123594 +I0408 20:12:08.040228 5931 solver.cpp:218] Iteration 6444 (2.49944 iter/s, 4.80107s/12 iters), loss = 0.264956 +I0408 20:12:08.040262 5931 solver.cpp:237] Train net output #0: loss = 0.264956 (* 1 = 0.264956 loss) +I0408 20:12:08.040271 5931 sgd_solver.cpp:105] Iteration 6444, lr = 0.00121696 +I0408 20:12:12.863951 5931 solver.cpp:218] Iteration 6456 (2.48773 iter/s, 4.82367s/12 iters), loss = 0.305538 +I0408 20:12:12.863986 5931 solver.cpp:237] Train net output #0: loss = 0.305538 (* 1 = 0.305538 loss) +I0408 20:12:12.863993 5931 sgd_solver.cpp:105] Iteration 6456, lr = 0.00119822 +I0408 20:12:17.758031 5931 solver.cpp:218] Iteration 6468 (2.45197 iter/s, 4.89402s/12 iters), loss = 0.0797478 +I0408 20:12:17.758066 5931 solver.cpp:237] Train net output #0: loss = 0.0797478 (* 1 = 0.0797478 loss) +I0408 20:12:17.758074 5931 sgd_solver.cpp:105] Iteration 6468, lr = 0.00117973 +I0408 20:12:19.778565 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:12:22.656345 5931 solver.cpp:218] Iteration 6480 (2.44985 iter/s, 4.89826s/12 iters), loss = 0.0982578 +I0408 20:12:22.656380 5931 solver.cpp:237] Train net output #0: loss = 0.0982579 (* 1 = 0.0982579 loss) +I0408 20:12:22.656388 5931 sgd_solver.cpp:105] Iteration 6480, lr = 0.00116149 +I0408 20:12:27.474653 5931 solver.cpp:218] Iteration 6492 (2.49053 iter/s, 4.81825s/12 iters), loss = 0.104125 +I0408 20:12:27.474686 5931 solver.cpp:237] Train net output #0: loss = 0.104125 (* 1 = 0.104125 loss) +I0408 20:12:27.474694 5931 sgd_solver.cpp:105] Iteration 6492, lr = 0.0011435 +I0408 20:12:32.354048 5931 solver.cpp:218] Iteration 6504 (2.45935 iter/s, 4.87934s/12 iters), loss = 0.184643 +I0408 20:12:32.354081 5931 solver.cpp:237] Train net output #0: loss = 0.184643 (* 1 = 0.184643 loss) +I0408 20:12:32.354089 5931 sgd_solver.cpp:105] Iteration 6504, lr = 0.00112575 +I0408 20:12:37.232302 5931 solver.cpp:218] Iteration 6516 (2.45992 iter/s, 4.8782s/12 iters), loss = 0.0606845 +I0408 20:12:37.232337 5931 solver.cpp:237] Train net output #0: loss = 0.0606845 (* 1 = 0.0606845 loss) +I0408 20:12:37.232344 5931 sgd_solver.cpp:105] Iteration 6516, lr = 0.00110824 +I0408 20:12:41.641340 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 20:12:45.429971 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 20:12:47.839398 5931 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 20:12:47.839422 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:12:49.688155 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:12:52.194080 5931 solver.cpp:397] Test net output #0: accuracy = 0.458333 +I0408 20:12:52.194218 5931 solver.cpp:397] Test net output #1: loss = 2.96061 (* 1 = 2.96061 loss) +I0408 20:12:52.290647 5931 solver.cpp:218] Iteration 6528 (0.796904 iter/s, 15.0583s/12 iters), loss = 0.0645053 +I0408 20:12:52.290684 5931 solver.cpp:237] Train net output #0: loss = 0.0645054 (* 1 = 0.0645054 loss) +I0408 20:12:52.290693 5931 sgd_solver.cpp:105] Iteration 6528, lr = 0.00109097 +I0408 20:12:56.250638 5931 solver.cpp:218] Iteration 6540 (3.03035 iter/s, 3.95994s/12 iters), loss = 0.119277 +I0408 20:12:56.250674 5931 solver.cpp:237] Train net output #0: loss = 0.119277 (* 1 = 0.119277 loss) +I0408 20:12:56.250681 5931 sgd_solver.cpp:105] Iteration 6540, lr = 0.00107393 +I0408 20:13:01.046283 5931 solver.cpp:218] Iteration 6552 (2.5023 iter/s, 4.79559s/12 iters), loss = 0.0869053 +I0408 20:13:01.046316 5931 solver.cpp:237] Train net output #0: loss = 0.0869053 (* 1 = 0.0869053 loss) +I0408 20:13:01.046324 5931 sgd_solver.cpp:105] Iteration 6552, lr = 0.00105713 +I0408 20:13:06.057199 5931 solver.cpp:218] Iteration 6564 (2.3948 iter/s, 5.01086s/12 iters), loss = 0.124849 +I0408 20:13:06.057231 5931 solver.cpp:237] Train net output #0: loss = 0.124849 (* 1 = 0.124849 loss) +I0408 20:13:06.057240 5931 sgd_solver.cpp:105] Iteration 6564, lr = 0.00104057 +I0408 20:13:10.039264 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:13:10.767402 5931 solver.cpp:218] Iteration 6576 (2.54769 iter/s, 4.71015s/12 iters), loss = 0.187502 +I0408 20:13:10.767434 5931 solver.cpp:237] Train net output #0: loss = 0.187502 (* 1 = 0.187502 loss) +I0408 20:13:10.767441 5931 sgd_solver.cpp:105] Iteration 6576, lr = 0.00102423 +I0408 20:13:15.552714 5931 solver.cpp:218] Iteration 6588 (2.5077 iter/s, 4.78526s/12 iters), loss = 0.101033 +I0408 20:13:15.552748 5931 solver.cpp:237] Train net output #0: loss = 0.101033 (* 1 = 0.101033 loss) +I0408 20:13:15.552757 5931 sgd_solver.cpp:105] Iteration 6588, lr = 0.00100812 +I0408 20:13:20.493610 5931 solver.cpp:218] Iteration 6600 (2.42874 iter/s, 4.94084s/12 iters), loss = 0.136095 +I0408 20:13:20.493644 5931 solver.cpp:237] Train net output #0: loss = 0.136095 (* 1 = 0.136095 loss) +I0408 20:13:20.493651 5931 sgd_solver.cpp:105] Iteration 6600, lr = 0.000992235 +I0408 20:13:25.458819 5931 solver.cpp:218] Iteration 6612 (2.41684 iter/s, 4.96515s/12 iters), loss = 0.115821 +I0408 20:13:25.458936 5931 solver.cpp:237] Train net output #0: loss = 0.115821 (* 1 = 0.115821 loss) +I0408 20:13:25.458945 5931 sgd_solver.cpp:105] Iteration 6612, lr = 0.000976574 +I0408 20:13:30.456481 5931 solver.cpp:218] Iteration 6624 (2.40119 iter/s, 4.99752s/12 iters), loss = 0.278434 +I0408 20:13:30.456513 5931 solver.cpp:237] Train net output #0: loss = 0.278434 (* 1 = 0.278434 loss) +I0408 20:13:30.456521 5931 sgd_solver.cpp:105] Iteration 6624, lr = 0.000961133 +I0408 20:13:32.526356 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 20:13:36.006157 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 20:13:38.355458 5931 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 20:13:38.355482 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:13:40.274756 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:13:42.873092 5931 solver.cpp:397] Test net output #0: accuracy = 0.464461 +I0408 20:13:42.873137 5931 solver.cpp:397] Test net output #1: loss = 2.94478 (* 1 = 2.94478 loss) +I0408 20:13:44.616324 5931 solver.cpp:218] Iteration 6636 (0.847471 iter/s, 14.1598s/12 iters), loss = 0.133299 +I0408 20:13:44.616359 5931 solver.cpp:237] Train net output #0: loss = 0.133299 (* 1 = 0.133299 loss) +I0408 20:13:44.616366 5931 sgd_solver.cpp:105] Iteration 6636, lr = 0.000945911 +I0408 20:13:49.346843 5931 solver.cpp:218] Iteration 6648 (2.53675 iter/s, 4.73046s/12 iters), loss = 0.301478 +I0408 20:13:49.346876 5931 solver.cpp:237] Train net output #0: loss = 0.301478 (* 1 = 0.301478 loss) +I0408 20:13:49.346884 5931 sgd_solver.cpp:105] Iteration 6648, lr = 0.000930905 +I0408 20:13:54.184154 5931 solver.cpp:218] Iteration 6660 (2.48074 iter/s, 4.83726s/12 iters), loss = 0.110594 +I0408 20:13:54.184187 5931 solver.cpp:237] Train net output #0: loss = 0.110594 (* 1 = 0.110594 loss) +I0408 20:13:54.184195 5931 sgd_solver.cpp:105] Iteration 6660, lr = 0.000916113 +I0408 20:13:58.985841 5931 solver.cpp:218] Iteration 6672 (2.49915 iter/s, 4.80163s/12 iters), loss = 0.0967719 +I0408 20:13:58.985936 5931 solver.cpp:237] Train net output #0: loss = 0.0967719 (* 1 = 0.0967719 loss) +I0408 20:13:58.985944 5931 sgd_solver.cpp:105] Iteration 6672, lr = 0.000901533 +I0408 20:14:00.287806 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:14:03.751572 5931 solver.cpp:218] Iteration 6684 (2.51804 iter/s, 4.76562s/12 iters), loss = 0.176942 +I0408 20:14:03.751607 5931 solver.cpp:237] Train net output #0: loss = 0.176942 (* 1 = 0.176942 loss) +I0408 20:14:03.751616 5931 sgd_solver.cpp:105] Iteration 6684, lr = 0.000887162 +I0408 20:14:08.475462 5931 solver.cpp:218] Iteration 6696 (2.54031 iter/s, 4.72384s/12 iters), loss = 0.0631857 +I0408 20:14:08.475497 5931 solver.cpp:237] Train net output #0: loss = 0.0631858 (* 1 = 0.0631858 loss) +I0408 20:14:08.475504 5931 sgd_solver.cpp:105] Iteration 6696, lr = 0.000872998 +I0408 20:14:13.273082 5931 solver.cpp:218] Iteration 6708 (2.50127 iter/s, 4.79757s/12 iters), loss = 0.166637 +I0408 20:14:13.273115 5931 solver.cpp:237] Train net output #0: loss = 0.166637 (* 1 = 0.166637 loss) +I0408 20:14:13.273123 5931 sgd_solver.cpp:105] Iteration 6708, lr = 0.000859039 +I0408 20:14:17.936640 5931 solver.cpp:218] Iteration 6720 (2.57317 iter/s, 4.6635s/12 iters), loss = 0.137803 +I0408 20:14:17.936671 5931 solver.cpp:237] Train net output #0: loss = 0.137803 (* 1 = 0.137803 loss) +I0408 20:14:17.936678 5931 sgd_solver.cpp:105] Iteration 6720, lr = 0.000845283 +I0408 20:14:22.252166 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 20:14:25.308012 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 20:14:27.723134 5931 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 20:14:27.723160 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:14:29.600313 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:14:32.533883 5931 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0408 20:14:32.533931 5931 solver.cpp:397] Test net output #1: loss = 2.92792 (* 1 = 2.92792 loss) +I0408 20:14:32.630347 5931 solver.cpp:218] Iteration 6732 (0.81668 iter/s, 14.6936s/12 iters), loss = 0.0591866 +I0408 20:14:32.630384 5931 solver.cpp:237] Train net output #0: loss = 0.0591867 (* 1 = 0.0591867 loss) +I0408 20:14:32.630393 5931 sgd_solver.cpp:105] Iteration 6732, lr = 0.000831727 +I0408 20:14:36.601056 5931 solver.cpp:218] Iteration 6744 (3.02217 iter/s, 3.97066s/12 iters), loss = 0.163432 +I0408 20:14:36.601091 5931 solver.cpp:237] Train net output #0: loss = 0.163432 (* 1 = 0.163432 loss) +I0408 20:14:36.601099 5931 sgd_solver.cpp:105] Iteration 6744, lr = 0.000818369 +I0408 20:14:41.400969 5931 solver.cpp:218] Iteration 6756 (2.50008 iter/s, 4.79986s/12 iters), loss = 0.134583 +I0408 20:14:41.401002 5931 solver.cpp:237] Train net output #0: loss = 0.134583 (* 1 = 0.134583 loss) +I0408 20:14:41.401010 5931 sgd_solver.cpp:105] Iteration 6756, lr = 0.000805206 +I0408 20:14:46.205837 5931 solver.cpp:218] Iteration 6768 (2.4975 iter/s, 4.80481s/12 iters), loss = 0.0954983 +I0408 20:14:46.205868 5931 solver.cpp:237] Train net output #0: loss = 0.0954984 (* 1 = 0.0954984 loss) +I0408 20:14:46.205876 5931 sgd_solver.cpp:105] Iteration 6768, lr = 0.000792237 +I0408 20:14:49.582054 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:14:51.064855 5931 solver.cpp:218] Iteration 6780 (2.46966 iter/s, 4.85897s/12 iters), loss = 0.13027 +I0408 20:14:51.064888 5931 solver.cpp:237] Train net output #0: loss = 0.13027 (* 1 = 0.13027 loss) +I0408 20:14:51.064895 5931 sgd_solver.cpp:105] Iteration 6780, lr = 0.000779459 +I0408 20:14:55.858438 5931 solver.cpp:218] Iteration 6792 (2.50337 iter/s, 4.79353s/12 iters), loss = 0.200689 +I0408 20:14:55.858471 5931 solver.cpp:237] Train net output #0: loss = 0.200689 (* 1 = 0.200689 loss) +I0408 20:14:55.858479 5931 sgd_solver.cpp:105] Iteration 6792, lr = 0.000766871 +I0408 20:15:00.700433 5931 solver.cpp:218] Iteration 6804 (2.47834 iter/s, 4.84194s/12 iters), loss = 0.085935 +I0408 20:15:00.700548 5931 solver.cpp:237] Train net output #0: loss = 0.085935 (* 1 = 0.085935 loss) +I0408 20:15:00.700557 5931 sgd_solver.cpp:105] Iteration 6804, lr = 0.000754468 +I0408 20:15:05.547202 5931 solver.cpp:218] Iteration 6816 (2.47595 iter/s, 4.84663s/12 iters), loss = 0.128109 +I0408 20:15:05.547236 5931 solver.cpp:237] Train net output #0: loss = 0.128109 (* 1 = 0.128109 loss) +I0408 20:15:05.547243 5931 sgd_solver.cpp:105] Iteration 6816, lr = 0.00074225 +I0408 20:15:10.352576 5931 solver.cpp:218] Iteration 6828 (2.49723 iter/s, 4.80532s/12 iters), loss = 0.120586 +I0408 20:15:10.352608 5931 solver.cpp:237] Train net output #0: loss = 0.120586 (* 1 = 0.120586 loss) +I0408 20:15:10.352617 5931 sgd_solver.cpp:105] Iteration 6828, lr = 0.000730215 +I0408 20:15:12.281247 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 20:15:15.355904 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 20:15:17.709599 5931 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 20:15:17.709625 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:15:19.549518 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:15:22.466540 5931 solver.cpp:397] Test net output #0: accuracy = 0.469363 +I0408 20:15:22.466588 5931 solver.cpp:397] Test net output #1: loss = 2.92281 (* 1 = 2.92281 loss) +I0408 20:15:24.207881 5931 solver.cpp:218] Iteration 6840 (0.866098 iter/s, 13.8552s/12 iters), loss = 0.164247 +I0408 20:15:24.207917 5931 solver.cpp:237] Train net output #0: loss = 0.164247 (* 1 = 0.164247 loss) +I0408 20:15:24.207926 5931 sgd_solver.cpp:105] Iteration 6840, lr = 0.000718359 +I0408 20:15:29.007839 5931 solver.cpp:218] Iteration 6852 (2.50005 iter/s, 4.7999s/12 iters), loss = 0.154856 +I0408 20:15:29.007871 5931 solver.cpp:237] Train net output #0: loss = 0.154856 (* 1 = 0.154856 loss) +I0408 20:15:29.007879 5931 sgd_solver.cpp:105] Iteration 6852, lr = 0.000706682 +I0408 20:15:33.844710 5931 solver.cpp:218] Iteration 6864 (2.48097 iter/s, 4.83682s/12 iters), loss = 0.129887 +I0408 20:15:33.844862 5931 solver.cpp:237] Train net output #0: loss = 0.129887 (* 1 = 0.129887 loss) +I0408 20:15:33.844871 5931 sgd_solver.cpp:105] Iteration 6864, lr = 0.00069518 +I0408 20:15:38.682919 5931 solver.cpp:218] Iteration 6876 (2.48034 iter/s, 4.83804s/12 iters), loss = 0.074003 +I0408 20:15:38.682952 5931 solver.cpp:237] Train net output #0: loss = 0.0740031 (* 1 = 0.0740031 loss) +I0408 20:15:38.682960 5931 sgd_solver.cpp:105] Iteration 6876, lr = 0.000683851 +I0408 20:15:39.260697 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:15:43.503979 5931 solver.cpp:218] Iteration 6888 (2.4891 iter/s, 4.82101s/12 iters), loss = 0.198173 +I0408 20:15:43.504011 5931 solver.cpp:237] Train net output #0: loss = 0.198173 (* 1 = 0.198173 loss) +I0408 20:15:43.504019 5931 sgd_solver.cpp:105] Iteration 6888, lr = 0.000672694 +I0408 20:15:48.301620 5931 solver.cpp:218] Iteration 6900 (2.50126 iter/s, 4.79759s/12 iters), loss = 0.181807 +I0408 20:15:48.301654 5931 solver.cpp:237] Train net output #0: loss = 0.181807 (* 1 = 0.181807 loss) +I0408 20:15:48.301661 5931 sgd_solver.cpp:105] Iteration 6900, lr = 0.000661705 +I0408 20:15:53.151407 5931 solver.cpp:218] Iteration 6912 (2.47436 iter/s, 4.84974s/12 iters), loss = 0.113427 +I0408 20:15:53.151443 5931 solver.cpp:237] Train net output #0: loss = 0.113427 (* 1 = 0.113427 loss) +I0408 20:15:53.151451 5931 sgd_solver.cpp:105] Iteration 6912, lr = 0.000650884 +I0408 20:15:57.975843 5931 solver.cpp:218] Iteration 6924 (2.48737 iter/s, 4.82438s/12 iters), loss = 0.10663 +I0408 20:15:57.975875 5931 solver.cpp:237] Train net output #0: loss = 0.10663 (* 1 = 0.10663 loss) +I0408 20:15:57.975883 5931 sgd_solver.cpp:105] Iteration 6924, lr = 0.000640227 +I0408 20:16:02.336524 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 20:16:06.629683 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 20:16:08.980520 5931 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 20:16:08.980546 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:16:09.593680 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:16:10.679060 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:16:13.348839 5931 solver.cpp:397] Test net output #0: accuracy = 0.459559 +I0408 20:16:13.348884 5931 solver.cpp:397] Test net output #1: loss = 2.94355 (* 1 = 2.94355 loss) +I0408 20:16:13.445363 5931 solver.cpp:218] Iteration 6936 (0.775722 iter/s, 15.4695s/12 iters), loss = 0.114165 +I0408 20:16:13.445396 5931 solver.cpp:237] Train net output #0: loss = 0.114165 (* 1 = 0.114165 loss) +I0408 20:16:13.445405 5931 sgd_solver.cpp:105] Iteration 6936, lr = 0.000629733 +I0408 20:16:17.429514 5931 solver.cpp:218] Iteration 6948 (3.01197 iter/s, 3.9841s/12 iters), loss = 0.131762 +I0408 20:16:17.429548 5931 solver.cpp:237] Train net output #0: loss = 0.131762 (* 1 = 0.131762 loss) +I0408 20:16:17.429556 5931 sgd_solver.cpp:105] Iteration 6948, lr = 0.0006194 +I0408 20:16:22.282490 5931 solver.cpp:218] Iteration 6960 (2.47274 iter/s, 4.85292s/12 iters), loss = 0.280908 +I0408 20:16:22.282522 5931 solver.cpp:237] Train net output #0: loss = 0.280908 (* 1 = 0.280908 loss) +I0408 20:16:22.282531 5931 sgd_solver.cpp:105] Iteration 6960, lr = 0.000609226 +I0408 20:16:27.083074 5931 solver.cpp:218] Iteration 6972 (2.49972 iter/s, 4.80053s/12 iters), loss = 0.0834992 +I0408 20:16:27.083107 5931 solver.cpp:237] Train net output #0: loss = 0.0834993 (* 1 = 0.0834993 loss) +I0408 20:16:27.083115 5931 sgd_solver.cpp:105] Iteration 6972, lr = 0.000599208 +I0408 20:16:29.739754 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:16:31.932974 5931 solver.cpp:218] Iteration 6984 (2.4743 iter/s, 4.84985s/12 iters), loss = 0.164028 +I0408 20:16:31.933009 5931 solver.cpp:237] Train net output #0: loss = 0.164028 (* 1 = 0.164028 loss) +I0408 20:16:31.933017 5931 sgd_solver.cpp:105] Iteration 6984, lr = 0.000589344 +I0408 20:16:36.755919 5931 solver.cpp:218] Iteration 6996 (2.48813 iter/s, 4.82289s/12 iters), loss = 0.169343 +I0408 20:16:36.756073 5931 solver.cpp:237] Train net output #0: loss = 0.169343 (* 1 = 0.169343 loss) +I0408 20:16:36.756083 5931 sgd_solver.cpp:105] Iteration 6996, lr = 0.000579632 +I0408 20:16:41.536451 5931 solver.cpp:218] Iteration 7008 (2.51027 iter/s, 4.78036s/12 iters), loss = 0.10899 +I0408 20:16:41.536484 5931 solver.cpp:237] Train net output #0: loss = 0.10899 (* 1 = 0.10899 loss) +I0408 20:16:41.536492 5931 sgd_solver.cpp:105] Iteration 7008, lr = 0.000570071 +I0408 20:16:46.375644 5931 solver.cpp:218] Iteration 7020 (2.47978 iter/s, 4.83914s/12 iters), loss = 0.206646 +I0408 20:16:46.375679 5931 solver.cpp:237] Train net output #0: loss = 0.206646 (* 1 = 0.206646 loss) +I0408 20:16:46.375686 5931 sgd_solver.cpp:105] Iteration 7020, lr = 0.000560659 +I0408 20:16:51.199347 5931 solver.cpp:218] Iteration 7032 (2.48774 iter/s, 4.82365s/12 iters), loss = 0.0845994 +I0408 20:16:51.199383 5931 solver.cpp:237] Train net output #0: loss = 0.0845994 (* 1 = 0.0845994 loss) +I0408 20:16:51.199389 5931 sgd_solver.cpp:105] Iteration 7032, lr = 0.000551392 +I0408 20:16:53.162933 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 20:16:57.693749 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 20:17:01.519523 5931 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 20:17:01.519548 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:17:03.273010 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:17:06.315460 5931 solver.cpp:397] Test net output #0: accuracy = 0.462623 +I0408 20:17:06.315510 5931 solver.cpp:397] Test net output #1: loss = 2.95039 (* 1 = 2.95039 loss) +I0408 20:17:08.055099 5931 solver.cpp:218] Iteration 7044 (0.711926 iter/s, 16.8557s/12 iters), loss = 0.178482 +I0408 20:17:08.055223 5931 solver.cpp:237] Train net output #0: loss = 0.178482 (* 1 = 0.178482 loss) +I0408 20:17:08.055231 5931 sgd_solver.cpp:105] Iteration 7044, lr = 0.00054227 +I0408 20:17:12.865379 5931 solver.cpp:218] Iteration 7056 (2.49473 iter/s, 4.81014s/12 iters), loss = 0.103092 +I0408 20:17:12.865413 5931 solver.cpp:237] Train net output #0: loss = 0.103092 (* 1 = 0.103092 loss) +I0408 20:17:12.865420 5931 sgd_solver.cpp:105] Iteration 7056, lr = 0.00053329 +I0408 20:17:17.736277 5931 solver.cpp:218] Iteration 7068 (2.46364 iter/s, 4.87084s/12 iters), loss = 0.188787 +I0408 20:17:17.736310 5931 solver.cpp:237] Train net output #0: loss = 0.188787 (* 1 = 0.188787 loss) +I0408 20:17:17.736317 5931 sgd_solver.cpp:105] Iteration 7068, lr = 0.000524451 +I0408 20:17:22.414850 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:17:22.536586 5931 solver.cpp:218] Iteration 7080 (2.49986 iter/s, 4.80026s/12 iters), loss = 0.194107 +I0408 20:17:22.536615 5931 solver.cpp:237] Train net output #0: loss = 0.194107 (* 1 = 0.194107 loss) +I0408 20:17:22.536623 5931 sgd_solver.cpp:105] Iteration 7080, lr = 0.00051575 +I0408 20:17:27.378692 5931 solver.cpp:218] Iteration 7092 (2.47829 iter/s, 4.84206s/12 iters), loss = 0.0827191 +I0408 20:17:27.378726 5931 solver.cpp:237] Train net output #0: loss = 0.0827191 (* 1 = 0.0827191 loss) +I0408 20:17:27.378734 5931 sgd_solver.cpp:105] Iteration 7092, lr = 0.000507186 +I0408 20:17:32.198681 5931 solver.cpp:218] Iteration 7104 (2.48966 iter/s, 4.81993s/12 iters), loss = 0.16073 +I0408 20:17:32.198716 5931 solver.cpp:237] Train net output #0: loss = 0.16073 (* 1 = 0.16073 loss) +I0408 20:17:32.198724 5931 sgd_solver.cpp:105] Iteration 7104, lr = 0.000498757 +I0408 20:17:37.021219 5931 solver.cpp:218] Iteration 7116 (2.48834 iter/s, 4.82248s/12 iters), loss = 0.18256 +I0408 20:17:37.021252 5931 solver.cpp:237] Train net output #0: loss = 0.18256 (* 1 = 0.18256 loss) +I0408 20:17:37.021260 5931 sgd_solver.cpp:105] Iteration 7116, lr = 0.00049046 +I0408 20:17:41.838027 5931 solver.cpp:218] Iteration 7128 (2.4913 iter/s, 4.81675s/12 iters), loss = 0.125816 +I0408 20:17:41.838140 5931 solver.cpp:237] Train net output #0: loss = 0.125816 (* 1 = 0.125816 loss) +I0408 20:17:41.838148 5931 sgd_solver.cpp:105] Iteration 7128, lr = 0.000482295 +I0408 20:17:46.209100 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 20:17:49.364675 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 20:17:51.727552 5931 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 20:17:51.727579 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:17:53.296329 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:17:56.051793 5931 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0408 20:17:56.051839 5931 solver.cpp:397] Test net output #1: loss = 2.94129 (* 1 = 2.94129 loss) +I0408 20:17:56.148749 5931 solver.cpp:218] Iteration 7140 (0.838541 iter/s, 14.3106s/12 iters), loss = 0.0895932 +I0408 20:17:56.148800 5931 solver.cpp:237] Train net output #0: loss = 0.0895933 (* 1 = 0.0895933 loss) +I0408 20:17:56.148813 5931 sgd_solver.cpp:105] Iteration 7140, lr = 0.000474259 +I0408 20:18:00.106354 5931 solver.cpp:218] Iteration 7152 (3.03219 iter/s, 3.95754s/12 iters), loss = 0.18653 +I0408 20:18:00.106387 5931 solver.cpp:237] Train net output #0: loss = 0.18653 (* 1 = 0.18653 loss) +I0408 20:18:00.106395 5931 sgd_solver.cpp:105] Iteration 7152, lr = 0.00046635 +I0408 20:18:04.809603 5931 solver.cpp:218] Iteration 7164 (2.55146 iter/s, 4.7032s/12 iters), loss = 0.0887692 +I0408 20:18:04.809638 5931 solver.cpp:237] Train net output #0: loss = 0.0887693 (* 1 = 0.0887693 loss) +I0408 20:18:04.809646 5931 sgd_solver.cpp:105] Iteration 7164, lr = 0.000458566 +I0408 20:18:09.553859 5931 solver.cpp:218] Iteration 7176 (2.5294 iter/s, 4.7442s/12 iters), loss = 0.0805091 +I0408 20:18:09.553894 5931 solver.cpp:237] Train net output #0: loss = 0.0805092 (* 1 = 0.0805092 loss) +I0408 20:18:09.553901 5931 sgd_solver.cpp:105] Iteration 7176, lr = 0.000450907 +I0408 20:18:11.601563 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:18:14.399296 5931 solver.cpp:218] Iteration 7188 (2.47658 iter/s, 4.84538s/12 iters), loss = 0.232216 +I0408 20:18:14.399361 5931 solver.cpp:237] Train net output #0: loss = 0.232216 (* 1 = 0.232216 loss) +I0408 20:18:14.399369 5931 sgd_solver.cpp:105] Iteration 7188, lr = 0.000443369 +I0408 20:18:19.212534 5931 solver.cpp:218] Iteration 7200 (2.49317 iter/s, 4.81315s/12 iters), loss = 0.0812828 +I0408 20:18:19.212568 5931 solver.cpp:237] Train net output #0: loss = 0.0812828 (* 1 = 0.0812828 loss) +I0408 20:18:19.212575 5931 sgd_solver.cpp:105] Iteration 7200, lr = 0.000435951 +I0408 20:18:24.076754 5931 solver.cpp:218] Iteration 7212 (2.46702 iter/s, 4.86417s/12 iters), loss = 0.125965 +I0408 20:18:24.076788 5931 solver.cpp:237] Train net output #0: loss = 0.125965 (* 1 = 0.125965 loss) +I0408 20:18:24.076795 5931 sgd_solver.cpp:105] Iteration 7212, lr = 0.000428653 +I0408 20:18:28.859877 5931 solver.cpp:218] Iteration 7224 (2.50885 iter/s, 4.78307s/12 iters), loss = 0.06889 +I0408 20:18:28.859916 5931 solver.cpp:237] Train net output #0: loss = 0.06889 (* 1 = 0.06889 loss) +I0408 20:18:28.859923 5931 sgd_solver.cpp:105] Iteration 7224, lr = 0.000421471 +I0408 20:18:33.699026 5931 solver.cpp:218] Iteration 7236 (2.47981 iter/s, 4.83909s/12 iters), loss = 0.0516151 +I0408 20:18:33.699061 5931 solver.cpp:237] Train net output #0: loss = 0.0516151 (* 1 = 0.0516151 loss) +I0408 20:18:33.699069 5931 sgd_solver.cpp:105] Iteration 7236, lr = 0.000414404 +I0408 20:18:35.659523 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 20:18:38.754662 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 20:18:41.115761 5931 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 20:18:41.115787 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:18:42.776041 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:18:45.920527 5931 solver.cpp:397] Test net output #0: accuracy = 0.468137 +I0408 20:18:45.920724 5931 solver.cpp:397] Test net output #1: loss = 2.9379 (* 1 = 2.9379 loss) +I0408 20:18:47.674877 5931 solver.cpp:218] Iteration 7248 (0.858628 iter/s, 13.9758s/12 iters), loss = 0.0657108 +I0408 20:18:47.674913 5931 solver.cpp:237] Train net output #0: loss = 0.0657108 (* 1 = 0.0657108 loss) +I0408 20:18:47.674921 5931 sgd_solver.cpp:105] Iteration 7248, lr = 0.00040745 +I0408 20:18:52.370834 5931 solver.cpp:218] Iteration 7260 (2.55542 iter/s, 4.6959s/12 iters), loss = 0.151435 +I0408 20:18:52.370869 5931 solver.cpp:237] Train net output #0: loss = 0.151435 (* 1 = 0.151435 loss) +I0408 20:18:52.370877 5931 sgd_solver.cpp:105] Iteration 7260, lr = 0.000400608 +I0408 20:18:57.212363 5931 solver.cpp:218] Iteration 7272 (2.47858 iter/s, 4.84147s/12 iters), loss = 0.0784705 +I0408 20:18:57.212394 5931 solver.cpp:237] Train net output #0: loss = 0.0784705 (* 1 = 0.0784705 loss) +I0408 20:18:57.212402 5931 sgd_solver.cpp:105] Iteration 7272, lr = 0.000393877 +I0408 20:19:01.300945 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:19:02.022949 5931 solver.cpp:218] Iteration 7284 (2.49452 iter/s, 4.81054s/12 iters), loss = 0.0987218 +I0408 20:19:02.022984 5931 solver.cpp:237] Train net output #0: loss = 0.0987218 (* 1 = 0.0987218 loss) +I0408 20:19:02.022991 5931 sgd_solver.cpp:105] Iteration 7284, lr = 0.000387254 +I0408 20:19:06.865867 5931 solver.cpp:218] Iteration 7296 (2.47787 iter/s, 4.84286s/12 iters), loss = 0.0326328 +I0408 20:19:06.865900 5931 solver.cpp:237] Train net output #0: loss = 0.0326328 (* 1 = 0.0326328 loss) +I0408 20:19:06.865906 5931 sgd_solver.cpp:105] Iteration 7296, lr = 0.000380738 +I0408 20:19:11.649075 5931 solver.cpp:218] Iteration 7308 (2.5088 iter/s, 4.78316s/12 iters), loss = 0.0749877 +I0408 20:19:11.649108 5931 solver.cpp:237] Train net output #0: loss = 0.0749877 (* 1 = 0.0749877 loss) +I0408 20:19:11.649116 5931 sgd_solver.cpp:105] Iteration 7308, lr = 0.000374327 +I0408 20:19:16.496217 5931 solver.cpp:218] Iteration 7320 (2.47571 iter/s, 4.84709s/12 iters), loss = 0.12528 +I0408 20:19:16.496301 5931 solver.cpp:237] Train net output #0: loss = 0.12528 (* 1 = 0.12528 loss) +I0408 20:19:16.496310 5931 sgd_solver.cpp:105] Iteration 7320, lr = 0.00036802 +I0408 20:19:21.310253 5931 solver.cpp:218] Iteration 7332 (2.49276 iter/s, 4.81394s/12 iters), loss = 0.134648 +I0408 20:19:21.310284 5931 solver.cpp:237] Train net output #0: loss = 0.134648 (* 1 = 0.134648 loss) +I0408 20:19:21.310292 5931 sgd_solver.cpp:105] Iteration 7332, lr = 0.000361816 +I0408 20:19:25.699064 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 20:19:29.611052 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 20:19:31.970430 5931 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 20:19:31.970455 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:19:33.650229 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:19:36.817358 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0408 20:19:36.817406 5931 solver.cpp:397] Test net output #1: loss = 2.92733 (* 1 = 2.92733 loss) +I0408 20:19:36.913908 5931 solver.cpp:218] Iteration 7344 (0.769054 iter/s, 15.6036s/12 iters), loss = 0.033353 +I0408 20:19:36.913940 5931 solver.cpp:237] Train net output #0: loss = 0.033353 (* 1 = 0.033353 loss) +I0408 20:19:36.913949 5931 sgd_solver.cpp:105] Iteration 7344, lr = 0.000355712 +I0408 20:19:40.861305 5931 solver.cpp:218] Iteration 7356 (3.04002 iter/s, 3.94735s/12 iters), loss = 0.0802436 +I0408 20:19:40.861337 5931 solver.cpp:237] Train net output #0: loss = 0.0802436 (* 1 = 0.0802436 loss) +I0408 20:19:40.861346 5931 sgd_solver.cpp:105] Iteration 7356, lr = 0.000349707 +I0408 20:19:45.655977 5931 solver.cpp:218] Iteration 7368 (2.5028 iter/s, 4.79462s/12 iters), loss = 0.0973827 +I0408 20:19:45.656013 5931 solver.cpp:237] Train net output #0: loss = 0.0973827 (* 1 = 0.0973827 loss) +I0408 20:19:45.656020 5931 sgd_solver.cpp:105] Iteration 7368, lr = 0.0003438 +I0408 20:19:50.462960 5931 solver.cpp:218] Iteration 7380 (2.4964 iter/s, 4.80693s/12 iters), loss = 0.10154 +I0408 20:19:50.463057 5931 solver.cpp:237] Train net output #0: loss = 0.10154 (* 1 = 0.10154 loss) +I0408 20:19:50.463066 5931 sgd_solver.cpp:105] Iteration 7380, lr = 0.00033799 +I0408 20:19:51.787308 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:19:55.296522 5931 solver.cpp:218] Iteration 7392 (2.4827 iter/s, 4.83345s/12 iters), loss = 0.205759 +I0408 20:19:55.296561 5931 solver.cpp:237] Train net output #0: loss = 0.205759 (* 1 = 0.205759 loss) +I0408 20:19:55.296569 5931 sgd_solver.cpp:105] Iteration 7392, lr = 0.000332274 +I0408 20:20:00.119652 5931 solver.cpp:218] Iteration 7404 (2.48804 iter/s, 4.82307s/12 iters), loss = 0.209126 +I0408 20:20:00.119686 5931 solver.cpp:237] Train net output #0: loss = 0.209126 (* 1 = 0.209126 loss) +I0408 20:20:00.119694 5931 sgd_solver.cpp:105] Iteration 7404, lr = 0.000326652 +I0408 20:20:04.919106 5931 solver.cpp:218] Iteration 7416 (2.50031 iter/s, 4.7994s/12 iters), loss = 0.0922531 +I0408 20:20:04.919139 5931 solver.cpp:237] Train net output #0: loss = 0.0922531 (* 1 = 0.0922531 loss) +I0408 20:20:04.919147 5931 sgd_solver.cpp:105] Iteration 7416, lr = 0.000321121 +I0408 20:20:09.778239 5931 solver.cpp:218] Iteration 7428 (2.4696 iter/s, 4.85908s/12 iters), loss = 0.14191 +I0408 20:20:09.778277 5931 solver.cpp:237] Train net output #0: loss = 0.14191 (* 1 = 0.14191 loss) +I0408 20:20:09.778285 5931 sgd_solver.cpp:105] Iteration 7428, lr = 0.000315682 +I0408 20:20:14.635035 5931 solver.cpp:218] Iteration 7440 (2.4708 iter/s, 4.85674s/12 iters), loss = 0.136621 +I0408 20:20:14.635066 5931 solver.cpp:237] Train net output #0: loss = 0.136621 (* 1 = 0.136621 loss) +I0408 20:20:14.635074 5931 sgd_solver.cpp:105] Iteration 7440, lr = 0.000310331 +I0408 20:20:16.542326 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 20:20:19.931020 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 20:20:23.936364 5931 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 20:20:23.936429 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:20:25.507534 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:20:28.730105 5931 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0408 20:20:28.730154 5931 solver.cpp:397] Test net output #1: loss = 2.95751 (* 1 = 2.95751 loss) +I0408 20:20:30.418192 5931 solver.cpp:218] Iteration 7452 (0.760308 iter/s, 15.7831s/12 iters), loss = 0.278244 +I0408 20:20:30.418228 5931 solver.cpp:237] Train net output #0: loss = 0.278244 (* 1 = 0.278244 loss) +I0408 20:20:30.418236 5931 sgd_solver.cpp:105] Iteration 7452, lr = 0.000305068 +I0408 20:20:35.144546 5931 solver.cpp:218] Iteration 7464 (2.53899 iter/s, 4.7263s/12 iters), loss = 0.176602 +I0408 20:20:35.144580 5931 solver.cpp:237] Train net output #0: loss = 0.176602 (* 1 = 0.176602 loss) +I0408 20:20:35.144587 5931 sgd_solver.cpp:105] Iteration 7464, lr = 0.000299892 +I0408 20:20:39.885480 5931 solver.cpp:218] Iteration 7476 (2.53118 iter/s, 4.74088s/12 iters), loss = 0.115417 +I0408 20:20:39.885514 5931 solver.cpp:237] Train net output #0: loss = 0.115417 (* 1 = 0.115417 loss) +I0408 20:20:39.885522 5931 sgd_solver.cpp:105] Iteration 7476, lr = 0.000294801 +I0408 20:20:43.289029 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:20:44.707486 5931 solver.cpp:218] Iteration 7488 (2.48862 iter/s, 4.82196s/12 iters), loss = 0.0603507 +I0408 20:20:44.707520 5931 solver.cpp:237] Train net output #0: loss = 0.0603507 (* 1 = 0.0603507 loss) +I0408 20:20:44.707527 5931 sgd_solver.cpp:105] Iteration 7488, lr = 0.000289793 +I0408 20:20:49.577452 5931 solver.cpp:218] Iteration 7500 (2.46411 iter/s, 4.86991s/12 iters), loss = 0.0762331 +I0408 20:20:49.577486 5931 solver.cpp:237] Train net output #0: loss = 0.0762331 (* 1 = 0.0762331 loss) +I0408 20:20:49.577494 5931 sgd_solver.cpp:105] Iteration 7500, lr = 0.000284869 +I0408 20:20:54.378831 5931 solver.cpp:218] Iteration 7512 (2.49931 iter/s, 4.80132s/12 iters), loss = 0.171264 +I0408 20:20:54.378928 5931 solver.cpp:237] Train net output #0: loss = 0.171264 (* 1 = 0.171264 loss) +I0408 20:20:54.378938 5931 sgd_solver.cpp:105] Iteration 7512, lr = 0.000280025 +I0408 20:20:59.213133 5931 solver.cpp:218] Iteration 7524 (2.48232 iter/s, 4.83419s/12 iters), loss = 0.0863697 +I0408 20:20:59.213167 5931 solver.cpp:237] Train net output #0: loss = 0.0863698 (* 1 = 0.0863698 loss) +I0408 20:20:59.213176 5931 sgd_solver.cpp:105] Iteration 7524, lr = 0.000275262 +I0408 20:21:04.035259 5931 solver.cpp:218] Iteration 7536 (2.48855 iter/s, 4.82208s/12 iters), loss = 0.0900084 +I0408 20:21:04.035293 5931 solver.cpp:237] Train net output #0: loss = 0.0900084 (* 1 = 0.0900084 loss) +I0408 20:21:04.035301 5931 sgd_solver.cpp:105] Iteration 7536, lr = 0.000270577 +I0408 20:21:08.386983 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 20:21:11.474941 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 20:21:13.848488 5931 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 20:21:13.848515 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:21:15.375437 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:21:18.636113 5931 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0408 20:21:18.636162 5931 solver.cpp:397] Test net output #1: loss = 2.93221 (* 1 = 2.93221 loss) +I0408 20:21:18.731993 5931 solver.cpp:218] Iteration 7548 (0.816512 iter/s, 14.6967s/12 iters), loss = 0.110486 +I0408 20:21:18.732028 5931 solver.cpp:237] Train net output #0: loss = 0.110486 (* 1 = 0.110486 loss) +I0408 20:21:18.732038 5931 sgd_solver.cpp:105] Iteration 7548, lr = 0.00026597 +I0408 20:21:22.667505 5931 solver.cpp:218] Iteration 7560 (3.0492 iter/s, 3.93546s/12 iters), loss = 0.054214 +I0408 20:21:22.667544 5931 solver.cpp:237] Train net output #0: loss = 0.054214 (* 1 = 0.054214 loss) +I0408 20:21:22.667551 5931 sgd_solver.cpp:105] Iteration 7560, lr = 0.000261439 +I0408 20:21:27.544577 5931 solver.cpp:218] Iteration 7572 (2.46052 iter/s, 4.87701s/12 iters), loss = 0.0605282 +I0408 20:21:27.544695 5931 solver.cpp:237] Train net output #0: loss = 0.0605282 (* 1 = 0.0605282 loss) +I0408 20:21:27.544704 5931 sgd_solver.cpp:105] Iteration 7572, lr = 0.000256983 +I0408 20:21:32.375460 5931 solver.cpp:218] Iteration 7584 (2.48409 iter/s, 4.83075s/12 iters), loss = 0.0444338 +I0408 20:21:32.375499 5931 solver.cpp:237] Train net output #0: loss = 0.0444338 (* 1 = 0.0444338 loss) +I0408 20:21:32.375507 5931 sgd_solver.cpp:105] Iteration 7584, lr = 0.000252602 +I0408 20:21:32.981845 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:21:37.189952 5931 solver.cpp:218] Iteration 7596 (2.49251 iter/s, 4.81443s/12 iters), loss = 0.07387 +I0408 20:21:37.189985 5931 solver.cpp:237] Train net output #0: loss = 0.07387 (* 1 = 0.07387 loss) +I0408 20:21:37.189992 5931 sgd_solver.cpp:105] Iteration 7596, lr = 0.000248293 +I0408 20:21:41.994925 5931 solver.cpp:218] Iteration 7608 (2.49744 iter/s, 4.80492s/12 iters), loss = 0.11755 +I0408 20:21:41.994958 5931 solver.cpp:237] Train net output #0: loss = 0.11755 (* 1 = 0.11755 loss) +I0408 20:21:41.994966 5931 sgd_solver.cpp:105] Iteration 7608, lr = 0.000244056 +I0408 20:21:46.805831 5931 solver.cpp:218] Iteration 7620 (2.49436 iter/s, 4.81085s/12 iters), loss = 0.0318004 +I0408 20:21:46.805868 5931 solver.cpp:237] Train net output #0: loss = 0.0318004 (* 1 = 0.0318004 loss) +I0408 20:21:46.805876 5931 sgd_solver.cpp:105] Iteration 7620, lr = 0.000239889 +I0408 20:21:49.141270 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:21:51.573714 5931 solver.cpp:218] Iteration 7632 (2.51687 iter/s, 4.76783s/12 iters), loss = 0.117765 +I0408 20:21:51.573746 5931 solver.cpp:237] Train net output #0: loss = 0.117765 (* 1 = 0.117765 loss) +I0408 20:21:51.573755 5931 sgd_solver.cpp:105] Iteration 7632, lr = 0.000235792 +I0408 20:21:56.285547 5931 solver.cpp:218] Iteration 7644 (2.54681 iter/s, 4.71178s/12 iters), loss = 0.094675 +I0408 20:21:56.285579 5931 solver.cpp:237] Train net output #0: loss = 0.094675 (* 1 = 0.094675 loss) +I0408 20:21:56.285588 5931 sgd_solver.cpp:105] Iteration 7644, lr = 0.000231763 +I0408 20:21:58.238368 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 20:22:03.017647 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 20:22:05.652349 5931 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 20:22:05.652375 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:22:07.126479 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:22:10.222456 5931 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0408 20:22:10.222502 5931 solver.cpp:397] Test net output #1: loss = 2.94049 (* 1 = 2.94049 loss) +I0408 20:22:11.955940 5931 solver.cpp:218] Iteration 7656 (0.765778 iter/s, 15.6703s/12 iters), loss = 0.0435643 +I0408 20:22:11.955976 5931 solver.cpp:237] Train net output #0: loss = 0.0435643 (* 1 = 0.0435643 loss) +I0408 20:22:11.955983 5931 sgd_solver.cpp:105] Iteration 7656, lr = 0.000227801 +I0408 20:22:16.681826 5931 solver.cpp:218] Iteration 7668 (2.53923 iter/s, 4.72583s/12 iters), loss = 0.123313 +I0408 20:22:16.681859 5931 solver.cpp:237] Train net output #0: loss = 0.123313 (* 1 = 0.123313 loss) +I0408 20:22:16.681867 5931 sgd_solver.cpp:105] Iteration 7668, lr = 0.000223906 +I0408 20:22:21.405337 5931 solver.cpp:218] Iteration 7680 (2.54051 iter/s, 4.72346s/12 iters), loss = 0.0731207 +I0408 20:22:21.405370 5931 solver.cpp:237] Train net output #0: loss = 0.0731207 (* 1 = 0.0731207 loss) +I0408 20:22:21.405377 5931 sgd_solver.cpp:105] Iteration 7680, lr = 0.000220075 +I0408 20:22:24.082844 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:22:26.240177 5931 solver.cpp:218] Iteration 7692 (2.48201 iter/s, 4.83479s/12 iters), loss = 0.0993189 +I0408 20:22:26.240211 5931 solver.cpp:237] Train net output #0: loss = 0.0993189 (* 1 = 0.0993189 loss) +I0408 20:22:26.240219 5931 sgd_solver.cpp:105] Iteration 7692, lr = 0.000216309 +I0408 20:22:31.039340 5931 solver.cpp:218] Iteration 7704 (2.50046 iter/s, 4.79911s/12 iters), loss = 0.101911 +I0408 20:22:31.039407 5931 solver.cpp:237] Train net output #0: loss = 0.101911 (* 1 = 0.101911 loss) +I0408 20:22:31.039415 5931 sgd_solver.cpp:105] Iteration 7704, lr = 0.000212606 +I0408 20:22:35.875198 5931 solver.cpp:218] Iteration 7716 (2.48151 iter/s, 4.83577s/12 iters), loss = 0.0725028 +I0408 20:22:35.875231 5931 solver.cpp:237] Train net output #0: loss = 0.0725029 (* 1 = 0.0725029 loss) +I0408 20:22:35.875239 5931 sgd_solver.cpp:105] Iteration 7716, lr = 0.000208964 +I0408 20:22:40.676853 5931 solver.cpp:218] Iteration 7728 (2.49916 iter/s, 4.8016s/12 iters), loss = 0.115026 +I0408 20:22:40.676887 5931 solver.cpp:237] Train net output #0: loss = 0.115026 (* 1 = 0.115026 loss) +I0408 20:22:40.676893 5931 sgd_solver.cpp:105] Iteration 7728, lr = 0.000205384 +I0408 20:22:45.528357 5931 solver.cpp:218] Iteration 7740 (2.47349 iter/s, 4.85145s/12 iters), loss = 0.0881686 +I0408 20:22:45.528390 5931 solver.cpp:237] Train net output #0: loss = 0.0881687 (* 1 = 0.0881687 loss) +I0408 20:22:45.528398 5931 sgd_solver.cpp:105] Iteration 7740, lr = 0.000201864 +I0408 20:22:49.881412 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 20:22:52.990099 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 20:22:55.355211 5931 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 20:22:55.355237 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:22:56.796537 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:23:00.137374 5931 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0408 20:23:00.137423 5931 solver.cpp:397] Test net output #1: loss = 2.92803 (* 1 = 2.92803 loss) +I0408 20:23:00.233801 5931 solver.cpp:218] Iteration 7752 (0.816028 iter/s, 14.7054s/12 iters), loss = 0.0743262 +I0408 20:23:00.233837 5931 solver.cpp:237] Train net output #0: loss = 0.0743262 (* 1 = 0.0743262 loss) +I0408 20:23:00.233845 5931 sgd_solver.cpp:105] Iteration 7752, lr = 0.000198403 +I0408 20:23:04.154002 5931 solver.cpp:218] Iteration 7764 (3.06111 iter/s, 3.92015s/12 iters), loss = 0.223223 +I0408 20:23:04.154098 5931 solver.cpp:237] Train net output #0: loss = 0.223223 (* 1 = 0.223223 loss) +I0408 20:23:04.154107 5931 sgd_solver.cpp:105] Iteration 7764, lr = 0.000195 +I0408 20:23:08.886755 5931 solver.cpp:218] Iteration 7776 (2.53558 iter/s, 4.73264s/12 iters), loss = 0.0771 +I0408 20:23:08.886790 5931 solver.cpp:237] Train net output #0: loss = 0.0771001 (* 1 = 0.0771001 loss) +I0408 20:23:08.886797 5931 sgd_solver.cpp:105] Iteration 7776, lr = 0.000191655 +I0408 20:23:13.660429 5931 solver.cpp:218] Iteration 7788 (2.51381 iter/s, 4.77362s/12 iters), loss = 0.131822 +I0408 20:23:13.660462 5931 solver.cpp:237] Train net output #0: loss = 0.131822 (* 1 = 0.131822 loss) +I0408 20:23:13.660470 5931 sgd_solver.cpp:105] Iteration 7788, lr = 0.000188365 +I0408 20:23:13.666374 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:23:18.473021 5931 solver.cpp:218] Iteration 7800 (2.49349 iter/s, 4.81254s/12 iters), loss = 0.102104 +I0408 20:23:18.473054 5931 solver.cpp:237] Train net output #0: loss = 0.102104 (* 1 = 0.102104 loss) +I0408 20:23:18.473062 5931 sgd_solver.cpp:105] Iteration 7800, lr = 0.000185131 +I0408 20:23:23.284548 5931 solver.cpp:218] Iteration 7812 (2.49404 iter/s, 4.81147s/12 iters), loss = 0.165851 +I0408 20:23:23.284579 5931 solver.cpp:237] Train net output #0: loss = 0.165851 (* 1 = 0.165851 loss) +I0408 20:23:23.284586 5931 sgd_solver.cpp:105] Iteration 7812, lr = 0.000181952 +I0408 20:23:28.096400 5931 solver.cpp:218] Iteration 7824 (2.49387 iter/s, 4.8118s/12 iters), loss = 0.116059 +I0408 20:23:28.096433 5931 solver.cpp:237] Train net output #0: loss = 0.116059 (* 1 = 0.116059 loss) +I0408 20:23:28.096441 5931 sgd_solver.cpp:105] Iteration 7824, lr = 0.000178826 +I0408 20:23:32.954372 5931 solver.cpp:218] Iteration 7836 (2.47019 iter/s, 4.85792s/12 iters), loss = 0.110737 +I0408 20:23:32.954406 5931 solver.cpp:237] Train net output #0: loss = 0.110737 (* 1 = 0.110737 loss) +I0408 20:23:32.954414 5931 sgd_solver.cpp:105] Iteration 7836, lr = 0.000175753 +I0408 20:23:37.781884 5931 solver.cpp:218] Iteration 7848 (2.48578 iter/s, 4.82746s/12 iters), loss = 0.19917 +I0408 20:23:37.781942 5931 solver.cpp:237] Train net output #0: loss = 0.19917 (* 1 = 0.19917 loss) +I0408 20:23:37.781950 5931 sgd_solver.cpp:105] Iteration 7848, lr = 0.000172732 +I0408 20:23:39.740697 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 20:23:44.558678 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 20:23:46.919368 5931 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 20:23:46.919394 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:23:48.309034 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:23:51.709477 5931 solver.cpp:397] Test net output #0: accuracy = 0.465074 +I0408 20:23:51.709525 5931 solver.cpp:397] Test net output #1: loss = 2.9478 (* 1 = 2.9478 loss) +I0408 20:23:53.455191 5931 solver.cpp:218] Iteration 7860 (0.765637 iter/s, 15.6732s/12 iters), loss = 0.125866 +I0408 20:23:53.455235 5931 solver.cpp:237] Train net output #0: loss = 0.125866 (* 1 = 0.125866 loss) +I0408 20:23:53.455243 5931 sgd_solver.cpp:105] Iteration 7860, lr = 0.000169762 +I0408 20:23:58.128324 5931 solver.cpp:218] Iteration 7872 (2.56791 iter/s, 4.67307s/12 iters), loss = 0.151375 +I0408 20:23:58.128357 5931 solver.cpp:237] Train net output #0: loss = 0.151375 (* 1 = 0.151375 loss) +I0408 20:23:58.128365 5931 sgd_solver.cpp:105] Iteration 7872, lr = 0.000166842 +I0408 20:24:02.844486 5931 solver.cpp:218] Iteration 7884 (2.54447 iter/s, 4.71611s/12 iters), loss = 0.0382169 +I0408 20:24:02.844519 5931 solver.cpp:237] Train net output #0: loss = 0.0382169 (* 1 = 0.0382169 loss) +I0408 20:24:02.844527 5931 sgd_solver.cpp:105] Iteration 7884, lr = 0.000163971 +I0408 20:24:04.911635 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:24:07.601445 5931 solver.cpp:218] Iteration 7896 (2.52265 iter/s, 4.7569s/12 iters), loss = 0.0646236 +I0408 20:24:07.601478 5931 solver.cpp:237] Train net output #0: loss = 0.0646236 (* 1 = 0.0646236 loss) +I0408 20:24:07.601485 5931 sgd_solver.cpp:105] Iteration 7896, lr = 0.000161149 +I0408 20:24:12.320919 5931 solver.cpp:218] Iteration 7908 (2.54268 iter/s, 4.71942s/12 iters), loss = 0.182402 +I0408 20:24:12.321022 5931 solver.cpp:237] Train net output #0: loss = 0.182402 (* 1 = 0.182402 loss) +I0408 20:24:12.321030 5931 sgd_solver.cpp:105] Iteration 7908, lr = 0.000158375 +I0408 20:24:17.179579 5931 solver.cpp:218] Iteration 7920 (2.46988 iter/s, 4.85854s/12 iters), loss = 0.19271 +I0408 20:24:17.179612 5931 solver.cpp:237] Train net output #0: loss = 0.19271 (* 1 = 0.19271 loss) +I0408 20:24:17.179620 5931 sgd_solver.cpp:105] Iteration 7920, lr = 0.000155648 +I0408 20:24:22.006021 5931 solver.cpp:218] Iteration 7932 (2.48633 iter/s, 4.82639s/12 iters), loss = 0.0952818 +I0408 20:24:22.006053 5931 solver.cpp:237] Train net output #0: loss = 0.0952818 (* 1 = 0.0952818 loss) +I0408 20:24:22.006062 5931 sgd_solver.cpp:105] Iteration 7932, lr = 0.000152967 +I0408 20:24:26.796352 5931 solver.cpp:218] Iteration 7944 (2.50507 iter/s, 4.79028s/12 iters), loss = 0.146613 +I0408 20:24:26.796387 5931 solver.cpp:237] Train net output #0: loss = 0.146613 (* 1 = 0.146613 loss) +I0408 20:24:26.796394 5931 sgd_solver.cpp:105] Iteration 7944, lr = 0.000150331 +I0408 20:24:31.200110 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 20:24:34.338088 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 20:24:37.527542 5931 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 20:24:37.527567 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:24:38.880158 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:24:42.319628 5931 solver.cpp:397] Test net output #0: accuracy = 0.467524 +I0408 20:24:42.319679 5931 solver.cpp:397] Test net output #1: loss = 2.94018 (* 1 = 2.94018 loss) +I0408 20:24:42.415591 5931 solver.cpp:218] Iteration 7956 (0.768287 iter/s, 15.6192s/12 iters), loss = 0.0466145 +I0408 20:24:42.415721 5931 solver.cpp:237] Train net output #0: loss = 0.0466145 (* 1 = 0.0466145 loss) +I0408 20:24:42.415731 5931 sgd_solver.cpp:105] Iteration 7956, lr = 0.00014774 +I0408 20:24:46.337007 5931 solver.cpp:218] Iteration 7968 (3.06023 iter/s, 3.92127s/12 iters), loss = 0.0817163 +I0408 20:24:46.337041 5931 solver.cpp:237] Train net output #0: loss = 0.0817163 (* 1 = 0.0817163 loss) +I0408 20:24:46.337049 5931 sgd_solver.cpp:105] Iteration 7968, lr = 0.000145194 +I0408 20:24:51.135247 5931 solver.cpp:218] Iteration 7980 (2.50094 iter/s, 4.79819s/12 iters), loss = 0.0511982 +I0408 20:24:51.135282 5931 solver.cpp:237] Train net output #0: loss = 0.0511982 (* 1 = 0.0511982 loss) +I0408 20:24:51.135289 5931 sgd_solver.cpp:105] Iteration 7980, lr = 0.00014269 +I0408 20:24:55.242931 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:24:55.923118 5931 solver.cpp:218] Iteration 7992 (2.50636 iter/s, 4.78782s/12 iters), loss = 0.0730105 +I0408 20:24:55.923152 5931 solver.cpp:237] Train net output #0: loss = 0.0730105 (* 1 = 0.0730105 loss) +I0408 20:24:55.923159 5931 sgd_solver.cpp:105] Iteration 7992, lr = 0.000140229 +I0408 20:25:00.782428 5931 solver.cpp:218] Iteration 8004 (2.46951 iter/s, 4.85926s/12 iters), loss = 0.0519604 +I0408 20:25:00.782461 5931 solver.cpp:237] Train net output #0: loss = 0.0519604 (* 1 = 0.0519604 loss) +I0408 20:25:00.782469 5931 sgd_solver.cpp:105] Iteration 8004, lr = 0.00013781 +I0408 20:25:05.574198 5931 solver.cpp:218] Iteration 8016 (2.50432 iter/s, 4.79171s/12 iters), loss = 0.0522229 +I0408 20:25:05.574231 5931 solver.cpp:237] Train net output #0: loss = 0.0522229 (* 1 = 0.0522229 loss) +I0408 20:25:05.574239 5931 sgd_solver.cpp:105] Iteration 8016, lr = 0.000135432 +I0408 20:25:10.331296 5931 solver.cpp:218] Iteration 8028 (2.52257 iter/s, 4.75704s/12 iters), loss = 0.139277 +I0408 20:25:10.331329 5931 solver.cpp:237] Train net output #0: loss = 0.139277 (* 1 = 0.139277 loss) +I0408 20:25:10.331337 5931 sgd_solver.cpp:105] Iteration 8028, lr = 0.000133094 +I0408 20:25:15.040107 5931 solver.cpp:218] Iteration 8040 (2.54844 iter/s, 4.70876s/12 iters), loss = 0.164568 +I0408 20:25:15.040202 5931 solver.cpp:237] Train net output #0: loss = 0.164568 (* 1 = 0.164568 loss) +I0408 20:25:15.040211 5931 sgd_solver.cpp:105] Iteration 8040, lr = 0.000130797 +I0408 20:25:19.880785 5931 solver.cpp:218] Iteration 8052 (2.47905 iter/s, 4.84057s/12 iters), loss = 0.1742 +I0408 20:25:19.880820 5931 solver.cpp:237] Train net output #0: loss = 0.1742 (* 1 = 0.1742 loss) +I0408 20:25:19.880826 5931 sgd_solver.cpp:105] Iteration 8052, lr = 0.000128538 +I0408 20:25:21.837352 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 20:25:24.963810 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 20:25:27.320695 5931 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 20:25:27.320720 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:25:28.619453 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:25:32.110468 5931 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0408 20:25:32.110517 5931 solver.cpp:397] Test net output #1: loss = 2.94616 (* 1 = 2.94616 loss) +I0408 20:25:33.832515 5931 solver.cpp:218] Iteration 8064 (0.860113 iter/s, 13.9517s/12 iters), loss = 0.168703 +I0408 20:25:33.832549 5931 solver.cpp:237] Train net output #0: loss = 0.168703 (* 1 = 0.168703 loss) +I0408 20:25:33.832557 5931 sgd_solver.cpp:105] Iteration 8064, lr = 0.000126318 +I0408 20:25:38.563421 5931 solver.cpp:218] Iteration 8076 (2.53654 iter/s, 4.73085s/12 iters), loss = 0.134421 +I0408 20:25:38.563454 5931 solver.cpp:237] Train net output #0: loss = 0.134421 (* 1 = 0.134421 loss) +I0408 20:25:38.563462 5931 sgd_solver.cpp:105] Iteration 8076, lr = 0.000124136 +I0408 20:25:43.309962 5931 solver.cpp:218] Iteration 8088 (2.52819 iter/s, 4.74648s/12 iters), loss = 0.0561604 +I0408 20:25:43.309993 5931 solver.cpp:237] Train net output #0: loss = 0.0561605 (* 1 = 0.0561605 loss) +I0408 20:25:43.310000 5931 sgd_solver.cpp:105] Iteration 8088, lr = 0.000121991 +I0408 20:25:44.625670 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:25:47.990897 5931 solver.cpp:218] Iteration 8100 (2.56362 iter/s, 4.68088s/12 iters), loss = 0.0781737 +I0408 20:25:47.990960 5931 solver.cpp:237] Train net output #0: loss = 0.0781737 (* 1 = 0.0781737 loss) +I0408 20:25:47.990968 5931 sgd_solver.cpp:105] Iteration 8100, lr = 0.000119883 +I0408 20:25:52.831816 5931 solver.cpp:218] Iteration 8112 (2.47891 iter/s, 4.84084s/12 iters), loss = 0.124162 +I0408 20:25:52.831851 5931 solver.cpp:237] Train net output #0: loss = 0.124162 (* 1 = 0.124162 loss) +I0408 20:25:52.831858 5931 sgd_solver.cpp:105] Iteration 8112, lr = 0.000117811 +I0408 20:25:57.656028 5931 solver.cpp:218] Iteration 8124 (2.48748 iter/s, 4.82416s/12 iters), loss = 0.0961411 +I0408 20:25:57.656060 5931 solver.cpp:237] Train net output #0: loss = 0.0961411 (* 1 = 0.0961411 loss) +I0408 20:25:57.656069 5931 sgd_solver.cpp:105] Iteration 8124, lr = 0.000115774 +I0408 20:26:02.498335 5931 solver.cpp:218] Iteration 8136 (2.47818 iter/s, 4.84225s/12 iters), loss = 0.0787658 +I0408 20:26:02.498368 5931 solver.cpp:237] Train net output #0: loss = 0.0787658 (* 1 = 0.0787658 loss) +I0408 20:26:02.498376 5931 sgd_solver.cpp:105] Iteration 8136, lr = 0.000113772 +I0408 20:26:07.322288 5931 solver.cpp:218] Iteration 8148 (2.48761 iter/s, 4.8239s/12 iters), loss = 0.064925 +I0408 20:26:07.322320 5931 solver.cpp:237] Train net output #0: loss = 0.0649251 (* 1 = 0.0649251 loss) +I0408 20:26:07.322329 5931 sgd_solver.cpp:105] Iteration 8148, lr = 0.000111804 +I0408 20:26:11.680806 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 20:26:15.559020 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 20:26:17.915998 5931 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 20:26:17.916024 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:26:19.107070 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:26:22.232733 5931 solver.cpp:397] Test net output #0: accuracy = 0.471814 +I0408 20:26:22.232777 5931 solver.cpp:397] Test net output #1: loss = 2.93942 (* 1 = 2.93942 loss) +I0408 20:26:22.327145 5931 solver.cpp:218] Iteration 8160 (0.799744 iter/s, 15.0048s/12 iters), loss = 0.0508529 +I0408 20:26:22.327178 5931 solver.cpp:237] Train net output #0: loss = 0.0508529 (* 1 = 0.0508529 loss) +I0408 20:26:22.327185 5931 sgd_solver.cpp:105] Iteration 8160, lr = 0.000109869 +I0408 20:26:26.459023 5931 solver.cpp:218] Iteration 8172 (2.90428 iter/s, 4.13183s/12 iters), loss = 0.0753525 +I0408 20:26:26.459059 5931 solver.cpp:237] Train net output #0: loss = 0.0753525 (* 1 = 0.0753525 loss) +I0408 20:26:26.459065 5931 sgd_solver.cpp:105] Iteration 8172, lr = 0.000107968 +I0408 20:26:31.516129 5931 solver.cpp:218] Iteration 8184 (2.37292 iter/s, 5.05705s/12 iters), loss = 0.101495 +I0408 20:26:31.516163 5931 solver.cpp:237] Train net output #0: loss = 0.101495 (* 1 = 0.101495 loss) +I0408 20:26:31.516170 5931 sgd_solver.cpp:105] Iteration 8184, lr = 0.0001061 +I0408 20:26:34.918092 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:26:36.319432 5931 solver.cpp:218] Iteration 8196 (2.49831 iter/s, 4.80325s/12 iters), loss = 0.085153 +I0408 20:26:36.319468 5931 solver.cpp:237] Train net output #0: loss = 0.0851531 (* 1 = 0.0851531 loss) +I0408 20:26:36.319476 5931 sgd_solver.cpp:105] Iteration 8196, lr = 0.000104263 +I0408 20:26:41.268072 5931 solver.cpp:218] Iteration 8208 (2.42493 iter/s, 4.94859s/12 iters), loss = 0.112394 +I0408 20:26:41.268105 5931 solver.cpp:237] Train net output #0: loss = 0.112394 (* 1 = 0.112394 loss) +I0408 20:26:41.268113 5931 sgd_solver.cpp:105] Iteration 8208, lr = 0.000102458 +I0408 20:26:46.106567 5931 solver.cpp:218] Iteration 8220 (2.48014 iter/s, 4.83844s/12 iters), loss = 0.154063 +I0408 20:26:46.106600 5931 solver.cpp:237] Train net output #0: loss = 0.154063 (* 1 = 0.154063 loss) +I0408 20:26:46.106608 5931 sgd_solver.cpp:105] Iteration 8220, lr = 0.000100684 +I0408 20:26:50.947154 5931 solver.cpp:218] Iteration 8232 (2.47907 iter/s, 4.84053s/12 iters), loss = 0.105271 +I0408 20:26:50.947284 5931 solver.cpp:237] Train net output #0: loss = 0.105271 (* 1 = 0.105271 loss) +I0408 20:26:50.947293 5931 sgd_solver.cpp:105] Iteration 8232, lr = 9.89401e-05 +I0408 20:26:56.002797 5931 solver.cpp:218] Iteration 8244 (2.37365 iter/s, 5.0555s/12 iters), loss = 0.134947 +I0408 20:26:56.002830 5931 solver.cpp:237] Train net output #0: loss = 0.134947 (* 1 = 0.134947 loss) +I0408 20:26:56.002837 5931 sgd_solver.cpp:105] Iteration 8244, lr = 9.72262e-05 +I0408 20:27:00.783254 5931 solver.cpp:218] Iteration 8256 (2.51025 iter/s, 4.78041s/12 iters), loss = 0.176201 +I0408 20:27:00.783288 5931 solver.cpp:237] Train net output #0: loss = 0.176201 (* 1 = 0.176201 loss) +I0408 20:27:00.783295 5931 sgd_solver.cpp:105] Iteration 8256, lr = 9.55418e-05 +I0408 20:27:02.754855 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 20:27:05.881983 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 20:27:09.374007 5931 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 20:27:09.374032 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:27:10.601816 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:27:14.163220 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0408 20:27:14.163269 5931 solver.cpp:397] Test net output #1: loss = 2.93941 (* 1 = 2.93941 loss) +I0408 20:27:15.953040 5931 solver.cpp:218] Iteration 8268 (0.79105 iter/s, 15.1697s/12 iters), loss = 0.0735358 +I0408 20:27:15.953075 5931 solver.cpp:237] Train net output #0: loss = 0.0735358 (* 1 = 0.0735358 loss) +I0408 20:27:15.953083 5931 sgd_solver.cpp:105] Iteration 8268, lr = 9.38862e-05 +I0408 20:27:20.682509 5931 solver.cpp:218] Iteration 8280 (2.53731 iter/s, 4.72941s/12 iters), loss = 0.0912038 +I0408 20:27:20.682543 5931 solver.cpp:237] Train net output #0: loss = 0.0912038 (* 1 = 0.0912038 loss) +I0408 20:27:20.682549 5931 sgd_solver.cpp:105] Iteration 8280, lr = 9.22591e-05 +I0408 20:27:25.504879 5931 solver.cpp:218] Iteration 8292 (2.48843 iter/s, 4.82232s/12 iters), loss = 0.114888 +I0408 20:27:25.505025 5931 solver.cpp:237] Train net output #0: loss = 0.114888 (* 1 = 0.114888 loss) +I0408 20:27:25.505034 5931 sgd_solver.cpp:105] Iteration 8292, lr = 9.06599e-05 +I0408 20:27:26.138120 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:27:30.352633 5931 solver.cpp:218] Iteration 8304 (2.47546 iter/s, 4.84759s/12 iters), loss = 0.0824306 +I0408 20:27:30.352665 5931 solver.cpp:237] Train net output #0: loss = 0.0824306 (* 1 = 0.0824306 loss) +I0408 20:27:30.352672 5931 sgd_solver.cpp:105] Iteration 8304, lr = 8.90882e-05 +I0408 20:27:33.073662 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:27:35.130246 5931 solver.cpp:218] Iteration 8316 (2.51174 iter/s, 4.77756s/12 iters), loss = 0.0808418 +I0408 20:27:35.130280 5931 solver.cpp:237] Train net output #0: loss = 0.0808418 (* 1 = 0.0808418 loss) +I0408 20:27:35.130287 5931 sgd_solver.cpp:105] Iteration 8316, lr = 8.75435e-05 +I0408 20:27:40.008551 5931 solver.cpp:218] Iteration 8328 (2.4599 iter/s, 4.87825s/12 iters), loss = 0.0297925 +I0408 20:27:40.008586 5931 solver.cpp:237] Train net output #0: loss = 0.0297925 (* 1 = 0.0297925 loss) +I0408 20:27:40.008594 5931 sgd_solver.cpp:105] Iteration 8328, lr = 8.60253e-05 +I0408 20:27:44.911015 5931 solver.cpp:218] Iteration 8340 (2.44778 iter/s, 4.90241s/12 iters), loss = 0.101278 +I0408 20:27:44.911047 5931 solver.cpp:237] Train net output #0: loss = 0.101278 (* 1 = 0.101278 loss) +I0408 20:27:44.911054 5931 sgd_solver.cpp:105] Iteration 8340, lr = 8.45333e-05 +I0408 20:27:49.745927 5931 solver.cpp:218] Iteration 8352 (2.48197 iter/s, 4.83486s/12 iters), loss = 0.10988 +I0408 20:27:49.745960 5931 solver.cpp:237] Train net output #0: loss = 0.10988 (* 1 = 0.10988 loss) +I0408 20:27:49.745968 5931 sgd_solver.cpp:105] Iteration 8352, lr = 8.30669e-05 +I0408 20:27:54.103435 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 20:27:57.227099 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 20:27:59.647097 5931 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 20:27:59.647125 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:28:00.816737 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:28:04.415927 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0408 20:28:04.415974 5931 solver.cpp:397] Test net output #1: loss = 2.94869 (* 1 = 2.94869 loss) +I0408 20:28:04.512482 5931 solver.cpp:218] Iteration 8364 (0.812651 iter/s, 14.7665s/12 iters), loss = 0.0300906 +I0408 20:28:04.512516 5931 solver.cpp:237] Train net output #0: loss = 0.0300906 (* 1 = 0.0300906 loss) +I0408 20:28:04.512523 5931 sgd_solver.cpp:105] Iteration 8364, lr = 8.16257e-05 +I0408 20:28:08.512995 5931 solver.cpp:218] Iteration 8376 (2.99966 iter/s, 4.00046s/12 iters), loss = 0.0399983 +I0408 20:28:08.513027 5931 solver.cpp:237] Train net output #0: loss = 0.0399983 (* 1 = 0.0399983 loss) +I0408 20:28:08.513036 5931 sgd_solver.cpp:105] Iteration 8376, lr = 8.02093e-05 +I0408 20:28:13.315222 5931 solver.cpp:218] Iteration 8388 (2.49887 iter/s, 4.80218s/12 iters), loss = 0.0287316 +I0408 20:28:13.315255 5931 solver.cpp:237] Train net output #0: loss = 0.0287316 (* 1 = 0.0287316 loss) +I0408 20:28:13.315263 5931 sgd_solver.cpp:105] Iteration 8388, lr = 7.88173e-05 +I0408 20:28:16.044642 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:28:18.179610 5931 solver.cpp:218] Iteration 8400 (2.46694 iter/s, 4.86434s/12 iters), loss = 0.172697 +I0408 20:28:18.179644 5931 solver.cpp:237] Train net output #0: loss = 0.172696 (* 1 = 0.172696 loss) +I0408 20:28:18.179652 5931 sgd_solver.cpp:105] Iteration 8400, lr = 7.74494e-05 +I0408 20:28:23.128772 5931 solver.cpp:218] Iteration 8412 (2.42468 iter/s, 4.9491s/12 iters), loss = 0.0878625 +I0408 20:28:23.128818 5931 solver.cpp:237] Train net output #0: loss = 0.0878624 (* 1 = 0.0878624 loss) +I0408 20:28:23.128841 5931 sgd_solver.cpp:105] Iteration 8412, lr = 7.61049e-05 +I0408 20:28:28.049643 5931 solver.cpp:218] Iteration 8424 (2.43862 iter/s, 4.92081s/12 iters), loss = 0.0928251 +I0408 20:28:28.049742 5931 solver.cpp:237] Train net output #0: loss = 0.0928251 (* 1 = 0.0928251 loss) +I0408 20:28:28.049751 5931 sgd_solver.cpp:105] Iteration 8424, lr = 7.47836e-05 +I0408 20:28:32.882720 5931 solver.cpp:218] Iteration 8436 (2.48295 iter/s, 4.83296s/12 iters), loss = 0.137636 +I0408 20:28:32.882752 5931 solver.cpp:237] Train net output #0: loss = 0.137636 (* 1 = 0.137636 loss) +I0408 20:28:32.882761 5931 sgd_solver.cpp:105] Iteration 8436, lr = 7.34851e-05 +I0408 20:28:37.880565 5931 solver.cpp:218] Iteration 8448 (2.40106 iter/s, 4.99779s/12 iters), loss = 0.143883 +I0408 20:28:37.880599 5931 solver.cpp:237] Train net output #0: loss = 0.143883 (* 1 = 0.143883 loss) +I0408 20:28:37.880605 5931 sgd_solver.cpp:105] Iteration 8448, lr = 7.22089e-05 +I0408 20:28:42.894275 5931 solver.cpp:218] Iteration 8460 (2.39346 iter/s, 5.01365s/12 iters), loss = 0.136481 +I0408 20:28:42.894309 5931 solver.cpp:237] Train net output #0: loss = 0.136481 (* 1 = 0.136481 loss) +I0408 20:28:42.894316 5931 sgd_solver.cpp:105] Iteration 8460, lr = 7.09548e-05 +I0408 20:28:44.878473 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 20:28:48.067986 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 20:28:50.431948 5931 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 20:28:50.431974 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:28:51.569953 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:28:55.220135 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0408 20:28:55.220185 5931 solver.cpp:397] Test net output #1: loss = 2.93773 (* 1 = 2.93773 loss) +I0408 20:28:56.962355 5931 solver.cpp:218] Iteration 8472 (0.852999 iter/s, 14.068s/12 iters), loss = 0.0511453 +I0408 20:28:56.962390 5931 solver.cpp:237] Train net output #0: loss = 0.0511453 (* 1 = 0.0511453 loss) +I0408 20:28:56.962399 5931 sgd_solver.cpp:105] Iteration 8472, lr = 6.97223e-05 +I0408 20:29:01.840673 5931 solver.cpp:218] Iteration 8484 (2.45989 iter/s, 4.87826s/12 iters), loss = 0.0473533 +I0408 20:29:01.840792 5931 solver.cpp:237] Train net output #0: loss = 0.0473532 (* 1 = 0.0473532 loss) +I0408 20:29:01.840801 5931 sgd_solver.cpp:105] Iteration 8484, lr = 6.85111e-05 +I0408 20:29:06.645707 5931 solver.cpp:218] Iteration 8496 (2.49745 iter/s, 4.8049s/12 iters), loss = 0.108647 +I0408 20:29:06.645741 5931 solver.cpp:237] Train net output #0: loss = 0.108647 (* 1 = 0.108647 loss) +I0408 20:29:06.645748 5931 sgd_solver.cpp:105] Iteration 8496, lr = 6.73207e-05 +I0408 20:29:06.680244 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:29:11.507843 5931 solver.cpp:218] Iteration 8508 (2.46808 iter/s, 4.86209s/12 iters), loss = 0.0733235 +I0408 20:29:11.507876 5931 solver.cpp:237] Train net output #0: loss = 0.0733235 (* 1 = 0.0733235 loss) +I0408 20:29:11.507884 5931 sgd_solver.cpp:105] Iteration 8508, lr = 6.61509e-05 +I0408 20:29:16.345728 5931 solver.cpp:218] Iteration 8520 (2.48045 iter/s, 4.83783s/12 iters), loss = 0.0643699 +I0408 20:29:16.345762 5931 solver.cpp:237] Train net output #0: loss = 0.0643699 (* 1 = 0.0643699 loss) +I0408 20:29:16.345768 5931 sgd_solver.cpp:105] Iteration 8520, lr = 6.50013e-05 +I0408 20:29:21.103876 5931 solver.cpp:218] Iteration 8532 (2.52202 iter/s, 4.7581s/12 iters), loss = 0.0633643 +I0408 20:29:21.103909 5931 solver.cpp:237] Train net output #0: loss = 0.0633643 (* 1 = 0.0633643 loss) +I0408 20:29:21.103917 5931 sgd_solver.cpp:105] Iteration 8532, lr = 6.38715e-05 +I0408 20:29:26.053018 5931 solver.cpp:218] Iteration 8544 (2.42469 iter/s, 4.94909s/12 iters), loss = 0.0946614 +I0408 20:29:26.053057 5931 solver.cpp:237] Train net output #0: loss = 0.0946614 (* 1 = 0.0946614 loss) +I0408 20:29:26.053064 5931 sgd_solver.cpp:105] Iteration 8544, lr = 6.27613e-05 +I0408 20:29:30.829038 5931 solver.cpp:218] Iteration 8556 (2.51258 iter/s, 4.77596s/12 iters), loss = 0.111092 +I0408 20:29:30.829071 5931 solver.cpp:237] Train net output #0: loss = 0.111092 (* 1 = 0.111092 loss) +I0408 20:29:30.829078 5931 sgd_solver.cpp:105] Iteration 8556, lr = 6.16702e-05 +I0408 20:29:35.121054 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 20:29:39.336314 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 20:29:42.511834 5931 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 20:29:42.511859 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:29:43.594988 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:29:47.112916 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0408 20:29:47.112962 5931 solver.cpp:397] Test net output #1: loss = 2.94576 (* 1 = 2.94576 loss) +I0408 20:29:47.207698 5931 solver.cpp:218] Iteration 8568 (0.732664 iter/s, 16.3786s/12 iters), loss = 0.149233 +I0408 20:29:47.207748 5931 solver.cpp:237] Train net output #0: loss = 0.149233 (* 1 = 0.149233 loss) +I0408 20:29:47.207759 5931 sgd_solver.cpp:105] Iteration 8568, lr = 6.0598e-05 +I0408 20:29:51.206379 5931 solver.cpp:218] Iteration 8580 (3.00104 iter/s, 3.99862s/12 iters), loss = 0.0988229 +I0408 20:29:51.206414 5931 solver.cpp:237] Train net output #0: loss = 0.0988229 (* 1 = 0.0988229 loss) +I0408 20:29:51.206421 5931 sgd_solver.cpp:105] Iteration 8580, lr = 5.95443e-05 +I0408 20:29:56.132553 5931 solver.cpp:218] Iteration 8592 (2.436 iter/s, 4.92612s/12 iters), loss = 0.153437 +I0408 20:29:56.132586 5931 solver.cpp:237] Train net output #0: loss = 0.153437 (* 1 = 0.153437 loss) +I0408 20:29:56.132593 5931 sgd_solver.cpp:105] Iteration 8592, lr = 5.85088e-05 +I0408 20:29:58.273859 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:30:00.957770 5931 solver.cpp:218] Iteration 8604 (2.48696 iter/s, 4.82516s/12 iters), loss = 0.0346651 +I0408 20:30:00.957804 5931 solver.cpp:237] Train net output #0: loss = 0.034665 (* 1 = 0.034665 loss) +I0408 20:30:00.957811 5931 sgd_solver.cpp:105] Iteration 8604, lr = 5.74913e-05 +I0408 20:30:05.844019 5931 solver.cpp:218] Iteration 8616 (2.4559 iter/s, 4.8862s/12 iters), loss = 0.088288 +I0408 20:30:05.844134 5931 solver.cpp:237] Train net output #0: loss = 0.0882879 (* 1 = 0.0882879 loss) +I0408 20:30:05.844143 5931 sgd_solver.cpp:105] Iteration 8616, lr = 5.64913e-05 +I0408 20:30:10.772385 5931 solver.cpp:218] Iteration 8628 (2.43495 iter/s, 4.92824s/12 iters), loss = 0.148244 +I0408 20:30:10.772418 5931 solver.cpp:237] Train net output #0: loss = 0.148244 (* 1 = 0.148244 loss) +I0408 20:30:10.772425 5931 sgd_solver.cpp:105] Iteration 8628, lr = 5.55086e-05 +I0408 20:30:15.619257 5931 solver.cpp:218] Iteration 8640 (2.47585 iter/s, 4.84682s/12 iters), loss = 0.0402559 +I0408 20:30:15.619292 5931 solver.cpp:237] Train net output #0: loss = 0.0402559 (* 1 = 0.0402559 loss) +I0408 20:30:15.619300 5931 sgd_solver.cpp:105] Iteration 8640, lr = 5.4543e-05 +I0408 20:30:20.432282 5931 solver.cpp:218] Iteration 8652 (2.49326 iter/s, 4.81297s/12 iters), loss = 0.148454 +I0408 20:30:20.432315 5931 solver.cpp:237] Train net output #0: loss = 0.148454 (* 1 = 0.148454 loss) +I0408 20:30:20.432323 5931 sgd_solver.cpp:105] Iteration 8652, lr = 5.3594e-05 +I0408 20:30:25.361495 5931 solver.cpp:218] Iteration 8664 (2.43449 iter/s, 4.92916s/12 iters), loss = 0.117744 +I0408 20:30:25.361528 5931 solver.cpp:237] Train net output #0: loss = 0.117744 (* 1 = 0.117744 loss) +I0408 20:30:25.361536 5931 sgd_solver.cpp:105] Iteration 8664, lr = 5.26614e-05 +I0408 20:30:27.283310 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 20:30:30.444983 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 20:30:32.804564 5931 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 20:30:32.804589 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:30:33.845715 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:30:37.590982 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0408 20:30:37.591125 5931 solver.cpp:397] Test net output #1: loss = 2.94176 (* 1 = 2.94176 loss) +I0408 20:30:39.324362 5931 solver.cpp:218] Iteration 8676 (0.859427 iter/s, 13.9628s/12 iters), loss = 0.0733706 +I0408 20:30:39.324395 5931 solver.cpp:237] Train net output #0: loss = 0.0733706 (* 1 = 0.0733706 loss) +I0408 20:30:39.324402 5931 sgd_solver.cpp:105] Iteration 8676, lr = 5.17451e-05 +I0408 20:30:44.171057 5931 solver.cpp:218] Iteration 8688 (2.47594 iter/s, 4.84664s/12 iters), loss = 0.0753945 +I0408 20:30:44.171089 5931 solver.cpp:237] Train net output #0: loss = 0.0753945 (* 1 = 0.0753945 loss) +I0408 20:30:44.171097 5931 sgd_solver.cpp:105] Iteration 8688, lr = 5.08445e-05 +I0408 20:30:48.316236 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:30:48.970965 5931 solver.cpp:218] Iteration 8700 (2.50008 iter/s, 4.79986s/12 iters), loss = 0.0575705 +I0408 20:30:48.970999 5931 solver.cpp:237] Train net output #0: loss = 0.0575705 (* 1 = 0.0575705 loss) +I0408 20:30:48.971007 5931 sgd_solver.cpp:105] Iteration 8700, lr = 4.99596e-05 +I0408 20:30:53.821552 5931 solver.cpp:218] Iteration 8712 (2.47396 iter/s, 4.85053s/12 iters), loss = 0.0795703 +I0408 20:30:53.821583 5931 solver.cpp:237] Train net output #0: loss = 0.0795702 (* 1 = 0.0795702 loss) +I0408 20:30:53.821591 5931 sgd_solver.cpp:105] Iteration 8712, lr = 4.909e-05 +I0408 20:30:58.628325 5931 solver.cpp:218] Iteration 8724 (2.4965 iter/s, 4.80672s/12 iters), loss = 0.0746322 +I0408 20:30:58.628360 5931 solver.cpp:237] Train net output #0: loss = 0.0746321 (* 1 = 0.0746321 loss) +I0408 20:30:58.628367 5931 sgd_solver.cpp:105] Iteration 8724, lr = 4.82354e-05 +I0408 20:31:03.472627 5931 solver.cpp:218] Iteration 8736 (2.47716 iter/s, 4.84425s/12 iters), loss = 0.12831 +I0408 20:31:03.472659 5931 solver.cpp:237] Train net output #0: loss = 0.12831 (* 1 = 0.12831 loss) +I0408 20:31:03.472667 5931 sgd_solver.cpp:105] Iteration 8736, lr = 4.73957e-05 +I0408 20:31:08.296367 5931 solver.cpp:218] Iteration 8748 (2.48772 iter/s, 4.82369s/12 iters), loss = 0.120845 +I0408 20:31:08.296424 5931 solver.cpp:237] Train net output #0: loss = 0.120845 (* 1 = 0.120845 loss) +I0408 20:31:08.296432 5931 sgd_solver.cpp:105] Iteration 8748, lr = 4.65705e-05 +I0408 20:31:13.092270 5931 solver.cpp:218] Iteration 8760 (2.50217 iter/s, 4.79583s/12 iters), loss = 0.0858041 +I0408 20:31:13.092304 5931 solver.cpp:237] Train net output #0: loss = 0.0858041 (* 1 = 0.0858041 loss) +I0408 20:31:13.092311 5931 sgd_solver.cpp:105] Iteration 8760, lr = 4.57596e-05 +I0408 20:31:17.531430 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 20:31:21.013509 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 20:31:24.816133 5931 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 20:31:24.816157 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:31:25.814661 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:31:29.278798 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0408 20:31:29.278846 5931 solver.cpp:397] Test net output #1: loss = 2.9544 (* 1 = 2.9544 loss) +I0408 20:31:29.375337 5931 solver.cpp:218] Iteration 8772 (0.736965 iter/s, 16.283s/12 iters), loss = 0.0411556 +I0408 20:31:29.375370 5931 solver.cpp:237] Train net output #0: loss = 0.0411556 (* 1 = 0.0411556 loss) +I0408 20:31:29.375378 5931 sgd_solver.cpp:105] Iteration 8772, lr = 4.49627e-05 +I0408 20:31:33.539240 5931 solver.cpp:218] Iteration 8784 (2.88194 iter/s, 4.16385s/12 iters), loss = 0.134866 +I0408 20:31:33.539275 5931 solver.cpp:237] Train net output #0: loss = 0.134866 (* 1 = 0.134866 loss) +I0408 20:31:33.539283 5931 sgd_solver.cpp:105] Iteration 8784, lr = 4.41797e-05 +I0408 20:31:38.444595 5931 solver.cpp:218] Iteration 8796 (2.44633 iter/s, 4.9053s/12 iters), loss = 0.10287 +I0408 20:31:38.444695 5931 solver.cpp:237] Train net output #0: loss = 0.10287 (* 1 = 0.10287 loss) +I0408 20:31:38.444703 5931 sgd_solver.cpp:105] Iteration 8796, lr = 4.34103e-05 +I0408 20:31:39.868703 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:31:43.273849 5931 solver.cpp:218] Iteration 8808 (2.48492 iter/s, 4.82913s/12 iters), loss = 0.0556044 +I0408 20:31:43.273881 5931 solver.cpp:237] Train net output #0: loss = 0.0556044 (* 1 = 0.0556044 loss) +I0408 20:31:43.273890 5931 sgd_solver.cpp:105] Iteration 8808, lr = 4.26541e-05 +I0408 20:31:48.101758 5931 solver.cpp:218] Iteration 8820 (2.48558 iter/s, 4.82786s/12 iters), loss = 0.0501046 +I0408 20:31:48.101791 5931 solver.cpp:237] Train net output #0: loss = 0.0501046 (* 1 = 0.0501046 loss) +I0408 20:31:48.101799 5931 sgd_solver.cpp:105] Iteration 8820, lr = 4.19112e-05 +I0408 20:31:52.938191 5931 solver.cpp:218] Iteration 8832 (2.4812 iter/s, 4.83638s/12 iters), loss = 0.0740233 +I0408 20:31:52.938226 5931 solver.cpp:237] Train net output #0: loss = 0.0740233 (* 1 = 0.0740233 loss) +I0408 20:31:52.938235 5931 sgd_solver.cpp:105] Iteration 8832, lr = 4.11811e-05 +I0408 20:31:57.894986 5931 solver.cpp:218] Iteration 8844 (2.42094 iter/s, 4.95674s/12 iters), loss = 0.181416 +I0408 20:31:57.895025 5931 solver.cpp:237] Train net output #0: loss = 0.181416 (* 1 = 0.181416 loss) +I0408 20:31:57.895032 5931 sgd_solver.cpp:105] Iteration 8844, lr = 4.04636e-05 +I0408 20:32:02.857275 5931 solver.cpp:218] Iteration 8856 (2.41827 iter/s, 4.96223s/12 iters), loss = 0.0361681 +I0408 20:32:02.857306 5931 solver.cpp:237] Train net output #0: loss = 0.0361681 (* 1 = 0.0361681 loss) +I0408 20:32:02.857314 5931 sgd_solver.cpp:105] Iteration 8856, lr = 3.97586e-05 +I0408 20:32:08.101279 5931 solver.cpp:218] Iteration 8868 (2.28835 iter/s, 5.24395s/12 iters), loss = 0.0931413 +I0408 20:32:08.101310 5931 solver.cpp:237] Train net output #0: loss = 0.0931413 (* 1 = 0.0931413 loss) +I0408 20:32:08.101317 5931 sgd_solver.cpp:105] Iteration 8868, lr = 3.90659e-05 +I0408 20:32:10.105515 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 20:32:13.221325 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 20:32:15.575300 5931 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 20:32:15.575326 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:32:16.502672 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:32:19.884495 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0408 20:32:19.884541 5931 solver.cpp:397] Test net output #1: loss = 2.95092 (* 1 = 2.95092 loss) +I0408 20:32:21.676535 5931 solver.cpp:218] Iteration 8880 (0.883965 iter/s, 13.5752s/12 iters), loss = 0.0893554 +I0408 20:32:21.676570 5931 solver.cpp:237] Train net output #0: loss = 0.0893554 (* 1 = 0.0893554 loss) +I0408 20:32:21.676578 5931 sgd_solver.cpp:105] Iteration 8880, lr = 3.83852e-05 +I0408 20:32:26.565443 5931 solver.cpp:218] Iteration 8892 (2.45456 iter/s, 4.88885s/12 iters), loss = 0.19656 +I0408 20:32:26.565476 5931 solver.cpp:237] Train net output #0: loss = 0.19656 (* 1 = 0.19656 loss) +I0408 20:32:26.565485 5931 sgd_solver.cpp:105] Iteration 8892, lr = 3.77162e-05 +I0408 20:32:29.991446 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:32:31.315542 5931 solver.cpp:218] Iteration 8904 (2.52629 iter/s, 4.75005s/12 iters), loss = 0.184462 +I0408 20:32:31.315575 5931 solver.cpp:237] Train net output #0: loss = 0.184462 (* 1 = 0.184462 loss) +I0408 20:32:31.315583 5931 sgd_solver.cpp:105] Iteration 8904, lr = 3.7059e-05 +I0408 20:32:36.149960 5931 solver.cpp:218] Iteration 8916 (2.48223 iter/s, 4.83436s/12 iters), loss = 0.0538377 +I0408 20:32:36.149991 5931 solver.cpp:237] Train net output #0: loss = 0.0538377 (* 1 = 0.0538377 loss) +I0408 20:32:36.149999 5931 sgd_solver.cpp:105] Iteration 8916, lr = 3.64131e-05 +I0408 20:32:40.977504 5931 solver.cpp:218] Iteration 8928 (2.48576 iter/s, 4.82749s/12 iters), loss = 0.0963427 +I0408 20:32:40.977653 5931 solver.cpp:237] Train net output #0: loss = 0.0963427 (* 1 = 0.0963427 loss) +I0408 20:32:40.977663 5931 sgd_solver.cpp:105] Iteration 8928, lr = 3.57784e-05 +I0408 20:32:45.782821 5931 solver.cpp:218] Iteration 8940 (2.49732 iter/s, 4.80515s/12 iters), loss = 0.120136 +I0408 20:32:45.782855 5931 solver.cpp:237] Train net output #0: loss = 0.120136 (* 1 = 0.120136 loss) +I0408 20:32:45.782862 5931 sgd_solver.cpp:105] Iteration 8940, lr = 3.51547e-05 +I0408 20:32:50.719826 5931 solver.cpp:218] Iteration 8952 (2.43065 iter/s, 4.93695s/12 iters), loss = 0.0655056 +I0408 20:32:50.719859 5931 solver.cpp:237] Train net output #0: loss = 0.0655056 (* 1 = 0.0655056 loss) +I0408 20:32:50.719866 5931 sgd_solver.cpp:105] Iteration 8952, lr = 3.45419e-05 +I0408 20:32:55.436892 5931 solver.cpp:218] Iteration 8964 (2.54398 iter/s, 4.71701s/12 iters), loss = 0.156777 +I0408 20:32:55.436925 5931 solver.cpp:237] Train net output #0: loss = 0.156777 (* 1 = 0.156777 loss) +I0408 20:32:55.436933 5931 sgd_solver.cpp:105] Iteration 8964, lr = 3.39398e-05 +I0408 20:32:59.763679 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 20:33:02.857662 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 20:33:05.211658 5931 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 20:33:05.211683 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:33:06.132351 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:33:10.005319 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0408 20:33:10.005368 5931 solver.cpp:397] Test net output #1: loss = 2.95804 (* 1 = 2.95804 loss) +I0408 20:33:10.102162 5931 solver.cpp:218] Iteration 8976 (0.818264 iter/s, 14.6652s/12 iters), loss = 0.0280937 +I0408 20:33:10.102201 5931 solver.cpp:237] Train net output #0: loss = 0.0280937 (* 1 = 0.0280937 loss) +I0408 20:33:10.102210 5931 sgd_solver.cpp:105] Iteration 8976, lr = 3.33481e-05 +I0408 20:33:14.166538 5931 solver.cpp:218] Iteration 8988 (2.95253 iter/s, 4.06432s/12 iters), loss = 0.0495558 +I0408 20:33:14.166617 5931 solver.cpp:237] Train net output #0: loss = 0.0495558 (* 1 = 0.0495558 loss) +I0408 20:33:14.166626 5931 sgd_solver.cpp:105] Iteration 8988, lr = 3.27666e-05 +I0408 20:33:17.340737 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:33:18.966545 5931 solver.cpp:218] Iteration 9000 (2.50005 iter/s, 4.79991s/12 iters), loss = 0.029268 +I0408 20:33:18.966578 5931 solver.cpp:237] Train net output #0: loss = 0.029268 (* 1 = 0.029268 loss) +I0408 20:33:18.966585 5931 sgd_solver.cpp:105] Iteration 9000, lr = 3.21953e-05 +I0408 20:33:19.615051 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:33:23.697597 5931 solver.cpp:218] Iteration 9012 (2.53646 iter/s, 4.731s/12 iters), loss = 0.0514562 +I0408 20:33:23.697628 5931 solver.cpp:237] Train net output #0: loss = 0.0514562 (* 1 = 0.0514562 loss) +I0408 20:33:23.697636 5931 sgd_solver.cpp:105] Iteration 9012, lr = 3.16339e-05 +I0408 20:33:28.421757 5931 solver.cpp:218] Iteration 9024 (2.54016 iter/s, 4.72411s/12 iters), loss = 0.119511 +I0408 20:33:28.421789 5931 solver.cpp:237] Train net output #0: loss = 0.119511 (* 1 = 0.119511 loss) +I0408 20:33:28.421797 5931 sgd_solver.cpp:105] Iteration 9024, lr = 3.10823e-05 +I0408 20:33:33.231767 5931 solver.cpp:218] Iteration 9036 (2.49482 iter/s, 4.80996s/12 iters), loss = 0.0514225 +I0408 20:33:33.231801 5931 solver.cpp:237] Train net output #0: loss = 0.0514225 (* 1 = 0.0514225 loss) +I0408 20:33:33.231808 5931 sgd_solver.cpp:105] Iteration 9036, lr = 3.05403e-05 +I0408 20:33:38.100306 5931 solver.cpp:218] Iteration 9048 (2.46483 iter/s, 4.86849s/12 iters), loss = 0.0690097 +I0408 20:33:38.100340 5931 solver.cpp:237] Train net output #0: loss = 0.0690097 (* 1 = 0.0690097 loss) +I0408 20:33:38.100348 5931 sgd_solver.cpp:105] Iteration 9048, lr = 3.00077e-05 +I0408 20:33:42.925173 5931 solver.cpp:218] Iteration 9060 (2.48714 iter/s, 4.82481s/12 iters), loss = 0.114602 +I0408 20:33:42.925204 5931 solver.cpp:237] Train net output #0: loss = 0.114602 (* 1 = 0.114602 loss) +I0408 20:33:42.925212 5931 sgd_solver.cpp:105] Iteration 9060, lr = 2.94843e-05 +I0408 20:33:47.746598 5931 solver.cpp:218] Iteration 9072 (2.48892 iter/s, 4.82137s/12 iters), loss = 0.0583481 +I0408 20:33:47.746695 5931 solver.cpp:237] Train net output #0: loss = 0.0583481 (* 1 = 0.0583481 loss) +I0408 20:33:47.746704 5931 sgd_solver.cpp:105] Iteration 9072, lr = 2.89701e-05 +I0408 20:33:49.688468 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 20:33:52.807066 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 20:33:55.163450 5931 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 20:33:55.163475 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:33:56.031569 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:33:59.675956 5931 solver.cpp:397] Test net output #0: accuracy = 0.471814 +I0408 20:33:59.676000 5931 solver.cpp:397] Test net output #1: loss = 2.94564 (* 1 = 2.94564 loss) +I0408 20:34:01.425879 5931 solver.cpp:218] Iteration 9084 (0.877248 iter/s, 13.6791s/12 iters), loss = 0.0723732 +I0408 20:34:01.425915 5931 solver.cpp:237] Train net output #0: loss = 0.0723732 (* 1 = 0.0723732 loss) +I0408 20:34:01.425923 5931 sgd_solver.cpp:105] Iteration 9084, lr = 2.84647e-05 +I0408 20:34:06.204130 5931 solver.cpp:218] Iteration 9096 (2.51141 iter/s, 4.77819s/12 iters), loss = 0.0574748 +I0408 20:34:06.204164 5931 solver.cpp:237] Train net output #0: loss = 0.0574748 (* 1 = 0.0574748 loss) +I0408 20:34:06.204172 5931 sgd_solver.cpp:105] Iteration 9096, lr = 2.79682e-05 +I0408 20:34:09.065004 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:34:10.996745 5931 solver.cpp:218] Iteration 9108 (2.50388 iter/s, 4.79255s/12 iters), loss = 0.0838419 +I0408 20:34:10.996779 5931 solver.cpp:237] Train net output #0: loss = 0.0838419 (* 1 = 0.0838419 loss) +I0408 20:34:10.996786 5931 sgd_solver.cpp:105] Iteration 9108, lr = 2.74803e-05 +I0408 20:34:15.736411 5931 solver.cpp:218] Iteration 9120 (2.53186 iter/s, 4.73961s/12 iters), loss = 0.117803 +I0408 20:34:15.736445 5931 solver.cpp:237] Train net output #0: loss = 0.117803 (* 1 = 0.117803 loss) +I0408 20:34:15.736452 5931 sgd_solver.cpp:105] Iteration 9120, lr = 2.70009e-05 +I0408 20:34:20.517153 5931 solver.cpp:218] Iteration 9132 (2.5101 iter/s, 4.78068s/12 iters), loss = 0.110181 +I0408 20:34:20.517271 5931 solver.cpp:237] Train net output #0: loss = 0.110181 (* 1 = 0.110181 loss) +I0408 20:34:20.517280 5931 sgd_solver.cpp:105] Iteration 9132, lr = 2.65299e-05 +I0408 20:34:25.332458 5931 solver.cpp:218] Iteration 9144 (2.49213 iter/s, 4.81516s/12 iters), loss = 0.0930482 +I0408 20:34:25.332496 5931 solver.cpp:237] Train net output #0: loss = 0.0930482 (* 1 = 0.0930482 loss) +I0408 20:34:25.332504 5931 sgd_solver.cpp:105] Iteration 9144, lr = 2.6067e-05 +I0408 20:34:30.132419 5931 solver.cpp:218] Iteration 9156 (2.50005 iter/s, 4.7999s/12 iters), loss = 0.0490891 +I0408 20:34:30.132452 5931 solver.cpp:237] Train net output #0: loss = 0.0490891 (* 1 = 0.0490891 loss) +I0408 20:34:30.132460 5931 sgd_solver.cpp:105] Iteration 9156, lr = 2.56122e-05 +I0408 20:34:34.975716 5931 solver.cpp:218] Iteration 9168 (2.47768 iter/s, 4.84324s/12 iters), loss = 0.127033 +I0408 20:34:34.975751 5931 solver.cpp:237] Train net output #0: loss = 0.127033 (* 1 = 0.127033 loss) +I0408 20:34:34.975759 5931 sgd_solver.cpp:105] Iteration 9168, lr = 2.51653e-05 +I0408 20:34:39.332674 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 20:34:43.032655 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 20:34:46.995499 5931 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 20:34:46.995524 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:34:47.832314 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:34:51.787060 5931 solver.cpp:397] Test net output #0: accuracy = 0.473039 +I0408 20:34:51.787160 5931 solver.cpp:397] Test net output #1: loss = 2.94609 (* 1 = 2.94609 loss) +I0408 20:34:51.883633 5931 solver.cpp:218] Iteration 9180 (0.70973 iter/s, 16.9078s/12 iters), loss = 0.0608644 +I0408 20:34:51.883671 5931 solver.cpp:237] Train net output #0: loss = 0.0608644 (* 1 = 0.0608644 loss) +I0408 20:34:51.883679 5931 sgd_solver.cpp:105] Iteration 9180, lr = 2.47262e-05 +I0408 20:34:55.841660 5931 solver.cpp:218] Iteration 9192 (3.03186 iter/s, 3.95797s/12 iters), loss = 0.138006 +I0408 20:34:55.841693 5931 solver.cpp:237] Train net output #0: loss = 0.138006 (* 1 = 0.138006 loss) +I0408 20:34:55.841701 5931 sgd_solver.cpp:105] Iteration 9192, lr = 2.42948e-05 +I0408 20:35:00.668448 5931 solver.cpp:218] Iteration 9204 (2.48616 iter/s, 4.82673s/12 iters), loss = 0.0751007 +I0408 20:35:00.668483 5931 solver.cpp:237] Train net output #0: loss = 0.0751007 (* 1 = 0.0751007 loss) +I0408 20:35:00.668489 5931 sgd_solver.cpp:105] Iteration 9204, lr = 2.38708e-05 +I0408 20:35:00.728327 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:35:05.510135 5931 solver.cpp:218] Iteration 9216 (2.4785 iter/s, 4.84163s/12 iters), loss = 0.122912 +I0408 20:35:05.510170 5931 solver.cpp:237] Train net output #0: loss = 0.122912 (* 1 = 0.122912 loss) +I0408 20:35:05.510177 5931 sgd_solver.cpp:105] Iteration 9216, lr = 2.34542e-05 +I0408 20:35:10.318519 5931 solver.cpp:218] Iteration 9228 (2.49567 iter/s, 4.80833s/12 iters), loss = 0.0800206 +I0408 20:35:10.318552 5931 solver.cpp:237] Train net output #0: loss = 0.0800206 (* 1 = 0.0800206 loss) +I0408 20:35:10.318559 5931 sgd_solver.cpp:105] Iteration 9228, lr = 2.30449e-05 +I0408 20:35:15.108515 5931 solver.cpp:218] Iteration 9240 (2.50525 iter/s, 4.78994s/12 iters), loss = 0.0737501 +I0408 20:35:15.108549 5931 solver.cpp:237] Train net output #0: loss = 0.0737502 (* 1 = 0.0737502 loss) +I0408 20:35:15.108556 5931 sgd_solver.cpp:105] Iteration 9240, lr = 2.26427e-05 +I0408 20:35:19.973369 5931 solver.cpp:218] Iteration 9252 (2.4667 iter/s, 4.8648s/12 iters), loss = 0.0617412 +I0408 20:35:19.973402 5931 solver.cpp:237] Train net output #0: loss = 0.0617412 (* 1 = 0.0617412 loss) +I0408 20:35:19.973408 5931 sgd_solver.cpp:105] Iteration 9252, lr = 2.22475e-05 +I0408 20:35:24.804848 5931 solver.cpp:218] Iteration 9264 (2.48374 iter/s, 4.83142s/12 iters), loss = 0.131618 +I0408 20:35:24.804996 5931 solver.cpp:237] Train net output #0: loss = 0.131618 (* 1 = 0.131618 loss) +I0408 20:35:24.805004 5931 sgd_solver.cpp:105] Iteration 9264, lr = 2.18592e-05 +I0408 20:35:29.627671 5931 solver.cpp:218] Iteration 9276 (2.48825 iter/s, 4.82266s/12 iters), loss = 0.225857 +I0408 20:35:29.627707 5931 solver.cpp:237] Train net output #0: loss = 0.225857 (* 1 = 0.225857 loss) +I0408 20:35:29.627715 5931 sgd_solver.cpp:105] Iteration 9276, lr = 2.14777e-05 +I0408 20:35:31.577963 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 20:35:34.691906 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 20:35:37.051455 5931 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 20:35:37.051482 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:35:37.830374 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:35:41.821640 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0408 20:35:41.821686 5931 solver.cpp:397] Test net output #1: loss = 2.95209 (* 1 = 2.95209 loss) +I0408 20:35:43.569531 5931 solver.cpp:218] Iteration 9288 (0.860722 iter/s, 13.9418s/12 iters), loss = 0.120213 +I0408 20:35:43.569566 5931 solver.cpp:237] Train net output #0: loss = 0.120213 (* 1 = 0.120213 loss) +I0408 20:35:43.569572 5931 sgd_solver.cpp:105] Iteration 9288, lr = 2.11028e-05 +I0408 20:35:48.282476 5931 solver.cpp:218] Iteration 9300 (2.54621 iter/s, 4.71289s/12 iters), loss = 0.0497918 +I0408 20:35:48.282510 5931 solver.cpp:237] Train net output #0: loss = 0.0497918 (* 1 = 0.0497918 loss) +I0408 20:35:48.282516 5931 sgd_solver.cpp:105] Iteration 9300, lr = 2.07344e-05 +I0408 20:35:50.398639 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:35:53.122256 5931 solver.cpp:218] Iteration 9312 (2.47948 iter/s, 4.83972s/12 iters), loss = 0.0553774 +I0408 20:35:53.122287 5931 solver.cpp:237] Train net output #0: loss = 0.0553775 (* 1 = 0.0553775 loss) +I0408 20:35:53.122295 5931 sgd_solver.cpp:105] Iteration 9312, lr = 2.03725e-05 +I0408 20:35:57.935631 5931 solver.cpp:218] Iteration 9324 (2.49308 iter/s, 4.81332s/12 iters), loss = 0.0643109 +I0408 20:35:57.935747 5931 solver.cpp:237] Train net output #0: loss = 0.064311 (* 1 = 0.064311 loss) +I0408 20:35:57.935756 5931 sgd_solver.cpp:105] Iteration 9324, lr = 2.00168e-05 +I0408 20:36:02.791230 5931 solver.cpp:218] Iteration 9336 (2.47144 iter/s, 4.85546s/12 iters), loss = 0.107235 +I0408 20:36:02.791265 5931 solver.cpp:237] Train net output #0: loss = 0.107235 (* 1 = 0.107235 loss) +I0408 20:36:02.791271 5931 sgd_solver.cpp:105] Iteration 9336, lr = 1.96673e-05 +I0408 20:36:07.588019 5931 solver.cpp:218] Iteration 9348 (2.5017 iter/s, 4.79674s/12 iters), loss = 0.123679 +I0408 20:36:07.588053 5931 solver.cpp:237] Train net output #0: loss = 0.123679 (* 1 = 0.123679 loss) +I0408 20:36:07.588060 5931 sgd_solver.cpp:105] Iteration 9348, lr = 1.9324e-05 +I0408 20:36:12.414711 5931 solver.cpp:218] Iteration 9360 (2.4862 iter/s, 4.82663s/12 iters), loss = 0.156089 +I0408 20:36:12.414743 5931 solver.cpp:237] Train net output #0: loss = 0.156089 (* 1 = 0.156089 loss) +I0408 20:36:12.414750 5931 sgd_solver.cpp:105] Iteration 9360, lr = 1.89866e-05 +I0408 20:36:17.251804 5931 solver.cpp:218] Iteration 9372 (2.48086 iter/s, 4.83704s/12 iters), loss = 0.0873874 +I0408 20:36:17.251839 5931 solver.cpp:237] Train net output #0: loss = 0.0873875 (* 1 = 0.0873875 loss) +I0408 20:36:17.251847 5931 sgd_solver.cpp:105] Iteration 9372, lr = 1.86551e-05 +I0408 20:36:21.609894 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 20:36:24.723522 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 20:36:27.078889 5931 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 20:36:27.078914 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:36:27.819653 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:36:31.861135 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0408 20:36:31.861289 5931 solver.cpp:397] Test net output #1: loss = 2.94438 (* 1 = 2.94438 loss) +I0408 20:36:31.957691 5931 solver.cpp:218] Iteration 9384 (0.816004 iter/s, 14.7058s/12 iters), loss = 0.25483 +I0408 20:36:31.957724 5931 solver.cpp:237] Train net output #0: loss = 0.25483 (* 1 = 0.25483 loss) +I0408 20:36:31.957733 5931 sgd_solver.cpp:105] Iteration 9384, lr = 1.83294e-05 +I0408 20:36:35.913532 5931 solver.cpp:218] Iteration 9396 (3.03353 iter/s, 3.95578s/12 iters), loss = 0.181478 +I0408 20:36:35.913565 5931 solver.cpp:237] Train net output #0: loss = 0.181478 (* 1 = 0.181478 loss) +I0408 20:36:35.913573 5931 sgd_solver.cpp:105] Iteration 9396, lr = 1.80093e-05 +I0408 20:36:40.077522 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:36:40.718521 5931 solver.cpp:218] Iteration 9408 (2.49743 iter/s, 4.80493s/12 iters), loss = 0.11943 +I0408 20:36:40.718554 5931 solver.cpp:237] Train net output #0: loss = 0.11943 (* 1 = 0.11943 loss) +I0408 20:36:40.718561 5931 sgd_solver.cpp:105] Iteration 9408, lr = 1.76949e-05 +I0408 20:36:45.575469 5931 solver.cpp:218] Iteration 9420 (2.47072 iter/s, 4.85689s/12 iters), loss = 0.0547342 +I0408 20:36:45.575503 5931 solver.cpp:237] Train net output #0: loss = 0.0547343 (* 1 = 0.0547343 loss) +I0408 20:36:45.575510 5931 sgd_solver.cpp:105] Iteration 9420, lr = 1.73859e-05 +I0408 20:36:50.381433 5931 solver.cpp:218] Iteration 9432 (2.49693 iter/s, 4.80591s/12 iters), loss = 0.0512802 +I0408 20:36:50.381469 5931 solver.cpp:237] Train net output #0: loss = 0.0512803 (* 1 = 0.0512803 loss) +I0408 20:36:50.381475 5931 sgd_solver.cpp:105] Iteration 9432, lr = 1.70823e-05 +I0408 20:36:55.196823 5931 solver.cpp:218] Iteration 9444 (2.49204 iter/s, 4.81533s/12 iters), loss = 0.0732759 +I0408 20:36:55.196858 5931 solver.cpp:237] Train net output #0: loss = 0.0732759 (* 1 = 0.0732759 loss) +I0408 20:36:55.196866 5931 sgd_solver.cpp:105] Iteration 9444, lr = 1.6784e-05 +I0408 20:37:00.030663 5931 solver.cpp:218] Iteration 9456 (2.48253 iter/s, 4.83378s/12 iters), loss = 0.17094 +I0408 20:37:00.030697 5931 solver.cpp:237] Train net output #0: loss = 0.17094 (* 1 = 0.17094 loss) +I0408 20:37:00.030704 5931 sgd_solver.cpp:105] Iteration 9456, lr = 1.64909e-05 +I0408 20:37:04.870842 5931 solver.cpp:218] Iteration 9468 (2.47928 iter/s, 4.84012s/12 iters), loss = 0.137621 +I0408 20:37:04.870963 5931 solver.cpp:237] Train net output #0: loss = 0.137621 (* 1 = 0.137621 loss) +I0408 20:37:04.870972 5931 sgd_solver.cpp:105] Iteration 9468, lr = 1.62029e-05 +I0408 20:37:09.671526 5931 solver.cpp:218] Iteration 9480 (2.49972 iter/s, 4.80054s/12 iters), loss = 0.179658 +I0408 20:37:09.671561 5931 solver.cpp:237] Train net output #0: loss = 0.179658 (* 1 = 0.179658 loss) +I0408 20:37:09.671569 5931 sgd_solver.cpp:105] Iteration 9480, lr = 1.59199e-05 +I0408 20:37:11.625967 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 20:37:16.086841 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 20:37:18.439859 5931 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 20:37:18.439883 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:37:19.134279 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:37:23.224915 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0408 20:37:23.224964 5931 solver.cpp:397] Test net output #1: loss = 2.9512 (* 1 = 2.9512 loss) +I0408 20:37:24.966917 5931 solver.cpp:218] Iteration 9492 (0.784554 iter/s, 15.2953s/12 iters), loss = 0.213301 +I0408 20:37:24.966953 5931 solver.cpp:237] Train net output #0: loss = 0.213301 (* 1 = 0.213301 loss) +I0408 20:37:24.966960 5931 sgd_solver.cpp:105] Iteration 9492, lr = 1.56419e-05 +I0408 20:37:29.779623 5931 solver.cpp:218] Iteration 9504 (2.49343 iter/s, 4.81265s/12 iters), loss = 0.198088 +I0408 20:37:29.779654 5931 solver.cpp:237] Train net output #0: loss = 0.198088 (* 1 = 0.198088 loss) +I0408 20:37:29.779662 5931 sgd_solver.cpp:105] Iteration 9504, lr = 1.53687e-05 +I0408 20:37:31.173892 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:37:34.600750 5931 solver.cpp:218] Iteration 9516 (2.48907 iter/s, 4.82107s/12 iters), loss = 0.0584544 +I0408 20:37:34.600785 5931 solver.cpp:237] Train net output #0: loss = 0.0584545 (* 1 = 0.0584545 loss) +I0408 20:37:34.600791 5931 sgd_solver.cpp:105] Iteration 9516, lr = 1.51003e-05 +I0408 20:37:39.433826 5931 solver.cpp:218] Iteration 9528 (2.48292 iter/s, 4.83302s/12 iters), loss = 0.0587378 +I0408 20:37:39.433925 5931 solver.cpp:237] Train net output #0: loss = 0.0587378 (* 1 = 0.0587378 loss) +I0408 20:37:39.433933 5931 sgd_solver.cpp:105] Iteration 9528, lr = 1.48365e-05 +I0408 20:37:44.215971 5931 solver.cpp:218] Iteration 9540 (2.5094 iter/s, 4.78203s/12 iters), loss = 0.0592625 +I0408 20:37:44.216004 5931 solver.cpp:237] Train net output #0: loss = 0.0592626 (* 1 = 0.0592626 loss) +I0408 20:37:44.216012 5931 sgd_solver.cpp:105] Iteration 9540, lr = 1.45774e-05 +I0408 20:37:49.061978 5931 solver.cpp:218] Iteration 9552 (2.47629 iter/s, 4.84595s/12 iters), loss = 0.0672157 +I0408 20:37:49.062011 5931 solver.cpp:237] Train net output #0: loss = 0.0672158 (* 1 = 0.0672158 loss) +I0408 20:37:49.062019 5931 sgd_solver.cpp:105] Iteration 9552, lr = 1.43227e-05 +I0408 20:37:53.895902 5931 solver.cpp:218] Iteration 9564 (2.48248 iter/s, 4.83387s/12 iters), loss = 0.046416 +I0408 20:37:53.895936 5931 solver.cpp:237] Train net output #0: loss = 0.046416 (* 1 = 0.046416 loss) +I0408 20:37:53.895943 5931 sgd_solver.cpp:105] Iteration 9564, lr = 1.40726e-05 +I0408 20:37:58.727025 5931 solver.cpp:218] Iteration 9576 (2.48392 iter/s, 4.83107s/12 iters), loss = 0.144244 +I0408 20:37:58.727059 5931 solver.cpp:237] Train net output #0: loss = 0.144244 (* 1 = 0.144244 loss) +I0408 20:37:58.727066 5931 sgd_solver.cpp:105] Iteration 9576, lr = 1.38267e-05 +I0408 20:38:03.077329 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 20:38:06.183543 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 20:38:10.067361 5931 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 20:38:10.067428 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:38:10.722975 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:38:14.855226 5931 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0408 20:38:14.855273 5931 solver.cpp:397] Test net output #1: loss = 2.96082 (* 1 = 2.96082 loss) +I0408 20:38:14.951717 5931 solver.cpp:218] Iteration 9588 (0.739617 iter/s, 16.2246s/12 iters), loss = 0.0613223 +I0408 20:38:14.951754 5931 solver.cpp:237] Train net output #0: loss = 0.0613223 (* 1 = 0.0613223 loss) +I0408 20:38:14.951762 5931 sgd_solver.cpp:105] Iteration 9588, lr = 1.35852e-05 +I0408 20:38:18.958339 5931 solver.cpp:218] Iteration 9600 (2.99509 iter/s, 4.00656s/12 iters), loss = 0.132205 +I0408 20:38:18.958374 5931 solver.cpp:237] Train net output #0: loss = 0.132205 (* 1 = 0.132205 loss) +I0408 20:38:18.958380 5931 sgd_solver.cpp:105] Iteration 9600, lr = 1.33479e-05 +I0408 20:38:22.440071 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:38:23.787370 5931 solver.cpp:218] Iteration 9612 (2.485 iter/s, 4.82898s/12 iters), loss = 0.0688998 +I0408 20:38:23.787405 5931 solver.cpp:237] Train net output #0: loss = 0.0688998 (* 1 = 0.0688998 loss) +I0408 20:38:23.787412 5931 sgd_solver.cpp:105] Iteration 9612, lr = 1.31147e-05 +I0408 20:38:28.643677 5931 solver.cpp:218] Iteration 9624 (2.47104 iter/s, 4.85625s/12 iters), loss = 0.119419 +I0408 20:38:28.643712 5931 solver.cpp:237] Train net output #0: loss = 0.119419 (* 1 = 0.119419 loss) +I0408 20:38:28.643720 5931 sgd_solver.cpp:105] Iteration 9624, lr = 1.28856e-05 +I0408 20:38:33.460417 5931 solver.cpp:218] Iteration 9636 (2.49134 iter/s, 4.81668s/12 iters), loss = 0.0237301 +I0408 20:38:33.460450 5931 solver.cpp:237] Train net output #0: loss = 0.0237302 (* 1 = 0.0237302 loss) +I0408 20:38:33.460458 5931 sgd_solver.cpp:105] Iteration 9636, lr = 1.26605e-05 +I0408 20:38:38.266090 5931 solver.cpp:218] Iteration 9648 (2.49708 iter/s, 4.80562s/12 iters), loss = 0.125619 +I0408 20:38:38.266126 5931 solver.cpp:237] Train net output #0: loss = 0.125619 (* 1 = 0.125619 loss) +I0408 20:38:38.266134 5931 sgd_solver.cpp:105] Iteration 9648, lr = 1.24393e-05 +I0408 20:38:43.136318 5931 solver.cpp:218] Iteration 9660 (2.46398 iter/s, 4.87017s/12 iters), loss = 0.0678197 +I0408 20:38:43.136462 5931 solver.cpp:237] Train net output #0: loss = 0.0678197 (* 1 = 0.0678197 loss) +I0408 20:38:43.136471 5931 sgd_solver.cpp:105] Iteration 9660, lr = 1.2222e-05 +I0408 20:38:47.958387 5931 solver.cpp:218] Iteration 9672 (2.48864 iter/s, 4.82191s/12 iters), loss = 0.0385928 +I0408 20:38:47.958421 5931 solver.cpp:237] Train net output #0: loss = 0.0385928 (* 1 = 0.0385928 loss) +I0408 20:38:47.958428 5931 sgd_solver.cpp:105] Iteration 9672, lr = 1.20084e-05 +I0408 20:38:52.750205 5931 solver.cpp:218] Iteration 9684 (2.5043 iter/s, 4.79176s/12 iters), loss = 0.134879 +I0408 20:38:52.750238 5931 solver.cpp:237] Train net output #0: loss = 0.134879 (* 1 = 0.134879 loss) +I0408 20:38:52.750247 5931 sgd_solver.cpp:105] Iteration 9684, lr = 1.17986e-05 +I0408 20:38:54.718261 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 20:38:57.833307 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 20:39:00.186273 5931 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 20:39:00.186300 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:39:00.789927 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:39:03.874589 5931 blocking_queue.cpp:49] Waiting for data +I0408 20:39:04.967350 5931 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0408 20:39:04.967398 5931 solver.cpp:397] Test net output #1: loss = 2.95407 (* 1 = 2.95407 loss) +I0408 20:39:06.717764 5931 solver.cpp:218] Iteration 9696 (0.859138 iter/s, 13.9675s/12 iters), loss = 0.0833017 +I0408 20:39:06.717798 5931 solver.cpp:237] Train net output #0: loss = 0.0833017 (* 1 = 0.0833017 loss) +I0408 20:39:06.717806 5931 sgd_solver.cpp:105] Iteration 9696, lr = 1.15925e-05 +I0408 20:39:11.425753 5931 solver.cpp:218] Iteration 9708 (2.54889 iter/s, 4.70794s/12 iters), loss = 0.142654 +I0408 20:39:11.425787 5931 solver.cpp:237] Train net output #0: loss = 0.142655 (* 1 = 0.142655 loss) +I0408 20:39:11.425794 5931 sgd_solver.cpp:105] Iteration 9708, lr = 1.13899e-05 +I0408 20:39:12.116508 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:39:16.269891 5931 solver.cpp:218] Iteration 9720 (2.47725 iter/s, 4.84408s/12 iters), loss = 0.0678505 +I0408 20:39:16.270009 5931 solver.cpp:237] Train net output #0: loss = 0.0678505 (* 1 = 0.0678505 loss) +I0408 20:39:16.270016 5931 sgd_solver.cpp:105] Iteration 9720, lr = 1.11909e-05 +I0408 20:39:21.082855 5931 solver.cpp:218] Iteration 9732 (2.49334 iter/s, 4.81283s/12 iters), loss = 0.0502067 +I0408 20:39:21.082890 5931 solver.cpp:237] Train net output #0: loss = 0.0502068 (* 1 = 0.0502068 loss) +I0408 20:39:21.082897 5931 sgd_solver.cpp:105] Iteration 9732, lr = 1.09954e-05 +I0408 20:39:25.938031 5931 solver.cpp:218] Iteration 9744 (2.47162 iter/s, 4.85512s/12 iters), loss = 0.0657831 +I0408 20:39:25.938066 5931 solver.cpp:237] Train net output #0: loss = 0.0657832 (* 1 = 0.0657832 loss) +I0408 20:39:25.938073 5931 sgd_solver.cpp:105] Iteration 9744, lr = 1.08033e-05 +I0408 20:39:30.765408 5931 solver.cpp:218] Iteration 9756 (2.48585 iter/s, 4.82732s/12 iters), loss = 0.085278 +I0408 20:39:30.765439 5931 solver.cpp:237] Train net output #0: loss = 0.0852781 (* 1 = 0.0852781 loss) +I0408 20:39:30.765446 5931 sgd_solver.cpp:105] Iteration 9756, lr = 1.06145e-05 +I0408 20:39:35.604094 5931 solver.cpp:218] Iteration 9768 (2.48004 iter/s, 4.83864s/12 iters), loss = 0.0588029 +I0408 20:39:35.604130 5931 solver.cpp:237] Train net output #0: loss = 0.0588029 (* 1 = 0.0588029 loss) +I0408 20:39:35.604137 5931 sgd_solver.cpp:105] Iteration 9768, lr = 1.0429e-05 +I0408 20:39:40.421936 5931 solver.cpp:218] Iteration 9780 (2.49077 iter/s, 4.81779s/12 iters), loss = 0.0834084 +I0408 20:39:40.421968 5931 solver.cpp:237] Train net output #0: loss = 0.0834084 (* 1 = 0.0834084 loss) +I0408 20:39:40.421977 5931 sgd_solver.cpp:105] Iteration 9780, lr = 1.02468e-05 +I0408 20:39:44.683256 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 20:39:47.806821 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 20:39:50.162832 5931 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 20:39:50.162858 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:39:50.727265 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:39:54.953281 5931 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0408 20:39:54.953331 5931 solver.cpp:397] Test net output #1: loss = 2.95754 (* 1 = 2.95754 loss) +I0408 20:39:55.049803 5931 solver.cpp:218] Iteration 9792 (0.820356 iter/s, 14.6278s/12 iters), loss = 0.0912696 +I0408 20:39:55.049839 5931 solver.cpp:237] Train net output #0: loss = 0.0912696 (* 1 = 0.0912696 loss) +I0408 20:39:55.049846 5931 sgd_solver.cpp:105] Iteration 9792, lr = 1.00677e-05 +I0408 20:39:59.054729 5931 solver.cpp:218] Iteration 9804 (2.99635 iter/s, 4.00487s/12 iters), loss = 0.044689 +I0408 20:39:59.054762 5931 solver.cpp:237] Train net output #0: loss = 0.0446891 (* 1 = 0.0446891 loss) +I0408 20:39:59.054770 5931 sgd_solver.cpp:105] Iteration 9804, lr = 9.89177e-06 +I0408 20:40:01.928100 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:40:03.910099 5931 solver.cpp:218] Iteration 9816 (2.47152 iter/s, 4.85531s/12 iters), loss = 0.0518716 +I0408 20:40:03.910132 5931 solver.cpp:237] Train net output #0: loss = 0.0518717 (* 1 = 0.0518717 loss) +I0408 20:40:03.910140 5931 sgd_solver.cpp:105] Iteration 9816, lr = 9.71891e-06 +I0408 20:40:08.733824 5931 solver.cpp:218] Iteration 9828 (2.48773 iter/s, 4.82367s/12 iters), loss = 0.035862 +I0408 20:40:08.733857 5931 solver.cpp:237] Train net output #0: loss = 0.035862 (* 1 = 0.035862 loss) +I0408 20:40:08.733865 5931 sgd_solver.cpp:105] Iteration 9828, lr = 9.54907e-06 +I0408 20:40:13.563439 5931 solver.cpp:218] Iteration 9840 (2.4847 iter/s, 4.82956s/12 iters), loss = 0.132918 +I0408 20:40:13.563472 5931 solver.cpp:237] Train net output #0: loss = 0.132918 (* 1 = 0.132918 loss) +I0408 20:40:13.563480 5931 sgd_solver.cpp:105] Iteration 9840, lr = 9.38219e-06 +I0408 20:40:18.379511 5931 solver.cpp:218] Iteration 9852 (2.49168 iter/s, 4.81602s/12 iters), loss = 0.125383 +I0408 20:40:18.379583 5931 solver.cpp:237] Train net output #0: loss = 0.125383 (* 1 = 0.125383 loss) +I0408 20:40:18.379591 5931 sgd_solver.cpp:105] Iteration 9852, lr = 9.21823e-06 +I0408 20:40:23.221319 5931 solver.cpp:218] Iteration 9864 (2.47846 iter/s, 4.84171s/12 iters), loss = 0.07437 +I0408 20:40:23.221354 5931 solver.cpp:237] Train net output #0: loss = 0.07437 (* 1 = 0.07437 loss) +I0408 20:40:23.221361 5931 sgd_solver.cpp:105] Iteration 9864, lr = 9.05713e-06 +I0408 20:40:28.036972 5931 solver.cpp:218] Iteration 9876 (2.4919 iter/s, 4.8156s/12 iters), loss = 0.0945036 +I0408 20:40:28.037007 5931 solver.cpp:237] Train net output #0: loss = 0.0945036 (* 1 = 0.0945036 loss) +I0408 20:40:28.037015 5931 sgd_solver.cpp:105] Iteration 9876, lr = 8.89884e-06 +I0408 20:40:32.861271 5931 solver.cpp:218] Iteration 9888 (2.48744 iter/s, 4.82424s/12 iters), loss = 0.194543 +I0408 20:40:32.861305 5931 solver.cpp:237] Train net output #0: loss = 0.194543 (* 1 = 0.194543 loss) +I0408 20:40:32.861313 5931 sgd_solver.cpp:105] Iteration 9888, lr = 8.74331e-06 +I0408 20:40:34.828349 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 20:40:37.923693 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 20:40:40.279616 5931 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 20:40:40.279642 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:40:40.744858 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:40:44.506418 5931 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0408 20:40:44.506464 5931 solver.cpp:397] Test net output #1: loss = 2.93378 (* 1 = 2.93378 loss) +I0408 20:40:46.251792 5931 solver.cpp:218] Iteration 9900 (0.896161 iter/s, 13.3905s/12 iters), loss = 0.12264 +I0408 20:40:46.251828 5931 solver.cpp:237] Train net output #0: loss = 0.12264 (* 1 = 0.12264 loss) +I0408 20:40:46.251837 5931 sgd_solver.cpp:105] Iteration 9900, lr = 8.5905e-06 +I0408 20:40:50.982254 5931 solver.cpp:218] Iteration 9912 (2.53678 iter/s, 4.7304s/12 iters), loss = 0.0552435 +I0408 20:40:50.982350 5931 solver.cpp:237] Train net output #0: loss = 0.0552435 (* 1 = 0.0552435 loss) +I0408 20:40:50.982359 5931 sgd_solver.cpp:105] Iteration 9912, lr = 8.44036e-06 +I0408 20:40:51.070289 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:40:55.760116 5931 solver.cpp:218] Iteration 9924 (2.51164 iter/s, 4.77775s/12 iters), loss = 0.152204 +I0408 20:40:55.760149 5931 solver.cpp:237] Train net output #0: loss = 0.152204 (* 1 = 0.152204 loss) +I0408 20:40:55.760157 5931 sgd_solver.cpp:105] Iteration 9924, lr = 8.29284e-06 +I0408 20:41:00.578701 5931 solver.cpp:218] Iteration 9936 (2.49039 iter/s, 4.81853s/12 iters), loss = 0.0711884 +I0408 20:41:00.578733 5931 solver.cpp:237] Train net output #0: loss = 0.0711885 (* 1 = 0.0711885 loss) +I0408 20:41:00.578742 5931 sgd_solver.cpp:105] Iteration 9936, lr = 8.1479e-06 +I0408 20:41:05.403081 5931 solver.cpp:218] Iteration 9948 (2.48739 iter/s, 4.82432s/12 iters), loss = 0.128263 +I0408 20:41:05.403115 5931 solver.cpp:237] Train net output #0: loss = 0.128263 (* 1 = 0.128263 loss) +I0408 20:41:05.403122 5931 sgd_solver.cpp:105] Iteration 9948, lr = 8.00549e-06 +I0408 20:41:10.234453 5931 solver.cpp:218] Iteration 9960 (2.48379 iter/s, 4.83132s/12 iters), loss = 0.151204 +I0408 20:41:10.234486 5931 solver.cpp:237] Train net output #0: loss = 0.151204 (* 1 = 0.151204 loss) +I0408 20:41:10.234493 5931 sgd_solver.cpp:105] Iteration 9960, lr = 7.86557e-06 +I0408 20:41:15.075289 5931 solver.cpp:218] Iteration 9972 (2.47894 iter/s, 4.84078s/12 iters), loss = 0.113763 +I0408 20:41:15.075322 5931 solver.cpp:237] Train net output #0: loss = 0.113763 (* 1 = 0.113763 loss) +I0408 20:41:15.075330 5931 sgd_solver.cpp:105] Iteration 9972, lr = 7.72808e-06 +I0408 20:41:19.879783 5931 solver.cpp:218] Iteration 9984 (2.49769 iter/s, 4.80444s/12 iters), loss = 0.0795457 +I0408 20:41:19.879818 5931 solver.cpp:237] Train net output #0: loss = 0.0795457 (* 1 = 0.0795457 loss) +I0408 20:41:19.879827 5931 sgd_solver.cpp:105] Iteration 9984, lr = 7.59301e-06 +I0408 20:41:24.260288 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 20:41:27.370132 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 20:41:29.787765 5931 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 20:41:29.787791 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:41:30.261198 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:41:34.452486 5931 solver.cpp:397] Test net output #0: accuracy = 0.473039 +I0408 20:41:34.452533 5931 solver.cpp:397] Test net output #1: loss = 2.95554 (* 1 = 2.95554 loss) +I0408 20:41:34.549006 5931 solver.cpp:218] Iteration 9996 (0.818044 iter/s, 14.6691s/12 iters), loss = 0.135623 +I0408 20:41:34.549041 5931 solver.cpp:237] Train net output #0: loss = 0.135623 (* 1 = 0.135623 loss) +I0408 20:41:34.549049 5931 sgd_solver.cpp:105] Iteration 9996, lr = 7.46029e-06 +I0408 20:41:38.544926 5931 solver.cpp:218] Iteration 10008 (3.00311 iter/s, 3.99586s/12 iters), loss = 0.0737608 +I0408 20:41:38.544958 5931 solver.cpp:237] Train net output #0: loss = 0.0737609 (* 1 = 0.0737609 loss) +I0408 20:41:38.544965 5931 sgd_solver.cpp:105] Iteration 10008, lr = 7.32989e-06 +I0408 20:41:40.704476 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:41:43.386376 5931 solver.cpp:218] Iteration 10020 (2.47862 iter/s, 4.8414s/12 iters), loss = 0.0687955 +I0408 20:41:43.386411 5931 solver.cpp:237] Train net output #0: loss = 0.0687956 (* 1 = 0.0687956 loss) +I0408 20:41:43.386418 5931 sgd_solver.cpp:105] Iteration 10020, lr = 7.20176e-06 +I0408 20:41:48.209853 5931 solver.cpp:218] Iteration 10032 (2.48786 iter/s, 4.82342s/12 iters), loss = 0.171151 +I0408 20:41:48.209887 5931 solver.cpp:237] Train net output #0: loss = 0.171151 (* 1 = 0.171151 loss) +I0408 20:41:48.209893 5931 sgd_solver.cpp:105] Iteration 10032, lr = 7.07588e-06 +I0408 20:41:53.035887 5931 solver.cpp:218] Iteration 10044 (2.48654 iter/s, 4.82598s/12 iters), loss = 0.0817633 +I0408 20:41:53.035921 5931 solver.cpp:237] Train net output #0: loss = 0.0817634 (* 1 = 0.0817634 loss) +I0408 20:41:53.035929 5931 sgd_solver.cpp:105] Iteration 10044, lr = 6.95219e-06 +I0408 20:41:57.857344 5931 solver.cpp:218] Iteration 10056 (2.4889 iter/s, 4.8214s/12 iters), loss = 0.115068 +I0408 20:41:57.857439 5931 solver.cpp:237] Train net output #0: loss = 0.115068 (* 1 = 0.115068 loss) +I0408 20:41:57.857448 5931 sgd_solver.cpp:105] Iteration 10056, lr = 6.83066e-06 +I0408 20:42:02.654227 5931 solver.cpp:218] Iteration 10068 (2.50168 iter/s, 4.79677s/12 iters), loss = 0.167017 +I0408 20:42:02.654260 5931 solver.cpp:237] Train net output #0: loss = 0.167017 (* 1 = 0.167017 loss) +I0408 20:42:02.654268 5931 sgd_solver.cpp:105] Iteration 10068, lr = 6.71126e-06 +I0408 20:42:07.511828 5931 solver.cpp:218] Iteration 10080 (2.47038 iter/s, 4.85755s/12 iters), loss = 0.162304 +I0408 20:42:07.511859 5931 solver.cpp:237] Train net output #0: loss = 0.162304 (* 1 = 0.162304 loss) +I0408 20:42:07.511868 5931 sgd_solver.cpp:105] Iteration 10080, lr = 6.59394e-06 +I0408 20:42:12.320920 5931 solver.cpp:218] Iteration 10092 (2.4953 iter/s, 4.80904s/12 iters), loss = 0.0981655 +I0408 20:42:12.320955 5931 solver.cpp:237] Train net output #0: loss = 0.0981656 (* 1 = 0.0981656 loss) +I0408 20:42:12.320962 5931 sgd_solver.cpp:105] Iteration 10092, lr = 6.47867e-06 +I0408 20:42:14.289875 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 20:42:19.269456 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 20:42:21.621007 5931 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 20:42:21.621034 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:42:22.057817 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:42:26.406313 5931 solver.cpp:397] Test net output #0: accuracy = 0.47549 +I0408 20:42:26.406352 5931 solver.cpp:397] Test net output #1: loss = 2.94543 (* 1 = 2.94543 loss) +I0408 20:42:28.155103 5931 solver.cpp:218] Iteration 10104 (0.757858 iter/s, 15.8341s/12 iters), loss = 0.034996 +I0408 20:42:28.155170 5931 solver.cpp:237] Train net output #0: loss = 0.0349961 (* 1 = 0.0349961 loss) +I0408 20:42:28.155179 5931 sgd_solver.cpp:105] Iteration 10104, lr = 6.36542e-06 +I0408 20:42:32.267426 5936 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:42:32.857280 5931 solver.cpp:218] Iteration 10116 (2.55206 iter/s, 4.70209s/12 iters), loss = 0.0455537 +I0408 20:42:32.857316 5931 solver.cpp:237] Train net output #0: loss = 0.0455538 (* 1 = 0.0455538 loss) +I0408 20:42:32.857323 5931 sgd_solver.cpp:105] Iteration 10116, lr = 6.25414e-06 +I0408 20:42:37.622426 5931 solver.cpp:218] Iteration 10128 (2.51832 iter/s, 4.76509s/12 iters), loss = 0.11589 +I0408 20:42:37.622457 5931 solver.cpp:237] Train net output #0: loss = 0.11589 (* 1 = 0.11589 loss) +I0408 20:42:37.622465 5931 sgd_solver.cpp:105] Iteration 10128, lr = 6.14481e-06 +I0408 20:42:42.429641 5931 solver.cpp:218] Iteration 10140 (2.49627 iter/s, 4.80717s/12 iters), loss = 0.0707577 +I0408 20:42:42.429675 5931 solver.cpp:237] Train net output #0: loss = 0.0707578 (* 1 = 0.0707578 loss) +I0408 20:42:42.429683 5931 sgd_solver.cpp:105] Iteration 10140, lr = 6.03739e-06 +I0408 20:42:47.289350 5931 solver.cpp:218] Iteration 10152 (2.46931 iter/s, 4.85965s/12 iters), loss = 0.164566 +I0408 20:42:47.289386 5931 solver.cpp:237] Train net output #0: loss = 0.164566 (* 1 = 0.164566 loss) +I0408 20:42:47.289393 5931 sgd_solver.cpp:105] Iteration 10152, lr = 5.93184e-06 +I0408 20:42:52.098048 5931 solver.cpp:218] Iteration 10164 (2.49551 iter/s, 4.80864s/12 iters), loss = 0.214253 +I0408 20:42:52.098083 5931 solver.cpp:237] Train net output #0: loss = 0.214253 (* 1 = 0.214253 loss) +I0408 20:42:52.098090 5931 sgd_solver.cpp:105] Iteration 10164, lr = 5.82814e-06 +I0408 20:42:56.939460 5931 solver.cpp:218] Iteration 10176 (2.47864 iter/s, 4.84136s/12 iters), loss = 0.0714591 +I0408 20:42:56.939500 5931 solver.cpp:237] Train net output #0: loss = 0.0714592 (* 1 = 0.0714592 loss) +I0408 20:42:56.939507 5931 sgd_solver.cpp:105] Iteration 10176, lr = 5.72625e-06 +I0408 20:43:01.749601 5931 solver.cpp:218] Iteration 10188 (2.49476 iter/s, 4.81009s/12 iters), loss = 0.0401616 +I0408 20:43:01.749706 5931 solver.cpp:237] Train net output #0: loss = 0.0401617 (* 1 = 0.0401617 loss) +I0408 20:43:01.749713 5931 sgd_solver.cpp:105] Iteration 10188, lr = 5.62614e-06 +I0408 20:43:06.128652 5931 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 20:43:09.309223 5931 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 20:43:13.292811 5931 solver.cpp:310] Iteration 10200, loss = 0.064615 +I0408 20:43:13.292837 5931 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 20:43:13.292841 5931 net.cpp:676] Ignoring source layer train-data +I0408 20:43:13.677668 5937 data_layer.cpp:73] Restarting data prefetching from start. +I0408 20:43:18.069763 5931 solver.cpp:397] Test net output #0: accuracy = 0.474877 +I0408 20:43:18.069809 5931 solver.cpp:397] Test net output #1: loss = 2.93863 (* 1 = 2.93863 loss) +I0408 20:43:18.069819 5931 solver.cpp:315] Optimization Done. +I0408 20:43:18.069826 5931 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.15/conf.csv b/cars/lr-investigations/sigmoid/1e-2/50_0.15/conf.csv new file mode 100644 index 0000000..23df2d7 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.15/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Acura RL Sedan 2012,0,2,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Acura TL Sedan 2012,0,0,6,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Acura TL Type-S 2008,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Acura TSX Sedan 2012,0,1,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Acura Integra Type R 2001,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Acura ZDX Hatchback 2012,0,0,0,0,1,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi TTS Coupe 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,1,1,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.25 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.0909 +Audi TT Hatchback 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 3 Series Wagon 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW X6 SUV 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.5556 +BMW M6 Convertible 2010,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.2 +BMW Z4 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bugatti Veyron 16.4 Convertible 2009,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3333 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0.2857 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,2,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Cobalt SS 2010,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0.25 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Chrysler Sebring Convertible 2010,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.5 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.375 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Magnum Wagon 2008,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2143 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5455 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0769 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7273 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6923 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4615 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Honda Odyssey Minivan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0.125 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Hyundai Sonata Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.125 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Infiniti G Coupe IPL 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Jeep Wrangler SUV 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5455 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0.2727 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Nissan NV Passenger Van 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7273 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3125 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.25 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.1667 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.375 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.4286 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Spyker C8 Coupe 2009,0,0,0,0,0,2,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Suzuki Aerio Sedan 2007,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.25 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3077 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0.9091 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0.2857 +Toyota Corolla Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,5,0,0,0,0,0,0,0,0,0.3846 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,6,0,0,0,0,0,0,0,0.5 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0.3846 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,1,0,0,0.7143 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0.3636 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0.5 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0.6667 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0.625 +smart fortwo Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0.6154 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.15/deploy.prototxt b/cars/lr-investigations/sigmoid/1e-2/50_0.15/deploy.prototxt new file mode 100644 index 0000000..33df585 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.15/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.9999997e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.9999997e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.0049999999 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.0049999999 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.15/large.png b/cars/lr-investigations/sigmoid/1e-2/50_0.15/large.png new file mode 100644 index 0000000000000000000000000000000000000000..c9a0e7ab830a8005d6714ded1bb846e529e66c55 GIT binary patch literal 110506 zcmafb1yqz<_dcLB5-Laysi1V%Pyzx5B1m_44~>+h#EgJQ2`C`l-AE%T9Yc2v-BSM- z<$m%1i63j-b?4s2JDm5N9nXIDv(LL%FQsl_kzyesA>Dc^Eg_GDbW;=w=>|Cl8t{K! z-Tfg0{0kW(FC~VQ+fBX#{Krk>$1;zRkP2Yfr@E-Xe`DH6t3r^Fa2qfGL2k89H$XzV z`1(}hv4XP}Vgg-9LGb`>%eqe*#dp&DAr0tphEmWix4Wor$7_`bg*>k$zOj5HbW_KE zNSx1mw}3!&MJCAiHkCaFv-|nxxD$O0N%(tT--w+v$GNJ*E_^C&y7~BVr`*;xB!b^R za;QXlFo~-lzmIHVJ_SXHCTa*wYI2s1`g_8QST84F=NX98G1W;ihTvMv0GOJ&qUdfoYgKMJYLdwBqcs-*EqrkAB~&cz8-} zhDU1xbfcNg=B+7iyO-4;#S{wkLZP*G>PRH~b}3cGbjy}4AtVPRS39AgVm_SPwJUJ4 zl;~O7^Dt;5uq#>GPA*ObEb!AA8z(Xd3IdN2nCkxDcL83DaUF-W#j!QewDh}apM4YU z&^aqb|N67{zNWN4gi61FQru;b(Cb!*W_WAb|SNVU>F0~AK| zUz`5#{r`r7ab*pPD8O%L=tLR+=MMhIW_EhXyn6TB1lsE9(ytaGu|R%#!XvsWe>#B6 z#{tWEh6%=5`@`A)S_YFB{*^gC02UL8|B&C9|KFDX zmqQ59z4j2QzFlosn9sjH5=26No!ws^L&ax!fMCo1_uu?aAB2$r?|t=Nkx2jJJf~UM zu6}hM`1sXuNM*Nvza})^uxClS#h1DQ=H~yxru%A<1cdQw$oKheDOh6jM-`&xEuF1T zM4=M*UsCwQ9N2EA=$e>Nekp|gWyhOQq-R$jMRR1!oo9i=Z?ogk{@|S=q*3@-aQ%LM zRzi9zIXfG?)r;oj(7K2{XWP;A`L?t?O{ySIe=dFu<{nA#&6D@U+-3?J>+BxZ|JZW< z2P~>v>=yEZ{@f)+BOB2`oQOZ#qrly4bVuALDv0V7*9(sqkc5((2Ge?5EAaf~NI#ci zzd&hmO--(I;!9}?17hon56X$xec6ykW@6aUms{Q`n1NMf#M*(vRE1c+e)u%Mev*9*JWLjCl8yfzSzF-`dF1!q&oD5$$;33#FZa>jJ$f!NQn>KX`3 z#)`7aqbX8a{iz)0in5MZ$KS3udT%3SUk0wf_?ik5_0^J|c>%^l_!r|zUq^ZE`Y(r+ z>$SZ{{QFUwBs=K;c=poaeE)L%M50$|C;j$iAVK|0AQ?yXzxrMBe}7E>r2ju2yNr># z*L%+Aa6-}2b(zLI#ei-g&&jGp6fd9eR|wNW3Rw`{1oGM?f&3=Ge-PT6AnS$lj*K(|ADTk&;DiD zxvOv#CmfSt^i-ynR>)9Q-4D4cvzwE3x%2|u8M-}J9;zrfj#frKMtOWENxe2GFcyL@ zcjDx1_EJ0&ZHlU}S3!a&!6b-M463;5=>t0H-#RUhEZ^*Z5||igK(RYoAp*kltZnK} z&;LsXNdG1zDwaI_O~7@vDfRI8q|uVV+3pt=aK_iTFu>d zUD|bU=-p z1EV1sTi0%d_IJbgA(&3Bv{pXDd)P7WYKg%e{6gm0oUx|eF1$_D=Np*aoE;yrMsJpM z1wLwP3lx#6=hMa?uTqOz8aQ)Ac*IM`Ws zt;d?~3Keo@(QR52palqjh@C5O)K`OB-l>96J$z4yw#M)YAGwCp zoodxEjGRiWFd6#xO5zk_qqtfsVfBO5nVFt)vKPA7W`f!VBONPUOjj}h=D92E)o=N3 zlvl^7lUEor*Z_F$B)V=RP^h>$H8Ti)v*bO6aGDT>NSO$3Ze9KO`E4b4b{aAde}8To zWSDz6_e$O^M+Gj{vtlgX(@j=LHq-w&<+;TfTKElvQ$Nwe5q}e6IEXfN)Ia@cKLJc- z$N4CdAkPrM< z226U?ymixpNmw|IizUTx3zoz^KaoiG+#?#%v{T{po&{ zt;TL_AQYpyPv+6`P&OTfKvj*q(lLEUmVo`Tj&X|jztQ`D;E6molDkW;m4dp+O}3qZ z))NVoN(%A(7+E6C-5QgidwSm|V56fm?j<&NHa->O$Ea3pDogkW&~Vdsbfd&i<*;j2 zBly5q#wy^-;EL>9_KlBagJ2|Pp@HWft$^TIcQ$GNi!Uj=$s*I;vP4wOoSQWMJ)9!h zd?`oNeWzH=^|e~XqtJiy#r*=LS?AM+Zs#q;0bkm4eaHtFCC69ZwDy$MgXc|?12}JZ zJZURo=LCl@wU#?M+0T~-%eQ?h7MF``haZF69W;t!O?ac{FoQ<$c3@ z9?`Y!?OgVKgt^54Z5#iCA>qz*Dv~kWW(I)rid}Qc?%(OmEd2n^ZZ(U z0^aNwEj(&{S-ccW{$Up|ToNx z=Q^Fs{P1934vS z<~vwdy31C`;~I?+yw5j6FHKEp$VT3FwrN%`+HMaShnut){jH?ZN9#7^b@F~RGVV}i zbC}|%Ql>AWHkcQ5-a62jhJD^rzdA*gv`BuEt&wm86jr$L42-?l+{$}UZ)n}gQKXe) zroS>+Utv$s0uTXaL}TF{ zw3ci9TSh}{`p%8>B7tTc1Yx&?omw8NuMjoOJq~E$X4@M1Ig+U5tF0_~Z6p*n`i3H1 z@FKph7v${Kd1je!J?JxX(c_taxY?WfG;Zi>m`2 zlv3!{6w9auCDm0prv(5x`v5Fs7WZ^R>-)<*edr4OrBweO_|u(UjL>o4WhGWBE`eS_ zx}-*Nh{tG)W`+8)>&)ZQ8qlJSBvHaoD?gGb<-b5BpvnxU^{~3V5ko${M5~;$jDdJM z1#L6hjG+l+BHT_Lz9Du%yQYJkLYJ861`mOqhC$SQs0NPRPIsF|9VLGotwLov_6vSU zF$%o+gzBU9%g4{m&^BU<9~$rbQ~Tk7LoJR_8_c`ydsJgi#%8De*Vb`N||xoQz<4?K{+%qzl#z?Ns~Rs;H#)V zCfDtGBhkM9d(L|L8@=l>r5Eb^+uO50tjbHZnV{xc9pu&mUnAX{6dzRifmA7|GLPZu zj-A8`8Hb>cR_ZsbUmD{t&AeAQEf*Z^w);wM@09Qe@7nBhS#YOFNY_EbmK?tgcph@M zo&ccIO8a>DQBK!(PQCt*R3oz8am3!wwh`Ogg}6L^^!AiAtKD8{D-r2qc7imkp23+p zTB0S6u-S={vYDDX5AHfi10%z^g+%2TeXaA+QatggPkua&b?j0xcYb?PSg?>NG-+fe zV!A8S%vcogAm8EBewR4&AnN);Jf6lFhlFpc@uV|Q*pj}d8l9Ph-&_Ut1Y5ql`w7$V zSL@CO1UDFgvpkrID_l`f77ubStj-hpHWL+CU+#^46!{xh9>1u@UwC@1j;KFGJLY{+77-iL}eY#=$HWUf0C_LbtbNmmu@8 zp6^!&FJAC%)eM<3=m9iwJ5;$m4Yf_hk|%o5qoNUXil?DTf??g+e!#+cUF$q zl>(2xQWy5#mEiVdOjB+fKz%wA7i-#*)L|baBw!%Enja}i&HDS zxD~NH%XzS7$QPYp*s>BcYBZVVpb5$A5MDZki%95Sh&a(gtkIpt@TfAsODLFw(Pm^O zo1&jY&8~4<-56LnI15hEL`O(VwL(GbfyHe9#T)*M@A2UPb~%AKp!{9w`Y$>U_bjfm ze`k57=cCSHJr3t&VuD`@d;-O9JhRYs&4cqG%;kkaISKvdQ%)&sC2sO@8$x+r?b#P7 z%9VmUYemxIwUm#5zib#MkB~+$EAP9G=xVn?PMP_!9T+#(R#Wm-RdBW?a+59{n+H)! zJ6y|Era}NBcbixVwhk8_wbk?Jn}xTPtQ19UYoJ(8oSM zY8@BbyVLzt%^gQ#%twvN(gKP8W*+v)DS9rmN!@%ImYNb$zBC+y0|^c_r~PJv5ZimF z&WDc{RdRx=;w>FUhlZGtY|rOTFOtbzXBJzzfdV;rUNl!&V@gf;2yTJaQIC4OHSUVa_TkE-DW zul}(?-Z?pKmc}a2`>_R=iAFM^Blp|y^cbn=Qjx&Il8Yoq^8{~YB}{o+Jmli|2O(M1 zp_wie=23uy-aj!Lux0dQX1e7|_cx!wN)hV&cFCN=dl3iQc~NizHrtoenXu`9>XIi7 zDAFV)yn_>T!wZj{)6pBz%Xo|Yo_edVVwncU))r9;CRj*tALA#yy3pSIX$W%#Q~c9NYAy)%8QhU5Gk{B6x`{=C=V&~kYp_yF5sYHR zpA!nIc)KJO^jBEbo(<&1CWkY<-XcTG5aGIrm=i&gVUjag4vbW8hVQGU&{D{zR`jbE ze4B*6E)4`q5SE5aR>zl%JmQ)q4wMw1XqLtkD8=0>o)Gc3{}ca{^pI0-EaS3B%) zmlw)ztm09tPt-!XFje?=>@~(~9toDVQD10Q^Pt$~SaIy8(w~-FPpP`RTISj@%~?2?320C2FmN&_|v@}mAYN8c;qf~skstHSDm&pTE`t437p6Ot1KI|%UD6%klDd+&1^%Zzcq1t}zd3UEz;F#w$?3QN* z9+8;cGX{WwGlM>9zTOp)oxC&hU%D?EXHVE7F|SGJw|Ks6%&?w-fo7&YD@nM&@%*kF zh!xyEikhmNHFh-LB7C4+nc4{ttfFVm=hPX0Z&jY|cIT=dNDA_=`u3_~clq9PnQig5 z?O3OarpiHjfU#kB{A%4?S4-yY(CzZbW8N63@*U@~60V?BBt7sRqLddE^-ztv>~XBT zI}T=jgkHSlyN;(`$a$eo6yNI#qdwg(ud&)XwfP^rmq|flB=s=|VqiQVx%#o*i2RZy z{IbCiR+AC4xV-t+%Db%UW>53S4+`U_GlF~MC&~Qn;{ktlAchomS#y1id5JHUve9MCp2WE1p9pLET1Q#5 z4AqzdmT*;36b7Qc$68*kW!~Ojr=JBLiJn_3O9|J=|eXYy5?&Klc6rae%CY7kIY*|Jdb@Ayh?*Vv`X{TDz zji?%SY$3Iwrd8&X0ug(Hq}VgONdyK$8^YUAXiiJZ2p1;9z`OPMkce9*c|fg~V8nrH zLKsD3vOI>7f(TXgT0^0Hf-iX9e!17{Sv-Nwz$La};txz%O0H94L-5rfr#X>tHH z<=1<9Wexk7n6i&0OWk^u!#$CkCei5NGg`e>eqh`C*`owD_kW)=L$C@`#yp2SN?BRg z%e0M;;@u<6iG*5#A2@%V80TGDK?S*tyvsrC5=^-CIACd+^-K920;EM7~dQ zIICKSDP%>344yxW1rcV8qw`1%w*3E{;44H2G&Q8gO8X1k7j8*Er@(QpzAUFrRWml) zVV{}b@2p{8b-^Mf`ffJ42pYjPdX{gx-IgY{>~ZPui_3^h16BY<6KKYrQRUDu+pv zlt;>J=h%pR@aPU#MntGSse(8hZ7`lw%hzw7NaEn@qNc>}wouZ}_kYv6%83E3H=L?q zGL&~=x-#oGkQb>7LMG4}QKTP)-B!qMv)lByy_vhU+@HzAaX=o>Sp%BJoWQe=hix}% zrs<4n(t}~HokQi=5eL(VC=c;8sk+wL(8A37TkaUwCPU>BoK9w@$JVq`&|+B7&5-?Z zln@Bznn;&V`8$^hMBhX<&ZFnRVclmD`Vs@GD3l3!O)%2`D+fha9^ZB@%G9%77JF0s z69Va83hRl|8BM**Dg2%;@-FKE8llRyfmQpv(R=mrKubs%KTpUyl%U^2d>~~dP%8Us zGxY{sK;>@OJZNKL2NyydN7Z| z6smdxecZB%p3teLlJ9^_V|HQGEo3WaJP-n9o2&lmiQ(vS zZL1#G`41c9&N!2`i#Nx)mx*x@R3!psfxTIZmV(>sQ^=Z+t49gi#_TFcq5!4LU3_tg|l)V)6oZJh)-4*d2 zzq#8pbVkgZ!q|-%z|UDzZ2pnZ#lC&v8q*r5h&Lw5TT=?UA{`>#0oT?OIm+3?uR2Ie zHj8Adc6@?&YTuKQI-1eh96zyXFRYpwUC<^lG7jBoVd?pca3NAH%XJXZX8Cp%b6e-- z>`P8up8RIfy>Hmk@Y%`5+e!{!cSj?1TZ93scZ>jx6NUP(()Pa#UVxE$wq9Q}M$07; zM7bfPH9D##c%V3`SZ~@i?y5b0^KT}4G(z=9qfmJ2BwTwQtyJX_U6kxX_+}YLi$VbxLO$;jF2b}KV{R57O>vZW*!T1 zqh~b;nBnmHV@Cl-!l#@wj+$y$1+-X?92R)MH(m;-QUD#ywD<+H{psO~=G(A)it069 z?*o~oWrXoas(y~4YrMQE{pKyW;dg&Ck{;*N`*8`fEX|!wVCv|8 z3^@`78VXtob;XRi%M&Q2+6)|rj$)3kAfOb(*Mj7_^~upPkWa)8Hbv%je>1N;)$a*M zyVhS=yza}0Y9tak-ew|r7tyMdI&A)N+W8lagaL8~yq$gV?Mo9i&UPVPC2t&#MxY*B z$VM^MN@Jkw)PhY7t@FBzQ^Zy_eM(D)X(s$xy`q3k^*im{7H)WQ@WLxaqO%cWuY^&w z<)<~DnArw@O*{xW=8@)vBGpV4fs%eLf0;!;1!V8oegh5s+aYQCk^yA}@dU;@r&fKH z*KRZ_za7uHXerzZY3UpFCj{__F<1bw09x!da&U`tD z0ZvK|y>7tj&E5TlI+9@O3Hk4pYx-(HL#x$NxcP*_r={E6PL2prPBc)Yk-$&*DL{P;(ij3(3QhqthcdCMya zOv>{z%vEZGuTtc6_mOV}K&8e9BsX%HuLK$$q}HXa2&{;TG;lQuH^J?K8|sDU5(duc z{34Kj$2VN&Ac{b3Uv_QQvbrEB(RIf05F7PWwk$g zxo3+WL>D;*sIJU72#5ALelqIb#JK1?-u&`BH3eTx>fUup;6nu=m4eobbH?vb4U#HY z052yR#?;#yYV7qJp{DNH+>1`uZ$Rujo2=@AZ)864*VR@dH7ju=jY$xap0cIkkgudY(b3l!Dk8BG zF5y0ZIT@@^rX&?Cptzp*PXb6v(v~ek5^F9sTN7rQ`tbH3R6k!|o0P>(pNO>V z7cnMaAqWdFf%jn3W)vNqAd>64le`qLNWb_1zsv2uw7nSJh&_-K>2`uWT_B}wF)=7H&Q!fyN^Qrb?E_kR#;qC5?_x$i+smUZ%x{XV@A|Z{9rnM3;w4N>hGfha zbQJwjSO!q!@|b4F--aCxTnd3sprx;5-eU!6cMEk}+6}&azU(O%q}PiNbahV9oYz+G zAR>MXO{DL{eZEZ?#d{ZhSUWf{n}{#EhOoD5O2YNP!(!b1hszJ28q=7K-75=uMgqvi zGOH(T5T{FO63%2)DeXjW%I4Ue!>lO3_BCB+AWU9AGxlD4i94E7t5Ju z7roSV8pIpeH``tQ=?swq1d1HBg9*95RKQsIb4L$bm!izkuq?^QF~_TeR1g4^hsiYG z^N_+z9o~Z~c&x47Cg^)Mu`-s9aVp&Yn|(b9P2Qbac%a|2JyQ2mIAxQsxwA2o4rn3z z5TA6}ai)dWU%#`j9*x>l4M2D3ZprnR#=k@CRc`riim8O6s?<2txqrB-Pz?ahqEzHX z4%?RN`&#$UB$5O1P~`Qs81_h<>+Bbh`zgF-ai^_E?8)DC$daNesW&OYn)h7>7r3dr z*_&(Kp+$2N4Qv&@QY<|KIeAkvJORLv_}D>zr}IJXyXZ2Hdy~gP1Ws=Rr#}6Ir7!^r z*1IeU691~7L(PNk>Ph;@>T_7C?BNwB&d!|r`0|F>Vp+LtOLeNnqvRP!f7>@y5NYdY z+cDP=fjn9>deFlRSVe4G`GEoSx3+wpP2O;ePUab(l}^g`nOU; z>+<>jY^4vN3Xng2&xDR~fHHk0DKyK$n?%`s3%h%Dpe+P@r}NO0mJ^S=+|_11NHt0V8e{1o(2VdaXFjuCxr#>q=-M>*>veaum=SG*X^wGx;<-*CCQt-zkzxbIyPulkuBTN)ENHRZ`%L7@OOP&2lUTT1D516-5Y+Yek#CAL zu3v1o#*$za2=w!iqY0M@K4S92Q#JTjr9;WB}8hl#P|9caPTd|Ulr0oM6) z(R>;KGu2k!m>)|Q1P#)7+2%+U&7u{lS-af`hCMxn9KWt}EFGpA#nOU;{_J7Ob|m+8 zvRm~@Qx~g4U)oTTtb^|bU_M<`h-m<9JqQ;hFe0~Y2r}_LyBPP=W<4XU(>?&V98$uf z1BpAICiq~B)Zy=zb~hHvSS8{MC_FU~mGb|;1`+ zbI&%^BnD29w+xmn5}*G*K`E)7CcYPxT;%Qszosa@xAhi_%)Vbf&9l%2PUMNM08Xof z->6*fYM3tZP!T^xU4D_!opdb)p=!^elk$uX86&N)8}<@q&bMYtJX<3m2~A5EZ>+lS zR0;mEY$W9I@lsbuz|-ZD5y|Jbw+;sQG^XG$@!0X+86tRy0m-|<-Lgg-K)?aE3#O)7 z(DCR0>FX+HyJlN9JHa{S$D2hemOMmTSg(9!ax6u>eS#4Z2ksUwvb&~+C*-*S=$g-e z6Fxs8RrfqgSYI25-8h?O8@5NTCe8x#DKQzC3*zbcM` zx<0WbG5e_LN+6cbb^k?NKzW2+2jwmOD*Yy|G7^UHR9cFH?u&M!e-_VE?P#Aq9ZA&? zr${&&6Xv*xwM*`5E@RmA68@*6oN*K~;LPz6Q}sW=%?ELhFJV8A$o}w>?vy3xHnCER zl_$X^fa*_E1cB|8At@~2UCsb~X!mObB7yOa7}L~!MuF;) zxYitIyfzw^lfF(3D9k+uUQTa1j0{F8#BG{wVd0%UPdJP_zEhO=ZKHU?NJF)t zzx0o&^fCWKulpfZz8&;%%t$g+2VyHVMp6+LxSp}nt2G!{H~|)^ejq>#b8AowV_Mpw zV-#Z%Uewz&`2o~qK*<+#?f0s(dUcWp*G9jKfsOJ(58X36!uJkq9ez~Blbi{a=7LjY_X zNiq7sU-?}8O@-@LXR{{a=#^>A=p~S-KAONCcOB1J91j$coE8NNMvh2Ku;rgcetgOw zv`l-|&>qN!h$rj5M!eAQh4GNrMr7Z8+`g=xA#Z+(??0HYNB9&N!G)`Tc8EluDu)YU z0}cJxpX^?^kMrnieT!#T%<|P+N#|V0Inp)dusYSrjYs{t^p4YZR5@y9Gv0G9T%V<$ z)}5jN_M0`4(*o!%`xs5+J{yzj3E@_AD{qpBS3G6CUm8~W1)R`{XX45-m2bUXvgFdI zj7jYON>E$3cJ~v$I$24UWc2Pye_^NG8v$NSSWn%sO=;aFM1k^0BNOqKi+KR%i)*+il1lHDMnvo zZ4Ix*$_pt-eM`Em{)eS^814ZFTJ~=RK|i_S2ITOw<7Hj!`n$tz?O8vnZn0;n}< z)uOTUEU{C^H~i$gl@8j~lbx%J%Xd~WORms;CeG#fm0UQ;{{qrdfPv>AqG*^Lg?}vj z*a2TXf3JNvyVx=f9`@YPx5BMuqV0fa(J^-C-JcV6>#y&U2fhp4$<%i^524#KnCVLm zUwh&cEv*4(CHfL@SFAeqSzor2f@tV{eOV`jx;rJ>fCmyR@rbWMtbxsPf~!c#>Iw7P z{OgKlpqzb4K9%&5e?z8=t(8T_OlQ6V^omxXp%e0Sv@v*UV-x0!j!s3xbf|RCTGH~A ztBj)C(w#+%WGm>=+c!0f=C5yV|NIzwZUFAEUS|@qdqy~U!1Q@0Yca&KTDP-{WFT9 ztKPXH3viI>AsE~;G85etwX*^5w;kwPXz2PhAM^oyJ>+f~o=NaYx8M*7=qJtjn|iuE z)A82qo9{3}zYPq&W;YrlK6&_?+g7}P3CJF<;5OpDRQ25lj+-POix z@DWJm$t5s_%HMRcoHkFz*!dnLYqP+sJlmbP*%TK%$pr(nq1V^{k>Qs+DPo;`DfFno z)m)iTXATdG1m$yf))*HT(N6pN(?`=tn@B$-vQYO*9J=t0TCDSx!%RkSwo_i`oB&*H zeYCokJgVP+Fous z-%x&c**v;pMw50zE(e_+Oz0j#kuBHT2n8v(f#d*>Giw1Kro~j$(Ul~1+CJ{1fQ%Qn zx?2I^W6#}AAopTQdr^hEbHZvk%_wDD__gqL-idrE*Pwg{sJA!g?~=pW&B)YXXqWjeL7F^OE=cQNvi7!zaBU{dC-K~(M0-`Z!n z=4MTuz;=vBuAc@oda0Z7dONI@iDyI-Ijm_H^Wf_tDAv|b#~hHPWMrj|N&T+#)2sCWeA(Q)!FGD&7yl#80p#oF+9|gvJeQhNOiNjY zUuf|fi$$<|{l+ZquF+uJ%pOtN+)6|u&r-tqnkj;>yfLKX&R~Wp$1AnCU!2xW zst6reKt5E++CAG~W?^x9sthQ5FKaW`vX6r_6qf@;o$jt&%iiUswj)usctELAY}|qO zmv3kA#zt7N)_=6Ja|&7ksl$)+?!gbxCUI#ugwC}F-evk|hkMlHt$E~M&0(ci|3cHM zt8Ax;2bz{)wE5_P*+`fN?L8MGVOeSt+#$={4Iz|?XXUE57mn+eyBZL? zmS(Sq2&$CLdASt^9vC4?XorV<)VJpv9|kx ztI>51!v1f#Z_=IdwHW4vN@9x6cY}huVWZmsENWpm43{Y8~zE zuX9~sTwLK9;7q!sn37EJ4|>q^6udTohZS^W9~O81ymVt(J})@N8l2xn z4!gFw10)}YFR3L->kq9vc+#f7m$Pg+BQV$cE1o(kI7gM$k#EKyC#+l)IG^YNOoKk< zm0TeC-DS2h1VkU3rBOyeYAK+SiC-?)xH+4rU+&=1xP8*CvE1D7)3H7lp~3KwPbKkNv{BWz5EamT7as4HCYkuTxu- zoh1hbGtHnoQAJn=2aBTz7Ap+qBnpy$>@Ndb9_~CJ{B@+3wd+#Yo_Jp!DNK>_ys&!I z@vg~fPu6<+mH}ZKHz<#N&iKN0i2QeASzi7fYS-8hb+h6(d$5Vh@eY8&EwG(CmzxmK zJF|eIlGq{e2QuZcJvUFu>a0&E5}1Yl3LpxHbj!7W-{}XjTPL^UteMFM3GOctauTxM_#|H zQ;0Pm`_hW_eV-QUwb&7WW{)0ig8ZEjvb?R|HYmTH7ry}8P1vcCT^j!`NA?+;0xaE1 z$@{cm1<$SY`o0oy3x!K%x!Y^V-p&1s^xG6c9U+}RZ;DL*wJ+qiJBLEH9sB6^2-NXaT_m(X`u131K;NEIq>MK-mvp1YgryB_mBB% zXrMc{q41`_Ci#)?xR5Ebyn!+?44v$)73@(PFpCzeNEKYl+|Vh*xjq`+{O4W>pmPbQ zqw20e+i3$vJ8Y^Rpf8C%! z&47vCcjLt6<}M+ZUJ?rS18?4Dq$<4fGcjLJ0tqb2;krZmgv8Q5pr+m2(P!;ZMGen? zlt)AL3$)9TL;y|ic>OSwdrVxhqycMgVCCa0nHWEC56jEkl?m0DFA7Mefw~d?jUFaD zA3p@T5PR1;qPD4IJd~@D12BOIpCS9XN=;)o)_3J&j7%?yfPh7==VuQ4JYbZ`bLOoD z3c)BvDrKkYu@G&ot-?!{^B=WC+Pa)=71)iNzsH5w!kl$9Hn85S(=C<^=~LY97_nrl z6cX*UWDB)%S#o3VT<4Erd_?e?qNu~Tn$ufYf98VI4wEWRC*9)V8pvNHzN#Mj=Ix;y z=0KHV{HL_GFKQ`O6P6Mx7-C}aJwlu}tjO7CC*`T_qR*4?FY(>*(hP^xJ?`x%{lA&a9G?d{-^=O|fHw?%Cp?no*S1O2nHu!Zf<;>pCEd;8~Yu)AOiq2Zi_p*$_r6Zsp~ zUrBf^{rI(pS%)rHCZ^;~u6^Om>0voz&S$*JAE-@Yz4$w08$!n?XNOy8bjL6>2Iz+F zib=jG>L8luA*p~m85{b`Bi~2X7phOcMknAA4!Y-6u4)aWi!8%HMhPwvF{xh2s2~Mg#5`G7-Spt_8E7@-VIJ=5KC<9Erm< zJ|Mf6eLJ%9#60qP3Q?Fsf7W7n;v==7J~ia9-sS_ef8n+>+0v82%#SiEn(@@d!;;!K z?>X7hLoX+X9(pd72=_oW_LJBCnI?<8J3&FEpc@&$(o+wI2d$P?WNh*fPYI3$6b(^x zc33Y2GW#A`g+2-jbC;a$-f&7XZcON|+NLtKzMYzvXhq2^>^SykLEU9b<*Cd1&iI!C zIL3aw$T&+&ZN(O=|7nqB9jGG3hI+^Rb8LR(m$($07WbV*M(l&XWUzeHpL>d8M1Vu`O-Nn@!i!fneDj(RoH0JZ#%P3`IVJ= zs{~>W=onZ;`85YFcQ(UTyw^eM->O7LR^1H_5 z*lz$;g`LG@#A@}|m~ANtPqe<)o6wg&ap_jiZ9Q{((jdG#)@G^kgk7MC&FP#g?aqV1 zOANK}rO{?n$pO*kFqMW~;1K{Hw~w>1U4z4UD1qS!i5!zMj6$;xVP|*sSvA0A^#GOy z%orP9PU!zPFeOg`#g$D*&lA^_tBJ~=~Kv6-s7=)`F zZEFj>*I%k7J9{hnM(EDa7rE)Vx|}g1DVHr25#}ko@+bF^hc*ShC_mE0CHJgPSWC^B zg}N~Qz96ZW;Ibrt;(}lk+^L3|ysnFluXytWHZPRHkBUdqq3(@(2QOd3%JY#k!Bgl{ zPs?xLWiLX=M54{19QVS$ggMWq&<8m%;`}*l{kkpaYl@&Fv2g7Z=F7P*V7#8z4K1C3 z&07a3<{?&HW;6^m1D_a!meK%bAnKyp?QDa1 z$RnBrcI1AuR^<$JC@q_J_lld#t2W;1+3-Z9pU$rR_w8PQH!R~XIapdqZG0@HDHjRs zgjuVS^=}A}Kqx5;piv1w$XW5$tV)}hGl6c!B^gs!)Eb|z`jrkS#hSN7{Pnj6>Z1$I zf&eiDL+ljqIrOy%KjFPM9^O|YJy4uqMbPtrnboijEIiM;yh&ZDZ>)@EGk{PyNq>&m ztz|(Z?=^P=xuG)2D9vGPEpwM(z`cM8T;5z@00cl&3rf-WveO;=m!VQ_@^`JKti|cP zk++mjJ9wscUn(X_`3>m5FGTwV&{#qK;G2XzP4u2FL*3*Q=ylSI-qaM=B<#gPs z#r^NQ(EyJLiEgt2qnJrnF$%mfnB*+wNu7dVos$dy0FWj=Kwc=&7u!#zZ4x7@m6k@s z7{OpT6YRpMi}wJBK=E!Xuizw9qj#ovB(Y%Xm%c8Y?^k@76u>!|>a$b7;BlPaNgM_U z8Q`k5Fn6h0=!TPyPOvxen8!o40Tb_<6*t=p>%+NR5+_ihnD1|ITHwB6{exocr0;M> zTjU(uRMqt0#c}=ce_t7Qc}rOM&baOoaEZm%L_Gc6@$;&fEqXl zt>QwIVy7@%SWb30GaW)lou`-a9OHi!7jrSf=$C7(C&`N_3oJsU?*yC@pqd#Kvj7zfU#Ck4PnWzdcxIDKORz`m~v_&0;1s#M9#fB#VQvLf8expRF=(D5x|!e7Lsv3%K)c zOM(xobxd58+05V;P-Rd1^=o;x&J`GI2EbVkO-Qy|G2X--G4pJ~Eub8E%kAcA>-QFG zy-qx9C^wnidjJE|icG^PtX6e4oqTS@bmk!@^u-9#U+nt2+PwvC^rUSmOQiKRB%u)Y z!4koj_aC>6{0csiMm>Z9EUdL%a7i312neg6kqo6~Kd}f^!Li~VNw_rt%*0o-FW-WgcLsEb zG{J+XN`H02dS`yMZ3XR#Yu)<9PD_-m8nGWdv>WPdHOo)VK`{`Sv?;cfH2yaN(LY;gB~w*!BL2B0hv(a!G$-e#9}dyLgQ|4qLZ)so|f zZ*ci%{f#x0EkdnRK2Tjy7Ylo6CXd+8xq-%c*Fvg@v~7yUrP#bJ!S9ZdIRS40Dq8&ow$g=d8-3dwlbf zslCf<@L+gm&vN`;&!?S`QPgKj%hlD>hT}W^%&GYDL-}*n|JC#bTvbs|#!M0jAI={4 zCy(|i!8`nwjE{3yoNvw2%yzP{zwVBEdnfKwU?<{5k$8y4eZqr}#1+I82m5S$NBIH# z?bUpxl;hBqwY0cxH{;p>^~wp9yy0N5M{OfQ>vhc6l(dnsTA34`nN(9=>i)QQ^#wk* zvM{$71TuocC);}W9(zn~alSmBzpHVuZwQp+eFs~ccyn>wQ#xf%Wx%&*hY!z@1y8Z* ztDecJ_^9EC8K|VhS4?Uj)c)f2%mZ_q5;<6J_p4!iy8hG$3FQ5|=q<)hG7@0=&y!QYD9mc5A zY53#z)phFG^#|5*G}4D?6TMY()^4RXV&W)dUyb-L7|lm)wf;+UfF!7O%x-~71J+T< zue%+Y1YG!4K*Nu^PTKMr5No>~vga`}m=WO34>~PpUbjOHR>Zqzd^SC4^n_fW)+0nMk~jBIp4;Y9t0e ztUEhRTh*0P&QZu|)8+L4*!u2hw*Ef;Qlq7%tyL67QME^@T2&OailR#GQnmLAF{*>w zHEOnY?OG9g)E+6SMna58>=7#=*j@)}c_x*m&sdOHlsi0ST zqpUl(d8Bs_Z%5G!hFuc;ctz2#gq14}#F@7j2@3J=F@!r>IMKW2Z$(ddhgqR3APe=!(FWiYl!}S;)&!^yUl80lVeVR$IB;r?;i*O_++L9GF2v9lPl<|4x6j~!X z_l3ZyB_-U>gmlplj+FBI!GEp$O;r&~ANCDP*(@is(!l*jl7_>Tg0Evip9^rFFKZ{F zEeO{joc=;N%7=j#W9Kv^Sbi<8aJ}pwL~igN>2av;7WY{6)ZN{c+cJR6erHLZ98 z&tr=o8NM*oOk8>oeD4thez|}?;2o=W{@{vy%#>Y0`JmWE=t2dv<;bX)uBF^e`LCPe zffss5IMOD(Uq2bY($chG>@DmhHXK5xTtOTF>Gf9_cIL957hLiJ!%jzDMBm0UF}C3_ zw6*IP68?mr`RSNR{sNxis=Mbpm*bn>8rTq6UeMBh5Ryfl!M~_?W&&P?y}0vb3Fm2H z0%QohhY*B)P5TSHiXPsBi?K9>rPRp|Fmm(&^R{f?(#>hxZv!ja%R4grA42_UjbBp| z75_JdmNXIp(W8{j^F2B#W>AQR9TPRZGd1dXa`kYe^6q zG{h#dcf{&$H_x=MqkqZsSj^vU|9r#&^q{Q}?-iq+{5G(PGZF6Yw&|76ij+8udo24# zgdRKe$W3)N^CydejX?>g!Q6o=exaP+!+R=otnsCt3jjiw+a^q25eNa@a64U-X{p&| z@;*2;61;4f73BCSxH+br@W!O|YsejN&3Fgoh8hh`{78^+@dI9S5$#&UVmp0bLnPeG ztuJ65RVp zL~|be-wCBvwxr}dRRxDa_fb+#%S;3yUoKc!S85ZnSrO=I%Vj=|51;uY@3~$p^?PG4 z7oZ>cRsf3PEA94T>-)_7VR}rK2`2sVd&ax=0$;mbV})9kNmBrzMFEs=-^-K<1CpUm z=Xax0njH{PKztzGbBTc{;to4lW3HqLw@HAJhC^?mXONS*-5ob#FF=8O<-Ap6`+PUG!zTdV`$uT`^rZg`1O;COP;v4#yENhcN9gUVVOF0^{}_GDP|=f;dt z&ix*G!3bP)-CW`7RAa7Sg68*vl7?H;wtn=I&4VCc)=?q>7Mn3lQhk54%1dq-kC#V~&SD)wP3LL@ZHsJxA}n_ zmEd6STiAf>*VJ|k#a=1sEU-Wg>i=FT{)HMSmr5Z+104 zUb%{RA|qB~tKr6gbz+^k!Li}@3muaA(}~D$v^f+HI_ES$eX-A9CUsP>-8n>S+1qx- zztE_i|7>@*V`{juKtcI9u(n3SBn1>SU;N>KAUBKK`R{F}t;_z|QB^U6xSzB*VUZvk zt9euLFZ3pBTuTn1_AwBo6%ET$KBqUL7>KXBaN~4gY7|qWxaOf$pNRWqEkD7_0;>rg znm=fDz%WCv(etZcfp(abDEtRLAr{gMrjC zeImZjiAIoR;5ggEO3!XMe*_W}P4GECRHcU8~^R+(?0g*Rc*bZcYvqW zFG|F@0dF2vDA!4IHq$HQr;rg$c)SZVOT5lQ(Uvr5x#fm73sQx6cCwIN^`afegR{5p zrfuFenvMYpD)bLthw7rf6csPDUpzOr=GHRVAe+$h)`^|T1- z7^nB{qQWy&9Y4%|G%nQA4wo`Q4>e5MNunC2C+h7vXc2KW4KtMJJx-jnLlw{T@In3=#13o|mRs8q z&Rmxd0GL6C>r>^9|9xO=x&xgC+cv;A4}XTnGd1D3Q4Q&7C++Vto9A5O#tTeLZueL4 z8~#pk_;Fq)j^%*_1MZU%)gY@|PV{tZ)Jr=6ggiU8I6#x@ZJz6F0@bvN>z+HR6LL+1 zhTMJe;UPzKU6)D*>?v8PNyzv{G796>auIKI>!05{Ka0o7Gf$5+lcN?c`oZRQ(x?Gpd zCMAoIH>Fa^GZ=$Oi{!mL)F;oPH@xni4D?fE?|`}Gi^nJP$_1v|Y3=vf!R4dv#4vZt zejt)z)Z5W!GBpH1Y}k~VzRRwgR@vtI1{7v@YVTW0vP>T4ZP=^_8jWmA<~5cngPKBq zUp1QvRle_E$wI7}Aby44Lv_{OZE8XC!K$ch)*qd>7`h}b56%hwl)n!V=VPfN%I|~y zOh8F0Z|8vA$|y!}w=F;CoaRNw6cC6satlgpDbox*GKti*VqQB1(uabLtP{G1{umpL zNQl*tFRhS?!GRU!^oXb!^Vme&;sCE+bgZqy#XiG>ACS|}_(%C;+hsT0XdG)&wA1H# z7+(uhcph4HaYod{Bm%cFS&}yM)HLIFG_bDgNEr(b56~%kZN!1-;>icxoZx^{ZGjquB?*UMSQAckw{GqVb$`N56}jYy;t$2$SEf=z}s zvs%XcK@na7Fi5gxCfuqeM2OOUGW@{x#ZPBS^c~n`AXOsJ96e*O*RPLo$1PG>oMToR zkD8rJH|ADw$e*EGg^##du#x6h zduh+CI%X=0=eB;qf+aX^Y%oXvY4nd9(^d|D(Pn77nPN|_iA=T7c+cWE zDcz^w)&o*3;^E(w)IDV?9%1s|<0w^RSO`ug4z zst|DmoNHpFG#(NzvsbkDgVF6I4;bWH^^|^Yy2LnuM6{hX%gGqPK|IM5{Y4PdiMV+a%*p8yZCJIh6lf@R+uqU!4pimE0n>pk{0%ph~1`j&f3Y!uMGcVqpJ}m~5M1@otdP zSF4Qc6&GpChKfAF?g|L07OWL*9!S~sU-AB~_-*FGgz$5}jKq8dRi3V2JG6A!xX83u zL>Xx-X;~MNXy)lT|7TyPd!oNu(_2EUd9c5fo;#592e9s=YsS5wM02`d3F>Ank2vkA z`{9c+pB%)bZhqs<4F+IFr$kuuY4E&zFECeky0Dhpm^U=%k)pLr>@}~e`Gu~<|FSX4 z!rvVJ5=a(n5E1|=(`ZCJhbGrMtFmLP<@fe`QxrX5s3=mr9I#sDb^UyUT65TJ4(atb z*D<(NafR8<{G(7?8;|vUZKA{3o-L7OtK7bPwtldjBC$espQr3nmRK;F$0SHwlkADf z!%Kn={c$((iN_*}TqIpzsg3bZWpCwDjpwqhJgB4ayumVqVn)lSMjon$(16_gx<%PaSMVX0IQVfWu63C4^F21Rs5|n={y}EJZASZ$ z!JrADCw>D?oD+x~5l*Mu@=M3prxTkl`tod~^L%5JS_AI8f&bihLON6{i$M=<>Zn7u z_>)<5r$6JqegM%s|Y9{=KE0B<)vjet*{_?bjDI`FnCTugejl++{5G&T|X&KLF*sAm*3_ z?9TT5B$_Ml8=%lU7P%_SVp;ziVL1l*X|9t%s{vInx{ICtsjl>-P&cRmmt65~D0yMd zu;AO_3uK>;Sn3k9vYLujOu;m_{KbJS6|eG-z^WMa;U2f~FipjI@@Xd1^O`LmaVJKF zfOTuc{bf<_FZe_fU=3tC1NO9nNFx7#FsUkA`-HHybf;)(%N>Vb6*+OJEGBMB7G(<4 zuxlwbW%FMntxVmLg_^=*j-K4l|J~yE#cc7q%U1HXAB3{v0^SpEf{=0|JGwReD7M5y zLAHRMs-eoA>*@j8-C6u-1946R1c>z!vr+R;pWU!OW+c8+K>1w}-%mq|2d%#p*hUU8B5t&}0VCdkwLwLi5P>x_c&VhX0Z0dc#8 z?qhBE=K|IjZ6Uy-;Tmt0nF9be^a3EC#~p4m#$BZgRYSxYsfUID6QI(u{e+?f(K}x;;)_@6ky9?rD^86_52g zA=YhA^&Xdsm1e_^NWg|6xDzt)QJ~GtjTEFVd5p>J#N}Q*HEVg8Zx0DnESwP}sm#;f z1K^geMkNr6mcXAs9;24=+`++dX`9u5c_JluR)hY2$eE7?05Ss0etD1-NC9W(y@*qZ zr`M_akZ(Y^W_XaWoAE!UNpgz5j)?-+M|G!kIeBxovI`%@y$v5{=yq+Wx@gcV|eM z90HO90+q|>LOVuj8eEK`IaZz`I2+$728gl_Yau=v<>FbJ=_%$-k~6LcGRs`22j77y;s!Cj`WnmNawT>Tu6Lez)t!om6 z+j!BO&%u;kem9Znnc->dfm%ks^u5$M(CX^)e}VZ-ypa^2IkK($0+Y8q_JgSaSxezv zIX;gRjgQo;h&rlm`FsvQqTiSLtuJP2STA-HAd*<}+brJK%hQR}Sd7VgOeOR3T~#fF zb(pe*zK)YrW_#IN_ls2oCf+xW1!ogsgzSRb*zuM$anulZBf8mncbAKPc}YxEMo6_( z{kc?B`q< zy}Z2|`e7zqt6yg99P*VZ>Yyu8hw>XvRt|5=uRs9qmjjQt6*Epp&H?|P6pS5U^A+2 zIf=xP@T@xLRc5w_vOjFl=XWk5Wtz_QcAjz3XNUN>4V2uqH;!?^3n}+lws}Kmj*e?5 zb8WVA>H*msZBdTwB%^J_o-eS&H=f+z{;;N6v>Zd*2EdY-6@Z~hcTIuCDZ*U}2?x3Q za19#$hLUr@1XhIkP>xQ#!nw6yvKG6KSI)H?IO03{>QlE%`k;T&5^XfeDm#n2K|tV8 zuudm0#??Yth6~;BkKYX7y*8lQO-l{ut{zy4Ly`u0i=Arg0>d;9s=D-D)Hes8Mpj5U zyXy%ENP3wWjYPvHh-69B_NLFvr8P7&R=ll~WRCoGVA<67I?GGsP{ z`se4razvW#3#S$YBPFb{7ye~rPH`vQE7ob4?&JzrFmy-yj>3bEBaK5Q0fh(nwcN2| zAivx@v98R6GSUCs!#_CT3Xrf8(V5Mj3Eer{lnYpmlYIVQoQqrG*DGIMK$Q8e3Yeb1 z;p`oA=zJeq17Jx2VCDpD%l4BbyP@>5d@#Z(`gT{EirO0r&Q*LEYr8a&ul{|B^HF)H zFVgCR+m1f~f}bWcaSiziOGR-(vo-qne#q&6-AjB4;K^}uoc}{}4*HPY0lKPi+n9m; z&dVuIn^=p0*tZn2BL}u;dc@vBH=8?7rb_a?fR^7E_cswI`GT!3QpYkxrNpBE*7sT4 zF`e_W*Kpa+2W8U7M)FD>{rXvy)(6*~mx)S<(0QTM$w)Ih`Iecz3F@ye5)sxn0 z*$^?y^wS8%U?0WQ-E?RLpe%kJXBz6wx77BrdmuOK^C)q{#ROz=GFdoX?H_r@B)UeF z0!9sV!|juV4Qz~>Z zIUppEPb@fpuv5D~yce$vUU<|?Ry(d5TD3D38c&}F{zx4fe7iXJFv6 zXF+%4h`RwK#)&jm2iT3V7j*!44v>wQ(xP;8`!J6v-TcP3p91BlI&Ae5a4a$`Uz3$! zy_`RX)am7`Jl-X5h8WHOnMoQN+pZGZ_Y!~3SD+S!^^&D0Am-8pD`8uxac?XZK<>t7-P)ScJxU$c# z7rj!r8dGKY*-G?`G8vZrSrDV!`HeXeFh;b=4K8C_GMfX}DrRM)#@as~m`_-;t59u0v5Q>Jor3to-j{xg!^>(BG8=fL%Nh+yUsj-l0 z_~^{IwR_~66g}4~_QvELz@v+Js{flk>K_sn0ZaX?4rj5!Mh~DH z1zhQKPB-L?a0wNGQRNE{0qo2HQEzFg;5{hiAiuFNm$m+6@;=;(=rf=Xq&^1bNc*Rd z4}9j9+SSa}SlFWq-Qh;QGrn3Cohl*X`M8^5IJL{vw~^+jM7aE}<{~CZOiZqTdSFp_ z?k6KHM5InCZJ4%+qo~e`8bF8AamQ*`avt6^1Mt#;iYMdFujl^;9_g(7s#5>gs9we6 zuwedW5z2m3Eb1CCtH!Zsx`zPe3aYPuakcih%1n%bRfTg>koJbc^Qln(2jtp}d|EWz z?!12Ei(q>E5DUIat)LufG%*J^6Lv~?2tc6n-XS16_X9WMzEO*R3l~wVQro?Cz7ygH)87LCLHLod_~wSqiQyWhSOm?9734e^1N}CuvQlMsEdd{wf2BZA=(FMHXsF z`h{d~B?zH{7fj9|BrOPa2K-zJx4k@=i_vT!ohCNoSrQ(86nbOFYV6<#)<8js}qg%oXUHiwc~1Stj8e?qEYdtEG-%P3WDib$P-Yl zml}=!c=2m6I<$PQ_OF5{7)i|9<=PJg(H%bw@LeoJn`8hO$0E8?7G4|f;GW|OKxT*% z7GoG{=Tz#`L`L@eA-I)W^es5On`~JyaJ4|f1&?@QeL^5)T0gbf&`+f-*6Jl2kT0_S z9NgJ|5eS^hf=e8uV}zG?CTV+;md!D zif3yBlc#DJh4*=?7W*8P-AvL3p2`UZoq}}*E4yFcE;};WdilD|atdJdaug+zIQk9LtCFfFNtcnC<5mcPdle_R@}b%fsVwLE&g>1`E!guEEIWlXC~Xs5;}rufzf zeFe3qa4CIx*VRHdIC1FXHgX|dyx{tc9VL)N!3)ZSd{vVW>8_RJxvz}oG)6N((4kAZ zLZGB56m>&Bzx%SNArOI@f@y#NlCRG|bWYkO~oexB9oqRb&3nY%&jG@_`fbsUjSI#@*C6l@3 zae?k@!9~w_AYJ`E+pc|cr2q2@L^Jp(nhoo?E7#V!_n>)l2F>$Q32nHLn3pE)okB|i z_JU7PR)}?^a8#)Q`pT`DmVw-j<#y%XW^H6oT%`P_SsEcb_aRZrnR$N%56Ghw$`+akrxkX zbr%Zx2Hrmp*sEjN(n$kV4!SzE(W*gRMcbKPMR7xZYb8F5etX`mzfySTTrq(s=YZj5 zwJTZEOpib*slleQl0qt?8PBjnkD`H)%$jf(4s`~Lf`0uMAE`ywpZ6%k z>E-vHOZE>v!M@NLU4D#;5qqasv8$>jtB;}jWIf##!(d0wo)=tqm&1G0p+ zW8O0Rb@i$4BoyE3TsZ_USSfukCD(S4G6vMW2|m>`&^(v=Fe?1#Eemi+jqh=BD3o|At$aG zw$rEya>y^e*))5lwtdJb3A69so$ns2%Ls<2v=?I(V(C-C){dhat*!e(JAtbkudqom z17DpT^W2Bp&^(4FN%(!mKFAVx6{i2K6n_7dg^zEjSU+?Ybawd&ohR!ZEk&GKA#Tn* z8rL-QOU6PgCwv>r`d;~=lcs7xdV@P+?eQSJBbVuk7NvqPVWC@hf}t;ttjGkW)C|+V zM3l5>sTju@-b`q(iqA@ZGG$KZG5~!gq6`F(r^9^B47fGSqWB?FC;e}m<(rT;j?f(Z z1}jNVAn$$7;pClTHo%`7JYMiJ&Wkp`WfWw;^6PbLGC| zm(iGy7mrA&nmPv&|K6{hy%}42U((Jj8-sLt8I8j3sEZ3K4Q|^h6VIgdk+1RMp2p#qCH$SYkLoXG z(*N2oR&;j^S9*2mG@7&+17{{MEY_&CNu)(QtF96|IjJraiWrdXh7s^O9kN88VTSiQ z?h7K1JMEd`HqpEqP;o5Biolkk_})O(l$H$wzn@JObq|UIXau{|HWsy@rv9Gq7S9GH zeaym_cv<9!{2oH5wyi}oXn4wAV(%gPdyr;EqmnHAN;MJuIGzIWf&^Z7tdSov<{{MM z3mSTEZ#?X-<)vM=(bd3`kvoV{_p`-@gbr=#c^L>R%ca5F3HyQ{5k)?R$;mpNIt};E z9gmesl;|2aZyDP=(B~xjJDIehL<`jN`TWs^hh?E>TMYbdHtLc2a&=u`oFZLATF~RHVZ3uzFLR{moG#3}N z6KTWoc0c{<%(xDCy zCz^6~R7Nqwsg4=^3xR^BQxiZ7;e>#H^I;d_zM)>mH)c*idCj>3*aP)nW4vEdedp#5 zSgUcv1?@S2mRnXx4$-ZCV?)Y>kRM-5m{}bh)t;OAo?9)*Kpr>5i_kfdpZv+yUm^TC zJZIRJW$EfPlrkFGM-|7`EUD#Sz49PRP7x9#@qy!RErk_`a2;z+M#d7SS-iWWhD5< zEEJxqK3-$LftcvgXd8&Hxb93t<`w?XU)wEQxV>-*i|2(@lutv+x86de$|6yZU#6B5 z>sQ2#Ui8Nkd)^&fPOyz6il}($iGp4`h3twb^>FLDdWX(#+*%Q6tCfM#yihcdZK^cu z-Qi^!9^W*@rbPUX`@>Q6%_B5(UpEvG8U$$?4Ch+-46Uau#2{NJswfg*aHI^H*%Rfh z9ZgRQ5tYu3VG6hBiTW7H3WY4IM`?V2qIR{GZTU@dL}CloogL=;FVkVpL>Rr94fhN! zR5KOk8yM`pmx;cQp7^0B@L9>TPEhUSWTt;Z%OqPfQER@v{9$6uTS1Beksw3ygrywD zR`Tdl^r?yei)&_qw<+DN7PXa3Q4JzQ+stx`WLpShD@Z;6l~Z$d0Ni%}crP&qENFsf zX+v#&s8_b`sbo4b6IX9Hr9#j1pm?M12;MvmLTl3VStSl&3h`oJnG}_3@-)~UQYRaK ztfA2lD(QDtqhZHl(&CFjX9L#>p4d!ngCh6*Hgv{c;*lCYgCCMHI3+)EI>^cAZ8m4{ z9DCnq(KuW_8qatV^e}fRvdZeN$91LIYwCN=9WuW$vyg5&CNy(8ICqxqI6F{y zT(Wk|?VU7x9ddvQM5zcOD^Oj&3GxnJ1lAWsH9NiDtIwq9ysD6;uF=)m@&M$)4FkOY zavl3cKb}Mf4-&UFx~d6izJE>6*m=9j-kf)Cgmws4a$8-!j1%;!O?OC_4jAVy<3cTs zObzh_$Xn}*4F_{u|7b3^NQjXZe2%l~piHLa5#+@88nz@b(bha~`9>a=Kr2bi?HGKU zE}$PYKI)}4G1rGt$nnnXC5hdW*P#%V{w<2};0{xdy+kJRVre~s)0{)}RV)U3 zR%h-OpY%9BzMLS}+OzfnQF*5<&3>CVm%g+0eZ=XN$xr2WevV1xUt0JLjozdl@lG`W-S#9@$(xPApsqSW$WbCX|^Hw)#_Y(f*P)}|7 z_?}g#;WK4AGXsqCpRcC8`rK7yGvf%;Fi`bWWYMKW7AxXsf@W$>P_Kr`-+ou|PW$>u zMpjTk|800AHM^|8h2HnmZBBn+_lj^YCNZcu*dFm`t%c#YE26W^MK+$H1-}f{V-pa)usFq6m!xZ9MX+eunUz_a;sdJiOMUF}gUzzqtvqRNzXp<3UtdhiX3=ei1n`Hb5l&7lwyV(I08+z%VD0gC+9$|qd z3JMl28n1Jlvd;Bi8qr+2NW&($unFTom@}V#TW8uFnU^RbNb$>#9(e@oYNC4sS2n&x zuw0W{-OV#0cnqKk&6Pm*a&6KYDSaqQ{E{dvjaJ0zg5Zc%;p!ch!l<>mXD_@Ygsak^ z1KuO9x3EEpw2t6h;y!d{rN3`#StYcoIWX5-MWp$b+;Y_vh@+b4iD(#@6|4QzRCP{z zi{I$VUSj-D#ybVOi$X~QQO9tVh~WYaa0%R(LrLKh04Fxs!IJ33hrk- zK^+QK9WLbk(6^~7_BIWAAd0_~DRA{7fA8YfbU-lsQ;+z#B$i!A@m^~OCutRt(N-A^ zTGEwdr)So+F$p8Z6!F5g!bo)`c2+CxI#Z^I-PaxklnK0NhbgQifP*9u+iBI>SKV3IV;* z_eY5z8If21KG9f0Nn@7L#N=Glvlo*8iO~^jPId<(5cM9_ZXV+@CAc%BF+Y{)1{a*s zQYkHH*&ASQ+#6@#5_WIPHhB8j#*d-Y1-GLjDu_5?{a1Sp>SA{hOX1tU-z zmBstm)%n=-COZ&5wccHH2 z$077UJC4DO$)u4NOXBN9#7prtgcjP5LT*s>Qq5A2^evZZhGH4{NrcJndWY$VzQ$|c z$XhGLgx67wih53dPs7W80P*2}S>09q+!K})w?Fds#E~>zK$hd=E!w8DA0$TIwh!ek zV5ieAfet9>p*KhZ{t2OW%lMy`;JAP3L#kLO*;&2;%#^y&2?^@P2_t>^p1-u=4uc%_)LCjY|(df zdJIUv%$R&gVByJ~aV~(q+`U(oC+wBW)<0JLcRk?_va7(%^bB2CWH&0rOp|l z(z&3o7gNZpZri+xkYo0tRn-#uaV6;fW>lHHrEA>lSj2lCUD=fv%zMs>z%+TP}!g5j%QDAKZM^9f<9{ zxP9ist#symkzBTh#s??_E-|X73AJeJ$r*qH<*NTE{~xSaQ#E})>HK_#M|LFv)vl>- zh{!nIx8LH=d^>^s(!%|Qd&TsZ|FM}HD@3*B993ObkeP4=t>4{f?qGDM)ZAGN9kP+( z^}9v-m6fuguOjt{PraUm_rwDosU1VA@!gHwuSP&44QFIM@p`&%7jhws0^4uPiqQ9SOPJ!=bO-01e zH7v~L`59+T)Jw2U`MAf=B(FnYO?E(E0pf3a1yJ}a&f2o)ys*QeK+j*MUb2gO_`jlV zl9P@}G;$yD1tWki@H$c%orX!~zf#6h9M$iJX%?FjSNPf>PZ~irAvB3VCPLKl!ps(_^vlz= z{RL2g*(ibp${`=arf2=oeY84RwVYNWi036&I3H}h$g)PlfL4TzK$5#<^J8=bY03Lv z*X3`3ZR#&mGRT8;pz449I`+dA@;`_AtS(gQee3$PF~&$b)tV;Drlkx~9~<&j=e&dD zRL-exZt7K8_j>IO8)5KjE-6kS8?ixJsaQgk^99hcE|Do;vWmL548NA)7 zB*9?EDNm4TYykqwuIz~g_1~i(`<{pt5w%=+pKR+1*bp`^E32Gh&c$phI5^hp9KoHx zWgQpaNhsU)wfX$tP~4KNAp3`z-;(J30!4Ei8dev@fOMU>Tb$NF^10uQJ0<=f`!Zv{ zLg1PmHEueHsAf>wa+s;V~!$EKM#}_!u5ctA_ z|Dvk@V}-hBLKRrI8i3o4l_UABBZKM(^E;hX3Q8CE8hfr*QE#!C^!>OhDQ?#zBWDLK zjQ=M8TBqkZP@ZHHM>*5D@$Fw3Lk2%x&26YPtdE1NyRIz^ptlXscr&bE(;a=8zG$96 z+gnTg{6qctjbL%V)Zn&%XnugY%^$va@WzrMe(-N2rx?&LwOp2cSZ&?yc1j@#rbtt= zFcc9fzr*|}`X6rgzpwZVI%<_A`%PTR{5n^-V?0^!u}{1tECy7L2EW+t+nm@4OF>@z z5sX;=;MuV>&=Kt(Uf)iZiM|LoB|{=M6pn-H;EM`~d|0bza9T5QgJwkEv zWfe&5iRuHGI;$5Y)LZNr86CiQwY9Za<_Xr!9o@0N$N*BR8?V^bLOTuV$sXF9U=L%}f5??48(wHM*VUsR59KO@xqHTAaiv^g z$X>F&sf$(FmlR%J)I6C8QC5PRK8%;&abJ4f5sbOuo<-9FYB_B?J7bj=OS8Qm{E34( zywCg#7cuo>O;&rvSxQM#fyctYKhpswi3@VmVOwW{UC_Q{$T&I z{7*@`2e9A{XgY!R&ANqf&YFeGd(8H5T7E$;grL1p3np_q4ZAlPMr(O-HrJV}4)|IV zk$`WGoH}b~k!}#~wvc%m#xbg1qd(`@AqOKH8$C`P^9_G{NJ|W+0=vk+y5bXe@rb|K z{S>uou~2n>x&O#{n2VY6%B{=N>*Ug#>*t(N`1Gxp8y3^_7aL9vf0iJx-+V|`GC7`8 z9VZ7Bjl6cjS`Dj`Y<+HeV|o^{Ik}sZGgM{05!?iUC=EK zUV1M5FZHuu+wYfWvwwOtWDg|mh~)jUklc54p+buPdVA6M)44d)@V1fne?!{@tRHXn z_ty^mD5oAE`eJjXW*1W@W~YHMy{G5@9pqp`evxLr);DW zVk#E80=d6G@=MKTOzgwgTee$eB6kE?4$oO8@rlk- zaPQGeIa6`I=bJw|=0}d+<-3_xoV4$cK()w$k&2@RG-Bsm zyw`&ze^*OAtIFR0%lYQ_z**DY%2r2e;b=?#zV8+v1b1We7<17*n058De#?*^x$(h< z6UlO>lcT_zX3+&si0NwYUtAWF!6`Fago#roIF)%|zBM#fS_zZp5SQ#zj}MA3SSBdN zh%K{9QqPiK8sKH_r*QJna>~t(0zLMk|9;b074}=N_;;YyxAnio%T44QB(GUmw9X(~ zHFpzZ-m!<)B##?gQ+c(Ye<2RF-rZdLJdqV+kN*KBP@H*`KBsQ7pgCy#3w_`v`VoY( ztqJ0lALv_Da$`dkZ`VBKc8W_j&|laro=dqLIIsZ|>)~08x*fk|v7A#jTo7Pm;{V4_ z$<#K?9t2wz2za==Q+Rmlv%U`#P{TI(}E*0F;G+;LaJ;>Fwz74B*o)FYPC83!7KFB8(44v$^XAWq0CrsdE# z-Z1^-T*d#s<^)5SRE~%D?(x=H$L7@LudxlQ4m153EzW}9Jd|k><#@`NP~3%AdhO!_ zYmC9zXDe$#FEhT)N9=v%x~FK(&b{YWd4Zdc@E)>CYJOrqxi7LcTh6c4-h<~^>#w?i z-H)!o9e>#O0BW@i7QY9qL~l19z4CXOlTxHx_z?Lsy}^Z+ZSr#$dXD-!)AjeHWdA*& zlXRp)>OEunnWfAmPj@wHOltEpWx~>b&V6Itl~7Mnn$S>$-mMy*$DucxgvMGg%%9U& z%jVLiXzb(GT(mOxC}fC-_t`jh2&aLi-eb$W$}_3C%=&Gk(14lO`VUb^J0yMR3QyVO zk4Mg!yc$1k%ntrewT;YgQ~(As(19FPZzE7lYnU|j_pBh1jbP$zMYg;6`G%zrCGB}* z_R%$uXzwwmVf?<`vI6FKlM{!bH<`w0@q4KVvdnp1zqJX*kbi2Q{iIs+1$geqL-7Iq zTiTL2$I8}4`~Lesf1q`7Rrid7~(?xFSt_4v7EvYvUsi2&8h4wgisza z$kTo#Z#v5RWoP@Dfd?}Cda!fWVNB`eoQSaf zk|yVF>)Pe`W(GqJ>Bs1sAVEH!Kti#g!j)T;f8LV)d6OF4tfc}z&mP6Jfao?YX?48M zEev(`2L?LujYAcpZC45gR-d$Ana#d>CHswliAp=B(sy(RIzJckdY0Gi`hdnc0`d@< zrhUEiL4kW8nsOB52~kyc=y{$FrXK{z2lC#aqWpIM2Z#~(NK7EmF!Yo%4bGg+sLYvO zb8|?x_!|&_uMlY9Xhd-x&vctA_LQ=$0WF&CV&498l#p3wE3tm8h@R3yCNx|vT@J^o z7v1KWZ>*sv#agpc%h$gOY4P8>>_?S#HtznSVW0w3d%-Z^KYNr{X1K*OP)L<`_^O4E zw6EwxDrMR~F58x<{+_eHE8BZj{^2f=MyuP7JbY{M_c;i&-vhnC#E!AuCvg2To9_S9)&;tMzGKy`U?T%FgIvP6D70(C|8=~?cN+tu_7y& zj6~js@9Zo7!V`{1Rs!3sFwR-)8!S8pX&)J7u-#DO!_kV(9&JMZtx=j2@Oku zvw~2?Tj$EgF#V7F?r&i1bF|J-Q%e(89E|`Haj`siB`d}kydyns&8nT{5GhmOM76|e}SMQy>Z2S%I z^ELy0Puz+VLoe_hR#X#nO(|d@bjJ$#=BM1K1v*T`zIadR!aS2VBX!-W(M6_EYw4~%S2lcn{}PLxM` z!d$B#;8?%CR6Vs$=ng>?Jd!-L@>}ZPfq@$_S_axC@cxD$+QqZUah#^j%_gYV$L|s5 zFR(`M5cqmcAc?^={mLNxuul51tMo9yCnUvJ2abyaalWGe46f4$mG*d=+vDsgxI7jo z_>l|gP4v~dhjx@16$~q%Y2%{THFL?O^l^K6F(#Ri**>tr54nQvhjI*8O7c{ZYi2GY zd8CB=H)^YYUn}PfPR;HtSAzn%CY$<0YLoYDfbz;Rv+ssq|Fglyy`>tj-id+FS<+z{ zLZJ0(Y&iTrI8M6j%Q<6Ns0T#&FmYws^+X;6_8JxQM{{H!ALa$CSg{qbIuWjJ=MLl| zIC-{o4gO3o>6pK*zL(T`*yA|R zyD)leNbsP&&5`-1A86JtHi*?Er61)Ij@*q1*Sx*}b@eGmHRL?!K?_l%!1~--5U);% zg{o7?>D^r4rduNNV?eM(bQ+j2B@+5hju_|DPSd!kv4FhnCe>x`Kz3Z^jh51`!g1SE zCuZ7X62BcLoHjJ}&;u&7X7_{EtBt$97#JGVEdsXW)^IAwFx^xACEbaBJK9&Fz^wd^ z0EOp-;z)n0fO@>PvO;MOJx{4-!ORcp3F<)I@BHVp5mja+V|!tqU0_u^v;V*3h5LU`}O9y)u6BDm!SSk9&`TNKbI+w zSWvP5MvF`(Bv&IBEyYgs_tPiu+3h1Ixb;aA@`baIlb3aG5^H^3Cteyf7HBMl)CoX- zd|3U6c&zao)`C4mS2+Xlhe?6M;FcJ+tYvjRk6HAA=&pd0qc4rcJ7$HdEB`@bG_t~_ ze||B4P8fI_&$s7>q+65Yh8M|fqHaYtBv(w{dTOJ;}B zOW`=sU-oN@rdSd>1iP(u<3EUpX`&>cs%<7OAg&KdyvDA)k+vuIg1qnN3I^Ov7u(u6 zTVGE03dl15nYt+lBo@n6yLQBhEyV&YT4TM6tK$V!ZVFH)QYSQjAxoR&gu*tgeWnyl zpU{Fj#3Y^HW@%3iqh$BX*FAfS+m1`t$-TzIb5DS7o5~@U8r`z?*?%TEl~F=86y{oK z)?IZ$G%B%bhfHReJmZjxN*S~Lcd1GoHijBGg7+p7-L4y~7`jyz(?V&lw3izFNTBO} z?nNrID%ovtg*#|K3s(2Azn6y%`f0BHAHLo)tg3Z;A0`*lNOwv|BhszXNH<7#cSv`G zgn+b!ba!_n-MOT@JKu@!z0W!SbAIplb*(w)^NhI1J!+2c2aWnnsgY>VbK_1OutRl| zraMw$q2BFeCLdewbr{J%ps3S`l&8cZC86;w^lfF_C%GOX#QW2?Uy`7@()4OSI|BH~ z>Laa2%`J|AKjxc~6a?O?IlfJ$S(+jHx8h^(lPcqNPJWk#Jo85?-+vEV40`SP;yHAq z|I{!UnfJ=U!u@)qy8V>aJI-Iy?X9qbY!uoKn;p<5cztv}^}O5_DEc<+{X34PV+N{^ zq0&sDn_Tga9q7Q#l|DEPbsC*U#?Zamh>QFrb+?G%v{oM;oJQ+%>IG-PfPb43Mh{#Y zorn6|T}+fOFsku@X4EH~zN$!pEhDVp9RJ3>U4+LTb|fS?59#(qj?}W0M|uUd=mGi# zvh!nmJyxALyv;D8U@`XL+B;=0fMNZr@K+Z^3@f!Q_41v5@$>#N*pnqj45h3RE^L)? z#-~pjb{g4_6?O#imUb;_D7#7X%v3f6nosrC97zL#f2&7=F=%Ia=96_CkT zWQAW#TCKp*wiSjggR_v^uO&w{O9iT?fL^8ykuW+w^JahxCN?54Rtjz32{W`F)28_NAb`?Ln z!24Eh1dM+wW?s%%_~g5#H@AtY7-6H5nr&q8OE4i1hS)jk5)L?{C|EI~#WEEflv!-e9)S~S@NjoqnT&U1Jk(NP{gwxL0n`)$RKh(f?(vIDcD^Y>+hwl)9(?Lug++$pCoG;LxHCXzhjQg~{_+g1cF@Wp066k74EN=ba=8%`Aw(BoI>8 zg)ppsw~zf^@T#aN>Ob!%{xZ)M_V@}Dw}Whzt$INnSLrw0-8MJ$o9pd zsE{CQ=wZoIO4AdX;HroWNL~TvQti*krC=K4Jx#AYCqibRca;+58wq(H!LF0Wec#|u z5&(Q{c?yk`3#`t3T>us(WFmkQa(zM)>U(3Vj6lZ{B(>LMd^}cZ{i|@#*!y{;DlD)O zn}`S>>&WxSgR8cs&OnRr&CqaBhBE1|U-jDZP@g?HM;090nqiIhmfway7}evcIQ)@< z0Y{KzE|dWOF7cUuO*Ro?(e*T+=jT)pQn3LMomE-zj`B0SxKBS@A#Q`)f;JtV8JEU^ zEh1@UPtpe4rez<@tA&aB=ULPqyg=4jtsAAYVV=WI#i4Jt z`h2K!9~&*Zb_v9x8j*LL@|Cd+Q-{8iu0_{rxsMF@pJg8?Gegcyr~iEU{<8j|4}P&&X3F2;#S z1=fo3SmLfNg!H&t&W~MCSAS?Wd+D?}Pc<^q32YQU$XoA6z#z}0V83(ZDT|kaY-uLB zUK8Hp=^OFRZq=zt`YF=`S?kpc5PHS*ceV3yMW2ReHt=LXE&W_xr@~D$t&1!`9+HS9 z2TF_t=?ca9anB5QVJY(d6{Q}rNJi-=$Tv>$d@>tQJV<-|=*B?YvdSdHjWAG0Sdd|<$Ao2;WD<|5P;|jdpCV9yI zAmwWDqw%(r2V)v2|TwA7u^hOrMPqV@JrWWdfv9Lfka?}G#d0-rVIcCVhQb#zUVaXqyw<7mbXVc5a zc^IOleui(LscyHX8hURM&L?ac<~9nVK^wV>8!K-KVcUtzW(!?syBAOe^6?vP^+L+g zY@Si0j63taT4$2jwJ%poS33aazE7v9ZH|`*p)) zzH+x~ng=ksUn|-Us4nQmPX}|oRDx=4)qzt!ZYrxOhF~AI2Mx~@X>mZSNI^=s%y`f< zu_Z$u3i7CIpz5M9W?cB?iPJR_!jWmVDCBO07nn-W(dbnKG{`+g z!u_CU2VB?81dg-N!tE3=yYP(w`U-=1kG(+A+upwzTW3YqJS=lK<S(tIK!@-f@ z2eypXv!4>Me?IK*9$sb0>>cK=yQLa(>ysaFV!(bw%qU%>oS<-zsJr2pW54d}of4iW zbq29sCU1xh#x>(Gw0z;yk6c3=kShe=uB3()KRCq}J$7f%FfA?w9m-1mbao_fA&PsapQ$ zw|NDvG0%%cBqBXA6bru0>Z*>wGnoG#TFD74f~usTOP}WcXeRDA;Y+z82XRs>z))r_ zcC0CRED^U_BK5oTWYk&ljo1pRRP{pl03$;u6=ZId?Uo%s-4YSWu=ScwO-=C(%C>73 zpW5TUPzO-x^9SnTPP1g*8vohU_9xWPwk+t1mLv>1+en$A8K2 zq-;Oy_`{C_&%1sk(>bEbST1K?=nqZffQ)E>YMg8ts0`Ymma*J23@{&7~xH>*)ObYf$sQoMRU<2Ty? zYyG5w_Q%-48ZjS1^OOOSezukc6i+!WKtZS4YJqs6Ce3!(KRm3#y1nU}xvJ|`ID|8c zkI*=gK>xcy?6)ofkxq2FQBA3+lwuthD0V>+Af86WXNWaTAs zJ_?MJ`D06LH(xEo2&0vK_okV3JNl&fp`G#abdHWz7zS3Zz#;o;8Txwy1X+O1%CMWY zePeRtV2-91`ev@~@_u#m-OAxoaxw=rp*@Tsjwce~vPH@@E%YZ6B?7!aUEILep*9fy z@Ccf^ssin!;1fywyl5{__0M*uJX-iyT6FjA68y`Y@0IxI}geyP6T3j5S#H0ON3&GnhdSGK5$p4hxhV2 zybHw9l_2)pSTY?LlJExsDs`C96y?05YB<(ijmJ< zv@C~wB}JepX(1Z1`!e%k7`}`1QHG_l*GpK@`5xP5kW32-6#00nKEFO8gl^(lny9Cm zkJ8B-9l>~a>ZRQT(SR653<_2vCCI6ZyKwO^a)mM>GJQfuq$hnM{&amQ&nCfcWj~=K zs;`q`G4AX{GLeG~vu30LN_c_&kc#JV+n29Ke_3Ui@qioBy$4sI-%%KTS*4I#D4OXrA;wddmL%#VRX^j~Z=Vu4m?L)%)jVo*6>3DjtjrQ6VuJxz*b?pa4S!-8= zgufxCKQ`Wc!M~y6s205D97Q$HASuPSNQJa`B%o1J0tpsXH3K0!wroiWlBfG5w(2RC z%_eS{Ju&leT}nfPLlaKkxX2QXAkAQw`+HIbJk|U9MdjwKa)z=Ej{q!wls}jL`){Yc zp-H8_fDt-x;T8SxHw;KSyLRq6=o9goBP%~j+;ZtYI7Z%>o>-j|UN8~gy9Si4Z}~HA z7Fb}2qWzGgJX*3kMfmf7y@jASAEEP;F}s>~`rzf83M)948y4`-`L^1G{tPh(*tsQ2 zYS|@Jx}e$up|OB}mp^J6e0qHNnT#=JuXmrWLlGHq9+2C%!3m3l?7y!##rTf>or8bT zno#_`U}EJ>*-xVoiffzqLAz$_$*9J&3M;9e8QJLysM1SDlgvFXC7mVUcd|&aN5Lg@ zJ>^o49QdE|*+2Wlw`<;zF@x#WX4zUw>I_E}W$9mS!Ag#B`<58SNYK)6wRGXR$aF=dAsXLHA+)rcI*#?EorULQBi6EGf(q*HAX)%nh7$j zx=mPGs$4Y%Pm;P=FTs-1;I-d6Xn{ZEF6{Kl)R{+?g+RL_2}KrKSmCTt8D*PK-YCAR z@xA(K7^gcSU|#-6nxKG>8EHb<>{B2rNeSaudUr|`9%6zhvdhvvlz4qnNDWXYBwCxQW)tTnW?F7u6`fW}E0=7FzYQptB!zW4w?JjL5xuGr@xUE~D0 z8B}_TJ~4SSqC&GZN=SNIWz3Vu`RGmK0_Ig0mkPSvzx#y4VwTzQbvYVqMAYdPPd&K6 ziO-Y3jc-*;EswEs9KZS=Bz8*j&lM-)^Nuz0cf8-&c|X5z;0+O0JE&Z{jF7=yTV0|h zGOO3U5BVjyY%#S(nhLJ9nc=rV_7(h0%e(;(K10l*TtUUdzrP7SiLx!(X2A@mWvDd_ z(qe+Hm5Pt=$NrB)am^K?Mq=}$aPxfkWbXN{12I)LU)h{j;3Mq2RbxF~GrT7(`ajm> zv?#r4yiFrDd@xz1XZ$-K%jThU2dL^t7vf1T6cazL3b%a3D`)4@ED;}F5HF*trugi| z9eMyV)$ixMfNEWWzrTVlvks_QzY{VkyX08&)<)=>hUQ+*Wz;=I{CB&Mo?$*}OM{(J zsmZQj$qNd{hr0RM2yT16AG;4yin#MLv~)#ZW1=gvq?8v=me3b(mfq;E^SP~G9ei|r|d_esp%C6HG6U*<2Z{M+$7i->O_ z?;dq6K1@=-5NAUF+sHE*p%lpI0$K>YPI{Yy{cNR6MpjI0mc77h3W4})1GwKuyUvoI z>r>f3z>?wnBb6kcNXf)iavo1-0#oO7tu2wj=RLvt#rCLlzlXUgmGOVOI@}((dNtZr zP3+iD1#vZS;zI}&)Whraot+k@<{-x*@1L0mqW+Gn<~*G#S5hRP6n-Q{6PQId0v9s^ zoBqLytO00AA8PhN6b4HxWsWkNFJUVz&j+1_^IPVD56UGq(_!=?BUi-1v(}s{2(`77 z*F}{K`Emho$2C-MZ`JhHl<3xjS9`W{XRFIeyGUkK;mPl}9e3?3xvAKGJ@zD-VMj+g zsg;5|hUK&A=S{~Cv8$QQPMg9XYyICJ-o9cf2QLmz@;g?dBShRL}9i2#_FmQ+N9p zO@eRQpYht?2K6@*`Yn)vTguHa`!Yt>Q(i@Rkitj4%5>)YMxsLz`Q-rS&R7|gh_vz& z6(KK|6PEHm7h}&IMr?pKt%NifJ=V~6GR1~=gFcP07N1Y_fsX!0`j5!ZHj4rNW`$(! zi20Eva-<{*;%idB<(&6_KK>67!=*wTN+NO%C`Do6a4yLgLHGKGV<_Rjc8CaQzD2){ zJDW9JOJd`vYyWSr-wn+>$VR-97RcpgH^S;+T=FZ1lYy7y@5EH4b-C%N+{Ix#?gR`& zR!_OGq&6da&u>h{9Dw_eb*{xv9Q@$>b7^T0+}U1ytat>mh+v3z`&>7eCTMbeO733!J zM+V9{Om+tEQF$e`?Op(|>u;_9gO;D|F#I#BTQvLPDGhK^pShK0n}8+JX^^KDD}i;H z!iM|&N&Y!JQK6P3!;9n=AgfBs65}PQ`|?-1tn(YU;DA8_!>UCF93n<{d%R(85;ZEL z1x@P4$XCC9ls>(W#d#8m%R&)fLio0q@JGmXHeZ0xg)-FLbY@w=ClPH^Ptfl=e1y{> zR?cB#48wMi#v|62HE+jndqoFH!CNrz0B^V(fNV^<>m&0M#I$6mIr z;SnD0NVqlw6q3IwE3-bKmLAbpNjL6ZvHj`~+%qAygs%zdF5bo36btO5G!}~Mq;|UejKExx15r17S!9SPFf$z@QndbBBJk>>m zajo{ExC8&y3EQvQAl5f`jZtYr6a(9Rb!{pl!B0}rf~sX787O443pwFcnqNj82^%m>XbJ&G_f@WOF-!(bKgbK zb4Lu)&u%rV))949Br>EvX51;5W%*8YW&lAO$NJ=GLlaOF;G{s)a=;Z-Mb8Yv z-n;$}fn*NHDKXVh0`zHx#0OL6K(?_6-xb%>5aVsW#q#u5uBlE`0(9vDIi19A<>Dnh zs9zhNALWE#`TDdb%Y1RSu<~~*4nspGj1#@NzClQNiAR=RL%g^kDe9a`ha`&>-2DF0 ztPKcho?Y^Dn27ltCfa4S2Nx#kZ5u{>u$8Y^zgrd5dqY*aT*`~{t|>)ns3Z5$mx7@n zzGpqCVO4GIq-ZQkaFx`@!LnS>D9zxIeJy=cNm5tr&P;Ey1J_!>T_W5g`V+F%uHt*( zE7JS49=4; zS4i9W&T;jq3r?v}i94~mG|0R^w^SDo?~fT-k32ioth%vYBN%=~+QE5v+f>3160D`3 z6#R8=|H6y-f7oNBSjkO`aya@tntTBf>1FSOAZY@M+80z`tPKz2-hg5VQFtB1sr?jJn8GP}x$jcHFGf)l27uRaa z6c>q>FNf&aaC;g4BBE|-U|hhdh$BauT_#F9i+Alp&L{a=U%Uh4mtvx0lzu()HSn_7<sV}(g3uPHMc)Su6%c* zMaT=cwzXx%y}amb`&7Hct8?Mik*!;tjyka}4oybG9g-&lbuA3i<%*9L3$9eML;JB! z1MhU-esOYN#>$7si78&LM_U-kV{k#kH$JO`v1A(*bbKu-BgG^O2pDTi1=tUZh zkoH-OGcDZq%AsfQA?d|lVP63?Vi%lN7V*GUG~0Ml=v4`JkW3EvacppGr}|sR53c!< z5}Ce~h+jyd&k70{{dD&!QqR}NrpDll-SL>C2-hPheXBV3+Qg_E5#(oMVL*uo@mlcz z0aQRN_>XtGpCm0&%*Ge*<1qJ9P3T3#nG6$NNHVlh$W7|l#Qa9EI)oxtKb#5hlIKGIFKc18|c}kb_Q@zwee^EX2YYh4S z&=NS_<-!(x@gmO=5v(rlZ>zsLT39mb8(um0!Jvu$2COa>+RjiMH+YSDhqxv=c4nTMM1#o{8|VYG`0kCLbaX4A&GN z70hh4R;PAi~=TeOaUf~+4Q zx`Hq=W;K(dpD*NXY!$yEjR+D7xrQR@osFWII+yv7l~1~e*`{a)gTwUQa>z2 z%`5Bu!5dsR8EW^p*&MO&zhTl=aJ*p z=5fsz!Ww+UkWN35ZXtr}b%N?uk~Bszn><2ZWW}j7tav!8sNHasl9wT=388Y_6S*FuaO zKnI3HN~ox)l#SjRf!jCQ*j6C0lKU3!-{6Xk7|oHXTTPeehJY{hmRIswF3pedq)~x087HapBt%ofo^8cWy!35ghFIJ( z@KG|W)o8{TJrH*kYWM%YAw-sfpGL!^B1OmqDo87#FcA`&$tU8+SEU48R`%Fr+=vD* zv-Ab4b%*;FdB&iAb7b<)_16nkQqwRGoEdGsgzD3JP4FO3WPjtamN^M2L!Hs9p0>J! zOc|fziH*ymjNXN2G#ahpx(DZ;pUq9}h-m+f9uOQL3rz3%~(5`VbiD? zO}(Q6t9qJorm^DP8S*lE0zE>m&sQwRZS{tU>{){xU}TmP8{{G?qUH>#vPS6?Y{Wmt zNNUqiWbJhdR-^3tTFCA}Wh`LW@gB01vV^VHxFtYVD#iD=S$l7X+710yxK0CcA7tRQeO%Y?6+TApVM0| zDuW(Lo%PVSBlemip~wKPaxh$Nduo7K$-e9Pa4t9#Z>#7%C6=@q@e9~Dy~EO=3!LL5 z)jgZFrZG=M241h75*W1QOh5}B9Pax1{totaClY15hbWk44MC-VawRGs@ZfuoBgYr2DY(BR`}q~Av`$idbG zOUwL>{K{raCmTGHZa+^52}OuYMz|ly3OJnC55(WdkAK-m{~@*i;pAyB z*#u2qOA$KpvSX%BV(VQW|H2#8FY*G|<&P2~Mu#sjFz|kee6tPYvD#OC9|6^=k*uce z1GlzMK{9%hp@EVjPw_*{_LiCX7ctk5{fN+y8=M>;R3J(ogh21HJ>%+$`zow`kiGhx zYG)$Y`J4SF$U=U{us>)N+Mr1hS;id&m^{J+(j!iWCSnr}_}JR!a{G zjapEtyx<3Hj~7w}Pi@uCvIZ&4^oa!rb%t`@PJbp9t%3C7W9U`!Qr=cyI^Fs=mh(5> zqv?bEay^C%P6{DDJi(P$veZXFe$JW*3;7io8i+>7%W>UR^RRP6jc8B5P^m7;tXU7A zI_U-cES}4H!dElN>Go;)?oJ!EdWr#khv*I4GW(LDI#Plck}Xg*KVdq;uc#b7`uB$3 z(*{cf$mJ9Fp+0!KW_gp8f`+M}i>;yXKYcGzbpen3N9qJHd9nZmMQp7nZvExzFs!=V zAuNlx>7JF8K#!#DFhHI~L7fPhc!a(Gt^;1?GH5}gA;=Fy+%y=ezqRPCmQ^hDW;3F@ z8`trbtZDyM_x+W3ItapxkMe=P6f(ybGd1@!=}StV_sKpxoj&@F27?PN)_HV)bcmVj zdmBiQyBVyxtXB%zfobs!%|m@biei&y9_4o?=$_i9HK-Rb)FwMpR?N`McaaNW=?zff z<{!GJ6ew2qd2B(f9K@LH)I-Y-XqKWzxF@=?@K#o6HM$tcxIq= zXTS@vJS?A2tXQb_N*{YFTZ`L=JB@m=WE{wIC5=-iLnD+aguM%i_2^U-D2~FlTX0gf zlS39-K9K`q>&Db;0^932B(!MC^b_zEC+FS^?)nLzPl(j`yWA{t9LZ%sV0mE6J_`Av9CxAbgq>{y$hF*7Bd+P)A97|N2|DnCx`>NAkn( z!qwwuaeR7;fntTbhQ|+<2XgG(9mj7De*2DH&qX^&6UqQ*~LM} zH<0^JjL>?&JGamjiU_}PD<^Wv-<2nAr=K2h;X{$`f)+UESXS(Dqc5Qx-SNzL!fEp^ z_5PgDrims{V`}6@^OYp_5NE!&&|glYu*io z?klLA9C_$ne_ud6sOtrRK({!DvRKS;ABDiKnBms(13%ZwucA$QWV=xw?|NGuwyZ zi$5;7!aP}Js-s%zQkSxa6+yW%K%#lQO8Kr6ZoP~@3q_=Kgq?8?)f=$w-WcVWx z3N*j|j;jIXV8aCRB0>a`6bv*Si2C}MU^d*%;iLIYgW(z zFTG5I<&#VW6io=?*kMds$bT~@;tOhv`8_CbyHvzZj?k9wC1dD^{rVD`%PmWzBW zHhL{8d<{GzYUrGBYy$3C@y5M7rJ!>8Z>s??4V}yZ5S2tFLHhv|O)Rb-p*Ahz2U+^Y z(c{X{R&u-SG6l^taPO$0*xDi~#9eIlY-Tj37jO9r>QTt14EOc3=pw{D#lc-#I+y0V z_@BAlhKbAUZs+u7+`)dzZFwRe{ z{zp$UvxVXYCXdlnA+pWBt(wJstNmg1t|2KnmeLC-NKTDrbj;@uBKTR*l>zucy@g5- z0=*M^93bOSgxRh55SuE6MsPO+E_fgb{l#OL23PU`iF+D$%yQ?b(@V%T-S;!qtRT8; z$2cs11VU5^1V2~K0UgEBNcGwcRSuoW$?Nu*K}8G zGXc2cc0+h^cl^g!|8$DH;GM^*0l5@z7%2~ITw~r5>su(28jw~5G!F> zN^JW7b=%$xjnf_0SB^aZwUjB2^_2SQ-q1s}zUmu`c#Y0&ty6x0GpHJEx}Sl}D{C%Y z1peyQK>8{TjycXm}FdL ztmHdHt*%X?Y>l-|O{CdECj!S0+kF%5?_-{%r%o7Ie_iMaQjUUrN5K*r-{O+>gabHK zHER7$It`jY;p*M6Iw7W`>zw4WZ@F`wN<)#CrCpulqhg0SK$_cq&z$S7hCct-Ookx_PDl-5-qK@h^1$FLVUI;1G_3m zXC#g$2!keim(N58Bx9k5H)jwX)j(RUd1t7C;TOV|)_sdfB59FH2jSO}u*PK#y>+6|bQJl*Qu8}5;_ zB?9@0I@8BCm|) z$!MJ&l7z^>&=)~JQXj3OHD>)c=}w@v@y4}Zju&MY-szO|)eVq1{1m-wM-b9fedX<& z(9~06F~8FJUzwXVEqqWvweL)iS`F-CvUM#NuG8s-!)s5LvPeU?zYDCehDvvYM6rSx zn1ZyrBiJ_A#3r6arxsFKv!xMx7ylbA2XY<#W4%@Vn!ZbXqxnDvyW-y*LZgC!ra^M3 z%&{7@%Awa^4+<6&2oa5nY-`j_C&j;n5HWZ$_1)%IaVy6FGLYh&K^yKUT6SUCcYDiN zgUItT2xr1dPNNdsVeF%h10gQzogRd19T}3TAu-Z(xgUa*j*u&_@)hG`{LwRgF-;-< zDGwByvjUOs#C~bWd^~d2=A{jRaR?I8MjZOAG#7o^fZ60?!zJ6CbzTYoUsT?|Guxf` z>&R6@n|{Yp!lSx{jR-cqNW5_lJX)OdI5XKOo#v($HC?gYczc1QIU%YU{`AHeXbq*F9?` z^2Kf+HG6t7rYh}sj6RgNuYM`jz$_)Fk#a6X0|V9q4h*_D<(s@8AS z;fs%tFR7OA(F{wwVqdS4yT6mvM$(dK#B)q?Mql&(u8#Np(p$W1|Ch_gI`S2UOMu#l`eGqUe~PmT#JOa zs0DGC@?{tMcvUnt$k8Q=`@HV>l^kkjmUTH@lzxAFtrcoVm!q1VSIaxn^(X zxUDV<2XJUU9h_J}mU8f5faL}w=G}wtx7-M#bUL2A#bW|l5vOu4EOl&nnxOHWpi%wK zFfo@bhBCMBbwhNv@c1gP2k{=KyBkX5Z1d804#R^YY` zOeTObG2h-PA{y@HLQuWmi10sA@xK_RlZzS4j2>aAgp+`lU_Qz~U3$&Cn~v}XJRa>< zDb?88r#b&9Bm7va?w)NoG*@;xR}kd@w9IG5tHH?nHs=IjLVtb~xYYhYSXOU~AYrYv z8s24pMu{^vJ~FQi?c79>I9BBdXU1}8KJ?@z6B*2wzsxH#^o3-;&>xDfJU>G3!?dC9 zJyE~dA>>93rpq)Exea$`8kIlf?QnZHlr-lZatHU6e8L>*2d6aRn&sXHYai|gJLg*0 zOrepPG|u@@VR-Q((cdX^fh?`stKnxt?lLmVTbDQbXt`cS-C7q5?atZbqQ8NT3W$7P zwCCSc^!;T1{IeRi(o!oZZxTst5$^sWCD+7kD+r)CU^_yyHd$l4sY;{tD^6rcb=lBn zG?xYb3OGtJFK*sG=K)_UCPID@v1Pg5y9BkhUkC>DWNw&G=z38wI_Bo}3VGRbzN3b9 zl!WHyaHvDvKBbW@2%X;!pjhaN!FZM4MqoPgYvP=43N|fca0lp0mJs`35{!8DSOw+w z6Y58gzD0NwY;?)n9SmS7$U`42&k~lc?m#0KqBq*vGM1wtJ62(kIAv+Kz}}VqppODS zG)AgcvX4JT#iOWgHn<#J!B(_fJQFcOrl1D4C<9-u^uZOZ0KMXN)YRj8v41KZ{}O-dqqnnBV_Dv?Rve3mF!xoPmf?{c z>`eF}!>XiEG>3f9%#Y<`J#2{oD*BR}0nc|G85qF|IbEo}bvSC%b$;#s)$?_U6p_zS z;{&4RE&J#$$dp7~S8CBZzEH=NbJ&8f7n64; zirp_|S+1>vD)&MOI!BgY5nDStsEidjec1UWxCQ4k7%qcQP%32kDOt0)gz1L0nWDw~ z2JukLjgSPp@nzNoQ;)BG#7V5~!Yi*(pVytE^JNO-3xygkLGchCT+WTBO=myd)e@%$ zmi3oexl7DdkZT>{F9iEym=FrIPWaI_^UTrBt}U$#3lx z%mzcUoc5ouj#PnB>yy*}UJHl&Ll)q}k;LL8YcY{1L-BGe38-}*E(X7RKB042jo&*K zjB2O=8?{E|Fla0!)_Fnjma9$YzF<8x|EUUIL#g<*7w_f0*67nG-u zGsM8HjRP%?KMtJncBN_nZ*Zc1}G)6Mqww> z6oDN{cuWY|Y6OZY7t16G-=_vAMz@-|5-m&@Bo}RkEZI(fR$ah#wP;4C=`e#(&&px9|?c7=3w;P(&jxrL(uK7?bss!_lo6bKLFI$qDiU}dUXaO zDvEW8^W%(23MU0LalbJik);$>@qCaMilJi*rWyvO~XT&+$Rk^o%B1cc$c1 zN4z52+ag&`pLeLsXG|46D!OuJgA1ID_T|%)=R<0Q(&$PVf!h<4-(c6^#E$)VttR&FDxpuKx7UTng_SyfitTJrO39X|mxH1`86NsA?-+X7F68@As3{-la zD)~jkP66ruv(R)nic<^no?LD3Y@?aN2-go%SQ*QdZ zR-APta-)w?DQohB>NH;jy@oBqiz-=xo&#?Qhdd>0OY_eNm6w*v@G@7XdA#Dvl5*tl z!hWraV8u~G<7`?U?iw*=?w%Jn-EVy+98ryrnQ+H>3MQ}W`2-iU@s~qRY5h}pu%RY! z^Fzpv{EL%1S1A5)3Ao;1im7e9G#XnS3Ob4}*uZ~n&y|P8O6~D{>W%s5w~?%@S~VPYbo*cu_ATVob#?kOy_Y;=g2cgR=>cR%AcE*U99F`LaBu?>(&2)mjp z?ZFj-!fF=~(?0K=ukz7EH-m$};Z*<}UfGBH@+KyUMj0%1KF=Pnu`xsfmvi)M7jE;* zw6@|E#&#u=kzNfiYk3WO)c>KTs?b255h<2nIvjTTfpMW9kekijyfk!Ps=XmI`)%=xC}k3-&|a|SB6$X==f8DfNl-FjkL9EfY0XTH~QKT z_eU9ZPeH%)p3kMK+xRJqOnY`{DxNTLiq+|j1(x>9Z>So%iu%jUA5<%bmP^iJKE?vt)q`nvlf6@+fMj;q@`pDD%*Wg zy#a;^Xud#KhWa(uRxN;MTqxVblEFpXnhp7xt%QdDrrl_~z~h;Gd?ZC~s&30kB41&g z&F2kB|H?SbNcTMwh3NxOem_NH@2v-5Th&Gt5MLiZ*L3VB-R9hnaMGD~$(5sPsb1w~ zBevCStgg-3fo~KvjnXxRH{_$uFgceII#2)Gmi(5@PG&CMG3vHqSHb*(Hp8q*5yYjm zIH$CP!3w>{JF^TLY^V=zyJEbvS&S`p`Nd^7LSM%(QJAF#=q%<4LoI`(vl90a3DAIs z0tJfxIs0LEc%EU1?tIL$T&2%qGs)WvG2c4gF}tdIiz|RQe>WH)*cd#4dAg zMcNCgv+U*cM&S>WnRtf!cLto=1fOsb0*D+4wI2l3o;t-R9tG#-+a9aun1Yk+B#<$8 zZe|Xr31sjwPSCK5NF_ZpuE)X0{g{e0c;A5#q^3qW=|&Y@zh=)71f`d`537=_?6k~p zFW9XDdVyv3$pGHudY6h-e@&=KKtHTZ4WR#fw#Ujchv?tb6`FrMH~+>ln0&37{r{9z z0v_+#o}fP`^MuAo`IHzv$bc%n$$i@17}#ZfR6ilo-7 z@xvq+*`B58Kw^&D@oJZ22Rhrp*S^_^)t7U7HEXE<1BL!>PQs<)86qTG7+1D{dTwkw z7b@I~_+~+0X3SD%-ZH-(H2De~ROtP-vu7H5eg$6h0v>>0y9l>58svnjyKxxPBvXnI z9rKLNPw+6BvefajkVbo8r|QDtjxVk7Cpyu>gj>rMGs;1 z()aK!x*E%O;&S|sxYbpGhch55N=iHQdDqzxMsx_`L-4QG<<@T_`zWk!t6`;^hq4sn z9q?)&rVRid&&6!f%)Qknw`@K6PRgL#fQspR!p4TcOx6=MqW@1l$CrQQEQ0@Gy-qd# zt|{B@QN!nKIc>>nUjJFvE zQqyCYt3SRu9~T)I47cwO#W41fHHMTU$c!j)t=E`@Q%l!D)k*XrI5UeAmoF|FGCC1a zRwK3Ai@oST4cmv+@ltP+j5tjziu4QeQu8U@IzV$&?gNVT82*1Kao!1?t9Lr>L2V;5 zc#$mS2RAW8qc338ThO(jX1R$tx3~Oxb|7``EHYfUz&}Ek_d+r8d1JlCGh)=4CEJ>9==mou?~Tj+PGBj5jgTjp>9n&T5k5^(yK&qR>Vo1U(k ziHF?|hzzi3uiM7;3P-l%n=2xn4HMGI#8)evkijRP^s`7SbrxQ_^F_TO(Cmnj35NPX zPPN+8`(8c7H@!Xp!JpCfQ19MF6t1d7rQ%Ulq^=&`pHwX_bz5DA!`WQxM#MJYRq(aaxPjB-PaWKkZ2*h> zp{UkFKxfNJ(88g)((l_Gnq)v6(+?9;3Y#D zk;k`BEiwT{4kt9wwL;Yc7*ZSHn5!%PyEjW)`_hD)+Wec;FjUy+WZ=mb#W& z?)blX@cyr$*SQAA6#a7HZ+>bGy&*MGlT1$Da9MU6M|XQXbBNoyqmpfnBE*qrKM(-w z+D}_mQ^S!1b9Nl%&A8KW8zr>1+tlAqeE_}i7SXEUY_eUCQ?rt&CMEN6R7^UOzkhN{ew97OzJ*pXlK)Sm@De3MO0qGKyZb?BJL^|I3(EIK=$8-Mx>~HV2W{f$;n5(%ou8~{^u7c9Y z^%O$(^L40$FUUK;j1`$~R~z&??QVo~dikGjSk;f!Sw^Nr$7;x?UK#ViSLh!TzwxEM zRnGr(wtmRG`s*kJF|qzXA63W3$(XHji@G#)xy1>K@73fIhZYDEaJwj|o3eNSG< zy#+sjZq*0qM4t5kXUGMg5ip>MhDB$GFLyUGD02ES$;;+s5k5e@B$0IW#$qSkg;;$+ ze?HL<$-9gf7SZ=f`-fP;&&$KLY@hA0JM_0qdusxMX1n(U-_Z6rUVo5-gWWrGU|M|J zs$<9FPj3Fnt=UpD9Pimo%zl>qiS}A!ro^!HOuyl~$q!y%GsAm(OR)j>LHu7Y-Y^?~fVw_I&3_UH+4>0tG{fYUFIPM!h}_040C@?1`K+ zlKZpM9h?do2m5+9S&!tQi48I4g((`p&9%?XTL!b;7Wz`J(_$sPd?}-n{aQf?Uu+Jx zCZkb#8g;9?SYBl4IXj876S9+N0la~D=?#VWxzLr_)bv5}&7 zX7}j5{TYVVnHOp0`!mTSHw)xWmO-vYCvXRiq0BYiUEg_rDFWaLBB8N}mNu`lU3jWs zg?pmfVJ_mHc$)=f#We>ook5Dkvx#<{`TO@_8uu8oOtD;941Vb&O>LA}>H{hl`&wA( ztt8<)#(s8Ry5KN;b1gM^I+PVMHH5??@bD0aB9ytowJ1;KTvn*8*Lf!|H*^;#m4&dYp?C&)S*A8mY<2BbnfF2uJ^!9K=a@n3RjYj3v~15}Z|q=+1bU%KK$slFYGQKO1&=AtCO zIV=8gk1SSjj)q=!%VhU~8G>|+m35&P&qg7CTb~v+{p2MXNa0OvDff3V zMXKNdDYSNtXH&m`G|1o`{g)<@z_J++7@#d5MZZ);Y163V?x@hL7qCfWVehe|M`U~3 z&%{B3bNgBO{GKU&5Y}o^_v*=h661*QHjW}tysHjpbQYhjc3kA-pSQ5W#ibs8RrL5c zE|FYQTg+~xHujs#83-FGZ(N5br|*{uYj%Jb&EbBJ`eyCwha;hLXgsm98I9Q=J`&Newhc)bb%Vt! zlgje5hl3|!Tr&l|Wgoxe3WgT!F=Iv=`i^W2oDTL}GdNoe4w$0hvDPoT%>fqjPBgQP zc)wc_Nw}k(S_hJBk^ znOB{%>rLvil7Bt#&VFZ{VYT^{3YP8}KEj{u72GALzMD)$*RoaRF%oIpCuN(6dNs)w*P&X*H(J$5haox6ger(R>$Ht87lz$MO;B7Qr<9ecGp zgKS$V>uO82JybgFymo&$^nx%UZ@H&&oqI_Vm!JM}a!!ojq>S*gbEu0_e%Jo}WMsGZ zLyzoNIv$bnkBfgq#@jIanC>2#+Q-`(wAKiT-7DHUR3w^u>9s}Abs{_WhT9!iZ?uNC zCli6D+#zTnPjsqGXYoZDzGDiTC(-Sn_lMC58jCqX2r6ealH;?#c#jXVvx~KS-60`o zSa=rqhTtt4uciLwTFOplw7c%0kerfq>e@nkReHPDhlq!^kvokpt8ivXFY}tQ)nd4k z3(oZNtKHw9Dxl(QguQ`Ha;uVKR_p3&;m}dWO{wg_VWpz(eBg9u9!41NWjFMgiyjCP zs+^my1gJc`g11abk#Mg#VUf9#bZLi6;|ydyr#7auw%ql{WMuk3)EyYSKZOHAHJVbn z&c}3Ig=JPn3Wo<+yr#bztT5_XSju!mC$p!r>si=A5kwU>{-3AyXH6Z-QWA_FLJM1n9&O$YXgb6ror*N(9BW>t*Se;mmzN zt)+-ni%qAJ<=8OLR56cf_trjg7A4E?=ITE} zD<|@JONCL*8`j>2Yqs|dDe3CWgg9UD{e4>E5p*a^?!Fh_=@4- zp;@p`%Sv0Rc8-bq!sHX6kU5zwgBrhK@uWww71kmzEI8D!fQNja-LBzceS)sFa_WGS zM-HYp&}qVwAM7qm3Ar=hk#KTM#S9O3_&Mj&JuI4#0qvm|eh4 znXu|fKcx$A3@{k$r7l5b@svRYCm^j(H0`zG`RA(R&hO%54OBAdHldmmUgC!7M<;n4 zV$M<`)DL#yW#pv;OJW_bT-y)9D&qnv(Rf5}Ltik$jYuxH^9v^)@Ilu(O1<*`_piCM zDh4d1wWEYZDa*tk(D)9@n7m3S07e&Tg@n!;V-b{aI!8bJaH34#DQ0edZAPJ=pCU3^ zoX3woE{#S=gh6#r`G}%xSRFMx+pPceolOK*pSaSz;VD9}e?lGF`(3dpEJL(t5KYj_zMlT}Dg%jBVu@=p8?#AZ zwbEaNpkA2ZhovWbf;Y*k|32dejrk8uE~~J)Q`}KVb+6 z>H{<*8&s$oC$byC-4$ED9mJaq!o&h|quB4DCr^+Pk}r9?!?o_q+)io)(ut=C@CX^E zS3`f_Fb|++yC%)VFR^EFI#ff>QS8VbqI4jd1>R&Ep+~l57F!e8U^H3txu$1%IYhep5|bkd3cg zjbVK}`_4_rq$V=&zvR4Wh_rh=hJDCAD#R$D zZM8=u1*%`cFIl>&JMhgY)ar-_3w)(TK zNF2E)%mCKK*Z1d$uN;TnL^xjsRw^vE|1q|kygeC}^DxGiT6tr8l>_(If-&R9=moGBx zJj0nREc;b0E2#YE>^0HuqE#N-3hrHH)y@P!wAxU#c>~$`Ky`++4G6@Kkv%l=9`UBO zxU~_(NAVy5C2J2`xE2jP|Nm5!rO79GBj#qn*to$ne=Ai(1f#c|r^?i6TPBT_KeOI> zK<7HAp{be&?-T5Gy*a}%y;{v)=r|2(GVhUl)yx`avmOatA=bjXI}je2=6=`%JW>(~ zRO5}-ifJ!Wakg1HR+>MD91sR5uE^7w!EB|q#xdAYZs|8FV|-@cdSH9{BE_{BklM10 z@h#Z!5}Te>h!-b>b^z-fW~G(mCqvmqUT-z9Cv&4ay#Y1JQ^^diQubRj_c zMHKrgQ5ASalZ> zh7;LXRso;_BRErgJ$9A>JoJN?@#DHzxG5n|E|P1VcKJnfJcLO!MvA-scV) z9+ILP9`iW02fYKL87I{QZ9h1^IUJhjweVTM-WYPc|9(dO87(@EJy0i;5>|NIv-ZT| zSN(eYn`O3a$GI!Lbn4*?H!(VfM{Umz>;%-Nc^eCTMM=89>ooz;JwTwiVNdK$u1xC7 z58gcEQEXIX_bQyMa7BO0wycWvvM%Jvv`2@(D2eTuPOm%6@R4&vy02`yPrdrF>Hdai z&>u`LNYsMZPt6$jC);Fc-@Yea!vL2o(7?Z;+}f8#PaU7lzCUh1TI>l6WOS=nWIDf5 za{X40p>hpV(x&-?@Suu3S!@Vauk0J=iLs)Yoo_3`FS}SsH~WbH^*Tkoen116*s{>cL6>RNJKAJiT+oyRkN2P>tl88GJ<=0|_*@Eu-(Gv^xk??I(>89_kB6fpbP!(<|E20v_iEyoo604nPn+cV zm;!~S8=cQ`2lfsg&dv>iPPy<2elAB z!*33n_)x58Y>%cV0F}%R_8{ zZ2u+vMffF21FPX#Buj5reN%0ZD(u?lescvqZz%Z}J>okt`4%J%Q^# z9D9B_lt8LgjF^eGM{_PAT!#a5Tj6)^DYsoxfkm-9D65evg~}$M?9ghmikhywh;+Zj zrQ(R8W(tLS2zZ8HE{(7_Z=A|=9n=I8eT;MGfW~0?wr-gfM95nRPprjG2e{Aw^9{y2 zD14s0q3>m@NKP^tRx6xvaNAUWpH>Ng52Wq2S+|MtkV*u>G~b?fnCP5*dwjkd?YK&M zR4?-^ZQ&6q*?^U}9z2M1$FEEu_(qy$*`;aiYu1d92W43tb8G}U570c~G`$ZO^4=B@D_CRpF2QM%rE+>`J7A?kKoXAw( zLq0^EuW+*b%irt&4?_G4V%Dxc#deqm5{Ffe<*mcU+l^~##!({FF22(YXu{hR22NGw z-{ufbP^C8-v)`s3zwNz?sD6kOyOeyiXM5w-V353O#Ba}m~tjSy@ppNK zsj6HfkpAcKge&&d?pQe^;j>F=9`6KjPdjfJ;=EZ(@0&7iAtZ}GnQr6KJ6Qq z^jgU~4<0Q2;)JOCH+gw%lhg&|h98=lY@`cVM&eJMxo12Uu>5A1H5rMhdL{-`*|7NC zD4ukDMz(dDL40<&KEJzC-Lkan&9|I3>sr0`)=v2O<46?ozxk4Z+i|1{%k1__TrB7k z{uxz-KFW`)+Q8A!%+SL^iz}^4NQJh>AA0EnIL*ptN0W`2vwfTq{KL8ZPzV-s`ZvoW zTn@Md{@+P3RwStL=o8@;S$dQ?yA;!pzJ!De6^QIhV#lw_S+6j^qhg25)ilxH!#Seo zT5z!23A>|+vn{f1z4*L(VHz79#o0RTF~6vqeC5qg_TVyh%=u9G7UgoE{%dsaT?Ebv zJp1B)DZSJ{Qm#cD%;UP)v8Lm)WsiB7-BiL+cL;KVTy6CEv zL%QdpQMSSJkhV$PC(i!pp^B~+& zTNG}p9pRnq3RpdLH%#kdO@@^~-_YB_#{CRJ@(J9}%`Wa;&Q%%{;EfwEBP^3~Bi~U` ziu8Q=5r$kMk1DcNW8eq ztqPtLjip>1z(XSQ8;!$7!TeCO%XYpK&rjUlou8X!tj*SjD_?%P2*BxxA|A(%)Nqqq zAC2u8!LYYUPyu!6)NgmyKP+aLM+^m$F-nOTdL<2S9^3`Dt7nfUnmL^>r0i;&0;J2l zxORqVIh$w8{#@1qHkP z!r9GHZUW|S($O^b!!t2Xs*x>fAeDk9ma%6%Fz9NBbEP=HQ2lZJZX}_4^Tgb;Tx@aiRhP))!*`$}qy;NVWrKw@znnwB>3p~g?J-uvAKA22i z9BBQZ!NMNNEmCpHnx&np%R$5EFHUC5P$>!c#Ug@?`Dq&mY6ynbIm#Sj`1*eR?jJoq z-#}H4usIR=qEr|Psv=5GN>aTsyK+tMrRfec>ujvxQr1>JB)~ormA7{=ID55-u`FC= z^I6W~d5XGn*|SgOEHhN}qhoYEvk$@rGj{dN2GZ&9Pb1a=#ss?MeH`Qbbi{7{aE%8I#^|iyUa?+~y&xjOso0ML18{>En zEgEVehBu=AZqp&AwGcl}H^^*MPoKeF48Rw`pjwRnSzICGcB7r>^P<4MM;d*H%`{!i z#HMls$hi4oaj7#*N0-yyx!RnmeoQ1hpil?YI;$m|?e7T(p zk;b4DvV1F!n!nX+J^yq|p9fuHJ34g!b6Q$7!ikSn(y@LtpUi2ezV9v-H$~7iH;5bA zu;aO@FR_nX_Ac!`vp5`x2m6EL<}5hjO^DF{kR3s!IyjzEC&64yHlGngSm_$L&~UI4 zO{twt{860Tn&=t;wbqlf5$~Jm!b9yNFD`G}Z!kp_$F^aT_9e)|J1G0oABS`ENp9ar zqBjsX#U{wiiQccUA)m`2%WI~sP@H*sHDep^$>WVkPVpY4La^S0h6^#3Nz=u{;|@|v z$(H(v>C+Y6<0F|F>u&xK+|uPsD=a6BEY?PE_xlM( z_Z=oE*GGST8+cKu>Zi2&6Xm^*0~RQl8`6QxUMxQAU*)zV4;!HM@`>WujoDIb9Ys5$}5&NPkeaX@fktS^#rA0tAbWMO%T-1e45 zSEkW;Q9EtN&c=3dTJ7Y5E%Gbv?U>D97I=RZ)+lGeQeJYslErL1y$ZMi4Jj@mzBhvB zYbrpcw7z`}Y=-F$dON}R#V7eO5l^(m)&NQ|EEpL_H8rY8e_>Cyb9;vt0{{?J!zFbN zJ^e`Y&z)g2ep3NSZ$G;dtFtm)6>`cS1XP;)eEzxDR2lXBDkgrid2)}3p^S+2*Y(&C zgcpEPMSh6zLUnZrjY5o+J(*<;*iJAW;RS89XF|nOASQXC?wl(*uzX9oQn$`Q zIEMvBk`Rw%BjSXJS^|xq(h3P1uX+k1h~-S>Er%K3*&f?#%0;}@VhP-f8oo~*VyYin ze!4v>Dv7C#8$ez7N4E3tP=@V71hjJhx!vJoFjEZk3|vmY0kl0!(#Pq0i0s~&jjkvM zUHA|$>paUNm+IsXY`y0YKg(Z_alf22M`q^ZRfO|9`309kwbp>6-7cvhWO;d&xUn5* zjC&7MUeo~SWJhR4C);Ig>Na$bPa6H7wQs2;6+mz!_!Q|0YY1iCWP{%W;~5xxM|hj( z&_IEis0VvG1e+0=oCMq_QSjJ``}WwKv&qUsNdPht4E!{a9lxB=bi7IVh_|hZYm}yV z2>0llomfEft@gh4lx-zD0TF5B%Gzsz)9AZc|IITH0$(#$;|0YlL47rV&ZUD+d;>AQ zVD~22{L$R(M?h^Z>T?wY7^NUGMr#1q4UwNBFeWPlAI?k{6}c22DRAA?SrL`bKbyCN z{n#3Uz(__{BV9_06-~!AH@zqP8UZ+v!Ic?i(6gTFRB0Jlb!C!NUdJ#L#(n)0dyLpO z-J`B|2-xyDP$i^i%q@U1I_0v&8;nR*7j7D-qYbZ520A}R8!;Z8X)wNBnR@Rzl}gR- zZkGQclGUreP*=_Cje5tp>v&eWC;yguNYBSE+%yHn&MlMVtbN31-PkG27TI7m$<%mcH_H3GQe4atv~ z)bz|~AgG2`@t#R)^GK{bmc2lKjb$0DZhPSGbV1)b`;GmZ#cxmnk|`d>mT)TU+Vekw z2F@`KZ{Va7H3@L_K|Y3<#jMHrm*{G$0Qq~!22G8WR3XvjLCiLV{QOhRZo{;Rot4p+ z;!EbTpj^4kJOYUj03%)` z8izSGQYSFj?m?Mr4q`Ys@9X}#RG{o*;+ zB4t&GpQ(OwZw4xKrTHoqd8pRNibEJzb&@bt!wM*4_j zllgu;{FBL?(eF@yr#w*JWI)U*FvaS+mX_w@h+H%bQ4!cY+JKXxnD*`!CAaR;W(5nE{WWw8zgKwWBIkBY7ll0b zB*FWrw4SfqC#WQ7e+GKU_mo=giJT~msj?M2kYq7dr&+pW@qN}4kh38#F?Iu}k--m2 zB=7lw%f*52QZGfvbBVJXsQO8$h|D%Q9+qQAoZS(J1BNoHFu0rFpVyLQUXJCI_;z5B zp>#T2xXmc+G~aQ!QqW{*RCM!Z(r*5`lN&gL+5YRJ5DLdrz(zSFo7vo|&!==f_fo$A z*NLdQPO96tuKlUF?7MN7FZXP48Hcke6u&|!VE~G$*w|OkX-};?q%=J5G(_87uogtk z{f(I;Krr(_7%davZ?EWuf3}5f-LE8yZkLHZ0n+ zY4CmY4yKhuH-wVkk9)c8bfz9gyiWE<7>DrjC9~T#2+6$>D>reBM@+4aDxh0*iOyOn zI9DxH*$goj9Tl#g_%_f$TZ{5s5gV)m+2z+~RUmG4w)1AN+1+>v| z@~O|~JWr@e3PJ7Fh_M7L5ck&|VD|KIgMo<4In~x47f_1mN_9ABOX$RmhBZ_^B6tjI$}B&(Z}w6Y zM0nBtk!eUppQ$!vnxmtV_na1DRDLhyOgm)J@{@}A|2vW`tI>7)g zW+(9O!_r~1oa`HSy*wOSF)(EfFPkO$oL@}*QoxCtNDrgWg5TWeO#*)#_Tk@`K!ETB zIe4LvgI6tBSjcpb82Q)>CnVcQDV$v&2vk6CP)dyUT;U@9wPs47ni&`e)Twd>>CQDP zmj@Ie71wD#(u9mK%I&T8qDjzMlBLF&xtCN$MBr#H`Ekr}X0WF^jciX#V!?Q804gLt zJy^-?G?w-mSL9i;fYYeqt=T6-UG@Zzf4ybH1Q?E7i@QAp*KQ54O7=WaH?JWElEVZ5 zts%@{^%g-?ke9FZKAxbNbGbT5k74wFh9}t8eo~P}eS@e_ZpPkr2oR-=0 z4_O0?DE$P;*$cG{BY#s??i!H?zQvqr&*7%;PY@D1o`wez*T7s#Wfyh;eHQ2qdW${+ zVPJOwe=R@y zb#d=7SQt#K z^Iu-#e=SJwdOh4ilulrhF`Nhe^A&VA?9Pxf-0zDTuSLwdV2vrJef=5BW6Afbidl~q zwgL4CtGsEcnUS=5@NE@2)A#SxvSw4Uw4KD!W-l30Jh4KpMxEs1A2*(M2zBhM^5csy ze386}(k)1MvVw|I|GdITGGZ)pPJ^9H+j*+=U-Ok9h4x8VZJ9#?5MR>2t*x-&cwqB$ ze^Xa4l6EbbZTYFKZFH=Aw~n5<>y`7p_89)WgWzRt7-HPBO6+WI33dl7g3{@c43Nx(bCtH}S@+ivtsG?LRB=D+6%|MWID-m(y4%4b zpL5DL_a3-P_r={Vb^jdC!!Ied7HTk`e>2^snSay-<@N+P{nc6&b zTUfpKxVL!~IB)}JQDR?OAM=$@zHCy6DH7Uk94e7J>WtsNKQ>cUb**`K?NYt_*_s#T zwO$oLbhJTUOIqh&mss32q5w}+OAvgER(hckH8)QU+>sQ-Bqg!8hPhoApqHa>95FR} z2kGcF25|`{DV+1Dxoni>0|ad%+-bN3OXygR#Ik7~@(B6yM-9&BpY}0%u*`=7q0ukF zg2Hm}U2Thn7c`{=HyY=|Z11D(A#`yL^*i-15Vr_8vtiH=xHX#hGkD^OxsDcC(*ZO= z*v#BWYIO&x#@d^D^iyAu)+RUqW7)uE^#PqKx*kH|s`_C%WUx;tX*iXCSi~Tqy=@6J&X*pf9p@x2!QH@snoXqs)LN!me)n z!4=ocz!ZVT;4F_C5Hu9^pKWOCR^rpz3-P2@m`MOg|oeX#%f zxRme8I-Fdxoy~7e(DXNc9uYuxPk{DI$pi?qif|#v$Z`JjJ0Yp zbg0TVF#q*2vU|3Se4bfLEQI^UIsbZVIp(=L$ENH$MAP|iD(N-FpPeSRH?~Myh%6LP z0Y`FlZ;{XNAh<$5JGxGnJaKxU2q?jY8qbbdQZ*5rTeLEiZ*5*AR}er~L0bw8BM0cN@kO!F^&HBsj}icWXtGUlVTrf` zI-}m&55c*^uTeQ22yvnvYv`WrqmT~%4rT@|7NmfDARo94YwH^@ArZh;^wd3d*8S#p zek`c8cDj{zJ!~VHL)u2?(d+6$%U%m`q3f7n~fx zhvhm6F8XLLTOTrJ<%jrp<`iTUu3|C;V>}S=GVc;{_({a0EeuSja1n;=Vq2D$!?%lK z{d7ZE%q>GnJlM*dS$d?F-p|eExPIcM#>>@+mc8gpOO{t>OQJ)?bJx$(j|E9Q5y5mzo^0-8Yy01TCg z#hL+Nh5!oS0=Vkv#2VFBHUeHO;O3Xf#0})pOfU+JS73pm45NqHvK!C#gCN;@;<@rm z&wE>9{L<5ymUbV1v{iI--0tEh>M_~6lVWFw?IMjZnpPQ*W}Eux>oobOy+YqHx9V4WLSqQ^v!GLhL)eu zzmj~WUokX1!Hw4zHLK@|sY&`r1O|hxo-hTh>P4j7kRow&6P45nXTF6<{sM=tP#){7 z$wrms>KaY+r{6I2z+6z7rla+#FARl;G+Dxp4|pbNLImzPkGlZixhFDRiXe#DPt+=rF4Y$7g`Xf zFEC`djL0cf#B`PJA^A^UX-06)bIJH*g8phP9|tXVh4FFo_JOsXf&i25YKB~5GF?IX zL-iD1q?G}rM~}dAs>;t;SDTDWuaxnecv0IegRAK}zBCjKT`(GmsGlhq|LwE(>!F{R z9a9nrwH4}{etGn~2c~hsq45;0{j67pWQtiEykMqAh1aCh@AadUM&GR>yb{5j=fevr zr)&V!*R+B)zD<)nyIRo{tS!bCX06`FFD<%E%L7Z{dbQP&Q3-)sG#%iHaO8>}xz-M& zGg-DNx*d*F#>U)&L3C>U9eWnX9RCxXOjFg8#X8B(*D6w)SFUl26Xb+GWIf*SsE{~J zrNoS;mQ28~kf9Ds&+@xEtwiuuDR_X4w+02#(P?L9j-)?~AK*sKwWu2{ z#KNKKY3;Lz>KXuMoF)fA(`I^v0B&>3-)c~tLIfA&@M}k)fZ0-&?xg|-!;xOqq{1lE z+;@v-ApbwPI2$4CjlqNuGTiT=CavNRkk%rVMHA1uek2!&pxa?jUrh)@kvibt#k5U$K2pwxwn@ML-k$lZV z+wlSJM{y9d1*R0cbd0oVTeJv{QL1|qWqa*-`-6j!nyq5(zJO|7#LlCK0Cn~+c*Wly z?60@Hx91wbs{_h#ZJuraN4cg&^z10F3)Qh%dcLj7ov?G)&#n86Kfhf4E#o{&eq5)! zdTx!Hha--&sxo+1VSG1wUMuc60JUY~+}hdE3ts{Z7=9&~fr-Sq6rZKXbC6a|ZT$Wt z!M9PVB$3auKZfSkbTE`cN2Do#k{69-(N*sOR+uQ;xj87cS0DC#Dv9JM9KK2-SuKzK zMCML0T_2f125Epk!eC3>D5+Wz;$!_1EJktv`~7*2E`-qy^E_$LvN*EWN9CcioPqi; zwuuYSR*0gXS#ScS-BTCd&nKF$(D4S1qxBGU6qgsB{Mr={^bC_VB&Q50-oTp$jJPYO z`7FPaFK^%)?Yeu}f6ekEOdx)%M^5-b|H@0qg9VZ<9B*sn4C06e$X^00Yn}I9SxRG% zJHToAD?g8ckoftlkH8)~(M+OMpN~h(hnVUd6BPV@-9}2#ms2nnwy;`W*?bUoN!NHC zvJEZO?Ku$O?7LSV^v7kAF=laJw27LwxH+22_;eFQuCSIlO3(WQZ`3XiWoqCkPseQ8C>9>FX5(>pA?re-QENq557&ytWfT z*opnlRjc@PjoMWOLAcUv2ZeSH{q_c|Ey2!Y#u<&0>k@L83o*3e}D>SeqJ&9-gu8l6AcW< zXa~`-Z11T%qCOo+3TX%2GUv1BDEXx`(RytLaVh~5v<-pk&jy8~EQA!>vi?ch#)q0Q zx#EWs9e=g!U?~lz=ZV7J0M=8_~b+HeA7n=dmazeIMDbNG| zi4Y5pEj=~kz#g&ZKcfbWP^sk>2>ho zFlw-C4Q0aPkM6a>wtZ-ku=H*ufJ&F?XjZla@yx|KVl|qH(7dGMVE+_4m~WsodT>#N zBz3+cu^s|06foLg;j5xODM`RiD%7GPHrv|^*sU;N2Cm!7bvK_rm%Vk{rsqE73jJ3y#kfLlei8hcfFsg?;7(GA@UqvDOw>P|EWZm*{x=#wVFYZOvS`Y z##Wq|L_j!IY$g)iXBJHbPfYlvC971U1yU za-Ar$q;hwN)6>U$5F>h|#*Tw(M~mI)N=BVi|1EFMmoUE$2gM|%txW<;)V`x_^sm;D zp+L?2y#Wq$!fbXin)YYe{W;jTs|}Yz%UhbMuuu*t9w}`~0%G}0W~N)S*Jq}CCkoP1 z!3L7n%~2$0XK4i&lpG5B;YP{sm|;6vP>NXYR?6WKl$bh4sMP;Joa><;v8}cprWC;t zqZWupPuA_=iJjbvK*7G&95h|ABAz;7O*KIgw2I_t0@%Bl4Fj9=L_zfrR4`3a%R0bU z-_)I|Q3%3*h)`dazvbtyU3-nBxhIA}Fps1$Lv!;wUmzs~;J>=VIQQ_2MFQ!@esmEj zNsfcvLaSgo=E3pV1fk$d|5+5slCE7DgE`QyFN%Djz zT|`ThM;sWx@8DF|9Mk{b4BWKwfk9k7vZJd^d?Q82pc9RW9(TKS=y|9M` z=Eihfg6IG*WbAnv+C%|34gqW-|3J`%lH1kE{0_g3CPw73Lww)d(e9;^-{(uNPnk=3 z@Ntspspqkyi9PU99wIgI)Jx0dV~pC@gr(>B-2nl!(~M4rU3sWU0?2nUm`|e2<@d#`?y>ZXGHp($46uypby2Kjklc41h?(Z6>RC4cKIj7Q32Oq$~ z259x}(TO6DVkX3mNPkiUqpJI1V3|7e1G|O|^FE)m&|GzsGQhu#Trmw0O;sp!@BZwc zY#u>Gg1OR4k(?v@5WJ`IhgvK|_re+~kXs&o2g2Gfw`1^ym-D#u;;#gwio9qqXN@w1 zXab@C4n;s3WW$H>ie&)-u>4P8GQ^FiLnWqUeHBk(l^o#rGHC4mxr9C_25Pgw3I}TjPZrB|v)K#SjyDFHw8Ir_nqOawdzZ;e6z3s4DrBy{ z*w}&tm{&aTsclxnH%*+TXn29+A*p#c!$Cm=jp|Vlo;V-|9GmH13OhG0M}n0(FrtPr z$vo#6zoE}bN_XWc{DH|zH^)N+Ybg-Teec$UV5zzOWTmXD;l~RI2VC#v&n?T4&;)tQ zKE6WQ?KE{Zl0Zg{&xr@mOPCt}5ktUBav9v2@+lf2-p^Gw{`^8>4EooWuh{vCGQOVq z1!N9`87b|fP=?-eY)P#6NaRrM4;ukrH-m_vs2E}M!q^@LIBd#n2vt2*tBII5r@G(u zx>qqXrD_>UETsw_%!G%vqs9td0?hM9V zFyO^3+Zzm})C>i_CtC%V zKRIqzC4!X0ri2a!dqN0Of8Wq%p6*wNM*^Y3%>(V>p<~|OJ^1rC3#t)s>UFeh1WKBQ z=vXq&?a>!+JmL$D9wc4)wF~1AtggJc>4p`rz;ZkGo_xcq@cOR>5#%rx=giB^nwB!M~8-J@@|dPsLyV4_^K@KmxtJJi}XyQ+4FpqvJt zZO1Xha$+g1(vc}wf7L>O!9hG(ejA+U3qfEuu5*0LAg2+qI|e+? zix|O{PQ{)~YKQ~!R$!}@i+Ab7Ep2HYv+(j!{gkU|{TKVv*)432Ym=KJI#{-0>cSK5 zVgz<2i6HJr)zo~mi!(#V;%Q9D-7ym%zd!dd{{A%1YUXadkfsFQ3vvWlF$NeEZbR@G z_HYj(IEp~8WMi0BZX68OcKz3;^yYq+E?M+RX@$tr^!NK!p4}*HFRC1Pc!U)cnKQS1 z-D&6_<8#x2x*se1{tb#WHIQwCM%@+U}{&W0=@p6G73 z(SPhy&GSBb@azn7bv%4{uh_;rpi$qw`o%-qybPRH{-FnX`Mg}o#eld%dtw(-CBM#{ zXyvWv4?kx<`A9RRPBKmMp3V2U>NjZFF(2~nHLmJCD-ND0cz^5he=2M$bkQQNrG4}a z2A;jJ9#O~0(`636(6GMIed|+kQb%9O+hTbiB`e3ypGNFGC2D*~@?!C)|9ozfAL{M9 zXGc2B&pad{pSGV}Rxz(IcJ29N;v|u;I7VOR!8mUQI+;KEVM>mkywoGEDxo~DPt}Dg zWCKu4MAqn0(=}`ZxXDD+t4X`}CjEcDI+^RDh#z#AWH5K|C3&X{mZ5w0Bbhu= z$b`X=)j$N>zpRo0^&o6cT**uH720VU-H?MmeMmYk!n3KQZA^6Qd7NHvKFKr*L6gM4lg7MvrS69!bK zY15jYCb#ejXWEF|THJ_w=Esl|O+|R66!7;2=Br`Hek^;vE#An4Oac>-MeLKHj zt^muK!^PuI)XxH0&ld%f62buPhU6jk*B%#~>BH{D^>&7IAB(Thv3WkW-khzwcJK~2 zue{KAPRx_1YU2Dq@Xi@kprS=kypLtt;4gqM_3|GKTOnNo94klmAk zV&v$#pYYvY_1nkRK~s^Sk(m3w~02#B%$o77XY+TDOpgUXvjq z!?JrIHduoPpJb(b^{ygp`ZlTWDMK;e(=GU!5uJUnXYp=~eOpzCMM&cDHrRZ=%KIJB#cUhfPl!EKoM{^MU z(QeH?R5nqyjYxx4YsSOh9(HhJ|HqI3)P!ht4e0=-yWyx@V`)0hdu+RuaV`Py_{3^V zuyyLc;~bZgkHD;ou;w{1QrH)dW%Z0VkQE`q3pm~#JNqc+2XpFHkt2i6<1PWO7OiTc zx$3Z`!T7FPl{**#V}?E{3Jq&rt*3V+{Dsx?+^Q8etmWu_TWqJP=)s8oGoe~CL4&id zVo`>!J$up3_d$>B)>}XURiY9YVdW)xtqryeO1~s$cQC(&UJt`hoM7Z+9Lygi;rWF3 zglIf0vChEnldT%x(qUBzcw=N8ahYmIKlJaLbQ{+4FVgUPU1wIV@m#%B#xh3#<(24M z-;f7W@M0KdV5W@_f-yy4$XuI!s;#{AB6a0SyRkR0S=-Xj%ABbHg8oZRB?EJ;+(_I`Y5O@YOgeFxISpKP;*G+!!SX zc8wnF)v+ZK5T3A-$eBOo5*g#Kv=C}q@0ETJnJS<%?_ZgDJ3_F>lpjPGK4~MY=c8wS z$>pTd*86P<76gAwNo$(^uu^eR9Uof{XSvkM+q&_sE8W?0^o6$mdM3wuiAru(AmW=B($LS15^Gj~C|Eb7%zb zDkKhVKkUg@RILYa3K5sC(C?$udI+Amxz`iT|LjzaO?_}_vABVXGj;I^qn~L}7wRpr zSjBs7P~D3k(_d^*#m{Xu)97sdL*UpZ?K-bXkcxWfhIa-i0j@*{c3+V4DBgNPEJy%T z1zb}4`LhXAlhmD$y?_}otW?`V}U`#(b`kfYl#(P zF`x4t({7fp-xQ7cG>ewZTd_0G8}UZQ=;pign%Vzx_Lfm`EnU|r2`)i`g#dvN+!}We z8r*5z8h3&_1h)`^JHg!@nxMhm-QC^q&Uwx|zW4cl+&jjtAB-MN@4c&Pm#kWAt~tjX zbDe7hftbpSXB{RW6BPp4KP$OKSv1ZU4`y%f>;nk80Ww!p{Mp<* zr3U!fM$qrv824w!+lc!1GRpsQ`<#owqEsl^TcT*jQe+?lI0Y^k2k$kGwyq%`lG}!W zGg;%%!RrR2CM#R%Zn=!Xrq+MduQsXvMyVy-r#r>o&;dGpf`h9F!bu-WixL#mL#ddU zZHou*E3EoOrKSqIQ6L2@e%)c^9JQ1udNV8&2^>kKh8W?G z&3E6C2FX*o0sw15nc>@0^0Dr;;Q0x7+c~ z9VUp$e9*;mWQ%aAl29uB(QFHI_H1hhkH8;Tu0^)6W9Zip3kycOxshGYvE$vH--eLV zF^j(B^W$K>`+KUcWu(bk&j874n%dS{V!k)Ln~y)!zpe;hP-MQG-BS?_P9e5!2{x-j zY17E^FVoS@2vzPg-RuxcF=`q5Wa}Fge=3#(zAgyVta9jeM9LQ zdcsY+zxrSb0S9f#JAjLpfbuW2j0*6Y)}uNDI3=lMYJb{LG)`#87)K*N4;dV;(P69~ zZSF6HCOCcxBW=nXZ1{ZD)Q|`a#WP4oFG+6l%QWqn`Xp- zK;nVZ_%2k#cKM^_xU1bg+6Kmjwkd!%|0|$eYB@SCUT?n~iPgqww!Y%t#di7NDlq>p z{_!FdFk3Spw5siIFa`jj<`_Ge9BPqQ(XdhRE|U)13&dF1$9XYc2MuWxR4y3aW+XDCPPK4pF5KJ9;W79L{BLp7st) z4g37#{#0NNE_-6udsmBE$9O2v(xR0X4fHm*TFM%P(rKxQ(=l_CYHQSdmhOtJ+JrAsPs{qGc7+$M!U;X-lTXL^36fZ82-Tr=V3(yg;-;%gs zG954|Sx5*05~q4Qp(U8oaWdC%AI&x+VWae;Ca4M+hr9$C@HwCWi6bu#*TWWcsbd=- zI6^w6;pW>?$k10h8dS5ATCM@ak7QEB7x~H~>oglgrw{%9v2iu#(EKPRCfAu59g}-c zBA}mlD<3@o{ktTn*;KRWn{&kf+GlaTzOgx4NB)2*xANtph_>C}F2bwG_Ok)at?-f= zN6R=O$s3!%8ALV!(d%^jH3n;?A$9MqoFMBJU3?dV9_V*`z;*&;Bp@Yrv8O01Bs7%> zGyNcs`!!u#6@HZ_;~7BuMV;@@gQHQTE^N}4=poYOxnG?ml>nzZF;#-FTpRr+enziClG_1b3xcD6QXhYZO7tP>p3LLacd4v zO}IUn73I5Gct4gDvW#uq$C>5dG2_#SbQSy@SS*m9P}pv#3#iS17;K+o4MH$(ZH@N# z6MSPfmxY^uf~vQJ%(_Z9?B63u6>-3SKJaCMxhw!6V$Z&!n;3m)EI z5e=Y-aEJjIus|T_6(v6sIRVKmZZgc3dtWliJYJOtUPLRo;v+K$iM}0mdvtU zOIjx}@$GOSCI7yK8c8>>V`V}TQbxbd$bWNy_gP-(TUcYdtRVjBInsS@qPK9al;=`d zkEOnlj$6O@Kz2p(%?JE$kf6OxjzIO}IMjHD`O?*tV?HvKk^YWSZ)Cwh#&gGL_ZvWy zW6OYMxwX5e0ysuRHGE`TYBrqiyD(6P*gWnuy&!zYU=Ucyq@vFaStkJ{dHhFWtOZ%T z9UsBXV}%Ud=MQ&I6m6Uzj5d?0W0=S9u9B$pj0-Vior2R#xMZPryv||!Z5m+c3EU4Q z;-mBc7$>tL+1}t+VAI|_`zSQRiG1Y4%om2P$5M&!7A;ij$J~CV48LO@{ncu$7k$RH zz$s*};M0OUD>XDc+B+HIyLHZwp&D(xjths6>%*uPggYz*3KY`bq}2LkRS#WJ{Qq8d#&(?kvQKAJt}vy=AJxOTIRRXwf} z#R`*Q?9E&v!C_`H<#yEv)&c)2=G0iOCc1hEtsOnh8w|o&M=EI-;!cl=di`VyjlcSx zXVT22AAPp#r)Hf`e>Qb>1p+1`RyQb`YQZN`mYG!_t-yEx`tx~$7eE8x$+z%<3*aQ1 zk4%jEtw;a%I$HIC#T#HcuJ>;xE}x(x>xd}th@VMfai%sCR=^96>*kHhuKiWY0*_~Q z_v6h*cfMW<4W^imZYp*ve^H2)uAPpDkBA3I>z^hqtR8evLUg-Qy&0Raqm=|rL z@sk_r4ZtZ4K#L6{A#=mzzzSKgrOj~PiyEXkQ(yuh0^Q*YV>2K+ec-|b+u zB69wh34g8(dr!e6EXyeW4*O9CiuPU)$H>#OvMoo7g1!HJHLi_XP5Bo8u7g&BrYqpF zc0HMo&vp*+ZR*<3p$b8x&k^zp{QW z^<2(6Ct-yrHneF{rN!N-I~&ExNQ4knjg35imIKg3S$_!agB!M*&ZHx2r~B z?#nO1FRcEo+x6;uM_>P#MP??5*ku^z-U|)q<_Q)5A0Hqjl>k3a&|^ZFe#J@KlO&JL zV7-@atE{e8u%ScEa7{N<>`h0Qjyl8!tvymfi9*rTWfaQ+BmELD7(Yl z$Vr4%fA?!Em121UX0_C|(5sI~)n?Wmp{!&N!TZ5LDs(VXM2^O5jGwKnzY}j?YL9)* zHl(5N^{#&tq1osW1L-;Co!bXLDh~rcblkPq?G%-Sc7kvrBc7Qzuxq9Iv{SIRX4~;r zQ}6|(YuU>q?SUX(!cx$04t$9 zoaa|RL9|aoC*@u&ve%vrKKFJetF`ph)qD3KeAI(Mi~iKD%`_;HuqfcOtbq%$a8Njn zc^$p&SYg6p&5JYpeB04TU!<9|PHSfp93^EzxN!5-Xm&lm0=P?7T#FBcYd!x5&uD!n zB>gTl!}_;o;F&kef&*s}5w@Lmj6U=Je0&cx-AK1_-;4E~E>_D&-W9IkmAfS+gVIMs ze%;86VlWf$RK?FU&dIl@`9|NO7(e1@=RHha^Y|$cQY8^ioY>q;X76LARCKbBX zi0FH)OA4(V+X?GbC^g};vX`;n?2j0S^Ro^}q@o&w2kFB$jC^DW5c7y&>E2_(x9Ao} zU3tWvoo|}GW-Gs|n$?-5edbrX^DgUX%WRa7mvrp7m{FJvX}OFsJ;qL> zrl|Hn{1}rgc4>IF0m%UeX(bx!!_yayBeY$;f?1$ zlWyY;uX*Rqua!iHpEfjp<(i&6RwGC1J!%J#cmm)9N_ zYHd1KrPMr63#BFMZ;9((K=gWZu^{7U@l7-^D>v=}NH3ON39aMumT68JDn=x>>zG7E53#4K66n}$){$H`QKKVB#1o%Kk%5K7EIypf>CRTRfsH@iw+g*~jhPtyky-(F+ zi-&yzsB&h>mC!3mk*7)m{;N9PHi-qOk-`xI%6m7X4iwhX<+Ii9A_z5~|P=)96xZQi|MY<$KnceN4UMZW66jCcJzabYq9@R||1gj6|(xNHj8( zlWF@ZlgRqOdpZiDJB=}_+P9cfV9VTXRs#6 ze2q{$m-qU&io~v8_&yMTrvZ{sOyGK0Pg}|!TSH(;;WN@MeC2rnk3Qn?J4ElJ5PlX8PBnx!Kp?drf>d&-Fp-dfer05 zcaZYC>U$4}8`?5DeKb>&6vGi4(B5dOxy&TOy&QBUo+Q3?)nPHvep=c~seJm0_NYZawSd49ztMDx@)3=(@zE7vOzn)wR_0*v>vupY9>(N zVOUs@(2feX9DjXbX%5SjIxk&$3`UITeb&Miy$-5&j&dyLOM-jOnit;oXl-D|5={ST zGQg6(kyaJqxmJ5r<77(2Tes!Q?<#%dU--`I7k*yY4N~hi;8*p72Y2CMi9UYQ*@nKyFkAf1vcsb>>er;T+QR5UEJz!r}F9LSIOwYSsS2@Tt zS9N>j;D}nmlwh6-c6WcBtU~w)4O9A{55@o><*1Nk7Qmrewk4uD@&okg1$AIOJqYY( zZd& zxa+C5oV24=H_?#JucwOa>u^fL_4)Yl(!E<;qfN`ldEPYCT>O*JNBby{?6WWkPa?((le(-Xm$L9>zEZ;~}X?NAoyj zC)OAOM#iyqbq*SPgM?h_>?`&-W1uF#gw9DgXPFKeUKADf%j9t%b zTKco7Q}2%NJT(HMLIXVB&$jhOG-;^37*uOj7~7%imFXKR?XGqSXE$B5QyO*B2nzy9 zt*T!O`&{kcXcel6_WX!%I~ihTO!zG}_I|#@aN`|w^=L_wur6%Fw=?H=&%FpOfHr2O zXy{@2zN_Ppn8;1UN}T?4JZ$11dT;UKOZvnXo>vs24A}VSMDpTI`&`D}YF$M#bs2ak zJ+7Z`xN3DwfWX@Kf3{S8=Cu#{-O=qIH&6$fRwAn(1*=M}S2%qU<6mDr6wu*${+Gd~ zjL8PX(ET|PIeKe)n^2{_y;+<}`InaWC(7@6BSK+><2~2yCG39hr6^Fv1Mz?NA)DLj zL=8-}H_Jq`B99gfEL0_l=D6AE!34%x*2fX$!z!#~JmVL1&+QzlXJh)(Onqm?3|`3f zRr)E+V0HB@y^IXjYmblC)iGD!I=W1UV0OxT@$?p(6B1E$Hhh`SDCBr370h=A2^$n> zKMgH5X4q7A^$=kXIkmqB zzysdkDy>~97kk+hi+zVX-Hj75BA7lBIReDz#1vn}$Q+6c$wgDod0BW9D8i#BamAT@ zBR}j0jO!n+KBoqW|FC)Da1<2e;}+Z6G9R3k18#HajFUhT8(R6CzpbQ|IfKG~Sm)X>+w!X$!JK_Gg&#YZGy^MWXT#CB` zDj_2^YD9TrNkNuSXy?5?z`>WM^W2cZy%BGy6)WD@-(pyDlrzSe`#LBWL0CHLr9H{P ze0GOg9lBvp`+hzZtCnPO)?t;Lk%=<;CkM!T%b8C*f4;Kep%>ENQ)AWK#33-IHt;Po z0q>)at2G;#tOCPmyj6wO!^GAkH_x4$>Z`hUs3oD)OM()rNh0b9$r>nfP(Okbj)v%t%pHb%d{@Jzkn=2>G z;PW9+|N2LlwR4yLE(UnRCdV57R=pV`UF^eo(%>vw1h#6hPzGo5? zj=gh^;P+|5FC_GXCP(6z!DtA2R~W+r8<~YHl{hy!Ye` zUF3Wh-rSsH#vaj{nj+FlgFCjJ9EFu5b{`HPCL({1JR>qq9UZc{2gbfdR&4jofW4*z^i;hAbDd`bxqE>P%qEv5J4 z>aV*MbsBd)Psr7fPQs|`%d4_jJwJc`q?_2lIH3gJugh|iW+Ucv>8{|6>%>P^@Kj~? z+uDzXjDxrWpS>=KD?aRCLZE39^c?@ho@tm%S>ySquD3_E)XBbJ0EuC(V#ddAV@=O^ zmA=>+IxSUQJrIw}I!b;m%U9Q^&WJnt$;u=7x6@J48vAF#Iq&&r?Y&1+ot{rIGg%w$ zUz(F4te2UC@eH3H)&X@9W8;QI_>fXCui;*%-;*NiMTGsZjpC4ULBcb~(M^l<&qxtz zKLBP#X;D@4?m1cmPy7|jSQh1kvWtyE+m)+QqLv(we-fpMIuQ?*N7WRcg0Nl3;QiW& zF}g1tNzp;2QFA5&>hp^)Vb6PsYKvyEx*H^J#&7@E0E2Po zDDs7j+;nXQHv!Sr(0oh3uDyrO5_m%fZ;6$756;4n6C3M{vw;TAHw9A%1(sT&*?yOF z_Z_D0nPDh6qu;XZAtRs@0PK}L9n#pd+;usW9m^L$xQz zbDO9DrrPWJ)w&Py487?AWSfg(?6n3q6EdZ0Y6H+ARhQdqH|R_qLgE_;|8uQ$f;yrW%AjDtXCfX6 zyD-HkOw@04YaE|?xiZDTdy?;vT^xGX!om>y_FeSaIkQ*ANgezSybT-9K;Yu6$76(R zDUxL!f-t;TAv`^9c1>IGU})+UzcA0(@&_5VGSg-fd;z5^3J&7ivg{?xCx<%R-F*g1ay@a#Nqu5pA;3-l5jgR~zXQzcKd;-pKVwM+Q#*@q0 znb(W*2-rDOb@FZYl$3EwatBF6cbHp#RD#kC^J*fZb(`xf`o0isXm}Y3v4RF%HzVZ< zdW9j<);WlvvV<%|2>+jB*$;ykjPcW7n z<}DxfA7-z2r_Np*w-rQNqHY_VTXU`(R?Gwq#&7^@MPsRr{A%bB%R7<3Y<56iBMN_3 zPr?~xoHVj!U|9OIvz{q)BLG4ZG!vhgHfQ@6XE z+0qat2vDE;u9RhSw*7^i#EhDnKGBUkASF8S&9I9J=i zFkqifkNIU%uvwrRe3rY9kka|eB@U3Y;=p>9`cy|qWnx!jqpzh_E1P`7O>Xc4@(IT9 z>fmu{C?Xa{%O{6@2jduM!<{a-bE49N=cGETSK_JkW#opC-#$4!Kb}}J8FdP;NfYs! z3Tc_0OQBLd=c9!4ltTpk?;cxQj1jI&>6{0UANZFnHx5!3-s5{fbnrO{=Mn&T%+ zX?OnQXSGM`R%iQp!DEJAckhkq>BuF`uJB2$qfJ5qwrDNqvv#fghx{Ia++468--FlJ z66|oQ-o7$%U1wYXa#Rb4E}P;OrjfBfQE(7wOi$qWaeVY^z5Su`n1(z|7vlCtxD4T* zCzm6tW-E*A?bn+V9jXJAu>sLJd44fE(-Vc(blv@PCy!{Ot_+rDzx@-9W+Cn@$5f57 zSmX;arSbp+>Wkp`14YV|`668qzPD}_V)+Ziq$4T8J+c1EPJAhCA42oapbaL889TOM zSc!L`QF7U2#a@0ptTD2QJE=QG){G$jP9S$n83%)n7nfgl#|ZS`*7p0=_ZIy=_4XXZ zT>d)j+l`OU8~?YZVM#YBFI~{FLH%>FHUu*)+l?-JH16mf{@$H}R2eJdt zi(9`P(+%AQtrS!-bF(`C+-K0RH(>@sW__Hfe9!`=c7NTG&>NTE#p;~c*MPzS(SWG7 zB&!MJ`W+r5sKJ;4p*I#>b)g|X-`dr*1H`wnYX@*bij!uXHd6b|GSL~5beUk2yOd4B z~ICtx>SLx$E*uNaO_Z$2$m ztZfP09@kwPHU@xCHVP|yHW%B~eZv6_8?l<`^j0Z^pDj+UXU{kgF6*A2&xT~Xb!{YQ z8C7xuY+sMHsiqGqW09R6G<%$A3O-dMvz)lpyKk}9>JmS zn0n~q4W*gh!b(3F^9a~)Pn521=~M4Z6jGLmL+cuf^l9Nso$C&1YL;A-l#}fRAlm%+R@uUvuQVUHsn^Q37sZ|<=#=e?D zj0v>iA9bK!7u)b!J{kfy93X;g)NyczUCY=qpIAz^S{(q9)Jedv8>3!==DPr}>y z5&k6ylLCsP-Jx?o5}DNX6x$(4#>qo|}@ro6eM ztX!IYA#;_aHLsY#Nwvk^_NIxffjskp*(IjLz86|POBGfxa83tbME`K&r4IKMYs%#; zGi83umi~fG?fqA2EiH?B zXJM6ZOU?;O&CT9TQ@LK6s4C2}N8xH_M)gR)@itK3;>Ml6l_YJU5JHmDPru;3N$pEY zNiu%jC-cr*PjIHuac9_z*QF!%<#B}j>dn5bPR<50v;a%gy_LNsP?n4de4jppZ0)Kn zbka5$G4AK+@tYC9YK5tW_n7z;F+@MXHgQ+IKKMq^kKo2E~Un zBJ>j#pR4Br0aZb~yC;_x34EK`gBPhyLR>P=mukuQ31)R?OZh!fpri%HfV7`?@=-t2 zH(?goEpgDCyCjx3eX^r|-oaSJT*fl1x!!+wj1BF2*%-oa7Hp|Ivv+EH=RH|l%F!Zn zG1CuwzO)|7^02Sy4i^$^O9JvKrfqWl3cTO1Rpjk2M28i>10He@B=~&RC)EG!p!V+S zxtxXURP4UUpur2DhV0bK_s2npp^DyxwA2{O4wVU8tCQ9uvKWUf*!0LxD=y57aeHdSImY^XTk~ZDw*oy(>OX8%?%R)(+YX$skRJEOp0|nH- zFycpd6yib`?v7NAWMV@&X1bKwY|J!v`Wc$`KL3n+1Bd;>aw6`w_2h-+uNTzx!o zc2&MC#E~$cw^SkvW?D3DaDLVoYY2faDP=7GVUbpe>AeO>L{Iz3$3H!-?3N(%t>0ld zk$|jG`-TcWvl3!VS0A`X8xWJaz-&$4$5=JX!!ced)k;}i`P5Il%fd}z8{gNU?60N# ziX3EVKf39<^E5=qCUvb_MF%xw+@RmW27FJRc29K$iKp<)!26HAH%ZSu#gIB}T?y5G zl&U88ztO`f^wuJGQQExvepPuW9y5P4^g1`;{?p_lM}P4N`OWhQuga#@^=Ic}5sc2q zDNv;bLTE3GBwxJndL>#Dp0}9i<&2gJWcB;A|I2PZUF~+edB=yq-rHX+i-1wS6s%t{Fm}f zsi1cLjcJz1x_8RaFIqiZR9ohe?9X3#?wRIlo`57U#>WL@6Tl~6IshY!WY=n!W-;Y- zJEY~Y87gR{+FMR5H+&;yJnZ?@6aH0@3@=DTyzzw3_vBZ;@x-G!aTF$8EQucBG&khr z5@!hq{v3M2>v+@w9W_LPEYQ%fklUrcS5rfD-#fKR;)g^$&SVJuB;M!QHa6WAK)18` zBOr8*-j6F>AgRFoxIV&BYtG^40W(A=0!HP^87*MYsK0tQ=D8Zsy?k>!>b85;+G~0O z8kNPV`}oHfV#2*#zg4LDA&BM|!nlVQ+4`Axx`vNZ6qUb&aE z&bQVMR%^Q#Qdqd1aWx^kz4BJGkmDJ{;wIBYes{058h(U`^QwJm_-$}8^ZqTrYqSf_ zY>#c5dt_Ui@3WBzm=SZrye>UsiE;R#DLnZ0{@OfxDTpV%T>F#sbX)m@bq9wx3CCuQ zp>u$Vue|5B!_y6p&rX#J*Z_wt0tJ#)P7U{!A$8%Kgg43bWdFVPni=?RzN}(oz608- z5}l3{Stc(*9bg=j`s%wxl~|dFr0fc_G_lV;zU?gdV4PPhNcJuFX;!iT=3M!QXbFNH z9tv6GQ;nFced%@ur-`-7dxjXnmlUvYI{^>|f%pubcKn_ZFiEKq`TFovWI=r*;>|)9oWWs_@&) zRKFkQ~F7F?zeE%t|H|q|k1=QWjrc=K7g9j7QFkp#%NPlOXB9Niz?9 z05#566hUKKH7Qa?%(IPMpo6Y->nL#--JQ$yEL?LQ`! z-&Q1uQ+TfV?z-{I<5Mzj9W_=!e`JJAYi~U;oxWk6O#W)R2*Wz(by{K~QzS>4CG|jI z3hU=g_fj5#<)IbGO6e<1bH$gr!M}J+Kyi|2@_yOryE@M+=O*OgX7stGyg+;Mwu;G! zQ!QfP4#et?+;E)SIjlG=<^8yGb&$(DW^KpQ!S5rf$M3GV`|j)oNA;z~y22A;^HB@q zX=U}p=Zo@YpBBYur8yox=H%p$u;@D>8#kZZ;WDO>_gm|4lh?f5+!|XN8t3^eYo8ay zn)KqJ;7f@@{`vP2?~~(be3Ev&oXHGeHtDfZd{aZ&t|a&WlSkS+zU8@zrB%5s{qh<`#!nWy7dXyGOK3>fYp4^0kUdxCtB&iIYxdnN-d8I~(wZHiu_}9!hU|{z!L|$`a_^`)QH7 z*JYL-X|Xmh$JYCrGyA^TZ;aQP7{S%GvLxIwGK3kQlJ;m=%)4Obd=9@Ajgm~hN(;6j zpt{hVEvZ&2k(V2cDfz^^>6p><@n@33k?KsRN$Ar}(-${);@3XQSHuFqaI`;}YP#5x z{9fq1GQt_ia}Q@+vgBgzicQ2OeSf7j<1 zp8L&?&yLIfyCH1YPPP||sF{<^hF~91B#-{a-mWboEGe?ewW|;czP?Qp{fa7CwPvte zbkW2sOk*d{Ljh2Ar`+5=iQMJY*?It3Ge=lNYPLYFv?zkOJZ`p~jGNqlw$T4sdW;Cj zbtNFaV?eP}nQ9wEO$v&rN->K?AKKs#PS7UY?VO?~IF7j_U>6g4ENYcCu}J4iXO;25dfe z(c{x!xbHXawrj$#kQh!5%VHB&=ID6Q>z*6J^Q>Pk;->uwMpdjM8uLnrzGPk*$29v> zzQ2(fN?4$JGZS}sP5Rw;TPF7W{=iqX#3wv`p@t4;v_`lrs^$LotGT+Dkcg2Zkop}D z`Ss_E`e2`{s1JG9N>@n_(O~s&$(}&RzW?#7ot$`K7DJ0?t!*}ZpQ&%h>IklqO zAqFXq8D7fQclWA|UqyZHj?`PX<#djMPF~7qLO}xcMV>55%A0o}{Qa1))tDDI3GeMo z_({cUjloyni*S|r9O_DX9y{K=^=z=l&P^}aK@j3#jBlSOI}ur5AI5b%Zv?+hKb=sc zhVkD9nIUWh|NUzurWG9m6l!7b%Y2M252)>sw$OF^Jc_L-@@@g~%N{WL6z`@|nin3M zB2jGBIif}KI@Hx#vgoXlG%_7X%;Cb*SN-(bKE7AfDIk{<86Pd84GnC|U}^g_LG!50X4a3P^K{x?`y!$-MY|f9p2HV! z+3Di27An4Xjt9Ao=f9vSR_SR=OzxNs!quk&j-m)xQV9!`Tm2dJ)BD>rFWi<6DbGe^ z!mE3Tmi7CYcs%t_zw<#D>@NEjKCUhqZSpb9L6kDmQ*Aaa#szLu0Wz${1EkdcXw}zU zcrb-AxGp1D;C%`jQv0mSyv)H1gq*!GcPp426G$cf0EihM3*R+qQ;<`hCyZ|IHSdI+ zLg?SldTZ4wfoL3FR3oDhhj+>BM;{!v@19mv9vpK-xf|Z0mNSOD-*}v%=c$f}iOD21 zv}dhK861`V-CcF9#Z@D|%+6U%9|>1uL8^>*U0yvbH#%Mik#N(pNF?&3Q8^K-<`UayGTe!^Xloxltryc96S@Slwlh}lB;x(aL^LHQr%p?g!$>HByy6MH? zANSUTbV~Lz0vtt2^li;b$F;~Pg!t0-Tdhhg)xW+5cJTsYd8JsC4bS%nTk<{*JW?zy ztgN|}%u3One-C3o!I7=GzjT_>p(<}V4|AL5fO%`tI@U>HiXb_{m+Oc!@bQ1`B9&fLmor?XtHgZ?-7J3j+i^glwpZW;#VE1TI?m1C zv2a6o5Ct=P5rmBU`Q}Iid0ykb1Cw=2^B%**{paT)P0CS&nws4MX&YVeun83AZ_*5R3UQfoh-0YMiySEWpoobYmmjGdoT+Cc;1 zEccmTmu33yMxVxCfj+>sKM8DD22FNmND!k-{|R=Z4`@)z2oQ0KYh|I1|IzqJ)I~f% z>ep{<-~PmiQ(9IsO^115>s*TiW$HyvBrnfF_EqtwR`Rrtx-tF|LqD%wC}4;~vL6kG z#5_xQH-WREaMG1HTW%vLHk#yHar80A{va(1)}bfR-48+7Xy9qdEF(0q;SfxhZPb~d zz-{gU(zYVnTCJt$hm+D|8n(Y)}j{4D$V5kpr{(rtXt1>;P%m z`FYw&PJfrDH~M->UX?c9QjW#UclDey&(NPmKA$uYmdZ^axj68}kj63$SF-82Gu!J9 zva>HV5@E+G2h1=Icv^uN@46+T29wR7+iQ)kf`Lk^f1*1cj_Yr{7$m8-qYpR^Iw+?l zhTp1sM2!)|rVp_BRx_V_r}Sj^;1dlzK+-Eovvu@w9lu}PG8{6RrZ#Yh5w3y2FErFo zK?#FPFpx>OHT2_0%9mE5RqYt6Uysf0EW5fFGxJb^BHeA{PYoIfIv~^Sl8`H3CdK{! z9T6c~H&{~Eb3l_>X@tp(UOLC)u#1^api3(CY3QE4o$Z%y;z{G=1thX5CU?!$e(RY z;IQmR4>X{8za9+0maqM!#kNKFNWMcxy&OygXa+d(ldWnflmv``w39&$`~gzo?8!K) z9SPJq%4p!dZ${(NfKAEN2&Exya!$Xxeg~rz+ALRB)n1H*VyJZNqUV0erPd&;7I|p^ zrUkNIohEN|74$3cxzE}qnvyBJ|I|&Npi6mnC$mUJ$1R7a8g0FBm2v?w#-Bwa@C)Jq z>9O4r)%>Ib@FT4P!_woIKKCF9raECl-(e`nr&D27gobBe0)}d+_m~<97b2sRnH5im zW9EF}+0T=CJN0{ul{`dQNzWsIa8N1im(D=IgekrHzZ06lIP@!(>KyA$TiT$hF9cKK zc!d<1k(M+m`#C`)Omz5Ac`T(wVU^e6D z+Vrr5U~BvAtgM-BWj(984dfiHl#t`Lzf2-yWBsR4lx`lue*1Sd{G$)^KOcX5fF=ER zDf)T&4(8*3mZI#OUKphRxso42=-=z8_n2Y+E`j-3;%bY;--Sp$HCx77JShPKVLgt0 z8yUDlapphwmYX1(!$kWsnzSv;4ElSgD<(8w%)kE^LFnDEU;%&3vO=%r`^n&NgK`$% zltkWLmHh>Tb7u!$xcOV>v{(N;b(d`@L4ZfWdn^P9ae#(Kv40kQ0R-YM%82m4?6@Qz%d--qe`&Qsg z(s2^i^H#v*-0o#UVR-S<6fC?ZIMRygy42ivv5>3aICt+c*=-$Q+@2cP3S2(7cqWx3 z0QJX8BlxFc1p}q%5bK{(d;WbtqT73m-qNtkYFp3_K<;Nf`Soa-;B^vx+uMF+~>?HsD>;Jbm`S;cT z*B128O9JkUr8sW%|96n2IRcjC=iVWrzxM%38r^H*?m?=+jMg&=@cH%3Q1vyuR#lEm zKa9EgaC~apXUO9yANTaAg!6P>--GI_y%Y|~JRQ%NMZS*`Htz)oTZ$bq?fM93wZ7<< z|5&HH7*vYcnYw5mbZkcd&jYZWqH|DvA0H!??&|AFm_~*d3*)VjInt;I%xNsXuuH@K zAlqYc{-e*moJiSuf0f|k!Z~o1pqm+Q(szd4y7i}0hG5*Kg5J%(UWVJJ!fMf32$3&- zut5e<@PqbMeEP_+OzcC3n+_Dn(LMXI)SNIU;WID`O)54PB|A^@{rmd&e5bepM1}HN+B;^VK$H9Ddg9s3zjEh zv&?7%c+%fm?NLz?1`mXI|H|1{2+$QEr~6E-7oKXyP2jHUvH4A#iCnq|{X=%1fx}h- z77MA7Zw~xJ-}HX0gP5+(q!m``f&8>>f=3wvwxhyE<%-ImPc9LhBmYj_AIeGyLQV5y z+rQ5DC7N?9bA{i_bNmTajy&H!eh+>b`_M;{OiMz{MGE$klX80U?mPAnVPTDy?(E~K zwP}SLk4h^2nzq{K{R40CN0t|&^y;S2-E2sBj{c?C`G(-+z`}wu1zjtY&*8y!$;#Ba zTep#%Q>zDKgyX~}FppCis!m((-Mkx-yxK72_HUKk$$%PthjJq)x00elhCE36@3_fc zTGxods=73RMh^ot<}pyK;`xUWDXt$v#Lpw-KLl%RXHxb!Q6q9Uc`IeY5R(D0 zPNVv0Wu+`Hva+wxzX^8AZZ(N?+jXgWYOYT*{dYm+$ABfZzwRQb>z}c0ku=p?yt$A) zKYUUa5ypN<4ut9FRBz2qIa%ao*F#j+*XtB;D|_U3+b-8K*4B+}QErxfFE=IWe)9Q8 zyuCuQT>9vNSnQN#1rhhS-sUEZIgfx)&l>^?y_Z{@JAL`&Nut3Y&6GQP5m@!*Zx0s` zq^;_ZUJG!EUmBcGnwI}G$9A}M_;+ni4|??-Zodd!vNDYw*W>e$0w$@OiE`uP%>9h< z{8lS@v0iJ*%CjGlRZ+~(8uwPYX1VJGMX;Na7t@6C_e=E&Qf>g~bDZj$yziX6bx%+>bJFBoLyLizP0}NdP z4mqSqOG<;ZijvZu!VuCOLrNpvjes=LEg(aOG!ja84>80UzHgs>&VHVKu`kZWd9UVT z;9YChfBpNn7TU$D1?hQbmspJ{`xMe{883rQb>*J*^%G*JgOZ_*FWqY!l7?bjgui(V zv#)xvS`swzE=4bljN*-!h2*dlA-^c4oOAhhg8w4`C}Bjtw`T@YI&tTgOBb8cxIcY| zyZ|y>D)(>y-g1J_rCsvRu6M%OwK4>P4k=Snly&m#cnI&Zk0sf3licc|7Wj#c?%!ck zXZ^6;DCt_SUnbX`>f8y4s%$ns|J#PPt9sjumajc4?l}KyqgN!QTV~k4_1K$XO_W2dQ$Vn!@$!lD*G?-cVVeoi(%!-O0gBf zYk5BZsu$K~q}{UWh3^GQ_4jg zqg@cHc&Fxd#H)uh+c``0@nt$=PTQ4(`DW2C^B=3&n@Ns`iURij&;DbLxiFFz(;P4E9&}galmn{?br~3vcyHf!g$8n8wg#n%tI1nNC(^f@4Ke)dT;#7K zeGAvL2=NQA!n73HVlr`CqG7kCxBZoKN9_z6igPw}?%Q#M;=)g^|fr#o=NZ zTF-$0*)#dh80g@sBFH!+Nd`SM&*>;FozA8My2Y(EwY|v)7pSgk<*`wo{u5NY1w$oX zDle8s%iAd_EToG|Gz>$&>;qHLL>qhU@b|Y_%#%WPappw?$)98twzp(%N|eMIjCtEu z9P0%CUHPn$rzm+%-PU}UcRmTD_prmIH{3Gh;UiC_;V>clHda%sVqm$?O=+!)I;DBU zW9HD7&BolvzJYd-!Z&sm*-)tBwB1Yp5ohZ4Mqbvn~RE+wXXz9ud8m{GUl~G zr667r@9$ANlJY;zV<*lEYUKxz+3zBwDnCoke|5y}&f_3X33VbZU)01bL&31xi=>v% zcxcq*4S}mT4QFXz1qZp0a!BAJ;3iW9bq!i+^yvoGXhMW<>&En8EK{7DEEgql;wPIj zq=^#UbsGr$saxl!ht7xjT3$Dl`lASgulL0?D)C+F^82wprI8dZ!2yb@Y=#uP4q5qg zDwAd9f5q#h7X`>n26%PbP1waMFzZvLVHK|bC8HvU)jB397rRzz{Pt(9%r1lWS&w8J z^2A)3)6du+Yb}o4(nPrAc)ex^vJ1S;FDI5nRGip62HWb)w%f=8<4%J5_pl2Vd079A z$EWU)vvtNqqkMn+CrCw-5g4AU{$a29q{l^_GD_v_4wN$R?7=r{ROD0M4gvHzd94l` z;bDrA!!k=Vx?G3rkTnRYlC95Fg%?~j2H7rQ4vmncPX)UcMrT-FX+~~d4FnPTqJMR1 zo+x1#!aUo@evR1uYr;xwc~D+$;bmZ)PNLJzf@mAmKS+_o>Mki@8W$qq>c9Z(8`5qk z{`M20yw3nsl5-{K0Y#>y_J`6-Fnb@SW?77eQePm>ypwTcoA>Z*I82_c4_$ zdg!S3!J35(S3(W?&vXG1tl2Jj=POxpDzs8MntMg7m^`yhiT0aRt;d0EyF3o#2|#?G zl@Eyd)(aAy-Fb5>Ei!&G=fJl9b&vgmSLy@oS5E8eu|+@G{T3j^7*wlRO?$&|LbzvZ zVxCFSx#kJn_Enm4UWE3+Huw1)q@Xqg!)=W!!O?LRj@1G@!bq{4F`HH zzuOKgbnr3~o=D^>z{E?WSP@~md}2s4qoCB5J3sD?wUTgfv1s9V)XkfJ1ROX>8DfzV z2ObLZ@0Hn=B;EC24*ekwyYLN;Vgjt~GrG37kh+SzEc+Tnc6u1-ezAh7mGfO9Pqpkg z{B#wj`6x*>NN05PqhQI&1r_&{4jnL}ymXG;Vvzur&M9yTqaj_dWIsD^0ea*nXaacm zRXVjFu>7y2I`WnYJ-BNn$6YqD{O2es>oJ%8%yn52Xx$`uXNZK0BrgPTcy3d`e!S?s z0H@i%PxpHCYv{mNP+(VGfB*!?r8#mQ^+3box(Y#ly=kHO(0|9XX(m%%o8{d{DC zaji+><#}M6|F*BeXPI$ybzk-MRU+fXx#Fzq10@-j0St659$S~u&k4`gwa;o))C)s5 zF|o@YM4+1rLA+QygXUToVMJHbX(naD9~ix3h0k`8hhn>AM-FoO{b@Y&m^!loWv_Yc zJGmQ((i2&3eHv9rkM)?98WGCDp*ykGTM{&wXy_&obK5k0)whT#<5&Exbai2PJj+PrJED!B#X_o|Quv&Mt4)z6&{#3>mjr>Dv7B8+{4 zc_%$?_K30i)B23iq4z=`V3T9|tkK*VDwBeSKcS%J5ee`D1oS?)Lovd`mq8uzmnD} z0|L<4E?d4h_}Mj*`2m!OjH}7cWTL}fos}@@!Q7++{y+kUsWXi}cqQvh;uO%h3aU)% zH2nmI=8Apdj1O_Dd@5v}nYr@d)9kn!;`NG8$lvYBAPOpQGYGtLXa*@*o%0eX4F!YIVa8hF{Z{{=9TNIx1Podj>!p&re8m*K>-+j8f9f;_*NJ zSja$m)N`8x&>f;!(4YC-+*5L06L*pf^^kOgnr70?cZwwNF)cZ!w zT`*uc-Hv#5{8NkQ_c$94>KZlBDjWPf@5iLr-(NN51;{jOExNI;CotBa`(}T(Cs6y6 z3*_=S`zJo_S2|VH2+OVbth|E*;mrf|G!h{1mH+2hGB)oLV|s0J<5?uzM$2C3!j>Zpyxj|;VHGMeJ>>5pW%+#p4NW;m^&RikzlI-Bt(axQEK5qy_X8v2RgkJ%Q zG8^!=>T}9s8}67Zco;kUPffdR#43Kw(#Vg}k0ldZ#*G$@Yby=DoC|PKc7eFEIzyr- zZPvyR>1k~+QPaV3g9-{-?6x=1_p>a{TQ^K7gWxv+sl*nm41`Wc&dsRi71lT~bgop( zX7=KJaFt*aIgDhoTlHeTIu^*ZGZvFBf_^FGWz#|c{-b?SkiO3=CYS}81Zlxl-#=?t z;HdNOIlla;awL7@9F73R0;Lu_#dgctwj2Voj(__tQ@t159e#c(QGZ$09(Lg*5EAo- z=KZfy7V)ZQe6h1;7At#_{o@kDK3=a|+{^KKx zo)cDWYf=@YTWqA>p98GPes;JuzTzijJJKxaNLW-G;1qM=6xu@th3*K(k0Uyd2g45Y7i69Fcni&$tKUqjxD@n<;84pcPvF%mCFA%ktlk-}I+(HRi-C=V?u`;Q`@YR&Lq|C#jPQ9g|-} z)ssellCGKpx&-SHXj~Tb`HZEE?36S85IQQJD19yz!jeI38bn+3>K6^*6%kQ)g9y&B z3np&|(Nj5|8BF;T>$?0}FAG-@mB`!@#2ce+3du8enoZF?jpIc7hTzHx*;df_v|li%;8cV)IdvDyL4Of`ts$0Q zu6E%xEQF)=+46rzDf^);#yIIT0t+E1q%a_8#$Zr;{XBEsxlY^tsjB9Qcn3k=dW${fXg6 zw`K|AAOgtGAkv%WE;*Wf+w2FO_XuZq{N#9QN04co*>0R+MwL%W_6>gc-6TG9orV1h+C(r0`X-h`A}uV5{=Ovz?DR$9aEeG$~B`v~Bq7o1Y8(=fpryfS6YZ zrkX$us&z;DHPhY8*D^i(rc{U9d_b?Z^RD{5QNtItc%cXNcTvADhgsU+XNW^BxnQi) zQl{zYm+q^S_%U{GTzy&B0MchHWH+|z@hXZ3};daEOzDDLpqBdp64Zf99 z7$gN!7OOQmUK(dNs>*Nyv7h6mE|4j=NrcCu>t){7f!|3p@9|acipzo2ufmaz}v`-9%ypPm7jYmCcPp+^JiK zMk2%kF%(--mY}q|>DyJ{tXu`DEe{&mr@L>AY+D|^&g#*m&yc>CAUtbeW-SAZoM?UvPl@8LZI{K2)zZDE+zLY#`@tih8e=gYNh-_Bb34o65 zcir1nqwg_z5aFY}(8k(Yr<=g+k1WT{068hyCofB&5kFPJDwqJP1dZw)`CBH~d!Ylf zS2JrWJL^6i6JkY~Nf|wx03*=*1G)%#t@Il>_Fdtfe#PTkxKIOGaU3W>q~`~Kmf%Qb zg+Wc(g0k~V#^Cp?#-S4dbZLS%I@GX39>*xyYK@^|&j|TTwSxoioCWtale%h}`5w8@ z7z&VJ_agabnBk9A6l7}q%Rg)ShtSET@pEiPIiDC2M9TT8KTjWA92$iWK-~}L-~PHj zkHB?7>6YlPG1J@j2JjqVzP%-ClX_qR+GuOj70e)AGAK=HgDoF_arD>(P5r_FJ!_Cz z^*ji!jT%Tn%^ib^N+iVo)6gvA6MBO`=}<>#)Dvpl2HT8*?-YeLvEuK#1Sf(^>y#b- z`ueL7YH4j?P{I9;q2!i7cwG)lM1A-ZeC_ForK)wv-9)}GL7H&4r9u)u$7k6ZI_C1d zJ@*d0=lZR{ag;Mlxi7Vfz8Ky&(Owbw^lg~C=TW0H0YJQ^wG;!Hl3;#UoN7=U##}TtPl`#<@9(*ZVMmhJ+6p%9F(9VVCqzO=5@W z-b$mO>To=j!z$QWb)e`4&1ZfIC*a;Y&0!;gs}{$2johu`VTN&PTH_BwOtp z+oWs>>02V`j@^0Yg0<3 z5UFvK6i?YMvsj%!cowllpqILZ4~pEZP;6-u{hs`e~$@U_iB^OL}O7<(@T3#+5I_a zd>8!Wi4vulmjvr-h#;&gWbXT8@CRb0LO(I0rs@$F2I*fknYi%S*WS~4m|1BPAQ(&v z+-q2%2sxw9$l~41TS?O@RQ}p%2W1Rv7@GAvw{13aNq~4ZzB(M1d|vQNbAv34C7&Bz zqhv{8h4rbR#~G-8$-0{q&>UB9mT{BG<=uWa5@YK2H(W@7<}7r-x4`4UXPQ=+o^1N! z^mF8tCxYHO5UD_c*5qoPiy6C9y!@rxY)u_7C#hBAE=BIWJn^r(ZN{PakkwQX+zlIa zW?-iA!gK}dsbD5$2#v|z!UTJtd6YtFcsefg%QK#Oso-l%V zU*&f5zt^6%e=Zs=tOx1SJe69ab~U;EJ-5W0!3FO^i)NH^e(HkAUvkJyO@Y&#_~-P} z)e(wIrFg>mEMk)6utc+NJb{a3LMUTl-U_Ry<3b;=mm{5lD&3bPlbGc?^ASYtM+AMd z&9GGSJI&RU@{cr5XJ;4%8`{5=K+c9n&EK`^+s-GeEM!*$qVV>Ues_KRu&k;h-zUth zxjg5oNJj`IrNG;n-JH{%>Ll26r%uVF-x}Bx7;);?q)__s5V(0`G0?qf$ZNd{K5E8) zn;VNslUsdeIG%5cpe_9-%E5?b`FdGOll)*JkicCJ=;lJY<>jI%qz9@*r(R6Q8n~t~ z+{F;Xbe#wnhwWGEFuSt6bSnJGpQPGfiZo{lpbN#vO_%ipx#_Yb{IMdhifEo+3Ma@q zP4n*$FCb<$I@niyZiG&Aa;TX&vD^n*Iy<;L19d^5IrkgX0467}ML5J3#H86xUn}a7 z{avx_Z3fREG0ZjPS3mP%DO z>X+m%!V7}P??QLL{qSN4D8WCE;`=!0g-vrH9!nI*6WcRt^Jmuzl#c;*es(mnnPzux znUg_OFr1pd$H?>tD{;+Jzh>-k{Y?y6o=LQur!RHa?pmS;vJ})Y#Av?>P+4QK)m+K_ zzV&)gJy0DO-7li6dMcp8JE?YlT9O{~dTl~vK+N^GIb{j*dX3w^F-jw|my`^WJ{5*; zf>uL)1z~#-0_&F(3`RQFp<*6qeO~tn+lJSjU7vQ?qj?)TVOqtTioOO}97dg*Rt4v8 z#GgCWDoqyYh-;}=%kdtUWDC7X=g06?vhfO?62dZv9D+Ta-v{wy{c4+?nqmdj3cZwa z!weh9UNxT2qh*v%0P*ul=Wvuvp{E1s_s~G%lK1BRX<{Wxv}~SlVoKNC=sf~BlKh(v z(UvmT5!{{JM~5ZJ9XD<7V5^48H*IeF^XwTCb48<#s;4)Zi380bmLAM`fn|;9I5x?} z@5nQp(wQtYqfh@L6xLJCcjeiwU)QZk1s!5-(n);k&=;_bYx~};>-V8Srkyr!UY$Gs zz3+bh%z^88W{=z3$TJs({gb+ay{kVWdFc8s!BlU4lBS!P=-sotew3oAx<~gyP}onq z5N>cWphG+G&t%MI(Uy7M-L9qy2!->r0dDlW zte*%t^wTnZX7O&K9-yYz5#HKMe3&J?Ok(HGfuz%vSV&k826l+3NQ-Cvu`Z~|YRi8f zBRUx&x_|JGj8QNYggZ;qTG;4OR{Vy0D5pb+bpWY9&Whq(iaEV*=Dx=``l0v z$W$(2^!FgUHR=OF&U0Kedr8*0SemT<5UIdLX-MHa%Yza@zxzw*0m{t582}Y+v6)Te zqw7l0Uic~&8exM!xl5DnY_|lD7hz)QS-0Eb&~UYH0SY`U#yuWm4f7d5i%F*ZP@P#-xKcj-} z+~96VtQHR$3PAE04nCA~0^alB9SLdlQ6^bDIM$bVn1R@)0>IcJ+4X^>qUAhuQ3T$2 zbMPS>8jYqJUyU1LJSmQX&860M#=un8xWJvWd8m<r23AX$z#-<`5yn~QjZmZ{W)fK`jx$jhl^*Y= znaAok2?7hg=`}RcW3h(=vsau)p3zv=SA5)#9MlQ{tt|tx} z8}JJ_AfPMUF0>9=>)uglR3bK1=t4uq0%#a|tuBnen1hf2o{eW>4xx^vATv312_s^t zi(&&mynwaHriY2G=)JJjq3KhiO;(KQaoM+8euf;a`=^l{<>{2Xtq?$<8zq$1ko zttO*}j5Z(VS6HSU%VwF4Y{JYcd-|abTx(wnbLgZ$P5G)(@lLa&ni`eZg+%0?=4s^( z6n1eYYp=)Pw6PMY?-EG?klxDNMg)B!Nw2#7TTkP3H07iD>7anU=jqMmQE}$AXWW820r_ zMZJiW>g-&3&~s#=;ZpYspHfjqvzAEDS(%caMdv$&L{-I2?){c+uvFT+(I0^)o%?h-9eptfX5BKhl zgd1;9#NKb?gZ5sLCPvzmgPbd1b5!k?&t2X*^YMXoI~fLgEg?-b{Vl&GL^$}(q}?!< zZR@0e`@JGUsnG$Y8o_Of>|c{s#1fm^f{B9hsD}%JbX`P5B^o=Ig`k2!`+zKk(8x{@ z9()7t3*{i^XjBeD8JkeRuQfSL&!pHbz}SfL(|5ForyCpiTLNzkKA~$1w)R@A5Y`Ch z{qUZ{3qxwSFEq%q_@T8u(fnDl;&GwQc+5ft!?exPcy)Q%7gtD*=Lvt2MMPAy{5q5& z{;cXUG>F+rwrrS1RAblS?oW=ZbDCl|Er5(Ds_8P_XI{;qiXCoWL_1GV(#GgPR53;% z#q&{FE}Fmz1xg?L`-Lpjm0=;RrLdr=YSdPm3;~j!sP}gdI^Iji$8al(qOZ-Fnhi&nR8^-Py zmKOg09L zTp|~#H~?z0rp>bDm)w;n{F#*p>9%_cFrqV!|FArg~* zRy&7PNdu*}$Hd{)u&2!_$e3Kcvwj_9jB{hy?J03}tCweIBB>q9L0KMV2Tnb|pvsT+ za$#9uKhlSQ^nU?|>xf~#ipU4aH;7JQBn zW5C#p2m<(-k7p7=_MB8a%}#M$AP|D=0k!{?Jz9%6RC=0-Y%dTIMGjnivD1=PxT&T3^TBns}S4;7sze zOJCmr|0(hEEn@F##1La6KtX~2!4Q?}Y~AfD=W96IFbvNjBg zF`jt9hJpoyFc8ux{Uc)1JXold`~CRIP5VyzLSldKv_tnvq;l77T*c-HZmhdc{-m!y z{nQ4Nc=VvhP)Fh&4?Xaac2$ySz5C`VDo{FI(NKNyXMMNd7y!O8MqR5TXRi{9oTe8G za++tmZjCWeCzq-nrYQ+6_4f49?>#EpMQk|RR_MwqE zks3$If-waAaa)Zr#zDii2Vf(Sf6wL507sLWz+)xK#T!+d%!Qp|C1@91mV zPDqpqdQttpB(sK_iYW5Q%erd+M4iG-g$54Mj6Nu@?1RwDD#fFo8q;%@MD%pIEc;`$ zS?lx`LYIdZyB(5Q-nVa8Z`@qJc4b}f=MelhYdFgGFw2ejOTQ3{Axncq79oEzIf)Xx z%nELttWx%{$L@xv%+YC5`yH#T(3G`mr|B~NY$idJsYGpEya3)QMo~OwhF!sUw)YdY zZ(9;7V2xPP=z1pgGUTmf+8W6!pXKAw$vy&@j;Wv7q zj))bRL^1!U4J-i{^ow z+1ju+peR9-FtnE+yho1vh!-3CBYhb>pqCaFUIlF8SGS8M2p2wczgj=<-nUQMLSG{c z652alj;Vb|S2GWsTWJ7tM8l|;v}al!C)9x~`rNIO4(u|J4 zp9LSR@@)wc)`8wEpno?RUZ(iXP*uq`NvIluV2~um#4|yB4b? zABq!wt86JgZ2xRKIU%r(2O-QEVs=-?@y*^B7gbA&MhKy{h$>QGkJ9A``!xJU^oOkd zyo*5qA2xS7LnN;Bf;-Px$5N()JA;Tg(Ycl#3EtnT-r+l=eXB`s^sbukY@Vnj8zi!b zx|7x0((gr4)SB!Diqan&qY*sYZBqbnnl}I5zN&+_&*X;Sd$=&4M+fdl;R)>Ym(Q@U zSnGZf&aMB5on4oP>|J*)fV25tk%X;cLqYe0s2w~7!Z9O$HOgv4w;oEGKlVjnv?v^n z^L%q$EK!3&93*Y<@EhLfKLPO;K@oy%DAuOIuE*4Ay!QdXj;MtQT=)T|GJ{2l_8eWz zd}lj+Rs23au-bpWQT!z`uE1wPg-1L02~=0(S)gjuZ3Rn(8f?D8Ku@x#jzvh|B4km9 zXsLMLLx`}_c!1jUGJtN{{k`j1_mD&MM5@7;lYTW^F`&htBB}j1CF{ntM~!=Pmuq5i z2El86_o#a&RN7-)JzhYO9Sa&j)3F~wsM3Iod(2ZgB`KWjI- ze<`;w%j`@MLf@QzNH|IW?{mvP9oStnT1Nnx*=AYQf3s`T^#|F89?YFNA5m2geZqr_ zIda$=(^So`GTvAI@%w>5+jON)X}5CBZjx6&o%YnE9bfDbUNGzG__VUP7ukt1*U;`J z$VaeelHoyv=y$&43%y)>deYn{ao{PBtRo+XUz%nJiW2sl9T|!4i=iD~dB-aF2-YY= zsAe^ds5Av()jv*}0$(N$aA{WBgDIqe)S}2zh=Dilm3yBb*C$#y^}$_mXXneqjA`e~ zv&e%5J5zCv9xL)3nnWaRW$oRT7=;?wj?AH*+np7nKbv^*HQfa(t0Cc?EBfMfC4orh zbDHlkl7Z@O+~Gx~J9J`rN%330Sl5ffWh)~_q?Z&q$K4mdic8fS4~ORz z$ev8iiGc|+Dnukdn^ORHHE7{B1$JiB19kBJp#C3l{XHCaLVZ_{zTSDqc3QpnKV%d4=X%qE0=q!oe4b;-$@jlI>RHKW4cxQZP6ydHbxxI9 zP!z#LaprGqgsJ{VG~kQa$H@5cQHuP(2*CdyzcAb_h)8>nv;7@IeD;4z8>$*V#v_l< z?Hu6I(|UaV3+?lT6-5mRm=SCXz6tC?@-=Us#~_)NlO=WyrKcX1Lo&*-b+Rof-Va#j zC-QZvNI1zJ^kgW44f!z+#Zc$iIS%;8KN1bTf;?tIKS_L97ZXY88I2779Y@|@dFFtI z1eSCqv2KNgRgpAguzzgU9xeQ+PF-ucX^sO|@nleildF_j841a5P(N?3(;Y8TQc1F= zmsB|kAsmCv*Di=n)73UJtF^sJ3S&#aSDU+Gj%v}LyQBLJRtu1XAd$U=rr~QUejUq) zC;mamSE#@}Du)d%vXNw0xf+`m=NJ4NhxqjD3}#`DpewZpT5izZt#|bkY1U+Ev5jGl z7qdpnt;s|AWbX&dk+iyg>6mn0%b+3X$(sRvB*PbD5hrC)`*PKfBI1MAhdr|JYoS)% z2&2?Bz}qiclK?3;$tTY{1pB>tixkQ2DmCa{L=ax|m)9yjFiI|QOc+6nv?EU2tT2Q) zzns2KR&?)9srZt%d7t7lkQ1nYe4BFGR$^cuZ@B1Lh;7fSvrG#jBh4f=uCt=?+w^tc z8Ve+lHoxHHTAz|;bdDpp$pGx*Rm9V5PGxthx^E0b;%A=MqwZ=JrV^4^pFXJTa7Egy z)!V|@)wDWfUr%=uBVjtNx>~ge=ya|AES4DY-r$vxw@JK5Q6i(9d)dWP6yeBf4Ty-c7>_=+R2on&G6XwT z!V*;P4U9o9RoAu$Ms%9o&b7q)96^;Se9j+wy`)lET{oQR!AWhXaiHrj4wj`>sS?S| zlkIVbf(qszRgef-qz@7r;BBsjO$XmTwY$h&YYDH>KIO28k{PmHPYcRK7MV7+6kqGkhdPA!M zX{wyXl^9Y&pYJ=XXqHuqsb%S4o@h8G90Vy!gUVkO1tAI4COD~`jWF^{oEkMBE+5Rr zdw9dYMGu+7WiyDca@o-J{gb8hWy{&u>S}VQ09eG|HTUFzYRojQ>MWmkS5HACz0XUl z+Pm>BpZ85vZglVPC4c+EbF7~dmQG$P+mcYWpXR;tZj-NzH=Oa(Ar3&1l-9=)6x?M6 zwTJ^AZW((yUUNNecdf%t>|1Ik#rgczbFw@KSz07;e6q6M8>uE_2I|GG>^wVi{C=w9 z|E-+yMStCvF_)o`Yl zc2)P;veGw0vU7eI^kV6m0sYA=Qsc8`r#`O36I{*boQe2Wr^QB&LU;Qi4MrwDv{6uA`!C@xjRJq1%ALLC=UGuv> z_L@-lgI5Tb#tLI!M0!VMhuz*CV!5Dn-Su>COG?E6L~Q>#2uKx+P>QomraIbobxsOqRdyKQv1>X@~(Iy9N>4;!xj~y){(!k$TDM4 z&17n9ae)?(bs+NX2RiMevcI-v{9w>3?cE<05G#T(SQc2|`P48xk#uZ5wAiR?&~H=k zH!w`CSu>V2Pb%brz_X8&8x@dR1%QO$9)q|V7{0ILb-&8K9;q)!lGILCsu@w~)f=92 zYGP&`i3_%^H5!{^$Ah))cVXRvQ#8hxRPS#@IJ(+54Y1OZ7AeiySyMJPZ?vjdQzsabfES>tU7BNSeD^mwd_Ga43VBS!7NFEQhQ0rl``~j3)lC?c!nGY0osT@Cw&h{OxBF z9G0YtEbd>*eUdl#ch&f5YS9O@Z#M1#`lX`gK6qIiYt6Yw+Vz* z^I{sPUk$}8=cc$o)_9+_g4>irQ$mb~ut$tHhxT>iGdfXfnFiUHCQs8xhq+XeuEV8C znIR8;u+&tpYr9(I7P?W3i*k$I*KE5Y9ICVGLim%jOk!qAR?gml*I6`c?A_zynA3{9tRF#}%Ev$8x;$||E@68}kSXZ8B7?QF7iX9OVbq=~$z$6- zE5PkA`Y9~=M%%5_3jw=!`H+kef#?Qmnf!c)ijdiAF0-5&;w@#Iu$465;lG8?^pSct-{T)boK^m$blpU8L73r<9v?02NBxU5 zaT?69@wQTph|Ii*_ix0|jXw21%D@)+KNR|-PtUqjL->Ed@Bco4`0pWqre~)QsAr@U0EZ zoH=uzIWy1qz3<00b17b%4gA+y_x-DTy_0(`j)6*odgI0o3`q%5g&Q{z2yWbfTfT(^ z{>3A4XdC=-(^^4Xb8#!$AVy%+dcwX}f z8#j0KQD+Ay#nI8x-s8>9%^QN-wExq8`dI?=b8`b;{#PIA7<|igRYIayAN@$N$Fw+C zAM#nO`Pcv6Px7-MYOVksrDB*0t02-beGGotRy{i>wZNMWa{=N8?ez0Nq`CY^j0lSt zxhPjl3V`B9i0Uz^P?gqD?Cq78B$fMX_G0t2X>g;36EZf7+15~y5>EKFGkIdgU|2I^ zUwzZ!w+Kiy`hz<2U!v8DoX8#zc8Px#Fh(GoW-(PI(>pHDl&WJ3ZWj{apO@`jn99uE znF{>v8$Wqg7r6k@ zrJ7n>R}^*#m^9Oa+oV4~HfuOPJ7IM_wt+k`3N_Vm8&7*4lWE!}{qyHf2?+_gA@etH z@^k6fUr*GKf9AAk2_$BpTv$jmZI`yFJ$vknN&X&BmQQ{tg!qom&U)pBUPlxw5u1TO z_=*o7K1|L83$`@9!(-K{y8)3hI$qAoQ>xnvWbf?eFo@V&8KPxj!49XF9po@b?dXuc zLq|8&fX3`yTU(oJ_NI&fVA7A$t()$k=5QL#b+#qdaMNEbDFxdkx@knc4TA3_P|+zd zPxP)#${L4oPcQsJOoFYoec1o_gxr*uuv6_#;me-HCpFibYR7RlRJuH7X}KOsI|XzmuZwImer)o4Wp57@)ud^ZdY4J$;ALh0qL*1mB_ z&xetr^_Ey|(3xKSz|XYq7W&Srg`9Ye(JyZ5>Ui*c2n?}Ws4C_M^7(aY^JRIF_*eX^2Er<2)r_-qT)rdnO#YMYjZl}4)$HM&v9{i zrfsiZy?Q0_{P`dqo1%gOZf{?o?YoW^x5m)lHw;cOF+AFDwap0qw<;t5*|A^Bh}wkp zr>RX(;#0MBQC{bnf#T<7$qVDL0nGTJPY7B)D-`RplN}`B7 zc`~)s?oft*M_fWjhYAi3&ITh|xI(SBgx_iRE$lGSu}dhF@H_8Qad8pV)YMc&bTqkn z+1_zXij0h`a0Ab=O1|YbH8pi+OpGO;F~)v(`V$mXR6V(RnqF3&g*u+z0t_rHW3U6* zsKQGO7h)P#8Qtk%Ht3lK9(jKa3TK4~_sD+CEYdj?d9b*x-ZR0Hz;-rvgl z4m`4z51#sMbu7A-&Ni1qmEIbyunu}|0#sB~B`7vqBv_o1oUE)q4ui+-@Nz0D zsZs_6?FCdrxtfgzOyDnO4-T{nkwD!Gt;wA=q%oC%B9;rbxq4z!!Zt~JTbq!cULvTG zpp1rwg(XTEJSL86Zf#Ba`c-KtMBU2DN@-L@S$T?;n}liB2G>fOrbxAEx6eJ{TI3Z{YCn$`wrhX2CyOO`|wQm@>YqLf2-^4peF7dsC9WE+uwdUmPyz+w0>rTys z`}c)kzP!iBPmERSIeQBQ9bHsN=q=a=5`_Yo ziSD!v{eQI1$7FxI&N0sirM`;{n&`X|sdhruac_qF6pyoDU^ZoEF-Ei^|D~-hNZE7D zcU3fTiXjWAj0VQK>_#-1aZIH`gL$TJL*?I4I{mgmN|tRrK(icrUnfFQSaO3sIH1>X zdC`FXLpCq%PWubV6DLWwxLLJ(_wLDYi?nHm=?jmPQ(Xk?*ppxd~>^sSZ$hTzHgqgddvLxkjyqFem&xMRi(g z`V`gXwPEb$1ARzK3;*ujJJ|Be$UJ@a>^)e1104cN%HZB!1yE_g){r;TP*zR>$G*2F zIyxG>G9x!v#q4uTOpa+ABkry6k{?}NLmUPrU%x)OLr=c~3e5fcC`(IA;FbEdQ*Db% z9*D)+H>C=;baK6ehzRkP1j^zgp5I{Cx86Hh2_>y04ky;UekN>B(@+^jCpNw~u#)WP z8SBY(1mwaap6Ow$PH>fj61&l&FyNnOER>eE6EQ2w?4$^oI}(6or}^Q`;*`_r*{?e&{9s zD8HbG(GP)fC+hWyT<}r2jq-!GY(x|mM$Iz0p^#`$P43i&pSiYc?juN#g^!Sg2}$F! zwimCgt>u`uqlX>lCMP2#BqVI^uI_GaVoF+hBOoEsP*Dj1=#U&hXEvH7j&*o)a(NOA zM~jTHJiWZ8R#vhA(15L57^jn?W5!Bk2YoxK;dN^xZnYj<6y^Ua5M`IqSLnB@Hilb- zB(-6Kql6uv%Avj=l5fDa{<#QlX9Qb`Y6TGyku_ZhXNf4^8nmrpUq3(gbe)^TA(F7t z6_cOOf`rdV6{A{iN36sWhfa`eMy!;Nd0AtaKnvX3*-?bGIK;x|Y0D{l-M}tUh=>T^*;xY!4Lcnj9W_5cB(m-GDkmB79~#;37+ut?gsCS zhta~g6CXc(p!y993I8A3GCEj6JRjoYsla;Eki*+yX48_7Zf?GTEk8WlD-F=T@CXQ6 z;yn?QcNm7i+RumAdtSmI-P(Gd-XU23b8~ZBKA&Vr7aG)M4*FO9_j&Aak+xB=R7zga zPvt7hlk0Zy{L696QQ4b;Vuy!jIRg3)%pAz2InphZ+A>W=Tch&ojr>2~UA{rOwZ2XQ zhMmftX3ZggL5@1)(P_)(6ICk138&jb>kSrjpSL8o;l{R>8kbKSY?m0)sp@^Y zO6F(cD9^mrW!(c@4F{I_i2tTaLhIGCBq-h%7P3KTieR17ZjR*cC4kZ>KM3OhKoYuZ zOUI0-{=|y0?M!$b&*qRNzgvZ3z<+#;iopGdjY7%+9<9bU=5%IfjPp(FC)v&AmQ;2! zw~n8|^p9Wn(cuyk6H7=-_X7xIV#1)HpkVW^<1T#B;i1EahzPLiQqP}5O-3^_8DL;- z|3^m$c%_uBZL!Jd>gsD42@#6=YUbuv1He{FN(wbMw>sFjl9G}Vva&;TY@{a`;z;ml zYm-y*K?Ai9TOZW&1u_KlSCnL6x&2BG{&f6^UzYM3n~O)3T17nTG_5kCE|Fa20zC0& z*Qi!x^N2}>01^SF*Rj#3@`%r_xR)=tb--2f54@?enyLDIeA)hoh~`C0y^l9tXjA}x z+sB=2z8DtYWd}iL{2DH6=8n)$j@4g2@hsCm|Kt@H9&{}w_-Zet>wjzXEjDFg-@o6q z+oyb{x2eR)a$rc#)dp=&LNn59-X_|W#|LoN1<{Dfp})DqH`m9*$Bt|8;L)A4sV6S> zu4Lxq`}dYj;rF6j7~m$F+mqaSQ(D|ktD`EPa1jZ(aNU)TikC7-?MV{X2ZRfB6Erlm z#t-)uv56Ls1%%9oN-eYpN(2N1z=^%P#{06H3aquw%AicKS*_bX#l2`cPNVX0FIFG2XoIzL%?~(i`73xFn8RU)jP`Av4J3h2KFpZa zPCV-PRD`6C&KSbplchKO>b=EjSTjMyBB8Dc(4+uhn5?d(?9X&pD<~Cu}(=_6oVYUr6(y1Q0xIXz!1B$wd8#T83nd@F&>uplJx9vS#%kXGlR83f!WtsVS=HxY57U7ib&>3#! z)tPMy&OiL1GC0{XgeMPiwpq{^u5}lD|NcEVn_ppUl*Uv^MI|vl{sspJ2YBKNT3WdP zQ9+MhW-F+v`Ck=_wj$E2Vlgl{m|60#hErNrrUu#oAf3xFP-Q1$Ivjv7xe4jvu=kQ9rFnoKiSm$9zn#Qo5H@<%U20K%`ZT}d4&(XM3@xY)Y|KIF_uac~j< z7*7%lY8Woi2i4?}+o?k!5v$1WD22@E;EN5`V3$@fVQTGL4#J%Jtc9BQbZLzBi1l4b zP8*_UOhdf~WwP60pT=E`etL#=hH`M|s)B%+h;HZpi>4ACe)*{|8 zG9E3xoXHKk}JI$G;QkS(XuCB6twbM;5W#+!b6HogNNVNp%-fK6paJMJ{FDAozS zFIEG3;P!54-{qQSim?H1WCCHhh=Wl`&aS7e&smXVBIK-u{mrJUB9Tjh7C-o^RZJqCte&`fGv zPx=G0<<-^Sd3wV2_xCS?*6-+8ZgQ>DJYZxLy<%#2UPWFNa}!fj<-&em$%S}_V*S$_LM93q*7+DNEPHf!+>eNaaJEk534UuARnLO- zfAnz@@*md*i7y0-wM<)YEosZP@|J$_6wJYhXNb zXdgbp{9lxxUz=Z~Y5!Gdq@<*t{GrmU3)qtsV_kt2a=8%MkdaSTOBqs@t%tmCeuad~ zE88$&zOE(ZI1yjA=O{MYcf%)RKOBvnJS|?6t zuk}8yV$SMWp?o*v%Y1``OSW9 zZ3CjLOORCDFMrm6A^o|7%3bwq>87Q^MTh#D)~~D#ybzz^0L0$K*m7uhW}vkqQ!72s zI?lhKERiVBu*%m|u!6wiV!I@l!vWE#o__mb_RmvZEvZ9{(%R@iQY}+8yO8Qq^r7lg z{*t-KMUwchg-Gt&;l6vsUrZ#f>Zy$5Fw)5S!M#;D+z1C9w#SL*Zq_0wY%{vQsbt(P z0;8XT32WOMBH&G@dQP4|M(e&eq80D?Jy%dD*$Ga6$p1X@t)!RJOxY&IA$8U*L0$xW zG8ukqvOG=qFeY_CEuU@k{+x*HFqExp;?KyTMrpc(6Ruea!yXYGRPQ!`_=8PCf+{PU zJ6ZG(bs5!#cpAk5ppQ!aS_D-fSDP&ka2?jC5)%F<#>V1Sd_x~?w`k}N z;l%Dm{rA2z<}mHy*2TdcXGmc|aezQKQU7FFv6M-A?r#-zR6=yY|n^@U$UY z_$ps&;V6F`-Zy_B^Udvvtp^%yvB|^lS9BP0!vG;GJzART5yviYt z|6jDta?_8>y}i95U%mjaoSK|`Cpj$*Xj4IFzO+fE$OMlcKI!{{D)!6AQXZp-Xw?^k zG_}y{@xk(Ir=$Ib^nCfnp=wH(Dt^lg$C=Q>g@w(guk@d!GTw&#LL};|O+yvv?;o_T zl)S1JRvF+8@5-1Ku2So^8;o%pBhJh8;)`eCP}A;)n!0JZ0rrx|baTU^eL(zL700MJ zRPcY+jUpW6Ves)>}i7GuNLg(ucAif~s=R!j?wMoGNw4w}6^s+D6H{SFUX zQ&E_I+;wF7YevUeICbwIl`1z0Mzcb(xg?o@hOBp@;R{UUyCHnjK z?^4Bo&^znv>j6Imf;P~v%4NH!8ns5`bDc}q%bX4e)QGCFnd5fYT6{@EUqu&hMlzp! z-fyg+)WqBxC=p@uyOJIg#fa46z4-X~wl*>@#ALN;c_086`-QK!HVIQ_YHFwkV?{NE zUOjy>mVBWg??b=If{ft$CtZq%^9L6B?3)|6$WAQ|#j+be_2*>%VmLY25SNz^1*m*~ zZ8S~GAn4n-XSZ+Pj!*S1a_UgI;vSc3E-D(D{I&kScIWb#<&KQJ82E#mLqJFfwr);h zqR9B~dRJ4s>+_bX&>bCZczJ~)(pZ6`&82D_jpfMcp~Q(GJc73WKOBNcq+OyL{VSgE zUFOaOyPxT8uXG-Ns2w29QtgQAwEcqXbAfPI=Y$PBH>M+p@`;1us$Tf!xq*u7(;yCv zueKCLDECuJ4rL9TcLxgAHtm}K3&@Pjm*JZ1ii|;$3`mmsctu9Z+E88`;Qa^)2EbKFZ1c(=HA{@;2c%~^$sJtd16AlI46z%!a)5goIaZzt+k_rL;96q34AA$ zKd4P!US0sJ&tIBGR&nu-e$|hxR(^$VG|w3GLDioaO^tah(6kNN!SCin9>snfo;uSG zR6C?tcRvvCA1rU%zJ?0oh`|0)H^$_`3%JYNK&wbmUtUddV>u|TAXdOv;oi_IXA81Ojp2?!Fiv!#J@y0^Etd`SS5H8isR zNC2kwtdBeUm7YHJsrcQldTO_R|B0atdFDZ|u&w;pTtt^f0T27hyf#L@c+(O3%Yr}F z*^7E9+)l0HX0_EZ3J6dDWem{tu<-Dtk&?{JXTbPKc4cR02aiz!#05qk^YUr{tLx9c zq+RV9S25(z#$>TXUY+^zt@L|k*v0s+wiy&|XIhO1&Z@f2gZL5;r2F=+wxZ1=9UYGs z$*OO$jDm(n4F{YPT!w7Z^DyMv$@uxQ^34~d4i^qCn#Qmerl&S2AOE_p=MV~@KhIs$I^?kuRSAHF9fNzi)sk>7uHj;Mv_R=itOfVUF02 zgG)r@|Mu+-pbCUAMSL|2rr@6h$`Z_-_+SQ@-7QQ^P-OFR>Dd1gxsi3Ld+|RqDGo>8 zZ<(XtYxSEjA?;i3T^?sr64#kyZ zx!;@qqs2S8TU>^G;>5xAYE}9X4O;b7c3ssz$>kZP4A3(+yY>`eujC)eHiSuZG^5Ub zJ37`J?a>rvlI%9FWCADThY_V9X)6-wPeErYr=%t;W%i7hxXKp8QM*<5#~1u4PDxei zPr*R}LptltDTgN_@RD=W*(FtcI%#)pp| z!QpxuYt(+(y)KQ8f9ZJ-9HZMvfV;PjWfjM@T3D2iG=rVO*{66c)0oX|8q!<`7wUZG zyxUr|aEd&%2YDA3N0^ZL^1T3jRm2ua&DdTFQ?ay|7!ocX9yl2vK7D%s;lpjf!Q21Y z8LA98xEp)}#anU|)FxmJYrJ?t0*)N)tv-D4-rco<38g)<-6%IZXQRoprWst8{vbUoej4;Ie;PF*n#NJ>wJ?wrY6- zLJ!jHc0$a7YZG|3#pmh6w)}DyueTI5Pk4>090PdnUj9HlVK80O6K!3KbKEA}EiDP5 ziU=5Nc=L^Fhg6BIg1Yzfb-dOXyXj5H@_EqITiV51o)RySRWbxSp%lvnNFqovm0TJ< zg;_aSt!+=^60^TaXbt74!kr#hWkG#vRc}=B@mqdlO`DWWI`^io_FZJh_{Tot*YPK9 zE@8BHK!oV#&6}VYQb8DBjZ*MC)q%zX3rE}^jpcX7CL=@F*475$BR$~WgjMwbbOfn2 z5CCSp{`-&+?19eC5rNpt2v-T#bE)5)PB(!>L*8e_d^DJ>`v}n7IkT4N~peg-qNl?Ay1S;ys@x>(_O9*e2_fQc!dP zFUdgY?&W!JXlNi(%71I4H8%o`Bo{W2bbuL3SJpJhRJ3+=$&OQMBI1wG!(86!nngns zJ5TDH-xD|B31r!gSa$>J#|zJ9V+vRlIOeJMJImFI4%eB;m9SS+LSH!{+4PBHEPp#$ zNov7VBCmU}l(%?QUFBN`7rt@LwwSjV#01ng>a#s=od;CfuNmiHK@V}BMj39TCn26qy2C0sH>@3Fv)j+xN=vbMx zFu z(@SzPGkZbAUZy&$%&p#} z20j_|-ZRi5-^ppbPNBJVc3U%jd13kEYnhEFtCLi1_$zui;o^+Ztf3jwe6~=oYfyj_ z_d5SGl?t;F%k-c8LDyUcSrhb&Z02fg?`O<*y4w2hS@V;gY@Kz-Vim0%G;r z+?!%z+o zO1BA$2^SS*O7`B+p{ZwiaIl7Ua4Y6ysk z39ww9sL}GzqBN&a4i{Hf9103d3kwU->9-CJRLxeFerEK+*}lA{O2_0^!LV%*nfXJO z2$pmN5s%Z;)BY>p(YKd~je!COjx*)kAMmfwACB!^ijsP}YJv4h0~FCa(@Z~} zeu>SY0{pf`tbbzSlTsjx+B~(?eG-9Sh^8i)QCDn^)cV8g@DQCzMx{y$jd@YQT*N9# zLEcc~u-0i2gZ86C8b)5*=<9M_=-F|1#-YYBOaB%1GKp=qTko--jJELpZ3Ao`?HgSr1W$N5GVW-ElU*xVDj7d z@5Tln^0mYu?4C$YELLg`(tCOIOKK%vhh?H=2nb6`ZdF4+5t3EbDVPx8k zhO%^mhpAL}NA^1+oXoWOR3_h%%!M|5D1z4uSE~iqP;f0e~`l&iO#<( z(+CUDsLn5;std3ZAN)}Fa16IWB!8TRTO_aCclb`<@EkEckJA%FaQ5tNKYYe=)YY-( z@na%T3*kejh_Yn~!45jwBW3NhJZg%-Z-Wdp%my1|#_jB{Bq7-`7uZ>L3Ee&d0|`_uGg2x6si+G%W&1^_eAmTU$MsKV&5;3Y*tB$ z%I`W%T6+2|kn#mJDl0u*?plbs{GO&$$BIe)mQVLJ5k7R(``6(Rt+EqYL*u++1zIX< z;0KUdHu@YL7KZGV$_qaUKU0F=Qf|A|*-~oz#l3gyy>?G+$^h0CAHzt) z@=Wt9K%8TK$}udjkOzG#RC@G8 z&kZR*QjENzyN&7#*?K zOBrMf_mN5M@v)QbWdJ)fCrA1BK6{^mLB!Is05n<#28QcK3sfd@-`D7t=XJh&OUy3e zK3$~*I_^&!g&s0+p{k-+!^uiJ!_{cDRD7G*zwotpa}_5Kcm79FwxY|QNF(GnoiMP0nc^2;6zmkzjiE zoFdxgKD^w9%W_tj{RzFVN{a4SYnCyQudtH{evIO@qVRML3ao(Pm4`DNw$fKv>?)Y& zQuO^S+l#YyA|n|6{MUJzVaLM?1irX^zV{ExwXTw7i*NK`5p~o&A=mzXD8CF|0K~4r zaB;LckB2Gmek*%MSGvB5$?jqg5xY?!c&dP5uo!;3jet~9>ziSAyuX$;GT7QGeyI>4 zW0(v_`*rl>XmAdcoE`6hgmnZEL%m$^@Fx=79tb7J=JsX-1aG~UZZaosqG1EsZHUh5&&eGO6p41S|In$wH#Re$26-1~=%%xP1f7Cmqk^D|oU;w&0H-jnPJ80$B*P6nPEr_VTzUYK8O z+wm0~p}?HlOz2zJll=@r^&~LA0YaMT8J4a=3Zow*BeOts-Fk%0S6cBhIFsu5I^A^{ zIHiBp6r{P#KmO6-mh%g{A}_XljBK}dn2CG^_)nD_wbeOdp%b}KNT?iWo59ucmEWX`NMH& z(U1>!{0mD6^!4R#mumj4Qft|6y2<7|_JW1CE1#R7XT1Hd5sghta_T<|R%b|E?Q4U( zu!0iq4W$>|m23UTVS6}4FPNckOloHige%wM(X?welwORR-_iJF?XYjRxWjIc38eG5 zzf>{~s`TxF9uU)z7(lXr42g*f${v?V`%IZ`6*p#S(X92G?De82N?SW`d*M;lW4(;E zj*el+k|N*hw4U;UwVAjzPI)r*YPT|YGxBenQ;n>;4G0huY;jn1$vI?fu98Y)ob9`3Hja+GsT*> zCTWR0?AK$9F}$?7Lr`vFmB#Hnd-Kb^M#Te>)$An~3}`(~3a*dO7gFk1n#>H&ZRmO` zn6=Yc#aH#_$EK;AqPAD|G$UEx8BqrjAAC}y*oyt-M4P;-(TIb2ADe@yMaz4LrGG(d zurhgmf!ldKF?vg{zl6cK`enMCu!$J0|J9dnV2YA~{7;>49O~ww@hHn$0rQrm6UAxO z+2*Qxm)`zX5zZ=U;EjzNUv69C!bs;YZ4K>!$Ug0s72>=svwIWAM-Mgkrj*r6U1NA; zFE@z|7)gM*QRW}6`^J09z>;~-ZztOP?DQr3Ll=-Sy3(JM+y@Ov{|~tQ?Zz98aED zdPea$8{!om`MeK>g!F0-P9%bfmxOTcbUk-29fff=rwY-UwQpZ=IU5?h2;HO-gqSQh z={qearTXrYc-D-cEGsC|J`rCAi~)Qsf4h@U)lNEI{RxZFfZDY9vygD@y-^2i_Cm6m zcBh}BN`!IaZ)^}?zOz9G*K17yDOEY+J@v{Js7y?v$`5&K*mI!!%5x@yvS0lNi9Nbj)%u+;ZZ1)u zsWR1hqBdm^YPJPpIqA_68lDBE9QISE@h&vz=?gbzx%y z^C}oEPmW~a$STH{S9ZNBcb3eF|v9(%E zLo&>t|vEt_`#9CA3SrHr||)xujE>q$M;LJ{Xxp*FL2mE}3`<}u%g+(I zmlJypx8yZ7$Lgiy*R>3C;^X59knz1sBhx_(&q6EZmVhBMxzfTcEP zDrecWb2z8UiIwq0m?0vw%+yZACyorO7&R1BZ_WpWD@{(xxe0Fa8s&Ws0+dSWsHq!o zYq>nHp;d~x=+fj)WD@qQA?u3H`_An1(p!qU;_DvqQQ20psAOrps1FiNwjcBH0j69z z@m(y;0pm}{0vpa_n@bobj^6&L(1yBr4-@)##9qcaqHVX7uZmm@AsA1YtWsE(yA0%; z1{C>;Pv$Ps4?_dHML?dziEp9YU1CelNl1}BE&zt?85~x9aYecPb_c} zs;{C8#=wBDdO4A@yFRWFIWpg&i{o%nqR47LUBJbi$(h(tF=`SNLql=4YwS{OR?1^H z2mElopUG+R8f+xMv6ZvdAzFS-xu!L|4Y&TjHcOEyVDYb&&~`y}mC(8<^!_%@!j$NL zkfH~<%heS5NSkTadNsSHcWQfSFSBcB9tDzjOU2zZ*9!Ii;<{dX{;duDiTeJ>d*3VI z=PGlbE_}HiAiX{8lH1>cAPHHqNn;= zxuukpoQR}adq}QVdxBwco{v^LODVTUQ(6WWm%OkPrn2F)J+Y9OdGCel4dSQ7YDH!k zHC-oKu2t(ZEBWRpJgyO!q;_!;OxxPt`z>S=O<(2599wI|S5@D|MrF23GI52 zRO7CD>r9?S%A{-_{ZzjnCzYvvw396D9z}XbEfGAQ(bD_W2(uTy??0hJmL2}2i27Fg zMdke2{qJb54jxIVsnNP3IR6o6)dX>?lK&CwL)ao2{mR^|J}_~VJU+5_35yLF;c0Ky znbm(Yw~f;W=)EC_p~OS!ffOkH|8_*#t^^n!5>(P7U@Sr#(7?Zj`8=5)lsWOrcUg?s zMX@mJ2g0E~rD^gdCnraZN^EWO{hW9ot`b4Z??G}R>6z}kll$S-a4wteg0m^{JiyEZY03Ss#7gH2yF$TlBZnvQ*mS@g2i+;zCu4B5w7au za3#n#9#IKe1THa;GPW}!V7-3862^CK)-cg8Zfsj}arX6q{@N(z;eiPTzk_N6^wWvaucNs8AI-<`@$vQlMH;Nd z>pmOE8i26D<;3)U?_xT8l?Ap|oIRTY!Iz-qldhJL&$7b1@z|~`V&?sYAK&SeOh5Nd*tApsLia8nuUOGNANL2U-evIYlG|YqMEHH zpb@ohTdE(FKBilV=l}JT%D<9g^XKPcX0+w@SC?b_cR2pcf*t9B1v^32`6=)T)7LDWe2m)wkX3T z7NlC|TZVjx<6cn(c1U5Ma1viXb`U2>e8R<4168 zrqC30mPPCr6}KDA!Suzj>XMU;o{A-b0%|$gRU@pxgo$0mzfF{pH|Dqb5~G10Os;k> z>y^OGkwR}n|1PL%tB;|N1NWIBU;ft3s{A>`S+X|yJr$zAaRYyBOpBP&|9SrG4{^!A zoUPE$Smm&MQzko@D@k(6HNRUf)!zM<+|u|-J6jM&9OrV&pL9Z#m9TlR}#&PORn zL7u20o;XsEANE{tY$(u^5(!?K#rl}~YJ0)vL%M%~YZj(5>;j?$Ed_p+ACiOZjV7SA zo@QhiX+T^4cJz8EW})tn&BvB32ZPaH3R;PfWt=Ux%#oqyy!Aqpbr%(Votp?2Q&a4V z?cK1-DNI$Mj5hv95woLHmVT$g5v425xVX6ZUz&06&_gCBFsGvNZxOTKZ$z*qgL?R^ z`8-5pd}OTI#8qt25R*XtWH0n8Ox!?zKbz)1=QJ5;yHKKK|G`wSL1+9|kw0h4&`ms&Fyk#{k}07B4Qo| zFuOc7m9Rmf(0V0Gk(0xU4mza(8Qxv#?i6VA>Kt|_fhcpgcpYc0yH^l5sck!1l6Y`S z6stavJP8O0eD5o!QnBRg?xRE}{Wg5Gktzbl&Hgk^`Hy!qtYyKjSpiCCjud&ofCu8w zPgX6H#1#mPqhHaB_vQ_Y*8UM{16Rsi#S8y_z9=Z&CmWN|zZQD2Qa?^}r>kK(PBlya zs)j%_cMt*PR+POFIK=I(L|+v_(0z*mk#! zANfRubcwW!73>&|xC0*==XCVZuWn;IM>h`d6sl>+3=NgTq2b=~{}qT|xh$`3;Y=6U zIClO68D+chF}$@3mFh3|P1w8$pDp8W@XVGG{t4XF+)@J6e)axSWtkWr^WdEFlY#F& zd-Pg)aOisO18#ib+krghd4CdQUR^+``_-;TiuNx$LrsCJc|9Ay%l%J!fHeI~&$%@# zlW_0@` zq?60W9D#w^s|TJ(%oE8r6g7CgC5^(`hCkJwwqFysS~ zgMT{rH3`k|mpOAQ$=?Q53={W>dtY*kjz-)&{ZL8i?l6bE`sSAO?COJ78H+o*JDt^; zE^hrt$fa@F8Cms$wHIku;eEmPp14zs!kIG@mU@ z0FOql`sQp-Tydk0UtL4VX$c~M3SC8QR`#h|q<~4) z*(@P%ZCx=X(zWI5mkeW#|6 zn3P&F$N43EjhMzElvQ7tEF+{WoxIz8-YC8`{4e`kh3_g3?aV=W_R zUSrJfPrQBQ^!im-LH8q%nV#0hL8`suGQ6U7(7j&6 zAU}hDG3pJJm@{Y#6UjKCtR}ZgXeFl9|A8A9 zqWR(lK7`VWXY$bowV7j|&46puG@o<|ey;jhgiXwjc{v;n9qJTWXK;oh>ISOMFq!e3 zuRh~(#LB_aTh~No9PWM(OR#)O!iwqm#IZ8jfn?8Ir~)JqKMV%{!C5tj$!hdKNR<{M z&0WSbboTQT3?sgypwW2GDE5R}0XVjOgEE;BH8rhtBbKkeHt56L`B0nJjg5^Ubo&;) z?edecr zM2*EO;a<@^jOFpStZrsh_JZ;)XPDAmJZscF$CQbONN}t(lEPkacb>p6hX*&G@kL3z zO}Mdc?<0^0cIc-j3jOUalvNFH?BZTaXc2+ttol91jHU;q00ZG+>5QOE9fBe%y6w5- z;IMzsnZwPpEssjf8!D8axAL+iI1TGLI=}o?TBYqp%j=_)L~;sEE zexTXjDWrHd7-MSy{Z3s{ev8py;z$Z@#X>Pr%pUrn|)c5`RHFC`-MFBG!NfIdtiV;f@6PhT_OxxPIB+>-KFR|ECQdwa>S2}m%w9ZU&{9_LTig4!E3}Qxt&qSAnG4EPN?vl1 z6=WEu>LW${hMKRpf_j!4A^E?(d1$#Nx>@r*fdSBr@teTES|yU2~ls8^WlM+iCND*I84_S!gGH~?%aR$mG> zt+i&VZbkc~lpUvR$g46ZU9?pCOX#(@FMUCU(s-S*oDXX)m!+0aP+C}CNVy($e`jSh zh~i<&y59(Fo@=jHUJ*qt)eE_FGDEEBA(^)9&rT9yUv*4w3=Ke46IGVU7rnG@wpbxY zL-J4F7SymCYjfwixZ&-utlbI5KoMOH3g7Hdp4sgDkv6&K2$aKF9_EH-%p!tcGPc#t z$@yoQGxds;-e9yj>*T1jYs;*&^g8L4?ty^+SmzTa#Un^bPdxQp-FVybMpe;tg5&V{ zOiQqGhB|I@sH-d?Y;d7X8eFOtHqm}wL;mxNG2Uh)CT;udXU^vhD6USEVQDqZ7S4gQ z#tGxD1?z)~nC3E$_rS~#jN6#3ECVp)@#7#aNaw=*__gB2^J7k}<1IQ{G8}A=1LGPj z!Myo!?h!l|OIZ_B2{=~CCNLOPT3QOm79^%C!@_XAeSI7H!nfW$kbs8N)d_(yA250C zWmAxB=DfRj)BPgij6XgiH2Jmj{;KesH!Lo$qzgNd}tC5FgIZsbd9v3-b zu66XS0cM}FWuFa9Bz!p6>VoNDJPk4>Y+TVOJ}xD4sW(&Ow-1U4nq>6N8(7DK)G?0? zkD>~Ukmg<4WD!Znno(2!GZ{Tf?1^e|zI%7xot+ZP^#c3xoOy3Cx%NM;%5du7vd_fF zhwap*4Sm|?;!d4zqoJYsTOb*%z)tjHCCtdq@6FvJJOUZ5WGNvnbqbhj_`{$~_Y9*V z!XGp8?BfaRL1Vev{y1CqXbon8hQ4KE8t3HCe&an}n4(w##wPqHvgO(O=gH z?{NMJh3l2hsFCIu-a@RZ>cC0SX$$924b24T_>t{I-f?=thE;9jcfp!$DN!3PzUb{c zy{LUQ8TE?yWvPomY(ovr=;GB#<2ZDD575c4LCrZ;o zlont389@%$9*fnKn!45X*+;-w_T=IJ`kJUu(1mdFH~?5Q&jjoqg(1ghcc^tfoe!-= z``arK+lsyE!p$zabXEN!Mc6~W-a$|x_F>XpPs;ai&90i&%$%M4+P9@3xA#*U>R87X zvGadJpT&iCl4am1=Jhv0gw&agY+J#yjLfw%?b4V(-N0A6!-~y8{a-UWC7s(w2Z6p}xQ|AyyS@aT9=+?mE5jdLA>GZQ5$tACw1;y<;|Mh3EN=jLaG1>Apc zMJfXjRjm#j!#x*6E|iWbV8xt%E3sDb_#1@Qb~nx0-+Si%$oeoa^qS939?(5^fZ+BM z3aamFPAj`>QSMrfljg$jtFH=7^od%??2cs=lGCP*8z}Kbcsg13O+t&DHM&~e?jn@k z7}`@yhB^yc1B(|t&v#2Fqm{`R+F$IOgsUyIJdSe?qO}>z2n`es{Bn{oU26gCp%P(X z)6RPp4S)`+D^vaxF#i1GEgoJ1wMY1k^5VWvVEjpz+M2UXgjgn7@%uPp2|&4O|0pEK zcIH{pByoM*WWHQX5XSM}EImNo=KV(RmhH&H`r-!y`T}#}@k;6i9 zH@(qjqU)@*y68ed#T^gIhFl-V-Jcy#4DCw*q)s=2pCF()z(s!l5ee0kcRG`jnW*Q$ zjy?aMCAOnF(mUam3lYah4?7qgX239~HLygpf9{fw_!3T1M|DA<%`=(7l?X;|Y ze1PgWB%Skgx*7vSqgm()J5RaZnrB_sC+!=f)``QC&GO=1wmHH{J0SOjpG&;&d2Nk? z`S9$D0sp-+JnyAO(uvJi8_fTW{dc=1#jam)53NKEX#IUsFPacF_3>qF`3kKnWl7tTCTkbv)DV~y0Hu~?E`z+;?|C_iMi}e`D$9y>U{NIr{ z+Qcd=ezhc7+5jpf?Ue~t0mkCUxEftuI%o^Z<7HrfsQGIjZtiFLHm_X@7x*myIs0yf z%xB@&}8xd5ww%awdI(^bQ3xuG=~0ySJpY#(~Ws{6a2Hr zIs#dws`kGf%CqoiL4)aLVJjTpyt;er!gl|z+*oO6wik&W`4j29X>T%)Pn)}J`OYi7 zXBoJf21;zQ7{Ke7_buM6E+LPEi1(tdSmUaB-jXrgE?=^vbwB_28PT(aDwyX!P|OQPyzcp8oV{ z`k|?P*6O44*7958R))7J8qDahbeSfqF5UH=KJJOxs{OQe5PLEEE42XePx?UtYm0g? zz$!i|6hP_u$7;XdS+nYh^EQ)YTdm- zY&$K9ic*@0IO~$J(c8hGY-xXYfxRL32l3qm@!hMD1{<88r-3tvZkK)ME0;3&sT3Cf z>!J0#!uCo*u{yVHRa5(H-PRvlqY{r*{wHYIIVFR*z!lz^%~AVM7Zij~e0Na6W2og7 z60exG*UJ@5Bhy04qRZ0Q-7=YNd7^DaX643V+{kTW;_vZOod)Qf; z*hXx5GH>jegjvg~!9DY=8G^hTAbxv%>N~KxIaAfCsYaGWtM1}0U;d~96`E+^wIy(G zs?=n0C?9-bcPRbv~eg`y2`&n2)>!1Oh{!$nvv zP8+8mUy;@^k) za!{?-i7jk-H?Sg!%P;;?3(m7}a}CfWx78 z$lC_^wFof&c&g-HH7$g`^?LFcLnC|cJ7R+kn%#E4cb6-1q135p^61U; z+3GJCbwtyrwR@&gVeL`B&9*}}`WBC>rmu>)sko6NAo~nJ)|62N5z?nzqjeushw%;Z zsqYAq2F)wIdVS%y9wyghSx zob=pmd#+=MhG8~{8t3@^P0$el1};1OetR_mafT)ab>~p|9MpUW4vuH*JpJxxzH|9) z*yt*G&=-&GL=2ov%{5z30(gtHdjgxzx|%3k{asxCs>2^QA4N-iE~wXJRnqLlAEC)Y zh_Kc2kwb1!}f;oi|p<8oC$Ggir26&Ah| zyA*rPm6TDXxVA*{UlQ`U@4}G1QnZ!8aHN*M0rzHtA&+*u_Gc(ewL;!jzD6I|YE9}d z`B4m9Xm6}6jm#u{JVJh9(_QS>44NMdsq6R;4>#xJjKWRpzr1&dg1ni%%>QD9*IlH( z85JHlp(zaf|3tpi4XiYTv(TqB%Ti_ln5GxAiGdzPCr=FCvH%7RmkX9w#a)a;!w(55 zzq~fz%yAc3Sj#xvw)OeBU6m2QE;WBPU=Hc_?0uQ|QnLB?)H=HAsB?Rxb^h&C_z~Kx zBuQHPMIK{{pqr}+z)IG_wh-OWvAzZMhnCAinZ#lH+ZWZ@`aR{&fpmA5x8_@u36A(a zW~081qi$0yQ@~hB({n6}V|?b=m1#cj%U78#xs)8TQ7P9`oJS9RuAP+fz}Icxi@SB# zj(&+DB)xm~I|eCP&Xh@op%aboG=IUH>EL&lpW9-*ZR_U@7mJtlmw*dRGb`D7e5odJP$o*h zpXmvU(@C-`q&>L_p(A5wh_I;bEFmLq*y*CXkb#loCYs&{uMfVP>5l*_2AUyxdM{wOPb%46S5;L%JLkHImnzlvVYZlEJ%@N61tE+LR;v!-FGY zh1nOb_O@ZnNW+6gZ(`x56H7ImO(5W6zb^0ZO-eQIUq4Ovf=ows568|;^H%*=>qLfg z`89={v|Qt;ICRl{y-CnD=Q5aMNIFQELg~nvfRr?W{9c>~T30+>w7-U2KIomE^Wp4Z z*6?zV4?##BTE2P5!~@xP6MC6d>DAqy6G{+t=k;e{^zdu%h>y4MErOI7a>sYOUvk$$ zRWjISvv2-kWL{EZ3`z01O3Bm~?YT0}ViQrlmMr`BzVT7GagsniK1c75@JW2jIUMqE z&@HSjYy}<%(4|~YDoS)oItRrH8SjTjTmIg&)hFRD!cRTIrNy6vdH&iL5F5gWO5KS z`P^uo7nohgc?G<}XS zq4B<#^f$F$S)zKsTBm2W$%Yr&+0e*s5xmYZ3OKrVFh`ZSW3y|H%$HW|K|SqDZ@+%u z*X$u@F!>7H`7WEdPe`82CKGAktjuQt5IYCSwdCLsf?o4!6qK4#L>cb;#gKLo%%dD0 z)Ak8pukiW-Hw#kGMg-6I)BeH$!$@3aYQCTOm-I!S5vhtRa>7mj(Q0ky|_1V&_b=AcJeB+%zKz+F{7g) zhvN0q3VzuUisGMT1ZY*OsbqlBG;GgAas7;{JwBwdnR2ZgQ~>v#L7W)Hj}D-y1-OvR zVS@kZk@%KC8&41`Na0mu)h+*zKuZnfPJ1Vxjc1Rxq3MuSXePLv#)>Jvw6SJ~^>~_8 zr{4WKbJArB=Z7c+8>4xS>sjUJ1)FV|tD58W`o0$y8$8c)C8`42=yga0td?S3y`R%$ z#G@Y+j7~nVDSiP=<>{SnZIQ-i97;vrml9$s^rWd@8P(iD$>CJM z0sz8x$8dS}w>*}GbbbALz&bX-??5j=>^P8g zD-5G~@`uErcgI4FiB_l%C-C)qLI0Whd&u0VUh)Q^q?S}y(ky|D$w^om>jG^mlm~Np z-xASb-g8GDi1E1}F7Of|a~Wg;Sw68p;8A--FS>^AS%x<=c?QIgN1?GmCdPE?i(m1b z)lrj<${?O#hFkx$%fe?I*AAR42mTM~gOvJO#M7YOdmfSR-*#(Y%>2LJe z+u0a};vr2LL8%4TF_9<2h{*ByHL5bNr=+NAFA$QXfH)(T^Ml#aY3sYFZ6%WexOrm6 zL$Vszb1ZD?5(4H&+2w(}F zIL`26E#v$^8-_Nn-FOUkiBMhlg6pN98rb#@qH&Sz_lY}-p^GJqSDRrjq2M=w*~PfX>J*qE>Wh42o1f2J&sNW&Ihzk=LDCneRUd<5j; zPbTYq04+QjEo|4*kc)a<1|AnBh0Balr7o3HqpYx6+pqWZ8{Cb6Yln+N!O65oJ=)E$ z_1^nha4MzCP#Y(inp`ki*8AF7f4eVT4U1h1$x`$kv!UM>zf6{T&?^ma_CYt+eQ3|qtT*tzY+Uzilno_LD$^T^siNgtck|as9G0^%kl&Z~ z>cGgDSZlXc>$)fcn{HWuC~f1@K1xsy$XG`;N5!_}+V?p7WNNTrsz#aH0B1DKP@u}D zNMbj2>>kQZr+<8NQrxO--b$*bKlI`|ech1J6oMq|9g^nJ|6ogR->#NsMD(V(P8!HC zXuDl+&lMv$Evkqe_Fvaywy|fv-KZc4Ia0s5T1^p{#3XR zX%a-!erRvO-S(!<1fegRw_bDFZ&AaYzob5l(+V`f1{?L6qPojeyartAGUPDy1l(UF zJqt*_$}DrT*ru?U%iHGTE40Bgb3Q-Dsq6b9opK=u3pP}KsrUMWGvrP$P!ch5=wu}C zE(*K}&y?n2KlS;ybga%b6fhBZlKMjcf9`>2P~3f3O4pM9*nki51OzN9zyH%S(!l(g z5fdmDiQH8%Mu@uqE$_+d^{>2boc>7pln(FS1df=88`HJA>|$jI{WuA$?yyqZbw1LNq1efI z7o@`4$Nq^kTGtR2uL2$Ecy=W#jF>(lS1nf4K|J1|BCo>U2wa$*U|(8YV>5}pViod; z01lx<5i4TDqA36>gwj=?x&b*F9>UET-^78Vq|s+^@RtqW5H5G!ze3can|?wYN^9S! z%%kU+I=lCdUNJJ=3Zo}B!%nW(; ztGu!4uXr*mz2}8PZX`$cxvbeG?-!|nv}N;jraUxR-1&|@Y;#Oduf#gfJ#uiYwykMq zK^OC2eW!Fb+9sVEzWD{RJ?3t%D`7I3N1p#?7hcnULHqwA|<9g zJ2O92bG8O~_Z_REBe3+X9dzt!J!?f@j(ONoBBP(SM@7#!Jb;|95(9?(&(b3oNTR1h z-zCHDMT)FXADm18OAdj6FuZ^>J}0zaoiFLdWZ1)}mpgfF_A@DF$;Q9FQ{i``N#7&! zU$i`k`#WGz$w|b2HU7#ghoow*C}VrqZuigg)I28SOVb2X0c+d@rz`l^!r7BSL8(Ch2G zSAB}7x_cd{?`s@O#U9Qe-o9+*8>$f;_1DI4&CU)zFI(+hc0W4&8?m=R+}=1eqgFTp z&%Ul)jasD1CmN;soFRI%D&`^c)^ms4Ov!+jz_HU}Tc-$B#nD9CmKCucU7W^WimU?$ zfRkX2(~&t##Yb@gmkZIvRLD5O9;*`+5ybz|y%sB%ko1YTeat8mV`xRw_1%dh_ilmE~57&lg9pI>^#^0pwZ*}sj|$H-VMK*bI3|3GrD5&j^k zi)}br6fOn!qW3I6ogO{tuIWE|CP#L7Q%-2S#ZNKU4U6t+s+5NJ`DyRoKy051KE6eD znI84ac{kQd5j(%N4UMCKt&onqzP=NWdE|ZI#CXkI=DGxV znv*D$c-}K{C;QH`Cu?b({=UZPfAP|nEv+`GQnmi4hGbR6E28(ss9TTX=WZ?>LEGc> zy2tW_%bp*=bSf{Y*k(ip+oD$mZD`d2{Nz#CsQfZD!KNSwaJM~%rlCI>f(X5 zZwNDr?%q8d-exm8IF-#U8izBD3vdhaA=V(heZqf|_b&<8SqRqgkO zr|$_c8X2{gIBiMAF#ZHIhnEI=g|V5ys!OZ7J!~{oC(z?<)odF%5Y2h@`<&kRUxwpM zC}D?_bwgy6b#|4bBAKa|?!PD-=Zv`Ue%Sxn#M82du3--}u+6F&kVQ2ZgcK0*1l~JR zX!v8=RRg2#tTC8(hdNUhdVR^07!`9GT=)^12UW-y z8*DJ4b((1+1a<~>jT2I-sPByhhA(UtZh{uQP3<_l#Ar zk`@W&O)X+sXySC+{{oNqZ|O(lEVG|cj{$N-Cr1ggHB{(MZY=0D6lg$IRnP&$=L2FYrju9u`n(gri<4$7F5{xfAv&B7&fxbB8BV>3umglb96}!9B|FgG~e3QiNaxbq~ zfkP=G_GinZeO)?xWVXfGmT$SG$+@U0#(dC~69Jw0W40`xZybH^>Fr9T0h+o-K>{LZ ze*4KIX(c+fil4r=;qgNYY&pb;%bOCVsHby>#|Mh0fg{12fb10ptSoft)Z$mo7w+)0 zcb~g~Ra{or`9(@H`8e!34-U?VS9Z$k*@VOo<#)!TNFRq3$Myz(n&k}o~ zJbAJkO`JwJzq<#H*lBndZ0?QR#4ki!ZZ8$VYj1`UR)_9GHGJ$o@nz^iQ&-VxONX*K^eX|xmefpF$};h8FT_L$9{?)et3qL#(zXI+ zG(mKYzMdm?G%9@HpzNm@Ci{#ho3UDBdewi}M8#0n8I+z`(j$|Xyc2-W6lWuI^RhX< z)I6eOH;Y(@q3y^xOQwEy^EjxW!~|4&F@L0bG|D6FrUhg9L`j4=SghhzmiXk&Sk9$2 zN10LgD{+YbF8yLFtr~{aPn>m{^K01h%w)^m$7-8~1C6uc_3GKYEBHG|B@t8=3+R3w z)pjz`z!CAsFM!h^YiahhS+a#>PJ|kErKxukE8Txh;s6`}xzNLq9NVPBvgrvD986;4 z(XXxuH#vi(AJm1NnKl8UkY_g3!NM{-N+T%FnraFHyDP!Kw6wn~I^RBTrN3@T&gq&Z zUKa+RiZfYam`R`6kSoH1(^g(_g1eh{Mr{sId~la9vcXu=bl@4O!0{2$ugTjM6`UxM zEobu^jhnq0jZYcjJ^9l4wyRTMM(dl{lP&6GTFLwE)FqWDjLJuVa}_9%^=KI5b?2(@ zt<34}-JL-We{Tz2q1>!^6o&Ok{ru^`TKwBT@78~gml{{vk8zl~Y4FJ707w6}Q2%>7 zv*S6ken}cKfR!QD>}jkiP+`IS&#Us=);q|ywSDt4H4RhOpXBh?u_I69BCWx_*k9`q z%6U52;z-=EH{sbhPMG?3Or2LDl;*zuWa~gW{gi9|=EU^GT0{J|09r!GN5ReGK8t*3 z3v*Mew>(S51gd!o0V|g@>4XIJ%woFsTSi$jFK{qWEl9L)IkWZ7Lt;ThxBIJiuaV{v z1Rmo~&VbX>OngM(rE&ASN@_kKWm{gK!VmB1-o-((Y*&BBvxN(kbPmU~3lgm_x_~eP z@gAtSeB%bmu4Kf?d$A^<#}$^9==IqK@z_fWDq?_2Y=688Bfl_ObAYEyyEH!hi*+SD z>(7!}gcTYzef8+ldp~ZfXUMDRbwYsFX?ApOiA-Z75=Frjr7e?vkN(6)XOGsoy$$|paM>W|tS4JD}?GMJJt(<1b1XdkA%U$kflINbi6C6l2 zo3>}x6QFncREyK#8HxQ5Zh(8-=lnR*6Pe=6Y+im-RC#??_qjy_J7fn0iNb>H>?fet z>|i{9+W8;{oNjhCT&t19i1fviRQ2x@pr4w0Vf(w+;tcgQxum>H6Q{c_ASn9M#4BVD zV~mS+>ZyM3jXZ)a^}>p6Vh?ken3kaN`rS=-1;1UcxR=LirCo_^mJ1?(=RKW2r!8@6 zDb51)TGwqz6o%f?UktS|6JYL3z+$yF%*(`L1<5X{*rwfBEz68nUhkA$6mGhyH8A{W z@hN?n@i7wN{{Zmy7h6eO820T$<8xB3>BV5Q;%<;AFMb(GRM{liNdi% zuvdJl19|(IsSI2$oSU3~CoPtdj6-umL9N?!Gt*qFnF%`&nVJ+nwr0x^K*U>?z^~ON z@2LY*B$;eS|MeP*ct`WW{#RWo_asXLe&cTR%)#0quV+z6U8D%2eh2^f*dc%+o|Xw9 zL_T=HmnDukUx~i&6Y_Km0v2wpaD@Ly}orQ}Ec^czr2}H}{_>lePD1W9eSDm*Yv*?Vy=OFpFb}HdcQ!lb zL_}FOMT1ZcLNOg$B&yk$ZSXbbP71N52@%Rn=Faov%U!0^ej!>G=R~%T6pzf3+sQ&- zn_m8q1oWEIdC13@TMO!NuUn=ORN4H#0}vNQaa93|p*UqGQakp?r~9Qz@?x;X8QqSu zSJe{Mr->zbIQCJahFTpxBe;DC;}5*vLM;=Yi5cQXuCmLLoRP0Rz2$G@b+q5v!@EmF3IFSz?^iLKY&4)C>{> z^ZF9c2D|FL_9))GvS@!(F`ocWA4QM5q7b>hitT$ojUoqpe9FJJ@miN|y&*b1`dN}_ z!~?5IFvZn0kKVa80+&6D29!~^!+URS(ZbZ&0*{}0g6w_7)P=S za#=3o>!U7fm7P5Ys+XLNqkgEPbbu~H{kwO=mHfMli5_#<3T0h$VeGDT+ugxCVrEb8 zVn66xNZOvBJ7$^!f!Bvf0{t+f)JyJa4wF@E2 z1v#Jnc~(HgX*9H4+4T&ObbDr+Xt>ZC5PN#vOMK#4b9R)zOJW|^e|&DOr|_~MaHYXE z>CszUZzY{}EIR9oq4oU-Ixb&b4?N#VggyKTJbXXLdK4mc{TLVOwc{SsnfzukuC8_7 zeE^^t!vl`C-`{ttZTbAkA!+u_#isd9rk%`((mf05k@-_T1er~;#Zc@JE9pxne0ov|^o&7YCl%VzL_T$h zD8D&3GPO_t+xu21&n(NVF`epgDr0E2>}wsYX!YKp*f^TPW%E)iBb`dNW))m2=_@I+ zWwM&Q#=Ms-YC2O{>v^G){(JaUP@42@RurXVI-{e8vyj@A>Lb3k>4i&ft=E~Yd}mnN;-w5#P5Xu&CI}{A zd%bCzK+6o&CTg~9#H&AfAgo-5=}YaPmA~=HBrYK&!Ct&UqDn`8eq^@R|D|AZ#Pylm zfcS>2>nca2;v?3YbdXu%RZ5egT2;nc-X?F6Bspdn?$&hos`uIqC!)(gxw#3F9!w+-VL0*JbE3Yf!Uwe+=F4T0uqFr{)e8;W>xD91)LFla z?uWavp6yKHTcv{%YhY{g0xHQ=Xk~l6^0qU*F&qu~Y0ML4T*U5YQgZ^A6p3$7_h7U8 z!6V-s#+7UZQ=dxUJMa-{?_pq-4W6ZcFmxYh>}%9e6vsNU<)UQ~wQ4u&ul(J-vVZj# zaKp87NfArWbH@=1^n})?Shb4-ulYf1_OcgfqAqBW7Pl>G3l7l4IkBG5%pWw#wT)F? z2I4_gK@+|X%BfyFslV4Ylhyf?742-*o21D={NEkRH&d`pd;NU9Q;$r253X>>P7?;d z-^iq0Bp8+RfXqYs|Hfl^yS*Pjtk!w;Tp1+zqr95MWOiamz|uVs?7kY8MM~ zxIG#H3<0Q%4InN+CsDm`$#kIx`ufd%MkQF$jk%YL;v&d-X3>w+i0WALuOK?|0(tKI z3j%Pq@3JnP6BiUz5RZ`l%e`68kH2~IxTQXMiF*AbtI~+Y`^zv*hRqB0MOE% z7);l=;VWylz9?(MgiL}A zo2itWMwr7{)ftaNl|vlXmxbnofv_`gWYp6J9@+*Yc@{Bt>nLczXQ*Ho0v6H#)~NB_ zyWBNXH>qDxKIK33RfJ{zW>2UE9`h?$5#df-C6+EF{2b(m541L2CH({uf>48{oO?a3~p z)u(zsJeYc83v}U*{We9%#2;TSBN>qJ_mzZ`KiTGzx$S%RgnBBpu(jKi=|>mv(_zXq ztu%fmlYE-NLlqVoF^r$?Xvmu39U(dmRyJPKI@ry_vA*%EdB0c8RT5u10%Esf!yBU) zKVcGz&dE(!i~#+CnF2&MLMoHq90MrtL%aZ!L&Wy?XjJD>_&gh99^VTVefKqJd$I+x zNC_nee!Q8&^*U>LUU*MfeN*H`;;wZL8#*a6kxx9JCT;W0M)N>XO_3zB)~-J}JCh(b zv*4XtsL0i8gDIyr1mQPkB-25A-e=s7frJJA3sZMixq9qj{LxB+-`4TF=lkGbWw^wb z@;N-s2=78OfIss9Rf9o>1#^G}Y`N%5w;0DNxM8PlSp_Gr>br99gyX`A90n8MJuP`SIEj3; z#x@l2%E|lfS|ZgJ-Tb8|tFSpj3KlN=FFD$_xV^Hoz7&yIGAw9}m`3`> zX1`=j;R0V2W69Jja8-;{-Qodt7W{`@Fvr@P!TdAOBYzbe)dmAb-di}a(Gvxb-mjpuu?{L z3;X^Yg9iyPLfPPheeR$Xrc6j`=mLez`t?Uo^U{v*2{1mV&gZ5xvN*r@ogi9-DmD$l zl9e8`I!G>bs^H$XKF#srzSFSN)JNPWfa`b*c>ru4x9qt3f-xC0cL^2f%~m?t*>ZcZG(|c{oJZ{IW=vF4e=&`i8|crU zw82%kE>~LGv9Fl;pD`bhfqaieZ-l_|J!{&#zdpZxW$`tYJ+hCRL4p^!tX*yLNA#C2 zoLN^Kujv-t2l47JVkmy>kN*2F8h>Na?nl6702m7%?jx>vfEIu-CWQ}wrw7$=u<^w3 z?D?24h*rTl%v9mhu*;aVG@co3rL)g^T79@U4Q8$L^i`5uD{(U2ol%eYEo3|BPfJ;} z8f{*3gxzfRXzEApPTPB5ystIMJW(Mv#`0v3Ghr72O|rm2E3C7Wv0say$|ri}7FG4bT4}8+;>Si3rk8i5mF) zNXXV%c6KXu?~ydU@Nf$JNxgGRWq7{UsHjCdj!Mz+*>5G2hr_BFl@{Er&W`i>{Zar2 zu-m8$hI87zB~vGv-@E#G+!Cd<&F7nYGRxxp{WRf!x{6Gsg>vCAwoM?nr!CkS5Gb)v z28)dWBFaENReN7wv>+|_D{bws-H(}=n2IwqYwaW_tout~OtJ1M4dp04N5iklo~E6^~{ zeA<*bY370!*3q=`3x>P6vlKc1Ee5!X9}79{_k9L^`p$cmp?e1erikA2H(bfGsB$`tR&rJ@>~}JlYjoaYMUAynFWHd{`i}OK zs{fK}jDTM`^W0e;h+nxqdE}jv6I%JjDwY3Y$|K{o>L`-Ht+zV9p-G29NYC(fB!F=R zVmfNllb=vq-Tn;!z~Hp?lOnjTxE|sgFc`!W!07vQUOo7x@NfKJmgezzyor5edfU&W zg=lTPHF2Mp+NROmQ}=xK1X_Fm=lg%EW&-J}=xiq-oLY`4dseJcfB7f=SzHD%rr4gRkHono1ySiiw!Wsj%D*L3}(*6Gu= z$JX>zDafR(yu309>!_EQm{_rs&9-#ahnjN7p%?4L_jY;CnPF(d|Bm%WLjG-=wdU-+ zZz2*`-MJ*1yrh4*=%?fq4U)u@^c6U;03H0oZqs7;`-lhy&sh#@&E+~39}T?1dfASq z8HUx&-oT^>xD_HJe+dnrk0Fp~w5BAU0+@y<==2LKgw%dmU-HUcY-tbRqG22Hc@}~_wcVhf&eY4Sh z3Nu!I%|ArM7NdOd?UQ~& z%9UPX=JQ;2YmtHI|J->5UasSbvo$YbZv}+fC@c3ZPUAA4% zbaOEpH-t?~06}?ypr^4XxXs+XocH;4cXMY#TvkH#BwH=0yWG_A+TRORD~+T_}B zDDiZ+(vs+9rFpAdNljqvXd*m&Wu;APe_It7bz=hrVwF)r#uBv09nswzb+{J@v-ekZ zY*glus9ih8{bYyUMB+UxX>$TcgNMxy4qA3yO~G3GBiL1BnD~mB{gp(56awBe@7Lc4 zKL>7J0yWMcH8Ok2qpx99utm66XO znYp}4Q)Sp!{*Jt2N#Y644h~c`h#TC+>KE|12^yOoIS>0Ehqd2Js|aggjtmPmfpi;~ zGKkUz3)r>N%2_Yk@!C;LaD*vp8-8YDEjg8R*8AFtN~NHD%(=qQnpr6 zkxh^a#8=UEx?eI>{nO`R_F);RbwWAw74D5K4W4|nt$(Wt#NQjZ=35zgEjCw;P7CRC zYWSOoXao?kA& zz2<%_>?nrP@lGO!^qnS>W;ru-lc%I7#M-Rb>a&(C*g|5<83gyFPEH#CAmJynQ}m{y zX)G40eJmuW`d3NvKBIljxSU{A_uCoI*})=mx`^j~{-;uT>tK`;IB25D8)(-l18NwN z?WL?E45GLph}vE6lP?r!n9I8)&9)h`_(}zT8QK%0FEMI@%rR0$eB$I`A7U1drtxzulop z&xK?=nGbC_9OF@z-I0i%J~pjDUJVQL^<()dV%%u{NhI3Q(y_7kbAec_Ix-&n1pWbk zF5PXOGsTDV_?mJrPIb33;i8-{Zy^}Q3w41UGaF*_!fomHG$yB#daZIZje}1Vf5n7^ z6kxIqj@6b683m;9^s}D@Cy@@^ zr*CSH#bs{-+Ss9ZppF& zkMeCxaNA3ZA+Owlj0+s}mfYE)=?WNW@?lI*ZH|?rdEGAk4hIPY$1mTM!ucugysQZo7A`6kXCI8nUCJ@#qzWV zu?)BP0Nl|_1IyXp*)den_{vlwe~hhQhe1ZM;zXN!VZ8g&m{QlG4_KdyZy`q{4fT02 z7Z6q<2TPaXtXj-A#nrhhgBa^&aL-uD&um}!@@cf{>Fa-QwmQWPlvCYh5v(>Tqp{tP zrntpPzhlOHm72A`^D>M@!gt{>XULLZ%(Lm(kz*SdZ=@h$2$`?^O}FFBhUc`@(kJq6 z##x?27Aw_80!k1IkhI=Z zZDAtHqt+RWp!8_mPdM2d=pGye7`{w4ug^rUTL`)KH2yQ>IOb(hu4robXpz^-b4ackir0p^Dpgl$irNNiak z!$GC>w>Xw`UdkzW^| zj6#E_Q}I38mB@Tl%LwiCOVMK`UQ;@r+ENMnuLeC9CV1k|#46Ra2}=V71IxNA$Gcnp zmEb4{y!LMM@_WciLp~W`r9~x?XH>d~9?I8HxO3I?Q_nEo4C*SmEPfjfJnT%g8aq^5 zuzquRRc6PzGh?SdvNKi9Ru*(95zsPl8i_<+<9}HCFycr@1>4~+>6UUXunbgEh&&EW zNbs>9e2aBHDV}Ef00;v_0%3q2APf-CGybNplF_&V*`|mChTgR$5R`#L8NTWUjO(7RQT5*-e8#tUWNtDU!Vhy%&_b!I=-{a4B92pieD`Z zE85}iJ3bMJopG179S`XW2;A`AwsFm*9|2dQ_CaRlIGyv%j^?@jL{+dnF6iSC-(RgY zMg10sBWmU>R9_vDDRo`!#8oF}`Mg3HIKW?w^36a(Lupn%2YPLAq+gHwK%PKK6uB}_&(C3?&&9zBFi6ck$k&>H93%6-m|nRcUw4m0 zC-h*gw9IJgR+FLidDIWy^67Ah z0(hWalyRHUcP7Jd845aGFE3#-GP2QH8d}F~lZ1D0=Y`mTbP+3H336~$?Rnbk;oN#7 z{DFw>(<3cO?TL7*;^N|iy{3K3{uKTv0@fePoG>@fDQ_J?@vxIK=tx_F`-WLQ!W{L5 z-ym78$~rn3E6hv41-6C_mDPeC)UqL`AI!8_50-RSO169nNo6j7Uk2M2gHB<--V;JG ze4oLARSC)&E5_6Wn#1=^1*V$(j3oXq%HA@l&TiQj#@z|-3GNo$-Q8V+1t+*K2(H0h zg9LYX4H7iCy9IZ@583ZN=hi;wyH(%6q>3VIX3g0>dUW>~cSu|C^=x=hvOG?b%%16rYmps7vV4fp4xOKer%%R{*~yO*K-YK;M=~&9UFBCzTV2QN zkXJuk`AE3(#4VkV%SI^54s@sNFy?NU2DW9mXoV zH?JDy?~iyiSE<>(JQPoLgb#aRFV&@pVS|v0>{w{KOg0x^`^-IXnlhT^Kq<^~&v)?! zhjmL>AjW6GKQ<@d#+s&;SE{FnfG@!HzW{%d~5+-|y>|z1cY8(#CY5Af)w|P3H2)_NAy}@Z;e52P~ZDISzl@esV)M zTRKSoR42wyRS(g&LVx679EuJYt_&KH_Z#e)qlu&;e!_dUifeA`b;5U5HoVSqcLuCj zxe)}qY|vU2AbIaRVq*w-E^sut89=<375%h_07>>&x?$k*zphDuzM7c=J6CVteAO_Mn<{Z9--~@7>>!i z?@wf!NqCZ%qQA(5@#JQKul$xxP@j2U)I_N0*Q}oy#J?B7>+z^x_VM>c_)4~Q)RU-p zmUkvB;9#~K3(7ME7V+XbIZY#r+DTR+$@hix*-}+jrg8#W!9(QylC@D;NfQoMRZl<0 z6%6@n!Ib&wtzFR^!ta6Oye!Rg8!y)n2yKIE-x8z9oG|OhsK&P`bWQ&jLD)D~$X@^=f zlLzJdM;O|%J6|Ga@Ec!l_H_VD`Lbi7f95u9tZM=TzeOh;QdXfN7neDoLyJKc>6p*Y zly8p1L<8}D_o)lO>R*Z8)Bl791O0P~}n!A5{(UP&46y-WApT2m)q=rDm z3;0Qam>FT{N#Ov5-);Z$K5{=aLd%Ug)~H6`GI`HpUC=w)zyXLr7sunjThu23A6Z=s zUxAGTJ;0;$JG}fHfG5a|+CO@UxjXCF<+Bwmw75J9Lv_gt-7lt8tvR+%&m5}zH01m8 z{G|chLzgORvBkfJt~<&Qg44&EZ?ZA|cxgMVjh?9L@{D;leXR|?$uxq+C=p~OE3G1! zYJRN1xzzP#+r~7OVR}OU+x2Zt@7H5%#?CXm?;(Z(d8#B}c8V}CEn14J);Y&9JHLaU zkZsAjgS`CMW*gV8$ zzt7rUOLmPX1gj{V#8k#f@JB}UFL2|bvWy&f`dXk>>k7Gusk5#Usr=JD$vkqvtD zO)x(911bGOd|)$%2iT0^2R37ZovYL2SE-NkDFU0xjpA(y6f?{|F(rR>iz{6(mAock zARSt*&@MvMS+L7#nSz7RGJeGAI!fLTz{F!;itia>gsb7}$`bbl)bEr;1wONi`vDR` zpAS<1Wn9mFL-11%5LT!CL7J?f69|~@u*7k`&n3Rhbb3mwULp6g{GAK<<+2n{h`l3RSIlvW)+UayIRDljj>F((buOuV>rCp z8Tk@BtiZkrbN{2pIas|Wv>VsK7>F?Y&0EgN&jCw~t3{mbGfEYA=|S7qwz6Mcgi9X! zc8E7qp**?sr>-32hR(Q+F}w{sME+sQ?bW-xLwCL}sVRI~0o)CWYN&kI{gnd*a%cJ) z-%$MLJEgX^WR~U>#hlgR3y^9^+G{gD`Ai@UnL2bknGQeqD{>H(jc9n+Fd90c{(SID z<*~;xYF!&)g?V)K30cB>1$#OBR^9)dzQ5_oMc3j6%V#Q#Jmbsq4?t*rG51Z$H2fn= zBPoZjX4oICWsKT^evB}nrvkjpA03wBNd_&0G&`TQL=lW0(XG@PE=1nf3_}>isBTEr(fqF$CEZ}oAf8hlzk5gJx93N3+W)jY{PS(IJ zv`iso+cQi^HoTl11TtGGg))Md#=9QmR|q@NzkBztn2_uf<4`pzU@A!!;qnvVuYw&1 zTA^sX8Dfo34iwC%^tPUC&^4m}?dgPl)i?f=>~sikXVj|ukLyQ+HapW%q=A3-9g0`* z$8;?Jn2-+L=Gnu%jJql(eGPlPTS>89&!|$Al5kyUUDMy}ogfnun_Ey&12#>3giqQ( zMeRNy{}z~!13sYdZXw-P$^?EEm_KA*&z(S_j8_>1TEAwvL0w1}e5w|9|hE zr~uY+LqkK#wz}&5+Kd|CZW4Vue?WIQ4A0sp-?0Lkl@e$h<)!{BodBax{_|}5u|fHq z45qhc#Gh@5cimLMWTip~!q{nLcW=pJ;M>2fK9&OtxPO0^mX?-MRGgz=C3r+Wacq@- z&ttjG(jAI`{JUTv`d}yKe2|ColTCANusGpU8`ey{yV(|s%d!UY2&uo7XfGKz8AbIc zRKX9;8>e0)=f|!%M-gG6JhThtWK8lndQ#fP^j@)jk#+|eY&8Y>bT!vTcg*^LR|soF z{gS+EOP5FwM#wd3!(5I0!&lxKm*C#Vs5w^MS_~HhR6RZsTjT?qp?=%!-OrCRUAEJ~ z`xs}NoZ7_|wvWFruknyUL4b8qag4xfR?5c;}5*bI0KqozY!qiw=`z{B~c^Q;}`fiZ!lTb%kB zum;SsaFgpeAcJMo1$cy?@~Al!UzSs_5&v5k8lN?u+&*F3t)`QSXi?FF0(Y?}gz@8e zmj8j0mkL0$6P)_A@?P_DXI^aZ`^T{&!11Zpy*~U=sjFDO08OX^WSE1zVpkP zie1aCje|0Y3ze?Wx3@QKhD{ZX<4j6OAZ2HNmzAa0Z2>)mj)99C>JNq^4bB_)%-vOa zWZUUL(I9+psY`Oe?jsW47jA72K}(1+mg)V$;pM}?dDd|k>NtTe4@@vP)fkL~o=HY6 zT}}I*SI8|=%?jkS26$`7w0)IJI$xU&Nrt(z{sj^<c6rhbdzSF610Z3?EsTLX$Pm}!GFN*2ra*s&&EDA?a=A!O`dx!K$n zj8pZoQ^bewJH|Vfc_WTlN5}ZToO0Kt33}qp5=Qj%^}gRM!yTQ?Wfh}Bptr0ghcoWP6=C$3{Sfl42f7)n*W5bmHmPYXuCSSM%|k_9^m>l+m@#b&VznEB5vQ5luDYu zd=++DT93#aJaaFrQB1uMdAi>Rbp2pVBU9_Wh|s)3_Th5pz-w347bylo$s!=0sJ>bp z0cfOD1aJ2rHF?6eho&;k5>9;Rcl)dd*29Uwz@}+|;3fb1&uk$B{Pk5FTo>`_Hn@;R zDNYA_+D;3_17dO;V&)gSb4t_5>e_;(@xAT!9*jxlvfsJOpQupjsY`KP`%@4JsZZ09 z2pSrU>7Zb-wcO4QPhroVU?}oEEOT%=9tS;~mhg9G>f!Voa>)dHZ~U^?s@i*U%1W@6 z={Sd9DXdR$W28k3(!UJgPOGHAw*lM`rFSr7#i|TeuoGLs`JX@FRGc}(ax+QAOa8PkxmvEG39+hy(SfE(Qaw(uW2SWM|>~0HhL^$XY+erz; zGN3hA&(IdaJ5fSUM+0H6 z$_EWQwbmd=1~|q9ZIb2Rg}s|{_FErEbgqN~$MktZQah*zA)*-cy;5!KwmU%eNGnGw z29)Lm38tV5ROd{iU%4LjDMu2ojM4Q9R7mv20SM)bQ#qe{e`635(lbR=Uzs!{W@SYK z%Vd+Lo-)$X!a&P;|6>dWEsv7C?13-e`A?crZx)nk%~#OcEj}b{p{3~zlhr`ZN>KhN zEOrk>`^J*0bd$QSCexl?&N52ET{T-?n6{oCp^Pj8AC_5pTxKRijIBDBCR#NX{#qmw zkqk}R;v;0$E6yZK^$zr8RX}!-N=y4VxLqXl$ur^^GB&Kd-Z?GvL=RDK(-MKE^#rSB zo~2f0ON$QiQd!xo`n>V3GHK)h2h+ILV#)y>V3h^ry}ZGzgp`!fx;l2?6kCtMyF0!D zx_n$k9`(*f_p=8AxW|~IJN9mMWxcH%$FNl~Q`HlJt zHj%L^!MlQ{R%U+%S2l~ab>o^wx^SEWi@To98Q)b#NwF`#$B5|e^MRnhg(~Br#cPV@ z%d z7~rIq`q0@mb_+r+2)nl4^0$8l->!F1JgdZZ!rVE5i4(vgVhfMvc;PR6B{)L{*BiC3 zJ(SAG$k?t%Myi|C*W=thIbn<`&(7W<<*;s_m{0Ia91rUO(|LLPSwa&*d!5a3|PytJ&`Fq|PJ_ZTyK<$zrol#BVP`s4)( z*;9g)>wSZ{k&zw^mRZV*ii(SCPz9zOtFdFRsO#d35ge=B_Z2Xn%~tk-ltO9I$Mpkk z({)mPce(bLL1DEtzGqEX>@juHS%!-$-I zOI+wCqsT%B@RQ2YcU`zCRc;Bs&r34tEWl$a$9Vp#)$eD6Y(5F1qN1h4(_m+Go4_a3 zGKx(7c)ARd(&51*Vc^1HT0uim)TFxSQV(%I5)phQvu%S&j@dnY0$&(>7rq5`*e6xzT1%w%5L<56bG9SOG~aMW%g07c+|3X z?axXoP|}@~T@>Rqwwv29%S{GDfkI>35G->v!ia%!Hb%V|li!qt0!mrm-u8o10bXo8 z*DyHD^yhGfUJ&$bZbCvrPL)z>4yz9q7S>Q@(uK22UmdzY6Hl99RwttzVd5@0Z!|}l zO3wEv69mw?u+N0(!$$^mjxK_|A5N^^sX6*Cc?CB+pQ%#GXX;(JVl7^tlS<0U#C&}L z;l>1~bU8u5^yp%KcE*wPrv?H7f|5od!ag^(u$X*Z_z$DXeM>F3(kpq)ImhIzu4@)~ zKS7ygsTl$!ORxU%n26}@rAJVSO2ILczT59a0v_}hco@lr_%Ef5W&1~@;6*0)&vWS^W663nQKf#oRGAj5s? z5Lu8g7Fr^yD`ATTVfvS@p%D#@-TLo^Kq}tCqS#`+B)9tcC$LlKCY+ z0|6RE7nz3#g`Rmp=hFce87?)g#5+wj)3GJpYO)pFkap_tE-sq;b9fNo9u!!2N3jE0 zN7y`WQuaufGZg}ks}mi#%OP}J%!NZUvMr($TJNWb2bJH zs|j*VIJh3o`zh!Gh7T=|k)5YjR&iS5GiH6DYEDSs4DL(-h)H6`s86;sTSxEX|IHw^ zRlCsYGd(!7Mzisy=+phCqi=7eKD4zKay3OzV!Z2kc)OhJBx-_n932@hWbkn%0S*)+ir zeZjmXs0~Fgra%efQMx2Z4=AvVz7o!9j$_U{tL3X(L8N|lyHRk!r$p`?G_yj9!h(4a|K55#jnjusj3k;qNMXM<1(h(VM zdfPb$4&U*UXmKJhL}O7aHH_q@K~Y^DB#9jTNPE60dXHqx=io+X9$nA8{s$3>x4#@` z4QRd(soW2Xc18eI1IsMSwy$qz+swvwv%KcPuK7uvon?qo=zi((@SmTl*o)CXVIm5T zf+F#MB`rR^t3}EkEp&y9$<@ZBH1$Y+Zi>7))(yxu7Bw6FoN(l|g1TobGYMfD89D+g zwdG3FDG5jt5)!#g9xP&F!m0^fAt8UhhOx0R;HnWs*#kajN~+*bcTA3I7_N}amT~*V zaz5{H{bKeleeGP1T`BN{fIYq3~?k9)%PGax(%BajPqR#w*jN^2vKdOf_nMws{$IBMf^ z80e5IB3LOyo@7D}(ZVFtH1HOzb9Kb5o12=t=H_ssqaP@~enQ~nM6E5*U%Cv8dx|%^!nq`S`Uy*nkutACMA` z8VjodO*hN#F;6E41_tsqI3Jre)Fh^rIuO~v=zTJ-k)GB;FMm?xCeyh@8e>FefsJCU7jznmjRar<_&6o;Dr3CAvZ`0i zM*JCbau@^@>BMLe3xg(6rTBHxF2Zdlz|EncprEF=X>rc1*H>2l_B4ekf2XO>hX3K= z`fGkWk;KDopI;@i^%o`3s8t#|M;ZE}L-H*wFB!3)Cx8MDt)7G+?u%;2mw~p^ud;#X^X|72fJroFSC2 zuge8CsVNV*4!!tBFD*&1SW>T2Mgy2#1*NTWN}#NjiN9A%)7G~9pR0B21Id=>wX(Ts z0+cbO#l^9eKnZ8*2D+@Wy!RY6#D%0#&#&<@dA<`Xan&YA`;cX=1ZBJarjy2^6l}B##7+VgaB6wFfqN3pxFY9NDHv z_~|=Pp9#3t*0i`sRo4PCLvqARZEbu&eq;Dw3N+rOTjWW_Z6oB}Uc*(!4JOUlpDbmT z`#oG$UARXM#eCakp)Yx`-ih-q=}yCwM$E2COh~tENnN$#W^e;MNVJFxgt7!=s88?l zfy;o)M)eTpxy2C*^UQ2t?%Zb3HtQOLfbo_kT%-<<(FBjjtketOUBp9w3b!-oWuMdh z0Y{;)ijH(bw(-Od^+N_QDPbK(VkEr)Ee~a|A(Wgp6jDZxjR$j4o(qL3-rG~+cLd`4 zELjkg`}?1RqIR0Vd{JwH4M6jxwRn<~d^|yp!vBr9dZMtuB)ae@4+?M4$S{)gyY9ld z^dH}&#lrX1Mrz|w_;F}dPC^2%K&-Neq9BxQ+?6BUWyS<{IZNw-WcLV-YiX=)E|g;V zhPxs^#{BOgoF{}}5EX+#X474+t}H%DpB|PRF0u2&#mywaS1NJ<>xVa?{&W?{O5*mBv^Sl5;hCtQ*4i7IZ zHWm%Iu16ZT$V6~&cXIRKAZ)eWD}s1B9xyF>I+Ux3-ba;$HEZYCk#&E*4MbKaPKz%d zt`u4#MGAiW0g3ov8{+U^1q2w(bWD1BI$y)h&C2=*x_iXQiK~xY@^QkBEU<3V|31*mo+d|KzEtGXX_BE_2Y#f>6=wz?pWEMer(kdfg@{#Fl|37TYnF;j&q-@fR?#se4v z*R(7Ocn&-XfZNkMY<#wRwr5}mWTUQeLM*tOKO#(gRF!?GS(esptl zQ%R>}{B$s~rnYvcy1az-mH!mOwGtA=9-F9ph5#-b^(y8aEIIU}e+;84t;AEi0Z*8E zr}>45(R@&zDL=p~MIr%L@JB^O(jW&Noh)$bTp`>jTLXhEuAZx;w6yT=-^qa=kdc!U z)6q%WXK8mye+)+X*B50imvjGJSuJ`hBeUcQ!Bic%m0aTxM-Ji95Nm?uJaI#>Di_3j zzEDjM$m?TkAUZ?k25v1A8to5nUv^3qaCnwk;}up%X2L(|jL4@Oo1yoZkp5ErZ52v*RFT+RQxWbW4IM4KkN>EUh(-{t>{CYYkS)X?;IHt~= zoAWKMtG_yf{6n8GUQ&vU{1!*5Z~hi-P_VEcXlZ4D@};Mz2aTAR(K8daoa=700)D>9 z;j^etYi0;4D!BLhOoY{4l34>J&&QTnH+G26X36&ePwHja-OI(g`H+L<>9&2~g=_1pErRb)5O zP1VuMZP7j@bh1=AFu%%)lIAh!>FEIz;fRuwh$FwXOPiXThfJ;Q*ZKu&Xve{m$&UrKpa}WtQT8#DI_CgO^oLow|%UPg>!1Nr~GQ0|Nu#Gw%L__PQ5QVS#!eb6{p;0K?OeiU_BC07ET|ARopW7CVFR4@+?j zYgk?m1T+qA?@gnBV-Z+s2xRs+G>SdCeereyxE~+nQxn|$b+t1@eN}?G9W9y{@7a^o zdXTbE7+1{7qYPEk)t+uX0E#LE6EYA5rcT+I@tdx=*M~Lx|B`Nz^-OQ|8c)&11fjF{D?ATF$QNAZ{O1)j;>9JQRcj2j7;UAf5y9YIpV5Q$@TmZ5F|k#j#Qig zwqvvWeECxI>WQC9fLdTyjznB#pcU# zm#v^I)uaCAKUZt;zxaTOri9FcqT*sHUl()YvFH@MWyLH1`M!br4H_XO9qkW|us5!f zOm3H6M^_5#TH4xSPfy;ze^dJjOe_9_sZ2)vS1o%wpKT{u&VTuI*^ht>lfl6c+}rxp?pltb94o;${WVGN-;P*I@8RN0@SPard_bx5kVP zOA=|<>0ai5gKU>onChedA8<&0Gjy!REi5>A3c_gQvMZY@91`CWT10+&hE4v{6C*x; zjcfS8g78-Qw{K*ga!i0n^~Joo*+-Osnuh%UcRX5n>Ht|CK7fJ%DBDmQk4ZgLd1Mkx zw`vmUBETl`&@=K&+Kz;QzISaf3f*s!*cgp_!pX?^t0C&-W;xnQRy<1BbxAoKJr}`v zGi3&s`qPfS9&Y%}{DUV88sEr<96XE`NE6}xm`MnYz6PEoBMmL!xcU)<5g89mO z(&!C+9eKAn8CLdNYwTQghh)BEnJhef*R93G;rk(0oxNARg@1ocuS z*uoJrM&quIH_Zqmst4mvY0@l6CX%7-$6A0~MAQzy(ehd5h9kP!LD)TmH+iuEM(%CK zc@@K2tWz0*o#2BFvW8R-pK<6RA(}M!{&h%3BCUN+PV8&zz3!C5C>Q7M?(Wd=a10<3 z0dp%~LqdQ=BryX>lj-f;46&&L;5SUdjB*g=&rB75cN}`jdT$4ZUC7z_dH3%hsv8@* zP;@E25D*aC)h@0a*^#v~zFr7i7s*qFs^(Yp2T(2AG;8i|gcH`W7sSm^6h^xUU2gBz z4{3Y?WJq$atQ82MIQYxGqmlyJyB5*BZAXg>W2W3DkbUTq{|(C=T3+mn4x z6jxM4<$23t_&&Bi>o3ltHJ8Nq3+%X$q?6df9McRra=u7)SX zoinx)MV#ji0pv2}bF*d}l3o)bF1s?fZ<6vG!7FE&uoU*MZWJLQ;dXU_HB)U=h3neH zw~6+OK0fpduy4oC5{u)F`ol;iQ zpTD|HooZIl{*s^|H{AuJc#kR-Z81ZcBxhh~scTnvy=CayV2${5Zw0><)Bd-$WL9ALH~0{J*I=|k zMn*{jd|Ok~M6cfHX@PKeuD2uy0{-G0U}ob?gUqN)OA?pLmH!=8e}{fp z98=Tr&HkuvV89q-tDh+m&{x9N#d!<FTd)YaMBn*Y6F)*i#L|YY2 z#?Ma#4_F5QO}n_bfbH#1lShDm3@f=zf`xs}R?%=ZRna*u%oj_SUT%SbPZ6*ey4e;W zN^?g?M`{KvuLJqEt0VA8{c805gr)1Xbo3j$Scu_ zr0;3g_g*0zIvG%;ZeGCJsO1m+w2H~KN2Ss2r7Cvi>NzTwVVktb0*1XRDsccMML|jVo`FFgs4VDLIhoTB7XQX?Y~i5( zlDPQD>WYoj?Ay>J^l~_@hsX?;^nl*gKzp(OM{k1_u*&`~w_6 zx*T+gJcV3V8$6uGS@L=?MLpDiPQUmVSv_VYX->wfXjzGpbIXcQx5oBSMcru%8=jCR zrkCnG1b~$|9DgKj^${Djut;EKF2#$|c^!q=*_Af?elvl--hy=46zLIeqzyI6cx;`$ zlPxWC1VjElCd8vDP|!YA-6i=%geEidY;z(5+5hh-8L<$TcdkzdJUT$$f{@2UA{n}RILpbI8v6LMfTgT*VhFi zT^COxV3Q~&E)Kv*RlrHGr?*$U@{-`dUSNTk!k#d9annfJG1W2bsUb4HX(Q8CYUr~^ z4efs;)ePjmkzd+%b=S@=?-&rHpP;=3aDFP{z>?$nfmv5T%P`P)pT7Sm&}&4Qt*&(y zs^{gCDYZn)c@e^8Q=wSyv%NbzL(k+0Zxd%{hccwVC&GE7J!65p&&AC>WJ-XGOC8PJ z-qhMUVtTYU2;$X+e~a8=UxAw;E+O%r{Cm{BPl|ThE%NB@TP^oaQBm>gWJMQ1;ce~h zJDQpsr#s=WVMXnK5eF}jwy>9g6|u?m z1M~4K&_+l&iLS)4Pf2-5vD`P>gzUO&6_?DB!Q?ChZ=)|W-zTMJmcaa2$h7Dw{hy_@ zW~=?a)c;p0J+0%u;lSr&1{eHr6Zs!hGd9Tc9TeL}lvW z=O4o3L^tPA&Y|N~}`e4pzV>WdOu=Q=Nh zr@g!l9{;Saq48c&5b%SM=a++BMq}2`Lsg6MB?!X1_QZ5O(ZMYB z1t^$EaKP>5lrUh^a{g(X$vQr%aT7mGam}htU3Aup?%WiZM$#eqE@w`AHxDI@gPuD> zql5X^tQDttYd+|Ti;CLOo*infFMwnykQi>Fy8zO;qqiS?R>S$k{F8GJsXDBtzCJLS zqM?xlPy`|%X8ivLVF?t5NtLMT>gL1pZ0YN7)X`E4-*3aQ>4^lQKYtEcUQW$~%7;Q! zs@a9_&Xp&vN=gb*8vWWZDRyM);Y%LQy34olwL7ZL4zhiDamQRx6v&~1JQAe<+~$JPpO{5>OedZ`Nc z_i{uBywOZ{QM9s3cENjwEzVT;TJuc;$3NJ{n&lPm>PA8IwF0G>3*P)fixqGp`6_ImpkmE5>aRQk3 zGW+AwPq?9vOtCMSPJh-bhd)Efbj@qn>G22uO&|IH`ajJ7j8QuXvsrTXg1fVZd32io zbsxN9Q{Q&YMkVQziin}7ZjZzGejxwuya^K{8vj;Kz#4$B7PW~_@JY)Lf)w4G z@l&1c$ye5Ok*%UXVE$4z13XZzp2PHgWfC8MBs1s+7sw_9Fk3O9?OWWMvX5aQlPE-? zoo0L*Z@uu@*6w= zS`a*tGCUfOJ*?<^T*)zB)SXQH^@VEJfsLb(=r%(aR%K{3G!{h{V!nR~+olkryeC@9 z4cGdoV<-)LB!sjCnJtMSd{~)Rg}?7hMV>`VL|$nm%N&y-FD z=e;uFu|im@v~yT5ZQ= z@FO)S|GHz7h;;r1ZkPLs5*F(x*ds)l!xNet&y#-~Lc!JdNDaiYH~|#{Lgc3+!IM7D zi;WSYhL0$;XrfBSi?1I^)JW?Xx)yp$BA?htgrP5PJxR|$OnxH-lzQek4o)?yG`S^q zI1Ev&eUv~MUYdvj2x9n==*bYK_PaR{Z`JY`BX@BXqILAlNa@t!)}YCYzj`Q+ef%BP zOG?bgpSib3U%tM|fyd6~Q z(R#$2(Km=l1NE2iAHCiONHZ6a-5yW+!aWjgmK1(c?An=9-2dto){%tYWU@R@8c6s0 z4k<9ODWr+TsB2J6Oka_ZC^vwAddf}Uf4UJk55hk@@`n_Rh!&zCn(kC~!uNLe$j^ZQ zN{MgDYw$SAv?|BCr|HTb8?||J3HkaAgdHtd?iMBHN+3Oz#(r-lkkY!C)_JG1-u+_s z1$OwWZYP22OY09~x*(e~kGx#tsot(U$gZuaQ%<3+ADt0JmQrI2`rK6BYDT19IYGkWEO~j8N4Wl{{4-f8(%S&ZVDxcRBc_m{1ni^JsV92%LbUvBl z9=#Ih#3WIR22FfiCDKbHOa_ZUnjZX#zHM=Dt2C&+BQf&_lP zr(`b60Zm|QV@y*6eIg0AB(CZP`(VxxIb)uwL(1u1R_M+f>G~Mtax2$&g)VSmEa}Co zhehnKXitKQYd^-pzP_h z-eV?&YG{Vob1Vpn^9qaW5)@ZVZV({pT{hHY=3)We2Xq{qkP=#o1&V2sD0>MBHaY{X z2z5=(5!3XYfJ7FK>?ElW#$h;9veSKoz3krZjMb~SU6Bx}9+^y6N z6MsJ+o8F9=!UiR}ZD5Mr9l{v?ma)gSLfOBmYr9Z-FPOZ!KApU|L+~DLegqkpRa=_6xW7~oja^@w(5lRJ$MRP@hbNNiseCP=PbqA5zvlN z-u*-->T)(C69j*)fq`nc#qqBGAOa+b0v=I-I{CN>sv_tkc;oj>GYNNes%isY+pbfv zzVPPtZ=6H|$6)c9(SVdJ2qU*;$tj2REctBy!?jC`f~vdBtpNU6$WiHx2tG2A@^Fm5 z4;-=hdoB#@0pxdhPaef)$lv>?)$2Ixh4%g-FECHPw!LF1uN^nWw@7AC*WEMSTNEE8 zAvgzUyWyqHg?~I5G6csZvg+VD9K#MH1o$08Gx`o3s-%zG&xcr*zINFsPMsQ$?NH#c{a?pI2cmh`GtcHn~HV{ZikxrGhN8*%?2{fyymM}5}a zKa3qX)B9@|#}ey0%UAX4-LtC|t0FwAXeH!JY7P`GqZZ8QJs|ML>#%dw^#PWkTw=nR z(vZE3*{JQxf+El1(64IAo@1ENkD$p~bt@4;vlIL-)g~R+6WrncvdJb=@I{jsJif%B zn=m991RD?H^-K0!%h*I%e(FYfR~!gS833tvkFH~7+r!fK&>E+^*}gck{mL|*fmL5|y1ugbgO-K*ZVAUY70UoxHO6#*-@Rx*4!#5yp^{Oi|5qJw%Ub{-sd zri~s}4+ph}sk}V0=j{mtP^RKyFuzUEyv`8Ws^)|v=vd~-DQ+y4Y&XRVPko7B_szfK8SSY%fB*Vjq2JLUWU5Vrfy z=i%zx;DXxG-WM6@(0S|M>SW|j@G?f$&n9AD)PYF?7@#0Wp`C|Y!JWU_B|Tu9oQQ3c zU|+OcDIdszV5lzAe5E!s3#bPeu~Jy1W@tHi@0@<%FPsg)n#yhK`On2 ziV1oG*L&X8Mx;eci=CWzQtEc~_V(r~HiC4%l-Xm1#k!J=hsM_hK4J9V)3wa))S$i?X*d)$mTn*Ag-_$Z*l7$LRSx`_$mPER& ze@_MdHvw}_*xS)NnfTvBBHiOsnrO;xVIlo{=)-r-@N>EF7^c2p`-i{Jai2~G`Ezc; ztF7ai=K6TDn55G$U7Iz$#1KOO%K`3BxDFdm=jM<1+`qgJa=$#>bPa?Q z8C@`&nhXlJuQ;AtZiUQghS@Tix{ZjH=SfYWd2yL4sNtYivb{xydN635gubZZ(#Zxm zZNX7pYwu3qW4;5axxam^318|(w}C53FAC&G3fmr){@``(yh#Wu6zV0qhIZ(_RWcNr z_x9it`ZPQ|4#||qzWLyD4HUxP2@!z-A*blrBE18=jKkUn@{Hy#shZMIHp-Jn{H(FcRK}>GMSmm?# zR&LRj;CnGw{aororuqZ<&7f@xhJ)2g1=Ade?Wd zNo{L~DLi-^VCB}1#0LY|2BhsUix}GG!me*!d#C3jyORdZ*XM#%t1WloxVW`C_+W3G zM1SWPIJFiwbj$!*zqI!zGTv!vvKs{_=x$@U3ap8jjv}o_A#p_a{omu_vW5KbLqpDI zb0b|@r{a>VM?_srV$M)9;qE7yc^~f0Sd>=e0=P60Kh{1*p+`jz4i3Vq7AXXUgoJRJ zc+LILz^-%U?L+;+jcmnIh;sQYUYv(_aqBSjWwSVr^uh)K4lZ_ZcH#aHRotHvOYgvd z0AQH2e`rXWc&SUMq9Tve&CSij=K1NV55S%Ov6>)vlA2<7*Rk;jpaPDR`1tuJTN_<_ zcxE|PS644eXQ)A&!4zGFpO`p0 zPtQYH{8@AxV)DTK-!lM%h3bShI~Ph@!vXEhMd!EYNfs$D!ik2U24UP~=CPDDkP~yA zS*f^g^S{Of#!0jrL_jQQ#VkI`QD1oeV+LT+d#!6U&r6?)$5j^C1AyCGD@AA6%h_fr4y5^xpr9x=7*GrmXW*#G#`BWp^_Rj za3``IFB_-yqtD^_0}0iXU?FEI>uk)xZ3E|1eF!p#q*J<)ZjcZJq`N`7l;*o1)V1Ds?X~y!&tJ&FoO9%Lox_(25$&Y? z`AeUQid=M{Fo>VIE62hTmm%{f=fhH{x(2bH&h+DZ4R0984XmJ`J8k>wO&0_GrDhfn zaLBD+()K~0av?ZzqN&;6b6UM`-G7^{BcS5^j?Gpp#wM8U#SJy0Zt=ci*v#YH@PpV| zq5Ln($~i%R$44j^t4s=7vE-k)L8N#8Yf&|~mF^Q-_{v?Cj48sy8I@k?2LvreXK#0k zs37CXj3e0CEg)EY?or*RZK7`_J1#qH+^t+Hd25tcg>eJFavHoy59R_^OsCCIGEuq(FIt^T zEJu$hub(xqgB%-5eSDx}V%ef^{i@a6-J9I*dLv~G4cd3V{Bv8)-mmTkm^HUDyCpO< zG^@YFVp|`);gD%i6EJ9x`bjzLaG8wIY_l;OFT7N>Lm$x38xcw0^+nmi6r)`Fa&9^eX>$5n<$IB)Pk}FXToUT=~3e3pZ0v#5S2JuA#E*;Y<0!O z?^kw#zgK&Wda~)(`^i`z2Q(uiBMLUz*8?P0bbRNZ>mLp{-C(#)$+U}2!$*Q{Xg1g4 zK8tU1gtMHggk}LUC+knwnlZbUosN?+&&9Mf%3iD+q}y{e$U1dr$K2Vxu%I&}jy-+h zGWoTEpudV!(Ul$s|CO|Xt1O2wSbDWV;WYi}cIpf02YCPQZYMbvtTtRy7|PyXo|{ji zC14CBl1He;Ia~8Fy+OPP<~JCCeer$m3aRvY|L)z^@Ih zpbu-?(XiSWyaS!)0wEI|L=XAkid#SZtQ38Xy=`Y8I72*O;qG+&uGs+~ZZcQ>c4bn3H;<2sydJp~$8qw2>uyTrJoe6Yec?MV*_1LeD37h$TLkLeTF^Ooe zh-mTg#WkT%*3-t~rlS>oCPjDiG8ip+AFIE3nJ5WUz@Rtim(GtjD?y#{N<}%8L|K{a zRU8}6Cs-J_W{DTQKH_Lo{eIHO9r>BRAfq}~>bdgxb znIT{V&$RWVbxd*VT`HR9VaSQgBg8s!u5rwmgy9de+EOEbWsM{ImL{jVSE;C!Mr?2)TTPJe~ zpTp$CL;vx#&X_}Vh2Y^sP&F{h%E}&1!o#ayi~7Clotx7l28VnHH`5h2?)zx>Tk zd+fhds3?etU)O*QR%QYnl)@rKtTrJjW&>qkt@fT4bz&CX@Tw9rhlGbK7n^_eV4gWT zIT78TZxVaQR=CP}Fel)Bn@ZZ0E!kFkdoQF4YX{OVmBQyxda+e{V_kMZp^-9Tqow!_ z0Ux3sN09i&>K}Q9dTREzMc+a5CS!pxt6^YZ^Yd;I9g3{%*-zDL$*;E>AAIY5^koZ( zO;MD4iCQKzJTZGTDA90=yEhlu9ouywE`^yNk;)1$eM7$I7Lp8-Y=u%XVBj?E1w$LK zzBIVVyoBd=oSPlE4yzddTbh(X5t_dadGZuV-a+`|^7|9&gTpl`o!xH_a@t{zMF7z#_#qA71pWzp@ORYzDnqU{M;Qr~r4 zGdJA7T4j9xML|lFYm!>-u-K-9bHy}z$dR!86I>P>1KwI--BBEhh?Ha(!7=IZsIqIU zkTl=%sP>oD=wnK}Lesl`w>+-0Fz*^FWf&+mqSwVV=wlY&A867sHC!jvF`UdR7&#=YM0gfjYq2WS z^!Flm-+QEI_wGO5${USM3#!5{ett$yj{$s5h)0L5z^R~iC{kY_N~ZNaxujm*!4T0h zCBI3%RcTX^0KeD`l95Mfh3|9a$8(Ob-`=>?Y7+U}#JwHSiN^_c_t=0HO&gUs_hEnD z&(H=WBoFu=OI`3#2JvFimJ){(aD9U4J>H^#fp~aHlfGVi7{v_nvZ_pH6qlK`E3FUm zz>hn{hZ>d3K&HWrm`KO^SgXbc6p79ou6)59BCCaT*r!yU(8Yx5@$|mPogD~x)Yo(Q zn4-8yG)jN=er(InFOTf)+CStAUKw=DJG+Wts7mni@H~Xr^_%&OKbHMaDT!xSpG3|& z+D>g02mLH93FulWk!80PUp(2$kHQc}_YP{YJSu-06CV%CeAS5yg?KrS%UWY0{5&X5 z&lsB=abS}k{@#4I5PZY$O<_jl;vn*CUtC>X{oA4mF>=mw>#9yuk9Il^0B+bgwKZo}E z=Hp21P5vgC_YtOY5s%Jq*O&g38*+=yZa_|E(r2+!Y`# zV*bAqp@zmjf!enHd~3U3SH4vRTIOHwVJhq=tGEc*YO2iNk%zx7nu}$YX^UjP!m$$C zM0cZ)c}140vdT1><|tm3)JJ9P%GCA#r}rmLe1Rl|i0WOFM{7!Iryaxqj?86{-{>Pk zr1qHsQvQLorlw)PTYNw4tzpK5NxU(kBTpG8t`jE_o=qZWe#Qdcu&&k|aAo3s)!Z021{EAGkuM53nlD(@R6g9ouE5@xDogMAOMHU~o&Y=B# zK|)gtfwx^JxbzXMc<&;r!uZ`XTGIc2bqt z90fPvVOZ!EZuqgis$=5M=ZMqN(@N~B+rTdrPN=8R91Vt>C*Xu6t;hC5m!X00(;TNEq_Qq73uMU)85Fq}_c;bN&dDo(3|BtfX%#DMUIL zRiKeY809bE-2uU-YJIe6XWCyBOHx9#Ax)R`e0A z0YRXphoS$pr^l@Cktw+i)^%!p_+k8vUzErQGQ6;W*sHvH$7SLFOWju=RadkoEFuED z6F?s-7a19eh=lZjFSpjq%S&aBqpSwl5`H&B0EBMvMp-&K9ayF$Z1=Rla^S0I&QV9p z59-nx4yhiBV2(uXKkW{f&SkIII6AbBEnVA8#5~qaF9^{scFjxiO$lWbJQM85Zqa5y znNq33&L~roEECmu9B_I19tH~Dgv)5Pyt>xvhID&1QOd1(C0`S6c{_V$nd;z#?M3ZP zeyz3rPuPfucv-;!kyDJ5X*cnucz4EM&EPL9b^t_s2>H%Id&CHq4t8(f#zJgMy1Sqo z4SOrz%PhENk~8OuXg!FUV<9=@(HC0Iez3LWLn{I!iV-AWuTZ6K6>mz=Iq5wQa*KhU zcX#ru)62N4W)6}Kz6PY*S`QBXV1cI*(@O8DRgba~W4<+N2Y|aAjADqAD(E+gs^Yh%C-vpypD6#rgcHt=roZNhde;i$4cGm*nE4|O zz&^>}0XP^TPN07i!$Dje+rBxM@VNqzu#xzX1mVXu88@c1B*CM~3}a@qZFH`;Eo-15)i!6)#5|>1Ph}!EbuWA)oMfeh_D~yr>C4ie<(2!QA{t00vDNI*n zH{tH?;`SCzEj3e=V*BMH#6Z@q?)#sUnR0Q5W&=9rttk>b=fsg3h2QG7cUxcns-y!s zM^4$)tH1VDM2FJ|qZ+F-YBdo(rJp!*@TW&W##eb9MlgaxK%5#<*io&@jAxw+2ba(_f5SVJ!2g$O7_Hf= zjHrI%^yryKGqd~OqTvp2pjxk3NQL&$K~jnff)PeC!ZR{TbLnay?C_@_tSkeN0r-sT zrlrlVC#2Le)ge#n5_fStcZP83!F-rxxT0t{#NSfeHtH^9R6|0Bgt80t zysf4^9uE)v&qL!FBfa$JsMWx1U@9gNPHfO(l{tTR6@!!9jI-6Hk zI9(>qQ{5LgNRE%E1e>Ou+}x+s)RI8vh>3+285c(ZFbfcE?rBDW)T`dl(+FVXznu^4 z^@E8383q3W_QF2|-N0z5>OnU)N)@(Gji}m+;LW2CAC*)bPkva7dzr3zeT;1G{;3eb z=H4#inal0Gy1F!ufCC?58|P;SY%m}Ta2?X_tgbc&OcYowhr`ze)ybZ+O>{k%sON`- zpvdr4a(tTW?t7|@blhPnS}_J~Ok8=Z;W3@V_`SgOwF0l9ox;-Iqg>^sRiI-e=$ZQ@ z-6lc~1J)@KLm?rv7zda;Z5uM{ar|?x?0q5c&@@#(lg&^3)o&C1GjreH6}OdacDMOM zgcKMZ6RXdQ&kuASFwXDR-@R#ZH%-RR;ZqO>t_eSF$QiQ17!din@c305Qbyyisg`LD z0#_i)huzo^EY`yz_E)dc=i!-i;0m!(pNYC z2!$4T>D1Bbrl_D1UNNg(uhJDcw;ixuGwu7cC7iCBcG@3m+1#ZEYip*=%uLbJWZJkA zegyWAh}8mB?+5WAvi)~F8-NB#mV1wg@BzDp%{fOpZ0keTlA;l z$B!T1djgf3Il)OK^evd6n4aZh?tH*-)b4$yc?B~#F(c6p%l}myy8(GE`~w1j-Cr2I z7Eeh@A7ElW1+Rtug5U&#k&%&&DC4l2rp~)AEKyZy6^d~Kx`2Gf%fF!tXTYzjf~f6M=?0QLohD2ySWQ9Ga8_m|I0xd9t__QdaTrosaP2zuWooQ$#200sjw{- zse8W)_UAmAo1JB1_>9LSPiaj@T`CTA{<98MwH>g^?>p4L_ucQ2W7Bz*0fw&o=7X($ zBtI5=t!}%!PX^O?BYt<|P1W{V>2?WQ{cUYR#2WQKp3N*?!p~$tDxmGYr1hJkj)83Uc!`FvBB)?1+NfMIyl={6N*qq!gJJy3N zLm_!p6s%j;o+71cSeg8I>p$|Q$TtN2S&4d3t-Qn0=ozWgnY6*wsD}!LdYC*MjzVP! z0W?-J5PDM=Pr?g*Bd1L6FF#l=MR?Dk@;tu@+Yxc5cz_X-U&|{)p;5p9g5?qnU9fdb z(BZJJm_6sD%(V*p>b{2GWt=;oeicKZTYTJsxAF5#oaX``Ep)VXl$6L?5-k2|Z0A@q z(zv}>#znechnSwk+y-0Sip$#gb3$L$P-3)XztYB6)7D1sDHyeVC6zfZRc@lwe5Esz zbcLKftP=D_g$`_IBLEL;Lul92(daIiR;<^0m&Ij-E&Y0$g*7!Q|M@h54L^4+I+6d+ z9C#pO(OYw@Z2%z0l-+W0l;tx#m@~Uxj#zzG)77GQCZ=Pt^S*@0<8GfZGCCUh{{3T@ zIVC-K>oZ`Nr@RglpUbV90aOCG-rjD?E*TwG=Frek5fhV-oFh##tgtvcUf&G5)UHk~ z2|ue++`hKjGvQ+Nj@#ha!KJsjvo?sMGVMv^Xrd$JEZnX>%Hbu84Krs@_2v3raGy)8 zJ3TNiNj>tXC=3A67a6;;JgaIEC^{`DELda*Ib$-zBBn3fwzQ2 zUlpsoRbt^<*dlckEBt5|XubRj64Gfyb)NVj zuh$5CUZb2axM|0u+Ge(UP-)FS&Zy((48EbT>STNq+gL(U?kJmD07fCgT_eBimsv9L zIz|QdI;30n;(Za~IC-XnYLDEfHo0o&92hoaHd zXj%|O$@X)F7Fe1t*f13u)FycomT_-#!txm0obz3 zKky+T`S7$9x~%idmlwnuuCA_tXmLWA%AILZhz)6Pa{BHQ{KUiRa^@sxnV4bWabzR- zW%dn?>lyh6+NJF$T8#+A>RT+$Igs=pdp^hmrus%sAyNWA%k_Y8n=oH`$FpXSR|?3&!C)&FCNpuR!jfzVEw9U zM$OW8X<#W6&V1fVhOGB4K+oA10v8W5&%n*BZIgZXAaY;f`+607vX>vKBHuDN%AmJP zpbU16J-BA}cy0xZ6|gP5ykeHyhH|n<^S6pxn2|M4zO6)`kxJE~QE}>9H$LZaUO7}; zvz?OhJzqg+&&xYB*(%A(6Ais9fL*uPAuBDJY`WAU5!yS0!G^ZNtbSglw}1*%b>?j9 zK9w$*Hxy@OWY}6#4;ke=S z`#znEM6~<^cd_B&)uIERFVgrNHR22?wA zi$x?GHfM7{PW_iC{GTus-Q7F_Se)hZz6c-WN8;h zfj)wHoB>k+TAKue?igA-_+HIN9|S)iWN~llhI{wY)g?uRlup=kBP?*yx)anfaF5UN zX4Ml4floG{iPNpZ#w&l(p4=fH8UZ&<;n{E+(7|8nL|K1IF0Rpsl!jRKZn_x@vufW2 z9?-jlRY$jIt3V^bxyE|v!5(Z&oza;pWg=?TWMY>jzstZ z8bu)Q5!S8t!%VQ@4nlus8Mry%3_)vwCb_>P^%=@r6i~bml9W%ZK6bENNf!23$XQ{nA0b2g}>hC`gue4j1DLJ~V|orQuyURNf*Uy__0F6!ROliEVl@9*8h z`YV5hox2|=b&GSh&i^svu(KkN#JWp5lhh`Pf_cINakdsMp#}ZZPe$Fn4KG(po$@v{ z%A9KbjQSe%JJQr@1@lej*rea%m7!hs-!G#jfOr&%WL(Qv?H4I#rnlF_3A(3zE02Cd zy);6%3a8umbTLHL%aiOL4C@c=%LwRzFR)kQp)fT${*50B;#q<&kWwschWG{w9YkpTY=s6b z7h_uZpR%p9<~D~-?f9c-%rohPDE7Y=A9GY?Uonoy$CF>oe&!Cii(AjJ4hA!2V1@8~ zke8vwq5L!;6dv>eC+MI?IO|iTc^>IIrF9Wmg26@BA2SrtamWAO=NEK7n6a*^^)1aS zoXzD$;v!$8n0Z{KO8Y)|1CLh3zMB_?wfWJbN1(n__#b{JUIS{i+){wD2Zxp+F3USo z;0Q?A#Z7wzY6gI!RX#p>fn4Uod9d)Lb#&yl!ESN5FEWQG3MZ{=$s>aliF8vjXp6wf z1j`Rq#%rof>AWZ+7q+Qzpn3^=D+ekxnf^y6&un<1sK%Z89{!{&TS8hhdyY*{f+Jmp zCIm-0cyCb6D0{F{(2!m(mRgR-7zNhCzl==1+SL2_S6j~md1G=tG_#AuoqoD4cHP&# z))K6qB++ojpFF7o5}Ue*ocXP4dD!XbbUWM(>aA;UqSy;w@S-^506A*rBI`c05eO}l zQ(X{N#UBjHAgCIk92#l4g}=u`Oxr(=pod^XeBV4I!48k0q@zP!0>o)R`}ng#@U3m# zr2ma=HL~e+_@?osPi#coHqsv$?V|%9!JyO(RvvT>8sOD_SC!GZ4!m065s+*xS1gum ze*TX=Hv92ZoBF`7J+^=VgpdXJ>;Hr)nGFHIe<$QucDjSKRw`MRR|zJeHG(y#EHQM1 z#c0vfsUQu;;Y}xql@zxU4Hp;p?Bb$*c=#oRCSYe5-7`Kv|AXWe7>2?(^J(2@PCrkx zVC0|#()%a1)I-7}!-}>VRzPL5aya=-oEDo3w^J*PEJVBix1ry`!QtqCE06vs35A7< zn*x75NZ6j?&5u_IqW8R4L<5<}A3f@m952iaViCEJ#1b7g5x0L&GvpIqBhpwa*5J~S z`T?_Op=%7`uKu|JgOUWHp*L~dI_LNRs`P1t(c}lS3gN>G^yqm{WqTk*A4BjYin}#4 zLL`&AJ$10d++Ak_<@1xi;qP>8{cgL*B5;~}F_1X3dk4?D^G#-0Sav6`J-X*NfJuZU z!g#NHKD){l4SH`DcD4*Yp$;?QnA!RkJ$(Uh?HauRqF-X3$^Qc*H3i8&{^-co*?jxE z=qWaVvymNq^Q2x9We#zv1veF?WEDId4(gNO7W9q1l%JyO>f zDznqm?-?2v4-L0gjZIAS|6@T4zrZnxKDUj7n~Z^3S@ZEX?d@)DQY0cNCnq5+?6a8y z$LA(0VmRsFI%X9V(f7IEJNOn>xCDNO`{td(Z>`b0t?=LG_%+II7l>D}r=~!P`r4RQ zXOA__?R2BXPPD(m$aCIkR`dxQ`#xjqi+!seE7zm0wi;@NQgN|r2d^%ndQ>fau_#G; zNVu5Rpi|raEd=V)P&yI6vq$p2yhz+)_!pj=S?MMGI36gHS*UoZwYCIQrcXZGfWVtd z4;%|&vJVxV8(uWaF@`{te+_GF_sa`h6m z&(L@ciljdo*uFPr!y#M@HY0@*8{%~Y6o_KY6!qK4hND3Ht4}kZh*nxA0`za{U~Jxs zdNw|rP&4A+GJeo3$<5#b`F#y`|7*x!O?qnTKR>ei^o%BF&fgEhjsEXBn^O>Aa{SFw zs$n+BW}HtT2?ooD&IgMl%-09=UtX5gKK;t+tfn(;`aLP=#yXP>vG{)F3f25f6tzpM zfDvlf+m|q+a`+@x9J3tm`I}I3x1SK!#^|Nh#6Z}|CQ{QY-uSf+&^`919)I?mzj>%4 z_RFj8$86nug7uer=I%izXz}IHy-}%*wq*Fr)mSu|HHOR>23;UJ()4OyDlK<{+M-*n zR>`^^({d1fb7`3>LT#h4la5Y3{;3PH1Om_1`6TK|WraTEBX4XV$C_c0ZJ(bDVijUl_@V_jfW!mgVyg76&14-OD;0@Ys#e-pms; zkpFOPbTp?6NES3G*m-%eQ5Xq_%h)n=Yv%QD;Mn@Qth>xS^{-3l2pMU5%G)af(%b7q zTvl?nJ63C`IVcf$J$j!HD@qx?k#0%7D@XVs;4-U+@UB|cLCBJ$1dQ=pCicZ$WRYmhK1F~7 zWz5~?p+@pWB7Z#F)xH*1tlGu*9ehXjd>{}H+{*C3;A|F&x33g`!;Z&-NmDvz?GQq6 z4ld^#11yl^%;$B0(rmYv{sFy347~o@SQZ-J)st)O_~u5qta!`T8JoaP8w+sAo{E+h zNUCwwErkEK0HaYG6{NL;QbwEXTC~b-%g!kBHJA*pF&_;zPvx~V z0&f9AJI#XUX$0#(i5jnJ_5EMHgVtlMadviw@W4z>Y5qBn8h-_NU_4-8uxHl8Beg6( zl9gsJ!LMV&(w!jtZH!=?f)I=Tm;vJ$w>Xyq1weQ z;;`@bOB8=57n*r$$zz2G@$l{?^DFU>6H1fQySj36C>7iZDn_v&q(pFoAuKzNU!TYV)N}=lAQ2) zTUuf!9It&F6R)!~69w$)1BoOFTC%IADqj?(>LVF{2iuqbkSBa~LT7USO|bZ1r}Qb; z%^8(o^7lul9knCl2pUONnVn0dd~Q;1t@wXTZXD)d(~UxZQ5^9#V7XzW7M}+bN=iDj zc}Pykve%MU-bXl!HH)mw;#>b%Af*;sqt(doNe9>w_az>lj@&}@je~Mn@){FWAIRal zjWfGXK$}FFc88nc0zK3(+{~|)`1ab^)erV@?mrCpUpzvLb5}1c1koPR7jV}0$-qgK zaAS#Qgo>FkgMN58-jNA6Kui!sTvCjp5Kc6S(!%h8#wx>UBbVyRuA6Bx7+W2j8qq(T zXjr>T8wuKw7a*|y4QAXhz8;X2MsmIM4)~%v*?0?!EKLyK%59U2*^<2$LcBVQY$2vW z^(NqKNrxp++OxTwy9<}+9UHR#-IfZwLZ4~I5_?%}f(n;;Vyd@re0Ab2^GIaL-xUiW zJ#1y4z#fc}W@fd`Lm?7Ua%-vnbA`CCXH=|uNB2p2ZaVqs+_`?4_a#F`Ni(rdQjz)@ z*$tv;Ck`AkA}Y&N-&d8P0es&>p>B&e{kQQ9rP@q)44=gF5X_>t-*fia{z>uqqcotC zN@bZ-R#N&5;Wka8!ePS?^tcQwhw3c7J6H21++s;@=7-?JZ$omI0!!}tus>x>wQ#k) z!PU0HVl~xbj{IUjfj0-mJ&BqS#;?{}$6gu}3nB^sBgjbqM^}R{u(odwK|CL5RPF{D z3!zg1tuKvBYcUo=Xq*S(&hEj@mldW@rBRwOM|86{Hqa_J?<15)w!2O}pOX4UO+Vv< zR4*Hr|4Db?-TgpbwEJ%p8;u2E+T z*m_!K?2hyh>C`BIp=MV^T#nKcVnFjMQSDthUM2(l!(ZlH3dnGhtfmExkgamy^Dx|} zL)yjf697{Qvv-D_a7_#>qi#?JVN-EgzI-LfAWTUu=g;cp9}~?I^5Ok(2rx&z$ol^9 zHjyo$4?Bod+;c;D5m1Xlh#|==DWrS(LT!LWQH=9W_KsNfj2s}wrxS4?-vhdx5Znk4 zBA$yk_`D{kGGsH)TE3Z+5%GLi}ZS$>TqsrG;g@pN@sG$@y6+_i_xNces(k+V_|-8kW)E#2dc?q_8!nc zDp}5qBzqFJSK_Ep?C3ZneIPoo^CjNI2|X%3*_pxud^F%BgdsQNaXunzY-|Mdw5Jiz z_zvBDcjb@75fBj0uM97;R>N8IHb?W`@ebx1^G|$WHt7EBEKWCFgX}Q!&;VEqpWjBl zyn(wdH6k@Ce$oS-LG$3(!6>_MiH4*>#|^;+L7JH-+J!a2E9(hvO-Ca%DDB+Pa&klC zaM(d+i~z0o-FA4hd9&Ng3f(-=(%jwMoeNk3S)XK;?;-;{*xOGEL_U^gs6uf1q1oZ; z;y*b&NqMqM5fHHLMSl|7@7c-=d9uDrFNb&q55TYfwFx*0&3neil$-gD;jmFRg_z+y zzceMG(IgE2*XoKu>2b>To_C*%C}Ufn)8UJEI>F?_mGo~Wm44LW^||9|cjsenKdo?p z=9zy$gw>`BHGF%Ys2h*RHT&J;tEk+RuA5rE^GrjH=)lu1>;g>;Qwh1ar6FHR(RYwy ziyo5`wz90yCbPR};X#9?%8FlvmV6#EU8g6+p=i~$jI`Y9*EL!1#<%Wi>~Sr$-gerW z@T4Gzs;HlO;2wViPJW@vMe4Qp=b0E&jEQCp&7Z-x9{|vxg5-9vZ7F)1TvFgndiy-U zqLG^e8Y5Kz^}15O4{Zxcr-TN^ike;`XCGu% zp$HJ$LF;)a2I<+R17ZWhNgWK&k`KxYH$}buf0+d=J{YiEw8ysY$sC5W#oq&HAbkcQsoF1XUJtJvQd&Xwa-IC@pgVp?l13L zfA!op*~i=-1)5b!G<3znl00#)ZfEUFXWNI5CTo}V-8_zsof>Fnocan(ZH_NzBDG%M z?5l%0c8n6RkL z?W|wp;5ug(#<0H9}b{Ab91e4 zRg~GAnQ2?KP~$FU)D-pbzlxIjaO*}0FK`3Xo;K~JEU+W=B87S4*wbS=bm0f<+{ocq zT*=SehMIMPg?K;KKUkiaHAI6c{Q2yczGYJa7eF(J?qO$?b2WQl#xre@`VWU;twV!V zLfPa1&ZS2}tx7do%gd)dC53itYQ`UnWOkx%SZFEomI#uuDp9bwK7Dn@mgX>`PLoz$ zedjG_1jR+YjK-t;!&OkwZS40 zaxNi#g@=1_r~~ef1kIDqsI;EXdnh$9`u9zOr#v1eQcBs3Ue2s3qvEzSKGN%FU+icZ zxW&I4ky&c-l-=jVC_g<7?{hgxZa}0hhbH8&X(Tn@E19!8R9Q(}H_WP)bFgtzUKIbw?xX7_4 z=Uwru14GE#2x*-5KtRNmKNJFg`vIw$m%BiSZ~L&*VxT85I5ho*z9xio2xF zfY(Ed6MKK|8G5hWV5bN!D(-%&y97PC9&0BSUDs4j=|^@fCnrzoOY;2JAibzv0wyC+ z`ip|SmrSS1x56kLVRu}J@?LsdBM>@$7ofw^ z4~0hDcj04lFRz%>J2rhhQMTLG$u;Vo-28y(O~ex@tcmOzG^xkp!3p{7)mbZ3QI2XXoyEH5oV0h^*9Uo}+MT4rBF@Z&V%Pu4Mv1*Y4qwd^Or zvw>wqw{OCCHDH)Ib~;Rt6Ar;uF0HRqfYc!W4;MNXWTZoGWe@1VLpr$vQuEJ|mM%}W zNZ(abLvG#W)r*8`m%&%2eh5;Y>GZZJWIF79rB*3OnlDH(U|g~L#G^};F0m56w)Sa$ ztNH6&#uvWGWT(=LYx26gFM#1Zn@oZ=f&AY#0KdKCtLe~n>?3Y`MelIJI&QVNk)=x! zBULp-QI$%lfnM#?b>oxCAD$Zq=gLoxnCZQn>L*r{{&fuycpvN*i0&LE>DWrTHKTQV zBUDDhS5kDrI9wQ+@w$d?MFkYb4EiON9XkPn5MPs3mzuJ2P;kS<pQG6wR}}d zf}bEbd$YnG#z(=ANZrMTHqW{A!jBj=nfh>b7C0oez2Dc{Q>1?4#fw1y@rkBU03418 zE;ZfB-E7P30`F#dNw%Ve|0bf-Rv4PwTY>|}qD|xUqsVJvuMQ1w0P#uhOKE|*CKUrz z!USUW+>Iyn4WbO*Tm~_WK+1Q2pVdmETap(iIfRrl{2bp{83yh#6g3m3fkfBbt7yo z1b0N1R0jHvMC4}n&0xsJ0dmgjZWIVeER8Y)?BJZA7Pu#JN0^?RQv3kd=m=%KoX)A+ zUX06R7`gfUB3uO;>D?RXQ1p9_*TbA&Tj~Cs?PG2l{ugL*Tr_mWc-G;aWbaxASc?+d zJQSo~5uUH??ZskI*5*I_=|T98nU-Deq(TSK^*on;Hk~hPjpG0h_c1%;|Elu+ZQkYK zsmMXvn^DZ3n$*s*+PH@rCSGmF_>I%$ojNz;+GS1O&njdwr+Gl&?6dJ%ecve zb4!k*SD)*cGmDCJ8cF!d1`g9eOehe?IU(c(UOhaJ?adSxLa`S^Yp307#DprU!#UHX zkatjUUg$+jkkcUY5MK^sJh-eQfvQ|Ua1*E52cn7XDyrVB!sw{P%Y$HroiEgpGvj@9 zoW9XtV#;=cnxzJWP2+wjY&ddkw{ZJ`s)Q#Q)UoFKl~aPVp58uuf*JNKZ*@uKMO>e5 zd#6GH%pkPLkZN-rh*a^yu}>L@EsDBMd}C*x@Xx#8E%kHgUL4y50bJM5(kcI|(Tn}O zTLvzIpT&}$kohXmo=CiWRqd2#L3NnJ6)Yhei~~yQaW*iKm{M8p5d`3OgZ2)DPdw-c z1oY_l{y{CaGm+Ie{G;L+t{`(Pa{hZ%C}YLiEF^@lF=THmW(?5Px6&5;We4XGS!x$r z>RFQfaAbRzbT3a%%9lM|4_a|0&uknSY6v;K<30Gi%;wKfro`5kY1K<>1J94g^72BB z%g1d2et1YjK%j4_&HTx~>?6QQ#Y!;U9H@z~#70Bgb5B~8I{4$A+v@$N0Ppf+BLD2{ zEW}x`@s3U-qZRMPH*>@92h9i8FFn}7Ugqgs`>5MdO=2-Ll7y_Dh+YlsOfHOf`zx~t-^*ch%7Iyjj|5Y$8b=x z4S+_-GCd7i&wl>jF;9{|hX*Kr$3C;BxouGq-xPb(FPc!Z4cMC;;;%BSr;b}=OQDyJ zJ8?mX*_LHMJH@46OwL}(9Q)Sa@+g{8fob_#qepL~jDH!?dV&&ZGTv4Fq)3(gMW)rQ zF{QqvVK8ay>XN(7&2t^pO^bm`kzP{izG7OQb8vYvOuGh(MQ1jwP-h_ooFpyCX>;c- zyXt#so2*HUa}UAQ5KhNbg*oCw)h_Y_GxxeqW)@wDoah$E8Sxv~4;gdH#*(F`5Yfn8Ei^e3cAuzL$d{^sVLcPC*yHxODJYT! z2g{B=A1ospn-x%YFGA68aEM7?QeJJS@*ap`-ZXh|tT$u5^UE69NG!W57DE$vGo84J=Ynh#^{6S@&m&oIk`)#WL8m20w9U+&Z|vB0VvVQ_s*FQvC_`b zNaL>jnEO523P^rDkG^nuok9~I{Xj)28J4iKXZ(1=f9Xv)Y~%*o?hF-1XH@Aeu#h85 z7rytLc3T#_XyEz-GbTxXv_q*H{5Xc!w$y(NdUtJkcpXc55Y@yTQ(EKq`Jd928zP>D zf51E-BERr`fdI&j+nnG6tFldL7b%Xg$^{so z+)x<$Uz+Z}4h8A|E&clsUj5%^M0fRssb5xvoktQ30qozO=%#?n|I0-7wV~>o_^9hl9NQ8Fz0z% z`{E<5fN@4e!k=Y#Mllg?*fUwbmSN{HA3Zwtr(~@tsU`SpeB0aQ9C>Tbbkm`~@4$_X zUV6UK-)oq$-qp}JT<*T6vgk^1!2UCl&N1IL#jqz<)Q+EKj~m&g`;Wsz4XnBJTUhCv z37f{7Y={t`u_~dp4)4K`=vvF|G)h<^X>$;W8)n}tn7frx0!(265D{P5^^;x5Irc+6 z@A=J*oF+d3wn9XnXL2Fhig|tXMo1V3wjJ)Hfg!|zPJFrAGSjQDHj!f#|2Y_cOz6I% z?}gK1=KYmEglbxIc_N>vm)d8-A2b=B*-tS#{n%JP7Qu6?*+rD1p?aB>?pmzg;ZbdJHEw;}?2lnt&8v|&b+)o2FBuG`v4Ps#gr`}WmG#pP=$lAH)D|_u z_a~8-?cZo|As;l$x9IJC#n|3c+Jaf+su$j=XUU2*FHVfBeVwIF;piX0BzZ!+4t=u& zK)e?orgFiAr5@Leq9v0-i6bu#$xF>6rKRz|(!f^hdGHpY-|kQ8Sv^V&=tC#RW&?l-5gb*E{HCe*l$pf0NnC`5CB)(V%40mn3YoDTnT4<7 z-}|GPypUE^csk6%o`~`Ettyz}mXTJLC8miu)C`l|D2^4-O0iyE1zd;QPEAe|jGS)X zur+}Fo!ibAzVOqA3hOTfp1tnl)z-Qh4gHc(&6ku1gZ7}6Yn{J^nwgKexy%Ch{5-Pm zA%q)7bKh}P^m>Yu=Mo{D=l@9VXaZ9s8o$q^XnES&)%-eta!rA_0{>H7K+doWO4%X3 z0PTD7fNL(GJ5L)w+o!9cHRke+(Gl@SP>fR%#`~%gMBU-OmiNQ-GACJ|XH04tE;`_` zO)uQpc?PwU#k`uELywcWn-g-o=s{+4vo_=mj!J`Qwf@Q_@K7>w2&uJfJ5|cTO^_3s zx73{bQ!hU4?K;Wa>{Dig8B}UC25{?I()AgUa(|^obHF{e{aTFU8veP$4Ni~s)B89j~w2#coPQOZO{#4-==R0HxV7QUg z4i=gau=`aA2|LytN`eDvB$<2ok`F2Q5W||pfMN&GMn1-+#eK{b&*ZXl8#P5!zj2?U zk|Ek7bwO6wJvf?0JbR91p#I=6>D$fa$I!Ctg$)A;k6i)VxXh1+-#9ju^^^P2eNnXU za`cfB_-|EQK+sks=2^n7&D5AizqNmAI;55yqFnhKO)>&Bhcede;E+lAL z9&$8@6<)h1e+Y*o*=t?DhOjiz?_(;+7EZCn${cCPT9qB=o0L?L>)RdWHCP}6Ow})&_CCyxHww- z3MCA-S2j4LP$i9zb}4JL)Iuq)PcD=IS>*u#OnS9PSY&}Rlp{G;G%-?DQ zjoH|;<$9<{udV{z)##h@p^-CkcB(wDd##FHkD8e0uD(a4-40^YA15W}6I-pj!>B`v zAj#u;9&_AWpIUMq=3lsd!%7K>^YPPy;E1AY8`PfNHd!2T2_czKw~9E6Q#l5tCdFJS zXDGi8ptp&W&%vQT`C0Sh*ryr;{E^W;R$|lOpy{9SO&< za8Fl8_Q>i=hD;E*hog<`)a%(6+jRvXtJ^x>oR&nX2gO22WYs{4rI&kRR1@oR+BxJ& z8_TS|d^^6cf~lRf>dll+Wq zg|fi&pExumJtUE7nWHNHOVS=ug|wUAsXiL&3{AIw{L$UyBV-e;wRyDAt^{`Wyw{`J z&Q?FClr*(1YA}1jjg2)0pD*P~b3T}v>^+*~IKC4(EonJxTd#fX_g;E+K7^B@gX35C zrI;X1J3|@o2DKaFq|EfE7I0aM@@BW!Cywc@ z_pi-I(!}Z*wN=Rp-#+V=F!(GdveA)}M)tW)82NzrC^m}6m!@lTiE?ZIHFfaLVJ32+ zN+D23rMZUtd@EY9R-<@e@y0(d)dd;C7u6w}CmFhzHVEy|j9~5#4z-hTVq$d8L%rU8 zsPnp;d`L=__;}b=;}CTHEgskSrXDQU^7N+o8U?%kClb})Ox!*)R0C?K`KjmxjHjn3 z*rzEbiLkYpM^%3SdgH6BtHssV$(@b4H{4FpGta85a6a-*!)#z+HB|=2b(7H2^`sK6 zgl|7KsW=~*MMRZ0=!f9O~W;Yx&E2 z0V)D?Aa|4IEcjB~){*xqURfkkGFx2|3BW|F*>jB3j=K2*mfG*Xl&a~8rxQb z290etwi>Ik8mF;sTXWO?{xfUVtTi9z!@M8btarWV-ow4m*=Ik`qxl>@wXLVCDjG?D zmKGpf0?!|S$c2pn{{k%sNdsI?uDbrXz zC2^9%x{8M7Zn)+9%)ka^mCwJmbuWWQ#|r7TfA{#<5f;ik<#rtn@JrU+K5@b8O0#7m5P>Ul4}D~ zQYT#mFT4~M-u$z7@LG4qnU;KWVe_-oV(6x9j~@y&MyCp-`(o?z^E4i3UeN~Ez^)Vc zJ_=P@wB;FGIZY)R7VM`8-tFC7_n6ko9Mocd1@K_+Jm7^@zoB64ub#L?s%oypAAoar zf7t4R_zt86vlwvJl|Q=?h<8Y{ju{aKJ6~-3*j&+YWlzkv=&7OSvp(GeK_Nx6^EKp` zEGnd7-)#T5-|&L{>y^V4xTvI-7!5;`zKOSAJgbGqdF-XVe}lBOkGGg`2b40aN80`9 zSzeJ~N3{8j`DR6W|7Pnpp2uZ@Sp51=H}R2QU_z)2o|dJ%2ZyBc0;6?-t>IvLDX4#t zy3DDlDL&iW5MDOLhR|b?w+D~dqzx+93V{tzPcCn-sNHTSt;Z!d04z6!d;V0O%&+U1 z!9@eIo$6?C8Vs@mAx}4G;%Rw2Fszd7qDFC&VW6rG`j`}6Dy2!krb%7A6&Nf)Gs1B! z;;IU&oauX)nK~xd{C#it8-LcT_Mt&=j(Pog_Gmo{gZ-U#RVbHL5~mKXQ2G@J1qsTl zn~Y3Ep4rTeMmoMHKRWv~Ex+#VNv5gl?^~G{Or)JG(g1qwgkjPHtbnNBFgW#t1%eIo zk6E4FiSdT!6S~H14sdy$)fVQCO4U{jjbp;1v$H-3^um+sjbvJ9~jmq zt{2s{R0GBT6tFkD7V9D%huqmlq3|BLq&(x|Pj95lWV1-wOy&9jva%ojJdSG*q- zX-8+7^9q$UWlQPG0pa>;8 zdn(BU?U&d)h0($953xhoO1$aW-oNNiZ=Zepm00x>HbZNY%FTOF7?*bvd8xMixFPrK zlc6?lzT6OQn3J83Sp_Q|6OHoBN%hjg$E&klwD6|D%X@p{9NV#qz~cB7FxO;|qA!1t@%fuyg*0;F$B4CLu~9tsJdTs? zqF2R0FGCw4HQ|6sCvVR|R9&k8ulm{V)S)S;G`dD46%rkf8~Py^Gk5*Z=yC|I_v7UX z%?T$NjhlUwh32NBWei$YuEs=J*{I~6i{|L##~h8oiPUZti|Wl=liBBn&=l1cA?Y>70%BfX;Hukhgtu{i&dvY=+uf*18 zNT+c&a^SL3wjQTv`4HoqW5)#Bb_tDeg0R|VR{)UNm;3E=Z`l0;ZGnn0>TkUo^gUiU zoi1(zVBeXkduBTpldP7UFlR8OV3JDDyK*RJ?(!=)faS92E>2o}V~k307&mT2e}#lR zUUr4whLS)rF^JXWNu2v)Nsp{kDTmc?waLB|Pa)^{5Rw~1pC~!0K8U$$ddggxb+Twk z^YsA6V?;Q8f_8NDgz|+eTAvxki3DoBtk;N>QdY+TlxKJimF6{>oIjI2M-u6UeIOqi zfj72r7Dvk;6KrwUG3?`U%sT}U#1EXk@ti~w_4e1~eUP(dw6IjQB-&Xa!RVl#qHReZ zfP;3bxAP$02?nlDGTsO#KVxee)vAFo2^GmwRzo-QIGuDbooNaR2omgcAyr7_p0Ge} z1$u7%fY@UvrC>8&E}{bsB9COfVCPBYNTKn8Cp#ytk2KrrQC`nQZhPpQSMjzr9D%fW zwM|@QdkBHy=jGIVUDZa(Rt#-EOUb^^=AXhG*Tbc@6J8{Hd9sihfVvU%Q&sx2cDucC z8?CMRy8NuaMs4V?cYjN`7napP=(e}n!4{S`H#3eX8#}VDb=kEi`FpoMSBJ63$7?;X zA_NzpKE0n7$qGm;^IHg+Q+dFf5i0N-Fl&qsDM~$LO;8ukte+mAhS0MeyEN;v^SZLv zdemXe$=(?e0^80O|6HUTl__*wxwWY~n2oPeQFJat26=Na!NURY02$!oX_)7_awE&{ zffg};xa$zmpAFee~9EAsI0te@KIo_;XJe@A>3_;l<# zLh(MFtlg8YHj$>GZ1XZZfkWQiRNsqSrY__*87_aAw4$!c2L%Z7l(QJ6{i3V=R|gqN ztOsM{hv-Y<#GLk_uTKcitS^n@r9AZLQ4}mI_=xNA^wRi8o|d%3$-Vq|SFf`Q8X7P{ zqW1tX9HUTfd!e*}1<9-C!p8cf*G$%q;Ai-H%$FXBMQwY62Ws>ql!PH>Szo=_*ApNI zX6LJ{v_e>0pZ?nlCGvK>I`~$Dq_9ZU1+WW^d@$NLJ^uRRo5|%ZsFa@6l7+dptdn{4 z3shrNJcX%cf|q|50&WEEGVal7m~E4tMz$-=NGAvRR{q_-RlW5%XV}pi6J(XlAO4}1DYmmj(gka7{?|{_ z?0MY$asmP0mI-WjrhBj<%o4&pQKxi_hO0Z=)gG}ql4D#aThQtX_$3#WG1<7A3suSI z+HxHtYe*P{$~?_m!Bxp7H;)ZMdMQlVp%qeFE^qi_Jx52S@HW03bu(F6`%SXsRVdeg z`~F&cU03x=^JcV&w9M1M@OXUy1{G3>?)%?_AzqQ|#W@IEnUq0k2Z#fW!y$zk!1HXO zqO3ub=0FQ}>nwVjDUguJeIlJ}=qD&ywg_RCZG59w7aDAq*twb*opxn_yI?YUdby6F z9TB#M*u=zd_xJ7(%LPH|GW;P3_}!Jdt@eHB>h_n4xDSVARg8|?5)lL|&m!@fRi&jc zYrao(fVv%%wZ?S&SbfMnsKsTKE`t2%*HK2dx(YGqonp@*jNu9cn+2J)kJH9(eyi9X z-+D}@NMn);aTN%Hp5~6@k~wfE&R&497bR^)zizfA|3d*qd_sL(?LtvmoN=ix{flPR zZ(JHrF*NJvhrMhj-)DDkr)m@i>v@J%3(KA!1Zq35^OyV1b&^~b*)Iuu z?70bX7^S8R39Ru+_CPLXxARWm;^s&I^5UAZUV(vap4hLT@v{sA*K{P=V$4d}*zB%! zBP#J;K$3C$G8%GP{NAAH$RdNbtWO;(Lfh&roewQq&)By>CYP0puyy(Q7Td)atial| zo%Mm0Z?aI8^lEKs_1t-Rra92d=!ADNZw?D0jPj$JikRP8VVzOhHjb1_ns9*y6{VRb z@8hj~VqF`#fO8HUTkJ!T0pvR0jB49zo`9054Md9S>pie z`7Wan8l$8NfjTB|3gR&w_v`%}9U%AvfF~PYiF6+tL5+4p0|Wdx?SC)5r}DffCB$W< zR@K-&G>`Y@`iPA1NUM^YzqR}{UwHmK8Ms67rcxt}uR@eyd@;Q=uob^F-d9T_eE#@c zGnM}ZCof-eVibvglyI%ynS%F1&+m-1JPS3L;WW+Q_Ta6ewCG`1XHkX>1SYh2k{ZD! z(r;MRuw)9#MjZ=(eb)F?NE-tqjg%#S9Y*ye=jEu;yGdBDR*o{paIBPYYP;xp7eJ7L zeoAtT1|XgO6tvqTL<2Ct?KD&Q4UtZ>`BbjI%09uIyGngyDkjQ|Li<>Yrb5Ju&D!`9 z)UTPz8cY6om;;(CxjnP7dqt_xhoptCtgOwTp6Pya2X-%)mg1Y8_NhuhF#tw@!41>f zqdOuyWoF`~#_7K^4lPpJ@K)b>O)BQX!1F)Dy1xmn zkEDO)CD)I?#zyiga-KyAGZ>bmoW<=(sq#M2XOPU6V4ytH6oSV5DWmuCJ`}bi^SUDQ zg}{CsV|@{^Kz{d4QazosYwj}Sud>l16d4`sI0C>b5g(tMnpd=)V3xzxdB&uVsZXQr zqb-ZQ8>mfz&~GxeEy?SlO(vUfegkUKQ*;OqFowZqXhoI!`)%a z*F%#lu_8an8Ay5`))wE)AL2R*?0mebaHJBrO3VH#*;xIX*?5Ixpe*%{u-QE5K`CM? zn_oUrXB-8F2;dCJC)N;tE9gy2y3{RJycBW*vaK$vehy)^Uz_nGYi$m+zU~IKZHav`YkAS>fjUD*S3jmNmO2ZEjc$jR?YRWR z_e`9M`nq95J_$ZvQK=6jB4$v$;lG|u_4`3tDRvF84hj#@Le!02+{DClS?1bs{7EQd zjrfKk-?$ryQ?E3DSE^u9nQxkIqivF*Emftu>-OeMqsv!~)Y(mVRRhU&b5mS39;`l!+inFb47eH? zL^)Q3CQ#~)Gf-$Onbf&E>T^~qcto^C|{p_AABY#i<(1*5_n zr%drRfHXoztgDT~?lvmCn zZ<&gAh`ALKgfBhHtRjNM)>UVM^>&iVAPsM2BwSFV*L0$q)?vQYb^xN=@Pp{gX(~?8 z07H%K4TKNFftTgs<41iSpA(Ihc#i(6>K+km(HGQy9YU>vmLHY)8aXD^Q+IAaMm|>O z?|Qaw!c^F!8utLs8BltIT=*AzygaF%17U9cY zsc)tE*h4qcc6lb$k>6rV7Cpc~{Nm02+?i!_Da-C8q){^K|BY|&gKB{kwxsf@4e0Mwb_{s z2n$D{n?ouKVmkCryGJfZw&2sv$ttCtXDF@WKYS3HY03aHSiD0j7S$GKVtWt3;SOsv z4VqLvht*qeZTEML{D$U!_2JX$^}PhLn)27=H6LMp^%iNfISPF}+`p@q5m<-C z(M0(@asVeXlLHx#wu(f*7SP+N_IBB%(MH8c=P^Yj6K%0AbXqipiN%14m6P{=vd^Ux z{0$+iO{fw2FCAHiK*5S{^wif~)AJ+wuyZSrs*B$Z3qBo9%aO-+Gb+z`&22V(j6#`HlMF8?kjl{(QS#914&%LuVz?BXwIQmD` z5Bs42EH=J2g}a|aDos-UqQr4v0Z^gBIeP-GgaLtR?~QW|0AOM#KZk$~s7O+O?axHf z*F!p{sIvArU1UU{P7z!Rqcjs%*9n`|1dz9hJ0r&kzc`@}spsPB{T8B3I=ied(@TYRqnw^mL(RMEIf9mU97 zP*h}eviS3|`RK?>m)yxTGbjlB`ONRFCr>nd;)nQv_wd|;qJhul_D~96yA{PpTe}4J z>jksyKC)z;fQzkx@EiT`h3w2DUqgW0J2M5#g{Gu){Y__c@?7#_Z2Y6Rp zyv3S*4?K`m^Uh|`@%HLPtJ8#(l_jfgKFJ>XD-ddg!HKe3;Eo{DAqqmeiCP5qCs{b9 z)#}Zhesq03>+{Rq8c=p50-HraU7Z4IAmz2=@sMUTl?AHR?W}))(u|{7Rb80F0FYv1 zaCCCo*fU$HHTlD=GGu(Q+4s(`2XF>J4L`3I$rH9cUyiu1`$P3A7KXe$-5K?UB8P^B z{aS8z>QgK%N@Xz{{#8S#ou;N>V1o+qLCafqzCKz3%{W+bTkF$xTlrRAPJ4Z}#yVu8 zz3T+XxwTbh8WGzQV9@DDKfD7~WB{N__k%{Kw_;fU%=;j{k5o(1KEyj(EllI5EZ%$r z3~F}9H#XQ7HwAy^hwaG!^taZ=5L{hfm8{?$TRd39{wt{g3o#~a{hr}n*j#Y^T`wT< zqCy*bZPq!k6zPT0&ZfPsQODQis-59~uhO#U{;~yl!PMQ8qspdb(!Ues{U5D&^`rlu zie<$Hfft8IiFu7 zNX#>Nyt=)`0DhZPiRgV&4G+lea{iOveQ)d^7=WSVfA2A>=m#ib|IJn)qY?)|#r>~B z?_AE+YHDz%OAA9oXZvhVS2`DvR%Q3-i(8Td@LM)!jW8FRoL0d@&6aMua5Cb_0}VDf zk=gzCmp4L)7aC-dE2TDh04yQV;rQpO83x^ZRxAYQ7=E z5#JoEPK;sJ3{&4}srbPu{tQ=Z==(S=!P1{xhv{ccJKNC*PeT@hGmdB5nY##JehZWT9wl|US68q_QMuyWd5ap4wkpKDkYRGZ{_RQ**=+u1!w1$`WMM->t5rqJ53hH z*k;@m6HX5JDvG?mC)U$G4=RU;Lgp#a;Ks zHhGoI`?pQm?wD+cojF+xeKCJsz7ytTBt;8PLxqv;>%_AUs6KR4?o0Pgj zy_R+MiO>C7U#!}ljT9JGaAwBS0zD7J)bS{Wy{1G3MUSvp3Ow`(w3Yd#arW2-ihF>T zu&M>uplx61QnmkBKl+BSsV=oeri&{xHc~NCVAb!~BSBLi#pIOsplRn^fdu@C%5`Iv zKh6}sM;={ayX~N=EB}zTq=qy1O>B>RjiWwkcQ5|=!IYE3!&+MooABfz@HV9^`r@X$ z0We?a%!rjx{cwW(lN2xHse@=ff0&!ItNP=1v=#N=KAVOc!Phd^z}7L6DqNdP zrqtlgCk`>`NI(9L6n$Crh#Z?0bGKd!&C2TgqW9zCQ)>)W-iCL(`KJeq9{O?*L*)MN z!Y~*0KKn?M>LU7-D_@Sswu`v`OgulR$FAx#M0)!B* zfpBM1Ds12=XQ~0+C;6|cBX+oxEg-0W2)7BJl7?4MtnlOsv@>@|OgFsC^*bcMaqm4R z*@xXpc3mRZBbhyLxkWx%_j7>%iS>I07#2Tlttz?rep?>Z?aCmY;PH9@;%&i0f?M7n z4t-jA8a!hv5gBMfa4H*vs+w(zWQ>#B40L=6-*T^;+0EEZ&wYe(uX|#caEwT!i~e@~ z=;m|o!V`Fh-u(M=JQ{AO2moY6HLyE1T3ie~mE!0gj9yy+0L)i$b;RcEHHNb*AD_y8 zSr9804@Vl=uXA{)Uh)Y9bL%5np3SGNyqexHrM|~Z-axjHI036}SoOXK7ESqBo z5i(kOXho7bKXcij{BU+g@nR=K0D$XzSFJ5CLy-)mR9pfOhFH^)ZKIl50;6KbA1dW0 zOf{LB{0MO9984eMvaeYeho=#*Fs35UEako~n4(oHLfC`tZQP`2YVe==jGb4adfa4g zP<@_`t(`KxQ7}@P%g8M=G#dzWShDW^63a7D9e3bsuz_=6`AcK2*Z-Sos^&21v|dN= zV(4vls%Bh%yLT8{E(~>VY4+>o{GoiB0BxR0KCZ=M*If7?rH13;U$JZifc0L=otEEolr{R%Cl3bWz|k1WTs_oOrx zmH1vwZMM==Fp=+89C=tu3cJTs)IkH(4S{||x=zh=hFudaV|-AJq8Oy>#oq`}j!9=tV2vF)x2MALp)_fc8R;7= z&{rXQmKl*|Vkv*0RZBt%iOSKKiBXm+%u!XCj}w&5CZCgJ`?EA>mYb<9ym=?+e+;q? z8dpL3Qeum;lqFS9(A#m~yW3v>t>&>_+p?r7n;>hY+l zKjVN!CDPHv9?^Ul9GN=nK8n*hgDFd})PRH<5PUJ+w6FtMDOONekq$}5D7rPc`k0}6 zHeL?dF}sdmKMA5MPJs7s)O`nDny+JrJ0=@hv-=dRX6dXufe>{u-w^!pAYAu%Ah5X~ z`7IRwa>W1jS6UJO_^ki>&%e?J|8rwCYFhvm*8lwK|GSUv`u|$U#dJyS*Vx$DvDNKf z^Cqkf?Yrcg=_hjO>-Q@Dd8g9=9PZJz+7~My-a|IM8mFhQs&~8&*1N|0|IN?8*TDs> zIeR>K#f2$UGk1}i_y*T5VGvMIFTFcaBi3s(B6{P4KeMv_dH;5M3c)vgI7)cWa0g3F zDliBRN~$ALi6TN=;~usNVX56SMOVE@{YSURJgj^t-W_h|!!TWf$zqmq?wbs3p$ z*%xgog-LL9lx>XD4U{N0YFSLd+VvgjC_dutnG?<&tu$U zOl~e08xKcNM8uiSz`#E=bYJV@4>PTBAvU>UsH`Q;sfXD<5v(8l>-!Ww)Qu) z^vxvD^s%&D3^NW8>8)zhWDn4(n&T4@w6tu7WjI>g6(&yLnIh_#kQkw%p^!Y# zAL?&O%;`>WZ^~jHUX1H(d!{hiiBA@Os#OK(Vjng(@gb1<@hi`k3k4(K&BtE2ex72t z>zZ^{wk;w?m$aiR8J}A|fGaDP^h_5D{TrcS&lyz^)I5 zPUs7hU@g<~CNU+}<#;~vSimP#=g)k^i^-(u!M}{T!(gPTDKn0-kZ^{?2WqyT_NxmN zU>_as5V)R;)Bdtkmdz;bUd=2#BsYiHGIWzmlIkKgPX#ukA-5!r@4u6h6e z{iA2}KDd8BZT-1O|GpI2X1mpRZ_E3q>TgH>KY#qUdw?E7_K5U{`1eziOB^uR|ML-l zNBI58gI0fg?)|s1b6EfXKKROs(lnDtK~+7RE`*Os`}Be9843S0C{wOOVPVDjy1-~C z;g^Pg?GJ^dhs5wS&wgP|dbt=eEwe%pM@l>Tq7wE~>g8h{Ua%mse-jlkj#EE;PeyNU z3LE+2^E)>k@R{uT)g^>@!tVzu{Z>6;?NL=?N}E_1@)yKL-IZA*Ztvx{T zMdbeD73IHDif_F@sZ3g~=z>md!-i!mF|fmD*xB0t8Fz*WCM;s#$xyiOzb0akL-EnV z6_MG4o)Cqdj7ag|nJ7yt2l`4q6ZGOtGFLkkG(#k70v)#I&2>$q!n*HMK3-{u{cDnU zAP|92QBe+xH=%H-zoxt#zOv7I2A5076!6e(_7FScN)w*c;hwVA#6$2CnB`6rUN?^` zppHbwLSuwe{?fl*I2o40>j{^Zmae!~ETznHI8&QDWN5>|eqiD*LDb0V0F6IC7a9IN&fn^Owc>61N!mj0H%j@*4T=fufd zH^&Ju{b^nKGq=XHywvLV9U~73IL%pVJ{a78)98e$dO}`xhP6viF>s3vVvvTeEA`Te zvdviB;WvZ|JI0TpPBeH*(aaxk2(0PZm+;tMCY`B3e#b!x(WM`5G7^)cyxE`Kr0|pd z;R*k5nEk(%390&^m*SKwttdn;_G=}~CTcF-%odv$cYQmAn7B|Csv{vp1^-qeuRa@*smRAsQAT=VmyBa$Baf~ zUk%Od%wpY5MNTUQg`FP}jT7C9dfHzcs<^B8-zcB}uO5*LfIC=txL;c_bC9ce3PB^G zy!-$Pb*6kIx~rL$ipC3lg}S@78sx>q?pR(z_P1o-$Txq8mON&8onE`U3{lTpu6BH+ zFCl)#)PiKCIwH<05NTlF6<1~+CZLOs@~V1PjL!OXjn1ZcasJh|_zW74L1_ zwn$-hMzIZT_V@U&BA))hlxoCDOS{;ZBx&nhi?V6nQ&gNbAUL4>TnqU_3}4h|P;dSS zp(pqCYNoo{@N*aACsRn%{?Xo<4P`Dch`$pvHU#KK5Tk(&*!vzq?pOP+s7v|)IA8z7 zk2r0FJ;6yt-U?he&)*fb^vwxwMz;;)W0{#D8Y9{uUVUGy;cIKm!2Uf37mjw~>-FR$ z$uXxR$U@P`xu|by$%&S`J6C^1@i!ZHwgBO9`A++?0@rc4g(UyysOO4y1&C|XOK(z`|)&vr6#18XoW{Tu5aYWk91%C<}JX3 zvIPz1vF{<0(xG@M>J&z!G9%NiISl2N@yNfEzK?XC6(ks}vnn-Znc!_I^YI8n&#Tjp zXJJ^SBWu$oY`K8Jyv2P;R-nE;({rFSQVz^BFPs`BGp^|6pfRv=yYZIrL_);=x2!7Z zfd;Z|$qbS4ZuR;Hz~HG!Lvtpm%o*+H81RmWh=fvG9u&Pgl@{A{5wpA$=o_FDG;yJo zOoQ4tT+)uIWc<3Q-Qv`7)ZkxDo#;}K0rGIIK>`DzjLi2HL_$Q4z6O>fBH~uYi;01Y zrkMThQe=2I!1cQ1YWnbWye!&U^LziA`M}@gM@`T{_RAUs{RaKM{G8>OuM@ZRq!n-w z=Fz4F_AuwLUDiw1%Q${Cr+7{j@uDd2&zk(&)di}^VZ1m3#o-&QOTlnxb1;5>8OX7j zRl?rBq6b)1zB<3)W7viJ`txa9FIH!ru?#v3$XIj~ln;0THF|)6qk5Vqcv~S4!xJMK2P}6{hep7G`+Y}Tl zoUW+ihnI}QkeY2t!_0}|MzI_T5eCc1D}rUQ%9+{Jnr{gYyJBW;CPVZ${S>_7RFE&d!{h z!9m^Qi0?)Zb}8zRidh#v{9}LPUSyB(5cK`^v-myb+b3fT9{-Fl>d7 zb2R25OH7)6I{(ov0go;CS$+}X)*3YVRWYvBCw?v#udB*CG;jl5^vm8DnX+Nk|_ zUc{|=n^h?sY+PB>#c3~_aWUB{$tKomFCX65Ned3(&bA?jeiHqH7;0aaDlBhXWygxQ zj!nU%82Ocgf*B@Q+QD6Amf0VUJz$?(J2s<1(i3pLjgNXhU$J$4+g$22NIf_OO+vurxJcSIJT+efQLImW98pEx|v%~wW5lYV>}_1rcGe}Kr% zuM~j_+}4RVvB;#ZWp!aTDQz=jF)}^GBWfoeIQ0HWUF)n_RbJIQKUnh_iP;xe&RnF% zp${b^RShL-Py?hX=NHY+o3rY%1NrC0jFS2^u@q`P@0gCq2G>= zJMhRRwu#TSTCZO`Bvrg!d1)d@ouBJlwx2sFI-3nHH6mGbpOb#3X@eF%6<5IcxL?%t zPLT`PsP7Ph*H2xJM|w;P4LO3(3oz_(KLg;I44LLtn_#)ePkN*3xb18D(^PwuKYbEA zT!n+}r<;IxD5~yaTtP|}YXT?C|3wAAe;91(vp3&Ne^Xm-QGVe1DDTJb*9-r>4rjJh zqPh>43)3;ii%A^{DMJ)ga7wsKIoCh;(OoP=#K?SJ0S;dADA!VV_Q3Ne{nL@R&!y)M zTT9&O{nUQDeThrj%!ue}88#D33@eEw6z+CL%nMBkm7s@DGan-TA3bZ-lo%xq-TAGT zL?b3*%Ycq227gG8vuzFTaj>~7p=?z6#A2KBSy51sv98qT2!yN>o4x8!(C6R~;KcL% z8h6L`^qDTq71mE%r=)wG;NPhasqOQxLrYGw+6aa+NdzJF!7biBF#Y@S^N|>uTEc!q zJv+m4n&!*OCT{h<*tipgM2{Md6^eNbU`|Ky4K$^M<#2M;zhBG5hynU$2j8a)8~kF{ zzp*Nr6o)$NC%4`?s_WzQeRls5RfH$bRalz)j7sf&-S|Wggh{d+%{@-EX^FeOP}}TMkJ5;lm*#a9Z5z%GEhD;gTmo0j+h+ zuzKd8Akb2=23THOY!_Hte3vqU*L70AEBgaOpGN*hQp^wrg44;&)z`7qL3vQBlOf&9 z%N9qK8TD&Vjc{(joBlZmF~eroyQ6k+DZGrB?aAvtG~8HDB1Q%A1$mTfshbO8buADV zkMWCnu-MN4z4Se4uf{ZSF)94Red%Uw9(7F=TVT!2R`zC`o$mmE{IjmX4`3bfFru_W zpHR+vW(<{OE6j}7cHAZ9f>&-=9_zNl=ROVCG}tsCFfU_y8KrNaPmPe3F~YXOxE`21 z5i?b8`^aIZ26$XtU7M+SPTYS7XU%W?o^dzjCF)tn8L}jCL8?Hpx0912`1qLw;2#{b z(HxGUKQJU2nE5%lC+k^0s1#>8%thBszx_yhitM4h z`Sv;XCGNAw3G=9!XXFqUb$cf;SsvdHwJ$orW)0(YPcDP12IpBA3StY<&y7Y5?si4v zc{PS%P9M$3|3&nvrpi5A?=x<4T;Rr^du^B4(+l2qFwgT%!OU_cPc;du7L}m9G!iRa zx&kPFTa}dlZ?+nP%=5If4QQ!(bu?4!6YvM6-n{wwt(u(6u?%NZ#qq5JW5nojKLnC^ zhcJmF`Bx-jAOnX?*74}qtwru19)5PHX{Plj@L}xUAj0Aowr=a&PVMt6cz^H;zda1D zTTV@elzUnaqSZbWQu$#$@i79Mr~esae9-Gp9CzMvJ_5k6ftl>ob<-3C^=KLliA_zs zSI=<5)mcO~LDXZp-F8gJb*mgAKbwsXt>dmTE|%sL2?=NJY=gV7E?&+QePXja^ug^oIt`Y9Kx+Sb9r z&1UzUR-SdcXvBkynox-%dMGW`Cfv>6v;$C|^<*dQ@2i*`odcQ_odc+2d&5>SE^~9_ zb9c7`!eiWfOz}2cwl9&sgu1sizxmSfSTEBu0j|2cZJ+C)=ar=KRIcF4qguNTqOq0xb_79}+reSI%Om_)6^cV~jSRbvTn9 zc^1#=_&63%^hbQlK6~(v%^f{1*t~hQIL*zs+Us7sn1<6s0agd{YrN=e(_3G(qV8I8 zV^LH@?~?p-z409`EOk>O(`Pbj+7C6SxHAKH;T+UD~T=t z!8sm_pph+@Out!&Oy$+SVC()&G!Wd`{&bF)~v&s8dvQZCM%&eL|%KCn7LB@qBhqXty#|)+MAkl z@f7_#<*X;E%-8Z^My!X?p>s&=v@bqm`K+8X%~Vf6#zm8_CU5W(Pm-<{JbcrywD8xG zPHdOCpClvFZ{hzpsH5@ePUoi`pmh*!HylGP6heX?@T*Jep=)P!UBHQIce0WT3|>Et z5zo)Ti08{ArCm?fbb*-Hx=29cx*C)HZ!_nL>e5 zBK6M-KtggsO_a@%o0VM`H;sV&{>0#1!eD|?^~+cLIyn5z%f`i*OdJ+GaZvQJJ=U2f z+F4&IViLza2483yZDaO*Mw zkcsZeK`O(|fQudE@kQp2MkhYn7ERD~%*NL=&C+0{A&|Bu2y|dtb1A%8H}kL5vU>&`MZzr>O^><>AF2rMvG-?@9dh@OvBFn}rNSxO+53o}{Hk z0_`Zgz>8<~qAz1jhMX!2{*i=x zhSIJb9`%XaUK*dx;5vBi@HPPz&j>y>-MLUqmZ+__6}Fn+zNm_rhh_e#*rkf@IH7XY z!xIiG9Q)L;{%z6aL|q58IrqgLU44V3M852dQs|lp=>`Oh-=j;if2-^m(NGe%Lqbw> z=}oyKvPIq{^|wib@v{yOa}x;$*{d33b4@*i0`ZL3_h9|u`grr+g&!Bhyz5|8OaB-P z?szC+zyh=|GTwUh9J73GVJ=%u3S5zf$2ci%yGKNcg-cB-LFe#jPoey{Gu9X~)_Mq3 z+~&o-%~m@>@Z{d4nXBpusmh&iI2BBoGUYfwf|KP{Xc;@keoAkOOl1$frTY(`3aT6|H+f#9)pS z@R`NRvp13REmcTo#g_*|;kuC6I=tS}plYkUC1j1l>Z^-BYIk2atn}Zs&il?#B@SYDu|kb*}Kxst^Ceh8U3vkjG8fz zfVX7oqIm|({4Ds|;QWo>Z$jl(;8=y|f?d`2=jl0j>t3UCwi~@FbQmN5dnn_tx7v>F zFEsUz)vpADYrT}J-cu<-;Ax7}B+F{|`%b_-sT_A?*b}ui@3Sbww7Z!E-E+}ihLEHOk(6<_EJ9a^33fBf>#uk1 zOAhj7b{53h>loHz5cKc$C}rX&OsVfWJUuJrSxY0%HE95+veZVokgNiSCh1)>&RPbW zQWk>3nlaOVeGR4B1p%u09tbAN^OXz$Ww7NBzC)a!Ts~zc6aMtNmO0l9&**Kx4f=W; ziKp_X;kK~JM+r_(hZ#0d80>=OhWpJ&+lr)_VH~T3Kstbsn?5E+%x2QCZW6-6+iTk0 zHLlaaARMS|zq3(=N7q1pqyIMaxya~ES8r=YF664*r1<+xBYmG~`rIxxI1DG8{?{4L z?8;W(4}JviYZ9EM;gvP|Jq~9!5~X~b^x zuo=QoG6zGWU{m)5@o*9G4sWHsD><*KF7b`Rg^~&Dg0E(3NO)PH@TfF_OT?7umoEYF3y)S^}m zt8UJ&j0Mg?`^>;TG87UmHS4mI|8v-!Tc(%`aMX>JiwoaK3^Dy=Y9Cs1AW`YfY`nSR zQ{h%j`0k55ei_%zdc`d}jvpv_XQ>B_%O@V{pfPjz$^7&y>)?T?8xTu3a}{nGI^sTx z+m}N>2)0W%9Cn_iRE1wG%iP9`Sr=Tea6!ocmr~u*!kMqVHnr@jl=!3@<)BWVr4acj zRJQ>!6iWp1Q63cfeO12T0eeVRBH+eoJvlq0yNdZr!L{Vq4CqK_La3h>Q_ipf>5sVyh!$QshV_DAq$gG;lnpYrLl-%R2)Y?B`sBw`FR?L|gN#$F_ zIQv$wr+2ni*SchZ#$Eq<>p7mwereQ(Mjx*tm$J6D)p&KSa2OHVV3PjULmrqtZb-d zOQ@l2AJ!k8h}=lgk8VwEri8`zK}V~IT))Sdk$13+32csbdvo0_J$ZM7c6!D;5IOz2 zq@?EO+6gjv@$v^f&7Q%^TkmW z(<xN@k! z9g4563|>KwG(xyZ^Q1JqC!*~nL-u3hCNLB%WjX_qq;GaGBk--cB301# zH}p*`O)#P~ZU>$8RW)}6H)yg!+m&lYn666yzz+@T4q&RFfVldn&ph+iH<`~6r7@hl~*fpfF-pf>&$rY=G6iyd4PSa4*cC%pt>aOL2&_fHek zAGlLUgmg|<;~@R{IxbGvgbnIndJwGKLx2Ex195IBoAiRK%?Hecx%C}Hx%D~CB3W4) zil9vR`bcpbVYx4Okn)NGvt#+sYC=d{0wSX1@sxcSMQj&!`lUFZ&(~V@vjKU&`)!}~dv;akuPv2klIFtwW87ZI5m{C*ww6DNYZ2bJlLSqE*+wR9QQIS#h?JT|I3tzqe zkLtcED$4e6SEXJ+qy(fy5JV)UYd~qFrG}0nM7m*Uln|tm8bav~=@^i1kQf?<9=c&@ zzK3_m`VRKN{-5l%_I)~Qp69vi7uS7Vzk6$tQx!Q?T+38Q{JBM@go!;B8Z~G0{$Bl@uS;=c z@=KSmbJom0+u{^mKvrQ-e3%53R_+14TMA_$mt=`b#UqAQ;!Rf|v;NoMrwI>%xa>0( zJv~9W-@o(n+4i0!bL%hHdL4;ia+;lY2Io|ARmWwV#-A{H+|Em$Yp%1XkA0Q{6Zu}0 zz#LYSI^&$$q=+Q`du+qO5cAj2-r6x@6`Nor_j`k$J!^n z;qX_j0X=G3i|?S6J-lCrY%L|=%`~4?V=dW3Ug;`qRUf5bdnafI9+OoAUJ}R4v&69W zL)wtRB4fZ;P5itU=GR>6V|*9$_oolmI(aTCxIpc+rGksexQA8bSk?T|TR)iaLlq=QzU+RJs|^Fk z9^*)PhIRwahtn-?8Jm6^g2qEgu=_U3c3+m-8MWtce>9{C5 zxL5vQc_6in?2`Dc(<_pY#te8HZSUH_RGE8LdDF!B1471#ww5BK^R)z7^XZnQaBJq+ z5hv5~m64lYx*_xl@lc7rX2qLev$RM%G@!$#0eU`ox6{Z9e}b z6~0~ZnOxC(dA59%CFX;T(&i`?$dV8 zJ48h2KekF+=lipf%a*fI$?V~bCGjtUFi9-jh}q81%G@Ea-j{FPz=F3Y=vvQIf#ocS zbP^YX1asHF2S^FPf%td^;1=s!Y9HZUG%DqUC&_DZnXGdo!l+H(d@H5t4L>N;b5^q? z;Rw^ySh>sn`pcpyi-!pzT)xQ2BW?pu_&UoR!Nq4Q|6t|LNjD>d%ZBI{H6kSZcE#N{ z?u&XSVx2e~lfT)0|MVZiJ>PXaT*JAFGmM+Y4x>TZaD)*ocTyxS?{91l`6D(GDbc|ElNRf0U80}G1z_=xz{p)6R z-KJJu!%f!0J35)J0rum4torTjRY^T*_Io3pS$?&g0gppEWYRYsh^WfRYcXNnuOYq{ z$lb|B)r`nk>kiG?ju5Ds?jpOG&z`-y&c=8$I$x}I-o zv}SOlVHxdZGXQzrJr#Arw-lkjKeWdI%=d1u>Q|pT{M5OJv&@|v1sp!+=*^GUox?nX8>P?Qs7v#KWtNWs6L*VTY9Bw2f2T`V+n2nqt$$RV8?0nRfk{*ue4bHy_2_ z&4_#@;te<3KT$|AL$s7bqU`(J&g)r$->#BKdEfO4&y|D0c+51?HtGnaK|u}hw|f-E z-Z$AWovl!&66V*ywBd-32hZ^g2Cq7{pAg-XY%=emrUo~JHbw{%>kN)db5~h#;*W_d z@iHK~^)n@w6f?LL!}1%IZMvKkMueiD=f2-g$2SI6^fydmMy~SZNZk1|v1n0JP8*T1 zL~+59+$B0{otd|Aha3^v_URI+m0+ygi7l z&hLi#yl)`J<8p7C%SkTDvxA4^F}Q+-n&Qp2VuW6vt6+p4R1#}GgaCv(h6bnEQc6>(9hPDF#$`Jd&UEE zmG2JlSBk<{C0@^2GpVwP;l-!_{vh97I!MbnR7vtm`GSgQyfPS**uVh5{ocAnqY3Pj z>rIdIED!pI;$E}uKl|hT!s=;y9purg$k2D|-@@;`-u33sdC?gy4G*GN8Cl50)N96w zZ(7@G&z_Dte(DTxUYl|R(%Dq6_k_tCk(f-m5mbSjg^IM4-!>1`La9kU|4Z;W0+JbC z2Tcl?&NDOqVEDwqVtXxvvyieyb!dhhICnQzqu~{ojt1wB%xtmbV>!idNGh&E*zqc#T zZoM~}_Ke7ApMPg^?plQPLQV&sBr4dM1U=!ur}6+498i2FXRkwe-hTSm@om|p6zeaK z!()tN6%8&=r*|j;SU{Uu9Jn^d@-wS{n71aL|BmlDl z^TlI+QLOP1G-IdR zAhC(&_S*T&VObx&_?5@s;aY;}D6GgeGIU5WjP^TVVi#-VU(R8_Tdhug)13W9(vm}0 z0ar1Vy`YuiBAsa{el-pGL7t0GJ7GZXXpbW3{9rFaTLSB7t@xKb(vu&X)e-5_CkDxDP`pm5B04}z{ zk3J5*jU_s2@gW|*5zHQZY&8J4ZjzY`8-UCCw$vg4Hjuy+tNQ=pA{?=jcirElopfB%4)yz-ZI(ram)Yt zC}f;ZHI}TuTrio#GvQL7V6XM!qvmXATqgpW%V^|x+bi%4{47*AmimLKq$W)o(sks6 z3I>*t)`O){>1|Znb~8WkNQ%|_J|a!*?rJ;PNDbuQ(vk{*)HS{pcxif7DNYA~!-y7z z`DpA5c%d44jq)Wi)oR)CyB^*YA ztGg`-y5-wN4=aaGjCtbWKDtH^#d(~@sne2J_Wi}*Y%O11ANdE*L0n2A5CFI4}P0dMvd@|Qd?|N08qRCktbE&rS_s@9PXds#|A;r2MAdv5c3aZ;jwGA&L z%4mh79UcM^p+wH-x;h?F1}SDbxaDWIW?mD)M<5S^<`?hdfhbh4hzeq<*{&MKOP)6C zw9vyvFNCrwG(r9@-7*)_hZ~iETy?{FdDGgRR|S=R6HG+F3mgmck2P!7j!_?uzV`f0 zA0X{KKgqtrtdfA%38Ez*J&6@qkA?21f|9a(EL-dM_E90f3Qbra;w7tDO#LK+yOdDB z71U^{9sPOo74zrnF@2flBRec}KB#y$F*~Y%V}onHJOPc6htdmKHjQ)+_(KMLA?({! zFx6RO_U-ZC6KsuJH>(Aq(GNPLgQ}bSULv6GjGulE<2W1kT)jcb7^=C3JU2DKC4BO? z+oD+*xJszRSws=hdpNlt;L9oD@<3t;-)gbn+Wk2`%E{qV^b;1CAxtYPcp&Vl#7M~F!R#@?pLw1)(@+fAsdUkn4A`>3`kSsUwKpr z@#Tx>tGJ&&GPj6oAK`5PO!QdGcL}-8jgp*_kIjUoabL*Y1}cE=NEX#;1F>J0uu!=k zyelCLd#eH@5nHL=BSu$wFV9<2AMrL`>%A5TLVc$WmaddBS^6GxiC-o%x_G&x@$CtB z&tD8nN!dMLA?gbHfX|d>d=BPrcveITMDLq>`hHi6m>=bM=6!Zi_;QSaSd8zo1(Ms9 zoS01N-xdXZPZ3;kEK-dO?NYbf?Q!R>6D&X;4{MR2QXBP%#ZGMM>X#4p_BLOC{rw{W z6>h1VWMdgA^o-2Y-n>DB{{0i&P`UPx3GEt?BQrI!nj*CJBTWz!2y8~BW#!-N`J%-r z@qzVbaa>NLO#a+%VsL(?36fI&a&z$ZBFtNv@sFzESSVm&gj0*O19@LDg|1%DZ7%v> z4#>UKc!bM5eg&1{Gn>cyH5ViE8}q%{Ck;PFRI&GS$V*H{L){ zb+FOom>bL?0B9aQIN>#MP21>WNg%|Vz69$D;WLNbF zvw=!dm91!Es8R($LI?s|=v*XKA7OBxWQsWDIV^n_^gaz%vul)87$&NRakgV{M^T`| zyUdMZ(R`>R;&Y&b#aOo3FSmhiKFlnjH?8rJK%|!@*Ubh;vmk>^}D< z8v5P1^78U7#>hT@%eTtP*>cUDnVESIVej2O9?iKsU5NwewVtFyw^*cP+!TdbZH2JO zy`utxo;zWadoY|uv|RVMbO6GB$HhMnftSXnq=c=nTX-L|;^YQ%lrxjH&J+P@a*I}1GEW|^Yp z4XpN6bZYC2lJS>dcdR)7qLF`~=MBthx zOo#a%`vck*@&ASVDKPIy01}gtq3p|SK0@tw{NPk;;&?AAZ(Jm*HUmjzmJHpJX>>;H zZ^K4zH;$&xlwm8V_46a>621;ND{?-?z+%j5GGzj?zvsC1adx|e4 zO*=o7vb>%sc6-#(jkKIM(&&@VI}SXS;S>UjGXe5~OGHonO38 zm>&h}E}(W>-NhMAMdem{i%*Mkbc3GsFN(I{BXqBhVRNyZze^_#1%N*2*)y(CqC96l za#!erVrx9>p&AD%vwHJsuqclGFpfp}zI=qX3>j zo=~|*oTPz+UR_aEdXGy!C-#$5#Gja&XHQP0C&%%(-@2+fER{yiIC~kU&#%gBQI@Qu!_@>GslvQ ze#ns->aX1s0&XSm`zo!rF8^Nc)0EZwd`D6@t==NpI+$zHVWKsl3G=JgFZ;Mnh9~UU z;eU}R&2F0Vda!9L>@AJw__DHF56QdC$I6&nrw_68RpXA*Riwp30?1Jy&sgWxOv+6 zyf>gT1Y=d{+hdj0!!7yDwBdheZp5}VPxoh*rRCPp!G`7ZjtwwKc2u4aAaC|6?mv^P z{dalXO9~AJfqu=6x)cvVWqe#;82yfA?=+d#vzj{LiYn!tLV|yFU)X_{*A*U~rr6CD zVjtvITI>{j&soSAmgHLj(lb7aYUG_y#1};bRMR|iW zxFzxi_{_yY8FZv8XESq_ibwA(RdUJxsKdq)fg4+ZP_R~bvoE`TzgY^-xH2rf8N1qi zMdG?hqA|4$MJIMopfxZ|b6j4|zZ%3b8c?e=Hnsdd8 zsWYqPD%T;kx49&;8v?3}Jak1fO}dDqC`vh8V!u`>-3#Uox4d_F|K}opr7nM24HN!& z2Rqd-L^OWup6G74OaHSiO{Z?On6Ec6{)$~aWy8utknFoXc+90bgF{B;W|=$4=xQ@3 zpY(Yuu=wF7xj&pihTN_iFqRb$_yK`{x?Qz+0&OG!KsGvST6uvS#3LB$e?{4DyCOVG zkESj|#nRJ!COijs(;_DyZhJ{=AFlszn_N3rOV=R24(uc*Y;sX^Wzlb)a+?keaf!n9 zT(2*eXPgEMn#V5Y^>O&#JwXi=g>1OF?|Q~z z++D$!dx-YFjY9_h&syLA%(dR1xB~6}xqSD(tCRn~`{H$!>VPnykAA&Ghvcyaxo;uK zQ~0*fzJeXa9!nu>7D4%llgV6Ib^7ex;EhED07UwkL}4*x`gYuQF`QqNyib_kGde22 z_~i($FPX4Oq(?{mm@1#Ox%5B1q%d)AE;txpaFx?3SKFmG*!}EYvYCYz1|<2{SR@WN)PG>AjY(o5E=yP}$@ba!w`K1hiLRDXb_3 zbxXutPJLdi;FIIz*K|SjdO^svA`HK+IbSsg6e@v(^XTTj{tzF2OEwNk+?*LF?3%@zxDrE~Y@=@VPw9rz+MIc$aOL>BnK zr+q>An^C>{AFobMBYF@~7p8vJF^9vBg+og2K8SPuO*cA&e3Z>Ksswzv_-O3ik6(CO z_H(-yV5wURwvR3QBeiK)sEgZLvasxT0S1pTg076#Ytkg)l6Egx+6+`S6qW5- zF4nqb-wel&%1v>W-@juh_RhMwb&vNza%aOEsHo8?c)*Z4|2w3XnuQha$fs=30-}Op zc*riL9&nebXt4?`a2!>s+iX0G1P8My@DQifQ0<%BbbAfwWS+SeSlhaI9?_tWq7S>Y z7(wx2jOt%-t)_0*dE_*U`i*8v&sYiKN@U|t!MDcPAAK48R^-_fKN5tkP*;39Vz4Rx z&{=5IcU-&p<0>oWV$59bW?{l^kF7Z*Z{H|*po6(WYz1TkHRX0%L)|iE8DO*rkK>F+ zAGeX4xlA6_WolqtdBw#Xan^?#HfYh}yQcD&NqrcUDNe0@u&qxe>A3}hiSEnW5Eulz z>LHE|!NGrRRT$Q8`Fh@#jl`i&q}I`+<@_gBHUm@sd31_u`$c7E+I*ueM~pUSr#(~V zzJK!P>&dpuY5LdQeO2_*E4!K>;jc?4r@TJ(6(_Kn{r=r;eqmRn_603#v|EViWUzu|SmRlUq3+Ku3PD4mS9(As8@}`hohEKxFx}8*0;`$3E@mFy?5NPDDcH&g zw{%Of&8vjbSQYxZCQNG;--JLqC#cjRy}m4nx1Oa?1KUDtn%TSFiS<)m@iN1Gok?54 zQD2|YLN4wM>nmq=rwQR$W9Q=AIUDo@Ap@K zg_4@4X5UU*wl7H3UgGykvUq{6N_tl0=;uk~Y^D#qI^trRHbgOEz5mA5Ok`q61E@N3 znx>9wbw?n5Ji@ca$6d_QkN>=qh4Hjr502ltmGGe&oW(`w@06p|3s&IWh`vwUu7DoF~KKAy?lQb>Ivo*2<|Rw>JdFBnrWL;lRFz}5fgDbFqZ|MmHN<(*UfWAjP$NnBs-ku zRZl`*_rJST30Ont6;@X91ogzFW66KBjpGl_eQ|0+&Arg~3GSSp5x{OgeK6p|GU4md zaF-S)G1tMkcsggdH-u)sxtfU)AJ<9kq9QxbC1oFkX^LQfuim?znD?dvq_ z%;JKVJD}d*mtyC|uwnfbL|qR`GYJNg^)|pitF>r`>mrgqq$N$A^;bW8o<|L)bhCP= zu-q2m0d?ZnVowU(;Ih6xPZ7|76ynK6@#f>IEIFm*LY>s3`EWuP)=QTVHZP9 z=|5(~vJrTey9@Y&{<1Zal9il2l@k|xkm4Uv{aPf4%3ox(;xLc(@Y4}@@khjjSK*A5 zXNa-360(DXLvkTDf<6DK8XEp|BR z$}7(Hb#;)3a^5o0yk=vWNM4Pp`DdE8OwBCD3$scTPmo2cG2Gm1j`Id+xwF>A3oqqjU{{T4G7=6Ts0tdi?j)c)NRFFL;* zvyQxq=yY4>_|un6DTic<0E=)hD2MDWX=GPb<%8z#tPy1OZd2vP--IvAEMKTA!we|F z_D24^iRtp5`^6n;j$5E`SYUj&7Gy=l?dwpYD9t*+tQ;=`s4i0D_CX9Tuc950gK5r6y-9a^GX;Om~+R+xs@74CTX-utgD3@$1viW(29SzFS482g- zoc@D_X(~Y)=9r7TU5_T)}bdfd7@swba=+k=qqQK==RE(aII9b87!T#ox*r3PEmix z2wnIdXKIE_{?ut_t?6_4hv%`xo=t5BndsbIk-}Yzo7AA5|JqqZPfuZW@Ow7H;2`L; zuOCw*`HXZzMsbjmCJ`8skmRY`Jnix`dxN+R5@I#K|FOQ!`H~LC2;}VDwYktG5mTXN z*{_%$Md*MNg|S$~ZLhGz$I0_Tus)@W=8>wkuW^{t_cc9XTV+6NR@eCvlXo<_4A>2H zPSo-Y1V_dHCi7|k8R39U$Bma zU8d~2v1h$csXmDC#_@rgmTyX?uD8guhxNZUEt`!I$E22Y8Owo$=dn=It-L>;=hmd zE-SLT1&mMUT-X#0LpAMf5G(BhqHfF|Gp52;Q4=N?yr*QH3L;^06~%YPGdZmzMcndplqxD6CA!q2yj3|1w)d zkb%#JVF<4rs>NZ>wlvNl(*m6NKA(mbWm1i-qh^|7KP&Y{6Z|y!j;9wF1|f6Is^jgf zqZM1zE{yE1$up{l9(TaS;BAmXwHuF7{|3Em6;-;^r*P4^cg3`1CdE%wXL)|9$NzLkg|@mR3*7Fqhb&+ zv?Q?=@A%&FoYlA$O=fCH9*HMrp6$w3aJlkv3l9cR1YwEy{>j}}mf6EEd=G1Q%<2~t zq9fibb*9Iv@sf))WR71H%CUc3(o?}M(Wj_BLO1A5rRQGS*_PrW+VBoe7*!%IBSpo( zW@dVWv2|EH(dE1xtJE`J|GY9xz&HpxOn$5IiX@{?YOicecW)1Rl$zaw3>(N`liJkl zANM+CoIvFmkBJmj{Ee%4Ahuwn!0?fR(|?svUko|0@HZmcQw3x8ck~MXNFHC4L_+_1 zt@Xy4@!fpkpiI|rK$T}D_Qc*(8c1O|EY#qhMgzTW5jTIEENX-DEO!Eq}vvP_nz*kXi6K}ShfbNaA zu=84Dgxo|(hhE9!{dP{@>oyucE_ZAdw5fYZJ&imaF}!sM)j4b<>>tFd&l)bsv!Jg$ zpk#zKa3Cy9l$`L6(%Cy%3H6&_`R+z)$|+VuBu7}~oNce6R+rXegSx}Jck8~D{0{mt z*4>8@U_nQWkIugjUHqPKlMow7-_LyJ9>T&{bD7)N`MDNysrP1$)p%cc;6q>M8#=xR z1)QD~n0;QZ^j+{D!Et(twXlTpvUvKNm`}y&JMG4Z>UBJQ5hq_^{7NV7UnhxH+Kz$B zfCwl^@;;vQ`c>d@B(7d@h}zunow#HDMNSEuWH<>Td;I1Ez=fyI$6Ub|ry_?NS61Nq zY|Dt#4yK}t1{Vze{iDIZ$#%5Jz=-{_KU*P`8V56L&2Adz#$))uz*n@`WIzJQ{4az~ zxMp%J>CSM~DhU>8$vD-WYJ9>Hg+cxM@>rEX0*F1Etmr399%{8z;SLY%dybX4O;Tlx zS+?hj?N_S?m#7T1OiT*n#6q6kB0BG{k%2K5g#)1C@r3exY literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.15/solver.prototxt b/cars/lr-investigations/sigmoid/1e-2/50_0.15/solver.prototxt new file mode 100644 index 0000000..a1361db --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.15/solver.prototxt @@ -0,0 +1,15 @@ +test_iter: 51 +test_interval: 102 +base_lr: 0.0099999998 +display: 12 +max_iter: 10200 +lr_policy: "sigmoid" +gamma: -0.0014705883 +momentum: 0.89999998 +weight_decay: 9.9999997e-05 +stepsize: 5100 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +net: "train_val.prototxt" +solver_type: SGD diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.15/train_val.prototxt b/cars/lr-investigations/sigmoid/1e-2/50_0.15/train_val.prototxt new file mode 100644 index 0000000..217a730 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.15/train_val.prototxt @@ -0,0 +1,382 @@ +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TRAIN + } + transform_param { + mirror: true + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db" + batch_size: 128 + backend: LMDB + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + phase: TEST + } + transform_param { + crop_size: 227 + mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" + } + data_param { + source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db" + batch_size: 32 + backend: LMDB + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.9999997e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.9999997e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.0049999999 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.0049999999 + } + bias_filler { + type: "constant" + value: 0.1 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.0099999998 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + phase: TEST + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" +} diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.2/caffe_output.log b/cars/lr-investigations/sigmoid/1e-2/50_0.2/caffe_output.log new file mode 100644 index 0000000..23fd2a6 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.2/caffe_output.log @@ -0,0 +1,4567 @@ +I0407 22:24:57.000056 359 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-222455-6e13/solver.prototxt +I0407 22:24:57.000228 359 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 22:24:57.000236 359 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 22:24:57.002756 359 caffe.cpp:218] Using GPUs 2 +I0407 22:24:57.045344 359 caffe.cpp:223] GPU 2: GeForce RTX 2080 +I0407 22:24:57.335467 359 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "sigmoid" +gamma: -0.0019607844 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 5100 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 2 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 22:24:57.336266 359 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 22:24:57.336860 359 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 22:24:57.336874 359 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 22:24:57.337000 359 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 22:24:57.337081 359 layer_factory.hpp:77] Creating layer train-data +I0407 22:24:57.339022 359 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/train_db +I0407 22:24:57.339668 359 net.cpp:84] Creating Layer train-data +I0407 22:24:57.339680 359 net.cpp:380] train-data -> data +I0407 22:24:57.339700 359 net.cpp:380] train-data -> label +I0407 22:24:57.339711 359 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0407 22:24:57.344272 359 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 22:24:57.471490 359 net.cpp:122] Setting up train-data +I0407 22:24:57.471513 359 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 22:24:57.471518 359 net.cpp:129] Top shape: 128 (128) +I0407 22:24:57.471519 359 net.cpp:137] Memory required for data: 79149056 +I0407 22:24:57.471529 359 layer_factory.hpp:77] Creating layer conv1 +I0407 22:24:57.471549 359 net.cpp:84] Creating Layer conv1 +I0407 22:24:57.471554 359 net.cpp:406] conv1 <- data +I0407 22:24:57.471566 359 net.cpp:380] conv1 -> conv1 +I0407 22:24:58.376600 359 net.cpp:122] Setting up conv1 +I0407 22:24:58.376621 359 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:24:58.376624 359 net.cpp:137] Memory required for data: 227833856 +I0407 22:24:58.376643 359 layer_factory.hpp:77] Creating layer relu1 +I0407 22:24:58.376653 359 net.cpp:84] Creating Layer relu1 +I0407 22:24:58.376657 359 net.cpp:406] relu1 <- conv1 +I0407 22:24:58.376662 359 net.cpp:367] relu1 -> conv1 (in-place) +I0407 22:24:58.376996 359 net.cpp:122] Setting up relu1 +I0407 22:24:58.377004 359 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:24:58.377007 359 net.cpp:137] Memory required for data: 376518656 +I0407 22:24:58.377010 359 layer_factory.hpp:77] Creating layer norm1 +I0407 22:24:58.377019 359 net.cpp:84] Creating Layer norm1 +I0407 22:24:58.377038 359 net.cpp:406] norm1 <- conv1 +I0407 22:24:58.377043 359 net.cpp:380] norm1 -> norm1 +I0407 22:24:58.377588 359 net.cpp:122] Setting up norm1 +I0407 22:24:58.377597 359 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 22:24:58.377600 359 net.cpp:137] Memory required for data: 525203456 +I0407 22:24:58.377604 359 layer_factory.hpp:77] Creating layer pool1 +I0407 22:24:58.377610 359 net.cpp:84] Creating Layer pool1 +I0407 22:24:58.377614 359 net.cpp:406] pool1 <- norm1 +I0407 22:24:58.377619 359 net.cpp:380] pool1 -> pool1 +I0407 22:24:58.377650 359 net.cpp:122] Setting up pool1 +I0407 22:24:58.377655 359 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 22:24:58.377657 359 net.cpp:137] Memory required for data: 561035264 +I0407 22:24:58.377660 359 layer_factory.hpp:77] Creating layer conv2 +I0407 22:24:58.377669 359 net.cpp:84] Creating Layer conv2 +I0407 22:24:58.377672 359 net.cpp:406] conv2 <- pool1 +I0407 22:24:58.377676 359 net.cpp:380] conv2 -> conv2 +I0407 22:24:58.388175 359 net.cpp:122] Setting up conv2 +I0407 22:24:58.388195 359 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:24:58.388200 359 net.cpp:137] Memory required for data: 656586752 +I0407 22:24:58.388213 359 layer_factory.hpp:77] Creating layer relu2 +I0407 22:24:58.388221 359 net.cpp:84] Creating Layer relu2 +I0407 22:24:58.388226 359 net.cpp:406] relu2 <- conv2 +I0407 22:24:58.388233 359 net.cpp:367] relu2 -> conv2 (in-place) +I0407 22:24:58.388893 359 net.cpp:122] Setting up relu2 +I0407 22:24:58.388906 359 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:24:58.388911 359 net.cpp:137] Memory required for data: 752138240 +I0407 22:24:58.388916 359 layer_factory.hpp:77] Creating layer norm2 +I0407 22:24:58.388924 359 net.cpp:84] Creating Layer norm2 +I0407 22:24:58.388929 359 net.cpp:406] norm2 <- conv2 +I0407 22:24:58.388936 359 net.cpp:380] norm2 -> norm2 +I0407 22:24:58.389379 359 net.cpp:122] Setting up norm2 +I0407 22:24:58.389391 359 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 22:24:58.389395 359 net.cpp:137] Memory required for data: 847689728 +I0407 22:24:58.389400 359 layer_factory.hpp:77] Creating layer pool2 +I0407 22:24:58.389408 359 net.cpp:84] Creating Layer pool2 +I0407 22:24:58.389413 359 net.cpp:406] pool2 <- norm2 +I0407 22:24:58.389420 359 net.cpp:380] pool2 -> pool2 +I0407 22:24:58.389453 359 net.cpp:122] Setting up pool2 +I0407 22:24:58.389459 359 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:24:58.389463 359 net.cpp:137] Memory required for data: 869840896 +I0407 22:24:58.389467 359 layer_factory.hpp:77] Creating layer conv3 +I0407 22:24:58.389477 359 net.cpp:84] Creating Layer conv3 +I0407 22:24:58.389482 359 net.cpp:406] conv3 <- pool2 +I0407 22:24:58.389487 359 net.cpp:380] conv3 -> conv3 +I0407 22:24:58.400347 359 net.cpp:122] Setting up conv3 +I0407 22:24:58.400363 359 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:58.400367 359 net.cpp:137] Memory required for data: 903067648 +I0407 22:24:58.400375 359 layer_factory.hpp:77] Creating layer relu3 +I0407 22:24:58.400382 359 net.cpp:84] Creating Layer relu3 +I0407 22:24:58.400386 359 net.cpp:406] relu3 <- conv3 +I0407 22:24:58.400391 359 net.cpp:367] relu3 -> conv3 (in-place) +I0407 22:24:58.400890 359 net.cpp:122] Setting up relu3 +I0407 22:24:58.400900 359 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:58.400903 359 net.cpp:137] Memory required for data: 936294400 +I0407 22:24:58.400907 359 layer_factory.hpp:77] Creating layer conv4 +I0407 22:24:58.400915 359 net.cpp:84] Creating Layer conv4 +I0407 22:24:58.400918 359 net.cpp:406] conv4 <- conv3 +I0407 22:24:58.400923 359 net.cpp:380] conv4 -> conv4 +I0407 22:24:58.411839 359 net.cpp:122] Setting up conv4 +I0407 22:24:58.411855 359 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:58.411859 359 net.cpp:137] Memory required for data: 969521152 +I0407 22:24:58.411867 359 layer_factory.hpp:77] Creating layer relu4 +I0407 22:24:58.411876 359 net.cpp:84] Creating Layer relu4 +I0407 22:24:58.411896 359 net.cpp:406] relu4 <- conv4 +I0407 22:24:58.411902 359 net.cpp:367] relu4 -> conv4 (in-place) +I0407 22:24:58.412392 359 net.cpp:122] Setting up relu4 +I0407 22:24:58.412402 359 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 22:24:58.412405 359 net.cpp:137] Memory required for data: 1002747904 +I0407 22:24:58.412408 359 layer_factory.hpp:77] Creating layer conv5 +I0407 22:24:58.412417 359 net.cpp:84] Creating Layer conv5 +I0407 22:24:58.412420 359 net.cpp:406] conv5 <- conv4 +I0407 22:24:58.412426 359 net.cpp:380] conv5 -> conv5 +I0407 22:24:58.421608 359 net.cpp:122] Setting up conv5 +I0407 22:24:58.421627 359 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:24:58.421629 359 net.cpp:137] Memory required for data: 1024899072 +I0407 22:24:58.421643 359 layer_factory.hpp:77] Creating layer relu5 +I0407 22:24:58.421653 359 net.cpp:84] Creating Layer relu5 +I0407 22:24:58.421655 359 net.cpp:406] relu5 <- conv5 +I0407 22:24:58.421661 359 net.cpp:367] relu5 -> conv5 (in-place) +I0407 22:24:58.422227 359 net.cpp:122] Setting up relu5 +I0407 22:24:58.422238 359 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 22:24:58.422241 359 net.cpp:137] Memory required for data: 1047050240 +I0407 22:24:58.422245 359 layer_factory.hpp:77] Creating layer pool5 +I0407 22:24:58.422250 359 net.cpp:84] Creating Layer pool5 +I0407 22:24:58.422253 359 net.cpp:406] pool5 <- conv5 +I0407 22:24:58.422259 359 net.cpp:380] pool5 -> pool5 +I0407 22:24:58.422294 359 net.cpp:122] Setting up pool5 +I0407 22:24:58.422300 359 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 22:24:58.422303 359 net.cpp:137] Memory required for data: 1051768832 +I0407 22:24:58.422307 359 layer_factory.hpp:77] Creating layer fc6 +I0407 22:24:58.422315 359 net.cpp:84] Creating Layer fc6 +I0407 22:24:58.422318 359 net.cpp:406] fc6 <- pool5 +I0407 22:24:58.422323 359 net.cpp:380] fc6 -> fc6 +I0407 22:24:58.781308 359 net.cpp:122] Setting up fc6 +I0407 22:24:58.781327 359 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:58.781330 359 net.cpp:137] Memory required for data: 1053865984 +I0407 22:24:58.781339 359 layer_factory.hpp:77] Creating layer relu6 +I0407 22:24:58.781348 359 net.cpp:84] Creating Layer relu6 +I0407 22:24:58.781352 359 net.cpp:406] relu6 <- fc6 +I0407 22:24:58.781359 359 net.cpp:367] relu6 -> fc6 (in-place) +I0407 22:24:58.782140 359 net.cpp:122] Setting up relu6 +I0407 22:24:58.782151 359 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:58.782155 359 net.cpp:137] Memory required for data: 1055963136 +I0407 22:24:58.782158 359 layer_factory.hpp:77] Creating layer drop6 +I0407 22:24:58.782164 359 net.cpp:84] Creating Layer drop6 +I0407 22:24:58.782167 359 net.cpp:406] drop6 <- fc6 +I0407 22:24:58.782172 359 net.cpp:367] drop6 -> fc6 (in-place) +I0407 22:24:58.782200 359 net.cpp:122] Setting up drop6 +I0407 22:24:58.782205 359 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:58.782207 359 net.cpp:137] Memory required for data: 1058060288 +I0407 22:24:58.782210 359 layer_factory.hpp:77] Creating layer fc7 +I0407 22:24:58.782218 359 net.cpp:84] Creating Layer fc7 +I0407 22:24:58.782222 359 net.cpp:406] fc7 <- fc6 +I0407 22:24:58.782225 359 net.cpp:380] fc7 -> fc7 +I0407 22:24:58.941969 359 net.cpp:122] Setting up fc7 +I0407 22:24:58.941987 359 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:58.941990 359 net.cpp:137] Memory required for data: 1060157440 +I0407 22:24:58.941999 359 layer_factory.hpp:77] Creating layer relu7 +I0407 22:24:58.942008 359 net.cpp:84] Creating Layer relu7 +I0407 22:24:58.942011 359 net.cpp:406] relu7 <- fc7 +I0407 22:24:58.942018 359 net.cpp:367] relu7 -> fc7 (in-place) +I0407 22:24:58.942502 359 net.cpp:122] Setting up relu7 +I0407 22:24:58.942517 359 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:58.942519 359 net.cpp:137] Memory required for data: 1062254592 +I0407 22:24:58.942523 359 layer_factory.hpp:77] Creating layer drop7 +I0407 22:24:58.942529 359 net.cpp:84] Creating Layer drop7 +I0407 22:24:58.942548 359 net.cpp:406] drop7 <- fc7 +I0407 22:24:58.942554 359 net.cpp:367] drop7 -> fc7 (in-place) +I0407 22:24:58.942576 359 net.cpp:122] Setting up drop7 +I0407 22:24:58.942581 359 net.cpp:129] Top shape: 128 4096 (524288) +I0407 22:24:58.942584 359 net.cpp:137] Memory required for data: 1064351744 +I0407 22:24:58.942586 359 layer_factory.hpp:77] Creating layer fc8 +I0407 22:24:58.942595 359 net.cpp:84] Creating Layer fc8 +I0407 22:24:58.942597 359 net.cpp:406] fc8 <- fc7 +I0407 22:24:58.942602 359 net.cpp:380] fc8 -> fc8 +I0407 22:24:58.950403 359 net.cpp:122] Setting up fc8 +I0407 22:24:58.950412 359 net.cpp:129] Top shape: 128 196 (25088) +I0407 22:24:58.950415 359 net.cpp:137] Memory required for data: 1064452096 +I0407 22:24:58.950421 359 layer_factory.hpp:77] Creating layer loss +I0407 22:24:58.950428 359 net.cpp:84] Creating Layer loss +I0407 22:24:58.950431 359 net.cpp:406] loss <- fc8 +I0407 22:24:58.950435 359 net.cpp:406] loss <- label +I0407 22:24:58.950441 359 net.cpp:380] loss -> loss +I0407 22:24:58.950449 359 layer_factory.hpp:77] Creating layer loss +I0407 22:24:58.951120 359 net.cpp:122] Setting up loss +I0407 22:24:58.951129 359 net.cpp:129] Top shape: (1) +I0407 22:24:58.951133 359 net.cpp:132] with loss weight 1 +I0407 22:24:58.951148 359 net.cpp:137] Memory required for data: 1064452100 +I0407 22:24:58.951151 359 net.cpp:198] loss needs backward computation. +I0407 22:24:58.951157 359 net.cpp:198] fc8 needs backward computation. +I0407 22:24:58.951160 359 net.cpp:198] drop7 needs backward computation. +I0407 22:24:58.951164 359 net.cpp:198] relu7 needs backward computation. +I0407 22:24:58.951165 359 net.cpp:198] fc7 needs backward computation. +I0407 22:24:58.951169 359 net.cpp:198] drop6 needs backward computation. +I0407 22:24:58.951170 359 net.cpp:198] relu6 needs backward computation. +I0407 22:24:58.951174 359 net.cpp:198] fc6 needs backward computation. +I0407 22:24:58.951176 359 net.cpp:198] pool5 needs backward computation. +I0407 22:24:58.951179 359 net.cpp:198] relu5 needs backward computation. +I0407 22:24:58.951182 359 net.cpp:198] conv5 needs backward computation. +I0407 22:24:58.951185 359 net.cpp:198] relu4 needs backward computation. +I0407 22:24:58.951189 359 net.cpp:198] conv4 needs backward computation. +I0407 22:24:58.951191 359 net.cpp:198] relu3 needs backward computation. +I0407 22:24:58.951193 359 net.cpp:198] conv3 needs backward computation. +I0407 22:24:58.951203 359 net.cpp:198] pool2 needs backward computation. +I0407 22:24:58.951207 359 net.cpp:198] norm2 needs backward computation. +I0407 22:24:58.951210 359 net.cpp:198] relu2 needs backward computation. +I0407 22:24:58.951212 359 net.cpp:198] conv2 needs backward computation. +I0407 22:24:58.951215 359 net.cpp:198] pool1 needs backward computation. +I0407 22:24:58.951218 359 net.cpp:198] norm1 needs backward computation. +I0407 22:24:58.951221 359 net.cpp:198] relu1 needs backward computation. +I0407 22:24:58.951223 359 net.cpp:198] conv1 needs backward computation. +I0407 22:24:58.951226 359 net.cpp:200] train-data does not need backward computation. +I0407 22:24:58.951229 359 net.cpp:242] This network produces output loss +I0407 22:24:58.951246 359 net.cpp:255] Network initialization done. +I0407 22:24:58.951777 359 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 22:24:58.951807 359 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 22:24:58.951942 359 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 22:24:58.952044 359 layer_factory.hpp:77] Creating layer val-data +I0407 22:24:58.953537 359 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/val_db +I0407 22:24:58.954196 359 net.cpp:84] Creating Layer val-data +I0407 22:24:58.954207 359 net.cpp:380] val-data -> data +I0407 22:24:58.954216 359 net.cpp:380] val-data -> label +I0407 22:24:58.954221 359 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-TAM-1/digits/jobs/20210407-221849-d51c/mean.binaryproto +I0407 22:24:58.957778 359 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 22:24:58.991655 359 net.cpp:122] Setting up val-data +I0407 22:24:58.991675 359 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 22:24:58.991679 359 net.cpp:129] Top shape: 32 (32) +I0407 22:24:58.991683 359 net.cpp:137] Memory required for data: 19787264 +I0407 22:24:58.991688 359 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 22:24:58.991699 359 net.cpp:84] Creating Layer label_val-data_1_split +I0407 22:24:58.991703 359 net.cpp:406] label_val-data_1_split <- label +I0407 22:24:58.991708 359 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 22:24:58.991717 359 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 22:24:58.991762 359 net.cpp:122] Setting up label_val-data_1_split +I0407 22:24:58.991768 359 net.cpp:129] Top shape: 32 (32) +I0407 22:24:58.991771 359 net.cpp:129] Top shape: 32 (32) +I0407 22:24:58.991773 359 net.cpp:137] Memory required for data: 19787520 +I0407 22:24:58.991776 359 layer_factory.hpp:77] Creating layer conv1 +I0407 22:24:58.991787 359 net.cpp:84] Creating Layer conv1 +I0407 22:24:58.991789 359 net.cpp:406] conv1 <- data +I0407 22:24:58.991794 359 net.cpp:380] conv1 -> conv1 +I0407 22:24:58.994642 359 net.cpp:122] Setting up conv1 +I0407 22:24:58.994653 359 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:24:58.994657 359 net.cpp:137] Memory required for data: 56958720 +I0407 22:24:58.994665 359 layer_factory.hpp:77] Creating layer relu1 +I0407 22:24:58.994671 359 net.cpp:84] Creating Layer relu1 +I0407 22:24:58.994674 359 net.cpp:406] relu1 <- conv1 +I0407 22:24:58.994679 359 net.cpp:367] relu1 -> conv1 (in-place) +I0407 22:24:58.995002 359 net.cpp:122] Setting up relu1 +I0407 22:24:58.995012 359 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:24:58.995014 359 net.cpp:137] Memory required for data: 94129920 +I0407 22:24:58.995018 359 layer_factory.hpp:77] Creating layer norm1 +I0407 22:24:58.995024 359 net.cpp:84] Creating Layer norm1 +I0407 22:24:58.995028 359 net.cpp:406] norm1 <- conv1 +I0407 22:24:58.995033 359 net.cpp:380] norm1 -> norm1 +I0407 22:24:58.995978 359 net.cpp:122] Setting up norm1 +I0407 22:24:58.995988 359 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 22:24:58.995990 359 net.cpp:137] Memory required for data: 131301120 +I0407 22:24:58.995995 359 layer_factory.hpp:77] Creating layer pool1 +I0407 22:24:58.996001 359 net.cpp:84] Creating Layer pool1 +I0407 22:24:58.996003 359 net.cpp:406] pool1 <- norm1 +I0407 22:24:58.996008 359 net.cpp:380] pool1 -> pool1 +I0407 22:24:58.996034 359 net.cpp:122] Setting up pool1 +I0407 22:24:58.996039 359 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 22:24:58.996042 359 net.cpp:137] Memory required for data: 140259072 +I0407 22:24:58.996044 359 layer_factory.hpp:77] Creating layer conv2 +I0407 22:24:58.996052 359 net.cpp:84] Creating Layer conv2 +I0407 22:24:58.996054 359 net.cpp:406] conv2 <- pool1 +I0407 22:24:58.996076 359 net.cpp:380] conv2 -> conv2 +I0407 22:24:59.004604 359 net.cpp:122] Setting up conv2 +I0407 22:24:59.004626 359 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:24:59.004629 359 net.cpp:137] Memory required for data: 164146944 +I0407 22:24:59.004640 359 layer_factory.hpp:77] Creating layer relu2 +I0407 22:24:59.004648 359 net.cpp:84] Creating Layer relu2 +I0407 22:24:59.004652 359 net.cpp:406] relu2 <- conv2 +I0407 22:24:59.004657 359 net.cpp:367] relu2 -> conv2 (in-place) +I0407 22:24:59.005244 359 net.cpp:122] Setting up relu2 +I0407 22:24:59.005254 359 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:24:59.005256 359 net.cpp:137] Memory required for data: 188034816 +I0407 22:24:59.005259 359 layer_factory.hpp:77] Creating layer norm2 +I0407 22:24:59.005270 359 net.cpp:84] Creating Layer norm2 +I0407 22:24:59.005272 359 net.cpp:406] norm2 <- conv2 +I0407 22:24:59.005277 359 net.cpp:380] norm2 -> norm2 +I0407 22:24:59.006044 359 net.cpp:122] Setting up norm2 +I0407 22:24:59.006053 359 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 22:24:59.006057 359 net.cpp:137] Memory required for data: 211922688 +I0407 22:24:59.006060 359 layer_factory.hpp:77] Creating layer pool2 +I0407 22:24:59.006067 359 net.cpp:84] Creating Layer pool2 +I0407 22:24:59.006070 359 net.cpp:406] pool2 <- norm2 +I0407 22:24:59.006078 359 net.cpp:380] pool2 -> pool2 +I0407 22:24:59.006105 359 net.cpp:122] Setting up pool2 +I0407 22:24:59.006111 359 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:24:59.006114 359 net.cpp:137] Memory required for data: 217460480 +I0407 22:24:59.006116 359 layer_factory.hpp:77] Creating layer conv3 +I0407 22:24:59.006126 359 net.cpp:84] Creating Layer conv3 +I0407 22:24:59.006129 359 net.cpp:406] conv3 <- pool2 +I0407 22:24:59.006135 359 net.cpp:380] conv3 -> conv3 +I0407 22:24:59.018026 359 net.cpp:122] Setting up conv3 +I0407 22:24:59.018043 359 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:59.018045 359 net.cpp:137] Memory required for data: 225767168 +I0407 22:24:59.018056 359 layer_factory.hpp:77] Creating layer relu3 +I0407 22:24:59.018066 359 net.cpp:84] Creating Layer relu3 +I0407 22:24:59.018069 359 net.cpp:406] relu3 <- conv3 +I0407 22:24:59.018075 359 net.cpp:367] relu3 -> conv3 (in-place) +I0407 22:24:59.018676 359 net.cpp:122] Setting up relu3 +I0407 22:24:59.018685 359 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:59.018688 359 net.cpp:137] Memory required for data: 234073856 +I0407 22:24:59.018692 359 layer_factory.hpp:77] Creating layer conv4 +I0407 22:24:59.018702 359 net.cpp:84] Creating Layer conv4 +I0407 22:24:59.018705 359 net.cpp:406] conv4 <- conv3 +I0407 22:24:59.018712 359 net.cpp:380] conv4 -> conv4 +I0407 22:24:59.029397 359 net.cpp:122] Setting up conv4 +I0407 22:24:59.029410 359 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:59.029414 359 net.cpp:137] Memory required for data: 242380544 +I0407 22:24:59.029422 359 layer_factory.hpp:77] Creating layer relu4 +I0407 22:24:59.029428 359 net.cpp:84] Creating Layer relu4 +I0407 22:24:59.029431 359 net.cpp:406] relu4 <- conv4 +I0407 22:24:59.029438 359 net.cpp:367] relu4 -> conv4 (in-place) +I0407 22:24:59.029821 359 net.cpp:122] Setting up relu4 +I0407 22:24:59.029830 359 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 22:24:59.029832 359 net.cpp:137] Memory required for data: 250687232 +I0407 22:24:59.029835 359 layer_factory.hpp:77] Creating layer conv5 +I0407 22:24:59.029846 359 net.cpp:84] Creating Layer conv5 +I0407 22:24:59.029850 359 net.cpp:406] conv5 <- conv4 +I0407 22:24:59.029856 359 net.cpp:380] conv5 -> conv5 +I0407 22:24:59.039891 359 net.cpp:122] Setting up conv5 +I0407 22:24:59.039907 359 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:24:59.039911 359 net.cpp:137] Memory required for data: 256225024 +I0407 22:24:59.039922 359 layer_factory.hpp:77] Creating layer relu5 +I0407 22:24:59.039929 359 net.cpp:84] Creating Layer relu5 +I0407 22:24:59.039948 359 net.cpp:406] relu5 <- conv5 +I0407 22:24:59.039954 359 net.cpp:367] relu5 -> conv5 (in-place) +I0407 22:24:59.040582 359 net.cpp:122] Setting up relu5 +I0407 22:24:59.040592 359 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 22:24:59.040596 359 net.cpp:137] Memory required for data: 261762816 +I0407 22:24:59.040598 359 layer_factory.hpp:77] Creating layer pool5 +I0407 22:24:59.040608 359 net.cpp:84] Creating Layer pool5 +I0407 22:24:59.040611 359 net.cpp:406] pool5 <- conv5 +I0407 22:24:59.040616 359 net.cpp:380] pool5 -> pool5 +I0407 22:24:59.040652 359 net.cpp:122] Setting up pool5 +I0407 22:24:59.040657 359 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 22:24:59.040659 359 net.cpp:137] Memory required for data: 262942464 +I0407 22:24:59.040663 359 layer_factory.hpp:77] Creating layer fc6 +I0407 22:24:59.040670 359 net.cpp:84] Creating Layer fc6 +I0407 22:24:59.040673 359 net.cpp:406] fc6 <- pool5 +I0407 22:24:59.040678 359 net.cpp:380] fc6 -> fc6 +I0407 22:24:59.399106 359 net.cpp:122] Setting up fc6 +I0407 22:24:59.399128 359 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:59.399132 359 net.cpp:137] Memory required for data: 263466752 +I0407 22:24:59.399140 359 layer_factory.hpp:77] Creating layer relu6 +I0407 22:24:59.399152 359 net.cpp:84] Creating Layer relu6 +I0407 22:24:59.399154 359 net.cpp:406] relu6 <- fc6 +I0407 22:24:59.399160 359 net.cpp:367] relu6 -> fc6 (in-place) +I0407 22:24:59.399969 359 net.cpp:122] Setting up relu6 +I0407 22:24:59.399978 359 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:59.399981 359 net.cpp:137] Memory required for data: 263991040 +I0407 22:24:59.399984 359 layer_factory.hpp:77] Creating layer drop6 +I0407 22:24:59.399991 359 net.cpp:84] Creating Layer drop6 +I0407 22:24:59.399994 359 net.cpp:406] drop6 <- fc6 +I0407 22:24:59.400000 359 net.cpp:367] drop6 -> fc6 (in-place) +I0407 22:24:59.400023 359 net.cpp:122] Setting up drop6 +I0407 22:24:59.400028 359 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:59.400032 359 net.cpp:137] Memory required for data: 264515328 +I0407 22:24:59.400033 359 layer_factory.hpp:77] Creating layer fc7 +I0407 22:24:59.400040 359 net.cpp:84] Creating Layer fc7 +I0407 22:24:59.400043 359 net.cpp:406] fc7 <- fc6 +I0407 22:24:59.400048 359 net.cpp:380] fc7 -> fc7 +I0407 22:24:59.559554 359 net.cpp:122] Setting up fc7 +I0407 22:24:59.559576 359 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:59.559579 359 net.cpp:137] Memory required for data: 265039616 +I0407 22:24:59.559588 359 layer_factory.hpp:77] Creating layer relu7 +I0407 22:24:59.559597 359 net.cpp:84] Creating Layer relu7 +I0407 22:24:59.559599 359 net.cpp:406] relu7 <- fc7 +I0407 22:24:59.559605 359 net.cpp:367] relu7 -> fc7 (in-place) +I0407 22:24:59.560138 359 net.cpp:122] Setting up relu7 +I0407 22:24:59.560149 359 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:59.560153 359 net.cpp:137] Memory required for data: 265563904 +I0407 22:24:59.560155 359 layer_factory.hpp:77] Creating layer drop7 +I0407 22:24:59.560161 359 net.cpp:84] Creating Layer drop7 +I0407 22:24:59.560164 359 net.cpp:406] drop7 <- fc7 +I0407 22:24:59.560169 359 net.cpp:367] drop7 -> fc7 (in-place) +I0407 22:24:59.560194 359 net.cpp:122] Setting up drop7 +I0407 22:24:59.560199 359 net.cpp:129] Top shape: 32 4096 (131072) +I0407 22:24:59.560202 359 net.cpp:137] Memory required for data: 266088192 +I0407 22:24:59.560204 359 layer_factory.hpp:77] Creating layer fc8 +I0407 22:24:59.560211 359 net.cpp:84] Creating Layer fc8 +I0407 22:24:59.560214 359 net.cpp:406] fc8 <- fc7 +I0407 22:24:59.560218 359 net.cpp:380] fc8 -> fc8 +I0407 22:24:59.568007 359 net.cpp:122] Setting up fc8 +I0407 22:24:59.568018 359 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:24:59.568020 359 net.cpp:137] Memory required for data: 266113280 +I0407 22:24:59.568027 359 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 22:24:59.568032 359 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 22:24:59.568035 359 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 22:24:59.568056 359 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 22:24:59.568063 359 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 22:24:59.568091 359 net.cpp:122] Setting up fc8_fc8_0_split +I0407 22:24:59.568095 359 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:24:59.568099 359 net.cpp:129] Top shape: 32 196 (6272) +I0407 22:24:59.568101 359 net.cpp:137] Memory required for data: 266163456 +I0407 22:24:59.568104 359 layer_factory.hpp:77] Creating layer accuracy +I0407 22:24:59.568111 359 net.cpp:84] Creating Layer accuracy +I0407 22:24:59.568114 359 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 22:24:59.568117 359 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 22:24:59.568122 359 net.cpp:380] accuracy -> accuracy +I0407 22:24:59.568128 359 net.cpp:122] Setting up accuracy +I0407 22:24:59.568132 359 net.cpp:129] Top shape: (1) +I0407 22:24:59.568135 359 net.cpp:137] Memory required for data: 266163460 +I0407 22:24:59.568137 359 layer_factory.hpp:77] Creating layer loss +I0407 22:24:59.568141 359 net.cpp:84] Creating Layer loss +I0407 22:24:59.568145 359 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 22:24:59.568147 359 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 22:24:59.568151 359 net.cpp:380] loss -> loss +I0407 22:24:59.568158 359 layer_factory.hpp:77] Creating layer loss +I0407 22:24:59.568816 359 net.cpp:122] Setting up loss +I0407 22:24:59.568826 359 net.cpp:129] Top shape: (1) +I0407 22:24:59.568830 359 net.cpp:132] with loss weight 1 +I0407 22:24:59.568838 359 net.cpp:137] Memory required for data: 266163464 +I0407 22:24:59.568842 359 net.cpp:198] loss needs backward computation. +I0407 22:24:59.568846 359 net.cpp:200] accuracy does not need backward computation. +I0407 22:24:59.568850 359 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 22:24:59.568852 359 net.cpp:198] fc8 needs backward computation. +I0407 22:24:59.568856 359 net.cpp:198] drop7 needs backward computation. +I0407 22:24:59.568858 359 net.cpp:198] relu7 needs backward computation. +I0407 22:24:59.568861 359 net.cpp:198] fc7 needs backward computation. +I0407 22:24:59.568863 359 net.cpp:198] drop6 needs backward computation. +I0407 22:24:59.568866 359 net.cpp:198] relu6 needs backward computation. +I0407 22:24:59.568868 359 net.cpp:198] fc6 needs backward computation. +I0407 22:24:59.568872 359 net.cpp:198] pool5 needs backward computation. +I0407 22:24:59.568876 359 net.cpp:198] relu5 needs backward computation. +I0407 22:24:59.568877 359 net.cpp:198] conv5 needs backward computation. +I0407 22:24:59.568881 359 net.cpp:198] relu4 needs backward computation. +I0407 22:24:59.568883 359 net.cpp:198] conv4 needs backward computation. +I0407 22:24:59.568886 359 net.cpp:198] relu3 needs backward computation. +I0407 22:24:59.568889 359 net.cpp:198] conv3 needs backward computation. +I0407 22:24:59.568892 359 net.cpp:198] pool2 needs backward computation. +I0407 22:24:59.568894 359 net.cpp:198] norm2 needs backward computation. +I0407 22:24:59.568897 359 net.cpp:198] relu2 needs backward computation. +I0407 22:24:59.568900 359 net.cpp:198] conv2 needs backward computation. +I0407 22:24:59.568902 359 net.cpp:198] pool1 needs backward computation. +I0407 22:24:59.568905 359 net.cpp:198] norm1 needs backward computation. +I0407 22:24:59.568909 359 net.cpp:198] relu1 needs backward computation. +I0407 22:24:59.568912 359 net.cpp:198] conv1 needs backward computation. +I0407 22:24:59.568914 359 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 22:24:59.568918 359 net.cpp:200] val-data does not need backward computation. +I0407 22:24:59.568920 359 net.cpp:242] This network produces output accuracy +I0407 22:24:59.568923 359 net.cpp:242] This network produces output loss +I0407 22:24:59.568939 359 net.cpp:255] Network initialization done. +I0407 22:24:59.569005 359 solver.cpp:56] Solver scaffolding done. +I0407 22:24:59.569339 359 caffe.cpp:248] Starting Optimization +I0407 22:24:59.569347 359 solver.cpp:272] Solving +I0407 22:24:59.569358 359 solver.cpp:273] Learning Rate Policy: sigmoid +I0407 22:24:59.571000 359 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 22:24:59.571009 359 net.cpp:676] Ignoring source layer train-data +I0407 22:24:59.658704 359 blocking_queue.cpp:49] Waiting for data +I0407 22:25:03.936782 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:03.982277 359 solver.cpp:397] Test net output #0: accuracy = 0.00245098 +I0407 22:25:03.982334 359 solver.cpp:397] Test net output #1: loss = 5.28174 (* 1 = 5.28174 loss) +I0407 22:25:04.081135 359 solver.cpp:218] Iteration 0 (0 iter/s, 4.51172s/12 iters), loss = 5.28806 +I0407 22:25:04.082665 359 solver.cpp:237] Train net output #0: loss = 5.28806 (* 1 = 5.28806 loss) +I0407 22:25:04.082700 359 sgd_solver.cpp:105] Iteration 0, lr = 0.00999955 +I0407 22:25:07.896353 359 solver.cpp:218] Iteration 12 (3.14657 iter/s, 3.81367s/12 iters), loss = 5.28562 +I0407 22:25:07.896394 359 solver.cpp:237] Train net output #0: loss = 5.28562 (* 1 = 5.28562 loss) +I0407 22:25:07.896401 359 sgd_solver.cpp:105] Iteration 12, lr = 0.00999954 +I0407 22:25:12.851897 359 solver.cpp:218] Iteration 24 (2.42156 iter/s, 4.95549s/12 iters), loss = 5.29167 +I0407 22:25:12.851936 359 solver.cpp:237] Train net output #0: loss = 5.29167 (* 1 = 5.29167 loss) +I0407 22:25:12.851944 359 sgd_solver.cpp:105] Iteration 24, lr = 0.00999952 +I0407 22:25:17.794610 359 solver.cpp:218] Iteration 36 (2.42785 iter/s, 4.94265s/12 iters), loss = 5.28802 +I0407 22:25:17.794651 359 solver.cpp:237] Train net output #0: loss = 5.28802 (* 1 = 5.28802 loss) +I0407 22:25:17.794661 359 sgd_solver.cpp:105] Iteration 36, lr = 0.00999951 +I0407 22:25:22.766485 359 solver.cpp:218] Iteration 48 (2.41361 iter/s, 4.97181s/12 iters), loss = 5.2704 +I0407 22:25:22.766522 359 solver.cpp:237] Train net output #0: loss = 5.2704 (* 1 = 5.2704 loss) +I0407 22:25:22.766530 359 sgd_solver.cpp:105] Iteration 48, lr = 0.0099995 +I0407 22:25:27.680014 359 solver.cpp:218] Iteration 60 (2.44226 iter/s, 4.91347s/12 iters), loss = 5.26748 +I0407 22:25:27.680188 359 solver.cpp:237] Train net output #0: loss = 5.26748 (* 1 = 5.26748 loss) +I0407 22:25:27.680197 359 sgd_solver.cpp:105] Iteration 60, lr = 0.00999949 +I0407 22:25:32.628957 359 solver.cpp:218] Iteration 72 (2.42485 iter/s, 4.94875s/12 iters), loss = 5.29883 +I0407 22:25:32.628998 359 solver.cpp:237] Train net output #0: loss = 5.29883 (* 1 = 5.29883 loss) +I0407 22:25:32.629009 359 sgd_solver.cpp:105] Iteration 72, lr = 0.00999948 +I0407 22:25:37.554020 359 solver.cpp:218] Iteration 84 (2.43655 iter/s, 4.92501s/12 iters), loss = 5.30654 +I0407 22:25:37.554062 359 solver.cpp:237] Train net output #0: loss = 5.30654 (* 1 = 5.30654 loss) +I0407 22:25:37.554071 359 sgd_solver.cpp:105] Iteration 84, lr = 0.00999946 +I0407 22:25:42.509307 359 solver.cpp:218] Iteration 96 (2.42169 iter/s, 4.95522s/12 iters), loss = 5.29047 +I0407 22:25:42.509352 359 solver.cpp:237] Train net output #0: loss = 5.29047 (* 1 = 5.29047 loss) +I0407 22:25:42.509361 359 sgd_solver.cpp:105] Iteration 96, lr = 0.00999945 +I0407 22:25:44.187778 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:44.489156 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 22:25:50.035602 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 22:25:53.812662 359 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 22:25:53.812680 359 net.cpp:676] Ignoring source layer train-data +I0407 22:25:58.538599 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:25:58.625958 359 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0407 22:25:58.626006 359 solver.cpp:397] Test net output #1: loss = 5.28653 (* 1 = 5.28653 loss) +I0407 22:26:00.399950 359 solver.cpp:218] Iteration 108 (0.670745 iter/s, 17.8906s/12 iters), loss = 5.29295 +I0407 22:26:00.399988 359 solver.cpp:237] Train net output #0: loss = 5.29295 (* 1 = 5.29295 loss) +I0407 22:26:00.399996 359 sgd_solver.cpp:105] Iteration 108, lr = 0.00999944 +I0407 22:26:05.338814 359 solver.cpp:218] Iteration 120 (2.42974 iter/s, 4.9388s/12 iters), loss = 5.26551 +I0407 22:26:05.338848 359 solver.cpp:237] Train net output #0: loss = 5.26551 (* 1 = 5.26551 loss) +I0407 22:26:05.338856 359 sgd_solver.cpp:105] Iteration 120, lr = 0.00999943 +I0407 22:26:10.315505 359 solver.cpp:218] Iteration 132 (2.41127 iter/s, 4.97663s/12 iters), loss = 5.30808 +I0407 22:26:10.315548 359 solver.cpp:237] Train net output #0: loss = 5.30808 (* 1 = 5.30808 loss) +I0407 22:26:10.315557 359 sgd_solver.cpp:105] Iteration 132, lr = 0.00999941 +I0407 22:26:15.271690 359 solver.cpp:218] Iteration 144 (2.42125 iter/s, 4.95612s/12 iters), loss = 5.29402 +I0407 22:26:15.271726 359 solver.cpp:237] Train net output #0: loss = 5.29402 (* 1 = 5.29402 loss) +I0407 22:26:15.271734 359 sgd_solver.cpp:105] Iteration 144, lr = 0.0099994 +I0407 22:26:20.201300 359 solver.cpp:218] Iteration 156 (2.4343 iter/s, 4.92955s/12 iters), loss = 5.26807 +I0407 22:26:20.201336 359 solver.cpp:237] Train net output #0: loss = 5.26807 (* 1 = 5.26807 loss) +I0407 22:26:20.201344 359 sgd_solver.cpp:105] Iteration 156, lr = 0.00999938 +I0407 22:26:25.184865 359 solver.cpp:218] Iteration 168 (2.40794 iter/s, 4.98351s/12 iters), loss = 5.28113 +I0407 22:26:25.184901 359 solver.cpp:237] Train net output #0: loss = 5.28113 (* 1 = 5.28113 loss) +I0407 22:26:25.184909 359 sgd_solver.cpp:105] Iteration 168, lr = 0.00999937 +I0407 22:26:30.109724 359 solver.cpp:218] Iteration 180 (2.43665 iter/s, 4.9248s/12 iters), loss = 5.29121 +I0407 22:26:30.109831 359 solver.cpp:237] Train net output #0: loss = 5.29121 (* 1 = 5.29121 loss) +I0407 22:26:30.109840 359 sgd_solver.cpp:105] Iteration 180, lr = 0.00999935 +I0407 22:26:35.060994 359 solver.cpp:218] Iteration 192 (2.42368 iter/s, 4.95114s/12 iters), loss = 5.27884 +I0407 22:26:35.061033 359 solver.cpp:237] Train net output #0: loss = 5.27884 (* 1 = 5.27884 loss) +I0407 22:26:35.061039 359 sgd_solver.cpp:105] Iteration 192, lr = 0.00999934 +I0407 22:26:38.851106 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:39.524173 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 22:26:42.585925 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 22:26:44.957439 359 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 22:26:44.957466 359 net.cpp:676] Ignoring source layer train-data +I0407 22:26:49.607137 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:26:49.742899 359 solver.cpp:397] Test net output #0: accuracy = 0.00796569 +I0407 22:26:49.742942 359 solver.cpp:397] Test net output #1: loss = 5.19495 (* 1 = 5.19495 loss) +I0407 22:26:49.839781 359 solver.cpp:218] Iteration 204 (0.811979 iter/s, 14.7787s/12 iters), loss = 5.24342 +I0407 22:26:49.839821 359 solver.cpp:237] Train net output #0: loss = 5.24342 (* 1 = 5.24342 loss) +I0407 22:26:49.839828 359 sgd_solver.cpp:105] Iteration 204, lr = 0.00999932 +I0407 22:26:53.951974 359 solver.cpp:218] Iteration 216 (2.91819 iter/s, 4.11213s/12 iters), loss = 5.2751 +I0407 22:26:53.952008 359 solver.cpp:237] Train net output #0: loss = 5.2751 (* 1 = 5.2751 loss) +I0407 22:26:53.952015 359 sgd_solver.cpp:105] Iteration 216, lr = 0.00999931 +I0407 22:26:58.894639 359 solver.cpp:218] Iteration 228 (2.42787 iter/s, 4.94261s/12 iters), loss = 5.2056 +I0407 22:26:58.894675 359 solver.cpp:237] Train net output #0: loss = 5.2056 (* 1 = 5.2056 loss) +I0407 22:26:58.894683 359 sgd_solver.cpp:105] Iteration 228, lr = 0.00999929 +I0407 22:27:03.779997 359 solver.cpp:218] Iteration 240 (2.45635 iter/s, 4.8853s/12 iters), loss = 5.21841 +I0407 22:27:03.780162 359 solver.cpp:237] Train net output #0: loss = 5.21841 (* 1 = 5.21841 loss) +I0407 22:27:03.780172 359 sgd_solver.cpp:105] Iteration 240, lr = 0.00999927 +I0407 22:27:08.759843 359 solver.cpp:218] Iteration 252 (2.4098 iter/s, 4.97966s/12 iters), loss = 5.21303 +I0407 22:27:08.759881 359 solver.cpp:237] Train net output #0: loss = 5.21303 (* 1 = 5.21303 loss) +I0407 22:27:08.759888 359 sgd_solver.cpp:105] Iteration 252, lr = 0.00999926 +I0407 22:27:13.693011 359 solver.cpp:218] Iteration 264 (2.43255 iter/s, 4.9331s/12 iters), loss = 5.17119 +I0407 22:27:13.693055 359 solver.cpp:237] Train net output #0: loss = 5.17119 (* 1 = 5.17119 loss) +I0407 22:27:13.693063 359 sgd_solver.cpp:105] Iteration 264, lr = 0.00999924 +I0407 22:27:18.646687 359 solver.cpp:218] Iteration 276 (2.42248 iter/s, 4.95361s/12 iters), loss = 5.10664 +I0407 22:27:18.646729 359 solver.cpp:237] Train net output #0: loss = 5.10664 (* 1 = 5.10664 loss) +I0407 22:27:18.646737 359 sgd_solver.cpp:105] Iteration 276, lr = 0.00999922 +I0407 22:27:23.590082 359 solver.cpp:218] Iteration 288 (2.42751 iter/s, 4.94333s/12 iters), loss = 5.15481 +I0407 22:27:23.590126 359 solver.cpp:237] Train net output #0: loss = 5.15481 (* 1 = 5.15481 loss) +I0407 22:27:23.590133 359 sgd_solver.cpp:105] Iteration 288, lr = 0.0099992 +I0407 22:27:28.508064 359 solver.cpp:218] Iteration 300 (2.44006 iter/s, 4.91792s/12 iters), loss = 5.1391 +I0407 22:27:28.508106 359 solver.cpp:237] Train net output #0: loss = 5.1391 (* 1 = 5.1391 loss) +I0407 22:27:28.508114 359 sgd_solver.cpp:105] Iteration 300, lr = 0.00999918 +I0407 22:27:29.468757 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:30.625247 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 22:27:33.680151 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 22:27:36.049736 359 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 22:27:36.049819 359 net.cpp:676] Ignoring source layer train-data +I0407 22:27:40.323453 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:27:40.484102 359 solver.cpp:397] Test net output #0: accuracy = 0.00980392 +I0407 22:27:40.484138 359 solver.cpp:397] Test net output #1: loss = 5.14301 (* 1 = 5.14301 loss) +I0407 22:27:42.278084 359 solver.cpp:218] Iteration 312 (0.871464 iter/s, 13.7699s/12 iters), loss = 5.16477 +I0407 22:27:42.278126 359 solver.cpp:237] Train net output #0: loss = 5.16477 (* 1 = 5.16477 loss) +I0407 22:27:42.278133 359 sgd_solver.cpp:105] Iteration 312, lr = 0.00999916 +I0407 22:27:47.238617 359 solver.cpp:218] Iteration 324 (2.41913 iter/s, 4.96046s/12 iters), loss = 5.10394 +I0407 22:27:47.238658 359 solver.cpp:237] Train net output #0: loss = 5.10394 (* 1 = 5.10394 loss) +I0407 22:27:47.238667 359 sgd_solver.cpp:105] Iteration 324, lr = 0.00999914 +I0407 22:27:52.168494 359 solver.cpp:218] Iteration 336 (2.43417 iter/s, 4.92981s/12 iters), loss = 5.16258 +I0407 22:27:52.168537 359 solver.cpp:237] Train net output #0: loss = 5.16258 (* 1 = 5.16258 loss) +I0407 22:27:52.168546 359 sgd_solver.cpp:105] Iteration 336, lr = 0.00999912 +I0407 22:27:57.110576 359 solver.cpp:218] Iteration 348 (2.42816 iter/s, 4.94201s/12 iters), loss = 5.16971 +I0407 22:27:57.110622 359 solver.cpp:237] Train net output #0: loss = 5.16971 (* 1 = 5.16971 loss) +I0407 22:27:57.110631 359 sgd_solver.cpp:105] Iteration 348, lr = 0.0099991 +I0407 22:28:02.080013 359 solver.cpp:218] Iteration 360 (2.4148 iter/s, 4.96936s/12 iters), loss = 5.08358 +I0407 22:28:02.080055 359 solver.cpp:237] Train net output #0: loss = 5.08358 (* 1 = 5.08358 loss) +I0407 22:28:02.080065 359 sgd_solver.cpp:105] Iteration 360, lr = 0.00999908 +I0407 22:28:07.004658 359 solver.cpp:218] Iteration 372 (2.43676 iter/s, 4.92458s/12 iters), loss = 5.17792 +I0407 22:28:07.004829 359 solver.cpp:237] Train net output #0: loss = 5.17792 (* 1 = 5.17792 loss) +I0407 22:28:07.004838 359 sgd_solver.cpp:105] Iteration 372, lr = 0.00999906 +I0407 22:28:11.959836 359 solver.cpp:218] Iteration 384 (2.4218 iter/s, 4.95499s/12 iters), loss = 5.14355 +I0407 22:28:11.959878 359 solver.cpp:237] Train net output #0: loss = 5.14355 (* 1 = 5.14355 loss) +I0407 22:28:11.959887 359 sgd_solver.cpp:105] Iteration 384, lr = 0.00999904 +I0407 22:28:16.881438 359 solver.cpp:218] Iteration 396 (2.43826 iter/s, 4.92154s/12 iters), loss = 5.17333 +I0407 22:28:16.881474 359 solver.cpp:237] Train net output #0: loss = 5.17333 (* 1 = 5.17333 loss) +I0407 22:28:16.881481 359 sgd_solver.cpp:105] Iteration 396, lr = 0.00999901 +I0407 22:28:19.977671 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:21.349093 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 22:28:25.832041 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 22:28:29.169131 359 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 22:28:29.169149 359 net.cpp:676] Ignoring source layer train-data +I0407 22:28:33.587616 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:28:33.794279 359 solver.cpp:397] Test net output #0: accuracy = 0.0171569 +I0407 22:28:33.794325 359 solver.cpp:397] Test net output #1: loss = 5.09501 (* 1 = 5.09501 loss) +I0407 22:28:33.890836 359 solver.cpp:218] Iteration 408 (0.705496 iter/s, 17.0093s/12 iters), loss = 5.08627 +I0407 22:28:33.890900 359 solver.cpp:237] Train net output #0: loss = 5.08627 (* 1 = 5.08627 loss) +I0407 22:28:33.890913 359 sgd_solver.cpp:105] Iteration 408, lr = 0.00999899 +I0407 22:28:38.042706 359 solver.cpp:218] Iteration 420 (2.89032 iter/s, 4.15179s/12 iters), loss = 5.02218 +I0407 22:28:38.042827 359 solver.cpp:237] Train net output #0: loss = 5.02218 (* 1 = 5.02218 loss) +I0407 22:28:38.042836 359 sgd_solver.cpp:105] Iteration 420, lr = 0.00999897 +I0407 22:28:42.962224 359 solver.cpp:218] Iteration 432 (2.43933 iter/s, 4.91938s/12 iters), loss = 5.16687 +I0407 22:28:42.962265 359 solver.cpp:237] Train net output #0: loss = 5.16687 (* 1 = 5.16687 loss) +I0407 22:28:42.962272 359 sgd_solver.cpp:105] Iteration 432, lr = 0.00999894 +I0407 22:28:47.891464 359 solver.cpp:218] Iteration 444 (2.43448 iter/s, 4.92917s/12 iters), loss = 5.01469 +I0407 22:28:47.891505 359 solver.cpp:237] Train net output #0: loss = 5.01469 (* 1 = 5.01469 loss) +I0407 22:28:47.891512 359 sgd_solver.cpp:105] Iteration 444, lr = 0.00999892 +I0407 22:28:52.833674 359 solver.cpp:218] Iteration 456 (2.4281 iter/s, 4.94215s/12 iters), loss = 5.04734 +I0407 22:28:52.833719 359 solver.cpp:237] Train net output #0: loss = 5.04734 (* 1 = 5.04734 loss) +I0407 22:28:52.833726 359 sgd_solver.cpp:105] Iteration 456, lr = 0.00999889 +I0407 22:28:57.785079 359 solver.cpp:218] Iteration 468 (2.42359 iter/s, 4.95134s/12 iters), loss = 5.1518 +I0407 22:28:57.785120 359 solver.cpp:237] Train net output #0: loss = 5.1518 (* 1 = 5.1518 loss) +I0407 22:28:57.785128 359 sgd_solver.cpp:105] Iteration 468, lr = 0.00999886 +I0407 22:29:02.684864 359 solver.cpp:218] Iteration 480 (2.44912 iter/s, 4.89972s/12 iters), loss = 5.13715 +I0407 22:29:02.684908 359 solver.cpp:237] Train net output #0: loss = 5.13715 (* 1 = 5.13715 loss) +I0407 22:29:02.684917 359 sgd_solver.cpp:105] Iteration 480, lr = 0.00999884 +I0407 22:29:07.649720 359 solver.cpp:218] Iteration 492 (2.41702 iter/s, 4.96479s/12 iters), loss = 5.02726 +I0407 22:29:07.649762 359 solver.cpp:237] Train net output #0: loss = 5.02726 (* 1 = 5.02726 loss) +I0407 22:29:07.649771 359 sgd_solver.cpp:105] Iteration 492, lr = 0.00999881 +I0407 22:29:12.556727 359 solver.cpp:218] Iteration 504 (2.44552 iter/s, 4.90694s/12 iters), loss = 5.06168 +I0407 22:29:12.556864 359 solver.cpp:237] Train net output #0: loss = 5.06168 (* 1 = 5.06168 loss) +I0407 22:29:12.556874 359 sgd_solver.cpp:105] Iteration 504, lr = 0.00999878 +I0407 22:29:12.793963 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:14.535104 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 22:29:17.622326 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 22:29:19.984289 359 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 22:29:19.984308 359 net.cpp:676] Ignoring source layer train-data +I0407 22:29:24.211604 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:29:24.449582 359 solver.cpp:397] Test net output #0: accuracy = 0.0196078 +I0407 22:29:24.449625 359 solver.cpp:397] Test net output #1: loss = 5.03868 (* 1 = 5.03868 loss) +I0407 22:29:26.382103 359 solver.cpp:218] Iteration 516 (0.86798 iter/s, 13.8252s/12 iters), loss = 5.04089 +I0407 22:29:26.382153 359 solver.cpp:237] Train net output #0: loss = 5.04089 (* 1 = 5.04089 loss) +I0407 22:29:26.382162 359 sgd_solver.cpp:105] Iteration 516, lr = 0.00999875 +I0407 22:29:31.556311 359 solver.cpp:218] Iteration 528 (2.31923 iter/s, 5.17413s/12 iters), loss = 5.11859 +I0407 22:29:31.556351 359 solver.cpp:237] Train net output #0: loss = 5.11859 (* 1 = 5.11859 loss) +I0407 22:29:31.556360 359 sgd_solver.cpp:105] Iteration 528, lr = 0.00999872 +I0407 22:29:36.519137 359 solver.cpp:218] Iteration 540 (2.41801 iter/s, 4.96276s/12 iters), loss = 4.98663 +I0407 22:29:36.519182 359 solver.cpp:237] Train net output #0: loss = 4.98663 (* 1 = 4.98663 loss) +I0407 22:29:36.519191 359 sgd_solver.cpp:105] Iteration 540, lr = 0.00999869 +I0407 22:29:41.679147 359 solver.cpp:218] Iteration 552 (2.32561 iter/s, 5.15994s/12 iters), loss = 4.89262 +I0407 22:29:41.679185 359 solver.cpp:237] Train net output #0: loss = 4.89262 (* 1 = 4.89262 loss) +I0407 22:29:41.679193 359 sgd_solver.cpp:105] Iteration 552, lr = 0.00999866 +I0407 22:29:46.902901 359 solver.cpp:218] Iteration 564 (2.29723 iter/s, 5.22369s/12 iters), loss = 5.01488 +I0407 22:29:46.903031 359 solver.cpp:237] Train net output #0: loss = 5.01488 (* 1 = 5.01488 loss) +I0407 22:29:46.903041 359 sgd_solver.cpp:105] Iteration 564, lr = 0.00999863 +I0407 22:29:51.820363 359 solver.cpp:218] Iteration 576 (2.44036 iter/s, 4.91731s/12 iters), loss = 5.11047 +I0407 22:29:51.820405 359 solver.cpp:237] Train net output #0: loss = 5.11047 (* 1 = 5.11047 loss) +I0407 22:29:51.820415 359 sgd_solver.cpp:105] Iteration 576, lr = 0.0099986 +I0407 22:29:56.786377 359 solver.cpp:218] Iteration 588 (2.41646 iter/s, 4.96595s/12 iters), loss = 5.0596 +I0407 22:29:56.786419 359 solver.cpp:237] Train net output #0: loss = 5.0596 (* 1 = 5.0596 loss) +I0407 22:29:56.786428 359 sgd_solver.cpp:105] Iteration 588, lr = 0.00999856 +I0407 22:30:01.696429 359 solver.cpp:218] Iteration 600 (2.444 iter/s, 4.90998s/12 iters), loss = 5.00307 +I0407 22:30:01.696473 359 solver.cpp:237] Train net output #0: loss = 5.00307 (* 1 = 5.00307 loss) +I0407 22:30:01.696481 359 sgd_solver.cpp:105] Iteration 600, lr = 0.00999853 +I0407 22:30:04.082912 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:06.179540 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 22:30:09.268191 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 22:30:11.650826 359 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 22:30:11.650844 359 net.cpp:676] Ignoring source layer train-data +I0407 22:30:16.100869 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:16.416594 359 solver.cpp:397] Test net output #0: accuracy = 0.0300245 +I0407 22:30:16.416641 359 solver.cpp:397] Test net output #1: loss = 4.99111 (* 1 = 4.99111 loss) +I0407 22:30:16.513608 359 solver.cpp:218] Iteration 612 (0.809875 iter/s, 14.8171s/12 iters), loss = 4.94482 +I0407 22:30:16.513654 359 solver.cpp:237] Train net output #0: loss = 4.94482 (* 1 = 4.94482 loss) +I0407 22:30:16.513662 359 sgd_solver.cpp:105] Iteration 612, lr = 0.00999849 +I0407 22:30:20.595207 359 solver.cpp:218] Iteration 624 (2.94008 iter/s, 4.08153s/12 iters), loss = 5.06131 +I0407 22:30:20.595358 359 solver.cpp:237] Train net output #0: loss = 5.06131 (* 1 = 5.06131 loss) +I0407 22:30:20.595368 359 sgd_solver.cpp:105] Iteration 624, lr = 0.00999846 +I0407 22:30:25.532660 359 solver.cpp:218] Iteration 636 (2.43049 iter/s, 4.93728s/12 iters), loss = 4.99104 +I0407 22:30:25.532699 359 solver.cpp:237] Train net output #0: loss = 4.99104 (* 1 = 4.99104 loss) +I0407 22:30:25.532707 359 sgd_solver.cpp:105] Iteration 636, lr = 0.00999842 +I0407 22:30:30.427517 359 solver.cpp:218] Iteration 648 (2.45158 iter/s, 4.8948s/12 iters), loss = 4.97093 +I0407 22:30:30.427562 359 solver.cpp:237] Train net output #0: loss = 4.97093 (* 1 = 4.97093 loss) +I0407 22:30:30.427570 359 sgd_solver.cpp:105] Iteration 648, lr = 0.00999838 +I0407 22:30:35.438525 359 solver.cpp:218] Iteration 660 (2.39476 iter/s, 5.01094s/12 iters), loss = 4.91551 +I0407 22:30:35.438557 359 solver.cpp:237] Train net output #0: loss = 4.91551 (* 1 = 4.91551 loss) +I0407 22:30:35.438565 359 sgd_solver.cpp:105] Iteration 660, lr = 0.00999834 +I0407 22:30:40.433089 359 solver.cpp:218] Iteration 672 (2.40264 iter/s, 4.9945s/12 iters), loss = 4.99966 +I0407 22:30:40.433125 359 solver.cpp:237] Train net output #0: loss = 4.99966 (* 1 = 4.99966 loss) +I0407 22:30:40.433135 359 sgd_solver.cpp:105] Iteration 672, lr = 0.0099983 +I0407 22:30:45.276988 359 solver.cpp:218] Iteration 684 (2.47737 iter/s, 4.84384s/12 iters), loss = 4.84708 +I0407 22:30:45.277024 359 solver.cpp:237] Train net output #0: loss = 4.84708 (* 1 = 4.84708 loss) +I0407 22:30:45.277032 359 sgd_solver.cpp:105] Iteration 684, lr = 0.00999826 +I0407 22:30:46.048619 359 blocking_queue.cpp:49] Waiting for data +I0407 22:30:50.219533 359 solver.cpp:218] Iteration 696 (2.42793 iter/s, 4.94248s/12 iters), loss = 4.90099 +I0407 22:30:50.219574 359 solver.cpp:237] Train net output #0: loss = 4.90099 (* 1 = 4.90099 loss) +I0407 22:30:50.219583 359 sgd_solver.cpp:105] Iteration 696, lr = 0.00999822 +I0407 22:30:54.781718 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:30:55.152725 359 solver.cpp:218] Iteration 708 (2.43253 iter/s, 4.93313s/12 iters), loss = 5.01674 +I0407 22:30:55.152765 359 solver.cpp:237] Train net output #0: loss = 5.01674 (* 1 = 5.01674 loss) +I0407 22:30:55.152773 359 sgd_solver.cpp:105] Iteration 708, lr = 0.00999818 +I0407 22:30:57.139627 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 22:31:02.480870 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 22:31:04.856963 359 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 22:31:04.856981 359 net.cpp:676] Ignoring source layer train-data +I0407 22:31:09.474417 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:09.809592 359 solver.cpp:397] Test net output #0: accuracy = 0.0349265 +I0407 22:31:09.809638 359 solver.cpp:397] Test net output #1: loss = 4.88016 (* 1 = 4.88016 loss) +I0407 22:31:11.613674 359 solver.cpp:218] Iteration 720 (0.729002 iter/s, 16.4609s/12 iters), loss = 4.89186 +I0407 22:31:11.613708 359 solver.cpp:237] Train net output #0: loss = 4.89186 (* 1 = 4.89186 loss) +I0407 22:31:11.613714 359 sgd_solver.cpp:105] Iteration 720, lr = 0.00999814 +I0407 22:31:16.581562 359 solver.cpp:218] Iteration 732 (2.41554 iter/s, 4.96783s/12 iters), loss = 4.8736 +I0407 22:31:16.581598 359 solver.cpp:237] Train net output #0: loss = 4.8736 (* 1 = 4.8736 loss) +I0407 22:31:16.581605 359 sgd_solver.cpp:105] Iteration 732, lr = 0.00999809 +I0407 22:31:21.489038 359 solver.cpp:218] Iteration 744 (2.44528 iter/s, 4.90742s/12 iters), loss = 4.85927 +I0407 22:31:21.489078 359 solver.cpp:237] Train net output #0: loss = 4.85927 (* 1 = 4.85927 loss) +I0407 22:31:21.489084 359 sgd_solver.cpp:105] Iteration 744, lr = 0.00999805 +I0407 22:31:26.414517 359 solver.cpp:218] Iteration 756 (2.43634 iter/s, 4.92542s/12 iters), loss = 4.65793 +I0407 22:31:26.414664 359 solver.cpp:237] Train net output #0: loss = 4.65793 (* 1 = 4.65793 loss) +I0407 22:31:26.414674 359 sgd_solver.cpp:105] Iteration 756, lr = 0.009998 +I0407 22:31:31.361675 359 solver.cpp:218] Iteration 768 (2.42572 iter/s, 4.94699s/12 iters), loss = 4.72027 +I0407 22:31:31.361716 359 solver.cpp:237] Train net output #0: loss = 4.72027 (* 1 = 4.72027 loss) +I0407 22:31:31.361726 359 sgd_solver.cpp:105] Iteration 768, lr = 0.00999795 +I0407 22:31:36.293408 359 solver.cpp:218] Iteration 780 (2.43326 iter/s, 4.93166s/12 iters), loss = 4.8095 +I0407 22:31:36.293455 359 solver.cpp:237] Train net output #0: loss = 4.8095 (* 1 = 4.8095 loss) +I0407 22:31:36.293463 359 sgd_solver.cpp:105] Iteration 780, lr = 0.00999791 +I0407 22:31:41.203377 359 solver.cpp:218] Iteration 792 (2.44404 iter/s, 4.9099s/12 iters), loss = 4.91927 +I0407 22:31:41.203415 359 solver.cpp:237] Train net output #0: loss = 4.91927 (* 1 = 4.91927 loss) +I0407 22:31:41.203423 359 sgd_solver.cpp:105] Iteration 792, lr = 0.00999785 +I0407 22:31:46.121747 359 solver.cpp:218] Iteration 804 (2.43986 iter/s, 4.91831s/12 iters), loss = 4.78404 +I0407 22:31:46.121783 359 solver.cpp:237] Train net output #0: loss = 4.78404 (* 1 = 4.78404 loss) +I0407 22:31:46.121789 359 sgd_solver.cpp:105] Iteration 804, lr = 0.0099978 +I0407 22:31:47.830135 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:31:50.604972 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 22:31:55.502758 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 22:31:57.982527 359 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 22:31:57.982635 359 net.cpp:676] Ignoring source layer train-data +I0407 22:32:02.365247 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:02.721709 359 solver.cpp:397] Test net output #0: accuracy = 0.0465686 +I0407 22:32:02.721740 359 solver.cpp:397] Test net output #1: loss = 4.76026 (* 1 = 4.76026 loss) +I0407 22:32:02.817966 359 solver.cpp:218] Iteration 816 (0.71873 iter/s, 16.6961s/12 iters), loss = 4.67944 +I0407 22:32:02.818039 359 solver.cpp:237] Train net output #0: loss = 4.67944 (* 1 = 4.67944 loss) +I0407 22:32:02.818055 359 sgd_solver.cpp:105] Iteration 816, lr = 0.00999775 +I0407 22:32:06.937144 359 solver.cpp:218] Iteration 828 (2.91327 iter/s, 4.11909s/12 iters), loss = 4.74997 +I0407 22:32:06.937181 359 solver.cpp:237] Train net output #0: loss = 4.74997 (* 1 = 4.74997 loss) +I0407 22:32:06.937191 359 sgd_solver.cpp:105] Iteration 828, lr = 0.0099977 +I0407 22:32:11.848239 359 solver.cpp:218] Iteration 840 (2.44348 iter/s, 4.91104s/12 iters), loss = 4.78239 +I0407 22:32:11.848280 359 solver.cpp:237] Train net output #0: loss = 4.78239 (* 1 = 4.78239 loss) +I0407 22:32:11.848289 359 sgd_solver.cpp:105] Iteration 840, lr = 0.00999764 +I0407 22:32:16.808430 359 solver.cpp:218] Iteration 852 (2.4193 iter/s, 4.96012s/12 iters), loss = 4.65832 +I0407 22:32:16.808476 359 solver.cpp:237] Train net output #0: loss = 4.65832 (* 1 = 4.65832 loss) +I0407 22:32:16.808485 359 sgd_solver.cpp:105] Iteration 852, lr = 0.00999759 +I0407 22:32:21.736987 359 solver.cpp:218] Iteration 864 (2.43482 iter/s, 4.92849s/12 iters), loss = 4.8104 +I0407 22:32:21.737030 359 solver.cpp:237] Train net output #0: loss = 4.8104 (* 1 = 4.8104 loss) +I0407 22:32:21.737040 359 sgd_solver.cpp:105] Iteration 864, lr = 0.00999753 +I0407 22:32:26.718418 359 solver.cpp:218] Iteration 876 (2.40898 iter/s, 4.98136s/12 iters), loss = 4.80148 +I0407 22:32:26.718461 359 solver.cpp:237] Train net output #0: loss = 4.80148 (* 1 = 4.80148 loss) +I0407 22:32:26.718469 359 sgd_solver.cpp:105] Iteration 876, lr = 0.00999747 +I0407 22:32:31.612859 359 solver.cpp:218] Iteration 888 (2.45179 iter/s, 4.89438s/12 iters), loss = 4.79278 +I0407 22:32:31.613009 359 solver.cpp:237] Train net output #0: loss = 4.79278 (* 1 = 4.79278 loss) +I0407 22:32:31.613018 359 sgd_solver.cpp:105] Iteration 888, lr = 0.00999741 +I0407 22:32:36.590762 359 solver.cpp:218] Iteration 900 (2.41074 iter/s, 4.97773s/12 iters), loss = 4.67766 +I0407 22:32:36.590807 359 solver.cpp:237] Train net output #0: loss = 4.67766 (* 1 = 4.67766 loss) +I0407 22:32:36.590816 359 sgd_solver.cpp:105] Iteration 900, lr = 0.00999735 +I0407 22:32:40.446219 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:41.531286 359 solver.cpp:218] Iteration 912 (2.42893 iter/s, 4.94045s/12 iters), loss = 4.83716 +I0407 22:32:41.531327 359 solver.cpp:237] Train net output #0: loss = 4.83716 (* 1 = 4.83716 loss) +I0407 22:32:41.531335 359 sgd_solver.cpp:105] Iteration 912, lr = 0.00999729 +I0407 22:32:43.534842 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 22:32:48.348703 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 22:32:53.865550 359 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 22:32:53.865566 359 net.cpp:676] Ignoring source layer train-data +I0407 22:32:57.934777 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:32:58.338527 359 solver.cpp:397] Test net output #0: accuracy = 0.0526961 +I0407 22:32:58.338574 359 solver.cpp:397] Test net output #1: loss = 4.64697 (* 1 = 4.64697 loss) +I0407 22:33:00.147841 359 solver.cpp:218] Iteration 924 (0.644591 iter/s, 18.6165s/12 iters), loss = 4.59192 +I0407 22:33:00.147883 359 solver.cpp:237] Train net output #0: loss = 4.59192 (* 1 = 4.59192 loss) +I0407 22:33:00.147892 359 sgd_solver.cpp:105] Iteration 924, lr = 0.00999722 +I0407 22:33:05.110913 359 solver.cpp:218] Iteration 936 (2.41789 iter/s, 4.963s/12 iters), loss = 4.47134 +I0407 22:33:05.111032 359 solver.cpp:237] Train net output #0: loss = 4.47134 (* 1 = 4.47134 loss) +I0407 22:33:05.111042 359 sgd_solver.cpp:105] Iteration 936, lr = 0.00999716 +I0407 22:33:10.071822 359 solver.cpp:218] Iteration 948 (2.41898 iter/s, 4.96077s/12 iters), loss = 4.64827 +I0407 22:33:10.071862 359 solver.cpp:237] Train net output #0: loss = 4.64827 (* 1 = 4.64827 loss) +I0407 22:33:10.071871 359 sgd_solver.cpp:105] Iteration 948, lr = 0.00999709 +I0407 22:33:14.996212 359 solver.cpp:218] Iteration 960 (2.43688 iter/s, 4.92432s/12 iters), loss = 4.65115 +I0407 22:33:14.996250 359 solver.cpp:237] Train net output #0: loss = 4.65115 (* 1 = 4.65115 loss) +I0407 22:33:14.996259 359 sgd_solver.cpp:105] Iteration 960, lr = 0.00999702 +I0407 22:33:19.943707 359 solver.cpp:218] Iteration 972 (2.4255 iter/s, 4.94743s/12 iters), loss = 4.75913 +I0407 22:33:19.943754 359 solver.cpp:237] Train net output #0: loss = 4.75913 (* 1 = 4.75913 loss) +I0407 22:33:19.943763 359 sgd_solver.cpp:105] Iteration 972, lr = 0.00999695 +I0407 22:33:24.741403 359 solver.cpp:218] Iteration 984 (2.50124 iter/s, 4.79763s/12 iters), loss = 4.52512 +I0407 22:33:24.741446 359 solver.cpp:237] Train net output #0: loss = 4.52512 (* 1 = 4.52512 loss) +I0407 22:33:24.741453 359 sgd_solver.cpp:105] Iteration 984, lr = 0.00999688 +I0407 22:33:29.687659 359 solver.cpp:218] Iteration 996 (2.42611 iter/s, 4.94619s/12 iters), loss = 4.73446 +I0407 22:33:29.687703 359 solver.cpp:237] Train net output #0: loss = 4.73446 (* 1 = 4.73446 loss) +I0407 22:33:29.687711 359 sgd_solver.cpp:105] Iteration 996, lr = 0.0099968 +I0407 22:33:34.659121 359 solver.cpp:218] Iteration 1008 (2.41381 iter/s, 4.97139s/12 iters), loss = 4.23608 +I0407 22:33:34.659162 359 solver.cpp:237] Train net output #0: loss = 4.23608 (* 1 = 4.23608 loss) +I0407 22:33:34.659169 359 sgd_solver.cpp:105] Iteration 1008, lr = 0.00999672 +I0407 22:33:35.640033 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:39.085248 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 22:33:41.908701 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 22:33:44.267123 359 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 22:33:44.267141 359 net.cpp:676] Ignoring source layer train-data +I0407 22:33:48.382591 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:33:48.822115 359 solver.cpp:397] Test net output #0: accuracy = 0.0612745 +I0407 22:33:48.822146 359 solver.cpp:397] Test net output #1: loss = 4.49162 (* 1 = 4.49162 loss) +I0407 22:33:48.918799 359 solver.cpp:218] Iteration 1020 (0.841539 iter/s, 14.2596s/12 iters), loss = 4.52069 +I0407 22:33:48.918857 359 solver.cpp:237] Train net output #0: loss = 4.52069 (* 1 = 4.52069 loss) +I0407 22:33:48.918869 359 sgd_solver.cpp:105] Iteration 1020, lr = 0.00999665 +I0407 22:33:53.033442 359 solver.cpp:218] Iteration 1032 (2.91647 iter/s, 4.11456s/12 iters), loss = 4.36611 +I0407 22:33:53.033484 359 solver.cpp:237] Train net output #0: loss = 4.36611 (* 1 = 4.36611 loss) +I0407 22:33:53.033493 359 sgd_solver.cpp:105] Iteration 1032, lr = 0.00999657 +I0407 22:33:57.986956 359 solver.cpp:218] Iteration 1044 (2.42255 iter/s, 4.95345s/12 iters), loss = 4.5116 +I0407 22:33:57.986992 359 solver.cpp:237] Train net output #0: loss = 4.5116 (* 1 = 4.5116 loss) +I0407 22:33:57.987000 359 sgd_solver.cpp:105] Iteration 1044, lr = 0.00999648 +I0407 22:34:02.841928 359 solver.cpp:218] Iteration 1056 (2.47172 iter/s, 4.85491s/12 iters), loss = 4.39033 +I0407 22:34:02.841967 359 solver.cpp:237] Train net output #0: loss = 4.39033 (* 1 = 4.39033 loss) +I0407 22:34:02.841975 359 sgd_solver.cpp:105] Iteration 1056, lr = 0.0099964 +I0407 22:34:07.756639 359 solver.cpp:218] Iteration 1068 (2.44168 iter/s, 4.91465s/12 iters), loss = 4.31935 +I0407 22:34:07.756770 359 solver.cpp:237] Train net output #0: loss = 4.31935 (* 1 = 4.31935 loss) +I0407 22:34:07.756779 359 sgd_solver.cpp:105] Iteration 1068, lr = 0.00999632 +I0407 22:34:12.726732 359 solver.cpp:218] Iteration 1080 (2.41452 iter/s, 4.96994s/12 iters), loss = 4.47299 +I0407 22:34:12.726776 359 solver.cpp:237] Train net output #0: loss = 4.47299 (* 1 = 4.47299 loss) +I0407 22:34:12.726785 359 sgd_solver.cpp:105] Iteration 1080, lr = 0.00999623 +I0407 22:34:17.582882 359 solver.cpp:218] Iteration 1092 (2.47113 iter/s, 4.85609s/12 iters), loss = 4.21391 +I0407 22:34:17.582921 359 solver.cpp:237] Train net output #0: loss = 4.21391 (* 1 = 4.21391 loss) +I0407 22:34:17.582929 359 sgd_solver.cpp:105] Iteration 1092, lr = 0.00999614 +I0407 22:34:22.533805 359 solver.cpp:218] Iteration 1104 (2.42382 iter/s, 4.95086s/12 iters), loss = 4.69628 +I0407 22:34:22.533843 359 solver.cpp:237] Train net output #0: loss = 4.69628 (* 1 = 4.69628 loss) +I0407 22:34:22.533850 359 sgd_solver.cpp:105] Iteration 1104, lr = 0.00999605 +I0407 22:34:25.619745 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:27.427727 359 solver.cpp:218] Iteration 1116 (2.45205 iter/s, 4.89386s/12 iters), loss = 4.34636 +I0407 22:34:27.427764 359 solver.cpp:237] Train net output #0: loss = 4.34636 (* 1 = 4.34636 loss) +I0407 22:34:27.427772 359 sgd_solver.cpp:105] Iteration 1116, lr = 0.00999595 +I0407 22:34:29.422978 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 22:34:32.512549 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 22:34:36.219897 359 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 22:34:36.219918 359 net.cpp:676] Ignoring source layer train-data +I0407 22:34:40.466763 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:34:40.992725 359 solver.cpp:397] Test net output #0: accuracy = 0.0778186 +I0407 22:34:40.992771 359 solver.cpp:397] Test net output #1: loss = 4.36458 (* 1 = 4.36458 loss) +I0407 22:34:42.793181 359 solver.cpp:218] Iteration 1128 (0.780977 iter/s, 15.3654s/12 iters), loss = 4.1891 +I0407 22:34:42.793221 359 solver.cpp:237] Train net output #0: loss = 4.1891 (* 1 = 4.1891 loss) +I0407 22:34:42.793229 359 sgd_solver.cpp:105] Iteration 1128, lr = 0.00999586 +I0407 22:34:47.728471 359 solver.cpp:218] Iteration 1140 (2.4315 iter/s, 4.93522s/12 iters), loss = 4.35371 +I0407 22:34:47.728518 359 solver.cpp:237] Train net output #0: loss = 4.35371 (* 1 = 4.35371 loss) +I0407 22:34:47.728528 359 sgd_solver.cpp:105] Iteration 1140, lr = 0.00999576 +I0407 22:34:52.632295 359 solver.cpp:218] Iteration 1152 (2.4471 iter/s, 4.90376s/12 iters), loss = 3.96796 +I0407 22:34:52.632331 359 solver.cpp:237] Train net output #0: loss = 3.96796 (* 1 = 3.96796 loss) +I0407 22:34:52.632339 359 sgd_solver.cpp:105] Iteration 1152, lr = 0.00999566 +I0407 22:34:57.603988 359 solver.cpp:218] Iteration 1164 (2.41369 iter/s, 4.97163s/12 iters), loss = 4.15408 +I0407 22:34:57.604030 359 solver.cpp:237] Train net output #0: loss = 4.15408 (* 1 = 4.15408 loss) +I0407 22:34:57.604039 359 sgd_solver.cpp:105] Iteration 1164, lr = 0.00999555 +I0407 22:35:02.549484 359 solver.cpp:218] Iteration 1176 (2.42648 iter/s, 4.94543s/12 iters), loss = 4.15201 +I0407 22:35:02.549527 359 solver.cpp:237] Train net output #0: loss = 4.15201 (* 1 = 4.15201 loss) +I0407 22:35:02.549535 359 sgd_solver.cpp:105] Iteration 1176, lr = 0.00999545 +I0407 22:35:07.461488 359 solver.cpp:218] Iteration 1188 (2.44303 iter/s, 4.91194s/12 iters), loss = 3.98278 +I0407 22:35:07.461529 359 solver.cpp:237] Train net output #0: loss = 3.98278 (* 1 = 3.98278 loss) +I0407 22:35:07.461537 359 sgd_solver.cpp:105] Iteration 1188, lr = 0.00999534 +I0407 22:35:12.443728 359 solver.cpp:218] Iteration 1200 (2.40859 iter/s, 4.98218s/12 iters), loss = 4.23676 +I0407 22:35:12.443876 359 solver.cpp:237] Train net output #0: loss = 4.23676 (* 1 = 4.23676 loss) +I0407 22:35:12.443886 359 sgd_solver.cpp:105] Iteration 1200, lr = 0.00999523 +I0407 22:35:17.360339 359 solver.cpp:218] Iteration 1212 (2.44079 iter/s, 4.91644s/12 iters), loss = 4.04756 +I0407 22:35:17.360383 359 solver.cpp:237] Train net output #0: loss = 4.04756 (* 1 = 4.04756 loss) +I0407 22:35:17.360391 359 sgd_solver.cpp:105] Iteration 1212, lr = 0.00999511 +I0407 22:35:17.625289 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:21.844188 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 22:35:24.919265 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 22:35:27.275514 359 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 22:35:27.275533 359 net.cpp:676] Ignoring source layer train-data +I0407 22:35:31.362200 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:35:31.937912 359 solver.cpp:397] Test net output #0: accuracy = 0.0808824 +I0407 22:35:31.937959 359 solver.cpp:397] Test net output #1: loss = 4.26455 (* 1 = 4.26455 loss) +I0407 22:35:32.033993 359 solver.cpp:218] Iteration 1224 (0.817797 iter/s, 14.6736s/12 iters), loss = 4.16022 +I0407 22:35:32.034037 359 solver.cpp:237] Train net output #0: loss = 4.16022 (* 1 = 4.16022 loss) +I0407 22:35:32.034045 359 sgd_solver.cpp:105] Iteration 1224, lr = 0.009995 +I0407 22:35:36.215714 359 solver.cpp:218] Iteration 1236 (2.86968 iter/s, 4.18166s/12 iters), loss = 4.14807 +I0407 22:35:36.215751 359 solver.cpp:237] Train net output #0: loss = 4.14807 (* 1 = 4.14807 loss) +I0407 22:35:36.215762 359 sgd_solver.cpp:105] Iteration 1236, lr = 0.00999488 +I0407 22:35:41.153381 359 solver.cpp:218] Iteration 1248 (2.43033 iter/s, 4.93761s/12 iters), loss = 4.01501 +I0407 22:35:41.153419 359 solver.cpp:237] Train net output #0: loss = 4.01501 (* 1 = 4.01501 loss) +I0407 22:35:41.153427 359 sgd_solver.cpp:105] Iteration 1248, lr = 0.00999476 +I0407 22:35:46.095556 359 solver.cpp:218] Iteration 1260 (2.42811 iter/s, 4.94211s/12 iters), loss = 3.90919 +I0407 22:35:46.095719 359 solver.cpp:237] Train net output #0: loss = 3.90919 (* 1 = 3.90919 loss) +I0407 22:35:46.095729 359 sgd_solver.cpp:105] Iteration 1260, lr = 0.00999463 +I0407 22:35:50.956984 359 solver.cpp:218] Iteration 1272 (2.4685 iter/s, 4.86125s/12 iters), loss = 3.89158 +I0407 22:35:50.957023 359 solver.cpp:237] Train net output #0: loss = 3.89158 (* 1 = 3.89158 loss) +I0407 22:35:50.957031 359 sgd_solver.cpp:105] Iteration 1272, lr = 0.0099945 +I0407 22:35:55.918812 359 solver.cpp:218] Iteration 1284 (2.41849 iter/s, 4.96177s/12 iters), loss = 3.97335 +I0407 22:35:55.918848 359 solver.cpp:237] Train net output #0: loss = 3.97335 (* 1 = 3.97335 loss) +I0407 22:35:55.918855 359 sgd_solver.cpp:105] Iteration 1284, lr = 0.00999437 +I0407 22:36:00.840694 359 solver.cpp:218] Iteration 1296 (2.43812 iter/s, 4.92182s/12 iters), loss = 4.00292 +I0407 22:36:00.840731 359 solver.cpp:237] Train net output #0: loss = 4.00292 (* 1 = 4.00292 loss) +I0407 22:36:00.840739 359 sgd_solver.cpp:105] Iteration 1296, lr = 0.00999424 +I0407 22:36:05.786229 359 solver.cpp:218] Iteration 1308 (2.42646 iter/s, 4.94548s/12 iters), loss = 4.08033 +I0407 22:36:05.786267 359 solver.cpp:237] Train net output #0: loss = 4.08033 (* 1 = 4.08033 loss) +I0407 22:36:05.786275 359 sgd_solver.cpp:105] Iteration 1308, lr = 0.0099941 +I0407 22:36:08.250079 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:10.687924 359 solver.cpp:218] Iteration 1320 (2.44816 iter/s, 4.90163s/12 iters), loss = 4.1993 +I0407 22:36:10.687971 359 solver.cpp:237] Train net output #0: loss = 4.1993 (* 1 = 4.1993 loss) +I0407 22:36:10.687980 359 sgd_solver.cpp:105] Iteration 1320, lr = 0.00999396 +I0407 22:36:12.724865 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 22:36:16.704424 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 22:36:19.068617 359 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 22:36:19.068635 359 net.cpp:676] Ignoring source layer train-data +I0407 22:36:23.350137 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:36:24.033901 359 solver.cpp:397] Test net output #0: accuracy = 0.115196 +I0407 22:36:24.033941 359 solver.cpp:397] Test net output #1: loss = 4.0472 (* 1 = 4.0472 loss) +I0407 22:36:25.826490 359 solver.cpp:218] Iteration 1332 (0.792682 iter/s, 15.1385s/12 iters), loss = 3.8674 +I0407 22:36:25.826531 359 solver.cpp:237] Train net output #0: loss = 3.8674 (* 1 = 3.8674 loss) +I0407 22:36:25.826539 359 sgd_solver.cpp:105] Iteration 1332, lr = 0.00999382 +I0407 22:36:30.738754 359 solver.cpp:218] Iteration 1344 (2.4429 iter/s, 4.9122s/12 iters), loss = 3.83042 +I0407 22:36:30.738801 359 solver.cpp:237] Train net output #0: loss = 3.83042 (* 1 = 3.83042 loss) +I0407 22:36:30.738811 359 sgd_solver.cpp:105] Iteration 1344, lr = 0.00999367 +I0407 22:36:35.691824 359 solver.cpp:218] Iteration 1356 (2.42277 iter/s, 4.953s/12 iters), loss = 4.03057 +I0407 22:36:35.691864 359 solver.cpp:237] Train net output #0: loss = 4.03057 (* 1 = 4.03057 loss) +I0407 22:36:35.691872 359 sgd_solver.cpp:105] Iteration 1356, lr = 0.00999352 +I0407 22:36:40.628046 359 solver.cpp:218] Iteration 1368 (2.43104 iter/s, 4.93616s/12 iters), loss = 3.99038 +I0407 22:36:40.628091 359 solver.cpp:237] Train net output #0: loss = 3.99038 (* 1 = 3.99038 loss) +I0407 22:36:40.628099 359 sgd_solver.cpp:105] Iteration 1368, lr = 0.00999337 +I0407 22:36:41.805462 359 blocking_queue.cpp:49] Waiting for data +I0407 22:36:45.591382 359 solver.cpp:218] Iteration 1380 (2.41776 iter/s, 4.96326s/12 iters), loss = 3.90185 +I0407 22:36:45.591426 359 solver.cpp:237] Train net output #0: loss = 3.90185 (* 1 = 3.90185 loss) +I0407 22:36:45.591434 359 sgd_solver.cpp:105] Iteration 1380, lr = 0.00999321 +I0407 22:36:50.489408 359 solver.cpp:218] Iteration 1392 (2.45 iter/s, 4.89796s/12 iters), loss = 4.01423 +I0407 22:36:50.489535 359 solver.cpp:237] Train net output #0: loss = 4.01423 (* 1 = 4.01423 loss) +I0407 22:36:50.489545 359 sgd_solver.cpp:105] Iteration 1392, lr = 0.00999305 +I0407 22:36:55.458361 359 solver.cpp:218] Iteration 1404 (2.41507 iter/s, 4.9688s/12 iters), loss = 3.78515 +I0407 22:36:55.458403 359 solver.cpp:237] Train net output #0: loss = 3.78515 (* 1 = 3.78515 loss) +I0407 22:36:55.458412 359 sgd_solver.cpp:105] Iteration 1404, lr = 0.00999288 +I0407 22:37:00.012928 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:00.354723 359 solver.cpp:218] Iteration 1416 (2.45083 iter/s, 4.8963s/12 iters), loss = 3.86286 +I0407 22:37:00.354764 359 solver.cpp:237] Train net output #0: loss = 3.86286 (* 1 = 3.86286 loss) +I0407 22:37:00.354773 359 sgd_solver.cpp:105] Iteration 1416, lr = 0.00999271 +I0407 22:37:04.854851 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 22:37:08.827879 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 22:37:11.759481 359 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 22:37:11.759498 359 net.cpp:676] Ignoring source layer train-data +I0407 22:37:15.826653 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:16.482923 359 solver.cpp:397] Test net output #0: accuracy = 0.110294 +I0407 22:37:16.482971 359 solver.cpp:397] Test net output #1: loss = 4.01474 (* 1 = 4.01474 loss) +I0407 22:37:16.579562 359 solver.cpp:218] Iteration 1428 (0.739611 iter/s, 16.2248s/12 iters), loss = 3.76934 +I0407 22:37:16.579612 359 solver.cpp:237] Train net output #0: loss = 3.76934 (* 1 = 3.76934 loss) +I0407 22:37:16.579619 359 sgd_solver.cpp:105] Iteration 1428, lr = 0.00999254 +I0407 22:37:20.879366 359 solver.cpp:218] Iteration 1440 (2.79087 iter/s, 4.29974s/12 iters), loss = 3.79479 +I0407 22:37:20.879532 359 solver.cpp:237] Train net output #0: loss = 3.79479 (* 1 = 3.79479 loss) +I0407 22:37:20.879541 359 sgd_solver.cpp:105] Iteration 1440, lr = 0.00999236 +I0407 22:37:25.823222 359 solver.cpp:218] Iteration 1452 (2.42735 iter/s, 4.94367s/12 iters), loss = 3.83387 +I0407 22:37:25.823263 359 solver.cpp:237] Train net output #0: loss = 3.83387 (* 1 = 3.83387 loss) +I0407 22:37:25.823272 359 sgd_solver.cpp:105] Iteration 1452, lr = 0.00999218 +I0407 22:37:30.762645 359 solver.cpp:218] Iteration 1464 (2.42946 iter/s, 4.93936s/12 iters), loss = 3.49704 +I0407 22:37:30.762682 359 solver.cpp:237] Train net output #0: loss = 3.49704 (* 1 = 3.49704 loss) +I0407 22:37:30.762691 359 sgd_solver.cpp:105] Iteration 1464, lr = 0.00999199 +I0407 22:37:35.785454 359 solver.cpp:218] Iteration 1476 (2.38913 iter/s, 5.02275s/12 iters), loss = 3.77816 +I0407 22:37:35.785496 359 solver.cpp:237] Train net output #0: loss = 3.77816 (* 1 = 3.77816 loss) +I0407 22:37:35.785504 359 sgd_solver.cpp:105] Iteration 1476, lr = 0.0099918 +I0407 22:37:40.759732 359 solver.cpp:218] Iteration 1488 (2.41244 iter/s, 4.97421s/12 iters), loss = 3.68157 +I0407 22:37:40.759775 359 solver.cpp:237] Train net output #0: loss = 3.68157 (* 1 = 3.68157 loss) +I0407 22:37:40.759783 359 sgd_solver.cpp:105] Iteration 1488, lr = 0.00999161 +I0407 22:37:45.792701 359 solver.cpp:218] Iteration 1500 (2.38431 iter/s, 5.0329s/12 iters), loss = 3.85981 +I0407 22:37:45.792744 359 solver.cpp:237] Train net output #0: loss = 3.85981 (* 1 = 3.85981 loss) +I0407 22:37:45.792752 359 sgd_solver.cpp:105] Iteration 1500, lr = 0.00999141 +I0407 22:37:50.967263 359 solver.cpp:218] Iteration 1512 (2.31907 iter/s, 5.1745s/12 iters), loss = 3.58055 +I0407 22:37:50.967398 359 solver.cpp:237] Train net output #0: loss = 3.58055 (* 1 = 3.58055 loss) +I0407 22:37:50.967407 359 sgd_solver.cpp:105] Iteration 1512, lr = 0.00999121 +I0407 22:37:52.703716 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:37:55.821451 359 solver.cpp:218] Iteration 1524 (2.47217 iter/s, 4.85404s/12 iters), loss = 3.73534 +I0407 22:37:55.821487 359 solver.cpp:237] Train net output #0: loss = 3.73534 (* 1 = 3.73534 loss) +I0407 22:37:55.821494 359 sgd_solver.cpp:105] Iteration 1524, lr = 0.009991 +I0407 22:37:57.910384 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 22:38:01.042002 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 22:38:03.403066 359 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 22:38:03.403086 359 net.cpp:676] Ignoring source layer train-data +I0407 22:38:07.249096 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:07.957537 359 solver.cpp:397] Test net output #0: accuracy = 0.131127 +I0407 22:38:07.957581 359 solver.cpp:397] Test net output #1: loss = 3.87971 (* 1 = 3.87971 loss) +I0407 22:38:09.773028 359 solver.cpp:218] Iteration 1536 (0.860122 iter/s, 13.9515s/12 iters), loss = 3.37834 +I0407 22:38:09.773062 359 solver.cpp:237] Train net output #0: loss = 3.37834 (* 1 = 3.37834 loss) +I0407 22:38:09.773070 359 sgd_solver.cpp:105] Iteration 1536, lr = 0.00999078 +I0407 22:38:14.798009 359 solver.cpp:218] Iteration 1548 (2.3881 iter/s, 5.02493s/12 iters), loss = 3.56426 +I0407 22:38:14.798050 359 solver.cpp:237] Train net output #0: loss = 3.56426 (* 1 = 3.56426 loss) +I0407 22:38:14.798058 359 sgd_solver.cpp:105] Iteration 1548, lr = 0.00999056 +I0407 22:38:19.762490 359 solver.cpp:218] Iteration 1560 (2.4172 iter/s, 4.96441s/12 iters), loss = 3.63487 +I0407 22:38:19.762537 359 solver.cpp:237] Train net output #0: loss = 3.63487 (* 1 = 3.63487 loss) +I0407 22:38:19.762545 359 sgd_solver.cpp:105] Iteration 1560, lr = 0.00999034 +I0407 22:38:24.742230 359 solver.cpp:218] Iteration 1572 (2.4098 iter/s, 4.97967s/12 iters), loss = 3.66285 +I0407 22:38:24.742388 359 solver.cpp:237] Train net output #0: loss = 3.66285 (* 1 = 3.66285 loss) +I0407 22:38:24.742404 359 sgd_solver.cpp:105] Iteration 1572, lr = 0.00999011 +I0407 22:38:29.863627 359 solver.cpp:218] Iteration 1584 (2.34319 iter/s, 5.12122s/12 iters), loss = 3.51581 +I0407 22:38:29.863664 359 solver.cpp:237] Train net output #0: loss = 3.51581 (* 1 = 3.51581 loss) +I0407 22:38:29.863672 359 sgd_solver.cpp:105] Iteration 1584, lr = 0.00998987 +I0407 22:38:34.847849 359 solver.cpp:218] Iteration 1596 (2.40763 iter/s, 4.98416s/12 iters), loss = 3.26739 +I0407 22:38:34.847888 359 solver.cpp:237] Train net output #0: loss = 3.26739 (* 1 = 3.26739 loss) +I0407 22:38:34.847895 359 sgd_solver.cpp:105] Iteration 1596, lr = 0.00998963 +I0407 22:38:40.061777 359 solver.cpp:218] Iteration 1608 (2.30155 iter/s, 5.21387s/12 iters), loss = 3.56462 +I0407 22:38:40.061815 359 solver.cpp:237] Train net output #0: loss = 3.56462 (* 1 = 3.56462 loss) +I0407 22:38:40.061822 359 sgd_solver.cpp:105] Iteration 1608, lr = 0.00998939 +I0407 22:38:43.895316 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:44.947158 359 solver.cpp:218] Iteration 1620 (2.45634 iter/s, 4.88532s/12 iters), loss = 3.76939 +I0407 22:38:44.947208 359 solver.cpp:237] Train net output #0: loss = 3.76939 (* 1 = 3.76939 loss) +I0407 22:38:44.947218 359 sgd_solver.cpp:105] Iteration 1620, lr = 0.00998913 +I0407 22:38:49.420012 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 22:38:52.522264 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 22:38:54.877012 359 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 22:38:54.877141 359 net.cpp:676] Ignoring source layer train-data +I0407 22:38:58.904289 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:38:59.651060 359 solver.cpp:397] Test net output #0: accuracy = 0.150735 +I0407 22:38:59.651093 359 solver.cpp:397] Test net output #1: loss = 3.72563 (* 1 = 3.72563 loss) +I0407 22:38:59.747587 359 solver.cpp:218] Iteration 1632 (0.810792 iter/s, 14.8003s/12 iters), loss = 3.5402 +I0407 22:38:59.747635 359 solver.cpp:237] Train net output #0: loss = 3.5402 (* 1 = 3.5402 loss) +I0407 22:38:59.747643 359 sgd_solver.cpp:105] Iteration 1632, lr = 0.00998887 +I0407 22:39:03.867409 359 solver.cpp:218] Iteration 1644 (2.91279 iter/s, 4.11976s/12 iters), loss = 3.39617 +I0407 22:39:03.867441 359 solver.cpp:237] Train net output #0: loss = 3.39617 (* 1 = 3.39617 loss) +I0407 22:39:03.867449 359 sgd_solver.cpp:105] Iteration 1644, lr = 0.00998861 +I0407 22:39:08.843333 359 solver.cpp:218] Iteration 1656 (2.41164 iter/s, 4.97587s/12 iters), loss = 3.47303 +I0407 22:39:08.843375 359 solver.cpp:237] Train net output #0: loss = 3.47303 (* 1 = 3.47303 loss) +I0407 22:39:08.843384 359 sgd_solver.cpp:105] Iteration 1656, lr = 0.00998834 +I0407 22:39:13.711283 359 solver.cpp:218] Iteration 1668 (2.46514 iter/s, 4.86789s/12 iters), loss = 3.42902 +I0407 22:39:13.711319 359 solver.cpp:237] Train net output #0: loss = 3.42902 (* 1 = 3.42902 loss) +I0407 22:39:13.711328 359 sgd_solver.cpp:105] Iteration 1668, lr = 0.00998806 +I0407 22:39:18.650694 359 solver.cpp:218] Iteration 1680 (2.42947 iter/s, 4.93935s/12 iters), loss = 3.12802 +I0407 22:39:18.650739 359 solver.cpp:237] Train net output #0: loss = 3.12802 (* 1 = 3.12802 loss) +I0407 22:39:18.650748 359 sgd_solver.cpp:105] Iteration 1680, lr = 0.00998778 +I0407 22:39:23.563797 359 solver.cpp:218] Iteration 1692 (2.44248 iter/s, 4.91303s/12 iters), loss = 3.12681 +I0407 22:39:23.563850 359 solver.cpp:237] Train net output #0: loss = 3.12681 (* 1 = 3.12681 loss) +I0407 22:39:23.563860 359 sgd_solver.cpp:105] Iteration 1692, lr = 0.00998749 +I0407 22:39:28.526150 359 solver.cpp:218] Iteration 1704 (2.41824 iter/s, 4.96228s/12 iters), loss = 3.151 +I0407 22:39:28.526324 359 solver.cpp:237] Train net output #0: loss = 3.151 (* 1 = 3.151 loss) +I0407 22:39:28.526332 359 sgd_solver.cpp:105] Iteration 1704, lr = 0.00998719 +I0407 22:39:33.444808 359 solver.cpp:218] Iteration 1716 (2.43978 iter/s, 4.91847s/12 iters), loss = 3.32572 +I0407 22:39:33.444845 359 solver.cpp:237] Train net output #0: loss = 3.32572 (* 1 = 3.32572 loss) +I0407 22:39:33.444852 359 sgd_solver.cpp:105] Iteration 1716, lr = 0.00998688 +I0407 22:39:34.456984 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:38.346740 359 solver.cpp:218] Iteration 1728 (2.44804 iter/s, 4.90187s/12 iters), loss = 3.33658 +I0407 22:39:38.346781 359 solver.cpp:237] Train net output #0: loss = 3.33658 (* 1 = 3.33658 loss) +I0407 22:39:38.346788 359 sgd_solver.cpp:105] Iteration 1728, lr = 0.00998657 +I0407 22:39:40.381992 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 22:39:43.566239 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 22:39:45.939190 359 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 22:39:45.939219 359 net.cpp:676] Ignoring source layer train-data +I0407 22:39:49.854434 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:39:50.574000 359 solver.cpp:397] Test net output #0: accuracy = 0.175245 +I0407 22:39:50.574049 359 solver.cpp:397] Test net output #1: loss = 3.626 (* 1 = 3.626 loss) +I0407 22:39:52.444792 359 solver.cpp:218] Iteration 1740 (0.851186 iter/s, 14.098s/12 iters), loss = 3.19325 +I0407 22:39:52.444828 359 solver.cpp:237] Train net output #0: loss = 3.19325 (* 1 = 3.19325 loss) +I0407 22:39:52.444835 359 sgd_solver.cpp:105] Iteration 1740, lr = 0.00998625 +I0407 22:39:57.374161 359 solver.cpp:218] Iteration 1752 (2.43441 iter/s, 4.92932s/12 iters), loss = 3.13466 +I0407 22:39:57.374197 359 solver.cpp:237] Train net output #0: loss = 3.13466 (* 1 = 3.13466 loss) +I0407 22:39:57.374204 359 sgd_solver.cpp:105] Iteration 1752, lr = 0.00998593 +I0407 22:40:02.352735 359 solver.cpp:218] Iteration 1764 (2.41036 iter/s, 4.97852s/12 iters), loss = 3.22794 +I0407 22:40:02.352860 359 solver.cpp:237] Train net output #0: loss = 3.22794 (* 1 = 3.22794 loss) +I0407 22:40:02.352869 359 sgd_solver.cpp:105] Iteration 1764, lr = 0.00998559 +I0407 22:40:07.304322 359 solver.cpp:218] Iteration 1776 (2.42354 iter/s, 4.95144s/12 iters), loss = 3.18758 +I0407 22:40:07.304366 359 solver.cpp:237] Train net output #0: loss = 3.18758 (* 1 = 3.18758 loss) +I0407 22:40:07.304374 359 sgd_solver.cpp:105] Iteration 1776, lr = 0.00998525 +I0407 22:40:12.302299 359 solver.cpp:218] Iteration 1788 (2.40101 iter/s, 4.9979s/12 iters), loss = 3.0682 +I0407 22:40:12.302345 359 solver.cpp:237] Train net output #0: loss = 3.0682 (* 1 = 3.0682 loss) +I0407 22:40:12.302353 359 sgd_solver.cpp:105] Iteration 1788, lr = 0.0099849 +I0407 22:40:17.184746 359 solver.cpp:218] Iteration 1800 (2.45782 iter/s, 4.88238s/12 iters), loss = 2.91501 +I0407 22:40:17.184787 359 solver.cpp:237] Train net output #0: loss = 2.91501 (* 1 = 2.91501 loss) +I0407 22:40:17.184796 359 sgd_solver.cpp:105] Iteration 1800, lr = 0.00998454 +I0407 22:40:22.162169 359 solver.cpp:218] Iteration 1812 (2.41092 iter/s, 4.97735s/12 iters), loss = 3.29513 +I0407 22:40:22.162211 359 solver.cpp:237] Train net output #0: loss = 3.29513 (* 1 = 3.29513 loss) +I0407 22:40:22.162220 359 sgd_solver.cpp:105] Iteration 1812, lr = 0.00998417 +I0407 22:40:25.314308 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:27.094609 359 solver.cpp:218] Iteration 1824 (2.43291 iter/s, 4.93237s/12 iters), loss = 3.4254 +I0407 22:40:27.094653 359 solver.cpp:237] Train net output #0: loss = 3.4254 (* 1 = 3.4254 loss) +I0407 22:40:27.094661 359 sgd_solver.cpp:105] Iteration 1824, lr = 0.0099838 +I0407 22:40:31.569416 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 22:40:34.641258 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 22:40:37.078544 359 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 22:40:37.078564 359 net.cpp:676] Ignoring source layer train-data +I0407 22:40:41.028375 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:40:41.862079 359 solver.cpp:397] Test net output #0: accuracy = 0.181373 +I0407 22:40:41.862124 359 solver.cpp:397] Test net output #1: loss = 3.53646 (* 1 = 3.53646 loss) +I0407 22:40:41.959156 359 solver.cpp:218] Iteration 1836 (0.807295 iter/s, 14.8645s/12 iters), loss = 3.25231 +I0407 22:40:41.959223 359 solver.cpp:237] Train net output #0: loss = 3.25231 (* 1 = 3.25231 loss) +I0407 22:40:41.959233 359 sgd_solver.cpp:105] Iteration 1836, lr = 0.00998341 +I0407 22:40:46.102376 359 solver.cpp:218] Iteration 1848 (2.89636 iter/s, 4.14314s/12 iters), loss = 3.28534 +I0407 22:40:46.102421 359 solver.cpp:237] Train net output #0: loss = 3.28534 (* 1 = 3.28534 loss) +I0407 22:40:46.102429 359 sgd_solver.cpp:105] Iteration 1848, lr = 0.00998302 +I0407 22:40:51.040313 359 solver.cpp:218] Iteration 1860 (2.4302 iter/s, 4.93787s/12 iters), loss = 2.97721 +I0407 22:40:51.040352 359 solver.cpp:237] Train net output #0: loss = 2.97721 (* 1 = 2.97721 loss) +I0407 22:40:51.040360 359 sgd_solver.cpp:105] Iteration 1860, lr = 0.00998261 +I0407 22:40:55.966456 359 solver.cpp:218] Iteration 1872 (2.43601 iter/s, 4.92609s/12 iters), loss = 2.8339 +I0407 22:40:55.966493 359 solver.cpp:237] Train net output #0: loss = 2.8339 (* 1 = 2.8339 loss) +I0407 22:40:55.966501 359 sgd_solver.cpp:105] Iteration 1872, lr = 0.0099822 +I0407 22:41:00.919643 359 solver.cpp:218] Iteration 1884 (2.42271 iter/s, 4.95313s/12 iters), loss = 3.01308 +I0407 22:41:00.919684 359 solver.cpp:237] Train net output #0: loss = 3.01308 (* 1 = 3.01308 loss) +I0407 22:41:00.919692 359 sgd_solver.cpp:105] Iteration 1884, lr = 0.00998178 +I0407 22:41:05.817286 359 solver.cpp:218] Iteration 1896 (2.45019 iter/s, 4.89758s/12 iters), loss = 3.05372 +I0407 22:41:05.817401 359 solver.cpp:237] Train net output #0: loss = 3.05372 (* 1 = 3.05372 loss) +I0407 22:41:05.817411 359 sgd_solver.cpp:105] Iteration 1896, lr = 0.00998134 +I0407 22:41:10.788357 359 solver.cpp:218] Iteration 1908 (2.41403 iter/s, 4.97094s/12 iters), loss = 2.96224 +I0407 22:41:10.788396 359 solver.cpp:237] Train net output #0: loss = 2.96224 (* 1 = 2.96224 loss) +I0407 22:41:10.788403 359 sgd_solver.cpp:105] Iteration 1908, lr = 0.0099809 +I0407 22:41:15.696400 359 solver.cpp:218] Iteration 1920 (2.445 iter/s, 4.90798s/12 iters), loss = 2.92034 +I0407 22:41:15.696446 359 solver.cpp:237] Train net output #0: loss = 2.92034 (* 1 = 2.92034 loss) +I0407 22:41:15.696455 359 sgd_solver.cpp:105] Iteration 1920, lr = 0.00998045 +I0407 22:41:15.991915 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:20.653021 359 solver.cpp:218] Iteration 1932 (2.42104 iter/s, 4.95655s/12 iters), loss = 3.14069 +I0407 22:41:20.653064 359 solver.cpp:237] Train net output #0: loss = 3.14069 (* 1 = 3.14069 loss) +I0407 22:41:20.653072 359 sgd_solver.cpp:105] Iteration 1932, lr = 0.00997998 +I0407 22:41:22.773319 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 22:41:25.864236 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 22:41:28.227759 359 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 22:41:28.227777 359 net.cpp:676] Ignoring source layer train-data +I0407 22:41:32.138288 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:41:32.936493 359 solver.cpp:397] Test net output #0: accuracy = 0.193015 +I0407 22:41:32.936539 359 solver.cpp:397] Test net output #1: loss = 3.47011 (* 1 = 3.47011 loss) +I0407 22:41:34.749590 359 solver.cpp:218] Iteration 1944 (0.851276 iter/s, 14.0965s/12 iters), loss = 3.1482 +I0407 22:41:34.749629 359 solver.cpp:237] Train net output #0: loss = 3.1482 (* 1 = 3.1482 loss) +I0407 22:41:34.749636 359 sgd_solver.cpp:105] Iteration 1944, lr = 0.00997951 +I0407 22:41:39.694242 359 solver.cpp:218] Iteration 1956 (2.42689 iter/s, 4.9446s/12 iters), loss = 2.96406 +I0407 22:41:39.694414 359 solver.cpp:237] Train net output #0: loss = 2.96406 (* 1 = 2.96406 loss) +I0407 22:41:39.694424 359 sgd_solver.cpp:105] Iteration 1956, lr = 0.00997902 +I0407 22:41:44.628644 359 solver.cpp:218] Iteration 1968 (2.432 iter/s, 4.93421s/12 iters), loss = 2.81329 +I0407 22:41:44.628688 359 solver.cpp:237] Train net output #0: loss = 2.81329 (* 1 = 2.81329 loss) +I0407 22:41:44.628696 359 sgd_solver.cpp:105] Iteration 1968, lr = 0.00997852 +I0407 22:41:49.602478 359 solver.cpp:218] Iteration 1980 (2.41266 iter/s, 4.97377s/12 iters), loss = 2.97557 +I0407 22:41:49.602519 359 solver.cpp:237] Train net output #0: loss = 2.97557 (* 1 = 2.97557 loss) +I0407 22:41:49.602526 359 sgd_solver.cpp:105] Iteration 1980, lr = 0.00997801 +I0407 22:41:54.548319 359 solver.cpp:218] Iteration 1992 (2.42631 iter/s, 4.94578s/12 iters), loss = 2.91323 +I0407 22:41:54.548359 359 solver.cpp:237] Train net output #0: loss = 2.91323 (* 1 = 2.91323 loss) +I0407 22:41:54.548368 359 sgd_solver.cpp:105] Iteration 1992, lr = 0.00997749 +I0407 22:41:59.498108 359 solver.cpp:218] Iteration 2004 (2.42438 iter/s, 4.94973s/12 iters), loss = 2.86267 +I0407 22:41:59.498152 359 solver.cpp:237] Train net output #0: loss = 2.86267 (* 1 = 2.86267 loss) +I0407 22:41:59.498162 359 sgd_solver.cpp:105] Iteration 2004, lr = 0.00997696 +I0407 22:42:04.465466 359 solver.cpp:218] Iteration 2016 (2.41581 iter/s, 4.96729s/12 iters), loss = 2.82093 +I0407 22:42:04.465524 359 solver.cpp:237] Train net output #0: loss = 2.82093 (* 1 = 2.82093 loss) +I0407 22:42:04.465538 359 sgd_solver.cpp:105] Iteration 2016, lr = 0.00997641 +I0407 22:42:06.967725 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:09.377447 359 solver.cpp:218] Iteration 2028 (2.44304 iter/s, 4.91191s/12 iters), loss = 3.11125 +I0407 22:42:09.377490 359 solver.cpp:237] Train net output #0: loss = 3.11125 (* 1 = 3.11125 loss) +I0407 22:42:09.377499 359 sgd_solver.cpp:105] Iteration 2028, lr = 0.00997585 +I0407 22:42:13.875124 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 22:42:17.015957 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 22:42:19.374635 359 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 22:42:19.374653 359 net.cpp:676] Ignoring source layer train-data +I0407 22:42:23.261555 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:24.114142 359 solver.cpp:397] Test net output #0: accuracy = 0.227328 +I0407 22:42:24.114192 359 solver.cpp:397] Test net output #1: loss = 3.24905 (* 1 = 3.24905 loss) +I0407 22:42:24.210613 359 solver.cpp:218] Iteration 2040 (0.809002 iter/s, 14.8331s/12 iters), loss = 2.63953 +I0407 22:42:24.210654 359 solver.cpp:237] Train net output #0: loss = 2.63953 (* 1 = 2.63953 loss) +I0407 22:42:24.210661 359 sgd_solver.cpp:105] Iteration 2040, lr = 0.00997527 +I0407 22:42:28.373304 359 solver.cpp:218] Iteration 2052 (2.88279 iter/s, 4.16263s/12 iters), loss = 2.96616 +I0407 22:42:28.373347 359 solver.cpp:237] Train net output #0: loss = 2.96616 (* 1 = 2.96616 loss) +I0407 22:42:28.373355 359 sgd_solver.cpp:105] Iteration 2052, lr = 0.00997469 +I0407 22:42:29.953039 359 blocking_queue.cpp:49] Waiting for data +I0407 22:42:33.262485 359 solver.cpp:218] Iteration 2064 (2.45443 iter/s, 4.88912s/12 iters), loss = 2.97788 +I0407 22:42:33.262521 359 solver.cpp:237] Train net output #0: loss = 2.97788 (* 1 = 2.97788 loss) +I0407 22:42:33.262529 359 sgd_solver.cpp:105] Iteration 2064, lr = 0.00997408 +I0407 22:42:38.240365 359 solver.cpp:218] Iteration 2076 (2.41069 iter/s, 4.97782s/12 iters), loss = 3.04856 +I0407 22:42:38.240401 359 solver.cpp:237] Train net output #0: loss = 3.04856 (* 1 = 3.04856 loss) +I0407 22:42:38.240408 359 sgd_solver.cpp:105] Iteration 2076, lr = 0.00997347 +I0407 22:42:43.194154 359 solver.cpp:218] Iteration 2088 (2.42241 iter/s, 4.95374s/12 iters), loss = 2.89056 +I0407 22:42:43.194188 359 solver.cpp:237] Train net output #0: loss = 2.89056 (* 1 = 2.89056 loss) +I0407 22:42:43.194196 359 sgd_solver.cpp:105] Iteration 2088, lr = 0.00997284 +I0407 22:42:48.136507 359 solver.cpp:218] Iteration 2100 (2.42802 iter/s, 4.9423s/12 iters), loss = 3.05797 +I0407 22:42:48.136633 359 solver.cpp:237] Train net output #0: loss = 3.05797 (* 1 = 3.05797 loss) +I0407 22:42:48.136642 359 sgd_solver.cpp:105] Iteration 2100, lr = 0.0099722 +I0407 22:42:53.081180 359 solver.cpp:218] Iteration 2112 (2.42692 iter/s, 4.94453s/12 iters), loss = 2.60516 +I0407 22:42:53.081218 359 solver.cpp:237] Train net output #0: loss = 2.60516 (* 1 = 2.60516 loss) +I0407 22:42:53.081224 359 sgd_solver.cpp:105] Iteration 2112, lr = 0.00997153 +I0407 22:42:57.717440 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:42:58.030218 359 solver.cpp:218] Iteration 2124 (2.42474 iter/s, 4.94898s/12 iters), loss = 2.90187 +I0407 22:42:58.030259 359 solver.cpp:237] Train net output #0: loss = 2.90187 (* 1 = 2.90187 loss) +I0407 22:42:58.030268 359 sgd_solver.cpp:105] Iteration 2124, lr = 0.00997086 +I0407 22:43:02.951489 359 solver.cpp:218] Iteration 2136 (2.43843 iter/s, 4.92121s/12 iters), loss = 3.1684 +I0407 22:43:02.951524 359 solver.cpp:237] Train net output #0: loss = 3.1684 (* 1 = 3.1684 loss) +I0407 22:43:02.951532 359 sgd_solver.cpp:105] Iteration 2136, lr = 0.00997017 +I0407 22:43:04.986749 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 22:43:08.056052 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 22:43:10.412533 359 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 22:43:10.412554 359 net.cpp:676] Ignoring source layer train-data +I0407 22:43:14.105819 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:14.981710 359 solver.cpp:397] Test net output #0: accuracy = 0.262255 +I0407 22:43:14.981756 359 solver.cpp:397] Test net output #1: loss = 3.15991 (* 1 = 3.15991 loss) +I0407 22:43:16.770299 359 solver.cpp:218] Iteration 2148 (0.868386 iter/s, 13.8187s/12 iters), loss = 2.6207 +I0407 22:43:16.770344 359 solver.cpp:237] Train net output #0: loss = 2.6207 (* 1 = 2.6207 loss) +I0407 22:43:16.770351 359 sgd_solver.cpp:105] Iteration 2148, lr = 0.00996946 +I0407 22:43:21.637567 359 solver.cpp:218] Iteration 2160 (2.46548 iter/s, 4.86721s/12 iters), loss = 3.12555 +I0407 22:43:21.637723 359 solver.cpp:237] Train net output #0: loss = 3.12555 (* 1 = 3.12555 loss) +I0407 22:43:21.637732 359 sgd_solver.cpp:105] Iteration 2160, lr = 0.00996873 +I0407 22:43:26.586370 359 solver.cpp:218] Iteration 2172 (2.42491 iter/s, 4.94863s/12 iters), loss = 2.9212 +I0407 22:43:26.586406 359 solver.cpp:237] Train net output #0: loss = 2.9212 (* 1 = 2.9212 loss) +I0407 22:43:26.586413 359 sgd_solver.cpp:105] Iteration 2172, lr = 0.00996799 +I0407 22:43:31.510375 359 solver.cpp:218] Iteration 2184 (2.43707 iter/s, 4.92395s/12 iters), loss = 2.61246 +I0407 22:43:31.510416 359 solver.cpp:237] Train net output #0: loss = 2.61246 (* 1 = 2.61246 loss) +I0407 22:43:31.510423 359 sgd_solver.cpp:105] Iteration 2184, lr = 0.00996723 +I0407 22:43:36.463024 359 solver.cpp:218] Iteration 2196 (2.42298 iter/s, 4.95259s/12 iters), loss = 2.73664 +I0407 22:43:36.463070 359 solver.cpp:237] Train net output #0: loss = 2.73664 (* 1 = 2.73664 loss) +I0407 22:43:36.463078 359 sgd_solver.cpp:105] Iteration 2196, lr = 0.00996646 +I0407 22:43:41.413550 359 solver.cpp:218] Iteration 2208 (2.42402 iter/s, 4.95046s/12 iters), loss = 2.63206 +I0407 22:43:41.413590 359 solver.cpp:237] Train net output #0: loss = 2.63206 (* 1 = 2.63206 loss) +I0407 22:43:41.413599 359 sgd_solver.cpp:105] Iteration 2208, lr = 0.00996566 +I0407 22:43:46.349711 359 solver.cpp:218] Iteration 2220 (2.43107 iter/s, 4.9361s/12 iters), loss = 2.47727 +I0407 22:43:46.349750 359 solver.cpp:237] Train net output #0: loss = 2.47727 (* 1 = 2.47727 loss) +I0407 22:43:46.349757 359 sgd_solver.cpp:105] Iteration 2220, lr = 0.00996485 +I0407 22:43:48.122831 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:43:51.218158 359 solver.cpp:218] Iteration 2232 (2.46488 iter/s, 4.86839s/12 iters), loss = 2.48663 +I0407 22:43:51.218200 359 solver.cpp:237] Train net output #0: loss = 2.48663 (* 1 = 2.48663 loss) +I0407 22:43:51.218209 359 sgd_solver.cpp:105] Iteration 2232, lr = 0.00996401 +I0407 22:43:55.724633 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 22:43:58.784642 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 22:44:02.889842 359 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 22:44:02.889859 359 net.cpp:676] Ignoring source layer train-data +I0407 22:44:06.451486 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:07.376595 359 solver.cpp:397] Test net output #0: accuracy = 0.273897 +I0407 22:44:07.376646 359 solver.cpp:397] Test net output #1: loss = 3.17993 (* 1 = 3.17993 loss) +I0407 22:44:07.473145 359 solver.cpp:218] Iteration 2244 (0.738239 iter/s, 16.2549s/12 iters), loss = 2.46823 +I0407 22:44:07.473194 359 solver.cpp:237] Train net output #0: loss = 2.46823 (* 1 = 2.46823 loss) +I0407 22:44:07.473203 359 sgd_solver.cpp:105] Iteration 2244, lr = 0.00996316 +I0407 22:44:11.575385 359 solver.cpp:218] Iteration 2256 (2.92528 iter/s, 4.10217s/12 iters), loss = 2.4896 +I0407 22:44:11.575423 359 solver.cpp:237] Train net output #0: loss = 2.4896 (* 1 = 2.4896 loss) +I0407 22:44:11.575433 359 sgd_solver.cpp:105] Iteration 2256, lr = 0.00996228 +I0407 22:44:16.564204 359 solver.cpp:218] Iteration 2268 (2.40541 iter/s, 4.98876s/12 iters), loss = 2.43589 +I0407 22:44:16.564240 359 solver.cpp:237] Train net output #0: loss = 2.43589 (* 1 = 2.43589 loss) +I0407 22:44:16.564249 359 sgd_solver.cpp:105] Iteration 2268, lr = 0.00996139 +I0407 22:44:21.590222 359 solver.cpp:218] Iteration 2280 (2.38761 iter/s, 5.02595s/12 iters), loss = 2.43739 +I0407 22:44:21.590266 359 solver.cpp:237] Train net output #0: loss = 2.43739 (* 1 = 2.43739 loss) +I0407 22:44:21.590276 359 sgd_solver.cpp:105] Iteration 2280, lr = 0.00996047 +I0407 22:44:26.538518 359 solver.cpp:218] Iteration 2292 (2.42511 iter/s, 4.94823s/12 iters), loss = 2.44551 +I0407 22:44:26.538664 359 solver.cpp:237] Train net output #0: loss = 2.44551 (* 1 = 2.44551 loss) +I0407 22:44:26.538674 359 sgd_solver.cpp:105] Iteration 2292, lr = 0.00995954 +I0407 22:44:31.483511 359 solver.cpp:218] Iteration 2304 (2.42678 iter/s, 4.94483s/12 iters), loss = 2.43083 +I0407 22:44:31.483551 359 solver.cpp:237] Train net output #0: loss = 2.43083 (* 1 = 2.43083 loss) +I0407 22:44:31.483559 359 sgd_solver.cpp:105] Iteration 2304, lr = 0.00995858 +I0407 22:44:36.507511 359 solver.cpp:218] Iteration 2316 (2.38857 iter/s, 5.02394s/12 iters), loss = 2.68947 +I0407 22:44:36.507551 359 solver.cpp:237] Train net output #0: loss = 2.68947 (* 1 = 2.68947 loss) +I0407 22:44:36.507560 359 sgd_solver.cpp:105] Iteration 2316, lr = 0.00995759 +I0407 22:44:40.379441 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:41.403112 359 solver.cpp:218] Iteration 2328 (2.45121 iter/s, 4.89554s/12 iters), loss = 2.6636 +I0407 22:44:41.403156 359 solver.cpp:237] Train net output #0: loss = 2.6636 (* 1 = 2.6636 loss) +I0407 22:44:41.403163 359 sgd_solver.cpp:105] Iteration 2328, lr = 0.00995659 +I0407 22:44:46.347402 359 solver.cpp:218] Iteration 2340 (2.42708 iter/s, 4.94422s/12 iters), loss = 2.40418 +I0407 22:44:46.347448 359 solver.cpp:237] Train net output #0: loss = 2.40418 (* 1 = 2.40418 loss) +I0407 22:44:46.347457 359 sgd_solver.cpp:105] Iteration 2340, lr = 0.00995556 +I0407 22:44:48.363399 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 22:44:51.524742 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 22:44:53.978636 359 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 22:44:53.978653 359 net.cpp:676] Ignoring source layer train-data +I0407 22:44:57.708062 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:44:58.705417 359 solver.cpp:397] Test net output #0: accuracy = 0.252451 +I0407 22:44:58.705457 359 solver.cpp:397] Test net output #1: loss = 3.26199 (* 1 = 3.26199 loss) +I0407 22:45:00.496237 359 solver.cpp:218] Iteration 2352 (0.848131 iter/s, 14.1488s/12 iters), loss = 2.34774 +I0407 22:45:00.496279 359 solver.cpp:237] Train net output #0: loss = 2.34774 (* 1 = 2.34774 loss) +I0407 22:45:00.496289 359 sgd_solver.cpp:105] Iteration 2352, lr = 0.00995451 +I0407 22:45:05.401335 359 solver.cpp:218] Iteration 2364 (2.44647 iter/s, 4.90503s/12 iters), loss = 2.51786 +I0407 22:45:05.401373 359 solver.cpp:237] Train net output #0: loss = 2.51786 (* 1 = 2.51786 loss) +I0407 22:45:05.401381 359 sgd_solver.cpp:105] Iteration 2364, lr = 0.00995343 +I0407 22:45:10.361184 359 solver.cpp:218] Iteration 2376 (2.41946 iter/s, 4.95979s/12 iters), loss = 2.59695 +I0407 22:45:10.361224 359 solver.cpp:237] Train net output #0: loss = 2.59695 (* 1 = 2.59695 loss) +I0407 22:45:10.361232 359 sgd_solver.cpp:105] Iteration 2376, lr = 0.00995233 +I0407 22:45:15.275897 359 solver.cpp:218] Iteration 2388 (2.44168 iter/s, 4.91465s/12 iters), loss = 2.55361 +I0407 22:45:15.275935 359 solver.cpp:237] Train net output #0: loss = 2.55361 (* 1 = 2.55361 loss) +I0407 22:45:15.275943 359 sgd_solver.cpp:105] Iteration 2388, lr = 0.0099512 +I0407 22:45:20.219977 359 solver.cpp:218] Iteration 2400 (2.42717 iter/s, 4.94402s/12 iters), loss = 2.29065 +I0407 22:45:20.220019 359 solver.cpp:237] Train net output #0: loss = 2.29065 (* 1 = 2.29065 loss) +I0407 22:45:20.220027 359 sgd_solver.cpp:105] Iteration 2400, lr = 0.00995004 +I0407 22:45:25.143514 359 solver.cpp:218] Iteration 2412 (2.43731 iter/s, 4.92347s/12 iters), loss = 2.76306 +I0407 22:45:25.143559 359 solver.cpp:237] Train net output #0: loss = 2.76306 (* 1 = 2.76306 loss) +I0407 22:45:25.143568 359 sgd_solver.cpp:105] Iteration 2412, lr = 0.00994886 +I0407 22:45:30.110707 359 solver.cpp:218] Iteration 2424 (2.41588 iter/s, 4.96713s/12 iters), loss = 2.06413 +I0407 22:45:30.110862 359 solver.cpp:237] Train net output #0: loss = 2.06413 (* 1 = 2.06413 loss) +I0407 22:45:30.110872 359 sgd_solver.cpp:105] Iteration 2424, lr = 0.00994765 +I0407 22:45:31.152237 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:35.006736 359 solver.cpp:218] Iteration 2436 (2.45105 iter/s, 4.89586s/12 iters), loss = 2.38329 +I0407 22:45:35.006778 359 solver.cpp:237] Train net output #0: loss = 2.38329 (* 1 = 2.38329 loss) +I0407 22:45:35.006785 359 sgd_solver.cpp:105] Iteration 2436, lr = 0.00994641 +I0407 22:45:39.507761 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 22:45:43.694573 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 22:45:46.619050 359 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 22:45:46.619069 359 net.cpp:676] Ignoring source layer train-data +I0407 22:45:50.383879 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:45:51.464020 359 solver.cpp:397] Test net output #0: accuracy = 0.239583 +I0407 22:45:51.464053 359 solver.cpp:397] Test net output #1: loss = 3.32404 (* 1 = 3.32404 loss) +I0407 22:45:51.560308 359 solver.cpp:218] Iteration 2448 (0.724923 iter/s, 16.5535s/12 iters), loss = 2.68792 +I0407 22:45:51.560364 359 solver.cpp:237] Train net output #0: loss = 2.68792 (* 1 = 2.68792 loss) +I0407 22:45:51.560374 359 sgd_solver.cpp:105] Iteration 2448, lr = 0.00994514 +I0407 22:45:55.595785 359 solver.cpp:218] Iteration 2460 (2.97368 iter/s, 4.0354s/12 iters), loss = 2.49981 +I0407 22:45:55.595826 359 solver.cpp:237] Train net output #0: loss = 2.49981 (* 1 = 2.49981 loss) +I0407 22:45:55.595835 359 sgd_solver.cpp:105] Iteration 2460, lr = 0.00994384 +I0407 22:46:00.445024 359 solver.cpp:218] Iteration 2472 (2.47464 iter/s, 4.84918s/12 iters), loss = 2.17352 +I0407 22:46:00.445158 359 solver.cpp:237] Train net output #0: loss = 2.17352 (* 1 = 2.17352 loss) +I0407 22:46:00.445165 359 sgd_solver.cpp:105] Iteration 2472, lr = 0.00994251 +I0407 22:46:05.404966 359 solver.cpp:218] Iteration 2484 (2.41946 iter/s, 4.95979s/12 iters), loss = 2.29499 +I0407 22:46:05.405000 359 solver.cpp:237] Train net output #0: loss = 2.29499 (* 1 = 2.29499 loss) +I0407 22:46:05.405007 359 sgd_solver.cpp:105] Iteration 2484, lr = 0.00994115 +I0407 22:46:10.333974 359 solver.cpp:218] Iteration 2496 (2.43459 iter/s, 4.92896s/12 iters), loss = 2.5319 +I0407 22:46:10.334015 359 solver.cpp:237] Train net output #0: loss = 2.5319 (* 1 = 2.5319 loss) +I0407 22:46:10.334023 359 sgd_solver.cpp:105] Iteration 2496, lr = 0.00993976 +I0407 22:46:15.308440 359 solver.cpp:218] Iteration 2508 (2.41235 iter/s, 4.97441s/12 iters), loss = 2.37591 +I0407 22:46:15.308475 359 solver.cpp:237] Train net output #0: loss = 2.37591 (* 1 = 2.37591 loss) +I0407 22:46:15.308482 359 sgd_solver.cpp:105] Iteration 2508, lr = 0.00993833 +I0407 22:46:20.222555 359 solver.cpp:218] Iteration 2520 (2.44197 iter/s, 4.91406s/12 iters), loss = 2.29151 +I0407 22:46:20.222589 359 solver.cpp:237] Train net output #0: loss = 2.29151 (* 1 = 2.29151 loss) +I0407 22:46:20.222596 359 sgd_solver.cpp:105] Iteration 2520, lr = 0.00993687 +I0407 22:46:23.421361 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:25.167135 359 solver.cpp:218] Iteration 2532 (2.42693 iter/s, 4.94453s/12 iters), loss = 2.35582 +I0407 22:46:25.167168 359 solver.cpp:237] Train net output #0: loss = 2.35582 (* 1 = 2.35582 loss) +I0407 22:46:25.167176 359 sgd_solver.cpp:105] Iteration 2532, lr = 0.00993538 +I0407 22:46:30.112251 359 solver.cpp:218] Iteration 2544 (2.42666 iter/s, 4.94506s/12 iters), loss = 2.42731 +I0407 22:46:30.112291 359 solver.cpp:237] Train net output #0: loss = 2.42731 (* 1 = 2.42731 loss) +I0407 22:46:30.112300 359 sgd_solver.cpp:105] Iteration 2544, lr = 0.00993385 +I0407 22:46:32.149363 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 22:46:35.288813 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 22:46:38.053391 359 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 22:46:38.053411 359 net.cpp:676] Ignoring source layer train-data +I0407 22:46:41.696125 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:46:42.827939 359 solver.cpp:397] Test net output #0: accuracy = 0.284314 +I0407 22:46:42.827984 359 solver.cpp:397] Test net output #1: loss = 3.15071 (* 1 = 3.15071 loss) +I0407 22:46:44.611464 359 solver.cpp:218] Iteration 2556 (0.827636 iter/s, 14.4991s/12 iters), loss = 2.2578 +I0407 22:46:44.611512 359 solver.cpp:237] Train net output #0: loss = 2.2578 (* 1 = 2.2578 loss) +I0407 22:46:44.611521 359 sgd_solver.cpp:105] Iteration 2556, lr = 0.00993228 +I0407 22:46:49.662487 359 solver.cpp:218] Iteration 2568 (2.3758 iter/s, 5.05094s/12 iters), loss = 2.19678 +I0407 22:46:49.662552 359 solver.cpp:237] Train net output #0: loss = 2.19678 (* 1 = 2.19678 loss) +I0407 22:46:49.662567 359 sgd_solver.cpp:105] Iteration 2568, lr = 0.00993068 +I0407 22:46:54.587882 359 solver.cpp:218] Iteration 2580 (2.4364 iter/s, 4.92531s/12 iters), loss = 1.96284 +I0407 22:46:54.587924 359 solver.cpp:237] Train net output #0: loss = 1.96284 (* 1 = 1.96284 loss) +I0407 22:46:54.587931 359 sgd_solver.cpp:105] Iteration 2580, lr = 0.00992905 +I0407 22:46:59.540197 359 solver.cpp:218] Iteration 2592 (2.42314 iter/s, 4.95226s/12 iters), loss = 2.35947 +I0407 22:46:59.540233 359 solver.cpp:237] Train net output #0: loss = 2.35947 (* 1 = 2.35947 loss) +I0407 22:46:59.540241 359 sgd_solver.cpp:105] Iteration 2592, lr = 0.00992737 +I0407 22:47:04.440917 359 solver.cpp:218] Iteration 2604 (2.44865 iter/s, 4.90066s/12 iters), loss = 2.09648 +I0407 22:47:04.441054 359 solver.cpp:237] Train net output #0: loss = 2.09648 (* 1 = 2.09648 loss) +I0407 22:47:04.441063 359 sgd_solver.cpp:105] Iteration 2604, lr = 0.00992565 +I0407 22:47:09.410863 359 solver.cpp:218] Iteration 2616 (2.41459 iter/s, 4.96979s/12 iters), loss = 2.16389 +I0407 22:47:09.410907 359 solver.cpp:237] Train net output #0: loss = 2.16389 (* 1 = 2.16389 loss) +I0407 22:47:09.410914 359 sgd_solver.cpp:105] Iteration 2616, lr = 0.00992389 +I0407 22:47:14.319983 359 solver.cpp:218] Iteration 2628 (2.44446 iter/s, 4.90905s/12 iters), loss = 1.97931 +I0407 22:47:14.320024 359 solver.cpp:237] Train net output #0: loss = 1.97931 (* 1 = 1.97931 loss) +I0407 22:47:14.320032 359 sgd_solver.cpp:105] Iteration 2628, lr = 0.0099221 +I0407 22:47:14.738675 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:19.256965 359 solver.cpp:218] Iteration 2640 (2.43067 iter/s, 4.93692s/12 iters), loss = 2.25741 +I0407 22:47:19.257009 359 solver.cpp:237] Train net output #0: loss = 2.25741 (* 1 = 2.25741 loss) +I0407 22:47:19.257016 359 sgd_solver.cpp:105] Iteration 2640, lr = 0.00992026 +I0407 22:47:23.661909 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 22:47:26.747251 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 22:47:29.112129 359 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 22:47:29.112147 359 net.cpp:676] Ignoring source layer train-data +I0407 22:47:32.740947 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:47:33.908448 359 solver.cpp:397] Test net output #0: accuracy = 0.272059 +I0407 22:47:33.908484 359 solver.cpp:397] Test net output #1: loss = 3.15613 (* 1 = 3.15613 loss) +I0407 22:47:34.004735 359 solver.cpp:218] Iteration 2652 (0.813687 iter/s, 14.7477s/12 iters), loss = 2.32786 +I0407 22:47:34.004778 359 solver.cpp:237] Train net output #0: loss = 2.32786 (* 1 = 2.32786 loss) +I0407 22:47:34.004787 359 sgd_solver.cpp:105] Iteration 2652, lr = 0.00991837 +I0407 22:47:38.125959 359 solver.cpp:218] Iteration 2664 (2.91181 iter/s, 4.12115s/12 iters), loss = 2.42141 +I0407 22:47:38.126102 359 solver.cpp:237] Train net output #0: loss = 2.42141 (* 1 = 2.42141 loss) +I0407 22:47:38.126111 359 sgd_solver.cpp:105] Iteration 2664, lr = 0.00991645 +I0407 22:47:42.995462 359 solver.cpp:218] Iteration 2676 (2.4644 iter/s, 4.86934s/12 iters), loss = 1.88912 +I0407 22:47:42.995507 359 solver.cpp:237] Train net output #0: loss = 1.88912 (* 1 = 1.88912 loss) +I0407 22:47:42.995515 359 sgd_solver.cpp:105] Iteration 2676, lr = 0.00991447 +I0407 22:47:47.908500 359 solver.cpp:218] Iteration 2688 (2.44251 iter/s, 4.91298s/12 iters), loss = 2.26359 +I0407 22:47:47.908532 359 solver.cpp:237] Train net output #0: loss = 2.26359 (* 1 = 2.26359 loss) +I0407 22:47:47.908540 359 sgd_solver.cpp:105] Iteration 2688, lr = 0.00991246 +I0407 22:47:52.857479 359 solver.cpp:218] Iteration 2700 (2.42477 iter/s, 4.94892s/12 iters), loss = 2.33243 +I0407 22:47:52.857511 359 solver.cpp:237] Train net output #0: loss = 2.33243 (* 1 = 2.33243 loss) +I0407 22:47:52.857518 359 sgd_solver.cpp:105] Iteration 2700, lr = 0.00991039 +I0407 22:47:57.767093 359 solver.cpp:218] Iteration 2712 (2.44421 iter/s, 4.90956s/12 iters), loss = 2.30132 +I0407 22:47:57.767129 359 solver.cpp:237] Train net output #0: loss = 2.30132 (* 1 = 2.30132 loss) +I0407 22:47:57.767138 359 sgd_solver.cpp:105] Iteration 2712, lr = 0.00990828 +I0407 22:48:02.710635 359 solver.cpp:218] Iteration 2724 (2.42744 iter/s, 4.94349s/12 iters), loss = 2.0974 +I0407 22:48:02.710675 359 solver.cpp:237] Train net output #0: loss = 2.0974 (* 1 = 2.0974 loss) +I0407 22:48:02.710681 359 sgd_solver.cpp:105] Iteration 2724, lr = 0.00990611 +I0407 22:48:05.232297 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:07.613812 359 solver.cpp:218] Iteration 2736 (2.44742 iter/s, 4.90311s/12 iters), loss = 2.26774 +I0407 22:48:07.613849 359 solver.cpp:237] Train net output #0: loss = 2.26774 (* 1 = 2.26774 loss) +I0407 22:48:07.613857 359 sgd_solver.cpp:105] Iteration 2736, lr = 0.0099039 +I0407 22:48:12.586241 359 solver.cpp:218] Iteration 2748 (2.41334 iter/s, 4.97237s/12 iters), loss = 2.08512 +I0407 22:48:12.586366 359 solver.cpp:237] Train net output #0: loss = 2.08512 (* 1 = 2.08512 loss) +I0407 22:48:12.586375 359 sgd_solver.cpp:105] Iteration 2748, lr = 0.00990163 +I0407 22:48:14.588271 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 22:48:17.679343 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 22:48:20.043385 359 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 22:48:20.043403 359 net.cpp:676] Ignoring source layer train-data +I0407 22:48:23.333578 359 blocking_queue.cpp:49] Waiting for data +I0407 22:48:23.601482 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:24.816747 359 solver.cpp:397] Test net output #0: accuracy = 0.283088 +I0407 22:48:24.816795 359 solver.cpp:397] Test net output #1: loss = 3.17317 (* 1 = 3.17317 loss) +I0407 22:48:26.637207 359 solver.cpp:218] Iteration 2760 (0.854044 iter/s, 14.0508s/12 iters), loss = 2.25691 +I0407 22:48:26.637259 359 solver.cpp:237] Train net output #0: loss = 2.25691 (* 1 = 2.25691 loss) +I0407 22:48:26.637269 359 sgd_solver.cpp:105] Iteration 2760, lr = 0.00989932 +I0407 22:48:31.531042 359 solver.cpp:218] Iteration 2772 (2.4521 iter/s, 4.89376s/12 iters), loss = 2.27579 +I0407 22:48:31.531082 359 solver.cpp:237] Train net output #0: loss = 2.27579 (* 1 = 2.27579 loss) +I0407 22:48:31.531090 359 sgd_solver.cpp:105] Iteration 2772, lr = 0.00989694 +I0407 22:48:36.490770 359 solver.cpp:218] Iteration 2784 (2.41952 iter/s, 4.95966s/12 iters), loss = 1.85031 +I0407 22:48:36.490814 359 solver.cpp:237] Train net output #0: loss = 1.85031 (* 1 = 1.85031 loss) +I0407 22:48:36.490823 359 sgd_solver.cpp:105] Iteration 2784, lr = 0.00989452 +I0407 22:48:41.406931 359 solver.cpp:218] Iteration 2796 (2.44096 iter/s, 4.9161s/12 iters), loss = 2.35421 +I0407 22:48:41.406965 359 solver.cpp:237] Train net output #0: loss = 2.35421 (* 1 = 2.35421 loss) +I0407 22:48:41.406973 359 sgd_solver.cpp:105] Iteration 2796, lr = 0.00989203 +I0407 22:48:46.345438 359 solver.cpp:218] Iteration 2808 (2.42991 iter/s, 4.93846s/12 iters), loss = 2.1644 +I0407 22:48:46.345599 359 solver.cpp:237] Train net output #0: loss = 2.1644 (* 1 = 2.1644 loss) +I0407 22:48:46.345609 359 sgd_solver.cpp:105] Iteration 2808, lr = 0.00988949 +I0407 22:48:51.282537 359 solver.cpp:218] Iteration 2820 (2.43066 iter/s, 4.93693s/12 iters), loss = 1.87829 +I0407 22:48:51.282572 359 solver.cpp:237] Train net output #0: loss = 1.87829 (* 1 = 1.87829 loss) +I0407 22:48:51.282579 359 sgd_solver.cpp:105] Iteration 2820, lr = 0.00988689 +I0407 22:48:55.939746 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:48:56.224982 359 solver.cpp:218] Iteration 2832 (2.42797 iter/s, 4.94239s/12 iters), loss = 2.01649 +I0407 22:48:56.225016 359 solver.cpp:237] Train net output #0: loss = 2.01649 (* 1 = 2.01649 loss) +I0407 22:48:56.225023 359 sgd_solver.cpp:105] Iteration 2832, lr = 0.00988423 +I0407 22:49:01.161550 359 solver.cpp:218] Iteration 2844 (2.43087 iter/s, 4.93651s/12 iters), loss = 1.9606 +I0407 22:49:01.161585 359 solver.cpp:237] Train net output #0: loss = 1.9606 (* 1 = 1.9606 loss) +I0407 22:49:01.161593 359 sgd_solver.cpp:105] Iteration 2844, lr = 0.0098815 +I0407 22:49:05.659430 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 22:49:08.729086 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 22:49:11.087358 359 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 22:49:11.087375 359 net.cpp:676] Ignoring source layer train-data +I0407 22:49:14.623360 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:15.875644 359 solver.cpp:397] Test net output #0: accuracy = 0.304534 +I0407 22:49:15.875692 359 solver.cpp:397] Test net output #1: loss = 3.03383 (* 1 = 3.03383 loss) +I0407 22:49:15.972419 359 solver.cpp:218] Iteration 2856 (0.81022 iter/s, 14.8108s/12 iters), loss = 1.85983 +I0407 22:49:15.972462 359 solver.cpp:237] Train net output #0: loss = 1.85983 (* 1 = 1.85983 loss) +I0407 22:49:15.972471 359 sgd_solver.cpp:105] Iteration 2856, lr = 0.00987872 +I0407 22:49:20.129029 359 solver.cpp:218] Iteration 2868 (2.88701 iter/s, 4.15655s/12 iters), loss = 2.07138 +I0407 22:49:20.129158 359 solver.cpp:237] Train net output #0: loss = 2.07138 (* 1 = 2.07138 loss) +I0407 22:49:20.129168 359 sgd_solver.cpp:105] Iteration 2868, lr = 0.00987586 +I0407 22:49:25.049413 359 solver.cpp:218] Iteration 2880 (2.43891 iter/s, 4.92024s/12 iters), loss = 2.13079 +I0407 22:49:25.049450 359 solver.cpp:237] Train net output #0: loss = 2.13079 (* 1 = 2.13079 loss) +I0407 22:49:25.049458 359 sgd_solver.cpp:105] Iteration 2880, lr = 0.00987295 +I0407 22:49:30.000919 359 solver.cpp:218] Iteration 2892 (2.42353 iter/s, 4.95145s/12 iters), loss = 2.06035 +I0407 22:49:30.000954 359 solver.cpp:237] Train net output #0: loss = 2.06035 (* 1 = 2.06035 loss) +I0407 22:49:30.000962 359 sgd_solver.cpp:105] Iteration 2892, lr = 0.00986996 +I0407 22:49:34.916677 359 solver.cpp:218] Iteration 2904 (2.44116 iter/s, 4.9157s/12 iters), loss = 2.31742 +I0407 22:49:34.916713 359 solver.cpp:237] Train net output #0: loss = 2.31742 (* 1 = 2.31742 loss) +I0407 22:49:34.916721 359 sgd_solver.cpp:105] Iteration 2904, lr = 0.00986691 +I0407 22:49:39.877827 359 solver.cpp:218] Iteration 2916 (2.41882 iter/s, 4.96109s/12 iters), loss = 1.92919 +I0407 22:49:39.877864 359 solver.cpp:237] Train net output #0: loss = 1.92919 (* 1 = 1.92919 loss) +I0407 22:49:39.877873 359 sgd_solver.cpp:105] Iteration 2916, lr = 0.00986378 +I0407 22:49:44.795217 359 solver.cpp:218] Iteration 2928 (2.44035 iter/s, 4.91733s/12 iters), loss = 1.81033 +I0407 22:49:44.795258 359 solver.cpp:237] Train net output #0: loss = 1.81033 (* 1 = 1.81033 loss) +I0407 22:49:44.795266 359 sgd_solver.cpp:105] Iteration 2928, lr = 0.00986058 +I0407 22:49:46.627804 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:49:49.728142 359 solver.cpp:218] Iteration 2940 (2.43267 iter/s, 4.93285s/12 iters), loss = 2.03943 +I0407 22:49:49.728201 359 solver.cpp:237] Train net output #0: loss = 2.03943 (* 1 = 2.03943 loss) +I0407 22:49:49.728214 359 sgd_solver.cpp:105] Iteration 2940, lr = 0.00985731 +I0407 22:49:54.657171 359 solver.cpp:218] Iteration 2952 (2.43459 iter/s, 4.92895s/12 iters), loss = 2.02725 +I0407 22:49:54.657321 359 solver.cpp:237] Train net output #0: loss = 2.02725 (* 1 = 2.02725 loss) +I0407 22:49:54.657332 359 sgd_solver.cpp:105] Iteration 2952, lr = 0.00985396 +I0407 22:49:56.686234 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 22:49:59.871939 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 22:50:02.232760 359 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 22:50:02.232780 359 net.cpp:676] Ignoring source layer train-data +I0407 22:50:05.661442 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:06.950773 359 solver.cpp:397] Test net output #0: accuracy = 0.299632 +I0407 22:50:06.950816 359 solver.cpp:397] Test net output #1: loss = 3.07793 (* 1 = 3.07793 loss) +I0407 22:50:08.736313 359 solver.cpp:218] Iteration 2964 (0.852336 iter/s, 14.079s/12 iters), loss = 2.05118 +I0407 22:50:08.736361 359 solver.cpp:237] Train net output #0: loss = 2.05118 (* 1 = 2.05118 loss) +I0407 22:50:08.736371 359 sgd_solver.cpp:105] Iteration 2964, lr = 0.00985054 +I0407 22:50:13.663187 359 solver.cpp:218] Iteration 2976 (2.43565 iter/s, 4.92681s/12 iters), loss = 1.90589 +I0407 22:50:13.663225 359 solver.cpp:237] Train net output #0: loss = 1.90589 (* 1 = 1.90589 loss) +I0407 22:50:13.663233 359 sgd_solver.cpp:105] Iteration 2976, lr = 0.00984703 +I0407 22:50:18.610044 359 solver.cpp:218] Iteration 2988 (2.42581 iter/s, 4.9468s/12 iters), loss = 2.09538 +I0407 22:50:18.610085 359 solver.cpp:237] Train net output #0: loss = 2.09538 (* 1 = 2.09538 loss) +I0407 22:50:18.610093 359 sgd_solver.cpp:105] Iteration 2988, lr = 0.00984345 +I0407 22:50:23.547987 359 solver.cpp:218] Iteration 3000 (2.43019 iter/s, 4.93788s/12 iters), loss = 1.83884 +I0407 22:50:23.548025 359 solver.cpp:237] Train net output #0: loss = 1.83884 (* 1 = 1.83884 loss) +I0407 22:50:23.548033 359 sgd_solver.cpp:105] Iteration 3000, lr = 0.00983978 +I0407 22:50:28.594018 359 solver.cpp:218] Iteration 3012 (2.37813 iter/s, 5.04598s/12 iters), loss = 1.87208 +I0407 22:50:28.594077 359 solver.cpp:237] Train net output #0: loss = 1.87208 (* 1 = 1.87208 loss) +I0407 22:50:28.594085 359 sgd_solver.cpp:105] Iteration 3012, lr = 0.00983603 +I0407 22:50:33.816968 359 solver.cpp:218] Iteration 3024 (2.29759 iter/s, 5.22287s/12 iters), loss = 1.93008 +I0407 22:50:33.817006 359 solver.cpp:237] Train net output #0: loss = 1.93008 (* 1 = 1.93008 loss) +I0407 22:50:33.817014 359 sgd_solver.cpp:105] Iteration 3024, lr = 0.00983219 +I0407 22:50:37.810873 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:38.804452 359 solver.cpp:218] Iteration 3036 (2.40605 iter/s, 4.98743s/12 iters), loss = 1.70603 +I0407 22:50:38.804488 359 solver.cpp:237] Train net output #0: loss = 1.70603 (* 1 = 1.70603 loss) +I0407 22:50:38.804495 359 sgd_solver.cpp:105] Iteration 3036, lr = 0.00982826 +I0407 22:50:43.883749 359 solver.cpp:218] Iteration 3048 (2.36256 iter/s, 5.07924s/12 iters), loss = 1.91323 +I0407 22:50:43.883790 359 solver.cpp:237] Train net output #0: loss = 1.91323 (* 1 = 1.91323 loss) +I0407 22:50:43.883797 359 sgd_solver.cpp:105] Iteration 3048, lr = 0.00982425 +I0407 22:50:48.389130 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 22:50:52.510715 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 22:50:54.960774 359 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 22:50:54.960794 359 net.cpp:676] Ignoring source layer train-data +I0407 22:50:58.439750 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:50:59.740667 359 solver.cpp:397] Test net output #0: accuracy = 0.313113 +I0407 22:50:59.740809 359 solver.cpp:397] Test net output #1: loss = 2.98991 (* 1 = 2.98991 loss) +I0407 22:50:59.837545 359 solver.cpp:218] Iteration 3060 (0.752176 iter/s, 15.9537s/12 iters), loss = 1.75386 +I0407 22:50:59.837592 359 solver.cpp:237] Train net output #0: loss = 1.75386 (* 1 = 1.75386 loss) +I0407 22:50:59.837601 359 sgd_solver.cpp:105] Iteration 3060, lr = 0.00982014 +I0407 22:51:04.122287 359 solver.cpp:218] Iteration 3072 (2.80068 iter/s, 4.28468s/12 iters), loss = 1.54107 +I0407 22:51:04.122321 359 solver.cpp:237] Train net output #0: loss = 1.54107 (* 1 = 1.54107 loss) +I0407 22:51:04.122328 359 sgd_solver.cpp:105] Iteration 3072, lr = 0.00981593 +I0407 22:51:09.134703 359 solver.cpp:218] Iteration 3084 (2.39408 iter/s, 5.01236s/12 iters), loss = 1.87213 +I0407 22:51:09.134748 359 solver.cpp:237] Train net output #0: loss = 1.87213 (* 1 = 1.87213 loss) +I0407 22:51:09.134757 359 sgd_solver.cpp:105] Iteration 3084, lr = 0.00981163 +I0407 22:51:14.128625 359 solver.cpp:218] Iteration 3096 (2.40295 iter/s, 4.99385s/12 iters), loss = 1.77313 +I0407 22:51:14.128671 359 solver.cpp:237] Train net output #0: loss = 1.77313 (* 1 = 1.77313 loss) +I0407 22:51:14.128680 359 sgd_solver.cpp:105] Iteration 3096, lr = 0.00980724 +I0407 22:51:18.986593 359 solver.cpp:218] Iteration 3108 (2.47021 iter/s, 4.8579s/12 iters), loss = 1.94607 +I0407 22:51:18.986634 359 solver.cpp:237] Train net output #0: loss = 1.94607 (* 1 = 1.94607 loss) +I0407 22:51:18.986642 359 sgd_solver.cpp:105] Iteration 3108, lr = 0.00980274 +I0407 22:51:23.914330 359 solver.cpp:218] Iteration 3120 (2.43522 iter/s, 4.92768s/12 iters), loss = 2.19232 +I0407 22:51:23.914369 359 solver.cpp:237] Train net output #0: loss = 2.19232 (* 1 = 2.19232 loss) +I0407 22:51:23.914376 359 sgd_solver.cpp:105] Iteration 3120, lr = 0.00979814 +I0407 22:51:28.876279 359 solver.cpp:218] Iteration 3132 (2.41843 iter/s, 4.96189s/12 iters), loss = 1.86277 +I0407 22:51:28.876312 359 solver.cpp:237] Train net output #0: loss = 1.86277 (* 1 = 1.86277 loss) +I0407 22:51:28.876319 359 sgd_solver.cpp:105] Iteration 3132, lr = 0.00979343 +I0407 22:51:29.947422 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:33.763401 359 solver.cpp:218] Iteration 3144 (2.45546 iter/s, 4.88706s/12 iters), loss = 1.78341 +I0407 22:51:33.763442 359 solver.cpp:237] Train net output #0: loss = 1.78341 (* 1 = 1.78341 loss) +I0407 22:51:33.763450 359 sgd_solver.cpp:105] Iteration 3144, lr = 0.00978861 +I0407 22:51:38.727494 359 solver.cpp:218] Iteration 3156 (2.41739 iter/s, 4.96403s/12 iters), loss = 1.60958 +I0407 22:51:38.727533 359 solver.cpp:237] Train net output #0: loss = 1.60958 (* 1 = 1.60958 loss) +I0407 22:51:38.727540 359 sgd_solver.cpp:105] Iteration 3156, lr = 0.00978369 +I0407 22:51:40.710310 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 22:51:45.026276 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 22:51:48.847363 359 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 22:51:48.847381 359 net.cpp:676] Ignoring source layer train-data +I0407 22:51:52.225072 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:51:53.618080 359 solver.cpp:397] Test net output #0: accuracy = 0.319853 +I0407 22:51:53.618124 359 solver.cpp:397] Test net output #1: loss = 2.96404 (* 1 = 2.96404 loss) +I0407 22:51:55.414750 359 solver.cpp:218] Iteration 3168 (0.719115 iter/s, 16.6872s/12 iters), loss = 1.72166 +I0407 22:51:55.414785 359 solver.cpp:237] Train net output #0: loss = 1.72166 (* 1 = 1.72166 loss) +I0407 22:51:55.414794 359 sgd_solver.cpp:105] Iteration 3168, lr = 0.00977866 +I0407 22:52:00.319183 359 solver.cpp:218] Iteration 3180 (2.4468 iter/s, 4.90437s/12 iters), loss = 1.62192 +I0407 22:52:00.319308 359 solver.cpp:237] Train net output #0: loss = 1.62192 (* 1 = 1.62192 loss) +I0407 22:52:00.319317 359 sgd_solver.cpp:105] Iteration 3180, lr = 0.0097735 +I0407 22:52:05.216598 359 solver.cpp:218] Iteration 3192 (2.45034 iter/s, 4.89727s/12 iters), loss = 1.81731 +I0407 22:52:05.216640 359 solver.cpp:237] Train net output #0: loss = 1.81731 (* 1 = 1.81731 loss) +I0407 22:52:05.216648 359 sgd_solver.cpp:105] Iteration 3192, lr = 0.00976824 +I0407 22:52:10.143244 359 solver.cpp:218] Iteration 3204 (2.43577 iter/s, 4.92657s/12 iters), loss = 1.89343 +I0407 22:52:10.143287 359 solver.cpp:237] Train net output #0: loss = 1.89343 (* 1 = 1.89343 loss) +I0407 22:52:10.143296 359 sgd_solver.cpp:105] Iteration 3204, lr = 0.00976285 +I0407 22:52:15.104357 359 solver.cpp:218] Iteration 3216 (2.41884 iter/s, 4.96105s/12 iters), loss = 1.50783 +I0407 22:52:15.104393 359 solver.cpp:237] Train net output #0: loss = 1.50783 (* 1 = 1.50783 loss) +I0407 22:52:15.104399 359 sgd_solver.cpp:105] Iteration 3216, lr = 0.00975734 +I0407 22:52:20.017047 359 solver.cpp:218] Iteration 3228 (2.44268 iter/s, 4.91264s/12 iters), loss = 1.82193 +I0407 22:52:20.017084 359 solver.cpp:237] Train net output #0: loss = 1.82193 (* 1 = 1.82193 loss) +I0407 22:52:20.017092 359 sgd_solver.cpp:105] Iteration 3228, lr = 0.00975171 +I0407 22:52:23.233575 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:24.955689 359 solver.cpp:218] Iteration 3240 (2.42985 iter/s, 4.93858s/12 iters), loss = 2.01245 +I0407 22:52:24.955731 359 solver.cpp:237] Train net output #0: loss = 2.01245 (* 1 = 2.01245 loss) +I0407 22:52:24.955740 359 sgd_solver.cpp:105] Iteration 3240, lr = 0.00974595 +I0407 22:52:29.877923 359 solver.cpp:218] Iteration 3252 (2.43795 iter/s, 4.92217s/12 iters), loss = 1.8181 +I0407 22:52:29.877959 359 solver.cpp:237] Train net output #0: loss = 1.8181 (* 1 = 1.8181 loss) +I0407 22:52:29.877965 359 sgd_solver.cpp:105] Iteration 3252, lr = 0.00974005 +I0407 22:52:34.374315 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 22:52:37.939534 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 22:52:42.060667 359 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 22:52:42.060688 359 net.cpp:676] Ignoring source layer train-data +I0407 22:52:45.365583 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:52:46.692616 359 solver.cpp:397] Test net output #0: accuracy = 0.311274 +I0407 22:52:46.692664 359 solver.cpp:397] Test net output #1: loss = 3.02124 (* 1 = 3.02124 loss) +I0407 22:52:46.789216 359 solver.cpp:218] Iteration 3264 (0.709588 iter/s, 16.9112s/12 iters), loss = 1.81548 +I0407 22:52:46.789254 359 solver.cpp:237] Train net output #0: loss = 1.81548 (* 1 = 1.81548 loss) +I0407 22:52:46.789263 359 sgd_solver.cpp:105] Iteration 3264, lr = 0.00973403 +I0407 22:52:50.907032 359 solver.cpp:218] Iteration 3276 (2.9142 iter/s, 4.11776s/12 iters), loss = 1.84454 +I0407 22:52:50.907068 359 solver.cpp:237] Train net output #0: loss = 1.84454 (* 1 = 1.84454 loss) +I0407 22:52:50.907074 359 sgd_solver.cpp:105] Iteration 3276, lr = 0.00972787 +I0407 22:52:55.844164 359 solver.cpp:218] Iteration 3288 (2.43059 iter/s, 4.93707s/12 iters), loss = 1.45229 +I0407 22:52:55.844206 359 solver.cpp:237] Train net output #0: loss = 1.45229 (* 1 = 1.45229 loss) +I0407 22:52:55.844214 359 sgd_solver.cpp:105] Iteration 3288, lr = 0.00972157 +I0407 22:53:00.785689 359 solver.cpp:218] Iteration 3300 (2.42843 iter/s, 4.94146s/12 iters), loss = 1.59583 +I0407 22:53:00.785729 359 solver.cpp:237] Train net output #0: loss = 1.59583 (* 1 = 1.59583 loss) +I0407 22:53:00.785737 359 sgd_solver.cpp:105] Iteration 3300, lr = 0.00971513 +I0407 22:53:05.713490 359 solver.cpp:218] Iteration 3312 (2.43519 iter/s, 4.92774s/12 iters), loss = 1.94547 +I0407 22:53:05.713624 359 solver.cpp:237] Train net output #0: loss = 1.94547 (* 1 = 1.94547 loss) +I0407 22:53:05.713632 359 sgd_solver.cpp:105] Iteration 3312, lr = 0.00970855 +I0407 22:53:10.669137 359 solver.cpp:218] Iteration 3324 (2.42156 iter/s, 4.95549s/12 iters), loss = 1.7866 +I0407 22:53:10.669180 359 solver.cpp:237] Train net output #0: loss = 1.7866 (* 1 = 1.7866 loss) +I0407 22:53:10.669188 359 sgd_solver.cpp:105] Iteration 3324, lr = 0.00970181 +I0407 22:53:15.620919 359 solver.cpp:218] Iteration 3336 (2.4234 iter/s, 4.95171s/12 iters), loss = 1.43149 +I0407 22:53:15.620962 359 solver.cpp:237] Train net output #0: loss = 1.43149 (* 1 = 1.43149 loss) +I0407 22:53:15.620971 359 sgd_solver.cpp:105] Iteration 3336, lr = 0.00969493 +I0407 22:53:16.067467 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:20.512449 359 solver.cpp:218] Iteration 3348 (2.45325 iter/s, 4.89146s/12 iters), loss = 1.57974 +I0407 22:53:20.512490 359 solver.cpp:237] Train net output #0: loss = 1.57974 (* 1 = 1.57974 loss) +I0407 22:53:20.512499 359 sgd_solver.cpp:105] Iteration 3348, lr = 0.00968789 +I0407 22:53:25.477869 359 solver.cpp:218] Iteration 3360 (2.41675 iter/s, 4.96535s/12 iters), loss = 1.89577 +I0407 22:53:25.477910 359 solver.cpp:237] Train net output #0: loss = 1.89577 (* 1 = 1.89577 loss) +I0407 22:53:25.477918 359 sgd_solver.cpp:105] Iteration 3360, lr = 0.0096807 +I0407 22:53:27.475548 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 22:53:30.577740 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 22:53:34.989799 359 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 22:53:34.989815 359 net.cpp:676] Ignoring source layer train-data +I0407 22:53:38.015815 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:53:39.354274 359 solver.cpp:397] Test net output #0: accuracy = 0.303922 +I0407 22:53:39.354315 359 solver.cpp:397] Test net output #1: loss = 2.98053 (* 1 = 2.98053 loss) +I0407 22:53:41.153334 359 solver.cpp:218] Iteration 3372 (0.765531 iter/s, 15.6754s/12 iters), loss = 1.74271 +I0407 22:53:41.153375 359 solver.cpp:237] Train net output #0: loss = 1.74271 (* 1 = 1.74271 loss) +I0407 22:53:41.153383 359 sgd_solver.cpp:105] Iteration 3372, lr = 0.00967335 +I0407 22:53:46.088308 359 solver.cpp:218] Iteration 3384 (2.43165 iter/s, 4.93491s/12 iters), loss = 1.61365 +I0407 22:53:46.088351 359 solver.cpp:237] Train net output #0: loss = 1.61365 (* 1 = 1.61365 loss) +I0407 22:53:46.088357 359 sgd_solver.cpp:105] Iteration 3384, lr = 0.00966583 +I0407 22:53:51.047209 359 solver.cpp:218] Iteration 3396 (2.41992 iter/s, 4.95884s/12 iters), loss = 1.52177 +I0407 22:53:51.047253 359 solver.cpp:237] Train net output #0: loss = 1.52177 (* 1 = 1.52177 loss) +I0407 22:53:51.047261 359 sgd_solver.cpp:105] Iteration 3396, lr = 0.00965815 +I0407 22:53:55.980113 359 solver.cpp:218] Iteration 3408 (2.43268 iter/s, 4.93283s/12 iters), loss = 1.84539 +I0407 22:53:55.980157 359 solver.cpp:237] Train net output #0: loss = 1.84539 (* 1 = 1.84539 loss) +I0407 22:53:55.980165 359 sgd_solver.cpp:105] Iteration 3408, lr = 0.00965029 +I0407 22:54:00.915119 359 solver.cpp:218] Iteration 3420 (2.43164 iter/s, 4.93494s/12 iters), loss = 1.69592 +I0407 22:54:00.915166 359 solver.cpp:237] Train net output #0: loss = 1.69592 (* 1 = 1.69592 loss) +I0407 22:54:00.915174 359 sgd_solver.cpp:105] Iteration 3420, lr = 0.00964226 +I0407 22:54:05.856339 359 solver.cpp:218] Iteration 3432 (2.42858 iter/s, 4.94115s/12 iters), loss = 1.71626 +I0407 22:54:05.856387 359 solver.cpp:237] Train net output #0: loss = 1.71626 (* 1 = 1.71626 loss) +I0407 22:54:05.856395 359 sgd_solver.cpp:105] Iteration 3432, lr = 0.00963406 +I0407 22:54:08.425891 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:10.768893 359 solver.cpp:218] Iteration 3444 (2.44276 iter/s, 4.91248s/12 iters), loss = 1.78531 +I0407 22:54:10.768937 359 solver.cpp:237] Train net output #0: loss = 1.78531 (* 1 = 1.78531 loss) +I0407 22:54:10.768946 359 sgd_solver.cpp:105] Iteration 3444, lr = 0.00962567 +I0407 22:54:15.631819 359 solver.cpp:218] Iteration 3456 (2.46768 iter/s, 4.86286s/12 iters), loss = 1.8038 +I0407 22:54:15.631856 359 solver.cpp:237] Train net output #0: loss = 1.8038 (* 1 = 1.8038 loss) +I0407 22:54:15.631863 359 sgd_solver.cpp:105] Iteration 3456, lr = 0.0096171 +I0407 22:54:20.116326 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 22:54:23.230362 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 22:54:25.599941 359 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 22:54:25.599961 359 net.cpp:676] Ignoring source layer train-data +I0407 22:54:25.979009 359 blocking_queue.cpp:49] Waiting for data +I0407 22:54:28.577630 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:29.964434 359 solver.cpp:397] Test net output #0: accuracy = 0.297181 +I0407 22:54:29.964470 359 solver.cpp:397] Test net output #1: loss = 3.10223 (* 1 = 3.10223 loss) +I0407 22:54:30.060896 359 solver.cpp:218] Iteration 3468 (0.831658 iter/s, 14.429s/12 iters), loss = 1.71592 +I0407 22:54:30.060936 359 solver.cpp:237] Train net output #0: loss = 1.71592 (* 1 = 1.71592 loss) +I0407 22:54:30.060943 359 sgd_solver.cpp:105] Iteration 3468, lr = 0.00960834 +I0407 22:54:34.042717 359 solver.cpp:218] Iteration 3480 (3.01374 iter/s, 3.98176s/12 iters), loss = 1.78015 +I0407 22:54:34.042757 359 solver.cpp:237] Train net output #0: loss = 1.78015 (* 1 = 1.78015 loss) +I0407 22:54:34.042765 359 sgd_solver.cpp:105] Iteration 3480, lr = 0.00959939 +I0407 22:54:38.969643 359 solver.cpp:218] Iteration 3492 (2.43563 iter/s, 4.92686s/12 iters), loss = 1.64672 +I0407 22:54:38.969753 359 solver.cpp:237] Train net output #0: loss = 1.64672 (* 1 = 1.64672 loss) +I0407 22:54:38.969760 359 sgd_solver.cpp:105] Iteration 3492, lr = 0.00959024 +I0407 22:54:43.925062 359 solver.cpp:218] Iteration 3504 (2.42166 iter/s, 4.95528s/12 iters), loss = 1.89541 +I0407 22:54:43.925109 359 solver.cpp:237] Train net output #0: loss = 1.89541 (* 1 = 1.89541 loss) +I0407 22:54:43.925118 359 sgd_solver.cpp:105] Iteration 3504, lr = 0.0095809 +I0407 22:54:48.824512 359 solver.cpp:218] Iteration 3516 (2.44929 iter/s, 4.89939s/12 iters), loss = 1.91145 +I0407 22:54:48.824544 359 solver.cpp:237] Train net output #0: loss = 1.91145 (* 1 = 1.91145 loss) +I0407 22:54:48.824553 359 sgd_solver.cpp:105] Iteration 3516, lr = 0.00957135 +I0407 22:54:53.741083 359 solver.cpp:218] Iteration 3528 (2.44075 iter/s, 4.91651s/12 iters), loss = 1.44124 +I0407 22:54:53.741124 359 solver.cpp:237] Train net output #0: loss = 1.44124 (* 1 = 1.44124 loss) +I0407 22:54:53.741133 359 sgd_solver.cpp:105] Iteration 3528, lr = 0.00956159 +I0407 22:54:58.331110 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:54:58.587404 359 solver.cpp:218] Iteration 3540 (2.47614 iter/s, 4.84626s/12 iters), loss = 1.56631 +I0407 22:54:58.587445 359 solver.cpp:237] Train net output #0: loss = 1.56631 (* 1 = 1.56631 loss) +I0407 22:54:58.587453 359 sgd_solver.cpp:105] Iteration 3540, lr = 0.00955162 +I0407 22:55:03.489917 359 solver.cpp:218] Iteration 3552 (2.44775 iter/s, 4.90246s/12 iters), loss = 1.99541 +I0407 22:55:03.489951 359 solver.cpp:237] Train net output #0: loss = 1.99541 (* 1 = 1.99541 loss) +I0407 22:55:03.489959 359 sgd_solver.cpp:105] Iteration 3552, lr = 0.00954143 +I0407 22:55:08.438408 359 solver.cpp:218] Iteration 3564 (2.42501 iter/s, 4.94844s/12 iters), loss = 1.75829 +I0407 22:55:08.438442 359 solver.cpp:237] Train net output #0: loss = 1.75829 (* 1 = 1.75829 loss) +I0407 22:55:08.438449 359 sgd_solver.cpp:105] Iteration 3564, lr = 0.00953103 +I0407 22:55:10.426291 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 22:55:13.532604 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 22:55:15.900574 359 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 22:55:15.900593 359 net.cpp:676] Ignoring source layer train-data +I0407 22:55:18.917930 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:20.338215 359 solver.cpp:397] Test net output #0: accuracy = 0.317402 +I0407 22:55:20.338258 359 solver.cpp:397] Test net output #1: loss = 3.03856 (* 1 = 3.03856 loss) +I0407 22:55:22.125113 359 solver.cpp:218] Iteration 3576 (0.876768 iter/s, 13.6866s/12 iters), loss = 1.82348 +I0407 22:55:22.125156 359 solver.cpp:237] Train net output #0: loss = 1.82348 (* 1 = 1.82348 loss) +I0407 22:55:22.125164 359 sgd_solver.cpp:105] Iteration 3576, lr = 0.0095204 +I0407 22:55:27.052601 359 solver.cpp:218] Iteration 3588 (2.43535 iter/s, 4.92742s/12 iters), loss = 1.5205 +I0407 22:55:27.052639 359 solver.cpp:237] Train net output #0: loss = 1.5205 (* 1 = 1.5205 loss) +I0407 22:55:27.052646 359 sgd_solver.cpp:105] Iteration 3588, lr = 0.00950954 +I0407 22:55:32.014633 359 solver.cpp:218] Iteration 3600 (2.41839 iter/s, 4.96197s/12 iters), loss = 1.56863 +I0407 22:55:32.014675 359 solver.cpp:237] Train net output #0: loss = 1.56863 (* 1 = 1.56863 loss) +I0407 22:55:32.014683 359 sgd_solver.cpp:105] Iteration 3600, lr = 0.00949845 +I0407 22:55:36.968760 359 solver.cpp:218] Iteration 3612 (2.42225 iter/s, 4.95406s/12 iters), loss = 1.74721 +I0407 22:55:36.968801 359 solver.cpp:237] Train net output #0: loss = 1.74721 (* 1 = 1.74721 loss) +I0407 22:55:36.968809 359 sgd_solver.cpp:105] Iteration 3612, lr = 0.00948712 +I0407 22:55:41.915572 359 solver.cpp:218] Iteration 3624 (2.42583 iter/s, 4.94675s/12 iters), loss = 1.32363 +I0407 22:55:41.915701 359 solver.cpp:237] Train net output #0: loss = 1.32363 (* 1 = 1.32363 loss) +I0407 22:55:41.915710 359 sgd_solver.cpp:105] Iteration 3624, lr = 0.00947555 +I0407 22:55:46.881790 359 solver.cpp:218] Iteration 3636 (2.4164 iter/s, 4.96607s/12 iters), loss = 1.42952 +I0407 22:55:46.881827 359 solver.cpp:237] Train net output #0: loss = 1.42952 (* 1 = 1.42952 loss) +I0407 22:55:46.881835 359 sgd_solver.cpp:105] Iteration 3636, lr = 0.00946373 +I0407 22:55:48.705510 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:55:51.770571 359 solver.cpp:218] Iteration 3648 (2.45463 iter/s, 4.88872s/12 iters), loss = 1.4643 +I0407 22:55:51.770614 359 solver.cpp:237] Train net output #0: loss = 1.4643 (* 1 = 1.4643 loss) +I0407 22:55:51.770622 359 sgd_solver.cpp:105] Iteration 3648, lr = 0.00945166 +I0407 22:55:56.723450 359 solver.cpp:218] Iteration 3660 (2.42286 iter/s, 4.95282s/12 iters), loss = 1.42625 +I0407 22:55:56.723487 359 solver.cpp:237] Train net output #0: loss = 1.42625 (* 1 = 1.42625 loss) +I0407 22:55:56.723495 359 sgd_solver.cpp:105] Iteration 3660, lr = 0.00943934 +I0407 22:56:01.163729 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 22:56:04.252982 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 22:56:06.616099 359 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 22:56:06.616117 359 net.cpp:676] Ignoring source layer train-data +I0407 22:56:09.556977 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:11.049046 359 solver.cpp:397] Test net output #0: accuracy = 0.322304 +I0407 22:56:11.049093 359 solver.cpp:397] Test net output #1: loss = 3.03693 (* 1 = 3.03693 loss) +I0407 22:56:11.145462 359 solver.cpp:218] Iteration 3672 (0.832065 iter/s, 14.4219s/12 iters), loss = 1.59599 +I0407 22:56:11.145499 359 solver.cpp:237] Train net output #0: loss = 1.59599 (* 1 = 1.59599 loss) +I0407 22:56:11.145506 359 sgd_solver.cpp:105] Iteration 3672, lr = 0.00942676 +I0407 22:56:15.304809 359 solver.cpp:218] Iteration 3684 (2.88511 iter/s, 4.15929s/12 iters), loss = 1.48452 +I0407 22:56:15.304971 359 solver.cpp:237] Train net output #0: loss = 1.48452 (* 1 = 1.48452 loss) +I0407 22:56:15.304980 359 sgd_solver.cpp:105] Iteration 3684, lr = 0.00941391 +I0407 22:56:20.271034 359 solver.cpp:218] Iteration 3696 (2.41641 iter/s, 4.96604s/12 iters), loss = 1.43322 +I0407 22:56:20.271077 359 solver.cpp:237] Train net output #0: loss = 1.43322 (* 1 = 1.43322 loss) +I0407 22:56:20.271086 359 sgd_solver.cpp:105] Iteration 3696, lr = 0.00940079 +I0407 22:56:25.196681 359 solver.cpp:218] Iteration 3708 (2.43626 iter/s, 4.92558s/12 iters), loss = 1.16543 +I0407 22:56:25.196725 359 solver.cpp:237] Train net output #0: loss = 1.16543 (* 1 = 1.16543 loss) +I0407 22:56:25.196735 359 sgd_solver.cpp:105] Iteration 3708, lr = 0.0093874 +I0407 22:56:30.150964 359 solver.cpp:218] Iteration 3720 (2.42218 iter/s, 4.95422s/12 iters), loss = 1.78309 +I0407 22:56:30.151001 359 solver.cpp:237] Train net output #0: loss = 1.78309 (* 1 = 1.78309 loss) +I0407 22:56:30.151010 359 sgd_solver.cpp:105] Iteration 3720, lr = 0.00937373 +I0407 22:56:35.094007 359 solver.cpp:218] Iteration 3732 (2.42768 iter/s, 4.94298s/12 iters), loss = 1.28626 +I0407 22:56:35.094048 359 solver.cpp:237] Train net output #0: loss = 1.28626 (* 1 = 1.28626 loss) +I0407 22:56:35.094056 359 sgd_solver.cpp:105] Iteration 3732, lr = 0.00935977 +I0407 22:56:39.051785 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:56:40.023315 359 solver.cpp:218] Iteration 3744 (2.43445 iter/s, 4.92925s/12 iters), loss = 1.57416 +I0407 22:56:40.023353 359 solver.cpp:237] Train net output #0: loss = 1.57416 (* 1 = 1.57416 loss) +I0407 22:56:40.023362 359 sgd_solver.cpp:105] Iteration 3744, lr = 0.00934553 +I0407 22:56:45.009591 359 solver.cpp:218] Iteration 3756 (2.40663 iter/s, 4.98622s/12 iters), loss = 1.47913 +I0407 22:56:45.009625 359 solver.cpp:237] Train net output #0: loss = 1.47913 (* 1 = 1.47913 loss) +I0407 22:56:45.009634 359 sgd_solver.cpp:105] Iteration 3756, lr = 0.00933099 +I0407 22:56:49.940285 359 solver.cpp:218] Iteration 3768 (2.43376 iter/s, 4.93064s/12 iters), loss = 1.3796 +I0407 22:56:49.940412 359 solver.cpp:237] Train net output #0: loss = 1.3796 (* 1 = 1.3796 loss) +I0407 22:56:49.940421 359 sgd_solver.cpp:105] Iteration 3768, lr = 0.00931615 +I0407 22:56:51.956657 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 22:56:55.111392 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 22:56:57.535313 359 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 22:56:57.535332 359 net.cpp:676] Ignoring source layer train-data +I0407 22:57:00.533215 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:02.193050 359 solver.cpp:397] Test net output #0: accuracy = 0.308211 +I0407 22:57:02.193097 359 solver.cpp:397] Test net output #1: loss = 3.07509 (* 1 = 3.07509 loss) +I0407 22:57:03.967428 359 solver.cpp:218] Iteration 3780 (0.855493 iter/s, 14.027s/12 iters), loss = 1.33665 +I0407 22:57:03.967471 359 solver.cpp:237] Train net output #0: loss = 1.33665 (* 1 = 1.33665 loss) +I0407 22:57:03.967479 359 sgd_solver.cpp:105] Iteration 3780, lr = 0.00930101 +I0407 22:57:08.915087 359 solver.cpp:218] Iteration 3792 (2.42542 iter/s, 4.94759s/12 iters), loss = 1.36408 +I0407 22:57:08.915132 359 solver.cpp:237] Train net output #0: loss = 1.36408 (* 1 = 1.36408 loss) +I0407 22:57:08.915140 359 sgd_solver.cpp:105] Iteration 3792, lr = 0.00928555 +I0407 22:57:13.822329 359 solver.cpp:218] Iteration 3804 (2.4454 iter/s, 4.90717s/12 iters), loss = 1.28694 +I0407 22:57:13.822369 359 solver.cpp:237] Train net output #0: loss = 1.28694 (* 1 = 1.28694 loss) +I0407 22:57:13.822377 359 sgd_solver.cpp:105] Iteration 3804, lr = 0.00926979 +I0407 22:57:18.775259 359 solver.cpp:218] Iteration 3816 (2.42284 iter/s, 4.95287s/12 iters), loss = 1.4879 +I0407 22:57:18.775296 359 solver.cpp:237] Train net output #0: loss = 1.4879 (* 1 = 1.4879 loss) +I0407 22:57:18.775305 359 sgd_solver.cpp:105] Iteration 3816, lr = 0.0092537 +I0407 22:57:23.694917 359 solver.cpp:218] Iteration 3828 (2.43922 iter/s, 4.9196s/12 iters), loss = 1.40069 +I0407 22:57:23.695066 359 solver.cpp:237] Train net output #0: loss = 1.40069 (* 1 = 1.40069 loss) +I0407 22:57:23.695076 359 sgd_solver.cpp:105] Iteration 3828, lr = 0.00923728 +I0407 22:57:28.654698 359 solver.cpp:218] Iteration 3840 (2.41955 iter/s, 4.95961s/12 iters), loss = 1.30807 +I0407 22:57:28.654744 359 solver.cpp:237] Train net output #0: loss = 1.30807 (* 1 = 1.30807 loss) +I0407 22:57:28.654753 359 sgd_solver.cpp:105] Iteration 3840, lr = 0.00922054 +I0407 22:57:29.756131 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:33.486899 359 solver.cpp:218] Iteration 3852 (2.48337 iter/s, 4.83214s/12 iters), loss = 1.5054 +I0407 22:57:33.486941 359 solver.cpp:237] Train net output #0: loss = 1.5054 (* 1 = 1.5054 loss) +I0407 22:57:33.486949 359 sgd_solver.cpp:105] Iteration 3852, lr = 0.00920346 +I0407 22:57:38.419373 359 solver.cpp:218] Iteration 3864 (2.43289 iter/s, 4.93241s/12 iters), loss = 1.32235 +I0407 22:57:38.419415 359 solver.cpp:237] Train net output #0: loss = 1.32235 (* 1 = 1.32235 loss) +I0407 22:57:38.419423 359 sgd_solver.cpp:105] Iteration 3864, lr = 0.00918604 +I0407 22:57:42.897219 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 22:57:46.039988 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 22:57:48.402369 359 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 22:57:48.402385 359 net.cpp:676] Ignoring source layer train-data +I0407 22:57:51.336009 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:57:53.038373 359 solver.cpp:397] Test net output #0: accuracy = 0.322304 +I0407 22:57:53.038420 359 solver.cpp:397] Test net output #1: loss = 3.15085 (* 1 = 3.15085 loss) +I0407 22:57:53.135298 359 solver.cpp:218] Iteration 3876 (0.815447 iter/s, 14.7159s/12 iters), loss = 1.29692 +I0407 22:57:53.135342 359 solver.cpp:237] Train net output #0: loss = 1.29692 (* 1 = 1.29692 loss) +I0407 22:57:53.135350 359 sgd_solver.cpp:105] Iteration 3876, lr = 0.00916827 +I0407 22:57:57.240638 359 solver.cpp:218] Iteration 3888 (2.92307 iter/s, 4.10527s/12 iters), loss = 1.1866 +I0407 22:57:57.240765 359 solver.cpp:237] Train net output #0: loss = 1.1866 (* 1 = 1.1866 loss) +I0407 22:57:57.240774 359 sgd_solver.cpp:105] Iteration 3888, lr = 0.00915015 +I0407 22:58:02.198922 359 solver.cpp:218] Iteration 3900 (2.42027 iter/s, 4.95813s/12 iters), loss = 1.35107 +I0407 22:58:02.198976 359 solver.cpp:237] Train net output #0: loss = 1.35107 (* 1 = 1.35107 loss) +I0407 22:58:02.198987 359 sgd_solver.cpp:105] Iteration 3900, lr = 0.00913168 +I0407 22:58:07.118937 359 solver.cpp:218] Iteration 3912 (2.43905 iter/s, 4.91994s/12 iters), loss = 1.32408 +I0407 22:58:07.118981 359 solver.cpp:237] Train net output #0: loss = 1.32408 (* 1 = 1.32408 loss) +I0407 22:58:07.118989 359 sgd_solver.cpp:105] Iteration 3912, lr = 0.00911284 +I0407 22:58:12.036504 359 solver.cpp:218] Iteration 3924 (2.44026 iter/s, 4.9175s/12 iters), loss = 1.04679 +I0407 22:58:12.036551 359 solver.cpp:237] Train net output #0: loss = 1.04679 (* 1 = 1.04679 loss) +I0407 22:58:12.036559 359 sgd_solver.cpp:105] Iteration 3924, lr = 0.00909363 +I0407 22:58:16.966168 359 solver.cpp:218] Iteration 3936 (2.43428 iter/s, 4.9296s/12 iters), loss = 1.03738 +I0407 22:58:16.966207 359 solver.cpp:237] Train net output #0: loss = 1.03738 (* 1 = 1.03738 loss) +I0407 22:58:16.966214 359 sgd_solver.cpp:105] Iteration 3936, lr = 0.00907405 +I0407 22:58:20.266736 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:21.915828 359 solver.cpp:218] Iteration 3948 (2.42444 iter/s, 4.9496s/12 iters), loss = 1.55883 +I0407 22:58:21.915870 359 solver.cpp:237] Train net output #0: loss = 1.55883 (* 1 = 1.55883 loss) +I0407 22:58:21.915879 359 sgd_solver.cpp:105] Iteration 3948, lr = 0.00905409 +I0407 22:58:26.839010 359 solver.cpp:218] Iteration 3960 (2.43748 iter/s, 4.92312s/12 iters), loss = 1.16935 +I0407 22:58:26.839046 359 solver.cpp:237] Train net output #0: loss = 1.16935 (* 1 = 1.16935 loss) +I0407 22:58:26.839053 359 sgd_solver.cpp:105] Iteration 3960, lr = 0.00903374 +I0407 22:58:31.700322 359 solver.cpp:218] Iteration 3972 (2.4685 iter/s, 4.86125s/12 iters), loss = 1.00229 +I0407 22:58:31.700532 359 solver.cpp:237] Train net output #0: loss = 1.00229 (* 1 = 1.00229 loss) +I0407 22:58:31.700547 359 sgd_solver.cpp:105] Iteration 3972, lr = 0.00901301 +I0407 22:58:33.714874 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 22:58:36.835970 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 22:58:39.232069 359 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 22:58:39.232086 359 net.cpp:676] Ignoring source layer train-data +I0407 22:58:42.364213 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:58:44.073710 359 solver.cpp:397] Test net output #0: accuracy = 0.311274 +I0407 22:58:44.073755 359 solver.cpp:397] Test net output #1: loss = 3.19912 (* 1 = 3.19912 loss) +I0407 22:58:45.872015 359 solver.cpp:218] Iteration 3984 (0.846772 iter/s, 14.1715s/12 iters), loss = 1.46864 +I0407 22:58:45.872053 359 solver.cpp:237] Train net output #0: loss = 1.46864 (* 1 = 1.46864 loss) +I0407 22:58:45.872061 359 sgd_solver.cpp:105] Iteration 3984, lr = 0.00899188 +I0407 22:58:50.795529 359 solver.cpp:218] Iteration 3996 (2.43731 iter/s, 4.92346s/12 iters), loss = 1.06736 +I0407 22:58:50.795572 359 solver.cpp:237] Train net output #0: loss = 1.06736 (* 1 = 1.06736 loss) +I0407 22:58:50.795580 359 sgd_solver.cpp:105] Iteration 3996, lr = 0.00897035 +I0407 22:58:55.753439 359 solver.cpp:218] Iteration 4008 (2.42041 iter/s, 4.95784s/12 iters), loss = 1.24715 +I0407 22:58:55.753484 359 solver.cpp:237] Train net output #0: loss = 1.24715 (* 1 = 1.24715 loss) +I0407 22:58:55.753494 359 sgd_solver.cpp:105] Iteration 4008, lr = 0.00894841 +I0407 22:59:00.688710 359 solver.cpp:218] Iteration 4020 (2.43151 iter/s, 4.93521s/12 iters), loss = 1.62328 +I0407 22:59:00.688757 359 solver.cpp:237] Train net output #0: loss = 1.62328 (* 1 = 1.62328 loss) +I0407 22:59:00.688766 359 sgd_solver.cpp:105] Iteration 4020, lr = 0.00892607 +I0407 22:59:05.590694 359 solver.cpp:218] Iteration 4032 (2.44802 iter/s, 4.90192s/12 iters), loss = 1.28528 +I0407 22:59:05.590814 359 solver.cpp:237] Train net output #0: loss = 1.28528 (* 1 = 1.28528 loss) +I0407 22:59:05.590822 359 sgd_solver.cpp:105] Iteration 4032, lr = 0.0089033 +I0407 22:59:10.494958 359 solver.cpp:218] Iteration 4044 (2.44692 iter/s, 4.90412s/12 iters), loss = 1.08686 +I0407 22:59:10.495004 359 solver.cpp:237] Train net output #0: loss = 1.08686 (* 1 = 1.08686 loss) +I0407 22:59:10.495012 359 sgd_solver.cpp:105] Iteration 4044, lr = 0.00888011 +I0407 22:59:10.971974 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:15.421900 359 solver.cpp:218] Iteration 4056 (2.43562 iter/s, 4.92688s/12 iters), loss = 1.43536 +I0407 22:59:15.421945 359 solver.cpp:237] Train net output #0: loss = 1.43536 (* 1 = 1.43536 loss) +I0407 22:59:15.421953 359 sgd_solver.cpp:105] Iteration 4056, lr = 0.0088565 +I0407 22:59:20.351946 359 solver.cpp:218] Iteration 4068 (2.43409 iter/s, 4.92998s/12 iters), loss = 1.2736 +I0407 22:59:20.351989 359 solver.cpp:237] Train net output #0: loss = 1.2736 (* 1 = 1.2736 loss) +I0407 22:59:20.351996 359 sgd_solver.cpp:105] Iteration 4068, lr = 0.00883245 +I0407 22:59:24.777037 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 22:59:29.177081 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 22:59:31.699450 359 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 22:59:31.699465 359 net.cpp:676] Ignoring source layer train-data +I0407 22:59:34.641240 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 22:59:36.284500 359 solver.cpp:397] Test net output #0: accuracy = 0.323529 +I0407 22:59:36.284646 359 solver.cpp:397] Test net output #1: loss = 3.14619 (* 1 = 3.14619 loss) +I0407 22:59:36.381498 359 solver.cpp:218] Iteration 4080 (0.748621 iter/s, 16.0295s/12 iters), loss = 1.19587 +I0407 22:59:36.381542 359 solver.cpp:237] Train net output #0: loss = 1.19587 (* 1 = 1.19587 loss) +I0407 22:59:36.381549 359 sgd_solver.cpp:105] Iteration 4080, lr = 0.00880797 +I0407 22:59:40.510213 359 solver.cpp:218] Iteration 4092 (2.90652 iter/s, 4.12865s/12 iters), loss = 1.26657 +I0407 22:59:40.510258 359 solver.cpp:237] Train net output #0: loss = 1.26657 (* 1 = 1.26657 loss) +I0407 22:59:40.510267 359 sgd_solver.cpp:105] Iteration 4092, lr = 0.00878304 +I0407 22:59:45.452402 359 solver.cpp:218] Iteration 4104 (2.42811 iter/s, 4.94212s/12 iters), loss = 1.40396 +I0407 22:59:45.452447 359 solver.cpp:237] Train net output #0: loss = 1.40396 (* 1 = 1.40396 loss) +I0407 22:59:45.452455 359 sgd_solver.cpp:105] Iteration 4104, lr = 0.00875767 +I0407 22:59:50.409837 359 solver.cpp:218] Iteration 4116 (2.42064 iter/s, 4.95736s/12 iters), loss = 1.27666 +I0407 22:59:50.409880 359 solver.cpp:237] Train net output #0: loss = 1.27666 (* 1 = 1.27666 loss) +I0407 22:59:50.409889 359 sgd_solver.cpp:105] Iteration 4116, lr = 0.00873184 +I0407 22:59:55.328012 359 solver.cpp:218] Iteration 4128 (2.43996 iter/s, 4.91811s/12 iters), loss = 1.10314 +I0407 22:59:55.328045 359 solver.cpp:237] Train net output #0: loss = 1.10314 (* 1 = 1.10314 loss) +I0407 22:59:55.328052 359 sgd_solver.cpp:105] Iteration 4128, lr = 0.00870556 +I0407 23:00:00.289180 359 solver.cpp:218] Iteration 4140 (2.41881 iter/s, 4.96111s/12 iters), loss = 1.34791 +I0407 23:00:00.289219 359 solver.cpp:237] Train net output #0: loss = 1.34791 (* 1 = 1.34791 loss) +I0407 23:00:00.289227 359 sgd_solver.cpp:105] Iteration 4140, lr = 0.00867881 +I0407 23:00:02.866626 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:05.180112 359 solver.cpp:218] Iteration 4152 (2.45355 iter/s, 4.89087s/12 iters), loss = 1.45668 +I0407 23:00:05.180158 359 solver.cpp:237] Train net output #0: loss = 1.45668 (* 1 = 1.45668 loss) +I0407 23:00:05.180166 359 sgd_solver.cpp:105] Iteration 4152, lr = 0.0086516 +I0407 23:00:06.758963 359 blocking_queue.cpp:49] Waiting for data +I0407 23:00:10.133764 359 solver.cpp:218] Iteration 4164 (2.42249 iter/s, 4.95358s/12 iters), loss = 0.80139 +I0407 23:00:10.133810 359 solver.cpp:237] Train net output #0: loss = 0.80139 (* 1 = 0.80139 loss) +I0407 23:00:10.133818 359 sgd_solver.cpp:105] Iteration 4164, lr = 0.00862391 +I0407 23:00:15.034997 359 solver.cpp:218] Iteration 4176 (2.4484 iter/s, 4.90117s/12 iters), loss = 1.35264 +I0407 23:00:15.035044 359 solver.cpp:237] Train net output #0: loss = 1.35264 (* 1 = 1.35264 loss) +I0407 23:00:15.035053 359 sgd_solver.cpp:105] Iteration 4176, lr = 0.00859575 +I0407 23:00:17.019186 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 23:00:21.290120 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 23:00:24.105581 359 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 23:00:24.105600 359 net.cpp:676] Ignoring source layer train-data +I0407 23:00:27.069430 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:28.889843 359 solver.cpp:397] Test net output #0: accuracy = 0.316176 +I0407 23:00:28.889892 359 solver.cpp:397] Test net output #1: loss = 3.2268 (* 1 = 3.2268 loss) +I0407 23:00:30.651959 359 solver.cpp:218] Iteration 4188 (0.768399 iter/s, 15.6169s/12 iters), loss = 1.26156 +I0407 23:00:30.651999 359 solver.cpp:237] Train net output #0: loss = 1.26156 (* 1 = 1.26156 loss) +I0407 23:00:30.652007 359 sgd_solver.cpp:105] Iteration 4188, lr = 0.00856711 +I0407 23:00:35.575906 359 solver.cpp:218] Iteration 4200 (2.4371 iter/s, 4.92388s/12 iters), loss = 1.15826 +I0407 23:00:35.575951 359 solver.cpp:237] Train net output #0: loss = 1.15826 (* 1 = 1.15826 loss) +I0407 23:00:35.575959 359 sgd_solver.cpp:105] Iteration 4200, lr = 0.00853798 +I0407 23:00:40.534448 359 solver.cpp:218] Iteration 4212 (2.4201 iter/s, 4.95848s/12 iters), loss = 1.24572 +I0407 23:00:40.534613 359 solver.cpp:237] Train net output #0: loss = 1.24572 (* 1 = 1.24572 loss) +I0407 23:00:40.534622 359 sgd_solver.cpp:105] Iteration 4212, lr = 0.00850836 +I0407 23:00:45.426296 359 solver.cpp:218] Iteration 4224 (2.45315 iter/s, 4.89167s/12 iters), loss = 0.929474 +I0407 23:00:45.426337 359 solver.cpp:237] Train net output #0: loss = 0.929474 (* 1 = 0.929474 loss) +I0407 23:00:45.426344 359 sgd_solver.cpp:105] Iteration 4224, lr = 0.00847826 +I0407 23:00:50.392489 359 solver.cpp:218] Iteration 4236 (2.41637 iter/s, 4.96614s/12 iters), loss = 1.17604 +I0407 23:00:50.392526 359 solver.cpp:237] Train net output #0: loss = 1.17604 (* 1 = 1.17604 loss) +I0407 23:00:50.392534 359 sgd_solver.cpp:105] Iteration 4236, lr = 0.00844765 +I0407 23:00:55.056447 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:00:55.281594 359 solver.cpp:218] Iteration 4248 (2.45447 iter/s, 4.88904s/12 iters), loss = 1.20396 +I0407 23:00:55.281641 359 solver.cpp:237] Train net output #0: loss = 1.20396 (* 1 = 1.20396 loss) +I0407 23:00:55.281648 359 sgd_solver.cpp:105] Iteration 4248, lr = 0.00841654 +I0407 23:01:00.224630 359 solver.cpp:218] Iteration 4260 (2.42769 iter/s, 4.94297s/12 iters), loss = 1.30071 +I0407 23:01:00.224678 359 solver.cpp:237] Train net output #0: loss = 1.30071 (* 1 = 1.30071 loss) +I0407 23:01:00.224687 359 sgd_solver.cpp:105] Iteration 4260, lr = 0.00838493 +I0407 23:01:05.163117 359 solver.cpp:218] Iteration 4272 (2.42993 iter/s, 4.93842s/12 iters), loss = 0.907478 +I0407 23:01:05.163162 359 solver.cpp:237] Train net output #0: loss = 0.907478 (* 1 = 0.907478 loss) +I0407 23:01:05.163172 359 sgd_solver.cpp:105] Iteration 4272, lr = 0.00835281 +I0407 23:01:09.643810 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 23:01:12.732884 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 23:01:15.492810 359 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 23:01:15.492828 359 net.cpp:676] Ignoring source layer train-data +I0407 23:01:18.268864 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:19.993580 359 solver.cpp:397] Test net output #0: accuracy = 0.311274 +I0407 23:01:19.993623 359 solver.cpp:397] Test net output #1: loss = 3.17454 (* 1 = 3.17454 loss) +I0407 23:01:20.090034 359 solver.cpp:218] Iteration 4284 (0.803921 iter/s, 14.9268s/12 iters), loss = 1.1332 +I0407 23:01:20.090072 359 solver.cpp:237] Train net output #0: loss = 1.1332 (* 1 = 1.1332 loss) +I0407 23:01:20.090080 359 sgd_solver.cpp:105] Iteration 4284, lr = 0.00832018 +I0407 23:01:24.208346 359 solver.cpp:218] Iteration 4296 (2.91386 iter/s, 4.11825s/12 iters), loss = 1.09216 +I0407 23:01:24.208396 359 solver.cpp:237] Train net output #0: loss = 1.09216 (* 1 = 1.09216 loss) +I0407 23:01:24.208410 359 sgd_solver.cpp:105] Iteration 4296, lr = 0.00828704 +I0407 23:01:29.155835 359 solver.cpp:218] Iteration 4308 (2.42551 iter/s, 4.94742s/12 iters), loss = 1.20225 +I0407 23:01:29.155875 359 solver.cpp:237] Train net output #0: loss = 1.20225 (* 1 = 1.20225 loss) +I0407 23:01:29.155884 359 sgd_solver.cpp:105] Iteration 4308, lr = 0.00825338 +I0407 23:01:34.067395 359 solver.cpp:218] Iteration 4320 (2.44324 iter/s, 4.9115s/12 iters), loss = 1.19316 +I0407 23:01:34.067433 359 solver.cpp:237] Train net output #0: loss = 1.19316 (* 1 = 1.19316 loss) +I0407 23:01:34.067441 359 sgd_solver.cpp:105] Iteration 4320, lr = 0.0082192 +I0407 23:01:39.042028 359 solver.cpp:218] Iteration 4332 (2.41227 iter/s, 4.97458s/12 iters), loss = 1.08762 +I0407 23:01:39.042062 359 solver.cpp:237] Train net output #0: loss = 1.08762 (* 1 = 1.08762 loss) +I0407 23:01:39.042069 359 sgd_solver.cpp:105] Iteration 4332, lr = 0.0081845 +I0407 23:01:43.957597 359 solver.cpp:218] Iteration 4344 (2.44125 iter/s, 4.91551s/12 iters), loss = 0.923437 +I0407 23:01:43.957777 359 solver.cpp:237] Train net output #0: loss = 0.923437 (* 1 = 0.923437 loss) +I0407 23:01:43.957798 359 sgd_solver.cpp:105] Iteration 4344, lr = 0.00814928 +I0407 23:01:45.825765 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:01:48.904299 359 solver.cpp:218] Iteration 4356 (2.42595 iter/s, 4.94651s/12 iters), loss = 1.15211 +I0407 23:01:48.904340 359 solver.cpp:237] Train net output #0: loss = 1.15211 (* 1 = 1.15211 loss) +I0407 23:01:48.904348 359 sgd_solver.cpp:105] Iteration 4356, lr = 0.00811353 +I0407 23:01:53.825569 359 solver.cpp:218] Iteration 4368 (2.43843 iter/s, 4.9212s/12 iters), loss = 1.17825 +I0407 23:01:53.825613 359 solver.cpp:237] Train net output #0: loss = 1.17825 (* 1 = 1.17825 loss) +I0407 23:01:53.825620 359 sgd_solver.cpp:105] Iteration 4368, lr = 0.00807725 +I0407 23:01:58.777667 359 solver.cpp:218] Iteration 4380 (2.42325 iter/s, 4.95203s/12 iters), loss = 1.07236 +I0407 23:01:58.777707 359 solver.cpp:237] Train net output #0: loss = 1.07236 (* 1 = 1.07236 loss) +I0407 23:01:58.777716 359 sgd_solver.cpp:105] Iteration 4380, lr = 0.00804044 +I0407 23:02:00.772776 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 23:02:03.842010 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 23:02:06.212311 359 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 23:02:06.212329 359 net.cpp:676] Ignoring source layer train-data +I0407 23:02:08.871178 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:10.609735 359 solver.cpp:397] Test net output #0: accuracy = 0.352328 +I0407 23:02:10.609783 359 solver.cpp:397] Test net output #1: loss = 3.0698 (* 1 = 3.0698 loss) +I0407 23:02:12.402021 359 solver.cpp:218] Iteration 4392 (0.88078 iter/s, 13.6243s/12 iters), loss = 1.30571 +I0407 23:02:12.402076 359 solver.cpp:237] Train net output #0: loss = 1.30571 (* 1 = 1.30571 loss) +I0407 23:02:12.402084 359 sgd_solver.cpp:105] Iteration 4392, lr = 0.0080031 +I0407 23:02:17.323110 359 solver.cpp:218] Iteration 4404 (2.43852 iter/s, 4.92101s/12 iters), loss = 1.05286 +I0407 23:02:17.323215 359 solver.cpp:237] Train net output #0: loss = 1.05286 (* 1 = 1.05286 loss) +I0407 23:02:17.323225 359 sgd_solver.cpp:105] Iteration 4404, lr = 0.00796523 +I0407 23:02:22.288081 359 solver.cpp:218] Iteration 4416 (2.41699 iter/s, 4.96485s/12 iters), loss = 1.1881 +I0407 23:02:22.288121 359 solver.cpp:237] Train net output #0: loss = 1.1881 (* 1 = 1.1881 loss) +I0407 23:02:22.288130 359 sgd_solver.cpp:105] Iteration 4416, lr = 0.00792683 +I0407 23:02:27.180815 359 solver.cpp:218] Iteration 4428 (2.45265 iter/s, 4.89267s/12 iters), loss = 1.18597 +I0407 23:02:27.180855 359 solver.cpp:237] Train net output #0: loss = 1.18597 (* 1 = 1.18597 loss) +I0407 23:02:27.180863 359 sgd_solver.cpp:105] Iteration 4428, lr = 0.0078879 +I0407 23:02:32.143658 359 solver.cpp:218] Iteration 4440 (2.418 iter/s, 4.96278s/12 iters), loss = 0.850651 +I0407 23:02:32.143699 359 solver.cpp:237] Train net output #0: loss = 0.850651 (* 1 = 0.850651 loss) +I0407 23:02:32.143707 359 sgd_solver.cpp:105] Iteration 4440, lr = 0.00784843 +I0407 23:02:36.092711 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:02:37.025038 359 solver.cpp:218] Iteration 4452 (2.45835 iter/s, 4.88131s/12 iters), loss = 1.04663 +I0407 23:02:37.025085 359 solver.cpp:237] Train net output #0: loss = 1.04663 (* 1 = 1.04663 loss) +I0407 23:02:37.025094 359 sgd_solver.cpp:105] Iteration 4452, lr = 0.00780843 +I0407 23:02:41.990219 359 solver.cpp:218] Iteration 4464 (2.41686 iter/s, 4.96511s/12 iters), loss = 1.07428 +I0407 23:02:41.990262 359 solver.cpp:237] Train net output #0: loss = 1.07428 (* 1 = 1.07428 loss) +I0407 23:02:41.990269 359 sgd_solver.cpp:105] Iteration 4464, lr = 0.0077679 +I0407 23:02:46.901567 359 solver.cpp:218] Iteration 4476 (2.44335 iter/s, 4.91128s/12 iters), loss = 0.912665 +I0407 23:02:46.901614 359 solver.cpp:237] Train net output #0: loss = 0.912665 (* 1 = 0.912665 loss) +I0407 23:02:46.901624 359 sgd_solver.cpp:105] Iteration 4476, lr = 0.00772684 +I0407 23:02:51.394461 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 23:02:55.574654 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 23:02:59.708824 359 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 23:02:59.708842 359 net.cpp:676] Ignoring source layer train-data +I0407 23:03:02.337529 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:04.114943 359 solver.cpp:397] Test net output #0: accuracy = 0.344363 +I0407 23:03:04.114993 359 solver.cpp:397] Test net output #1: loss = 3.10434 (* 1 = 3.10434 loss) +I0407 23:03:04.211478 359 solver.cpp:218] Iteration 4488 (0.693248 iter/s, 17.3098s/12 iters), loss = 0.779825 +I0407 23:03:04.211525 359 solver.cpp:237] Train net output #0: loss = 0.779825 (* 1 = 0.779825 loss) +I0407 23:03:04.211534 359 sgd_solver.cpp:105] Iteration 4488, lr = 0.00768525 +I0407 23:03:08.291023 359 solver.cpp:218] Iteration 4500 (2.94155 iter/s, 4.07948s/12 iters), loss = 0.777058 +I0407 23:03:08.291064 359 solver.cpp:237] Train net output #0: loss = 0.777058 (* 1 = 0.777058 loss) +I0407 23:03:08.291071 359 sgd_solver.cpp:105] Iteration 4500, lr = 0.00764313 +I0407 23:03:13.197472 359 solver.cpp:218] Iteration 4512 (2.44579 iter/s, 4.90639s/12 iters), loss = 0.890965 +I0407 23:03:13.197516 359 solver.cpp:237] Train net output #0: loss = 0.890965 (* 1 = 0.890965 loss) +I0407 23:03:13.197525 359 sgd_solver.cpp:105] Iteration 4512, lr = 0.00760048 +I0407 23:03:18.064895 359 solver.cpp:218] Iteration 4524 (2.4654 iter/s, 4.86736s/12 iters), loss = 1.10968 +I0407 23:03:18.064934 359 solver.cpp:237] Train net output #0: loss = 1.10968 (* 1 = 1.10968 loss) +I0407 23:03:18.064944 359 sgd_solver.cpp:105] Iteration 4524, lr = 0.0075573 +I0407 23:03:23.037331 359 solver.cpp:218] Iteration 4536 (2.41333 iter/s, 4.97237s/12 iters), loss = 0.852607 +I0407 23:03:23.037443 359 solver.cpp:237] Train net output #0: loss = 0.852607 (* 1 = 0.852607 loss) +I0407 23:03:23.037451 359 sgd_solver.cpp:105] Iteration 4536, lr = 0.00751361 +I0407 23:03:28.023815 359 solver.cpp:218] Iteration 4548 (2.40657 iter/s, 4.98635s/12 iters), loss = 1.0859 +I0407 23:03:28.023852 359 solver.cpp:237] Train net output #0: loss = 1.0859 (* 1 = 1.0859 loss) +I0407 23:03:28.023860 359 sgd_solver.cpp:105] Iteration 4548, lr = 0.00746939 +I0407 23:03:29.331871 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:33.036319 359 solver.cpp:218] Iteration 4560 (2.39404 iter/s, 5.01245s/12 iters), loss = 1.12001 +I0407 23:03:33.036357 359 solver.cpp:237] Train net output #0: loss = 1.12001 (* 1 = 1.12001 loss) +I0407 23:03:33.036365 359 sgd_solver.cpp:105] Iteration 4560, lr = 0.00742466 +I0407 23:03:37.971357 359 solver.cpp:218] Iteration 4572 (2.43162 iter/s, 4.93498s/12 iters), loss = 1.08174 +I0407 23:03:37.971395 359 solver.cpp:237] Train net output #0: loss = 1.08174 (* 1 = 1.08174 loss) +I0407 23:03:37.971402 359 sgd_solver.cpp:105] Iteration 4572, lr = 0.00737941 +I0407 23:03:42.927739 359 solver.cpp:218] Iteration 4584 (2.42115 iter/s, 4.95633s/12 iters), loss = 0.919457 +I0407 23:03:42.927776 359 solver.cpp:237] Train net output #0: loss = 0.919457 (* 1 = 0.919457 loss) +I0407 23:03:42.927783 359 sgd_solver.cpp:105] Iteration 4584, lr = 0.00733365 +I0407 23:03:45.004302 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 23:03:48.106365 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 23:03:50.478353 359 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 23:03:50.478371 359 net.cpp:676] Ignoring source layer train-data +I0407 23:03:53.257681 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:03:55.208550 359 solver.cpp:397] Test net output #0: accuracy = 0.355392 +I0407 23:03:55.208596 359 solver.cpp:397] Test net output #1: loss = 3.0353 (* 1 = 3.0353 loss) +I0407 23:03:57.061884 359 solver.cpp:218] Iteration 4596 (0.849012 iter/s, 14.1341s/12 iters), loss = 1.01907 +I0407 23:03:57.061933 359 solver.cpp:237] Train net output #0: loss = 1.01907 (* 1 = 1.01907 loss) +I0407 23:03:57.061941 359 sgd_solver.cpp:105] Iteration 4596, lr = 0.00728739 +I0407 23:04:02.015368 359 solver.cpp:218] Iteration 4608 (2.42257 iter/s, 4.95342s/12 iters), loss = 1.03239 +I0407 23:04:02.015406 359 solver.cpp:237] Train net output #0: loss = 1.03239 (* 1 = 1.03239 loss) +I0407 23:04:02.015414 359 sgd_solver.cpp:105] Iteration 4608, lr = 0.00724063 +I0407 23:04:07.018111 359 solver.cpp:218] Iteration 4620 (2.39871 iter/s, 5.00269s/12 iters), loss = 0.820322 +I0407 23:04:07.018154 359 solver.cpp:237] Train net output #0: loss = 0.820322 (* 1 = 0.820322 loss) +I0407 23:04:07.018162 359 sgd_solver.cpp:105] Iteration 4620, lr = 0.00719337 +I0407 23:04:11.869942 359 solver.cpp:218] Iteration 4632 (2.47332 iter/s, 4.85177s/12 iters), loss = 1.01248 +I0407 23:04:11.869976 359 solver.cpp:237] Train net output #0: loss = 1.01248 (* 1 = 1.01248 loss) +I0407 23:04:11.869984 359 sgd_solver.cpp:105] Iteration 4632, lr = 0.00714562 +I0407 23:04:16.785553 359 solver.cpp:218] Iteration 4644 (2.44123 iter/s, 4.91555s/12 iters), loss = 0.868681 +I0407 23:04:16.785595 359 solver.cpp:237] Train net output #0: loss = 0.868681 (* 1 = 0.868681 loss) +I0407 23:04:16.785604 359 sgd_solver.cpp:105] Iteration 4644, lr = 0.00709739 +I0407 23:04:20.158550 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:21.725051 359 solver.cpp:218] Iteration 4656 (2.42943 iter/s, 4.93943s/12 iters), loss = 0.895408 +I0407 23:04:21.725095 359 solver.cpp:237] Train net output #0: loss = 0.895408 (* 1 = 0.895408 loss) +I0407 23:04:21.725102 359 sgd_solver.cpp:105] Iteration 4656, lr = 0.00704868 +I0407 23:04:26.661913 359 solver.cpp:218] Iteration 4668 (2.43072 iter/s, 4.9368s/12 iters), loss = 1.19164 +I0407 23:04:26.662040 359 solver.cpp:237] Train net output #0: loss = 1.19164 (* 1 = 1.19164 loss) +I0407 23:04:26.662048 359 sgd_solver.cpp:105] Iteration 4668, lr = 0.0069995 +I0407 23:04:31.571571 359 solver.cpp:218] Iteration 4680 (2.44423 iter/s, 4.90951s/12 iters), loss = 0.866611 +I0407 23:04:31.571610 359 solver.cpp:237] Train net output #0: loss = 0.866611 (* 1 = 0.866611 loss) +I0407 23:04:31.571619 359 sgd_solver.cpp:105] Iteration 4680, lr = 0.00694985 +I0407 23:04:36.015635 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 23:04:40.339160 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 23:04:43.731345 359 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 23:04:43.731362 359 net.cpp:676] Ignoring source layer train-data +I0407 23:04:46.538678 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:04:48.667326 359 solver.cpp:397] Test net output #0: accuracy = 0.341299 +I0407 23:04:48.667382 359 solver.cpp:397] Test net output #1: loss = 3.18518 (* 1 = 3.18518 loss) +I0407 23:04:48.764021 359 solver.cpp:218] Iteration 4692 (0.697984 iter/s, 17.1924s/12 iters), loss = 1.11231 +I0407 23:04:48.764063 359 solver.cpp:237] Train net output #0: loss = 1.11231 (* 1 = 1.11231 loss) +I0407 23:04:48.764072 359 sgd_solver.cpp:105] Iteration 4692, lr = 0.00689974 +I0407 23:04:52.885627 359 solver.cpp:218] Iteration 4704 (2.91153 iter/s, 4.12154s/12 iters), loss = 0.821108 +I0407 23:04:52.885666 359 solver.cpp:237] Train net output #0: loss = 0.821108 (* 1 = 0.821108 loss) +I0407 23:04:52.885673 359 sgd_solver.cpp:105] Iteration 4704, lr = 0.00684919 +I0407 23:04:57.789563 359 solver.cpp:218] Iteration 4716 (2.44704 iter/s, 4.90388s/12 iters), loss = 0.731509 +I0407 23:04:57.789701 359 solver.cpp:237] Train net output #0: loss = 0.731509 (* 1 = 0.731509 loss) +I0407 23:04:57.789710 359 sgd_solver.cpp:105] Iteration 4716, lr = 0.00679819 +I0407 23:05:02.699545 359 solver.cpp:218] Iteration 4728 (2.44408 iter/s, 4.90982s/12 iters), loss = 1.09188 +I0407 23:05:02.699590 359 solver.cpp:237] Train net output #0: loss = 1.09188 (* 1 = 1.09188 loss) +I0407 23:05:02.699599 359 sgd_solver.cpp:105] Iteration 4728, lr = 0.00674676 +I0407 23:05:07.689182 359 solver.cpp:218] Iteration 4740 (2.40501 iter/s, 4.98957s/12 iters), loss = 0.68834 +I0407 23:05:07.689220 359 solver.cpp:237] Train net output #0: loss = 0.68834 (* 1 = 0.68834 loss) +I0407 23:05:07.689229 359 sgd_solver.cpp:105] Iteration 4740, lr = 0.00669491 +I0407 23:05:12.675359 359 solver.cpp:218] Iteration 4752 (2.40668 iter/s, 4.98612s/12 iters), loss = 0.783096 +I0407 23:05:12.675407 359 solver.cpp:237] Train net output #0: loss = 0.783096 (* 1 = 0.783096 loss) +I0407 23:05:12.675416 359 sgd_solver.cpp:105] Iteration 4752, lr = 0.00664264 +I0407 23:05:13.182657 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:17.643110 359 solver.cpp:218] Iteration 4764 (2.41561 iter/s, 4.96769s/12 iters), loss = 0.976755 +I0407 23:05:17.643149 359 solver.cpp:237] Train net output #0: loss = 0.976755 (* 1 = 0.976755 loss) +I0407 23:05:17.643157 359 sgd_solver.cpp:105] Iteration 4764, lr = 0.00658996 +I0407 23:05:22.654903 359 solver.cpp:218] Iteration 4776 (2.39438 iter/s, 5.01173s/12 iters), loss = 0.813546 +I0407 23:05:22.654948 359 solver.cpp:237] Train net output #0: loss = 0.813546 (* 1 = 0.813546 loss) +I0407 23:05:22.654956 359 sgd_solver.cpp:105] Iteration 4776, lr = 0.00653689 +I0407 23:05:27.560628 359 solver.cpp:218] Iteration 4788 (2.44615 iter/s, 4.90566s/12 iters), loss = 0.932335 +I0407 23:05:27.560667 359 solver.cpp:237] Train net output #0: loss = 0.932335 (* 1 = 0.932335 loss) +I0407 23:05:27.560675 359 sgd_solver.cpp:105] Iteration 4788, lr = 0.00648343 +I0407 23:05:29.552392 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 23:05:33.405416 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 23:05:36.520601 359 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 23:05:36.520617 359 net.cpp:676] Ignoring source layer train-data +I0407 23:05:39.249437 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:05:41.456301 359 solver.cpp:397] Test net output #0: accuracy = 0.364583 +I0407 23:05:41.456336 359 solver.cpp:397] Test net output #1: loss = 3.15568 (* 1 = 3.15568 loss) +I0407 23:05:43.324231 359 solver.cpp:218] Iteration 4800 (0.761251 iter/s, 15.7635s/12 iters), loss = 0.874731 +I0407 23:05:43.324280 359 solver.cpp:237] Train net output #0: loss = 0.874731 (* 1 = 0.874731 loss) +I0407 23:05:43.324287 359 sgd_solver.cpp:105] Iteration 4800, lr = 0.0064296 +I0407 23:05:48.240773 359 solver.cpp:218] Iteration 4812 (2.44078 iter/s, 4.91647s/12 iters), loss = 0.70028 +I0407 23:05:48.240818 359 solver.cpp:237] Train net output #0: loss = 0.70028 (* 1 = 0.70028 loss) +I0407 23:05:48.240828 359 sgd_solver.cpp:105] Iteration 4812, lr = 0.00637541 +I0407 23:05:53.208781 359 solver.cpp:218] Iteration 4824 (2.41549 iter/s, 4.96793s/12 iters), loss = 0.785002 +I0407 23:05:53.208829 359 solver.cpp:237] Train net output #0: loss = 0.785002 (* 1 = 0.785002 loss) +I0407 23:05:53.208838 359 sgd_solver.cpp:105] Iteration 4824, lr = 0.00632086 +I0407 23:05:58.198913 359 solver.cpp:218] Iteration 4836 (2.40478 iter/s, 4.99007s/12 iters), loss = 0.711259 +I0407 23:05:58.198953 359 solver.cpp:237] Train net output #0: loss = 0.711259 (* 1 = 0.711259 loss) +I0407 23:05:58.198962 359 sgd_solver.cpp:105] Iteration 4836, lr = 0.00626597 +I0407 23:06:00.234081 359 blocking_queue.cpp:49] Waiting for data +I0407 23:06:03.153045 359 solver.cpp:218] Iteration 4848 (2.42225 iter/s, 4.95407s/12 iters), loss = 0.77453 +I0407 23:06:03.153090 359 solver.cpp:237] Train net output #0: loss = 0.77453 (* 1 = 0.77453 loss) +I0407 23:06:03.153097 359 sgd_solver.cpp:105] Iteration 4848, lr = 0.00621076 +I0407 23:06:05.812907 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:08.101795 359 solver.cpp:218] Iteration 4860 (2.42489 iter/s, 4.94868s/12 iters), loss = 0.931621 +I0407 23:06:08.101838 359 solver.cpp:237] Train net output #0: loss = 0.931621 (* 1 = 0.931621 loss) +I0407 23:06:08.101847 359 sgd_solver.cpp:105] Iteration 4860, lr = 0.00615523 +I0407 23:06:13.024924 359 solver.cpp:218] Iteration 4872 (2.43751 iter/s, 4.92306s/12 iters), loss = 0.982474 +I0407 23:06:13.024971 359 solver.cpp:237] Train net output #0: loss = 0.982474 (* 1 = 0.982474 loss) +I0407 23:06:13.024979 359 sgd_solver.cpp:105] Iteration 4872, lr = 0.0060994 +I0407 23:06:17.970460 359 solver.cpp:218] Iteration 4884 (2.42646 iter/s, 4.94547s/12 iters), loss = 0.737415 +I0407 23:06:17.970504 359 solver.cpp:237] Train net output #0: loss = 0.737415 (* 1 = 0.737415 loss) +I0407 23:06:17.970512 359 sgd_solver.cpp:105] Iteration 4884, lr = 0.00604327 +I0407 23:06:22.354007 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 23:06:25.483212 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 23:06:28.072077 359 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 23:06:28.072094 359 net.cpp:676] Ignoring source layer train-data +I0407 23:06:30.701858 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:32.736217 359 solver.cpp:397] Test net output #0: accuracy = 0.367647 +I0407 23:06:32.736244 359 solver.cpp:397] Test net output #1: loss = 3.02149 (* 1 = 3.02149 loss) +I0407 23:06:32.832558 359 solver.cpp:218] Iteration 4896 (0.807427 iter/s, 14.862s/12 iters), loss = 0.760391 +I0407 23:06:32.832603 359 solver.cpp:237] Train net output #0: loss = 0.760391 (* 1 = 0.760391 loss) +I0407 23:06:32.832612 359 sgd_solver.cpp:105] Iteration 4896, lr = 0.00598688 +I0407 23:06:36.929620 359 solver.cpp:218] Iteration 4908 (2.92897 iter/s, 4.097s/12 iters), loss = 0.764885 +I0407 23:06:36.929656 359 solver.cpp:237] Train net output #0: loss = 0.764885 (* 1 = 0.764885 loss) +I0407 23:06:36.929664 359 sgd_solver.cpp:105] Iteration 4908, lr = 0.00593022 +I0407 23:06:41.883965 359 solver.cpp:218] Iteration 4920 (2.42215 iter/s, 4.95428s/12 iters), loss = 0.940427 +I0407 23:06:41.884011 359 solver.cpp:237] Train net output #0: loss = 0.940427 (* 1 = 0.940427 loss) +I0407 23:06:41.884019 359 sgd_solver.cpp:105] Iteration 4920, lr = 0.00587331 +I0407 23:06:46.776434 359 solver.cpp:218] Iteration 4932 (2.45279 iter/s, 4.8924s/12 iters), loss = 0.897402 +I0407 23:06:46.776484 359 solver.cpp:237] Train net output #0: loss = 0.897402 (* 1 = 0.897402 loss) +I0407 23:06:46.776494 359 sgd_solver.cpp:105] Iteration 4932, lr = 0.00581616 +I0407 23:06:51.752323 359 solver.cpp:218] Iteration 4944 (2.41166 iter/s, 4.97582s/12 iters), loss = 0.832853 +I0407 23:06:51.752368 359 solver.cpp:237] Train net output #0: loss = 0.832853 (* 1 = 0.832853 loss) +I0407 23:06:51.752377 359 sgd_solver.cpp:105] Iteration 4944, lr = 0.0057588 +I0407 23:06:56.452111 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:06:56.648890 359 solver.cpp:218] Iteration 4956 (2.45073 iter/s, 4.8965s/12 iters), loss = 0.689222 +I0407 23:06:56.648924 359 solver.cpp:237] Train net output #0: loss = 0.689222 (* 1 = 0.689222 loss) +I0407 23:06:56.648932 359 sgd_solver.cpp:105] Iteration 4956, lr = 0.00570123 +I0407 23:07:01.592567 359 solver.cpp:218] Iteration 4968 (2.42737 iter/s, 4.94362s/12 iters), loss = 0.366809 +I0407 23:07:01.592710 359 solver.cpp:237] Train net output #0: loss = 0.366809 (* 1 = 0.366809 loss) +I0407 23:07:01.592718 359 sgd_solver.cpp:105] Iteration 4968, lr = 0.00564347 +I0407 23:07:06.515650 359 solver.cpp:218] Iteration 4980 (2.43757 iter/s, 4.92293s/12 iters), loss = 0.479785 +I0407 23:07:06.515688 359 solver.cpp:237] Train net output #0: loss = 0.479785 (* 1 = 0.479785 loss) +I0407 23:07:06.515695 359 sgd_solver.cpp:105] Iteration 4980, lr = 0.00558554 +I0407 23:07:11.458390 359 solver.cpp:218] Iteration 4992 (2.42783 iter/s, 4.94268s/12 iters), loss = 0.729526 +I0407 23:07:11.458427 359 solver.cpp:237] Train net output #0: loss = 0.729526 (* 1 = 0.729526 loss) +I0407 23:07:11.458434 359 sgd_solver.cpp:105] Iteration 4992, lr = 0.00552744 +I0407 23:07:13.449579 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 23:07:16.561566 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 23:07:19.019897 359 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 23:07:19.019917 359 net.cpp:676] Ignoring source layer train-data +I0407 23:07:21.678143 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:23.734504 359 solver.cpp:397] Test net output #0: accuracy = 0.379902 +I0407 23:07:23.734550 359 solver.cpp:397] Test net output #1: loss = 3.08703 (* 1 = 3.08703 loss) +I0407 23:07:25.583346 359 solver.cpp:218] Iteration 5004 (0.849564 iter/s, 14.1249s/12 iters), loss = 0.401737 +I0407 23:07:25.583397 359 solver.cpp:237] Train net output #0: loss = 0.401737 (* 1 = 0.401737 loss) +I0407 23:07:25.583405 359 sgd_solver.cpp:105] Iteration 5004, lr = 0.0054692 +I0407 23:07:30.571161 359 solver.cpp:218] Iteration 5016 (2.4059 iter/s, 4.98775s/12 iters), loss = 0.620913 +I0407 23:07:30.571208 359 solver.cpp:237] Train net output #0: loss = 0.620913 (* 1 = 0.620913 loss) +I0407 23:07:30.571216 359 sgd_solver.cpp:105] Iteration 5016, lr = 0.00541084 +I0407 23:07:35.521492 359 solver.cpp:218] Iteration 5028 (2.42411 iter/s, 4.95026s/12 iters), loss = 0.647608 +I0407 23:07:35.521632 359 solver.cpp:237] Train net output #0: loss = 0.647608 (* 1 = 0.647608 loss) +I0407 23:07:35.521642 359 sgd_solver.cpp:105] Iteration 5028, lr = 0.00535236 +I0407 23:07:40.458485 359 solver.cpp:218] Iteration 5040 (2.43071 iter/s, 4.93683s/12 iters), loss = 0.65534 +I0407 23:07:40.458532 359 solver.cpp:237] Train net output #0: loss = 0.65534 (* 1 = 0.65534 loss) +I0407 23:07:40.458540 359 sgd_solver.cpp:105] Iteration 5040, lr = 0.00529378 +I0407 23:07:45.444732 359 solver.cpp:218] Iteration 5052 (2.40665 iter/s, 4.98618s/12 iters), loss = 0.575499 +I0407 23:07:45.444774 359 solver.cpp:237] Train net output #0: loss = 0.575499 (* 1 = 0.575499 loss) +I0407 23:07:45.444782 359 sgd_solver.cpp:105] Iteration 5052, lr = 0.00523512 +I0407 23:07:47.281433 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:07:50.295415 359 solver.cpp:218] Iteration 5064 (2.47391 iter/s, 4.85062s/12 iters), loss = 0.906331 +I0407 23:07:50.295460 359 solver.cpp:237] Train net output #0: loss = 0.906331 (* 1 = 0.906331 loss) +I0407 23:07:50.295469 359 sgd_solver.cpp:105] Iteration 5064, lr = 0.0051764 +I0407 23:07:55.257282 359 solver.cpp:218] Iteration 5076 (2.41848 iter/s, 4.9618s/12 iters), loss = 0.596021 +I0407 23:07:55.257321 359 solver.cpp:237] Train net output #0: loss = 0.596021 (* 1 = 0.596021 loss) +I0407 23:07:55.257329 359 sgd_solver.cpp:105] Iteration 5076, lr = 0.00511763 +I0407 23:08:00.217500 359 solver.cpp:218] Iteration 5088 (2.41928 iter/s, 4.96016s/12 iters), loss = 0.823575 +I0407 23:08:00.217536 359 solver.cpp:237] Train net output #0: loss = 0.823575 (* 1 = 0.823575 loss) +I0407 23:08:00.217545 359 sgd_solver.cpp:105] Iteration 5088, lr = 0.00505882 +I0407 23:08:04.707762 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 23:08:07.831751 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 23:08:10.195988 359 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 23:08:10.196007 359 net.cpp:676] Ignoring source layer train-data +I0407 23:08:12.549998 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:14.568877 359 solver.cpp:397] Test net output #0: accuracy = 0.370098 +I0407 23:08:14.568924 359 solver.cpp:397] Test net output #1: loss = 3.10449 (* 1 = 3.10449 loss) +I0407 23:08:14.665768 359 solver.cpp:218] Iteration 5100 (0.830553 iter/s, 14.4482s/12 iters), loss = 0.744585 +I0407 23:08:14.665807 359 solver.cpp:237] Train net output #0: loss = 0.744585 (* 1 = 0.744585 loss) +I0407 23:08:14.665817 359 sgd_solver.cpp:105] Iteration 5100, lr = 0.005 +I0407 23:08:18.806478 359 solver.cpp:218] Iteration 5112 (2.89809 iter/s, 4.14065s/12 iters), loss = 0.670824 +I0407 23:08:18.806510 359 solver.cpp:237] Train net output #0: loss = 0.670824 (* 1 = 0.670824 loss) +I0407 23:08:18.806517 359 sgd_solver.cpp:105] Iteration 5112, lr = 0.00494118 +I0407 23:08:23.739210 359 solver.cpp:218] Iteration 5124 (2.43275 iter/s, 4.93268s/12 iters), loss = 0.651989 +I0407 23:08:23.739246 359 solver.cpp:237] Train net output #0: loss = 0.651989 (* 1 = 0.651989 loss) +I0407 23:08:23.739253 359 sgd_solver.cpp:105] Iteration 5124, lr = 0.00488237 +I0407 23:08:28.681856 359 solver.cpp:218] Iteration 5136 (2.42787 iter/s, 4.94259s/12 iters), loss = 0.458284 +I0407 23:08:28.681891 359 solver.cpp:237] Train net output #0: loss = 0.458284 (* 1 = 0.458284 loss) +I0407 23:08:28.681900 359 sgd_solver.cpp:105] Iteration 5136, lr = 0.0048236 +I0407 23:08:33.633774 359 solver.cpp:218] Iteration 5148 (2.42333 iter/s, 4.95186s/12 iters), loss = 0.590291 +I0407 23:08:33.633818 359 solver.cpp:237] Train net output #0: loss = 0.590291 (* 1 = 0.590291 loss) +I0407 23:08:33.633827 359 sgd_solver.cpp:105] Iteration 5148, lr = 0.00476488 +I0407 23:08:37.657568 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:08:38.561758 359 solver.cpp:218] Iteration 5160 (2.43511 iter/s, 4.92792s/12 iters), loss = 0.577291 +I0407 23:08:38.561887 359 solver.cpp:237] Train net output #0: loss = 0.577291 (* 1 = 0.577291 loss) +I0407 23:08:38.561895 359 sgd_solver.cpp:105] Iteration 5160, lr = 0.00470622 +I0407 23:08:43.500888 359 solver.cpp:218] Iteration 5172 (2.42965 iter/s, 4.93898s/12 iters), loss = 0.661538 +I0407 23:08:43.500932 359 solver.cpp:237] Train net output #0: loss = 0.661538 (* 1 = 0.661538 loss) +I0407 23:08:43.500941 359 sgd_solver.cpp:105] Iteration 5172, lr = 0.00464764 +I0407 23:08:48.400684 359 solver.cpp:218] Iteration 5184 (2.44911 iter/s, 4.89973s/12 iters), loss = 0.358573 +I0407 23:08:48.400730 359 solver.cpp:237] Train net output #0: loss = 0.358573 (* 1 = 0.358573 loss) +I0407 23:08:48.400739 359 sgd_solver.cpp:105] Iteration 5184, lr = 0.00458916 +I0407 23:08:53.309351 359 solver.cpp:218] Iteration 5196 (2.44469 iter/s, 4.9086s/12 iters), loss = 0.27501 +I0407 23:08:53.309396 359 solver.cpp:237] Train net output #0: loss = 0.27501 (* 1 = 0.27501 loss) +I0407 23:08:53.309404 359 sgd_solver.cpp:105] Iteration 5196, lr = 0.0045308 +I0407 23:08:55.294013 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 23:08:58.374043 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 23:09:00.744858 359 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 23:09:00.744876 359 net.cpp:676] Ignoring source layer train-data +I0407 23:09:03.268515 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:05.517493 359 solver.cpp:397] Test net output #0: accuracy = 0.381127 +I0407 23:09:05.517540 359 solver.cpp:397] Test net output #1: loss = 3.10979 (* 1 = 3.10979 loss) +I0407 23:09:07.335219 359 solver.cpp:218] Iteration 5208 (0.855567 iter/s, 14.0258s/12 iters), loss = 0.510135 +I0407 23:09:07.335266 359 solver.cpp:237] Train net output #0: loss = 0.510135 (* 1 = 0.510135 loss) +I0407 23:09:07.335274 359 sgd_solver.cpp:105] Iteration 5208, lr = 0.00447256 +I0407 23:09:12.320524 359 solver.cpp:218] Iteration 5220 (2.40711 iter/s, 4.98524s/12 iters), loss = 0.437447 +I0407 23:09:12.320667 359 solver.cpp:237] Train net output #0: loss = 0.437447 (* 1 = 0.437447 loss) +I0407 23:09:12.320677 359 sgd_solver.cpp:105] Iteration 5220, lr = 0.00441446 +I0407 23:09:17.229663 359 solver.cpp:218] Iteration 5232 (2.4445 iter/s, 4.90898s/12 iters), loss = 0.348768 +I0407 23:09:17.229701 359 solver.cpp:237] Train net output #0: loss = 0.348768 (* 1 = 0.348768 loss) +I0407 23:09:17.229709 359 sgd_solver.cpp:105] Iteration 5232, lr = 0.00435653 +I0407 23:09:22.266436 359 solver.cpp:218] Iteration 5244 (2.3825 iter/s, 5.03672s/12 iters), loss = 0.47217 +I0407 23:09:22.266476 359 solver.cpp:237] Train net output #0: loss = 0.47217 (* 1 = 0.47217 loss) +I0407 23:09:22.266484 359 sgd_solver.cpp:105] Iteration 5244, lr = 0.00429877 +I0407 23:09:27.221897 359 solver.cpp:218] Iteration 5256 (2.4216 iter/s, 4.9554s/12 iters), loss = 0.531433 +I0407 23:09:27.221944 359 solver.cpp:237] Train net output #0: loss = 0.531433 (* 1 = 0.531433 loss) +I0407 23:09:27.221952 359 sgd_solver.cpp:105] Iteration 5256, lr = 0.0042412 +I0407 23:09:28.476162 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:32.108680 359 solver.cpp:218] Iteration 5268 (2.45564 iter/s, 4.88672s/12 iters), loss = 0.521499 +I0407 23:09:32.108714 359 solver.cpp:237] Train net output #0: loss = 0.521499 (* 1 = 0.521499 loss) +I0407 23:09:32.108722 359 sgd_solver.cpp:105] Iteration 5268, lr = 0.00418384 +I0407 23:09:37.075927 359 solver.cpp:218] Iteration 5280 (2.41585 iter/s, 4.9672s/12 iters), loss = 0.657227 +I0407 23:09:37.075966 359 solver.cpp:237] Train net output #0: loss = 0.657227 (* 1 = 0.657227 loss) +I0407 23:09:37.075973 359 sgd_solver.cpp:105] Iteration 5280, lr = 0.00412669 +I0407 23:09:41.969507 359 solver.cpp:218] Iteration 5292 (2.45222 iter/s, 4.89352s/12 iters), loss = 0.364044 +I0407 23:09:41.969550 359 solver.cpp:237] Train net output #0: loss = 0.364044 (* 1 = 0.364044 loss) +I0407 23:09:41.969558 359 sgd_solver.cpp:105] Iteration 5292, lr = 0.00406978 +I0407 23:09:46.410845 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 23:09:49.721287 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 23:09:52.087182 359 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 23:09:52.087206 359 net.cpp:676] Ignoring source layer train-data +I0407 23:09:54.421185 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:09:56.533413 359 solver.cpp:397] Test net output #0: accuracy = 0.390319 +I0407 23:09:56.533447 359 solver.cpp:397] Test net output #1: loss = 3.06499 (* 1 = 3.06499 loss) +I0407 23:09:56.629779 359 solver.cpp:218] Iteration 5304 (0.818544 iter/s, 14.6602s/12 iters), loss = 0.290723 +I0407 23:09:56.629854 359 solver.cpp:237] Train net output #0: loss = 0.290723 (* 1 = 0.290723 loss) +I0407 23:09:56.629870 359 sgd_solver.cpp:105] Iteration 5304, lr = 0.00401312 +I0407 23:10:00.773187 359 solver.cpp:218] Iteration 5316 (2.89623 iter/s, 4.14332s/12 iters), loss = 0.678481 +I0407 23:10:00.773232 359 solver.cpp:237] Train net output #0: loss = 0.678481 (* 1 = 0.678481 loss) +I0407 23:10:00.773241 359 sgd_solver.cpp:105] Iteration 5316, lr = 0.00395672 +I0407 23:10:05.697723 359 solver.cpp:218] Iteration 5328 (2.43681 iter/s, 4.92448s/12 iters), loss = 0.40485 +I0407 23:10:05.697759 359 solver.cpp:237] Train net output #0: loss = 0.40485 (* 1 = 0.40485 loss) +I0407 23:10:05.697767 359 sgd_solver.cpp:105] Iteration 5328, lr = 0.0039006 +I0407 23:10:10.650027 359 solver.cpp:218] Iteration 5340 (2.42314 iter/s, 4.95225s/12 iters), loss = 0.476173 +I0407 23:10:10.650063 359 solver.cpp:237] Train net output #0: loss = 0.476173 (* 1 = 0.476173 loss) +I0407 23:10:10.650071 359 sgd_solver.cpp:105] Iteration 5340, lr = 0.00384477 +I0407 23:10:15.558791 359 solver.cpp:218] Iteration 5352 (2.44463 iter/s, 4.90871s/12 iters), loss = 0.45152 +I0407 23:10:15.558828 359 solver.cpp:237] Train net output #0: loss = 0.45152 (* 1 = 0.45152 loss) +I0407 23:10:15.558835 359 sgd_solver.cpp:105] Iteration 5352, lr = 0.00378924 +I0407 23:10:18.931526 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:20.503518 359 solver.cpp:218] Iteration 5364 (2.42685 iter/s, 4.94467s/12 iters), loss = 0.472535 +I0407 23:10:20.503556 359 solver.cpp:237] Train net output #0: loss = 0.472535 (* 1 = 0.472535 loss) +I0407 23:10:20.503563 359 sgd_solver.cpp:105] Iteration 5364, lr = 0.00373403 +I0407 23:10:25.455345 359 solver.cpp:218] Iteration 5376 (2.42338 iter/s, 4.95177s/12 iters), loss = 0.339578 +I0407 23:10:25.455384 359 solver.cpp:237] Train net output #0: loss = 0.339578 (* 1 = 0.339578 loss) +I0407 23:10:25.455391 359 sgd_solver.cpp:105] Iteration 5376, lr = 0.00367914 +I0407 23:10:30.403879 359 solver.cpp:218] Iteration 5388 (2.42499 iter/s, 4.94848s/12 iters), loss = 0.329 +I0407 23:10:30.403918 359 solver.cpp:237] Train net output #0: loss = 0.329 (* 1 = 0.329 loss) +I0407 23:10:30.403925 359 sgd_solver.cpp:105] Iteration 5388, lr = 0.00362459 +I0407 23:10:35.242074 359 solver.cpp:218] Iteration 5400 (2.48029 iter/s, 4.83814s/12 iters), loss = 0.300492 +I0407 23:10:35.242113 359 solver.cpp:237] Train net output #0: loss = 0.300492 (* 1 = 0.300492 loss) +I0407 23:10:35.242121 359 sgd_solver.cpp:105] Iteration 5400, lr = 0.0035704 +I0407 23:10:37.239481 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 23:10:41.514129 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 23:10:43.912750 359 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 23:10:43.912768 359 net.cpp:676] Ignoring source layer train-data +I0407 23:10:46.360626 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:10:48.694677 359 solver.cpp:397] Test net output #0: accuracy = 0.415441 +I0407 23:10:48.694725 359 solver.cpp:397] Test net output #1: loss = 2.93582 (* 1 = 2.93582 loss) +I0407 23:10:50.504892 359 solver.cpp:218] Iteration 5412 (0.786228 iter/s, 15.2627s/12 iters), loss = 0.316812 +I0407 23:10:50.505004 359 solver.cpp:237] Train net output #0: loss = 0.316812 (* 1 = 0.316812 loss) +I0407 23:10:50.505012 359 sgd_solver.cpp:105] Iteration 5412, lr = 0.00351657 +I0407 23:10:55.414255 359 solver.cpp:218] Iteration 5424 (2.44438 iter/s, 4.90923s/12 iters), loss = 0.392943 +I0407 23:10:55.414299 359 solver.cpp:237] Train net output #0: loss = 0.392943 (* 1 = 0.392943 loss) +I0407 23:10:55.414307 359 sgd_solver.cpp:105] Iteration 5424, lr = 0.00346311 +I0407 23:11:00.315161 359 solver.cpp:218] Iteration 5436 (2.44856 iter/s, 4.90084s/12 iters), loss = 0.486893 +I0407 23:11:00.315220 359 solver.cpp:237] Train net output #0: loss = 0.486893 (* 1 = 0.486893 loss) +I0407 23:11:00.315233 359 sgd_solver.cpp:105] Iteration 5436, lr = 0.00341004 +I0407 23:11:05.259418 359 solver.cpp:218] Iteration 5448 (2.4271 iter/s, 4.94418s/12 iters), loss = 0.304622 +I0407 23:11:05.259452 359 solver.cpp:237] Train net output #0: loss = 0.304622 (* 1 = 0.304622 loss) +I0407 23:11:05.259459 359 sgd_solver.cpp:105] Iteration 5448, lr = 0.00335736 +I0407 23:11:10.148643 359 solver.cpp:218] Iteration 5460 (2.4544 iter/s, 4.88917s/12 iters), loss = 0.433443 +I0407 23:11:10.148679 359 solver.cpp:237] Train net output #0: loss = 0.433443 (* 1 = 0.433443 loss) +I0407 23:11:10.148687 359 sgd_solver.cpp:105] Iteration 5460, lr = 0.00330509 +I0407 23:11:10.683794 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:14.939079 359 solver.cpp:218] Iteration 5472 (2.50502 iter/s, 4.79038s/12 iters), loss = 0.227015 +I0407 23:11:14.939128 359 solver.cpp:237] Train net output #0: loss = 0.227015 (* 1 = 0.227015 loss) +I0407 23:11:14.939137 359 sgd_solver.cpp:105] Iteration 5472, lr = 0.00325324 +I0407 23:11:19.948105 359 solver.cpp:218] Iteration 5484 (2.39571 iter/s, 5.00895s/12 iters), loss = 0.63865 +I0407 23:11:19.948150 359 solver.cpp:237] Train net output #0: loss = 0.63865 (* 1 = 0.63865 loss) +I0407 23:11:19.948159 359 sgd_solver.cpp:105] Iteration 5484, lr = 0.00320181 +I0407 23:11:24.890550 359 solver.cpp:218] Iteration 5496 (2.42798 iter/s, 4.94237s/12 iters), loss = 0.474697 +I0407 23:11:24.890722 359 solver.cpp:237] Train net output #0: loss = 0.474697 (* 1 = 0.474697 loss) +I0407 23:11:24.890731 359 sgd_solver.cpp:105] Iteration 5496, lr = 0.00315081 +I0407 23:11:29.351128 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 23:11:33.410147 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 23:11:36.455431 359 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 23:11:36.455449 359 net.cpp:676] Ignoring source layer train-data +I0407 23:11:38.838516 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:11:41.222564 359 solver.cpp:397] Test net output #0: accuracy = 0.427696 +I0407 23:11:41.222604 359 solver.cpp:397] Test net output #1: loss = 2.84702 (* 1 = 2.84702 loss) +I0407 23:11:41.318938 359 solver.cpp:218] Iteration 5508 (0.730452 iter/s, 16.4282s/12 iters), loss = 0.303231 +I0407 23:11:41.318982 359 solver.cpp:237] Train net output #0: loss = 0.303231 (* 1 = 0.303231 loss) +I0407 23:11:41.318991 359 sgd_solver.cpp:105] Iteration 5508, lr = 0.00310026 +I0407 23:11:45.424505 359 solver.cpp:218] Iteration 5520 (2.9229 iter/s, 4.10551s/12 iters), loss = 0.404447 +I0407 23:11:45.424542 359 solver.cpp:237] Train net output #0: loss = 0.404447 (* 1 = 0.404447 loss) +I0407 23:11:45.424551 359 sgd_solver.cpp:105] Iteration 5520, lr = 0.00305015 +I0407 23:11:47.838690 359 blocking_queue.cpp:49] Waiting for data +I0407 23:11:50.383118 359 solver.cpp:218] Iteration 5532 (2.42006 iter/s, 4.95855s/12 iters), loss = 0.238364 +I0407 23:11:50.383157 359 solver.cpp:237] Train net output #0: loss = 0.238364 (* 1 = 0.238364 loss) +I0407 23:11:50.383165 359 sgd_solver.cpp:105] Iteration 5532, lr = 0.0030005 +I0407 23:11:55.311910 359 solver.cpp:218] Iteration 5544 (2.4347 iter/s, 4.92873s/12 iters), loss = 0.375532 +I0407 23:11:55.312031 359 solver.cpp:237] Train net output #0: loss = 0.375532 (* 1 = 0.375532 loss) +I0407 23:11:55.312041 359 sgd_solver.cpp:105] Iteration 5544, lr = 0.00295132 +I0407 23:12:00.365229 359 solver.cpp:218] Iteration 5556 (2.37474 iter/s, 5.05318s/12 iters), loss = 0.372204 +I0407 23:12:00.365263 359 solver.cpp:237] Train net output #0: loss = 0.372204 (* 1 = 0.372204 loss) +I0407 23:12:00.365270 359 sgd_solver.cpp:105] Iteration 5556, lr = 0.00290261 +I0407 23:12:03.050983 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:05.316218 359 solver.cpp:218] Iteration 5568 (2.42378 iter/s, 4.95094s/12 iters), loss = 0.242734 +I0407 23:12:05.316255 359 solver.cpp:237] Train net output #0: loss = 0.242734 (* 1 = 0.242734 loss) +I0407 23:12:05.316263 359 sgd_solver.cpp:105] Iteration 5568, lr = 0.00285438 +I0407 23:12:10.244213 359 solver.cpp:218] Iteration 5580 (2.4351 iter/s, 4.92794s/12 iters), loss = 0.20582 +I0407 23:12:10.244254 359 solver.cpp:237] Train net output #0: loss = 0.20582 (* 1 = 0.20582 loss) +I0407 23:12:10.244263 359 sgd_solver.cpp:105] Iteration 5580, lr = 0.00280663 +I0407 23:12:15.203958 359 solver.cpp:218] Iteration 5592 (2.41951 iter/s, 4.95969s/12 iters), loss = 0.297734 +I0407 23:12:15.203994 359 solver.cpp:237] Train net output #0: loss = 0.297734 (* 1 = 0.297734 loss) +I0407 23:12:15.204002 359 sgd_solver.cpp:105] Iteration 5592, lr = 0.00275937 +I0407 23:12:20.126761 359 solver.cpp:218] Iteration 5604 (2.43766 iter/s, 4.92275s/12 iters), loss = 0.439124 +I0407 23:12:20.126802 359 solver.cpp:237] Train net output #0: loss = 0.439124 (* 1 = 0.439124 loss) +I0407 23:12:20.126811 359 sgd_solver.cpp:105] Iteration 5604, lr = 0.00271261 +I0407 23:12:22.170949 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 23:12:26.229061 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 23:12:30.063935 359 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 23:12:30.063956 359 net.cpp:676] Ignoring source layer train-data +I0407 23:12:32.436645 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:34.856134 359 solver.cpp:397] Test net output #0: accuracy = 0.435662 +I0407 23:12:34.856169 359 solver.cpp:397] Test net output #1: loss = 2.89615 (* 1 = 2.89615 loss) +I0407 23:12:36.632707 359 solver.cpp:218] Iteration 5616 (0.727014 iter/s, 16.5059s/12 iters), loss = 0.331044 +I0407 23:12:36.632753 359 solver.cpp:237] Train net output #0: loss = 0.331044 (* 1 = 0.331044 loss) +I0407 23:12:36.632761 359 sgd_solver.cpp:105] Iteration 5616, lr = 0.00266635 +I0407 23:12:41.692314 359 solver.cpp:218] Iteration 5628 (2.37175 iter/s, 5.05955s/12 iters), loss = 0.389382 +I0407 23:12:41.692351 359 solver.cpp:237] Train net output #0: loss = 0.389382 (* 1 = 0.389382 loss) +I0407 23:12:41.692358 359 sgd_solver.cpp:105] Iteration 5628, lr = 0.00262059 +I0407 23:12:46.717353 359 solver.cpp:218] Iteration 5640 (2.38807 iter/s, 5.02498s/12 iters), loss = 0.374075 +I0407 23:12:46.717396 359 solver.cpp:237] Train net output #0: loss = 0.374075 (* 1 = 0.374075 loss) +I0407 23:12:46.717402 359 sgd_solver.cpp:105] Iteration 5640, lr = 0.00257534 +I0407 23:12:51.776077 359 solver.cpp:218] Iteration 5652 (2.37217 iter/s, 5.05867s/12 iters), loss = 0.245748 +I0407 23:12:51.776108 359 solver.cpp:237] Train net output #0: loss = 0.245748 (* 1 = 0.245748 loss) +I0407 23:12:51.776116 359 sgd_solver.cpp:105] Iteration 5652, lr = 0.00253061 +I0407 23:12:56.510118 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:12:56.678118 359 solver.cpp:218] Iteration 5664 (2.44798 iter/s, 4.902s/12 iters), loss = 0.179748 +I0407 23:12:56.678148 359 solver.cpp:237] Train net output #0: loss = 0.179748 (* 1 = 0.179748 loss) +I0407 23:12:56.678155 359 sgd_solver.cpp:105] Iteration 5664, lr = 0.00248639 +I0407 23:13:01.638792 359 solver.cpp:218] Iteration 5676 (2.41905 iter/s, 4.96063s/12 iters), loss = 0.356952 +I0407 23:13:01.638820 359 solver.cpp:237] Train net output #0: loss = 0.356952 (* 1 = 0.356952 loss) +I0407 23:13:01.638828 359 sgd_solver.cpp:105] Iteration 5676, lr = 0.0024427 +I0407 23:13:06.605708 359 solver.cpp:218] Iteration 5688 (2.41601 iter/s, 4.96687s/12 iters), loss = 0.308913 +I0407 23:13:06.605746 359 solver.cpp:237] Train net output #0: loss = 0.308913 (* 1 = 0.308913 loss) +I0407 23:13:06.605753 359 sgd_solver.cpp:105] Iteration 5688, lr = 0.00239952 +I0407 23:13:11.461937 359 solver.cpp:218] Iteration 5700 (2.47108 iter/s, 4.85617s/12 iters), loss = 0.389904 +I0407 23:13:11.461978 359 solver.cpp:237] Train net output #0: loss = 0.389904 (* 1 = 0.389904 loss) +I0407 23:13:11.461987 359 sgd_solver.cpp:105] Iteration 5700, lr = 0.00235687 +I0407 23:13:15.926808 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 23:13:20.141396 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 23:13:23.874502 359 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 23:13:23.874519 359 net.cpp:676] Ignoring source layer train-data +I0407 23:13:26.197837 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:28.663111 359 solver.cpp:397] Test net output #0: accuracy = 0.436887 +I0407 23:13:28.663331 359 solver.cpp:397] Test net output #1: loss = 2.88431 (* 1 = 2.88431 loss) +I0407 23:13:28.759913 359 solver.cpp:218] Iteration 5712 (0.693726 iter/s, 17.2979s/12 iters), loss = 0.310276 +I0407 23:13:28.759960 359 solver.cpp:237] Train net output #0: loss = 0.310276 (* 1 = 0.310276 loss) +I0407 23:13:28.759968 359 sgd_solver.cpp:105] Iteration 5712, lr = 0.00231475 +I0407 23:13:32.957828 359 solver.cpp:218] Iteration 5724 (2.85861 iter/s, 4.19785s/12 iters), loss = 0.385243 +I0407 23:13:32.957868 359 solver.cpp:237] Train net output #0: loss = 0.385243 (* 1 = 0.385243 loss) +I0407 23:13:32.957876 359 sgd_solver.cpp:105] Iteration 5724, lr = 0.00227316 +I0407 23:13:37.826519 359 solver.cpp:218] Iteration 5736 (2.46476 iter/s, 4.86863s/12 iters), loss = 0.323 +I0407 23:13:37.826558 359 solver.cpp:237] Train net output #0: loss = 0.323 (* 1 = 0.323 loss) +I0407 23:13:37.826567 359 sgd_solver.cpp:105] Iteration 5736, lr = 0.0022321 +I0407 23:13:42.735463 359 solver.cpp:218] Iteration 5748 (2.44455 iter/s, 4.90888s/12 iters), loss = 0.269936 +I0407 23:13:42.735502 359 solver.cpp:237] Train net output #0: loss = 0.269936 (* 1 = 0.269936 loss) +I0407 23:13:42.735509 359 sgd_solver.cpp:105] Iteration 5748, lr = 0.00219157 +I0407 23:13:47.683583 359 solver.cpp:218] Iteration 5760 (2.42519 iter/s, 4.94806s/12 iters), loss = 0.227433 +I0407 23:13:47.683625 359 solver.cpp:237] Train net output #0: loss = 0.227433 (* 1 = 0.227433 loss) +I0407 23:13:47.683634 359 sgd_solver.cpp:105] Iteration 5760, lr = 0.00215157 +I0407 23:13:49.597967 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:13:52.574467 359 solver.cpp:218] Iteration 5772 (2.45357 iter/s, 4.89083s/12 iters), loss = 0.158779 +I0407 23:13:52.574502 359 solver.cpp:237] Train net output #0: loss = 0.158779 (* 1 = 0.158779 loss) +I0407 23:13:52.574509 359 sgd_solver.cpp:105] Iteration 5772, lr = 0.0021121 +I0407 23:13:57.531615 359 solver.cpp:218] Iteration 5784 (2.42077 iter/s, 4.95709s/12 iters), loss = 0.225406 +I0407 23:13:57.531652 359 solver.cpp:237] Train net output #0: loss = 0.225406 (* 1 = 0.225406 loss) +I0407 23:13:57.531661 359 sgd_solver.cpp:105] Iteration 5784, lr = 0.00207317 +I0407 23:14:02.442128 359 solver.cpp:218] Iteration 5796 (2.44376 iter/s, 4.91046s/12 iters), loss = 0.260227 +I0407 23:14:02.442282 359 solver.cpp:237] Train net output #0: loss = 0.260227 (* 1 = 0.260227 loss) +I0407 23:14:02.442293 359 sgd_solver.cpp:105] Iteration 5796, lr = 0.00203477 +I0407 23:14:07.388200 359 solver.cpp:218] Iteration 5808 (2.42625 iter/s, 4.9459s/12 iters), loss = 0.212148 +I0407 23:14:07.388238 359 solver.cpp:237] Train net output #0: loss = 0.212148 (* 1 = 0.212148 loss) +I0407 23:14:07.388247 359 sgd_solver.cpp:105] Iteration 5808, lr = 0.0019969 +I0407 23:14:09.397231 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 23:14:12.773272 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 23:14:16.778278 359 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 23:14:16.778295 359 net.cpp:676] Ignoring source layer train-data +I0407 23:14:19.008105 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:21.349109 359 solver.cpp:397] Test net output #0: accuracy = 0.443015 +I0407 23:14:21.349156 359 solver.cpp:397] Test net output #1: loss = 2.83557 (* 1 = 2.83557 loss) +I0407 23:14:23.160087 359 solver.cpp:218] Iteration 5820 (0.760851 iter/s, 15.7718s/12 iters), loss = 0.406367 +I0407 23:14:23.160125 359 solver.cpp:237] Train net output #0: loss = 0.406367 (* 1 = 0.406367 loss) +I0407 23:14:23.160133 359 sgd_solver.cpp:105] Iteration 5820, lr = 0.00195956 +I0407 23:14:28.109808 359 solver.cpp:218] Iteration 5832 (2.42441 iter/s, 4.94966s/12 iters), loss = 0.310057 +I0407 23:14:28.109850 359 solver.cpp:237] Train net output #0: loss = 0.310057 (* 1 = 0.310057 loss) +I0407 23:14:28.109858 359 sgd_solver.cpp:105] Iteration 5832, lr = 0.00192275 +I0407 23:14:33.014621 359 solver.cpp:218] Iteration 5844 (2.44661 iter/s, 4.90475s/12 iters), loss = 0.263185 +I0407 23:14:33.014744 359 solver.cpp:237] Train net output #0: loss = 0.263185 (* 1 = 0.263185 loss) +I0407 23:14:33.014755 359 sgd_solver.cpp:105] Iteration 5844, lr = 0.00188647 +I0407 23:14:37.971206 359 solver.cpp:218] Iteration 5856 (2.42109 iter/s, 4.95645s/12 iters), loss = 0.19987 +I0407 23:14:37.971242 359 solver.cpp:237] Train net output #0: loss = 0.19987 (* 1 = 0.19987 loss) +I0407 23:14:37.971251 359 sgd_solver.cpp:105] Iteration 5856, lr = 0.00185072 +I0407 23:14:42.130307 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:14:42.918393 359 solver.cpp:218] Iteration 5868 (2.42565 iter/s, 4.94713s/12 iters), loss = 0.199371 +I0407 23:14:42.918435 359 solver.cpp:237] Train net output #0: loss = 0.199371 (* 1 = 0.199371 loss) +I0407 23:14:42.918444 359 sgd_solver.cpp:105] Iteration 5868, lr = 0.0018155 +I0407 23:14:47.815058 359 solver.cpp:218] Iteration 5880 (2.45068 iter/s, 4.8966s/12 iters), loss = 0.184291 +I0407 23:14:47.815104 359 solver.cpp:237] Train net output #0: loss = 0.184291 (* 1 = 0.184291 loss) +I0407 23:14:47.815114 359 sgd_solver.cpp:105] Iteration 5880, lr = 0.0017808 +I0407 23:14:52.780167 359 solver.cpp:218] Iteration 5892 (2.4169 iter/s, 4.96504s/12 iters), loss = 0.264258 +I0407 23:14:52.780211 359 solver.cpp:237] Train net output #0: loss = 0.264258 (* 1 = 0.264258 loss) +I0407 23:14:52.780220 359 sgd_solver.cpp:105] Iteration 5892, lr = 0.00174662 +I0407 23:14:57.756559 359 solver.cpp:218] Iteration 5904 (2.41142 iter/s, 4.97632s/12 iters), loss = 0.284302 +I0407 23:14:57.756620 359 solver.cpp:237] Train net output #0: loss = 0.284302 (* 1 = 0.284302 loss) +I0407 23:14:57.756631 359 sgd_solver.cpp:105] Iteration 5904, lr = 0.00171296 +I0407 23:15:02.260032 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 23:15:05.350765 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 23:15:08.007269 359 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 23:15:08.007289 359 net.cpp:676] Ignoring source layer train-data +I0407 23:15:10.244650 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:12.810101 359 solver.cpp:397] Test net output #0: accuracy = 0.455882 +I0407 23:15:12.810149 359 solver.cpp:397] Test net output #1: loss = 2.83536 (* 1 = 2.83536 loss) +I0407 23:15:12.906216 359 solver.cpp:218] Iteration 5916 (0.792102 iter/s, 15.1496s/12 iters), loss = 0.143237 +I0407 23:15:12.906260 359 solver.cpp:237] Train net output #0: loss = 0.143237 (* 1 = 0.143237 loss) +I0407 23:15:12.906268 359 sgd_solver.cpp:105] Iteration 5916, lr = 0.00167982 +I0407 23:15:16.993103 359 solver.cpp:218] Iteration 5928 (2.93626 iter/s, 4.08682s/12 iters), loss = 0.145722 +I0407 23:15:16.993140 359 solver.cpp:237] Train net output #0: loss = 0.145722 (* 1 = 0.145722 loss) +I0407 23:15:16.993149 359 sgd_solver.cpp:105] Iteration 5928, lr = 0.00164719 +I0407 23:15:21.842190 359 solver.cpp:218] Iteration 5940 (2.47472 iter/s, 4.84903s/12 iters), loss = 0.133358 +I0407 23:15:21.842231 359 solver.cpp:237] Train net output #0: loss = 0.133358 (* 1 = 0.133358 loss) +I0407 23:15:21.842239 359 sgd_solver.cpp:105] Iteration 5940, lr = 0.00161507 +I0407 23:15:26.799206 359 solver.cpp:218] Iteration 5952 (2.42085 iter/s, 4.95693s/12 iters), loss = 0.313479 +I0407 23:15:26.799253 359 solver.cpp:237] Train net output #0: loss = 0.313479 (* 1 = 0.313479 loss) +I0407 23:15:26.799263 359 sgd_solver.cpp:105] Iteration 5952, lr = 0.00158346 +I0407 23:15:31.779289 359 solver.cpp:218] Iteration 5964 (2.40964 iter/s, 4.98001s/12 iters), loss = 0.124743 +I0407 23:15:31.779335 359 solver.cpp:237] Train net output #0: loss = 0.124743 (* 1 = 0.124743 loss) +I0407 23:15:31.779345 359 sgd_solver.cpp:105] Iteration 5964, lr = 0.00155235 +I0407 23:15:33.063752 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:15:36.666793 359 solver.cpp:218] Iteration 5976 (2.45528 iter/s, 4.88743s/12 iters), loss = 0.146947 +I0407 23:15:36.666956 359 solver.cpp:237] Train net output #0: loss = 0.146947 (* 1 = 0.146947 loss) +I0407 23:15:36.666966 359 sgd_solver.cpp:105] Iteration 5976, lr = 0.00152174 +I0407 23:15:41.544632 359 solver.cpp:218] Iteration 5988 (2.4602 iter/s, 4.87766s/12 iters), loss = 0.148596 +I0407 23:15:41.544668 359 solver.cpp:237] Train net output #0: loss = 0.148596 (* 1 = 0.148596 loss) +I0407 23:15:41.544677 359 sgd_solver.cpp:105] Iteration 5988, lr = 0.00149164 +I0407 23:15:46.482853 359 solver.cpp:218] Iteration 6000 (2.43006 iter/s, 4.93815s/12 iters), loss = 0.233873 +I0407 23:15:46.482905 359 solver.cpp:237] Train net output #0: loss = 0.233873 (* 1 = 0.233873 loss) +I0407 23:15:46.482916 359 sgd_solver.cpp:105] Iteration 6000, lr = 0.00146202 +I0407 23:15:51.396286 359 solver.cpp:218] Iteration 6012 (2.44232 iter/s, 4.91336s/12 iters), loss = 0.278592 +I0407 23:15:51.396332 359 solver.cpp:237] Train net output #0: loss = 0.278592 (* 1 = 0.278592 loss) +I0407 23:15:51.396342 359 sgd_solver.cpp:105] Iteration 6012, lr = 0.00143289 +I0407 23:15:53.396051 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 23:15:57.885305 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 23:16:00.275216 359 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 23:16:00.275236 359 net.cpp:676] Ignoring source layer train-data +I0407 23:16:02.468118 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:05.065683 359 solver.cpp:397] Test net output #0: accuracy = 0.447917 +I0407 23:16:05.065723 359 solver.cpp:397] Test net output #1: loss = 2.83763 (* 1 = 2.83763 loss) +I0407 23:16:06.846371 359 solver.cpp:218] Iteration 6024 (0.776699 iter/s, 15.45s/12 iters), loss = 0.245023 +I0407 23:16:06.846490 359 solver.cpp:237] Train net output #0: loss = 0.245023 (* 1 = 0.245023 loss) +I0407 23:16:06.846499 359 sgd_solver.cpp:105] Iteration 6024, lr = 0.00140425 +I0407 23:16:11.799628 359 solver.cpp:218] Iteration 6036 (2.42272 iter/s, 4.95312s/12 iters), loss = 0.170038 +I0407 23:16:11.799665 359 solver.cpp:237] Train net output #0: loss = 0.170038 (* 1 = 0.170038 loss) +I0407 23:16:11.799674 359 sgd_solver.cpp:105] Iteration 6036, lr = 0.00137609 +I0407 23:16:16.704784 359 solver.cpp:218] Iteration 6048 (2.44643 iter/s, 4.9051s/12 iters), loss = 0.217919 +I0407 23:16:16.704824 359 solver.cpp:237] Train net output #0: loss = 0.217919 (* 1 = 0.217919 loss) +I0407 23:16:16.704833 359 sgd_solver.cpp:105] Iteration 6048, lr = 0.0013484 +I0407 23:16:21.646584 359 solver.cpp:218] Iteration 6060 (2.42829 iter/s, 4.94174s/12 iters), loss = 0.134132 +I0407 23:16:21.646625 359 solver.cpp:237] Train net output #0: loss = 0.134132 (* 1 = 0.134132 loss) +I0407 23:16:21.646634 359 sgd_solver.cpp:105] Iteration 6060, lr = 0.00132119 +I0407 23:16:25.035243 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:26.537616 359 solver.cpp:218] Iteration 6072 (2.4535 iter/s, 4.89097s/12 iters), loss = 0.237463 +I0407 23:16:26.537659 359 solver.cpp:237] Train net output #0: loss = 0.237463 (* 1 = 0.237463 loss) +I0407 23:16:26.537668 359 sgd_solver.cpp:105] Iteration 6072, lr = 0.00129444 +I0407 23:16:31.477509 359 solver.cpp:218] Iteration 6084 (2.42924 iter/s, 4.93982s/12 iters), loss = 0.241037 +I0407 23:16:31.477552 359 solver.cpp:237] Train net output #0: loss = 0.241037 (* 1 = 0.241037 loss) +I0407 23:16:31.477560 359 sgd_solver.cpp:105] Iteration 6084, lr = 0.00126816 +I0407 23:16:36.413036 359 solver.cpp:218] Iteration 6096 (2.43138 iter/s, 4.93546s/12 iters), loss = 0.269924 +I0407 23:16:36.413079 359 solver.cpp:237] Train net output #0: loss = 0.269924 (* 1 = 0.269924 loss) +I0407 23:16:36.413089 359 sgd_solver.cpp:105] Iteration 6096, lr = 0.00124233 +I0407 23:16:41.308813 359 solver.cpp:218] Iteration 6108 (2.45113 iter/s, 4.89571s/12 iters), loss = 0.185467 +I0407 23:16:41.308938 359 solver.cpp:237] Train net output #0: loss = 0.185467 (* 1 = 0.185467 loss) +I0407 23:16:41.308948 359 sgd_solver.cpp:105] Iteration 6108, lr = 0.00121696 +I0407 23:16:45.815301 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 23:16:48.882534 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 23:16:51.347414 359 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 23:16:51.347432 359 net.cpp:676] Ignoring source layer train-data +I0407 23:16:53.483459 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:16:56.131894 359 solver.cpp:397] Test net output #0: accuracy = 0.445466 +I0407 23:16:56.131943 359 solver.cpp:397] Test net output #1: loss = 2.83952 (* 1 = 2.83952 loss) +I0407 23:16:56.228446 359 solver.cpp:218] Iteration 6120 (0.804318 iter/s, 14.9195s/12 iters), loss = 0.145287 +I0407 23:16:56.228493 359 solver.cpp:237] Train net output #0: loss = 0.145287 (* 1 = 0.145287 loss) +I0407 23:16:56.228502 359 sgd_solver.cpp:105] Iteration 6120, lr = 0.00119203 +I0407 23:17:00.337146 359 solver.cpp:218] Iteration 6132 (2.92068 iter/s, 4.10864s/12 iters), loss = 0.132761 +I0407 23:17:00.337185 359 solver.cpp:237] Train net output #0: loss = 0.132761 (* 1 = 0.132761 loss) +I0407 23:17:00.337193 359 sgd_solver.cpp:105] Iteration 6132, lr = 0.00116755 +I0407 23:17:05.298271 359 solver.cpp:218] Iteration 6144 (2.41883 iter/s, 4.96107s/12 iters), loss = 0.162121 +I0407 23:17:05.298308 359 solver.cpp:237] Train net output #0: loss = 0.162121 (* 1 = 0.162121 loss) +I0407 23:17:05.298317 359 sgd_solver.cpp:105] Iteration 6144, lr = 0.0011435 +I0407 23:17:10.255321 359 solver.cpp:218] Iteration 6156 (2.42082 iter/s, 4.95699s/12 iters), loss = 0.186738 +I0407 23:17:10.255363 359 solver.cpp:237] Train net output #0: loss = 0.186738 (* 1 = 0.186738 loss) +I0407 23:17:10.255371 359 sgd_solver.cpp:105] Iteration 6156, lr = 0.00111989 +I0407 23:17:15.203159 359 solver.cpp:218] Iteration 6168 (2.42533 iter/s, 4.94778s/12 iters), loss = 0.137813 +I0407 23:17:15.203291 359 solver.cpp:237] Train net output #0: loss = 0.137812 (* 1 = 0.137812 loss) +I0407 23:17:15.203300 359 sgd_solver.cpp:105] Iteration 6168, lr = 0.0010967 +I0407 23:17:15.768159 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:20.098423 359 solver.cpp:218] Iteration 6180 (2.45142 iter/s, 4.89512s/12 iters), loss = 0.253244 +I0407 23:17:20.098469 359 solver.cpp:237] Train net output #0: loss = 0.253244 (* 1 = 0.253244 loss) +I0407 23:17:20.098477 359 sgd_solver.cpp:105] Iteration 6180, lr = 0.00107393 +I0407 23:17:25.054626 359 solver.cpp:218] Iteration 6192 (2.42124 iter/s, 4.95613s/12 iters), loss = 0.189062 +I0407 23:17:25.054667 359 solver.cpp:237] Train net output #0: loss = 0.189062 (* 1 = 0.189062 loss) +I0407 23:17:25.054675 359 sgd_solver.cpp:105] Iteration 6192, lr = 0.00105159 +I0407 23:17:29.953361 359 solver.cpp:218] Iteration 6204 (2.44964 iter/s, 4.89868s/12 iters), loss = 0.222306 +I0407 23:17:29.953399 359 solver.cpp:237] Train net output #0: loss = 0.222306 (* 1 = 0.222306 loss) +I0407 23:17:29.953406 359 sgd_solver.cpp:105] Iteration 6204, lr = 0.00102965 +I0407 23:17:34.915452 359 solver.cpp:218] Iteration 6216 (2.41836 iter/s, 4.96204s/12 iters), loss = 0.200733 +I0407 23:17:34.915488 359 solver.cpp:237] Train net output #0: loss = 0.200733 (* 1 = 0.200733 loss) +I0407 23:17:34.915498 359 sgd_solver.cpp:105] Iteration 6216, lr = 0.00100812 +I0407 23:17:36.912931 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 23:17:40.000715 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 23:17:42.434772 359 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 23:17:42.434790 359 net.cpp:676] Ignoring source layer train-data +I0407 23:17:44.584822 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:17:46.061904 359 blocking_queue.cpp:49] Waiting for data +I0407 23:17:47.348780 359 solver.cpp:397] Test net output #0: accuracy = 0.441789 +I0407 23:17:47.348807 359 solver.cpp:397] Test net output #1: loss = 2.85965 (* 1 = 2.85965 loss) +I0407 23:17:49.122150 359 solver.cpp:218] Iteration 6228 (0.844676 iter/s, 14.2066s/12 iters), loss = 0.129902 +I0407 23:17:49.122196 359 solver.cpp:237] Train net output #0: loss = 0.129902 (* 1 = 0.129902 loss) +I0407 23:17:49.122205 359 sgd_solver.cpp:105] Iteration 6228, lr = 0.00098699 +I0407 23:17:54.039830 359 solver.cpp:218] Iteration 6240 (2.44021 iter/s, 4.91762s/12 iters), loss = 0.153368 +I0407 23:17:54.039870 359 solver.cpp:237] Train net output #0: loss = 0.153368 (* 1 = 0.153368 loss) +I0407 23:17:54.039878 359 sgd_solver.cpp:105] Iteration 6240, lr = 0.000966255 +I0407 23:17:58.976161 359 solver.cpp:218] Iteration 6252 (2.43099 iter/s, 4.93627s/12 iters), loss = 0.0896474 +I0407 23:17:58.976199 359 solver.cpp:237] Train net output #0: loss = 0.0896474 (* 1 = 0.0896474 loss) +I0407 23:17:58.976208 359 sgd_solver.cpp:105] Iteration 6252, lr = 0.000945911 +I0407 23:18:03.978098 359 solver.cpp:218] Iteration 6264 (2.3991 iter/s, 5.00188s/12 iters), loss = 0.259995 +I0407 23:18:03.978142 359 solver.cpp:237] Train net output #0: loss = 0.259995 (* 1 = 0.259995 loss) +I0407 23:18:03.978149 359 sgd_solver.cpp:105] Iteration 6264, lr = 0.00092595 +I0407 23:18:06.676151 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:08.906256 359 solver.cpp:218] Iteration 6276 (2.43502 iter/s, 4.92809s/12 iters), loss = 0.273486 +I0407 23:18:08.906299 359 solver.cpp:237] Train net output #0: loss = 0.273486 (* 1 = 0.273486 loss) +I0407 23:18:08.906307 359 sgd_solver.cpp:105] Iteration 6276, lr = 0.000906369 +I0407 23:18:13.853348 359 solver.cpp:218] Iteration 6288 (2.4257 iter/s, 4.94703s/12 iters), loss = 0.139224 +I0407 23:18:13.853389 359 solver.cpp:237] Train net output #0: loss = 0.139224 (* 1 = 0.139224 loss) +I0407 23:18:13.853399 359 sgd_solver.cpp:105] Iteration 6288, lr = 0.000887162 +I0407 23:18:18.791798 359 solver.cpp:218] Iteration 6300 (2.42994 iter/s, 4.93839s/12 iters), loss = 0.134716 +I0407 23:18:18.791942 359 solver.cpp:237] Train net output #0: loss = 0.134716 (* 1 = 0.134716 loss) +I0407 23:18:18.791951 359 sgd_solver.cpp:105] Iteration 6300, lr = 0.000868323 +I0407 23:18:23.745375 359 solver.cpp:218] Iteration 6312 (2.42257 iter/s, 4.95341s/12 iters), loss = 0.139055 +I0407 23:18:23.745416 359 solver.cpp:237] Train net output #0: loss = 0.139055 (* 1 = 0.139055 loss) +I0407 23:18:23.745424 359 sgd_solver.cpp:105] Iteration 6312, lr = 0.000849846 +I0407 23:18:28.225522 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 23:18:31.307723 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 23:18:33.675303 359 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 23:18:33.675323 359 net.cpp:676] Ignoring source layer train-data +I0407 23:18:35.731346 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:38.459969 359 solver.cpp:397] Test net output #0: accuracy = 0.457721 +I0407 23:18:38.460003 359 solver.cpp:397] Test net output #1: loss = 2.81101 (* 1 = 2.81101 loss) +I0407 23:18:38.556648 359 solver.cpp:218] Iteration 6324 (0.810198 iter/s, 14.8112s/12 iters), loss = 0.153668 +I0407 23:18:38.556690 359 solver.cpp:237] Train net output #0: loss = 0.153668 (* 1 = 0.153668 loss) +I0407 23:18:38.556699 359 sgd_solver.cpp:105] Iteration 6324, lr = 0.000831727 +I0407 23:18:42.664073 359 solver.cpp:218] Iteration 6336 (2.92159 iter/s, 4.10736s/12 iters), loss = 0.163364 +I0407 23:18:42.664115 359 solver.cpp:237] Train net output #0: loss = 0.163364 (* 1 = 0.163364 loss) +I0407 23:18:42.664122 359 sgd_solver.cpp:105] Iteration 6336, lr = 0.00081396 +I0407 23:18:47.559902 359 solver.cpp:218] Iteration 6348 (2.4511 iter/s, 4.89576s/12 iters), loss = 0.231072 +I0407 23:18:47.559952 359 solver.cpp:237] Train net output #0: loss = 0.231071 (* 1 = 0.231071 loss) +I0407 23:18:47.559959 359 sgd_solver.cpp:105] Iteration 6348, lr = 0.000796539 +I0407 23:18:52.520370 359 solver.cpp:218] Iteration 6360 (2.41916 iter/s, 4.9604s/12 iters), loss = 0.120645 +I0407 23:18:52.520499 359 solver.cpp:237] Train net output #0: loss = 0.120645 (* 1 = 0.120645 loss) +I0407 23:18:52.520507 359 sgd_solver.cpp:105] Iteration 6360, lr = 0.000779459 +I0407 23:18:57.274106 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:18:57.413798 359 solver.cpp:218] Iteration 6372 (2.45234 iter/s, 4.89328s/12 iters), loss = 0.153222 +I0407 23:18:57.413831 359 solver.cpp:237] Train net output #0: loss = 0.153222 (* 1 = 0.153222 loss) +I0407 23:18:57.413839 359 sgd_solver.cpp:105] Iteration 6372, lr = 0.000762716 +I0407 23:19:02.350708 359 solver.cpp:218] Iteration 6384 (2.4307 iter/s, 4.93686s/12 iters), loss = 0.0881359 +I0407 23:19:02.350745 359 solver.cpp:237] Train net output #0: loss = 0.0881359 (* 1 = 0.0881359 loss) +I0407 23:19:02.350752 359 sgd_solver.cpp:105] Iteration 6384, lr = 0.000746303 +I0407 23:19:07.270803 359 solver.cpp:218] Iteration 6396 (2.439 iter/s, 4.92004s/12 iters), loss = 0.135171 +I0407 23:19:07.270850 359 solver.cpp:237] Train net output #0: loss = 0.135171 (* 1 = 0.135171 loss) +I0407 23:19:07.270859 359 sgd_solver.cpp:105] Iteration 6396, lr = 0.000730215 +I0407 23:19:12.212148 359 solver.cpp:218] Iteration 6408 (2.42852 iter/s, 4.94128s/12 iters), loss = 0.274553 +I0407 23:19:12.212185 359 solver.cpp:237] Train net output #0: loss = 0.274553 (* 1 = 0.274553 loss) +I0407 23:19:12.212193 359 sgd_solver.cpp:105] Iteration 6408, lr = 0.000714447 +I0407 23:19:17.134399 359 solver.cpp:218] Iteration 6420 (2.43794 iter/s, 4.9222s/12 iters), loss = 0.138166 +I0407 23:19:17.134439 359 solver.cpp:237] Train net output #0: loss = 0.138166 (* 1 = 0.138166 loss) +I0407 23:19:17.134447 359 sgd_solver.cpp:105] Iteration 6420, lr = 0.000698994 +I0407 23:19:19.124998 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 23:19:22.204881 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 23:19:24.673915 359 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 23:19:24.674012 359 net.cpp:676] Ignoring source layer train-data +I0407 23:19:26.581594 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:29.139668 359 solver.cpp:397] Test net output #0: accuracy = 0.450368 +I0407 23:19:29.139700 359 solver.cpp:397] Test net output #1: loss = 2.84339 (* 1 = 2.84339 loss) +I0407 23:19:30.940819 359 solver.cpp:218] Iteration 6432 (0.869165 iter/s, 13.8063s/12 iters), loss = 0.150292 +I0407 23:19:30.940857 359 solver.cpp:237] Train net output #0: loss = 0.150292 (* 1 = 0.150292 loss) +I0407 23:19:30.940865 359 sgd_solver.cpp:105] Iteration 6432, lr = 0.000683851 +I0407 23:19:35.942068 359 solver.cpp:218] Iteration 6444 (2.39943 iter/s, 5.00119s/12 iters), loss = 0.246275 +I0407 23:19:35.942111 359 solver.cpp:237] Train net output #0: loss = 0.246274 (* 1 = 0.246274 loss) +I0407 23:19:35.942119 359 sgd_solver.cpp:105] Iteration 6444, lr = 0.000669012 +I0407 23:19:40.886096 359 solver.cpp:218] Iteration 6456 (2.4272 iter/s, 4.94396s/12 iters), loss = 0.215359 +I0407 23:19:40.886143 359 solver.cpp:237] Train net output #0: loss = 0.215359 (* 1 = 0.215359 loss) +I0407 23:19:40.886152 359 sgd_solver.cpp:105] Iteration 6456, lr = 0.000654472 +I0407 23:19:45.861039 359 solver.cpp:218] Iteration 6468 (2.41212 iter/s, 4.97487s/12 iters), loss = 0.126235 +I0407 23:19:45.861086 359 solver.cpp:237] Train net output #0: loss = 0.126235 (* 1 = 0.126235 loss) +I0407 23:19:45.861094 359 sgd_solver.cpp:105] Iteration 6468, lr = 0.000640227 +I0407 23:19:47.810267 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:19:50.822371 359 solver.cpp:218] Iteration 6480 (2.41874 iter/s, 4.96127s/12 iters), loss = 0.105952 +I0407 23:19:50.822408 359 solver.cpp:237] Train net output #0: loss = 0.105952 (* 1 = 0.105952 loss) +I0407 23:19:50.822417 359 sgd_solver.cpp:105] Iteration 6480, lr = 0.000626271 +I0407 23:19:55.739878 359 solver.cpp:218] Iteration 6492 (2.44029 iter/s, 4.91745s/12 iters), loss = 0.238412 +I0407 23:19:55.740053 359 solver.cpp:237] Train net output #0: loss = 0.238412 (* 1 = 0.238412 loss) +I0407 23:19:55.740069 359 sgd_solver.cpp:105] Iteration 6492, lr = 0.0006126 +I0407 23:20:00.695417 359 solver.cpp:218] Iteration 6504 (2.42162 iter/s, 4.95535s/12 iters), loss = 0.251793 +I0407 23:20:00.695458 359 solver.cpp:237] Train net output #0: loss = 0.251793 (* 1 = 0.251793 loss) +I0407 23:20:00.695467 359 sgd_solver.cpp:105] Iteration 6504, lr = 0.000599207 +I0407 23:20:05.594112 359 solver.cpp:218] Iteration 6516 (2.44966 iter/s, 4.89864s/12 iters), loss = 0.196607 +I0407 23:20:05.594148 359 solver.cpp:237] Train net output #0: loss = 0.196607 (* 1 = 0.196607 loss) +I0407 23:20:05.594156 359 sgd_solver.cpp:105] Iteration 6516, lr = 0.00058609 +I0407 23:20:10.109151 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 23:20:13.216063 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 23:20:15.603492 359 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 23:20:15.603508 359 net.cpp:676] Ignoring source layer train-data +I0407 23:20:17.508338 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:20.119869 359 solver.cpp:397] Test net output #0: accuracy = 0.457721 +I0407 23:20:20.119915 359 solver.cpp:397] Test net output #1: loss = 2.87348 (* 1 = 2.87348 loss) +I0407 23:20:20.216583 359 solver.cpp:218] Iteration 6528 (0.820659 iter/s, 14.6224s/12 iters), loss = 0.0990301 +I0407 23:20:20.216629 359 solver.cpp:237] Train net output #0: loss = 0.0990301 (* 1 = 0.0990301 loss) +I0407 23:20:20.216637 359 sgd_solver.cpp:105] Iteration 6528, lr = 0.000573242 +I0407 23:20:24.354866 359 solver.cpp:218] Iteration 6540 (2.8998 iter/s, 4.13822s/12 iters), loss = 0.175362 +I0407 23:20:24.354910 359 solver.cpp:237] Train net output #0: loss = 0.175362 (* 1 = 0.175362 loss) +I0407 23:20:24.354919 359 sgd_solver.cpp:105] Iteration 6540, lr = 0.000560659 +I0407 23:20:29.286823 359 solver.cpp:218] Iteration 6552 (2.43315 iter/s, 4.93189s/12 iters), loss = 0.13445 +I0407 23:20:29.286944 359 solver.cpp:237] Train net output #0: loss = 0.13445 (* 1 = 0.13445 loss) +I0407 23:20:29.286954 359 sgd_solver.cpp:105] Iteration 6552, lr = 0.000548335 +I0407 23:20:34.175601 359 solver.cpp:218] Iteration 6564 (2.45467 iter/s, 4.88864s/12 iters), loss = 0.184569 +I0407 23:20:34.175639 359 solver.cpp:237] Train net output #0: loss = 0.184569 (* 1 = 0.184569 loss) +I0407 23:20:34.175648 359 sgd_solver.cpp:105] Iteration 6564, lr = 0.000536268 +I0407 23:20:38.373523 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:20:39.128399 359 solver.cpp:218] Iteration 6576 (2.4229 iter/s, 4.95274s/12 iters), loss = 0.22993 +I0407 23:20:39.128435 359 solver.cpp:237] Train net output #0: loss = 0.22993 (* 1 = 0.22993 loss) +I0407 23:20:39.128443 359 sgd_solver.cpp:105] Iteration 6576, lr = 0.000524451 +I0407 23:20:44.056602 359 solver.cpp:218] Iteration 6588 (2.43499 iter/s, 4.92815s/12 iters), loss = 0.13458 +I0407 23:20:44.056636 359 solver.cpp:237] Train net output #0: loss = 0.13458 (* 1 = 0.13458 loss) +I0407 23:20:44.056643 359 sgd_solver.cpp:105] Iteration 6588, lr = 0.000512881 +I0407 23:20:49.049531 359 solver.cpp:218] Iteration 6600 (2.40343 iter/s, 4.99287s/12 iters), loss = 0.151401 +I0407 23:20:49.049571 359 solver.cpp:237] Train net output #0: loss = 0.151401 (* 1 = 0.151401 loss) +I0407 23:20:49.049580 359 sgd_solver.cpp:105] Iteration 6600, lr = 0.000501552 +I0407 23:20:53.991566 359 solver.cpp:218] Iteration 6612 (2.42818 iter/s, 4.94197s/12 iters), loss = 0.177412 +I0407 23:20:53.991613 359 solver.cpp:237] Train net output #0: loss = 0.177412 (* 1 = 0.177412 loss) +I0407 23:20:53.991621 359 sgd_solver.cpp:105] Iteration 6612, lr = 0.00049046 +I0407 23:20:58.907235 359 solver.cpp:218] Iteration 6624 (2.44121 iter/s, 4.9156s/12 iters), loss = 0.160151 +I0407 23:20:58.907280 359 solver.cpp:237] Train net output #0: loss = 0.160151 (* 1 = 0.160151 loss) +I0407 23:20:58.907289 359 sgd_solver.cpp:105] Iteration 6624, lr = 0.000479602 +I0407 23:21:00.898057 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 23:21:03.982336 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 23:21:06.351004 359 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 23:21:06.351023 359 net.cpp:676] Ignoring source layer train-data +I0407 23:21:08.286592 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:11.145256 359 solver.cpp:397] Test net output #0: accuracy = 0.454044 +I0407 23:21:11.145303 359 solver.cpp:397] Test net output #1: loss = 2.86725 (* 1 = 2.86725 loss) +I0407 23:21:12.957787 359 solver.cpp:218] Iteration 6636 (0.854064 iter/s, 14.0505s/12 iters), loss = 0.115546 +I0407 23:21:12.957829 359 solver.cpp:237] Train net output #0: loss = 0.115546 (* 1 = 0.115546 loss) +I0407 23:21:12.957837 359 sgd_solver.cpp:105] Iteration 6636, lr = 0.000468972 +I0407 23:21:17.907053 359 solver.cpp:218] Iteration 6648 (2.42463 iter/s, 4.94921s/12 iters), loss = 0.131054 +I0407 23:21:17.907088 359 solver.cpp:237] Train net output #0: loss = 0.131054 (* 1 = 0.131054 loss) +I0407 23:21:17.907095 359 sgd_solver.cpp:105] Iteration 6648, lr = 0.000458566 +I0407 23:21:22.831107 359 solver.cpp:218] Iteration 6660 (2.43704 iter/s, 4.924s/12 iters), loss = 0.0919114 +I0407 23:21:22.831142 359 solver.cpp:237] Train net output #0: loss = 0.0919114 (* 1 = 0.0919114 loss) +I0407 23:21:22.831151 359 sgd_solver.cpp:105] Iteration 6660, lr = 0.00044838 +I0407 23:21:27.782884 359 solver.cpp:218] Iteration 6672 (2.4234 iter/s, 4.95172s/12 iters), loss = 0.109363 +I0407 23:21:27.782924 359 solver.cpp:237] Train net output #0: loss = 0.109363 (* 1 = 0.109363 loss) +I0407 23:21:27.782932 359 sgd_solver.cpp:105] Iteration 6672, lr = 0.000438411 +I0407 23:21:29.098017 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:21:32.668825 359 solver.cpp:218] Iteration 6684 (2.45606 iter/s, 4.88588s/12 iters), loss = 0.0794411 +I0407 23:21:32.668939 359 solver.cpp:237] Train net output #0: loss = 0.079441 (* 1 = 0.079441 loss) +I0407 23:21:32.668947 359 sgd_solver.cpp:105] Iteration 6684, lr = 0.000428653 +I0407 23:21:37.626327 359 solver.cpp:218] Iteration 6696 (2.42064 iter/s, 4.95737s/12 iters), loss = 0.192344 +I0407 23:21:37.626370 359 solver.cpp:237] Train net output #0: loss = 0.192344 (* 1 = 0.192344 loss) +I0407 23:21:37.626377 359 sgd_solver.cpp:105] Iteration 6696, lr = 0.000419102 +I0407 23:21:42.536317 359 solver.cpp:218] Iteration 6708 (2.44403 iter/s, 4.90992s/12 iters), loss = 0.189281 +I0407 23:21:42.536360 359 solver.cpp:237] Train net output #0: loss = 0.189281 (* 1 = 0.189281 loss) +I0407 23:21:42.536370 359 sgd_solver.cpp:105] Iteration 6708, lr = 0.000409755 +I0407 23:21:47.443796 359 solver.cpp:218] Iteration 6720 (2.44528 iter/s, 4.90741s/12 iters), loss = 0.0837439 +I0407 23:21:47.443840 359 solver.cpp:237] Train net output #0: loss = 0.0837439 (* 1 = 0.0837439 loss) +I0407 23:21:47.443847 359 sgd_solver.cpp:105] Iteration 6720, lr = 0.000400608 +I0407 23:21:51.929875 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 23:21:55.912889 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 23:21:58.291445 359 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 23:21:58.291465 359 net.cpp:676] Ignoring source layer train-data +I0407 23:22:00.027452 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:02.689129 359 solver.cpp:397] Test net output #0: accuracy = 0.456495 +I0407 23:22:02.689332 359 solver.cpp:397] Test net output #1: loss = 2.84666 (* 1 = 2.84666 loss) +I0407 23:22:02.785645 359 solver.cpp:218] Iteration 6732 (0.782178 iter/s, 15.3418s/12 iters), loss = 0.0341394 +I0407 23:22:02.785689 359 solver.cpp:237] Train net output #0: loss = 0.0341394 (* 1 = 0.0341394 loss) +I0407 23:22:02.785698 359 sgd_solver.cpp:105] Iteration 6732, lr = 0.000391657 +I0407 23:22:06.918531 359 solver.cpp:218] Iteration 6744 (2.90358 iter/s, 4.13283s/12 iters), loss = 0.172641 +I0407 23:22:06.918565 359 solver.cpp:237] Train net output #0: loss = 0.172641 (* 1 = 0.172641 loss) +I0407 23:22:06.918573 359 sgd_solver.cpp:105] Iteration 6744, lr = 0.000382898 +I0407 23:22:11.868175 359 solver.cpp:218] Iteration 6756 (2.42444 iter/s, 4.94959s/12 iters), loss = 0.241404 +I0407 23:22:11.868216 359 solver.cpp:237] Train net output #0: loss = 0.241404 (* 1 = 0.241404 loss) +I0407 23:22:11.868223 359 sgd_solver.cpp:105] Iteration 6756, lr = 0.000374327 +I0407 23:22:16.728605 359 solver.cpp:218] Iteration 6768 (2.46895 iter/s, 4.86037s/12 iters), loss = 0.279273 +I0407 23:22:16.728642 359 solver.cpp:237] Train net output #0: loss = 0.279273 (* 1 = 0.279273 loss) +I0407 23:22:16.728650 359 sgd_solver.cpp:105] Iteration 6768, lr = 0.000365941 +I0407 23:22:20.148819 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:21.670934 359 solver.cpp:218] Iteration 6780 (2.42803 iter/s, 4.94227s/12 iters), loss = 0.128633 +I0407 23:22:21.670977 359 solver.cpp:237] Train net output #0: loss = 0.128633 (* 1 = 0.128633 loss) +I0407 23:22:21.670986 359 sgd_solver.cpp:105] Iteration 6780, lr = 0.000357735 +I0407 23:22:26.599380 359 solver.cpp:218] Iteration 6792 (2.43487 iter/s, 4.92839s/12 iters), loss = 0.183782 +I0407 23:22:26.599417 359 solver.cpp:237] Train net output #0: loss = 0.183782 (* 1 = 0.183782 loss) +I0407 23:22:26.599426 359 sgd_solver.cpp:105] Iteration 6792, lr = 0.000349707 +I0407 23:22:31.549271 359 solver.cpp:218] Iteration 6804 (2.42432 iter/s, 4.94984s/12 iters), loss = 0.152019 +I0407 23:22:31.549310 359 solver.cpp:237] Train net output #0: loss = 0.152019 (* 1 = 0.152019 loss) +I0407 23:22:31.549319 359 sgd_solver.cpp:105] Iteration 6804, lr = 0.000341853 +I0407 23:22:36.446985 359 solver.cpp:218] Iteration 6816 (2.45015 iter/s, 4.89766s/12 iters), loss = 0.167886 +I0407 23:22:36.447109 359 solver.cpp:237] Train net output #0: loss = 0.167886 (* 1 = 0.167886 loss) +I0407 23:22:36.447118 359 sgd_solver.cpp:105] Iteration 6816, lr = 0.000334169 +I0407 23:22:41.410583 359 solver.cpp:218] Iteration 6828 (2.41767 iter/s, 4.96346s/12 iters), loss = 0.105224 +I0407 23:22:41.410617 359 solver.cpp:237] Train net output #0: loss = 0.105224 (* 1 = 0.105224 loss) +I0407 23:22:41.410625 359 sgd_solver.cpp:105] Iteration 6828, lr = 0.000326652 +I0407 23:22:43.398420 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 23:22:47.631776 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 23:22:51.158975 359 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 23:22:51.158994 359 net.cpp:676] Ignoring source layer train-data +I0407 23:22:52.835144 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:22:55.525240 359 solver.cpp:397] Test net output #0: accuracy = 0.456495 +I0407 23:22:55.525287 359 solver.cpp:397] Test net output #1: loss = 2.84198 (* 1 = 2.84198 loss) +I0407 23:22:57.320017 359 solver.cpp:218] Iteration 6840 (0.754273 iter/s, 15.9094s/12 iters), loss = 0.213791 +I0407 23:22:57.320061 359 solver.cpp:237] Train net output #0: loss = 0.213791 (* 1 = 0.213791 loss) +I0407 23:22:57.320070 359 sgd_solver.cpp:105] Iteration 6840, lr = 0.000319298 +I0407 23:23:02.217681 359 solver.cpp:218] Iteration 6852 (2.45018 iter/s, 4.8976s/12 iters), loss = 0.144369 +I0407 23:23:02.217728 359 solver.cpp:237] Train net output #0: loss = 0.144369 (* 1 = 0.144369 loss) +I0407 23:23:02.217736 359 sgd_solver.cpp:105] Iteration 6852, lr = 0.000312105 +I0407 23:23:07.196313 359 solver.cpp:218] Iteration 6864 (2.41033 iter/s, 4.97857s/12 iters), loss = 0.196857 +I0407 23:23:07.197065 359 solver.cpp:237] Train net output #0: loss = 0.196857 (* 1 = 0.196857 loss) +I0407 23:23:07.197077 359 sgd_solver.cpp:105] Iteration 6864, lr = 0.000305068 +I0407 23:23:12.125314 359 solver.cpp:218] Iteration 6876 (2.43495 iter/s, 4.92823s/12 iters), loss = 0.215531 +I0407 23:23:12.125355 359 solver.cpp:237] Train net output #0: loss = 0.215531 (* 1 = 0.215531 loss) +I0407 23:23:12.125361 359 sgd_solver.cpp:105] Iteration 6876, lr = 0.000298185 +I0407 23:23:12.732437 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:17.067513 359 solver.cpp:218] Iteration 6888 (2.4281 iter/s, 4.94213s/12 iters), loss = 0.170668 +I0407 23:23:17.067559 359 solver.cpp:237] Train net output #0: loss = 0.170668 (* 1 = 0.170668 loss) +I0407 23:23:17.067569 359 sgd_solver.cpp:105] Iteration 6888, lr = 0.000291453 +I0407 23:23:22.020543 359 solver.cpp:218] Iteration 6900 (2.42279 iter/s, 4.95296s/12 iters), loss = 0.184094 +I0407 23:23:22.020581 359 solver.cpp:237] Train net output #0: loss = 0.184094 (* 1 = 0.184094 loss) +I0407 23:23:22.020588 359 sgd_solver.cpp:105] Iteration 6900, lr = 0.000284869 +I0407 23:23:26.911700 359 solver.cpp:218] Iteration 6912 (2.45344 iter/s, 4.8911s/12 iters), loss = 0.305297 +I0407 23:23:26.911737 359 solver.cpp:237] Train net output #0: loss = 0.305297 (* 1 = 0.305297 loss) +I0407 23:23:26.911747 359 sgd_solver.cpp:105] Iteration 6912, lr = 0.000278428 +I0407 23:23:31.828889 359 solver.cpp:218] Iteration 6924 (2.44045 iter/s, 4.91713s/12 iters), loss = 0.262044 +I0407 23:23:31.828924 359 solver.cpp:237] Train net output #0: loss = 0.262044 (* 1 = 0.262044 loss) +I0407 23:23:31.828933 359 sgd_solver.cpp:105] Iteration 6924, lr = 0.00027213 +I0407 23:23:36.315490 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 23:23:40.034473 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 23:23:43.089866 359 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 23:23:43.089884 359 net.cpp:676] Ignoring source layer train-data +I0407 23:23:43.654500 359 blocking_queue.cpp:49] Waiting for data +I0407 23:23:44.722661 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:23:47.463395 359 solver.cpp:397] Test net output #0: accuracy = 0.458333 +I0407 23:23:47.463443 359 solver.cpp:397] Test net output #1: loss = 2.82497 (* 1 = 2.82497 loss) +I0407 23:23:47.560518 359 solver.cpp:218] Iteration 6936 (0.762799 iter/s, 15.7315s/12 iters), loss = 0.118046 +I0407 23:23:47.560585 359 solver.cpp:237] Train net output #0: loss = 0.118046 (* 1 = 0.118046 loss) +I0407 23:23:47.560600 359 sgd_solver.cpp:105] Iteration 6936, lr = 0.00026597 +I0407 23:23:51.671131 359 solver.cpp:218] Iteration 6948 (2.91933 iter/s, 4.11054s/12 iters), loss = 0.097086 +I0407 23:23:51.671175 359 solver.cpp:237] Train net output #0: loss = 0.097086 (* 1 = 0.097086 loss) +I0407 23:23:51.671185 359 sgd_solver.cpp:105] Iteration 6948, lr = 0.000259946 +I0407 23:23:56.623329 359 solver.cpp:218] Iteration 6960 (2.4232 iter/s, 4.95213s/12 iters), loss = 0.112395 +I0407 23:23:56.623373 359 solver.cpp:237] Train net output #0: loss = 0.112395 (* 1 = 0.112395 loss) +I0407 23:23:56.623380 359 sgd_solver.cpp:105] Iteration 6960, lr = 0.000254054 +I0407 23:24:01.587177 359 solver.cpp:218] Iteration 6972 (2.41751 iter/s, 4.96379s/12 iters), loss = 0.14027 +I0407 23:24:01.587222 359 solver.cpp:237] Train net output #0: loss = 0.14027 (* 1 = 0.14027 loss) +I0407 23:24:01.587231 359 sgd_solver.cpp:105] Iteration 6972, lr = 0.000248293 +I0407 23:24:04.314172 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:06.516044 359 solver.cpp:218] Iteration 6984 (2.43467 iter/s, 4.92881s/12 iters), loss = 0.167093 +I0407 23:24:06.516083 359 solver.cpp:237] Train net output #0: loss = 0.167093 (* 1 = 0.167093 loss) +I0407 23:24:06.516090 359 sgd_solver.cpp:105] Iteration 6984, lr = 0.000242659 +I0407 23:24:11.514892 359 solver.cpp:218] Iteration 6996 (2.40058 iter/s, 4.99878s/12 iters), loss = 0.201238 +I0407 23:24:11.515044 359 solver.cpp:237] Train net output #0: loss = 0.201238 (* 1 = 0.201238 loss) +I0407 23:24:11.515054 359 sgd_solver.cpp:105] Iteration 6996, lr = 0.00023715 +I0407 23:24:16.443599 359 solver.cpp:218] Iteration 7008 (2.4348 iter/s, 4.92853s/12 iters), loss = 0.0924055 +I0407 23:24:16.443646 359 solver.cpp:237] Train net output #0: loss = 0.0924055 (* 1 = 0.0924055 loss) +I0407 23:24:16.443655 359 sgd_solver.cpp:105] Iteration 7008, lr = 0.000231763 +I0407 23:24:21.383993 359 solver.cpp:218] Iteration 7020 (2.42899 iter/s, 4.94032s/12 iters), loss = 0.153556 +I0407 23:24:21.384040 359 solver.cpp:237] Train net output #0: loss = 0.153556 (* 1 = 0.153556 loss) +I0407 23:24:21.384048 359 sgd_solver.cpp:105] Iteration 7020, lr = 0.000226495 +I0407 23:24:26.370350 359 solver.cpp:218] Iteration 7032 (2.4066 iter/s, 4.98628s/12 iters), loss = 0.136955 +I0407 23:24:26.370398 359 solver.cpp:237] Train net output #0: loss = 0.136955 (* 1 = 0.136955 loss) +I0407 23:24:26.370407 359 sgd_solver.cpp:105] Iteration 7032, lr = 0.000221345 +I0407 23:24:28.369777 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 23:24:31.476897 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 23:24:33.903177 359 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 23:24:33.903194 359 net.cpp:676] Ignoring source layer train-data +I0407 23:24:35.673597 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:38.711179 359 solver.cpp:397] Test net output #0: accuracy = 0.455882 +I0407 23:24:38.711243 359 solver.cpp:397] Test net output #1: loss = 2.83419 (* 1 = 2.83419 loss) +I0407 23:24:40.521961 359 solver.cpp:218] Iteration 7044 (0.847965 iter/s, 14.1515s/12 iters), loss = 0.114693 +I0407 23:24:40.522001 359 solver.cpp:237] Train net output #0: loss = 0.114693 (* 1 = 0.114693 loss) +I0407 23:24:40.522007 359 sgd_solver.cpp:105] Iteration 7044, lr = 0.000216309 +I0407 23:24:45.452225 359 solver.cpp:218] Iteration 7056 (2.43398 iter/s, 4.9302s/12 iters), loss = 0.170558 +I0407 23:24:45.452363 359 solver.cpp:237] Train net output #0: loss = 0.170558 (* 1 = 0.170558 loss) +I0407 23:24:45.452373 359 sgd_solver.cpp:105] Iteration 7056, lr = 0.000211385 +I0407 23:24:50.392465 359 solver.cpp:218] Iteration 7068 (2.42911 iter/s, 4.94009s/12 iters), loss = 0.188994 +I0407 23:24:50.392504 359 solver.cpp:237] Train net output #0: loss = 0.188994 (* 1 = 0.188994 loss) +I0407 23:24:50.392513 359 sgd_solver.cpp:105] Iteration 7068, lr = 0.000206571 +I0407 23:24:55.213446 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:24:55.323170 359 solver.cpp:218] Iteration 7080 (2.43376 iter/s, 4.93065s/12 iters), loss = 0.216889 +I0407 23:24:55.323213 359 solver.cpp:237] Train net output #0: loss = 0.216889 (* 1 = 0.216889 loss) +I0407 23:24:55.323221 359 sgd_solver.cpp:105] Iteration 7080, lr = 0.000201864 +I0407 23:25:00.184571 359 solver.cpp:218] Iteration 7092 (2.46846 iter/s, 4.86134s/12 iters), loss = 0.159934 +I0407 23:25:00.184615 359 solver.cpp:237] Train net output #0: loss = 0.159934 (* 1 = 0.159934 loss) +I0407 23:25:00.184623 359 sgd_solver.cpp:105] Iteration 7092, lr = 0.000197262 +I0407 23:25:05.111347 359 solver.cpp:218] Iteration 7104 (2.4357 iter/s, 4.92671s/12 iters), loss = 0.0967507 +I0407 23:25:05.111384 359 solver.cpp:237] Train net output #0: loss = 0.0967507 (* 1 = 0.0967507 loss) +I0407 23:25:05.111393 359 sgd_solver.cpp:105] Iteration 7104, lr = 0.000192763 +I0407 23:25:10.049810 359 solver.cpp:218] Iteration 7116 (2.42993 iter/s, 4.93841s/12 iters), loss = 0.212849 +I0407 23:25:10.049844 359 solver.cpp:237] Train net output #0: loss = 0.212849 (* 1 = 0.212849 loss) +I0407 23:25:10.049851 359 sgd_solver.cpp:105] Iteration 7116, lr = 0.000188365 +I0407 23:25:14.970294 359 solver.cpp:218] Iteration 7128 (2.43881 iter/s, 4.92043s/12 iters), loss = 0.216186 +I0407 23:25:14.970332 359 solver.cpp:237] Train net output #0: loss = 0.216186 (* 1 = 0.216186 loss) +I0407 23:25:14.970340 359 sgd_solver.cpp:105] Iteration 7128, lr = 0.000184065 +I0407 23:25:19.462628 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 23:25:22.590390 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 23:25:24.958521 359 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 23:25:24.958539 359 net.cpp:676] Ignoring source layer train-data +I0407 23:25:26.613893 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:29.475989 359 solver.cpp:397] Test net output #0: accuracy = 0.45527 +I0407 23:25:29.476022 359 solver.cpp:397] Test net output #1: loss = 2.85037 (* 1 = 2.85037 loss) +I0407 23:25:29.572391 359 solver.cpp:218] Iteration 7140 (0.821804 iter/s, 14.602s/12 iters), loss = 0.174071 +I0407 23:25:29.572436 359 solver.cpp:237] Train net output #0: loss = 0.174071 (* 1 = 0.174071 loss) +I0407 23:25:29.572444 359 sgd_solver.cpp:105] Iteration 7140, lr = 0.000179862 +I0407 23:25:33.689715 359 solver.cpp:218] Iteration 7152 (2.91456 iter/s, 4.11726s/12 iters), loss = 0.145695 +I0407 23:25:33.689760 359 solver.cpp:237] Train net output #0: loss = 0.145695 (* 1 = 0.145695 loss) +I0407 23:25:33.689769 359 sgd_solver.cpp:105] Iteration 7152, lr = 0.000175753 +I0407 23:25:38.629235 359 solver.cpp:218] Iteration 7164 (2.42942 iter/s, 4.93945s/12 iters), loss = 0.0993061 +I0407 23:25:38.629281 359 solver.cpp:237] Train net output #0: loss = 0.0993061 (* 1 = 0.0993061 loss) +I0407 23:25:38.629288 359 sgd_solver.cpp:105] Iteration 7164, lr = 0.000171736 +I0407 23:25:43.583881 359 solver.cpp:218] Iteration 7176 (2.422 iter/s, 4.95458s/12 iters), loss = 0.0892541 +I0407 23:25:43.583933 359 solver.cpp:237] Train net output #0: loss = 0.0892541 (* 1 = 0.0892541 loss) +I0407 23:25:43.583942 359 sgd_solver.cpp:105] Iteration 7176, lr = 0.000167809 +I0407 23:25:45.655647 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:25:48.480268 359 solver.cpp:218] Iteration 7188 (2.45083 iter/s, 4.89631s/12 iters), loss = 0.188101 +I0407 23:25:48.480309 359 solver.cpp:237] Train net output #0: loss = 0.188101 (* 1 = 0.188101 loss) +I0407 23:25:48.480319 359 sgd_solver.cpp:105] Iteration 7188, lr = 0.000163971 +I0407 23:25:53.413872 359 solver.cpp:218] Iteration 7200 (2.43233 iter/s, 4.93354s/12 iters), loss = 0.188401 +I0407 23:25:53.413934 359 solver.cpp:237] Train net output #0: loss = 0.188401 (* 1 = 0.188401 loss) +I0407 23:25:53.413942 359 sgd_solver.cpp:105] Iteration 7200, lr = 0.000160219 +I0407 23:25:58.344467 359 solver.cpp:218] Iteration 7212 (2.43382 iter/s, 4.93052s/12 iters), loss = 0.127247 +I0407 23:25:58.344501 359 solver.cpp:237] Train net output #0: loss = 0.127247 (* 1 = 0.127247 loss) +I0407 23:25:58.344509 359 sgd_solver.cpp:105] Iteration 7212, lr = 0.000156551 +I0407 23:26:03.242328 359 solver.cpp:218] Iteration 7224 (2.45008 iter/s, 4.89781s/12 iters), loss = 0.152345 +I0407 23:26:03.242363 359 solver.cpp:237] Train net output #0: loss = 0.152345 (* 1 = 0.152345 loss) +I0407 23:26:03.242372 359 sgd_solver.cpp:105] Iteration 7224, lr = 0.000152967 +I0407 23:26:08.191819 359 solver.cpp:218] Iteration 7236 (2.42452 iter/s, 4.94944s/12 iters), loss = 0.101342 +I0407 23:26:08.191854 359 solver.cpp:237] Train net output #0: loss = 0.101342 (* 1 = 0.101342 loss) +I0407 23:26:08.191862 359 sgd_solver.cpp:105] Iteration 7236, lr = 0.000149463 +I0407 23:26:10.191319 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 23:26:13.329421 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 23:26:15.743396 359 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 23:26:15.743415 359 net.cpp:676] Ignoring source layer train-data +I0407 23:26:17.394312 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:20.311830 359 solver.cpp:397] Test net output #0: accuracy = 0.457721 +I0407 23:26:20.311866 359 solver.cpp:397] Test net output #1: loss = 2.8281 (* 1 = 2.8281 loss) +I0407 23:26:22.118371 359 solver.cpp:218] Iteration 7248 (0.861668 iter/s, 13.9265s/12 iters), loss = 0.161142 +I0407 23:26:22.118412 359 solver.cpp:237] Train net output #0: loss = 0.161142 (* 1 = 0.161142 loss) +I0407 23:26:22.118422 359 sgd_solver.cpp:105] Iteration 7248, lr = 0.000146038 +I0407 23:26:27.061333 359 solver.cpp:218] Iteration 7260 (2.42772 iter/s, 4.9429s/12 iters), loss = 0.0641212 +I0407 23:26:27.061465 359 solver.cpp:237] Train net output #0: loss = 0.0641212 (* 1 = 0.0641212 loss) +I0407 23:26:27.061473 359 sgd_solver.cpp:105] Iteration 7260, lr = 0.00014269 +I0407 23:26:31.940481 359 solver.cpp:218] Iteration 7272 (2.45952 iter/s, 4.879s/12 iters), loss = 0.097481 +I0407 23:26:31.940527 359 solver.cpp:237] Train net output #0: loss = 0.0974811 (* 1 = 0.0974811 loss) +I0407 23:26:31.940536 359 sgd_solver.cpp:105] Iteration 7272, lr = 0.000139418 +I0407 23:26:36.102092 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:26:36.841253 359 solver.cpp:218] Iteration 7284 (2.44863 iter/s, 4.90069s/12 iters), loss = 0.119114 +I0407 23:26:36.841300 359 solver.cpp:237] Train net output #0: loss = 0.119114 (* 1 = 0.119114 loss) +I0407 23:26:36.841307 359 sgd_solver.cpp:105] Iteration 7284, lr = 0.00013622 +I0407 23:26:41.810151 359 solver.cpp:218] Iteration 7296 (2.41506 iter/s, 4.96883s/12 iters), loss = 0.0925093 +I0407 23:26:41.810197 359 solver.cpp:237] Train net output #0: loss = 0.0925093 (* 1 = 0.0925093 loss) +I0407 23:26:41.810206 359 sgd_solver.cpp:105] Iteration 7296, lr = 0.000133094 +I0407 23:26:46.759048 359 solver.cpp:218] Iteration 7308 (2.42482 iter/s, 4.94883s/12 iters), loss = 0.153806 +I0407 23:26:46.759092 359 solver.cpp:237] Train net output #0: loss = 0.153806 (* 1 = 0.153806 loss) +I0407 23:26:46.759101 359 sgd_solver.cpp:105] Iteration 7308, lr = 0.00013004 +I0407 23:26:51.659354 359 solver.cpp:218] Iteration 7320 (2.44886 iter/s, 4.90024s/12 iters), loss = 0.263687 +I0407 23:26:51.659399 359 solver.cpp:237] Train net output #0: loss = 0.263687 (* 1 = 0.263687 loss) +I0407 23:26:51.659407 359 sgd_solver.cpp:105] Iteration 7320, lr = 0.000127054 +I0407 23:26:56.606472 359 solver.cpp:218] Iteration 7332 (2.42569 iter/s, 4.94705s/12 iters), loss = 0.123806 +I0407 23:26:56.606519 359 solver.cpp:237] Train net output #0: loss = 0.123806 (* 1 = 0.123806 loss) +I0407 23:26:56.606531 359 sgd_solver.cpp:105] Iteration 7332, lr = 0.000124136 +I0407 23:27:01.061975 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 23:27:04.517289 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 23:27:07.873240 359 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 23:27:07.873258 359 net.cpp:676] Ignoring source layer train-data +I0407 23:27:09.503477 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:12.685493 359 solver.cpp:397] Test net output #0: accuracy = 0.458333 +I0407 23:27:12.685520 359 solver.cpp:397] Test net output #1: loss = 2.81908 (* 1 = 2.81908 loss) +I0407 23:27:12.782277 359 solver.cpp:218] Iteration 7344 (0.741852 iter/s, 16.1757s/12 iters), loss = 0.103389 +I0407 23:27:12.782321 359 solver.cpp:237] Train net output #0: loss = 0.10339 (* 1 = 0.10339 loss) +I0407 23:27:12.782330 359 sgd_solver.cpp:105] Iteration 7344, lr = 0.000121284 +I0407 23:27:16.921480 359 solver.cpp:218] Iteration 7356 (2.89915 iter/s, 4.13914s/12 iters), loss = 0.128865 +I0407 23:27:16.921522 359 solver.cpp:237] Train net output #0: loss = 0.128865 (* 1 = 0.128865 loss) +I0407 23:27:16.921531 359 sgd_solver.cpp:105] Iteration 7356, lr = 0.000118497 +I0407 23:27:21.841703 359 solver.cpp:218] Iteration 7368 (2.43895 iter/s, 4.92016s/12 iters), loss = 0.146078 +I0407 23:27:21.841749 359 solver.cpp:237] Train net output #0: loss = 0.146078 (* 1 = 0.146078 loss) +I0407 23:27:21.841758 359 sgd_solver.cpp:105] Iteration 7368, lr = 0.000115774 +I0407 23:27:26.791333 359 solver.cpp:218] Iteration 7380 (2.42446 iter/s, 4.94957s/12 iters), loss = 0.0587999 +I0407 23:27:26.791374 359 solver.cpp:237] Train net output #0: loss = 0.0587999 (* 1 = 0.0587999 loss) +I0407 23:27:26.791383 359 sgd_solver.cpp:105] Iteration 7380, lr = 0.000113112 +I0407 23:27:28.137576 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:27:31.679008 359 solver.cpp:218] Iteration 7392 (2.45518 iter/s, 4.88762s/12 iters), loss = 0.196448 +I0407 23:27:31.679145 359 solver.cpp:237] Train net output #0: loss = 0.196448 (* 1 = 0.196448 loss) +I0407 23:27:31.679155 359 sgd_solver.cpp:105] Iteration 7392, lr = 0.00011051 +I0407 23:27:36.649873 359 solver.cpp:218] Iteration 7404 (2.41414 iter/s, 4.97072s/12 iters), loss = 0.104589 +I0407 23:27:36.649904 359 solver.cpp:237] Train net output #0: loss = 0.104589 (* 1 = 0.104589 loss) +I0407 23:27:36.649912 359 sgd_solver.cpp:105] Iteration 7404, lr = 0.000107968 +I0407 23:27:41.546430 359 solver.cpp:218] Iteration 7416 (2.45073 iter/s, 4.89651s/12 iters), loss = 0.0983313 +I0407 23:27:41.546465 359 solver.cpp:237] Train net output #0: loss = 0.0983313 (* 1 = 0.0983313 loss) +I0407 23:27:41.546473 359 sgd_solver.cpp:105] Iteration 7416, lr = 0.000105484 +I0407 23:27:46.514627 359 solver.cpp:218] Iteration 7428 (2.41539 iter/s, 4.96814s/12 iters), loss = 0.15201 +I0407 23:27:46.514665 359 solver.cpp:237] Train net output #0: loss = 0.15201 (* 1 = 0.15201 loss) +I0407 23:27:46.514673 359 sgd_solver.cpp:105] Iteration 7428, lr = 0.000103056 +I0407 23:27:51.431454 359 solver.cpp:218] Iteration 7440 (2.44063 iter/s, 4.91677s/12 iters), loss = 0.167093 +I0407 23:27:51.431491 359 solver.cpp:237] Train net output #0: loss = 0.167093 (* 1 = 0.167093 loss) +I0407 23:27:51.431499 359 sgd_solver.cpp:105] Iteration 7440, lr = 0.000100684 +I0407 23:27:53.427947 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 23:27:56.502161 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 23:27:58.871912 359 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 23:27:58.871929 359 net.cpp:676] Ignoring source layer train-data +I0407 23:28:00.456387 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:03.699553 359 solver.cpp:397] Test net output #0: accuracy = 0.452206 +I0407 23:28:03.699710 359 solver.cpp:397] Test net output #1: loss = 2.84002 (* 1 = 2.84002 loss) +I0407 23:28:05.497198 359 solver.cpp:218] Iteration 7452 (0.853141 iter/s, 14.0657s/12 iters), loss = 0.0823287 +I0407 23:28:05.497236 359 solver.cpp:237] Train net output #0: loss = 0.0823287 (* 1 = 0.0823287 loss) +I0407 23:28:05.497244 359 sgd_solver.cpp:105] Iteration 7452, lr = 9.83655e-05 +I0407 23:28:10.405025 359 solver.cpp:218] Iteration 7464 (2.4451 iter/s, 4.90777s/12 iters), loss = 0.0612384 +I0407 23:28:10.405064 359 solver.cpp:237] Train net output #0: loss = 0.0612384 (* 1 = 0.0612384 loss) +I0407 23:28:10.405071 359 sgd_solver.cpp:105] Iteration 7464, lr = 9.61e-05 +I0407 23:28:15.322244 359 solver.cpp:218] Iteration 7476 (2.44043 iter/s, 4.91716s/12 iters), loss = 0.10629 +I0407 23:28:15.322284 359 solver.cpp:237] Train net output #0: loss = 0.10629 (* 1 = 0.10629 loss) +I0407 23:28:15.322293 359 sgd_solver.cpp:105] Iteration 7476, lr = 9.38862e-05 +I0407 23:28:18.794477 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:20.268381 359 solver.cpp:218] Iteration 7488 (2.42617 iter/s, 4.94608s/12 iters), loss = 0.157365 +I0407 23:28:20.268424 359 solver.cpp:237] Train net output #0: loss = 0.157365 (* 1 = 0.157365 loss) +I0407 23:28:20.268432 359 sgd_solver.cpp:105] Iteration 7488, lr = 9.1723e-05 +I0407 23:28:25.195538 359 solver.cpp:218] Iteration 7500 (2.43552 iter/s, 4.92709s/12 iters), loss = 0.0981837 +I0407 23:28:25.195590 359 solver.cpp:237] Train net output #0: loss = 0.0981837 (* 1 = 0.0981837 loss) +I0407 23:28:25.195603 359 sgd_solver.cpp:105] Iteration 7500, lr = 8.96091e-05 +I0407 23:28:30.147296 359 solver.cpp:218] Iteration 7512 (2.42342 iter/s, 4.95169s/12 iters), loss = 0.100816 +I0407 23:28:30.147337 359 solver.cpp:237] Train net output #0: loss = 0.100816 (* 1 = 0.100816 loss) +I0407 23:28:30.147346 359 sgd_solver.cpp:105] Iteration 7512, lr = 8.75435e-05 +I0407 23:28:35.043851 359 solver.cpp:218] Iteration 7524 (2.45073 iter/s, 4.89649s/12 iters), loss = 0.128969 +I0407 23:28:35.044023 359 solver.cpp:237] Train net output #0: loss = 0.128969 (* 1 = 0.128969 loss) +I0407 23:28:35.044035 359 sgd_solver.cpp:105] Iteration 7524, lr = 8.55251e-05 +I0407 23:28:39.916781 359 solver.cpp:218] Iteration 7536 (2.46268 iter/s, 4.87274s/12 iters), loss = 0.0964068 +I0407 23:28:39.916826 359 solver.cpp:237] Train net output #0: loss = 0.0964068 (* 1 = 0.0964068 loss) +I0407 23:28:39.916834 359 sgd_solver.cpp:105] Iteration 7536, lr = 8.35528e-05 +I0407 23:28:44.411808 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 23:28:47.514835 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 23:28:49.876381 359 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 23:28:49.876400 359 net.cpp:676] Ignoring source layer train-data +I0407 23:28:51.413739 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:28:54.714722 359 solver.cpp:397] Test net output #0: accuracy = 0.450368 +I0407 23:28:54.714771 359 solver.cpp:397] Test net output #1: loss = 2.82414 (* 1 = 2.82414 loss) +I0407 23:28:54.811138 359 solver.cpp:218] Iteration 7548 (0.805679 iter/s, 14.8943s/12 iters), loss = 0.215424 +I0407 23:28:54.811184 359 solver.cpp:237] Train net output #0: loss = 0.215424 (* 1 = 0.215424 loss) +I0407 23:28:54.811192 359 sgd_solver.cpp:105] Iteration 7548, lr = 8.16257e-05 +I0407 23:28:58.913132 359 solver.cpp:218] Iteration 7560 (2.92545 iter/s, 4.10193s/12 iters), loss = 0.160461 +I0407 23:28:58.913178 359 solver.cpp:237] Train net output #0: loss = 0.160461 (* 1 = 0.160461 loss) +I0407 23:28:58.913187 359 sgd_solver.cpp:105] Iteration 7560, lr = 7.97426e-05 +I0407 23:29:03.854527 359 solver.cpp:218] Iteration 7572 (2.4285 iter/s, 4.94133s/12 iters), loss = 0.0862786 +I0407 23:29:03.854568 359 solver.cpp:237] Train net output #0: loss = 0.0862786 (* 1 = 0.0862786 loss) +I0407 23:29:03.854578 359 sgd_solver.cpp:105] Iteration 7572, lr = 7.79027e-05 +I0407 23:29:08.836550 359 solver.cpp:218] Iteration 7584 (2.40869 iter/s, 4.98196s/12 iters), loss = 0.0929231 +I0407 23:29:08.836692 359 solver.cpp:237] Train net output #0: loss = 0.0929231 (* 1 = 0.0929231 loss) +I0407 23:29:08.836701 359 sgd_solver.cpp:105] Iteration 7584, lr = 7.61049e-05 +I0407 23:29:09.457921 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:29:13.764643 359 solver.cpp:218] Iteration 7596 (2.4351 iter/s, 4.92793s/12 iters), loss = 0.130177 +I0407 23:29:13.764689 359 solver.cpp:237] Train net output #0: loss = 0.130177 (* 1 = 0.130177 loss) +I0407 23:29:13.764698 359 sgd_solver.cpp:105] Iteration 7596, lr = 7.43482e-05 +I0407 23:29:18.683015 359 solver.cpp:218] Iteration 7608 (2.43986 iter/s, 4.91831s/12 iters), loss = 0.124939 +I0407 23:29:18.683053 359 solver.cpp:237] Train net output #0: loss = 0.124939 (* 1 = 0.124939 loss) +I0407 23:29:18.683063 359 sgd_solver.cpp:105] Iteration 7608, lr = 7.26318e-05 +I0407 23:29:23.533573 359 solver.cpp:218] Iteration 7620 (2.47397 iter/s, 4.8505s/12 iters), loss = 0.0977765 +I0407 23:29:23.533617 359 solver.cpp:237] Train net output #0: loss = 0.0977765 (* 1 = 0.0977765 loss) +I0407 23:29:23.533625 359 sgd_solver.cpp:105] Iteration 7620, lr = 7.09548e-05 +I0407 23:29:25.874089 359 blocking_queue.cpp:49] Waiting for data +I0407 23:29:28.392765 359 solver.cpp:218] Iteration 7632 (2.46958 iter/s, 4.85913s/12 iters), loss = 0.0783972 +I0407 23:29:28.392810 359 solver.cpp:237] Train net output #0: loss = 0.0783972 (* 1 = 0.0783972 loss) +I0407 23:29:28.392818 359 sgd_solver.cpp:105] Iteration 7632, lr = 6.93162e-05 +I0407 23:29:33.337855 359 solver.cpp:218] Iteration 7644 (2.42668 iter/s, 4.94502s/12 iters), loss = 0.186941 +I0407 23:29:33.337898 359 solver.cpp:237] Train net output #0: loss = 0.186941 (* 1 = 0.186941 loss) +I0407 23:29:33.337905 359 sgd_solver.cpp:105] Iteration 7644, lr = 6.77152e-05 +I0407 23:29:35.343619 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 23:29:38.440865 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 23:29:40.827283 359 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 23:29:40.827399 359 net.cpp:676] Ignoring source layer train-data +I0407 23:29:42.337857 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:29:45.688679 359 solver.cpp:397] Test net output #0: accuracy = 0.452819 +I0407 23:29:45.688707 359 solver.cpp:397] Test net output #1: loss = 2.83726 (* 1 = 2.83726 loss) +I0407 23:29:47.478560 359 solver.cpp:218] Iteration 7656 (0.848618 iter/s, 14.1406s/12 iters), loss = 0.100135 +I0407 23:29:47.478597 359 solver.cpp:237] Train net output #0: loss = 0.100135 (* 1 = 0.100135 loss) +I0407 23:29:47.478605 359 sgd_solver.cpp:105] Iteration 7656, lr = 6.61509e-05 +I0407 23:29:52.431851 359 solver.cpp:218] Iteration 7668 (2.42266 iter/s, 4.95324s/12 iters), loss = 0.133091 +I0407 23:29:52.431883 359 solver.cpp:237] Train net output #0: loss = 0.133091 (* 1 = 0.133091 loss) +I0407 23:29:52.431890 359 sgd_solver.cpp:105] Iteration 7668, lr = 6.46225e-05 +I0407 23:29:57.359477 359 solver.cpp:218] Iteration 7680 (2.43528 iter/s, 4.92757s/12 iters), loss = 0.138438 +I0407 23:29:57.359513 359 solver.cpp:237] Train net output #0: loss = 0.138438 (* 1 = 0.138438 loss) +I0407 23:29:57.359520 359 sgd_solver.cpp:105] Iteration 7680, lr = 6.31292e-05 +I0407 23:30:00.120311 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:02.288190 359 solver.cpp:218] Iteration 7692 (2.43474 iter/s, 4.92866s/12 iters), loss = 0.171719 +I0407 23:30:02.288228 359 solver.cpp:237] Train net output #0: loss = 0.171719 (* 1 = 0.171719 loss) +I0407 23:30:02.288235 359 sgd_solver.cpp:105] Iteration 7692, lr = 6.16702e-05 +I0407 23:30:07.204720 359 solver.cpp:218] Iteration 7704 (2.44078 iter/s, 4.91647s/12 iters), loss = 0.0526268 +I0407 23:30:07.204764 359 solver.cpp:237] Train net output #0: loss = 0.0526269 (* 1 = 0.0526269 loss) +I0407 23:30:07.204773 359 sgd_solver.cpp:105] Iteration 7704, lr = 6.02447e-05 +I0407 23:30:12.156980 359 solver.cpp:218] Iteration 7716 (2.42317 iter/s, 4.95219s/12 iters), loss = 0.0985625 +I0407 23:30:12.157104 359 solver.cpp:237] Train net output #0: loss = 0.0985625 (* 1 = 0.0985625 loss) +I0407 23:30:12.157112 359 sgd_solver.cpp:105] Iteration 7716, lr = 5.8852e-05 +I0407 23:30:17.069025 359 solver.cpp:218] Iteration 7728 (2.44305 iter/s, 4.9119s/12 iters), loss = 0.136825 +I0407 23:30:17.069072 359 solver.cpp:237] Train net output #0: loss = 0.136825 (* 1 = 0.136825 loss) +I0407 23:30:17.069079 359 sgd_solver.cpp:105] Iteration 7728, lr = 5.74913e-05 +I0407 23:30:22.034132 359 solver.cpp:218] Iteration 7740 (2.4169 iter/s, 4.96505s/12 iters), loss = 0.132538 +I0407 23:30:22.034163 359 solver.cpp:237] Train net output #0: loss = 0.132538 (* 1 = 0.132538 loss) +I0407 23:30:22.034171 359 sgd_solver.cpp:105] Iteration 7740, lr = 5.61618e-05 +I0407 23:30:26.498157 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 23:30:29.626694 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 23:30:31.996178 359 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 23:30:31.996196 359 net.cpp:676] Ignoring source layer train-data +I0407 23:30:33.442696 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:36.751013 359 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 23:30:36.751061 359 solver.cpp:397] Test net output #1: loss = 2.82652 (* 1 = 2.82652 loss) +I0407 23:30:36.847776 359 solver.cpp:218] Iteration 7752 (0.810067 iter/s, 14.8136s/12 iters), loss = 0.161823 +I0407 23:30:36.847820 359 solver.cpp:237] Train net output #0: loss = 0.161824 (* 1 = 0.161824 loss) +I0407 23:30:36.847829 359 sgd_solver.cpp:105] Iteration 7752, lr = 5.4863e-05 +I0407 23:30:40.917726 359 solver.cpp:218] Iteration 7764 (2.94848 iter/s, 4.06989s/12 iters), loss = 0.180322 +I0407 23:30:40.917771 359 solver.cpp:237] Train net output #0: loss = 0.180322 (* 1 = 0.180322 loss) +I0407 23:30:40.917780 359 sgd_solver.cpp:105] Iteration 7764, lr = 5.3594e-05 +I0407 23:30:45.918315 359 solver.cpp:218] Iteration 7776 (2.39975 iter/s, 5.00052s/12 iters), loss = 0.166381 +I0407 23:30:45.918469 359 solver.cpp:237] Train net output #0: loss = 0.166381 (* 1 = 0.166381 loss) +I0407 23:30:45.918479 359 sgd_solver.cpp:105] Iteration 7776, lr = 5.23542e-05 +I0407 23:30:50.836014 359 solver.cpp:218] Iteration 7788 (2.44025 iter/s, 4.91752s/12 iters), loss = 0.13637 +I0407 23:30:50.836061 359 solver.cpp:237] Train net output #0: loss = 0.13637 (* 1 = 0.13637 loss) +I0407 23:30:50.836068 359 sgd_solver.cpp:105] Iteration 7788, lr = 5.11429e-05 +I0407 23:30:50.842371 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:30:55.787715 359 solver.cpp:218] Iteration 7800 (2.42344 iter/s, 4.95163s/12 iters), loss = 0.115531 +I0407 23:30:55.787762 359 solver.cpp:237] Train net output #0: loss = 0.115531 (* 1 = 0.115531 loss) +I0407 23:30:55.787771 359 sgd_solver.cpp:105] Iteration 7800, lr = 4.99596e-05 +I0407 23:31:00.731448 359 solver.cpp:218] Iteration 7812 (2.42735 iter/s, 4.94367s/12 iters), loss = 0.159319 +I0407 23:31:00.731490 359 solver.cpp:237] Train net output #0: loss = 0.159319 (* 1 = 0.159319 loss) +I0407 23:31:00.731498 359 sgd_solver.cpp:105] Iteration 7812, lr = 4.88034e-05 +I0407 23:31:05.690143 359 solver.cpp:218] Iteration 7824 (2.42003 iter/s, 4.95862s/12 iters), loss = 0.190898 +I0407 23:31:05.690202 359 solver.cpp:237] Train net output #0: loss = 0.190898 (* 1 = 0.190898 loss) +I0407 23:31:05.690213 359 sgd_solver.cpp:105] Iteration 7824, lr = 4.76739e-05 +I0407 23:31:10.649706 359 solver.cpp:218] Iteration 7836 (2.4196 iter/s, 4.95949s/12 iters), loss = 0.131701 +I0407 23:31:10.649742 359 solver.cpp:237] Train net output #0: loss = 0.131701 (* 1 = 0.131701 loss) +I0407 23:31:10.649749 359 sgd_solver.cpp:105] Iteration 7836, lr = 4.65705e-05 +I0407 23:31:15.593343 359 solver.cpp:218] Iteration 7848 (2.42739 iter/s, 4.94358s/12 iters), loss = 0.100684 +I0407 23:31:15.593381 359 solver.cpp:237] Train net output #0: loss = 0.100684 (* 1 = 0.100684 loss) +I0407 23:31:15.593389 359 sgd_solver.cpp:105] Iteration 7848, lr = 4.54924e-05 +I0407 23:31:17.607589 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 23:31:20.820639 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 23:31:23.295486 359 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 23:31:23.295502 359 net.cpp:676] Ignoring source layer train-data +I0407 23:31:24.710500 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:31:28.186986 359 solver.cpp:397] Test net output #0: accuracy = 0.450368 +I0407 23:31:28.187026 359 solver.cpp:397] Test net output #1: loss = 2.83505 (* 1 = 2.83505 loss) +I0407 23:31:29.999689 359 solver.cpp:218] Iteration 7860 (0.83297 iter/s, 14.4063s/12 iters), loss = 0.110066 +I0407 23:31:29.999734 359 solver.cpp:237] Train net output #0: loss = 0.110066 (* 1 = 0.110066 loss) +I0407 23:31:29.999742 359 sgd_solver.cpp:105] Iteration 7860, lr = 4.44392e-05 +I0407 23:31:34.907042 359 solver.cpp:218] Iteration 7872 (2.44534 iter/s, 4.90729s/12 iters), loss = 0.135548 +I0407 23:31:34.907086 359 solver.cpp:237] Train net output #0: loss = 0.135548 (* 1 = 0.135548 loss) +I0407 23:31:34.907094 359 sgd_solver.cpp:105] Iteration 7872, lr = 4.34102e-05 +I0407 23:31:39.873056 359 solver.cpp:218] Iteration 7884 (2.41646 iter/s, 4.96595s/12 iters), loss = 0.054767 +I0407 23:31:39.873098 359 solver.cpp:237] Train net output #0: loss = 0.054767 (* 1 = 0.054767 loss) +I0407 23:31:39.873106 359 sgd_solver.cpp:105] Iteration 7884, lr = 4.2405e-05 +I0407 23:31:41.984211 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:31:44.824985 359 solver.cpp:218] Iteration 7896 (2.42333 iter/s, 4.95186s/12 iters), loss = 0.199566 +I0407 23:31:44.825026 359 solver.cpp:237] Train net output #0: loss = 0.199566 (* 1 = 0.199566 loss) +I0407 23:31:44.825033 359 sgd_solver.cpp:105] Iteration 7896, lr = 4.1423e-05 +I0407 23:31:49.743180 359 solver.cpp:218] Iteration 7908 (2.43995 iter/s, 4.91813s/12 iters), loss = 0.127736 +I0407 23:31:49.743315 359 solver.cpp:237] Train net output #0: loss = 0.127736 (* 1 = 0.127736 loss) +I0407 23:31:49.743324 359 sgd_solver.cpp:105] Iteration 7908, lr = 4.04636e-05 +I0407 23:31:54.692584 359 solver.cpp:218] Iteration 7920 (2.42461 iter/s, 4.94925s/12 iters), loss = 0.0679647 +I0407 23:31:54.692621 359 solver.cpp:237] Train net output #0: loss = 0.0679648 (* 1 = 0.0679648 loss) +I0407 23:31:54.692629 359 sgd_solver.cpp:105] Iteration 7920, lr = 3.95264e-05 +I0407 23:31:59.591023 359 solver.cpp:218] Iteration 7932 (2.44979 iter/s, 4.89839s/12 iters), loss = 0.146791 +I0407 23:31:59.591060 359 solver.cpp:237] Train net output #0: loss = 0.146791 (* 1 = 0.146791 loss) +I0407 23:31:59.591068 359 sgd_solver.cpp:105] Iteration 7932, lr = 3.86107e-05 +I0407 23:32:04.563835 359 solver.cpp:218] Iteration 7944 (2.41315 iter/s, 4.97275s/12 iters), loss = 0.112108 +I0407 23:32:04.563874 359 solver.cpp:237] Train net output #0: loss = 0.112108 (* 1 = 0.112108 loss) +I0407 23:32:04.563882 359 sgd_solver.cpp:105] Iteration 7944, lr = 3.77162e-05 +I0407 23:32:09.028057 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 23:32:12.097879 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 23:32:14.462730 359 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 23:32:14.462759 359 net.cpp:676] Ignoring source layer train-data +I0407 23:32:15.847432 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:19.101797 359 solver.cpp:397] Test net output #0: accuracy = 0.45527 +I0407 23:32:19.101836 359 solver.cpp:397] Test net output #1: loss = 2.82293 (* 1 = 2.82293 loss) +I0407 23:32:19.198400 359 solver.cpp:218] Iteration 7956 (0.819981 iter/s, 14.6345s/12 iters), loss = 0.0440542 +I0407 23:32:19.198443 359 solver.cpp:237] Train net output #0: loss = 0.0440543 (* 1 = 0.0440543 loss) +I0407 23:32:19.198451 359 sgd_solver.cpp:105] Iteration 7956, lr = 3.68424e-05 +I0407 23:32:23.230445 359 solver.cpp:218] Iteration 7968 (2.9762 iter/s, 4.03199s/12 iters), loss = 0.182227 +I0407 23:32:23.230568 359 solver.cpp:237] Train net output #0: loss = 0.182227 (* 1 = 0.182227 loss) +I0407 23:32:23.230577 359 sgd_solver.cpp:105] Iteration 7968, lr = 3.59887e-05 +I0407 23:32:28.163815 359 solver.cpp:218] Iteration 7980 (2.43248 iter/s, 4.93323s/12 iters), loss = 0.199141 +I0407 23:32:28.163852 359 solver.cpp:237] Train net output #0: loss = 0.199141 (* 1 = 0.199141 loss) +I0407 23:32:28.163861 359 sgd_solver.cpp:105] Iteration 7980, lr = 3.51547e-05 +I0407 23:32:32.363152 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:32:33.021293 359 solver.cpp:218] Iteration 7992 (2.47045 iter/s, 4.85742s/12 iters), loss = 0.152924 +I0407 23:32:33.021327 359 solver.cpp:237] Train net output #0: loss = 0.152924 (* 1 = 0.152924 loss) +I0407 23:32:33.021335 359 sgd_solver.cpp:105] Iteration 7992, lr = 3.434e-05 +I0407 23:32:37.985229 359 solver.cpp:218] Iteration 8004 (2.41746 iter/s, 4.96389s/12 iters), loss = 0.0793058 +I0407 23:32:37.985263 359 solver.cpp:237] Train net output #0: loss = 0.0793058 (* 1 = 0.0793058 loss) +I0407 23:32:37.985271 359 sgd_solver.cpp:105] Iteration 8004, lr = 3.35441e-05 +I0407 23:32:42.897962 359 solver.cpp:218] Iteration 8016 (2.44266 iter/s, 4.91268s/12 iters), loss = 0.14935 +I0407 23:32:42.897997 359 solver.cpp:237] Train net output #0: loss = 0.14935 (* 1 = 0.14935 loss) +I0407 23:32:42.898005 359 sgd_solver.cpp:105] Iteration 8016, lr = 3.27666e-05 +I0407 23:32:47.788993 359 solver.cpp:218] Iteration 8028 (2.4535 iter/s, 4.89098s/12 iters), loss = 0.115184 +I0407 23:32:47.789032 359 solver.cpp:237] Train net output #0: loss = 0.115184 (* 1 = 0.115184 loss) +I0407 23:32:47.789041 359 sgd_solver.cpp:105] Iteration 8028, lr = 3.20071e-05 +I0407 23:32:52.683718 359 solver.cpp:218] Iteration 8040 (2.45165 iter/s, 4.89466s/12 iters), loss = 0.169018 +I0407 23:32:52.683758 359 solver.cpp:237] Train net output #0: loss = 0.169018 (* 1 = 0.169018 loss) +I0407 23:32:52.683766 359 sgd_solver.cpp:105] Iteration 8040, lr = 3.12651e-05 +I0407 23:32:57.533496 359 solver.cpp:218] Iteration 8052 (2.47437 iter/s, 4.84972s/12 iters), loss = 0.0941235 +I0407 23:32:57.533654 359 solver.cpp:237] Train net output #0: loss = 0.0941235 (* 1 = 0.0941235 loss) +I0407 23:32:57.533664 359 sgd_solver.cpp:105] Iteration 8052, lr = 3.05403e-05 +I0407 23:32:59.543113 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 23:33:02.643108 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 23:33:05.006484 359 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 23:33:05.006502 359 net.cpp:676] Ignoring source layer train-data +I0407 23:33:06.332792 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:09.763608 359 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 23:33:09.763656 359 solver.cpp:397] Test net output #1: loss = 2.83435 (* 1 = 2.83435 loss) +I0407 23:33:11.501518 359 solver.cpp:218] Iteration 8064 (0.859117 iter/s, 13.9678s/12 iters), loss = 0.109753 +I0407 23:33:11.501559 359 solver.cpp:237] Train net output #0: loss = 0.109753 (* 1 = 0.109753 loss) +I0407 23:33:11.501567 359 sgd_solver.cpp:105] Iteration 8064, lr = 2.98322e-05 +I0407 23:33:16.439133 359 solver.cpp:218] Iteration 8076 (2.43035 iter/s, 4.93756s/12 iters), loss = 0.0864122 +I0407 23:33:16.439169 359 solver.cpp:237] Train net output #0: loss = 0.0864122 (* 1 = 0.0864122 loss) +I0407 23:33:16.439177 359 sgd_solver.cpp:105] Iteration 8076, lr = 2.91405e-05 +I0407 23:33:21.394717 359 solver.cpp:218] Iteration 8088 (2.42154 iter/s, 4.95553s/12 iters), loss = 0.139236 +I0407 23:33:21.394753 359 solver.cpp:237] Train net output #0: loss = 0.139236 (* 1 = 0.139236 loss) +I0407 23:33:21.394760 359 sgd_solver.cpp:105] Iteration 8088, lr = 2.84647e-05 +I0407 23:33:22.773025 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:33:26.297230 359 solver.cpp:218] Iteration 8100 (2.44775 iter/s, 4.90245s/12 iters), loss = 0.171817 +I0407 23:33:26.297267 359 solver.cpp:237] Train net output #0: loss = 0.171817 (* 1 = 0.171817 loss) +I0407 23:33:26.297276 359 sgd_solver.cpp:105] Iteration 8100, lr = 2.78046e-05 +I0407 23:33:31.270700 359 solver.cpp:218] Iteration 8112 (2.41283 iter/s, 4.97342s/12 iters), loss = 0.177519 +I0407 23:33:31.270818 359 solver.cpp:237] Train net output #0: loss = 0.177519 (* 1 = 0.177519 loss) +I0407 23:33:31.270828 359 sgd_solver.cpp:105] Iteration 8112, lr = 2.71598e-05 +I0407 23:33:36.160349 359 solver.cpp:218] Iteration 8124 (2.45423 iter/s, 4.88952s/12 iters), loss = 0.138745 +I0407 23:33:36.160383 359 solver.cpp:237] Train net output #0: loss = 0.138745 (* 1 = 0.138745 loss) +I0407 23:33:36.160392 359 sgd_solver.cpp:105] Iteration 8124, lr = 2.65299e-05 +I0407 23:33:41.049350 359 solver.cpp:218] Iteration 8136 (2.45452 iter/s, 4.88895s/12 iters), loss = 0.144014 +I0407 23:33:41.049391 359 solver.cpp:237] Train net output #0: loss = 0.144014 (* 1 = 0.144014 loss) +I0407 23:33:41.049398 359 sgd_solver.cpp:105] Iteration 8136, lr = 2.59145e-05 +I0407 23:33:46.007997 359 solver.cpp:218] Iteration 8148 (2.42004 iter/s, 4.95859s/12 iters), loss = 0.115102 +I0407 23:33:46.008036 359 solver.cpp:237] Train net output #0: loss = 0.115102 (* 1 = 0.115102 loss) +I0407 23:33:46.008044 359 sgd_solver.cpp:105] Iteration 8148, lr = 2.53134e-05 +I0407 23:33:50.515622 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 23:33:53.589617 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 23:33:55.999799 359 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 23:33:55.999816 359 net.cpp:676] Ignoring source layer train-data +I0407 23:33:57.269635 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:00.778331 359 solver.cpp:397] Test net output #0: accuracy = 0.450368 +I0407 23:34:00.778373 359 solver.cpp:397] Test net output #1: loss = 2.84238 (* 1 = 2.84238 loss) +I0407 23:34:00.874678 359 solver.cpp:218] Iteration 8160 (0.807178 iter/s, 14.8666s/12 iters), loss = 0.199744 +I0407 23:34:00.874722 359 solver.cpp:237] Train net output #0: loss = 0.199744 (* 1 = 0.199744 loss) +I0407 23:34:00.874732 359 sgd_solver.cpp:105] Iteration 8160, lr = 2.47262e-05 +I0407 23:34:04.965214 359 solver.cpp:218] Iteration 8172 (2.93365 iter/s, 4.09047s/12 iters), loss = 0.231639 +I0407 23:34:04.965356 359 solver.cpp:237] Train net output #0: loss = 0.231639 (* 1 = 0.231639 loss) +I0407 23:34:04.965365 359 sgd_solver.cpp:105] Iteration 8172, lr = 2.41526e-05 +I0407 23:34:09.918386 359 solver.cpp:218] Iteration 8184 (2.42277 iter/s, 4.95301s/12 iters), loss = 0.143868 +I0407 23:34:09.918423 359 solver.cpp:237] Train net output #0: loss = 0.143868 (* 1 = 0.143868 loss) +I0407 23:34:09.918431 359 sgd_solver.cpp:105] Iteration 8184, lr = 2.35923e-05 +I0407 23:34:13.396580 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:14.833173 359 solver.cpp:218] Iteration 8196 (2.44164 iter/s, 4.91473s/12 iters), loss = 0.0685172 +I0407 23:34:14.833211 359 solver.cpp:237] Train net output #0: loss = 0.0685173 (* 1 = 0.0685173 loss) +I0407 23:34:14.833218 359 sgd_solver.cpp:105] Iteration 8196, lr = 2.30449e-05 +I0407 23:34:19.807173 359 solver.cpp:218] Iteration 8208 (2.41258 iter/s, 4.97394s/12 iters), loss = 0.14359 +I0407 23:34:19.807224 359 solver.cpp:237] Train net output #0: loss = 0.14359 (* 1 = 0.14359 loss) +I0407 23:34:19.807233 359 sgd_solver.cpp:105] Iteration 8208, lr = 2.25102e-05 +I0407 23:34:24.754192 359 solver.cpp:218] Iteration 8220 (2.42574 iter/s, 4.94695s/12 iters), loss = 0.0174887 +I0407 23:34:24.754232 359 solver.cpp:237] Train net output #0: loss = 0.0174888 (* 1 = 0.0174888 loss) +I0407 23:34:24.754240 359 sgd_solver.cpp:105] Iteration 8220, lr = 2.19879e-05 +I0407 23:34:29.654958 359 solver.cpp:218] Iteration 8232 (2.44862 iter/s, 4.90071s/12 iters), loss = 0.133079 +I0407 23:34:29.654996 359 solver.cpp:237] Train net output #0: loss = 0.133079 (* 1 = 0.133079 loss) +I0407 23:34:29.655007 359 sgd_solver.cpp:105] Iteration 8232, lr = 2.14777e-05 +I0407 23:34:34.613402 359 solver.cpp:218] Iteration 8244 (2.42014 iter/s, 4.95839s/12 iters), loss = 0.0642758 +I0407 23:34:34.613440 359 solver.cpp:237] Train net output #0: loss = 0.0642759 (* 1 = 0.0642759 loss) +I0407 23:34:34.613447 359 sgd_solver.cpp:105] Iteration 8244, lr = 2.09793e-05 +I0407 23:34:39.521891 359 solver.cpp:218] Iteration 8256 (2.44477 iter/s, 4.90843s/12 iters), loss = 0.0774939 +I0407 23:34:39.522049 359 solver.cpp:237] Train net output #0: loss = 0.077494 (* 1 = 0.077494 loss) +I0407 23:34:39.522058 359 sgd_solver.cpp:105] Iteration 8256, lr = 2.04924e-05 +I0407 23:34:41.525800 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 23:34:44.588554 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 23:34:46.951015 359 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 23:34:46.951032 359 net.cpp:676] Ignoring source layer train-data +I0407 23:34:48.098776 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:34:51.387286 359 solver.cpp:397] Test net output #0: accuracy = 0.447917 +I0407 23:34:51.387331 359 solver.cpp:397] Test net output #1: loss = 2.83274 (* 1 = 2.83274 loss) +I0407 23:34:53.118649 359 solver.cpp:218] Iteration 8268 (0.882576 iter/s, 13.5966s/12 iters), loss = 0.091885 +I0407 23:34:53.118693 359 solver.cpp:237] Train net output #0: loss = 0.0918851 (* 1 = 0.0918851 loss) +I0407 23:34:53.118702 359 sgd_solver.cpp:105] Iteration 8268, lr = 2.00168e-05 +I0407 23:34:58.066449 359 solver.cpp:218] Iteration 8280 (2.42535 iter/s, 4.94773s/12 iters), loss = 0.147981 +I0407 23:34:58.066495 359 solver.cpp:237] Train net output #0: loss = 0.147981 (* 1 = 0.147981 loss) +I0407 23:34:58.066504 359 sgd_solver.cpp:105] Iteration 8280, lr = 1.95522e-05 +I0407 23:35:02.989535 359 solver.cpp:218] Iteration 8292 (2.43753 iter/s, 4.92302s/12 iters), loss = 0.144756 +I0407 23:35:02.989579 359 solver.cpp:237] Train net output #0: loss = 0.144756 (* 1 = 0.144756 loss) +I0407 23:35:02.989588 359 sgd_solver.cpp:105] Iteration 8292, lr = 1.90984e-05 +I0407 23:35:03.587188 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:07.839907 359 solver.cpp:218] Iteration 8304 (2.47407 iter/s, 4.85031s/12 iters), loss = 0.122598 +I0407 23:35:07.839943 359 solver.cpp:237] Train net output #0: loss = 0.122599 (* 1 = 0.122599 loss) +I0407 23:35:07.839951 359 sgd_solver.cpp:105] Iteration 8304, lr = 1.86551e-05 +I0407 23:35:10.672946 359 blocking_queue.cpp:49] Waiting for data +I0407 23:35:12.806915 359 solver.cpp:218] Iteration 8316 (2.41597 iter/s, 4.96695s/12 iters), loss = 0.089899 +I0407 23:35:12.806954 359 solver.cpp:237] Train net output #0: loss = 0.0898991 (* 1 = 0.0898991 loss) +I0407 23:35:12.806962 359 sgd_solver.cpp:105] Iteration 8316, lr = 1.82221e-05 +I0407 23:35:17.669307 359 solver.cpp:218] Iteration 8328 (2.46795 iter/s, 4.86234s/12 iters), loss = 0.124047 +I0407 23:35:17.669342 359 solver.cpp:237] Train net output #0: loss = 0.124047 (* 1 = 0.124047 loss) +I0407 23:35:17.669350 359 sgd_solver.cpp:105] Iteration 8328, lr = 1.77991e-05 +I0407 23:35:22.583503 359 solver.cpp:218] Iteration 8340 (2.44193 iter/s, 4.91414s/12 iters), loss = 0.0786122 +I0407 23:35:22.583547 359 solver.cpp:237] Train net output #0: loss = 0.0786123 (* 1 = 0.0786123 loss) +I0407 23:35:22.583555 359 sgd_solver.cpp:105] Iteration 8340, lr = 1.73859e-05 +I0407 23:35:27.570639 359 solver.cpp:218] Iteration 8352 (2.40622 iter/s, 4.98707s/12 iters), loss = 0.123852 +I0407 23:35:27.570683 359 solver.cpp:237] Train net output #0: loss = 0.123852 (* 1 = 0.123852 loss) +I0407 23:35:27.570693 359 sgd_solver.cpp:105] Iteration 8352, lr = 1.69823e-05 +I0407 23:35:32.068830 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 23:35:35.198611 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 23:35:37.552906 359 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 23:35:37.552925 359 net.cpp:676] Ignoring source layer train-data +I0407 23:35:38.627948 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:41.923678 359 solver.cpp:397] Test net output #0: accuracy = 0.447917 +I0407 23:35:41.923846 359 solver.cpp:397] Test net output #1: loss = 2.83897 (* 1 = 2.83897 loss) +I0407 23:35:42.020275 359 solver.cpp:218] Iteration 8364 (0.830475 iter/s, 14.4496s/12 iters), loss = 0.0775367 +I0407 23:35:42.020320 359 solver.cpp:237] Train net output #0: loss = 0.0775368 (* 1 = 0.0775368 loss) +I0407 23:35:42.020330 359 sgd_solver.cpp:105] Iteration 8364, lr = 1.6588e-05 +I0407 23:35:46.119009 359 solver.cpp:218] Iteration 8376 (2.92778 iter/s, 4.09866s/12 iters), loss = 0.118774 +I0407 23:35:46.119052 359 solver.cpp:237] Train net output #0: loss = 0.118774 (* 1 = 0.118774 loss) +I0407 23:35:46.119060 359 sgd_solver.cpp:105] Iteration 8376, lr = 1.62029e-05 +I0407 23:35:51.069802 359 solver.cpp:218] Iteration 8388 (2.42389 iter/s, 4.95073s/12 iters), loss = 0.0871738 +I0407 23:35:51.069844 359 solver.cpp:237] Train net output #0: loss = 0.0871739 (* 1 = 0.0871739 loss) +I0407 23:35:51.069852 359 sgd_solver.cpp:105] Iteration 8388, lr = 1.58267e-05 +I0407 23:35:53.821846 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:35:55.958904 359 solver.cpp:218] Iteration 8400 (2.45447 iter/s, 4.88905s/12 iters), loss = 0.149992 +I0407 23:35:55.958937 359 solver.cpp:237] Train net output #0: loss = 0.149992 (* 1 = 0.149992 loss) +I0407 23:35:55.958945 359 sgd_solver.cpp:105] Iteration 8400, lr = 1.54592e-05 +I0407 23:36:00.911273 359 solver.cpp:218] Iteration 8412 (2.42311 iter/s, 4.95232s/12 iters), loss = 0.0321403 +I0407 23:36:00.911309 359 solver.cpp:237] Train net output #0: loss = 0.0321404 (* 1 = 0.0321404 loss) +I0407 23:36:00.911315 359 sgd_solver.cpp:105] Iteration 8412, lr = 1.51002e-05 +I0407 23:36:05.826252 359 solver.cpp:218] Iteration 8424 (2.44155 iter/s, 4.91492s/12 iters), loss = 0.0848399 +I0407 23:36:05.826297 359 solver.cpp:237] Train net output #0: loss = 0.08484 (* 1 = 0.08484 loss) +I0407 23:36:05.826306 359 sgd_solver.cpp:105] Iteration 8424, lr = 1.47496e-05 +I0407 23:36:10.771190 359 solver.cpp:218] Iteration 8436 (2.42675 iter/s, 4.94488s/12 iters), loss = 0.118401 +I0407 23:36:10.771235 359 solver.cpp:237] Train net output #0: loss = 0.118401 (* 1 = 0.118401 loss) +I0407 23:36:10.771245 359 sgd_solver.cpp:105] Iteration 8436, lr = 1.44071e-05 +I0407 23:36:15.706318 359 solver.cpp:218] Iteration 8448 (2.43158 iter/s, 4.93506s/12 iters), loss = 0.199423 +I0407 23:36:15.706467 359 solver.cpp:237] Train net output #0: loss = 0.199423 (* 1 = 0.199423 loss) +I0407 23:36:15.706477 359 sgd_solver.cpp:105] Iteration 8448, lr = 1.40725e-05 +I0407 23:36:20.670230 359 solver.cpp:218] Iteration 8460 (2.41753 iter/s, 4.96375s/12 iters), loss = 0.115787 +I0407 23:36:20.670269 359 solver.cpp:237] Train net output #0: loss = 0.115787 (* 1 = 0.115787 loss) +I0407 23:36:20.670276 359 sgd_solver.cpp:105] Iteration 8460, lr = 1.37457e-05 +I0407 23:36:22.669723 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 23:36:25.751446 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 23:36:28.113206 359 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 23:36:28.113232 359 net.cpp:676] Ignoring source layer train-data +I0407 23:36:29.256511 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:36:32.916054 359 solver.cpp:397] Test net output #0: accuracy = 0.45098 +I0407 23:36:32.916097 359 solver.cpp:397] Test net output #1: loss = 2.82356 (* 1 = 2.82356 loss) +I0407 23:36:34.718864 359 solver.cpp:218] Iteration 8472 (0.85418 iter/s, 14.0486s/12 iters), loss = 0.125319 +I0407 23:36:34.718904 359 solver.cpp:237] Train net output #0: loss = 0.125319 (* 1 = 0.125319 loss) +I0407 23:36:34.718911 359 sgd_solver.cpp:105] Iteration 8472, lr = 1.34265e-05 +I0407 23:36:39.697643 359 solver.cpp:218] Iteration 8484 (2.41026 iter/s, 4.97872s/12 iters), loss = 0.144618 +I0407 23:36:39.697682 359 solver.cpp:237] Train net output #0: loss = 0.144618 (* 1 = 0.144618 loss) +I0407 23:36:39.697690 359 sgd_solver.cpp:105] Iteration 8484, lr = 1.31147e-05 +I0407 23:36:44.599232 359 solver.cpp:218] Iteration 8496 (2.44822 iter/s, 4.90153s/12 iters), loss = 0.069995 +I0407 23:36:44.599278 359 solver.cpp:237] Train net output #0: loss = 0.0699951 (* 1 = 0.0699951 loss) +I0407 23:36:44.599287 359 sgd_solver.cpp:105] Iteration 8496, lr = 1.28101e-05 +I0407 23:36:44.635639 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:36:49.501340 359 solver.cpp:218] Iteration 8508 (2.44796 iter/s, 4.90204s/12 iters), loss = 0.0924 +I0407 23:36:49.501523 359 solver.cpp:237] Train net output #0: loss = 0.0924001 (* 1 = 0.0924001 loss) +I0407 23:36:49.501533 359 sgd_solver.cpp:105] Iteration 8508, lr = 1.25126e-05 +I0407 23:36:54.462152 359 solver.cpp:218] Iteration 8520 (2.41906 iter/s, 4.96061s/12 iters), loss = 0.105946 +I0407 23:36:54.462196 359 solver.cpp:237] Train net output #0: loss = 0.105946 (* 1 = 0.105946 loss) +I0407 23:36:54.462204 359 sgd_solver.cpp:105] Iteration 8520, lr = 1.2222e-05 +I0407 23:36:59.358388 359 solver.cpp:218] Iteration 8532 (2.45089 iter/s, 4.89617s/12 iters), loss = 0.191108 +I0407 23:36:59.358426 359 solver.cpp:237] Train net output #0: loss = 0.191108 (* 1 = 0.191108 loss) +I0407 23:36:59.358434 359 sgd_solver.cpp:105] Iteration 8532, lr = 1.19381e-05 +I0407 23:37:04.319348 359 solver.cpp:218] Iteration 8544 (2.41892 iter/s, 4.9609s/12 iters), loss = 0.0866535 +I0407 23:37:04.319396 359 solver.cpp:237] Train net output #0: loss = 0.0866536 (* 1 = 0.0866536 loss) +I0407 23:37:04.319403 359 sgd_solver.cpp:105] Iteration 8544, lr = 1.16608e-05 +I0407 23:37:09.266324 359 solver.cpp:218] Iteration 8556 (2.42576 iter/s, 4.9469s/12 iters), loss = 0.0468395 +I0407 23:37:09.266379 359 solver.cpp:237] Train net output #0: loss = 0.0468396 (* 1 = 0.0468396 loss) +I0407 23:37:09.266391 359 sgd_solver.cpp:105] Iteration 8556, lr = 1.13899e-05 +I0407 23:37:13.731248 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 23:37:16.826028 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 23:37:19.188450 359 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 23:37:19.188469 359 net.cpp:676] Ignoring source layer train-data +I0407 23:37:20.282374 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:23.907529 359 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 23:37:23.907574 359 solver.cpp:397] Test net output #1: loss = 2.83594 (* 1 = 2.83594 loss) +I0407 23:37:24.004022 359 solver.cpp:218] Iteration 8568 (0.814243 iter/s, 14.7376s/12 iters), loss = 0.0781373 +I0407 23:37:24.004073 359 solver.cpp:237] Train net output #0: loss = 0.0781374 (* 1 = 0.0781374 loss) +I0407 23:37:24.004081 359 sgd_solver.cpp:105] Iteration 8568, lr = 1.11254e-05 +I0407 23:37:28.215729 359 solver.cpp:218] Iteration 8580 (2.84925 iter/s, 4.21164s/12 iters), loss = 0.0775844 +I0407 23:37:28.215766 359 solver.cpp:237] Train net output #0: loss = 0.0775845 (* 1 = 0.0775845 loss) +I0407 23:37:28.215773 359 sgd_solver.cpp:105] Iteration 8580, lr = 1.08669e-05 +I0407 23:37:33.258900 359 solver.cpp:218] Iteration 8592 (2.37948 iter/s, 5.04311s/12 iters), loss = 0.110503 +I0407 23:37:33.258944 359 solver.cpp:237] Train net output #0: loss = 0.110503 (* 1 = 0.110503 loss) +I0407 23:37:33.258953 359 sgd_solver.cpp:105] Iteration 8592, lr = 1.06145e-05 +I0407 23:37:35.387615 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:37:38.152248 359 solver.cpp:218] Iteration 8604 (2.45234 iter/s, 4.89328s/12 iters), loss = 0.165899 +I0407 23:37:38.152295 359 solver.cpp:237] Train net output #0: loss = 0.165899 (* 1 = 0.165899 loss) +I0407 23:37:38.152303 359 sgd_solver.cpp:105] Iteration 8604, lr = 1.03679e-05 +I0407 23:37:43.119252 359 solver.cpp:218] Iteration 8616 (2.41598 iter/s, 4.96693s/12 iters), loss = 0.0955551 +I0407 23:37:43.119297 359 solver.cpp:237] Train net output #0: loss = 0.0955551 (* 1 = 0.0955551 loss) +I0407 23:37:43.119304 359 sgd_solver.cpp:105] Iteration 8616, lr = 1.0127e-05 +I0407 23:37:48.027545 359 solver.cpp:218] Iteration 8628 (2.44487 iter/s, 4.90823s/12 iters), loss = 0.0759271 +I0407 23:37:48.027586 359 solver.cpp:237] Train net output #0: loss = 0.0759272 (* 1 = 0.0759272 loss) +I0407 23:37:48.027595 359 sgd_solver.cpp:105] Iteration 8628, lr = 9.89177e-06 +I0407 23:37:52.936188 359 solver.cpp:218] Iteration 8640 (2.4447 iter/s, 4.90858s/12 iters), loss = 0.0806167 +I0407 23:37:52.936350 359 solver.cpp:237] Train net output #0: loss = 0.0806167 (* 1 = 0.0806167 loss) +I0407 23:37:52.936360 359 sgd_solver.cpp:105] Iteration 8640, lr = 9.66196e-06 +I0407 23:37:57.858758 359 solver.cpp:218] Iteration 8652 (2.43784 iter/s, 4.92238s/12 iters), loss = 0.154482 +I0407 23:37:57.858803 359 solver.cpp:237] Train net output #0: loss = 0.154482 (* 1 = 0.154482 loss) +I0407 23:37:57.858810 359 sgd_solver.cpp:105] Iteration 8652, lr = 9.43749e-06 +I0407 23:38:02.821100 359 solver.cpp:218] Iteration 8664 (2.41824 iter/s, 4.96228s/12 iters), loss = 0.0870906 +I0407 23:38:02.821141 359 solver.cpp:237] Train net output #0: loss = 0.0870906 (* 1 = 0.0870906 loss) +I0407 23:38:02.821148 359 sgd_solver.cpp:105] Iteration 8664, lr = 9.21823e-06 +I0407 23:38:04.811540 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 23:38:07.887387 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 23:38:10.309214 359 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 23:38:10.309235 359 net.cpp:676] Ignoring source layer train-data +I0407 23:38:11.371522 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:15.141376 359 solver.cpp:397] Test net output #0: accuracy = 0.449755 +I0407 23:38:15.141422 359 solver.cpp:397] Test net output #1: loss = 2.82661 (* 1 = 2.82661 loss) +I0407 23:38:16.930375 359 solver.cpp:218] Iteration 8676 (0.850509 iter/s, 14.1092s/12 iters), loss = 0.0449423 +I0407 23:38:16.930423 359 solver.cpp:237] Train net output #0: loss = 0.0449423 (* 1 = 0.0449423 loss) +I0407 23:38:16.930431 359 sgd_solver.cpp:105] Iteration 8676, lr = 9.00405e-06 +I0407 23:38:21.901751 359 solver.cpp:218] Iteration 8688 (2.41385 iter/s, 4.97131s/12 iters), loss = 0.0630664 +I0407 23:38:21.901794 359 solver.cpp:237] Train net output #0: loss = 0.0630664 (* 1 = 0.0630664 loss) +I0407 23:38:21.901803 359 sgd_solver.cpp:105] Iteration 8688, lr = 8.79485e-06 +I0407 23:38:26.116315 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:38:26.788120 359 solver.cpp:218] Iteration 8700 (2.45584 iter/s, 4.88631s/12 iters), loss = 0.0818737 +I0407 23:38:26.788162 359 solver.cpp:237] Train net output #0: loss = 0.0818738 (* 1 = 0.0818738 loss) +I0407 23:38:26.788172 359 sgd_solver.cpp:105] Iteration 8700, lr = 8.5905e-06 +I0407 23:38:31.746891 359 solver.cpp:218] Iteration 8712 (2.41999 iter/s, 4.9587s/12 iters), loss = 0.0961585 +I0407 23:38:31.746935 359 solver.cpp:237] Train net output #0: loss = 0.0961586 (* 1 = 0.0961586 loss) +I0407 23:38:31.746944 359 sgd_solver.cpp:105] Iteration 8712, lr = 8.3909e-06 +I0407 23:38:36.654266 359 solver.cpp:218] Iteration 8724 (2.44533 iter/s, 4.90731s/12 iters), loss = 0.188736 +I0407 23:38:36.654305 359 solver.cpp:237] Train net output #0: loss = 0.188736 (* 1 = 0.188736 loss) +I0407 23:38:36.654314 359 sgd_solver.cpp:105] Iteration 8724, lr = 8.19593e-06 +I0407 23:38:41.599942 359 solver.cpp:218] Iteration 8736 (2.42639 iter/s, 4.94562s/12 iters), loss = 0.175551 +I0407 23:38:41.599982 359 solver.cpp:237] Train net output #0: loss = 0.175551 (* 1 = 0.175551 loss) +I0407 23:38:41.599989 359 sgd_solver.cpp:105] Iteration 8736, lr = 8.00549e-06 +I0407 23:38:46.522909 359 solver.cpp:218] Iteration 8748 (2.43758 iter/s, 4.92291s/12 iters), loss = 0.283982 +I0407 23:38:46.522948 359 solver.cpp:237] Train net output #0: loss = 0.283982 (* 1 = 0.283982 loss) +I0407 23:38:46.522954 359 sgd_solver.cpp:105] Iteration 8748, lr = 7.81947e-06 +I0407 23:38:51.479146 359 solver.cpp:218] Iteration 8760 (2.42122 iter/s, 4.95618s/12 iters), loss = 0.11002 +I0407 23:38:51.479183 359 solver.cpp:237] Train net output #0: loss = 0.11002 (* 1 = 0.11002 loss) +I0407 23:38:51.479192 359 sgd_solver.cpp:105] Iteration 8760, lr = 7.63777e-06 +I0407 23:38:55.937175 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 23:38:59.037871 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 23:39:01.429013 359 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 23:39:01.429029 359 net.cpp:676] Ignoring source layer train-data +I0407 23:39:02.386000 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:05.864818 359 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 23:39:05.864850 359 solver.cpp:397] Test net output #1: loss = 2.83201 (* 1 = 2.83201 loss) +I0407 23:39:05.961374 359 solver.cpp:218] Iteration 8772 (0.828607 iter/s, 14.4821s/12 iters), loss = 0.0881024 +I0407 23:39:05.961450 359 solver.cpp:237] Train net output #0: loss = 0.0881025 (* 1 = 0.0881025 loss) +I0407 23:39:05.961467 359 sgd_solver.cpp:105] Iteration 8772, lr = 7.46029e-06 +I0407 23:39:10.080976 359 solver.cpp:218] Iteration 8784 (2.91297 iter/s, 4.11951s/12 iters), loss = 0.162071 +I0407 23:39:10.081019 359 solver.cpp:237] Train net output #0: loss = 0.162071 (* 1 = 0.162071 loss) +I0407 23:39:10.081027 359 sgd_solver.cpp:105] Iteration 8784, lr = 7.28692e-06 +I0407 23:39:15.019028 359 solver.cpp:218] Iteration 8796 (2.43014 iter/s, 4.93799s/12 iters), loss = 0.136573 +I0407 23:39:15.019073 359 solver.cpp:237] Train net output #0: loss = 0.136573 (* 1 = 0.136573 loss) +I0407 23:39:15.019083 359 sgd_solver.cpp:105] Iteration 8796, lr = 7.11759e-06 +I0407 23:39:16.425887 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:19.914045 359 solver.cpp:218] Iteration 8808 (2.45151 iter/s, 4.89495s/12 iters), loss = 0.0656361 +I0407 23:39:19.914089 359 solver.cpp:237] Train net output #0: loss = 0.0656361 (* 1 = 0.0656361 loss) +I0407 23:39:19.914098 359 sgd_solver.cpp:105] Iteration 8808, lr = 6.95219e-06 +I0407 23:39:24.690186 359 solver.cpp:218] Iteration 8820 (2.51252 iter/s, 4.77608s/12 iters), loss = 0.0844655 +I0407 23:39:24.690224 359 solver.cpp:237] Train net output #0: loss = 0.0844655 (* 1 = 0.0844655 loss) +I0407 23:39:24.690232 359 sgd_solver.cpp:105] Iteration 8820, lr = 6.79063e-06 +I0407 23:39:29.608309 359 solver.cpp:218] Iteration 8832 (2.43998 iter/s, 4.91807s/12 iters), loss = 0.190377 +I0407 23:39:29.608433 359 solver.cpp:237] Train net output #0: loss = 0.190377 (* 1 = 0.190377 loss) +I0407 23:39:29.608441 359 sgd_solver.cpp:105] Iteration 8832, lr = 6.63282e-06 +I0407 23:39:34.551301 359 solver.cpp:218] Iteration 8844 (2.42775 iter/s, 4.94284s/12 iters), loss = 0.121329 +I0407 23:39:34.551345 359 solver.cpp:237] Train net output #0: loss = 0.121329 (* 1 = 0.121329 loss) +I0407 23:39:34.551354 359 sgd_solver.cpp:105] Iteration 8844, lr = 6.47867e-06 +I0407 23:39:39.516156 359 solver.cpp:218] Iteration 8856 (2.41702 iter/s, 4.96479s/12 iters), loss = 0.157651 +I0407 23:39:39.516202 359 solver.cpp:237] Train net output #0: loss = 0.157651 (* 1 = 0.157651 loss) +I0407 23:39:39.516211 359 sgd_solver.cpp:105] Iteration 8856, lr = 6.3281e-06 +I0407 23:39:44.451517 359 solver.cpp:218] Iteration 8868 (2.43147 iter/s, 4.93529s/12 iters), loss = 0.149847 +I0407 23:39:44.451558 359 solver.cpp:237] Train net output #0: loss = 0.149847 (* 1 = 0.149847 loss) +I0407 23:39:44.451567 359 sgd_solver.cpp:105] Iteration 8868, lr = 6.18104e-06 +I0407 23:39:46.433789 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 23:39:50.187085 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 23:39:52.551925 359 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 23:39:52.551944 359 net.cpp:676] Ignoring source layer train-data +I0407 23:39:53.509279 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:39:57.332002 359 solver.cpp:397] Test net output #0: accuracy = 0.45098 +I0407 23:39:57.332049 359 solver.cpp:397] Test net output #1: loss = 2.8289 (* 1 = 2.8289 loss) +I0407 23:39:59.136139 359 solver.cpp:218] Iteration 8880 (0.817186 iter/s, 14.6845s/12 iters), loss = 0.102348 +I0407 23:39:59.136188 359 solver.cpp:237] Train net output #0: loss = 0.102348 (* 1 = 0.102348 loss) +I0407 23:39:59.136198 359 sgd_solver.cpp:105] Iteration 8880, lr = 6.03739e-06 +I0407 23:40:04.090639 359 solver.cpp:218] Iteration 8892 (2.42207 iter/s, 4.95443s/12 iters), loss = 0.0871479 +I0407 23:40:04.090806 359 solver.cpp:237] Train net output #0: loss = 0.087148 (* 1 = 0.087148 loss) +I0407 23:40:04.090816 359 sgd_solver.cpp:105] Iteration 8892, lr = 5.89707e-06 +I0407 23:40:07.591856 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:08.971700 359 solver.cpp:218] Iteration 8904 (2.45857 iter/s, 4.88088s/12 iters), loss = 0.13032 +I0407 23:40:08.971735 359 solver.cpp:237] Train net output #0: loss = 0.13032 (* 1 = 0.13032 loss) +I0407 23:40:08.971743 359 sgd_solver.cpp:105] Iteration 8904, lr = 5.76001e-06 +I0407 23:40:13.937816 359 solver.cpp:218] Iteration 8916 (2.4164 iter/s, 4.96606s/12 iters), loss = 0.0716483 +I0407 23:40:13.937858 359 solver.cpp:237] Train net output #0: loss = 0.0716483 (* 1 = 0.0716483 loss) +I0407 23:40:13.937867 359 sgd_solver.cpp:105] Iteration 8916, lr = 5.62614e-06 +I0407 23:40:18.847456 359 solver.cpp:218] Iteration 8928 (2.4442 iter/s, 4.90958s/12 iters), loss = 0.119038 +I0407 23:40:18.847499 359 solver.cpp:237] Train net output #0: loss = 0.119038 (* 1 = 0.119038 loss) +I0407 23:40:18.847508 359 sgd_solver.cpp:105] Iteration 8928, lr = 5.49538e-06 +I0407 23:40:23.762256 359 solver.cpp:218] Iteration 8940 (2.44164 iter/s, 4.91474s/12 iters), loss = 0.0533999 +I0407 23:40:23.762291 359 solver.cpp:237] Train net output #0: loss = 0.0533999 (* 1 = 0.0533999 loss) +I0407 23:40:23.762298 359 sgd_solver.cpp:105] Iteration 8940, lr = 5.36766e-06 +I0407 23:40:28.687304 359 solver.cpp:218] Iteration 8952 (2.43655 iter/s, 4.92499s/12 iters), loss = 0.0766114 +I0407 23:40:28.687340 359 solver.cpp:237] Train net output #0: loss = 0.0766115 (* 1 = 0.0766115 loss) +I0407 23:40:28.687348 359 sgd_solver.cpp:105] Iteration 8952, lr = 5.2429e-06 +I0407 23:40:33.637977 359 solver.cpp:218] Iteration 8964 (2.42394 iter/s, 4.95061s/12 iters), loss = 0.153665 +I0407 23:40:33.638021 359 solver.cpp:237] Train net output #0: loss = 0.153665 (* 1 = 0.153665 loss) +I0407 23:40:33.638029 359 sgd_solver.cpp:105] Iteration 8964, lr = 5.12104e-06 +I0407 23:40:38.039327 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 23:40:41.170154 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 23:40:43.534703 359 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 23:40:43.534723 359 net.cpp:676] Ignoring source layer train-data +I0407 23:40:44.420064 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:40:47.966501 359 solver.cpp:397] Test net output #0: accuracy = 0.447304 +I0407 23:40:47.966533 359 solver.cpp:397] Test net output #1: loss = 2.84442 (* 1 = 2.84442 loss) +I0407 23:40:48.063611 359 solver.cpp:218] Iteration 8976 (0.831857 iter/s, 14.4255s/12 iters), loss = 0.0681887 +I0407 23:40:48.063649 359 solver.cpp:237] Train net output #0: loss = 0.0681888 (* 1 = 0.0681888 loss) +I0407 23:40:48.063657 359 sgd_solver.cpp:105] Iteration 8976, lr = 5.00201e-06 +I0407 23:40:52.189750 359 solver.cpp:218] Iteration 8988 (2.90833 iter/s, 4.12608s/12 iters), loss = 0.0454001 +I0407 23:40:52.189787 359 solver.cpp:237] Train net output #0: loss = 0.0454001 (* 1 = 0.0454001 loss) +I0407 23:40:52.189795 359 sgd_solver.cpp:105] Iteration 8988, lr = 4.88574e-06 +I0407 23:40:55.404886 359 blocking_queue.cpp:49] Waiting for data +I0407 23:40:57.128886 359 solver.cpp:218] Iteration 9000 (2.4296 iter/s, 4.93908s/12 iters), loss = 0.0909112 +I0407 23:40:57.128926 359 solver.cpp:237] Train net output #0: loss = 0.0909113 (* 1 = 0.0909113 loss) +I0407 23:40:57.128933 359 sgd_solver.cpp:105] Iteration 9000, lr = 4.77218e-06 +I0407 23:40:57.822428 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:02.033378 359 solver.cpp:218] Iteration 9012 (2.44676 iter/s, 4.90444s/12 iters), loss = 0.107862 +I0407 23:41:02.033414 359 solver.cpp:237] Train net output #0: loss = 0.107862 (* 1 = 0.107862 loss) +I0407 23:41:02.033421 359 sgd_solver.cpp:105] Iteration 9012, lr = 4.66126e-06 +I0407 23:41:06.955420 359 solver.cpp:218] Iteration 9024 (2.43804 iter/s, 4.92198s/12 iters), loss = 0.208127 +I0407 23:41:06.955462 359 solver.cpp:237] Train net output #0: loss = 0.208127 (* 1 = 0.208127 loss) +I0407 23:41:06.955471 359 sgd_solver.cpp:105] Iteration 9024, lr = 4.55291e-06 +I0407 23:41:11.937781 359 solver.cpp:218] Iteration 9036 (2.40853 iter/s, 4.9823s/12 iters), loss = 0.114744 +I0407 23:41:11.937922 359 solver.cpp:237] Train net output #0: loss = 0.114745 (* 1 = 0.114745 loss) +I0407 23:41:11.937930 359 sgd_solver.cpp:105] Iteration 9036, lr = 4.44708e-06 +I0407 23:41:16.900611 359 solver.cpp:218] Iteration 9048 (2.41805 iter/s, 4.96268s/12 iters), loss = 0.113315 +I0407 23:41:16.900647 359 solver.cpp:237] Train net output #0: loss = 0.113315 (* 1 = 0.113315 loss) +I0407 23:41:16.900655 359 sgd_solver.cpp:105] Iteration 9048, lr = 4.34371e-06 +I0407 23:41:21.853181 359 solver.cpp:218] Iteration 9060 (2.42301 iter/s, 4.95251s/12 iters), loss = 0.139511 +I0407 23:41:21.853236 359 solver.cpp:237] Train net output #0: loss = 0.139511 (* 1 = 0.139511 loss) +I0407 23:41:21.853250 359 sgd_solver.cpp:105] Iteration 9060, lr = 4.24274e-06 +I0407 23:41:26.844935 359 solver.cpp:218] Iteration 9072 (2.404 iter/s, 4.99168s/12 iters), loss = 0.0976321 +I0407 23:41:26.844978 359 solver.cpp:237] Train net output #0: loss = 0.0976322 (* 1 = 0.0976322 loss) +I0407 23:41:26.844986 359 sgd_solver.cpp:105] Iteration 9072, lr = 4.14412e-06 +I0407 23:41:28.838894 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 23:41:31.946161 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 23:41:34.308960 359 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 23:41:34.308980 359 net.cpp:676] Ignoring source layer train-data +I0407 23:41:35.104416 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:38.670513 359 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 23:41:38.670555 359 solver.cpp:397] Test net output #1: loss = 2.83304 (* 1 = 2.83304 loss) +I0407 23:41:40.500010 359 solver.cpp:218] Iteration 9084 (0.878799 iter/s, 13.655s/12 iters), loss = 0.118667 +I0407 23:41:40.500056 359 solver.cpp:237] Train net output #0: loss = 0.118667 (* 1 = 0.118667 loss) +I0407 23:41:40.500064 359 sgd_solver.cpp:105] Iteration 9084, lr = 4.04779e-06 +I0407 23:41:45.462385 359 solver.cpp:218] Iteration 9096 (2.41823 iter/s, 4.96231s/12 iters), loss = 0.12539 +I0407 23:41:45.462509 359 solver.cpp:237] Train net output #0: loss = 0.12539 (* 1 = 0.12539 loss) +I0407 23:41:45.462517 359 sgd_solver.cpp:105] Iteration 9096, lr = 3.95369e-06 +I0407 23:41:48.343343 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:41:50.357234 359 solver.cpp:218] Iteration 9108 (2.45163 iter/s, 4.89471s/12 iters), loss = 0.0646588 +I0407 23:41:50.357275 359 solver.cpp:237] Train net output #0: loss = 0.0646588 (* 1 = 0.0646588 loss) +I0407 23:41:50.357282 359 sgd_solver.cpp:105] Iteration 9108, lr = 3.86179e-06 +I0407 23:41:55.320041 359 solver.cpp:218] Iteration 9120 (2.41802 iter/s, 4.96275s/12 iters), loss = 0.17825 +I0407 23:41:55.320080 359 solver.cpp:237] Train net output #0: loss = 0.17825 (* 1 = 0.17825 loss) +I0407 23:41:55.320088 359 sgd_solver.cpp:105] Iteration 9120, lr = 3.77202e-06 +I0407 23:42:00.233377 359 solver.cpp:218] Iteration 9132 (2.44236 iter/s, 4.91328s/12 iters), loss = 0.0906506 +I0407 23:42:00.233415 359 solver.cpp:237] Train net output #0: loss = 0.0906506 (* 1 = 0.0906506 loss) +I0407 23:42:00.233423 359 sgd_solver.cpp:105] Iteration 9132, lr = 3.68433e-06 +I0407 23:42:05.177191 359 solver.cpp:218] Iteration 9144 (2.4273 iter/s, 4.94376s/12 iters), loss = 0.0635827 +I0407 23:42:05.177232 359 solver.cpp:237] Train net output #0: loss = 0.0635828 (* 1 = 0.0635828 loss) +I0407 23:42:05.177240 359 sgd_solver.cpp:105] Iteration 9144, lr = 3.59868e-06 +I0407 23:42:10.095171 359 solver.cpp:218] Iteration 9156 (2.44006 iter/s, 4.91791s/12 iters), loss = 0.122193 +I0407 23:42:10.095223 359 solver.cpp:237] Train net output #0: loss = 0.122193 (* 1 = 0.122193 loss) +I0407 23:42:10.095233 359 sgd_solver.cpp:105] Iteration 9156, lr = 3.51503e-06 +I0407 23:42:15.059562 359 solver.cpp:218] Iteration 9168 (2.41725 iter/s, 4.96432s/12 iters), loss = 0.117753 +I0407 23:42:15.059609 359 solver.cpp:237] Train net output #0: loss = 0.117753 (* 1 = 0.117753 loss) +I0407 23:42:15.059623 359 sgd_solver.cpp:105] Iteration 9168, lr = 3.43331e-06 +I0407 23:42:19.603961 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 23:42:22.757802 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 23:42:25.131599 359 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 23:42:25.131618 359 net.cpp:676] Ignoring source layer train-data +I0407 23:42:25.961233 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:42:29.925479 359 solver.cpp:397] Test net output #0: accuracy = 0.45098 +I0407 23:42:29.925540 359 solver.cpp:397] Test net output #1: loss = 2.83207 (* 1 = 2.83207 loss) +I0407 23:42:30.021684 359 solver.cpp:218] Iteration 9180 (0.802029 iter/s, 14.962s/12 iters), loss = 0.0381248 +I0407 23:42:30.021733 359 solver.cpp:237] Train net output #0: loss = 0.0381248 (* 1 = 0.0381248 loss) +I0407 23:42:30.021741 359 sgd_solver.cpp:105] Iteration 9180, lr = 3.3535e-06 +I0407 23:42:34.232491 359 solver.cpp:218] Iteration 9192 (2.84986 iter/s, 4.21074s/12 iters), loss = 0.0942718 +I0407 23:42:34.232535 359 solver.cpp:237] Train net output #0: loss = 0.0942719 (* 1 = 0.0942719 loss) +I0407 23:42:34.232543 359 sgd_solver.cpp:105] Iteration 9192, lr = 3.27554e-06 +I0407 23:42:39.242657 359 solver.cpp:218] Iteration 9204 (2.39516 iter/s, 5.0101s/12 iters), loss = 0.169785 +I0407 23:42:39.242695 359 solver.cpp:237] Train net output #0: loss = 0.169785 (* 1 = 0.169785 loss) +I0407 23:42:39.242703 359 sgd_solver.cpp:105] Iteration 9204, lr = 3.19939e-06 +I0407 23:42:39.316300 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:42:44.217150 359 solver.cpp:218] Iteration 9216 (2.41233 iter/s, 4.97444s/12 iters), loss = 0.100025 +I0407 23:42:44.217187 359 solver.cpp:237] Train net output #0: loss = 0.100025 (* 1 = 0.100025 loss) +I0407 23:42:44.217195 359 sgd_solver.cpp:105] Iteration 9216, lr = 3.12501e-06 +I0407 23:42:49.171494 359 solver.cpp:218] Iteration 9228 (2.42215 iter/s, 4.95429s/12 iters), loss = 0.11473 +I0407 23:42:49.171535 359 solver.cpp:237] Train net output #0: loss = 0.11473 (* 1 = 0.11473 loss) +I0407 23:42:49.171541 359 sgd_solver.cpp:105] Iteration 9228, lr = 3.05237e-06 +I0407 23:42:54.106451 359 solver.cpp:218] Iteration 9240 (2.43166 iter/s, 4.9349s/12 iters), loss = 0.0410729 +I0407 23:42:54.106573 359 solver.cpp:237] Train net output #0: loss = 0.0410729 (* 1 = 0.0410729 loss) +I0407 23:42:54.106582 359 sgd_solver.cpp:105] Iteration 9240, lr = 2.98141e-06 +I0407 23:42:59.078850 359 solver.cpp:218] Iteration 9252 (2.41339 iter/s, 4.97226s/12 iters), loss = 0.0620218 +I0407 23:42:59.078891 359 solver.cpp:237] Train net output #0: loss = 0.0620219 (* 1 = 0.0620219 loss) +I0407 23:42:59.078899 359 sgd_solver.cpp:105] Iteration 9252, lr = 2.91209e-06 +I0407 23:43:04.040300 359 solver.cpp:218] Iteration 9264 (2.41868 iter/s, 4.96139s/12 iters), loss = 0.0994477 +I0407 23:43:04.040338 359 solver.cpp:237] Train net output #0: loss = 0.0994478 (* 1 = 0.0994478 loss) +I0407 23:43:04.040345 359 sgd_solver.cpp:105] Iteration 9264, lr = 2.84439e-06 +I0407 23:43:09.029474 359 solver.cpp:218] Iteration 9276 (2.40524 iter/s, 4.98911s/12 iters), loss = 0.273761 +I0407 23:43:09.029520 359 solver.cpp:237] Train net output #0: loss = 0.273761 (* 1 = 0.273761 loss) +I0407 23:43:09.029527 359 sgd_solver.cpp:105] Iteration 9276, lr = 2.77826e-06 +I0407 23:43:11.017052 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 23:43:14.122756 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 23:43:16.488492 359 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 23:43:16.488510 359 net.cpp:676] Ignoring source layer train-data +I0407 23:43:17.266289 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:21.331053 359 solver.cpp:397] Test net output #0: accuracy = 0.449755 +I0407 23:43:21.331094 359 solver.cpp:397] Test net output #1: loss = 2.83806 (* 1 = 2.83806 loss) +I0407 23:43:23.131387 359 solver.cpp:218] Iteration 9288 (0.850953 iter/s, 14.1018s/12 iters), loss = 0.116045 +I0407 23:43:23.131428 359 solver.cpp:237] Train net output #0: loss = 0.116045 (* 1 = 0.116045 loss) +I0407 23:43:23.131435 359 sgd_solver.cpp:105] Iteration 9288, lr = 2.71367e-06 +I0407 23:43:28.078056 359 solver.cpp:218] Iteration 9300 (2.42591 iter/s, 4.94661s/12 iters), loss = 0.1753 +I0407 23:43:28.078198 359 solver.cpp:237] Train net output #0: loss = 0.1753 (* 1 = 0.1753 loss) +I0407 23:43:28.078207 359 sgd_solver.cpp:105] Iteration 9300, lr = 2.65059e-06 +I0407 23:43:30.237421 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:43:32.972517 359 solver.cpp:218] Iteration 9312 (2.45183 iter/s, 4.8943s/12 iters), loss = 0.166904 +I0407 23:43:32.972554 359 solver.cpp:237] Train net output #0: loss = 0.166904 (* 1 = 0.166904 loss) +I0407 23:43:32.972563 359 sgd_solver.cpp:105] Iteration 9312, lr = 2.58896e-06 +I0407 23:43:37.932895 359 solver.cpp:218] Iteration 9324 (2.4192 iter/s, 4.96032s/12 iters), loss = 0.124534 +I0407 23:43:37.932934 359 solver.cpp:237] Train net output #0: loss = 0.124534 (* 1 = 0.124534 loss) +I0407 23:43:37.932942 359 sgd_solver.cpp:105] Iteration 9324, lr = 2.52877e-06 +I0407 23:43:42.845811 359 solver.cpp:218] Iteration 9336 (2.44257 iter/s, 4.91286s/12 iters), loss = 0.141922 +I0407 23:43:42.845849 359 solver.cpp:237] Train net output #0: loss = 0.141922 (* 1 = 0.141922 loss) +I0407 23:43:42.845856 359 sgd_solver.cpp:105] Iteration 9336, lr = 2.46998e-06 +I0407 23:43:47.794771 359 solver.cpp:218] Iteration 9348 (2.42478 iter/s, 4.9489s/12 iters), loss = 0.112526 +I0407 23:43:47.794811 359 solver.cpp:237] Train net output #0: loss = 0.112526 (* 1 = 0.112526 loss) +I0407 23:43:47.794818 359 sgd_solver.cpp:105] Iteration 9348, lr = 2.41256e-06 +I0407 23:43:52.770589 359 solver.cpp:218] Iteration 9360 (2.41169 iter/s, 4.97576s/12 iters), loss = 0.206143 +I0407 23:43:52.770627 359 solver.cpp:237] Train net output #0: loss = 0.206143 (* 1 = 0.206143 loss) +I0407 23:43:52.770634 359 sgd_solver.cpp:105] Iteration 9360, lr = 2.35647e-06 +I0407 23:43:57.705350 359 solver.cpp:218] Iteration 9372 (2.43176 iter/s, 4.93471s/12 iters), loss = 0.0886094 +I0407 23:43:57.705386 359 solver.cpp:237] Train net output #0: loss = 0.0886095 (* 1 = 0.0886095 loss) +I0407 23:43:57.705394 359 sgd_solver.cpp:105] Iteration 9372, lr = 2.30168e-06 +I0407 23:44:02.185900 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 23:44:05.282016 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 23:44:07.648779 359 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 23:44:07.648798 359 net.cpp:676] Ignoring source layer train-data +I0407 23:44:08.388518 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:12.408736 359 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 23:44:12.408782 359 solver.cpp:397] Test net output #1: loss = 2.82807 (* 1 = 2.82807 loss) +I0407 23:44:12.505198 359 solver.cpp:218] Iteration 9384 (0.810823 iter/s, 14.7998s/12 iters), loss = 0.14763 +I0407 23:44:12.505244 359 solver.cpp:237] Train net output #0: loss = 0.14763 (* 1 = 0.14763 loss) +I0407 23:44:12.505251 359 sgd_solver.cpp:105] Iteration 9384, lr = 2.24817e-06 +I0407 23:44:16.570714 359 solver.cpp:218] Iteration 9396 (2.9517 iter/s, 4.06545s/12 iters), loss = 0.164532 +I0407 23:44:16.570756 359 solver.cpp:237] Train net output #0: loss = 0.164532 (* 1 = 0.164532 loss) +I0407 23:44:16.570765 359 sgd_solver.cpp:105] Iteration 9396, lr = 2.1959e-06 +I0407 23:44:20.831952 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:44:21.499477 359 solver.cpp:218] Iteration 9408 (2.43472 iter/s, 4.9287s/12 iters), loss = 0.0997483 +I0407 23:44:21.499524 359 solver.cpp:237] Train net output #0: loss = 0.0997483 (* 1 = 0.0997483 loss) +I0407 23:44:21.499533 359 sgd_solver.cpp:105] Iteration 9408, lr = 2.14484e-06 +I0407 23:44:26.424047 359 solver.cpp:218] Iteration 9420 (2.43679 iter/s, 4.9245s/12 iters), loss = 0.164456 +I0407 23:44:26.424093 359 solver.cpp:237] Train net output #0: loss = 0.164456 (* 1 = 0.164456 loss) +I0407 23:44:26.424103 359 sgd_solver.cpp:105] Iteration 9420, lr = 2.09498e-06 +I0407 23:44:31.365551 359 solver.cpp:218] Iteration 9432 (2.42844 iter/s, 4.94144s/12 iters), loss = 0.0614223 +I0407 23:44:31.365597 359 solver.cpp:237] Train net output #0: loss = 0.0614224 (* 1 = 0.0614224 loss) +I0407 23:44:31.365605 359 sgd_solver.cpp:105] Iteration 9432, lr = 2.04627e-06 +I0407 23:44:36.270550 359 solver.cpp:218] Iteration 9444 (2.44652 iter/s, 4.90493s/12 iters), loss = 0.179541 +I0407 23:44:36.270721 359 solver.cpp:237] Train net output #0: loss = 0.179541 (* 1 = 0.179541 loss) +I0407 23:44:36.270731 359 sgd_solver.cpp:105] Iteration 9444, lr = 1.99869e-06 +I0407 23:44:41.219415 359 solver.cpp:218] Iteration 9456 (2.4249 iter/s, 4.94867s/12 iters), loss = 0.168537 +I0407 23:44:41.219463 359 solver.cpp:237] Train net output #0: loss = 0.168537 (* 1 = 0.168537 loss) +I0407 23:44:41.219471 359 sgd_solver.cpp:105] Iteration 9456, lr = 1.95222e-06 +I0407 23:44:46.137250 359 solver.cpp:218] Iteration 9468 (2.44013 iter/s, 4.91777s/12 iters), loss = 0.0856009 +I0407 23:44:46.137285 359 solver.cpp:237] Train net output #0: loss = 0.085601 (* 1 = 0.085601 loss) +I0407 23:44:46.137293 359 sgd_solver.cpp:105] Iteration 9468, lr = 1.90683e-06 +I0407 23:44:51.092250 359 solver.cpp:218] Iteration 9480 (2.42182 iter/s, 4.95495s/12 iters), loss = 0.163074 +I0407 23:44:51.092288 359 solver.cpp:237] Train net output #0: loss = 0.163074 (* 1 = 0.163074 loss) +I0407 23:44:51.092295 359 sgd_solver.cpp:105] Iteration 9480, lr = 1.8625e-06 +I0407 23:44:53.079025 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 23:44:56.168238 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 23:44:58.536355 359 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 23:44:58.536373 359 net.cpp:676] Ignoring source layer train-data +I0407 23:44:59.243846 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:03.317701 359 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 23:45:03.317749 359 solver.cpp:397] Test net output #1: loss = 2.83584 (* 1 = 2.83584 loss) +I0407 23:45:05.141343 359 solver.cpp:218] Iteration 9492 (0.854152 iter/s, 14.049s/12 iters), loss = 0.10268 +I0407 23:45:05.141388 359 solver.cpp:237] Train net output #0: loss = 0.10268 (* 1 = 0.10268 loss) +I0407 23:45:05.141396 359 sgd_solver.cpp:105] Iteration 9492, lr = 1.81919e-06 +I0407 23:45:10.049109 359 solver.cpp:218] Iteration 9504 (2.44514 iter/s, 4.9077s/12 iters), loss = 0.069278 +I0407 23:45:10.049254 359 solver.cpp:237] Train net output #0: loss = 0.0692781 (* 1 = 0.0692781 loss) +I0407 23:45:10.049263 359 sgd_solver.cpp:105] Iteration 9504, lr = 1.7769e-06 +I0407 23:45:11.483283 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:14.952170 359 solver.cpp:218] Iteration 9516 (2.44753 iter/s, 4.9029s/12 iters), loss = 0.0581919 +I0407 23:45:14.952208 359 solver.cpp:237] Train net output #0: loss = 0.0581919 (* 1 = 0.0581919 loss) +I0407 23:45:14.952216 359 sgd_solver.cpp:105] Iteration 9516, lr = 1.73558e-06 +I0407 23:45:19.905041 359 solver.cpp:218] Iteration 9528 (2.42286 iter/s, 4.95282s/12 iters), loss = 0.0740821 +I0407 23:45:19.905079 359 solver.cpp:237] Train net output #0: loss = 0.0740821 (* 1 = 0.0740821 loss) +I0407 23:45:19.905087 359 sgd_solver.cpp:105] Iteration 9528, lr = 1.69523e-06 +I0407 23:45:24.838248 359 solver.cpp:218] Iteration 9540 (2.43253 iter/s, 4.93314s/12 iters), loss = 0.13533 +I0407 23:45:24.838294 359 solver.cpp:237] Train net output #0: loss = 0.13533 (* 1 = 0.13533 loss) +I0407 23:45:24.838302 359 sgd_solver.cpp:105] Iteration 9540, lr = 1.65581e-06 +I0407 23:45:29.755347 359 solver.cpp:218] Iteration 9552 (2.4405 iter/s, 4.91703s/12 iters), loss = 0.111031 +I0407 23:45:29.755390 359 solver.cpp:237] Train net output #0: loss = 0.111031 (* 1 = 0.111031 loss) +I0407 23:45:29.755398 359 sgd_solver.cpp:105] Iteration 9552, lr = 1.61731e-06 +I0407 23:45:34.718720 359 solver.cpp:218] Iteration 9564 (2.41774 iter/s, 4.96331s/12 iters), loss = 0.140934 +I0407 23:45:34.718760 359 solver.cpp:237] Train net output #0: loss = 0.140934 (* 1 = 0.140934 loss) +I0407 23:45:34.718768 359 sgd_solver.cpp:105] Iteration 9564, lr = 1.57971e-06 +I0407 23:45:39.594220 359 solver.cpp:218] Iteration 9576 (2.46132 iter/s, 4.87544s/12 iters), loss = 0.130819 +I0407 23:45:39.594259 359 solver.cpp:237] Train net output #0: loss = 0.130819 (* 1 = 0.130819 loss) +I0407 23:45:39.594266 359 sgd_solver.cpp:105] Iteration 9576, lr = 1.54298e-06 +I0407 23:45:43.980114 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 23:45:47.073791 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 23:45:49.440476 359 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 23:45:49.440495 359 net.cpp:676] Ignoring source layer train-data +I0407 23:45:50.103266 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:45:53.966145 359 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 23:45:53.966192 359 solver.cpp:397] Test net output #1: loss = 2.83786 (* 1 = 2.83786 loss) +I0407 23:45:54.062616 359 solver.cpp:218] Iteration 9588 (0.829398 iter/s, 14.4683s/12 iters), loss = 0.175383 +I0407 23:45:54.062656 359 solver.cpp:237] Train net output #0: loss = 0.175384 (* 1 = 0.175384 loss) +I0407 23:45:54.062665 359 sgd_solver.cpp:105] Iteration 9588, lr = 1.5071e-06 +I0407 23:45:58.184581 359 solver.cpp:218] Iteration 9600 (2.91127 iter/s, 4.12191s/12 iters), loss = 0.142131 +I0407 23:45:58.184618 359 solver.cpp:237] Train net output #0: loss = 0.142132 (* 1 = 0.142132 loss) +I0407 23:45:58.184628 359 sgd_solver.cpp:105] Iteration 9600, lr = 1.47206e-06 +I0407 23:46:01.747241 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:03.097952 359 solver.cpp:218] Iteration 9612 (2.44234 iter/s, 4.91332s/12 iters), loss = 0.1103 +I0407 23:46:03.097991 359 solver.cpp:237] Train net output #0: loss = 0.1103 (* 1 = 0.1103 loss) +I0407 23:46:03.097999 359 sgd_solver.cpp:105] Iteration 9612, lr = 1.43783e-06 +I0407 23:46:08.020946 359 solver.cpp:218] Iteration 9624 (2.43757 iter/s, 4.92293s/12 iters), loss = 0.0665706 +I0407 23:46:08.020983 359 solver.cpp:237] Train net output #0: loss = 0.0665706 (* 1 = 0.0665706 loss) +I0407 23:46:08.020992 359 sgd_solver.cpp:105] Iteration 9624, lr = 1.4044e-06 +I0407 23:46:12.976524 359 solver.cpp:218] Iteration 9636 (2.42154 iter/s, 4.95552s/12 iters), loss = 0.188979 +I0407 23:46:12.976560 359 solver.cpp:237] Train net output #0: loss = 0.188979 (* 1 = 0.188979 loss) +I0407 23:46:12.976567 359 sgd_solver.cpp:105] Iteration 9636, lr = 1.37175e-06 +I0407 23:46:17.875429 359 solver.cpp:218] Iteration 9648 (2.44956 iter/s, 4.89884s/12 iters), loss = 0.0693474 +I0407 23:46:17.875550 359 solver.cpp:237] Train net output #0: loss = 0.0693475 (* 1 = 0.0693475 loss) +I0407 23:46:17.875560 359 sgd_solver.cpp:105] Iteration 9648, lr = 1.33985e-06 +I0407 23:46:22.846493 359 solver.cpp:218] Iteration 9660 (2.41404 iter/s, 4.97092s/12 iters), loss = 0.142862 +I0407 23:46:22.846540 359 solver.cpp:237] Train net output #0: loss = 0.142862 (* 1 = 0.142862 loss) +I0407 23:46:22.846549 359 sgd_solver.cpp:105] Iteration 9660, lr = 1.3087e-06 +I0407 23:46:27.756002 359 solver.cpp:218] Iteration 9672 (2.44427 iter/s, 4.90944s/12 iters), loss = 0.159316 +I0407 23:46:27.756042 359 solver.cpp:237] Train net output #0: loss = 0.159316 (* 1 = 0.159316 loss) +I0407 23:46:27.756050 359 sgd_solver.cpp:105] Iteration 9672, lr = 1.27827e-06 +I0407 23:46:32.700523 359 solver.cpp:218] Iteration 9684 (2.42696 iter/s, 4.94446s/12 iters), loss = 0.182466 +I0407 23:46:32.700558 359 solver.cpp:237] Train net output #0: loss = 0.182466 (* 1 = 0.182466 loss) +I0407 23:46:32.700567 359 sgd_solver.cpp:105] Iteration 9684, lr = 1.24855e-06 +I0407 23:46:34.698504 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 23:46:37.793181 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 23:46:40.155972 359 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 23:46:40.155987 359 net.cpp:676] Ignoring source layer train-data +I0407 23:46:40.768965 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:43.878679 359 blocking_queue.cpp:49] Waiting for data +I0407 23:46:44.983029 359 solver.cpp:397] Test net output #0: accuracy = 0.450368 +I0407 23:46:44.983075 359 solver.cpp:397] Test net output #1: loss = 2.83867 (* 1 = 2.83867 loss) +I0407 23:46:46.763945 359 solver.cpp:218] Iteration 9696 (0.853281 iter/s, 14.0634s/12 iters), loss = 0.142083 +I0407 23:46:46.763983 359 solver.cpp:237] Train net output #0: loss = 0.142083 (* 1 = 0.142083 loss) +I0407 23:46:46.763990 359 sgd_solver.cpp:105] Iteration 9696, lr = 1.21951e-06 +I0407 23:46:51.716920 359 solver.cpp:218] Iteration 9708 (2.42281 iter/s, 4.95292s/12 iters), loss = 0.114182 +I0407 23:46:51.717041 359 solver.cpp:237] Train net output #0: loss = 0.114182 (* 1 = 0.114182 loss) +I0407 23:46:51.717048 359 sgd_solver.cpp:105] Iteration 9708, lr = 1.19116e-06 +I0407 23:46:52.436004 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:46:56.626152 359 solver.cpp:218] Iteration 9720 (2.44444 iter/s, 4.9091s/12 iters), loss = 0.179163 +I0407 23:46:56.626191 359 solver.cpp:237] Train net output #0: loss = 0.179163 (* 1 = 0.179163 loss) +I0407 23:46:56.626199 359 sgd_solver.cpp:105] Iteration 9720, lr = 1.16346e-06 +I0407 23:47:01.593101 359 solver.cpp:218] Iteration 9732 (2.416 iter/s, 4.96689s/12 iters), loss = 0.178441 +I0407 23:47:01.593139 359 solver.cpp:237] Train net output #0: loss = 0.178441 (* 1 = 0.178441 loss) +I0407 23:47:01.593147 359 sgd_solver.cpp:105] Iteration 9732, lr = 1.13641e-06 +I0407 23:47:06.506975 359 solver.cpp:218] Iteration 9744 (2.44209 iter/s, 4.91382s/12 iters), loss = 0.122313 +I0407 23:47:06.507016 359 solver.cpp:237] Train net output #0: loss = 0.122313 (* 1 = 0.122313 loss) +I0407 23:47:06.507023 359 sgd_solver.cpp:105] Iteration 9744, lr = 1.10999e-06 +I0407 23:47:11.483729 359 solver.cpp:218] Iteration 9756 (2.41124 iter/s, 4.97669s/12 iters), loss = 0.135807 +I0407 23:47:11.483770 359 solver.cpp:237] Train net output #0: loss = 0.135807 (* 1 = 0.135807 loss) +I0407 23:47:11.483779 359 sgd_solver.cpp:105] Iteration 9756, lr = 1.08417e-06 +I0407 23:47:16.410970 359 solver.cpp:218] Iteration 9768 (2.43547 iter/s, 4.92718s/12 iters), loss = 0.09179 +I0407 23:47:16.411010 359 solver.cpp:237] Train net output #0: loss = 0.0917901 (* 1 = 0.0917901 loss) +I0407 23:47:16.411018 359 sgd_solver.cpp:105] Iteration 9768, lr = 1.05897e-06 +I0407 23:47:21.338914 359 solver.cpp:218] Iteration 9780 (2.43512 iter/s, 4.92789s/12 iters), loss = 0.155029 +I0407 23:47:21.338954 359 solver.cpp:237] Train net output #0: loss = 0.155029 (* 1 = 0.155029 loss) +I0407 23:47:21.338963 359 sgd_solver.cpp:105] Iteration 9780, lr = 1.03434e-06 +I0407 23:47:25.818817 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 23:47:28.913245 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 23:47:31.423696 359 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 23:47:31.423713 359 net.cpp:676] Ignoring source layer train-data +I0407 23:47:31.988075 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:47:36.285781 359 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 23:47:36.285807 359 solver.cpp:397] Test net output #1: loss = 2.8326 (* 1 = 2.8326 loss) +I0407 23:47:36.381963 359 solver.cpp:218] Iteration 9792 (0.797715 iter/s, 15.043s/12 iters), loss = 0.180558 +I0407 23:47:36.382001 359 solver.cpp:237] Train net output #0: loss = 0.180558 (* 1 = 0.180558 loss) +I0407 23:47:36.382009 359 sgd_solver.cpp:105] Iteration 9792, lr = 1.01029e-06 +I0407 23:47:40.488464 359 solver.cpp:218] Iteration 9804 (2.92224 iter/s, 4.10644s/12 iters), loss = 0.0752499 +I0407 23:47:40.488519 359 solver.cpp:237] Train net output #0: loss = 0.07525 (* 1 = 0.07525 loss) +I0407 23:47:40.488530 359 sgd_solver.cpp:105] Iteration 9804, lr = 9.868e-07 +I0407 23:47:43.394654 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:47:45.380812 359 solver.cpp:218] Iteration 9816 (2.45284 iter/s, 4.89228s/12 iters), loss = 0.155441 +I0407 23:47:45.380853 359 solver.cpp:237] Train net output #0: loss = 0.155441 (* 1 = 0.155441 loss) +I0407 23:47:45.380861 359 sgd_solver.cpp:105] Iteration 9816, lr = 9.63854e-07 +I0407 23:47:50.344197 359 solver.cpp:218] Iteration 9828 (2.41773 iter/s, 4.96333s/12 iters), loss = 0.171004 +I0407 23:47:50.344231 359 solver.cpp:237] Train net output #0: loss = 0.171004 (* 1 = 0.171004 loss) +I0407 23:47:50.344238 359 sgd_solver.cpp:105] Iteration 9828, lr = 9.41442e-07 +I0407 23:47:55.281509 359 solver.cpp:218] Iteration 9840 (2.4305 iter/s, 4.93726s/12 iters), loss = 0.134581 +I0407 23:47:55.281543 359 solver.cpp:237] Train net output #0: loss = 0.134581 (* 1 = 0.134581 loss) +I0407 23:47:55.281551 359 sgd_solver.cpp:105] Iteration 9840, lr = 9.19551e-07 +I0407 23:48:00.208547 359 solver.cpp:218] Iteration 9852 (2.43557 iter/s, 4.92698s/12 iters), loss = 0.217192 +I0407 23:48:00.208673 359 solver.cpp:237] Train net output #0: loss = 0.217192 (* 1 = 0.217192 loss) +I0407 23:48:00.208683 359 sgd_solver.cpp:105] Iteration 9852, lr = 8.98169e-07 +I0407 23:48:05.156338 359 solver.cpp:218] Iteration 9864 (2.4254 iter/s, 4.94764s/12 iters), loss = 0.0965633 +I0407 23:48:05.156380 359 solver.cpp:237] Train net output #0: loss = 0.0965633 (* 1 = 0.0965633 loss) +I0407 23:48:05.156388 359 sgd_solver.cpp:105] Iteration 9864, lr = 8.77284e-07 +I0407 23:48:10.085152 359 solver.cpp:218] Iteration 9876 (2.43469 iter/s, 4.92875s/12 iters), loss = 0.215828 +I0407 23:48:10.085189 359 solver.cpp:237] Train net output #0: loss = 0.215828 (* 1 = 0.215828 loss) +I0407 23:48:10.085197 359 sgd_solver.cpp:105] Iteration 9876, lr = 8.56885e-07 +I0407 23:48:15.033823 359 solver.cpp:218] Iteration 9888 (2.42492 iter/s, 4.94862s/12 iters), loss = 0.126415 +I0407 23:48:15.033859 359 solver.cpp:237] Train net output #0: loss = 0.126415 (* 1 = 0.126415 loss) +I0407 23:48:15.033869 359 sgd_solver.cpp:105] Iteration 9888, lr = 8.3696e-07 +I0407 23:48:17.039280 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 23:48:20.152248 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 23:48:22.518414 359 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 23:48:22.518432 359 net.cpp:676] Ignoring source layer train-data +I0407 23:48:23.000597 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:48:26.889662 359 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 23:48:26.889706 359 solver.cpp:397] Test net output #1: loss = 2.82148 (* 1 = 2.82148 loss) +I0407 23:48:28.719249 359 solver.cpp:218] Iteration 9900 (0.87685 iter/s, 13.6854s/12 iters), loss = 0.0737331 +I0407 23:48:28.719292 359 solver.cpp:237] Train net output #0: loss = 0.0737331 (* 1 = 0.0737331 loss) +I0407 23:48:28.719300 359 sgd_solver.cpp:105] Iteration 9900, lr = 8.17498e-07 +I0407 23:48:33.615123 359 solver.cpp:218] Iteration 9912 (2.45108 iter/s, 4.89581s/12 iters), loss = 0.100437 +I0407 23:48:33.615269 359 solver.cpp:237] Train net output #0: loss = 0.100437 (* 1 = 0.100437 loss) +I0407 23:48:33.615278 359 sgd_solver.cpp:105] Iteration 9912, lr = 7.98489e-07 +I0407 23:48:33.708283 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:48:38.555037 359 solver.cpp:218] Iteration 9924 (2.42927 iter/s, 4.93975s/12 iters), loss = 0.120905 +I0407 23:48:38.555073 359 solver.cpp:237] Train net output #0: loss = 0.120905 (* 1 = 0.120905 loss) +I0407 23:48:38.555080 359 sgd_solver.cpp:105] Iteration 9924, lr = 7.79922e-07 +I0407 23:48:43.471093 359 solver.cpp:218] Iteration 9936 (2.44101 iter/s, 4.916s/12 iters), loss = 0.104876 +I0407 23:48:43.471132 359 solver.cpp:237] Train net output #0: loss = 0.104876 (* 1 = 0.104876 loss) +I0407 23:48:43.471140 359 sgd_solver.cpp:105] Iteration 9936, lr = 7.61786e-07 +I0407 23:48:48.405019 359 solver.cpp:218] Iteration 9948 (2.43217 iter/s, 4.93387s/12 iters), loss = 0.121452 +I0407 23:48:48.405061 359 solver.cpp:237] Train net output #0: loss = 0.121452 (* 1 = 0.121452 loss) +I0407 23:48:48.405068 359 sgd_solver.cpp:105] Iteration 9948, lr = 7.44072e-07 +I0407 23:48:53.327111 359 solver.cpp:218] Iteration 9960 (2.43802 iter/s, 4.92203s/12 iters), loss = 0.0796441 +I0407 23:48:53.327152 359 solver.cpp:237] Train net output #0: loss = 0.0796441 (* 1 = 0.0796441 loss) +I0407 23:48:53.327160 359 sgd_solver.cpp:105] Iteration 9960, lr = 7.2677e-07 +I0407 23:48:58.290238 359 solver.cpp:218] Iteration 9972 (2.41786 iter/s, 4.96307s/12 iters), loss = 0.141926 +I0407 23:48:58.290271 359 solver.cpp:237] Train net output #0: loss = 0.141926 (* 1 = 0.141926 loss) +I0407 23:48:58.290278 359 sgd_solver.cpp:105] Iteration 9972, lr = 7.09871e-07 +I0407 23:49:03.209168 359 solver.cpp:218] Iteration 9984 (2.43958 iter/s, 4.91888s/12 iters), loss = 0.152807 +I0407 23:49:03.209204 359 solver.cpp:237] Train net output #0: loss = 0.152807 (* 1 = 0.152807 loss) +I0407 23:49:03.209211 359 sgd_solver.cpp:105] Iteration 9984, lr = 6.93364e-07 +I0407 23:49:07.649179 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 23:49:10.758925 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 23:49:13.121933 359 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 23:49:13.121951 359 net.cpp:676] Ignoring source layer train-data +I0407 23:49:13.596901 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:17.666776 359 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 23:49:17.666821 359 solver.cpp:397] Test net output #1: loss = 2.84798 (* 1 = 2.84798 loss) +I0407 23:49:17.763316 359 solver.cpp:218] Iteration 9996 (0.824512 iter/s, 14.5541s/12 iters), loss = 0.174449 +I0407 23:49:17.763365 359 solver.cpp:237] Train net output #0: loss = 0.174449 (* 1 = 0.174449 loss) +I0407 23:49:17.763375 359 sgd_solver.cpp:105] Iteration 9996, lr = 6.77241e-07 +I0407 23:49:21.880429 359 solver.cpp:218] Iteration 10008 (2.91471 iter/s, 4.11704s/12 iters), loss = 0.158894 +I0407 23:49:21.880471 359 solver.cpp:237] Train net output #0: loss = 0.158895 (* 1 = 0.158895 loss) +I0407 23:49:21.880479 359 sgd_solver.cpp:105] Iteration 10008, lr = 6.61493e-07 +I0407 23:49:24.086469 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:49:26.825052 359 solver.cpp:218] Iteration 10020 (2.42691 iter/s, 4.94456s/12 iters), loss = 0.101659 +I0407 23:49:26.825096 359 solver.cpp:237] Train net output #0: loss = 0.101659 (* 1 = 0.101659 loss) +I0407 23:49:26.825104 359 sgd_solver.cpp:105] Iteration 10020, lr = 6.46111e-07 +I0407 23:49:31.748116 359 solver.cpp:218] Iteration 10032 (2.43754 iter/s, 4.923s/12 iters), loss = 0.165941 +I0407 23:49:31.748163 359 solver.cpp:237] Train net output #0: loss = 0.165941 (* 1 = 0.165941 loss) +I0407 23:49:31.748172 359 sgd_solver.cpp:105] Iteration 10032, lr = 6.31087e-07 +I0407 23:49:36.691609 359 solver.cpp:218] Iteration 10044 (2.42747 iter/s, 4.94343s/12 iters), loss = 0.108188 +I0407 23:49:36.691653 359 solver.cpp:237] Train net output #0: loss = 0.108188 (* 1 = 0.108188 loss) +I0407 23:49:36.691661 359 sgd_solver.cpp:105] Iteration 10044, lr = 6.16412e-07 +I0407 23:49:41.592237 359 solver.cpp:218] Iteration 10056 (2.4487 iter/s, 4.90057s/12 iters), loss = 0.18827 +I0407 23:49:41.592394 359 solver.cpp:237] Train net output #0: loss = 0.18827 (* 1 = 0.18827 loss) +I0407 23:49:41.592404 359 sgd_solver.cpp:105] Iteration 10056, lr = 6.02079e-07 +I0407 23:49:46.561509 359 solver.cpp:218] Iteration 10068 (2.41493 iter/s, 4.9691s/12 iters), loss = 0.131724 +I0407 23:49:46.561554 359 solver.cpp:237] Train net output #0: loss = 0.131724 (* 1 = 0.131724 loss) +I0407 23:49:46.561563 359 sgd_solver.cpp:105] Iteration 10068, lr = 5.88078e-07 +I0407 23:49:51.573681 359 solver.cpp:218] Iteration 10080 (2.3942 iter/s, 5.01211s/12 iters), loss = 0.157332 +I0407 23:49:51.573726 359 solver.cpp:237] Train net output #0: loss = 0.157332 (* 1 = 0.157332 loss) +I0407 23:49:51.573735 359 sgd_solver.cpp:105] Iteration 10080, lr = 5.74403e-07 +I0407 23:49:56.477515 359 solver.cpp:218] Iteration 10092 (2.4471 iter/s, 4.90377s/12 iters), loss = 0.0513291 +I0407 23:49:56.477560 359 solver.cpp:237] Train net output #0: loss = 0.0513291 (* 1 = 0.0513291 loss) +I0407 23:49:56.477567 359 sgd_solver.cpp:105] Iteration 10092, lr = 5.61047e-07 +I0407 23:49:58.425443 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 23:50:01.488281 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 23:50:03.855386 359 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 23:50:03.855412 359 net.cpp:676] Ignoring source layer train-data +I0407 23:50:04.295897 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:50:08.660059 359 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 23:50:08.660099 359 solver.cpp:397] Test net output #1: loss = 2.8317 (* 1 = 2.8317 loss) +I0407 23:50:10.435355 359 solver.cpp:218] Iteration 10104 (0.859736 iter/s, 13.9578s/12 iters), loss = 0.0973125 +I0407 23:50:10.435393 359 solver.cpp:237] Train net output #0: loss = 0.0973126 (* 1 = 0.0973126 loss) +I0407 23:50:10.435401 359 sgd_solver.cpp:105] Iteration 10104, lr = 5.48e-07 +I0407 23:50:14.570070 364 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:50:15.170166 359 solver.cpp:218] Iteration 10116 (2.53445 iter/s, 4.73476s/12 iters), loss = 0.0722294 +I0407 23:50:15.170202 359 solver.cpp:237] Train net output #0: loss = 0.0722295 (* 1 = 0.0722295 loss) +I0407 23:50:15.170210 359 sgd_solver.cpp:105] Iteration 10116, lr = 5.35257e-07 +I0407 23:50:19.991789 359 solver.cpp:218] Iteration 10128 (2.48882 iter/s, 4.82157s/12 iters), loss = 0.0625775 +I0407 23:50:19.991825 359 solver.cpp:237] Train net output #0: loss = 0.0625775 (* 1 = 0.0625775 loss) +I0407 23:50:19.991832 359 sgd_solver.cpp:105] Iteration 10128, lr = 5.22811e-07 +I0407 23:50:24.814267 359 solver.cpp:218] Iteration 10140 (2.48838 iter/s, 4.82242s/12 iters), loss = 0.035246 +I0407 23:50:24.814301 359 solver.cpp:237] Train net output #0: loss = 0.035246 (* 1 = 0.035246 loss) +I0407 23:50:24.814309 359 sgd_solver.cpp:105] Iteration 10140, lr = 5.10653e-07 +I0407 23:50:29.618716 359 solver.cpp:218] Iteration 10152 (2.49771 iter/s, 4.80439s/12 iters), loss = 0.0725636 +I0407 23:50:29.618753 359 solver.cpp:237] Train net output #0: loss = 0.0725636 (* 1 = 0.0725636 loss) +I0407 23:50:29.618760 359 sgd_solver.cpp:105] Iteration 10152, lr = 4.98779e-07 +I0407 23:50:34.473207 359 solver.cpp:218] Iteration 10164 (2.47196 iter/s, 4.85444s/12 iters), loss = 0.131913 +I0407 23:50:34.473242 359 solver.cpp:237] Train net output #0: loss = 0.131913 (* 1 = 0.131913 loss) +I0407 23:50:34.473250 359 sgd_solver.cpp:105] Iteration 10164, lr = 4.87181e-07 +I0407 23:50:39.397006 359 solver.cpp:218] Iteration 10176 (2.43717 iter/s, 4.92375s/12 iters), loss = 0.14953 +I0407 23:50:39.397039 359 solver.cpp:237] Train net output #0: loss = 0.14953 (* 1 = 0.14953 loss) +I0407 23:50:39.397047 359 sgd_solver.cpp:105] Iteration 10176, lr = 4.75852e-07 +I0407 23:50:44.281131 359 solver.cpp:218] Iteration 10188 (2.45697 iter/s, 4.88407s/12 iters), loss = 0.211933 +I0407 23:50:44.281167 359 solver.cpp:237] Train net output #0: loss = 0.211933 (* 1 = 0.211933 loss) +I0407 23:50:44.281175 359 sgd_solver.cpp:105] Iteration 10188, lr = 4.64787e-07 +I0407 23:50:48.643961 359 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 23:50:51.757793 359 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 23:50:55.223758 359 solver.cpp:310] Iteration 10200, loss = 0.0844708 +I0407 23:50:55.223788 359 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 23:50:55.223794 359 net.cpp:676] Ignoring source layer train-data +I0407 23:50:55.608233 369 data_layer.cpp:73] Restarting data prefetching from start. +I0407 23:50:59.650789 359 solver.cpp:397] Test net output #0: accuracy = 0.451593 +I0407 23:50:59.650828 359 solver.cpp:397] Test net output #1: loss = 2.82001 (* 1 = 2.82001 loss) +I0407 23:50:59.650838 359 solver.cpp:315] Optimization Done. +I0407 23:50:59.650846 359 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.2/conf.csv b/cars/lr-investigations/sigmoid/1e-2/50_0.2/conf.csv new file mode 100644 index 0000000..1294459 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.2/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Acura RL Sedan 2012,1,3,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Acura TL Sedan 2012,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0.5 +Acura TL Type-S 2008,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Acura TSX Sedan 2012,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4286 +Acura Integra Type R 2001,0,0,0,0,0,5,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3636 +Aston Martin V8 Vantage Coupe 2012,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Audi RS 4 Convertible 2008,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,2,0,0,2,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2727 +Audi V8 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1818 +Audi TT Hatchback 2011,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.3333 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +BMW X5 SUV 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW X6 SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.2308 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +BMW Z4 Convertible 2012,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Bentley Arnage Sedan 2009,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Buick Regal GS 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,5,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4545 +Buick Rainier SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Buick Verano Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.5714 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.875 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Sonic Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Cobalt SS 2010,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,1,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Malibu Sedan 2007,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Chrysler Crossfire Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.625 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5385 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Journey SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Dodge Dakota Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Dodge Challenger SRT8 2011,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Dodge Durango SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +FIAT 500 Abarth 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Ferrari 458 Italia Coupe 2012,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,2,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.2143 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,6,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5455 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford GT Coupe 2006,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.5714 +Ford F-150 Regular Cab 2007,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,5,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3846 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0.2308 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4444 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0.7273 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6923 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Geo Metro Convertible 1993,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.6923 +HUMMER H3T Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Accord Coupe 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Hyundai Veloster Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8571 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0.3333 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.5714 +Hyundai Elantra Sedan 2007,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0.375 +Hyundai Accent Sedan 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Hyundai Elantra Touring Hatchback 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Infiniti G Coupe IPL 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5714 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Jeep Wrangler SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5556 +Jeep Liberty SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.5455 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0.5455 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0.7143 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7778 +Maybach Landaulet Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8333 +Mazda Tribute SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0.8333 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6667 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +Mercedes-Benz Sprinter Van 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Nissan Leaf Hatchback 2012,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6364 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3125 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2143 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.375 +Porsche Panamera Sedan 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0.25 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0.4286 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4286 +Spyker C8 Convertible 2009,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0.3077 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0.375 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0.8182 +Toyota Camry Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0.1429 +Toyota Corolla Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,3,0,0,0,1,0,0,0,0,0.2308 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0.4167 +Volkswagen Golf Hatchback 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,6,0,0,0,0,0,0,0.4615 +Volkswagen Golf Hatchback 1991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,1,0,0,0.5714 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0.3636 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.1667 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,8,0,0,0.6667 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0.625 +smart fortwo Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0.6154 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.2/large.png b/cars/lr-investigations/sigmoid/1e-2/50_0.2/large.png new file mode 100644 index 0000000000000000000000000000000000000000..38ad23ec6bf622d749f1d921e4a8878e09dc5a0b GIT binary patch literal 109210 zcma%j1yoe;_O^3=bGFa$j=vS^>!Fnt!_2SBv>ylTlpitaG z1^%Uq&RhZb>#F?=8Hp=-T@;JJ57$i|%0Ikvr7#5JSnme#Gn$R8y8V?a*p0|PS6i$z z46j@{`}$bwp|X?C%EZlA$|`%P8`iy&Xf@X*&|chqdn<#0@CF9R>(;friP9XSRV)I$ z!VV8@qg5l-s}JkF2_F&A-+2{^ z!@=DS6`~KMet#)H@*JVV`~9VunHp%Pw_^dGp_ylks-`z^jjf61qiTc4&RZ(`*JK1V zfcRNS z0f_`nu~7$+FfA+e0X6rJ7R((^6t{o-)+n}qW$`-+zpr$JN^!z0R$6) z`R4{ROU;LfoRUspA>yMZpQKgq5{TS^I{nTy5%@F?g^*KF#e}4sL*@<@=aS?DmjbbaM z>uvb&Jw0EJs~YB)Q1v21Kguwo|Jay+_ULD${;l&6P+?^8e%@N3S@NHo`0t-Z%{mVq z!-98AejYnE0 z!o8CV-8|dHK}>`H2P6K(vvL4UW_J3k_8$igCT^);^{Kp5RKIY`WQZ7~>;F5Z{7FY7 z(tMXGB>DKR{}Bp@)d%inx|%b?aXy+1ijR^0jL)D&+%m>jMP=xk#qLT6Q!Hvq!1ks8 zY$ZvvzN`Ue0uQMq{))Q3s+@YlQoPeH3F>}|=;~wI+c&!;&0uZ|SndZL(C2|4Pj_Z~SEfb5B^ala=@@>fH)6~(QbOLj1fhl6uO?Bm?T9QP zY|K>xBowTuitM&l2#L)go(4Uz6Ao}Eh-LS9H1(eCLQhtrTl{Za$k@tas%ldn)t9YO z%%=leD}is^vcGz`N9XX!m^Q7)f0 zd5VmCw4q$>I`+S4ks7wjlD@10+;n(<$Zfa|o-|yyX1t=iUTu_HcXc;8Hg3LrVmh(A z;URDbs9IsCH}KY>xKo&TignVTC>3ol3~k*JqtJJozxY$xB0CpG4TsCO`K^_n#2yy= z&OZ#x_)yuDJj1sCHX*8^h1W^XI0+5n2uuo z5Zgi$klshqDQ7sE&HMnz4O~V~*@vkb+e1HuCcRYiSNszYcF^tWhDI$G&)-Es@hhCg z9?g|p&@R=j|L8SW+L#dsY36o(y&jyVG@dOYb6iwXB5Bpjo2Pq(@6&wg!m_tMD`M@^4X))m$_ZTe4X%`dV7e_4-KT&rF^9CTi0|n zu-clg4U0XfV^(Nt>x`ZDAU?*)H7|pVPMF*7s;a``@y&)!4y(D`2(3ihY=r(-QBG#c;Pjq^@pE4{ND!kD z^^P&lGB%Y*77GKg|0hWn@9Ta6{uuXtT}!t?Qq=pm^yBK@6=YcMsR!%6yqTzU2NZBY zAy!Qz-5~+JM(doVsr@L^EmQN<{GP#UL2X((rd2C08HC!V zcm~`oFfz{&sy;KO@7UD*csMEC$IGDzgv$?HJBO4I&jj_cusS717i^;&gYaE_ihzz z58YfpLr_k!D6~Y1-dy2kx_RNYw_pN%o>2l(xym`+fOc?VU1!ivuf(yL?04We<$-c@ znN9?Rl2z(@gHvAofqN6S=OZf_sZM(Mf>4exQ8~W6`wv(E|5^hpHMEg2rLKixn}0O> z9N-DiS-d|zc;i$;dDSg;_n}>5R9MZSMESNpE@>GFZ!q}kfTnoJuqO_bv#3i8VG;6O z$hRl;<#eYq^;z|n^3pJ?#>LgTJCyEjhyLmIc9O5vhA8bav`Ce5ZG3dNYKaDH?0hPh zC{94z(6})zFKRO|W*-_6K2PxU{b`1zf@yI2%{N7VYETO**!y|d+WHXoTD4hgSNU}t zpRsIg)h4!`U#l<>{CJE8vPGzmK5#qcFkLJ!oRcgEHcvSoH=7zQHxJe_??$U zivkim0y4;Bnnte=!c~IA)#Fys(X+cit??;nl>_%ovle_cYX4TlMltkRsKIE^mzptD zWUGx<$U7ec$=~;|X@C#+e^;9L!Mg6}_@o0JEi;hygpluW(SwCqr{TBAST zN+!6f+cY5L%m$RT87tr@I(foNxIJVN3lkTQx29&SyRe@8qDr&3YPj4=Dba|xxDl^B zMyG6EX;QC@*^!a0xKIq(yEsvG$f&K7J}72ToIglcOzBiAUu@~X(_tMrZWkS?XyqK+ z5aJdU;?MSa$iOQ(VOA6fVQ`{q9SY!HInO)aCm)(a=}MTFKT`_YZC~pke9AXV=h#6w zT(42OR-e-Q)4N))IN{dB$F~;nS7T4H{nrVxI^}c z;$ib892&OgWSQ5mazF49U8qvT|^Rd)pT`mQ0Mmf&9q;0 z4F5tKRGo?DOr!j{CVyjklqItkBkiK>X!;vo+X6g*|Dc|+z_EdyY5)=kyC&WYS-2}ZL9 zHZct?O>r*CW8qT<2%YrS+f?v|M+`jmCK!CN_M89WZbwK2d+||}4(lIo{qH>zeH(zc z3mKSI9B2SDfT{(vV=n}S>!10#Wqa#QRW28b@9IdcR${Il-}f9+^HT{6q0O4iPc%Vz z^ay%|87(R(Hf!F(E7FqwHnF=8={8@c@l#{3ERod26Q#CE~QQ8;bdG_^K3tygykkhtY`X1uQM9>&kJk>y>QFMO60K0c*9n9o`xk2Km${@ zV4}pa^@O!JJwde(g7}`%742Cc?B?gfhg^3}gy8v8&KYxAJ4DU^=PqAb6@&}8cex;Z z=?+BtFNMIlYLbus{UM1>EQ}|20xUyvps#v&AHby5M5yw zCkVgMY2hDacN9UveA&bNw5~6!!35V6a2biANii8)ChU)Xn7~;Awx^(`_W2fMKAMeP zaf&D?-mDLr=;W+0$B;X6Lm|qU@*B^A14Lh1iJ)!5k)nat@lINsq10eP&_;Anq5-;o ztU?ncVPwzI-YII<=>!Ia{Q<~~C8qu6P(W+2GxjPs`7g2IrH)E~|97Pm;psS!#Nc&+ z!Q&A#&{UYe7YqhKXlW=AVw$@gmvT^N%G}w5z?(DTZTta$_Qmp4GO_r32zQaU^1-$A z_dL0j0od{|Acy(mBVR*W&@befKtUpW%}=^WZAZ>w%;kM=_^DUuds(9e_c7z)A)n5* zgN-z**8`tXyUq?IW<4#xslGe@P+DNU+qeha%m>)6XT>t7NhkIjYZYRA>m^g_b4fr* z%cvrWO`#%@^dlz?X&b&pM}Ns;bfDo5YZ~s0n7fXaW-{-{1_L1&CRiVY*&!7_4~4KW zI=q>+$V%D+@%Tsif*XyrWAzP;Bc0LDdlJER2hP;Z&_dbMyOZjty%t;_Ta;H&v%c=i zZK09478Mr{FJ(b~=$CKYqMW-{wRCAC?jR5iRbqPJ#mNUhB-U)mA*$KWIc+Nb;hqQ@aWUgMWn!)@)kUSrG*#5v(xM zwh#1sW9%n;7Mg>la28rnITe@eJ7P7oU8k4C0@=cxdJzqfyFxmdjl&-O%gceRBmCzMR?9#Hpft$yPfk>Il}r>&x3 zpU9v6c|@lFbALbCKkY?{i$zTWpPcNxG;V{oJ{9^|12m}h6A5yP*YhYmRiE-!L7R9E zZ`I|G`F)LxkGa><(n6{6zAw*K-u};Cj3DWFi zF?)D2QsdXU9r)Mc7X+zLF2l6)aVn6OX}K0#x2VV5K>?sk88n$Z-Ds(ldtMaM``RJTha*{=T`-*ingehfgif{DkH}Ge9k3Ie#ai zihRVPd*%Ij(idHir(wI6)oZONY9E^!_4#qDio>R)|Rc!zTa?_9f{d`B}zqArAx2a+i2r6 zFO0+1PDcaB!G{QD|1v>%Uu3*lnd3eI#__PY{!d0Y87L?|*{ zImz(`7M^PL71Ku^iRKH0xYb_oSlOPtKi_#Ckr`yK`X5^^Ee4ZXf@`OII}Wz zS!?+Mf{YVlOG-cF!ul-{P)?_NvX70u&$aCc86fQ>x^YCVo>cKX3UCD}% zUNw62L|pVOSp1|uu*U7tv5Eh2wHdRJ_$K91H3tfVsNm`kqH3M=Z)~orj6vI8u6 z8U&!V?uQ*m1DmJ2>7Ugn%(_0Da|1>|6U{0io5PlH2Z;cJ(VfaRsd;^|&TCzF!*$8&r}LRN&L<| zrg1Uha@qw*?~XP|i|4Z20ske9%SQM_ z3L8y~{o4OPJ(|ax3i$m-i{KyCR=gCt**EP#@u=ln&vTp2GX_^gr3T96RVJ)V6l6D4 zWv}XTQlEu+w}|WN2cP%AbCdxzDzaJ@se&$LKN518s;En}GL z?CXcwVvA)Sz0Ez!Cy;Y%hS#dgMcD2jiGiMe1kY6O;+|4j(KJRKK3t-}vLrRcZ@}*8 zj#-2Q*XyuKm;LxWeIvmjxdEllv&hcQcC6fa*bE%|@3H=S52WaypKT5ty-0%!Zk{VsTp(-0oqqc(q}+PPs^3 zI;(Gga8Q$PfH1*G=0SzE>d*Evcr=|CcGaW5Pd0&(;tTp43NR9<7uRlEa7sn?>{w2a zA^5eHoizk-_nE~I%iJb=GBokIE~0hmxrJI_v!?)YD*K_(yf3Hm_UyQvtS)cT7@+E3 z>aBYIK9~gL17&r#CTTB&1Fy&BHP6g*MyrRkf-rF;6|BUzieqV*4c=Dl9ptnWT1|ay zj2xoK>?X1(0;;6oZv>C9|0QDA(_5#!Sb22E=u-{+3FLqWTu7nMnc8k=u+i3O3tRMa zdbO1_T*%&{6#>(%OO3T%>$1v-8zQbatQgi@mM?E`j9EU7v>LUP@nOzUvh5oMJq{*x zRWS0INdDUxM-@bB`07|RJgmANt86SteZi}zSTxEcWG~P-#(WK{E!wr)shhilfk-kd zI>SbH_C$z>t0gA;TTDt+{7@d%9BBn^mC2Q@eTLWsBS4gd9r_Ete%a&{aHp!+$WN{w zeOcL6w+`fUFQ!$oi;?F7@yRIap}}2Hk)*+u+xTw-`<}F*V87cEA2JgV} zEon*I$T1?y)!(wV9%m}Lv$#|C%3^qt=UdEJE^ zm{GbZr@ks#=6e;mtu|%KcK6x+*AL}XxeZc9fIvX^3&so_1H0P+fa|^<6D_=AVV^^a zZ<+@l@DFNY-^YAZ+WLKxN^v)BOtJn+Z>E##%U9E0?L>dijC>334ML&Yn!<6`JPIrR z(|s1)1ITVbs@r1@AIQhnP7?|MTYhe%@}_ideiO^>?0MP+GjG1ry~?95dN*fbj)T6C z=VT)-=e$fM?lu(=e2&tVz(0G;1;IAO+#xZJ&5ZrZ+j)=98T#BQFY+mnCN%u}R$hMm zyWb6n8Dap^Fk7jlIkP?XtdSc<2>3Z*_FEf#A;RO%WH8Ir6VeZV4_#pL9ASzo>U|j5 zBez8;>LRwJt)Zkw9k%rj2$(c*woCbGzmz>oI~rOk$H6B!d|`Kk5rBnS3)ngB?G~Z_1P<0L&n7 zgZGD&<)Vux1BY1aer%sj`({*J?*N^?TgzRFT|V_+Qm!tHUUdYfi3VkVcUOdTum(6Y zk(v&^Koe(i0N4iB*xpfW288bj70Ko7-= z@FrT-k7h2F1p{c5nE)1R5*&lTiA^CHF~6&I3t3!m1x&okkAxQOh=R_`!5cvOmH0X+ zCe{^9;a7UQhwmjQ>Z(5Zv(4kWK8y6b3I2{IhyF~;dlzIA^t(?pE>mgw@GW7x)SQuE zl@2g4Q_?f^v}SAPY?gEQ|3Mztj0u5_6YE!iss<@O4?5 z^G+V@!7<_k9BP{~^3T2l%KVI9X2*|tFH$FS`1B*Za}td;mqNk?=F$29p=(S$0wDHI z)X4mBHQ@n;(BSPQSm#sax@nZ}FMlCmWNIeI^0)sdhW2LqCGwuE@6~ z=4komB)ngc*1eN_gpRni(X(y}lDg#L_lYIBI8GDWWEDt#uI@c~TcQkYwAm@*mPFb` z9;>`~jxs=u3W78z#C--j;@Nqg2ks#5?{m`16S{a~$J$Z@XZ0fa3cIrQcYkk3Z>k37 zV^YG9elRe6dS8Rf!b+%=7(E9?x9z^>5-jcSCL2g0*jwfaSr3w6W*cNQbJBk(Cnd1- zGNhqHvhwH9O+@Uno}y-F4|CQUJKRaH#i@F8n~Y_$ydz#|q3|LX6p&95sDyx(W6A67 z4XzglP9^E0X!lMetxzBYiXw%nK&8-Axthc_>{}(K^{V@=2bLIKRKjq7pr+Uky;%vE zBCo*0o^AZFCnIK)rPuK=?@$vFSj@`)yIe13G41#Hb4$ADN5^bVJCAW-qo4*$x&SjH zz$o&OVK_3=w2zatZ9!9x##3UwdHv;R7@)qH$gm6B%~IzC<$~>2My5d~lqKg1L-G%1 z>Z-Qup`>@(NRm)_sJMvQlA44&bYtbEw@CP&v*Nrrak`!~Zy`!N0MhaKAgtguM)_`I zq0>f1*O*##y!VX>KN%DFqU`;tB<4?pCdqmDLxD4h^UX&`#=yYU6+Fky4ugf^@|~u8 zpxIku#BqING~n%Kfr3L?d#Z^8x^gYAZtO2VUX{K6cQyJSjXKFrfZMaZiufi7vg)P* z+u_3kdMONhj^dkJMSwV2NQ`y6uJDg!x&tJ%%xtau>c%NndbELU5x@4;^2RViQH<$< z!O`qDEEn3@kdB-$jT44DtyWw&{IbMRda!EWAzo3gXxrn2u3L07i&ba->ZZDX1Dq@d zVEPieCcoS?s`xp6wIqVnIq@_io%jm2-VS?bM<4$C=y07Kdm-%QDs`MXv7wr?!_%1{X73^vO zPyRze#wsvfOZaCcNDG^7#zb%o(F{AqNE~X6qH;|V?%1*AvGpPt9^X!NAqW6HA(N77 zbr>KCfrg74RIGVX^?Edc@onuCLiUOvkrHGv8~QCy|8yT z!i~Ubu*!Y-%-mx3D&g-`P5$u;xWR7CTbr6(;Yqrk!4y`Gse-k<_CbO#MlK8lq!EZ` z{DFlhH({zyP{vzz8d{Svb&#Q#2~9GbYxbsSNbqIcT;j|0wLDXYD^n8__z<8kGg{UI#a`j)2M$ogyRT2yYqXw=y*t5(QSPEo^Oishh*8s?$WCZqtQ0g*YEbrg{I^G z!i65r2Eg^$F55R+2%0TmHu`bDOI^qyuUuQ8W^Gj4yNAR=1M8lFZlvYYW8?)4CLwO0g0Ei~ z6+k>0Wtn8VfMx;qZ99K2TKL#P?f{JQ##C`kDQk}c4@Q&Q&Xm3pV$xlM}ax8t^$cAv{? zL_lPxLvoK)`SyiC2AE*I(m&rTR9_4xc7*OVJtzL zRB?l7 zzH@#F)o+dRu;OYN7o{w)ZcY&>KVkWf#WK>h*7EhT2J?ALrfy@`&jK^4*|9KK_#ycw zyxSa@CD`didkPJ#+_I^n>$$&9+aH`4^hus^xWMFt+aKS?4zTlF_WOdCtF5*ZZCI>#B^S6%q!Z%0}TsCVh^Rz;=WZe1De$l=p+ail9ThqY&F07t`zmdC* zVVL`O$}nXjebq5E%4w-r?5unsK716azmVD4@^t;H?53`1hV#a-@PVXgbJ}v%$A4PyFmWV`ycZ^{6DZ(bTNop&8RO$<35rqQ!(%s5 zms9jEq1F#ReQNX`9C1BK)#$Q^?Irgx!GB$}jPlg+gb_}HPimD!(yQPP3TEE;aYKBtWd%#quJd^%`meOHP4GW+cVTvY^YmF@b<@5` z%#EVgFt%g+2G_p8foV;#?PGrCA1p;U$qgwRN~6!xGP8VxZE8Q6H%rIT30};!tJ

SXfxJE2h28>;J*x45O!Kr+nfoM{AtQ~wRD%ENn;aO-JT@i7zD7}tN2j3U zRdtZ^l;)PMeQM){bP{l#E7z9C8*w6=|DKkL$s%`${%kxW$ce^|Bv1%sCrVKPCKGFZ z-oZ2@nL-**f#o2}1c_s3WU z!F-tFq&YwdjoBiA*7&;TgiA0es3IzX~j>%)*WT*)Y)v~wO*>)md!)@ z{PkasJOEP9P7_Dj*oqLHb#bE8?P97`G$>V&PV}7CRA^w^exQu^3E>cA@UYZ-_#03b)Y_s$0~hBpC7+R|cQuC3x3wjbI=bfTNeN(Mjx16#gmuM%&2KD z08nOA)X6#a)8EFyqZm=j?W6ri24I)+JXyJdMmz6j+$>ypeutEHRY0JJ{Qv?%X}uTI zHZe39FT;0m+r;e+k+G$|q{=V&Nq+t$h7YGL9r1)F2)|1IfG0hSsW;7l>$d1w#53em zqA*RLK_YVN{HsKAbwOw2cwl@-(fo*^Da8^N>zlC`RddZ^r0zyYrz@Fm2NG3R_deMydfTHwXv&&E$=MdY#l?gZI&|`MwovG ztn#OGM9q`k?k|s)1;YUc&2WZI_gU4(K=PaU_etY5tE;UHm8WlxO?Dm1H()g7Yp}xT z0|c3C`LU!3-!kWUzn7eq`JMpiAl*YTQjChOsF29?vI?>B(Y~6G_O|VTSIei64O>UH zm2cL4a&X!yZia6@gIn|TJ<{-*@cmF#Nh_XSD`;$aOm63xbj#8G`rx`|;M9JNHv=)w z_XWX}&9uidbV_^}#l>(;ni#wRGlN^Loc&Rj4@7EwZ@270$e z(&v4LTA0PZrL+f7R{c#&1x$bK9-M}IuXh?)pe_xGN?-fyt@(VBj7iWXe<%;Wau-HF ze|D-DA&T+F?rC>EFSEsXYe!H+eM0)Hvr)~TUD;Mt`~E?`rRObS){}Ne&byW(A6xFy zp7bQ{Nqi2YlM&K3`!Jc|D$uLY%<Ke7q~%d9bScqVq7pq?B`B$F9~*H&_&d;GXV4 z+Ehq~pqij&Hy|>5GGDv7jWb%@?sxIpcdfWc@jv2;zwsBv2Tou#8e;BFRio5a};=i_{ha>D+5Fbn?=0k%=c znZv0yi>Z&%eX)t&r@08asf3W5?(SD^ZoPMRqrU)rkY z!z$40Mm?UQJ~PRG$@cdOB4+%vF@`2}4brDE5(ZmOFKa;hW?-k>orR#%#^VEfaIGf+epxLazKZHwd|`rN(>dgXr*;>f58f1wkcZ^t)E$|qcpVsl8F;6Fy$74&@^bj?Wx%2kcxEX|WHs!N z;gQ9o!zvf$t!?ArlihhRtxE-&`~dDOPd2zj2Doq7Ua7R%j=2uSj#--a?zjQfjPuJU zPLIn*bI6KG37z9SJ9Uo`WsdOxoiM}>Sa|0m%4XU|o{eS`l3zw^2qEgL}!%fbj&qGnb%6~+fLYy;gspYCWH1!&*7gG zsY56YCio{&J6$_+G<6v!UiDr@blMj3DDMtD<|ufZ>i|rezooo)$eF^E&*JBVom3z; z?MJ(vTnAzBYFhmZ?>lO&F_;JWM)j~7cUU-l!ECBtCzL2Jc6H+9D5y26BV3oQxuGOM4G&ygvsAng`{-OO zR(4kTEqkNSf34THIWhHH7_G)W9Zc~Oq~-@Fxb+t{cU`H-bY!mPO2tTSFv=%s8MQ=g zG!efupF0(_6`MSzC#=iwl+ppcuUUGnk{v<$TjEnR`i_i*3?V|FinlFnPZ~aX>@F0QRDp%F9rOUws&B+XQ^LXbiZAxwwSHhUQusuxMW}m z5QPqf<}-m}r0rLOKSQr2Sc4M}G%HYHM2WP_zoFR76@(1=7lvGMR`2Y2HAHu?=$`~# z#bTxPzf+SMJJp zAME1!VeW%4ua5F$nYw&9&@6OjuPn*16v~`*m1frZ!8ob4jyHu;gYRN6Rqy6xyA}Y~ zcy#%OAo*=iA)rni%u%?mm9n_u2=V0_byFn74M>-F(C3DSMc@y=n*E|gB_XAD9XYsV znfx}alS>lpfci$@uSaK*%-wX{4zL!@Zit5j_?6JT0<0^BYu$w=4?e{9IL-71?_sLN z)^-F_^zzS+Vh_b``l{3Y+&h-}ecOb@NC<4HR4TMc5#EF+lGxgQ6l||hRmg+xZLmfF z8qFN$`1gp3xD*k7$(s1Sw?iWcvtpPo%Uhb1p3HKvzP6U5S+byu=+TJ& zafw~FiSqYAY~l@IoWJAhBJ|R7#GIXq?H(=aev)e)X&uk{SM)x)h|6S}C)NPB0Vx-# z#O>3%sS<%!c3Be`TMzx_Q_LIl(qfh})VrsT_TkCft?N)uU`XjkbUuT2M3UD}Q3}na z+0F>BgUB|DOuQQDJ5WMz)8+J;^wRAD=H)wS>{IW3?y(nj-`BmcDQubBD}X&|oU{9K z+g+g z*x%>f6(6antfdQbdotB9gG;_UI_^tvR~GL1D^&~RJ;bu#A(VfR`NVsLMDyb%iN^9QDIV8l;&nI&(8l3%-pPm6d8DExP6sqGR;cms&%~2g-Cd@4r z-;l0!axBV=A5|Cm-YO++I{VQgJhpBrY{1qMG1e(iS{X)& zEbmjt27sq~JzEzJB$4ODnOcUPmtOgH<}>6?sSYA&ojYWovL@9w2Hk@kb3)EfiYYoH zTV*+~6=jMY|MCL+YD!8rev2wf!55BSM->k*<|)7d(5##h^KS+lxbv>BbFk_>NALj6J!|&YYzxP_xe>fmy=UGeMWAu( zaR*dlFYTc~`8I)61vw3q2>Mv@H&{hQ_lU{)!7}G&3S1(xu6(F))~TZ)iBN8Wib^ zc`;~FX5tfo7E-@FUmbi@xGTRNdehzI%2cZRhkotMKRhAT4>*t;)BYpV30e{Xn&mnR zz{F_;iekwSI)fK3qpy_rqnRp)sp-?C^%nXho%bQC?iNY578f-9(eD6oCg6(rqO>^( zoT+NHJdKK5=TV&qPcRRD6!w*CfHr%CyCoY#w=~7z@|?&;dUKi7>ac@=(*?lsO+gpO za8qh(li<^;j)M-Ng&oSxc4+&bXC1?6~LWz5GJ_yXZDYtdM`FL~=4*{HRs z*|cnY4HOt-+VCR2sF5(b?rq)nGy*V@%jH@BXh~U%8^UNN}jp^O{i1u$vz49J4p@E**g( zFE{DEh6zkr!Q6`KddVzf+xCWP-g&UIeOwUST{iUrr@**x1ai zSy6A3R};JXtka$8v+c6VYJLMsy2z{Zsbp}_xxVtXxmjvdQExWxEqNomMM!MnmKI>E z&oj-xdE};@Mj6o+3iG+cC9=`YX*zKC+?AVL^b5^_fE};53W+1o?VzanI8!qQZ-0Yj zG9UfOvsx8IlPv>m3?(ObohPNg4hNhfHJyF@MdxkAb)`d9JR!pM z@pYaD4prO0Xub=2Z8L_;BZcyC+!jP$V)lF@aCyiVvT!v4dLTRgV-r=_u63|V)x(Wf zNB5wTl$!DHp#U7M{#l_~$3VDWF=6~z-sP;#3H)uoXr8K$_>U#+*

0d`k0B0rs%c@-$g68{MpaK%G?1xyj_lH_f3Hm{ zQPjRhQhOV7F8gbXkKv2!A61*z0W}91k*xp>^-_xF*&e;wTPvnFYjZuAg|R%r!nqUd zyVcaz&+)juQQxH_Cvz!z{(9Zc&1YU;yA7f!Zi3 zxhGQ?UPLXf6|rRchibhdxk2EzN)fe~n$wEhc9=&IO;^1TN;R&I^EKtBUf{d<2R?Ma z@+HRr%JJ!;x<-|OTc~PH#W~*=uY~YG6+$size>#pSK0%-!Os=I^3qhhq}cJaV_|-q zW~%HnevXeO+Y+>d+QE$d-uljU9%y&9uWdSF<$ho63JBTh_Zra-h=n=;8nv_BI?@K) z+Pre?`Tj9?dUNT4pJzbFe=_Ntr_D6FKomaRW46iY>lS7bSK)ZyJGJq!2DZ--6!NwEV8A3e zI2}53Z)&v#a&cOO(7OLlJe~Cq zJV0w{mW8+k5BsV4Ll8r$dEmbZ_LH<%{o`M(7Xd;iD=bRc?726v>nzT~wxt@4&H;!@ zJKO|PnO>=o)JtDmIr49wx%G1QJ%qxuoElD+K)OAAvro3_wuS7RMBdfHC#VWY2eo=4}Nm^T@oWIXioM zyjJHT@*xCp4Jsa30uoHb)l}#qqRF$C#X~Jf$fjc|v@C`jyX@8}S}%#hI@_liFZzNjtNy zYP7}c3>|eCIS^K?V(1jlwEnoeqWfX?S^ms|iyg?})f~fRkJk4TNF2=?guUwCz{#p$ zQ_GGI5u3`W&b9Zn3fKlnwF&#I%HD~a-$j8Pi*0>(*HrJcmY|QjP=X^NpN$l~i@rmh z)e?2U(k%S%yi3v7RTA04y1xjhDs5eCa4%&-8n@5a=ll+NH>HC4i}#UV<^TI4*Sf06=Hr``Qp?Hr?%Lnmn^1#0 zjh@-NnFzs@m^hzUuEr|B9RH`Oac;}?9JV+L=!m?&T1%XiQ}Up++5r=~lp1dO+JQe( zFf+x9#`@cFua(e?oxO9oLEMGU@|w>*^9oG}^+c(u>$E+^tBDvj*Ezy&yE4)<=A2B$ z@CNwxpte?L$z%ozbd;wgBnWr*-#lq3-`DOTN|(H{5R?AH+Eh{*YcGS1d~MQUEAz!A)U=> z^b2{`hW)!hwn%1!gND7KNKJnI@y#K`OSKxe>jve!eZM|o3tPGm&oFxA6lV3@Xb!VD zq8i{w+D56L!)CY$$TdSsLk#gFm5Ti zAH@q#P`}9F&=@vwvo&2yOP!Wx{_3npbW-pXvqkdVlOLR zRv_48AhM>2+nRI}dp#@&-gi&^Nau&tF8u(lqRBhEF**Lm4Mozke~VLBaBsKGVq~48 zDrZD1*y?fD2@6e5J#IbBWQ)kam1gAM@g4B4v*@|Q7Gy33{$aL)f4spIyT$T%Z$+aj z!}ky>hi^?LSr}6DWZo9ju*4TC=YGN$cb$rvKq z^e3&VtDe5Fsfn6ZFJRi`^CYmQe0PC-2L8^9c1T9mRaRzuCK?gEFViH6Y z4uB8{)dy#SNU5>w=zk6*^?u9OK9h0&jq?eRn=HE2Kamf&_mcZ* z=}_B>XaSUAet9!vRzCia;Q!bnS49`hH|5=rC~r*2fx23L&Nu+tq0$sac7`C&O9#uF zD%wxt%^q;{krhUTBTH_0h7bXa)T?ICInHU@+S=T)@nD^lk8kp7{2S3zB`jNlhWvVV zUCa}jCfUzJW(oMme)oF%Q0+N!vmG0dmc;3^pKwOA?HkjCN9x$3ew);REsFYzE*636;6Zu}o-}029=V9rl{`{{79zl}WO{OGI-dYQksMYE zi=D|^XNGiUzqqSxn_i5%MxccEr91$Nrl3+EP=A_HvK!#m!V>B>+DU=<{&zbfkxdU4 zMb3T<9XmB5h*12ramQS3L)+3g?qVdwjdM11F9e{ykX zQMlS9F0(?UJ;-G!YGGm+)(L0;%aiDI$?1Wq?)oYPyK=g6MQh9f5`%gJ;ouc1FX0(* z4#|L?>;J)gt2A!}3%&S7Dy=C*Wmd`2$Py5z`52VYO_~2JMTvLl$QY!c5pHuF2$;VQ zO;hUI6ok!pXaB4{l^DYvEYymL*s_8gkkZzE1i206zgPYHz$%>{L6j2_i-k7nEr0y- zP}R#}(9m(7NRdcu7x<|ARgQk-;V8_`9Z2swKsvmvEvl=3yJ2khC?YvYCt@zwihO%AsxyPGJ4*&;pp`F?-;K*$sNu_)I z4mq97D1KoV`4gK1QQj1)yTM_;e<8XL&B>U5|`d_YtYM6fL>z(!Z(F4lpYsyVl3+lT|0BHJ5xkl;fo_BU}#(Ni!b!_Q@$vj3NL^>kTEfvwqkQr=~;gXx;9vK|D zxbU2zOz`7+IKkKORjzT_f7CNxAi26PokM(-OMzyb`k7Vve%%juBv~1OjZb#rmHMxDc3gVh z4}0%pSo-Ra0T&+)Q-#Zolq$@<2U8a)W@!tcmL#{B80);kO!~9J;NW8veF`P{WJo6U zI3S#=66CR0kCp2UaO$C?G!y64dGfhu{VnS1+~}r>$4Z9;#kBtC`&u<3V)C&HQe9@$ zb9#ZP>J=(Ay<3VEGFIkC*%MSiv^LQ z@DfboUq9sNF{_!$Q*v*Ri!5N!DWCf+YCp=!MaQU~vJxR-C2Bjdr4gHCB>R8HldMN5 zwV8n{v0^{pfQ&VIKyl1AmyMx`;w-^4!D5PYvS0r+2WjbL^mZ)vCS83w9ocgy`=tmN zh{L&=q3TzSew_!m9ZldY zx+Rb>fP8PRUKOgk?X6*L3#{ozKVruo8uK{r1tKNx$WpHnTcy6RHzjmvsE+d{xSYRB|&jpvNHnwFGXsq)s*-5 z(6|WlD_6I8o#Y*z!BLk%9^LyQ<3Ub|!(%!C_hAuKa)TpSzGamVv6gg?G+AKE+9|OB zaJZc{ViCK`Z$-qGj@VZw<9{&fvOn=}v3SL4Yj*9UK^jT4OOypIIs0P}Ja=T33x7B8 zpw?lFXdo^<%gtvWMpab*Ma1w_?uQio0&+|O3$VA^2g@eXR|8Sc3KNMtxZ8ca8T;&K z*+igv%Pz`@z1+}aEx1|My?){#c(x$INIcj1*Y|TWG1r3!f|^tI1LrzG09hilmh{zq zI-74hS#nhqP~RoaDp|Y3I78mt*w-!fSN%|ROhf`J3Z!J0c!;bcGq0-2hPfvp+?&>7 z?nR^*s1J_;lG!lEaFBn?<1>CMR;ELjAD>DS&~bY}XP!f#vh7KpI{WUp4q~!wDd~Tx zNPwvcT!`GgEGlBW{V})SL~~esKiVPEe|(v8V?JJGaO%^4LZY1_7uHD&-@Rg_jsOy_ z7~sLr(8()4mvb1Ns=XsauHF#0T>=6mC#oKfehNQ{xpF?)KEP*Zw}ArOmY*J(UiLck zm`n2ie&{6&Uk)G=b$Dr%gv28fe_RSHi})zwhoYAAlTq2Pe;Gb|RK&jkSYSR5JiL2H z*{5OHTCE0_VF|i_$qX+t(Oke;Z=;~(8J>qu0L zFE^@Y&IYhB*`6hc6M7P!dWc1xgdLSxOOS`_x`KYW8uEF>GE*s{5ZfaeAQxu-0@?6Y zVE>e)J9w}ZVNnM9Xm7A>@HlHNnX1z1PBF0dCIJeh0|T%K^0`J`*C% z5s2GFH#~7mX8SgI^x(fek-$Orfmma6>{o53VQ@0arKTX!AifD?=3Od2OZM%E@|-<1xo2HvHhcn#V;-TfcI4BGecxpLr)gDmA;izkEvJ zuww;xO5ZxB2{eQxNPH02AK7^6pEU13w?yV{Q%2Dbv~+C(XlaXWI*=O{f83Rf$iyIA z)Qp+_=QaxrQ-YFeRIg$Br{L|4fgQ`lbWO~QZel+Uw}z8R8ncbq(jUoZ+@;8j&)8q3 z{igu(u9TYt8fbR@bwwEF_>6NBPcYbXUo1{H7js@Wpj@3CvBK8_>H5A)?jdXp*&~S_ z!bfHeJ@ER{X@x)N^{!>}o!{?O2d+m<14zp}bQmV4#_=E!IuUyQSQ?9VA==A~GJqaU zo1aH}KOc8&4z5O+4OIV=y7{i)<5M%)1t@!0K`6hm3vtMshY9~m3?@U$+L~m@9eRSi zkK$=2xp|JJU$5{tek-k()u~zAKMQ%3@S^i8qRG6xAx}m*jd0E9dhPn$2C>l7Pf#Km z`uw8JavmU~^AyV({`cmYfsz{n$%`nfner(;V_6OE1>l(FbvS@f2YVA!j38G~)w3qI zt`DKkHioaFoBjwjI6}TsoUMH(1XySnvdERHMgh#jQIqJYC$3*iSo-Fv7Y=Fqb*hC8 zEmD<0st8BFq;l@nrsJmwVj&iQCfZ-s%Rk|ARhkD8>7^0H#{d-&q) zyb-ZjNTVyRCI>J1-`A-jv4a>tY)JqTomx&t1w zG*ZDaOonggypo)>WNh^(g~87sLQ?Me!DfB|YF7UIsmAF<6I95ki(xR)!_xo}a6LM> zx~VXS%n#nM^8A3xB5^%!02m! zfbSa2!td=*4D}y}Wkl<_$>08T>L;ltr&n@oL!lL)!1r*czU%!l(^hv1b}J(=8f)QO z$mp0|WnlKtN1zzmD&Wu@mc|5g0r^ZTY=JhF>(ELDKNRJ_qB6GM6}<$}70l;6hbqMc z-!?fmSa=zt{!+L$YDf0A@ILn8}XkU95P$()>RtzI7HS>8!X7( ztkfgrep@quqjD! ziBCs_2egd8Q}|SF(hcm?yG_;AKo8MvbW8Xt5}C|BmH7cUshfOU=c{Dw=(~^X7k5_* zWON>NSXXyD182t!Qj$*-P-m}LOQG}i9~EB1!AJ=e4nLK3&&XW2g31)}J-z*HUS6>F zwr>=J^^Y8?@XuY|o!k6HOB?Yd23vgonnVv7cB+rbS3U9H3)FrJ)b7ZD3!CI{uhicH z?Yn!@H+j>8^w7@$4-S9B52Rr3!KSx_u)f%nmRUvX!>B8Hha11|poMp>+cA%$ili#+ zKA{uE$K*5;c2-7tCnPuudTqu-E$h}d%7`3-gOoA_VI41W8jS)}GCRFtCe*j(Cr6yZ z!vo0rzot^}KX~~BMeAq{Zw}DTt^@%Jqew-joi?mUR#+SY(0(mkq+!(n1>06S?lquw zz9R*uTXD-z5>9BC8)Qw&4iWg6nwOa{%XT0gK@Ar*$>Q_vQ0*kjiaS*0yPP(Ppp0@> z4z;pO1iuvm@ZvbgBVxUj^Zu=)lTF>SAj)J@bUUZD&bk9ASX6JT=mz^fkOqO+`8g=% z>UFC|!h-w_X{yq<3lbW4Vl2fu5!hTQdE_5!eQc8EKhuPDK+nVM63s_XPC~j9{Q6!9 z>7;ymj5We(v)sf{~i;qC!Y0I$PxXrmBAB6vA){G2jYS^fs~7E5A3_y zy2hy)b|K;SPxKir@cmL*wE_8xmm8$lV+r|()?i;dVqB0hv`qWam#21AUR#+72%=?b zccuZGoM-NhEp4k)AaK{}NO$t|{3hV}2A9j)rLv?(o$xQ$V)PDD(zG zZUPz^iOvc@vc6b1*)^fIW_l9PidqeRK6n^6e)!1z2euf^zYxbG1$~Fe8 zH2L)R95{avm{k`erGj2D7|Cp+Qz7Qa|GH46r&oFW@Ad0_2=W9V$%mmbi=MVZsyCp) z&t7c!!MgxQvZHyikhAJ|+f*D{y6=tML_*z<{m(0GmGYIoFI9^$D+RiZDplHHJ=#=Q zDs_F;_eB3*#)bML46Y_~sw{NryiYt0S_T4I{fcw!d0bHtfa@bd0Wzw|bF=qf9sHgE zY5Yz}e$~Y(!6t?^Cs!$!RO&pFJ7@Z%$=*h=P*Nrejra;Sk+V*$Q+ZWPY0tIAyV}%0 zF2B3V`x3Gpf)@+09G<^B?Kc#BfKhqqTm_;p|b>O$sD=Rp` zQ4^L=FFdT1iPJuN7fppjB0z0tn_aOIkDDU`s}e9w2$&ixf zH5bXw8w-@u`z{~(G6-k`6^C_S@H$84r-%swZeAS_#iUQMm5ZW9vi~Jv7oU&ygDJnh z%rb3CY?V@q12si%lK)av2Bs@dFvv>dTG&fM7k-6>>ZI8RsPt*uFSX{*|pS)h|`=l!4Lk zHF)=4+2oN7s`B-FNv(s1)w($3sgSluXF5Un7;ff_;kH&YKvEoFYLqKpos$138>i+S z5jiTdiVXtwOl2Gwm2haylIKM10h4%p>Km=!A4AA2^1Q2?*Xg9}o_1SGY>UIxL;_e8 zyn9tvUMsW&Hu3StC`%J;l-$Itz5_c3J|Hd3x;#~|3+ysxdt^7tdq8<7=(gX(QYGs;~)d$Ga~PWP?2VTm`LfoemV+^c>|1A)7|XVs&J48J|7oadszd25pw zO`SLRUhcUL|Am4y4tb3xG>m?#u!X^8D-WO)TO}Wg%0hw4Me~1#%U<)V00q%n^YzUE zWeJ-(8-VB!=BFzjN0px0nv=6!ETILeKRI)XE8Ntd*N-NT6PNis%PsvF^t_uY(xR`Y z&*S0}HXx1Z>nC=CY^J5JuCq6wKN=B}p~TTR9h23ZF*)~tms$z%9QHELoI-w0DCkaD z8IdyV@Bcz~IjrY-SFx00e|~!6^bPpH-t>ntr{F&c71M8fbiQuRc>#K-C=wj%XB+n8 zFXmYRE}b=_9ueSF)Wzgeet?Xf#2}# ziWiqPe73ElZh4W!*C+MWyXiZ9{XVZOIDq9^RA!*Ey83Ws8!%0>G#ZwWskYUmQ7i|Y3b@dym`!eiRaCJ)i<>pcbrd{9qbCY=f(uN$y|51KJKq;GCKQW7SZcg^8B)IS=7ECbL> z)r*9RZp?FXxBk~x>3Ns%Adp)?<(36PVtYN1f!@XPHL-6l! z-8l=uNBiIlquKDZf1gfL{qAo3@~=TcaBo6~LuLrb_t*6mg5ic3>zJ2D-*N><%FbK{ER#_G)` z0pVJ=&+6Z|s0=|$n$i|N(0LdB#RX#$;VaNU-{5oX_T=P~y%S;Q&K2fBa$82C#FW&| zSfJ?n&qH-NO`BfA>01j5D<$5(f-{6}V&M)?Uv%LrFX=Ng@*jZN;51t8H%3Q1nWUFy z15$4CGDEJHQkYM+4=HtQ_59iH1dNVuiSUwyx^` z6m2Zi@c@kf{81NTuBc!pF!r0vgp7vT#Z9#)(z%5bqID2a&vBKaW z=8Vs$A*BGTOKVJuqj~IRO?}KaS+Rq3L%p09N9*~K)v!2@<@HIv!G28|r*DdM8$T|3 z4Vzl9@UnHg*mZ?82z2oY6lWE|t#C<8VPoTc2JdYUloHB{nRzds!lWC1bMuj=v|J*X z9l>7J-l7*Tdz|sp;`cg9Q|(c+it4QiV@!#wqo#T+)$Erw1MmCM)7={ENb{`Z$63j6 z(&Ox8dm)_R#7lATLsvUH`V>E&cY7a`tufqvU-LK4a~0)tr)7Jnj70gkX3l2%yL$!v z#~x|)q*9yZyL*00>px9(!e2-zEk&v;DOXCq0z~;M-^%Tu5__bXtn1m++7bwQ^UE90 zLC4*Cv*!?U5h~Af!nqKEHIqpbOZ`avR5kXl@|&ZcJ)vg(tow&m%4WS2+Ro;*pcCawYv*q)+%rEwR>%U$ETphZebnqxK;$V3#>IOKY~~U z0*NNelyKF%b10hZ$Dx^L^-HG@%jcl%;uNcc`AOM~TH;zylthL&)ybo*#BJ3x{CnV2 zbq=2lqbG7epby7{`xx zWd`XOCGm$a`5&L!%^J6?OkD7Li*-n`1OuTxoj2a(W``_MFRj>&jM$r&+wkhTJZDO> z8kyar-Zhz~q=5h%V&Ty|T0Olpxw7*=uAifB<%VS*qmbSge_ZI+NEa;oM4BIxbIRPC z&4D;Ance|{jB4>Ms)+CBNS*eSFIUSHqB7(c*@~jI)42yF9-&8($6ZeBCA{iA=zv<8Ij|Wf+oB4%u7X2e+^ar zBoq&dPtAR95rJOZ7iZ$gn*K^ZM)71?a*Lt#?V5G~leJ8Opq7+mluI~!IAjlTKJF}1CuFW6dIHTfkj052`kTs)wqz@dEIab_3aF57m#vjo4l-wbD%sJ>`ekH+m`|imLA;1`S3+pVN-e51UNdQU#bcP z<9Ja5-$Q@wm8V!qTU8cnXJp*A0~Cc(Etp>I=(g_h+QV~tqlY&Qj_~w6L74;m%v$VC}cN@ z;quAP?nA6ore2jpDDmLB)MuBUMJnSES$?M=L5D(Rqp|{#{VK);$Y}=p_*!x;P|DG5 zDR~>GT?RJ5h!=E?FH-W`t=GPAjU8q{`3`YHR@*nMrQmW0YiqK%wY5NcwzB!R1 zpb`3AA+4=QGCrLoj_!H>>i!koH-V+Wd)?isKf_|*SQ&Vy9jt3E8`lmJ$7VvyDj z8{*@>!=$c)xIHbs+hjtb&ce>fTV2QD5}xOFo2}o!hS#m+p*JP8o>T6^*cS*v4<7t8 zzh;HDRCYh~l~3W8v8r5Jar9ICqS?Fd^DK4wp^<2a$WRw0i3U13qx!{U)$cT@0599Ia)XrZVhJ9uMd|p?CH9|3k9O6YyAo^^H^V!L!TyoM1xX3#asegux9i^V z2uV;BD{h!WN-ZgmZI0=ILJbO*oUt~uE(QcyuzlOV9z20EO1p+?zwA2gilWrTzma5O z`3_e&fc>yca~66lsw9RCu<5fOC2aq>Cj9Q2*}8#M(_TCO^v$m!ScA|dbNnEXOg0PToGGN>O?alyM9Re!w{XV{3X`M3g8$SvF4kkk2j*y|YjZ(tgLn zlDByGIgRXd?*G4c(wlyXsl-68({->x6D@GX(F&f;BImj>Jejzv{(p@t|GaE|ldCQt zG@sZPdRWA>$bH`$9ZDoWY_IG;I;1H>R&b5EqNCjC9kTujUmK*wyM1V|VP5foQl^su z9K^2B%#W!=@`E9oGWT`}q$>+3y9FvgDmyNefWrD;P!#H?5Zjqe;w_A;=(vEyzqgl7 zLY74CbnAo5d#9`RXAWij{{Z^NzbFA`0+i8{Ms$pr|m|8424GW5&(G>#zW%Qxcr_d>LY_uX5*{Srqtu}V)zSwcr`!P4~WFS z8r%PY3zl@_e4>>6?`LMuxQNo=sa&6}tNF}rVq42e;m73XrQAULm_9cH!!0K@Qmt6{ zZTG!eK=KA1tYVJ27ayY#2!@GTGxImj-6APotbmCN9@p1m9-PieYW z0eE9MjWZCLe`@>rxX#MbfPaV49X2(azvYv;yhf4dC8t|Y+RbO@NyaMr0nPfML5t@#_)-L4gcl$#S=!gS}aA9;mCFkt-{b#j{<}h71AP3C8^QoDucc7l|!W zWqE^8du!RQwx9!=;^cC#X0J1M(eg1om=w|DL%=i#ON;Kh{VZ#KJGlFk;?3J{eOqqM zZ!E7Wj9&3?k=oH!Mx8cLWyxL53bO5~d?7>OU(Y0L6#$dV##=i5jD_bV1%zQxl7}p( zcCSYzUk;59oF0wfD|DJEj!rJUti_BUPaQR4ypEOUUUHjD+bTQwSL9*6o?ks`RtMND z6FKqK7#mla6J0M*Wc)!8Sox-K?Rx`$#^ZNJZ8UKuM%(9(>^wkqWaEJAV!-RyaFTzj zQgWC1U&HEe5KclqW8S0(SOJ3nDArpVz<2X#Uhz~_Sasl%z!K)v%1xiv#`JjU_y9Q{ z46AI{d576Q-msn;{HiMmQu;Hl6doNN?_mCyS%}27R|{{WdNm-Q9kMS?JW|Cy&4(Br zHr!g>tp6wy(;pX#RSR@IKvXf14>pngF3802C^Kc9vw;T}&oFO!cuA%RB)(rS)qJ}m zK7InyV*a+8oln4@<@vsZdkGhmGAK!OSo>f3jl^RPQmq+`FPq{y%h7I7M^o8k>pg9t z(B|@W-l<#4ISc_UO1=}flv76E-nvR+3BQ!>Tg9MQ^NnP^wt`p9X4ejdInuj#api+; zW%HfK2Dy`)GUemEg!1zc_$hF{8H4F^H1;yej>3 zWe{vx?l5)e=#J)*lECJ<_oP3Uj8T3aC&pQWF>7BOu2y@?u+q}Z%djc%f2cIY;o89Ov0hIuCY7U`e z_F()-BxxwKz}u7@IAoaqG>sf9v7=#$ zMmF&Du=h*B87sE;W5h#X|Dgt;NlGWzE|UdX*?A+YgI2ZVal7=aXL0PDBHM2_2=WX$ zzMxMUTX*)}jNibbtdjneh}yC3oiA1a0?DJb3#9|WWVeX~rtv+^j&3b#>!?+0O4c~-%zeFDL1t4~ad9v61}(q>a{L&iWeT16oI)qTqYcd+4mS`uY@QLmS;Xl2r*LU*h`_20s#rziVPs zLx7SV17Rwk?k6z8>uSJEa_wQK8A(479afZ;yfb^J-B$Y&uO|0=Gfui)5}ujCNSeIz z6)Totokd-luxy>&w*E^9dzsX#X`}Sd-G6=-#0aMIe{KCnXZC;!cc!vp^zzs6&q#Fc zYn)sfaw({t88v0$Fs5Y_hAyUq9-KDoK~uc&dIudzNNxU}*QF&Gd$1A=_a{n)Br`oi zRTjd-_m*yaQ8hz))am*No_Tr0dkg*(C$bsNs^~^`l2F4NvUGU9Vv}VhuA@gXfDfWx z2FE6IK@gRy15AUn%V+}K^H1u_p2#BWDfbZz>=l*oR zw}b9||AOhqSKn9TE9prUgctVZGU^y?PSp>{Y0eubwl1NBJC%;7p-`(XIRvN_1O7~x zzht{fxa)qVdcbhRw{Cj_EOVL7V*6ND0qz4od6Ng%A{2aRqB*{!RNr~1Byysx7nzR@ z5HIUP3YsqmQHpB`y~U97OKdF2gD)s8^TOObAj0tWS_mO21}3;CSPi8X8yK92}! z;bEI{)guA=&qIM9C19fo{2uh0I>d78REsb&wlB8*Ya4WS#1OYT3*Y!%Zzl94GGhMF z2fES_y^{-sQBL`mDAC#oe+^kD0n>MzP+m%Hp$hrvP8%hP@ZM}vN$)JkGKI5 zXd&V8cO?lwZ}$opu98iBhg3*mA~QSS(30dYu|0W^Ovyz75B!z~FPq6xkWtIeDNxL} z)h|?2JNF&XgDyvoLB=A_epsEPbtkkSdy_-%S6XO>;6!9>t-iaXlzC#;5*9|s@jg7N z$wPF#OOZ$YEdvRqCQh@($)EMbDb!k|mw{RJX;b<5$X5v1iXmz8RuXkS(?Q*p;%?5) zhXiH4lDf8Bj(7k(*Qu*#gpn{=1K5hh!phx?JbmkPO5h0RWUb1^=%C(Iu}wsT}C z%tMgB#_sAuCi%sz50R zwSrOO5p;%y{`%P@AL;IpfDBmJd!AneT|}txrFz%j?M^XMJym4bM2tbeoaG|=8XAME z19JuO;ho9k@tw)I(BXo8mp>J3NkI2H;@d=|;fv9(TbbSus~Sc{J+`kZ$WCBIdTus+ z)iONWh$Xoo*#kuQ{+YAUXaheWy~&;o%2536e)%07U~>5VDIFt%)r|l5TjbreWHTCF zub%?D&}?mO4EiYQ+0HGWtnNk%!5Kb>3UMfZ$@nsbGt{bp$nWfj%VwPjaNN=(9e|A0 zJMkw%*q7Y$nL5TC;FtL-gYn735Y@XC`IzJEnCp{| ztz9qd55ly+9Xbb*xc6y;7t{j%?F9D}W+%L=EOxZ@1&`^DI=ntX!G9H9a)F?zvgyd} z>XRXZPck&Ssfxx2gM#S}l$IAW4|%aBcW?ITDomM7SufEt-jdb&D5!y=4`2ZWx)uWF zxbf@ZZ>!WEDA#Aoz~_?YZ=znqAAxyc+EAUj0CUkx-4yHGMlZx~m3+ipwZ3pMm@{3J zk$BqTpl&-`0Gd)~f7GJ11dcuQ+E8vRyf>uP-K2+tr@`3>hkO!}g^cjcWG>Z)8K%%> zYqEozsReKaHBe7C?)&7yeX6u`We0}lDIP4xKsC%UvH+hlCtteF7LA@4*F-R0hZ@nKgB=%<&#f8nyL$%gU) z2N<1fEx0A)3|)MvlH=phvZEs5; ztBJgGz#>M6l3Mkn9%* zpA=;nJ7=Q1y*Gl*^O&gMH5j=*%h(0$YxOwW5B+ijb%jfdX2B#x=`QJRqy(v#?rwQ$lcX5k{wf*sq<4+*C^N^jR(RPj|Z*f zl6Txj+?P0OM3Nh@3L0ZbP3Vsg$S%H!B4nRxU0|oRif6B^xJ2u*<3mEPI3c`zfWcM# zmi^YW{_Z?b`7R#ZN`cOYDdK^z`%wNCb1-R+8^ zn0GU8%=YXak5*2%cfPHpjbP~ZI3*I5@U34T^}H58=NZ5J5%TLiqU8qE5k0UwI(oMW zz3S23na^eP(QkofH+lt#O^*subkk?Rz|}9%rk*c8=NL++P!*6)99^C=cEB@!cxHDi zBc@V3AgCeOvXrI4AP@aP_Wi>`Kzxu*-vAxZv6)wPO3ji!x(u-O6zG2eqTDMX(S%xWYR~;voF1ZUoZY7e_UV?I?r0Kh>s1 zj<*5*G_YhS6qM?FW)U^>Fg-#Tfq}FBLX-nrVV`>R0J5Wj&cGu2@u=aocM8CcsM?QH zEArfU5>QGzO=f4ofXN}(VR>3QCE0|0GvOA5pHp1G9%@Ba%<~yVo8GEhNK%VqaCbOC zqAY+E>(zld5zxkygzU$+Pk}^n$$0}Wi={HSv0wkpV_p{N+h>39Ooo%Iq8m9<#{)hF zKxvhH!yA4;W!^j*tzsUxKg;~-S8?bXZPWtIR1fFlH8@8qeB;!wbriw@Q~|KH9kbkn z<>-BqLyW<%yOYbrJy*=+OZ8l5A(JS6Q$$Y!#?BCa(a<6V;KHnN!e5I+vA^6BGPxi2 zGbOJr>7(lBG4hMH-iwIoSd%{xIxwo)E(e0?ga@)0jiuR_3hCB3j^AlC&@&nhy%<-Oq@UMZKK$j% z?wvMSump6BZ50)uE5<@3D8eA3_@N@(JV+b3q)E|;S4o`S`do(d`e4dOvTH>_AK*WT zxF7C&Xn8?|fB3jYBy8_zt&8W!BB5u~TnDzR8F8Z+DP8M+dmWI?&)60BeQJmjN&aHr zei5oq3m8dzG4=e4i-%=(V1v^1?A69a_Bj&U>2h_cH38xeFfE=TcHw zwp-iR|3tpvMpr6q&M3q z5M8^a3=$3xarQ<7w}j&9rcZIqw6+degL=hM^VI8hI-OqS#&TD}^&?wG;%iroV+#Xg z&qW5iy|Iz-1NLwCw2v`TiF;Ok{;ZMSCS@PV@`waP*x1rgD@9%gg@)b|30)@gAQ9+6mk)-JRt3Lv$*;D;vELq4+ z5)m8TmFjnq#lDb^Z}S#=x)LycjI)b7|1>5u{G8}5EWjg=I$|F!d_o98yv$x0jgFBm zo0VL2^T@>;QXK7l)581qPv50N$GFm+<@g3qE^yNFJVRHX(F?utJ8#bR!G+Y{Jnrwk zR01Bov9%{|-&qU>zg>wAX=ikY?7vKiJh2d3CpC(@3-fNBGbWD#=FWhPhQOx$QK5F3 zRG!dG=S{~v%{I$MV1S|VCUa%@99Ytu(H9->TB7$Vm$mK&&g@NpJA+W$bmxd5Z%ccI z7umPc7HmQMoc(<8ki|| z$Y?W+AkCUt&#$-(Pb;Y>rQ%%C(W(@fAiSrTEH+(6NO*B{*De!KzgK4c`(ziJ9{2hB zJETCv)%bmx@b7qhJ_+)8%=xWh|Fff`vu`t5T9kr}O^Wt=i1=sIQ((W{_m(7J>(SM4 zRPs5<=-|Q|xYy@tvDWOb`8j=H!rI|-&W7bGYR;6tW!UXw$za8;)t(;G<9n8^@+E&@ zk4Z0ZmBkl8be7tOSZ%r|K>v0n`16&P`BY9baACKqk}U@SCWYpY{CG+FD;NA-iPz|( z;1OM)8aqWo04t+aX9lP*kOr18VyjwKGfi4qT}ZAmaO{B1O`|-a03RQj*ilc$`PJs> z%3k;m8=(~(v(<}}pFk5OtO((wBPR2u%}ei36=;srMnaD>8qa}SQgcP065>0+OHI;* zL$1<+dwmF7@(;(RV^a!_z!~g-4utG#aYbgOq83<`+r;tv)b+g%G|`{+-*kj5T(Ob| zG5+^i{Lg>v3YFo>5$FE_x%Q?JQ2)LgG2e!y)1MD$2?e{F?t zF!GHi;tu#)_xnun7T`U*gf5-|qk#TA_Rqq1;F=oJT#UG7BEh8izOJ8ePBpTk~>tGrP8 z63}+J3?nSGzhriVj3uUG{TwRb^^Z18=^cJjQtuUhHmA$veOrw95pw(XOMBD9=?!B} zPkGZ(V>7sH!P779wayi-z~NNH<>j*fR5--LE$_8x1fI1Z|5*PlB{(y<2tnv^%(4^L zD3ZnWyYX{GymFONeQHC6x(s%*je;!XlY#S0bo8tg=c~lU*hhhkHY}NX5-bU#Ry}L( z*hn%Oyw_-t_^J_abQsoyDE+n>Edo6Z!QpUb9A&iNUic1_vvu4Zbz_#)TWouJNNV*Z zx4?7+zGgggAOGg#GjIj;Js0ea1Jcu9^|4givjzpr>gZ(bvgn4>!g5}i=XfYZohpLh zzK8{vWU&*Fv$GMb&@Yz1;UGr+Ag>oJ|FC3AtYBkbg|&0ixkl@f5T`%;C=j1RjJC(Cr+=oy5T zsOp_($QWIKY&>QTq%g{2W+HkQP$H&n?|=$@azi!OS-Wwn(MKTPY`$Qe4J_TBeFRlK z?nmkEkBtKgjAQ}h8a+4wKLtshcDjPv$ew5f<f zFgAsVIoxxT;R>sh$(RympYJGR<5$LIbKXdSD`^p?WDjTzQKDf$9t3QJ=#Hf31!sMW z^E?I$wyg|>mDh&|u-en_CFv6qjP?&sAf-2MRI2h3#|u32V&mXTZMe>{v8FQftS#1s ztk56RI}39{37se>qdGni+4i36g9mS3pPb2CRT>tSs*C*NQ5Hx_nEry& z+1$r_PfzgqZN6Y~SVVA_)3w{aYR|P1|FPT73RC+y`bbLhnakJ0<=B{^Sko zn0AH|GS)?p+c=3#HVN6peQE-WX`;CO^&m2uc3{GKy;&vWJj*U6Y&tuiH@YZmgBY-9 zs$e#R93d>I4^sC?0S*svO*L{1u#w~?x}|{zGYUU5s$K=oa;7Nr4^lcQrNt+&`ODPQ z+`8xFm$T(^6!Z7JG?cW*(XU<4ZA(4kxwGot3EDndhB3vQUe0^F9bP(LIRkBDl`v}OlXbA7i?Vyxh4zKukuD2xFp&>*SbOS;ERChgL{Cp>;YlimDxoa- z26~;NiaZ5v%Tq&IzN@4@4Dl%$ywS8Wvz}VE)vu_29~UO$0?OLFmRZOt_qaPX>F(u< z?Ji>K{(WSCFOX(YZBF~cgFsFamXRk`^NK8Z2m3j99;t$0haR08Y2o#H za^Ji+bG|F1eUWjUp@+n7yLwS1RC-afRX?XpT!_Y)&8x*orD?&KzyCMt)aORL4gXrqQDhvJh;cQo#TsKh0B3j2@brF%C_ zS|+Ir2^VgfU%c@~|9u!Lz8Tq@vmGDpRSO*E zm53=2Bna90#ZG&=(g;5dvkr`2tOW~BN3_$hu$!&rS{vhzTlc<|!851KbP7soXsP4Vt!6af+dGpHuPxuJNfR+v_y~37UX6j2KfZDVg z5*Whzoh1GWWS!mrvHs4|u;xThnM*JA)DXAXM(Z?tTzoP`^4MLQZ8p#D+34^{t}2~P zk((&56601M#h^zfUUy1uVgX0+C6F(*-VK^zZZiE8_sM z(*VeNM)bydc=ISY^-y}jh`f-YfH2hYn|yNjHb$sYF%JS zM#B2!)N=!qTUz;4r=b-~tQ;k!8p_h(?TLJAq;QRT`~A;5&9(`MW+ECrWTxIdWrQKY zU;b`6cJm`zILR^pq~jeC%TbtsxmJ&s;rPf`6t)qomhGBl=QSm=FQ+5X-SxK| z@oN|m{$$cDL!p))G>`9$kFahf(3Qu~?xjE9b_SOCQ@KE0GC~q-!M#2tV={986PW&) z%URUuzf39lo~YXLmc;E!Rn=3l1CZjug+4_Sg*M&NQn#>`T~N%q+6Ge`K?^geY6AP< zP=t-6h#}Ow#9#gf+6V-3bop#~59RJXPOKM%`8aB$C#3!NJ)zokMYa4e>nEoLBl!K5 z^(eSuT{9=1Rp`&@88d^xV!6rlYtv^!9R=ok%8YGzlkLgoBb&_kYoI)nQrU8A!PHmE zuq=M>XxVqOUugsBrJaK2Qv-gj5k@xlCRIDI%tQNP~ z6Z}9U8z!YfSI&RZ?(d|C{Z~9oI>Xf&Z?D&waAc-=OXL8;Wr(Qe0BNb!x@-;wMNF5n zU=(?U9-X57`Y?fLSDvq9i}g|_$GJjtSZ1q)oUIS_p1&55K-PHo$9w-mNWbvP1h^E_ zaCFT+FSnRQk+rzWe(yVB7*ayZODi3}+n-bo_~dI2h-0}nAt$}9Hn}FHUwEqDIwz8y z2#xEp_lIDuKoZYL#NF_#hCHDZ`uBfls70f1(o^s(W)6+~92WUbTOX{vhZyS^Y%`_D za@muZF#QjGTuR5fhy!D`tb4y*ZW~Q9S&7LQVSC)^se}Sp;UooGZ=rrF2;uauf~|7L z$hmXC4#~$GE!C@~wIbX(N}e2iD-_6P;*F-Z^Z&9O)+O$~eB#0;W#P3xh}CRDc#3Vn zT5>H6X^iqJo^;gX)pb%fk>%+Sap0w?jUoUrOh0uUi3e|V!fGzQUsrhvg8H_Lk>i89 z8oA&fJu^^dU;NP5ckd@Unr$P26iop^at4L%iy#Ju=xK)|)|z=k1KLx`fYTIkxRpAWY|q|TNA$P=)TOFXV4CIQv}1O zL3tn?Enu7gMAg(6iKT7j3oF1SL&<7c4||x3h;&cbc!IhbkOBnSA)kC$q3&0!OSYY* zIDYhLjc2KBQuU*(jC&~in(!)i@QVU)<}O*Szc6I!^S?nP7r1j#)i6T^=KC^;ld1$_Kv}T7+stWws>puM$o_4^&C?svzrJcKf~aQO zw2pzFflMnFYN7MjHtjcIuzfAF@qi^%5#m?+-eCGC7_kNOSPxaF{(@t*j%#(OOGxY0 zw;QF^=`?=<=V7d-mwBq;;2|&L>*sdEo{qQd_TsER)w5ZS{-qU)}=7U6z2kBuh zsEM06$2M%BR9;CzPxX?#Tn%Q7RjqW`{q5*-DhI~Z_c!ZszAOsmu=aaMIYT46((VdN zS2^MhCxr`{pq{6ir~s8pRHNTM-|#+M8EKK7?~U$@5SBpgcjnv80AzYMSXKl|OJvq{ z{!nMUxmiqLe?WzJ(s?;F6_>CbEo=xX{bau{cD#W|$9Jb^Tw{yC?37`B;KBs`a4X4Z zQx4y&EeTm1LAJ{51vDET~d=}m{&)=sK6O7-1L&KI0-QEFvwM{WMUd~jDv^9s{ z8PevzLITM;F_n~bOr2w`%FYFk(@t4GbnX!uLtwa|V>Dd*FP|HiF7ARVKa7KsT68>>b2>qdrfw?ZeQdCzObQJC1=MclCq|X#RYhh@U zN}tP4m$Oj?{`&5+<=LCZ#U{s5+z|IW7GvdQitF4rHHzA-cf7Z`UBABU|ALiT zZP+mDlA?vrrba*FOCY%jEv5=F>h&D=g5UmPeOCmC-jP)k|M5;Eq}{FRp@@&%o@8c* zBGE1EpjTQAb)NAmG5vexb0!QS@Z=8$)h8>~>m+Ubu=0(=ih%-J0 zT^KiFVvbgM!Vhb{{n-HxdqC_oN>>w^#mz?Eh|Qh}qqSu8gc78!kqQ=3WqrX{lcy2Z z7GA8BOV5n+p^3^N(=XKFBC!7(5B@1^BdcOPJ;A1TwHYoJC!xvU>#g&bl!Nr4yI4R; zRc_orB)ahZZkiokZ;(Ha+&+GN%7Q?Z$yGvWoaMBeOGSZAy(pi>D3t~KY8PV;`%Cx< zD6jNN&H41*Awg$(zK|@#YAeo^@RLzlz<;^p8b)BuwzVpdXGSqm(bP-$>f4wVP*kGx zyb>RIUQQXkI$37VJl;woLc=4bj1HSl602HpqE|h?)2=*6OFrZZaMFK-BLd6z6zQww z$(f`DHC35GzqiY98UR*+k>{I&h!N{vc@xRDL#N&&RGNHvGR5=*lCfs6HwFVkmgY!&?e3kB}JgW2sf zzBaViA`Vx^&_0N}VqlX6YY%c;pyXEx8p(qBchr_aBHmq*rPpjKlvf@b=Mr2z7jpcF z9FKGOYzV02zF;@yPqwTzMrePsi`X^fU6vNE-(a`;@XRnqcnw}Ibw}ZIMc}lkYM<#I z{c0wg9}qI-2o>RUABds7#!0xEF^g148cleE6Ti&DyYXji+he}j$|*KtrP>hDYPU#!ht8EAC7?GtgDcDTEnHmiDd3k|bx|Gn7 z&my7Bdi*U2Yv=xyer!B-Q$Ma9CHf%NW+=i>f&=Q3A!PvRbVZ_5o5(Mi1j0!#N#@-H zKBU(-nP{o)kA5xKxPm#l8?%fcKKmsmM+sbMke7?UZ0+orY@!tBkWWL4@#$yW)&F$> zrQrlpPnHKqR6gQsyNr|TSQfDCVG!(zE4`o#G504A+e8Q!E3W>}&!+_D99NAS5Js2C zFx6N4^5JJ)s5NU}Gt$l-dSKDJsvHH@cTsF3!3|D9&~hdY>6jNtv>mdBo%9(wQa;C$ z%Dm*LG|P8bO7CPBgu-bj_M((eKDaDTW|O`tUMv0u zspvxtGm++Q50+Bj4-mUWp>FCO@#Wld4XdYAt;GPR$Q9K4lCeHuH(2hC+A6tFQZ@Hp z=tlin{!5lC&&(Qy0#8DOy-R@Z@%;I1XJAEKW<9>VUk^@&J_+N6GY|BXHYgBbqhN&K2x8v!MOQ_c+JB!H#JoNU9`3$$dc*13oOB9jLzv z(EsF(d<`m5OFee@gmTuxNlr0QL76JelisB8bKWUKg-?<6e)w3z+M6DMl#Eb6<|VNu zkw05DWx%6OeA;+FhGMHvkaS1>=8i@ZY2%bI0(faM%8KszgX(gay4Q?9!uOpGM!)UY zXIkG|a6bHr8wnH2VDcrkK7#x){6fAWwoK9@1hg$P;Y__dw! zc;GlKSdgVk_S|MM3{{CUCRpo$MbaM2Y-9*<{9@L3hV`E~4#zo)bQOJU5~*_?q}0hP z0XnHx36iFgnh;%3ed;&y*zlVk2NJHWN&gp?BJ1b6ioKt z{~XIG0|>Ps?v?r?9|>XisY7PU%US)k9{m7vPGz+h%kjjl4kvPvHzrZ$h%ytqo6NN} z!ve~=pfW+P~7tquTy zmJ7x;9)GCg$nTN)KDrz=mgk^4*6!lY>pU>^_h0@Whg2^bq*wR*rNZE6{UrMrz-ttg%#_Ng3Dz1GqkA9rc;MITSdXT^a`kC@VHWw3ao#(u zcr6v6(QyvY$|z9rQeL*}RX$P6jm$y0)TJn--bCLbW8Y3hX5+2T&|tBd_?-MJKr$-T z@O&@ibaw2b1=#wDiHXeBJ_&8`t=my#rt8;sa$4v{xNRSZ|2$#i~1eoX)&hVzoN z?-zCnfALr5lLI_%wmdl%M#RQeYqJ_L()Tc+7-*&3HF?DBrj_n-lo3N)LDQLum@Fp; z;vU~v-(7uWWod7a#~j;ANsHAe!FWL_jWXBNckRH%O?2tgf^-1B3r5|x##&dFlGKNb z5KIF0q?!!ft^IEn_)XyzYY0XQFHfN;K!1Lx>I$itc6McP&1gNJ{VXO8`b62>xTl@G zRe)Fctm20n$r3)!^02?QC%ectY?7E@xmqM{0M8*%to^gNL6aNJLEH2WsQd9?eQ(MA1)-Yq~E#1#( zLvOxZGbn&{0t|;-TW@CGOes5Vi3DX1OfS%51)!K-j$t;Q5B2VFxulz05Xx%Mq=kir zg?A30-}WBBwz6o~z8;Ne`iN=>hTV3KnNRK`Z>(o!bf_N@t`VIO)7}~GE+#6EV+Z(y zr|KrGD|`8OZkJ2JZRNCLqhydmOW-KVcX(-fnkSNGKc+?_Q^(iZ-+!82v_ql}O`^LZ zgS2tn(M5=_@=0KoIHdqUP8|#45h|%s7M@7p} zBlN}VMU962T)~`yc^}#G8D5ZLtRvV;i4BOy3!*l}T z3mpS(h~)1)Z}qm}jC{0%%SvyRexXjWMW0ybsX`R{WhpnUW}yAtcGQ7c8-@JoU&B@V zX9cqP2HvO+f%J&Oiym$um~F@_O{)PIT#fLvy??PmMS>>sS%gK|2_c(Oq@5aSjv>Eu zEKK+RW=o*)6XOVs0$wYNFX+5HOl*^2XXKm?f zqH~h&!<;=L6gY--$z4=V>wop$zLY%cg^YV~^3rIp;|UqfXoX*Z@OgVT3*OX!ex_M@ z9=pqZz~d+~Y*6JC1N~znx7o<_Ilt*O_4zrj7d(M4$0IWRwGwio$-3$`d81v+KEV{X zltuY=mgBS3N0eB_=gtaVGRBSew7*UW>vsqm$MopG+Hc;YTn;%G1_CYw{5Kb!Oq zwcpyo`Dl`wS;aO&@J{lv=5V(+Un6BmepQmlFo#RE+p<$88&U&acr8HJ4l2aLG`!0^ z8|4whM7jhhXreud2?>F+KJ5tk8{({ITo(wd2PRw&w`i~6~iG_;T>ZXJmad9OXC z!f#+dt8*64nY9iII~5uvHMr&kbDHBak2WsPq(IG$GWeE-S5tLyKuh!wLQFpvz+T5T zB3?CSx3&f1q~5$Z_OLQo)~3pS@hR0N8!nL%uC`f>$hhnOQ!@fS20ia`IYP%9N~Btp zUnS^Ux*UPJ)xQB-p-nL_f-zD6jCBYJjM~Uzte3hZJ0*znTb*Kq3_tA z;ePV8vh{4+!x$t|Jb5T1+q+~~EHg!jiSN?n;uu!NKvb1yV@}os-H}vZvXQ~<;66(~ z9O?D^F~WYT<|SD9W2y)58*#6&qT!5zpcpedtS8fqr0P4Fo-gtK;CrVN6VIa(nWTk( zyKdK)y4U@v#7|)nV{PROaTERQP#boUouqMB8({T1zkT&5@PP(#Bx#TOjH7bZ%PdoJ zCfLEL`Je_#K&G@a9Yq}e-0$1ilxc@pKCtCeT-RXsjftyKl_P{~UV>SCjm5RjQCj2< z^KJTS#@f$o^!?)*pGCpYN}j(s3I0lJaA$z4$r=@BI|b{^K=KnQ9ht-h7=pA10K4nB zTnAhmd_M|L@_=8jt~36ro`<$6f!05HkdNJ+J-VQ16PNYtt3+{pz0j-YN2Y>-QdRoj zM=SL!nNMw7U!0HvONR|x8ep?VTJcY&ZXq|L`dH;A*|d<+8`^00T3{~__+Hr4x z0`2g9G}`yOa+aY)F4jOJczQos3b$e=jp+1)1T<xikfWYx^^2kI~-vS)K z3Qryup;RyaOM-K2g`E;KapNOi54@wfGy%FHJIi({@50Nl`^66|zaNxDV!CeT7ZX$( zZYu&!Ec6&;^YUnEbuTXc$sOGB;%MqDOUvV+$8>CxL?0q(X$B>-p)Dn31<*`Sqrn^Y z&jn`dD^xdEE-85DKP`u~nQ?l^z64iumio`CxNdP5TzGOtv3Qcz;l zmrur;$4OqU+MKNd-g$1(?|mNymf`sIQvH|e@fd5hNBP!Io>RyVro;um8>xtTZ=-^T zRfD>I-o{Caul6^FG9iq;8%Ag(S8hcHmF0KIQfm6M8RFbntMezf7=QnFgfj# z4SLNdqq{01V^<&uP46ZjO#?qx)F2C#G0#dfp~#O?;M3o&K&yTn*xT$~0DBY7=fX0c zWoYZtra+0S$2q^j#{c>~^@L4q06X2g`zceqgmdeT7IFiM5MCQ&f+NJQ56via7}2@9 znc=t&?_?4OMZ3NNbl}e8jUd;1KB5sz@M?>8%O}UV@wIBwqmiEY0|~JeTdT<_YLjeQ z!$y{Smd~$u0*~zW7^SO&|Az7VP%$SEtrO1Jylsc?|NI(maYnyNW-pV**m0)ooR>E~DW;6>~ zjE#TSy;kiGyjyfc5I2;zF<{=;=(B z2Jr&caZf|~1rPwDCk%sxj48b5Gp}bT2U8f@DZp61LKopUe2ZZ;QG?U)Cd8u}tz@qL zcweY~@4z{s0mam`L7i+pLz|(6B_-dhqrYi?b7eTW@#VccU#f#^GzFb{;tkw(1B=|K zlW z3hHO@|M|UIUVH?_e>cF(0sVNyq?1?I_*IY&w}4$3+IS9*{S4GP=lfKi9JlT$yTKVq zOj2QeIEO(0zIq7GM;N|#Rcx&`piL8&3I6#gJB=R(f*_yAAT^#s1@)W;0K)Nq&|Lqe zwIK}bW^oE+voIiOh-8Qva6Rwba@dZjS1(pgRk^_nB16>Fb05#r06}F9;ZojEI;nxX zuS9dpa*|6^rIX^}V+S<(t5C7TS6)OT)!uIE=-_dP5<#NCN~)w@65yeK01BXOnO*X% z{uf3qKV|Mi{QG=g+%K>ZceBK>H3`WCogM_F_zRF33;J+WTHxCoejrO++>o*DU zi^{`gJJ2L`MffybApX|uMCCFyC0P^P0(JwIDQQ=ax=z&51bg5;gTbVOs_)@8IN zDS3TBDQ2~c>#GmmwP@t)Jmv2>c;eE!x zC?L|FKm0CGoCw@qk{)+yc7AmoN(K-1Bd#knIM(hc%d8U?#6bBp$-fsI;gO$&lX~+) z&2&=SrJjqPP$0{Hqn4h}Vqwb#sGBr!eQ}rYwQEof>BMtQgC*yuVa#-|sRgWW`In1X z3B4!uy4V^lU9Es`a$o-rP3z6;zgl| zm>#vdv%Bj)kbEoEEs?J;T1$oOGsB&X~#xNoLwtDDe{SjZgO0s zXmzm+4hzc8KchsB6XKFSen?(}egtRCNYfnN$r=iqWAvdI?rKCzpDkNcpBc|Mco3=R6=fX#1`LD8%aY^OR6r^DR1q+;W}Vghs2MI8l3*~x~*gv>yy6RgNs za-;vs9BS1JxKtQaYb&$YyDyo2OL?~N0#1B5An6(ZYOeRO^oKaIt4I{9kn~Hkw1;&- zB-q006(ItY>R1PiTOHo1yTaoHN# zK`Aj9MwS-)$p9fRf2ugT2736+z7x^Ayk%+Z{;=A1MZKn4d-5euOZGDlt=dYc(N}S= zSKv#N#lUA3s-cNW#G3VA`Yw8??0*3Cz`w>+Ml_$- zuNM#f)$01MnAg!A(WMvZi=1laRdnWYx%yGHqW?=@fWwZzyP;{A>o%IKhk2{R$XeK6 zaty*izVt^F`}c5YirD7-&l*>;R{d2wkNG<{^&t-`l3P-(vk^-(sM+9y(vPWE>ovh? zzL@T^+^OWQHgTn&p=|7Kfrjz7dO4U@=X`q5e5GYAZi}LWDn?=bcjOPrqmhyw=rYwG z!%ouoVP{puZ8aAJt>FvAQ2G#y*S`(cAfpD!V+8Bjio5;9p;C;7W}jeFjH^M{nQwb zH}kU-@MAdDlPpWl&QlFaIXnKIt{s@uc)_)<#vL6By9NuSS46%v2pz#*x0&~CHl}8S z6s(MK-!JwCCc8Iyfh$8oeRh@>o7k<@l5rk;Nx)+-H1`t~%Hj-$bq&p}^d~&*_>rW1 zVWX5fx;oFc?FYJA>?NY?j-{qyBv0Pt+RZB6VP7Xoe)xvn$s*aMrvlzfODXoOtij+4 zuv#iArNF@T?)}*?XcPFGjvH9helWb{^f)tjE{@Wm#f&If;0t)?JjoK0AIel9WAYDA z756}3{*FI)fbiQuJuW=68`P}2C3UNDBZB2pYJSI#%fotJ9g$n7nc_OZ-q(3bc_*N=O>0vJJbPz zk^LeK`3uCIi0cIv`SfN=w*zZ#f}Tw3lWeX5Hs_xRV;5o(?B~WxYE19tJqb7q1Sz%f z;gk#GW&Kil7dCpUFx@+B75^{oz*EDkLcz#@G47KuX6a{%%fgX-_5`R&bQ|?7&i^Mc34def%F8YmYercz8+hhsgpOjn{NJw7dMD&Cg_(U7s z995tc*RJH=)G*Y`ahz(~7$?^>XU}27QoRLZOr}Axpm&39W^28qHsTAaOJ+X%!}*OR zG=fh$zb8CFC;h8foyt9@8)MPnhfn2@t`9bu(C-Ym^aH|LxSg?f=%GL%e0%FP5}%JA z;+Wpzr~2lNjo#j^#d^-vQ&Zt7OjBXi+fp>t@}n^{8%y<0EZyDk>BN*93R6e2?~>u> zP6^p_gIv;GG9G-B`43Y#}$gMVHa(Y-+Wk4qG&&XMVC_2=844|{(h zdxEM2ce}iEcyf~$1rrnn_o6u`zVDFs1|z#l|LZH+=&_DcVaIfx8%Hi~-P*!e|BH5> zdLMrg3UpO0J8qe~)N^3?TTg!fOvEXFzWD|%XKMrtf~DAF55@ZTK}>1Fj@p(+9pxVZ z-NHAe4AqwKnQ|r=7L#7v*5f{pv1Z_^mH&%q{!2z$dKCtuUYM=#G|9#@`iX~ZzV(3g;TMdJg!v1{c3=<$CanxzWS|S}$@qVK zglb-bHzuIE?hr({vnPwSpgVKk{xEt>$w2S5Nuf@JHSbuW-}_lPY{y zVLjcR0!nc+B`UgwMtJdxHybK?yfOXS3%r-tbK|b#@y{Z& zs?}<3-IqQzynNN2u>yCQ`oDGE?`}MTq^K7rL#H~uQEiL)_{2lhr%<(#C__&y0JlEbI>1~pXZ z^tH|-7j9`{EpM0}(Dd${+VE)(??N93h<)bF{5G6rR?5_)cq; zd_LQJId4uLe}uZAGiy^!_asbEI^a5IkN$ zSd*?Q3h=gXw6QP`ccM#LU>_eoG{uwV_w0DC=Iex4GO-|M?yAQJ-pL|5oU}}pXSYPW zh_Q2svAcDoVf4Dye~-^gG%@|bR(t(Mb)%fu)T-}aU9#7ivJ2Pf1Ez$rcdQ_B!n!0o zufHh?`2h?{kaw8A4ao4!UHNIYT*Oji@%(f3ck`*uXT#pAHc%EWmZSHV@pqR4ILb%-fm3>)*HL zKb_LQq(!NRYFq#!coDx(Z!kqZXXl+}?KENc0L0mGRm!6zkKy~9{5|q@<*-@G%>t-U-Dw6 zJ|G=$zFfW1%Q3am^vvsFKRq>H54v1)H8~l--}74`j_X4l+WJuqD_Mu_UU50Li_xTe z7}Ze%r~w^VFqM;&_uVQj)pPk`QFRFv<4GY#2+=JtayZj& z3ake;?s=rjm`HD)eiSK>JjrRb;lv+E`^;V8T)MldZ@aJ!+w-qJ@YF2I94*?RrVs*T zn6^^4M|*xVi0?ZH8k1aX92mNC(q5^1(>0XoUSL&fjciaOl~4}WFC|rvl(1s?-|(Ag z4@cfRGi=##8=SRXc`gaCj7Hp9TgjxWG+2K2a`eVIiz)e$il@{NpZ+#J!jff_f=iTl z2Hi$pb%&j^WpWs!rtT|Jv7P_|Fpnh{b;?wl$X2xmOg%lpiDZ($5)~pofZR7-Y7-%@ z@6in|9bYyh*dN4n`fW$nj6k%+e;bbash@bCeFTeQ6L%kwL&3RM(C@P_Wa5c{do-`v z%a1}{A!B)G(?UQ@nec20AFt{K8(S+d2V#$|-tu9pRM)!vhnoJrwdk&z8kA>E*)q>HjO${TBXx!)5QMA2OO+rqZzQiQL;P~mjPz)l-d%Ub%$QqbsQ)`C2^VKIe$YS#<82#o zAM{=g0TXGH9YcKt62O#GZlcu%a7c{Bb-SB~ojYq~d>fOdqQCUi=$zkZ~cjV@@B zA^f8j!1>n`az&FQQ-(f7i_#cokZf7U$!~)r0LAt8)B+nviJpO#tM<7?`^$_qOBl4)`7gW!>&@ z!KVSsZ@9IDpLwJ&Jyob;fUub2YttHmOSPin^hIYYUY{x&ir^87?_F;-gr)G}dsER? zA7O^bme1@y%`Jtv+grs0C2{r|lrJs_Ww6%oxYBfuf#oYO8Zia^uR!ie_T=K{jtGfp z?!Zt^>-i<+UCoJ~xrI*Zzenwzw;$+JAzQb4TUjjklhI=Gae;!tH1u(fth8|rn9hQU z@^50d?Wysz@_9DO6E;UwyFTpxb>LxxHS4`jxay zOWZcQ-_B!$7!2PYR?$%QjWWn_o?GVtP$A>vsmTUX0$uYYW*J4N7M`=)NLFXdR%xAX za(Y};A)r%&u^Z_kXU7DeO`Ph2wpT_WYUH85|7+;U<-{Ae!Tm5Wf^a7j+81NAH2_=} z=`M8XkXpg`Do-M&KKa}10}I$O&N3sh{CZ#qw<3j<1p4jG;5yZMD5m2Xfy}sL;WfdTO-yRJ=_o(o=I$* zPFm3J@hr_lxZ}X(rmLAv*Vqeg-i@xKl(2y6+AkkCn5#=P1*FgK5IJstQRtCXt<=jf zDlNz%mp=|Izo8+AFp9SxpoZqXiBbx~*cMddds3N0fen7(2&v(J+t(UkxYmF@t|vGo?LDQOH-D zau2zmHZ{gjQ@EOq=asvf|L!p__Kf?N?LrLt8+M_cx{+kN(azvG5`wVko&-*QEE=ax z*1Rk93jw(|q~G(WgwoDicb`>-BNXCO4LSrGi)_3|T$vFbnmtYRQb)BWc5Qz;*1>8_ zPSH9>mevYL|6mSABG*YtM^?&F(3x+DR zt!t|&2oll_3IfvIB}zzlcQ;6pfiDXb`qqPf=v+_lPjG27B&*u{WEw=MQjSUk)$2*V zvInC_^XW}DQUO?~Hk)G7xf$UvAx5sgLbKs>UL^jbx}#U1CFFPJf2@k7nbGiNM#Z+N zgN|DEhasJBNKRfdKeM3qY*EKv#5tI%L$&l)f^BY>A-uv^MZ&*LX5u{LC zNyTI;`ExC4-04G0!#@L4;yNpIAaAsJ4z8Z6(u{f@hloAK*9}zWgXIrgUmc>hX6NEP-|8=7>@kU4<$$Lg*xHwLLFVdbQ;CdWuIwlwHG433_<9-S?Bt=qq@Gq7T z@`+wOrS1;Us_jMgjBNd0ry0yBx16o?MX7)j*@&)&l~2llg~Tg7~j<4!rfDiO-kcy#6L# zo5<)SooDun=(X_A-j7pd#3H`V=)(oZ%*>BMats3OKYk&hxgE>fp*k@sp?{0Ca22Jz z@oR1&UERo4d=D$rKratCPRd(4|J^#0B$2D|zRK#6NPQEU;7_^ga)Kwtzc8?lU_b2Y zy=Y-GPP!tcJ9K{0TN$K%={S9a631n_K9d~NA$eQV!% zMBl7l_($hsaYtRh7ZDcnQDGszAU8N1SgXc&aaj+BsFziTH(NR{ zc551_w8N~R%@WOGN}h}{Is|brqpxji^`$B_e$F2oaU7AE#ZZMlXDcyLjI4YE`ILk7 zrkDN~aWbg93}x1&ymNgkzP$BgBZ*qxQoB6@K7pO~lSo#o^K9t@Avh}6Ef%Y)pt#8B}GP6!}yLD=bqbPV10gKV!<^s|Ut ztRiE?%gZE^@PzVs1yuUf&n49#EBPxjRp39SG#JUh=REkj`0pRCbkw^x$zpOgm~lvL zK<=6Bs^Itj(N8!Ta(0_|QOv#$qs{s;>eK)9;-~EnTMtF zM`Lc_Dnjk6%_ASD>`=}aFb88%s^cp28V+Z*el>^@XV|snkOS zh5yf5DwR!Qoy{K}-h`gs8ZrB{^?HwnWJlubY_|DJc7WDn@jNffK~r1M<>~)wVYCBL_WT5^dY;BKO%4; zLO_<1HIh15(kka@JJl6?{Row{T%zkxu98V)+Ws}RX8!`sFOd8VoX}u;MbGRmAZJtW zw!QJHqJ*rPB)du-e;uP;&obRS1`os<|M%kgYh!>ve3)bXp~Jjv+&_9l?bpi>3)a(H zDrK@>5|xvD=YsNbv<_=xVMo#w#!JN|CPBWog}d7ch_ABJ?@aGrSgfSfY#s}csT;N> zzI;pX2Orb4mzz{-k+Ly5!6uv+2Q2<#wk~^?!?&3GiSjLQFn2uvb&~&S`GH=AJzU@b zox~1{I7|zX2On?dr!(AL<$Zy(WBXT-tNdpBgThgXVCS<6 zY@%neWke470H_vIT6NwpF2|2WV7&d9b_=T9^-jVjTT z$$epz<%VAiLH+sb(xN&mRADtLs~;-``t*dSM<|Age2%6-kae{$>-8E-t%nqRA%B34 zeL&|jUdnusCS}^cxbp9xjsdq$!gi5S3k8U}Wc&WYl+?q8dWs zo@1{G^#P-mfj%rT*~5=+c`~AtqsnL&nR$R*NjxkO)O#Q0C>3$UO}nW5DPw}aLtGvo ze~b1e%YR~3!?4S3!{8TfR`8GoBXHXD^^d3W`wkzgWN2Bd;^?0Dezwae>sM>iJWcGIH{AJ= zREs_7+VFhvu2iFf3DKZUvS5V@1FDkA;QA_+Z4ttO`S0Sr|H8xdq`P#(Dm@+!K7`Ul z*X@A&jDk~S()}0`()NOjxUIkZv~gEuf`mvQ*&57^t26dOC5J*5U(Vsx&)m4NRNW3< z`PO&Wk6k=sU&pcKsnhqAw&*K{==pJe1di%NBtuI`#LJ!$6_P)=mt@e9{yf8(+3TQ` z&MBW0cz;`Whqi4}RsU|w7Nr5RyCv6Vd7k9YoB;#$SPwJqFH}`UBx5|kJPT!06WveV_Z%FowmVUgmP9q{#GA^;N&aoyGe&Zw(c%_jX`ev z?UB@Qpt~Jz2K;Z{0>qK;e+=>4kNs?ez0e#QzH7Vn`JQ4ivWIq3EDY!7cA>xEvPH^S zy0XZR)$Ihq(XsT$WItQX5dF}qf}|ww;J^~7puDvRPK)#IEX%F>a@E8KePOy}4Dv`* z_H@dpncFT*Qjjmh=bbp|J{cw^G zc~_Oy+OKJ4jp64M)?Fx#f^NZsY1p!|%zl_pHf|D!KkA*X-NyK8)T#ZCC7 z$U`@EVH3x5uPU>nn_=5K5smhPeYr`#s4yZe0Y`N$@q)Av$vX)>J@)Wd*@b2$x(;!b zE+KgYy|n+^g87S$AYgR*>VxJvW(pC9^vKRON0#bhK&X9CIC;IhOotb(0TP(`FzB*!i;XIG%TqWh8=3P_V zyC_{1on=+)<;v)`mGSQ^r8ViI>JT@rotH_Vp1*xxWM$1!>l4SHNZa=w6MBWRKQ}cE zk*dL?s|hSa_fpVJ8Rzqdu$5A^c9{9CM}Y%ji;t?59I&DB4j+JMY3aFAJl;CrD9-9Z zTc*5H-EuC+qc+0#&7KRiojEqkrCQrB8}0@%PTY41?ef|+J}@&A<5JoapqsyTtu`X_ zxvNmAXvhB7v@7ItvqFwDoq(%da1`KtCSeUp7OxC~R*lj(Q5yeg(60$P?nz?9zC1P= zhmsj7JDBD&S`nxmmQ$FrWC?^tewevbx(_5LKrZ)^vP?~{ zrY`9i_PWZNb*2yRSF_)U z_(q_P+vxWPUdEn$iF!qD@u!&f#o8q(|0VRIkZI@?(QXJVt%XfAsQjE#$5~_u6yXw# zbY=ATiB*5}EDU)-Q`@R^pvW<$sRF^7wS>mN7Rdb9hkm{%Sa)evYI1BeX1IYq1?)5D}Gdt3ATkiZh#KgF|>1DzrK)^DxBcOn3Ngtq(R zBFnL=i9;m^$>+t7-}s{r5sDeUjsyhT8l2bLTpoI2zMA~p2!Sq%n2}%E3Y3{6sqtxM zv|xiy#0=}wK!|=kVoN@xW1ZE$d21L7U_q{qVjE~S^DO5EidAagk27j~?vQ;iUTyH@ z!tZearhKo;WRWxvoGwhYLdNI%%RV0?`Q8hhAeg2yQFZ$JGoBK@ah0~p9f)`eF?B=M zag#VpNd+ePQ1+t8nqo0Me|9Tk8mf>7i6+**Oo!-2pYK?6BIE#;pwCqwu03hv9(bk_ zaI`9JsMR0)5YQT4p!ae_5N2kX+CMGr{NBiw{TAD>SsRsvrEf*BedDRx!aGvzva*H? z+FQDbz33+z{cSygvi;Qd#o&OaA{jo|_sv z-cZ?C-QY5tMAnU!ozK2J5Zi{@_tHLyfqTf2u8luVZSdE6=nAm(ID7~4s>^-*Zr9~E2O_e^xc%Z6*i*v?iadsYGcJ17{MF9mX^D~?STnx zSSm~T^9?MfJ0qWj!Yl`SO#hG=;=&QGVn{~)Oi#5yKi2S?L2$e@ikON4hTwGt4rb#` z2?$dK#l;GKB_cwhBY zZah~y3EO(T?Iw+X_xpm)RjXpEV=X3{N!J>9ya~B&#m}5y-0EnNGVHk3u8Wm2kqCn$%IZ)Z6$hjqIZA1 zESP1>R~}S09E~Uh4H6IT(R>8p^BKUu7XEttHIeUddE_ykcz0Z4YI@NvJ1TxuuRs8` zU3VR~zn_0*=W!DkX*I`7ATGhtO3r`EGdKj z_Y9%Gff*nS#nN!CUUpNG8M;!8F}H197pbubTHV^3t1@4`9VKt0hm4 zef9=L{P?|`hTitW3)AgwFIp8y4Dd}c}Od>q}B zpZarg``TO^YE9u=FhBcJzU$7p-A2E2bf3WBy122nlcW9D3IP<%l^c&Z@Q_@`X4wjy zVEpJLvVC0P)lM*mF7Q%klK_oq93ATZUVE)pq$VoSBcwdL&2!i33`~N7Je5qO2Jjqp zD9=hS=YLHyPwP#G5a$~jYIN6?fytf*1zbGFBm*BmRvCrnbT8!q(TGB&`}T!~Ym*~c z@~v?t4(DY!=Mrf#Sed2DUA|K|4n)h++aG1A`c7L^A&jextORbquAmx2DFv*}Gj z+7UxX>>JKJDtSf*mVL>Ns&@nU@>TU6;KUT~k;?c*ZoqeoCd z!{pF9ZT$j!fp*3}_$r+L>fo_5-e~}h9epOMJf>{5)%?C!`+L{R`7m7$?cF!)VG>Psivbq`E%f(7MPjWI!SdgKhf4iFj6(87W@edLX=sW*a zLtcV()ti7qyH8ZhD+9U>Ote>WG=Z?8k)4u%KHktyXw!s}FqF!zj)lA_4I@21cbJE1 z{kTxV3_AbSFZA7ZD+hR@R>?C(LK18)EY2Eq4BmOdg&z~tMhK`P7CT(wpFzsjPdav6 z8&{FCz&YSf?djg`DF5lvcgKM0WD>&$DHrK_mGlzae=XgDHf_Nq--H{658nrik&1kC z5p{D)d`YP~0ggwHpylASW!FeUcJHf9Q-DoOH1PT8?6eorul`^ZQ2mt|LBJjdi`ApV zRD|qVmety}vBqdFYRqohUYo$f}*ig~c;;s@-OP>_*W&k}dH>ZM297KzX#! zI-o9eE2-c_=bmVb>yOzms@@9<(SNZpNQ{xbI@Otpo4P-2tc7>X!lqkRwj0WBe=|;w z1>xm*e!g^>cUx{ESSa*wLyenqelzhXO&J@~9at^P61W=C-)*z1zV7%g;;OV{=B)~4 z5w(4~H0d(f7v^;kL)<+84eFF^L3VW-6ThxHvWS@77VPEhhcw|i){+Ajjn*hrt*F?Q_V-F&DEtzr{Lb#P zaHKJOH2B|3ktt6?R5)>4DCAX6V3nF48&6{+V>HjaW<@Fbj_R1o5iXR=QY)bgK63R$ zCFSB-c_Oo$Mf%&K;-L3(H03Nk1#fdfCzoz1M?T%sc~g=X;KuZB!j_`Y{y*ocl=a}R zDK>OKFN`2qZ+gsChFx>PooZ#NH8lHO{a9ahMqcz&>FC(OGZmtS$YVu$3;)OS1RIlR zgqjQO!y|>r_0CaAuuwk1nQPBMEbj)Qa>ST$?Mqi1jSC6N&6#nY+Q6{ zxUhVbO)mk?Qfxh@2AeTKixz6<|Tv-%p_o*|? z4H>zmNVO+pe#-rODQ(Y|K}QGgg!1n1d$Uwh2B_Q%A zHeb|-zM0tV=JuE6>4~E&#Z)38$6gBxTMGS`KYWiC;b}x_;B0En+5&Zopdj1_qrja> zGpNKHtPh9v)_qvLF){>5Ds9o7fPgoS49Gp9Y_ol#b6Z|30&aVrCLWL9`F~NcbsrdK zMnoSs!{&4sH4GnRDAl_{9)^B9xc<|ha%g?roj+mr_+C1u+zfDH$RzbqA6GxM!Qpmh z;_86WI|sem#IvXX9@BAB<&ZcZCx9sS@Mo~d4|%y`_DNdi0NyjXMJ zum3w=5MpC&caIZ$4jRUvC%5|#L(!3P?6Q`Cvu>_BIK+z7W;o#}78-&r4dMIg3>w00 z8GQOuKN3JrJey8;(UL4qisU`s>3cONH|M^r+0X#DNkI?Pw-v`?CW2KPvbaWM@tdaS zkVY9M+W($xS^VJ5Ohf zXu)+Hvw+pst|0ZTMOQL5R#a6cFZ^nVKh(eC#?kYWwhCoLPNEc|ChpL-n`q7BPv~<7I4O!yrjO)8|?_lEi{yUqpg+Av935|mhTAg($z6jY!YEA zE88qMTZ+~|uu>>DfzS0_;p`d)r80brKVT zsFa78=*REQDh(d#EjPZ}kr6eT*o_ViBfPDeX8y)0Ykpe<5iWRLnOU${jQT}J;{RGq&?#V@6+=h6Jps8#sANTenQl*Vi4!i#9+#6$KSTu_ z#fE<0wpbOM1R2IMh$Cd4s8#f(s`*37U0}z3ET(deNsCI?JQaa+X(d1DoDZWmkypGW zJgyUTPTyMaZZ=Ipz|=`92HKud;n}AnX&d5s61F# zrU!YIpubfNTJLNBeku1EOXtO!cr`4HvSlbgiY$OVaaK~7;`(dHkU=w{E@f3HN)mcBwfCb-p+yRL%#~x3y>tqAu%K+`w zL<3;iznF23%0R|c1WGUT=Bu_nr+ZJt^rETmXTKF`1y$0AGH7f)x_^*=^)R9PjZ)&vMDw`pg~rc zSvolP+N?x!){mU>%0Os%Y04U-g20FXgHL5#RigofKrZB2f^d3K42V*5{2(TE^ zGnXY~6CGOxjRUxuiR@p*17`kUyhC?yL3<>|EDVgzju%xX2LR&YN!Rx@u$U7kUwus4 zSa1J*!ck9T0atlX0OCKS9?0*p+Brt%fq(2Fg77I#6N`*=Zxp9PNqFR&H2V0nqy(34 zqIA-8wnHyY?T1{h7B=G%*~Qa=3yM8iER^IjxeAp4(fGpGB7kxwdiZ+{joMQuU(6&nb#_A0T2Cmi*-O##gmt-p~e1(JJec_4c8zh*p(7 z8CCg7Iwdbrkk_trpQ9tYx~Pvf>JFHDHpQn@zk+*)@DDBbzQvX(6BXb<{m`v;a06sI znTRt@WStsfmw#VT&(J)lagi36+2saXi2))^WFeaQgJlY7I>~BpmonDcS!E<%+Punu ziGp~A1*aNkUri^>XAD+mNMmtIrZWa!_>g*`cAPn4HKZK3K;uJ}2sQJb zjb9JQP&=$6DljkBtY2_KZQOVjf~YCwVaH7)V&|xyI=qRo+E`yafr0g_FTj2w2kF=i zzM}W9BXlEeG~@gd1m3TYsh3P>Qff;qWrOP8W2k0i_M02BM-Y3oDcDYM*K&snqupz8 z>GwVR9R94OAk^;{X>WS?;vTbKS=sS*|G9@SUqdIH;VXhaff!ZMX9n6E7&qObs{;%| z;WiTpr7p)kh&82#?%;_q|ynpQx* zKzNk7zWAISze-1sx~aA3%v8IA-`m7G^^Be@fi%Tzr2k#RRC*$|SxZ1sD=PoAU-IOv zFtS%iM5|fu&$4+#zcE`@2MH|XLe!ug#a@*v!f4?zAb}kGVp5z(N;r@q2&#LH$U8qT zTft?)XTbFd%V`PW$Ve<@qD9v<=GWI z0O};l7W3L5|wVhkHD0Lu9II^YZ;=ofwr=1XuiMzi*0Y2Gr(D z`*v5-JR+pbubabg%O{>vH&185mHwKgzxNP{f#m7eFXW|B0e1wZiMUe|7$TirMYf_Z z{_~Z*)+BxV>Wu-HYZZ7&py4P`lW`VzqY$`nE5o&2KDb#L>%+XdO4z2CWn2*pr?N}x z+cD$1>*OdMg@;wpZPSxo499aYdry?rgmKJ*R zb)<&2mdX#E`+v71R(bEh<8(DLIFLRC)IW5!rs(lfJ$~M6`-QlRgSr97ukMVl*6%Rq z7OEFj?S;<~L{npqSj?<*?QpN)?smiq-E{*L6D8 zMmA*oQCnZQ*qx#_?#=g`_uN;KGMU4QFhD?hL4=dLfVy!?_o4f0t0mm`KA|{N!q)ME zs}N0PJpYr;vWefT_X`+LXn*`_A>1z2Z;E&NS-IvAE2{P=f{}G4gvFM!WWP!sSH9U) zu}g(wZGb^;Hgmt=ZV@u>#Qxg7?18BU)tpH~69e@>1ZFCN624POY=TgjoW+>-x8^sN z-yK?m2vcRg2fIHwt;>4`fE*X5%qA4!qt+N~A5%4Dmo*ug9~EDG;K8t{q`f;%cfNd$ zCnn-Kryg^=%ts!IshZOC1@YB49hjxE89rPp zTF3Q~fByZO?%Vn|Cw;?Ro}I1x`SZ443a~2Zn~8}EBV)s~an7$eUga42H!Ai&pvM>O zZUbzSj*|0a@|ms=${(W4I3t6^uk=dC=7nVWOXcgF62OhQ7rt1|t&;cH?_+|x0^pqg zEh_~{BIZQDOOPiE&6VhKC&b2Imc3cke6$Lu(FRzlwwph4;S^rswVu7Ro)8jLU?GUB zd3(}rQ2sriFvbCvt97}XQ1R!7GBw0*xya5J*qjoqdRKZ8^-fdttVRFv}%;O z!~Ohy)p5@29GusE1QvnLwQzLV<9K?kxki@cMmicJ?$Ars#QN`e??q&}bK2w#xsheE z)LylWQ$^Hw&_?-3M%dn+_a0t0m@AbY=Rzjv`24*?_PwRP`>Skg{k+Fb)v2X?!ozba z87N+mA4M8q;TbN8v3qND9xH3)1h2bu!n_zfJq4=JV7(UIEhs~OHyIOBK}ls#&>%>E z_bmX+PMUHdy0%&EdO(e8!AUMykA7^~I1W@%42@0wj(5y>T*)DXF?($`O_p?m6Z?x3 zl@wa17RotZCq`=MwD88BVZ0^HOXj}AwS4+P*mH2F6bVn%ZQ{YCpotxcwt`U>B2^0~ zVy~zptzH|%5&C}og+}^}7JN=MQwJ&cr7jx)LSi$;xX;QcJqG5g+Ndhkv9~8xeU`6v-mD)=i*(H0e(-d{#}+ z;agq}E$#&_`{A&s_jrx^%havalfy*EahrgrwBBR`mT7`c=Ou?qgxBQ)6*>QGnBNy! zXvSGfvGHZW`41}U;c6V{KkO;Js4C)WJj2wQ8U4PeZ!M;y;~|)HrioVj=YvgRF{R?` z2YkOOufn>s)8{l>rk4wBTW*}o!zU4Y)Kx|u2$F(8xt(=kZuz9J^^G_5?=CYQ^?x}N zL>e=>zvugxxo?Xt0!{#hxCg;Gc1ra61BW}9lLk!<3!!T8gGZCi@g!XojHGQZ-{!QS}lZbbo$7c2z!Ze z9PK4iqC8AgkDwnNgKa=FFxp2Xdia)OvLuKGfx_RJn9pJf%*inxmXXohB``INzpiWawTbq3 zai#c&zz-=IM5;(q9&L7dIL~{i;Ey!}qBC?c7*pCPSp{))DZKB?q8BU($2)|H2n$ap z{{_nFxR^Nl& zgrePf_RAzX@$cw>x5%Dgwi#CS8w7Z!>|H1BR0mP0jeVT#a&JBur9{@idM=~N`3fz>zh7 zVDr~n_EdFpzlojG|FqinTkZmF47}A0y@zt8&w>cET9cUBD5Cwp1NZ$k$o%ZLK^$pg>`Wfaf6?YUVlHo}X+B@`bNgyJxAsRJuGOBSn#gA`^i;R}~t@%%+fu zv-@K_{|~eS`~%9B8vr<8bsYRA^CLBf&2qpzM85>~!(b0{Q|*x?ZaVu9ro%r*3c~8z z+~EN+#CwhThD?c}tc)Hc*0D~S+z+Scmg+`o^#1nw!F0bmgwFqi=Sa)0%dLUTScv-~ z7br1jK6j|MOvZ}0;a1Jj_2}n+{wjis;Aoy3iQ4S9Mx)*9_Eg!Mo?I;RhM23v?+(3( z0I{GH_W@pZQi>XdJtH$!R9C|AZ#qVrAK#zo5j<10s43}cTDBh#SmGql#^DYPpv-+9 z(GQSMgNyH^+Z;PM;p!LTqfis@X!fpVqb1SF>UnR9*%&~UJH`#>l!oQ~jK z-&Te0cpVW;tz~J+=iSwIhftkp*)+vK9xF7E5Zg&P^)pkJQY%&c6D04$0wh4?`}uEv zXZ=mAKRX67e?~R21XKaJw{Sc~t6kxE+csb5Z)**-4voZo{!HMLVE6W!Ko3?;r8)8! zx^6S1A1u`3OuHy%)nP|>uG|nHgaVUqMsMFlk#4PTh8)0v&5k>5ZSVvOG!zoWs3l4rmFR@Adu;R6K zS$!h~SA2ECTY?b+u9g)60vRGr}fI#f!WB<=UogD4<7=;e*=wZB3VlUDG&BfA4I#6 zbXIcqMz6yD^$}AKBFk=?fATv=Z>=`!kxIcYnKAN1S7oJ75y*x5x3#r%3h=U1KXWgc z_x;gd5V(Eem-DlI?WVJRqCTd96I1fKM#Q|mUR=!^IOC;GU*TBJIH(1Gvc%kNV{A$! z;3fRqBFBRY?9hAvZrMG8?i~s1nk24A2tpD%-TuR7bTci z5i+X}SBtO{B}`#cE&utNLLY zN2FL+-$d9Wu_uceHlO6yBMlQjU`*>a|L4etlguj1k{^t$&dNjc^d&9)p8e5Ub#7ir z(y!Eg;EF4r2=%p7k#u-sbe{8fV2?&t5c#2bdL*s06P@z*E6G3nsNd5a;>5sMKs_4E zLu%hVfWjixj*Wfz_M^>Zpi@v38XqP4pp&{?q&FdyJI_NfQf1<)zyFhXga;;eQi@U> z8U-9wwEwx1y>p~1jWmnXHG8*=G#CXDt@-F<8|_nYfOhjD#vu>9;~ceI-%5Sl>|re2 zX3a$jE;Ms;YRw5JJT7o1e z1|Lk`KIXze;%XqkVtH6&jsZZcZy?FDX38yS@Jj@!D3LGgdiHS7jT9gQ*t!_a<-OcD z`R-H2@|!H5H(=lgpCuHSo>KfB4pk8XgStOM>X`G>o!?yME;91JhBjm^@DXUe(*E_% z5d2H_WaW%*X5R1BhO$X1{9pMg(kz!Mm#YrIAJ&u+fM2tcG72)EjRzZqc$B_v#~KBq z{Jo_N$q*>m8ex9+XMIo~1F3~c=r9`*Z5t%iJ%G3`Y`sx47e~TAPoWZ@Ksw%=mn=Iy z!u~97rus*vQe05mnAjWulDOJX%4?mk#HyDKsF5y9ROHf|Be?<=;XT|=RP}U*nyeT=BsxL;M+s655J3V7Qjc^?=Q+;22eGg>astY@nL#$a?-VZn^E0F! zwuKhBc6&M{Ao*LpXx7mhsA98!yN9D|xZpggqt9Zr9-HH?vOGJ(`m+mmINZ=(bsg&p z6}Seevby`u0?zWf2TFdnRF&$S!DeZKXhKJGCX<;piCEWBlF(s)%WgWt8qmjy>E+#$ z#zty#|A7&^uhy4y`>@$Pg3n&9=I+=6=gMVRfb%3eaw~E8t+&j)J)t=IW{f#Z#9?0~^Tyo_ zFILkB--e-s&8EYei=*b%PX+6L?Y{|+PszF$AOa|vYtoCpW z{(eaXAVPehej@EKEDshC7l2+u>pHgS6wpV6APCa&XKIUU`cmG|Pu0-Es-BVcdh{p`q2N`6MHjfaeFh2TZH)Y! zy4bk{Q!ZGU@=2eS$$a*bq7D&)W;*Zx_56vHIwNNv4lz@&7s`vU@AnuPbK^9G*MMtRW=v2)8>kJ?`t zHp?J|WOmIf!h#@oGxt|%r~VO`jH{?f4Qwj&wg zt3mZld<emhd>VK)H9myLPrUX8goeFY=t-g!O*t;Uekzmqu->Az0$SU8)9d>kN|nEQIH1;ieK?UE`XH*ObUQ>GH+3_&KS zwm3Z_)tt{pmOSMzJ2cElG&$>4pD9ahi`N7?za>E9LUR!JQb3y;N`4hniT@--S}a9;2a!OFVDz}rOu)pr3%f7%AUT&d zT0Tm@;eH3iUhn(R(%=690XsBH(xF3+#oN_4O~clcSl|LI{A2`fAB6l!^xdAMPJYw$ z%nqnAE6n9o#lF1YwLboACkN7C=M_R$^mOTi8$5Og^8}eL%fWnkAX+5Vf%W;B zvj+C!7wH7$T;kuoN+t-S~5{3( z%qjIf0ksHp{uc6ZJl}PWS`A)gZ5+0Mp^$&2q`>JOTj9!e(79aJPshVWeFqIG+1-;o zp6ov)3waQ>Iu;dW;gBEV4j?K2Wv4v}Z2r+EcNp6D!}0s1!_`?6K7_Q92}lUz5fosS z5)ZX$ZrIWx7<5<*gvXt=1ZADvqOGW*vu`{^yhIVNvbY3IuX#zh86^cIjVEzNL4eUe z3mXKR075Q?#xxMH&}ewX^J7q#g*$|Kl1_kUJfV4)nX5KI6a6+EMXWq_&E|_0!(hBc} z4PFDX#$tC8;3Pf*QA2ahWqZgmaW9bL(M#NRgFssQR7&jY^%3mzSgxV!ye(nLPKvF31%0nl}NH{b=L*ANv^Pf(YWvRtJ$+}YYHu-IHP^Y zRv+Ji8Qtv{m7BQjQ!50cx+A)@Gxk%5ct@Tn?27IUQfR43)vKvSBSIm;fTp-w}-cW1%Q zlY|>eG8+ovI(nl3k0qF$JT6@pgp_q!hn@212Ln%*#SBs?aIvaNd>;Q1vVvBkKH7DCi8zR=R`Gpr^9flrH@(yZ|`n_t(aUz?d%A zU;8X}{wGydL=wHs&W&tPl49Zh$*7ykIzDh9fQSRQiWo@ZU6*N1;^ud~K4)YchKV(u zC$aWS_MKWi0rQTxp{MC~SH_nXr7rzV2}z|F>@mMc-AimR@a#gx3mnLn0-a{R(%pXL zkf}j2hb3JifO#w6*c$A$t>U(jwT}QhqrFxoq zB#nHrvf#*kbceS??`XUQJ$JRs014s)$jM$*p0#k0Gbv9cB}X-ry{W>e!u$CeE9GUU zQ*fPz?R3jv`wXs|w|WCCR<7p6VgS-wpp`c6+<qtpb!!iMm&xgeP63>X{?k}U$;k2KS2B6E- zqfT773ppTL&}g_Yuwz_LoWjJjzr{$sfQx2dO|imTAGkUfSn5qtP)eN@(}|xwH*_fk zw92n=(RGYZ;JA4?an=<$y-cDnP!Kd~S;h5YVIZ`|PBkA}The!kBstnUC8mcfp#>kn zeB`j?xFVXcxj}ye{i)hcm;N|XBKMaOSSPDIIt7+*?FsBLu<+@>lBA3FDzj)4AOXIQ z*0#s;MNoFVd%YSJy7QjHIwJLcUtjG?#tZ#NM%lecz!^zZ8MME>(OfkC+Cf?QiQ~cZ ze3_~W$Uf*zFe7d-wI_UM5Pi%nGh$~dhrK(lutKe)+g9_+d8YxRQN0;58aAyBd?C`# z3Mv6EGl;mi=L326BCy6`seo_lCvR<8@?kqUfvaEP! z6FqdrYv`I8nD|?YN8>}W)vM2)8|k3FX@Eg-I1wOHk|vH{ThXb0@g>>;f`rPfuVSd0 z6jN?ug^l^fiiD7IEe>XwmBi#&9Q40^=^L`H(Z&*+;QTAa!gpm)PT)#zd0VM!bS9B&QiFy$cn9%vtqwv_%V!+s>HVAtM{b&PBaD>k zRw?I>0(UPi!HqVFAkMz|K28(v?erp5ygFL=DC4C~7y>xh>@=3e-BS*=KhJ>at%Ro! zL-s&Zjfn@L|54psVR09D7bVq^QrltNF?E`6=RWpI;=nDI8>mJ5`O_wetiz51Si!PW z@Vo`bVVqTyb>ghjB}J8K_K9Lj#MCLD1=CEs$yM0mc20Z~Nw<0w6RpizdtN7jvEfud zNElS=6mD5p;DAaWr6Kl&-ol3H-M~aD^~bziioEC4h9y!r=&UyN8WApHTM9IubhF)k zVW*RqVdh{(#Cw~Nn~egCrK26Rhfd4Eg&c@LNVX?xK6da zpmSw-{*KlUTbgw4Z6tmC@u{ZaMAulm$HjaJ^lxXSjP>3>_w<>i|Hly z*}lB01u?9LFydL_)u&cI9e47cI;qHi#EJaX-S{M07NZ1Unfr&Ll~(#oevZia+_({T z=2-mY&5Hmocvivi44Mu|GL=-~6aLpy4);5LlU(Q+)7%F$RpD{J>;_<$o>@YlGd_Or z!*5qx`10*;CW|K!v>VqZv+z?n8fnFD>DzHzc61+t=z}9O=PF6Q} zr6!-C7wLO*vp)spq%7dIAFkfmkxEz^)Uqd% zpKBGRJ%MP3#`4(k!VQi+(<{sKy8i{N1HIpHMv)M18NfowZ6ez=;Ccp>!C`4BcslDNCokW-cqe)mDvaAIxL%yfG{M69a<3qHTw0>ldggMf?^MzT9ds>Ba@M*< zSh@iPpOB4I&K$uivp7!;ov(S_0}hG;L$?}vK<&Fq^adi?*m~&5dKM@a1xSYFXA3Po zzS%M17WnemMp))N^b){Q8>gdj)jwRZM&~{fimdD^HX(MtKzkq#M)Gtt26#39XV~@- zDvU;Ye40M@HL^tfKo27`ut4qx@1);z97pzMNP2}EcQoYPGld5XIR>@d&SB5{s(Z|I zv-BS}D&7T^@gtT20Fc4=i+R{)>$q9?gf*}5Wk%Z{%*E~IvaEp!8{a6t{L~C0sQl-( zzv`J1oTb167>|UUOCN#h3_}oCk&~ zu&e|uPyX?$ArAdbPF2cs92>OJv1v7!quwcsU_&gGNq7ShxE=?PsM%syCI+N$A$Xoy z9H&JK$>CzkA~Z3asIN5r#Of^`HEY%C_F{Q)sDFKk`F6%*FKY1~BHM3Mb{$NBa7~rg zTs}_U7@(x<0pZSZj=G?1+(0yD9?&~K5$z8}Kg{%EZGyUsag9DX4HGI{#>;ZAX$>yRD2+Hh&pA!d zNM@zxo4IMXzqnZ~OPb(H3*w)gSaxN2(uC12E6ytsy8$e~U9b%ByjEz3UQNFpkIw2TeX&LC!o*9F&?2zKzg|P!& zx%6ok;SRO&AT5yRcK{ZdxeT!9pnd=9zVo&Rn6PH&%#dSZd+Cuz)9+O9hv<+n`wdl2 zKuq8kmYq0x{86Ic-+U-pYwB%-pwziEhDWD19aB!6!k>JCZc58DXYX3&d){`YwP07D z8^TzvZknpzaAu;L#X9o^fYK_Ty>k@&g8FH7CAz4T+7qBnnrxVfC(jj8@JhML{KIa3 z#zJdCsUT%2InB##`zokIK(8*I*kkw>mVZY!;>0;I@PSKoNWwif6vYU&lJnK_dwzVk zh>hP%lrffh?2J_~(g=Y5{@>xCNKN;A{p4$#W`v&R?6_yo?TIboZ*436``w@CHnX@^ znrO-yxn2L2HLwl&+&(#s5Ebo3+Vb&XBJR*%7asP=WgbehHo`rhiK#QP23986jQ}=?AiYSecY)w^g2w7 zPBb5i9^!u-t>>#QiXUivQ>Jlc*YRDeB$wp}yIL8+sfxcq)Z zwZ`|J=73A?e65_?vN z2|7y6r=9b5r@W_buBy@A8j>3R!8x6bA#TDnmO>=z;13FC>!V|o3YV8VZDW+0=BrQ5 zRZsrDHe*;PCiWRs5P%>SuXbYJBm^Z|QEI5`tbYPD_tdnr)_l982XmZ0k7H7r4>huw zRiw`?3Wq3g18Cg^_H`D^UuKGV>4qRCj^$L3MKRP#0Ll(9u)<6uFWm2@EFp_okcbT~ zWBOuam3Mu~w#@lExp!pnIX!{m40aUtGx})jHt|wcguC#+pt>&s5ryKf9!Ld1E%NSF z7}9@*lhiZ_%9HlToAU;HNcGpxvjX_vtTYcez0g#kN59)S61D7OzTF98Q0G6_o|-`5Q$Tk-eydoNVURa6KMvs^-MaXPV=PMs&)vDu?j0mZZt(TV8 zAsSjHF`o99eNN>nd=apsrx<{Z0FYI_^`yP0iK82@TH5Fir-R$Gks1SG7x62cmDxnC z+m@7-!|Bl^<^r0M{0`2%GyJEenkUXks+sb)j=WKSl=TwvQzqISTxd4l4##6kjr>?J z`&79-_NDoQD>kvpa&W?3>=Tfii9HZmU^5KJM5pHU;*bqLsA`{GhQT#H>ExiCrH)%F zs?d=U0tKz0RR+Rv`Y%$UCaRM;U=ur2Z^hIzHXF;kS zCQ;0{+75Q^uX^C#ilC1K3PrIA(H?{KhEZIZEnmDaR%2QkZIo;~fwg=kYmYBLpCu@z zxbM0&CCiVIMRXfb`{R{ntce}S@We1x;Y#uqk)?5JBT#VkhKBy%E@Mc?nkVa$UqNYyui zM!<3BMIsf`2tSJPG8hH?pxp_xK=9&a6GoF~y?q5@st6UGFbMW_S;>HP~wsebrX!dN{cV;78m{QbJU{#60jpP`k{WuSUvd zy3lFW7eRm!^V^)*h3x`|R39=)ebu8;#!r~+k6D?qQ)<3WCV#Cm93odgais?{7-kMc zdLl!1aNNr^k<&JRURrxdb*I$UY+Q9`rD%(|fyP4iDK7ns zY8zK+fuN{N6KYV9L#clu+dkVSE`3CZ#_!p?@nLvD3XhGnGj!N6^JS|EX3Pr-v!;Au zD~EDD36dDUu?7l<*0yC^PSIJUoJ8!B6O}W4^EIjSVyIlQ8@-~GA&wQuYTN;+rFEc` zrXQ>MG_aGXyJs=@SPN44suYS^?~r>c&FKngTHuoOOOKpog2gtri3IfGx7|tTW5azd zbQV!R;oL0hd}3vMB?64OkG1pRt1?3t_r%~WU`Mp?fpN)Jnd)n%J@BL|3KUYQKpg3+(qY?uji|#$c*i4vW%?iD_!h!27YiBZjF{c=EXQr#QK54R(hb;YPh$cyh8M z`D3W`#LShp%o`;h%{_|8mJ=R}=a0;?JNrB1%3NZrcU_90>p3Lj9tbxEEjpk_W+27a`vJsdi7R)D?ZILjlW#Oye2|DzkJi zEI3FY4<}CaSGi<8zEL9K<#4@q4F&Wf!D1ZSj>HsPE07i!LBjKgFL2J#$(FtJ~pK-nL z1%PZR`}mfu&ENljrOSB|48ED1_8Sx>7BQFtDKo^Hf%>#icT02m0=kZt=8x==JbISj zTcu8dgvhSV%$u%Cmhb+O1#ND7X&pHS1;X%7{&2J0ISqWbyXfsP1sDpjK{Y@Xr@|~k zbw(Oo-YOE;!OvKmQ;M$fN2b5`Ix*xgo2T|61wH>nq!g{|&^zKShB5e6X#s;*X1H%? zS86ROl1^FTvSefCnI|jgP+q8@(hBD5&K1j*+c}$BuO=OpzM}nbrID*6z3TXp%9V~! zDq|Ja8v6Azd;WvTcsCQUX|fYFxuCyV)ckS?h#EuPIZ)lMm7N2O_lf03KFJ}9 z?o!4CSpw#p8&(U>PWw;Bz)>V)(8XMHoMdwXP(Z-@m8Pd@?~xSrzJ|t zJG`q(Qpjv37LU`A*<4FlK5vnt_Ipm*mEV}ye1^T`|ZD^HD|{NS%}`guKd-~&ZRfO z$`aIJbM1cT@^#(m2RF$#=6tH`C33QicSn9;LYvKuO2j`R>vtT#Z=E&|kp)Ffd^rGT z9v=8*;=M{=IHtKj!D?k9kiV`LFjzpnf#_{KgMc>1;BlgSei&6J;gMJ6)PFe`Sjy5g z%BGKE+|7%1Qf>E|+{#&qF#F8swa(xd^z{5Lw-wl8%-9PFRDVrb1;R!HcIh3PLu4O4 zMfoF+X10N$h_V$h*%mR7R5jGaDckDf;Of*OE}!h3!=7Y2DNzaY#P?MAc$Q=n=2|ok z`C^JHmr8H}@U!N&Z(Ex9g&m>~YOUB<@R`85)PT}Fl?fs57-ziR{8MDtOKtZqMF^fX zgMV;+MsLbOG{`0~Z|`P7jGu#h$?GK43DCZLY-=-MAJqX6=}JuSURaZZ;=;|G_oUrU zmcaoklL_hxk5e}Xs=u|EqsAVg01xxm9iHP`S&f0QNJP8`o5~N_Ts9-0J!nznmTkT= zIos#93Kn)Z`iJ=E z_L)!zheZm`m>!xQAmOnw<4h+GU=um(<|Hk8zuIzbwv34X`~XOvSd!raM|~xEExrXKWB_ zd??>Nv?|)?fj*3zktoH>nSovW%UIhfDYJ+XBB84?@hN{J;G{sKvQ8l5ZN$ z%=XCip=oyPgV0?;*z!;G&gXdTuSB>P@bJX`+h*z*{yyA2`F6u4(~FI7ZkA5O^o}Ab zO9@_*N?x}EZa-r5+n|eAdaA$yUC3sTWj}=_c_-vkzkp&a0Gyg7Tjhrhv%!^Z>oO+n zBFS91JzcH>_2KX{Tqq#9D=HnLvC`}5dGkXK)seC)6JdbOkKl`J#$yFV7Rx4g&7C(h@|j zX<feN+aH2`d594m$fb)0%YfD`($H-w%X=s#r*waS&Z1V{HA8JsNR;CJmd=9 z#Vzhj(KaQK_o=J3q5BYeOv&TPp-(vu2oWbd_mlP)joVRa@UlF5$5${b$817!)rb_j z>N)#xi;>mu;|XkH9xNQ%H=hmd5uTsq);vVFky2Z<2t09E-`@*NO+)!>BNyH*6s$}> zC}8hOsqD{Dk_nEZ*$E_Puw-`F)Z-IADIgkzSH+mKV%^vgY$6Gi%k5126uVZLa;%$+|trF z`;9+CzEHxs+@3gUy&iuC&EipO6|l_j*ey&<^(vvy0J$hJ2N z`}SAIE%8xIg~sd)rw|W8CeM*{1^3KcdXz37X8!WECWqn_h_KoDXrqt5(Vx2b$pbx3P$GN>>f0!-Qd0(0J zT>G}=40@dYegJTt)k-53?Sx;qNY&3eA)PMO$+LlOtLuj~1oRg zAdyo4t*mE@bHO-%nVvRj_skbMa=*;mfy1Hno;qWcab%z@gs*Te2mwLmFJGm?0M!hG=gC^?p+you7)_Mex(Kd|J$WFF4T-}5iwUV$=ABQA0YZVuRG9pJ1 zv$^qGqlQNMu&#b9f83dtW&J3`hegK4Zi3dFA%7J#y46)j6lQZnphvf6MgB;-;+ht< z*BiFg6nWHQvq#QYPAFVeze-BRc~L-+T>s0*KFw%htk;rlA&H8#?{*>%ukPnfqq7*- zMmRgq%{I>f##JNf49p1>M|SQg?LjisjLit5@iV%EoP2!-CQAxY((sc&(h zaFCNzMZ~K61HUb+>nQBgCW}57Fy!jnshEIr&`Www7udgfWwg&A^H%ve!y5Hv$^PE7Y zLN|oV`wtW`hOdHbEmtmH*!F$DAi2VOZ0p1eA_65{^5vZNHHB$~#l5UmMac2jMC+4SvEK5^Q4vb0ZYZ%QlgV`4CwytofP8(^#<9U1?!w$b^+twbeN#2 z(`aLulfi^Ss;wd1??rYNlfAK@&i0{^tyWb(rR~@LF%e|SWg4^AG!0{ zbU2mfSxp@W{Vpr0c%i!fATJy%!NbB8UHlINK|mI{#(W;%)HuphTGUdF5R}R~lJ_O> z!y)h~M^jfy;y>4#UL_`3jsbAp zoruZxOwBs1x)l<~wcX1yBtm8=ezFLM4(}b5=24v_ghUUX3!X#*#IZlQfrU;O|t2)sYfGpbykIkMKyhWlG z3g*KS+84PR`?wND@FpIKqReT?iVrzM1c0)QBq33-TI}RH)f2NQ4?-%hp70v0=w)9Y z*Jy)2#UB$aH!}bX4L&2Svpt58ddv_^yH;9LS{#aT2#Hy`paM2HaCulc)7`b#%1jfM z2w}jak61(Y6-0h++pW*fw}6Z?hK9v+iC>%`WlYC$X}YV?SWUUU&?(2yocLHJW+kzSRX@kXDB&jEnsqXy=ItF@`6zaNb)9(_>Q{ zQh>J=^fJ|`f~aonfAphk_lbmXu?WelC5UPiq)j+Ln|4S+nS;v6X!==aeAyyMIU?d~ zl17$N#G{ZLO}DLFiw1M{Kz%;Y;o4qmhLKq7!sL9t$_ST9@nF@+M;r{FpL?|u(qlg#shYJ9(KIy;vv0D|4Nwo#c`I)WyEv8k z`cqX*sD+O8Y7te2MS};NS&qJtsPH(YgkW}e#?hyvA=fA1_%tpP2?SK)S>SHt!Sl3y zK+ew_$6o@h$>|TA-{zcaHnw$_uHC<^`TXG-C@QOrC=Kq^RwR(VQ}u>@;QATy?538a z)FytJy~WTugSBz(=3l%64(nCYKFz0V`lNO`vo*%9oh#2*j+iDZdFyy4JUvtIoDR(7 zK*w7hmd@oZ%590EuEVz)NzMwOxQY9kFQfR_;bCJ{KOgug<5!v178+^zTXRsYkLED( z7G&@Yn`b5LsGPK&>n{e8^{O@C_OTIM4J@ZW!!!XdF9HdHwK*I)n5@Xd8bWfD3+VN- z^Zjp6Pp(dO?j6~0Mqqa)peUHherTK+6xKq1&iKIEBR>D!PB#Uc+Rt^N!Aza2!JCaC zx7So8xp_xiSM6;S8*~76*?W7D#$EPVwl2P?I>l5)Pb(r>{NC*}1)rrjK|DCJv%W0( zWb>9VL(lIX#&k=6Yq4szTZ6TKaVTIQZuE8EQ3lzhmUOH(sqV|l@^~u4Ww)7u)N>`p zU%-Yz=naNB&C=c3RfZ=ILrP>BWwBHvS>MKy-FSA~=xH;Y$oSK11tFtbaC7L-M)wpK zjF`qSG>je`Nd22C60&V42OCyH<9+vwUJA)Ch#8(vgusgJtAv1cn;}Cy{nBs5-(GT? z16sa4XM*)_`{i<%6|3yt0T^$)lyCu7shw35BQ3wP*RTI6o&FEnTh~xuZ(V5B(EB;A zO?@7TYOxm*Zft?mD)s!^+}UaAX#EcwnEO=?-$}Ig37>nkcy8Ulb=e-i&J98Vq=0rB zYDWp_&Zz=piQh4X<2cG6oAUmUDOWGlpC@H%>}5;Y=4o9RtsX+AA0eM00DX;L%(e;1 zYY1}lPy&)Jy=bU+BOLXoIx@91J69RV@8Kum9k#ethLqtKUPj&h6WgiZ_qj@huK+H+ z0+L70Lni!vst9w^WRQh2YLN;(_tGUfL&I}I4o%%Uz_)dNUTbwm03$4Vvo*98gGI{mgd$D!w87# zUdrfZJ;GeciMWV@xu13L3k*~N%$cL5rNyC_so-{X$oAAUdUb2`NBgZb*e@PS9qWv; z879WmIXcF~v_%slOxjBg24=beB|6-_&)epz&xh&xScqiGw35{5ln5tumQ_7uoGx9U z1gv`#&#ay-plu>IV&zqPm1m{XWY(P>Mg1f9tIAR6--fxF( zv^_N$5=`%A92tyms^+r6(qhC+4*;nDV8u91&Iy=LSd-n^*l{F>|C;c`~6%49wzMuE+p)f3FpWOz48$@uQ0Xb$(}&ko-3Tse-CYlr34_X_=bIh z05W~k7pPL8e(q3n*`GinLLa5ipIM7L@%UcgI1Z~HIjq&ROrS21z9O&aU>jP%{%E78Aytq^|y4d+Huc+UgrAZDG^+wmLJ;K){0D@WWDnH3vuMa4;_h;sIc^-&eH?8s(Lv2pp8D3+6B zlH$?nfcKLCTv%`A(T5h{W}&j>RfMXqh?+vq=8Hjc;6lh45`#1M` zU-vGotL#rRcy10x1GqL|nf73~Zyd9iOC|T7LL(POhX5RWxk(Hg=u9Vfe%Nc*$HD$N z_*0MQR?z~Ua{qORh4u&>98gq)J&d7NGY?? z+o@gm{z|LW=-{JOR^PWz;pd%RH?*+6J2~OIh67?*a`Jb|eQ>;55P|@Xx9Tayd(o?G=eUn&B0msC_}?SlP*AXjd9T5`kP|t5)6T8Sa;KJ)gf1@4NR1 zenImK*!OW9YlRMqWfBorc9Qf!^#G2OBo6-`wv|tI)7Jymc1g>^L0ES*-B&!$rRZBk ztxrQ-;}&FOvk&gPSDL0upr6gs@PUPb_nee5aaIL9de8tUBK0&}q>KKn6@nQ7K41yx zijF+?*4x3j;r4Xj@s@Z{an}R~tYn_;LnuMBh_7dk!bA>vGk&2FzB_lU_gZyc#T5Zs zI~i>#zWEKa3asChcxu1+Vjj9z@tf~5Vq{n6iHYWERzft3xwNw!UOjVWVH1EQ5S`*v zNN6hg6?Gw`u(8HCt!1Y^dJp$@j=1w}p0Ip4xgjFbU%q)0i7t0V_BpZ5GFAd#MKYo8 z2%nUHGpm@flQx|(!%p`xole9QuOIoHD@yg{K16$GaP;YfzUHp0xNWO|1vav%UwD#s zWpQ}9WmtRF@84K?l8}$QB*5x7SHb$C4{e?K5(sf$bXhk%$s+@YMuVntMc%LImaNrORj^^CyTF#vFKeC1z*2ypfzug z{Bw)8vS{9e!8uGt#PINt+( zUqflG#rSDT8MVr+TQi;Ura-MhWhAj3_K;iqY=O>Hzokj>Wo-KWxyGayrs8A!; zRnL37q;bd4vEtf@0yFT@i}EujZdZq`xp$#Wjuc)8A@&;?6_A$Ql6(qlO{bS$GQWeR zsawrqr_KojSO0y_N7;eqCZlWcK)U9=QKF}3Y?gxT$d9RkKL0ji_4vGCK z@O~7doX)6;ls1OGk$%%mH~JlYiTtBUDDh*jP7e4Icjy>oS9&s5;ks_gU3YH^&-9B! z7sCh^Nc?S<)#gb?8W7N<~r}+(1S2EF5NfB(L2;tDiEe=8r=tLH@BEZzka=1Ona4e z@T*WsSybRsm$z}~ls&nSc4&7L{%`9_jT4j@w|Qn@)~#Oe-mZclG4vKJ)M_8k4Ua(sQg(Yxc>-OVzVo ze)GNKkw1&RaMtf5YTePB9PLAA`1NEOd0x~B)Emz)Lg8!Q&%FfzkQXSmJI5y5bdx0{ zyaJ<4c5o-=!4Xn^Yq`uX;Gv08bg$pV1n!zOF5VWiCh5G`nwUnLy%+T$BhlU|RFWCtBBX$KE=3mWM!&qH{ zNI^w&c|FCa&|)Nm=0;#_kUou^-6dK6e3!_>3^|EzLC!BdaQ9V@qbj0-1$p&;X9WIl6pj+j;k*=-8Pm|sP0 z2YnaSTrQHVkDC(9pE73&qKjS0v`_uHIQedl43Bfnd@_8mu;7p?mSr5Q)#_9+n(6t~ z`MG<}zx}L^a5lgk+$qB74;@tAH`Aeckq^(4kYZKstmRm2do@Ph)^hjJo>liw-}~F5 z(d{ltoMT|?$8X~Tj4P$^^xIhOMsM1T;;Ltrde?=wQFWe(jD)LV>n_=zgKJmgqD2&waUPdUxOx9UpBxozy3K z)EG%9J7K@nRtv5>V3#W`G^xJt&8k+3JZrz3wq2i5G@m+??Hh~WvlA}8l?asF$4{XL@SljP}AXmGsHkI=;bDLg@cBTIuj@ba=jZY?UZ)h!$dy%3m1(e@cbkp zeD6=LDSpZ!oJ)ArNEQ#X5SYa^3eT+exCS@d@&@_y2{;kl&()p|XO-)}3{rkxt z62gveP*!3U{pzVhW_`(1I_mZLe&c{t2T-5PY3g-8Q?F(8bjD3kKzk>bD7(*!v#0H0 zyAxjSc7qCAl1Y-%G!L~tJdyTtEnG}B!a*4RdFu|EY|Rq9~SwdVCj7>Cs6 zFN5|wp{Z7XiUg^?#+=^flBTH(QPs9jYUgW3?~oCMEeB`uc~$fEYwpV2mB9-ZP@G{$ z0ks)n=yNQf>4*5=U@4H170`Yl8M2?AL=PRHQM^%vy5v26&u9B{UD2s*1vNFrqwP6OOCJmN17A&Rw9(+BNsPToffWz_{wR75 z3IVI1Y;qq7CIkbG0e`L@y-PaK@3q%gke}A$K!5aW=}uNkxyS9(T${&Vf#rxS%1kw+ z!CNOoY63BcYgjQYv@QDLfpqO_jLs?Gz~KVL!%nH;J%_}WNq24iuIPqA9BuE1tMk1y z8*bFZ@=<9s&K34i{6Ak1XpRgYKS~i2E@L!$tT`?W5!tl;VyMRmda328O^(gMl7FMC zI<3$3w;TA!JpA|K;m??5HNw>4(z#8cXm=ZoyU(Sm`6e7#`=d&GIA8oB>d!j?Z41%y zf|+ImLZ@P>{y`~}AzcvZ5_+arL?1oItRq(F@opsF!4;BGg#FJ`DaZ{cHIGOYSmu|O zmEGMrsMvQ#bIS$l3e-WH_3udCPA40Tn@{zc2*46ng1(! zY+$A}O^5pHKZfrAdXqoC4tPmC83HOPE^06f0p&j}SA0=A=%4opjz#gO__G2BTD&qg z9lqkbG8^Zh>oZuQWMFHef$4@hO}l43EizuBqigYjZKC)@&BhbIhUP(~F+p#%4njfA zGKq7B5hjML#&3H}j2!PUkG+kTiJzrac-K`C?umPK$5N*^ADrLc{C%|E^YyKbUE2?| zE#xOstsB0b4U@7;?dDk>NZd4Am!`I&c(K0tSgL#e@w_=7n!I2F)WNIC0F^91<^r72 zS}gGGVkEy#GT}RI+!%BF2`YhOYxIq`eyupu<6t$KL8)EA6^Ci)sQYVgf8fRC&s=;* zwT>8mpc#xZKGsWtYag}p3-R_O`A5hbW;+K)`qiIE>BIy>jWDHP_QR|2s=`v08t@fL ziq;@=FwGTLawW7z386rdJuAyU8R!y)K)S1?jX=t|ggK|at;aMS`U1u^!&h?HdP1*+ z?^{JAtHzw)7A6eFT6taB<}J#5FWyt%k=<)R2_FL0B@6N=HE1)NMH+53DEVILwGHnz zoqE&6<}SH_33_MiUa1n`)A=XccY0Xq9y8RU8CYcLH4F-+Kp%&9Jcf)2dKLSE=nt){ z9J~+G7?{bP(IkHMC=TuSh-tm-LmKXZL)n^ViKb9%JUf$0Z%fM#LRYs7cwCmH*Z;7>e`+^o-kl zH~L;xRB4ii1`2!P=bMo%77j~3a*==*JLXqK*gW{mt>U4p8iypt5nn?t>GFHm-qrAu zqZT%o@v0;6(d+GX_@E4;T)pD-cokqYX>Y#H5a(zCk?_4c=Xt=oqAp*w{n`c{!K=h_?hlkn3~pr(jFcr@b}Wm<&?Cs#4COb zI)8N(81eB(HD}U;N#GyaOtU*WMR^1Zg=b$0dWoSAFXOyk1IJNSYv$nIp_#xzAQ1S_1=pVx*A`#ey z`LFGgq(%E<1*f=50S^W5g`j36s_ha@SySq&WsH8}cTKWU%4W}cPKy(?I7N+ixvDoy^)(MiA;5FCJp21} z2hz904mhimGm0hOvNRei#8vk#W5$?`ppx|+LWyr}VpLRQ5hSiEjO->-2}?BWqejzy zEDh0>BvW2w+FxUOc+SzrBn_|qL$P55u`x+zm~7yftvM~uI}Qn6S$s$9z$8RLXvv4-*g3Pq$QIk99bm)bedZbqffdj z@Og8g0k4%GoF$fsgV=!M#W!D#|5x`J|HnlsDE{w<{~vqx&nN(X`1dFJbI<>BPXE6H zW}##I3QGLvl0c(o))Taa;Pfw7oDSxWh0V>?7nf*w95S)+kyrQ{o4sb`I#MLOYVh6j ziv2YbcX!ue&aW19L-Kx1#&h@QlmjyB?r?Hfk5TuJFtFH_M6<=0m^ZHn6TLJJn5|tZ zz4-pQ36_pJHZ%UY4Ott*NW=OmLq_NPo;EV;Yo{dbXIYmM(04r-cVSg*O4A-1cE$4` zwaCGw48*kj5+-3qDy`74ppmq!^!Sk=v>5+G*g%J4!s~oxC_gPm`Ga^SY+ac|-_>b` zbZAUAZl&-|>43uxdG0)X_d84IDs>DAqAW9}@ISM~ffRTMyVA3G54&R=XNi2MW$iJS zY7t}rHvj>9)czeJEdLN3;bC{{Guud<^ku`AOWRq!bb>f`xprW+qE)OEEMafo@=}w9 znuSeE@%fTnA-@V$G{r;h-B32MbhF)Myc~Z8|3|%6aK6XQVfA^M4BL5;oQ2W!Zx7gY zz!dX#EY|dDJVn@(;dfrUktY4x){j8LNqs^oh1;Cb#(AX>A(vc0Mn;C5J_ zVfTb?xKmncnSSaZLNsJQCt zkfZ#Z^?^RZpK6j-5Ex4o!nGH>t!g?naVVi+aA!Xm{p_}{skcVbEiY*`a%SSV$_jwf&3NlS`~%LCPd zPk%WyJ9h6<(!18&&-p_WDQ6f+^WofQ#wnY;e?rsq(VNOxo~)AijWs?Qo0XK1s0s`s z^?$AQp#)lxHaTWM@cWll=Wnax8t>V`f#e_ih&KOo zBQvxhDgstR8h7ukOfn{NEib1Lasuvb+045cp7X9}ooGapAN(%}!3)*q$oaFOj3;&L z4e#hpzDsOc`qr`TNLg%uq9KJ*!%l8GvCy0rNt#j%nFh%}`!7i&tcHBQ@Yr7v8ue^y$xZ`+h=Y*ZB#k`J*MPXOD4!ZG%w0AtW@PW zZ^r(|830YeS^rZ&3mO5*;HM?;HeHU86uye6dq|Pi?$83eq+~zSnGrxXD@H~A&;$>a z_f4cTvm&JO?f*Qj$e{^k$fW2jxfSwyj6k+~NM?%ND5~gLs$|FbXOK`HqWM!ej7N|8 z?lBtg;J*~VCaH>Zb|RY@=|LS}3cHr=!>v04VvAjR$r4kd zVmsmw3TFj#-0wEQCrP8}57Ts4P}RuMSvoHFLU}^Ds8}gPj3gU5LQ2q)BDnjv$3fbZ z+Fkxt%#)I>{NrA#ZR|!>=j8}M3>f?OO@m{x{3&KDKJ_x(!ES%Cjqfx48g;4BX6IAi zVhFk4=Qtf23M$kGhFOA#wx{9*k^1-doJEAGyX$EP!?(F{=ks`EgIU)e#Y!g>H15c61YjAS}KA2Cw5khx%G6>U3%W zwuh4DYD>yWISSovDalS%apn`7q&+!nEfw)gsYznQnfFtOx`YbB=O`&$<4zs#Ni8P zJj8`7CAgp}vi{0^U5{OHO|v?O>CTHf;1J%{Ax4Xh4Nzw?AI&Xs zLr=gc4$p^aEHreFl{wFyVX0K`#1P+km#R4Ha1yz^A6g7x$($QaF_u2;BfU-efK>RG z?#-m$Wl~nW)&FSiJmcZ~+I_E#7HzbMD5E3<(MIpx=v@%e2hk;ZH$xCa3DJchf`}TT z*9d~qTl5m$Aj*h(ZqNTY=j?sn?EN|CtXE#R=bkldt*iX5^<69R%Hb4Pchs_9!(yC2W9Js{{L`BpS$xGuCG&@xuh8{0 zj9)VWy}IUpJJgC1`Dl|HQ~`MHv5K}AL9K2m&#nj;I)Sq?1}RTnr){S-k9q47aRWAj z9kN>!^RoWBQb`a;dF|Q!%t|eeHRg+y4S}|!HG9&|G;^ldu!S5`cwmr9pw?&T}MjMPVvW%kg8*U9B?!{bavv#>pIL{|~ zot?aBqIhPjKkFO0{Y`;a&;S#;YUs}I?=w^{3$LRWS_L=Pyhjt&p#Gci3^Bj_TVsI9 z*j!>-3QCf;J-7eILaW1pfz(&bTge3Eqsp$hJGLs(0yz~6pR`2~$Cjfvl+qGI)7Z9lE;m(B`}TVc#f!@5g@2Y{09iOo z$}t$&Sh)8BtxpeEpSuLS-*(Fsz97417)bH@SB1Rn1JQW;ySw3_jzj}etv>~etq_K5 zTJVxdTZ;;TVxl~~D!-tRZ)%rDsIsuSAwV@G&+&~slze&Qnz2741 z^C+U8cKG^9z)7=z%R*Y_d7IHh+4PJU>Uu1N`!+}$O^ z?ZS1RelcwR(kgv%C6-`omx2!j^I<5SxG)z9d|MXWrjC(E9?djvsP@nbd1etCI68u;kgL4M)CK%r`+QmNq|9CmABle5+1%!`J9M0%+b+xgvR!n zU^(Q-PiSf}D{uF+wozZ}*advQuO)yfcqUKZ1qYwq4_tQHv?K6${HBqZ3k`u>)SK(# zU?&pKW5g8k_!Aym45ZHjkl@f%#P8<^c{0ru5mzRes zMR(+N+@3_3Ms4i<%r9YB5img*_Sf^(t30c?DYO*TX#}UYkLH!h@0C*=jezWQ1*R|q z$?|Wrl0IW%uLwR3V4q*n5S@P9Z}Ps;%9Sl@gGikk78yE#d+Bo|pC-snyu)I^0XOOF zrq0(kd3$hCOe3_8#9s6&vx^+7A!Rg4;2)XCz7y~4XX;Ute4Pf%HSCot_;Ob5N!J=<+K_qjCv+PW zjI*qQg`dH_0#`*#v?mK7I_6>_ww>SkbFp4yZ#_EkC_Q*auKz%IRezIOuxRwcsaWnI z*g4V@O<%AmdJKYK2hnk9p8k+!i`Dm8%p^Z?=xDkwNT%o*>=p1~zVbz6$OOW~Ad8Cz z)Ocrg-*IO_#_`K1vq2Ur7E#zAk7ziVUp?jki6s4w7;O-m{lT8^Xr%S#W_+m3_qx9KpvlX7%ab>3dQQ_3E_a&hQta7u;||y7z8&I1e}v zhU|GWG8$AE&nop_o7t=nE~b}*dPtk`5uv+X1G77tPuLc4Po=9X1_xl=zid^wGd%?{ zYLKo*2Ybe!_YO?koi%6DVS(mfFObhsJijg|5}=!?K;n6S*+v7Q-%MYg@57`Poaalp zH}1Ycw?e3;0eNAiS2B~7`3w=Fr0GfTH5n74!DKM|!JUGtOfI!|uq{A?z+m@UrBfcl z!9kySyn~InOM({{?8m}yTWuN;^NngoDdOkh>qsgIRpbEZDgk|nwM!e9SQtl|V=ep9|Aug|vnAy+T-GRWMa`2~C2;)I}uW*q&#TbY{{w_S( z3c_9hGG%X=ag+%B9v5kA6*`?D?(^XJpQGI(X{RQ{%h{C9N>jnbLjZt*o6PKnx&4q2P0E= z6o#N&QF?pl1>~@`D)o@KQruWdWJNE>Gr5uW(}b{|pE&3CRYXyfUquNfJj4(qjk_-? zRf@6rWEX}>%I}wJOH&9fY`^F`wgjDBvT?Jm8T$!mc>8_DtTxk5thMr0k>y?xV^_Cm zMj}v3RpnLOGmp$0AUTW%`?z*?GW#9D;<-7EsrbG+rDggx*=@?4lZ&joqJvjvg{Lz) zjW2UrMp{-|`DD-kEH-KMz3Bkwiyh&MxiCsQ1?)!Rodt}|(V(o&z4<9Ch}O1773TBgh&k&7DzRa*+H2Z)Cez{%9V0sdYaq?w>)(>M%`L6jE6+CHYS>{m=x$T zj);BBN4EER;-cbYP{La;e*{hptUjGrOJhXMX156^4AJTdNd#7CwP?UcbI?EjHSD0s zB*)>!X!Ao@GL6^h`F8MBqw_E3Gb@#5goh$tR5&w%g|qKwj5lFrdKm@%xxD;vC%mw^ z07X>MA!Vg~!f5?JO$zO1mZWSXsy-ZqaW$8zH%J>GzRHin5 zOQRdqBV`PtZPu0E^;Qij$M1SUd5;U%6LNc0#m`tXMvRR{#|t4wc0Bh9;f0^4GN=48 z6mu1sLv))U*>j(<&1c1rYCn?%u$x!uCufkCc$M@#F?z8J-1}wOD#0hbEZ|!ohy^IS z-vK3F4=2`e3tbF#BcSBJ*=28gANA|p9uU$>6Q}b35+m?WacQS`ho zl>2vm%zejpxi)F(?;F`Bi(CSzk)}#4!j^Rw4{XwBFl$S<5p5ks(cb^qRF$-QWkdBW)Yi78Ty5~TlwW^MaQl*f)E=)+>k&^aQpO}X&Q zfo6;V_t4B;Eu&!_{LJD_|6SN%?vta9U%vP_42t6$z-nL(|M68zvBE?2wnX8S02DN~ z^$4w=9l`xQ&MZL^fY6YitLVuH64YcT!U6C2GNjP=kd7e;;gxx8Chqn`%+ZK;oID5x z=pG5^{_p_%Gb+X`agMP=?sO7bkPo;_&VW%4j4z*^>=Zaqz&SL57Ef>0%-^c`?j`07 zsS#vnV}GJ+zX@T_+AmdIiPLQg+{I4tzSs)u7X1%5e4tTu*c{OK{Z`70v|3M z;py^iENJaJEo<$zr$hLvMUVC|(t zAkejZULf6$4q%8RZ*_du%4CjD<3a_JW5&LE%PdA&vf_f|OiB+?*nOP*CDv{HLJ&bf zb(}8lW}*stM3|YEZ0hOaMQ!HY%xeS2!zPmK?*M&pzm&D9f&JN6~S8CfIjkaldv$Z>6LEyJ%E*Rq#NhFcny$O`3ZR?1qJ`pjWg)!q~ZZ8SUiHLxBb^pTn zaT0(lTYYAga?Jm{m|*cQ+{JAOFtp?hbod58&wQYmxptE)D9_83xb9`Yd1`tv^E&LZ zt3RaSB2w+VwkU%P4M7oMh!La=LqhV+eHp`M zIsS}{%c&rjWYY>YANUJ}uiz-aiLoI&bAm!P5ehd<__oiiLLZ5`tF;f+x4HRSJRsU0-^th|92>&tIs^7weMyX?bO|3w2J*&NgR1;96btrT z&r1zj8}wrcgjLVCT1MOcMn97h(s8@0F6GZ3Ei00p8t)g(I#o+9RBLMuUd!E2=khMS zzG<6m90JN*c#L4zWSX)a*&fMCC-K$%wd=J6m^typ&K&jDE_jH(_l|a3-Q=d zd!PGLW)L)B6RQt0tz$83%I!VKNvXSW_C}4i@8Sa0dm4TMh0BFzNMAwCKZJCJK6xK_ zQyk>HZPMVj^6*d77ml?8#V>!_eOn*XakM4I@IX|T&S>?`t{SM%$@){Sz26p~yAsjJL=^Ze{q=}*ISx~{ZiuPDNeec^spvQ*V{-cE%pdxo}SMF zSZzd0T%xxu`a9^+@OZ&UPQqHgBT8udKF8Sy+=swYQu6u$=-|=6LO#Om#zKUy=&YD% zx?BHhXSPUtZ&VBu$WR})asKgd=tavmaPvIx46_{3GQhbK1FnW|7k|IHN&QCr?^}U- z)dvraP$J*d?VrY6XciBV=T0K9%(pNlt^*b4#k~cxAaCuq#Tn+dze|Nd4(DlW`4q4I zO!1waIFGoiEr&7uJ;8j!4;Op>9(ipzockIOGu_I%nDVTw+ z*_y-8h^DNW>c^WzYW2zg)}GVS~Rvrv!Iz6^e}=iOP`_` zWFPUhVKU}qY@2z*X=R;>=x`clB|K_z+0tQ&04L39I(4f z1Jco)jOh~@E-);1ehth+_F=4EpGv{I&0w$`KQ@8@q@pX1@riR1d=~=J8D@EmgUwEb zJHt`2fH5*}fGsVhImr^1rc?N`3eeHnFHQr;6bVm-X?EfJ^W-H!ePm@MrKrabxZg;!c{2jgB14_N3?_BPyu zI%FmT^)VE0wrbwBBk5PLb{Hu5#ZuK1X_5CnqQ|O36m-&xYb!g-yn189z3)bd>8iyw zmw>D2{jx^fn=1r5Xe7fsLEN2q(qL-&qwMF^kbw|QSS>!3YnYrc-T{X)EKJkwNh9jM zye>|`@bu6Jh4}W@Ejfst&ZFgYEc|jB4|KgqHa!Xt43^I$xaj!HdS;a#yh@S5W`)B? z7&Is5X2S3JgRE?+o-l8zzW#~lkS23?9N9Qsvg?>$s)pFc{dWG2$C5|gpvhZv_ectG z(!7S7O>&~%@&{cx!^V-MS5HY=I*CH4L%NB=Na7XoO5}}@6b$k;_oP_m1TVRg@_V~l zfLm6H_U{-LcNrDxEt@xtKwLU;OfX}$kVq2FAYPC6_mX-RzNHbRPY*uVe8}+5AO0K* zNkZ6}o)j4JvdhF@vjqiz&#a2v1q(4M;K%m)ycUWO$fV1Vi=~ZsMLt;eI&E%oui-&T zYU_S9eLuf8HDzCpJ7oLFMo3Zt+zDd#xZ%3eHee$0jANI)EeBb&!DQXt>ErwCx9(&U zpF0Z#*QB$gz+{iB-F|xUcHCCh^Wp74@a~>pBVH$|CFf-T_QKyrP1zETuxS%~aLiba zqGS}Yco2#l>nM0%PTkl0BDYW}QvC&tW)F?La|0+5^9@d7MJ1$2BGLH%DH?D0HV(qa z%=}0>L`j)#v@O+h{+v2iRm5sKR%{wk={@#95ZFY%vJ++4aX35_ZCaPRe}_YLG1Z)6WPLpYI>NyTp;oprCRQX2yoO##=YIty;O00{` zg1lZ^vWsA2XwbtsVL7KPa*7umnGu&2)WSD*^gsqlD!i<+%j!5d$4fs+zLO? zNjAYBAY0A#J4kLq$~;FBBsO8=Eo%V}fqx_j=LpLqjdynVWF_0}w8$Q9!~7W!n~CAG z;Pj*$D`@?aORnsa|1;Y15e8h$80aIjzAk8%CAK@O z<0UVG8dRB>ajP1Rn+e=g@Ztq8$t5SqeNOJH`c}<@h0KF}g`O9eqwYNU0+3;s1Y9< zH_pbJB-i1DSm~7nYpDHz_$*jc!Sj(jxSPMC>tvb^D#ihVdRVZ_!Exm3A@^ztHqe7& z9St%ED^FTvC3S7ji{--}{7UlG^v@Vb@eC&S0!=wM(BC>2ZyF$ETi$eu2P}u8FG(r8 z7bxa8N<~M__}wdPWma51pGenkw$z#nNo;bE+_3f5U!SMy;~F3SxH?FCiBb*A{UG8x zE5g+)s9Bw*+44|?WQFMMjy#vRzuY6`AW^BDh$D}CM9AKb4C`~L)p1GK01GK3vt%b* zBk$E~!yA{pd(Y$&JLq)<23=Y0id}*#3(fQJJk09}p8rhAdRHU}^JopbvL0tVerF?5 zg;(}XGU?5D&+9%^hxqDK?;_oloFSj@WTn#?yc?ao^tV1k8z^tB$mQOTl6|tjZTLy& z%{U20Ps`D1L8{13oQ|PmM5h$UQDHRzTT?awzxK+-QKJeAZQ-=)z4 zJ=XmoyBLSN`^g5Qm$PRLRr9z8f?1xKV=Fa}o9AzlB-9|lOI6^+E zYQcpXFv(XxbhZ;RDr(Dr<@A3K_)AT`Y~2EN_Z^-mK=m`Jh)mq|81 z+iK`;ksv_PG?1z6$)Co~;G1&!@zg2u<4;A}3lYAw5*L-^@w2eXyz_yM6o-;9p7|aE z3lB-`;}biG-oOJt6EBH>ZOby-jjDU?1=-uBKc=GM)ZnNqpxzzBl%vi6iz!nLsKGff#l?l)5 zfM_J2m;l&t;Q2IbLbTUOc<);gE{g4Zv0Vy4UN{QPUlsA*QxFl${P~Vmu>!27<_*XO z`DlAzP%KsiksGrdVt^W?mWUnBE*m-*QfWTMGA2bho3$?7%ikdd$S;c=CL-90<&~15 z%2>D^G$2DP1hxBV%vQt{JSW@911Vu_rWFcKF};jp?1;M?#|wWi+QG@NQ!?ed%`Uqf zsa>}${9HXE#8eZD`+hydC;0)e5F}(tA`_`nie-z6s91U4unsy*6r3wW|Gn#LQPBmR z{OnIcKI`{0Sc+}5kbU25YjXn?%{?ObDSvZS5wr85RW9?dp|1=Z4Bkt_ibs{R)KkgV z!1sVP-=r#QIj?UBa6m1)qzcSnD~Heb*qgo|3nN`ezV|SprrQM)|5_vO+_RVlX^?<) z!Eu#Y%T{e-yqQbWbdN=LXJ_en;=_-ypAG4_-TQoDLqwZ0!Z>_)ZQF`Cp8T|`lFU?m zbFn+p^){GBtbQno7i~veM200X>UKyl%2k~|?`V)fd_0bprvcgTw#TOttt%lnFc9BJ z#Qt+xk?b_o!HXK76}%0EoEZ#J;^8s)JoOb6{ifqn`EiY6AKt#d;9Fzkg`*bI@>P`O z=TMFi>IMjJKDyJY_tpAi9I%s1FHMae4?| z{>AL3Z7yr1??%6?qH631Wn+gpracc|Ybd|j>xLepNG6^4VO$}R}PrhqpsJ>6R^ zNT7EKr$Fjvh*pM5`OZ>*>awPCDN(K|l-(Wv9X+*Fn+{W^uQ*)LkzB$P(~(LDUKJLj z-CZR49k`Rc>tD$8e(YG;p|0e)1yN?F$qxW3~`Il1UW(&;z=l&yI>LTI!g#z%jO z*drB$3qgayLhVOl+*e5=35&7O1DVHaM#2cO>QGK%=(=t)EuURNhx zyYA_J7V7w|tpo_nUNldD>5_9*gEQA<%At9DlNaD4UZbyCC>F35C6b zz0X-A>q%N~@r*#m*JMLF4GrE3h(o<6$1oB4mYYOjD4>%eB@38(kt5TSRN=alRBMOM z7E2Ge^|`JV9n!IH1`pUxw(QQMJDm^r~q;rq(|%f_zUz&GCCIZvVJ-K zvah(=7>Gj^2QGd#4|N8k4j5$i?b}dokdtlC^Y_=6D-yYX7sj=R2Ai1%UJQD-)+-0Q zO)UCE7ikXeqC^CQCf>^6P7=nJFQW9?y; zYWtM5IARIcuKu+ z)lbmMgR!1=gn#xI<5Ff!RNBm4I~%0yox;7};-z8Hq3Z`SG9@c?B=T+pjC*u*fZ9{XH$ht`-X|!m*NO z5`rNER~-$Rfl=OmjH!bT1RJq-M-0dp>w@TDoeWGygR#jE0jykt8b12EZvUB`7Yr`3 z>cSQd5-61e%3Li^@)sd~(hHvTZbzmV8Jo_3%To3|sQu4L6O`>YDd?;_}0e>crRWG~57EVL=X*0vU=jWki%a;_CrpkI z{Z3Q^1df)+!`(oW{+Pz5HWaFIA1l0b;Cztpo-l>rIg0(%Ak%zz!vTfcA9g{_D;E() z4wcd!`IZaACq)x;xlQB$j_`zHvwBJam#R21(WKYz8*kYbyrx3q;W$|MG5S@|9b}i! zl>}RT1+I$5^j)eacnVDsi_sc5lKQ$XPh;wuvitqLK)`0r>D`Nn)g_r(OuPNh@5B{~ zbgM_pu3WT4Xi2|>S0|!xAVrI`uW_a#NZ1OR79odLq1r5S7x`>{(q1Q5ae;JOS40aK z57>r7Iri?*7gKlH#SGO@f~IP6+zwiIdsC=JuT}5Kly;h^=#zR4AWpn()Ngjmo3t1F zR!Mz1Up$2Kf8RJ#V`XoC_WZwtqJ6AS_~%oUl++OaC)shEL;NQOKz+L)MlzRwc$qk$ z{o|RQo1GN0Yw*X0a-!!;M=i7@v|9#di zAorGwA^88#y2*<^!ZvCg`@0;&6O^ceO7=$QU$+nPC696$F_mhH^dHyp!N>O$7H$xO ztlej90PR=u^WEfP9w&5P{F2m$?z>|5DjwAROH(^ETA=N0iZ^NS+&wANBAxs1Dy z^|(VQZH%GulUbVB3wNK|lvb|<8Y#6PA{vszeM-(2kww$=C#)KEexDy+NQtfad$ab^k~iJ$fSoJXl)U zd#+uo`DkT>`G?b`8N5%^Xe_dm(tD%7@Yxl82Xxb4*!fbQvN+YKQD%wI%=ky!OsvLt z&W}Ny4Mwg#R;oyoSaSMqmDYir)$6LA_D1u^N$-sT@{tdGbBTwB)agDBe;;{K!NuHd z2A?4B1a_3+OB0rS>yIrwUyi?Fsv-$UJh!QJtGdvz;@9{hohq;Ml;g?s1sC=*F{{tdkuhi_NE;sz!@3is(&>M3LkW~ z^#I>Rym2v=)J@l;p;wyXoC;2NoP8C3BvIapBH|rph-*eBoZLIaF<+f24$E>`KdS^{#R} zOAuj5@MJI*i&rBUkIcnqN}t5&%bkJD7WH=##Qlv@<6qMsjwTy+4+ZaM^<9wwZ|J?I ze}H&MgLX=lf3_qDz-$B;p8VXEr9aIF0six15fnnUQfQ-QHMzYc%1Y4B90{H8PA8KEQ`Z$!B}{vJTQm;aYtW2w6MpT>su&uwwzpZ5PmH2q_{SpSW{ z-CDQ*WGMe5$@?EH-Twt$_y73OXE-sE09r$BTmT7}$=R8H&(ZoDMJHT+eu{HAMBWSF zc%@AGhxIx?9ZFZJ%Tq^_Lj0L4Np1=ZtW|(c3$4nOZ zqcu60zIZ!OngSH=I}J7Ce$|=P`ek(864y|TeauOlg&-8 zna;s&`?Mj>17)>Xpo$qU`&LfjG+BJHg4VFC3CvZWvLfDCz)Nu4H|scE7Z0|SzL@O6 zG^-fwq`8_s^kwn*I7IOqz9gX~?i&xUfekqR(a~KQF+^u zahh8yQqM;IW4Ygl$0dZS%(^_E;qR$8W9mzX2Xi?Ljst{^G?V;?yuU8kS~jGpm85Li zb9YzgIlUWr`>=Y($)eJ&6E^@tT=e0On0Z}UxzFiqSBU9dk=|-FMH0b)h_hliq+2kp zx0BTRbCq;nfv3s=%slv=XM%`MItOO+j(_0^quD34ZSAjC7wy*4HQL^0qO2TSe35?2 z9VX^zq$Y!>j9HA4UGUS_zlt<}&Ig(v`DFBddAJ94RhXnrRo&WsrSFDzwQG2sy_aGK z>mf%37yE{ZyFK2zI3QebMg=D};JIRdTj8nx*>W@S`CBj4fY*8|O1sglAq!)kOnhTcVgi&f>R4C zlpN{#+ywzz^e2s`vzG$rA6vpb>$raCURE}l7oOx)q1i0PeA;3QANi3x6<&Vyu7(#~ zJX?OoIfnRji*{;XHg>*o1@Lg!P|cfiZ|KL~vZ1tmB1)2f9Uo9L$1JzD8fXn!udjOL zoKbtuiwTArGnvf!@YG$3+gb027M{HJx}D06|4hb5!q+_LY+`IY>F}S|_C_^FB8<^r zWel6HB1fK787gFQYNowHJ5|(Ssq=xCv)Rl8g)k4Y6P+gq1qTF(;R{cFTh6*6+2k|> z=|p{#RTI&RV-QXYHi=3@mfr~jPQ-aiQX%dm*H2@9i0wc3Hmc4mHT}y+U;zfy|eKz!SYwdt5C(Wn9t@tx76^%yKp4vLP(dU;WzPo(WBDp z{XGUF(W&UK3#(F@W#eV0cLf9s74?J$w>Vig%Jv=2EWwR}I)>$JU!s-*;B=e9IiH_7 z+A&6m%z9K)X^MX+8BoX&6%C@IlRN!>x6S;i_EDyPcc~3TBrHFIVUak4x~8z${I2>? zS8Z8Vlm5J#@_dxtcF6X+;`#dsd+1hKmg)DmjM|ZI&QZLZuR|)B8E0HIR~wKTNG8(&V@fotX&I z%@|pg5OWCDnMIEryP~Dvd}Zn?%h&%hm8OyO%iT{qmv?9V?&j2mNJ{aPS|!rr(xbNQ zm&m-o+XIOPp5z8MWi!#O%5(0+pKW!9Yajn4F1-tRV=^c!As!MPt@Sd1>HKoK`QE

62M(Hi?A{;2jEng(c(x^^8^Nyo zTi=E>G)UWq4iqcC06cIj&i^~o2V7z9t)0JZ|0&Y{ul=9W+6^{cWd@~UzMVN1(A1Q* KmC6;YkpBZ;6ebk_ literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.2/pred.csv b/cars/lr-investigations/sigmoid/1e-2/50_0.2/pred.csv new file mode 100644 index 0000000..65ed5d1 --- /dev/null +++ b/cars/lr-investigations/sigmoid/1e-2/50_0.2/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 20.94% Jeep Compass SUV 2012 18.57% Chevrolet Avalanche Crew Cab 2012 11.37% Mazda Tribute SUV 2011 9.05% Jeep Grand Cherokee SUV 2012 5.27% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 Chevrolet Impala Sedan 2007 21.61% Suzuki Kizashi Sedan 2012 14.19% Ford Mustang Convertible 2007 9.96% Chevrolet Monte Carlo Coupe 2007 7.24% Dodge Ram Pickup 3500 Crew Cab 2010 3.43% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Malibu Hybrid Sedan 2010 21.97% Maybach Landaulet Convertible 2012 19.08% Toyota Corolla Sedan 2012 15.75% Mercedes-Benz C-Class Sedan 2012 9.3% Dodge Caliber Wagon 2012 4.88% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 BMW X5 SUV 2007 53.97% Jeep Compass SUV 2012 14.39% Mazda Tribute SUV 2011 11.98% Cadillac SRX SUV 2012 6.45% Buick Rainier SUV 2007 3.44% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 29.34% Chrysler 300 SRT-8 2010 28.69% Ford Focus Sedan 2007 11.08% Bentley Continental Flying Spur Sedan 2007 10.58% Dodge Charger SRT-8 2009 5.29% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 74.91% Audi V8 Sedan 1994 24.18% Volkswagen Golf Hatchback 1991 0.44% Audi 100 Wagon 1994 0.25% Plymouth Neon Coupe 1999 0.12% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Audi TT Hatchback 2011 38.62% Audi TTS Coupe 2012 7.26% Mitsubishi Lancer Sedan 2012 6.94% Audi S5 Convertible 2012 6.71% Audi A5 Coupe 2012 5.74% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Mazda Tribute SUV 2011 37.53% BMW X5 SUV 2007 31.71% Dodge Caliber Wagon 2012 9.6% Chrysler PT Cruiser Convertible 2008 7.79% Jeep Grand Cherokee SUV 2012 5.68% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 68.52% Lamborghini Diablo Coupe 2001 8.73% Acura Integra Type R 2001 4.48% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.19% Aston Martin V8 Vantage Coupe 2012 2.64% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 100.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Buick Regal GS 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% Chrysler 300 SRT-8 2010 0.0% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Audi S5 Coupe 2012 53.69% Audi S4 Sedan 2007 25.36% Audi S4 Sedan 2012 10.29% Audi TT Hatchback 2011 2.39% Dodge Charger Sedan 2012 1.15% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Camaro Convertible 2012 27.23% Aston Martin V8 Vantage Convertible 2012 13.64% Aston Martin V8 Vantage Coupe 2012 12.1% Hyundai Genesis Sedan 2012 9.5% Ferrari FF Coupe 2012 5.72% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 35.97% Chevrolet Silverado 1500 Extended Cab 2012 28.36% Ford Ranger SuperCab 2011 20.53% Chevrolet Silverado 2500HD Regular Cab 2012 3.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.16% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Ford Edge SUV 2012 86.13% Chrysler Aspen SUV 2009 12.12% Ford F-150 Regular Cab 2012 0.46% Jeep Liberty SUV 2012 0.19% Ford Ranger SuperCab 2011 0.18% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Land Rover Range Rover SUV 2012 85.49% Mercedes-Benz 300-Class Convertible 1993 2.79% Chrysler Sebring Convertible 2010 2.5% Ford Focus Sedan 2007 1.71% Chrysler Crossfire Convertible 2008 1.03% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 94.9% Chevrolet Silverado 1500 Regular Cab 2012 3.46% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.99% Chevrolet Silverado 1500 Extended Cab 2012 0.38% Dodge Dakota Club Cab 2007 0.12% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 99.49% Ford Edge SUV 2012 0.32% Chevrolet Silverado 1500 Regular Cab 2012 0.14% Chevrolet Avalanche Crew Cab 2012 0.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.02% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 Land Rover LR2 SUV 2012 18.11% Mazda Tribute SUV 2011 17.25% Dodge Caliber Wagon 2012 17.13% Dodge Journey SUV 2012 13.41% Nissan Juke Hatchback 2012 6.18% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Porsche Panamera Sedan 2012 87.04% Fisker Karma Sedan 2012 12.28% Jaguar XK XKR 2012 0.27% Audi S5 Convertible 2012 0.11% Chevrolet Corvette Convertible 2012 0.06% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.92% Bentley Continental Supersports Conv. Convertible 2012 0.07% MINI Cooper Roadster Convertible 2012 0.0% Acura Integra Type R 2001 0.0% Maybach Landaulet Convertible 2012 0.0% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 99.71% Audi S4 Sedan 2012 0.28% Audi S5 Coupe 2012 0.01% Audi S4 Sedan 2007 0.01% Audi S5 Convertible 2012 0.0% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Acura ZDX Hatchback 2012 17.16% Buick Verano Sedan 2012 9.68% Hyundai Azera Sedan 2012 6.14% Chevrolet Malibu Hybrid Sedan 2010 5.1% Mercedes-Benz C-Class Sedan 2012 4.04% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 Chevrolet Impala Sedan 2007 80.07% Plymouth Neon Coupe 1999 4.71% Dodge Caravan Minivan 1997 4.3% Chevrolet Monte Carlo Coupe 2007 2.16% Ford Focus Sedan 2007 1.77% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 Suzuki SX4 Sedan 2012 86.71% Chrysler Town and Country Minivan 2012 5.74% Ram C/V Cargo Van Minivan 2012 4.74% Suzuki Aerio Sedan 2007 1.07% Audi S4 Sedan 2007 0.9% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 Audi S5 Convertible 2012 52.53% Audi A5 Coupe 2012 26.27% Audi S4 Sedan 2012 15.56% Audi S6 Sedan 2011 3.63% Audi RS 4 Convertible 2008 1.07% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 99.9% Hyundai Genesis Sedan 2012 0.02% Audi S6 Sedan 2011 0.01% BMW ActiveHybrid 5 Sedan 2012 0.01% Bentley Arnage Sedan 2009 0.01% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 98.85% Buick Enclave SUV 2012 0.83% Volvo XC90 SUV 2007 0.3% Mazda Tribute SUV 2011 0.0% Toyota Sequoia SUV 2012 0.0% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 99.1% Ford GT Coupe 2006 0.6% Lamborghini Aventador Coupe 2012 0.26% Ferrari 458 Italia Coupe 2012 0.03% BMW 1 Series Coupe 2012 0.01% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 61.95% Cadillac Escalade EXT Crew Cab 2007 30.55% GMC Yukon Hybrid SUV 2012 3.51% Ford Freestar Minivan 2007 0.92% Ford F-150 Regular Cab 2007 0.65% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Chevrolet Tahoe Hybrid SUV 2012 28.55% GMC Savana Van 2012 26.92% Toyota Sequoia SUV 2012 10.6% Ford Expedition EL SUV 2009 8.94% Chevrolet Avalanche Crew Cab 2012 5.11% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 97.95% Audi TTS Coupe 2012 0.98% Audi S6 Sedan 2011 0.38% Audi S4 Sedan 2012 0.28% Audi S5 Convertible 2012 0.17% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 100.0% Maybach Landaulet Convertible 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Rolls-Royce Phantom Sedan 2012 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 83.66% Chevrolet Silverado 1500 Regular Cab 2012 9.31% Dodge Dakota Crew Cab 2010 2.82% Dodge Dakota Club Cab 2007 1.82% Dodge Ram Pickup 3500 Quad Cab 2009 0.54% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 Dodge Caravan Minivan 1997 19.97% Nissan Leaf Hatchback 2012 15.81% Honda Accord Sedan 2012 13.72% Ford Fiesta Sedan 2012 10.37% Acura TSX Sedan 2012 7.16% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 59.78% Lamborghini Aventador Coupe 2012 21.95% Hyundai Veloster Hatchback 2012 6.24% Lamborghini Reventon Coupe 2008 5.01% Bugatti Veyron 16.4 Convertible 2009 4.51% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 100.0% Toyota Camry Sedan 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Honda Odyssey Minivan 2007 68.5% Land Rover LR2 SUV 2012 12.53% GMC Terrain SUV 2012 6.51% Ford Expedition EL SUV 2009 5.85% Chevrolet Tahoe Hybrid SUV 2012 1.42% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.53% Dodge Journey SUV 2012 0.38% Dodge Magnum Wagon 2008 0.04% Chevrolet Avalanche Crew Cab 2012 0.02% GMC Terrain SUV 2012 0.01% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 94.23% Ford Ranger SuperCab 2011 5.43% GMC Canyon Extended Cab 2012 0.16% Dodge Dakota Crew Cab 2010 0.1% Dodge Ram Pickup 3500 Quad Cab 2009 0.05% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 BMW 3 Series Sedan 2012 35.3% Dodge Caliber Wagon 2007 18.73% Toyota Camry Sedan 2012 10.19% BMW 3 Series Wagon 2012 6.61% Toyota Corolla Sedan 2012 3.07% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 BMW M6 Convertible 2010 47.52% Jaguar XK XKR 2012 36.86% Porsche Panamera Sedan 2012 2.77% Chrysler 300 SRT-8 2010 1.84% Spyker C8 Convertible 2009 1.81% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Aston Martin V8 Vantage Coupe 2012 72.71% Mitsubishi Lancer Sedan 2012 19.09% Ferrari California Convertible 2012 2.66% Lamborghini Aventador Coupe 2012 2.21% Audi TT RS Coupe 2012 0.77% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 Audi TTS Coupe 2012 12.46% Suzuki Kizashi Sedan 2012 11.06% Porsche Panamera Sedan 2012 8.13% Spyker C8 Convertible 2009 7.24% Audi S5 Coupe 2012 6.13% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 68.8% Jeep Patriot SUV 2012 10.38% Jeep Liberty SUV 2012 3.57% Chevrolet Silverado 1500 Regular Cab 2012 2.64% Ford Ranger SuperCab 2011 1.23% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 Isuzu Ascender SUV 2008 15.23% Jeep Grand Cherokee SUV 2012 10.86% Land Rover LR2 SUV 2012 10.03% Ford Expedition EL SUV 2009 6.22% Chevrolet Tahoe Hybrid SUV 2012 3.53% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 Acura Integra Type R 2001 25.1% Bentley Continental Supersports Conv. Convertible 2012 15.99% Lamborghini Gallardo LP 570-4 Superleggera 2012 15.6% Volkswagen Golf Hatchback 1991 7.55% Bugatti Veyron 16.4 Coupe 2009 4.39% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 88.06% Dodge Caliber Wagon 2012 4.56% Dodge Dakota Crew Cab 2010 4.08% Dodge Durango SUV 2012 1.79% Dodge Dakota Club Cab 2007 0.94% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Dodge Caravan Minivan 1997 69.71% Chevrolet Silverado 1500 Classic Extended Cab 2007 6.43% Isuzu Ascender SUV 2008 5.07% Honda Accord Sedan 2012 4.38% Audi 100 Sedan 1994 3.9% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 40.14% Audi S5 Convertible 2012 8.02% Ferrari FF Coupe 2012 7.7% Chrysler Crossfire Convertible 2008 7.22% Ferrari California Convertible 2012 5.82% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Ford Fiesta Sedan 2012 59.77% Nissan Leaf Hatchback 2012 14.52% Volkswagen Golf Hatchback 2012 12.41% Chevrolet Malibu Hybrid Sedan 2010 5.67% Hyundai Accent Sedan 2012 3.77% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Ford F-150 Regular Cab 2007 41.79% Dodge Dakota Club Cab 2007 21.57% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.04% Chevrolet Silverado 1500 Extended Cab 2012 4.79% Ford F-450 Super Duty Crew Cab 2012 4.38% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 99.87% McLaren MP4-12C Coupe 2012 0.04% Spyker C8 Coupe 2009 0.02% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% Bentley Continental GT Coupe 2007 0.01% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Extended Cab 2012 55.7% Dodge Dakota Club Cab 2007 35.18% Dodge Ram Pickup 3500 Quad Cab 2009 3.51% Chevrolet Silverado 2500HD Regular Cab 2012 2.27% Ford Ranger SuperCab 2011 2.14% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 Porsche Panamera Sedan 2012 44.51% Lamborghini Reventon Coupe 2008 40.17% BMW 6 Series Convertible 2007 11.58% Cadillac CTS-V Sedan 2012 0.93% Audi TTS Coupe 2012 0.5% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.3% Dodge Magnum Wagon 2008 0.54% Mercedes-Benz S-Class Sedan 2012 0.04% Ford Freestar Minivan 2007 0.04% Land Rover Range Rover SUV 2012 0.02% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 99.84% Chevrolet Express Cargo Van 2007 0.12% Chevrolet Express Van 2007 0.03% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Volkswagen Golf Hatchback 1991 0.0% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 Audi 100 Sedan 1994 45.2% Lincoln Town Car Sedan 2011 14.14% GMC Canyon Extended Cab 2012 12.1% Ford Ranger SuperCab 2011 8.54% Chevrolet Silverado 1500 Regular Cab 2012 4.78% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 Chevrolet HHR SS 2010 99.92% Dodge Magnum Wagon 2008 0.08% Volkswagen Beetle Hatchback 2012 0.0% Dodge Journey SUV 2012 0.0% Dodge Charger SRT-8 2009 0.0% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2012 54.12% Audi A5 Coupe 2012 21.4% Audi S6 Sedan 2011 12.28% Audi S5 Coupe 2012 5.27% Audi S4 Sedan 2007 4.12% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 88.58% Suzuki SX4 Sedan 2012 3.16% BMW X3 SUV 2012 3.05% Bentley Continental GT Coupe 2012 2.21% Buick Verano Sedan 2012 1.87% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 MINI Cooper Roadster Convertible 2012 82.88% Ferrari FF Coupe 2012 2.66% Bentley Continental Supersports Conv. Convertible 2012 2.07% Ferrari 458 Italia Convertible 2012 1.92% Aston Martin V8 Vantage Convertible 2012 1.69% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 80.6% Hyundai Elantra Sedan 2007 7.28% Chevrolet Cobalt SS 2010 4.06% Cadillac SRX SUV 2012 3.03% Hyundai Sonata Hybrid Sedan 2012 0.83% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Lamborghini Reventon Coupe 2008 47.61% Aston Martin V8 Vantage Coupe 2012 11.01% Lamborghini Aventador Coupe 2012 6.47% Mercedes-Benz SL-Class Coupe 2009 5.67% Aston Martin Virage Convertible 2012 5.4% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 96.71% Chevrolet Camaro Convertible 2012 0.93% Chevrolet Corvette Convertible 2012 0.55% Aston Martin V8 Vantage Coupe 2012 0.45% Aston Martin V8 Vantage Convertible 2012 0.37% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 48.83% Aston Martin V8 Vantage Coupe 2012 21.28% McLaren MP4-12C Coupe 2012 10.46% Audi TTS Coupe 2012 4.34% Spyker C8 Coupe 2009 2.79% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 BMW M5 Sedan 2010 28.87% Suzuki Kizashi Sedan 2012 19.38% Chevrolet Monte Carlo Coupe 2007 17.45% Toyota Camry Sedan 2012 9.43% BMW M6 Convertible 2010 5.61% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Suzuki Aerio Sedan 2007 35.2% Suzuki Kizashi Sedan 2012 15.44% Toyota Camry Sedan 2012 9.51% Nissan Leaf Hatchback 2012 6.01% Acura TSX Sedan 2012 3.65% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 42.23% Chevrolet Malibu Sedan 2007 25.26% Volvo XC90 SUV 2007 5.08% Ford Mustang Convertible 2007 4.87% Audi 100 Wagon 1994 4.5% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi RS 4 Convertible 2008 84.02% Audi S5 Convertible 2012 5.27% Infiniti G Coupe IPL 2012 3.21% BMW 1 Series Convertible 2012 1.78% Audi S6 Sedan 2011 1.62% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 Mercedes-Benz S-Class Sedan 2012 42.1% Dodge Durango SUV 2012 26.93% Dodge Charger Sedan 2012 14.61% Audi S6 Sedan 2011 3.45% Hyundai Genesis Sedan 2012 2.58% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 100.0% Bentley Arnage Sedan 2009 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% Ford Mustang Convertible 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 99.94% Tesla Model S Sedan 2012 0.04% Ferrari FF Coupe 2012 0.02% Audi TTS Coupe 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 Audi 100 Wagon 1994 43.57% Acura ZDX Hatchback 2012 6.29% Chevrolet Traverse SUV 2012 5.62% Ford Focus Sedan 2007 5.49% Mercedes-Benz 300-Class Convertible 1993 4.66% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 Volvo 240 Sedan 1993 54.4% Audi 100 Wagon 1994 36.74% Buick Rainier SUV 2007 2.02% Chrysler Aspen SUV 2009 1.82% Dodge Dakota Crew Cab 2010 1.52% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 72.02% Chevrolet Silverado 2500HD Regular Cab 2012 20.18% Chevrolet Silverado 1500 Regular Cab 2012 7.03% Chevrolet Silverado 1500 Extended Cab 2012 0.68% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 85.19% Ford Fiesta Sedan 2012 3.13% Toyota Sequoia SUV 2012 3.02% Mercedes-Benz SL-Class Coupe 2009 1.68% Land Rover LR2 SUV 2012 1.53% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Bentley Arnage Sedan 2009 10.28% FIAT 500 Abarth 2012 9.23% Rolls-Royce Phantom Sedan 2012 8.9% Chrysler 300 SRT-8 2010 5.64% Infiniti G Coupe IPL 2012 3.55% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 94.43% Dodge Caliber Wagon 2012 2.32% Volvo C30 Hatchback 2012 1.82% Dodge Journey SUV 2012 0.65% Hyundai Elantra Touring Hatchback 2012 0.22% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Eagle Talon Hatchback 1998 42.19% Chevrolet Cobalt SS 2010 12.05% Chevrolet Monte Carlo Coupe 2007 5.06% Chevrolet Impala Sedan 2007 4.59% Plymouth Neon Coupe 1999 4.15% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 Audi 100 Wagon 1994 72.16% Mercedes-Benz 300-Class Convertible 1993 27.6% Audi 100 Sedan 1994 0.24% Dodge Magnum Wagon 2008 0.0% Dodge Dakota Club Cab 2007 0.0% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 Honda Accord Sedan 2012 54.21% Chrysler Sebring Convertible 2010 26.2% Hyundai Genesis Sedan 2012 6.14% Chrysler Town and Country Minivan 2012 2.48% Hyundai Azera Sedan 2012 2.05% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 99.93% Chrysler 300 SRT-8 2010 0.04% Bentley Continental GT Coupe 2012 0.02% Bentley Continental GT Coupe 2007 0.0% Cadillac CTS-V Sedan 2012 0.0% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Ford Edge SUV 2012 44.42% Buick Verano Sedan 2012 12.83% Honda Odyssey Minivan 2012 12.03% BMW X6 SUV 2012 11.7% Honda Accord Sedan 2012 4.82% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford E-Series Wagon Van 2012 0.0% GMC Savana Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% AM General Hummer SUV 2000 0.0% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 BMW M3 Coupe 2012 38.18% Suzuki Kizashi Sedan 2012 20.21% BMW M5 Sedan 2010 12.52% Mercedes-Benz E-Class Sedan 2012 11.51% Volkswagen Beetle Hatchback 2012 8.59% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 Cadillac SRX SUV 2012 61.47% Suzuki SX4 Hatchback 2012 25.52% Ford Fiesta Sedan 2012 6.37% BMW X3 SUV 2012 1.76% Dodge Journey SUV 2012 1.64% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 54.21% Infiniti QX56 SUV 2011 13.41% Honda Odyssey Minivan 2012 6.45% Honda Odyssey Minivan 2007 5.96% Toyota 4Runner SUV 2012 3.48% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 39.55% Audi TTS Coupe 2012 30.93% BMW Z4 Convertible 2012 11.11% Audi TT Hatchback 2011 5.34% Bugatti Veyron 16.4 Convertible 2009 4.66% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 Audi S5 Convertible 2012 20.06% Chevrolet Corvette ZR1 2012 14.64% Hyundai Azera Sedan 2012 14.51% Nissan Juke Hatchback 2012 6.41% Bugatti Veyron 16.4 Coupe 2009 4.23% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Audi V8 Sedan 1994 93.9% Mercedes-Benz 300-Class Convertible 1993 5.83% Plymouth Neon Coupe 1999 0.07% Eagle Talon Hatchback 1998 0.04% Geo Metro Convertible 1993 0.03% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Nissan NV Passenger Van 2012 62.65% Lamborghini Diablo Coupe 2001 14.32% Lamborghini Gallardo LP 570-4 Superleggera 2012 6.58% Spyker C8 Convertible 2009 5.0% Bugatti Veyron 16.4 Convertible 2009 3.24% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Jeep Grand Cherokee SUV 2012 29.2% Toyota 4Runner SUV 2012 17.7% Dodge Caliber Wagon 2012 10.76% Dodge Durango SUV 2012 10.16% Ford Expedition EL SUV 2009 3.96% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 91.49% Audi S5 Coupe 2012 3.18% Audi A5 Coupe 2012 1.66% Audi TT Hatchback 2011 1.46% Audi RS 4 Convertible 2008 1.12% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 26.17% Bugatti Veyron 16.4 Coupe 2009 23.56% Ford Mustang Convertible 2007 16.16% Ford GT Coupe 2006 14.39% Acura Integra Type R 2001 2.94% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Honda Odyssey Minivan 2012 44.58% Audi 100 Wagon 1994 10.19% Hyundai Sonata Sedan 2012 9.2% Chevrolet Impala Sedan 2007 7.94% BMW M5 Sedan 2010 5.61% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 30.41% Jeep Patriot SUV 2012 26.33% Ford F-150 Regular Cab 2012 4.03% Ford F-450 Super Duty Crew Cab 2012 2.94% Volvo 240 Sedan 1993 2.59% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 81.32% BMW X3 SUV 2012 17.16% Mitsubishi Lancer Sedan 2012 1.38% Cadillac CTS-V Sedan 2012 0.06% GMC Terrain SUV 2012 0.01% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 46.5% Ferrari 458 Italia Convertible 2012 27.11% Chevrolet Corvette Convertible 2012 21.48% Chevrolet Corvette ZR1 2012 1.96% Bugatti Veyron 16.4 Coupe 2009 1.34% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 95.31% Audi S5 Convertible 2012 3.34% BMW 3 Series Wagon 2012 0.23% BMW 3 Series Sedan 2012 0.21% Audi TTS Coupe 2012 0.17% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz S-Class Sedan 2012 82.41% Chrysler Sebring Convertible 2010 7.41% Chrysler Crossfire Convertible 2008 5.1% Chevrolet Camaro Convertible 2012 3.38% Dodge Challenger SRT8 2011 0.84% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 98.66% Dodge Dakota Club Cab 2007 0.61% Dodge Ram Pickup 3500 Crew Cab 2010 0.56% GMC Canyon Extended Cab 2012 0.09% Ford F-150 Regular Cab 2007 0.06% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 BMW M3 Coupe 2012 93.46% BMW ActiveHybrid 5 Sedan 2012 4.73% BMW M5 Sedan 2010 1.67% BMW 3 Series Wagon 2012 0.04% Dodge Challenger SRT8 2011 0.02% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Rolls-Royce Ghost Sedan 2012 33.64% Rolls-Royce Phantom Sedan 2012 25.5% Fisker Karma Sedan 2012 12.52% Tesla Model S Sedan 2012 3.56% Chrysler 300 SRT-8 2010 1.7% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 85.2% HUMMER H3T Crew Cab 2010 7.86% HUMMER H2 SUT Crew Cab 2009 2.12% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.18% Ford F-150 Regular Cab 2012 1.11% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Infiniti G Coupe IPL 2012 95.41% BMW M5 Sedan 2010 3.63% BMW M3 Coupe 2012 0.22% Acura TL Type-S 2008 0.21% Toyota Corolla Sedan 2012 0.17% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Audi 100 Wagon 1994 75.12% Volkswagen Golf Hatchback 1991 14.42% Daewoo Nubira Wagon 2002 3.77% BMW 3 Series Wagon 2012 1.74% Volvo 240 Sedan 1993 1.35% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 99.87% Audi 100 Sedan 1994 0.13% Plymouth Neon Coupe 1999 0.0% Audi 100 Wagon 1994 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Lamborghini Aventador Coupe 2012 96.64% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.3% McLaren MP4-12C Coupe 2012 0.02% Bugatti Veyron 16.4 Convertible 2009 0.02% Ferrari 458 Italia Convertible 2012 0.01% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 99.98% Chrysler PT Cruiser Convertible 2008 0.01% Land Rover Range Rover SUV 2012 0.0% Ford E-Series Wagon Van 2012 0.0% Ford Expedition EL SUV 2009 0.0% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.0% Porsche Panamera Sedan 2012 0.0% Cadillac CTS-V Sedan 2012 0.0% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2012 32.06% Volvo XC90 SUV 2007 6.47% Jeep Grand Cherokee SUV 2012 5.75% Suzuki SX4 Hatchback 2012 5.14% Buick Rainier SUV 2007 4.99% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 99.91% Plymouth Neon Coupe 1999 0.09% Suzuki Aerio Sedan 2007 0.0% Daewoo Nubira Wagon 2002 0.0% Nissan 240SX Coupe 1998 0.0% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Ford F-450 Super Duty Crew Cab 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Hyundai Azera Sedan 2012 0.0% Suzuki SX4 Sedan 2012 0.0% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 Acura ZDX Hatchback 2012 85.04% Hyundai Tucson SUV 2012 6.81% Buick Verano Sedan 2012 1.03% Chevrolet Traverse SUV 2012 0.56% Fisker Karma Sedan 2012 0.45% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Chevrolet Cobalt SS 2010 28.97% Acura Integra Type R 2001 26.79% Lamborghini Diablo Coupe 2001 9.47% Ferrari 458 Italia Convertible 2012 5.76% Dodge Challenger SRT8 2011 4.99% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Honda Accord Sedan 2012 81.36% Honda Accord Coupe 2012 18.47% Hyundai Genesis Sedan 2012 0.16% Honda Odyssey Minivan 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 98.67% Mercedes-Benz Sprinter Van 2012 1.04% Nissan NV Passenger Van 2012 0.21% GMC Savana Van 2012 0.03% Ram C/V Cargo Van Minivan 2012 0.02% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 66.44% Toyota Sequoia SUV 2012 11.95% Ford F-450 Super Duty Crew Cab 2012 10.78% Ford Expedition EL SUV 2009 10.36% Ford E-Series Wagon Van 2012 0.12% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Spyker C8 Coupe 2009 11.07% Lamborghini Reventon Coupe 2008 8.35% Dodge Challenger SRT8 2011 7.56% Spyker C8 Convertible 2009 5.0% Hyundai Veloster Hatchback 2012 4.65% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Abarth 2012 99.99% Acura ZDX Hatchback 2012 0.0% BMW M5 Sedan 2010 0.0% Bugatti Veyron 16.4 Coupe 2009 0.0% Infiniti G Coupe IPL 2012 0.0% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 Ram C/V Cargo Van Minivan 2012 25.14% Mercedes-Benz S-Class Sedan 2012 22.74% Chrysler Sebring Convertible 2010 16.07% Suzuki Kizashi Sedan 2012 10.5% Buick Verano Sedan 2012 3.64% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 88.97% Plymouth Neon Coupe 1999 10.51% Chrysler Crossfire Convertible 2008 0.31% Audi 100 Sedan 1994 0.09% Chrysler Sebring Convertible 2010 0.05% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Lamborghini Reventon Coupe 2008 0.0% Lamborghini Diablo Coupe 2001 0.0% Acura Integra Type R 2001 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 77.43% Chevrolet Sonic Sedan 2012 5.0% Audi 100 Wagon 1994 3.05% Geo Metro Convertible 1993 1.74% Audi 100 Sedan 1994 1.44% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 Suzuki SX4 Sedan 2012 65.75% Nissan Juke Hatchback 2012 16.48% Bentley Arnage Sedan 2009 7.96% Audi R8 Coupe 2012 5.95% Audi 100 Wagon 1994 2.25% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.84% Land Rover Range Rover SUV 2012 0.08% Toyota Sequoia SUV 2012 0.06% Land Rover LR2 SUV 2012 0.02% Ford F-150 Regular Cab 2012 0.0% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 Chrysler 300 SRT-8 2010 90.13% Dodge Caliber Wagon 2012 2.04% Lincoln Town Car Sedan 2011 1.61% Chevrolet Malibu Sedan 2007 1.49% Chevrolet Impala Sedan 2007 1.36% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Audi V8 Sedan 1994 72.56% Ford GT Coupe 2006 11.01% Chevrolet Corvette ZR1 2012 2.51% Nissan 240SX Coupe 1998 2.39% Bugatti Veyron 16.4 Coupe 2009 1.47% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 100.0% Hyundai Sonata Hybrid Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Impala Sedan 2007 67.25% Dodge Caravan Minivan 1997 7.84% Suzuki SX4 Sedan 2012 7.83% Plymouth Neon Coupe 1999 7.54% Chevrolet Monte Carlo Coupe 2007 3.65% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 99.96% Bentley Continental Supersports Conv. Convertible 2012 0.03% MINI Cooper Roadster Convertible 2012 0.01% GMC Terrain SUV 2012 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 72.3% Audi RS 4 Convertible 2008 20.08% Acura Integra Type R 2001 1.7% Chrysler PT Cruiser Convertible 2008 1.44% Chevrolet Sonic Sedan 2012 0.92% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 33.87% Jeep Patriot SUV 2012 30.46% Ford Ranger SuperCab 2011 14.2% Cadillac Escalade EXT Crew Cab 2007 9.6% Jeep Liberty SUV 2012 2.99% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 64.27% Ford Ranger SuperCab 2011 14.84% Chevrolet Silverado 1500 Regular Cab 2012 8.58% Ford F-150 Regular Cab 2012 4.82% Chevrolet Silverado 2500HD Regular Cab 2012 2.58% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 90.39% Dodge Caliber Wagon 2012 4.56% Dodge Journey SUV 2012 3.78% Dodge Magnum Wagon 2008 0.58% Dodge Durango SUV 2012 0.33% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.93% Lamborghini Diablo Coupe 2001 0.03% Chevrolet Cobalt SS 2010 0.01% Dodge Charger Sedan 2012 0.01% Ford Mustang Convertible 2007 0.0% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 76.45% Honda Odyssey Minivan 2012 23.05% Honda Accord Sedan 2012 0.28% Hyundai Sonata Sedan 2012 0.21% Chrysler Town and Country Minivan 2012 0.02% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 Infiniti G Coupe IPL 2012 53.63% BMW M6 Convertible 2010 16.58% Chevrolet Monte Carlo Coupe 2007 8.17% Aston Martin V8 Vantage Convertible 2012 3.84% BMW 6 Series Convertible 2007 2.67% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Plymouth Neon Coupe 1999 90.64% Mercedes-Benz SL-Class Coupe 2009 2.69% Acura TSX Sedan 2012 2.66% Eagle Talon Hatchback 1998 1.91% Infiniti G Coupe IPL 2012 0.29% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Chevrolet Sonic Sedan 2012 42.8% Acura ZDX Hatchback 2012 12.6% Lamborghini Reventon Coupe 2008 11.2% Volkswagen Golf Hatchback 2012 4.3% Bugatti Veyron 16.4 Coupe 2009 3.46% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Ford F-450 Super Duty Crew Cab 2012 33.21% Land Rover LR2 SUV 2012 8.94% Rolls-Royce Phantom Sedan 2012 8.86% Cadillac Escalade EXT Crew Cab 2007 7.38% AM General Hummer SUV 2000 6.0% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 94.61% Nissan Leaf Hatchback 2012 2.8% Dodge Caliber Wagon 2007 0.98% Ford Mustang Convertible 2007 0.4% Ferrari FF Coupe 2012 0.13% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 93.82% Jeep Grand Cherokee SUV 2012 4.31% Bentley Continental Flying Spur Sedan 2007 0.43% Rolls-Royce Phantom Sedan 2012 0.43% Buick Enclave SUV 2012 0.39% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 99.93% Dodge Charger Sedan 2012 0.03% Dodge Caliber Wagon 2007 0.02% Dodge Dakota Club Cab 2007 0.01% Dodge Caliber Wagon 2012 0.0% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 47.49% Dodge Dakota Crew Cab 2010 20.52% Cadillac Escalade EXT Crew Cab 2007 6.32% Buick Enclave SUV 2012 5.78% BMW X5 SUV 2007 4.25% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Jeep Patriot SUV 2012 18.5% GMC Yukon Hybrid SUV 2012 17.72% Buick Verano Sedan 2012 9.01% Nissan NV Passenger Van 2012 4.95% FIAT 500 Abarth 2012 4.8% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 66.56% GMC Savana Van 2012 32.68% Chevrolet Express Van 2007 0.61% Volvo 240 Sedan 1993 0.12% Plymouth Neon Coupe 1999 0.0% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 88.84% Nissan Juke Hatchback 2012 9.63% Volkswagen Golf Hatchback 1991 0.78% Audi V8 Sedan 1994 0.36% Audi 100 Sedan 1994 0.18% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 98.61% Land Rover LR2 SUV 2012 0.77% Chevrolet Silverado 2500HD Regular Cab 2012 0.22% Toyota Sequoia SUV 2012 0.12% Cadillac Escalade EXT Crew Cab 2007 0.06% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.98% Plymouth Neon Coupe 1999 0.02% Mercedes-Benz 300-Class Convertible 1993 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Nissan 240SX Coupe 1998 0.0% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 Volkswagen Golf Hatchback 1991 52.57% Mercedes-Benz 300-Class Convertible 1993 11.68% Suzuki Kizashi Sedan 2012 5.82% Geo Metro Convertible 1993 3.24% Chevrolet Corvette Convertible 2012 3.23% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Audi 100 Wagon 1994 97.55% Rolls-Royce Phantom Sedan 2012 1.08% Audi V8 Sedan 1994 0.45% Mercedes-Benz 300-Class Convertible 1993 0.28% Volvo XC90 SUV 2007 0.19% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Ford Mustang Convertible 2007 36.66% Honda Accord Sedan 2012 14.47% Chevrolet Monte Carlo Coupe 2007 9.76% Chrysler Sebring Convertible 2010 7.5% Chevrolet Malibu Sedan 2007 7.19% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 Hyundai Elantra Touring Hatchback 2012 47.7% Chrysler Town and Country Minivan 2012 23.01% Ram C/V Cargo Van Minivan 2012 15.18% Ford Expedition EL SUV 2009 6.47% Honda Odyssey Minivan 2007 5.3% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Rolls-Royce Phantom Drophead Coupe Convertible 2012 40.18% Chrysler 300 SRT-8 2010 18.57% Jaguar XK XKR 2012 7.43% Rolls-Royce Ghost Sedan 2012 6.12% Tesla Model S Sedan 2012 4.72% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 BMW X5 SUV 2007 99.99% Mercedes-Benz S-Class Sedan 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Porsche Panamera Sedan 2012 0.0% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 78.41% Hyundai Sonata Sedan 2012 10.66% Acura TL Sedan 2012 2.86% Buick Regal GS 2012 2.81% Porsche Panamera Sedan 2012 0.91% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Tahoe Hybrid SUV 2012 14.94% Dodge Durango SUV 2007 12.53% Ford Expedition EL SUV 2009 11.9% Chrysler Aspen SUV 2009 11.33% Jeep Liberty SUV 2012 10.97% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Spyker C8 Coupe 2009 22.18% McLaren MP4-12C Coupe 2012 19.68% Chevrolet Corvette Convertible 2012 18.91% Aston Martin V8 Vantage Coupe 2012 16.71% Bentley Continental GT Coupe 2007 13.02% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 BMW 3 Series Wagon 2012 65.41% BMW 3 Series Sedan 2012 7.87% Volkswagen Beetle Hatchback 2012 6.17% Ferrari 458 Italia Coupe 2012 5.19% Volvo 240 Sedan 1993 4.21% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 99.75% Honda Accord Sedan 2012 0.14% Honda Accord Coupe 2012 0.05% Chevrolet Malibu Sedan 2007 0.04% Acura TL Type-S 2008 0.02% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 38.28% Audi TT Hatchback 2011 16.28% Acura ZDX Hatchback 2012 7.53% BMW Z4 Convertible 2012 6.97% Bentley Continental GT Coupe 2007 6.59% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.98% GMC Yukon Hybrid SUV 2012 0.02% Dodge Durango SUV 2012 0.0% Cadillac SRX SUV 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Audi V8 Sedan 1994 60.71% Chevrolet Silverado 1500 Extended Cab 2012 10.53% Bentley Mulsanne Sedan 2011 8.28% Mercedes-Benz 300-Class Convertible 1993 2.98% Mercedes-Benz E-Class Sedan 2012 2.93% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 MINI Cooper Roadster Convertible 2012 94.67% Rolls-Royce Phantom Sedan 2012 2.98% BMW Z4 Convertible 2012 0.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.44% Chrysler 300 SRT-8 2010 0.26% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 99.89% Hyundai Sonata Sedan 2012 0.09% Hyundai Azera Sedan 2012 0.01% Mercedes-Benz C-Class Sedan 2012 0.0% Infiniti G Coupe IPL 2012 0.0% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 51.4% Jeep Wrangler SUV 2012 44.16% Toyota 4Runner SUV 2012 2.42% Jeep Compass SUV 2012 1.06% Jeep Grand Cherokee SUV 2012 0.21% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 57.4% Volkswagen Golf Hatchback 1991 26.59% Ford Ranger SuperCab 2011 11.19% GMC Savana Van 2012 2.44% Mercedes-Benz 300-Class Convertible 1993 0.69% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 91.53% Land Rover Range Rover SUV 2012 2.59% Ford F-150 Regular Cab 2012 1.83% Ford Ranger SuperCab 2011 1.75% Volvo XC90 SUV 2007 1.71% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 12.9% Mercedes-Benz SL-Class Coupe 2009 9.4% Mercedes-Benz Sprinter Van 2012 9.4% Porsche Panamera Sedan 2012 8.0% Cadillac CTS-V Sedan 2012 6.36% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 99.92% Bentley Continental GT Coupe 2012 0.08% BMW 1 Series Coupe 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% BMW Z4 Convertible 2012 0.0% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 99.48% Mitsubishi Lancer Sedan 2012 0.33% Honda Odyssey Minivan 2012 0.15% Honda Accord Sedan 2012 0.03% Acura TSX Sedan 2012 0.01% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 BMW ActiveHybrid 5 Sedan 2012 71.49% Mercedes-Benz E-Class Sedan 2012 12.22% Acura TSX Sedan 2012 5.29% BMW M3 Coupe 2012 4.16% Suzuki Kizashi Sedan 2012 3.64% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 78.21% Bentley Continental GT Coupe 2007 7.05% Acura ZDX Hatchback 2012 3.54% Buick Verano Sedan 2012 3.42% Fisker Karma Sedan 2012 1.73% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 78.28% Volvo 240 Sedan 1993 9.53% BMW X5 SUV 2007 2.02% BMW 1 Series Coupe 2012 1.97% Bentley Arnage Sedan 2009 0.89% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 Hyundai Elantra Touring Hatchback 2012 26.8% Suzuki Kizashi Sedan 2012 16.05% Maybach Landaulet Convertible 2012 6.53% Suzuki SX4 Sedan 2012 6.34% Mercedes-Benz S-Class Sedan 2012 5.87% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 19.02% Dodge Ram Pickup 3500 Quad Cab 2009 15.44% Ford F-450 Super Duty Crew Cab 2012 12.0% Acura ZDX Hatchback 2012 7.78% Audi S5 Coupe 2012 6.43% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 59.28% Ferrari 458 Italia Convertible 2012 34.49% Ferrari 458 Italia Coupe 2012 5.03% Acura Integra Type R 2001 0.27% Ferrari FF Coupe 2012 0.16% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 Honda Accord Sedan 2012 95.69% Chevrolet Malibu Hybrid Sedan 2010 1.04% Chrysler Sebring Convertible 2010 0.89% Toyota Camry Sedan 2012 0.6% Acura TL Type-S 2008 0.3% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 95.08% Dodge Caliber Wagon 2007 2.88% BMW X3 SUV 2012 0.55% BMW X6 SUV 2012 0.43% BMW 3 Series Wagon 2012 0.38% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Bentley Mulsanne Sedan 2011 35.51% Bentley Continental GT Coupe 2007 16.52% Volkswagen Beetle Hatchback 2012 14.91% BMW 6 Series Convertible 2007 7.24% Bentley Continental Flying Spur Sedan 2007 5.2% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 83.98% BMW X3 SUV 2012 5.23% Audi TT Hatchback 2011 2.34% Cadillac SRX SUV 2012 1.4% Hyundai Tucson SUV 2012 1.4% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 66.91% Dodge Journey SUV 2012 10.26% Honda Accord Sedan 2012 5.84% Ford Fiesta Sedan 2012 2.97% Hyundai Veracruz SUV 2012 2.89% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 BMW Z4 Convertible 2012 56.98% BMW 1 Series Convertible 2012 31.91% BMW 6 Series Convertible 2007 3.76% Audi TTS Coupe 2012 3.72% Mitsubishi Lancer Sedan 2012 1.2% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 86.27% Eagle Talon Hatchback 1998 11.01% BMW 3 Series Wagon 2012 0.68% Volvo C30 Hatchback 2012 0.2% BMW 1 Series Coupe 2012 0.17% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 93.74% Ford F-150 Regular Cab 2007 3.9% Ford E-Series Wagon Van 2012 0.72% GMC Yukon Hybrid SUV 2012 0.46% Nissan NV Passenger Van 2012 0.41% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Aston Martin V8 Vantage Coupe 2012 90.13% McLaren MP4-12C Coupe 2012 4.86% Ferrari 458 Italia Convertible 2012 1.98% Audi TTS Coupe 2012 0.98% Lamborghini Diablo Coupe 2001 0.68% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.98% Ford F-150 Regular Cab 2007 0.02% Ford F-150 Regular Cab 2012 0.0% Chevrolet Express Van 2007 0.0% GMC Savana Van 2012 0.0% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 Lincoln Town Car Sedan 2011 83.21% Ford Focus Sedan 2007 3.89% Eagle Talon Hatchback 1998 2.79% Nissan NV Passenger Van 2012 2.34% Suzuki Kizashi Sedan 2012 1.05% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 92.28% Rolls-Royce Phantom Sedan 2012 6.82% Bentley Continental GT Coupe 2012 0.83% Bentley Continental Flying Spur Sedan 2007 0.04% Bentley Continental Supersports Conv. Convertible 2012 0.02% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 Toyota Camry Sedan 2012 54.23% Ford Fiesta Sedan 2012 43.97% Hyundai Sonata Hybrid Sedan 2012 0.64% Toyota Corolla Sedan 2012 0.54% Hyundai Accent Sedan 2012 0.18% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 98.6% Acura ZDX Hatchback 2012 0.59% Suzuki Aerio Sedan 2007 0.1% Cadillac SRX SUV 2012 0.09% Ford Edge SUV 2012 0.08% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 Suzuki SX4 Hatchback 2012 30.82% Hyundai Elantra Touring Hatchback 2012 21.11% Ford Focus Sedan 2007 12.66% Daewoo Nubira Wagon 2002 12.4% smart fortwo Convertible 2012 4.87% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Convertible 2012 61.87% Fisker Karma Sedan 2012 15.9% Aston Martin V8 Vantage Convertible 2012 8.09% Ferrari FF Coupe 2012 4.64% BMW 6 Series Convertible 2007 1.25% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 58.56% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 33.13% Chevrolet Silverado 1500 Extended Cab 2012 3.28% Chevrolet Silverado 1500 Regular Cab 2012 2.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.14% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 56.52% smart fortwo Convertible 2012 41.38% Bugatti Veyron 16.4 Convertible 2009 1.25% Ford GT Coupe 2006 0.32% Ferrari 458 Italia Convertible 2012 0.09% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Suzuki SX4 Hatchback 2012 81.59% Hyundai Tucson SUV 2012 6.09% Audi 100 Wagon 1994 2.1% Jeep Grand Cherokee SUV 2012 1.69% Jeep Compass SUV 2012 1.55% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Honda Odyssey Minivan 2007 35.38% Chrysler Sebring Convertible 2010 31.34% Honda Accord Sedan 2012 12.53% Hyundai Veracruz SUV 2012 6.0% Toyota Camry Sedan 2012 2.09% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 99.99% Hyundai Accent Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% Infiniti G Coupe IPL 2012 0.0% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 69.59% Chevrolet Silverado 2500HD Regular Cab 2012 19.46% Audi 100 Wagon 1994 4.89% Audi 100 Sedan 1994 1.21% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.19% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Nissan Juke Hatchback 2012 28.66% Jaguar XK XKR 2012 27.31% BMW 3 Series Sedan 2012 12.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 5.03% Audi V8 Sedan 1994 2.82% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 BMW M5 Sedan 2010 44.91% Chevrolet Corvette ZR1 2012 42.66% Nissan 240SX Coupe 1998 2.93% Rolls-Royce Phantom Drophead Coupe Convertible 2012 2.86% Volvo 240 Sedan 1993 1.39% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 AM General Hummer SUV 2000 24.84% Rolls-Royce Phantom Drophead Coupe Convertible 2012 19.32% Chrysler PT Cruiser Convertible 2008 8.33% Bentley Mulsanne Sedan 2011 7.04% Maybach Landaulet Convertible 2012 4.92% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 67.54% Lamborghini Diablo Coupe 2001 19.37% Spyker C8 Convertible 2009 2.49% Acura Integra Type R 2001 2.07% Hyundai Veloster Hatchback 2012 1.93% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 86.55% Chevrolet Express Cargo Van 2007 13.39% Chevrolet Express Van 2007 0.06% Jeep Wrangler SUV 2012 0.0% Volvo 240 Sedan 1993 0.0% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 75.54% Volkswagen Beetle Hatchback 2012 9.27% Buick Verano Sedan 2012 6.58% Acura ZDX Hatchback 2012 4.41% Hyundai Azera Sedan 2012 0.72% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 28.16% Ferrari 458 Italia Coupe 2012 20.9% BMW Z4 Convertible 2012 15.78% Chevrolet Corvette Convertible 2012 5.77% Aston Martin Virage Coupe 2012 4.37% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 74.23% Bentley Continental GT Coupe 2012 24.37% Buick Regal GS 2012 1.24% Audi TT RS Coupe 2012 0.13% Mitsubishi Lancer Sedan 2012 0.01% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.93% Chrysler Aspen SUV 2009 0.03% Chevrolet Tahoe Hybrid SUV 2012 0.03% Dodge Durango SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 98.79% Spyker C8 Coupe 2009 1.16% Spyker C8 Convertible 2009 0.03% Hyundai Veloster Hatchback 2012 0.0% Audi TTS Coupe 2012 0.0% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 48.74% Ford E-Series Wagon Van 2012 47.54% Ford Ranger SuperCab 2011 1.36% Nissan NV Passenger Van 2012 0.82% Dodge Ram Pickup 3500 Quad Cab 2009 0.54% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 100.0% Dodge Charger SRT-8 2009 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Chevrolet HHR SS 2010 0.0% Land Rover Range Rover SUV 2012 0.0% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% McLaren MP4-12C Coupe 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Dodge Charger Sedan 2012 0.0% Audi TTS Coupe 2012 0.0% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 Hyundai Accent Sedan 2012 89.82% Toyota Camry Sedan 2012 4.5% Ford Fiesta Sedan 2012 4.32% Hyundai Sonata Hybrid Sedan 2012 0.47% Honda Accord Coupe 2012 0.39% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 96.92% Rolls-Royce Phantom Sedan 2012 2.66% Mitsubishi Lancer Sedan 2012 0.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.1% Audi TTS Coupe 2012 0.04% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 Acura TL Sedan 2012 52.17% Chevrolet Impala Sedan 2007 36.23% Toyota Camry Sedan 2012 7.72% Buick Verano Sedan 2012 1.44% Acura ZDX Hatchback 2012 0.68% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2012 94.64% Bentley Continental GT Coupe 2007 1.7% Bugatti Veyron 16.4 Convertible 2009 1.14% Cadillac CTS-V Sedan 2012 0.47% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.33% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 Buick Enclave SUV 2012 45.52% BMW X3 SUV 2012 16.37% Buick Verano Sedan 2012 7.28% BMW 1 Series Coupe 2012 5.9% Suzuki Aerio Sedan 2007 4.92% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 94.08% Ford Fiesta Sedan 2012 5.91% Hyundai Tucson SUV 2012 0.01% Toyota Corolla Sedan 2012 0.01% Nissan Leaf Hatchback 2012 0.0% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.93% Dodge Dakota Crew Cab 2010 0.04% Cadillac Escalade EXT Crew Cab 2007 0.02% Ford Ranger SuperCab 2011 0.01% Ford F-450 Super Duty Crew Cab 2012 0.0% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 GMC Savana Van 2012 84.28% Chevrolet Express Van 2007 15.42% Chevrolet Express Cargo Van 2007 0.26% Jeep Liberty SUV 2012 0.02% Nissan Juke Hatchback 2012 0.01% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 BMW 1 Series Coupe 2012 67.82% Dodge Magnum Wagon 2008 7.15% Bentley Continental GT Coupe 2012 4.89% Mitsubishi Lancer Sedan 2012 4.51% Dodge Charger Sedan 2012 3.29% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 96.44% Toyota Sequoia SUV 2012 2.84% Ford F-150 Regular Cab 2012 0.63% Ford E-Series Wagon Van 2012 0.05% Cadillac SRX SUV 2012 0.02% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 86.91% Geo Metro Convertible 1993 12.88% Chrysler PT Cruiser Convertible 2008 0.19% Audi RS 4 Convertible 2008 0.01% Audi S5 Convertible 2012 0.0% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 61.26% GMC Canyon Extended Cab 2012 33.81% Chevrolet Silverado 1500 Regular Cab 2012 2.24% Ford F-150 Regular Cab 2007 1.12% Chevrolet Silverado 2500HD Regular Cab 2012 1.01% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi TT Hatchback 2011 44.66% Audi A5 Coupe 2012 42.09% Audi S5 Convertible 2012 5.55% Audi S6 Sedan 2011 2.81% Audi S4 Sedan 2012 2.06% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Chevrolet Malibu Hybrid Sedan 2010 55.25% Chevrolet Impala Sedan 2007 27.35% Dodge Challenger SRT8 2011 5.07% Dodge Magnum Wagon 2008 4.05% Acura TL Sedan 2012 1.88% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Bugatti Veyron 16.4 Convertible 2009 95.31% Lamborghini Aventador Coupe 2012 1.57% Audi R8 Coupe 2012 0.71% Bugatti Veyron 16.4 Coupe 2009 0.7% Lamborghini Reventon Coupe 2008 0.55% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.99% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% Ford F-150 Regular Cab 2007 0.0% Ford F-150 Regular Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Audi TTS Coupe 2012 63.26% Audi A5 Coupe 2012 18.54% Audi S4 Sedan 2007 7.59% Rolls-Royce Ghost Sedan 2012 4.62% Audi S5 Coupe 2012 2.32% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 100.0% Buick Enclave SUV 2012 0.0% GMC Acadia SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 60.98% GMC Acadia SUV 2012 35.72% Volvo 240 Sedan 1993 1.19% Audi 100 Sedan 1994 0.59% Buick Enclave SUV 2012 0.54% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 42.11% Chevrolet Impala Sedan 2007 10.46% Buick Verano Sedan 2012 7.26% Chevrolet Malibu Sedan 2007 7.17% Buick Enclave SUV 2012 5.22% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 99.91% Eagle Talon Hatchback 1998 0.04% Nissan 240SX Coupe 1998 0.03% Ford Focus Sedan 2007 0.02% Audi V8 Sedan 1994 0.0% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 84.82% Hyundai Azera Sedan 2012 9.49% Mercedes-Benz S-Class Sedan 2012 3.06% Hyundai Genesis Sedan 2012 1.21% Mercedes-Benz E-Class Sedan 2012 0.57% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 Chevrolet Impala Sedan 2007 18.64% Acura TSX Sedan 2012 16.27% Hyundai Elantra Sedan 2007 14.61% Toyota Camry Sedan 2012 11.64% Chevrolet Monte Carlo Coupe 2007 8.99% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 90.01% Chevrolet Camaro Convertible 2012 5.68% Ferrari 458 Italia Convertible 2012 1.53% Mercedes-Benz C-Class Sedan 2012 0.46% Buick Regal GS 2012 0.23% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 46.51% Infiniti QX56 SUV 2011 42.68% Dodge Durango SUV 2007 4.07% Toyota Sequoia SUV 2012 1.56% Land Rover Range Rover SUV 2012 1.0% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Buick Verano Sedan 2012 46.13% Chevrolet Sonic Sedan 2012 14.8% Buick Regal GS 2012 12.48% Acura RL Sedan 2012 6.75% Hyundai Azera Sedan 2012 3.95% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 49.44% Hyundai Azera Sedan 2012 40.19% Hyundai Genesis Sedan 2012 1.09% Mitsubishi Lancer Sedan 2012 0.92% Chrysler Sebring Convertible 2010 0.73% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 McLaren MP4-12C Coupe 2012 5.99% BMW M5 Sedan 2010 4.93% Chevrolet Camaro Convertible 2012 4.12% BMW 1 Series Coupe 2012 4.11% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.67% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Jeep Patriot SUV 2012 99.92% Jeep Compass SUV 2012 0.04% Jeep Liberty SUV 2012 0.04% Dodge Dakota Crew Cab 2010 0.0% Jeep Wrangler SUV 2012 0.0% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 100.0% Honda Accord Sedan 2012 0.0% Chrysler Crossfire Convertible 2008 0.0% Hyundai Elantra Sedan 2007 0.0% Volvo C30 Hatchback 2012 0.0% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 99.14% Dodge Sprinter Cargo Van 2009 0.79% Nissan NV Passenger Van 2012 0.01% GMC Savana Van 2012 0.01% Ford E-Series Wagon Van 2012 0.01% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% MINI Cooper Roadster Convertible 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% FIAT 500 Convertible 2012 0.0% Chrysler PT Cruiser Convertible 2008 0.0% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Nissan NV Passenger Van 2012 15.87% Ford E-Series Wagon Van 2012 9.19% Audi R8 Coupe 2012 6.87% Dodge Charger Sedan 2012 6.18% BMW ActiveHybrid 5 Sedan 2012 4.61% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Ford Ranger SuperCab 2011 89.37% Chrysler Aspen SUV 2009 2.51% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 2.0% GMC Canyon Extended Cab 2012 1.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.9% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.89% McLaren MP4-12C Coupe 2012 0.06% Spyker C8 Coupe 2009 0.04% Audi TTS Coupe 2012 0.01% Aston Martin V8 Vantage Coupe 2012 0.0% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 72.66% Mercedes-Benz 300-Class Convertible 1993 20.58% Audi 100 Wagon 1994 6.76% Lincoln Town Car Sedan 2011 0.0% Dodge Caravan Minivan 1997 0.0% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Buick Enclave SUV 2012 78.06% GMC Acadia SUV 2012 17.93% BMW X3 SUV 2012 1.69% Infiniti QX56 SUV 2011 0.42% Buick Verano Sedan 2012 0.37% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 Toyota Camry Sedan 2012 27.65% Volkswagen Beetle Hatchback 2012 15.77% Audi S4 Sedan 2012 10.33% Chevrolet Sonic Sedan 2012 9.49% Hyundai Accent Sedan 2012 9.37% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 66.47% Toyota Corolla Sedan 2012 25.19% Acura TL Type-S 2008 2.94% Mercedes-Benz C-Class Sedan 2012 1.73% Acura RL Sedan 2012 0.57% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 Ford Expedition EL SUV 2009 26.02% Isuzu Ascender SUV 2008 23.31% Toyota Sequoia SUV 2012 10.88% Hyundai Santa Fe SUV 2012 8.86% BMW X5 SUV 2007 3.9% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 99.49% Chevrolet Corvette ZR1 2012 0.31% Audi R8 Coupe 2012 0.07% Tesla Model S Sedan 2012 0.02% Cadillac CTS-V Sedan 2012 0.02% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 100.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Toyota Sequoia SUV 2012 0.0% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.93% Infiniti G Coupe IPL 2012 0.04% Hyundai Azera Sedan 2012 0.01% Audi TT Hatchback 2011 0.01% Mitsubishi Lancer Sedan 2012 0.0% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ferrari 458 Italia Convertible 2012 70.43% Audi R8 Coupe 2012 6.54% Audi TT RS Coupe 2012 1.96% Bugatti Veyron 16.4 Coupe 2009 1.75% Chevrolet Sonic Sedan 2012 1.7% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Audi S5 Coupe 2012 80.2% Audi A5 Coupe 2012 3.89% Fisker Karma Sedan 2012 3.81% BMW 6 Series Convertible 2007 2.75% Buick Verano Sedan 2012 0.96% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 Ferrari 458 Italia Coupe 2012 22.5% Chevrolet Corvette Convertible 2012 7.89% Acura Integra Type R 2001 7.07% Lamborghini Reventon Coupe 2008 5.98% Ferrari 458 Italia Convertible 2012 5.51% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 96.31% HUMMER H2 SUT Crew Cab 2009 1.38% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.35% Ford Ranger SuperCab 2011 0.29% Dodge Dakota Crew Cab 2010 0.24% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2012 100.0% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Mulsanne Sedan 2011 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Buick Verano Sedan 2012 0.0% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 51.5% Mercedes-Benz S-Class Sedan 2012 47.66% Ford F-150 Regular Cab 2007 0.63% Dodge Magnum Wagon 2008 0.06% Mercedes-Benz E-Class Sedan 2012 0.05% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 Volvo C30 Hatchback 2012 28.38% Suzuki SX4 Sedan 2012 14.44% Bentley Continental GT Coupe 2007 8.8% Chrysler 300 SRT-8 2010 6.25% Bugatti Veyron 16.4 Coupe 2009 3.46% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 62.21% Chevrolet Impala Sedan 2007 24.61% Chevrolet Cobalt SS 2010 4.58% Toyota Camry Sedan 2012 2.65% Nissan 240SX Coupe 1998 1.54% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Toyota 4Runner SUV 2012 20.34% Toyota Camry Sedan 2012 18.8% Rolls-Royce Ghost Sedan 2012 7.96% Suzuki Kizashi Sedan 2012 6.81% Chrysler PT Cruiser Convertible 2008 5.69% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Dodge Dakota Crew Cab 2010 28.49% Audi 100 Sedan 1994 13.78% Mercedes-Benz Sprinter Van 2012 12.37% Dodge Durango SUV 2007 5.66% Ram C/V Cargo Van Minivan 2012 5.34% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.48% Ford Freestar Minivan 2007 0.45% Dodge Caravan Minivan 1997 0.03% Ford E-Series Wagon Van 2012 0.02% Dodge Dakota Crew Cab 2010 0.01% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Aston Martin Virage Convertible 2012 52.26% Spyker C8 Convertible 2009 24.99% Spyker C8 Coupe 2009 13.53% Tesla Model S Sedan 2012 1.24% Bugatti Veyron 16.4 Coupe 2009 1.09% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Continental GT Coupe 2007 99.93% Bentley Continental GT Coupe 2012 0.06% Bentley Continental Flying Spur Sedan 2007 0.0% Bentley Mulsanne Sedan 2011 0.0% Buick Verano Sedan 2012 0.0% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 96.89% Audi TT Hatchback 2011 1.0% Ford GT Coupe 2006 0.57% Audi TT RS Coupe 2012 0.47% Hyundai Veloster Hatchback 2012 0.4% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 96.99% Jeep Wrangler SUV 2012 2.97% Jeep Patriot SUV 2012 0.03% Buick Rainier SUV 2007 0.0% Jeep Compass SUV 2012 0.0% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 99.84% Audi V8 Sedan 1994 0.16% Mercedes-Benz 300-Class Convertible 1993 0.0% Eagle Talon Hatchback 1998 0.0% BMW 6 Series Convertible 2007 0.0% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Chrysler Crossfire Convertible 2008 28.23% Audi S4 Sedan 2007 10.78% Audi S5 Coupe 2012 9.34% Chevrolet Malibu Hybrid Sedan 2010 7.0% Suzuki Kizashi Sedan 2012 6.8% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 95.68% Chevrolet Tahoe Hybrid SUV 2012 0.8% Chrysler Aspen SUV 2009 0.77% Toyota Sequoia SUV 2012 0.48% Ford F-150 Regular Cab 2012 0.4% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 68.59% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 17.5% Chevrolet Silverado 2500HD Regular Cab 2012 5.81% Chrysler Aspen SUV 2009 2.18% Dodge Ram Pickup 3500 Crew Cab 2010 2.04% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Hyundai Sonata Hybrid Sedan 2012 56.45% Suzuki Kizashi Sedan 2012 28.14% Volkswagen Beetle Hatchback 2012 2.74% Bentley Continental GT Coupe 2012 1.99% Mitsubishi Lancer Sedan 2012 1.54% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 95.89% Chevrolet Malibu Hybrid Sedan 2010 3.07% Hyundai Azera Sedan 2012 0.95% Hyundai Elantra Sedan 2007 0.04% Honda Odyssey Minivan 2007 0.01% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Ford Fiesta Sedan 2012 93.69% smart fortwo Convertible 2012 5.46% Hyundai Accent Sedan 2012 0.69% Volkswagen Golf Hatchback 2012 0.06% Suzuki Aerio Sedan 2007 0.05% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Ford F-150 Regular Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% GMC Canyon Extended Cab 2012 0.0% Nissan NV Passenger Van 2012 0.0% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Nissan 240SX Coupe 1998 22.26% Hyundai Tucson SUV 2012 4.63% Dodge Caravan Minivan 1997 4.12% Chevrolet Silverado 1500 Regular Cab 2012 3.82% Chevrolet Express Van 2007 3.64% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 24.66% Land Rover LR2 SUV 2012 8.73% Ford Edge SUV 2012 8.28% Dodge Durango SUV 2012 6.36% Infiniti QX56 SUV 2011 6.11% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 58.69% Plymouth Neon Coupe 1999 25.77% Mercedes-Benz SL-Class Coupe 2009 7.06% Ford Fiesta Sedan 2012 2.17% Acura TL Type-S 2008 1.75% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Express Van 2007 57.48% Ford F-150 Regular Cab 2007 15.94% GMC Yukon Hybrid SUV 2012 6.19% Dodge Ram Pickup 3500 Crew Cab 2010 4.79% Chevrolet Express Cargo Van 2007 2.35% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 53.42% GMC Canyon Extended Cab 2012 31.99% Chevrolet Silverado 1500 Extended Cab 2012 6.81% Ford F-150 Regular Cab 2012 3.37% Dodge Dakota Club Cab 2007 2.8% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 BMW 6 Series Convertible 2007 54.32% Bentley Mulsanne Sedan 2011 26.35% Rolls-Royce Phantom Drophead Coupe Convertible 2012 10.82% Rolls-Royce Ghost Sedan 2012 3.89% Fisker Karma Sedan 2012 2.34% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Ford Focus Sedan 2007 35.58% Chevrolet Impala Sedan 2007 17.85% Ford Mustang Convertible 2007 10.93% Ford F-150 Regular Cab 2007 7.28% Lincoln Town Car Sedan 2011 4.97% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Lamborghini Reventon Coupe 2008 57.68% Dodge Challenger SRT8 2011 41.2% Bugatti Veyron 16.4 Convertible 2009 0.8% Audi S5 Convertible 2012 0.1% Spyker C8 Convertible 2009 0.07% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.99% Ford F-150 Regular Cab 2012 0.01% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Toyota 4Runner SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 35.51% Cadillac Escalade EXT Crew Cab 2007 28.56% Jeep Patriot SUV 2012 10.3% Chevrolet Tahoe Hybrid SUV 2012 9.12% Chevrolet TrailBlazer SS 2009 3.66% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.61% Chevrolet Tahoe Hybrid SUV 2012 0.38% Chevrolet Avalanche Crew Cab 2012 0.01% Land Rover LR2 SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 Mitsubishi Lancer Sedan 2012 59.1% Audi RS 4 Convertible 2008 13.07% Audi TT Hatchback 2011 8.56% Audi TTS Coupe 2012 6.1% Audi S5 Convertible 2012 4.65% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 89.23% FIAT 500 Convertible 2012 6.83% Volkswagen Beetle Hatchback 2012 1.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.86% Bentley Continental Flying Spur Sedan 2007 0.64% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Ford Expedition EL SUV 2009 60.04% Chevrolet Avalanche Crew Cab 2012 12.54% Dodge Journey SUV 2012 5.16% Chevrolet Tahoe Hybrid SUV 2012 3.83% Chevrolet TrailBlazer SS 2009 2.25% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 91.09% Dodge Journey SUV 2012 2.66% Chrysler PT Cruiser Convertible 2008 0.91% Dodge Caliber Wagon 2007 0.65% Chevrolet Silverado 1500 Extended Cab 2012 0.62% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Hyundai Accent Sedan 2012 99.13% Toyota Camry Sedan 2012 0.41% Tesla Model S Sedan 2012 0.25% Cadillac CTS-V Sedan 2012 0.07% Hyundai Sonata Hybrid Sedan 2012 0.06% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Phantom Sedan 2012 100.0% Rolls-Royce Ghost Sedan 2012 0.0% Maybach Landaulet Convertible 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 99.46% BMW 1 Series Coupe 2012 0.51% Volvo C30 Hatchback 2012 0.02% Dodge Caliber Wagon 2012 0.01% Audi S4 Sedan 2012 0.0% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 78.73% Chevrolet Impala Sedan 2007 3.68% Hyundai Elantra Touring Hatchback 2012 2.65% Mazda Tribute SUV 2011 2.63% Ford Ranger SuperCab 2011 2.37% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 Chrysler Crossfire Convertible 2008 19.72% Chrysler PT Cruiser Convertible 2008 18.09% Chrysler 300 SRT-8 2010 10.31% Cadillac CTS-V Sedan 2012 9.01% Dodge Journey SUV 2012 8.86% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.46% Cadillac SRX SUV 2012 0.3% Hyundai Santa Fe SUV 2012 0.15% Ford Expedition EL SUV 2009 0.04% Dodge Journey SUV 2012 0.02% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 Bentley Arnage Sedan 2009 27.82% Chevrolet Malibu Hybrid Sedan 2010 24.45% Volvo 240 Sedan 1993 15.89% Audi 100 Wagon 1994 10.47% Hyundai Azera Sedan 2012 6.0% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 FIAT 500 Convertible 2012 54.99% Bugatti Veyron 16.4 Convertible 2009 31.09% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.58% Maybach Landaulet Convertible 2012 3.89% BMW Z4 Convertible 2012 1.8% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 BMW M3 Coupe 2012 96.22% Suzuki Kizashi Sedan 2012 2.66% Chevrolet Corvette ZR1 2012 0.75% BMW M5 Sedan 2010 0.14% Plymouth Neon Coupe 1999 0.07% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 99.85% Audi S4 Sedan 2007 0.06% BMW Z4 Convertible 2012 0.05% Audi S6 Sedan 2011 0.01% BMW M3 Coupe 2012 0.01% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 79.7% Ford Freestar Minivan 2007 10.62% Geo Metro Convertible 1993 9.26% Ford Mustang Convertible 2007 0.22% Ferrari FF Coupe 2012 0.03% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 91.27% Hyundai Azera Sedan 2012 4.59% Cadillac SRX SUV 2012 1.22% Dodge Journey SUV 2012 0.6% Land Rover LR2 SUV 2012 0.6% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 Chevrolet Sonic Sedan 2012 51.38% BMW 3 Series Wagon 2012 20.75% BMW M3 Coupe 2012 7.21% Chevrolet Malibu Hybrid Sedan 2010 5.56% Honda Accord Sedan 2012 3.56% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 99.5% Mercedes-Benz S-Class Sedan 2012 0.44% Acura Integra Type R 2001 0.05% Acura TL Type-S 2008 0.0% Toyota Corolla Sedan 2012 0.0% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.89% Dodge Durango SUV 2007 0.07% GMC Acadia SUV 2012 0.01% Rolls-Royce Ghost Sedan 2012 0.0% BMW X5 SUV 2007 0.0% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 35.36% Honda Odyssey Minivan 2012 13.0% Mazda Tribute SUV 2011 11.16% GMC Savana Van 2012 7.53% Land Rover LR2 SUV 2012 6.68% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 99.9% Bentley Continental Flying Spur Sedan 2007 0.07% Aston Martin V8 Vantage Convertible 2012 0.01% Bentley Continental GT Coupe 2012 0.01% Fisker Karma Sedan 2012 0.0% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Ford Ranger SuperCab 2011 33.83% Chevrolet Silverado 1500 Regular Cab 2012 14.34% Chevrolet Avalanche Crew Cab 2012 12.89% Ford F-150 Regular Cab 2012 11.16% GMC Canyon Extended Cab 2012 4.76% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 Audi S5 Coupe 2012 92.94% Audi TTS Coupe 2012 6.28% Audi S4 Sedan 2012 0.18% Audi TT RS Coupe 2012 0.17% Audi A5 Coupe 2012 0.15% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 97.64% Dodge Dakota Club Cab 2007 2.32% Chevrolet Silverado 1500 Extended Cab 2012 0.01% Chevrolet Silverado 1500 Regular Cab 2012 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 99.98% Jeep Grand Cherokee SUV 2012 0.02% Jeep Wrangler SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% Jeep Compass SUV 2012 0.0% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 Bentley Mulsanne Sedan 2011 61.47% Dodge Charger Sedan 2012 17.66% Cadillac CTS-V Sedan 2012 6.73% Rolls-Royce Ghost Sedan 2012 3.29% BMW ActiveHybrid 5 Sedan 2012 2.83% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 99.86% Buick Regal GS 2012 0.1% Mitsubishi Lancer Sedan 2012 0.01% Chevrolet Sonic Sedan 2012 0.01% Suzuki Kizashi Sedan 2012 0.01% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 38.77% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 31.01% Chevrolet Silverado 2500HD Regular Cab 2012 21.49% Chevrolet Silverado 1500 Extended Cab 2012 7.98% Chevrolet Avalanche Crew Cab 2012 0.55% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 99.37% Dodge Caliber Wagon 2007 0.62% Dodge Durango SUV 2007 0.01% Dodge Magnum Wagon 2008 0.0% Dodge Journey SUV 2012 0.0% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 McLaren MP4-12C Coupe 2012 96.82% Aston Martin Virage Coupe 2012 2.68% HUMMER H3T Crew Cab 2010 0.15% Mitsubishi Lancer Sedan 2012 0.09% Hyundai Veloster Hatchback 2012 0.08% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 GMC Terrain SUV 2012 27.76% Mazda Tribute SUV 2011 17.86% BMW X3 SUV 2012 13.05% Toyota 4Runner SUV 2012 9.33% Suzuki SX4 Sedan 2012 7.63% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Acura TL Type-S 2008 93.73% Toyota Camry Sedan 2012 2.55% Acura TSX Sedan 2012 1.84% Mitsubishi Lancer Sedan 2012 0.74% Toyota Corolla Sedan 2012 0.61% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 100.0% Dodge Caliber Wagon 2012 0.0% Dodge Durango SUV 2007 0.0% Dodge Journey SUV 2012 0.0% Infiniti QX56 SUV 2011 0.0% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Ferrari California Convertible 2012 94.96% Ferrari 458 Italia Convertible 2012 3.81% Ferrari 458 Italia Coupe 2012 0.98% Ford GT Coupe 2006 0.11% Eagle Talon Hatchback 1998 0.07% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Convertible 2009 73.02% Audi RS 4 Convertible 2008 10.26% Audi S5 Coupe 2012 7.74% Audi TTS Coupe 2012 1.36% Audi S5 Convertible 2012 1.32% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 Chevrolet Express Cargo Van 2007 25.41% BMW 1 Series Coupe 2012 11.4% Chevrolet Express Van 2007 7.83% Plymouth Neon Coupe 1999 6.41% Chevrolet TrailBlazer SS 2009 4.72% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 98.46% Audi 100 Sedan 1994 0.84% Volkswagen Golf Hatchback 1991 0.35% Audi V8 Sedan 1994 0.23% Mercedes-Benz 300-Class Convertible 1993 0.03% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Ferrari FF Coupe 2012 69.29% Jeep Wrangler SUV 2012 15.08% Lamborghini Aventador Coupe 2012 5.85% Ford GT Coupe 2006 2.58% FIAT 500 Abarth 2012 1.83% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Maybach Landaulet Convertible 2012 93.52% Bentley Mulsanne Sedan 2011 2.44% Nissan Leaf Hatchback 2012 2.06% Chevrolet Sonic Sedan 2012 1.0% MINI Cooper Roadster Convertible 2012 0.17% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 70.88% Audi TT Hatchback 2011 7.11% Audi TT RS Coupe 2012 6.62% Porsche Panamera Sedan 2012 2.67% Jaguar XK XKR 2012 1.57% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 99.77% Acura RL Sedan 2012 0.22% Acura ZDX Hatchback 2012 0.01% Toyota Camry Sedan 2012 0.0% Honda Odyssey Minivan 2012 0.0% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.1% Lamborghini Aventador Coupe 2012 0.79% Mitsubishi Lancer Sedan 2012 0.05% Eagle Talon Hatchback 1998 0.04% Spyker C8 Coupe 2009 0.01% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Bentley Arnage Sedan 2009 49.81% Audi 100 Wagon 1994 43.49% Mercedes-Benz 300-Class Convertible 1993 0.89% BMW 3 Series Sedan 2012 0.84% BMW X5 SUV 2007 0.79% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 99.24% Chrysler Town and Country Minivan 2012 0.19% Dodge Caliber Wagon 2012 0.16% Ford Freestar Minivan 2007 0.05% Cadillac Escalade EXT Crew Cab 2007 0.05% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Chevrolet Camaro Convertible 2012 41.28% Audi S5 Convertible 2012 33.67% Ferrari 458 Italia Convertible 2012 16.37% Ferrari California Convertible 2012 2.11% Chevrolet Corvette Convertible 2012 1.54% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 100.0% Toyota Camry Sedan 2012 0.0% Toyota Corolla Sedan 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% Honda Accord Coupe 2012 0.0% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 93.2% Dodge Challenger SRT8 2011 3.73% Dodge Charger SRT-8 2009 1.48% Dodge Charger Sedan 2012 0.53% Mercedes-Benz 300-Class Convertible 1993 0.53% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Expedition EL SUV 2009 56.17% Ford F-450 Super Duty Crew Cab 2012 37.8% Toyota Sequoia SUV 2012 3.5% Cadillac SRX SUV 2012 1.08% Ford F-150 Regular Cab 2012 0.53% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 BMW X3 SUV 2012 48.35% BMW 1 Series Coupe 2012 25.68% BMW 3 Series Sedan 2012 11.83% BMW X6 SUV 2012 7.56% BMW 3 Series Wagon 2012 1.88% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 95.88% HUMMER H2 SUT Crew Cab 2009 3.93% HUMMER H3T Crew Cab 2010 0.15% Ford GT Coupe 2006 0.01% Jeep Wrangler SUV 2012 0.01% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 Buick Rainier SUV 2007 41.91% Lincoln Town Car Sedan 2011 31.16% Volvo 240 Sedan 1993 6.17% Audi 100 Wagon 1994 4.22% Mercedes-Benz 300-Class Convertible 1993 3.73% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 65.83% Ford Focus Sedan 2007 34.15% Eagle Talon Hatchback 1998 0.02% Suzuki Aerio Sedan 2007 0.0% Acura Integra Type R 2001 0.0% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 100.0% Chevrolet HHR SS 2010 0.0% Dodge Charger SRT-8 2009 0.0% Chevrolet Camaro Convertible 2012 0.0% Scion xD Hatchback 2012 0.0% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Volkswagen Beetle Hatchback 2012 78.9% Toyota Corolla Sedan 2012 10.91% Toyota Camry Sedan 2012 5.7% Scion xD Hatchback 2012 2.53% Dodge Charger SRT-8 2009 0.48% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 85.14% Dodge Durango SUV 2007 8.77% Jeep Patriot SUV 2012 3.12% GMC Yukon Hybrid SUV 2012 1.36% Isuzu Ascender SUV 2008 0.31% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Rolls-Royce Phantom Drophead Coupe Convertible 2012 33.26% Lamborghini Reventon Coupe 2008 15.83% Chrysler Sebring Convertible 2010 14.35% Suzuki Kizashi Sedan 2012 3.45% Lincoln Town Car Sedan 2011 2.86% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 Spyker C8 Coupe 2009 99.99% Spyker C8 Convertible 2009 0.01% Bugatti Veyron 16.4 Convertible 2009 0.0% Lamborghini Reventon Coupe 2008 0.0% Ford GT Coupe 2006 0.0% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.78% Dodge Caliber Wagon 2012 0.2% Ram C/V Cargo Van Minivan 2012 0.03% Suzuki Aerio Sedan 2007 0.0% Dodge Caliber Wagon 2007 0.0% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 97.97% MINI Cooper Roadster Convertible 2012 0.86% Mercedes-Benz Sprinter Van 2012 0.44% Bugatti Veyron 16.4 Convertible 2009 0.18% Chrysler PT Cruiser Convertible 2008 0.09% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% Infiniti QX56 SUV 2011 0.0% Ford Expedition EL SUV 2009 0.0% Ford F-150 Regular Cab 2012 0.0% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 40.89% Audi V8 Sedan 1994 38.69% Audi 100 Sedan 1994 15.62% GMC Acadia SUV 2012 1.95% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.73% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 99.99% Toyota 4Runner SUV 2012 0.01% Chrysler Aspen SUV 2009 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Dodge Durango SUV 2012 0.0% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 37.2% HUMMER H3T Crew Cab 2010 22.34% Ford F-450 Super Duty Crew Cab 2012 6.71% Dodge Ram Pickup 3500 Crew Cab 2010 5.76% Ford Ranger SuperCab 2011 3.58% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Jeep Liberty SUV 2012 97.0% Isuzu Ascender SUV 2008 2.81% Jeep Patriot SUV 2012 0.13% Chrysler Aspen SUV 2009 0.01% HUMMER H3T Crew Cab 2010 0.01% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 18.22% Audi V8 Sedan 1994 17.39% Ford Mustang Convertible 2007 12.27% Plymouth Neon Coupe 1999 10.39% Ford Freestar Minivan 2007 7.6% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 91.44% Bentley Continental GT Coupe 2012 7.3% Acura ZDX Hatchback 2012 0.65% Bentley Continental GT Coupe 2007 0.34% Acura Integra Type R 2001 0.06% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Ford Expedition EL SUV 2009 62.05% Infiniti QX56 SUV 2011 32.63% Land Rover Range Rover SUV 2012 4.6% Chrysler Aspen SUV 2009 0.6% Land Rover LR2 SUV 2012 0.07% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.57% Hyundai Santa Fe SUV 2012 0.13% BMW X3 SUV 2012 0.11% BMW X5 SUV 2007 0.05% Nissan Juke Hatchback 2012 0.02% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 90.56% Audi RS 4 Convertible 2008 8.98% Dodge Charger SRT-8 2009 0.14% Chevrolet Corvette Convertible 2012 0.07% McLaren MP4-12C Coupe 2012 0.06% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Hyundai Genesis Sedan 2012 55.79% Mercedes-Benz C-Class Sedan 2012 30.12% Mercedes-Benz SL-Class Coupe 2009 9.49% Mercedes-Benz E-Class Sedan 2012 1.91% Hyundai Azera Sedan 2012 0.7% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 99.84% Porsche Panamera Sedan 2012 0.15% Nissan Juke Hatchback 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% Nissan Leaf Hatchback 2012 0.0% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 52.81% Ford F-150 Regular Cab 2012 27.4% Nissan NV Passenger Van 2012 17.74% Ford E-Series Wagon Van 2012 1.82% Dodge Ram Pickup 3500 Quad Cab 2009 0.07% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 Hyundai Veracruz SUV 2012 56.53% Chevrolet Traverse SUV 2012 20.75% Dodge Caliber Wagon 2012 11.67% Chevrolet Impala Sedan 2007 1.99% Ford Edge SUV 2012 1.83% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.44% Volvo 240 Sedan 1993 0.12% Ram C/V Cargo Van Minivan 2012 0.11% Audi 100 Sedan 1994 0.11% Suzuki SX4 Sedan 2012 0.08% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.49% Chevrolet Corvette ZR1 2012 0.16% Ford GT Coupe 2006 0.06% Acura TSX Sedan 2012 0.04% Mercedes-Benz C-Class Sedan 2012 0.03% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 99.63% Chrysler PT Cruiser Convertible 2008 0.18% Chevrolet Traverse SUV 2012 0.07% Honda Accord Sedan 2012 0.05% Chrysler Aspen SUV 2009 0.02% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Maybach Landaulet Convertible 2012 99.93% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.06% Rolls-Royce Ghost Sedan 2012 0.01% Rolls-Royce Phantom Sedan 2012 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 Chevrolet Sonic Sedan 2012 38.19% Chevrolet Malibu Hybrid Sedan 2010 9.22% Audi A5 Coupe 2012 9.11% Nissan 240SX Coupe 1998 8.61% Audi 100 Sedan 1994 7.74% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.24% Chevrolet Express Cargo Van 2007 1.73% Chevrolet Express Van 2007 0.03% Ford Ranger SuperCab 2011 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Mazda Tribute SUV 2011 29.79% GMC Acadia SUV 2012 10.79% Toyota 4Runner SUV 2012 10.4% BMW X5 SUV 2007 9.9% Jeep Grand Cherokee SUV 2012 7.31% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Bentley Continental GT Coupe 2007 31.13% Nissan Juke Hatchback 2012 20.97% Lamborghini Aventador Coupe 2012 14.46% McLaren MP4-12C Coupe 2012 4.86% Audi R8 Coupe 2012 3.21% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Nissan Leaf Hatchback 2012 36.14% Dodge Caravan Minivan 1997 12.64% Suzuki SX4 Sedan 2012 9.68% Audi S4 Sedan 2007 7.72% Suzuki SX4 Hatchback 2012 6.14% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Ford F-150 Regular Cab 2012 54.92% Ford F-450 Super Duty Crew Cab 2012 28.92% AM General Hummer SUV 2000 7.21% Chevrolet Silverado 2500HD Regular Cab 2012 5.62% Chevrolet Silverado 1500 Regular Cab 2012 1.03% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Ford Focus Sedan 2007 44.2% Ford Edge SUV 2012 23.32% Chevrolet Malibu Sedan 2007 13.9% Chevrolet Sonic Sedan 2012 7.75% Dodge Caliber Wagon 2012 3.21% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Audi S5 Convertible 2012 41.08% Toyota Camry Sedan 2012 16.87% Infiniti G Coupe IPL 2012 15.56% Audi S4 Sedan 2012 14.14% Hyundai Veloster Hatchback 2012 2.18% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Volvo 240 Sedan 1993 36.16% Mercedes-Benz 300-Class Convertible 1993 33.78% Audi V8 Sedan 1994 10.47% Bentley Arnage Sedan 2009 4.21% Nissan 240SX Coupe 1998 3.49% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 42.04% Suzuki SX4 Hatchback 2012 22.39% Buick Rainier SUV 2007 21.53% Daewoo Nubira Wagon 2002 7.55% Volvo C30 Hatchback 2012 2.33% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 99.76% Lamborghini Aventador Coupe 2012 0.07% Audi TT RS Coupe 2012 0.05% Suzuki Aerio Sedan 2007 0.04% Audi S5 Coupe 2012 0.02% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Porsche Panamera Sedan 2012 84.12% Dodge Challenger SRT8 2011 5.94% Mercedes-Benz E-Class Sedan 2012 4.05% Audi S4 Sedan 2012 2.47% Chrysler Sebring Convertible 2010 1.19% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 98.94% Suzuki SX4 Sedan 2012 0.33% BMW Z4 Convertible 2012 0.18% Buick Verano Sedan 2012 0.15% BMW X3 SUV 2012 0.06% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.98% Ford Ranger SuperCab 2011 0.01% Volvo XC90 SUV 2007 0.01% Ford F-450 Super Duty Crew Cab 2012 0.0% Cadillac SRX SUV 2012 0.0% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 79.49% Chevrolet Sonic Sedan 2012 5.57% Mercedes-Benz E-Class Sedan 2012 4.07% Audi S6 Sedan 2011 4.06% Hyundai Azera Sedan 2012 3.32% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 BMW 1 Series Convertible 2012 79.43% Volvo C30 Hatchback 2012 11.2% Audi R8 Coupe 2012 3.37% Audi A5 Coupe 2012 1.61% Tesla Model S Sedan 2012 1.43% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Ford F-150 Regular Cab 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Jaguar XK XKR 2012 24.01% Acura TL Type-S 2008 13.62% Honda Accord Sedan 2012 7.26% BMW X6 SUV 2012 4.39% Chevrolet Sonic Sedan 2012 3.94% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.32% Porsche Panamera Sedan 2012 0.28% Lamborghini Aventador Coupe 2012 0.17% Chevrolet Corvette ZR1 2012 0.11% Chevrolet Camaro Convertible 2012 0.03% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Buick Enclave SUV 2012 0.0% Volvo XC90 SUV 2007 0.0% Jeep Patriot SUV 2012 0.0% Ford Ranger SuperCab 2011 0.0% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 76.24% Audi S4 Sedan 2007 22.61% Audi S5 Convertible 2012 0.54% Audi S5 Coupe 2012 0.53% Audi S4 Sedan 2012 0.05% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 81.8% Jeep Compass SUV 2012 18.18% GMC Terrain SUV 2012 0.01% GMC Acadia SUV 2012 0.0% BMW X3 SUV 2012 0.0% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 Ford Fiesta Sedan 2012 49.02% Nissan Leaf Hatchback 2012 41.35% Hyundai Elantra Sedan 2007 7.64% Chevrolet Sonic Sedan 2012 0.94% Toyota Corolla Sedan 2012 0.81% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Hyundai Santa Fe SUV 2012 0.0% Cadillac SRX SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 Honda Accord Sedan 2012 20.16% Chevrolet Malibu Sedan 2007 15.33% Toyota Camry Sedan 2012 10.16% Acura TSX Sedan 2012 7.27% Audi S5 Coupe 2012 5.26% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 90.57% Chevrolet TrailBlazer SS 2009 2.84% Jeep Liberty SUV 2012 2.04% Jeep Compass SUV 2012 1.68% Land Rover Range Rover SUV 2012 1.43% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 Chrysler Aspen SUV 2009 72.4% Dodge Durango SUV 2007 22.1% Jeep Patriot SUV 2012 3.13% Jeep Liberty SUV 2012 1.35% Buick Rainier SUV 2007 0.45% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Tesla Model S Sedan 2012 45.61% Audi TTS Coupe 2012 12.92% Fisker Karma Sedan 2012 8.09% Audi S6 Sedan 2011 7.95% Aston Martin V8 Vantage Coupe 2012 6.7% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 Spyker C8 Coupe 2009 85.66% Ford GT Coupe 2006 1.62% Spyker C8 Convertible 2009 1.32% Aston Martin Virage Coupe 2012 1.18% Dodge Challenger SRT8 2011 0.75% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Audi TT RS Coupe 2012 67.48% BMW Z4 Convertible 2012 11.46% BMW 3 Series Sedan 2012 6.04% Volkswagen Beetle Hatchback 2012 2.46% Volvo C30 Hatchback 2012 2.06% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Honda Odyssey Minivan 2012 43.16% Buick Enclave SUV 2012 14.31% Audi S4 Sedan 2012 13.18% Dodge Durango SUV 2012 11.26% BMW 3 Series Sedan 2012 5.4% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 92.97% Bentley Continental Flying Spur Sedan 2007 5.31% Nissan Leaf Hatchback 2012 0.48% Ford Focus Sedan 2007 0.21% Bentley Mulsanne Sedan 2011 0.16% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 66.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 32.56% Lamborghini Aventador Coupe 2012 1.09% Ford GT Coupe 2006 0.04% Jaguar XK XKR 2012 0.02% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 99.94% Ford Freestar Minivan 2007 0.03% Plymouth Neon Coupe 1999 0.01% Dodge Sprinter Cargo Van 2009 0.01% Eagle Talon Hatchback 1998 0.0% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 BMW 3 Series Wagon 2012 54.69% Hyundai Veracruz SUV 2012 4.81% Volkswagen Golf Hatchback 2012 4.33% BMW X6 SUV 2012 3.64% Honda Odyssey Minivan 2012 3.52% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 89.86% Lamborghini Aventador Coupe 2012 9.58% Spyker C8 Convertible 2009 0.23% Lamborghini Diablo Coupe 2001 0.16% Bugatti Veyron 16.4 Coupe 2009 0.05% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 100.0% HUMMER H2 SUT Crew Cab 2009 0.0% AM General Hummer SUV 2000 0.0% GMC Terrain SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 87.29% BMW 3 Series Sedan 2012 2.71% BMW Z4 Convertible 2012 2.58% Dodge Magnum Wagon 2008 1.93% Mitsubishi Lancer Sedan 2012 0.68% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 Rolls-Royce Phantom Sedan 2012 16.83% Dodge Magnum Wagon 2008 15.97% Rolls-Royce Ghost Sedan 2012 14.46% Mercedes-Benz S-Class Sedan 2012 7.58% Bentley Continental Flying Spur Sedan 2007 6.18% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 Acura RL Sedan 2012 53.94% Honda Odyssey Minivan 2012 17.2% Hyundai Sonata Sedan 2012 15.39% Honda Odyssey Minivan 2007 6.62% Acura TSX Sedan 2012 1.81% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.98% Volkswagen Golf Hatchback 1991 0.01% Rolls-Royce Phantom Sedan 2012 0.0% BMW M5 Sedan 2010 0.0% BMW 3 Series Wagon 2012 0.0% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Hyundai Sonata Sedan 2012 65.31% Hyundai Tucson SUV 2012 24.81% Hyundai Azera Sedan 2012 4.04% Chevrolet Sonic Sedan 2012 2.46% Suzuki SX4 Hatchback 2012 1.6% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 Acura ZDX Hatchback 2012 15.06% Hyundai Tucson SUV 2012 11.34% Scion xD Hatchback 2012 10.84% Eagle Talon Hatchback 1998 5.66% Hyundai Azera Sedan 2012 4.55% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Porsche Panamera Sedan 2012 56.32% Audi R8 Coupe 2012 36.96% Infiniti G Coupe IPL 2012 2.66% Mercedes-Benz SL-Class Coupe 2009 2.23% Audi TT Hatchback 2011 0.82% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Mitsubishi Lancer Sedan 2012 26.89% Hyundai Genesis Sedan 2012 15.98% Mercedes-Benz E-Class Sedan 2012 8.63% Chrysler Town and Country Minivan 2012 7.88% Mercedes-Benz S-Class Sedan 2012 3.59% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% BMW X5 SUV 2007 0.0% Jeep Liberty SUV 2012 0.0% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 Chrysler Sebring Convertible 2010 61.69% Hyundai Tucson SUV 2012 10.88% Acura Integra Type R 2001 4.51% Audi 100 Sedan 1994 3.73% Cadillac SRX SUV 2012 3.08% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 99.35% Mercedes-Benz SL-Class Coupe 2009 0.27% McLaren MP4-12C Coupe 2012 0.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.12% Bugatti Veyron 16.4 Coupe 2009 0.03% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 96.83% Chevrolet TrailBlazer SS 2009 2.04% Chevrolet Cobalt SS 2010 0.35% Audi S5 Coupe 2012 0.15% Nissan 240SX Coupe 1998 0.07% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Toyota 4Runner SUV 2012 74.89% Land Rover Range Rover SUV 2012 4.92% Cadillac Escalade EXT Crew Cab 2007 4.29% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.26% Ford Expedition EL SUV 2009 2.36% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 BMW 1 Series Convertible 2012 61.33% Audi S5 Convertible 2012 11.44% Audi 100 Sedan 1994 9.04% Audi S6 Sedan 2011 4.68% Suzuki SX4 Sedan 2012 2.5% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Land Rover LR2 SUV 2012 8.74% Cadillac CTS-V Sedan 2012 7.63% Infiniti G Coupe IPL 2012 6.28% Audi S4 Sedan 2007 6.19% Chevrolet Tahoe Hybrid SUV 2012 6.17% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 87.49% Audi TT RS Coupe 2012 6.21% Audi TTS Coupe 2012 2.78% Hyundai Accent Sedan 2012 0.63% Ford Fiesta Sedan 2012 0.38% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Ford F-150 Regular Cab 2007 18.12% Volvo XC90 SUV 2007 7.99% Hyundai Veracruz SUV 2012 7.97% Chevrolet Malibu Hybrid Sedan 2010 6.34% Chrysler 300 SRT-8 2010 4.0% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 79.35% Aston Martin V8 Vantage Convertible 2012 20.55% Aston Martin Virage Convertible 2012 0.1% Jaguar XK XKR 2012 0.0% Ferrari California Convertible 2012 0.0% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 99.3% Scion xD Hatchback 2012 0.18% BMW 3 Series Wagon 2012 0.11% Cadillac CTS-V Sedan 2012 0.09% Volvo C30 Hatchback 2012 0.04% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 Chevrolet Express Van 2007 62.44% Chevrolet Express Cargo Van 2007 37.05% GMC Savana Van 2012 0.41% Ford E-Series Wagon Van 2012 0.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 97.86% Jaguar XK XKR 2012 0.58% Acura TL Sedan 2012 0.4% Acura RL Sedan 2012 0.3% Buick Regal GS 2012 0.2% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 98.85% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.66% Rolls-Royce Ghost Sedan 2012 0.48% Chrysler 300 SRT-8 2010 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Buick Rainier SUV 2007 0.0% Chevrolet Traverse SUV 2012 0.0% Volvo XC90 SUV 2007 0.0% Buick Enclave SUV 2012 0.0% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 47.81% Ford E-Series Wagon Van 2012 25.28% Ford Ranger SuperCab 2011 7.75% GMC Canyon Extended Cab 2012 7.01% Dodge Ram Pickup 3500 Quad Cab 2009 5.27% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Isuzu Ascender SUV 2008 31.71% Dodge Ram Pickup 3500 Quad Cab 2009 30.09% Dodge Ram Pickup 3500 Crew Cab 2010 22.89% Dodge Dakota Crew Cab 2010 5.61% Ford Ranger SuperCab 2011 5.22% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 61.04% Aston Martin Virage Convertible 2012 4.43% BMW Z4 Convertible 2012 3.25% Dodge Charger Sedan 2012 3.15% BMW ActiveHybrid 5 Sedan 2012 3.03% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Acura TSX Sedan 2012 97.92% Toyota Camry Sedan 2012 1.74% Chevrolet Impala Sedan 2007 0.2% Acura TL Sedan 2012 0.05% Chevrolet Monte Carlo Coupe 2007 0.03% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 100.0% Suzuki Kizashi Sedan 2012 0.0% Chevrolet HHR SS 2010 0.0% Cadillac SRX SUV 2012 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 100.0% Lamborghini Aventador Coupe 2012 0.0% Spyker C8 Convertible 2009 0.0% Chrysler 300 SRT-8 2010 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 Ford GT Coupe 2006 93.65% Bugatti Veyron 16.4 Coupe 2009 3.57% Spyker C8 Convertible 2009 1.33% Spyker C8 Coupe 2009 0.71% McLaren MP4-12C Coupe 2012 0.44% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Audi S6 Sedan 2011 52.0% Porsche Panamera Sedan 2012 22.09% Audi S5 Coupe 2012 3.09% BMW M5 Sedan 2010 2.71% Volkswagen Beetle Hatchback 2012 2.67% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 68.58% Lamborghini Diablo Coupe 2001 26.93% Ferrari California Convertible 2012 2.69% McLaren MP4-12C Coupe 2012 0.64% Ford GT Coupe 2006 0.38% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 41.82% Chevrolet Impala Sedan 2007 22.96% Lamborghini Reventon Coupe 2008 6.75% Honda Odyssey Minivan 2012 3.29% Lincoln Town Car Sedan 2011 3.29% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Mercedes-Benz C-Class Sedan 2012 60.1% Toyota Corolla Sedan 2012 9.74% Hyundai Accent Sedan 2012 6.93% Hyundai Sonata Sedan 2012 2.13% Acura TSX Sedan 2012 2.13% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Nissan 240SX Coupe 1998 70.49% Chevrolet Camaro Convertible 2012 12.79% Hyundai Genesis Sedan 2012 3.79% Volkswagen Golf Hatchback 2012 3.06% Jaguar XK XKR 2012 2.94% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Mulsanne Sedan 2011 99.78% Bentley Arnage Sedan 2009 0.17% Bentley Continental GT Coupe 2007 0.02% Rolls-Royce Phantom Sedan 2012 0.02% Bentley Continental Flying Spur Sedan 2007 0.01% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Dodge Challenger SRT8 2011 16.5% Land Rover LR2 SUV 2012 13.66% HUMMER H3T Crew Cab 2010 13.42% Spyker C8 Coupe 2009 10.75% Lamborghini Diablo Coupe 2001 10.21% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.83% Eagle Talon Hatchback 1998 0.04% Mercedes-Benz 300-Class Convertible 1993 0.03% Aston Martin V8 Vantage Convertible 2012 0.02% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.01% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Hyundai Veracruz SUV 2012 28.81% Daewoo Nubira Wagon 2002 12.91% Hyundai Tucson SUV 2012 10.7% Toyota 4Runner SUV 2012 8.09% Volkswagen Golf Hatchback 2012 7.24% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 94.37% Chevrolet TrailBlazer SS 2009 0.76% Mercedes-Benz Sprinter Van 2012 0.65% Honda Odyssey Minivan 2007 0.59% Honda Odyssey Minivan 2012 0.35% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Hyundai Azera Sedan 2012 73.16% Honda Accord Sedan 2012 19.15% Chrysler Crossfire Convertible 2008 4.57% Hyundai Genesis Sedan 2012 1.7% Mercedes-Benz S-Class Sedan 2012 0.45% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 99.65% Geo Metro Convertible 1993 0.26% Chevrolet Cobalt SS 2010 0.04% Chevrolet Corvette Convertible 2012 0.01% Lamborghini Diablo Coupe 2001 0.01% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Hatchback 2012 23.56% Suzuki Kizashi Sedan 2012 8.47% Ford Mustang Convertible 2007 6.36% Cadillac CTS-V Sedan 2012 3.62% BMW 1 Series Coupe 2012 3.48% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-150 Regular Cab 2012 50.41% GMC Terrain SUV 2012 14.52% Chevrolet Silverado 1500 Extended Cab 2012 13.38% Dodge Dakota Club Cab 2007 4.73% Chevrolet Silverado 1500 Regular Cab 2012 3.13% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 35.44% Audi TTS Coupe 2012 17.19% Audi S5 Coupe 2012 14.24% Audi A5 Coupe 2012 12.13% Audi TT RS Coupe 2012 9.64% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 98.73% Ford Ranger SuperCab 2011 0.49% HUMMER H2 SUT Crew Cab 2009 0.37% GMC Yukon Hybrid SUV 2012 0.27% Jeep Patriot SUV 2012 0.02% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 66.02% Aston Martin V8 Vantage Coupe 2012 11.97% Ferrari California Convertible 2012 7.41% BMW Z4 Convertible 2012 2.92% Chevrolet Corvette Convertible 2012 2.7% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 91.82% BMW X6 SUV 2012 2.43% Honda Odyssey Minivan 2007 2.05% BMW X5 SUV 2007 0.84% Land Rover Range Rover SUV 2012 0.84% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Journey SUV 2012 26.65% BMW X6 SUV 2012 20.33% Volvo C30 Hatchback 2012 11.53% Ford Fiesta Sedan 2012 7.54% Chevrolet Sonic Sedan 2012 6.3% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 79.17% Ferrari California Convertible 2012 20.01% Chevrolet Corvette Convertible 2012 0.82% Ferrari 458 Italia Coupe 2012 0.0% Aston Martin V8 Vantage Convertible 2012 0.0% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Rolls-Royce Ghost Sedan 2012 90.14% Audi S6 Sedan 2011 6.52% Audi TTS Coupe 2012 1.3% Rolls-Royce Phantom Sedan 2012 0.77% Audi S4 Sedan 2007 0.28% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Ford GT Coupe 2006 14.89% Spyker C8 Coupe 2009 10.84% Mitsubishi Lancer Sedan 2012 9.55% Lamborghini Reventon Coupe 2008 9.24% Bugatti Veyron 16.4 Coupe 2009 8.0% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 GMC Savana Van 2012 94.21% Chevrolet Express Van 2007 4.18% Chevrolet Express Cargo Van 2007 1.25% Ford F-150 Regular Cab 2012 0.08% Ford E-Series Wagon Van 2012 0.05% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2007 95.72% GMC Acadia SUV 2012 2.54% Ford F-450 Super Duty Crew Cab 2012 1.02% Dodge Durango SUV 2007 0.1% Ford F-150 Regular Cab 2012 0.09% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 11.96% McLaren MP4-12C Coupe 2012 10.87% Spyker C8 Coupe 2009 9.37% Ford GT Coupe 2006 9.2% Aston Martin Virage Coupe 2012 8.75% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 89.75% Volvo 240 Sedan 1993 3.26% Jeep Compass SUV 2012 1.97% Isuzu Ascender SUV 2008 1.08% Chevrolet TrailBlazer SS 2009 0.67% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 99.93% AM General Hummer SUV 2000 0.05% Jeep Patriot SUV 2012 0.01% HUMMER H3T Crew Cab 2010 0.0% GMC Yukon Hybrid SUV 2012 0.0% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 42.76% Dodge Caliber Wagon 2007 11.74% Ford Freestar Minivan 2007 7.09% Dodge Magnum Wagon 2008 5.42% Jeep Grand Cherokee SUV 2012 4.2% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Audi V8 Sedan 1994 84.47% Volvo 240 Sedan 1993 6.27% Nissan 240SX Coupe 1998 1.8% Audi R8 Coupe 2012 1.48% Aston Martin V8 Vantage Convertible 2012 1.26% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Honda Accord Sedan 2012 40.61% Hyundai Genesis Sedan 2012 39.69% Mercedes-Benz C-Class Sedan 2012 7.24% Chrysler Crossfire Convertible 2008 3.56% Acura TL Type-S 2008 2.75% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 55.88% Plymouth Neon Coupe 1999 12.09% Eagle Talon Hatchback 1998 7.02% Chrysler 300 SRT-8 2010 6.82% Audi RS 4 Convertible 2008 5.45% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 72.86% Ford E-Series Wagon Van 2012 26.11% Audi V8 Sedan 1994 0.85% Audi 100 Wagon 1994 0.12% Mercedes-Benz Sprinter Van 2012 0.02% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Volvo 240 Sedan 1993 69.2% Bentley Arnage Sedan 2009 5.29% Buick Rainier SUV 2007 3.45% Jeep Patriot SUV 2012 2.56% Audi 100 Sedan 1994 2.32% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Hyundai Genesis Sedan 2012 11.83% Hyundai Azera Sedan 2012 11.41% HUMMER H3T Crew Cab 2010 9.41% Mercedes-Benz E-Class Sedan 2012 5.4% Ford F-450 Super Duty Crew Cab 2012 4.63% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Porsche Panamera Sedan 2012 54.66% Ford GT Coupe 2006 4.71% Audi R8 Coupe 2012 4.32% Audi S5 Coupe 2012 2.84% Audi V8 Sedan 1994 2.59% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 33.66% BMW 1 Series Coupe 2012 26.9% Buick Regal GS 2012 6.13% Toyota 4Runner SUV 2012 4.56% Hyundai Sonata Hybrid Sedan 2012 3.75% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 96.72% Jeep Wrangler SUV 2012 3.02% Jeep Liberty SUV 2012 0.25% GMC Yukon Hybrid SUV 2012 0.0% Ford E-Series Wagon Van 2012 0.0% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 54.15% Dodge Ram Pickup 3500 Crew Cab 2010 45.15% AM General Hummer SUV 2000 0.35% HUMMER H2 SUT Crew Cab 2009 0.21% Dodge Dakota Club Cab 2007 0.11% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 93.57% Audi TT Hatchback 2011 2.88% Audi S5 Coupe 2012 1.81% Audi S5 Convertible 2012 0.77% Audi S6 Sedan 2011 0.24% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 97.87% GMC Terrain SUV 2012 2.09% GMC Acadia SUV 2012 0.01% Honda Odyssey Minivan 2007 0.01% Nissan Juke Hatchback 2012 0.0% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 15.48% Hyundai Sonata Sedan 2012 11.89% Honda Odyssey Minivan 2012 10.6% Toyota Camry Sedan 2012 7.61% Acura RL Sedan 2012 6.99% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Coupe 2009 54.81% Bugatti Veyron 16.4 Convertible 2009 15.55% Scion xD Hatchback 2012 7.3% Hyundai Azera Sedan 2012 5.31% Chevrolet Sonic Sedan 2012 4.18% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Scion xD Hatchback 2012 80.96% Ford Fiesta Sedan 2012 10.18% Suzuki SX4 Sedan 2012 1.71% Suzuki Aerio Sedan 2007 0.97% BMW X3 SUV 2012 0.82% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 BMW 1 Series Convertible 2012 81.35% Audi TT RS Coupe 2012 5.3% Infiniti G Coupe IPL 2012 4.59% Audi RS 4 Convertible 2008 1.79% Jaguar XK XKR 2012 1.3% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 Chevrolet Monte Carlo Coupe 2007 31.47% Bentley Continental GT Coupe 2007 15.89% Toyota Camry Sedan 2012 15.34% Hyundai Sonata Hybrid Sedan 2012 6.59% Buick Verano Sedan 2012 5.39% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Lamborghini Aventador Coupe 2012 70.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.0% Chevrolet Corvette ZR1 2012 2.86% Aston Martin V8 Vantage Coupe 2012 2.06% Mercedes-Benz Sprinter Van 2012 1.87% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Bentley Continental GT Coupe 2012 18.73% Buick Verano Sedan 2012 8.17% Acura TSX Sedan 2012 7.37% Audi TTS Coupe 2012 7.26% Bentley Continental GT Coupe 2007 6.98% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 38.69% GMC Canyon Extended Cab 2012 21.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 12.29% Chevrolet Silverado 1500 Extended Cab 2012 10.29% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.76% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Acura ZDX Hatchback 2012 49.04% Hyundai Azera Sedan 2012 13.49% Acura RL Sedan 2012 8.62% Buick Verano Sedan 2012 5.42% Audi S5 Coupe 2012 4.24% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Plymouth Neon Coupe 1999 82.85% Ford Focus Sedan 2007 10.22% Nissan 240SX Coupe 1998 5.87% Chevrolet Impala Sedan 2007 0.29% Volkswagen Golf Hatchback 2012 0.25% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Suzuki SX4 Hatchback 2012 44.69% Dodge Caliber Wagon 2012 26.99% Chevrolet Malibu Sedan 2007 12.54% Ram C/V Cargo Van Minivan 2012 6.37% Chrysler Town and Country Minivan 2012 2.75% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 BMW 3 Series Sedan 2012 64.01% Honda Accord Coupe 2012 4.27% Audi V8 Sedan 1994 3.4% Mercedes-Benz C-Class Sedan 2012 3.28% Chevrolet Sonic Sedan 2012 2.49% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 100.0% Acura ZDX Hatchback 2012 0.0% Hyundai Azera Sedan 2012 0.0% BMW X5 SUV 2007 0.0% Acura TL Sedan 2012 0.0% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Audi TTS Coupe 2012 99.79% Audi S4 Sedan 2012 0.11% Audi A5 Coupe 2012 0.09% Audi S4 Sedan 2007 0.0% Toyota Camry Sedan 2012 0.0% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 Porsche Panamera Sedan 2012 45.47% Nissan Juke Hatchback 2012 9.04% Dodge Caravan Minivan 1997 6.29% Chevrolet Corvette ZR1 2012 5.1% Nissan Leaf Hatchback 2012 4.83% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 95.76% Mercedes-Benz SL-Class Coupe 2009 2.01% Audi S6 Sedan 2011 1.38% Acura TL Type-S 2008 0.21% Hyundai Azera Sedan 2012 0.16% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 100.0% Ford F-450 Super Duty Crew Cab 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% MINI Cooper Roadster Convertible 2012 0.0% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 Chrysler Sebring Convertible 2010 98.61% Mercedes-Benz C-Class Sedan 2012 0.81% Mercedes-Benz S-Class Sedan 2012 0.37% Chrysler Crossfire Convertible 2008 0.14% Mercedes-Benz E-Class Sedan 2012 0.05% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.35% Hyundai Santa Fe SUV 2012 0.29% Volvo XC90 SUV 2007 0.2% Ford Edge SUV 2012 0.09% Ford Expedition EL SUV 2009 0.01% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Volvo C30 Hatchback 2012 99.59% BMW 1 Series Coupe 2012 0.26% Dodge Journey SUV 2012 0.06% Chevrolet HHR SS 2010 0.03% Suzuki SX4 Hatchback 2012 0.03% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 38.63% Bentley Continental Supersports Conv. Convertible 2012 31.59% Plymouth Neon Coupe 1999 8.9% Mercedes-Benz 300-Class Convertible 1993 7.03% Suzuki Aerio Sedan 2007 2.66% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Jaguar XK XKR 2012 71.25% Audi R8 Coupe 2012 9.01% Eagle Talon Hatchback 1998 5.94% BMW 6 Series Convertible 2007 5.15% BMW M6 Convertible 2010 3.87% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Chevrolet HHR SS 2010 73.49% Scion xD Hatchback 2012 3.71% Volkswagen Beetle Hatchback 2012 3.09% Honda Accord Coupe 2012 2.62% Dodge Magnum Wagon 2008 2.49% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.66% Dodge Ram Pickup 3500 Crew Cab 2010 0.24% Dodge Ram Pickup 3500 Quad Cab 2009 0.08% Dodge Dakota Club Cab 2007 0.01% Audi V8 Sedan 1994 0.0% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 Audi S5 Coupe 2012 84.17% Chevrolet Corvette Convertible 2012 2.49% Tesla Model S Sedan 2012 2.04% Fisker Karma Sedan 2012 1.47% Ford Mustang Convertible 2007 1.4% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Audi R8 Coupe 2012 33.59% Chrysler 300 SRT-8 2010 23.93% Mitsubishi Lancer Sedan 2012 10.59% Dodge Charger Sedan 2012 4.5% Chevrolet Sonic Sedan 2012 3.25% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Jeep Compass SUV 2012 52.98% Jeep Grand Cherokee SUV 2012 15.18% BMW X5 SUV 2007 10.65% BMW X3 SUV 2012 10.14% Mazda Tribute SUV 2011 1.97% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 96.15% Infiniti G Coupe IPL 2012 1.58% Audi A5 Coupe 2012 0.23% Dodge Durango SUV 2012 0.21% Cadillac CTS-V Sedan 2012 0.16% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 98.19% Chevrolet Silverado 1500 Regular Cab 2012 0.59% GMC Canyon Extended Cab 2012 0.46% Chevrolet Silverado 1500 Extended Cab 2012 0.15% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.14% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 46.8% HUMMER H3T Crew Cab 2010 15.77% Dodge Journey SUV 2012 14.85% Volvo C30 Hatchback 2012 4.91% Jeep Wrangler SUV 2012 3.63% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Acura TL Type-S 2008 76.87% Mercedes-Benz E-Class Sedan 2012 4.16% Audi S4 Sedan 2007 3.13% BMW M6 Convertible 2010 3.06% Honda Accord Sedan 2012 1.29% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 68.62% BMW M3 Coupe 2012 25.88% Volvo C30 Hatchback 2012 3.57% Dodge Magnum Wagon 2008 1.36% BMW M5 Sedan 2010 0.43% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 93.98% Audi A5 Coupe 2012 5.88% BMW X6 SUV 2012 0.04% Audi S5 Coupe 2012 0.03% Acura TSX Sedan 2012 0.02% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Audi TT Hatchback 2011 95.56% Audi TTS Coupe 2012 4.35% Audi A5 Coupe 2012 0.07% Audi TT RS Coupe 2012 0.02% Audi R8 Coupe 2012 0.0% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Aston Martin V8 Vantage Convertible 2012 21.92% Hyundai Veloster Hatchback 2012 18.75% Spyker C8 Convertible 2009 6.04% Aston Martin Virage Coupe 2012 5.54% Spyker C8 Coupe 2009 5.33% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Buick Enclave SUV 2012 70.23% Chevrolet TrailBlazer SS 2009 15.31% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.47% Buick Rainier SUV 2007 2.24% GMC Acadia SUV 2012 1.97% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-150 Regular Cab 2007 60.83% Chevrolet Silverado 1500 Extended Cab 2012 19.74% Volvo 240 Sedan 1993 6.83% Nissan NV Passenger Van 2012 3.16% Dodge Ram Pickup 3500 Quad Cab 2009 1.36% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 97.48% Mazda Tribute SUV 2011 0.98% Jeep Wrangler SUV 2012 0.41% Jeep Liberty SUV 2012 0.23% Cadillac Escalade EXT Crew Cab 2007 0.21% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.41% Fisker Karma Sedan 2012 0.59% Aston Martin Virage Coupe 2012 0.0% Acura TL Sedan 2012 0.0% Ferrari FF Coupe 2012 0.0% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Cadillac CTS-V Sedan 2012 29.36% BMW M5 Sedan 2010 19.46% Honda Accord Sedan 2012 18.35% BMW M3 Coupe 2012 6.06% Mercedes-Benz C-Class Sedan 2012 5.51% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Lamborghini Aventador Coupe 2012 93.44% Bugatti Veyron 16.4 Coupe 2009 3.04% Lamborghini Reventon Coupe 2008 1.16% Bentley Continental Supersports Conv. Convertible 2012 0.67% Spyker C8 Coupe 2009 0.59% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Canyon Extended Cab 2012 54.98% Ford Ranger SuperCab 2011 34.48% Dodge Dakota Club Cab 2007 5.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.64% Chevrolet Silverado 1500 Extended Cab 2012 0.67% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.83% Dodge Caravan Minivan 1997 0.17% Buick Rainier SUV 2007 0.0% Chrysler Aspen SUV 2009 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 67.95% Ferrari California Convertible 2012 29.16% Ferrari 458 Italia Convertible 2012 1.14% Ferrari 458 Italia Coupe 2012 0.98% Ford GT Coupe 2006 0.3% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 HUMMER H3T Crew Cab 2010 35.88% Chevrolet Silverado 1500 Extended Cab 2012 30.21% Chevrolet Avalanche Crew Cab 2012 10.81% Dodge Ram Pickup 3500 Quad Cab 2009 5.97% Chevrolet HHR SS 2010 4.25% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Jeep Compass SUV 2012 94.16% Audi TTS Coupe 2012 2.21% Rolls-Royce Ghost Sedan 2012 0.64% Jeep Grand Cherokee SUV 2012 0.47% Bugatti Veyron 16.4 Coupe 2009 0.28% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% Jeep Liberty SUV 2012 0.0% BMW X3 SUV 2012 0.0% BMW X6 SUV 2012 0.0% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.64% Ford F-150 Regular Cab 2012 0.2% Dodge Ram Pickup 3500 Crew Cab 2010 0.1% Dodge Ram Pickup 3500 Quad Cab 2009 0.04% GMC Canyon Extended Cab 2012 0.01% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 99.44% Porsche Panamera Sedan 2012 0.28% BMW M5 Sedan 2010 0.07% Dodge Challenger SRT8 2011 0.04% Buick Regal GS 2012 0.03% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 84.99% Jeep Liberty SUV 2012 14.15% Jeep Compass SUV 2012 0.81% Jeep Patriot SUV 2012 0.02% Jeep Wrangler SUV 2012 0.02% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Hyundai Elantra Sedan 2007 93.33% Chevrolet Impala Sedan 2007 3.08% Honda Odyssey Minivan 2012 2.38% Acura TL Type-S 2008 0.95% Chevrolet Malibu Sedan 2007 0.09% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S5 Coupe 2012 40.41% Audi TT Hatchback 2011 14.46% Audi S6 Sedan 2011 13.86% Audi A5 Coupe 2012 12.83% Audi S4 Sedan 2012 11.62% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 72.14% BMW X6 SUV 2012 17.61% GMC Acadia SUV 2012 9.3% Nissan Juke Hatchback 2012 0.59% Jeep Compass SUV 2012 0.33% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chevrolet Malibu Sedan 2007 28.39% Dodge Ram Pickup 3500 Quad Cab 2009 19.85% Chevrolet Silverado 1500 Extended Cab 2012 7.75% Cadillac Escalade EXT Crew Cab 2007 4.45% Ford Freestar Minivan 2007 4.37% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Chrysler Town and Country Minivan 2012 33.58% Hyundai Elantra Touring Hatchback 2012 28.74% Volvo XC90 SUV 2007 16.39% Ram C/V Cargo Van Minivan 2012 4.05% BMW X3 SUV 2012 3.4% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 99.83% Toyota Camry Sedan 2012 0.09% Ford Fiesta Sedan 2012 0.06% Acura TSX Sedan 2012 0.02% Hyundai Accent Sedan 2012 0.01% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Mercedes-Benz 300-Class Convertible 1993 55.52% Rolls-Royce Phantom Drophead Coupe Convertible 2012 26.42% Volkswagen Golf Hatchback 1991 10.84% Suzuki Aerio Sedan 2007 0.96% Chevrolet Malibu Sedan 2007 0.85% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.88% Buick Rainier SUV 2007 0.11% Isuzu Ascender SUV 2008 0.01% Chrysler Town and Country Minivan 2012 0.0% Dodge Caravan Minivan 1997 0.0% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Mazda Tribute SUV 2011 44.74% GMC Acadia SUV 2012 22.25% Jeep Grand Cherokee SUV 2012 6.1% GMC Terrain SUV 2012 5.75% BMW X5 SUV 2007 4.78% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 Mitsubishi Lancer Sedan 2012 99.65% Audi A5 Coupe 2012 0.16% Audi S5 Convertible 2012 0.15% Acura TSX Sedan 2012 0.02% Audi S4 Sedan 2012 0.01% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Chevrolet Malibu Hybrid Sedan 2010 28.48% Volkswagen Golf Hatchback 2012 16.28% Porsche Panamera Sedan 2012 7.23% Nissan Juke Hatchback 2012 6.54% Suzuki SX4 Sedan 2012 6.45% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 63.45% Dodge Durango SUV 2012 11.66% Hyundai Tucson SUV 2012 10.06% Dodge Journey SUV 2012 8.58% BMW X3 SUV 2012 1.1% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Dodge Charger SRT-8 2009 82.8% Aston Martin V8 Vantage Convertible 2012 5.94% Eagle Talon Hatchback 1998 1.66% Aston Martin V8 Vantage Coupe 2012 1.28% Jaguar XK XKR 2012 1.21% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Bentley Arnage Sedan 2009 17.5% Hyundai Veracruz SUV 2012 14.76% Chevrolet TrailBlazer SS 2009 14.29% Bentley Continental GT Coupe 2007 14.17% Nissan 240SX Coupe 1998 6.59% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 Audi V8 Sedan 1994 29.33% Lincoln Town Car Sedan 2011 21.84% Audi 100 Wagon 1994 14.21% Mercedes-Benz 300-Class Convertible 1993 3.56% GMC Savana Van 2012 2.68% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 98.58% Cadillac SRX SUV 2012 0.53% Dodge Durango SUV 2012 0.46% Infiniti QX56 SUV 2011 0.21% Chrysler Aspen SUV 2009 0.15% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Hyundai Veloster Hatchback 2012 35.05% Spyker C8 Coupe 2009 10.27% BMW M3 Coupe 2012 7.71% Chevrolet HHR SS 2010 4.98% Lamborghini Diablo Coupe 2001 4.52% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 81.7% Ford Edge SUV 2012 17.66% Hyundai Sonata Sedan 2012 0.22% Buick Regal GS 2012 0.14% Spyker C8 Coupe 2009 0.09% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 Ford F-150 Regular Cab 2007 51.38% Toyota 4Runner SUV 2012 19.77% Land Rover LR2 SUV 2012 6.63% Chevrolet Impala Sedan 2007 3.97% Mazda Tribute SUV 2011 2.64% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Cadillac CTS-V Sedan 2012 36.86% Toyota 4Runner SUV 2012 22.36% Bentley Mulsanne Sedan 2011 17.17% GMC Acadia SUV 2012 12.83% Cadillac SRX SUV 2012 4.67% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 98.3% Chevrolet Camaro Convertible 2012 1.64% Mercedes-Benz S-Class Sedan 2012 0.01% Hyundai Genesis Sedan 2012 0.01% Hyundai Azera Sedan 2012 0.01% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 17.76% Chrysler Town and Country Minivan 2012 13.38% Volvo XC90 SUV 2007 7.42% Chrysler Aspen SUV 2009 6.87% Cadillac Escalade EXT Crew Cab 2007 6.29% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 99.78% Dodge Ram Pickup 3500 Quad Cab 2009 0.22% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Chevrolet Sonic Sedan 2012 17.35% Audi 100 Wagon 1994 11.96% Hyundai Genesis Sedan 2012 6.34% Infiniti G Coupe IPL 2012 5.49% Cadillac SRX SUV 2012 4.07% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 24.58% Ford Freestar Minivan 2007 12.76% Buick Enclave SUV 2012 10.63% Land Rover Range Rover SUV 2012 7.2% Dodge Caravan Minivan 1997 6.26% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 McLaren MP4-12C Coupe 2012 54.07% BMW 1 Series Coupe 2012 14.69% Aston Martin Virage Coupe 2012 7.95% Bentley Continental GT Coupe 2012 4.01% Spyker C8 Coupe 2009 3.26% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Audi S4 Sedan 2007 52.55% Audi RS 4 Convertible 2008 36.54% Audi TTS Coupe 2012 5.57% Audi S5 Coupe 2012 4.14% Audi S5 Convertible 2012 0.64% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 McLaren MP4-12C Coupe 2012 37.32% BMW Z4 Convertible 2012 20.31% Lamborghini Diablo Coupe 2001 6.82% Dodge Charger Sedan 2012 6.0% HUMMER H2 SUT Crew Cab 2009 5.59% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 Hyundai Veloster Hatchback 2012 16.02% Dodge Charger SRT-8 2009 8.89% Honda Accord Coupe 2012 8.06% Chrysler Crossfire Convertible 2008 7.88% Audi 100 Wagon 1994 6.46% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 Volvo 240 Sedan 1993 48.05% Audi 100 Wagon 1994 26.28% Volkswagen Golf Hatchback 1991 18.86% Daewoo Nubira Wagon 2002 2.7% Suzuki Aerio Sedan 2007 1.05% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 97.0% Bentley Continental GT Coupe 2007 1.79% Dodge Challenger SRT8 2011 0.84% Volkswagen Beetle Hatchback 2012 0.18% Audi S6 Sedan 2011 0.05% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.98% Chevrolet Express Van 2007 0.01% GMC Savana Van 2012 0.01% Geo Metro Convertible 1993 0.0% Ford Ranger SuperCab 2011 0.0% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 100.0% Ford Ranger SuperCab 2011 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Chevrolet Express Cargo Van 2007 0.0% Chrysler Aspen SUV 2009 0.0% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Cadillac CTS-V Sedan 2012 14.98% Dodge Magnum Wagon 2008 13.58% Acura TL Sedan 2012 11.78% Buick Verano Sedan 2012 8.47% BMW M5 Sedan 2010 6.19% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 99.89% Buick Regal GS 2012 0.03% Mercedes-Benz E-Class Sedan 2012 0.02% Hyundai Veracruz SUV 2012 0.02% Jaguar XK XKR 2012 0.01% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 64.24% BMW X3 SUV 2012 4.37% Buick Regal GS 2012 2.43% Fisker Karma Sedan 2012 2.07% Honda Odyssey Minivan 2012 2.06% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Audi TTS Coupe 2012 65.18% BMW Z4 Convertible 2012 28.89% Acura TL Sedan 2012 2.06% Audi TT Hatchback 2011 1.27% BMW 3 Series Sedan 2012 0.79% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Ford Freestar Minivan 2007 28.78% Plymouth Neon Coupe 1999 24.68% Volvo 240 Sedan 1993 24.42% Audi V8 Sedan 1994 8.24% Dodge Dakota Crew Cab 2010 5.29% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Chrysler Crossfire Convertible 2008 37.45% Mercedes-Benz S-Class Sedan 2012 23.36% Chrysler PT Cruiser Convertible 2008 13.42% Chrysler Sebring Convertible 2010 6.81% Chevrolet HHR SS 2010 5.53% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 100.0% Hyundai Elantra Touring Hatchback 2012 0.0% Chevrolet Sonic Sedan 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Hyundai Accent Sedan 2012 0.0% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.64% Ford F-450 Super Duty Crew Cab 2012 0.3% Ford F-150 Regular Cab 2007 0.06% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Nissan NV Passenger Van 2012 0.0% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 95.88% Ferrari California Convertible 2012 1.88% Volkswagen Beetle Hatchback 2012 0.98% Suzuki SX4 Hatchback 2012 0.59% Fisker Karma Sedan 2012 0.31% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Suzuki SX4 Hatchback 2012 37.08% Ferrari FF Coupe 2012 11.03% Suzuki SX4 Sedan 2012 7.36% Chevrolet Sonic Sedan 2012 7.11% Ram C/V Cargo Van Minivan 2012 4.72% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 19.99% Spyker C8 Convertible 2009 17.01% Nissan Leaf Hatchback 2012 6.77% Suzuki Kizashi Sedan 2012 5.83% Lamborghini Reventon Coupe 2008 4.98% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 28.14% Chevrolet Malibu Hybrid Sedan 2010 13.69% Land Rover Range Rover SUV 2012 11.46% Audi S4 Sedan 2007 10.88% Toyota Corolla Sedan 2012 5.65% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 Dodge Challenger SRT8 2011 38.38% Aston Martin V8 Vantage Coupe 2012 32.99% Aston Martin V8 Vantage Convertible 2012 9.26% Fisker Karma Sedan 2012 6.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.04% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 Buick Verano Sedan 2012 99.88% BMW X6 SUV 2012 0.05% Chevrolet TrailBlazer SS 2009 0.01% Hyundai Elantra Sedan 2007 0.01% Ford Fiesta Sedan 2012 0.01% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Chrysler Town and Country Minivan 2012 8.8% Land Rover Range Rover SUV 2012 7.23% Honda Odyssey Minivan 2012 5.86% Ford Expedition EL SUV 2009 5.13% Cadillac SRX SUV 2012 4.78% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Volkswagen Golf Hatchback 2012 80.01% Ford Focus Sedan 2007 11.25% Hyundai Veracruz SUV 2012 1.28% Dodge Journey SUV 2012 1.13% Chevrolet Malibu Sedan 2007 0.69% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 Audi TT Hatchback 2011 43.68% Fisker Karma Sedan 2012 29.43% Aston Martin V8 Vantage Coupe 2012 10.05% Audi R8 Coupe 2012 4.72% Ferrari FF Coupe 2012 2.38% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 43.9% BMW 6 Series Convertible 2007 22.03% Nissan 240SX Coupe 1998 11.23% BMW 3 Series Sedan 2012 8.46% Chevrolet Camaro Convertible 2012 4.62% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Hyundai Veloster Hatchback 2012 47.96% BMW M3 Coupe 2012 31.61% Volvo C30 Hatchback 2012 12.75% Audi TTS Coupe 2012 2.44% McLaren MP4-12C Coupe 2012 2.1% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 BMW 1 Series Coupe 2012 92.44% Audi S4 Sedan 2012 4.39% BMW M3 Coupe 2012 0.84% Audi TT RS Coupe 2012 0.78% Audi S5 Convertible 2012 0.64% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 7.79% Acura Integra Type R 2001 7.0% Porsche Panamera Sedan 2012 6.28% Nissan Leaf Hatchback 2012 6.27% Toyota Camry Sedan 2012 5.71% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 Honda Odyssey Minivan 2007 63.98% Ford Freestar Minivan 2007 27.57% Chevrolet Malibu Sedan 2007 3.35% Honda Odyssey Minivan 2012 1.29% Chrysler Town and Country Minivan 2012 0.97% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.12% Lamborghini Aventador Coupe 2012 0.84% McLaren MP4-12C Coupe 2012 0.02% Bugatti Veyron 16.4 Coupe 2009 0.01% Nissan Leaf Hatchback 2012 0.0% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Hyundai Veracruz SUV 2012 12.5% BMW 1 Series Coupe 2012 7.04% GMC Acadia SUV 2012 5.34% Rolls-Royce Phantom Sedan 2012 3.55% Honda Odyssey Minivan 2012 3.35% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 79.85% Infiniti G Coupe IPL 2012 7.29% Audi A5 Coupe 2012 3.62% Audi S5 Coupe 2012 2.82% Hyundai Azera Sedan 2012 1.19% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 35.3% Buick Regal GS 2012 25.57% Hyundai Tucson SUV 2012 13.93% Volvo C30 Hatchback 2012 3.86% Chevrolet Sonic Sedan 2012 3.29% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Jeep Grand Cherokee SUV 2012 14.96% Rolls-Royce Ghost Sedan 2012 7.63% GMC Yukon Hybrid SUV 2012 5.41% Dodge Magnum Wagon 2008 5.05% Nissan Juke Hatchback 2012 4.83% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 23.81% Maybach Landaulet Convertible 2012 5.64% Rolls-Royce Ghost Sedan 2012 5.16% Rolls-Royce Phantom Sedan 2012 4.98% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.98% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Nissan Juke Hatchback 2012 27.88% BMW M6 Convertible 2010 8.92% Audi S6 Sedan 2011 8.82% Jaguar XK XKR 2012 5.37% Dodge Challenger SRT8 2011 4.32% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Malibu Sedan 2007 56.99% Chevrolet Monte Carlo Coupe 2007 16.27% Dodge Caliber Wagon 2012 4.9% Nissan Leaf Hatchback 2012 4.6% Chevrolet Impala Sedan 2007 3.06% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 Toyota Corolla Sedan 2012 70.21% Hyundai Accent Sedan 2012 14.65% Ford Fiesta Sedan 2012 13.62% Ford Edge SUV 2012 0.7% Toyota Camry Sedan 2012 0.35% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 77.67% Chevrolet Corvette ZR1 2012 14.7% Eagle Talon Hatchback 1998 6.45% Geo Metro Convertible 1993 0.51% Aston Martin V8 Vantage Coupe 2012 0.3% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 98.93% Audi S4 Sedan 2012 0.96% Audi TT Hatchback 2011 0.08% Audi S5 Convertible 2012 0.01% Audi S5 Coupe 2012 0.01% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Isuzu Ascender SUV 2008 50.2% Porsche Panamera Sedan 2012 7.78% Dodge Durango SUV 2012 6.5% Dodge Ram Pickup 3500 Quad Cab 2009 5.26% Ford Freestar Minivan 2007 4.05% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 BMW M5 Sedan 2010 23.03% Rolls-Royce Ghost Sedan 2012 22.67% BMW M6 Convertible 2010 7.21% Nissan Juke Hatchback 2012 6.07% BMW X5 SUV 2007 3.4% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 97.15% Chevrolet Impala Sedan 2007 1.49% Lincoln Town Car Sedan 2011 0.3% Suzuki SX4 Hatchback 2012 0.26% Daewoo Nubira Wagon 2002 0.25% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 99.56% Chevrolet Tahoe Hybrid SUV 2012 0.38% GMC Yukon Hybrid SUV 2012 0.05% Chevrolet Silverado 1500 Extended Cab 2012 0.01% Dodge Dakota Crew Cab 2010 0.0% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Chevrolet Express Cargo Van 2007 74.05% Chevrolet Express Van 2007 19.0% Mazda Tribute SUV 2011 2.51% Volvo C30 Hatchback 2012 1.37% Volkswagen Golf Hatchback 1991 0.63% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Lamborghini Reventon Coupe 2008 58.91% Lamborghini Aventador Coupe 2012 30.32% Aston Martin Virage Convertible 2012 7.44% Bentley Continental GT Coupe 2007 0.56% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.44% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Bugatti Veyron 16.4 Convertible 2009 17.51% BMW M6 Convertible 2010 8.75% Spyker C8 Convertible 2009 7.4% Mercedes-Benz SL-Class Coupe 2009 6.3% BMW Z4 Convertible 2012 5.94% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Ford Expedition EL SUV 2009 27.13% Ram C/V Cargo Van Minivan 2012 24.64% Land Rover LR2 SUV 2012 11.22% Isuzu Ascender SUV 2008 4.08% Chevrolet Tahoe Hybrid SUV 2012 3.17% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 99.81% Plymouth Neon Coupe 1999 0.08% Audi V8 Sedan 1994 0.03% Audi 100 Wagon 1994 0.03% Audi 100 Sedan 1994 0.02% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Crew Cab 2010 100.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Dakota Club Cab 2007 0.0% Dodge Durango SUV 2007 0.0% Ford F-150 Regular Cab 2007 0.0% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 51.96% Ford Focus Sedan 2007 47.86% Plymouth Neon Coupe 1999 0.15% Hyundai Elantra Touring Hatchback 2012 0.02% Suzuki Aerio Sedan 2007 0.0% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Hyundai Tucson SUV 2012 43.74% Land Rover LR2 SUV 2012 21.23% Hyundai Sonata Sedan 2012 16.44% Honda Odyssey Minivan 2012 8.04% Chevrolet HHR SS 2010 6.89% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 Audi 100 Wagon 1994 71.28% Honda Odyssey Minivan 2012 7.03% Ram C/V Cargo Van Minivan 2012 2.25% Volvo 240 Sedan 1993 1.85% Buick Verano Sedan 2012 1.46% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 HUMMER H2 SUT Crew Cab 2009 14.98% Toyota 4Runner SUV 2012 13.6% BMW X3 SUV 2012 8.9% BMW X6 SUV 2012 7.11% smart fortwo Convertible 2012 5.75% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Audi S5 Coupe 2012 17.53% Audi TTS Coupe 2012 13.54% Ford F-450 Super Duty Crew Cab 2012 10.22% Audi RS 4 Convertible 2008 9.33% Chevrolet Corvette ZR1 2012 5.21% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2012 68.76% Dodge Ram Pickup 3500 Crew Cab 2010 6.27% Dodge Ram Pickup 3500 Quad Cab 2009 6.16% Ford Ranger SuperCab 2011 6.1% Ford F-150 Regular Cab 2007 4.66% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 Audi S5 Convertible 2012 48.27% Audi RS 4 Convertible 2008 24.08% Audi S5 Coupe 2012 15.28% Audi S4 Sedan 2007 3.45% Acura RL Sedan 2012 1.4% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 26.44% Ford Fiesta Sedan 2012 21.59% Chevrolet Sonic Sedan 2012 6.21% Buick Verano Sedan 2012 2.47% Mitsubishi Lancer Sedan 2012 2.27% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Dodge Dakota Crew Cab 2010 34.01% Chevrolet Malibu Sedan 2007 12.07% Dodge Durango SUV 2007 10.35% Dodge Dakota Club Cab 2007 7.46% Dodge Ram Pickup 3500 Crew Cab 2010 5.21% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Buick Regal GS 2012 45.62% Hyundai Sonata Hybrid Sedan 2012 25.78% Hyundai Elantra Sedan 2007 10.39% Hyundai Accent Sedan 2012 6.06% Acura TSX Sedan 2012 2.34% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 40.91% AM General Hummer SUV 2000 20.83% HUMMER H2 SUT Crew Cab 2009 11.66% Jeep Patriot SUV 2012 10.92% Dodge Dakota Club Cab 2007 5.39% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 85.12% Dodge Magnum Wagon 2008 5.15% Dodge Caliber Wagon 2007 4.07% Dodge Durango SUV 2012 2.14% Dodge Journey SUV 2012 1.48% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Nissan Leaf Hatchback 2012 99.93% Hyundai Sonata Hybrid Sedan 2012 0.04% Suzuki Aerio Sedan 2007 0.02% Scion xD Hatchback 2012 0.01% Acura ZDX Hatchback 2012 0.0% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 44.98% Audi TTS Coupe 2012 23.66% Fisker Karma Sedan 2012 3.94% Hyundai Genesis Sedan 2012 2.93% Aston Martin V8 Vantage Coupe 2012 2.86% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Chrysler Aspen SUV 2009 67.04% Land Rover Range Rover SUV 2012 22.55% Toyota Sequoia SUV 2012 8.29% Cadillac Escalade EXT Crew Cab 2007 0.61% Ford Expedition EL SUV 2009 0.6% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 42.28% Chevrolet Avalanche Crew Cab 2012 26.3% Dodge Dakota Crew Cab 2010 11.4% Chevrolet Tahoe Hybrid SUV 2012 3.51% Isuzu Ascender SUV 2008 3.11% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 43.67% Suzuki SX4 Hatchback 2012 19.69% Nissan Leaf Hatchback 2012 13.45% Hyundai Veracruz SUV 2012 12.17% Suzuki SX4 Sedan 2012 2.01% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 60.66% Bugatti Veyron 16.4 Convertible 2009 34.1% Bugatti Veyron 16.4 Coupe 2009 1.65% Audi R8 Coupe 2012 0.81% Aston Martin V8 Vantage Convertible 2012 0.68% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 70.23% Plymouth Neon Coupe 1999 19.2% Eagle Talon Hatchback 1998 9.86% Dodge Caravan Minivan 1997 0.39% Nissan 240SX Coupe 1998 0.11% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 99.69% BMW X5 SUV 2007 0.28% BMW X3 SUV 2012 0.03% BMW 1 Series Convertible 2012 0.0% BMW 1 Series Coupe 2012 0.0% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Hyundai Genesis Sedan 2012 67.72% Chrysler Crossfire Convertible 2008 28.48% Dodge Charger SRT-8 2009 0.79% Chrysler Sebring Convertible 2010 0.76% Hyundai Sonata Sedan 2012 0.35% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 94.96% Hyundai Veracruz SUV 2012 4.18% Honda Odyssey Minivan 2012 0.77% Hyundai Sonata Sedan 2012 0.09% Chevrolet Malibu Sedan 2007 0.0% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 82.45% Nissan 240SX Coupe 1998 5.05% Chrysler Crossfire Convertible 2008 2.61% Hyundai Veloster Hatchback 2012 2.03% Chevrolet Camaro Convertible 2012 1.4% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.98% Ford F-450 Super Duty Crew Cab 2012 0.01% Toyota Sequoia SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Plymouth Neon Coupe 1999 99.93% Eagle Talon Hatchback 1998 0.06% Dodge Caravan Minivan 1997 0.01% Geo Metro Convertible 1993 0.0% Nissan 240SX Coupe 1998 0.0% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 89.55% Ford Fiesta Sedan 2012 4.72% Hyundai Elantra Touring Hatchback 2012 3.05% Hyundai Sonata Hybrid Sedan 2012 1.49% Hyundai Accent Sedan 2012 0.98% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 97.1% Ford Freestar Minivan 2007 1.17% Chrysler Aspen SUV 2009 0.88% Dodge Caravan Minivan 1997 0.44% Chrysler Sebring Convertible 2010 0.23% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Aston Martin Virage Convertible 2012 45.88% Chevrolet Corvette ZR1 2012 7.96% BMW ActiveHybrid 5 Sedan 2012 3.87% Rolls-Royce Phantom Sedan 2012 3.68% BMW M6 Convertible 2010 2.51% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Chevrolet Express Van 2007 53.31% GMC Savana Van 2012 36.31% Chevrolet Express Cargo Van 2007 8.96% Ford Ranger SuperCab 2011 0.2% Chrysler PT Cruiser Convertible 2008 0.18% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 35.69% Dodge Caliber Wagon 2007 16.63% Mazda Tribute SUV 2011 10.34% Dodge Dakota Crew Cab 2010 5.48% Jeep Grand Cherokee SUV 2012 4.18% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 65.27% Bentley Arnage Sedan 2009 7.8% BMW Z4 Convertible 2012 4.95% BMW M6 Convertible 2010 4.39% Aston Martin V8 Vantage Convertible 2012 4.0% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Chevrolet Impala Sedan 2007 31.16% Porsche Panamera Sedan 2012 15.28% BMW ActiveHybrid 5 Sedan 2012 12.59% Chrysler Sebring Convertible 2010 9.46% Honda Accord Sedan 2012 5.0% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 52.22% Ford Ranger SuperCab 2011 23.89% Nissan NV Passenger Van 2012 15.8% Dodge Ram Pickup 3500 Quad Cab 2009 7.24% Dodge Ram Pickup 3500 Crew Cab 2010 0.38% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Chrysler 300 SRT-8 2010 47.55% Chevrolet Camaro Convertible 2012 23.7% Audi S6 Sedan 2011 10.89% BMW M6 Convertible 2010 3.61% BMW 3 Series Sedan 2012 3.09% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Suzuki Kizashi Sedan 2012 81.69% Suzuki SX4 Hatchback 2012 10.8% Bentley Continental GT Coupe 2012 2.09% Volkswagen Beetle Hatchback 2012 1.13% Audi S6 Sedan 2011 0.48% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ford Mustang Convertible 2007 98.95% Eagle Talon Hatchback 1998 0.41% Mercedes-Benz 300-Class Convertible 1993 0.25% Chevrolet Camaro Convertible 2012 0.18% Chevrolet Corvette Convertible 2012 0.09% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 99.93% Acura Integra Type R 2001 0.02% McLaren MP4-12C Coupe 2012 0.02% AM General Hummer SUV 2000 0.01% Ferrari 458 Italia Coupe 2012 0.01% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 Daewoo Nubira Wagon 2002 63.39% Toyota Corolla Sedan 2012 15.63% Mercedes-Benz E-Class Sedan 2012 7.43% Mercedes-Benz C-Class Sedan 2012 5.36% Dodge Caliber Wagon 2012 2.52% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 53.92% Ford Freestar Minivan 2007 13.75% GMC Acadia SUV 2012 10.05% Honda Odyssey Minivan 2007 4.46% Chevrolet Traverse SUV 2012 4.03% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 38.93% Chevrolet Silverado 1500 Regular Cab 2012 38.37% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.27% Chevrolet HHR SS 2010 3.07% Dodge Dakota Crew Cab 2010 2.48% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 100.0% Land Rover Range Rover SUV 2012 0.0% Buick Enclave SUV 2012 0.0% Dodge Durango SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Chevrolet Avalanche Crew Cab 2012 22.37% Cadillac CTS-V Sedan 2012 8.78% Hyundai Tucson SUV 2012 7.19% Lamborghini Reventon Coupe 2008 6.84% Chevrolet Tahoe Hybrid SUV 2012 6.59% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 99.58% Ferrari 458 Italia Coupe 2012 0.24% Ferrari 458 Italia Convertible 2012 0.11% Suzuki Kizashi Sedan 2012 0.02% Audi TT RS Coupe 2012 0.01% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 88.3% Ford F-150 Regular Cab 2012 2.08% GMC Canyon Extended Cab 2012 1.26% Dodge Ram Pickup 3500 Crew Cab 2010 0.84% HUMMER H2 SUT Crew Cab 2009 0.71% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 99.97% Porsche Panamera Sedan 2012 0.02% Aston Martin V8 Vantage Coupe 2012 0.01% Chevrolet Corvette ZR1 2012 0.0% Acura TL Sedan 2012 0.0% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 99.56% Chevrolet Corvette ZR1 2012 0.21% Chevrolet Camaro Convertible 2012 0.09% Ferrari 458 Italia Coupe 2012 0.08% Aston Martin V8 Vantage Coupe 2012 0.02% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Fisker Karma Sedan 2012 26.72% Jeep Grand Cherokee SUV 2012 15.26% Jeep Liberty SUV 2012 7.91% Spyker C8 Convertible 2009 7.77% BMW 3 Series Wagon 2012 6.47% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 35.68% Bentley Continental GT Coupe 2012 13.74% Suzuki Kizashi Sedan 2012 12.85% Hyundai Veloster Hatchback 2012 6.52% Hyundai Sonata Hybrid Sedan 2012 3.46% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 Hyundai Veloster Hatchback 2012 31.37% Ford Mustang Convertible 2007 18.57% Chevrolet Cobalt SS 2010 12.59% Suzuki Kizashi Sedan 2012 6.69% Toyota Camry Sedan 2012 5.88% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 Daewoo Nubira Wagon 2002 22.45% Ford Focus Sedan 2007 21.78% Land Rover LR2 SUV 2012 14.08% Nissan Juke Hatchback 2012 13.11% Honda Accord Sedan 2012 6.38% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 BMW 6 Series Convertible 2007 13.59% Hyundai Veloster Hatchback 2012 10.64% Volkswagen Golf Hatchback 2012 5.87% smart fortwo Convertible 2012 4.23% Fisker Karma Sedan 2012 4.18% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 39.86% Mercedes-Benz S-Class Sedan 2012 33.2% Hyundai Genesis Sedan 2012 11.97% Audi TTS Coupe 2012 1.55% Ford F-150 Regular Cab 2007 1.45% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.85% GMC Yukon Hybrid SUV 2012 0.05% Ford F-150 Regular Cab 2012 0.04% Chevrolet Avalanche Crew Cab 2012 0.02% Chevrolet Silverado 1500 Regular Cab 2012 0.01% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 99.92% Scion xD Hatchback 2012 0.07% Suzuki Aerio Sedan 2007 0.0% Hyundai Accent Sedan 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Rolls-Royce Phantom Drophead Coupe Convertible 2012 27.93% Chevrolet Impala Sedan 2007 15.35% Infiniti G Coupe IPL 2012 13.4% Honda Accord Sedan 2012 6.39% Lamborghini Reventon Coupe 2008 5.8% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chrysler Crossfire Convertible 2008 27.11% Chrysler Sebring Convertible 2010 22.97% Fisker Karma Sedan 2012 18.66% Bentley Continental Flying Spur Sedan 2007 7.66% Chrysler PT Cruiser Convertible 2008 4.53% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 81.57% Ferrari 458 Italia Coupe 2012 11.62% Aston Martin Virage Coupe 2012 5.96% Chevrolet Cobalt SS 2010 0.34% Dodge Charger Sedan 2012 0.23% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 99.54% Hyundai Azera Sedan 2012 0.22% Buick Verano Sedan 2012 0.11% Hyundai Elantra Sedan 2007 0.07% Chevrolet Malibu Hybrid Sedan 2010 0.02% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S4 Sedan 2007 56.61% Audi S6 Sedan 2011 9.43% BMW X3 SUV 2012 7.04% BMW 3 Series Wagon 2012 5.28% BMW X5 SUV 2007 2.58% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.85% Land Rover LR2 SUV 2012 0.07% Toyota Sequoia SUV 2012 0.03% Honda Odyssey Minivan 2007 0.01% GMC Yukon Hybrid SUV 2012 0.01% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 31.1% Lamborghini Aventador Coupe 2012 16.87% Jaguar XK XKR 2012 14.46% Chevrolet Camaro Convertible 2012 8.25% Aston Martin Virage Convertible 2012 5.5% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Chevrolet Corvette ZR1 2012 15.41% McLaren MP4-12C Coupe 2012 5.36% Porsche Panamera Sedan 2012 4.73% Eagle Talon Hatchback 1998 4.06% Mercedes-Benz SL-Class Coupe 2009 3.98% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 63.31% Spyker C8 Convertible 2009 15.63% Infiniti G Coupe IPL 2012 4.08% Audi R8 Coupe 2012 2.32% Suzuki Kizashi Sedan 2012 1.87% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Aston Martin V8 Vantage Coupe 2012 65.47% Aston Martin V8 Vantage Convertible 2012 11.47% Fisker Karma Sedan 2012 3.46% Spyker C8 Convertible 2009 2.3% Mercedes-Benz SL-Class Coupe 2009 2.2% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 85.12% Dodge Magnum Wagon 2008 5.15% Dodge Caliber Wagon 2007 4.07% Dodge Durango SUV 2012 2.14% Dodge Journey SUV 2012 1.48% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Infiniti QX56 SUV 2011 73.89% Dodge Magnum Wagon 2008 4.55% Chevrolet Malibu Hybrid Sedan 2010 2.6% Bentley Mulsanne Sedan 2011 2.38% Volkswagen Beetle Hatchback 2012 2.16% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 100.0% Honda Accord Sedan 2012 0.0% Hyundai Azera Sedan 2012 0.0% Ford Edge SUV 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 BMW 1 Series Coupe 2012 82.06% Mitsubishi Lancer Sedan 2012 4.92% McLaren MP4-12C Coupe 2012 4.74% Hyundai Veloster Hatchback 2012 4.53% Dodge Charger Sedan 2012 2.73% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 58.5% AM General Hummer SUV 2000 27.17% Lamborghini Aventador Coupe 2012 7.37% HUMMER H3T Crew Cab 2010 4.32% Mercedes-Benz SL-Class Coupe 2009 0.48% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 56.34% Ford E-Series Wagon Van 2012 27.18% AM General Hummer SUV 2000 8.02% Jeep Patriot SUV 2012 3.34% Ford F-450 Super Duty Crew Cab 2012 1.73% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 100.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Ford F-150 Regular Cab 2007 0.0% Cadillac SRX SUV 2012 0.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 AM General Hummer SUV 2000 23.65% Spyker C8 Coupe 2009 17.9% Ford GT Coupe 2006 8.9% McLaren MP4-12C Coupe 2012 7.6% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.08% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Acura TSX Sedan 2012 47.76% Acura TL Sedan 2012 38.2% BMW 1 Series Convertible 2012 4.94% Audi S5 Coupe 2012 3.31% Acura RL Sedan 2012 2.02% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 BMW 3 Series Sedan 2012 22.74% BMW 3 Series Wagon 2012 16.05% Hyundai Genesis Sedan 2012 15.36% Honda Odyssey Minivan 2012 11.92% Nissan 240SX Coupe 1998 8.65% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.63% BMW ActiveHybrid 5 Sedan 2012 0.12% Infiniti G Coupe IPL 2012 0.05% Audi TT RS Coupe 2012 0.02% Audi S6 Sedan 2011 0.02% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Ferrari 458 Italia Convertible 2012 50.05% BMW M3 Coupe 2012 28.71% Aston Martin V8 Vantage Convertible 2012 5.1% Chevrolet Corvette Convertible 2012 1.9% BMW Z4 Convertible 2012 1.85% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Ford Fiesta Sedan 2012 99.94% Hyundai Accent Sedan 2012 0.03% Nissan Leaf Hatchback 2012 0.02% Hyundai Sonata Hybrid Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Chrysler 300 SRT-8 2010 24.2% Nissan Juke Hatchback 2012 20.46% Rolls-Royce Ghost Sedan 2012 12.34% Dodge Challenger SRT8 2011 4.52% Dodge Magnum Wagon 2008 3.61% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 75.54% Isuzu Ascender SUV 2008 9.67% Jeep Compass SUV 2012 7.22% Rolls-Royce Phantom Sedan 2012 2.83% Jeep Grand Cherokee SUV 2012 1.48% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 Dodge Caravan Minivan 1997 60.37% Ram C/V Cargo Van Minivan 2012 30.41% Ford Freestar Minivan 2007 6.16% Audi 100 Wagon 1994 2.02% Chrysler Town and Country Minivan 2012 0.73% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 Audi V8 Sedan 1994 38.8% Chevrolet Sonic Sedan 2012 21.52% Audi R8 Coupe 2012 11.49% Audi 100 Sedan 1994 4.75% Nissan 240SX Coupe 1998 4.72% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 Ford F-150 Regular Cab 2012 76.1% HUMMER H3T Crew Cab 2010 9.39% Chevrolet Silverado 1500 Extended Cab 2012 8.09% Dodge Dakota Club Cab 2007 4.48% GMC Canyon Extended Cab 2012 1.6% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 Chevrolet Avalanche Crew Cab 2012 42.55% Ford Ranger SuperCab 2011 38.54% HUMMER H3T Crew Cab 2010 2.32% Chevrolet Silverado 2500HD Regular Cab 2012 1.85% Aston Martin Virage Convertible 2012 1.63% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 Porsche Panamera Sedan 2012 50.97% BMW 6 Series Convertible 2007 6.69% Volkswagen Beetle Hatchback 2012 5.28% Infiniti G Coupe IPL 2012 2.93% BMW Z4 Convertible 2012 2.92% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Acura TL Type-S 2008 91.56% Honda Accord Coupe 2012 5.7% Dodge Caravan Minivan 1997 0.75% Aston Martin V8 Vantage Coupe 2012 0.36% Eagle Talon Hatchback 1998 0.21% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Audi S6 Sedan 2011 28.1% Suzuki Kizashi Sedan 2012 4.74% BMW ActiveHybrid 5 Sedan 2012 4.63% Mitsubishi Lancer Sedan 2012 3.75% Audi RS 4 Convertible 2008 3.52% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 Acura RL Sedan 2012 99.38% Hyundai Tucson SUV 2012 0.37% Chevrolet Sonic Sedan 2012 0.17% Hyundai Accent Sedan 2012 0.03% Hyundai Sonata Sedan 2012 0.01% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Eagle Talon Hatchback 1998 99.99% Plymouth Neon Coupe 1999 0.01% Ferrari 458 Italia Coupe 2012 0.0% Toyota Corolla Sedan 2012 0.0% Nissan 240SX Coupe 1998 0.0% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 BMW X5 SUV 2007 65.75% Volvo XC90 SUV 2007 11.2% Jeep Grand Cherokee SUV 2012 7.83% Cadillac SRX SUV 2012 3.58% Chevrolet Traverse SUV 2012 3.31% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 86.86% HUMMER H3T Crew Cab 2010 11.45% HUMMER H2 SUT Crew Cab 2009 1.33% Chevrolet Avalanche Crew Cab 2012 0.05% Jeep Patriot SUV 2012 0.04% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 BMW 3 Series Sedan 2012 42.96% Volkswagen Beetle Hatchback 2012 31.42% BMW 1 Series Coupe 2012 7.36% Chevrolet Sonic Sedan 2012 3.6% Volvo C30 Hatchback 2012 2.25% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Infiniti G Coupe IPL 2012 68.37% Suzuki Kizashi Sedan 2012 16.13% Chrysler Sebring Convertible 2010 5.16% Ferrari 458 Italia Convertible 2012 1.57% Porsche Panamera Sedan 2012 1.18% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 Nissan Juke Hatchback 2012 25.87% Nissan Leaf Hatchback 2012 12.03% Suzuki SX4 Sedan 2012 7.58% Mazda Tribute SUV 2011 4.21% BMW X5 SUV 2007 2.35% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Jaguar XK XKR 2012 19.94% Nissan 240SX Coupe 1998 17.15% Plymouth Neon Coupe 1999 16.97% Acura TSX Sedan 2012 7.55% Eagle Talon Hatchback 1998 6.11% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 98.38% Chrysler Aspen SUV 2009 1.62% Dodge Dakota Club Cab 2007 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Scion xD Hatchback 2012 27.81% BMW 3 Series Wagon 2012 19.74% Toyota Corolla Sedan 2012 12.2% BMW 3 Series Sedan 2012 7.19% Nissan 240SX Coupe 1998 5.92% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 100.0% Nissan 240SX Coupe 1998 0.0% Chevrolet Camaro Convertible 2012 0.0% Toyota Camry Sedan 2012 0.0% Ford Focus Sedan 2007 0.0% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 Infiniti G Coupe IPL 2012 93.96% Toyota Camry Sedan 2012 0.92% Hyundai Sonata Hybrid Sedan 2012 0.77% Hyundai Veloster Hatchback 2012 0.75% Chrysler Sebring Convertible 2010 0.57% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 98.84% Dodge Charger SRT-8 2009 0.91% Aston Martin V8 Vantage Convertible 2012 0.15% BMW M6 Convertible 2010 0.04% Aston Martin Virage Convertible 2012 0.02% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 99.54% Acura Integra Type R 2001 0.29% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.08% AM General Hummer SUV 2000 0.05% Dodge Charger Sedan 2012 0.02% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 Mercedes-Benz SL-Class Coupe 2009 20.44% Nissan Juke Hatchback 2012 5.59% Audi TTS Coupe 2012 5.07% Audi R8 Coupe 2012 4.43% Audi S5 Coupe 2012 4.14% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 91.17% Eagle Talon Hatchback 1998 3.98% Daewoo Nubira Wagon 2002 0.57% Acura Integra Type R 2001 0.53% BMW 6 Series Convertible 2007 0.45% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Suzuki SX4 Sedan 2012 44.72% Chevrolet Sonic Sedan 2012 11.82% Suzuki Aerio Sedan 2007 7.21% Mercedes-Benz C-Class Sedan 2012 6.38% Acura Integra Type R 2001 5.79% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 92.48% Ferrari 458 Italia Convertible 2012 6.67% Scion xD Hatchback 2012 0.37% Ferrari California Convertible 2012 0.14% Chevrolet Corvette ZR1 2012 0.11% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 Dodge Durango SUV 2012 43.75% BMW X3 SUV 2012 27.73% Chevrolet Malibu Sedan 2007 6.75% Mazda Tribute SUV 2011 3.29% Jeep Compass SUV 2012 2.93% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 Volkswagen Golf Hatchback 2012 20.7% Land Rover Range Rover SUV 2012 20.45% Audi 100 Wagon 1994 11.65% Dodge Charger Sedan 2012 4.29% Hyundai Veloster Hatchback 2012 2.94% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 99.99% Ford E-Series Wagon Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% Jeep Compass SUV 2012 0.0% Volvo XC90 SUV 2007 0.0% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Suzuki SX4 Hatchback 2012 60.07% BMW 1 Series Coupe 2012 24.41% Honda Accord Coupe 2012 2.18% Mitsubishi Lancer Sedan 2012 2.04% Ferrari 458 Italia Coupe 2012 1.94% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 Aston Martin Virage Convertible 2012 13.51% Hyundai Elantra Touring Hatchback 2012 12.98% Nissan Juke Hatchback 2012 8.36% Tesla Model S Sedan 2012 7.95% Porsche Panamera Sedan 2012 5.2% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 79.55% Audi 100 Sedan 1994 20.2% Audi V8 Sedan 1994 0.23% Lincoln Town Car Sedan 2011 0.01% Volvo 240 Sedan 1993 0.01% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 Aston Martin V8 Vantage Coupe 2012 61.54% Jaguar XK XKR 2012 16.2% Buick Verano Sedan 2012 5.12% Toyota Camry Sedan 2012 3.59% Suzuki SX4 Sedan 2012 2.95% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 99.98% Mitsubishi Lancer Sedan 2012 0.02% McLaren MP4-12C Coupe 2012 0.0% Audi TTS Coupe 2012 0.0% BMW 1 Series Coupe 2012 0.0% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 Jeep Patriot SUV 2012 46.86% AM General Hummer SUV 2000 20.15% Jeep Wrangler SUV 2012 15.14% Bugatti Veyron 16.4 Coupe 2009 5.63% Spyker C8 Coupe 2009 4.63% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 99.96% Dodge Sprinter Cargo Van 2009 0.04% Volkswagen Golf Hatchback 1991 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Audi 100 Sedan 1994 0.0% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 96.81% HUMMER H2 SUT Crew Cab 2009 1.42% HUMMER H3T Crew Cab 2010 0.63% Dodge Ram Pickup 3500 Quad Cab 2009 0.36% Ford F-150 Regular Cab 2007 0.15% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 45.87% Honda Accord Coupe 2012 19.34% Audi TT Hatchback 2011 13.2% Toyota Camry Sedan 2012 5.09% Audi A5 Coupe 2012 2.4% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.85% FIAT 500 Convertible 2012 0.13% Bugatti Veyron 16.4 Convertible 2009 0.01% smart fortwo Convertible 2012 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Suzuki Aerio Sedan 2007 0.0% Chevrolet Corvette Convertible 2012 0.0% Plymouth Neon Coupe 1999 0.0% Dodge Sprinter Cargo Van 2009 0.0% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 66.78% smart fortwo Convertible 2012 21.58% Ferrari 458 Italia Coupe 2012 3.9% Spyker C8 Convertible 2009 3.34% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.64% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 65.28% Dodge Sprinter Cargo Van 2009 34.72% Chevrolet Express Van 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 Acura RL Sedan 2012 28.37% Maybach Landaulet Convertible 2012 17.29% Rolls-Royce Phantom Drophead Coupe Convertible 2012 11.06% Ram C/V Cargo Van Minivan 2012 8.77% Nissan Leaf Hatchback 2012 5.52% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Acura TSX Sedan 2012 46.14% Nissan 240SX Coupe 1998 33.09% Hyundai Accent Sedan 2012 15.63% Chevrolet Camaro Convertible 2012 1.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.98% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.46% Lamborghini Reventon Coupe 2008 0.23% Dodge Challenger SRT8 2011 0.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.07% smart fortwo Convertible 2012 0.03% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 56.58% Dodge Caliber Wagon 2012 38.53% Ford Freestar Minivan 2007 0.64% Dodge Journey SUV 2012 0.62% Dodge Durango SUV 2007 0.6% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 94.62% Acura TL Sedan 2012 5.08% Acura RL Sedan 2012 0.26% Acura ZDX Hatchback 2012 0.02% Toyota Camry Sedan 2012 0.0% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 65.19% Hyundai Veloster Hatchback 2012 11.29% Audi TT RS Coupe 2012 6.27% Ford Fiesta Sedan 2012 5.07% Ford GT Coupe 2006 3.31% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 99.77% Audi S5 Coupe 2012 0.1% Audi S4 Sedan 2012 0.05% Audi S5 Convertible 2012 0.03% Mercedes-Benz C-Class Sedan 2012 0.02% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 85.0% Audi TT Hatchback 2011 9.58% Audi S5 Convertible 2012 2.54% Audi TTS Coupe 2012 0.92% Audi S6 Sedan 2011 0.56% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 58.01% Hyundai Veracruz SUV 2012 40.51% Chevrolet Malibu Sedan 2007 0.41% Scion xD Hatchback 2012 0.38% Chevrolet Tahoe Hybrid SUV 2012 0.13% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Eagle Talon Hatchback 1998 68.19% Plymouth Neon Coupe 1999 11.19% Spyker C8 Convertible 2009 5.35% Chevrolet Corvette ZR1 2012 4.77% Nissan 240SX Coupe 1998 2.09% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 BMW X6 SUV 2012 94.61% BMW X5 SUV 2007 1.33% Volvo XC90 SUV 2007 1.12% Isuzu Ascender SUV 2008 1.09% BMW X3 SUV 2012 0.57% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 Audi S5 Coupe 2012 23.57% Audi R8 Coupe 2012 8.99% Chrysler 300 SRT-8 2010 8.87% Aston Martin Virage Convertible 2012 7.98% Audi S4 Sedan 2012 7.67% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Nissan Juke Hatchback 2012 19.36% Cadillac SRX SUV 2012 14.93% Suzuki SX4 Sedan 2012 12.88% Hyundai Elantra Touring Hatchback 2012 9.02% Ford Fiesta Sedan 2012 6.4% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Audi S5 Coupe 2012 64.33% Audi A5 Coupe 2012 9.55% Audi S4 Sedan 2007 6.73% Audi TTS Coupe 2012 4.2% Chevrolet Camaro Convertible 2012 1.91% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 GMC Terrain SUV 2012 22.33% Ford Edge SUV 2012 18.88% Chevrolet Avalanche Crew Cab 2012 18.14% Cadillac Escalade EXT Crew Cab 2007 13.59% Ford F-450 Super Duty Crew Cab 2012 3.57% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 45.46% Spyker C8 Convertible 2009 23.78% Bugatti Veyron 16.4 Coupe 2009 16.83% Bentley Continental Supersports Conv. Convertible 2012 5.28% Ford GT Coupe 2006 1.97% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Audi 100 Sedan 1994 44.99% Dodge Dakota Club Cab 2007 34.91% Buick Rainier SUV 2007 8.59% Audi 100 Wagon 1994 7.43% Volvo 240 Sedan 1993 1.31% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 55.02% Chevrolet Camaro Convertible 2012 25.12% Lamborghini Aventador Coupe 2012 7.75% Ferrari 458 Italia Convertible 2012 3.02% Chevrolet Silverado 2500HD Regular Cab 2012 2.65% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 BMW 1 Series Coupe 2012 42.16% BMW Z4 Convertible 2012 23.81% BMW 3 Series Sedan 2012 7.79% Chrysler PT Cruiser Convertible 2008 2.64% Volvo C30 Hatchback 2012 2.26% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 97.58% Bentley Continental Flying Spur Sedan 2007 0.76% Aston Martin Virage Convertible 2012 0.46% Nissan Leaf Hatchback 2012 0.41% FIAT 500 Convertible 2012 0.17% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Audi 100 Sedan 1994 80.5% Audi 100 Wagon 1994 7.09% Mercedes-Benz 300-Class Convertible 1993 5.95% Lincoln Town Car Sedan 2011 2.79% Ford Ranger SuperCab 2011 0.67% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 79.26% Dodge Ram Pickup 3500 Crew Cab 2010 20.42% Dodge Dakota Crew Cab 2010 0.29% GMC Canyon Extended Cab 2012 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Charger SRT-8 2009 80.02% Dodge Charger Sedan 2012 19.78% Dodge Magnum Wagon 2008 0.14% BMW M6 Convertible 2010 0.01% Chevrolet Camaro Convertible 2012 0.01% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 Chevrolet Camaro Convertible 2012 68.98% Ferrari 458 Italia Coupe 2012 12.04% Dodge Charger Sedan 2012 5.97% Chevrolet Corvette ZR1 2012 3.5% Audi S5 Coupe 2012 2.42% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Dodge Caravan Minivan 1997 10.67% Cadillac Escalade EXT Crew Cab 2007 10.33% Lincoln Town Car Sedan 2011 9.03% Scion xD Hatchback 2012 8.58% Volkswagen Golf Hatchback 1991 7.46% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.98% BMW 3 Series Sedan 2012 0.01% Fisker Karma Sedan 2012 0.0% Volvo C30 Hatchback 2012 0.0% BMW M3 Coupe 2012 0.0% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 83.21% Hyundai Tucson SUV 2012 2.13% BMW X6 SUV 2012 1.43% Audi 100 Wagon 1994 1.14% Mazda Tribute SUV 2011 1.12% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz Sprinter Van 2012 29.04% BMW ActiveHybrid 5 Sedan 2012 10.11% Isuzu Ascender SUV 2008 8.59% Dodge Sprinter Cargo Van 2009 5.5% Rolls-Royce Phantom Sedan 2012 5.49% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 Rolls-Royce Ghost Sedan 2012 43.14% GMC Terrain SUV 2012 10.9% GMC Acadia SUV 2012 5.28% Buick Rainier SUV 2007 4.4% Jeep Grand Cherokee SUV 2012 3.79% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Rolls-Royce Phantom Sedan 2012 55.19% Bugatti Veyron 16.4 Coupe 2009 10.52% Dodge Charger SRT-8 2009 9.05% BMW 3 Series Sedan 2012 5.59% Aston Martin V8 Vantage Coupe 2012 5.3% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 85.81% Mercedes-Benz 300-Class Convertible 1993 13.08% Chevrolet Corvette Convertible 2012 0.75% Nissan 240SX Coupe 1998 0.1% Chrysler Crossfire Convertible 2008 0.05% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Nissan 240SX Coupe 1998 45.23% Bentley Arnage Sedan 2009 29.29% Ford GT Coupe 2006 8.06% Bentley Mulsanne Sedan 2011 6.06% Eagle Talon Hatchback 1998 2.18% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Hyundai Veloster Hatchback 2012 26.06% Volkswagen Golf Hatchback 2012 19.43% Porsche Panamera Sedan 2012 18.14% Acura RL Sedan 2012 6.92% Volkswagen Beetle Hatchback 2012 5.41% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 99.68% Isuzu Ascender SUV 2008 0.11% Ford Ranger SuperCab 2011 0.08% Buick Rainier SUV 2007 0.05% GMC Canyon Extended Cab 2012 0.05% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Audi 100 Sedan 1994 86.37% Volvo 240 Sedan 1993 12.78% Audi 100 Wagon 1994 0.51% Ford Ranger SuperCab 2011 0.13% Lincoln Town Car Sedan 2011 0.04% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 Aston Martin Virage Coupe 2012 28.89% McLaren MP4-12C Coupe 2012 24.26% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.98% Ferrari 458 Italia Coupe 2012 4.31% Ford GT Coupe 2006 4.04% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Dodge Durango SUV 2007 62.68% Chevrolet Avalanche Crew Cab 2012 20.43% Chevrolet Traverse SUV 2012 14.47% Hyundai Tucson SUV 2012 0.7% Toyota 4Runner SUV 2012 0.69% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 50.58% BMW X6 SUV 2012 19.86% BMW 1 Series Coupe 2012 11.31% Buick Regal GS 2012 10.77% Suzuki Kizashi Sedan 2012 2.28% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 BMW 3 Series Sedan 2012 54.77% Tesla Model S Sedan 2012 7.27% BMW 3 Series Wagon 2012 6.76% Rolls-Royce Phantom Sedan 2012 3.86% FIAT 500 Abarth 2012 3.1% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Coupe 2012 99.42% Ferrari California Convertible 2012 0.43% Ferrari 458 Italia Convertible 2012 0.14% Chevrolet Corvette ZR1 2012 0.01% Chevrolet Corvette Convertible 2012 0.0% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 27.82% Buick Rainier SUV 2007 26.23% Volkswagen Golf Hatchback 1991 9.06% Chevrolet Malibu Sedan 2007 4.18% Chrysler 300 SRT-8 2010 2.89% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 26.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 15.0% Land Rover LR2 SUV 2012 5.54% Hyundai Genesis Sedan 2012 5.07% Chevrolet Silverado 1500 Extended Cab 2012 3.6% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2012 47.94% Cadillac Escalade EXT Crew Cab 2007 21.27% Dodge Caliber Wagon 2012 11.44% Dodge Durango SUV 2007 10.79% Dodge Magnum Wagon 2008 4.02% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 100.0% Dodge Magnum Wagon 2008 0.0% Audi S4 Sedan 2007 0.0% Chrysler Town and Country Minivan 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 93.4% Ferrari California Convertible 2012 5.37% Fisker Karma Sedan 2012 1.03% Scion xD Hatchback 2012 0.06% Ferrari 458 Italia Convertible 2012 0.06% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Jeep Patriot SUV 2012 79.2% Dodge Durango SUV 2007 9.42% Buick Enclave SUV 2012 8.89% GMC Acadia SUV 2012 0.56% Volvo XC90 SUV 2007 0.48% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Wagon 2012 33.62% BMW Z4 Convertible 2012 30.89% BMW 3 Series Sedan 2012 13.52% Fisker Karma Sedan 2012 9.71% BMW ActiveHybrid 5 Sedan 2012 5.0% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 99.96% Chevrolet Malibu Sedan 2007 0.03% Chevrolet Monte Carlo Coupe 2007 0.01% Mercedes-Benz 300-Class Convertible 1993 0.01% Chevrolet Impala Sedan 2007 0.0% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 Volvo C30 Hatchback 2012 37.94% BMW M3 Coupe 2012 27.33% Audi S4 Sedan 2012 11.81% Audi TT RS Coupe 2012 11.59% Audi TTS Coupe 2012 3.11% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Ford GT Coupe 2006 64.45% Ferrari California Convertible 2012 9.65% Lamborghini Aventador Coupe 2012 6.17% Ferrari 458 Italia Convertible 2012 4.83% Chevrolet Corvette Convertible 2012 2.68% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 100.0% Bugatti Veyron 16.4 Convertible 2009 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% Mercedes-Benz Sprinter Van 2012 0.0% Infiniti G Coupe IPL 2012 0.0% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 BMW 6 Series Convertible 2007 97.92% Ford Mustang Convertible 2007 1.17% Audi RS 4 Convertible 2008 0.38% Chrysler 300 SRT-8 2010 0.17% Audi R8 Coupe 2012 0.07% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.98% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.01% Lamborghini Reventon Coupe 2008 0.0% Volvo 240 Sedan 1993 0.0% Rolls-Royce Phantom Sedan 2012 0.0% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 86.05% Aston Martin Virage Convertible 2012 7.58% Aston Martin V8 Vantage Convertible 2012 2.71% Jaguar XK XKR 2012 1.13% Lamborghini Reventon Coupe 2008 0.96% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 97.72% GMC Savana Van 2012 2.28% Chevrolet Express Van 2007 0.0% Ford Ranger SuperCab 2011 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Honda Odyssey Minivan 2007 40.24% Chrysler Sebring Convertible 2010 15.58% Honda Odyssey Minivan 2012 14.85% Chevrolet Impala Sedan 2007 5.64% Ford Freestar Minivan 2007 3.47% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 Ford Fiesta Sedan 2012 21.16% Chevrolet Traverse SUV 2012 15.86% Hyundai Tucson SUV 2012 13.2% Ford Edge SUV 2012 6.47% Dodge Caliber Wagon 2007 6.38% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 10.93% Bentley Arnage Sedan 2009 9.49% Volkswagen Beetle Hatchback 2012 7.02% Audi TTS Coupe 2012 6.66% Chevrolet TrailBlazer SS 2009 5.14% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 83.73% Suzuki SX4 Hatchback 2012 3.73% Mercedes-Benz Sprinter Van 2012 3.36% Scion xD Hatchback 2012 2.32% Hyundai Elantra Touring Hatchback 2012 1.13% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 93.04% Aston Martin V8 Vantage Coupe 2012 3.23% Porsche Panamera Sedan 2012 2.47% Fisker Karma Sedan 2012 0.42% Chevrolet Monte Carlo Coupe 2007 0.39% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 99.51% FIAT 500 Convertible 2012 0.17% BMW M3 Coupe 2012 0.1% Acura TSX Sedan 2012 0.07% Toyota Corolla Sedan 2012 0.05% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 Chevrolet Malibu Sedan 2007 38.49% Chrysler Sebring Convertible 2010 19.73% Jaguar XK XKR 2012 15.97% Dodge Charger SRT-8 2009 6.94% Nissan Juke Hatchback 2012 1.92% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Dodge Magnum Wagon 2008 99.18% Dodge Charger SRT-8 2009 0.81% Dodge Charger Sedan 2012 0.01% Chevrolet HHR SS 2010 0.0% Dodge Journey SUV 2012 0.0% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Ferrari California Convertible 2012 56.47% Dodge Charger Sedan 2012 27.6% Bentley Continental Supersports Conv. Convertible 2012 4.73% Chevrolet Corvette ZR1 2012 3.09% Ferrari 458 Italia Convertible 2012 2.74% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Ranger SuperCab 2011 70.13% Ford Expedition EL SUV 2009 19.54% Chrysler Aspen SUV 2009 3.64% Ford E-Series Wagon Van 2012 1.47% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.24% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 Honda Accord Sedan 2012 55.13% Hyundai Accent Sedan 2012 17.23% Mitsubishi Lancer Sedan 2012 5.73% Hyundai Genesis Sedan 2012 5.53% Hyundai Sonata Sedan 2012 3.8% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Audi R8 Coupe 2012 100.0% Lamborghini Aventador Coupe 2012 0.0% Audi S6 Sedan 2011 0.0% Spyker C8 Coupe 2009 0.0% Chevrolet Camaro Convertible 2012 0.0% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 Plymouth Neon Coupe 1999 48.5% Nissan 240SX Coupe 1998 17.34% Eagle Talon Hatchback 1998 7.74% Mercedes-Benz C-Class Sedan 2012 7.07% Hyundai Elantra Touring Hatchback 2012 5.63% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 99.87% Aston Martin V8 Vantage Coupe 2012 0.04% BMW Z4 Convertible 2012 0.04% Bugatti Veyron 16.4 Coupe 2009 0.01% Ferrari 458 Italia Coupe 2012 0.01% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 Lamborghini Reventon Coupe 2008 55.21% McLaren MP4-12C Coupe 2012 11.99% Spyker C8 Convertible 2009 10.06% Aston Martin V8 Vantage Convertible 2012 5.96% Spyker C8 Coupe 2009 5.4% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Lamborghini Reventon Coupe 2008 51.45% Audi R8 Coupe 2012 22.69% Bugatti Veyron 16.4 Coupe 2009 16.93% FIAT 500 Abarth 2012 3.83% Audi TTS Coupe 2012 3.11% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Lincoln Town Car Sedan 2011 32.96% Mercedes-Benz 300-Class Convertible 1993 10.85% Jeep Grand Cherokee SUV 2012 5.27% Audi 100 Wagon 1994 5.24% BMW X5 SUV 2007 4.6% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 Buick Rainier SUV 2007 99.16% Buick Enclave SUV 2012 0.53% Volvo 240 Sedan 1993 0.11% Volkswagen Golf Hatchback 1991 0.06% Ford Mustang Convertible 2007 0.03% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 Dodge Journey SUV 2012 38.6% Chevrolet Malibu Sedan 2007 31.8% Chevrolet Monte Carlo Coupe 2007 10.32% Honda Accord Coupe 2012 8.97% Toyota Camry Sedan 2012 6.5% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 74.19% Dodge Dakota Crew Cab 2010 21.16% Cadillac Escalade EXT Crew Cab 2007 4.16% Dodge Durango SUV 2007 0.47% Dodge Magnum Wagon 2008 0.01% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 Ferrari 458 Italia Convertible 2012 63.73% Ferrari California Convertible 2012 12.31% Aston Martin V8 Vantage Coupe 2012 10.03% Ferrari 458 Italia Coupe 2012 8.81% Aston Martin V8 Vantage Convertible 2012 2.97% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 81.27% Lamborghini Aventador Coupe 2012 10.39% Mercedes-Benz SL-Class Coupe 2009 8.01% Bugatti Veyron 16.4 Coupe 2009 0.28% Spyker C8 Coupe 2009 0.04% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 34.65% Lamborghini Diablo Coupe 2001 19.44% Spyker C8 Convertible 2009 5.75% Spyker C8 Coupe 2009 5.44% Hyundai Genesis Sedan 2012 4.65% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.95% Scion xD Hatchback 2012 0.02% Honda Odyssey Minivan 2007 0.02% Land Rover LR2 SUV 2012 0.01% Honda Odyssey Minivan 2012 0.0% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 36.43% Mitsubishi Lancer Sedan 2012 24.22% Audi S4 Sedan 2012 7.15% Chevrolet Monte Carlo Coupe 2007 3.02% BMW 6 Series Convertible 2007 2.46% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 62.5% Hyundai Tucson SUV 2012 21.35% Chevrolet Sonic Sedan 2012 6.71% Hyundai Accent Sedan 2012 3.82% Volkswagen Golf Hatchback 2012 2.01% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Dodge Ram Pickup 3500 Quad Cab 2009 36.26% HUMMER H3T Crew Cab 2010 16.34% Dodge Ram Pickup 3500 Crew Cab 2010 13.44% Ford F-450 Super Duty Crew Cab 2012 7.59% Ford Ranger SuperCab 2011 3.92% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Acura Integra Type R 2001 46.34% Lamborghini Diablo Coupe 2001 18.04% Audi RS 4 Convertible 2008 13.39% Lamborghini Gallardo LP 570-4 Superleggera 2012 10.05% Geo Metro Convertible 1993 1.29% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 71.81% Suzuki SX4 Sedan 2012 13.03% BMW X3 SUV 2012 5.52% Suzuki SX4 Hatchback 2012 4.86% Ford Fiesta Sedan 2012 1.52% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Geo Metro Convertible 1993 59.9% Plymouth Neon Coupe 1999 19.81% Ford Focus Sedan 2007 13.04% Nissan 240SX Coupe 1998 2.2% Chevrolet Malibu Sedan 2007 0.69% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Ferrari FF Coupe 2012 31.57% FIAT 500 Abarth 2012 20.08% Ford Mustang Convertible 2007 11.5% Lamborghini Aventador Coupe 2012 7.89% Ford GT Coupe 2006 7.64% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Buick Rainier SUV 2007 25.3% Lincoln Town Car Sedan 2011 23.95% Ford Focus Sedan 2007 22.66% BMW X5 SUV 2007 5.89% Ford Mustang Convertible 2007 1.84% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Lincoln Town Car Sedan 2011 11.81% Chevrolet Corvette Ron Fellows Edition Z06 2007 9.24% Ford Freestar Minivan 2007 5.2% Ford Expedition EL SUV 2009 5.07% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.12% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Cadillac CTS-V Sedan 2012 76.35% HUMMER H2 SUT Crew Cab 2009 20.97% Bentley Arnage Sedan 2009 1.15% Ford F-150 Regular Cab 2007 0.65% Lamborghini Reventon Coupe 2008 0.22% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 98.47% Geo Metro Convertible 1993 0.3% Ford Mustang Convertible 2007 0.19% Audi 100 Wagon 1994 0.16% Ford Ranger SuperCab 2011 0.1% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 57.4% Chevrolet Express Cargo Van 2007 29.26% Chevrolet Express Van 2007 12.58% Nissan NV Passenger Van 2012 0.38% Dodge Sprinter Cargo Van 2009 0.1% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Ford Fiesta Sedan 2012 74.92% Hyundai Veloster Hatchback 2012 7.16% Mitsubishi Lancer Sedan 2012 6.58% Buick Verano Sedan 2012 2.1% Volkswagen Beetle Hatchback 2012 1.49% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 BMW 3 Series Sedan 2012 63.06% Suzuki Kizashi Sedan 2012 16.73% Toyota Camry Sedan 2012 10.34% Toyota Corolla Sedan 2012 4.09% BMW 3 Series Wagon 2012 1.27% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.98% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% Audi 100 Sedan 1994 0.01% Chevrolet Silverado 1500 Extended Cab 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Buick Verano Sedan 2012 41.13% Hyundai Tucson SUV 2012 10.31% Honda Accord Coupe 2012 9.82% Acura ZDX Hatchback 2012 6.73% Ford Fiesta Sedan 2012 4.42% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 70.59% Ford E-Series Wagon Van 2012 23.51% Ford F-150 Regular Cab 2012 3.07% GMC Savana Van 2012 1.33% Volvo XC90 SUV 2007 0.57% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.99% Jeep Liberty SUV 2012 0.01% Jeep Wrangler SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Bentley Arnage Sedan 2009 0.0% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 BMW X3 SUV 2012 85.53% Nissan NV Passenger Van 2012 10.09% BMW X5 SUV 2007 3.07% Bentley Arnage Sedan 2009 0.93% BMW X6 SUV 2012 0.2% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Land Rover LR2 SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Toyota 4Runner SUV 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Avalanche Crew Cab 2012 15.65% Toyota 4Runner SUV 2012 14.04% Toyota Camry Sedan 2012 8.57% Volkswagen Beetle Hatchback 2012 5.29% Hyundai Genesis Sedan 2012 4.18% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 100.0% Toyota 4Runner SUV 2012 0.0% Land Rover Range Rover SUV 2012 0.0% Toyota Sequoia SUV 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Nissan Leaf Hatchback 2012 99.21% Hyundai Elantra Sedan 2007 0.33% Chevrolet Sonic Sedan 2012 0.26% Chevrolet Malibu Hybrid Sedan 2010 0.05% FIAT 500 Convertible 2012 0.03% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Club Cab 2007 38.56% Dodge Caliber Wagon 2007 26.93% Dodge Dakota Crew Cab 2010 18.31% Suzuki SX4 Hatchback 2012 7.35% Dodge Caliber Wagon 2012 3.05% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 100.0% Chevrolet Corvette ZR1 2012 0.0% Jaguar XK XKR 2012 0.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% McLaren MP4-12C Coupe 2012 0.0% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.8% Jeep Compass SUV 2012 0.17% Jeep Grand Cherokee SUV 2012 0.02% GMC Yukon Hybrid SUV 2012 0.01% Cadillac Escalade EXT Crew Cab 2007 0.0% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 Infiniti G Coupe IPL 2012 45.17% Audi S4 Sedan 2007 14.45% Mercedes-Benz C-Class Sedan 2012 10.78% Mitsubishi Lancer Sedan 2012 9.09% Cadillac CTS-V Sedan 2012 7.51% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Bugatti Veyron 16.4 Coupe 2009 94.69% Ford Fiesta Sedan 2012 3.31% Bugatti Veyron 16.4 Convertible 2009 1.15% Mercedes-Benz SL-Class Coupe 2009 0.35% Hyundai Veloster Hatchback 2012 0.31% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Hatchback 2012 69.59% Nissan Juke Hatchback 2012 19.49% GMC Acadia SUV 2012 3.36% Cadillac CTS-V Sedan 2012 3.18% Suzuki Kizashi Sedan 2012 1.12% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 Plymouth Neon Coupe 1999 26.8% Nissan 240SX Coupe 1998 25.28% Ford Focus Sedan 2007 18.38% Eagle Talon Hatchback 1998 5.75% Lincoln Town Car Sedan 2011 5.09% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 48.89% Ford F-150 Regular Cab 2007 33.78% Chevrolet Silverado 2500HD Regular Cab 2012 8.36% Dodge Dakota Club Cab 2007 3.23% Dodge Ram Pickup 3500 Quad Cab 2009 1.59% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 88.76% Dodge Durango SUV 2012 3.44% Dodge Caliber Wagon 2012 2.57% Nissan Juke Hatchback 2012 1.33% Chevrolet Traverse SUV 2012 1.13% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 HUMMER H2 SUT Crew Cab 2009 95.78% AM General Hummer SUV 2000 4.2% HUMMER H3T Crew Cab 2010 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Jeep Wrangler SUV 2012 0.0% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 16.46% Dodge Durango SUV 2007 14.05% Dodge Journey SUV 2012 12.29% BMW X6 SUV 2012 11.4% Jeep Compass SUV 2012 7.48% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 29.92% Audi R8 Coupe 2012 23.42% Eagle Talon Hatchback 1998 12.95% Audi V8 Sedan 1994 12.6% Mercedes-Benz SL-Class Coupe 2009 5.85% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 20.52% Cadillac Escalade EXT Crew Cab 2007 9.01% Dodge Ram Pickup 3500 Quad Cab 2009 7.59% Dodge Dakota Crew Cab 2010 6.43% Ford F-150 Regular Cab 2012 5.97% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Maybach Landaulet Convertible 2012 53.81% Acura ZDX Hatchback 2012 9.11% Hyundai Veloster Hatchback 2012 5.75% Acura RL Sedan 2012 5.13% Ram C/V Cargo Van Minivan 2012 2.88% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Chevrolet Impala Sedan 2007 90.33% Chevrolet Traverse SUV 2012 6.71% Hyundai Elantra Touring Hatchback 2012 2.59% Honda Odyssey Minivan 2007 0.23% Eagle Talon Hatchback 1998 0.05% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 99.91% GMC Acadia SUV 2012 0.05% BMW X3 SUV 2012 0.01% Cadillac Escalade EXT Crew Cab 2007 0.01% Mazda Tribute SUV 2011 0.0% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Lamborghini Aventador Coupe 2012 16.53% Spyker C8 Coupe 2009 16.23% BMW M3 Coupe 2012 14.95% Ford GT Coupe 2006 11.33% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.96% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Plymouth Neon Coupe 1999 99.0% Eagle Talon Hatchback 1998 0.91% Ford Focus Sedan 2007 0.09% Mercedes-Benz C-Class Sedan 2012 0.0% Nissan 240SX Coupe 1998 0.0% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 Volkswagen Beetle Hatchback 2012 53.43% Toyota Corolla Sedan 2012 10.63% Hyundai Sonata Hybrid Sedan 2012 4.85% BMW 3 Series Sedan 2012 4.6% Hyundai Veloster Hatchback 2012 3.52% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.47% Acura Integra Type R 2001 0.19% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.16% Chrysler PT Cruiser Convertible 2008 0.07% Audi 100 Sedan 1994 0.04% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 95.8% Chevrolet Silverado 1500 Extended Cab 2012 3.89% Ford F-450 Super Duty Crew Cab 2012 0.19% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.08% GMC Canyon Extended Cab 2012 0.02% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Chevrolet Traverse SUV 2012 96.74% GMC Acadia SUV 2012 2.0% Cadillac SRX SUV 2012 0.58% Dodge Caliber Wagon 2012 0.2% Dodge Caliber Wagon 2007 0.17% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 BMW 1 Series Convertible 2012 28.03% Mercedes-Benz 300-Class Convertible 1993 28.03% BMW 6 Series Convertible 2007 14.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 6.32% Aston Martin Virage Coupe 2012 5.91% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 Audi TT RS Coupe 2012 79.12% Bugatti Veyron 16.4 Convertible 2009 13.92% Audi R8 Coupe 2012 4.54% Bugatti Veyron 16.4 Coupe 2009 1.24% Audi S6 Sedan 2011 0.39% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 Chevrolet Malibu Sedan 2007 34.74% Chevrolet Impala Sedan 2007 17.95% Lincoln Town Car Sedan 2011 17.06% Chevrolet Monte Carlo Coupe 2007 8.73% Chrysler Sebring Convertible 2010 6.43% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 BMW 6 Series Convertible 2007 75.86% Chrysler Sebring Convertible 2010 8.63% BMW ActiveHybrid 5 Sedan 2012 2.86% Chrysler Crossfire Convertible 2008 1.19% Suzuki Aerio Sedan 2007 1.0% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 67.34% Ford F-150 Regular Cab 2012 29.97% Dodge Ram Pickup 3500 Quad Cab 2009 1.16% GMC Canyon Extended Cab 2012 0.88% HUMMER H3T Crew Cab 2010 0.34% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 Lamborghini Reventon Coupe 2008 16.28% Lincoln Town Car Sedan 2011 10.78% Cadillac CTS-V Sedan 2012 7.51% Volkswagen Beetle Hatchback 2012 5.94% Ferrari FF Coupe 2012 4.53% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 98.46% Chevrolet Sonic Sedan 2012 0.44% Dodge Durango SUV 2012 0.14% Land Rover Range Rover SUV 2012 0.13% GMC Terrain SUV 2012 0.13% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Spyker C8 Convertible 2009 77.67% Volvo C30 Hatchback 2012 7.16% Bugatti Veyron 16.4 Coupe 2009 3.44% smart fortwo Convertible 2012 2.63% Bugatti Veyron 16.4 Convertible 2009 2.43% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 Dodge Charger SRT-8 2009 21.59% Chevrolet Camaro Convertible 2012 20.78% Dodge Charger Sedan 2012 6.51% Nissan 240SX Coupe 1998 5.42% BMW M5 Sedan 2010 4.44% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Acura ZDX Hatchback 2012 55.05% Acura TL Sedan 2012 16.82% Acura TSX Sedan 2012 11.74% Suzuki Aerio Sedan 2007 8.33% Hyundai Veracruz SUV 2012 2.75% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Geo Metro Convertible 1993 35.26% BMW 3 Series Sedan 2012 23.51% Dodge Sprinter Cargo Van 2009 11.68% Ford F-150 Regular Cab 2007 3.54% Volkswagen Golf Hatchback 1991 2.26% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2012 50.79% FIAT 500 Convertible 2012 40.12% Dodge Caliber Wagon 2007 6.32% Toyota Corolla Sedan 2012 1.06% Hyundai Elantra Touring Hatchback 2012 0.76% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 98.87% Dodge Durango SUV 2007 1.13% Ford F-150 Regular Cab 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 99.36% Dodge Charger Sedan 2012 0.14% Ferrari 458 Italia Coupe 2012 0.09% Dodge Journey SUV 2012 0.08% Suzuki SX4 Hatchback 2012 0.04% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bentley Continental Flying Spur Sedan 2007 24.4% Infiniti G Coupe IPL 2012 8.81% Hyundai Veloster Hatchback 2012 6.96% Bentley Continental GT Coupe 2007 5.74% BMW M5 Sedan 2010 4.59% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 Toyota Camry Sedan 2012 54.08% Acura TL Sedan 2012 10.33% Hyundai Accent Sedan 2012 8.57% Toyota Corolla Sedan 2012 7.29% Acura TSX Sedan 2012 4.83% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H2 SUT Crew Cab 2009 86.7% AM General Hummer SUV 2000 8.44% HUMMER H3T Crew Cab 2010 3.47% Land Rover LR2 SUV 2012 0.3% Mazda Tribute SUV 2011 0.21% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Chevrolet Express Van 2007 0.0% Acura Integra Type R 2001 0.0% Lamborghini Aventador Coupe 2012 0.0% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Hyundai Sonata Sedan 2012 93.8% Hyundai Elantra Sedan 2007 5.69% Honda Odyssey Minivan 2012 0.41% Honda Accord Sedan 2012 0.07% Hyundai Veracruz SUV 2012 0.02% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 99.0% Nissan Leaf Hatchback 2012 0.56% Chevrolet Corvette ZR1 2012 0.38% Bugatti Veyron 16.4 Convertible 2009 0.02% MINI Cooper Roadster Convertible 2012 0.01% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 78.52% Dodge Ram Pickup 3500 Quad Cab 2009 9.33% HUMMER H3T Crew Cab 2010 9.04% Dodge Dakota Crew Cab 2010 1.17% HUMMER H2 SUT Crew Cab 2009 0.41% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Volvo XC90 SUV 2007 52.5% Jeep Patriot SUV 2012 15.29% Mazda Tribute SUV 2011 10.43% Buick Rainier SUV 2007 9.82% GMC Terrain SUV 2012 6.67% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 98.94% Audi RS 4 Convertible 2008 0.75% Acura Integra Type R 2001 0.1% Ford Mustang Convertible 2007 0.03% Dodge Challenger SRT8 2011 0.03% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 98.94% Dodge Sprinter Cargo Van 2009 1.06% Chevrolet Express Van 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% GMC Savana Van 2012 0.0% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Hyundai Elantra Sedan 2007 99.98% Honda Odyssey Minivan 2012 0.01% Honda Accord Coupe 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Dodge Charger SRT-8 2009 54.22% Rolls-Royce Phantom Drophead Coupe Convertible 2012 15.36% Bentley Mulsanne Sedan 2011 6.19% Mercedes-Benz 300-Class Convertible 1993 3.68% Aston Martin V8 Vantage Coupe 2012 3.66% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Mitsubishi Lancer Sedan 2012 64.31% Acura TSX Sedan 2012 15.27% Hyundai Sonata Sedan 2012 8.44% Toyota Camry Sedan 2012 4.09% Honda Accord Sedan 2012 1.43% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Rolls-Royce Phantom Sedan 2012 74.4% Rolls-Royce Ghost Sedan 2012 8.4% Jeep Liberty SUV 2012 7.27% Volvo 240 Sedan 1993 4.1% Bentley Arnage Sedan 2009 0.97% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 BMW 6 Series Convertible 2007 36.63% BMW M5 Sedan 2010 21.75% Rolls-Royce Ghost Sedan 2012 9.99% Jeep Grand Cherokee SUV 2012 8.91% BMW Z4 Convertible 2012 7.27% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 87.88% Lamborghini Diablo Coupe 2001 10.42% Acura Integra Type R 2001 1.69% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Chevrolet Corvette Convertible 2012 0.0% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Chrysler Aspen SUV 2009 22.6% Volvo XC90 SUV 2007 16.21% Audi 100 Wagon 1994 10.73% Cadillac SRX SUV 2012 10.17% Dodge Caliber Wagon 2012 9.84% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 BMW Z4 Convertible 2012 90.58% Ford Mustang Convertible 2007 5.23% BMW M5 Sedan 2010 1.86% BMW 1 Series Convertible 2012 0.76% BMW 1 Series Coupe 2012 0.56% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Volkswagen Golf Hatchback 1991 29.05% Dodge Charger Sedan 2012 6.18% Geo Metro Convertible 1993 5.18% Nissan 240SX Coupe 1998 4.66% Dodge Challenger SRT8 2011 4.01% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Chevrolet Monte Carlo Coupe 2007 96.57% Nissan 240SX Coupe 1998 2.32% Chevrolet Impala Sedan 2007 0.65% Plymouth Neon Coupe 1999 0.15% Jaguar XK XKR 2012 0.09% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 Chevrolet Malibu Sedan 2007 17.98% Chevrolet Monte Carlo Coupe 2007 14.5% Chevrolet Impala Sedan 2007 5.6% Eagle Talon Hatchback 1998 3.07% Honda Accord Sedan 2012 2.97% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Audi 100 Wagon 1994 45.59% Volkswagen Golf Hatchback 1991 33.84% Volvo 240 Sedan 1993 5.58% Audi 100 Sedan 1994 4.19% Daewoo Nubira Wagon 2002 2.03% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 82.56% Chevrolet Express Van 2007 17.3% GMC Savana Van 2012 0.13% Ford Focus Sedan 2007 0.0% Chevrolet Silverado 2500HD Regular Cab 2012 0.0% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Ford GT Coupe 2006 18.98% Bentley Continental Supersports Conv. Convertible 2012 15.53% Tesla Model S Sedan 2012 10.38% Chevrolet Camaro Convertible 2012 4.5% Ferrari FF Coupe 2012 4.44% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 71.38% Chevrolet Avalanche Crew Cab 2012 9.52% Dodge Dakota Club Cab 2007 9.41% GMC Canyon Extended Cab 2012 4.11% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.94% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Aston Martin Virage Coupe 2012 20.38% Tesla Model S Sedan 2012 14.78% Bentley Continental GT Coupe 2012 8.6% Spyker C8 Convertible 2009 7.57% Suzuki Kizashi Sedan 2012 5.31% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 56.59% Audi 100 Sedan 1994 43.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.04% Ford Mustang Convertible 2007 0.04% Audi 100 Wagon 1994 0.01% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 Audi TT Hatchback 2011 61.98% Volkswagen Beetle Hatchback 2012 11.45% Hyundai Sonata Sedan 2012 4.93% BMW ActiveHybrid 5 Sedan 2012 3.83% Porsche Panamera Sedan 2012 3.69% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Ford Ranger SuperCab 2011 71.13% Chrysler Aspen SUV 2009 7.17% Volvo XC90 SUV 2007 6.34% Isuzu Ascender SUV 2008 4.08% Dodge Dakota Crew Cab 2010 1.86% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Dodge Sprinter Cargo Van 2009 97.23% Mercedes-Benz Sprinter Van 2012 2.77% Chrysler Aspen SUV 2009 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Dodge Durango SUV 2007 0.0% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 GMC Savana Van 2012 91.33% Volkswagen Golf Hatchback 1991 2.52% HUMMER H3T Crew Cab 2010 1.36% Audi 100 Wagon 1994 1.04% Volvo XC90 SUV 2007 0.93% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Tesla Model S Sedan 2012 30.92% Volkswagen Beetle Hatchback 2012 24.75% Toyota Camry Sedan 2012 14.94% Ferrari California Convertible 2012 7.03% Audi TT Hatchback 2011 5.78% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Volvo XC90 SUV 2007 23.33% Mazda Tribute SUV 2011 10.36% Chevrolet Avalanche Crew Cab 2012 6.3% Dodge Journey SUV 2012 6.02% Jeep Compass SUV 2012 5.15% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 Hyundai Veloster Hatchback 2012 57.45% Volvo C30 Hatchback 2012 24.53% Dodge Charger Sedan 2012 10.73% BMW 1 Series Coupe 2012 2.19% Land Rover LR2 SUV 2012 2.13% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Audi S5 Convertible 2012 39.29% Bugatti Veyron 16.4 Coupe 2009 11.37% Chevrolet Corvette ZR1 2012 6.48% Bentley Continental GT Coupe 2007 6.19% Audi RS 4 Convertible 2008 5.81% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 99.92% Dodge Challenger SRT8 2011 0.08% Dodge Charger Sedan 2012 0.0% Dodge Magnum Wagon 2008 0.0% Infiniti G Coupe IPL 2012 0.0% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.91% Ford Freestar Minivan 2007 0.06% Chevrolet Avalanche Crew Cab 2012 0.01% Chevrolet Tahoe Hybrid SUV 2012 0.01% Dodge Caliber Wagon 2012 0.01% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 94.24% Hyundai Genesis Sedan 2012 2.72% FIAT 500 Abarth 2012 0.5% Mercedes-Benz E-Class Sedan 2012 0.29% Lamborghini Reventon Coupe 2008 0.2% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 Buick Verano Sedan 2012 60.54% Buick Regal GS 2012 39.0% Suzuki Kizashi Sedan 2012 0.05% Chrysler 300 SRT-8 2010 0.05% Bentley Continental GT Coupe 2012 0.04% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Volkswagen Beetle Hatchback 2012 12.27% Maybach Landaulet Convertible 2012 9.58% Hyundai Sonata Hybrid Sedan 2012 7.23% Nissan Leaf Hatchback 2012 6.86% Dodge Challenger SRT8 2011 3.42% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 84.04% Hyundai Accent Sedan 2012 15.88% Toyota Corolla Sedan 2012 0.05% Scion xD Hatchback 2012 0.03% Suzuki Aerio Sedan 2007 0.0% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Ford Expedition EL SUV 2009 0.0% Hyundai Santa Fe SUV 2012 0.0% Land Rover LR2 SUV 2012 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 98.32% Chevrolet Silverado 1500 Extended Cab 2012 0.64% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.38% Chevrolet Silverado 2500HD Regular Cab 2012 0.29% Dodge Dakota Crew Cab 2010 0.18% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 48.62% Fisker Karma Sedan 2012 17.66% Jaguar XK XKR 2012 10.43% Porsche Panamera Sedan 2012 2.47% Audi TT Hatchback 2011 2.34% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 Ford F-150 Regular Cab 2007 51.42% Chevrolet Silverado 1500 Extended Cab 2012 46.99% GMC Canyon Extended Cab 2012 1.58% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Chrysler Sebring Convertible 2010 49.09% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.37% Hyundai Veloster Hatchback 2012 4.53% Chevrolet Corvette Convertible 2012 3.73% Mercedes-Benz 300-Class Convertible 1993 3.49% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 84.85% Acura RL Sedan 2012 6.18% Buick Verano Sedan 2012 1.54% Honda Odyssey Minivan 2007 0.95% Cadillac CTS-V Sedan 2012 0.92% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Toyota Camry Sedan 2012 48.88% Acura TL Sedan 2012 34.4% Acura TSX Sedan 2012 3.26% Nissan Leaf Hatchback 2012 2.81% Volkswagen Golf Hatchback 2012 1.7% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 76.57% Infiniti QX56 SUV 2011 22.77% Toyota Sequoia SUV 2012 0.3% Dodge Dakota Crew Cab 2010 0.08% Dodge Charger Sedan 2012 0.06% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 Dodge Dakota Club Cab 2007 99.98% Ford Ranger SuperCab 2011 0.01% Ford F-150 Regular Cab 2012 0.0% Mazda Tribute SUV 2011 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Mitsubishi Lancer Sedan 2012 99.56% Chevrolet Sonic Sedan 2012 0.21% Ford Fiesta Sedan 2012 0.07% Toyota Corolla Sedan 2012 0.04% Eagle Talon Hatchback 1998 0.04% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 HUMMER H2 SUT Crew Cab 2009 79.06% Cadillac CTS-V Sedan 2012 6.72% Audi 100 Wagon 1994 2.82% Ford F-150 Regular Cab 2007 2.3% AM General Hummer SUV 2000 1.98% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 98.6% Chevrolet Corvette Convertible 2012 1.18% Porsche Panamera Sedan 2012 0.18% Fisker Karma Sedan 2012 0.02% Audi S5 Convertible 2012 0.01% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Spyker C8 Convertible 2009 90.55% FIAT 500 Abarth 2012 5.15% Spyker C8 Coupe 2009 0.91% Chevrolet Sonic Sedan 2012 0.49% smart fortwo Convertible 2012 0.38% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 47.57% Bentley Continental GT Coupe 2007 32.37% Chevrolet Sonic Sedan 2012 6.06% Acura ZDX Hatchback 2012 3.78% BMW X6 SUV 2012 2.92% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Chevrolet Cobalt SS 2010 100.0% Dodge Charger SRT-8 2009 0.0% Chevrolet Camaro Convertible 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Honda Accord Coupe 2012 0.0% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Chevrolet Corvette Convertible 2012 99.64% Lamborghini Diablo Coupe 2001 0.33% Chevrolet Cobalt SS 2010 0.01% Aston Martin V8 Vantage Coupe 2012 0.01% Acura Integra Type R 2001 0.0% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 79.45% Fisker Karma Sedan 2012 18.74% Chevrolet Corvette Convertible 2012 0.68% Porsche Panamera Sedan 2012 0.39% Acura TL Sedan 2012 0.28% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 98.92% GMC Yukon Hybrid SUV 2012 0.52% Chevrolet Avalanche Crew Cab 2012 0.16% Chrysler Aspen SUV 2009 0.09% Cadillac Escalade EXT Crew Cab 2007 0.08% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 100.0% Isuzu Ascender SUV 2008 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% HUMMER H3T Crew Cab 2010 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz E-Class Sedan 2012 91.82% Mercedes-Benz S-Class Sedan 2012 6.97% Chrysler PT Cruiser Convertible 2008 0.84% Mercedes-Benz C-Class Sedan 2012 0.09% Chevrolet HHR SS 2010 0.06% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Acura Integra Type R 2001 83.2% Chevrolet Sonic Sedan 2012 4.14% Audi 100 Sedan 1994 3.68% Volkswagen Golf Hatchback 1991 2.11% Suzuki Aerio Sedan 2007 1.32% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Dodge Durango SUV 2007 44.26% Chevrolet Avalanche Crew Cab 2012 18.32% Chevrolet Malibu Sedan 2007 12.19% Buick Rainier SUV 2007 11.23% Cadillac Escalade EXT Crew Cab 2007 5.62% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 97.88% Land Rover Range Rover SUV 2012 0.63% Buick Verano Sedan 2012 0.26% Hyundai Veracruz SUV 2012 0.19% Nissan Leaf Hatchback 2012 0.17% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 Ford Ranger SuperCab 2011 59.24% Ford F-450 Super Duty Crew Cab 2012 22.75% Dodge Ram Pickup 3500 Quad Cab 2009 7.18% Ford F-150 Regular Cab 2012 5.27% GMC Canyon Extended Cab 2012 2.59% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.97% Ford F-150 Regular Cab 2007 0.03% Chrysler Aspen SUV 2009 0.0% GMC Canyon Extended Cab 2012 0.0% Ford F-450 Super Duty Crew Cab 2012 0.0% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 92.07% Dodge Dakota Club Cab 2007 7.88% Dodge Dakota Crew Cab 2010 0.05% Chrysler Aspen SUV 2009 0.0% Dodge Caliber Wagon 2012 0.0% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 Hyundai Elantra Sedan 2007 45.75% Plymouth Neon Coupe 1999 17.28% Ferrari FF Coupe 2012 8.13% Spyker C8 Coupe 2009 3.92% Ford GT Coupe 2006 2.87% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 BMW 1 Series Coupe 2012 25.67% Audi V8 Sedan 1994 18.32% Suzuki SX4 Hatchback 2012 7.16% Ford Edge SUV 2012 5.38% Dodge Caliber Wagon 2007 4.97% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 99.65% Bentley Continental GT Coupe 2012 0.23% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.05% Rolls-Royce Phantom Sedan 2012 0.03% Bentley Arnage Sedan 2009 0.02% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 99.84% Chevrolet Silverado 1500 Extended Cab 2012 0.11% Chevrolet Silverado 1500 Regular Cab 2012 0.03% Ford Ranger SuperCab 2011 0.01% Chevrolet Avalanche Crew Cab 2012 0.0% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 95.25% GMC Savana Van 2012 4.73% Chevrolet Express Van 2007 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Ford Ranger SuperCab 2011 0.0% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Spyker C8 Convertible 2009 87.66% Lamborghini Reventon Coupe 2008 10.21% Bugatti Veyron 16.4 Coupe 2009 1.18% Chrysler 300 SRT-8 2010 0.43% Audi R8 Coupe 2012 0.11% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 Jeep Grand Cherokee SUV 2012 40.77% Jeep Compass SUV 2012 35.48% Chevrolet Sonic Sedan 2012 21.37% BMW X5 SUV 2007 0.67% BMW X3 SUV 2012 0.46% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.27% Jeep Compass SUV 2012 0.72% Jeep Liberty SUV 2012 0.01% Jeep Patriot SUV 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 BMW M3 Coupe 2012 51.63% Lamborghini Aventador Coupe 2012 20.79% Audi TT RS Coupe 2012 18.27% Ferrari California Convertible 2012 6.06% Ferrari 458 Italia Convertible 2012 2.44% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Infiniti QX56 SUV 2011 23.88% Bentley Mulsanne Sedan 2011 6.36% Toyota Sequoia SUV 2012 6.05% Chevrolet Monte Carlo Coupe 2007 4.61% Chevrolet Malibu Sedan 2007 3.73% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Suzuki SX4 Sedan 2012 6.92% Aston Martin V8 Vantage Coupe 2012 6.37% Lamborghini Reventon Coupe 2008 5.98% Ferrari 458 Italia Coupe 2012 5.97% Mercedes-Benz SL-Class Coupe 2009 5.41% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 44.27% Chrysler Town and Country Minivan 2012 9.74% Chrysler Aspen SUV 2009 9.51% Audi 100 Wagon 1994 7.5% Land Rover Range Rover SUV 2012 7.4% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Audi S4 Sedan 2007 30.49% Dodge Magnum Wagon 2008 16.64% Chevrolet Impala Sedan 2007 16.0% Dodge Caliber Wagon 2007 4.17% Lincoln Town Car Sedan 2011 3.55% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 100.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Ford Edge SUV 2012 0.0% Rolls-Royce Ghost Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 Porsche Panamera Sedan 2012 56.85% Nissan 240SX Coupe 1998 8.53% Chevrolet Corvette ZR1 2012 4.77% Plymouth Neon Coupe 1999 4.39% Buick Rainier SUV 2007 4.09% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 FIAT 500 Convertible 2012 17.84% Nissan Leaf Hatchback 2012 16.08% Chrysler Town and Country Minivan 2012 11.46% Volkswagen Beetle Hatchback 2012 4.56% Aston Martin Virage Convertible 2012 4.33% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 55.0% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 44.43% Chevrolet Silverado 2500HD Regular Cab 2012 0.54% Chevrolet Silverado 1500 Extended Cab 2012 0.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Bentley Continental GT Coupe 2007 82.48% Ford GT Coupe 2006 11.58% BMW 1 Series Coupe 2012 1.4% Porsche Panamera Sedan 2012 1.07% Ferrari 458 Italia Convertible 2012 0.84% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz SL-Class Coupe 2009 99.99% Bugatti Veyron 16.4 Convertible 2009 0.01% Ford Fiesta Sedan 2012 0.0% Audi TT RS Coupe 2012 0.0% Eagle Talon Hatchback 1998 0.0% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 Chevrolet Malibu Hybrid Sedan 2010 79.08% Mitsubishi Lancer Sedan 2012 8.81% Acura RL Sedan 2012 4.57% Bentley Continental Flying Spur Sedan 2007 1.85% Mercedes-Benz C-Class Sedan 2012 1.21% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 98.98% Hyundai Azera Sedan 2012 1.02% Toyota Camry Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% Hyundai Accent Sedan 2012 0.0% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 97.9% Bentley Continental GT Coupe 2007 1.57% Volkswagen Beetle Hatchback 2012 0.52% Chrysler Sebring Convertible 2010 0.0% Bentley Continental GT Coupe 2012 0.0% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Ford Edge SUV 2012 50.52% Hyundai Santa Fe SUV 2012 33.02% Honda Odyssey Minivan 2012 8.88% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 3.3% Ford Expedition EL SUV 2009 1.13% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Jaguar XK XKR 2012 9.56% Mercedes-Benz SL-Class Coupe 2009 9.21% Acura TL Type-S 2008 8.63% Aston Martin V8 Vantage Coupe 2012 7.82% Buick Regal GS 2012 6.1% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 99.94% Bentley Arnage Sedan 2009 0.05% FIAT 500 Abarth 2012 0.01% Spyker C8 Coupe 2009 0.0% Bentley Continental GT Coupe 2012 0.0% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Audi S5 Coupe 2012 59.17% Audi TT Hatchback 2011 29.31% Audi S4 Sedan 2007 4.63% Audi A5 Coupe 2012 2.61% Fisker Karma Sedan 2012 1.61% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 72.34% Fisker Karma Sedan 2012 6.11% Chevrolet Corvette ZR1 2012 5.98% Ferrari 458 Italia Coupe 2012 4.08% Ferrari 458 Italia Convertible 2012 2.24% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 BMW M6 Convertible 2010 65.17% BMW Z4 Convertible 2012 17.98% BMW M5 Sedan 2010 9.22% BMW 6 Series Convertible 2007 2.45% Acura TSX Sedan 2012 1.45% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Buick Verano Sedan 2012 71.79% BMW ActiveHybrid 5 Sedan 2012 11.58% BMW X3 SUV 2012 6.59% Suzuki SX4 Sedan 2012 1.72% Suzuki Aerio Sedan 2007 1.19% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 74.24% Ford E-Series Wagon Van 2012 23.87% Toyota Sequoia SUV 2012 0.6% Ford F-150 Regular Cab 2012 0.42% Cadillac SRX SUV 2012 0.25% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Hyundai Accent Sedan 2012 93.07% Chevrolet Sonic Sedan 2012 3.26% Ford Fiesta Sedan 2012 1.66% Hyundai Elantra Sedan 2007 1.59% Toyota Corolla Sedan 2012 0.13% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Audi S5 Coupe 2012 17.43% Audi R8 Coupe 2012 16.59% Ferrari FF Coupe 2012 13.97% BMW M6 Convertible 2010 12.47% Fisker Karma Sedan 2012 8.83% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 96.43% BMW Z4 Convertible 2012 1.77% Lamborghini Diablo Coupe 2001 0.47% Acura Integra Type R 2001 0.12% Ferrari California Convertible 2012 0.11% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Jeep Patriot SUV 2012 0.0% Dodge Durango SUV 2007 0.0% Ford F-150 Regular Cab 2007 0.0% Chrysler Aspen SUV 2009 0.0% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 71.13% Geo Metro Convertible 1993 21.88% FIAT 500 Convertible 2012 3.91% Chrysler PT Cruiser Convertible 2008 2.99% Suzuki SX4 Hatchback 2012 0.06% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 99.94% Hyundai Tucson SUV 2012 0.05% Toyota 4Runner SUV 2012 0.0% Hyundai Veracruz SUV 2012 0.0% Hyundai Santa Fe SUV 2012 0.0% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Spyker C8 Convertible 2009 43.51% FIAT 500 Abarth 2012 30.54% Bugatti Veyron 16.4 Coupe 2009 8.5% Spyker C8 Coupe 2009 3.71% Infiniti G Coupe IPL 2012 2.5% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Volkswagen Golf Hatchback 1991 22.21% Chrysler 300 SRT-8 2010 12.19% Scion xD Hatchback 2012 7.68% Chevrolet TrailBlazer SS 2009 7.21% Buick Verano Sedan 2012 5.47% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Audi TT RS Coupe 2012 15.9% Audi S5 Coupe 2012 15.32% BMW Z4 Convertible 2012 13.24% Audi A5 Coupe 2012 8.56% Audi S5 Convertible 2012 7.38% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Club Cab 2007 64.06% Dodge Dakota Crew Cab 2010 35.94% Dodge Durango SUV 2007 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Ford Freestar Minivan 2007 0.0% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 Jeep Grand Cherokee SUV 2012 99.77% Jeep Liberty SUV 2012 0.12% Jeep Compass SUV 2012 0.11% Jeep Wrangler SUV 2012 0.0% Jeep Patriot SUV 2012 0.0% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Chevrolet TrailBlazer SS 2009 16.5% Ferrari 458 Italia Coupe 2012 12.07% Dodge Journey SUV 2012 10.56% Dodge Charger Sedan 2012 6.34% Dodge Durango SUV 2007 6.27% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Ford Fiesta Sedan 2012 24.39% Hyundai Tucson SUV 2012 9.1% Scion xD Hatchback 2012 8.89% Bugatti Veyron 16.4 Convertible 2009 8.31% Hyundai Veloster Hatchback 2012 6.98% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 74.95% BMW M6 Convertible 2010 4.96% Chevrolet Camaro Convertible 2012 4.45% Fisker Karma Sedan 2012 3.41% Audi RS 4 Convertible 2008 2.81% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 BMW M3 Coupe 2012 44.85% Bentley Continental GT Coupe 2007 26.04% Suzuki Kizashi Sedan 2012 24.23% Bentley Continental GT Coupe 2012 3.17% Dodge Magnum Wagon 2008 0.72% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 80.65% Bentley Continental Flying Spur Sedan 2007 12.51% Chevrolet Monte Carlo Coupe 2007 1.11% Bentley Continental GT Coupe 2012 0.87% Spyker C8 Convertible 2009 0.49% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 46.43% Dodge Ram Pickup 3500 Quad Cab 2009 25.77% GMC Canyon Extended Cab 2012 15.09% Dodge Ram Pickup 3500 Crew Cab 2010 5.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 4.59% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 98.39% Ford Mustang Convertible 2007 0.71% Audi S4 Sedan 2012 0.35% BMW Z4 Convertible 2012 0.14% Geo Metro Convertible 1993 0.06% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 99.32% Suzuki Kizashi Sedan 2012 0.37% Bentley Continental GT Coupe 2012 0.25% Bentley Continental GT Coupe 2007 0.04% Cadillac SRX SUV 2012 0.01% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 Audi 100 Sedan 1994 48.71% Dodge Dakota Club Cab 2007 43.54% Dodge Dakota Crew Cab 2010 5.73% Dodge Ram Pickup 3500 Quad Cab 2009 1.09% Isuzu Ascender SUV 2008 0.6% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Chevrolet Sonic Sedan 2012 27.86% Chrysler PT Cruiser Convertible 2008 18.5% BMW Z4 Convertible 2012 10.77% Ford Mustang Convertible 2007 8.53% Maybach Landaulet Convertible 2012 7.97% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 87.89% Chevrolet Tahoe Hybrid SUV 2012 9.12% Chevrolet Avalanche Crew Cab 2012 1.13% GMC Yukon Hybrid SUV 2012 0.59% Dodge Dakota Crew Cab 2010 0.49% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 BMW M6 Convertible 2010 86.79% Chevrolet Camaro Convertible 2012 4.43% Fisker Karma Sedan 2012 3.14% Lamborghini Aventador Coupe 2012 1.76% Audi S5 Coupe 2012 1.7% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 99.88% Ferrari California Convertible 2012 0.03% Lamborghini Aventador Coupe 2012 0.03% Audi TTS Coupe 2012 0.01% Mitsubishi Lancer Sedan 2012 0.01% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 93.7% Dodge Caravan Minivan 1997 5.7% Ford Expedition EL SUV 2009 0.21% Honda Odyssey Minivan 2007 0.11% Honda Odyssey Minivan 2012 0.1% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.92% Dodge Magnum Wagon 2008 0.06% GMC Yukon Hybrid SUV 2012 0.02% Cadillac SRX SUV 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Infiniti G Coupe IPL 2012 36.58% BMW ActiveHybrid 5 Sedan 2012 27.67% Acura RL Sedan 2012 5.95% Jaguar XK XKR 2012 3.83% Nissan 240SX Coupe 1998 3.32% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Ford Edge SUV 2012 45.02% Dodge Durango SUV 2007 35.64% GMC Canyon Extended Cab 2012 3.03% Ford Ranger SuperCab 2011 2.13% GMC Acadia SUV 2012 2.09% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Hyundai Elantra Sedan 2007 37.73% Volkswagen Golf Hatchback 2012 19.49% Ford Focus Sedan 2007 14.07% Chevrolet Impala Sedan 2007 6.35% Chevrolet Cobalt SS 2010 6.25% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 93.06% BMW 6 Series Convertible 2007 3.69% BMW X5 SUV 2007 1.62% Suzuki Aerio Sedan 2007 0.38% Audi TT Hatchback 2011 0.24% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 BMW X3 SUV 2012 15.98% Buick Rainier SUV 2007 11.24% Chevrolet TrailBlazer SS 2009 10.82% Jeep Liberty SUV 2012 7.46% Ford Focus Sedan 2007 6.11% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Bentley Mulsanne Sedan 2011 40.06% Dodge Challenger SRT8 2011 10.29% Hyundai Sonata Hybrid Sedan 2012 6.42% Volvo 240 Sedan 1993 5.34% Rolls-Royce Phantom Sedan 2012 3.83% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 BMW M5 Sedan 2010 52.48% BMW 6 Series Convertible 2007 14.53% Audi S4 Sedan 2007 8.19% BMW 3 Series Sedan 2012 6.35% Audi TTS Coupe 2012 4.67% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 77.15% GMC Yukon Hybrid SUV 2012 14.96% Bentley Continental GT Coupe 2007 4.39% Bentley Continental Flying Spur Sedan 2007 1.4% FIAT 500 Abarth 2012 0.54% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 63.73% Plymouth Neon Coupe 1999 3.97% Lamborghini Reventon Coupe 2008 2.31% Nissan Leaf Hatchback 2012 1.91% Eagle Talon Hatchback 1998 1.72% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Audi TTS Coupe 2012 20.99% Audi S5 Coupe 2012 14.68% Mitsubishi Lancer Sedan 2012 10.2% Chevrolet Sonic Sedan 2012 8.31% BMW Z4 Convertible 2012 7.26% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 59.74% Audi TT Hatchback 2011 28.15% Audi S4 Sedan 2012 5.56% Audi S4 Sedan 2007 2.47% Audi S5 Coupe 2012 1.93% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 46.08% Ram C/V Cargo Van Minivan 2012 20.71% Dodge Durango SUV 2007 18.83% Nissan NV Passenger Van 2012 5.88% Ford F-150 Regular Cab 2012 1.76% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 Honda Accord Coupe 2012 68.65% Chevrolet Malibu Sedan 2007 20.79% Honda Accord Sedan 2012 8.06% Honda Odyssey Minivan 2012 1.81% Acura RL Sedan 2012 0.26% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 97.84% Ford F-150 Regular Cab 2007 0.6% Ford E-Series Wagon Van 2012 0.58% Ford F-450 Super Duty Crew Cab 2012 0.23% Ford F-150 Regular Cab 2012 0.2% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 39.07% BMW 1 Series Coupe 2012 17.08% BMW 1 Series Convertible 2012 5.73% Chevrolet HHR SS 2010 4.27% Dodge Charger SRT-8 2009 2.7% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.85% Jeep Patriot SUV 2012 0.15% Buick Rainier SUV 2007 0.0% Volkswagen Golf Hatchback 1991 0.0% Bentley Arnage Sedan 2009 0.0% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 39.0% Jeep Compass SUV 2012 22.05% HUMMER H3T Crew Cab 2010 15.17% Dodge Dakota Crew Cab 2010 10.75% Dodge Dakota Club Cab 2007 4.79% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 38.36% Chevrolet Tahoe Hybrid SUV 2012 13.37% Chevrolet Silverado 1500 Extended Cab 2012 9.83% Ford Expedition EL SUV 2009 8.36% Jeep Patriot SUV 2012 7.01% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 100.0% Volvo XC90 SUV 2007 0.0% Buick Rainier SUV 2007 0.0% Jeep Patriot SUV 2012 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz 300-Class Convertible 1993 18.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 17.24% Lamborghini Reventon Coupe 2008 14.64% Aston Martin V8 Vantage Convertible 2012 7.11% Aston Martin Virage Coupe 2012 6.93% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 99.94% Bugatti Veyron 16.4 Convertible 2009 0.04% Audi S5 Convertible 2012 0.01% smart fortwo Convertible 2012 0.0% Scion xD Hatchback 2012 0.0% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 56.33% Chevrolet Impala Sedan 2007 17.47% Volvo 240 Sedan 1993 7.12% Chevrolet Malibu Sedan 2007 5.02% GMC Acadia SUV 2012 1.47% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Tesla Model S Sedan 2012 39.38% Lamborghini Reventon Coupe 2008 21.52% Porsche Panamera Sedan 2012 11.14% Lamborghini Aventador Coupe 2012 8.45% Aston Martin Virage Convertible 2012 4.15% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Acura TSX Sedan 2012 82.33% Acura RL Sedan 2012 8.55% Honda Accord Coupe 2012 4.82% Toyota Camry Sedan 2012 1.68% Acura TL Sedan 2012 1.66% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Aston Martin Virage Coupe 2012 37.12% Hyundai Veloster Hatchback 2012 28.73% Mitsubishi Lancer Sedan 2012 16.31% Spyker C8 Coupe 2009 10.6% Bentley Continental GT Coupe 2012 2.03% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford Ranger SuperCab 2011 81.98% Dodge Ram Pickup 3500 Quad Cab 2009 6.11% Ford F-150 Regular Cab 2007 4.69% Ford F-150 Regular Cab 2012 4.34% Volvo XC90 SUV 2007 0.82% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 Lamborghini Reventon Coupe 2008 29.52% Geo Metro Convertible 1993 26.71% Daewoo Nubira Wagon 2002 15.82% Audi V8 Sedan 1994 10.42% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.07% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 Hyundai Veracruz SUV 2012 24.82% Acura ZDX Hatchback 2012 12.25% BMW X5 SUV 2007 10.18% BMW X6 SUV 2012 5.86% Audi 100 Wagon 1994 3.47% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 87.54% Scion xD Hatchback 2012 8.2% Nissan Juke Hatchback 2012 1.92% Chevrolet Traverse SUV 2012 0.86% Hyundai Tucson SUV 2012 0.6% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 46.15% Chevrolet Malibu Sedan 2007 25.7% Chevrolet Impala Sedan 2007 19.87% Acura RL Sedan 2012 2.44% Chevrolet Monte Carlo Coupe 2007 1.51% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 BMW 1 Series Coupe 2012 56.85% Ferrari FF Coupe 2012 9.62% Suzuki SX4 Hatchback 2012 5.57% Ford GT Coupe 2006 5.39% BMW X6 SUV 2012 4.37% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 97.55% Buick Regal GS 2012 1.49% Bentley Continental GT Coupe 2012 0.94% BMW X3 SUV 2012 0.01% Bentley Mulsanne Sedan 2011 0.0% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 99.48% GMC Yukon Hybrid SUV 2012 0.31% Cadillac SRX SUV 2012 0.15% Dodge Magnum Wagon 2008 0.02% Chevrolet Tahoe Hybrid SUV 2012 0.01% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Nissan 240SX Coupe 1998 39.56% Mercedes-Benz 300-Class Convertible 1993 22.95% Audi 100 Sedan 1994 16.59% Chevrolet Monte Carlo Coupe 2007 8.12% Plymouth Neon Coupe 1999 5.43% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 BMW 1 Series Convertible 2012 52.26% Mercedes-Benz E-Class Sedan 2012 13.12% Buick Regal GS 2012 4.79% Audi S5 Coupe 2012 4.52% Toyota Corolla Sedan 2012 3.52% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 Suzuki Kizashi Sedan 2012 28.45% Audi S5 Coupe 2012 10.48% Suzuki SX4 Sedan 2012 8.19% Audi S4 Sedan 2012 6.36% Volkswagen Beetle Hatchback 2012 5.02% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Chevrolet Cobalt SS 2010 71.33% Buick Verano Sedan 2012 12.27% Hyundai Sonata Hybrid Sedan 2012 3.33% Suzuki Kizashi Sedan 2012 2.55% Bentley Continental GT Coupe 2007 1.85% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 37.37% Cadillac Escalade EXT Crew Cab 2007 35.3% Dodge Durango SUV 2007 13.92% Jeep Patriot SUV 2012 7.01% Jeep Liberty SUV 2012 3.54% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Acura Integra Type R 2001 13.67% Dodge Charger Sedan 2012 11.52% HUMMER H3T Crew Cab 2010 9.29% FIAT 500 Abarth 2012 7.7% Dodge Challenger SRT8 2011 6.36% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Infiniti QX56 SUV 2011 13.41% Mercedes-Benz E-Class Sedan 2012 13.0% Toyota 4Runner SUV 2012 7.24% Suzuki Kizashi Sedan 2012 3.77% Dodge Caravan Minivan 1997 3.54% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 56.5% BMW X5 SUV 2007 20.1% Toyota Corolla Sedan 2012 6.92% Toyota Camry Sedan 2012 1.44% Volkswagen Beetle Hatchback 2012 1.28% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 79.11% Jeep Patriot SUV 2012 19.17% Ford F-450 Super Duty Crew Cab 2012 0.68% HUMMER H2 SUT Crew Cab 2009 0.54% Jeep Liberty SUV 2012 0.22% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Ford F-150 Regular Cab 2007 77.38% Chevrolet Silverado 1500 Extended Cab 2012 16.38% Dodge Magnum Wagon 2008 2.54% HUMMER H3T Crew Cab 2010 1.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.95% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Jaguar XK XKR 2012 30.39% BMW X6 SUV 2012 12.02% BMW 1 Series Convertible 2012 11.12% Dodge Caliber Wagon 2012 10.97% Spyker C8 Coupe 2009 9.96% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 29.91% Mercedes-Benz E-Class Sedan 2012 15.01% Audi TTS Coupe 2012 10.5% Audi RS 4 Convertible 2008 7.93% Audi S5 Convertible 2012 7.14% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 Volkswagen Beetle Hatchback 2012 60.14% Ford F-150 Regular Cab 2007 19.64% Chrysler Sebring Convertible 2010 4.31% Chrysler Town and Country Minivan 2012 2.66% Chevrolet Malibu Hybrid Sedan 2010 2.4% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Dodge Durango SUV 2007 99.91% Dodge Dakota Club Cab 2007 0.08% Dodge Caliber Wagon 2012 0.01% Dodge Caliber Wagon 2007 0.0% Dodge Dakota Crew Cab 2010 0.0% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Chevrolet Malibu Hybrid Sedan 2010 31.94% Acura TL Sedan 2012 15.28% Hyundai Sonata Sedan 2012 11.41% Toyota Camry Sedan 2012 7.25% Chevrolet Cobalt SS 2010 6.26% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette ZR1 2012 15.58% Dodge Caravan Minivan 1997 9.33% Suzuki SX4 Sedan 2012 8.14% Lincoln Town Car Sedan 2011 5.05% Dodge Sprinter Cargo Van 2009 3.69% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Toyota Camry Sedan 2012 34.0% Rolls-Royce Ghost Sedan 2012 7.86% Acura TSX Sedan 2012 6.76% Audi TT Hatchback 2011 5.29% Acura RL Sedan 2012 3.6% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 Infiniti QX56 SUV 2011 74.72% Hyundai Sonata Hybrid Sedan 2012 8.49% Buick Regal GS 2012 8.27% Honda Odyssey Minivan 2012 6.36% Hyundai Veracruz SUV 2012 1.27% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Audi TT Hatchback 2011 17.08% Toyota Camry Sedan 2012 11.13% Hyundai Accent Sedan 2012 8.77% Audi S5 Coupe 2012 7.07% Audi TT RS Coupe 2012 6.84% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental GT Coupe 2007 85.3% Bentley Continental Supersports Conv. Convertible 2012 7.26% Spyker C8 Coupe 2009 6.02% Bentley Continental GT Coupe 2012 0.58% Ford GT Coupe 2006 0.39% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% HUMMER H3T Crew Cab 2010 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% Jeep Wrangler SUV 2012 0.0% Lamborghini Diablo Coupe 2001 0.0% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Ford Focus Sedan 2007 87.55% Chevrolet Impala Sedan 2007 10.46% Suzuki Aerio Sedan 2007 1.15% Plymouth Neon Coupe 1999 0.37% Daewoo Nubira Wagon 2002 0.15% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Coupe 2012 100.0% Ferrari 458 Italia Convertible 2012 0.0% Lamborghini Aventador Coupe 2012 0.0% Ferrari California Convertible 2012 0.0% Chevrolet Corvette ZR1 2012 0.0% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 43.94% Jeep Liberty SUV 2012 15.38% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.88% Jeep Wrangler SUV 2012 5.23% HUMMER H2 SUT Crew Cab 2009 4.77% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 25.8% Geo Metro Convertible 1993 18.99% Eagle Talon Hatchback 1998 18.63% Ford Focus Sedan 2007 11.31% Acura Integra Type R 2001 8.59% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 Bentley Continental Flying Spur Sedan 2007 49.51% Volkswagen Beetle Hatchback 2012 23.1% Bentley Continental GT Coupe 2007 14.02% Bentley Mulsanne Sedan 2011 4.01% Chevrolet HHR SS 2010 1.06% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Land Rover LR2 SUV 2012 90.92% Land Rover Range Rover SUV 2012 5.09% Maybach Landaulet Convertible 2012 3.35% Nissan Leaf Hatchback 2012 0.24% smart fortwo Convertible 2012 0.14% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 99.76% GMC Savana Van 2012 0.17% Chevrolet Express Van 2007 0.07% Audi 100 Sedan 1994 0.0% Ford Ranger SuperCab 2011 0.0% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 Honda Accord Sedan 2012 18.5% Acura RL Sedan 2012 13.29% Chevrolet Malibu Hybrid Sedan 2010 9.75% Dodge Magnum Wagon 2008 7.75% Acura ZDX Hatchback 2012 2.9% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 93.49% Isuzu Ascender SUV 2008 2.3% Chevrolet Tahoe Hybrid SUV 2012 1.94% Dodge Dakota Crew Cab 2010 1.24% GMC Yukon Hybrid SUV 2012 0.61% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Chrysler Town and Country Minivan 2012 99.55% Ram C/V Cargo Van Minivan 2012 0.44% Suzuki Aerio Sedan 2007 0.01% Ford Freestar Minivan 2007 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 Daewoo Nubira Wagon 2002 62.36% Nissan Leaf Hatchback 2012 20.09% Hyundai Elantra Touring Hatchback 2012 10.39% Plymouth Neon Coupe 1999 1.81% Eagle Talon Hatchback 1998 1.66% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 Jaguar XK XKR 2012 96.5% Ford Fiesta Sedan 2012 0.95% Chevrolet Impala Sedan 2007 0.67% Chevrolet Corvette ZR1 2012 0.46% Nissan Leaf Hatchback 2012 0.32% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Nissan Juke Hatchback 2012 51.21% Suzuki SX4 Sedan 2012 14.33% Dodge Durango SUV 2012 7.99% Cadillac SRX SUV 2012 4.21% Hyundai Genesis Sedan 2012 2.66% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Hyundai Sonata Sedan 2012 21.97% Chevrolet Cobalt SS 2010 13.64% Ferrari FF Coupe 2012 11.36% Mercedes-Benz C-Class Sedan 2012 8.11% Cadillac CTS-V Sedan 2012 6.47% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 100.0% Jeep Patriot SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% GMC Yukon Hybrid SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 Ford F-150 Regular Cab 2012 52.14% Chrysler Aspen SUV 2009 16.39% Dodge Durango SUV 2007 14.61% Dodge Dakota Club Cab 2007 14.35% Dodge Ram Pickup 3500 Quad Cab 2009 1.13% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 Nissan Leaf Hatchback 2012 94.19% Bugatti Veyron 16.4 Coupe 2009 0.92% Audi S5 Convertible 2012 0.89% Chevrolet Corvette ZR1 2012 0.82% Chevrolet HHR SS 2010 0.52% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 99.98% GMC Canyon Extended Cab 2012 0.01% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Chevrolet Silverado 1500 Regular Cab 2012 0.0% Chevrolet Silverado 1500 Extended Cab 2012 0.0% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 smart fortwo Convertible 2012 35.53% Bugatti Veyron 16.4 Convertible 2009 18.29% Chevrolet Sonic Sedan 2012 9.98% Spyker C8 Convertible 2009 9.57% Suzuki Kizashi Sedan 2012 5.83% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.99% Jeep Patriot SUV 2012 0.01% Jeep Grand Cherokee SUV 2012 0.0% Jeep Compass SUV 2012 0.0% Bentley Arnage Sedan 2009 0.0% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 52.73% Hyundai Sonata Sedan 2012 28.04% Honda Odyssey Minivan 2012 11.71% Cadillac SRX SUV 2012 1.67% Mercedes-Benz C-Class Sedan 2012 1.06% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.99% Buick Verano Sedan 2012 0.0% BMW M3 Coupe 2012 0.0% BMW 1 Series Coupe 2012 0.0% BMW X3 SUV 2012 0.0% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 28.59% Cadillac CTS-V Sedan 2012 12.29% Mercedes-Benz E-Class Sedan 2012 8.99% Acura RL Sedan 2012 7.73% Hyundai Sonata Sedan 2012 7.5% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 91.05% Dodge Dakota Club Cab 2007 7.55% GMC Canyon Extended Cab 2012 0.87% Dodge Ram Pickup 3500 Quad Cab 2009 0.12% Dodge Durango SUV 2007 0.08% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 90.02% Dodge Caliber Wagon 2012 3.86% Cadillac SRX SUV 2012 1.59% Hyundai Sonata Hybrid Sedan 2012 0.92% Dodge Caliber Wagon 2007 0.84% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Chevrolet Camaro Convertible 2012 77.51% Bentley Continental Supersports Conv. Convertible 2012 5.63% Ferrari California Convertible 2012 5.61% Chevrolet Corvette Convertible 2012 4.72% Ferrari 458 Italia Convertible 2012 4.22% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 98.91% Dodge Ram Pickup 3500 Quad Cab 2009 1.09% Dodge Durango SUV 2007 0.0% Ford F-150 Regular Cab 2007 0.0% GMC Canyon Extended Cab 2012 0.0% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Mercedes-Benz E-Class Sedan 2012 26.99% Hyundai Genesis Sedan 2012 23.33% BMW 3 Series Sedan 2012 15.08% Mercedes-Benz S-Class Sedan 2012 9.01% BMW 3 Series Wagon 2012 4.95% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 Bugatti Veyron 16.4 Coupe 2009 31.97% Audi R8 Coupe 2012 31.01% Chevrolet Corvette ZR1 2012 13.18% Mercedes-Benz SL-Class Coupe 2009 7.09% Audi TTS Coupe 2012 1.72% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 39.73% Chevrolet Avalanche Crew Cab 2012 10.46% Chevrolet Tahoe Hybrid SUV 2012 10.23% Chevrolet TrailBlazer SS 2009 8.69% Dodge Dakota Crew Cab 2010 5.75% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 54.88% Audi 100 Sedan 1994 41.91% Audi V8 Sedan 1994 2.94% Volvo 240 Sedan 1993 0.16% Daewoo Nubira Wagon 2002 0.05% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Maybach Landaulet Convertible 2012 0.0% Nissan Leaf Hatchback 2012 0.0% MINI Cooper Roadster Convertible 2012 0.0% Bugatti Veyron 16.4 Convertible 2009 0.0% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 36.39% Audi S4 Sedan 2012 18.9% Audi RS 4 Convertible 2008 11.73% Mitsubishi Lancer Sedan 2012 10.15% Audi TT Hatchback 2011 9.25% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Acura TL Type-S 2008 21.87% Mercedes-Benz C-Class Sedan 2012 18.01% Jaguar XK XKR 2012 12.19% Porsche Panamera Sedan 2012 3.73% Audi S4 Sedan 2007 3.51% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 HUMMER H2 SUT Crew Cab 2009 18.68% Dodge Ram Pickup 3500 Crew Cab 2010 8.48% GMC Terrain SUV 2012 8.27% AM General Hummer SUV 2000 6.96% Ford Edge SUV 2012 4.56% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 99.56% Audi RS 4 Convertible 2008 0.31% Audi S4 Sedan 2007 0.06% Chevrolet Corvette ZR1 2012 0.04% Porsche Panamera Sedan 2012 0.01% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 BMW ActiveHybrid 5 Sedan 2012 48.61% Audi 100 Wagon 1994 41.49% Acura ZDX Hatchback 2012 5.94% Porsche Panamera Sedan 2012 1.47% Buick Regal GS 2012 1.3% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Nissan NV Passenger Van 2012 41.35% Bentley Mulsanne Sedan 2011 11.21% AM General Hummer SUV 2000 7.84% Bugatti Veyron 16.4 Coupe 2009 6.61% Ford GT Coupe 2006 4.77% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Chrysler Sebring Convertible 2010 84.09% Dodge Charger Sedan 2012 7.78% Jaguar XK XKR 2012 2.34% BMW M6 Convertible 2010 1.39% Infiniti G Coupe IPL 2012 1.05% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 BMW 3 Series Sedan 2012 97.66% Volvo C30 Hatchback 2012 0.65% Chevrolet Camaro Convertible 2012 0.52% Audi TT RS Coupe 2012 0.24% Chevrolet Sonic Sedan 2012 0.13% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 100.0% Spyker C8 Coupe 2009 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Lamborghini Reventon Coupe 2008 0.0% Suzuki Kizashi Sedan 2012 0.0% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 94.92% Nissan NV Passenger Van 2012 2.26% Rolls-Royce Phantom Sedan 2012 0.78% Bentley Continental GT Coupe 2007 0.36% Chrysler 300 SRT-8 2010 0.23% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 McLaren MP4-12C Coupe 2012 73.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 8.67% Ferrari 458 Italia Convertible 2012 8.07% Lamborghini Aventador Coupe 2012 3.22% Aston Martin V8 Vantage Convertible 2012 1.54% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Hyundai Tucson SUV 2012 31.4% Hyundai Sonata Sedan 2012 18.63% Chevrolet Traverse SUV 2012 8.94% Honda Odyssey Minivan 2007 8.81% Cadillac SRX SUV 2012 7.2% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 Dodge Dakota Crew Cab 2010 50.89% Dodge Ram Pickup 3500 Quad Cab 2009 6.3% Ford GT Coupe 2006 4.94% AM General Hummer SUV 2000 4.53% Ford F-150 Regular Cab 2007 3.98% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 97.92% Toyota Camry Sedan 2012 2.05% Dodge Journey SUV 2012 0.01% Toyota Corolla Sedan 2012 0.0% Acura TL Sedan 2012 0.0% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 Jeep Liberty SUV 2012 35.86% Volkswagen Golf Hatchback 1991 17.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 12.17% Chevrolet Avalanche Crew Cab 2012 5.17% Buick Rainier SUV 2007 5.09% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Acura TSX Sedan 2012 42.72% Honda Odyssey Minivan 2007 15.01% Chevrolet Sonic Sedan 2012 12.31% BMW 3 Series Wagon 2012 4.23% Volkswagen Golf Hatchback 2012 3.15% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 88.37% Bentley Arnage Sedan 2009 10.13% Rolls-Royce Phantom Sedan 2012 0.93% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.12% Bentley Continental Flying Spur Sedan 2007 0.11% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Ferrari FF Coupe 2012 25.55% Acura TL Type-S 2008 11.69% Audi V8 Sedan 1994 5.3% Nissan 240SX Coupe 1998 5.27% BMW M6 Convertible 2010 4.76% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 BMW 3 Series Sedan 2012 91.15% BMW 3 Series Wagon 2012 8.56% Audi TTS Coupe 2012 0.09% BMW M5 Sedan 2010 0.05% Acura TL Sedan 2012 0.04% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 99.71% Plymouth Neon Coupe 1999 0.11% Lincoln Town Car Sedan 2011 0.09% Audi 100 Sedan 1994 0.05% Audi V8 Sedan 1994 0.02% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Ford Fiesta Sedan 2012 85.9% Hyundai Tucson SUV 2012 13.95% Scion xD Hatchback 2012 0.13% Hyundai Accent Sedan 2012 0.02% Chevrolet Sonic Sedan 2012 0.0% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Volvo C30 Hatchback 2012 20.65% Hyundai Elantra Touring Hatchback 2012 11.4% Chevrolet Sonic Sedan 2012 10.68% Suzuki SX4 Hatchback 2012 9.07% Hyundai Veloster Hatchback 2012 3.4% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 89.24% Audi S5 Convertible 2012 10.44% Audi S4 Sedan 2007 0.21% Audi A5 Coupe 2012 0.09% Audi R8 Coupe 2012 0.0% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Nissan 240SX Coupe 1998 49.06% Lincoln Town Car Sedan 2011 24.79% Chevrolet Malibu Hybrid Sedan 2010 8.22% Hyundai Genesis Sedan 2012 3.95% Acura Integra Type R 2001 2.85% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 Aston Martin V8 Vantage Convertible 2012 95.52% Fisker Karma Sedan 2012 2.48% Ferrari 458 Italia Convertible 2012 0.52% Ferrari FF Coupe 2012 0.41% Ferrari 458 Italia Coupe 2012 0.24% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 65.16% Suzuki SX4 Sedan 2012 6.67% Acura TSX Sedan 2012 5.54% Suzuki Aerio Sedan 2007 4.84% Acura TL Sedan 2012 3.36% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 69.71% Dodge Ram Pickup 3500 Quad Cab 2009 27.9% Dodge Ram Pickup 3500 Crew Cab 2010 0.47% Chevrolet Silverado 1500 Extended Cab 2012 0.43% HUMMER H2 SUT Crew Cab 2009 0.41% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Aston Martin V8 Vantage Coupe 2012 49.93% McLaren MP4-12C Coupe 2012 26.15% Ferrari 458 Italia Convertible 2012 11.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.6% Chevrolet Corvette Convertible 2012 3.96% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 GMC Savana Van 2012 58.01% Nissan NV Passenger Van 2012 11.21% Ford E-Series Wagon Van 2012 5.0% Chevrolet Express Cargo Van 2007 3.01% Dodge Sprinter Cargo Van 2009 1.99% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 99.96% Hyundai Elantra Sedan 2007 0.02% Chevrolet Cobalt SS 2010 0.01% Toyota Camry Sedan 2012 0.0% Hyundai Sonata Sedan 2012 0.0% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Chevrolet Traverse SUV 2012 93.35% Hyundai Tucson SUV 2012 2.84% Hyundai Elantra Touring Hatchback 2012 0.97% Hyundai Sonata Hybrid Sedan 2012 0.46% Hyundai Veracruz SUV 2012 0.44% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Dodge Charger SRT-8 2009 77.36% Chevrolet TrailBlazer SS 2009 17.65% Chrysler 300 SRT-8 2010 2.09% Honda Accord Coupe 2012 0.5% BMW M6 Convertible 2010 0.47% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 88.38% Chevrolet Malibu Sedan 2007 8.25% Suzuki SX4 Hatchback 2012 1.33% Suzuki Aerio Sedan 2007 0.98% Volkswagen Golf Hatchback 2012 0.7% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Fisker Karma Sedan 2012 30.79% Audi R8 Coupe 2012 11.8% Audi TTS Coupe 2012 5.2% smart fortwo Convertible 2012 5.08% Volkswagen Beetle Hatchback 2012 4.77% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Land Rover Range Rover SUV 2012 70.46% Chevrolet Avalanche Crew Cab 2012 12.62% Chevrolet Tahoe Hybrid SUV 2012 9.3% Chevrolet TrailBlazer SS 2009 5.46% Dodge Durango SUV 2012 0.84% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Ferrari FF Coupe 2012 42.96% Fisker Karma Sedan 2012 27.93% Porsche Panamera Sedan 2012 17.07% Cadillac CTS-V Sedan 2012 2.68% Audi TTS Coupe 2012 2.3% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Chrysler PT Cruiser Convertible 2008 67.79% Cadillac SRX SUV 2012 19.44% Hyundai Azera Sedan 2012 4.45% Mercedes-Benz C-Class Sedan 2012 3.24% Cadillac Escalade EXT Crew Cab 2007 1.02% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 42.65% Audi S5 Coupe 2012 29.82% Audi S4 Sedan 2007 15.73% Audi TTS Coupe 2012 5.97% Audi TT Hatchback 2011 3.9% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 98.04% Buick Rainier SUV 2007 0.51% HUMMER H2 SUT Crew Cab 2009 0.39% Jeep Wrangler SUV 2012 0.31% Chevrolet Express Van 2007 0.1% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 99.83% Jeep Grand Cherokee SUV 2012 0.17% Jeep Patriot SUV 2012 0.0% BMW X3 SUV 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 Chrysler Aspen SUV 2009 68.07% Ford F-150 Regular Cab 2012 24.85% Ford F-150 Regular Cab 2007 3.1% Chevrolet Silverado 2500HD Regular Cab 2012 0.72% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.61% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 Geo Metro Convertible 1993 35.18% Nissan NV Passenger Van 2012 34.19% Audi 100 Wagon 1994 4.82% Mercedes-Benz 300-Class Convertible 1993 3.9% Dodge Caravan Minivan 1997 3.22% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Mercedes-Benz SL-Class Coupe 2009 15.32% Rolls-Royce Phantom Drophead Coupe Convertible 2012 8.78% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.58% Bentley Continental Supersports Conv. Convertible 2012 5.16% Audi RS 4 Convertible 2008 3.2% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 83.43% Chevrolet Express Cargo Van 2007 13.78% Chevrolet Express Van 2007 1.06% Nissan NV Passenger Van 2012 0.71% Chevrolet Impala Sedan 2007 0.66% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Chevrolet Monte Carlo Coupe 2007 87.78% Aston Martin Virage Convertible 2012 4.17% Chevrolet Malibu Hybrid Sedan 2010 1.43% Maybach Landaulet Convertible 2012 1.17% Chrysler Sebring Convertible 2010 0.89% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 BMW M6 Convertible 2010 16.69% Chevrolet Cobalt SS 2010 15.38% Hyundai Sonata Hybrid Sedan 2012 13.28% Hyundai Veloster Hatchback 2012 9.22% Aston Martin Virage Coupe 2012 8.36% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 Chevrolet Impala Sedan 2007 27.44% Hyundai Elantra Touring Hatchback 2012 18.72% Chrysler Sebring Convertible 2010 14.95% Lincoln Town Car Sedan 2011 13.39% Ford Focus Sedan 2007 9.86% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 BMW 1 Series Convertible 2012 61.64% Audi S5 Convertible 2012 14.98% Audi S4 Sedan 2012 9.85% BMW Z4 Convertible 2012 6.6% Ferrari California Convertible 2012 0.95% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 Volkswagen Golf Hatchback 1991 69.46% Suzuki Aerio Sedan 2007 4.3% Volvo 240 Sedan 1993 3.62% Chevrolet Express Van 2007 2.72% Acura Integra Type R 2001 2.24% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Dodge Caliber Wagon 2012 27.5% Acura ZDX Hatchback 2012 25.21% Hyundai Veracruz SUV 2012 21.58% BMW X3 SUV 2012 8.55% Suzuki SX4 Sedan 2012 7.12% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Lincoln Town Car Sedan 2011 76.7% Ford Freestar Minivan 2007 23.18% Dodge Dakota Club Cab 2007 0.12% Dodge Caravan Minivan 1997 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Bentley Continental Supersports Conv. Convertible 2012 42.4% Ford GT Coupe 2006 18.68% Jeep Grand Cherokee SUV 2012 13.15% Jeep Patriot SUV 2012 8.96% AM General Hummer SUV 2000 8.86% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 45.12% smart fortwo Convertible 2012 38.16% Chevrolet Corvette ZR1 2012 8.63% Nissan Leaf Hatchback 2012 6.3% Jaguar XK XKR 2012 0.58% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Audi S4 Sedan 2007 50.63% Buick Regal GS 2012 16.52% BMW M5 Sedan 2010 11.69% Audi TT Hatchback 2011 8.11% Audi S6 Sedan 2011 5.36% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 Bugatti Veyron 16.4 Convertible 2009 95.5% Ford Mustang Convertible 2007 2.85% Bugatti Veyron 16.4 Coupe 2009 1.47% BMW Z4 Convertible 2012 0.06% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.02% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 26.42% Dodge Caliber Wagon 2012 24.67% Dodge Journey SUV 2012 12.03% Toyota Corolla Sedan 2012 9.36% Dodge Caliber Wagon 2007 7.48% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Acura RL Sedan 2012 60.51% Acura TSX Sedan 2012 17.99% Acura ZDX Hatchback 2012 14.52% Acura TL Sedan 2012 4.6% Toyota Camry Sedan 2012 0.52% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 91.6% Chevrolet Silverado 1500 Regular Cab 2012 5.22% Chevrolet Silverado 1500 Extended Cab 2012 1.48% Ford F-150 Regular Cab 2012 1.04% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.26% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 Toyota Camry Sedan 2012 68.69% Honda Odyssey Minivan 2007 15.01% Toyota Corolla Sedan 2012 9.69% Chevrolet Malibu Sedan 2007 4.25% Hyundai Elantra Sedan 2007 1.33% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Chevrolet HHR SS 2010 98.04% Aston Martin Virage Coupe 2012 1.9% Dodge Magnum Wagon 2008 0.03% Dodge Challenger SRT8 2011 0.01% HUMMER H3T Crew Cab 2010 0.01% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Dodge Dakota Club Cab 2007 53.13% Chevrolet Silverado 1500 Classic Extended Cab 2007 16.09% Dodge Ram Pickup 3500 Quad Cab 2009 4.12% Audi 100 Sedan 1994 3.28% Dodge Dakota Crew Cab 2010 2.98% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 Chevrolet Sonic Sedan 2012 43.77% Mitsubishi Lancer Sedan 2012 8.01% BMW 6 Series Convertible 2007 5.69% Dodge Charger SRT-8 2009 5.44% Audi TTS Coupe 2012 4.45% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Bugatti Veyron 16.4 Coupe 2009 99.86% Mercedes-Benz 300-Class Convertible 1993 0.08% Chrysler 300 SRT-8 2010 0.03% Spyker C8 Convertible 2009 0.01% Ford GT Coupe 2006 0.01% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 99.98% Ford Ranger SuperCab 2011 0.02% Ford F-150 Regular Cab 2012 0.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.0% Volvo XC90 SUV 2007 0.0% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Buick Regal GS 2012 48.37% GMC Terrain SUV 2012 47.67% Jaguar XK XKR 2012 0.6% Suzuki Kizashi Sedan 2012 0.37% Volvo C30 Hatchback 2012 0.23% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 65.2% GMC Yukon Hybrid SUV 2012 10.3% Chrysler Aspen SUV 2009 5.66% Toyota Sequoia SUV 2012 3.97% Volvo XC90 SUV 2007 3.83% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 41.27% Hyundai Azera Sedan 2012 16.61% Chrysler PT Cruiser Convertible 2008 13.94% Honda Accord Sedan 2012 6.47% Ford Fiesta Sedan 2012 3.65% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 Ferrari 458 Italia Convertible 2012 24.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 22.33% Aston Martin V8 Vantage Convertible 2012 12.66% Bentley Continental Supersports Conv. Convertible 2012 10.88% Chevrolet Cobalt SS 2010 3.29% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Buick Regal GS 2012 36.96% BMW M5 Sedan 2010 28.1% BMW 1 Series Convertible 2012 18.12% BMW 1 Series Coupe 2012 7.41% BMW M3 Coupe 2012 5.04% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.89% Ford F-150 Regular Cab 2007 0.02% Dodge Dakota Club Cab 2007 0.02% Nissan NV Passenger Van 2012 0.02% GMC Yukon Hybrid SUV 2012 0.01% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Infiniti G Coupe IPL 2012 76.82% Aston Martin V8 Vantage Coupe 2012 10.77% Aston Martin V8 Vantage Convertible 2012 3.63% Aston Martin Virage Convertible 2012 3.63% Jaguar XK XKR 2012 1.8% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Dodge Durango SUV 2007 25.36% Jeep Patriot SUV 2012 17.98% GMC Terrain SUV 2012 10.24% GMC Yukon Hybrid SUV 2012 8.91% Land Rover Range Rover SUV 2012 7.26% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Rolls-Royce Phantom Sedan 2012 29.88% BMW 3 Series Sedan 2012 21.49% Rolls-Royce Ghost Sedan 2012 20.93% Hyundai Veracruz SUV 2012 8.59% Bentley Arnage Sedan 2009 2.7% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 49.35% Mercedes-Benz C-Class Sedan 2012 29.38% Suzuki Kizashi Sedan 2012 7.74% Chrysler Crossfire Convertible 2008 6.06% Ford Focus Sedan 2007 3.9% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 21.43% Chrysler 300 SRT-8 2010 16.51% Audi S4 Sedan 2007 12.86% Audi TT Hatchback 2011 12.5% Audi S6 Sedan 2011 11.39% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 BMW 1 Series Coupe 2012 51.56% Buick Verano Sedan 2012 34.99% Buick Regal GS 2012 6.26% Suzuki Kizashi Sedan 2012 2.52% Suzuki SX4 Sedan 2012 1.63% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 FIAT 500 Abarth 2012 8.55% Jeep Liberty SUV 2012 7.3% HUMMER H3T Crew Cab 2010 6.31% Lamborghini Aventador Coupe 2012 4.48% Volkswagen Golf Hatchback 1991 4.19% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 Chevrolet Camaro Convertible 2012 46.75% Chrysler Crossfire Convertible 2008 43.62% Ford Mustang Convertible 2007 2.07% BMW M6 Convertible 2010 1.76% Eagle Talon Hatchback 1998 1.35% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Dodge Sprinter Cargo Van 2009 99.95% Mercedes-Benz Sprinter Van 2012 0.05% Ram C/V Cargo Van Minivan 2012 0.0% Nissan NV Passenger Van 2012 0.0% Suzuki Aerio Sedan 2007 0.0% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 Chevrolet Impala Sedan 2007 39.48% Ferrari FF Coupe 2012 35.13% BMW M5 Sedan 2010 5.66% Ferrari California Convertible 2012 5.37% Ferrari 458 Italia Coupe 2012 5.06% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 99.97% Acura TSX Sedan 2012 0.02% Acura RL Sedan 2012 0.0% Acura TL Type-S 2008 0.0% Toyota Camry Sedan 2012 0.0% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Hyundai Santa Fe SUV 2012 96.91% Suzuki SX4 Hatchback 2012 1.07% Volkswagen Golf Hatchback 2012 0.45% BMW X5 SUV 2007 0.34% Land Rover LR2 SUV 2012 0.19% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Mercedes-Benz C-Class Sedan 2012 36.94% BMW 3 Series Sedan 2012 9.0% Audi 100 Wagon 1994 5.85% Volvo 240 Sedan 1993 4.8% BMW 3 Series Wagon 2012 4.32% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Cadillac CTS-V Sedan 2012 39.41% Bentley Arnage Sedan 2009 20.31% Bentley Continental Flying Spur Sedan 2007 13.57% Bentley Mulsanne Sedan 2011 10.76% Bentley Continental GT Coupe 2007 5.59% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 26.81% Chevrolet Avalanche Crew Cab 2012 24.97% Ford F-450 Super Duty Crew Cab 2012 14.82% Chevrolet Silverado 1500 Regular Cab 2012 6.92% Ford F-150 Regular Cab 2007 3.89% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 99.99% Cadillac Escalade EXT Crew Cab 2007 0.01% Dodge Dakota Club Cab 2007 0.0% Chevrolet Avalanche Crew Cab 2012 0.0% Ford Ranger SuperCab 2011 0.0% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 100.0% Chrysler Aspen SUV 2009 0.0% Hyundai Santa Fe SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% GMC Acadia SUV 2012 0.0% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 78.27% Ford Fiesta Sedan 2012 20.21% Hyundai Veracruz SUV 2012 0.43% Scion xD Hatchback 2012 0.34% Hyundai Elantra Touring Hatchback 2012 0.22% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 BMW 3 Series Wagon 2012 30.08% Tesla Model S Sedan 2012 14.71% Volkswagen Beetle Hatchback 2012 7.63% Ferrari 458 Italia Coupe 2012 2.68% Hyundai Genesis Sedan 2012 2.46% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Bentley Continental Supersports Conv. Convertible 2012 98.31% Audi R8 Coupe 2012 0.59% MINI Cooper Roadster Convertible 2012 0.4% Lamborghini Aventador Coupe 2012 0.32% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.28% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 91.81% Ford Fiesta Sedan 2012 6.96% Hyundai Accent Sedan 2012 1.11% Hyundai Sonata Sedan 2012 0.11% Ford Edge SUV 2012 0.0% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 Mazda Tribute SUV 2011 99.98% smart fortwo Convertible 2012 0.01% BMW X3 SUV 2012 0.01% Dodge Caliber Wagon 2007 0.0% FIAT 500 Convertible 2012 0.0% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 97.31% Chevrolet Silverado 2500HD Regular Cab 2012 2.52% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.1% Chevrolet Silverado 1500 Extended Cab 2012 0.06% Ford F-150 Regular Cab 2012 0.0% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 54.55% Suzuki SX4 Sedan 2012 39.15% Mitsubishi Lancer Sedan 2012 2.06% Chrysler Town and Country Minivan 2012 1.54% Audi S4 Sedan 2007 1.44% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 48.53% Chrysler PT Cruiser Convertible 2008 46.54% Dodge Magnum Wagon 2008 2.77% Scion xD Hatchback 2012 0.28% Dodge Caliber Wagon 2007 0.22% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Cadillac CTS-V Sedan 2012 47.01% Bentley Continental GT Coupe 2012 37.23% Suzuki Kizashi Sedan 2012 10.59% Buick Regal GS 2012 3.32% MINI Cooper Roadster Convertible 2012 0.74% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 Lincoln Town Car Sedan 2011 38.01% Volvo 240 Sedan 1993 25.78% Chevrolet Monte Carlo Coupe 2007 17.98% Eagle Talon Hatchback 1998 4.18% Lamborghini Reventon Coupe 2008 2.64% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 99.86% Chrysler Crossfire Convertible 2008 0.08% Hyundai Genesis Sedan 2012 0.04% Mercedes-Benz S-Class Sedan 2012 0.01% Acura RL Sedan 2012 0.0% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 BMW M5 Sedan 2010 96.46% Infiniti G Coupe IPL 2012 2.64% Buick Verano Sedan 2012 0.15% Suzuki Kizashi Sedan 2012 0.1% BMW M6 Convertible 2010 0.08% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ford Mustang Convertible 2007 90.35% BMW M6 Convertible 2010 5.36% Audi RS 4 Convertible 2008 3.65% BMW 1 Series Convertible 2012 0.33% Chevrolet Camaro Convertible 2012 0.13% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Extended Cab 2012 93.59% GMC Canyon Extended Cab 2012 2.92% Ford F-150 Regular Cab 2007 1.24% Dodge Ram Pickup 3500 Quad Cab 2009 0.9% Dodge Dakota Club Cab 2007 0.49% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 65.38% Spyker C8 Convertible 2009 32.57% Bentley Continental GT Coupe 2012 0.27% Ford GT Coupe 2006 0.24% Audi S5 Convertible 2012 0.23% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 28.99% Chrysler Crossfire Convertible 2008 23.49% Mercedes-Benz S-Class Sedan 2012 19.63% Mercedes-Benz E-Class Sedan 2012 8.66% Dodge Charger SRT-8 2009 6.58% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 100.0% Hyundai Tucson SUV 2012 0.0% BMW X3 SUV 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Ford Fiesta Sedan 2012 0.0% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 BMW 1 Series Coupe 2012 52.35% Volvo C30 Hatchback 2012 4.92% BMW 1 Series Convertible 2012 4.37% Jaguar XK XKR 2012 3.19% BMW 3 Series Sedan 2012 3.13% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Honda Odyssey Minivan 2012 96.12% Hyundai Sonata Sedan 2012 3.24% Honda Odyssey Minivan 2007 0.33% Hyundai Sonata Hybrid Sedan 2012 0.1% Honda Accord Coupe 2012 0.07% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.95% Lamborghini Aventador Coupe 2012 0.03% Bugatti Veyron 16.4 Convertible 2009 0.01% Mercedes-Benz SL-Class Coupe 2009 0.0% Eagle Talon Hatchback 1998 0.0% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 BMW 1 Series Convertible 2012 57.27% Audi A5 Coupe 2012 29.83% Ferrari FF Coupe 2012 2.92% Audi TT Hatchback 2011 2.11% BMW 6 Series Convertible 2007 1.54% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Avalanche Crew Cab 2012 45.75% Ford Edge SUV 2012 20.39% Chevrolet Express Cargo Van 2007 12.59% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 5.94% Chevrolet Silverado 1500 Regular Cab 2012 4.86% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chrysler 300 SRT-8 2010 85.06% Buick Verano Sedan 2012 9.99% Porsche Panamera Sedan 2012 1.41% Dodge Magnum Wagon 2008 0.96% Audi S5 Coupe 2012 0.5% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 Tesla Model S Sedan 2012 99.89% Chevrolet Impala Sedan 2007 0.04% Ford Fiesta Sedan 2012 0.03% Hyundai Sonata Hybrid Sedan 2012 0.02% Chevrolet Sonic Sedan 2012 0.02% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 99.99% GMC Acadia SUV 2012 0.0% Cadillac Escalade EXT Crew Cab 2007 0.0% Land Rover LR2 SUV 2012 0.0% Land Rover Range Rover SUV 2012 0.0% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 Audi V8 Sedan 1994 100.0% Audi 100 Sedan 1994 0.0% Audi 100 Wagon 1994 0.0% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Plymouth Neon Coupe 1999 0.0% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 HUMMER H3T Crew Cab 2010 38.0% Chevrolet Tahoe Hybrid SUV 2012 11.82% Dodge Charger Sedan 2012 10.24% Lamborghini Diablo Coupe 2001 8.27% Chevrolet Silverado 1500 Regular Cab 2012 7.25% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Acura TSX Sedan 2012 33.88% Acura TL Sedan 2012 28.73% Infiniti G Coupe IPL 2012 27.38% BMW 1 Series Convertible 2012 4.33% Toyota Camry Sedan 2012 3.72% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Hyundai Tucson SUV 2012 48.65% Scion xD Hatchback 2012 48.22% Ford Fiesta Sedan 2012 2.21% Acura ZDX Hatchback 2012 0.46% Chevrolet Traverse SUV 2012 0.29% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 BMW M5 Sedan 2010 56.0% BMW 6 Series Convertible 2007 19.51% Mercedes-Benz S-Class Sedan 2012 4.5% Audi S4 Sedan 2007 2.79% Suzuki Kizashi Sedan 2012 2.09% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 GMC Canyon Extended Cab 2012 70.62% Chevrolet TrailBlazer SS 2009 7.1% Chevrolet Silverado 1500 Regular Cab 2012 3.97% Ford F-150 Regular Cab 2007 2.34% GMC Acadia SUV 2012 2.1% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 99.45% Plymouth Neon Coupe 1999 0.51% Ford Focus Sedan 2007 0.03% Buick Enclave SUV 2012 0.0% Daewoo Nubira Wagon 2002 0.0% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 87.28% Chevrolet Express Cargo Van 2007 12.01% Chevrolet Express Van 2007 0.45% Nissan NV Passenger Van 2012 0.11% Jeep Wrangler SUV 2012 0.09% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 84.47% Suzuki Aerio Sedan 2007 5.27% Audi 100 Wagon 1994 2.48% BMW M6 Convertible 2010 1.64% GMC Savana Van 2012 0.79% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 65.68% Suzuki Kizashi Sedan 2012 18.28% Daewoo Nubira Wagon 2002 2.65% Ford Focus Sedan 2007 1.99% Chrysler Sebring Convertible 2010 1.98% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 99.3% Ford Focus Sedan 2007 0.68% Mercedes-Benz C-Class Sedan 2012 0.01% Daewoo Nubira Wagon 2002 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 Cadillac SRX SUV 2012 99.38% Suzuki SX4 Sedan 2012 0.29% Hyundai Azera Sedan 2012 0.07% MINI Cooper Roadster Convertible 2012 0.06% Cadillac CTS-V Sedan 2012 0.06% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 81.88% Aston Martin Virage Coupe 2012 9.71% McLaren MP4-12C Coupe 2012 3.31% smart fortwo Convertible 2012 1.2% Audi TTS Coupe 2012 0.71% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Eagle Talon Hatchback 1998 42.56% Aston Martin V8 Vantage Convertible 2012 29.88% Aston Martin V8 Vantage Coupe 2012 16.28% Bugatti Veyron 16.4 Coupe 2009 3.4% Nissan 240SX Coupe 1998 1.49% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Chevrolet Sonic Sedan 2012 36.06% Acura Integra Type R 2001 14.94% Bugatti Veyron 16.4 Convertible 2009 9.86% AM General Hummer SUV 2000 5.2% Lamborghini Diablo Coupe 2001 5.07% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 MINI Cooper Roadster Convertible 2012 76.46% Jeep Grand Cherokee SUV 2012 6.24% Jeep Liberty SUV 2012 3.78% Cadillac CTS-V Sedan 2012 2.7% Bentley Arnage Sedan 2009 2.19% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 Rolls-Royce Ghost Sedan 2012 83.35% Rolls-Royce Phantom Sedan 2012 6.23% Volvo XC90 SUV 2007 5.69% Acura RL Sedan 2012 0.79% GMC Acadia SUV 2012 0.36% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Chevrolet Express Cargo Van 2007 97.8% Chevrolet Express Van 2007 2.2% GMC Savana Van 2012 0.0% Ford Ranger SuperCab 2011 0.0% Ford E-Series Wagon Van 2012 0.0% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 99.66% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.28% Acura Integra Type R 2001 0.02% Audi RS 4 Convertible 2008 0.02% Bugatti Veyron 16.4 Coupe 2009 0.01% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Dodge Charger Sedan 2012 30.19% Ford Fiesta Sedan 2012 28.23% Toyota Corolla Sedan 2012 13.63% Nissan Leaf Hatchback 2012 4.06% Mitsubishi Lancer Sedan 2012 3.56% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 Mercedes-Benz E-Class Sedan 2012 29.96% Scion xD Hatchback 2012 7.76% Mercedes-Benz C-Class Sedan 2012 6.1% Mercedes-Benz S-Class Sedan 2012 5.66% Acura Integra Type R 2001 4.05% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Chevrolet Traverse SUV 2012 95.83% Hyundai Tucson SUV 2012 2.43% BMW X6 SUV 2012 0.66% FIAT 500 Convertible 2012 0.22% Dodge Journey SUV 2012 0.15% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Acura TL Sedan 2012 91.49% Acura TSX Sedan 2012 4.66% Fisker Karma Sedan 2012 1.84% Spyker C8 Convertible 2009 0.59% Acura ZDX Hatchback 2012 0.26% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2012 66.4% Dodge Caliber Wagon 2007 21.52% Ford Mustang Convertible 2007 7.38% Jeep Grand Cherokee SUV 2012 0.93% Chevrolet Monte Carlo Coupe 2007 0.85% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 BMW 6 Series Convertible 2007 61.86% Tesla Model S Sedan 2012 17.48% Aston Martin Virage Convertible 2012 5.83% Jaguar XK XKR 2012 4.49% Audi S4 Sedan 2012 2.03% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Coupe 2012 89.7% Ferrari California Convertible 2012 8.23% Chevrolet Corvette Convertible 2012 0.64% Chevrolet Corvette ZR1 2012 0.44% Aston Martin V8 Vantage Coupe 2012 0.38% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 Toyota Camry Sedan 2012 85.77% Acura TSX Sedan 2012 7.12% Acura TL Sedan 2012 6.14% Hyundai Elantra Sedan 2007 0.3% Toyota Corolla Sedan 2012 0.2% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Acura Integra Type R 2001 99.91% Lamborghini Diablo Coupe 2001 0.08% Chevrolet Corvette Convertible 2012 0.0% Chevrolet Corvette ZR1 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 Honda Accord Sedan 2012 17.19% Suzuki Kizashi Sedan 2012 9.69% Nissan Leaf Hatchback 2012 6.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.42% Ram C/V Cargo Van Minivan 2012 4.11% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 99.32% Chevrolet Express Cargo Van 2007 0.66% GMC Savana Van 2012 0.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.0% Buick Rainier SUV 2007 0.0% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 Honda Odyssey Minivan 2012 40.94% Ford Freestar Minivan 2007 24.77% Chrysler Town and Country Minivan 2012 14.93% Hyundai Elantra Sedan 2007 9.42% Chevrolet Cobalt SS 2010 2.03% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 BMW M6 Convertible 2010 97.72% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.41% Spyker C8 Convertible 2009 0.23% Rolls-Royce Ghost Sedan 2012 0.08% Spyker C8 Coupe 2009 0.06% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 91.19% Fisker Karma Sedan 2012 5.26% Acura RL Sedan 2012 0.8% Ferrari FF Coupe 2012 0.35% Audi TTS Coupe 2012 0.33% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Ferrari California Convertible 2012 25.62% Ferrari 458 Italia Convertible 2012 14.82% Spyker C8 Convertible 2009 10.69% Audi RS 4 Convertible 2008 10.66% Spyker C8 Coupe 2009 6.94% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 98.18% Acura Integra Type R 2001 1.54% Dodge Charger Sedan 2012 0.19% Chevrolet Cobalt SS 2010 0.08% Audi RS 4 Convertible 2008 0.0% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 Nissan NV Passenger Van 2012 41.71% Chrysler 300 SRT-8 2010 17.17% Rolls-Royce Phantom Sedan 2012 11.77% Dodge Ram Pickup 3500 Crew Cab 2010 6.7% Dodge Durango SUV 2007 4.61% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Audi TT RS Coupe 2012 55.01% Audi TT Hatchback 2011 20.64% Audi A5 Coupe 2012 11.04% Mitsubishi Lancer Sedan 2012 8.16% Audi S4 Sedan 2012 3.22% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Audi RS 4 Convertible 2008 87.5% Aston Martin V8 Vantage Coupe 2012 9.01% Lamborghini Diablo Coupe 2001 2.91% Aston Martin Virage Coupe 2012 0.27% Audi TTS Coupe 2012 0.13% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Acura ZDX Hatchback 2012 91.53% Jaguar XK XKR 2012 4.28% Hyundai Azera Sedan 2012 1.23% BMW M6 Convertible 2010 0.85% Aston Martin Virage Convertible 2012 0.55% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 Honda Odyssey Minivan 2012 21.01% Chevrolet Malibu Sedan 2007 16.8% Chrysler Sebring Convertible 2010 11.25% Ford Fiesta Sedan 2012 7.27% Chevrolet Monte Carlo Coupe 2007 5.87% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 98.41% BMW 3 Series Sedan 2012 1.58% BMW M3 Coupe 2012 0.0% Ferrari 458 Italia Coupe 2012 0.0% Daewoo Nubira Wagon 2002 0.0% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 87.27% Volkswagen Golf Hatchback 1991 12.3% Daewoo Nubira Wagon 2002 0.4% Suzuki Aerio Sedan 2007 0.02% Suzuki SX4 Hatchback 2012 0.01% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Dodge Dakota Crew Cab 2010 44.08% HUMMER H3T Crew Cab 2010 34.52% Ford Ranger SuperCab 2011 9.92% Dodge Dakota Club Cab 2007 7.1% Isuzu Ascender SUV 2008 2.78% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 GMC Canyon Extended Cab 2012 61.89% Chevrolet Silverado 1500 Extended Cab 2012 17.33% HUMMER H3T Crew Cab 2010 9.43% AM General Hummer SUV 2000 6.11% HUMMER H2 SUT Crew Cab 2009 1.67% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Jeep Patriot SUV 2012 96.39% Jeep Liberty SUV 2012 2.97% Jeep Wrangler SUV 2012 0.57% Jeep Compass SUV 2012 0.04% Nissan NV Passenger Van 2012 0.01% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 93.32% Audi A5 Coupe 2012 6.4% Mercedes-Benz E-Class Sedan 2012 0.11% BMW M5 Sedan 2010 0.08% Daewoo Nubira Wagon 2002 0.01% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Chevrolet Monte Carlo Coupe 2007 10.43% Dodge Charger SRT-8 2009 8.65% Bentley Arnage Sedan 2009 6.77% Dodge Magnum Wagon 2008 6.62% Chevrolet Tahoe Hybrid SUV 2012 4.99% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Nissan 240SX Coupe 1998 40.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 33.11% Audi V8 Sedan 1994 8.82% Ford GT Coupe 2006 4.14% Ford Focus Sedan 2007 1.52% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 Jaguar XK XKR 2012 76.3% Aston Martin V8 Vantage Convertible 2012 5.62% Chevrolet Corvette ZR1 2012 5.29% Fisker Karma Sedan 2012 3.82% Aston Martin V8 Vantage Coupe 2012 3.31% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.77% Jeep Wrangler SUV 2012 0.23% HUMMER H2 SUT Crew Cab 2009 0.0% Geo Metro Convertible 1993 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 47.51% Dodge Journey SUV 2012 31.51% Dodge Caliber Wagon 2012 15.69% Dodge Caliber Wagon 2007 1.87% Dodge Durango SUV 2007 1.36% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 52.5% Infiniti QX56 SUV 2011 10.7% Rolls-Royce Phantom Sedan 2012 7.59% Ford F-450 Super Duty Crew Cab 2012 4.99% HUMMER H2 SUT Crew Cab 2009 3.18% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 Hyundai Sonata Sedan 2012 71.7% Chevrolet Malibu Hybrid Sedan 2010 8.17% Acura RL Sedan 2012 4.65% Chevrolet Impala Sedan 2007 4.1% Acura TL Sedan 2012 3.04% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 91.89% Plymouth Neon Coupe 1999 4.78% Acura TL Sedan 2012 1.5% Nissan Leaf Hatchback 2012 0.34% Chevrolet Monte Carlo Coupe 2007 0.31% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Audi S5 Coupe 2012 11.71% Dodge Durango SUV 2007 10.2% Rolls-Royce Ghost Sedan 2012 9.9% Audi R8 Coupe 2012 6.08% Hyundai Genesis Sedan 2012 5.44% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 75.68% MINI Cooper Roadster Convertible 2012 4.26% Bugatti Veyron 16.4 Convertible 2009 2.13% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.75% Mercedes-Benz S-Class Sedan 2012 1.72% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Hyundai Genesis Sedan 2012 53.47% Infiniti G Coupe IPL 2012 36.93% Hyundai Azera Sedan 2012 2.67% Toyota Camry Sedan 2012 2.25% Toyota Corolla Sedan 2012 1.61% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Continental Flying Spur Sedan 2007 16.7% Suzuki Kizashi Sedan 2012 9.2% Chevrolet Corvette ZR1 2012 7.8% Bentley Continental GT Coupe 2012 6.81% Suzuki Aerio Sedan 2007 5.64% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 73.55% Audi 100 Sedan 1994 18.87% Lincoln Town Car Sedan 2011 2.13% Audi 100 Wagon 1994 1.56% Buick Rainier SUV 2007 1.11% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 Lamborghini Gallardo LP 570-4 Superleggera 2012 10.59% AM General Hummer SUV 2000 9.26% GMC Savana Van 2012 7.98% Audi 100 Wagon 1994 6.61% McLaren MP4-12C Coupe 2012 4.26% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Ford Fiesta Sedan 2012 59.22% Chevrolet Impala Sedan 2007 12.42% Scion xD Hatchback 2012 6.92% Plymouth Neon Coupe 1999 4.32% Acura Integra Type R 2001 2.25% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chrysler Crossfire Convertible 2008 30.05% Audi A5 Coupe 2012 19.39% BMW 1 Series Convertible 2012 8.0% Acura TSX Sedan 2012 6.73% Chrysler Sebring Convertible 2010 6.21% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Chevrolet Camaro Convertible 2012 50.99% Aston Martin Virage Convertible 2012 30.42% Toyota Corolla Sedan 2012 4.4% Jaguar XK XKR 2012 3.54% Aston Martin V8 Vantage Convertible 2012 1.72% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 100.0% Ford Edge SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% Suzuki SX4 Hatchback 2012 0.0% Bentley Continental GT Coupe 2012 0.0% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette ZR1 2012 84.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.7% Chevrolet Corvette Convertible 2012 2.48% Acura Integra Type R 2001 1.66% Acura TL Type-S 2008 1.12% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 99.3% Dodge Ram Pickup 3500 Crew Cab 2010 0.37% HUMMER H3T Crew Cab 2010 0.31% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.0% Ford F-150 Regular Cab 2012 0.0% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.49% Chevrolet Express Van 2007 1.28% Chevrolet Express Cargo Van 2007 0.23% Bentley Continental Supersports Conv. Convertible 2012 0.01% Mazda Tribute SUV 2011 0.0% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 94.31% Toyota Corolla Sedan 2012 4.93% Toyota 4Runner SUV 2012 0.43% Land Rover LR2 SUV 2012 0.18% Ford Fiesta Sedan 2012 0.07% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 99.95% Jeep Grand Cherokee SUV 2012 0.03% BMW X5 SUV 2007 0.01% Chevrolet Traverse SUV 2012 0.0% Toyota 4Runner SUV 2012 0.0% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 49.7% Mercedes-Benz SL-Class Coupe 2009 13.61% Audi R8 Coupe 2012 12.67% Fisker Karma Sedan 2012 5.08% Ford Expedition EL SUV 2009 1.49% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 91.74% Jeep Grand Cherokee SUV 2012 2.0% Chevrolet Traverse SUV 2012 1.61% Hyundai Tucson SUV 2012 0.62% Acura ZDX Hatchback 2012 0.56% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Hyundai Azera Sedan 2012 70.81% Hyundai Sonata Sedan 2012 19.15% Buick Verano Sedan 2012 2.67% Buick Regal GS 2012 1.61% Acura ZDX Hatchback 2012 1.04% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 86.32% Audi 100 Wagon 1994 8.22% Volkswagen Golf Hatchback 1991 1.83% BMW ActiveHybrid 5 Sedan 2012 0.4% Dodge Dakota Crew Cab 2010 0.38% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 GMC Yukon Hybrid SUV 2012 30.68% Dodge Durango SUV 2007 24.8% Buick Rainier SUV 2007 15.73% Bentley Continental Flying Spur Sedan 2007 6.83% Bentley Arnage Sedan 2009 5.01% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 Buick Regal GS 2012 99.92% Bentley Continental Supersports Conv. Convertible 2012 0.07% Cadillac CTS-V Sedan 2012 0.01% Audi TT RS Coupe 2012 0.0% Bentley Continental GT Coupe 2012 0.0% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 82.2% Acura Integra Type R 2001 7.83% AM General Hummer SUV 2000 7.67% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.11% McLaren MP4-12C Coupe 2012 0.4% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Suzuki Aerio Sedan 2007 57.04% Lincoln Town Car Sedan 2011 8.11% Dodge Caliber Wagon 2012 3.58% Plymouth Neon Coupe 1999 2.13% Ford Focus Sedan 2007 2.09% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Rolls-Royce Phantom Sedan 2012 79.28% Maybach Landaulet Convertible 2012 17.87% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.74% Jeep Liberty SUV 2012 0.58% Bentley Continental Flying Spur Sedan 2007 0.17% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Audi S4 Sedan 2012 99.87% Audi S4 Sedan 2007 0.08% BMW X5 SUV 2007 0.03% Chrysler Sebring Convertible 2010 0.01% Toyota Corolla Sedan 2012 0.01% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Terrain SUV 2012 37.64% Chrysler 300 SRT-8 2010 14.9% Rolls-Royce Ghost Sedan 2012 3.33% Cadillac CTS-V Sedan 2012 3.07% Nissan NV Passenger Van 2012 1.87% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 97.74% GMC Yukon Hybrid SUV 2012 2.23% Cadillac SRX SUV 2012 0.01% GMC Acadia SUV 2012 0.01% Chrysler Aspen SUV 2009 0.0% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 99.89% Dodge Ram Pickup 3500 Crew Cab 2010 0.11% Dodge Dakota Crew Cab 2010 0.0% Dodge Dakota Club Cab 2007 0.0% GMC Canyon Extended Cab 2012 0.0% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 97.72% Dodge Caliber Wagon 2007 0.84% Dodge Durango SUV 2012 0.42% Dodge Dakota Crew Cab 2010 0.23% Dodge Charger Sedan 2012 0.2% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H3T Crew Cab 2010 98.15% HUMMER H2 SUT Crew Cab 2009 1.71% AM General Hummer SUV 2000 0.08% Jeep Wrangler SUV 2012 0.02% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.01% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 Hyundai Veloster Hatchback 2012 39.96% Buick Verano Sedan 2012 13.56% Suzuki Kizashi Sedan 2012 10.93% Infiniti G Coupe IPL 2012 6.82% Bentley Continental GT Coupe 2007 4.01% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 BMW M6 Convertible 2010 83.14% Spyker C8 Convertible 2009 11.42% Audi RS 4 Convertible 2008 1.77% BMW 1 Series Convertible 2012 0.55% Audi S5 Convertible 2012 0.46% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 68.05% BMW M6 Convertible 2010 8.53% Audi TTS Coupe 2012 5.24% Honda Accord Coupe 2012 3.58% Audi R8 Coupe 2012 2.94% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 72.48% Chrysler Town and Country Minivan 2012 14.29% Ram C/V Cargo Van Minivan 2012 13.06% Chevrolet Malibu Sedan 2007 0.08% Daewoo Nubira Wagon 2002 0.04% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Lamborghini Diablo Coupe 2001 42.57% Hyundai Veloster Hatchback 2012 31.83% McLaren MP4-12C Coupe 2012 10.12% Chevrolet HHR SS 2010 5.59% Dodge Charger Sedan 2012 3.63% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 83.47% Bugatti Veyron 16.4 Convertible 2009 6.62% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.86% Lamborghini Reventon Coupe 2008 2.66% McLaren MP4-12C Coupe 2012 2.11% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 27.51% Mitsubishi Lancer Sedan 2012 19.99% Bugatti Veyron 16.4 Coupe 2009 6.76% Hyundai Sonata Sedan 2012 6.37% Hyundai Veracruz SUV 2012 6.07% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 BMW Z4 Convertible 2012 46.57% Chevrolet Corvette ZR1 2012 16.74% Acura ZDX Hatchback 2012 8.65% Aston Martin V8 Vantage Convertible 2012 5.58% Ferrari FF Coupe 2012 3.56% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Bentley Mulsanne Sedan 2011 99.31% BMW ActiveHybrid 5 Sedan 2012 0.5% Bentley Continental Flying Spur Sedan 2007 0.09% BMW 3 Series Wagon 2012 0.05% Bentley Continental GT Coupe 2012 0.01% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 99.32% Volvo C30 Hatchback 2012 0.68% Mazda Tribute SUV 2011 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% BMW 3 Series Wagon 2012 0.0% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 100.0% Jeep Wrangler SUV 2012 0.0% HUMMER H2 SUT Crew Cab 2009 0.0% HUMMER H3T Crew Cab 2010 0.0% Lamborghini Diablo Coupe 2001 0.0% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 93.6% Chevrolet Monte Carlo Coupe 2007 5.8% Ford Freestar Minivan 2007 0.27% Lincoln Town Car Sedan 2011 0.11% Chevrolet Impala Sedan 2007 0.08% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 100.0% Bentley Continental GT Coupe 2012 0.0% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.0% Dodge Charger Sedan 2012 0.0% Buick Regal GS 2012 0.0% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Porsche Panamera Sedan 2012 89.53% BMW ActiveHybrid 5 Sedan 2012 5.95% Hyundai Sonata Sedan 2012 2.05% Audi TT Hatchback 2011 0.55% Honda Accord Coupe 2012 0.46% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 89.02% Mercedes-Benz C-Class Sedan 2012 9.43% Audi 100 Wagon 1994 0.78% Hyundai Genesis Sedan 2012 0.2% Mercedes-Benz S-Class Sedan 2012 0.1% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 99.37% Ram C/V Cargo Van Minivan 2012 0.33% Dodge Durango SUV 2012 0.21% Toyota Corolla Sedan 2012 0.01% Chevrolet Malibu Sedan 2007 0.01% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Hyundai Veracruz SUV 2012 82.63% BMW X6 SUV 2012 6.89% Ford Edge SUV 2012 3.98% GMC Terrain SUV 2012 1.31% Mazda Tribute SUV 2011 0.8% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 BMW 6 Series Convertible 2007 88.01% Acura ZDX Hatchback 2012 8.2% Suzuki Kizashi Sedan 2012 1.15% Chevrolet Sonic Sedan 2012 0.64% Acura TL Sedan 2012 0.35% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 Ferrari FF Coupe 2012 67.73% Chevrolet Sonic Sedan 2012 21.23% Chevrolet Cobalt SS 2010 5.76% Hyundai Elantra Sedan 2007 4.21% Chevrolet Impala Sedan 2007 0.61% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 Aston Martin Virage Coupe 2012 80.35% HUMMER H3T Crew Cab 2010 6.1% Jeep Wrangler SUV 2012 4.43% AM General Hummer SUV 2000 2.24% HUMMER H2 SUT Crew Cab 2009 1.31% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% Aston Martin V8 Vantage Coupe 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% Audi R8 Coupe 2012 0.0% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Buick Verano Sedan 2012 96.77% Fisker Karma Sedan 2012 0.97% BMW X6 SUV 2012 0.77% Chevrolet TrailBlazer SS 2009 0.59% Cadillac CTS-V Sedan 2012 0.22% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 Ford F-150 Regular Cab 2012 99.99% Chrysler Aspen SUV 2009 0.0% GMC Terrain SUV 2012 0.0% Ford Expedition EL SUV 2009 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 Audi TTS Coupe 2012 46.2% Rolls-Royce Ghost Sedan 2012 19.92% Fisker Karma Sedan 2012 14.47% Bugatti Veyron 16.4 Coupe 2009 3.48% Audi S5 Coupe 2012 3.4% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Land Rover LR2 SUV 2012 51.09% Ford Edge SUV 2012 48.36% Toyota Sequoia SUV 2012 0.24% GMC Terrain SUV 2012 0.11% Ford Expedition EL SUV 2009 0.07% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 FIAT 500 Abarth 2012 11.21% Jeep Compass SUV 2012 10.47% Bentley Arnage Sedan 2009 8.64% Jeep Grand Cherokee SUV 2012 8.24% Jeep Liberty SUV 2012 7.87% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Ram C/V Cargo Van Minivan 2012 25.22% Chevrolet Malibu Sedan 2007 15.06% Suzuki SX4 Sedan 2012 13.78% Dodge Caliber Wagon 2012 13.68% Chevrolet Impala Sedan 2007 7.9% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Aston Martin V8 Vantage Convertible 2012 26.88% Aston Martin Virage Convertible 2012 11.85% Audi TTS Coupe 2012 10.85% BMW M6 Convertible 2010 5.18% Aston Martin V8 Vantage Coupe 2012 3.37% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Regular Cab 2012 74.98% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 24.43% Chevrolet Silverado 2500HD Regular Cab 2012 0.16% Chevrolet Silverado 1500 Extended Cab 2012 0.11% GMC Yukon Hybrid SUV 2012 0.06% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 44.27% Plymouth Neon Coupe 1999 20.31% Eagle Talon Hatchback 1998 15.72% Chevrolet Camaro Convertible 2012 3.01% Audi V8 Sedan 1994 2.3% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Dodge Durango SUV 2012 41.94% Buick Enclave SUV 2012 22.09% HUMMER H3T Crew Cab 2010 13.86% FIAT 500 Abarth 2012 11.86% Jeep Liberty SUV 2012 3.75% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 46.64% Spyker C8 Coupe 2009 14.65% Jaguar XK XKR 2012 12.93% Bugatti Veyron 16.4 Coupe 2009 4.76% Bentley Continental Supersports Conv. Convertible 2012 3.63% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 Volkswagen Beetle Hatchback 2012 49.81% Hyundai Genesis Sedan 2012 21.05% Mercedes-Benz E-Class Sedan 2012 8.49% Jaguar XK XKR 2012 5.58% BMW ActiveHybrid 5 Sedan 2012 3.63% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 Audi 100 Wagon 1994 46.27% Audi 100 Sedan 1994 41.19% Mercedes-Benz 300-Class Convertible 1993 4.57% Dodge Dakota Club Cab 2007 1.8% Volkswagen Golf Hatchback 1991 0.99% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 100.0% Suzuki Aerio Sedan 2007 0.0% Suzuki SX4 Sedan 2012 0.0% Chrysler Town and Country Minivan 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Audi S4 Sedan 2007 59.89% Audi RS 4 Convertible 2008 5.17% BMW 6 Series Convertible 2007 4.66% Chrysler Crossfire Convertible 2008 2.76% Acura RL Sedan 2012 2.53% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 Hyundai Elantra Touring Hatchback 2012 99.84% Ford Fiesta Sedan 2012 0.08% Hyundai Sonata Hybrid Sedan 2012 0.06% Hyundai Accent Sedan 2012 0.02% Suzuki Aerio Sedan 2007 0.0% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 Acura TSX Sedan 2012 74.44% Nissan 240SX Coupe 1998 17.21% Acura TL Type-S 2008 3.6% Toyota Camry Sedan 2012 1.45% Toyota Corolla Sedan 2012 1.27% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 51.5% Audi 100 Sedan 1994 21.13% Volvo 240 Sedan 1993 5.89% Plymouth Neon Coupe 1999 4.85% Ford Ranger SuperCab 2011 2.62% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 90.66% Acura Integra Type R 2001 8.67% Aston Martin V8 Vantage Coupe 2012 0.26% Geo Metro Convertible 1993 0.18% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.15% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Dodge Durango SUV 2012 99.94% Audi A5 Coupe 2012 0.03% Dodge Journey SUV 2012 0.01% Chevrolet TrailBlazer SS 2009 0.01% Chevrolet Avalanche Crew Cab 2012 0.0% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 McLaren MP4-12C Coupe 2012 99.89% Aston Martin Virage Coupe 2012 0.07% Audi TTS Coupe 2012 0.03% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Lamborghini Gallardo LP 570-4 Superleggera 2012 96.28% Hyundai Veloster Hatchback 2012 2.59% Dodge Challenger SRT8 2011 0.71% Ford Fiesta Sedan 2012 0.12% smart fortwo Convertible 2012 0.08% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 Dodge Challenger SRT8 2011 32.05% Honda Accord Coupe 2012 10.4% Volkswagen Beetle Hatchback 2012 7.24% Porsche Panamera Sedan 2012 6.76% Mitsubishi Lancer Sedan 2012 5.36% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Dodge Charger SRT-8 2009 90.96% Toyota Corolla Sedan 2012 2.78% Hyundai Veloster Hatchback 2012 1.48% Volkswagen Golf Hatchback 1991 1.1% Chevrolet Sonic Sedan 2012 0.83% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 BMW ActiveHybrid 5 Sedan 2012 58.83% BMW 6 Series Convertible 2007 24.9% BMW 1 Series Convertible 2012 6.56% Mercedes-Benz SL-Class Coupe 2009 1.19% Porsche Panamera Sedan 2012 0.83% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 99.23% Ferrari 458 Italia Coupe 2012 0.73% Volkswagen Beetle Hatchback 2012 0.01% Ferrari California Convertible 2012 0.01% Aston Martin V8 Vantage Coupe 2012 0.0% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Hyundai Veloster Hatchback 2012 96.73% Audi TTS Coupe 2012 2.17% Ford GT Coupe 2006 0.63% Aston Martin Virage Coupe 2012 0.15% Dodge Charger Sedan 2012 0.09% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 Toyota Corolla Sedan 2012 67.38% Toyota Camry Sedan 2012 8.3% Mercedes-Benz E-Class Sedan 2012 7.24% Hyundai Sonata Sedan 2012 5.09% Mitsubishi Lancer Sedan 2012 1.79% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Aston Martin V8 Vantage Coupe 2012 92.26% Ferrari California Convertible 2012 2.42% Aston Martin V8 Vantage Convertible 2012 2.17% Rolls-Royce Phantom Drophead Coupe Convertible 2012 1.4% Lamborghini Diablo Coupe 2001 0.26% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Plymouth Neon Coupe 1999 96.54% Audi S6 Sedan 2011 2.49% Ford Focus Sedan 2007 0.42% Eagle Talon Hatchback 1998 0.32% Nissan 240SX Coupe 1998 0.11% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 60.93% Mercedes-Benz E-Class Sedan 2012 12.91% Infiniti QX56 SUV 2011 11.72% Hyundai Sonata Hybrid Sedan 2012 1.63% Acura RL Sedan 2012 1.07% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota 4Runner SUV 2012 99.25% Toyota Sequoia SUV 2012 0.7% Infiniti QX56 SUV 2011 0.02% Land Rover Range Rover SUV 2012 0.01% Dodge Durango SUV 2012 0.0% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Porsche Panamera Sedan 2012 89.24% McLaren MP4-12C Coupe 2012 3.2% Tesla Model S Sedan 2012 1.73% Aston Martin Virage Convertible 2012 1.63% Ferrari 458 Italia Coupe 2012 1.15% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 99.85% Ford F-150 Regular Cab 2012 0.08% Dodge Ram Pickup 3500 Crew Cab 2010 0.05% GMC Canyon Extended Cab 2012 0.02% Isuzu Ascender SUV 2008 0.0% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Hyundai Genesis Sedan 2012 81.75% Chrysler Crossfire Convertible 2008 12.02% Volkswagen Golf Hatchback 2012 1.67% Mercedes-Benz C-Class Sedan 2012 0.86% Chrysler Sebring Convertible 2010 0.77% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 Chevrolet Traverse SUV 2012 28.23% Ford Edge SUV 2012 19.8% Cadillac SRX SUV 2012 15.21% Buick Verano Sedan 2012 11.61% Nissan Juke Hatchback 2012 7.96% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Dodge Journey SUV 2012 100.0% Audi A5 Coupe 2012 0.0% Dodge Durango SUV 2012 0.0% Toyota Camry Sedan 2012 0.0% Honda Accord Coupe 2012 0.0% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 Chevrolet Monte Carlo Coupe 2007 69.38% Chevrolet Malibu Sedan 2007 21.18% Toyota Corolla Sedan 2012 2.21% Acura TSX Sedan 2012 2.09% Chevrolet Impala Sedan 2007 1.46% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 Jaguar XK XKR 2012 29.52% Toyota Corolla Sedan 2012 26.63% Lincoln Town Car Sedan 2011 24.29% Honda Odyssey Minivan 2007 6.69% BMW 3 Series Wagon 2012 6.58% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Audi RS 4 Convertible 2008 78.79% Audi S5 Convertible 2012 4.27% BMW M6 Convertible 2010 4.24% Audi S6 Sedan 2011 3.17% Mercedes-Benz E-Class Sedan 2012 3.16% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Ferrari California Convertible 2012 80.58% Ferrari 458 Italia Coupe 2012 5.26% BMW Z4 Convertible 2012 4.03% Chevrolet Corvette Convertible 2012 0.94% Dodge Charger Sedan 2012 0.79% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 Acura ZDX Hatchback 2012 24.53% Ford Fiesta Sedan 2012 19.6% Toyota Camry Sedan 2012 8.73% Hyundai Sonata Hybrid Sedan 2012 6.73% smart fortwo Convertible 2012 5.91% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Lamborghini Gallardo LP 570-4 Superleggera 2012 96.75% Lamborghini Diablo Coupe 2001 0.87% Hyundai Veloster Hatchback 2012 0.84% Chevrolet Corvette Convertible 2012 0.65% Ford GT Coupe 2006 0.09% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 HUMMER H3T Crew Cab 2010 72.91% Jeep Wrangler SUV 2012 24.57% AM General Hummer SUV 2000 2.25% Chevrolet Silverado 1500 Extended Cab 2012 0.13% HUMMER H2 SUT Crew Cab 2009 0.13% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Nissan Juke Hatchback 2012 28.49% Jeep Grand Cherokee SUV 2012 9.96% Volvo C30 Hatchback 2012 8.5% Volkswagen Golf Hatchback 1991 8.44% Volvo 240 Sedan 1993 7.94% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Chrysler 300 SRT-8 2010 29.36% Chevrolet Impala Sedan 2007 25.01% Ford Focus Sedan 2007 24.09% Chevrolet Malibu Sedan 2007 3.69% Eagle Talon Hatchback 1998 2.83% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 96.8% Mercedes-Benz E-Class Sedan 2012 0.83% Chrysler Town and Country Minivan 2012 0.62% Chrysler PT Cruiser Convertible 2008 0.39% Mercedes-Benz C-Class Sedan 2012 0.17% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 82.1% Dodge Dakota Crew Cab 2010 4.5% Dodge Dakota Club Cab 2007 2.18% Chevrolet Silverado 1500 Extended Cab 2012 2.07% GMC Canyon Extended Cab 2012 1.07% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 98.71% Ferrari California Convertible 2012 0.86% Chevrolet Corvette ZR1 2012 0.34% Ferrari 458 Italia Coupe 2012 0.03% Eagle Talon Hatchback 1998 0.03% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 89.87% Honda Odyssey Minivan 2012 7.42% Land Rover LR2 SUV 2012 0.82% Toyota 4Runner SUV 2012 0.71% Hyundai Santa Fe SUV 2012 0.17% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 99.49% HUMMER H3T Crew Cab 2010 0.45% HUMMER H2 SUT Crew Cab 2009 0.06% Jeep Wrangler SUV 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 Buick Enclave SUV 2012 36.67% GMC Acadia SUV 2012 17.98% Cadillac SRX SUV 2012 16.97% Jeep Grand Cherokee SUV 2012 5.35% Dodge Magnum Wagon 2008 3.48% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 97.33% Ford F-450 Super Duty Crew Cab 2012 2.59% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.02% Chevrolet Express Van 2007 0.02% GMC Savana Van 2012 0.01% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 96.81% Hyundai Santa Fe SUV 2012 2.82% Dodge Durango SUV 2012 0.22% Dodge Journey SUV 2012 0.12% Cadillac SRX SUV 2012 0.01% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 BMW X3 SUV 2012 99.99% Suzuki SX4 Sedan 2012 0.0% BMW 1 Series Coupe 2012 0.0% BMW X6 SUV 2012 0.0% Suzuki Aerio Sedan 2007 0.0% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Buick Regal GS 2012 98.31% Buick Verano Sedan 2012 1.36% Suzuki Kizashi Sedan 2012 0.09% Infiniti G Coupe IPL 2012 0.05% Bentley Continental GT Coupe 2007 0.05% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 GMC Yukon Hybrid SUV 2012 81.07% Cadillac Escalade EXT Crew Cab 2007 17.58% Jeep Patriot SUV 2012 1.18% Dodge Durango SUV 2007 0.08% Jeep Grand Cherokee SUV 2012 0.06% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 GMC Canyon Extended Cab 2012 50.36% Chevrolet Silverado 1500 Regular Cab 2012 37.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 7.01% Ford F-150 Regular Cab 2007 1.05% Ford Ranger SuperCab 2011 0.97% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Aston Martin V8 Vantage Convertible 2012 17.01% Aston Martin V8 Vantage Coupe 2012 16.58% Dodge Challenger SRT8 2011 8.84% Bugatti Veyron 16.4 Coupe 2009 8.57% Aston Martin Virage Convertible 2012 8.26% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 49.58% Audi RS 4 Convertible 2008 14.47% Dodge Challenger SRT8 2011 9.08% Dodge Charger Sedan 2012 5.46% Acura Integra Type R 2001 4.34% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Nissan NV Passenger Van 2012 94.26% Ram C/V Cargo Van Minivan 2012 1.13% Chevrolet Tahoe Hybrid SUV 2012 0.54% Chevrolet Traverse SUV 2012 0.42% Chrysler Town and Country Minivan 2012 0.33% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 Jeep Compass SUV 2012 100.0% BMW X3 SUV 2012 0.0% Jeep Grand Cherokee SUV 2012 0.0% BMW X6 SUV 2012 0.0% Buick Regal GS 2012 0.0% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 39.54% Rolls-Royce Ghost Sedan 2012 6.61% Bentley Continental Flying Spur Sedan 2007 4.94% Chrysler 300 SRT-8 2010 4.84% BMW X3 SUV 2012 3.91% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Mercedes-Benz E-Class Sedan 2012 12.8% Acura RL Sedan 2012 10.53% BMW 6 Series Convertible 2007 7.91% Honda Accord Sedan 2012 7.55% Hyundai Sonata Sedan 2012 7.2% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Audi R8 Coupe 2012 52.1% Lamborghini Aventador Coupe 2012 15.76% Chevrolet Camaro Convertible 2012 8.88% Aston Martin V8 Vantage Coupe 2012 4.55% Ferrari 458 Italia Convertible 2012 2.25% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Charger Sedan 2012 65.01% Chevrolet Avalanche Crew Cab 2012 12.88% Dodge Durango SUV 2012 5.19% Chrysler Sebring Convertible 2010 1.6% Chrysler PT Cruiser Convertible 2008 1.56% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Jeep Liberty SUV 2012 99.99% Bentley Arnage Sedan 2009 0.01% Jeep Patriot SUV 2012 0.0% Jeep Wrangler SUV 2012 0.0% Jeep Compass SUV 2012 0.0% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Toyota Camry Sedan 2012 99.97% Acura TSX Sedan 2012 0.02% Toyota Corolla Sedan 2012 0.01% Hyundai Accent Sedan 2012 0.0% Mitsubishi Lancer Sedan 2012 0.0% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 96.83% Chevrolet Traverse SUV 2012 2.28% Honda Accord Coupe 2012 0.45% Dodge Durango SUV 2012 0.25% Dodge Journey SUV 2012 0.03% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 100.0% Jeep Grand Cherokee SUV 2012 0.0% Buick Rainier SUV 2007 0.0% Buick Enclave SUV 2012 0.0% Lincoln Town Car Sedan 2011 0.0% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 Audi R8 Coupe 2012 18.08% Fisker Karma Sedan 2012 17.43% Jaguar XK XKR 2012 12.29% Chevrolet Camaro Convertible 2012 11.73% Cadillac CTS-V Sedan 2012 4.03% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Ford F-450 Super Duty Crew Cab 2012 39.2% Ford F-150 Regular Cab 2012 33.88% GMC Canyon Extended Cab 2012 15.52% Isuzu Ascender SUV 2008 3.74% Toyota Sequoia SUV 2012 3.55% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Buick Regal GS 2012 76.75% Hyundai Accent Sedan 2012 8.06% Chevrolet Sonic Sedan 2012 5.73% Hyundai Sonata Sedan 2012 1.72% Hyundai Elantra Sedan 2007 1.6% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Aston Martin V8 Vantage Convertible 2012 44.75% BMW M6 Convertible 2010 24.81% Ferrari 458 Italia Convertible 2012 16.96% BMW 6 Series Convertible 2007 2.85% Audi RS 4 Convertible 2008 1.95% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 52.01% Chevrolet Silverado 2500HD Regular Cab 2012 14.81% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 10.68% Chevrolet Tahoe Hybrid SUV 2012 7.83% Chevrolet Silverado 1500 Regular Cab 2012 3.84% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Hyundai Azera Sedan 2012 24.94% Land Rover LR2 SUV 2012 16.59% Aston Martin Virage Coupe 2012 14.3% Honda Accord Sedan 2012 6.48% Acura TL Sedan 2012 5.72% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Chevrolet Sonic Sedan 2012 68.7% Maybach Landaulet Convertible 2012 4.81% Chrysler Crossfire Convertible 2008 1.63% Hyundai Genesis Sedan 2012 1.62% Cadillac Escalade EXT Crew Cab 2007 1.48% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 54.2% Chevrolet Tahoe Hybrid SUV 2012 16.39% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 6.68% Jeep Patriot SUV 2012 4.59% Chevrolet Avalanche Crew Cab 2012 3.78% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Aventador Coupe 2012 99.99% Ferrari 458 Italia Convertible 2012 0.01% McLaren MP4-12C Coupe 2012 0.0% Audi TT RS Coupe 2012 0.0% Ferrari California Convertible 2012 0.0% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Nissan 240SX Coupe 1998 41.6% Chevrolet TrailBlazer SS 2009 41.55% Aston Martin V8 Vantage Coupe 2012 7.22% Plymouth Neon Coupe 1999 1.74% BMW M6 Convertible 2010 1.58% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Chevrolet Camaro Convertible 2012 88.31% Audi S5 Coupe 2012 2.57% GMC Yukon Hybrid SUV 2012 1.43% Scion xD Hatchback 2012 1.0% Fisker Karma Sedan 2012 0.94% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 BMW 6 Series Convertible 2007 100.0% BMW M6 Convertible 2010 0.0% Audi A5 Coupe 2012 0.0% Honda Accord Coupe 2012 0.0% Audi R8 Coupe 2012 0.0% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 Buick Verano Sedan 2012 97.8% BMW 1 Series Coupe 2012 1.94% Ram C/V Cargo Van Minivan 2012 0.05% Buick Regal GS 2012 0.05% Acura RL Sedan 2012 0.05% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Ford E-Series Wagon Van 2012 79.58% Ford Ranger SuperCab 2011 19.71% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.37% Dodge Ram Pickup 3500 Quad Cab 2009 0.1% Dodge Dakota Club Cab 2007 0.07% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Hyundai Veracruz SUV 2012 32.45% Scion xD Hatchback 2012 14.94% Toyota 4Runner SUV 2012 8.0% Hyundai Sonata Sedan 2012 7.97% BMW X3 SUV 2012 5.07% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 79.38% Aston Martin V8 Vantage Convertible 2012 4.11% Aston Martin V8 Vantage Coupe 2012 3.61% Hyundai Sonata Hybrid Sedan 2012 1.24% Maybach Landaulet Convertible 2012 0.94% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 BMW M5 Sedan 2010 76.59% BMW M3 Coupe 2012 8.8% Acura TL Type-S 2008 3.97% Chevrolet Cobalt SS 2010 2.27% Jaguar XK XKR 2012 2.13% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 98.99% Ferrari 458 Italia Convertible 2012 0.65% Chevrolet Corvette ZR1 2012 0.13% BMW Z4 Convertible 2012 0.04% Bentley Continental Supersports Conv. Convertible 2012 0.04% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 Ram C/V Cargo Van Minivan 2012 98.42% Bentley Continental Supersports Conv. Convertible 2012 0.73% Dodge Sprinter Cargo Van 2009 0.4% Chevrolet Express Cargo Van 2007 0.13% Mercedes-Benz Sprinter Van 2012 0.08% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 63.08% GMC Acadia SUV 2012 13.08% Suzuki SX4 Sedan 2012 9.67% Chevrolet Traverse SUV 2012 9.07% Chevrolet Impala Sedan 2007 1.82% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Spyker C8 Convertible 2009 37.02% Hyundai Genesis Sedan 2012 5.44% smart fortwo Convertible 2012 3.28% Audi S5 Coupe 2012 2.83% Rolls-Royce Phantom Sedan 2012 2.42% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 Honda Odyssey Minivan 2007 36.95% Toyota Camry Sedan 2012 23.71% Hyundai Elantra Sedan 2007 15.37% Chevrolet Malibu Sedan 2007 11.54% Chevrolet Monte Carlo Coupe 2007 3.34% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Ford Mustang Convertible 2007 32.81% Hyundai Azera Sedan 2012 11.29% BMW X6 SUV 2012 9.03% Chevrolet Cobalt SS 2010 7.2% Hyundai Veloster Hatchback 2012 5.4% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Cadillac Escalade EXT Crew Cab 2007 53.56% Land Rover Range Rover SUV 2012 27.79% Dodge Durango SUV 2012 4.88% Hyundai Genesis Sedan 2012 4.67% Land Rover LR2 SUV 2012 4.06% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 Rolls-Royce Phantom Sedan 2012 58.58% Nissan Leaf Hatchback 2012 15.97% Mercedes-Benz S-Class Sedan 2012 4.93% FIAT 500 Convertible 2012 4.39% Scion xD Hatchback 2012 2.52% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi V8 Sedan 1994 98.76% Audi 100 Sedan 1994 1.21% Volvo XC90 SUV 2007 0.01% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.01% Audi 100 Wagon 1994 0.01% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Ferrari FF Coupe 2012 27.74% Acura RL Sedan 2012 12.01% Volvo C30 Hatchback 2012 11.2% BMW X6 SUV 2012 8.42% Tesla Model S Sedan 2012 5.94% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Acura RL Sedan 2012 17.02% Hyundai Sonata Sedan 2012 4.58% Hyundai Azera Sedan 2012 4.07% Hyundai Genesis Sedan 2012 4.01% Honda Odyssey Minivan 2012 3.46% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 BMW 3 Series Wagon 2012 98.02% Mercedes-Benz C-Class Sedan 2012 0.78% BMW M5 Sedan 2010 0.43% Acura Integra Type R 2001 0.24% Daewoo Nubira Wagon 2002 0.19% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 Ford Ranger SuperCab 2011 99.85% Ford Expedition EL SUV 2009 0.11% Chevrolet Silverado 1500 Extended Cab 2012 0.01% Ford F-150 Regular Cab 2012 0.01% Isuzu Ascender SUV 2008 0.0% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 Toyota Sequoia SUV 2012 99.33% Dodge Durango SUV 2012 0.44% Cadillac SRX SUV 2012 0.11% Hyundai Santa Fe SUV 2012 0.06% Suzuki SX4 Sedan 2012 0.01% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford Ranger SuperCab 2011 81.59% Chevrolet Silverado 2500HD Regular Cab 2012 8.9% Buick Enclave SUV 2012 4.04% Rolls-Royce Phantom Sedan 2012 1.45% Jeep Liberty SUV 2012 1.05% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Infiniti G Coupe IPL 2012 27.47% Hyundai Genesis Sedan 2012 19.01% Dodge Journey SUV 2012 18.79% Hyundai Santa Fe SUV 2012 10.68% Dodge Durango SUV 2012 5.06% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette ZR1 2012 43.4% Porsche Panamera Sedan 2012 11.25% Nissan Leaf Hatchback 2012 9.83% Chevrolet Cobalt SS 2010 9.36% Jaguar XK XKR 2012 7.18% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Infiniti G Coupe IPL 2012 66.21% Buick Regal GS 2012 29.03% Cadillac CTS-V Sedan 2012 1.14% Ford Edge SUV 2012 0.86% Mercedes-Benz SL-Class Coupe 2009 0.43% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Rolls-Royce Phantom Sedan 2012 99.74% Rolls-Royce Ghost Sedan 2012 0.13% Bentley Arnage Sedan 2009 0.08% Bentley Continental Flying Spur Sedan 2007 0.03% Volvo 240 Sedan 1993 0.02% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 Buick Verano Sedan 2012 49.17% Toyota Corolla Sedan 2012 43.1% Jaguar XK XKR 2012 1.7% Volkswagen Beetle Hatchback 2012 1.43% Hyundai Elantra Sedan 2007 0.89% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Hyundai Elantra Sedan 2007 26.89% Honda Odyssey Minivan 2012 20.46% Honda Odyssey Minivan 2007 9.76% Hyundai Sonata Hybrid Sedan 2012 8.9% Infiniti G Coupe IPL 2012 8.48% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 Acura RL Sedan 2012 25.27% Dodge Caliber Wagon 2012 16.27% Honda Odyssey Minivan 2012 7.13% Nissan Leaf Hatchback 2012 5.8% Lincoln Town Car Sedan 2011 5.63% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Jeep Patriot SUV 2012 97.57% Land Rover LR2 SUV 2012 2.14% Jeep Liberty SUV 2012 0.16% Isuzu Ascender SUV 2008 0.07% Chevrolet Express Van 2007 0.01% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 Hyundai Elantra Sedan 2007 39.33% Chevrolet Sonic Sedan 2012 29.26% Ford Fiesta Sedan 2012 16.0% Toyota Corolla Sedan 2012 3.46% Chevrolet Impala Sedan 2007 2.94% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Audi R8 Coupe 2012 98.63% Audi S6 Sedan 2011 0.46% Rolls-Royce Ghost Sedan 2012 0.14% Audi TT RS Coupe 2012 0.11% Bugatti Veyron 16.4 Convertible 2009 0.08% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 Plymouth Neon Coupe 1999 35.44% Daewoo Nubira Wagon 2002 16.06% BMW 6 Series Convertible 2007 4.61% Mercedes-Benz 300-Class Convertible 1993 4.25% Acura Integra Type R 2001 3.16% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 47.18% Ferrari 458 Italia Coupe 2012 45.32% Chevrolet Corvette ZR1 2012 2.1% Ford GT Coupe 2006 1.84% Ferrari FF Coupe 2012 1.4% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Ford Fiesta Sedan 2012 27.8% Honda Odyssey Minivan 2012 11.76% Dodge Journey SUV 2012 9.56% Ford Edge SUV 2012 9.25% Hyundai Sonata Sedan 2012 7.96% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 Spyker C8 Coupe 2009 96.91% Spyker C8 Convertible 2009 2.67% Lamborghini Aventador Coupe 2012 0.24% McLaren MP4-12C Coupe 2012 0.11% Lamborghini Reventon Coupe 2008 0.03% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Acura Integra Type R 2001 87.0% Acura TSX Sedan 2012 5.84% BMW M5 Sedan 2010 2.11% Daewoo Nubira Wagon 2002 2.04% Mercedes-Benz C-Class Sedan 2012 1.22% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Mercedes-Benz 300-Class Convertible 1993 0.0% Suzuki Aerio Sedan 2007 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Ford F-150 Regular Cab 2007 0.0% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 Ford Expedition EL SUV 2009 33.34% Chevrolet Tahoe Hybrid SUV 2012 29.56% Chevrolet Avalanche Crew Cab 2012 17.07% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 8.67% Chevrolet Silverado 1500 Regular Cab 2012 5.02% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 Volkswagen Golf Hatchback 2012 100.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.0% Nissan 240SX Coupe 1998 0.0% Hyundai Accent Sedan 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Hyundai Accent Sedan 2012 0.0% Ford Fiesta Sedan 2012 0.0% Hyundai Tucson SUV 2012 0.0% Hyundai Elantra Touring Hatchback 2012 0.0% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 98.87% Audi S4 Sedan 2007 1.05% Audi RS 4 Convertible 2008 0.05% Mercedes-Benz C-Class Sedan 2012 0.03% Chrysler 300 SRT-8 2010 0.01% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Dodge Magnum Wagon 2008 41.94% Chrysler PT Cruiser Convertible 2008 11.84% Chrysler Town and Country Minivan 2012 8.4% Daewoo Nubira Wagon 2002 6.51% Audi S4 Sedan 2007 4.76% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 Hyundai Sonata Hybrid Sedan 2012 29.76% Hyundai Tucson SUV 2012 20.65% Acura TL Sedan 2012 11.42% Acura TSX Sedan 2012 5.26% Lamborghini Reventon Coupe 2008 5.16% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Audi S5 Coupe 2012 49.24% Audi A5 Coupe 2012 44.18% Audi S4 Sedan 2012 4.69% Audi S5 Convertible 2012 1.01% Audi TTS Coupe 2012 0.27% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Dodge Challenger SRT8 2011 98.67% Bugatti Veyron 16.4 Coupe 2009 0.56% Audi R8 Coupe 2012 0.45% Jaguar XK XKR 2012 0.2% Mercedes-Benz SL-Class Coupe 2009 0.07% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Audi TTS Coupe 2012 46.87% Audi S4 Sedan 2007 8.5% BMW 3 Series Sedan 2012 5.23% Audi S5 Coupe 2012 2.68% Cadillac SRX SUV 2012 2.57% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 Chevrolet Impala Sedan 2007 35.73% Lincoln Town Car Sedan 2011 26.48% Chevrolet Malibu Sedan 2007 17.18% Acura TSX Sedan 2012 13.49% Toyota Camry Sedan 2012 3.7% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 75.62% Tesla Model S Sedan 2012 7.68% Bentley Mulsanne Sedan 2011 4.08% Rolls-Royce Phantom Drophead Coupe Convertible 2012 3.33% Cadillac CTS-V Sedan 2012 1.9% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 Chevrolet Impala Sedan 2007 37.5% Lincoln Town Car Sedan 2011 23.1% Ford Freestar Minivan 2007 18.4% Dodge Magnum Wagon 2008 2.69% Ford Focus Sedan 2007 2.51% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 Chevrolet Malibu Sedan 2007 92.52% Chevrolet Monte Carlo Coupe 2007 7.36% Chevrolet Cobalt SS 2010 0.05% Lincoln Town Car Sedan 2011 0.04% Hyundai Elantra Sedan 2007 0.02% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Maybach Landaulet Convertible 2012 35.26% Bentley Continental Flying Spur Sedan 2007 15.39% Audi S4 Sedan 2007 4.09% BMW 3 Series Wagon 2012 3.99% Audi S6 Sedan 2011 3.98% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 96.8% smart fortwo Convertible 2012 1.5% Bugatti Veyron 16.4 Convertible 2009 0.73% Maybach Landaulet Convertible 2012 0.53% Chrysler PT Cruiser Convertible 2008 0.16% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 94.16% GMC Savana Van 2012 1.66% Bentley Continental Supersports Conv. Convertible 2012 0.49% Volkswagen Golf Hatchback 1991 0.43% Hyundai Veloster Hatchback 2012 0.43% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 96.38% Chevrolet Avalanche Crew Cab 2012 3.62% Dodge Durango SUV 2012 0.0% Dodge Dakota Crew Cab 2010 0.0% GMC Yukon Hybrid SUV 2012 0.0% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Chevrolet Silverado 1500 Extended Cab 2012 49.69% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 44.78% Chevrolet Silverado 1500 Regular Cab 2012 2.97% GMC Canyon Extended Cab 2012 0.79% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.78% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Spyker C8 Convertible 2009 0.0% Dodge Charger Sedan 2012 0.0% Spyker C8 Coupe 2009 0.0% Lamborghini Diablo Coupe 2001 0.0% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Honda Accord Sedan 2012 34.4% Acura TSX Sedan 2012 32.01% Toyota Camry Sedan 2012 20.83% Acura ZDX Hatchback 2012 3.76% Suzuki Aerio Sedan 2007 1.67% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 Nissan Leaf Hatchback 2012 47.19% Acura TL Sedan 2012 22.4% Audi S5 Convertible 2012 18.03% Ford Focus Sedan 2007 4.69% Acura RL Sedan 2012 4.68% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 BMW 3 Series Sedan 2012 38.25% Audi S6 Sedan 2011 37.72% BMW 3 Series Wagon 2012 11.91% BMW ActiveHybrid 5 Sedan 2012 5.29% Bentley Arnage Sedan 2009 2.76% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 GMC Acadia SUV 2012 61.4% Buick Enclave SUV 2012 28.24% BMW X6 SUV 2012 1.8% Jeep Grand Cherokee SUV 2012 1.47% Suzuki SX4 Hatchback 2012 1.44% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Scion xD Hatchback 2012 29.04% Ford Fiesta Sedan 2012 14.69% Toyota Camry Sedan 2012 12.32% Toyota Corolla Sedan 2012 7.25% Cadillac CTS-V Sedan 2012 5.61% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Rolls-Royce Phantom Drophead Coupe Convertible 2012 71.52% AM General Hummer SUV 2000 24.21% Mercedes-Benz 300-Class Convertible 1993 2.58% Lamborghini Reventon Coupe 2008 0.49% Maybach Landaulet Convertible 2012 0.33% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 99.98% Ferrari 458 Italia Coupe 2012 0.01% Ferrari California Convertible 2012 0.0% Aston Martin V8 Vantage Convertible 2012 0.0% Ferrari FF Coupe 2012 0.0% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Volkswagen Golf Hatchback 2012 22.72% Cadillac CTS-V Sedan 2012 9.06% Rolls-Royce Ghost Sedan 2012 7.45% Buick Verano Sedan 2012 4.77% BMW X3 SUV 2012 4.17% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Nissan 240SX Coupe 1998 18.51% Nissan Juke Hatchback 2012 7.47% Mercedes-Benz 300-Class Convertible 1993 7.24% Audi 100 Sedan 1994 6.26% Ferrari FF Coupe 2012 6.15% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 Jeep Patriot SUV 2012 99.68% Jeep Compass SUV 2012 0.3% Jeep Grand Cherokee SUV 2012 0.01% Jeep Liberty SUV 2012 0.01% Dodge Durango SUV 2007 0.01% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Ford Mustang Convertible 2007 53.74% Chrysler PT Cruiser Convertible 2008 18.69% Fisker Karma Sedan 2012 4.13% BMW X6 SUV 2012 3.75% Porsche Panamera Sedan 2012 2.77% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 53.21% BMW X6 SUV 2012 10.17% Honda Odyssey Minivan 2007 5.52% Dodge Magnum Wagon 2008 4.25% Ferrari FF Coupe 2012 3.17% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Chrysler PT Cruiser Convertible 2008 46.6% MINI Cooper Roadster Convertible 2012 15.56% Ford Expedition EL SUV 2009 11.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 4.67% Toyota 4Runner SUV 2012 4.49% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Suzuki SX4 Sedan 2012 90.21% Suzuki Kizashi Sedan 2012 6.87% BMW M3 Coupe 2012 1.4% BMW M5 Sedan 2010 0.63% BMW 1 Series Coupe 2012 0.34% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Ferrari 458 Italia Coupe 2012 47.72% Chevrolet Camaro Convertible 2012 26.12% Ford GT Coupe 2006 5.35% Chevrolet Corvette Convertible 2012 5.14% Ferrari California Convertible 2012 4.87% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 Dodge Caliber Wagon 2007 52.83% Dodge Durango SUV 2007 9.32% Hyundai Azera Sedan 2012 7.19% Suzuki SX4 Hatchback 2012 5.77% Nissan Juke Hatchback 2012 3.87% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 99.81% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.08% AM General Hummer SUV 2000 0.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.01% GMC Canyon Extended Cab 2012 0.01% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Suzuki Aerio Sedan 2007 77.9% Suzuki SX4 Sedan 2012 15.91% BMW X3 SUV 2012 2.27% BMW 1 Series Coupe 2012 0.96% Ram C/V Cargo Van Minivan 2012 0.73% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 BMW X6 SUV 2012 100.0% BMW X3 SUV 2012 0.0% BMW X5 SUV 2007 0.0% BMW 1 Series Coupe 2012 0.0% BMW 1 Series Convertible 2012 0.0% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 99.2% Bugatti Veyron 16.4 Convertible 2009 0.45% Bugatti Veyron 16.4 Coupe 2009 0.11% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.06% Maybach Landaulet Convertible 2012 0.05% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 GMC Canyon Extended Cab 2012 99.18% Chevrolet Monte Carlo Coupe 2007 0.54% Chevrolet Avalanche Crew Cab 2012 0.09% Chevrolet Silverado 2500HD Regular Cab 2012 0.04% Hyundai Sonata Hybrid Sedan 2012 0.04% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Infiniti G Coupe IPL 2012 57.79% Mercedes-Benz E-Class Sedan 2012 15.03% Mercedes-Benz C-Class Sedan 2012 11.77% Hyundai Genesis Sedan 2012 4.8% Honda Accord Sedan 2012 4.14% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Acura TSX Sedan 2012 87.16% Hyundai Santa Fe SUV 2012 7.89% Land Rover LR2 SUV 2012 1.25% Volkswagen Golf Hatchback 2012 0.58% Hyundai Sonata Sedan 2012 0.54% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Aston Martin V8 Vantage Coupe 2012 29.85% Chevrolet Corvette Convertible 2012 29.78% Acura Integra Type R 2001 28.25% Geo Metro Convertible 1993 9.93% Chevrolet Corvette ZR1 2012 0.62% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Ford Edge SUV 2012 35.69% Chevrolet Sonic Sedan 2012 30.22% Nissan Juke Hatchback 2012 4.98% GMC Terrain SUV 2012 4.5% Cadillac SRX SUV 2012 3.73% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 30.0% Ford Freestar Minivan 2007 7.33% Audi 100 Sedan 1994 6.37% Ford Ranger SuperCab 2011 6.01% Suzuki SX4 Hatchback 2012 5.99% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 Jeep Patriot SUV 2012 50.63% Dodge Dakota Club Cab 2007 23.42% Jeep Liberty SUV 2012 5.04% Nissan NV Passenger Van 2012 3.42% Ford F-150 Regular Cab 2007 3.15% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 62.67% Chevrolet Avalanche Crew Cab 2012 13.0% Land Rover Range Rover SUV 2012 12.41% Land Rover LR2 SUV 2012 4.12% Cadillac SRX SUV 2012 2.48% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 97.13% Suzuki Kizashi Sedan 2012 1.94% Cadillac CTS-V Sedan 2012 0.52% Bentley Continental GT Coupe 2007 0.11% Ferrari 458 Italia Coupe 2012 0.08% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 98.9% BMW 3 Series Sedan 2012 0.84% Hyundai Elantra Sedan 2007 0.16% Plymouth Neon Coupe 1999 0.02% Ferrari 458 Italia Convertible 2012 0.01% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Jeep Grand Cherokee SUV 2012 41.87% Isuzu Ascender SUV 2008 12.85% Cadillac Escalade EXT Crew Cab 2007 8.82% Dodge Durango SUV 2007 5.98% HUMMER H2 SUT Crew Cab 2009 5.07% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Bentley Continental GT Coupe 2007 100.0% Ford GT Coupe 2006 0.0% Bentley Continental GT Coupe 2012 0.0% Suzuki Kizashi Sedan 2012 0.0% Bentley Mulsanne Sedan 2011 0.0% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 Bentley Continental Flying Spur Sedan 2007 57.51% Chevrolet Sonic Sedan 2012 11.5% Bentley Continental GT Coupe 2007 9.23% Honda Accord Coupe 2012 8.29% Ford Mustang Convertible 2007 3.44% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 50.95% Bentley Continental Supersports Conv. Convertible 2012 14.31% Jaguar XK XKR 2012 13.04% Aston Martin V8 Vantage Convertible 2012 4.19% Chevrolet Corvette Convertible 2012 3.81% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 97.16% Mercedes-Benz 300-Class Convertible 1993 1.48% Audi 100 Sedan 1994 1.01% Chrysler Crossfire Convertible 2008 0.14% Volvo C30 Hatchback 2012 0.06% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 Ferrari FF Coupe 2012 25.44% Chevrolet Sonic Sedan 2012 23.76% Tesla Model S Sedan 2012 11.27% Cadillac CTS-V Sedan 2012 9.31% Suzuki Kizashi Sedan 2012 5.94% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Spyker C8 Convertible 2009 60.88% Suzuki Kizashi Sedan 2012 10.57% Lamborghini Diablo Coupe 2001 8.78% Cadillac CTS-V Sedan 2012 2.33% BMW X3 SUV 2012 2.0% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 Volkswagen Golf Hatchback 1991 80.38% Volvo 240 Sedan 1993 19.45% Audi V8 Sedan 1994 0.13% BMW 3 Series Wagon 2012 0.01% GMC Savana Van 2012 0.01% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Dodge Challenger SRT8 2011 61.35% Audi RS 4 Convertible 2008 16.6% Mercedes-Benz E-Class Sedan 2012 8.97% BMW M5 Sedan 2010 4.49% Bugatti Veyron 16.4 Coupe 2009 2.34% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Dodge Charger Sedan 2012 68.11% McLaren MP4-12C Coupe 2012 10.03% Lamborghini Diablo Coupe 2001 9.3% AM General Hummer SUV 2000 3.09% Spyker C8 Coupe 2009 2.38% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Jaguar XK XKR 2012 87.52% Chevrolet Corvette Convertible 2012 5.95% Chevrolet Corvette ZR1 2012 1.62% Audi S4 Sedan 2007 1.32% Audi S5 Convertible 2012 0.95% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Dodge Charger SRT-8 2009 96.14% Porsche Panamera Sedan 2012 0.88% Chevrolet TrailBlazer SS 2009 0.77% Chrysler 300 SRT-8 2010 0.58% Dodge Charger Sedan 2012 0.5% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 Maybach Landaulet Convertible 2012 99.73% Bentley Mulsanne Sedan 2011 0.25% Rolls-Royce Phantom Drophead Coupe Convertible 2012 0.02% Rolls-Royce Phantom Sedan 2012 0.0% Bentley Continental Flying Spur Sedan 2007 0.0% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ford Freestar Minivan 2007 93.81% Suzuki SX4 Sedan 2012 3.11% Honda Odyssey Minivan 2012 2.58% Daewoo Nubira Wagon 2002 0.12% Hyundai Elantra Sedan 2007 0.11% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Dodge Durango SUV 2012 50.41% Infiniti QX56 SUV 2011 19.97% Toyota Sequoia SUV 2012 18.1% Toyota 4Runner SUV 2012 4.83% GMC Terrain SUV 2012 2.6% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 Acura RL Sedan 2012 30.69% Ford Focus Sedan 2007 24.57% Chevrolet Corvette ZR1 2012 22.21% Acura TL Type-S 2008 5.67% Daewoo Nubira Wagon 2002 2.46% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac SRX SUV 2012 51.81% Cadillac Escalade EXT Crew Cab 2007 47.76% Suzuki SX4 Sedan 2012 0.15% Chrysler PT Cruiser Convertible 2008 0.1% Dodge Magnum Wagon 2008 0.04% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Mercedes-Benz S-Class Sedan 2012 85.05% Hyundai Azera Sedan 2012 14.26% Hyundai Genesis Sedan 2012 0.44% Infiniti G Coupe IPL 2012 0.25% Chrysler PT Cruiser Convertible 2008 0.0% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 Jeep Wrangler SUV 2012 99.99% AM General Hummer SUV 2000 0.01% Jeep Patriot SUV 2012 0.0% Nissan NV Passenger Van 2012 0.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Suzuki SX4 Hatchback 2012 98.66% Ford Fiesta Sedan 2012 0.96% Hyundai Veracruz SUV 2012 0.13% Suzuki SX4 Sedan 2012 0.11% Hyundai Tucson SUV 2012 0.05% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 Chrysler Aspen SUV 2009 93.96% Toyota Sequoia SUV 2012 5.54% Chrysler PT Cruiser Convertible 2008 0.2% Mercedes-Benz Sprinter Van 2012 0.14% Land Rover Range Rover SUV 2012 0.05% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Ford F-450 Super Duty Crew Cab 2012 27.49% GMC Canyon Extended Cab 2012 26.13% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 21.06% Dodge Ram Pickup 3500 Quad Cab 2009 8.6% Ford F-150 Regular Cab 2012 7.66% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 62.67% Geo Metro Convertible 1993 36.83% Ford Freestar Minivan 2007 0.18% Plymouth Neon Coupe 1999 0.15% Chevrolet Impala Sedan 2007 0.04% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 98.04% Dodge Sprinter Cargo Van 2009 1.96% Ram C/V Cargo Van Minivan 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Nissan Juke Hatchback 2012 0.0% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Hyundai Veloster Hatchback 2012 56.38% Aston Martin Virage Convertible 2012 10.32% Suzuki SX4 Hatchback 2012 6.09% Ferrari California Convertible 2012 2.5% Chevrolet Malibu Sedan 2007 2.27% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Chrysler Crossfire Convertible 2008 51.95% Eagle Talon Hatchback 1998 28.32% Plymouth Neon Coupe 1999 16.14% Ford Focus Sedan 2007 1.51% Volkswagen Golf Hatchback 2012 0.7% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 Dodge Durango SUV 2007 67.48% Suzuki SX4 Sedan 2012 3.85% Volkswagen Golf Hatchback 2012 3.2% Porsche Panamera Sedan 2012 3.13% Acura ZDX Hatchback 2012 3.06% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 72.89% Suzuki SX4 Sedan 2012 27.07% Ford F-150 Regular Cab 2007 0.02% Hyundai Elantra Sedan 2007 0.01% Acura TL Type-S 2008 0.0% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Suzuki SX4 Sedan 2012 99.95% Suzuki Aerio Sedan 2007 0.05% Suzuki SX4 Hatchback 2012 0.0% Chevrolet Malibu Sedan 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 23.55% Aston Martin V8 Vantage Coupe 2012 14.29% Lamborghini Gallardo LP 570-4 Superleggera 2012 8.81% Lamborghini Diablo Coupe 2001 7.91% Ford GT Coupe 2006 4.86% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Lamborghini Reventon Coupe 2008 99.57% Eagle Talon Hatchback 1998 0.19% Lamborghini Gallardo LP 570-4 Superleggera 2012 0.15% Plymouth Neon Coupe 1999 0.03% Geo Metro Convertible 1993 0.01% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Ford F-150 Regular Cab 2007 53.79% Mercedes-Benz 300-Class Convertible 1993 18.45% Lincoln Town Car Sedan 2011 9.38% Dodge Dakota Club Cab 2007 4.5% Ford Ranger SuperCab 2011 4.44% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Rolls-Royce Phantom Drophead Coupe Convertible 2012 31.88% Rolls-Royce Phantom Sedan 2012 27.79% Mazda Tribute SUV 2011 7.55% Rolls-Royce Ghost Sedan 2012 6.03% Maybach Landaulet Convertible 2012 5.44% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Jeep Liberty SUV 2012 27.11% Isuzu Ascender SUV 2008 21.77% HUMMER H3T Crew Cab 2010 13.87% Volvo 240 Sedan 1993 8.22% Jeep Patriot SUV 2012 7.06% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Bentley Continental Flying Spur Sedan 2007 28.6% Buick Enclave SUV 2012 23.35% Ford Focus Sedan 2007 11.27% Volkswagen Beetle Hatchback 2012 10.76% Suzuki SX4 Sedan 2012 9.15% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Hyundai Tucson SUV 2012 51.27% smart fortwo Convertible 2012 14.56% Ford Fiesta Sedan 2012 14.46% Acura RL Sedan 2012 8.04% Land Rover LR2 SUV 2012 1.63% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Ford GT Coupe 2006 46.76% Chevrolet Sonic Sedan 2012 10.48% Ferrari 458 Italia Coupe 2012 10.03% Bentley Continental GT Coupe 2007 5.0% BMW X6 SUV 2012 3.63% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 Dodge Sprinter Cargo Van 2009 32.62% Nissan Juke Hatchback 2012 12.13% Aston Martin Virage Convertible 2012 10.89% Chevrolet Silverado 2500HD Regular Cab 2012 8.65% Bentley Continental Supersports Conv. Convertible 2012 8.33% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 81.6% BMW 3 Series Sedan 2012 13.34% Daewoo Nubira Wagon 2002 1.54% BMW 3 Series Wagon 2012 1.17% BMW 1 Series Coupe 2012 0.99% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 Audi 100 Wagon 1994 50.03% Audi V8 Sedan 1994 16.89% Chrysler Town and Country Minivan 2012 9.93% Suzuki Aerio Sedan 2007 9.33% Honda Accord Sedan 2012 3.03% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz C-Class Sedan 2012 48.35% Mercedes-Benz E-Class Sedan 2012 41.17% Mercedes-Benz S-Class Sedan 2012 10.42% Audi S6 Sedan 2011 0.02% Hyundai Azera Sedan 2012 0.01% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 41.85% Honda Accord Coupe 2012 14.03% Bentley Continental Supersports Conv. Convertible 2012 12.55% Ferrari California Convertible 2012 7.53% Ferrari FF Coupe 2012 6.94% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Tahoe Hybrid SUV 2012 26.73% Toyota 4Runner SUV 2012 16.5% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 12.46% Dodge Journey SUV 2012 5.81% Dodge Durango SUV 2012 4.52% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Dodge Charger SRT-8 2009 91.32% Dodge Magnum Wagon 2008 8.68% Chevrolet Camaro Convertible 2012 0.0% Dodge Charger Sedan 2012 0.0% Dodge Challenger SRT8 2011 0.0% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 Volvo XC90 SUV 2007 41.39% GMC Savana Van 2012 4.76% Buick Rainier SUV 2007 3.52% Chevrolet Silverado 1500 Classic Extended Cab 2007 3.38% Ford Ranger SuperCab 2011 3.0% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Jeep Patriot SUV 2012 75.42% Ford E-Series Wagon Van 2012 11.34% Chevrolet Tahoe Hybrid SUV 2012 4.88% Buick Rainier SUV 2007 4.18% Nissan NV Passenger Van 2012 1.24% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Hyundai Genesis Sedan 2012 11.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 11.01% Scion xD Hatchback 2012 7.68% Nissan 240SX Coupe 1998 5.0% Hyundai Veracruz SUV 2012 2.78% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 99.31% Mercedes-Benz 300-Class Convertible 1993 0.69% Ford F-150 Regular Cab 2007 0.0% Chrysler PT Cruiser Convertible 2008 0.0% Chevrolet Corvette Convertible 2012 0.0% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 Hyundai Sonata Hybrid Sedan 2012 47.2% Suzuki Aerio Sedan 2007 15.48% Hyundai Veloster Hatchback 2012 12.0% Mitsubishi Lancer Sedan 2012 5.63% Bentley Continental GT Coupe 2012 2.63% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 100.0% Mitsubishi Lancer Sedan 2012 0.0% Audi TTS Coupe 2012 0.0% Bentley Continental GT Coupe 2012 0.0% Hyundai Veloster Hatchback 2012 0.0% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 Dodge Caravan Minivan 1997 92.44% Ford Freestar Minivan 2007 7.17% Plymouth Neon Coupe 1999 0.09% Audi 100 Wagon 1994 0.09% Eagle Talon Hatchback 1998 0.04% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Bentley Continental Supersports Conv. Convertible 2012 64.68% Bentley Continental GT Coupe 2012 19.0% BMW 1 Series Convertible 2012 9.64% Bentley Continental Flying Spur Sedan 2007 2.26% Bentley Mulsanne Sedan 2011 1.03% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Chrysler Sebring Convertible 2010 75.77% Chrysler Crossfire Convertible 2008 23.69% Chrysler PT Cruiser Convertible 2008 0.54% Mercedes-Benz S-Class Sedan 2012 0.0% Mercedes-Benz 300-Class Convertible 1993 0.0% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% Dodge Sprinter Cargo Van 2009 0.0% Suzuki Aerio Sedan 2007 0.0% Ram C/V Cargo Van Minivan 2012 0.0% Suzuki SX4 Sedan 2012 0.0% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 GMC Yukon Hybrid SUV 2012 90.11% Isuzu Ascender SUV 2008 4.9% Jeep Patriot SUV 2012 3.41% Chevrolet Tahoe Hybrid SUV 2012 1.27% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 0.29% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Chevrolet Sonic Sedan 2012 65.93% Mitsubishi Lancer Sedan 2012 8.55% Dodge Caliber Wagon 2007 4.11% BMW 3 Series Sedan 2012 2.64% BMW 1 Series Coupe 2012 2.57% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 Mercedes-Benz Sprinter Van 2012 87.6% Dodge Sprinter Cargo Van 2009 12.4% Ram C/V Cargo Van Minivan 2012 0.0% Chevrolet Traverse SUV 2012 0.0% Ford Freestar Minivan 2007 0.0% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Cadillac CTS-V Sedan 2012 44.15% Maybach Landaulet Convertible 2012 28.53% Dodge Journey SUV 2012 9.18% MINI Cooper Roadster Convertible 2012 3.97% Land Rover Range Rover SUV 2012 3.54% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 Dodge Journey SUV 2012 51.41% Dodge Durango SUV 2012 22.48% Chevrolet Avalanche Crew Cab 2012 7.54% Chevrolet TrailBlazer SS 2009 4.79% Dodge Caravan Minivan 1997 2.37% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 77.6% Toyota Camry Sedan 2012 22.07% Hyundai Accent Sedan 2012 0.32% Acura TSX Sedan 2012 0.0% Ford Fiesta Sedan 2012 0.0% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 BMW X6 SUV 2012 52.57% Audi 100 Wagon 1994 12.0% Buick Enclave SUV 2012 8.3% Cadillac SRX SUV 2012 8.09% Acura ZDX Hatchback 2012 4.77% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Ford E-Series Wagon Van 2012 52.46% Plymouth Neon Coupe 1999 10.76% Chrysler Aspen SUV 2009 4.81% Isuzu Ascender SUV 2008 4.25% Hyundai Tucson SUV 2012 2.7% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 Audi A5 Coupe 2012 92.36% Audi S6 Sedan 2011 5.81% Audi S4 Sedan 2012 0.97% Audi RS 4 Convertible 2008 0.27% Audi S5 Convertible 2012 0.25% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 63.36% HUMMER H3T Crew Cab 2010 36.6% Jeep Grand Cherokee SUV 2012 0.03% Jeep Compass SUV 2012 0.0% AM General Hummer SUV 2000 0.0% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 49.33% Ford F-150 Regular Cab 2012 15.76% Dodge Ram Pickup 3500 Crew Cab 2010 9.23% Ford F-150 Regular Cab 2007 5.5% Ford F-450 Super Duty Crew Cab 2012 5.2% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Audi TT RS Coupe 2012 99.96% Ferrari 458 Italia Convertible 2012 0.04% Lamborghini Aventador Coupe 2012 0.0% Audi TTS Coupe 2012 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Toyota Corolla Sedan 2012 81.81% Hyundai Accent Sedan 2012 12.33% Ford Fiesta Sedan 2012 3.13% Hyundai Veloster Hatchback 2012 0.66% Hyundai Sonata Hybrid Sedan 2012 0.54% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 Cadillac CTS-V Sedan 2012 6.61% Cadillac SRX SUV 2012 5.25% BMW X3 SUV 2012 5.22% Hyundai Veracruz SUV 2012 3.69% GMC Terrain SUV 2012 3.66% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 FIAT 500 Abarth 2012 99.97% Acura Integra Type R 2001 0.03% Audi V8 Sedan 1994 0.0% Mercedes-Benz C-Class Sedan 2012 0.0% Mercedes-Benz SL-Class Coupe 2009 0.0% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 Hyundai Sonata Sedan 2012 66.39% Hyundai Azera Sedan 2012 31.24% Cadillac SRX SUV 2012 1.36% Hyundai Tucson SUV 2012 0.51% Chevrolet Traverse SUV 2012 0.35% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Chevrolet TrailBlazer SS 2009 86.27% Nissan 240SX Coupe 1998 5.9% Volvo 240 Sedan 1993 2.36% Porsche Panamera Sedan 2012 1.69% Audi V8 Sedan 1994 1.14% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 Aston Martin V8 Vantage Coupe 2012 57.85% Chevrolet Corvette Ron Fellows Edition Z06 2007 5.76% Jaguar XK XKR 2012 5.31% Aston Martin Virage Convertible 2012 2.81% Chevrolet Corvette ZR1 2012 2.55% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Hyundai Elantra Sedan 2007 28.22% Nissan 240SX Coupe 1998 25.43% Plymouth Neon Coupe 1999 14.26% BMW 3 Series Sedan 2012 13.13% Eagle Talon Hatchback 1998 6.53% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Audi S4 Sedan 2007 31.5% Audi A5 Coupe 2012 24.24% Mitsubishi Lancer Sedan 2012 21.73% Audi S4 Sedan 2012 4.83% Audi S5 Coupe 2012 4.31% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Cadillac CTS-V Sedan 2012 8.66% Hyundai Veracruz SUV 2012 3.39% Buick Verano Sedan 2012 3.34% Chevrolet Malibu Hybrid Sedan 2010 3.25% Nissan 240SX Coupe 1998 2.87% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Spyker C8 Convertible 2009 88.04% Bentley Continental GT Coupe 2007 5.51% Eagle Talon Hatchback 1998 2.22% Chevrolet Corvette ZR1 2012 1.61% Lamborghini Reventon Coupe 2008 1.26% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Aston Martin V8 Vantage Coupe 2012 28.96% Fisker Karma Sedan 2012 28.78% Jaguar XK XKR 2012 14.8% Audi R8 Coupe 2012 6.16% Rolls-Royce Ghost Sedan 2012 4.13% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 Suzuki SX4 Sedan 2012 23.93% Chevrolet Malibu Hybrid Sedan 2010 12.63% Chevrolet Monte Carlo Coupe 2007 10.77% Chevrolet Impala Sedan 2007 10.13% Chrysler Sebring Convertible 2010 5.99% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 BMW 3 Series Wagon 2012 43.7% Chrysler Crossfire Convertible 2008 27.68% Mercedes-Benz C-Class Sedan 2012 11.14% BMW 6 Series Convertible 2007 10.37% Chevrolet Monte Carlo Coupe 2007 3.05% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 Audi S5 Convertible 2012 87.56% Audi RS 4 Convertible 2008 3.54% BMW Z4 Convertible 2012 2.02% Mercedes-Benz E-Class Sedan 2012 1.28% Porsche Panamera Sedan 2012 0.79% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 Land Rover Range Rover SUV 2012 59.65% Honda Odyssey Minivan 2012 25.7% Hyundai Azera Sedan 2012 10.8% Hyundai Veracruz SUV 2012 2.91% FIAT 500 Abarth 2012 0.14% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 Land Rover LR2 SUV 2012 42.65% GMC Savana Van 2012 15.46% Jeep Wrangler SUV 2012 11.38% HUMMER H3T Crew Cab 2010 3.69% Ford GT Coupe 2006 3.47% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 61.02% Chevrolet Silverado 1500 Regular Cab 2012 9.12% Audi 100 Wagon 1994 8.19% Chevrolet Malibu Sedan 2007 2.93% Cadillac CTS-V Sedan 2012 1.53% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Audi 100 Wagon 1994 27.1% BMW 3 Series Sedan 2012 18.46% Dodge Dakota Crew Cab 2010 13.53% Lincoln Town Car Sedan 2011 10.28% BMW ActiveHybrid 5 Sedan 2012 2.57% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Malibu Hybrid Sedan 2010 99.99% Acura TL Sedan 2012 0.0% Chevrolet Monte Carlo Coupe 2007 0.0% Chevrolet Cobalt SS 2010 0.0% Hyundai Sonata Sedan 2012 0.0% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Ford Expedition EL SUV 2009 59.78% Toyota Sequoia SUV 2012 32.0% Land Rover Range Rover SUV 2012 3.54% Chrysler Aspen SUV 2009 1.23% Dodge Durango SUV 2012 1.22% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Ram Pickup 3500 Quad Cab 2009 95.65% Dodge Ram Pickup 3500 Crew Cab 2010 4.34% Dodge Dakota Crew Cab 2010 0.01% Dodge Dakota Club Cab 2007 0.0% AM General Hummer SUV 2000 0.0% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Ford Mustang Convertible 2007 76.14% GMC Terrain SUV 2012 7.12% Jeep Grand Cherokee SUV 2012 2.14% Buick Enclave SUV 2012 1.56% Hyundai Tucson SUV 2012 1.46% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 94.6% McLaren MP4-12C Coupe 2012 5.25% Bugatti Veyron 16.4 Coupe 2009 0.03% Spyker C8 Convertible 2009 0.03% Lamborghini Aventador Coupe 2012 0.02% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 56.65% Ford Mustang Convertible 2007 28.23% Audi R8 Coupe 2012 7.89% Lamborghini Aventador Coupe 2012 4.73% Bugatti Veyron 16.4 Convertible 2009 1.42% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 94.26% Dodge Caliber Wagon 2012 4.01% Dodge Charger Sedan 2012 0.75% Dodge Magnum Wagon 2008 0.38% BMW 3 Series Sedan 2012 0.18% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Ford Ranger SuperCab 2011 16.41% Chevrolet Avalanche Crew Cab 2012 10.79% Chevrolet Silverado 2500HD Regular Cab 2012 10.39% Dodge Ram Pickup 3500 Quad Cab 2009 9.17% Dodge Dakota Club Cab 2007 8.64% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Bugatti Veyron 16.4 Coupe 2009 75.06% Rolls-Royce Phantom Drophead Coupe Convertible 2012 5.77% Lamborghini Reventon Coupe 2008 4.16% Aston Martin V8 Vantage Coupe 2012 2.66% Lamborghini Aventador Coupe 2012 1.41% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Geo Metro Convertible 1993 100.0% Chevrolet Corvette Convertible 2012 0.0% Acura Integra Type R 2001 0.0% Lamborghini Diablo Coupe 2001 0.0% Eagle Talon Hatchback 1998 0.0% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Suzuki Kizashi Sedan 2012 27.09% Nissan Juke Hatchback 2012 19.21% BMW M3 Coupe 2012 11.43% Porsche Panamera Sedan 2012 9.05% MINI Cooper Roadster Convertible 2012 5.67% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Ram C/V Cargo Van Minivan 2012 20.11% Lincoln Town Car Sedan 2011 17.68% Rolls-Royce Ghost Sedan 2012 8.8% Maybach Landaulet Convertible 2012 8.1% Audi 100 Sedan 1994 5.99% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Mitsubishi Lancer Sedan 2012 44.89% Hyundai Veloster Hatchback 2012 32.27% Spyker C8 Coupe 2009 17.69% Hyundai Elantra Touring Hatchback 2012 1.75% Nissan 240SX Coupe 1998 0.53% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 98.24% Toyota Sequoia SUV 2012 0.77% Ford F-150 Regular Cab 2012 0.68% Ford E-Series Wagon Van 2012 0.21% Ford Ranger SuperCab 2011 0.06% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Porsche Panamera Sedan 2012 32.1% Mercedes-Benz C-Class Sedan 2012 10.59% Hyundai Sonata Hybrid Sedan 2012 6.78% Toyota Camry Sedan 2012 4.71% Acura TL Type-S 2008 4.22% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 Aston Martin V8 Vantage Convertible 2012 64.14% Lamborghini Aventador Coupe 2012 14.3% Bugatti Veyron 16.4 Convertible 2009 9.27% McLaren MP4-12C Coupe 2012 4.85% Lamborghini Reventon Coupe 2008 2.49% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 Chevrolet Express Cargo Van 2007 52.65% Nissan NV Passenger Van 2012 24.57% Ford F-150 Regular Cab 2012 8.27% Dodge Sprinter Cargo Van 2009 6.63% Ford F-450 Super Duty Crew Cab 2012 2.04% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Nissan NV Passenger Van 2012 100.0% Ford E-Series Wagon Van 2012 0.0% Ford F-150 Regular Cab 2007 0.0% Jeep Patriot SUV 2012 0.0% Dodge Durango SUV 2007 0.0% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Audi A5 Coupe 2012 81.81% Audi S4 Sedan 2007 17.88% Audi S5 Coupe 2012 0.3% Audi S5 Convertible 2012 0.01% Audi S6 Sedan 2011 0.0% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chrysler Aspen SUV 2009 98.96% Ford F-150 Regular Cab 2012 0.58% Dodge Ram Pickup 3500 Crew Cab 2010 0.19% Ford Expedition EL SUV 2009 0.05% Land Rover Range Rover SUV 2012 0.04% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Audi RS 4 Convertible 2008 39.39% Audi S5 Coupe 2012 32.67% Audi S4 Sedan 2007 12.08% Audi TTS Coupe 2012 8.9% Audi S5 Convertible 2012 3.56% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 35.47% BMW 3 Series Sedan 2012 31.75% FIAT 500 Convertible 2012 8.48% Mercedes-Benz S-Class Sedan 2012 5.5% BMW ActiveHybrid 5 Sedan 2012 5.45% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 Bugatti Veyron 16.4 Convertible 2009 99.59% Bugatti Veyron 16.4 Coupe 2009 0.24% smart fortwo Convertible 2012 0.08% Spyker C8 Convertible 2009 0.04% Ford GT Coupe 2006 0.02% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Lamborghini Aventador Coupe 2012 27.16% Bugatti Veyron 16.4 Coupe 2009 24.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 6.03% Chrysler 300 SRT-8 2010 4.8% McLaren MP4-12C Coupe 2012 2.9% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 GMC Savana Van 2012 98.84% Audi 100 Wagon 1994 0.5% Infiniti QX56 SUV 2011 0.42% Audi 100 Sedan 1994 0.04% Dodge Durango SUV 2007 0.04% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 100.0% Bentley Continental Supersports Conv. Convertible 2012 0.0% BMW M3 Coupe 2012 0.0% Nissan Leaf Hatchback 2012 0.0% Volkswagen Beetle Hatchback 2012 0.0% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 56.28% Ford GT Coupe 2006 14.05% Lamborghini Reventon Coupe 2008 12.35% Bugatti Veyron 16.4 Convertible 2009 5.31% Spyker C8 Convertible 2009 3.7% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Hyundai Azera Sedan 2012 89.59% Mercedes-Benz S-Class Sedan 2012 8.02% Hyundai Genesis Sedan 2012 1.37% Hyundai Sonata Sedan 2012 0.88% Chevrolet Camaro Convertible 2012 0.07% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 Volkswagen Beetle Hatchback 2012 28.17% Acura ZDX Hatchback 2012 15.18% Chevrolet Impala Sedan 2007 13.84% Lincoln Town Car Sedan 2011 5.93% Buick Verano Sedan 2012 4.09% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Volvo XC90 SUV 2007 59.71% Jeep Compass SUV 2012 5.42% Ford Freestar Minivan 2007 5.01% Buick Rainier SUV 2007 3.48% BMW X5 SUV 2007 3.1% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Audi A5 Coupe 2012 36.46% Audi S4 Sedan 2012 21.08% Audi S4 Sedan 2007 10.72% Audi S5 Coupe 2012 9.92% Hyundai Genesis Sedan 2012 4.18% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Porsche Panamera Sedan 2012 82.3% BMW ActiveHybrid 5 Sedan 2012 11.89% Jaguar XK XKR 2012 1.0% Volkswagen Beetle Hatchback 2012 0.97% Hyundai Sonata Sedan 2012 0.76% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Lincoln Town Car Sedan 2011 48.66% Ford F-150 Regular Cab 2007 6.83% Ford Freestar Minivan 2007 6.45% Dodge Caravan Minivan 1997 4.86% Audi 100 Sedan 1994 4.03% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Dodge Durango SUV 2012 66.11% Infiniti QX56 SUV 2011 11.13% Buick Enclave SUV 2012 6.02% Ford Expedition EL SUV 2009 3.46% Audi 100 Wagon 1994 1.4% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 McLaren MP4-12C Coupe 2012 69.88% Aston Martin Virage Coupe 2012 17.88% Aston Martin V8 Vantage Coupe 2012 5.93% Spyker C8 Coupe 2009 2.26% Ford GT Coupe 2006 0.76% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Dakota Crew Cab 2010 97.8% Dodge Dakota Club Cab 2007 2.01% Dodge Durango SUV 2007 0.1% Dodge Charger Sedan 2012 0.08% Dodge Caliber Wagon 2007 0.0% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 Ford F-150 Regular Cab 2012 64.62% Chrysler PT Cruiser Convertible 2008 8.89% Chevrolet Malibu Sedan 2007 6.39% Lincoln Town Car Sedan 2011 5.3% Ford F-150 Regular Cab 2007 3.66% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Chevrolet Express Van 2007 55.99% Audi V8 Sedan 1994 20.38% Chevrolet Express Cargo Van 2007 12.61% Plymouth Neon Coupe 1999 10.53% Acura Integra Type R 2001 0.17% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Buick Regal GS 2012 44.95% Audi S6 Sedan 2011 20.43% Audi S5 Coupe 2012 17.03% Tesla Model S Sedan 2012 12.9% Rolls-Royce Ghost Sedan 2012 1.54% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 100.0% Land Rover LR2 SUV 2012 0.0% Honda Odyssey Minivan 2012 0.0% Ford Expedition EL SUV 2009 0.0% Hyundai Accent Sedan 2012 0.0% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Hyundai Genesis Sedan 2012 48.05% Tesla Model S Sedan 2012 29.33% BMW 6 Series Convertible 2007 9.47% Mercedes-Benz S-Class Sedan 2012 2.14% Infiniti G Coupe IPL 2012 1.87% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ford Freestar Minivan 2007 98.37% Dodge Caravan Minivan 1997 0.76% Plymouth Neon Coupe 1999 0.36% Ford Focus Sedan 2007 0.3% Daewoo Nubira Wagon 2002 0.16% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 GMC Yukon Hybrid SUV 2012 17.57% Bentley Arnage Sedan 2009 14.86% Dodge Caliber Wagon 2012 13.22% Acura ZDX Hatchback 2012 9.39% Scion xD Hatchback 2012 8.68% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 Suzuki SX4 Hatchback 2012 78.09% Chevrolet HHR SS 2010 14.85% Suzuki SX4 Sedan 2012 3.6% Suzuki Aerio Sedan 2007 1.34% Toyota Corolla Sedan 2012 0.84% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 Audi TT Hatchback 2011 48.29% Porsche Panamera Sedan 2012 32.34% Volkswagen Beetle Hatchback 2012 6.59% Buick Regal GS 2012 4.68% Audi TT RS Coupe 2012 2.93% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 Ford Edge SUV 2012 99.28% Nissan Juke Hatchback 2012 0.15% Jeep Wrangler SUV 2012 0.09% Land Rover LR2 SUV 2012 0.06% BMW 1 Series Coupe 2012 0.04% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Chrysler 300 SRT-8 2010 69.85% Bentley Arnage Sedan 2009 7.32% Mercedes-Benz 300-Class Convertible 1993 5.03% Bentley Continental Flying Spur Sedan 2007 3.08% Volkswagen Golf Hatchback 1991 2.73% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 Honda Accord Coupe 2012 8.89% Suzuki SX4 Hatchback 2012 7.84% Acura ZDX Hatchback 2012 6.7% Porsche Panamera Sedan 2012 6.46% Nissan Juke Hatchback 2012 4.87% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet Avalanche Crew Cab 2012 19.0% Chrysler Aspen SUV 2009 17.47% Ford F-150 Regular Cab 2007 10.39% Chevrolet Tahoe Hybrid SUV 2012 7.46% Buick Rainier SUV 2007 4.53% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Toyota Corolla Sedan 2012 99.63% Acura TSX Sedan 2012 0.25% Toyota Camry Sedan 2012 0.11% Volkswagen Golf Hatchback 2012 0.01% Hyundai Accent Sedan 2012 0.0% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Ford GT Coupe 2006 97.92% Lamborghini Aventador Coupe 2012 0.49% Chevrolet Camaro Convertible 2012 0.47% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.27% HUMMER H2 SUT Crew Cab 2009 0.16% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Chevrolet TrailBlazer SS 2009 16.69% Chevrolet Avalanche Crew Cab 2012 10.29% Audi S4 Sedan 2007 7.8% Dodge Charger Sedan 2012 6.92% Dodge Caliber Wagon 2012 5.96% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Hyundai Santa Fe SUV 2012 100.0% Honda Odyssey Minivan 2012 0.0% Honda Accord Sedan 2012 0.0% Dodge Caravan Minivan 1997 0.0% Land Rover LR2 SUV 2012 0.0% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Acura ZDX Hatchback 2012 62.01% Audi TT Hatchback 2011 16.82% Buick Regal GS 2012 6.1% Acura TSX Sedan 2012 3.95% Toyota Camry Sedan 2012 2.53% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 100.0% BMW X3 SUV 2012 0.0% Dodge Sprinter Cargo Van 2009 0.0% BMW X5 SUV 2007 0.0% Buick Rainier SUV 2007 0.0% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 43.85% Aston Martin Virage Convertible 2012 16.84% Bentley Arnage Sedan 2009 15.85% Fisker Karma Sedan 2012 7.74% Spyker C8 Convertible 2009 5.31% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Chevrolet Silverado 1500 Classic Extended Cab 2007 85.82% Hyundai Elantra Touring Hatchback 2012 5.0% Ford Focus Sedan 2007 4.21% Volkswagen Golf Hatchback 1991 2.39% Mercedes-Benz Sprinter Van 2012 0.9% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 GMC Terrain SUV 2012 95.23% Ford F-150 Regular Cab 2012 1.57% Nissan NV Passenger Van 2012 1.2% Chrysler 300 SRT-8 2010 0.49% Hyundai Sonata Hybrid Sedan 2012 0.31% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 BMW 3 Series Sedan 2012 30.39% BMW M5 Sedan 2010 21.56% Buick Regal GS 2012 19.04% Tesla Model S Sedan 2012 9.04% Chevrolet Impala Sedan 2007 2.39% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bentley Continental Supersports Conv. Convertible 2012 92.42% FIAT 500 Convertible 2012 1.51% Plymouth Neon Coupe 1999 1.47% Lincoln Town Car Sedan 2011 0.67% Bentley Continental Flying Spur Sedan 2007 0.59% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Rolls-Royce Ghost Sedan 2012 31.99% Rolls-Royce Phantom Sedan 2012 7.49% Jeep Grand Cherokee SUV 2012 6.04% Chevrolet Sonic Sedan 2012 5.54% BMW ActiveHybrid 5 Sedan 2012 5.01% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 Jeep Compass SUV 2012 19.71% BMW X3 SUV 2012 17.82% BMW X5 SUV 2007 8.96% Nissan Juke Hatchback 2012 5.71% Ford Mustang Convertible 2007 5.12% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Audi S5 Convertible 2012 36.25% Audi RS 4 Convertible 2008 35.39% Mercedes-Benz SL-Class Coupe 2009 16.32% Fisker Karma Sedan 2012 4.78% Audi R8 Coupe 2012 2.71% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Buick Verano Sedan 2012 36.92% Suzuki SX4 Sedan 2012 26.06% Honda Odyssey Minivan 2012 10.36% Honda Odyssey Minivan 2007 6.38% BMW M5 Sedan 2010 5.84% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 Chrysler Sebring Convertible 2010 93.44% Toyota Corolla Sedan 2012 4.62% Audi S4 Sedan 2007 0.42% Jaguar XK XKR 2012 0.4% BMW 3 Series Wagon 2012 0.13% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 77.72% Dodge Caliber Wagon 2012 21.97% Ford Freestar Minivan 2007 0.24% Dodge Journey SUV 2012 0.02% Ram C/V Cargo Van Minivan 2012 0.01% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 BMW X5 SUV 2007 77.34% Rolls-Royce Ghost Sedan 2012 6.33% BMW X6 SUV 2012 5.49% BMW 3 Series Wagon 2012 0.97% Acura RL Sedan 2012 0.8% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 Chevrolet Corvette Convertible 2012 59.43% Jaguar XK XKR 2012 8.07% Acura Integra Type R 2001 4.82% Chevrolet Cobalt SS 2010 4.73% Aston Martin V8 Vantage Coupe 2012 3.39% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Honda Accord Coupe 2012 85.56% Hyundai Genesis Sedan 2012 7.34% Acura RL Sedan 2012 1.73% Mitsubishi Lancer Sedan 2012 0.99% Volkswagen Golf Hatchback 2012 0.7% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Volkswagen Beetle Hatchback 2012 98.62% Nissan Leaf Hatchback 2012 1.04% Acura Integra Type R 2001 0.14% Toyota Camry Sedan 2012 0.08% Scion xD Hatchback 2012 0.02% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 AM General Hummer SUV 2000 29.63% Rolls-Royce Phantom Drophead Coupe Convertible 2012 15.3% Mercedes-Benz 300-Class Convertible 1993 13.48% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.71% Hyundai Veloster Hatchback 2012 3.25% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Acura TL Sedan 2012 70.08% Acura RL Sedan 2012 29.92% Acura TSX Sedan 2012 0.0% Acura ZDX Hatchback 2012 0.0% Honda Odyssey Minivan 2012 0.0% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Chevrolet TrailBlazer SS 2009 98.49% Nissan 240SX Coupe 1998 0.43% Eagle Talon Hatchback 1998 0.32% Chevrolet Camaro Convertible 2012 0.11% Plymouth Neon Coupe 1999 0.09% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 Isuzu Ascender SUV 2008 100.0% HUMMER H3T Crew Cab 2010 0.0% Volvo XC90 SUV 2007 0.0% Jeep Compass SUV 2012 0.0% Chevrolet Tahoe Hybrid SUV 2012 0.0% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 Acura TSX Sedan 2012 24.4% Toyota Camry Sedan 2012 22.34% Audi TT Hatchback 2011 13.36% BMW 1 Series Coupe 2012 8.22% Volkswagen Golf Hatchback 2012 7.0% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Jaguar XK XKR 2012 21.88% Suzuki Kizashi Sedan 2012 18.17% Infiniti G Coupe IPL 2012 10.76% BMW M6 Convertible 2010 6.13% Rolls-Royce Phantom Drophead Coupe Convertible 2012 4.29% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Jeep Compass SUV 2012 30.78% Chrysler 300 SRT-8 2010 23.8% Audi S6 Sedan 2011 16.4% Bugatti Veyron 16.4 Coupe 2009 6.42% BMW 3 Series Sedan 2012 5.4% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Chevrolet Corvette ZR1 2012 30.35% Aston Martin Virage Coupe 2012 13.82% Chevrolet Corvette Convertible 2012 13.45% Acura Integra Type R 2001 9.47% Lamborghini Diablo Coupe 2001 9.04% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 Volvo 240 Sedan 1993 35.71% Audi 100 Wagon 1994 21.73% Rolls-Royce Phantom Drophead Coupe Convertible 2012 20.99% Rolls-Royce Ghost Sedan 2012 9.67% Rolls-Royce Phantom Sedan 2012 3.67% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Dodge Ram Pickup 3500 Crew Cab 2010 99.99% Dodge Ram Pickup 3500 Quad Cab 2009 0.0% Dodge Durango SUV 2007 0.0% Nissan NV Passenger Van 2012 0.0% GMC Canyon Extended Cab 2012 0.0% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Lincoln Town Car Sedan 2011 76.21% Chevrolet Malibu Sedan 2007 23.74% Chevrolet Monte Carlo Coupe 2007 0.02% Chevrolet Impala Sedan 2007 0.02% Chrysler Town and Country Minivan 2012 0.0% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 Chevrolet Monte Carlo Coupe 2007 21.11% Chevrolet Malibu Sedan 2007 20.16% Dodge Dakota Club Cab 2007 13.24% Chevrolet Avalanche Crew Cab 2012 10.59% Mazda Tribute SUV 2011 5.48% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Hyundai Sonata Sedan 2012 73.59% Hyundai Tucson SUV 2012 14.01% Ford Edge SUV 2012 9.85% Hyundai Santa Fe SUV 2012 1.03% Honda Odyssey Minivan 2012 0.84% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Acura TL Type-S 2008 49.03% Fisker Karma Sedan 2012 15.46% Porsche Panamera Sedan 2012 11.2% Mercedes-Benz 300-Class Convertible 1993 7.88% Audi TT Hatchback 2011 2.41% \ No newline at end of file diff --git a/cars/lr-investigations/sigmoid/1e-2/50_0.2/small.png b/cars/lr-investigations/sigmoid/1e-2/50_0.2/small.png new file mode 100644 index 0000000000000000000000000000000000000000..46eaf97c8e002eb3bc954f4dee9ba3f8ac507583 GIT binary patch literal 104351 zcmdSB1yq&o_AO3#BPiXV(kLJ;A>Gnlg3`6=kWfGxBqc;Zy1P?CO1isa)1CL-faiSY zJHM0n-v1r{J%$6{JvQvU-{)Ct%{Av-Pk_9v7&;0e3KSF+x`eohA`}!HE)*0D7zqJ* z#wCOS1NZ@Lrzj=_mETLe4qU*Q2+9aTK^29fUh2aG*T~l5>UL027%h;0(Ct>4Mo>^U z=@KG>N=`ak(}-@LU!5cF>Jq-AJ`8*L5(Y)mO0q~^$=nGAd&s){;4=BB_rRPENqjHY zDZ|9dgyQid^UTMeM4k)Ew8NoNe~v{!PVw~}y5TP=F>);Va$cXddog1Y>S#P_^z34# zr~9CncTvF*n)2@PO>}?g1_%4@!H(jCEOPfa>I@N0YqxFPG|1x>={tJw=jYKKTt4*T zldkDWZC61*KWpsEyH_rSz~P+tv}kCTK5Tf7c2I~@#m=6Y)mcW|BRn=RVJ$e5EiSE7 ziDt8LM%c=z{=Sn51_O+3M~ij$mR00U?+Y`_V);xsM)C;)E91{%(~?UN2n?{Q=nxd< z^EVcXrVQDzbbZcnj}EMrNBM1xVeWoYfn?8#9Yw7w1A)~sco^hRTvCW{h^>!G?Z3P3 zpHPCYJ|1n@bs!N7KINs=KgS_|l5^E3qsQWZ}yL8>DS*Yuiw~!e`V-3+)isEH`gz@K1Hhe zSRu5Rmsc#Wb8$We)f;1DN>*0vXC}SA4Gj(Xc_84gFSL_+4$+*{U!R+~FSSK4@5aLU zy}>X=ZoLTa&?fmHuWcgJ@#tf$dX;~GQ(3Pk6*a}8QESSI;Kju8s&8^!q0`<10@>Xb z7`o=YK3&|PwRI0|gCok!$K{SCcQjw_wQ$G0+hwK=O9(|dMM+?r(_Q_mpWl&#AED-U zdgs8S8d3>)?ILxHMzDK&M~>6gXb|_;vzYu|;@4Fu_(oPD-Gqtu{ri_{Yeqrst%i$2 zB<62dE7^@;d3kx2r~|ohyD83as3~Mlwx>bp1nHHPYFCqGW~xWb1erCyXho)Iwf9tP4~#8m~8ncSe_HOPMZ90Ty*>iJx2sqM|iO>#6-BgL=VPROnCAkmFJ52Y zX2>Op3YQ~+I7<>5R+CSff^Bxu&Q5MNwxnG5(mYSnZm;rU%w8Ii1;RD^qe5*M_b#sv^0^?Fa=v%Tcye9n3zpMw)j#jW8?2k z;R;WmK2@4DHmMnd4bl+t)*UE6J39m7AUZnw zxY*QS^QKmzXJAlrJ-RqQ-_T&gfvg-{kdBVd#wE?71dJ%b@7)rz+THTMzaRDv4qlHU zs(Qh(J#;m_&(}lL|J`DC)n6GgbjFdd<|nk={>OrTREG`mcJJjcsZ-jC_rg{2cYwS@ zm=SO@mERZ{kyB6z#&n2hWo3y=Nc7XN#iO+u7#b=lDtk-a3~f1K@ICHOwx?3vRI!N^m0D z3+|wBR*!UjlPye-6sQ9rNYsI;1`cTbuE}FmChdfS8*!|=&I_d;INp`*n)L* zUq2&@JUsZl5!ftvV#5+YP7*O(Pc=pl%v4<}C8mbT+aFdx_6t!!P-Tch|re5`rQ&DR+>WEb_; ziOfR70+V{*az-jDSY%{mpwLRn$h?x2{KORAZ^VL6L=+eifdd3)XJ@B^g{F>9KJcak z^>J}=z$>#dGvzJ5BqjnM}KF$`0irw|_u6(i|6*ynq=quZuNvcy5d-$S4l;Kj{ph>4MOvdzK$B}E(? z%A-wQyN_FkUeLZpt2?)3Xo2CKr-Z`B#Wm#gX*%+`&nd)Z-~?nQU(ujpv0ywef3EXi zoxf6qhm%r|`0iiP5iS;-3;#B9AB&F@jkUy<#F%g??~};bZG}~KZ2!pEHP4FdZx`Ex z6}n6s$#^rQcP*kl49CVJ=#3JH&p5ztL@m+y7I?_necH70( z^)~Yq@Yt_mxg2jH%k?=tJg|I7y(*@sM-Br6V~bW&|gZtD>fs zdAxD*m!d|6{HU(BcIZs1EfOw>?K@B{{Y*_vi2LF)&`$=0Sly!sBR+1uox(4}@7lJ- z7RSQP7*!v@YOrU+?^X{W`hqP^egKb%_$*8hXC19j7}&YpAANmU!t`JWd?hAU!zDXY`)j0{H2Cw_$)H7n+=$T+LsJLLF8$VK2vcxbZ0QrNS!98YiY9 ziSeV3E%*x(Qd<3b*?~+QD`)AM>VYE$g!^SPjpp#26oWx2Pb65HuT-LVppZj?%cKE| zQdUr)Pkx{HJLD6DCI8*RcAE>U0x16fmkaBb{vYSU|BF@ad9x$Wv4Q5cpmugtv^&&j z{Q-Bcn?66&*({0(o%vwjeO?1;q0v4U+DJLEKC3y=12r>g!@6DD(dM6@x=@p8d-+_G z=~uLGo{o-~?S+QU4i`Y_+%Tcq>H4?R$XT@wfCxHx)V?QE5UI~nZ+3Jz6(9GPUxx?L zap9t%peXfXvPCaRhn45$=Z~-(Jy#!PzBrC7qBikPsIkSk{ZDD0mTM<5&@70ZS4Wrx zbW?EQE}fH)B6HV2l79P{(0&8o@0I3t0Ox|^{509goYxr5F3MPb@+fcD?%7O6SW*q9 zrz;&irh9@HnFBrr-zvGz6$ffba-i_Bhr`U){})v^zLDoGebVW&ErV3Uqh*hP>XC3i zRb(blFrHiNeocN>)N8FzCJi$wQumNQdO7ct60$>HsJO^zz{6Dvmwd2um!V~8`buk~ zp3rM&B@NQ^F?3AklR+ZRE5)y&cPTM5FXE+;+Jiz{xnPZ-DkXF{tXIUaD0@;ZESU7+ z^nIgC8X+qb=I?4f$_))!n$TuIk?a#rb~(>(WBwZl6DHBDZs2%-ALUam)emCx<8Sq5 zHo4WpNP_9`d)t2EDIh81rTA+U;gme&pEp1dZf^;}Ktlnb*olsCDpup}M*vI> zCgQ|s`G`IU;3Vg(j|@h6&~2h>EpQwu*oIzt>LclBn+?KY?D+xnsz(SDz5M&bK|?BQB57l8hyCCSwgsL-7R|UZcMS@ z_+SGENX4nHC)>c6*qA8GaS7vcb9cwa!GW=|vI2_g-pPro#b#%m*7tC|ShU^_wPF>O zI{*&=)ohF938@vmh9=&DQSd-|AW)DmFE586rM&Ia%T{9YCta+tLIC6_q(xOPU*w7& zRZq5^yPO4ykg^w_`b8MM-}F50CBL#xf4yn;Ob`J={WqEIMV|#aOMB z!(k#6q_c5bB8#B9uvDLsVeel;YN&zo1mM>ZMvxB0pNI&e#M(*x`O;Sq8c1-Vhk2t|LJ9Gk81K$bKVLY>! z`gu%@!dkp6&Nz>x3+IRxea@UO=9dYW4UeCcfMm2i+(-0Quj?w;^Wc<}lgEk@d=N3e zWoC*4kod=s9~*)zFI)~E14%<(T|EncD(UIz*+A<=5)%+^bG$vBa|@uZ2<`wBKsIER zN0~9l`CK6!i0hs-dcgvVM^8@=!22rMN-9pjWkT@wJX09CP(etME7(nBjL|~=4EHbs z(WJKupPLc^S9(8m@8*{nlao>-k9Ez@#6lx&gin$`!(G2h3pg8e{`Z|%GL(8n$TMUQ ziOH4KRY+%s_B|pp5)=^hIX2e+@X%hHGBs}8%3pT_8q?2$^aum9Fu1(lRl z=g(v&S>5_qW6xV@gIv~7rw(+UhJ5Ccoqdv%**vM~px-aH?qoTLVFX^(R=mqS_+MU- zRrNR4dXPRn5mFmci=x+$@X(NUVR=Z;im4yH%E#NxAVwd4@%4(Hn+f>N_LG^DhvBaL zO;6T_45@f)F*gb4zSLq`ck*y9_8&ETE&ayfR7gufaIU^G(^9!6@TF+ZCwU0X zuYKeu=$)K-bB3nf5&eDQtV*z>9YV+T1-f`3(Y8NKz z&et#Lm@ipwcv265uNOML6QU z1RD((K&VvF2ZmESPXnp*SBZ(7lMCC51w!W;_M=Ds@1ZOe%&FHEB_=ZV2 zk%qp0%0$lW=%^|{RzVOTwcg?WzTzq~fgBFY&)9Ebp`_V~iDmY@V%w~-zo1HF>oYhm zKds`ZG!^u@R)5dmZ+`be!`h39y{Dx_j664xY^C7_*Y=YcECyyTFFI!uyL`;uy@K5T z?iNk{yrpm0DVZ;x3&m({4lSC&B^*-L^4!4ee6>GKK7{d>b;t68O%}=6{&JL~<*H{v zXz6q%=J(QDt=f`kB;AGp?w%AS^FhvA8v3Qj%WeYm6f+^;OzQxp!`riAbe`-QzZTX( zs66WMa2j=XCYii)hx;n~yZTX!rTg7B78$Zfqb>cWZg{@XwVBkM)r4yw9JK|<%4+_N zsY(_1lCjn;?@QPi5BqZ@{u$6H>bOyP3JIB!dt@#Z)ney_*yOnwThfyBWWJwHm+^$ix-gWK$Q^as9@J{?~O z`$f)BZU1Ow)*0iPK9)PZbpv?E`{neTv4$)INW< z=21yqURug5XJlpuy0ho+X1lwkflQ&Kq?B3S(>p>G5vfmoN@MXQIk^Dn?cTk6CoY>m z%^nmK`In?pH2cd1z)V!VNPMuW7*#l{M*^5Sq$BF^^MdnE_7g&&tzJ%7)rFD3r@Mo~ z59bbe`kK&9FdAnD>MG6ctxhj0lM;6|uPK&@=d^L}It5dJ9h#`LteA|3iT+89`AgkT9dgX4y&an9h!$XYEKhp6k_kS=xe$krceYcjk zO9^|DH~)>Yt}&NXQ|-Uu8` zM6OLwPbBt|2|63GRm6J*oH5YOj5ffrnM-`Gb^vEz(-=zpCb=9pFR$&DB5JpRu66A< zCF-+u2>>1u0L%civ3QK+1jpmYNY~dEbOH)uzN=%NPsvrvcq(g{K*$O+YQy~-G6 zU0vileSYxTE#eGWC2ba^q3MKjcS)>2tDSah+!HSO>a!m@!I@e$lQ5%aVUN~5OK3aN z$A zH(z`cUpW~sI%wZ_qqal9pHc77fXxj?c|E9}8@lX2+UH<&lI$VSyWtwmq<)05_5oQR z*S@nldN4|MdSPyPv(oAyhM?Vq%;aA*9py|vC>J}cJ;p1NgJ?WWmZzfZV(&QFzk;?X zUMV9CfX9OXhhKZcMc&Bc>f*(h&v>|1uLNVnEbVbR4~p4q^hGQ**g!F_G=SBK+d~=Y(eOKv<0d05ucOf3J?t75Q&Apnr;8F56-B_o z!2tsPbA0@#&z~Ovq1~y+z`=n}Lqh|wq5wchohYxZ)dKQUn)|b7&j7ffsGyKC!NJ3$ z32ef<(D!t+bV%?Y7#IjkNXV5kN^5NuNz2eQL5SQNvwF)%LLZAo`XM%+uvJU@3oFIp zMokeK>TYW`ul8#xgyM*x)Os=3XRPLw`TR$wc)Yv&g~reLo}5y5C$s31)VzMZ982K* zGfe0FZo~L@DELV=s;RcK3ELL7mxy!}x!xkjg>XC4 zCOn^lUwu&Zb)!vPJC5w?`itc-X6c>YK0W}o6JU=pM!^zlZ!9b%^hlh=3$6K9){raE zse@cz21or%;uF-E6c6`cYoC-QOrBYy+essIFc&`5^z`V0%&q$ReFdAr(AIAj&!iS? z=Y4Q|*yfpW^Kkkqw*;2A4zr2boY6t4!MlsU5>1YdFK;8@ZeN%KB7rZQ?``^tNR6qe z55g?>{0gvOM>54BK|yq8WEPubolX(YQoeqDxqL}}OLb0eY?uOlR3zxC*h+vv%2?!Q z75yp;fs`$+_~g&BnC>PIALq0Jdgtg4Vn7nf$FxoSx)|65r?{axpl8fN@gH)YT0f0T zKYc}l3{>`9#M{tg5nL) zE&*M}pscxBs7$q?pr8P_ECLvFiN>|%<@8=%wj=9edAd@+MMIN$sE+Ew|4ujGdJ;kVYs6DOQ_<`(t2}>MnoeRPK=2NCV|))UkfIT^zvX zADo_@Wo`Q8yo8Ahpg<&3fEm@oDU1aFH;I#iYq=IO5c zdiM*ER_|xdxoo^RA@ffqj1;% zfbR!r{(pn-2mAm`@aHauKlMoDGl7EA>o`}souMA+z{OJsQ-WnZ5V*T;xh-oZ%n3Z`FDB&}^0A6`^=g16vI>iOyi#YV2k zjvtUT&9luE(cG5r4SygXRP+)}Xp%vH@fi0zYWTjcs119Lzpz=8vG6&JyewsDK2`bj zM72R9nfk6D#Q4wzXPa{>&gE8Tks*#={-#E^VQRX7h|&eYU_MCdmW1kqAffpeSW_r^Axu;UXSDc>Hm?w+PhF z=cYrCgGl)_0HL#3?&kB8*I19ntiLIk#{V-yss+&6XvoQ5mRan~l$FqSs!@rBw8pX; z0+su@<s%cHW(x$KQ0D6(uCK30LPqw2NTw92fE=1ress8${J2D%MH<1x zhyfE56Lj03>;tXdAGAfl_<&AFo3V1IWmd_?8g$u$+$;E^t@@AJmnd8;!3U&vsf_G& z2**Pm=>xW-nmI}j5%m#A#tge~7AKOx62-5T)Z1!d~lh)Nn<-L4& zRdTNePb6%;6_M3=|7MTfRIDcc^o<(J6P$jBFUPIS=qmKfdBD1`~3ccQayj`=VZ_qo zQL%Nq$bRpI#eV3)RDn+5g%871HNPhXLGzi71~A7~LOm4I%9U!IoSbQ^*0x&2%usEn zCr2es!mD&wW?N}!z$5#9nXmf>v^yvG01s~+had|uJphXVw9u~v1)-nPSHWlZOG-&8 zPpYWa$el|vmN@R{ltHT2wnpb|)ym1vmMr@NX^n_M40LoFfVH6-P#} z1D=KRjc$;Zn;TQd+h=B0Z~3HVufkE$`d~6(WK`YgzZa6_-jgob(Ejs!`0N5b#YD{D zINsT5IGRqdM+7Q5Q9uIkpg7_^7q-7VjhKWwiGUr953*7LkYx9IZ)BQBemvV<*X?U# z$CVrCd$GU2+dMd!-1cr-E>fGC#9674dCT1i@lEE!dGh|Q5Cc!qZGj#7_(6=qxKEN= zW}p-A;s?2{9Qw*+G+)9TkWgAqUCs;)$W9v6`L#WU#2QTmmN%&G+JyrKo!Ux=3iyYZ z~jps7{%?=xT#vf`^neqh*)!~iJg*K7_( zr0h5b6cyBpG<0L%UIp5t53e?K-uwuB#|%XLPvMM|=NH@{x9POV-Cu87lwm|A^yn^j zB8q^{vC^cJiyAqW`gMfe=;Wm4D8T0Y&%DncjWk%7SK2%NB0W^MUE{FM6_6l?n3x!DPXJ-PS7>{{=W-|y-pV~&tb$->^RxDM>Mgf^q}Ji?cIt6%MMigj!Ox7y zsX5gcpX#2o4W;`q4U2)4qmEzSoL@N2Grva2TKwO$*!;Fs_(sS15~Z3LHl;0_;(IIe zM$2hHF~nIW<^erP&6}K#ns54v$%%ezH7okyh#DR@a>2q3(U06f1H$V$bAW`IeKEN> zIK6MSrvCBghG`kk9fzc#iRS`BgQ(8xt17#@khVZ;i1%&9?tGJ0ZY!^E)@locJ2X3S z6Keys)9u`PllhYIWQy~Mx4e!sc55r6GQ+MeWZt?vp$ZDhKI{RmN+h=lM?sSY8s2RG z)h5-7>8chIAbn_GxbJ@# zpiw{?M)1>EtcFr-R~Jc#9z!z?bIgl0f+0eDX|4C$9wQ=wrd7ggVroZMmddnuh5I=D z3J$lNp?&GYc_pc{x4*&Qbdx(;?$vp*p z{5=s4*9bL)x;rT~@Tg;=9{&-xO*3`fTREdDpR1AZ8H$~S96l`p(Yw?zQ|hB9MEY&@ zCq8lC!ZvpG&pciu3wYyX;*_qT5nh&gXgDVjv?&zkPRr@(8s%lhQiIcFd%J>~N~Z2B z(MSJ<3?=uz=SOG>;AR^xuX8;Cl*-a@DlvoZSXPLv#c4_W5uND!U9TYb1(S9uuUZB? zd}f}=_(H2wXoOJDLg~=~O{qfh)I5;K5qNW#3HzuzxMM$XKAUL;C2RXNDO|SagwxD;5fm;1KjwI2QL09O{tOX|9%=JEu`_kLd zCT%Bh#;E;0TAp}{+4a6A*tjur8C~B$E-LU5AHARhK$5%|;vM^J|7lNco1%-_v>`-B zS{g0Casfr#_P0dDq#!ljaOMGUMgdG*gi{tQ2G>}r_mHiJuB7cn(lfEi#JI3JY*tw* z{2@yWR60(Zbs;#)DQe50prF#pJ-`qWG}_s9}Mn+|edk+nu&nZL1R`d_ir*bt==Wp&_NTw6rxG z0vQCuqN1Y5PoDGx`ei}_@o+h?8j!#Se~F9Bk}~@IAN7}V?LRHqZMdWLp_A02GU$!o zwHh(RmfT&e=L^a`xIb(65E#t>VKRYCJ$ZVlZbYf96=31=3;{ijak`)a#-I4h&A z`ngvF{(1D_HPzwB#OsyL)(bvrtRQ$773r7DUJ996Xo^Q-PebRT3oM)F_gk{1?;2SP zxf&E&X_vybCuatazp0GApi%k!-g|l<2?1wxSRIkP%e%Q9`MitcWfX-j%>I*k(-qwM?K9Qz)G1?Mi0oyfam7tA@*DxfNPm3 zcie$Q1BdOBco4xeQ9uw}YzuBF)NcV$cbkXsCg4WYP_D{g{v??_X#=b6z<@|oPGiEV1iuRqLU-h}Y^9nU4|&NM+Xfj1TW z2G<>uF(rXGJU2GXdcxlx$7csDdF9Mr+@lgpr+{{nr-Z$?_!C|t8!AQe2Ul$s!MH2DTr9zHl!0luL7gVq) zcN;wKw?p-hzD91R-LH}m7}mD)xOJG>O5v#G9BwhPAt|`v#4WgTc2QpaH8L|MbM6@k zJ=-i-V!YX>d9Uq*6*)DzNK|L|pB-a%>%sp>vHKHpy8_J8f;c&N`1sj%=kD(Az-0i0 z-GC7VJkX$P05L$P20d{(TuYf4Cup}@(Pv44<~<8ZF8=g1;e5^owDs=YiEfNGk`;5i zmoMDI?FsvbPjm7J4lnGteMXs`NG?LR#gsvKACHK?dt=<)0Kj$TSK*e~vwN`D+^FNV zQCa;RL139!sr~r-(U*@8dtIUHbw+A%A_V3a${sFegH-irG7hYdc>tXSOqRKNN9=VF z1FQDMAla7{6uMa#Lgy>fX!fx7Bb3$V;Z%0~1m7FXD6(dsSw8>MDJN~=yEhg!1XeOC z*D3;J#6i_;HX4!shU}LZD0qtZp?k1+RRjyh_OyD;)T#_t3`VsQ*)X27 zWE%fn&{L)YdBUPM)5AgH(PrltmdZ)JOV^18Y#gj_X1UcDpmuflzJdD!z((kUJe2(r zgXGiRV*6&qa7TTxRP*CruqRV}{6W;jG(`uU_%L1+9z_jlW`F?=ZEWnw(vSb_O^iWSkJu#a^30aX(pg(U;=YI$H037L1Hb76` zQW(XA?>L{Oq)-QOWcVe8a0#!h;W*l1Y1cR?W3u@b6fg@33C)4Q5Wng5^>wxdAKw|> zPX-*c$R+}Uu9gC|BK;nDW-{UA+GyBXgU9#ZHgc9-SN{@_ccISq+za4J!M~?u6{}fhTo5Eq(3r;p{hh1fL`c$=)SA zt8`HHL$Bdr!KS+1>g)=<(XLLJi7p%b(V9tRox+D&HLEM4nx?X7kSwzF?(7wDe}zMq z@IrnYjs62V_+;O`y7nAHiPlPo3k}d6G8uXSC?wxSms_&jTlM3XT`1RDc^-pnm(`M~kjmn6 z_!gq6@n60EE-k31_Z7GghwFo4Wfs8P5Mbz)nQ)wI^a9}g-rk;q1raGJ;E;X{OeADm z0Jsuj(f%KKzV?#Y-=1BQ0*o>hBeBJR4<$vmuO8&G|8~oHt>KcpWBf5ZY=@?5kryr_ zd&O2|6Niha4Wzr}l-lVc^0jNS5#w4$M;}s9Q0xK{6uZ#_PfyR`@}#6o+&B2hA3NuQ zf@lUc@0!NH!T(h5(@ff?RuSPvzs+UeCyI$9NnjB1?`?3Q6o0kBWgd<7NsCWRpT5EP z7O6_t&FvgrHV4hS-$DgZdCRu$EWVk0`&e}b(1lBuBIEEF`*#G-uQ#s037#S2SBGdK zVaZ4NJ1NDITTe_UlGa{d$dr)|LEQ?x9J78>0+kOmPb|tt?pQo_YF8?Qk?yviMCNfg z;`Up5LJrR<`6%W5kDh{ufpIPcC8abe&^R+l++sn|?Mb^UcAgeX$EXS;*yD z;xW>1b>Z2vs-C=w6XyPc=tkz6`5OBIGgn;8OZSsUe_yH9KOO9-V(4V}lOw;U=8*jxIQUX-C@e~<6FM2tPk_8m=8!x8^c3YjNWsZ)xPX4ObgbaXLV>DoHU)>+OvSL+L)~r^ z=px}Otk{N;ZHNG{0%Cx(t2NIbXlZnUi@(H$6}KOC`_hnQq-Ix(#^h#)9t+6?`!NkG z8=fV1%bz-3v;#f`9vS!b==99Y{9kt^kDKC+2?esHH|)GZrE8}~cMUz^h<%`oL+$Ht zZ6VpP2)GMHZUZn3fytQP+uz=t+aHOYyxdGGdV{AtR&-LxT^_#Q=j>;nr6LoI`SV2Q zt5k>(jL_VAikv&=-p7U1AL2jd?rSSIMb*T0e{UM1T@lU!*7tp8U-b|b%9AEsL+Xin zZ{$5GI>V-j7v0I3^qDe5-1d*#LdgoG^3lP#xei8Hp?NpUYA^M*HJGkp&XqDI2m8@2@jlS2cQHj6CgV=O?%i<_~EeL=>~el(ql@oH#;Fv?ezPep9F zGw+vzvzmuq``J8r9H0aX-G17XV`@6stv&SV;A3UVh-++>E3r^`WFgWr55d!wq}pNIl^F)Toh-Ldt8*!1sxt1{?Tjn{b$jq* zNYor}Dh_I~v7z;e1`pGWj)2wtJUuStv~3TUhUi!q(+Gb5Wx$%cvaa?FH-VkySqiJu zepyoD2b$RPQ(EopoX8lum82O=&O|;eXGF=pBv+8lB%U!LILs^QLBPScWB*021N*T&iY)gRPP^ov zK7F$9RB(QCWs^_08q!?c<(Kod$=8c-w|m%dcUjf;2^*PK>GIeu_j;0G|+R;0NAqn3np%5GOlXZHY{Jz-YAXOjiW5M*jINS zQ-6>dzIy0|uq)aRzKq#asmAYoUv@>$iSE~5Bq8plg~rmDb*;;^lQh8;YMsxO_4#{C zQ|A`&pxj77rj!n+qnm&>OwwejFd6$y?cj>OX+u^u9BaExwd?BQQL>Ke(cOlp1BBz>s3dfhW>Mr2t@T5TSp|&ydCu&i!Xo@B++3U;=o$|5 zYj#`w5KRF!COwX7<~WMQ_+L}O(Z(?9KL#u>x0MW^-;*U;y6;N=W1!A9k~e4?Bji@b zNTz-fpY)iSfdy@tJ^$IyhT}oA4#v*m^zsa|(R{#ry?b=@3Xtk+fni^Cf**kKv@9=! z?nWf;mA5|I3o66TW5YY9;qS#rZGdP1jLsSNL<1lDMxp2-*tTj>^H?Ex?2#=-4EbQlK3Ur!ZY$^$8Ki|Qf80HfNawfXc*UGWg~a)3;U7ZmJ1BX zT_)jm!g}@URkcy=Gr8>mrfdF<%I^rLHYV8DN9!C~R|EJ;N>w`bdOK-zkt`JE-b`E@ z3zP7v!V{LV-U|x`0P9N3=kfp^9zHWS7c!ABFrYYGK0J(m6QX$Vn@hh1jptH3YU8nh%1f*!I1ikv4v1Dtkt3 zjzP-jzhl=hnqE%F&W`uw$rAv9MmDLLn=?pC#wP{(Y{dLq#;?D6KL0+*0CJ4G6kM*|i40T5b6}yB9i~bvnt@>9p!MU5)=}3`9PnQ;r{+aD`+^>&y3C#x12V4EQQpJuaQJ*=C|LPFg;+2!paz z8n&Sy5#*mJ9`6=jZ+gQ$(5ljFgpZx^tY%7)VRF1<{Vi*dDJOaU?dg+0iv5s%Z?V)7 z{^*%;5MU5$3nuc@Z}|ua#KBh|M_PdX5;BTz4_HEDy7!vN+UHXQ&{~ElC``XMUp-9x zRIrouDb!K`cXo!8L|ACb>PAgr*#otcCNky)gQL?{d;5@$X8%7H03toVbyGI65F~^b z0h9Sdw>mR03oP|VomsnD?IOsC_jb7Tc0hb9s~>s3x)XM{fk?J}(lhD(mkc!TiVP5k zkQ1k;h|F3+h&Gp*&iSG|Lof*qSG*xUXs5erxy+$1={Ui)xOeet(g*KFzA z(P76%SuH=XALba2>t2QgJI<{zTeUUR-#i>Ru|d64P&ZWC!cY?s@+C($m~NjRIZJCEmk_ zIf!wK0Ama|v|j?}N&x-ZeIBfWWX^y5zVcfsv#@yUi5oUb-cXrGj zZdSH3t-rO<*!QZjquw>!lsu{D!?dK5U6xvKXTThff_2)<7-Bp!Mp0Yn8g!Eb}KqSz1mnz{ZmyUn%VP-Z~ObQl+XW<%2F9;PKVlGwX(6-RJLpb zOjbf0No`i)_AYDdPKOC%MJogBPTNzfLk;dcC(3=wfOC9%tY+`pYA455M}pMu$?b@w zLJgqNhDRzmJi{fdN%f(pfTr-TrzZ5N#!!4CF;vN7Nzqo%j=$RA$lun$M|vZ19_kWu zrwZ^vl#9P~z81njVA^Ar=2vmMmEy#?N)6fAbtw8(Fu9=m)S!>BzkCJyQRJyRevU$V zeXXy|q46gfKxG3U=ij}{GM(Ho?VVxmf}Ftt972#AA5VDa6#5$(AiRFt3$~|0@YT`p zv8Z2r!1pN24hlk}rlwv~oYWWKp-4xTBGE$Lc;I^@?I-}NKiroSX7@rYCMfdn0;30$ zBi!u&$SDO{kKV*^QsjjL6llp#2fzE0286o3Lsdh^07hGC&fJ{{stKO%PvO_T+UN_} zS_Nm^&p}S`11DB!y>NdCc8JpS6nMW8PpEC01l$G%<5Oxo|wa+TB6gB>uP&Z#qTd%K7tY*N`2562H?{Li-RC)_(l2 zMtMM1slMNd@gITC#@ZMroQP`6!Crhu+jGWuO!s)97O%)@?~619AQrfP`5=`v6C_tY zqFrrmJo}8*u|unDOJDNzL2j)RjmznYd|#(SxaaJlqgKT=H}5VO_H=O7v-xPVU=;`H z7T1}+p73DN@3O^{Ddwldp8jPig;4+))2MU=WQNpI!2oSnn%c4us%>?0Fo!6RQe1uA zDFE#JwvD(P*33=vMq$+niEg>pg~}iI(7#;#X&BP&XFDt(wUZvON(jhVbp7U?ECS6j*WXo<`|BQH zrsjT=B;lEicEwV^kOX=>AhY5)a9kdI0G!R?C1lW3tt1P!3%i@wx}YqZPl18MKHWBl zYYM>04quCl6#;Sa-XW$67%e95!;oR!uH)Y@h&5ZYk%ECC{l%k7+dfJ1r)XUjYpaY4 zF(36w%@_N$y83y28TnW(-&CyY30;1Kk0rTc_-5`LL_6ajWrweqI_dnH6M;yj{n(>q$^-C-e4ywPMt zn%pbWg-k`E?{hTAx2@hg5`(E?zeYa&_$u$m)*8|Ds(?J%3xaR zfE8&G##BdmbHuyWO6!bkKGh?Ay3;mWcoMeBp1}2EgprJBb7pYoNAkxTiI`j$#G&o1 zy5ownO3#BUr=8K0p~V@iZRIz&p=WC`_+5sn-KD(!piiJccio(E-NpP}SDZX2 z@?t<|%fRC!=2Oep)US;ntpxk$Bx($h2T;q1D%x8n(%`bPvQ{p9qPOql+mv`jDL89P}P&^Fl;K(%vuTzqlbPT zto~EDufMePQ9>rIzO_;28}m~xonDDA<(Dr@V~wzyb>~(u_Jw>;JQ@(f292_Hb-Xjg zjb;)dZ?*{nNgEk06%n9qlN#mE&CPKTiDTWVPp|5*gT)W*`gi7QixYGkWI3 zdYxwZXo5~{SYn~=<_B1*U1ok2><6ulK;Fm$l|-6U2|CPsgvTZ+pgB6~T0bIImiDX> z!^=7C84(Un^Gk1JBP`n6(?48}Hhut?X)RAzf#a>(BB8x+UG@66)8~-0ac%+6+|w{U zU;CmH-=`|+7Ef8fA0EQ`tvEFL&t0TH3qL=|PL?W%L;{<+b_1kfpiKIW4XNvu9|I&V=_W zC;0u9=g4?_b%`&%7=4v8KBU74*Po(RwC{+-BJ~;_7H!Q9*FvqH@+zCx6MFo; zFFv?Tp<>)32Rn2*(x^t9(;1gmww;Zk5!V6Q|1>?aNDr_Azn$#$$qd*6q`7jxZXUId zVgeWHB!SMjvdwR6Mqh=Xi=8yeZd9I%!}CjaDzqO}9hZ^q?q*D4RTz?$8{seX9|#OmVu6*<&!K~7hBhmKlC zb2}PP_U4#}n|iyL$*$5whEVb+{jkm3LNe0IB_)vgPAFiJ6>H3y9cf6u*qjBoayD!a zr)$ib;LZO~+w{C>Pw{LmByAZg;!{Vl0T-HqvZDXRkz%*fdE8U_e#(vrsJ zwnvj*tw76Go&G)%?I@n5EBwvn_}ZlhSo4c+*i&fuiz9{*2?inTvWY5L7!(IHy+`72 z2ie%z!otG7N?8ncQY6l=8fyC}D=CJI*7r28%$g!zhxQSCXp{ww_UQ7gQ#-k8;MS+D z65Fd$&TrL#FAf#7%XgMHmjhLeYrTm+PQQ=zmh)b=P2UJrB5mr01s$-Zeg95Llg^O= zOCa@6yjSX;VUh9q-@XZzSvVXc7gnAA(ajvmzW8UCqx24^_{%0sH+9aeZy;$G$`FA` zHx{o<#z(}2X`%0FHrWobt=BX8UtD}ns$LRzu&y*Rie-YfYO9fJ1seEkjNC0G{lTi& zCR6O!Ou1jmFd%03vc{4peZTF#x(H-Z2^Db(s6o#0+aY z=h&>2u{JI?x zq*1mGw=Jq7uu6hW1ks3iJL7Zw*&CpdU7;l$_N6X4_?>CRwRYi7=V<*i(Dsz6LgC>R)`kh2Z5z~SSFM_HyKFh$@Aq=r@_Ry{9jJ-4g3j2J7kQfJZ7Q5x1zqesQ=3 zXS1C};j|Oo`BXpk(Nqn`_+r7?5h8ADaEle-llPkx5NQgB(KaP2$Fpe3)1CQbV-?yG zThTVxTd>m_vOsdKeuvXT0h7IHAKW_7v~r4j_Ans&|`dxUSjYX!Or z4M9^r=b22p$<<9r7Z#6+G*{W`k(k-18T{agPt{y>)M2~Z z%sU&37xsTa=Zg%}Z|U#gIi~>uHhbT1crIZ?^CzE1=?4#CF&c=df&q9w^Kx^gwaJ#a z1^*XeZy6PJ+qQk9l*kZ*L5Gx*3eqhoASESTGJr62cN-`<$k3po(%sF7;BqZtm^uFYvF+RT+lt!-G91vd4KobKig&-KsNC7YdHcBk zNg)nU4VTW_A|{~hAy*t*5! z#`3==IA)tM(vGwkvSTn&n0p)xK&dJ>%*$)YwcaP0^Qp zIzuO~1efESg<#;R)Z@sbWj0iQXPCk};2jWF%vbgFJb;MJ{dM9C!%)2s80oF=w@trV z&Z~c}SQJwsWnI(z*&KBDe zc%eK&Kw$@Ob4=3Z5U*MKv`9iEjev}4{2cFgKn-3NI4CUY2k3lnNcJVXhV;4FmdvMz zR;{3aWPy&jkjG^9FYszq<}LDib$)qvGCh1JXmJNvJ->?ym(8FJ-Puly$th-t#%=1p z`+r}A<%J(scupYIUpYLGH<3gcZH5w;7W**D@L$l(A%mQYgy6C-FF%J7G1~?edO>kB zb*VikhkKEz_qVzZ2Tf*bm0%vS>v3^XJR=`C7)Pv4nXXXIG0|L5lCTTGF&XmBsx z(4BazwuhgTJ{5cRS=u~i^YSQ7k@Vr0@b%IT_c2`EZ4VXLMG9O*DFyi`w)_x-uI+uu zFkjO)4Vn!)of>ahXeek_IOOe)pEZ;rphV^4=}= z@?SK}GIoLJz6S};3}3oA&u@CyetdFnH2>S95~n~tz9L^BP=LcCNc|ZY!J@>8CcpV* zA4@$jTv0DgJ^VB*OFG?N#2P8V&Mcq_LRn|X2pB6|qy`%>iY`BYjWGlf$1)8o@txSM z<|qqzw6y=GwX|K!uE!ZNE6y^%skRRCsUF?PxP}X|-Di z-vuuw{FOnD5*V3k)9|a@i7A*AwY1{-(Im9tkT+)8s>OXkxSv^`K|1^_;C+ZSvi}^1K_d@?R1bu&Dk^ z!n*gz#gmC!oBfwUum0m)I{w|dZB4Hw73GPAY8z4Ue;%uf$0%=)(<(p{L}o}(ECBSZ z;BM2If>G1g8N^;2sc!-ku+en8MS$66z&j{rbId%prlzSV>-Cvge2(Hv8+ktslk`fj&y4-?6gwwPQqh>xF(yqmCCGS@9gZ|qSzHT$Kq%UgH8DZjEBPDTKhJN6w>X^_aO3tIRkpyh zp-M{uWyAT%+P_OC17k5^h}iw9qB*}86uX2)%yte6K@O-G_+_K$Wm@D3uk&B-y7ivD zx}Etf;QCu0`vbv%QY?Ps$)o>{)J2(W|sn z@@=*4Kgl1cV#Oeimr|B(b={uQ=Ot`uSxXK9G-8ut<>%W&yqzLwV4tF<77d^!baC zW|(HBek}HsrlU!iTxT{T>|jokdFNuEe-@2q?DcUbl9|?$EcITQ)GX1KxZNgq)uq(uK~3Hn}=oy6>G4mK2yi_9HyhE^$>N z+U!hdn4ozKqiAY8vc4skU??jZ>??GUaL6omj%~x`C2l>!r8n(Ufg7_BBfV#H1n|VE zBK0k}>uL6yi?S@oSCv)D9?VKu$3fQkM-kT*4Hv6Q{}-S&;@Lfv7N2QlYTk4_+D$Xn zk|yB&>)QB;H(rE3-m48XlUBL>v`YVjw$@c)|Q zL@6>2vy3tY+Ia5#v4xXm(8fenyDlx zbXGEm*8^R%m^c0A=+tdx+sFIw83dO6W5<;G4vv_{ zTIipy{X=hXS1Ts{4|+qVUQ1{cYoIAWWMBGY1S!5s!c`Bj(z#xG1XMnXW5L}v+K8q& zEFDlW=$OeHUu8aU z^4aTJD2Gv3|IF-PrpQ_5e8r8(nzlml(y8tTICM{a>DRJ7Ne_yhWYU8skLKjfRon-A zK?`OcdNEGoLVLOm4wapJ#=tFR?G)JH<&r`Af$uwoZu>%`6xFdiRuZl;00u zAJqJqkjC%q;U~2DObQ^K-b4in^VE@L+ zqc5kqp7s^XcFA>KoJ^N{u2n)ErfJ*SbqsWq&;(!})=LxbhL^y5B-#btQ|cMm$yy@19gtAM&q zRnx04)J#KLqRu{C@0uXi`bpO2{7WeYeEZ20&)59InFOSn%07i9LjI+L_Js^8OJW_$tfiMg1zt;hyA+%CpXi3e0(E->l?sL{UJKMZ3x1zO8-9r z;Quuj_2X==fV<+XWRdOGJtIZzvxgVw^5(wWLW_ZP|NugO~{4RYC>bwwq z=VE|$Z!yDsE{{t1*{4sXmCwgUC!r05^xn?H97^Q{?<583ZO|tO&u%*2IL7DG@m_w% z)3y)G$CUMs4=XPWUvz(2yv;mS^_8_8(ydPKq>bFBUw6(OSbrZ|{9Mxhnz;Vg{=|qz z0^x@CjE?>emQR3gXnLpo4^Dpt;LPU#S3G*#`}5~j)&I#y18cG2qtA_vdswg_k+=IR zJa6|0V=zABVN?XIkj)yMn+T>(jD4$myO}a@NKuVxxK^^#O)JrSCr^hyX}-7$YjRjI z`D_5uM!KZXS#S>GV>Jf#WcbsQ7)(E0B{y|buNE??woc(6fl5vbKB(dfe|>uDVQeUYKKdmRe0}3={aG%Tz`U2magwrum#g^j>lVPzZnEwOtC}u z=Rv#PQ9GhcW8@9T<8lq(*mqsAwqp&TA6-#b#Fg%9M(R#|mr2@Z7$lwXJ{K{sqBRZN zOZXzfla7T?SA4q`8dspNhPc($xa3*)u@;pAf1EFAHH3A?A&n6X#QFMfTO zycIaG>W8HU`Sr8>gx`2DhXK|$eIZHqoVMM}wm<9QitF;8VA=Cs1pvH4my_=HzLiwx|B~`naRJ%S6cR;86ICw{AUkds26_Ru7#x%fqhS=J^NwlI zNeW3CG|Lwa4g*D@cJ569p+l9xVXxsNWuZJ460}lOgZ~LI@YKzgeI~N^2C(k;;P?|N z@>CuoqH!$z^d7V@ka^hDxl>ztBmzXrer>{N|A^GQW_9cr!omUkG_;q1=HytcO80BC zTv*(vBq2L4V-|TSuYRjDU~3hhE5+`^VVrf{uz$aGl^AdYgY8~R@{zH>OP+h_(%z{* zAC^ptlK=`~!Cm5eQ}rdZ{mC>44Kp6Txp`zBzh24pCJl33}} z@Ow!GhR9_}NE7#6(er!%Ri_j_frC8)5!PHQT4hzrg}k3Rx`xxj+x+Q+MZVtOtwq96 z9+qq*Y}SS!BmuEP%%^f8oqHz0)cM1G)yK{02OL0Nt+?1#GmO69X^Tnt^IjEpFesr#Ot@wtriOZLr)bif-71sDAPIvO~)!P7U6w-RjSqMkj_=^hU%n z60nc&_6zK=_!&PUPi&wV4e&rK*`GB>|3@3Z%U zLp^PzrLbd(B(^|4k7n4D@EXr&I7C!Gp(to!3?rnEm3 zg4Kc@U3hsEj$vReuUZCx8+w;Lg&*5)y*(0&Id8=NYOf*PS7opbRgNL({{2f^;Cu7C z%kRUh;y&20u@Nd3|MF=$uk>7Jn^sw_b84-er-reBNfR)~=fu3`)r^}F=-&*^+<5gz zM$v!!rTp%ZdzUW@LY$qV?JQ&SC|EBkAR|In@G`pc^Rf=f_3LipBd}D>?{jy6K&rKM zbF;|{Dp6sF0hf_&*^e1QwbkSDl$WE9lll6}=o!mvVv?RbC74Wfxj9&svEE zGzQ@8JR@g5hQ+KU1q1#`%{dpwv{BClf2=~~!m#`-TX0*$tOa2IJ;I^nmL#(ttFpUa z>GhPIk{aXB`yTOLFYXCUv!xqSR9mr_;;VnaW-1zQiBhgb%5q@Hht0X7(wHsw;`h3-trVI>r(` zem;gWtY`)&^!{z^^%EfbtRJpw%wp+M1NYhdQZu}L`+%!gA78D`oloVGDS5ZG>`EC= z`9C5X!p9mprcz%tY6IF_D!LoyEjIa*z7${CUTQkyOtI* zl2rVng32ThSo-2LhP)N<*sUp8;Vr#e_TT$}-GTjcXJ+L%S}IXc!xh`NSw;JHU4`#k zqRv$_fa4dqgY;N-qQEY91 zxp=BTtxn14ob#G+Gdm_D;x}*0Z9}1@2BGgKG>sk?s;B$!1x5}%CSGb2MGFcC7+p>l zjzV2DYzS`xrb|mh)}Z@m-)6tvC~nNWsK0(sECGZ*TH%aSyQFd{Eiz1kmpa^EeqDC_9^Wx0=WKY=I@F=xN` zr3rp&i!c~)MPY#AIPpf^;^&B>OwBnPThn&u?I2 zPzu)S--L3Ghi>f9RJQ!N(Qab8`ZA zm84t*Jb1M?rnxL}U-Y@cpOtp&S5q=thZ-CUDb0dTGS*V)z1QBbI-2j9Suvn&r>t(5xp8>-hFjGoM>99<2I|>S6feNxsI6< zhgyMmJEGqRci$d|Zi^?-k}{hf-w-h=ljoRof8s`LLggCC&u9*KD&Iv%>-it2so2~z zx#@c2i^d0gZ5DY&@|a=Z5p1UXRn15zRU6=p0my2UcJIvQ7f#5!8V>P=7S$!f2zfC8KtU3NaCV)?53*T;{y zYvLWRatsAp;pjz2!qY1hI6a-Ax-TK{)HYCzbZL$$79!K|l;cS{8m`8`>wSqfEH>ii zX<2^m1DP_eAN@Ve>h8J_(!sIt@k)7NN>bL)(+#k1*w*$Qu(ED#%8}$``?wrh9&uOd z9)QNJkR`jMUIk@ltG*DlTJFBDNjK|6wd~uNo zjn`5dcqJY5T>x+|XEp8+8)E9kBqO2?)x`(FU#!=fHzKV_7;$tdUpvTKYWBr1w(176 zJz$`jqoG!XlA1ajpJkg_(J?fzKLY0(oOE;28R`N>XxapRp`yO9`n4%PlL#*V@nM**C}-N(xLp|9BK5LpobszA0n10`A>2OFP8}hSfyf!h1TEgoZt6^6rk+Wigc3YajJB%P!rIn$Esu`|{TM z>+Kw%(PJ^bf(hPcD_sbk=*Gkw;z8%1LszAxv350*gxB=D>FE`qM58Ac)}tK}zes?~ z|I@MOR$Xq?Xa<3pS{l>9K0{mHD_?Q?ifX^f7n|?OG316eE;FStM{oPDQ%~nsDMS3` zr-*lT2X(mT-YtK_39w6jPD2D-I4l(d;-G%oq))B&)l3f6o^Z14Z@+Z#R6+S`5(?v= zD<@8dP?D4k7I{KWi$}!N4@72#_tG-TMh6?oO z`wf75q`7@A`pBXMGGsbl3JK>IKif=hS^OR^x~|>n(Ma_mv&#q?@|#iRmG4SDPuW3h zzeI&ISpQ?rcbRWq`0HKCA-|=7Z%76hz1j$(Rs}_`WP9?8J4f@|S2$Xkx33GkPyTvC zU>}ekfxGBf8^6vI)ut)v*sm{6Nu5xIWE(4Jq{mppyscV#?>dh-!YE+A)RTYP5$Wva z7AC(6p0t0pTzD%B;J5$urujg{&5ze>xOAqLvKRNZd%ZW+d%4(`0u_oSj<^GtbJLtf zdnK%4{GKL)*GT^qtSJJ;YJz}T$NqUGED|OY^1)ileCLAhQscY^_*a9L|9{lsSK`R6 zTSXL@wBc&@w{;tJf4r*VxmPDyyyvAZ^1FP3hq8&2~sT7I)cEhuFhjxfPx;Fs+TCFUndeWLt{IZ|3 z$?2O^OO|dj{Q;9A=(fs!(`V^7i*OQ(dQ%OSZVHY%O9l3paQ8(;5(}x|i-WcGIh`@e zD(Ujx&J19|og16_y|7%(Q9(sf(PJ7HJFd8~z+dC$^(fOojGjk-+~%%9XE&}4N6^;1 zATA`#ltqyV7^f5uoH3OXMXVg3o=-g&2C+YvO!EH(a(0{mz%;XHR|>B?jK4V~GQoLa z?4nXdop$vdJ%}My4)4R`!%^WE<=ADc?R1GMSp|p2$E_3gq%eX9Z;oibXK~o40hg1x zdavM#pul0V^27~U(M#%_5-CQUbPqt7dmUeP_H6X{c|T(Xlyn%1x3GQOFN}mglOijo zOB@pKc@;&~EBTmWBr0yS(P~t(`#KeN_5&+1{bHJ4A{0OIJ{y8c8 z$Psysp5!sG8(JTXl*cidU+CkE&8dZ(Nr9N?7jxTGR2EY&YSokIj%!LT-*~2MdXRKU z#YOtR+<|w@(0h`VUakf4o;qFWXcQ*0Eta4LjOgJdUcuk8q%W2^-{8XfH6kP({gr|FT?PF}idf0+Sc{WcMrMR@ zqut{V0Cm3L?q=hCOb3U(^1m=#6B3gA;J{ZU{l!_D|CegKrF(!BX+70)a_Fx|baCeO zibV-{?&2C3AqNq0Wq+CL-D2hHUmF~sSRc1mZI-l)PRy;*oyhc^-OTgX@$CMcK%%)g zHP_OP;{a@#&%{vFjPYlk)~(r2qmMG)%?wFMD*sd0;M6pwMdeYqf-rvId8Auqy48DP zyZFJ>e9acZaf^LneK`kr{a-l9$l9E&R{h@{)>sYAVZrEiQHRM&5`aD*H}#LZ_a0yY zM_dXhOqUt%xYE$y8rA4%^nKS1VWP}{_|DZChKfoBV+KIGi(!`AcPOOy+68h87a2|N+S6Z1Z_S-9*##?p()`3tu_19Sqp@(R^w~wY zq{uA5sBJ3h**;G`$^N@>wl9^!WKSqhZAv)zUJ731#7^EO2|J&=bNM#%H?=GJZPHTo zq3EGdhnTi6K~11<+L??<1Nrt3SrKg8XN_u9<95a7uG=KShi8cox4XQk-zzzrsLlf% zRv5@}c4hvNZ6KugK|s-D*|3#sviqh zGN9BktanG?I8_y)ammzs3VsY;0l(pErVHue1HpR%hi{c!`)tQ@uM~mu zncoL1&uGOWBHJz%a+z<5-@1zWpU4}A7Uyvw1lX@pWzok% z-&3LP&4zMOWw!3`ByH+Hite4oO^StQzPI*O3%xgGPq*;F%wEzwi=ocU&nZZF&qdKK z_0^+*54Z!6x7VPF1c6Ql!T7}&%l1H^`6EIx`L*?HoE;sv5_J%mErvuNX-}$(on*W3 zsjUmuE~fF6Iv@mfN0LuOOXihBQ|ro*znDyi_N*DZet5raZu5TI0@*{JVix8`vf1M1 zxJa7$-Wx}Z1^JQTTnM&6b(<|ai;q;7@Y<`yO%4S&MoFfuER%-f)3xhrX2P_hjq~rHy{dc6({WkJwWCCi7A7+7mu|H=Cf29uy7!@At!)50@*7|2&+Xb*2*0*i* z(@C~*<2Qdyt%3T&T)lI_bsH0jU2T(xr`NI93ml(JmAXwm`?{m5Uy>s3!pSd-cEc7X zf~JAM)_Wr(Rw4dnh_c2_f5CYl5%h$WY&b7ES=LepKv3wS2Tugr`@=$irVlu6=f6xl;60z<<4Bh|M?JpOEqE&#ng? zZ*4nogY>hk+}-ME`|_-bCpsMdC-1>6p36m z8}=QRVKqp_DKe!`45P?ti+bD~<5F~InP&4HbB@x!Z)^o79WcJE{@FU#dB>fz7d}qe zx%G{DpK4dFM@YFRsS4dX9Hirl+lv(P+YVOm`!8@4>i}^-GwizFPb^c8O?bxCrO6TP zBv%CNgu6vE5*?Y(+nu>`qPH*9?R(rs5ep3SMabX~Z#*YDUuv8vnD4+=kpW)+SUJ@? zA6kq0h!}>XJ%$xv1)8=&<(>V$YNid2%R(1!V@Vt4b`%&Ss=Hj;@R^|ds#=oqfk?1a z(%ZE<9Dj4O^w!tZ&zC{$Zq`dzx>bG&5XJky9NvEOzM%fa7cXPQbk8<|23Nlb?7%1U zDTY1}=eU4-DFvNDI7sDp4B2ev!(d*T^CBhnlzX}K7;$d(Z_ zP?=4OdY^yY6kpiF%x_iOlh-?1z|6l)!s$Kat=R`$*pyNAta#4JDILiM-6hOIZU8E6S%etV&nwBfxYda_tiIN;G8 zdAMfMX+fuSF-7F}T2L;CwUD;jAReDfRXtmwiXFgj<1TV&||I+;j>$rChPh(@3`l3XSghnme!XimG zK*KEJlfN&VKNRm$VM=+g(5Ch5VdF>DUy^e24(` z0M}_%MoIt6@{t-2TJS#AsSi4L z-xt!aa1mcGE&--r^R{g+fDwx$>FYLz3v?-ecjz^A`(rl^Hp}nU-F~)cVB3W6XVv!& z@~f{Tja&8CVkC3cbGV}Gvl^XY&$ipS@u67ZEVJ-*s?M(k`{z7DW?G$851KX-3V?va z#GA7W)mb=TgBv+<KB&`gnV}25`)i@r zW&ZV9iV+{}zzFR@z8qXCs;VKcm3UkT~AAdwezl&Du; z59AH#^`Y9ssWYKhNx}e6{O0UzIVq{kX}6nh%^e!lPIyuYV=T!H&?u$W6bn8AsbgBA ze#?#cq~nHYet+e(9SlCV@V-r~YAUaDn`km16@7nuDj*B!GCJIh475Jdd;&`$%pa=9 z1}-!8k5t9l1!#Ss~X6X-8V z!2%|acJHQ7Ak~f}Xd|!-SlQgA?@;;AAUXE3ZJeL{dEWc|Exvo*`cemzIuA zUF{=zMA?>s}gN+WGjU9zhTx3SRhV)*WKK+iqNEWfjZ{ zm-83)hBy~_epa3;k#4z8Ea>8PP>$asIlD4Tx0iKC6hSU`J|x`Y__n&)*B~=wkv0b& zWuQtWom5YTrM|c0YZN7WWZ>)Ny10p}$KV%lK}^!pQX>wu`l?0|=Rw^Na4Cx4fX#c~ z8up%D(=#bcv0pufao6f1*2$Y9-U|>Ja8c^wyed?obuyidUItt6?5?eF_FzhE4h54q z^2Xujv?gDu5q8ratHw8l*HoAfa+gV6a=RUO-Yg@2q~fuUifG^aV0ys>+Ih&p<`@0P zohFnz9Z##h4ZGTP^rTpisxaWP=ESpz4UJu69H*!Ea&(b2R-JqirYp#j1kURRKOIca z$<%FecK+V7?v>IyK5I3C0;OD8U~njnKY;7aEBg5QENHS_L})N&?DlAu)S57{%74By z5UjxVm^a6 zNiKb8(frK;EG9S*geGL%5g@amWPQnT2x$Ekf^nd2i14X)UOIsf!&|L7KcTtzqi?2QWmOAPND~YoUpaY z(;f^LgdQiRkdzbf$#6Aaq;nEg&fsjg2FM3hl^uF6ZN9X_k&>AeMB?S!ZtFCHbCf#pl+`=DLfbD&q#sz`?t<7*n}9i5Sg~@HhszGf|=femYGj ziAlqKuD`&r?}=W}s-;6nR=M{9sj*yzQ`{J8$$=!tJSWcuMOfEF0K-b(Z{W;GY z&voN^Ox;ur$=NEL=*}cI^uK1pztII4F$s?xHFed4AMZb@#Wcavd8kf3Y<0WtnTV_j z)*ut&Xm#Dl+!9NF+jOW1=`s;}BNNsD#~PobYhvN=r?9y$+eet?37}dN!!;cn1jl*+ z$l&0}<=R{Tjoic>;(7eh1Rtqc*vDg;?IvnaoJSI@_FSBXPWQ4#yJDoPKKk1YW4U^( z^IihrZJ^#d!w}_KTS&!rJ9zuJKDGMQo1QGWjs++3Roov)G|*Gpt$SAD75F-Qg;-CU zug+gU9xodO0K7zUR%U< zs*6dvCd4ApwXM%W%o4EOB33B#V!C(#?{D>BQ*=?bvmRueV?C`fFUgRJDmM=Nwm;=0 znkAA+bZg@4HdV}yG?P}&lf0uL5vZ~{^oPn-Iad7jmKbzFj~)xSz5+GB(37#Wjf)}a zb{0dQJ#$gGdYg*o#@zP#?X33TH?BD`ZK#Ja;dhbMHSt&SdqMZ_@jWNGF|$Gx2lf*T zR}kY0mjX!afISOpwOPUun!#S~&go0f{(wE)Wg=3}YdY=#@igq3pj;vcuV|oF8t<=6 zH3V#ZVzJqIyC4CygR6Z&9~7dWnrZk?tVsA-wq(Cq4vkavIz}CEUqky|B%CuJ`I4vv zaifXZeb|@1<*MBhXVg&Lc*jK_W+h$Zx$gl;uwf9pcwfS=1MKVdQT7byM3f!UzEx-4KTbGBm?p|C$Q-edORu zIKQ_tKesVa!z8DHj1oF6-XQMXC40S@AeVfdKyfZMK=Uw#B*uSx+<0{Hp(IcXZSepO zRK(LD6Z=vOj#Xyv=LE|JKe+JP#=)#CAHbzRoXI781k^FabwX9Eq7Xp^+TQLA8I`9t znlPF!3wepb4PktnT=+*J6(>%WHg>kUX>||Jx9G9Jmc@(01;&W_lUd>8>0L0o87bO70eogCE)iFdd&hLOYpoO7M_S`QUz3ZbPYQF%>( zuWCj*0rZ+?KO?=bCbU5z%;@u#&l|SYWc72(!3vI_UulLhxt)wr9&I-AB^w3 zVlg3OTJaPZ@G&H_aRhslOpV1W`ig>D;0wNK0xw&hS8Vai)NJ$L7xaM*Xa!M#*H}Uy z`403O3q5OPv37nh0aNs;c7IHja#uKET$<7?+_CyLhJ{)q4@J{A&Ymt%{3 zw3S5K&GN!#Y+MGyicDZH|M>M=d9xYO$iCrJ*FF<%;UuxcazAFV8!%d0?pHM9Y}c zJ(IgHFJ@U(&?z6SqhaSqsShPEyPP=k{C*t)y=Ex!%S)4p1NcP(0e>&c6@+(nQ~2WkOHY|@C%Jt|yV(DF*%%(G zOq_OZ=z31)6v#F=IM=V3ym%sb4M1Z8AHe|Nb<6$+Ct%fyTIn}`YWb$VfG1<|`)uFl zJ34B$SG;wI`$DRyB!@UOJc2sq22j@}AS6T$(4mvX-8s*(o2#?9`NU-P*9MK+0{|BW zer9?CQ2VL0h7$E(SfK_5TmV<_%tD%IW~jS{Yr3`)AK)Lt1$_EVot>QlM_(L4l%UJs zD%|J+YPC^BsVOaePUsvM7>y{BuX_KX2!d(w^2}IH zNY#W!`}_Ltt%j@g^z;n>+i4B>k<`LKnk+9hL0>ioc&0va9u6+2`Q=h%&vvq(lu_KZ z{o{-WNEyc|32p$Dnr{z1fxnCGefjZE^AWyt6yTLHD^H{Wl}O2+YOh-c^4AEc1bg z>JuAVTyv(&2R+z&`0d>MU&KX)`3&QG!n>P(^Un`BN1pW)*a5{BqXnP65SJw5#}9Y? z!-`qx*G0$oIe{g|e^qR<_-_y0R5QaZyA)Y@`;$}UN!jaW7;J`OQ&9}nAU7VP+XT6}xz8PW8k!zW zjh=)c2MAzCL`?M80;&{ce=BofLMV1hFHThbuR5DtN1eTpolsQbHQ&sslIwZ)$s(=T zL;EGVVIO!O$7)n=jyYhi`Rwb?7a>B|c=$RMLUt~SvOKhHXdSx8+~xn>n{=oQrnOes z8U#C`gXW|@XZ_0O2}!0ea>Q&ihb9dWUU)}Z6Z9GSi~K3g#sL(es7G=Cwtr6N38>2> z5(KUT5iE%Z0u&b8r;|KS4k=KNZrl)84#4-Zr`e6Lj%$#*d3stR_k^c!QrXm+akpp2 z-SsQw_&NLTMc=5KRbe@3Jb@1%GR1gS=o~V}7rrVjYk)Wgvo!7Ko4P>HV!o*p;qT1g z1-S6+PAgipJ;r{8Q5BgVa3TB~+s{%3?rd`L9b;e8)|y*k#Zit1V6xQlu1)q|yUM}y zdkLXQ-|?nehBb|rzqSGmeqy2rmWStOPV+Saht!iN0#})5uAr&{7+vq(8Lz#0iZX*3 z7B(RE{NHEH83l<{iDpBbk_KUQ>91j?2CSlkjFUnINNSp)Hmjrrm< zDLkgL+J})e*2djCLLYczAM5J6ri$P2v~UwO4kIQ;*-$CFSRQ%SyQH_vHNJnrs_VwrbF>ffn&eM2$fYcXw{I25S<(NGJN*RFGBKg(2~|6p*VL`na%jVTD!@ zoD;k@=YTa6q%3hglib_VX*I4Wyz*|Xz~dXKIsa8EGyLkJ3eX#Y3jWa2Zj~#uF_q`N zbNDTe&*6kwm9IPm`V{3xk*z)AttSF_*2G1!B?Me1@hstd&)Ku8c&MJo?O5%!?z9%~ zg#2Kv|3b^HT7-lWSS$zDrnvsTJ4kNMTS^qQjEpnnr82OP3w>94`pq)=ZKBVy{Z!Z+ zT&THiJokaZ)$2fD&C?~Y{%ol?!9RcL4b{UAc5C1uB&*&3=7X>z?GV6FF|!*>=qV~P z{$9Ox)*3mDo-Nb56GPq2@myEaZ0n=mnOp)bp=|J?7-fGsXnzJhvM(g`DvQ#&t>bdTRxBQ7AV_YZoXor_+EK`xy2mz^_KQYwwf=GT%O8DzO0A_8Ob3>i)E(r~Ay#Or49pxNaQ0eTk%a3o<=BmAX&O9kvSN(Hy3Y58Ixvg%pK*VD4jBVQ}X=syU|Hi!~94*Bo^w zCa?Mm935$o9CR+IQ`B9nHKMS$#%nmXVF@g%;=TJFFUgqb{XXqATB&ZeE4DKlSDi3$ zL1h_=uBm*UDhtFsdcfT1V#Hj*=6ygw&Jr|Dl^1_kOW!!0D(iA6aJQT5*M6n|o*#J` zk!N~1@xF{xWk5+k>u5P>UKXviHAq7tuvsU&?FX62JfBrgBOV@dt{{{--#R0Mh6wo; zf5W0|l>9JP4n_?ocNidsM2E)+umk`3od0Pxn{%H!DUFwl>P3|z>A``r*tAkWrRMJ`WYtuaoo7eP8_Fp8LwFsNFPiyZ*`71I zl+CDpP6y9J5Cf-ENEqY;#RG@i53us8#KkQ~Xsl$BxD5N-$fo8c-mL5u@7bY!-wEXg z<(QiT8m;rRtzA4v)L!hA_vIf5ARu@9iLM^`vcMB5oZLZ=V(PCaABC;7ZhNa;ePPVE z#V+3!HxyDfW;iwe)CSSDPj4G9fX|kGHL=AgXcc<(Q)hSalh|3;WJKU4DX5J-H~#jt)!)iny3Yxb~uInW;h~i zww||;je``2FpXY`;3bTMzvZd+I;d>?thwW!5&rU{bsXD{o{bJeIp|qx0n*}Aub_`K z>LqO`2vuxsOIvwnB-3(k_jN9fS))4;1u-p~xMaK5xm82nc^3~ua{ z>iGZ(JOAYr#w?gj7g*(K(|QL6|H^X|*rDz^m@*prr5Ad-!D_m`JV_B6s#DZip1#b3 zked_1ShpIs`ofxBPiaTX<0L1kK&6D*!w}w;-JzliDHA^W_)t_tivjURK}xUoHtJ+Y z+IP?9EjAlq@^K)ijPwRdF%0vl6?z6X!FjA21pdW?KYMzczVK|dl1v^Zxh$-qr^;!4&e(58oDcu83OJG{+iP8rdbnwd#s zP4?o!8A<1W+OUkIDsSxeeE}tSU0jjQGec}R#j`qaM#3d;*(w`U&7_L=#OCn?(m~ww z`;pN8@6d5(^Q!)vo#RXO%Dy7OciM4mPyp^^JKT~^4aiMSgpcLY{^RN>pZm?4H zUU3`~-(@;e&d3O$?eGA!%8i>$GVkp)I~FbSmLz(LugK7h=8$S1-^^al#qQ`J^epYGRr%n?@t8Iuir5zi-2ZjUBZOm&`2X>|0`qOc^_56#SLD(C* z<_z)UrQrkj?s?xIeXuJgpFHu_rREde4@Si{Th*@;3aC{#cGy8QoS7|3t>cmxJiKQO zt-{#JnpO*2jEU0(hklGur7^+a#l53l73m*{H%KhVnki`>k#P^aJ}72c?5V+NV#}pb`ua`IUBmB3tHL%#Hb{`)&$drGFShd~Uwn-_7MqA!0Al=;}of6XBotsv=L0Uv$)7_19D6nbilJ1WC;`g0%?mgo- z#`Pcg%dy$-^R8#jx#pU4?u`JE?)I_-L^gs zSuBog^@=J~vMf1bjT8WI^|*y*^*)Jh%2axMFJKl!PM=_tL(CezZ*U8X5W3Mfi=*nw z%u9v!|8S1uZu;`^@xyd(*h7*lVe5dmYYmjs-QjKeAxlm%!bciy6JK^1fCrD~WV=3Xj7NzyFA26XC>Jmfp6fAi!)ON{^gdu~WY*>f>1PA-o~v+Gx+} zPnpj=UgvxDzEZ#BfSHrxc^&!ry#dtn2xqg~ijB9MED_7AwOpwhhjU(3Sutz`y^t)xr5-h|NxjFgQQ|8GCO<=g>UI8TRMk1S>~lQUO}| z^donuVtR^zllb)9aF!Uze&8yh0QpjG+4N5@4bP;z9obi-G>Xm{S(zCFy$Uj)gzzOA113lpGOM2}61Rcui zclze>jZ}Mow(phknQ3_GV99~YBd4tunOMh$RWG`k%43OEn|68l_ekuz*eU0L&*g!w z665P()=arT<)Dvu^(}_FCb)#J26ISjWMt~iWG!Ct(G-&XPs}m z0R1pk_$~6kRHI(KtqN@D-z`fHd0X33c_ePPUG@9r4A6DAl5hx+S6=n;kRg+Z2(YT% z`Z(B(ic3=3_7nN$hQe$0<~XIU!d21Tof~iugElP`L`Jq4PT2~$?~AIcVzaiLt6tye z@S~bGUM=}x6lQxfhGBR(r8efri6!|Zh+9-&-UP{%k{WrKG9FAAMC+*?y_<2Q=;jzm ztWYsD_bv=Ewr|ocWHBYG*+8~rPOqbwyfaIYoMq@ou(pdsAegBzj0NG) z%<;x$+9X})bRS`_s)ksk0SVYyuYMdpCH8SXG=!x343y)J=U553)77Y(uF%)$(=<-& zb0ms8zrA0fvIwQ2N(u=PcV;PV9%|0)mkzSm(wnc&v5&=P-fluz&vc7~>C;_uILW?+ z7Y^_x-x27$C2Sc|aN5dB8J|BD3V57qt}Wt|9)bP-I7x&WCx|cx&U;K5KMK3x7$^#; z|3y9nN1tOOltO}ORZ`Z^ZK1QY=f%JL!+ZE@;p;fL#l&U8h|@OD`=)pL@pF>ZrLXDb zv}OsdZoEtfQ}#PgyGENQK5eizJ;>~x)W-&TT%ghu>%62M?)J`xGxgmO&ZXm143p6< zPu=WPwomCBxN%j;ywFb28`@{};gFDT*YX(V%gY*AZ@MlZOKWv2P_sv{`PlbuCj}X| zl^Jc1%8qeP@cgHQ^&2`2j%?I{4fLa2v0xzj%WQ^qZ>kR#9;pZ+DyOhz>E5hsWYY2S zb=%Z(ZC6{c@+5=r8D*8jsEimDX>R1qV&Tn z1yvgssp##lt!Ck$xyu0_bfLjP#?!O0307Z6ld1_9$;DOgN!Co&%}+`Qb_j)zI{9Y0Ie9lP_omBQm#Nv>vAi?5&$ zK2>-!Aq|`#$nw^?W9!)Cb|y2tsduv)jzar`MkR38<#KPOOh>*>Tn~EXPk! zck1J?>6FP%?94_m*5BlebGvpis1RtxPpA=FibUAnxH@^OaHo-+SNn!Ix&8NwOW5Y! z@HWE?2IY2Wb006-n%Q8&1D9BPOs3jt8!a!zfqhP*)V!Lzi&J*qn_g#OLlZ*B9PY`} zFYMF4>|>^c$@?EE?bvQ)Htaj1nRyay3Nmp{9|{g=Vn1>68E&{>I=9O%z2Mv4(Dp~a zArkX$O3`=O@R2>0vq-2s3)-9xDa=k;rq|k@D#b6W8495ZuFIsCdewg2M)g8W%|3X> zEX76IKYTy)d84_N??OW{fC~wK;gpu)!Er29xN-O5nYC779R)b7s7X*}6cs<$!7f0Z~^?QVNFXBO*`e4zLJn~#?c5{~=eb>@fj zBCaZZlYuC>rn9;OlMlvNv%_E97VE#Qunc!fAn}fx<-oRAnTj&W9c{2$h2XXj_5@NUhRCDT3Xb5)ViSYL)9>!+U_D6f+!Hcv41Ky_SEtQ4KjO zB@i+tFiE;M#*qq!pq>K#x!;QHLZxxAt}eG%bw+y<0?9QMPS6!T5$*_Ris&%? zH--Lv*v?CN@r0xy%+?KH;v<0x1}|XB*sySAtnmGUwf`Gf$Z2aZ?J1iI zg;^vkOeiuSI5>u8Yu(RjT z25|bT+ly{s<_{S}7{laFA6)5tY8H@bi6rXvnXc#f4|I{RFNdjVnpPH4V586cA5#Ub z+VmLV5k1ler8Y`BBbZ#l`c^JoA?Q094((zZ8n3=9Wqh~Els$dNb+LSUN81t1QTIFD zJ32dPX_+IUDo4Yybr3tc=VrR)hQqI&Z(}<-H;7pyF8!4W5c7TqZiw?GPq-61>}~mF z^k&sFF%X~c+hsXD3E)`Hh1%XnBNN43rw01G3p;s zx18%9fsVnuMxi>RprB|RPtVL~%_PJ}?eN6eNJ&W@pPsIbA}1y#Cl|9z#gYlB3kV40 z^}EnHpv`^vvFgW`o|-BWDCP3eq_RptP7yc=GGSw50;QQ;Ef>iQe|L!U0&-D-`N1bw zB;9$+#*@+r6P`=qccWeHJu+^^f7%BevuebA>qgz22kI61YpRzr!3gVv9}xd*E>Th6 zmKeOxy%J;gevYC^!E;-4C2YL(24N#6Pcgpj7|R6?)Lp?OICd*=zf~4;HPTNC*!z6P z#^6=Jf1B@_onF6^8${b z`g2_F{e7XG)h+wq4MJpA4{1At&<<-#%x6;@Cl$pBeHzFcGRe5XI2kXO^Z<%MRg!UX%m> z+B`lXc6~;Zf|F+ey^i~dBd-|zQ=H>pKQe~LTHW|q>^?lCH;hw-kADEm`n9Fj+dS=8WK4jVYGlb=}jcG)B6eb_#33KT} zg29)xg!4UmU;#}{){L3iZ>_(T=9e9A`=vqBAZx)!EZ&2U7qGwp1|RT`EI>Zk0v32U z(dnXojPO56xy0o?=x0y#>%I($AllmEEL~P6FCF_C{PKeRd+PcxXsfZuc>k;GxM0{+P1-$3_LOB>Ca-w3=A|)VvOF{LO zu9^=0f;rGz6-7_Nx>VDVgn2-;kIG2SHO-AMd?5%41G_0^-yy-z)Kqxx&T{T)7SrMq zZCZ;VLZV;(SScZx=m*#JLWsf6MEUKh`oRM3cJ|Wg(4^d0NNcO0&^B_q0)R+nQxt9l zoI!)>j{CFhP#aU#ZWRvKnO;@%5zUSC&Ku?8n62GV>3Zka4)maDZ)GI=Te2NKF~3}= z!AUYck4+Lf7hoTU@HqezM(@k6Zg+L4gyp%fdk@oI=i{6{ZN-{6mY1}hm73a8*Aa~8fUM;`Q4SH&@os@IY(4v+Rt_+_9GvSuSJOQgK6p`49v{x zG6T#yIy$$r@*ljM(FhF({eROu%D+cL4jX|voc6a~F7!LBUj}nN87Da<&9CwJBYVzm zc*i+AZVQ0~t4Tctmx~IQB*6$Os;XaO%hY`+UF41x`nY)-HaBOjUaP9A#-*hdd7IJ| zzm5Cy1>$YWy~H!62;m{XnD2RG67O!bWPL!^y6T0fC;O(0!G_)Bmv5=NW;+!XQDj~E zC%Zq9KW)gnd`G%nax|46>2P!g_y6omNp@;bQ~ez4mwnrKQqdE!?DyVb=0{9x{_GdM z+y+0v-^YLKrZ-HP>JNL^ieqrzVyiGE>}`bUVq+Pc5MfR%?v3d~MWR1!U50RK1C4@|DDn(`CCW;^QyXRc{w~Yg88J8?9}Cvs zfUMD6-2)2$b=e@eWchQ?)$6%k+0k~zO5tJw5k~d#JWQb>T_*jZ_jt*UUPLM-8jTp& zri_&rK5m^cVp=6gfHem+-0f92??^W;^Pk4mP0PwF&1^C6PcM6YiBBD3^mzT;t-*r)hl@wJ^8I4q^9Is~4wd z6AN?Uk;ff|4SRM})~npsBAx}}J$Lx9!(_5owR3_fGn6fHh({fr%lk*t_i7DTI^-jL=^rr9{^E$q8Cdr6eNRPEy zHpp)fXgKR@4#?Z*_II%g}HyQJH<%bOx5Y!P1Wc}_h2)cFcICLG3p-|{bfwy z%kbt}_X3=vU|(!%3l9&!3RtGaBoNY6>H7P(8~Skp&YVWmXkymWSWw8Jq!r;r zb(RIgf{EUePqtM0t>m+TKW%(-c3Lcj?4adK%P>V-ZLv@Z}JTs{($yjkG%C z4s95uf)Qp;E-s)I7?*G$yNR@PYmK0)I^$_=E;jeBwGLn!^F86UF4EVDJyS;t++T+3 z?;0%;aQFREB6f#ohHrk%^-taum=-J9hcbl|>5(<6*3vQg`jJ|gh5$P^STK+6(qitBx3(#z@C^) zfP-YHKuo z`ZX(9G=sywD;5fALfVS~B&@2{9deiP@i(SN`DRb~gxRehVOkGLMR`3-391$@iw)e8 zvDxNzl8sJc&+hWn0vnc=v>f5KpB!F2UK$Gu>(uCpOfSm*uX>-FT0(8gJvYPVcBe!y zhfB)$pbE8Y+n`hWYs0Faz$wComWWLN3m%O+qpH1tG2DpvQAUC~h{IWq>^r*f( z>+LXS?(jQdSujh#?0tp&r({5ppv1_+g7*KGY_7#?;SZH-@p8A{p1#EYW~ceuGg!KR z<@Y5blUho;Ka9ry-p?j`DTNuN7AEkHo_J;bQ#yW5xwq(6m&vu83#++b8_2^yAvcDb zoP#hjI$FxuIFDc4d~j%JqQAbeQJa*qX7KuZVPQ%3r%eJZc}Id5^*iwOr233F8_^p?l$?gaKUeqSieC48y|v&*4j{fwoh`xjBziBb zN14__aZE78!hi8=1B-15ul}Z~M$nH_mOe%#A5D9gdonDps?W|wztBWaRPxEW2^xLS z9M?TM=VIZ(ilIPaI!m&x2|+j-d&L@-&6uNvIZ}!d0hOJD3pJg|ZY}MA5%AXzR2g)^ zdb1)%HfR;(jO0{qce2y$3l}xe9y_jf>MGLhm&VjPp5kF~)y+Ox@~B%6e@PX2^FZAh z-9P{s1e|XAddId$uR`TtA)xUQ5(iqvN2vSh5p#TT*+OtRrWfKWetfty>5aew?sXzT z&o^PHgkQbOshQAONlD7Rr|&@u+}c{SnF}JguuIvH?b-A~q!LXx()%{`60bP^2ORo$ zlA?hRjQHvStE;QGv)+Ik8sDHVM?0{0uG)r_Kq0=*3CVBT(aFuP<5$pI+uSUOwUd+_ zWvVK&zkhhRs5+RhD*+A=@movGFmzJj*8aZQ6Hd*@D1R|v%i88J5Y;90t8%VSv>q6* z(Y?aO4SAQvUrd%>4CEQymaq$Qx&cgWe0Xf?N;kgNTHPyw^Y%3U5vNzkdLD}Vp(;WL znHaA+E%q+gVoC3y;P2b(>%oAA$kTh8geI@~X6%x3?l zo-e{5A5NlzbKWk_^d#kPR$*#*c(`!A^8xLQ<;Y!Fz4W2mLW76CbOuo$fIB*b2i&^j zn_RYaOIT*TZuz9Mr_K8zr4-qlomJ_|GnMPW zG*rEr-zBB)7boB#gLICt@4jdHVI+LSb zXu+I+(qOf8bkhHQnESxPlst69AQvw6Hm(2qmFnS^V&;=HK325M7E4!D_(!8}dT;Bc znbWUiGiHgpjNrJ6Yir;3_Lrcpm_jx-Oo7GJ;_SU9J-S!ujV;h)So(J;XuUEGF+ulu z8Ud+EBRy#s7j#e?!T(S#XSJinw-Qg3l$EvGbmwaku5E&M)m7rki0t&_EQH zl4(-|Y4Sj=v@ZwV5(POqv5z0W0$&+6HugVFZvFRm2Lb^BVib0GS(zi%;6opPx<6gnD*-5eYF{f1sT__u+(QB1y`gMgXeD(j&md4P zZlkk482?^#RAu|bO4w}eOS1d zN=y>Xm4a0JjOh4IZTbKe*#lm|9(lUM?EC;!oe~aM;eDa>H)f|z zu@N*x#r7%(h~R7k4okpJk@$RZieFoB^hA=Rou;|q@y$hNjbEUaG%Qn&n!}XpXLS{>LwzRV>M>tId6OdV&%KBmDa4gNE zY+nby)uVlPmca3qBeVr#@@xeR2e)!`)%vRO z+6!v6u#qC)$NlCF=5uHhL%JAt$>#Rx>q&;HjL*{XRLD=p8Pp3L0|xBf<;eQA;0B*g^vs)Gz3+bvg8*&n{OYfcUQH z2k7`xGD*oT0xEE(5m|)BukE*|OuM&SPp4LE@#JpQ6Am$vx%&0@@tFcimRzsrmTB$= z27IfpepNqJaS=@pHw&37d9Nem&{&8Y7-VOk1&`1Iet@<>lr9v@+44c4vt-`1qg9c# zGT$*LUhyP<7<_#N#$bcpau@v(;BC`ij$lBT_u>` zX|9?REI#Q=01*5Fu&SSGe7Ft&TXPW}rdDh+=aUJm^hv4>gw|<7QilFMpoIg@m|jEG=T8<2U_Q?2Uz(#oI>3vf2;Tt z!tg&y(C@kDuR5;+kU2E1vR*clE>w`}*|%E!+GFnQsQD#q#{9+v%Mp^*8)K>k6a)W5 zb8~YDwP}h;f6O0~jEszun7FzBM!ercLJ)um5(rs(^c9*CptYv5j_*4^bmeg9u3rq& z-Bywv77khv{@h=L*s(U1F0z)#mT){HCM@-hjt&;gd_ZTwNUQEf0q<#1t+LB5q$%*J z12#n%VgFjgPjs>v-!c4hX|sX=`ijo-=t;@PFo705Jx_Q;(ulxu#(E{J0vzxS-US1` z;U3{!NZBv&xo_rpe)ductsr>nQec^Sw#u-MWO&vv!pfo7SVy<~5woGOlth91K6Gzc zFEU?hv0PNibkwG^Lm77I3qmUgw&#;Lg-4>d+S#32XI>k`q`zn(uw^~)n6mTdUi9uu zi*Z=0+T{{Io|TseR~;5*x0Ub`74Xf{#pnRoRT%|twXb+Kwrq7IdTJSE=tmFf;BFjf zFw&p9mnSFlzacVH5eay3A`dtWHFNGYK3vDEW_@^JSFAAHetAokCO^44rN&{i+jj%u zRX=r&%MJ1br0hJGv1Y(G`inX+I%5CW`vN!;Xk>x}5@Dz+ZPQlz=C}NXM z4c1fLE0)m8U@t7iRiI1CX#xI}-52T4vF+pw&*?_UmI_S zHRh-MBshUAYp&wlTng9SUiy#afXx%~1N2Mu&YVhJ;DMJ+e87~~T2{P9kJm+_`uo`CX+FpcPD>Br zOIQDZnAUZl$1>4NB_)HlM-c5FVH?dU-&i(#=lfqCEELWh(7R|@&fx!3)smBw|Clh% z7&u4QJ1_sl-7vU1UiC&OFV_70`SbZ+us(f}(|^W>bq4v~?m>ku8A~Y;)Vr4?%a&VK zM+N4jDndN^LaG^(kbQTyhx!jsx_bYqnejr8Legv4*QX?I;N`?JpNYE8@haCld!Ai590m!z!O;ZvQu>EW~IXQt=E)t=` z)Yiqt1^87@Uj8LEjtwDd0l%EAtf;j$yvs(MM6~m=sC!+zk+?bP_vWTQa&hM~=LAy+ zUes81G)vis1p2QXg4UrR1+{7o6oTbK6f*v+sYGxD3m;;g?wn{@XSqh_mV-v&%Q@f! z_LFKMiK(C|Uw%dbkC)dWafsi-t1WXdGEUJV!#&p%9P1BV2p}5Q9I&y|t6NnGuQD=T zcwfTgE^m2dvj|S@_3j(_w(Uo~+ST^$~dZ5Il6lfsgIBT->C0L<2?Gd<% za$atQrd39G8E|KsjT@H88=S+Y`#}$YDX3OJhOJBCGc~M>>h`J zHzTJEDJ7>IoV1(~{e{P%ehQ7eU7oqClNH~s$Rm#YaP;upZTdC^Z>2NKX$AIEcW@3d zAI;b9;L7tykhk9bLB8kx7xVp|EPiIVrz~M@2LbB;?#ci^+_NfyCxXYL;SG7%q(9Wn z>mpics%={e2{Ql=%vDHbb@cEM8@ZE&Jr)nh9Y_%A35!pxard^~jw@xJtwB1TY#;Bg zJu|=KI0zAh2)ae(T46?zaVD<)W^^f*yyA4cl zjb@zm;wba_VW|uowLtT%seU9>JKwj{Dqqxk8L4YQIZ!`a#;U|izgN)YX>Eg;Su~}V zkr7|cDq~(h=Cr)mUhGq#PbNX0sFUk3L+p;w3*5tlZ+JpqJcoDem#47J^_~QG%|N7I zeYk~du<989lL~=H&%9uR0zQCL*6F$qZ;VIb8l$s9U$f7pStUwzr6kcN(Xx#hNKSD? z)yQ>gbEO?`$2{;Fd{oTsnZH{*ucT#on9#Fg-Aku#bKn?w|Ssv_ON09KyXy$UkuDlX~qrmADrFV(mh*_ zYx-YJFZWZX6ic$g5%ECr^ee@rbQx2C5!G|n6;(!BigZR z!pOnY85o%d77&AH@{l+BgD@ZXRy2l_N!Q7NhvKaS_qAM|^q~)$Thw|(6Ft>yF;yV+wZZ>WWlCj8L2-}%QubR&|w@0^{h;3hh|I+71Mm~Zs zEe)E7yBaHXY8=DK}uk65%zUeZNn*@+y1TN_ouMHh)0$n6Gw2A3nj{qb(syeS1+ zJAO_E$q8|n`a;zLzJk%q>&GY9t(SM``ghYrf@hO>585W)PvfYIH*#=f*UX@08nfd3 zu>%orIEOyn)QTJzXFVB2_YG2w18&B{R|ik(teLQCf$o&j3(3zj$w$~UAA)NOI>%o% zfjkNvfIqy-@XW0<-TTN1ATA(^fL$DDo`R7v`Tzx%dc^_3QqLE_Md2cS)}9lbJ)DPoy)QFo4iI=Z*Y+aSvovJ<`*>hAgo%0g zPl!7ijsI7EA`2+dJPeYd%`hf)YX%Adm8+u={4T z_TRItgW7U*>sCfEh|8D=A-8TdTxl!+#YuWYsJFZ}uSm5^oP}p^U4LiG57Ly#FKb1l z)%mDnqeI^=a3@ZYA~!mJJPd%MEFX z4`239vrPq=xC6m}47MWqDa>$4#_{eEcBSl7r`UEfmo@FGP_CretcV#ZCjU>%1{G}7 z#6iMzg?f!4x32LDFD*r@PlAGi=T*rzY)#U7Z4Q>G&J_#oZHWopQxrfJ;O&2bWQwnv zX8H~`*nKz!)7Gd7Y-jhA;g+CuPkQah@{xfiH=WH5fuWOA$kxVxdO9my z0^tcoo4BRZ_X63!d>KKDt zJOT@4HfbX5i#nSgZ15Ec4!+F?AK<+##1@7TZX}pJ#)@kf&lqS&Z{_Z@oat7fhmD?a zzT0HPaVPI(%2Mn}n=JV-C20};JM)sM6p{(+5W{`mz}cL2oTiTutRFVIPf z+A}kV4gt`1TT*uO@xdS|rI^M?9&xdfHQ#-EZkbN1wzosqnL?-OUpBrKg^{WXt;(_t+u%*b8J(V4 z8tq|7`#iLCE+m4tm3itd_I1rjJWNOTAbEst;nuZwcb5l~dzXn#G^;iG_%Y-j_d<#n zYMPqgW6Sh?2D#>U{Ul7{e17+Y6Jz4i7yf@C2pXbPf#>~#I<&<0abn(%Gh$~aR>~vh z2dx(e`;+?b_-M7%E|mYEqbGEnz&PD?8xG+DK<+9HRRSTg`Lpw@tb@2;YMF;EgsLo(liUM z`yeFn3rzr0si(9X$-p)I^||g!vHiT^H6`^=Cz|2e?2|6qPIrydD#$*r(Uo=n!6pW3 zOP6JXQ&m-!ta5|q1BFY{KVz<9&F(lWnrm8stl9GW9`k69;$}YNK7MNYqp8^bbPfF&z24}=RcHnj)MxUFBcM z!xE>`V_f3+isz%^R)!^hzLF_zM<-+(tR+K?<7SZ{0xe--zCV;{y;vh@y*PzyeOk|H zye`nVX8d)F`*dC@sxMMck0j&Td7Mp(HQlAv2ETaX1h?iv4jip?^0FrE!^~M?;{&J# zkH4|68|0KRMxNW>pb0KWNFb#+3_gKvEz2e90JAz;44ZRkC@3nqQ^ij8_zzd7mIus_ zI%d5;J1)c9C1F%IkI7S`uZGs z3VM0rwl`g&GPk>s_%{Xwk!@hA#;-Ov%&cu;Oq;CLbeJf&SLwH9#nK-NmBcPhzv6#4 zU8D?=Sq6<VT!}a;K$-9bTkKHkcFg0_^;%5T&e9;mwwAhX*mA>$ zaRUOjdeX)z<*MbjjT(eQ+s>oX;?#Df+aj=i8+K9{ru+dlEm!Gu{0m6GL6Z259hC#t z6WQ@CFSX}!2e^|dKQJ|nuz-Z+T?+#5)9aNetp7pBQBbeR>Fp#=M`n;z>aBV7`z>~&G739C{Y#jf zc|^QEks6Y8M#{Az1r*024tmgi-(s>zt*myqbpW9N!ZGz)AsX*bwV zKtI&w@v(e&F17Irv)uPW8Cp^rpzU*i-07L`;>dHnl`g7sVX7OxkP~)!^#tqbSxk*S zV2yHfHsrfJr~LWXe42id(#Ao2LTse{TTK*RDsYrPJ_P-I!wul(cP0u@7Ju6XF=A6( zA6Y@x11CjFF1PmmxSrY;VB|UpFfm~Q0;qYVw&L^{2^Ts$MXzt>O2_h$68{HF?#ekA zul`dQ5u(V*$Zl^Gwh{rag~FZ1rW)Zf4JYAke*JV{de6WR0Z209Gr;wp5^vl*5%7NV zp>JOty>w9aSmZ4)Y?l(npczQqdpbvYBsCT^uK1C-`-{5-N1l5+PVs&Ar2>W6xe$Ki zt{*Vn4jeW>@{WQZ%MRA}=%;0r!DnrtV`gSU)a*d$RphBhqG6fBupoENq!nhltHipF z`;48VZ-qwV>A7bpzw(J~m~QRNpKZ!syzIdX>!ImVZT9-YT`pZp28^%@a2bKX7a_Vs z0ev$-!%Rc-&6z?BAq+OP<10Tm{{=^%uBL|T)I7Qdfr-QmbaZoyF2s#6jj`usL3$iO zsD^~CUs$%p^A@RT=2=JL>*oh_Q*EL_ucw)RRvh)&Fn)w=&W`@FpJ6_-srbV_AOCln zWbGz>xgXJBPXNy7yXeJ9mC6h7#5|rf>C3(~VT|p}6Y9ixLcYHd$v^5G$j-vtN{Ov# z-OlwGQ+1m{pQBp&{mzX<;p$I?E)+3^1V*@H$@7-g=P@814G>ey>M}GD)u!IZIro*F z6I32E+CX0%!2kr|$-yS^uZA6JK~-nu1a#d*zUiGQlt37ISdk}P1o&WO4Kx9`An+w4 zj2f{--AR*40s9g_OS4|{IBt`72EOj>4cJ+rA+aWhtyL>g1K7j}YbtO^6>+7bLumVL zDV05exvL?}f>MQ(a+om^9+low#lW;KC+4LoOZ|^}xMxPYV5)4azDM%OD^BQ%$gF1)^uhp+;DVw3AI(rQV_KtAu{U0&lIV-)3CX*{76Ye z%zNa%#m}LW=EgTf&~ZS-6sz3Ty`7H*A%7uteul!nd9uAt2e~YaBdGsrp-J;L(6qknxF`aHl)qTi;GG95Hl-7hq7I_v`)a8r6+)T-F(fyQ0s# z29NSOj;ba-nkbjSfkX`6G_HYK*mo0 z!eG<-e{7ss=x+7Z?I+LBV)X` zev)?6lG4(DfB)A1j0YQW>s88nL-ZU&QV@dsH*?aiXQ(N}PJB+$-NycDm(;HN*PgB9 z*wkZ2tSvIxLUg51ignF{TwnH+Og+)?38~z}OCI}nwBfPEPYqQ5(wRqXo|AWotw#^! zA&1wBezKficyCO@b}c1VHl3=mLyFWyjR93$P7T0cUn7H;5;Y2u4h=egJRzEI!(!M? zKV~lksx*}FFbxk4iQC#Te~yfV#`7msC#Bwx7crb13h=}P0;G6Vz_Kd;uj#;Ih;g`W=xhtR-^^&A*PY1Q7!9}E0`~@tbF`{0*P=;H zWFCxs{cokNao92WM{jSpM>NQb;4#Qe3PeqSI7%8jnrA-iMREu`K(2l7UHn|N>!|m4 znqg1d4^}QDhGIcplEW>YmsKIO-x0X|Y;tSKM8f34ag%GD>|)mUTQI7KKCCIszj%zb%+8LV!@1B zDG>7!MQT_RDemw7uaFwJ6O5|po{P&~{k4N=%;<*yqF*1*#UFCmhJLtsoM_r(wPh9Z z%AN{pcON2@*-J9sutjQa5OIliMs{pBjyoLwm#+yN`y#rL5AE{-7(7o1ioR2_1`K)> z-|oLM&pdTxNh88r6p&&p7=HZSV3TVNE3k{B_?OiK(VqI|i+7`->7qj#SQ8-E+#n!z z#7yq%)OQ={Cw~0vbwubdSxm9)TY+l*yVc559cY!);FIGA)qwk|9tNfx`SbUg3l%ll zigIHgl$H1JJ{zjKINkNfoCV%r{**kg*P(pxkRzq_uHJHQzaI?3D2dT<-lEih9Ln*& z131O|>rRBW-;1)R%|StMu74&F4-ccfT7qbdP+ze;_sGO z-IK1RD$UOxR#V@Cf`SNS9kH4SEhl*pUK^^T)1bEZc~OYTPIO1+AU8`B-W^a&!)mov zXu%Tvs>#2NyX2&K2=sr}4yeA4qd;==@XendjRFHiC>tL?k^*mmcGrN4e)E=FZ#oc+PMD;THH0D2X4_MPKJ4`M zjI2a~w~$Ikyy8RDKEc5yq=mMlo7Xm?xK-77f8Un57d7P1QMgrE=s@;wZq>IOK=Dx8 zyB1q{hy-(0z~2Z2`ssm19+7>05#Or}dv{5N2aZ?38xVqgJ&UUlbM>LNNgR>CA~UxM zibAo31iC)lQBu}#;qi_{R+iuy)Xy^4alaox5)w|4 z+~6bKoQ(8VVq0v=L+q&TB2(vM8N|foh@ZOiJ#qC*<1-J4i3FQfBf*QEujo@b>P7?v z#vi^mI@_QF!^!hZa=iI*jFEfm{DSa|@tsd1WLZ%&6~r-4Z2~3hteCz;KZ{d$d1o4I z;F=yi3P{_9Z1MPm`9 zPrkt~77c7tS*rrJO%bsknWZtiY9!U$i&x8Lgnfxnvjqf%|0&xIl$D$G}i! zG19X?1E9b&iW(&cFr?{n!UCAh0SVx()|Qd+erq?02kA&J!y@p>Dr%Q1xi5EMK0|1L zE2CF?)=KT`*dXu$l8XK1JYn1Z1yFzg!K|B1r| z1W>O3qcHt))mu`q`!g^25t3Ra0#IUl{_1Fnw%6KRZ-x5dwc1dk+Ho3%@BoQR?rYx{ zj{W4F4|1Jtdtl-YcrsZe)&MELPW^gt(CFPe3f6T@|K%@*S7uz@`wDk^2V14was*~5 zy-72g>vu`EB>b8|`#n<6ZHK*oK-O)@-u2B5B@GS2;o&{jCL>UJZ#SYwXt@S9|8|j^ zz~(?~S!`@o_2-e9+&d&^`DYz!gJuYo%gycW?z1BN{rXxK5tfEWuiQj8HjYBJ9LtZ8 zD`28~Zw~!=ZIgIeV-AUd$038W*Mki~e|!7k9U|2@0{`XPTUMit5O)6=v5_11#9c8q z#JL)mz+EoGLU%NE7Nf#oqwb6<0msr=-OC9oRw44pwe;fb=XSsBS!Y=K@(R{)32uY` zwIQysHkV@M8P7`Pm$X}}#B;C~;lcdpFI2H`8ih`-dppPhLJW6}B=~?ux#B*9%3^>|3uX!7F)C35`}TvA$6t+F$x zHfq~DE?ZaPyblE=Nm@zYqElXhqIV1p?Ru+lRI96#!m&^`G@9rLth$2va7(m+B&e>Mk*U;~ z+CZd-OC%1gAZ(e(4WVeSU|=hB{JdSUw7j_}fE$Bq3-{R|iuCMFbs)?|1VvklmCwEy|@2M`_sa{XWZ+?I6T zK(rqcE~BgE-S*?Yg?seFCX#W{?O*i~gU~7_+Zz_AXeEMRhI8J|U(l9dn}&wO^+p0w z+XoQo#nOice0UWtqCq@lL-@t}{9g{H0;l^9Ab>c1CA;ik>tzZ0+KgD7vY}LTzukVe zj$lew`(%1iO}R?2&{DJe@1YtA203~15NS6yz(tZ1eUITw433KKOcK_R@5PFTjxB5S zpzDMJoAkMfSqV<@IDu#QMKR{k0Ps|WMqvz11m+VUP_V^eo1fe!F`7q~4h?5oM(~bO zb9h_+4tA_2!sGZ#wQQ?G+3}(kq`Gu^8H@8y^Zzh*)?rm<-`l4Vl~(DJQbG`<8)>Aw zQIKw=yHTX2q*PGg&>fP}ASE0QB_Sn;?uK_Cbex&*uip7&hzZO*1GTevvOi0 z$*ZF_L*D1S7&&!n%ZhbYM^xu3yCdL-F?m@2?BNG%gCaguk_dnLp{HMyL>I!Jy95YP z(55$uEZG_V+=pc8yr7M#HFSXkuct|BP_ELCb_NdqGD5{0<-$YNE-n7b!5GI7!(CWT zzJf>B6p9b52Q`y^E@_0^<(9iukLcINg%^T_K3wXvNfr8U-aJe~zIwx8;QPD0NeRH7 zNCN6Q<1W2vr%f|2#;v!7|IKO7eUgz+>dNai@MA~IpVB-xYAHxQASo2NIO?Gj+b!6$ zye3;d8LyW_sio${q`_Se5_(0VUabXtBuVEP_73v2y$yC$I6)TN(z)BH)U7J*FU`h_ z4U6KJv_HIoEqLtqKv3nC#^m9utriw8ZYOw|=GF^$Uc{`JdVB4cm7}~QZR_oor*BK-vOdKWA z?-*J4CF6On(zA<4U))3Y|7q_+*hk zBRNrU3|_3#c&0IRu1UMtz0Y2&C-~4bG)&CZc+S7|{a)Zdq0*zGTAu97y&#|FQ4Z=xnDEwt zwy<>N-bGYd`Pfr=l6RfnT4~ZKwJ-OlukJ~XzzcjR?x~I22~}WiStcP7iQwv=<~bH{ zpH-wr4nNRLXS#TW`NL3yLV!*ykbe8a!c&Jg?xiHoFov7eQPCre-_6tSe2A(drz#$g z9Dr?V2r=`l`z=d{z{TPq4~UJi8Gz1GxU6+m3RUI1pc9U=i0+ePk$6&uJdK5}3Z(g- ztR#Z~#4wRczUm9$KB9*X>7P-}z71*a(t`%@cTE) z9DoWAEdCciV=f>PJ>qxrOvJwX(_nXL&90c{t!xKDRN50iii%YYCALMJvvE$a4!$I0 zj7drg`}R%MC3~?;NIzQ_x=56vTnK+aXf;3O~1&6PofL;^{*Zs0O3P@C0}eag5=DYG92B{oy*dpgw- z(sgl{6bhqPc8>Wkmg7gAIO@~B4hJ^t*9ZL@p63{3le)@;gxPPR%H==NWu`Ywdw+f? zq>-~2+pP`8D%WpV$2ydykbL{ToiTRtH0tn$T>JG1D(+gl{KuM_iNaOw?N$OfDT*CD zLP7@nT`ctU^e1CxX8eZdkN0VRo#`4_;ZKs{;sV>+BoNkTIy!1DE)8&v0sA^XD7#txb+LF8Qu8CNNn&WJ{-W9~ZBwW|9Zq`j$z+hcX$f%znQP{m_ zPOZ|-Wb*;wo(i~0y}@OCS`1g{+e+04BAsNNr`5Z7bES-RG$N0yFJ3PYGKCFUU^k<;fq-?GGLA{zs-2C6eP+RQ=Pc~7rY?;K@W^n2q zF}A+p%`W>{VX9|~#XYEMZi^^v2b18fA=WHBXkXp+xi831-7i0>Z0$NV>MoYGKwgC{ zl7)L3BYq|TNc@>8JIJ%!J>3YR?_}2U;X-yh)n zmx&k|=TgH%+FmyMTyCL5@d)&HvIxTns=$2efNVBKLj-qoi$iz z3YbVlD>7E|uQBrm?0^0`1IMGJEQ&6?@*$YTZ?8l1li;yB_4W08rIF#`${>6VJZ>jr zuIm#TAf<;*`sfV=Hf7=Fz7rA>0+*R|dOrcDE`@-!;5-DTHJ_ufgm(MyRKkBLW2?ifWhU@Xq61ypg7=lDC`c6R&T{I-{iuO?IO1Dd8@!WX`i~gSDdJ=akddu zvm1}*op6){@@?RsLK4KEkiEbG*&@FjD?F|zx}*5sx2om$nY^Bkb3-91ZxZU~8eGD? zZSG_ApOcg~$+pMN)5EXW+gAO+!f&O(zpsfckd|Oc2MMZJqlIXE&p_>ramige{{bwn zPbbJ6wQFrN8#O+>%e_U_x&Eb)%4zcIla>E>ql(Qc#({9{u$W zC1w9}k04v<~jOAnX0l8G^xw+lb zybR}l6dbWeLx|+nu;Di1)03R27A;~DSXe^Vzu*{j7M$(Q;WcgC&8qtmEzM}M)Si>& z?2m>qrL2NXx5;PW{SHIx=E^5sX!>MkZ}LmxhErs#sYyq$e`MqkL;@#o4C(T#X9NSzaFBZFJq=-%Ovv zd`jW1G0^iJ``Qj<5M00d0>$0*f6VXd#LFAo^IVKHAM5TTny{;Ug400rDF*Dnxr2!S zU^DyMw{Lh<18eKpiDx7wMhOeMBMcUVRFY0k9C2}RuT4z(Q(m`sbbJ74dkV|XMdVfn z&#AF)aUQ?~8KfiRVtsOD+Nr1T2!3X5#@~aTls8T1M%y|%mR{(T-^#G~9FPey^&TD` z1|=CVEPjZ#H8Wcev{LsXIEyRo>+9114b^|-o}q9R4g+vI%Wsh7nt^G2<%`AV30m~8 z8&NHYKJZHv5iKl-$YX}(XA~%oa@5TCWhPSuYQYCMN4>4FtXhp9T={5s^!UuhH4Dw@smGp8_EQvjA z%P?!H^bb);5pG^9U>6R2I$5H=f$4k!5^P(G?!L84$D-IJ0qo#Ker|=+mk#?6t}KT8 zQsjn4rH?OJ5I>16fedlABTZRlD#3VKo1DhSPpU@W29z+)k9;mf z+{mmtmiQ$EXCMBindpLnEqYbK7z<^KvYcSe3#s&`#z{Xaj4i@>I{w{THjw4Mg`Fn2BdvP z#H)okBL17hNoT!X<3AgrSK$BE1E@J)pREH|eb+kQj%Q|)=w?wW23{PTC1|a9mR{r0 z$*=Q<6RCrML+5uRG(ndPFFGPF+2Ml@r5&@+t{3x*f-%b;QEg~+G_JU~`0R?Mpe&>D z$+cCbZ&W;sKM7sE8fD9tSZZt>771eA6xSlRa5}Ds1$DmKZZgt%HstwpcJrfdR83wn z^mazcrMW#T9WeuSPjg~bi|4G_+vT5*d)`JM$`uOz?{teSGWkqsmc6gg)r~X ziGv$y`0mp^rpcJ06HZ3Q=BMtOO?X0l*+L*?`SaE+?-={uEet+zis?q& zX4ag2$(Z4A0!g9MB@fdXzVicWtz_qIF^ssSWOv+Ve{72tjZ_o=WAH)CdaCJK#cclsG%VKm~X~TwXhCrZ@-OeXF0D7>8bdP zF^ix3UE%uYj|8V6#frqY$4Q8=7ZgAUMa7z?B^cz(`Mp^U>$QEp;bYMSKkfK%tbHD$ zfD^)f1*Z5l3}b26WR`Xgh<<>onuN5-Eno6o$R7x?onV^z_#{Gq{*QO?{BW;Y3emmA zyT>*bj3iFlV0-4h5RWOgsF}1 z{PEUCB<=QgVb-AHDJKqScxR@(LNk!QO{)2llTy9Djyuv+W%kD!I9#nyv;e?Ff1*j) z(>yg%h~b$2@iI+H&hPH%3qBU{Pbe{YJvcK*7}ra&=+wW0?16f)6b|a0=hTn)ZLuS4 z&S@|ax5~$lA8CYz4fnh9Tl;1Z$%H{mon;*Igaq;5ugbZBV}hp`|lj{gUvw z&;zeAyqe+Jo3hu5+2Lh(=hlYB_gpoA4R5U6k@XYK4H1%S+9i*$wdzk8`#ps3Sbw8n zRIErSZNjr2jx_$56Gmp3EPTs6)9|>75BMhP350Ii&rrWKj@$}C6YS|x$dw;|-Cg_d zJkzA;Xra`vQQ4HfOECDM^8T}{a+;xrh5h*P%%$xKQ_Q<0-vV-(K}m^c*SXadtCDNU zBZw68(%zINAS&IDUHZkOuBIH+kNY}bfNWz~;hcnJ?eqnIcOBE*53#2cXfwyr?{Z7t zS?S#Z?(FtLst(%XcS||(nT3;Cx)Xl(#$(;L2@hl}dk>hJ#4m=P6-?`V_D4sY!-kGZ z5YfP_LTt~xF8btc<(scxMDT@sSYRZ6^+Fp$2*l-%U%OrLnxY_LBYO*$mn#I<24yTe zGu0xgif6`c9BZap?qKT8jCoIM&b?IiPPZ^mP`n*sLm(;@%`aKGw(H=QU-99Ks{q0h zS1FeA(0#*kef0y$HD~8x=7ThEg=#ch|I+gEQoO{0+}YMOD{Eq1dSHrtOMCyc#xM0? z|DLiZ%F&J)b!WF>Q7*H3P_9RfXSR#W7oyd}yN&~5YeL3rL!00FG0pc%K_-LFr)gg3 z+-qcWG5pOZL1haTx3zITq%1F&(aHX?C5IzNlPbh~Sta!req_7r4)f1qIp*7-oejx4 z)a5}uVf&jiRJ2lEhR^ve$LE{Xo;EYnRu+HvUsl58W>vADc(@^KJo^Y*`Ujd}%AGeX z;`l=X4Gk@q*0lHF{w0;b!Ti4V>V>!TOCr{*{O9^4)bVZ`W%{{BZ)0-hC@T)^br}YC z8i}i%^ovc?vqotpZ7uZ*sbBbvzt4ADV_R$5-Cv_F7<|#Rn>+{u`wMuZL4EPa`^Z5; zQW7vR`kZEF*VhZ9lufR3s>;fE{4URg4&!}2Z-S&3R3&PB?K>qqdd;@L>{@3ej8z1A zxlhYpa}<#ll`NY3%ZAQB9X69Fdl4Xyp%aABH1^~x8`+v*@+=@4MX&Fhc;(V2czAiv zzM>g5mela05R4M3+8mzTu(L~W;vH!_7&y>ity0xq13>|S-6-81Np7#-#`45Q#GV`W zlwad31fFaQDB%l+)jp>OU{14p1r0(3RDfw)MeW`r2L6Ow7V(83D;q^YNQGYHNfj_3FRtf)k4MEK{@R$`M2T0jSmg4NKZrK7XvWz|)z45J zrh9o9y#DG{Cimj3MeOdkOah4-9y3&_ua~#YMW`YIoc%gJ`;9T%7q(?PsQ5- z>0;I3lN{?H6&uok1j@hxa>fQu!BMrNpa8lycdv!OmuBQj>aeJU+4TgdJZ|Ef1e1$H zONdsvUZ?ck=lvc>dj}6ai_lfnRYR-S&Za-qe-IxSGIj((tI&y`gx_#-LUgOO&eU5q z!@Ta;A?lH{>jd8Js;8$uphcp%%H5^w+9H&KdAd^uF6&>1yCURP1w-#LYEwUYRDP5F z5WaEya5JY+01qS5{fO7|Q582dBPaL}1FyR<-oIj}@Uw0gJ$erU7J8ce6M9x6087a= zboo8SnmXEF_ZE6srDZM%h+dvX-W8tJlqI?F>OK#~Ua3&Gt=4Q`8qd!Uib{0Sw;~nz zdLfDS-K`ThPhrJ8Hck?cr2m}p+lgtPop9o7!KSBQnStLI_`k^-ARS!Do{SfUZbu-K z9C#n<{7r>3{`bJkx;=^tO;b3ZU!%*5Yek6UC%>qR72|IWMA|I=_i*b56u-=+V9Xw(9cU_AM13PJD&g^$J{cy$bC!!G>1?zh#T4?i#@H5qV`TflCE%rN`B{JTRP_`7e; z_1vF5BwfOFLy_mA2o?6P;d9*dNu^5oM$c3HlLK^` zd_o&%#<3zfK;)>IM!xY>4?1U!sX@^neLW;I>HO;uEV}a24MbD#TCwW7pme;onXV^M z65I|RCW^gZx5uSPHAeXG`n6(Jm`)rkPThodg6N2NU+p8g;*LQcIv^(75yL)nPB%EB zJs`RDNm#`#V`6i6ur>!`xHyFsK~T^VOp>*plu*DrS(b?C>Nf-6$LI@3j+m2tC!rN; ztO#9ww7XEe482m0FFb`Zv|Y>0WV`Y`T>E(h5nG3bmcd8QsJ?UoBIl*ADncCbbjEMc zTvh$5HRN@#dHYnu$F8m5KJmi6CTu{#9!>v}z*_2aC>?UVshrb>r>7?*Yax7r;^$P6 zD?KT_hk=+Fa@~s+6gRiihnw32EYeG2wB6r@%=d??>8FmS`5V|YsD7BIXH}E^NW>jo zmA%tWyS(4p5P$m9HlqBJEF%3h3clWgzdppwi)Tbn>b3aUZKo6Br#@ab@>-@p8VK7* zr&???vipqH>Ks)80RdaPoSK6%eE%>AZQr4Vh#-n1I^#Xi;SU&bWP-mDpCp*z?>iRt z^z}vV@)21MGZO+rAmnn^4PY68YGHLA5PX*2{4GpFdU#WOHqZ|h=8ZB%u^cBF7?X-T zjR$J2uc5)g>@mvnmDqIG5WXIMKn!ilGyzlXX(|%;lTKC$=96L*J{f77e17kAb&vek zRc6(d8bm zA_Lhg*DAod{3oF#66>>2TyJw6=X;3TMVE46XgL@K+dAFxoq7{=TkjCW#5vV4R|2qa z=%hR3^udFZ{PN$k*bv74_Kr@{{+b$I@lF;e_2%8I%q@42)OQGzBuxRe{Ok%T<~;PvmXC5;iS`z5f#KyvIN{mcR4}ow|W2t zIA~livB*V`x)xgc`ebT;w!Yn!FymjXz`MC&C$f5EOISd79O`M?t_Xz`WEY_Lt#xTN zz%M?XlhEZ-o4R}{s~~SM(6IDCw>x(b+Bo7xF1~1dTrB4}eS^8wq0ep~>*^c6M0~@u zGbL#5m)09UNk8&Sn0^9_=3j05)a7Q(MR9s*Fp-Tb=ezOa5Yuf6pNK9!!m{c?hm;>tp_(gioE$mRJHZ{Jhmf>YS| z(X!-0HRVVW{b7I*a%0pCAx~sPa8q@x{nL4)u>I^<4OZDlOcG-zo4aPQKwRj3doS)Q z0#t&)xdkHzlE2H-BJizj2j7Vi^S{UipsG+@s;Jz1!un1L6Vp5~$A5clAdKwRDr;If z)=pOg%mvavRFcv+>0jp&s9Aeo*ES`h4awMb@3OP~cuu*#vo5d?*DNXkn}9q9I&_njdh~ z9k-qR88emfE7db7H;!hPVm*B^be?Y=I-mSV^%@u?WEqvpL9&-{Ewu}Yg<|x6bJ}j2 zsWLHY!OGE~oIatYz`Wjf-`NGmNVa9*ln6)mK$kpPj*HZ;Z`tO)0UpJ>=7?YZA9jgu z@{a24uytfyOkx8L&=iC^kRO{N@vx#}NRxG@HUk|U40<~LQbbjElRi}cRW#P?Q&@T? z;ox+p0Y_6e1*Y_fFNwohQ4qikeel$I~ga2q~}3u_5yUz;!rU!5_C zFlmR%tBtlRr8<@PCY`UY=`pWs<-a@0%gr4eFyIU8)_?x|`7d!O=n%Vz_OLDtmr4^1 zuT)fGeSKn9(YPM`v-#J>^GG{d>}&2{g!?ZA<{+RGU=;A@%ER4OI{s4=V0Snw7~-&yIz?UW>vUs7$OrbMEw=+LsN4Lk;|+=S6~S zT60$hWWZ~03gGb)m8Hjev#s(0=BG#ifVRDv$MdM{k1#q zn#b%~V>qSHD>$-A>KQ!+r2Llqit8IQGGq#CLJ%ARD!bnc1d@8bTCfw{%c>L*^?1#3u zLq#-yI3YN4L8=Y^v||_2F0t0)`cAxwMD3KryL~4Z@NQv*4@MUxEcyD~J!=gohBE9o zD56{Nq4Me-o5JCG!rIZaosn{!7t@sP^q#!WMmN3`ryg2LGdT>j$(+rEobMlYlRL@N zAFHDv(7v5=!v8>nP*J(O`PzoKnE$UZSMD(efy9ASX8>Ak`Uld!=&74qq0KJ;LhssI zW6_1@Zcz(*8;Y>hJo9h#dCv_ZR`V-SA5=TB2%4s2@{0M64srF^UrclC0qLy&!k(qb zgLA`_`aO_^8|$6P88Yv@2DV~L>DT7hCJ(w_p>xFlr*ZpN-~BIA?}9EE@bJy+v?|Ce zY!c#gDLdxP6Qso9KAla=++ONQ=XL+u^{l~pM&(T+8FG*v#ramB(EN~ypviE3^i{u5i+@u_+B4 zi!H^aVQ~PKQdDMFH9c;cGn01%-V6w!xC!^m~e;`4v?PzXhQ&s(f2j33E2yl7v!oBRshQP_E+R;(T&X%`EFIH{NRzD0w zb0E9BJ0)bnB?jpw_ak_!&6t3jW@rkMkN3G&qM&uXCDJUc6A>}Hs+sjzU+iC zKI=A^ci1KA;QINaB~E#$afSACzUFh4xluaf)bbnZ`3FEMnLW4$ZVoVc)Gcj`4jA|l zklutE;?X>f2>YVsU*rqVHg`xi_m~5NsRJnh=>lYs6@uM4*KQpO$$$b{?0o4BCAEg0 zlQ48h;+ukk^PXUY-*qX66)}Xdb9Z9}E-=kaa2lxS0b@j^VK4be+_^2KvhpH>`zeR< zcfIDGW&h$0RZOlpsl(EZ{J|^uk>cL&ti6_->O6nl$5qT{L+lLRTcCdE;kt z*uOT3j?8dr^fSyxa;kSm37ey4*SjuGZe4|cf)2aod~fVG?yTh=LDNvyJO zv^giZ=&+LM)Z(0B!^3JIBTF^hcF=&<1jd#83-b*9?svli@jYZG9{02|#Ly(c z&M!^o->9H=0WPa_({{1yIfxqW?dMV%=yyM8c5!2w=-%mli~xUp2jyxZY>))_t78z1tIf^h$ zr8e>__$fpWMO9!U&FaY@qZX2{;5PtVnwWDrrO} z{*S#Gpht4(<=UrM0f+lrEe63Ch9d4>>P^pUOrF^<$(JDdtG|PL|3mYY6e}uzNTU6r zuIfj|&DNVN5>*GB?>^ksv+ffei-$hODa8NhX~Mw2LsarSFZPMblS{nhqkDt3)%@?a zvCtTVKJjb3u7_R|tuXHH?v|0019Dv|oz8#3Ymdp`$t+DK5@S-~(oT3TxMP*!@MWHb zqMf``k7LwEspwhoZGlLB0I3HNw_hN&|LYW4f}e(_Ddl`AJiTc=am%Gm>Mx0t3flzR z=pQ2IR+c{yInzh$k=1i^-U@YC&cIM3T{Yq_u+lh*wltJRfzxIi7llZ~e(zR>w z?>d$KBH#~#|7y!(rpY2zVO!EHrPzUCtV?%SV`en;^=Kv^xSXtf;)Ky(MU$?-a{!Zv z*RBc^-9NIKtlbemu^~kvGa>hLzUkgnpPFl{Ha#L2=5T5#N*pKd$|N1a%uxQ94tV5w zz7K;k<~^8VqSM3Uqa)!1)0qf9=Or-qX8=rpthMZmqWcRkd@ZjzI3x{;Y|0u>olAX= zETvO<)@K2Wp)-#A6+Tk}l>>G6DtL1TKgtu;eCAwQzaF=1VlRgNslL*1GxJ+F74xNI z;&c(bFJT4T`lDyPkfbztIjF|YEh=>T{tGV5?+UQ89Z%yTsLO9?;sLq6GZ6?YS&J!n97<;7M|d# zey6z^QT(;zhc$)PV=L^pmj-XovUGZEED+uSM`?)nwEH;ooLHZjvT}?^09vVYEmzF! z$M0R(P3;!dVosdRWGJxM)N#Pw21zkdhNo9YiK2r8JI4M`6t{Kr>@nwA;;5vtfxvT+ z!i1pf3%6Y(eZpHAaiLK#)lrCZ$7z6O8L(-W;;{m+mJ_u88iV{Zcc$Id`V{Mk-xCT# zanz5Th)eFFl0fXOwM|!X=)#wLav11&JNmzz@$TbN@KBX^D7w5Q86K;CcE9hbhfbFC zNKav<&WA^)q1^M*@Mm>l4?wh&uu<}?YT4?=Oo%3_FO<^$L#pp2KSI>pZDop zy~*Lqf{Y`gS&83FRl)vL)9Oap191rMeQ?y3{oExwr|#aD%SkycK>q;O;Y|& zktzSxQi9Vk%skqI-p3P@Kd1%2e`l{ss)V%m*q*BA+r~p{_`cbzx z^HJXpalHw$LH#T9Y|8z&H;1O&^!f7@6Fq(X0+6h}GTjV`d}T;he*Qd=PWz25&fVro zLi7D{J6k+L#mWOMJ9BoiKe6Ih5j-5f*kVq4k@;O2+yAM|M!L?hn|%se-+do`@x?5{ z=cDQCLcQJo6lJXxlCgI_DFpF8J5-zkW~dzx-wl@Cw&KZ?F5v2CKE4o}-CYgH4iT;O z6kl7!-Q%0IAjFS-tisJqShaBLo&IU9<+eiHex29KEW1!=AnRm3R=(R(Rz+I-`>T%^ zu*|~4JD#mebycBB|E!EQ7B-u!Rm!)2tzGY4+IJn}l+8+fyt_Fp=}MUrp>Q`5Eb&S4 zREs~kjR+=;-Q)Z8eY_F)VRI8xb!4X@h#dx-s$I)ypA1i{^}Qu&iWUO?7FcgEua^oTALRVA zpErF>sVc?bf(_aoLv)r@)U!RM_5Ebe)+kna4S)eiEA2}y(OFaommh!;GQa9yuYcIV zAQD*kvPzHQ%DI`V;FurNfYhfB#5UqEXl{wD@zc#QS?fE^3Ig?Y-wYFZSsci6eDX>( zLvm4d(y7Hl_?#=SSW*;!qrLTH!8)l;r94HUU~G(y5-f=dF#w+|AXz7kLwgc;zq@vI zWhD=>g5~e2{^4k)e^G5r8Wos_Z5Z8@q6{S3EZErd|pSF;?826#PMi`2wZ5U&yJDwC(eWcmwc1-57 zrLilNrVh|&yLT_wlUi)SMm5qC&Lzt=@t~Gu7CT_ItItM8<{B#21L}D8D}DweFRwN( zUAWwBin6G86$Rwr+RdjusOHsv@^e`7`Zip((#UJU{Uy9o!Ksz$|2j%zthqJ?xVi)I z5CZ@lYw6lU$4 zkO9pvh@1ZqxxdB;tWoJo$#q!8w(Btp+ddujxyQmyFmdp6Em{me%HE%T`OCYF(eAJ_ zUBt6T_V&_*ssSymaztve@VXQU&g7M~{N%Vw{cRQ$Fg?e18sKA&qfd;txJ28o&4$|h zzq~{OyjBB6Xn)dY|5QJuv(LG>;8o+qr#J^|o3x+OGT)dsOem^uPk5{(wMkJ19?Mts zcR{x~akGf#<1g;Sxa_1aig5kSdwfMW>JL{Q8V|mJ4!OINwS)lXv=^!rrljc&3xI{v0e+ zv8q(q!F&84>s;#X9Vq@2&IlBY-wOsh$JB1#V{Q-m11M;BBS))zfTf5GpU8jRk z**}bigR;2(ymsvx!ae_czlj%OR}aD* z{2FRhg+-J4fB6&ZO`?vLiLiXB&nI|5|t_K%{Kv!Q(*Yy zdYjiuE+Q$CZxn9Dm*`w0Qwix69CMPRd+=(YO{DQjO9tv_TuNrac%+v}^7qD~M%kV( zUB^v7qM`{MF3n$_R3#B5+NyyGx{5V0@TXYAm}Zm4Attl}==U^u(#o7hdKGI+Gv*QG z20(-73YBIPEL262jL6BskuXhqTfM#aVkd<%-Rc4BxPJY~DGn5}2J5RWP*%azD~p~D z7$9)`P_gqWipXy=ij7d4BR)Kr3k*f!Mbu<6$0#yq#A90YEs1nmFFu*z&VC~b=sZBu zYK)3gW0P_$b`H34feqFzY|R=nmLuHF-~&qg%iZi!_AL~?c(gr#GM1Q>uUcwa2YfFp zE~h|c#}saKd6bdDe+{VR?hEz4+6S{KHD(Lt9D^H;~p=P-+eLsi6wi49fy*AU%~ z+uOoMOWTQTtFNIs-^4$Y68(oE!0%t9^ZO)hA#JQR8*t0`NI}XjxMfJ@r;CVY@HEcr zT0NieuW^XES2i7x?f%LgumqS_{T33}H(PT;5lc;~-vm8Eutn`s2X7oIZUi+NtYc!X zIl4KwlEJWxE9%4qvIPwFLw{DoW{b@lzl%XsWT@L?0r6|SmGxJ~w0vDSV1Vz(TU)mO zv`sHmQEJKjF=PDBZcm&tBOe|3LQ6}RuxFQ3CfuB`31QRbhy{3D(r!xdLR}ZyNg7j^ zR){p?Jeb4GCSmqVNc)+5)G=(q`s(gh*h&}K7l0;lf>y2802kJ7xN$7)5wA<;^O!u^ zMBP0GxW!bgL9zg92!}!Df(6I6_qZlB9QTp&Rm$%yz)D{6e-}8J1Bj44Y;1|IwpsYI zCh9?Bl}&h@(>f7f2&1ae3&-AuSx@T*316Ndn_QlgW!Sd``v8M>NMS8H#Qd>F*i@Q< zf3MMbmL&Zf8>VF`7ol2?j}X9oL=5Mxz_Olq69U>EvNrUT!V?s2g0le%h|qa}77zg% z7?7*aZU*D1V}eXfW&FD@r#zABLMbs+EfqYl*_6yG<0V+?*0Ja6#qmtl!rZ4rn2Ca? zuv{;54CrNlqJrhLyZg?C?W6vm zY7G+-8fznaECAsCi(LFzc=W&7lLnc%b(l+MC3kw|^IaBInwAI{-R;a{bl~S$GPli+yiZ z>uvTPUF^)Jcz!PWr?JBa9ZL1T7Kd98BAI&iF$<1(wpR6xSEHL-44MU&E!@;D&CxK( zNqoYr#vFzf*%$-R@NeB}6Ag^$>O-=>rY~)0_E=mTw7tmxz_mmY$lw8nUW*8upus*< z#Ec6P?VU3?dki)AxrQ^wUUowm1f3w*(K{cmLvKzgKGp9%MHuhS5ksxPN*9}LOD(4V zi2Wwjcm5vUqVF-3Y!4*YMg?uU`2rIr59a3B;(T{b1u zoF#}ju1{K*Jd@8jxwVy&*ZM_5L0)eo8hgXH9Z(-k;H&u$pIvZxrynJGR?qp4G+xr-_IzZ!eBYGKIujph8*w1S zG@1EqbiJjYKe52)V7c(*4paB#-G#%G&ZPV9o6$ELltwfiQy*jNu9qd#>P#q|KJX8V zwIw4d1q~sIt(SM8KUg>#DnWK`a@-*o;`&}H6BOadDWVsfTAf(87rXaMpLOoH&_7%d z0qF>!{S8)AbhQ~kB-4hQnE5S@?A`q+xWS4!;q~OOFoB*P2qv4Atu2Or&IlynEQUTPzN^ z(uMd>=OJ_W#M4<>p0L`5hA@ZYd_Qm*8cp%t$@1j3+0QM&sr%BhdD+)sZtM_T%X|-) zf?3Q?3?E1kE0>9P;s!N#O2$0bz6?7ox4mT^lffav@*kTAdRnCOKv?ww^ezCzuEWTs zqZN@6Z~*=ZPg9HK@ox&_T|*s`J=cu53MRWvKlk0P=BvTcVyNJ9EJnE;dXP4diSrfa z8*_P->*#%c+M(s;jS`vtDp53W3-%z20gd2l)Iz)4JuTgPA{WxKc6&3O9I z@~T+-I@|Vj zr;@gTuB&0AX~eV@vNq6na=<{K&$Dz38gyU{H_SuqIs!>dt*__Ym8#TYU37|7=_4JT z)~;GN=)wa(sMa_1$bPXTin&d|kvKzdK3DwMC7*al-YV*%!YHGrc)FGktESg8_>&U(8hl>G!e-X6aGG7;mSeVpw&q$9lZ$VCC)=Bqj)kN$cuJQw zk~3xMgy#8Crd|UIR0W+$SScqxIr0^L5o9xZVV!sEN3=u?4x?1=Xl=OA52)I9xl)s) zwv%zhYIN?lKur_6buJA8mVKuona<9QzZV@NtO65pHA#_luR0IN ze01KF9bg;#=DHH?B{+V~@HeI&#^e1Wnv^k4g?)sseBe&mfc>r_rh?XnYS)>KMZf3(#9h;oFRl!AA);=D(6z$ zx!lLjZN04&2!X%ly8yAsE_n>&DpxF{ecWYBY>2g+HDMT6&2B3faow!jUdnNnAzU?% zV1iaD9`>9(_h326XS{WZwUq?e5l7}lR^sDK+Ltg{XLM7dn2k==W)5h2t5-QJyM>&@ zFDnmOru;#5JX}pGQz0dFw2~LJH=yovnlj4RjL3Jq^fLfS&whkeLFj0=1#SRO?=h`^ zuBsK^)({o6-emvq!lsN=@ETxZUBz-m3s%T$HqQ)6kJZd8&;#o@x)uk|hve!vfM=i3ZP0MnRPl*IA3 zg{bn;J}D>=jP~$q(a#Vm`5Nuc6f(*7!`CL5TexbuyPGognbYTd9uGfdf6uD3{n|=h zMYk0@*ft6cG&{zFeAqh+P*QZaa!~| zkcDReGfKxkTtu%4^Uyl}iQdjFy~I!QcX@SuZ8!7sIS<=xngOX%>PN<7Ps=AM>`Feg zI4PLcJUSUU=Ol|TP0aw;Y0480FE4QvABTBf>y6;Lixk^M^82c+r=~id3V~@Xy@|~| zTa12CRQ{b!8YN@;?oS25$F|NzC+e+*lP*Y{O%uSuvC~%1{gUbV54Z(=5Sl*sS{`4n z>Y6FKLUs`OU6;8fQ!yp?u(#D&BcW(Q2q_o9vP$HD|hNcvIgI-Aee$Z1BSt#W~+?VYPEz2l!7& zbKZ70K?gmWW`87I3|32bS1QMCPt>hvp$XM6z&-&~{$O!J)v@M+uE$(N{$8Outm!k( z>cLKnq8j*+3wdL3(j4N{yNYQCi}K-PTcdW@JHF?GX{W@#+klQw$=dsu;h8QthN%yy zv>z(pD8rme@nSq2>gAmFHDmL3n{hAje8F)cV9Ty}qq4{cQ9fc24Qi4NAvS)4Fk=-wRO zs^Na>-meITZL3RyJ_FTLXT7gbJYKPSeGhq(wkXt1rA#)HWBSxmt_rU6+&can%(wXX zWev-CqH(BD87r-8>Uje3k0M#HT%*iWl;P3-P|JXCo>GJzg;mj~SS$00R@sRr6W_U) zR{2t<{P!*sD+^s?w5YKtd7gFEKM#MqTQ1C3=0kA0!PMD(ddHr<>V8-4-QInBU%!UN z32MG!_Z`;Ds6)RE@BR1j?Y#V0_X^!O-mg)aonPcdYx&ItRIWr_MgpzFf1W8?>hUAf zc9}03k53Li(gK&+zOi9Qx`o(4|AqTQPvQ&T{=ACv>u2Sp(mPp1{LBW|JNSsT9Tt&Ps)d@5CpuKVl-pR?Ye zYF{5^D2_5GXFE3&O!tC^vBG7Z$BBr_8IGD7gw8Xjl};#lD3G5YvqteA3&=cc`#Cf^ zh1DPD#P2k#o!2P+{UJ~GrgNjMB*Rivhn!}=jH-|{ohaV2X`l@amSnM?d0|HD>|p7$ zTUPT7y;aX8UoIrabiY++a+F|jueKm$(P;-Cp&x*UDWS3X0nogc6Uj!TtVA7UvcuWW z%XASAat7`O9c&S2Qt{^qb2fSLF*73tF1u(WPYRk z5s-XrfY8A(;EU-3)d~L>8#%+beYsnMx(tv zcv|lo$#F5M`us5iyecy`fgiDeuL*|_ccQE55SSxp_0|QGR>vjT3cqO?cEefZn?Jxc zZ{5(@re?lnx*wgk9HqZ|@HU>g7IMNTPoIz@)oz8uWuY=I;#T-=gJAkw(arm!r`M?A za6{uj85(;hS-_EZsx`FW7n1I7t2&Gs->8AKF>|X(T^< zN8-5BTYqhTI!Maqk#?f>4oiR8Ne}jv%I&d3^C>)-SWo?wR!MW0t=WUa~Dp9NF{`Za!6df#-qjeL-2@m2eyR(mrREgfkM;Q~!1%P#)Z4?B-#m zE1jq-OmW{@UGL)iz@X`LL+?37!_-JmteYKqfU{z8;}2C7ERKiOi0r$MlDDN!NQR&j zSYzjNBWxkqVZn$fGitKZX!-SmP|W)EeMUdR+6$;ds@?Go0S8a*m_{LK6x_1wpZwgt z1TT9><$7TsuXivHJ&rA*)ib)kwV<@pr7Azl29l>dMPx-_>rhT#qO9BV9n5@o6gxFc z6Zxo8h-u;nnTC<}o3pOkFP621QgUhImYaQ5WqDp;ZMEqQp*}2d+kcn!rZHjt z5eJr=gyy6SPD=keT;yrv%DIbnX=SMY`)#GA;2_+Qqg8)E#uAM?XwYcwd}KAaIv4Ht zL|h^VKIyF8*WyC_Bv-7Q@Ay^44Tm3{qSI!yBp=YO*WoDJTUB}EdUHQ^A&;S|37C+4 z(j%_>;`JjT;M<9;!3ILqEleNC=)k63BPtWAGlQNsmO%d70>GxYDq|>Ly%r} zi08^H!_VkJB|dqoIf3#Ne|G()N(29j(zW#l`-h^b_ZnSV9nM#3>3H9$zJ9E<624o} zowjfAHg=CHLeT&x{v^&PNUC-7oHTL$lEL#otW@l@09Z$Cvvl+K*Dr5bL%kAb4^xWys` zNJ2#e7k<=qx7;D}IAK$Qtmh4OY$kGg&c^P77KdA0)28b>=?yGz=$k{){+C~aB<~eU zFOpKR;o8=Jo*&(Ai1Et4h6sNa`>#xQ(dBmED@?Vc4N#fk*XTc(^HQZ+r2n_;4b1q#!w@A)P5E25BBF;O@Rd^8I_aw(8by)$JjgS!KpjP+`rKnt7D;440n>oMGr(4IkmA{FJW$WC(vrZUudlK zojPxiAVuot0|*ejGa~R=7sr1S7+eAnMw6xD{#^h%68-KCuZ%Kuj6F~?e)>55XKX3c z?oG~usC^IsAJZ5RIkfWFfv)8;b0#ZmryJvGFU4z$oyEJHQT0bo2lKq1#lF0&DpX1O z!0n5))-9t$SjCq*p^l`UQ6RN|*Lv>Qu9-*E=^~Ukn~82jKA%7|d}zM(jZq{udCl|t zi*8t1NtI$kjPLL`LPl}4hf=5q{MN|4a;dhH#3@!Gx~T{t>$T(g?awbBx?y%$toR>CiPQINUomj?iAm6 zZ&FvqNo$bAlt~tQb^VX%lVt;p?Jm6-KQ3IP9xm8Ja@@^%yPtxLq#fsDIiTBiPnQS+ z9%luSN3=oX>2#6~Lezei47_Ez6t8cJj!oH*5SbEL(MwU76y1@h%Rae`iltMNq{4~I zndM7x?V+901{VhaTyus@OODO44ZPE8Y&rne9*jlNY-fkrWK8h1?}4r z{3XK`yU?Z-^vntyo1)NT{3P=II0U{D#kBmF_TBY4=i?)TZd5RO14)EgrlCxY+u~*E z1*0jFw>70c z=qLwD&@_hB0kv(UEY1758i{33yRppHKmC5Bza$7L09o zm$_(Bda>7ZBc&is1QG(mWy0gwiv&Aop|NZY-iS)&hA9DmYXEppjCYW<(GMKHG%f*U z6h9+GfrEV=>rTR))_VT6ENW=vJIaZt+ki1l%ud_=-4DNn22v{^v^lSmcQlN;%i&Oc zYeT)~uNmGUHPZ8vsZ?Q0JWmf@GNj^xA!!SsW0_Cvkn3#nY%KBs#X{6SL97hn?P#V zTz4Fr_yzuUX!>mt{m$i{L_H&K?R<^HYwP%zSNzk)=G9}d_RCP7Y>CRkwAj-Vj_tY2 zXPe&`VOJ2}OEbJ`ELXlZXMKS__jIu771ySlA#0F%tIMAuj~p&#p``G=ot>gyjiC!@eT9hJ+!KT522i*z-#*iD$W&%%a2J%85QZ zv&E&R^B~lPGz*{bcuST0*N%(x8+*;juE}QIi^B-L$3TstFeK=Xp|61%>0sA8k%=e# zJql0F=8NjYr5+hgG@pb@9Ft{;d zYT3R$HbELG1ZTRHiHn3t9TG_~E-ux+J)Vj)2_EX(#YOJ^irP~XJ?HKHGN zFx#x{2X6NeWBne9I2b)NYHlat=JN5~Ca+C@ZpVQ@3Ir$RX_ab)wA<=-khZcV;Abo4 zu*>Rtxbrg3*q(|RQ$=Pu zVhCt)aiZQswKhJXpKL05-QIvkqWVuHP|#^?j7=UlMi+m9hw7wN^J{`~8Pnzf?_x081&YX+#D6Ll2mCnvy~MJo`WWIwvK7m zG|*g%gE_VWR3qo$y3m2qw#x3rSc@c)z6z^2>^BJfPiv` zr&Hra$~xXp)l%TwO5o$#N-sD`S>LVrzE!Z+^c=vR+?87ZAod@=DOddJ)c;U{zYGR> zyL;Y|9ZH|PVUFGTK^q?uU`&24WUcb-a2H&x!??f3A}}De-75MjxCjeWA#D`f5@&DG z4lV{d$&X!}rTV6JOm_rO>%clDb%NewOB4XsyyylCXR|4+XJL&+1|n*~?Wd{4t#2y- zh$9Et@H|eqsg46u8$3Xl{T3y?RvLban_hXCk|*_}Z+~da^?XI)rYl-8tcZFT_k4>* zu=@J-;!*xp>?LBo@heGm5J_d3xH9Yt^O#)+6b$s^kTZseAq{Es*7wD|O#>@=I++2| zy#UXb{Y1IsuQ|@~w!?@U$?>(>pcG7Iem6j$Tb&)AyxEiFU6l7D-t)A%oO=UVp^H7& zZk$6N*_inDVI8!ao*lIF9_J_ZrUN&8!|-TJwHPbfIIc-VF+9py^fa#lL}+)h*8q{R zqe7YMJuSQ-e7xi=$PYy~WW8B=8~DxY6&Q-F0ifW;Z6> zLs#8@B~URc72+W9JeQyJ+d5N?Grm71@~|!*M9lqNgfJD z%CH3nkHijts2VmckYFKl$y^ zS2&xaGf=L+S95QknLdb1R2%y_Sr@mXmB|ej-vA_^|LVP+g+EeJ)zr_y26CHyu~DE4 za!#B%d7W0Zt9r%NJ>$>?N*MR%K}ug?(kMQ>E`4}@Y z3om?q6L@(pI+_0Chj@Z(-5Wcct++W_}eQ8%Us2^1kU;V-gf z!8E0~qG-O8O4g?cJ}-?p$-3P$l6Wh%NjZ%gt#1vVhwgGLkz;&+w=Q+=CAmZiU#4B1 z-{+5AaU^59nkfK9|4zp=zoO%t^KZjaqty%wi3Hp)B;4g861pOQty(Kyr`hL2@nr z`#b_ZEoMkT3>>}!{c!he){Te!aHKZ-ovNBA_iNyhoK#J0xYUTdT($p}cGZqJ(w4!q;U7wHLM@!h)(S)m3vl3Q5L6OMqt>955&-C=2Ns&E>8i{^@`{28s zYGl~rTo~qURJ{@ah)W}Yhgx%FNUxW38$eB=+3F7W z(SF)D0P_&}W`-6PiXC-m9U7+rdFgV>S^#hD(|tok_+OkjJb;K$@S8Vb3;6y1FmCaQ zdc7Afk47UT=Pj;qB`pBgxm*6+Ft$e=`y$M28PylX(#*za25J9Oh+>ija?h-kOu{HUu}+LuVS?*xAd3#&=bPLtPGgxlyLoMc>2(4 zwe>jpXpiRaMu7QFym5uF@q?-`8604a>%FJq_-3A|VPu(&;T0SUx%mnQOY+{gh$xpn z)R6U_IlcNWsRvYQmPu7gCbQaTx8IKa{dYvUBLcU;C_L^GcQnlu+4!&NOq;z3ynT@P zo>}g<<*L=7@nk@)yJ3fLINHH*$!W)vHPHD;wAbkAvF)_vZ%@!WP0>nsLaW-17}uc492Hp*(p`kkGz$XjfzqT|IPub@zE zHcbZ1ozd;m@JCY85eNh0dXkQJsM&OZ-u6Hw2EDE?hq!S}YDMd53k*9u`~K2w8rHgE ziXuS@y8~H<>lQTdWdh7)($xEKx{i>ivrZkLf68*X0q*7TMo>}`wxa!39q4FqTyxty z0I60gRW1f*4s<6UA}>~UJc6* zltyqSyfDAmTY5+agx_6pZqYN;G5>@_$ZC2a6#NfBu)Db;RAmQ% z+YBA`QQPjNznum+9s)xV-@sUXFL9~V9IvAxBA@WR)e#s)((f%R|E|XYl$ibdYsg_B z5U7y+$t+esqy%7WD24wb3)LTTa`m#sjVia0N~Y(pAF||f(F!&=a+m*__-h`3Z<-}i zv2*s?sPATbfp-z5|na$oF>0PMKGV-^}{9{x8J$$?hSe}9!r2fQj#W7vY0<^$;C z9hRGEoEr!hpd|ZtP$5cVVEMNd$kvQq34ematd%=#Nfhm1gC136X8OhMO%JS{YF6Z` zKTC?A9>FFqe{u{8Rb z^RT+D%gWT>r}S5s<72Y6t{<^PvR9(h_Urm`$Fw=AcVDB4*p5{By#rdDUfR1AVK+T!y#X7z7=a5+^4h_9TflHR z$|ippqY~XX#KRuPxcFAg-a9%y=ppfn)0)RPGCeF=@`h)Y01^}1k229=`tm2Yay#8N z-gnHZwDm>x(!&QS=i%R_C-w7Vcie*wJOla#yIkB4>X8pioC^BZvumhrf4(Y8?U4b* zV`3FB4ZO8=4(JBdGS=)3H`}JKvR7W9z#|pH(I~~@GUbC#qbZxBFUB9^=C-J6Wv{|2 znl^%=DimZ3v^FaZ23=%06ISV+VJI2hwXL*P>4$wCgSitAHdv--R8Fi`yuL`UY&Y1r z=>fO9s=t`3fKwV9oxQ5F7~mQe#XiO*7BRoqu5>Jy1+Gq2Lycz6JD8S{ilZ^TzisZo zz01;=eXNO2m7dyWQ$*Lwn|YmSljsot{#x!AGI9;Wp1T%au-wuB?jb1#=2ky1dIYVP6iBacvXY})#@hiL`q?F zIn?Q;3AUElq8V{tzB%S!AY;d5=d879GsnCt>Vcv0yg_|07KFG_Y?sM9#2&~fT~)UH zwV{x?Bk181`t>kj?H>+h8dv8q-ie0?BK@1@(I*53XXhZNS;)aT91Aqvm2HK( zqkx+|oXTcepj_6y=8XvkF?R0#iA<#T5bB#`fQ7mN!o>sK{d^|re6p+i@!F~R^$82D z2l9!>8;$N-yJhN@xH3`Y!}g!ACSYk&?m|A%pSw@e54aNjQQ`!_Ht6|EGbLRV!3t8J z>+?p}9dSC>p40Gv^dIWv-SKW@xdAyjc*5P?@@enx!cYEI9xh%OHn;Y7p-5wJOTTGz zGV@w_S{ko6Q(#EBgM<4VHst3#Ac`;JWNmMG^y}a`d*BINn+^*M*qG(RKR-f+Yx_Ug zG1V^v4coEwl(0-_Qr$hN>@CJa57&5J>!+pjOU;N`5Yyy!OL;Dv+Vx3_x8H1VR7gRH zXQRQ*5)EpW?liM+HyNvwLK%|`7%CfS2}@0{pLwZ1e}ykiue8ropUe#5P?f4Xe zSg#K#fqFEmi)a#!RQ7MU#MAo{$v0xXiZrKVC7^JLm;oL+a%K;VDH1+83TCO&6gl{D zsjGX*eKp-Aq6Wxyks$-63<^~wk6OmYtf3tvW0!Sll7?kPZWYli3>MCrdmDcSb{gQm z8W)IvFjcE|L^z)iI5Fp+ac4-DjSMgn=XjEcFY+_wO$pfjcAG>d$MV%Lu)jgZjlJQ| zG#Om<5YnU(qtV7qPDjKETZ6=Tq&fVfRPyT%7tol3Lj&zn<(X#A-${lcKpf1z!l>`E zNWq>TUD#7?RfI$HW)5AT$=)np6+6H3ed;btrnHTS=6Xq`+I9(vMmt~2#%+Cq9zg#o zQ;pNDa7JZouJ<#rsQGz{?AmS$3rn_uxG2&(TN1Z18WM8_F-KY#enfvFuko;j6}%gL zRZyyIDUPTFoTsC#dPVKKurlV(-Q{=(6dXq3lG-9JZS3)|pNLP^!TY|XDt$>oS}e5r zUEGr2?L1!5j;&E&m&U3l%_f?sN+|<6*x-kA7W9W@zTb6S)<*tzvRphx zcl%#f)>A{-BL>P3MjqKa3tt0&f~Vo|a%dz6_66FoizC12h<3>^BgjMlIB-+JjD zAI~nus;O2$!q`_mmy#wUT~Xx_UpM-Nn9@`fb^T%}sZ4p3t-IyKezy)NmV6K@CA^BIe>u&p-f`{US0@)dVri6&&DRX3`t$aTM~Qv!aA3Frg8~(oWnJ6Zce`i_ zS_q4^pa~0fVou|L-#*m;b;PFc%Dq29Lsz)~<2xgXTxm{{)AQfXS!IoP?~V~h<^Snz z{V%z*g8%1^2`Q5Q$M6RH{(mUD?^pbPxp)8ThW|&q;{WHBLp6fF)elE)P1##6ID8%) z{UoQX9Tpd+|06LeD^K%DUCw{12I+^=55fgHjMada-oa_y4sEX z(q}^qFSgpQ(j}E-IH00xQ}80@w6|dCghw{ux9Hp6-D0?li=51Y^ww3TgSO390t@{< z%+&y^-#xIx9rAjhKU>;aW58Xnftr|p{=fQB%$GtL~%9S@ra>AT?P^u z!-o&B0ZwV3O!Cq|$*H%R?0slzE=KsziD&QD6(Eiw=shKFy{Uu@gWu4dw*md{ie^N&YtI0W~;9LXifa=Z)fp^_`_QsgZ z&3#0Df7!s8Wk{a*C7RWZWE)fI{uDUJYXQgYT|6WFoK7DpjEjW%P*yl?n?FZp+=llrYini;O=K-tq_G@Y_JwQ4j!8}`T63zk#v9^E|0+)m>h#<}lo zGv3_LaHx0#z4q=lSEunedZ%7YZ;M%?oqJEC6Th?7X^IIs2>PqzndJ{49x~`~JM?KW zAy?BokrYHk(9``}zMO0T)!W`|`>FN3G~Gu;X`1r>V`hNOklOwIY_f<4SperDK>+Nf zDifwbZ=vpF8HuOYt7}ArVfe>?&z>F84SqOB_v#GFJI?uiiTd|BT#>)cxf-r!NC+1K zc!n?-?N1Zu@im<91&70?6&c^hrJqqc96Yed$OBVF{%u853gBGouBh$xvGSBNz>Zje zfq@VQd3)LaLjqg^o2EBL&~6Y#TT$FdI30R##p_X2ou=rgpW*pT=v%MX%ZMA;x_Ixl z5m1obz{6a&{2ai-RgAI2aL!l`)oNI6nwrwZJNeZ~3NkEbV5edK6K})L`dPCNd@%Wc zCQt=T;4vNcyy@xLdM9&qP)DXM{OYFg7qJ#LG6RIe*4{ozcMv6ULD%@;I2X___&!vS z1E85VMh-`+>d&p(N~RX6AwR5Vm_#LiW&x=ttQLim>dM;}6Acyb?kfrvjS~Ml{_hx` z;|F*ST1qT%QujAw2Dbw14nh1Ni%r4eloE8NY;+Ga~A$~FOJ2-$uzm0LR>H?EizVzvyxzs4*CKr zMfq=++yML>%=>9H<@{q;oO1F?mGfST>TY|ATygATm7EU0-lysx2WrV%yUI01Mn&;S z=jSEqv%w?pPo%%^gXj>@a;CCW?JK@%d+URfS4mRP=go^^_nUk2cEuggs4Ob76>$ly z8#yDS2{Y*e4)?8W>Q4=BN&vjmLi-FI+#uffg*`)z+ zF9C_LWB29gce;ZYj0#&k_-~^aOx~=A{w`VB{V&}(>0()W$}2Rus>!&#*tOfn#9Z_% z|GhoO698-oqW%vWr?NG>FYhU*g*eyt_H;;B@@hyZosg?3vFFR7+_GYL$#<$N*zuuX zi1X2Hc&yPKn5?9$fuG+#UqSs{qRD!I$p8x}!~2NB`{oon0t!YbLY!DYszTmT^n<6N z?nl8E&S$$fcFhtCW>Twf!oj*LA+qh3gQ(28c;2sYQ1F(4GJK@wp3+-!FBl`(GFjQp z{JfQ%tYm8;5ptMA80mfo#09DH|D<~pV1U3%#7fmTA0Whjtt!QM7#wX$KFhXXC5i4r z==dCEpcGv7*5i#s!R=c+yV@9qfygBQi8dutaD)b|F`86wGLweRC2-E;&lIZO)e4W1QGFQgGgoB(=Y5sOO8ZMxpcE zhWLevZ6&@m)CALN*;)l`wlp)S=Zi43| zQ{+>Gsv3e*SXh9A%Y$V=G_bEZ@=xJFfB{~#X3POa=gSt}Y8d~}eH3q#1y+aGkx={T zd4~HMrwHvvdb9-4qq+1$y(i%LBB+jSg)0|R#dB=aa8_*9eN$)`I<54UW@v++$`fTE z5O@a6=uHP?fT<%3M&$B6^+2dKk_$4PrPEh_`IIxzY1-~ zcRU~X${1aHVZjpyW*T%2zbig>7_>-A8Vpu-U4l!z6$|TJ>$bje(UjJtY>T-u3(B98~@V`&^ z%KnwO$q4|dZSuoX%N;BLalk-3_X#hrFDON1Y1z37Jlb+?ekq5L{VQxUg2}!$lGdV~ zGvpeDJD82vWnx8Hvmk{14?aN`b8HJIVN-%U(!7I>;7pr&171<;VCvs06AM#C4(aMM z?hd)u?Sy$o18~GPe2+tpdE|MuQ*+UI@^oO~halgmqmJencb#^d7Hkn`RhAIMm(oMJ zps1@p8-K(gsoKF|i?RFWE}`Db202NRG?ST^KjvYwF32wi@@Wip<1%6NPwefEL-5DI z0|G%qS(0x-kv+%vi^cX(#8WYIJ5;Ar5F@Hv{^ zl@lJO9>uzF$TTX)5csZOp4tq@4r5@m&$UeB6i@|HxhQ^0KjRo}IAQOEd@#9kB0W;= zXV6+(mp4$bdl@>i^V+)M7$QJbDqayg&n~F`rsA%VMA|7I@I4WNB#88YlAUx|>$F>- z!R{^Sg-z92woy7(bLchkrSh)z5gthZS$&=~>63*F$>-e#$Run!my*7u`J`=|exK>u zI20w+`lBAknLMHVeS!eVUaHLL2UlAhm?$s6%9Lgnnka-;6_`6^X!Wnp|Ht?rFVR~gz1TB!c0cyg#>Ka5rLYfXqwy1p}t{h^+BRw+_Je++|81Fd;8_8Xv}X! zTL<{I=BxJp;J(I&YumcVm_-AeQD{QwWHip-Cuq`u)?jV}K&F{P#P~J=K7w_Q&fdB{ zDDLk9LRFoV2PukSI~5nh;t7hh34Fu5@b=;D{amFUQGUp{s1{<|M1u#K{t#0?vsm*M zpT-Wz1evobI6m?h2^TExB`YHg6ky@v{aPIX zeCxO6jz3R+D~CflNwUY`$RNRDNblT{@k1<{c$t-NN+FfS^9`0YskJEe17_n7B4CoR z#sC$7wWGbJ6>-*inXLw992M1r-@$^Q=XVN;(jxC#EvsUmuaCBm9`a$`*SYxzf+4zJ zG@bW~k%O&_DCs5GGGq&C-)xbq#7A|i&MDBI^+6p-cnF8AJUS9l0xd|xESbS%9Kgxr z@FjTa){4U9#Q}32QN^*}TSsh)?VQHG-#~WK>=W6;0e7={9Dkq>-APv096!={l`bch1N2Q9eHo3ZhYIqp4>tbwknJ ziRQ%@St3+dTuoWA7HH9lUl;5~y0SX>I#<7L4d28|@ywKnnsb9fVJRs21F(^8`qBc~ zTRsZw3_nRops-u#8;$r)f&D=Yx3p=kpef)C$3eJs+i5+3obAHGLN zKPpSaD<6eJb;lp+N}gKn*NVEJatuq!3xGvpE-9;=Iip)OB}r0r$`|kKq>*TZ+aoC4 zu62a<9J!!a55mcfvc^&g$DwXX4b2S?RbWL{OVrH;*Vy4ahG7>Ob~}|15Rc=GQ%~wd z-k5jmbXp0_E?qe_kf?pEvOAGM0_aRr}ezm9wf_T(Z*U!r+xE#X_9ZJTq zz$1h#{xF*yvU#=R<*XpLl_q(${pK6GDnO_0j0 zWlGsct}}B-&QI=VDk ztUbqP65sp)bTWeM`E*d!Dfv?Jsh8r4X6Z8*=&i%H#Sz>m-WlFHmW@d)42I@39a7O* zGr%;!^_okl93MwSOi!almZ(GPXCWFGN1ua|0^p3Y)XF9mlA)7~~OaK(&^g{K|S ztotu#b?cng(VT`JOIEofS|=LNF^x}B9`}uj@$UGnVRvB&!1(}Ru9-lFR>FyRMJ*d4tN|ezAF35 zsJk6^G`NM0IqWVjPL$(ER_rbR3Mui0?!=A*lqbZlqL6yL2Q^ zllzqJcPm)$X9_6~QUq8PN+dsiL@1~zp(@xscJm6iJL{r(!S(_1SUz2J{*^-*z5_(X zwDst)nrJyWZxr-W>D-)ZEL86fD0vmr%`ab|6ew4CQS{8Qdjbp;@xsq1*o1<})iSqh ze!EvnkeWZFxn23GRK9AN$sUANikr7j4x+1gX2q$i6gw2P`l$M>i@bOpogG@qFHb_% zb9eB?yVIy@y?$?GCf3|@1~2wndDQwC_#rmeZ~x*CZtLU}6thI!hLpmxeXV-pAc>Pp z@fQ%>^$%S#`Ex5eyMA*uB+#E&=1LR`dD3=RjI~JBDl2Q&MtO(Yg4>kagRg4ZWVS4w zc6s^AQBDr8SckoB#mA0LW31*gyUl#qZX=0Zf}goxR@v+aT}YZec}pZ;I@CKo*x?Oz zMqCM7BuNjH|18|n#!q{2zD8}|$7t4Bw|b&INSZHRa1XElusYcEdY-wkZ~}`trI@N0 z-94=L^Cmo8LG}NP09LJK7GuqDiW48d+T3;cb`wNP!``cjkX}N#@|i z15W00tYh==>g4WvoY#7Y7-lq)@s!E0c(cFqFDV8Sq;i|qeZ?7OTT*uSlB6Iay!Gm~ zZ71{du0=epv}C$gPAI790Rak8E45@y71hhd*zF;&t3-5ONj-tOxyv!;u9(e8xgstm zx#5GLE{3eTqSf9+T6I8(>4e&4W>*8|blVXa?tfbBBE2TcO`hTaL$ANV+js4DJ5y6HyCt%+b>+d zO{?W2n+7?X(g&PV)26&BqbzMw_R|nk(@}T$WUorK?Dqi5B+E{&L(=*4ZG2Igm5^%{ zFOmNiuaCevS7xIu2n`c83XRIOK=DOAriXBcZdo_Jd6 zwn#+&w#zf%30oJ%!x!#PA*LZMs^FeAU~E1MpD;w3o=fzpLu~6sM}3Fn_+~JulZ=m} zRw8gGLYcji=D?<=_^C3GHe$^5)2X|n#O*99;<)DJRE z#tlj{%h<|moTAvujmAkNMQ%_K=#zZTD6&t;8B9Ts86>INy+0*6&<%b(P3v5qJJYsL zaE!MS;S==7CSxC2fwmS^36ehh(ky20+2EWSo7drhf2A%X>H@ttzIj-?*gk_P3@ZD0 zRcfGV&pxLyAF#UYJ-BDn7%6QO_ZWVRy=Sl~9=YfZt(tQlci{g zti^Xvhkz(xpq3T3{@^DGHI1Qq!C{M~cuf)jh-8S(!Yve*D{_GqM$5wh$E5mQ0!8VzJL%Ke=S@%!XjL$Eo#Tl_VoCf*=^ahGQPT?6G>Jp+O zV82EqP5Lh1aGi^Fpb8Z=qzJHz2I(}y+nQq%fPmpL)4Qp*&Bplxr&x$DfTRx*Cmmv4 zjK#_yb2!O0vaz|p*0|+)L=pHqn%M3>=es|TZ(g~c39&ol&`tXkl4qvGhWLzU1SQLs zl7dgNlxAZ!xgr%&)Wls=x>%3UC0u3vz^#X%{E=q@X^S_QHKU$b&~b|8fgDrwAwp#7%HF)2HJHec?gkIu~dRykG?zZY<&g!(c^d!Do1PFg1V|9y>3l%Man9$xJ=G zO(39>XVEXRS7N(=Op2?!P_z6Ku}AO0AI0;GY1;8aE+-JQTsUt;zW*IXbpP+2BvLr z`}=>65%bAJAPfQqS$EjU01=y~twjn&r>uVgG21v&-RmAw_s+)G;i(+twMQ|I=gD2o zey~Qo14MZuOMo;z_4EU7>dR>Q8zLo@RMpSBQTuDxgaOdqLBCp$vM&B=amG=`lP$ zAGRhr3pX?}e}2%xw>T|+qvVQyYdzV-g{qq{#T`FUGE z4NFg}e+!1#pk|E_wDqmD&OaY~+0%r-r%=%Je)wK}KZYBR$mnZ8J;VBSJN{BVtwXg` z166cBQVe=CnTs*UX-P^YYJqk;QjnCxcf(xw*Wj6SKNxH2NMUV@IFr^Y=|20l(FRX( z+O2U++lan}qEE`1_GzC-iMWzIwY0jy2S7R}5Yx}X?u-L{Qo^6lGs_5i$j?%G`1$<7 z#A^K*=D~86;<(5bx!wsVn45seu28Rl+YKsLomq5-UJmuEH_!djv!UnRw8Ce^V;gb5 zfj?-^H!*OX>q-&N+eZ7Y@;IzSD4nlMH_CURB}~djDpc+EN%PH&r^$laNZeegDHPRaiD%r@CQtzTiCX=p=B2BPK~A)&N#-TP?JT&4(7QgDB@w_ z_$utOEI3yQ$*dn(rj396bVaifBp@yXL*#i_Ze>x%GVaI^3R-P{r=euc z`E{|f5_BZ$Lw*#%Oh4FZ5byI)HpcXcEz!smg!{?r31cqq7|)wFOK+UI>Tn zM0EUd;lD`n?V34win2n*ANe6E;Z-zfK*Cv9HE`Q~-9XpXmV95%y8Cz8=nYEyow06* z#QSiBh)ZDWyq@>X)5Vw@iRxAzb^e3W=!+&_ zlmwac3w``MYei!4q!U6a1mPfV92TenVGoj#&q3i|HaY0(MRGssQK;;a-l|H2T?L1!FxvhDHt&O+Y!_Yf%R&7wKhoNJ=KXtmZvWmz>F-XFsa?S)(k7_+ zhjc!^0Bo>{$yrjcS2604D3_!BdcGUC(gfeSqJ22Ca{4FjjRG4myLc%=Kz||LpaFSx z#~U$+C+^OVYi~hHc0VX@w+hvpiN%oZOxy|BnUd4;+!cnoVj)pFZNA(EhvYu*!i$)p(SMAoYsq`l``rFqUk3Wk`OBtBBfY zQ&E|EC{Z!D>xI1YBq!EE{-RYpbHEvQHt^uV*zBposNw6FI_9?zBj`%b@vc=ykYF0YbaHyLYM6|Ws>6L=DI z62menle+J5UfOPS?dFRa=_FYwTvA*%K)&9jOgDMoxY!HN+|v`0}LPbZI;shaY(%rVTPhryZ5D!WYOFS~g)4Ty`KLpJHN zM2sXKDm^`TfUM)h(OAhLmfg7}Di3XQVDy-lfTvIl-UOp~`**-7h5#s;ITn)#>0RAP zeu9-HVdiu{-=2!XYNYLF{{qnGmEVj^dsxeoXk15$Wp9YCr3mI zO7xkAwCQ%eJVD-`?w)L$JBEKWkxeU%rG5_QR1n!>VnUA1qS^}R4;qEL?_uJUeNSi^ zIfoQ>FhjDa{ItDaA?1$DBXQFfVKm(pY?ST;Ys@2X{b17gp0~^C4t}4U@PnQ1n{g>9 z9r2il#uiQKjc;Y=^w5hz8JGCCE0yA%53=X5w#Q$th{zceHrj&A?_y)GjADcaB|+j` za3XaIK1E2@tTo=8rF5n+Lqge2dalEaDa~$bbS~$fEpf(&-JU2Q+wMigHhHOo_JA%M zhhtb8wuqT!Z&2xOz(YqpZxC~2*Th2ktB97$ z|0plHIXel2^jqF|{CV-&f`f{Qo#GOq1dH{(o&{Jsu17srZ@N*TF(f6z`mXz+?n}mR zg0=daRHr*ohwm3;%UT?$PBU_&FyDo=rQrR%z9QQB*y{tzeVHM;75Fsr zOw3@Qn1?6Rt)^wb1Z3L8xbE)aTOpy3JjQ8$VJ^4M5op|Hbnowf#*KMT2j^r1 zSo}GgSuDOWFli%@$G`u8kVk#!iJ(ciBl4XMZf8Bl)X(H1;GiW|RGDs)%jP3|1Q>8T03qY2@>i znOIeN(vBy7s`u>DehH9SG%dn{1p#j{UZkDfK46XB+67W1d6BS(_mL5XE4)5!@Shz? zz|<;yu0k?MbEp}+w*80g+&_;76^DkvpS;i@`EVQdUMAG`Kt0iKKzLtl^LNSYuBe_f>+ng))kFxR!(YE@-p<_*3q8FQob|>NE`S$DD!-f$anSG*@Rk)LZ=(GIxi7NUni^Z9~pj zS-n~Z!N=$o9?UO?nK`TonS*adb=$6(hgxmH=XY1#RtiW!kVhTCbFrE;NOJjM`B~v! zCSjz+gH7<#jy&H{;m-7Z^w{0{?T+?RJR-}D~vw2L}tbwH)9 zAbH%zN34QBcszCdX-8xI2%ILxb*c-LNm@p55*{Ks!(`=_y>B5+?#8jB-<$>wxh;f5 zkVNmFCgoRg1wdhOO=4|h4%j-`T$npzzN#Z^+#hvj_MP#voiHZHrt^H`wm|`H#TexW zLa~_C+Ptdz;!B>!--tSL8GDw1#I78L{gXaVn*m!^=HJUSF`mU2!-Cl|$uGpa1a1{c{?Lr?YV!y!U(60USD@Uv7fH z;m1xITfT@+WEISec>E+|Ae{XKH5366g@QAy$Bh+&^D!b>S6hggx&3yNz3s}5Qh9|( zEINHcyCfiq5Z7MI1+=_Izma6S}{|Z=DxYUJRurPH;&3*QMRpE*0>e z@dksLw7}E23K;iI_whnLQ7yu3}B-9R+ zUc^!}S_ljWQ>CCmMkzy{hGl*tS=axFAa8AS?pu^8))?@k={41h-~SW#8hcbV17VYs zx&P_qL_FYqaul7DC*%>W>yT6tYH^S}+~03ZEK*&G-qloM2i!>fN&ed_G7hNQ-sNK4 zt_*bFfJ(>HZyTb1WOo-IEs@ynKNq>2>1(Xgn*+8D`(hwpGEL* zCcg({gNq(k>wRa>P#2yK-@7b zx*?9AiZXf(ZD1{X;7*O70C8^@#!7_cY1kGbaieUTUEC}TiO}Pb%&vcw!KB)}>#GJ< zfsG%q&TUKFWD^^PoZvsaR}u}| z{0ktm9>Ru|%yus?+y*ibTz zMLUge7SU>81?0k8or$Y~3+H^EvW|#H>m2@fGTO}1>Lj}7LCv|bt#=Xd+H6Cva7eQE zQ%(kwf0IHk!2M@Q`F(qMQ?t4esp)w2@Q%UE8~V?!}x?|g6^V{^cHPgayzQ6 zG$B$t6pVdr$+kJTT#vv#iHR`@LA;w(9X>|C9T0O%6*3(#R-Z~Z&~prUOsfGN#pDJc zuWo~=PMc~95Hlq+sul^uu};TQrIPAsY^X23VgF<)UxX zE4p5=dHI|K_b$*$Le3FjNBA`h7=pt2`5)cH0NLK{ui1c0rMQWskUOqqsiF9ewlwLxwp(GRq zl-^4SpoA7m6i5(4Ig9T<|33f4zB|vp+w&qfYh|vv#+q}?G2SuWF((WAJ^CDPh~E5Y z@%mE>BTsIbs+)fzx2sArxqiPCV3hq@td%sHmj3BoukKj`faCUniHMu~n(}bUd^uSw zU3=22)J_wpODR`!Fm_vWK=+TF}{U&uR^&5C$kwPeXRr1O&F5F zrR|H@vCrXwf2*@=7ExFHk$e6Km%An@E@+aVJjO&7eE)vaCuEuV`tTzbWo27(t-V9FM9sSGJ6qbW^z1DY zCdSddtZj7f4~QKAfYy_DnAZcO)@H?27`J%a(%#zrbkFvN zCtPh)H+VRTEjtHqu#{afQA~0+T~$0Fl?vST=8L>?@P~&nI99*!9Z=Fs!(yZVP+myr zOGTv-_6BlcG{z-W-hvW<x1==dlmrK%BAZSS??5ClTU7!mbOGx zS0^YPepB+rc7f<6w|t-y8TX7Hv|gJm|K4FlZ1b+YcIT|qMUz)E0w}nG>EvQ$zLsEU z>IV9D>8<^57jx@Zo6yuP=)T$Ok@Ha|hOtrpmAjlKEYh0eKOYr0Zo3wR@M?awXnk-E zQJNk*YA3|DPgS0u^%px_B)Lwsi{{&vlVE$pR7R?74I2aF5)t7#s}hjOaACfvRJabe zb7N~pX|fSf#O0>3T0LcnQIsJl%iwbA-_QCyrLB^#J7~kKo6TMehFHKu`)sLzKASO#r0no@r*39B2_;KuUwyA!3nqcQG7Tcq3gWB{< zYEK0;_)~Y-3*aW&6O8<=w31WhA;H_-FF55PTuh7#i9W^o_`8mkpHyxD%WZ5417NBL zzjtZlJG+etM*`_~pHAq+OPAK>zRN-5-9`}&X*dngI-^c1{&n`T(rR;H$FZ1WtF2%E z;cJzhiiDxx;+kZhb>bwLTfKm+vUJA7GJZQ;zkF_F;L2vuI-hpV;|-ksy)J9XdDOlr zS!F#{DYZbR{U>PJW%b?91%S->TDiq4~+IS0q*{t0*PDJ)C^d zIWvQ^;SIk`^%r>%D^!p#-!@Md z)t9g_DX3D6R`?7WHjquGeqGkmUuUFIR6*I8^mpgol$BqboBYOFuR7YqQqz@pl`Aao zwHS5@0aA>93nGj8k-tl|S4y7^q#3Yg=06dn8`=K&!KOB`7iSr2L)tK45HyH@9Ja6kmdw0S>s6n%$g1L}C6Z50i=mUAY@|GJwjE-eaX?3gqn~m;F;3<~CPHQB+jq|K~@vE>*w)B#dO)KSJVI`tw%! z7DO)i&pjJ}10J$1Bp{Gsu=f_z=C{%~W7AV^T=5t8aHhp^57SeHa0+VHWg;2^7R1s* zq0m3S6T;qK(6zxBpA=z1$Q^Os<{8bm^uUd9Ac|+aut|AK-SDbCxgy%*Nid}xVlo1 zpwtZzxpk-lv|qjyvaqoD)r>kF`j80j*!wPGR_91X$E^^PDHZ+5wDggxSSxqn#;sX5 znfIKs;~$d2MTC=3k#X-Wj7^+RMuzqLH_v%EK6qUo80C+Rv4RXaC`bmf z_@1=eHUj($6R@5m$J-P_@&$&SoR;<$i*;;2##I!*Y2QSw=k`R>E5%4T4ci@T3}2C~ zQ<@2TkOv$e@lOkQ^AAbs!mr=E_77|5;_!}FS2oQxu=z) zeEdR}5e4UeW?AYl;Npum$=~#!{r;QV!~Or*;|kq&DyGA3Pnr@ExI6U>h}tsymk7pP zDOHChALNP62_qKF8D6+Y(GFAVi$fbNeh3Ju7<1-b8y0~4^_C27O!C;#tH;%NyQ7hQ zga^=yQ^-=`?VOQIGH%G3O$pOJFk*TIpG%tdo(}i~&1=-wJNNyajaFCW$!ho55CoqM z{Y36?%|XP%wiI`~bH$H=Jaw_Mu)*H7OIg~yD~9th@MY~3e}*jzFTQ^N1^9#7jt`aJ zXLxOi&00rK;ZG>V+XIDeYe3<}Y-S`~e4DwfhS$8`LUTw#!dzsQ{?GO>v~jOLFw}_K zQZ@6U&B-f4XD)D0&Ls-hn!r#QnLLRELwdJ6a@QPX<8{@Ke+2KhY#$0>J3WKbON-)x z(F?Fu53k#>p@MeNix~-hoPEx&-}`P7G^W>H;GT7Pd)N|u-1b^Or(@ffPatV>z7nXA z)ihF*Uu(JYL2ypzz8cC=sZ#ycKu)*Q{-G7i9=2jb#^&ObS_@O@F(Ha-HO7%@uF|WEVGYi(44|(J~mO zk|UM-dfORRA&JwXM-hD2ulE?UL-n686`pZz5ofVT!p#oboZ%9Mbz&-PU!~0FA;gb)EQMP1eH7R-QX^FB#TeNf`CYXcVh7~{dWqw5 z@K8P;UlOHbR-K7cYz>>a2D`&_<57Pw*{tOkGj~5mJo-9mKpV|fvGaO~n6w~>jxE|D z=FP(Rms>L&os1IkoFj zYdXuzARvm)e;-o0Jid zj={G>32VHE?~H{yfiJaWMqr z%-o_77+{ZXoWA~ubapy?`WooxQ4UY84Q)d%gkl5{;$&=Ns*IU#KrT}d@bk%Tj==Pw zXH1eD_^LEcn&8Y@Xy)E(IvZVql8vxk`3Kl^T(=OoJM{HqMBn5pSwM=kodKg)lcW6v z7~$8^MI675f%x@=h>4Mxj`&2G7zcuZfCUOY5;rQ~WBNEX4Pvl!>TX+u8uu`Z!*%%|q^;*>S1WcGU`RT8Pl2nIYuj3YligG!YTnwG`hvk_%slUH&BYvy{p8X7co= z`oRa;?53~saN$Ndy`B6LXU~rw)hkB&lN8{1T|iOXGwhVbi)XHtVGcYLZ2hBQo3(Pg z1A3&~)~Siw@&;v|mfXEWt5H(ZPCM>_2{36@@gr5CTfhi(*Z2R1=8QI>0NH4JoMe3s zL0eXB(JSIF^f5;ym9@mxtS^=VP&xmy^wtOLcaGo8w~pk9jhAZg9Ga7`!TDI^4z(fG zD@>S}*lS>0AYnMCBFYAbSGIpc=>OR_W#Ge`rq$=|J(7u>=D2e z`0qp!lVB||0GJX{*z^5X^Sy<#Fk82@SEHn7AIvwRc#JbC@@48nXllU?e}Md?4~RUFFP2c#4EesVqQ*B!$u2)XpsxONgdCQ-k`U5*f`dAa7I(5?05mkEk~3)RK~ z;~9ArD~wYfGdtLDxN|b^f;Gu2$A^9((!1U}{jFZ}yG0l{9r`jr!(d>5n&d@0 zAq`{HxrbEpg>m$NI*Gy{S+x5y$eJnm_q(J!BVCg$U&g+g6%KTkHc7CKda-|uGAP&m z-u0aXwx1FwW|HmAUdoZTh;n-Vm8o+tY(T9@7?4x=MbgZeouPTm!tHc^hdTP;;NW}q zXI}7-#=mwrXlAy=uFmb>-dO*mGyITv2rj6>Of|@lcvfx{5zMkOBGuxx7KR&tv1dhE zHMRsI-O{Jp=f@@k(Zd8YQFO&wuggRO;%vnV9k^i6HEuU=qV@>+xX-Kp?D=Ico)3oxXdnC&W?Wx;Z3m&Bv@T%0mM@Gfe_iE; zh|`<&mO0y(fwzPum3`0xlM}$ZK4Yst246Z>99o{0JCGKZ&WI67nS^UvNR<66$}-9o zgu{7YVa4I=snyTRn$Y0F%4h<$N!b2Wqgk$VykN)aoEgEOZwD{BTE*$uQA5dbm_-I) zZGT-D)U-lV|Spt`)fkJgx~S9aPf&15UCjW`zZ?SG4yhPj}%Wi_lnCS<^+{T1=< z?Psb&INJ|(O|fYgvb`1{?*4dwMl$K8);(cr2c^~9B>Hejh z0#>tFMrKrqtly;O?rK`*gfA869{SKlECrIY`&EBc+GocE#NXaSWhC1?$}y8No3e$%d-Ekv)Lx zV*|Pgq9$g-yX6~DMMC4p+jSI@TNpUbCBL+e(oB2zEr`O+uEE1ZP(AqOO93PE7I~Hj zRx$?lGWkD=Q#doD_4fL~k0Xlf?dKRHWS<`UKoT#f--1*>So6i{8e|92aE>a7zAd?T>@J}uBKwl5~ zIrw6&aaW;)x-YlcsXUCE8|^X86$_rLH#+)AR$pa?rYFU^LyN!E9nR^H4gzrAjUrX` zsMDwKc9g0KfrJ29&W!!YF-EhZvp+2VbjxDL(&_2r{E#8B`bE=o#yQet>iEo#$a>Li zy-a!r+2fscwLNpLRVW0_qy0wlcMzmPaaA=J?2J6E1sj*ik30)$$o_U-gKitW1=zm~>yOgZu*K zOzhAw>XZ;YNy4CvJG_^MPDV02^f2sN>+vb5BzH6CF!a$wVKaxPs>O3aK{F>-z2*_q zKFv0VZ^28i6hjA_8s&3EgYr!Bls)4DZv#{Rj$7tK)%&luA1|(jbRL@Uip(*yPo#_X zNV@f``C*ZE_Ze>sl8sb$&4aH$bN2X3u|%NJqEkvJItJw0*La+-g1tpuhEXW#5Oo}s z)cqLO5WU#@Bcksf%G&dufzyl9b}}etQE5yc!hc0(TX9;~ z`>5is2g5W=_Lpgr+(J~|hw>(_Qg~JUG(C%5!Ci&~#~0;_tB&K6?V+MPu8#NQ{c=~z zC^q#fb(kR@;^T>k`?O6?`}3`GMr*eYh3)1rnYcSUT2!%x6pt*lNa1XeQi(@Hs#y1L zu5FJ)h3GAt1%B4HNy2wt`;pq1;|jkycfz6+7ovD{C=U_*FCMY7+AB7>Lr6c^+6gpn zes|T@1kAO2V!`zM=h6GXSM4g(u>Q0+099;yFuHyXZNnTWCq)BfA>F+2(<7fK;*2Rk z-dx>%aI(lUdJ|Yn-8%We^n^|nNK&OsA!a~xzHMQIv_617`onwE!J+UOt}^HEr^k;pozI(QHi`fM3+#iPy`CWW1p`W zR@4NC(wS5|-;y^be9G^sDZ_bafg_)_?sHcE?k2`IM9FG+<8b)i=@5#%!1Gniw%RhXg zZMILWTc#%+mPYC&Zt;>!2ygZu4O6-;8Yg_Yx*A{0WPG%fBtNn#CGJt3k@YScA>)P- z>)AHuJCCF7d<;wc(fd0!`3}n$y0yFA<%ocOj2Me4$DYlQ+E1`l(wGIz*PB#rY`VIT z6r*-n)^YxvdvCR7E;HK64VJh%NmjNYUh!Hz`FJ?lAnEt=O}7&mZ5QT27mz}`|Y$H=)OMV(MqiIp}H(piVc^6kuZl)h>x zz%HZxNvlpZYsjOWk4Lxl^h}Mbg4z5`4()faMvf@`jcISrSU16!-}JYlhn_dLw{)c4 zcT~)N7m~GKQ!UDa4!sO-FKH8_bC(OD9Ky-f>bA;dh|zgnZIe!0UL(?rN1iV*bl5SZ z&B^dpe_F)-tP!{hgR)&M5@mB$Msc$oqT-X~YNLBY$<)KTZ!A=}9 znJ?Vefbc@BGIql zi_jGQAbeBrC(GmI1%~u@@MyQ$Kf{6TXK>nqU2mPEGEQ+L^fl4rc96HyeWk^>3(bRG z^dN0Qrros=CsozQ0AK*De2w|X95pX(#JtwTdvWPan`et0-0fE~=^;HQx2GNEbO-`r z#-3(3;v(=){3H@b5=oDH&ju4?tesvKJ8uBD$p^7q2(2q+VoESTjL5yEpG2K7o%*g4 zg^qE@Gy6_N2eck@mVf-^NLQEl-8k=2uZ|fkyFmx8ytb-!UZ#Srh&AdxAo^KfP5H9P zUJgo!rP9N@d%=^3yi1!su%xqxVk+5S`3Fn`xi;mXH#k!0L*wf&P#rbbVd-$SZ>JnJ zI-tQ_1$9uGZ5Dld4VmnDyLpId`S_`$%&x!84Q9&uYQzIKD)?DM zSR-`?udp5XmnsIz$5z2JqBd_(;(U#zxf!LMdPlYx1XQ1)Eo=K3dA#shjen(zrA85P z)75<-yZFRNsK`F**kd|Wiet+*6|WON$62_D0x^Bn z`x$RW`Wzsfz0=VtiHColFC>+TRnZsQO*N(TyK-$R+;Bc`pbZMEzc!0xoy+uFj)yn) zCs;-`AG)igAv1i}Wvw-G6V%GbGn-MB-`ZI#K?%y1vB#$A4xVc_u~6A~>-(&y0`yr( zFjv&m3N5#nbS8?XZw~UX4)`>d@}KDmJz^ppxgzt8v?Rv*B#9YjnkU|-&(TDvnN>P$ z6*hVJYgrB(t`v;Fq6yrJpAz zKyTi!`PTVu*t1$e^$^p9<;;8=R(X&S;!IQ39|--F4OjIBA03(*+-{)){Ea4XJM`S%}x zd;t*TRQApTFo0t=i4vF5ejL419h{BwG+_y{Pi!zuY-5 zH6Fu+Vty1>Vi5cSQ!d^)f5d(#u$^pVN$T~~@v)x?zu?4M+M*Hu0Yo=i`#)U2qR%Vk z+4Av_FF(I=BqAWzD)5|-^;O3N$^@}r zh6mlxb!L;JQqXD843!#`5#M3>4S446*Gp54YoKg-qGD?NLHAVYAKmGD+>R+RuYTEs zuLAEV`hY3nM3jjmED4tDw2HckOKJ|_ipaC+df07eV*YpB)5^Z`AbjT@xUL4LGy>WX zKCJBe7)v|bJ|T~J9_SM+B7>|Yb47l8s8UUPfGCio&jNz6t@wLD!Ponvvywo4wO0K% zL$+;Kg7C`kq10E+x89s?CH?-Z=Cj>BzaCyAkDhW4RtH5^`=R=*U$ZJB6+r~~8NU5@ zs&2T$X{yv&;%m7kOe5RK!jOye63qg_;lgz#<48QWzVKct|FJm!!RoOLzTW>41NfiE cDlVNVXTSQTWO}xK data +I0407 08:22:58.088460 15775 net.cpp:380] train-data -> label +I0407 08:22:58.088483 15775 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 08:22:58.096284 15775 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 08:22:58.259054 15775 net.cpp:122] Setting up train-data +I0407 08:22:58.259081 15775 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 08:22:58.259086 15775 net.cpp:129] Top shape: 128 (128) +I0407 08:22:58.259088 15775 net.cpp:137] Memory required for data: 79149056 +I0407 08:22:58.259097 15775 layer_factory.hpp:77] Creating layer conv1 +I0407 08:22:58.259119 15775 net.cpp:84] Creating Layer conv1 +I0407 08:22:58.259124 15775 net.cpp:406] conv1 <- data +I0407 08:22:58.259135 15775 net.cpp:380] conv1 -> conv1 +I0407 08:22:58.706866 15775 net.cpp:122] Setting up conv1 +I0407 08:22:58.706888 15775 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:22:58.706892 15775 net.cpp:137] Memory required for data: 227833856 +I0407 08:22:58.706913 15775 layer_factory.hpp:77] Creating layer relu1 +I0407 08:22:58.706923 15775 net.cpp:84] Creating Layer relu1 +I0407 08:22:58.706928 15775 net.cpp:406] relu1 <- conv1 +I0407 08:22:58.706933 15775 net.cpp:367] relu1 -> conv1 (in-place) +I0407 08:22:58.707221 15775 net.cpp:122] Setting up relu1 +I0407 08:22:58.707231 15775 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:22:58.707232 15775 net.cpp:137] Memory required for data: 376518656 +I0407 08:22:58.707235 15775 layer_factory.hpp:77] Creating layer norm1 +I0407 08:22:58.707244 15775 net.cpp:84] Creating Layer norm1 +I0407 08:22:58.707270 15775 net.cpp:406] norm1 <- conv1 +I0407 08:22:58.707275 15775 net.cpp:380] norm1 -> norm1 +I0407 08:22:58.707754 15775 net.cpp:122] Setting up norm1 +I0407 08:22:58.707764 15775 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:22:58.707767 15775 net.cpp:137] Memory required for data: 525203456 +I0407 08:22:58.707770 15775 layer_factory.hpp:77] Creating layer pool1 +I0407 08:22:58.707777 15775 net.cpp:84] Creating Layer pool1 +I0407 08:22:58.707779 15775 net.cpp:406] pool1 <- norm1 +I0407 08:22:58.707783 15775 net.cpp:380] pool1 -> pool1 +I0407 08:22:58.707818 15775 net.cpp:122] Setting up pool1 +I0407 08:22:58.707823 15775 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 08:22:58.707825 15775 net.cpp:137] Memory required for data: 561035264 +I0407 08:22:58.707828 15775 layer_factory.hpp:77] Creating layer conv2 +I0407 08:22:58.707837 15775 net.cpp:84] Creating Layer conv2 +I0407 08:22:58.707840 15775 net.cpp:406] conv2 <- pool1 +I0407 08:22:58.707844 15775 net.cpp:380] conv2 -> conv2 +I0407 08:22:58.713976 15775 net.cpp:122] Setting up conv2 +I0407 08:22:58.713989 15775 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:22:58.713990 15775 net.cpp:137] Memory required for data: 656586752 +I0407 08:22:58.713999 15775 layer_factory.hpp:77] Creating layer relu2 +I0407 08:22:58.714004 15775 net.cpp:84] Creating Layer relu2 +I0407 08:22:58.714007 15775 net.cpp:406] relu2 <- conv2 +I0407 08:22:58.714011 15775 net.cpp:367] relu2 -> conv2 (in-place) +I0407 08:22:58.714457 15775 net.cpp:122] Setting up relu2 +I0407 08:22:58.714468 15775 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:22:58.714469 15775 net.cpp:137] Memory required for data: 752138240 +I0407 08:22:58.714473 15775 layer_factory.hpp:77] Creating layer norm2 +I0407 08:22:58.714478 15775 net.cpp:84] Creating Layer norm2 +I0407 08:22:58.714480 15775 net.cpp:406] norm2 <- conv2 +I0407 08:22:58.714484 15775 net.cpp:380] norm2 -> norm2 +I0407 08:22:58.714797 15775 net.cpp:122] Setting up norm2 +I0407 08:22:58.714807 15775 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:22:58.714808 15775 net.cpp:137] Memory required for data: 847689728 +I0407 08:22:58.714812 15775 layer_factory.hpp:77] Creating layer pool2 +I0407 08:22:58.714820 15775 net.cpp:84] Creating Layer pool2 +I0407 08:22:58.714823 15775 net.cpp:406] pool2 <- norm2 +I0407 08:22:58.714828 15775 net.cpp:380] pool2 -> pool2 +I0407 08:22:58.714856 15775 net.cpp:122] Setting up pool2 +I0407 08:22:58.714861 15775 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:22:58.714864 15775 net.cpp:137] Memory required for data: 869840896 +I0407 08:22:58.714865 15775 layer_factory.hpp:77] Creating layer conv3 +I0407 08:22:58.714874 15775 net.cpp:84] Creating Layer conv3 +I0407 08:22:58.714876 15775 net.cpp:406] conv3 <- pool2 +I0407 08:22:58.714881 15775 net.cpp:380] conv3 -> conv3 +I0407 08:22:58.725339 15775 net.cpp:122] Setting up conv3 +I0407 08:22:58.725354 15775 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:22:58.725358 15775 net.cpp:137] Memory required for data: 903067648 +I0407 08:22:58.725366 15775 layer_factory.hpp:77] Creating layer relu3 +I0407 08:22:58.725373 15775 net.cpp:84] Creating Layer relu3 +I0407 08:22:58.725375 15775 net.cpp:406] relu3 <- conv3 +I0407 08:22:58.725381 15775 net.cpp:367] relu3 -> conv3 (in-place) +I0407 08:22:58.725899 15775 net.cpp:122] Setting up relu3 +I0407 08:22:58.725909 15775 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:22:58.725912 15775 net.cpp:137] Memory required for data: 936294400 +I0407 08:22:58.725915 15775 layer_factory.hpp:77] Creating layer conv4 +I0407 08:22:58.725924 15775 net.cpp:84] Creating Layer conv4 +I0407 08:22:58.725926 15775 net.cpp:406] conv4 <- conv3 +I0407 08:22:58.725931 15775 net.cpp:380] conv4 -> conv4 +I0407 08:22:58.737085 15775 net.cpp:122] Setting up conv4 +I0407 08:22:58.737100 15775 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:22:58.737103 15775 net.cpp:137] Memory required for data: 969521152 +I0407 08:22:58.737110 15775 layer_factory.hpp:77] Creating layer relu4 +I0407 08:22:58.737118 15775 net.cpp:84] Creating Layer relu4 +I0407 08:22:58.737139 15775 net.cpp:406] relu4 <- conv4 +I0407 08:22:58.737146 15775 net.cpp:367] relu4 -> conv4 (in-place) +I0407 08:22:58.737488 15775 net.cpp:122] Setting up relu4 +I0407 08:22:58.737496 15775 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:22:58.737498 15775 net.cpp:137] Memory required for data: 1002747904 +I0407 08:22:58.737501 15775 layer_factory.hpp:77] Creating layer conv5 +I0407 08:22:58.737512 15775 net.cpp:84] Creating Layer conv5 +I0407 08:22:58.737515 15775 net.cpp:406] conv5 <- conv4 +I0407 08:22:58.737520 15775 net.cpp:380] conv5 -> conv5 +I0407 08:22:58.746017 15775 net.cpp:122] Setting up conv5 +I0407 08:22:58.746031 15775 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:22:58.746033 15775 net.cpp:137] Memory required for data: 1024899072 +I0407 08:22:58.746045 15775 layer_factory.hpp:77] Creating layer relu5 +I0407 08:22:58.746052 15775 net.cpp:84] Creating Layer relu5 +I0407 08:22:58.746054 15775 net.cpp:406] relu5 <- conv5 +I0407 08:22:58.746060 15775 net.cpp:367] relu5 -> conv5 (in-place) +I0407 08:22:58.746572 15775 net.cpp:122] Setting up relu5 +I0407 08:22:58.746582 15775 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:22:58.746584 15775 net.cpp:137] Memory required for data: 1047050240 +I0407 08:22:58.746587 15775 layer_factory.hpp:77] Creating layer pool5 +I0407 08:22:58.746593 15775 net.cpp:84] Creating Layer pool5 +I0407 08:22:58.746596 15775 net.cpp:406] pool5 <- conv5 +I0407 08:22:58.746600 15775 net.cpp:380] pool5 -> pool5 +I0407 08:22:58.746637 15775 net.cpp:122] Setting up pool5 +I0407 08:22:58.746642 15775 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 08:22:58.746644 15775 net.cpp:137] Memory required for data: 1051768832 +I0407 08:22:58.746646 15775 layer_factory.hpp:77] Creating layer fc6 +I0407 08:22:58.746657 15775 net.cpp:84] Creating Layer fc6 +I0407 08:22:58.746659 15775 net.cpp:406] fc6 <- pool5 +I0407 08:22:58.746663 15775 net.cpp:380] fc6 -> fc6 +I0407 08:22:59.085840 15775 net.cpp:122] Setting up fc6 +I0407 08:22:59.085858 15775 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:22:59.085861 15775 net.cpp:137] Memory required for data: 1053865984 +I0407 08:22:59.085870 15775 layer_factory.hpp:77] Creating layer relu6 +I0407 08:22:59.085877 15775 net.cpp:84] Creating Layer relu6 +I0407 08:22:59.085880 15775 net.cpp:406] relu6 <- fc6 +I0407 08:22:59.085891 15775 net.cpp:367] relu6 -> fc6 (in-place) +I0407 08:22:59.086488 15775 net.cpp:122] Setting up relu6 +I0407 08:22:59.086498 15775 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:22:59.086499 15775 net.cpp:137] Memory required for data: 1055963136 +I0407 08:22:59.086503 15775 layer_factory.hpp:77] Creating layer drop6 +I0407 08:22:59.086508 15775 net.cpp:84] Creating Layer drop6 +I0407 08:22:59.086510 15775 net.cpp:406] drop6 <- fc6 +I0407 08:22:59.086515 15775 net.cpp:367] drop6 -> fc6 (in-place) +I0407 08:22:59.086539 15775 net.cpp:122] Setting up drop6 +I0407 08:22:59.086544 15775 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:22:59.086545 15775 net.cpp:137] Memory required for data: 1058060288 +I0407 08:22:59.086547 15775 layer_factory.hpp:77] Creating layer fc7 +I0407 08:22:59.086555 15775 net.cpp:84] Creating Layer fc7 +I0407 08:22:59.086557 15775 net.cpp:406] fc7 <- fc6 +I0407 08:22:59.086560 15775 net.cpp:380] fc7 -> fc7 +I0407 08:22:59.232445 15775 net.cpp:122] Setting up fc7 +I0407 08:22:59.232462 15775 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:22:59.232465 15775 net.cpp:137] Memory required for data: 1060157440 +I0407 08:22:59.232473 15775 layer_factory.hpp:77] Creating layer relu7 +I0407 08:22:59.232481 15775 net.cpp:84] Creating Layer relu7 +I0407 08:22:59.232483 15775 net.cpp:406] relu7 <- fc7 +I0407 08:22:59.232491 15775 net.cpp:367] relu7 -> fc7 (in-place) +I0407 08:22:59.232858 15775 net.cpp:122] Setting up relu7 +I0407 08:22:59.232865 15775 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:22:59.232867 15775 net.cpp:137] Memory required for data: 1062254592 +I0407 08:22:59.232870 15775 layer_factory.hpp:77] Creating layer drop7 +I0407 08:22:59.232877 15775 net.cpp:84] Creating Layer drop7 +I0407 08:22:59.232901 15775 net.cpp:406] drop7 <- fc7 +I0407 08:22:59.232905 15775 net.cpp:367] drop7 -> fc7 (in-place) +I0407 08:22:59.232928 15775 net.cpp:122] Setting up drop7 +I0407 08:22:59.232933 15775 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:22:59.232934 15775 net.cpp:137] Memory required for data: 1064351744 +I0407 08:22:59.232936 15775 layer_factory.hpp:77] Creating layer fc8 +I0407 08:22:59.232942 15775 net.cpp:84] Creating Layer fc8 +I0407 08:22:59.232945 15775 net.cpp:406] fc8 <- fc7 +I0407 08:22:59.232950 15775 net.cpp:380] fc8 -> fc8 +I0407 08:22:59.241638 15775 net.cpp:122] Setting up fc8 +I0407 08:22:59.241647 15775 net.cpp:129] Top shape: 128 196 (25088) +I0407 08:22:59.241650 15775 net.cpp:137] Memory required for data: 1064452096 +I0407 08:22:59.241655 15775 layer_factory.hpp:77] Creating layer loss +I0407 08:22:59.241662 15775 net.cpp:84] Creating Layer loss +I0407 08:22:59.241664 15775 net.cpp:406] loss <- fc8 +I0407 08:22:59.241667 15775 net.cpp:406] loss <- label +I0407 08:22:59.241672 15775 net.cpp:380] loss -> loss +I0407 08:22:59.241680 15775 layer_factory.hpp:77] Creating layer loss +I0407 08:22:59.243239 15775 net.cpp:122] Setting up loss +I0407 08:22:59.243247 15775 net.cpp:129] Top shape: (1) +I0407 08:22:59.243249 15775 net.cpp:132] with loss weight 1 +I0407 08:22:59.243264 15775 net.cpp:137] Memory required for data: 1064452100 +I0407 08:22:59.243268 15775 net.cpp:198] loss needs backward computation. +I0407 08:22:59.243273 15775 net.cpp:198] fc8 needs backward computation. +I0407 08:22:59.243275 15775 net.cpp:198] drop7 needs backward computation. +I0407 08:22:59.243278 15775 net.cpp:198] relu7 needs backward computation. +I0407 08:22:59.243279 15775 net.cpp:198] fc7 needs backward computation. +I0407 08:22:59.243281 15775 net.cpp:198] drop6 needs backward computation. +I0407 08:22:59.243284 15775 net.cpp:198] relu6 needs backward computation. +I0407 08:22:59.243286 15775 net.cpp:198] fc6 needs backward computation. +I0407 08:22:59.243289 15775 net.cpp:198] pool5 needs backward computation. +I0407 08:22:59.243292 15775 net.cpp:198] relu5 needs backward computation. +I0407 08:22:59.243294 15775 net.cpp:198] conv5 needs backward computation. +I0407 08:22:59.243297 15775 net.cpp:198] relu4 needs backward computation. +I0407 08:22:59.243299 15775 net.cpp:198] conv4 needs backward computation. +I0407 08:22:59.243301 15775 net.cpp:198] relu3 needs backward computation. +I0407 08:22:59.243304 15775 net.cpp:198] conv3 needs backward computation. +I0407 08:22:59.243307 15775 net.cpp:198] pool2 needs backward computation. +I0407 08:22:59.243309 15775 net.cpp:198] norm2 needs backward computation. +I0407 08:22:59.243311 15775 net.cpp:198] relu2 needs backward computation. +I0407 08:22:59.243314 15775 net.cpp:198] conv2 needs backward computation. +I0407 08:22:59.243316 15775 net.cpp:198] pool1 needs backward computation. +I0407 08:22:59.243319 15775 net.cpp:198] norm1 needs backward computation. +I0407 08:22:59.243321 15775 net.cpp:198] relu1 needs backward computation. +I0407 08:22:59.243324 15775 net.cpp:198] conv1 needs backward computation. +I0407 08:22:59.243326 15775 net.cpp:200] train-data does not need backward computation. +I0407 08:22:59.243328 15775 net.cpp:242] This network produces output loss +I0407 08:22:59.243340 15775 net.cpp:255] Network initialization done. +I0407 08:22:59.243872 15775 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 08:22:59.243899 15775 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 08:22:59.244029 15775 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 08:22:59.244122 15775 layer_factory.hpp:77] Creating layer val-data +I0407 08:22:59.256011 15775 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db +I0407 08:22:59.256232 15775 net.cpp:84] Creating Layer val-data +I0407 08:22:59.256242 15775 net.cpp:380] val-data -> data +I0407 08:22:59.256253 15775 net.cpp:380] val-data -> label +I0407 08:22:59.256259 15775 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 08:22:59.260248 15775 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 08:22:59.301146 15775 net.cpp:122] Setting up val-data +I0407 08:22:59.301164 15775 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 08:22:59.301167 15775 net.cpp:129] Top shape: 32 (32) +I0407 08:22:59.301169 15775 net.cpp:137] Memory required for data: 19787264 +I0407 08:22:59.301174 15775 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 08:22:59.301185 15775 net.cpp:84] Creating Layer label_val-data_1_split +I0407 08:22:59.301188 15775 net.cpp:406] label_val-data_1_split <- label +I0407 08:22:59.301193 15775 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 08:22:59.301201 15775 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 08:22:59.301267 15775 net.cpp:122] Setting up label_val-data_1_split +I0407 08:22:59.301272 15775 net.cpp:129] Top shape: 32 (32) +I0407 08:22:59.301275 15775 net.cpp:129] Top shape: 32 (32) +I0407 08:22:59.301276 15775 net.cpp:137] Memory required for data: 19787520 +I0407 08:22:59.301278 15775 layer_factory.hpp:77] Creating layer conv1 +I0407 08:22:59.301288 15775 net.cpp:84] Creating Layer conv1 +I0407 08:22:59.301291 15775 net.cpp:406] conv1 <- data +I0407 08:22:59.301295 15775 net.cpp:380] conv1 -> conv1 +I0407 08:22:59.303838 15775 net.cpp:122] Setting up conv1 +I0407 08:22:59.303846 15775 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:22:59.303849 15775 net.cpp:137] Memory required for data: 56958720 +I0407 08:22:59.303858 15775 layer_factory.hpp:77] Creating layer relu1 +I0407 08:22:59.303862 15775 net.cpp:84] Creating Layer relu1 +I0407 08:22:59.303865 15775 net.cpp:406] relu1 <- conv1 +I0407 08:22:59.303869 15775 net.cpp:367] relu1 -> conv1 (in-place) +I0407 08:22:59.304126 15775 net.cpp:122] Setting up relu1 +I0407 08:22:59.304133 15775 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:22:59.304136 15775 net.cpp:137] Memory required for data: 94129920 +I0407 08:22:59.304137 15775 layer_factory.hpp:77] Creating layer norm1 +I0407 08:22:59.304144 15775 net.cpp:84] Creating Layer norm1 +I0407 08:22:59.304147 15775 net.cpp:406] norm1 <- conv1 +I0407 08:22:59.304152 15775 net.cpp:380] norm1 -> norm1 +I0407 08:22:59.304596 15775 net.cpp:122] Setting up norm1 +I0407 08:22:59.304605 15775 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:22:59.304607 15775 net.cpp:137] Memory required for data: 131301120 +I0407 08:22:59.304610 15775 layer_factory.hpp:77] Creating layer pool1 +I0407 08:22:59.304615 15775 net.cpp:84] Creating Layer pool1 +I0407 08:22:59.304618 15775 net.cpp:406] pool1 <- norm1 +I0407 08:22:59.304622 15775 net.cpp:380] pool1 -> pool1 +I0407 08:22:59.304646 15775 net.cpp:122] Setting up pool1 +I0407 08:22:59.304651 15775 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 08:22:59.304652 15775 net.cpp:137] Memory required for data: 140259072 +I0407 08:22:59.304656 15775 layer_factory.hpp:77] Creating layer conv2 +I0407 08:22:59.304661 15775 net.cpp:84] Creating Layer conv2 +I0407 08:22:59.304663 15775 net.cpp:406] conv2 <- pool1 +I0407 08:22:59.304685 15775 net.cpp:380] conv2 -> conv2 +I0407 08:22:59.310736 15775 net.cpp:122] Setting up conv2 +I0407 08:22:59.310750 15775 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:22:59.310751 15775 net.cpp:137] Memory required for data: 164146944 +I0407 08:22:59.310760 15775 layer_factory.hpp:77] Creating layer relu2 +I0407 08:22:59.310765 15775 net.cpp:84] Creating Layer relu2 +I0407 08:22:59.310767 15775 net.cpp:406] relu2 <- conv2 +I0407 08:22:59.310773 15775 net.cpp:367] relu2 -> conv2 (in-place) +I0407 08:22:59.311266 15775 net.cpp:122] Setting up relu2 +I0407 08:22:59.311275 15775 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:22:59.311276 15775 net.cpp:137] Memory required for data: 188034816 +I0407 08:22:59.311280 15775 layer_factory.hpp:77] Creating layer norm2 +I0407 08:22:59.311287 15775 net.cpp:84] Creating Layer norm2 +I0407 08:22:59.311290 15775 net.cpp:406] norm2 <- conv2 +I0407 08:22:59.311295 15775 net.cpp:380] norm2 -> norm2 +I0407 08:22:59.311802 15775 net.cpp:122] Setting up norm2 +I0407 08:22:59.311812 15775 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:22:59.311815 15775 net.cpp:137] Memory required for data: 211922688 +I0407 08:22:59.311817 15775 layer_factory.hpp:77] Creating layer pool2 +I0407 08:22:59.311822 15775 net.cpp:84] Creating Layer pool2 +I0407 08:22:59.311825 15775 net.cpp:406] pool2 <- norm2 +I0407 08:22:59.311830 15775 net.cpp:380] pool2 -> pool2 +I0407 08:22:59.311857 15775 net.cpp:122] Setting up pool2 +I0407 08:22:59.311861 15775 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:22:59.311863 15775 net.cpp:137] Memory required for data: 217460480 +I0407 08:22:59.311866 15775 layer_factory.hpp:77] Creating layer conv3 +I0407 08:22:59.311873 15775 net.cpp:84] Creating Layer conv3 +I0407 08:22:59.311875 15775 net.cpp:406] conv3 <- pool2 +I0407 08:22:59.311880 15775 net.cpp:380] conv3 -> conv3 +I0407 08:22:59.321751 15775 net.cpp:122] Setting up conv3 +I0407 08:22:59.321766 15775 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:22:59.321769 15775 net.cpp:137] Memory required for data: 225767168 +I0407 08:22:59.321779 15775 layer_factory.hpp:77] Creating layer relu3 +I0407 08:22:59.321784 15775 net.cpp:84] Creating Layer relu3 +I0407 08:22:59.321787 15775 net.cpp:406] relu3 <- conv3 +I0407 08:22:59.321794 15775 net.cpp:367] relu3 -> conv3 (in-place) +I0407 08:22:59.322284 15775 net.cpp:122] Setting up relu3 +I0407 08:22:59.322293 15775 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:22:59.322294 15775 net.cpp:137] Memory required for data: 234073856 +I0407 08:22:59.322297 15775 layer_factory.hpp:77] Creating layer conv4 +I0407 08:22:59.322306 15775 net.cpp:84] Creating Layer conv4 +I0407 08:22:59.322309 15775 net.cpp:406] conv4 <- conv3 +I0407 08:22:59.322315 15775 net.cpp:380] conv4 -> conv4 +I0407 08:22:59.331331 15775 net.cpp:122] Setting up conv4 +I0407 08:22:59.331346 15775 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:22:59.331347 15775 net.cpp:137] Memory required for data: 242380544 +I0407 08:22:59.331353 15775 layer_factory.hpp:77] Creating layer relu4 +I0407 08:22:59.331359 15775 net.cpp:84] Creating Layer relu4 +I0407 08:22:59.331362 15775 net.cpp:406] relu4 <- conv4 +I0407 08:22:59.331367 15775 net.cpp:367] relu4 -> conv4 (in-place) +I0407 08:22:59.331679 15775 net.cpp:122] Setting up relu4 +I0407 08:22:59.331686 15775 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:22:59.331688 15775 net.cpp:137] Memory required for data: 250687232 +I0407 08:22:59.331691 15775 layer_factory.hpp:77] Creating layer conv5 +I0407 08:22:59.331699 15775 net.cpp:84] Creating Layer conv5 +I0407 08:22:59.331702 15775 net.cpp:406] conv5 <- conv4 +I0407 08:22:59.331708 15775 net.cpp:380] conv5 -> conv5 +I0407 08:22:59.339571 15775 net.cpp:122] Setting up conv5 +I0407 08:22:59.339586 15775 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:22:59.339589 15775 net.cpp:137] Memory required for data: 256225024 +I0407 08:22:59.339599 15775 layer_factory.hpp:77] Creating layer relu5 +I0407 08:22:59.339607 15775 net.cpp:84] Creating Layer relu5 +I0407 08:22:59.339627 15775 net.cpp:406] relu5 <- conv5 +I0407 08:22:59.339633 15775 net.cpp:367] relu5 -> conv5 (in-place) +I0407 08:22:59.340127 15775 net.cpp:122] Setting up relu5 +I0407 08:22:59.340137 15775 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:22:59.340138 15775 net.cpp:137] Memory required for data: 261762816 +I0407 08:22:59.340142 15775 layer_factory.hpp:77] Creating layer pool5 +I0407 08:22:59.340149 15775 net.cpp:84] Creating Layer pool5 +I0407 08:22:59.340152 15775 net.cpp:406] pool5 <- conv5 +I0407 08:22:59.340157 15775 net.cpp:380] pool5 -> pool5 +I0407 08:22:59.340189 15775 net.cpp:122] Setting up pool5 +I0407 08:22:59.340193 15775 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 08:22:59.340196 15775 net.cpp:137] Memory required for data: 262942464 +I0407 08:22:59.340198 15775 layer_factory.hpp:77] Creating layer fc6 +I0407 08:22:59.340205 15775 net.cpp:84] Creating Layer fc6 +I0407 08:22:59.340207 15775 net.cpp:406] fc6 <- pool5 +I0407 08:22:59.340212 15775 net.cpp:380] fc6 -> fc6 +I0407 08:22:59.704593 15775 net.cpp:122] Setting up fc6 +I0407 08:22:59.704617 15775 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:22:59.704620 15775 net.cpp:137] Memory required for data: 263466752 +I0407 08:22:59.704632 15775 layer_factory.hpp:77] Creating layer relu6 +I0407 08:22:59.704643 15775 net.cpp:84] Creating Layer relu6 +I0407 08:22:59.704646 15775 net.cpp:406] relu6 <- fc6 +I0407 08:22:59.704656 15775 net.cpp:367] relu6 -> fc6 (in-place) +I0407 08:22:59.705866 15775 net.cpp:122] Setting up relu6 +I0407 08:22:59.705878 15775 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:22:59.705881 15775 net.cpp:137] Memory required for data: 263991040 +I0407 08:22:59.705886 15775 layer_factory.hpp:77] Creating layer drop6 +I0407 08:22:59.705893 15775 net.cpp:84] Creating Layer drop6 +I0407 08:22:59.705897 15775 net.cpp:406] drop6 <- fc6 +I0407 08:22:59.705905 15775 net.cpp:367] drop6 -> fc6 (in-place) +I0407 08:22:59.705933 15775 net.cpp:122] Setting up drop6 +I0407 08:22:59.705941 15775 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:22:59.705945 15775 net.cpp:137] Memory required for data: 264515328 +I0407 08:22:59.705948 15775 layer_factory.hpp:77] Creating layer fc7 +I0407 08:22:59.705956 15775 net.cpp:84] Creating Layer fc7 +I0407 08:22:59.705965 15775 net.cpp:406] fc7 <- fc6 +I0407 08:22:59.705973 15775 net.cpp:380] fc7 -> fc7 +I0407 08:22:59.865497 15775 net.cpp:122] Setting up fc7 +I0407 08:22:59.865517 15775 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:22:59.865520 15775 net.cpp:137] Memory required for data: 265039616 +I0407 08:22:59.865527 15775 layer_factory.hpp:77] Creating layer relu7 +I0407 08:22:59.865536 15775 net.cpp:84] Creating Layer relu7 +I0407 08:22:59.865540 15775 net.cpp:406] relu7 <- fc7 +I0407 08:22:59.865545 15775 net.cpp:367] relu7 -> fc7 (in-place) +I0407 08:22:59.865927 15775 net.cpp:122] Setting up relu7 +I0407 08:22:59.865934 15775 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:22:59.865936 15775 net.cpp:137] Memory required for data: 265563904 +I0407 08:22:59.865939 15775 layer_factory.hpp:77] Creating layer drop7 +I0407 08:22:59.865944 15775 net.cpp:84] Creating Layer drop7 +I0407 08:22:59.865947 15775 net.cpp:406] drop7 <- fc7 +I0407 08:22:59.865952 15775 net.cpp:367] drop7 -> fc7 (in-place) +I0407 08:22:59.865972 15775 net.cpp:122] Setting up drop7 +I0407 08:22:59.865978 15775 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:22:59.865979 15775 net.cpp:137] Memory required for data: 266088192 +I0407 08:22:59.865981 15775 layer_factory.hpp:77] Creating layer fc8 +I0407 08:22:59.865988 15775 net.cpp:84] Creating Layer fc8 +I0407 08:22:59.865989 15775 net.cpp:406] fc8 <- fc7 +I0407 08:22:59.865994 15775 net.cpp:380] fc8 -> fc8 +I0407 08:22:59.873194 15775 net.cpp:122] Setting up fc8 +I0407 08:22:59.873206 15775 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:22:59.873208 15775 net.cpp:137] Memory required for data: 266113280 +I0407 08:22:59.873214 15775 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 08:22:59.873219 15775 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 08:22:59.873220 15775 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 08:22:59.873243 15775 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 08:22:59.873250 15775 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 08:22:59.873281 15775 net.cpp:122] Setting up fc8_fc8_0_split +I0407 08:22:59.873286 15775 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:22:59.873288 15775 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:22:59.873291 15775 net.cpp:137] Memory required for data: 266163456 +I0407 08:22:59.873292 15775 layer_factory.hpp:77] Creating layer accuracy +I0407 08:22:59.873297 15775 net.cpp:84] Creating Layer accuracy +I0407 08:22:59.873299 15775 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 08:22:59.873302 15775 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 08:22:59.873307 15775 net.cpp:380] accuracy -> accuracy +I0407 08:22:59.873313 15775 net.cpp:122] Setting up accuracy +I0407 08:22:59.873317 15775 net.cpp:129] Top shape: (1) +I0407 08:22:59.873318 15775 net.cpp:137] Memory required for data: 266163460 +I0407 08:22:59.873320 15775 layer_factory.hpp:77] Creating layer loss +I0407 08:22:59.873324 15775 net.cpp:84] Creating Layer loss +I0407 08:22:59.873327 15775 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 08:22:59.873329 15775 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 08:22:59.873332 15775 net.cpp:380] loss -> loss +I0407 08:22:59.873338 15775 layer_factory.hpp:77] Creating layer loss +I0407 08:22:59.873934 15775 net.cpp:122] Setting up loss +I0407 08:22:59.873942 15775 net.cpp:129] Top shape: (1) +I0407 08:22:59.873944 15775 net.cpp:132] with loss weight 1 +I0407 08:22:59.873953 15775 net.cpp:137] Memory required for data: 266163464 +I0407 08:22:59.873956 15775 net.cpp:198] loss needs backward computation. +I0407 08:22:59.873960 15775 net.cpp:200] accuracy does not need backward computation. +I0407 08:22:59.873962 15775 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 08:22:59.873965 15775 net.cpp:198] fc8 needs backward computation. +I0407 08:22:59.873967 15775 net.cpp:198] drop7 needs backward computation. +I0407 08:22:59.873970 15775 net.cpp:198] relu7 needs backward computation. +I0407 08:22:59.873971 15775 net.cpp:198] fc7 needs backward computation. +I0407 08:22:59.873973 15775 net.cpp:198] drop6 needs backward computation. +I0407 08:22:59.873975 15775 net.cpp:198] relu6 needs backward computation. +I0407 08:22:59.873977 15775 net.cpp:198] fc6 needs backward computation. +I0407 08:22:59.873980 15775 net.cpp:198] pool5 needs backward computation. +I0407 08:22:59.873982 15775 net.cpp:198] relu5 needs backward computation. +I0407 08:22:59.873984 15775 net.cpp:198] conv5 needs backward computation. +I0407 08:22:59.873986 15775 net.cpp:198] relu4 needs backward computation. +I0407 08:22:59.873989 15775 net.cpp:198] conv4 needs backward computation. +I0407 08:22:59.873991 15775 net.cpp:198] relu3 needs backward computation. +I0407 08:22:59.873993 15775 net.cpp:198] conv3 needs backward computation. +I0407 08:22:59.873996 15775 net.cpp:198] pool2 needs backward computation. +I0407 08:22:59.873998 15775 net.cpp:198] norm2 needs backward computation. +I0407 08:22:59.874001 15775 net.cpp:198] relu2 needs backward computation. +I0407 08:22:59.874002 15775 net.cpp:198] conv2 needs backward computation. +I0407 08:22:59.874004 15775 net.cpp:198] pool1 needs backward computation. +I0407 08:22:59.874006 15775 net.cpp:198] norm1 needs backward computation. +I0407 08:22:59.874009 15775 net.cpp:198] relu1 needs backward computation. +I0407 08:22:59.874011 15775 net.cpp:198] conv1 needs backward computation. +I0407 08:22:59.874013 15775 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 08:22:59.874017 15775 net.cpp:200] val-data does not need backward computation. +I0407 08:22:59.874018 15775 net.cpp:242] This network produces output accuracy +I0407 08:22:59.874022 15775 net.cpp:242] This network produces output loss +I0407 08:22:59.874035 15775 net.cpp:255] Network initialization done. +I0407 08:22:59.874099 15775 solver.cpp:56] Solver scaffolding done. +I0407 08:22:59.874476 15775 caffe.cpp:248] Starting Optimization +I0407 08:22:59.874485 15775 solver.cpp:272] Solving +I0407 08:22:59.874495 15775 solver.cpp:273] Learning Rate Policy: step +I0407 08:22:59.876243 15775 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 08:22:59.876251 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:22:59.977617 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:23:04.037012 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:23:04.084988 15775 solver.cpp:397] Test net output #0: accuracy = 0.00857843 +I0407 08:23:04.085047 15775 solver.cpp:397] Test net output #1: loss = 5.27741 (* 1 = 5.27741 loss) +I0407 08:23:04.234515 15775 solver.cpp:218] Iteration 0 (1.82953e+36 iter/s, 4.35995s/12 iters), loss = 5.29154 +I0407 08:23:04.236081 15775 solver.cpp:237] Train net output #0: loss = 5.29154 (* 1 = 5.29154 loss) +I0407 08:23:04.236100 15775 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 08:23:08.396513 15775 solver.cpp:218] Iteration 12 (2.88435 iter/s, 4.16038s/12 iters), loss = 5.28837 +I0407 08:23:08.396554 15775 solver.cpp:237] Train net output #0: loss = 5.28837 (* 1 = 5.28837 loss) +I0407 08:23:08.396564 15775 sgd_solver.cpp:105] Iteration 12, lr = 0.01 +I0407 08:23:13.759481 15775 solver.cpp:218] Iteration 24 (2.23761 iter/s, 5.36287s/12 iters), loss = 5.28632 +I0407 08:23:13.759516 15775 solver.cpp:237] Train net output #0: loss = 5.28632 (* 1 = 5.28632 loss) +I0407 08:23:13.759521 15775 sgd_solver.cpp:105] Iteration 24, lr = 0.01 +I0407 08:23:19.062652 15775 solver.cpp:218] Iteration 36 (2.26283 iter/s, 5.30308s/12 iters), loss = 5.28928 +I0407 08:23:19.062690 15775 solver.cpp:237] Train net output #0: loss = 5.28928 (* 1 = 5.28928 loss) +I0407 08:23:19.062697 15775 sgd_solver.cpp:105] Iteration 36, lr = 0.01 +I0407 08:23:24.446909 15775 solver.cpp:218] Iteration 48 (2.22876 iter/s, 5.38417s/12 iters), loss = 5.31001 +I0407 08:23:24.446952 15775 solver.cpp:237] Train net output #0: loss = 5.31001 (* 1 = 5.31001 loss) +I0407 08:23:24.446961 15775 sgd_solver.cpp:105] Iteration 48, lr = 0.01 +I0407 08:23:29.853219 15775 solver.cpp:218] Iteration 60 (2.21966 iter/s, 5.40622s/12 iters), loss = 5.26807 +I0407 08:23:29.853291 15775 solver.cpp:237] Train net output #0: loss = 5.26807 (* 1 = 5.26807 loss) +I0407 08:23:29.853298 15775 sgd_solver.cpp:105] Iteration 60, lr = 0.01 +I0407 08:23:35.195150 15775 solver.cpp:218] Iteration 72 (2.24643 iter/s, 5.34181s/12 iters), loss = 5.31191 +I0407 08:23:35.195190 15775 solver.cpp:237] Train net output #0: loss = 5.31191 (* 1 = 5.31191 loss) +I0407 08:23:35.195199 15775 sgd_solver.cpp:105] Iteration 72, lr = 0.01 +I0407 08:23:40.416543 15775 solver.cpp:218] Iteration 84 (2.29827 iter/s, 5.22131s/12 iters), loss = 5.29027 +I0407 08:23:40.416579 15775 solver.cpp:237] Train net output #0: loss = 5.29027 (* 1 = 5.29027 loss) +I0407 08:23:40.416586 15775 sgd_solver.cpp:105] Iteration 84, lr = 0.01 +I0407 08:23:45.770115 15775 solver.cpp:218] Iteration 96 (2.24153 iter/s, 5.35349s/12 iters), loss = 5.26858 +I0407 08:23:45.770150 15775 solver.cpp:237] Train net output #0: loss = 5.26858 (* 1 = 5.26858 loss) +I0407 08:23:45.770159 15775 sgd_solver.cpp:105] Iteration 96, lr = 0.01 +I0407 08:23:47.660236 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:23:47.974378 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 08:23:51.187666 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 08:23:53.521109 15775 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 08:23:53.521136 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:23:57.808598 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:23:57.888741 15775 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0407 08:23:57.888787 15775 solver.cpp:397] Test net output #1: loss = 5.29457 (* 1 = 5.29457 loss) +I0407 08:23:59.959328 15775 solver.cpp:218] Iteration 108 (0.845721 iter/s, 14.1891s/12 iters), loss = 5.29516 +I0407 08:23:59.959487 15775 solver.cpp:237] Train net output #0: loss = 5.29516 (* 1 = 5.29516 loss) +I0407 08:23:59.959496 15775 sgd_solver.cpp:105] Iteration 108, lr = 0.01 +I0407 08:24:05.191540 15775 solver.cpp:218] Iteration 120 (2.29358 iter/s, 5.23201s/12 iters), loss = 5.26871 +I0407 08:24:05.191579 15775 solver.cpp:237] Train net output #0: loss = 5.26871 (* 1 = 5.26871 loss) +I0407 08:24:05.191587 15775 sgd_solver.cpp:105] Iteration 120, lr = 0.01 +I0407 08:24:10.469550 15775 solver.cpp:218] Iteration 132 (2.27362 iter/s, 5.27792s/12 iters), loss = 5.28539 +I0407 08:24:10.469596 15775 solver.cpp:237] Train net output #0: loss = 5.28539 (* 1 = 5.28539 loss) +I0407 08:24:10.469604 15775 sgd_solver.cpp:105] Iteration 132, lr = 0.01 +I0407 08:24:15.761276 15775 solver.cpp:218] Iteration 144 (2.26773 iter/s, 5.29163s/12 iters), loss = 5.27269 +I0407 08:24:15.761320 15775 solver.cpp:237] Train net output #0: loss = 5.27269 (* 1 = 5.27269 loss) +I0407 08:24:15.761330 15775 sgd_solver.cpp:105] Iteration 144, lr = 0.01 +I0407 08:24:21.013494 15775 solver.cpp:218] Iteration 156 (2.28479 iter/s, 5.25212s/12 iters), loss = 5.30626 +I0407 08:24:21.013532 15775 solver.cpp:237] Train net output #0: loss = 5.30626 (* 1 = 5.30626 loss) +I0407 08:24:21.013538 15775 sgd_solver.cpp:105] Iteration 156, lr = 0.01 +I0407 08:24:26.354526 15775 solver.cpp:218] Iteration 168 (2.24679 iter/s, 5.34094s/12 iters), loss = 5.26604 +I0407 08:24:26.354565 15775 solver.cpp:237] Train net output #0: loss = 5.26604 (* 1 = 5.26604 loss) +I0407 08:24:26.354573 15775 sgd_solver.cpp:105] Iteration 168, lr = 0.01 +I0407 08:24:31.869868 15775 solver.cpp:218] Iteration 180 (2.17579 iter/s, 5.51524s/12 iters), loss = 5.27425 +I0407 08:24:31.869962 15775 solver.cpp:237] Train net output #0: loss = 5.27425 (* 1 = 5.27425 loss) +I0407 08:24:31.869971 15775 sgd_solver.cpp:105] Iteration 180, lr = 0.01 +I0407 08:24:37.194700 15775 solver.cpp:218] Iteration 192 (2.25365 iter/s, 5.32469s/12 iters), loss = 5.15259 +I0407 08:24:37.194737 15775 solver.cpp:237] Train net output #0: loss = 5.15259 (* 1 = 5.15259 loss) +I0407 08:24:37.194744 15775 sgd_solver.cpp:105] Iteration 192, lr = 0.01 +I0407 08:24:41.366322 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:24:42.095335 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 08:24:45.160727 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 08:24:47.519670 15775 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 08:24:47.519695 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:24:51.856833 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:24:51.982986 15775 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 08:24:51.983021 15775 solver.cpp:397] Test net output #1: loss = 5.20035 (* 1 = 5.20035 loss) +I0407 08:24:52.124441 15775 solver.cpp:218] Iteration 204 (0.803773 iter/s, 14.9296s/12 iters), loss = 5.14736 +I0407 08:24:52.124507 15775 solver.cpp:237] Train net output #0: loss = 5.14736 (* 1 = 5.14736 loss) +I0407 08:24:52.124516 15775 sgd_solver.cpp:105] Iteration 204, lr = 0.01 +I0407 08:24:56.551288 15775 solver.cpp:218] Iteration 216 (2.7108 iter/s, 4.42673s/12 iters), loss = 5.25309 +I0407 08:24:56.551327 15775 solver.cpp:237] Train net output #0: loss = 5.25309 (* 1 = 5.25309 loss) +I0407 08:24:56.551335 15775 sgd_solver.cpp:105] Iteration 216, lr = 0.01 +I0407 08:25:01.930060 15775 solver.cpp:218] Iteration 228 (2.23103 iter/s, 5.37868s/12 iters), loss = 5.2283 +I0407 08:25:01.930124 15775 solver.cpp:237] Train net output #0: loss = 5.2283 (* 1 = 5.2283 loss) +I0407 08:25:01.930131 15775 sgd_solver.cpp:105] Iteration 228, lr = 0.01 +I0407 08:25:07.294862 15775 solver.cpp:218] Iteration 240 (2.23685 iter/s, 5.36469s/12 iters), loss = 5.16883 +I0407 08:25:07.294904 15775 solver.cpp:237] Train net output #0: loss = 5.16883 (* 1 = 5.16883 loss) +I0407 08:25:07.294912 15775 sgd_solver.cpp:105] Iteration 240, lr = 0.01 +I0407 08:25:12.630615 15775 solver.cpp:218] Iteration 252 (2.24902 iter/s, 5.33566s/12 iters), loss = 5.21816 +I0407 08:25:12.630661 15775 solver.cpp:237] Train net output #0: loss = 5.21816 (* 1 = 5.21816 loss) +I0407 08:25:12.630671 15775 sgd_solver.cpp:105] Iteration 252, lr = 0.01 +I0407 08:25:17.375411 15775 solver.cpp:218] Iteration 264 (2.52914 iter/s, 4.7447s/12 iters), loss = 5.13257 +I0407 08:25:17.375447 15775 solver.cpp:237] Train net output #0: loss = 5.13257 (* 1 = 5.13257 loss) +I0407 08:25:17.375453 15775 sgd_solver.cpp:105] Iteration 264, lr = 0.01 +I0407 08:25:22.544935 15775 solver.cpp:218] Iteration 276 (2.32134 iter/s, 5.16944s/12 iters), loss = 5.12379 +I0407 08:25:22.544977 15775 solver.cpp:237] Train net output #0: loss = 5.12379 (* 1 = 5.12379 loss) +I0407 08:25:22.544986 15775 sgd_solver.cpp:105] Iteration 276, lr = 0.01 +I0407 08:25:27.702724 15775 solver.cpp:218] Iteration 288 (2.32662 iter/s, 5.1577s/12 iters), loss = 5.1731 +I0407 08:25:27.702766 15775 solver.cpp:237] Train net output #0: loss = 5.1731 (* 1 = 5.1731 loss) +I0407 08:25:27.702773 15775 sgd_solver.cpp:105] Iteration 288, lr = 0.01 +I0407 08:25:33.156765 15775 solver.cpp:218] Iteration 300 (2.20024 iter/s, 5.45395s/12 iters), loss = 5.24344 +I0407 08:25:33.156929 15775 solver.cpp:237] Train net output #0: loss = 5.24344 (* 1 = 5.24344 loss) +I0407 08:25:33.156939 15775 sgd_solver.cpp:105] Iteration 300, lr = 0.01 +I0407 08:25:34.143019 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:35.256261 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 08:25:38.288193 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 08:25:40.626431 15775 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 08:25:40.626456 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:25:45.079520 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:45.250808 15775 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 08:25:45.250842 15775 solver.cpp:397] Test net output #1: loss = 5.16357 (* 1 = 5.16357 loss) +I0407 08:25:47.161224 15775 solver.cpp:218] Iteration 312 (0.856886 iter/s, 14.0042s/12 iters), loss = 5.1284 +I0407 08:25:47.161260 15775 solver.cpp:237] Train net output #0: loss = 5.1284 (* 1 = 5.1284 loss) +I0407 08:25:47.161267 15775 sgd_solver.cpp:105] Iteration 312, lr = 0.01 +I0407 08:25:52.552168 15775 solver.cpp:218] Iteration 324 (2.22599 iter/s, 5.39085s/12 iters), loss = 5.21169 +I0407 08:25:52.552213 15775 solver.cpp:237] Train net output #0: loss = 5.21169 (* 1 = 5.21169 loss) +I0407 08:25:52.552220 15775 sgd_solver.cpp:105] Iteration 324, lr = 0.01 +I0407 08:25:57.892258 15775 solver.cpp:218] Iteration 336 (2.24719 iter/s, 5.33999s/12 iters), loss = 5.14278 +I0407 08:25:57.892302 15775 solver.cpp:237] Train net output #0: loss = 5.14278 (* 1 = 5.14278 loss) +I0407 08:25:57.892308 15775 sgd_solver.cpp:105] Iteration 336, lr = 0.01 +I0407 08:26:02.917914 15775 solver.cpp:218] Iteration 348 (2.38779 iter/s, 5.02556s/12 iters), loss = 5.11892 +I0407 08:26:02.917961 15775 solver.cpp:237] Train net output #0: loss = 5.11892 (* 1 = 5.11892 loss) +I0407 08:26:02.917969 15775 sgd_solver.cpp:105] Iteration 348, lr = 0.01 +I0407 08:26:08.170171 15775 solver.cpp:218] Iteration 360 (2.28477 iter/s, 5.25216s/12 iters), loss = 5.17903 +I0407 08:26:08.170279 15775 solver.cpp:237] Train net output #0: loss = 5.17903 (* 1 = 5.17903 loss) +I0407 08:26:08.170287 15775 sgd_solver.cpp:105] Iteration 360, lr = 0.01 +I0407 08:26:13.408490 15775 solver.cpp:218] Iteration 372 (2.29088 iter/s, 5.23816s/12 iters), loss = 5.14746 +I0407 08:26:13.408532 15775 solver.cpp:237] Train net output #0: loss = 5.14746 (* 1 = 5.14746 loss) +I0407 08:26:13.408540 15775 sgd_solver.cpp:105] Iteration 372, lr = 0.01 +I0407 08:26:18.629895 15775 solver.cpp:218] Iteration 384 (2.29827 iter/s, 5.22131s/12 iters), loss = 5.20477 +I0407 08:26:18.629943 15775 solver.cpp:237] Train net output #0: loss = 5.20477 (* 1 = 5.20477 loss) +I0407 08:26:18.629952 15775 sgd_solver.cpp:105] Iteration 384, lr = 0.01 +I0407 08:26:23.961932 15775 solver.cpp:218] Iteration 396 (2.25059 iter/s, 5.33194s/12 iters), loss = 5.11741 +I0407 08:26:23.961975 15775 solver.cpp:237] Train net output #0: loss = 5.11741 (* 1 = 5.11741 loss) +I0407 08:26:23.961983 15775 sgd_solver.cpp:105] Iteration 396, lr = 0.01 +I0407 08:26:27.211582 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:28.749639 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 08:26:31.804107 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 08:26:34.141804 15775 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 08:26:34.141829 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:26:38.548501 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:38.767446 15775 solver.cpp:397] Test net output #0: accuracy = 0.0165441 +I0407 08:26:38.767483 15775 solver.cpp:397] Test net output #1: loss = 5.1263 (* 1 = 5.1263 loss) +I0407 08:26:38.907228 15775 solver.cpp:218] Iteration 408 (0.802936 iter/s, 14.9451s/12 iters), loss = 5.14457 +I0407 08:26:38.907274 15775 solver.cpp:237] Train net output #0: loss = 5.14457 (* 1 = 5.14457 loss) +I0407 08:26:38.907282 15775 sgd_solver.cpp:105] Iteration 408, lr = 0.01 +I0407 08:26:42.996053 15775 solver.cpp:218] Iteration 420 (2.93489 iter/s, 4.08874s/12 iters), loss = 5.0738 +I0407 08:26:42.996093 15775 solver.cpp:237] Train net output #0: loss = 5.0738 (* 1 = 5.0738 loss) +I0407 08:26:42.996099 15775 sgd_solver.cpp:105] Iteration 420, lr = 0.01 +I0407 08:26:48.359141 15775 solver.cpp:218] Iteration 432 (2.23755 iter/s, 5.363s/12 iters), loss = 5.04389 +I0407 08:26:48.359189 15775 solver.cpp:237] Train net output #0: loss = 5.04389 (* 1 = 5.04389 loss) +I0407 08:26:48.359197 15775 sgd_solver.cpp:105] Iteration 432, lr = 0.01 +I0407 08:26:53.662815 15775 solver.cpp:218] Iteration 444 (2.26262 iter/s, 5.30358s/12 iters), loss = 5.04974 +I0407 08:26:53.662855 15775 solver.cpp:237] Train net output #0: loss = 5.04974 (* 1 = 5.04974 loss) +I0407 08:26:53.662863 15775 sgd_solver.cpp:105] Iteration 444, lr = 0.01 +I0407 08:26:58.806208 15775 solver.cpp:218] Iteration 456 (2.33313 iter/s, 5.14331s/12 iters), loss = 5.14817 +I0407 08:26:58.806246 15775 solver.cpp:237] Train net output #0: loss = 5.14817 (* 1 = 5.14817 loss) +I0407 08:26:58.806254 15775 sgd_solver.cpp:105] Iteration 456, lr = 0.01 +I0407 08:27:04.217275 15775 solver.cpp:218] Iteration 468 (2.21771 iter/s, 5.41098s/12 iters), loss = 5.0603 +I0407 08:27:04.217325 15775 solver.cpp:237] Train net output #0: loss = 5.0603 (* 1 = 5.0603 loss) +I0407 08:27:04.217334 15775 sgd_solver.cpp:105] Iteration 468, lr = 0.01 +I0407 08:27:09.581252 15775 solver.cpp:218] Iteration 480 (2.23719 iter/s, 5.36388s/12 iters), loss = 4.95124 +I0407 08:27:09.581357 15775 solver.cpp:237] Train net output #0: loss = 4.95124 (* 1 = 4.95124 loss) +I0407 08:27:09.581364 15775 sgd_solver.cpp:105] Iteration 480, lr = 0.01 +I0407 08:27:15.092428 15775 solver.cpp:218] Iteration 492 (2.17745 iter/s, 5.51102s/12 iters), loss = 5.07828 +I0407 08:27:15.092475 15775 solver.cpp:237] Train net output #0: loss = 5.07828 (* 1 = 5.07828 loss) +I0407 08:27:15.092483 15775 sgd_solver.cpp:105] Iteration 492, lr = 0.01 +I0407 08:27:20.490804 15775 solver.cpp:218] Iteration 504 (2.22293 iter/s, 5.39828s/12 iters), loss = 5.10811 +I0407 08:27:20.490850 15775 solver.cpp:237] Train net output #0: loss = 5.10811 (* 1 = 5.10811 loss) +I0407 08:27:20.490859 15775 sgd_solver.cpp:105] Iteration 504, lr = 0.01 +I0407 08:27:20.726436 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:27:22.607617 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 08:27:25.609333 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 08:27:29.165897 15775 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 08:27:29.165917 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:27:33.476212 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:27:33.714031 15775 solver.cpp:397] Test net output #0: accuracy = 0.0183824 +I0407 08:27:33.714080 15775 solver.cpp:397] Test net output #1: loss = 5.07407 (* 1 = 5.07407 loss) +I0407 08:27:35.552914 15775 solver.cpp:218] Iteration 516 (0.796709 iter/s, 15.062s/12 iters), loss = 5.09789 +I0407 08:27:35.552954 15775 solver.cpp:237] Train net output #0: loss = 5.09789 (* 1 = 5.09789 loss) +I0407 08:27:35.552963 15775 sgd_solver.cpp:105] Iteration 516, lr = 0.01 +I0407 08:27:40.959307 15775 solver.cpp:218] Iteration 528 (2.21963 iter/s, 5.40631s/12 iters), loss = 5.13514 +I0407 08:27:40.959435 15775 solver.cpp:237] Train net output #0: loss = 5.13514 (* 1 = 5.13514 loss) +I0407 08:27:40.959443 15775 sgd_solver.cpp:105] Iteration 528, lr = 0.01 +I0407 08:27:46.137123 15775 solver.cpp:218] Iteration 540 (2.31766 iter/s, 5.17764s/12 iters), loss = 5.00718 +I0407 08:27:46.137162 15775 solver.cpp:237] Train net output #0: loss = 5.00718 (* 1 = 5.00718 loss) +I0407 08:27:46.137169 15775 sgd_solver.cpp:105] Iteration 540, lr = 0.01 +I0407 08:27:51.056362 15775 solver.cpp:218] Iteration 552 (2.43944 iter/s, 4.91915s/12 iters), loss = 5.1156 +I0407 08:27:51.056402 15775 solver.cpp:237] Train net output #0: loss = 5.1156 (* 1 = 5.1156 loss) +I0407 08:27:51.056411 15775 sgd_solver.cpp:105] Iteration 552, lr = 0.01 +I0407 08:27:56.479290 15775 solver.cpp:218] Iteration 564 (2.21286 iter/s, 5.42284s/12 iters), loss = 5.02839 +I0407 08:27:56.479331 15775 solver.cpp:237] Train net output #0: loss = 5.02839 (* 1 = 5.02839 loss) +I0407 08:27:56.479338 15775 sgd_solver.cpp:105] Iteration 564, lr = 0.01 +I0407 08:28:01.914595 15775 solver.cpp:218] Iteration 576 (2.20782 iter/s, 5.43521s/12 iters), loss = 5.00293 +I0407 08:28:01.914645 15775 solver.cpp:237] Train net output #0: loss = 5.00293 (* 1 = 5.00293 loss) +I0407 08:28:01.914654 15775 sgd_solver.cpp:105] Iteration 576, lr = 0.01 +I0407 08:28:06.964022 15775 solver.cpp:218] Iteration 588 (2.37655 iter/s, 5.04933s/12 iters), loss = 5.01554 +I0407 08:28:06.964071 15775 solver.cpp:237] Train net output #0: loss = 5.01554 (* 1 = 5.01554 loss) +I0407 08:28:06.964079 15775 sgd_solver.cpp:105] Iteration 588, lr = 0.01 +I0407 08:28:12.170583 15775 solver.cpp:218] Iteration 600 (2.30483 iter/s, 5.20646s/12 iters), loss = 5.0056 +I0407 08:28:12.170686 15775 solver.cpp:237] Train net output #0: loss = 5.0056 (* 1 = 5.0056 loss) +I0407 08:28:12.170694 15775 sgd_solver.cpp:105] Iteration 600, lr = 0.01 +I0407 08:28:14.743404 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:28:17.089898 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 08:28:20.121791 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 08:28:24.343632 15775 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 08:28:24.343659 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:28:28.394991 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:28:28.678284 15775 solver.cpp:397] Test net output #0: accuracy = 0.0306373 +I0407 08:28:28.678324 15775 solver.cpp:397] Test net output #1: loss = 5.02228 (* 1 = 5.02228 loss) +I0407 08:28:28.816192 15775 solver.cpp:218] Iteration 612 (0.72092 iter/s, 16.6454s/12 iters), loss = 4.97881 +I0407 08:28:28.816236 15775 solver.cpp:237] Train net output #0: loss = 4.97881 (* 1 = 4.97881 loss) +I0407 08:28:28.816246 15775 sgd_solver.cpp:105] Iteration 612, lr = 0.01 +I0407 08:28:33.203166 15775 solver.cpp:218] Iteration 624 (2.73543 iter/s, 4.38688s/12 iters), loss = 4.93163 +I0407 08:28:33.203220 15775 solver.cpp:237] Train net output #0: loss = 4.93163 (* 1 = 4.93163 loss) +I0407 08:28:33.203231 15775 sgd_solver.cpp:105] Iteration 624, lr = 0.01 +I0407 08:28:38.440104 15775 solver.cpp:218] Iteration 636 (2.29146 iter/s, 5.23684s/12 iters), loss = 4.97323 +I0407 08:28:38.440152 15775 solver.cpp:237] Train net output #0: loss = 4.97323 (* 1 = 4.97323 loss) +I0407 08:28:38.440161 15775 sgd_solver.cpp:105] Iteration 636, lr = 0.01 +I0407 08:28:43.580461 15775 solver.cpp:218] Iteration 648 (2.33451 iter/s, 5.14026s/12 iters), loss = 4.9759 +I0407 08:28:43.580585 15775 solver.cpp:237] Train net output #0: loss = 4.9759 (* 1 = 4.9759 loss) +I0407 08:28:43.580592 15775 sgd_solver.cpp:105] Iteration 648, lr = 0.01 +I0407 08:28:49.083653 15775 solver.cpp:218] Iteration 660 (2.18062 iter/s, 5.50302s/12 iters), loss = 4.93585 +I0407 08:28:49.083699 15775 solver.cpp:237] Train net output #0: loss = 4.93585 (* 1 = 4.93585 loss) +I0407 08:28:49.083706 15775 sgd_solver.cpp:105] Iteration 660, lr = 0.01 +I0407 08:28:54.565485 15775 solver.cpp:218] Iteration 672 (2.18909 iter/s, 5.48174s/12 iters), loss = 4.96601 +I0407 08:28:54.565528 15775 solver.cpp:237] Train net output #0: loss = 4.96601 (* 1 = 4.96601 loss) +I0407 08:28:54.565536 15775 sgd_solver.cpp:105] Iteration 672, lr = 0.01 +I0407 08:28:59.951262 15775 solver.cpp:218] Iteration 684 (2.22813 iter/s, 5.38569s/12 iters), loss = 4.92038 +I0407 08:28:59.951301 15775 solver.cpp:237] Train net output #0: loss = 4.92038 (* 1 = 4.92038 loss) +I0407 08:28:59.951310 15775 sgd_solver.cpp:105] Iteration 684, lr = 0.01 +I0407 08:29:00.763540 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:29:05.087476 15775 solver.cpp:218] Iteration 696 (2.33639 iter/s, 5.13613s/12 iters), loss = 4.83141 +I0407 08:29:05.087519 15775 solver.cpp:237] Train net output #0: loss = 4.83141 (* 1 = 4.83141 loss) +I0407 08:29:05.087527 15775 sgd_solver.cpp:105] Iteration 696, lr = 0.01 +I0407 08:29:09.960564 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:29:10.375900 15775 solver.cpp:218] Iteration 708 (2.26915 iter/s, 5.28833s/12 iters), loss = 4.94156 +I0407 08:29:10.375942 15775 solver.cpp:237] Train net output #0: loss = 4.94156 (* 1 = 4.94156 loss) +I0407 08:29:10.375949 15775 sgd_solver.cpp:105] Iteration 708, lr = 0.01 +I0407 08:29:12.502023 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 08:29:15.553210 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 08:29:19.330847 15775 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 08:29:19.330865 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:29:23.293486 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:29:23.606891 15775 solver.cpp:397] Test net output #0: accuracy = 0.0373775 +I0407 08:29:23.606920 15775 solver.cpp:397] Test net output #1: loss = 4.95579 (* 1 = 4.95579 loss) +I0407 08:29:25.509990 15775 solver.cpp:218] Iteration 720 (0.79292 iter/s, 15.1339s/12 iters), loss = 4.94131 +I0407 08:29:25.510035 15775 solver.cpp:237] Train net output #0: loss = 4.94131 (* 1 = 4.94131 loss) +I0407 08:29:25.510042 15775 sgd_solver.cpp:105] Iteration 720, lr = 0.01 +I0407 08:29:30.911836 15775 solver.cpp:218] Iteration 732 (2.2215 iter/s, 5.40176s/12 iters), loss = 4.78855 +I0407 08:29:30.911873 15775 solver.cpp:237] Train net output #0: loss = 4.78855 (* 1 = 4.78855 loss) +I0407 08:29:30.911880 15775 sgd_solver.cpp:105] Iteration 732, lr = 0.01 +I0407 08:29:36.347568 15775 solver.cpp:218] Iteration 744 (2.20765 iter/s, 5.43564s/12 iters), loss = 4.82579 +I0407 08:29:36.347620 15775 solver.cpp:237] Train net output #0: loss = 4.82579 (* 1 = 4.82579 loss) +I0407 08:29:36.347630 15775 sgd_solver.cpp:105] Iteration 744, lr = 0.01 +I0407 08:29:41.600585 15775 solver.cpp:218] Iteration 756 (2.28444 iter/s, 5.25292s/12 iters), loss = 4.78834 +I0407 08:29:41.600626 15775 solver.cpp:237] Train net output #0: loss = 4.78834 (* 1 = 4.78834 loss) +I0407 08:29:41.600633 15775 sgd_solver.cpp:105] Iteration 756, lr = 0.01 +I0407 08:29:46.875607 15775 solver.cpp:218] Iteration 768 (2.27491 iter/s, 5.27494s/12 iters), loss = 4.88684 +I0407 08:29:46.875746 15775 solver.cpp:237] Train net output #0: loss = 4.88684 (* 1 = 4.88684 loss) +I0407 08:29:46.875753 15775 sgd_solver.cpp:105] Iteration 768, lr = 0.01 +I0407 08:29:52.169348 15775 solver.cpp:218] Iteration 780 (2.26691 iter/s, 5.29356s/12 iters), loss = 4.85197 +I0407 08:29:52.169409 15775 solver.cpp:237] Train net output #0: loss = 4.85197 (* 1 = 4.85197 loss) +I0407 08:29:52.169423 15775 sgd_solver.cpp:105] Iteration 780, lr = 0.01 +I0407 08:29:57.542423 15775 solver.cpp:218] Iteration 792 (2.2334 iter/s, 5.37297s/12 iters), loss = 4.96349 +I0407 08:29:57.542464 15775 solver.cpp:237] Train net output #0: loss = 4.96349 (* 1 = 4.96349 loss) +I0407 08:29:57.542471 15775 sgd_solver.cpp:105] Iteration 792, lr = 0.01 +I0407 08:30:02.966966 15775 solver.cpp:218] Iteration 804 (2.21221 iter/s, 5.42445s/12 iters), loss = 4.87756 +I0407 08:30:02.967015 15775 solver.cpp:237] Train net output #0: loss = 4.87756 (* 1 = 4.87756 loss) +I0407 08:30:02.967023 15775 sgd_solver.cpp:105] Iteration 804, lr = 0.01 +I0407 08:30:04.898061 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:30:07.848120 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 08:30:11.465319 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 08:30:15.285668 15775 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 08:30:15.285691 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:30:19.263736 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:30:19.613112 15775 solver.cpp:397] Test net output #0: accuracy = 0.0367647 +I0407 08:30:19.613143 15775 solver.cpp:397] Test net output #1: loss = 4.91498 (* 1 = 4.91498 loss) +I0407 08:30:19.742429 15775 solver.cpp:218] Iteration 816 (0.715338 iter/s, 16.7753s/12 iters), loss = 4.84202 +I0407 08:30:19.742477 15775 solver.cpp:237] Train net output #0: loss = 4.84202 (* 1 = 4.84202 loss) +I0407 08:30:19.742486 15775 sgd_solver.cpp:105] Iteration 816, lr = 0.01 +I0407 08:30:24.119755 15775 solver.cpp:218] Iteration 828 (2.74146 iter/s, 4.37723s/12 iters), loss = 4.84139 +I0407 08:30:24.119803 15775 solver.cpp:237] Train net output #0: loss = 4.84139 (* 1 = 4.84139 loss) +I0407 08:30:24.119812 15775 sgd_solver.cpp:105] Iteration 828, lr = 0.01 +I0407 08:30:29.339309 15775 solver.cpp:218] Iteration 840 (2.29909 iter/s, 5.21946s/12 iters), loss = 4.6938 +I0407 08:30:29.339360 15775 solver.cpp:237] Train net output #0: loss = 4.6938 (* 1 = 4.6938 loss) +I0407 08:30:29.339370 15775 sgd_solver.cpp:105] Iteration 840, lr = 0.01 +I0407 08:30:34.480453 15775 solver.cpp:218] Iteration 852 (2.33416 iter/s, 5.14104s/12 iters), loss = 4.65497 +I0407 08:30:34.480492 15775 solver.cpp:237] Train net output #0: loss = 4.65497 (* 1 = 4.65497 loss) +I0407 08:30:34.480499 15775 sgd_solver.cpp:105] Iteration 852, lr = 0.01 +I0407 08:30:39.790216 15775 solver.cpp:218] Iteration 864 (2.26002 iter/s, 5.30968s/12 iters), loss = 4.74995 +I0407 08:30:39.790261 15775 solver.cpp:237] Train net output #0: loss = 4.74995 (* 1 = 4.74995 loss) +I0407 08:30:39.790271 15775 sgd_solver.cpp:105] Iteration 864, lr = 0.01 +I0407 08:30:45.004026 15775 solver.cpp:218] Iteration 876 (2.30162 iter/s, 5.21372s/12 iters), loss = 4.75534 +I0407 08:30:45.004067 15775 solver.cpp:237] Train net output #0: loss = 4.75534 (* 1 = 4.75534 loss) +I0407 08:30:45.004074 15775 sgd_solver.cpp:105] Iteration 876, lr = 0.01 +I0407 08:30:50.213013 15775 solver.cpp:218] Iteration 888 (2.30375 iter/s, 5.2089s/12 iters), loss = 4.76162 +I0407 08:30:50.213105 15775 solver.cpp:237] Train net output #0: loss = 4.76162 (* 1 = 4.76162 loss) +I0407 08:30:50.213114 15775 sgd_solver.cpp:105] Iteration 888, lr = 0.01 +I0407 08:30:55.282603 15775 solver.cpp:218] Iteration 900 (2.36712 iter/s, 5.06945s/12 iters), loss = 4.75176 +I0407 08:30:55.282645 15775 solver.cpp:237] Train net output #0: loss = 4.75176 (* 1 = 4.75176 loss) +I0407 08:30:55.282652 15775 sgd_solver.cpp:105] Iteration 900, lr = 0.01 +I0407 08:30:59.458592 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:00.636565 15775 solver.cpp:218] Iteration 912 (2.24137 iter/s, 5.35387s/12 iters), loss = 4.81443 +I0407 08:31:00.636610 15775 solver.cpp:237] Train net output #0: loss = 4.81443 (* 1 = 4.81443 loss) +I0407 08:31:00.636617 15775 sgd_solver.cpp:105] Iteration 912, lr = 0.01 +I0407 08:31:02.716549 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 08:31:06.978204 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 08:31:10.733455 15775 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 08:31:10.733474 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:31:14.657872 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:15.050719 15775 solver.cpp:397] Test net output #0: accuracy = 0.0557598 +I0407 08:31:15.050768 15775 solver.cpp:397] Test net output #1: loss = 4.76175 (* 1 = 4.76175 loss) +I0407 08:31:16.973907 15775 solver.cpp:218] Iteration 924 (0.734521 iter/s, 16.3372s/12 iters), loss = 4.66135 +I0407 08:31:16.973966 15775 solver.cpp:237] Train net output #0: loss = 4.66135 (* 1 = 4.66135 loss) +I0407 08:31:16.973976 15775 sgd_solver.cpp:105] Iteration 924, lr = 0.01 +I0407 08:31:22.191005 15775 solver.cpp:218] Iteration 936 (2.30017 iter/s, 5.217s/12 iters), loss = 4.72755 +I0407 08:31:22.191138 15775 solver.cpp:237] Train net output #0: loss = 4.72755 (* 1 = 4.72755 loss) +I0407 08:31:22.191146 15775 sgd_solver.cpp:105] Iteration 936, lr = 0.01 +I0407 08:31:27.294726 15775 solver.cpp:218] Iteration 948 (2.35131 iter/s, 5.10355s/12 iters), loss = 4.77171 +I0407 08:31:27.294766 15775 solver.cpp:237] Train net output #0: loss = 4.77171 (* 1 = 4.77171 loss) +I0407 08:31:27.294773 15775 sgd_solver.cpp:105] Iteration 948, lr = 0.01 +I0407 08:31:32.630409 15775 solver.cpp:218] Iteration 960 (2.24905 iter/s, 5.33559s/12 iters), loss = 4.72132 +I0407 08:31:32.630448 15775 solver.cpp:237] Train net output #0: loss = 4.72132 (* 1 = 4.72132 loss) +I0407 08:31:32.630456 15775 sgd_solver.cpp:105] Iteration 960, lr = 0.01 +I0407 08:31:38.050858 15775 solver.cpp:218] Iteration 972 (2.21388 iter/s, 5.42035s/12 iters), loss = 4.42711 +I0407 08:31:38.050915 15775 solver.cpp:237] Train net output #0: loss = 4.42711 (* 1 = 4.42711 loss) +I0407 08:31:38.050925 15775 sgd_solver.cpp:105] Iteration 972, lr = 0.01 +I0407 08:31:43.243443 15775 solver.cpp:218] Iteration 984 (2.31103 iter/s, 5.19248s/12 iters), loss = 4.62405 +I0407 08:31:43.243480 15775 solver.cpp:237] Train net output #0: loss = 4.62405 (* 1 = 4.62405 loss) +I0407 08:31:43.243487 15775 sgd_solver.cpp:105] Iteration 984, lr = 0.01 +I0407 08:31:48.478173 15775 solver.cpp:218] Iteration 996 (2.29242 iter/s, 5.23464s/12 iters), loss = 4.59153 +I0407 08:31:48.478214 15775 solver.cpp:237] Train net output #0: loss = 4.59153 (* 1 = 4.59153 loss) +I0407 08:31:48.478222 15775 sgd_solver.cpp:105] Iteration 996, lr = 0.01 +I0407 08:31:53.773705 15775 solver.cpp:218] Iteration 1008 (2.2661 iter/s, 5.29544s/12 iters), loss = 4.6696 +I0407 08:31:53.773835 15775 solver.cpp:237] Train net output #0: loss = 4.6696 (* 1 = 4.6696 loss) +I0407 08:31:53.773846 15775 sgd_solver.cpp:105] Iteration 1008, lr = 0.01 +I0407 08:31:54.839197 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:58.537333 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 08:32:02.062321 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 08:32:05.829254 15775 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 08:32:05.829277 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:32:09.683507 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:10.106658 15775 solver.cpp:397] Test net output #0: accuracy = 0.0557598 +I0407 08:32:10.106686 15775 solver.cpp:397] Test net output #1: loss = 4.68216 (* 1 = 4.68216 loss) +I0407 08:32:10.246131 15775 solver.cpp:218] Iteration 1020 (0.728501 iter/s, 16.4722s/12 iters), loss = 4.61372 +I0407 08:32:10.246173 15775 solver.cpp:237] Train net output #0: loss = 4.61372 (* 1 = 4.61372 loss) +I0407 08:32:10.246181 15775 sgd_solver.cpp:105] Iteration 1020, lr = 0.01 +I0407 08:32:14.536149 15775 solver.cpp:218] Iteration 1032 (2.79725 iter/s, 4.28993s/12 iters), loss = 4.90017 +I0407 08:32:14.536195 15775 solver.cpp:237] Train net output #0: loss = 4.90017 (* 1 = 4.90017 loss) +I0407 08:32:14.536201 15775 sgd_solver.cpp:105] Iteration 1032, lr = 0.01 +I0407 08:32:19.903410 15775 solver.cpp:218] Iteration 1044 (2.23582 iter/s, 5.36717s/12 iters), loss = 4.44342 +I0407 08:32:19.903451 15775 solver.cpp:237] Train net output #0: loss = 4.44342 (* 1 = 4.44342 loss) +I0407 08:32:19.903460 15775 sgd_solver.cpp:105] Iteration 1044, lr = 0.01 +I0407 08:32:25.103358 15775 solver.cpp:218] Iteration 1056 (2.30775 iter/s, 5.19986s/12 iters), loss = 4.51696 +I0407 08:32:25.103472 15775 solver.cpp:237] Train net output #0: loss = 4.51696 (* 1 = 4.51696 loss) +I0407 08:32:25.103482 15775 sgd_solver.cpp:105] Iteration 1056, lr = 0.01 +I0407 08:32:30.601222 15775 solver.cpp:218] Iteration 1068 (2.18273 iter/s, 5.4977s/12 iters), loss = 4.38327 +I0407 08:32:30.601262 15775 solver.cpp:237] Train net output #0: loss = 4.38327 (* 1 = 4.38327 loss) +I0407 08:32:30.601270 15775 sgd_solver.cpp:105] Iteration 1068, lr = 0.01 +I0407 08:32:35.824421 15775 solver.cpp:218] Iteration 1080 (2.29748 iter/s, 5.22311s/12 iters), loss = 4.29295 +I0407 08:32:35.824472 15775 solver.cpp:237] Train net output #0: loss = 4.29295 (* 1 = 4.29295 loss) +I0407 08:32:35.824483 15775 sgd_solver.cpp:105] Iteration 1080, lr = 0.01 +I0407 08:32:41.148730 15775 solver.cpp:218] Iteration 1092 (2.25386 iter/s, 5.32421s/12 iters), loss = 4.49579 +I0407 08:32:41.148777 15775 solver.cpp:237] Train net output #0: loss = 4.49579 (* 1 = 4.49579 loss) +I0407 08:32:41.148785 15775 sgd_solver.cpp:105] Iteration 1092, lr = 0.01 +I0407 08:32:46.541457 15775 solver.cpp:218] Iteration 1104 (2.22526 iter/s, 5.39263s/12 iters), loss = 4.36042 +I0407 08:32:46.541498 15775 solver.cpp:237] Train net output #0: loss = 4.36042 (* 1 = 4.36042 loss) +I0407 08:32:46.541505 15775 sgd_solver.cpp:105] Iteration 1104, lr = 0.01 +I0407 08:32:49.839913 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:51.775679 15775 solver.cpp:218] Iteration 1116 (2.29264 iter/s, 5.23413s/12 iters), loss = 4.41614 +I0407 08:32:51.775720 15775 solver.cpp:237] Train net output #0: loss = 4.41614 (* 1 = 4.41614 loss) +I0407 08:32:51.775727 15775 sgd_solver.cpp:105] Iteration 1116, lr = 0.01 +I0407 08:32:53.849905 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 08:32:56.871551 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 08:33:01.264562 15775 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 08:33:01.264580 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:33:05.135605 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:05.604480 15775 solver.cpp:397] Test net output #0: accuracy = 0.0759804 +I0407 08:33:05.604527 15775 solver.cpp:397] Test net output #1: loss = 4.43004 (* 1 = 4.43004 loss) +I0407 08:33:07.546481 15775 solver.cpp:218] Iteration 1128 (0.760907 iter/s, 15.7707s/12 iters), loss = 4.25096 +I0407 08:33:07.546519 15775 solver.cpp:237] Train net output #0: loss = 4.25096 (* 1 = 4.25096 loss) +I0407 08:33:07.546526 15775 sgd_solver.cpp:105] Iteration 1128, lr = 0.01 +I0407 08:33:12.835587 15775 solver.cpp:218] Iteration 1140 (2.26885 iter/s, 5.28902s/12 iters), loss = 4.30326 +I0407 08:33:12.835629 15775 solver.cpp:237] Train net output #0: loss = 4.30326 (* 1 = 4.30326 loss) +I0407 08:33:12.835636 15775 sgd_solver.cpp:105] Iteration 1140, lr = 0.01 +I0407 08:33:18.101820 15775 solver.cpp:218] Iteration 1152 (2.27871 iter/s, 5.26614s/12 iters), loss = 4.41068 +I0407 08:33:18.101863 15775 solver.cpp:237] Train net output #0: loss = 4.41068 (* 1 = 4.41068 loss) +I0407 08:33:18.101871 15775 sgd_solver.cpp:105] Iteration 1152, lr = 0.01 +I0407 08:33:23.041621 15775 solver.cpp:218] Iteration 1164 (2.42929 iter/s, 4.93971s/12 iters), loss = 4.60593 +I0407 08:33:23.041678 15775 solver.cpp:237] Train net output #0: loss = 4.60593 (* 1 = 4.60593 loss) +I0407 08:33:23.041692 15775 sgd_solver.cpp:105] Iteration 1164, lr = 0.01 +I0407 08:33:28.217504 15775 solver.cpp:218] Iteration 1176 (2.31849 iter/s, 5.17578s/12 iters), loss = 4.39359 +I0407 08:33:28.217620 15775 solver.cpp:237] Train net output #0: loss = 4.39359 (* 1 = 4.39359 loss) +I0407 08:33:28.217629 15775 sgd_solver.cpp:105] Iteration 1176, lr = 0.01 +I0407 08:33:33.281422 15775 solver.cpp:218] Iteration 1188 (2.36978 iter/s, 5.06375s/12 iters), loss = 4.27655 +I0407 08:33:33.281462 15775 solver.cpp:237] Train net output #0: loss = 4.27655 (* 1 = 4.27655 loss) +I0407 08:33:33.281471 15775 sgd_solver.cpp:105] Iteration 1188, lr = 0.01 +I0407 08:33:38.613977 15775 solver.cpp:218] Iteration 1200 (2.25037 iter/s, 5.33247s/12 iters), loss = 4.21949 +I0407 08:33:38.614022 15775 solver.cpp:237] Train net output #0: loss = 4.21949 (* 1 = 4.21949 loss) +I0407 08:33:38.614032 15775 sgd_solver.cpp:105] Iteration 1200, lr = 0.01 +I0407 08:33:43.923430 15775 solver.cpp:218] Iteration 1212 (2.26016 iter/s, 5.30936s/12 iters), loss = 4.21263 +I0407 08:33:43.923477 15775 solver.cpp:237] Train net output #0: loss = 4.21263 (* 1 = 4.21263 loss) +I0407 08:33:43.923485 15775 sgd_solver.cpp:105] Iteration 1212, lr = 0.01 +I0407 08:33:44.180979 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:48.801575 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 08:33:51.859386 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 08:33:54.202457 15775 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 08:33:54.202481 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:33:57.951740 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:58.451670 15775 solver.cpp:397] Test net output #0: accuracy = 0.0796569 +I0407 08:33:58.451782 15775 solver.cpp:397] Test net output #1: loss = 4.303 (* 1 = 4.303 loss) +I0407 08:33:58.593180 15775 solver.cpp:218] Iteration 1224 (0.818018 iter/s, 14.6696s/12 iters), loss = 4.26246 +I0407 08:33:58.593230 15775 solver.cpp:237] Train net output #0: loss = 4.26246 (* 1 = 4.26246 loss) +I0407 08:33:58.593240 15775 sgd_solver.cpp:105] Iteration 1224, lr = 0.01 +I0407 08:34:03.042791 15775 solver.cpp:218] Iteration 1236 (2.69692 iter/s, 4.44952s/12 iters), loss = 4.21856 +I0407 08:34:03.042834 15775 solver.cpp:237] Train net output #0: loss = 4.21856 (* 1 = 4.21856 loss) +I0407 08:34:03.042842 15775 sgd_solver.cpp:105] Iteration 1236, lr = 0.01 +I0407 08:34:08.235316 15775 solver.cpp:218] Iteration 1248 (2.31106 iter/s, 5.19243s/12 iters), loss = 4.148 +I0407 08:34:08.235358 15775 solver.cpp:237] Train net output #0: loss = 4.148 (* 1 = 4.148 loss) +I0407 08:34:08.235365 15775 sgd_solver.cpp:105] Iteration 1248, lr = 0.01 +I0407 08:34:13.439555 15775 solver.cpp:218] Iteration 1260 (2.30585 iter/s, 5.20415s/12 iters), loss = 4.37202 +I0407 08:34:13.439596 15775 solver.cpp:237] Train net output #0: loss = 4.37202 (* 1 = 4.37202 loss) +I0407 08:34:13.439604 15775 sgd_solver.cpp:105] Iteration 1260, lr = 0.01 +I0407 08:34:18.885025 15775 solver.cpp:218] Iteration 1272 (2.2037 iter/s, 5.44539s/12 iters), loss = 4.24994 +I0407 08:34:18.885061 15775 solver.cpp:237] Train net output #0: loss = 4.24994 (* 1 = 4.24994 loss) +I0407 08:34:18.885067 15775 sgd_solver.cpp:105] Iteration 1272, lr = 0.01 +I0407 08:34:24.368433 15775 solver.cpp:218] Iteration 1284 (2.18845 iter/s, 5.48332s/12 iters), loss = 4.32786 +I0407 08:34:24.368479 15775 solver.cpp:237] Train net output #0: loss = 4.32786 (* 1 = 4.32786 loss) +I0407 08:34:24.368486 15775 sgd_solver.cpp:105] Iteration 1284, lr = 0.01 +I0407 08:34:29.565053 15775 solver.cpp:218] Iteration 1296 (2.30923 iter/s, 5.19653s/12 iters), loss = 4.13921 +I0407 08:34:29.565192 15775 solver.cpp:237] Train net output #0: loss = 4.13921 (* 1 = 4.13921 loss) +I0407 08:34:29.565203 15775 sgd_solver.cpp:105] Iteration 1296, lr = 0.01 +I0407 08:34:34.691632 15775 solver.cpp:218] Iteration 1308 (2.34083 iter/s, 5.1264s/12 iters), loss = 4.32062 +I0407 08:34:34.691677 15775 solver.cpp:237] Train net output #0: loss = 4.32062 (* 1 = 4.32062 loss) +I0407 08:34:34.691686 15775 sgd_solver.cpp:105] Iteration 1308, lr = 0.01 +I0407 08:34:37.274950 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:39.885581 15775 solver.cpp:218] Iteration 1320 (2.31042 iter/s, 5.19386s/12 iters), loss = 4.27223 +I0407 08:34:39.885624 15775 solver.cpp:237] Train net output #0: loss = 4.27223 (* 1 = 4.27223 loss) +I0407 08:34:39.885634 15775 sgd_solver.cpp:105] Iteration 1320, lr = 0.01 +I0407 08:34:42.034520 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 08:34:45.114773 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 08:34:47.418973 15775 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 08:34:47.418994 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:34:51.167732 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:51.754408 15775 solver.cpp:397] Test net output #0: accuracy = 0.0998775 +I0407 08:34:51.754464 15775 solver.cpp:397] Test net output #1: loss = 4.15158 (* 1 = 4.15158 loss) +I0407 08:34:53.598948 15775 solver.cpp:218] Iteration 1332 (0.875068 iter/s, 13.7132s/12 iters), loss = 4.06243 +I0407 08:34:53.599001 15775 solver.cpp:237] Train net output #0: loss = 4.06243 (* 1 = 4.06243 loss) +I0407 08:34:53.599012 15775 sgd_solver.cpp:105] Iteration 1332, lr = 0.01 +I0407 08:34:58.633435 15775 solver.cpp:218] Iteration 1344 (2.3836 iter/s, 5.03439s/12 iters), loss = 4.11304 +I0407 08:34:58.633476 15775 solver.cpp:237] Train net output #0: loss = 4.11304 (* 1 = 4.11304 loss) +I0407 08:34:58.633482 15775 sgd_solver.cpp:105] Iteration 1344, lr = 0.01 +I0407 08:35:04.038491 15775 solver.cpp:218] Iteration 1356 (2.22018 iter/s, 5.40496s/12 iters), loss = 3.9623 +I0407 08:35:04.038591 15775 solver.cpp:237] Train net output #0: loss = 3.9623 (* 1 = 3.9623 loss) +I0407 08:35:04.038599 15775 sgd_solver.cpp:105] Iteration 1356, lr = 0.01 +I0407 08:35:09.334935 15775 solver.cpp:218] Iteration 1368 (2.26573 iter/s, 5.2963s/12 iters), loss = 4.09085 +I0407 08:35:09.334980 15775 solver.cpp:237] Train net output #0: loss = 4.09085 (* 1 = 4.09085 loss) +I0407 08:35:09.334987 15775 sgd_solver.cpp:105] Iteration 1368, lr = 0.01 +I0407 08:35:10.590122 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:35:14.574594 15775 solver.cpp:218] Iteration 1380 (2.29026 iter/s, 5.23957s/12 iters), loss = 4.1047 +I0407 08:35:14.574635 15775 solver.cpp:237] Train net output #0: loss = 4.1047 (* 1 = 4.1047 loss) +I0407 08:35:14.574642 15775 sgd_solver.cpp:105] Iteration 1380, lr = 0.01 +I0407 08:35:19.845712 15775 solver.cpp:218] Iteration 1392 (2.27659 iter/s, 5.27103s/12 iters), loss = 3.99979 +I0407 08:35:19.845755 15775 solver.cpp:237] Train net output #0: loss = 3.99979 (* 1 = 3.99979 loss) +I0407 08:35:19.845762 15775 sgd_solver.cpp:105] Iteration 1392, lr = 0.01 +I0407 08:35:25.237605 15775 solver.cpp:218] Iteration 1404 (2.2256 iter/s, 5.3918s/12 iters), loss = 3.89264 +I0407 08:35:25.237648 15775 solver.cpp:237] Train net output #0: loss = 3.89264 (* 1 = 3.89264 loss) +I0407 08:35:25.237655 15775 sgd_solver.cpp:105] Iteration 1404, lr = 0.01 +I0407 08:35:29.970504 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:30.357975 15775 solver.cpp:218] Iteration 1416 (2.34362 iter/s, 5.12028s/12 iters), loss = 4.03186 +I0407 08:35:30.358012 15775 solver.cpp:237] Train net output #0: loss = 4.03186 (* 1 = 4.03186 loss) +I0407 08:35:30.358021 15775 sgd_solver.cpp:105] Iteration 1416, lr = 0.01 +I0407 08:35:35.101398 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 08:35:38.131191 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 08:35:40.535537 15775 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 08:35:40.535563 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:35:44.268036 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:44.856251 15775 solver.cpp:397] Test net output #0: accuracy = 0.126838 +I0407 08:35:44.856287 15775 solver.cpp:397] Test net output #1: loss = 4.03462 (* 1 = 4.03462 loss) +I0407 08:35:44.996933 15775 solver.cpp:218] Iteration 1428 (0.819738 iter/s, 14.6388s/12 iters), loss = 3.8426 +I0407 08:35:44.996979 15775 solver.cpp:237] Train net output #0: loss = 3.8426 (* 1 = 3.8426 loss) +I0407 08:35:44.996986 15775 sgd_solver.cpp:105] Iteration 1428, lr = 0.01 +I0407 08:35:49.166721 15775 solver.cpp:218] Iteration 1440 (2.8779 iter/s, 4.1697s/12 iters), loss = 3.86114 +I0407 08:35:49.166774 15775 solver.cpp:237] Train net output #0: loss = 3.86114 (* 1 = 3.86114 loss) +I0407 08:35:49.166783 15775 sgd_solver.cpp:105] Iteration 1440, lr = 0.01 +I0407 08:35:54.387774 15775 solver.cpp:218] Iteration 1452 (2.29843 iter/s, 5.22096s/12 iters), loss = 3.95506 +I0407 08:35:54.387814 15775 solver.cpp:237] Train net output #0: loss = 3.95506 (* 1 = 3.95506 loss) +I0407 08:35:54.387822 15775 sgd_solver.cpp:105] Iteration 1452, lr = 0.01 +I0407 08:35:59.662045 15775 solver.cpp:218] Iteration 1464 (2.27524 iter/s, 5.27418s/12 iters), loss = 3.70884 +I0407 08:35:59.662101 15775 solver.cpp:237] Train net output #0: loss = 3.70884 (* 1 = 3.70884 loss) +I0407 08:35:59.662112 15775 sgd_solver.cpp:105] Iteration 1464, lr = 0.01 +I0407 08:36:04.815834 15775 solver.cpp:218] Iteration 1476 (2.32843 iter/s, 5.15368s/12 iters), loss = 3.92217 +I0407 08:36:04.815894 15775 solver.cpp:237] Train net output #0: loss = 3.92217 (* 1 = 3.92217 loss) +I0407 08:36:04.815905 15775 sgd_solver.cpp:105] Iteration 1476, lr = 0.01 +I0407 08:36:10.028079 15775 solver.cpp:218] Iteration 1488 (2.30232 iter/s, 5.21214s/12 iters), loss = 3.68318 +I0407 08:36:10.028178 15775 solver.cpp:237] Train net output #0: loss = 3.68318 (* 1 = 3.68318 loss) +I0407 08:36:10.028187 15775 sgd_solver.cpp:105] Iteration 1488, lr = 0.01 +I0407 08:36:15.258334 15775 solver.cpp:218] Iteration 1500 (2.2944 iter/s, 5.23011s/12 iters), loss = 3.87105 +I0407 08:36:15.258373 15775 solver.cpp:237] Train net output #0: loss = 3.87105 (* 1 = 3.87105 loss) +I0407 08:36:15.258380 15775 sgd_solver.cpp:105] Iteration 1500, lr = 0.01 +I0407 08:36:20.560636 15775 solver.cpp:218] Iteration 1512 (2.26321 iter/s, 5.30221s/12 iters), loss = 3.77096 +I0407 08:36:20.560685 15775 solver.cpp:237] Train net output #0: loss = 3.77096 (* 1 = 3.77096 loss) +I0407 08:36:20.560694 15775 sgd_solver.cpp:105] Iteration 1512, lr = 0.01 +I0407 08:36:22.409528 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:36:25.816825 15775 solver.cpp:218] Iteration 1524 (2.28306 iter/s, 5.2561s/12 iters), loss = 3.92059 +I0407 08:36:25.816861 15775 solver.cpp:237] Train net output #0: loss = 3.92059 (* 1 = 3.92059 loss) +I0407 08:36:25.816869 15775 sgd_solver.cpp:105] Iteration 1524, lr = 0.01 +I0407 08:36:27.784812 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 08:36:30.795264 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 08:36:33.093098 15775 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 08:36:33.093120 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:36:36.860965 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:36:37.489408 15775 solver.cpp:397] Test net output #0: accuracy = 0.140319 +I0407 08:36:37.489434 15775 solver.cpp:397] Test net output #1: loss = 3.89671 (* 1 = 3.89671 loss) +I0407 08:36:39.620036 15775 solver.cpp:218] Iteration 1536 (0.869372 iter/s, 13.8031s/12 iters), loss = 3.47727 +I0407 08:36:39.620086 15775 solver.cpp:237] Train net output #0: loss = 3.47727 (* 1 = 3.47727 loss) +I0407 08:36:39.620095 15775 sgd_solver.cpp:105] Iteration 1536, lr = 0.01 +I0407 08:36:45.055764 15775 solver.cpp:218] Iteration 1548 (2.20766 iter/s, 5.43563s/12 iters), loss = 3.73769 +I0407 08:36:45.055924 15775 solver.cpp:237] Train net output #0: loss = 3.73769 (* 1 = 3.73769 loss) +I0407 08:36:45.055941 15775 sgd_solver.cpp:105] Iteration 1548, lr = 0.01 +I0407 08:36:50.390718 15775 solver.cpp:218] Iteration 1560 (2.2494 iter/s, 5.33476s/12 iters), loss = 3.61786 +I0407 08:36:50.390755 15775 solver.cpp:237] Train net output #0: loss = 3.61786 (* 1 = 3.61786 loss) +I0407 08:36:50.390763 15775 sgd_solver.cpp:105] Iteration 1560, lr = 0.01 +I0407 08:36:55.740126 15775 solver.cpp:218] Iteration 1572 (2.24327 iter/s, 5.34933s/12 iters), loss = 3.66973 +I0407 08:36:55.740166 15775 solver.cpp:237] Train net output #0: loss = 3.66973 (* 1 = 3.66973 loss) +I0407 08:36:55.740173 15775 sgd_solver.cpp:105] Iteration 1572, lr = 0.01 +I0407 08:37:00.816085 15775 solver.cpp:218] Iteration 1584 (2.36413 iter/s, 5.07587s/12 iters), loss = 3.89331 +I0407 08:37:00.816143 15775 solver.cpp:237] Train net output #0: loss = 3.89331 (* 1 = 3.89331 loss) +I0407 08:37:00.816155 15775 sgd_solver.cpp:105] Iteration 1584, lr = 0.01 +I0407 08:37:06.042894 15775 solver.cpp:218] Iteration 1596 (2.2959 iter/s, 5.22671s/12 iters), loss = 3.61359 +I0407 08:37:06.042935 15775 solver.cpp:237] Train net output #0: loss = 3.61359 (* 1 = 3.61359 loss) +I0407 08:37:06.042943 15775 sgd_solver.cpp:105] Iteration 1596, lr = 0.01 +I0407 08:37:11.395283 15775 solver.cpp:218] Iteration 1608 (2.24202 iter/s, 5.35231s/12 iters), loss = 3.5022 +I0407 08:37:11.395319 15775 solver.cpp:237] Train net output #0: loss = 3.5022 (* 1 = 3.5022 loss) +I0407 08:37:11.395325 15775 sgd_solver.cpp:105] Iteration 1608, lr = 0.01 +I0407 08:37:15.479393 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:37:16.672647 15775 solver.cpp:218] Iteration 1620 (2.2739 iter/s, 5.27728s/12 iters), loss = 3.74052 +I0407 08:37:16.672700 15775 solver.cpp:237] Train net output #0: loss = 3.74052 (* 1 = 3.74052 loss) +I0407 08:37:16.672710 15775 sgd_solver.cpp:105] Iteration 1620, lr = 0.01 +I0407 08:37:21.352339 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 08:37:24.394778 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 08:37:26.704370 15775 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 08:37:26.704388 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:37:30.336230 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:37:30.999420 15775 solver.cpp:397] Test net output #0: accuracy = 0.151348 +I0407 08:37:30.999454 15775 solver.cpp:397] Test net output #1: loss = 3.78851 (* 1 = 3.78851 loss) +I0407 08:37:31.136819 15775 solver.cpp:218] Iteration 1632 (0.829645 iter/s, 14.464s/12 iters), loss = 3.4758 +I0407 08:37:31.136869 15775 solver.cpp:237] Train net output #0: loss = 3.4758 (* 1 = 3.4758 loss) +I0407 08:37:31.136878 15775 sgd_solver.cpp:105] Iteration 1632, lr = 0.01 +I0407 08:37:35.496357 15775 solver.cpp:218] Iteration 1644 (2.75264 iter/s, 4.35945s/12 iters), loss = 3.74133 +I0407 08:37:35.496392 15775 solver.cpp:237] Train net output #0: loss = 3.74133 (* 1 = 3.74133 loss) +I0407 08:37:35.496399 15775 sgd_solver.cpp:105] Iteration 1644, lr = 0.01 +I0407 08:37:40.779817 15775 solver.cpp:218] Iteration 1656 (2.27128 iter/s, 5.28337s/12 iters), loss = 3.54997 +I0407 08:37:40.779865 15775 solver.cpp:237] Train net output #0: loss = 3.54997 (* 1 = 3.54997 loss) +I0407 08:37:40.779872 15775 sgd_solver.cpp:105] Iteration 1656, lr = 0.01 +I0407 08:37:46.150995 15775 solver.cpp:218] Iteration 1668 (2.23419 iter/s, 5.37108s/12 iters), loss = 3.772 +I0407 08:37:46.151146 15775 solver.cpp:237] Train net output #0: loss = 3.772 (* 1 = 3.772 loss) +I0407 08:37:46.151155 15775 sgd_solver.cpp:105] Iteration 1668, lr = 0.01 +I0407 08:37:51.357041 15775 solver.cpp:218] Iteration 1680 (2.3051 iter/s, 5.20584s/12 iters), loss = 3.45336 +I0407 08:37:51.357089 15775 solver.cpp:237] Train net output #0: loss = 3.45336 (* 1 = 3.45336 loss) +I0407 08:37:51.357100 15775 sgd_solver.cpp:105] Iteration 1680, lr = 0.01 +I0407 08:37:56.866508 15775 solver.cpp:218] Iteration 1692 (2.17811 iter/s, 5.50937s/12 iters), loss = 3.32264 +I0407 08:37:56.866551 15775 solver.cpp:237] Train net output #0: loss = 3.32264 (* 1 = 3.32264 loss) +I0407 08:37:56.866559 15775 sgd_solver.cpp:105] Iteration 1692, lr = 0.01 +I0407 08:38:01.944259 15775 solver.cpp:218] Iteration 1704 (2.36329 iter/s, 5.07766s/12 iters), loss = 3.26995 +I0407 08:38:01.944303 15775 solver.cpp:237] Train net output #0: loss = 3.26995 (* 1 = 3.26995 loss) +I0407 08:38:01.944310 15775 sgd_solver.cpp:105] Iteration 1704, lr = 0.01 +I0407 08:38:07.174748 15775 solver.cpp:218] Iteration 1716 (2.29428 iter/s, 5.2304s/12 iters), loss = 3.75603 +I0407 08:38:07.174787 15775 solver.cpp:237] Train net output #0: loss = 3.75603 (* 1 = 3.75603 loss) +I0407 08:38:07.174794 15775 sgd_solver.cpp:105] Iteration 1716, lr = 0.01 +I0407 08:38:08.184592 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:38:12.492960 15775 solver.cpp:218] Iteration 1728 (2.25643 iter/s, 5.31813s/12 iters), loss = 3.51817 +I0407 08:38:12.493001 15775 solver.cpp:237] Train net output #0: loss = 3.51817 (* 1 = 3.51817 loss) +I0407 08:38:12.493008 15775 sgd_solver.cpp:105] Iteration 1728, lr = 0.01 +I0407 08:38:14.565971 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 08:38:17.534461 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 08:38:19.853181 15775 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 08:38:19.853206 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:38:23.572122 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:38:24.317274 15775 solver.cpp:397] Test net output #0: accuracy = 0.170956 +I0407 08:38:24.317322 15775 solver.cpp:397] Test net output #1: loss = 3.67011 (* 1 = 3.67011 loss) +I0407 08:38:26.185520 15775 solver.cpp:218] Iteration 1740 (0.876397 iter/s, 13.6924s/12 iters), loss = 3.48462 +I0407 08:38:26.185583 15775 solver.cpp:237] Train net output #0: loss = 3.48462 (* 1 = 3.48462 loss) +I0407 08:38:26.185595 15775 sgd_solver.cpp:105] Iteration 1740, lr = 0.01 +I0407 08:38:31.301688 15775 solver.cpp:218] Iteration 1752 (2.34555 iter/s, 5.11607s/12 iters), loss = 3.47179 +I0407 08:38:31.301726 15775 solver.cpp:237] Train net output #0: loss = 3.47179 (* 1 = 3.47179 loss) +I0407 08:38:31.301734 15775 sgd_solver.cpp:105] Iteration 1752, lr = 0.01 +I0407 08:38:36.711046 15775 solver.cpp:218] Iteration 1764 (2.21841 iter/s, 5.40927s/12 iters), loss = 3.67878 +I0407 08:38:36.711087 15775 solver.cpp:237] Train net output #0: loss = 3.67878 (* 1 = 3.67878 loss) +I0407 08:38:36.711095 15775 sgd_solver.cpp:105] Iteration 1764, lr = 0.01 +I0407 08:38:41.700762 15775 solver.cpp:218] Iteration 1776 (2.40499 iter/s, 4.98963s/12 iters), loss = 3.18367 +I0407 08:38:41.700806 15775 solver.cpp:237] Train net output #0: loss = 3.18367 (* 1 = 3.18367 loss) +I0407 08:38:41.700814 15775 sgd_solver.cpp:105] Iteration 1776, lr = 0.01 +I0407 08:38:46.638881 15775 solver.cpp:218] Iteration 1788 (2.43012 iter/s, 4.93803s/12 iters), loss = 3.14672 +I0407 08:38:46.638926 15775 solver.cpp:237] Train net output #0: loss = 3.14672 (* 1 = 3.14672 loss) +I0407 08:38:46.638932 15775 sgd_solver.cpp:105] Iteration 1788, lr = 0.01 +I0407 08:38:52.126713 15775 solver.cpp:218] Iteration 1800 (2.18669 iter/s, 5.48774s/12 iters), loss = 3.53299 +I0407 08:38:52.126816 15775 solver.cpp:237] Train net output #0: loss = 3.53299 (* 1 = 3.53299 loss) +I0407 08:38:52.126824 15775 sgd_solver.cpp:105] Iteration 1800, lr = 0.01 +I0407 08:38:57.427667 15775 solver.cpp:218] Iteration 1812 (2.26381 iter/s, 5.30081s/12 iters), loss = 3.10138 +I0407 08:38:57.427709 15775 solver.cpp:237] Train net output #0: loss = 3.10138 (* 1 = 3.10138 loss) +I0407 08:38:57.427716 15775 sgd_solver.cpp:105] Iteration 1812, lr = 0.01 +I0407 08:39:00.659574 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:02.507285 15775 solver.cpp:218] Iteration 1824 (2.36242 iter/s, 5.07953s/12 iters), loss = 3.36283 +I0407 08:39:02.507325 15775 solver.cpp:237] Train net output #0: loss = 3.36283 (* 1 = 3.36283 loss) +I0407 08:39:02.507333 15775 sgd_solver.cpp:105] Iteration 1824, lr = 0.01 +I0407 08:39:07.264809 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 08:39:10.370818 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 08:39:12.666615 15775 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 08:39:12.666635 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:39:16.271800 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:17.010017 15775 solver.cpp:397] Test net output #0: accuracy = 0.174632 +I0407 08:39:17.010049 15775 solver.cpp:397] Test net output #1: loss = 3.72011 (* 1 = 3.72011 loss) +I0407 08:39:17.146898 15775 solver.cpp:218] Iteration 1836 (0.819701 iter/s, 14.6395s/12 iters), loss = 3.18155 +I0407 08:39:17.146939 15775 solver.cpp:237] Train net output #0: loss = 3.18155 (* 1 = 3.18155 loss) +I0407 08:39:17.146945 15775 sgd_solver.cpp:105] Iteration 1836, lr = 0.01 +I0407 08:39:21.487082 15775 solver.cpp:218] Iteration 1848 (2.76491 iter/s, 4.3401s/12 iters), loss = 3.14836 +I0407 08:39:21.487120 15775 solver.cpp:237] Train net output #0: loss = 3.14836 (* 1 = 3.14836 loss) +I0407 08:39:21.487126 15775 sgd_solver.cpp:105] Iteration 1848, lr = 0.01 +I0407 08:39:26.810957 15775 solver.cpp:218] Iteration 1860 (2.25403 iter/s, 5.32379s/12 iters), loss = 3.2645 +I0407 08:39:26.811101 15775 solver.cpp:237] Train net output #0: loss = 3.2645 (* 1 = 3.2645 loss) +I0407 08:39:26.811110 15775 sgd_solver.cpp:105] Iteration 1860, lr = 0.01 +I0407 08:39:32.307967 15775 solver.cpp:218] Iteration 1872 (2.18308 iter/s, 5.49682s/12 iters), loss = 3.44138 +I0407 08:39:32.308008 15775 solver.cpp:237] Train net output #0: loss = 3.44138 (* 1 = 3.44138 loss) +I0407 08:39:32.308017 15775 sgd_solver.cpp:105] Iteration 1872, lr = 0.01 +I0407 08:39:37.512984 15775 solver.cpp:218] Iteration 1884 (2.30551 iter/s, 5.20493s/12 iters), loss = 3.07741 +I0407 08:39:37.513022 15775 solver.cpp:237] Train net output #0: loss = 3.07741 (* 1 = 3.07741 loss) +I0407 08:39:37.513029 15775 sgd_solver.cpp:105] Iteration 1884, lr = 0.01 +I0407 08:39:42.874243 15775 solver.cpp:218] Iteration 1896 (2.23832 iter/s, 5.36117s/12 iters), loss = 3.29923 +I0407 08:39:42.874282 15775 solver.cpp:237] Train net output #0: loss = 3.29923 (* 1 = 3.29923 loss) +I0407 08:39:42.874289 15775 sgd_solver.cpp:105] Iteration 1896, lr = 0.01 +I0407 08:39:48.333189 15775 solver.cpp:218] Iteration 1908 (2.19826 iter/s, 5.45886s/12 iters), loss = 3.08818 +I0407 08:39:48.333230 15775 solver.cpp:237] Train net output #0: loss = 3.08818 (* 1 = 3.08818 loss) +I0407 08:39:48.333237 15775 sgd_solver.cpp:105] Iteration 1908, lr = 0.01 +I0407 08:39:53.549932 15775 solver.cpp:218] Iteration 1920 (2.30033 iter/s, 5.21665s/12 iters), loss = 3.08402 +I0407 08:39:53.549973 15775 solver.cpp:237] Train net output #0: loss = 3.08402 (* 1 = 3.08402 loss) +I0407 08:39:53.549981 15775 sgd_solver.cpp:105] Iteration 1920, lr = 0.01 +I0407 08:39:53.836078 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:58.776521 15775 solver.cpp:218] Iteration 1932 (2.29599 iter/s, 5.2265s/12 iters), loss = 3.26802 +I0407 08:39:58.776640 15775 solver.cpp:237] Train net output #0: loss = 3.26802 (* 1 = 3.26802 loss) +I0407 08:39:58.776648 15775 sgd_solver.cpp:105] Iteration 1932, lr = 0.01 +I0407 08:40:00.805631 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 08:40:03.885833 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 08:40:06.191772 15775 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 08:40:06.191793 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:40:09.699748 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:10.472321 15775 solver.cpp:397] Test net output #0: accuracy = 0.163603 +I0407 08:40:10.472348 15775 solver.cpp:397] Test net output #1: loss = 3.65245 (* 1 = 3.65245 loss) +I0407 08:40:12.286707 15775 solver.cpp:218] Iteration 1944 (0.888233 iter/s, 13.51s/12 iters), loss = 3.15742 +I0407 08:40:12.286753 15775 solver.cpp:237] Train net output #0: loss = 3.15742 (* 1 = 3.15742 loss) +I0407 08:40:12.286761 15775 sgd_solver.cpp:105] Iteration 1944, lr = 0.01 +I0407 08:40:17.440735 15775 solver.cpp:218] Iteration 1956 (2.32832 iter/s, 5.15393s/12 iters), loss = 3.30476 +I0407 08:40:17.440786 15775 solver.cpp:237] Train net output #0: loss = 3.30476 (* 1 = 3.30476 loss) +I0407 08:40:17.440796 15775 sgd_solver.cpp:105] Iteration 1956, lr = 0.01 +I0407 08:40:22.507212 15775 solver.cpp:218] Iteration 1968 (2.36855 iter/s, 5.06638s/12 iters), loss = 3.3591 +I0407 08:40:22.507256 15775 solver.cpp:237] Train net output #0: loss = 3.3591 (* 1 = 3.3591 loss) +I0407 08:40:22.507266 15775 sgd_solver.cpp:105] Iteration 1968, lr = 0.01 +I0407 08:40:27.812465 15775 solver.cpp:218] Iteration 1980 (2.26195 iter/s, 5.30516s/12 iters), loss = 3.06774 +I0407 08:40:27.812510 15775 solver.cpp:237] Train net output #0: loss = 3.06774 (* 1 = 3.06774 loss) +I0407 08:40:27.812520 15775 sgd_solver.cpp:105] Iteration 1980, lr = 0.01 +I0407 08:40:33.191015 15775 solver.cpp:218] Iteration 1992 (2.23112 iter/s, 5.37846s/12 iters), loss = 3.2123 +I0407 08:40:33.191152 15775 solver.cpp:237] Train net output #0: loss = 3.2123 (* 1 = 3.2123 loss) +I0407 08:40:33.191162 15775 sgd_solver.cpp:105] Iteration 1992, lr = 0.01 +I0407 08:40:38.344240 15775 solver.cpp:218] Iteration 2004 (2.32872 iter/s, 5.15304s/12 iters), loss = 3.28494 +I0407 08:40:38.344286 15775 solver.cpp:237] Train net output #0: loss = 3.28494 (* 1 = 3.28494 loss) +I0407 08:40:38.344295 15775 sgd_solver.cpp:105] Iteration 2004, lr = 0.01 +I0407 08:40:43.670608 15775 solver.cpp:218] Iteration 2016 (2.25298 iter/s, 5.32628s/12 iters), loss = 3.31581 +I0407 08:40:43.670653 15775 solver.cpp:237] Train net output #0: loss = 3.31581 (* 1 = 3.31581 loss) +I0407 08:40:43.670661 15775 sgd_solver.cpp:105] Iteration 2016, lr = 0.01 +I0407 08:40:46.326436 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:48.892714 15775 solver.cpp:218] Iteration 2028 (2.29797 iter/s, 5.22201s/12 iters), loss = 3.2401 +I0407 08:40:48.892756 15775 solver.cpp:237] Train net output #0: loss = 3.2401 (* 1 = 3.2401 loss) +I0407 08:40:48.892765 15775 sgd_solver.cpp:105] Iteration 2028, lr = 0.01 +I0407 08:40:53.575073 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 08:40:56.573895 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 08:40:58.876268 15775 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 08:40:58.876286 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:41:02.433679 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:03.253790 15775 solver.cpp:397] Test net output #0: accuracy = 0.209559 +I0407 08:41:03.253887 15775 solver.cpp:397] Test net output #1: loss = 3.42351 (* 1 = 3.42351 loss) +I0407 08:41:03.383226 15775 solver.cpp:218] Iteration 2040 (0.828136 iter/s, 14.4904s/12 iters), loss = 3.13441 +I0407 08:41:03.383270 15775 solver.cpp:237] Train net output #0: loss = 3.13441 (* 1 = 3.13441 loss) +I0407 08:41:03.383278 15775 sgd_solver.cpp:105] Iteration 2040, lr = 0.01 +I0407 08:41:07.775492 15775 solver.cpp:218] Iteration 2052 (2.73213 iter/s, 4.39218s/12 iters), loss = 3.30901 +I0407 08:41:07.775535 15775 solver.cpp:237] Train net output #0: loss = 3.30901 (* 1 = 3.30901 loss) +I0407 08:41:07.775543 15775 sgd_solver.cpp:105] Iteration 2052, lr = 0.01 +I0407 08:41:09.514499 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:41:13.184605 15775 solver.cpp:218] Iteration 2064 (2.21852 iter/s, 5.40902s/12 iters), loss = 2.78771 +I0407 08:41:13.184653 15775 solver.cpp:237] Train net output #0: loss = 2.78771 (* 1 = 2.78771 loss) +I0407 08:41:13.184660 15775 sgd_solver.cpp:105] Iteration 2064, lr = 0.01 +I0407 08:41:18.305011 15775 solver.cpp:218] Iteration 2076 (2.34361 iter/s, 5.12032s/12 iters), loss = 2.67524 +I0407 08:41:18.305049 15775 solver.cpp:237] Train net output #0: loss = 2.67524 (* 1 = 2.67524 loss) +I0407 08:41:18.305058 15775 sgd_solver.cpp:105] Iteration 2076, lr = 0.01 +I0407 08:41:23.682736 15775 solver.cpp:218] Iteration 2088 (2.23146 iter/s, 5.37764s/12 iters), loss = 3.08047 +I0407 08:41:23.682790 15775 solver.cpp:237] Train net output #0: loss = 3.08047 (* 1 = 3.08047 loss) +I0407 08:41:23.682799 15775 sgd_solver.cpp:105] Iteration 2088, lr = 0.01 +I0407 08:41:28.894572 15775 solver.cpp:218] Iteration 2100 (2.3025 iter/s, 5.21174s/12 iters), loss = 3.07009 +I0407 08:41:28.894618 15775 solver.cpp:237] Train net output #0: loss = 3.07009 (* 1 = 3.07009 loss) +I0407 08:41:28.894626 15775 sgd_solver.cpp:105] Iteration 2100, lr = 0.01 +I0407 08:41:34.057488 15775 solver.cpp:218] Iteration 2112 (2.32431 iter/s, 5.16283s/12 iters), loss = 2.67676 +I0407 08:41:34.057732 15775 solver.cpp:237] Train net output #0: loss = 2.67676 (* 1 = 2.67676 loss) +I0407 08:41:34.057741 15775 sgd_solver.cpp:105] Iteration 2112, lr = 0.01 +I0407 08:41:38.716406 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:39.071818 15775 solver.cpp:218] Iteration 2124 (2.39328 iter/s, 5.01404s/12 iters), loss = 3.00611 +I0407 08:41:39.071861 15775 solver.cpp:237] Train net output #0: loss = 3.00611 (* 1 = 3.00611 loss) +I0407 08:41:39.071868 15775 sgd_solver.cpp:105] Iteration 2124, lr = 0.01 +I0407 08:41:44.339432 15775 solver.cpp:218] Iteration 2136 (2.27811 iter/s, 5.26753s/12 iters), loss = 3.01567 +I0407 08:41:44.339471 15775 solver.cpp:237] Train net output #0: loss = 3.01567 (* 1 = 3.01567 loss) +I0407 08:41:44.339480 15775 sgd_solver.cpp:105] Iteration 2136, lr = 0.01 +I0407 08:41:46.344935 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 08:41:49.348057 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 08:41:51.661239 15775 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 08:41:51.661263 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:41:55.084777 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:55.934947 15775 solver.cpp:397] Test net output #0: accuracy = 0.215686 +I0407 08:41:55.934975 15775 solver.cpp:397] Test net output #1: loss = 3.33824 (* 1 = 3.33824 loss) +I0407 08:41:57.903264 15775 solver.cpp:218] Iteration 2148 (0.884715 iter/s, 13.5637s/12 iters), loss = 2.61637 +I0407 08:41:57.903308 15775 solver.cpp:237] Train net output #0: loss = 2.61637 (* 1 = 2.61637 loss) +I0407 08:41:57.903316 15775 sgd_solver.cpp:105] Iteration 2148, lr = 0.01 +I0407 08:42:03.245143 15775 solver.cpp:218] Iteration 2160 (2.24644 iter/s, 5.34179s/12 iters), loss = 2.60561 +I0407 08:42:03.245185 15775 solver.cpp:237] Train net output #0: loss = 2.60561 (* 1 = 2.60561 loss) +I0407 08:42:03.245193 15775 sgd_solver.cpp:105] Iteration 2160, lr = 0.01 +I0407 08:42:08.370663 15775 solver.cpp:218] Iteration 2172 (2.34127 iter/s, 5.12543s/12 iters), loss = 2.88274 +I0407 08:42:08.370757 15775 solver.cpp:237] Train net output #0: loss = 2.88274 (* 1 = 2.88274 loss) +I0407 08:42:08.370766 15775 sgd_solver.cpp:105] Iteration 2172, lr = 0.01 +I0407 08:42:13.575453 15775 solver.cpp:218] Iteration 2184 (2.30563 iter/s, 5.20465s/12 iters), loss = 2.70255 +I0407 08:42:13.575503 15775 solver.cpp:237] Train net output #0: loss = 2.70255 (* 1 = 2.70255 loss) +I0407 08:42:13.575512 15775 sgd_solver.cpp:105] Iteration 2184, lr = 0.01 +I0407 08:42:18.865097 15775 solver.cpp:218] Iteration 2196 (2.26862 iter/s, 5.28955s/12 iters), loss = 2.74136 +I0407 08:42:18.865149 15775 solver.cpp:237] Train net output #0: loss = 2.74136 (* 1 = 2.74136 loss) +I0407 08:42:18.865156 15775 sgd_solver.cpp:105] Iteration 2196, lr = 0.01 +I0407 08:42:23.972956 15775 solver.cpp:218] Iteration 2208 (2.34936 iter/s, 5.10776s/12 iters), loss = 2.90256 +I0407 08:42:23.972998 15775 solver.cpp:237] Train net output #0: loss = 2.90256 (* 1 = 2.90256 loss) +I0407 08:42:23.973006 15775 sgd_solver.cpp:105] Iteration 2208, lr = 0.01 +I0407 08:42:29.229763 15775 solver.cpp:218] Iteration 2220 (2.2828 iter/s, 5.25671s/12 iters), loss = 2.7475 +I0407 08:42:29.229816 15775 solver.cpp:237] Train net output #0: loss = 2.7475 (* 1 = 2.7475 loss) +I0407 08:42:29.229826 15775 sgd_solver.cpp:105] Iteration 2220, lr = 0.01 +I0407 08:42:30.894726 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:34.315956 15775 solver.cpp:218] Iteration 2232 (2.35937 iter/s, 5.08609s/12 iters), loss = 2.66962 +I0407 08:42:34.315999 15775 solver.cpp:237] Train net output #0: loss = 2.66962 (* 1 = 2.66962 loss) +I0407 08:42:34.316007 15775 sgd_solver.cpp:105] Iteration 2232, lr = 0.01 +I0407 08:42:39.227684 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 08:42:42.283494 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 08:42:44.587110 15775 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 08:42:44.587129 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:42:48.062947 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:48.961423 15775 solver.cpp:397] Test net output #0: accuracy = 0.230392 +I0407 08:42:48.961457 15775 solver.cpp:397] Test net output #1: loss = 3.3386 (* 1 = 3.3386 loss) +I0407 08:42:49.095934 15775 solver.cpp:218] Iteration 2244 (0.811917 iter/s, 14.7798s/12 iters), loss = 2.82255 +I0407 08:42:49.095980 15775 solver.cpp:237] Train net output #0: loss = 2.82255 (* 1 = 2.82255 loss) +I0407 08:42:49.095988 15775 sgd_solver.cpp:105] Iteration 2244, lr = 0.01 +I0407 08:42:53.608052 15775 solver.cpp:218] Iteration 2256 (2.65956 iter/s, 4.51203s/12 iters), loss = 2.35484 +I0407 08:42:53.608088 15775 solver.cpp:237] Train net output #0: loss = 2.35484 (* 1 = 2.35484 loss) +I0407 08:42:53.608094 15775 sgd_solver.cpp:105] Iteration 2256, lr = 0.01 +I0407 08:42:58.869834 15775 solver.cpp:218] Iteration 2268 (2.28063 iter/s, 5.2617s/12 iters), loss = 2.68089 +I0407 08:42:58.869884 15775 solver.cpp:237] Train net output #0: loss = 2.68089 (* 1 = 2.68089 loss) +I0407 08:42:58.869894 15775 sgd_solver.cpp:105] Iteration 2268, lr = 0.01 +I0407 08:43:04.228698 15775 solver.cpp:218] Iteration 2280 (2.23932 iter/s, 5.35877s/12 iters), loss = 2.66856 +I0407 08:43:04.228740 15775 solver.cpp:237] Train net output #0: loss = 2.66856 (* 1 = 2.66856 loss) +I0407 08:43:04.228747 15775 sgd_solver.cpp:105] Iteration 2280, lr = 0.01 +I0407 08:43:09.668064 15775 solver.cpp:218] Iteration 2292 (2.20617 iter/s, 5.43928s/12 iters), loss = 2.68126 +I0407 08:43:09.668165 15775 solver.cpp:237] Train net output #0: loss = 2.68126 (* 1 = 2.68126 loss) +I0407 08:43:09.668174 15775 sgd_solver.cpp:105] Iteration 2292, lr = 0.01 +I0407 08:43:15.009407 15775 solver.cpp:218] Iteration 2304 (2.24669 iter/s, 5.3412s/12 iters), loss = 2.72245 +I0407 08:43:15.009445 15775 solver.cpp:237] Train net output #0: loss = 2.72245 (* 1 = 2.72245 loss) +I0407 08:43:15.009454 15775 sgd_solver.cpp:105] Iteration 2304, lr = 0.01 +I0407 08:43:19.961683 15775 solver.cpp:218] Iteration 2316 (2.42317 iter/s, 4.95219s/12 iters), loss = 2.4755 +I0407 08:43:19.961725 15775 solver.cpp:237] Train net output #0: loss = 2.4755 (* 1 = 2.4755 loss) +I0407 08:43:19.961733 15775 sgd_solver.cpp:105] Iteration 2316, lr = 0.01 +I0407 08:43:24.164489 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:25.345738 15775 solver.cpp:218] Iteration 2328 (2.22884 iter/s, 5.38397s/12 iters), loss = 2.68419 +I0407 08:43:25.345782 15775 solver.cpp:237] Train net output #0: loss = 2.68419 (* 1 = 2.68419 loss) +I0407 08:43:25.345789 15775 sgd_solver.cpp:105] Iteration 2328, lr = 0.01 +I0407 08:43:30.537302 15775 solver.cpp:218] Iteration 2340 (2.31148 iter/s, 5.19147s/12 iters), loss = 2.69591 +I0407 08:43:30.537345 15775 solver.cpp:237] Train net output #0: loss = 2.69591 (* 1 = 2.69591 loss) +I0407 08:43:30.537353 15775 sgd_solver.cpp:105] Iteration 2340, lr = 0.01 +I0407 08:43:32.571117 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 08:43:35.634306 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 08:43:38.162719 15775 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 08:43:38.162744 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:43:41.526260 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:42.452569 15775 solver.cpp:397] Test net output #0: accuracy = 0.242647 +I0407 08:43:42.452600 15775 solver.cpp:397] Test net output #1: loss = 3.23424 (* 1 = 3.23424 loss) +I0407 08:43:44.241818 15775 solver.cpp:218] Iteration 2352 (0.875633 iter/s, 13.7044s/12 iters), loss = 2.36383 +I0407 08:43:44.241861 15775 solver.cpp:237] Train net output #0: loss = 2.36383 (* 1 = 2.36383 loss) +I0407 08:43:44.241868 15775 sgd_solver.cpp:105] Iteration 2352, lr = 0.01 +I0407 08:43:49.230012 15775 solver.cpp:218] Iteration 2364 (2.40573 iter/s, 4.9881s/12 iters), loss = 2.3554 +I0407 08:43:49.230054 15775 solver.cpp:237] Train net output #0: loss = 2.3554 (* 1 = 2.3554 loss) +I0407 08:43:49.230062 15775 sgd_solver.cpp:105] Iteration 2364, lr = 0.01 +I0407 08:43:54.308800 15775 solver.cpp:218] Iteration 2376 (2.36281 iter/s, 5.07871s/12 iters), loss = 2.93817 +I0407 08:43:54.308838 15775 solver.cpp:237] Train net output #0: loss = 2.93817 (* 1 = 2.93817 loss) +I0407 08:43:54.308845 15775 sgd_solver.cpp:105] Iteration 2376, lr = 0.01 +I0407 08:43:59.548956 15775 solver.cpp:218] Iteration 2388 (2.29005 iter/s, 5.24007s/12 iters), loss = 2.62418 +I0407 08:43:59.549000 15775 solver.cpp:237] Train net output #0: loss = 2.62418 (* 1 = 2.62418 loss) +I0407 08:43:59.549008 15775 sgd_solver.cpp:105] Iteration 2388, lr = 0.01 +I0407 08:44:04.962033 15775 solver.cpp:218] Iteration 2400 (2.21689 iter/s, 5.41299s/12 iters), loss = 2.52675 +I0407 08:44:04.962074 15775 solver.cpp:237] Train net output #0: loss = 2.52675 (* 1 = 2.52675 loss) +I0407 08:44:04.962082 15775 sgd_solver.cpp:105] Iteration 2400, lr = 0.01 +I0407 08:44:10.202118 15775 solver.cpp:218] Iteration 2412 (2.29008 iter/s, 5.24s/12 iters), loss = 2.60249 +I0407 08:44:10.202160 15775 solver.cpp:237] Train net output #0: loss = 2.60249 (* 1 = 2.60249 loss) +I0407 08:44:10.202168 15775 sgd_solver.cpp:105] Iteration 2412, lr = 0.01 +I0407 08:44:15.569610 15775 solver.cpp:218] Iteration 2424 (2.23572 iter/s, 5.3674s/12 iters), loss = 2.84266 +I0407 08:44:15.569726 15775 solver.cpp:237] Train net output #0: loss = 2.84266 (* 1 = 2.84266 loss) +I0407 08:44:15.569736 15775 sgd_solver.cpp:105] Iteration 2424, lr = 0.01 +I0407 08:44:16.719781 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:44:21.065922 15775 solver.cpp:218] Iteration 2436 (2.18335 iter/s, 5.49615s/12 iters), loss = 2.92687 +I0407 08:44:21.065965 15775 solver.cpp:237] Train net output #0: loss = 2.92687 (* 1 = 2.92687 loss) +I0407 08:44:21.065973 15775 sgd_solver.cpp:105] Iteration 2436, lr = 0.01 +I0407 08:44:25.639679 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 08:44:28.628180 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 08:44:31.442478 15775 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 08:44:31.442495 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:44:34.764479 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:44:35.722815 15775 solver.cpp:397] Test net output #0: accuracy = 0.255515 +I0407 08:44:35.722854 15775 solver.cpp:397] Test net output #1: loss = 3.17496 (* 1 = 3.17496 loss) +I0407 08:44:35.864008 15775 solver.cpp:218] Iteration 2448 (0.810924 iter/s, 14.7979s/12 iters), loss = 2.64514 +I0407 08:44:35.864069 15775 solver.cpp:237] Train net output #0: loss = 2.64514 (* 1 = 2.64514 loss) +I0407 08:44:35.864080 15775 sgd_solver.cpp:105] Iteration 2448, lr = 0.01 +I0407 08:44:40.218127 15775 solver.cpp:218] Iteration 2460 (2.75608 iter/s, 4.35402s/12 iters), loss = 2.47853 +I0407 08:44:40.218169 15775 solver.cpp:237] Train net output #0: loss = 2.47853 (* 1 = 2.47853 loss) +I0407 08:44:40.218178 15775 sgd_solver.cpp:105] Iteration 2460, lr = 0.01 +I0407 08:44:45.643606 15775 solver.cpp:218] Iteration 2472 (2.21182 iter/s, 5.42539s/12 iters), loss = 2.45372 +I0407 08:44:45.643769 15775 solver.cpp:237] Train net output #0: loss = 2.45372 (* 1 = 2.45372 loss) +I0407 08:44:45.643780 15775 sgd_solver.cpp:105] Iteration 2472, lr = 0.01 +I0407 08:44:50.727588 15775 solver.cpp:218] Iteration 2484 (2.36045 iter/s, 5.08377s/12 iters), loss = 2.37377 +I0407 08:44:50.727633 15775 solver.cpp:237] Train net output #0: loss = 2.37377 (* 1 = 2.37377 loss) +I0407 08:44:50.727643 15775 sgd_solver.cpp:105] Iteration 2484, lr = 0.01 +I0407 08:44:55.837467 15775 solver.cpp:218] Iteration 2496 (2.34843 iter/s, 5.10979s/12 iters), loss = 2.15388 +I0407 08:44:55.837517 15775 solver.cpp:237] Train net output #0: loss = 2.15388 (* 1 = 2.15388 loss) +I0407 08:44:55.837527 15775 sgd_solver.cpp:105] Iteration 2496, lr = 0.01 +I0407 08:45:01.232178 15775 solver.cpp:218] Iteration 2508 (2.22444 iter/s, 5.39462s/12 iters), loss = 2.5503 +I0407 08:45:01.232221 15775 solver.cpp:237] Train net output #0: loss = 2.5503 (* 1 = 2.5503 loss) +I0407 08:45:01.232229 15775 sgd_solver.cpp:105] Iteration 2508, lr = 0.01 +I0407 08:45:06.497506 15775 solver.cpp:218] Iteration 2520 (2.2791 iter/s, 5.26524s/12 iters), loss = 2.12506 +I0407 08:45:06.497546 15775 solver.cpp:237] Train net output #0: loss = 2.12506 (* 1 = 2.12506 loss) +I0407 08:45:06.497555 15775 sgd_solver.cpp:105] Iteration 2520, lr = 0.01 +I0407 08:45:09.695773 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:45:11.688683 15775 solver.cpp:218] Iteration 2532 (2.31166 iter/s, 5.19108s/12 iters), loss = 2.4356 +I0407 08:45:11.688735 15775 solver.cpp:237] Train net output #0: loss = 2.4356 (* 1 = 2.4356 loss) +I0407 08:45:11.688745 15775 sgd_solver.cpp:105] Iteration 2532, lr = 0.01 +I0407 08:45:17.005384 15775 solver.cpp:218] Iteration 2544 (2.25708 iter/s, 5.31661s/12 iters), loss = 2.21797 +I0407 08:45:17.005491 15775 solver.cpp:237] Train net output #0: loss = 2.21797 (* 1 = 2.21797 loss) +I0407 08:45:17.005501 15775 sgd_solver.cpp:105] Iteration 2544, lr = 0.01 +I0407 08:45:19.167285 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 08:45:22.071285 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 08:45:24.816597 15775 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 08:45:24.816617 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:45:28.265467 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:45:29.317524 15775 solver.cpp:397] Test net output #0: accuracy = 0.278799 +I0407 08:45:29.317553 15775 solver.cpp:397] Test net output #1: loss = 3.15443 (* 1 = 3.15443 loss) +I0407 08:45:31.260614 15775 solver.cpp:218] Iteration 2556 (0.841808 iter/s, 14.255s/12 iters), loss = 2.23377 +I0407 08:45:31.260658 15775 solver.cpp:237] Train net output #0: loss = 2.23377 (* 1 = 2.23377 loss) +I0407 08:45:31.260664 15775 sgd_solver.cpp:105] Iteration 2556, lr = 0.01 +I0407 08:45:36.584874 15775 solver.cpp:218] Iteration 2568 (2.25387 iter/s, 5.32416s/12 iters), loss = 2.38772 +I0407 08:45:36.584929 15775 solver.cpp:237] Train net output #0: loss = 2.38772 (* 1 = 2.38772 loss) +I0407 08:45:36.584937 15775 sgd_solver.cpp:105] Iteration 2568, lr = 0.01 +I0407 08:45:41.872915 15775 solver.cpp:218] Iteration 2580 (2.26932 iter/s, 5.28793s/12 iters), loss = 2.5324 +I0407 08:45:41.872961 15775 solver.cpp:237] Train net output #0: loss = 2.5324 (* 1 = 2.5324 loss) +I0407 08:45:41.872969 15775 sgd_solver.cpp:105] Iteration 2580, lr = 0.01 +I0407 08:45:47.075999 15775 solver.cpp:218] Iteration 2592 (2.30637 iter/s, 5.20299s/12 iters), loss = 2.18933 +I0407 08:45:47.076138 15775 solver.cpp:237] Train net output #0: loss = 2.18933 (* 1 = 2.18933 loss) +I0407 08:45:47.076145 15775 sgd_solver.cpp:105] Iteration 2592, lr = 0.01 +I0407 08:45:52.156445 15775 solver.cpp:218] Iteration 2604 (2.36208 iter/s, 5.08026s/12 iters), loss = 2.34903 +I0407 08:45:52.156492 15775 solver.cpp:237] Train net output #0: loss = 2.34903 (* 1 = 2.34903 loss) +I0407 08:45:52.156500 15775 sgd_solver.cpp:105] Iteration 2604, lr = 0.01 +I0407 08:45:57.368098 15775 solver.cpp:218] Iteration 2616 (2.30257 iter/s, 5.21156s/12 iters), loss = 2.27403 +I0407 08:45:57.368142 15775 solver.cpp:237] Train net output #0: loss = 2.27403 (* 1 = 2.27403 loss) +I0407 08:45:57.368151 15775 sgd_solver.cpp:105] Iteration 2616, lr = 0.01 +I0407 08:46:02.594161 15775 solver.cpp:218] Iteration 2628 (2.29622 iter/s, 5.22597s/12 iters), loss = 2.403 +I0407 08:46:02.594211 15775 solver.cpp:237] Train net output #0: loss = 2.403 (* 1 = 2.403 loss) +I0407 08:46:02.594219 15775 sgd_solver.cpp:105] Iteration 2628, lr = 0.01 +I0407 08:46:03.018738 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:08.034128 15775 solver.cpp:218] Iteration 2640 (2.20593 iter/s, 5.43987s/12 iters), loss = 2.21988 +I0407 08:46:08.034171 15775 solver.cpp:237] Train net output #0: loss = 2.21988 (* 1 = 2.21988 loss) +I0407 08:46:08.034179 15775 sgd_solver.cpp:105] Iteration 2640, lr = 0.01 +I0407 08:46:12.811929 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 08:46:15.827594 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 08:46:18.859144 15775 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 08:46:18.859221 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:46:22.170205 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:23.203163 15775 solver.cpp:397] Test net output #0: accuracy = 0.280637 +I0407 08:46:23.203203 15775 solver.cpp:397] Test net output #1: loss = 3.06205 (* 1 = 3.06205 loss) +I0407 08:46:23.340286 15775 solver.cpp:218] Iteration 2652 (0.784005 iter/s, 15.306s/12 iters), loss = 2.39285 +I0407 08:46:23.340354 15775 solver.cpp:237] Train net output #0: loss = 2.39285 (* 1 = 2.39285 loss) +I0407 08:46:23.340363 15775 sgd_solver.cpp:105] Iteration 2652, lr = 0.01 +I0407 08:46:27.852102 15775 solver.cpp:218] Iteration 2664 (2.65975 iter/s, 4.5117s/12 iters), loss = 2.31775 +I0407 08:46:27.852159 15775 solver.cpp:237] Train net output #0: loss = 2.31775 (* 1 = 2.31775 loss) +I0407 08:46:27.852169 15775 sgd_solver.cpp:105] Iteration 2664, lr = 0.01 +I0407 08:46:33.145995 15775 solver.cpp:218] Iteration 2676 (2.26681 iter/s, 5.29379s/12 iters), loss = 2.14525 +I0407 08:46:33.146039 15775 solver.cpp:237] Train net output #0: loss = 2.14525 (* 1 = 2.14525 loss) +I0407 08:46:33.146049 15775 sgd_solver.cpp:105] Iteration 2676, lr = 0.01 +I0407 08:46:38.625077 15775 solver.cpp:218] Iteration 2688 (2.19019 iter/s, 5.47899s/12 iters), loss = 2.34791 +I0407 08:46:38.625124 15775 solver.cpp:237] Train net output #0: loss = 2.34791 (* 1 = 2.34791 loss) +I0407 08:46:38.625133 15775 sgd_solver.cpp:105] Iteration 2688, lr = 0.01 +I0407 08:46:43.928725 15775 solver.cpp:218] Iteration 2700 (2.26263 iter/s, 5.30355s/12 iters), loss = 2.13853 +I0407 08:46:43.928774 15775 solver.cpp:237] Train net output #0: loss = 2.13853 (* 1 = 2.13853 loss) +I0407 08:46:43.928783 15775 sgd_solver.cpp:105] Iteration 2700, lr = 0.01 +I0407 08:46:49.107836 15775 solver.cpp:218] Iteration 2712 (2.31704 iter/s, 5.17901s/12 iters), loss = 2.43644 +I0407 08:46:49.107977 15775 solver.cpp:237] Train net output #0: loss = 2.43644 (* 1 = 2.43644 loss) +I0407 08:46:49.107986 15775 sgd_solver.cpp:105] Iteration 2712, lr = 0.01 +I0407 08:46:54.525905 15775 solver.cpp:218] Iteration 2724 (2.21489 iter/s, 5.41788s/12 iters), loss = 2.31064 +I0407 08:46:54.525944 15775 solver.cpp:237] Train net output #0: loss = 2.31064 (* 1 = 2.31064 loss) +I0407 08:46:54.525951 15775 sgd_solver.cpp:105] Iteration 2724, lr = 0.01 +I0407 08:46:57.309909 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:59.982756 15775 solver.cpp:218] Iteration 2736 (2.19911 iter/s, 5.45676s/12 iters), loss = 2.23895 +I0407 08:46:59.982807 15775 solver.cpp:237] Train net output #0: loss = 2.23895 (* 1 = 2.23895 loss) +I0407 08:46:59.982816 15775 sgd_solver.cpp:105] Iteration 2736, lr = 0.01 +I0407 08:47:05.412089 15775 solver.cpp:218] Iteration 2748 (2.21026 iter/s, 5.42923s/12 iters), loss = 2.29072 +I0407 08:47:05.412127 15775 solver.cpp:237] Train net output #0: loss = 2.29072 (* 1 = 2.29072 loss) +I0407 08:47:05.412132 15775 sgd_solver.cpp:105] Iteration 2748, lr = 0.01 +I0407 08:47:07.615780 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 08:47:10.626410 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 08:47:14.490864 15775 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 08:47:14.490885 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:47:17.574738 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:47:17.823138 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:18.908849 15775 solver.cpp:397] Test net output #0: accuracy = 0.271446 +I0407 08:47:18.908891 15775 solver.cpp:397] Test net output #1: loss = 3.17902 (* 1 = 3.17902 loss) +I0407 08:47:21.010478 15775 solver.cpp:218] Iteration 2760 (0.769317 iter/s, 15.5983s/12 iters), loss = 2.46001 +I0407 08:47:21.010581 15775 solver.cpp:237] Train net output #0: loss = 2.46001 (* 1 = 2.46001 loss) +I0407 08:47:21.010589 15775 sgd_solver.cpp:105] Iteration 2760, lr = 0.01 +I0407 08:47:26.573964 15775 solver.cpp:218] Iteration 2772 (2.15698 iter/s, 5.56334s/12 iters), loss = 1.96896 +I0407 08:47:26.574003 15775 solver.cpp:237] Train net output #0: loss = 1.96896 (* 1 = 1.96896 loss) +I0407 08:47:26.574012 15775 sgd_solver.cpp:105] Iteration 2772, lr = 0.01 +I0407 08:47:32.041783 15775 solver.cpp:218] Iteration 2784 (2.1947 iter/s, 5.46773s/12 iters), loss = 2.38937 +I0407 08:47:32.041828 15775 solver.cpp:237] Train net output #0: loss = 2.38937 (* 1 = 2.38937 loss) +I0407 08:47:32.041836 15775 sgd_solver.cpp:105] Iteration 2784, lr = 0.01 +I0407 08:47:37.212491 15775 solver.cpp:218] Iteration 2796 (2.32081 iter/s, 5.17061s/12 iters), loss = 2.26564 +I0407 08:47:37.212536 15775 solver.cpp:237] Train net output #0: loss = 2.26564 (* 1 = 2.26564 loss) +I0407 08:47:37.212544 15775 sgd_solver.cpp:105] Iteration 2796, lr = 0.01 +I0407 08:47:42.605640 15775 solver.cpp:218] Iteration 2808 (2.22508 iter/s, 5.39306s/12 iters), loss = 2.40756 +I0407 08:47:42.605679 15775 solver.cpp:237] Train net output #0: loss = 2.40756 (* 1 = 2.40756 loss) +I0407 08:47:42.605687 15775 sgd_solver.cpp:105] Iteration 2808, lr = 0.01 +I0407 08:47:47.875121 15775 solver.cpp:218] Iteration 2820 (2.2773 iter/s, 5.26939s/12 iters), loss = 2.05311 +I0407 08:47:47.875164 15775 solver.cpp:237] Train net output #0: loss = 2.05311 (* 1 = 2.05311 loss) +I0407 08:47:47.875170 15775 sgd_solver.cpp:105] Iteration 2820, lr = 0.01 +I0407 08:47:52.919366 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:53.248093 15775 solver.cpp:218] Iteration 2832 (2.23344 iter/s, 5.37288s/12 iters), loss = 2.06717 +I0407 08:47:53.248136 15775 solver.cpp:237] Train net output #0: loss = 2.06717 (* 1 = 2.06717 loss) +I0407 08:47:53.248142 15775 sgd_solver.cpp:105] Iteration 2832, lr = 0.01 +I0407 08:47:58.187682 15775 solver.cpp:218] Iteration 2844 (2.42939 iter/s, 4.9395s/12 iters), loss = 2.06993 +I0407 08:47:58.187727 15775 solver.cpp:237] Train net output #0: loss = 2.06993 (* 1 = 2.06993 loss) +I0407 08:47:58.187736 15775 sgd_solver.cpp:105] Iteration 2844, lr = 0.01 +I0407 08:48:02.563369 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 08:48:06.673924 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 08:48:10.512323 15775 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 08:48:10.512346 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:48:13.732141 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:14.847097 15775 solver.cpp:397] Test net output #0: accuracy = 0.297794 +I0407 08:48:14.847131 15775 solver.cpp:397] Test net output #1: loss = 3.04849 (* 1 = 3.04849 loss) +I0407 08:48:14.988008 15775 solver.cpp:218] Iteration 2856 (0.714279 iter/s, 16.8002s/12 iters), loss = 2.10809 +I0407 08:48:14.988054 15775 solver.cpp:237] Train net output #0: loss = 2.10809 (* 1 = 2.10809 loss) +I0407 08:48:14.988065 15775 sgd_solver.cpp:105] Iteration 2856, lr = 0.01 +I0407 08:48:19.217434 15775 solver.cpp:218] Iteration 2868 (2.83732 iter/s, 4.22934s/12 iters), loss = 1.96598 +I0407 08:48:19.217483 15775 solver.cpp:237] Train net output #0: loss = 1.96598 (* 1 = 1.96598 loss) +I0407 08:48:19.217494 15775 sgd_solver.cpp:105] Iteration 2868, lr = 0.01 +I0407 08:48:24.393270 15775 solver.cpp:218] Iteration 2880 (2.31851 iter/s, 5.17574s/12 iters), loss = 2.45764 +I0407 08:48:24.393385 15775 solver.cpp:237] Train net output #0: loss = 2.45764 (* 1 = 2.45764 loss) +I0407 08:48:24.393393 15775 sgd_solver.cpp:105] Iteration 2880, lr = 0.01 +I0407 08:48:29.327569 15775 solver.cpp:218] Iteration 2892 (2.43203 iter/s, 4.93415s/12 iters), loss = 2.20189 +I0407 08:48:29.327605 15775 solver.cpp:237] Train net output #0: loss = 2.20189 (* 1 = 2.20189 loss) +I0407 08:48:29.327613 15775 sgd_solver.cpp:105] Iteration 2892, lr = 0.01 +I0407 08:48:34.698117 15775 solver.cpp:218] Iteration 2904 (2.23444 iter/s, 5.37047s/12 iters), loss = 1.92231 +I0407 08:48:34.698155 15775 solver.cpp:237] Train net output #0: loss = 1.92231 (* 1 = 1.92231 loss) +I0407 08:48:34.698163 15775 sgd_solver.cpp:105] Iteration 2904, lr = 0.01 +I0407 08:48:39.725519 15775 solver.cpp:218] Iteration 2916 (2.38696 iter/s, 5.02732s/12 iters), loss = 1.84864 +I0407 08:48:39.725567 15775 solver.cpp:237] Train net output #0: loss = 1.84864 (* 1 = 1.84864 loss) +I0407 08:48:39.725577 15775 sgd_solver.cpp:105] Iteration 2916, lr = 0.01 +I0407 08:48:45.011817 15775 solver.cpp:218] Iteration 2928 (2.27006 iter/s, 5.2862s/12 iters), loss = 2.27549 +I0407 08:48:45.011860 15775 solver.cpp:237] Train net output #0: loss = 2.27549 (* 1 = 2.27549 loss) +I0407 08:48:45.011868 15775 sgd_solver.cpp:105] Iteration 2928, lr = 0.01 +I0407 08:48:46.995941 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:50.400983 15775 solver.cpp:218] Iteration 2940 (2.22673 iter/s, 5.38907s/12 iters), loss = 2.04105 +I0407 08:48:50.401027 15775 solver.cpp:237] Train net output #0: loss = 2.04105 (* 1 = 2.04105 loss) +I0407 08:48:50.401036 15775 sgd_solver.cpp:105] Iteration 2940, lr = 0.01 +I0407 08:48:55.466970 15775 solver.cpp:218] Iteration 2952 (2.36878 iter/s, 5.06589s/12 iters), loss = 1.99327 +I0407 08:48:55.467089 15775 solver.cpp:237] Train net output #0: loss = 1.99327 (* 1 = 1.99327 loss) +I0407 08:48:55.467098 15775 sgd_solver.cpp:105] Iteration 2952, lr = 0.01 +I0407 08:48:57.636574 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 08:49:00.977927 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 08:49:04.869506 15775 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 08:49:04.869525 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:49:08.095402 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:49:09.266093 15775 solver.cpp:397] Test net output #0: accuracy = 0.306985 +I0407 08:49:09.266124 15775 solver.cpp:397] Test net output #1: loss = 3.059 (* 1 = 3.059 loss) +I0407 08:49:11.106552 15775 solver.cpp:218] Iteration 2964 (0.767295 iter/s, 15.6394s/12 iters), loss = 2.13145 +I0407 08:49:11.106598 15775 solver.cpp:237] Train net output #0: loss = 2.13145 (* 1 = 2.13145 loss) +I0407 08:49:11.106606 15775 sgd_solver.cpp:105] Iteration 2964, lr = 0.01 +I0407 08:49:16.344687 15775 solver.cpp:218] Iteration 2976 (2.29093 iter/s, 5.23804s/12 iters), loss = 1.7773 +I0407 08:49:16.344743 15775 solver.cpp:237] Train net output #0: loss = 1.7773 (* 1 = 1.7773 loss) +I0407 08:49:16.344754 15775 sgd_solver.cpp:105] Iteration 2976, lr = 0.01 +I0407 08:49:21.655889 15775 solver.cpp:218] Iteration 2988 (2.25942 iter/s, 5.3111s/12 iters), loss = 2.39647 +I0407 08:49:21.655936 15775 solver.cpp:237] Train net output #0: loss = 2.39647 (* 1 = 2.39647 loss) +I0407 08:49:21.655943 15775 sgd_solver.cpp:105] Iteration 2988, lr = 0.01 +I0407 08:49:26.787262 15775 solver.cpp:218] Iteration 3000 (2.3386 iter/s, 5.13128s/12 iters), loss = 2.26435 +I0407 08:49:26.787377 15775 solver.cpp:237] Train net output #0: loss = 2.26435 (* 1 = 2.26435 loss) +I0407 08:49:26.787386 15775 sgd_solver.cpp:105] Iteration 3000, lr = 0.01 +I0407 08:49:32.023277 15775 solver.cpp:218] Iteration 3012 (2.29189 iter/s, 5.23585s/12 iters), loss = 2.01897 +I0407 08:49:32.023322 15775 solver.cpp:237] Train net output #0: loss = 2.01897 (* 1 = 2.01897 loss) +I0407 08:49:32.023329 15775 sgd_solver.cpp:105] Iteration 3012, lr = 0.01 +I0407 08:49:36.966404 15775 solver.cpp:218] Iteration 3024 (2.42766 iter/s, 4.94303s/12 iters), loss = 2.06167 +I0407 08:49:36.966449 15775 solver.cpp:237] Train net output #0: loss = 2.06167 (* 1 = 2.06167 loss) +I0407 08:49:36.966457 15775 sgd_solver.cpp:105] Iteration 3024, lr = 0.01 +I0407 08:49:41.085357 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:49:42.223960 15775 solver.cpp:218] Iteration 3036 (2.28247 iter/s, 5.25746s/12 iters), loss = 2.01991 +I0407 08:49:42.224007 15775 solver.cpp:237] Train net output #0: loss = 2.01991 (* 1 = 2.01991 loss) +I0407 08:49:42.224014 15775 sgd_solver.cpp:105] Iteration 3036, lr = 0.01 +I0407 08:49:47.590844 15775 solver.cpp:218] Iteration 3048 (2.23597 iter/s, 5.36679s/12 iters), loss = 1.74506 +I0407 08:49:47.590885 15775 solver.cpp:237] Train net output #0: loss = 1.74506 (* 1 = 1.74506 loss) +I0407 08:49:47.590893 15775 sgd_solver.cpp:105] Iteration 3048, lr = 0.01 +I0407 08:49:52.276810 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 08:49:55.308320 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 08:49:58.754361 15775 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 08:49:58.754451 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:50:01.981299 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:03.175418 15775 solver.cpp:397] Test net output #0: accuracy = 0.283701 +I0407 08:50:03.175454 15775 solver.cpp:397] Test net output #1: loss = 3.17074 (* 1 = 3.17074 loss) +I0407 08:50:03.309911 15775 solver.cpp:218] Iteration 3060 (0.763411 iter/s, 15.7189s/12 iters), loss = 2.27128 +I0407 08:50:03.309955 15775 solver.cpp:237] Train net output #0: loss = 2.27128 (* 1 = 2.27128 loss) +I0407 08:50:03.309963 15775 sgd_solver.cpp:105] Iteration 3060, lr = 0.01 +I0407 08:50:07.720508 15775 solver.cpp:218] Iteration 3072 (2.72077 iter/s, 4.41051s/12 iters), loss = 1.67077 +I0407 08:50:07.720556 15775 solver.cpp:237] Train net output #0: loss = 1.67077 (* 1 = 1.67077 loss) +I0407 08:50:07.720563 15775 sgd_solver.cpp:105] Iteration 3072, lr = 0.01 +I0407 08:50:12.786876 15775 solver.cpp:218] Iteration 3084 (2.36861 iter/s, 5.06627s/12 iters), loss = 2.08541 +I0407 08:50:12.786917 15775 solver.cpp:237] Train net output #0: loss = 2.08541 (* 1 = 2.08541 loss) +I0407 08:50:12.786924 15775 sgd_solver.cpp:105] Iteration 3084, lr = 0.01 +I0407 08:50:18.071908 15775 solver.cpp:218] Iteration 3096 (2.2706 iter/s, 5.28495s/12 iters), loss = 2.16944 +I0407 08:50:18.071945 15775 solver.cpp:237] Train net output #0: loss = 2.16944 (* 1 = 2.16944 loss) +I0407 08:50:18.071954 15775 sgd_solver.cpp:105] Iteration 3096, lr = 0.01 +I0407 08:50:23.357976 15775 solver.cpp:218] Iteration 3108 (2.27015 iter/s, 5.28599s/12 iters), loss = 1.92494 +I0407 08:50:23.358019 15775 solver.cpp:237] Train net output #0: loss = 1.92494 (* 1 = 1.92494 loss) +I0407 08:50:23.358027 15775 sgd_solver.cpp:105] Iteration 3108, lr = 0.01 +I0407 08:50:28.576680 15775 solver.cpp:218] Iteration 3120 (2.29946 iter/s, 5.21861s/12 iters), loss = 2.15681 +I0407 08:50:28.576723 15775 solver.cpp:237] Train net output #0: loss = 2.15681 (* 1 = 2.15681 loss) +I0407 08:50:28.576731 15775 sgd_solver.cpp:105] Iteration 3120, lr = 0.01 +I0407 08:50:34.022500 15775 solver.cpp:218] Iteration 3132 (2.20356 iter/s, 5.44573s/12 iters), loss = 1.8296 +I0407 08:50:34.022634 15775 solver.cpp:237] Train net output #0: loss = 1.8296 (* 1 = 1.8296 loss) +I0407 08:50:34.022644 15775 sgd_solver.cpp:105] Iteration 3132, lr = 0.01 +I0407 08:50:35.083101 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:39.133489 15775 solver.cpp:218] Iteration 3144 (2.34796 iter/s, 5.11081s/12 iters), loss = 1.56837 +I0407 08:50:39.133545 15775 solver.cpp:237] Train net output #0: loss = 1.56837 (* 1 = 1.56837 loss) +I0407 08:50:39.133556 15775 sgd_solver.cpp:105] Iteration 3144, lr = 0.01 +I0407 08:50:44.372432 15775 solver.cpp:218] Iteration 3156 (2.29058 iter/s, 5.23885s/12 iters), loss = 2.52365 +I0407 08:50:44.372479 15775 solver.cpp:237] Train net output #0: loss = 2.52365 (* 1 = 2.52365 loss) +I0407 08:50:44.372488 15775 sgd_solver.cpp:105] Iteration 3156, lr = 0.01 +I0407 08:50:46.413349 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 08:50:49.460378 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 08:50:51.772269 15775 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 08:50:51.772292 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:50:54.839440 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:56.079210 15775 solver.cpp:397] Test net output #0: accuracy = 0.289216 +I0407 08:50:56.079246 15775 solver.cpp:397] Test net output #1: loss = 3.15319 (* 1 = 3.15319 loss) +I0407 08:50:57.938694 15775 solver.cpp:218] Iteration 3168 (0.884556 iter/s, 13.5661s/12 iters), loss = 1.67624 +I0407 08:50:57.938740 15775 solver.cpp:237] Train net output #0: loss = 1.67624 (* 1 = 1.67624 loss) +I0407 08:50:57.938750 15775 sgd_solver.cpp:105] Iteration 3168, lr = 0.01 +I0407 08:51:02.813184 15775 solver.cpp:218] Iteration 3180 (2.46184 iter/s, 4.8744s/12 iters), loss = 1.89246 +I0407 08:51:02.813241 15775 solver.cpp:237] Train net output #0: loss = 1.89246 (* 1 = 1.89246 loss) +I0407 08:51:02.813256 15775 sgd_solver.cpp:105] Iteration 3180, lr = 0.01 +I0407 08:51:07.965162 15775 solver.cpp:218] Iteration 3192 (2.32925 iter/s, 5.15188s/12 iters), loss = 1.50983 +I0407 08:51:07.965273 15775 solver.cpp:237] Train net output #0: loss = 1.50983 (* 1 = 1.50983 loss) +I0407 08:51:07.965281 15775 sgd_solver.cpp:105] Iteration 3192, lr = 0.01 +I0407 08:51:13.298365 15775 solver.cpp:218] Iteration 3204 (2.25012 iter/s, 5.33305s/12 iters), loss = 2.03875 +I0407 08:51:13.298409 15775 solver.cpp:237] Train net output #0: loss = 2.03875 (* 1 = 2.03875 loss) +I0407 08:51:13.298418 15775 sgd_solver.cpp:105] Iteration 3204, lr = 0.01 +I0407 08:51:18.829036 15775 solver.cpp:218] Iteration 3216 (2.16975 iter/s, 5.53058s/12 iters), loss = 2.32128 +I0407 08:51:18.829082 15775 solver.cpp:237] Train net output #0: loss = 2.32128 (* 1 = 2.32128 loss) +I0407 08:51:18.829092 15775 sgd_solver.cpp:105] Iteration 3216, lr = 0.01 +I0407 08:51:24.092744 15775 solver.cpp:218] Iteration 3228 (2.2798 iter/s, 5.26362s/12 iters), loss = 1.56408 +I0407 08:51:24.092788 15775 solver.cpp:237] Train net output #0: loss = 1.56408 (* 1 = 1.56408 loss) +I0407 08:51:24.092795 15775 sgd_solver.cpp:105] Iteration 3228, lr = 0.01 +I0407 08:51:27.499612 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:29.443225 15775 solver.cpp:218] Iteration 3240 (2.24283 iter/s, 5.35039s/12 iters), loss = 2.03282 +I0407 08:51:29.443266 15775 solver.cpp:237] Train net output #0: loss = 2.03282 (* 1 = 2.03282 loss) +I0407 08:51:29.443274 15775 sgd_solver.cpp:105] Iteration 3240, lr = 0.01 +I0407 08:51:34.702025 15775 solver.cpp:218] Iteration 3252 (2.28192 iter/s, 5.25872s/12 iters), loss = 1.76479 +I0407 08:51:34.702064 15775 solver.cpp:237] Train net output #0: loss = 1.76479 (* 1 = 1.76479 loss) +I0407 08:51:34.702070 15775 sgd_solver.cpp:105] Iteration 3252, lr = 0.01 +I0407 08:51:39.461092 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 08:51:42.405830 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 08:51:44.706154 15775 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 08:51:44.706173 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:51:47.753690 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:49.029999 15775 solver.cpp:397] Test net output #0: accuracy = 0.285539 +I0407 08:51:49.030041 15775 solver.cpp:397] Test net output #1: loss = 3.15602 (* 1 = 3.15602 loss) +I0407 08:51:49.170675 15775 solver.cpp:218] Iteration 3264 (0.829387 iter/s, 14.4685s/12 iters), loss = 2.01612 +I0407 08:51:49.170739 15775 solver.cpp:237] Train net output #0: loss = 2.01612 (* 1 = 2.01612 loss) +I0407 08:51:49.170751 15775 sgd_solver.cpp:105] Iteration 3264, lr = 0.01 +I0407 08:51:53.625576 15775 solver.cpp:218] Iteration 3276 (2.69373 iter/s, 4.4548s/12 iters), loss = 1.40866 +I0407 08:51:53.625628 15775 solver.cpp:237] Train net output #0: loss = 1.40866 (* 1 = 1.40866 loss) +I0407 08:51:53.625636 15775 sgd_solver.cpp:105] Iteration 3276, lr = 0.01 +I0407 08:51:58.888124 15775 solver.cpp:218] Iteration 3288 (2.28031 iter/s, 5.26245s/12 iters), loss = 1.91559 +I0407 08:51:58.888165 15775 solver.cpp:237] Train net output #0: loss = 1.91559 (* 1 = 1.91559 loss) +I0407 08:51:58.888172 15775 sgd_solver.cpp:105] Iteration 3288, lr = 0.01 +I0407 08:52:04.265422 15775 solver.cpp:218] Iteration 3300 (2.23164 iter/s, 5.37721s/12 iters), loss = 2.03875 +I0407 08:52:04.265465 15775 solver.cpp:237] Train net output #0: loss = 2.03875 (* 1 = 2.03875 loss) +I0407 08:52:04.265470 15775 sgd_solver.cpp:105] Iteration 3300, lr = 0.01 +I0407 08:52:09.517112 15775 solver.cpp:218] Iteration 3312 (2.28502 iter/s, 5.2516s/12 iters), loss = 2.19413 +I0407 08:52:09.517221 15775 solver.cpp:237] Train net output #0: loss = 2.19413 (* 1 = 2.19413 loss) +I0407 08:52:09.517230 15775 sgd_solver.cpp:105] Iteration 3312, lr = 0.01 +I0407 08:52:14.513178 15775 solver.cpp:218] Iteration 3324 (2.40196 iter/s, 4.99591s/12 iters), loss = 2.12056 +I0407 08:52:14.513228 15775 solver.cpp:237] Train net output #0: loss = 2.12056 (* 1 = 2.12056 loss) +I0407 08:52:14.513238 15775 sgd_solver.cpp:105] Iteration 3324, lr = 0.01 +I0407 08:52:19.636600 15775 solver.cpp:218] Iteration 3336 (2.34223 iter/s, 5.12333s/12 iters), loss = 1.90549 +I0407 08:52:19.636664 15775 solver.cpp:237] Train net output #0: loss = 1.90549 (* 1 = 1.90549 loss) +I0407 08:52:19.636678 15775 sgd_solver.cpp:105] Iteration 3336, lr = 0.01 +I0407 08:52:20.130228 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:24.748136 15775 solver.cpp:218] Iteration 3348 (2.34768 iter/s, 5.11143s/12 iters), loss = 2.08286 +I0407 08:52:24.748178 15775 solver.cpp:237] Train net output #0: loss = 2.08286 (* 1 = 2.08286 loss) +I0407 08:52:24.748186 15775 sgd_solver.cpp:105] Iteration 3348, lr = 0.01 +I0407 08:52:29.805456 15775 solver.cpp:218] Iteration 3360 (2.37284 iter/s, 5.05724s/12 iters), loss = 2.15313 +I0407 08:52:29.805493 15775 solver.cpp:237] Train net output #0: loss = 2.15313 (* 1 = 2.15313 loss) +I0407 08:52:29.805500 15775 sgd_solver.cpp:105] Iteration 3360, lr = 0.01 +I0407 08:52:31.934234 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 08:52:34.932420 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 08:52:37.226672 15775 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 08:52:37.226696 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:52:40.230777 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:41.540014 15775 solver.cpp:397] Test net output #0: accuracy = 0.283701 +I0407 08:52:41.540050 15775 solver.cpp:397] Test net output #1: loss = 3.13515 (* 1 = 3.13515 loss) +I0407 08:52:43.417243 15775 solver.cpp:218] Iteration 3372 (0.881597 iter/s, 13.6117s/12 iters), loss = 3.31395 +I0407 08:52:43.417277 15775 solver.cpp:237] Train net output #0: loss = 3.31395 (* 1 = 3.31395 loss) +I0407 08:52:43.417284 15775 sgd_solver.cpp:105] Iteration 3372, lr = 0.001 +I0407 08:52:48.651856 15775 solver.cpp:218] Iteration 3384 (2.29247 iter/s, 5.23453s/12 iters), loss = 2.36321 +I0407 08:52:48.651908 15775 solver.cpp:237] Train net output #0: loss = 2.36321 (* 1 = 2.36321 loss) +I0407 08:52:48.651917 15775 sgd_solver.cpp:105] Iteration 3384, lr = 0.001 +I0407 08:52:54.150837 15775 solver.cpp:218] Iteration 3396 (2.18226 iter/s, 5.49888s/12 iters), loss = 2.13261 +I0407 08:52:54.150885 15775 solver.cpp:237] Train net output #0: loss = 2.13261 (* 1 = 2.13261 loss) +I0407 08:52:54.150894 15775 sgd_solver.cpp:105] Iteration 3396, lr = 0.001 +I0407 08:52:59.542361 15775 solver.cpp:218] Iteration 3408 (2.22575 iter/s, 5.39143s/12 iters), loss = 1.6675 +I0407 08:52:59.542402 15775 solver.cpp:237] Train net output #0: loss = 1.6675 (* 1 = 1.6675 loss) +I0407 08:52:59.542409 15775 sgd_solver.cpp:105] Iteration 3408, lr = 0.001 +I0407 08:53:04.777921 15775 solver.cpp:218] Iteration 3420 (2.29206 iter/s, 5.23547s/12 iters), loss = 1.51478 +I0407 08:53:04.777963 15775 solver.cpp:237] Train net output #0: loss = 1.51478 (* 1 = 1.51478 loss) +I0407 08:53:04.777971 15775 sgd_solver.cpp:105] Iteration 3420, lr = 0.001 +I0407 08:53:09.993438 15775 solver.cpp:218] Iteration 3432 (2.30087 iter/s, 5.21543s/12 iters), loss = 1.46058 +I0407 08:53:09.993479 15775 solver.cpp:237] Train net output #0: loss = 1.46058 (* 1 = 1.46058 loss) +I0407 08:53:09.993486 15775 sgd_solver.cpp:105] Iteration 3432, lr = 0.001 +I0407 08:53:12.613310 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:53:15.169481 15775 solver.cpp:218] Iteration 3444 (2.31841 iter/s, 5.17596s/12 iters), loss = 1.45203 +I0407 08:53:15.169523 15775 solver.cpp:237] Train net output #0: loss = 1.45203 (* 1 = 1.45203 loss) +I0407 08:53:15.169531 15775 sgd_solver.cpp:105] Iteration 3444, lr = 0.001 +I0407 08:53:20.538151 15775 solver.cpp:218] Iteration 3456 (2.23523 iter/s, 5.36858s/12 iters), loss = 1.22291 +I0407 08:53:20.538189 15775 solver.cpp:237] Train net output #0: loss = 1.22291 (* 1 = 1.22291 loss) +I0407 08:53:20.538197 15775 sgd_solver.cpp:105] Iteration 3456, lr = 0.001 +I0407 08:53:24.983013 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 08:53:28.013375 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 08:53:30.319254 15775 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 08:53:30.319273 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:53:30.770978 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:53:33.406067 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:53:34.785773 15775 solver.cpp:397] Test net output #0: accuracy = 0.380515 +I0407 08:53:34.785815 15775 solver.cpp:397] Test net output #1: loss = 2.70531 (* 1 = 2.70531 loss) +I0407 08:53:34.919700 15775 solver.cpp:218] Iteration 3468 (0.83441 iter/s, 14.3814s/12 iters), loss = 1.49288 +I0407 08:53:34.919756 15775 solver.cpp:237] Train net output #0: loss = 1.49288 (* 1 = 1.49288 loss) +I0407 08:53:34.919765 15775 sgd_solver.cpp:105] Iteration 3468, lr = 0.001 +I0407 08:53:39.472527 15775 solver.cpp:218] Iteration 3480 (2.63578 iter/s, 4.55273s/12 iters), loss = 1.41311 +I0407 08:53:39.472568 15775 solver.cpp:237] Train net output #0: loss = 1.41311 (* 1 = 1.41311 loss) +I0407 08:53:39.472574 15775 sgd_solver.cpp:105] Iteration 3480, lr = 0.001 +I0407 08:53:44.652391 15775 solver.cpp:218] Iteration 3492 (2.3167 iter/s, 5.17978s/12 iters), loss = 1.10911 +I0407 08:53:44.652527 15775 solver.cpp:237] Train net output #0: loss = 1.10911 (* 1 = 1.10911 loss) +I0407 08:53:44.652537 15775 sgd_solver.cpp:105] Iteration 3492, lr = 0.001 +I0407 08:53:49.822867 15775 solver.cpp:218] Iteration 3504 (2.32095 iter/s, 5.1703s/12 iters), loss = 1.23731 +I0407 08:53:49.822906 15775 solver.cpp:237] Train net output #0: loss = 1.23731 (* 1 = 1.23731 loss) +I0407 08:53:49.822912 15775 sgd_solver.cpp:105] Iteration 3504, lr = 0.001 +I0407 08:53:55.011029 15775 solver.cpp:218] Iteration 3516 (2.313 iter/s, 5.18808s/12 iters), loss = 1.2339 +I0407 08:53:55.011070 15775 solver.cpp:237] Train net output #0: loss = 1.2339 (* 1 = 1.2339 loss) +I0407 08:53:55.011077 15775 sgd_solver.cpp:105] Iteration 3516, lr = 0.001 +I0407 08:54:00.135242 15775 solver.cpp:218] Iteration 3528 (2.34186 iter/s, 5.12412s/12 iters), loss = 1.26289 +I0407 08:54:00.135279 15775 solver.cpp:237] Train net output #0: loss = 1.26289 (* 1 = 1.26289 loss) +I0407 08:54:00.135288 15775 sgd_solver.cpp:105] Iteration 3528, lr = 0.001 +I0407 08:54:05.283517 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:54:05.585927 15775 solver.cpp:218] Iteration 3540 (2.20159 iter/s, 5.4506s/12 iters), loss = 0.879847 +I0407 08:54:05.585970 15775 solver.cpp:237] Train net output #0: loss = 0.879847 (* 1 = 0.879847 loss) +I0407 08:54:05.585978 15775 sgd_solver.cpp:105] Iteration 3540, lr = 0.001 +I0407 08:54:10.976099 15775 solver.cpp:218] Iteration 3552 (2.22631 iter/s, 5.39008s/12 iters), loss = 0.961726 +I0407 08:54:10.976142 15775 solver.cpp:237] Train net output #0: loss = 0.961726 (* 1 = 0.961726 loss) +I0407 08:54:10.976150 15775 sgd_solver.cpp:105] Iteration 3552, lr = 0.001 +I0407 08:54:16.374081 15775 solver.cpp:218] Iteration 3564 (2.22309 iter/s, 5.39789s/12 iters), loss = 0.831375 +I0407 08:54:16.374800 15775 solver.cpp:237] Train net output #0: loss = 0.831375 (* 1 = 0.831375 loss) +I0407 08:54:16.374810 15775 sgd_solver.cpp:105] Iteration 3564, lr = 0.001 +I0407 08:54:18.403503 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 08:54:21.342454 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 08:54:23.641278 15775 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 08:54:23.641295 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:54:26.621476 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:54:28.016038 15775 solver.cpp:397] Test net output #0: accuracy = 0.385417 +I0407 08:54:28.016083 15775 solver.cpp:397] Test net output #1: loss = 2.65714 (* 1 = 2.65714 loss) +I0407 08:54:29.839123 15775 solver.cpp:218] Iteration 3576 (0.891251 iter/s, 13.4642s/12 iters), loss = 1.09358 +I0407 08:54:29.839177 15775 solver.cpp:237] Train net output #0: loss = 1.09358 (* 1 = 1.09358 loss) +I0407 08:54:29.839187 15775 sgd_solver.cpp:105] Iteration 3576, lr = 0.001 +I0407 08:54:34.956238 15775 solver.cpp:218] Iteration 3588 (2.34512 iter/s, 5.11702s/12 iters), loss = 1.38278 +I0407 08:54:34.956291 15775 solver.cpp:237] Train net output #0: loss = 1.38278 (* 1 = 1.38278 loss) +I0407 08:54:34.956302 15775 sgd_solver.cpp:105] Iteration 3588, lr = 0.001 +I0407 08:54:40.184594 15775 solver.cpp:218] Iteration 3600 (2.29522 iter/s, 5.22826s/12 iters), loss = 1.24442 +I0407 08:54:40.184638 15775 solver.cpp:237] Train net output #0: loss = 1.24442 (* 1 = 1.24442 loss) +I0407 08:54:40.184645 15775 sgd_solver.cpp:105] Iteration 3600, lr = 0.001 +I0407 08:54:45.447793 15775 solver.cpp:218] Iteration 3612 (2.28002 iter/s, 5.26311s/12 iters), loss = 1.13586 +I0407 08:54:45.447834 15775 solver.cpp:237] Train net output #0: loss = 1.13586 (* 1 = 1.13586 loss) +I0407 08:54:45.447841 15775 sgd_solver.cpp:105] Iteration 3612, lr = 0.001 +I0407 08:54:50.927696 15775 solver.cpp:218] Iteration 3624 (2.18985 iter/s, 5.47982s/12 iters), loss = 0.947231 +I0407 08:54:50.927836 15775 solver.cpp:237] Train net output #0: loss = 0.947231 (* 1 = 0.947231 loss) +I0407 08:54:50.927845 15775 sgd_solver.cpp:105] Iteration 3624, lr = 0.001 +I0407 08:54:56.392719 15775 solver.cpp:218] Iteration 3636 (2.19586 iter/s, 5.46484s/12 iters), loss = 0.94565 +I0407 08:54:56.392760 15775 solver.cpp:237] Train net output #0: loss = 0.94565 (* 1 = 0.94565 loss) +I0407 08:54:56.392767 15775 sgd_solver.cpp:105] Iteration 3636, lr = 0.001 +I0407 08:54:58.405166 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:01.669941 15775 solver.cpp:218] Iteration 3648 (2.27396 iter/s, 5.27713s/12 iters), loss = 0.669473 +I0407 08:55:01.669988 15775 solver.cpp:237] Train net output #0: loss = 0.669473 (* 1 = 0.669473 loss) +I0407 08:55:01.669996 15775 sgd_solver.cpp:105] Iteration 3648, lr = 0.001 +I0407 08:55:06.632443 15775 solver.cpp:218] Iteration 3660 (2.41818 iter/s, 4.96241s/12 iters), loss = 0.917289 +I0407 08:55:06.632485 15775 solver.cpp:237] Train net output #0: loss = 0.917289 (* 1 = 0.917289 loss) +I0407 08:55:06.632493 15775 sgd_solver.cpp:105] Iteration 3660, lr = 0.001 +I0407 08:55:11.180281 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 08:55:14.208577 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 08:55:16.519858 15775 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 08:55:16.519881 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:55:19.388890 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:20.941349 15775 solver.cpp:397] Test net output #0: accuracy = 0.403186 +I0407 08:55:20.941413 15775 solver.cpp:397] Test net output #1: loss = 2.59891 (* 1 = 2.59891 loss) +I0407 08:55:21.079643 15775 solver.cpp:218] Iteration 3672 (0.830619 iter/s, 14.4471s/12 iters), loss = 1.16479 +I0407 08:55:21.079712 15775 solver.cpp:237] Train net output #0: loss = 1.16479 (* 1 = 1.16479 loss) +I0407 08:55:21.079722 15775 sgd_solver.cpp:105] Iteration 3672, lr = 0.001 +I0407 08:55:25.407835 15775 solver.cpp:218] Iteration 3684 (2.77259 iter/s, 4.32808s/12 iters), loss = 0.82109 +I0407 08:55:25.407881 15775 solver.cpp:237] Train net output #0: loss = 0.82109 (* 1 = 0.82109 loss) +I0407 08:55:25.407889 15775 sgd_solver.cpp:105] Iteration 3684, lr = 0.001 +I0407 08:55:30.804401 15775 solver.cpp:218] Iteration 3696 (2.22367 iter/s, 5.39648s/12 iters), loss = 1.15925 +I0407 08:55:30.804445 15775 solver.cpp:237] Train net output #0: loss = 1.15925 (* 1 = 1.15925 loss) +I0407 08:55:30.804452 15775 sgd_solver.cpp:105] Iteration 3696, lr = 0.001 +I0407 08:55:36.257359 15775 solver.cpp:218] Iteration 3708 (2.20068 iter/s, 5.45287s/12 iters), loss = 1.03501 +I0407 08:55:36.257405 15775 solver.cpp:237] Train net output #0: loss = 1.03501 (* 1 = 1.03501 loss) +I0407 08:55:36.257412 15775 sgd_solver.cpp:105] Iteration 3708, lr = 0.001 +I0407 08:55:41.534466 15775 solver.cpp:218] Iteration 3720 (2.27401 iter/s, 5.27701s/12 iters), loss = 0.796326 +I0407 08:55:41.534515 15775 solver.cpp:237] Train net output #0: loss = 0.796326 (* 1 = 0.796326 loss) +I0407 08:55:41.534524 15775 sgd_solver.cpp:105] Iteration 3720, lr = 0.001 +I0407 08:55:46.936774 15775 solver.cpp:218] Iteration 3732 (2.22131 iter/s, 5.40221s/12 iters), loss = 1.0039 +I0407 08:55:46.936815 15775 solver.cpp:237] Train net output #0: loss = 1.0039 (* 1 = 1.0039 loss) +I0407 08:55:46.936821 15775 sgd_solver.cpp:105] Iteration 3732, lr = 0.001 +I0407 08:55:51.195952 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:52.324033 15775 solver.cpp:218] Iteration 3744 (2.22752 iter/s, 5.38716s/12 iters), loss = 0.903393 +I0407 08:55:52.324084 15775 solver.cpp:237] Train net output #0: loss = 0.903393 (* 1 = 0.903393 loss) +I0407 08:55:52.324093 15775 sgd_solver.cpp:105] Iteration 3744, lr = 0.001 +I0407 08:55:57.715957 15775 solver.cpp:218] Iteration 3756 (2.22559 iter/s, 5.39183s/12 iters), loss = 0.913514 +I0407 08:55:57.716001 15775 solver.cpp:237] Train net output #0: loss = 0.913514 (* 1 = 0.913514 loss) +I0407 08:55:57.716008 15775 sgd_solver.cpp:105] Iteration 3756, lr = 0.001 +I0407 08:56:02.742345 15775 solver.cpp:218] Iteration 3768 (2.38744 iter/s, 5.0263s/12 iters), loss = 0.909545 +I0407 08:56:02.742390 15775 solver.cpp:237] Train net output #0: loss = 0.909545 (* 1 = 0.909545 loss) +I0407 08:56:02.742398 15775 sgd_solver.cpp:105] Iteration 3768, lr = 0.001 +I0407 08:56:04.850294 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 08:56:07.842041 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 08:56:10.156877 15775 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 08:56:10.156905 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:56:12.985185 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:14.454375 15775 solver.cpp:397] Test net output #0: accuracy = 0.417279 +I0407 08:56:14.454421 15775 solver.cpp:397] Test net output #1: loss = 2.60302 (* 1 = 2.60302 loss) +I0407 08:56:16.500152 15775 solver.cpp:218] Iteration 3780 (0.872241 iter/s, 13.7577s/12 iters), loss = 0.673351 +I0407 08:56:16.500195 15775 solver.cpp:237] Train net output #0: loss = 0.673351 (* 1 = 0.673351 loss) +I0407 08:56:16.500202 15775 sgd_solver.cpp:105] Iteration 3780, lr = 0.001 +I0407 08:56:21.806212 15775 solver.cpp:218] Iteration 3792 (2.2616 iter/s, 5.30597s/12 iters), loss = 0.874574 +I0407 08:56:21.806349 15775 solver.cpp:237] Train net output #0: loss = 0.874574 (* 1 = 0.874574 loss) +I0407 08:56:21.806360 15775 sgd_solver.cpp:105] Iteration 3792, lr = 0.001 +I0407 08:56:27.225172 15775 solver.cpp:218] Iteration 3804 (2.21452 iter/s, 5.41878s/12 iters), loss = 0.984349 +I0407 08:56:27.225215 15775 solver.cpp:237] Train net output #0: loss = 0.984349 (* 1 = 0.984349 loss) +I0407 08:56:27.225224 15775 sgd_solver.cpp:105] Iteration 3804, lr = 0.001 +I0407 08:56:32.555063 15775 solver.cpp:218] Iteration 3816 (2.25149 iter/s, 5.3298s/12 iters), loss = 0.843749 +I0407 08:56:32.555107 15775 solver.cpp:237] Train net output #0: loss = 0.843749 (* 1 = 0.843749 loss) +I0407 08:56:32.555114 15775 sgd_solver.cpp:105] Iteration 3816, lr = 0.001 +I0407 08:56:37.855999 15775 solver.cpp:218] Iteration 3828 (2.26379 iter/s, 5.30085s/12 iters), loss = 0.87447 +I0407 08:56:37.856038 15775 solver.cpp:237] Train net output #0: loss = 0.87447 (* 1 = 0.87447 loss) +I0407 08:56:37.856046 15775 sgd_solver.cpp:105] Iteration 3828, lr = 0.001 +I0407 08:56:43.140712 15775 solver.cpp:218] Iteration 3840 (2.27074 iter/s, 5.28463s/12 iters), loss = 0.857613 +I0407 08:56:43.140759 15775 solver.cpp:237] Train net output #0: loss = 0.857613 (* 1 = 0.857613 loss) +I0407 08:56:43.140770 15775 sgd_solver.cpp:105] Iteration 3840, lr = 0.001 +I0407 08:56:44.320518 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:48.518702 15775 solver.cpp:218] Iteration 3852 (2.23136 iter/s, 5.3779s/12 iters), loss = 0.666989 +I0407 08:56:48.518745 15775 solver.cpp:237] Train net output #0: loss = 0.666989 (* 1 = 0.666989 loss) +I0407 08:56:48.518752 15775 sgd_solver.cpp:105] Iteration 3852, lr = 0.001 +I0407 08:56:53.908623 15775 solver.cpp:218] Iteration 3864 (2.22641 iter/s, 5.38983s/12 iters), loss = 0.980955 +I0407 08:56:53.908735 15775 solver.cpp:237] Train net output #0: loss = 0.980955 (* 1 = 0.980955 loss) +I0407 08:56:53.908742 15775 sgd_solver.cpp:105] Iteration 3864, lr = 0.001 +I0407 08:56:58.523592 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 08:57:01.473636 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 08:57:03.769556 15775 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 08:57:03.769577 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:57:06.561548 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:57:08.150823 15775 solver.cpp:397] Test net output #0: accuracy = 0.414828 +I0407 08:57:08.150852 15775 solver.cpp:397] Test net output #1: loss = 2.60417 (* 1 = 2.60417 loss) +I0407 08:57:08.289907 15775 solver.cpp:218] Iteration 3876 (0.83443 iter/s, 14.3811s/12 iters), loss = 0.850122 +I0407 08:57:08.291455 15775 solver.cpp:237] Train net output #0: loss = 0.850122 (* 1 = 0.850122 loss) +I0407 08:57:08.291465 15775 sgd_solver.cpp:105] Iteration 3876, lr = 0.001 +I0407 08:57:12.816489 15775 solver.cpp:218] Iteration 3888 (2.65194 iter/s, 4.525s/12 iters), loss = 0.821898 +I0407 08:57:12.816531 15775 solver.cpp:237] Train net output #0: loss = 0.821898 (* 1 = 0.821898 loss) +I0407 08:57:12.816540 15775 sgd_solver.cpp:105] Iteration 3888, lr = 0.001 +I0407 08:57:18.173674 15775 solver.cpp:218] Iteration 3900 (2.24002 iter/s, 5.35709s/12 iters), loss = 0.690627 +I0407 08:57:18.173720 15775 solver.cpp:237] Train net output #0: loss = 0.690627 (* 1 = 0.690627 loss) +I0407 08:57:18.173729 15775 sgd_solver.cpp:105] Iteration 3900, lr = 0.001 +I0407 08:57:23.481600 15775 solver.cpp:218] Iteration 3912 (2.26081 iter/s, 5.30783s/12 iters), loss = 0.634823 +I0407 08:57:23.481643 15775 solver.cpp:237] Train net output #0: loss = 0.634823 (* 1 = 0.634823 loss) +I0407 08:57:23.481650 15775 sgd_solver.cpp:105] Iteration 3912, lr = 0.001 +I0407 08:57:28.777036 15775 solver.cpp:218] Iteration 3924 (2.26614 iter/s, 5.29534s/12 iters), loss = 0.850353 +I0407 08:57:28.777164 15775 solver.cpp:237] Train net output #0: loss = 0.850353 (* 1 = 0.850353 loss) +I0407 08:57:28.777173 15775 sgd_solver.cpp:105] Iteration 3924, lr = 0.001 +I0407 08:57:33.709722 15775 solver.cpp:218] Iteration 3936 (2.43284 iter/s, 4.93252s/12 iters), loss = 0.679257 +I0407 08:57:33.709766 15775 solver.cpp:237] Train net output #0: loss = 0.679257 (* 1 = 0.679257 loss) +I0407 08:57:33.709774 15775 sgd_solver.cpp:105] Iteration 3936, lr = 0.001 +I0407 08:57:37.113575 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:57:38.806370 15775 solver.cpp:218] Iteration 3948 (2.35453 iter/s, 5.09656s/12 iters), loss = 0.772704 +I0407 08:57:38.806409 15775 solver.cpp:237] Train net output #0: loss = 0.772704 (* 1 = 0.772704 loss) +I0407 08:57:38.806417 15775 sgd_solver.cpp:105] Iteration 3948, lr = 0.001 +I0407 08:57:44.195750 15775 solver.cpp:218] Iteration 3960 (2.22664 iter/s, 5.38929s/12 iters), loss = 0.7935 +I0407 08:57:44.195796 15775 solver.cpp:237] Train net output #0: loss = 0.7935 (* 1 = 0.7935 loss) +I0407 08:57:44.195804 15775 sgd_solver.cpp:105] Iteration 3960, lr = 0.001 +I0407 08:57:49.337458 15775 solver.cpp:218] Iteration 3972 (2.33389 iter/s, 5.14162s/12 iters), loss = 0.570102 +I0407 08:57:49.337499 15775 solver.cpp:237] Train net output #0: loss = 0.570102 (* 1 = 0.570102 loss) +I0407 08:57:49.337509 15775 sgd_solver.cpp:105] Iteration 3972, lr = 0.001 +I0407 08:57:51.440269 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 08:57:54.426122 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 08:57:56.723868 15775 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 08:57:56.723888 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:57:59.589191 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:01.131821 15775 solver.cpp:397] Test net output #0: accuracy = 0.422181 +I0407 08:58:01.131873 15775 solver.cpp:397] Test net output #1: loss = 2.61148 (* 1 = 2.61148 loss) +I0407 08:58:03.159271 15775 solver.cpp:218] Iteration 3984 (0.868202 iter/s, 13.8217s/12 iters), loss = 0.785575 +I0407 08:58:03.159325 15775 solver.cpp:237] Train net output #0: loss = 0.785575 (* 1 = 0.785575 loss) +I0407 08:58:03.159334 15775 sgd_solver.cpp:105] Iteration 3984, lr = 0.001 +I0407 08:58:08.321905 15775 solver.cpp:218] Iteration 3996 (2.32444 iter/s, 5.16253s/12 iters), loss = 0.847422 +I0407 08:58:08.321951 15775 solver.cpp:237] Train net output #0: loss = 0.847422 (* 1 = 0.847422 loss) +I0407 08:58:08.321959 15775 sgd_solver.cpp:105] Iteration 3996, lr = 0.001 +I0407 08:58:13.711078 15775 solver.cpp:218] Iteration 4008 (2.22672 iter/s, 5.38908s/12 iters), loss = 0.723073 +I0407 08:58:13.711127 15775 solver.cpp:237] Train net output #0: loss = 0.723073 (* 1 = 0.723073 loss) +I0407 08:58:13.711139 15775 sgd_solver.cpp:105] Iteration 4008, lr = 0.001 +I0407 08:58:19.225090 15775 solver.cpp:218] Iteration 4020 (2.17631 iter/s, 5.51392s/12 iters), loss = 1.02231 +I0407 08:58:19.225131 15775 solver.cpp:237] Train net output #0: loss = 1.02231 (* 1 = 1.02231 loss) +I0407 08:58:19.225138 15775 sgd_solver.cpp:105] Iteration 4020, lr = 0.001 +I0407 08:58:24.636449 15775 solver.cpp:218] Iteration 4032 (2.21759 iter/s, 5.41127s/12 iters), loss = 0.798995 +I0407 08:58:24.636490 15775 solver.cpp:237] Train net output #0: loss = 0.798995 (* 1 = 0.798995 loss) +I0407 08:58:24.636497 15775 sgd_solver.cpp:105] Iteration 4032, lr = 0.001 +I0407 08:58:29.953487 15775 solver.cpp:218] Iteration 4044 (2.25693 iter/s, 5.31695s/12 iters), loss = 0.652966 +I0407 08:58:29.953650 15775 solver.cpp:237] Train net output #0: loss = 0.652966 (* 1 = 0.652966 loss) +I0407 08:58:29.953660 15775 sgd_solver.cpp:105] Iteration 4044, lr = 0.001 +I0407 08:58:30.458114 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:35.184861 15775 solver.cpp:218] Iteration 4056 (2.29394 iter/s, 5.23117s/12 iters), loss = 0.745718 +I0407 08:58:35.184913 15775 solver.cpp:237] Train net output #0: loss = 0.745718 (* 1 = 0.745718 loss) +I0407 08:58:35.184923 15775 sgd_solver.cpp:105] Iteration 4056, lr = 0.001 +I0407 08:58:40.296703 15775 solver.cpp:218] Iteration 4068 (2.34754 iter/s, 5.11174s/12 iters), loss = 0.73994 +I0407 08:58:40.296753 15775 solver.cpp:237] Train net output #0: loss = 0.73994 (* 1 = 0.73994 loss) +I0407 08:58:40.296763 15775 sgd_solver.cpp:105] Iteration 4068, lr = 0.001 +I0407 08:58:44.997628 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 08:58:48.001574 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 08:58:51.946964 15775 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 08:58:51.946982 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:58:54.636379 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:56.206460 15775 solver.cpp:397] Test net output #0: accuracy = 0.433824 +I0407 08:58:56.206499 15775 solver.cpp:397] Test net output #1: loss = 2.58107 (* 1 = 2.58107 loss) +I0407 08:58:56.345309 15775 solver.cpp:218] Iteration 4080 (0.747736 iter/s, 16.0484s/12 iters), loss = 0.943744 +I0407 08:58:56.345368 15775 solver.cpp:237] Train net output #0: loss = 0.943744 (* 1 = 0.943744 loss) +I0407 08:58:56.345378 15775 sgd_solver.cpp:105] Iteration 4080, lr = 0.001 +I0407 08:59:00.801496 15775 solver.cpp:218] Iteration 4092 (2.69294 iter/s, 4.45609s/12 iters), loss = 0.690229 +I0407 08:59:00.801591 15775 solver.cpp:237] Train net output #0: loss = 0.690229 (* 1 = 0.690229 loss) +I0407 08:59:00.801599 15775 sgd_solver.cpp:105] Iteration 4092, lr = 0.001 +I0407 08:59:06.159210 15775 solver.cpp:218] Iteration 4104 (2.23982 iter/s, 5.35758s/12 iters), loss = 0.653344 +I0407 08:59:06.159253 15775 solver.cpp:237] Train net output #0: loss = 0.653344 (* 1 = 0.653344 loss) +I0407 08:59:06.159260 15775 sgd_solver.cpp:105] Iteration 4104, lr = 0.001 +I0407 08:59:11.599552 15775 solver.cpp:218] Iteration 4116 (2.20578 iter/s, 5.44025s/12 iters), loss = 0.547122 +I0407 08:59:11.599596 15775 solver.cpp:237] Train net output #0: loss = 0.547122 (* 1 = 0.547122 loss) +I0407 08:59:11.599604 15775 sgd_solver.cpp:105] Iteration 4116, lr = 0.001 +I0407 08:59:17.086796 15775 solver.cpp:218] Iteration 4128 (2.18693 iter/s, 5.48715s/12 iters), loss = 0.869504 +I0407 08:59:17.086846 15775 solver.cpp:237] Train net output #0: loss = 0.869504 (* 1 = 0.869504 loss) +I0407 08:59:17.086854 15775 sgd_solver.cpp:105] Iteration 4128, lr = 0.001 +I0407 08:59:22.535195 15775 solver.cpp:218] Iteration 4140 (2.20252 iter/s, 5.4483s/12 iters), loss = 0.682621 +I0407 08:59:22.535235 15775 solver.cpp:237] Train net output #0: loss = 0.682621 (* 1 = 0.682621 loss) +I0407 08:59:22.535243 15775 sgd_solver.cpp:105] Iteration 4140, lr = 0.001 +I0407 08:59:25.434845 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:59:28.049787 15775 solver.cpp:218] Iteration 4152 (2.17608 iter/s, 5.5145s/12 iters), loss = 0.720171 +I0407 08:59:28.049831 15775 solver.cpp:237] Train net output #0: loss = 0.720171 (* 1 = 0.720171 loss) +I0407 08:59:28.049839 15775 sgd_solver.cpp:105] Iteration 4152, lr = 0.001 +I0407 08:59:29.846045 15775 blocking_queue.cpp:49] Waiting for data +I0407 08:59:33.446485 15775 solver.cpp:218] Iteration 4164 (2.22362 iter/s, 5.39661s/12 iters), loss = 0.545155 +I0407 08:59:33.446609 15775 solver.cpp:237] Train net output #0: loss = 0.545155 (* 1 = 0.545155 loss) +I0407 08:59:33.446616 15775 sgd_solver.cpp:105] Iteration 4164, lr = 0.001 +I0407 08:59:38.443625 15775 solver.cpp:218] Iteration 4176 (2.40145 iter/s, 4.99697s/12 iters), loss = 0.771099 +I0407 08:59:38.443667 15775 solver.cpp:237] Train net output #0: loss = 0.771099 (* 1 = 0.771099 loss) +I0407 08:59:38.443675 15775 sgd_solver.cpp:105] Iteration 4176, lr = 0.001 +I0407 08:59:40.453539 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 08:59:43.988538 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 08:59:47.811012 15775 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 08:59:47.811038 15775 net.cpp:676] Ignoring source layer train-data +I0407 08:59:50.511700 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:59:52.132386 15775 solver.cpp:397] Test net output #0: accuracy = 0.428309 +I0407 08:59:52.132421 15775 solver.cpp:397] Test net output #1: loss = 2.58512 (* 1 = 2.58512 loss) +I0407 08:59:54.144193 15775 solver.cpp:218] Iteration 4188 (0.764311 iter/s, 15.7004s/12 iters), loss = 0.678795 +I0407 08:59:54.144233 15775 solver.cpp:237] Train net output #0: loss = 0.678795 (* 1 = 0.678795 loss) +I0407 08:59:54.144241 15775 sgd_solver.cpp:105] Iteration 4188, lr = 0.001 +I0407 08:59:59.582170 15775 solver.cpp:218] Iteration 4200 (2.20674 iter/s, 5.43789s/12 iters), loss = 0.736814 +I0407 08:59:59.582217 15775 solver.cpp:237] Train net output #0: loss = 0.736814 (* 1 = 0.736814 loss) +I0407 08:59:59.582226 15775 sgd_solver.cpp:105] Iteration 4200, lr = 0.001 +I0407 09:00:04.881958 15775 solver.cpp:218] Iteration 4212 (2.26428 iter/s, 5.2997s/12 iters), loss = 0.849863 +I0407 09:00:04.882067 15775 solver.cpp:237] Train net output #0: loss = 0.849863 (* 1 = 0.849863 loss) +I0407 09:00:04.882076 15775 sgd_solver.cpp:105] Iteration 4212, lr = 0.001 +I0407 09:00:10.157088 15775 solver.cpp:218] Iteration 4224 (2.2749 iter/s, 5.27496s/12 iters), loss = 0.70912 +I0407 09:00:10.157136 15775 solver.cpp:237] Train net output #0: loss = 0.70912 (* 1 = 0.70912 loss) +I0407 09:00:10.157145 15775 sgd_solver.cpp:105] Iteration 4224, lr = 0.001 +I0407 09:00:15.416502 15775 solver.cpp:218] Iteration 4236 (2.28166 iter/s, 5.25932s/12 iters), loss = 0.714994 +I0407 09:00:15.416544 15775 solver.cpp:237] Train net output #0: loss = 0.714994 (* 1 = 0.714994 loss) +I0407 09:00:15.416553 15775 sgd_solver.cpp:105] Iteration 4236, lr = 0.001 +I0407 09:00:20.456914 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:20.738605 15775 solver.cpp:218] Iteration 4248 (2.25479 iter/s, 5.32201s/12 iters), loss = 0.768594 +I0407 09:00:20.738648 15775 solver.cpp:237] Train net output #0: loss = 0.768594 (* 1 = 0.768594 loss) +I0407 09:00:20.738656 15775 sgd_solver.cpp:105] Iteration 4248, lr = 0.001 +I0407 09:00:26.146859 15775 solver.cpp:218] Iteration 4260 (2.21887 iter/s, 5.40816s/12 iters), loss = 0.636721 +I0407 09:00:26.146903 15775 solver.cpp:237] Train net output #0: loss = 0.636721 (* 1 = 0.636721 loss) +I0407 09:00:26.146910 15775 sgd_solver.cpp:105] Iteration 4260, lr = 0.001 +I0407 09:00:31.475441 15775 solver.cpp:218] Iteration 4272 (2.25204 iter/s, 5.32849s/12 iters), loss = 0.578221 +I0407 09:00:31.475481 15775 solver.cpp:237] Train net output #0: loss = 0.578221 (* 1 = 0.578221 loss) +I0407 09:00:31.475487 15775 sgd_solver.cpp:105] Iteration 4272, lr = 0.001 +I0407 09:00:36.383621 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 09:00:41.247654 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 09:00:45.768959 15775 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 09:00:45.768986 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:00:48.408704 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:50.088755 15775 solver.cpp:397] Test net output #0: accuracy = 0.414216 +I0407 09:00:50.088801 15775 solver.cpp:397] Test net output #1: loss = 2.61173 (* 1 = 2.61173 loss) +I0407 09:00:50.228775 15775 solver.cpp:218] Iteration 4284 (0.639892 iter/s, 18.7532s/12 iters), loss = 0.991352 +I0407 09:00:50.228821 15775 solver.cpp:237] Train net output #0: loss = 0.991352 (* 1 = 0.991352 loss) +I0407 09:00:50.228829 15775 sgd_solver.cpp:105] Iteration 4284, lr = 0.001 +I0407 09:00:54.429756 15775 solver.cpp:218] Iteration 4296 (2.85653 iter/s, 4.2009s/12 iters), loss = 0.738346 +I0407 09:00:54.429813 15775 solver.cpp:237] Train net output #0: loss = 0.738346 (* 1 = 0.738346 loss) +I0407 09:00:54.429827 15775 sgd_solver.cpp:105] Iteration 4296, lr = 0.001 +I0407 09:00:59.596274 15775 solver.cpp:218] Iteration 4308 (2.32269 iter/s, 5.16642s/12 iters), loss = 0.627069 +I0407 09:00:59.596313 15775 solver.cpp:237] Train net output #0: loss = 0.627069 (* 1 = 0.627069 loss) +I0407 09:00:59.596321 15775 sgd_solver.cpp:105] Iteration 4308, lr = 0.001 +I0407 09:01:05.014364 15775 solver.cpp:218] Iteration 4320 (2.21484 iter/s, 5.418s/12 iters), loss = 0.663949 +I0407 09:01:05.014407 15775 solver.cpp:237] Train net output #0: loss = 0.663949 (* 1 = 0.663949 loss) +I0407 09:01:05.014415 15775 sgd_solver.cpp:105] Iteration 4320, lr = 0.001 +I0407 09:01:10.288059 15775 solver.cpp:218] Iteration 4332 (2.27548 iter/s, 5.27361s/12 iters), loss = 0.638405 +I0407 09:01:10.288151 15775 solver.cpp:237] Train net output #0: loss = 0.638405 (* 1 = 0.638405 loss) +I0407 09:01:10.288161 15775 sgd_solver.cpp:105] Iteration 4332, lr = 0.001 +I0407 09:01:15.700970 15775 solver.cpp:218] Iteration 4344 (2.21698 iter/s, 5.41277s/12 iters), loss = 0.463559 +I0407 09:01:15.701014 15775 solver.cpp:237] Train net output #0: loss = 0.463559 (* 1 = 0.463559 loss) +I0407 09:01:15.701021 15775 sgd_solver.cpp:105] Iteration 4344, lr = 0.001 +I0407 09:01:17.658876 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:01:21.054658 15775 solver.cpp:218] Iteration 4356 (2.24148 iter/s, 5.3536s/12 iters), loss = 0.449648 +I0407 09:01:21.054702 15775 solver.cpp:237] Train net output #0: loss = 0.449648 (* 1 = 0.449648 loss) +I0407 09:01:21.054709 15775 sgd_solver.cpp:105] Iteration 4356, lr = 0.001 +I0407 09:01:26.329532 15775 solver.cpp:218] Iteration 4368 (2.27497 iter/s, 5.27479s/12 iters), loss = 0.592103 +I0407 09:01:26.329573 15775 solver.cpp:237] Train net output #0: loss = 0.592103 (* 1 = 0.592103 loss) +I0407 09:01:26.329581 15775 sgd_solver.cpp:105] Iteration 4368, lr = 0.001 +I0407 09:01:31.755270 15775 solver.cpp:218] Iteration 4380 (2.21172 iter/s, 5.42565s/12 iters), loss = 0.64046 +I0407 09:01:31.755311 15775 solver.cpp:237] Train net output #0: loss = 0.64046 (* 1 = 0.64046 loss) +I0407 09:01:31.755318 15775 sgd_solver.cpp:105] Iteration 4380, lr = 0.001 +I0407 09:01:33.904748 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 09:01:38.428285 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 09:01:44.100368 15775 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 09:01:44.100476 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:01:46.688325 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:01:48.432011 15775 solver.cpp:397] Test net output #0: accuracy = 0.419118 +I0407 09:01:48.432044 15775 solver.cpp:397] Test net output #1: loss = 2.64616 (* 1 = 2.64616 loss) +I0407 09:01:50.226718 15775 solver.cpp:218] Iteration 4392 (0.649657 iter/s, 18.4713s/12 iters), loss = 0.56154 +I0407 09:01:50.226763 15775 solver.cpp:237] Train net output #0: loss = 0.56154 (* 1 = 0.56154 loss) +I0407 09:01:50.226769 15775 sgd_solver.cpp:105] Iteration 4392, lr = 0.001 +I0407 09:01:55.358860 15775 solver.cpp:218] Iteration 4404 (2.33824 iter/s, 5.13206s/12 iters), loss = 0.5867 +I0407 09:01:55.358897 15775 solver.cpp:237] Train net output #0: loss = 0.5867 (* 1 = 0.5867 loss) +I0407 09:01:55.358904 15775 sgd_solver.cpp:105] Iteration 4404, lr = 0.001 +I0407 09:02:00.624145 15775 solver.cpp:218] Iteration 4416 (2.27912 iter/s, 5.2652s/12 iters), loss = 0.765055 +I0407 09:02:00.624186 15775 solver.cpp:237] Train net output #0: loss = 0.765055 (* 1 = 0.765055 loss) +I0407 09:02:00.624195 15775 sgd_solver.cpp:105] Iteration 4416, lr = 0.001 +I0407 09:02:05.783916 15775 solver.cpp:218] Iteration 4428 (2.32572 iter/s, 5.15968s/12 iters), loss = 0.691121 +I0407 09:02:05.783962 15775 solver.cpp:237] Train net output #0: loss = 0.691121 (* 1 = 0.691121 loss) +I0407 09:02:05.783969 15775 sgd_solver.cpp:105] Iteration 4428, lr = 0.001 +I0407 09:02:10.990370 15775 solver.cpp:218] Iteration 4440 (2.30487 iter/s, 5.20636s/12 iters), loss = 0.740848 +I0407 09:02:10.990417 15775 solver.cpp:237] Train net output #0: loss = 0.740848 (* 1 = 0.740848 loss) +I0407 09:02:10.990423 15775 sgd_solver.cpp:105] Iteration 4440, lr = 0.001 +I0407 09:02:15.351835 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:02:16.524175 15775 solver.cpp:218] Iteration 4452 (2.16853 iter/s, 5.53371s/12 iters), loss = 0.576732 +I0407 09:02:16.524217 15775 solver.cpp:237] Train net output #0: loss = 0.576732 (* 1 = 0.576732 loss) +I0407 09:02:16.524224 15775 sgd_solver.cpp:105] Iteration 4452, lr = 0.001 +I0407 09:02:21.928768 15775 solver.cpp:218] Iteration 4464 (2.22037 iter/s, 5.40451s/12 iters), loss = 0.487889 +I0407 09:02:21.928810 15775 solver.cpp:237] Train net output #0: loss = 0.487889 (* 1 = 0.487889 loss) +I0407 09:02:21.928818 15775 sgd_solver.cpp:105] Iteration 4464, lr = 0.001 +I0407 09:02:27.243510 15775 solver.cpp:218] Iteration 4476 (2.25791 iter/s, 5.31465s/12 iters), loss = 0.613412 +I0407 09:02:27.243552 15775 solver.cpp:237] Train net output #0: loss = 0.613412 (* 1 = 0.613412 loss) +I0407 09:02:27.243559 15775 sgd_solver.cpp:105] Iteration 4476, lr = 0.001 +I0407 09:02:31.977838 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 09:02:36.508180 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 09:02:40.866591 15775 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 09:02:40.866613 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:02:43.538364 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:02:45.278419 15775 solver.cpp:397] Test net output #0: accuracy = 0.43076 +I0407 09:02:45.278468 15775 solver.cpp:397] Test net output #1: loss = 2.64601 (* 1 = 2.64601 loss) +I0407 09:02:45.419584 15775 solver.cpp:218] Iteration 4488 (0.660214 iter/s, 18.1759s/12 iters), loss = 0.483461 +I0407 09:02:45.419665 15775 solver.cpp:237] Train net output #0: loss = 0.483461 (* 1 = 0.483461 loss) +I0407 09:02:45.419673 15775 sgd_solver.cpp:105] Iteration 4488, lr = 0.001 +I0407 09:02:49.643863 15775 solver.cpp:218] Iteration 4500 (2.84081 iter/s, 4.22415s/12 iters), loss = 0.511479 +I0407 09:02:49.643910 15775 solver.cpp:237] Train net output #0: loss = 0.511479 (* 1 = 0.511479 loss) +I0407 09:02:49.643918 15775 sgd_solver.cpp:105] Iteration 4500, lr = 0.001 +I0407 09:02:54.884024 15775 solver.cpp:218] Iteration 4512 (2.29005 iter/s, 5.24007s/12 iters), loss = 0.743593 +I0407 09:02:54.884065 15775 solver.cpp:237] Train net output #0: loss = 0.743593 (* 1 = 0.743593 loss) +I0407 09:02:54.884073 15775 sgd_solver.cpp:105] Iteration 4512, lr = 0.001 +I0407 09:03:00.235021 15775 solver.cpp:218] Iteration 4524 (2.24261 iter/s, 5.35091s/12 iters), loss = 0.621296 +I0407 09:03:00.235078 15775 solver.cpp:237] Train net output #0: loss = 0.621296 (* 1 = 0.621296 loss) +I0407 09:03:00.235090 15775 sgd_solver.cpp:105] Iteration 4524, lr = 0.001 +I0407 09:03:05.343442 15775 solver.cpp:218] Iteration 4536 (2.34911 iter/s, 5.10833s/12 iters), loss = 0.526022 +I0407 09:03:05.343480 15775 solver.cpp:237] Train net output #0: loss = 0.526022 (* 1 = 0.526022 loss) +I0407 09:03:05.343487 15775 sgd_solver.cpp:105] Iteration 4536, lr = 0.001 +I0407 09:03:10.442095 15775 solver.cpp:218] Iteration 4548 (2.3536 iter/s, 5.09857s/12 iters), loss = 0.519631 +I0407 09:03:10.442138 15775 solver.cpp:237] Train net output #0: loss = 0.519631 (* 1 = 0.519631 loss) +I0407 09:03:10.442147 15775 sgd_solver.cpp:105] Iteration 4548, lr = 0.001 +I0407 09:03:11.714628 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:03:15.688242 15775 solver.cpp:218] Iteration 4560 (2.28743 iter/s, 5.24605s/12 iters), loss = 0.383181 +I0407 09:03:15.688474 15775 solver.cpp:237] Train net output #0: loss = 0.383181 (* 1 = 0.383181 loss) +I0407 09:03:15.688485 15775 sgd_solver.cpp:105] Iteration 4560, lr = 0.001 +I0407 09:03:20.882964 15775 solver.cpp:218] Iteration 4572 (2.31016 iter/s, 5.19445s/12 iters), loss = 0.641114 +I0407 09:03:20.883010 15775 solver.cpp:237] Train net output #0: loss = 0.641114 (* 1 = 0.641114 loss) +I0407 09:03:20.883018 15775 sgd_solver.cpp:105] Iteration 4572, lr = 0.001 +I0407 09:03:26.242559 15775 solver.cpp:218] Iteration 4584 (2.23901 iter/s, 5.3595s/12 iters), loss = 0.644148 +I0407 09:03:26.242601 15775 solver.cpp:237] Train net output #0: loss = 0.644148 (* 1 = 0.644148 loss) +I0407 09:03:26.242609 15775 sgd_solver.cpp:105] Iteration 4584, lr = 0.001 +I0407 09:03:28.384541 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 09:03:34.414527 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 09:03:38.190659 15775 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 09:03:38.190685 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:03:40.725492 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:03:42.504555 15775 solver.cpp:397] Test net output #0: accuracy = 0.431985 +I0407 09:03:42.504588 15775 solver.cpp:397] Test net output #1: loss = 2.62943 (* 1 = 2.62943 loss) +I0407 09:03:44.356492 15775 solver.cpp:218] Iteration 4596 (0.662479 iter/s, 18.1138s/12 iters), loss = 0.526942 +I0407 09:03:44.356534 15775 solver.cpp:237] Train net output #0: loss = 0.526942 (* 1 = 0.526942 loss) +I0407 09:03:44.356542 15775 sgd_solver.cpp:105] Iteration 4596, lr = 0.001 +I0407 09:03:49.763506 15775 solver.cpp:218] Iteration 4608 (2.21938 iter/s, 5.40692s/12 iters), loss = 0.429211 +I0407 09:03:49.763622 15775 solver.cpp:237] Train net output #0: loss = 0.429211 (* 1 = 0.429211 loss) +I0407 09:03:49.763631 15775 sgd_solver.cpp:105] Iteration 4608, lr = 0.001 +I0407 09:03:55.031616 15775 solver.cpp:218] Iteration 4620 (2.27793 iter/s, 5.26795s/12 iters), loss = 0.47323 +I0407 09:03:55.031654 15775 solver.cpp:237] Train net output #0: loss = 0.47323 (* 1 = 0.47323 loss) +I0407 09:03:55.031662 15775 sgd_solver.cpp:105] Iteration 4620, lr = 0.001 +I0407 09:04:00.305220 15775 solver.cpp:218] Iteration 4632 (2.27552 iter/s, 5.27351s/12 iters), loss = 0.621251 +I0407 09:04:00.305289 15775 solver.cpp:237] Train net output #0: loss = 0.621251 (* 1 = 0.621251 loss) +I0407 09:04:00.305299 15775 sgd_solver.cpp:105] Iteration 4632, lr = 0.001 +I0407 09:04:05.775151 15775 solver.cpp:218] Iteration 4644 (2.19386 iter/s, 5.46981s/12 iters), loss = 0.374965 +I0407 09:04:05.775193 15775 solver.cpp:237] Train net output #0: loss = 0.374965 (* 1 = 0.374965 loss) +I0407 09:04:05.775200 15775 sgd_solver.cpp:105] Iteration 4644, lr = 0.001 +I0407 09:04:09.373417 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:11.160467 15775 solver.cpp:218] Iteration 4656 (2.22832 iter/s, 5.38523s/12 iters), loss = 0.402807 +I0407 09:04:11.160511 15775 solver.cpp:237] Train net output #0: loss = 0.402807 (* 1 = 0.402807 loss) +I0407 09:04:11.160521 15775 sgd_solver.cpp:105] Iteration 4656, lr = 0.001 +I0407 09:04:16.586676 15775 solver.cpp:218] Iteration 4668 (2.21152 iter/s, 5.42612s/12 iters), loss = 0.50544 +I0407 09:04:16.586717 15775 solver.cpp:237] Train net output #0: loss = 0.50544 (* 1 = 0.50544 loss) +I0407 09:04:16.586725 15775 sgd_solver.cpp:105] Iteration 4668, lr = 0.001 +I0407 09:04:21.884972 15775 solver.cpp:218] Iteration 4680 (2.26492 iter/s, 5.29821s/12 iters), loss = 0.448668 +I0407 09:04:21.885141 15775 solver.cpp:237] Train net output #0: loss = 0.448668 (* 1 = 0.448668 loss) +I0407 09:04:21.885154 15775 sgd_solver.cpp:105] Iteration 4680, lr = 0.001 +I0407 09:04:26.790638 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 09:04:31.835988 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 09:04:36.196056 15775 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 09:04:36.196075 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:04:38.645422 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:40.480676 15775 solver.cpp:397] Test net output #0: accuracy = 0.4375 +I0407 09:04:40.480705 15775 solver.cpp:397] Test net output #1: loss = 2.64873 (* 1 = 2.64873 loss) +I0407 09:04:40.621798 15775 solver.cpp:218] Iteration 4692 (0.64046 iter/s, 18.7365s/12 iters), loss = 0.483926 +I0407 09:04:40.621856 15775 solver.cpp:237] Train net output #0: loss = 0.483926 (* 1 = 0.483926 loss) +I0407 09:04:40.621867 15775 sgd_solver.cpp:105] Iteration 4692, lr = 0.001 +I0407 09:04:44.862632 15775 solver.cpp:218] Iteration 4704 (2.8297 iter/s, 4.24074s/12 iters), loss = 0.639987 +I0407 09:04:44.862674 15775 solver.cpp:237] Train net output #0: loss = 0.639987 (* 1 = 0.639987 loss) +I0407 09:04:44.862682 15775 sgd_solver.cpp:105] Iteration 4704, lr = 0.001 +I0407 09:04:50.048837 15775 solver.cpp:218] Iteration 4716 (2.31387 iter/s, 5.18611s/12 iters), loss = 0.450664 +I0407 09:04:50.048879 15775 solver.cpp:237] Train net output #0: loss = 0.450664 (* 1 = 0.450664 loss) +I0407 09:04:50.048892 15775 sgd_solver.cpp:105] Iteration 4716, lr = 0.001 +I0407 09:04:55.187145 15775 solver.cpp:218] Iteration 4728 (2.33544 iter/s, 5.13822s/12 iters), loss = 0.57292 +I0407 09:04:55.187256 15775 solver.cpp:237] Train net output #0: loss = 0.57292 (* 1 = 0.57292 loss) +I0407 09:04:55.187265 15775 sgd_solver.cpp:105] Iteration 4728, lr = 0.001 +I0407 09:05:00.335094 15775 solver.cpp:218] Iteration 4740 (2.3311 iter/s, 5.14779s/12 iters), loss = 0.405732 +I0407 09:05:00.335140 15775 solver.cpp:237] Train net output #0: loss = 0.405732 (* 1 = 0.405732 loss) +I0407 09:05:00.335148 15775 sgd_solver.cpp:105] Iteration 4740, lr = 0.001 +I0407 09:05:05.698844 15775 solver.cpp:218] Iteration 4752 (2.23728 iter/s, 5.36366s/12 iters), loss = 0.496903 +I0407 09:05:05.698889 15775 solver.cpp:237] Train net output #0: loss = 0.496903 (* 1 = 0.496903 loss) +I0407 09:05:05.698897 15775 sgd_solver.cpp:105] Iteration 4752, lr = 0.001 +I0407 09:05:06.271108 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:05:10.965286 15775 solver.cpp:218] Iteration 4764 (2.27862 iter/s, 5.26635s/12 iters), loss = 0.552822 +I0407 09:05:10.965332 15775 solver.cpp:237] Train net output #0: loss = 0.552822 (* 1 = 0.552822 loss) +I0407 09:05:10.965342 15775 sgd_solver.cpp:105] Iteration 4764, lr = 0.001 +I0407 09:05:16.266214 15775 solver.cpp:218] Iteration 4776 (2.26379 iter/s, 5.30084s/12 iters), loss = 0.669901 +I0407 09:05:16.266258 15775 solver.cpp:237] Train net output #0: loss = 0.669901 (* 1 = 0.669901 loss) +I0407 09:05:16.266265 15775 sgd_solver.cpp:105] Iteration 4776, lr = 0.001 +I0407 09:05:21.606946 15775 solver.cpp:218] Iteration 4788 (2.24692 iter/s, 5.34064s/12 iters), loss = 0.48355 +I0407 09:05:21.606989 15775 solver.cpp:237] Train net output #0: loss = 0.48355 (* 1 = 0.48355 loss) +I0407 09:05:21.606997 15775 sgd_solver.cpp:105] Iteration 4788, lr = 0.001 +I0407 09:05:23.811668 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 09:05:28.344305 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 09:05:32.225402 15775 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 09:05:32.225427 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:05:34.633287 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:05:36.491451 15775 solver.cpp:397] Test net output #0: accuracy = 0.438726 +I0407 09:05:36.491487 15775 solver.cpp:397] Test net output #1: loss = 2.66294 (* 1 = 2.66294 loss) +I0407 09:05:38.455987 15775 solver.cpp:218] Iteration 4800 (0.712213 iter/s, 16.8489s/12 iters), loss = 0.647122 +I0407 09:05:38.456032 15775 solver.cpp:237] Train net output #0: loss = 0.647122 (* 1 = 0.647122 loss) +I0407 09:05:38.456039 15775 sgd_solver.cpp:105] Iteration 4800, lr = 0.001 +I0407 09:05:43.740249 15775 solver.cpp:218] Iteration 4812 (2.27093 iter/s, 5.28417s/12 iters), loss = 0.404581 +I0407 09:05:43.740301 15775 solver.cpp:237] Train net output #0: loss = 0.404581 (* 1 = 0.404581 loss) +I0407 09:05:43.740311 15775 sgd_solver.cpp:105] Iteration 4812, lr = 0.001 +I0407 09:05:49.137498 15775 solver.cpp:218] Iteration 4824 (2.2234 iter/s, 5.39715s/12 iters), loss = 0.475673 +I0407 09:05:49.137544 15775 solver.cpp:237] Train net output #0: loss = 0.475673 (* 1 = 0.475673 loss) +I0407 09:05:49.137552 15775 sgd_solver.cpp:105] Iteration 4824, lr = 0.001 +I0407 09:05:54.550299 15775 solver.cpp:218] Iteration 4836 (2.217 iter/s, 5.41271s/12 iters), loss = 0.497368 +I0407 09:05:54.550335 15775 solver.cpp:237] Train net output #0: loss = 0.497368 (* 1 = 0.497368 loss) +I0407 09:05:54.550341 15775 sgd_solver.cpp:105] Iteration 4836, lr = 0.001 +I0407 09:05:56.737411 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:05:59.944346 15775 solver.cpp:218] Iteration 4848 (2.22471 iter/s, 5.39396s/12 iters), loss = 0.532847 +I0407 09:05:59.944439 15775 solver.cpp:237] Train net output #0: loss = 0.532847 (* 1 = 0.532847 loss) +I0407 09:05:59.944448 15775 sgd_solver.cpp:105] Iteration 4848, lr = 0.001 +I0407 09:06:02.711995 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:05.087477 15775 solver.cpp:218] Iteration 4860 (2.33327 iter/s, 5.14299s/12 iters), loss = 0.45505 +I0407 09:06:05.087532 15775 solver.cpp:237] Train net output #0: loss = 0.45505 (* 1 = 0.45505 loss) +I0407 09:06:05.087543 15775 sgd_solver.cpp:105] Iteration 4860, lr = 0.001 +I0407 09:06:10.225678 15775 solver.cpp:218] Iteration 4872 (2.33549 iter/s, 5.1381s/12 iters), loss = 0.486844 +I0407 09:06:10.225736 15775 solver.cpp:237] Train net output #0: loss = 0.486844 (* 1 = 0.486844 loss) +I0407 09:06:10.225749 15775 sgd_solver.cpp:105] Iteration 4872, lr = 0.001 +I0407 09:06:15.503405 15775 solver.cpp:218] Iteration 4884 (2.27375 iter/s, 5.27763s/12 iters), loss = 0.521519 +I0407 09:06:15.503443 15775 solver.cpp:237] Train net output #0: loss = 0.521519 (* 1 = 0.521519 loss) +I0407 09:06:15.503451 15775 sgd_solver.cpp:105] Iteration 4884, lr = 0.001 +I0407 09:06:20.315640 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 09:06:24.802644 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 09:06:28.628176 15775 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 09:06:28.628194 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:06:31.081130 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:32.974284 15775 solver.cpp:397] Test net output #0: accuracy = 0.441789 +I0407 09:06:32.974318 15775 solver.cpp:397] Test net output #1: loss = 2.66151 (* 1 = 2.66151 loss) +I0407 09:06:33.112056 15775 solver.cpp:218] Iteration 4896 (0.681489 iter/s, 17.6085s/12 iters), loss = 0.453935 +I0407 09:06:33.113636 15775 solver.cpp:237] Train net output #0: loss = 0.453935 (* 1 = 0.453935 loss) +I0407 09:06:33.113651 15775 sgd_solver.cpp:105] Iteration 4896, lr = 0.001 +I0407 09:06:37.316689 15775 solver.cpp:218] Iteration 4908 (2.85509 iter/s, 4.20302s/12 iters), loss = 0.404954 +I0407 09:06:37.316725 15775 solver.cpp:237] Train net output #0: loss = 0.404954 (* 1 = 0.404954 loss) +I0407 09:06:37.316731 15775 sgd_solver.cpp:105] Iteration 4908, lr = 0.001 +I0407 09:06:42.537662 15775 solver.cpp:218] Iteration 4920 (2.29846 iter/s, 5.22089s/12 iters), loss = 0.48682 +I0407 09:06:42.537703 15775 solver.cpp:237] Train net output #0: loss = 0.48682 (* 1 = 0.48682 loss) +I0407 09:06:42.537711 15775 sgd_solver.cpp:105] Iteration 4920, lr = 0.001 +I0407 09:06:47.857817 15775 solver.cpp:218] Iteration 4932 (2.25561 iter/s, 5.32006s/12 iters), loss = 0.422833 +I0407 09:06:47.857861 15775 solver.cpp:237] Train net output #0: loss = 0.422833 (* 1 = 0.422833 loss) +I0407 09:06:47.857869 15775 sgd_solver.cpp:105] Iteration 4932, lr = 0.001 +I0407 09:06:53.024021 15775 solver.cpp:218] Iteration 4944 (2.32283 iter/s, 5.16612s/12 iters), loss = 0.736994 +I0407 09:06:53.024061 15775 solver.cpp:237] Train net output #0: loss = 0.736994 (* 1 = 0.736994 loss) +I0407 09:06:53.024070 15775 sgd_solver.cpp:105] Iteration 4944, lr = 0.001 +I0407 09:06:58.113512 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:58.363479 15775 solver.cpp:218] Iteration 4956 (2.24745 iter/s, 5.33937s/12 iters), loss = 0.257559 +I0407 09:06:58.363520 15775 solver.cpp:237] Train net output #0: loss = 0.257559 (* 1 = 0.257559 loss) +I0407 09:06:58.363528 15775 sgd_solver.cpp:105] Iteration 4956, lr = 0.001 +I0407 09:07:03.463129 15775 solver.cpp:218] Iteration 4968 (2.35314 iter/s, 5.09957s/12 iters), loss = 0.463503 +I0407 09:07:03.463276 15775 solver.cpp:237] Train net output #0: loss = 0.463503 (* 1 = 0.463503 loss) +I0407 09:07:03.463286 15775 sgd_solver.cpp:105] Iteration 4968, lr = 0.001 +I0407 09:07:08.507920 15775 solver.cpp:218] Iteration 4980 (2.37878 iter/s, 5.0446s/12 iters), loss = 0.321038 +I0407 09:07:08.507967 15775 solver.cpp:237] Train net output #0: loss = 0.321038 (* 1 = 0.321038 loss) +I0407 09:07:08.507975 15775 sgd_solver.cpp:105] Iteration 4980, lr = 0.001 +I0407 09:07:13.776091 15775 solver.cpp:218] Iteration 4992 (2.27787 iter/s, 5.26808s/12 iters), loss = 0.555252 +I0407 09:07:13.776134 15775 solver.cpp:237] Train net output #0: loss = 0.555252 (* 1 = 0.555252 loss) +I0407 09:07:13.776142 15775 sgd_solver.cpp:105] Iteration 4992, lr = 0.001 +I0407 09:07:15.963956 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 09:07:20.109221 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 09:07:23.931646 15775 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 09:07:23.931671 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:07:26.386466 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:28.365290 15775 solver.cpp:397] Test net output #0: accuracy = 0.438726 +I0407 09:07:28.365325 15775 solver.cpp:397] Test net output #1: loss = 2.68097 (* 1 = 2.68097 loss) +I0407 09:07:30.223515 15775 solver.cpp:218] Iteration 5004 (0.729604 iter/s, 16.4473s/12 iters), loss = 0.421536 +I0407 09:07:30.223557 15775 solver.cpp:237] Train net output #0: loss = 0.421536 (* 1 = 0.421536 loss) +I0407 09:07:30.223565 15775 sgd_solver.cpp:105] Iteration 5004, lr = 0.001 +I0407 09:07:35.260826 15775 solver.cpp:218] Iteration 5016 (2.38226 iter/s, 5.03723s/12 iters), loss = 0.52511 +I0407 09:07:35.260943 15775 solver.cpp:237] Train net output #0: loss = 0.52511 (* 1 = 0.52511 loss) +I0407 09:07:35.260951 15775 sgd_solver.cpp:105] Iteration 5016, lr = 0.001 +I0407 09:07:40.522143 15775 solver.cpp:218] Iteration 5028 (2.28087 iter/s, 5.26115s/12 iters), loss = 0.3936 +I0407 09:07:40.522193 15775 solver.cpp:237] Train net output #0: loss = 0.3936 (* 1 = 0.3936 loss) +I0407 09:07:40.522200 15775 sgd_solver.cpp:105] Iteration 5028, lr = 0.001 +I0407 09:07:45.788420 15775 solver.cpp:218] Iteration 5040 (2.27869 iter/s, 5.26618s/12 iters), loss = 0.376767 +I0407 09:07:45.788470 15775 solver.cpp:237] Train net output #0: loss = 0.376767 (* 1 = 0.376767 loss) +I0407 09:07:45.788481 15775 sgd_solver.cpp:105] Iteration 5040, lr = 0.001 +I0407 09:07:50.946496 15775 solver.cpp:218] Iteration 5052 (2.32649 iter/s, 5.15798s/12 iters), loss = 0.242453 +I0407 09:07:50.946539 15775 solver.cpp:237] Train net output #0: loss = 0.242453 (* 1 = 0.242453 loss) +I0407 09:07:50.946547 15775 sgd_solver.cpp:105] Iteration 5052, lr = 0.001 +I0407 09:07:52.883976 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:56.111919 15775 solver.cpp:218] Iteration 5064 (2.32318 iter/s, 5.16534s/12 iters), loss = 0.244843 +I0407 09:07:56.111960 15775 solver.cpp:237] Train net output #0: loss = 0.244843 (* 1 = 0.244843 loss) +I0407 09:07:56.111968 15775 sgd_solver.cpp:105] Iteration 5064, lr = 0.001 +I0407 09:08:00.923614 15775 solver.cpp:218] Iteration 5076 (2.49397 iter/s, 4.8116s/12 iters), loss = 0.500444 +I0407 09:08:00.923666 15775 solver.cpp:237] Train net output #0: loss = 0.500444 (* 1 = 0.500444 loss) +I0407 09:08:00.923676 15775 sgd_solver.cpp:105] Iteration 5076, lr = 0.001 +I0407 09:08:06.061163 15775 solver.cpp:218] Iteration 5088 (2.33579 iter/s, 5.13746s/12 iters), loss = 0.595614 +I0407 09:08:06.061321 15775 solver.cpp:237] Train net output #0: loss = 0.595614 (* 1 = 0.595614 loss) +I0407 09:08:06.061331 15775 sgd_solver.cpp:105] Iteration 5088, lr = 0.001 +I0407 09:08:10.765513 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 09:08:13.773679 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 09:08:17.540256 15775 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 09:08:17.540274 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:08:20.138463 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:08:22.162842 15775 solver.cpp:397] Test net output #0: accuracy = 0.430147 +I0407 09:08:22.162881 15775 solver.cpp:397] Test net output #1: loss = 2.70793 (* 1 = 2.70793 loss) +I0407 09:08:22.305063 15775 solver.cpp:218] Iteration 5100 (0.738751 iter/s, 16.2436s/12 iters), loss = 0.275051 +I0407 09:08:22.305115 15775 solver.cpp:237] Train net output #0: loss = 0.275051 (* 1 = 0.275051 loss) +I0407 09:08:22.305126 15775 sgd_solver.cpp:105] Iteration 5100, lr = 0.001 +I0407 09:08:26.450532 15775 solver.cpp:218] Iteration 5112 (2.89479 iter/s, 4.14538s/12 iters), loss = 0.508401 +I0407 09:08:26.450579 15775 solver.cpp:237] Train net output #0: loss = 0.508401 (* 1 = 0.508401 loss) +I0407 09:08:26.450588 15775 sgd_solver.cpp:105] Iteration 5112, lr = 0.001 +I0407 09:08:31.640405 15775 solver.cpp:218] Iteration 5124 (2.31223 iter/s, 5.18979s/12 iters), loss = 0.426809 +I0407 09:08:31.640448 15775 solver.cpp:237] Train net output #0: loss = 0.426809 (* 1 = 0.426809 loss) +I0407 09:08:31.640458 15775 sgd_solver.cpp:105] Iteration 5124, lr = 0.001 +I0407 09:08:36.769621 15775 solver.cpp:218] Iteration 5136 (2.33958 iter/s, 5.12913s/12 iters), loss = 0.451801 +I0407 09:08:36.769721 15775 solver.cpp:237] Train net output #0: loss = 0.451801 (* 1 = 0.451801 loss) +I0407 09:08:36.769731 15775 sgd_solver.cpp:105] Iteration 5136, lr = 0.001 +I0407 09:08:41.974227 15775 solver.cpp:218] Iteration 5148 (2.30571 iter/s, 5.20446s/12 iters), loss = 0.386817 +I0407 09:08:41.974273 15775 solver.cpp:237] Train net output #0: loss = 0.386817 (* 1 = 0.386817 loss) +I0407 09:08:41.974280 15775 sgd_solver.cpp:105] Iteration 5148, lr = 0.001 +I0407 09:08:46.054001 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:08:47.108743 15775 solver.cpp:218] Iteration 5160 (2.33717 iter/s, 5.13442s/12 iters), loss = 0.40317 +I0407 09:08:47.108783 15775 solver.cpp:237] Train net output #0: loss = 0.40317 (* 1 = 0.40317 loss) +I0407 09:08:47.108790 15775 sgd_solver.cpp:105] Iteration 5160, lr = 0.001 +I0407 09:08:52.307695 15775 solver.cpp:218] Iteration 5172 (2.3082 iter/s, 5.19887s/12 iters), loss = 0.445614 +I0407 09:08:52.307739 15775 solver.cpp:237] Train net output #0: loss = 0.445614 (* 1 = 0.445614 loss) +I0407 09:08:52.307745 15775 sgd_solver.cpp:105] Iteration 5172, lr = 0.001 +I0407 09:08:57.486552 15775 solver.cpp:218] Iteration 5184 (2.31715 iter/s, 5.17877s/12 iters), loss = 0.359337 +I0407 09:08:57.486598 15775 solver.cpp:237] Train net output #0: loss = 0.359337 (* 1 = 0.359337 loss) +I0407 09:08:57.486604 15775 sgd_solver.cpp:105] Iteration 5184, lr = 0.001 +I0407 09:09:02.676528 15775 solver.cpp:218] Iteration 5196 (2.31219 iter/s, 5.18989s/12 iters), loss = 0.376534 +I0407 09:09:02.676569 15775 solver.cpp:237] Train net output #0: loss = 0.376534 (* 1 = 0.376534 loss) +I0407 09:09:02.676578 15775 sgd_solver.cpp:105] Iteration 5196, lr = 0.001 +I0407 09:09:04.783414 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 09:09:07.699741 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 09:09:11.718523 15775 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 09:09:11.718555 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:09:13.977886 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:09:15.982782 15775 solver.cpp:397] Test net output #0: accuracy = 0.446691 +I0407 09:09:15.982821 15775 solver.cpp:397] Test net output #1: loss = 2.71229 (* 1 = 2.71229 loss) +I0407 09:09:17.789985 15775 solver.cpp:218] Iteration 5208 (0.794002 iter/s, 15.1133s/12 iters), loss = 0.394378 +I0407 09:09:17.790036 15775 solver.cpp:237] Train net output #0: loss = 0.394378 (* 1 = 0.394378 loss) +I0407 09:09:17.790046 15775 sgd_solver.cpp:105] Iteration 5208, lr = 0.001 +I0407 09:09:23.011348 15775 solver.cpp:218] Iteration 5220 (2.29829 iter/s, 5.22127s/12 iters), loss = 0.513069 +I0407 09:09:23.011391 15775 solver.cpp:237] Train net output #0: loss = 0.513069 (* 1 = 0.513069 loss) +I0407 09:09:23.011399 15775 sgd_solver.cpp:105] Iteration 5220, lr = 0.001 +I0407 09:09:28.416115 15775 solver.cpp:218] Iteration 5232 (2.2203 iter/s, 5.40468s/12 iters), loss = 0.43497 +I0407 09:09:28.416157 15775 solver.cpp:237] Train net output #0: loss = 0.43497 (* 1 = 0.43497 loss) +I0407 09:09:28.416163 15775 sgd_solver.cpp:105] Iteration 5232, lr = 0.001 +I0407 09:09:33.760748 15775 solver.cpp:218] Iteration 5244 (2.24528 iter/s, 5.34454s/12 iters), loss = 0.369734 +I0407 09:09:33.760797 15775 solver.cpp:237] Train net output #0: loss = 0.369734 (* 1 = 0.369734 loss) +I0407 09:09:33.760804 15775 sgd_solver.cpp:105] Iteration 5244, lr = 0.001 +I0407 09:09:39.070124 15775 solver.cpp:218] Iteration 5256 (2.26019 iter/s, 5.30929s/12 iters), loss = 0.387922 +I0407 09:09:39.070449 15775 solver.cpp:237] Train net output #0: loss = 0.387922 (* 1 = 0.387922 loss) +I0407 09:09:39.070458 15775 sgd_solver.cpp:105] Iteration 5256, lr = 0.001 +I0407 09:09:40.345707 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:09:44.093158 15775 solver.cpp:218] Iteration 5268 (2.38917 iter/s, 5.02267s/12 iters), loss = 0.33954 +I0407 09:09:44.093209 15775 solver.cpp:237] Train net output #0: loss = 0.33954 (* 1 = 0.33954 loss) +I0407 09:09:44.093219 15775 sgd_solver.cpp:105] Iteration 5268, lr = 0.001 +I0407 09:09:49.110445 15775 solver.cpp:218] Iteration 5280 (2.39178 iter/s, 5.01719s/12 iters), loss = 0.340514 +I0407 09:09:49.110496 15775 solver.cpp:237] Train net output #0: loss = 0.340514 (* 1 = 0.340514 loss) +I0407 09:09:49.110502 15775 sgd_solver.cpp:105] Iteration 5280, lr = 0.001 +I0407 09:09:54.434190 15775 solver.cpp:218] Iteration 5292 (2.25409 iter/s, 5.32365s/12 iters), loss = 0.330031 +I0407 09:09:54.434231 15775 solver.cpp:237] Train net output #0: loss = 0.330031 (* 1 = 0.330031 loss) +I0407 09:09:54.434237 15775 sgd_solver.cpp:105] Iteration 5292, lr = 0.001 +I0407 09:09:59.276857 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 09:10:02.296375 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 09:10:06.266897 15775 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 09:10:06.266921 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:10:08.473767 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:10:10.533097 15775 solver.cpp:397] Test net output #0: accuracy = 0.436887 +I0407 09:10:10.533537 15775 solver.cpp:397] Test net output #1: loss = 2.73422 (* 1 = 2.73422 loss) +I0407 09:10:10.674780 15775 solver.cpp:218] Iteration 5304 (0.738896 iter/s, 16.2405s/12 iters), loss = 0.381343 +I0407 09:10:10.674821 15775 solver.cpp:237] Train net output #0: loss = 0.381343 (* 1 = 0.381343 loss) +I0407 09:10:10.674829 15775 sgd_solver.cpp:105] Iteration 5304, lr = 0.001 +I0407 09:10:15.053171 15775 solver.cpp:218] Iteration 5316 (2.74079 iter/s, 4.3783s/12 iters), loss = 0.398986 +I0407 09:10:15.053221 15775 solver.cpp:237] Train net output #0: loss = 0.398986 (* 1 = 0.398986 loss) +I0407 09:10:15.053231 15775 sgd_solver.cpp:105] Iteration 5316, lr = 0.001 +I0407 09:10:20.345736 15775 solver.cpp:218] Iteration 5328 (2.26737 iter/s, 5.29247s/12 iters), loss = 0.446163 +I0407 09:10:20.345777 15775 solver.cpp:237] Train net output #0: loss = 0.446163 (* 1 = 0.446163 loss) +I0407 09:10:20.345784 15775 sgd_solver.cpp:105] Iteration 5328, lr = 0.001 +I0407 09:10:25.492197 15775 solver.cpp:218] Iteration 5340 (2.33174 iter/s, 5.14638s/12 iters), loss = 0.401424 +I0407 09:10:25.492236 15775 solver.cpp:237] Train net output #0: loss = 0.401424 (* 1 = 0.401424 loss) +I0407 09:10:25.492244 15775 sgd_solver.cpp:105] Iteration 5340, lr = 0.001 +I0407 09:10:30.641826 15775 solver.cpp:218] Iteration 5352 (2.3303 iter/s, 5.14955s/12 iters), loss = 0.328184 +I0407 09:10:30.641867 15775 solver.cpp:237] Train net output #0: loss = 0.328184 (* 1 = 0.328184 loss) +I0407 09:10:30.641875 15775 sgd_solver.cpp:105] Iteration 5352, lr = 0.001 +I0407 09:10:34.273046 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:10:35.878615 15775 solver.cpp:218] Iteration 5364 (2.29152 iter/s, 5.2367s/12 iters), loss = 0.582523 +I0407 09:10:35.878671 15775 solver.cpp:237] Train net output #0: loss = 0.582523 (* 1 = 0.582523 loss) +I0407 09:10:35.878681 15775 sgd_solver.cpp:105] Iteration 5364, lr = 0.001 +I0407 09:10:41.270638 15775 solver.cpp:218] Iteration 5376 (2.22555 iter/s, 5.39192s/12 iters), loss = 0.437618 +I0407 09:10:41.270761 15775 solver.cpp:237] Train net output #0: loss = 0.437618 (* 1 = 0.437618 loss) +I0407 09:10:41.270771 15775 sgd_solver.cpp:105] Iteration 5376, lr = 0.001 +I0407 09:10:46.527185 15775 solver.cpp:218] Iteration 5388 (2.28294 iter/s, 5.25638s/12 iters), loss = 0.401983 +I0407 09:10:46.527235 15775 solver.cpp:237] Train net output #0: loss = 0.401983 (* 1 = 0.401983 loss) +I0407 09:10:46.527242 15775 sgd_solver.cpp:105] Iteration 5388, lr = 0.001 +I0407 09:10:51.739082 15775 solver.cpp:218] Iteration 5400 (2.30246 iter/s, 5.21181s/12 iters), loss = 0.359214 +I0407 09:10:51.739128 15775 solver.cpp:237] Train net output #0: loss = 0.359214 (* 1 = 0.359214 loss) +I0407 09:10:51.739137 15775 sgd_solver.cpp:105] Iteration 5400, lr = 0.001 +I0407 09:10:53.870453 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 09:10:56.895673 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 09:11:00.669884 15775 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 09:11:00.669904 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:11:02.970017 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:05.204980 15775 solver.cpp:397] Test net output #0: accuracy = 0.443627 +I0407 09:11:05.205009 15775 solver.cpp:397] Test net output #1: loss = 2.70527 (* 1 = 2.70527 loss) +I0407 09:11:06.988399 15775 solver.cpp:218] Iteration 5412 (0.786928 iter/s, 15.2492s/12 iters), loss = 0.361524 +I0407 09:11:06.988435 15775 solver.cpp:237] Train net output #0: loss = 0.361524 (* 1 = 0.361524 loss) +I0407 09:11:06.988441 15775 sgd_solver.cpp:105] Iteration 5412, lr = 0.001 +I0407 09:11:12.302650 15775 solver.cpp:218] Iteration 5424 (2.25812 iter/s, 5.31417s/12 iters), loss = 0.390478 +I0407 09:11:12.302772 15775 solver.cpp:237] Train net output #0: loss = 0.390478 (* 1 = 0.390478 loss) +I0407 09:11:12.302779 15775 sgd_solver.cpp:105] Iteration 5424, lr = 0.001 +I0407 09:11:17.503516 15775 solver.cpp:218] Iteration 5436 (2.30738 iter/s, 5.2007s/12 iters), loss = 0.416625 +I0407 09:11:17.503562 15775 solver.cpp:237] Train net output #0: loss = 0.416625 (* 1 = 0.416625 loss) +I0407 09:11:17.503571 15775 sgd_solver.cpp:105] Iteration 5436, lr = 0.001 +I0407 09:11:22.718865 15775 solver.cpp:218] Iteration 5448 (2.30094 iter/s, 5.21526s/12 iters), loss = 0.555078 +I0407 09:11:22.718909 15775 solver.cpp:237] Train net output #0: loss = 0.555078 (* 1 = 0.555078 loss) +I0407 09:11:22.718917 15775 sgd_solver.cpp:105] Iteration 5448, lr = 0.001 +I0407 09:11:27.998435 15775 solver.cpp:218] Iteration 5460 (2.27295 iter/s, 5.27948s/12 iters), loss = 0.347554 +I0407 09:11:27.998481 15775 solver.cpp:237] Train net output #0: loss = 0.347554 (* 1 = 0.347554 loss) +I0407 09:11:27.998488 15775 sgd_solver.cpp:105] Iteration 5460, lr = 0.001 +I0407 09:11:28.480329 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:33.266258 15775 solver.cpp:218] Iteration 5472 (2.27802 iter/s, 5.26773s/12 iters), loss = 0.325262 +I0407 09:11:33.266304 15775 solver.cpp:237] Train net output #0: loss = 0.325262 (* 1 = 0.325262 loss) +I0407 09:11:33.266312 15775 sgd_solver.cpp:105] Iteration 5472, lr = 0.001 +I0407 09:11:38.589689 15775 solver.cpp:218] Iteration 5484 (2.25422 iter/s, 5.32334s/12 iters), loss = 0.239996 +I0407 09:11:38.589730 15775 solver.cpp:237] Train net output #0: loss = 0.239996 (* 1 = 0.239996 loss) +I0407 09:11:38.589737 15775 sgd_solver.cpp:105] Iteration 5484, lr = 0.001 +I0407 09:11:43.694125 15775 solver.cpp:218] Iteration 5496 (2.35093 iter/s, 5.10436s/12 iters), loss = 0.49047 +I0407 09:11:43.694240 15775 solver.cpp:237] Train net output #0: loss = 0.49047 (* 1 = 0.49047 loss) +I0407 09:11:43.694249 15775 sgd_solver.cpp:105] Iteration 5496, lr = 0.001 +I0407 09:11:48.541862 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 09:11:51.581852 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 09:11:55.519129 15775 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 09:11:55.519152 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:11:57.669137 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:59.957319 15775 solver.cpp:397] Test net output #0: accuracy = 0.449755 +I0407 09:11:59.957348 15775 solver.cpp:397] Test net output #1: loss = 2.70827 (* 1 = 2.70827 loss) +I0407 09:12:00.096560 15775 solver.cpp:218] Iteration 5508 (0.731608 iter/s, 16.4022s/12 iters), loss = 0.435671 +I0407 09:12:00.096606 15775 solver.cpp:237] Train net output #0: loss = 0.435671 (* 1 = 0.435671 loss) +I0407 09:12:00.096614 15775 sgd_solver.cpp:105] Iteration 5508, lr = 0.001 +I0407 09:12:04.584694 15775 solver.cpp:218] Iteration 5520 (2.67377 iter/s, 4.48805s/12 iters), loss = 0.486474 +I0407 09:12:04.584736 15775 solver.cpp:237] Train net output #0: loss = 0.486474 (* 1 = 0.486474 loss) +I0407 09:12:04.584744 15775 sgd_solver.cpp:105] Iteration 5520, lr = 0.001 +I0407 09:12:07.221652 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:12:09.839532 15775 solver.cpp:218] Iteration 5532 (2.28365 iter/s, 5.25475s/12 iters), loss = 0.388243 +I0407 09:12:09.839577 15775 solver.cpp:237] Train net output #0: loss = 0.388243 (* 1 = 0.388243 loss) +I0407 09:12:09.839586 15775 sgd_solver.cpp:105] Iteration 5532, lr = 0.001 +I0407 09:12:15.199622 15775 solver.cpp:218] Iteration 5544 (2.23881 iter/s, 5.35999s/12 iters), loss = 0.4577 +I0407 09:12:15.199759 15775 solver.cpp:237] Train net output #0: loss = 0.4577 (* 1 = 0.4577 loss) +I0407 09:12:15.199769 15775 sgd_solver.cpp:105] Iteration 5544, lr = 0.001 +I0407 09:12:20.509028 15775 solver.cpp:218] Iteration 5556 (2.26022 iter/s, 5.30923s/12 iters), loss = 0.371845 +I0407 09:12:20.509074 15775 solver.cpp:237] Train net output #0: loss = 0.371845 (* 1 = 0.371845 loss) +I0407 09:12:20.509083 15775 sgd_solver.cpp:105] Iteration 5556, lr = 0.001 +I0407 09:12:23.336166 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:25.852424 15775 solver.cpp:218] Iteration 5568 (2.2458 iter/s, 5.34331s/12 iters), loss = 0.368562 +I0407 09:12:25.852464 15775 solver.cpp:237] Train net output #0: loss = 0.368562 (* 1 = 0.368562 loss) +I0407 09:12:25.852473 15775 sgd_solver.cpp:105] Iteration 5568, lr = 0.001 +I0407 09:12:31.186988 15775 solver.cpp:218] Iteration 5580 (2.24952 iter/s, 5.33447s/12 iters), loss = 0.233938 +I0407 09:12:31.187036 15775 solver.cpp:237] Train net output #0: loss = 0.233938 (* 1 = 0.233938 loss) +I0407 09:12:31.187042 15775 sgd_solver.cpp:105] Iteration 5580, lr = 0.001 +I0407 09:12:36.420760 15775 solver.cpp:218] Iteration 5592 (2.29284 iter/s, 5.23368s/12 iters), loss = 0.297688 +I0407 09:12:36.420804 15775 solver.cpp:237] Train net output #0: loss = 0.297688 (* 1 = 0.297688 loss) +I0407 09:12:36.420812 15775 sgd_solver.cpp:105] Iteration 5592, lr = 0.001 +I0407 09:12:41.802987 15775 solver.cpp:218] Iteration 5604 (2.2296 iter/s, 5.38214s/12 iters), loss = 0.285659 +I0407 09:12:41.803033 15775 solver.cpp:237] Train net output #0: loss = 0.285659 (* 1 = 0.285659 loss) +I0407 09:12:41.803043 15775 sgd_solver.cpp:105] Iteration 5604, lr = 0.001 +I0407 09:12:43.969553 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 09:12:46.998581 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 09:12:51.282214 15775 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 09:12:51.282236 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:12:53.396136 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:55.557647 15775 solver.cpp:397] Test net output #0: accuracy = 0.447304 +I0407 09:12:55.557674 15775 solver.cpp:397] Test net output #1: loss = 2.75079 (* 1 = 2.75079 loss) +I0407 09:12:57.400132 15775 solver.cpp:218] Iteration 5616 (0.769379 iter/s, 15.597s/12 iters), loss = 0.415805 +I0407 09:12:57.400177 15775 solver.cpp:237] Train net output #0: loss = 0.415805 (* 1 = 0.415805 loss) +I0407 09:12:57.400183 15775 sgd_solver.cpp:105] Iteration 5616, lr = 0.001 +I0407 09:13:02.559154 15775 solver.cpp:218] Iteration 5628 (2.32606 iter/s, 5.15893s/12 iters), loss = 0.301313 +I0407 09:13:02.559199 15775 solver.cpp:237] Train net output #0: loss = 0.301313 (* 1 = 0.301313 loss) +I0407 09:13:02.559207 15775 sgd_solver.cpp:105] Iteration 5628, lr = 0.001 +I0407 09:13:07.882171 15775 solver.cpp:218] Iteration 5640 (2.2544 iter/s, 5.32292s/12 iters), loss = 0.290008 +I0407 09:13:07.882236 15775 solver.cpp:237] Train net output #0: loss = 0.290008 (* 1 = 0.290008 loss) +I0407 09:13:07.882248 15775 sgd_solver.cpp:105] Iteration 5640, lr = 0.001 +I0407 09:13:13.187527 15775 solver.cpp:218] Iteration 5652 (2.26191 iter/s, 5.30525s/12 iters), loss = 0.377742 +I0407 09:13:13.187566 15775 solver.cpp:237] Train net output #0: loss = 0.377742 (* 1 = 0.377742 loss) +I0407 09:13:13.187573 15775 sgd_solver.cpp:105] Iteration 5652, lr = 0.001 +I0407 09:13:18.404917 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:13:18.624631 15775 solver.cpp:218] Iteration 5664 (2.20709 iter/s, 5.43702s/12 iters), loss = 0.386929 +I0407 09:13:18.624680 15775 solver.cpp:237] Train net output #0: loss = 0.386929 (* 1 = 0.386929 loss) +I0407 09:13:18.624689 15775 sgd_solver.cpp:105] Iteration 5664, lr = 0.001 +I0407 09:13:23.963570 15775 solver.cpp:218] Iteration 5676 (2.24768 iter/s, 5.33885s/12 iters), loss = 0.354295 +I0407 09:13:23.963613 15775 solver.cpp:237] Train net output #0: loss = 0.354295 (* 1 = 0.354295 loss) +I0407 09:13:23.963619 15775 sgd_solver.cpp:105] Iteration 5676, lr = 0.001 +I0407 09:13:28.979180 15775 solver.cpp:218] Iteration 5688 (2.39257 iter/s, 5.01553s/12 iters), loss = 0.39756 +I0407 09:13:28.979219 15775 solver.cpp:237] Train net output #0: loss = 0.39756 (* 1 = 0.39756 loss) +I0407 09:13:28.979226 15775 sgd_solver.cpp:105] Iteration 5688, lr = 0.001 +I0407 09:13:34.222409 15775 solver.cpp:218] Iteration 5700 (2.28871 iter/s, 5.24314s/12 iters), loss = 0.285653 +I0407 09:13:34.222468 15775 solver.cpp:237] Train net output #0: loss = 0.285653 (* 1 = 0.285653 loss) +I0407 09:13:34.222479 15775 sgd_solver.cpp:105] Iteration 5700, lr = 0.001 +I0407 09:13:38.929769 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 09:13:41.925818 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 09:13:46.126065 15775 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 09:13:46.126091 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:13:48.209436 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:13:50.452641 15775 solver.cpp:397] Test net output #0: accuracy = 0.445466 +I0407 09:13:50.452783 15775 solver.cpp:397] Test net output #1: loss = 2.77747 (* 1 = 2.77747 loss) +I0407 09:13:50.593832 15775 solver.cpp:218] Iteration 5712 (0.732991 iter/s, 16.3713s/12 iters), loss = 0.40072 +I0407 09:13:50.593897 15775 solver.cpp:237] Train net output #0: loss = 0.40072 (* 1 = 0.40072 loss) +I0407 09:13:50.593906 15775 sgd_solver.cpp:105] Iteration 5712, lr = 0.001 +I0407 09:13:55.123366 15775 solver.cpp:218] Iteration 5724 (2.64934 iter/s, 4.52943s/12 iters), loss = 0.362709 +I0407 09:13:55.123405 15775 solver.cpp:237] Train net output #0: loss = 0.362709 (* 1 = 0.362709 loss) +I0407 09:13:55.123414 15775 sgd_solver.cpp:105] Iteration 5724, lr = 0.001 +I0407 09:14:00.300897 15775 solver.cpp:218] Iteration 5736 (2.31775 iter/s, 5.17745s/12 iters), loss = 0.297038 +I0407 09:14:00.300938 15775 solver.cpp:237] Train net output #0: loss = 0.297038 (* 1 = 0.297038 loss) +I0407 09:14:00.300947 15775 sgd_solver.cpp:105] Iteration 5736, lr = 0.001 +I0407 09:14:05.339259 15775 solver.cpp:218] Iteration 5748 (2.38176 iter/s, 5.03828s/12 iters), loss = 0.331039 +I0407 09:14:05.339301 15775 solver.cpp:237] Train net output #0: loss = 0.331039 (* 1 = 0.331039 loss) +I0407 09:14:05.339308 15775 sgd_solver.cpp:105] Iteration 5748, lr = 0.001 +I0407 09:14:10.492377 15775 solver.cpp:218] Iteration 5760 (2.32872 iter/s, 5.15304s/12 iters), loss = 0.3633 +I0407 09:14:10.492411 15775 solver.cpp:237] Train net output #0: loss = 0.3633 (* 1 = 0.3633 loss) +I0407 09:14:10.492419 15775 sgd_solver.cpp:105] Iteration 5760, lr = 0.001 +I0407 09:14:12.466830 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:14:15.822343 15775 solver.cpp:218] Iteration 5772 (2.25145 iter/s, 5.32989s/12 iters), loss = 0.373164 +I0407 09:14:15.822381 15775 solver.cpp:237] Train net output #0: loss = 0.373164 (* 1 = 0.373164 loss) +I0407 09:14:15.822387 15775 sgd_solver.cpp:105] Iteration 5772, lr = 0.001 +I0407 09:14:21.227795 15775 solver.cpp:218] Iteration 5784 (2.22002 iter/s, 5.40536s/12 iters), loss = 0.406163 +I0407 09:14:21.227943 15775 solver.cpp:237] Train net output #0: loss = 0.406163 (* 1 = 0.406163 loss) +I0407 09:14:21.227954 15775 sgd_solver.cpp:105] Iteration 5784, lr = 0.001 +I0407 09:14:26.360090 15775 solver.cpp:218] Iteration 5796 (2.33822 iter/s, 5.1321s/12 iters), loss = 0.349382 +I0407 09:14:26.360133 15775 solver.cpp:237] Train net output #0: loss = 0.349382 (* 1 = 0.349382 loss) +I0407 09:14:26.360141 15775 sgd_solver.cpp:105] Iteration 5796, lr = 0.001 +I0407 09:14:31.725678 15775 solver.cpp:218] Iteration 5808 (2.23651 iter/s, 5.3655s/12 iters), loss = 0.55251 +I0407 09:14:31.725731 15775 solver.cpp:237] Train net output #0: loss = 0.55251 (* 1 = 0.55251 loss) +I0407 09:14:31.725740 15775 sgd_solver.cpp:105] Iteration 5808, lr = 0.001 +I0407 09:14:33.720890 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 09:14:36.724138 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 09:14:40.965654 15775 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 09:14:40.965677 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:14:43.029147 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:14:45.287406 15775 solver.cpp:397] Test net output #0: accuracy = 0.438726 +I0407 09:14:45.287444 15775 solver.cpp:397] Test net output #1: loss = 2.80501 (* 1 = 2.80501 loss) +I0407 09:14:47.197544 15775 solver.cpp:218] Iteration 5820 (0.775609 iter/s, 15.4717s/12 iters), loss = 0.235191 +I0407 09:14:47.197587 15775 solver.cpp:237] Train net output #0: loss = 0.235191 (* 1 = 0.235191 loss) +I0407 09:14:47.197594 15775 sgd_solver.cpp:105] Iteration 5820, lr = 0.001 +I0407 09:14:52.306190 15775 solver.cpp:218] Iteration 5832 (2.349 iter/s, 5.10856s/12 iters), loss = 0.188562 +I0407 09:14:52.306310 15775 solver.cpp:237] Train net output #0: loss = 0.188562 (* 1 = 0.188562 loss) +I0407 09:14:52.306319 15775 sgd_solver.cpp:105] Iteration 5832, lr = 0.001 +I0407 09:14:57.541687 15775 solver.cpp:218] Iteration 5844 (2.29212 iter/s, 5.23533s/12 iters), loss = 0.300547 +I0407 09:14:57.541730 15775 solver.cpp:237] Train net output #0: loss = 0.300547 (* 1 = 0.300547 loss) +I0407 09:14:57.541738 15775 sgd_solver.cpp:105] Iteration 5844, lr = 0.001 +I0407 09:15:02.769807 15775 solver.cpp:218] Iteration 5856 (2.29532 iter/s, 5.22803s/12 iters), loss = 0.409564 +I0407 09:15:02.769847 15775 solver.cpp:237] Train net output #0: loss = 0.409564 (* 1 = 0.409564 loss) +I0407 09:15:02.769856 15775 sgd_solver.cpp:105] Iteration 5856, lr = 0.001 +I0407 09:15:07.276247 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:08.176786 15775 solver.cpp:218] Iteration 5868 (2.21939 iter/s, 5.40689s/12 iters), loss = 0.411655 +I0407 09:15:08.176836 15775 solver.cpp:237] Train net output #0: loss = 0.411655 (* 1 = 0.411655 loss) +I0407 09:15:08.176846 15775 sgd_solver.cpp:105] Iteration 5868, lr = 0.001 +I0407 09:15:13.331545 15775 solver.cpp:218] Iteration 5880 (2.32799 iter/s, 5.15467s/12 iters), loss = 0.278927 +I0407 09:15:13.331588 15775 solver.cpp:237] Train net output #0: loss = 0.278927 (* 1 = 0.278927 loss) +I0407 09:15:13.331595 15775 sgd_solver.cpp:105] Iteration 5880, lr = 0.001 +I0407 09:15:18.611021 15775 solver.cpp:218] Iteration 5892 (2.27299 iter/s, 5.27939s/12 iters), loss = 0.193341 +I0407 09:15:18.611060 15775 solver.cpp:237] Train net output #0: loss = 0.193341 (* 1 = 0.193341 loss) +I0407 09:15:18.611068 15775 sgd_solver.cpp:105] Iteration 5892, lr = 0.001 +I0407 09:15:23.971733 15775 solver.cpp:218] Iteration 5904 (2.23855 iter/s, 5.36062s/12 iters), loss = 0.268411 +I0407 09:15:23.971854 15775 solver.cpp:237] Train net output #0: loss = 0.268411 (* 1 = 0.268411 loss) +I0407 09:15:23.971864 15775 sgd_solver.cpp:105] Iteration 5904, lr = 0.001 +I0407 09:15:28.706732 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 09:15:31.721904 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 09:15:35.503019 15775 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 09:15:35.503044 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:15:37.546725 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:39.819389 15775 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 09:15:39.819424 15775 solver.cpp:397] Test net output #1: loss = 2.74277 (* 1 = 2.74277 loss) +I0407 09:15:39.960482 15775 solver.cpp:218] Iteration 5916 (0.750538 iter/s, 15.9885s/12 iters), loss = 0.282202 +I0407 09:15:39.960532 15775 solver.cpp:237] Train net output #0: loss = 0.282202 (* 1 = 0.282202 loss) +I0407 09:15:39.960542 15775 sgd_solver.cpp:105] Iteration 5916, lr = 0.001 +I0407 09:15:44.283449 15775 solver.cpp:218] Iteration 5928 (2.77593 iter/s, 4.32288s/12 iters), loss = 0.281583 +I0407 09:15:44.283493 15775 solver.cpp:237] Train net output #0: loss = 0.281583 (* 1 = 0.281583 loss) +I0407 09:15:44.283500 15775 sgd_solver.cpp:105] Iteration 5928, lr = 0.001 +I0407 09:15:49.482844 15775 solver.cpp:218] Iteration 5940 (2.308 iter/s, 5.1993s/12 iters), loss = 0.366568 +I0407 09:15:49.482892 15775 solver.cpp:237] Train net output #0: loss = 0.366568 (* 1 = 0.366568 loss) +I0407 09:15:49.482900 15775 sgd_solver.cpp:105] Iteration 5940, lr = 0.001 +I0407 09:15:54.713876 15775 solver.cpp:218] Iteration 5952 (2.29404 iter/s, 5.23094s/12 iters), loss = 0.307737 +I0407 09:15:54.714022 15775 solver.cpp:237] Train net output #0: loss = 0.307737 (* 1 = 0.307737 loss) +I0407 09:15:54.714033 15775 sgd_solver.cpp:105] Iteration 5952, lr = 0.001 +I0407 09:15:59.984127 15775 solver.cpp:218] Iteration 5964 (2.27701 iter/s, 5.27006s/12 iters), loss = 0.224172 +I0407 09:15:59.984169 15775 solver.cpp:237] Train net output #0: loss = 0.224172 (* 1 = 0.224172 loss) +I0407 09:15:59.984176 15775 sgd_solver.cpp:105] Iteration 5964, lr = 0.001 +I0407 09:16:01.414135 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:05.183826 15775 solver.cpp:218] Iteration 5976 (2.30787 iter/s, 5.19961s/12 iters), loss = 0.306742 +I0407 09:16:05.183872 15775 solver.cpp:237] Train net output #0: loss = 0.306742 (* 1 = 0.306742 loss) +I0407 09:16:05.183881 15775 sgd_solver.cpp:105] Iteration 5976, lr = 0.001 +I0407 09:16:10.427817 15775 solver.cpp:218] Iteration 5988 (2.28837 iter/s, 5.24391s/12 iters), loss = 0.294626 +I0407 09:16:10.427857 15775 solver.cpp:237] Train net output #0: loss = 0.294626 (* 1 = 0.294626 loss) +I0407 09:16:10.427865 15775 sgd_solver.cpp:105] Iteration 5988, lr = 0.001 +I0407 09:16:15.786296 15775 solver.cpp:218] Iteration 6000 (2.23948 iter/s, 5.35839s/12 iters), loss = 0.432341 +I0407 09:16:15.786342 15775 solver.cpp:237] Train net output #0: loss = 0.432341 (* 1 = 0.432341 loss) +I0407 09:16:15.786350 15775 sgd_solver.cpp:105] Iteration 6000, lr = 0.001 +I0407 09:16:21.180904 15775 solver.cpp:218] Iteration 6012 (2.22448 iter/s, 5.39451s/12 iters), loss = 0.444475 +I0407 09:16:21.180950 15775 solver.cpp:237] Train net output #0: loss = 0.444475 (* 1 = 0.444475 loss) +I0407 09:16:21.180958 15775 sgd_solver.cpp:105] Iteration 6012, lr = 0.001 +I0407 09:16:23.351966 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 09:16:26.439656 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 09:16:30.663496 15775 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 09:16:30.663518 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:16:32.606894 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:34.931211 15775 solver.cpp:397] Test net output #0: accuracy = 0.440564 +I0407 09:16:34.931246 15775 solver.cpp:397] Test net output #1: loss = 2.84365 (* 1 = 2.84365 loss) +I0407 09:16:36.872709 15775 solver.cpp:218] Iteration 6024 (0.764738 iter/s, 15.6917s/12 iters), loss = 0.320497 +I0407 09:16:36.872752 15775 solver.cpp:237] Train net output #0: loss = 0.320497 (* 1 = 0.320497 loss) +I0407 09:16:36.872761 15775 sgd_solver.cpp:105] Iteration 6024, lr = 0.001 +I0407 09:16:42.046986 15775 solver.cpp:218] Iteration 6036 (2.3192 iter/s, 5.17419s/12 iters), loss = 0.21396 +I0407 09:16:42.047031 15775 solver.cpp:237] Train net output #0: loss = 0.21396 (* 1 = 0.21396 loss) +I0407 09:16:42.047039 15775 sgd_solver.cpp:105] Iteration 6036, lr = 0.001 +I0407 09:16:47.413012 15775 solver.cpp:218] Iteration 6048 (2.23633 iter/s, 5.36594s/12 iters), loss = 0.374125 +I0407 09:16:47.413053 15775 solver.cpp:237] Train net output #0: loss = 0.374125 (* 1 = 0.374125 loss) +I0407 09:16:47.413061 15775 sgd_solver.cpp:105] Iteration 6048, lr = 0.001 +I0407 09:16:52.508862 15775 solver.cpp:218] Iteration 6060 (2.3549 iter/s, 5.09575s/12 iters), loss = 0.281376 +I0407 09:16:52.508934 15775 solver.cpp:237] Train net output #0: loss = 0.281376 (* 1 = 0.281376 loss) +I0407 09:16:52.508945 15775 sgd_solver.cpp:105] Iteration 6060, lr = 0.001 +I0407 09:16:56.124518 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:57.702108 15775 solver.cpp:218] Iteration 6072 (2.31074 iter/s, 5.19314s/12 iters), loss = 0.343484 +I0407 09:16:57.702239 15775 solver.cpp:237] Train net output #0: loss = 0.343484 (* 1 = 0.343484 loss) +I0407 09:16:57.702246 15775 sgd_solver.cpp:105] Iteration 6072, lr = 0.001 +I0407 09:17:02.436062 15775 solver.cpp:218] Iteration 6084 (2.53497 iter/s, 4.73378s/12 iters), loss = 0.307909 +I0407 09:17:02.436110 15775 solver.cpp:237] Train net output #0: loss = 0.307909 (* 1 = 0.307909 loss) +I0407 09:17:02.436118 15775 sgd_solver.cpp:105] Iteration 6084, lr = 0.001 +I0407 09:17:07.730564 15775 solver.cpp:218] Iteration 6096 (2.26654 iter/s, 5.29441s/12 iters), loss = 0.280985 +I0407 09:17:07.730618 15775 solver.cpp:237] Train net output #0: loss = 0.280985 (* 1 = 0.280985 loss) +I0407 09:17:07.730626 15775 sgd_solver.cpp:105] Iteration 6096, lr = 0.001 +I0407 09:17:12.858603 15775 solver.cpp:218] Iteration 6108 (2.34012 iter/s, 5.12794s/12 iters), loss = 0.336839 +I0407 09:17:12.858659 15775 solver.cpp:237] Train net output #0: loss = 0.336839 (* 1 = 0.336839 loss) +I0407 09:17:12.858673 15775 sgd_solver.cpp:105] Iteration 6108, lr = 0.001 +I0407 09:17:17.658614 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 09:17:20.696300 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 09:17:23.435640 15775 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 09:17:23.435668 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:17:25.386765 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:27.735812 15775 solver.cpp:397] Test net output #0: accuracy = 0.444853 +I0407 09:17:27.735918 15775 solver.cpp:397] Test net output #1: loss = 2.75512 (* 1 = 2.75512 loss) +I0407 09:17:27.877238 15775 solver.cpp:218] Iteration 6120 (0.799016 iter/s, 15.0185s/12 iters), loss = 0.243711 +I0407 09:17:27.878811 15775 solver.cpp:237] Train net output #0: loss = 0.243711 (* 1 = 0.243711 loss) +I0407 09:17:27.878830 15775 sgd_solver.cpp:105] Iteration 6120, lr = 0.001 +I0407 09:17:32.278841 15775 solver.cpp:218] Iteration 6132 (2.72727 iter/s, 4.4s/12 iters), loss = 0.187085 +I0407 09:17:32.278885 15775 solver.cpp:237] Train net output #0: loss = 0.187085 (* 1 = 0.187085 loss) +I0407 09:17:32.278893 15775 sgd_solver.cpp:105] Iteration 6132, lr = 0.001 +I0407 09:17:37.721616 15775 solver.cpp:218] Iteration 6144 (2.20479 iter/s, 5.44268s/12 iters), loss = 0.51436 +I0407 09:17:37.721657 15775 solver.cpp:237] Train net output #0: loss = 0.51436 (* 1 = 0.51436 loss) +I0407 09:17:37.721664 15775 sgd_solver.cpp:105] Iteration 6144, lr = 0.001 +I0407 09:17:43.127449 15775 solver.cpp:218] Iteration 6156 (2.21986 iter/s, 5.40574s/12 iters), loss = 0.308169 +I0407 09:17:43.127494 15775 solver.cpp:237] Train net output #0: loss = 0.308169 (* 1 = 0.308169 loss) +I0407 09:17:43.127503 15775 sgd_solver.cpp:105] Iteration 6156, lr = 0.001 +I0407 09:17:48.549486 15775 solver.cpp:218] Iteration 6168 (2.21323 iter/s, 5.42195s/12 iters), loss = 0.325754 +I0407 09:17:48.549531 15775 solver.cpp:237] Train net output #0: loss = 0.325754 (* 1 = 0.325754 loss) +I0407 09:17:48.549540 15775 sgd_solver.cpp:105] Iteration 6168, lr = 0.001 +I0407 09:17:49.174183 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:53.665202 15775 solver.cpp:218] Iteration 6180 (2.34575 iter/s, 5.11563s/12 iters), loss = 0.41277 +I0407 09:17:53.665244 15775 solver.cpp:237] Train net output #0: loss = 0.41277 (* 1 = 0.41277 loss) +I0407 09:17:53.665253 15775 sgd_solver.cpp:105] Iteration 6180, lr = 0.001 +I0407 09:17:59.011173 15775 solver.cpp:218] Iteration 6192 (2.24472 iter/s, 5.34588s/12 iters), loss = 0.26064 +I0407 09:17:59.011330 15775 solver.cpp:237] Train net output #0: loss = 0.26064 (* 1 = 0.26064 loss) +I0407 09:17:59.011339 15775 sgd_solver.cpp:105] Iteration 6192, lr = 0.001 +I0407 09:18:04.298141 15775 solver.cpp:218] Iteration 6204 (2.26982 iter/s, 5.28677s/12 iters), loss = 0.236829 +I0407 09:18:04.298192 15775 solver.cpp:237] Train net output #0: loss = 0.236829 (* 1 = 0.236829 loss) +I0407 09:18:04.298200 15775 sgd_solver.cpp:105] Iteration 6204, lr = 0.001 +I0407 09:18:09.635004 15775 solver.cpp:218] Iteration 6216 (2.24855 iter/s, 5.33677s/12 iters), loss = 0.313196 +I0407 09:18:09.635049 15775 solver.cpp:237] Train net output #0: loss = 0.313196 (* 1 = 0.313196 loss) +I0407 09:18:09.635057 15775 sgd_solver.cpp:105] Iteration 6216, lr = 0.001 +I0407 09:18:11.869948 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 09:18:14.862150 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 09:18:18.957327 15775 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 09:18:18.957360 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:18:20.966668 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:22.371922 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:18:23.609469 15775 solver.cpp:397] Test net output #0: accuracy = 0.449755 +I0407 09:18:23.609496 15775 solver.cpp:397] Test net output #1: loss = 2.78276 (* 1 = 2.78276 loss) +I0407 09:18:25.605654 15775 solver.cpp:218] Iteration 6228 (0.751385 iter/s, 15.9705s/12 iters), loss = 0.307971 +I0407 09:18:25.605693 15775 solver.cpp:237] Train net output #0: loss = 0.307971 (* 1 = 0.307971 loss) +I0407 09:18:25.605700 15775 sgd_solver.cpp:105] Iteration 6228, lr = 0.001 +I0407 09:18:30.167915 15775 solver.cpp:218] Iteration 6240 (2.63035 iter/s, 4.56213s/12 iters), loss = 0.279685 +I0407 09:18:30.168007 15775 solver.cpp:237] Train net output #0: loss = 0.279685 (* 1 = 0.279685 loss) +I0407 09:18:30.168015 15775 sgd_solver.cpp:105] Iteration 6240, lr = 0.001 +I0407 09:18:35.064991 15775 solver.cpp:218] Iteration 6252 (2.45051 iter/s, 4.89694s/12 iters), loss = 0.302416 +I0407 09:18:35.065027 15775 solver.cpp:237] Train net output #0: loss = 0.302416 (* 1 = 0.302416 loss) +I0407 09:18:35.065034 15775 sgd_solver.cpp:105] Iteration 6252, lr = 0.001 +I0407 09:18:40.255036 15775 solver.cpp:218] Iteration 6264 (2.3123 iter/s, 5.18965s/12 iters), loss = 0.339954 +I0407 09:18:40.255072 15775 solver.cpp:237] Train net output #0: loss = 0.339954 (* 1 = 0.339954 loss) +I0407 09:18:40.255079 15775 sgd_solver.cpp:105] Iteration 6264, lr = 0.001 +I0407 09:18:43.065871 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:45.531163 15775 solver.cpp:218] Iteration 6276 (2.27443 iter/s, 5.27604s/12 iters), loss = 0.159408 +I0407 09:18:45.531199 15775 solver.cpp:237] Train net output #0: loss = 0.159408 (* 1 = 0.159408 loss) +I0407 09:18:45.531208 15775 sgd_solver.cpp:105] Iteration 6276, lr = 0.001 +I0407 09:18:50.613139 15775 solver.cpp:218] Iteration 6288 (2.36132 iter/s, 5.08189s/12 iters), loss = 0.308655 +I0407 09:18:50.613179 15775 solver.cpp:237] Train net output #0: loss = 0.308655 (* 1 = 0.308655 loss) +I0407 09:18:50.613188 15775 sgd_solver.cpp:105] Iteration 6288, lr = 0.001 +I0407 09:18:55.756340 15775 solver.cpp:218] Iteration 6300 (2.33322 iter/s, 5.14311s/12 iters), loss = 0.353439 +I0407 09:18:55.756395 15775 solver.cpp:237] Train net output #0: loss = 0.353439 (* 1 = 0.353439 loss) +I0407 09:18:55.756405 15775 sgd_solver.cpp:105] Iteration 6300, lr = 0.001 +I0407 09:19:01.324177 15775 solver.cpp:218] Iteration 6312 (2.15527 iter/s, 5.56774s/12 iters), loss = 0.276341 +I0407 09:19:01.324265 15775 solver.cpp:237] Train net output #0: loss = 0.276341 (* 1 = 0.276341 loss) +I0407 09:19:01.324273 15775 sgd_solver.cpp:105] Iteration 6312, lr = 0.001 +I0407 09:19:05.819185 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 09:19:08.942359 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 09:19:11.253186 15775 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 09:19:11.253204 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:19:13.290565 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:19:15.856968 15775 solver.cpp:397] Test net output #0: accuracy = 0.464461 +I0407 09:19:15.857000 15775 solver.cpp:397] Test net output #1: loss = 2.76631 (* 1 = 2.76631 loss) +I0407 09:19:15.998006 15775 solver.cpp:218] Iteration 6324 (0.817792 iter/s, 14.6736s/12 iters), loss = 0.327632 +I0407 09:19:15.998046 15775 solver.cpp:237] Train net output #0: loss = 0.327632 (* 1 = 0.327632 loss) +I0407 09:19:15.998054 15775 sgd_solver.cpp:105] Iteration 6324, lr = 0.001 +I0407 09:19:20.390873 15775 solver.cpp:218] Iteration 6336 (2.73175 iter/s, 4.39278s/12 iters), loss = 0.208512 +I0407 09:19:20.390918 15775 solver.cpp:237] Train net output #0: loss = 0.208512 (* 1 = 0.208512 loss) +I0407 09:19:20.390928 15775 sgd_solver.cpp:105] Iteration 6336, lr = 0.001 +I0407 09:19:25.615737 15775 solver.cpp:218] Iteration 6348 (2.29675 iter/s, 5.22477s/12 iters), loss = 0.356951 +I0407 09:19:25.615780 15775 solver.cpp:237] Train net output #0: loss = 0.356951 (* 1 = 0.356951 loss) +I0407 09:19:25.615787 15775 sgd_solver.cpp:105] Iteration 6348, lr = 0.001 +I0407 09:19:30.982074 15775 solver.cpp:218] Iteration 6360 (2.2362 iter/s, 5.36625s/12 iters), loss = 0.222055 +I0407 09:19:30.982111 15775 solver.cpp:237] Train net output #0: loss = 0.222055 (* 1 = 0.222055 loss) +I0407 09:19:30.982118 15775 sgd_solver.cpp:105] Iteration 6360, lr = 0.001 +I0407 09:19:35.955412 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:19:36.148711 15775 solver.cpp:218] Iteration 6372 (2.32263 iter/s, 5.16655s/12 iters), loss = 0.204389 +I0407 09:19:36.148758 15775 solver.cpp:237] Train net output #0: loss = 0.204389 (* 1 = 0.204389 loss) +I0407 09:19:36.148766 15775 sgd_solver.cpp:105] Iteration 6372, lr = 0.001 +I0407 09:19:41.624541 15775 solver.cpp:218] Iteration 6384 (2.19148 iter/s, 5.47574s/12 iters), loss = 0.363674 +I0407 09:19:41.624579 15775 solver.cpp:237] Train net output #0: loss = 0.363674 (* 1 = 0.363674 loss) +I0407 09:19:41.624585 15775 sgd_solver.cpp:105] Iteration 6384, lr = 0.001 +I0407 09:19:46.631577 15775 solver.cpp:218] Iteration 6396 (2.39667 iter/s, 5.00696s/12 iters), loss = 0.230405 +I0407 09:19:46.631625 15775 solver.cpp:237] Train net output #0: loss = 0.230405 (* 1 = 0.230405 loss) +I0407 09:19:46.631633 15775 sgd_solver.cpp:105] Iteration 6396, lr = 0.001 +I0407 09:19:51.834936 15775 solver.cpp:218] Iteration 6408 (2.30624 iter/s, 5.20326s/12 iters), loss = 0.377213 +I0407 09:19:51.834981 15775 solver.cpp:237] Train net output #0: loss = 0.377213 (* 1 = 0.377213 loss) +I0407 09:19:51.834990 15775 sgd_solver.cpp:105] Iteration 6408, lr = 0.001 +I0407 09:19:57.186767 15775 solver.cpp:218] Iteration 6420 (2.24226 iter/s, 5.35174s/12 iters), loss = 0.416711 +I0407 09:19:57.186813 15775 solver.cpp:237] Train net output #0: loss = 0.416711 (* 1 = 0.416711 loss) +I0407 09:19:57.186821 15775 sgd_solver.cpp:105] Iteration 6420, lr = 0.001 +I0407 09:19:59.282276 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 09:20:02.298434 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 09:20:04.604593 15775 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 09:20:04.604614 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:20:06.465548 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:20:08.987555 15775 solver.cpp:397] Test net output #0: accuracy = 0.454657 +I0407 09:20:08.987587 15775 solver.cpp:397] Test net output #1: loss = 2.76495 (* 1 = 2.76495 loss) +I0407 09:20:10.967314 15775 solver.cpp:218] Iteration 6432 (0.870802 iter/s, 13.7804s/12 iters), loss = 0.26002 +I0407 09:20:10.967360 15775 solver.cpp:237] Train net output #0: loss = 0.26002 (* 1 = 0.26002 loss) +I0407 09:20:10.967368 15775 sgd_solver.cpp:105] Iteration 6432, lr = 0.001 +I0407 09:20:16.314647 15775 solver.cpp:218] Iteration 6444 (2.24415 iter/s, 5.34725s/12 iters), loss = 0.222394 +I0407 09:20:16.314685 15775 solver.cpp:237] Train net output #0: loss = 0.222394 (* 1 = 0.222394 loss) +I0407 09:20:16.314692 15775 sgd_solver.cpp:105] Iteration 6444, lr = 0.001 +I0407 09:20:21.741307 15775 solver.cpp:218] Iteration 6456 (2.21134 iter/s, 5.42658s/12 iters), loss = 0.298698 +I0407 09:20:21.741348 15775 solver.cpp:237] Train net output #0: loss = 0.298698 (* 1 = 0.298698 loss) +I0407 09:20:21.741355 15775 sgd_solver.cpp:105] Iteration 6456, lr = 0.001 +I0407 09:20:27.020097 15775 solver.cpp:218] Iteration 6468 (2.27328 iter/s, 5.27871s/12 iters), loss = 0.199493 +I0407 09:20:27.020136 15775 solver.cpp:237] Train net output #0: loss = 0.199493 (* 1 = 0.199493 loss) +I0407 09:20:27.020143 15775 sgd_solver.cpp:105] Iteration 6468, lr = 0.001 +I0407 09:20:29.174273 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:20:32.464991 15775 solver.cpp:218] Iteration 6480 (2.20394 iter/s, 5.44481s/12 iters), loss = 0.129308 +I0407 09:20:32.465040 15775 solver.cpp:237] Train net output #0: loss = 0.129308 (* 1 = 0.129308 loss) +I0407 09:20:32.465049 15775 sgd_solver.cpp:105] Iteration 6480, lr = 0.001 +I0407 09:20:37.806224 15775 solver.cpp:218] Iteration 6492 (2.24671 iter/s, 5.34114s/12 iters), loss = 0.295348 +I0407 09:20:37.806362 15775 solver.cpp:237] Train net output #0: loss = 0.295348 (* 1 = 0.295348 loss) +I0407 09:20:37.806371 15775 sgd_solver.cpp:105] Iteration 6492, lr = 0.001 +I0407 09:20:43.027145 15775 solver.cpp:218] Iteration 6504 (2.29852 iter/s, 5.22075s/12 iters), loss = 0.18256 +I0407 09:20:43.027181 15775 solver.cpp:237] Train net output #0: loss = 0.18256 (* 1 = 0.18256 loss) +I0407 09:20:43.027189 15775 sgd_solver.cpp:105] Iteration 6504, lr = 0.001 +I0407 09:20:48.236896 15775 solver.cpp:218] Iteration 6516 (2.30341 iter/s, 5.20967s/12 iters), loss = 0.239277 +I0407 09:20:48.236940 15775 solver.cpp:237] Train net output #0: loss = 0.239277 (* 1 = 0.239277 loss) +I0407 09:20:48.236948 15775 sgd_solver.cpp:105] Iteration 6516, lr = 0.001 +I0407 09:20:53.081871 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 09:20:56.083829 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 09:20:58.413501 15775 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 09:20:58.413524 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:21:00.256673 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:02.882701 15775 solver.cpp:397] Test net output #0: accuracy = 0.463848 +I0407 09:21:02.882750 15775 solver.cpp:397] Test net output #1: loss = 2.76706 (* 1 = 2.76706 loss) +I0407 09:21:03.023540 15775 solver.cpp:218] Iteration 6528 (0.811551 iter/s, 14.7865s/12 iters), loss = 0.208014 +I0407 09:21:03.023588 15775 solver.cpp:237] Train net output #0: loss = 0.208014 (* 1 = 0.208014 loss) +I0407 09:21:03.023598 15775 sgd_solver.cpp:105] Iteration 6528, lr = 0.001 +I0407 09:21:07.165570 15775 solver.cpp:218] Iteration 6540 (2.89719 iter/s, 4.14195s/12 iters), loss = 0.218569 +I0407 09:21:07.165611 15775 solver.cpp:237] Train net output #0: loss = 0.218569 (* 1 = 0.218569 loss) +I0407 09:21:07.165617 15775 sgd_solver.cpp:105] Iteration 6540, lr = 0.001 +I0407 09:21:12.717924 15775 solver.cpp:218] Iteration 6552 (2.16128 iter/s, 5.55227s/12 iters), loss = 0.338364 +I0407 09:21:12.718024 15775 solver.cpp:237] Train net output #0: loss = 0.338364 (* 1 = 0.338364 loss) +I0407 09:21:12.718034 15775 sgd_solver.cpp:105] Iteration 6552, lr = 0.001 +I0407 09:21:18.031579 15775 solver.cpp:218] Iteration 6564 (2.25839 iter/s, 5.31351s/12 iters), loss = 0.364762 +I0407 09:21:18.031622 15775 solver.cpp:237] Train net output #0: loss = 0.364762 (* 1 = 0.364762 loss) +I0407 09:21:18.031630 15775 sgd_solver.cpp:105] Iteration 6564, lr = 0.001 +I0407 09:21:22.526904 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:23.370098 15775 solver.cpp:218] Iteration 6576 (2.24785 iter/s, 5.33844s/12 iters), loss = 0.253794 +I0407 09:21:23.370134 15775 solver.cpp:237] Train net output #0: loss = 0.253794 (* 1 = 0.253794 loss) +I0407 09:21:23.370141 15775 sgd_solver.cpp:105] Iteration 6576, lr = 0.001 +I0407 09:21:28.653169 15775 solver.cpp:218] Iteration 6588 (2.27144 iter/s, 5.28299s/12 iters), loss = 0.203354 +I0407 09:21:28.653213 15775 solver.cpp:237] Train net output #0: loss = 0.203354 (* 1 = 0.203354 loss) +I0407 09:21:28.653221 15775 sgd_solver.cpp:105] Iteration 6588, lr = 0.001 +I0407 09:21:33.767733 15775 solver.cpp:218] Iteration 6600 (2.34628 iter/s, 5.11447s/12 iters), loss = 0.167006 +I0407 09:21:33.767787 15775 solver.cpp:237] Train net output #0: loss = 0.167006 (* 1 = 0.167006 loss) +I0407 09:21:33.767800 15775 sgd_solver.cpp:105] Iteration 6600, lr = 0.001 +I0407 09:21:38.879070 15775 solver.cpp:218] Iteration 6612 (2.34777 iter/s, 5.11124s/12 iters), loss = 0.309655 +I0407 09:21:38.879113 15775 solver.cpp:237] Train net output #0: loss = 0.309655 (* 1 = 0.309655 loss) +I0407 09:21:38.879122 15775 sgd_solver.cpp:105] Iteration 6612, lr = 0.001 +I0407 09:21:44.053776 15775 solver.cpp:218] Iteration 6624 (2.31901 iter/s, 5.17462s/12 iters), loss = 0.144556 +I0407 09:21:44.053963 15775 solver.cpp:237] Train net output #0: loss = 0.144556 (* 1 = 0.144556 loss) +I0407 09:21:44.053975 15775 sgd_solver.cpp:105] Iteration 6624, lr = 0.001 +I0407 09:21:45.894239 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 09:21:48.901021 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 09:21:51.221213 15775 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 09:21:51.221230 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:21:52.961287 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:55.500083 15775 solver.cpp:397] Test net output #0: accuracy = 0.461397 +I0407 09:21:55.500128 15775 solver.cpp:397] Test net output #1: loss = 2.81438 (* 1 = 2.81438 loss) +I0407 09:21:57.357625 15775 solver.cpp:218] Iteration 6636 (0.902013 iter/s, 13.3036s/12 iters), loss = 0.213364 +I0407 09:21:57.357669 15775 solver.cpp:237] Train net output #0: loss = 0.213364 (* 1 = 0.213364 loss) +I0407 09:21:57.357677 15775 sgd_solver.cpp:105] Iteration 6636, lr = 0.001 +I0407 09:22:02.556937 15775 solver.cpp:218] Iteration 6648 (2.30804 iter/s, 5.19923s/12 iters), loss = 0.236651 +I0407 09:22:02.556975 15775 solver.cpp:237] Train net output #0: loss = 0.236651 (* 1 = 0.236651 loss) +I0407 09:22:02.556982 15775 sgd_solver.cpp:105] Iteration 6648, lr = 0.001 +I0407 09:22:07.908561 15775 solver.cpp:218] Iteration 6660 (2.24235 iter/s, 5.35153s/12 iters), loss = 0.316051 +I0407 09:22:07.908608 15775 solver.cpp:237] Train net output #0: loss = 0.316051 (* 1 = 0.316051 loss) +I0407 09:22:07.908617 15775 sgd_solver.cpp:105] Iteration 6660, lr = 0.001 +I0407 09:22:13.164198 15775 solver.cpp:218] Iteration 6672 (2.2833 iter/s, 5.25555s/12 iters), loss = 0.186583 +I0407 09:22:13.164240 15775 solver.cpp:237] Train net output #0: loss = 0.186583 (* 1 = 0.186583 loss) +I0407 09:22:13.164248 15775 sgd_solver.cpp:105] Iteration 6672, lr = 0.001 +I0407 09:22:14.649796 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:18.665446 15775 solver.cpp:218] Iteration 6684 (2.18136 iter/s, 5.50116s/12 iters), loss = 0.175787 +I0407 09:22:18.665483 15775 solver.cpp:237] Train net output #0: loss = 0.175787 (* 1 = 0.175787 loss) +I0407 09:22:18.665490 15775 sgd_solver.cpp:105] Iteration 6684, lr = 0.001 +I0407 09:22:24.072660 15775 solver.cpp:218] Iteration 6696 (2.21929 iter/s, 5.40713s/12 iters), loss = 0.215263 +I0407 09:22:24.072705 15775 solver.cpp:237] Train net output #0: loss = 0.215263 (* 1 = 0.215263 loss) +I0407 09:22:24.072715 15775 sgd_solver.cpp:105] Iteration 6696, lr = 0.001 +I0407 09:22:29.545043 15775 solver.cpp:218] Iteration 6708 (2.19287 iter/s, 5.47229s/12 iters), loss = 0.301671 +I0407 09:22:29.545086 15775 solver.cpp:237] Train net output #0: loss = 0.301671 (* 1 = 0.301671 loss) +I0407 09:22:29.545094 15775 sgd_solver.cpp:105] Iteration 6708, lr = 0.001 +I0407 09:22:34.901809 15775 solver.cpp:218] Iteration 6720 (2.2402 iter/s, 5.35668s/12 iters), loss = 0.313318 +I0407 09:22:34.901854 15775 solver.cpp:237] Train net output #0: loss = 0.313318 (* 1 = 0.313318 loss) +I0407 09:22:34.901861 15775 sgd_solver.cpp:105] Iteration 6720, lr = 0.001 +I0407 09:22:39.680181 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 09:22:42.700763 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 09:22:45.048593 15775 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 09:22:45.048733 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:22:46.791031 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:49.488770 15775 solver.cpp:397] Test net output #0: accuracy = 0.453431 +I0407 09:22:49.488797 15775 solver.cpp:397] Test net output #1: loss = 2.83856 (* 1 = 2.83856 loss) +I0407 09:22:49.623991 15775 solver.cpp:218] Iteration 6732 (0.815104 iter/s, 14.722s/12 iters), loss = 0.183038 +I0407 09:22:49.625552 15775 solver.cpp:237] Train net output #0: loss = 0.183038 (* 1 = 0.183038 loss) +I0407 09:22:49.625566 15775 sgd_solver.cpp:105] Iteration 6732, lr = 0.0001 +I0407 09:22:54.010404 15775 solver.cpp:218] Iteration 6744 (2.73671 iter/s, 4.38482s/12 iters), loss = 0.190767 +I0407 09:22:54.010447 15775 solver.cpp:237] Train net output #0: loss = 0.190767 (* 1 = 0.190767 loss) +I0407 09:22:54.010457 15775 sgd_solver.cpp:105] Iteration 6744, lr = 0.0001 +I0407 09:22:59.217561 15775 solver.cpp:218] Iteration 6756 (2.30456 iter/s, 5.20707s/12 iters), loss = 0.307047 +I0407 09:22:59.217607 15775 solver.cpp:237] Train net output #0: loss = 0.307047 (* 1 = 0.307047 loss) +I0407 09:22:59.217614 15775 sgd_solver.cpp:105] Iteration 6756, lr = 0.0001 +I0407 09:23:04.586104 15775 solver.cpp:218] Iteration 6768 (2.23528 iter/s, 5.36845s/12 iters), loss = 0.363447 +I0407 09:23:04.586158 15775 solver.cpp:237] Train net output #0: loss = 0.363447 (* 1 = 0.363447 loss) +I0407 09:23:04.586169 15775 sgd_solver.cpp:105] Iteration 6768, lr = 0.0001 +I0407 09:23:08.283061 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:09.968047 15775 solver.cpp:218] Iteration 6780 (2.22972 iter/s, 5.38185s/12 iters), loss = 0.260021 +I0407 09:23:09.968086 15775 solver.cpp:237] Train net output #0: loss = 0.260021 (* 1 = 0.260021 loss) +I0407 09:23:09.968094 15775 sgd_solver.cpp:105] Iteration 6780, lr = 0.0001 +I0407 09:23:15.302354 15775 solver.cpp:218] Iteration 6792 (2.24963 iter/s, 5.33422s/12 iters), loss = 0.122612 +I0407 09:23:15.302444 15775 solver.cpp:237] Train net output #0: loss = 0.122612 (* 1 = 0.122612 loss) +I0407 09:23:15.302453 15775 sgd_solver.cpp:105] Iteration 6792, lr = 0.0001 +I0407 09:23:20.669766 15775 solver.cpp:218] Iteration 6804 (2.23577 iter/s, 5.36727s/12 iters), loss = 0.293254 +I0407 09:23:20.669811 15775 solver.cpp:237] Train net output #0: loss = 0.293254 (* 1 = 0.293254 loss) +I0407 09:23:20.669819 15775 sgd_solver.cpp:105] Iteration 6804, lr = 0.0001 +I0407 09:23:25.931326 15775 solver.cpp:218] Iteration 6816 (2.28073 iter/s, 5.26147s/12 iters), loss = 0.180989 +I0407 09:23:25.931370 15775 solver.cpp:237] Train net output #0: loss = 0.180989 (* 1 = 0.180989 loss) +I0407 09:23:25.931377 15775 sgd_solver.cpp:105] Iteration 6816, lr = 0.0001 +I0407 09:23:31.344229 15775 solver.cpp:218] Iteration 6828 (2.21696 iter/s, 5.41282s/12 iters), loss = 0.174703 +I0407 09:23:31.344270 15775 solver.cpp:237] Train net output #0: loss = 0.174703 (* 1 = 0.174703 loss) +I0407 09:23:31.344278 15775 sgd_solver.cpp:105] Iteration 6828, lr = 0.0001 +I0407 09:23:33.469743 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 09:23:36.559012 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 09:23:39.338321 15775 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 09:23:39.338340 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:23:41.064318 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:43.873749 15775 solver.cpp:397] Test net output #0: accuracy = 0.458946 +I0407 09:23:43.873791 15775 solver.cpp:397] Test net output #1: loss = 2.79776 (* 1 = 2.79776 loss) +I0407 09:23:45.886940 15775 solver.cpp:218] Iteration 6840 (0.825163 iter/s, 14.5426s/12 iters), loss = 0.10646 +I0407 09:23:45.887046 15775 solver.cpp:237] Train net output #0: loss = 0.10646 (* 1 = 0.10646 loss) +I0407 09:23:45.887055 15775 sgd_solver.cpp:105] Iteration 6840, lr = 0.0001 +I0407 09:23:51.093634 15775 solver.cpp:218] Iteration 6852 (2.30479 iter/s, 5.20655s/12 iters), loss = 0.239638 +I0407 09:23:51.093672 15775 solver.cpp:237] Train net output #0: loss = 0.239638 (* 1 = 0.239638 loss) +I0407 09:23:51.093679 15775 sgd_solver.cpp:105] Iteration 6852, lr = 0.0001 +I0407 09:23:56.519966 15775 solver.cpp:218] Iteration 6864 (2.21147 iter/s, 5.42624s/12 iters), loss = 0.206385 +I0407 09:23:56.520020 15775 solver.cpp:237] Train net output #0: loss = 0.206385 (* 1 = 0.206385 loss) +I0407 09:23:56.520030 15775 sgd_solver.cpp:105] Iteration 6864, lr = 0.0001 +I0407 09:24:01.895184 15775 solver.cpp:218] Iteration 6876 (2.23251 iter/s, 5.37512s/12 iters), loss = 0.236434 +I0407 09:24:01.895224 15775 solver.cpp:237] Train net output #0: loss = 0.236434 (* 1 = 0.236434 loss) +I0407 09:24:01.895232 15775 sgd_solver.cpp:105] Iteration 6876, lr = 0.0001 +I0407 09:24:02.547231 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:07.089821 15775 solver.cpp:218] Iteration 6888 (2.31011 iter/s, 5.19455s/12 iters), loss = 0.197228 +I0407 09:24:07.089864 15775 solver.cpp:237] Train net output #0: loss = 0.197228 (* 1 = 0.197228 loss) +I0407 09:24:07.089871 15775 sgd_solver.cpp:105] Iteration 6888, lr = 0.0001 +I0407 09:24:12.294006 15775 solver.cpp:218] Iteration 6900 (2.30588 iter/s, 5.20409s/12 iters), loss = 0.226616 +I0407 09:24:12.294055 15775 solver.cpp:237] Train net output #0: loss = 0.226616 (* 1 = 0.226616 loss) +I0407 09:24:12.294064 15775 sgd_solver.cpp:105] Iteration 6900, lr = 0.0001 +I0407 09:24:17.753196 15775 solver.cpp:218] Iteration 6912 (2.19817 iter/s, 5.4591s/12 iters), loss = 0.195279 +I0407 09:24:17.753319 15775 solver.cpp:237] Train net output #0: loss = 0.195279 (* 1 = 0.195279 loss) +I0407 09:24:17.753326 15775 sgd_solver.cpp:105] Iteration 6912, lr = 0.0001 +I0407 09:24:22.912312 15775 solver.cpp:218] Iteration 6924 (2.32606 iter/s, 5.15895s/12 iters), loss = 0.131771 +I0407 09:24:22.912361 15775 solver.cpp:237] Train net output #0: loss = 0.131771 (* 1 = 0.131771 loss) +I0407 09:24:22.912370 15775 sgd_solver.cpp:105] Iteration 6924, lr = 0.0001 +I0407 09:24:27.696444 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 09:24:30.739472 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 09:24:33.038204 15775 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 09:24:33.038224 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:24:33.610102 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:24:34.650631 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:37.420328 15775 solver.cpp:397] Test net output #0: accuracy = 0.458946 +I0407 09:24:37.420361 15775 solver.cpp:397] Test net output #1: loss = 2.78671 (* 1 = 2.78671 loss) +I0407 09:24:37.561210 15775 solver.cpp:218] Iteration 6936 (0.819182 iter/s, 14.6488s/12 iters), loss = 0.192647 +I0407 09:24:37.561255 15775 solver.cpp:237] Train net output #0: loss = 0.192647 (* 1 = 0.192647 loss) +I0407 09:24:37.561264 15775 sgd_solver.cpp:105] Iteration 6936, lr = 0.0001 +I0407 09:24:41.959784 15775 solver.cpp:218] Iteration 6948 (2.72821 iter/s, 4.39849s/12 iters), loss = 0.156775 +I0407 09:24:41.959831 15775 solver.cpp:237] Train net output #0: loss = 0.156775 (* 1 = 0.156775 loss) +I0407 09:24:41.959841 15775 sgd_solver.cpp:105] Iteration 6948, lr = 0.0001 +I0407 09:24:47.393568 15775 solver.cpp:218] Iteration 6960 (2.20844 iter/s, 5.43369s/12 iters), loss = 0.201708 +I0407 09:24:47.393611 15775 solver.cpp:237] Train net output #0: loss = 0.201708 (* 1 = 0.201708 loss) +I0407 09:24:47.393620 15775 sgd_solver.cpp:105] Iteration 6960, lr = 0.0001 +I0407 09:24:52.742414 15775 solver.cpp:218] Iteration 6972 (2.24351 iter/s, 5.34876s/12 iters), loss = 0.168353 +I0407 09:24:52.742547 15775 solver.cpp:237] Train net output #0: loss = 0.168353 (* 1 = 0.168353 loss) +I0407 09:24:52.742558 15775 sgd_solver.cpp:105] Iteration 6972, lr = 0.0001 +I0407 09:24:55.496652 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:58.018937 15775 solver.cpp:218] Iteration 6984 (2.2743 iter/s, 5.27635s/12 iters), loss = 0.258954 +I0407 09:24:58.018981 15775 solver.cpp:237] Train net output #0: loss = 0.258954 (* 1 = 0.258954 loss) +I0407 09:24:58.018990 15775 sgd_solver.cpp:105] Iteration 6984, lr = 0.0001 +I0407 09:25:03.296555 15775 solver.cpp:218] Iteration 6996 (2.27379 iter/s, 5.27753s/12 iters), loss = 0.203726 +I0407 09:25:03.296595 15775 solver.cpp:237] Train net output #0: loss = 0.203726 (* 1 = 0.203726 loss) +I0407 09:25:03.296603 15775 sgd_solver.cpp:105] Iteration 6996, lr = 0.0001 +I0407 09:25:08.577530 15775 solver.cpp:218] Iteration 7008 (2.27234 iter/s, 5.28089s/12 iters), loss = 0.196518 +I0407 09:25:08.577577 15775 solver.cpp:237] Train net output #0: loss = 0.196518 (* 1 = 0.196518 loss) +I0407 09:25:08.577585 15775 sgd_solver.cpp:105] Iteration 7008, lr = 0.0001 +I0407 09:25:13.769346 15775 solver.cpp:218] Iteration 7020 (2.31137 iter/s, 5.19173s/12 iters), loss = 0.244629 +I0407 09:25:13.769388 15775 solver.cpp:237] Train net output #0: loss = 0.244629 (* 1 = 0.244629 loss) +I0407 09:25:13.769397 15775 sgd_solver.cpp:105] Iteration 7020, lr = 0.0001 +I0407 09:25:19.079790 15775 solver.cpp:218] Iteration 7032 (2.25974 iter/s, 5.31036s/12 iters), loss = 0.209226 +I0407 09:25:19.079833 15775 solver.cpp:237] Train net output #0: loss = 0.209226 (* 1 = 0.209226 loss) +I0407 09:25:19.079839 15775 sgd_solver.cpp:105] Iteration 7032, lr = 0.0001 +I0407 09:25:21.278338 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 09:25:24.289050 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 09:25:26.591805 15775 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 09:25:26.591825 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:25:28.216323 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:25:30.915727 15775 solver.cpp:397] Test net output #0: accuracy = 0.46201 +I0407 09:25:30.915762 15775 solver.cpp:397] Test net output #1: loss = 2.7773 (* 1 = 2.7773 loss) +I0407 09:25:32.772975 15775 solver.cpp:218] Iteration 7044 (0.876356 iter/s, 13.6931s/12 iters), loss = 0.212891 +I0407 09:25:32.773013 15775 solver.cpp:237] Train net output #0: loss = 0.212891 (* 1 = 0.212891 loss) +I0407 09:25:32.773021 15775 sgd_solver.cpp:105] Iteration 7044, lr = 0.0001 +I0407 09:25:37.987907 15775 solver.cpp:218] Iteration 7056 (2.30112 iter/s, 5.21485s/12 iters), loss = 0.214166 +I0407 09:25:37.987958 15775 solver.cpp:237] Train net output #0: loss = 0.214166 (* 1 = 0.214166 loss) +I0407 09:25:37.987968 15775 sgd_solver.cpp:105] Iteration 7056, lr = 0.0001 +I0407 09:25:43.364807 15775 solver.cpp:218] Iteration 7068 (2.23181 iter/s, 5.3768s/12 iters), loss = 0.177785 +I0407 09:25:43.364852 15775 solver.cpp:237] Train net output #0: loss = 0.177785 (* 1 = 0.177785 loss) +I0407 09:25:43.364859 15775 sgd_solver.cpp:105] Iteration 7068, lr = 0.0001 +I0407 09:25:48.615677 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:25:48.781451 15775 solver.cpp:218] Iteration 7080 (2.21543 iter/s, 5.41655s/12 iters), loss = 0.121524 +I0407 09:25:48.781493 15775 solver.cpp:237] Train net output #0: loss = 0.121524 (* 1 = 0.121524 loss) +I0407 09:25:48.781502 15775 sgd_solver.cpp:105] Iteration 7080, lr = 0.0001 +I0407 09:25:54.202718 15775 solver.cpp:218] Iteration 7092 (2.21354 iter/s, 5.42118s/12 iters), loss = 0.168077 +I0407 09:25:54.202757 15775 solver.cpp:237] Train net output #0: loss = 0.168077 (* 1 = 0.168077 loss) +I0407 09:25:54.202765 15775 sgd_solver.cpp:105] Iteration 7092, lr = 0.0001 +I0407 09:25:59.596101 15775 solver.cpp:218] Iteration 7104 (2.22498 iter/s, 5.3933s/12 iters), loss = 0.217399 +I0407 09:25:59.596268 15775 solver.cpp:237] Train net output #0: loss = 0.217399 (* 1 = 0.217399 loss) +I0407 09:25:59.596279 15775 sgd_solver.cpp:105] Iteration 7104, lr = 0.0001 +I0407 09:26:05.042435 15775 solver.cpp:218] Iteration 7116 (2.2034 iter/s, 5.44613s/12 iters), loss = 0.307791 +I0407 09:26:05.042479 15775 solver.cpp:237] Train net output #0: loss = 0.307791 (* 1 = 0.307791 loss) +I0407 09:26:05.042486 15775 sgd_solver.cpp:105] Iteration 7116, lr = 0.0001 +I0407 09:26:10.358634 15775 solver.cpp:218] Iteration 7128 (2.25729 iter/s, 5.31611s/12 iters), loss = 0.206883 +I0407 09:26:10.358675 15775 solver.cpp:237] Train net output #0: loss = 0.206883 (* 1 = 0.206883 loss) +I0407 09:26:10.358681 15775 sgd_solver.cpp:105] Iteration 7128, lr = 0.0001 +I0407 09:26:14.988117 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 09:26:18.013643 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 09:26:20.323123 15775 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 09:26:20.323144 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:26:21.842883 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:24.604226 15775 solver.cpp:397] Test net output #0: accuracy = 0.463235 +I0407 09:26:24.604257 15775 solver.cpp:397] Test net output #1: loss = 2.77018 (* 1 = 2.77018 loss) +I0407 09:26:24.739362 15775 solver.cpp:218] Iteration 7140 (0.834458 iter/s, 14.3806s/12 iters), loss = 0.159387 +I0407 09:26:24.739421 15775 solver.cpp:237] Train net output #0: loss = 0.159387 (* 1 = 0.159387 loss) +I0407 09:26:24.739431 15775 sgd_solver.cpp:105] Iteration 7140, lr = 0.0001 +I0407 09:26:29.023591 15775 solver.cpp:218] Iteration 7152 (2.80103 iter/s, 4.28414s/12 iters), loss = 0.228182 +I0407 09:26:29.023630 15775 solver.cpp:237] Train net output #0: loss = 0.228182 (* 1 = 0.228182 loss) +I0407 09:26:29.023638 15775 sgd_solver.cpp:105] Iteration 7152, lr = 0.0001 +I0407 09:26:34.230108 15775 solver.cpp:218] Iteration 7164 (2.30484 iter/s, 5.20643s/12 iters), loss = 0.152388 +I0407 09:26:34.230206 15775 solver.cpp:237] Train net output #0: loss = 0.152388 (* 1 = 0.152388 loss) +I0407 09:26:34.230216 15775 sgd_solver.cpp:105] Iteration 7164, lr = 0.0001 +I0407 09:26:39.422395 15775 solver.cpp:218] Iteration 7176 (2.31118 iter/s, 5.19215s/12 iters), loss = 0.231802 +I0407 09:26:39.422437 15775 solver.cpp:237] Train net output #0: loss = 0.231802 (* 1 = 0.231802 loss) +I0407 09:26:39.422444 15775 sgd_solver.cpp:105] Iteration 7176, lr = 0.0001 +I0407 09:26:41.674469 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:44.828414 15775 solver.cpp:218] Iteration 7188 (2.21978 iter/s, 5.40593s/12 iters), loss = 0.213253 +I0407 09:26:44.828459 15775 solver.cpp:237] Train net output #0: loss = 0.213253 (* 1 = 0.213253 loss) +I0407 09:26:44.828467 15775 sgd_solver.cpp:105] Iteration 7188, lr = 0.0001 +I0407 09:26:49.981614 15775 solver.cpp:218] Iteration 7200 (2.32869 iter/s, 5.15311s/12 iters), loss = 0.250984 +I0407 09:26:49.981654 15775 solver.cpp:237] Train net output #0: loss = 0.250984 (* 1 = 0.250984 loss) +I0407 09:26:49.981662 15775 sgd_solver.cpp:105] Iteration 7200, lr = 0.0001 +I0407 09:26:55.358340 15775 solver.cpp:218] Iteration 7212 (2.23188 iter/s, 5.37664s/12 iters), loss = 0.288394 +I0407 09:26:55.358381 15775 solver.cpp:237] Train net output #0: loss = 0.288394 (* 1 = 0.288394 loss) +I0407 09:26:55.358389 15775 sgd_solver.cpp:105] Iteration 7212, lr = 0.0001 +I0407 09:27:00.563890 15775 solver.cpp:218] Iteration 7224 (2.30527 iter/s, 5.20546s/12 iters), loss = 0.300839 +I0407 09:27:00.563942 15775 solver.cpp:237] Train net output #0: loss = 0.300839 (* 1 = 0.300839 loss) +I0407 09:27:00.563952 15775 sgd_solver.cpp:105] Iteration 7224, lr = 0.0001 +I0407 09:27:05.793032 15775 solver.cpp:218] Iteration 7236 (2.29487 iter/s, 5.22904s/12 iters), loss = 0.200409 +I0407 09:27:05.793154 15775 solver.cpp:237] Train net output #0: loss = 0.200409 (* 1 = 0.200409 loss) +I0407 09:27:05.793161 15775 sgd_solver.cpp:105] Iteration 7236, lr = 0.0001 +I0407 09:27:07.928663 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 09:27:10.926934 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 09:27:13.238765 15775 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 09:27:13.238790 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:27:14.718250 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:27:17.490237 15775 solver.cpp:397] Test net output #0: accuracy = 0.463235 +I0407 09:27:17.490288 15775 solver.cpp:397] Test net output #1: loss = 2.78559 (* 1 = 2.78559 loss) +I0407 09:27:19.468350 15775 solver.cpp:218] Iteration 7248 (0.877507 iter/s, 13.6751s/12 iters), loss = 0.34004 +I0407 09:27:19.468400 15775 solver.cpp:237] Train net output #0: loss = 0.34004 (* 1 = 0.34004 loss) +I0407 09:27:19.468407 15775 sgd_solver.cpp:105] Iteration 7248, lr = 0.0001 +I0407 09:27:24.873795 15775 solver.cpp:218] Iteration 7260 (2.22002 iter/s, 5.40535s/12 iters), loss = 0.156104 +I0407 09:27:24.873839 15775 solver.cpp:237] Train net output #0: loss = 0.156104 (* 1 = 0.156104 loss) +I0407 09:27:24.873847 15775 sgd_solver.cpp:105] Iteration 7260, lr = 0.0001 +I0407 09:27:30.255923 15775 solver.cpp:218] Iteration 7272 (2.22964 iter/s, 5.38204s/12 iters), loss = 0.190749 +I0407 09:27:30.255970 15775 solver.cpp:237] Train net output #0: loss = 0.190749 (* 1 = 0.190749 loss) +I0407 09:27:30.255978 15775 sgd_solver.cpp:105] Iteration 7272, lr = 0.0001 +I0407 09:27:34.838030 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:27:35.669123 15775 solver.cpp:218] Iteration 7284 (2.21684 iter/s, 5.41311s/12 iters), loss = 0.145423 +I0407 09:27:35.669170 15775 solver.cpp:237] Train net output #0: loss = 0.145423 (* 1 = 0.145423 loss) +I0407 09:27:35.669178 15775 sgd_solver.cpp:105] Iteration 7284, lr = 0.0001 +I0407 09:27:40.753870 15775 solver.cpp:218] Iteration 7296 (2.36004 iter/s, 5.08465s/12 iters), loss = 0.206602 +I0407 09:27:40.753979 15775 solver.cpp:237] Train net output #0: loss = 0.206602 (* 1 = 0.206602 loss) +I0407 09:27:40.753988 15775 sgd_solver.cpp:105] Iteration 7296, lr = 0.0001 +I0407 09:27:45.683147 15775 solver.cpp:218] Iteration 7308 (2.43451 iter/s, 4.92913s/12 iters), loss = 0.219412 +I0407 09:27:45.683192 15775 solver.cpp:237] Train net output #0: loss = 0.219412 (* 1 = 0.219412 loss) +I0407 09:27:45.683199 15775 sgd_solver.cpp:105] Iteration 7308, lr = 0.0001 +I0407 09:27:50.881042 15775 solver.cpp:218] Iteration 7320 (2.30866 iter/s, 5.19781s/12 iters), loss = 0.180196 +I0407 09:27:50.881074 15775 solver.cpp:237] Train net output #0: loss = 0.180196 (* 1 = 0.180196 loss) +I0407 09:27:50.881081 15775 sgd_solver.cpp:105] Iteration 7320, lr = 0.0001 +I0407 09:27:56.054044 15775 solver.cpp:218] Iteration 7332 (2.31977 iter/s, 5.17293s/12 iters), loss = 0.151155 +I0407 09:27:56.054086 15775 solver.cpp:237] Train net output #0: loss = 0.151155 (* 1 = 0.151155 loss) +I0407 09:27:56.054095 15775 sgd_solver.cpp:105] Iteration 7332, lr = 0.0001 +I0407 09:28:00.701388 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 09:28:03.728799 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 09:28:06.156183 15775 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 09:28:06.156201 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:28:07.685220 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:28:10.496357 15775 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 09:28:10.496397 15775 solver.cpp:397] Test net output #1: loss = 2.77412 (* 1 = 2.77412 loss) +I0407 09:28:10.630676 15775 solver.cpp:218] Iteration 7344 (0.823243 iter/s, 14.5765s/12 iters), loss = 0.190714 +I0407 09:28:10.630723 15775 solver.cpp:237] Train net output #0: loss = 0.190714 (* 1 = 0.190714 loss) +I0407 09:28:10.630731 15775 sgd_solver.cpp:105] Iteration 7344, lr = 0.0001 +I0407 09:28:14.940886 15775 solver.cpp:218] Iteration 7356 (2.78414 iter/s, 4.31012s/12 iters), loss = 0.234899 +I0407 09:28:14.941037 15775 solver.cpp:237] Train net output #0: loss = 0.234899 (* 1 = 0.234899 loss) +I0407 09:28:14.941048 15775 sgd_solver.cpp:105] Iteration 7356, lr = 0.0001 +I0407 09:28:20.372488 15775 solver.cpp:218] Iteration 7368 (2.20937 iter/s, 5.43141s/12 iters), loss = 0.171428 +I0407 09:28:20.372529 15775 solver.cpp:237] Train net output #0: loss = 0.171428 (* 1 = 0.171428 loss) +I0407 09:28:20.372536 15775 sgd_solver.cpp:105] Iteration 7368, lr = 0.0001 +I0407 09:28:25.475080 15775 solver.cpp:218] Iteration 7380 (2.35178 iter/s, 5.10251s/12 iters), loss = 0.195193 +I0407 09:28:25.475121 15775 solver.cpp:237] Train net output #0: loss = 0.195193 (* 1 = 0.195193 loss) +I0407 09:28:25.475129 15775 sgd_solver.cpp:105] Iteration 7380, lr = 0.0001 +I0407 09:28:26.977147 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:28:30.917415 15775 solver.cpp:218] Iteration 7392 (2.20497 iter/s, 5.44225s/12 iters), loss = 0.164932 +I0407 09:28:30.917455 15775 solver.cpp:237] Train net output #0: loss = 0.164932 (* 1 = 0.164932 loss) +I0407 09:28:30.917464 15775 sgd_solver.cpp:105] Iteration 7392, lr = 0.0001 +I0407 09:28:36.138320 15775 solver.cpp:218] Iteration 7404 (2.29849 iter/s, 5.22082s/12 iters), loss = 0.191292 +I0407 09:28:36.138358 15775 solver.cpp:237] Train net output #0: loss = 0.191292 (* 1 = 0.191292 loss) +I0407 09:28:36.138366 15775 sgd_solver.cpp:105] Iteration 7404, lr = 0.0001 +I0407 09:28:41.380628 15775 solver.cpp:218] Iteration 7416 (2.28911 iter/s, 5.24222s/12 iters), loss = 0.199219 +I0407 09:28:41.380672 15775 solver.cpp:237] Train net output #0: loss = 0.199219 (* 1 = 0.199219 loss) +I0407 09:28:41.380681 15775 sgd_solver.cpp:105] Iteration 7416, lr = 0.0001 +I0407 09:28:46.368392 15775 solver.cpp:218] Iteration 7428 (2.40593 iter/s, 4.98768s/12 iters), loss = 0.126367 +I0407 09:28:46.368525 15775 solver.cpp:237] Train net output #0: loss = 0.126367 (* 1 = 0.126367 loss) +I0407 09:28:46.368535 15775 sgd_solver.cpp:105] Iteration 7428, lr = 0.0001 +I0407 09:28:51.816973 15775 solver.cpp:218] Iteration 7440 (2.20248 iter/s, 5.44841s/12 iters), loss = 0.0946572 +I0407 09:28:51.817020 15775 solver.cpp:237] Train net output #0: loss = 0.0946572 (* 1 = 0.0946572 loss) +I0407 09:28:51.817028 15775 sgd_solver.cpp:105] Iteration 7440, lr = 0.0001 +I0407 09:28:53.897375 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 09:28:56.908746 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 09:28:59.208917 15775 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 09:28:59.208935 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:29:00.610591 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:03.513818 15775 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0407 09:29:03.513850 15775 solver.cpp:397] Test net output #1: loss = 2.79619 (* 1 = 2.79619 loss) +I0407 09:29:05.471350 15775 solver.cpp:218] Iteration 7452 (0.878848 iter/s, 13.6542s/12 iters), loss = 0.205252 +I0407 09:29:05.471392 15775 solver.cpp:237] Train net output #0: loss = 0.205252 (* 1 = 0.205252 loss) +I0407 09:29:05.471400 15775 sgd_solver.cpp:105] Iteration 7452, lr = 0.0001 +I0407 09:29:10.511732 15775 solver.cpp:218] Iteration 7464 (2.38081 iter/s, 5.04029s/12 iters), loss = 0.267691 +I0407 09:29:10.511777 15775 solver.cpp:237] Train net output #0: loss = 0.267691 (* 1 = 0.267691 loss) +I0407 09:29:10.511785 15775 sgd_solver.cpp:105] Iteration 7464, lr = 0.0001 +I0407 09:29:15.780800 15775 solver.cpp:218] Iteration 7476 (2.27748 iter/s, 5.26898s/12 iters), loss = 0.220136 +I0407 09:29:15.780848 15775 solver.cpp:237] Train net output #0: loss = 0.220136 (* 1 = 0.220136 loss) +I0407 09:29:15.780858 15775 sgd_solver.cpp:105] Iteration 7476, lr = 0.0001 +I0407 09:29:19.253975 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:20.875221 15775 solver.cpp:218] Iteration 7488 (2.35556 iter/s, 5.09433s/12 iters), loss = 0.185967 +I0407 09:29:20.875259 15775 solver.cpp:237] Train net output #0: loss = 0.185967 (* 1 = 0.185967 loss) +I0407 09:29:20.875267 15775 sgd_solver.cpp:105] Iteration 7488, lr = 0.0001 +I0407 09:29:26.021740 15775 solver.cpp:218] Iteration 7500 (2.33171 iter/s, 5.14643s/12 iters), loss = 0.185146 +I0407 09:29:26.021785 15775 solver.cpp:237] Train net output #0: loss = 0.185146 (* 1 = 0.185146 loss) +I0407 09:29:26.021792 15775 sgd_solver.cpp:105] Iteration 7500, lr = 0.0001 +I0407 09:29:31.173168 15775 solver.cpp:218] Iteration 7512 (2.32949 iter/s, 5.15134s/12 iters), loss = 0.230294 +I0407 09:29:31.173214 15775 solver.cpp:237] Train net output #0: loss = 0.230294 (* 1 = 0.230294 loss) +I0407 09:29:31.173223 15775 sgd_solver.cpp:105] Iteration 7512, lr = 0.0001 +I0407 09:29:36.464839 15775 solver.cpp:218] Iteration 7524 (2.26775 iter/s, 5.29158s/12 iters), loss = 0.215981 +I0407 09:29:36.464901 15775 solver.cpp:237] Train net output #0: loss = 0.215981 (* 1 = 0.215981 loss) +I0407 09:29:36.464910 15775 sgd_solver.cpp:105] Iteration 7524, lr = 0.0001 +I0407 09:29:41.739938 15775 solver.cpp:218] Iteration 7536 (2.27488 iter/s, 5.27501s/12 iters), loss = 0.277953 +I0407 09:29:41.739979 15775 solver.cpp:237] Train net output #0: loss = 0.277953 (* 1 = 0.277953 loss) +I0407 09:29:41.739986 15775 sgd_solver.cpp:105] Iteration 7536, lr = 0.0001 +I0407 09:29:46.525513 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 09:29:49.484652 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 09:29:51.807904 15775 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 09:29:51.807926 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:29:53.229388 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:56.200847 15775 solver.cpp:397] Test net output #0: accuracy = 0.467524 +I0407 09:29:56.200892 15775 solver.cpp:397] Test net output #1: loss = 2.77075 (* 1 = 2.77075 loss) +I0407 09:29:56.335637 15775 solver.cpp:218] Iteration 7548 (0.822167 iter/s, 14.5956s/12 iters), loss = 0.0995509 +I0407 09:29:56.335683 15775 solver.cpp:237] Train net output #0: loss = 0.0995509 (* 1 = 0.0995509 loss) +I0407 09:29:56.335691 15775 sgd_solver.cpp:105] Iteration 7548, lr = 0.0001 +I0407 09:30:00.815331 15775 solver.cpp:218] Iteration 7560 (2.6788 iter/s, 4.47961s/12 iters), loss = 0.234615 +I0407 09:30:00.815373 15775 solver.cpp:237] Train net output #0: loss = 0.234615 (* 1 = 0.234615 loss) +I0407 09:30:00.815380 15775 sgd_solver.cpp:105] Iteration 7560, lr = 0.0001 +I0407 09:30:06.105780 15775 solver.cpp:218] Iteration 7572 (2.26828 iter/s, 5.29036s/12 iters), loss = 0.156556 +I0407 09:30:06.105823 15775 solver.cpp:237] Train net output #0: loss = 0.156556 (* 1 = 0.156556 loss) +I0407 09:30:06.105831 15775 sgd_solver.cpp:105] Iteration 7572, lr = 0.0001 +I0407 09:30:11.272186 15775 solver.cpp:218] Iteration 7584 (2.32273 iter/s, 5.16632s/12 iters), loss = 0.236838 +I0407 09:30:11.272222 15775 solver.cpp:237] Train net output #0: loss = 0.236838 (* 1 = 0.236838 loss) +I0407 09:30:11.272229 15775 sgd_solver.cpp:105] Iteration 7584, lr = 0.0001 +I0407 09:30:11.958397 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:30:16.659869 15775 solver.cpp:218] Iteration 7596 (2.22734 iter/s, 5.3876s/12 iters), loss = 0.306201 +I0407 09:30:16.659909 15775 solver.cpp:237] Train net output #0: loss = 0.306201 (* 1 = 0.306201 loss) +I0407 09:30:16.659915 15775 sgd_solver.cpp:105] Iteration 7596, lr = 0.0001 +I0407 09:30:21.949218 15775 solver.cpp:218] Iteration 7608 (2.26875 iter/s, 5.28926s/12 iters), loss = 0.243947 +I0407 09:30:21.949354 15775 solver.cpp:237] Train net output #0: loss = 0.243947 (* 1 = 0.243947 loss) +I0407 09:30:21.949363 15775 sgd_solver.cpp:105] Iteration 7608, lr = 0.0001 +I0407 09:30:27.243690 15775 solver.cpp:218] Iteration 7620 (2.26659 iter/s, 5.29429s/12 iters), loss = 0.200246 +I0407 09:30:27.243731 15775 solver.cpp:237] Train net output #0: loss = 0.200246 (* 1 = 0.200246 loss) +I0407 09:30:27.243739 15775 sgd_solver.cpp:105] Iteration 7620, lr = 0.0001 +I0407 09:30:29.757453 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:30:32.264744 15775 solver.cpp:218] Iteration 7632 (2.38998 iter/s, 5.02096s/12 iters), loss = 0.180509 +I0407 09:30:32.264808 15775 solver.cpp:237] Train net output #0: loss = 0.180509 (* 1 = 0.180509 loss) +I0407 09:30:32.264822 15775 sgd_solver.cpp:105] Iteration 7632, lr = 0.0001 +I0407 09:30:37.617739 15775 solver.cpp:218] Iteration 7644 (2.24178 iter/s, 5.35289s/12 iters), loss = 0.084686 +I0407 09:30:37.617789 15775 solver.cpp:237] Train net output #0: loss = 0.084686 (* 1 = 0.084686 loss) +I0407 09:30:37.617796 15775 sgd_solver.cpp:105] Iteration 7644, lr = 0.0001 +I0407 09:30:39.686095 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 09:30:42.681820 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 09:30:44.994465 15775 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 09:30:44.994490 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:30:46.349534 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:30:49.373080 15775 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0407 09:30:49.373113 15775 solver.cpp:397] Test net output #1: loss = 2.78887 (* 1 = 2.78887 loss) +I0407 09:30:51.198356 15775 solver.cpp:218] Iteration 7656 (0.883621 iter/s, 13.5805s/12 iters), loss = 0.114475 +I0407 09:30:51.198405 15775 solver.cpp:237] Train net output #0: loss = 0.114475 (* 1 = 0.114475 loss) +I0407 09:30:51.198415 15775 sgd_solver.cpp:105] Iteration 7656, lr = 0.0001 +I0407 09:30:56.661972 15775 solver.cpp:218] Iteration 7668 (2.19638 iter/s, 5.46352s/12 iters), loss = 0.254494 +I0407 09:30:56.662071 15775 solver.cpp:237] Train net output #0: loss = 0.254494 (* 1 = 0.254494 loss) +I0407 09:30:56.662079 15775 sgd_solver.cpp:105] Iteration 7668, lr = 0.0001 +I0407 09:31:01.815399 15775 solver.cpp:218] Iteration 7680 (2.32861 iter/s, 5.15329s/12 iters), loss = 0.208128 +I0407 09:31:01.815439 15775 solver.cpp:237] Train net output #0: loss = 0.208128 (* 1 = 0.208128 loss) +I0407 09:31:01.815448 15775 sgd_solver.cpp:105] Iteration 7680, lr = 0.0001 +I0407 09:31:04.814925 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:31:07.312110 15775 solver.cpp:218] Iteration 7692 (2.18316 iter/s, 5.49662s/12 iters), loss = 0.170597 +I0407 09:31:07.312152 15775 solver.cpp:237] Train net output #0: loss = 0.170597 (* 1 = 0.170597 loss) +I0407 09:31:07.312160 15775 sgd_solver.cpp:105] Iteration 7692, lr = 0.0001 +I0407 09:31:12.555634 15775 solver.cpp:218] Iteration 7704 (2.28858 iter/s, 5.24343s/12 iters), loss = 0.104252 +I0407 09:31:12.555681 15775 solver.cpp:237] Train net output #0: loss = 0.104252 (* 1 = 0.104252 loss) +I0407 09:31:12.555689 15775 sgd_solver.cpp:105] Iteration 7704, lr = 0.0001 +I0407 09:31:17.805547 15775 solver.cpp:218] Iteration 7716 (2.28579 iter/s, 5.24982s/12 iters), loss = 0.364449 +I0407 09:31:17.805595 15775 solver.cpp:237] Train net output #0: loss = 0.364449 (* 1 = 0.364449 loss) +I0407 09:31:17.805603 15775 sgd_solver.cpp:105] Iteration 7716, lr = 0.0001 +I0407 09:31:23.088852 15775 solver.cpp:218] Iteration 7728 (2.27135 iter/s, 5.28321s/12 iters), loss = 0.219849 +I0407 09:31:23.088907 15775 solver.cpp:237] Train net output #0: loss = 0.219849 (* 1 = 0.219849 loss) +I0407 09:31:23.088915 15775 sgd_solver.cpp:105] Iteration 7728, lr = 0.0001 +I0407 09:31:28.620333 15775 solver.cpp:218] Iteration 7740 (2.16944 iter/s, 5.53139s/12 iters), loss = 0.267337 +I0407 09:31:28.620479 15775 solver.cpp:237] Train net output #0: loss = 0.267337 (* 1 = 0.267337 loss) +I0407 09:31:28.620488 15775 sgd_solver.cpp:105] Iteration 7740, lr = 0.0001 +I0407 09:31:33.513622 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 09:31:36.443346 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 09:31:38.751618 15775 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 09:31:38.751638 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:31:40.113066 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:31:43.126926 15775 solver.cpp:397] Test net output #0: accuracy = 0.463235 +I0407 09:31:43.126966 15775 solver.cpp:397] Test net output #1: loss = 2.77631 (* 1 = 2.77631 loss) +I0407 09:31:43.268137 15775 solver.cpp:218] Iteration 7752 (0.819249 iter/s, 14.6476s/12 iters), loss = 0.202699 +I0407 09:31:43.268186 15775 solver.cpp:237] Train net output #0: loss = 0.202699 (* 1 = 0.202699 loss) +I0407 09:31:43.268194 15775 sgd_solver.cpp:105] Iteration 7752, lr = 0.0001 +I0407 09:31:47.736685 15775 solver.cpp:218] Iteration 7764 (2.68548 iter/s, 4.46847s/12 iters), loss = 0.0838488 +I0407 09:31:47.736726 15775 solver.cpp:237] Train net output #0: loss = 0.0838488 (* 1 = 0.0838488 loss) +I0407 09:31:47.736734 15775 sgd_solver.cpp:105] Iteration 7764, lr = 0.0001 +I0407 09:31:52.777436 15775 solver.cpp:218] Iteration 7776 (2.38064 iter/s, 5.04066s/12 iters), loss = 0.17133 +I0407 09:31:52.777482 15775 solver.cpp:237] Train net output #0: loss = 0.17133 (* 1 = 0.17133 loss) +I0407 09:31:52.777490 15775 sgd_solver.cpp:105] Iteration 7776, lr = 0.0001 +I0407 09:31:58.026767 15775 solver.cpp:218] Iteration 7788 (2.28605 iter/s, 5.24924s/12 iters), loss = 0.28539 +I0407 09:31:58.026810 15775 solver.cpp:237] Train net output #0: loss = 0.28539 (* 1 = 0.28539 loss) +I0407 09:31:58.026818 15775 sgd_solver.cpp:105] Iteration 7788, lr = 0.0001 +I0407 09:31:58.033911 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:03.212095 15775 solver.cpp:218] Iteration 7800 (2.31426 iter/s, 5.18524s/12 iters), loss = 0.198718 +I0407 09:32:03.212209 15775 solver.cpp:237] Train net output #0: loss = 0.198718 (* 1 = 0.198718 loss) +I0407 09:32:03.212218 15775 sgd_solver.cpp:105] Iteration 7800, lr = 0.0001 +I0407 09:32:08.353811 15775 solver.cpp:218] Iteration 7812 (2.33392 iter/s, 5.14156s/12 iters), loss = 0.224926 +I0407 09:32:08.353853 15775 solver.cpp:237] Train net output #0: loss = 0.224926 (* 1 = 0.224926 loss) +I0407 09:32:08.353861 15775 sgd_solver.cpp:105] Iteration 7812, lr = 0.0001 +I0407 09:32:13.542713 15775 solver.cpp:218] Iteration 7824 (2.31267 iter/s, 5.18881s/12 iters), loss = 0.174964 +I0407 09:32:13.542757 15775 solver.cpp:237] Train net output #0: loss = 0.174964 (* 1 = 0.174964 loss) +I0407 09:32:13.542763 15775 sgd_solver.cpp:105] Iteration 7824, lr = 0.0001 +I0407 09:32:18.845803 15775 solver.cpp:218] Iteration 7836 (2.26287 iter/s, 5.303s/12 iters), loss = 0.267359 +I0407 09:32:18.845846 15775 solver.cpp:237] Train net output #0: loss = 0.267359 (* 1 = 0.267359 loss) +I0407 09:32:18.845854 15775 sgd_solver.cpp:105] Iteration 7836, lr = 0.0001 +I0407 09:32:24.334246 15775 solver.cpp:218] Iteration 7848 (2.18645 iter/s, 5.48836s/12 iters), loss = 0.12231 +I0407 09:32:24.334293 15775 solver.cpp:237] Train net output #0: loss = 0.12231 (* 1 = 0.12231 loss) +I0407 09:32:24.334301 15775 sgd_solver.cpp:105] Iteration 7848, lr = 0.0001 +I0407 09:32:26.513742 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 09:32:29.548357 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 09:32:31.855183 15775 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 09:32:31.855203 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:32:33.154407 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:36.190276 15775 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 09:32:36.190407 15775 solver.cpp:397] Test net output #1: loss = 2.77592 (* 1 = 2.77592 loss) +I0407 09:32:38.121388 15775 solver.cpp:218] Iteration 7860 (0.870385 iter/s, 13.787s/12 iters), loss = 0.18764 +I0407 09:32:38.121426 15775 solver.cpp:237] Train net output #0: loss = 0.18764 (* 1 = 0.18764 loss) +I0407 09:32:38.121433 15775 sgd_solver.cpp:105] Iteration 7860, lr = 0.0001 +I0407 09:32:43.179543 15775 solver.cpp:218] Iteration 7872 (2.37245 iter/s, 5.05807s/12 iters), loss = 0.0927208 +I0407 09:32:43.179598 15775 solver.cpp:237] Train net output #0: loss = 0.0927208 (* 1 = 0.0927208 loss) +I0407 09:32:43.179610 15775 sgd_solver.cpp:105] Iteration 7872, lr = 0.0001 +I0407 09:32:48.617997 15775 solver.cpp:218] Iteration 7884 (2.20655 iter/s, 5.43835s/12 iters), loss = 0.244021 +I0407 09:32:48.618049 15775 solver.cpp:237] Train net output #0: loss = 0.244021 (* 1 = 0.244021 loss) +I0407 09:32:48.618059 15775 sgd_solver.cpp:105] Iteration 7884, lr = 0.0001 +I0407 09:32:50.888128 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:53.902029 15775 solver.cpp:218] Iteration 7896 (2.27104 iter/s, 5.28393s/12 iters), loss = 0.235531 +I0407 09:32:53.902081 15775 solver.cpp:237] Train net output #0: loss = 0.235531 (* 1 = 0.235531 loss) +I0407 09:32:53.902091 15775 sgd_solver.cpp:105] Iteration 7896, lr = 0.0001 +I0407 09:32:59.195375 15775 solver.cpp:218] Iteration 7908 (2.26704 iter/s, 5.29325s/12 iters), loss = 0.224285 +I0407 09:32:59.195413 15775 solver.cpp:237] Train net output #0: loss = 0.224285 (* 1 = 0.224285 loss) +I0407 09:32:59.195420 15775 sgd_solver.cpp:105] Iteration 7908, lr = 0.0001 +I0407 09:33:04.448689 15775 solver.cpp:218] Iteration 7920 (2.28431 iter/s, 5.25323s/12 iters), loss = 0.227626 +I0407 09:33:04.448729 15775 solver.cpp:237] Train net output #0: loss = 0.227627 (* 1 = 0.227627 loss) +I0407 09:33:04.448735 15775 sgd_solver.cpp:105] Iteration 7920, lr = 0.0001 +I0407 09:33:09.808367 15775 solver.cpp:218] Iteration 7932 (2.23898 iter/s, 5.35959s/12 iters), loss = 0.177788 +I0407 09:33:09.808473 15775 solver.cpp:237] Train net output #0: loss = 0.177788 (* 1 = 0.177788 loss) +I0407 09:33:09.808482 15775 sgd_solver.cpp:105] Iteration 7932, lr = 0.0001 +I0407 09:33:15.145196 15775 solver.cpp:218] Iteration 7944 (2.24859 iter/s, 5.33668s/12 iters), loss = 0.158173 +I0407 09:33:15.145242 15775 solver.cpp:237] Train net output #0: loss = 0.158173 (* 1 = 0.158173 loss) +I0407 09:33:15.145251 15775 sgd_solver.cpp:105] Iteration 7944, lr = 0.0001 +I0407 09:33:19.686439 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 09:33:22.700050 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 09:33:24.995015 15775 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 09:33:24.995034 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:33:26.243005 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:29.355198 15775 solver.cpp:397] Test net output #0: accuracy = 0.466912 +I0407 09:33:29.355229 15775 solver.cpp:397] Test net output #1: loss = 2.78432 (* 1 = 2.78432 loss) +I0407 09:33:29.495965 15775 solver.cpp:218] Iteration 7956 (0.8362 iter/s, 14.3506s/12 iters), loss = 0.131539 +I0407 09:33:29.496014 15775 solver.cpp:237] Train net output #0: loss = 0.131539 (* 1 = 0.131539 loss) +I0407 09:33:29.496021 15775 sgd_solver.cpp:105] Iteration 7956, lr = 0.0001 +I0407 09:33:33.901183 15775 solver.cpp:218] Iteration 7968 (2.72409 iter/s, 4.40513s/12 iters), loss = 0.230298 +I0407 09:33:33.901227 15775 solver.cpp:237] Train net output #0: loss = 0.230298 (* 1 = 0.230298 loss) +I0407 09:33:33.901235 15775 sgd_solver.cpp:105] Iteration 7968, lr = 0.0001 +I0407 09:33:39.102317 15775 solver.cpp:218] Iteration 7980 (2.30723 iter/s, 5.20105s/12 iters), loss = 0.322107 +I0407 09:33:39.102353 15775 solver.cpp:237] Train net output #0: loss = 0.322107 (* 1 = 0.322107 loss) +I0407 09:33:39.102360 15775 sgd_solver.cpp:105] Iteration 7980, lr = 0.0001 +I0407 09:33:43.404958 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:44.193581 15775 solver.cpp:218] Iteration 7992 (2.35702 iter/s, 5.09118s/12 iters), loss = 0.132409 +I0407 09:33:44.193629 15775 solver.cpp:237] Train net output #0: loss = 0.132409 (* 1 = 0.132409 loss) +I0407 09:33:44.193637 15775 sgd_solver.cpp:105] Iteration 7992, lr = 0.0001 +I0407 09:33:49.525353 15775 solver.cpp:218] Iteration 8004 (2.2507 iter/s, 5.33168s/12 iters), loss = 0.18291 +I0407 09:33:49.525393 15775 solver.cpp:237] Train net output #0: loss = 0.18291 (* 1 = 0.18291 loss) +I0407 09:33:49.525400 15775 sgd_solver.cpp:105] Iteration 8004, lr = 0.0001 +I0407 09:33:54.855419 15775 solver.cpp:218] Iteration 8016 (2.25142 iter/s, 5.32998s/12 iters), loss = 0.277694 +I0407 09:33:54.855459 15775 solver.cpp:237] Train net output #0: loss = 0.277694 (* 1 = 0.277694 loss) +I0407 09:33:54.855468 15775 sgd_solver.cpp:105] Iteration 8016, lr = 0.0001 +I0407 09:34:00.212157 15775 solver.cpp:218] Iteration 8028 (2.24021 iter/s, 5.35665s/12 iters), loss = 0.12535 +I0407 09:34:00.212206 15775 solver.cpp:237] Train net output #0: loss = 0.12535 (* 1 = 0.12535 loss) +I0407 09:34:00.212214 15775 sgd_solver.cpp:105] Iteration 8028, lr = 0.0001 +I0407 09:34:05.326721 15775 solver.cpp:218] Iteration 8040 (2.34628 iter/s, 5.11447s/12 iters), loss = 0.16967 +I0407 09:34:05.326761 15775 solver.cpp:237] Train net output #0: loss = 0.16967 (* 1 = 0.16967 loss) +I0407 09:34:05.326768 15775 sgd_solver.cpp:105] Iteration 8040, lr = 0.0001 +I0407 09:34:10.762732 15775 solver.cpp:218] Iteration 8052 (2.20754 iter/s, 5.43593s/12 iters), loss = 0.197566 +I0407 09:34:10.762773 15775 solver.cpp:237] Train net output #0: loss = 0.197566 (* 1 = 0.197566 loss) +I0407 09:34:10.762780 15775 sgd_solver.cpp:105] Iteration 8052, lr = 0.0001 +I0407 09:34:13.030786 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 09:34:15.985896 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 09:34:18.288851 15775 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 09:34:18.288870 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:34:19.489835 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:34:22.671602 15775 solver.cpp:397] Test net output #0: accuracy = 0.463848 +I0407 09:34:22.671629 15775 solver.cpp:397] Test net output #1: loss = 2.78979 (* 1 = 2.78979 loss) +I0407 09:34:24.708302 15775 solver.cpp:218] Iteration 8064 (0.860497 iter/s, 13.9454s/12 iters), loss = 0.0869159 +I0407 09:34:24.708346 15775 solver.cpp:237] Train net output #0: loss = 0.0869159 (* 1 = 0.0869159 loss) +I0407 09:34:24.708353 15775 sgd_solver.cpp:105] Iteration 8064, lr = 0.0001 +I0407 09:34:29.967427 15775 solver.cpp:218] Iteration 8076 (2.28179 iter/s, 5.25904s/12 iters), loss = 0.179315 +I0407 09:34:29.967471 15775 solver.cpp:237] Train net output #0: loss = 0.179315 (* 1 = 0.179315 loss) +I0407 09:34:29.967478 15775 sgd_solver.cpp:105] Iteration 8076, lr = 0.0001 +I0407 09:34:35.410851 15775 solver.cpp:218] Iteration 8088 (2.20453 iter/s, 5.44333s/12 iters), loss = 0.109006 +I0407 09:34:35.410889 15775 solver.cpp:237] Train net output #0: loss = 0.109006 (* 1 = 0.109006 loss) +I0407 09:34:35.410898 15775 sgd_solver.cpp:105] Iteration 8088, lr = 0.0001 +I0407 09:34:36.838083 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:34:40.440376 15775 solver.cpp:218] Iteration 8100 (2.38595 iter/s, 5.02944s/12 iters), loss = 0.225336 +I0407 09:34:40.440418 15775 solver.cpp:237] Train net output #0: loss = 0.225336 (* 1 = 0.225336 loss) +I0407 09:34:40.440424 15775 sgd_solver.cpp:105] Iteration 8100, lr = 0.0001 +I0407 09:34:45.698197 15775 solver.cpp:218] Iteration 8112 (2.28235 iter/s, 5.25773s/12 iters), loss = 0.261921 +I0407 09:34:45.698244 15775 solver.cpp:237] Train net output #0: loss = 0.261921 (* 1 = 0.261921 loss) +I0407 09:34:45.698256 15775 sgd_solver.cpp:105] Iteration 8112, lr = 0.0001 +I0407 09:34:51.177444 15775 solver.cpp:218] Iteration 8124 (2.19012 iter/s, 5.47916s/12 iters), loss = 0.264464 +I0407 09:34:51.177610 15775 solver.cpp:237] Train net output #0: loss = 0.264464 (* 1 = 0.264464 loss) +I0407 09:34:51.177623 15775 sgd_solver.cpp:105] Iteration 8124, lr = 0.0001 +I0407 09:34:56.323855 15775 solver.cpp:218] Iteration 8136 (2.33182 iter/s, 5.1462s/12 iters), loss = 0.0979184 +I0407 09:34:56.323899 15775 solver.cpp:237] Train net output #0: loss = 0.0979184 (* 1 = 0.0979184 loss) +I0407 09:34:56.323906 15775 sgd_solver.cpp:105] Iteration 8136, lr = 0.0001 +I0407 09:35:01.822054 15775 solver.cpp:218] Iteration 8148 (2.18257 iter/s, 5.49811s/12 iters), loss = 0.193246 +I0407 09:35:01.822094 15775 solver.cpp:237] Train net output #0: loss = 0.193246 (* 1 = 0.193246 loss) +I0407 09:35:01.822103 15775 sgd_solver.cpp:105] Iteration 8148, lr = 0.0001 +I0407 09:35:06.583465 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 09:35:09.581786 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 09:35:11.886507 15775 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 09:35:11.886523 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:35:13.083827 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:35:16.222033 15775 solver.cpp:397] Test net output #0: accuracy = 0.468137 +I0407 09:35:16.222065 15775 solver.cpp:397] Test net output #1: loss = 2.77553 (* 1 = 2.77553 loss) +I0407 09:35:16.363323 15775 solver.cpp:218] Iteration 8160 (0.825245 iter/s, 14.5411s/12 iters), loss = 0.244302 +I0407 09:35:16.363384 15775 solver.cpp:237] Train net output #0: loss = 0.244302 (* 1 = 0.244302 loss) +I0407 09:35:16.363394 15775 sgd_solver.cpp:105] Iteration 8160, lr = 0.0001 +I0407 09:35:20.696568 15775 solver.cpp:218] Iteration 8172 (2.76935 iter/s, 4.33314s/12 iters), loss = 0.232459 +I0407 09:35:20.696611 15775 solver.cpp:237] Train net output #0: loss = 0.232458 (* 1 = 0.232458 loss) +I0407 09:35:20.696619 15775 sgd_solver.cpp:105] Iteration 8172, lr = 0.0001 +I0407 09:35:26.104297 15775 solver.cpp:218] Iteration 8184 (2.21908 iter/s, 5.40764s/12 iters), loss = 0.142146 +I0407 09:35:26.104422 15775 solver.cpp:237] Train net output #0: loss = 0.142146 (* 1 = 0.142146 loss) +I0407 09:35:26.104431 15775 sgd_solver.cpp:105] Iteration 8184, lr = 0.0001 +I0407 09:35:29.941336 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:35:31.476348 15775 solver.cpp:218] Iteration 8196 (2.23385 iter/s, 5.37188s/12 iters), loss = 0.159702 +I0407 09:35:31.476390 15775 solver.cpp:237] Train net output #0: loss = 0.159702 (* 1 = 0.159702 loss) +I0407 09:35:31.476397 15775 sgd_solver.cpp:105] Iteration 8196, lr = 0.0001 +I0407 09:35:36.827898 15775 solver.cpp:218] Iteration 8208 (2.24238 iter/s, 5.35146s/12 iters), loss = 0.203403 +I0407 09:35:36.827952 15775 solver.cpp:237] Train net output #0: loss = 0.203403 (* 1 = 0.203403 loss) +I0407 09:35:36.827965 15775 sgd_solver.cpp:105] Iteration 8208, lr = 0.0001 +I0407 09:35:41.890682 15775 solver.cpp:218] Iteration 8220 (2.37028 iter/s, 5.06269s/12 iters), loss = 0.2243 +I0407 09:35:41.890719 15775 solver.cpp:237] Train net output #0: loss = 0.2243 (* 1 = 0.2243 loss) +I0407 09:35:41.890727 15775 sgd_solver.cpp:105] Iteration 8220, lr = 0.0001 +I0407 09:35:47.380877 15775 solver.cpp:218] Iteration 8232 (2.18575 iter/s, 5.49011s/12 iters), loss = 0.25165 +I0407 09:35:47.380940 15775 solver.cpp:237] Train net output #0: loss = 0.25165 (* 1 = 0.25165 loss) +I0407 09:35:47.380952 15775 sgd_solver.cpp:105] Iteration 8232, lr = 0.0001 +I0407 09:35:52.532946 15775 solver.cpp:218] Iteration 8244 (2.32921 iter/s, 5.15196s/12 iters), loss = 0.296633 +I0407 09:35:52.532987 15775 solver.cpp:237] Train net output #0: loss = 0.296633 (* 1 = 0.296633 loss) +I0407 09:35:52.532995 15775 sgd_solver.cpp:105] Iteration 8244, lr = 0.0001 +I0407 09:35:57.660349 15775 solver.cpp:218] Iteration 8256 (2.34041 iter/s, 5.12732s/12 iters), loss = 0.117871 +I0407 09:35:57.660538 15775 solver.cpp:237] Train net output #0: loss = 0.117871 (* 1 = 0.117871 loss) +I0407 09:35:57.660549 15775 sgd_solver.cpp:105] Iteration 8256, lr = 0.0001 +I0407 09:35:59.755928 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 09:36:02.777660 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 09:36:05.081199 15775 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 09:36:05.081220 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:36:06.195776 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:09.356230 15775 solver.cpp:397] Test net output #0: accuracy = 0.471814 +I0407 09:36:09.356258 15775 solver.cpp:397] Test net output #1: loss = 2.77471 (* 1 = 2.77471 loss) +I0407 09:36:11.299086 15775 solver.cpp:218] Iteration 8268 (0.879865 iter/s, 13.6385s/12 iters), loss = 0.200328 +I0407 09:36:11.299130 15775 solver.cpp:237] Train net output #0: loss = 0.200328 (* 1 = 0.200328 loss) +I0407 09:36:11.299137 15775 sgd_solver.cpp:105] Iteration 8268, lr = 0.0001 +I0407 09:36:16.615181 15775 solver.cpp:218] Iteration 8280 (2.25733 iter/s, 5.316s/12 iters), loss = 0.178023 +I0407 09:36:16.615224 15775 solver.cpp:237] Train net output #0: loss = 0.178023 (* 1 = 0.178023 loss) +I0407 09:36:16.615233 15775 sgd_solver.cpp:105] Iteration 8280, lr = 0.0001 +I0407 09:36:21.986915 15775 solver.cpp:218] Iteration 8292 (2.23395 iter/s, 5.37164s/12 iters), loss = 0.110845 +I0407 09:36:21.986958 15775 solver.cpp:237] Train net output #0: loss = 0.110845 (* 1 = 0.110845 loss) +I0407 09:36:21.986968 15775 sgd_solver.cpp:105] Iteration 8292, lr = 0.0001 +I0407 09:36:22.592711 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:27.103220 15775 solver.cpp:218] Iteration 8304 (2.34548 iter/s, 5.11622s/12 iters), loss = 0.276164 +I0407 09:36:27.103262 15775 solver.cpp:237] Train net output #0: loss = 0.276164 (* 1 = 0.276164 loss) +I0407 09:36:27.103268 15775 sgd_solver.cpp:105] Iteration 8304, lr = 0.0001 +I0407 09:36:29.874419 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:36:32.148851 15775 solver.cpp:218] Iteration 8316 (2.37834 iter/s, 5.04554s/12 iters), loss = 0.0950775 +I0407 09:36:32.148906 15775 solver.cpp:237] Train net output #0: loss = 0.0950775 (* 1 = 0.0950775 loss) +I0407 09:36:32.148916 15775 sgd_solver.cpp:105] Iteration 8316, lr = 0.0001 +I0407 09:36:37.492367 15775 solver.cpp:218] Iteration 8328 (2.24575 iter/s, 5.34342s/12 iters), loss = 0.203504 +I0407 09:36:37.492408 15775 solver.cpp:237] Train net output #0: loss = 0.203504 (* 1 = 0.203504 loss) +I0407 09:36:37.492415 15775 sgd_solver.cpp:105] Iteration 8328, lr = 0.0001 +I0407 09:36:42.973763 15775 solver.cpp:218] Iteration 8340 (2.18926 iter/s, 5.48131s/12 iters), loss = 0.111682 +I0407 09:36:42.973811 15775 solver.cpp:237] Train net output #0: loss = 0.111682 (* 1 = 0.111682 loss) +I0407 09:36:42.973819 15775 sgd_solver.cpp:105] Iteration 8340, lr = 0.0001 +I0407 09:36:48.083160 15775 solver.cpp:218] Iteration 8352 (2.34866 iter/s, 5.1093s/12 iters), loss = 0.218374 +I0407 09:36:48.083217 15775 solver.cpp:237] Train net output #0: loss = 0.218374 (* 1 = 0.218374 loss) +I0407 09:36:48.083227 15775 sgd_solver.cpp:105] Iteration 8352, lr = 0.0001 +I0407 09:36:52.636117 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 09:36:55.608235 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 09:36:57.903527 15775 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 09:36:57.903544 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:36:58.967002 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:02.185660 15775 solver.cpp:397] Test net output #0: accuracy = 0.468137 +I0407 09:37:02.185806 15775 solver.cpp:397] Test net output #1: loss = 2.78232 (* 1 = 2.78232 loss) +I0407 09:37:02.324307 15775 solver.cpp:218] Iteration 8364 (0.842638 iter/s, 14.241s/12 iters), loss = 0.136067 +I0407 09:37:02.324363 15775 solver.cpp:237] Train net output #0: loss = 0.136067 (* 1 = 0.136067 loss) +I0407 09:37:02.324375 15775 sgd_solver.cpp:105] Iteration 8364, lr = 0.0001 +I0407 09:37:06.711711 15775 solver.cpp:218] Iteration 8376 (2.73516 iter/s, 4.38731s/12 iters), loss = 0.17559 +I0407 09:37:06.711755 15775 solver.cpp:237] Train net output #0: loss = 0.17559 (* 1 = 0.17559 loss) +I0407 09:37:06.711763 15775 sgd_solver.cpp:105] Iteration 8376, lr = 0.0001 +I0407 09:37:12.039923 15775 solver.cpp:218] Iteration 8388 (2.2522 iter/s, 5.32812s/12 iters), loss = 0.148543 +I0407 09:37:12.039970 15775 solver.cpp:237] Train net output #0: loss = 0.148543 (* 1 = 0.148543 loss) +I0407 09:37:12.039978 15775 sgd_solver.cpp:105] Iteration 8388, lr = 0.0001 +I0407 09:37:14.840026 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:17.268148 15775 solver.cpp:218] Iteration 8400 (2.29527 iter/s, 5.22813s/12 iters), loss = 0.167037 +I0407 09:37:17.268188 15775 solver.cpp:237] Train net output #0: loss = 0.167037 (* 1 = 0.167037 loss) +I0407 09:37:17.268195 15775 sgd_solver.cpp:105] Iteration 8400, lr = 0.0001 +I0407 09:37:22.547247 15775 solver.cpp:218] Iteration 8412 (2.27315 iter/s, 5.27901s/12 iters), loss = 0.173118 +I0407 09:37:22.547292 15775 solver.cpp:237] Train net output #0: loss = 0.173118 (* 1 = 0.173118 loss) +I0407 09:37:22.547300 15775 sgd_solver.cpp:105] Iteration 8412, lr = 0.0001 +I0407 09:37:28.019259 15775 solver.cpp:218] Iteration 8424 (2.19301 iter/s, 5.47192s/12 iters), loss = 0.302702 +I0407 09:37:28.019300 15775 solver.cpp:237] Train net output #0: loss = 0.302702 (* 1 = 0.302702 loss) +I0407 09:37:28.019309 15775 sgd_solver.cpp:105] Iteration 8424, lr = 0.0001 +I0407 09:37:33.312759 15775 solver.cpp:218] Iteration 8436 (2.26697 iter/s, 5.29341s/12 iters), loss = 0.274028 +I0407 09:37:33.312865 15775 solver.cpp:237] Train net output #0: loss = 0.274028 (* 1 = 0.274028 loss) +I0407 09:37:33.312873 15775 sgd_solver.cpp:105] Iteration 8436, lr = 0.0001 +I0407 09:37:38.789935 15775 solver.cpp:218] Iteration 8448 (2.19097 iter/s, 5.47703s/12 iters), loss = 0.152959 +I0407 09:37:38.789978 15775 solver.cpp:237] Train net output #0: loss = 0.152959 (* 1 = 0.152959 loss) +I0407 09:37:38.789988 15775 sgd_solver.cpp:105] Iteration 8448, lr = 0.0001 +I0407 09:37:44.222939 15775 solver.cpp:218] Iteration 8460 (2.20876 iter/s, 5.43292s/12 iters), loss = 0.160577 +I0407 09:37:44.222975 15775 solver.cpp:237] Train net output #0: loss = 0.160577 (* 1 = 0.160577 loss) +I0407 09:37:44.222983 15775 sgd_solver.cpp:105] Iteration 8460, lr = 0.0001 +I0407 09:37:46.361547 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 09:37:49.386245 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 09:37:51.698274 15775 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 09:37:51.698294 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:37:52.734156 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:56.016774 15775 solver.cpp:397] Test net output #0: accuracy = 0.462623 +I0407 09:37:56.016804 15775 solver.cpp:397] Test net output #1: loss = 2.77601 (* 1 = 2.77601 loss) +I0407 09:37:57.883035 15775 solver.cpp:218] Iteration 8472 (0.878479 iter/s, 13.66s/12 iters), loss = 0.155588 +I0407 09:37:57.883074 15775 solver.cpp:237] Train net output #0: loss = 0.155588 (* 1 = 0.155588 loss) +I0407 09:37:57.883080 15775 sgd_solver.cpp:105] Iteration 8472, lr = 0.0001 +I0407 09:38:03.204202 15775 solver.cpp:218] Iteration 8484 (2.25518 iter/s, 5.32108s/12 iters), loss = 0.239091 +I0407 09:38:03.204239 15775 solver.cpp:237] Train net output #0: loss = 0.239091 (* 1 = 0.239091 loss) +I0407 09:38:03.204246 15775 sgd_solver.cpp:105] Iteration 8484, lr = 0.0001 +I0407 09:38:08.534260 15775 solver.cpp:218] Iteration 8496 (2.25142 iter/s, 5.32997s/12 iters), loss = 0.133987 +I0407 09:38:08.534401 15775 solver.cpp:237] Train net output #0: loss = 0.133987 (* 1 = 0.133987 loss) +I0407 09:38:08.534411 15775 sgd_solver.cpp:105] Iteration 8496, lr = 0.0001 +I0407 09:38:08.569203 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:38:13.946738 15775 solver.cpp:218] Iteration 8508 (2.21718 iter/s, 5.41229s/12 iters), loss = 0.186882 +I0407 09:38:13.946779 15775 solver.cpp:237] Train net output #0: loss = 0.186882 (* 1 = 0.186882 loss) +I0407 09:38:13.946785 15775 sgd_solver.cpp:105] Iteration 8508, lr = 0.0001 +I0407 09:38:19.231798 15775 solver.cpp:218] Iteration 8520 (2.27059 iter/s, 5.28497s/12 iters), loss = 0.189981 +I0407 09:38:19.231858 15775 solver.cpp:237] Train net output #0: loss = 0.189981 (* 1 = 0.189981 loss) +I0407 09:38:19.231868 15775 sgd_solver.cpp:105] Iteration 8520, lr = 0.0001 +I0407 09:38:24.606546 15775 solver.cpp:218] Iteration 8532 (2.23271 iter/s, 5.37464s/12 iters), loss = 0.126007 +I0407 09:38:24.606600 15775 solver.cpp:237] Train net output #0: loss = 0.126007 (* 1 = 0.126007 loss) +I0407 09:38:24.606609 15775 sgd_solver.cpp:105] Iteration 8532, lr = 0.0001 +I0407 09:38:29.668452 15775 solver.cpp:218] Iteration 8544 (2.37069 iter/s, 5.06181s/12 iters), loss = 0.270667 +I0407 09:38:29.668491 15775 solver.cpp:237] Train net output #0: loss = 0.270667 (* 1 = 0.270667 loss) +I0407 09:38:29.668499 15775 sgd_solver.cpp:105] Iteration 8544, lr = 0.0001 +I0407 09:38:34.973691 15775 solver.cpp:218] Iteration 8556 (2.26195 iter/s, 5.30515s/12 iters), loss = 0.165452 +I0407 09:38:34.973734 15775 solver.cpp:237] Train net output #0: loss = 0.165452 (* 1 = 0.165452 loss) +I0407 09:38:34.973742 15775 sgd_solver.cpp:105] Iteration 8556, lr = 0.0001 +I0407 09:38:39.627403 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 09:38:42.650408 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 09:38:44.964018 15775 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 09:38:44.964038 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:38:45.979720 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:38:49.286901 15775 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0407 09:38:49.286936 15775 solver.cpp:397] Test net output #1: loss = 2.7795 (* 1 = 2.7795 loss) +I0407 09:38:49.422243 15775 solver.cpp:218] Iteration 8568 (0.830541 iter/s, 14.4484s/12 iters), loss = 0.219798 +I0407 09:38:49.423843 15775 solver.cpp:237] Train net output #0: loss = 0.219798 (* 1 = 0.219798 loss) +I0407 09:38:49.423856 15775 sgd_solver.cpp:105] Iteration 8568, lr = 0.0001 +I0407 09:38:53.848757 15775 solver.cpp:218] Iteration 8580 (2.71194 iter/s, 4.42488s/12 iters), loss = 0.165831 +I0407 09:38:53.848796 15775 solver.cpp:237] Train net output #0: loss = 0.165831 (* 1 = 0.165831 loss) +I0407 09:38:53.848804 15775 sgd_solver.cpp:105] Iteration 8580, lr = 0.0001 +I0407 09:38:59.100354 15775 solver.cpp:218] Iteration 8592 (2.28506 iter/s, 5.25151s/12 iters), loss = 0.10014 +I0407 09:38:59.100402 15775 solver.cpp:237] Train net output #0: loss = 0.10014 (* 1 = 0.10014 loss) +I0407 09:38:59.100411 15775 sgd_solver.cpp:105] Iteration 8592, lr = 0.0001 +I0407 09:39:01.342001 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:04.408264 15775 solver.cpp:218] Iteration 8604 (2.26082 iter/s, 5.30782s/12 iters), loss = 0.184438 +I0407 09:39:04.408309 15775 solver.cpp:237] Train net output #0: loss = 0.184438 (* 1 = 0.184438 loss) +I0407 09:39:04.408316 15775 sgd_solver.cpp:105] Iteration 8604, lr = 0.0001 +I0407 09:39:09.760710 15775 solver.cpp:218] Iteration 8616 (2.242 iter/s, 5.35236s/12 iters), loss = 0.214161 +I0407 09:39:09.760840 15775 solver.cpp:237] Train net output #0: loss = 0.214161 (* 1 = 0.214161 loss) +I0407 09:39:09.760849 15775 sgd_solver.cpp:105] Iteration 8616, lr = 0.0001 +I0407 09:39:15.234361 15775 solver.cpp:218] Iteration 8628 (2.19239 iter/s, 5.47347s/12 iters), loss = 0.267955 +I0407 09:39:15.234405 15775 solver.cpp:237] Train net output #0: loss = 0.267955 (* 1 = 0.267955 loss) +I0407 09:39:15.234412 15775 sgd_solver.cpp:105] Iteration 8628, lr = 0.0001 +I0407 09:39:20.574261 15775 solver.cpp:218] Iteration 8640 (2.24727 iter/s, 5.33981s/12 iters), loss = 0.135936 +I0407 09:39:20.574319 15775 solver.cpp:237] Train net output #0: loss = 0.135936 (* 1 = 0.135936 loss) +I0407 09:39:20.574333 15775 sgd_solver.cpp:105] Iteration 8640, lr = 0.0001 +I0407 09:39:25.811745 15775 solver.cpp:218] Iteration 8652 (2.29122 iter/s, 5.23739s/12 iters), loss = 0.151961 +I0407 09:39:25.811786 15775 solver.cpp:237] Train net output #0: loss = 0.151961 (* 1 = 0.151961 loss) +I0407 09:39:25.811794 15775 sgd_solver.cpp:105] Iteration 8652, lr = 0.0001 +I0407 09:39:30.932004 15775 solver.cpp:218] Iteration 8664 (2.34367 iter/s, 5.12017s/12 iters), loss = 0.208429 +I0407 09:39:30.932054 15775 solver.cpp:237] Train net output #0: loss = 0.208429 (* 1 = 0.208429 loss) +I0407 09:39:30.932062 15775 sgd_solver.cpp:105] Iteration 8664, lr = 0.0001 +I0407 09:39:33.045516 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 09:39:36.033013 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 09:39:38.359109 15775 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 09:39:38.359133 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:39:39.340095 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:42.653741 15775 solver.cpp:397] Test net output #0: accuracy = 0.46201 +I0407 09:39:42.653813 15775 solver.cpp:397] Test net output #1: loss = 2.78384 (* 1 = 2.78384 loss) +I0407 09:39:44.607852 15775 solver.cpp:218] Iteration 8676 (0.877469 iter/s, 13.6757s/12 iters), loss = 0.20332 +I0407 09:39:44.607916 15775 solver.cpp:237] Train net output #0: loss = 0.20332 (* 1 = 0.20332 loss) +I0407 09:39:44.607926 15775 sgd_solver.cpp:105] Iteration 8676, lr = 0.0001 +I0407 09:39:49.977928 15775 solver.cpp:218] Iteration 8688 (2.23465 iter/s, 5.36997s/12 iters), loss = 0.226908 +I0407 09:39:49.977972 15775 solver.cpp:237] Train net output #0: loss = 0.226908 (* 1 = 0.226908 loss) +I0407 09:39:49.977978 15775 sgd_solver.cpp:105] Iteration 8688, lr = 0.0001 +I0407 09:39:54.417440 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:55.178180 15775 solver.cpp:218] Iteration 8700 (2.30762 iter/s, 5.20016s/12 iters), loss = 0.293073 +I0407 09:39:55.178225 15775 solver.cpp:237] Train net output #0: loss = 0.293073 (* 1 = 0.293073 loss) +I0407 09:39:55.178231 15775 sgd_solver.cpp:105] Iteration 8700, lr = 0.0001 +I0407 09:40:00.242110 15775 solver.cpp:218] Iteration 8712 (2.36974 iter/s, 5.06384s/12 iters), loss = 0.0823797 +I0407 09:40:00.242156 15775 solver.cpp:237] Train net output #0: loss = 0.0823796 (* 1 = 0.0823796 loss) +I0407 09:40:00.242163 15775 sgd_solver.cpp:105] Iteration 8712, lr = 0.0001 +I0407 09:40:05.632783 15775 solver.cpp:218] Iteration 8724 (2.2261 iter/s, 5.39058s/12 iters), loss = 0.225253 +I0407 09:40:05.632828 15775 solver.cpp:237] Train net output #0: loss = 0.225253 (* 1 = 0.225253 loss) +I0407 09:40:05.632835 15775 sgd_solver.cpp:105] Iteration 8724, lr = 0.0001 +I0407 09:40:10.884124 15775 solver.cpp:218] Iteration 8736 (2.28517 iter/s, 5.25125s/12 iters), loss = 0.178038 +I0407 09:40:10.884163 15775 solver.cpp:237] Train net output #0: loss = 0.178038 (* 1 = 0.178038 loss) +I0407 09:40:10.884172 15775 sgd_solver.cpp:105] Iteration 8736, lr = 0.0001 +I0407 09:40:16.539064 15775 solver.cpp:218] Iteration 8748 (2.12207 iter/s, 5.65485s/12 iters), loss = 0.200482 +I0407 09:40:16.539222 15775 solver.cpp:237] Train net output #0: loss = 0.200482 (* 1 = 0.200482 loss) +I0407 09:40:16.539233 15775 sgd_solver.cpp:105] Iteration 8748, lr = 0.0001 +I0407 09:40:21.816598 15775 solver.cpp:218] Iteration 8760 (2.27387 iter/s, 5.27734s/12 iters), loss = 0.114772 +I0407 09:40:21.816642 15775 solver.cpp:237] Train net output #0: loss = 0.114772 (* 1 = 0.114772 loss) +I0407 09:40:21.816651 15775 sgd_solver.cpp:105] Iteration 8760, lr = 0.0001 +I0407 09:40:26.542656 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 09:40:29.547874 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 09:40:31.881594 15775 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 09:40:31.881615 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:40:32.807691 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:36.167990 15775 solver.cpp:397] Test net output #0: accuracy = 0.465074 +I0407 09:40:36.168025 15775 solver.cpp:397] Test net output #1: loss = 2.79614 (* 1 = 2.79614 loss) +I0407 09:40:36.302038 15775 solver.cpp:218] Iteration 8772 (0.828426 iter/s, 14.4853s/12 iters), loss = 0.296499 +I0407 09:40:36.302081 15775 solver.cpp:237] Train net output #0: loss = 0.296499 (* 1 = 0.296499 loss) +I0407 09:40:36.302088 15775 sgd_solver.cpp:105] Iteration 8772, lr = 0.0001 +I0407 09:40:40.587915 15775 solver.cpp:218] Iteration 8784 (2.79995 iter/s, 4.28579s/12 iters), loss = 0.278127 +I0407 09:40:40.587961 15775 solver.cpp:237] Train net output #0: loss = 0.278127 (* 1 = 0.278127 loss) +I0407 09:40:40.587970 15775 sgd_solver.cpp:105] Iteration 8784, lr = 0.0001 +I0407 09:40:45.737562 15775 solver.cpp:218] Iteration 8796 (2.3303 iter/s, 5.14956s/12 iters), loss = 0.320462 +I0407 09:40:45.737607 15775 solver.cpp:237] Train net output #0: loss = 0.320462 (* 1 = 0.320462 loss) +I0407 09:40:45.737614 15775 sgd_solver.cpp:105] Iteration 8796, lr = 0.0001 +I0407 09:40:47.272972 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:51.114642 15775 solver.cpp:218] Iteration 8808 (2.23173 iter/s, 5.37699s/12 iters), loss = 0.0962093 +I0407 09:40:51.114683 15775 solver.cpp:237] Train net output #0: loss = 0.0962093 (* 1 = 0.0962093 loss) +I0407 09:40:51.114691 15775 sgd_solver.cpp:105] Iteration 8808, lr = 0.0001 +I0407 09:40:56.526345 15775 solver.cpp:218] Iteration 8820 (2.21745 iter/s, 5.41161s/12 iters), loss = 0.182791 +I0407 09:40:56.526387 15775 solver.cpp:237] Train net output #0: loss = 0.182791 (* 1 = 0.182791 loss) +I0407 09:40:56.526394 15775 sgd_solver.cpp:105] Iteration 8820, lr = 0.0001 +I0407 09:41:02.015588 15775 solver.cpp:218] Iteration 8832 (2.18613 iter/s, 5.48915s/12 iters), loss = 0.178365 +I0407 09:41:02.015630 15775 solver.cpp:237] Train net output #0: loss = 0.178365 (* 1 = 0.178365 loss) +I0407 09:41:02.015637 15775 sgd_solver.cpp:105] Iteration 8832, lr = 0.0001 +I0407 09:41:07.385399 15775 solver.cpp:218] Iteration 8844 (2.23475 iter/s, 5.36972s/12 iters), loss = 0.170143 +I0407 09:41:07.385444 15775 solver.cpp:237] Train net output #0: loss = 0.170143 (* 1 = 0.170143 loss) +I0407 09:41:07.385452 15775 sgd_solver.cpp:105] Iteration 8844, lr = 0.0001 +I0407 09:41:12.412004 15775 solver.cpp:218] Iteration 8856 (2.38734 iter/s, 5.02651s/12 iters), loss = 0.119312 +I0407 09:41:12.412048 15775 solver.cpp:237] Train net output #0: loss = 0.119312 (* 1 = 0.119312 loss) +I0407 09:41:12.412056 15775 sgd_solver.cpp:105] Iteration 8856, lr = 0.0001 +I0407 09:41:17.869287 15775 solver.cpp:218] Iteration 8868 (2.19893 iter/s, 5.45719s/12 iters), loss = 0.216871 +I0407 09:41:17.869431 15775 solver.cpp:237] Train net output #0: loss = 0.216871 (* 1 = 0.216871 loss) +I0407 09:41:17.869446 15775 sgd_solver.cpp:105] Iteration 8868, lr = 0.0001 +I0407 09:41:19.872058 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 09:41:22.890132 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 09:41:25.216226 15775 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 09:41:25.216248 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:41:26.124527 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:29.581593 15775 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 09:41:29.581624 15775 solver.cpp:397] Test net output #1: loss = 2.7977 (* 1 = 2.7977 loss) +I0407 09:41:31.367637 15775 solver.cpp:218] Iteration 8880 (0.889013 iter/s, 13.4981s/12 iters), loss = 0.195215 +I0407 09:41:31.367681 15775 solver.cpp:237] Train net output #0: loss = 0.195215 (* 1 = 0.195215 loss) +I0407 09:41:31.367689 15775 sgd_solver.cpp:105] Iteration 8880, lr = 0.0001 +I0407 09:41:36.383443 15775 solver.cpp:218] Iteration 8892 (2.39248 iter/s, 5.01571s/12 iters), loss = 0.10408 +I0407 09:41:36.383500 15775 solver.cpp:237] Train net output #0: loss = 0.10408 (* 1 = 0.10408 loss) +I0407 09:41:36.383512 15775 sgd_solver.cpp:105] Iteration 8892, lr = 0.0001 +I0407 09:41:40.124331 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:41.707063 15775 solver.cpp:218] Iteration 8904 (2.25415 iter/s, 5.32352s/12 iters), loss = 0.142892 +I0407 09:41:41.707121 15775 solver.cpp:237] Train net output #0: loss = 0.142892 (* 1 = 0.142892 loss) +I0407 09:41:41.707131 15775 sgd_solver.cpp:105] Iteration 8904, lr = 0.0001 +I0407 09:41:47.012498 15775 solver.cpp:218] Iteration 8916 (2.26188 iter/s, 5.30533s/12 iters), loss = 0.189756 +I0407 09:41:47.012547 15775 solver.cpp:237] Train net output #0: loss = 0.189756 (* 1 = 0.189756 loss) +I0407 09:41:47.012557 15775 sgd_solver.cpp:105] Iteration 8916, lr = 0.0001 +I0407 09:41:52.345100 15775 solver.cpp:218] Iteration 8928 (2.25035 iter/s, 5.33251s/12 iters), loss = 0.106127 +I0407 09:41:52.345259 15775 solver.cpp:237] Train net output #0: loss = 0.106127 (* 1 = 0.106127 loss) +I0407 09:41:52.345270 15775 sgd_solver.cpp:105] Iteration 8928, lr = 0.0001 +I0407 09:41:57.675164 15775 solver.cpp:218] Iteration 8940 (2.25147 iter/s, 5.32986s/12 iters), loss = 0.287958 +I0407 09:41:57.675211 15775 solver.cpp:237] Train net output #0: loss = 0.287958 (* 1 = 0.287958 loss) +I0407 09:41:57.675221 15775 sgd_solver.cpp:105] Iteration 8940, lr = 0.0001 +I0407 09:42:02.947769 15775 solver.cpp:218] Iteration 8952 (2.27596 iter/s, 5.27251s/12 iters), loss = 0.167046 +I0407 09:42:02.947819 15775 solver.cpp:237] Train net output #0: loss = 0.167046 (* 1 = 0.167046 loss) +I0407 09:42:02.947829 15775 sgd_solver.cpp:105] Iteration 8952, lr = 0.0001 +I0407 09:42:08.149744 15775 solver.cpp:218] Iteration 8964 (2.30686 iter/s, 5.20188s/12 iters), loss = 0.229616 +I0407 09:42:08.149789 15775 solver.cpp:237] Train net output #0: loss = 0.229616 (* 1 = 0.229616 loss) +I0407 09:42:08.149797 15775 sgd_solver.cpp:105] Iteration 8964, lr = 0.0001 +I0407 09:42:12.584575 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 09:42:16.202208 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 09:42:18.509975 15775 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 09:42:18.509994 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:42:19.385262 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:22.873937 15775 solver.cpp:397] Test net output #0: accuracy = 0.469976 +I0407 09:42:22.874017 15775 solver.cpp:397] Test net output #1: loss = 2.79118 (* 1 = 2.79118 loss) +I0407 09:42:23.003568 15775 solver.cpp:218] Iteration 8976 (0.80788 iter/s, 14.8537s/12 iters), loss = 0.170598 +I0407 09:42:23.003618 15775 solver.cpp:237] Train net output #0: loss = 0.170598 (* 1 = 0.170598 loss) +I0407 09:42:23.003625 15775 sgd_solver.cpp:105] Iteration 8976, lr = 0.0001 +I0407 09:42:27.289806 15775 solver.cpp:218] Iteration 8988 (2.79972 iter/s, 4.28615s/12 iters), loss = 0.0769355 +I0407 09:42:27.289861 15775 solver.cpp:237] Train net output #0: loss = 0.0769355 (* 1 = 0.0769355 loss) +I0407 09:42:27.289871 15775 sgd_solver.cpp:105] Iteration 8988, lr = 0.0001 +I0407 09:42:30.526003 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:42:32.165915 15775 solver.cpp:218] Iteration 9000 (2.46103 iter/s, 4.87601s/12 iters), loss = 0.137046 +I0407 09:42:32.165961 15775 solver.cpp:237] Train net output #0: loss = 0.137046 (* 1 = 0.137046 loss) +I0407 09:42:32.165969 15775 sgd_solver.cpp:105] Iteration 9000, lr = 0.0001 +I0407 09:42:32.889675 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:37.394378 15775 solver.cpp:218] Iteration 9012 (2.29517 iter/s, 5.22837s/12 iters), loss = 0.257716 +I0407 09:42:37.394426 15775 solver.cpp:237] Train net output #0: loss = 0.257716 (* 1 = 0.257716 loss) +I0407 09:42:37.394435 15775 sgd_solver.cpp:105] Iteration 9012, lr = 0.0001 +I0407 09:42:42.581104 15775 solver.cpp:218] Iteration 9024 (2.31364 iter/s, 5.18663s/12 iters), loss = 0.267739 +I0407 09:42:42.581143 15775 solver.cpp:237] Train net output #0: loss = 0.267739 (* 1 = 0.267739 loss) +I0407 09:42:42.581151 15775 sgd_solver.cpp:105] Iteration 9024, lr = 0.0001 +I0407 09:42:48.024983 15775 solver.cpp:218] Iteration 9036 (2.20435 iter/s, 5.44379s/12 iters), loss = 0.148599 +I0407 09:42:48.025032 15775 solver.cpp:237] Train net output #0: loss = 0.148599 (* 1 = 0.148599 loss) +I0407 09:42:48.025040 15775 sgd_solver.cpp:105] Iteration 9036, lr = 0.0001 +I0407 09:42:53.298626 15775 solver.cpp:218] Iteration 9048 (2.27551 iter/s, 5.27355s/12 iters), loss = 0.190266 +I0407 09:42:53.298763 15775 solver.cpp:237] Train net output #0: loss = 0.190266 (* 1 = 0.190266 loss) +I0407 09:42:53.298772 15775 sgd_solver.cpp:105] Iteration 9048, lr = 0.0001 +I0407 09:42:58.636189 15775 solver.cpp:218] Iteration 9060 (2.24829 iter/s, 5.33739s/12 iters), loss = 0.119327 +I0407 09:42:58.636235 15775 solver.cpp:237] Train net output #0: loss = 0.119327 (* 1 = 0.119327 loss) +I0407 09:42:58.636245 15775 sgd_solver.cpp:105] Iteration 9060, lr = 0.0001 +I0407 09:43:04.041849 15775 solver.cpp:218] Iteration 9072 (2.21993 iter/s, 5.40557s/12 iters), loss = 0.0824048 +I0407 09:43:04.041893 15775 solver.cpp:237] Train net output #0: loss = 0.0824047 (* 1 = 0.0824047 loss) +I0407 09:43:04.041899 15775 sgd_solver.cpp:105] Iteration 9072, lr = 0.0001 +I0407 09:43:06.008786 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 09:43:11.514572 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 09:43:13.827811 15775 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 09:43:13.827828 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:43:14.617607 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:18.136560 15775 solver.cpp:397] Test net output #0: accuracy = 0.467524 +I0407 09:43:18.136596 15775 solver.cpp:397] Test net output #1: loss = 2.78248 (* 1 = 2.78248 loss) +I0407 09:43:19.979810 15775 solver.cpp:218] Iteration 9084 (0.752926 iter/s, 15.9378s/12 iters), loss = 0.233106 +I0407 09:43:19.979857 15775 solver.cpp:237] Train net output #0: loss = 0.233106 (* 1 = 0.233106 loss) +I0407 09:43:19.979866 15775 sgd_solver.cpp:105] Iteration 9084, lr = 0.0001 +I0407 09:43:25.266616 15775 solver.cpp:218] Iteration 9096 (2.26984 iter/s, 5.28671s/12 iters), loss = 0.198415 +I0407 09:43:25.266722 15775 solver.cpp:237] Train net output #0: loss = 0.198415 (* 1 = 0.198415 loss) +I0407 09:43:25.266731 15775 sgd_solver.cpp:105] Iteration 9096, lr = 0.0001 +I0407 09:43:28.361714 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:30.573132 15775 solver.cpp:218] Iteration 9108 (2.26143 iter/s, 5.30637s/12 iters), loss = 0.302202 +I0407 09:43:30.573177 15775 solver.cpp:237] Train net output #0: loss = 0.302202 (* 1 = 0.302202 loss) +I0407 09:43:30.573186 15775 sgd_solver.cpp:105] Iteration 9108, lr = 0.0001 +I0407 09:43:35.755198 15775 solver.cpp:218] Iteration 9120 (2.31572 iter/s, 5.18198s/12 iters), loss = 0.230548 +I0407 09:43:35.755255 15775 solver.cpp:237] Train net output #0: loss = 0.230548 (* 1 = 0.230548 loss) +I0407 09:43:35.755265 15775 sgd_solver.cpp:105] Iteration 9120, lr = 0.0001 +I0407 09:43:41.111403 15775 solver.cpp:218] Iteration 9132 (2.24044 iter/s, 5.3561s/12 iters), loss = 0.201977 +I0407 09:43:41.111449 15775 solver.cpp:237] Train net output #0: loss = 0.201977 (* 1 = 0.201977 loss) +I0407 09:43:41.111457 15775 sgd_solver.cpp:105] Iteration 9132, lr = 0.0001 +I0407 09:43:46.324040 15775 solver.cpp:218] Iteration 9144 (2.30214 iter/s, 5.21255s/12 iters), loss = 0.126563 +I0407 09:43:46.324085 15775 solver.cpp:237] Train net output #0: loss = 0.126563 (* 1 = 0.126563 loss) +I0407 09:43:46.324093 15775 sgd_solver.cpp:105] Iteration 9144, lr = 0.0001 +I0407 09:43:51.637163 15775 solver.cpp:218] Iteration 9156 (2.2586 iter/s, 5.31303s/12 iters), loss = 0.171573 +I0407 09:43:51.637204 15775 solver.cpp:237] Train net output #0: loss = 0.171573 (* 1 = 0.171573 loss) +I0407 09:43:51.637212 15775 sgd_solver.cpp:105] Iteration 9156, lr = 0.0001 +I0407 09:43:56.839985 15775 solver.cpp:218] Iteration 9168 (2.30648 iter/s, 5.20274s/12 iters), loss = 0.223802 +I0407 09:43:56.840114 15775 solver.cpp:237] Train net output #0: loss = 0.223802 (* 1 = 0.223802 loss) +I0407 09:43:56.840124 15775 sgd_solver.cpp:105] Iteration 9168, lr = 0.0001 +I0407 09:44:01.557219 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 09:44:05.973708 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 09:44:09.090745 15775 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 09:44:09.090766 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:44:09.850093 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:13.401523 15775 solver.cpp:397] Test net output #0: accuracy = 0.466299 +I0407 09:44:13.401554 15775 solver.cpp:397] Test net output #1: loss = 2.78557 (* 1 = 2.78557 loss) +I0407 09:44:13.538446 15775 solver.cpp:218] Iteration 9180 (0.718639 iter/s, 16.6982s/12 iters), loss = 0.126074 +I0407 09:44:13.538508 15775 solver.cpp:237] Train net output #0: loss = 0.126074 (* 1 = 0.126074 loss) +I0407 09:44:13.538517 15775 sgd_solver.cpp:105] Iteration 9180, lr = 0.0001 +I0407 09:44:17.874361 15775 solver.cpp:218] Iteration 9192 (2.76765 iter/s, 4.33581s/12 iters), loss = 0.148098 +I0407 09:44:17.874404 15775 solver.cpp:237] Train net output #0: loss = 0.148098 (* 1 = 0.148098 loss) +I0407 09:44:17.874413 15775 sgd_solver.cpp:105] Iteration 9192, lr = 0.0001 +I0407 09:44:23.122661 15775 solver.cpp:218] Iteration 9204 (2.28649 iter/s, 5.24821s/12 iters), loss = 0.128494 +I0407 09:44:23.122704 15775 solver.cpp:237] Train net output #0: loss = 0.128494 (* 1 = 0.128494 loss) +I0407 09:44:23.122710 15775 sgd_solver.cpp:105] Iteration 9204, lr = 0.0001 +I0407 09:44:23.184644 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:28.634991 15775 solver.cpp:218] Iteration 9216 (2.17697 iter/s, 5.51224s/12 iters), loss = 0.2307 +I0407 09:44:28.635118 15775 solver.cpp:237] Train net output #0: loss = 0.2307 (* 1 = 0.2307 loss) +I0407 09:44:28.635133 15775 sgd_solver.cpp:105] Iteration 9216, lr = 0.0001 +I0407 09:44:33.964706 15775 solver.cpp:218] Iteration 9228 (2.2516 iter/s, 5.32955s/12 iters), loss = 0.256333 +I0407 09:44:33.964756 15775 solver.cpp:237] Train net output #0: loss = 0.256333 (* 1 = 0.256333 loss) +I0407 09:44:33.964766 15775 sgd_solver.cpp:105] Iteration 9228, lr = 0.0001 +I0407 09:44:39.221791 15775 solver.cpp:218] Iteration 9240 (2.28267 iter/s, 5.257s/12 iters), loss = 0.201656 +I0407 09:44:39.221829 15775 solver.cpp:237] Train net output #0: loss = 0.201656 (* 1 = 0.201656 loss) +I0407 09:44:39.221837 15775 sgd_solver.cpp:105] Iteration 9240, lr = 0.0001 +I0407 09:44:44.628408 15775 solver.cpp:218] Iteration 9252 (2.21954 iter/s, 5.40654s/12 iters), loss = 0.157593 +I0407 09:44:44.628455 15775 solver.cpp:237] Train net output #0: loss = 0.157593 (* 1 = 0.157593 loss) +I0407 09:44:44.628464 15775 sgd_solver.cpp:105] Iteration 9252, lr = 0.0001 +I0407 09:44:49.931193 15775 solver.cpp:218] Iteration 9264 (2.263 iter/s, 5.30269s/12 iters), loss = 0.181314 +I0407 09:44:49.931241 15775 solver.cpp:237] Train net output #0: loss = 0.181314 (* 1 = 0.181314 loss) +I0407 09:44:49.931250 15775 sgd_solver.cpp:105] Iteration 9264, lr = 0.0001 +I0407 09:44:55.035255 15775 solver.cpp:218] Iteration 9276 (2.35111 iter/s, 5.10397s/12 iters), loss = 0.183511 +I0407 09:44:55.035301 15775 solver.cpp:237] Train net output #0: loss = 0.183511 (* 1 = 0.183511 loss) +I0407 09:44:55.035310 15775 sgd_solver.cpp:105] Iteration 9276, lr = 0.0001 +I0407 09:44:57.215515 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 09:45:01.690359 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 09:45:04.126464 15775 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 09:45:04.126482 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:45:04.834314 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:08.405364 15775 solver.cpp:397] Test net output #0: accuracy = 0.467524 +I0407 09:45:08.405393 15775 solver.cpp:397] Test net output #1: loss = 2.7946 (* 1 = 2.7946 loss) +I0407 09:45:10.366865 15775 solver.cpp:218] Iteration 9288 (0.782704 iter/s, 15.3315s/12 iters), loss = 0.227677 +I0407 09:45:10.366905 15775 solver.cpp:237] Train net output #0: loss = 0.227677 (* 1 = 0.227677 loss) +I0407 09:45:10.366914 15775 sgd_solver.cpp:105] Iteration 9288, lr = 0.0001 +I0407 09:45:15.578668 15775 solver.cpp:218] Iteration 9300 (2.3025 iter/s, 5.21172s/12 iters), loss = 0.0991249 +I0407 09:45:15.578714 15775 solver.cpp:237] Train net output #0: loss = 0.0991249 (* 1 = 0.0991249 loss) +I0407 09:45:15.578722 15775 sgd_solver.cpp:105] Iteration 9300, lr = 0.0001 +I0407 09:45:17.954671 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:20.740993 15775 solver.cpp:218] Iteration 9312 (2.32458 iter/s, 5.16223s/12 iters), loss = 0.182747 +I0407 09:45:20.741039 15775 solver.cpp:237] Train net output #0: loss = 0.182747 (* 1 = 0.182747 loss) +I0407 09:45:20.741047 15775 sgd_solver.cpp:105] Iteration 9312, lr = 0.0001 +I0407 09:45:26.135376 15775 solver.cpp:218] Iteration 9324 (2.22458 iter/s, 5.39429s/12 iters), loss = 0.331795 +I0407 09:45:26.135434 15775 solver.cpp:237] Train net output #0: loss = 0.331795 (* 1 = 0.331795 loss) +I0407 09:45:26.135444 15775 sgd_solver.cpp:105] Iteration 9324, lr = 0.0001 +I0407 09:45:31.352756 15775 solver.cpp:218] Iteration 9336 (2.30005 iter/s, 5.21728s/12 iters), loss = 0.215172 +I0407 09:45:31.352799 15775 solver.cpp:237] Train net output #0: loss = 0.215172 (* 1 = 0.215172 loss) +I0407 09:45:31.352807 15775 sgd_solver.cpp:105] Iteration 9336, lr = 0.0001 +I0407 09:45:36.607095 15775 solver.cpp:218] Iteration 9348 (2.28387 iter/s, 5.25425s/12 iters), loss = 0.109224 +I0407 09:45:36.607223 15775 solver.cpp:237] Train net output #0: loss = 0.109224 (* 1 = 0.109224 loss) +I0407 09:45:36.607234 15775 sgd_solver.cpp:105] Iteration 9348, lr = 0.0001 +I0407 09:45:41.941922 15775 solver.cpp:218] Iteration 9360 (2.24944 iter/s, 5.33466s/12 iters), loss = 0.195852 +I0407 09:45:41.941980 15775 solver.cpp:237] Train net output #0: loss = 0.195852 (* 1 = 0.195852 loss) +I0407 09:45:41.941992 15775 sgd_solver.cpp:105] Iteration 9360, lr = 0.0001 +I0407 09:45:47.231703 15775 solver.cpp:218] Iteration 9372 (2.26857 iter/s, 5.28968s/12 iters), loss = 0.0763284 +I0407 09:45:47.231748 15775 solver.cpp:237] Train net output #0: loss = 0.0763284 (* 1 = 0.0763284 loss) +I0407 09:45:47.231756 15775 sgd_solver.cpp:105] Iteration 9372, lr = 0.0001 +I0407 09:45:52.096810 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 09:45:56.706606 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 09:45:59.096077 15775 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 09:45:59.096097 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:45:59.768874 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:03.493252 15775 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0407 09:46:03.493278 15775 solver.cpp:397] Test net output #1: loss = 2.78917 (* 1 = 2.78917 loss) +I0407 09:46:03.623515 15775 solver.cpp:218] Iteration 9384 (0.732079 iter/s, 16.3917s/12 iters), loss = 0.17757 +I0407 09:46:03.623558 15775 solver.cpp:237] Train net output #0: loss = 0.17757 (* 1 = 0.17757 loss) +I0407 09:46:03.623566 15775 sgd_solver.cpp:105] Iteration 9384, lr = 0.0001 +I0407 09:46:07.717604 15775 solver.cpp:218] Iteration 9396 (2.93111 iter/s, 4.09401s/12 iters), loss = 0.118849 +I0407 09:46:07.717764 15775 solver.cpp:237] Train net output #0: loss = 0.118849 (* 1 = 0.118849 loss) +I0407 09:46:07.717773 15775 sgd_solver.cpp:105] Iteration 9396, lr = 0.0001 +I0407 09:46:12.311385 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:13.044143 15775 solver.cpp:218] Iteration 9408 (2.25296 iter/s, 5.32634s/12 iters), loss = 0.239455 +I0407 09:46:13.044193 15775 solver.cpp:237] Train net output #0: loss = 0.239455 (* 1 = 0.239455 loss) +I0407 09:46:13.044199 15775 sgd_solver.cpp:105] Iteration 9408, lr = 0.0001 +I0407 09:46:18.141952 15775 solver.cpp:218] Iteration 9420 (2.354 iter/s, 5.09772s/12 iters), loss = 0.148894 +I0407 09:46:18.141999 15775 solver.cpp:237] Train net output #0: loss = 0.148894 (* 1 = 0.148894 loss) +I0407 09:46:18.142006 15775 sgd_solver.cpp:105] Iteration 9420, lr = 0.0001 +I0407 09:46:23.439549 15775 solver.cpp:218] Iteration 9432 (2.26522 iter/s, 5.29751s/12 iters), loss = 0.136226 +I0407 09:46:23.439600 15775 solver.cpp:237] Train net output #0: loss = 0.136226 (* 1 = 0.136226 loss) +I0407 09:46:23.439610 15775 sgd_solver.cpp:105] Iteration 9432, lr = 0.0001 +I0407 09:46:28.559461 15775 solver.cpp:218] Iteration 9444 (2.34383 iter/s, 5.11982s/12 iters), loss = 0.141263 +I0407 09:46:28.559500 15775 solver.cpp:237] Train net output #0: loss = 0.141263 (* 1 = 0.141263 loss) +I0407 09:46:28.559507 15775 sgd_solver.cpp:105] Iteration 9444, lr = 0.0001 +I0407 09:46:33.813613 15775 solver.cpp:218] Iteration 9456 (2.28394 iter/s, 5.25407s/12 iters), loss = 0.155403 +I0407 09:46:33.813654 15775 solver.cpp:237] Train net output #0: loss = 0.155403 (* 1 = 0.155403 loss) +I0407 09:46:33.813663 15775 sgd_solver.cpp:105] Iteration 9456, lr = 0.0001 +I0407 09:46:38.866866 15775 solver.cpp:218] Iteration 9468 (2.37475 iter/s, 5.05316s/12 iters), loss = 0.202033 +I0407 09:46:38.866972 15775 solver.cpp:237] Train net output #0: loss = 0.202033 (* 1 = 0.202033 loss) +I0407 09:46:38.866981 15775 sgd_solver.cpp:105] Iteration 9468, lr = 0.0001 +I0407 09:46:44.039175 15775 solver.cpp:218] Iteration 9480 (2.32012 iter/s, 5.17215s/12 iters), loss = 0.128295 +I0407 09:46:44.039232 15775 solver.cpp:237] Train net output #0: loss = 0.128295 (* 1 = 0.128295 loss) +I0407 09:46:44.039243 15775 sgd_solver.cpp:105] Iteration 9480, lr = 0.0001 +I0407 09:46:46.137526 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 09:46:50.502921 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 09:46:53.479776 15775 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 09:46:53.479795 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:46:54.105449 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:57.925103 15775 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0407 09:46:57.925132 15775 solver.cpp:397] Test net output #1: loss = 2.80709 (* 1 = 2.80709 loss) +I0407 09:46:59.767215 15775 solver.cpp:218] Iteration 9492 (0.762976 iter/s, 15.7279s/12 iters), loss = 0.170891 +I0407 09:46:59.767262 15775 solver.cpp:237] Train net output #0: loss = 0.170891 (* 1 = 0.170891 loss) +I0407 09:46:59.767271 15775 sgd_solver.cpp:105] Iteration 9492, lr = 0.0001 +I0407 09:47:05.078788 15775 solver.cpp:218] Iteration 9504 (2.25926 iter/s, 5.31147s/12 iters), loss = 0.176479 +I0407 09:47:05.078845 15775 solver.cpp:237] Train net output #0: loss = 0.176479 (* 1 = 0.176479 loss) +I0407 09:47:05.078856 15775 sgd_solver.cpp:105] Iteration 9504, lr = 0.0001 +I0407 09:47:06.494701 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:10.326475 15775 solver.cpp:218] Iteration 9516 (2.28676 iter/s, 5.24759s/12 iters), loss = 0.0869653 +I0407 09:47:10.326597 15775 solver.cpp:237] Train net output #0: loss = 0.0869653 (* 1 = 0.0869653 loss) +I0407 09:47:10.326606 15775 sgd_solver.cpp:105] Iteration 9516, lr = 0.0001 +I0407 09:47:15.548610 15775 solver.cpp:218] Iteration 9528 (2.29798 iter/s, 5.22197s/12 iters), loss = 0.168655 +I0407 09:47:15.548658 15775 solver.cpp:237] Train net output #0: loss = 0.168655 (* 1 = 0.168655 loss) +I0407 09:47:15.548667 15775 sgd_solver.cpp:105] Iteration 9528, lr = 0.0001 +I0407 09:47:20.625870 15775 solver.cpp:218] Iteration 9540 (2.36352 iter/s, 5.07717s/12 iters), loss = 0.14013 +I0407 09:47:20.625916 15775 solver.cpp:237] Train net output #0: loss = 0.14013 (* 1 = 0.14013 loss) +I0407 09:47:20.625924 15775 sgd_solver.cpp:105] Iteration 9540, lr = 0.0001 +I0407 09:47:26.004985 15775 solver.cpp:218] Iteration 9552 (2.23089 iter/s, 5.37903s/12 iters), loss = 0.196021 +I0407 09:47:26.005041 15775 solver.cpp:237] Train net output #0: loss = 0.196021 (* 1 = 0.196021 loss) +I0407 09:47:26.005053 15775 sgd_solver.cpp:105] Iteration 9552, lr = 0.0001 +I0407 09:47:31.296083 15775 solver.cpp:218] Iteration 9564 (2.268 iter/s, 5.291s/12 iters), loss = 0.177279 +I0407 09:47:31.296129 15775 solver.cpp:237] Train net output #0: loss = 0.177279 (* 1 = 0.177279 loss) +I0407 09:47:31.296137 15775 sgd_solver.cpp:105] Iteration 9564, lr = 0.0001 +I0407 09:47:36.548911 15775 solver.cpp:218] Iteration 9576 (2.28453 iter/s, 5.25273s/12 iters), loss = 0.164927 +I0407 09:47:36.548957 15775 solver.cpp:237] Train net output #0: loss = 0.164927 (* 1 = 0.164927 loss) +I0407 09:47:36.548966 15775 sgd_solver.cpp:105] Iteration 9576, lr = 0.0001 +I0407 09:47:41.392846 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 09:47:45.961107 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 09:47:50.326215 15775 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 09:47:50.326234 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:47:50.986127 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:54.670445 15775 solver.cpp:397] Test net output #0: accuracy = 0.471201 +I0407 09:47:54.670480 15775 solver.cpp:397] Test net output #1: loss = 2.80319 (* 1 = 2.80319 loss) +I0407 09:47:54.808917 15775 solver.cpp:218] Iteration 9588 (0.65718 iter/s, 18.2598s/12 iters), loss = 0.28031 +I0407 09:47:54.810477 15775 solver.cpp:237] Train net output #0: loss = 0.28031 (* 1 = 0.28031 loss) +I0407 09:47:54.810492 15775 sgd_solver.cpp:105] Iteration 9588, lr = 0.0001 +I0407 09:47:59.178256 15775 solver.cpp:218] Iteration 9600 (2.74741 iter/s, 4.36775s/12 iters), loss = 0.151852 +I0407 09:47:59.178303 15775 solver.cpp:237] Train net output #0: loss = 0.151852 (* 1 = 0.151852 loss) +I0407 09:47:59.178311 15775 sgd_solver.cpp:105] Iteration 9600, lr = 0.0001 +I0407 09:48:02.962478 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:04.420794 15775 solver.cpp:218] Iteration 9612 (2.28901 iter/s, 5.24245s/12 iters), loss = 0.12765 +I0407 09:48:04.420835 15775 solver.cpp:237] Train net output #0: loss = 0.12765 (* 1 = 0.12765 loss) +I0407 09:48:04.420842 15775 sgd_solver.cpp:105] Iteration 9612, lr = 0.0001 +I0407 09:48:09.849131 15775 solver.cpp:218] Iteration 9624 (2.21066 iter/s, 5.42824s/12 iters), loss = 0.135463 +I0407 09:48:09.849176 15775 solver.cpp:237] Train net output #0: loss = 0.135463 (* 1 = 0.135463 loss) +I0407 09:48:09.849184 15775 sgd_solver.cpp:105] Iteration 9624, lr = 0.0001 +I0407 09:48:15.019057 15775 solver.cpp:218] Iteration 9636 (2.32116 iter/s, 5.16984s/12 iters), loss = 0.15202 +I0407 09:48:15.019201 15775 solver.cpp:237] Train net output #0: loss = 0.15202 (* 1 = 0.15202 loss) +I0407 09:48:15.019212 15775 sgd_solver.cpp:105] Iteration 9636, lr = 0.0001 +I0407 09:48:20.202482 15775 solver.cpp:218] Iteration 9648 (2.31515 iter/s, 5.18324s/12 iters), loss = 0.141664 +I0407 09:48:20.202531 15775 solver.cpp:237] Train net output #0: loss = 0.141664 (* 1 = 0.141664 loss) +I0407 09:48:20.202538 15775 sgd_solver.cpp:105] Iteration 9648, lr = 0.0001 +I0407 09:48:25.683687 15775 solver.cpp:218] Iteration 9660 (2.18934 iter/s, 5.48111s/12 iters), loss = 0.122585 +I0407 09:48:25.683733 15775 solver.cpp:237] Train net output #0: loss = 0.122585 (* 1 = 0.122585 loss) +I0407 09:48:25.683743 15775 sgd_solver.cpp:105] Iteration 9660, lr = 0.0001 +I0407 09:48:30.831939 15775 solver.cpp:218] Iteration 9672 (2.33093 iter/s, 5.14816s/12 iters), loss = 0.194214 +I0407 09:48:30.831991 15775 solver.cpp:237] Train net output #0: loss = 0.194214 (* 1 = 0.194214 loss) +I0407 09:48:30.832001 15775 sgd_solver.cpp:105] Iteration 9672, lr = 0.0001 +I0407 09:48:36.125952 15775 solver.cpp:218] Iteration 9684 (2.26675 iter/s, 5.29392s/12 iters), loss = 0.154156 +I0407 09:48:36.125996 15775 solver.cpp:237] Train net output #0: loss = 0.154156 (* 1 = 0.154156 loss) +I0407 09:48:36.126003 15775 sgd_solver.cpp:105] Iteration 9684, lr = 0.0001 +I0407 09:48:38.315619 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 09:48:43.488997 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 09:48:47.372617 15775 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 09:48:47.372692 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:48:47.914767 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:50.659564 15775 blocking_queue.cpp:49] Waiting for data +I0407 09:48:51.632952 15775 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0407 09:48:51.632984 15775 solver.cpp:397] Test net output #1: loss = 2.79821 (* 1 = 2.79821 loss) +I0407 09:48:53.435176 15775 solver.cpp:218] Iteration 9696 (0.693278 iter/s, 17.3091s/12 iters), loss = 0.213284 +I0407 09:48:53.435228 15775 solver.cpp:237] Train net output #0: loss = 0.213284 (* 1 = 0.213284 loss) +I0407 09:48:53.435237 15775 sgd_solver.cpp:105] Iteration 9696, lr = 0.0001 +I0407 09:48:58.604811 15775 solver.cpp:218] Iteration 9708 (2.32129 iter/s, 5.16954s/12 iters), loss = 0.164927 +I0407 09:48:58.604848 15775 solver.cpp:237] Train net output #0: loss = 0.164927 (* 1 = 0.164927 loss) +I0407 09:48:58.604854 15775 sgd_solver.cpp:105] Iteration 9708, lr = 0.0001 +I0407 09:48:59.351450 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:03.794610 15775 solver.cpp:218] Iteration 9720 (2.31227 iter/s, 5.18971s/12 iters), loss = 0.18559 +I0407 09:49:03.794661 15775 solver.cpp:237] Train net output #0: loss = 0.18559 (* 1 = 0.18559 loss) +I0407 09:49:03.794672 15775 sgd_solver.cpp:105] Iteration 9720, lr = 0.0001 +I0407 09:49:09.124004 15775 solver.cpp:218] Iteration 9732 (2.2517 iter/s, 5.3293s/12 iters), loss = 0.124581 +I0407 09:49:09.124051 15775 solver.cpp:237] Train net output #0: loss = 0.124581 (* 1 = 0.124581 loss) +I0407 09:49:09.124058 15775 sgd_solver.cpp:105] Iteration 9732, lr = 0.0001 +I0407 09:49:14.429980 15775 solver.cpp:218] Iteration 9744 (2.26164 iter/s, 5.30589s/12 iters), loss = 0.182487 +I0407 09:49:14.430027 15775 solver.cpp:237] Train net output #0: loss = 0.182487 (* 1 = 0.182487 loss) +I0407 09:49:14.430033 15775 sgd_solver.cpp:105] Iteration 9744, lr = 0.0001 +I0407 09:49:19.782027 15775 solver.cpp:218] Iteration 9756 (2.24217 iter/s, 5.35195s/12 iters), loss = 0.102209 +I0407 09:49:19.782157 15775 solver.cpp:237] Train net output #0: loss = 0.102209 (* 1 = 0.102209 loss) +I0407 09:49:19.782169 15775 sgd_solver.cpp:105] Iteration 9756, lr = 0.0001 +I0407 09:49:25.162781 15775 solver.cpp:218] Iteration 9768 (2.23024 iter/s, 5.38059s/12 iters), loss = 0.131875 +I0407 09:49:25.162827 15775 solver.cpp:237] Train net output #0: loss = 0.131875 (* 1 = 0.131875 loss) +I0407 09:49:25.162835 15775 sgd_solver.cpp:105] Iteration 9768, lr = 0.0001 +I0407 09:49:30.081877 15775 solver.cpp:218] Iteration 9780 (2.43952 iter/s, 4.91901s/12 iters), loss = 0.144339 +I0407 09:49:30.081916 15775 solver.cpp:237] Train net output #0: loss = 0.144339 (* 1 = 0.144339 loss) +I0407 09:49:30.081924 15775 sgd_solver.cpp:105] Iteration 9780, lr = 0.0001 +I0407 09:49:34.834777 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 09:49:39.550606 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 09:49:43.509400 15775 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 09:49:43.509420 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:49:44.033205 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:47.782961 15775 solver.cpp:397] Test net output #0: accuracy = 0.470588 +I0407 09:49:47.782996 15775 solver.cpp:397] Test net output #1: loss = 2.80099 (* 1 = 2.80099 loss) +I0407 09:49:47.913172 15775 solver.cpp:218] Iteration 9792 (0.67298 iter/s, 17.8311s/12 iters), loss = 0.284332 +I0407 09:49:47.913224 15775 solver.cpp:237] Train net output #0: loss = 0.284332 (* 1 = 0.284332 loss) +I0407 09:49:47.913233 15775 sgd_solver.cpp:105] Iteration 9792, lr = 0.0001 +I0407 09:49:52.284960 15775 solver.cpp:218] Iteration 9804 (2.74493 iter/s, 4.3717s/12 iters), loss = 0.184522 +I0407 09:49:52.285100 15775 solver.cpp:237] Train net output #0: loss = 0.184522 (* 1 = 0.184522 loss) +I0407 09:49:52.285109 15775 sgd_solver.cpp:105] Iteration 9804, lr = 0.0001 +I0407 09:49:55.484755 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:57.713879 15775 solver.cpp:218] Iteration 9816 (2.21046 iter/s, 5.42874s/12 iters), loss = 0.106026 +I0407 09:49:57.713925 15775 solver.cpp:237] Train net output #0: loss = 0.106026 (* 1 = 0.106026 loss) +I0407 09:49:57.713933 15775 sgd_solver.cpp:105] Iteration 9816, lr = 0.0001 +I0407 09:50:02.938012 15775 solver.cpp:218] Iteration 9828 (2.29707 iter/s, 5.22404s/12 iters), loss = 0.213115 +I0407 09:50:02.938060 15775 solver.cpp:237] Train net output #0: loss = 0.213115 (* 1 = 0.213115 loss) +I0407 09:50:02.938068 15775 sgd_solver.cpp:105] Iteration 9828, lr = 0.0001 +I0407 09:50:08.325975 15775 solver.cpp:218] Iteration 9840 (2.22723 iter/s, 5.38787s/12 iters), loss = 0.246496 +I0407 09:50:08.326033 15775 solver.cpp:237] Train net output #0: loss = 0.246497 (* 1 = 0.246497 loss) +I0407 09:50:08.326045 15775 sgd_solver.cpp:105] Iteration 9840, lr = 0.0001 +I0407 09:50:13.658087 15775 solver.cpp:218] Iteration 9852 (2.25056 iter/s, 5.33201s/12 iters), loss = 0.205428 +I0407 09:50:13.658145 15775 solver.cpp:237] Train net output #0: loss = 0.205428 (* 1 = 0.205428 loss) +I0407 09:50:13.658155 15775 sgd_solver.cpp:105] Iteration 9852, lr = 0.0001 +I0407 09:50:18.940282 15775 solver.cpp:218] Iteration 9864 (2.27183 iter/s, 5.2821s/12 iters), loss = 0.21726 +I0407 09:50:18.940327 15775 solver.cpp:237] Train net output #0: loss = 0.21726 (* 1 = 0.21726 loss) +I0407 09:50:18.940335 15775 sgd_solver.cpp:105] Iteration 9864, lr = 0.0001 +I0407 09:50:24.215428 15775 solver.cpp:218] Iteration 9876 (2.27486 iter/s, 5.27506s/12 iters), loss = 0.249407 +I0407 09:50:24.215517 15775 solver.cpp:237] Train net output #0: loss = 0.249407 (* 1 = 0.249407 loss) +I0407 09:50:24.215526 15775 sgd_solver.cpp:105] Iteration 9876, lr = 0.0001 +I0407 09:50:29.449712 15775 solver.cpp:218] Iteration 9888 (2.29263 iter/s, 5.23415s/12 iters), loss = 0.193869 +I0407 09:50:29.449757 15775 solver.cpp:237] Train net output #0: loss = 0.193869 (* 1 = 0.193869 loss) +I0407 09:50:29.449764 15775 sgd_solver.cpp:105] Iteration 9888, lr = 0.0001 +I0407 09:50:31.627467 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 09:50:36.024458 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 09:50:38.845136 15775 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 09:50:38.845153 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:50:39.348192 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:43.203734 15775 solver.cpp:397] Test net output #0: accuracy = 0.473652 +I0407 09:50:43.203769 15775 solver.cpp:397] Test net output #1: loss = 2.79862 (* 1 = 2.79862 loss) +I0407 09:50:45.118007 15775 solver.cpp:218] Iteration 9900 (0.765885 iter/s, 15.6681s/12 iters), loss = 0.202655 +I0407 09:50:45.118067 15775 solver.cpp:237] Train net output #0: loss = 0.202655 (* 1 = 0.202655 loss) +I0407 09:50:45.118078 15775 sgd_solver.cpp:105] Iteration 9900, lr = 0.0001 +I0407 09:50:50.334579 15775 solver.cpp:218] Iteration 9912 (2.30041 iter/s, 5.21647s/12 iters), loss = 0.308391 +I0407 09:50:50.334619 15775 solver.cpp:237] Train net output #0: loss = 0.308391 (* 1 = 0.308391 loss) +I0407 09:50:50.334625 15775 sgd_solver.cpp:105] Iteration 9912, lr = 0.0001 +I0407 09:50:50.430362 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:55.653986 15775 solver.cpp:218] Iteration 9924 (2.25593 iter/s, 5.31932s/12 iters), loss = 0.197434 +I0407 09:50:55.654148 15775 solver.cpp:237] Train net output #0: loss = 0.197434 (* 1 = 0.197434 loss) +I0407 09:50:55.654157 15775 sgd_solver.cpp:105] Iteration 9924, lr = 0.0001 +I0407 09:51:00.980057 15775 solver.cpp:218] Iteration 9936 (2.25316 iter/s, 5.32586s/12 iters), loss = 0.157159 +I0407 09:51:00.980110 15775 solver.cpp:237] Train net output #0: loss = 0.15716 (* 1 = 0.15716 loss) +I0407 09:51:00.980121 15775 sgd_solver.cpp:105] Iteration 9936, lr = 0.0001 +I0407 09:51:06.244501 15775 solver.cpp:218] Iteration 9948 (2.27949 iter/s, 5.26435s/12 iters), loss = 0.203385 +I0407 09:51:06.244542 15775 solver.cpp:237] Train net output #0: loss = 0.203385 (* 1 = 0.203385 loss) +I0407 09:51:06.244550 15775 sgd_solver.cpp:105] Iteration 9948, lr = 0.0001 +I0407 09:51:11.576861 15775 solver.cpp:218] Iteration 9960 (2.25045 iter/s, 5.33227s/12 iters), loss = 0.143722 +I0407 09:51:11.576927 15775 solver.cpp:237] Train net output #0: loss = 0.143722 (* 1 = 0.143722 loss) +I0407 09:51:11.576942 15775 sgd_solver.cpp:105] Iteration 9960, lr = 0.0001 +I0407 09:51:16.474040 15775 solver.cpp:218] Iteration 9972 (2.45044 iter/s, 4.89707s/12 iters), loss = 0.246464 +I0407 09:51:16.474095 15775 solver.cpp:237] Train net output #0: loss = 0.246464 (* 1 = 0.246464 loss) +I0407 09:51:16.474105 15775 sgd_solver.cpp:105] Iteration 9972, lr = 0.0001 +I0407 09:51:21.599442 15775 solver.cpp:218] Iteration 9984 (2.34133 iter/s, 5.1253s/12 iters), loss = 0.151494 +I0407 09:51:21.599503 15775 solver.cpp:237] Train net output #0: loss = 0.151494 (* 1 = 0.151494 loss) +I0407 09:51:21.599514 15775 sgd_solver.cpp:105] Iteration 9984, lr = 0.0001 +I0407 09:51:26.454092 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 09:51:30.959329 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 09:51:33.332249 15775 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 09:51:33.332275 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:51:33.758469 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:37.745553 15775 solver.cpp:397] Test net output #0: accuracy = 0.473652 +I0407 09:51:37.745586 15775 solver.cpp:397] Test net output #1: loss = 2.80023 (* 1 = 2.80023 loss) +I0407 09:51:37.886790 15775 solver.cpp:218] Iteration 9996 (0.736775 iter/s, 16.2872s/12 iters), loss = 0.146576 +I0407 09:51:37.886854 15775 solver.cpp:237] Train net output #0: loss = 0.146576 (* 1 = 0.146576 loss) +I0407 09:51:37.886863 15775 sgd_solver.cpp:105] Iteration 9996, lr = 0.0001 +I0407 09:51:42.201056 15775 solver.cpp:218] Iteration 10008 (2.78154 iter/s, 4.31416s/12 iters), loss = 0.150558 +I0407 09:51:42.201109 15775 solver.cpp:237] Train net output #0: loss = 0.150558 (* 1 = 0.150558 loss) +I0407 09:51:42.201120 15775 sgd_solver.cpp:105] Iteration 10008, lr = 0.0001 +I0407 09:51:44.437494 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:47.426571 15775 solver.cpp:218] Iteration 10020 (2.29647 iter/s, 5.22542s/12 iters), loss = 0.143988 +I0407 09:51:47.426615 15775 solver.cpp:237] Train net output #0: loss = 0.143988 (* 1 = 0.143988 loss) +I0407 09:51:47.426623 15775 sgd_solver.cpp:105] Iteration 10020, lr = 0.0001 +I0407 09:51:52.690600 15775 solver.cpp:218] Iteration 10032 (2.27966 iter/s, 5.26394s/12 iters), loss = 0.20282 +I0407 09:51:52.690655 15775 solver.cpp:237] Train net output #0: loss = 0.20282 (* 1 = 0.20282 loss) +I0407 09:51:52.690666 15775 sgd_solver.cpp:105] Iteration 10032, lr = 0.0001 +I0407 09:51:57.800948 15775 solver.cpp:218] Iteration 10044 (2.34822 iter/s, 5.11026s/12 iters), loss = 0.240436 +I0407 09:51:57.801079 15775 solver.cpp:237] Train net output #0: loss = 0.240436 (* 1 = 0.240436 loss) +I0407 09:51:57.801088 15775 sgd_solver.cpp:105] Iteration 10044, lr = 0.0001 +I0407 09:52:02.963201 15775 solver.cpp:218] Iteration 10056 (2.32465 iter/s, 5.16208s/12 iters), loss = 0.212926 +I0407 09:52:02.963248 15775 solver.cpp:237] Train net output #0: loss = 0.212926 (* 1 = 0.212926 loss) +I0407 09:52:02.963256 15775 sgd_solver.cpp:105] Iteration 10056, lr = 0.0001 +I0407 09:52:08.271837 15775 solver.cpp:218] Iteration 10068 (2.26051 iter/s, 5.30855s/12 iters), loss = 0.155927 +I0407 09:52:08.271883 15775 solver.cpp:237] Train net output #0: loss = 0.155927 (* 1 = 0.155927 loss) +I0407 09:52:08.271890 15775 sgd_solver.cpp:105] Iteration 10068, lr = 0.0001 +I0407 09:52:13.636561 15775 solver.cpp:218] Iteration 10080 (2.23687 iter/s, 5.36464s/12 iters), loss = 0.257291 +I0407 09:52:13.636601 15775 solver.cpp:237] Train net output #0: loss = 0.257291 (* 1 = 0.257291 loss) +I0407 09:52:13.636610 15775 sgd_solver.cpp:105] Iteration 10080, lr = 0.0001 +I0407 09:52:18.869587 15775 solver.cpp:218] Iteration 10092 (2.29317 iter/s, 5.23294s/12 iters), loss = 0.140405 +I0407 09:52:18.869642 15775 solver.cpp:237] Train net output #0: loss = 0.140405 (* 1 = 0.140405 loss) +I0407 09:52:18.869653 15775 sgd_solver.cpp:105] Iteration 10092, lr = 0.0001 +I0407 09:52:21.125428 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 09:52:25.895536 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 09:52:28.249903 15775 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 09:52:28.249963 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:52:28.695365 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:32.608776 15775 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0407 09:52:32.608812 15775 solver.cpp:397] Test net output #1: loss = 2.79313 (* 1 = 2.79313 loss) +I0407 09:52:34.497972 15775 solver.cpp:218] Iteration 10104 (0.767841 iter/s, 15.6282s/12 iters), loss = 0.110996 +I0407 09:52:34.498014 15775 solver.cpp:237] Train net output #0: loss = 0.110996 (* 1 = 0.110996 loss) +I0407 09:52:34.498023 15775 sgd_solver.cpp:105] Iteration 10104, lr = 1e-05 +I0407 09:52:39.116322 15806 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:39.838129 15775 solver.cpp:218] Iteration 10116 (2.24716 iter/s, 5.34007s/12 iters), loss = 0.140319 +I0407 09:52:39.838176 15775 solver.cpp:237] Train net output #0: loss = 0.140319 (* 1 = 0.140319 loss) +I0407 09:52:39.838183 15775 sgd_solver.cpp:105] Iteration 10116, lr = 1e-05 +I0407 09:52:45.071777 15775 solver.cpp:218] Iteration 10128 (2.2929 iter/s, 5.23355s/12 iters), loss = 0.219552 +I0407 09:52:45.071835 15775 solver.cpp:237] Train net output #0: loss = 0.219552 (* 1 = 0.219552 loss) +I0407 09:52:45.071846 15775 sgd_solver.cpp:105] Iteration 10128, lr = 1e-05 +I0407 09:52:50.329653 15775 solver.cpp:218] Iteration 10140 (2.28233 iter/s, 5.25777s/12 iters), loss = 0.156479 +I0407 09:52:50.329694 15775 solver.cpp:237] Train net output #0: loss = 0.156479 (* 1 = 0.156479 loss) +I0407 09:52:50.329702 15775 sgd_solver.cpp:105] Iteration 10140, lr = 1e-05 +I0407 09:52:55.608155 15775 solver.cpp:218] Iteration 10152 (2.27341 iter/s, 5.27841s/12 iters), loss = 0.142809 +I0407 09:52:55.608196 15775 solver.cpp:237] Train net output #0: loss = 0.142809 (* 1 = 0.142809 loss) +I0407 09:52:55.608204 15775 sgd_solver.cpp:105] Iteration 10152, lr = 1e-05 +I0407 09:53:00.843679 15775 solver.cpp:218] Iteration 10164 (2.29207 iter/s, 5.23543s/12 iters), loss = 0.178734 +I0407 09:53:00.843825 15775 solver.cpp:237] Train net output #0: loss = 0.178734 (* 1 = 0.178734 loss) +I0407 09:53:00.843837 15775 sgd_solver.cpp:105] Iteration 10164, lr = 1e-05 +I0407 09:53:06.041625 15775 solver.cpp:218] Iteration 10176 (2.30869 iter/s, 5.19776s/12 iters), loss = 0.193976 +I0407 09:53:06.041671 15775 solver.cpp:237] Train net output #0: loss = 0.193976 (* 1 = 0.193976 loss) +I0407 09:53:06.041680 15775 sgd_solver.cpp:105] Iteration 10176, lr = 1e-05 +I0407 09:53:11.194289 15775 solver.cpp:218] Iteration 10188 (2.32893 iter/s, 5.15258s/12 iters), loss = 0.188027 +I0407 09:53:11.194345 15775 solver.cpp:237] Train net output #0: loss = 0.188027 (* 1 = 0.188027 loss) +I0407 09:53:11.194355 15775 sgd_solver.cpp:105] Iteration 10188, lr = 1e-05 +I0407 09:53:15.945991 15775 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 09:53:19.074204 15775 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 09:53:21.453879 15775 solver.cpp:310] Iteration 10200, loss = 0.185753 +I0407 09:53:21.453908 15775 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 09:53:21.453912 15775 net.cpp:676] Ignoring source layer train-data +I0407 09:53:21.833256 15837 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:25.804838 15775 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 09:53:25.804872 15775 solver.cpp:397] Test net output #1: loss = 2.78563 (* 1 = 2.78563 loss) +I0407 09:53:25.804878 15775 solver.cpp:315] Optimization Done. +I0407 09:53:25.804893 15775 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/step-down/1e-2/33_0.25/caffe_output.log b/cars/lr-investigations/step-down/1e-2/33_0.25/caffe_output.log new file mode 100644 index 0000000..c0171d1 --- /dev/null +++ b/cars/lr-investigations/step-down/1e-2/33_0.25/caffe_output.log @@ -0,0 +1,4567 @@ +I0407 09:40:51.550113 17183 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210407-094049-37d4/solver.prototxt +I0407 09:40:51.550261 17183 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 09:40:51.550264 17183 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 09:40:51.550316 17183 caffe.cpp:218] Using GPUs 3 +I0407 09:40:51.602154 17183 caffe.cpp:223] GPU 3: GeForce GTX TITAN X +I0407 09:40:51.817802 17183 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "step" +gamma: 0.25 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 3366 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 3 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 09:40:51.818681 17183 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 09:40:51.819336 17183 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 09:40:51.819350 17183 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 09:40:51.819473 17183 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 09:40:51.819552 17183 layer_factory.hpp:77] Creating layer train-data +I0407 09:40:51.822512 17183 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db +I0407 09:40:51.822808 17183 net.cpp:84] Creating Layer train-data +I0407 09:40:51.822826 17183 net.cpp:380] train-data -> data +I0407 09:40:51.822854 17183 net.cpp:380] train-data -> label +I0407 09:40:51.822870 17183 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 09:40:51.828150 17183 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 09:40:51.950438 17183 net.cpp:122] Setting up train-data +I0407 09:40:51.950459 17183 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 09:40:51.950464 17183 net.cpp:129] Top shape: 128 (128) +I0407 09:40:51.950465 17183 net.cpp:137] Memory required for data: 79149056 +I0407 09:40:51.950472 17183 layer_factory.hpp:77] Creating layer conv1 +I0407 09:40:51.950490 17183 net.cpp:84] Creating Layer conv1 +I0407 09:40:51.950495 17183 net.cpp:406] conv1 <- data +I0407 09:40:51.950505 17183 net.cpp:380] conv1 -> conv1 +I0407 09:40:52.410439 17183 net.cpp:122] Setting up conv1 +I0407 09:40:52.410459 17183 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 09:40:52.410461 17183 net.cpp:137] Memory required for data: 227833856 +I0407 09:40:52.410480 17183 layer_factory.hpp:77] Creating layer relu1 +I0407 09:40:52.410490 17183 net.cpp:84] Creating Layer relu1 +I0407 09:40:52.410492 17183 net.cpp:406] relu1 <- conv1 +I0407 09:40:52.410497 17183 net.cpp:367] relu1 -> conv1 (in-place) +I0407 09:40:52.410756 17183 net.cpp:122] Setting up relu1 +I0407 09:40:52.410763 17183 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 09:40:52.410765 17183 net.cpp:137] Memory required for data: 376518656 +I0407 09:40:52.410768 17183 layer_factory.hpp:77] Creating layer norm1 +I0407 09:40:52.410775 17183 net.cpp:84] Creating Layer norm1 +I0407 09:40:52.410801 17183 net.cpp:406] norm1 <- conv1 +I0407 09:40:52.410806 17183 net.cpp:380] norm1 -> norm1 +I0407 09:40:52.412657 17183 net.cpp:122] Setting up norm1 +I0407 09:40:52.412665 17183 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 09:40:52.412668 17183 net.cpp:137] Memory required for data: 525203456 +I0407 09:40:52.412670 17183 layer_factory.hpp:77] Creating layer pool1 +I0407 09:40:52.412678 17183 net.cpp:84] Creating Layer pool1 +I0407 09:40:52.412679 17183 net.cpp:406] pool1 <- norm1 +I0407 09:40:52.412684 17183 net.cpp:380] pool1 -> pool1 +I0407 09:40:52.412719 17183 net.cpp:122] Setting up pool1 +I0407 09:40:52.412727 17183 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 09:40:52.412730 17183 net.cpp:137] Memory required for data: 561035264 +I0407 09:40:52.412734 17183 layer_factory.hpp:77] Creating layer conv2 +I0407 09:40:52.412745 17183 net.cpp:84] Creating Layer conv2 +I0407 09:40:52.412750 17183 net.cpp:406] conv2 <- pool1 +I0407 09:40:52.412755 17183 net.cpp:380] conv2 -> conv2 +I0407 09:40:52.420058 17183 net.cpp:122] Setting up conv2 +I0407 09:40:52.420078 17183 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 09:40:52.420080 17183 net.cpp:137] Memory required for data: 656586752 +I0407 09:40:52.420090 17183 layer_factory.hpp:77] Creating layer relu2 +I0407 09:40:52.420100 17183 net.cpp:84] Creating Layer relu2 +I0407 09:40:52.420104 17183 net.cpp:406] relu2 <- conv2 +I0407 09:40:52.420109 17183 net.cpp:367] relu2 -> conv2 (in-place) +I0407 09:40:52.420578 17183 net.cpp:122] Setting up relu2 +I0407 09:40:52.420586 17183 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 09:40:52.420588 17183 net.cpp:137] Memory required for data: 752138240 +I0407 09:40:52.420591 17183 layer_factory.hpp:77] Creating layer norm2 +I0407 09:40:52.420598 17183 net.cpp:84] Creating Layer norm2 +I0407 09:40:52.420600 17183 net.cpp:406] norm2 <- conv2 +I0407 09:40:52.420605 17183 net.cpp:380] norm2 -> norm2 +I0407 09:40:52.420943 17183 net.cpp:122] Setting up norm2 +I0407 09:40:52.420950 17183 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 09:40:52.420953 17183 net.cpp:137] Memory required for data: 847689728 +I0407 09:40:52.420954 17183 layer_factory.hpp:77] Creating layer pool2 +I0407 09:40:52.420962 17183 net.cpp:84] Creating Layer pool2 +I0407 09:40:52.420965 17183 net.cpp:406] pool2 <- norm2 +I0407 09:40:52.420969 17183 net.cpp:380] pool2 -> pool2 +I0407 09:40:52.421000 17183 net.cpp:122] Setting up pool2 +I0407 09:40:52.421003 17183 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 09:40:52.421005 17183 net.cpp:137] Memory required for data: 869840896 +I0407 09:40:52.421007 17183 layer_factory.hpp:77] Creating layer conv3 +I0407 09:40:52.421016 17183 net.cpp:84] Creating Layer conv3 +I0407 09:40:52.421018 17183 net.cpp:406] conv3 <- pool2 +I0407 09:40:52.421023 17183 net.cpp:380] conv3 -> conv3 +I0407 09:40:52.434401 17183 net.cpp:122] Setting up conv3 +I0407 09:40:52.434424 17183 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 09:40:52.434428 17183 net.cpp:137] Memory required for data: 903067648 +I0407 09:40:52.434444 17183 layer_factory.hpp:77] Creating layer relu3 +I0407 09:40:52.434454 17183 net.cpp:84] Creating Layer relu3 +I0407 09:40:52.434459 17183 net.cpp:406] relu3 <- conv3 +I0407 09:40:52.434468 17183 net.cpp:367] relu3 -> conv3 (in-place) +I0407 09:40:52.435096 17183 net.cpp:122] Setting up relu3 +I0407 09:40:52.435106 17183 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 09:40:52.435109 17183 net.cpp:137] Memory required for data: 936294400 +I0407 09:40:52.435113 17183 layer_factory.hpp:77] Creating layer conv4 +I0407 09:40:52.435127 17183 net.cpp:84] Creating Layer conv4 +I0407 09:40:52.435130 17183 net.cpp:406] conv4 <- conv3 +I0407 09:40:52.435138 17183 net.cpp:380] conv4 -> conv4 +I0407 09:40:52.449146 17183 net.cpp:122] Setting up conv4 +I0407 09:40:52.449172 17183 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 09:40:52.449177 17183 net.cpp:137] Memory required for data: 969521152 +I0407 09:40:52.449187 17183 layer_factory.hpp:77] Creating layer relu4 +I0407 09:40:52.449198 17183 net.cpp:84] Creating Layer relu4 +I0407 09:40:52.449230 17183 net.cpp:406] relu4 <- conv4 +I0407 09:40:52.449240 17183 net.cpp:367] relu4 -> conv4 (in-place) +I0407 09:40:52.449688 17183 net.cpp:122] Setting up relu4 +I0407 09:40:52.449698 17183 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 09:40:52.449703 17183 net.cpp:137] Memory required for data: 1002747904 +I0407 09:40:52.449707 17183 layer_factory.hpp:77] Creating layer conv5 +I0407 09:40:52.449719 17183 net.cpp:84] Creating Layer conv5 +I0407 09:40:52.449723 17183 net.cpp:406] conv5 <- conv4 +I0407 09:40:52.449730 17183 net.cpp:380] conv5 -> conv5 +I0407 09:40:52.460681 17183 net.cpp:122] Setting up conv5 +I0407 09:40:52.460707 17183 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 09:40:52.460711 17183 net.cpp:137] Memory required for data: 1024899072 +I0407 09:40:52.460726 17183 layer_factory.hpp:77] Creating layer relu5 +I0407 09:40:52.460737 17183 net.cpp:84] Creating Layer relu5 +I0407 09:40:52.460742 17183 net.cpp:406] relu5 <- conv5 +I0407 09:40:52.460750 17183 net.cpp:367] relu5 -> conv5 (in-place) +I0407 09:40:52.461380 17183 net.cpp:122] Setting up relu5 +I0407 09:40:52.461393 17183 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 09:40:52.461396 17183 net.cpp:137] Memory required for data: 1047050240 +I0407 09:40:52.461400 17183 layer_factory.hpp:77] Creating layer pool5 +I0407 09:40:52.461408 17183 net.cpp:84] Creating Layer pool5 +I0407 09:40:52.461412 17183 net.cpp:406] pool5 <- conv5 +I0407 09:40:52.461419 17183 net.cpp:380] pool5 -> pool5 +I0407 09:40:52.461462 17183 net.cpp:122] Setting up pool5 +I0407 09:40:52.461468 17183 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 09:40:52.461472 17183 net.cpp:137] Memory required for data: 1051768832 +I0407 09:40:52.461475 17183 layer_factory.hpp:77] Creating layer fc6 +I0407 09:40:52.461488 17183 net.cpp:84] Creating Layer fc6 +I0407 09:40:52.461491 17183 net.cpp:406] fc6 <- pool5 +I0407 09:40:52.461498 17183 net.cpp:380] fc6 -> fc6 +I0407 09:40:52.830471 17183 net.cpp:122] Setting up fc6 +I0407 09:40:52.830494 17183 net.cpp:129] Top shape: 128 4096 (524288) +I0407 09:40:52.830497 17183 net.cpp:137] Memory required for data: 1053865984 +I0407 09:40:52.830505 17183 layer_factory.hpp:77] Creating layer relu6 +I0407 09:40:52.830515 17183 net.cpp:84] Creating Layer relu6 +I0407 09:40:52.830518 17183 net.cpp:406] relu6 <- fc6 +I0407 09:40:52.830523 17183 net.cpp:367] relu6 -> fc6 (in-place) +I0407 09:40:52.831136 17183 net.cpp:122] Setting up relu6 +I0407 09:40:52.831147 17183 net.cpp:129] Top shape: 128 4096 (524288) +I0407 09:40:52.831149 17183 net.cpp:137] Memory required for data: 1055963136 +I0407 09:40:52.831152 17183 layer_factory.hpp:77] Creating layer drop6 +I0407 09:40:52.831158 17183 net.cpp:84] Creating Layer drop6 +I0407 09:40:52.831161 17183 net.cpp:406] drop6 <- fc6 +I0407 09:40:52.831166 17183 net.cpp:367] drop6 -> fc6 (in-place) +I0407 09:40:52.831192 17183 net.cpp:122] Setting up drop6 +I0407 09:40:52.831195 17183 net.cpp:129] Top shape: 128 4096 (524288) +I0407 09:40:52.831197 17183 net.cpp:137] Memory required for data: 1058060288 +I0407 09:40:52.831199 17183 layer_factory.hpp:77] Creating layer fc7 +I0407 09:40:52.831207 17183 net.cpp:84] Creating Layer fc7 +I0407 09:40:52.831208 17183 net.cpp:406] fc7 <- fc6 +I0407 09:40:52.831212 17183 net.cpp:380] fc7 -> fc7 +I0407 09:40:52.980631 17183 net.cpp:122] Setting up fc7 +I0407 09:40:52.980650 17183 net.cpp:129] Top shape: 128 4096 (524288) +I0407 09:40:52.980652 17183 net.cpp:137] Memory required for data: 1060157440 +I0407 09:40:52.980661 17183 layer_factory.hpp:77] Creating layer relu7 +I0407 09:40:52.980669 17183 net.cpp:84] Creating Layer relu7 +I0407 09:40:52.980671 17183 net.cpp:406] relu7 <- fc7 +I0407 09:40:52.980677 17183 net.cpp:367] relu7 -> fc7 (in-place) +I0407 09:40:52.981060 17183 net.cpp:122] Setting up relu7 +I0407 09:40:52.981068 17183 net.cpp:129] Top shape: 128 4096 (524288) +I0407 09:40:52.981070 17183 net.cpp:137] Memory required for data: 1062254592 +I0407 09:40:52.981073 17183 layer_factory.hpp:77] Creating layer drop7 +I0407 09:40:52.981079 17183 net.cpp:84] Creating Layer drop7 +I0407 09:40:52.981101 17183 net.cpp:406] drop7 <- fc7 +I0407 09:40:52.981106 17183 net.cpp:367] drop7 -> fc7 (in-place) +I0407 09:40:52.981127 17183 net.cpp:122] Setting up drop7 +I0407 09:40:52.981132 17183 net.cpp:129] Top shape: 128 4096 (524288) +I0407 09:40:52.981133 17183 net.cpp:137] Memory required for data: 1064351744 +I0407 09:40:52.981135 17183 layer_factory.hpp:77] Creating layer fc8 +I0407 09:40:52.981142 17183 net.cpp:84] Creating Layer fc8 +I0407 09:40:52.981143 17183 net.cpp:406] fc8 <- fc7 +I0407 09:40:52.981148 17183 net.cpp:380] fc8 -> fc8 +I0407 09:40:52.988312 17183 net.cpp:122] Setting up fc8 +I0407 09:40:52.988333 17183 net.cpp:129] Top shape: 128 196 (25088) +I0407 09:40:52.988337 17183 net.cpp:137] Memory required for data: 1064452096 +I0407 09:40:52.988344 17183 layer_factory.hpp:77] Creating layer loss +I0407 09:40:52.988351 17183 net.cpp:84] Creating Layer loss +I0407 09:40:52.988354 17183 net.cpp:406] loss <- fc8 +I0407 09:40:52.988359 17183 net.cpp:406] loss <- label +I0407 09:40:52.988364 17183 net.cpp:380] loss -> loss +I0407 09:40:52.988373 17183 layer_factory.hpp:77] Creating layer loss +I0407 09:40:52.989091 17183 net.cpp:122] Setting up loss +I0407 09:40:52.989099 17183 net.cpp:129] Top shape: (1) +I0407 09:40:52.989101 17183 net.cpp:132] with loss weight 1 +I0407 09:40:52.989117 17183 net.cpp:137] Memory required for data: 1064452100 +I0407 09:40:52.989120 17183 net.cpp:198] loss needs backward computation. +I0407 09:40:52.989125 17183 net.cpp:198] fc8 needs backward computation. +I0407 09:40:52.989128 17183 net.cpp:198] drop7 needs backward computation. +I0407 09:40:52.989130 17183 net.cpp:198] relu7 needs backward computation. +I0407 09:40:52.989132 17183 net.cpp:198] fc7 needs backward computation. +I0407 09:40:52.989135 17183 net.cpp:198] drop6 needs backward computation. +I0407 09:40:52.989137 17183 net.cpp:198] relu6 needs backward computation. +I0407 09:40:52.989140 17183 net.cpp:198] fc6 needs backward computation. +I0407 09:40:52.989142 17183 net.cpp:198] pool5 needs backward computation. +I0407 09:40:52.989145 17183 net.cpp:198] relu5 needs backward computation. +I0407 09:40:52.989147 17183 net.cpp:198] conv5 needs backward computation. +I0407 09:40:52.989149 17183 net.cpp:198] relu4 needs backward computation. +I0407 09:40:52.989151 17183 net.cpp:198] conv4 needs backward computation. +I0407 09:40:52.989154 17183 net.cpp:198] relu3 needs backward computation. +I0407 09:40:52.989156 17183 net.cpp:198] conv3 needs backward computation. +I0407 09:40:52.989158 17183 net.cpp:198] pool2 needs backward computation. +I0407 09:40:52.989161 17183 net.cpp:198] norm2 needs backward computation. +I0407 09:40:52.989163 17183 net.cpp:198] relu2 needs backward computation. +I0407 09:40:52.989166 17183 net.cpp:198] conv2 needs backward computation. +I0407 09:40:52.989168 17183 net.cpp:198] pool1 needs backward computation. +I0407 09:40:52.989171 17183 net.cpp:198] norm1 needs backward computation. +I0407 09:40:52.989173 17183 net.cpp:198] relu1 needs backward computation. +I0407 09:40:52.989176 17183 net.cpp:198] conv1 needs backward computation. +I0407 09:40:52.989178 17183 net.cpp:200] train-data does not need backward computation. +I0407 09:40:52.989181 17183 net.cpp:242] This network produces output loss +I0407 09:40:52.989192 17183 net.cpp:255] Network initialization done. +I0407 09:40:52.989683 17183 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 09:40:52.989710 17183 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 09:40:52.989840 17183 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 09:40:52.989938 17183 layer_factory.hpp:77] Creating layer val-data +I0407 09:40:52.998039 17183 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db +I0407 09:40:52.998294 17183 net.cpp:84] Creating Layer val-data +I0407 09:40:52.998309 17183 net.cpp:380] val-data -> data +I0407 09:40:52.998320 17183 net.cpp:380] val-data -> label +I0407 09:40:52.998327 17183 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 09:40:53.002041 17183 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 09:40:53.040927 17183 net.cpp:122] Setting up val-data +I0407 09:40:53.040952 17183 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 09:40:53.040958 17183 net.cpp:129] Top shape: 32 (32) +I0407 09:40:53.040961 17183 net.cpp:137] Memory required for data: 19787264 +I0407 09:40:53.040967 17183 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 09:40:53.040980 17183 net.cpp:84] Creating Layer label_val-data_1_split +I0407 09:40:53.040984 17183 net.cpp:406] label_val-data_1_split <- label +I0407 09:40:53.040992 17183 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 09:40:53.041003 17183 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 09:40:53.041097 17183 net.cpp:122] Setting up label_val-data_1_split +I0407 09:40:53.041107 17183 net.cpp:129] Top shape: 32 (32) +I0407 09:40:53.041111 17183 net.cpp:129] Top shape: 32 (32) +I0407 09:40:53.041115 17183 net.cpp:137] Memory required for data: 19787520 +I0407 09:40:53.041118 17183 layer_factory.hpp:77] Creating layer conv1 +I0407 09:40:53.041132 17183 net.cpp:84] Creating Layer conv1 +I0407 09:40:53.041136 17183 net.cpp:406] conv1 <- data +I0407 09:40:53.041143 17183 net.cpp:380] conv1 -> conv1 +I0407 09:40:53.044275 17183 net.cpp:122] Setting up conv1 +I0407 09:40:53.044296 17183 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 09:40:53.044299 17183 net.cpp:137] Memory required for data: 56958720 +I0407 09:40:53.044312 17183 layer_factory.hpp:77] Creating layer relu1 +I0407 09:40:53.044322 17183 net.cpp:84] Creating Layer relu1 +I0407 09:40:53.044325 17183 net.cpp:406] relu1 <- conv1 +I0407 09:40:53.044333 17183 net.cpp:367] relu1 -> conv1 (in-place) +I0407 09:40:53.044724 17183 net.cpp:122] Setting up relu1 +I0407 09:40:53.044734 17183 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 09:40:53.044737 17183 net.cpp:137] Memory required for data: 94129920 +I0407 09:40:53.044741 17183 layer_factory.hpp:77] Creating layer norm1 +I0407 09:40:53.044751 17183 net.cpp:84] Creating Layer norm1 +I0407 09:40:53.044755 17183 net.cpp:406] norm1 <- conv1 +I0407 09:40:53.044761 17183 net.cpp:380] norm1 -> norm1 +I0407 09:40:53.045359 17183 net.cpp:122] Setting up norm1 +I0407 09:40:53.045372 17183 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 09:40:53.045377 17183 net.cpp:137] Memory required for data: 131301120 +I0407 09:40:53.045380 17183 layer_factory.hpp:77] Creating layer pool1 +I0407 09:40:53.045387 17183 net.cpp:84] Creating Layer pool1 +I0407 09:40:53.045392 17183 net.cpp:406] pool1 <- norm1 +I0407 09:40:53.045397 17183 net.cpp:380] pool1 -> pool1 +I0407 09:40:53.045433 17183 net.cpp:122] Setting up pool1 +I0407 09:40:53.045440 17183 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 09:40:53.045444 17183 net.cpp:137] Memory required for data: 140259072 +I0407 09:40:53.045446 17183 layer_factory.hpp:77] Creating layer conv2 +I0407 09:40:53.045457 17183 net.cpp:84] Creating Layer conv2 +I0407 09:40:53.045461 17183 net.cpp:406] conv2 <- pool1 +I0407 09:40:53.045492 17183 net.cpp:380] conv2 -> conv2 +I0407 09:40:53.054517 17183 net.cpp:122] Setting up conv2 +I0407 09:40:53.054541 17183 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 09:40:53.054546 17183 net.cpp:137] Memory required for data: 164146944 +I0407 09:40:53.054560 17183 layer_factory.hpp:77] Creating layer relu2 +I0407 09:40:53.054571 17183 net.cpp:84] Creating Layer relu2 +I0407 09:40:53.054575 17183 net.cpp:406] relu2 <- conv2 +I0407 09:40:53.054587 17183 net.cpp:367] relu2 -> conv2 (in-place) +I0407 09:40:53.055248 17183 net.cpp:122] Setting up relu2 +I0407 09:40:53.055258 17183 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 09:40:53.055263 17183 net.cpp:137] Memory required for data: 188034816 +I0407 09:40:53.055266 17183 layer_factory.hpp:77] Creating layer norm2 +I0407 09:40:53.055279 17183 net.cpp:84] Creating Layer norm2 +I0407 09:40:53.055284 17183 net.cpp:406] norm2 <- conv2 +I0407 09:40:53.055289 17183 net.cpp:380] norm2 -> norm2 +I0407 09:40:53.055980 17183 net.cpp:122] Setting up norm2 +I0407 09:40:53.055992 17183 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 09:40:53.055996 17183 net.cpp:137] Memory required for data: 211922688 +I0407 09:40:53.056000 17183 layer_factory.hpp:77] Creating layer pool2 +I0407 09:40:53.056010 17183 net.cpp:84] Creating Layer pool2 +I0407 09:40:53.056015 17183 net.cpp:406] pool2 <- norm2 +I0407 09:40:53.056022 17183 net.cpp:380] pool2 -> pool2 +I0407 09:40:53.056061 17183 net.cpp:122] Setting up pool2 +I0407 09:40:53.056066 17183 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 09:40:53.056069 17183 net.cpp:137] Memory required for data: 217460480 +I0407 09:40:53.056073 17183 layer_factory.hpp:77] Creating layer conv3 +I0407 09:40:53.056085 17183 net.cpp:84] Creating Layer conv3 +I0407 09:40:53.056089 17183 net.cpp:406] conv3 <- pool2 +I0407 09:40:53.056097 17183 net.cpp:380] conv3 -> conv3 +I0407 09:40:53.071759 17183 net.cpp:122] Setting up conv3 +I0407 09:40:53.071787 17183 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 09:40:53.071791 17183 net.cpp:137] Memory required for data: 225767168 +I0407 09:40:53.071810 17183 layer_factory.hpp:77] Creating layer relu3 +I0407 09:40:53.071820 17183 net.cpp:84] Creating Layer relu3 +I0407 09:40:53.071825 17183 net.cpp:406] relu3 <- conv3 +I0407 09:40:53.071832 17183 net.cpp:367] relu3 -> conv3 (in-place) +I0407 09:40:53.072486 17183 net.cpp:122] Setting up relu3 +I0407 09:40:53.072497 17183 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 09:40:53.072500 17183 net.cpp:137] Memory required for data: 234073856 +I0407 09:40:53.072504 17183 layer_factory.hpp:77] Creating layer conv4 +I0407 09:40:53.072520 17183 net.cpp:84] Creating Layer conv4 +I0407 09:40:53.072525 17183 net.cpp:406] conv4 <- conv3 +I0407 09:40:53.072532 17183 net.cpp:380] conv4 -> conv4 +I0407 09:40:53.086604 17183 net.cpp:122] Setting up conv4 +I0407 09:40:53.086629 17183 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 09:40:53.086633 17183 net.cpp:137] Memory required for data: 242380544 +I0407 09:40:53.086644 17183 layer_factory.hpp:77] Creating layer relu4 +I0407 09:40:53.086658 17183 net.cpp:84] Creating Layer relu4 +I0407 09:40:53.086663 17183 net.cpp:406] relu4 <- conv4 +I0407 09:40:53.086671 17183 net.cpp:367] relu4 -> conv4 (in-place) +I0407 09:40:53.087139 17183 net.cpp:122] Setting up relu4 +I0407 09:40:53.087148 17183 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 09:40:53.087152 17183 net.cpp:137] Memory required for data: 250687232 +I0407 09:40:53.087155 17183 layer_factory.hpp:77] Creating layer conv5 +I0407 09:40:53.087169 17183 net.cpp:84] Creating Layer conv5 +I0407 09:40:53.087175 17183 net.cpp:406] conv5 <- conv4 +I0407 09:40:53.087182 17183 net.cpp:380] conv5 -> conv5 +I0407 09:40:53.099390 17183 net.cpp:122] Setting up conv5 +I0407 09:40:53.099412 17183 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 09:40:53.099416 17183 net.cpp:137] Memory required for data: 256225024 +I0407 09:40:53.099434 17183 layer_factory.hpp:77] Creating layer relu5 +I0407 09:40:53.099445 17183 net.cpp:84] Creating Layer relu5 +I0407 09:40:53.099473 17183 net.cpp:406] relu5 <- conv5 +I0407 09:40:53.099483 17183 net.cpp:367] relu5 -> conv5 (in-place) +I0407 09:40:53.100147 17183 net.cpp:122] Setting up relu5 +I0407 09:40:53.100159 17183 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 09:40:53.100163 17183 net.cpp:137] Memory required for data: 261762816 +I0407 09:40:53.100167 17183 layer_factory.hpp:77] Creating layer pool5 +I0407 09:40:53.100179 17183 net.cpp:84] Creating Layer pool5 +I0407 09:40:53.100184 17183 net.cpp:406] pool5 <- conv5 +I0407 09:40:53.100193 17183 net.cpp:380] pool5 -> pool5 +I0407 09:40:53.100239 17183 net.cpp:122] Setting up pool5 +I0407 09:40:53.100246 17183 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 09:40:53.100250 17183 net.cpp:137] Memory required for data: 262942464 +I0407 09:40:53.100253 17183 layer_factory.hpp:77] Creating layer fc6 +I0407 09:40:53.100261 17183 net.cpp:84] Creating Layer fc6 +I0407 09:40:53.100265 17183 net.cpp:406] fc6 <- pool5 +I0407 09:40:53.100275 17183 net.cpp:380] fc6 -> fc6 +I0407 09:40:53.479776 17183 net.cpp:122] Setting up fc6 +I0407 09:40:53.479799 17183 net.cpp:129] Top shape: 32 4096 (131072) +I0407 09:40:53.479800 17183 net.cpp:137] Memory required for data: 263466752 +I0407 09:40:53.479809 17183 layer_factory.hpp:77] Creating layer relu6 +I0407 09:40:53.479817 17183 net.cpp:84] Creating Layer relu6 +I0407 09:40:53.479820 17183 net.cpp:406] relu6 <- fc6 +I0407 09:40:53.479827 17183 net.cpp:367] relu6 -> fc6 (in-place) +I0407 09:40:53.480592 17183 net.cpp:122] Setting up relu6 +I0407 09:40:53.480600 17183 net.cpp:129] Top shape: 32 4096 (131072) +I0407 09:40:53.480602 17183 net.cpp:137] Memory required for data: 263991040 +I0407 09:40:53.480605 17183 layer_factory.hpp:77] Creating layer drop6 +I0407 09:40:53.480610 17183 net.cpp:84] Creating Layer drop6 +I0407 09:40:53.480613 17183 net.cpp:406] drop6 <- fc6 +I0407 09:40:53.480618 17183 net.cpp:367] drop6 -> fc6 (in-place) +I0407 09:40:53.480639 17183 net.cpp:122] Setting up drop6 +I0407 09:40:53.480643 17183 net.cpp:129] Top shape: 32 4096 (131072) +I0407 09:40:53.480645 17183 net.cpp:137] Memory required for data: 264515328 +I0407 09:40:53.480648 17183 layer_factory.hpp:77] Creating layer fc7 +I0407 09:40:53.480654 17183 net.cpp:84] Creating Layer fc7 +I0407 09:40:53.480656 17183 net.cpp:406] fc7 <- fc6 +I0407 09:40:53.480661 17183 net.cpp:380] fc7 -> fc7 +I0407 09:40:53.628304 17183 net.cpp:122] Setting up fc7 +I0407 09:40:53.628324 17183 net.cpp:129] Top shape: 32 4096 (131072) +I0407 09:40:53.628325 17183 net.cpp:137] Memory required for data: 265039616 +I0407 09:40:53.628334 17183 layer_factory.hpp:77] Creating layer relu7 +I0407 09:40:53.628340 17183 net.cpp:84] Creating Layer relu7 +I0407 09:40:53.628343 17183 net.cpp:406] relu7 <- fc7 +I0407 09:40:53.628348 17183 net.cpp:367] relu7 -> fc7 (in-place) +I0407 09:40:53.628734 17183 net.cpp:122] Setting up relu7 +I0407 09:40:53.628741 17183 net.cpp:129] Top shape: 32 4096 (131072) +I0407 09:40:53.628743 17183 net.cpp:137] Memory required for data: 265563904 +I0407 09:40:53.628746 17183 layer_factory.hpp:77] Creating layer drop7 +I0407 09:40:53.628751 17183 net.cpp:84] Creating Layer drop7 +I0407 09:40:53.628755 17183 net.cpp:406] drop7 <- fc7 +I0407 09:40:53.628758 17183 net.cpp:367] drop7 -> fc7 (in-place) +I0407 09:40:53.628779 17183 net.cpp:122] Setting up drop7 +I0407 09:40:53.628783 17183 net.cpp:129] Top shape: 32 4096 (131072) +I0407 09:40:53.628785 17183 net.cpp:137] Memory required for data: 266088192 +I0407 09:40:53.628787 17183 layer_factory.hpp:77] Creating layer fc8 +I0407 09:40:53.628795 17183 net.cpp:84] Creating Layer fc8 +I0407 09:40:53.628798 17183 net.cpp:406] fc8 <- fc7 +I0407 09:40:53.628801 17183 net.cpp:380] fc8 -> fc8 +I0407 09:40:53.636118 17183 net.cpp:122] Setting up fc8 +I0407 09:40:53.636137 17183 net.cpp:129] Top shape: 32 196 (6272) +I0407 09:40:53.636139 17183 net.cpp:137] Memory required for data: 266113280 +I0407 09:40:53.636147 17183 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 09:40:53.636154 17183 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 09:40:53.636157 17183 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 09:40:53.636181 17183 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 09:40:53.636190 17183 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 09:40:53.636224 17183 net.cpp:122] Setting up fc8_fc8_0_split +I0407 09:40:53.636227 17183 net.cpp:129] Top shape: 32 196 (6272) +I0407 09:40:53.636229 17183 net.cpp:129] Top shape: 32 196 (6272) +I0407 09:40:53.636231 17183 net.cpp:137] Memory required for data: 266163456 +I0407 09:40:53.636234 17183 layer_factory.hpp:77] Creating layer accuracy +I0407 09:40:53.636240 17183 net.cpp:84] Creating Layer accuracy +I0407 09:40:53.636242 17183 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 09:40:53.636245 17183 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 09:40:53.636250 17183 net.cpp:380] accuracy -> accuracy +I0407 09:40:53.636255 17183 net.cpp:122] Setting up accuracy +I0407 09:40:53.636258 17183 net.cpp:129] Top shape: (1) +I0407 09:40:53.636260 17183 net.cpp:137] Memory required for data: 266163460 +I0407 09:40:53.636261 17183 layer_factory.hpp:77] Creating layer loss +I0407 09:40:53.636267 17183 net.cpp:84] Creating Layer loss +I0407 09:40:53.636269 17183 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 09:40:53.636271 17183 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 09:40:53.636276 17183 net.cpp:380] loss -> loss +I0407 09:40:53.636281 17183 layer_factory.hpp:77] Creating layer loss +I0407 09:40:53.636956 17183 net.cpp:122] Setting up loss +I0407 09:40:53.636965 17183 net.cpp:129] Top shape: (1) +I0407 09:40:53.636966 17183 net.cpp:132] with loss weight 1 +I0407 09:40:53.636976 17183 net.cpp:137] Memory required for data: 266163464 +I0407 09:40:53.636978 17183 net.cpp:198] loss needs backward computation. +I0407 09:40:53.636982 17183 net.cpp:200] accuracy does not need backward computation. +I0407 09:40:53.636986 17183 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 09:40:53.636987 17183 net.cpp:198] fc8 needs backward computation. +I0407 09:40:53.636989 17183 net.cpp:198] drop7 needs backward computation. +I0407 09:40:53.636991 17183 net.cpp:198] relu7 needs backward computation. +I0407 09:40:53.636993 17183 net.cpp:198] fc7 needs backward computation. +I0407 09:40:53.636996 17183 net.cpp:198] drop6 needs backward computation. +I0407 09:40:53.636997 17183 net.cpp:198] relu6 needs backward computation. +I0407 09:40:53.636999 17183 net.cpp:198] fc6 needs backward computation. +I0407 09:40:53.637002 17183 net.cpp:198] pool5 needs backward computation. +I0407 09:40:53.637006 17183 net.cpp:198] relu5 needs backward computation. +I0407 09:40:53.637007 17183 net.cpp:198] conv5 needs backward computation. +I0407 09:40:53.637009 17183 net.cpp:198] relu4 needs backward computation. +I0407 09:40:53.637012 17183 net.cpp:198] conv4 needs backward computation. +I0407 09:40:53.637014 17183 net.cpp:198] relu3 needs backward computation. +I0407 09:40:53.637017 17183 net.cpp:198] conv3 needs backward computation. +I0407 09:40:53.637018 17183 net.cpp:198] pool2 needs backward computation. +I0407 09:40:53.637022 17183 net.cpp:198] norm2 needs backward computation. +I0407 09:40:53.637023 17183 net.cpp:198] relu2 needs backward computation. +I0407 09:40:53.637025 17183 net.cpp:198] conv2 needs backward computation. +I0407 09:40:53.637027 17183 net.cpp:198] pool1 needs backward computation. +I0407 09:40:53.637032 17183 net.cpp:198] norm1 needs backward computation. +I0407 09:40:53.637033 17183 net.cpp:198] relu1 needs backward computation. +I0407 09:40:53.637035 17183 net.cpp:198] conv1 needs backward computation. +I0407 09:40:53.637037 17183 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 09:40:53.637040 17183 net.cpp:200] val-data does not need backward computation. +I0407 09:40:53.637042 17183 net.cpp:242] This network produces output accuracy +I0407 09:40:53.637044 17183 net.cpp:242] This network produces output loss +I0407 09:40:53.637059 17183 net.cpp:255] Network initialization done. +I0407 09:40:53.637126 17183 solver.cpp:56] Solver scaffolding done. +I0407 09:40:53.637513 17183 caffe.cpp:248] Starting Optimization +I0407 09:40:53.637521 17183 solver.cpp:272] Solving +I0407 09:40:53.637533 17183 solver.cpp:273] Learning Rate Policy: step +I0407 09:40:53.639103 17183 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 09:40:53.639112 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:40:53.741817 17183 blocking_queue.cpp:49] Waiting for data +I0407 09:40:57.921883 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:57.969542 17183 solver.cpp:397] Test net output #0: accuracy = 0.00183824 +I0407 09:40:57.969573 17183 solver.cpp:397] Test net output #1: loss = 5.28051 (* 1 = 5.28051 loss) +I0407 09:40:58.117000 17183 solver.cpp:218] Iteration 0 (-1.70797e+23 iter/s, 4.47934s/12 iters), loss = 5.29034 +I0407 09:40:58.118562 17183 solver.cpp:237] Train net output #0: loss = 5.29034 (* 1 = 5.29034 loss) +I0407 09:40:58.118590 17183 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 09:41:02.039294 17183 solver.cpp:218] Iteration 12 (3.06072 iter/s, 3.92065s/12 iters), loss = 5.29101 +I0407 09:41:02.039347 17183 solver.cpp:237] Train net output #0: loss = 5.29101 (* 1 = 5.29101 loss) +I0407 09:41:02.039357 17183 sgd_solver.cpp:105] Iteration 12, lr = 0.01 +I0407 09:41:07.163018 17183 solver.cpp:218] Iteration 24 (2.34211 iter/s, 5.12357s/12 iters), loss = 5.2893 +I0407 09:41:07.163064 17183 solver.cpp:237] Train net output #0: loss = 5.2893 (* 1 = 5.2893 loss) +I0407 09:41:07.163071 17183 sgd_solver.cpp:105] Iteration 24, lr = 0.01 +I0407 09:41:12.418853 17183 solver.cpp:218] Iteration 36 (2.28324 iter/s, 5.2557s/12 iters), loss = 5.27906 +I0407 09:41:12.418891 17183 solver.cpp:237] Train net output #0: loss = 5.27906 (* 1 = 5.27906 loss) +I0407 09:41:12.418900 17183 sgd_solver.cpp:105] Iteration 36, lr = 0.01 +I0407 09:41:17.654757 17183 solver.cpp:218] Iteration 48 (2.29192 iter/s, 5.23579s/12 iters), loss = 5.29165 +I0407 09:41:17.654798 17183 solver.cpp:237] Train net output #0: loss = 5.29165 (* 1 = 5.29165 loss) +I0407 09:41:17.654806 17183 sgd_solver.cpp:105] Iteration 48, lr = 0.01 +I0407 09:41:22.932030 17183 solver.cpp:218] Iteration 60 (2.27396 iter/s, 5.27714s/12 iters), loss = 5.2749 +I0407 09:41:22.933955 17183 solver.cpp:237] Train net output #0: loss = 5.2749 (* 1 = 5.2749 loss) +I0407 09:41:22.933964 17183 sgd_solver.cpp:105] Iteration 60, lr = 0.01 +I0407 09:41:27.930671 17183 solver.cpp:218] Iteration 72 (2.40162 iter/s, 4.99663s/12 iters), loss = 5.31652 +I0407 09:41:27.930714 17183 solver.cpp:237] Train net output #0: loss = 5.31652 (* 1 = 5.31652 loss) +I0407 09:41:27.930722 17183 sgd_solver.cpp:105] Iteration 72, lr = 0.01 +I0407 09:41:32.885418 17183 solver.cpp:218] Iteration 84 (2.42198 iter/s, 4.95462s/12 iters), loss = 5.3062 +I0407 09:41:32.885458 17183 solver.cpp:237] Train net output #0: loss = 5.3062 (* 1 = 5.3062 loss) +I0407 09:41:32.885465 17183 sgd_solver.cpp:105] Iteration 84, lr = 0.01 +I0407 09:41:38.002714 17183 solver.cpp:218] Iteration 96 (2.34505 iter/s, 5.11716s/12 iters), loss = 5.28013 +I0407 09:41:38.002768 17183 solver.cpp:237] Train net output #0: loss = 5.28013 (* 1 = 5.28013 loss) +I0407 09:41:38.002777 17183 sgd_solver.cpp:105] Iteration 96, lr = 0.01 +I0407 09:41:39.776338 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:40.077988 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 09:41:43.168503 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 09:41:45.464030 17183 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 09:41:45.464049 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:41:49.816871 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:49.895164 17183 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0407 09:41:49.895200 17183 solver.cpp:397] Test net output #1: loss = 5.29209 (* 1 = 5.29209 loss) +I0407 09:41:51.884996 17183 solver.cpp:218] Iteration 108 (0.864429 iter/s, 13.882s/12 iters), loss = 5.27759 +I0407 09:41:51.885035 17183 solver.cpp:237] Train net output #0: loss = 5.27759 (* 1 = 5.27759 loss) +I0407 09:41:51.885042 17183 sgd_solver.cpp:105] Iteration 108, lr = 0.01 +I0407 09:41:57.035794 17183 solver.cpp:218] Iteration 120 (2.3298 iter/s, 5.15066s/12 iters), loss = 5.25749 +I0407 09:41:57.035985 17183 solver.cpp:237] Train net output #0: loss = 5.25749 (* 1 = 5.25749 loss) +I0407 09:41:57.035995 17183 sgd_solver.cpp:105] Iteration 120, lr = 0.01 +I0407 09:42:02.191797 17183 solver.cpp:218] Iteration 132 (2.32751 iter/s, 5.15572s/12 iters), loss = 5.26898 +I0407 09:42:02.191843 17183 solver.cpp:237] Train net output #0: loss = 5.26898 (* 1 = 5.26898 loss) +I0407 09:42:02.191851 17183 sgd_solver.cpp:105] Iteration 132, lr = 0.01 +I0407 09:42:07.433768 17183 solver.cpp:218] Iteration 144 (2.28928 iter/s, 5.24183s/12 iters), loss = 5.23283 +I0407 09:42:07.433806 17183 solver.cpp:237] Train net output #0: loss = 5.23283 (* 1 = 5.23283 loss) +I0407 09:42:07.433813 17183 sgd_solver.cpp:105] Iteration 144, lr = 0.01 +I0407 09:42:12.842806 17183 solver.cpp:218] Iteration 156 (2.21857 iter/s, 5.4089s/12 iters), loss = 5.23414 +I0407 09:42:12.842849 17183 solver.cpp:237] Train net output #0: loss = 5.23414 (* 1 = 5.23414 loss) +I0407 09:42:12.842856 17183 sgd_solver.cpp:105] Iteration 156, lr = 0.01 +I0407 09:42:17.864326 17183 solver.cpp:218] Iteration 168 (2.38978 iter/s, 5.02138s/12 iters), loss = 5.22246 +I0407 09:42:17.864373 17183 solver.cpp:237] Train net output #0: loss = 5.22246 (* 1 = 5.22246 loss) +I0407 09:42:17.864382 17183 sgd_solver.cpp:105] Iteration 168, lr = 0.01 +I0407 09:42:23.089356 17183 solver.cpp:218] Iteration 180 (2.2967 iter/s, 5.22488s/12 iters), loss = 5.24721 +I0407 09:42:23.089412 17183 solver.cpp:237] Train net output #0: loss = 5.24721 (* 1 = 5.24721 loss) +I0407 09:42:23.089422 17183 sgd_solver.cpp:105] Iteration 180, lr = 0.01 +I0407 09:42:28.234350 17183 solver.cpp:218] Iteration 192 (2.33243 iter/s, 5.14484s/12 iters), loss = 5.06714 +I0407 09:42:28.234495 17183 solver.cpp:237] Train net output #0: loss = 5.06714 (* 1 = 5.06714 loss) +I0407 09:42:28.234506 17183 sgd_solver.cpp:105] Iteration 192, lr = 0.01 +I0407 09:42:32.296821 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:32.997891 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 09:42:36.165145 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 09:42:38.463747 17183 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 09:42:38.463768 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:42:42.792953 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:42.916755 17183 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 09:42:42.916790 17183 solver.cpp:397] Test net output #1: loss = 5.18289 (* 1 = 5.18289 loss) +I0407 09:42:43.053799 17183 solver.cpp:218] Iteration 204 (0.809767 iter/s, 14.8191s/12 iters), loss = 5.16634 +I0407 09:42:43.053854 17183 solver.cpp:237] Train net output #0: loss = 5.16634 (* 1 = 5.16634 loss) +I0407 09:42:43.053864 17183 sgd_solver.cpp:105] Iteration 204, lr = 0.01 +I0407 09:42:47.336104 17183 solver.cpp:218] Iteration 216 (2.80232 iter/s, 4.28217s/12 iters), loss = 5.23323 +I0407 09:42:47.336148 17183 solver.cpp:237] Train net output #0: loss = 5.23323 (* 1 = 5.23323 loss) +I0407 09:42:47.336155 17183 sgd_solver.cpp:105] Iteration 216, lr = 0.01 +I0407 09:42:52.242489 17183 solver.cpp:218] Iteration 228 (2.44586 iter/s, 4.90625s/12 iters), loss = 5.21328 +I0407 09:42:52.242537 17183 solver.cpp:237] Train net output #0: loss = 5.21328 (* 1 = 5.21328 loss) +I0407 09:42:52.242543 17183 sgd_solver.cpp:105] Iteration 228, lr = 0.01 +I0407 09:42:57.406203 17183 solver.cpp:218] Iteration 240 (2.32397 iter/s, 5.16357s/12 iters), loss = 5.15556 +I0407 09:42:57.406255 17183 solver.cpp:237] Train net output #0: loss = 5.15556 (* 1 = 5.15556 loss) +I0407 09:42:57.406265 17183 sgd_solver.cpp:105] Iteration 240, lr = 0.01 +I0407 09:43:02.420445 17183 solver.cpp:218] Iteration 252 (2.39325 iter/s, 5.0141s/12 iters), loss = 5.22382 +I0407 09:43:02.420601 17183 solver.cpp:237] Train net output #0: loss = 5.22382 (* 1 = 5.22382 loss) +I0407 09:43:02.420611 17183 sgd_solver.cpp:105] Iteration 252, lr = 0.01 +I0407 09:43:07.474092 17183 solver.cpp:218] Iteration 264 (2.37463 iter/s, 5.05341s/12 iters), loss = 5.1227 +I0407 09:43:07.474128 17183 solver.cpp:237] Train net output #0: loss = 5.1227 (* 1 = 5.1227 loss) +I0407 09:43:07.474135 17183 sgd_solver.cpp:105] Iteration 264, lr = 0.01 +I0407 09:43:12.536469 17183 solver.cpp:218] Iteration 276 (2.37048 iter/s, 5.06226s/12 iters), loss = 5.1105 +I0407 09:43:12.536509 17183 solver.cpp:237] Train net output #0: loss = 5.1105 (* 1 = 5.1105 loss) +I0407 09:43:12.536516 17183 sgd_solver.cpp:105] Iteration 276, lr = 0.01 +I0407 09:43:17.734089 17183 solver.cpp:218] Iteration 288 (2.3088 iter/s, 5.1975s/12 iters), loss = 5.14251 +I0407 09:43:17.734131 17183 solver.cpp:237] Train net output #0: loss = 5.14251 (* 1 = 5.14251 loss) +I0407 09:43:17.734138 17183 sgd_solver.cpp:105] Iteration 288, lr = 0.01 +I0407 09:43:22.862918 17183 solver.cpp:218] Iteration 300 (2.33977 iter/s, 5.1287s/12 iters), loss = 5.23258 +I0407 09:43:22.862962 17183 solver.cpp:237] Train net output #0: loss = 5.23258 (* 1 = 5.23258 loss) +I0407 09:43:22.862970 17183 sgd_solver.cpp:105] Iteration 300, lr = 0.01 +I0407 09:43:23.881915 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:24.975782 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 09:43:28.042697 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 09:43:30.346369 17183 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 09:43:30.346388 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:43:34.454638 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:34.611027 17183 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 09:43:34.611060 17183 solver.cpp:397] Test net output #1: loss = 5.15683 (* 1 = 5.15683 loss) +I0407 09:43:36.517375 17183 solver.cpp:218] Iteration 312 (0.878849 iter/s, 13.6542s/12 iters), loss = 5.12517 +I0407 09:43:36.517421 17183 solver.cpp:237] Train net output #0: loss = 5.12517 (* 1 = 5.12517 loss) +I0407 09:43:36.517427 17183 sgd_solver.cpp:105] Iteration 312, lr = 0.01 +I0407 09:43:41.658918 17183 solver.cpp:218] Iteration 324 (2.33398 iter/s, 5.14142s/12 iters), loss = 5.21573 +I0407 09:43:41.658962 17183 solver.cpp:237] Train net output #0: loss = 5.21573 (* 1 = 5.21573 loss) +I0407 09:43:41.658969 17183 sgd_solver.cpp:105] Iteration 324, lr = 0.01 +I0407 09:43:46.650516 17183 solver.cpp:218] Iteration 336 (2.4041 iter/s, 4.99148s/12 iters), loss = 5.13969 +I0407 09:43:46.650553 17183 solver.cpp:237] Train net output #0: loss = 5.13969 (* 1 = 5.13969 loss) +I0407 09:43:46.650561 17183 sgd_solver.cpp:105] Iteration 336, lr = 0.01 +I0407 09:43:51.529753 17183 solver.cpp:218] Iteration 348 (2.45946 iter/s, 4.87913s/12 iters), loss = 5.12106 +I0407 09:43:51.529796 17183 solver.cpp:237] Train net output #0: loss = 5.12106 (* 1 = 5.12106 loss) +I0407 09:43:51.529803 17183 sgd_solver.cpp:105] Iteration 348, lr = 0.01 +I0407 09:43:56.575244 17183 solver.cpp:218] Iteration 360 (2.37842 iter/s, 5.04537s/12 iters), loss = 5.16823 +I0407 09:43:56.575301 17183 solver.cpp:237] Train net output #0: loss = 5.16823 (* 1 = 5.16823 loss) +I0407 09:43:56.575311 17183 sgd_solver.cpp:105] Iteration 360, lr = 0.01 +I0407 09:44:01.734870 17183 solver.cpp:218] Iteration 372 (2.32581 iter/s, 5.15949s/12 iters), loss = 5.13872 +I0407 09:44:01.734936 17183 solver.cpp:237] Train net output #0: loss = 5.13872 (* 1 = 5.13872 loss) +I0407 09:44:01.734946 17183 sgd_solver.cpp:105] Iteration 372, lr = 0.01 +I0407 09:44:07.137075 17183 solver.cpp:218] Iteration 384 (2.22137 iter/s, 5.40206s/12 iters), loss = 5.22298 +I0407 09:44:07.137188 17183 solver.cpp:237] Train net output #0: loss = 5.22298 (* 1 = 5.22298 loss) +I0407 09:44:07.137197 17183 sgd_solver.cpp:105] Iteration 384, lr = 0.01 +I0407 09:44:12.549729 17183 solver.cpp:218] Iteration 396 (2.2171 iter/s, 5.41246s/12 iters), loss = 5.10874 +I0407 09:44:12.549772 17183 solver.cpp:237] Train net output #0: loss = 5.10874 (* 1 = 5.10874 loss) +I0407 09:44:12.549778 17183 sgd_solver.cpp:105] Iteration 396, lr = 0.01 +I0407 09:44:15.599061 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:17.077685 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 09:44:20.184353 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 09:44:22.513068 17183 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 09:44:22.513087 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:44:26.790239 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:26.994776 17183 solver.cpp:397] Test net output #0: accuracy = 0.0153186 +I0407 09:44:26.994808 17183 solver.cpp:397] Test net output #1: loss = 5.11342 (* 1 = 5.11342 loss) +I0407 09:44:27.128578 17183 solver.cpp:218] Iteration 408 (0.823123 iter/s, 14.5786s/12 iters), loss = 5.12656 +I0407 09:44:27.128635 17183 solver.cpp:237] Train net output #0: loss = 5.12656 (* 1 = 5.12656 loss) +I0407 09:44:27.128646 17183 sgd_solver.cpp:105] Iteration 408, lr = 0.01 +I0407 09:44:31.182662 17183 solver.cpp:218] Iteration 420 (2.96006 iter/s, 4.05397s/12 iters), loss = 5.07724 +I0407 09:44:31.182704 17183 solver.cpp:237] Train net output #0: loss = 5.07724 (* 1 = 5.07724 loss) +I0407 09:44:31.182713 17183 sgd_solver.cpp:105] Iteration 420, lr = 0.01 +I0407 09:44:36.227298 17183 solver.cpp:218] Iteration 432 (2.37882 iter/s, 5.04452s/12 iters), loss = 5.0367 +I0407 09:44:36.227358 17183 solver.cpp:237] Train net output #0: loss = 5.0367 (* 1 = 5.0367 loss) +I0407 09:44:36.227370 17183 sgd_solver.cpp:105] Iteration 432, lr = 0.01 +I0407 09:44:41.330307 17183 solver.cpp:218] Iteration 444 (2.35162 iter/s, 5.10287s/12 iters), loss = 5.09827 +I0407 09:44:41.330462 17183 solver.cpp:237] Train net output #0: loss = 5.09827 (* 1 = 5.09827 loss) +I0407 09:44:41.330472 17183 sgd_solver.cpp:105] Iteration 444, lr = 0.01 +I0407 09:44:46.499207 17183 solver.cpp:218] Iteration 456 (2.32168 iter/s, 5.16867s/12 iters), loss = 5.15358 +I0407 09:44:46.499269 17183 solver.cpp:237] Train net output #0: loss = 5.15358 (* 1 = 5.15358 loss) +I0407 09:44:46.499281 17183 sgd_solver.cpp:105] Iteration 456, lr = 0.01 +I0407 09:44:51.587787 17183 solver.cpp:218] Iteration 468 (2.35828 iter/s, 5.08845s/12 iters), loss = 5.05654 +I0407 09:44:51.587836 17183 solver.cpp:237] Train net output #0: loss = 5.05654 (* 1 = 5.05654 loss) +I0407 09:44:51.587842 17183 sgd_solver.cpp:105] Iteration 468, lr = 0.01 +I0407 09:44:56.848628 17183 solver.cpp:218] Iteration 480 (2.28106 iter/s, 5.26072s/12 iters), loss = 4.99937 +I0407 09:44:56.848675 17183 solver.cpp:237] Train net output #0: loss = 4.99937 (* 1 = 4.99937 loss) +I0407 09:44:56.848683 17183 sgd_solver.cpp:105] Iteration 480, lr = 0.01 +I0407 09:45:01.871268 17183 solver.cpp:218] Iteration 492 (2.38924 iter/s, 5.02253s/12 iters), loss = 5.11694 +I0407 09:45:01.871309 17183 solver.cpp:237] Train net output #0: loss = 5.11694 (* 1 = 5.11694 loss) +I0407 09:45:01.871315 17183 sgd_solver.cpp:105] Iteration 492, lr = 0.01 +I0407 09:45:06.979441 17183 solver.cpp:218] Iteration 504 (2.34923 iter/s, 5.10806s/12 iters), loss = 5.08163 +I0407 09:45:06.979494 17183 solver.cpp:237] Train net output #0: loss = 5.08163 (* 1 = 5.08163 loss) +I0407 09:45:06.979504 17183 sgd_solver.cpp:105] Iteration 504, lr = 0.01 +I0407 09:45:07.213981 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:09.122180 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 09:45:12.146181 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 09:45:14.474560 17183 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 09:45:14.474578 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:45:18.517946 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:18.754789 17183 solver.cpp:397] Test net output #0: accuracy = 0.0196078 +I0407 09:45:18.754822 17183 solver.cpp:397] Test net output #1: loss = 5.0829 (* 1 = 5.0829 loss) +I0407 09:45:20.604251 17183 solver.cpp:218] Iteration 516 (0.88076 iter/s, 13.6246s/12 iters), loss = 5.07928 +I0407 09:45:20.604306 17183 solver.cpp:237] Train net output #0: loss = 5.07928 (* 1 = 5.07928 loss) +I0407 09:45:20.604315 17183 sgd_solver.cpp:105] Iteration 516, lr = 0.01 +I0407 09:45:25.686888 17183 solver.cpp:218] Iteration 528 (2.36103 iter/s, 5.08253s/12 iters), loss = 5.11948 +I0407 09:45:25.686919 17183 solver.cpp:237] Train net output #0: loss = 5.11948 (* 1 = 5.11948 loss) +I0407 09:45:25.686925 17183 sgd_solver.cpp:105] Iteration 528, lr = 0.01 +I0407 09:45:30.821233 17183 solver.cpp:218] Iteration 540 (2.33725 iter/s, 5.13424s/12 iters), loss = 5.00821 +I0407 09:45:30.821275 17183 solver.cpp:237] Train net output #0: loss = 5.00821 (* 1 = 5.00821 loss) +I0407 09:45:30.821282 17183 sgd_solver.cpp:105] Iteration 540, lr = 0.01 +I0407 09:45:36.041779 17183 solver.cpp:218] Iteration 552 (2.29866 iter/s, 5.22043s/12 iters), loss = 5.14879 +I0407 09:45:36.041834 17183 solver.cpp:237] Train net output #0: loss = 5.14879 (* 1 = 5.14879 loss) +I0407 09:45:36.041846 17183 sgd_solver.cpp:105] Iteration 552, lr = 0.01 +I0407 09:45:41.277374 17183 solver.cpp:218] Iteration 564 (2.29206 iter/s, 5.23547s/12 iters), loss = 5.05796 +I0407 09:45:41.277417 17183 solver.cpp:237] Train net output #0: loss = 5.05796 (* 1 = 5.05796 loss) +I0407 09:45:41.277424 17183 sgd_solver.cpp:105] Iteration 564, lr = 0.01 +I0407 09:45:46.303522 17183 solver.cpp:218] Iteration 576 (2.38757 iter/s, 5.02604s/12 iters), loss = 4.94882 +I0407 09:45:46.303633 17183 solver.cpp:237] Train net output #0: loss = 4.94882 (* 1 = 4.94882 loss) +I0407 09:45:46.303642 17183 sgd_solver.cpp:105] Iteration 576, lr = 0.01 +I0407 09:45:51.251864 17183 solver.cpp:218] Iteration 588 (2.42514 iter/s, 4.94816s/12 iters), loss = 5.0636 +I0407 09:45:51.251924 17183 solver.cpp:237] Train net output #0: loss = 5.0636 (* 1 = 5.0636 loss) +I0407 09:45:51.251935 17183 sgd_solver.cpp:105] Iteration 588, lr = 0.01 +I0407 09:45:56.445529 17183 solver.cpp:218] Iteration 600 (2.31057 iter/s, 5.19353s/12 iters), loss = 5.04418 +I0407 09:45:56.445595 17183 solver.cpp:237] Train net output #0: loss = 5.04418 (* 1 = 5.04418 loss) +I0407 09:45:56.445605 17183 sgd_solver.cpp:105] Iteration 600, lr = 0.01 +I0407 09:45:58.840363 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:01.152096 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 09:46:04.163636 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 09:46:06.468438 17183 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 09:46:06.468458 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:46:10.469460 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:10.754643 17183 solver.cpp:397] Test net output #0: accuracy = 0.0214461 +I0407 09:46:10.754670 17183 solver.cpp:397] Test net output #1: loss = 5.01698 (* 1 = 5.01698 loss) +I0407 09:46:10.896261 17183 solver.cpp:218] Iteration 612 (0.830421 iter/s, 14.4505s/12 iters), loss = 4.98794 +I0407 09:46:10.897833 17183 solver.cpp:237] Train net output #0: loss = 4.98794 (* 1 = 4.98794 loss) +I0407 09:46:10.897845 17183 sgd_solver.cpp:105] Iteration 612, lr = 0.01 +I0407 09:46:15.175691 17183 solver.cpp:218] Iteration 624 (2.80518 iter/s, 4.27781s/12 iters), loss = 4.94075 +I0407 09:46:15.175732 17183 solver.cpp:237] Train net output #0: loss = 4.94075 (* 1 = 4.94075 loss) +I0407 09:46:15.175740 17183 sgd_solver.cpp:105] Iteration 624, lr = 0.01 +I0407 09:46:20.221472 17183 solver.cpp:218] Iteration 636 (2.37828 iter/s, 5.04567s/12 iters), loss = 4.97043 +I0407 09:46:20.221591 17183 solver.cpp:237] Train net output #0: loss = 4.97043 (* 1 = 4.97043 loss) +I0407 09:46:20.221599 17183 sgd_solver.cpp:105] Iteration 636, lr = 0.01 +I0407 09:46:25.220638 17183 solver.cpp:218] Iteration 648 (2.40049 iter/s, 4.99898s/12 iters), loss = 4.93795 +I0407 09:46:25.220682 17183 solver.cpp:237] Train net output #0: loss = 4.93795 (* 1 = 4.93795 loss) +I0407 09:46:25.220690 17183 sgd_solver.cpp:105] Iteration 648, lr = 0.01 +I0407 09:46:30.325280 17183 solver.cpp:218] Iteration 660 (2.35085 iter/s, 5.10453s/12 iters), loss = 4.9114 +I0407 09:46:30.325322 17183 solver.cpp:237] Train net output #0: loss = 4.9114 (* 1 = 4.9114 loss) +I0407 09:46:30.325330 17183 sgd_solver.cpp:105] Iteration 660, lr = 0.01 +I0407 09:46:35.635972 17183 solver.cpp:218] Iteration 672 (2.25964 iter/s, 5.31058s/12 iters), loss = 5.00311 +I0407 09:46:35.636024 17183 solver.cpp:237] Train net output #0: loss = 5.00311 (* 1 = 5.00311 loss) +I0407 09:46:35.636034 17183 sgd_solver.cpp:105] Iteration 672, lr = 0.01 +I0407 09:46:40.890777 17183 solver.cpp:218] Iteration 684 (2.28368 iter/s, 5.25469s/12 iters), loss = 4.97703 +I0407 09:46:40.890820 17183 solver.cpp:237] Train net output #0: loss = 4.97703 (* 1 = 4.97703 loss) +I0407 09:46:40.890827 17183 sgd_solver.cpp:105] Iteration 684, lr = 0.01 +I0407 09:46:41.677608 17183 blocking_queue.cpp:49] Waiting for data +I0407 09:46:46.043313 17183 solver.cpp:218] Iteration 696 (2.329 iter/s, 5.15242s/12 iters), loss = 4.86391 +I0407 09:46:46.043359 17183 solver.cpp:237] Train net output #0: loss = 4.86391 (* 1 = 4.86391 loss) +I0407 09:46:46.043368 17183 sgd_solver.cpp:105] Iteration 696, lr = 0.01 +I0407 09:46:50.535465 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:50.937342 17183 solver.cpp:218] Iteration 708 (2.45202 iter/s, 4.89392s/12 iters), loss = 4.98269 +I0407 09:46:50.937381 17183 solver.cpp:237] Train net output #0: loss = 4.98269 (* 1 = 4.98269 loss) +I0407 09:46:50.937387 17183 sgd_solver.cpp:105] Iteration 708, lr = 0.01 +I0407 09:46:52.956530 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 09:46:56.089017 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 09:46:58.396445 17183 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 09:46:58.396464 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:47:02.421568 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:02.745668 17183 solver.cpp:397] Test net output #0: accuracy = 0.0416667 +I0407 09:47:02.745703 17183 solver.cpp:397] Test net output #1: loss = 4.91351 (* 1 = 4.91351 loss) +I0407 09:47:04.581557 17183 solver.cpp:218] Iteration 720 (0.879506 iter/s, 13.644s/12 iters), loss = 4.93016 +I0407 09:47:04.581614 17183 solver.cpp:237] Train net output #0: loss = 4.93016 (* 1 = 4.93016 loss) +I0407 09:47:04.581624 17183 sgd_solver.cpp:105] Iteration 720, lr = 0.01 +I0407 09:47:09.457695 17183 solver.cpp:218] Iteration 732 (2.46103 iter/s, 4.87602s/12 iters), loss = 4.83353 +I0407 09:47:09.457737 17183 solver.cpp:237] Train net output #0: loss = 4.83353 (* 1 = 4.83353 loss) +I0407 09:47:09.457746 17183 sgd_solver.cpp:105] Iteration 732, lr = 0.01 +I0407 09:47:14.688465 17183 solver.cpp:218] Iteration 744 (2.29417 iter/s, 5.23066s/12 iters), loss = 4.84066 +I0407 09:47:14.688508 17183 solver.cpp:237] Train net output #0: loss = 4.84066 (* 1 = 4.84066 loss) +I0407 09:47:14.688514 17183 sgd_solver.cpp:105] Iteration 744, lr = 0.01 +I0407 09:47:19.802726 17183 solver.cpp:218] Iteration 756 (2.34643 iter/s, 5.11415s/12 iters), loss = 4.7123 +I0407 09:47:19.802783 17183 solver.cpp:237] Train net output #0: loss = 4.7123 (* 1 = 4.7123 loss) +I0407 09:47:19.802793 17183 sgd_solver.cpp:105] Iteration 756, lr = 0.01 +I0407 09:47:25.045045 17183 solver.cpp:218] Iteration 768 (2.28912 iter/s, 5.2422s/12 iters), loss = 4.82834 +I0407 09:47:25.045197 17183 solver.cpp:237] Train net output #0: loss = 4.82834 (* 1 = 4.82834 loss) +I0407 09:47:25.045207 17183 sgd_solver.cpp:105] Iteration 768, lr = 0.01 +I0407 09:47:30.364351 17183 solver.cpp:218] Iteration 780 (2.25602 iter/s, 5.31909s/12 iters), loss = 4.7501 +I0407 09:47:30.364385 17183 solver.cpp:237] Train net output #0: loss = 4.7501 (* 1 = 4.7501 loss) +I0407 09:47:30.364392 17183 sgd_solver.cpp:105] Iteration 780, lr = 0.01 +I0407 09:47:35.616895 17183 solver.cpp:218] Iteration 792 (2.28466 iter/s, 5.25243s/12 iters), loss = 4.96578 +I0407 09:47:35.616950 17183 solver.cpp:237] Train net output #0: loss = 4.96578 (* 1 = 4.96578 loss) +I0407 09:47:35.616961 17183 sgd_solver.cpp:105] Iteration 792, lr = 0.01 +I0407 09:47:40.779835 17183 solver.cpp:218] Iteration 804 (2.32432 iter/s, 5.16281s/12 iters), loss = 4.76117 +I0407 09:47:40.779898 17183 solver.cpp:237] Train net output #0: loss = 4.76117 (* 1 = 4.76117 loss) +I0407 09:47:40.779911 17183 sgd_solver.cpp:105] Iteration 804, lr = 0.01 +I0407 09:47:42.624337 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:45.505318 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 09:47:50.624723 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 09:47:52.925487 17183 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 09:47:52.925506 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:47:56.915741 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:57.285372 17183 solver.cpp:397] Test net output #0: accuracy = 0.0496324 +I0407 09:47:57.285405 17183 solver.cpp:397] Test net output #1: loss = 4.85616 (* 1 = 4.85616 loss) +I0407 09:47:57.429162 17183 solver.cpp:218] Iteration 816 (0.72076 iter/s, 16.6491s/12 iters), loss = 4.86812 +I0407 09:47:57.429221 17183 solver.cpp:237] Train net output #0: loss = 4.86812 (* 1 = 4.86812 loss) +I0407 09:47:57.429231 17183 sgd_solver.cpp:105] Iteration 816, lr = 0.01 +I0407 09:48:01.650287 17183 solver.cpp:218] Iteration 828 (2.84292 iter/s, 4.22101s/12 iters), loss = 4.7782 +I0407 09:48:01.650339 17183 solver.cpp:237] Train net output #0: loss = 4.7782 (* 1 = 4.7782 loss) +I0407 09:48:01.650349 17183 sgd_solver.cpp:105] Iteration 828, lr = 0.01 +I0407 09:48:06.647303 17183 solver.cpp:218] Iteration 840 (2.40149 iter/s, 4.9969s/12 iters), loss = 4.6755 +I0407 09:48:06.647347 17183 solver.cpp:237] Train net output #0: loss = 4.6755 (* 1 = 4.6755 loss) +I0407 09:48:06.647353 17183 sgd_solver.cpp:105] Iteration 840, lr = 0.01 +I0407 09:48:11.794504 17183 solver.cpp:218] Iteration 852 (2.33141 iter/s, 5.14709s/12 iters), loss = 4.64862 +I0407 09:48:11.794551 17183 solver.cpp:237] Train net output #0: loss = 4.64862 (* 1 = 4.64862 loss) +I0407 09:48:11.794557 17183 sgd_solver.cpp:105] Iteration 852, lr = 0.01 +I0407 09:48:17.056268 17183 solver.cpp:218] Iteration 864 (2.28066 iter/s, 5.26164s/12 iters), loss = 4.78376 +I0407 09:48:17.056329 17183 solver.cpp:237] Train net output #0: loss = 4.78376 (* 1 = 4.78376 loss) +I0407 09:48:17.056339 17183 sgd_solver.cpp:105] Iteration 864, lr = 0.01 +I0407 09:48:22.145890 17183 solver.cpp:218] Iteration 876 (2.3578 iter/s, 5.0895s/12 iters), loss = 4.66092 +I0407 09:48:22.145933 17183 solver.cpp:237] Train net output #0: loss = 4.66092 (* 1 = 4.66092 loss) +I0407 09:48:22.145941 17183 sgd_solver.cpp:105] Iteration 876, lr = 0.01 +I0407 09:48:27.135820 17183 solver.cpp:218] Iteration 888 (2.4049 iter/s, 4.98982s/12 iters), loss = 4.74521 +I0407 09:48:27.135908 17183 solver.cpp:237] Train net output #0: loss = 4.74521 (* 1 = 4.74521 loss) +I0407 09:48:27.135916 17183 sgd_solver.cpp:105] Iteration 888, lr = 0.01 +I0407 09:48:32.086153 17183 solver.cpp:218] Iteration 900 (2.42415 iter/s, 4.95018s/12 iters), loss = 4.59849 +I0407 09:48:32.086197 17183 solver.cpp:237] Train net output #0: loss = 4.59849 (* 1 = 4.59849 loss) +I0407 09:48:32.086205 17183 sgd_solver.cpp:105] Iteration 900, lr = 0.01 +I0407 09:48:35.979648 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:37.185350 17183 solver.cpp:218] Iteration 912 (2.35336 iter/s, 5.09908s/12 iters), loss = 4.69207 +I0407 09:48:37.185403 17183 solver.cpp:237] Train net output #0: loss = 4.69207 (* 1 = 4.69207 loss) +I0407 09:48:37.185412 17183 sgd_solver.cpp:105] Iteration 912, lr = 0.01 +I0407 09:48:39.223618 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 09:48:44.095527 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 09:48:47.950829 17183 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 09:48:47.950850 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:48:51.874034 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:52.383752 17183 solver.cpp:397] Test net output #0: accuracy = 0.0569853 +I0407 09:48:52.383790 17183 solver.cpp:397] Test net output #1: loss = 4.63344 (* 1 = 4.63344 loss) +I0407 09:48:54.170779 17183 solver.cpp:218] Iteration 924 (0.706498 iter/s, 16.9852s/12 iters), loss = 4.62143 +I0407 09:48:54.170819 17183 solver.cpp:237] Train net output #0: loss = 4.62143 (* 1 = 4.62143 loss) +I0407 09:48:54.170826 17183 sgd_solver.cpp:105] Iteration 924, lr = 0.01 +I0407 09:48:59.074852 17183 solver.cpp:218] Iteration 936 (2.447 iter/s, 4.90397s/12 iters), loss = 4.69614 +I0407 09:48:59.074992 17183 solver.cpp:237] Train net output #0: loss = 4.69614 (* 1 = 4.69614 loss) +I0407 09:48:59.075001 17183 sgd_solver.cpp:105] Iteration 936, lr = 0.01 +I0407 09:49:03.862555 17183 solver.cpp:218] Iteration 948 (2.50653 iter/s, 4.7875s/12 iters), loss = 4.64414 +I0407 09:49:03.862603 17183 solver.cpp:237] Train net output #0: loss = 4.64414 (* 1 = 4.64414 loss) +I0407 09:49:03.862612 17183 sgd_solver.cpp:105] Iteration 948, lr = 0.01 +I0407 09:49:09.058517 17183 solver.cpp:218] Iteration 960 (2.30954 iter/s, 5.19584s/12 iters), loss = 4.6928 +I0407 09:49:09.058564 17183 solver.cpp:237] Train net output #0: loss = 4.6928 (* 1 = 4.6928 loss) +I0407 09:49:09.058571 17183 sgd_solver.cpp:105] Iteration 960, lr = 0.01 +I0407 09:49:14.332981 17183 solver.cpp:218] Iteration 972 (2.27516 iter/s, 5.27435s/12 iters), loss = 4.45633 +I0407 09:49:14.333043 17183 solver.cpp:237] Train net output #0: loss = 4.45633 (* 1 = 4.45633 loss) +I0407 09:49:14.333055 17183 sgd_solver.cpp:105] Iteration 972, lr = 0.01 +I0407 09:49:19.547904 17183 solver.cpp:218] Iteration 984 (2.30114 iter/s, 5.2148s/12 iters), loss = 4.48336 +I0407 09:49:19.547945 17183 solver.cpp:237] Train net output #0: loss = 4.48336 (* 1 = 4.48336 loss) +I0407 09:49:19.547952 17183 sgd_solver.cpp:105] Iteration 984, lr = 0.01 +I0407 09:49:24.661311 17183 solver.cpp:218] Iteration 996 (2.34682 iter/s, 5.1133s/12 iters), loss = 4.40351 +I0407 09:49:24.661376 17183 solver.cpp:237] Train net output #0: loss = 4.40351 (* 1 = 4.40351 loss) +I0407 09:49:24.661387 17183 sgd_solver.cpp:105] Iteration 996, lr = 0.01 +I0407 09:49:29.780774 17183 solver.cpp:218] Iteration 1008 (2.34406 iter/s, 5.11933s/12 iters), loss = 4.55959 +I0407 09:49:29.780906 17183 solver.cpp:237] Train net output #0: loss = 4.55959 (* 1 = 4.55959 loss) +I0407 09:49:29.780915 17183 sgd_solver.cpp:105] Iteration 1008, lr = 0.01 +I0407 09:49:30.831336 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:34.464773 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 09:49:39.105170 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 09:49:43.078788 17183 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 09:49:43.078809 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:49:46.945564 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:47.369377 17183 solver.cpp:397] Test net output #0: accuracy = 0.0655637 +I0407 09:49:47.369412 17183 solver.cpp:397] Test net output #1: loss = 4.49743 (* 1 = 4.49743 loss) +I0407 09:49:47.511412 17183 solver.cpp:218] Iteration 1020 (0.676807 iter/s, 17.7303s/12 iters), loss = 4.46157 +I0407 09:49:47.511461 17183 solver.cpp:237] Train net output #0: loss = 4.46157 (* 1 = 4.46157 loss) +I0407 09:49:47.511469 17183 sgd_solver.cpp:105] Iteration 1020, lr = 0.01 +I0407 09:49:51.862474 17183 solver.cpp:218] Iteration 1032 (2.75802 iter/s, 4.35095s/12 iters), loss = 4.8251 +I0407 09:49:51.862526 17183 solver.cpp:237] Train net output #0: loss = 4.8251 (* 1 = 4.8251 loss) +I0407 09:49:51.862535 17183 sgd_solver.cpp:105] Iteration 1032, lr = 0.01 +I0407 09:49:56.974475 17183 solver.cpp:218] Iteration 1044 (2.34747 iter/s, 5.11188s/12 iters), loss = 4.47834 +I0407 09:49:56.974527 17183 solver.cpp:237] Train net output #0: loss = 4.47834 (* 1 = 4.47834 loss) +I0407 09:49:56.974539 17183 sgd_solver.cpp:105] Iteration 1044, lr = 0.01 +I0407 09:50:02.007140 17183 solver.cpp:218] Iteration 1056 (2.38448 iter/s, 5.03254s/12 iters), loss = 4.47833 +I0407 09:50:02.007272 17183 solver.cpp:237] Train net output #0: loss = 4.47833 (* 1 = 4.47833 loss) +I0407 09:50:02.007279 17183 sgd_solver.cpp:105] Iteration 1056, lr = 0.01 +I0407 09:50:07.239732 17183 solver.cpp:218] Iteration 1068 (2.29341 iter/s, 5.23239s/12 iters), loss = 4.40389 +I0407 09:50:07.239796 17183 solver.cpp:237] Train net output #0: loss = 4.40389 (* 1 = 4.40389 loss) +I0407 09:50:07.239809 17183 sgd_solver.cpp:105] Iteration 1068, lr = 0.01 +I0407 09:50:12.121832 17183 solver.cpp:218] Iteration 1080 (2.45802 iter/s, 4.88197s/12 iters), loss = 4.14075 +I0407 09:50:12.121906 17183 solver.cpp:237] Train net output #0: loss = 4.14075 (* 1 = 4.14075 loss) +I0407 09:50:12.121919 17183 sgd_solver.cpp:105] Iteration 1080, lr = 0.01 +I0407 09:50:17.466854 17183 solver.cpp:218] Iteration 1092 (2.24514 iter/s, 5.34488s/12 iters), loss = 4.44049 +I0407 09:50:17.466912 17183 solver.cpp:237] Train net output #0: loss = 4.44049 (* 1 = 4.44049 loss) +I0407 09:50:17.466922 17183 sgd_solver.cpp:105] Iteration 1092, lr = 0.01 +I0407 09:50:22.697124 17183 solver.cpp:218] Iteration 1104 (2.29439 iter/s, 5.23014s/12 iters), loss = 4.27978 +I0407 09:50:22.697183 17183 solver.cpp:237] Train net output #0: loss = 4.27978 (* 1 = 4.27978 loss) +I0407 09:50:22.697194 17183 sgd_solver.cpp:105] Iteration 1104, lr = 0.01 +I0407 09:50:25.974720 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:27.947036 17183 solver.cpp:218] Iteration 1116 (2.28581 iter/s, 5.24978s/12 iters), loss = 4.3328 +I0407 09:50:27.947089 17183 solver.cpp:237] Train net output #0: loss = 4.3328 (* 1 = 4.3328 loss) +I0407 09:50:27.947098 17183 sgd_solver.cpp:105] Iteration 1116, lr = 0.01 +I0407 09:50:30.068538 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 09:50:33.529832 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 09:50:37.288450 17183 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 09:50:37.288468 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:50:41.103741 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:41.573868 17183 solver.cpp:397] Test net output #0: accuracy = 0.0772059 +I0407 09:50:41.573904 17183 solver.cpp:397] Test net output #1: loss = 4.35837 (* 1 = 4.35837 loss) +I0407 09:50:43.371472 17183 solver.cpp:218] Iteration 1128 (0.777997 iter/s, 15.4242s/12 iters), loss = 4.24875 +I0407 09:50:43.371516 17183 solver.cpp:237] Train net output #0: loss = 4.24875 (* 1 = 4.24875 loss) +I0407 09:50:43.371523 17183 sgd_solver.cpp:105] Iteration 1128, lr = 0.01 +I0407 09:50:48.551532 17183 solver.cpp:218] Iteration 1140 (2.31663 iter/s, 5.17995s/12 iters), loss = 4.35367 +I0407 09:50:48.551590 17183 solver.cpp:237] Train net output #0: loss = 4.35367 (* 1 = 4.35367 loss) +I0407 09:50:48.551604 17183 sgd_solver.cpp:105] Iteration 1140, lr = 0.01 +I0407 09:50:53.607841 17183 solver.cpp:218] Iteration 1152 (2.37333 iter/s, 5.05619s/12 iters), loss = 4.48762 +I0407 09:50:53.607883 17183 solver.cpp:237] Train net output #0: loss = 4.48762 (* 1 = 4.48762 loss) +I0407 09:50:53.607890 17183 sgd_solver.cpp:105] Iteration 1152, lr = 0.01 +I0407 09:50:58.670126 17183 solver.cpp:218] Iteration 1164 (2.37052 iter/s, 5.06217s/12 iters), loss = 4.53733 +I0407 09:50:58.670176 17183 solver.cpp:237] Train net output #0: loss = 4.53733 (* 1 = 4.53733 loss) +I0407 09:50:58.670186 17183 sgd_solver.cpp:105] Iteration 1164, lr = 0.01 +I0407 09:51:03.956380 17183 solver.cpp:218] Iteration 1176 (2.27009 iter/s, 5.28613s/12 iters), loss = 4.25441 +I0407 09:51:03.956516 17183 solver.cpp:237] Train net output #0: loss = 4.25441 (* 1 = 4.25441 loss) +I0407 09:51:03.956527 17183 sgd_solver.cpp:105] Iteration 1176, lr = 0.01 +I0407 09:51:09.214826 17183 solver.cpp:218] Iteration 1188 (2.28213 iter/s, 5.25824s/12 iters), loss = 4.14306 +I0407 09:51:09.214872 17183 solver.cpp:237] Train net output #0: loss = 4.14306 (* 1 = 4.14306 loss) +I0407 09:51:09.214880 17183 sgd_solver.cpp:105] Iteration 1188, lr = 0.01 +I0407 09:51:14.345281 17183 solver.cpp:218] Iteration 1200 (2.33903 iter/s, 5.13034s/12 iters), loss = 3.90948 +I0407 09:51:14.345328 17183 solver.cpp:237] Train net output #0: loss = 3.90948 (* 1 = 3.90948 loss) +I0407 09:51:14.345336 17183 sgd_solver.cpp:105] Iteration 1200, lr = 0.01 +I0407 09:51:19.660706 17183 solver.cpp:218] Iteration 1212 (2.25763 iter/s, 5.31531s/12 iters), loss = 4.15126 +I0407 09:51:19.660764 17183 solver.cpp:237] Train net output #0: loss = 4.15126 (* 1 = 4.15126 loss) +I0407 09:51:19.660774 17183 sgd_solver.cpp:105] Iteration 1212, lr = 0.01 +I0407 09:51:19.918256 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:24.400861 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 09:51:27.436376 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 09:51:31.259100 17183 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 09:51:31.259124 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:51:35.136149 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:35.636590 17183 solver.cpp:397] Test net output #0: accuracy = 0.0833333 +I0407 09:51:35.636626 17183 solver.cpp:397] Test net output #1: loss = 4.23949 (* 1 = 4.23949 loss) +I0407 09:51:35.777688 17183 solver.cpp:218] Iteration 1224 (0.744567 iter/s, 16.1168s/12 iters), loss = 4.21311 +I0407 09:51:35.777751 17183 solver.cpp:237] Train net output #0: loss = 4.21311 (* 1 = 4.21311 loss) +I0407 09:51:35.777760 17183 sgd_solver.cpp:105] Iteration 1224, lr = 0.01 +I0407 09:51:39.976814 17183 solver.cpp:218] Iteration 1236 (2.85782 iter/s, 4.199s/12 iters), loss = 4.13797 +I0407 09:51:39.976857 17183 solver.cpp:237] Train net output #0: loss = 4.13797 (* 1 = 4.13797 loss) +I0407 09:51:39.976864 17183 sgd_solver.cpp:105] Iteration 1236, lr = 0.01 +I0407 09:51:44.917941 17183 solver.cpp:218] Iteration 1248 (2.42865 iter/s, 4.94101s/12 iters), loss = 4.11259 +I0407 09:51:44.917999 17183 solver.cpp:237] Train net output #0: loss = 4.11259 (* 1 = 4.11259 loss) +I0407 09:51:44.918009 17183 sgd_solver.cpp:105] Iteration 1248, lr = 0.01 +I0407 09:51:50.209956 17183 solver.cpp:218] Iteration 1260 (2.26762 iter/s, 5.29189s/12 iters), loss = 4.22741 +I0407 09:51:50.209998 17183 solver.cpp:237] Train net output #0: loss = 4.22741 (* 1 = 4.22741 loss) +I0407 09:51:50.210005 17183 sgd_solver.cpp:105] Iteration 1260, lr = 0.01 +I0407 09:51:55.559880 17183 solver.cpp:218] Iteration 1272 (2.24307 iter/s, 5.34981s/12 iters), loss = 4.2107 +I0407 09:51:55.559927 17183 solver.cpp:237] Train net output #0: loss = 4.2107 (* 1 = 4.2107 loss) +I0407 09:51:55.559937 17183 sgd_solver.cpp:105] Iteration 1272, lr = 0.01 +I0407 09:52:00.714527 17183 solver.cpp:218] Iteration 1284 (2.32805 iter/s, 5.15453s/12 iters), loss = 4.04798 +I0407 09:52:00.714586 17183 solver.cpp:237] Train net output #0: loss = 4.04798 (* 1 = 4.04798 loss) +I0407 09:52:00.714596 17183 sgd_solver.cpp:105] Iteration 1284, lr = 0.01 +I0407 09:52:05.736647 17183 solver.cpp:218] Iteration 1296 (2.38949 iter/s, 5.022s/12 iters), loss = 4.34512 +I0407 09:52:05.736773 17183 solver.cpp:237] Train net output #0: loss = 4.34512 (* 1 = 4.34512 loss) +I0407 09:52:05.736779 17183 sgd_solver.cpp:105] Iteration 1296, lr = 0.01 +I0407 09:52:11.021034 17183 solver.cpp:218] Iteration 1308 (2.27092 iter/s, 5.28419s/12 iters), loss = 4.29548 +I0407 09:52:11.021078 17183 solver.cpp:237] Train net output #0: loss = 4.29548 (* 1 = 4.29548 loss) +I0407 09:52:11.021086 17183 sgd_solver.cpp:105] Iteration 1308, lr = 0.01 +I0407 09:52:13.429229 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:16.030648 17183 solver.cpp:218] Iteration 1320 (2.39545 iter/s, 5.0095s/12 iters), loss = 4.26152 +I0407 09:52:16.030691 17183 solver.cpp:237] Train net output #0: loss = 4.26152 (* 1 = 4.26152 loss) +I0407 09:52:16.030699 17183 sgd_solver.cpp:105] Iteration 1320, lr = 0.01 +I0407 09:52:18.168612 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 09:52:21.187659 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 09:52:25.206555 17183 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 09:52:25.206575 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:52:28.943747 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:29.497139 17183 solver.cpp:397] Test net output #0: accuracy = 0.10049 +I0407 09:52:29.497176 17183 solver.cpp:397] Test net output #1: loss = 4.08941 (* 1 = 4.08941 loss) +I0407 09:52:31.247265 17183 solver.cpp:218] Iteration 1332 (0.788623 iter/s, 15.2164s/12 iters), loss = 3.93242 +I0407 09:52:31.247310 17183 solver.cpp:237] Train net output #0: loss = 3.93242 (* 1 = 3.93242 loss) +I0407 09:52:31.247318 17183 sgd_solver.cpp:105] Iteration 1332, lr = 0.01 +I0407 09:52:36.272330 17183 solver.cpp:218] Iteration 1344 (2.38808 iter/s, 5.02495s/12 iters), loss = 4.09424 +I0407 09:52:36.272451 17183 solver.cpp:237] Train net output #0: loss = 4.09424 (* 1 = 4.09424 loss) +I0407 09:52:36.272461 17183 sgd_solver.cpp:105] Iteration 1344, lr = 0.01 +I0407 09:52:41.341920 17183 solver.cpp:218] Iteration 1356 (2.36714 iter/s, 5.0694s/12 iters), loss = 3.791 +I0407 09:52:41.341979 17183 solver.cpp:237] Train net output #0: loss = 3.791 (* 1 = 3.791 loss) +I0407 09:52:41.341989 17183 sgd_solver.cpp:105] Iteration 1356, lr = 0.01 +I0407 09:52:46.521721 17183 solver.cpp:218] Iteration 1368 (2.31675 iter/s, 5.17967s/12 iters), loss = 3.83632 +I0407 09:52:46.521777 17183 solver.cpp:237] Train net output #0: loss = 3.83632 (* 1 = 3.83632 loss) +I0407 09:52:46.521786 17183 sgd_solver.cpp:105] Iteration 1368, lr = 0.01 +I0407 09:52:47.822561 17183 blocking_queue.cpp:49] Waiting for data +I0407 09:52:51.550354 17183 solver.cpp:218] Iteration 1380 (2.38639 iter/s, 5.02851s/12 iters), loss = 3.75876 +I0407 09:52:51.550395 17183 solver.cpp:237] Train net output #0: loss = 3.75876 (* 1 = 3.75876 loss) +I0407 09:52:51.550401 17183 sgd_solver.cpp:105] Iteration 1380, lr = 0.01 +I0407 09:52:56.544658 17183 solver.cpp:218] Iteration 1392 (2.40279 iter/s, 4.9942s/12 iters), loss = 4.00892 +I0407 09:52:56.544696 17183 solver.cpp:237] Train net output #0: loss = 4.00892 (* 1 = 4.00892 loss) +I0407 09:52:56.544703 17183 sgd_solver.cpp:105] Iteration 1392, lr = 0.01 +I0407 09:53:01.774585 17183 solver.cpp:218] Iteration 1404 (2.29454 iter/s, 5.22982s/12 iters), loss = 3.87323 +I0407 09:53:01.774631 17183 solver.cpp:237] Train net output #0: loss = 3.87323 (* 1 = 3.87323 loss) +I0407 09:53:01.774637 17183 sgd_solver.cpp:105] Iteration 1404, lr = 0.01 +I0407 09:53:06.231284 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:06.606586 17183 solver.cpp:218] Iteration 1416 (2.48357 iter/s, 4.83175s/12 iters), loss = 3.97928 +I0407 09:53:06.606709 17183 solver.cpp:237] Train net output #0: loss = 3.97928 (* 1 = 3.97928 loss) +I0407 09:53:06.606721 17183 sgd_solver.cpp:105] Iteration 1416, lr = 0.01 +I0407 09:53:11.225461 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 09:53:14.291221 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 09:53:16.600060 17183 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 09:53:16.600086 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:53:20.392937 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:20.974970 17183 solver.cpp:397] Test net output #0: accuracy = 0.114583 +I0407 09:53:20.974998 17183 solver.cpp:397] Test net output #1: loss = 3.97463 (* 1 = 3.97463 loss) +I0407 09:53:21.116662 17183 solver.cpp:218] Iteration 1428 (0.827028 iter/s, 14.5098s/12 iters), loss = 3.99685 +I0407 09:53:21.116735 17183 solver.cpp:237] Train net output #0: loss = 3.99685 (* 1 = 3.99685 loss) +I0407 09:53:21.116745 17183 sgd_solver.cpp:105] Iteration 1428, lr = 0.01 +I0407 09:53:25.145871 17183 solver.cpp:218] Iteration 1440 (2.97834 iter/s, 4.02909s/12 iters), loss = 3.76189 +I0407 09:53:25.145915 17183 solver.cpp:237] Train net output #0: loss = 3.76189 (* 1 = 3.76189 loss) +I0407 09:53:25.145923 17183 sgd_solver.cpp:105] Iteration 1440, lr = 0.01 +I0407 09:53:30.159947 17183 solver.cpp:218] Iteration 1452 (2.39332 iter/s, 5.01396s/12 iters), loss = 3.76785 +I0407 09:53:30.159993 17183 solver.cpp:237] Train net output #0: loss = 3.76785 (* 1 = 3.76785 loss) +I0407 09:53:30.160001 17183 sgd_solver.cpp:105] Iteration 1452, lr = 0.01 +I0407 09:53:35.157681 17183 solver.cpp:218] Iteration 1464 (2.40114 iter/s, 4.99763s/12 iters), loss = 3.55741 +I0407 09:53:35.157717 17183 solver.cpp:237] Train net output #0: loss = 3.55741 (* 1 = 3.55741 loss) +I0407 09:53:35.157724 17183 sgd_solver.cpp:105] Iteration 1464, lr = 0.01 +I0407 09:53:40.451547 17183 solver.cpp:218] Iteration 1476 (2.26682 iter/s, 5.29376s/12 iters), loss = 3.75603 +I0407 09:53:40.451691 17183 solver.cpp:237] Train net output #0: loss = 3.75603 (* 1 = 3.75603 loss) +I0407 09:53:40.451700 17183 sgd_solver.cpp:105] Iteration 1476, lr = 0.01 +I0407 09:53:45.392560 17183 solver.cpp:218] Iteration 1488 (2.42875 iter/s, 4.94081s/12 iters), loss = 3.98901 +I0407 09:53:45.392599 17183 solver.cpp:237] Train net output #0: loss = 3.98901 (* 1 = 3.98901 loss) +I0407 09:53:45.392606 17183 sgd_solver.cpp:105] Iteration 1488, lr = 0.01 +I0407 09:53:50.705410 17183 solver.cpp:218] Iteration 1500 (2.25872 iter/s, 5.31275s/12 iters), loss = 3.88407 +I0407 09:53:50.705452 17183 solver.cpp:237] Train net output #0: loss = 3.88407 (* 1 = 3.88407 loss) +I0407 09:53:50.705461 17183 sgd_solver.cpp:105] Iteration 1500, lr = 0.01 +I0407 09:53:55.811244 17183 solver.cpp:218] Iteration 1512 (2.3503 iter/s, 5.10572s/12 iters), loss = 3.73061 +I0407 09:53:55.811287 17183 solver.cpp:237] Train net output #0: loss = 3.73061 (* 1 = 3.73061 loss) +I0407 09:53:55.811296 17183 sgd_solver.cpp:105] Iteration 1512, lr = 0.01 +I0407 09:53:57.731810 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:01.130892 17183 solver.cpp:218] Iteration 1524 (2.25584 iter/s, 5.31953s/12 iters), loss = 3.65038 +I0407 09:54:01.130935 17183 solver.cpp:237] Train net output #0: loss = 3.65038 (* 1 = 3.65038 loss) +I0407 09:54:01.130942 17183 sgd_solver.cpp:105] Iteration 1524, lr = 0.01 +I0407 09:54:03.229619 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 09:54:06.288148 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 09:54:08.766551 17183 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 09:54:08.766569 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:54:12.411720 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:13.043355 17183 solver.cpp:397] Test net output #0: accuracy = 0.137255 +I0407 09:54:13.043395 17183 solver.cpp:397] Test net output #1: loss = 3.8735 (* 1 = 3.8735 loss) +I0407 09:54:14.933131 17183 solver.cpp:218] Iteration 1536 (0.869436 iter/s, 13.802s/12 iters), loss = 3.26798 +I0407 09:54:14.933174 17183 solver.cpp:237] Train net output #0: loss = 3.26798 (* 1 = 3.26798 loss) +I0407 09:54:14.933182 17183 sgd_solver.cpp:105] Iteration 1536, lr = 0.01 +I0407 09:54:20.165257 17183 solver.cpp:218] Iteration 1548 (2.29357 iter/s, 5.23202s/12 iters), loss = 3.74141 +I0407 09:54:20.165307 17183 solver.cpp:237] Train net output #0: loss = 3.74141 (* 1 = 3.74141 loss) +I0407 09:54:20.165316 17183 sgd_solver.cpp:105] Iteration 1548, lr = 0.01 +I0407 09:54:25.202978 17183 solver.cpp:218] Iteration 1560 (2.38209 iter/s, 5.0376s/12 iters), loss = 3.54658 +I0407 09:54:25.203032 17183 solver.cpp:237] Train net output #0: loss = 3.54658 (* 1 = 3.54658 loss) +I0407 09:54:25.203042 17183 sgd_solver.cpp:105] Iteration 1560, lr = 0.01 +I0407 09:54:30.357834 17183 solver.cpp:218] Iteration 1572 (2.32796 iter/s, 5.15473s/12 iters), loss = 3.47997 +I0407 09:54:30.357875 17183 solver.cpp:237] Train net output #0: loss = 3.47997 (* 1 = 3.47997 loss) +I0407 09:54:30.357882 17183 sgd_solver.cpp:105] Iteration 1572, lr = 0.01 +I0407 09:54:35.639465 17183 solver.cpp:218] Iteration 1584 (2.27207 iter/s, 5.28152s/12 iters), loss = 3.78554 +I0407 09:54:35.639518 17183 solver.cpp:237] Train net output #0: loss = 3.78554 (* 1 = 3.78554 loss) +I0407 09:54:35.639528 17183 sgd_solver.cpp:105] Iteration 1584, lr = 0.01 +I0407 09:54:40.891793 17183 solver.cpp:218] Iteration 1596 (2.28475 iter/s, 5.25221s/12 iters), loss = 3.53825 +I0407 09:54:40.891840 17183 solver.cpp:237] Train net output #0: loss = 3.53825 (* 1 = 3.53825 loss) +I0407 09:54:40.891849 17183 sgd_solver.cpp:105] Iteration 1596, lr = 0.01 +I0407 09:54:46.299116 17183 solver.cpp:218] Iteration 1608 (2.21926 iter/s, 5.40721s/12 iters), loss = 3.55311 +I0407 09:54:46.299226 17183 solver.cpp:237] Train net output #0: loss = 3.55311 (* 1 = 3.55311 loss) +I0407 09:54:46.299233 17183 sgd_solver.cpp:105] Iteration 1608, lr = 0.01 +I0407 09:54:50.377770 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:51.561973 17183 solver.cpp:218] Iteration 1620 (2.28021 iter/s, 5.26268s/12 iters), loss = 3.53434 +I0407 09:54:51.562017 17183 solver.cpp:237] Train net output #0: loss = 3.53434 (* 1 = 3.53434 loss) +I0407 09:54:51.562024 17183 sgd_solver.cpp:105] Iteration 1620, lr = 0.01 +I0407 09:54:56.232908 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 09:54:59.252789 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 09:55:01.552546 17183 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 09:55:01.552564 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:55:05.265812 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:55:05.931038 17183 solver.cpp:397] Test net output #0: accuracy = 0.158701 +I0407 09:55:05.931074 17183 solver.cpp:397] Test net output #1: loss = 3.72675 (* 1 = 3.72675 loss) +I0407 09:55:06.071094 17183 solver.cpp:218] Iteration 1632 (0.827077 iter/s, 14.5089s/12 iters), loss = 3.39378 +I0407 09:55:06.072669 17183 solver.cpp:237] Train net output #0: loss = 3.39378 (* 1 = 3.39378 loss) +I0407 09:55:06.072682 17183 sgd_solver.cpp:105] Iteration 1632, lr = 0.01 +I0407 09:55:10.218612 17183 solver.cpp:218] Iteration 1644 (2.89443 iter/s, 4.1459s/12 iters), loss = 3.71475 +I0407 09:55:10.218652 17183 solver.cpp:237] Train net output #0: loss = 3.71475 (* 1 = 3.71475 loss) +I0407 09:55:10.218660 17183 sgd_solver.cpp:105] Iteration 1644, lr = 0.01 +I0407 09:55:15.292634 17183 solver.cpp:218] Iteration 1656 (2.36504 iter/s, 5.07392s/12 iters), loss = 3.524 +I0407 09:55:15.292675 17183 solver.cpp:237] Train net output #0: loss = 3.524 (* 1 = 3.524 loss) +I0407 09:55:15.292682 17183 sgd_solver.cpp:105] Iteration 1656, lr = 0.01 +I0407 09:55:20.168550 17183 solver.cpp:218] Iteration 1668 (2.46113 iter/s, 4.87581s/12 iters), loss = 3.4417 +I0407 09:55:20.168695 17183 solver.cpp:237] Train net output #0: loss = 3.4417 (* 1 = 3.4417 loss) +I0407 09:55:20.168704 17183 sgd_solver.cpp:105] Iteration 1668, lr = 0.01 +I0407 09:55:25.295473 17183 solver.cpp:218] Iteration 1680 (2.34068 iter/s, 5.12671s/12 iters), loss = 3.18948 +I0407 09:55:25.295521 17183 solver.cpp:237] Train net output #0: loss = 3.18948 (* 1 = 3.18948 loss) +I0407 09:55:25.295527 17183 sgd_solver.cpp:105] Iteration 1680, lr = 0.01 +I0407 09:55:30.632254 17183 solver.cpp:218] Iteration 1692 (2.24859 iter/s, 5.33667s/12 iters), loss = 3.15276 +I0407 09:55:30.632299 17183 solver.cpp:237] Train net output #0: loss = 3.15276 (* 1 = 3.15276 loss) +I0407 09:55:30.632306 17183 sgd_solver.cpp:105] Iteration 1692, lr = 0.01 +I0407 09:55:35.964936 17183 solver.cpp:218] Iteration 1704 (2.25032 iter/s, 5.33256s/12 iters), loss = 3.01205 +I0407 09:55:35.965000 17183 solver.cpp:237] Train net output #0: loss = 3.01205 (* 1 = 3.01205 loss) +I0407 09:55:35.965011 17183 sgd_solver.cpp:105] Iteration 1704, lr = 0.01 +I0407 09:55:41.003408 17183 solver.cpp:218] Iteration 1716 (2.38174 iter/s, 5.03834s/12 iters), loss = 3.43825 +I0407 09:55:41.003468 17183 solver.cpp:237] Train net output #0: loss = 3.43825 (* 1 = 3.43825 loss) +I0407 09:55:41.003479 17183 sgd_solver.cpp:105] Iteration 1716, lr = 0.01 +I0407 09:55:42.078418 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:55:46.266727 17183 solver.cpp:218] Iteration 1728 (2.27998 iter/s, 5.2632s/12 iters), loss = 3.28556 +I0407 09:55:46.266770 17183 solver.cpp:237] Train net output #0: loss = 3.28556 (* 1 = 3.28556 loss) +I0407 09:55:46.266779 17183 sgd_solver.cpp:105] Iteration 1728, lr = 0.01 +I0407 09:55:48.334223 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 09:55:51.330019 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 09:55:53.631388 17183 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 09:55:53.631403 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:55:57.195892 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:55:57.888947 17183 solver.cpp:397] Test net output #0: accuracy = 0.175245 +I0407 09:55:57.888983 17183 solver.cpp:397] Test net output #1: loss = 3.55883 (* 1 = 3.55883 loss) +I0407 09:55:59.702648 17183 solver.cpp:218] Iteration 1740 (0.893141 iter/s, 13.4357s/12 iters), loss = 3.58067 +I0407 09:55:59.702697 17183 solver.cpp:237] Train net output #0: loss = 3.58067 (* 1 = 3.58067 loss) +I0407 09:55:59.702704 17183 sgd_solver.cpp:105] Iteration 1740, lr = 0.01 +I0407 09:56:04.868996 17183 solver.cpp:218] Iteration 1752 (2.32278 iter/s, 5.16623s/12 iters), loss = 3.33776 +I0407 09:56:04.869036 17183 solver.cpp:237] Train net output #0: loss = 3.33776 (* 1 = 3.33776 loss) +I0407 09:56:04.869045 17183 sgd_solver.cpp:105] Iteration 1752, lr = 0.01 +I0407 09:56:09.986668 17183 solver.cpp:218] Iteration 1764 (2.34487 iter/s, 5.11756s/12 iters), loss = 3.13355 +I0407 09:56:09.986713 17183 solver.cpp:237] Train net output #0: loss = 3.13355 (* 1 = 3.13355 loss) +I0407 09:56:09.986721 17183 sgd_solver.cpp:105] Iteration 1764, lr = 0.01 +I0407 09:56:15.144060 17183 solver.cpp:218] Iteration 1776 (2.32681 iter/s, 5.15728s/12 iters), loss = 2.97817 +I0407 09:56:15.144101 17183 solver.cpp:237] Train net output #0: loss = 2.97817 (* 1 = 2.97817 loss) +I0407 09:56:15.144107 17183 sgd_solver.cpp:105] Iteration 1776, lr = 0.01 +I0407 09:56:20.198084 17183 solver.cpp:218] Iteration 1788 (2.37439 iter/s, 5.05392s/12 iters), loss = 2.92333 +I0407 09:56:20.198127 17183 solver.cpp:237] Train net output #0: loss = 2.92333 (* 1 = 2.92333 loss) +I0407 09:56:20.198134 17183 sgd_solver.cpp:105] Iteration 1788, lr = 0.01 +I0407 09:56:25.226393 17183 solver.cpp:218] Iteration 1800 (2.38654 iter/s, 5.0282s/12 iters), loss = 3.33015 +I0407 09:56:25.226500 17183 solver.cpp:237] Train net output #0: loss = 3.33015 (* 1 = 3.33015 loss) +I0407 09:56:25.226509 17183 sgd_solver.cpp:105] Iteration 1800, lr = 0.01 +I0407 09:56:30.392530 17183 solver.cpp:218] Iteration 1812 (2.3229 iter/s, 5.16596s/12 iters), loss = 3.0642 +I0407 09:56:30.392575 17183 solver.cpp:237] Train net output #0: loss = 3.0642 (* 1 = 3.0642 loss) +I0407 09:56:30.392583 17183 sgd_solver.cpp:105] Iteration 1812, lr = 0.01 +I0407 09:56:33.760773 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:56:35.562568 17183 solver.cpp:218] Iteration 1824 (2.32112 iter/s, 5.16993s/12 iters), loss = 3.60327 +I0407 09:56:35.562610 17183 solver.cpp:237] Train net output #0: loss = 3.60327 (* 1 = 3.60327 loss) +I0407 09:56:35.562618 17183 sgd_solver.cpp:105] Iteration 1824, lr = 0.01 +I0407 09:56:40.128608 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 09:56:43.069499 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 09:56:46.427471 17183 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 09:56:46.427490 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:56:49.938205 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:56:50.676868 17183 solver.cpp:397] Test net output #0: accuracy = 0.20527 +I0407 09:56:50.676904 17183 solver.cpp:397] Test net output #1: loss = 3.45656 (* 1 = 3.45656 loss) +I0407 09:56:50.813747 17183 solver.cpp:218] Iteration 1836 (0.786835 iter/s, 15.251s/12 iters), loss = 2.84192 +I0407 09:56:50.813791 17183 solver.cpp:237] Train net output #0: loss = 2.84192 (* 1 = 2.84192 loss) +I0407 09:56:50.813796 17183 sgd_solver.cpp:105] Iteration 1836, lr = 0.01 +I0407 09:56:55.158865 17183 solver.cpp:218] Iteration 1848 (2.76178 iter/s, 4.34502s/12 iters), loss = 3.33767 +I0407 09:56:55.158908 17183 solver.cpp:237] Train net output #0: loss = 3.33767 (* 1 = 3.33767 loss) +I0407 09:56:55.158915 17183 sgd_solver.cpp:105] Iteration 1848, lr = 0.01 +I0407 09:57:00.194886 17183 solver.cpp:218] Iteration 1860 (2.38289 iter/s, 5.03591s/12 iters), loss = 3.20238 +I0407 09:57:00.195070 17183 solver.cpp:237] Train net output #0: loss = 3.20238 (* 1 = 3.20238 loss) +I0407 09:57:00.195086 17183 sgd_solver.cpp:105] Iteration 1860, lr = 0.01 +I0407 09:57:05.331207 17183 solver.cpp:218] Iteration 1872 (2.33641 iter/s, 5.13608s/12 iters), loss = 3.2007 +I0407 09:57:05.331245 17183 solver.cpp:237] Train net output #0: loss = 3.2007 (* 1 = 3.2007 loss) +I0407 09:57:05.331252 17183 sgd_solver.cpp:105] Iteration 1872, lr = 0.01 +I0407 09:57:10.490664 17183 solver.cpp:218] Iteration 1884 (2.32587 iter/s, 5.15935s/12 iters), loss = 2.97282 +I0407 09:57:10.490712 17183 solver.cpp:237] Train net output #0: loss = 2.97282 (* 1 = 2.97282 loss) +I0407 09:57:10.490722 17183 sgd_solver.cpp:105] Iteration 1884, lr = 0.01 +I0407 09:57:15.580597 17183 solver.cpp:218] Iteration 1896 (2.35765 iter/s, 5.08982s/12 iters), loss = 3.08313 +I0407 09:57:15.580638 17183 solver.cpp:237] Train net output #0: loss = 3.08313 (* 1 = 3.08313 loss) +I0407 09:57:15.580646 17183 sgd_solver.cpp:105] Iteration 1896, lr = 0.01 +I0407 09:57:20.853224 17183 solver.cpp:218] Iteration 1908 (2.27595 iter/s, 5.27252s/12 iters), loss = 3.1944 +I0407 09:57:20.853267 17183 solver.cpp:237] Train net output #0: loss = 3.1944 (* 1 = 3.1944 loss) +I0407 09:57:20.853274 17183 sgd_solver.cpp:105] Iteration 1908, lr = 0.01 +I0407 09:57:25.953251 17183 solver.cpp:218] Iteration 1920 (2.35298 iter/s, 5.09992s/12 iters), loss = 2.95372 +I0407 09:57:25.953295 17183 solver.cpp:237] Train net output #0: loss = 2.95372 (* 1 = 2.95372 loss) +I0407 09:57:25.953301 17183 sgd_solver.cpp:105] Iteration 1920, lr = 0.01 +I0407 09:57:26.240049 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:57:31.193421 17183 solver.cpp:218] Iteration 1932 (2.29005 iter/s, 5.24006s/12 iters), loss = 3.0928 +I0407 09:57:31.193604 17183 solver.cpp:237] Train net output #0: loss = 3.0928 (* 1 = 3.0928 loss) +I0407 09:57:31.193614 17183 sgd_solver.cpp:105] Iteration 1932, lr = 0.01 +I0407 09:57:33.249708 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 09:57:37.394665 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 09:57:40.041360 17183 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 09:57:40.041380 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:57:43.720651 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:57:44.498277 17183 solver.cpp:397] Test net output #0: accuracy = 0.200368 +I0407 09:57:44.498335 17183 solver.cpp:397] Test net output #1: loss = 3.46356 (* 1 = 3.46356 loss) +I0407 09:57:46.396625 17183 solver.cpp:218] Iteration 1944 (0.789325 iter/s, 15.2029s/12 iters), loss = 3.27975 +I0407 09:57:46.396662 17183 solver.cpp:237] Train net output #0: loss = 3.27975 (* 1 = 3.27975 loss) +I0407 09:57:46.396668 17183 sgd_solver.cpp:105] Iteration 1944, lr = 0.01 +I0407 09:57:51.585678 17183 solver.cpp:218] Iteration 1956 (2.31261 iter/s, 5.18895s/12 iters), loss = 3.16364 +I0407 09:57:51.585724 17183 solver.cpp:237] Train net output #0: loss = 3.16364 (* 1 = 3.16364 loss) +I0407 09:57:51.585731 17183 sgd_solver.cpp:105] Iteration 1956, lr = 0.01 +I0407 09:57:56.666510 17183 solver.cpp:218] Iteration 1968 (2.36187 iter/s, 5.08072s/12 iters), loss = 3.07119 +I0407 09:57:56.666568 17183 solver.cpp:237] Train net output #0: loss = 3.07119 (* 1 = 3.07119 loss) +I0407 09:57:56.666579 17183 sgd_solver.cpp:105] Iteration 1968, lr = 0.01 +I0407 09:58:01.807052 17183 solver.cpp:218] Iteration 1980 (2.33444 iter/s, 5.14042s/12 iters), loss = 3.02507 +I0407 09:58:01.807224 17183 solver.cpp:237] Train net output #0: loss = 3.02507 (* 1 = 3.02507 loss) +I0407 09:58:01.807236 17183 sgd_solver.cpp:105] Iteration 1980, lr = 0.01 +I0407 09:58:07.021049 17183 solver.cpp:218] Iteration 1992 (2.30161 iter/s, 5.21375s/12 iters), loss = 2.92048 +I0407 09:58:07.021109 17183 solver.cpp:237] Train net output #0: loss = 2.92048 (* 1 = 2.92048 loss) +I0407 09:58:07.021121 17183 sgd_solver.cpp:105] Iteration 1992, lr = 0.01 +I0407 09:58:12.310776 17183 solver.cpp:218] Iteration 2004 (2.2686 iter/s, 5.2896s/12 iters), loss = 3.02942 +I0407 09:58:12.310822 17183 solver.cpp:237] Train net output #0: loss = 3.02942 (* 1 = 3.02942 loss) +I0407 09:58:12.310830 17183 sgd_solver.cpp:105] Iteration 2004, lr = 0.01 +I0407 09:58:17.623934 17183 solver.cpp:218] Iteration 2016 (2.25859 iter/s, 5.31304s/12 iters), loss = 3.09015 +I0407 09:58:17.623975 17183 solver.cpp:237] Train net output #0: loss = 3.09015 (* 1 = 3.09015 loss) +I0407 09:58:17.623982 17183 sgd_solver.cpp:105] Iteration 2016, lr = 0.01 +I0407 09:58:20.369274 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:58:22.979001 17183 solver.cpp:218] Iteration 2028 (2.24091 iter/s, 5.35496s/12 iters), loss = 3.31056 +I0407 09:58:22.979045 17183 solver.cpp:237] Train net output #0: loss = 3.31056 (* 1 = 3.31056 loss) +I0407 09:58:22.979053 17183 sgd_solver.cpp:105] Iteration 2028, lr = 0.01 +I0407 09:58:27.650743 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 09:58:30.682168 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 09:58:32.997978 17183 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 09:58:32.998056 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:58:36.587478 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:58:37.416524 17183 solver.cpp:397] Test net output #0: accuracy = 0.201593 +I0407 09:58:37.416558 17183 solver.cpp:397] Test net output #1: loss = 3.41041 (* 1 = 3.41041 loss) +I0407 09:58:37.552012 17183 solver.cpp:218] Iteration 2040 (0.823451 iter/s, 14.5728s/12 iters), loss = 3.01822 +I0407 09:58:37.552075 17183 solver.cpp:237] Train net output #0: loss = 3.01822 (* 1 = 3.01822 loss) +I0407 09:58:37.552084 17183 sgd_solver.cpp:105] Iteration 2040, lr = 0.01 +I0407 09:58:41.651499 17183 solver.cpp:218] Iteration 2052 (2.92728 iter/s, 4.09936s/12 iters), loss = 2.91112 +I0407 09:58:41.651548 17183 solver.cpp:237] Train net output #0: loss = 2.91112 (* 1 = 2.91112 loss) +I0407 09:58:41.651558 17183 sgd_solver.cpp:105] Iteration 2052, lr = 0.01 +I0407 09:58:43.317924 17183 blocking_queue.cpp:49] Waiting for data +I0407 09:58:46.836632 17183 solver.cpp:218] Iteration 2064 (2.31436 iter/s, 5.18502s/12 iters), loss = 2.60481 +I0407 09:58:46.836673 17183 solver.cpp:237] Train net output #0: loss = 2.60481 (* 1 = 2.60481 loss) +I0407 09:58:46.836679 17183 sgd_solver.cpp:105] Iteration 2064, lr = 0.01 +I0407 09:58:52.119794 17183 solver.cpp:218] Iteration 2076 (2.27142 iter/s, 5.28305s/12 iters), loss = 2.81362 +I0407 09:58:52.119841 17183 solver.cpp:237] Train net output #0: loss = 2.81362 (* 1 = 2.81362 loss) +I0407 09:58:52.119850 17183 sgd_solver.cpp:105] Iteration 2076, lr = 0.01 +I0407 09:58:57.242998 17183 solver.cpp:218] Iteration 2088 (2.34234 iter/s, 5.12309s/12 iters), loss = 2.84939 +I0407 09:58:57.243037 17183 solver.cpp:237] Train net output #0: loss = 2.84939 (* 1 = 2.84939 loss) +I0407 09:58:57.243043 17183 sgd_solver.cpp:105] Iteration 2088, lr = 0.01 +I0407 09:59:02.368389 17183 solver.cpp:218] Iteration 2100 (2.34133 iter/s, 5.12529s/12 iters), loss = 2.73641 +I0407 09:59:02.368432 17183 solver.cpp:237] Train net output #0: loss = 2.73641 (* 1 = 2.73641 loss) +I0407 09:59:02.368440 17183 sgd_solver.cpp:105] Iteration 2100, lr = 0.01 +I0407 09:59:07.615687 17183 solver.cpp:218] Iteration 2112 (2.28694 iter/s, 5.24719s/12 iters), loss = 2.8175 +I0407 09:59:07.615825 17183 solver.cpp:237] Train net output #0: loss = 2.8175 (* 1 = 2.8175 loss) +I0407 09:59:07.615833 17183 sgd_solver.cpp:105] Iteration 2112, lr = 0.01 +I0407 09:59:12.544168 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:59:12.896149 17183 solver.cpp:218] Iteration 2124 (2.27262 iter/s, 5.28026s/12 iters), loss = 3.19814 +I0407 09:59:12.896196 17183 solver.cpp:237] Train net output #0: loss = 3.19814 (* 1 = 3.19814 loss) +I0407 09:59:12.896203 17183 sgd_solver.cpp:105] Iteration 2124, lr = 0.01 +I0407 09:59:18.099382 17183 solver.cpp:218] Iteration 2136 (2.30631 iter/s, 5.20312s/12 iters), loss = 3.29561 +I0407 09:59:18.099429 17183 solver.cpp:237] Train net output #0: loss = 3.29561 (* 1 = 3.29561 loss) +I0407 09:59:18.099439 17183 sgd_solver.cpp:105] Iteration 2136, lr = 0.01 +I0407 09:59:20.173444 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 09:59:23.197353 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 09:59:25.499326 17183 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 09:59:25.499351 17183 net.cpp:676] Ignoring source layer train-data +I0407 09:59:28.909832 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:59:29.799922 17183 solver.cpp:397] Test net output #0: accuracy = 0.215686 +I0407 09:59:29.799959 17183 solver.cpp:397] Test net output #1: loss = 3.35335 (* 1 = 3.35335 loss) +I0407 09:59:31.684741 17183 solver.cpp:218] Iteration 2148 (0.883316 iter/s, 13.5852s/12 iters), loss = 2.91122 +I0407 09:59:31.684789 17183 solver.cpp:237] Train net output #0: loss = 2.91122 (* 1 = 2.91122 loss) +I0407 09:59:31.684798 17183 sgd_solver.cpp:105] Iteration 2148, lr = 0.01 +I0407 09:59:36.867785 17183 solver.cpp:218] Iteration 2160 (2.31529 iter/s, 5.18293s/12 iters), loss = 2.55644 +I0407 09:59:36.867831 17183 solver.cpp:237] Train net output #0: loss = 2.55644 (* 1 = 2.55644 loss) +I0407 09:59:36.867841 17183 sgd_solver.cpp:105] Iteration 2160, lr = 0.01 +I0407 09:59:41.796795 17183 solver.cpp:218] Iteration 2172 (2.43462 iter/s, 4.9289s/12 iters), loss = 2.73659 +I0407 09:59:41.796916 17183 solver.cpp:237] Train net output #0: loss = 2.73659 (* 1 = 2.73659 loss) +I0407 09:59:41.796924 17183 sgd_solver.cpp:105] Iteration 2172, lr = 0.01 +I0407 09:59:46.928295 17183 solver.cpp:218] Iteration 2184 (2.33858 iter/s, 5.13131s/12 iters), loss = 2.91078 +I0407 09:59:46.928339 17183 solver.cpp:237] Train net output #0: loss = 2.91078 (* 1 = 2.91078 loss) +I0407 09:59:46.928346 17183 sgd_solver.cpp:105] Iteration 2184, lr = 0.01 +I0407 09:59:52.008430 17183 solver.cpp:218] Iteration 2196 (2.36219 iter/s, 5.08002s/12 iters), loss = 2.85662 +I0407 09:59:52.008491 17183 solver.cpp:237] Train net output #0: loss = 2.85662 (* 1 = 2.85662 loss) +I0407 09:59:52.008502 17183 sgd_solver.cpp:105] Iteration 2196, lr = 0.01 +I0407 09:59:57.147320 17183 solver.cpp:218] Iteration 2208 (2.33519 iter/s, 5.13876s/12 iters), loss = 2.55525 +I0407 09:59:57.147373 17183 solver.cpp:237] Train net output #0: loss = 2.55525 (* 1 = 2.55525 loss) +I0407 09:59:57.147383 17183 sgd_solver.cpp:105] Iteration 2208, lr = 0.01 +I0407 10:00:02.226804 17183 solver.cpp:218] Iteration 2220 (2.3625 iter/s, 5.07937s/12 iters), loss = 2.59775 +I0407 10:00:02.226845 17183 solver.cpp:237] Train net output #0: loss = 2.59775 (* 1 = 2.59775 loss) +I0407 10:00:02.226851 17183 sgd_solver.cpp:105] Iteration 2220, lr = 0.01 +I0407 10:00:04.058775 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:00:07.352958 17183 solver.cpp:218] Iteration 2232 (2.34098 iter/s, 5.12605s/12 iters), loss = 2.64993 +I0407 10:00:07.352999 17183 solver.cpp:237] Train net output #0: loss = 2.64993 (* 1 = 2.64993 loss) +I0407 10:00:07.353005 17183 sgd_solver.cpp:105] Iteration 2232, lr = 0.01 +I0407 10:00:12.087119 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 10:00:16.336810 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 10:00:18.808895 17183 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 10:00:18.808920 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:00:22.282609 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:00:23.179617 17183 solver.cpp:397] Test net output #0: accuracy = 0.243873 +I0407 10:00:23.179656 17183 solver.cpp:397] Test net output #1: loss = 3.20866 (* 1 = 3.20866 loss) +I0407 10:00:23.320924 17183 solver.cpp:218] Iteration 2244 (0.751514 iter/s, 15.9678s/12 iters), loss = 2.52339 +I0407 10:00:23.320973 17183 solver.cpp:237] Train net output #0: loss = 2.52339 (* 1 = 2.52339 loss) +I0407 10:00:23.320982 17183 sgd_solver.cpp:105] Iteration 2244, lr = 0.01 +I0407 10:00:27.554651 17183 solver.cpp:218] Iteration 2256 (2.83445 iter/s, 4.23362s/12 iters), loss = 2.6586 +I0407 10:00:27.554690 17183 solver.cpp:237] Train net output #0: loss = 2.6586 (* 1 = 2.6586 loss) +I0407 10:00:27.554698 17183 sgd_solver.cpp:105] Iteration 2256, lr = 0.01 +I0407 10:00:32.538568 17183 solver.cpp:218] Iteration 2268 (2.40779 iter/s, 4.98382s/12 iters), loss = 2.58638 +I0407 10:00:32.538601 17183 solver.cpp:237] Train net output #0: loss = 2.58638 (* 1 = 2.58638 loss) +I0407 10:00:32.538609 17183 sgd_solver.cpp:105] Iteration 2268, lr = 0.01 +I0407 10:00:37.654844 17183 solver.cpp:218] Iteration 2280 (2.3455 iter/s, 5.11617s/12 iters), loss = 2.52302 +I0407 10:00:37.654886 17183 solver.cpp:237] Train net output #0: loss = 2.52302 (* 1 = 2.52302 loss) +I0407 10:00:37.654893 17183 sgd_solver.cpp:105] Iteration 2280, lr = 0.01 +I0407 10:00:42.885804 17183 solver.cpp:218] Iteration 2292 (2.29408 iter/s, 5.23085s/12 iters), loss = 3.07674 +I0407 10:00:42.885963 17183 solver.cpp:237] Train net output #0: loss = 3.07674 (* 1 = 3.07674 loss) +I0407 10:00:42.885974 17183 sgd_solver.cpp:105] Iteration 2292, lr = 0.01 +I0407 10:00:48.047407 17183 solver.cpp:218] Iteration 2304 (2.32496 iter/s, 5.16138s/12 iters), loss = 2.48843 +I0407 10:00:48.047463 17183 solver.cpp:237] Train net output #0: loss = 2.48843 (* 1 = 2.48843 loss) +I0407 10:00:48.047473 17183 sgd_solver.cpp:105] Iteration 2304, lr = 0.01 +I0407 10:00:53.274519 17183 solver.cpp:218] Iteration 2316 (2.29578 iter/s, 5.22699s/12 iters), loss = 2.6718 +I0407 10:00:53.274564 17183 solver.cpp:237] Train net output #0: loss = 2.6718 (* 1 = 2.6718 loss) +I0407 10:00:53.274570 17183 sgd_solver.cpp:105] Iteration 2316, lr = 0.01 +I0407 10:00:57.388087 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:00:58.461983 17183 solver.cpp:218] Iteration 2328 (2.31332 iter/s, 5.18735s/12 iters), loss = 2.49642 +I0407 10:00:58.462028 17183 solver.cpp:237] Train net output #0: loss = 2.49642 (* 1 = 2.49642 loss) +I0407 10:00:58.462035 17183 sgd_solver.cpp:105] Iteration 2328, lr = 0.01 +I0407 10:01:03.642524 17183 solver.cpp:218] Iteration 2340 (2.31641 iter/s, 5.18043s/12 iters), loss = 2.5101 +I0407 10:01:03.642576 17183 solver.cpp:237] Train net output #0: loss = 2.5101 (* 1 = 2.5101 loss) +I0407 10:01:03.642586 17183 sgd_solver.cpp:105] Iteration 2340, lr = 0.01 +I0407 10:01:05.742681 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 10:01:10.265969 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 10:01:12.582108 17183 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 10:01:12.582131 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:01:16.067025 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:01:17.047690 17183 solver.cpp:397] Test net output #0: accuracy = 0.215686 +I0407 10:01:17.047729 17183 solver.cpp:397] Test net output #1: loss = 3.40289 (* 1 = 3.40289 loss) +I0407 10:01:19.044692 17183 solver.cpp:218] Iteration 2352 (0.779122 iter/s, 15.402s/12 iters), loss = 2.60058 +I0407 10:01:19.044736 17183 solver.cpp:237] Train net output #0: loss = 2.60058 (* 1 = 2.60058 loss) +I0407 10:01:19.044742 17183 sgd_solver.cpp:105] Iteration 2352, lr = 0.01 +I0407 10:01:24.096052 17183 solver.cpp:218] Iteration 2364 (2.37565 iter/s, 5.05125s/12 iters), loss = 2.52184 +I0407 10:01:24.096099 17183 solver.cpp:237] Train net output #0: loss = 2.52184 (* 1 = 2.52184 loss) +I0407 10:01:24.096109 17183 sgd_solver.cpp:105] Iteration 2364, lr = 0.01 +I0407 10:01:29.195179 17183 solver.cpp:218] Iteration 2376 (2.3534 iter/s, 5.09902s/12 iters), loss = 2.30901 +I0407 10:01:29.195216 17183 solver.cpp:237] Train net output #0: loss = 2.30901 (* 1 = 2.30901 loss) +I0407 10:01:29.195222 17183 sgd_solver.cpp:105] Iteration 2376, lr = 0.01 +I0407 10:01:34.265159 17183 solver.cpp:218] Iteration 2388 (2.36692 iter/s, 5.06987s/12 iters), loss = 2.39091 +I0407 10:01:34.265204 17183 solver.cpp:237] Train net output #0: loss = 2.39091 (* 1 = 2.39091 loss) +I0407 10:01:34.265211 17183 sgd_solver.cpp:105] Iteration 2388, lr = 0.01 +I0407 10:01:39.410161 17183 solver.cpp:218] Iteration 2400 (2.33241 iter/s, 5.14489s/12 iters), loss = 2.32995 +I0407 10:01:39.410207 17183 solver.cpp:237] Train net output #0: loss = 2.32995 (* 1 = 2.32995 loss) +I0407 10:01:39.410218 17183 sgd_solver.cpp:105] Iteration 2400, lr = 0.01 +I0407 10:01:44.655221 17183 solver.cpp:218] Iteration 2412 (2.28792 iter/s, 5.24494s/12 iters), loss = 2.43187 +I0407 10:01:44.655277 17183 solver.cpp:237] Train net output #0: loss = 2.43187 (* 1 = 2.43187 loss) +I0407 10:01:44.655287 17183 sgd_solver.cpp:105] Iteration 2412, lr = 0.01 +I0407 10:01:49.772440 17183 solver.cpp:218] Iteration 2424 (2.34508 iter/s, 5.1171s/12 iters), loss = 2.56607 +I0407 10:01:49.772547 17183 solver.cpp:237] Train net output #0: loss = 2.56607 (* 1 = 2.56607 loss) +I0407 10:01:49.772557 17183 sgd_solver.cpp:105] Iteration 2424, lr = 0.01 +I0407 10:01:50.891171 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:01:55.019294 17183 solver.cpp:218] Iteration 2436 (2.28716 iter/s, 5.24668s/12 iters), loss = 2.29006 +I0407 10:01:55.019340 17183 solver.cpp:237] Train net output #0: loss = 2.29006 (* 1 = 2.29006 loss) +I0407 10:01:55.019348 17183 sgd_solver.cpp:105] Iteration 2436, lr = 0.01 +I0407 10:01:59.616739 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 10:02:02.702136 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 10:02:05.008981 17183 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 10:02:05.009001 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:02:08.314381 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:02:09.275681 17183 solver.cpp:397] Test net output #0: accuracy = 0.26348 +I0407 10:02:09.275722 17183 solver.cpp:397] Test net output #1: loss = 3.07803 (* 1 = 3.07803 loss) +I0407 10:02:09.417346 17183 solver.cpp:218] Iteration 2448 (0.833458 iter/s, 14.3979s/12 iters), loss = 2.53475 +I0407 10:02:09.417385 17183 solver.cpp:237] Train net output #0: loss = 2.53475 (* 1 = 2.53475 loss) +I0407 10:02:09.417392 17183 sgd_solver.cpp:105] Iteration 2448, lr = 0.01 +I0407 10:02:13.723677 17183 solver.cpp:218] Iteration 2460 (2.78666 iter/s, 4.30623s/12 iters), loss = 2.54172 +I0407 10:02:13.723737 17183 solver.cpp:237] Train net output #0: loss = 2.54172 (* 1 = 2.54172 loss) +I0407 10:02:13.723747 17183 sgd_solver.cpp:105] Iteration 2460, lr = 0.01 +I0407 10:02:18.874725 17183 solver.cpp:218] Iteration 2472 (2.32968 iter/s, 5.15092s/12 iters), loss = 2.63666 +I0407 10:02:18.874788 17183 solver.cpp:237] Train net output #0: loss = 2.63666 (* 1 = 2.63666 loss) +I0407 10:02:18.874799 17183 sgd_solver.cpp:105] Iteration 2472, lr = 0.01 +I0407 10:02:23.882112 17183 solver.cpp:218] Iteration 2484 (2.39652 iter/s, 5.00726s/12 iters), loss = 1.98343 +I0407 10:02:23.882282 17183 solver.cpp:237] Train net output #0: loss = 1.98343 (* 1 = 1.98343 loss) +I0407 10:02:23.882292 17183 sgd_solver.cpp:105] Iteration 2484, lr = 0.01 +I0407 10:02:29.165390 17183 solver.cpp:218] Iteration 2496 (2.27142 iter/s, 5.28304s/12 iters), loss = 2.28107 +I0407 10:02:29.165436 17183 solver.cpp:237] Train net output #0: loss = 2.28107 (* 1 = 2.28107 loss) +I0407 10:02:29.165442 17183 sgd_solver.cpp:105] Iteration 2496, lr = 0.01 +I0407 10:02:34.378875 17183 solver.cpp:218] Iteration 2508 (2.30177 iter/s, 5.21337s/12 iters), loss = 2.30153 +I0407 10:02:34.378927 17183 solver.cpp:237] Train net output #0: loss = 2.30153 (* 1 = 2.30153 loss) +I0407 10:02:34.378937 17183 sgd_solver.cpp:105] Iteration 2508, lr = 0.01 +I0407 10:02:39.520553 17183 solver.cpp:218] Iteration 2520 (2.33392 iter/s, 5.14156s/12 iters), loss = 2.04957 +I0407 10:02:39.520598 17183 solver.cpp:237] Train net output #0: loss = 2.04957 (* 1 = 2.04957 loss) +I0407 10:02:39.520606 17183 sgd_solver.cpp:105] Iteration 2520, lr = 0.01 +I0407 10:02:42.624280 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:02:44.478077 17183 solver.cpp:218] Iteration 2532 (2.42062 iter/s, 4.95741s/12 iters), loss = 2.26588 +I0407 10:02:44.478116 17183 solver.cpp:237] Train net output #0: loss = 2.26588 (* 1 = 2.26588 loss) +I0407 10:02:44.478122 17183 sgd_solver.cpp:105] Iteration 2532, lr = 0.01 +I0407 10:02:49.847723 17183 solver.cpp:218] Iteration 2544 (2.23483 iter/s, 5.36954s/12 iters), loss = 2.34032 +I0407 10:02:49.847764 17183 solver.cpp:237] Train net output #0: loss = 2.34032 (* 1 = 2.34032 loss) +I0407 10:02:49.847770 17183 sgd_solver.cpp:105] Iteration 2544, lr = 0.01 +I0407 10:02:52.057236 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 10:02:55.105159 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 10:02:57.402341 17183 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 10:02:57.402362 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:03:00.796530 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:03:01.802660 17183 solver.cpp:397] Test net output #0: accuracy = 0.279412 +I0407 10:03:01.802698 17183 solver.cpp:397] Test net output #1: loss = 3.05345 (* 1 = 3.05345 loss) +I0407 10:03:03.855355 17183 solver.cpp:218] Iteration 2556 (0.856688 iter/s, 14.0074s/12 iters), loss = 2.46324 +I0407 10:03:03.855415 17183 solver.cpp:237] Train net output #0: loss = 2.46324 (* 1 = 2.46324 loss) +I0407 10:03:03.855425 17183 sgd_solver.cpp:105] Iteration 2556, lr = 0.01 +I0407 10:03:09.002228 17183 solver.cpp:218] Iteration 2568 (2.33157 iter/s, 5.14675s/12 iters), loss = 2.12094 +I0407 10:03:09.002270 17183 solver.cpp:237] Train net output #0: loss = 2.12094 (* 1 = 2.12094 loss) +I0407 10:03:09.002279 17183 sgd_solver.cpp:105] Iteration 2568, lr = 0.01 +I0407 10:03:14.210784 17183 solver.cpp:218] Iteration 2580 (2.30395 iter/s, 5.20844s/12 iters), loss = 2.30328 +I0407 10:03:14.210844 17183 solver.cpp:237] Train net output #0: loss = 2.30328 (* 1 = 2.30328 loss) +I0407 10:03:14.210853 17183 sgd_solver.cpp:105] Iteration 2580, lr = 0.01 +I0407 10:03:19.401515 17183 solver.cpp:218] Iteration 2592 (2.31187 iter/s, 5.19061s/12 iters), loss = 2.26808 +I0407 10:03:19.401556 17183 solver.cpp:237] Train net output #0: loss = 2.26808 (* 1 = 2.26808 loss) +I0407 10:03:19.401563 17183 sgd_solver.cpp:105] Iteration 2592, lr = 0.01 +I0407 10:03:24.532021 17183 solver.cpp:218] Iteration 2604 (2.339 iter/s, 5.1304s/12 iters), loss = 2.38723 +I0407 10:03:24.532068 17183 solver.cpp:237] Train net output #0: loss = 2.38723 (* 1 = 2.38723 loss) +I0407 10:03:24.532074 17183 sgd_solver.cpp:105] Iteration 2604, lr = 0.01 +I0407 10:03:29.790395 17183 solver.cpp:218] Iteration 2616 (2.28212 iter/s, 5.25826s/12 iters), loss = 2.13255 +I0407 10:03:29.790534 17183 solver.cpp:237] Train net output #0: loss = 2.13255 (* 1 = 2.13255 loss) +I0407 10:03:29.790542 17183 sgd_solver.cpp:105] Iteration 2616, lr = 0.01 +I0407 10:03:34.814038 17183 solver.cpp:218] Iteration 2628 (2.3888 iter/s, 5.02344s/12 iters), loss = 1.99 +I0407 10:03:34.814083 17183 solver.cpp:237] Train net output #0: loss = 1.99 (* 1 = 1.99 loss) +I0407 10:03:34.814090 17183 sgd_solver.cpp:105] Iteration 2628, lr = 0.01 +I0407 10:03:35.265050 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:03:40.113629 17183 solver.cpp:218] Iteration 2640 (2.26437 iter/s, 5.29948s/12 iters), loss = 2.19922 +I0407 10:03:40.113674 17183 solver.cpp:237] Train net output #0: loss = 2.19922 (* 1 = 2.19922 loss) +I0407 10:03:40.113682 17183 sgd_solver.cpp:105] Iteration 2640, lr = 0.01 +I0407 10:03:44.768877 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 10:03:47.792428 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 10:03:50.116482 17183 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 10:03:50.116501 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:03:53.339778 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:03:54.394706 17183 solver.cpp:397] Test net output #0: accuracy = 0.289828 +I0407 10:03:54.394734 17183 solver.cpp:397] Test net output #1: loss = 3.09958 (* 1 = 3.09958 loss) +I0407 10:03:54.531035 17183 solver.cpp:218] Iteration 2652 (0.832339 iter/s, 14.4172s/12 iters), loss = 2.4559 +I0407 10:03:54.531085 17183 solver.cpp:237] Train net output #0: loss = 2.4559 (* 1 = 2.4559 loss) +I0407 10:03:54.531092 17183 sgd_solver.cpp:105] Iteration 2652, lr = 0.01 +I0407 10:03:58.585762 17183 solver.cpp:218] Iteration 2664 (2.95958 iter/s, 4.05462s/12 iters), loss = 2.22556 +I0407 10:03:58.585803 17183 solver.cpp:237] Train net output #0: loss = 2.22556 (* 1 = 2.22556 loss) +I0407 10:03:58.585809 17183 sgd_solver.cpp:105] Iteration 2664, lr = 0.01 +I0407 10:04:03.685214 17183 solver.cpp:218] Iteration 2676 (2.35325 iter/s, 5.09934s/12 iters), loss = 2.0099 +I0407 10:04:03.685322 17183 solver.cpp:237] Train net output #0: loss = 2.0099 (* 1 = 2.0099 loss) +I0407 10:04:03.685333 17183 sgd_solver.cpp:105] Iteration 2676, lr = 0.01 +I0407 10:04:08.971036 17183 solver.cpp:218] Iteration 2688 (2.2703 iter/s, 5.28565s/12 iters), loss = 1.93899 +I0407 10:04:08.971081 17183 solver.cpp:237] Train net output #0: loss = 1.93899 (* 1 = 1.93899 loss) +I0407 10:04:08.971088 17183 sgd_solver.cpp:105] Iteration 2688, lr = 0.01 +I0407 10:04:14.038110 17183 solver.cpp:218] Iteration 2700 (2.36828 iter/s, 5.06696s/12 iters), loss = 2.19075 +I0407 10:04:14.038157 17183 solver.cpp:237] Train net output #0: loss = 2.19075 (* 1 = 2.19075 loss) +I0407 10:04:14.038165 17183 sgd_solver.cpp:105] Iteration 2700, lr = 0.01 +I0407 10:04:19.169168 17183 solver.cpp:218] Iteration 2712 (2.33875 iter/s, 5.13094s/12 iters), loss = 2.24219 +I0407 10:04:19.169224 17183 solver.cpp:237] Train net output #0: loss = 2.24219 (* 1 = 2.24219 loss) +I0407 10:04:19.169232 17183 sgd_solver.cpp:105] Iteration 2712, lr = 0.01 +I0407 10:04:24.371438 17183 solver.cpp:218] Iteration 2724 (2.30674 iter/s, 5.20214s/12 iters), loss = 2.57129 +I0407 10:04:24.371495 17183 solver.cpp:237] Train net output #0: loss = 2.57129 (* 1 = 2.57129 loss) +I0407 10:04:24.371505 17183 sgd_solver.cpp:105] Iteration 2724, lr = 0.01 +I0407 10:04:27.116446 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:04:29.644691 17183 solver.cpp:218] Iteration 2736 (2.27569 iter/s, 5.27313s/12 iters), loss = 2.15618 +I0407 10:04:29.644735 17183 solver.cpp:237] Train net output #0: loss = 2.15618 (* 1 = 2.15618 loss) +I0407 10:04:29.644742 17183 sgd_solver.cpp:105] Iteration 2736, lr = 0.01 +I0407 10:04:34.809602 17183 solver.cpp:218] Iteration 2748 (2.32342 iter/s, 5.1648s/12 iters), loss = 2.14553 +I0407 10:04:34.809734 17183 solver.cpp:237] Train net output #0: loss = 2.14553 (* 1 = 2.14553 loss) +I0407 10:04:34.809746 17183 sgd_solver.cpp:105] Iteration 2748, lr = 0.01 +I0407 10:04:36.904255 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 10:04:39.931028 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 10:04:42.233776 17183 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 10:04:42.233798 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:04:45.324985 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:04:45.555754 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:04:46.650954 17183 solver.cpp:397] Test net output #0: accuracy = 0.291667 +I0407 10:04:46.650988 17183 solver.cpp:397] Test net output #1: loss = 3.1267 (* 1 = 3.1267 loss) +I0407 10:04:48.428969 17183 solver.cpp:218] Iteration 2760 (0.881116 iter/s, 13.6191s/12 iters), loss = 2.13846 +I0407 10:04:48.429014 17183 solver.cpp:237] Train net output #0: loss = 2.13846 (* 1 = 2.13846 loss) +I0407 10:04:48.429021 17183 sgd_solver.cpp:105] Iteration 2760, lr = 0.01 +I0407 10:04:53.587978 17183 solver.cpp:218] Iteration 2772 (2.32608 iter/s, 5.15889s/12 iters), loss = 2.00872 +I0407 10:04:53.588019 17183 solver.cpp:237] Train net output #0: loss = 2.00872 (* 1 = 2.00872 loss) +I0407 10:04:53.588027 17183 sgd_solver.cpp:105] Iteration 2772, lr = 0.01 +I0407 10:04:58.750988 17183 solver.cpp:218] Iteration 2784 (2.32428 iter/s, 5.1629s/12 iters), loss = 2.04535 +I0407 10:04:58.751030 17183 solver.cpp:237] Train net output #0: loss = 2.04535 (* 1 = 2.04535 loss) +I0407 10:04:58.751037 17183 sgd_solver.cpp:105] Iteration 2784, lr = 0.01 +I0407 10:05:03.862161 17183 solver.cpp:218] Iteration 2796 (2.34785 iter/s, 5.11106s/12 iters), loss = 2.20868 +I0407 10:05:03.862206 17183 solver.cpp:237] Train net output #0: loss = 2.20868 (* 1 = 2.20868 loss) +I0407 10:05:03.862213 17183 sgd_solver.cpp:105] Iteration 2796, lr = 0.01 +I0407 10:05:09.014668 17183 solver.cpp:218] Iteration 2808 (2.32902 iter/s, 5.15239s/12 iters), loss = 1.87988 +I0407 10:05:09.014812 17183 solver.cpp:237] Train net output #0: loss = 1.87988 (* 1 = 1.87988 loss) +I0407 10:05:09.014824 17183 sgd_solver.cpp:105] Iteration 2808, lr = 0.01 +I0407 10:05:14.178679 17183 solver.cpp:218] Iteration 2820 (2.32387 iter/s, 5.1638s/12 iters), loss = 1.96404 +I0407 10:05:14.178719 17183 solver.cpp:237] Train net output #0: loss = 1.96404 (* 1 = 1.96404 loss) +I0407 10:05:14.178726 17183 sgd_solver.cpp:105] Iteration 2820, lr = 0.01 +I0407 10:05:19.109717 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:05:19.441059 17183 solver.cpp:218] Iteration 2832 (2.28039 iter/s, 5.26227s/12 iters), loss = 1.96936 +I0407 10:05:19.441102 17183 solver.cpp:237] Train net output #0: loss = 1.96936 (* 1 = 1.96936 loss) +I0407 10:05:19.441109 17183 sgd_solver.cpp:105] Iteration 2832, lr = 0.01 +I0407 10:05:24.325770 17183 solver.cpp:218] Iteration 2844 (2.4567 iter/s, 4.8846s/12 iters), loss = 2.13049 +I0407 10:05:24.325831 17183 solver.cpp:237] Train net output #0: loss = 2.13049 (* 1 = 2.13049 loss) +I0407 10:05:24.325842 17183 sgd_solver.cpp:105] Iteration 2844, lr = 0.01 +I0407 10:05:28.948444 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 10:05:31.984757 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 10:05:34.304783 17183 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 10:05:34.304805 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:05:37.540134 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:05:38.657763 17183 solver.cpp:397] Test net output #0: accuracy = 0.302696 +I0407 10:05:38.657802 17183 solver.cpp:397] Test net output #1: loss = 3.03169 (* 1 = 3.03169 loss) +I0407 10:05:38.800361 17183 solver.cpp:218] Iteration 2856 (0.829051 iter/s, 14.4744s/12 iters), loss = 2.07213 +I0407 10:05:38.803387 17183 solver.cpp:237] Train net output #0: loss = 2.07213 (* 1 = 2.07213 loss) +I0407 10:05:38.803403 17183 sgd_solver.cpp:105] Iteration 2856, lr = 0.01 +I0407 10:05:42.865212 17183 solver.cpp:218] Iteration 2868 (2.95437 iter/s, 4.06178s/12 iters), loss = 2.21084 +I0407 10:05:42.865339 17183 solver.cpp:237] Train net output #0: loss = 2.21084 (* 1 = 2.21084 loss) +I0407 10:05:42.865346 17183 sgd_solver.cpp:105] Iteration 2868, lr = 0.01 +I0407 10:05:48.030014 17183 solver.cpp:218] Iteration 2880 (2.32351 iter/s, 5.16461s/12 iters), loss = 1.57981 +I0407 10:05:48.030062 17183 solver.cpp:237] Train net output #0: loss = 1.57981 (* 1 = 1.57981 loss) +I0407 10:05:48.030071 17183 sgd_solver.cpp:105] Iteration 2880, lr = 0.01 +I0407 10:05:53.234555 17183 solver.cpp:218] Iteration 2892 (2.30573 iter/s, 5.20443s/12 iters), loss = 2.20648 +I0407 10:05:53.234601 17183 solver.cpp:237] Train net output #0: loss = 2.20648 (* 1 = 2.20648 loss) +I0407 10:05:53.234607 17183 sgd_solver.cpp:105] Iteration 2892, lr = 0.01 +I0407 10:05:58.345345 17183 solver.cpp:218] Iteration 2904 (2.34803 iter/s, 5.11067s/12 iters), loss = 2.05133 +I0407 10:05:58.345388 17183 solver.cpp:237] Train net output #0: loss = 2.05133 (* 1 = 2.05133 loss) +I0407 10:05:58.345396 17183 sgd_solver.cpp:105] Iteration 2904, lr = 0.01 +I0407 10:06:03.441679 17183 solver.cpp:218] Iteration 2916 (2.35468 iter/s, 5.09622s/12 iters), loss = 1.72584 +I0407 10:06:03.441727 17183 solver.cpp:237] Train net output #0: loss = 1.72584 (* 1 = 1.72584 loss) +I0407 10:06:03.441738 17183 sgd_solver.cpp:105] Iteration 2916, lr = 0.01 +I0407 10:06:08.374037 17183 solver.cpp:218] Iteration 2928 (2.43297 iter/s, 4.93225s/12 iters), loss = 2.18127 +I0407 10:06:08.374083 17183 solver.cpp:237] Train net output #0: loss = 2.18127 (* 1 = 2.18127 loss) +I0407 10:06:08.374090 17183 sgd_solver.cpp:105] Iteration 2928, lr = 0.01 +I0407 10:06:10.267897 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:06:13.590720 17183 solver.cpp:218] Iteration 2940 (2.30036 iter/s, 5.21657s/12 iters), loss = 1.79257 +I0407 10:06:13.590847 17183 solver.cpp:237] Train net output #0: loss = 1.79257 (* 1 = 1.79257 loss) +I0407 10:06:13.590855 17183 sgd_solver.cpp:105] Iteration 2940, lr = 0.01 +I0407 10:06:18.595013 17183 solver.cpp:218] Iteration 2952 (2.39803 iter/s, 5.0041s/12 iters), loss = 2.11507 +I0407 10:06:18.595067 17183 solver.cpp:237] Train net output #0: loss = 2.11507 (* 1 = 2.11507 loss) +I0407 10:06:18.595075 17183 sgd_solver.cpp:105] Iteration 2952, lr = 0.01 +I0407 10:06:20.829280 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 10:06:23.813624 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 10:06:26.119606 17183 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 10:06:26.119627 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:06:29.249169 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:06:30.437016 17183 solver.cpp:397] Test net output #0: accuracy = 0.305147 +I0407 10:06:30.437047 17183 solver.cpp:397] Test net output #1: loss = 3.06394 (* 1 = 3.06394 loss) +I0407 10:06:32.245649 17183 solver.cpp:218] Iteration 2964 (0.879093 iter/s, 13.6504s/12 iters), loss = 2.32909 +I0407 10:06:32.245697 17183 solver.cpp:237] Train net output #0: loss = 2.32909 (* 1 = 2.32909 loss) +I0407 10:06:32.245704 17183 sgd_solver.cpp:105] Iteration 2964, lr = 0.01 +I0407 10:06:37.528815 17183 solver.cpp:218] Iteration 2976 (2.27142 iter/s, 5.28305s/12 iters), loss = 1.57811 +I0407 10:06:37.528873 17183 solver.cpp:237] Train net output #0: loss = 1.57811 (* 1 = 1.57811 loss) +I0407 10:06:37.528889 17183 sgd_solver.cpp:105] Iteration 2976, lr = 0.01 +I0407 10:06:42.682343 17183 solver.cpp:218] Iteration 2988 (2.32856 iter/s, 5.1534s/12 iters), loss = 1.96127 +I0407 10:06:42.682397 17183 solver.cpp:237] Train net output #0: loss = 1.96127 (* 1 = 1.96127 loss) +I0407 10:06:42.682407 17183 sgd_solver.cpp:105] Iteration 2988, lr = 0.01 +I0407 10:06:47.820394 17183 solver.cpp:218] Iteration 3000 (2.33557 iter/s, 5.13793s/12 iters), loss = 1.84551 +I0407 10:06:47.820559 17183 solver.cpp:237] Train net output #0: loss = 1.84551 (* 1 = 1.84551 loss) +I0407 10:06:47.820570 17183 sgd_solver.cpp:105] Iteration 3000, lr = 0.01 +I0407 10:06:52.868841 17183 solver.cpp:218] Iteration 3012 (2.37708 iter/s, 5.04822s/12 iters), loss = 2.05433 +I0407 10:06:52.868889 17183 solver.cpp:237] Train net output #0: loss = 2.05433 (* 1 = 2.05433 loss) +I0407 10:06:52.868897 17183 sgd_solver.cpp:105] Iteration 3012, lr = 0.01 +I0407 10:06:57.991451 17183 solver.cpp:218] Iteration 3024 (2.34261 iter/s, 5.1225s/12 iters), loss = 1.87281 +I0407 10:06:57.991492 17183 solver.cpp:237] Train net output #0: loss = 1.87281 (* 1 = 1.87281 loss) +I0407 10:06:57.991500 17183 sgd_solver.cpp:105] Iteration 3024, lr = 0.01 +I0407 10:07:02.131184 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:07:03.238617 17183 solver.cpp:218] Iteration 3036 (2.287 iter/s, 5.24706s/12 iters), loss = 1.94262 +I0407 10:07:03.238659 17183 solver.cpp:237] Train net output #0: loss = 1.94262 (* 1 = 1.94262 loss) +I0407 10:07:03.238667 17183 sgd_solver.cpp:105] Iteration 3036, lr = 0.01 +I0407 10:07:08.223712 17183 solver.cpp:218] Iteration 3048 (2.40723 iter/s, 4.98498s/12 iters), loss = 1.62104 +I0407 10:07:08.223757 17183 solver.cpp:237] Train net output #0: loss = 1.62104 (* 1 = 1.62104 loss) +I0407 10:07:08.223763 17183 sgd_solver.cpp:105] Iteration 3048, lr = 0.01 +I0407 10:07:12.814374 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 10:07:15.887858 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 10:07:18.202167 17183 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 10:07:18.202239 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:07:21.294560 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:07:22.493077 17183 solver.cpp:397] Test net output #0: accuracy = 0.310662 +I0407 10:07:22.493113 17183 solver.cpp:397] Test net output #1: loss = 3.04783 (* 1 = 3.04783 loss) +I0407 10:07:22.629998 17183 solver.cpp:218] Iteration 3060 (0.832981 iter/s, 14.4061s/12 iters), loss = 1.89414 +I0407 10:07:22.630043 17183 solver.cpp:237] Train net output #0: loss = 1.89414 (* 1 = 1.89414 loss) +I0407 10:07:22.630050 17183 sgd_solver.cpp:105] Iteration 3060, lr = 0.01 +I0407 10:07:26.884171 17183 solver.cpp:218] Iteration 3072 (2.82083 iter/s, 4.25407s/12 iters), loss = 1.82064 +I0407 10:07:26.884219 17183 solver.cpp:237] Train net output #0: loss = 1.82064 (* 1 = 1.82064 loss) +I0407 10:07:26.884227 17183 sgd_solver.cpp:105] Iteration 3072, lr = 0.01 +I0407 10:07:32.050166 17183 solver.cpp:218] Iteration 3084 (2.32294 iter/s, 5.16587s/12 iters), loss = 1.80069 +I0407 10:07:32.050211 17183 solver.cpp:237] Train net output #0: loss = 1.80069 (* 1 = 1.80069 loss) +I0407 10:07:32.050218 17183 sgd_solver.cpp:105] Iteration 3084, lr = 0.01 +I0407 10:07:37.224099 17183 solver.cpp:218] Iteration 3096 (2.31937 iter/s, 5.17382s/12 iters), loss = 1.83894 +I0407 10:07:37.224144 17183 solver.cpp:237] Train net output #0: loss = 1.83894 (* 1 = 1.83894 loss) +I0407 10:07:37.224151 17183 sgd_solver.cpp:105] Iteration 3096, lr = 0.01 +I0407 10:07:42.411152 17183 solver.cpp:218] Iteration 3108 (2.3135 iter/s, 5.18694s/12 iters), loss = 1.71658 +I0407 10:07:42.411206 17183 solver.cpp:237] Train net output #0: loss = 1.71658 (* 1 = 1.71658 loss) +I0407 10:07:42.411216 17183 sgd_solver.cpp:105] Iteration 3108, lr = 0.01 +I0407 10:07:47.424216 17183 solver.cpp:218] Iteration 3120 (2.3938 iter/s, 5.01294s/12 iters), loss = 1.82585 +I0407 10:07:47.424261 17183 solver.cpp:237] Train net output #0: loss = 1.82585 (* 1 = 1.82585 loss) +I0407 10:07:47.424268 17183 sgd_solver.cpp:105] Iteration 3120, lr = 0.01 +I0407 10:07:52.660461 17183 solver.cpp:218] Iteration 3132 (2.29177 iter/s, 5.23613s/12 iters), loss = 1.82511 +I0407 10:07:52.660616 17183 solver.cpp:237] Train net output #0: loss = 1.82511 (* 1 = 1.82511 loss) +I0407 10:07:52.660627 17183 sgd_solver.cpp:105] Iteration 3132, lr = 0.01 +I0407 10:07:53.781437 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:07:57.899796 17183 solver.cpp:218] Iteration 3144 (2.29046 iter/s, 5.23911s/12 iters), loss = 1.8693 +I0407 10:07:57.899838 17183 solver.cpp:237] Train net output #0: loss = 1.8693 (* 1 = 1.8693 loss) +I0407 10:07:57.899845 17183 sgd_solver.cpp:105] Iteration 3144, lr = 0.01 +I0407 10:08:03.112880 17183 solver.cpp:218] Iteration 3156 (2.30195 iter/s, 5.21297s/12 iters), loss = 1.76339 +I0407 10:08:03.112939 17183 solver.cpp:237] Train net output #0: loss = 1.76339 (* 1 = 1.76339 loss) +I0407 10:08:03.112949 17183 sgd_solver.cpp:105] Iteration 3156, lr = 0.01 +I0407 10:08:05.199622 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 10:08:08.227169 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 10:08:10.545219 17183 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 10:08:10.545240 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:08:13.624083 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:08:14.867118 17183 solver.cpp:397] Test net output #0: accuracy = 0.320466 +I0407 10:08:14.867156 17183 solver.cpp:397] Test net output #1: loss = 2.80917 (* 1 = 2.80917 loss) +I0407 10:08:16.674572 17183 solver.cpp:218] Iteration 3168 (0.884859 iter/s, 13.5615s/12 iters), loss = 1.87324 +I0407 10:08:16.674614 17183 solver.cpp:237] Train net output #0: loss = 1.87324 (* 1 = 1.87324 loss) +I0407 10:08:16.674621 17183 sgd_solver.cpp:105] Iteration 3168, lr = 0.01 +I0407 10:08:21.771212 17183 solver.cpp:218] Iteration 3180 (2.35454 iter/s, 5.09653s/12 iters), loss = 1.92472 +I0407 10:08:21.771255 17183 solver.cpp:237] Train net output #0: loss = 1.92472 (* 1 = 1.92472 loss) +I0407 10:08:21.771261 17183 sgd_solver.cpp:105] Iteration 3180, lr = 0.01 +I0407 10:08:26.966935 17183 solver.cpp:218] Iteration 3192 (2.30964 iter/s, 5.19561s/12 iters), loss = 2.0196 +I0407 10:08:26.967027 17183 solver.cpp:237] Train net output #0: loss = 2.0196 (* 1 = 2.0196 loss) +I0407 10:08:26.967036 17183 sgd_solver.cpp:105] Iteration 3192, lr = 0.01 +I0407 10:08:32.128837 17183 solver.cpp:218] Iteration 3204 (2.3248 iter/s, 5.16174s/12 iters), loss = 1.65546 +I0407 10:08:32.128899 17183 solver.cpp:237] Train net output #0: loss = 1.65546 (* 1 = 1.65546 loss) +I0407 10:08:32.128912 17183 sgd_solver.cpp:105] Iteration 3204, lr = 0.01 +I0407 10:08:37.373157 17183 solver.cpp:218] Iteration 3216 (2.28824 iter/s, 5.2442s/12 iters), loss = 1.85165 +I0407 10:08:37.373209 17183 solver.cpp:237] Train net output #0: loss = 1.85165 (* 1 = 1.85165 loss) +I0407 10:08:37.373219 17183 sgd_solver.cpp:105] Iteration 3216, lr = 0.01 +I0407 10:08:42.428428 17183 solver.cpp:218] Iteration 3228 (2.37381 iter/s, 5.05516s/12 iters), loss = 1.71253 +I0407 10:08:42.428468 17183 solver.cpp:237] Train net output #0: loss = 1.71253 (* 1 = 1.71253 loss) +I0407 10:08:42.428475 17183 sgd_solver.cpp:105] Iteration 3228, lr = 0.01 +I0407 10:08:45.585083 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:08:47.393229 17183 solver.cpp:218] Iteration 3240 (2.41707 iter/s, 4.96469s/12 iters), loss = 1.69964 +I0407 10:08:47.393268 17183 solver.cpp:237] Train net output #0: loss = 1.69964 (* 1 = 1.69964 loss) +I0407 10:08:47.393275 17183 sgd_solver.cpp:105] Iteration 3240, lr = 0.01 +I0407 10:08:52.703002 17183 solver.cpp:218] Iteration 3252 (2.26003 iter/s, 5.30966s/12 iters), loss = 1.71023 +I0407 10:08:52.703061 17183 solver.cpp:237] Train net output #0: loss = 1.71023 (* 1 = 1.71023 loss) +I0407 10:08:52.703071 17183 sgd_solver.cpp:105] Iteration 3252, lr = 0.01 +I0407 10:08:57.376361 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 10:09:00.315748 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 10:09:03.696338 17183 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 10:09:03.696364 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:09:06.822008 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:09:08.143457 17183 solver.cpp:397] Test net output #0: accuracy = 0.327819 +I0407 10:09:08.143488 17183 solver.cpp:397] Test net output #1: loss = 2.9066 (* 1 = 2.9066 loss) +I0407 10:09:08.285216 17183 solver.cpp:218] Iteration 3264 (0.77012 iter/s, 15.582s/12 iters), loss = 1.71003 +I0407 10:09:08.285264 17183 solver.cpp:237] Train net output #0: loss = 1.71003 (* 1 = 1.71003 loss) +I0407 10:09:08.285271 17183 sgd_solver.cpp:105] Iteration 3264, lr = 0.01 +I0407 10:09:12.521534 17183 solver.cpp:218] Iteration 3276 (2.83272 iter/s, 4.23621s/12 iters), loss = 1.51897 +I0407 10:09:12.521589 17183 solver.cpp:237] Train net output #0: loss = 1.51897 (* 1 = 1.51897 loss) +I0407 10:09:12.521597 17183 sgd_solver.cpp:105] Iteration 3276, lr = 0.01 +I0407 10:09:17.590492 17183 solver.cpp:218] Iteration 3288 (2.3674 iter/s, 5.06884s/12 iters), loss = 1.57043 +I0407 10:09:17.590544 17183 solver.cpp:237] Train net output #0: loss = 1.57043 (* 1 = 1.57043 loss) +I0407 10:09:17.590553 17183 sgd_solver.cpp:105] Iteration 3288, lr = 0.01 +I0407 10:09:22.772508 17183 solver.cpp:218] Iteration 3300 (2.31576 iter/s, 5.18189s/12 iters), loss = 1.72871 +I0407 10:09:22.772563 17183 solver.cpp:237] Train net output #0: loss = 1.72871 (* 1 = 1.72871 loss) +I0407 10:09:22.772573 17183 sgd_solver.cpp:105] Iteration 3300, lr = 0.01 +I0407 10:09:28.001161 17183 solver.cpp:218] Iteration 3312 (2.2951 iter/s, 5.22853s/12 iters), loss = 1.92742 +I0407 10:09:28.001267 17183 solver.cpp:237] Train net output #0: loss = 1.92742 (* 1 = 1.92742 loss) +I0407 10:09:28.001276 17183 sgd_solver.cpp:105] Iteration 3312, lr = 0.01 +I0407 10:09:32.987623 17183 solver.cpp:218] Iteration 3324 (2.4066 iter/s, 4.98629s/12 iters), loss = 1.78495 +I0407 10:09:32.987675 17183 solver.cpp:237] Train net output #0: loss = 1.78495 (* 1 = 1.78495 loss) +I0407 10:09:32.987684 17183 sgd_solver.cpp:105] Iteration 3324, lr = 0.01 +I0407 10:09:38.164166 17183 solver.cpp:218] Iteration 3336 (2.3182 iter/s, 5.17642s/12 iters), loss = 1.58932 +I0407 10:09:38.164204 17183 solver.cpp:237] Train net output #0: loss = 1.58932 (* 1 = 1.58932 loss) +I0407 10:09:38.164211 17183 sgd_solver.cpp:105] Iteration 3336, lr = 0.01 +I0407 10:09:38.662662 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:09:43.411368 17183 solver.cpp:218] Iteration 3348 (2.28698 iter/s, 5.24709s/12 iters), loss = 1.6632 +I0407 10:09:43.411412 17183 solver.cpp:237] Train net output #0: loss = 1.6632 (* 1 = 1.6632 loss) +I0407 10:09:43.411419 17183 sgd_solver.cpp:105] Iteration 3348, lr = 0.01 +I0407 10:09:48.609447 17183 solver.cpp:218] Iteration 3360 (2.3086 iter/s, 5.19796s/12 iters), loss = 1.77603 +I0407 10:09:48.609504 17183 solver.cpp:237] Train net output #0: loss = 1.77603 (* 1 = 1.77603 loss) +I0407 10:09:48.609514 17183 sgd_solver.cpp:105] Iteration 3360, lr = 0.01 +I0407 10:09:50.692361 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 10:09:54.754874 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 10:09:57.786700 17183 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 10:09:57.786720 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:10:00.789830 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:10:02.180903 17183 solver.cpp:397] Test net output #0: accuracy = 0.313726 +I0407 10:10:02.180932 17183 solver.cpp:397] Test net output #1: loss = 3.09423 (* 1 = 3.09423 loss) +I0407 10:10:03.968730 17183 solver.cpp:218] Iteration 3372 (0.781298 iter/s, 15.3591s/12 iters), loss = 2.67122 +I0407 10:10:03.968773 17183 solver.cpp:237] Train net output #0: loss = 2.67122 (* 1 = 2.67122 loss) +I0407 10:10:03.968781 17183 sgd_solver.cpp:105] Iteration 3372, lr = 0.0025 +I0407 10:10:09.017493 17183 solver.cpp:218] Iteration 3384 (2.37687 iter/s, 5.04866s/12 iters), loss = 1.59515 +I0407 10:10:09.017531 17183 solver.cpp:237] Train net output #0: loss = 1.59515 (* 1 = 1.59515 loss) +I0407 10:10:09.017539 17183 sgd_solver.cpp:105] Iteration 3384, lr = 0.0025 +I0407 10:10:14.169629 17183 solver.cpp:218] Iteration 3396 (2.32918 iter/s, 5.15203s/12 iters), loss = 1.75154 +I0407 10:10:14.169674 17183 solver.cpp:237] Train net output #0: loss = 1.75154 (* 1 = 1.75154 loss) +I0407 10:10:14.169682 17183 sgd_solver.cpp:105] Iteration 3396, lr = 0.0025 +I0407 10:10:19.067953 17183 solver.cpp:218] Iteration 3408 (2.44988 iter/s, 4.89821s/12 iters), loss = 1.28764 +I0407 10:10:19.067997 17183 solver.cpp:237] Train net output #0: loss = 1.28764 (* 1 = 1.28764 loss) +I0407 10:10:19.068004 17183 sgd_solver.cpp:105] Iteration 3408, lr = 0.0025 +I0407 10:10:24.350530 17183 solver.cpp:218] Iteration 3420 (2.27167 iter/s, 5.28246s/12 iters), loss = 1.1938 +I0407 10:10:24.350569 17183 solver.cpp:237] Train net output #0: loss = 1.1938 (* 1 = 1.1938 loss) +I0407 10:10:24.350576 17183 sgd_solver.cpp:105] Iteration 3420, lr = 0.0025 +I0407 10:10:29.456220 17183 solver.cpp:218] Iteration 3432 (2.35037 iter/s, 5.10558s/12 iters), loss = 1.21263 +I0407 10:10:29.456264 17183 solver.cpp:237] Train net output #0: loss = 1.21263 (* 1 = 1.21263 loss) +I0407 10:10:29.456271 17183 sgd_solver.cpp:105] Iteration 3432, lr = 0.0025 +I0407 10:10:32.252969 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:10:34.788952 17183 solver.cpp:218] Iteration 3444 (2.2503 iter/s, 5.33262s/12 iters), loss = 1.15806 +I0407 10:10:34.788993 17183 solver.cpp:237] Train net output #0: loss = 1.15806 (* 1 = 1.15806 loss) +I0407 10:10:34.789000 17183 sgd_solver.cpp:105] Iteration 3444, lr = 0.0025 +I0407 10:10:39.776813 17183 solver.cpp:218] Iteration 3456 (2.40589 iter/s, 4.98775s/12 iters), loss = 1.12229 +I0407 10:10:39.776855 17183 solver.cpp:237] Train net output #0: loss = 1.12229 (* 1 = 1.12229 loss) +I0407 10:10:39.776862 17183 sgd_solver.cpp:105] Iteration 3456, lr = 0.0025 +I0407 10:10:44.288223 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 10:10:47.838124 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 10:10:51.295894 17183 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 10:10:51.295914 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:10:51.705919 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:10:54.252835 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:10:55.608388 17183 solver.cpp:397] Test net output #0: accuracy = 0.393995 +I0407 10:10:55.608428 17183 solver.cpp:397] Test net output #1: loss = 2.61836 (* 1 = 2.61836 loss) +I0407 10:10:55.744931 17183 solver.cpp:218] Iteration 3468 (0.751508 iter/s, 15.9679s/12 iters), loss = 1.28307 +I0407 10:10:55.744990 17183 solver.cpp:237] Train net output #0: loss = 1.28307 (* 1 = 1.28307 loss) +I0407 10:10:55.744999 17183 sgd_solver.cpp:105] Iteration 3468, lr = 0.0025 +I0407 10:11:00.228626 17183 solver.cpp:218] Iteration 3480 (2.67644 iter/s, 4.48357s/12 iters), loss = 1.45224 +I0407 10:11:00.228668 17183 solver.cpp:237] Train net output #0: loss = 1.45224 (* 1 = 1.45224 loss) +I0407 10:11:00.228675 17183 sgd_solver.cpp:105] Iteration 3480, lr = 0.0025 +I0407 10:11:05.389381 17183 solver.cpp:218] Iteration 3492 (2.32529 iter/s, 5.16064s/12 iters), loss = 0.943942 +I0407 10:11:05.389534 17183 solver.cpp:237] Train net output #0: loss = 0.943942 (* 1 = 0.943942 loss) +I0407 10:11:05.389544 17183 sgd_solver.cpp:105] Iteration 3492, lr = 0.0025 +I0407 10:11:10.460686 17183 solver.cpp:218] Iteration 3504 (2.36636 iter/s, 5.07109s/12 iters), loss = 1.02462 +I0407 10:11:10.460738 17183 solver.cpp:237] Train net output #0: loss = 1.02462 (* 1 = 1.02462 loss) +I0407 10:11:10.460748 17183 sgd_solver.cpp:105] Iteration 3504, lr = 0.0025 +I0407 10:11:15.519251 17183 solver.cpp:218] Iteration 3516 (2.37227 iter/s, 5.05844s/12 iters), loss = 0.984118 +I0407 10:11:15.519294 17183 solver.cpp:237] Train net output #0: loss = 0.984118 (* 1 = 0.984118 loss) +I0407 10:11:15.519302 17183 sgd_solver.cpp:105] Iteration 3516, lr = 0.0025 +I0407 10:11:20.604281 17183 solver.cpp:218] Iteration 3528 (2.35992 iter/s, 5.08491s/12 iters), loss = 0.977207 +I0407 10:11:20.604326 17183 solver.cpp:237] Train net output #0: loss = 0.977207 (* 1 = 0.977207 loss) +I0407 10:11:20.604333 17183 sgd_solver.cpp:105] Iteration 3528, lr = 0.0025 +I0407 10:11:25.587393 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:11:25.877672 17183 solver.cpp:218] Iteration 3540 (2.27562 iter/s, 5.27328s/12 iters), loss = 0.740473 +I0407 10:11:25.877714 17183 solver.cpp:237] Train net output #0: loss = 0.740473 (* 1 = 0.740473 loss) +I0407 10:11:25.877722 17183 sgd_solver.cpp:105] Iteration 3540, lr = 0.0025 +I0407 10:11:31.158681 17183 solver.cpp:218] Iteration 3552 (2.27234 iter/s, 5.2809s/12 iters), loss = 0.881177 +I0407 10:11:31.158723 17183 solver.cpp:237] Train net output #0: loss = 0.881177 (* 1 = 0.881177 loss) +I0407 10:11:31.158730 17183 sgd_solver.cpp:105] Iteration 3552, lr = 0.0025 +I0407 10:11:36.208832 17183 solver.cpp:218] Iteration 3564 (2.37622 iter/s, 5.05004s/12 iters), loss = 0.836472 +I0407 10:11:36.208957 17183 solver.cpp:237] Train net output #0: loss = 0.836472 (* 1 = 0.836472 loss) +I0407 10:11:36.208967 17183 sgd_solver.cpp:105] Iteration 3564, lr = 0.0025 +I0407 10:11:38.237344 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 10:11:41.239814 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 10:11:43.537638 17183 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 10:11:43.537658 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:11:46.551434 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:11:48.049095 17183 solver.cpp:397] Test net output #0: accuracy = 0.405637 +I0407 10:11:48.049140 17183 solver.cpp:397] Test net output #1: loss = 2.62035 (* 1 = 2.62035 loss) +I0407 10:11:49.909406 17183 solver.cpp:218] Iteration 3576 (0.875893 iter/s, 13.7003s/12 iters), loss = 1.04673 +I0407 10:11:49.909448 17183 solver.cpp:237] Train net output #0: loss = 1.04673 (* 1 = 1.04673 loss) +I0407 10:11:49.909456 17183 sgd_solver.cpp:105] Iteration 3576, lr = 0.0025 +I0407 10:11:54.936431 17183 solver.cpp:218] Iteration 3588 (2.38715 iter/s, 5.02692s/12 iters), loss = 1.00992 +I0407 10:11:54.936470 17183 solver.cpp:237] Train net output #0: loss = 1.00992 (* 1 = 1.00992 loss) +I0407 10:11:54.936477 17183 sgd_solver.cpp:105] Iteration 3588, lr = 0.0025 +I0407 10:12:00.149516 17183 solver.cpp:218] Iteration 3600 (2.30195 iter/s, 5.21297s/12 iters), loss = 0.838173 +I0407 10:12:00.149581 17183 solver.cpp:237] Train net output #0: loss = 0.838173 (* 1 = 0.838173 loss) +I0407 10:12:00.149592 17183 sgd_solver.cpp:105] Iteration 3600, lr = 0.0025 +I0407 10:12:05.312902 17183 solver.cpp:218] Iteration 3612 (2.32412 iter/s, 5.16325s/12 iters), loss = 0.628365 +I0407 10:12:05.312945 17183 solver.cpp:237] Train net output #0: loss = 0.628365 (* 1 = 0.628365 loss) +I0407 10:12:05.312952 17183 sgd_solver.cpp:105] Iteration 3612, lr = 0.0025 +I0407 10:12:10.425918 17183 solver.cpp:218] Iteration 3624 (2.347 iter/s, 5.11291s/12 iters), loss = 0.782762 +I0407 10:12:10.426059 17183 solver.cpp:237] Train net output #0: loss = 0.782762 (* 1 = 0.782762 loss) +I0407 10:12:10.426067 17183 sgd_solver.cpp:105] Iteration 3624, lr = 0.0025 +I0407 10:12:15.464936 17183 solver.cpp:218] Iteration 3636 (2.38151 iter/s, 5.03881s/12 iters), loss = 0.782921 +I0407 10:12:15.464982 17183 solver.cpp:237] Train net output #0: loss = 0.782921 (* 1 = 0.782921 loss) +I0407 10:12:15.464989 17183 sgd_solver.cpp:105] Iteration 3636, lr = 0.0025 +I0407 10:12:17.284198 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:12:20.525005 17183 solver.cpp:218] Iteration 3648 (2.37156 iter/s, 5.05996s/12 iters), loss = 0.594459 +I0407 10:12:20.525066 17183 solver.cpp:237] Train net output #0: loss = 0.594459 (* 1 = 0.594459 loss) +I0407 10:12:20.525076 17183 sgd_solver.cpp:105] Iteration 3648, lr = 0.0025 +I0407 10:12:25.691985 17183 solver.cpp:218] Iteration 3660 (2.3225 iter/s, 5.16686s/12 iters), loss = 0.746011 +I0407 10:12:25.692030 17183 solver.cpp:237] Train net output #0: loss = 0.746011 (* 1 = 0.746011 loss) +I0407 10:12:25.692039 17183 sgd_solver.cpp:105] Iteration 3660, lr = 0.0025 +I0407 10:12:30.416465 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 10:12:33.445029 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 10:12:37.377777 17183 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 10:12:37.377801 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:12:40.203860 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:12:41.643488 17183 solver.cpp:397] Test net output #0: accuracy = 0.421569 +I0407 10:12:41.643596 17183 solver.cpp:397] Test net output #1: loss = 2.60361 (* 1 = 2.60361 loss) +I0407 10:12:41.781692 17183 solver.cpp:218] Iteration 3672 (0.745829 iter/s, 16.0895s/12 iters), loss = 0.631886 +I0407 10:12:41.781751 17183 solver.cpp:237] Train net output #0: loss = 0.631886 (* 1 = 0.631886 loss) +I0407 10:12:41.781764 17183 sgd_solver.cpp:105] Iteration 3672, lr = 0.0025 +I0407 10:12:46.068361 17183 solver.cpp:218] Iteration 3684 (2.79946 iter/s, 4.28654s/12 iters), loss = 0.826152 +I0407 10:12:46.068423 17183 solver.cpp:237] Train net output #0: loss = 0.826152 (* 1 = 0.826152 loss) +I0407 10:12:46.068434 17183 sgd_solver.cpp:105] Iteration 3684, lr = 0.0025 +I0407 10:12:50.997898 17183 solver.cpp:218] Iteration 3696 (2.43437 iter/s, 4.92941s/12 iters), loss = 0.640615 +I0407 10:12:50.997953 17183 solver.cpp:237] Train net output #0: loss = 0.640615 (* 1 = 0.640615 loss) +I0407 10:12:50.997964 17183 sgd_solver.cpp:105] Iteration 3696, lr = 0.0025 +I0407 10:12:56.044075 17183 solver.cpp:218] Iteration 3708 (2.3781 iter/s, 5.04605s/12 iters), loss = 0.462328 +I0407 10:12:56.044117 17183 solver.cpp:237] Train net output #0: loss = 0.462328 (* 1 = 0.462328 loss) +I0407 10:12:56.044126 17183 sgd_solver.cpp:105] Iteration 3708, lr = 0.0025 +I0407 10:13:01.191921 17183 solver.cpp:218] Iteration 3720 (2.33112 iter/s, 5.14773s/12 iters), loss = 0.831446 +I0407 10:13:01.191983 17183 solver.cpp:237] Train net output #0: loss = 0.831446 (* 1 = 0.831446 loss) +I0407 10:13:01.191992 17183 sgd_solver.cpp:105] Iteration 3720, lr = 0.0025 +I0407 10:13:06.467835 17183 solver.cpp:218] Iteration 3732 (2.27454 iter/s, 5.27578s/12 iters), loss = 0.804265 +I0407 10:13:06.467888 17183 solver.cpp:237] Train net output #0: loss = 0.804265 (* 1 = 0.804265 loss) +I0407 10:13:06.467897 17183 sgd_solver.cpp:105] Iteration 3732, lr = 0.0025 +I0407 10:13:10.581534 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:13:11.657810 17183 solver.cpp:218] Iteration 3744 (2.3122 iter/s, 5.18986s/12 iters), loss = 0.556356 +I0407 10:13:11.657917 17183 solver.cpp:237] Train net output #0: loss = 0.556356 (* 1 = 0.556356 loss) +I0407 10:13:11.657925 17183 sgd_solver.cpp:105] Iteration 3744, lr = 0.0025 +I0407 10:13:16.797057 17183 solver.cpp:218] Iteration 3756 (2.33505 iter/s, 5.13907s/12 iters), loss = 0.881564 +I0407 10:13:16.797103 17183 solver.cpp:237] Train net output #0: loss = 0.881564 (* 1 = 0.881564 loss) +I0407 10:13:16.797111 17183 sgd_solver.cpp:105] Iteration 3756, lr = 0.0025 +I0407 10:13:22.019157 17183 solver.cpp:218] Iteration 3768 (2.29798 iter/s, 5.22198s/12 iters), loss = 0.709457 +I0407 10:13:22.019208 17183 solver.cpp:237] Train net output #0: loss = 0.709457 (* 1 = 0.709457 loss) +I0407 10:13:22.019217 17183 sgd_solver.cpp:105] Iteration 3768, lr = 0.0025 +I0407 10:13:24.001451 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 10:13:28.173316 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 10:13:30.846745 17183 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 10:13:30.846769 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:13:33.748576 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:13:35.255475 17183 solver.cpp:397] Test net output #0: accuracy = 0.443015 +I0407 10:13:35.255506 17183 solver.cpp:397] Test net output #1: loss = 2.51588 (* 1 = 2.51588 loss) +I0407 10:13:37.192574 17183 solver.cpp:218] Iteration 3780 (0.790868 iter/s, 15.1732s/12 iters), loss = 0.573203 +I0407 10:13:37.192627 17183 solver.cpp:237] Train net output #0: loss = 0.573203 (* 1 = 0.573203 loss) +I0407 10:13:37.192636 17183 sgd_solver.cpp:105] Iteration 3780, lr = 0.0025 +I0407 10:13:42.366313 17183 solver.cpp:218] Iteration 3792 (2.31946 iter/s, 5.17362s/12 iters), loss = 0.505776 +I0407 10:13:42.366797 17183 solver.cpp:237] Train net output #0: loss = 0.505776 (* 1 = 0.505776 loss) +I0407 10:13:42.366808 17183 sgd_solver.cpp:105] Iteration 3792, lr = 0.0025 +I0407 10:13:47.491988 17183 solver.cpp:218] Iteration 3804 (2.34141 iter/s, 5.12512s/12 iters), loss = 0.567716 +I0407 10:13:47.492035 17183 solver.cpp:237] Train net output #0: loss = 0.567716 (* 1 = 0.567716 loss) +I0407 10:13:47.492043 17183 sgd_solver.cpp:105] Iteration 3804, lr = 0.0025 +I0407 10:13:52.586012 17183 solver.cpp:218] Iteration 3816 (2.35576 iter/s, 5.0939s/12 iters), loss = 0.829055 +I0407 10:13:52.586076 17183 solver.cpp:237] Train net output #0: loss = 0.829055 (* 1 = 0.829055 loss) +I0407 10:13:52.586086 17183 sgd_solver.cpp:105] Iteration 3816, lr = 0.0025 +I0407 10:13:57.667217 17183 solver.cpp:218] Iteration 3828 (2.36171 iter/s, 5.08107s/12 iters), loss = 0.891977 +I0407 10:13:57.667280 17183 solver.cpp:237] Train net output #0: loss = 0.891977 (* 1 = 0.891977 loss) +I0407 10:13:57.667291 17183 sgd_solver.cpp:105] Iteration 3828, lr = 0.0025 +I0407 10:14:02.876487 17183 solver.cpp:218] Iteration 3840 (2.30364 iter/s, 5.20914s/12 iters), loss = 0.659003 +I0407 10:14:02.876528 17183 solver.cpp:237] Train net output #0: loss = 0.659003 (* 1 = 0.659003 loss) +I0407 10:14:02.876536 17183 sgd_solver.cpp:105] Iteration 3840, lr = 0.0025 +I0407 10:14:04.042191 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:14:08.192857 17183 solver.cpp:218] Iteration 3852 (2.25723 iter/s, 5.31626s/12 iters), loss = 0.524741 +I0407 10:14:08.192914 17183 solver.cpp:237] Train net output #0: loss = 0.524741 (* 1 = 0.524741 loss) +I0407 10:14:08.192924 17183 sgd_solver.cpp:105] Iteration 3852, lr = 0.0025 +I0407 10:14:13.454485 17183 solver.cpp:218] Iteration 3864 (2.28072 iter/s, 5.2615s/12 iters), loss = 0.794476 +I0407 10:14:13.454649 17183 solver.cpp:237] Train net output #0: loss = 0.794476 (* 1 = 0.794476 loss) +I0407 10:14:13.454660 17183 sgd_solver.cpp:105] Iteration 3864, lr = 0.0025 +I0407 10:14:18.170958 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 10:14:21.195945 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 10:14:23.505106 17183 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 10:14:23.505127 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:14:26.276165 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:14:27.790833 17183 solver.cpp:397] Test net output #0: accuracy = 0.439338 +I0407 10:14:27.790868 17183 solver.cpp:397] Test net output #1: loss = 2.59356 (* 1 = 2.59356 loss) +I0407 10:14:27.932307 17183 solver.cpp:218] Iteration 3876 (0.828872 iter/s, 14.4775s/12 iters), loss = 0.693466 +I0407 10:14:27.932358 17183 solver.cpp:237] Train net output #0: loss = 0.693466 (* 1 = 0.693466 loss) +I0407 10:14:27.932368 17183 sgd_solver.cpp:105] Iteration 3876, lr = 0.0025 +I0407 10:14:32.125921 17183 solver.cpp:218] Iteration 3888 (2.86157 iter/s, 4.1935s/12 iters), loss = 0.869559 +I0407 10:14:32.125964 17183 solver.cpp:237] Train net output #0: loss = 0.869559 (* 1 = 0.869559 loss) +I0407 10:14:32.125972 17183 sgd_solver.cpp:105] Iteration 3888, lr = 0.0025 +I0407 10:14:37.035310 17183 solver.cpp:218] Iteration 3900 (2.44435 iter/s, 4.90927s/12 iters), loss = 0.604007 +I0407 10:14:37.035364 17183 solver.cpp:237] Train net output #0: loss = 0.604007 (* 1 = 0.604007 loss) +I0407 10:14:37.035374 17183 sgd_solver.cpp:105] Iteration 3900, lr = 0.0025 +I0407 10:14:42.242249 17183 solver.cpp:218] Iteration 3912 (2.30467 iter/s, 5.20682s/12 iters), loss = 0.451595 +I0407 10:14:42.242298 17183 solver.cpp:237] Train net output #0: loss = 0.451595 (* 1 = 0.451595 loss) +I0407 10:14:42.242305 17183 sgd_solver.cpp:105] Iteration 3912, lr = 0.0025 +I0407 10:14:47.252440 17183 solver.cpp:218] Iteration 3924 (2.39517 iter/s, 5.01008s/12 iters), loss = 0.738555 +I0407 10:14:47.252578 17183 solver.cpp:237] Train net output #0: loss = 0.738555 (* 1 = 0.738555 loss) +I0407 10:14:47.252585 17183 sgd_solver.cpp:105] Iteration 3924, lr = 0.0025 +I0407 10:14:52.365129 17183 solver.cpp:218] Iteration 3936 (2.34719 iter/s, 5.11249s/12 iters), loss = 0.424005 +I0407 10:14:52.365173 17183 solver.cpp:237] Train net output #0: loss = 0.424005 (* 1 = 0.424005 loss) +I0407 10:14:52.365180 17183 sgd_solver.cpp:105] Iteration 3936, lr = 0.0025 +I0407 10:14:55.690486 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:14:57.399653 17183 solver.cpp:218] Iteration 3948 (2.3836 iter/s, 5.03441s/12 iters), loss = 0.548268 +I0407 10:14:57.399713 17183 solver.cpp:237] Train net output #0: loss = 0.548268 (* 1 = 0.548268 loss) +I0407 10:14:57.399722 17183 sgd_solver.cpp:105] Iteration 3948, lr = 0.0025 +I0407 10:15:02.334431 17183 solver.cpp:218] Iteration 3960 (2.43178 iter/s, 4.93465s/12 iters), loss = 0.501915 +I0407 10:15:02.334479 17183 solver.cpp:237] Train net output #0: loss = 0.501915 (* 1 = 0.501915 loss) +I0407 10:15:02.334486 17183 sgd_solver.cpp:105] Iteration 3960, lr = 0.0025 +I0407 10:15:07.558970 17183 solver.cpp:218] Iteration 3972 (2.29691 iter/s, 5.22442s/12 iters), loss = 0.579525 +I0407 10:15:07.559031 17183 solver.cpp:237] Train net output #0: loss = 0.579525 (* 1 = 0.579525 loss) +I0407 10:15:07.559041 17183 sgd_solver.cpp:105] Iteration 3972, lr = 0.0025 +I0407 10:15:09.657516 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 10:15:12.687501 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 10:15:15.028405 17183 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 10:15:15.028424 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:15:17.856566 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:15:19.410315 17183 solver.cpp:397] Test net output #0: accuracy = 0.438113 +I0407 10:15:19.410342 17183 solver.cpp:397] Test net output #1: loss = 2.6544 (* 1 = 2.6544 loss) +I0407 10:15:21.299437 17183 solver.cpp:218] Iteration 3984 (0.873347 iter/s, 13.7403s/12 iters), loss = 0.673105 +I0407 10:15:21.299489 17183 solver.cpp:237] Train net output #0: loss = 0.673105 (* 1 = 0.673105 loss) +I0407 10:15:21.299499 17183 sgd_solver.cpp:105] Iteration 3984, lr = 0.0025 +I0407 10:15:26.203053 17183 solver.cpp:218] Iteration 3996 (2.44723 iter/s, 4.9035s/12 iters), loss = 0.642366 +I0407 10:15:26.203094 17183 solver.cpp:237] Train net output #0: loss = 0.642366 (* 1 = 0.642366 loss) +I0407 10:15:26.203101 17183 sgd_solver.cpp:105] Iteration 3996, lr = 0.0025 +I0407 10:15:31.383720 17183 solver.cpp:218] Iteration 4008 (2.31635 iter/s, 5.18056s/12 iters), loss = 0.386158 +I0407 10:15:31.383770 17183 solver.cpp:237] Train net output #0: loss = 0.386158 (* 1 = 0.386158 loss) +I0407 10:15:31.383780 17183 sgd_solver.cpp:105] Iteration 4008, lr = 0.0025 +I0407 10:15:36.616613 17183 solver.cpp:218] Iteration 4020 (2.29324 iter/s, 5.23277s/12 iters), loss = 0.736973 +I0407 10:15:36.616675 17183 solver.cpp:237] Train net output #0: loss = 0.736973 (* 1 = 0.736973 loss) +I0407 10:15:36.616686 17183 sgd_solver.cpp:105] Iteration 4020, lr = 0.0025 +I0407 10:15:41.823276 17183 solver.cpp:218] Iteration 4032 (2.3048 iter/s, 5.20653s/12 iters), loss = 0.656751 +I0407 10:15:41.823323 17183 solver.cpp:237] Train net output #0: loss = 0.656751 (* 1 = 0.656751 loss) +I0407 10:15:41.823331 17183 sgd_solver.cpp:105] Iteration 4032, lr = 0.0025 +I0407 10:15:47.041893 17183 solver.cpp:218] Iteration 4044 (2.29951 iter/s, 5.2185s/12 iters), loss = 0.684348 +I0407 10:15:47.041939 17183 solver.cpp:237] Train net output #0: loss = 0.684348 (* 1 = 0.684348 loss) +I0407 10:15:47.041946 17183 sgd_solver.cpp:105] Iteration 4044, lr = 0.0025 +I0407 10:15:47.566455 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:15:52.271622 17183 solver.cpp:218] Iteration 4056 (2.29463 iter/s, 5.22961s/12 iters), loss = 0.4777 +I0407 10:15:52.271781 17183 solver.cpp:237] Train net output #0: loss = 0.4777 (* 1 = 0.4777 loss) +I0407 10:15:52.271792 17183 sgd_solver.cpp:105] Iteration 4056, lr = 0.0025 +I0407 10:15:57.330313 17183 solver.cpp:218] Iteration 4068 (2.37226 iter/s, 5.05846s/12 iters), loss = 0.362794 +I0407 10:15:57.330366 17183 solver.cpp:237] Train net output #0: loss = 0.362794 (* 1 = 0.362794 loss) +I0407 10:15:57.330376 17183 sgd_solver.cpp:105] Iteration 4068, lr = 0.0025 +I0407 10:16:02.072518 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 10:16:05.103482 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 10:16:07.431254 17183 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 10:16:07.431273 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:16:10.195096 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:16:11.775631 17183 solver.cpp:397] Test net output #0: accuracy = 0.447917 +I0407 10:16:11.775665 17183 solver.cpp:397] Test net output #1: loss = 2.56608 (* 1 = 2.56608 loss) +I0407 10:16:11.911178 17183 solver.cpp:218] Iteration 4080 (0.823009 iter/s, 14.5806s/12 iters), loss = 0.420921 +I0407 10:16:11.911240 17183 solver.cpp:237] Train net output #0: loss = 0.420921 (* 1 = 0.420921 loss) +I0407 10:16:11.911249 17183 sgd_solver.cpp:105] Iteration 4080, lr = 0.0025 +I0407 10:16:16.094555 17183 solver.cpp:218] Iteration 4092 (2.86858 iter/s, 4.18326s/12 iters), loss = 0.658057 +I0407 10:16:16.094610 17183 solver.cpp:237] Train net output #0: loss = 0.658057 (* 1 = 0.658057 loss) +I0407 10:16:16.094620 17183 sgd_solver.cpp:105] Iteration 4092, lr = 0.0025 +I0407 10:16:21.255543 17183 solver.cpp:218] Iteration 4104 (2.32519 iter/s, 5.16086s/12 iters), loss = 0.356784 +I0407 10:16:21.255596 17183 solver.cpp:237] Train net output #0: loss = 0.356784 (* 1 = 0.356784 loss) +I0407 10:16:21.255606 17183 sgd_solver.cpp:105] Iteration 4104, lr = 0.0025 +I0407 10:16:26.234791 17183 solver.cpp:218] Iteration 4116 (2.41006 iter/s, 4.97913s/12 iters), loss = 0.506653 +I0407 10:16:26.234933 17183 solver.cpp:237] Train net output #0: loss = 0.506653 (* 1 = 0.506653 loss) +I0407 10:16:26.234943 17183 sgd_solver.cpp:105] Iteration 4116, lr = 0.0025 +I0407 10:16:31.456159 17183 solver.cpp:218] Iteration 4128 (2.29834 iter/s, 5.22116s/12 iters), loss = 0.540867 +I0407 10:16:31.456199 17183 solver.cpp:237] Train net output #0: loss = 0.540867 (* 1 = 0.540867 loss) +I0407 10:16:31.456207 17183 sgd_solver.cpp:105] Iteration 4128, lr = 0.0025 +I0407 10:16:36.462790 17183 solver.cpp:218] Iteration 4140 (2.39687 iter/s, 5.00652s/12 iters), loss = 0.536663 +I0407 10:16:36.462831 17183 solver.cpp:237] Train net output #0: loss = 0.536663 (* 1 = 0.536663 loss) +I0407 10:16:36.462837 17183 sgd_solver.cpp:105] Iteration 4140, lr = 0.0025 +I0407 10:16:39.268455 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:16:41.668239 17183 solver.cpp:218] Iteration 4152 (2.30533 iter/s, 5.20534s/12 iters), loss = 0.41883 +I0407 10:16:41.668284 17183 solver.cpp:237] Train net output #0: loss = 0.41883 (* 1 = 0.41883 loss) +I0407 10:16:41.668292 17183 sgd_solver.cpp:105] Iteration 4152, lr = 0.0025 +I0407 10:16:43.322203 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:16:46.845906 17183 solver.cpp:218] Iteration 4164 (2.3177 iter/s, 5.17755s/12 iters), loss = 0.419307 +I0407 10:16:46.845953 17183 solver.cpp:237] Train net output #0: loss = 0.419307 (* 1 = 0.419307 loss) +I0407 10:16:46.845964 17183 sgd_solver.cpp:105] Iteration 4164, lr = 0.0025 +I0407 10:16:51.924021 17183 solver.cpp:218] Iteration 4176 (2.36314 iter/s, 5.078s/12 iters), loss = 0.741033 +I0407 10:16:51.924067 17183 solver.cpp:237] Train net output #0: loss = 0.741033 (* 1 = 0.741033 loss) +I0407 10:16:51.924073 17183 sgd_solver.cpp:105] Iteration 4176, lr = 0.0025 +I0407 10:16:54.011833 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 10:16:57.031061 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 10:16:59.349893 17183 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 10:16:59.349917 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:17:02.012493 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:17:03.632977 17183 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 10:17:03.633020 17183 solver.cpp:397] Test net output #1: loss = 2.64189 (* 1 = 2.64189 loss) +I0407 10:17:05.369194 17183 solver.cpp:218] Iteration 4188 (0.892527 iter/s, 13.445s/12 iters), loss = 0.622479 +I0407 10:17:05.369253 17183 solver.cpp:237] Train net output #0: loss = 0.622479 (* 1 = 0.622479 loss) +I0407 10:17:05.369263 17183 sgd_solver.cpp:105] Iteration 4188, lr = 0.0025 +I0407 10:17:10.492476 17183 solver.cpp:218] Iteration 4200 (2.34231 iter/s, 5.12315s/12 iters), loss = 0.56985 +I0407 10:17:10.492519 17183 solver.cpp:237] Train net output #0: loss = 0.56985 (* 1 = 0.56985 loss) +I0407 10:17:10.492527 17183 sgd_solver.cpp:105] Iteration 4200, lr = 0.0025 +I0407 10:17:15.591650 17183 solver.cpp:218] Iteration 4212 (2.35337 iter/s, 5.09906s/12 iters), loss = 0.443526 +I0407 10:17:15.591697 17183 solver.cpp:237] Train net output #0: loss = 0.443526 (* 1 = 0.443526 loss) +I0407 10:17:15.591704 17183 sgd_solver.cpp:105] Iteration 4212, lr = 0.0025 +I0407 10:17:20.776404 17183 solver.cpp:218] Iteration 4224 (2.31453 iter/s, 5.18464s/12 iters), loss = 0.627288 +I0407 10:17:20.776460 17183 solver.cpp:237] Train net output #0: loss = 0.627288 (* 1 = 0.627288 loss) +I0407 10:17:20.776470 17183 sgd_solver.cpp:105] Iteration 4224, lr = 0.0025 +I0407 10:17:26.140846 17183 solver.cpp:218] Iteration 4236 (2.23701 iter/s, 5.36431s/12 iters), loss = 0.586836 +I0407 10:17:26.140894 17183 solver.cpp:237] Train net output #0: loss = 0.586836 (* 1 = 0.586836 loss) +I0407 10:17:26.140902 17183 sgd_solver.cpp:105] Iteration 4236, lr = 0.0025 +I0407 10:17:31.036772 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:17:31.314411 17183 solver.cpp:218] Iteration 4248 (2.31954 iter/s, 5.17345s/12 iters), loss = 0.362686 +I0407 10:17:31.314467 17183 solver.cpp:237] Train net output #0: loss = 0.362686 (* 1 = 0.362686 loss) +I0407 10:17:31.314477 17183 sgd_solver.cpp:105] Iteration 4248, lr = 0.0025 +I0407 10:17:36.654412 17183 solver.cpp:218] Iteration 4260 (2.24724 iter/s, 5.33988s/12 iters), loss = 0.456123 +I0407 10:17:36.654458 17183 solver.cpp:237] Train net output #0: loss = 0.456123 (* 1 = 0.456123 loss) +I0407 10:17:36.654467 17183 sgd_solver.cpp:105] Iteration 4260, lr = 0.0025 +I0407 10:17:41.811009 17183 solver.cpp:218] Iteration 4272 (2.32716 iter/s, 5.15649s/12 iters), loss = 0.326916 +I0407 10:17:41.811044 17183 solver.cpp:237] Train net output #0: loss = 0.326916 (* 1 = 0.326916 loss) +I0407 10:17:41.811050 17183 sgd_solver.cpp:105] Iteration 4272, lr = 0.0025 +I0407 10:17:46.494594 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 10:17:49.553737 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 10:17:51.854821 17183 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 10:17:51.854841 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:17:54.505087 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:17:56.154449 17183 solver.cpp:397] Test net output #0: accuracy = 0.443015 +I0407 10:17:56.154489 17183 solver.cpp:397] Test net output #1: loss = 2.66028 (* 1 = 2.66028 loss) +I0407 10:17:56.290364 17183 solver.cpp:218] Iteration 4284 (0.828778 iter/s, 14.4792s/12 iters), loss = 0.532969 +I0407 10:17:56.290436 17183 solver.cpp:237] Train net output #0: loss = 0.532969 (* 1 = 0.532969 loss) +I0407 10:17:56.290444 17183 sgd_solver.cpp:105] Iteration 4284, lr = 0.0025 +I0407 10:18:00.486631 17183 solver.cpp:218] Iteration 4296 (2.85977 iter/s, 4.19613s/12 iters), loss = 0.50994 +I0407 10:18:00.486682 17183 solver.cpp:237] Train net output #0: loss = 0.50994 (* 1 = 0.50994 loss) +I0407 10:18:00.486693 17183 sgd_solver.cpp:105] Iteration 4296, lr = 0.0025 +I0407 10:18:05.706326 17183 solver.cpp:218] Iteration 4308 (2.29904 iter/s, 5.21958s/12 iters), loss = 0.254356 +I0407 10:18:05.706451 17183 solver.cpp:237] Train net output #0: loss = 0.254356 (* 1 = 0.254356 loss) +I0407 10:18:05.706459 17183 sgd_solver.cpp:105] Iteration 4308, lr = 0.0025 +I0407 10:18:10.762583 17183 solver.cpp:218] Iteration 4320 (2.37339 iter/s, 5.05606s/12 iters), loss = 0.539742 +I0407 10:18:10.762626 17183 solver.cpp:237] Train net output #0: loss = 0.539742 (* 1 = 0.539742 loss) +I0407 10:18:10.762634 17183 sgd_solver.cpp:105] Iteration 4320, lr = 0.0025 +I0407 10:18:15.930840 17183 solver.cpp:218] Iteration 4332 (2.32192 iter/s, 5.16814s/12 iters), loss = 0.393544 +I0407 10:18:15.930900 17183 solver.cpp:237] Train net output #0: loss = 0.393544 (* 1 = 0.393544 loss) +I0407 10:18:15.930912 17183 sgd_solver.cpp:105] Iteration 4332, lr = 0.0025 +I0407 10:18:21.143196 17183 solver.cpp:218] Iteration 4344 (2.30228 iter/s, 5.21222s/12 iters), loss = 0.397841 +I0407 10:18:21.143258 17183 solver.cpp:237] Train net output #0: loss = 0.397841 (* 1 = 0.397841 loss) +I0407 10:18:21.143268 17183 sgd_solver.cpp:105] Iteration 4344, lr = 0.0025 +I0407 10:18:23.116185 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:18:26.397249 17183 solver.cpp:218] Iteration 4356 (2.28401 iter/s, 5.25392s/12 iters), loss = 0.389841 +I0407 10:18:26.397306 17183 solver.cpp:237] Train net output #0: loss = 0.389841 (* 1 = 0.389841 loss) +I0407 10:18:26.397317 17183 sgd_solver.cpp:105] Iteration 4356, lr = 0.0025 +I0407 10:18:31.578590 17183 solver.cpp:218] Iteration 4368 (2.31606 iter/s, 5.18122s/12 iters), loss = 0.483776 +I0407 10:18:31.578639 17183 solver.cpp:237] Train net output #0: loss = 0.483776 (* 1 = 0.483776 loss) +I0407 10:18:31.578646 17183 sgd_solver.cpp:105] Iteration 4368, lr = 0.0025 +I0407 10:18:36.802268 17183 solver.cpp:218] Iteration 4380 (2.29729 iter/s, 5.22356s/12 iters), loss = 0.460386 +I0407 10:18:36.802393 17183 solver.cpp:237] Train net output #0: loss = 0.460386 (* 1 = 0.460386 loss) +I0407 10:18:36.802403 17183 sgd_solver.cpp:105] Iteration 4380, lr = 0.0025 +I0407 10:18:38.908830 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 10:18:41.895390 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 10:18:44.214500 17183 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 10:18:44.214520 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:18:46.860122 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:18:48.587927 17183 solver.cpp:397] Test net output #0: accuracy = 0.436887 +I0407 10:18:48.587956 17183 solver.cpp:397] Test net output #1: loss = 2.68207 (* 1 = 2.68207 loss) +I0407 10:18:50.336827 17183 solver.cpp:218] Iteration 4392 (0.886637 iter/s, 13.5343s/12 iters), loss = 0.303958 +I0407 10:18:50.336880 17183 solver.cpp:237] Train net output #0: loss = 0.303958 (* 1 = 0.303958 loss) +I0407 10:18:50.336897 17183 sgd_solver.cpp:105] Iteration 4392, lr = 0.0025 +I0407 10:18:55.431546 17183 solver.cpp:218] Iteration 4404 (2.35544 iter/s, 5.0946s/12 iters), loss = 0.414626 +I0407 10:18:55.431608 17183 solver.cpp:237] Train net output #0: loss = 0.414626 (* 1 = 0.414626 loss) +I0407 10:18:55.431622 17183 sgd_solver.cpp:105] Iteration 4404, lr = 0.0025 +I0407 10:19:00.410998 17183 solver.cpp:218] Iteration 4416 (2.40996 iter/s, 4.97933s/12 iters), loss = 0.497003 +I0407 10:19:00.411042 17183 solver.cpp:237] Train net output #0: loss = 0.497003 (* 1 = 0.497003 loss) +I0407 10:19:00.411051 17183 sgd_solver.cpp:105] Iteration 4416, lr = 0.0025 +I0407 10:19:05.628082 17183 solver.cpp:218] Iteration 4428 (2.30019 iter/s, 5.21697s/12 iters), loss = 0.518696 +I0407 10:19:05.628141 17183 solver.cpp:237] Train net output #0: loss = 0.518696 (* 1 = 0.518696 loss) +I0407 10:19:05.628151 17183 sgd_solver.cpp:105] Iteration 4428, lr = 0.0025 +I0407 10:19:10.618098 17183 solver.cpp:218] Iteration 4440 (2.40486 iter/s, 4.98989s/12 iters), loss = 0.472697 +I0407 10:19:10.618319 17183 solver.cpp:237] Train net output #0: loss = 0.472697 (* 1 = 0.472697 loss) +I0407 10:19:10.618330 17183 sgd_solver.cpp:105] Iteration 4440, lr = 0.0025 +I0407 10:19:14.755008 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:19:15.804265 17183 solver.cpp:218] Iteration 4452 (2.31398 iter/s, 5.18588s/12 iters), loss = 0.382334 +I0407 10:19:15.804323 17183 solver.cpp:237] Train net output #0: loss = 0.382334 (* 1 = 0.382334 loss) +I0407 10:19:15.804332 17183 sgd_solver.cpp:105] Iteration 4452, lr = 0.0025 +I0407 10:19:21.010036 17183 solver.cpp:218] Iteration 4464 (2.30519 iter/s, 5.20564s/12 iters), loss = 0.293454 +I0407 10:19:21.010094 17183 solver.cpp:237] Train net output #0: loss = 0.293454 (* 1 = 0.293454 loss) +I0407 10:19:21.010105 17183 sgd_solver.cpp:105] Iteration 4464, lr = 0.0025 +I0407 10:19:26.042012 17183 solver.cpp:218] Iteration 4476 (2.38481 iter/s, 5.03185s/12 iters), loss = 0.331533 +I0407 10:19:26.042069 17183 solver.cpp:237] Train net output #0: loss = 0.331533 (* 1 = 0.331533 loss) +I0407 10:19:26.042078 17183 sgd_solver.cpp:105] Iteration 4476, lr = 0.0025 +I0407 10:19:30.740952 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 10:19:33.749655 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 10:19:36.063824 17183 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 10:19:36.063843 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:19:38.663717 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:19:40.470198 17183 solver.cpp:397] Test net output #0: accuracy = 0.45098 +I0407 10:19:40.470233 17183 solver.cpp:397] Test net output #1: loss = 2.69544 (* 1 = 2.69544 loss) +I0407 10:19:40.611760 17183 solver.cpp:218] Iteration 4488 (0.823637 iter/s, 14.5695s/12 iters), loss = 0.354681 +I0407 10:19:40.611812 17183 solver.cpp:237] Train net output #0: loss = 0.354681 (* 1 = 0.354681 loss) +I0407 10:19:40.611820 17183 sgd_solver.cpp:105] Iteration 4488, lr = 0.0025 +I0407 10:19:44.927356 17183 solver.cpp:218] Iteration 4500 (2.78068 iter/s, 4.31549s/12 iters), loss = 0.313856 +I0407 10:19:44.927455 17183 solver.cpp:237] Train net output #0: loss = 0.313856 (* 1 = 0.313856 loss) +I0407 10:19:44.927464 17183 sgd_solver.cpp:105] Iteration 4500, lr = 0.0025 +I0407 10:19:49.942579 17183 solver.cpp:218] Iteration 4512 (2.39279 iter/s, 5.01506s/12 iters), loss = 0.526052 +I0407 10:19:49.942625 17183 solver.cpp:237] Train net output #0: loss = 0.526052 (* 1 = 0.526052 loss) +I0407 10:19:49.942632 17183 sgd_solver.cpp:105] Iteration 4512, lr = 0.0025 +I0407 10:19:54.889880 17183 solver.cpp:218] Iteration 4524 (2.42563 iter/s, 4.94717s/12 iters), loss = 0.405811 +I0407 10:19:54.889936 17183 solver.cpp:237] Train net output #0: loss = 0.405811 (* 1 = 0.405811 loss) +I0407 10:19:54.889947 17183 sgd_solver.cpp:105] Iteration 4524, lr = 0.0025 +I0407 10:20:00.048046 17183 solver.cpp:218] Iteration 4536 (2.32646 iter/s, 5.15805s/12 iters), loss = 0.481367 +I0407 10:20:00.048086 17183 solver.cpp:237] Train net output #0: loss = 0.481367 (* 1 = 0.481367 loss) +I0407 10:20:00.048094 17183 sgd_solver.cpp:105] Iteration 4536, lr = 0.0025 +I0407 10:20:05.053306 17183 solver.cpp:218] Iteration 4548 (2.39753 iter/s, 5.00516s/12 iters), loss = 0.394925 +I0407 10:20:05.053344 17183 solver.cpp:237] Train net output #0: loss = 0.394925 (* 1 = 0.394925 loss) +I0407 10:20:05.053354 17183 sgd_solver.cpp:105] Iteration 4548, lr = 0.0025 +I0407 10:20:06.363859 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:20:10.251817 17183 solver.cpp:218] Iteration 4560 (2.3084 iter/s, 5.1984s/12 iters), loss = 0.190777 +I0407 10:20:10.251861 17183 solver.cpp:237] Train net output #0: loss = 0.190777 (* 1 = 0.190777 loss) +I0407 10:20:10.251868 17183 sgd_solver.cpp:105] Iteration 4560, lr = 0.0025 +I0407 10:20:15.454391 17183 solver.cpp:218] Iteration 4572 (2.3066 iter/s, 5.20246s/12 iters), loss = 0.297531 +I0407 10:20:15.454510 17183 solver.cpp:237] Train net output #0: loss = 0.297531 (* 1 = 0.297531 loss) +I0407 10:20:15.454519 17183 sgd_solver.cpp:105] Iteration 4572, lr = 0.0025 +I0407 10:20:20.541483 17183 solver.cpp:218] Iteration 4584 (2.359 iter/s, 5.08691s/12 iters), loss = 0.403601 +I0407 10:20:20.541527 17183 solver.cpp:237] Train net output #0: loss = 0.403601 (* 1 = 0.403601 loss) +I0407 10:20:20.541534 17183 sgd_solver.cpp:105] Iteration 4584, lr = 0.0025 +I0407 10:20:22.565346 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 10:20:25.551050 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 10:20:29.299542 17183 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 10:20:29.299566 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:20:31.794690 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:20:33.767879 17183 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 10:20:33.767916 17183 solver.cpp:397] Test net output #1: loss = 2.65861 (* 1 = 2.65861 loss) +I0407 10:20:35.773480 17183 solver.cpp:218] Iteration 4596 (0.787826 iter/s, 15.2318s/12 iters), loss = 0.462016 +I0407 10:20:35.773520 17183 solver.cpp:237] Train net output #0: loss = 0.462016 (* 1 = 0.462016 loss) +I0407 10:20:35.773526 17183 sgd_solver.cpp:105] Iteration 4596, lr = 0.0025 +I0407 10:20:41.007143 17183 solver.cpp:218] Iteration 4608 (2.2929 iter/s, 5.23355s/12 iters), loss = 0.457469 +I0407 10:20:41.007186 17183 solver.cpp:237] Train net output #0: loss = 0.457469 (* 1 = 0.457469 loss) +I0407 10:20:41.007194 17183 sgd_solver.cpp:105] Iteration 4608, lr = 0.0025 +I0407 10:20:46.260360 17183 solver.cpp:218] Iteration 4620 (2.28437 iter/s, 5.2531s/12 iters), loss = 0.392305 +I0407 10:20:46.260495 17183 solver.cpp:237] Train net output #0: loss = 0.392305 (* 1 = 0.392305 loss) +I0407 10:20:46.260506 17183 sgd_solver.cpp:105] Iteration 4620, lr = 0.0025 +I0407 10:20:51.382228 17183 solver.cpp:218] Iteration 4632 (2.34299 iter/s, 5.12167s/12 iters), loss = 0.42014 +I0407 10:20:51.382272 17183 solver.cpp:237] Train net output #0: loss = 0.42014 (* 1 = 0.42014 loss) +I0407 10:20:51.382279 17183 sgd_solver.cpp:105] Iteration 4632, lr = 0.0025 +I0407 10:20:56.576215 17183 solver.cpp:218] Iteration 4644 (2.31041 iter/s, 5.19387s/12 iters), loss = 0.303295 +I0407 10:20:56.576268 17183 solver.cpp:237] Train net output #0: loss = 0.303295 (* 1 = 0.303295 loss) +I0407 10:20:56.576278 17183 sgd_solver.cpp:105] Iteration 4644, lr = 0.0025 +I0407 10:20:59.895913 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:21:01.627733 17183 solver.cpp:218] Iteration 4656 (2.37558 iter/s, 5.05139s/12 iters), loss = 0.332903 +I0407 10:21:01.627799 17183 solver.cpp:237] Train net output #0: loss = 0.332903 (* 1 = 0.332903 loss) +I0407 10:21:01.627810 17183 sgd_solver.cpp:105] Iteration 4656, lr = 0.0025 +I0407 10:21:06.852490 17183 solver.cpp:218] Iteration 4668 (2.29682 iter/s, 5.22462s/12 iters), loss = 0.383156 +I0407 10:21:06.852538 17183 solver.cpp:237] Train net output #0: loss = 0.383156 (* 1 = 0.383156 loss) +I0407 10:21:06.852546 17183 sgd_solver.cpp:105] Iteration 4668, lr = 0.0025 +I0407 10:21:11.952150 17183 solver.cpp:218] Iteration 4680 (2.35315 iter/s, 5.09954s/12 iters), loss = 0.251044 +I0407 10:21:11.952198 17183 solver.cpp:237] Train net output #0: loss = 0.251044 (* 1 = 0.251044 loss) +I0407 10:21:11.952205 17183 sgd_solver.cpp:105] Iteration 4680, lr = 0.0025 +I0407 10:21:16.504642 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 10:21:19.896311 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 10:21:22.207664 17183 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 10:21:22.207684 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:21:24.685101 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:21:26.507333 17183 solver.cpp:397] Test net output #0: accuracy = 0.454657 +I0407 10:21:26.507367 17183 solver.cpp:397] Test net output #1: loss = 2.74233 (* 1 = 2.74233 loss) +I0407 10:21:26.648669 17183 solver.cpp:218] Iteration 4692 (0.816532 iter/s, 14.6963s/12 iters), loss = 0.320323 +I0407 10:21:26.648711 17183 solver.cpp:237] Train net output #0: loss = 0.320323 (* 1 = 0.320323 loss) +I0407 10:21:26.648718 17183 sgd_solver.cpp:105] Iteration 4692, lr = 0.0025 +I0407 10:21:30.761613 17183 solver.cpp:218] Iteration 4704 (2.91769 iter/s, 4.11285s/12 iters), loss = 0.249088 +I0407 10:21:30.761654 17183 solver.cpp:237] Train net output #0: loss = 0.249088 (* 1 = 0.249088 loss) +I0407 10:21:30.761662 17183 sgd_solver.cpp:105] Iteration 4704, lr = 0.0025 +I0407 10:21:35.745687 17183 solver.cpp:218] Iteration 4716 (2.40772 iter/s, 4.98397s/12 iters), loss = 0.182893 +I0407 10:21:35.745724 17183 solver.cpp:237] Train net output #0: loss = 0.182893 (* 1 = 0.182893 loss) +I0407 10:21:35.745730 17183 sgd_solver.cpp:105] Iteration 4716, lr = 0.0025 +I0407 10:21:40.777284 17183 solver.cpp:218] Iteration 4728 (2.38498 iter/s, 5.03149s/12 iters), loss = 0.46416 +I0407 10:21:40.777326 17183 solver.cpp:237] Train net output #0: loss = 0.46416 (* 1 = 0.46416 loss) +I0407 10:21:40.777334 17183 sgd_solver.cpp:105] Iteration 4728, lr = 0.0025 +I0407 10:21:45.931288 17183 solver.cpp:218] Iteration 4740 (2.32834 iter/s, 5.15389s/12 iters), loss = 0.449705 +I0407 10:21:45.931345 17183 solver.cpp:237] Train net output #0: loss = 0.449705 (* 1 = 0.449705 loss) +I0407 10:21:45.931356 17183 sgd_solver.cpp:105] Iteration 4740, lr = 0.0025 +I0407 10:21:51.058018 17183 solver.cpp:218] Iteration 4752 (2.34073 iter/s, 5.12661s/12 iters), loss = 0.466394 +I0407 10:21:51.058125 17183 solver.cpp:237] Train net output #0: loss = 0.466394 (* 1 = 0.466394 loss) +I0407 10:21:51.058133 17183 sgd_solver.cpp:105] Iteration 4752, lr = 0.0025 +I0407 10:21:51.605834 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:21:56.282999 17183 solver.cpp:218] Iteration 4764 (2.29674 iter/s, 5.22481s/12 iters), loss = 0.357509 +I0407 10:21:56.283046 17183 solver.cpp:237] Train net output #0: loss = 0.357509 (* 1 = 0.357509 loss) +I0407 10:21:56.283052 17183 sgd_solver.cpp:105] Iteration 4764, lr = 0.0025 +I0407 10:22:01.459841 17183 solver.cpp:218] Iteration 4776 (2.31807 iter/s, 5.17673s/12 iters), loss = 0.298622 +I0407 10:22:01.459885 17183 solver.cpp:237] Train net output #0: loss = 0.298622 (* 1 = 0.298622 loss) +I0407 10:22:01.459893 17183 sgd_solver.cpp:105] Iteration 4776, lr = 0.0025 +I0407 10:22:06.677798 17183 solver.cpp:218] Iteration 4788 (2.2998 iter/s, 5.21784s/12 iters), loss = 0.256058 +I0407 10:22:06.677863 17183 solver.cpp:237] Train net output #0: loss = 0.256058 (* 1 = 0.256058 loss) +I0407 10:22:06.677875 17183 sgd_solver.cpp:105] Iteration 4788, lr = 0.0025 +I0407 10:22:08.772044 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 10:22:11.810783 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 10:22:14.138603 17183 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 10:22:14.138630 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:22:16.617596 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:22:18.487118 17183 solver.cpp:397] Test net output #0: accuracy = 0.458946 +I0407 10:22:18.487152 17183 solver.cpp:397] Test net output #1: loss = 2.64791 (* 1 = 2.64791 loss) +I0407 10:22:20.331171 17183 solver.cpp:218] Iteration 4800 (0.878918 iter/s, 13.6532s/12 iters), loss = 0.352332 +I0407 10:22:20.331218 17183 solver.cpp:237] Train net output #0: loss = 0.352332 (* 1 = 0.352332 loss) +I0407 10:22:20.331224 17183 sgd_solver.cpp:105] Iteration 4800, lr = 0.0025 +I0407 10:22:25.360589 17183 solver.cpp:218] Iteration 4812 (2.38602 iter/s, 5.0293s/12 iters), loss = 0.261992 +I0407 10:22:25.360759 17183 solver.cpp:237] Train net output #0: loss = 0.261992 (* 1 = 0.261992 loss) +I0407 10:22:25.360769 17183 sgd_solver.cpp:105] Iteration 4812, lr = 0.0025 +I0407 10:22:30.534862 17183 solver.cpp:218] Iteration 4824 (2.31927 iter/s, 5.17403s/12 iters), loss = 0.23625 +I0407 10:22:30.534914 17183 solver.cpp:237] Train net output #0: loss = 0.23625 (* 1 = 0.23625 loss) +I0407 10:22:30.534924 17183 sgd_solver.cpp:105] Iteration 4824, lr = 0.0025 +I0407 10:22:35.784459 17183 solver.cpp:218] Iteration 4836 (2.28594 iter/s, 5.24948s/12 iters), loss = 0.316175 +I0407 10:22:35.784504 17183 solver.cpp:237] Train net output #0: loss = 0.316175 (* 1 = 0.316175 loss) +I0407 10:22:35.784512 17183 sgd_solver.cpp:105] Iteration 4836, lr = 0.0025 +I0407 10:22:37.970134 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:22:41.081032 17183 solver.cpp:218] Iteration 4848 (2.26567 iter/s, 5.29645s/12 iters), loss = 0.342482 +I0407 10:22:41.081079 17183 solver.cpp:237] Train net output #0: loss = 0.342482 (* 1 = 0.342482 loss) +I0407 10:22:41.081086 17183 sgd_solver.cpp:105] Iteration 4848, lr = 0.0025 +I0407 10:22:43.931039 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:22:46.299804 17183 solver.cpp:218] Iteration 4860 (2.29944 iter/s, 5.21865s/12 iters), loss = 0.409695 +I0407 10:22:46.299857 17183 solver.cpp:237] Train net output #0: loss = 0.409695 (* 1 = 0.409695 loss) +I0407 10:22:46.299868 17183 sgd_solver.cpp:105] Iteration 4860, lr = 0.0025 +I0407 10:22:51.686316 17183 solver.cpp:218] Iteration 4872 (2.22784 iter/s, 5.38639s/12 iters), loss = 0.371034 +I0407 10:22:51.686362 17183 solver.cpp:237] Train net output #0: loss = 0.371034 (* 1 = 0.371034 loss) +I0407 10:22:51.686369 17183 sgd_solver.cpp:105] Iteration 4872, lr = 0.0025 +I0407 10:22:56.842797 17183 solver.cpp:218] Iteration 4884 (2.32722 iter/s, 5.15637s/12 iters), loss = 0.35912 +I0407 10:22:56.842890 17183 solver.cpp:237] Train net output #0: loss = 0.35912 (* 1 = 0.35912 loss) +I0407 10:22:56.842897 17183 sgd_solver.cpp:105] Iteration 4884, lr = 0.0025 +I0407 10:23:01.589329 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 10:23:04.625654 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 10:23:07.971539 17183 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 10:23:07.971558 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:23:10.449517 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:23:12.381713 17183 solver.cpp:397] Test net output #0: accuracy = 0.445466 +I0407 10:23:12.381750 17183 solver.cpp:397] Test net output #1: loss = 2.75499 (* 1 = 2.75499 loss) +I0407 10:23:12.523211 17183 solver.cpp:218] Iteration 4896 (0.765299 iter/s, 15.6801s/12 iters), loss = 0.342514 +I0407 10:23:12.523263 17183 solver.cpp:237] Train net output #0: loss = 0.342514 (* 1 = 0.342514 loss) +I0407 10:23:12.523273 17183 sgd_solver.cpp:105] Iteration 4896, lr = 0.0025 +I0407 10:23:16.805629 17183 solver.cpp:218] Iteration 4908 (2.80223 iter/s, 4.28231s/12 iters), loss = 0.391856 +I0407 10:23:16.805687 17183 solver.cpp:237] Train net output #0: loss = 0.391856 (* 1 = 0.391856 loss) +I0407 10:23:16.805697 17183 sgd_solver.cpp:105] Iteration 4908, lr = 0.0025 +I0407 10:23:21.981463 17183 solver.cpp:218] Iteration 4920 (2.31852 iter/s, 5.17571s/12 iters), loss = 0.290087 +I0407 10:23:21.981528 17183 solver.cpp:237] Train net output #0: loss = 0.290088 (* 1 = 0.290088 loss) +I0407 10:23:21.981539 17183 sgd_solver.cpp:105] Iteration 4920, lr = 0.0025 +I0407 10:23:27.071528 17183 solver.cpp:218] Iteration 4932 (2.35759 iter/s, 5.08994s/12 iters), loss = 0.353459 +I0407 10:23:27.071650 17183 solver.cpp:237] Train net output #0: loss = 0.353459 (* 1 = 0.353459 loss) +I0407 10:23:27.071657 17183 sgd_solver.cpp:105] Iteration 4932, lr = 0.0025 +I0407 10:23:32.205955 17183 solver.cpp:218] Iteration 4944 (2.33725 iter/s, 5.13424s/12 iters), loss = 0.241096 +I0407 10:23:32.205998 17183 solver.cpp:237] Train net output #0: loss = 0.241096 (* 1 = 0.241096 loss) +I0407 10:23:32.206005 17183 sgd_solver.cpp:105] Iteration 4944, lr = 0.0025 +I0407 10:23:37.142261 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:23:37.384610 17183 solver.cpp:218] Iteration 4956 (2.31854 iter/s, 5.17567s/12 iters), loss = 0.305865 +I0407 10:23:37.384655 17183 solver.cpp:237] Train net output #0: loss = 0.305866 (* 1 = 0.305866 loss) +I0407 10:23:37.384665 17183 sgd_solver.cpp:105] Iteration 4956, lr = 0.0025 +I0407 10:23:42.375368 17183 solver.cpp:218] Iteration 4968 (2.4045 iter/s, 4.99065s/12 iters), loss = 0.209439 +I0407 10:23:42.375423 17183 solver.cpp:237] Train net output #0: loss = 0.209439 (* 1 = 0.209439 loss) +I0407 10:23:42.375432 17183 sgd_solver.cpp:105] Iteration 4968, lr = 0.0025 +I0407 10:23:47.377924 17183 solver.cpp:218] Iteration 4980 (2.39882 iter/s, 5.00245s/12 iters), loss = 0.342865 +I0407 10:23:47.377979 17183 solver.cpp:237] Train net output #0: loss = 0.342865 (* 1 = 0.342865 loss) +I0407 10:23:47.377988 17183 sgd_solver.cpp:105] Iteration 4980, lr = 0.0025 +I0407 10:23:52.447587 17183 solver.cpp:218] Iteration 4992 (2.36708 iter/s, 5.06954s/12 iters), loss = 0.305662 +I0407 10:23:52.447634 17183 solver.cpp:237] Train net output #0: loss = 0.305663 (* 1 = 0.305663 loss) +I0407 10:23:52.447644 17183 sgd_solver.cpp:105] Iteration 4992, lr = 0.0025 +I0407 10:23:54.560818 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 10:23:58.553134 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 10:24:01.579598 17183 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 10:24:01.579620 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:24:03.930256 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:24:05.917088 17183 solver.cpp:397] Test net output #0: accuracy = 0.449142 +I0407 10:24:05.917119 17183 solver.cpp:397] Test net output #1: loss = 2.84797 (* 1 = 2.84797 loss) +I0407 10:24:07.897035 17183 solver.cpp:218] Iteration 5004 (0.776738 iter/s, 15.4492s/12 iters), loss = 0.39069 +I0407 10:24:07.897085 17183 solver.cpp:237] Train net output #0: loss = 0.39069 (* 1 = 0.39069 loss) +I0407 10:24:07.897094 17183 sgd_solver.cpp:105] Iteration 5004, lr = 0.0025 +I0407 10:24:12.728781 17183 solver.cpp:218] Iteration 5016 (2.48363 iter/s, 4.83163s/12 iters), loss = 0.293237 +I0407 10:24:12.728823 17183 solver.cpp:237] Train net output #0: loss = 0.293237 (* 1 = 0.293237 loss) +I0407 10:24:12.728830 17183 sgd_solver.cpp:105] Iteration 5016, lr = 0.0025 +I0407 10:24:17.803263 17183 solver.cpp:218] Iteration 5028 (2.36482 iter/s, 5.07438s/12 iters), loss = 0.32887 +I0407 10:24:17.803300 17183 solver.cpp:237] Train net output #0: loss = 0.32887 (* 1 = 0.32887 loss) +I0407 10:24:17.803308 17183 sgd_solver.cpp:105] Iteration 5028, lr = 0.0025 +I0407 10:24:23.009848 17183 solver.cpp:218] Iteration 5040 (2.30482 iter/s, 5.20647s/12 iters), loss = 0.204171 +I0407 10:24:23.009889 17183 solver.cpp:237] Train net output #0: loss = 0.204171 (* 1 = 0.204171 loss) +I0407 10:24:23.009896 17183 sgd_solver.cpp:105] Iteration 5040, lr = 0.0025 +I0407 10:24:28.227174 17183 solver.cpp:218] Iteration 5052 (2.30008 iter/s, 5.21721s/12 iters), loss = 0.368754 +I0407 10:24:28.227229 17183 solver.cpp:237] Train net output #0: loss = 0.368755 (* 1 = 0.368755 loss) +I0407 10:24:28.227239 17183 sgd_solver.cpp:105] Iteration 5052, lr = 0.0025 +I0407 10:24:30.158519 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:24:33.313671 17183 solver.cpp:218] Iteration 5064 (2.35924 iter/s, 5.08637s/12 iters), loss = 0.210764 +I0407 10:24:33.313711 17183 solver.cpp:237] Train net output #0: loss = 0.210764 (* 1 = 0.210764 loss) +I0407 10:24:33.313719 17183 sgd_solver.cpp:105] Iteration 5064, lr = 0.0025 +I0407 10:24:38.369974 17183 solver.cpp:218] Iteration 5076 (2.37333 iter/s, 5.0562s/12 iters), loss = 0.158833 +I0407 10:24:38.370012 17183 solver.cpp:237] Train net output #0: loss = 0.158834 (* 1 = 0.158834 loss) +I0407 10:24:38.370020 17183 sgd_solver.cpp:105] Iteration 5076, lr = 0.0025 +I0407 10:24:43.613279 17183 solver.cpp:218] Iteration 5088 (2.28868 iter/s, 5.24319s/12 iters), loss = 0.38199 +I0407 10:24:43.613322 17183 solver.cpp:237] Train net output #0: loss = 0.38199 (* 1 = 0.38199 loss) +I0407 10:24:43.613328 17183 sgd_solver.cpp:105] Iteration 5088, lr = 0.0025 +I0407 10:24:48.216670 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 10:24:51.317682 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 10:24:53.634045 17183 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 10:24:53.634064 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:24:55.955725 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:24:57.928580 17183 solver.cpp:397] Test net output #0: accuracy = 0.464461 +I0407 10:24:57.928612 17183 solver.cpp:397] Test net output #1: loss = 2.76872 (* 1 = 2.76872 loss) +I0407 10:24:58.070153 17183 solver.cpp:218] Iteration 5100 (0.830066 iter/s, 14.4567s/12 iters), loss = 0.141954 +I0407 10:24:58.070204 17183 solver.cpp:237] Train net output #0: loss = 0.141954 (* 1 = 0.141954 loss) +I0407 10:24:58.070211 17183 sgd_solver.cpp:105] Iteration 5100, lr = 0.0025 +I0407 10:25:02.152760 17183 solver.cpp:218] Iteration 5112 (2.93938 iter/s, 4.08249s/12 iters), loss = 0.289309 +I0407 10:25:02.152899 17183 solver.cpp:237] Train net output #0: loss = 0.28931 (* 1 = 0.28931 loss) +I0407 10:25:02.152910 17183 sgd_solver.cpp:105] Iteration 5112, lr = 0.0025 +I0407 10:25:07.206542 17183 solver.cpp:218] Iteration 5124 (2.37455 iter/s, 5.05359s/12 iters), loss = 0.412876 +I0407 10:25:07.206583 17183 solver.cpp:237] Train net output #0: loss = 0.412876 (* 1 = 0.412876 loss) +I0407 10:25:07.206590 17183 sgd_solver.cpp:105] Iteration 5124, lr = 0.0025 +I0407 10:25:12.405898 17183 solver.cpp:218] Iteration 5136 (2.30803 iter/s, 5.19924s/12 iters), loss = 0.195952 +I0407 10:25:12.405942 17183 solver.cpp:237] Train net output #0: loss = 0.195952 (* 1 = 0.195952 loss) +I0407 10:25:12.405951 17183 sgd_solver.cpp:105] Iteration 5136, lr = 0.0025 +I0407 10:25:17.592084 17183 solver.cpp:218] Iteration 5148 (2.31389 iter/s, 5.18608s/12 iters), loss = 0.335027 +I0407 10:25:17.592121 17183 solver.cpp:237] Train net output #0: loss = 0.335027 (* 1 = 0.335027 loss) +I0407 10:25:17.592128 17183 sgd_solver.cpp:105] Iteration 5148, lr = 0.0025 +I0407 10:25:21.666591 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:25:22.714613 17183 solver.cpp:218] Iteration 5160 (2.34264 iter/s, 5.12242s/12 iters), loss = 0.399367 +I0407 10:25:22.714658 17183 solver.cpp:237] Train net output #0: loss = 0.399367 (* 1 = 0.399367 loss) +I0407 10:25:22.714665 17183 sgd_solver.cpp:105] Iteration 5160, lr = 0.0025 +I0407 10:25:27.894282 17183 solver.cpp:218] Iteration 5172 (2.3168 iter/s, 5.17955s/12 iters), loss = 0.267967 +I0407 10:25:27.894336 17183 solver.cpp:237] Train net output #0: loss = 0.267967 (* 1 = 0.267967 loss) +I0407 10:25:27.894346 17183 sgd_solver.cpp:105] Iteration 5172, lr = 0.0025 +I0407 10:25:32.904697 17183 solver.cpp:218] Iteration 5184 (2.39507 iter/s, 5.0103s/12 iters), loss = 0.160912 +I0407 10:25:32.904824 17183 solver.cpp:237] Train net output #0: loss = 0.160912 (* 1 = 0.160912 loss) +I0407 10:25:32.904832 17183 sgd_solver.cpp:105] Iteration 5184, lr = 0.0025 +I0407 10:25:38.053015 17183 solver.cpp:218] Iteration 5196 (2.33095 iter/s, 5.14812s/12 iters), loss = 0.386388 +I0407 10:25:38.053066 17183 solver.cpp:237] Train net output #0: loss = 0.386388 (* 1 = 0.386388 loss) +I0407 10:25:38.053073 17183 sgd_solver.cpp:105] Iteration 5196, lr = 0.0025 +I0407 10:25:40.215587 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 10:25:43.151369 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 10:25:46.517268 17183 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 10:25:46.517287 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:25:48.769186 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:25:50.810488 17183 solver.cpp:397] Test net output #0: accuracy = 0.460784 +I0407 10:25:50.810523 17183 solver.cpp:397] Test net output #1: loss = 2.76178 (* 1 = 2.76178 loss) +I0407 10:25:52.539764 17183 solver.cpp:218] Iteration 5208 (0.828355 iter/s, 14.4865s/12 iters), loss = 0.210667 +I0407 10:25:52.539825 17183 solver.cpp:237] Train net output #0: loss = 0.210668 (* 1 = 0.210668 loss) +I0407 10:25:52.539835 17183 sgd_solver.cpp:105] Iteration 5208, lr = 0.0025 +I0407 10:25:57.484964 17183 solver.cpp:218] Iteration 5220 (2.42666 iter/s, 4.94507s/12 iters), loss = 0.209492 +I0407 10:25:57.485009 17183 solver.cpp:237] Train net output #0: loss = 0.209492 (* 1 = 0.209492 loss) +I0407 10:25:57.485018 17183 sgd_solver.cpp:105] Iteration 5220, lr = 0.0025 +I0407 10:26:02.671610 17183 solver.cpp:218] Iteration 5232 (2.31368 iter/s, 5.18653s/12 iters), loss = 0.357862 +I0407 10:26:02.671651 17183 solver.cpp:237] Train net output #0: loss = 0.357862 (* 1 = 0.357862 loss) +I0407 10:26:02.671658 17183 sgd_solver.cpp:105] Iteration 5232, lr = 0.0025 +I0407 10:26:07.930617 17183 solver.cpp:218] Iteration 5244 (2.28185 iter/s, 5.25889s/12 iters), loss = 0.286545 +I0407 10:26:07.930739 17183 solver.cpp:237] Train net output #0: loss = 0.286545 (* 1 = 0.286545 loss) +I0407 10:26:07.930749 17183 sgd_solver.cpp:105] Iteration 5244, lr = 0.0025 +I0407 10:26:13.107225 17183 solver.cpp:218] Iteration 5256 (2.3182 iter/s, 5.17642s/12 iters), loss = 0.174735 +I0407 10:26:13.107271 17183 solver.cpp:237] Train net output #0: loss = 0.174736 (* 1 = 0.174736 loss) +I0407 10:26:13.107278 17183 sgd_solver.cpp:105] Iteration 5256, lr = 0.0025 +I0407 10:26:14.474427 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:26:18.278066 17183 solver.cpp:218] Iteration 5268 (2.32076 iter/s, 5.17073s/12 iters), loss = 0.280127 +I0407 10:26:18.278110 17183 solver.cpp:237] Train net output #0: loss = 0.280128 (* 1 = 0.280128 loss) +I0407 10:26:18.278117 17183 sgd_solver.cpp:105] Iteration 5268, lr = 0.0025 +I0407 10:26:23.501999 17183 solver.cpp:218] Iteration 5280 (2.29717 iter/s, 5.22382s/12 iters), loss = 0.21558 +I0407 10:26:23.502044 17183 solver.cpp:237] Train net output #0: loss = 0.21558 (* 1 = 0.21558 loss) +I0407 10:26:23.502051 17183 sgd_solver.cpp:105] Iteration 5280, lr = 0.0025 +I0407 10:26:28.655233 17183 solver.cpp:218] Iteration 5292 (2.32869 iter/s, 5.15312s/12 iters), loss = 0.273289 +I0407 10:26:28.655287 17183 solver.cpp:237] Train net output #0: loss = 0.273289 (* 1 = 0.273289 loss) +I0407 10:26:28.655295 17183 sgd_solver.cpp:105] Iteration 5292, lr = 0.0025 +I0407 10:26:33.277899 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 10:26:37.922930 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 10:26:40.325150 17183 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 10:26:40.325249 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:26:42.572016 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:26:44.743993 17183 solver.cpp:397] Test net output #0: accuracy = 0.463848 +I0407 10:26:44.744029 17183 solver.cpp:397] Test net output #1: loss = 2.67957 (* 1 = 2.67957 loss) +I0407 10:26:44.880497 17183 solver.cpp:218] Iteration 5304 (0.739598 iter/s, 16.225s/12 iters), loss = 0.411012 +I0407 10:26:44.880553 17183 solver.cpp:237] Train net output #0: loss = 0.411012 (* 1 = 0.411012 loss) +I0407 10:26:44.880561 17183 sgd_solver.cpp:105] Iteration 5304, lr = 0.0025 +I0407 10:26:49.243592 17183 solver.cpp:218] Iteration 5316 (2.75041 iter/s, 4.36298s/12 iters), loss = 0.368727 +I0407 10:26:49.243636 17183 solver.cpp:237] Train net output #0: loss = 0.368728 (* 1 = 0.368728 loss) +I0407 10:26:49.243644 17183 sgd_solver.cpp:105] Iteration 5316, lr = 0.0025 +I0407 10:26:54.410871 17183 solver.cpp:218] Iteration 5328 (2.32236 iter/s, 5.16716s/12 iters), loss = 0.253173 +I0407 10:26:54.410912 17183 solver.cpp:237] Train net output #0: loss = 0.253173 (* 1 = 0.253173 loss) +I0407 10:26:54.410919 17183 sgd_solver.cpp:105] Iteration 5328, lr = 0.0025 +I0407 10:26:59.501228 17183 solver.cpp:218] Iteration 5340 (2.35745 iter/s, 5.09025s/12 iters), loss = 0.206135 +I0407 10:26:59.501277 17183 solver.cpp:237] Train net output #0: loss = 0.206135 (* 1 = 0.206135 loss) +I0407 10:26:59.501286 17183 sgd_solver.cpp:105] Iteration 5340, lr = 0.0025 +I0407 10:27:04.718174 17183 solver.cpp:218] Iteration 5352 (2.30025 iter/s, 5.21683s/12 iters), loss = 0.430822 +I0407 10:27:04.718216 17183 solver.cpp:237] Train net output #0: loss = 0.430822 (* 1 = 0.430822 loss) +I0407 10:27:04.718223 17183 sgd_solver.cpp:105] Iteration 5352, lr = 0.0025 +I0407 10:27:08.152915 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:27:09.810063 17183 solver.cpp:218] Iteration 5364 (2.35674 iter/s, 5.09177s/12 iters), loss = 0.234376 +I0407 10:27:09.810117 17183 solver.cpp:237] Train net output #0: loss = 0.234376 (* 1 = 0.234376 loss) +I0407 10:27:09.810127 17183 sgd_solver.cpp:105] Iteration 5364, lr = 0.0025 +I0407 10:27:15.055370 17183 solver.cpp:218] Iteration 5376 (2.28781 iter/s, 5.24519s/12 iters), loss = 0.320699 +I0407 10:27:15.055460 17183 solver.cpp:237] Train net output #0: loss = 0.320699 (* 1 = 0.320699 loss) +I0407 10:27:15.055469 17183 sgd_solver.cpp:105] Iteration 5376, lr = 0.0025 +I0407 10:27:20.205781 17183 solver.cpp:218] Iteration 5388 (2.32998 iter/s, 5.15025s/12 iters), loss = 0.410816 +I0407 10:27:20.205821 17183 solver.cpp:237] Train net output #0: loss = 0.410816 (* 1 = 0.410816 loss) +I0407 10:27:20.205827 17183 sgd_solver.cpp:105] Iteration 5388, lr = 0.0025 +I0407 10:27:25.535892 17183 solver.cpp:218] Iteration 5400 (2.25141 iter/s, 5.33s/12 iters), loss = 0.223305 +I0407 10:27:25.535950 17183 solver.cpp:237] Train net output #0: loss = 0.223305 (* 1 = 0.223305 loss) +I0407 10:27:25.535959 17183 sgd_solver.cpp:105] Iteration 5400, lr = 0.0025 +I0407 10:27:27.520188 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 10:27:30.528316 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 10:27:32.824752 17183 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 10:27:32.824771 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:27:35.021176 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:27:37.139189 17183 solver.cpp:397] Test net output #0: accuracy = 0.463848 +I0407 10:27:37.139223 17183 solver.cpp:397] Test net output #1: loss = 2.75521 (* 1 = 2.75521 loss) +I0407 10:27:38.981998 17183 solver.cpp:218] Iteration 5412 (0.892466 iter/s, 13.4459s/12 iters), loss = 0.217541 +I0407 10:27:38.982055 17183 solver.cpp:237] Train net output #0: loss = 0.217541 (* 1 = 0.217541 loss) +I0407 10:27:38.982064 17183 sgd_solver.cpp:105] Iteration 5412, lr = 0.0025 +I0407 10:27:44.092602 17183 solver.cpp:218] Iteration 5424 (2.34812 iter/s, 5.11048s/12 iters), loss = 0.230395 +I0407 10:27:44.092659 17183 solver.cpp:237] Train net output #0: loss = 0.230395 (* 1 = 0.230395 loss) +I0407 10:27:44.092669 17183 sgd_solver.cpp:105] Iteration 5424, lr = 0.0025 +I0407 10:27:49.245440 17183 solver.cpp:218] Iteration 5436 (2.32887 iter/s, 5.15271s/12 iters), loss = 0.199966 +I0407 10:27:49.245611 17183 solver.cpp:237] Train net output #0: loss = 0.199966 (* 1 = 0.199966 loss) +I0407 10:27:49.245626 17183 sgd_solver.cpp:105] Iteration 5436, lr = 0.0025 +I0407 10:27:54.303028 17183 solver.cpp:218] Iteration 5448 (2.37278 iter/s, 5.05736s/12 iters), loss = 0.21152 +I0407 10:27:54.303076 17183 solver.cpp:237] Train net output #0: loss = 0.21152 (* 1 = 0.21152 loss) +I0407 10:27:54.303082 17183 sgd_solver.cpp:105] Iteration 5448, lr = 0.0025 +I0407 10:27:59.534829 17183 solver.cpp:218] Iteration 5460 (2.29372 iter/s, 5.23168s/12 iters), loss = 0.189702 +I0407 10:27:59.534873 17183 solver.cpp:237] Train net output #0: loss = 0.189702 (* 1 = 0.189702 loss) +I0407 10:27:59.534880 17183 sgd_solver.cpp:105] Iteration 5460, lr = 0.0025 +I0407 10:28:00.039397 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:28:04.836308 17183 solver.cpp:218] Iteration 5472 (2.26357 iter/s, 5.30136s/12 iters), loss = 0.207885 +I0407 10:28:04.836356 17183 solver.cpp:237] Train net output #0: loss = 0.207885 (* 1 = 0.207885 loss) +I0407 10:28:04.836364 17183 sgd_solver.cpp:105] Iteration 5472, lr = 0.0025 +I0407 10:28:10.064255 17183 solver.cpp:218] Iteration 5484 (2.29541 iter/s, 5.22783s/12 iters), loss = 0.289476 +I0407 10:28:10.064301 17183 solver.cpp:237] Train net output #0: loss = 0.289476 (* 1 = 0.289476 loss) +I0407 10:28:10.064307 17183 sgd_solver.cpp:105] Iteration 5484, lr = 0.0025 +I0407 10:28:15.129221 17183 solver.cpp:218] Iteration 5496 (2.36927 iter/s, 5.06485s/12 iters), loss = 0.439828 +I0407 10:28:15.129268 17183 solver.cpp:237] Train net output #0: loss = 0.439829 (* 1 = 0.439829 loss) +I0407 10:28:15.129276 17183 sgd_solver.cpp:105] Iteration 5496, lr = 0.0025 +I0407 10:28:19.834794 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 10:28:22.864028 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 10:28:25.166968 17183 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 10:28:25.166990 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:28:27.438499 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:28:29.576911 17183 solver.cpp:397] Test net output #0: accuracy = 0.444853 +I0407 10:28:29.576944 17183 solver.cpp:397] Test net output #1: loss = 2.82574 (* 1 = 2.82574 loss) +I0407 10:28:29.717650 17183 solver.cpp:218] Iteration 5508 (0.822581 iter/s, 14.5882s/12 iters), loss = 0.287273 +I0407 10:28:29.717712 17183 solver.cpp:237] Train net output #0: loss = 0.287273 (* 1 = 0.287273 loss) +I0407 10:28:29.717721 17183 sgd_solver.cpp:105] Iteration 5508, lr = 0.0025 +I0407 10:28:33.898599 17183 solver.cpp:218] Iteration 5520 (2.87024 iter/s, 4.18083s/12 iters), loss = 0.371602 +I0407 10:28:33.898640 17183 solver.cpp:237] Train net output #0: loss = 0.371602 (* 1 = 0.371602 loss) +I0407 10:28:33.898648 17183 sgd_solver.cpp:105] Iteration 5520, lr = 0.0025 +I0407 10:28:36.326890 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:28:38.834280 17183 solver.cpp:218] Iteration 5532 (2.43133 iter/s, 4.93557s/12 iters), loss = 0.22128 +I0407 10:28:38.834321 17183 solver.cpp:237] Train net output #0: loss = 0.22128 (* 1 = 0.22128 loss) +I0407 10:28:38.834328 17183 sgd_solver.cpp:105] Iteration 5532, lr = 0.0025 +I0407 10:28:43.942912 17183 solver.cpp:218] Iteration 5544 (2.34902 iter/s, 5.10852s/12 iters), loss = 0.210653 +I0407 10:28:43.942958 17183 solver.cpp:237] Train net output #0: loss = 0.210653 (* 1 = 0.210653 loss) +I0407 10:28:43.942965 17183 sgd_solver.cpp:105] Iteration 5544, lr = 0.0025 +I0407 10:28:48.901530 17183 solver.cpp:218] Iteration 5556 (2.42009 iter/s, 4.9585s/12 iters), loss = 0.268755 +I0407 10:28:48.901582 17183 solver.cpp:237] Train net output #0: loss = 0.268755 (* 1 = 0.268755 loss) +I0407 10:28:48.901592 17183 sgd_solver.cpp:105] Iteration 5556, lr = 0.0025 +I0407 10:28:51.724838 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:28:54.089596 17183 solver.cpp:218] Iteration 5568 (2.31305 iter/s, 5.18795s/12 iters), loss = 0.272839 +I0407 10:28:54.089630 17183 solver.cpp:237] Train net output #0: loss = 0.272839 (* 1 = 0.272839 loss) +I0407 10:28:54.089638 17183 sgd_solver.cpp:105] Iteration 5568, lr = 0.0025 +I0407 10:28:59.400878 17183 solver.cpp:218] Iteration 5580 (2.25939 iter/s, 5.31117s/12 iters), loss = 0.399178 +I0407 10:28:59.400949 17183 solver.cpp:237] Train net output #0: loss = 0.399178 (* 1 = 0.399178 loss) +I0407 10:28:59.400959 17183 sgd_solver.cpp:105] Iteration 5580, lr = 0.0025 +I0407 10:29:04.588850 17183 solver.cpp:218] Iteration 5592 (2.3131 iter/s, 5.18783s/12 iters), loss = 0.20863 +I0407 10:29:04.588905 17183 solver.cpp:237] Train net output #0: loss = 0.208631 (* 1 = 0.208631 loss) +I0407 10:29:04.588914 17183 sgd_solver.cpp:105] Iteration 5592, lr = 0.0025 +I0407 10:29:09.846290 17183 solver.cpp:218] Iteration 5604 (2.28253 iter/s, 5.25731s/12 iters), loss = 0.171755 +I0407 10:29:09.846345 17183 solver.cpp:237] Train net output #0: loss = 0.171755 (* 1 = 0.171755 loss) +I0407 10:29:09.846355 17183 sgd_solver.cpp:105] Iteration 5604, lr = 0.0025 +I0407 10:29:11.928277 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 10:29:15.361121 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 10:29:18.385010 17183 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 10:29:18.385030 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:29:20.680027 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:29:22.931376 17183 solver.cpp:397] Test net output #0: accuracy = 0.459559 +I0407 10:29:22.931486 17183 solver.cpp:397] Test net output #1: loss = 2.83792 (* 1 = 2.83792 loss) +I0407 10:29:24.781383 17183 solver.cpp:218] Iteration 5616 (0.803488 iter/s, 14.9349s/12 iters), loss = 0.248601 +I0407 10:29:24.781431 17183 solver.cpp:237] Train net output #0: loss = 0.248601 (* 1 = 0.248601 loss) +I0407 10:29:24.781438 17183 sgd_solver.cpp:105] Iteration 5616, lr = 0.0025 +I0407 10:29:30.002136 17183 solver.cpp:218] Iteration 5628 (2.29857 iter/s, 5.22063s/12 iters), loss = 0.167395 +I0407 10:29:30.002182 17183 solver.cpp:237] Train net output #0: loss = 0.167395 (* 1 = 0.167395 loss) +I0407 10:29:30.002189 17183 sgd_solver.cpp:105] Iteration 5628, lr = 0.0025 +I0407 10:29:35.050954 17183 solver.cpp:218] Iteration 5640 (2.37685 iter/s, 5.0487s/12 iters), loss = 0.165034 +I0407 10:29:35.050999 17183 solver.cpp:237] Train net output #0: loss = 0.165034 (* 1 = 0.165034 loss) +I0407 10:29:35.051007 17183 sgd_solver.cpp:105] Iteration 5640, lr = 0.0025 +I0407 10:29:40.107182 17183 solver.cpp:218] Iteration 5652 (2.37337 iter/s, 5.05611s/12 iters), loss = 0.205237 +I0407 10:29:40.107239 17183 solver.cpp:237] Train net output #0: loss = 0.205237 (* 1 = 0.205237 loss) +I0407 10:29:40.107249 17183 sgd_solver.cpp:105] Iteration 5652, lr = 0.0025 +I0407 10:29:45.134636 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:29:45.342800 17183 solver.cpp:218] Iteration 5664 (2.29205 iter/s, 5.23549s/12 iters), loss = 0.198269 +I0407 10:29:45.342852 17183 solver.cpp:237] Train net output #0: loss = 0.198269 (* 1 = 0.198269 loss) +I0407 10:29:45.342864 17183 sgd_solver.cpp:105] Iteration 5664, lr = 0.0025 +I0407 10:29:50.620031 17183 solver.cpp:218] Iteration 5676 (2.27397 iter/s, 5.27711s/12 iters), loss = 0.214025 +I0407 10:29:50.620074 17183 solver.cpp:237] Train net output #0: loss = 0.214025 (* 1 = 0.214025 loss) +I0407 10:29:50.620080 17183 sgd_solver.cpp:105] Iteration 5676, lr = 0.0025 +I0407 10:29:55.922969 17183 solver.cpp:218] Iteration 5688 (2.26295 iter/s, 5.30282s/12 iters), loss = 0.156899 +I0407 10:29:55.923130 17183 solver.cpp:237] Train net output #0: loss = 0.156899 (* 1 = 0.156899 loss) +I0407 10:29:55.923141 17183 sgd_solver.cpp:105] Iteration 5688, lr = 0.0025 +I0407 10:30:01.295130 17183 solver.cpp:218] Iteration 5700 (2.23383 iter/s, 5.37193s/12 iters), loss = 0.300712 +I0407 10:30:01.295186 17183 solver.cpp:237] Train net output #0: loss = 0.300712 (* 1 = 0.300712 loss) +I0407 10:30:01.295195 17183 sgd_solver.cpp:105] Iteration 5700, lr = 0.0025 +I0407 10:30:05.873708 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 10:30:08.875749 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 10:30:11.180730 17183 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 10:30:11.180749 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:30:13.337939 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:30:15.541538 17183 solver.cpp:397] Test net output #0: accuracy = 0.456495 +I0407 10:30:15.541565 17183 solver.cpp:397] Test net output #1: loss = 2.81862 (* 1 = 2.81862 loss) +I0407 10:30:15.670332 17183 solver.cpp:218] Iteration 5712 (0.834783 iter/s, 14.375s/12 iters), loss = 0.147507 +I0407 10:30:15.670398 17183 solver.cpp:237] Train net output #0: loss = 0.147507 (* 1 = 0.147507 loss) +I0407 10:30:15.670406 17183 sgd_solver.cpp:105] Iteration 5712, lr = 0.0025 +I0407 10:30:19.721019 17183 solver.cpp:218] Iteration 5724 (2.96255 iter/s, 4.05056s/12 iters), loss = 0.375671 +I0407 10:30:19.721063 17183 solver.cpp:237] Train net output #0: loss = 0.375672 (* 1 = 0.375672 loss) +I0407 10:30:19.721071 17183 sgd_solver.cpp:105] Iteration 5724, lr = 0.0025 +I0407 10:30:24.629151 17183 solver.cpp:218] Iteration 5736 (2.44498 iter/s, 4.90802s/12 iters), loss = 0.22059 +I0407 10:30:24.629194 17183 solver.cpp:237] Train net output #0: loss = 0.220591 (* 1 = 0.220591 loss) +I0407 10:30:24.629201 17183 sgd_solver.cpp:105] Iteration 5736, lr = 0.0025 +I0407 10:30:29.729966 17183 solver.cpp:218] Iteration 5748 (2.35262 iter/s, 5.1007s/12 iters), loss = 0.392258 +I0407 10:30:29.730054 17183 solver.cpp:237] Train net output #0: loss = 0.392258 (* 1 = 0.392258 loss) +I0407 10:30:29.730062 17183 sgd_solver.cpp:105] Iteration 5748, lr = 0.0025 +I0407 10:30:35.006841 17183 solver.cpp:218] Iteration 5760 (2.27414 iter/s, 5.27672s/12 iters), loss = 0.223901 +I0407 10:30:35.006892 17183 solver.cpp:237] Train net output #0: loss = 0.223901 (* 1 = 0.223901 loss) +I0407 10:30:35.006902 17183 sgd_solver.cpp:105] Iteration 5760, lr = 0.0025 +I0407 10:30:37.070922 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:30:40.317464 17183 solver.cpp:218] Iteration 5772 (2.25967 iter/s, 5.3105s/12 iters), loss = 0.304775 +I0407 10:30:40.317508 17183 solver.cpp:237] Train net output #0: loss = 0.304775 (* 1 = 0.304775 loss) +I0407 10:30:40.317517 17183 sgd_solver.cpp:105] Iteration 5772, lr = 0.0025 +I0407 10:30:45.366400 17183 solver.cpp:218] Iteration 5784 (2.37679 iter/s, 5.04882s/12 iters), loss = 0.174954 +I0407 10:30:45.366456 17183 solver.cpp:237] Train net output #0: loss = 0.174954 (* 1 = 0.174954 loss) +I0407 10:30:45.366466 17183 sgd_solver.cpp:105] Iteration 5784, lr = 0.0025 +I0407 10:30:50.550452 17183 solver.cpp:218] Iteration 5796 (2.31485 iter/s, 5.18393s/12 iters), loss = 0.1661 +I0407 10:30:50.550494 17183 solver.cpp:237] Train net output #0: loss = 0.166101 (* 1 = 0.166101 loss) +I0407 10:30:50.550500 17183 sgd_solver.cpp:105] Iteration 5796, lr = 0.0025 +I0407 10:30:55.792109 17183 solver.cpp:218] Iteration 5808 (2.2894 iter/s, 5.24155s/12 iters), loss = 0.261145 +I0407 10:30:55.792147 17183 solver.cpp:237] Train net output #0: loss = 0.261146 (* 1 = 0.261146 loss) +I0407 10:30:55.792155 17183 sgd_solver.cpp:105] Iteration 5808, lr = 0.0025 +I0407 10:30:57.829808 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 10:31:00.854471 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 10:31:03.193992 17183 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 10:31:03.194012 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:31:05.341480 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:31:07.593492 17183 solver.cpp:397] Test net output #0: accuracy = 0.463235 +I0407 10:31:07.593536 17183 solver.cpp:397] Test net output #1: loss = 2.80418 (* 1 = 2.80418 loss) +I0407 10:31:09.476294 17183 solver.cpp:218] Iteration 5820 (0.876937 iter/s, 13.684s/12 iters), loss = 0.295368 +I0407 10:31:09.476338 17183 solver.cpp:237] Train net output #0: loss = 0.295369 (* 1 = 0.295369 loss) +I0407 10:31:09.476346 17183 sgd_solver.cpp:105] Iteration 5820, lr = 0.0025 +I0407 10:31:14.568866 17183 solver.cpp:218] Iteration 5832 (2.35643 iter/s, 5.09246s/12 iters), loss = 0.237225 +I0407 10:31:14.568917 17183 solver.cpp:237] Train net output #0: loss = 0.237225 (* 1 = 0.237225 loss) +I0407 10:31:14.568925 17183 sgd_solver.cpp:105] Iteration 5832, lr = 0.0025 +I0407 10:31:19.683396 17183 solver.cpp:218] Iteration 5844 (2.34631 iter/s, 5.11441s/12 iters), loss = 0.234138 +I0407 10:31:19.683442 17183 solver.cpp:237] Train net output #0: loss = 0.234138 (* 1 = 0.234138 loss) +I0407 10:31:19.683451 17183 sgd_solver.cpp:105] Iteration 5844, lr = 0.0025 +I0407 10:31:25.108944 17183 solver.cpp:218] Iteration 5856 (2.21181 iter/s, 5.42543s/12 iters), loss = 0.211855 +I0407 10:31:25.108991 17183 solver.cpp:237] Train net output #0: loss = 0.211855 (* 1 = 0.211855 loss) +I0407 10:31:25.108999 17183 sgd_solver.cpp:105] Iteration 5856, lr = 0.0025 +I0407 10:31:29.378409 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:31:30.267983 17183 solver.cpp:218] Iteration 5868 (2.32607 iter/s, 5.15893s/12 iters), loss = 0.189083 +I0407 10:31:30.268023 17183 solver.cpp:237] Train net output #0: loss = 0.189083 (* 1 = 0.189083 loss) +I0407 10:31:30.268030 17183 sgd_solver.cpp:105] Iteration 5868, lr = 0.0025 +I0407 10:31:35.447813 17183 solver.cpp:218] Iteration 5880 (2.31673 iter/s, 5.17972s/12 iters), loss = 0.140537 +I0407 10:31:35.447901 17183 solver.cpp:237] Train net output #0: loss = 0.140537 (* 1 = 0.140537 loss) +I0407 10:31:35.447909 17183 sgd_solver.cpp:105] Iteration 5880, lr = 0.0025 +I0407 10:31:40.654471 17183 solver.cpp:218] Iteration 5892 (2.30481 iter/s, 5.2065s/12 iters), loss = 0.216597 +I0407 10:31:40.654517 17183 solver.cpp:237] Train net output #0: loss = 0.216597 (* 1 = 0.216597 loss) +I0407 10:31:40.654525 17183 sgd_solver.cpp:105] Iteration 5892, lr = 0.0025 +I0407 10:31:45.683352 17183 solver.cpp:218] Iteration 5904 (2.38627 iter/s, 5.02877s/12 iters), loss = 0.0963077 +I0407 10:31:45.683396 17183 solver.cpp:237] Train net output #0: loss = 0.0963079 (* 1 = 0.0963079 loss) +I0407 10:31:45.683403 17183 sgd_solver.cpp:105] Iteration 5904, lr = 0.0025 +I0407 10:31:50.239240 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 10:31:53.263057 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 10:31:55.596891 17183 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 10:31:55.596912 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:31:57.650635 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:31:59.930358 17183 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 10:31:59.930397 17183 solver.cpp:397] Test net output #1: loss = 2.80387 (* 1 = 2.80387 loss) +I0407 10:32:00.064553 17183 solver.cpp:218] Iteration 5916 (0.834435 iter/s, 14.381s/12 iters), loss = 0.32122 +I0407 10:32:00.064600 17183 solver.cpp:237] Train net output #0: loss = 0.32122 (* 1 = 0.32122 loss) +I0407 10:32:00.064608 17183 sgd_solver.cpp:105] Iteration 5916, lr = 0.0025 +I0407 10:32:04.356837 17183 solver.cpp:218] Iteration 5928 (2.79578 iter/s, 4.29218s/12 iters), loss = 0.240482 +I0407 10:32:04.356879 17183 solver.cpp:237] Train net output #0: loss = 0.240482 (* 1 = 0.240482 loss) +I0407 10:32:04.356892 17183 sgd_solver.cpp:105] Iteration 5928, lr = 0.0025 +I0407 10:32:09.522089 17183 solver.cpp:218] Iteration 5940 (2.32327 iter/s, 5.16514s/12 iters), loss = 0.225969 +I0407 10:32:09.522234 17183 solver.cpp:237] Train net output #0: loss = 0.22597 (* 1 = 0.22597 loss) +I0407 10:32:09.522245 17183 sgd_solver.cpp:105] Iteration 5940, lr = 0.0025 +I0407 10:32:14.623790 17183 solver.cpp:218] Iteration 5952 (2.35225 iter/s, 5.10149s/12 iters), loss = 0.201364 +I0407 10:32:14.623827 17183 solver.cpp:237] Train net output #0: loss = 0.201364 (* 1 = 0.201364 loss) +I0407 10:32:14.623836 17183 sgd_solver.cpp:105] Iteration 5952, lr = 0.0025 +I0407 10:32:19.803325 17183 solver.cpp:218] Iteration 5964 (2.31686 iter/s, 5.17943s/12 iters), loss = 0.126091 +I0407 10:32:19.803371 17183 solver.cpp:237] Train net output #0: loss = 0.126092 (* 1 = 0.126092 loss) +I0407 10:32:19.803378 17183 sgd_solver.cpp:105] Iteration 5964, lr = 0.0025 +I0407 10:32:21.206034 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:32:25.046576 17183 solver.cpp:218] Iteration 5976 (2.28871 iter/s, 5.24313s/12 iters), loss = 0.133589 +I0407 10:32:25.046633 17183 solver.cpp:237] Train net output #0: loss = 0.133589 (* 1 = 0.133589 loss) +I0407 10:32:25.046643 17183 sgd_solver.cpp:105] Iteration 5976, lr = 0.0025 +I0407 10:32:30.078467 17183 solver.cpp:218] Iteration 5988 (2.38485 iter/s, 5.03177s/12 iters), loss = 0.110964 +I0407 10:32:30.078509 17183 solver.cpp:237] Train net output #0: loss = 0.110964 (* 1 = 0.110964 loss) +I0407 10:32:30.078516 17183 sgd_solver.cpp:105] Iteration 5988, lr = 0.0025 +I0407 10:32:35.235800 17183 solver.cpp:218] Iteration 6000 (2.32683 iter/s, 5.15722s/12 iters), loss = 0.0931256 +I0407 10:32:35.235842 17183 solver.cpp:237] Train net output #0: loss = 0.0931257 (* 1 = 0.0931257 loss) +I0407 10:32:35.235850 17183 sgd_solver.cpp:105] Iteration 6000, lr = 0.0025 +I0407 10:32:40.462591 17183 solver.cpp:218] Iteration 6012 (2.29591 iter/s, 5.22668s/12 iters), loss = 0.233485 +I0407 10:32:40.462678 17183 solver.cpp:237] Train net output #0: loss = 0.233485 (* 1 = 0.233485 loss) +I0407 10:32:40.462687 17183 sgd_solver.cpp:105] Iteration 6012, lr = 0.0025 +I0407 10:32:42.554951 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 10:32:45.631475 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 10:32:47.945921 17183 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 10:32:47.945945 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:32:49.915088 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:32:52.240090 17183 solver.cpp:397] Test net output #0: accuracy = 0.471814 +I0407 10:32:52.240128 17183 solver.cpp:397] Test net output #1: loss = 2.77414 (* 1 = 2.77414 loss) +I0407 10:32:54.064587 17183 solver.cpp:218] Iteration 6024 (0.882239 iter/s, 13.6018s/12 iters), loss = 0.176333 +I0407 10:32:54.064637 17183 solver.cpp:237] Train net output #0: loss = 0.176333 (* 1 = 0.176333 loss) +I0407 10:32:54.064646 17183 sgd_solver.cpp:105] Iteration 6024, lr = 0.0025 +I0407 10:32:59.153517 17183 solver.cpp:218] Iteration 6036 (2.35811 iter/s, 5.08881s/12 iters), loss = 0.137353 +I0407 10:32:59.153565 17183 solver.cpp:237] Train net output #0: loss = 0.137353 (* 1 = 0.137353 loss) +I0407 10:32:59.153575 17183 sgd_solver.cpp:105] Iteration 6036, lr = 0.0025 +I0407 10:33:04.293184 17183 solver.cpp:218] Iteration 6048 (2.33484 iter/s, 5.13955s/12 iters), loss = 0.183304 +I0407 10:33:04.293234 17183 solver.cpp:237] Train net output #0: loss = 0.183304 (* 1 = 0.183304 loss) +I0407 10:33:04.293243 17183 sgd_solver.cpp:105] Iteration 6048, lr = 0.0025 +I0407 10:33:09.471050 17183 solver.cpp:218] Iteration 6060 (2.31761 iter/s, 5.17775s/12 iters), loss = 0.254612 +I0407 10:33:09.471096 17183 solver.cpp:237] Train net output #0: loss = 0.254612 (* 1 = 0.254612 loss) +I0407 10:33:09.471102 17183 sgd_solver.cpp:105] Iteration 6060, lr = 0.0025 +I0407 10:33:13.068292 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:33:14.546576 17183 solver.cpp:218] Iteration 6072 (2.36434 iter/s, 5.07541s/12 iters), loss = 0.16019 +I0407 10:33:14.546620 17183 solver.cpp:237] Train net output #0: loss = 0.16019 (* 1 = 0.16019 loss) +I0407 10:33:14.546628 17183 sgd_solver.cpp:105] Iteration 6072, lr = 0.0025 +I0407 10:33:19.676923 17183 solver.cpp:218] Iteration 6084 (2.33907 iter/s, 5.13024s/12 iters), loss = 0.150795 +I0407 10:33:19.676965 17183 solver.cpp:237] Train net output #0: loss = 0.150795 (* 1 = 0.150795 loss) +I0407 10:33:19.676973 17183 sgd_solver.cpp:105] Iteration 6084, lr = 0.0025 +I0407 10:33:24.703339 17183 solver.cpp:218] Iteration 6096 (2.38744 iter/s, 5.0263s/12 iters), loss = 0.153682 +I0407 10:33:24.703390 17183 solver.cpp:237] Train net output #0: loss = 0.153683 (* 1 = 0.153683 loss) +I0407 10:33:24.703399 17183 sgd_solver.cpp:105] Iteration 6096, lr = 0.0025 +I0407 10:33:29.533957 17183 solver.cpp:218] Iteration 6108 (2.48421 iter/s, 4.8305s/12 iters), loss = 0.209118 +I0407 10:33:29.534011 17183 solver.cpp:237] Train net output #0: loss = 0.209118 (* 1 = 0.209118 loss) +I0407 10:33:29.534020 17183 sgd_solver.cpp:105] Iteration 6108, lr = 0.0025 +I0407 10:33:34.296844 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 10:33:37.398461 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 10:33:39.754546 17183 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 10:33:39.754567 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:33:41.674561 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:33:44.028537 17183 solver.cpp:397] Test net output #0: accuracy = 0.461397 +I0407 10:33:44.028666 17183 solver.cpp:397] Test net output #1: loss = 2.87519 (* 1 = 2.87519 loss) +I0407 10:33:44.170173 17183 solver.cpp:218] Iteration 6120 (0.819896 iter/s, 14.636s/12 iters), loss = 0.313397 +I0407 10:33:44.170230 17183 solver.cpp:237] Train net output #0: loss = 0.313398 (* 1 = 0.313398 loss) +I0407 10:33:44.170239 17183 sgd_solver.cpp:105] Iteration 6120, lr = 0.0025 +I0407 10:33:48.349038 17183 solver.cpp:218] Iteration 6132 (2.87167 iter/s, 4.17875s/12 iters), loss = 0.172789 +I0407 10:33:48.349092 17183 solver.cpp:237] Train net output #0: loss = 0.172789 (* 1 = 0.172789 loss) +I0407 10:33:48.349102 17183 sgd_solver.cpp:105] Iteration 6132, lr = 0.0025 +I0407 10:33:53.571574 17183 solver.cpp:218] Iteration 6144 (2.29779 iter/s, 5.22241s/12 iters), loss = 0.174373 +I0407 10:33:53.571617 17183 solver.cpp:237] Train net output #0: loss = 0.174373 (* 1 = 0.174373 loss) +I0407 10:33:53.571624 17183 sgd_solver.cpp:105] Iteration 6144, lr = 0.0025 +I0407 10:33:58.716513 17183 solver.cpp:218] Iteration 6156 (2.33244 iter/s, 5.14483s/12 iters), loss = 0.15049 +I0407 10:33:58.716555 17183 solver.cpp:237] Train net output #0: loss = 0.15049 (* 1 = 0.15049 loss) +I0407 10:33:58.716562 17183 sgd_solver.cpp:105] Iteration 6156, lr = 0.0025 +I0407 10:34:03.809051 17183 solver.cpp:218] Iteration 6168 (2.35644 iter/s, 5.09243s/12 iters), loss = 0.192061 +I0407 10:34:03.809100 17183 solver.cpp:237] Train net output #0: loss = 0.192062 (* 1 = 0.192062 loss) +I0407 10:34:03.809108 17183 sgd_solver.cpp:105] Iteration 6168, lr = 0.0025 +I0407 10:34:04.437690 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:34:09.129240 17183 solver.cpp:218] Iteration 6180 (2.25561 iter/s, 5.32007s/12 iters), loss = 0.327129 +I0407 10:34:09.129282 17183 solver.cpp:237] Train net output #0: loss = 0.32713 (* 1 = 0.32713 loss) +I0407 10:34:09.129289 17183 sgd_solver.cpp:105] Iteration 6180, lr = 0.0025 +I0407 10:34:14.247476 17183 solver.cpp:218] Iteration 6192 (2.34461 iter/s, 5.11812s/12 iters), loss = 0.210869 +I0407 10:34:14.247619 17183 solver.cpp:237] Train net output #0: loss = 0.21087 (* 1 = 0.21087 loss) +I0407 10:34:14.247628 17183 sgd_solver.cpp:105] Iteration 6192, lr = 0.0025 +I0407 10:34:19.387768 17183 solver.cpp:218] Iteration 6204 (2.33459 iter/s, 5.14008s/12 iters), loss = 0.138616 +I0407 10:34:19.387814 17183 solver.cpp:237] Train net output #0: loss = 0.138616 (* 1 = 0.138616 loss) +I0407 10:34:19.387820 17183 sgd_solver.cpp:105] Iteration 6204, lr = 0.0025 +I0407 10:34:24.609688 17183 solver.cpp:218] Iteration 6216 (2.29805 iter/s, 5.22181s/12 iters), loss = 0.13685 +I0407 10:34:24.609732 17183 solver.cpp:237] Train net output #0: loss = 0.13685 (* 1 = 0.13685 loss) +I0407 10:34:24.609740 17183 sgd_solver.cpp:105] Iteration 6216, lr = 0.0025 +I0407 10:34:26.684417 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 10:34:29.676774 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 10:34:31.985508 17183 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 10:34:31.985528 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:34:33.859192 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:34:35.112025 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:34:36.352979 17183 solver.cpp:397] Test net output #0: accuracy = 0.468137 +I0407 10:34:36.353016 17183 solver.cpp:397] Test net output #1: loss = 2.82827 (* 1 = 2.82827 loss) +I0407 10:34:38.255311 17183 solver.cpp:218] Iteration 6228 (0.879415 iter/s, 13.6454s/12 iters), loss = 0.224754 +I0407 10:34:38.255348 17183 solver.cpp:237] Train net output #0: loss = 0.224755 (* 1 = 0.224755 loss) +I0407 10:34:38.255354 17183 sgd_solver.cpp:105] Iteration 6228, lr = 0.0025 +I0407 10:34:43.193006 17183 solver.cpp:218] Iteration 6240 (2.43034 iter/s, 4.93759s/12 iters), loss = 0.252742 +I0407 10:34:43.193061 17183 solver.cpp:237] Train net output #0: loss = 0.252743 (* 1 = 0.252743 loss) +I0407 10:34:43.193073 17183 sgd_solver.cpp:105] Iteration 6240, lr = 0.0025 +I0407 10:34:48.228013 17183 solver.cpp:218] Iteration 6252 (2.38337 iter/s, 5.03489s/12 iters), loss = 0.33237 +I0407 10:34:48.228148 17183 solver.cpp:237] Train net output #0: loss = 0.33237 (* 1 = 0.33237 loss) +I0407 10:34:48.228157 17183 sgd_solver.cpp:105] Iteration 6252, lr = 0.0025 +I0407 10:34:53.178261 17183 solver.cpp:218] Iteration 6264 (2.42422 iter/s, 4.95005s/12 iters), loss = 0.182624 +I0407 10:34:53.178303 17183 solver.cpp:237] Train net output #0: loss = 0.182624 (* 1 = 0.182624 loss) +I0407 10:34:53.178310 17183 sgd_solver.cpp:105] Iteration 6264, lr = 0.0025 +I0407 10:34:56.039064 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:34:58.452306 17183 solver.cpp:218] Iteration 6276 (2.27534 iter/s, 5.27393s/12 iters), loss = 0.204793 +I0407 10:34:58.452353 17183 solver.cpp:237] Train net output #0: loss = 0.204793 (* 1 = 0.204793 loss) +I0407 10:34:58.452360 17183 sgd_solver.cpp:105] Iteration 6276, lr = 0.0025 +I0407 10:35:03.474650 17183 solver.cpp:218] Iteration 6288 (2.38938 iter/s, 5.02223s/12 iters), loss = 0.21792 +I0407 10:35:03.474701 17183 solver.cpp:237] Train net output #0: loss = 0.21792 (* 1 = 0.21792 loss) +I0407 10:35:03.474709 17183 sgd_solver.cpp:105] Iteration 6288, lr = 0.0025 +I0407 10:35:08.706540 17183 solver.cpp:218] Iteration 6300 (2.29368 iter/s, 5.23177s/12 iters), loss = 0.198343 +I0407 10:35:08.706589 17183 solver.cpp:237] Train net output #0: loss = 0.198343 (* 1 = 0.198343 loss) +I0407 10:35:08.706598 17183 sgd_solver.cpp:105] Iteration 6300, lr = 0.0025 +I0407 10:35:13.934671 17183 solver.cpp:218] Iteration 6312 (2.29533 iter/s, 5.22801s/12 iters), loss = 0.235605 +I0407 10:35:13.934715 17183 solver.cpp:237] Train net output #0: loss = 0.235605 (* 1 = 0.235605 loss) +I0407 10:35:13.934722 17183 sgd_solver.cpp:105] Iteration 6312, lr = 0.0025 +I0407 10:35:18.570780 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 10:35:21.627866 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 10:35:23.950585 17183 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 10:35:23.950605 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:35:25.894979 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:35:28.408087 17183 solver.cpp:397] Test net output #0: accuracy = 0.465686 +I0407 10:35:28.408118 17183 solver.cpp:397] Test net output #1: loss = 2.79449 (* 1 = 2.79449 loss) +I0407 10:35:28.549597 17183 solver.cpp:218] Iteration 6324 (0.82109 iter/s, 14.6147s/12 iters), loss = 0.080764 +I0407 10:35:28.549641 17183 solver.cpp:237] Train net output #0: loss = 0.0807641 (* 1 = 0.0807641 loss) +I0407 10:35:28.549649 17183 sgd_solver.cpp:105] Iteration 6324, lr = 0.0025 +I0407 10:35:32.710855 17183 solver.cpp:218] Iteration 6336 (2.88382 iter/s, 4.16115s/12 iters), loss = 0.162865 +I0407 10:35:32.710901 17183 solver.cpp:237] Train net output #0: loss = 0.162865 (* 1 = 0.162865 loss) +I0407 10:35:32.710908 17183 sgd_solver.cpp:105] Iteration 6336, lr = 0.0025 +I0407 10:35:37.807552 17183 solver.cpp:218] Iteration 6348 (2.35452 iter/s, 5.09658s/12 iters), loss = 0.140145 +I0407 10:35:37.807615 17183 solver.cpp:237] Train net output #0: loss = 0.140145 (* 1 = 0.140145 loss) +I0407 10:35:37.807627 17183 sgd_solver.cpp:105] Iteration 6348, lr = 0.0025 +I0407 10:35:42.895730 17183 solver.cpp:218] Iteration 6360 (2.35846 iter/s, 5.08806s/12 iters), loss = 0.135163 +I0407 10:35:42.895766 17183 solver.cpp:237] Train net output #0: loss = 0.135163 (* 1 = 0.135163 loss) +I0407 10:35:42.895774 17183 sgd_solver.cpp:105] Iteration 6360, lr = 0.0025 +I0407 10:35:47.793190 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:35:47.976692 17183 solver.cpp:218] Iteration 6372 (2.36181 iter/s, 5.08086s/12 iters), loss = 0.165443 +I0407 10:35:47.976740 17183 solver.cpp:237] Train net output #0: loss = 0.165443 (* 1 = 0.165443 loss) +I0407 10:35:47.976747 17183 sgd_solver.cpp:105] Iteration 6372, lr = 0.0025 +I0407 10:35:53.227947 17183 solver.cpp:218] Iteration 6384 (2.28522 iter/s, 5.25114s/12 iters), loss = 0.188304 +I0407 10:35:53.228050 17183 solver.cpp:237] Train net output #0: loss = 0.188304 (* 1 = 0.188304 loss) +I0407 10:35:53.228060 17183 sgd_solver.cpp:105] Iteration 6384, lr = 0.0025 +I0407 10:35:58.468961 17183 solver.cpp:218] Iteration 6396 (2.28971 iter/s, 5.24084s/12 iters), loss = 0.158067 +I0407 10:35:58.469009 17183 solver.cpp:237] Train net output #0: loss = 0.158067 (* 1 = 0.158067 loss) +I0407 10:35:58.469017 17183 sgd_solver.cpp:105] Iteration 6396, lr = 0.0025 +I0407 10:36:03.597553 17183 solver.cpp:218] Iteration 6408 (2.33988 iter/s, 5.12848s/12 iters), loss = 0.194425 +I0407 10:36:03.597599 17183 solver.cpp:237] Train net output #0: loss = 0.194425 (* 1 = 0.194425 loss) +I0407 10:36:03.597606 17183 sgd_solver.cpp:105] Iteration 6408, lr = 0.0025 +I0407 10:36:08.681640 17183 solver.cpp:218] Iteration 6420 (2.36036 iter/s, 5.08397s/12 iters), loss = 0.191943 +I0407 10:36:08.681697 17183 solver.cpp:237] Train net output #0: loss = 0.191943 (* 1 = 0.191943 loss) +I0407 10:36:08.681706 17183 sgd_solver.cpp:105] Iteration 6420, lr = 0.0025 +I0407 10:36:10.821529 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 10:36:13.863489 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 10:36:17.269295 17183 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 10:36:17.269317 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:36:19.098260 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:36:21.579015 17183 solver.cpp:397] Test net output #0: accuracy = 0.473039 +I0407 10:36:21.579052 17183 solver.cpp:397] Test net output #1: loss = 2.7519 (* 1 = 2.7519 loss) +I0407 10:36:23.385107 17183 solver.cpp:218] Iteration 6432 (0.816146 iter/s, 14.7032s/12 iters), loss = 0.154411 +I0407 10:36:23.385274 17183 solver.cpp:237] Train net output #0: loss = 0.154411 (* 1 = 0.154411 loss) +I0407 10:36:23.385288 17183 sgd_solver.cpp:105] Iteration 6432, lr = 0.0025 +I0407 10:36:28.610769 17183 solver.cpp:218] Iteration 6444 (2.29648 iter/s, 5.22538s/12 iters), loss = 0.217768 +I0407 10:36:28.610814 17183 solver.cpp:237] Train net output #0: loss = 0.217768 (* 1 = 0.217768 loss) +I0407 10:36:28.610821 17183 sgd_solver.cpp:105] Iteration 6444, lr = 0.0025 +I0407 10:36:33.663105 17183 solver.cpp:218] Iteration 6456 (2.37519 iter/s, 5.05222s/12 iters), loss = 0.108717 +I0407 10:36:33.663157 17183 solver.cpp:237] Train net output #0: loss = 0.108718 (* 1 = 0.108718 loss) +I0407 10:36:33.663166 17183 sgd_solver.cpp:105] Iteration 6456, lr = 0.0025 +I0407 10:36:38.834540 17183 solver.cpp:218] Iteration 6468 (2.32049 iter/s, 5.17131s/12 iters), loss = 0.172585 +I0407 10:36:38.834594 17183 solver.cpp:237] Train net output #0: loss = 0.172585 (* 1 = 0.172585 loss) +I0407 10:36:38.834604 17183 sgd_solver.cpp:105] Iteration 6468, lr = 0.0025 +I0407 10:36:40.879837 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:36:44.073299 17183 solver.cpp:218] Iteration 6480 (2.29067 iter/s, 5.23864s/12 iters), loss = 0.141487 +I0407 10:36:44.073355 17183 solver.cpp:237] Train net output #0: loss = 0.141487 (* 1 = 0.141487 loss) +I0407 10:36:44.073365 17183 sgd_solver.cpp:105] Iteration 6480, lr = 0.0025 +I0407 10:36:49.272018 17183 solver.cpp:218] Iteration 6492 (2.30832 iter/s, 5.1986s/12 iters), loss = 0.0926582 +I0407 10:36:49.272064 17183 solver.cpp:237] Train net output #0: loss = 0.0926583 (* 1 = 0.0926583 loss) +I0407 10:36:49.272071 17183 sgd_solver.cpp:105] Iteration 6492, lr = 0.0025 +I0407 10:36:54.444054 17183 solver.cpp:218] Iteration 6504 (2.32022 iter/s, 5.17192s/12 iters), loss = 0.092945 +I0407 10:36:54.444149 17183 solver.cpp:237] Train net output #0: loss = 0.0929452 (* 1 = 0.0929452 loss) +I0407 10:36:54.444156 17183 sgd_solver.cpp:105] Iteration 6504, lr = 0.0025 +I0407 10:36:59.650108 17183 solver.cpp:218] Iteration 6516 (2.30508 iter/s, 5.20589s/12 iters), loss = 0.149896 +I0407 10:36:59.650168 17183 solver.cpp:237] Train net output #0: loss = 0.149896 (* 1 = 0.149896 loss) +I0407 10:36:59.650179 17183 sgd_solver.cpp:105] Iteration 6516, lr = 0.0025 +I0407 10:37:04.377311 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 10:37:08.373148 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 10:37:11.456727 17183 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 10:37:11.456748 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:37:13.264516 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:37:15.838470 17183 solver.cpp:397] Test net output #0: accuracy = 0.46201 +I0407 10:37:15.838502 17183 solver.cpp:397] Test net output #1: loss = 2.94178 (* 1 = 2.94178 loss) +I0407 10:37:15.979064 17183 solver.cpp:218] Iteration 6528 (0.734902 iter/s, 16.3287s/12 iters), loss = 0.120463 +I0407 10:37:15.979118 17183 solver.cpp:237] Train net output #0: loss = 0.120463 (* 1 = 0.120463 loss) +I0407 10:37:15.979130 17183 sgd_solver.cpp:105] Iteration 6528, lr = 0.0025 +I0407 10:37:20.136093 17183 solver.cpp:218] Iteration 6540 (2.88675 iter/s, 4.15692s/12 iters), loss = 0.159697 +I0407 10:37:20.136144 17183 solver.cpp:237] Train net output #0: loss = 0.159698 (* 1 = 0.159698 loss) +I0407 10:37:20.136153 17183 sgd_solver.cpp:105] Iteration 6540, lr = 0.0025 +I0407 10:37:25.166375 17183 solver.cpp:218] Iteration 6552 (2.38561 iter/s, 5.03017s/12 iters), loss = 0.227867 +I0407 10:37:25.166494 17183 solver.cpp:237] Train net output #0: loss = 0.227867 (* 1 = 0.227867 loss) +I0407 10:37:25.166502 17183 sgd_solver.cpp:105] Iteration 6552, lr = 0.0025 +I0407 10:37:30.153337 17183 solver.cpp:218] Iteration 6564 (2.40636 iter/s, 4.98678s/12 iters), loss = 0.130073 +I0407 10:37:30.153376 17183 solver.cpp:237] Train net output #0: loss = 0.130074 (* 1 = 0.130074 loss) +I0407 10:37:30.153383 17183 sgd_solver.cpp:105] Iteration 6564, lr = 0.0025 +I0407 10:37:34.409091 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:37:35.228256 17183 solver.cpp:218] Iteration 6576 (2.36462 iter/s, 5.07481s/12 iters), loss = 0.282708 +I0407 10:37:35.228299 17183 solver.cpp:237] Train net output #0: loss = 0.282708 (* 1 = 0.282708 loss) +I0407 10:37:35.228307 17183 sgd_solver.cpp:105] Iteration 6576, lr = 0.0025 +I0407 10:37:40.416213 17183 solver.cpp:218] Iteration 6588 (2.3131 iter/s, 5.18784s/12 iters), loss = 0.219129 +I0407 10:37:40.416260 17183 solver.cpp:237] Train net output #0: loss = 0.21913 (* 1 = 0.21913 loss) +I0407 10:37:40.416267 17183 sgd_solver.cpp:105] Iteration 6588, lr = 0.0025 +I0407 10:37:45.558792 17183 solver.cpp:218] Iteration 6600 (2.33351 iter/s, 5.14246s/12 iters), loss = 0.15337 +I0407 10:37:45.558837 17183 solver.cpp:237] Train net output #0: loss = 0.15337 (* 1 = 0.15337 loss) +I0407 10:37:45.558845 17183 sgd_solver.cpp:105] Iteration 6600, lr = 0.0025 +I0407 10:37:50.791785 17183 solver.cpp:218] Iteration 6612 (2.29319 iter/s, 5.23288s/12 iters), loss = 0.145266 +I0407 10:37:50.791837 17183 solver.cpp:237] Train net output #0: loss = 0.145266 (* 1 = 0.145266 loss) +I0407 10:37:50.791846 17183 sgd_solver.cpp:105] Iteration 6612, lr = 0.0025 +I0407 10:37:55.777801 17183 solver.cpp:218] Iteration 6624 (2.40679 iter/s, 4.9859s/12 iters), loss = 0.13015 +I0407 10:37:55.777930 17183 solver.cpp:237] Train net output #0: loss = 0.13015 (* 1 = 0.13015 loss) +I0407 10:37:55.777940 17183 sgd_solver.cpp:105] Iteration 6624, lr = 0.0025 +I0407 10:37:57.829141 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 10:38:01.520119 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 10:38:03.822474 17183 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 10:38:03.822494 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:38:05.727015 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:38:08.356781 17183 solver.cpp:397] Test net output #0: accuracy = 0.452819 +I0407 10:38:08.356818 17183 solver.cpp:397] Test net output #1: loss = 2.90699 (* 1 = 2.90699 loss) +I0407 10:38:10.295200 17183 solver.cpp:218] Iteration 6636 (0.82661 iter/s, 14.5171s/12 iters), loss = 0.133132 +I0407 10:38:10.295244 17183 solver.cpp:237] Train net output #0: loss = 0.133132 (* 1 = 0.133132 loss) +I0407 10:38:10.295251 17183 sgd_solver.cpp:105] Iteration 6636, lr = 0.0025 +I0407 10:38:15.161711 17183 solver.cpp:218] Iteration 6648 (2.46589 iter/s, 4.8664s/12 iters), loss = 0.119367 +I0407 10:38:15.161752 17183 solver.cpp:237] Train net output #0: loss = 0.119367 (* 1 = 0.119367 loss) +I0407 10:38:15.161761 17183 sgd_solver.cpp:105] Iteration 6648, lr = 0.0025 +I0407 10:38:20.374091 17183 solver.cpp:218] Iteration 6660 (2.30226 iter/s, 5.21227s/12 iters), loss = 0.0970739 +I0407 10:38:20.374155 17183 solver.cpp:237] Train net output #0: loss = 0.0970741 (* 1 = 0.0970741 loss) +I0407 10:38:20.374166 17183 sgd_solver.cpp:105] Iteration 6660, lr = 0.0025 +I0407 10:38:25.597259 17183 solver.cpp:218] Iteration 6672 (2.29751 iter/s, 5.22304s/12 iters), loss = 0.304232 +I0407 10:38:25.597311 17183 solver.cpp:237] Train net output #0: loss = 0.304232 (* 1 = 0.304232 loss) +I0407 10:38:25.597321 17183 sgd_solver.cpp:105] Iteration 6672, lr = 0.0025 +I0407 10:38:26.966840 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:38:30.797565 17183 solver.cpp:218] Iteration 6684 (2.30761 iter/s, 5.20018s/12 iters), loss = 0.0845576 +I0407 10:38:30.797616 17183 solver.cpp:237] Train net output #0: loss = 0.0845578 (* 1 = 0.0845578 loss) +I0407 10:38:30.797624 17183 sgd_solver.cpp:105] Iteration 6684, lr = 0.0025 +I0407 10:38:36.010218 17183 solver.cpp:218] Iteration 6696 (2.30215 iter/s, 5.21253s/12 iters), loss = 0.146792 +I0407 10:38:36.010275 17183 solver.cpp:237] Train net output #0: loss = 0.146792 (* 1 = 0.146792 loss) +I0407 10:38:36.010285 17183 sgd_solver.cpp:105] Iteration 6696, lr = 0.0025 +I0407 10:38:41.269165 17183 solver.cpp:218] Iteration 6708 (2.28188 iter/s, 5.25882s/12 iters), loss = 0.297679 +I0407 10:38:41.269212 17183 solver.cpp:237] Train net output #0: loss = 0.29768 (* 1 = 0.29768 loss) +I0407 10:38:41.269218 17183 sgd_solver.cpp:105] Iteration 6708, lr = 0.0025 +I0407 10:38:46.478662 17183 solver.cpp:218] Iteration 6720 (2.30354 iter/s, 5.20938s/12 iters), loss = 0.157019 +I0407 10:38:46.478725 17183 solver.cpp:237] Train net output #0: loss = 0.15702 (* 1 = 0.15702 loss) +I0407 10:38:46.478736 17183 sgd_solver.cpp:105] Iteration 6720, lr = 0.0025 +I0407 10:38:51.162761 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 10:38:55.803769 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 10:38:59.125169 17183 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 10:38:59.125270 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:39:00.880607 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:39:03.620345 17183 solver.cpp:397] Test net output #0: accuracy = 0.468137 +I0407 10:39:03.620398 17183 solver.cpp:397] Test net output #1: loss = 2.82261 (* 1 = 2.82261 loss) +I0407 10:39:03.756143 17183 solver.cpp:218] Iteration 6732 (0.694556 iter/s, 17.2772s/12 iters), loss = 0.236948 +I0407 10:39:03.756192 17183 solver.cpp:237] Train net output #0: loss = 0.236948 (* 1 = 0.236948 loss) +I0407 10:39:03.756201 17183 sgd_solver.cpp:105] Iteration 6732, lr = 0.000625 +I0407 10:39:07.980870 17183 solver.cpp:218] Iteration 6744 (2.84049 iter/s, 4.22462s/12 iters), loss = 0.137971 +I0407 10:39:07.980926 17183 solver.cpp:237] Train net output #0: loss = 0.137971 (* 1 = 0.137971 loss) +I0407 10:39:07.980937 17183 sgd_solver.cpp:105] Iteration 6744, lr = 0.000625 +I0407 10:39:13.012703 17183 solver.cpp:218] Iteration 6756 (2.38488 iter/s, 5.0317s/12 iters), loss = 0.265228 +I0407 10:39:13.012750 17183 solver.cpp:237] Train net output #0: loss = 0.265229 (* 1 = 0.265229 loss) +I0407 10:39:13.012760 17183 sgd_solver.cpp:105] Iteration 6756, lr = 0.000625 +I0407 10:39:18.110090 17183 solver.cpp:218] Iteration 6768 (2.3542 iter/s, 5.09727s/12 iters), loss = 0.104921 +I0407 10:39:18.110143 17183 solver.cpp:237] Train net output #0: loss = 0.104921 (* 1 = 0.104921 loss) +I0407 10:39:18.110152 17183 sgd_solver.cpp:105] Iteration 6768, lr = 0.000625 +I0407 10:39:21.754649 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:39:23.378418 17183 solver.cpp:218] Iteration 6780 (2.27781 iter/s, 5.26821s/12 iters), loss = 0.163493 +I0407 10:39:23.378465 17183 solver.cpp:237] Train net output #0: loss = 0.163493 (* 1 = 0.163493 loss) +I0407 10:39:23.378473 17183 sgd_solver.cpp:105] Iteration 6780, lr = 0.000625 +I0407 10:39:28.496083 17183 solver.cpp:218] Iteration 6792 (2.34487 iter/s, 5.11755s/12 iters), loss = 0.110128 +I0407 10:39:28.496125 17183 solver.cpp:237] Train net output #0: loss = 0.110128 (* 1 = 0.110128 loss) +I0407 10:39:28.496135 17183 sgd_solver.cpp:105] Iteration 6792, lr = 0.000625 +I0407 10:39:33.663318 17183 solver.cpp:218] Iteration 6804 (2.32237 iter/s, 5.16713s/12 iters), loss = 0.151358 +I0407 10:39:33.663424 17183 solver.cpp:237] Train net output #0: loss = 0.151359 (* 1 = 0.151359 loss) +I0407 10:39:33.663431 17183 sgd_solver.cpp:105] Iteration 6804, lr = 0.000625 +I0407 10:39:38.758268 17183 solver.cpp:218] Iteration 6816 (2.35535 iter/s, 5.09478s/12 iters), loss = 0.073526 +I0407 10:39:38.758306 17183 solver.cpp:237] Train net output #0: loss = 0.0735262 (* 1 = 0.0735262 loss) +I0407 10:39:38.758313 17183 sgd_solver.cpp:105] Iteration 6816, lr = 0.000625 +I0407 10:39:43.921228 17183 solver.cpp:218] Iteration 6828 (2.3243 iter/s, 5.16286s/12 iters), loss = 0.209088 +I0407 10:39:43.921267 17183 solver.cpp:237] Train net output #0: loss = 0.209088 (* 1 = 0.209088 loss) +I0407 10:39:43.921275 17183 sgd_solver.cpp:105] Iteration 6828, lr = 0.000625 +I0407 10:39:46.167722 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 10:39:49.298911 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 10:39:51.773653 17183 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 10:39:51.773674 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:39:53.410012 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:39:56.034823 17183 solver.cpp:397] Test net output #0: accuracy = 0.479167 +I0407 10:39:56.034857 17183 solver.cpp:397] Test net output #1: loss = 2.78734 (* 1 = 2.78734 loss) +I0407 10:39:57.923017 17183 solver.cpp:218] Iteration 6840 (0.857045 iter/s, 14.0016s/12 iters), loss = 0.138393 +I0407 10:39:57.923059 17183 solver.cpp:237] Train net output #0: loss = 0.138394 (* 1 = 0.138394 loss) +I0407 10:39:57.923065 17183 sgd_solver.cpp:105] Iteration 6840, lr = 0.000625 +I0407 10:40:02.818085 17183 solver.cpp:218] Iteration 6852 (2.4515 iter/s, 4.89497s/12 iters), loss = 0.153274 +I0407 10:40:02.818118 17183 solver.cpp:237] Train net output #0: loss = 0.153274 (* 1 = 0.153274 loss) +I0407 10:40:02.818125 17183 sgd_solver.cpp:105] Iteration 6852, lr = 0.000625 +I0407 10:40:08.071842 17183 solver.cpp:218] Iteration 6864 (2.28412 iter/s, 5.25365s/12 iters), loss = 0.115637 +I0407 10:40:08.072026 17183 solver.cpp:237] Train net output #0: loss = 0.115637 (* 1 = 0.115637 loss) +I0407 10:40:08.072037 17183 sgd_solver.cpp:105] Iteration 6864, lr = 0.000625 +I0407 10:40:13.320591 17183 solver.cpp:218] Iteration 6876 (2.28637 iter/s, 5.2485s/12 iters), loss = 0.13847 +I0407 10:40:13.320644 17183 solver.cpp:237] Train net output #0: loss = 0.13847 (* 1 = 0.13847 loss) +I0407 10:40:13.320653 17183 sgd_solver.cpp:105] Iteration 6876, lr = 0.000625 +I0407 10:40:13.948331 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:40:18.380220 17183 solver.cpp:218] Iteration 6888 (2.37177 iter/s, 5.05952s/12 iters), loss = 0.155745 +I0407 10:40:18.380259 17183 solver.cpp:237] Train net output #0: loss = 0.155745 (* 1 = 0.155745 loss) +I0407 10:40:18.380266 17183 sgd_solver.cpp:105] Iteration 6888, lr = 0.000625 +I0407 10:40:23.469751 17183 solver.cpp:218] Iteration 6900 (2.35783 iter/s, 5.08942s/12 iters), loss = 0.0846866 +I0407 10:40:23.469799 17183 solver.cpp:237] Train net output #0: loss = 0.0846868 (* 1 = 0.0846868 loss) +I0407 10:40:23.469806 17183 sgd_solver.cpp:105] Iteration 6900, lr = 0.000625 +I0407 10:40:28.736104 17183 solver.cpp:218] Iteration 6912 (2.27867 iter/s, 5.26623s/12 iters), loss = 0.0791787 +I0407 10:40:28.736167 17183 solver.cpp:237] Train net output #0: loss = 0.0791789 (* 1 = 0.0791789 loss) +I0407 10:40:28.736177 17183 sgd_solver.cpp:105] Iteration 6912, lr = 0.000625 +I0407 10:40:33.970269 17183 solver.cpp:218] Iteration 6924 (2.29269 iter/s, 5.23403s/12 iters), loss = 0.110175 +I0407 10:40:33.970326 17183 solver.cpp:237] Train net output #0: loss = 0.110175 (* 1 = 0.110175 loss) +I0407 10:40:33.970335 17183 sgd_solver.cpp:105] Iteration 6924, lr = 0.000625 +I0407 10:40:38.651475 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 10:40:41.680464 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 10:40:43.987392 17183 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 10:40:43.987418 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:40:44.665272 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:40:45.825034 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:40:48.572225 17183 solver.cpp:397] Test net output #0: accuracy = 0.477328 +I0407 10:40:48.572260 17183 solver.cpp:397] Test net output #1: loss = 2.77448 (* 1 = 2.77448 loss) +I0407 10:40:48.713582 17183 solver.cpp:218] Iteration 6936 (0.81394 iter/s, 14.7431s/12 iters), loss = 0.0433232 +I0407 10:40:48.713649 17183 solver.cpp:237] Train net output #0: loss = 0.0433234 (* 1 = 0.0433234 loss) +I0407 10:40:48.713656 17183 sgd_solver.cpp:105] Iteration 6936, lr = 0.000625 +I0407 10:40:52.881536 17183 solver.cpp:218] Iteration 6948 (2.8792 iter/s, 4.16783s/12 iters), loss = 0.0740364 +I0407 10:40:52.881583 17183 solver.cpp:237] Train net output #0: loss = 0.0740365 (* 1 = 0.0740365 loss) +I0407 10:40:52.881592 17183 sgd_solver.cpp:105] Iteration 6948, lr = 0.000625 +I0407 10:40:58.122710 17183 solver.cpp:218] Iteration 6960 (2.28962 iter/s, 5.24105s/12 iters), loss = 0.300182 +I0407 10:40:58.122768 17183 solver.cpp:237] Train net output #0: loss = 0.300182 (* 1 = 0.300182 loss) +I0407 10:40:58.122778 17183 sgd_solver.cpp:105] Iteration 6960, lr = 0.000625 +I0407 10:41:03.264199 17183 solver.cpp:218] Iteration 6972 (2.33401 iter/s, 5.14136s/12 iters), loss = 0.0564694 +I0407 10:41:03.264242 17183 solver.cpp:237] Train net output #0: loss = 0.0564696 (* 1 = 0.0564696 loss) +I0407 10:41:03.264250 17183 sgd_solver.cpp:105] Iteration 6972, lr = 0.000625 +I0407 10:41:06.104723 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:41:08.492282 17183 solver.cpp:218] Iteration 6984 (2.29535 iter/s, 5.22797s/12 iters), loss = 0.164253 +I0407 10:41:08.492344 17183 solver.cpp:237] Train net output #0: loss = 0.164253 (* 1 = 0.164253 loss) +I0407 10:41:08.492354 17183 sgd_solver.cpp:105] Iteration 6984, lr = 0.000625 +I0407 10:41:13.617175 17183 solver.cpp:218] Iteration 6996 (2.34157 iter/s, 5.12477s/12 iters), loss = 0.0821292 +I0407 10:41:13.617347 17183 solver.cpp:237] Train net output #0: loss = 0.0821293 (* 1 = 0.0821293 loss) +I0407 10:41:13.617357 17183 sgd_solver.cpp:105] Iteration 6996, lr = 0.000625 +I0407 10:41:18.775774 17183 solver.cpp:218] Iteration 7008 (2.32632 iter/s, 5.15836s/12 iters), loss = 0.122798 +I0407 10:41:18.775815 17183 solver.cpp:237] Train net output #0: loss = 0.122799 (* 1 = 0.122799 loss) +I0407 10:41:18.775823 17183 sgd_solver.cpp:105] Iteration 7008, lr = 0.000625 +I0407 10:41:23.916632 17183 solver.cpp:218] Iteration 7020 (2.33429 iter/s, 5.14074s/12 iters), loss = 0.159962 +I0407 10:41:23.916694 17183 solver.cpp:237] Train net output #0: loss = 0.159963 (* 1 = 0.159963 loss) +I0407 10:41:23.916705 17183 sgd_solver.cpp:105] Iteration 7020, lr = 0.000625 +I0407 10:41:29.036160 17183 solver.cpp:218] Iteration 7032 (2.34403 iter/s, 5.1194s/12 iters), loss = 0.217651 +I0407 10:41:29.036208 17183 solver.cpp:237] Train net output #0: loss = 0.217651 (* 1 = 0.217651 loss) +I0407 10:41:29.036216 17183 sgd_solver.cpp:105] Iteration 7032, lr = 0.000625 +I0407 10:41:31.097173 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 10:41:34.087843 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 10:41:36.383074 17183 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 10:41:36.383093 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:41:38.006250 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:41:40.728029 17183 solver.cpp:397] Test net output #0: accuracy = 0.487132 +I0407 10:41:40.728062 17183 solver.cpp:397] Test net output #1: loss = 2.78693 (* 1 = 2.78693 loss) +I0407 10:41:42.580466 17183 solver.cpp:218] Iteration 7044 (0.885994 iter/s, 13.5441s/12 iters), loss = 0.0420517 +I0407 10:41:42.580515 17183 solver.cpp:237] Train net output #0: loss = 0.0420519 (* 1 = 0.0420519 loss) +I0407 10:41:42.580523 17183 sgd_solver.cpp:105] Iteration 7044, lr = 0.000625 +I0407 10:41:47.675645 17183 solver.cpp:218] Iteration 7056 (2.35522 iter/s, 5.09506s/12 iters), loss = 0.0993195 +I0407 10:41:47.675758 17183 solver.cpp:237] Train net output #0: loss = 0.0993197 (* 1 = 0.0993197 loss) +I0407 10:41:47.675768 17183 sgd_solver.cpp:105] Iteration 7056, lr = 0.000625 +I0407 10:41:52.608660 17183 solver.cpp:218] Iteration 7068 (2.43268 iter/s, 4.93284s/12 iters), loss = 0.066225 +I0407 10:41:52.608721 17183 solver.cpp:237] Train net output #0: loss = 0.0662252 (* 1 = 0.0662252 loss) +I0407 10:41:52.608731 17183 sgd_solver.cpp:105] Iteration 7068, lr = 0.000625 +I0407 10:41:57.627357 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:41:57.784543 17183 solver.cpp:218] Iteration 7080 (2.3185 iter/s, 5.17576s/12 iters), loss = 0.0590799 +I0407 10:41:57.784593 17183 solver.cpp:237] Train net output #0: loss = 0.0590801 (* 1 = 0.0590801 loss) +I0407 10:41:57.784603 17183 sgd_solver.cpp:105] Iteration 7080, lr = 0.000625 +I0407 10:42:02.853157 17183 solver.cpp:218] Iteration 7092 (2.36757 iter/s, 5.0685s/12 iters), loss = 0.0820355 +I0407 10:42:02.853209 17183 solver.cpp:237] Train net output #0: loss = 0.0820357 (* 1 = 0.0820357 loss) +I0407 10:42:02.853217 17183 sgd_solver.cpp:105] Iteration 7092, lr = 0.000625 +I0407 10:42:07.978914 17183 solver.cpp:218] Iteration 7104 (2.34117 iter/s, 5.12563s/12 iters), loss = 0.076736 +I0407 10:42:07.978960 17183 solver.cpp:237] Train net output #0: loss = 0.0767361 (* 1 = 0.0767361 loss) +I0407 10:42:07.978968 17183 sgd_solver.cpp:105] Iteration 7104, lr = 0.000625 +I0407 10:42:13.117415 17183 solver.cpp:218] Iteration 7116 (2.33536 iter/s, 5.13838s/12 iters), loss = 0.0953959 +I0407 10:42:13.117458 17183 solver.cpp:237] Train net output #0: loss = 0.0953961 (* 1 = 0.0953961 loss) +I0407 10:42:13.117465 17183 sgd_solver.cpp:105] Iteration 7116, lr = 0.000625 +I0407 10:42:18.107007 17183 solver.cpp:218] Iteration 7128 (2.40506 iter/s, 4.98948s/12 iters), loss = 0.0896063 +I0407 10:42:18.107129 17183 solver.cpp:237] Train net output #0: loss = 0.0896065 (* 1 = 0.0896065 loss) +I0407 10:42:18.107137 17183 sgd_solver.cpp:105] Iteration 7128, lr = 0.000625 +I0407 10:42:22.784034 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 10:42:25.886086 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 10:42:28.365314 17183 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 10:42:28.365332 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:42:29.944402 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:42:32.719724 17183 solver.cpp:397] Test net output #0: accuracy = 0.496936 +I0407 10:42:32.719754 17183 solver.cpp:397] Test net output #1: loss = 2.77837 (* 1 = 2.77837 loss) +I0407 10:42:32.855803 17183 solver.cpp:218] Iteration 7140 (0.813642 iter/s, 14.7485s/12 iters), loss = 0.129288 +I0407 10:42:32.855861 17183 solver.cpp:237] Train net output #0: loss = 0.129288 (* 1 = 0.129288 loss) +I0407 10:42:32.855871 17183 sgd_solver.cpp:105] Iteration 7140, lr = 0.000625 +I0407 10:42:37.060470 17183 solver.cpp:218] Iteration 7152 (2.85405 iter/s, 4.20455s/12 iters), loss = 0.163211 +I0407 10:42:37.060515 17183 solver.cpp:237] Train net output #0: loss = 0.163211 (* 1 = 0.163211 loss) +I0407 10:42:37.060523 17183 sgd_solver.cpp:105] Iteration 7152, lr = 0.000625 +I0407 10:42:42.069026 17183 solver.cpp:218] Iteration 7164 (2.39595 iter/s, 5.00845s/12 iters), loss = 0.130572 +I0407 10:42:42.069069 17183 solver.cpp:237] Train net output #0: loss = 0.130572 (* 1 = 0.130572 loss) +I0407 10:42:42.069077 17183 sgd_solver.cpp:105] Iteration 7164, lr = 0.000625 +I0407 10:42:46.977059 17183 solver.cpp:218] Iteration 7176 (2.44502 iter/s, 4.90793s/12 iters), loss = 0.04814 +I0407 10:42:46.977100 17183 solver.cpp:237] Train net output #0: loss = 0.0481401 (* 1 = 0.0481401 loss) +I0407 10:42:46.977108 17183 sgd_solver.cpp:105] Iteration 7176, lr = 0.000625 +I0407 10:42:49.239660 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:42:52.151451 17183 solver.cpp:218] Iteration 7188 (2.31916 iter/s, 5.17428s/12 iters), loss = 0.1268 +I0407 10:42:52.151499 17183 solver.cpp:237] Train net output #0: loss = 0.1268 (* 1 = 0.1268 loss) +I0407 10:42:52.151506 17183 sgd_solver.cpp:105] Iteration 7188, lr = 0.000625 +I0407 10:42:57.238150 17183 solver.cpp:218] Iteration 7200 (2.35915 iter/s, 5.08658s/12 iters), loss = 0.0626261 +I0407 10:42:57.238200 17183 solver.cpp:237] Train net output #0: loss = 0.0626263 (* 1 = 0.0626263 loss) +I0407 10:42:57.238209 17183 sgd_solver.cpp:105] Iteration 7200, lr = 0.000625 +I0407 10:43:02.726229 17183 solver.cpp:218] Iteration 7212 (2.1866 iter/s, 5.48796s/12 iters), loss = 0.0613317 +I0407 10:43:02.726269 17183 solver.cpp:237] Train net output #0: loss = 0.0613319 (* 1 = 0.0613319 loss) +I0407 10:43:02.726276 17183 sgd_solver.cpp:105] Iteration 7212, lr = 0.000625 +I0407 10:43:07.884410 17183 solver.cpp:218] Iteration 7224 (2.32645 iter/s, 5.15807s/12 iters), loss = 0.0683475 +I0407 10:43:07.884464 17183 solver.cpp:237] Train net output #0: loss = 0.0683476 (* 1 = 0.0683476 loss) +I0407 10:43:07.884474 17183 sgd_solver.cpp:105] Iteration 7224, lr = 0.000625 +I0407 10:43:12.978675 17183 solver.cpp:218] Iteration 7236 (2.35565 iter/s, 5.09414s/12 iters), loss = 0.130896 +I0407 10:43:12.978731 17183 solver.cpp:237] Train net output #0: loss = 0.130896 (* 1 = 0.130896 loss) +I0407 10:43:12.978740 17183 sgd_solver.cpp:105] Iteration 7236, lr = 0.000625 +I0407 10:43:15.081908 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 10:43:18.085486 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 10:43:20.385556 17183 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 10:43:20.385648 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:43:21.877491 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:43:24.701167 17183 solver.cpp:397] Test net output #0: accuracy = 0.496324 +I0407 10:43:24.701201 17183 solver.cpp:397] Test net output #1: loss = 2.79173 (* 1 = 2.79173 loss) +I0407 10:43:26.551350 17183 solver.cpp:218] Iteration 7248 (0.884143 iter/s, 13.5725s/12 iters), loss = 0.175584 +I0407 10:43:26.551388 17183 solver.cpp:237] Train net output #0: loss = 0.175584 (* 1 = 0.175584 loss) +I0407 10:43:26.551396 17183 sgd_solver.cpp:105] Iteration 7248, lr = 0.000625 +I0407 10:43:31.719614 17183 solver.cpp:218] Iteration 7260 (2.32191 iter/s, 5.16815s/12 iters), loss = 0.14419 +I0407 10:43:31.719657 17183 solver.cpp:237] Train net output #0: loss = 0.14419 (* 1 = 0.14419 loss) +I0407 10:43:31.719663 17183 sgd_solver.cpp:105] Iteration 7260, lr = 0.000625 +I0407 10:43:36.817317 17183 solver.cpp:218] Iteration 7272 (2.35405 iter/s, 5.09759s/12 iters), loss = 0.111242 +I0407 10:43:36.817363 17183 solver.cpp:237] Train net output #0: loss = 0.111242 (* 1 = 0.111242 loss) +I0407 10:43:36.817370 17183 sgd_solver.cpp:105] Iteration 7272, lr = 0.000625 +I0407 10:43:41.264302 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:43:42.097543 17183 solver.cpp:218] Iteration 7284 (2.27268 iter/s, 5.28011s/12 iters), loss = 0.0842072 +I0407 10:43:42.097602 17183 solver.cpp:237] Train net output #0: loss = 0.0842074 (* 1 = 0.0842074 loss) +I0407 10:43:42.097615 17183 sgd_solver.cpp:105] Iteration 7284, lr = 0.000625 +I0407 10:43:47.410876 17183 solver.cpp:218] Iteration 7296 (2.25852 iter/s, 5.31321s/12 iters), loss = 0.0510699 +I0407 10:43:47.410920 17183 solver.cpp:237] Train net output #0: loss = 0.0510701 (* 1 = 0.0510701 loss) +I0407 10:43:47.410928 17183 sgd_solver.cpp:105] Iteration 7296, lr = 0.000625 +I0407 10:43:52.604214 17183 solver.cpp:218] Iteration 7308 (2.3107 iter/s, 5.19323s/12 iters), loss = 0.0211966 +I0407 10:43:52.604311 17183 solver.cpp:237] Train net output #0: loss = 0.0211968 (* 1 = 0.0211968 loss) +I0407 10:43:52.604321 17183 sgd_solver.cpp:105] Iteration 7308, lr = 0.000625 +I0407 10:43:57.678745 17183 solver.cpp:218] Iteration 7320 (2.36483 iter/s, 5.07437s/12 iters), loss = 0.0572782 +I0407 10:43:57.678792 17183 solver.cpp:237] Train net output #0: loss = 0.0572784 (* 1 = 0.0572784 loss) +I0407 10:43:57.678802 17183 sgd_solver.cpp:105] Iteration 7320, lr = 0.000625 +I0407 10:44:02.861146 17183 solver.cpp:218] Iteration 7332 (2.31558 iter/s, 5.18228s/12 iters), loss = 0.0197616 +I0407 10:44:02.861196 17183 solver.cpp:237] Train net output #0: loss = 0.0197618 (* 1 = 0.0197618 loss) +I0407 10:44:02.861203 17183 sgd_solver.cpp:105] Iteration 7332, lr = 0.000625 +I0407 10:44:07.605645 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 10:44:10.644377 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 10:44:12.938130 17183 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 10:44:12.938151 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:44:14.450620 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:44:17.343645 17183 solver.cpp:397] Test net output #0: accuracy = 0.497549 +I0407 10:44:17.343674 17183 solver.cpp:397] Test net output #1: loss = 2.77067 (* 1 = 2.77067 loss) +I0407 10:44:17.485185 17183 solver.cpp:218] Iteration 7344 (0.820579 iter/s, 14.6238s/12 iters), loss = 0.0885054 +I0407 10:44:17.485231 17183 solver.cpp:237] Train net output #0: loss = 0.0885056 (* 1 = 0.0885056 loss) +I0407 10:44:17.485239 17183 sgd_solver.cpp:105] Iteration 7344, lr = 0.000625 +I0407 10:44:21.746076 17183 solver.cpp:218] Iteration 7356 (2.81638 iter/s, 4.26078s/12 iters), loss = 0.0931674 +I0407 10:44:21.746119 17183 solver.cpp:237] Train net output #0: loss = 0.0931676 (* 1 = 0.0931676 loss) +I0407 10:44:21.746126 17183 sgd_solver.cpp:105] Iteration 7356, lr = 0.000625 +I0407 10:44:26.997606 17183 solver.cpp:218] Iteration 7368 (2.2851 iter/s, 5.25142s/12 iters), loss = 0.0840888 +I0407 10:44:26.997761 17183 solver.cpp:237] Train net output #0: loss = 0.084089 (* 1 = 0.084089 loss) +I0407 10:44:26.997774 17183 sgd_solver.cpp:105] Iteration 7368, lr = 0.000625 +I0407 10:44:31.834458 17183 solver.cpp:218] Iteration 7380 (2.48106 iter/s, 4.83664s/12 iters), loss = 0.0929687 +I0407 10:44:31.834503 17183 solver.cpp:237] Train net output #0: loss = 0.0929689 (* 1 = 0.0929689 loss) +I0407 10:44:31.834511 17183 sgd_solver.cpp:105] Iteration 7380, lr = 0.000625 +I0407 10:44:33.225000 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:44:37.053614 17183 solver.cpp:218] Iteration 7392 (2.29927 iter/s, 5.21904s/12 iters), loss = 0.0651 +I0407 10:44:37.053660 17183 solver.cpp:237] Train net output #0: loss = 0.0651002 (* 1 = 0.0651002 loss) +I0407 10:44:37.053668 17183 sgd_solver.cpp:105] Iteration 7392, lr = 0.000625 +I0407 10:44:41.868613 17183 solver.cpp:218] Iteration 7404 (2.49227 iter/s, 4.81489s/12 iters), loss = 0.110215 +I0407 10:44:41.868661 17183 solver.cpp:237] Train net output #0: loss = 0.110215 (* 1 = 0.110215 loss) +I0407 10:44:41.868669 17183 sgd_solver.cpp:105] Iteration 7404, lr = 0.000625 +I0407 10:44:46.828691 17183 solver.cpp:218] Iteration 7416 (2.41938 iter/s, 4.95996s/12 iters), loss = 0.150626 +I0407 10:44:46.828753 17183 solver.cpp:237] Train net output #0: loss = 0.150626 (* 1 = 0.150626 loss) +I0407 10:44:46.828764 17183 sgd_solver.cpp:105] Iteration 7416, lr = 0.000625 +I0407 10:44:51.998296 17183 solver.cpp:218] Iteration 7428 (2.32132 iter/s, 5.16947s/12 iters), loss = 0.0998622 +I0407 10:44:51.998358 17183 solver.cpp:237] Train net output #0: loss = 0.0998624 (* 1 = 0.0998624 loss) +I0407 10:44:51.998369 17183 sgd_solver.cpp:105] Iteration 7428, lr = 0.000625 +I0407 10:44:57.225405 17183 solver.cpp:218] Iteration 7440 (2.29578 iter/s, 5.22698s/12 iters), loss = 0.0474961 +I0407 10:44:57.225518 17183 solver.cpp:237] Train net output #0: loss = 0.0474963 (* 1 = 0.0474963 loss) +I0407 10:44:57.225528 17183 sgd_solver.cpp:105] Iteration 7440, lr = 0.000625 +I0407 10:44:59.264817 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 10:45:02.293642 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 10:45:04.659176 17183 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 10:45:04.659195 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:45:06.067338 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:45:08.944420 17183 solver.cpp:397] Test net output #0: accuracy = 0.490809 +I0407 10:45:08.944447 17183 solver.cpp:397] Test net output #1: loss = 2.81781 (* 1 = 2.81781 loss) +I0407 10:45:10.766327 17183 solver.cpp:218] Iteration 7452 (0.88622 iter/s, 13.5407s/12 iters), loss = 0.163638 +I0407 10:45:10.766373 17183 solver.cpp:237] Train net output #0: loss = 0.163638 (* 1 = 0.163638 loss) +I0407 10:45:10.766381 17183 sgd_solver.cpp:105] Iteration 7452, lr = 0.000625 +I0407 10:45:15.918179 17183 solver.cpp:218] Iteration 7464 (2.32931 iter/s, 5.15174s/12 iters), loss = 0.066337 +I0407 10:45:15.918239 17183 solver.cpp:237] Train net output #0: loss = 0.0663372 (* 1 = 0.0663372 loss) +I0407 10:45:15.918251 17183 sgd_solver.cpp:105] Iteration 7464, lr = 0.000625 +I0407 10:45:21.059988 17183 solver.cpp:218] Iteration 7476 (2.33387 iter/s, 5.14168s/12 iters), loss = 0.105771 +I0407 10:45:21.060053 17183 solver.cpp:237] Train net output #0: loss = 0.105771 (* 1 = 0.105771 loss) +I0407 10:45:21.060063 17183 sgd_solver.cpp:105] Iteration 7476, lr = 0.000625 +I0407 10:45:24.617605 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:45:26.214040 17183 solver.cpp:218] Iteration 7488 (2.32833 iter/s, 5.15392s/12 iters), loss = 0.115985 +I0407 10:45:26.214087 17183 solver.cpp:237] Train net output #0: loss = 0.115985 (* 1 = 0.115985 loss) +I0407 10:45:26.214093 17183 sgd_solver.cpp:105] Iteration 7488, lr = 0.000625 +I0407 10:45:31.303032 17183 solver.cpp:218] Iteration 7500 (2.35809 iter/s, 5.08887s/12 iters), loss = 0.125554 +I0407 10:45:31.303175 17183 solver.cpp:237] Train net output #0: loss = 0.125554 (* 1 = 0.125554 loss) +I0407 10:45:31.303184 17183 sgd_solver.cpp:105] Iteration 7500, lr = 0.000625 +I0407 10:45:36.416129 17183 solver.cpp:218] Iteration 7512 (2.34701 iter/s, 5.11289s/12 iters), loss = 0.131361 +I0407 10:45:36.416182 17183 solver.cpp:237] Train net output #0: loss = 0.131361 (* 1 = 0.131361 loss) +I0407 10:45:36.416189 17183 sgd_solver.cpp:105] Iteration 7512, lr = 0.000625 +I0407 10:45:41.665640 17183 solver.cpp:218] Iteration 7524 (2.28598 iter/s, 5.24939s/12 iters), loss = 0.0537122 +I0407 10:45:41.665678 17183 solver.cpp:237] Train net output #0: loss = 0.0537124 (* 1 = 0.0537124 loss) +I0407 10:45:41.665684 17183 sgd_solver.cpp:105] Iteration 7524, lr = 0.000625 +I0407 10:45:46.795408 17183 solver.cpp:218] Iteration 7536 (2.33934 iter/s, 5.12966s/12 iters), loss = 0.141322 +I0407 10:45:46.795447 17183 solver.cpp:237] Train net output #0: loss = 0.141322 (* 1 = 0.141322 loss) +I0407 10:45:46.795455 17183 sgd_solver.cpp:105] Iteration 7536, lr = 0.000625 +I0407 10:45:51.473227 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 10:45:54.484745 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 10:45:56.804306 17183 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 10:45:56.804327 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:45:58.188892 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:46:01.084265 17183 solver.cpp:397] Test net output #0: accuracy = 0.495711 +I0407 10:46:01.084300 17183 solver.cpp:397] Test net output #1: loss = 2.78143 (* 1 = 2.78143 loss) +I0407 10:46:01.226002 17183 solver.cpp:218] Iteration 7548 (0.831578 iter/s, 14.4304s/12 iters), loss = 0.138212 +I0407 10:46:01.226071 17183 solver.cpp:237] Train net output #0: loss = 0.138212 (* 1 = 0.138212 loss) +I0407 10:46:01.226079 17183 sgd_solver.cpp:105] Iteration 7548, lr = 0.000625 +I0407 10:46:05.568764 17183 solver.cpp:218] Iteration 7560 (2.7633 iter/s, 4.34263s/12 iters), loss = 0.132511 +I0407 10:46:05.568912 17183 solver.cpp:237] Train net output #0: loss = 0.132512 (* 1 = 0.132512 loss) +I0407 10:46:05.568920 17183 sgd_solver.cpp:105] Iteration 7560, lr = 0.000625 +I0407 10:46:10.673276 17183 solver.cpp:218] Iteration 7572 (2.35096 iter/s, 5.10429s/12 iters), loss = 0.105429 +I0407 10:46:10.673319 17183 solver.cpp:237] Train net output #0: loss = 0.10543 (* 1 = 0.10543 loss) +I0407 10:46:10.673326 17183 sgd_solver.cpp:105] Iteration 7572, lr = 0.000625 +I0407 10:46:15.775395 17183 solver.cpp:218] Iteration 7584 (2.35202 iter/s, 5.102s/12 iters), loss = 0.0990291 +I0407 10:46:15.775460 17183 solver.cpp:237] Train net output #0: loss = 0.0990293 (* 1 = 0.0990293 loss) +I0407 10:46:15.775471 17183 sgd_solver.cpp:105] Iteration 7584, lr = 0.000625 +I0407 10:46:16.437811 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:46:20.920928 17183 solver.cpp:218] Iteration 7596 (2.33218 iter/s, 5.1454s/12 iters), loss = 0.104306 +I0407 10:46:20.920984 17183 solver.cpp:237] Train net output #0: loss = 0.104307 (* 1 = 0.104307 loss) +I0407 10:46:20.920994 17183 sgd_solver.cpp:105] Iteration 7596, lr = 0.000625 +I0407 10:46:25.919775 17183 solver.cpp:218] Iteration 7608 (2.40061 iter/s, 4.99872s/12 iters), loss = 0.139916 +I0407 10:46:25.919824 17183 solver.cpp:237] Train net output #0: loss = 0.139916 (* 1 = 0.139916 loss) +I0407 10:46:25.919833 17183 sgd_solver.cpp:105] Iteration 7608, lr = 0.000625 +I0407 10:46:31.103971 17183 solver.cpp:218] Iteration 7620 (2.31478 iter/s, 5.18408s/12 iters), loss = 0.0698311 +I0407 10:46:31.104013 17183 solver.cpp:237] Train net output #0: loss = 0.0698313 (* 1 = 0.0698313 loss) +I0407 10:46:31.104020 17183 sgd_solver.cpp:105] Iteration 7620, lr = 0.000625 +I0407 10:46:33.703755 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:46:36.218199 17183 solver.cpp:218] Iteration 7632 (2.34645 iter/s, 5.11411s/12 iters), loss = 0.151984 +I0407 10:46:36.218343 17183 solver.cpp:237] Train net output #0: loss = 0.151985 (* 1 = 0.151985 loss) +I0407 10:46:36.218353 17183 sgd_solver.cpp:105] Iteration 7632, lr = 0.000625 +I0407 10:46:41.251776 17183 solver.cpp:218] Iteration 7644 (2.38409 iter/s, 5.03337s/12 iters), loss = 0.0956514 +I0407 10:46:41.251834 17183 solver.cpp:237] Train net output #0: loss = 0.0956516 (* 1 = 0.0956516 loss) +I0407 10:46:41.251845 17183 sgd_solver.cpp:105] Iteration 7644, lr = 0.000625 +I0407 10:46:43.205859 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 10:46:46.216697 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 10:46:48.514979 17183 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 10:46:48.514998 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:46:49.888808 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:46:52.826272 17183 solver.cpp:397] Test net output #0: accuracy = 0.499387 +I0407 10:46:52.826308 17183 solver.cpp:397] Test net output #1: loss = 2.7858 (* 1 = 2.7858 loss) +I0407 10:46:54.711141 17183 solver.cpp:218] Iteration 7656 (0.891587 iter/s, 13.4592s/12 iters), loss = 0.133368 +I0407 10:46:54.711202 17183 solver.cpp:237] Train net output #0: loss = 0.133368 (* 1 = 0.133368 loss) +I0407 10:46:54.711213 17183 sgd_solver.cpp:105] Iteration 7656, lr = 0.000625 +I0407 10:46:59.751241 17183 solver.cpp:218] Iteration 7668 (2.38096 iter/s, 5.03997s/12 iters), loss = 0.0627986 +I0407 10:46:59.751289 17183 solver.cpp:237] Train net output #0: loss = 0.0627988 (* 1 = 0.0627988 loss) +I0407 10:46:59.751296 17183 sgd_solver.cpp:105] Iteration 7668, lr = 0.000625 +I0407 10:47:04.947093 17183 solver.cpp:218] Iteration 7680 (2.30959 iter/s, 5.19573s/12 iters), loss = 0.141565 +I0407 10:47:04.947150 17183 solver.cpp:237] Train net output #0: loss = 0.141565 (* 1 = 0.141565 loss) +I0407 10:47:04.947160 17183 sgd_solver.cpp:105] Iteration 7680, lr = 0.000625 +I0407 10:47:07.882141 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:47:10.203778 17183 solver.cpp:218] Iteration 7692 (2.28286 iter/s, 5.25656s/12 iters), loss = 0.0844639 +I0407 10:47:10.203832 17183 solver.cpp:237] Train net output #0: loss = 0.0844641 (* 1 = 0.0844641 loss) +I0407 10:47:10.203843 17183 sgd_solver.cpp:105] Iteration 7692, lr = 0.000625 +I0407 10:47:15.322875 17183 solver.cpp:218] Iteration 7704 (2.34422 iter/s, 5.11898s/12 iters), loss = 0.0639084 +I0407 10:47:15.322917 17183 solver.cpp:237] Train net output #0: loss = 0.0639086 (* 1 = 0.0639086 loss) +I0407 10:47:15.322924 17183 sgd_solver.cpp:105] Iteration 7704, lr = 0.000625 +I0407 10:47:20.379634 17183 solver.cpp:218] Iteration 7716 (2.37311 iter/s, 5.05665s/12 iters), loss = 0.167115 +I0407 10:47:20.379679 17183 solver.cpp:237] Train net output #0: loss = 0.167115 (* 1 = 0.167115 loss) +I0407 10:47:20.379686 17183 sgd_solver.cpp:105] Iteration 7716, lr = 0.000625 +I0407 10:47:25.536959 17183 solver.cpp:218] Iteration 7728 (2.32684 iter/s, 5.15721s/12 iters), loss = 0.109285 +I0407 10:47:25.537014 17183 solver.cpp:237] Train net output #0: loss = 0.109286 (* 1 = 0.109286 loss) +I0407 10:47:25.537024 17183 sgd_solver.cpp:105] Iteration 7728, lr = 0.000625 +I0407 10:47:30.655807 17183 solver.cpp:218] Iteration 7740 (2.34433 iter/s, 5.11872s/12 iters), loss = 0.130328 +I0407 10:47:30.655858 17183 solver.cpp:237] Train net output #0: loss = 0.130328 (* 1 = 0.130328 loss) +I0407 10:47:30.655866 17183 sgd_solver.cpp:105] Iteration 7740, lr = 0.000625 +I0407 10:47:35.291069 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 10:47:38.307904 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 10:47:40.607266 17183 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 10:47:40.607285 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:47:41.970609 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:47:44.991654 17183 solver.cpp:397] Test net output #0: accuracy = 0.499387 +I0407 10:47:44.991695 17183 solver.cpp:397] Test net output #1: loss = 2.78529 (* 1 = 2.78529 loss) +I0407 10:47:45.131342 17183 solver.cpp:218] Iteration 7752 (0.828997 iter/s, 14.4753s/12 iters), loss = 0.0665317 +I0407 10:47:45.131387 17183 solver.cpp:237] Train net output #0: loss = 0.066532 (* 1 = 0.066532 loss) +I0407 10:47:45.131395 17183 sgd_solver.cpp:105] Iteration 7752, lr = 0.000625 +I0407 10:47:49.412628 17183 solver.cpp:218] Iteration 7764 (2.80297 iter/s, 4.28118s/12 iters), loss = 0.0841167 +I0407 10:47:49.412681 17183 solver.cpp:237] Train net output #0: loss = 0.084117 (* 1 = 0.084117 loss) +I0407 10:47:49.412691 17183 sgd_solver.cpp:105] Iteration 7764, lr = 0.000625 +I0407 10:47:54.515532 17183 solver.cpp:218] Iteration 7776 (2.35166 iter/s, 5.10279s/12 iters), loss = 0.057899 +I0407 10:47:54.515573 17183 solver.cpp:237] Train net output #0: loss = 0.0578992 (* 1 = 0.0578992 loss) +I0407 10:47:54.515580 17183 sgd_solver.cpp:105] Iteration 7776, lr = 0.000625 +I0407 10:47:59.468458 17183 solver.cpp:218] Iteration 7788 (2.42286 iter/s, 4.95282s/12 iters), loss = 0.173774 +I0407 10:47:59.468504 17183 solver.cpp:237] Train net output #0: loss = 0.173774 (* 1 = 0.173774 loss) +I0407 10:47:59.468513 17183 sgd_solver.cpp:105] Iteration 7788, lr = 0.000625 +I0407 10:47:59.476480 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:48:04.590095 17183 solver.cpp:218] Iteration 7800 (2.34305 iter/s, 5.12152s/12 iters), loss = 0.068956 +I0407 10:48:04.590143 17183 solver.cpp:237] Train net output #0: loss = 0.0689562 (* 1 = 0.0689562 loss) +I0407 10:48:04.590152 17183 sgd_solver.cpp:105] Iteration 7800, lr = 0.000625 +I0407 10:48:09.721776 17183 solver.cpp:218] Iteration 7812 (2.33847 iter/s, 5.13156s/12 iters), loss = 0.0193418 +I0407 10:48:09.721913 17183 solver.cpp:237] Train net output #0: loss = 0.019342 (* 1 = 0.019342 loss) +I0407 10:48:09.721925 17183 sgd_solver.cpp:105] Iteration 7812, lr = 0.000625 +I0407 10:48:14.879925 17183 solver.cpp:218] Iteration 7824 (2.32651 iter/s, 5.15794s/12 iters), loss = 0.0868451 +I0407 10:48:14.879981 17183 solver.cpp:237] Train net output #0: loss = 0.0868453 (* 1 = 0.0868453 loss) +I0407 10:48:14.879992 17183 sgd_solver.cpp:105] Iteration 7824, lr = 0.000625 +I0407 10:48:20.084789 17183 solver.cpp:218] Iteration 7836 (2.30559 iter/s, 5.20474s/12 iters), loss = 0.0455478 +I0407 10:48:20.084847 17183 solver.cpp:237] Train net output #0: loss = 0.045548 (* 1 = 0.045548 loss) +I0407 10:48:20.084856 17183 sgd_solver.cpp:105] Iteration 7836, lr = 0.000625 +I0407 10:48:25.429148 17183 solver.cpp:218] Iteration 7848 (2.24541 iter/s, 5.34423s/12 iters), loss = 0.0600933 +I0407 10:48:25.429208 17183 solver.cpp:237] Train net output #0: loss = 0.0600935 (* 1 = 0.0600935 loss) +I0407 10:48:25.429216 17183 sgd_solver.cpp:105] Iteration 7848, lr = 0.000625 +I0407 10:48:27.427043 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 10:48:30.511484 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 10:48:34.086158 17183 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 10:48:34.086180 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:48:35.375555 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:48:38.388116 17183 solver.cpp:397] Test net output #0: accuracy = 0.499387 +I0407 10:48:38.388154 17183 solver.cpp:397] Test net output #1: loss = 2.81593 (* 1 = 2.81593 loss) +I0407 10:48:40.287773 17183 solver.cpp:218] Iteration 7860 (0.807624 iter/s, 14.8584s/12 iters), loss = 0.078988 +I0407 10:48:40.287979 17183 solver.cpp:237] Train net output #0: loss = 0.0789882 (* 1 = 0.0789882 loss) +I0407 10:48:40.287990 17183 sgd_solver.cpp:105] Iteration 7860, lr = 0.000625 +I0407 10:48:45.140177 17183 solver.cpp:218] Iteration 7872 (2.47314 iter/s, 4.85214s/12 iters), loss = 0.0448492 +I0407 10:48:45.140233 17183 solver.cpp:237] Train net output #0: loss = 0.0448494 (* 1 = 0.0448494 loss) +I0407 10:48:45.140241 17183 sgd_solver.cpp:105] Iteration 7872, lr = 0.000625 +I0407 10:48:50.121717 17183 solver.cpp:218] Iteration 7884 (2.40895 iter/s, 4.98142s/12 iters), loss = 0.104341 +I0407 10:48:50.121762 17183 solver.cpp:237] Train net output #0: loss = 0.104342 (* 1 = 0.104342 loss) +I0407 10:48:50.121769 17183 sgd_solver.cpp:105] Iteration 7884, lr = 0.000625 +I0407 10:48:52.357937 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:48:55.498816 17183 solver.cpp:218] Iteration 7896 (2.23173 iter/s, 5.37699s/12 iters), loss = 0.0966493 +I0407 10:48:55.498855 17183 solver.cpp:237] Train net output #0: loss = 0.0966495 (* 1 = 0.0966495 loss) +I0407 10:48:55.498863 17183 sgd_solver.cpp:105] Iteration 7896, lr = 0.000625 +I0407 10:49:00.888164 17183 solver.cpp:218] Iteration 7908 (2.22666 iter/s, 5.38924s/12 iters), loss = 0.174524 +I0407 10:49:00.888217 17183 solver.cpp:237] Train net output #0: loss = 0.174524 (* 1 = 0.174524 loss) +I0407 10:49:00.888228 17183 sgd_solver.cpp:105] Iteration 7908, lr = 0.000625 +I0407 10:49:06.021306 17183 solver.cpp:218] Iteration 7920 (2.3378 iter/s, 5.13302s/12 iters), loss = 0.0797732 +I0407 10:49:06.021350 17183 solver.cpp:237] Train net output #0: loss = 0.0797734 (* 1 = 0.0797734 loss) +I0407 10:49:06.021359 17183 sgd_solver.cpp:105] Iteration 7920, lr = 0.000625 +I0407 10:49:11.430550 17183 solver.cpp:218] Iteration 7932 (2.21847 iter/s, 5.40913s/12 iters), loss = 0.0859019 +I0407 10:49:11.430646 17183 solver.cpp:237] Train net output #0: loss = 0.0859021 (* 1 = 0.0859021 loss) +I0407 10:49:11.430655 17183 sgd_solver.cpp:105] Iteration 7932, lr = 0.000625 +I0407 10:49:16.786032 17183 solver.cpp:218] Iteration 7944 (2.24076 iter/s, 5.35531s/12 iters), loss = 0.0487056 +I0407 10:49:16.786077 17183 solver.cpp:237] Train net output #0: loss = 0.0487058 (* 1 = 0.0487058 loss) +I0407 10:49:16.786084 17183 sgd_solver.cpp:105] Iteration 7944, lr = 0.000625 +I0407 10:49:21.452817 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 10:49:24.503623 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 10:49:26.817879 17183 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 10:49:26.817898 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:49:28.062170 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:49:31.198323 17183 solver.cpp:397] Test net output #0: accuracy = 0.495098 +I0407 10:49:31.198352 17183 solver.cpp:397] Test net output #1: loss = 2.82778 (* 1 = 2.82778 loss) +I0407 10:49:31.339125 17183 solver.cpp:218] Iteration 7956 (0.824579 iter/s, 14.5529s/12 iters), loss = 0.127453 +I0407 10:49:31.340698 17183 solver.cpp:237] Train net output #0: loss = 0.127453 (* 1 = 0.127453 loss) +I0407 10:49:31.340709 17183 sgd_solver.cpp:105] Iteration 7956, lr = 0.000625 +I0407 10:49:35.823721 17183 solver.cpp:218] Iteration 7968 (2.6768 iter/s, 4.48297s/12 iters), loss = 0.120595 +I0407 10:49:35.823776 17183 solver.cpp:237] Train net output #0: loss = 0.120595 (* 1 = 0.120595 loss) +I0407 10:49:35.823786 17183 sgd_solver.cpp:105] Iteration 7968, lr = 0.000625 +I0407 10:49:40.780792 17183 solver.cpp:218] Iteration 7980 (2.42084 iter/s, 4.95695s/12 iters), loss = 0.0692724 +I0407 10:49:40.780854 17183 solver.cpp:237] Train net output #0: loss = 0.0692726 (* 1 = 0.0692726 loss) +I0407 10:49:40.780865 17183 sgd_solver.cpp:105] Iteration 7980, lr = 0.000625 +I0407 10:49:45.198104 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:49:45.981840 17183 solver.cpp:218] Iteration 7992 (2.30728 iter/s, 5.20092s/12 iters), loss = 0.129522 +I0407 10:49:45.981881 17183 solver.cpp:237] Train net output #0: loss = 0.129523 (* 1 = 0.129523 loss) +I0407 10:49:45.981889 17183 sgd_solver.cpp:105] Iteration 7992, lr = 0.000625 +I0407 10:49:51.093328 17183 solver.cpp:218] Iteration 8004 (2.3477 iter/s, 5.11138s/12 iters), loss = 0.0792974 +I0407 10:49:51.093376 17183 solver.cpp:237] Train net output #0: loss = 0.0792976 (* 1 = 0.0792976 loss) +I0407 10:49:51.093384 17183 sgd_solver.cpp:105] Iteration 8004, lr = 0.000625 +I0407 10:49:56.325394 17183 solver.cpp:218] Iteration 8016 (2.2936 iter/s, 5.23194s/12 iters), loss = 0.0774986 +I0407 10:49:56.325457 17183 solver.cpp:237] Train net output #0: loss = 0.0774988 (* 1 = 0.0774988 loss) +I0407 10:49:56.325467 17183 sgd_solver.cpp:105] Iteration 8016, lr = 0.000625 +I0407 10:50:01.581503 17183 solver.cpp:218] Iteration 8028 (2.28311 iter/s, 5.25598s/12 iters), loss = 0.0295496 +I0407 10:50:01.581549 17183 solver.cpp:237] Train net output #0: loss = 0.0295498 (* 1 = 0.0295498 loss) +I0407 10:50:01.581558 17183 sgd_solver.cpp:105] Iteration 8028, lr = 0.000625 +I0407 10:50:06.611490 17183 solver.cpp:218] Iteration 8040 (2.38574 iter/s, 5.02988s/12 iters), loss = 0.0258309 +I0407 10:50:06.611534 17183 solver.cpp:237] Train net output #0: loss = 0.0258311 (* 1 = 0.0258311 loss) +I0407 10:50:06.611541 17183 sgd_solver.cpp:105] Iteration 8040, lr = 0.000625 +I0407 10:50:11.823264 17183 solver.cpp:218] Iteration 8052 (2.30253 iter/s, 5.21166s/12 iters), loss = 0.0460411 +I0407 10:50:11.823312 17183 solver.cpp:237] Train net output #0: loss = 0.0460413 (* 1 = 0.0460413 loss) +I0407 10:50:11.823320 17183 sgd_solver.cpp:105] Iteration 8052, lr = 0.000625 +I0407 10:50:13.977751 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 10:50:16.990370 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 10:50:20.401538 17183 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 10:50:20.401561 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:50:21.626996 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:50:24.758708 17183 solver.cpp:397] Test net output #0: accuracy = 0.497549 +I0407 10:50:24.758745 17183 solver.cpp:397] Test net output #1: loss = 2.84237 (* 1 = 2.84237 loss) +I0407 10:50:26.748024 17183 solver.cpp:218] Iteration 8064 (0.804044 iter/s, 14.9245s/12 iters), loss = 0.0622957 +I0407 10:50:26.748066 17183 solver.cpp:237] Train net output #0: loss = 0.0622959 (* 1 = 0.0622959 loss) +I0407 10:50:26.748075 17183 sgd_solver.cpp:105] Iteration 8064, lr = 0.000625 +I0407 10:50:31.826516 17183 solver.cpp:218] Iteration 8076 (2.36296 iter/s, 5.07838s/12 iters), loss = 0.0563571 +I0407 10:50:31.826565 17183 solver.cpp:237] Train net output #0: loss = 0.0563574 (* 1 = 0.0563574 loss) +I0407 10:50:31.826575 17183 sgd_solver.cpp:105] Iteration 8076, lr = 0.000625 +I0407 10:50:36.995244 17183 solver.cpp:218] Iteration 8088 (2.32171 iter/s, 5.16861s/12 iters), loss = 0.0744766 +I0407 10:50:36.995292 17183 solver.cpp:237] Train net output #0: loss = 0.0744768 (* 1 = 0.0744768 loss) +I0407 10:50:36.995301 17183 sgd_solver.cpp:105] Iteration 8088, lr = 0.000625 +I0407 10:50:38.439569 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:50:42.146201 17183 solver.cpp:218] Iteration 8100 (2.32972 iter/s, 5.15084s/12 iters), loss = 0.0400681 +I0407 10:50:42.146248 17183 solver.cpp:237] Train net output #0: loss = 0.0400683 (* 1 = 0.0400683 loss) +I0407 10:50:42.146256 17183 sgd_solver.cpp:105] Iteration 8100, lr = 0.000625 +I0407 10:50:47.340406 17183 solver.cpp:218] Iteration 8112 (2.31032 iter/s, 5.19409s/12 iters), loss = 0.0472931 +I0407 10:50:47.340544 17183 solver.cpp:237] Train net output #0: loss = 0.0472933 (* 1 = 0.0472933 loss) +I0407 10:50:47.340553 17183 sgd_solver.cpp:105] Iteration 8112, lr = 0.000625 +I0407 10:50:52.622375 17183 solver.cpp:218] Iteration 8124 (2.27197 iter/s, 5.28176s/12 iters), loss = 0.148101 +I0407 10:50:52.622417 17183 solver.cpp:237] Train net output #0: loss = 0.148102 (* 1 = 0.148102 loss) +I0407 10:50:52.622426 17183 sgd_solver.cpp:105] Iteration 8124, lr = 0.000625 +I0407 10:50:57.906605 17183 solver.cpp:218] Iteration 8136 (2.27096 iter/s, 5.28412s/12 iters), loss = 0.0640443 +I0407 10:50:57.906666 17183 solver.cpp:237] Train net output #0: loss = 0.0640445 (* 1 = 0.0640445 loss) +I0407 10:50:57.906677 17183 sgd_solver.cpp:105] Iteration 8136, lr = 0.000625 +I0407 10:51:03.107659 17183 solver.cpp:218] Iteration 8148 (2.30728 iter/s, 5.20093s/12 iters), loss = 0.050891 +I0407 10:51:03.107702 17183 solver.cpp:237] Train net output #0: loss = 0.0508913 (* 1 = 0.0508913 loss) +I0407 10:51:03.107710 17183 sgd_solver.cpp:105] Iteration 8148, lr = 0.000625 +I0407 10:51:07.874775 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 10:51:12.605633 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 10:51:15.957407 17183 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 10:51:15.957429 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:51:17.103458 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:51:20.307984 17183 solver.cpp:397] Test net output #0: accuracy = 0.498774 +I0407 10:51:20.308212 17183 solver.cpp:397] Test net output #1: loss = 2.82267 (* 1 = 2.82267 loss) +I0407 10:51:20.446274 17183 solver.cpp:218] Iteration 8160 (0.692106 iter/s, 17.3384s/12 iters), loss = 0.0956313 +I0407 10:51:20.446318 17183 solver.cpp:237] Train net output #0: loss = 0.0956316 (* 1 = 0.0956316 loss) +I0407 10:51:20.446326 17183 sgd_solver.cpp:105] Iteration 8160, lr = 0.000625 +I0407 10:51:24.826339 17183 solver.cpp:218] Iteration 8172 (2.73975 iter/s, 4.37996s/12 iters), loss = 0.117277 +I0407 10:51:24.826401 17183 solver.cpp:237] Train net output #0: loss = 0.117277 (* 1 = 0.117277 loss) +I0407 10:51:24.826411 17183 sgd_solver.cpp:105] Iteration 8172, lr = 0.000625 +I0407 10:51:29.973881 17183 solver.cpp:218] Iteration 8184 (2.33127 iter/s, 5.14741s/12 iters), loss = 0.113563 +I0407 10:51:29.973943 17183 solver.cpp:237] Train net output #0: loss = 0.113563 (* 1 = 0.113563 loss) +I0407 10:51:29.973954 17183 sgd_solver.cpp:105] Iteration 8184, lr = 0.000625 +I0407 10:51:33.605048 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:51:35.136714 17183 solver.cpp:218] Iteration 8196 (2.32436 iter/s, 5.1627s/12 iters), loss = 0.149667 +I0407 10:51:35.136756 17183 solver.cpp:237] Train net output #0: loss = 0.149667 (* 1 = 0.149667 loss) +I0407 10:51:35.136765 17183 sgd_solver.cpp:105] Iteration 8196, lr = 0.000625 +I0407 10:51:40.204393 17183 solver.cpp:218] Iteration 8208 (2.368 iter/s, 5.06757s/12 iters), loss = 0.0947396 +I0407 10:51:40.204434 17183 solver.cpp:237] Train net output #0: loss = 0.0947399 (* 1 = 0.0947399 loss) +I0407 10:51:40.204442 17183 sgd_solver.cpp:105] Iteration 8208, lr = 0.000625 +I0407 10:51:45.444911 17183 solver.cpp:218] Iteration 8220 (2.28991 iter/s, 5.24038s/12 iters), loss = 0.0526855 +I0407 10:51:45.444957 17183 solver.cpp:237] Train net output #0: loss = 0.0526857 (* 1 = 0.0526857 loss) +I0407 10:51:45.444963 17183 sgd_solver.cpp:105] Iteration 8220, lr = 0.000625 +I0407 10:51:50.816505 17183 solver.cpp:218] Iteration 8232 (2.23402 iter/s, 5.37148s/12 iters), loss = 0.0731491 +I0407 10:51:50.816644 17183 solver.cpp:237] Train net output #0: loss = 0.0731494 (* 1 = 0.0731494 loss) +I0407 10:51:50.816653 17183 sgd_solver.cpp:105] Iteration 8232, lr = 0.000625 +I0407 10:51:56.018822 17183 solver.cpp:218] Iteration 8244 (2.30676 iter/s, 5.20211s/12 iters), loss = 0.0383172 +I0407 10:51:56.018877 17183 solver.cpp:237] Train net output #0: loss = 0.0383175 (* 1 = 0.0383175 loss) +I0407 10:51:56.018887 17183 sgd_solver.cpp:105] Iteration 8244, lr = 0.000625 +I0407 10:52:00.987519 17183 solver.cpp:218] Iteration 8256 (2.41518 iter/s, 4.96858s/12 iters), loss = 0.0581677 +I0407 10:52:00.987565 17183 solver.cpp:237] Train net output #0: loss = 0.0581679 (* 1 = 0.0581679 loss) +I0407 10:52:00.987573 17183 sgd_solver.cpp:105] Iteration 8256, lr = 0.000625 +I0407 10:52:03.046933 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 10:52:07.100895 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 10:52:10.145215 17183 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 10:52:10.145236 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:52:11.238119 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:52:14.447471 17183 solver.cpp:397] Test net output #0: accuracy = 0.496936 +I0407 10:52:14.447510 17183 solver.cpp:397] Test net output #1: loss = 2.8008 (* 1 = 2.8008 loss) +I0407 10:52:16.222399 17183 solver.cpp:218] Iteration 8268 (0.787678 iter/s, 15.2347s/12 iters), loss = 0.0581801 +I0407 10:52:16.222457 17183 solver.cpp:237] Train net output #0: loss = 0.0581804 (* 1 = 0.0581804 loss) +I0407 10:52:16.222467 17183 sgd_solver.cpp:105] Iteration 8268, lr = 0.000625 +I0407 10:52:21.420068 17183 solver.cpp:218] Iteration 8280 (2.30878 iter/s, 5.19754s/12 iters), loss = 0.0568836 +I0407 10:52:21.420161 17183 solver.cpp:237] Train net output #0: loss = 0.0568839 (* 1 = 0.0568839 loss) +I0407 10:52:21.420171 17183 sgd_solver.cpp:105] Iteration 8280, lr = 0.000625 +I0407 10:52:26.687366 17183 solver.cpp:218] Iteration 8292 (2.27828 iter/s, 5.26714s/12 iters), loss = 0.0713823 +I0407 10:52:26.687408 17183 solver.cpp:237] Train net output #0: loss = 0.0713825 (* 1 = 0.0713825 loss) +I0407 10:52:26.687415 17183 sgd_solver.cpp:105] Iteration 8292, lr = 0.000625 +I0407 10:52:27.290712 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:52:31.662210 17183 solver.cpp:218] Iteration 8304 (2.41219 iter/s, 4.97474s/12 iters), loss = 0.122087 +I0407 10:52:31.662250 17183 solver.cpp:237] Train net output #0: loss = 0.122087 (* 1 = 0.122087 loss) +I0407 10:52:31.662257 17183 sgd_solver.cpp:105] Iteration 8304, lr = 0.000625 +I0407 10:52:34.559530 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:52:36.845928 17183 solver.cpp:218] Iteration 8316 (2.31499 iter/s, 5.18361s/12 iters), loss = 0.121684 +I0407 10:52:36.845983 17183 solver.cpp:237] Train net output #0: loss = 0.121684 (* 1 = 0.121684 loss) +I0407 10:52:36.845993 17183 sgd_solver.cpp:105] Iteration 8316, lr = 0.000625 +I0407 10:52:42.135859 17183 solver.cpp:218] Iteration 8328 (2.26851 iter/s, 5.28981s/12 iters), loss = 0.133001 +I0407 10:52:42.135910 17183 solver.cpp:237] Train net output #0: loss = 0.133001 (* 1 = 0.133001 loss) +I0407 10:52:42.135918 17183 sgd_solver.cpp:105] Iteration 8328, lr = 0.000625 +I0407 10:52:47.208473 17183 solver.cpp:218] Iteration 8340 (2.3657 iter/s, 5.0725s/12 iters), loss = 0.0221935 +I0407 10:52:47.208513 17183 solver.cpp:237] Train net output #0: loss = 0.0221938 (* 1 = 0.0221938 loss) +I0407 10:52:47.208519 17183 sgd_solver.cpp:105] Iteration 8340, lr = 0.000625 +I0407 10:52:52.299271 17183 solver.cpp:218] Iteration 8352 (2.35725 iter/s, 5.09069s/12 iters), loss = 0.123597 +I0407 10:52:52.299425 17183 solver.cpp:237] Train net output #0: loss = 0.123598 (* 1 = 0.123598 loss) +I0407 10:52:52.299436 17183 sgd_solver.cpp:105] Iteration 8352, lr = 0.000625 +I0407 10:52:56.922571 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 10:53:00.748839 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 10:53:03.065932 17183 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 10:53:03.065949 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:53:04.218346 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:53:07.447512 17183 solver.cpp:397] Test net output #0: accuracy = 0.491422 +I0407 10:53:07.447551 17183 solver.cpp:397] Test net output #1: loss = 2.81816 (* 1 = 2.81816 loss) +I0407 10:53:07.589078 17183 solver.cpp:218] Iteration 8364 (0.784853 iter/s, 15.2895s/12 iters), loss = 0.0855221 +I0407 10:53:07.590648 17183 solver.cpp:237] Train net output #0: loss = 0.0855224 (* 1 = 0.0855224 loss) +I0407 10:53:07.590660 17183 sgd_solver.cpp:105] Iteration 8364, lr = 0.000625 +I0407 10:53:11.805603 17183 solver.cpp:218] Iteration 8376 (2.84704 iter/s, 4.21491s/12 iters), loss = 0.221027 +I0407 10:53:11.805649 17183 solver.cpp:237] Train net output #0: loss = 0.221028 (* 1 = 0.221028 loss) +I0407 10:53:11.805656 17183 sgd_solver.cpp:105] Iteration 8376, lr = 0.000625 +I0407 10:53:16.873870 17183 solver.cpp:218] Iteration 8388 (2.36773 iter/s, 5.06815s/12 iters), loss = 0.101348 +I0407 10:53:16.873914 17183 solver.cpp:237] Train net output #0: loss = 0.101348 (* 1 = 0.101348 loss) +I0407 10:53:16.873922 17183 sgd_solver.cpp:105] Iteration 8388, lr = 0.000625 +I0407 10:53:19.682777 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:53:22.020473 17183 solver.cpp:218] Iteration 8400 (2.33169 iter/s, 5.14649s/12 iters), loss = 0.0967995 +I0407 10:53:22.020519 17183 solver.cpp:237] Train net output #0: loss = 0.0967998 (* 1 = 0.0967998 loss) +I0407 10:53:22.020526 17183 sgd_solver.cpp:105] Iteration 8400, lr = 0.000625 +I0407 10:53:27.061833 17183 solver.cpp:218] Iteration 8412 (2.38037 iter/s, 5.04124s/12 iters), loss = 0.164131 +I0407 10:53:27.061933 17183 solver.cpp:237] Train net output #0: loss = 0.164131 (* 1 = 0.164131 loss) +I0407 10:53:27.061941 17183 sgd_solver.cpp:105] Iteration 8412, lr = 0.000625 +I0407 10:53:32.262173 17183 solver.cpp:218] Iteration 8424 (2.30762 iter/s, 5.20017s/12 iters), loss = 0.104581 +I0407 10:53:32.262225 17183 solver.cpp:237] Train net output #0: loss = 0.104581 (* 1 = 0.104581 loss) +I0407 10:53:32.262235 17183 sgd_solver.cpp:105] Iteration 8424, lr = 0.000625 +I0407 10:53:37.488566 17183 solver.cpp:218] Iteration 8436 (2.29609 iter/s, 5.22627s/12 iters), loss = 0.0887682 +I0407 10:53:37.488622 17183 solver.cpp:237] Train net output #0: loss = 0.0887685 (* 1 = 0.0887685 loss) +I0407 10:53:37.488632 17183 sgd_solver.cpp:105] Iteration 8436, lr = 0.000625 +I0407 10:53:42.586324 17183 solver.cpp:218] Iteration 8448 (2.35404 iter/s, 5.09763s/12 iters), loss = 0.0333019 +I0407 10:53:42.586385 17183 solver.cpp:237] Train net output #0: loss = 0.0333022 (* 1 = 0.0333022 loss) +I0407 10:53:42.586396 17183 sgd_solver.cpp:105] Iteration 8448, lr = 0.000625 +I0407 10:53:47.740259 17183 solver.cpp:218] Iteration 8460 (2.32838 iter/s, 5.15381s/12 iters), loss = 0.086842 +I0407 10:53:47.740305 17183 solver.cpp:237] Train net output #0: loss = 0.0868423 (* 1 = 0.0868423 loss) +I0407 10:53:47.740314 17183 sgd_solver.cpp:105] Iteration 8460, lr = 0.000625 +I0407 10:53:49.992254 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 10:53:52.945000 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 10:53:55.287552 17183 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 10:53:55.287572 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:53:56.407876 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:53:59.684511 17183 solver.cpp:397] Test net output #0: accuracy = 0.496936 +I0407 10:53:59.684650 17183 solver.cpp:397] Test net output #1: loss = 2.82864 (* 1 = 2.82864 loss) +I0407 10:54:01.585420 17183 solver.cpp:218] Iteration 8472 (0.866741 iter/s, 13.845s/12 iters), loss = 0.0716025 +I0407 10:54:01.585461 17183 solver.cpp:237] Train net output #0: loss = 0.0716028 (* 1 = 0.0716028 loss) +I0407 10:54:01.585469 17183 sgd_solver.cpp:105] Iteration 8472, lr = 0.000625 +I0407 10:54:06.616379 17183 solver.cpp:218] Iteration 8484 (2.38528 iter/s, 5.03085s/12 iters), loss = 0.0846204 +I0407 10:54:06.616425 17183 solver.cpp:237] Train net output #0: loss = 0.0846207 (* 1 = 0.0846207 loss) +I0407 10:54:06.616432 17183 sgd_solver.cpp:105] Iteration 8484, lr = 0.000625 +I0407 10:54:11.835515 17183 solver.cpp:218] Iteration 8496 (2.29928 iter/s, 5.21902s/12 iters), loss = 0.0762481 +I0407 10:54:11.835561 17183 solver.cpp:237] Train net output #0: loss = 0.0762484 (* 1 = 0.0762484 loss) +I0407 10:54:11.835568 17183 sgd_solver.cpp:105] Iteration 8496, lr = 0.000625 +I0407 10:54:11.871704 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:54:16.998478 17183 solver.cpp:218] Iteration 8508 (2.3243 iter/s, 5.16285s/12 iters), loss = 0.272719 +I0407 10:54:16.998522 17183 solver.cpp:237] Train net output #0: loss = 0.272719 (* 1 = 0.272719 loss) +I0407 10:54:16.998529 17183 sgd_solver.cpp:105] Iteration 8508, lr = 0.000625 +I0407 10:54:22.209151 17183 solver.cpp:218] Iteration 8520 (2.30302 iter/s, 5.21056s/12 iters), loss = 0.0406908 +I0407 10:54:22.209199 17183 solver.cpp:237] Train net output #0: loss = 0.0406911 (* 1 = 0.0406911 loss) +I0407 10:54:22.209211 17183 sgd_solver.cpp:105] Iteration 8520, lr = 0.000625 +I0407 10:54:27.392156 17183 solver.cpp:218] Iteration 8532 (2.31531 iter/s, 5.18288s/12 iters), loss = 0.0479939 +I0407 10:54:27.392207 17183 solver.cpp:237] Train net output #0: loss = 0.0479942 (* 1 = 0.0479942 loss) +I0407 10:54:27.392216 17183 sgd_solver.cpp:105] Iteration 8532, lr = 0.000625 +I0407 10:54:32.574036 17183 solver.cpp:218] Iteration 8544 (2.31582 iter/s, 5.18176s/12 iters), loss = 0.0673806 +I0407 10:54:32.574159 17183 solver.cpp:237] Train net output #0: loss = 0.0673809 (* 1 = 0.0673809 loss) +I0407 10:54:32.574170 17183 sgd_solver.cpp:105] Iteration 8544, lr = 0.000625 +I0407 10:54:37.842453 17183 solver.cpp:218] Iteration 8556 (2.27781 iter/s, 5.26822s/12 iters), loss = 0.0798057 +I0407 10:54:37.842515 17183 solver.cpp:237] Train net output #0: loss = 0.079806 (* 1 = 0.079806 loss) +I0407 10:54:37.842525 17183 sgd_solver.cpp:105] Iteration 8556, lr = 0.000625 +I0407 10:54:42.541260 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 10:54:45.540438 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 10:54:47.836719 17183 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 10:54:47.836740 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:54:48.833452 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:54:52.118090 17183 solver.cpp:397] Test net output #0: accuracy = 0.501838 +I0407 10:54:52.118132 17183 solver.cpp:397] Test net output #1: loss = 2.79541 (* 1 = 2.79541 loss) +I0407 10:54:52.255467 17183 solver.cpp:218] Iteration 8568 (0.832594 iter/s, 14.4128s/12 iters), loss = 0.0899906 +I0407 10:54:52.255511 17183 solver.cpp:237] Train net output #0: loss = 0.0899909 (* 1 = 0.0899909 loss) +I0407 10:54:52.255518 17183 sgd_solver.cpp:105] Iteration 8568, lr = 0.000625 +I0407 10:54:56.547456 17183 solver.cpp:218] Iteration 8580 (2.79598 iter/s, 4.29188s/12 iters), loss = 0.0689557 +I0407 10:54:56.547514 17183 solver.cpp:237] Train net output #0: loss = 0.068956 (* 1 = 0.068956 loss) +I0407 10:54:56.547525 17183 sgd_solver.cpp:105] Iteration 8580, lr = 0.000625 +I0407 10:55:01.651691 17183 solver.cpp:218] Iteration 8592 (2.35105 iter/s, 5.10411s/12 iters), loss = 0.11646 +I0407 10:55:01.651747 17183 solver.cpp:237] Train net output #0: loss = 0.116461 (* 1 = 0.116461 loss) +I0407 10:55:01.651758 17183 sgd_solver.cpp:105] Iteration 8592, lr = 0.000625 +I0407 10:55:03.846390 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:55:06.827105 17183 solver.cpp:218] Iteration 8604 (2.31871 iter/s, 5.17529s/12 iters), loss = 0.0802505 +I0407 10:55:06.827157 17183 solver.cpp:237] Train net output #0: loss = 0.0802509 (* 1 = 0.0802509 loss) +I0407 10:55:06.827168 17183 sgd_solver.cpp:105] Iteration 8604, lr = 0.000625 +I0407 10:55:12.053822 17183 solver.cpp:218] Iteration 8616 (2.29595 iter/s, 5.2266s/12 iters), loss = 0.0748164 +I0407 10:55:12.053875 17183 solver.cpp:237] Train net output #0: loss = 0.0748167 (* 1 = 0.0748167 loss) +I0407 10:55:12.053885 17183 sgd_solver.cpp:105] Iteration 8616, lr = 0.000625 +I0407 10:55:17.379108 17183 solver.cpp:218] Iteration 8628 (2.25345 iter/s, 5.32516s/12 iters), loss = 0.0539216 +I0407 10:55:17.379151 17183 solver.cpp:237] Train net output #0: loss = 0.0539219 (* 1 = 0.0539219 loss) +I0407 10:55:17.379158 17183 sgd_solver.cpp:105] Iteration 8628, lr = 0.000625 +I0407 10:55:22.464814 17183 solver.cpp:218] Iteration 8640 (2.35961 iter/s, 5.0856s/12 iters), loss = 0.0516931 +I0407 10:55:22.464862 17183 solver.cpp:237] Train net output #0: loss = 0.0516934 (* 1 = 0.0516934 loss) +I0407 10:55:22.464871 17183 sgd_solver.cpp:105] Iteration 8640, lr = 0.000625 +I0407 10:55:27.585688 17183 solver.cpp:218] Iteration 8652 (2.3434 iter/s, 5.12076s/12 iters), loss = 0.115303 +I0407 10:55:27.585726 17183 solver.cpp:237] Train net output #0: loss = 0.115303 (* 1 = 0.115303 loss) +I0407 10:55:27.585732 17183 sgd_solver.cpp:105] Iteration 8652, lr = 0.000625 +I0407 10:55:32.787847 17183 solver.cpp:218] Iteration 8664 (2.30678 iter/s, 5.20205s/12 iters), loss = 0.0426769 +I0407 10:55:32.787890 17183 solver.cpp:237] Train net output #0: loss = 0.0426772 (* 1 = 0.0426772 loss) +I0407 10:55:32.787897 17183 sgd_solver.cpp:105] Iteration 8664, lr = 0.000625 +I0407 10:55:34.909842 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 10:55:37.914333 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 10:55:40.250905 17183 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 10:55:40.250933 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:55:41.212442 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:55:44.613659 17183 solver.cpp:397] Test net output #0: accuracy = 0.492034 +I0407 10:55:44.613696 17183 solver.cpp:397] Test net output #1: loss = 2.84157 (* 1 = 2.84157 loss) +I0407 10:55:46.489437 17183 solver.cpp:218] Iteration 8676 (0.875823 iter/s, 13.7014s/12 iters), loss = 0.0562081 +I0407 10:55:46.489478 17183 solver.cpp:237] Train net output #0: loss = 0.0562084 (* 1 = 0.0562084 loss) +I0407 10:55:46.489485 17183 sgd_solver.cpp:105] Iteration 8676, lr = 0.000625 +I0407 10:55:51.606194 17183 solver.cpp:218] Iteration 8688 (2.34528 iter/s, 5.11665s/12 iters), loss = 0.059537 +I0407 10:55:51.606241 17183 solver.cpp:237] Train net output #0: loss = 0.0595373 (* 1 = 0.0595373 loss) +I0407 10:55:51.606249 17183 sgd_solver.cpp:105] Iteration 8688, lr = 0.000625 +I0407 10:55:55.971415 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:55:56.703048 17183 solver.cpp:218] Iteration 8700 (2.35445 iter/s, 5.09673s/12 iters), loss = 0.115664 +I0407 10:55:56.703114 17183 solver.cpp:237] Train net output #0: loss = 0.115665 (* 1 = 0.115665 loss) +I0407 10:55:56.703125 17183 sgd_solver.cpp:105] Iteration 8700, lr = 0.000625 +I0407 10:56:01.929777 17183 solver.cpp:218] Iteration 8712 (2.29595 iter/s, 5.2266s/12 iters), loss = 0.0628223 +I0407 10:56:01.929826 17183 solver.cpp:237] Train net output #0: loss = 0.0628226 (* 1 = 0.0628226 loss) +I0407 10:56:01.929836 17183 sgd_solver.cpp:105] Iteration 8712, lr = 0.000625 +I0407 10:56:07.209653 17183 solver.cpp:218] Iteration 8724 (2.27283 iter/s, 5.27976s/12 iters), loss = 0.0883033 +I0407 10:56:07.209811 17183 solver.cpp:237] Train net output #0: loss = 0.0883036 (* 1 = 0.0883036 loss) +I0407 10:56:07.209822 17183 sgd_solver.cpp:105] Iteration 8724, lr = 0.000625 +I0407 10:56:12.428586 17183 solver.cpp:218] Iteration 8736 (2.29942 iter/s, 5.21871s/12 iters), loss = 0.103778 +I0407 10:56:12.428632 17183 solver.cpp:237] Train net output #0: loss = 0.103778 (* 1 = 0.103778 loss) +I0407 10:56:12.428642 17183 sgd_solver.cpp:105] Iteration 8736, lr = 0.000625 +I0407 10:56:17.809468 17183 solver.cpp:218] Iteration 8748 (2.23017 iter/s, 5.38076s/12 iters), loss = 0.0907561 +I0407 10:56:17.809511 17183 solver.cpp:237] Train net output #0: loss = 0.0907564 (* 1 = 0.0907564 loss) +I0407 10:56:17.809518 17183 sgd_solver.cpp:105] Iteration 8748, lr = 0.000625 +I0407 10:56:23.102252 17183 solver.cpp:218] Iteration 8760 (2.26729 iter/s, 5.29267s/12 iters), loss = 0.126445 +I0407 10:56:23.102289 17183 solver.cpp:237] Train net output #0: loss = 0.126445 (* 1 = 0.126445 loss) +I0407 10:56:23.102296 17183 sgd_solver.cpp:105] Iteration 8760, lr = 0.000625 +I0407 10:56:27.709012 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 10:56:31.531308 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 10:56:34.155480 17183 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 10:56:34.155504 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:56:35.147351 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:56:38.671772 17183 solver.cpp:397] Test net output #0: accuracy = 0.49326 +I0407 10:56:38.671877 17183 solver.cpp:397] Test net output #1: loss = 2.84669 (* 1 = 2.84669 loss) +I0407 10:56:38.807230 17183 solver.cpp:218] Iteration 8772 (0.764099 iter/s, 15.7048s/12 iters), loss = 0.0766443 +I0407 10:56:38.807296 17183 solver.cpp:237] Train net output #0: loss = 0.0766446 (* 1 = 0.0766446 loss) +I0407 10:56:38.807305 17183 sgd_solver.cpp:105] Iteration 8772, lr = 0.000625 +I0407 10:56:43.136296 17183 solver.cpp:218] Iteration 8784 (2.77204 iter/s, 4.32895s/12 iters), loss = 0.0911338 +I0407 10:56:43.136338 17183 solver.cpp:237] Train net output #0: loss = 0.0911341 (* 1 = 0.0911341 loss) +I0407 10:56:43.136345 17183 sgd_solver.cpp:105] Iteration 8784, lr = 0.000625 +I0407 10:56:48.126014 17183 solver.cpp:218] Iteration 8796 (2.405 iter/s, 4.98961s/12 iters), loss = 0.108596 +I0407 10:56:48.126072 17183 solver.cpp:237] Train net output #0: loss = 0.108596 (* 1 = 0.108596 loss) +I0407 10:56:48.126082 17183 sgd_solver.cpp:105] Iteration 8796, lr = 0.000625 +I0407 10:56:49.551486 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:56:53.270771 17183 solver.cpp:218] Iteration 8808 (2.33253 iter/s, 5.14463s/12 iters), loss = 0.0430252 +I0407 10:56:53.270826 17183 solver.cpp:237] Train net output #0: loss = 0.0430255 (* 1 = 0.0430255 loss) +I0407 10:56:53.270836 17183 sgd_solver.cpp:105] Iteration 8808, lr = 0.000625 +I0407 10:56:58.451680 17183 solver.cpp:218] Iteration 8820 (2.31625 iter/s, 5.18079s/12 iters), loss = 0.0830306 +I0407 10:56:58.451722 17183 solver.cpp:237] Train net output #0: loss = 0.0830309 (* 1 = 0.0830309 loss) +I0407 10:56:58.451730 17183 sgd_solver.cpp:105] Iteration 8820, lr = 0.000625 +I0407 10:57:03.571573 17183 solver.cpp:218] Iteration 8832 (2.34385 iter/s, 5.11978s/12 iters), loss = 0.10723 +I0407 10:57:03.571617 17183 solver.cpp:237] Train net output #0: loss = 0.107231 (* 1 = 0.107231 loss) +I0407 10:57:03.571625 17183 sgd_solver.cpp:105] Iteration 8832, lr = 0.000625 +I0407 10:57:08.783054 17183 solver.cpp:218] Iteration 8844 (2.30266 iter/s, 5.21137s/12 iters), loss = 0.0618417 +I0407 10:57:08.783185 17183 solver.cpp:237] Train net output #0: loss = 0.061842 (* 1 = 0.061842 loss) +I0407 10:57:08.783193 17183 sgd_solver.cpp:105] Iteration 8844, lr = 0.000625 +I0407 10:57:13.892057 17183 solver.cpp:218] Iteration 8856 (2.34888 iter/s, 5.10881s/12 iters), loss = 0.0426024 +I0407 10:57:13.892100 17183 solver.cpp:237] Train net output #0: loss = 0.0426027 (* 1 = 0.0426027 loss) +I0407 10:57:13.892107 17183 sgd_solver.cpp:105] Iteration 8856, lr = 0.000625 +I0407 10:57:19.135627 17183 solver.cpp:218] Iteration 8868 (2.28857 iter/s, 5.24346s/12 iters), loss = 0.115248 +I0407 10:57:19.135672 17183 solver.cpp:237] Train net output #0: loss = 0.115248 (* 1 = 0.115248 loss) +I0407 10:57:19.135680 17183 sgd_solver.cpp:105] Iteration 8868, lr = 0.000625 +I0407 10:57:21.197113 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 10:57:24.214674 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 10:57:26.516913 17183 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 10:57:26.516932 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:57:27.435693 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:57:30.894924 17183 solver.cpp:397] Test net output #0: accuracy = 0.496936 +I0407 10:57:30.894964 17183 solver.cpp:397] Test net output #1: loss = 2.84499 (* 1 = 2.84499 loss) +I0407 10:57:32.728359 17183 solver.cpp:218] Iteration 8880 (0.882838 iter/s, 13.5925s/12 iters), loss = 0.0606245 +I0407 10:57:32.728415 17183 solver.cpp:237] Train net output #0: loss = 0.0606248 (* 1 = 0.0606248 loss) +I0407 10:57:32.728425 17183 sgd_solver.cpp:105] Iteration 8880, lr = 0.000625 +I0407 10:57:37.862569 17183 solver.cpp:218] Iteration 8892 (2.33732 iter/s, 5.13409s/12 iters), loss = 0.0726081 +I0407 10:57:37.862615 17183 solver.cpp:237] Train net output #0: loss = 0.0726084 (* 1 = 0.0726084 loss) +I0407 10:57:37.862623 17183 sgd_solver.cpp:105] Iteration 8892, lr = 0.000625 +I0407 10:57:41.501886 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:57:42.948820 17183 solver.cpp:218] Iteration 8904 (2.35935 iter/s, 5.08614s/12 iters), loss = 0.0477114 +I0407 10:57:42.948863 17183 solver.cpp:237] Train net output #0: loss = 0.0477117 (* 1 = 0.0477117 loss) +I0407 10:57:42.948870 17183 sgd_solver.cpp:105] Iteration 8904, lr = 0.000625 +I0407 10:57:47.981956 17183 solver.cpp:218] Iteration 8916 (2.38425 iter/s, 5.03302s/12 iters), loss = 0.0786811 +I0407 10:57:47.982007 17183 solver.cpp:237] Train net output #0: loss = 0.0786814 (* 1 = 0.0786814 loss) +I0407 10:57:47.982017 17183 sgd_solver.cpp:105] Iteration 8916, lr = 0.000625 +I0407 10:57:53.224943 17183 solver.cpp:218] Iteration 8928 (2.28882 iter/s, 5.24287s/12 iters), loss = 0.0316718 +I0407 10:57:53.224987 17183 solver.cpp:237] Train net output #0: loss = 0.0316721 (* 1 = 0.0316721 loss) +I0407 10:57:53.224993 17183 sgd_solver.cpp:105] Iteration 8928, lr = 0.000625 +I0407 10:57:58.405278 17183 solver.cpp:218] Iteration 8940 (2.3165 iter/s, 5.18022s/12 iters), loss = 0.0681814 +I0407 10:57:58.405330 17183 solver.cpp:237] Train net output #0: loss = 0.0681816 (* 1 = 0.0681816 loss) +I0407 10:57:58.405339 17183 sgd_solver.cpp:105] Iteration 8940, lr = 0.000625 +I0407 10:58:03.544909 17183 solver.cpp:218] Iteration 8952 (2.33486 iter/s, 5.1395s/12 iters), loss = 0.0360047 +I0407 10:58:03.544953 17183 solver.cpp:237] Train net output #0: loss = 0.036005 (* 1 = 0.036005 loss) +I0407 10:58:03.544961 17183 sgd_solver.cpp:105] Iteration 8952, lr = 0.000625 +I0407 10:58:08.531267 17183 solver.cpp:218] Iteration 8964 (2.40662 iter/s, 4.98625s/12 iters), loss = 0.141451 +I0407 10:58:08.531317 17183 solver.cpp:237] Train net output #0: loss = 0.141451 (* 1 = 0.141451 loss) +I0407 10:58:08.531327 17183 sgd_solver.cpp:105] Iteration 8964, lr = 0.000625 +I0407 10:58:12.998548 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 10:58:16.066444 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 10:58:18.423681 17183 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 10:58:18.423703 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:58:19.258040 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:58:22.743201 17183 solver.cpp:397] Test net output #0: accuracy = 0.497549 +I0407 10:58:22.743238 17183 solver.cpp:397] Test net output #1: loss = 2.83794 (* 1 = 2.83794 loss) +I0407 10:58:22.884630 17183 solver.cpp:218] Iteration 8976 (0.836053 iter/s, 14.3532s/12 iters), loss = 0.0461502 +I0407 10:58:22.884697 17183 solver.cpp:237] Train net output #0: loss = 0.0461504 (* 1 = 0.0461504 loss) +I0407 10:58:22.884706 17183 sgd_solver.cpp:105] Iteration 8976, lr = 0.000625 +I0407 10:58:27.154700 17183 solver.cpp:218] Iteration 8988 (2.81034 iter/s, 4.26994s/12 iters), loss = 0.0458021 +I0407 10:58:27.154747 17183 solver.cpp:237] Train net output #0: loss = 0.0458024 (* 1 = 0.0458024 loss) +I0407 10:58:27.154753 17183 sgd_solver.cpp:105] Iteration 8988, lr = 0.000625 +I0407 10:58:30.456094 17183 blocking_queue.cpp:49] Waiting for data +I0407 10:58:32.284741 17183 solver.cpp:218] Iteration 9000 (2.33922 iter/s, 5.12993s/12 iters), loss = 0.19601 +I0407 10:58:32.284786 17183 solver.cpp:237] Train net output #0: loss = 0.19601 (* 1 = 0.19601 loss) +I0407 10:58:32.284795 17183 sgd_solver.cpp:105] Iteration 9000, lr = 0.000625 +I0407 10:58:33.124868 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:58:37.696902 17183 solver.cpp:218] Iteration 9012 (2.21728 iter/s, 5.41204s/12 iters), loss = 0.0205743 +I0407 10:58:37.696944 17183 solver.cpp:237] Train net output #0: loss = 0.0205745 (* 1 = 0.0205745 loss) +I0407 10:58:37.696950 17183 sgd_solver.cpp:105] Iteration 9012, lr = 0.000625 +I0407 10:58:42.939730 17183 solver.cpp:218] Iteration 9024 (2.28889 iter/s, 5.24272s/12 iters), loss = 0.111482 +I0407 10:58:42.939792 17183 solver.cpp:237] Train net output #0: loss = 0.111482 (* 1 = 0.111482 loss) +I0407 10:58:42.939802 17183 sgd_solver.cpp:105] Iteration 9024, lr = 0.000625 +I0407 10:58:48.194247 17183 solver.cpp:218] Iteration 9036 (2.28381 iter/s, 5.25438s/12 iters), loss = 0.0408824 +I0407 10:58:48.194411 17183 solver.cpp:237] Train net output #0: loss = 0.0408826 (* 1 = 0.0408826 loss) +I0407 10:58:48.194422 17183 sgd_solver.cpp:105] Iteration 9036, lr = 0.000625 +I0407 10:58:53.407296 17183 solver.cpp:218] Iteration 9048 (2.30202 iter/s, 5.21282s/12 iters), loss = 0.0492892 +I0407 10:58:53.407339 17183 solver.cpp:237] Train net output #0: loss = 0.0492895 (* 1 = 0.0492895 loss) +I0407 10:58:53.407346 17183 sgd_solver.cpp:105] Iteration 9048, lr = 0.000625 +I0407 10:58:58.658058 17183 solver.cpp:218] Iteration 9060 (2.28543 iter/s, 5.25066s/12 iters), loss = 0.0474904 +I0407 10:58:58.658094 17183 solver.cpp:237] Train net output #0: loss = 0.0474906 (* 1 = 0.0474906 loss) +I0407 10:58:58.658102 17183 sgd_solver.cpp:105] Iteration 9060, lr = 0.000625 +I0407 10:59:03.911315 17183 solver.cpp:218] Iteration 9072 (2.28434 iter/s, 5.25315s/12 iters), loss = 0.0687165 +I0407 10:59:03.911365 17183 solver.cpp:237] Train net output #0: loss = 0.0687168 (* 1 = 0.0687168 loss) +I0407 10:59:03.911372 17183 sgd_solver.cpp:105] Iteration 9072, lr = 0.000625 +I0407 10:59:05.837116 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 10:59:08.860743 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 10:59:11.201076 17183 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 10:59:11.201100 17183 net.cpp:676] Ignoring source layer train-data +I0407 10:59:12.027361 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:59:15.559492 17183 solver.cpp:397] Test net output #0: accuracy = 0.5 +I0407 10:59:15.559530 17183 solver.cpp:397] Test net output #1: loss = 2.8534 (* 1 = 2.8534 loss) +I0407 10:59:17.404902 17183 solver.cpp:218] Iteration 9084 (0.889325 iter/s, 13.4934s/12 iters), loss = 0.0725912 +I0407 10:59:17.404958 17183 solver.cpp:237] Train net output #0: loss = 0.0725915 (* 1 = 0.0725915 loss) +I0407 10:59:17.404968 17183 sgd_solver.cpp:105] Iteration 9084, lr = 0.000625 +I0407 10:59:22.635094 17183 solver.cpp:218] Iteration 9096 (2.29443 iter/s, 5.23007s/12 iters), loss = 0.0357006 +I0407 10:59:22.635548 17183 solver.cpp:237] Train net output #0: loss = 0.0357008 (* 1 = 0.0357008 loss) +I0407 10:59:22.635560 17183 sgd_solver.cpp:105] Iteration 9096, lr = 0.000625 +I0407 10:59:25.535604 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 10:59:27.700920 17183 solver.cpp:218] Iteration 9108 (2.36906 iter/s, 5.06531s/12 iters), loss = 0.0576347 +I0407 10:59:27.700971 17183 solver.cpp:237] Train net output #0: loss = 0.0576349 (* 1 = 0.0576349 loss) +I0407 10:59:27.700981 17183 sgd_solver.cpp:105] Iteration 9108, lr = 0.000625 +I0407 10:59:32.913882 17183 solver.cpp:218] Iteration 9120 (2.30201 iter/s, 5.21284s/12 iters), loss = 0.115841 +I0407 10:59:32.913928 17183 solver.cpp:237] Train net output #0: loss = 0.115842 (* 1 = 0.115842 loss) +I0407 10:59:32.913934 17183 sgd_solver.cpp:105] Iteration 9120, lr = 0.000625 +I0407 10:59:38.099220 17183 solver.cpp:218] Iteration 9132 (2.31427 iter/s, 5.18523s/12 iters), loss = 0.119416 +I0407 10:59:38.099267 17183 solver.cpp:237] Train net output #0: loss = 0.119416 (* 1 = 0.119416 loss) +I0407 10:59:38.099273 17183 sgd_solver.cpp:105] Iteration 9132, lr = 0.000625 +I0407 10:59:43.304898 17183 solver.cpp:218] Iteration 9144 (2.30523 iter/s, 5.20556s/12 iters), loss = 0.0767432 +I0407 10:59:43.304935 17183 solver.cpp:237] Train net output #0: loss = 0.0767434 (* 1 = 0.0767434 loss) +I0407 10:59:43.304942 17183 sgd_solver.cpp:105] Iteration 9144, lr = 0.000625 +I0407 10:59:48.555496 17183 solver.cpp:218] Iteration 9156 (2.2855 iter/s, 5.25049s/12 iters), loss = 0.0512038 +I0407 10:59:48.555541 17183 solver.cpp:237] Train net output #0: loss = 0.051204 (* 1 = 0.051204 loss) +I0407 10:59:48.555548 17183 sgd_solver.cpp:105] Iteration 9156, lr = 0.000625 +I0407 10:59:53.761422 17183 solver.cpp:218] Iteration 9168 (2.30512 iter/s, 5.20581s/12 iters), loss = 0.00547451 +I0407 10:59:53.761536 17183 solver.cpp:237] Train net output #0: loss = 0.00547473 (* 1 = 0.00547473 loss) +I0407 10:59:53.761546 17183 sgd_solver.cpp:105] Iteration 9168, lr = 0.000625 +I0407 10:59:58.431537 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 11:00:01.456522 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 11:00:03.819615 17183 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 11:00:03.819635 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:00:04.605696 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:00:08.246425 17183 solver.cpp:397] Test net output #0: accuracy = 0.498774 +I0407 11:00:08.246460 17183 solver.cpp:397] Test net output #1: loss = 2.85911 (* 1 = 2.85911 loss) +I0407 11:00:08.382411 17183 solver.cpp:218] Iteration 9180 (0.820753 iter/s, 14.6207s/12 iters), loss = 0.10471 +I0407 11:00:08.382469 17183 solver.cpp:237] Train net output #0: loss = 0.10471 (* 1 = 0.10471 loss) +I0407 11:00:08.382478 17183 sgd_solver.cpp:105] Iteration 9180, lr = 0.000625 +I0407 11:00:12.401229 17183 solver.cpp:218] Iteration 9192 (2.98604 iter/s, 4.0187s/12 iters), loss = 0.0806283 +I0407 11:00:12.401286 17183 solver.cpp:237] Train net output #0: loss = 0.0806285 (* 1 = 0.0806285 loss) +I0407 11:00:12.401302 17183 sgd_solver.cpp:105] Iteration 9192, lr = 0.000625 +I0407 11:00:17.557528 17183 solver.cpp:218] Iteration 9204 (2.32731 iter/s, 5.15617s/12 iters), loss = 0.0733044 +I0407 11:00:17.557571 17183 solver.cpp:237] Train net output #0: loss = 0.0733047 (* 1 = 0.0733047 loss) +I0407 11:00:17.557579 17183 sgd_solver.cpp:105] Iteration 9204, lr = 0.000625 +I0407 11:00:17.619436 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:00:22.624244 17183 solver.cpp:218] Iteration 9216 (2.36845 iter/s, 5.06661s/12 iters), loss = 0.059496 +I0407 11:00:22.624287 17183 solver.cpp:237] Train net output #0: loss = 0.0594962 (* 1 = 0.0594962 loss) +I0407 11:00:22.624294 17183 sgd_solver.cpp:105] Iteration 9216, lr = 0.000625 +I0407 11:00:27.689179 17183 solver.cpp:218] Iteration 9228 (2.36928 iter/s, 5.06483s/12 iters), loss = 0.0558586 +I0407 11:00:27.689297 17183 solver.cpp:237] Train net output #0: loss = 0.0558589 (* 1 = 0.0558589 loss) +I0407 11:00:27.689306 17183 sgd_solver.cpp:105] Iteration 9228, lr = 0.000625 +I0407 11:00:32.754711 17183 solver.cpp:218] Iteration 9240 (2.36904 iter/s, 5.06534s/12 iters), loss = 0.0475089 +I0407 11:00:32.754760 17183 solver.cpp:237] Train net output #0: loss = 0.0475092 (* 1 = 0.0475092 loss) +I0407 11:00:32.754766 17183 sgd_solver.cpp:105] Iteration 9240, lr = 0.000625 +I0407 11:00:38.084257 17183 solver.cpp:218] Iteration 9252 (2.25165 iter/s, 5.32943s/12 iters), loss = 0.0625424 +I0407 11:00:38.084306 17183 solver.cpp:237] Train net output #0: loss = 0.0625426 (* 1 = 0.0625426 loss) +I0407 11:00:38.084314 17183 sgd_solver.cpp:105] Iteration 9252, lr = 0.000625 +I0407 11:00:43.373674 17183 solver.cpp:218] Iteration 9264 (2.26873 iter/s, 5.2893s/12 iters), loss = 0.0910423 +I0407 11:00:43.373725 17183 solver.cpp:237] Train net output #0: loss = 0.0910425 (* 1 = 0.0910425 loss) +I0407 11:00:43.373736 17183 sgd_solver.cpp:105] Iteration 9264, lr = 0.000625 +I0407 11:00:48.580983 17183 solver.cpp:218] Iteration 9276 (2.30451 iter/s, 5.20719s/12 iters), loss = 0.0292371 +I0407 11:00:48.581048 17183 solver.cpp:237] Train net output #0: loss = 0.0292373 (* 1 = 0.0292373 loss) +I0407 11:00:48.581059 17183 sgd_solver.cpp:105] Iteration 9276, lr = 0.000625 +I0407 11:00:50.742193 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 11:00:53.737398 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 11:00:56.076421 17183 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 11:00:56.076445 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:00:56.826378 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:01:00.390094 17183 solver.cpp:397] Test net output #0: accuracy = 0.49326 +I0407 11:01:00.390193 17183 solver.cpp:397] Test net output #1: loss = 2.87215 (* 1 = 2.87215 loss) +I0407 11:01:02.272573 17183 solver.cpp:218] Iteration 9288 (0.876464 iter/s, 13.6914s/12 iters), loss = 0.12189 +I0407 11:01:02.272615 17183 solver.cpp:237] Train net output #0: loss = 0.121891 (* 1 = 0.121891 loss) +I0407 11:01:02.272622 17183 sgd_solver.cpp:105] Iteration 9288, lr = 0.000625 +I0407 11:01:07.438139 17183 solver.cpp:218] Iteration 9300 (2.32312 iter/s, 5.16546s/12 iters), loss = 0.0630254 +I0407 11:01:07.438182 17183 solver.cpp:237] Train net output #0: loss = 0.0630257 (* 1 = 0.0630257 loss) +I0407 11:01:07.438189 17183 sgd_solver.cpp:105] Iteration 9300, lr = 0.000625 +I0407 11:01:09.777866 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:01:12.514816 17183 solver.cpp:218] Iteration 9312 (2.36381 iter/s, 5.07656s/12 iters), loss = 0.108852 +I0407 11:01:12.514886 17183 solver.cpp:237] Train net output #0: loss = 0.108852 (* 1 = 0.108852 loss) +I0407 11:01:12.514897 17183 sgd_solver.cpp:105] Iteration 9312, lr = 0.000625 +I0407 11:01:17.832684 17183 solver.cpp:218] Iteration 9324 (2.2566 iter/s, 5.31773s/12 iters), loss = 0.0541554 +I0407 11:01:17.832741 17183 solver.cpp:237] Train net output #0: loss = 0.0541556 (* 1 = 0.0541556 loss) +I0407 11:01:17.832751 17183 sgd_solver.cpp:105] Iteration 9324, lr = 0.000625 +I0407 11:01:23.070257 17183 solver.cpp:218] Iteration 9336 (2.29119 iter/s, 5.23745s/12 iters), loss = 0.104558 +I0407 11:01:23.070302 17183 solver.cpp:237] Train net output #0: loss = 0.104558 (* 1 = 0.104558 loss) +I0407 11:01:23.070310 17183 sgd_solver.cpp:105] Iteration 9336, lr = 0.000625 +I0407 11:01:28.181887 17183 solver.cpp:218] Iteration 9348 (2.34764 iter/s, 5.11151s/12 iters), loss = 0.0462349 +I0407 11:01:28.181932 17183 solver.cpp:237] Train net output #0: loss = 0.0462351 (* 1 = 0.0462351 loss) +I0407 11:01:28.181939 17183 sgd_solver.cpp:105] Iteration 9348, lr = 0.000625 +I0407 11:01:33.255532 17183 solver.cpp:218] Iteration 9360 (2.36522 iter/s, 5.07353s/12 iters), loss = 0.103655 +I0407 11:01:33.255702 17183 solver.cpp:237] Train net output #0: loss = 0.103655 (* 1 = 0.103655 loss) +I0407 11:01:33.255713 17183 sgd_solver.cpp:105] Iteration 9360, lr = 0.000625 +I0407 11:01:38.422103 17183 solver.cpp:218] Iteration 9372 (2.32273 iter/s, 5.16634s/12 iters), loss = 0.0291684 +I0407 11:01:38.422148 17183 solver.cpp:237] Train net output #0: loss = 0.0291686 (* 1 = 0.0291686 loss) +I0407 11:01:38.422155 17183 sgd_solver.cpp:105] Iteration 9372, lr = 0.000625 +I0407 11:01:42.837277 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 11:01:45.830507 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 11:01:48.284402 17183 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 11:01:48.284422 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:01:49.018276 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:01:52.682646 17183 solver.cpp:397] Test net output #0: accuracy = 0.495098 +I0407 11:01:52.682674 17183 solver.cpp:397] Test net output #1: loss = 2.85031 (* 1 = 2.85031 loss) +I0407 11:01:52.824106 17183 solver.cpp:218] Iteration 9384 (0.833229 iter/s, 14.4018s/12 iters), loss = 0.0454598 +I0407 11:01:52.824151 17183 solver.cpp:237] Train net output #0: loss = 0.04546 (* 1 = 0.04546 loss) +I0407 11:01:52.824157 17183 sgd_solver.cpp:105] Iteration 9384, lr = 0.000625 +I0407 11:01:57.031847 17183 solver.cpp:218] Iteration 9396 (2.85196 iter/s, 4.20764s/12 iters), loss = 0.066486 +I0407 11:01:57.031909 17183 solver.cpp:237] Train net output #0: loss = 0.0664863 (* 1 = 0.0664863 loss) +I0407 11:01:57.031920 17183 sgd_solver.cpp:105] Iteration 9396, lr = 0.000625 +I0407 11:02:01.501863 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:02:02.228363 17183 solver.cpp:218] Iteration 9408 (2.3093 iter/s, 5.19638s/12 iters), loss = 0.0616383 +I0407 11:02:02.228408 17183 solver.cpp:237] Train net output #0: loss = 0.0616385 (* 1 = 0.0616385 loss) +I0407 11:02:02.228415 17183 sgd_solver.cpp:105] Iteration 9408, lr = 0.000625 +I0407 11:02:07.318958 17183 solver.cpp:218] Iteration 9420 (2.35734 iter/s, 5.09048s/12 iters), loss = 0.0540313 +I0407 11:02:07.319065 17183 solver.cpp:237] Train net output #0: loss = 0.0540315 (* 1 = 0.0540315 loss) +I0407 11:02:07.319075 17183 sgd_solver.cpp:105] Iteration 9420, lr = 0.000625 +I0407 11:02:12.543519 17183 solver.cpp:218] Iteration 9432 (2.29692 iter/s, 5.22439s/12 iters), loss = 0.0922911 +I0407 11:02:12.543563 17183 solver.cpp:237] Train net output #0: loss = 0.0922913 (* 1 = 0.0922913 loss) +I0407 11:02:12.543571 17183 sgd_solver.cpp:105] Iteration 9432, lr = 0.000625 +I0407 11:02:17.560480 17183 solver.cpp:218] Iteration 9444 (2.39194 iter/s, 5.01685s/12 iters), loss = 0.0282788 +I0407 11:02:17.560521 17183 solver.cpp:237] Train net output #0: loss = 0.028279 (* 1 = 0.028279 loss) +I0407 11:02:17.560528 17183 sgd_solver.cpp:105] Iteration 9444, lr = 0.000625 +I0407 11:02:22.646811 17183 solver.cpp:218] Iteration 9456 (2.35932 iter/s, 5.08622s/12 iters), loss = 0.0620817 +I0407 11:02:22.646852 17183 solver.cpp:237] Train net output #0: loss = 0.0620819 (* 1 = 0.0620819 loss) +I0407 11:02:22.646859 17183 sgd_solver.cpp:105] Iteration 9456, lr = 0.000625 +I0407 11:02:27.561288 17183 solver.cpp:218] Iteration 9468 (2.44182 iter/s, 4.91437s/12 iters), loss = 0.023654 +I0407 11:02:27.561333 17183 solver.cpp:237] Train net output #0: loss = 0.0236542 (* 1 = 0.0236542 loss) +I0407 11:02:27.561342 17183 sgd_solver.cpp:105] Iteration 9468, lr = 0.000625 +I0407 11:02:32.610605 17183 solver.cpp:218] Iteration 9480 (2.37661 iter/s, 5.0492s/12 iters), loss = 0.0823722 +I0407 11:02:32.610671 17183 solver.cpp:237] Train net output #0: loss = 0.0823724 (* 1 = 0.0823724 loss) +I0407 11:02:32.610683 17183 sgd_solver.cpp:105] Iteration 9480, lr = 0.000625 +I0407 11:02:34.611799 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 11:02:37.615571 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 11:02:41.560250 17183 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 11:02:41.560268 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:02:42.242463 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:02:45.971122 17183 solver.cpp:397] Test net output #0: accuracy = 0.496936 +I0407 11:02:45.971159 17183 solver.cpp:397] Test net output #1: loss = 2.88611 (* 1 = 2.88611 loss) +I0407 11:02:47.904897 17183 solver.cpp:218] Iteration 9492 (0.784618 iter/s, 15.2941s/12 iters), loss = 0.0729228 +I0407 11:02:47.904947 17183 solver.cpp:237] Train net output #0: loss = 0.072923 (* 1 = 0.072923 loss) +I0407 11:02:47.904953 17183 sgd_solver.cpp:105] Iteration 9492, lr = 0.000625 +I0407 11:02:53.085057 17183 solver.cpp:218] Iteration 9504 (2.31659 iter/s, 5.18004s/12 iters), loss = 0.0417487 +I0407 11:02:53.085117 17183 solver.cpp:237] Train net output #0: loss = 0.0417489 (* 1 = 0.0417489 loss) +I0407 11:02:53.085129 17183 sgd_solver.cpp:105] Iteration 9504, lr = 0.000625 +I0407 11:02:54.585783 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:02:58.280331 17183 solver.cpp:218] Iteration 9516 (2.30985 iter/s, 5.19515s/12 iters), loss = 0.0723165 +I0407 11:02:58.280371 17183 solver.cpp:237] Train net output #0: loss = 0.0723167 (* 1 = 0.0723167 loss) +I0407 11:02:58.280378 17183 sgd_solver.cpp:105] Iteration 9516, lr = 0.000625 +I0407 11:03:03.408612 17183 solver.cpp:218] Iteration 9528 (2.34002 iter/s, 5.12817s/12 iters), loss = 0.0293174 +I0407 11:03:03.408656 17183 solver.cpp:237] Train net output #0: loss = 0.0293176 (* 1 = 0.0293176 loss) +I0407 11:03:03.408663 17183 sgd_solver.cpp:105] Iteration 9528, lr = 0.000625 +I0407 11:03:08.642390 17183 solver.cpp:218] Iteration 9540 (2.29285 iter/s, 5.23367s/12 iters), loss = 0.061959 +I0407 11:03:08.642482 17183 solver.cpp:237] Train net output #0: loss = 0.0619592 (* 1 = 0.0619592 loss) +I0407 11:03:08.642488 17183 sgd_solver.cpp:105] Iteration 9540, lr = 0.000625 +I0407 11:03:13.915906 17183 solver.cpp:218] Iteration 9552 (2.27559 iter/s, 5.27336s/12 iters), loss = 0.0737501 +I0407 11:03:13.915949 17183 solver.cpp:237] Train net output #0: loss = 0.0737503 (* 1 = 0.0737503 loss) +I0407 11:03:13.915956 17183 sgd_solver.cpp:105] Iteration 9552, lr = 0.000625 +I0407 11:03:19.111284 17183 solver.cpp:218] Iteration 9564 (2.3098 iter/s, 5.19527s/12 iters), loss = 0.0154118 +I0407 11:03:19.111333 17183 solver.cpp:237] Train net output #0: loss = 0.015412 (* 1 = 0.015412 loss) +I0407 11:03:19.111341 17183 sgd_solver.cpp:105] Iteration 9564, lr = 0.000625 +I0407 11:03:24.338812 17183 solver.cpp:218] Iteration 9576 (2.29559 iter/s, 5.22741s/12 iters), loss = 0.130841 +I0407 11:03:24.338860 17183 solver.cpp:237] Train net output #0: loss = 0.130841 (* 1 = 0.130841 loss) +I0407 11:03:24.338868 17183 sgd_solver.cpp:105] Iteration 9576, lr = 0.000625 +I0407 11:03:29.047703 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 11:03:33.554659 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 11:03:35.866094 17183 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 11:03:35.866113 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:03:36.568804 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:03:40.497380 17183 solver.cpp:397] Test net output #0: accuracy = 0.49326 +I0407 11:03:40.497479 17183 solver.cpp:397] Test net output #1: loss = 2.89987 (* 1 = 2.89987 loss) +I0407 11:03:40.635424 17183 solver.cpp:218] Iteration 9588 (0.736359 iter/s, 16.2964s/12 iters), loss = 0.0597941 +I0407 11:03:40.636984 17183 solver.cpp:237] Train net output #0: loss = 0.0597943 (* 1 = 0.0597943 loss) +I0407 11:03:40.637001 17183 sgd_solver.cpp:105] Iteration 9588, lr = 0.000625 +I0407 11:03:44.631580 17183 solver.cpp:218] Iteration 9600 (3.0041 iter/s, 3.99455s/12 iters), loss = 0.0527467 +I0407 11:03:44.631629 17183 solver.cpp:237] Train net output #0: loss = 0.0527469 (* 1 = 0.0527469 loss) +I0407 11:03:44.631695 17183 sgd_solver.cpp:105] Iteration 9600, lr = 0.000625 +I0407 11:03:48.333767 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:03:49.859426 17183 solver.cpp:218] Iteration 9612 (2.29545 iter/s, 5.22773s/12 iters), loss = 0.0481031 +I0407 11:03:49.859465 17183 solver.cpp:237] Train net output #0: loss = 0.0481034 (* 1 = 0.0481034 loss) +I0407 11:03:49.859472 17183 sgd_solver.cpp:105] Iteration 9612, lr = 0.000625 +I0407 11:03:55.044307 17183 solver.cpp:218] Iteration 9624 (2.31447 iter/s, 5.18477s/12 iters), loss = 0.119394 +I0407 11:03:55.044374 17183 solver.cpp:237] Train net output #0: loss = 0.119394 (* 1 = 0.119394 loss) +I0407 11:03:55.044385 17183 sgd_solver.cpp:105] Iteration 9624, lr = 0.000625 +I0407 11:04:00.235947 17183 solver.cpp:218] Iteration 9636 (2.31147 iter/s, 5.19151s/12 iters), loss = 0.0480237 +I0407 11:04:00.236006 17183 solver.cpp:237] Train net output #0: loss = 0.048024 (* 1 = 0.048024 loss) +I0407 11:04:00.236016 17183 sgd_solver.cpp:105] Iteration 9636, lr = 0.000625 +I0407 11:04:05.391024 17183 solver.cpp:218] Iteration 9648 (2.32786 iter/s, 5.15495s/12 iters), loss = 0.0522662 +I0407 11:04:05.391067 17183 solver.cpp:237] Train net output #0: loss = 0.0522665 (* 1 = 0.0522665 loss) +I0407 11:04:05.391074 17183 sgd_solver.cpp:105] Iteration 9648, lr = 0.000625 +I0407 11:04:10.469396 17183 solver.cpp:218] Iteration 9660 (2.36301 iter/s, 5.07826s/12 iters), loss = 0.0645649 +I0407 11:04:10.469437 17183 solver.cpp:237] Train net output #0: loss = 0.0645651 (* 1 = 0.0645651 loss) +I0407 11:04:10.469444 17183 sgd_solver.cpp:105] Iteration 9660, lr = 0.000625 +I0407 11:04:15.581437 17183 solver.cpp:218] Iteration 9672 (2.34745 iter/s, 5.11193s/12 iters), loss = 0.109858 +I0407 11:04:15.581595 17183 solver.cpp:237] Train net output #0: loss = 0.109858 (* 1 = 0.109858 loss) +I0407 11:04:15.581606 17183 sgd_solver.cpp:105] Iteration 9672, lr = 0.000625 +I0407 11:04:20.891834 17183 solver.cpp:218] Iteration 9684 (2.25981 iter/s, 5.31017s/12 iters), loss = 0.0842325 +I0407 11:04:20.891877 17183 solver.cpp:237] Train net output #0: loss = 0.0842328 (* 1 = 0.0842328 loss) +I0407 11:04:20.891885 17183 sgd_solver.cpp:105] Iteration 9684, lr = 0.000625 +I0407 11:04:23.012789 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 11:04:26.484498 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 11:04:29.925619 17183 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 11:04:29.925642 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:04:30.471827 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:04:33.297014 17183 blocking_queue.cpp:49] Waiting for data +I0407 11:04:34.344172 17183 solver.cpp:397] Test net output #0: accuracy = 0.492034 +I0407 11:04:34.344200 17183 solver.cpp:397] Test net output #1: loss = 2.90298 (* 1 = 2.90298 loss) +I0407 11:04:36.195674 17183 solver.cpp:218] Iteration 9696 (0.784128 iter/s, 15.3036s/12 iters), loss = 0.0796609 +I0407 11:04:36.195732 17183 solver.cpp:237] Train net output #0: loss = 0.0796612 (* 1 = 0.0796612 loss) +I0407 11:04:36.195744 17183 sgd_solver.cpp:105] Iteration 9696, lr = 0.000625 +I0407 11:04:41.254607 17183 solver.cpp:218] Iteration 9708 (2.3721 iter/s, 5.05881s/12 iters), loss = 0.0531675 +I0407 11:04:41.254654 17183 solver.cpp:237] Train net output #0: loss = 0.0531678 (* 1 = 0.0531678 loss) +I0407 11:04:41.254662 17183 sgd_solver.cpp:105] Iteration 9708, lr = 0.000625 +I0407 11:04:41.981658 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:04:46.306460 17183 solver.cpp:218] Iteration 9720 (2.37542 iter/s, 5.05174s/12 iters), loss = 0.0993365 +I0407 11:04:46.306625 17183 solver.cpp:237] Train net output #0: loss = 0.0993367 (* 1 = 0.0993367 loss) +I0407 11:04:46.306632 17183 sgd_solver.cpp:105] Iteration 9720, lr = 0.000625 +I0407 11:04:51.421028 17183 solver.cpp:218] Iteration 9732 (2.34635 iter/s, 5.11434s/12 iters), loss = 0.0822986 +I0407 11:04:51.421075 17183 solver.cpp:237] Train net output #0: loss = 0.0822989 (* 1 = 0.0822989 loss) +I0407 11:04:51.421083 17183 sgd_solver.cpp:105] Iteration 9732, lr = 0.000625 +I0407 11:04:56.506784 17183 solver.cpp:218] Iteration 9744 (2.35959 iter/s, 5.08564s/12 iters), loss = 0.0203321 +I0407 11:04:56.506837 17183 solver.cpp:237] Train net output #0: loss = 0.0203324 (* 1 = 0.0203324 loss) +I0407 11:04:56.506846 17183 sgd_solver.cpp:105] Iteration 9744, lr = 0.000625 +I0407 11:05:01.503914 17183 solver.cpp:218] Iteration 9756 (2.40144 iter/s, 4.99701s/12 iters), loss = 0.0516047 +I0407 11:05:01.503963 17183 solver.cpp:237] Train net output #0: loss = 0.051605 (* 1 = 0.051605 loss) +I0407 11:05:01.503973 17183 sgd_solver.cpp:105] Iteration 9756, lr = 0.000625 +I0407 11:05:06.694772 17183 solver.cpp:218] Iteration 9768 (2.31181 iter/s, 5.19074s/12 iters), loss = 0.0359456 +I0407 11:05:06.694815 17183 solver.cpp:237] Train net output #0: loss = 0.0359458 (* 1 = 0.0359458 loss) +I0407 11:05:06.694823 17183 sgd_solver.cpp:105] Iteration 9768, lr = 0.000625 +I0407 11:05:11.796515 17183 solver.cpp:218] Iteration 9780 (2.35219 iter/s, 5.10163s/12 iters), loss = 0.059686 +I0407 11:05:11.796574 17183 solver.cpp:237] Train net output #0: loss = 0.0596862 (* 1 = 0.0596862 loss) +I0407 11:05:11.796586 17183 sgd_solver.cpp:105] Iteration 9780, lr = 0.000625 +I0407 11:05:16.594588 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 11:05:21.054201 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 11:05:24.190517 17183 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 11:05:24.190536 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:05:24.720036 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:05:28.575722 17183 solver.cpp:397] Test net output #0: accuracy = 0.498774 +I0407 11:05:28.575753 17183 solver.cpp:397] Test net output #1: loss = 2.87703 (* 1 = 2.87703 loss) +I0407 11:05:28.712024 17183 solver.cpp:218] Iteration 9792 (0.709418 iter/s, 16.9153s/12 iters), loss = 0.0208924 +I0407 11:05:28.713618 17183 solver.cpp:237] Train net output #0: loss = 0.0208927 (* 1 = 0.0208927 loss) +I0407 11:05:28.713631 17183 sgd_solver.cpp:105] Iteration 9792, lr = 0.000625 +I0407 11:05:32.986035 17183 solver.cpp:218] Iteration 9804 (2.80875 iter/s, 4.27237s/12 iters), loss = 0.0276653 +I0407 11:05:32.986088 17183 solver.cpp:237] Train net output #0: loss = 0.0276655 (* 1 = 0.0276655 loss) +I0407 11:05:32.986097 17183 sgd_solver.cpp:105] Iteration 9804, lr = 0.000625 +I0407 11:05:36.007798 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:05:38.032269 17183 solver.cpp:218] Iteration 9816 (2.37807 iter/s, 5.04612s/12 iters), loss = 0.0787867 +I0407 11:05:38.032312 17183 solver.cpp:237] Train net output #0: loss = 0.078787 (* 1 = 0.078787 loss) +I0407 11:05:38.032320 17183 sgd_solver.cpp:105] Iteration 9816, lr = 0.000625 +I0407 11:05:43.175941 17183 solver.cpp:218] Iteration 9828 (2.33302 iter/s, 5.14356s/12 iters), loss = 0.0661278 +I0407 11:05:43.175984 17183 solver.cpp:237] Train net output #0: loss = 0.066128 (* 1 = 0.066128 loss) +I0407 11:05:43.175992 17183 sgd_solver.cpp:105] Iteration 9828, lr = 0.000625 +I0407 11:05:48.295409 17183 solver.cpp:218] Iteration 9840 (2.34404 iter/s, 5.11936s/12 iters), loss = 0.0690923 +I0407 11:05:48.295512 17183 solver.cpp:237] Train net output #0: loss = 0.0690925 (* 1 = 0.0690925 loss) +I0407 11:05:48.295522 17183 sgd_solver.cpp:105] Iteration 9840, lr = 0.000625 +I0407 11:05:53.504964 17183 solver.cpp:218] Iteration 9852 (2.30353 iter/s, 5.20939s/12 iters), loss = 0.0219736 +I0407 11:05:53.505008 17183 solver.cpp:237] Train net output #0: loss = 0.0219738 (* 1 = 0.0219738 loss) +I0407 11:05:53.505014 17183 sgd_solver.cpp:105] Iteration 9852, lr = 0.000625 +I0407 11:05:58.578145 17183 solver.cpp:218] Iteration 9864 (2.36543 iter/s, 5.07306s/12 iters), loss = 0.0170607 +I0407 11:05:58.578194 17183 solver.cpp:237] Train net output #0: loss = 0.0170609 (* 1 = 0.0170609 loss) +I0407 11:05:58.578202 17183 sgd_solver.cpp:105] Iteration 9864, lr = 0.000625 +I0407 11:06:03.759099 17183 solver.cpp:218] Iteration 9876 (2.31623 iter/s, 5.18084s/12 iters), loss = 0.0869968 +I0407 11:06:03.759140 17183 solver.cpp:237] Train net output #0: loss = 0.086997 (* 1 = 0.086997 loss) +I0407 11:06:03.759148 17183 sgd_solver.cpp:105] Iteration 9876, lr = 0.000625 +I0407 11:06:08.912544 17183 solver.cpp:218] Iteration 9888 (2.32859 iter/s, 5.15334s/12 iters), loss = 0.0670038 +I0407 11:06:08.912587 17183 solver.cpp:237] Train net output #0: loss = 0.067004 (* 1 = 0.067004 loss) +I0407 11:06:08.912595 17183 sgd_solver.cpp:105] Iteration 9888, lr = 0.000625 +I0407 11:06:11.008460 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 11:06:13.934430 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 11:06:16.250850 17183 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 11:06:16.250872 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:06:16.741780 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:06:20.551988 17183 solver.cpp:397] Test net output #0: accuracy = 0.501225 +I0407 11:06:20.552134 17183 solver.cpp:397] Test net output #1: loss = 2.87823 (* 1 = 2.87823 loss) +I0407 11:06:22.452913 17183 solver.cpp:218] Iteration 9900 (0.886252 iter/s, 13.5402s/12 iters), loss = 0.0786477 +I0407 11:06:22.452960 17183 solver.cpp:237] Train net output #0: loss = 0.0786479 (* 1 = 0.0786479 loss) +I0407 11:06:22.452968 17183 sgd_solver.cpp:105] Iteration 9900, lr = 0.000625 +I0407 11:06:27.498230 17183 solver.cpp:218] Iteration 9912 (2.3785 iter/s, 5.0452s/12 iters), loss = 0.0378857 +I0407 11:06:27.498272 17183 solver.cpp:237] Train net output #0: loss = 0.0378859 (* 1 = 0.0378859 loss) +I0407 11:06:27.498281 17183 sgd_solver.cpp:105] Iteration 9912, lr = 0.000625 +I0407 11:06:27.586537 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:06:32.593569 17183 solver.cpp:218] Iteration 9924 (2.35515 iter/s, 5.09522s/12 iters), loss = 0.0669824 +I0407 11:06:32.593614 17183 solver.cpp:237] Train net output #0: loss = 0.0669826 (* 1 = 0.0669826 loss) +I0407 11:06:32.593621 17183 sgd_solver.cpp:105] Iteration 9924, lr = 0.000625 +I0407 11:06:37.657033 17183 solver.cpp:218] Iteration 9936 (2.36997 iter/s, 5.06335s/12 iters), loss = 0.0288544 +I0407 11:06:37.657078 17183 solver.cpp:237] Train net output #0: loss = 0.0288546 (* 1 = 0.0288546 loss) +I0407 11:06:37.657086 17183 sgd_solver.cpp:105] Iteration 9936, lr = 0.000625 +I0407 11:06:42.777243 17183 solver.cpp:218] Iteration 9948 (2.34371 iter/s, 5.1201s/12 iters), loss = 0.0531572 +I0407 11:06:42.777288 17183 solver.cpp:237] Train net output #0: loss = 0.0531574 (* 1 = 0.0531574 loss) +I0407 11:06:42.777295 17183 sgd_solver.cpp:105] Iteration 9948, lr = 0.000625 +I0407 11:06:48.038772 17183 solver.cpp:218] Iteration 9960 (2.28076 iter/s, 5.26141s/12 iters), loss = 0.0595446 +I0407 11:06:48.038821 17183 solver.cpp:237] Train net output #0: loss = 0.0595448 (* 1 = 0.0595448 loss) +I0407 11:06:48.038830 17183 sgd_solver.cpp:105] Iteration 9960, lr = 0.000625 +I0407 11:06:53.261581 17183 solver.cpp:218] Iteration 9972 (2.29766 iter/s, 5.22269s/12 iters), loss = 0.0498927 +I0407 11:06:53.261693 17183 solver.cpp:237] Train net output #0: loss = 0.0498929 (* 1 = 0.0498929 loss) +I0407 11:06:53.261703 17183 sgd_solver.cpp:105] Iteration 9972, lr = 0.000625 +I0407 11:06:58.357590 17183 solver.cpp:218] Iteration 9984 (2.35487 iter/s, 5.09583s/12 iters), loss = 0.0119424 +I0407 11:06:58.357650 17183 solver.cpp:237] Train net output #0: loss = 0.0119426 (* 1 = 0.0119426 loss) +I0407 11:06:58.357661 17183 sgd_solver.cpp:105] Iteration 9984, lr = 0.000625 +I0407 11:07:03.011516 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 11:07:06.021677 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 11:07:08.318918 17183 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 11:07:08.318939 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:07:08.769259 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:07:12.654264 17183 solver.cpp:397] Test net output #0: accuracy = 0.507966 +I0407 11:07:12.654299 17183 solver.cpp:397] Test net output #1: loss = 2.8816 (* 1 = 2.8816 loss) +I0407 11:07:12.787097 17183 solver.cpp:218] Iteration 9996 (0.831642 iter/s, 14.4293s/12 iters), loss = 0.025883 +I0407 11:07:12.787150 17183 solver.cpp:237] Train net output #0: loss = 0.0258832 (* 1 = 0.0258832 loss) +I0407 11:07:12.787160 17183 sgd_solver.cpp:105] Iteration 9996, lr = 0.000625 +I0407 11:07:17.119249 17183 solver.cpp:218] Iteration 10008 (2.77006 iter/s, 4.33204s/12 iters), loss = 0.0553499 +I0407 11:07:17.119307 17183 solver.cpp:237] Train net output #0: loss = 0.0553501 (* 1 = 0.0553501 loss) +I0407 11:07:17.119318 17183 sgd_solver.cpp:105] Iteration 10008, lr = 0.000625 +I0407 11:07:19.399224 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:07:22.341140 17183 solver.cpp:218] Iteration 10020 (2.29807 iter/s, 5.22176s/12 iters), loss = 0.077295 +I0407 11:07:22.341183 17183 solver.cpp:237] Train net output #0: loss = 0.0772952 (* 1 = 0.0772952 loss) +I0407 11:07:22.341190 17183 sgd_solver.cpp:105] Iteration 10020, lr = 0.000625 +I0407 11:07:27.473882 17183 solver.cpp:218] Iteration 10032 (2.33798 iter/s, 5.13264s/12 iters), loss = 0.0744407 +I0407 11:07:27.473982 17183 solver.cpp:237] Train net output #0: loss = 0.0744409 (* 1 = 0.0744409 loss) +I0407 11:07:27.473989 17183 sgd_solver.cpp:105] Iteration 10032, lr = 0.000625 +I0407 11:07:32.762785 17183 solver.cpp:218] Iteration 10044 (2.26897 iter/s, 5.28873s/12 iters), loss = 0.080975 +I0407 11:07:32.762835 17183 solver.cpp:237] Train net output #0: loss = 0.0809752 (* 1 = 0.0809752 loss) +I0407 11:07:32.762841 17183 sgd_solver.cpp:105] Iteration 10044, lr = 0.000625 +I0407 11:07:38.005766 17183 solver.cpp:218] Iteration 10056 (2.28883 iter/s, 5.24286s/12 iters), loss = 0.0901572 +I0407 11:07:38.005815 17183 solver.cpp:237] Train net output #0: loss = 0.0901574 (* 1 = 0.0901574 loss) +I0407 11:07:38.005826 17183 sgd_solver.cpp:105] Iteration 10056, lr = 0.000625 +I0407 11:07:43.086123 17183 solver.cpp:218] Iteration 10068 (2.36209 iter/s, 5.08024s/12 iters), loss = 0.033751 +I0407 11:07:43.086169 17183 solver.cpp:237] Train net output #0: loss = 0.0337512 (* 1 = 0.0337512 loss) +I0407 11:07:43.086179 17183 sgd_solver.cpp:105] Iteration 10068, lr = 0.000625 +I0407 11:07:48.564287 17183 solver.cpp:218] Iteration 10080 (2.19056 iter/s, 5.47805s/12 iters), loss = 0.1037 +I0407 11:07:48.564329 17183 solver.cpp:237] Train net output #0: loss = 0.1037 (* 1 = 0.1037 loss) +I0407 11:07:48.564337 17183 sgd_solver.cpp:105] Iteration 10080, lr = 0.000625 +I0407 11:07:53.799026 17183 solver.cpp:218] Iteration 10092 (2.29243 iter/s, 5.23463s/12 iters), loss = 0.0371198 +I0407 11:07:53.799067 17183 solver.cpp:237] Train net output #0: loss = 0.03712 (* 1 = 0.03712 loss) +I0407 11:07:53.799074 17183 sgd_solver.cpp:105] Iteration 10092, lr = 0.000625 +I0407 11:07:55.877570 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 11:07:58.921484 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 11:08:01.225492 17183 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 11:08:01.225512 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:08:01.635864 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:08:05.548941 17183 solver.cpp:397] Test net output #0: accuracy = 0.503064 +I0407 11:08:05.548975 17183 solver.cpp:397] Test net output #1: loss = 2.90819 (* 1 = 2.90819 loss) +I0407 11:08:07.362542 17183 solver.cpp:218] Iteration 10104 (0.884739 iter/s, 13.5633s/12 iters), loss = 0.0458407 +I0407 11:08:07.362592 17183 solver.cpp:237] Train net output #0: loss = 0.0458409 (* 1 = 0.0458409 loss) +I0407 11:08:07.362601 17183 sgd_solver.cpp:105] Iteration 10104, lr = 0.00015625 +I0407 11:08:11.910910 17205 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:08:12.588498 17183 solver.cpp:218] Iteration 10116 (2.29628 iter/s, 5.22584s/12 iters), loss = 0.0651947 +I0407 11:08:12.588542 17183 solver.cpp:237] Train net output #0: loss = 0.0651949 (* 1 = 0.0651949 loss) +I0407 11:08:12.588549 17183 sgd_solver.cpp:105] Iteration 10116, lr = 0.00015625 +I0407 11:08:17.565800 17183 solver.cpp:218] Iteration 10128 (2.411 iter/s, 4.97719s/12 iters), loss = 0.0732039 +I0407 11:08:17.565845 17183 solver.cpp:237] Train net output #0: loss = 0.0732041 (* 1 = 0.0732041 loss) +I0407 11:08:17.565853 17183 sgd_solver.cpp:105] Iteration 10128, lr = 0.00015625 +I0407 11:08:22.620164 17183 solver.cpp:218] Iteration 10140 (2.37424 iter/s, 5.05425s/12 iters), loss = 0.0765288 +I0407 11:08:22.620205 17183 solver.cpp:237] Train net output #0: loss = 0.076529 (* 1 = 0.076529 loss) +I0407 11:08:22.620214 17183 sgd_solver.cpp:105] Iteration 10140, lr = 0.00015625 +I0407 11:08:27.744654 17183 solver.cpp:218] Iteration 10152 (2.34175 iter/s, 5.12438s/12 iters), loss = 0.0311094 +I0407 11:08:27.744716 17183 solver.cpp:237] Train net output #0: loss = 0.0311096 (* 1 = 0.0311096 loss) +I0407 11:08:27.744727 17183 sgd_solver.cpp:105] Iteration 10152, lr = 0.00015625 +I0407 11:08:33.012399 17183 solver.cpp:218] Iteration 10164 (2.27807 iter/s, 5.26761s/12 iters), loss = 0.0208912 +I0407 11:08:33.012542 17183 solver.cpp:237] Train net output #0: loss = 0.0208914 (* 1 = 0.0208914 loss) +I0407 11:08:33.012552 17183 sgd_solver.cpp:105] Iteration 10164, lr = 0.00015625 +I0407 11:08:38.234930 17183 solver.cpp:218] Iteration 10176 (2.29783 iter/s, 5.22232s/12 iters), loss = 0.0108636 +I0407 11:08:38.234974 17183 solver.cpp:237] Train net output #0: loss = 0.0108638 (* 1 = 0.0108638 loss) +I0407 11:08:38.234982 17183 sgd_solver.cpp:105] Iteration 10176, lr = 0.00015625 +I0407 11:08:43.406455 17183 solver.cpp:218] Iteration 10188 (2.32045 iter/s, 5.17141s/12 iters), loss = 0.0615019 +I0407 11:08:43.406502 17183 solver.cpp:237] Train net output #0: loss = 0.0615021 (* 1 = 0.0615021 loss) +I0407 11:08:43.406509 17183 sgd_solver.cpp:105] Iteration 10188, lr = 0.00015625 +I0407 11:08:48.017257 17183 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 11:08:51.018172 17183 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 11:08:53.381999 17183 solver.cpp:310] Iteration 10200, loss = 0.0693943 +I0407 11:08:53.382025 17183 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 11:08:53.382028 17183 net.cpp:676] Ignoring source layer train-data +I0407 11:08:53.748608 17236 data_layer.cpp:73] Restarting data prefetching from start. +I0407 11:08:57.608974 17183 solver.cpp:397] Test net output #0: accuracy = 0.498774 +I0407 11:08:57.609014 17183 solver.cpp:397] Test net output #1: loss = 2.89834 (* 1 = 2.89834 loss) +I0407 11:08:57.609019 17183 solver.cpp:315] Optimization Done. +I0407 11:08:57.609023 17183 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/step-down/1e-2/33_0.5/caffe_output.log b/cars/lr-investigations/step-down/1e-2/33_0.5/caffe_output.log new file mode 100644 index 0000000..d094794 --- /dev/null +++ b/cars/lr-investigations/step-down/1e-2/33_0.5/caffe_output.log @@ -0,0 +1,4567 @@ +I0407 08:24:09.918653 17723 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210407-082407-a665/solver.prototxt +I0407 08:24:09.918792 17723 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 08:24:09.918795 17723 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 08:24:09.918846 17723 caffe.cpp:218] Using GPUs 1 +I0407 08:24:09.939227 17723 caffe.cpp:223] GPU 1: GeForce GTX TITAN X +I0407 08:24:10.134234 17723 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "step" +gamma: 0.5 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 3366 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 1 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 08:24:10.135057 17723 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 08:24:10.135730 17723 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 08:24:10.135741 17723 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 08:24:10.135862 17723 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 08:24:10.135939 17723 layer_factory.hpp:77] Creating layer train-data +I0407 08:24:10.140313 17723 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db +I0407 08:24:10.140576 17723 net.cpp:84] Creating Layer train-data +I0407 08:24:10.140586 17723 net.cpp:380] train-data -> data +I0407 08:24:10.140604 17723 net.cpp:380] train-data -> label +I0407 08:24:10.140612 17723 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 08:24:10.145944 17723 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 08:24:10.275055 17723 net.cpp:122] Setting up train-data +I0407 08:24:10.275074 17723 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 08:24:10.275077 17723 net.cpp:129] Top shape: 128 (128) +I0407 08:24:10.275079 17723 net.cpp:137] Memory required for data: 79149056 +I0407 08:24:10.275087 17723 layer_factory.hpp:77] Creating layer conv1 +I0407 08:24:10.275106 17723 net.cpp:84] Creating Layer conv1 +I0407 08:24:10.275111 17723 net.cpp:406] conv1 <- data +I0407 08:24:10.275121 17723 net.cpp:380] conv1 -> conv1 +I0407 08:24:10.699064 17723 net.cpp:122] Setting up conv1 +I0407 08:24:10.699082 17723 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:24:10.699084 17723 net.cpp:137] Memory required for data: 227833856 +I0407 08:24:10.699103 17723 layer_factory.hpp:77] Creating layer relu1 +I0407 08:24:10.699112 17723 net.cpp:84] Creating Layer relu1 +I0407 08:24:10.699115 17723 net.cpp:406] relu1 <- conv1 +I0407 08:24:10.699120 17723 net.cpp:367] relu1 -> conv1 (in-place) +I0407 08:24:10.699376 17723 net.cpp:122] Setting up relu1 +I0407 08:24:10.699384 17723 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:24:10.699386 17723 net.cpp:137] Memory required for data: 376518656 +I0407 08:24:10.699388 17723 layer_factory.hpp:77] Creating layer norm1 +I0407 08:24:10.699396 17723 net.cpp:84] Creating Layer norm1 +I0407 08:24:10.699417 17723 net.cpp:406] norm1 <- conv1 +I0407 08:24:10.699422 17723 net.cpp:380] norm1 -> norm1 +I0407 08:24:10.699934 17723 net.cpp:122] Setting up norm1 +I0407 08:24:10.699944 17723 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:24:10.699945 17723 net.cpp:137] Memory required for data: 525203456 +I0407 08:24:10.699949 17723 layer_factory.hpp:77] Creating layer pool1 +I0407 08:24:10.699954 17723 net.cpp:84] Creating Layer pool1 +I0407 08:24:10.699957 17723 net.cpp:406] pool1 <- norm1 +I0407 08:24:10.699961 17723 net.cpp:380] pool1 -> pool1 +I0407 08:24:10.699995 17723 net.cpp:122] Setting up pool1 +I0407 08:24:10.700001 17723 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 08:24:10.700003 17723 net.cpp:137] Memory required for data: 561035264 +I0407 08:24:10.700006 17723 layer_factory.hpp:77] Creating layer conv2 +I0407 08:24:10.700014 17723 net.cpp:84] Creating Layer conv2 +I0407 08:24:10.700016 17723 net.cpp:406] conv2 <- pool1 +I0407 08:24:10.700021 17723 net.cpp:380] conv2 -> conv2 +I0407 08:24:10.707546 17723 net.cpp:122] Setting up conv2 +I0407 08:24:10.707559 17723 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:24:10.707562 17723 net.cpp:137] Memory required for data: 656586752 +I0407 08:24:10.707571 17723 layer_factory.hpp:77] Creating layer relu2 +I0407 08:24:10.707577 17723 net.cpp:84] Creating Layer relu2 +I0407 08:24:10.707581 17723 net.cpp:406] relu2 <- conv2 +I0407 08:24:10.707587 17723 net.cpp:367] relu2 -> conv2 (in-place) +I0407 08:24:10.708065 17723 net.cpp:122] Setting up relu2 +I0407 08:24:10.708073 17723 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:24:10.708076 17723 net.cpp:137] Memory required for data: 752138240 +I0407 08:24:10.708077 17723 layer_factory.hpp:77] Creating layer norm2 +I0407 08:24:10.708086 17723 net.cpp:84] Creating Layer norm2 +I0407 08:24:10.708087 17723 net.cpp:406] norm2 <- conv2 +I0407 08:24:10.708091 17723 net.cpp:380] norm2 -> norm2 +I0407 08:24:10.708421 17723 net.cpp:122] Setting up norm2 +I0407 08:24:10.708429 17723 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:24:10.708431 17723 net.cpp:137] Memory required for data: 847689728 +I0407 08:24:10.708434 17723 layer_factory.hpp:77] Creating layer pool2 +I0407 08:24:10.708442 17723 net.cpp:84] Creating Layer pool2 +I0407 08:24:10.708444 17723 net.cpp:406] pool2 <- norm2 +I0407 08:24:10.708448 17723 net.cpp:380] pool2 -> pool2 +I0407 08:24:10.708474 17723 net.cpp:122] Setting up pool2 +I0407 08:24:10.708478 17723 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:24:10.708480 17723 net.cpp:137] Memory required for data: 869840896 +I0407 08:24:10.708483 17723 layer_factory.hpp:77] Creating layer conv3 +I0407 08:24:10.708492 17723 net.cpp:84] Creating Layer conv3 +I0407 08:24:10.708494 17723 net.cpp:406] conv3 <- pool2 +I0407 08:24:10.708499 17723 net.cpp:380] conv3 -> conv3 +I0407 08:24:10.718997 17723 net.cpp:122] Setting up conv3 +I0407 08:24:10.719015 17723 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:10.719017 17723 net.cpp:137] Memory required for data: 903067648 +I0407 08:24:10.719029 17723 layer_factory.hpp:77] Creating layer relu3 +I0407 08:24:10.719036 17723 net.cpp:84] Creating Layer relu3 +I0407 08:24:10.719039 17723 net.cpp:406] relu3 <- conv3 +I0407 08:24:10.719045 17723 net.cpp:367] relu3 -> conv3 (in-place) +I0407 08:24:10.719521 17723 net.cpp:122] Setting up relu3 +I0407 08:24:10.719530 17723 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:10.719532 17723 net.cpp:137] Memory required for data: 936294400 +I0407 08:24:10.719535 17723 layer_factory.hpp:77] Creating layer conv4 +I0407 08:24:10.719544 17723 net.cpp:84] Creating Layer conv4 +I0407 08:24:10.719547 17723 net.cpp:406] conv4 <- conv3 +I0407 08:24:10.719552 17723 net.cpp:380] conv4 -> conv4 +I0407 08:24:10.728870 17723 net.cpp:122] Setting up conv4 +I0407 08:24:10.728894 17723 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:10.728899 17723 net.cpp:137] Memory required for data: 969521152 +I0407 08:24:10.728905 17723 layer_factory.hpp:77] Creating layer relu4 +I0407 08:24:10.728911 17723 net.cpp:84] Creating Layer relu4 +I0407 08:24:10.728932 17723 net.cpp:406] relu4 <- conv4 +I0407 08:24:10.728937 17723 net.cpp:367] relu4 -> conv4 (in-place) +I0407 08:24:10.729254 17723 net.cpp:122] Setting up relu4 +I0407 08:24:10.729262 17723 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:10.729264 17723 net.cpp:137] Memory required for data: 1002747904 +I0407 08:24:10.729266 17723 layer_factory.hpp:77] Creating layer conv5 +I0407 08:24:10.729275 17723 net.cpp:84] Creating Layer conv5 +I0407 08:24:10.729279 17723 net.cpp:406] conv5 <- conv4 +I0407 08:24:10.729285 17723 net.cpp:380] conv5 -> conv5 +I0407 08:24:10.736573 17723 net.cpp:122] Setting up conv5 +I0407 08:24:10.736585 17723 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:24:10.736588 17723 net.cpp:137] Memory required for data: 1024899072 +I0407 08:24:10.736598 17723 layer_factory.hpp:77] Creating layer relu5 +I0407 08:24:10.736603 17723 net.cpp:84] Creating Layer relu5 +I0407 08:24:10.736606 17723 net.cpp:406] relu5 <- conv5 +I0407 08:24:10.736610 17723 net.cpp:367] relu5 -> conv5 (in-place) +I0407 08:24:10.737078 17723 net.cpp:122] Setting up relu5 +I0407 08:24:10.737087 17723 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:24:10.737089 17723 net.cpp:137] Memory required for data: 1047050240 +I0407 08:24:10.737092 17723 layer_factory.hpp:77] Creating layer pool5 +I0407 08:24:10.737099 17723 net.cpp:84] Creating Layer pool5 +I0407 08:24:10.737102 17723 net.cpp:406] pool5 <- conv5 +I0407 08:24:10.737107 17723 net.cpp:380] pool5 -> pool5 +I0407 08:24:10.737139 17723 net.cpp:122] Setting up pool5 +I0407 08:24:10.737144 17723 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 08:24:10.737146 17723 net.cpp:137] Memory required for data: 1051768832 +I0407 08:24:10.737149 17723 layer_factory.hpp:77] Creating layer fc6 +I0407 08:24:10.737155 17723 net.cpp:84] Creating Layer fc6 +I0407 08:24:10.737157 17723 net.cpp:406] fc6 <- pool5 +I0407 08:24:10.737162 17723 net.cpp:380] fc6 -> fc6 +I0407 08:24:11.069077 17723 net.cpp:122] Setting up fc6 +I0407 08:24:11.069098 17723 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:11.069100 17723 net.cpp:137] Memory required for data: 1053865984 +I0407 08:24:11.069108 17723 layer_factory.hpp:77] Creating layer relu6 +I0407 08:24:11.069116 17723 net.cpp:84] Creating Layer relu6 +I0407 08:24:11.069119 17723 net.cpp:406] relu6 <- fc6 +I0407 08:24:11.069126 17723 net.cpp:367] relu6 -> fc6 (in-place) +I0407 08:24:11.069739 17723 net.cpp:122] Setting up relu6 +I0407 08:24:11.069749 17723 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:11.069751 17723 net.cpp:137] Memory required for data: 1055963136 +I0407 08:24:11.069754 17723 layer_factory.hpp:77] Creating layer drop6 +I0407 08:24:11.069761 17723 net.cpp:84] Creating Layer drop6 +I0407 08:24:11.069762 17723 net.cpp:406] drop6 <- fc6 +I0407 08:24:11.069766 17723 net.cpp:367] drop6 -> fc6 (in-place) +I0407 08:24:11.069790 17723 net.cpp:122] Setting up drop6 +I0407 08:24:11.069794 17723 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:11.069797 17723 net.cpp:137] Memory required for data: 1058060288 +I0407 08:24:11.069798 17723 layer_factory.hpp:77] Creating layer fc7 +I0407 08:24:11.069805 17723 net.cpp:84] Creating Layer fc7 +I0407 08:24:11.069808 17723 net.cpp:406] fc7 <- fc6 +I0407 08:24:11.069811 17723 net.cpp:380] fc7 -> fc7 +I0407 08:24:11.218331 17723 net.cpp:122] Setting up fc7 +I0407 08:24:11.218349 17723 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:11.218353 17723 net.cpp:137] Memory required for data: 1060157440 +I0407 08:24:11.218361 17723 layer_factory.hpp:77] Creating layer relu7 +I0407 08:24:11.218369 17723 net.cpp:84] Creating Layer relu7 +I0407 08:24:11.218371 17723 net.cpp:406] relu7 <- fc7 +I0407 08:24:11.218377 17723 net.cpp:367] relu7 -> fc7 (in-place) +I0407 08:24:11.218753 17723 net.cpp:122] Setting up relu7 +I0407 08:24:11.218760 17723 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:11.218763 17723 net.cpp:137] Memory required for data: 1062254592 +I0407 08:24:11.218765 17723 layer_factory.hpp:77] Creating layer drop7 +I0407 08:24:11.218770 17723 net.cpp:84] Creating Layer drop7 +I0407 08:24:11.218789 17723 net.cpp:406] drop7 <- fc7 +I0407 08:24:11.218796 17723 net.cpp:367] drop7 -> fc7 (in-place) +I0407 08:24:11.218816 17723 net.cpp:122] Setting up drop7 +I0407 08:24:11.218820 17723 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:11.218822 17723 net.cpp:137] Memory required for data: 1064351744 +I0407 08:24:11.218824 17723 layer_factory.hpp:77] Creating layer fc8 +I0407 08:24:11.218829 17723 net.cpp:84] Creating Layer fc8 +I0407 08:24:11.218832 17723 net.cpp:406] fc8 <- fc7 +I0407 08:24:11.218837 17723 net.cpp:380] fc8 -> fc8 +I0407 08:24:11.226606 17723 net.cpp:122] Setting up fc8 +I0407 08:24:11.226624 17723 net.cpp:129] Top shape: 128 196 (25088) +I0407 08:24:11.226625 17723 net.cpp:137] Memory required for data: 1064452096 +I0407 08:24:11.226634 17723 layer_factory.hpp:77] Creating layer loss +I0407 08:24:11.226641 17723 net.cpp:84] Creating Layer loss +I0407 08:24:11.226644 17723 net.cpp:406] loss <- fc8 +I0407 08:24:11.226649 17723 net.cpp:406] loss <- label +I0407 08:24:11.226655 17723 net.cpp:380] loss -> loss +I0407 08:24:11.226666 17723 layer_factory.hpp:77] Creating layer loss +I0407 08:24:11.227361 17723 net.cpp:122] Setting up loss +I0407 08:24:11.227370 17723 net.cpp:129] Top shape: (1) +I0407 08:24:11.227373 17723 net.cpp:132] with loss weight 1 +I0407 08:24:11.227392 17723 net.cpp:137] Memory required for data: 1064452100 +I0407 08:24:11.227396 17723 net.cpp:198] loss needs backward computation. +I0407 08:24:11.227401 17723 net.cpp:198] fc8 needs backward computation. +I0407 08:24:11.227403 17723 net.cpp:198] drop7 needs backward computation. +I0407 08:24:11.227406 17723 net.cpp:198] relu7 needs backward computation. +I0407 08:24:11.227408 17723 net.cpp:198] fc7 needs backward computation. +I0407 08:24:11.227411 17723 net.cpp:198] drop6 needs backward computation. +I0407 08:24:11.227412 17723 net.cpp:198] relu6 needs backward computation. +I0407 08:24:11.227416 17723 net.cpp:198] fc6 needs backward computation. +I0407 08:24:11.227418 17723 net.cpp:198] pool5 needs backward computation. +I0407 08:24:11.227421 17723 net.cpp:198] relu5 needs backward computation. +I0407 08:24:11.227423 17723 net.cpp:198] conv5 needs backward computation. +I0407 08:24:11.227425 17723 net.cpp:198] relu4 needs backward computation. +I0407 08:24:11.227427 17723 net.cpp:198] conv4 needs backward computation. +I0407 08:24:11.227430 17723 net.cpp:198] relu3 needs backward computation. +I0407 08:24:11.227432 17723 net.cpp:198] conv3 needs backward computation. +I0407 08:24:11.227435 17723 net.cpp:198] pool2 needs backward computation. +I0407 08:24:11.227437 17723 net.cpp:198] norm2 needs backward computation. +I0407 08:24:11.227439 17723 net.cpp:198] relu2 needs backward computation. +I0407 08:24:11.227442 17723 net.cpp:198] conv2 needs backward computation. +I0407 08:24:11.227444 17723 net.cpp:198] pool1 needs backward computation. +I0407 08:24:11.227447 17723 net.cpp:198] norm1 needs backward computation. +I0407 08:24:11.227449 17723 net.cpp:198] relu1 needs backward computation. +I0407 08:24:11.227452 17723 net.cpp:198] conv1 needs backward computation. +I0407 08:24:11.227454 17723 net.cpp:200] train-data does not need backward computation. +I0407 08:24:11.227456 17723 net.cpp:242] This network produces output loss +I0407 08:24:11.227468 17723 net.cpp:255] Network initialization done. +I0407 08:24:11.227989 17723 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 08:24:11.228016 17723 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 08:24:11.228143 17723 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 08:24:11.228240 17723 layer_factory.hpp:77] Creating layer val-data +I0407 08:24:11.230232 17723 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db +I0407 08:24:11.230458 17723 net.cpp:84] Creating Layer val-data +I0407 08:24:11.230465 17723 net.cpp:380] val-data -> data +I0407 08:24:11.230473 17723 net.cpp:380] val-data -> label +I0407 08:24:11.230479 17723 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 08:24:11.234190 17723 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 08:24:11.288233 17723 net.cpp:122] Setting up val-data +I0407 08:24:11.288250 17723 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 08:24:11.288254 17723 net.cpp:129] Top shape: 32 (32) +I0407 08:24:11.288255 17723 net.cpp:137] Memory required for data: 19787264 +I0407 08:24:11.288260 17723 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 08:24:11.288271 17723 net.cpp:84] Creating Layer label_val-data_1_split +I0407 08:24:11.288275 17723 net.cpp:406] label_val-data_1_split <- label +I0407 08:24:11.288280 17723 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 08:24:11.288287 17723 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 08:24:11.288331 17723 net.cpp:122] Setting up label_val-data_1_split +I0407 08:24:11.288336 17723 net.cpp:129] Top shape: 32 (32) +I0407 08:24:11.288338 17723 net.cpp:129] Top shape: 32 (32) +I0407 08:24:11.288339 17723 net.cpp:137] Memory required for data: 19787520 +I0407 08:24:11.288342 17723 layer_factory.hpp:77] Creating layer conv1 +I0407 08:24:11.288353 17723 net.cpp:84] Creating Layer conv1 +I0407 08:24:11.288355 17723 net.cpp:406] conv1 <- data +I0407 08:24:11.288359 17723 net.cpp:380] conv1 -> conv1 +I0407 08:24:11.290762 17723 net.cpp:122] Setting up conv1 +I0407 08:24:11.290772 17723 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:24:11.290776 17723 net.cpp:137] Memory required for data: 56958720 +I0407 08:24:11.290783 17723 layer_factory.hpp:77] Creating layer relu1 +I0407 08:24:11.290788 17723 net.cpp:84] Creating Layer relu1 +I0407 08:24:11.290791 17723 net.cpp:406] relu1 <- conv1 +I0407 08:24:11.290796 17723 net.cpp:367] relu1 -> conv1 (in-place) +I0407 08:24:11.291052 17723 net.cpp:122] Setting up relu1 +I0407 08:24:11.291060 17723 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:24:11.291062 17723 net.cpp:137] Memory required for data: 94129920 +I0407 08:24:11.291065 17723 layer_factory.hpp:77] Creating layer norm1 +I0407 08:24:11.291072 17723 net.cpp:84] Creating Layer norm1 +I0407 08:24:11.291074 17723 net.cpp:406] norm1 <- conv1 +I0407 08:24:11.291079 17723 net.cpp:380] norm1 -> norm1 +I0407 08:24:11.291503 17723 net.cpp:122] Setting up norm1 +I0407 08:24:11.291512 17723 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:24:11.291514 17723 net.cpp:137] Memory required for data: 131301120 +I0407 08:24:11.291517 17723 layer_factory.hpp:77] Creating layer pool1 +I0407 08:24:11.291522 17723 net.cpp:84] Creating Layer pool1 +I0407 08:24:11.291525 17723 net.cpp:406] pool1 <- norm1 +I0407 08:24:11.291528 17723 net.cpp:380] pool1 -> pool1 +I0407 08:24:11.291553 17723 net.cpp:122] Setting up pool1 +I0407 08:24:11.291558 17723 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 08:24:11.291559 17723 net.cpp:137] Memory required for data: 140259072 +I0407 08:24:11.291561 17723 layer_factory.hpp:77] Creating layer conv2 +I0407 08:24:11.291568 17723 net.cpp:84] Creating Layer conv2 +I0407 08:24:11.291570 17723 net.cpp:406] conv2 <- pool1 +I0407 08:24:11.291591 17723 net.cpp:380] conv2 -> conv2 +I0407 08:24:11.297576 17723 net.cpp:122] Setting up conv2 +I0407 08:24:11.297590 17723 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:24:11.297593 17723 net.cpp:137] Memory required for data: 164146944 +I0407 08:24:11.297602 17723 layer_factory.hpp:77] Creating layer relu2 +I0407 08:24:11.297608 17723 net.cpp:84] Creating Layer relu2 +I0407 08:24:11.297612 17723 net.cpp:406] relu2 <- conv2 +I0407 08:24:11.297617 17723 net.cpp:367] relu2 -> conv2 (in-place) +I0407 08:24:11.298111 17723 net.cpp:122] Setting up relu2 +I0407 08:24:11.298120 17723 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:24:11.298122 17723 net.cpp:137] Memory required for data: 188034816 +I0407 08:24:11.298125 17723 layer_factory.hpp:77] Creating layer norm2 +I0407 08:24:11.298135 17723 net.cpp:84] Creating Layer norm2 +I0407 08:24:11.298137 17723 net.cpp:406] norm2 <- conv2 +I0407 08:24:11.298141 17723 net.cpp:380] norm2 -> norm2 +I0407 08:24:11.298643 17723 net.cpp:122] Setting up norm2 +I0407 08:24:11.298651 17723 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:24:11.298655 17723 net.cpp:137] Memory required for data: 211922688 +I0407 08:24:11.298657 17723 layer_factory.hpp:77] Creating layer pool2 +I0407 08:24:11.298663 17723 net.cpp:84] Creating Layer pool2 +I0407 08:24:11.298666 17723 net.cpp:406] pool2 <- norm2 +I0407 08:24:11.298671 17723 net.cpp:380] pool2 -> pool2 +I0407 08:24:11.298697 17723 net.cpp:122] Setting up pool2 +I0407 08:24:11.298702 17723 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:24:11.298703 17723 net.cpp:137] Memory required for data: 217460480 +I0407 08:24:11.298707 17723 layer_factory.hpp:77] Creating layer conv3 +I0407 08:24:11.298714 17723 net.cpp:84] Creating Layer conv3 +I0407 08:24:11.298717 17723 net.cpp:406] conv3 <- pool2 +I0407 08:24:11.298722 17723 net.cpp:380] conv3 -> conv3 +I0407 08:24:11.308647 17723 net.cpp:122] Setting up conv3 +I0407 08:24:11.308665 17723 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:11.308666 17723 net.cpp:137] Memory required for data: 225767168 +I0407 08:24:11.308676 17723 layer_factory.hpp:77] Creating layer relu3 +I0407 08:24:11.308682 17723 net.cpp:84] Creating Layer relu3 +I0407 08:24:11.308686 17723 net.cpp:406] relu3 <- conv3 +I0407 08:24:11.308691 17723 net.cpp:367] relu3 -> conv3 (in-place) +I0407 08:24:11.309175 17723 net.cpp:122] Setting up relu3 +I0407 08:24:11.309183 17723 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:11.309186 17723 net.cpp:137] Memory required for data: 234073856 +I0407 08:24:11.309188 17723 layer_factory.hpp:77] Creating layer conv4 +I0407 08:24:11.309198 17723 net.cpp:84] Creating Layer conv4 +I0407 08:24:11.309201 17723 net.cpp:406] conv4 <- conv3 +I0407 08:24:11.309206 17723 net.cpp:380] conv4 -> conv4 +I0407 08:24:11.318428 17723 net.cpp:122] Setting up conv4 +I0407 08:24:11.318442 17723 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:11.318444 17723 net.cpp:137] Memory required for data: 242380544 +I0407 08:24:11.318451 17723 layer_factory.hpp:77] Creating layer relu4 +I0407 08:24:11.318459 17723 net.cpp:84] Creating Layer relu4 +I0407 08:24:11.318462 17723 net.cpp:406] relu4 <- conv4 +I0407 08:24:11.318466 17723 net.cpp:367] relu4 -> conv4 (in-place) +I0407 08:24:11.318779 17723 net.cpp:122] Setting up relu4 +I0407 08:24:11.318786 17723 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:11.318789 17723 net.cpp:137] Memory required for data: 250687232 +I0407 08:24:11.318791 17723 layer_factory.hpp:77] Creating layer conv5 +I0407 08:24:11.318800 17723 net.cpp:84] Creating Layer conv5 +I0407 08:24:11.318802 17723 net.cpp:406] conv5 <- conv4 +I0407 08:24:11.318809 17723 net.cpp:380] conv5 -> conv5 +I0407 08:24:11.326867 17723 net.cpp:122] Setting up conv5 +I0407 08:24:11.326884 17723 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:24:11.326887 17723 net.cpp:137] Memory required for data: 256225024 +I0407 08:24:11.326898 17723 layer_factory.hpp:77] Creating layer relu5 +I0407 08:24:11.326905 17723 net.cpp:84] Creating Layer relu5 +I0407 08:24:11.326927 17723 net.cpp:406] relu5 <- conv5 +I0407 08:24:11.326932 17723 net.cpp:367] relu5 -> conv5 (in-place) +I0407 08:24:11.327430 17723 net.cpp:122] Setting up relu5 +I0407 08:24:11.327437 17723 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:24:11.327440 17723 net.cpp:137] Memory required for data: 261762816 +I0407 08:24:11.327442 17723 layer_factory.hpp:77] Creating layer pool5 +I0407 08:24:11.327452 17723 net.cpp:84] Creating Layer pool5 +I0407 08:24:11.327455 17723 net.cpp:406] pool5 <- conv5 +I0407 08:24:11.327459 17723 net.cpp:380] pool5 -> pool5 +I0407 08:24:11.327493 17723 net.cpp:122] Setting up pool5 +I0407 08:24:11.327498 17723 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 08:24:11.327502 17723 net.cpp:137] Memory required for data: 262942464 +I0407 08:24:11.327503 17723 layer_factory.hpp:77] Creating layer fc6 +I0407 08:24:11.327509 17723 net.cpp:84] Creating Layer fc6 +I0407 08:24:11.327512 17723 net.cpp:406] fc6 <- pool5 +I0407 08:24:11.327517 17723 net.cpp:380] fc6 -> fc6 +I0407 08:24:11.689973 17723 net.cpp:122] Setting up fc6 +I0407 08:24:11.689996 17723 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:11.689997 17723 net.cpp:137] Memory required for data: 263466752 +I0407 08:24:11.690006 17723 layer_factory.hpp:77] Creating layer relu6 +I0407 08:24:11.690013 17723 net.cpp:84] Creating Layer relu6 +I0407 08:24:11.690017 17723 net.cpp:406] relu6 <- fc6 +I0407 08:24:11.690024 17723 net.cpp:367] relu6 -> fc6 (in-place) +I0407 08:24:11.690721 17723 net.cpp:122] Setting up relu6 +I0407 08:24:11.690730 17723 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:11.690732 17723 net.cpp:137] Memory required for data: 263991040 +I0407 08:24:11.690735 17723 layer_factory.hpp:77] Creating layer drop6 +I0407 08:24:11.690740 17723 net.cpp:84] Creating Layer drop6 +I0407 08:24:11.690743 17723 net.cpp:406] drop6 <- fc6 +I0407 08:24:11.690748 17723 net.cpp:367] drop6 -> fc6 (in-place) +I0407 08:24:11.690771 17723 net.cpp:122] Setting up drop6 +I0407 08:24:11.690776 17723 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:11.690778 17723 net.cpp:137] Memory required for data: 264515328 +I0407 08:24:11.690780 17723 layer_factory.hpp:77] Creating layer fc7 +I0407 08:24:11.690788 17723 net.cpp:84] Creating Layer fc7 +I0407 08:24:11.690789 17723 net.cpp:406] fc7 <- fc6 +I0407 08:24:11.690794 17723 net.cpp:380] fc7 -> fc7 +I0407 08:24:11.847674 17723 net.cpp:122] Setting up fc7 +I0407 08:24:11.847697 17723 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:11.847698 17723 net.cpp:137] Memory required for data: 265039616 +I0407 08:24:11.847707 17723 layer_factory.hpp:77] Creating layer relu7 +I0407 08:24:11.847715 17723 net.cpp:84] Creating Layer relu7 +I0407 08:24:11.847719 17723 net.cpp:406] relu7 <- fc7 +I0407 08:24:11.847724 17723 net.cpp:367] relu7 -> fc7 (in-place) +I0407 08:24:11.848120 17723 net.cpp:122] Setting up relu7 +I0407 08:24:11.848129 17723 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:11.848130 17723 net.cpp:137] Memory required for data: 265563904 +I0407 08:24:11.848134 17723 layer_factory.hpp:77] Creating layer drop7 +I0407 08:24:11.848138 17723 net.cpp:84] Creating Layer drop7 +I0407 08:24:11.848141 17723 net.cpp:406] drop7 <- fc7 +I0407 08:24:11.848146 17723 net.cpp:367] drop7 -> fc7 (in-place) +I0407 08:24:11.848167 17723 net.cpp:122] Setting up drop7 +I0407 08:24:11.848171 17723 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:11.848173 17723 net.cpp:137] Memory required for data: 266088192 +I0407 08:24:11.848176 17723 layer_factory.hpp:77] Creating layer fc8 +I0407 08:24:11.848182 17723 net.cpp:84] Creating Layer fc8 +I0407 08:24:11.848184 17723 net.cpp:406] fc8 <- fc7 +I0407 08:24:11.848189 17723 net.cpp:380] fc8 -> fc8 +I0407 08:24:11.855813 17723 net.cpp:122] Setting up fc8 +I0407 08:24:11.855831 17723 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:24:11.855834 17723 net.cpp:137] Memory required for data: 266113280 +I0407 08:24:11.855840 17723 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 08:24:11.855846 17723 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 08:24:11.855850 17723 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 08:24:11.855877 17723 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 08:24:11.855885 17723 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 08:24:11.855919 17723 net.cpp:122] Setting up fc8_fc8_0_split +I0407 08:24:11.855923 17723 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:24:11.855926 17723 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:24:11.855927 17723 net.cpp:137] Memory required for data: 266163456 +I0407 08:24:11.855931 17723 layer_factory.hpp:77] Creating layer accuracy +I0407 08:24:11.855935 17723 net.cpp:84] Creating Layer accuracy +I0407 08:24:11.855938 17723 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 08:24:11.855942 17723 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 08:24:11.855945 17723 net.cpp:380] accuracy -> accuracy +I0407 08:24:11.855952 17723 net.cpp:122] Setting up accuracy +I0407 08:24:11.855954 17723 net.cpp:129] Top shape: (1) +I0407 08:24:11.855957 17723 net.cpp:137] Memory required for data: 266163460 +I0407 08:24:11.855958 17723 layer_factory.hpp:77] Creating layer loss +I0407 08:24:11.855962 17723 net.cpp:84] Creating Layer loss +I0407 08:24:11.855965 17723 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 08:24:11.855968 17723 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 08:24:11.855973 17723 net.cpp:380] loss -> loss +I0407 08:24:11.855978 17723 layer_factory.hpp:77] Creating layer loss +I0407 08:24:11.856649 17723 net.cpp:122] Setting up loss +I0407 08:24:11.856658 17723 net.cpp:129] Top shape: (1) +I0407 08:24:11.856660 17723 net.cpp:132] with loss weight 1 +I0407 08:24:11.856670 17723 net.cpp:137] Memory required for data: 266163464 +I0407 08:24:11.856673 17723 net.cpp:198] loss needs backward computation. +I0407 08:24:11.856676 17723 net.cpp:200] accuracy does not need backward computation. +I0407 08:24:11.856679 17723 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 08:24:11.856681 17723 net.cpp:198] fc8 needs backward computation. +I0407 08:24:11.856684 17723 net.cpp:198] drop7 needs backward computation. +I0407 08:24:11.856686 17723 net.cpp:198] relu7 needs backward computation. +I0407 08:24:11.856688 17723 net.cpp:198] fc7 needs backward computation. +I0407 08:24:11.856690 17723 net.cpp:198] drop6 needs backward computation. +I0407 08:24:11.856693 17723 net.cpp:198] relu6 needs backward computation. +I0407 08:24:11.856695 17723 net.cpp:198] fc6 needs backward computation. +I0407 08:24:11.856698 17723 net.cpp:198] pool5 needs backward computation. +I0407 08:24:11.856700 17723 net.cpp:198] relu5 needs backward computation. +I0407 08:24:11.856703 17723 net.cpp:198] conv5 needs backward computation. +I0407 08:24:11.856704 17723 net.cpp:198] relu4 needs backward computation. +I0407 08:24:11.856707 17723 net.cpp:198] conv4 needs backward computation. +I0407 08:24:11.856709 17723 net.cpp:198] relu3 needs backward computation. +I0407 08:24:11.856711 17723 net.cpp:198] conv3 needs backward computation. +I0407 08:24:11.856714 17723 net.cpp:198] pool2 needs backward computation. +I0407 08:24:11.856716 17723 net.cpp:198] norm2 needs backward computation. +I0407 08:24:11.856719 17723 net.cpp:198] relu2 needs backward computation. +I0407 08:24:11.856721 17723 net.cpp:198] conv2 needs backward computation. +I0407 08:24:11.856724 17723 net.cpp:198] pool1 needs backward computation. +I0407 08:24:11.856726 17723 net.cpp:198] norm1 needs backward computation. +I0407 08:24:11.856729 17723 net.cpp:198] relu1 needs backward computation. +I0407 08:24:11.856730 17723 net.cpp:198] conv1 needs backward computation. +I0407 08:24:11.856734 17723 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 08:24:11.856736 17723 net.cpp:200] val-data does not need backward computation. +I0407 08:24:11.856739 17723 net.cpp:242] This network produces output accuracy +I0407 08:24:11.856741 17723 net.cpp:242] This network produces output loss +I0407 08:24:11.856756 17723 net.cpp:255] Network initialization done. +I0407 08:24:11.856820 17723 solver.cpp:56] Solver scaffolding done. +I0407 08:24:11.857239 17723 caffe.cpp:248] Starting Optimization +I0407 08:24:11.857246 17723 solver.cpp:272] Solving +I0407 08:24:11.857257 17723 solver.cpp:273] Learning Rate Policy: step +I0407 08:24:11.858923 17723 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 08:24:11.858932 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:24:11.965004 17723 blocking_queue.cpp:49] Waiting for data +I0407 08:24:16.239472 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:24:16.287261 17723 solver.cpp:397] Test net output #0: accuracy = 0.00428922 +I0407 08:24:16.287310 17723 solver.cpp:397] Test net output #1: loss = 5.28369 (* 1 = 5.28369 loss) +I0407 08:24:16.436692 17723 solver.cpp:218] Iteration 0 (0 iter/s, 4.57935s/12 iters), loss = 5.27203 +I0407 08:24:16.438266 17723 solver.cpp:237] Train net output #0: loss = 5.27203 (* 1 = 5.27203 loss) +I0407 08:24:16.438297 17723 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 08:24:20.569924 17723 solver.cpp:218] Iteration 12 (2.90444 iter/s, 4.13161s/12 iters), loss = 5.27739 +I0407 08:24:20.569977 17723 solver.cpp:237] Train net output #0: loss = 5.27739 (* 1 = 5.27739 loss) +I0407 08:24:20.569985 17723 sgd_solver.cpp:105] Iteration 12, lr = 0.01 +I0407 08:24:25.939116 17723 solver.cpp:218] Iteration 24 (2.23502 iter/s, 5.36909s/12 iters), loss = 5.27997 +I0407 08:24:25.939152 17723 solver.cpp:237] Train net output #0: loss = 5.27997 (* 1 = 5.27997 loss) +I0407 08:24:25.939158 17723 sgd_solver.cpp:105] Iteration 24, lr = 0.01 +I0407 08:24:31.323047 17723 solver.cpp:218] Iteration 36 (2.22889 iter/s, 5.38384s/12 iters), loss = 5.28048 +I0407 08:24:31.323089 17723 solver.cpp:237] Train net output #0: loss = 5.28048 (* 1 = 5.28048 loss) +I0407 08:24:31.323098 17723 sgd_solver.cpp:105] Iteration 36, lr = 0.01 +I0407 08:24:36.503662 17723 solver.cpp:218] Iteration 48 (2.31637 iter/s, 5.18052s/12 iters), loss = 5.30472 +I0407 08:24:36.503707 17723 solver.cpp:237] Train net output #0: loss = 5.30472 (* 1 = 5.30472 loss) +I0407 08:24:36.503715 17723 sgd_solver.cpp:105] Iteration 48, lr = 0.01 +I0407 08:24:41.875090 17723 solver.cpp:218] Iteration 60 (2.23409 iter/s, 5.37133s/12 iters), loss = 5.29112 +I0407 08:24:41.875250 17723 solver.cpp:237] Train net output #0: loss = 5.29112 (* 1 = 5.29112 loss) +I0407 08:24:41.875259 17723 sgd_solver.cpp:105] Iteration 60, lr = 0.01 +I0407 08:24:47.310328 17723 solver.cpp:218] Iteration 72 (2.2079 iter/s, 5.43503s/12 iters), loss = 5.30214 +I0407 08:24:47.310360 17723 solver.cpp:237] Train net output #0: loss = 5.30214 (* 1 = 5.30214 loss) +I0407 08:24:47.310369 17723 sgd_solver.cpp:105] Iteration 72, lr = 0.01 +I0407 08:24:52.677587 17723 solver.cpp:218] Iteration 84 (2.23582 iter/s, 5.36716s/12 iters), loss = 5.30355 +I0407 08:24:52.677628 17723 solver.cpp:237] Train net output #0: loss = 5.30355 (* 1 = 5.30355 loss) +I0407 08:24:52.677634 17723 sgd_solver.cpp:105] Iteration 84, lr = 0.01 +I0407 08:24:57.888641 17723 solver.cpp:218] Iteration 96 (2.30284 iter/s, 5.21096s/12 iters), loss = 5.29164 +I0407 08:24:57.888684 17723 solver.cpp:237] Train net output #0: loss = 5.29164 (* 1 = 5.29164 loss) +I0407 08:24:57.888691 17723 sgd_solver.cpp:105] Iteration 96, lr = 0.01 +I0407 08:24:59.706859 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:00.023910 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 08:25:03.073365 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 08:25:05.367254 17723 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 08:25:05.367274 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:25:09.663924 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:09.741816 17723 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0407 08:25:09.741852 17723 solver.cpp:397] Test net output #1: loss = 5.29202 (* 1 = 5.29202 loss) +I0407 08:25:11.574144 17723 solver.cpp:218] Iteration 108 (0.876851 iter/s, 13.6853s/12 iters), loss = 5.28085 +I0407 08:25:11.574184 17723 solver.cpp:237] Train net output #0: loss = 5.28085 (* 1 = 5.28085 loss) +I0407 08:25:11.574191 17723 sgd_solver.cpp:105] Iteration 108, lr = 0.01 +I0407 08:25:17.026501 17723 solver.cpp:218] Iteration 120 (2.20093 iter/s, 5.45225s/12 iters), loss = 5.26427 +I0407 08:25:17.026636 17723 solver.cpp:237] Train net output #0: loss = 5.26427 (* 1 = 5.26427 loss) +I0407 08:25:17.026644 17723 sgd_solver.cpp:105] Iteration 120, lr = 0.01 +I0407 08:25:22.422259 17723 solver.cpp:218] Iteration 132 (2.22405 iter/s, 5.39557s/12 iters), loss = 5.26664 +I0407 08:25:22.422297 17723 solver.cpp:237] Train net output #0: loss = 5.26664 (* 1 = 5.26664 loss) +I0407 08:25:22.422303 17723 sgd_solver.cpp:105] Iteration 132, lr = 0.01 +I0407 08:25:27.844897 17723 solver.cpp:218] Iteration 144 (2.21299 iter/s, 5.42253s/12 iters), loss = 5.25709 +I0407 08:25:27.844942 17723 solver.cpp:237] Train net output #0: loss = 5.25709 (* 1 = 5.25709 loss) +I0407 08:25:27.844950 17723 sgd_solver.cpp:105] Iteration 144, lr = 0.01 +I0407 08:25:32.821413 17723 solver.cpp:218] Iteration 156 (2.41138 iter/s, 4.97641s/12 iters), loss = 5.25432 +I0407 08:25:32.821453 17723 solver.cpp:237] Train net output #0: loss = 5.25432 (* 1 = 5.25432 loss) +I0407 08:25:32.821460 17723 sgd_solver.cpp:105] Iteration 156, lr = 0.01 +I0407 08:25:38.072118 17723 solver.cpp:218] Iteration 168 (2.28545 iter/s, 5.2506s/12 iters), loss = 5.20381 +I0407 08:25:38.072175 17723 solver.cpp:237] Train net output #0: loss = 5.20381 (* 1 = 5.20381 loss) +I0407 08:25:38.072185 17723 sgd_solver.cpp:105] Iteration 168, lr = 0.01 +I0407 08:25:43.304224 17723 solver.cpp:218] Iteration 180 (2.29358 iter/s, 5.23199s/12 iters), loss = 5.24119 +I0407 08:25:43.304261 17723 solver.cpp:237] Train net output #0: loss = 5.24119 (* 1 = 5.24119 loss) +I0407 08:25:43.304268 17723 sgd_solver.cpp:105] Iteration 180, lr = 0.01 +I0407 08:25:48.236456 17723 solver.cpp:218] Iteration 192 (2.43302 iter/s, 4.93213s/12 iters), loss = 5.11237 +I0407 08:25:48.236572 17723 solver.cpp:237] Train net output #0: loss = 5.11237 (* 1 = 5.11237 loss) +I0407 08:25:48.236580 17723 sgd_solver.cpp:105] Iteration 192, lr = 0.01 +I0407 08:25:52.270889 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:52.977246 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 08:25:55.958739 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 08:25:58.261632 17723 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 08:25:58.261651 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:26:02.403340 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:02.526929 17723 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 08:26:02.526962 17723 solver.cpp:397] Test net output #1: loss = 5.18843 (* 1 = 5.18843 loss) +I0407 08:26:02.666579 17723 solver.cpp:218] Iteration 204 (0.831608 iter/s, 14.4299s/12 iters), loss = 5.16766 +I0407 08:26:02.666626 17723 solver.cpp:237] Train net output #0: loss = 5.16766 (* 1 = 5.16766 loss) +I0407 08:26:02.666633 17723 sgd_solver.cpp:105] Iteration 204, lr = 0.01 +I0407 08:26:06.992321 17723 solver.cpp:218] Iteration 216 (2.77415 iter/s, 4.32565s/12 iters), loss = 5.24067 +I0407 08:26:06.992363 17723 solver.cpp:237] Train net output #0: loss = 5.24067 (* 1 = 5.24067 loss) +I0407 08:26:06.992372 17723 sgd_solver.cpp:105] Iteration 216, lr = 0.01 +I0407 08:26:12.143049 17723 solver.cpp:218] Iteration 228 (2.32982 iter/s, 5.15062s/12 iters), loss = 5.21476 +I0407 08:26:12.143092 17723 solver.cpp:237] Train net output #0: loss = 5.21476 (* 1 = 5.21476 loss) +I0407 08:26:12.143100 17723 sgd_solver.cpp:105] Iteration 228, lr = 0.01 +I0407 08:26:17.418216 17723 solver.cpp:218] Iteration 240 (2.27485 iter/s, 5.27507s/12 iters), loss = 5.18397 +I0407 08:26:17.418262 17723 solver.cpp:237] Train net output #0: loss = 5.18397 (* 1 = 5.18397 loss) +I0407 08:26:17.418268 17723 sgd_solver.cpp:105] Iteration 240, lr = 0.01 +I0407 08:26:22.659766 17723 solver.cpp:218] Iteration 252 (2.28945 iter/s, 5.24144s/12 iters), loss = 5.2248 +I0407 08:26:22.659922 17723 solver.cpp:237] Train net output #0: loss = 5.2248 (* 1 = 5.2248 loss) +I0407 08:26:22.659934 17723 sgd_solver.cpp:105] Iteration 252, lr = 0.01 +I0407 08:26:27.879107 17723 solver.cpp:218] Iteration 264 (2.29924 iter/s, 5.21912s/12 iters), loss = 5.1238 +I0407 08:26:27.879164 17723 solver.cpp:237] Train net output #0: loss = 5.1238 (* 1 = 5.1238 loss) +I0407 08:26:27.879175 17723 sgd_solver.cpp:105] Iteration 264, lr = 0.01 +I0407 08:26:33.294582 17723 solver.cpp:218] Iteration 276 (2.21592 iter/s, 5.41536s/12 iters), loss = 5.08348 +I0407 08:26:33.294648 17723 solver.cpp:237] Train net output #0: loss = 5.08348 (* 1 = 5.08348 loss) +I0407 08:26:33.294665 17723 sgd_solver.cpp:105] Iteration 276, lr = 0.01 +I0407 08:26:38.276167 17723 solver.cpp:218] Iteration 288 (2.40893 iter/s, 4.98147s/12 iters), loss = 5.1756 +I0407 08:26:38.276208 17723 solver.cpp:237] Train net output #0: loss = 5.1756 (* 1 = 5.1756 loss) +I0407 08:26:38.276216 17723 sgd_solver.cpp:105] Iteration 288, lr = 0.01 +I0407 08:26:43.563511 17723 solver.cpp:218] Iteration 300 (2.26961 iter/s, 5.28724s/12 iters), loss = 5.2461 +I0407 08:26:43.563567 17723 solver.cpp:237] Train net output #0: loss = 5.2461 (* 1 = 5.2461 loss) +I0407 08:26:43.563580 17723 sgd_solver.cpp:105] Iteration 300, lr = 0.01 +I0407 08:26:44.510615 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:45.663601 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 08:26:48.584748 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 08:26:50.954213 17723 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 08:26:50.954236 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:26:55.065412 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:55.221777 17723 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0407 08:26:55.221827 17723 solver.cpp:397] Test net output #1: loss = 5.16142 (* 1 = 5.16142 loss) +I0407 08:26:57.085628 17723 solver.cpp:218] Iteration 312 (0.887447 iter/s, 13.5219s/12 iters), loss = 5.13608 +I0407 08:26:57.085667 17723 solver.cpp:237] Train net output #0: loss = 5.13608 (* 1 = 5.13608 loss) +I0407 08:26:57.085675 17723 sgd_solver.cpp:105] Iteration 312, lr = 0.01 +I0407 08:27:02.418048 17723 solver.cpp:218] Iteration 324 (2.25043 iter/s, 5.33232s/12 iters), loss = 5.21504 +I0407 08:27:02.418094 17723 solver.cpp:237] Train net output #0: loss = 5.21504 (* 1 = 5.21504 loss) +I0407 08:27:02.418102 17723 sgd_solver.cpp:105] Iteration 324, lr = 0.01 +I0407 08:27:07.217141 17723 solver.cpp:218] Iteration 336 (2.50052 iter/s, 4.79899s/12 iters), loss = 5.14133 +I0407 08:27:07.217190 17723 solver.cpp:237] Train net output #0: loss = 5.14133 (* 1 = 5.14133 loss) +I0407 08:27:07.217198 17723 sgd_solver.cpp:105] Iteration 336, lr = 0.01 +I0407 08:27:12.281812 17723 solver.cpp:218] Iteration 348 (2.3694 iter/s, 5.06457s/12 iters), loss = 5.09814 +I0407 08:27:12.281857 17723 solver.cpp:237] Train net output #0: loss = 5.09814 (* 1 = 5.09814 loss) +I0407 08:27:12.281863 17723 sgd_solver.cpp:105] Iteration 348, lr = 0.01 +I0407 08:27:17.606396 17723 solver.cpp:218] Iteration 360 (2.25374 iter/s, 5.32449s/12 iters), loss = 5.17628 +I0407 08:27:17.606436 17723 solver.cpp:237] Train net output #0: loss = 5.17628 (* 1 = 5.17628 loss) +I0407 08:27:17.606443 17723 sgd_solver.cpp:105] Iteration 360, lr = 0.01 +I0407 08:27:22.915381 17723 solver.cpp:218] Iteration 372 (2.26037 iter/s, 5.30888s/12 iters), loss = 5.13409 +I0407 08:27:22.915436 17723 solver.cpp:237] Train net output #0: loss = 5.13409 (* 1 = 5.13409 loss) +I0407 08:27:22.915446 17723 sgd_solver.cpp:105] Iteration 372, lr = 0.01 +I0407 08:27:27.984854 17723 solver.cpp:218] Iteration 384 (2.36716 iter/s, 5.06936s/12 iters), loss = 5.21895 +I0407 08:27:27.984964 17723 solver.cpp:237] Train net output #0: loss = 5.21895 (* 1 = 5.21895 loss) +I0407 08:27:27.984973 17723 sgd_solver.cpp:105] Iteration 384, lr = 0.01 +I0407 08:27:33.268270 17723 solver.cpp:218] Iteration 396 (2.27133 iter/s, 5.28325s/12 iters), loss = 5.14261 +I0407 08:27:33.268313 17723 solver.cpp:237] Train net output #0: loss = 5.14261 (* 1 = 5.14261 loss) +I0407 08:27:33.268321 17723 sgd_solver.cpp:105] Iteration 396, lr = 0.01 +I0407 08:27:36.568516 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:27:38.007508 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 08:27:41.048254 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 08:27:43.388335 17723 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 08:27:43.388358 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:27:47.602891 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:27:47.807533 17723 solver.cpp:397] Test net output #0: accuracy = 0.0140931 +I0407 08:27:47.807565 17723 solver.cpp:397] Test net output #1: loss = 5.14544 (* 1 = 5.14544 loss) +I0407 08:27:47.941681 17723 solver.cpp:218] Iteration 408 (0.817816 iter/s, 14.6732s/12 iters), loss = 5.13915 +I0407 08:27:47.941725 17723 solver.cpp:237] Train net output #0: loss = 5.13915 (* 1 = 5.13915 loss) +I0407 08:27:47.941732 17723 sgd_solver.cpp:105] Iteration 408, lr = 0.01 +I0407 08:27:52.353024 17723 solver.cpp:218] Iteration 420 (2.72032 iter/s, 4.41124s/12 iters), loss = 5.10154 +I0407 08:27:52.353067 17723 solver.cpp:237] Train net output #0: loss = 5.10154 (* 1 = 5.10154 loss) +I0407 08:27:52.353075 17723 sgd_solver.cpp:105] Iteration 420, lr = 0.01 +I0407 08:27:57.460861 17723 solver.cpp:218] Iteration 432 (2.34938 iter/s, 5.10773s/12 iters), loss = 5.05281 +I0407 08:27:57.460908 17723 solver.cpp:237] Train net output #0: loss = 5.05281 (* 1 = 5.05281 loss) +I0407 08:27:57.460916 17723 sgd_solver.cpp:105] Iteration 432, lr = 0.01 +I0407 08:28:02.684159 17723 solver.cpp:218] Iteration 444 (2.29744 iter/s, 5.2232s/12 iters), loss = 5.10659 +I0407 08:28:02.684283 17723 solver.cpp:237] Train net output #0: loss = 5.10659 (* 1 = 5.10659 loss) +I0407 08:28:02.684293 17723 sgd_solver.cpp:105] Iteration 444, lr = 0.01 +I0407 08:28:07.770511 17723 solver.cpp:218] Iteration 456 (2.35933 iter/s, 5.08618s/12 iters), loss = 5.15221 +I0407 08:28:07.770546 17723 solver.cpp:237] Train net output #0: loss = 5.15221 (* 1 = 5.15221 loss) +I0407 08:28:07.770553 17723 sgd_solver.cpp:105] Iteration 456, lr = 0.01 +I0407 08:28:12.951198 17723 solver.cpp:218] Iteration 468 (2.31634 iter/s, 5.1806s/12 iters), loss = 5.07187 +I0407 08:28:12.951234 17723 solver.cpp:237] Train net output #0: loss = 5.07187 (* 1 = 5.07187 loss) +I0407 08:28:12.951241 17723 sgd_solver.cpp:105] Iteration 468, lr = 0.01 +I0407 08:28:18.006584 17723 solver.cpp:218] Iteration 480 (2.37375 iter/s, 5.05529s/12 iters), loss = 5.05976 +I0407 08:28:18.006623 17723 solver.cpp:237] Train net output #0: loss = 5.05976 (* 1 = 5.05976 loss) +I0407 08:28:18.006630 17723 sgd_solver.cpp:105] Iteration 480, lr = 0.01 +I0407 08:28:23.334877 17723 solver.cpp:218] Iteration 492 (2.25217 iter/s, 5.32819s/12 iters), loss = 5.06199 +I0407 08:28:23.334915 17723 solver.cpp:237] Train net output #0: loss = 5.06199 (* 1 = 5.06199 loss) +I0407 08:28:23.334923 17723 sgd_solver.cpp:105] Iteration 492, lr = 0.01 +I0407 08:28:28.561100 17723 solver.cpp:218] Iteration 504 (2.29616 iter/s, 5.22613s/12 iters), loss = 5.07016 +I0407 08:28:28.561146 17723 solver.cpp:237] Train net output #0: loss = 5.07016 (* 1 = 5.07016 loss) +I0407 08:28:28.561152 17723 sgd_solver.cpp:105] Iteration 504, lr = 0.01 +I0407 08:28:28.808265 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:28:30.763113 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 08:28:33.780421 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 08:28:36.099386 17723 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 08:28:36.099411 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:28:40.140475 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:28:40.377111 17723 solver.cpp:397] Test net output #0: accuracy = 0.0189951 +I0407 08:28:40.377148 17723 solver.cpp:397] Test net output #1: loss = 5.05891 (* 1 = 5.05891 loss) +I0407 08:28:42.216809 17723 solver.cpp:218] Iteration 516 (0.878765 iter/s, 13.6555s/12 iters), loss = 5.05031 +I0407 08:28:42.216850 17723 solver.cpp:237] Train net output #0: loss = 5.05031 (* 1 = 5.05031 loss) +I0407 08:28:42.216857 17723 sgd_solver.cpp:105] Iteration 516, lr = 0.01 +I0407 08:28:47.551664 17723 solver.cpp:218] Iteration 528 (2.2494 iter/s, 5.33476s/12 iters), loss = 5.13441 +I0407 08:28:47.551707 17723 solver.cpp:237] Train net output #0: loss = 5.13441 (* 1 = 5.13441 loss) +I0407 08:28:47.551713 17723 sgd_solver.cpp:105] Iteration 528, lr = 0.01 +I0407 08:28:52.959352 17723 solver.cpp:218] Iteration 540 (2.21911 iter/s, 5.40758s/12 iters), loss = 5.04259 +I0407 08:28:52.959394 17723 solver.cpp:237] Train net output #0: loss = 5.04259 (* 1 = 5.04259 loss) +I0407 08:28:52.959401 17723 sgd_solver.cpp:105] Iteration 540, lr = 0.01 +I0407 08:28:57.948135 17723 solver.cpp:218] Iteration 552 (2.40544 iter/s, 4.98868s/12 iters), loss = 5.10976 +I0407 08:28:57.948200 17723 solver.cpp:237] Train net output #0: loss = 5.10976 (* 1 = 5.10976 loss) +I0407 08:28:57.948215 17723 sgd_solver.cpp:105] Iteration 552, lr = 0.01 +I0407 08:29:03.016604 17723 solver.cpp:218] Iteration 564 (2.36763 iter/s, 5.06835s/12 iters), loss = 5.03572 +I0407 08:29:03.016650 17723 solver.cpp:237] Train net output #0: loss = 5.03572 (* 1 = 5.03572 loss) +I0407 08:29:03.016659 17723 sgd_solver.cpp:105] Iteration 564, lr = 0.01 +I0407 08:29:08.002784 17723 solver.cpp:218] Iteration 576 (2.4067 iter/s, 4.98608s/12 iters), loss = 5.01829 +I0407 08:29:08.002912 17723 solver.cpp:237] Train net output #0: loss = 5.01829 (* 1 = 5.01829 loss) +I0407 08:29:08.002923 17723 sgd_solver.cpp:105] Iteration 576, lr = 0.01 +I0407 08:29:13.291340 17723 solver.cpp:218] Iteration 588 (2.26913 iter/s, 5.28837s/12 iters), loss = 4.97955 +I0407 08:29:13.291395 17723 solver.cpp:237] Train net output #0: loss = 4.97955 (* 1 = 4.97955 loss) +I0407 08:29:13.291405 17723 sgd_solver.cpp:105] Iteration 588, lr = 0.01 +I0407 08:29:18.629580 17723 solver.cpp:218] Iteration 600 (2.24798 iter/s, 5.33812s/12 iters), loss = 5.03679 +I0407 08:29:18.629621 17723 solver.cpp:237] Train net output #0: loss = 5.03679 (* 1 = 5.03679 loss) +I0407 08:29:18.629628 17723 sgd_solver.cpp:105] Iteration 600, lr = 0.01 +I0407 08:29:21.167765 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:29:23.545449 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 08:29:26.586103 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 08:29:28.942225 17723 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 08:29:28.942245 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:29:32.954593 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:29:33.243046 17723 solver.cpp:397] Test net output #0: accuracy = 0.028799 +I0407 08:29:33.243074 17723 solver.cpp:397] Test net output #1: loss = 4.98814 (* 1 = 4.98814 loss) +I0407 08:29:33.383533 17723 solver.cpp:218] Iteration 612 (0.813351 iter/s, 14.7538s/12 iters), loss = 4.98951 +I0407 08:29:33.385114 17723 solver.cpp:237] Train net output #0: loss = 4.98951 (* 1 = 4.98951 loss) +I0407 08:29:33.385126 17723 sgd_solver.cpp:105] Iteration 612, lr = 0.01 +I0407 08:29:37.795877 17723 solver.cpp:218] Iteration 624 (2.72064 iter/s, 4.41072s/12 iters), loss = 4.98381 +I0407 08:29:37.795923 17723 solver.cpp:237] Train net output #0: loss = 4.98381 (* 1 = 4.98381 loss) +I0407 08:29:37.795933 17723 sgd_solver.cpp:105] Iteration 624, lr = 0.01 +I0407 08:29:43.145399 17723 solver.cpp:218] Iteration 636 (2.24323 iter/s, 5.34942s/12 iters), loss = 4.93793 +I0407 08:29:43.145524 17723 solver.cpp:237] Train net output #0: loss = 4.93793 (* 1 = 4.93793 loss) +I0407 08:29:43.145532 17723 sgd_solver.cpp:105] Iteration 636, lr = 0.01 +I0407 08:29:48.303215 17723 solver.cpp:218] Iteration 648 (2.32665 iter/s, 5.15764s/12 iters), loss = 4.9473 +I0407 08:29:48.303262 17723 solver.cpp:237] Train net output #0: loss = 4.9473 (* 1 = 4.9473 loss) +I0407 08:29:48.303272 17723 sgd_solver.cpp:105] Iteration 648, lr = 0.01 +I0407 08:29:53.483829 17723 solver.cpp:218] Iteration 660 (2.31637 iter/s, 5.18051s/12 iters), loss = 4.92484 +I0407 08:29:53.483871 17723 solver.cpp:237] Train net output #0: loss = 4.92484 (* 1 = 4.92484 loss) +I0407 08:29:53.483878 17723 sgd_solver.cpp:105] Iteration 660, lr = 0.01 +I0407 08:29:58.556046 17723 solver.cpp:218] Iteration 672 (2.36588 iter/s, 5.07212s/12 iters), loss = 4.98254 +I0407 08:29:58.556093 17723 solver.cpp:237] Train net output #0: loss = 4.98254 (* 1 = 4.98254 loss) +I0407 08:29:58.556100 17723 sgd_solver.cpp:105] Iteration 672, lr = 0.01 +I0407 08:30:03.828969 17723 solver.cpp:218] Iteration 684 (2.27582 iter/s, 5.27281s/12 iters), loss = 4.91847 +I0407 08:30:03.829021 17723 solver.cpp:237] Train net output #0: loss = 4.91847 (* 1 = 4.91847 loss) +I0407 08:30:03.829028 17723 sgd_solver.cpp:105] Iteration 684, lr = 0.01 +I0407 08:30:04.579027 17723 blocking_queue.cpp:49] Waiting for data +I0407 08:30:09.096228 17723 solver.cpp:218] Iteration 696 (2.27827 iter/s, 5.26715s/12 iters), loss = 4.84031 +I0407 08:30:09.096280 17723 solver.cpp:237] Train net output #0: loss = 4.84031 (* 1 = 4.84031 loss) +I0407 08:30:09.096289 17723 sgd_solver.cpp:105] Iteration 696, lr = 0.01 +I0407 08:30:13.717962 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:30:14.133530 17723 solver.cpp:218] Iteration 708 (2.38228 iter/s, 5.0372s/12 iters), loss = 5.03562 +I0407 08:30:14.133566 17723 solver.cpp:237] Train net output #0: loss = 5.03562 (* 1 = 5.03562 loss) +I0407 08:30:14.133572 17723 sgd_solver.cpp:105] Iteration 708, lr = 0.01 +I0407 08:30:16.186823 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 08:30:19.267858 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 08:30:21.596282 17723 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 08:30:21.596307 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:30:25.653553 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:30:25.966414 17723 solver.cpp:397] Test net output #0: accuracy = 0.0275735 +I0407 08:30:25.966454 17723 solver.cpp:397] Test net output #1: loss = 4.95693 (* 1 = 4.95693 loss) +I0407 08:30:27.884501 17723 solver.cpp:218] Iteration 720 (0.872676 iter/s, 13.7508s/12 iters), loss = 4.89187 +I0407 08:30:27.884554 17723 solver.cpp:237] Train net output #0: loss = 4.89187 (* 1 = 4.89187 loss) +I0407 08:30:27.884564 17723 sgd_solver.cpp:105] Iteration 720, lr = 0.01 +I0407 08:30:33.190722 17723 solver.cpp:218] Iteration 732 (2.26154 iter/s, 5.30611s/12 iters), loss = 4.77996 +I0407 08:30:33.190763 17723 solver.cpp:237] Train net output #0: loss = 4.77996 (* 1 = 4.77996 loss) +I0407 08:30:33.190771 17723 sgd_solver.cpp:105] Iteration 732, lr = 0.01 +I0407 08:30:38.453137 17723 solver.cpp:218] Iteration 744 (2.28037 iter/s, 5.26231s/12 iters), loss = 4.8486 +I0407 08:30:38.453178 17723 solver.cpp:237] Train net output #0: loss = 4.8486 (* 1 = 4.8486 loss) +I0407 08:30:38.453186 17723 sgd_solver.cpp:105] Iteration 744, lr = 0.01 +I0407 08:30:43.906733 17723 solver.cpp:218] Iteration 756 (2.20042 iter/s, 5.45349s/12 iters), loss = 4.74988 +I0407 08:30:43.906869 17723 solver.cpp:237] Train net output #0: loss = 4.74988 (* 1 = 4.74988 loss) +I0407 08:30:43.906877 17723 sgd_solver.cpp:105] Iteration 756, lr = 0.01 +I0407 08:30:49.386945 17723 solver.cpp:218] Iteration 768 (2.18977 iter/s, 5.48002s/12 iters), loss = 4.89097 +I0407 08:30:49.386986 17723 solver.cpp:237] Train net output #0: loss = 4.89097 (* 1 = 4.89097 loss) +I0407 08:30:49.386992 17723 sgd_solver.cpp:105] Iteration 768, lr = 0.01 +I0407 08:30:54.441555 17723 solver.cpp:218] Iteration 780 (2.37412 iter/s, 5.05451s/12 iters), loss = 4.7461 +I0407 08:30:54.441601 17723 solver.cpp:237] Train net output #0: loss = 4.7461 (* 1 = 4.7461 loss) +I0407 08:30:54.441609 17723 sgd_solver.cpp:105] Iteration 780, lr = 0.01 +I0407 08:30:59.691305 17723 solver.cpp:218] Iteration 792 (2.28587 iter/s, 5.24965s/12 iters), loss = 4.97157 +I0407 08:30:59.691349 17723 solver.cpp:237] Train net output #0: loss = 4.97157 (* 1 = 4.97157 loss) +I0407 08:30:59.691357 17723 sgd_solver.cpp:105] Iteration 792, lr = 0.01 +I0407 08:31:05.030591 17723 solver.cpp:218] Iteration 804 (2.24754 iter/s, 5.33918s/12 iters), loss = 4.88612 +I0407 08:31:05.030632 17723 solver.cpp:237] Train net output #0: loss = 4.88612 (* 1 = 4.88612 loss) +I0407 08:31:05.030639 17723 sgd_solver.cpp:105] Iteration 804, lr = 0.01 +I0407 08:31:06.840777 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:09.859714 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 08:31:13.789616 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 08:31:16.113237 17723 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 08:31:16.113369 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:31:20.128140 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:20.474858 17723 solver.cpp:397] Test net output #0: accuracy = 0.0410539 +I0407 08:31:20.474886 17723 solver.cpp:397] Test net output #1: loss = 4.87389 (* 1 = 4.87389 loss) +I0407 08:31:20.615257 17723 solver.cpp:218] Iteration 816 (0.769997 iter/s, 15.5845s/12 iters), loss = 4.97642 +I0407 08:31:20.615307 17723 solver.cpp:237] Train net output #0: loss = 4.97642 (* 1 = 4.97642 loss) +I0407 08:31:20.615315 17723 sgd_solver.cpp:105] Iteration 816, lr = 0.01 +I0407 08:31:25.142691 17723 solver.cpp:218] Iteration 828 (2.65057 iter/s, 4.52734s/12 iters), loss = 4.7781 +I0407 08:31:25.142735 17723 solver.cpp:237] Train net output #0: loss = 4.7781 (* 1 = 4.7781 loss) +I0407 08:31:25.142741 17723 sgd_solver.cpp:105] Iteration 828, lr = 0.01 +I0407 08:31:30.504657 17723 solver.cpp:218] Iteration 840 (2.23803 iter/s, 5.36186s/12 iters), loss = 4.64872 +I0407 08:31:30.504696 17723 solver.cpp:237] Train net output #0: loss = 4.64872 (* 1 = 4.64872 loss) +I0407 08:31:30.504703 17723 sgd_solver.cpp:105] Iteration 840, lr = 0.01 +I0407 08:31:35.772477 17723 solver.cpp:218] Iteration 852 (2.27802 iter/s, 5.26772s/12 iters), loss = 4.6304 +I0407 08:31:35.772521 17723 solver.cpp:237] Train net output #0: loss = 4.6304 (* 1 = 4.6304 loss) +I0407 08:31:35.772529 17723 sgd_solver.cpp:105] Iteration 852, lr = 0.01 +I0407 08:31:41.200486 17723 solver.cpp:218] Iteration 864 (2.2108 iter/s, 5.4279s/12 iters), loss = 4.74131 +I0407 08:31:41.200531 17723 solver.cpp:237] Train net output #0: loss = 4.74131 (* 1 = 4.74131 loss) +I0407 08:31:41.200538 17723 sgd_solver.cpp:105] Iteration 864, lr = 0.01 +I0407 08:31:46.496052 17723 solver.cpp:218] Iteration 876 (2.26609 iter/s, 5.29546s/12 iters), loss = 4.70262 +I0407 08:31:46.496166 17723 solver.cpp:237] Train net output #0: loss = 4.70262 (* 1 = 4.70262 loss) +I0407 08:31:46.496176 17723 sgd_solver.cpp:105] Iteration 876, lr = 0.01 +I0407 08:31:51.878010 17723 solver.cpp:218] Iteration 888 (2.22974 iter/s, 5.38178s/12 iters), loss = 4.72108 +I0407 08:31:51.878053 17723 solver.cpp:237] Train net output #0: loss = 4.72108 (* 1 = 4.72108 loss) +I0407 08:31:51.878060 17723 sgd_solver.cpp:105] Iteration 888, lr = 0.01 +I0407 08:31:57.294971 17723 solver.cpp:218] Iteration 900 (2.21531 iter/s, 5.41685s/12 iters), loss = 4.6185 +I0407 08:31:57.295019 17723 solver.cpp:237] Train net output #0: loss = 4.6185 (* 1 = 4.6185 loss) +I0407 08:31:57.295030 17723 sgd_solver.cpp:105] Iteration 900, lr = 0.01 +I0407 08:32:01.503384 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:02.766069 17723 solver.cpp:218] Iteration 912 (2.19339 iter/s, 5.47099s/12 iters), loss = 4.79812 +I0407 08:32:02.766115 17723 solver.cpp:237] Train net output #0: loss = 4.79812 (* 1 = 4.79812 loss) +I0407 08:32:02.766125 17723 sgd_solver.cpp:105] Iteration 912, lr = 0.01 +I0407 08:32:04.952694 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 08:32:09.659520 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 08:32:11.972473 17723 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 08:32:11.972496 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:32:15.940136 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:16.354485 17723 solver.cpp:397] Test net output #0: accuracy = 0.0508578 +I0407 08:32:16.354521 17723 solver.cpp:397] Test net output #1: loss = 4.73868 (* 1 = 4.73868 loss) +I0407 08:32:18.234645 17723 solver.cpp:218] Iteration 924 (0.775775 iter/s, 15.4684s/12 iters), loss = 4.60124 +I0407 08:32:18.234779 17723 solver.cpp:237] Train net output #0: loss = 4.60124 (* 1 = 4.60124 loss) +I0407 08:32:18.234787 17723 sgd_solver.cpp:105] Iteration 924, lr = 0.01 +I0407 08:32:23.464617 17723 solver.cpp:218] Iteration 936 (2.29455 iter/s, 5.22978s/12 iters), loss = 4.75197 +I0407 08:32:23.464658 17723 solver.cpp:237] Train net output #0: loss = 4.75197 (* 1 = 4.75197 loss) +I0407 08:32:23.464664 17723 sgd_solver.cpp:105] Iteration 936, lr = 0.01 +I0407 08:32:28.353803 17723 solver.cpp:218] Iteration 948 (2.45444 iter/s, 4.88909s/12 iters), loss = 4.67584 +I0407 08:32:28.353847 17723 solver.cpp:237] Train net output #0: loss = 4.67584 (* 1 = 4.67584 loss) +I0407 08:32:28.353853 17723 sgd_solver.cpp:105] Iteration 948, lr = 0.01 +I0407 08:32:33.704582 17723 solver.cpp:218] Iteration 960 (2.24271 iter/s, 5.35068s/12 iters), loss = 4.64987 +I0407 08:32:33.704622 17723 solver.cpp:237] Train net output #0: loss = 4.64987 (* 1 = 4.64987 loss) +I0407 08:32:33.704629 17723 sgd_solver.cpp:105] Iteration 960, lr = 0.01 +I0407 08:32:38.920089 17723 solver.cpp:218] Iteration 972 (2.30087 iter/s, 5.21541s/12 iters), loss = 4.45547 +I0407 08:32:38.920128 17723 solver.cpp:237] Train net output #0: loss = 4.45547 (* 1 = 4.45547 loss) +I0407 08:32:38.920135 17723 sgd_solver.cpp:105] Iteration 972, lr = 0.01 +I0407 08:32:44.165153 17723 solver.cpp:218] Iteration 984 (2.28791 iter/s, 5.24496s/12 iters), loss = 4.56012 +I0407 08:32:44.165196 17723 solver.cpp:237] Train net output #0: loss = 4.56012 (* 1 = 4.56012 loss) +I0407 08:32:44.165205 17723 sgd_solver.cpp:105] Iteration 984, lr = 0.01 +I0407 08:32:49.504492 17723 solver.cpp:218] Iteration 996 (2.24751 iter/s, 5.33924s/12 iters), loss = 4.58877 +I0407 08:32:49.504571 17723 solver.cpp:237] Train net output #0: loss = 4.58877 (* 1 = 4.58877 loss) +I0407 08:32:49.504580 17723 sgd_solver.cpp:105] Iteration 996, lr = 0.01 +I0407 08:32:54.566794 17723 solver.cpp:218] Iteration 1008 (2.37053 iter/s, 5.06216s/12 iters), loss = 4.62506 +I0407 08:32:54.566839 17723 solver.cpp:237] Train net output #0: loss = 4.62506 (* 1 = 4.62506 loss) +I0407 08:32:54.566846 17723 sgd_solver.cpp:105] Iteration 1008, lr = 0.01 +I0407 08:32:55.558241 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:59.088410 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 08:33:03.954284 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 08:33:07.322785 17723 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 08:33:07.322811 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:33:11.324645 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:11.774003 17723 solver.cpp:397] Test net output #0: accuracy = 0.0582108 +I0407 08:33:11.774034 17723 solver.cpp:397] Test net output #1: loss = 4.58432 (* 1 = 4.58432 loss) +I0407 08:33:11.912596 17723 solver.cpp:218] Iteration 1020 (0.691818 iter/s, 17.3456s/12 iters), loss = 4.49676 +I0407 08:33:11.912659 17723 solver.cpp:237] Train net output #0: loss = 4.49676 (* 1 = 4.49676 loss) +I0407 08:33:11.912667 17723 sgd_solver.cpp:105] Iteration 1020, lr = 0.01 +I0407 08:33:16.254660 17723 solver.cpp:218] Iteration 1032 (2.76374 iter/s, 4.34195s/12 iters), loss = 4.83507 +I0407 08:33:16.254704 17723 solver.cpp:237] Train net output #0: loss = 4.83507 (* 1 = 4.83507 loss) +I0407 08:33:16.254712 17723 sgd_solver.cpp:105] Iteration 1032, lr = 0.01 +I0407 08:33:21.559919 17723 solver.cpp:218] Iteration 1044 (2.26195 iter/s, 5.30516s/12 iters), loss = 4.61336 +I0407 08:33:21.560052 17723 solver.cpp:237] Train net output #0: loss = 4.61336 (* 1 = 4.61336 loss) +I0407 08:33:21.560060 17723 sgd_solver.cpp:105] Iteration 1044, lr = 0.01 +I0407 08:33:26.672010 17723 solver.cpp:218] Iteration 1056 (2.34746 iter/s, 5.1119s/12 iters), loss = 4.49201 +I0407 08:33:26.672060 17723 solver.cpp:237] Train net output #0: loss = 4.49201 (* 1 = 4.49201 loss) +I0407 08:33:26.672066 17723 sgd_solver.cpp:105] Iteration 1056, lr = 0.01 +I0407 08:33:31.893668 17723 solver.cpp:218] Iteration 1068 (2.29817 iter/s, 5.22155s/12 iters), loss = 4.3859 +I0407 08:33:31.893708 17723 solver.cpp:237] Train net output #0: loss = 4.3859 (* 1 = 4.3859 loss) +I0407 08:33:31.893714 17723 sgd_solver.cpp:105] Iteration 1068, lr = 0.01 +I0407 08:33:37.177289 17723 solver.cpp:218] Iteration 1080 (2.27121 iter/s, 5.28352s/12 iters), loss = 4.27895 +I0407 08:33:37.177332 17723 solver.cpp:237] Train net output #0: loss = 4.27895 (* 1 = 4.27895 loss) +I0407 08:33:37.177340 17723 sgd_solver.cpp:105] Iteration 1080, lr = 0.01 +I0407 08:33:42.471963 17723 solver.cpp:218] Iteration 1092 (2.26647 iter/s, 5.29458s/12 iters), loss = 4.51105 +I0407 08:33:42.471999 17723 solver.cpp:237] Train net output #0: loss = 4.51105 (* 1 = 4.51105 loss) +I0407 08:33:42.472007 17723 sgd_solver.cpp:105] Iteration 1092, lr = 0.01 +I0407 08:33:47.801568 17723 solver.cpp:218] Iteration 1104 (2.25161 iter/s, 5.32951s/12 iters), loss = 4.32584 +I0407 08:33:47.801613 17723 solver.cpp:237] Train net output #0: loss = 4.32584 (* 1 = 4.32584 loss) +I0407 08:33:47.801622 17723 sgd_solver.cpp:105] Iteration 1104, lr = 0.01 +I0407 08:33:51.193274 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:53.214184 17723 solver.cpp:218] Iteration 1116 (2.21709 iter/s, 5.41251s/12 iters), loss = 4.27827 +I0407 08:33:53.214270 17723 solver.cpp:237] Train net output #0: loss = 4.27827 (* 1 = 4.27827 loss) +I0407 08:33:53.214278 17723 sgd_solver.cpp:105] Iteration 1116, lr = 0.01 +I0407 08:33:55.407362 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 08:33:59.839272 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 08:34:02.670475 17723 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 08:34:02.670496 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:34:06.547474 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:07.019611 17723 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0407 08:34:07.019641 17723 solver.cpp:397] Test net output #1: loss = 4.42815 (* 1 = 4.42815 loss) +I0407 08:34:09.013814 17723 solver.cpp:218] Iteration 1128 (0.759522 iter/s, 15.7994s/12 iters), loss = 4.27206 +I0407 08:34:09.013864 17723 solver.cpp:237] Train net output #0: loss = 4.27206 (* 1 = 4.27206 loss) +I0407 08:34:09.013871 17723 sgd_solver.cpp:105] Iteration 1128, lr = 0.01 +I0407 08:34:14.457381 17723 solver.cpp:218] Iteration 1140 (2.20448 iter/s, 5.44346s/12 iters), loss = 4.36022 +I0407 08:34:14.457432 17723 solver.cpp:237] Train net output #0: loss = 4.36022 (* 1 = 4.36022 loss) +I0407 08:34:14.457439 17723 sgd_solver.cpp:105] Iteration 1140, lr = 0.01 +I0407 08:34:19.843838 17723 solver.cpp:218] Iteration 1152 (2.22785 iter/s, 5.38635s/12 iters), loss = 4.38491 +I0407 08:34:19.843881 17723 solver.cpp:237] Train net output #0: loss = 4.38491 (* 1 = 4.38491 loss) +I0407 08:34:19.843889 17723 sgd_solver.cpp:105] Iteration 1152, lr = 0.01 +I0407 08:34:25.003088 17723 solver.cpp:218] Iteration 1164 (2.32597 iter/s, 5.15915s/12 iters), loss = 4.39934 +I0407 08:34:25.003223 17723 solver.cpp:237] Train net output #0: loss = 4.39934 (* 1 = 4.39934 loss) +I0407 08:34:25.003232 17723 sgd_solver.cpp:105] Iteration 1164, lr = 0.01 +I0407 08:34:30.362181 17723 solver.cpp:218] Iteration 1176 (2.23926 iter/s, 5.3589s/12 iters), loss = 4.24703 +I0407 08:34:30.362227 17723 solver.cpp:237] Train net output #0: loss = 4.24703 (* 1 = 4.24703 loss) +I0407 08:34:30.362236 17723 sgd_solver.cpp:105] Iteration 1176, lr = 0.01 +I0407 08:34:35.720108 17723 solver.cpp:218] Iteration 1188 (2.23971 iter/s, 5.35783s/12 iters), loss = 4.30327 +I0407 08:34:35.720139 17723 solver.cpp:237] Train net output #0: loss = 4.30327 (* 1 = 4.30327 loss) +I0407 08:34:35.720145 17723 sgd_solver.cpp:105] Iteration 1188, lr = 0.01 +I0407 08:34:40.965467 17723 solver.cpp:218] Iteration 1200 (2.28778 iter/s, 5.24527s/12 iters), loss = 4.16591 +I0407 08:34:40.965512 17723 solver.cpp:237] Train net output #0: loss = 4.16591 (* 1 = 4.16591 loss) +I0407 08:34:40.965520 17723 sgd_solver.cpp:105] Iteration 1200, lr = 0.01 +I0407 08:34:46.085261 17723 solver.cpp:218] Iteration 1212 (2.34389 iter/s, 5.11969s/12 iters), loss = 4.03802 +I0407 08:34:46.085301 17723 solver.cpp:237] Train net output #0: loss = 4.03802 (* 1 = 4.03802 loss) +I0407 08:34:46.085309 17723 sgd_solver.cpp:105] Iteration 1212, lr = 0.01 +I0407 08:34:46.342731 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:50.603520 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 08:34:55.281482 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 08:34:57.703897 17723 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 08:34:57.703918 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:35:01.502485 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:02.005105 17723 solver.cpp:397] Test net output #0: accuracy = 0.102328 +I0407 08:35:02.005134 17723 solver.cpp:397] Test net output #1: loss = 4.22241 (* 1 = 4.22241 loss) +I0407 08:35:02.141146 17723 solver.cpp:218] Iteration 1224 (0.747398 iter/s, 16.0557s/12 iters), loss = 4.10182 +I0407 08:35:02.141186 17723 solver.cpp:237] Train net output #0: loss = 4.10182 (* 1 = 4.10182 loss) +I0407 08:35:02.141192 17723 sgd_solver.cpp:105] Iteration 1224, lr = 0.01 +I0407 08:35:06.559666 17723 solver.cpp:218] Iteration 1236 (2.71589 iter/s, 4.41843s/12 iters), loss = 4.39156 +I0407 08:35:06.559708 17723 solver.cpp:237] Train net output #0: loss = 4.39156 (* 1 = 4.39156 loss) +I0407 08:35:06.559715 17723 sgd_solver.cpp:105] Iteration 1236, lr = 0.01 +I0407 08:35:11.898330 17723 solver.cpp:218] Iteration 1248 (2.2478 iter/s, 5.33856s/12 iters), loss = 3.99724 +I0407 08:35:11.898375 17723 solver.cpp:237] Train net output #0: loss = 3.99724 (* 1 = 3.99724 loss) +I0407 08:35:11.898382 17723 sgd_solver.cpp:105] Iteration 1248, lr = 0.01 +I0407 08:35:17.280122 17723 solver.cpp:218] Iteration 1260 (2.22978 iter/s, 5.38169s/12 iters), loss = 4.28599 +I0407 08:35:17.280160 17723 solver.cpp:237] Train net output #0: loss = 4.28599 (* 1 = 4.28599 loss) +I0407 08:35:17.280167 17723 sgd_solver.cpp:105] Iteration 1260, lr = 0.01 +I0407 08:35:22.574378 17723 solver.cpp:218] Iteration 1272 (2.26665 iter/s, 5.29416s/12 iters), loss = 4.2064 +I0407 08:35:22.574411 17723 solver.cpp:237] Train net output #0: loss = 4.2064 (* 1 = 4.2064 loss) +I0407 08:35:22.574419 17723 sgd_solver.cpp:105] Iteration 1272, lr = 0.01 +I0407 08:35:27.945747 17723 solver.cpp:218] Iteration 1284 (2.23411 iter/s, 5.37127s/12 iters), loss = 4.19431 +I0407 08:35:27.945839 17723 solver.cpp:237] Train net output #0: loss = 4.19431 (* 1 = 4.19431 loss) +I0407 08:35:27.945848 17723 sgd_solver.cpp:105] Iteration 1284, lr = 0.01 +I0407 08:35:33.273322 17723 solver.cpp:218] Iteration 1296 (2.25249 iter/s, 5.32743s/12 iters), loss = 4.07808 +I0407 08:35:33.273361 17723 solver.cpp:237] Train net output #0: loss = 4.07808 (* 1 = 4.07808 loss) +I0407 08:35:33.273368 17723 sgd_solver.cpp:105] Iteration 1296, lr = 0.01 +I0407 08:35:38.661484 17723 solver.cpp:218] Iteration 1308 (2.22715 iter/s, 5.38806s/12 iters), loss = 4.12586 +I0407 08:35:38.661525 17723 solver.cpp:237] Train net output #0: loss = 4.12586 (* 1 = 4.12586 loss) +I0407 08:35:38.661532 17723 sgd_solver.cpp:105] Iteration 1308, lr = 0.01 +I0407 08:35:41.252496 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:43.993276 17723 solver.cpp:218] Iteration 1320 (2.25069 iter/s, 5.33169s/12 iters), loss = 4.24063 +I0407 08:35:43.993317 17723 solver.cpp:237] Train net output #0: loss = 4.24063 (* 1 = 4.24063 loss) +I0407 08:35:43.993324 17723 sgd_solver.cpp:105] Iteration 1320, lr = 0.01 +I0407 08:35:46.318876 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 08:35:50.483672 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 08:35:52.803149 17723 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 08:35:52.803175 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:35:56.588863 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:57.150223 17723 solver.cpp:397] Test net output #0: accuracy = 0.109681 +I0407 08:35:57.150255 17723 solver.cpp:397] Test net output #1: loss = 4.12315 (* 1 = 4.12315 loss) +I0407 08:35:59.021770 17723 solver.cpp:218] Iteration 1332 (0.798492 iter/s, 15.0283s/12 iters), loss = 3.8411 +I0407 08:35:59.021912 17723 solver.cpp:237] Train net output #0: loss = 3.8411 (* 1 = 3.8411 loss) +I0407 08:35:59.021920 17723 sgd_solver.cpp:105] Iteration 1332, lr = 0.01 +I0407 08:36:04.354323 17723 solver.cpp:218] Iteration 1344 (2.25041 iter/s, 5.33235s/12 iters), loss = 4.09598 +I0407 08:36:04.354370 17723 solver.cpp:237] Train net output #0: loss = 4.09598 (* 1 = 4.09598 loss) +I0407 08:36:04.354378 17723 sgd_solver.cpp:105] Iteration 1344, lr = 0.01 +I0407 08:36:09.712481 17723 solver.cpp:218] Iteration 1356 (2.23962 iter/s, 5.35806s/12 iters), loss = 3.88047 +I0407 08:36:09.712523 17723 solver.cpp:237] Train net output #0: loss = 3.88047 (* 1 = 3.88047 loss) +I0407 08:36:09.712532 17723 sgd_solver.cpp:105] Iteration 1356, lr = 0.01 +I0407 08:36:14.889079 17723 solver.cpp:218] Iteration 1368 (2.31817 iter/s, 5.1765s/12 iters), loss = 3.93201 +I0407 08:36:14.889118 17723 solver.cpp:237] Train net output #0: loss = 3.93201 (* 1 = 3.93201 loss) +I0407 08:36:14.889125 17723 sgd_solver.cpp:105] Iteration 1368, lr = 0.01 +I0407 08:36:16.122669 17723 blocking_queue.cpp:49] Waiting for data +I0407 08:36:20.062582 17723 solver.cpp:218] Iteration 1380 (2.31956 iter/s, 5.17341s/12 iters), loss = 3.92034 +I0407 08:36:20.062625 17723 solver.cpp:237] Train net output #0: loss = 3.92034 (* 1 = 3.92034 loss) +I0407 08:36:20.062633 17723 sgd_solver.cpp:105] Iteration 1380, lr = 0.01 +I0407 08:36:25.313717 17723 solver.cpp:218] Iteration 1392 (2.28526 iter/s, 5.25103s/12 iters), loss = 3.94414 +I0407 08:36:25.313760 17723 solver.cpp:237] Train net output #0: loss = 3.94414 (* 1 = 3.94414 loss) +I0407 08:36:25.313767 17723 sgd_solver.cpp:105] Iteration 1392, lr = 0.01 +I0407 08:36:30.419770 17723 solver.cpp:218] Iteration 1404 (2.3502 iter/s, 5.10596s/12 iters), loss = 3.79621 +I0407 08:36:30.419885 17723 solver.cpp:237] Train net output #0: loss = 3.79621 (* 1 = 3.79621 loss) +I0407 08:36:30.419893 17723 sgd_solver.cpp:105] Iteration 1404, lr = 0.01 +I0407 08:36:35.333459 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:36:35.723642 17723 solver.cpp:218] Iteration 1416 (2.26257 iter/s, 5.3037s/12 iters), loss = 3.77206 +I0407 08:36:35.723690 17723 solver.cpp:237] Train net output #0: loss = 3.77206 (* 1 = 3.77206 loss) +I0407 08:36:35.723698 17723 sgd_solver.cpp:105] Iteration 1416, lr = 0.01 +I0407 08:36:40.472396 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 08:36:43.969951 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 08:36:46.285399 17723 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 08:36:46.285419 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:36:49.959975 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:36:50.540123 17723 solver.cpp:397] Test net output #0: accuracy = 0.128064 +I0407 08:36:50.540158 17723 solver.cpp:397] Test net output #1: loss = 3.97197 (* 1 = 3.97197 loss) +I0407 08:36:50.678001 17723 solver.cpp:218] Iteration 1428 (0.802451 iter/s, 14.9542s/12 iters), loss = 4.02428 +I0407 08:36:50.678047 17723 solver.cpp:237] Train net output #0: loss = 4.02428 (* 1 = 4.02428 loss) +I0407 08:36:50.678056 17723 sgd_solver.cpp:105] Iteration 1428, lr = 0.01 +I0407 08:36:54.831110 17723 solver.cpp:218] Iteration 1440 (2.88946 iter/s, 4.15302s/12 iters), loss = 3.75233 +I0407 08:36:54.831146 17723 solver.cpp:237] Train net output #0: loss = 3.75233 (* 1 = 3.75233 loss) +I0407 08:36:54.831151 17723 sgd_solver.cpp:105] Iteration 1440, lr = 0.01 +I0407 08:37:00.028870 17723 solver.cpp:218] Iteration 1452 (2.30873 iter/s, 5.19766s/12 iters), loss = 3.76738 +I0407 08:37:00.028926 17723 solver.cpp:237] Train net output #0: loss = 3.76738 (* 1 = 3.76738 loss) +I0407 08:37:00.028936 17723 sgd_solver.cpp:105] Iteration 1452, lr = 0.01 +I0407 08:37:05.397434 17723 solver.cpp:218] Iteration 1464 (2.23528 iter/s, 5.36845s/12 iters), loss = 3.74539 +I0407 08:37:05.397572 17723 solver.cpp:237] Train net output #0: loss = 3.74539 (* 1 = 3.74539 loss) +I0407 08:37:05.397579 17723 sgd_solver.cpp:105] Iteration 1464, lr = 0.01 +I0407 08:37:10.526257 17723 solver.cpp:218] Iteration 1476 (2.3398 iter/s, 5.12863s/12 iters), loss = 3.7997 +I0407 08:37:10.526298 17723 solver.cpp:237] Train net output #0: loss = 3.7997 (* 1 = 3.7997 loss) +I0407 08:37:10.526305 17723 sgd_solver.cpp:105] Iteration 1476, lr = 0.01 +I0407 08:37:15.886348 17723 solver.cpp:218] Iteration 1488 (2.23881 iter/s, 5.35999s/12 iters), loss = 3.81453 +I0407 08:37:15.886392 17723 solver.cpp:237] Train net output #0: loss = 3.81453 (* 1 = 3.81453 loss) +I0407 08:37:15.886400 17723 sgd_solver.cpp:105] Iteration 1488, lr = 0.01 +I0407 08:37:21.132552 17723 solver.cpp:218] Iteration 1500 (2.28741 iter/s, 5.2461s/12 iters), loss = 4.03712 +I0407 08:37:21.132596 17723 solver.cpp:237] Train net output #0: loss = 4.03712 (* 1 = 4.03712 loss) +I0407 08:37:21.132604 17723 sgd_solver.cpp:105] Iteration 1500, lr = 0.01 +I0407 08:37:26.437347 17723 solver.cpp:218] Iteration 1512 (2.26215 iter/s, 5.3047s/12 iters), loss = 3.80538 +I0407 08:37:26.437382 17723 solver.cpp:237] Train net output #0: loss = 3.80538 (* 1 = 3.80538 loss) +I0407 08:37:26.437388 17723 sgd_solver.cpp:105] Iteration 1512, lr = 0.01 +I0407 08:37:28.261370 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:37:31.597959 17723 solver.cpp:218] Iteration 1524 (2.32535 iter/s, 5.16052s/12 iters), loss = 3.86334 +I0407 08:37:31.598006 17723 solver.cpp:237] Train net output #0: loss = 3.86334 (* 1 = 3.86334 loss) +I0407 08:37:31.598016 17723 sgd_solver.cpp:105] Iteration 1524, lr = 0.01 +I0407 08:37:33.732698 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 08:37:37.063853 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 08:37:39.368032 17723 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 08:37:39.368052 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:37:43.003428 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:37:43.631932 17723 solver.cpp:397] Test net output #0: accuracy = 0.121936 +I0407 08:37:43.631958 17723 solver.cpp:397] Test net output #1: loss = 3.9337 (* 1 = 3.9337 loss) +I0407 08:37:45.587893 17723 solver.cpp:218] Iteration 1536 (0.85777 iter/s, 13.9898s/12 iters), loss = 3.34348 +I0407 08:37:45.587931 17723 solver.cpp:237] Train net output #0: loss = 3.34348 (* 1 = 3.34348 loss) +I0407 08:37:45.587939 17723 sgd_solver.cpp:105] Iteration 1536, lr = 0.01 +I0407 08:37:50.766330 17723 solver.cpp:218] Iteration 1548 (2.31734 iter/s, 5.17834s/12 iters), loss = 3.6624 +I0407 08:37:50.766368 17723 solver.cpp:237] Train net output #0: loss = 3.6624 (* 1 = 3.6624 loss) +I0407 08:37:50.766376 17723 sgd_solver.cpp:105] Iteration 1548, lr = 0.01 +I0407 08:37:56.124137 17723 solver.cpp:218] Iteration 1560 (2.23976 iter/s, 5.35771s/12 iters), loss = 3.66926 +I0407 08:37:56.124181 17723 solver.cpp:237] Train net output #0: loss = 3.66926 (* 1 = 3.66926 loss) +I0407 08:37:56.124187 17723 sgd_solver.cpp:105] Iteration 1560, lr = 0.01 +I0407 08:38:01.462791 17723 solver.cpp:218] Iteration 1572 (2.2478 iter/s, 5.33856s/12 iters), loss = 3.62702 +I0407 08:38:01.462836 17723 solver.cpp:237] Train net output #0: loss = 3.62702 (* 1 = 3.62702 loss) +I0407 08:38:01.462842 17723 sgd_solver.cpp:105] Iteration 1572, lr = 0.01 +I0407 08:38:06.388521 17723 solver.cpp:218] Iteration 1584 (2.43624 iter/s, 4.92563s/12 iters), loss = 3.7888 +I0407 08:38:06.388563 17723 solver.cpp:237] Train net output #0: loss = 3.7888 (* 1 = 3.7888 loss) +I0407 08:38:06.388571 17723 sgd_solver.cpp:105] Iteration 1584, lr = 0.01 +I0407 08:38:11.401487 17723 solver.cpp:218] Iteration 1596 (2.39384 iter/s, 5.01287s/12 iters), loss = 3.93727 +I0407 08:38:11.401620 17723 solver.cpp:237] Train net output #0: loss = 3.93727 (* 1 = 3.93727 loss) +I0407 08:38:11.401628 17723 sgd_solver.cpp:105] Iteration 1596, lr = 0.01 +I0407 08:38:16.797745 17723 solver.cpp:218] Iteration 1608 (2.22384 iter/s, 5.39607s/12 iters), loss = 3.45897 +I0407 08:38:16.797791 17723 solver.cpp:237] Train net output #0: loss = 3.45897 (* 1 = 3.45897 loss) +I0407 08:38:16.797798 17723 sgd_solver.cpp:105] Iteration 1608, lr = 0.01 +I0407 08:38:21.018836 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:38:22.235513 17723 solver.cpp:218] Iteration 1620 (2.20683 iter/s, 5.43767s/12 iters), loss = 3.58393 +I0407 08:38:22.235554 17723 solver.cpp:237] Train net output #0: loss = 3.58393 (* 1 = 3.58393 loss) +I0407 08:38:22.235561 17723 sgd_solver.cpp:105] Iteration 1620, lr = 0.01 +I0407 08:38:26.851657 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 08:38:29.884435 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 08:38:32.255113 17723 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 08:38:32.255136 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:38:35.911092 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:38:36.632715 17723 solver.cpp:397] Test net output #0: accuracy = 0.151961 +I0407 08:38:36.632755 17723 solver.cpp:397] Test net output #1: loss = 3.86848 (* 1 = 3.86848 loss) +I0407 08:38:36.767127 17723 solver.cpp:218] Iteration 1632 (0.825795 iter/s, 14.5314s/12 iters), loss = 3.66544 +I0407 08:38:36.767177 17723 solver.cpp:237] Train net output #0: loss = 3.66544 (* 1 = 3.66544 loss) +I0407 08:38:36.767187 17723 sgd_solver.cpp:105] Iteration 1632, lr = 0.01 +I0407 08:38:41.206039 17723 solver.cpp:218] Iteration 1644 (2.70343 iter/s, 4.43881s/12 iters), loss = 3.63124 +I0407 08:38:41.206095 17723 solver.cpp:237] Train net output #0: loss = 3.63124 (* 1 = 3.63124 loss) +I0407 08:38:41.206106 17723 sgd_solver.cpp:105] Iteration 1644, lr = 0.01 +I0407 08:38:46.569988 17723 solver.cpp:218] Iteration 1656 (2.2372 iter/s, 5.36384s/12 iters), loss = 3.59747 +I0407 08:38:46.570154 17723 solver.cpp:237] Train net output #0: loss = 3.59747 (* 1 = 3.59747 loss) +I0407 08:38:46.570174 17723 sgd_solver.cpp:105] Iteration 1656, lr = 0.01 +I0407 08:38:51.543995 17723 solver.cpp:218] Iteration 1668 (2.41264 iter/s, 4.9738s/12 iters), loss = 3.79998 +I0407 08:38:51.544039 17723 solver.cpp:237] Train net output #0: loss = 3.79998 (* 1 = 3.79998 loss) +I0407 08:38:51.544049 17723 sgd_solver.cpp:105] Iteration 1668, lr = 0.01 +I0407 08:38:56.774866 17723 solver.cpp:218] Iteration 1680 (2.29412 iter/s, 5.23077s/12 iters), loss = 3.24084 +I0407 08:38:56.774916 17723 solver.cpp:237] Train net output #0: loss = 3.24084 (* 1 = 3.24084 loss) +I0407 08:38:56.774925 17723 sgd_solver.cpp:105] Iteration 1680, lr = 0.01 +I0407 08:39:02.035197 17723 solver.cpp:218] Iteration 1692 (2.28127 iter/s, 5.26023s/12 iters), loss = 3.3357 +I0407 08:39:02.035231 17723 solver.cpp:237] Train net output #0: loss = 3.3357 (* 1 = 3.3357 loss) +I0407 08:39:02.035238 17723 sgd_solver.cpp:105] Iteration 1692, lr = 0.01 +I0407 08:39:07.314095 17723 solver.cpp:218] Iteration 1704 (2.27324 iter/s, 5.27881s/12 iters), loss = 3.47659 +I0407 08:39:07.314129 17723 solver.cpp:237] Train net output #0: loss = 3.47659 (* 1 = 3.47659 loss) +I0407 08:39:07.314136 17723 sgd_solver.cpp:105] Iteration 1704, lr = 0.01 +I0407 08:39:12.808418 17723 solver.cpp:218] Iteration 1716 (2.18411 iter/s, 5.49423s/12 iters), loss = 3.52234 +I0407 08:39:12.808459 17723 solver.cpp:237] Train net output #0: loss = 3.52234 (* 1 = 3.52234 loss) +I0407 08:39:12.808467 17723 sgd_solver.cpp:105] Iteration 1716, lr = 0.01 +I0407 08:39:13.826246 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:18.138988 17723 solver.cpp:218] Iteration 1728 (2.25121 iter/s, 5.33047s/12 iters), loss = 3.28477 +I0407 08:39:18.139122 17723 solver.cpp:237] Train net output #0: loss = 3.28477 (* 1 = 3.28477 loss) +I0407 08:39:18.139132 17723 sgd_solver.cpp:105] Iteration 1728, lr = 0.01 +I0407 08:39:20.376286 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 08:39:23.417090 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 08:39:25.744300 17723 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 08:39:25.744321 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:39:29.380932 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:30.083323 17723 solver.cpp:397] Test net output #0: accuracy = 0.167279 +I0407 08:39:30.083360 17723 solver.cpp:397] Test net output #1: loss = 3.6985 (* 1 = 3.6985 loss) +I0407 08:39:31.824756 17723 solver.cpp:218] Iteration 1740 (0.87684 iter/s, 13.6855s/12 iters), loss = 3.65501 +I0407 08:39:31.824801 17723 solver.cpp:237] Train net output #0: loss = 3.65501 (* 1 = 3.65501 loss) +I0407 08:39:31.824810 17723 sgd_solver.cpp:105] Iteration 1740, lr = 0.01 +I0407 08:39:36.817203 17723 solver.cpp:218] Iteration 1752 (2.40368 iter/s, 4.99234s/12 iters), loss = 3.75702 +I0407 08:39:36.817255 17723 solver.cpp:237] Train net output #0: loss = 3.75702 (* 1 = 3.75702 loss) +I0407 08:39:36.817265 17723 sgd_solver.cpp:105] Iteration 1752, lr = 0.01 +I0407 08:39:42.176183 17723 solver.cpp:218] Iteration 1764 (2.23928 iter/s, 5.35887s/12 iters), loss = 3.64865 +I0407 08:39:42.176226 17723 solver.cpp:237] Train net output #0: loss = 3.64865 (* 1 = 3.64865 loss) +I0407 08:39:42.176234 17723 sgd_solver.cpp:105] Iteration 1764, lr = 0.01 +I0407 08:39:47.551877 17723 solver.cpp:218] Iteration 1776 (2.23231 iter/s, 5.3756s/12 iters), loss = 3.27998 +I0407 08:39:47.551920 17723 solver.cpp:237] Train net output #0: loss = 3.27998 (* 1 = 3.27998 loss) +I0407 08:39:47.551928 17723 sgd_solver.cpp:105] Iteration 1776, lr = 0.01 +I0407 08:39:53.000505 17723 solver.cpp:218] Iteration 1788 (2.20243 iter/s, 5.44852s/12 iters), loss = 3.19574 +I0407 08:39:53.000612 17723 solver.cpp:237] Train net output #0: loss = 3.19574 (* 1 = 3.19574 loss) +I0407 08:39:53.000619 17723 sgd_solver.cpp:105] Iteration 1788, lr = 0.01 +I0407 08:39:58.305763 17723 solver.cpp:218] Iteration 1800 (2.26198 iter/s, 5.30509s/12 iters), loss = 3.26565 +I0407 08:39:58.305809 17723 solver.cpp:237] Train net output #0: loss = 3.26565 (* 1 = 3.26565 loss) +I0407 08:39:58.305815 17723 sgd_solver.cpp:105] Iteration 1800, lr = 0.01 +I0407 08:40:03.299700 17723 solver.cpp:218] Iteration 1812 (2.40296 iter/s, 4.99384s/12 iters), loss = 3.24871 +I0407 08:40:03.299738 17723 solver.cpp:237] Train net output #0: loss = 3.24871 (* 1 = 3.24871 loss) +I0407 08:40:03.299744 17723 sgd_solver.cpp:105] Iteration 1812, lr = 0.01 +I0407 08:40:06.445266 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:08.258623 17723 solver.cpp:218] Iteration 1824 (2.41992 iter/s, 4.95883s/12 iters), loss = 3.22432 +I0407 08:40:08.258663 17723 solver.cpp:237] Train net output #0: loss = 3.22432 (* 1 = 3.22432 loss) +I0407 08:40:08.258669 17723 sgd_solver.cpp:105] Iteration 1824, lr = 0.01 +I0407 08:40:13.171088 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 08:40:16.165100 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 08:40:18.463703 17723 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 08:40:18.463724 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:40:22.095146 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:22.831840 17723 solver.cpp:397] Test net output #0: accuracy = 0.182598 +I0407 08:40:22.831874 17723 solver.cpp:397] Test net output #1: loss = 3.66998 (* 1 = 3.66998 loss) +I0407 08:40:22.970252 17723 solver.cpp:218] Iteration 1836 (0.815691 iter/s, 14.7115s/12 iters), loss = 2.97092 +I0407 08:40:22.970301 17723 solver.cpp:237] Train net output #0: loss = 2.97092 (* 1 = 2.97092 loss) +I0407 08:40:22.970310 17723 sgd_solver.cpp:105] Iteration 1836, lr = 0.01 +I0407 08:40:27.448606 17723 solver.cpp:218] Iteration 1848 (2.67962 iter/s, 4.47826s/12 iters), loss = 3.15149 +I0407 08:40:27.448741 17723 solver.cpp:237] Train net output #0: loss = 3.15149 (* 1 = 3.15149 loss) +I0407 08:40:27.448750 17723 sgd_solver.cpp:105] Iteration 1848, lr = 0.01 +I0407 08:40:32.905237 17723 solver.cpp:218] Iteration 1860 (2.19924 iter/s, 5.45644s/12 iters), loss = 3.01751 +I0407 08:40:32.905284 17723 solver.cpp:237] Train net output #0: loss = 3.01751 (* 1 = 3.01751 loss) +I0407 08:40:32.905292 17723 sgd_solver.cpp:105] Iteration 1860, lr = 0.01 +I0407 08:40:38.273058 17723 solver.cpp:218] Iteration 1872 (2.23559 iter/s, 5.36772s/12 iters), loss = 3.39048 +I0407 08:40:38.273099 17723 solver.cpp:237] Train net output #0: loss = 3.39048 (* 1 = 3.39048 loss) +I0407 08:40:38.273106 17723 sgd_solver.cpp:105] Iteration 1872, lr = 0.01 +I0407 08:40:43.442463 17723 solver.cpp:218] Iteration 1884 (2.32139 iter/s, 5.16931s/12 iters), loss = 3.09343 +I0407 08:40:43.442505 17723 solver.cpp:237] Train net output #0: loss = 3.09343 (* 1 = 3.09343 loss) +I0407 08:40:43.442512 17723 sgd_solver.cpp:105] Iteration 1884, lr = 0.01 +I0407 08:40:48.683889 17723 solver.cpp:218] Iteration 1896 (2.2895 iter/s, 5.24132s/12 iters), loss = 3.39125 +I0407 08:40:48.683934 17723 solver.cpp:237] Train net output #0: loss = 3.39125 (* 1 = 3.39125 loss) +I0407 08:40:48.683943 17723 sgd_solver.cpp:105] Iteration 1896, lr = 0.01 +I0407 08:40:54.028069 17723 solver.cpp:218] Iteration 1908 (2.24548 iter/s, 5.34407s/12 iters), loss = 3.10517 +I0407 08:40:54.028110 17723 solver.cpp:237] Train net output #0: loss = 3.10517 (* 1 = 3.10517 loss) +I0407 08:40:54.028116 17723 sgd_solver.cpp:105] Iteration 1908, lr = 0.01 +I0407 08:40:59.337733 17723 solver.cpp:218] Iteration 1920 (2.26007 iter/s, 5.30956s/12 iters), loss = 3.13277 +I0407 08:40:59.337839 17723 solver.cpp:237] Train net output #0: loss = 3.13277 (* 1 = 3.13277 loss) +I0407 08:40:59.337848 17723 sgd_solver.cpp:105] Iteration 1920, lr = 0.01 +I0407 08:40:59.633671 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:04.538182 17723 solver.cpp:218] Iteration 1932 (2.30756 iter/s, 5.20029s/12 iters), loss = 2.98155 +I0407 08:41:04.538220 17723 solver.cpp:237] Train net output #0: loss = 2.98155 (* 1 = 2.98155 loss) +I0407 08:41:04.538228 17723 sgd_solver.cpp:105] Iteration 1932, lr = 0.01 +I0407 08:41:06.512854 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 08:41:09.553436 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 08:41:11.875033 17723 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 08:41:11.875053 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:41:15.371934 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:16.144416 17723 solver.cpp:397] Test net output #0: accuracy = 0.198529 +I0407 08:41:16.144445 17723 solver.cpp:397] Test net output #1: loss = 3.53994 (* 1 = 3.53994 loss) +I0407 08:41:17.954967 17723 solver.cpp:218] Iteration 1944 (0.894412 iter/s, 13.4166s/12 iters), loss = 3.14107 +I0407 08:41:17.955014 17723 solver.cpp:237] Train net output #0: loss = 3.14107 (* 1 = 3.14107 loss) +I0407 08:41:17.955022 17723 sgd_solver.cpp:105] Iteration 1944, lr = 0.01 +I0407 08:41:23.222836 17723 solver.cpp:218] Iteration 1956 (2.27801 iter/s, 5.26777s/12 iters), loss = 2.90949 +I0407 08:41:23.222875 17723 solver.cpp:237] Train net output #0: loss = 2.90949 (* 1 = 2.90949 loss) +I0407 08:41:23.222882 17723 sgd_solver.cpp:105] Iteration 1956, lr = 0.01 +I0407 08:41:28.406599 17723 solver.cpp:218] Iteration 1968 (2.31497 iter/s, 5.18366s/12 iters), loss = 3.30923 +I0407 08:41:28.406644 17723 solver.cpp:237] Train net output #0: loss = 3.30923 (* 1 = 3.30923 loss) +I0407 08:41:28.406652 17723 sgd_solver.cpp:105] Iteration 1968, lr = 0.01 +I0407 08:41:33.511765 17723 solver.cpp:218] Iteration 1980 (2.35061 iter/s, 5.10506s/12 iters), loss = 3.2111 +I0407 08:41:33.511876 17723 solver.cpp:237] Train net output #0: loss = 3.2111 (* 1 = 3.2111 loss) +I0407 08:41:33.511885 17723 sgd_solver.cpp:105] Iteration 1980, lr = 0.01 +I0407 08:41:38.775609 17723 solver.cpp:218] Iteration 1992 (2.27977 iter/s, 5.26368s/12 iters), loss = 3.06646 +I0407 08:41:38.775652 17723 solver.cpp:237] Train net output #0: loss = 3.06646 (* 1 = 3.06646 loss) +I0407 08:41:38.775660 17723 sgd_solver.cpp:105] Iteration 1992, lr = 0.01 +I0407 08:41:44.103480 17723 solver.cpp:218] Iteration 2004 (2.25235 iter/s, 5.32777s/12 iters), loss = 2.98302 +I0407 08:41:44.103525 17723 solver.cpp:237] Train net output #0: loss = 2.98302 (* 1 = 2.98302 loss) +I0407 08:41:44.103534 17723 sgd_solver.cpp:105] Iteration 2004, lr = 0.01 +I0407 08:41:49.327323 17723 solver.cpp:218] Iteration 2016 (2.2972 iter/s, 5.22374s/12 iters), loss = 3.44219 +I0407 08:41:49.327363 17723 solver.cpp:237] Train net output #0: loss = 3.44219 (* 1 = 3.44219 loss) +I0407 08:41:49.327370 17723 sgd_solver.cpp:105] Iteration 2016, lr = 0.01 +I0407 08:41:51.830816 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:54.473799 17723 solver.cpp:218] Iteration 2028 (2.33174 iter/s, 5.14638s/12 iters), loss = 2.95523 +I0407 08:41:54.473839 17723 solver.cpp:237] Train net output #0: loss = 2.95523 (* 1 = 2.95523 loss) +I0407 08:41:54.473847 17723 sgd_solver.cpp:105] Iteration 2028, lr = 0.01 +I0407 08:41:59.178747 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 08:42:02.184460 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 08:42:04.501832 17723 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 08:42:04.501921 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:42:08.115247 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:08.950178 17723 solver.cpp:397] Test net output #0: accuracy = 0.191176 +I0407 08:42:08.950217 17723 solver.cpp:397] Test net output #1: loss = 3.54698 (* 1 = 3.54698 loss) +I0407 08:42:09.090734 17723 solver.cpp:218] Iteration 2040 (0.820975 iter/s, 14.6168s/12 iters), loss = 3.15196 +I0407 08:42:09.090783 17723 solver.cpp:237] Train net output #0: loss = 3.15196 (* 1 = 3.15196 loss) +I0407 08:42:09.090792 17723 sgd_solver.cpp:105] Iteration 2040, lr = 0.01 +I0407 08:42:13.373221 17723 solver.cpp:218] Iteration 2052 (2.80218 iter/s, 4.28238s/12 iters), loss = 3.01415 +I0407 08:42:13.373267 17723 solver.cpp:237] Train net output #0: loss = 3.01415 (* 1 = 3.01415 loss) +I0407 08:42:13.373275 17723 sgd_solver.cpp:105] Iteration 2052, lr = 0.01 +I0407 08:42:15.034858 17723 blocking_queue.cpp:49] Waiting for data +I0407 08:42:18.600240 17723 solver.cpp:218] Iteration 2064 (2.29581 iter/s, 5.22691s/12 iters), loss = 2.86552 +I0407 08:42:18.600286 17723 solver.cpp:237] Train net output #0: loss = 2.86552 (* 1 = 2.86552 loss) +I0407 08:42:18.600293 17723 sgd_solver.cpp:105] Iteration 2064, lr = 0.01 +I0407 08:42:24.001255 17723 solver.cpp:218] Iteration 2076 (2.22185 iter/s, 5.40091s/12 iters), loss = 2.88519 +I0407 08:42:24.001297 17723 solver.cpp:237] Train net output #0: loss = 2.88519 (* 1 = 2.88519 loss) +I0407 08:42:24.001304 17723 sgd_solver.cpp:105] Iteration 2076, lr = 0.01 +I0407 08:42:29.338903 17723 solver.cpp:218] Iteration 2088 (2.24822 iter/s, 5.33755s/12 iters), loss = 2.93261 +I0407 08:42:29.338946 17723 solver.cpp:237] Train net output #0: loss = 2.93261 (* 1 = 2.93261 loss) +I0407 08:42:29.338953 17723 sgd_solver.cpp:105] Iteration 2088, lr = 0.01 +I0407 08:42:34.690091 17723 solver.cpp:218] Iteration 2100 (2.24253 iter/s, 5.35109s/12 iters), loss = 2.97722 +I0407 08:42:34.690330 17723 solver.cpp:237] Train net output #0: loss = 2.97722 (* 1 = 2.97722 loss) +I0407 08:42:34.690338 17723 sgd_solver.cpp:105] Iteration 2100, lr = 0.01 +I0407 08:42:40.113013 17723 solver.cpp:218] Iteration 2112 (2.21295 iter/s, 5.42262s/12 iters), loss = 2.96123 +I0407 08:42:40.113071 17723 solver.cpp:237] Train net output #0: loss = 2.96123 (* 1 = 2.96123 loss) +I0407 08:42:40.113080 17723 sgd_solver.cpp:105] Iteration 2112, lr = 0.01 +I0407 08:42:45.048758 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:45.412156 17723 solver.cpp:218] Iteration 2124 (2.26457 iter/s, 5.29902s/12 iters), loss = 3.15008 +I0407 08:42:45.412211 17723 solver.cpp:237] Train net output #0: loss = 3.15008 (* 1 = 3.15008 loss) +I0407 08:42:45.412220 17723 sgd_solver.cpp:105] Iteration 2124, lr = 0.01 +I0407 08:42:50.620493 17723 solver.cpp:218] Iteration 2136 (2.30405 iter/s, 5.20823s/12 iters), loss = 3.0945 +I0407 08:42:50.620538 17723 solver.cpp:237] Train net output #0: loss = 3.0945 (* 1 = 3.0945 loss) +I0407 08:42:50.620546 17723 sgd_solver.cpp:105] Iteration 2136, lr = 0.01 +I0407 08:42:52.533425 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 08:42:55.579455 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 08:42:57.952688 17723 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 08:42:57.952705 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:43:01.475342 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:02.337513 17723 solver.cpp:397] Test net output #0: accuracy = 0.235907 +I0407 08:43:02.337548 17723 solver.cpp:397] Test net output #1: loss = 3.32712 (* 1 = 3.32712 loss) +I0407 08:43:04.288314 17723 solver.cpp:218] Iteration 2148 (0.877985 iter/s, 13.6677s/12 iters), loss = 2.66171 +I0407 08:43:04.288358 17723 solver.cpp:237] Train net output #0: loss = 2.66171 (* 1 = 2.66171 loss) +I0407 08:43:04.288365 17723 sgd_solver.cpp:105] Iteration 2148, lr = 0.01 +I0407 08:43:09.438333 17723 solver.cpp:218] Iteration 2160 (2.33013 iter/s, 5.14992s/12 iters), loss = 2.70018 +I0407 08:43:09.438464 17723 solver.cpp:237] Train net output #0: loss = 2.70018 (* 1 = 2.70018 loss) +I0407 08:43:09.438475 17723 sgd_solver.cpp:105] Iteration 2160, lr = 0.01 +I0407 08:43:14.461447 17723 solver.cpp:218] Iteration 2172 (2.38904 iter/s, 5.02293s/12 iters), loss = 2.78938 +I0407 08:43:14.461493 17723 solver.cpp:237] Train net output #0: loss = 2.78938 (* 1 = 2.78938 loss) +I0407 08:43:14.461500 17723 sgd_solver.cpp:105] Iteration 2172, lr = 0.01 +I0407 08:43:19.792465 17723 solver.cpp:218] Iteration 2184 (2.25102 iter/s, 5.33091s/12 iters), loss = 2.91048 +I0407 08:43:19.792510 17723 solver.cpp:237] Train net output #0: loss = 2.91048 (* 1 = 2.91048 loss) +I0407 08:43:19.792517 17723 sgd_solver.cpp:105] Iteration 2184, lr = 0.01 +I0407 08:43:25.109257 17723 solver.cpp:218] Iteration 2196 (2.25704 iter/s, 5.31669s/12 iters), loss = 3.04089 +I0407 08:43:25.109303 17723 solver.cpp:237] Train net output #0: loss = 3.04089 (* 1 = 3.04089 loss) +I0407 08:43:25.109310 17723 sgd_solver.cpp:105] Iteration 2196, lr = 0.01 +I0407 08:43:30.368808 17723 solver.cpp:218] Iteration 2208 (2.28161 iter/s, 5.25945s/12 iters), loss = 2.57843 +I0407 08:43:30.368849 17723 solver.cpp:237] Train net output #0: loss = 2.57843 (* 1 = 2.57843 loss) +I0407 08:43:30.368855 17723 sgd_solver.cpp:105] Iteration 2208, lr = 0.01 +I0407 08:43:35.685173 17723 solver.cpp:218] Iteration 2220 (2.25723 iter/s, 5.31626s/12 iters), loss = 2.53616 +I0407 08:43:35.685231 17723 solver.cpp:237] Train net output #0: loss = 2.53616 (* 1 = 2.53616 loss) +I0407 08:43:35.685242 17723 sgd_solver.cpp:105] Iteration 2220, lr = 0.01 +I0407 08:43:37.533154 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:40.989470 17723 solver.cpp:218] Iteration 2232 (2.26237 iter/s, 5.30418s/12 iters), loss = 2.73044 +I0407 08:43:40.990417 17723 solver.cpp:237] Train net output #0: loss = 2.73044 (* 1 = 2.73044 loss) +I0407 08:43:40.990427 17723 sgd_solver.cpp:105] Iteration 2232, lr = 0.01 +I0407 08:43:45.765579 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 08:43:48.770035 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 08:43:51.080551 17723 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 08:43:51.080571 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:43:54.630239 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:55.527345 17723 solver.cpp:397] Test net output #0: accuracy = 0.235907 +I0407 08:43:55.527379 17723 solver.cpp:397] Test net output #1: loss = 3.3259 (* 1 = 3.3259 loss) +I0407 08:43:55.668399 17723 solver.cpp:218] Iteration 2244 (0.817558 iter/s, 14.6779s/12 iters), loss = 2.41541 +I0407 08:43:55.669970 17723 solver.cpp:237] Train net output #0: loss = 2.41541 (* 1 = 2.41541 loss) +I0407 08:43:55.669983 17723 sgd_solver.cpp:105] Iteration 2244, lr = 0.01 +I0407 08:43:59.786105 17723 solver.cpp:218] Iteration 2256 (2.91538 iter/s, 4.1161s/12 iters), loss = 2.85119 +I0407 08:43:59.786144 17723 solver.cpp:237] Train net output #0: loss = 2.85119 (* 1 = 2.85119 loss) +I0407 08:43:59.786151 17723 sgd_solver.cpp:105] Iteration 2256, lr = 0.01 +I0407 08:44:04.941855 17723 solver.cpp:218] Iteration 2268 (2.32754 iter/s, 5.15565s/12 iters), loss = 2.60854 +I0407 08:44:04.941907 17723 solver.cpp:237] Train net output #0: loss = 2.60854 (* 1 = 2.60854 loss) +I0407 08:44:04.941917 17723 sgd_solver.cpp:105] Iteration 2268, lr = 0.01 +I0407 08:44:10.035516 17723 solver.cpp:218] Iteration 2280 (2.35592 iter/s, 5.09355s/12 iters), loss = 2.69688 +I0407 08:44:10.035557 17723 solver.cpp:237] Train net output #0: loss = 2.69688 (* 1 = 2.69688 loss) +I0407 08:44:10.035563 17723 sgd_solver.cpp:105] Iteration 2280, lr = 0.01 +I0407 08:44:15.440341 17723 solver.cpp:218] Iteration 2292 (2.22028 iter/s, 5.40473s/12 iters), loss = 2.9273 +I0407 08:44:15.440450 17723 solver.cpp:237] Train net output #0: loss = 2.9273 (* 1 = 2.9273 loss) +I0407 08:44:15.440459 17723 sgd_solver.cpp:105] Iteration 2292, lr = 0.01 +I0407 08:44:20.527715 17723 solver.cpp:218] Iteration 2304 (2.35886 iter/s, 5.08721s/12 iters), loss = 2.88004 +I0407 08:44:20.527765 17723 solver.cpp:237] Train net output #0: loss = 2.88004 (* 1 = 2.88004 loss) +I0407 08:44:20.527774 17723 sgd_solver.cpp:105] Iteration 2304, lr = 0.01 +I0407 08:44:25.771044 17723 solver.cpp:218] Iteration 2316 (2.28867 iter/s, 5.24322s/12 iters), loss = 2.61382 +I0407 08:44:25.771092 17723 solver.cpp:237] Train net output #0: loss = 2.61382 (* 1 = 2.61382 loss) +I0407 08:44:25.771100 17723 sgd_solver.cpp:105] Iteration 2316, lr = 0.01 +I0407 08:44:29.880079 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:44:30.991437 17723 solver.cpp:218] Iteration 2328 (2.29872 iter/s, 5.22029s/12 iters), loss = 2.6629 +I0407 08:44:30.991480 17723 solver.cpp:237] Train net output #0: loss = 2.6629 (* 1 = 2.6629 loss) +I0407 08:44:30.991488 17723 sgd_solver.cpp:105] Iteration 2328, lr = 0.01 +I0407 08:44:35.827461 17723 solver.cpp:218] Iteration 2340 (2.48143 iter/s, 4.83592s/12 iters), loss = 2.55689 +I0407 08:44:35.827507 17723 solver.cpp:237] Train net output #0: loss = 2.55689 (* 1 = 2.55689 loss) +I0407 08:44:35.827515 17723 sgd_solver.cpp:105] Iteration 2340, lr = 0.01 +I0407 08:44:37.967033 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 08:44:40.886046 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 08:44:43.243484 17723 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 08:44:43.243503 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:44:46.697021 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:44:47.662505 17723 solver.cpp:397] Test net output #0: accuracy = 0.227328 +I0407 08:44:47.662535 17723 solver.cpp:397] Test net output #1: loss = 3.39603 (* 1 = 3.39603 loss) +I0407 08:44:49.455579 17723 solver.cpp:218] Iteration 2352 (0.880543 iter/s, 13.628s/12 iters), loss = 2.74007 +I0407 08:44:49.455619 17723 solver.cpp:237] Train net output #0: loss = 2.74007 (* 1 = 2.74007 loss) +I0407 08:44:49.455626 17723 sgd_solver.cpp:105] Iteration 2352, lr = 0.01 +I0407 08:44:54.700973 17723 solver.cpp:218] Iteration 2364 (2.28776 iter/s, 5.2453s/12 iters), loss = 2.69422 +I0407 08:44:54.701017 17723 solver.cpp:237] Train net output #0: loss = 2.69422 (* 1 = 2.69422 loss) +I0407 08:44:54.701025 17723 sgd_solver.cpp:105] Iteration 2364, lr = 0.01 +I0407 08:44:59.749199 17723 solver.cpp:218] Iteration 2376 (2.37712 iter/s, 5.04812s/12 iters), loss = 2.65707 +I0407 08:44:59.749346 17723 solver.cpp:237] Train net output #0: loss = 2.65707 (* 1 = 2.65707 loss) +I0407 08:44:59.749357 17723 sgd_solver.cpp:105] Iteration 2376, lr = 0.01 +I0407 08:45:04.790129 17723 solver.cpp:218] Iteration 2388 (2.38061 iter/s, 5.04072s/12 iters), loss = 2.53539 +I0407 08:45:04.790205 17723 solver.cpp:237] Train net output #0: loss = 2.53539 (* 1 = 2.53539 loss) +I0407 08:45:04.790225 17723 sgd_solver.cpp:105] Iteration 2388, lr = 0.01 +I0407 08:45:09.952536 17723 solver.cpp:218] Iteration 2400 (2.32455 iter/s, 5.16228s/12 iters), loss = 2.55545 +I0407 08:45:09.952600 17723 solver.cpp:237] Train net output #0: loss = 2.55545 (* 1 = 2.55545 loss) +I0407 08:45:09.952613 17723 sgd_solver.cpp:105] Iteration 2400, lr = 0.01 +I0407 08:45:15.083227 17723 solver.cpp:218] Iteration 2412 (2.33892 iter/s, 5.13058s/12 iters), loss = 2.49658 +I0407 08:45:15.083285 17723 solver.cpp:237] Train net output #0: loss = 2.49658 (* 1 = 2.49658 loss) +I0407 08:45:15.083299 17723 sgd_solver.cpp:105] Iteration 2412, lr = 0.01 +I0407 08:45:20.301991 17723 solver.cpp:218] Iteration 2424 (2.29944 iter/s, 5.21865s/12 iters), loss = 2.62531 +I0407 08:45:20.302086 17723 solver.cpp:237] Train net output #0: loss = 2.62531 (* 1 = 2.62531 loss) +I0407 08:45:20.302093 17723 sgd_solver.cpp:105] Iteration 2424, lr = 0.01 +I0407 08:45:21.420270 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:45:25.716990 17723 solver.cpp:218] Iteration 2436 (2.21613 iter/s, 5.41485s/12 iters), loss = 2.66165 +I0407 08:45:25.717031 17723 solver.cpp:237] Train net output #0: loss = 2.66165 (* 1 = 2.66165 loss) +I0407 08:45:25.717039 17723 sgd_solver.cpp:105] Iteration 2436, lr = 0.01 +I0407 08:45:30.322365 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 08:45:33.335548 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 08:45:35.643463 17723 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 08:45:35.643481 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:45:38.939074 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:45:39.895392 17723 solver.cpp:397] Test net output #0: accuracy = 0.242647 +I0407 08:45:39.895427 17723 solver.cpp:397] Test net output #1: loss = 3.31635 (* 1 = 3.31635 loss) +I0407 08:45:40.035799 17723 solver.cpp:218] Iteration 2448 (0.838068 iter/s, 14.3186s/12 iters), loss = 2.53408 +I0407 08:45:40.035845 17723 solver.cpp:237] Train net output #0: loss = 2.53408 (* 1 = 2.53408 loss) +I0407 08:45:40.035852 17723 sgd_solver.cpp:105] Iteration 2448, lr = 0.01 +I0407 08:45:44.404685 17723 solver.cpp:218] Iteration 2460 (2.74675 iter/s, 4.36879s/12 iters), loss = 2.54613 +I0407 08:45:44.404734 17723 solver.cpp:237] Train net output #0: loss = 2.54613 (* 1 = 2.54613 loss) +I0407 08:45:44.404743 17723 sgd_solver.cpp:105] Iteration 2460, lr = 0.01 +I0407 08:45:49.596719 17723 solver.cpp:218] Iteration 2472 (2.31128 iter/s, 5.19193s/12 iters), loss = 2.73099 +I0407 08:45:49.596757 17723 solver.cpp:237] Train net output #0: loss = 2.73099 (* 1 = 2.73099 loss) +I0407 08:45:49.596765 17723 sgd_solver.cpp:105] Iteration 2472, lr = 0.01 +I0407 08:45:54.938609 17723 solver.cpp:218] Iteration 2484 (2.24644 iter/s, 5.34179s/12 iters), loss = 2.46041 +I0407 08:45:54.938792 17723 solver.cpp:237] Train net output #0: loss = 2.46041 (* 1 = 2.46041 loss) +I0407 08:45:54.938803 17723 sgd_solver.cpp:105] Iteration 2484, lr = 0.01 +I0407 08:46:00.263716 17723 solver.cpp:218] Iteration 2496 (2.25358 iter/s, 5.32487s/12 iters), loss = 2.39929 +I0407 08:46:00.263777 17723 solver.cpp:237] Train net output #0: loss = 2.39929 (* 1 = 2.39929 loss) +I0407 08:46:00.263787 17723 sgd_solver.cpp:105] Iteration 2496, lr = 0.01 +I0407 08:46:05.556413 17723 solver.cpp:218] Iteration 2508 (2.26732 iter/s, 5.29258s/12 iters), loss = 2.63649 +I0407 08:46:05.556457 17723 solver.cpp:237] Train net output #0: loss = 2.63649 (* 1 = 2.63649 loss) +I0407 08:46:05.556464 17723 sgd_solver.cpp:105] Iteration 2508, lr = 0.01 +I0407 08:46:10.933012 17723 solver.cpp:218] Iteration 2520 (2.23194 iter/s, 5.3765s/12 iters), loss = 2.51723 +I0407 08:46:10.933053 17723 solver.cpp:237] Train net output #0: loss = 2.51723 (* 1 = 2.51723 loss) +I0407 08:46:10.933061 17723 sgd_solver.cpp:105] Iteration 2520, lr = 0.01 +I0407 08:46:14.223596 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:16.156535 17723 solver.cpp:218] Iteration 2532 (2.29734 iter/s, 5.22342s/12 iters), loss = 2.30553 +I0407 08:46:16.156577 17723 solver.cpp:237] Train net output #0: loss = 2.30553 (* 1 = 2.30553 loss) +I0407 08:46:16.156584 17723 sgd_solver.cpp:105] Iteration 2532, lr = 0.01 +I0407 08:46:21.534629 17723 solver.cpp:218] Iteration 2544 (2.23131 iter/s, 5.378s/12 iters), loss = 2.01408 +I0407 08:46:21.534670 17723 solver.cpp:237] Train net output #0: loss = 2.01408 (* 1 = 2.01408 loss) +I0407 08:46:21.534677 17723 sgd_solver.cpp:105] Iteration 2544, lr = 0.01 +I0407 08:46:23.718298 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 08:46:26.798151 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 08:46:29.129740 17723 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 08:46:29.129758 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:46:32.377396 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:33.380546 17723 solver.cpp:397] Test net output #0: accuracy = 0.26348 +I0407 08:46:33.380580 17723 solver.cpp:397] Test net output #1: loss = 3.20129 (* 1 = 3.20129 loss) +I0407 08:46:35.304352 17723 solver.cpp:218] Iteration 2556 (0.871487 iter/s, 13.7696s/12 iters), loss = 2.52596 +I0407 08:46:35.304389 17723 solver.cpp:237] Train net output #0: loss = 2.52596 (* 1 = 2.52596 loss) +I0407 08:46:35.304396 17723 sgd_solver.cpp:105] Iteration 2556, lr = 0.01 +I0407 08:46:40.551889 17723 solver.cpp:218] Iteration 2568 (2.28683 iter/s, 5.24744s/12 iters), loss = 1.76083 +I0407 08:46:40.551931 17723 solver.cpp:237] Train net output #0: loss = 1.76083 (* 1 = 1.76083 loss) +I0407 08:46:40.551939 17723 sgd_solver.cpp:105] Iteration 2568, lr = 0.01 +I0407 08:46:45.735189 17723 solver.cpp:218] Iteration 2580 (2.31517 iter/s, 5.1832s/12 iters), loss = 2.49147 +I0407 08:46:45.735231 17723 solver.cpp:237] Train net output #0: loss = 2.49147 (* 1 = 2.49147 loss) +I0407 08:46:45.735239 17723 sgd_solver.cpp:105] Iteration 2580, lr = 0.01 +I0407 08:46:50.951592 17723 solver.cpp:218] Iteration 2592 (2.30048 iter/s, 5.2163s/12 iters), loss = 2.53345 +I0407 08:46:50.951630 17723 solver.cpp:237] Train net output #0: loss = 2.53345 (* 1 = 2.53345 loss) +I0407 08:46:50.951637 17723 sgd_solver.cpp:105] Iteration 2592, lr = 0.01 +I0407 08:46:56.339838 17723 solver.cpp:218] Iteration 2604 (2.22711 iter/s, 5.38815s/12 iters), loss = 2.53884 +I0407 08:46:56.339882 17723 solver.cpp:237] Train net output #0: loss = 2.53884 (* 1 = 2.53884 loss) +I0407 08:46:56.339890 17723 sgd_solver.cpp:105] Iteration 2604, lr = 0.01 +I0407 08:47:01.706575 17723 solver.cpp:218] Iteration 2616 (2.23604 iter/s, 5.36664s/12 iters), loss = 2.38202 +I0407 08:47:01.706682 17723 solver.cpp:237] Train net output #0: loss = 2.38202 (* 1 = 2.38202 loss) +I0407 08:47:01.706691 17723 sgd_solver.cpp:105] Iteration 2616, lr = 0.01 +I0407 08:47:06.626886 17723 solver.cpp:218] Iteration 2628 (2.43895 iter/s, 4.92015s/12 iters), loss = 2.3422 +I0407 08:47:06.626935 17723 solver.cpp:237] Train net output #0: loss = 2.3422 (* 1 = 2.3422 loss) +I0407 08:47:06.626943 17723 sgd_solver.cpp:105] Iteration 2628, lr = 0.01 +I0407 08:47:07.095592 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:11.960079 17723 solver.cpp:218] Iteration 2640 (2.2501 iter/s, 5.33309s/12 iters), loss = 2.43372 +I0407 08:47:11.960129 17723 solver.cpp:237] Train net output #0: loss = 2.43372 (* 1 = 2.43372 loss) +I0407 08:47:11.960139 17723 sgd_solver.cpp:105] Iteration 2640, lr = 0.01 +I0407 08:47:16.884140 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 08:47:19.967607 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 08:47:22.289803 17723 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 08:47:22.289821 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:47:25.580070 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:26.616115 17723 solver.cpp:397] Test net output #0: accuracy = 0.256127 +I0407 08:47:26.616148 17723 solver.cpp:397] Test net output #1: loss = 3.20406 (* 1 = 3.20406 loss) +I0407 08:47:26.756300 17723 solver.cpp:218] Iteration 2652 (0.811027 iter/s, 14.796s/12 iters), loss = 2.40819 +I0407 08:47:26.756358 17723 solver.cpp:237] Train net output #0: loss = 2.40819 (* 1 = 2.40819 loss) +I0407 08:47:26.756366 17723 sgd_solver.cpp:105] Iteration 2652, lr = 0.01 +I0407 08:47:31.152113 17723 solver.cpp:218] Iteration 2664 (2.72994 iter/s, 4.39571s/12 iters), loss = 2.21096 +I0407 08:47:31.152151 17723 solver.cpp:237] Train net output #0: loss = 2.21096 (* 1 = 2.21096 loss) +I0407 08:47:31.152158 17723 sgd_solver.cpp:105] Iteration 2664, lr = 0.01 +I0407 08:47:36.417021 17723 solver.cpp:218] Iteration 2676 (2.27929 iter/s, 5.26481s/12 iters), loss = 2.39169 +I0407 08:47:36.417122 17723 solver.cpp:237] Train net output #0: loss = 2.39169 (* 1 = 2.39169 loss) +I0407 08:47:36.417130 17723 sgd_solver.cpp:105] Iteration 2676, lr = 0.01 +I0407 08:47:41.853688 17723 solver.cpp:218] Iteration 2688 (2.2073 iter/s, 5.43651s/12 iters), loss = 2.18234 +I0407 08:47:41.853729 17723 solver.cpp:237] Train net output #0: loss = 2.18234 (* 1 = 2.18234 loss) +I0407 08:47:41.853736 17723 sgd_solver.cpp:105] Iteration 2688, lr = 0.01 +I0407 08:47:47.018292 17723 solver.cpp:218] Iteration 2700 (2.32355 iter/s, 5.16451s/12 iters), loss = 2.46621 +I0407 08:47:47.018334 17723 solver.cpp:237] Train net output #0: loss = 2.46621 (* 1 = 2.46621 loss) +I0407 08:47:47.018342 17723 sgd_solver.cpp:105] Iteration 2700, lr = 0.01 +I0407 08:47:52.428982 17723 solver.cpp:218] Iteration 2712 (2.21787 iter/s, 5.41059s/12 iters), loss = 2.42398 +I0407 08:47:52.429030 17723 solver.cpp:237] Train net output #0: loss = 2.42398 (* 1 = 2.42398 loss) +I0407 08:47:52.429039 17723 sgd_solver.cpp:105] Iteration 2712, lr = 0.01 +I0407 08:47:57.459549 17723 solver.cpp:218] Iteration 2724 (2.38547 iter/s, 5.03046s/12 iters), loss = 2.59093 +I0407 08:47:57.459594 17723 solver.cpp:237] Train net output #0: loss = 2.59093 (* 1 = 2.59093 loss) +I0407 08:47:57.459600 17723 sgd_solver.cpp:105] Iteration 2724, lr = 0.01 +I0407 08:48:00.106549 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:02.504294 17723 solver.cpp:218] Iteration 2736 (2.37876 iter/s, 5.04465s/12 iters), loss = 2.28092 +I0407 08:48:02.504340 17723 solver.cpp:237] Train net output #0: loss = 2.28092 (* 1 = 2.28092 loss) +I0407 08:48:02.504348 17723 sgd_solver.cpp:105] Iteration 2736, lr = 0.01 +I0407 08:48:07.737766 17723 solver.cpp:218] Iteration 2748 (2.29298 iter/s, 5.23337s/12 iters), loss = 2.19925 +I0407 08:48:07.737895 17723 solver.cpp:237] Train net output #0: loss = 2.19925 (* 1 = 2.19925 loss) +I0407 08:48:07.737902 17723 sgd_solver.cpp:105] Iteration 2748, lr = 0.01 +I0407 08:48:09.939769 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 08:48:13.648996 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 08:48:15.975252 17723 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 08:48:15.975273 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:48:18.990485 17723 blocking_queue.cpp:49] Waiting for data +I0407 08:48:19.220075 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:20.303061 17723 solver.cpp:397] Test net output #0: accuracy = 0.270833 +I0407 08:48:20.303094 17723 solver.cpp:397] Test net output #1: loss = 3.24263 (* 1 = 3.24263 loss) +I0407 08:48:22.232303 17723 solver.cpp:218] Iteration 2760 (0.827913 iter/s, 14.4943s/12 iters), loss = 2.43205 +I0407 08:48:22.232345 17723 solver.cpp:237] Train net output #0: loss = 2.43205 (* 1 = 2.43205 loss) +I0407 08:48:22.232352 17723 sgd_solver.cpp:105] Iteration 2760, lr = 0.01 +I0407 08:48:27.632391 17723 solver.cpp:218] Iteration 2772 (2.22223 iter/s, 5.39999s/12 iters), loss = 1.78944 +I0407 08:48:27.632438 17723 solver.cpp:237] Train net output #0: loss = 1.78944 (* 1 = 1.78944 loss) +I0407 08:48:27.632447 17723 sgd_solver.cpp:105] Iteration 2772, lr = 0.01 +I0407 08:48:33.034736 17723 solver.cpp:218] Iteration 2784 (2.2213 iter/s, 5.40224s/12 iters), loss = 2.05821 +I0407 08:48:33.034783 17723 solver.cpp:237] Train net output #0: loss = 2.05821 (* 1 = 2.05821 loss) +I0407 08:48:33.034791 17723 sgd_solver.cpp:105] Iteration 2784, lr = 0.01 +I0407 08:48:38.499573 17723 solver.cpp:218] Iteration 2796 (2.1959 iter/s, 5.46473s/12 iters), loss = 2.3307 +I0407 08:48:38.499702 17723 solver.cpp:237] Train net output #0: loss = 2.3307 (* 1 = 2.3307 loss) +I0407 08:48:38.499711 17723 sgd_solver.cpp:105] Iteration 2796, lr = 0.01 +I0407 08:48:43.916522 17723 solver.cpp:218] Iteration 2808 (2.21535 iter/s, 5.41676s/12 iters), loss = 2.49742 +I0407 08:48:43.916566 17723 solver.cpp:237] Train net output #0: loss = 2.49742 (* 1 = 2.49742 loss) +I0407 08:48:43.916574 17723 sgd_solver.cpp:105] Iteration 2808, lr = 0.01 +I0407 08:48:48.997057 17723 solver.cpp:218] Iteration 2820 (2.362 iter/s, 5.08044s/12 iters), loss = 2.14247 +I0407 08:48:48.997098 17723 solver.cpp:237] Train net output #0: loss = 2.14247 (* 1 = 2.14247 loss) +I0407 08:48:48.997105 17723 sgd_solver.cpp:105] Iteration 2820, lr = 0.01 +I0407 08:48:53.918586 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:54.246842 17723 solver.cpp:218] Iteration 2832 (2.28585 iter/s, 5.24968s/12 iters), loss = 2.36784 +I0407 08:48:54.246884 17723 solver.cpp:237] Train net output #0: loss = 2.36784 (* 1 = 2.36784 loss) +I0407 08:48:54.246891 17723 sgd_solver.cpp:105] Iteration 2832, lr = 0.01 +I0407 08:48:59.163362 17723 solver.cpp:218] Iteration 2844 (2.4408 iter/s, 4.91642s/12 iters), loss = 1.96114 +I0407 08:48:59.163401 17723 solver.cpp:237] Train net output #0: loss = 1.96114 (* 1 = 1.96114 loss) +I0407 08:48:59.163409 17723 sgd_solver.cpp:105] Iteration 2844, lr = 0.01 +I0407 08:49:03.676504 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 08:49:08.777470 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 08:49:11.092075 17723 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 08:49:11.092097 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:49:14.278499 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:49:15.393504 17723 solver.cpp:397] Test net output #0: accuracy = 0.27451 +I0407 08:49:15.393543 17723 solver.cpp:397] Test net output #1: loss = 3.20832 (* 1 = 3.20832 loss) +I0407 08:49:15.530748 17723 solver.cpp:218] Iteration 2856 (0.733173 iter/s, 16.3672s/12 iters), loss = 2.35189 +I0407 08:49:15.530792 17723 solver.cpp:237] Train net output #0: loss = 2.35189 (* 1 = 2.35189 loss) +I0407 08:49:15.530799 17723 sgd_solver.cpp:105] Iteration 2856, lr = 0.01 +I0407 08:49:19.857192 17723 solver.cpp:218] Iteration 2868 (2.7737 iter/s, 4.32635s/12 iters), loss = 2.05106 +I0407 08:49:19.857234 17723 solver.cpp:237] Train net output #0: loss = 2.05106 (* 1 = 2.05106 loss) +I0407 08:49:19.857241 17723 sgd_solver.cpp:105] Iteration 2868, lr = 0.01 +I0407 08:49:25.043743 17723 solver.cpp:218] Iteration 2880 (2.31372 iter/s, 5.18645s/12 iters), loss = 2.07798 +I0407 08:49:25.043788 17723 solver.cpp:237] Train net output #0: loss = 2.07798 (* 1 = 2.07798 loss) +I0407 08:49:25.043795 17723 sgd_solver.cpp:105] Iteration 2880, lr = 0.01 +I0407 08:49:30.177901 17723 solver.cpp:218] Iteration 2892 (2.33733 iter/s, 5.13406s/12 iters), loss = 2.21142 +I0407 08:49:30.177944 17723 solver.cpp:237] Train net output #0: loss = 2.21142 (* 1 = 2.21142 loss) +I0407 08:49:30.177951 17723 sgd_solver.cpp:105] Iteration 2892, lr = 0.01 +I0407 08:49:35.319973 17723 solver.cpp:218] Iteration 2904 (2.33373 iter/s, 5.14197s/12 iters), loss = 2.35173 +I0407 08:49:35.320013 17723 solver.cpp:237] Train net output #0: loss = 2.35173 (* 1 = 2.35173 loss) +I0407 08:49:35.320020 17723 sgd_solver.cpp:105] Iteration 2904, lr = 0.01 +I0407 08:49:40.795408 17723 solver.cpp:218] Iteration 2916 (2.19165 iter/s, 5.47533s/12 iters), loss = 2.13816 +I0407 08:49:40.795496 17723 solver.cpp:237] Train net output #0: loss = 2.13816 (* 1 = 2.13816 loss) +I0407 08:49:40.795503 17723 sgd_solver.cpp:105] Iteration 2916, lr = 0.01 +I0407 08:49:46.116490 17723 solver.cpp:218] Iteration 2928 (2.25524 iter/s, 5.32094s/12 iters), loss = 2.06245 +I0407 08:49:46.116523 17723 solver.cpp:237] Train net output #0: loss = 2.06245 (* 1 = 2.06245 loss) +I0407 08:49:46.116529 17723 sgd_solver.cpp:105] Iteration 2928, lr = 0.01 +I0407 08:49:48.041193 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:49:51.283891 17723 solver.cpp:218] Iteration 2940 (2.32229 iter/s, 5.16732s/12 iters), loss = 2.16938 +I0407 08:49:51.283931 17723 solver.cpp:237] Train net output #0: loss = 2.16938 (* 1 = 2.16938 loss) +I0407 08:49:51.283938 17723 sgd_solver.cpp:105] Iteration 2940, lr = 0.01 +I0407 08:49:56.520637 17723 solver.cpp:218] Iteration 2952 (2.29154 iter/s, 5.23664s/12 iters), loss = 2.05098 +I0407 08:49:56.520689 17723 solver.cpp:237] Train net output #0: loss = 2.05098 (* 1 = 2.05098 loss) +I0407 08:49:56.520697 17723 sgd_solver.cpp:105] Iteration 2952, lr = 0.01 +I0407 08:49:58.573405 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 08:50:03.063293 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 08:50:05.719794 17723 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 08:50:05.719815 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:50:08.880159 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:10.115233 17723 solver.cpp:397] Test net output #0: accuracy = 0.295956 +I0407 08:50:10.115285 17723 solver.cpp:397] Test net output #1: loss = 3.09858 (* 1 = 3.09858 loss) +I0407 08:50:12.043789 17723 solver.cpp:218] Iteration 2964 (0.773048 iter/s, 15.523s/12 iters), loss = 2.11513 +I0407 08:50:12.043926 17723 solver.cpp:237] Train net output #0: loss = 2.11513 (* 1 = 2.11513 loss) +I0407 08:50:12.043934 17723 sgd_solver.cpp:105] Iteration 2964, lr = 0.01 +I0407 08:50:17.311394 17723 solver.cpp:218] Iteration 2976 (2.27816 iter/s, 5.26741s/12 iters), loss = 1.88694 +I0407 08:50:17.311435 17723 solver.cpp:237] Train net output #0: loss = 1.88694 (* 1 = 1.88694 loss) +I0407 08:50:17.311442 17723 sgd_solver.cpp:105] Iteration 2976, lr = 0.01 +I0407 08:50:22.246088 17723 solver.cpp:218] Iteration 2988 (2.43181 iter/s, 4.9346s/12 iters), loss = 2.05557 +I0407 08:50:22.246130 17723 solver.cpp:237] Train net output #0: loss = 2.05557 (* 1 = 2.05557 loss) +I0407 08:50:22.246137 17723 sgd_solver.cpp:105] Iteration 2988, lr = 0.01 +I0407 08:50:27.659750 17723 solver.cpp:218] Iteration 3000 (2.21665 iter/s, 5.41357s/12 iters), loss = 2.25738 +I0407 08:50:27.659787 17723 solver.cpp:237] Train net output #0: loss = 2.25738 (* 1 = 2.25738 loss) +I0407 08:50:27.659793 17723 sgd_solver.cpp:105] Iteration 3000, lr = 0.01 +I0407 08:50:32.832635 17723 solver.cpp:218] Iteration 3012 (2.31983 iter/s, 5.17279s/12 iters), loss = 1.96245 +I0407 08:50:32.832681 17723 solver.cpp:237] Train net output #0: loss = 1.96245 (* 1 = 1.96245 loss) +I0407 08:50:32.832688 17723 sgd_solver.cpp:105] Iteration 3012, lr = 0.01 +I0407 08:50:37.977900 17723 solver.cpp:218] Iteration 3024 (2.33229 iter/s, 5.14516s/12 iters), loss = 1.63942 +I0407 08:50:37.977942 17723 solver.cpp:237] Train net output #0: loss = 1.63942 (* 1 = 1.63942 loss) +I0407 08:50:37.977948 17723 sgd_solver.cpp:105] Iteration 3024, lr = 0.01 +I0407 08:50:42.255326 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:43.410152 17723 solver.cpp:218] Iteration 3036 (2.20907 iter/s, 5.43215s/12 iters), loss = 1.98166 +I0407 08:50:43.410193 17723 solver.cpp:237] Train net output #0: loss = 1.98166 (* 1 = 1.98166 loss) +I0407 08:50:43.410200 17723 sgd_solver.cpp:105] Iteration 3036, lr = 0.01 +I0407 08:50:48.941234 17723 solver.cpp:218] Iteration 3048 (2.1696 iter/s, 5.53098s/12 iters), loss = 1.93518 +I0407 08:50:48.941273 17723 solver.cpp:237] Train net output #0: loss = 1.93518 (* 1 = 1.93518 loss) +I0407 08:50:48.941280 17723 sgd_solver.cpp:105] Iteration 3048, lr = 0.01 +I0407 08:50:53.782389 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 08:50:58.797488 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 08:51:01.140233 17723 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 08:51:01.140250 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:51:04.282519 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:05.477388 17723 solver.cpp:397] Test net output #0: accuracy = 0.308824 +I0407 08:51:05.477423 17723 solver.cpp:397] Test net output #1: loss = 3.14344 (* 1 = 3.14344 loss) +I0407 08:51:05.612737 17723 solver.cpp:218] Iteration 3060 (0.719799 iter/s, 16.6713s/12 iters), loss = 2.14463 +I0407 08:51:05.612792 17723 solver.cpp:237] Train net output #0: loss = 2.14463 (* 1 = 2.14463 loss) +I0407 08:51:05.612802 17723 sgd_solver.cpp:105] Iteration 3060, lr = 0.01 +I0407 08:51:10.038852 17723 solver.cpp:218] Iteration 3072 (2.71125 iter/s, 4.42601s/12 iters), loss = 2.44727 +I0407 08:51:10.038890 17723 solver.cpp:237] Train net output #0: loss = 2.44727 (* 1 = 2.44727 loss) +I0407 08:51:10.038897 17723 sgd_solver.cpp:105] Iteration 3072, lr = 0.01 +I0407 08:51:15.344416 17723 solver.cpp:218] Iteration 3084 (2.26182 iter/s, 5.30547s/12 iters), loss = 1.9429 +I0407 08:51:15.344532 17723 solver.cpp:237] Train net output #0: loss = 1.9429 (* 1 = 1.9429 loss) +I0407 08:51:15.344540 17723 sgd_solver.cpp:105] Iteration 3084, lr = 0.01 +I0407 08:51:20.622349 17723 solver.cpp:218] Iteration 3096 (2.27369 iter/s, 5.27776s/12 iters), loss = 1.69672 +I0407 08:51:20.622396 17723 solver.cpp:237] Train net output #0: loss = 1.69672 (* 1 = 1.69672 loss) +I0407 08:51:20.622403 17723 sgd_solver.cpp:105] Iteration 3096, lr = 0.01 +I0407 08:51:25.834128 17723 solver.cpp:218] Iteration 3108 (2.30252 iter/s, 5.21168s/12 iters), loss = 1.72682 +I0407 08:51:25.834165 17723 solver.cpp:237] Train net output #0: loss = 1.72682 (* 1 = 1.72682 loss) +I0407 08:51:25.834172 17723 sgd_solver.cpp:105] Iteration 3108, lr = 0.01 +I0407 08:51:31.112746 17723 solver.cpp:218] Iteration 3120 (2.27337 iter/s, 5.27851s/12 iters), loss = 1.69882 +I0407 08:51:31.112808 17723 solver.cpp:237] Train net output #0: loss = 1.69882 (* 1 = 1.69882 loss) +I0407 08:51:31.112823 17723 sgd_solver.cpp:105] Iteration 3120, lr = 0.01 +I0407 08:51:36.085711 17723 solver.cpp:218] Iteration 3132 (2.4131 iter/s, 4.97285s/12 iters), loss = 1.8036 +I0407 08:51:36.085755 17723 solver.cpp:237] Train net output #0: loss = 1.8036 (* 1 = 1.8036 loss) +I0407 08:51:36.085762 17723 sgd_solver.cpp:105] Iteration 3132, lr = 0.01 +I0407 08:51:37.234210 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:41.513224 17723 solver.cpp:218] Iteration 3144 (2.211 iter/s, 5.42741s/12 iters), loss = 2.08749 +I0407 08:51:41.513264 17723 solver.cpp:237] Train net output #0: loss = 2.08749 (* 1 = 2.08749 loss) +I0407 08:51:41.513271 17723 sgd_solver.cpp:105] Iteration 3144, lr = 0.01 +I0407 08:51:46.910455 17723 solver.cpp:218] Iteration 3156 (2.2234 iter/s, 5.39713s/12 iters), loss = 1.93634 +I0407 08:51:46.910568 17723 solver.cpp:237] Train net output #0: loss = 1.93634 (* 1 = 1.93634 loss) +I0407 08:51:46.910576 17723 sgd_solver.cpp:105] Iteration 3156, lr = 0.01 +I0407 08:51:49.089651 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 08:51:53.549649 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 08:51:55.858368 17723 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 08:51:55.858392 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:51:59.003214 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:00.250497 17723 solver.cpp:397] Test net output #0: accuracy = 0.281863 +I0407 08:52:00.250532 17723 solver.cpp:397] Test net output #1: loss = 3.1962 (* 1 = 3.1962 loss) +I0407 08:52:02.196944 17723 solver.cpp:218] Iteration 3168 (0.785019 iter/s, 15.2862s/12 iters), loss = 1.9491 +I0407 08:52:02.196990 17723 solver.cpp:237] Train net output #0: loss = 1.9491 (* 1 = 1.9491 loss) +I0407 08:52:02.196996 17723 sgd_solver.cpp:105] Iteration 3168, lr = 0.01 +I0407 08:52:07.384296 17723 solver.cpp:218] Iteration 3180 (2.31336 iter/s, 5.18725s/12 iters), loss = 2.10238 +I0407 08:52:07.384336 17723 solver.cpp:237] Train net output #0: loss = 2.10238 (* 1 = 2.10238 loss) +I0407 08:52:07.384342 17723 sgd_solver.cpp:105] Iteration 3180, lr = 0.01 +I0407 08:52:12.526463 17723 solver.cpp:218] Iteration 3192 (2.33369 iter/s, 5.14207s/12 iters), loss = 1.62716 +I0407 08:52:12.526505 17723 solver.cpp:237] Train net output #0: loss = 1.62716 (* 1 = 1.62716 loss) +I0407 08:52:12.526512 17723 sgd_solver.cpp:105] Iteration 3192, lr = 0.01 +I0407 08:52:17.991436 17723 solver.cpp:218] Iteration 3204 (2.19584 iter/s, 5.46487s/12 iters), loss = 1.74481 +I0407 08:52:17.991556 17723 solver.cpp:237] Train net output #0: loss = 1.74481 (* 1 = 1.74481 loss) +I0407 08:52:17.991564 17723 sgd_solver.cpp:105] Iteration 3204, lr = 0.01 +I0407 08:52:23.464660 17723 solver.cpp:218] Iteration 3216 (2.19256 iter/s, 5.47305s/12 iters), loss = 2.11728 +I0407 08:52:23.464700 17723 solver.cpp:237] Train net output #0: loss = 2.11728 (* 1 = 2.11728 loss) +I0407 08:52:23.464707 17723 sgd_solver.cpp:105] Iteration 3216, lr = 0.01 +I0407 08:52:28.775588 17723 solver.cpp:218] Iteration 3228 (2.25953 iter/s, 5.31083s/12 iters), loss = 1.50918 +I0407 08:52:28.775632 17723 solver.cpp:237] Train net output #0: loss = 1.50918 (* 1 = 1.50918 loss) +I0407 08:52:28.775640 17723 sgd_solver.cpp:105] Iteration 3228, lr = 0.01 +I0407 08:52:31.958761 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:33.952282 17723 solver.cpp:218] Iteration 3240 (2.31813 iter/s, 5.17659s/12 iters), loss = 1.56622 +I0407 08:52:33.952324 17723 solver.cpp:237] Train net output #0: loss = 1.56622 (* 1 = 1.56622 loss) +I0407 08:52:33.952330 17723 sgd_solver.cpp:105] Iteration 3240, lr = 0.01 +I0407 08:52:39.099306 17723 solver.cpp:218] Iteration 3252 (2.33149 iter/s, 5.14692s/12 iters), loss = 1.53779 +I0407 08:52:39.099350 17723 solver.cpp:237] Train net output #0: loss = 1.53779 (* 1 = 1.53779 loss) +I0407 08:52:39.099357 17723 sgd_solver.cpp:105] Iteration 3252, lr = 0.01 +I0407 08:52:43.860399 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 08:52:46.931398 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 08:52:49.252321 17723 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 08:52:49.252449 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:52:52.307664 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:53.627099 17723 solver.cpp:397] Test net output #0: accuracy = 0.295956 +I0407 08:52:53.627125 17723 solver.cpp:397] Test net output #1: loss = 3.17027 (* 1 = 3.17027 loss) +I0407 08:52:53.767813 17723 solver.cpp:218] Iteration 3264 (0.818089 iter/s, 14.6683s/12 iters), loss = 1.79241 +I0407 08:52:53.767859 17723 solver.cpp:237] Train net output #0: loss = 1.79241 (* 1 = 1.79241 loss) +I0407 08:52:53.767866 17723 sgd_solver.cpp:105] Iteration 3264, lr = 0.01 +I0407 08:52:58.235622 17723 solver.cpp:218] Iteration 3276 (2.68594 iter/s, 4.46772s/12 iters), loss = 1.87342 +I0407 08:52:58.235663 17723 solver.cpp:237] Train net output #0: loss = 1.87342 (* 1 = 1.87342 loss) +I0407 08:52:58.235671 17723 sgd_solver.cpp:105] Iteration 3276, lr = 0.01 +I0407 08:53:03.697962 17723 solver.cpp:218] Iteration 3288 (2.1969 iter/s, 5.46224s/12 iters), loss = 1.59953 +I0407 08:53:03.698007 17723 solver.cpp:237] Train net output #0: loss = 1.59953 (* 1 = 1.59953 loss) +I0407 08:53:03.698015 17723 sgd_solver.cpp:105] Iteration 3288, lr = 0.01 +I0407 08:53:08.855751 17723 solver.cpp:218] Iteration 3300 (2.32662 iter/s, 5.15769s/12 iters), loss = 1.81293 +I0407 08:53:08.855799 17723 solver.cpp:237] Train net output #0: loss = 1.81293 (* 1 = 1.81293 loss) +I0407 08:53:08.855808 17723 sgd_solver.cpp:105] Iteration 3300, lr = 0.01 +I0407 08:53:14.285604 17723 solver.cpp:218] Iteration 3312 (2.21005 iter/s, 5.42974s/12 iters), loss = 2.05625 +I0407 08:53:14.285650 17723 solver.cpp:237] Train net output #0: loss = 2.05625 (* 1 = 2.05625 loss) +I0407 08:53:14.285656 17723 sgd_solver.cpp:105] Iteration 3312, lr = 0.01 +I0407 08:53:19.300022 17723 solver.cpp:218] Iteration 3324 (2.39315 iter/s, 5.01432s/12 iters), loss = 1.85163 +I0407 08:53:19.300158 17723 solver.cpp:237] Train net output #0: loss = 1.85163 (* 1 = 1.85163 loss) +I0407 08:53:19.300170 17723 sgd_solver.cpp:105] Iteration 3324, lr = 0.01 +I0407 08:53:24.560346 17723 solver.cpp:218] Iteration 3336 (2.28131 iter/s, 5.26014s/12 iters), loss = 1.67871 +I0407 08:53:24.560386 17723 solver.cpp:237] Train net output #0: loss = 1.67871 (* 1 = 1.67871 loss) +I0407 08:53:24.560393 17723 sgd_solver.cpp:105] Iteration 3336, lr = 0.01 +I0407 08:53:25.059458 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:53:29.980406 17723 solver.cpp:218] Iteration 3348 (2.21404 iter/s, 5.41996s/12 iters), loss = 2.02885 +I0407 08:53:29.980445 17723 solver.cpp:237] Train net output #0: loss = 2.02885 (* 1 = 2.02885 loss) +I0407 08:53:29.980453 17723 sgd_solver.cpp:105] Iteration 3348, lr = 0.01 +I0407 08:53:35.315764 17723 solver.cpp:218] Iteration 3360 (2.24919 iter/s, 5.33526s/12 iters), loss = 1.6875 +I0407 08:53:35.315809 17723 solver.cpp:237] Train net output #0: loss = 1.6875 (* 1 = 1.6875 loss) +I0407 08:53:35.315817 17723 sgd_solver.cpp:105] Iteration 3360, lr = 0.01 +I0407 08:53:37.588084 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 08:53:40.499994 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 08:53:42.803690 17723 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 08:53:42.803710 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:53:45.768719 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:53:47.075016 17723 solver.cpp:397] Test net output #0: accuracy = 0.316789 +I0407 08:53:47.075047 17723 solver.cpp:397] Test net output #1: loss = 2.99511 (* 1 = 2.99511 loss) +I0407 08:53:49.060619 17723 solver.cpp:218] Iteration 3372 (0.873065 iter/s, 13.7447s/12 iters), loss = 1.85879 +I0407 08:53:49.060664 17723 solver.cpp:237] Train net output #0: loss = 1.85879 (* 1 = 1.85879 loss) +I0407 08:53:49.060672 17723 sgd_solver.cpp:105] Iteration 3372, lr = 0.005 +I0407 08:53:54.143848 17723 solver.cpp:218] Iteration 3384 (2.36075 iter/s, 5.08313s/12 iters), loss = 1.69724 +I0407 08:53:54.144001 17723 solver.cpp:237] Train net output #0: loss = 1.69724 (* 1 = 1.69724 loss) +I0407 08:53:54.144011 17723 sgd_solver.cpp:105] Iteration 3384, lr = 0.005 +I0407 08:53:58.910564 17723 solver.cpp:218] Iteration 3396 (2.51756 iter/s, 4.76652s/12 iters), loss = 1.7142 +I0407 08:53:58.910609 17723 solver.cpp:237] Train net output #0: loss = 1.7142 (* 1 = 1.7142 loss) +I0407 08:53:58.910616 17723 sgd_solver.cpp:105] Iteration 3396, lr = 0.005 +I0407 08:54:04.010007 17723 solver.cpp:218] Iteration 3408 (2.35324 iter/s, 5.09935s/12 iters), loss = 1.41298 +I0407 08:54:04.010044 17723 solver.cpp:237] Train net output #0: loss = 1.41298 (* 1 = 1.41298 loss) +I0407 08:54:04.010052 17723 sgd_solver.cpp:105] Iteration 3408, lr = 0.005 +I0407 08:54:09.111063 17723 solver.cpp:218] Iteration 3420 (2.3525 iter/s, 5.10096s/12 iters), loss = 1.18171 +I0407 08:54:09.111109 17723 solver.cpp:237] Train net output #0: loss = 1.18171 (* 1 = 1.18171 loss) +I0407 08:54:09.111115 17723 sgd_solver.cpp:105] Iteration 3420, lr = 0.005 +I0407 08:54:14.393471 17723 solver.cpp:218] Iteration 3432 (2.27173 iter/s, 5.28231s/12 iters), loss = 1.34535 +I0407 08:54:14.393512 17723 solver.cpp:237] Train net output #0: loss = 1.34535 (* 1 = 1.34535 loss) +I0407 08:54:14.393517 17723 sgd_solver.cpp:105] Iteration 3432, lr = 0.005 +I0407 08:54:17.260345 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:54:19.863291 17723 solver.cpp:218] Iteration 3444 (2.1939 iter/s, 5.46972s/12 iters), loss = 1.3866 +I0407 08:54:19.863341 17723 solver.cpp:237] Train net output #0: loss = 1.3866 (* 1 = 1.3866 loss) +I0407 08:54:19.863350 17723 sgd_solver.cpp:105] Iteration 3444, lr = 0.005 +I0407 08:54:25.317739 17723 solver.cpp:218] Iteration 3456 (2.20008 iter/s, 5.45434s/12 iters), loss = 1.40007 +I0407 08:54:25.317832 17723 solver.cpp:237] Train net output #0: loss = 1.40007 (* 1 = 1.40007 loss) +I0407 08:54:25.317842 17723 sgd_solver.cpp:105] Iteration 3456, lr = 0.005 +I0407 08:54:30.016217 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 08:54:33.018193 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 08:54:35.317196 17723 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 08:54:35.317212 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:54:35.714310 17723 blocking_queue.cpp:49] Waiting for data +I0407 08:54:38.352761 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:54:39.708324 17723 solver.cpp:397] Test net output #0: accuracy = 0.349265 +I0407 08:54:39.708359 17723 solver.cpp:397] Test net output #1: loss = 2.92638 (* 1 = 2.92638 loss) +I0407 08:54:39.847160 17723 solver.cpp:218] Iteration 3468 (0.825923 iter/s, 14.5292s/12 iters), loss = 1.51913 +I0407 08:54:39.847208 17723 solver.cpp:237] Train net output #0: loss = 1.51913 (* 1 = 1.51913 loss) +I0407 08:54:39.847213 17723 sgd_solver.cpp:105] Iteration 3468, lr = 0.005 +I0407 08:54:44.057852 17723 solver.cpp:218] Iteration 3480 (2.84995 iter/s, 4.2106s/12 iters), loss = 1.34851 +I0407 08:54:44.057894 17723 solver.cpp:237] Train net output #0: loss = 1.34851 (* 1 = 1.34851 loss) +I0407 08:54:44.057901 17723 sgd_solver.cpp:105] Iteration 3480, lr = 0.005 +I0407 08:54:49.309388 17723 solver.cpp:218] Iteration 3492 (2.28509 iter/s, 5.25144s/12 iters), loss = 1.40491 +I0407 08:54:49.309430 17723 solver.cpp:237] Train net output #0: loss = 1.40491 (* 1 = 1.40491 loss) +I0407 08:54:49.309437 17723 sgd_solver.cpp:105] Iteration 3492, lr = 0.005 +I0407 08:54:54.422474 17723 solver.cpp:218] Iteration 3504 (2.34697 iter/s, 5.11298s/12 iters), loss = 1.42214 +I0407 08:54:54.422516 17723 solver.cpp:237] Train net output #0: loss = 1.42214 (* 1 = 1.42214 loss) +I0407 08:54:54.422523 17723 sgd_solver.cpp:105] Iteration 3504, lr = 0.005 +I0407 08:54:59.789988 17723 solver.cpp:218] Iteration 3516 (2.23572 iter/s, 5.36741s/12 iters), loss = 1.1898 +I0407 08:54:59.790118 17723 solver.cpp:237] Train net output #0: loss = 1.1898 (* 1 = 1.1898 loss) +I0407 08:54:59.790127 17723 sgd_solver.cpp:105] Iteration 3516, lr = 0.005 +I0407 08:55:05.055822 17723 solver.cpp:218] Iteration 3528 (2.27892 iter/s, 5.26565s/12 iters), loss = 1.34456 +I0407 08:55:05.055866 17723 solver.cpp:237] Train net output #0: loss = 1.34456 (* 1 = 1.34456 loss) +I0407 08:55:05.055872 17723 sgd_solver.cpp:105] Iteration 3528, lr = 0.005 +I0407 08:55:09.859939 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:10.161401 17723 solver.cpp:218] Iteration 3540 (2.35042 iter/s, 5.10548s/12 iters), loss = 0.971675 +I0407 08:55:10.161442 17723 solver.cpp:237] Train net output #0: loss = 0.971675 (* 1 = 0.971675 loss) +I0407 08:55:10.161448 17723 sgd_solver.cpp:105] Iteration 3540, lr = 0.005 +I0407 08:55:15.494345 17723 solver.cpp:218] Iteration 3552 (2.2502 iter/s, 5.33285s/12 iters), loss = 0.887825 +I0407 08:55:15.494383 17723 solver.cpp:237] Train net output #0: loss = 0.887825 (* 1 = 0.887825 loss) +I0407 08:55:15.494391 17723 sgd_solver.cpp:105] Iteration 3552, lr = 0.005 +I0407 08:55:20.885918 17723 solver.cpp:218] Iteration 3564 (2.22574 iter/s, 5.39147s/12 iters), loss = 0.935728 +I0407 08:55:20.885978 17723 solver.cpp:237] Train net output #0: loss = 0.935728 (* 1 = 0.935728 loss) +I0407 08:55:20.885990 17723 sgd_solver.cpp:105] Iteration 3564, lr = 0.005 +I0407 08:55:23.199793 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 08:55:26.203869 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 08:55:28.505167 17723 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 08:55:28.505187 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:55:31.426573 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:32.820865 17723 solver.cpp:397] Test net output #0: accuracy = 0.387255 +I0407 08:55:32.820914 17723 solver.cpp:397] Test net output #1: loss = 2.7769 (* 1 = 2.7769 loss) +I0407 08:55:34.699203 17723 solver.cpp:218] Iteration 3576 (0.86874 iter/s, 13.8131s/12 iters), loss = 1.35843 +I0407 08:55:34.699256 17723 solver.cpp:237] Train net output #0: loss = 1.35843 (* 1 = 1.35843 loss) +I0407 08:55:34.699265 17723 sgd_solver.cpp:105] Iteration 3576, lr = 0.005 +I0407 08:55:40.040297 17723 solver.cpp:218] Iteration 3588 (2.24678 iter/s, 5.34099s/12 iters), loss = 1.3115 +I0407 08:55:40.040340 17723 solver.cpp:237] Train net output #0: loss = 1.3115 (* 1 = 1.3115 loss) +I0407 08:55:40.040347 17723 sgd_solver.cpp:105] Iteration 3588, lr = 0.005 +I0407 08:55:45.410285 17723 solver.cpp:218] Iteration 3600 (2.23468 iter/s, 5.36988s/12 iters), loss = 1.20391 +I0407 08:55:45.410336 17723 solver.cpp:237] Train net output #0: loss = 1.20391 (* 1 = 1.20391 loss) +I0407 08:55:45.410346 17723 sgd_solver.cpp:105] Iteration 3600, lr = 0.005 +I0407 08:55:50.771323 17723 solver.cpp:218] Iteration 3612 (2.23842 iter/s, 5.36093s/12 iters), loss = 1.03232 +I0407 08:55:50.771361 17723 solver.cpp:237] Train net output #0: loss = 1.03232 (* 1 = 1.03232 loss) +I0407 08:55:50.771368 17723 sgd_solver.cpp:105] Iteration 3612, lr = 0.005 +I0407 08:55:56.143491 17723 solver.cpp:218] Iteration 3624 (2.23378 iter/s, 5.37207s/12 iters), loss = 1.14169 +I0407 08:55:56.143546 17723 solver.cpp:237] Train net output #0: loss = 1.14169 (* 1 = 1.14169 loss) +I0407 08:55:56.143555 17723 sgd_solver.cpp:105] Iteration 3624, lr = 0.005 +I0407 08:56:01.358481 17723 solver.cpp:218] Iteration 3636 (2.30111 iter/s, 5.21488s/12 iters), loss = 0.911847 +I0407 08:56:01.358527 17723 solver.cpp:237] Train net output #0: loss = 0.911847 (* 1 = 0.911847 loss) +I0407 08:56:01.358536 17723 sgd_solver.cpp:105] Iteration 3636, lr = 0.005 +I0407 08:56:03.349681 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:06.816291 17723 solver.cpp:218] Iteration 3648 (2.19872 iter/s, 5.45771s/12 iters), loss = 1.05539 +I0407 08:56:06.816336 17723 solver.cpp:237] Train net output #0: loss = 1.05539 (* 1 = 1.05539 loss) +I0407 08:56:06.816344 17723 sgd_solver.cpp:105] Iteration 3648, lr = 0.005 +I0407 08:56:11.881395 17723 solver.cpp:218] Iteration 3660 (2.3692 iter/s, 5.065s/12 iters), loss = 0.972908 +I0407 08:56:11.881444 17723 solver.cpp:237] Train net output #0: loss = 0.972908 (* 1 = 0.972908 loss) +I0407 08:56:11.881456 17723 sgd_solver.cpp:105] Iteration 3660, lr = 0.005 +I0407 08:56:16.692517 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 08:56:19.717088 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 08:56:22.019757 17723 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 08:56:22.019774 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:56:24.871659 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:26.330968 17723 solver.cpp:397] Test net output #0: accuracy = 0.38174 +I0407 08:56:26.330996 17723 solver.cpp:397] Test net output #1: loss = 2.84826 (* 1 = 2.84826 loss) +I0407 08:56:26.471168 17723 solver.cpp:218] Iteration 3672 (0.822504 iter/s, 14.5896s/12 iters), loss = 0.854567 +I0407 08:56:26.471238 17723 solver.cpp:237] Train net output #0: loss = 0.854567 (* 1 = 0.854567 loss) +I0407 08:56:26.471246 17723 sgd_solver.cpp:105] Iteration 3672, lr = 0.005 +I0407 08:56:30.841235 17723 solver.cpp:218] Iteration 3684 (2.74602 iter/s, 4.36995s/12 iters), loss = 0.89752 +I0407 08:56:30.841290 17723 solver.cpp:237] Train net output #0: loss = 0.89752 (* 1 = 0.89752 loss) +I0407 08:56:30.841300 17723 sgd_solver.cpp:105] Iteration 3684, lr = 0.005 +I0407 08:56:35.738524 17723 solver.cpp:218] Iteration 3696 (2.45039 iter/s, 4.89718s/12 iters), loss = 1.1281 +I0407 08:56:35.738629 17723 solver.cpp:237] Train net output #0: loss = 1.1281 (* 1 = 1.1281 loss) +I0407 08:56:35.738639 17723 sgd_solver.cpp:105] Iteration 3696, lr = 0.005 +I0407 08:56:41.019501 17723 solver.cpp:218] Iteration 3708 (2.27238 iter/s, 5.28082s/12 iters), loss = 1.04691 +I0407 08:56:41.019546 17723 solver.cpp:237] Train net output #0: loss = 1.04691 (* 1 = 1.04691 loss) +I0407 08:56:41.019553 17723 sgd_solver.cpp:105] Iteration 3708, lr = 0.005 +I0407 08:56:46.248126 17723 solver.cpp:218] Iteration 3720 (2.2951 iter/s, 5.22853s/12 iters), loss = 0.821994 +I0407 08:56:46.248160 17723 solver.cpp:237] Train net output #0: loss = 0.821994 (* 1 = 0.821994 loss) +I0407 08:56:46.248167 17723 sgd_solver.cpp:105] Iteration 3720, lr = 0.005 +I0407 08:56:51.552613 17723 solver.cpp:218] Iteration 3732 (2.26228 iter/s, 5.30439s/12 iters), loss = 0.943572 +I0407 08:56:51.552671 17723 solver.cpp:237] Train net output #0: loss = 0.943572 (* 1 = 0.943572 loss) +I0407 08:56:51.552685 17723 sgd_solver.cpp:105] Iteration 3732, lr = 0.005 +I0407 08:56:55.667117 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:56.750506 17723 solver.cpp:218] Iteration 3744 (2.30868 iter/s, 5.19778s/12 iters), loss = 1.03797 +I0407 08:56:56.750543 17723 solver.cpp:237] Train net output #0: loss = 1.03797 (* 1 = 1.03797 loss) +I0407 08:56:56.750550 17723 sgd_solver.cpp:105] Iteration 3744, lr = 0.005 +I0407 08:57:02.217519 17723 solver.cpp:218] Iteration 3756 (2.19502 iter/s, 5.46692s/12 iters), loss = 0.828175 +I0407 08:57:02.217559 17723 solver.cpp:237] Train net output #0: loss = 0.828175 (* 1 = 0.828175 loss) +I0407 08:57:02.217566 17723 sgd_solver.cpp:105] Iteration 3756, lr = 0.005 +I0407 08:57:07.597725 17723 solver.cpp:218] Iteration 3768 (2.23044 iter/s, 5.38011s/12 iters), loss = 0.989436 +I0407 08:57:07.597852 17723 solver.cpp:237] Train net output #0: loss = 0.989436 (* 1 = 0.989436 loss) +I0407 08:57:07.597860 17723 sgd_solver.cpp:105] Iteration 3768, lr = 0.005 +I0407 08:57:09.635589 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 08:57:12.654944 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 08:57:14.963685 17723 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 08:57:14.963706 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:57:17.893985 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:57:19.472960 17723 solver.cpp:397] Test net output #0: accuracy = 0.376838 +I0407 08:57:19.473002 17723 solver.cpp:397] Test net output #1: loss = 2.89434 (* 1 = 2.89434 loss) +I0407 08:57:21.266072 17723 solver.cpp:218] Iteration 3780 (0.877957 iter/s, 13.6681s/12 iters), loss = 0.938009 +I0407 08:57:21.266120 17723 solver.cpp:237] Train net output #0: loss = 0.938009 (* 1 = 0.938009 loss) +I0407 08:57:21.266127 17723 sgd_solver.cpp:105] Iteration 3780, lr = 0.005 +I0407 08:57:26.328308 17723 solver.cpp:218] Iteration 3792 (2.37054 iter/s, 5.06213s/12 iters), loss = 0.845021 +I0407 08:57:26.328351 17723 solver.cpp:237] Train net output #0: loss = 0.845021 (* 1 = 0.845021 loss) +I0407 08:57:26.328357 17723 sgd_solver.cpp:105] Iteration 3792, lr = 0.005 +I0407 08:57:31.787833 17723 solver.cpp:218] Iteration 3804 (2.19803 iter/s, 5.45943s/12 iters), loss = 1.03655 +I0407 08:57:31.787873 17723 solver.cpp:237] Train net output #0: loss = 1.03655 (* 1 = 1.03655 loss) +I0407 08:57:31.787880 17723 sgd_solver.cpp:105] Iteration 3804, lr = 0.005 +I0407 08:57:36.940649 17723 solver.cpp:218] Iteration 3816 (2.32887 iter/s, 5.15272s/12 iters), loss = 0.954289 +I0407 08:57:36.940687 17723 solver.cpp:237] Train net output #0: loss = 0.954289 (* 1 = 0.954289 loss) +I0407 08:57:36.940694 17723 sgd_solver.cpp:105] Iteration 3816, lr = 0.005 +I0407 08:57:42.251655 17723 solver.cpp:218] Iteration 3828 (2.2595 iter/s, 5.31091s/12 iters), loss = 0.84998 +I0407 08:57:42.251786 17723 solver.cpp:237] Train net output #0: loss = 0.84998 (* 1 = 0.84998 loss) +I0407 08:57:42.251796 17723 sgd_solver.cpp:105] Iteration 3828, lr = 0.005 +I0407 08:57:47.653993 17723 solver.cpp:218] Iteration 3840 (2.22134 iter/s, 5.40215s/12 iters), loss = 0.696847 +I0407 08:57:47.654042 17723 solver.cpp:237] Train net output #0: loss = 0.696847 (* 1 = 0.696847 loss) +I0407 08:57:47.654048 17723 sgd_solver.cpp:105] Iteration 3840, lr = 0.005 +I0407 08:57:48.753749 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:57:53.009335 17723 solver.cpp:218] Iteration 3852 (2.2408 iter/s, 5.35523s/12 iters), loss = 0.672191 +I0407 08:57:53.009402 17723 solver.cpp:237] Train net output #0: loss = 0.672191 (* 1 = 0.672191 loss) +I0407 08:57:53.009416 17723 sgd_solver.cpp:105] Iteration 3852, lr = 0.005 +I0407 08:57:58.185480 17723 solver.cpp:218] Iteration 3864 (2.31838 iter/s, 5.17603s/12 iters), loss = 0.586028 +I0407 08:57:58.185523 17723 solver.cpp:237] Train net output #0: loss = 0.586028 (* 1 = 0.586028 loss) +I0407 08:57:58.185529 17723 sgd_solver.cpp:105] Iteration 3864, lr = 0.005 +I0407 08:58:02.704483 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 08:58:05.712033 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 08:58:08.015827 17723 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 08:58:08.015849 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:58:10.765470 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:12.275358 17723 solver.cpp:397] Test net output #0: accuracy = 0.39951 +I0407 08:58:12.275501 17723 solver.cpp:397] Test net output #1: loss = 2.83881 (* 1 = 2.83881 loss) +I0407 08:58:12.416256 17723 solver.cpp:218] Iteration 3876 (0.843253 iter/s, 14.2306s/12 iters), loss = 0.859276 +I0407 08:58:12.416306 17723 solver.cpp:237] Train net output #0: loss = 0.859276 (* 1 = 0.859276 loss) +I0407 08:58:12.416313 17723 sgd_solver.cpp:105] Iteration 3876, lr = 0.005 +I0407 08:58:16.581315 17723 solver.cpp:218] Iteration 3888 (2.88118 iter/s, 4.16496s/12 iters), loss = 1.0127 +I0407 08:58:16.581360 17723 solver.cpp:237] Train net output #0: loss = 1.0127 (* 1 = 1.0127 loss) +I0407 08:58:16.581368 17723 sgd_solver.cpp:105] Iteration 3888, lr = 0.005 +I0407 08:58:22.080935 17723 solver.cpp:218] Iteration 3900 (2.18201 iter/s, 5.49952s/12 iters), loss = 0.561502 +I0407 08:58:22.080978 17723 solver.cpp:237] Train net output #0: loss = 0.561502 (* 1 = 0.561502 loss) +I0407 08:58:22.080986 17723 sgd_solver.cpp:105] Iteration 3900, lr = 0.005 +I0407 08:58:27.288714 17723 solver.cpp:218] Iteration 3912 (2.30429 iter/s, 5.20768s/12 iters), loss = 0.502317 +I0407 08:58:27.288750 17723 solver.cpp:237] Train net output #0: loss = 0.502317 (* 1 = 0.502317 loss) +I0407 08:58:27.288756 17723 sgd_solver.cpp:105] Iteration 3912, lr = 0.005 +I0407 08:58:32.473048 17723 solver.cpp:218] Iteration 3924 (2.31471 iter/s, 5.18424s/12 iters), loss = 1.13069 +I0407 08:58:32.473086 17723 solver.cpp:237] Train net output #0: loss = 1.13069 (* 1 = 1.13069 loss) +I0407 08:58:32.473093 17723 sgd_solver.cpp:105] Iteration 3924, lr = 0.005 +I0407 08:58:37.974931 17723 solver.cpp:218] Iteration 3936 (2.18111 iter/s, 5.50179s/12 iters), loss = 0.608661 +I0407 08:58:37.974970 17723 solver.cpp:237] Train net output #0: loss = 0.608661 (* 1 = 0.608661 loss) +I0407 08:58:37.974977 17723 sgd_solver.cpp:105] Iteration 3936, lr = 0.005 +I0407 08:58:41.667208 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:43.473176 17723 solver.cpp:218] Iteration 3948 (2.18255 iter/s, 5.49815s/12 iters), loss = 0.617358 +I0407 08:58:43.473237 17723 solver.cpp:237] Train net output #0: loss = 0.617358 (* 1 = 0.617358 loss) +I0407 08:58:43.473244 17723 sgd_solver.cpp:105] Iteration 3948, lr = 0.005 +I0407 08:58:48.798032 17723 solver.cpp:218] Iteration 3960 (2.25363 iter/s, 5.32474s/12 iters), loss = 0.725351 +I0407 08:58:48.798091 17723 solver.cpp:237] Train net output #0: loss = 0.725351 (* 1 = 0.725351 loss) +I0407 08:58:48.798101 17723 sgd_solver.cpp:105] Iteration 3960, lr = 0.005 +I0407 08:58:54.120985 17723 solver.cpp:218] Iteration 3972 (2.25443 iter/s, 5.32284s/12 iters), loss = 0.790153 +I0407 08:58:54.121021 17723 solver.cpp:237] Train net output #0: loss = 0.790153 (* 1 = 0.790153 loss) +I0407 08:58:54.121029 17723 sgd_solver.cpp:105] Iteration 3972, lr = 0.005 +I0407 08:58:56.284106 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 08:58:59.307210 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 08:59:01.619652 17723 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 08:59:01.619673 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:59:04.357542 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:59:05.921720 17723 solver.cpp:397] Test net output #0: accuracy = 0.401961 +I0407 08:59:05.921751 17723 solver.cpp:397] Test net output #1: loss = 2.82833 (* 1 = 2.82833 loss) +I0407 08:59:07.830750 17723 solver.cpp:218] Iteration 3984 (0.875299 iter/s, 13.7096s/12 iters), loss = 0.542373 +I0407 08:59:07.830797 17723 solver.cpp:237] Train net output #0: loss = 0.542373 (* 1 = 0.542373 loss) +I0407 08:59:07.830806 17723 sgd_solver.cpp:105] Iteration 3984, lr = 0.005 +I0407 08:59:13.244872 17723 solver.cpp:218] Iteration 3996 (2.21647 iter/s, 5.41402s/12 iters), loss = 0.628853 +I0407 08:59:13.244920 17723 solver.cpp:237] Train net output #0: loss = 0.628853 (* 1 = 0.628853 loss) +I0407 08:59:13.244927 17723 sgd_solver.cpp:105] Iteration 3996, lr = 0.005 +I0407 08:59:18.657003 17723 solver.cpp:218] Iteration 4008 (2.21728 iter/s, 5.41203s/12 iters), loss = 0.539095 +I0407 08:59:18.657137 17723 solver.cpp:237] Train net output #0: loss = 0.539095 (* 1 = 0.539095 loss) +I0407 08:59:18.657145 17723 sgd_solver.cpp:105] Iteration 4008, lr = 0.005 +I0407 08:59:24.041014 17723 solver.cpp:218] Iteration 4020 (2.2289 iter/s, 5.38382s/12 iters), loss = 0.800418 +I0407 08:59:24.041055 17723 solver.cpp:237] Train net output #0: loss = 0.800418 (* 1 = 0.800418 loss) +I0407 08:59:24.041064 17723 sgd_solver.cpp:105] Iteration 4020, lr = 0.005 +I0407 08:59:29.439409 17723 solver.cpp:218] Iteration 4032 (2.22293 iter/s, 5.39829s/12 iters), loss = 0.748453 +I0407 08:59:29.439477 17723 solver.cpp:237] Train net output #0: loss = 0.748453 (* 1 = 0.748453 loss) +I0407 08:59:29.439492 17723 sgd_solver.cpp:105] Iteration 4032, lr = 0.005 +I0407 08:59:34.723727 17723 solver.cpp:218] Iteration 4044 (2.27092 iter/s, 5.2842s/12 iters), loss = 0.693601 +I0407 08:59:34.723773 17723 solver.cpp:237] Train net output #0: loss = 0.693601 (* 1 = 0.693601 loss) +I0407 08:59:34.723779 17723 sgd_solver.cpp:105] Iteration 4044, lr = 0.005 +I0407 08:59:35.268061 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:59:40.097071 17723 solver.cpp:218] Iteration 4056 (2.23329 iter/s, 5.37324s/12 iters), loss = 0.581602 +I0407 08:59:40.097122 17723 solver.cpp:237] Train net output #0: loss = 0.581602 (* 1 = 0.581602 loss) +I0407 08:59:40.097133 17723 sgd_solver.cpp:105] Iteration 4056, lr = 0.005 +I0407 08:59:45.397861 17723 solver.cpp:218] Iteration 4068 (2.26386 iter/s, 5.30068s/12 iters), loss = 0.76993 +I0407 08:59:45.397903 17723 solver.cpp:237] Train net output #0: loss = 0.76993 (* 1 = 0.76993 loss) +I0407 08:59:45.397910 17723 sgd_solver.cpp:105] Iteration 4068, lr = 0.005 +I0407 08:59:50.318418 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 08:59:53.343762 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 08:59:55.667770 17723 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 08:59:55.667793 17723 net.cpp:676] Ignoring source layer train-data +I0407 08:59:58.450455 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:00.033947 17723 solver.cpp:397] Test net output #0: accuracy = 0.400735 +I0407 09:00:00.033989 17723 solver.cpp:397] Test net output #1: loss = 2.82125 (* 1 = 2.82125 loss) +I0407 09:00:00.171819 17723 solver.cpp:218] Iteration 4080 (0.812249 iter/s, 14.7738s/12 iters), loss = 0.886368 +I0407 09:00:00.171886 17723 solver.cpp:237] Train net output #0: loss = 0.886368 (* 1 = 0.886368 loss) +I0407 09:00:00.171897 17723 sgd_solver.cpp:105] Iteration 4080, lr = 0.005 +I0407 09:00:04.345717 17723 solver.cpp:218] Iteration 4092 (2.87509 iter/s, 4.17379s/12 iters), loss = 1.15315 +I0407 09:00:04.345762 17723 solver.cpp:237] Train net output #0: loss = 1.15315 (* 1 = 1.15315 loss) +I0407 09:00:04.345773 17723 sgd_solver.cpp:105] Iteration 4092, lr = 0.005 +I0407 09:00:09.568050 17723 solver.cpp:218] Iteration 4104 (2.29787 iter/s, 5.22223s/12 iters), loss = 0.71006 +I0407 09:00:09.568090 17723 solver.cpp:237] Train net output #0: loss = 0.71006 (* 1 = 0.71006 loss) +I0407 09:00:09.568100 17723 sgd_solver.cpp:105] Iteration 4104, lr = 0.005 +I0407 09:00:14.889394 17723 solver.cpp:218] Iteration 4116 (2.25511 iter/s, 5.32125s/12 iters), loss = 0.752767 +I0407 09:00:14.889431 17723 solver.cpp:237] Train net output #0: loss = 0.752767 (* 1 = 0.752767 loss) +I0407 09:00:14.889437 17723 sgd_solver.cpp:105] Iteration 4116, lr = 0.005 +I0407 09:00:20.279289 17723 solver.cpp:218] Iteration 4128 (2.22643 iter/s, 5.3898s/12 iters), loss = 0.802451 +I0407 09:00:20.279330 17723 solver.cpp:237] Train net output #0: loss = 0.802451 (* 1 = 0.802451 loss) +I0407 09:00:20.279338 17723 sgd_solver.cpp:105] Iteration 4128, lr = 0.005 +I0407 09:00:25.541172 17723 solver.cpp:218] Iteration 4140 (2.28059 iter/s, 5.26179s/12 iters), loss = 0.758621 +I0407 09:00:25.541311 17723 solver.cpp:237] Train net output #0: loss = 0.758621 (* 1 = 0.758621 loss) +I0407 09:00:25.541319 17723 sgd_solver.cpp:105] Iteration 4140, lr = 0.005 +I0407 09:00:28.425740 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:31.074333 17723 solver.cpp:218] Iteration 4152 (2.16882 iter/s, 5.53296s/12 iters), loss = 0.636793 +I0407 09:00:31.074374 17723 solver.cpp:237] Train net output #0: loss = 0.636793 (* 1 = 0.636793 loss) +I0407 09:00:31.074381 17723 sgd_solver.cpp:105] Iteration 4152, lr = 0.005 +I0407 09:00:32.940007 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:00:36.422461 17723 solver.cpp:218] Iteration 4164 (2.24382 iter/s, 5.34803s/12 iters), loss = 0.582164 +I0407 09:00:36.422508 17723 solver.cpp:237] Train net output #0: loss = 0.582164 (* 1 = 0.582164 loss) +I0407 09:00:36.422516 17723 sgd_solver.cpp:105] Iteration 4164, lr = 0.005 +I0407 09:00:41.759888 17723 solver.cpp:218] Iteration 4176 (2.24832 iter/s, 5.33733s/12 iters), loss = 0.54265 +I0407 09:00:41.759933 17723 solver.cpp:237] Train net output #0: loss = 0.54265 (* 1 = 0.54265 loss) +I0407 09:00:41.759940 17723 sgd_solver.cpp:105] Iteration 4176, lr = 0.005 +I0407 09:00:43.853152 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 09:00:47.896901 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 09:00:50.226761 17723 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 09:00:50.226781 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:00:52.909237 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:54.574533 17723 solver.cpp:397] Test net output #0: accuracy = 0.386029 +I0407 09:00:54.574573 17723 solver.cpp:397] Test net output #1: loss = 2.98107 (* 1 = 2.98107 loss) +I0407 09:00:56.436221 17723 solver.cpp:218] Iteration 4188 (0.817653 iter/s, 14.6762s/12 iters), loss = 0.469448 +I0407 09:00:56.436322 17723 solver.cpp:237] Train net output #0: loss = 0.469448 (* 1 = 0.469448 loss) +I0407 09:00:56.436331 17723 sgd_solver.cpp:105] Iteration 4188, lr = 0.005 +I0407 09:01:01.771788 17723 solver.cpp:218] Iteration 4200 (2.24912 iter/s, 5.33542s/12 iters), loss = 0.626096 +I0407 09:01:01.771821 17723 solver.cpp:237] Train net output #0: loss = 0.626096 (* 1 = 0.626096 loss) +I0407 09:01:01.771826 17723 sgd_solver.cpp:105] Iteration 4200, lr = 0.005 +I0407 09:01:07.107246 17723 solver.cpp:218] Iteration 4212 (2.24914 iter/s, 5.33537s/12 iters), loss = 0.548248 +I0407 09:01:07.107288 17723 solver.cpp:237] Train net output #0: loss = 0.548248 (* 1 = 0.548248 loss) +I0407 09:01:07.107296 17723 sgd_solver.cpp:105] Iteration 4212, lr = 0.005 +I0407 09:01:12.322357 17723 solver.cpp:218] Iteration 4224 (2.30105 iter/s, 5.21501s/12 iters), loss = 0.544488 +I0407 09:01:12.322402 17723 solver.cpp:237] Train net output #0: loss = 0.544488 (* 1 = 0.544488 loss) +I0407 09:01:12.322408 17723 sgd_solver.cpp:105] Iteration 4224, lr = 0.005 +I0407 09:01:17.585748 17723 solver.cpp:218] Iteration 4236 (2.27994 iter/s, 5.26329s/12 iters), loss = 0.606547 +I0407 09:01:17.585793 17723 solver.cpp:237] Train net output #0: loss = 0.606547 (* 1 = 0.606547 loss) +I0407 09:01:17.585801 17723 sgd_solver.cpp:105] Iteration 4236, lr = 0.005 +I0407 09:01:22.665607 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:01:22.941447 17723 solver.cpp:218] Iteration 4248 (2.24065 iter/s, 5.3556s/12 iters), loss = 0.610777 +I0407 09:01:22.941494 17723 solver.cpp:237] Train net output #0: loss = 0.610777 (* 1 = 0.610777 loss) +I0407 09:01:22.941504 17723 sgd_solver.cpp:105] Iteration 4248, lr = 0.005 +I0407 09:01:28.310006 17723 solver.cpp:218] Iteration 4260 (2.23528 iter/s, 5.36845s/12 iters), loss = 0.651371 +I0407 09:01:28.310103 17723 solver.cpp:237] Train net output #0: loss = 0.651371 (* 1 = 0.651371 loss) +I0407 09:01:28.310112 17723 sgd_solver.cpp:105] Iteration 4260, lr = 0.005 +I0407 09:01:33.577579 17723 solver.cpp:218] Iteration 4272 (2.27815 iter/s, 5.26742s/12 iters), loss = 0.667568 +I0407 09:01:33.577626 17723 solver.cpp:237] Train net output #0: loss = 0.667568 (* 1 = 0.667568 loss) +I0407 09:01:33.577633 17723 sgd_solver.cpp:105] Iteration 4272, lr = 0.005 +I0407 09:01:38.416533 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 09:01:44.571655 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 09:01:46.892302 17723 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 09:01:46.892323 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:01:49.674036 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:01:51.333230 17723 solver.cpp:397] Test net output #0: accuracy = 0.405024 +I0407 09:01:51.333268 17723 solver.cpp:397] Test net output #1: loss = 2.84768 (* 1 = 2.84768 loss) +I0407 09:01:51.474051 17723 solver.cpp:218] Iteration 4284 (0.670531 iter/s, 17.8963s/12 iters), loss = 0.621058 +I0407 09:01:51.475641 17723 solver.cpp:237] Train net output #0: loss = 0.621058 (* 1 = 0.621058 loss) +I0407 09:01:51.475656 17723 sgd_solver.cpp:105] Iteration 4284, lr = 0.005 +I0407 09:01:55.821029 17723 solver.cpp:218] Iteration 4296 (2.76157 iter/s, 4.34535s/12 iters), loss = 0.704099 +I0407 09:01:55.821092 17723 solver.cpp:237] Train net output #0: loss = 0.704099 (* 1 = 0.704099 loss) +I0407 09:01:55.821102 17723 sgd_solver.cpp:105] Iteration 4296, lr = 0.005 +I0407 09:02:01.061851 17723 solver.cpp:218] Iteration 4308 (2.28977 iter/s, 5.2407s/12 iters), loss = 0.62725 +I0407 09:02:01.061995 17723 solver.cpp:237] Train net output #0: loss = 0.62725 (* 1 = 0.62725 loss) +I0407 09:02:01.062006 17723 sgd_solver.cpp:105] Iteration 4308, lr = 0.005 +I0407 09:02:06.158893 17723 solver.cpp:218] Iteration 4320 (2.3544 iter/s, 5.09685s/12 iters), loss = 0.573172 +I0407 09:02:06.158936 17723 solver.cpp:237] Train net output #0: loss = 0.573172 (* 1 = 0.573172 loss) +I0407 09:02:06.158943 17723 sgd_solver.cpp:105] Iteration 4320, lr = 0.005 +I0407 09:02:11.262135 17723 solver.cpp:218] Iteration 4332 (2.35149 iter/s, 5.10314s/12 iters), loss = 0.5438 +I0407 09:02:11.262177 17723 solver.cpp:237] Train net output #0: loss = 0.5438 (* 1 = 0.5438 loss) +I0407 09:02:11.262184 17723 sgd_solver.cpp:105] Iteration 4332, lr = 0.005 +I0407 09:02:16.673025 17723 solver.cpp:218] Iteration 4344 (2.21779 iter/s, 5.41079s/12 iters), loss = 0.721733 +I0407 09:02:16.673069 17723 solver.cpp:237] Train net output #0: loss = 0.721733 (* 1 = 0.721733 loss) +I0407 09:02:16.673075 17723 sgd_solver.cpp:105] Iteration 4344, lr = 0.005 +I0407 09:02:18.725122 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:02:22.125326 17723 solver.cpp:218] Iteration 4356 (2.20095 iter/s, 5.4522s/12 iters), loss = 0.73053 +I0407 09:02:22.125368 17723 solver.cpp:237] Train net output #0: loss = 0.73053 (* 1 = 0.73053 loss) +I0407 09:02:22.125375 17723 sgd_solver.cpp:105] Iteration 4356, lr = 0.005 +I0407 09:02:27.354346 17723 solver.cpp:218] Iteration 4368 (2.29493 iter/s, 5.22892s/12 iters), loss = 0.68324 +I0407 09:02:27.354388 17723 solver.cpp:237] Train net output #0: loss = 0.68324 (* 1 = 0.68324 loss) +I0407 09:02:27.354395 17723 sgd_solver.cpp:105] Iteration 4368, lr = 0.005 +I0407 09:02:32.666821 17723 solver.cpp:218] Iteration 4380 (2.25888 iter/s, 5.31237s/12 iters), loss = 0.474877 +I0407 09:02:32.666930 17723 solver.cpp:237] Train net output #0: loss = 0.474877 (* 1 = 0.474877 loss) +I0407 09:02:32.666940 17723 sgd_solver.cpp:105] Iteration 4380, lr = 0.005 +I0407 09:02:34.808161 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 09:02:40.586119 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 09:02:43.050159 17723 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 09:02:43.050180 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:02:45.684432 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:02:47.378419 17723 solver.cpp:397] Test net output #0: accuracy = 0.395833 +I0407 09:02:47.378458 17723 solver.cpp:397] Test net output #1: loss = 2.95157 (* 1 = 2.95157 loss) +I0407 09:02:49.155966 17723 solver.cpp:218] Iteration 4392 (0.727762 iter/s, 16.4889s/12 iters), loss = 0.501522 +I0407 09:02:49.156013 17723 solver.cpp:237] Train net output #0: loss = 0.501522 (* 1 = 0.501522 loss) +I0407 09:02:49.156021 17723 sgd_solver.cpp:105] Iteration 4392, lr = 0.005 +I0407 09:02:54.217521 17723 solver.cpp:218] Iteration 4404 (2.37086 iter/s, 5.06145s/12 iters), loss = 0.570615 +I0407 09:02:54.217586 17723 solver.cpp:237] Train net output #0: loss = 0.570615 (* 1 = 0.570615 loss) +I0407 09:02:54.217602 17723 sgd_solver.cpp:105] Iteration 4404, lr = 0.005 +I0407 09:02:59.300402 17723 solver.cpp:218] Iteration 4416 (2.36092 iter/s, 5.08277s/12 iters), loss = 0.566656 +I0407 09:02:59.300446 17723 solver.cpp:237] Train net output #0: loss = 0.566656 (* 1 = 0.566656 loss) +I0407 09:02:59.300452 17723 sgd_solver.cpp:105] Iteration 4416, lr = 0.005 +I0407 09:03:04.633680 17723 solver.cpp:218] Iteration 4428 (2.25006 iter/s, 5.33318s/12 iters), loss = 0.485665 +I0407 09:03:04.633813 17723 solver.cpp:237] Train net output #0: loss = 0.485665 (* 1 = 0.485665 loss) +I0407 09:03:04.633822 17723 sgd_solver.cpp:105] Iteration 4428, lr = 0.005 +I0407 09:03:09.658104 17723 solver.cpp:218] Iteration 4440 (2.38842 iter/s, 5.02423s/12 iters), loss = 0.471708 +I0407 09:03:09.658144 17723 solver.cpp:237] Train net output #0: loss = 0.471708 (* 1 = 0.471708 loss) +I0407 09:03:09.658151 17723 sgd_solver.cpp:105] Iteration 4440, lr = 0.005 +I0407 09:03:13.911016 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:03:14.903470 17723 solver.cpp:218] Iteration 4452 (2.28778 iter/s, 5.24527s/12 iters), loss = 0.418967 +I0407 09:03:14.903517 17723 solver.cpp:237] Train net output #0: loss = 0.418967 (* 1 = 0.418967 loss) +I0407 09:03:14.903524 17723 sgd_solver.cpp:105] Iteration 4452, lr = 0.005 +I0407 09:03:20.161060 17723 solver.cpp:218] Iteration 4464 (2.28246 iter/s, 5.25748s/12 iters), loss = 0.585909 +I0407 09:03:20.161110 17723 solver.cpp:237] Train net output #0: loss = 0.585909 (* 1 = 0.585909 loss) +I0407 09:03:20.161118 17723 sgd_solver.cpp:105] Iteration 4464, lr = 0.005 +I0407 09:03:25.359829 17723 solver.cpp:218] Iteration 4476 (2.30828 iter/s, 5.19867s/12 iters), loss = 0.398539 +I0407 09:03:25.359866 17723 solver.cpp:237] Train net output #0: loss = 0.398539 (* 1 = 0.398539 loss) +I0407 09:03:25.359874 17723 sgd_solver.cpp:105] Iteration 4476, lr = 0.005 +I0407 09:03:29.932260 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 09:03:35.136895 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 09:03:38.855173 17723 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 09:03:38.855197 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:03:41.483177 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:03:43.227052 17723 solver.cpp:397] Test net output #0: accuracy = 0.402574 +I0407 09:03:43.227082 17723 solver.cpp:397] Test net output #1: loss = 2.85229 (* 1 = 2.85229 loss) +I0407 09:03:43.367568 17723 solver.cpp:218] Iteration 4488 (0.666387 iter/s, 18.0075s/12 iters), loss = 0.520058 +I0407 09:03:43.367635 17723 solver.cpp:237] Train net output #0: loss = 0.520058 (* 1 = 0.520058 loss) +I0407 09:03:43.367643 17723 sgd_solver.cpp:105] Iteration 4488, lr = 0.005 +I0407 09:03:47.777120 17723 solver.cpp:218] Iteration 4500 (2.72144 iter/s, 4.40944s/12 iters), loss = 0.820858 +I0407 09:03:47.777168 17723 solver.cpp:237] Train net output #0: loss = 0.820858 (* 1 = 0.820858 loss) +I0407 09:03:47.777174 17723 sgd_solver.cpp:105] Iteration 4500, lr = 0.005 +I0407 09:03:52.971431 17723 solver.cpp:218] Iteration 4512 (2.31027 iter/s, 5.1942s/12 iters), loss = 0.434792 +I0407 09:03:52.971482 17723 solver.cpp:237] Train net output #0: loss = 0.434792 (* 1 = 0.434792 loss) +I0407 09:03:52.971489 17723 sgd_solver.cpp:105] Iteration 4512, lr = 0.005 +I0407 09:03:58.080567 17723 solver.cpp:218] Iteration 4524 (2.34878 iter/s, 5.10904s/12 iters), loss = 0.518991 +I0407 09:03:58.080605 17723 solver.cpp:237] Train net output #0: loss = 0.518991 (* 1 = 0.518991 loss) +I0407 09:03:58.080612 17723 sgd_solver.cpp:105] Iteration 4524, lr = 0.005 +I0407 09:04:03.200544 17723 solver.cpp:218] Iteration 4536 (2.3438 iter/s, 5.11988s/12 iters), loss = 0.575568 +I0407 09:04:03.200590 17723 solver.cpp:237] Train net output #0: loss = 0.575568 (* 1 = 0.575568 loss) +I0407 09:04:03.200598 17723 sgd_solver.cpp:105] Iteration 4536, lr = 0.005 +I0407 09:04:08.415647 17723 solver.cpp:218] Iteration 4548 (2.30106 iter/s, 5.215s/12 iters), loss = 0.419895 +I0407 09:04:08.415813 17723 solver.cpp:237] Train net output #0: loss = 0.419895 (* 1 = 0.419895 loss) +I0407 09:04:08.415824 17723 sgd_solver.cpp:105] Iteration 4548, lr = 0.005 +I0407 09:04:09.779948 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:13.844573 17723 solver.cpp:218] Iteration 4560 (2.21047 iter/s, 5.42871s/12 iters), loss = 0.404962 +I0407 09:04:13.844615 17723 solver.cpp:237] Train net output #0: loss = 0.404962 (* 1 = 0.404962 loss) +I0407 09:04:13.844622 17723 sgd_solver.cpp:105] Iteration 4560, lr = 0.005 +I0407 09:04:19.264792 17723 solver.cpp:218] Iteration 4572 (2.21397 iter/s, 5.42012s/12 iters), loss = 0.399626 +I0407 09:04:19.264840 17723 solver.cpp:237] Train net output #0: loss = 0.399626 (* 1 = 0.399626 loss) +I0407 09:04:19.264847 17723 sgd_solver.cpp:105] Iteration 4572, lr = 0.005 +I0407 09:04:24.730738 17723 solver.cpp:218] Iteration 4584 (2.19545 iter/s, 5.46584s/12 iters), loss = 0.517604 +I0407 09:04:24.730778 17723 solver.cpp:237] Train net output #0: loss = 0.517604 (* 1 = 0.517604 loss) +I0407 09:04:24.730787 17723 sgd_solver.cpp:105] Iteration 4584, lr = 0.005 +I0407 09:04:26.881525 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 09:04:31.851915 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 09:04:36.187064 17723 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 09:04:36.187085 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:04:38.767897 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:40.556828 17723 solver.cpp:397] Test net output #0: accuracy = 0.416054 +I0407 09:04:40.556859 17723 solver.cpp:397] Test net output #1: loss = 2.8126 (* 1 = 2.8126 loss) +I0407 09:04:42.506345 17723 solver.cpp:218] Iteration 4596 (0.67509 iter/s, 17.7754s/12 iters), loss = 0.581726 +I0407 09:04:42.506402 17723 solver.cpp:237] Train net output #0: loss = 0.581726 (* 1 = 0.581726 loss) +I0407 09:04:42.506412 17723 sgd_solver.cpp:105] Iteration 4596, lr = 0.005 +I0407 09:04:47.821568 17723 solver.cpp:218] Iteration 4608 (2.25771 iter/s, 5.31511s/12 iters), loss = 0.291869 +I0407 09:04:47.821610 17723 solver.cpp:237] Train net output #0: loss = 0.291869 (* 1 = 0.291869 loss) +I0407 09:04:47.821619 17723 sgd_solver.cpp:105] Iteration 4608, lr = 0.005 +I0407 09:04:53.199059 17723 solver.cpp:218] Iteration 4620 (2.23157 iter/s, 5.37739s/12 iters), loss = 0.387093 +I0407 09:04:53.199105 17723 solver.cpp:237] Train net output #0: loss = 0.387093 (* 1 = 0.387093 loss) +I0407 09:04:53.199111 17723 sgd_solver.cpp:105] Iteration 4620, lr = 0.005 +I0407 09:04:58.479909 17723 solver.cpp:218] Iteration 4632 (2.2724 iter/s, 5.28075s/12 iters), loss = 0.608453 +I0407 09:04:58.480039 17723 solver.cpp:237] Train net output #0: loss = 0.608453 (* 1 = 0.608453 loss) +I0407 09:04:58.480047 17723 sgd_solver.cpp:105] Iteration 4632, lr = 0.005 +I0407 09:05:03.783507 17723 solver.cpp:218] Iteration 4644 (2.26269 iter/s, 5.30341s/12 iters), loss = 0.473116 +I0407 09:05:03.783547 17723 solver.cpp:237] Train net output #0: loss = 0.473116 (* 1 = 0.473116 loss) +I0407 09:05:03.783555 17723 sgd_solver.cpp:105] Iteration 4644, lr = 0.005 +I0407 09:05:07.463328 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:05:09.152310 17723 solver.cpp:218] Iteration 4656 (2.23518 iter/s, 5.3687s/12 iters), loss = 0.503978 +I0407 09:05:09.152458 17723 solver.cpp:237] Train net output #0: loss = 0.503978 (* 1 = 0.503978 loss) +I0407 09:05:09.152469 17723 sgd_solver.cpp:105] Iteration 4656, lr = 0.005 +I0407 09:05:14.474267 17723 solver.cpp:218] Iteration 4668 (2.25489 iter/s, 5.32176s/12 iters), loss = 0.503264 +I0407 09:05:14.474323 17723 solver.cpp:237] Train net output #0: loss = 0.503264 (* 1 = 0.503264 loss) +I0407 09:05:14.474334 17723 sgd_solver.cpp:105] Iteration 4668, lr = 0.005 +I0407 09:05:19.728699 17723 solver.cpp:218] Iteration 4680 (2.28383 iter/s, 5.25432s/12 iters), loss = 0.447082 +I0407 09:05:19.728740 17723 solver.cpp:237] Train net output #0: loss = 0.447082 (* 1 = 0.447082 loss) +I0407 09:05:19.728747 17723 sgd_solver.cpp:105] Iteration 4680, lr = 0.005 +I0407 09:05:24.374704 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 09:05:28.975965 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 09:05:32.786577 17723 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 09:05:32.786597 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:05:35.279660 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:05:37.097646 17723 solver.cpp:397] Test net output #0: accuracy = 0.413603 +I0407 09:05:37.097681 17723 solver.cpp:397] Test net output #1: loss = 2.94645 (* 1 = 2.94645 loss) +I0407 09:05:37.227463 17723 solver.cpp:218] Iteration 4692 (0.685771 iter/s, 17.4986s/12 iters), loss = 0.603973 +I0407 09:05:37.227530 17723 solver.cpp:237] Train net output #0: loss = 0.603973 (* 1 = 0.603973 loss) +I0407 09:05:37.227542 17723 sgd_solver.cpp:105] Iteration 4692, lr = 0.005 +I0407 09:05:41.478430 17723 solver.cpp:218] Iteration 4704 (2.82296 iter/s, 4.25086s/12 iters), loss = 0.522529 +I0407 09:05:41.478528 17723 solver.cpp:237] Train net output #0: loss = 0.522529 (* 1 = 0.522529 loss) +I0407 09:05:41.478536 17723 sgd_solver.cpp:105] Iteration 4704, lr = 0.005 +I0407 09:05:46.783355 17723 solver.cpp:218] Iteration 4716 (2.26211 iter/s, 5.30478s/12 iters), loss = 0.458945 +I0407 09:05:46.783387 17723 solver.cpp:237] Train net output #0: loss = 0.458945 (* 1 = 0.458945 loss) +I0407 09:05:46.783393 17723 sgd_solver.cpp:105] Iteration 4716, lr = 0.005 +I0407 09:05:52.060050 17723 solver.cpp:218] Iteration 4728 (2.27419 iter/s, 5.2766s/12 iters), loss = 0.586671 +I0407 09:05:52.060097 17723 solver.cpp:237] Train net output #0: loss = 0.586671 (* 1 = 0.586671 loss) +I0407 09:05:52.060104 17723 sgd_solver.cpp:105] Iteration 4728, lr = 0.005 +I0407 09:05:57.131286 17723 solver.cpp:218] Iteration 4740 (2.36633 iter/s, 5.07113s/12 iters), loss = 0.574355 +I0407 09:05:57.131326 17723 solver.cpp:237] Train net output #0: loss = 0.574355 (* 1 = 0.574355 loss) +I0407 09:05:57.131335 17723 sgd_solver.cpp:105] Iteration 4740, lr = 0.005 +I0407 09:06:02.501600 17723 solver.cpp:218] Iteration 4752 (2.23455 iter/s, 5.37022s/12 iters), loss = 0.328291 +I0407 09:06:02.501641 17723 solver.cpp:237] Train net output #0: loss = 0.328291 (* 1 = 0.328291 loss) +I0407 09:06:02.501648 17723 sgd_solver.cpp:105] Iteration 4752, lr = 0.005 +I0407 09:06:03.073863 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:08.038014 17723 solver.cpp:218] Iteration 4764 (2.16751 iter/s, 5.53631s/12 iters), loss = 0.462023 +I0407 09:06:08.038055 17723 solver.cpp:237] Train net output #0: loss = 0.462023 (* 1 = 0.462023 loss) +I0407 09:06:08.038064 17723 sgd_solver.cpp:105] Iteration 4764, lr = 0.005 +I0407 09:06:13.453949 17723 solver.cpp:218] Iteration 4776 (2.21572 iter/s, 5.41583s/12 iters), loss = 0.672154 +I0407 09:06:13.454064 17723 solver.cpp:237] Train net output #0: loss = 0.672154 (* 1 = 0.672154 loss) +I0407 09:06:13.454072 17723 sgd_solver.cpp:105] Iteration 4776, lr = 0.005 +I0407 09:06:18.703847 17723 solver.cpp:218] Iteration 4788 (2.28583 iter/s, 5.24972s/12 iters), loss = 0.714263 +I0407 09:06:18.703889 17723 solver.cpp:237] Train net output #0: loss = 0.714263 (* 1 = 0.714263 loss) +I0407 09:06:18.703896 17723 sgd_solver.cpp:105] Iteration 4788, lr = 0.005 +I0407 09:06:20.881026 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 09:06:25.413038 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 09:06:29.211277 17723 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 09:06:29.211297 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:06:31.613276 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:33.472012 17723 solver.cpp:397] Test net output #0: accuracy = 0.41973 +I0407 09:06:33.472038 17723 solver.cpp:397] Test net output #1: loss = 2.877 (* 1 = 2.877 loss) +I0407 09:06:35.224951 17723 solver.cpp:218] Iteration 4800 (0.726352 iter/s, 16.5209s/12 iters), loss = 0.31703 +I0407 09:06:35.225013 17723 solver.cpp:237] Train net output #0: loss = 0.31703 (* 1 = 0.31703 loss) +I0407 09:06:35.225024 17723 sgd_solver.cpp:105] Iteration 4800, lr = 0.005 +I0407 09:06:40.430024 17723 solver.cpp:218] Iteration 4812 (2.30549 iter/s, 5.20496s/12 iters), loss = 0.59332 +I0407 09:06:40.430066 17723 solver.cpp:237] Train net output #0: loss = 0.59332 (* 1 = 0.59332 loss) +I0407 09:06:40.430073 17723 sgd_solver.cpp:105] Iteration 4812, lr = 0.005 +I0407 09:06:45.297859 17723 solver.cpp:218] Iteration 4824 (2.46521 iter/s, 4.86774s/12 iters), loss = 0.500066 +I0407 09:06:45.297988 17723 solver.cpp:237] Train net output #0: loss = 0.500066 (* 1 = 0.500066 loss) +I0407 09:06:45.297997 17723 sgd_solver.cpp:105] Iteration 4824, lr = 0.005 +I0407 09:06:50.435536 17723 solver.cpp:218] Iteration 4836 (2.33577 iter/s, 5.1375s/12 iters), loss = 0.567851 +I0407 09:06:50.435582 17723 solver.cpp:237] Train net output #0: loss = 0.567851 (* 1 = 0.567851 loss) +I0407 09:06:50.435590 17723 sgd_solver.cpp:105] Iteration 4836, lr = 0.005 +I0407 09:06:52.592437 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:06:55.794108 17723 solver.cpp:218] Iteration 4848 (2.23944 iter/s, 5.35847s/12 iters), loss = 0.520056 +I0407 09:06:55.794155 17723 solver.cpp:237] Train net output #0: loss = 0.520056 (* 1 = 0.520056 loss) +I0407 09:06:55.794162 17723 sgd_solver.cpp:105] Iteration 4848, lr = 0.005 +I0407 09:06:58.597368 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:01.273734 17723 solver.cpp:218] Iteration 4860 (2.18997 iter/s, 5.47952s/12 iters), loss = 0.488708 +I0407 09:07:01.273777 17723 solver.cpp:237] Train net output #0: loss = 0.488708 (* 1 = 0.488708 loss) +I0407 09:07:01.273784 17723 sgd_solver.cpp:105] Iteration 4860, lr = 0.005 +I0407 09:07:06.635701 17723 solver.cpp:218] Iteration 4872 (2.23803 iter/s, 5.36187s/12 iters), loss = 0.693563 +I0407 09:07:06.635741 17723 solver.cpp:237] Train net output #0: loss = 0.693564 (* 1 = 0.693564 loss) +I0407 09:07:06.635748 17723 sgd_solver.cpp:105] Iteration 4872, lr = 0.005 +I0407 09:07:12.150085 17723 solver.cpp:218] Iteration 4884 (2.17617 iter/s, 5.51429s/12 iters), loss = 0.590681 +I0407 09:07:12.150137 17723 solver.cpp:237] Train net output #0: loss = 0.590681 (* 1 = 0.590681 loss) +I0407 09:07:12.150147 17723 sgd_solver.cpp:105] Iteration 4884, lr = 0.005 +I0407 09:07:16.913020 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 09:07:21.192190 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 09:07:24.759640 17723 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 09:07:24.759670 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:07:27.142786 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:29.099547 17723 solver.cpp:397] Test net output #0: accuracy = 0.422794 +I0407 09:07:29.099586 17723 solver.cpp:397] Test net output #1: loss = 2.90385 (* 1 = 2.90385 loss) +I0407 09:07:29.238240 17723 solver.cpp:218] Iteration 4896 (0.702249 iter/s, 17.088s/12 iters), loss = 0.490099 +I0407 09:07:29.238294 17723 solver.cpp:237] Train net output #0: loss = 0.490099 (* 1 = 0.490099 loss) +I0407 09:07:29.238303 17723 sgd_solver.cpp:105] Iteration 4896, lr = 0.005 +I0407 09:07:33.548956 17723 solver.cpp:218] Iteration 4908 (2.78382 iter/s, 4.31062s/12 iters), loss = 0.438471 +I0407 09:07:33.548995 17723 solver.cpp:237] Train net output #0: loss = 0.438471 (* 1 = 0.438471 loss) +I0407 09:07:33.549001 17723 sgd_solver.cpp:105] Iteration 4908, lr = 0.005 +I0407 09:07:38.691434 17723 solver.cpp:218] Iteration 4920 (2.33355 iter/s, 5.14239s/12 iters), loss = 0.63931 +I0407 09:07:38.691476 17723 solver.cpp:237] Train net output #0: loss = 0.63931 (* 1 = 0.63931 loss) +I0407 09:07:38.691483 17723 sgd_solver.cpp:105] Iteration 4920, lr = 0.005 +I0407 09:07:44.084962 17723 solver.cpp:218] Iteration 4932 (2.22493 iter/s, 5.39343s/12 iters), loss = 0.455848 +I0407 09:07:44.085012 17723 solver.cpp:237] Train net output #0: loss = 0.455848 (* 1 = 0.455848 loss) +I0407 09:07:44.085023 17723 sgd_solver.cpp:105] Iteration 4932, lr = 0.005 +I0407 09:07:49.415005 17723 solver.cpp:218] Iteration 4944 (2.25143 iter/s, 5.32994s/12 iters), loss = 0.532654 +I0407 09:07:49.415184 17723 solver.cpp:237] Train net output #0: loss = 0.532654 (* 1 = 0.532654 loss) +I0407 09:07:49.415194 17723 sgd_solver.cpp:105] Iteration 4944, lr = 0.005 +I0407 09:07:54.638856 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:54.890214 17723 solver.cpp:218] Iteration 4956 (2.19179 iter/s, 5.47498s/12 iters), loss = 0.345649 +I0407 09:07:54.890254 17723 solver.cpp:237] Train net output #0: loss = 0.345649 (* 1 = 0.345649 loss) +I0407 09:07:54.890261 17723 sgd_solver.cpp:105] Iteration 4956, lr = 0.005 +I0407 09:07:59.878846 17723 solver.cpp:218] Iteration 4968 (2.40551 iter/s, 4.98854s/12 iters), loss = 0.541555 +I0407 09:07:59.878885 17723 solver.cpp:237] Train net output #0: loss = 0.541555 (* 1 = 0.541555 loss) +I0407 09:07:59.878892 17723 sgd_solver.cpp:105] Iteration 4968, lr = 0.005 +I0407 09:08:05.108395 17723 solver.cpp:218] Iteration 4980 (2.29469 iter/s, 5.22946s/12 iters), loss = 0.435701 +I0407 09:08:05.108441 17723 solver.cpp:237] Train net output #0: loss = 0.435701 (* 1 = 0.435701 loss) +I0407 09:08:05.108450 17723 sgd_solver.cpp:105] Iteration 4980, lr = 0.005 +I0407 09:08:10.468304 17723 solver.cpp:218] Iteration 4992 (2.23889 iter/s, 5.35981s/12 iters), loss = 0.504136 +I0407 09:08:10.468345 17723 solver.cpp:237] Train net output #0: loss = 0.504136 (* 1 = 0.504136 loss) +I0407 09:08:10.468353 17723 sgd_solver.cpp:105] Iteration 4992, lr = 0.005 +I0407 09:08:12.739871 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 09:08:17.208814 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 09:08:19.601008 17723 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 09:08:19.601099 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:08:22.044190 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:08:23.997560 17723 solver.cpp:397] Test net output #0: accuracy = 0.400123 +I0407 09:08:23.997591 17723 solver.cpp:397] Test net output #1: loss = 2.98855 (* 1 = 2.98855 loss) +I0407 09:08:25.859378 17723 solver.cpp:218] Iteration 5004 (0.779681 iter/s, 15.3909s/12 iters), loss = 0.586359 +I0407 09:08:25.859416 17723 solver.cpp:237] Train net output #0: loss = 0.586359 (* 1 = 0.586359 loss) +I0407 09:08:25.859424 17723 sgd_solver.cpp:105] Iteration 5004, lr = 0.005 +I0407 09:08:30.900190 17723 solver.cpp:218] Iteration 5016 (2.38061 iter/s, 5.04072s/12 iters), loss = 0.296775 +I0407 09:08:30.900233 17723 solver.cpp:237] Train net output #0: loss = 0.296775 (* 1 = 0.296775 loss) +I0407 09:08:30.900241 17723 sgd_solver.cpp:105] Iteration 5016, lr = 0.005 +I0407 09:08:36.274736 17723 solver.cpp:218] Iteration 5028 (2.23279 iter/s, 5.37444s/12 iters), loss = 0.489701 +I0407 09:08:36.274780 17723 solver.cpp:237] Train net output #0: loss = 0.489701 (* 1 = 0.489701 loss) +I0407 09:08:36.274786 17723 sgd_solver.cpp:105] Iteration 5028, lr = 0.005 +I0407 09:08:41.767256 17723 solver.cpp:218] Iteration 5040 (2.18483 iter/s, 5.49242s/12 iters), loss = 0.442909 +I0407 09:08:41.767294 17723 solver.cpp:237] Train net output #0: loss = 0.442909 (* 1 = 0.442909 loss) +I0407 09:08:41.767302 17723 sgd_solver.cpp:105] Iteration 5040, lr = 0.005 +I0407 09:08:47.064792 17723 solver.cpp:218] Iteration 5052 (2.26524 iter/s, 5.29744s/12 iters), loss = 0.505942 +I0407 09:08:47.064828 17723 solver.cpp:237] Train net output #0: loss = 0.505942 (* 1 = 0.505942 loss) +I0407 09:08:47.064836 17723 sgd_solver.cpp:105] Iteration 5052, lr = 0.005 +I0407 09:08:49.123078 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:08:52.365324 17723 solver.cpp:218] Iteration 5064 (2.26396 iter/s, 5.30044s/12 iters), loss = 0.347168 +I0407 09:08:52.365473 17723 solver.cpp:237] Train net output #0: loss = 0.347168 (* 1 = 0.347168 loss) +I0407 09:08:52.365483 17723 sgd_solver.cpp:105] Iteration 5064, lr = 0.005 +I0407 09:08:57.273993 17723 solver.cpp:218] Iteration 5076 (2.44476 iter/s, 4.90847s/12 iters), loss = 0.690943 +I0407 09:08:57.274045 17723 solver.cpp:237] Train net output #0: loss = 0.690943 (* 1 = 0.690943 loss) +I0407 09:08:57.274056 17723 sgd_solver.cpp:105] Iteration 5076, lr = 0.005 +I0407 09:09:02.300813 17723 solver.cpp:218] Iteration 5088 (2.38725 iter/s, 5.02671s/12 iters), loss = 0.428517 +I0407 09:09:02.300855 17723 solver.cpp:237] Train net output #0: loss = 0.428517 (* 1 = 0.428517 loss) +I0407 09:09:02.300861 17723 sgd_solver.cpp:105] Iteration 5088, lr = 0.005 +I0407 09:09:06.910661 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 09:09:11.666479 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 09:09:14.004793 17723 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 09:09:14.004813 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:09:16.387140 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:09:18.421223 17723 solver.cpp:397] Test net output #0: accuracy = 0.409926 +I0407 09:09:18.421273 17723 solver.cpp:397] Test net output #1: loss = 2.87777 (* 1 = 2.87777 loss) +I0407 09:09:18.561718 17723 solver.cpp:218] Iteration 5100 (0.737974 iter/s, 16.2607s/12 iters), loss = 0.409441 +I0407 09:09:18.561780 17723 solver.cpp:237] Train net output #0: loss = 0.409441 (* 1 = 0.409441 loss) +I0407 09:09:18.561794 17723 sgd_solver.cpp:105] Iteration 5100, lr = 0.005 +I0407 09:09:22.749177 17723 solver.cpp:218] Iteration 5112 (2.86577 iter/s, 4.18735s/12 iters), loss = 0.338192 +I0407 09:09:22.749317 17723 solver.cpp:237] Train net output #0: loss = 0.338192 (* 1 = 0.338192 loss) +I0407 09:09:22.749327 17723 sgd_solver.cpp:105] Iteration 5112, lr = 0.005 +I0407 09:09:27.967633 17723 solver.cpp:218] Iteration 5124 (2.29961 iter/s, 5.21827s/12 iters), loss = 0.306782 +I0407 09:09:27.967671 17723 solver.cpp:237] Train net output #0: loss = 0.306782 (* 1 = 0.306782 loss) +I0407 09:09:27.967677 17723 sgd_solver.cpp:105] Iteration 5124, lr = 0.005 +I0407 09:09:33.061275 17723 solver.cpp:218] Iteration 5136 (2.35592 iter/s, 5.09355s/12 iters), loss = 0.419329 +I0407 09:09:33.061321 17723 solver.cpp:237] Train net output #0: loss = 0.419329 (* 1 = 0.419329 loss) +I0407 09:09:33.061327 17723 sgd_solver.cpp:105] Iteration 5136, lr = 0.005 +I0407 09:09:38.345911 17723 solver.cpp:218] Iteration 5148 (2.27078 iter/s, 5.28454s/12 iters), loss = 0.515696 +I0407 09:09:38.345957 17723 solver.cpp:237] Train net output #0: loss = 0.515697 (* 1 = 0.515697 loss) +I0407 09:09:38.345964 17723 sgd_solver.cpp:105] Iteration 5148, lr = 0.005 +I0407 09:09:42.293315 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:09:43.347663 17723 solver.cpp:218] Iteration 5160 (2.39921 iter/s, 5.00165s/12 iters), loss = 0.506882 +I0407 09:09:43.347710 17723 solver.cpp:237] Train net output #0: loss = 0.506882 (* 1 = 0.506882 loss) +I0407 09:09:43.347718 17723 sgd_solver.cpp:105] Iteration 5160, lr = 0.005 +I0407 09:09:48.698952 17723 solver.cpp:218] Iteration 5172 (2.24249 iter/s, 5.35119s/12 iters), loss = 0.468894 +I0407 09:09:48.698998 17723 solver.cpp:237] Train net output #0: loss = 0.468894 (* 1 = 0.468894 loss) +I0407 09:09:48.699005 17723 sgd_solver.cpp:105] Iteration 5172, lr = 0.005 +I0407 09:09:53.985090 17723 solver.cpp:218] Iteration 5184 (2.27013 iter/s, 5.28603s/12 iters), loss = 0.429409 +I0407 09:09:53.985257 17723 solver.cpp:237] Train net output #0: loss = 0.429409 (* 1 = 0.429409 loss) +I0407 09:09:53.985273 17723 sgd_solver.cpp:105] Iteration 5184, lr = 0.005 +I0407 09:09:59.263350 17723 solver.cpp:218] Iteration 5196 (2.27357 iter/s, 5.27805s/12 iters), loss = 0.349597 +I0407 09:09:59.263393 17723 solver.cpp:237] Train net output #0: loss = 0.349597 (* 1 = 0.349597 loss) +I0407 09:09:59.263401 17723 sgd_solver.cpp:105] Iteration 5196, lr = 0.005 +I0407 09:10:01.453452 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 09:10:06.186498 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 09:10:08.551105 17723 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 09:10:08.551126 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:10:10.899850 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:10:12.947577 17723 solver.cpp:397] Test net output #0: accuracy = 0.418505 +I0407 09:10:12.947618 17723 solver.cpp:397] Test net output #1: loss = 2.86798 (* 1 = 2.86798 loss) +I0407 09:10:14.758834 17723 solver.cpp:218] Iteration 5208 (0.774428 iter/s, 15.4953s/12 iters), loss = 0.389607 +I0407 09:10:14.758877 17723 solver.cpp:237] Train net output #0: loss = 0.389607 (* 1 = 0.389607 loss) +I0407 09:10:14.758883 17723 sgd_solver.cpp:105] Iteration 5208, lr = 0.005 +I0407 09:10:19.958065 17723 solver.cpp:218] Iteration 5220 (2.30808 iter/s, 5.19913s/12 iters), loss = 0.404858 +I0407 09:10:19.958109 17723 solver.cpp:237] Train net output #0: loss = 0.404858 (* 1 = 0.404858 loss) +I0407 09:10:19.958117 17723 sgd_solver.cpp:105] Iteration 5220, lr = 0.005 +I0407 09:10:25.412358 17723 solver.cpp:218] Iteration 5232 (2.20014 iter/s, 5.45419s/12 iters), loss = 0.509758 +I0407 09:10:25.412454 17723 solver.cpp:237] Train net output #0: loss = 0.509758 (* 1 = 0.509758 loss) +I0407 09:10:25.412464 17723 sgd_solver.cpp:105] Iteration 5232, lr = 0.005 +I0407 09:10:30.798046 17723 solver.cpp:218] Iteration 5244 (2.22819 iter/s, 5.38554s/12 iters), loss = 0.296915 +I0407 09:10:30.798086 17723 solver.cpp:237] Train net output #0: loss = 0.296915 (* 1 = 0.296915 loss) +I0407 09:10:30.798092 17723 sgd_solver.cpp:105] Iteration 5244, lr = 0.005 +I0407 09:10:36.132289 17723 solver.cpp:218] Iteration 5256 (2.24966 iter/s, 5.33415s/12 iters), loss = 0.4872 +I0407 09:10:36.132330 17723 solver.cpp:237] Train net output #0: loss = 0.4872 (* 1 = 0.4872 loss) +I0407 09:10:36.132339 17723 sgd_solver.cpp:105] Iteration 5256, lr = 0.005 +I0407 09:10:37.568326 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:10:41.501083 17723 solver.cpp:218] Iteration 5268 (2.23518 iter/s, 5.36868s/12 iters), loss = 0.319737 +I0407 09:10:41.501137 17723 solver.cpp:237] Train net output #0: loss = 0.319737 (* 1 = 0.319737 loss) +I0407 09:10:41.501147 17723 sgd_solver.cpp:105] Iteration 5268, lr = 0.005 +I0407 09:10:46.927017 17723 solver.cpp:218] Iteration 5280 (2.21164 iter/s, 5.42583s/12 iters), loss = 0.351197 +I0407 09:10:46.927067 17723 solver.cpp:237] Train net output #0: loss = 0.351197 (* 1 = 0.351197 loss) +I0407 09:10:46.927075 17723 sgd_solver.cpp:105] Iteration 5280, lr = 0.005 +I0407 09:10:52.203101 17723 solver.cpp:218] Iteration 5292 (2.27446 iter/s, 5.27598s/12 iters), loss = 0.283926 +I0407 09:10:52.203145 17723 solver.cpp:237] Train net output #0: loss = 0.283926 (* 1 = 0.283926 loss) +I0407 09:10:52.203152 17723 sgd_solver.cpp:105] Iteration 5292, lr = 0.005 +I0407 09:10:56.970032 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 09:11:01.530180 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 09:11:03.847810 17723 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 09:11:03.847827 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:11:06.112002 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:08.162921 17723 solver.cpp:397] Test net output #0: accuracy = 0.413603 +I0407 09:11:08.162956 17723 solver.cpp:397] Test net output #1: loss = 2.94207 (* 1 = 2.94207 loss) +I0407 09:11:08.303411 17723 solver.cpp:218] Iteration 5304 (0.745336 iter/s, 16.1001s/12 iters), loss = 0.404529 +I0407 09:11:08.303450 17723 solver.cpp:237] Train net output #0: loss = 0.404529 (* 1 = 0.404529 loss) +I0407 09:11:08.303457 17723 sgd_solver.cpp:105] Iteration 5304, lr = 0.005 +I0407 09:11:12.798732 17723 solver.cpp:218] Iteration 5316 (2.66949 iter/s, 4.49523s/12 iters), loss = 0.333329 +I0407 09:11:12.798779 17723 solver.cpp:237] Train net output #0: loss = 0.333329 (* 1 = 0.333329 loss) +I0407 09:11:12.798785 17723 sgd_solver.cpp:105] Iteration 5316, lr = 0.005 +I0407 09:11:18.258607 17723 solver.cpp:218] Iteration 5328 (2.19789 iter/s, 5.45977s/12 iters), loss = 0.475054 +I0407 09:11:18.258646 17723 solver.cpp:237] Train net output #0: loss = 0.475054 (* 1 = 0.475054 loss) +I0407 09:11:18.258653 17723 sgd_solver.cpp:105] Iteration 5328, lr = 0.005 +I0407 09:11:23.419214 17723 solver.cpp:218] Iteration 5340 (2.32535 iter/s, 5.16051s/12 iters), loss = 0.295724 +I0407 09:11:23.419266 17723 solver.cpp:237] Train net output #0: loss = 0.295724 (* 1 = 0.295724 loss) +I0407 09:11:23.419276 17723 sgd_solver.cpp:105] Iteration 5340, lr = 0.005 +I0407 09:11:28.620898 17723 solver.cpp:218] Iteration 5352 (2.307 iter/s, 5.20156s/12 iters), loss = 0.511275 +I0407 09:11:28.621006 17723 solver.cpp:237] Train net output #0: loss = 0.511275 (* 1 = 0.511275 loss) +I0407 09:11:28.621016 17723 sgd_solver.cpp:105] Iteration 5352, lr = 0.005 +I0407 09:11:32.182160 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:33.878643 17723 solver.cpp:218] Iteration 5364 (2.28242 iter/s, 5.25758s/12 iters), loss = 0.406875 +I0407 09:11:33.878695 17723 solver.cpp:237] Train net output #0: loss = 0.406875 (* 1 = 0.406875 loss) +I0407 09:11:33.878705 17723 sgd_solver.cpp:105] Iteration 5364, lr = 0.005 +I0407 09:11:39.081925 17723 solver.cpp:218] Iteration 5376 (2.30628 iter/s, 5.20318s/12 iters), loss = 0.411872 +I0407 09:11:39.081969 17723 solver.cpp:237] Train net output #0: loss = 0.411872 (* 1 = 0.411872 loss) +I0407 09:11:39.081976 17723 sgd_solver.cpp:105] Iteration 5376, lr = 0.005 +I0407 09:11:44.216269 17723 solver.cpp:218] Iteration 5388 (2.33725 iter/s, 5.13424s/12 iters), loss = 0.200998 +I0407 09:11:44.216313 17723 solver.cpp:237] Train net output #0: loss = 0.200998 (* 1 = 0.200998 loss) +I0407 09:11:44.216321 17723 sgd_solver.cpp:105] Iteration 5388, lr = 0.005 +I0407 09:11:49.547359 17723 solver.cpp:218] Iteration 5400 (2.25099 iter/s, 5.33099s/12 iters), loss = 0.339643 +I0407 09:11:49.547406 17723 solver.cpp:237] Train net output #0: loss = 0.339643 (* 1 = 0.339643 loss) +I0407 09:11:49.547416 17723 sgd_solver.cpp:105] Iteration 5400, lr = 0.005 +I0407 09:11:51.520428 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 09:11:56.274189 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 09:11:58.594617 17723 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 09:11:58.594637 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:12:00.866204 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:02.979048 17723 solver.cpp:397] Test net output #0: accuracy = 0.397059 +I0407 09:12:02.979085 17723 solver.cpp:397] Test net output #1: loss = 3.11703 (* 1 = 3.11703 loss) +I0407 09:12:04.797865 17723 solver.cpp:218] Iteration 5412 (0.786868 iter/s, 15.2503s/12 iters), loss = 0.253224 +I0407 09:12:04.797915 17723 solver.cpp:237] Train net output #0: loss = 0.253224 (* 1 = 0.253224 loss) +I0407 09:12:04.797925 17723 sgd_solver.cpp:105] Iteration 5412, lr = 0.005 +I0407 09:12:10.100078 17723 solver.cpp:218] Iteration 5424 (2.26325 iter/s, 5.30211s/12 iters), loss = 0.349961 +I0407 09:12:10.100108 17723 solver.cpp:237] Train net output #0: loss = 0.349961 (* 1 = 0.349961 loss) +I0407 09:12:10.100114 17723 sgd_solver.cpp:105] Iteration 5424, lr = 0.005 +I0407 09:12:15.298318 17723 solver.cpp:218] Iteration 5436 (2.30851 iter/s, 5.19815s/12 iters), loss = 0.387611 +I0407 09:12:15.298365 17723 solver.cpp:237] Train net output #0: loss = 0.387611 (* 1 = 0.387611 loss) +I0407 09:12:15.298373 17723 sgd_solver.cpp:105] Iteration 5436, lr = 0.005 +I0407 09:12:20.431505 17723 solver.cpp:218] Iteration 5448 (2.33777 iter/s, 5.13309s/12 iters), loss = 0.45505 +I0407 09:12:20.431550 17723 solver.cpp:237] Train net output #0: loss = 0.45505 (* 1 = 0.45505 loss) +I0407 09:12:20.431556 17723 sgd_solver.cpp:105] Iteration 5448, lr = 0.005 +I0407 09:12:25.863926 17723 solver.cpp:218] Iteration 5460 (2.209 iter/s, 5.43233s/12 iters), loss = 0.335921 +I0407 09:12:25.863957 17723 solver.cpp:237] Train net output #0: loss = 0.335921 (* 1 = 0.335921 loss) +I0407 09:12:25.863963 17723 sgd_solver.cpp:105] Iteration 5460, lr = 0.005 +I0407 09:12:26.467945 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:31.343238 17723 solver.cpp:218] Iteration 5472 (2.19009 iter/s, 5.47922s/12 iters), loss = 0.440531 +I0407 09:12:31.343370 17723 solver.cpp:237] Train net output #0: loss = 0.440531 (* 1 = 0.440531 loss) +I0407 09:12:31.343380 17723 sgd_solver.cpp:105] Iteration 5472, lr = 0.005 +I0407 09:12:36.593665 17723 solver.cpp:218] Iteration 5484 (2.28561 iter/s, 5.25024s/12 iters), loss = 0.430535 +I0407 09:12:36.593715 17723 solver.cpp:237] Train net output #0: loss = 0.430535 (* 1 = 0.430535 loss) +I0407 09:12:36.593724 17723 sgd_solver.cpp:105] Iteration 5484, lr = 0.005 +I0407 09:12:41.932251 17723 solver.cpp:218] Iteration 5496 (2.24783 iter/s, 5.33848s/12 iters), loss = 0.383366 +I0407 09:12:41.932296 17723 solver.cpp:237] Train net output #0: loss = 0.383366 (* 1 = 0.383366 loss) +I0407 09:12:41.932304 17723 sgd_solver.cpp:105] Iteration 5496, lr = 0.005 +I0407 09:12:46.611061 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 09:12:51.664548 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 09:12:53.982633 17723 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 09:12:53.982653 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:12:56.212568 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:58.346272 17723 solver.cpp:397] Test net output #0: accuracy = 0.410539 +I0407 09:12:58.346316 17723 solver.cpp:397] Test net output #1: loss = 2.98967 (* 1 = 2.98967 loss) +I0407 09:12:58.486809 17723 solver.cpp:218] Iteration 5508 (0.724884 iter/s, 16.5544s/12 iters), loss = 0.397238 +I0407 09:12:58.488397 17723 solver.cpp:237] Train net output #0: loss = 0.397238 (* 1 = 0.397238 loss) +I0407 09:12:58.488410 17723 sgd_solver.cpp:105] Iteration 5508, lr = 0.005 +I0407 09:13:02.887137 17723 solver.cpp:218] Iteration 5520 (2.72808 iter/s, 4.3987s/12 iters), loss = 0.423102 +I0407 09:13:02.887238 17723 solver.cpp:237] Train net output #0: loss = 0.423102 (* 1 = 0.423102 loss) +I0407 09:13:02.887246 17723 sgd_solver.cpp:105] Iteration 5520, lr = 0.005 +I0407 09:13:05.491374 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:13:08.280582 17723 solver.cpp:218] Iteration 5532 (2.22499 iter/s, 5.39329s/12 iters), loss = 0.309459 +I0407 09:13:08.280628 17723 solver.cpp:237] Train net output #0: loss = 0.309459 (* 1 = 0.309459 loss) +I0407 09:13:08.280635 17723 sgd_solver.cpp:105] Iteration 5532, lr = 0.005 +I0407 09:13:13.691628 17723 solver.cpp:218] Iteration 5544 (2.21773 iter/s, 5.41094s/12 iters), loss = 0.293354 +I0407 09:13:13.691674 17723 solver.cpp:237] Train net output #0: loss = 0.293354 (* 1 = 0.293354 loss) +I0407 09:13:13.691681 17723 sgd_solver.cpp:105] Iteration 5544, lr = 0.005 +I0407 09:13:18.729940 17723 solver.cpp:218] Iteration 5556 (2.3818 iter/s, 5.03821s/12 iters), loss = 0.551574 +I0407 09:13:18.729987 17723 solver.cpp:237] Train net output #0: loss = 0.551574 (* 1 = 0.551574 loss) +I0407 09:13:18.729996 17723 sgd_solver.cpp:105] Iteration 5556, lr = 0.005 +I0407 09:13:21.484719 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:13:23.922230 17723 solver.cpp:218] Iteration 5568 (2.31116 iter/s, 5.19219s/12 iters), loss = 0.333671 +I0407 09:13:23.922271 17723 solver.cpp:237] Train net output #0: loss = 0.333671 (* 1 = 0.333671 loss) +I0407 09:13:23.922278 17723 sgd_solver.cpp:105] Iteration 5568, lr = 0.005 +I0407 09:13:29.022749 17723 solver.cpp:218] Iteration 5580 (2.35275 iter/s, 5.10042s/12 iters), loss = 0.390801 +I0407 09:13:29.022791 17723 solver.cpp:237] Train net output #0: loss = 0.390801 (* 1 = 0.390801 loss) +I0407 09:13:29.022799 17723 sgd_solver.cpp:105] Iteration 5580, lr = 0.005 +I0407 09:13:34.331916 17723 solver.cpp:218] Iteration 5592 (2.26028 iter/s, 5.30907s/12 iters), loss = 0.382235 +I0407 09:13:34.332043 17723 solver.cpp:237] Train net output #0: loss = 0.382235 (* 1 = 0.382235 loss) +I0407 09:13:34.332052 17723 sgd_solver.cpp:105] Iteration 5592, lr = 0.005 +I0407 09:13:39.556855 17723 solver.cpp:218] Iteration 5604 (2.29676 iter/s, 5.22476s/12 iters), loss = 0.540839 +I0407 09:13:39.556908 17723 solver.cpp:237] Train net output #0: loss = 0.54084 (* 1 = 0.54084 loss) +I0407 09:13:39.556916 17723 sgd_solver.cpp:105] Iteration 5604, lr = 0.005 +I0407 09:13:41.581431 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 09:13:46.558702 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 09:13:48.866772 17723 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 09:13:48.866793 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:13:50.986330 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:13:53.157454 17723 solver.cpp:397] Test net output #0: accuracy = 0.415441 +I0407 09:13:53.157491 17723 solver.cpp:397] Test net output #1: loss = 3.13394 (* 1 = 3.13394 loss) +I0407 09:13:55.036975 17723 solver.cpp:218] Iteration 5616 (0.775197 iter/s, 15.4799s/12 iters), loss = 0.342754 +I0407 09:13:55.037029 17723 solver.cpp:237] Train net output #0: loss = 0.342754 (* 1 = 0.342754 loss) +I0407 09:13:55.037037 17723 sgd_solver.cpp:105] Iteration 5616, lr = 0.005 +I0407 09:14:00.306617 17723 solver.cpp:218] Iteration 5628 (2.27724 iter/s, 5.26954s/12 iters), loss = 0.523255 +I0407 09:14:00.306658 17723 solver.cpp:237] Train net output #0: loss = 0.523255 (* 1 = 0.523255 loss) +I0407 09:14:00.306663 17723 sgd_solver.cpp:105] Iteration 5628, lr = 0.005 +I0407 09:14:05.641289 17723 solver.cpp:218] Iteration 5640 (2.24948 iter/s, 5.33458s/12 iters), loss = 0.347884 +I0407 09:14:05.641377 17723 solver.cpp:237] Train net output #0: loss = 0.347884 (* 1 = 0.347884 loss) +I0407 09:14:05.641386 17723 sgd_solver.cpp:105] Iteration 5640, lr = 0.005 +I0407 09:14:10.853003 17723 solver.cpp:218] Iteration 5652 (2.30257 iter/s, 5.21158s/12 iters), loss = 0.405064 +I0407 09:14:10.853044 17723 solver.cpp:237] Train net output #0: loss = 0.405064 (* 1 = 0.405064 loss) +I0407 09:14:10.853050 17723 sgd_solver.cpp:105] Iteration 5652, lr = 0.005 +I0407 09:14:15.784549 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:14:16.003774 17723 solver.cpp:218] Iteration 5664 (2.32979 iter/s, 5.15068s/12 iters), loss = 0.389775 +I0407 09:14:16.003825 17723 solver.cpp:237] Train net output #0: loss = 0.389776 (* 1 = 0.389776 loss) +I0407 09:14:16.003834 17723 sgd_solver.cpp:105] Iteration 5664, lr = 0.005 +I0407 09:14:21.264550 17723 solver.cpp:218] Iteration 5676 (2.28108 iter/s, 5.26067s/12 iters), loss = 0.244918 +I0407 09:14:21.264595 17723 solver.cpp:237] Train net output #0: loss = 0.244918 (* 1 = 0.244918 loss) +I0407 09:14:21.264602 17723 sgd_solver.cpp:105] Iteration 5676, lr = 0.005 +I0407 09:14:26.629501 17723 solver.cpp:218] Iteration 5688 (2.23678 iter/s, 5.36485s/12 iters), loss = 0.408798 +I0407 09:14:26.629544 17723 solver.cpp:237] Train net output #0: loss = 0.408798 (* 1 = 0.408798 loss) +I0407 09:14:26.629550 17723 sgd_solver.cpp:105] Iteration 5688, lr = 0.005 +I0407 09:14:31.789000 17723 solver.cpp:218] Iteration 5700 (2.32585 iter/s, 5.1594s/12 iters), loss = 0.270206 +I0407 09:14:31.789041 17723 solver.cpp:237] Train net output #0: loss = 0.270206 (* 1 = 0.270206 loss) +I0407 09:14:31.789047 17723 sgd_solver.cpp:105] Iteration 5700, lr = 0.005 +I0407 09:14:36.393718 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 09:14:41.370357 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 09:14:43.695647 17723 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 09:14:43.695665 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:14:45.826815 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:14:48.055858 17723 solver.cpp:397] Test net output #0: accuracy = 0.420343 +I0407 09:14:48.055887 17723 solver.cpp:397] Test net output #1: loss = 2.94451 (* 1 = 2.94451 loss) +I0407 09:14:48.184705 17723 solver.cpp:218] Iteration 5712 (0.731907 iter/s, 16.3955s/12 iters), loss = 0.237389 +I0407 09:14:48.184753 17723 solver.cpp:237] Train net output #0: loss = 0.237389 (* 1 = 0.237389 loss) +I0407 09:14:48.184762 17723 sgd_solver.cpp:105] Iteration 5712, lr = 0.005 +I0407 09:14:52.620013 17723 solver.cpp:218] Iteration 5724 (2.70562 iter/s, 4.43521s/12 iters), loss = 0.345667 +I0407 09:14:52.620057 17723 solver.cpp:237] Train net output #0: loss = 0.345667 (* 1 = 0.345667 loss) +I0407 09:14:52.620064 17723 sgd_solver.cpp:105] Iteration 5724, lr = 0.005 +I0407 09:14:57.743036 17723 solver.cpp:218] Iteration 5736 (2.34241 iter/s, 5.12293s/12 iters), loss = 0.326095 +I0407 09:14:57.743080 17723 solver.cpp:237] Train net output #0: loss = 0.326095 (* 1 = 0.326095 loss) +I0407 09:14:57.743088 17723 sgd_solver.cpp:105] Iteration 5736, lr = 0.005 +I0407 09:15:02.975219 17723 solver.cpp:218] Iteration 5748 (2.29354 iter/s, 5.23208s/12 iters), loss = 0.520099 +I0407 09:15:02.975265 17723 solver.cpp:237] Train net output #0: loss = 0.520099 (* 1 = 0.520099 loss) +I0407 09:15:02.975272 17723 sgd_solver.cpp:105] Iteration 5748, lr = 0.005 +I0407 09:15:08.392515 17723 solver.cpp:218] Iteration 5760 (2.21517 iter/s, 5.41719s/12 iters), loss = 0.211374 +I0407 09:15:08.392628 17723 solver.cpp:237] Train net output #0: loss = 0.211374 (* 1 = 0.211374 loss) +I0407 09:15:08.392637 17723 sgd_solver.cpp:105] Iteration 5760, lr = 0.005 +I0407 09:15:10.446045 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:13.789225 17723 solver.cpp:218] Iteration 5772 (2.22365 iter/s, 5.39654s/12 iters), loss = 0.335587 +I0407 09:15:13.789268 17723 solver.cpp:237] Train net output #0: loss = 0.335588 (* 1 = 0.335588 loss) +I0407 09:15:13.789273 17723 sgd_solver.cpp:105] Iteration 5772, lr = 0.005 +I0407 09:15:18.889344 17723 solver.cpp:218] Iteration 5784 (2.35293 iter/s, 5.10002s/12 iters), loss = 0.334471 +I0407 09:15:18.889384 17723 solver.cpp:237] Train net output #0: loss = 0.334471 (* 1 = 0.334471 loss) +I0407 09:15:18.889390 17723 sgd_solver.cpp:105] Iteration 5784, lr = 0.005 +I0407 09:15:24.255362 17723 solver.cpp:218] Iteration 5796 (2.23634 iter/s, 5.36592s/12 iters), loss = 0.358983 +I0407 09:15:24.255406 17723 solver.cpp:237] Train net output #0: loss = 0.358983 (* 1 = 0.358983 loss) +I0407 09:15:24.255414 17723 sgd_solver.cpp:105] Iteration 5796, lr = 0.005 +I0407 09:15:29.627487 17723 solver.cpp:218] Iteration 5808 (2.23379 iter/s, 5.37203s/12 iters), loss = 0.245558 +I0407 09:15:29.627529 17723 solver.cpp:237] Train net output #0: loss = 0.245559 (* 1 = 0.245559 loss) +I0407 09:15:29.627537 17723 sgd_solver.cpp:105] Iteration 5808, lr = 0.005 +I0407 09:15:31.781453 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 09:15:36.367934 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 09:15:38.702203 17723 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 09:15:38.702318 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:15:40.877828 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:43.238216 17723 solver.cpp:397] Test net output #0: accuracy = 0.419118 +I0407 09:15:43.238245 17723 solver.cpp:397] Test net output #1: loss = 3.01419 (* 1 = 3.01419 loss) +I0407 09:15:45.014843 17723 solver.cpp:218] Iteration 5820 (0.77987 iter/s, 15.3872s/12 iters), loss = 0.467205 +I0407 09:15:45.014899 17723 solver.cpp:237] Train net output #0: loss = 0.467205 (* 1 = 0.467205 loss) +I0407 09:15:45.014909 17723 sgd_solver.cpp:105] Iteration 5820, lr = 0.005 +I0407 09:15:50.237224 17723 solver.cpp:218] Iteration 5832 (2.29785 iter/s, 5.22227s/12 iters), loss = 0.257889 +I0407 09:15:50.237265 17723 solver.cpp:237] Train net output #0: loss = 0.257889 (* 1 = 0.257889 loss) +I0407 09:15:50.237272 17723 sgd_solver.cpp:105] Iteration 5832, lr = 0.005 +I0407 09:15:55.408329 17723 solver.cpp:218] Iteration 5844 (2.32063 iter/s, 5.17101s/12 iters), loss = 0.260618 +I0407 09:15:55.408376 17723 solver.cpp:237] Train net output #0: loss = 0.260618 (* 1 = 0.260618 loss) +I0407 09:15:55.408383 17723 sgd_solver.cpp:105] Iteration 5844, lr = 0.005 +I0407 09:16:00.784139 17723 solver.cpp:218] Iteration 5856 (2.23226 iter/s, 5.37571s/12 iters), loss = 0.239957 +I0407 09:16:00.784188 17723 solver.cpp:237] Train net output #0: loss = 0.239957 (* 1 = 0.239957 loss) +I0407 09:16:00.784198 17723 sgd_solver.cpp:105] Iteration 5856, lr = 0.005 +I0407 09:16:04.912277 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:05.781855 17723 solver.cpp:218] Iteration 5868 (2.40115 iter/s, 4.99761s/12 iters), loss = 0.38392 +I0407 09:16:05.781895 17723 solver.cpp:237] Train net output #0: loss = 0.38392 (* 1 = 0.38392 loss) +I0407 09:16:05.781903 17723 sgd_solver.cpp:105] Iteration 5868, lr = 0.005 +I0407 09:16:10.893364 17723 solver.cpp:218] Iteration 5880 (2.34769 iter/s, 5.11142s/12 iters), loss = 0.367686 +I0407 09:16:10.893474 17723 solver.cpp:237] Train net output #0: loss = 0.367686 (* 1 = 0.367686 loss) +I0407 09:16:10.893483 17723 sgd_solver.cpp:105] Iteration 5880, lr = 0.005 +I0407 09:16:16.258760 17723 solver.cpp:218] Iteration 5892 (2.23662 iter/s, 5.36523s/12 iters), loss = 0.49764 +I0407 09:16:16.258803 17723 solver.cpp:237] Train net output #0: loss = 0.49764 (* 1 = 0.49764 loss) +I0407 09:16:16.258810 17723 sgd_solver.cpp:105] Iteration 5892, lr = 0.005 +I0407 09:16:21.331074 17723 solver.cpp:218] Iteration 5904 (2.36583 iter/s, 5.07222s/12 iters), loss = 0.317316 +I0407 09:16:21.331120 17723 solver.cpp:237] Train net output #0: loss = 0.317316 (* 1 = 0.317316 loss) +I0407 09:16:21.331126 17723 sgd_solver.cpp:105] Iteration 5904, lr = 0.005 +I0407 09:16:26.145505 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 09:16:31.121222 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 09:16:33.424640 17723 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 09:16:33.424659 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:16:35.569546 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:37.964355 17723 solver.cpp:397] Test net output #0: accuracy = 0.41299 +I0407 09:16:37.964395 17723 solver.cpp:397] Test net output #1: loss = 3.11424 (* 1 = 3.11424 loss) +I0407 09:16:38.104704 17723 solver.cpp:218] Iteration 5916 (0.715416 iter/s, 16.7734s/12 iters), loss = 0.363039 +I0407 09:16:38.104751 17723 solver.cpp:237] Train net output #0: loss = 0.363039 (* 1 = 0.363039 loss) +I0407 09:16:38.104758 17723 sgd_solver.cpp:105] Iteration 5916, lr = 0.005 +I0407 09:16:42.436401 17723 solver.cpp:218] Iteration 5928 (2.77033 iter/s, 4.33161s/12 iters), loss = 0.317299 +I0407 09:16:42.436533 17723 solver.cpp:237] Train net output #0: loss = 0.317299 (* 1 = 0.317299 loss) +I0407 09:16:42.436542 17723 sgd_solver.cpp:105] Iteration 5928, lr = 0.005 +I0407 09:16:47.760562 17723 solver.cpp:218] Iteration 5940 (2.25395 iter/s, 5.32398s/12 iters), loss = 0.412606 +I0407 09:16:47.760601 17723 solver.cpp:237] Train net output #0: loss = 0.412606 (* 1 = 0.412606 loss) +I0407 09:16:47.760609 17723 sgd_solver.cpp:105] Iteration 5940, lr = 0.005 +I0407 09:16:52.900280 17723 solver.cpp:218] Iteration 5952 (2.3348 iter/s, 5.13962s/12 iters), loss = 0.379558 +I0407 09:16:52.900327 17723 solver.cpp:237] Train net output #0: loss = 0.379558 (* 1 = 0.379558 loss) +I0407 09:16:52.900334 17723 sgd_solver.cpp:105] Iteration 5952, lr = 0.005 +I0407 09:16:58.231801 17723 solver.cpp:218] Iteration 5964 (2.25081 iter/s, 5.33142s/12 iters), loss = 0.309804 +I0407 09:16:58.231844 17723 solver.cpp:237] Train net output #0: loss = 0.309804 (* 1 = 0.309804 loss) +I0407 09:16:58.231853 17723 sgd_solver.cpp:105] Iteration 5964, lr = 0.005 +I0407 09:16:59.658674 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:03.678189 17723 solver.cpp:218] Iteration 5976 (2.20333 iter/s, 5.44629s/12 iters), loss = 0.352661 +I0407 09:17:03.678229 17723 solver.cpp:237] Train net output #0: loss = 0.352661 (* 1 = 0.352661 loss) +I0407 09:17:03.678236 17723 sgd_solver.cpp:105] Iteration 5976, lr = 0.005 +I0407 09:17:09.112941 17723 solver.cpp:218] Iteration 5988 (2.20805 iter/s, 5.43465s/12 iters), loss = 0.188493 +I0407 09:17:09.112984 17723 solver.cpp:237] Train net output #0: loss = 0.188493 (* 1 = 0.188493 loss) +I0407 09:17:09.112991 17723 sgd_solver.cpp:105] Iteration 5988, lr = 0.005 +I0407 09:17:14.330111 17723 solver.cpp:218] Iteration 6000 (2.30014 iter/s, 5.21707s/12 iters), loss = 0.275099 +I0407 09:17:14.330232 17723 solver.cpp:237] Train net output #0: loss = 0.275099 (* 1 = 0.275099 loss) +I0407 09:17:14.330242 17723 sgd_solver.cpp:105] Iteration 6000, lr = 0.005 +I0407 09:17:19.650274 17723 solver.cpp:218] Iteration 6012 (2.25564 iter/s, 5.31999s/12 iters), loss = 0.326496 +I0407 09:17:19.650322 17723 solver.cpp:237] Train net output #0: loss = 0.326496 (* 1 = 0.326496 loss) +I0407 09:17:19.650329 17723 sgd_solver.cpp:105] Iteration 6012, lr = 0.005 +I0407 09:17:21.843437 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 09:17:25.323859 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 09:17:27.792716 17723 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 09:17:27.792734 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:17:29.747031 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:32.064656 17723 solver.cpp:397] Test net output #0: accuracy = 0.428309 +I0407 09:17:32.064692 17723 solver.cpp:397] Test net output #1: loss = 2.90885 (* 1 = 2.90885 loss) +I0407 09:17:33.899031 17723 solver.cpp:218] Iteration 6024 (0.842189 iter/s, 14.2486s/12 iters), loss = 0.47148 +I0407 09:17:33.899080 17723 solver.cpp:237] Train net output #0: loss = 0.47148 (* 1 = 0.47148 loss) +I0407 09:17:33.899089 17723 sgd_solver.cpp:105] Iteration 6024, lr = 0.005 +I0407 09:17:39.106891 17723 solver.cpp:218] Iteration 6036 (2.30425 iter/s, 5.20776s/12 iters), loss = 0.197582 +I0407 09:17:39.106935 17723 solver.cpp:237] Train net output #0: loss = 0.197582 (* 1 = 0.197582 loss) +I0407 09:17:39.106942 17723 sgd_solver.cpp:105] Iteration 6036, lr = 0.005 +I0407 09:17:44.407618 17723 solver.cpp:218] Iteration 6048 (2.26388 iter/s, 5.30062s/12 iters), loss = 0.374239 +I0407 09:17:44.407755 17723 solver.cpp:237] Train net output #0: loss = 0.374239 (* 1 = 0.374239 loss) +I0407 09:17:44.407766 17723 sgd_solver.cpp:105] Iteration 6048, lr = 0.005 +I0407 09:17:49.345636 17723 solver.cpp:218] Iteration 6060 (2.43022 iter/s, 4.93783s/12 iters), loss = 0.305195 +I0407 09:17:49.345679 17723 solver.cpp:237] Train net output #0: loss = 0.305195 (* 1 = 0.305195 loss) +I0407 09:17:49.345685 17723 sgd_solver.cpp:105] Iteration 6060, lr = 0.005 +I0407 09:17:53.042146 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:54.614838 17723 solver.cpp:218] Iteration 6072 (2.27743 iter/s, 5.2691s/12 iters), loss = 0.312153 +I0407 09:17:54.614883 17723 solver.cpp:237] Train net output #0: loss = 0.312153 (* 1 = 0.312153 loss) +I0407 09:17:54.614890 17723 sgd_solver.cpp:105] Iteration 6072, lr = 0.005 +I0407 09:17:59.671507 17723 solver.cpp:218] Iteration 6084 (2.37315 iter/s, 5.05657s/12 iters), loss = 0.360604 +I0407 09:17:59.671555 17723 solver.cpp:237] Train net output #0: loss = 0.360605 (* 1 = 0.360605 loss) +I0407 09:17:59.671562 17723 sgd_solver.cpp:105] Iteration 6084, lr = 0.005 +I0407 09:18:04.758473 17723 solver.cpp:218] Iteration 6096 (2.35902 iter/s, 5.08686s/12 iters), loss = 0.208339 +I0407 09:18:04.758517 17723 solver.cpp:237] Train net output #0: loss = 0.208339 (* 1 = 0.208339 loss) +I0407 09:18:04.758525 17723 sgd_solver.cpp:105] Iteration 6096, lr = 0.005 +I0407 09:18:09.968103 17723 solver.cpp:218] Iteration 6108 (2.30347 iter/s, 5.20954s/12 iters), loss = 0.306299 +I0407 09:18:09.968138 17723 solver.cpp:237] Train net output #0: loss = 0.306299 (* 1 = 0.306299 loss) +I0407 09:18:09.968144 17723 sgd_solver.cpp:105] Iteration 6108, lr = 0.005 +I0407 09:18:14.697693 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 09:18:19.475481 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 09:18:22.001130 17723 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 09:18:22.001148 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:18:24.018605 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:26.612298 17723 solver.cpp:397] Test net output #0: accuracy = 0.42402 +I0407 09:18:26.612331 17723 solver.cpp:397] Test net output #1: loss = 3.10377 (* 1 = 3.10377 loss) +I0407 09:18:26.750571 17723 solver.cpp:218] Iteration 6120 (0.715039 iter/s, 16.7823s/12 iters), loss = 0.208232 +I0407 09:18:26.750627 17723 solver.cpp:237] Train net output #0: loss = 0.208232 (* 1 = 0.208232 loss) +I0407 09:18:26.750635 17723 sgd_solver.cpp:105] Iteration 6120, lr = 0.005 +I0407 09:18:31.178189 17723 solver.cpp:218] Iteration 6132 (2.71032 iter/s, 4.42752s/12 iters), loss = 0.321788 +I0407 09:18:31.178220 17723 solver.cpp:237] Train net output #0: loss = 0.321788 (* 1 = 0.321788 loss) +I0407 09:18:31.178227 17723 sgd_solver.cpp:105] Iteration 6132, lr = 0.005 +I0407 09:18:36.531760 17723 solver.cpp:218] Iteration 6144 (2.24153 iter/s, 5.35348s/12 iters), loss = 0.298771 +I0407 09:18:36.531798 17723 solver.cpp:237] Train net output #0: loss = 0.298771 (* 1 = 0.298771 loss) +I0407 09:18:36.531806 17723 sgd_solver.cpp:105] Iteration 6144, lr = 0.005 +I0407 09:18:41.937840 17723 solver.cpp:218] Iteration 6156 (2.21976 iter/s, 5.40598s/12 iters), loss = 0.191015 +I0407 09:18:41.937891 17723 solver.cpp:237] Train net output #0: loss = 0.191015 (* 1 = 0.191015 loss) +I0407 09:18:41.937902 17723 sgd_solver.cpp:105] Iteration 6156, lr = 0.005 +I0407 09:18:47.237810 17723 solver.cpp:218] Iteration 6168 (2.26421 iter/s, 5.29987s/12 iters), loss = 0.333892 +I0407 09:18:47.237895 17723 solver.cpp:237] Train net output #0: loss = 0.333892 (* 1 = 0.333892 loss) +I0407 09:18:47.237901 17723 sgd_solver.cpp:105] Iteration 6168, lr = 0.005 +I0407 09:18:47.783383 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:52.575968 17723 solver.cpp:218] Iteration 6180 (2.24803 iter/s, 5.33802s/12 iters), loss = 0.45998 +I0407 09:18:52.576004 17723 solver.cpp:237] Train net output #0: loss = 0.45998 (* 1 = 0.45998 loss) +I0407 09:18:52.576012 17723 sgd_solver.cpp:105] Iteration 6180, lr = 0.005 +I0407 09:18:57.937255 17723 solver.cpp:218] Iteration 6192 (2.23831 iter/s, 5.36119s/12 iters), loss = 0.400253 +I0407 09:18:57.937304 17723 solver.cpp:237] Train net output #0: loss = 0.400253 (* 1 = 0.400253 loss) +I0407 09:18:57.937314 17723 sgd_solver.cpp:105] Iteration 6192, lr = 0.005 +I0407 09:19:03.320447 17723 solver.cpp:218] Iteration 6204 (2.2292 iter/s, 5.38309s/12 iters), loss = 0.27809 +I0407 09:19:03.320483 17723 solver.cpp:237] Train net output #0: loss = 0.27809 (* 1 = 0.27809 loss) +I0407 09:19:03.320490 17723 sgd_solver.cpp:105] Iteration 6204, lr = 0.005 +I0407 09:19:08.686620 17723 solver.cpp:218] Iteration 6216 (2.23627 iter/s, 5.36607s/12 iters), loss = 0.253579 +I0407 09:19:08.686673 17723 solver.cpp:237] Train net output #0: loss = 0.253579 (* 1 = 0.253579 loss) +I0407 09:19:08.686686 17723 sgd_solver.cpp:105] Iteration 6216, lr = 0.005 +I0407 09:19:10.848737 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 09:19:13.864594 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 09:19:16.588793 17723 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 09:19:16.588814 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:19:18.574918 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:19:19.905308 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:19:21.133078 17723 solver.cpp:397] Test net output #0: accuracy = 0.429534 +I0407 09:19:21.133112 17723 solver.cpp:397] Test net output #1: loss = 2.89394 (* 1 = 2.89394 loss) +I0407 09:19:23.053937 17723 solver.cpp:218] Iteration 6228 (0.835239 iter/s, 14.3671s/12 iters), loss = 0.357609 +I0407 09:19:23.053978 17723 solver.cpp:237] Train net output #0: loss = 0.357609 (* 1 = 0.357609 loss) +I0407 09:19:23.053985 17723 sgd_solver.cpp:105] Iteration 6228, lr = 0.005 +I0407 09:19:28.175837 17723 solver.cpp:218] Iteration 6240 (2.34293 iter/s, 5.1218s/12 iters), loss = 0.433488 +I0407 09:19:28.175880 17723 solver.cpp:237] Train net output #0: loss = 0.433488 (* 1 = 0.433488 loss) +I0407 09:19:28.175889 17723 sgd_solver.cpp:105] Iteration 6240, lr = 0.005 +I0407 09:19:33.377490 17723 solver.cpp:218] Iteration 6252 (2.307 iter/s, 5.20156s/12 iters), loss = 0.292799 +I0407 09:19:33.377527 17723 solver.cpp:237] Train net output #0: loss = 0.292799 (* 1 = 0.292799 loss) +I0407 09:19:33.377534 17723 sgd_solver.cpp:105] Iteration 6252, lr = 0.005 +I0407 09:19:38.538467 17723 solver.cpp:218] Iteration 6264 (2.32518 iter/s, 5.16088s/12 iters), loss = 0.291389 +I0407 09:19:38.538506 17723 solver.cpp:237] Train net output #0: loss = 0.291389 (* 1 = 0.291389 loss) +I0407 09:19:38.538513 17723 sgd_solver.cpp:105] Iteration 6264, lr = 0.005 +I0407 09:19:41.417924 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:19:43.837630 17723 solver.cpp:218] Iteration 6276 (2.26455 iter/s, 5.29907s/12 iters), loss = 0.281795 +I0407 09:19:43.837671 17723 solver.cpp:237] Train net output #0: loss = 0.281795 (* 1 = 0.281795 loss) +I0407 09:19:43.837678 17723 sgd_solver.cpp:105] Iteration 6276, lr = 0.005 +I0407 09:19:48.865572 17723 solver.cpp:218] Iteration 6288 (2.38671 iter/s, 5.02784s/12 iters), loss = 0.485081 +I0407 09:19:48.865684 17723 solver.cpp:237] Train net output #0: loss = 0.485081 (* 1 = 0.485081 loss) +I0407 09:19:48.865692 17723 sgd_solver.cpp:105] Iteration 6288, lr = 0.005 +I0407 09:19:54.097527 17723 solver.cpp:218] Iteration 6300 (2.29367 iter/s, 5.23179s/12 iters), loss = 0.31132 +I0407 09:19:54.097575 17723 solver.cpp:237] Train net output #0: loss = 0.311321 (* 1 = 0.311321 loss) +I0407 09:19:54.097584 17723 sgd_solver.cpp:105] Iteration 6300, lr = 0.005 +I0407 09:19:59.249511 17723 solver.cpp:218] Iteration 6312 (2.32925 iter/s, 5.15188s/12 iters), loss = 0.205744 +I0407 09:19:59.249552 17723 solver.cpp:237] Train net output #0: loss = 0.205744 (* 1 = 0.205744 loss) +I0407 09:19:59.249560 17723 sgd_solver.cpp:105] Iteration 6312, lr = 0.005 +I0407 09:20:04.069885 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 09:20:07.135699 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 09:20:09.988461 17723 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 09:20:09.988481 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:20:11.899159 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:20:14.522409 17723 solver.cpp:397] Test net output #0: accuracy = 0.422794 +I0407 09:20:14.522434 17723 solver.cpp:397] Test net output #1: loss = 2.9519 (* 1 = 2.9519 loss) +I0407 09:20:14.659190 17723 solver.cpp:218] Iteration 6324 (0.77874 iter/s, 15.4095s/12 iters), loss = 0.396142 +I0407 09:20:14.659225 17723 solver.cpp:237] Train net output #0: loss = 0.396142 (* 1 = 0.396142 loss) +I0407 09:20:14.659232 17723 sgd_solver.cpp:105] Iteration 6324, lr = 0.005 +I0407 09:20:18.793133 17723 solver.cpp:218] Iteration 6336 (2.90286 iter/s, 4.13386s/12 iters), loss = 0.237518 +I0407 09:20:18.793175 17723 solver.cpp:237] Train net output #0: loss = 0.237518 (* 1 = 0.237518 loss) +I0407 09:20:18.793184 17723 sgd_solver.cpp:105] Iteration 6336, lr = 0.005 +I0407 09:20:24.084115 17723 solver.cpp:218] Iteration 6348 (2.26805 iter/s, 5.29088s/12 iters), loss = 0.334599 +I0407 09:20:24.084255 17723 solver.cpp:237] Train net output #0: loss = 0.3346 (* 1 = 0.3346 loss) +I0407 09:20:24.084264 17723 sgd_solver.cpp:105] Iteration 6348, lr = 0.005 +I0407 09:20:29.422621 17723 solver.cpp:218] Iteration 6360 (2.2479 iter/s, 5.33831s/12 iters), loss = 0.207462 +I0407 09:20:29.422665 17723 solver.cpp:237] Train net output #0: loss = 0.207462 (* 1 = 0.207462 loss) +I0407 09:20:29.422673 17723 sgd_solver.cpp:105] Iteration 6360, lr = 0.005 +I0407 09:20:34.477509 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:20:34.670894 17723 solver.cpp:218] Iteration 6372 (2.28651 iter/s, 5.24817s/12 iters), loss = 0.272583 +I0407 09:20:34.670933 17723 solver.cpp:237] Train net output #0: loss = 0.272583 (* 1 = 0.272583 loss) +I0407 09:20:34.670940 17723 sgd_solver.cpp:105] Iteration 6372, lr = 0.005 +I0407 09:20:40.099916 17723 solver.cpp:218] Iteration 6384 (2.21038 iter/s, 5.42892s/12 iters), loss = 0.306488 +I0407 09:20:40.099965 17723 solver.cpp:237] Train net output #0: loss = 0.306488 (* 1 = 0.306488 loss) +I0407 09:20:40.099972 17723 sgd_solver.cpp:105] Iteration 6384, lr = 0.005 +I0407 09:20:45.348507 17723 solver.cpp:218] Iteration 6396 (2.28637 iter/s, 5.24849s/12 iters), loss = 0.284852 +I0407 09:20:45.348548 17723 solver.cpp:237] Train net output #0: loss = 0.284852 (* 1 = 0.284852 loss) +I0407 09:20:45.348554 17723 sgd_solver.cpp:105] Iteration 6396, lr = 0.005 +I0407 09:20:50.528477 17723 solver.cpp:218] Iteration 6408 (2.31666 iter/s, 5.17987s/12 iters), loss = 0.525476 +I0407 09:20:50.528539 17723 solver.cpp:237] Train net output #0: loss = 0.525477 (* 1 = 0.525477 loss) +I0407 09:20:50.528554 17723 sgd_solver.cpp:105] Iteration 6408, lr = 0.005 +I0407 09:20:55.725690 17723 solver.cpp:218] Iteration 6420 (2.30898 iter/s, 5.1971s/12 iters), loss = 0.307899 +I0407 09:20:55.725805 17723 solver.cpp:237] Train net output #0: loss = 0.307899 (* 1 = 0.307899 loss) +I0407 09:20:55.725816 17723 sgd_solver.cpp:105] Iteration 6420, lr = 0.005 +I0407 09:20:57.788995 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 09:21:00.964742 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 09:21:03.855111 17723 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 09:21:03.855130 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:21:05.633878 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:08.107044 17723 solver.cpp:397] Test net output #0: accuracy = 0.431985 +I0407 09:21:08.107082 17723 solver.cpp:397] Test net output #1: loss = 3.00469 (* 1 = 3.00469 loss) +I0407 09:21:09.999143 17723 solver.cpp:218] Iteration 6432 (0.840735 iter/s, 14.2732s/12 iters), loss = 0.241522 +I0407 09:21:09.999182 17723 solver.cpp:237] Train net output #0: loss = 0.241522 (* 1 = 0.241522 loss) +I0407 09:21:09.999189 17723 sgd_solver.cpp:105] Iteration 6432, lr = 0.005 +I0407 09:21:15.353475 17723 solver.cpp:218] Iteration 6444 (2.24122 iter/s, 5.35423s/12 iters), loss = 0.412065 +I0407 09:21:15.353515 17723 solver.cpp:237] Train net output #0: loss = 0.412065 (* 1 = 0.412065 loss) +I0407 09:21:15.353523 17723 sgd_solver.cpp:105] Iteration 6444, lr = 0.005 +I0407 09:21:20.423384 17723 solver.cpp:218] Iteration 6456 (2.36695 iter/s, 5.06981s/12 iters), loss = 0.265322 +I0407 09:21:20.423434 17723 solver.cpp:237] Train net output #0: loss = 0.265322 (* 1 = 0.265322 loss) +I0407 09:21:20.423441 17723 sgd_solver.cpp:105] Iteration 6456, lr = 0.005 +I0407 09:21:25.508301 17723 solver.cpp:218] Iteration 6468 (2.35997 iter/s, 5.08481s/12 iters), loss = 0.286483 +I0407 09:21:25.508342 17723 solver.cpp:237] Train net output #0: loss = 0.286483 (* 1 = 0.286483 loss) +I0407 09:21:25.508348 17723 sgd_solver.cpp:105] Iteration 6468, lr = 0.005 +I0407 09:21:27.435180 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:30.646378 17723 solver.cpp:218] Iteration 6480 (2.33555 iter/s, 5.13798s/12 iters), loss = 0.175376 +I0407 09:21:30.646422 17723 solver.cpp:237] Train net output #0: loss = 0.175376 (* 1 = 0.175376 loss) +I0407 09:21:30.646430 17723 sgd_solver.cpp:105] Iteration 6480, lr = 0.005 +I0407 09:21:35.851492 17723 solver.cpp:218] Iteration 6492 (2.30547 iter/s, 5.20501s/12 iters), loss = 0.363529 +I0407 09:21:35.851532 17723 solver.cpp:237] Train net output #0: loss = 0.363529 (* 1 = 0.363529 loss) +I0407 09:21:35.851538 17723 sgd_solver.cpp:105] Iteration 6492, lr = 0.005 +I0407 09:21:41.054170 17723 solver.cpp:218] Iteration 6504 (2.30655 iter/s, 5.20258s/12 iters), loss = 0.115061 +I0407 09:21:41.054214 17723 solver.cpp:237] Train net output #0: loss = 0.115061 (* 1 = 0.115061 loss) +I0407 09:21:41.054220 17723 sgd_solver.cpp:105] Iteration 6504, lr = 0.005 +I0407 09:21:46.350474 17723 solver.cpp:218] Iteration 6516 (2.26578 iter/s, 5.2962s/12 iters), loss = 0.197927 +I0407 09:21:46.350526 17723 solver.cpp:237] Train net output #0: loss = 0.197927 (* 1 = 0.197927 loss) +I0407 09:21:46.350534 17723 sgd_solver.cpp:105] Iteration 6516, lr = 0.005 +I0407 09:21:51.172130 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 09:21:54.263063 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 09:21:56.904897 17723 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 09:21:56.904918 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:21:58.647805 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:01.159147 17723 solver.cpp:397] Test net output #0: accuracy = 0.440564 +I0407 09:22:01.159174 17723 solver.cpp:397] Test net output #1: loss = 3.09967 (* 1 = 3.09967 loss) +I0407 09:22:01.299621 17723 solver.cpp:218] Iteration 6528 (0.802731 iter/s, 14.949s/12 iters), loss = 0.198191 +I0407 09:22:01.299674 17723 solver.cpp:237] Train net output #0: loss = 0.198191 (* 1 = 0.198191 loss) +I0407 09:22:01.299682 17723 sgd_solver.cpp:105] Iteration 6528, lr = 0.005 +I0407 09:22:05.590034 17723 solver.cpp:218] Iteration 6540 (2.797 iter/s, 4.29031s/12 iters), loss = 0.226992 +I0407 09:22:05.590080 17723 solver.cpp:237] Train net output #0: loss = 0.226992 (* 1 = 0.226992 loss) +I0407 09:22:05.590087 17723 sgd_solver.cpp:105] Iteration 6540, lr = 0.005 +I0407 09:22:10.802538 17723 solver.cpp:218] Iteration 6552 (2.3022 iter/s, 5.21241s/12 iters), loss = 0.316611 +I0407 09:22:10.802580 17723 solver.cpp:237] Train net output #0: loss = 0.316611 (* 1 = 0.316611 loss) +I0407 09:22:10.802588 17723 sgd_solver.cpp:105] Iteration 6552, lr = 0.005 +I0407 09:22:16.160691 17723 solver.cpp:218] Iteration 6564 (2.23962 iter/s, 5.35805s/12 iters), loss = 0.251943 +I0407 09:22:16.160734 17723 solver.cpp:237] Train net output #0: loss = 0.251943 (* 1 = 0.251943 loss) +I0407 09:22:16.160742 17723 sgd_solver.cpp:105] Iteration 6564, lr = 0.005 +I0407 09:22:20.678248 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:21.538858 17723 solver.cpp:218] Iteration 6576 (2.23128 iter/s, 5.37807s/12 iters), loss = 0.433876 +I0407 09:22:21.538902 17723 solver.cpp:237] Train net output #0: loss = 0.433876 (* 1 = 0.433876 loss) +I0407 09:22:21.538908 17723 sgd_solver.cpp:105] Iteration 6576, lr = 0.005 +I0407 09:22:26.837884 17723 solver.cpp:218] Iteration 6588 (2.26461 iter/s, 5.29893s/12 iters), loss = 0.301823 +I0407 09:22:26.837927 17723 solver.cpp:237] Train net output #0: loss = 0.301823 (* 1 = 0.301823 loss) +I0407 09:22:26.837935 17723 sgd_solver.cpp:105] Iteration 6588, lr = 0.005 +I0407 09:22:32.154449 17723 solver.cpp:218] Iteration 6600 (2.25714 iter/s, 5.31646s/12 iters), loss = 0.265304 +I0407 09:22:32.154570 17723 solver.cpp:237] Train net output #0: loss = 0.265304 (* 1 = 0.265304 loss) +I0407 09:22:32.154578 17723 sgd_solver.cpp:105] Iteration 6600, lr = 0.005 +I0407 09:22:37.413899 17723 solver.cpp:218] Iteration 6612 (2.28168 iter/s, 5.25928s/12 iters), loss = 0.311041 +I0407 09:22:37.413938 17723 solver.cpp:237] Train net output #0: loss = 0.311041 (* 1 = 0.311041 loss) +I0407 09:22:37.413945 17723 sgd_solver.cpp:105] Iteration 6612, lr = 0.005 +I0407 09:22:42.649277 17723 solver.cpp:218] Iteration 6624 (2.29214 iter/s, 5.23528s/12 iters), loss = 0.14351 +I0407 09:22:42.649327 17723 solver.cpp:237] Train net output #0: loss = 0.143511 (* 1 = 0.143511 loss) +I0407 09:22:42.649333 17723 sgd_solver.cpp:105] Iteration 6624, lr = 0.005 +I0407 09:22:44.778488 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 09:22:47.790019 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 09:22:52.115420 17723 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 09:22:52.115442 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:22:53.840657 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:56.385017 17723 solver.cpp:397] Test net output #0: accuracy = 0.426471 +I0407 09:22:56.385051 17723 solver.cpp:397] Test net output #1: loss = 3.14049 (* 1 = 3.14049 loss) +I0407 09:22:58.339797 17723 solver.cpp:218] Iteration 6636 (0.764802 iter/s, 15.6903s/12 iters), loss = 0.309342 +I0407 09:22:58.339829 17723 solver.cpp:237] Train net output #0: loss = 0.309342 (* 1 = 0.309342 loss) +I0407 09:22:58.339836 17723 sgd_solver.cpp:105] Iteration 6636, lr = 0.005 +I0407 09:23:03.675227 17723 solver.cpp:218] Iteration 6648 (2.24915 iter/s, 5.33534s/12 iters), loss = 0.358012 +I0407 09:23:03.675312 17723 solver.cpp:237] Train net output #0: loss = 0.358012 (* 1 = 0.358012 loss) +I0407 09:23:03.675318 17723 sgd_solver.cpp:105] Iteration 6648, lr = 0.005 +I0407 09:23:09.001051 17723 solver.cpp:218] Iteration 6660 (2.25323 iter/s, 5.32568s/12 iters), loss = 0.278763 +I0407 09:23:09.001098 17723 solver.cpp:237] Train net output #0: loss = 0.278763 (* 1 = 0.278763 loss) +I0407 09:23:09.001106 17723 sgd_solver.cpp:105] Iteration 6660, lr = 0.005 +I0407 09:23:14.218868 17723 solver.cpp:218] Iteration 6672 (2.29986 iter/s, 5.21771s/12 iters), loss = 0.217365 +I0407 09:23:14.218909 17723 solver.cpp:237] Train net output #0: loss = 0.217365 (* 1 = 0.217365 loss) +I0407 09:23:14.218916 17723 sgd_solver.cpp:105] Iteration 6672, lr = 0.005 +I0407 09:23:15.608348 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:19.607641 17723 solver.cpp:218] Iteration 6684 (2.2269 iter/s, 5.38867s/12 iters), loss = 0.275174 +I0407 09:23:19.607710 17723 solver.cpp:237] Train net output #0: loss = 0.275174 (* 1 = 0.275174 loss) +I0407 09:23:19.607724 17723 sgd_solver.cpp:105] Iteration 6684, lr = 0.005 +I0407 09:23:24.888188 17723 solver.cpp:218] Iteration 6696 (2.27254 iter/s, 5.28042s/12 iters), loss = 0.360311 +I0407 09:23:24.888242 17723 solver.cpp:237] Train net output #0: loss = 0.360311 (* 1 = 0.360311 loss) +I0407 09:23:24.888250 17723 sgd_solver.cpp:105] Iteration 6696, lr = 0.005 +I0407 09:23:30.089200 17723 solver.cpp:218] Iteration 6708 (2.30729 iter/s, 5.2009s/12 iters), loss = 0.180445 +I0407 09:23:30.089246 17723 solver.cpp:237] Train net output #0: loss = 0.180445 (* 1 = 0.180445 loss) +I0407 09:23:30.089252 17723 sgd_solver.cpp:105] Iteration 6708, lr = 0.005 +I0407 09:23:35.491662 17723 solver.cpp:218] Iteration 6720 (2.22125 iter/s, 5.40236s/12 iters), loss = 0.280516 +I0407 09:23:35.491806 17723 solver.cpp:237] Train net output #0: loss = 0.280516 (* 1 = 0.280516 loss) +I0407 09:23:35.491816 17723 sgd_solver.cpp:105] Iteration 6720, lr = 0.005 +I0407 09:23:40.334231 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 09:23:43.419330 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 09:23:48.053584 17723 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 09:23:48.053611 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:23:49.762781 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:52.355916 17723 solver.cpp:397] Test net output #0: accuracy = 0.457108 +I0407 09:23:52.355954 17723 solver.cpp:397] Test net output #1: loss = 3.03881 (* 1 = 3.03881 loss) +I0407 09:23:52.496302 17723 solver.cpp:218] Iteration 6732 (0.705702 iter/s, 17.0044s/12 iters), loss = 0.109536 +I0407 09:23:52.496363 17723 solver.cpp:237] Train net output #0: loss = 0.109536 (* 1 = 0.109536 loss) +I0407 09:23:52.496376 17723 sgd_solver.cpp:105] Iteration 6732, lr = 0.0025 +I0407 09:23:56.784590 17723 solver.cpp:218] Iteration 6744 (2.79839 iter/s, 4.28818s/12 iters), loss = 0.113135 +I0407 09:23:56.784646 17723 solver.cpp:237] Train net output #0: loss = 0.113135 (* 1 = 0.113135 loss) +I0407 09:23:56.784654 17723 sgd_solver.cpp:105] Iteration 6744, lr = 0.0025 +I0407 09:24:01.840051 17723 solver.cpp:218] Iteration 6756 (2.37372 iter/s, 5.05535s/12 iters), loss = 0.345276 +I0407 09:24:01.840097 17723 solver.cpp:237] Train net output #0: loss = 0.345276 (* 1 = 0.345276 loss) +I0407 09:24:01.840104 17723 sgd_solver.cpp:105] Iteration 6756, lr = 0.0025 +I0407 09:24:07.021613 17723 solver.cpp:218] Iteration 6768 (2.31595 iter/s, 5.18146s/12 iters), loss = 0.218324 +I0407 09:24:07.021718 17723 solver.cpp:237] Train net output #0: loss = 0.218324 (* 1 = 0.218324 loss) +I0407 09:24:07.021728 17723 sgd_solver.cpp:105] Iteration 6768, lr = 0.0025 +I0407 09:24:10.748338 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:12.397274 17723 solver.cpp:218] Iteration 6780 (2.23235 iter/s, 5.3755s/12 iters), loss = 0.136354 +I0407 09:24:12.397317 17723 solver.cpp:237] Train net output #0: loss = 0.136354 (* 1 = 0.136354 loss) +I0407 09:24:12.397325 17723 sgd_solver.cpp:105] Iteration 6780, lr = 0.0025 +I0407 09:24:17.677855 17723 solver.cpp:218] Iteration 6792 (2.27252 iter/s, 5.28048s/12 iters), loss = 0.234415 +I0407 09:24:17.677906 17723 solver.cpp:237] Train net output #0: loss = 0.234415 (* 1 = 0.234415 loss) +I0407 09:24:17.677915 17723 sgd_solver.cpp:105] Iteration 6792, lr = 0.0025 +I0407 09:24:22.968816 17723 solver.cpp:218] Iteration 6804 (2.26807 iter/s, 5.29085s/12 iters), loss = 0.130439 +I0407 09:24:22.968858 17723 solver.cpp:237] Train net output #0: loss = 0.130439 (* 1 = 0.130439 loss) +I0407 09:24:22.968865 17723 sgd_solver.cpp:105] Iteration 6804, lr = 0.0025 +I0407 09:24:28.203060 17723 solver.cpp:218] Iteration 6816 (2.29264 iter/s, 5.23414s/12 iters), loss = 0.138374 +I0407 09:24:28.203106 17723 solver.cpp:237] Train net output #0: loss = 0.138374 (* 1 = 0.138374 loss) +I0407 09:24:28.203114 17723 sgd_solver.cpp:105] Iteration 6816, lr = 0.0025 +I0407 09:24:33.587412 17723 solver.cpp:218] Iteration 6828 (2.22872 iter/s, 5.38424s/12 iters), loss = 0.178136 +I0407 09:24:33.587455 17723 solver.cpp:237] Train net output #0: loss = 0.178136 (* 1 = 0.178136 loss) +I0407 09:24:33.587461 17723 sgd_solver.cpp:105] Iteration 6828, lr = 0.0025 +I0407 09:24:35.639132 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 09:24:38.649065 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 09:24:42.476346 17723 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 09:24:42.476374 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:24:44.222311 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:47.008067 17723 solver.cpp:397] Test net output #0: accuracy = 0.461397 +I0407 09:24:47.008117 17723 solver.cpp:397] Test net output #1: loss = 2.86097 (* 1 = 2.86097 loss) +I0407 09:24:49.068373 17723 solver.cpp:218] Iteration 6840 (0.775154 iter/s, 15.4808s/12 iters), loss = 0.31725 +I0407 09:24:49.068428 17723 solver.cpp:237] Train net output #0: loss = 0.31725 (* 1 = 0.31725 loss) +I0407 09:24:49.068439 17723 sgd_solver.cpp:105] Iteration 6840, lr = 0.0025 +I0407 09:24:54.132351 17723 solver.cpp:218] Iteration 6852 (2.36973 iter/s, 5.06387s/12 iters), loss = 0.302486 +I0407 09:24:54.132401 17723 solver.cpp:237] Train net output #0: loss = 0.302487 (* 1 = 0.302487 loss) +I0407 09:24:54.132407 17723 sgd_solver.cpp:105] Iteration 6852, lr = 0.0025 +I0407 09:24:59.290779 17723 solver.cpp:218] Iteration 6864 (2.32634 iter/s, 5.15833s/12 iters), loss = 0.209576 +I0407 09:24:59.290822 17723 solver.cpp:237] Train net output #0: loss = 0.209576 (* 1 = 0.209576 loss) +I0407 09:24:59.290829 17723 sgd_solver.cpp:105] Iteration 6864, lr = 0.0025 +I0407 09:25:04.610190 17723 solver.cpp:218] Iteration 6876 (2.25593 iter/s, 5.31931s/12 iters), loss = 0.271104 +I0407 09:25:04.610252 17723 solver.cpp:237] Train net output #0: loss = 0.271104 (* 1 = 0.271104 loss) +I0407 09:25:04.610262 17723 sgd_solver.cpp:105] Iteration 6876, lr = 0.0025 +I0407 09:25:05.246156 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:25:09.783083 17723 solver.cpp:218] Iteration 6888 (2.31984 iter/s, 5.17278s/12 iters), loss = 0.229179 +I0407 09:25:09.783218 17723 solver.cpp:237] Train net output #0: loss = 0.229179 (* 1 = 0.229179 loss) +I0407 09:25:09.783228 17723 sgd_solver.cpp:105] Iteration 6888, lr = 0.0025 +I0407 09:25:14.982234 17723 solver.cpp:218] Iteration 6900 (2.30815 iter/s, 5.19897s/12 iters), loss = 0.0962233 +I0407 09:25:14.982278 17723 solver.cpp:237] Train net output #0: loss = 0.0962234 (* 1 = 0.0962234 loss) +I0407 09:25:14.982285 17723 sgd_solver.cpp:105] Iteration 6900, lr = 0.0025 +I0407 09:25:20.294093 17723 solver.cpp:218] Iteration 6912 (2.25914 iter/s, 5.31176s/12 iters), loss = 0.102003 +I0407 09:25:20.294139 17723 solver.cpp:237] Train net output #0: loss = 0.102004 (* 1 = 0.102004 loss) +I0407 09:25:20.294147 17723 sgd_solver.cpp:105] Iteration 6912, lr = 0.0025 +I0407 09:25:25.652074 17723 solver.cpp:218] Iteration 6924 (2.23969 iter/s, 5.35788s/12 iters), loss = 0.238217 +I0407 09:25:25.652113 17723 solver.cpp:237] Train net output #0: loss = 0.238217 (* 1 = 0.238217 loss) +I0407 09:25:25.652120 17723 sgd_solver.cpp:105] Iteration 6924, lr = 0.0025 +I0407 09:25:30.409894 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 09:25:33.488057 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 09:25:37.647881 17723 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 09:25:37.647904 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:25:38.272454 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:25:39.366467 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:25:42.174718 17723 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 09:25:42.174849 17723 solver.cpp:397] Test net output #1: loss = 2.83762 (* 1 = 2.83762 loss) +I0407 09:25:42.312412 17723 solver.cpp:218] Iteration 6936 (0.720281 iter/s, 16.6602s/12 iters), loss = 0.197332 +I0407 09:25:42.312465 17723 solver.cpp:237] Train net output #0: loss = 0.197332 (* 1 = 0.197332 loss) +I0407 09:25:42.312475 17723 sgd_solver.cpp:105] Iteration 6936, lr = 0.0025 +I0407 09:25:46.631764 17723 solver.cpp:218] Iteration 6948 (2.77826 iter/s, 4.31926s/12 iters), loss = 0.0996729 +I0407 09:25:46.631806 17723 solver.cpp:237] Train net output #0: loss = 0.099673 (* 1 = 0.099673 loss) +I0407 09:25:46.631815 17723 sgd_solver.cpp:105] Iteration 6948, lr = 0.0025 +I0407 09:25:52.034448 17723 solver.cpp:218] Iteration 6960 (2.22116 iter/s, 5.40259s/12 iters), loss = 0.236494 +I0407 09:25:52.034494 17723 solver.cpp:237] Train net output #0: loss = 0.236494 (* 1 = 0.236494 loss) +I0407 09:25:52.034502 17723 sgd_solver.cpp:105] Iteration 6960, lr = 0.0025 +I0407 09:25:57.433776 17723 solver.cpp:218] Iteration 6972 (2.22254 iter/s, 5.39923s/12 iters), loss = 0.0884773 +I0407 09:25:57.433820 17723 solver.cpp:237] Train net output #0: loss = 0.0884775 (* 1 = 0.0884775 loss) +I0407 09:25:57.433827 17723 sgd_solver.cpp:105] Iteration 6972, lr = 0.0025 +I0407 09:26:00.396134 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:02.752426 17723 solver.cpp:218] Iteration 6984 (2.25625 iter/s, 5.31855s/12 iters), loss = 0.129261 +I0407 09:26:02.752467 17723 solver.cpp:237] Train net output #0: loss = 0.129261 (* 1 = 0.129261 loss) +I0407 09:26:02.752475 17723 sgd_solver.cpp:105] Iteration 6984, lr = 0.0025 +I0407 09:26:08.098132 17723 solver.cpp:218] Iteration 6996 (2.24483 iter/s, 5.34561s/12 iters), loss = 0.368664 +I0407 09:26:08.098174 17723 solver.cpp:237] Train net output #0: loss = 0.368664 (* 1 = 0.368664 loss) +I0407 09:26:08.098181 17723 sgd_solver.cpp:105] Iteration 6996, lr = 0.0025 +I0407 09:26:13.310642 17723 solver.cpp:218] Iteration 7008 (2.3022 iter/s, 5.21241s/12 iters), loss = 0.183816 +I0407 09:26:13.310766 17723 solver.cpp:237] Train net output #0: loss = 0.183816 (* 1 = 0.183816 loss) +I0407 09:26:13.310775 17723 sgd_solver.cpp:105] Iteration 7008, lr = 0.0025 +I0407 09:26:18.473307 17723 solver.cpp:218] Iteration 7020 (2.32446 iter/s, 5.16249s/12 iters), loss = 0.108543 +I0407 09:26:18.473346 17723 solver.cpp:237] Train net output #0: loss = 0.108543 (* 1 = 0.108543 loss) +I0407 09:26:18.473354 17723 sgd_solver.cpp:105] Iteration 7020, lr = 0.0025 +I0407 09:26:23.422466 17723 solver.cpp:218] Iteration 7032 (2.4247 iter/s, 4.94907s/12 iters), loss = 0.180041 +I0407 09:26:23.422508 17723 solver.cpp:237] Train net output #0: loss = 0.180041 (* 1 = 0.180041 loss) +I0407 09:26:23.422514 17723 sgd_solver.cpp:105] Iteration 7032, lr = 0.0025 +I0407 09:26:25.504164 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 09:26:28.514153 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 09:26:32.697281 17723 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 09:26:32.697302 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:26:34.292625 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:36.986835 17723 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 09:26:36.986876 17723 solver.cpp:397] Test net output #1: loss = 2.89925 (* 1 = 2.89925 loss) +I0407 09:26:38.953353 17723 solver.cpp:218] Iteration 7044 (0.772662 iter/s, 15.5307s/12 iters), loss = 0.168955 +I0407 09:26:38.953397 17723 solver.cpp:237] Train net output #0: loss = 0.168955 (* 1 = 0.168955 loss) +I0407 09:26:38.953404 17723 sgd_solver.cpp:105] Iteration 7044, lr = 0.0025 +I0407 09:26:44.011093 17723 solver.cpp:218] Iteration 7056 (2.37265 iter/s, 5.05764s/12 iters), loss = 0.195244 +I0407 09:26:44.011193 17723 solver.cpp:237] Train net output #0: loss = 0.195244 (* 1 = 0.195244 loss) +I0407 09:26:44.011202 17723 sgd_solver.cpp:105] Iteration 7056, lr = 0.0025 +I0407 09:26:48.943266 17723 solver.cpp:218] Iteration 7068 (2.43308 iter/s, 4.93202s/12 iters), loss = 0.13238 +I0407 09:26:48.943317 17723 solver.cpp:237] Train net output #0: loss = 0.13238 (* 1 = 0.13238 loss) +I0407 09:26:48.943327 17723 sgd_solver.cpp:105] Iteration 7068, lr = 0.0025 +I0407 09:26:53.920123 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:54.084899 17723 solver.cpp:218] Iteration 7080 (2.33394 iter/s, 5.14152s/12 iters), loss = 0.0968622 +I0407 09:26:54.084944 17723 solver.cpp:237] Train net output #0: loss = 0.0968624 (* 1 = 0.0968624 loss) +I0407 09:26:54.084951 17723 sgd_solver.cpp:105] Iteration 7080, lr = 0.0025 +I0407 09:26:59.283915 17723 solver.cpp:218] Iteration 7092 (2.30817 iter/s, 5.19892s/12 iters), loss = 0.193178 +I0407 09:26:59.283958 17723 solver.cpp:237] Train net output #0: loss = 0.193178 (* 1 = 0.193178 loss) +I0407 09:26:59.283967 17723 sgd_solver.cpp:105] Iteration 7092, lr = 0.0025 +I0407 09:27:04.486554 17723 solver.cpp:218] Iteration 7104 (2.30656 iter/s, 5.20254s/12 iters), loss = 0.0924165 +I0407 09:27:04.486598 17723 solver.cpp:237] Train net output #0: loss = 0.0924166 (* 1 = 0.0924166 loss) +I0407 09:27:04.486605 17723 sgd_solver.cpp:105] Iteration 7104, lr = 0.0025 +I0407 09:27:09.878458 17723 solver.cpp:218] Iteration 7116 (2.2256 iter/s, 5.3918s/12 iters), loss = 0.132478 +I0407 09:27:09.878502 17723 solver.cpp:237] Train net output #0: loss = 0.132478 (* 1 = 0.132478 loss) +I0407 09:27:09.878509 17723 sgd_solver.cpp:105] Iteration 7116, lr = 0.0025 +I0407 09:27:15.087738 17723 solver.cpp:218] Iteration 7128 (2.30363 iter/s, 5.20918s/12 iters), loss = 0.347352 +I0407 09:27:15.087878 17723 solver.cpp:237] Train net output #0: loss = 0.347352 (* 1 = 0.347352 loss) +I0407 09:27:15.087888 17723 sgd_solver.cpp:105] Iteration 7128, lr = 0.0025 +I0407 09:27:19.730913 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 09:27:22.797268 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 09:27:27.011042 17723 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 09:27:27.011065 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:27:28.650068 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:27:31.416942 17723 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 09:27:31.416976 17723 solver.cpp:397] Test net output #1: loss = 2.86754 (* 1 = 2.86754 loss) +I0407 09:27:31.552909 17723 solver.cpp:218] Iteration 7140 (0.728823 iter/s, 16.4649s/12 iters), loss = 0.125222 +I0407 09:27:31.554481 17723 solver.cpp:237] Train net output #0: loss = 0.125222 (* 1 = 0.125222 loss) +I0407 09:27:31.554494 17723 sgd_solver.cpp:105] Iteration 7140, lr = 0.0025 +I0407 09:27:36.046223 17723 solver.cpp:218] Iteration 7152 (2.67159 iter/s, 4.4917s/12 iters), loss = 0.148154 +I0407 09:27:36.046273 17723 solver.cpp:237] Train net output #0: loss = 0.148154 (* 1 = 0.148154 loss) +I0407 09:27:36.046283 17723 sgd_solver.cpp:105] Iteration 7152, lr = 0.0025 +I0407 09:27:41.378137 17723 solver.cpp:218] Iteration 7164 (2.25064 iter/s, 5.33181s/12 iters), loss = 0.099054 +I0407 09:27:41.378186 17723 solver.cpp:237] Train net output #0: loss = 0.0990541 (* 1 = 0.0990541 loss) +I0407 09:27:41.378196 17723 sgd_solver.cpp:105] Iteration 7164, lr = 0.0025 +I0407 09:27:46.559923 17723 solver.cpp:218] Iteration 7176 (2.31585 iter/s, 5.18168s/12 iters), loss = 0.0978126 +I0407 09:27:46.560034 17723 solver.cpp:237] Train net output #0: loss = 0.0978127 (* 1 = 0.0978127 loss) +I0407 09:27:46.560045 17723 sgd_solver.cpp:105] Iteration 7176, lr = 0.0025 +I0407 09:27:48.811414 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:27:51.839785 17723 solver.cpp:218] Iteration 7188 (2.27286 iter/s, 5.27969s/12 iters), loss = 0.186258 +I0407 09:27:51.839834 17723 solver.cpp:237] Train net output #0: loss = 0.186258 (* 1 = 0.186258 loss) +I0407 09:27:51.839843 17723 sgd_solver.cpp:105] Iteration 7188, lr = 0.0025 +I0407 09:27:57.177480 17723 solver.cpp:218] Iteration 7200 (2.2482 iter/s, 5.33759s/12 iters), loss = 0.092208 +I0407 09:27:57.177523 17723 solver.cpp:237] Train net output #0: loss = 0.0922081 (* 1 = 0.0922081 loss) +I0407 09:27:57.177531 17723 sgd_solver.cpp:105] Iteration 7200, lr = 0.0025 +I0407 09:28:02.557225 17723 solver.cpp:218] Iteration 7212 (2.23063 iter/s, 5.37965s/12 iters), loss = 0.137213 +I0407 09:28:02.557265 17723 solver.cpp:237] Train net output #0: loss = 0.137213 (* 1 = 0.137213 loss) +I0407 09:28:02.557271 17723 sgd_solver.cpp:105] Iteration 7212, lr = 0.0025 +I0407 09:28:07.775455 17723 solver.cpp:218] Iteration 7224 (2.29967 iter/s, 5.21814s/12 iters), loss = 0.152205 +I0407 09:28:07.775501 17723 solver.cpp:237] Train net output #0: loss = 0.152205 (* 1 = 0.152205 loss) +I0407 09:28:07.775509 17723 sgd_solver.cpp:105] Iteration 7224, lr = 0.0025 +I0407 09:28:13.094461 17723 solver.cpp:218] Iteration 7236 (2.2561 iter/s, 5.31891s/12 iters), loss = 0.212324 +I0407 09:28:13.094503 17723 solver.cpp:237] Train net output #0: loss = 0.212325 (* 1 = 0.212325 loss) +I0407 09:28:13.094511 17723 sgd_solver.cpp:105] Iteration 7236, lr = 0.0025 +I0407 09:28:15.229918 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 09:28:18.294026 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 09:28:22.021073 17723 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 09:28:22.021091 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:28:23.500453 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:28:26.317742 17723 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 09:28:26.317777 17723 solver.cpp:397] Test net output #1: loss = 2.86458 (* 1 = 2.86458 loss) +I0407 09:28:28.125174 17723 solver.cpp:218] Iteration 7248 (0.798374 iter/s, 15.0305s/12 iters), loss = 0.176346 +I0407 09:28:28.125226 17723 solver.cpp:237] Train net output #0: loss = 0.176346 (* 1 = 0.176346 loss) +I0407 09:28:28.125234 17723 sgd_solver.cpp:105] Iteration 7248, lr = 0.0025 +I0407 09:28:33.299758 17723 solver.cpp:218] Iteration 7260 (2.31907 iter/s, 5.17448s/12 iters), loss = 0.0754882 +I0407 09:28:33.299801 17723 solver.cpp:237] Train net output #0: loss = 0.0754883 (* 1 = 0.0754883 loss) +I0407 09:28:33.299809 17723 sgd_solver.cpp:105] Iteration 7260, lr = 0.0025 +I0407 09:28:38.512902 17723 solver.cpp:218] Iteration 7272 (2.30192 iter/s, 5.21304s/12 iters), loss = 0.204317 +I0407 09:28:38.512939 17723 solver.cpp:237] Train net output #0: loss = 0.204317 (* 1 = 0.204317 loss) +I0407 09:28:38.512945 17723 sgd_solver.cpp:105] Iteration 7272, lr = 0.0025 +I0407 09:28:43.059015 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:28:43.880993 17723 solver.cpp:218] Iteration 7284 (2.23547 iter/s, 5.368s/12 iters), loss = 0.199815 +I0407 09:28:43.881038 17723 solver.cpp:237] Train net output #0: loss = 0.199815 (* 1 = 0.199815 loss) +I0407 09:28:43.881047 17723 sgd_solver.cpp:105] Iteration 7284, lr = 0.0025 +I0407 09:28:48.883067 17723 solver.cpp:218] Iteration 7296 (2.39905 iter/s, 5.00197s/12 iters), loss = 0.101158 +I0407 09:28:48.883184 17723 solver.cpp:237] Train net output #0: loss = 0.101158 (* 1 = 0.101158 loss) +I0407 09:28:48.883193 17723 sgd_solver.cpp:105] Iteration 7296, lr = 0.0025 +I0407 09:28:54.178018 17723 solver.cpp:218] Iteration 7308 (2.26638 iter/s, 5.29478s/12 iters), loss = 0.306776 +I0407 09:28:54.178066 17723 solver.cpp:237] Train net output #0: loss = 0.306776 (* 1 = 0.306776 loss) +I0407 09:28:54.178073 17723 sgd_solver.cpp:105] Iteration 7308, lr = 0.0025 +I0407 09:28:59.532171 17723 solver.cpp:218] Iteration 7320 (2.24129 iter/s, 5.35405s/12 iters), loss = 0.0362766 +I0407 09:28:59.532210 17723 solver.cpp:237] Train net output #0: loss = 0.0362768 (* 1 = 0.0362768 loss) +I0407 09:28:59.532217 17723 sgd_solver.cpp:105] Iteration 7320, lr = 0.0025 +I0407 09:29:04.787329 17723 solver.cpp:218] Iteration 7332 (2.28351 iter/s, 5.25506s/12 iters), loss = 0.186772 +I0407 09:29:04.787379 17723 solver.cpp:237] Train net output #0: loss = 0.186772 (* 1 = 0.186772 loss) +I0407 09:29:04.787389 17723 sgd_solver.cpp:105] Iteration 7332, lr = 0.0025 +I0407 09:29:09.700500 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 09:29:12.744525 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 09:29:17.002002 17723 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 09:29:17.002024 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:29:18.460453 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:21.397943 17723 solver.cpp:397] Test net output #0: accuracy = 0.477328 +I0407 09:29:21.398064 17723 solver.cpp:397] Test net output #1: loss = 2.86054 (* 1 = 2.86054 loss) +I0407 09:29:21.538306 17723 solver.cpp:218] Iteration 7344 (0.716384 iter/s, 16.7508s/12 iters), loss = 0.0800975 +I0407 09:29:21.538369 17723 solver.cpp:237] Train net output #0: loss = 0.0800976 (* 1 = 0.0800976 loss) +I0407 09:29:21.538378 17723 sgd_solver.cpp:105] Iteration 7344, lr = 0.0025 +I0407 09:29:25.965656 17723 solver.cpp:218] Iteration 7356 (2.71049 iter/s, 4.42724s/12 iters), loss = 0.0755385 +I0407 09:29:25.965698 17723 solver.cpp:237] Train net output #0: loss = 0.0755386 (* 1 = 0.0755386 loss) +I0407 09:29:25.965704 17723 sgd_solver.cpp:105] Iteration 7356, lr = 0.0025 +I0407 09:29:31.318883 17723 solver.cpp:218] Iteration 7368 (2.24168 iter/s, 5.35313s/12 iters), loss = 0.132703 +I0407 09:29:31.318926 17723 solver.cpp:237] Train net output #0: loss = 0.132703 (* 1 = 0.132703 loss) +I0407 09:29:31.318933 17723 sgd_solver.cpp:105] Iteration 7368, lr = 0.0025 +I0407 09:29:36.310317 17723 solver.cpp:218] Iteration 7380 (2.40416 iter/s, 4.99134s/12 iters), loss = 0.0834148 +I0407 09:29:36.310364 17723 solver.cpp:237] Train net output #0: loss = 0.0834149 (* 1 = 0.0834149 loss) +I0407 09:29:36.310371 17723 sgd_solver.cpp:105] Iteration 7380, lr = 0.0025 +I0407 09:29:37.794595 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:41.578596 17723 solver.cpp:218] Iteration 7392 (2.27783 iter/s, 5.26818s/12 iters), loss = 0.146151 +I0407 09:29:41.578641 17723 solver.cpp:237] Train net output #0: loss = 0.146151 (* 1 = 0.146151 loss) +I0407 09:29:41.578647 17723 sgd_solver.cpp:105] Iteration 7392, lr = 0.0025 +I0407 09:29:46.888607 17723 solver.cpp:218] Iteration 7404 (2.25993 iter/s, 5.30991s/12 iters), loss = 0.0798383 +I0407 09:29:46.888662 17723 solver.cpp:237] Train net output #0: loss = 0.0798384 (* 1 = 0.0798384 loss) +I0407 09:29:46.888672 17723 sgd_solver.cpp:105] Iteration 7404, lr = 0.0025 +I0407 09:29:51.914149 17723 solver.cpp:218] Iteration 7416 (2.38786 iter/s, 5.02543s/12 iters), loss = 0.1025 +I0407 09:29:51.914291 17723 solver.cpp:237] Train net output #0: loss = 0.1025 (* 1 = 0.1025 loss) +I0407 09:29:51.914304 17723 sgd_solver.cpp:105] Iteration 7416, lr = 0.0025 +I0407 09:29:56.897863 17723 solver.cpp:218] Iteration 7428 (2.40793 iter/s, 4.98352s/12 iters), loss = 0.0428453 +I0407 09:29:56.897907 17723 solver.cpp:237] Train net output #0: loss = 0.0428454 (* 1 = 0.0428454 loss) +I0407 09:29:56.897914 17723 sgd_solver.cpp:105] Iteration 7428, lr = 0.0025 +I0407 09:30:02.249238 17723 solver.cpp:218] Iteration 7440 (2.24246 iter/s, 5.35127s/12 iters), loss = 0.0984954 +I0407 09:30:02.249289 17723 solver.cpp:237] Train net output #0: loss = 0.0984955 (* 1 = 0.0984955 loss) +I0407 09:30:02.249295 17723 sgd_solver.cpp:105] Iteration 7440, lr = 0.0025 +I0407 09:30:04.311679 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 09:30:07.329198 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 09:30:10.989413 17723 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 09:30:10.989431 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:30:12.546998 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:30:15.417626 17723 solver.cpp:397] Test net output #0: accuracy = 0.472426 +I0407 09:30:15.417660 17723 solver.cpp:397] Test net output #1: loss = 2.87933 (* 1 = 2.87933 loss) +I0407 09:30:17.302850 17723 solver.cpp:218] Iteration 7452 (0.797161 iter/s, 15.0534s/12 iters), loss = 0.217558 +I0407 09:30:17.302896 17723 solver.cpp:237] Train net output #0: loss = 0.217558 (* 1 = 0.217558 loss) +I0407 09:30:17.302903 17723 sgd_solver.cpp:105] Iteration 7452, lr = 0.0025 +I0407 09:30:22.464485 17723 solver.cpp:218] Iteration 7464 (2.32489 iter/s, 5.16153s/12 iters), loss = 0.148892 +I0407 09:30:22.464633 17723 solver.cpp:237] Train net output #0: loss = 0.148892 (* 1 = 0.148892 loss) +I0407 09:30:22.464641 17723 sgd_solver.cpp:105] Iteration 7464, lr = 0.0025 +I0407 09:30:27.808697 17723 solver.cpp:218] Iteration 7476 (2.24551 iter/s, 5.34401s/12 iters), loss = 0.127499 +I0407 09:30:27.808739 17723 solver.cpp:237] Train net output #0: loss = 0.127499 (* 1 = 0.127499 loss) +I0407 09:30:27.808746 17723 sgd_solver.cpp:105] Iteration 7476, lr = 0.0025 +I0407 09:30:31.519191 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:30:33.165760 17723 solver.cpp:218] Iteration 7488 (2.24007 iter/s, 5.35696s/12 iters), loss = 0.109675 +I0407 09:30:33.165807 17723 solver.cpp:237] Train net output #0: loss = 0.109676 (* 1 = 0.109676 loss) +I0407 09:30:33.165814 17723 sgd_solver.cpp:105] Iteration 7488, lr = 0.0025 +I0407 09:30:38.433871 17723 solver.cpp:218] Iteration 7500 (2.2779 iter/s, 5.26801s/12 iters), loss = 0.175912 +I0407 09:30:38.433907 17723 solver.cpp:237] Train net output #0: loss = 0.175912 (* 1 = 0.175912 loss) +I0407 09:30:38.433913 17723 sgd_solver.cpp:105] Iteration 7500, lr = 0.0025 +I0407 09:30:43.653592 17723 solver.cpp:218] Iteration 7512 (2.29901 iter/s, 5.21963s/12 iters), loss = 0.283164 +I0407 09:30:43.653632 17723 solver.cpp:237] Train net output #0: loss = 0.283164 (* 1 = 0.283164 loss) +I0407 09:30:43.653640 17723 sgd_solver.cpp:105] Iteration 7512, lr = 0.0025 +I0407 09:30:49.119053 17723 solver.cpp:218] Iteration 7524 (2.19565 iter/s, 5.46536s/12 iters), loss = 0.0981661 +I0407 09:30:49.119103 17723 solver.cpp:237] Train net output #0: loss = 0.0981662 (* 1 = 0.0981662 loss) +I0407 09:30:49.119112 17723 sgd_solver.cpp:105] Iteration 7524, lr = 0.0025 +I0407 09:30:54.477066 17723 solver.cpp:218] Iteration 7536 (2.23968 iter/s, 5.3579s/12 iters), loss = 0.108151 +I0407 09:30:54.477154 17723 solver.cpp:237] Train net output #0: loss = 0.108151 (* 1 = 0.108151 loss) +I0407 09:30:54.477164 17723 sgd_solver.cpp:105] Iteration 7536, lr = 0.0025 +I0407 09:30:59.462772 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 09:31:02.414928 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 09:31:06.455761 17723 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 09:31:06.455790 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:31:07.909962 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:31:10.795451 17723 solver.cpp:397] Test net output #0: accuracy = 0.487745 +I0407 09:31:10.795498 17723 solver.cpp:397] Test net output #1: loss = 2.77759 (* 1 = 2.77759 loss) +I0407 09:31:10.936105 17723 solver.cpp:218] Iteration 7548 (0.729093 iter/s, 16.4588s/12 iters), loss = 0.175459 +I0407 09:31:10.936154 17723 solver.cpp:237] Train net output #0: loss = 0.175459 (* 1 = 0.175459 loss) +I0407 09:31:10.936163 17723 sgd_solver.cpp:105] Iteration 7548, lr = 0.0025 +I0407 09:31:15.288653 17723 solver.cpp:218] Iteration 7560 (2.75707 iter/s, 4.35245s/12 iters), loss = 0.0752927 +I0407 09:31:15.288693 17723 solver.cpp:237] Train net output #0: loss = 0.0752929 (* 1 = 0.0752929 loss) +I0407 09:31:15.288700 17723 sgd_solver.cpp:105] Iteration 7560, lr = 0.0025 +I0407 09:31:20.636438 17723 solver.cpp:218] Iteration 7572 (2.24396 iter/s, 5.34769s/12 iters), loss = 0.0949108 +I0407 09:31:20.636482 17723 solver.cpp:237] Train net output #0: loss = 0.0949109 (* 1 = 0.0949109 loss) +I0407 09:31:20.636489 17723 sgd_solver.cpp:105] Iteration 7572, lr = 0.0025 +I0407 09:31:25.987658 17723 solver.cpp:218] Iteration 7584 (2.24252 iter/s, 5.35112s/12 iters), loss = 0.103511 +I0407 09:31:25.987771 17723 solver.cpp:237] Train net output #0: loss = 0.103511 (* 1 = 0.103511 loss) +I0407 09:31:25.987785 17723 sgd_solver.cpp:105] Iteration 7584, lr = 0.0025 +I0407 09:31:26.683928 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:31:31.392753 17723 solver.cpp:218] Iteration 7596 (2.2202 iter/s, 5.40493s/12 iters), loss = 0.168591 +I0407 09:31:31.392802 17723 solver.cpp:237] Train net output #0: loss = 0.168591 (* 1 = 0.168591 loss) +I0407 09:31:31.392810 17723 sgd_solver.cpp:105] Iteration 7596, lr = 0.0025 +I0407 09:31:36.689040 17723 solver.cpp:218] Iteration 7608 (2.26578 iter/s, 5.29618s/12 iters), loss = 0.0402846 +I0407 09:31:36.689087 17723 solver.cpp:237] Train net output #0: loss = 0.0402847 (* 1 = 0.0402847 loss) +I0407 09:31:36.689095 17723 sgd_solver.cpp:105] Iteration 7608, lr = 0.0025 +I0407 09:31:41.845986 17723 solver.cpp:218] Iteration 7620 (2.327 iter/s, 5.15685s/12 iters), loss = 0.058903 +I0407 09:31:41.846021 17723 solver.cpp:237] Train net output #0: loss = 0.0589031 (* 1 = 0.0589031 loss) +I0407 09:31:41.846029 17723 sgd_solver.cpp:105] Iteration 7620, lr = 0.0025 +I0407 09:31:44.470131 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:31:46.983101 17723 solver.cpp:218] Iteration 7632 (2.33598 iter/s, 5.13702s/12 iters), loss = 0.0950153 +I0407 09:31:46.983141 17723 solver.cpp:237] Train net output #0: loss = 0.0950155 (* 1 = 0.0950155 loss) +I0407 09:31:46.983148 17723 sgd_solver.cpp:105] Iteration 7632, lr = 0.0025 +I0407 09:31:52.246960 17723 solver.cpp:218] Iteration 7644 (2.27974 iter/s, 5.26376s/12 iters), loss = 0.18873 +I0407 09:31:52.247005 17723 solver.cpp:237] Train net output #0: loss = 0.18873 (* 1 = 0.18873 loss) +I0407 09:31:52.247012 17723 sgd_solver.cpp:105] Iteration 7644, lr = 0.0025 +I0407 09:31:54.229652 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 09:31:57.570150 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 09:32:01.333173 17723 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 09:32:01.333194 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:32:02.651099 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:05.631453 17723 solver.cpp:397] Test net output #0: accuracy = 0.487132 +I0407 09:32:05.631498 17723 solver.cpp:397] Test net output #1: loss = 2.85858 (* 1 = 2.85858 loss) +I0407 09:32:07.645570 17723 solver.cpp:218] Iteration 7656 (0.7793 iter/s, 15.3984s/12 iters), loss = 0.0724095 +I0407 09:32:07.645617 17723 solver.cpp:237] Train net output #0: loss = 0.0724096 (* 1 = 0.0724096 loss) +I0407 09:32:07.645624 17723 sgd_solver.cpp:105] Iteration 7656, lr = 0.0025 +I0407 09:32:12.570960 17723 solver.cpp:218] Iteration 7668 (2.4364 iter/s, 4.92529s/12 iters), loss = 0.236057 +I0407 09:32:12.570999 17723 solver.cpp:237] Train net output #0: loss = 0.236057 (* 1 = 0.236057 loss) +I0407 09:32:12.571005 17723 sgd_solver.cpp:105] Iteration 7668, lr = 0.0025 +I0407 09:32:17.785727 17723 solver.cpp:218] Iteration 7680 (2.3012 iter/s, 5.21467s/12 iters), loss = 0.21472 +I0407 09:32:17.785769 17723 solver.cpp:237] Train net output #0: loss = 0.21472 (* 1 = 0.21472 loss) +I0407 09:32:17.785775 17723 sgd_solver.cpp:105] Iteration 7680, lr = 0.0025 +I0407 09:32:20.602391 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:23.022310 17723 solver.cpp:218] Iteration 7692 (2.29162 iter/s, 5.23648s/12 iters), loss = 0.108106 +I0407 09:32:23.022352 17723 solver.cpp:237] Train net output #0: loss = 0.108106 (* 1 = 0.108106 loss) +I0407 09:32:23.022361 17723 sgd_solver.cpp:105] Iteration 7692, lr = 0.0025 +I0407 09:32:28.291466 17723 solver.cpp:218] Iteration 7704 (2.27745 iter/s, 5.26906s/12 iters), loss = 0.125884 +I0407 09:32:28.291569 17723 solver.cpp:237] Train net output #0: loss = 0.125884 (* 1 = 0.125884 loss) +I0407 09:32:28.291580 17723 sgd_solver.cpp:105] Iteration 7704, lr = 0.0025 +I0407 09:32:33.460232 17723 solver.cpp:218] Iteration 7716 (2.32171 iter/s, 5.16861s/12 iters), loss = 0.155225 +I0407 09:32:33.460274 17723 solver.cpp:237] Train net output #0: loss = 0.155225 (* 1 = 0.155225 loss) +I0407 09:32:33.460281 17723 sgd_solver.cpp:105] Iteration 7716, lr = 0.0025 +I0407 09:32:38.652794 17723 solver.cpp:218] Iteration 7728 (2.31104 iter/s, 5.19246s/12 iters), loss = 0.143469 +I0407 09:32:38.652835 17723 solver.cpp:237] Train net output #0: loss = 0.143469 (* 1 = 0.143469 loss) +I0407 09:32:38.652843 17723 sgd_solver.cpp:105] Iteration 7728, lr = 0.0025 +I0407 09:32:44.008973 17723 solver.cpp:218] Iteration 7740 (2.24045 iter/s, 5.35607s/12 iters), loss = 0.106471 +I0407 09:32:44.009035 17723 solver.cpp:237] Train net output #0: loss = 0.106472 (* 1 = 0.106472 loss) +I0407 09:32:44.009047 17723 sgd_solver.cpp:105] Iteration 7740, lr = 0.0025 +I0407 09:32:48.644323 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 09:32:52.313305 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 09:32:56.258826 17723 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 09:32:56.258846 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:32:57.543368 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:00.508091 17723 solver.cpp:397] Test net output #0: accuracy = 0.474265 +I0407 09:33:00.508249 17723 solver.cpp:397] Test net output #1: loss = 2.87952 (* 1 = 2.87952 loss) +I0407 09:33:00.648530 17723 solver.cpp:218] Iteration 7752 (0.721182 iter/s, 16.6394s/12 iters), loss = 0.257135 +I0407 09:33:00.648581 17723 solver.cpp:237] Train net output #0: loss = 0.257135 (* 1 = 0.257135 loss) +I0407 09:33:00.648588 17723 sgd_solver.cpp:105] Iteration 7752, lr = 0.0025 +I0407 09:33:05.095850 17723 solver.cpp:218] Iteration 7764 (2.69831 iter/s, 4.44722s/12 iters), loss = 0.155556 +I0407 09:33:05.095898 17723 solver.cpp:237] Train net output #0: loss = 0.155556 (* 1 = 0.155556 loss) +I0407 09:33:05.095907 17723 sgd_solver.cpp:105] Iteration 7764, lr = 0.0025 +I0407 09:33:09.926076 17723 solver.cpp:218] Iteration 7776 (2.48441 iter/s, 4.83012s/12 iters), loss = 0.0870544 +I0407 09:33:09.926118 17723 solver.cpp:237] Train net output #0: loss = 0.0870545 (* 1 = 0.0870545 loss) +I0407 09:33:09.926126 17723 sgd_solver.cpp:105] Iteration 7776, lr = 0.0025 +I0407 09:33:14.941074 17723 solver.cpp:218] Iteration 7788 (2.39287 iter/s, 5.0149s/12 iters), loss = 0.129815 +I0407 09:33:14.941115 17723 solver.cpp:237] Train net output #0: loss = 0.129815 (* 1 = 0.129815 loss) +I0407 09:33:14.941123 17723 sgd_solver.cpp:105] Iteration 7788, lr = 0.0025 +I0407 09:33:14.947544 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:20.299356 17723 solver.cpp:218] Iteration 7800 (2.23957 iter/s, 5.35818s/12 iters), loss = 0.0769342 +I0407 09:33:20.299409 17723 solver.cpp:237] Train net output #0: loss = 0.0769343 (* 1 = 0.0769343 loss) +I0407 09:33:20.299419 17723 sgd_solver.cpp:105] Iteration 7800, lr = 0.0025 +I0407 09:33:25.571102 17723 solver.cpp:218] Iteration 7812 (2.27633 iter/s, 5.27164s/12 iters), loss = 0.0483944 +I0407 09:33:25.571144 17723 solver.cpp:237] Train net output #0: loss = 0.0483945 (* 1 = 0.0483945 loss) +I0407 09:33:25.571152 17723 sgd_solver.cpp:105] Iteration 7812, lr = 0.0025 +I0407 09:33:30.913439 17723 solver.cpp:218] Iteration 7824 (2.24625 iter/s, 5.34223s/12 iters), loss = 0.149453 +I0407 09:33:30.913563 17723 solver.cpp:237] Train net output #0: loss = 0.149453 (* 1 = 0.149453 loss) +I0407 09:33:30.913571 17723 sgd_solver.cpp:105] Iteration 7824, lr = 0.0025 +I0407 09:33:36.175472 17723 solver.cpp:218] Iteration 7836 (2.28057 iter/s, 5.26185s/12 iters), loss = 0.243926 +I0407 09:33:36.175518 17723 solver.cpp:237] Train net output #0: loss = 0.243926 (* 1 = 0.243926 loss) +I0407 09:33:36.175524 17723 sgd_solver.cpp:105] Iteration 7836, lr = 0.0025 +I0407 09:33:41.360808 17723 solver.cpp:218] Iteration 7848 (2.31426 iter/s, 5.18523s/12 iters), loss = 0.124123 +I0407 09:33:41.360867 17723 solver.cpp:237] Train net output #0: loss = 0.124123 (* 1 = 0.124123 loss) +I0407 09:33:41.360878 17723 sgd_solver.cpp:105] Iteration 7848, lr = 0.0025 +I0407 09:33:43.494060 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 09:33:47.236490 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 09:33:50.935535 17723 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 09:33:50.935559 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:33:52.179787 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:55.189224 17723 solver.cpp:397] Test net output #0: accuracy = 0.473039 +I0407 09:33:55.189254 17723 solver.cpp:397] Test net output #1: loss = 2.88905 (* 1 = 2.88905 loss) +I0407 09:33:57.118480 17723 solver.cpp:218] Iteration 7860 (0.761543 iter/s, 15.7575s/12 iters), loss = 0.10652 +I0407 09:33:57.118522 17723 solver.cpp:237] Train net output #0: loss = 0.10652 (* 1 = 0.10652 loss) +I0407 09:33:57.118530 17723 sgd_solver.cpp:105] Iteration 7860, lr = 0.0025 +I0407 09:34:02.138499 17723 solver.cpp:218] Iteration 7872 (2.39048 iter/s, 5.01992s/12 iters), loss = 0.0557668 +I0407 09:34:02.138641 17723 solver.cpp:237] Train net output #0: loss = 0.0557669 (* 1 = 0.0557669 loss) +I0407 09:34:02.138649 17723 sgd_solver.cpp:105] Iteration 7872, lr = 0.0025 +I0407 09:34:07.514288 17723 solver.cpp:218] Iteration 7884 (2.23231 iter/s, 5.37559s/12 iters), loss = 0.104199 +I0407 09:34:07.514325 17723 solver.cpp:237] Train net output #0: loss = 0.104199 (* 1 = 0.104199 loss) +I0407 09:34:07.514333 17723 sgd_solver.cpp:105] Iteration 7884, lr = 0.0025 +I0407 09:34:09.708031 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:34:12.804950 17723 solver.cpp:218] Iteration 7896 (2.26819 iter/s, 5.29057s/12 iters), loss = 0.157225 +I0407 09:34:12.805003 17723 solver.cpp:237] Train net output #0: loss = 0.157225 (* 1 = 0.157225 loss) +I0407 09:34:12.805011 17723 sgd_solver.cpp:105] Iteration 7896, lr = 0.0025 +I0407 09:34:17.809855 17723 solver.cpp:218] Iteration 7908 (2.3977 iter/s, 5.0048s/12 iters), loss = 0.110908 +I0407 09:34:17.809897 17723 solver.cpp:237] Train net output #0: loss = 0.110908 (* 1 = 0.110908 loss) +I0407 09:34:17.809904 17723 sgd_solver.cpp:105] Iteration 7908, lr = 0.0025 +I0407 09:34:23.001715 17723 solver.cpp:218] Iteration 7920 (2.31135 iter/s, 5.19177s/12 iters), loss = 0.188017 +I0407 09:34:23.001755 17723 solver.cpp:237] Train net output #0: loss = 0.188017 (* 1 = 0.188017 loss) +I0407 09:34:23.001761 17723 sgd_solver.cpp:105] Iteration 7920, lr = 0.0025 +I0407 09:34:28.449951 17723 solver.cpp:218] Iteration 7932 (2.20259 iter/s, 5.44813s/12 iters), loss = 0.141701 +I0407 09:34:28.449996 17723 solver.cpp:237] Train net output #0: loss = 0.141701 (* 1 = 0.141701 loss) +I0407 09:34:28.450003 17723 sgd_solver.cpp:105] Iteration 7932, lr = 0.0025 +I0407 09:34:33.683634 17723 solver.cpp:218] Iteration 7944 (2.29289 iter/s, 5.23358s/12 iters), loss = 0.166799 +I0407 09:34:33.683769 17723 solver.cpp:237] Train net output #0: loss = 0.166799 (* 1 = 0.166799 loss) +I0407 09:34:33.683779 17723 sgd_solver.cpp:105] Iteration 7944, lr = 0.0025 +I0407 09:34:38.308370 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 09:34:42.149169 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 09:34:45.997539 17723 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 09:34:45.997556 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:34:47.298925 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:34:50.355309 17723 solver.cpp:397] Test net output #0: accuracy = 0.476716 +I0407 09:34:50.355337 17723 solver.cpp:397] Test net output #1: loss = 2.95108 (* 1 = 2.95108 loss) +I0407 09:34:50.495107 17723 solver.cpp:218] Iteration 7956 (0.71381 iter/s, 16.8112s/12 iters), loss = 0.0679412 +I0407 09:34:50.495179 17723 solver.cpp:237] Train net output #0: loss = 0.0679414 (* 1 = 0.0679414 loss) +I0407 09:34:50.495188 17723 sgd_solver.cpp:105] Iteration 7956, lr = 0.0025 +I0407 09:34:54.845708 17723 solver.cpp:218] Iteration 7968 (2.75832 iter/s, 4.35048s/12 iters), loss = 0.0448621 +I0407 09:34:54.845757 17723 solver.cpp:237] Train net output #0: loss = 0.0448623 (* 1 = 0.0448623 loss) +I0407 09:34:54.845764 17723 sgd_solver.cpp:105] Iteration 7968, lr = 0.0025 +I0407 09:34:59.724121 17723 solver.cpp:218] Iteration 7980 (2.45987 iter/s, 4.87831s/12 iters), loss = 0.0642306 +I0407 09:34:59.724169 17723 solver.cpp:237] Train net output #0: loss = 0.0642308 (* 1 = 0.0642308 loss) +I0407 09:34:59.724177 17723 sgd_solver.cpp:105] Iteration 7980, lr = 0.0025 +I0407 09:35:04.197154 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:35:04.985522 17723 solver.cpp:218] Iteration 7992 (2.28081 iter/s, 5.2613s/12 iters), loss = 0.154156 +I0407 09:35:04.985564 17723 solver.cpp:237] Train net output #0: loss = 0.154156 (* 1 = 0.154156 loss) +I0407 09:35:04.985571 17723 sgd_solver.cpp:105] Iteration 7992, lr = 0.0025 +I0407 09:35:10.320103 17723 solver.cpp:218] Iteration 8004 (2.24952 iter/s, 5.33448s/12 iters), loss = 0.138573 +I0407 09:35:10.320147 17723 solver.cpp:237] Train net output #0: loss = 0.138573 (* 1 = 0.138573 loss) +I0407 09:35:10.320154 17723 sgd_solver.cpp:105] Iteration 8004, lr = 0.0025 +I0407 09:35:15.773106 17723 solver.cpp:218] Iteration 8016 (2.20066 iter/s, 5.4529s/12 iters), loss = 0.0432704 +I0407 09:35:15.773159 17723 solver.cpp:237] Train net output #0: loss = 0.0432706 (* 1 = 0.0432706 loss) +I0407 09:35:15.773169 17723 sgd_solver.cpp:105] Iteration 8016, lr = 0.0025 +I0407 09:35:21.030165 17723 solver.cpp:218] Iteration 8028 (2.28269 iter/s, 5.25695s/12 iters), loss = 0.131751 +I0407 09:35:21.030210 17723 solver.cpp:237] Train net output #0: loss = 0.131751 (* 1 = 0.131751 loss) +I0407 09:35:21.030215 17723 sgd_solver.cpp:105] Iteration 8028, lr = 0.0025 +I0407 09:35:26.191074 17723 solver.cpp:218] Iteration 8040 (2.32522 iter/s, 5.16081s/12 iters), loss = 0.222564 +I0407 09:35:26.191118 17723 solver.cpp:237] Train net output #0: loss = 0.222564 (* 1 = 0.222564 loss) +I0407 09:35:26.191125 17723 sgd_solver.cpp:105] Iteration 8040, lr = 0.0025 +I0407 09:35:31.057126 17723 solver.cpp:218] Iteration 8052 (2.46611 iter/s, 4.86596s/12 iters), loss = 0.0569647 +I0407 09:35:31.057169 17723 solver.cpp:237] Train net output #0: loss = 0.0569649 (* 1 = 0.0569649 loss) +I0407 09:35:31.057176 17723 sgd_solver.cpp:105] Iteration 8052, lr = 0.0025 +I0407 09:35:33.216295 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 09:35:37.140748 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 09:35:40.813936 17723 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 09:35:40.813959 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:35:42.038832 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:35:45.188009 17723 solver.cpp:397] Test net output #0: accuracy = 0.487132 +I0407 09:35:45.188046 17723 solver.cpp:397] Test net output #1: loss = 2.88917 (* 1 = 2.88917 loss) +I0407 09:35:47.151032 17723 solver.cpp:218] Iteration 8064 (0.745632 iter/s, 16.0937s/12 iters), loss = 0.0953866 +I0407 09:35:47.151082 17723 solver.cpp:237] Train net output #0: loss = 0.0953867 (* 1 = 0.0953867 loss) +I0407 09:35:47.151091 17723 sgd_solver.cpp:105] Iteration 8064, lr = 0.0025 +I0407 09:35:52.348500 17723 solver.cpp:218] Iteration 8076 (2.30886 iter/s, 5.19736s/12 iters), loss = 0.115914 +I0407 09:35:52.348547 17723 solver.cpp:237] Train net output #0: loss = 0.115914 (* 1 = 0.115914 loss) +I0407 09:35:52.348554 17723 sgd_solver.cpp:105] Iteration 8076, lr = 0.0025 +I0407 09:35:57.772011 17723 solver.cpp:218] Iteration 8088 (2.21263 iter/s, 5.42341s/12 iters), loss = 0.11987 +I0407 09:35:57.772049 17723 solver.cpp:237] Train net output #0: loss = 0.11987 (* 1 = 0.11987 loss) +I0407 09:35:57.772055 17723 sgd_solver.cpp:105] Iteration 8088, lr = 0.0025 +I0407 09:35:59.241886 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:02.997117 17723 solver.cpp:218] Iteration 8100 (2.29665 iter/s, 5.225s/12 iters), loss = 0.119287 +I0407 09:36:02.997175 17723 solver.cpp:237] Train net output #0: loss = 0.119287 (* 1 = 0.119287 loss) +I0407 09:36:02.997185 17723 sgd_solver.cpp:105] Iteration 8100, lr = 0.0025 +I0407 09:36:08.156873 17723 solver.cpp:218] Iteration 8112 (2.32574 iter/s, 5.15964s/12 iters), loss = 0.0425074 +I0407 09:36:08.157037 17723 solver.cpp:237] Train net output #0: loss = 0.0425075 (* 1 = 0.0425075 loss) +I0407 09:36:08.157049 17723 sgd_solver.cpp:105] Iteration 8112, lr = 0.0025 +I0407 09:36:13.350741 17723 solver.cpp:218] Iteration 8124 (2.31051 iter/s, 5.19365s/12 iters), loss = 0.102183 +I0407 09:36:13.350783 17723 solver.cpp:237] Train net output #0: loss = 0.102184 (* 1 = 0.102184 loss) +I0407 09:36:13.350790 17723 sgd_solver.cpp:105] Iteration 8124, lr = 0.0025 +I0407 09:36:18.626293 17723 solver.cpp:218] Iteration 8136 (2.27469 iter/s, 5.27545s/12 iters), loss = 0.114829 +I0407 09:36:18.626336 17723 solver.cpp:237] Train net output #0: loss = 0.114829 (* 1 = 0.114829 loss) +I0407 09:36:18.626343 17723 sgd_solver.cpp:105] Iteration 8136, lr = 0.0025 +I0407 09:36:24.143242 17723 solver.cpp:218] Iteration 8148 (2.17516 iter/s, 5.51685s/12 iters), loss = 0.0730449 +I0407 09:36:24.143288 17723 solver.cpp:237] Train net output #0: loss = 0.0730451 (* 1 = 0.0730451 loss) +I0407 09:36:24.143296 17723 sgd_solver.cpp:105] Iteration 8148, lr = 0.0025 +I0407 09:36:28.940026 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 09:36:33.898563 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 09:36:38.187355 17723 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 09:36:38.187464 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:36:39.416616 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:42.546334 17723 solver.cpp:397] Test net output #0: accuracy = 0.491422 +I0407 09:36:42.546362 17723 solver.cpp:397] Test net output #1: loss = 2.90181 (* 1 = 2.90181 loss) +I0407 09:36:42.681655 17723 solver.cpp:218] Iteration 8160 (0.647312 iter/s, 18.5382s/12 iters), loss = 0.104059 +I0407 09:36:42.681702 17723 solver.cpp:237] Train net output #0: loss = 0.104059 (* 1 = 0.104059 loss) +I0407 09:36:42.681710 17723 sgd_solver.cpp:105] Iteration 8160, lr = 0.0025 +I0407 09:36:46.960302 17723 solver.cpp:218] Iteration 8172 (2.80469 iter/s, 4.27855s/12 iters), loss = 0.0819929 +I0407 09:36:46.960348 17723 solver.cpp:237] Train net output #0: loss = 0.081993 (* 1 = 0.081993 loss) +I0407 09:36:46.960355 17723 sgd_solver.cpp:105] Iteration 8172, lr = 0.0025 +I0407 09:36:52.148624 17723 solver.cpp:218] Iteration 8184 (2.31293 iter/s, 5.18822s/12 iters), loss = 0.15578 +I0407 09:36:52.148679 17723 solver.cpp:237] Train net output #0: loss = 0.15578 (* 1 = 0.15578 loss) +I0407 09:36:52.148687 17723 sgd_solver.cpp:105] Iteration 8184, lr = 0.0025 +I0407 09:36:55.959144 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:57.503017 17723 solver.cpp:218] Iteration 8196 (2.2412 iter/s, 5.35428s/12 iters), loss = 0.118174 +I0407 09:36:57.503064 17723 solver.cpp:237] Train net output #0: loss = 0.118174 (* 1 = 0.118174 loss) +I0407 09:36:57.503072 17723 sgd_solver.cpp:105] Iteration 8196, lr = 0.0025 +I0407 09:37:02.614259 17723 solver.cpp:218] Iteration 8208 (2.34781 iter/s, 5.11114s/12 iters), loss = 0.119944 +I0407 09:37:02.614300 17723 solver.cpp:237] Train net output #0: loss = 0.119944 (* 1 = 0.119944 loss) +I0407 09:37:02.614306 17723 sgd_solver.cpp:105] Iteration 8208, lr = 0.0025 +I0407 09:37:07.939429 17723 solver.cpp:218] Iteration 8220 (2.25349 iter/s, 5.32507s/12 iters), loss = 0.113763 +I0407 09:37:07.939477 17723 solver.cpp:237] Train net output #0: loss = 0.113763 (* 1 = 0.113763 loss) +I0407 09:37:07.939484 17723 sgd_solver.cpp:105] Iteration 8220, lr = 0.0025 +I0407 09:37:13.366928 17723 solver.cpp:218] Iteration 8232 (2.21101 iter/s, 5.42739s/12 iters), loss = 0.0734046 +I0407 09:37:13.367177 17723 solver.cpp:237] Train net output #0: loss = 0.0734048 (* 1 = 0.0734048 loss) +I0407 09:37:13.367185 17723 sgd_solver.cpp:105] Iteration 8232, lr = 0.0025 +I0407 09:37:18.662575 17723 solver.cpp:218] Iteration 8244 (2.26614 iter/s, 5.29535s/12 iters), loss = 0.202632 +I0407 09:37:18.662616 17723 solver.cpp:237] Train net output #0: loss = 0.202632 (* 1 = 0.202632 loss) +I0407 09:37:18.662623 17723 sgd_solver.cpp:105] Iteration 8244, lr = 0.0025 +I0407 09:37:23.803021 17723 solver.cpp:218] Iteration 8256 (2.33447 iter/s, 5.14035s/12 iters), loss = 0.068278 +I0407 09:37:23.803061 17723 solver.cpp:237] Train net output #0: loss = 0.0682781 (* 1 = 0.0682781 loss) +I0407 09:37:23.803067 17723 sgd_solver.cpp:105] Iteration 8256, lr = 0.0025 +I0407 09:37:25.799464 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 09:37:30.566226 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 09:37:34.696612 17723 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 09:37:34.696632 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:37:35.818387 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:39.026314 17723 solver.cpp:397] Test net output #0: accuracy = 0.47549 +I0407 09:37:39.026346 17723 solver.cpp:397] Test net output #1: loss = 2.83492 (* 1 = 2.83492 loss) +I0407 09:37:40.961351 17723 solver.cpp:218] Iteration 8268 (0.699376 iter/s, 17.1581s/12 iters), loss = 0.11857 +I0407 09:37:40.961392 17723 solver.cpp:237] Train net output #0: loss = 0.11857 (* 1 = 0.11857 loss) +I0407 09:37:40.961398 17723 sgd_solver.cpp:105] Iteration 8268, lr = 0.0025 +I0407 09:37:46.091601 17723 solver.cpp:218] Iteration 8280 (2.33911 iter/s, 5.13015s/12 iters), loss = 0.0934839 +I0407 09:37:46.091701 17723 solver.cpp:237] Train net output #0: loss = 0.093484 (* 1 = 0.093484 loss) +I0407 09:37:46.091709 17723 sgd_solver.cpp:105] Iteration 8280, lr = 0.0025 +I0407 09:37:51.359957 17723 solver.cpp:218] Iteration 8292 (2.27782 iter/s, 5.2682s/12 iters), loss = 0.11242 +I0407 09:37:51.359997 17723 solver.cpp:237] Train net output #0: loss = 0.11242 (* 1 = 0.11242 loss) +I0407 09:37:51.360004 17723 sgd_solver.cpp:105] Iteration 8292, lr = 0.0025 +I0407 09:37:51.934556 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:55.915866 17723 solver.cpp:218] Iteration 8304 (2.634 iter/s, 4.55582s/12 iters), loss = 0.069613 +I0407 09:37:55.915911 17723 solver.cpp:237] Train net output #0: loss = 0.0696131 (* 1 = 0.0696131 loss) +I0407 09:37:55.915920 17723 sgd_solver.cpp:105] Iteration 8304, lr = 0.0025 +I0407 09:37:58.437163 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:38:00.726966 17723 solver.cpp:218] Iteration 8316 (2.49428 iter/s, 4.811s/12 iters), loss = 0.0634216 +I0407 09:38:00.727011 17723 solver.cpp:237] Train net output #0: loss = 0.0634217 (* 1 = 0.0634217 loss) +I0407 09:38:00.727020 17723 sgd_solver.cpp:105] Iteration 8316, lr = 0.0025 +I0407 09:38:05.802927 17723 solver.cpp:218] Iteration 8328 (2.36413 iter/s, 5.07586s/12 iters), loss = 0.0192429 +I0407 09:38:05.802973 17723 solver.cpp:237] Train net output #0: loss = 0.019243 (* 1 = 0.019243 loss) +I0407 09:38:05.802983 17723 sgd_solver.cpp:105] Iteration 8328, lr = 0.0025 +I0407 09:38:10.862761 17723 solver.cpp:218] Iteration 8340 (2.37167 iter/s, 5.05973s/12 iters), loss = 0.0610751 +I0407 09:38:10.862803 17723 solver.cpp:237] Train net output #0: loss = 0.0610752 (* 1 = 0.0610752 loss) +I0407 09:38:10.862812 17723 sgd_solver.cpp:105] Iteration 8340, lr = 0.0025 +I0407 09:38:16.016948 17723 solver.cpp:218] Iteration 8352 (2.32825 iter/s, 5.15409s/12 iters), loss = 0.12777 +I0407 09:38:16.016991 17723 solver.cpp:237] Train net output #0: loss = 0.12777 (* 1 = 0.12777 loss) +I0407 09:38:16.016999 17723 sgd_solver.cpp:105] Iteration 8352, lr = 0.0025 +I0407 09:38:20.719830 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 09:38:24.781702 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 09:38:28.443014 17723 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 09:38:28.443037 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:38:29.543884 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:38:32.802487 17723 solver.cpp:397] Test net output #0: accuracy = 0.476103 +I0407 09:38:32.802523 17723 solver.cpp:397] Test net output #1: loss = 2.86672 (* 1 = 2.86672 loss) +I0407 09:38:32.941673 17723 solver.cpp:218] Iteration 8364 (0.70903 iter/s, 16.9245s/12 iters), loss = 0.103239 +I0407 09:38:32.943253 17723 solver.cpp:237] Train net output #0: loss = 0.103239 (* 1 = 0.103239 loss) +I0407 09:38:32.943267 17723 sgd_solver.cpp:105] Iteration 8364, lr = 0.0025 +I0407 09:38:37.148118 17723 solver.cpp:218] Iteration 8376 (2.85386 iter/s, 4.20483s/12 iters), loss = 0.113682 +I0407 09:38:37.148162 17723 solver.cpp:237] Train net output #0: loss = 0.113682 (* 1 = 0.113682 loss) +I0407 09:38:37.148169 17723 sgd_solver.cpp:105] Iteration 8376, lr = 0.0025 +I0407 09:38:42.515725 17723 solver.cpp:218] Iteration 8388 (2.23568 iter/s, 5.3675s/12 iters), loss = 0.0627889 +I0407 09:38:42.515772 17723 solver.cpp:237] Train net output #0: loss = 0.062789 (* 1 = 0.062789 loss) +I0407 09:38:42.515779 17723 sgd_solver.cpp:105] Iteration 8388, lr = 0.0025 +I0407 09:38:45.327330 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:38:47.701527 17723 solver.cpp:218] Iteration 8400 (2.31406 iter/s, 5.1857s/12 iters), loss = 0.0985468 +I0407 09:38:47.701565 17723 solver.cpp:237] Train net output #0: loss = 0.0985468 (* 1 = 0.0985468 loss) +I0407 09:38:47.701571 17723 sgd_solver.cpp:105] Iteration 8400, lr = 0.0025 +I0407 09:38:52.923418 17723 solver.cpp:218] Iteration 8412 (2.29806 iter/s, 5.2218s/12 iters), loss = 0.0856074 +I0407 09:38:52.923517 17723 solver.cpp:237] Train net output #0: loss = 0.0856075 (* 1 = 0.0856075 loss) +I0407 09:38:52.923525 17723 sgd_solver.cpp:105] Iteration 8412, lr = 0.0025 +I0407 09:38:58.364910 17723 solver.cpp:218] Iteration 8424 (2.20534 iter/s, 5.44134s/12 iters), loss = 0.136218 +I0407 09:38:58.364953 17723 solver.cpp:237] Train net output #0: loss = 0.136218 (* 1 = 0.136218 loss) +I0407 09:38:58.364960 17723 sgd_solver.cpp:105] Iteration 8424, lr = 0.0025 +I0407 09:39:03.729400 17723 solver.cpp:218] Iteration 8436 (2.23697 iter/s, 5.36439s/12 iters), loss = 0.0117578 +I0407 09:39:03.729440 17723 solver.cpp:237] Train net output #0: loss = 0.0117579 (* 1 = 0.0117579 loss) +I0407 09:39:03.729447 17723 sgd_solver.cpp:105] Iteration 8436, lr = 0.0025 +I0407 09:39:08.936782 17723 solver.cpp:218] Iteration 8448 (2.30446 iter/s, 5.20728s/12 iters), loss = 0.0578684 +I0407 09:39:08.936827 17723 solver.cpp:237] Train net output #0: loss = 0.0578685 (* 1 = 0.0578685 loss) +I0407 09:39:08.936836 17723 sgd_solver.cpp:105] Iteration 8448, lr = 0.0025 +I0407 09:39:13.984174 17723 solver.cpp:218] Iteration 8460 (2.37751 iter/s, 5.04729s/12 iters), loss = 0.114637 +I0407 09:39:13.984221 17723 solver.cpp:237] Train net output #0: loss = 0.114637 (* 1 = 0.114637 loss) +I0407 09:39:13.984231 17723 sgd_solver.cpp:105] Iteration 8460, lr = 0.0025 +I0407 09:39:16.103969 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 09:39:20.392562 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 09:39:24.100863 17723 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 09:39:24.100932 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:39:25.136245 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:28.424557 17723 solver.cpp:397] Test net output #0: accuracy = 0.491422 +I0407 09:39:28.424590 17723 solver.cpp:397] Test net output #1: loss = 2.84574 (* 1 = 2.84574 loss) +I0407 09:39:30.289940 17723 solver.cpp:218] Iteration 8472 (0.735945 iter/s, 16.3056s/12 iters), loss = 0.155235 +I0407 09:39:30.289983 17723 solver.cpp:237] Train net output #0: loss = 0.155235 (* 1 = 0.155235 loss) +I0407 09:39:30.289988 17723 sgd_solver.cpp:105] Iteration 8472, lr = 0.0025 +I0407 09:39:35.644692 17723 solver.cpp:218] Iteration 8484 (2.24104 iter/s, 5.35465s/12 iters), loss = 0.0683355 +I0407 09:39:35.644744 17723 solver.cpp:237] Train net output #0: loss = 0.0683356 (* 1 = 0.0683356 loss) +I0407 09:39:35.644752 17723 sgd_solver.cpp:105] Iteration 8484, lr = 0.0025 +I0407 09:39:40.954301 17723 solver.cpp:218] Iteration 8496 (2.2601 iter/s, 5.30949s/12 iters), loss = 0.0862651 +I0407 09:39:40.954360 17723 solver.cpp:237] Train net output #0: loss = 0.0862652 (* 1 = 0.0862652 loss) +I0407 09:39:40.954371 17723 sgd_solver.cpp:105] Iteration 8496, lr = 0.0025 +I0407 09:39:40.989248 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:46.355062 17723 solver.cpp:218] Iteration 8508 (2.22196 iter/s, 5.40065s/12 iters), loss = 0.0511191 +I0407 09:39:46.355113 17723 solver.cpp:237] Train net output #0: loss = 0.0511192 (* 1 = 0.0511192 loss) +I0407 09:39:46.355124 17723 sgd_solver.cpp:105] Iteration 8508, lr = 0.0025 +I0407 09:39:51.582958 17723 solver.cpp:218] Iteration 8520 (2.29542 iter/s, 5.22779s/12 iters), loss = 0.139042 +I0407 09:39:51.583000 17723 solver.cpp:237] Train net output #0: loss = 0.139042 (* 1 = 0.139042 loss) +I0407 09:39:51.583007 17723 sgd_solver.cpp:105] Iteration 8520, lr = 0.0025 +I0407 09:39:56.816438 17723 solver.cpp:218] Iteration 8532 (2.29297 iter/s, 5.23338s/12 iters), loss = 0.0460321 +I0407 09:39:56.816566 17723 solver.cpp:237] Train net output #0: loss = 0.0460322 (* 1 = 0.0460322 loss) +I0407 09:39:56.816574 17723 sgd_solver.cpp:105] Iteration 8532, lr = 0.0025 +I0407 09:40:02.253731 17723 solver.cpp:218] Iteration 8544 (2.20705 iter/s, 5.43711s/12 iters), loss = 0.173334 +I0407 09:40:02.253770 17723 solver.cpp:237] Train net output #0: loss = 0.173334 (* 1 = 0.173334 loss) +I0407 09:40:02.253777 17723 sgd_solver.cpp:105] Iteration 8544, lr = 0.0025 +I0407 09:40:07.673326 17723 solver.cpp:218] Iteration 8556 (2.21423 iter/s, 5.4195s/12 iters), loss = 0.0369303 +I0407 09:40:07.673363 17723 solver.cpp:237] Train net output #0: loss = 0.0369304 (* 1 = 0.0369304 loss) +I0407 09:40:07.673372 17723 sgd_solver.cpp:105] Iteration 8556, lr = 0.0025 +I0407 09:40:12.478533 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 09:40:16.693847 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 09:40:20.432225 17723 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 09:40:20.432246 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:40:21.417207 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:24.766737 17723 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 09:40:24.766769 17723 solver.cpp:397] Test net output #1: loss = 2.84107 (* 1 = 2.84107 loss) +I0407 09:40:24.907522 17723 solver.cpp:218] Iteration 8568 (0.696298 iter/s, 17.234s/12 iters), loss = 0.145538 +I0407 09:40:24.909121 17723 solver.cpp:237] Train net output #0: loss = 0.145539 (* 1 = 0.145539 loss) +I0407 09:40:24.909139 17723 sgd_solver.cpp:105] Iteration 8568, lr = 0.0025 +I0407 09:40:29.261171 17723 solver.cpp:218] Iteration 8580 (2.75734 iter/s, 4.35202s/12 iters), loss = 0.0584392 +I0407 09:40:29.261279 17723 solver.cpp:237] Train net output #0: loss = 0.0584393 (* 1 = 0.0584393 loss) +I0407 09:40:29.261289 17723 sgd_solver.cpp:105] Iteration 8580, lr = 0.0025 +I0407 09:40:34.424834 17723 solver.cpp:218] Iteration 8592 (2.324 iter/s, 5.16351s/12 iters), loss = 0.0972383 +I0407 09:40:34.424878 17723 solver.cpp:237] Train net output #0: loss = 0.0972384 (* 1 = 0.0972384 loss) +I0407 09:40:34.424890 17723 sgd_solver.cpp:105] Iteration 8592, lr = 0.0025 +I0407 09:40:36.693614 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:39.738409 17723 solver.cpp:218] Iteration 8604 (2.25841 iter/s, 5.31347s/12 iters), loss = 0.059836 +I0407 09:40:39.738468 17723 solver.cpp:237] Train net output #0: loss = 0.0598361 (* 1 = 0.0598361 loss) +I0407 09:40:39.738478 17723 sgd_solver.cpp:105] Iteration 8604, lr = 0.0025 +I0407 09:40:45.094627 17723 solver.cpp:218] Iteration 8616 (2.24044 iter/s, 5.3561s/12 iters), loss = 0.0837077 +I0407 09:40:45.094686 17723 solver.cpp:237] Train net output #0: loss = 0.0837078 (* 1 = 0.0837078 loss) +I0407 09:40:45.094696 17723 sgd_solver.cpp:105] Iteration 8616, lr = 0.0025 +I0407 09:40:50.437968 17723 solver.cpp:218] Iteration 8628 (2.24584 iter/s, 5.34322s/12 iters), loss = 0.036472 +I0407 09:40:50.438024 17723 solver.cpp:237] Train net output #0: loss = 0.0364721 (* 1 = 0.0364721 loss) +I0407 09:40:50.438035 17723 sgd_solver.cpp:105] Iteration 8628, lr = 0.0025 +I0407 09:40:55.873054 17723 solver.cpp:218] Iteration 8640 (2.20792 iter/s, 5.43497s/12 iters), loss = 0.0483414 +I0407 09:40:55.873111 17723 solver.cpp:237] Train net output #0: loss = 0.0483415 (* 1 = 0.0483415 loss) +I0407 09:40:55.873121 17723 sgd_solver.cpp:105] Iteration 8640, lr = 0.0025 +I0407 09:41:00.901067 17723 solver.cpp:218] Iteration 8652 (2.38668 iter/s, 5.0279s/12 iters), loss = 0.119496 +I0407 09:41:00.901185 17723 solver.cpp:237] Train net output #0: loss = 0.119497 (* 1 = 0.119497 loss) +I0407 09:41:00.901196 17723 sgd_solver.cpp:105] Iteration 8652, lr = 0.0025 +I0407 09:41:06.033535 17723 solver.cpp:218] Iteration 8664 (2.33814 iter/s, 5.1323s/12 iters), loss = 0.178504 +I0407 09:41:06.033588 17723 solver.cpp:237] Train net output #0: loss = 0.178504 (* 1 = 0.178504 loss) +I0407 09:41:06.033597 17723 sgd_solver.cpp:105] Iteration 8664, lr = 0.0025 +I0407 09:41:08.094249 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 09:41:13.061969 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 09:41:17.260048 17723 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 09:41:17.260068 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:41:18.205665 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:21.607157 17723 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 09:41:21.607187 17723 solver.cpp:397] Test net output #1: loss = 2.9558 (* 1 = 2.9558 loss) +I0407 09:41:23.490203 17723 solver.cpp:218] Iteration 8676 (0.687424 iter/s, 17.4565s/12 iters), loss = 0.243724 +I0407 09:41:23.490250 17723 solver.cpp:237] Train net output #0: loss = 0.243724 (* 1 = 0.243724 loss) +I0407 09:41:23.490257 17723 sgd_solver.cpp:105] Iteration 8676, lr = 0.0025 +I0407 09:41:28.878271 17723 solver.cpp:218] Iteration 8688 (2.22719 iter/s, 5.38796s/12 iters), loss = 0.0547524 +I0407 09:41:28.878321 17723 solver.cpp:237] Train net output #0: loss = 0.0547525 (* 1 = 0.0547525 loss) +I0407 09:41:28.878329 17723 sgd_solver.cpp:105] Iteration 8688, lr = 0.0025 +I0407 09:41:33.319036 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:34.076745 17723 solver.cpp:218] Iteration 8700 (2.30842 iter/s, 5.19837s/12 iters), loss = 0.147064 +I0407 09:41:34.076783 17723 solver.cpp:237] Train net output #0: loss = 0.147064 (* 1 = 0.147064 loss) +I0407 09:41:34.076790 17723 sgd_solver.cpp:105] Iteration 8700, lr = 0.0025 +I0407 09:41:39.317906 17723 solver.cpp:218] Iteration 8712 (2.28961 iter/s, 5.24107s/12 iters), loss = 0.0774947 +I0407 09:41:39.317957 17723 solver.cpp:237] Train net output #0: loss = 0.0774948 (* 1 = 0.0774948 loss) +I0407 09:41:39.317966 17723 sgd_solver.cpp:105] Iteration 8712, lr = 0.0025 +I0407 09:41:44.697841 17723 solver.cpp:218] Iteration 8724 (2.23055 iter/s, 5.37983s/12 iters), loss = 0.14749 +I0407 09:41:44.697878 17723 solver.cpp:237] Train net output #0: loss = 0.14749 (* 1 = 0.14749 loss) +I0407 09:41:44.697887 17723 sgd_solver.cpp:105] Iteration 8724, lr = 0.0025 +I0407 09:41:49.855398 17723 solver.cpp:218] Iteration 8736 (2.32673 iter/s, 5.15746s/12 iters), loss = 0.0796878 +I0407 09:41:49.855469 17723 solver.cpp:237] Train net output #0: loss = 0.0796879 (* 1 = 0.0796879 loss) +I0407 09:41:49.855480 17723 sgd_solver.cpp:105] Iteration 8736, lr = 0.0025 +I0407 09:41:55.206494 17723 solver.cpp:218] Iteration 8748 (2.24258 iter/s, 5.35097s/12 iters), loss = 0.0479286 +I0407 09:41:55.206538 17723 solver.cpp:237] Train net output #0: loss = 0.0479287 (* 1 = 0.0479287 loss) +I0407 09:41:55.206545 17723 sgd_solver.cpp:105] Iteration 8748, lr = 0.0025 +I0407 09:42:00.472391 17723 solver.cpp:218] Iteration 8760 (2.27886 iter/s, 5.26579s/12 iters), loss = 0.0745446 +I0407 09:42:00.472450 17723 solver.cpp:237] Train net output #0: loss = 0.0745447 (* 1 = 0.0745447 loss) +I0407 09:42:00.472461 17723 sgd_solver.cpp:105] Iteration 8760, lr = 0.0025 +I0407 09:42:05.287096 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 09:42:09.944993 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 09:42:14.379530 17723 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 09:42:14.379550 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:42:15.341570 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:18.885835 17723 solver.cpp:397] Test net output #0: accuracy = 0.484681 +I0407 09:42:18.885869 17723 solver.cpp:397] Test net output #1: loss = 2.9296 (* 1 = 2.9296 loss) +I0407 09:42:19.022109 17723 solver.cpp:218] Iteration 8772 (0.646917 iter/s, 18.5495s/12 iters), loss = 0.0760322 +I0407 09:42:19.022171 17723 solver.cpp:237] Train net output #0: loss = 0.0760323 (* 1 = 0.0760323 loss) +I0407 09:42:19.022179 17723 sgd_solver.cpp:105] Iteration 8772, lr = 0.0025 +I0407 09:42:23.344997 17723 solver.cpp:218] Iteration 8784 (2.776 iter/s, 4.32277s/12 iters), loss = 0.0871405 +I0407 09:42:23.345057 17723 solver.cpp:237] Train net output #0: loss = 0.0871405 (* 1 = 0.0871405 loss) +I0407 09:42:23.345068 17723 sgd_solver.cpp:105] Iteration 8784, lr = 0.0025 +I0407 09:42:28.725728 17723 solver.cpp:218] Iteration 8796 (2.23023 iter/s, 5.38061s/12 iters), loss = 0.123285 +I0407 09:42:28.725782 17723 solver.cpp:237] Train net output #0: loss = 0.123285 (* 1 = 0.123285 loss) +I0407 09:42:28.725793 17723 sgd_solver.cpp:105] Iteration 8796, lr = 0.0025 +I0407 09:42:30.171921 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:33.976820 17723 solver.cpp:218] Iteration 8808 (2.28529 iter/s, 5.25097s/12 iters), loss = 0.101848 +I0407 09:42:33.976891 17723 solver.cpp:237] Train net output #0: loss = 0.101848 (* 1 = 0.101848 loss) +I0407 09:42:33.976902 17723 sgd_solver.cpp:105] Iteration 8808, lr = 0.0025 +I0407 09:42:39.359444 17723 solver.cpp:218] Iteration 8820 (2.22944 iter/s, 5.38251s/12 iters), loss = 0.0412963 +I0407 09:42:39.359561 17723 solver.cpp:237] Train net output #0: loss = 0.0412964 (* 1 = 0.0412964 loss) +I0407 09:42:39.359571 17723 sgd_solver.cpp:105] Iteration 8820, lr = 0.0025 +I0407 09:42:44.269366 17723 solver.cpp:218] Iteration 8832 (2.44411 iter/s, 4.90976s/12 iters), loss = 0.104322 +I0407 09:42:44.269408 17723 solver.cpp:237] Train net output #0: loss = 0.104322 (* 1 = 0.104322 loss) +I0407 09:42:44.269414 17723 sgd_solver.cpp:105] Iteration 8832, lr = 0.0025 +I0407 09:42:49.568742 17723 solver.cpp:218] Iteration 8844 (2.26446 iter/s, 5.29927s/12 iters), loss = 0.0468659 +I0407 09:42:49.568784 17723 solver.cpp:237] Train net output #0: loss = 0.0468659 (* 1 = 0.0468659 loss) +I0407 09:42:49.568791 17723 sgd_solver.cpp:105] Iteration 8844, lr = 0.0025 +I0407 09:42:54.872680 17723 solver.cpp:218] Iteration 8856 (2.26251 iter/s, 5.30384s/12 iters), loss = 0.122984 +I0407 09:42:54.872727 17723 solver.cpp:237] Train net output #0: loss = 0.122984 (* 1 = 0.122984 loss) +I0407 09:42:54.872735 17723 sgd_solver.cpp:105] Iteration 8856, lr = 0.0025 +I0407 09:43:00.234710 17723 solver.cpp:218] Iteration 8868 (2.238 iter/s, 5.36193s/12 iters), loss = 0.11966 +I0407 09:43:00.234758 17723 solver.cpp:237] Train net output #0: loss = 0.11966 (* 1 = 0.11966 loss) +I0407 09:43:00.234766 17723 sgd_solver.cpp:105] Iteration 8868, lr = 0.0025 +I0407 09:43:02.302850 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 09:43:06.658949 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 09:43:11.232236 17723 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 09:43:11.232372 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:43:12.195876 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:15.753684 17723 solver.cpp:397] Test net output #0: accuracy = 0.479779 +I0407 09:43:15.753715 17723 solver.cpp:397] Test net output #1: loss = 2.83374 (* 1 = 2.83374 loss) +I0407 09:43:17.591938 17723 solver.cpp:218] Iteration 8880 (0.691362 iter/s, 17.357s/12 iters), loss = 0.112328 +I0407 09:43:17.591981 17723 solver.cpp:237] Train net output #0: loss = 0.112328 (* 1 = 0.112328 loss) +I0407 09:43:17.591989 17723 sgd_solver.cpp:105] Iteration 8880, lr = 0.0025 +I0407 09:43:22.804446 17723 solver.cpp:218] Iteration 8892 (2.3022 iter/s, 5.21241s/12 iters), loss = 0.0885206 +I0407 09:43:22.804484 17723 solver.cpp:237] Train net output #0: loss = 0.0885206 (* 1 = 0.0885206 loss) +I0407 09:43:22.804491 17723 sgd_solver.cpp:105] Iteration 8892, lr = 0.0025 +I0407 09:43:26.608438 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:28.239045 17723 solver.cpp:218] Iteration 8904 (2.20811 iter/s, 5.4345s/12 iters), loss = 0.0837269 +I0407 09:43:28.239094 17723 solver.cpp:237] Train net output #0: loss = 0.083727 (* 1 = 0.083727 loss) +I0407 09:43:28.239101 17723 sgd_solver.cpp:105] Iteration 8904, lr = 0.0025 +I0407 09:43:33.649322 17723 solver.cpp:218] Iteration 8916 (2.21804 iter/s, 5.41017s/12 iters), loss = 0.127129 +I0407 09:43:33.649364 17723 solver.cpp:237] Train net output #0: loss = 0.127129 (* 1 = 0.127129 loss) +I0407 09:43:33.649372 17723 sgd_solver.cpp:105] Iteration 8916, lr = 0.0025 +I0407 09:43:38.952389 17723 solver.cpp:218] Iteration 8928 (2.26288 iter/s, 5.30297s/12 iters), loss = 0.0512254 +I0407 09:43:38.952430 17723 solver.cpp:237] Train net output #0: loss = 0.0512254 (* 1 = 0.0512254 loss) +I0407 09:43:38.952437 17723 sgd_solver.cpp:105] Iteration 8928, lr = 0.0025 +I0407 09:43:44.152242 17723 solver.cpp:218] Iteration 8940 (2.3078 iter/s, 5.19976s/12 iters), loss = 0.065827 +I0407 09:43:44.152341 17723 solver.cpp:237] Train net output #0: loss = 0.0658271 (* 1 = 0.0658271 loss) +I0407 09:43:44.152349 17723 sgd_solver.cpp:105] Iteration 8940, lr = 0.0025 +I0407 09:43:49.420150 17723 solver.cpp:218] Iteration 8952 (2.27801 iter/s, 5.26775s/12 iters), loss = 0.0669075 +I0407 09:43:49.420198 17723 solver.cpp:237] Train net output #0: loss = 0.0669075 (* 1 = 0.0669075 loss) +I0407 09:43:49.420207 17723 sgd_solver.cpp:105] Iteration 8952, lr = 0.0025 +I0407 09:43:54.548575 17723 solver.cpp:218] Iteration 8964 (2.33995 iter/s, 5.12832s/12 iters), loss = 0.0302166 +I0407 09:43:54.548619 17723 solver.cpp:237] Train net output #0: loss = 0.0302167 (* 1 = 0.0302167 loss) +I0407 09:43:54.548626 17723 sgd_solver.cpp:105] Iteration 8964, lr = 0.0025 +I0407 09:43:59.165571 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 09:44:04.002527 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 09:44:07.717056 17723 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 09:44:07.717074 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:44:08.621968 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:12.079779 17723 solver.cpp:397] Test net output #0: accuracy = 0.489583 +I0407 09:44:12.079818 17723 solver.cpp:397] Test net output #1: loss = 2.861 (* 1 = 2.861 loss) +I0407 09:44:12.219287 17723 solver.cpp:218] Iteration 8976 (0.679097 iter/s, 17.6705s/12 iters), loss = 0.0923821 +I0407 09:44:12.219357 17723 solver.cpp:237] Train net output #0: loss = 0.0923821 (* 1 = 0.0923821 loss) +I0407 09:44:12.219367 17723 sgd_solver.cpp:105] Iteration 8976, lr = 0.0025 +I0407 09:44:16.650434 17723 solver.cpp:218] Iteration 8988 (2.70818 iter/s, 4.43103s/12 iters), loss = 0.0526634 +I0407 09:44:16.650555 17723 solver.cpp:237] Train net output #0: loss = 0.0526634 (* 1 = 0.0526634 loss) +I0407 09:44:16.650563 17723 sgd_solver.cpp:105] Iteration 8988, lr = 0.0025 +I0407 09:44:20.036550 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:44:21.742549 17723 solver.cpp:218] Iteration 9000 (2.35666 iter/s, 5.09195s/12 iters), loss = 0.0455907 +I0407 09:44:21.742588 17723 solver.cpp:237] Train net output #0: loss = 0.0455907 (* 1 = 0.0455907 loss) +I0407 09:44:21.742595 17723 sgd_solver.cpp:105] Iteration 9000, lr = 0.0025 +I0407 09:44:22.441174 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:27.062359 17723 solver.cpp:218] Iteration 9012 (2.25576 iter/s, 5.31972s/12 iters), loss = 0.0233233 +I0407 09:44:27.062403 17723 solver.cpp:237] Train net output #0: loss = 0.0233233 (* 1 = 0.0233233 loss) +I0407 09:44:27.062412 17723 sgd_solver.cpp:105] Iteration 9012, lr = 0.0025 +I0407 09:44:32.342824 17723 solver.cpp:218] Iteration 9024 (2.27257 iter/s, 5.28036s/12 iters), loss = 0.0500342 +I0407 09:44:32.342882 17723 solver.cpp:237] Train net output #0: loss = 0.0500343 (* 1 = 0.0500343 loss) +I0407 09:44:32.342892 17723 sgd_solver.cpp:105] Iteration 9024, lr = 0.0025 +I0407 09:44:37.701433 17723 solver.cpp:218] Iteration 9036 (2.23943 iter/s, 5.3585s/12 iters), loss = 0.080713 +I0407 09:44:37.701481 17723 solver.cpp:237] Train net output #0: loss = 0.080713 (* 1 = 0.080713 loss) +I0407 09:44:37.701489 17723 sgd_solver.cpp:105] Iteration 9036, lr = 0.0025 +I0407 09:44:42.926584 17723 solver.cpp:218] Iteration 9048 (2.29663 iter/s, 5.22505s/12 iters), loss = 0.0794305 +I0407 09:44:42.926640 17723 solver.cpp:237] Train net output #0: loss = 0.0794305 (* 1 = 0.0794305 loss) +I0407 09:44:42.926649 17723 sgd_solver.cpp:105] Iteration 9048, lr = 0.0025 +I0407 09:44:47.890053 17723 solver.cpp:218] Iteration 9060 (2.41772 iter/s, 4.96335s/12 iters), loss = 0.109626 +I0407 09:44:47.890172 17723 solver.cpp:237] Train net output #0: loss = 0.109626 (* 1 = 0.109626 loss) +I0407 09:44:47.890183 17723 sgd_solver.cpp:105] Iteration 9060, lr = 0.0025 +I0407 09:44:53.303161 17723 solver.cpp:218] Iteration 9072 (2.21691 iter/s, 5.41294s/12 iters), loss = 0.0853011 +I0407 09:44:53.303205 17723 solver.cpp:237] Train net output #0: loss = 0.0853011 (* 1 = 0.0853011 loss) +I0407 09:44:53.303212 17723 sgd_solver.cpp:105] Iteration 9072, lr = 0.0025 +I0407 09:44:55.367444 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 09:44:58.426901 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 09:45:02.103837 17723 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 09:45:02.103857 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:45:02.908603 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:06.611129 17723 solver.cpp:397] Test net output #0: accuracy = 0.491422 +I0407 09:45:06.611157 17723 solver.cpp:397] Test net output #1: loss = 2.90897 (* 1 = 2.90897 loss) +I0407 09:45:08.522401 17723 solver.cpp:218] Iteration 9084 (0.788485 iter/s, 15.2191s/12 iters), loss = 0.0343107 +I0407 09:45:08.522461 17723 solver.cpp:237] Train net output #0: loss = 0.0343107 (* 1 = 0.0343107 loss) +I0407 09:45:08.522472 17723 sgd_solver.cpp:105] Iteration 9084, lr = 0.0025 +I0407 09:45:13.700839 17723 solver.cpp:218] Iteration 9096 (2.31735 iter/s, 5.17833s/12 iters), loss = 0.101523 +I0407 09:45:13.700881 17723 solver.cpp:237] Train net output #0: loss = 0.101523 (* 1 = 0.101523 loss) +I0407 09:45:13.700897 17723 sgd_solver.cpp:105] Iteration 9096, lr = 0.0025 +I0407 09:45:16.577955 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:18.787279 17723 solver.cpp:218] Iteration 9108 (2.35926 iter/s, 5.08635s/12 iters), loss = 0.0884933 +I0407 09:45:18.787380 17723 solver.cpp:237] Train net output #0: loss = 0.0884933 (* 1 = 0.0884933 loss) +I0407 09:45:18.787389 17723 sgd_solver.cpp:105] Iteration 9108, lr = 0.0025 +I0407 09:45:23.929527 17723 solver.cpp:218] Iteration 9120 (2.33368 iter/s, 5.14209s/12 iters), loss = 0.0798906 +I0407 09:45:23.929575 17723 solver.cpp:237] Train net output #0: loss = 0.0798906 (* 1 = 0.0798906 loss) +I0407 09:45:23.929584 17723 sgd_solver.cpp:105] Iteration 9120, lr = 0.0025 +I0407 09:45:29.308566 17723 solver.cpp:218] Iteration 9132 (2.23093 iter/s, 5.37893s/12 iters), loss = 0.0585725 +I0407 09:45:29.308632 17723 solver.cpp:237] Train net output #0: loss = 0.0585725 (* 1 = 0.0585725 loss) +I0407 09:45:29.308643 17723 sgd_solver.cpp:105] Iteration 9132, lr = 0.0025 +I0407 09:45:34.656649 17723 solver.cpp:218] Iteration 9144 (2.24384 iter/s, 5.34796s/12 iters), loss = 0.0271361 +I0407 09:45:34.656690 17723 solver.cpp:237] Train net output #0: loss = 0.0271361 (* 1 = 0.0271361 loss) +I0407 09:45:34.656697 17723 sgd_solver.cpp:105] Iteration 9144, lr = 0.0025 +I0407 09:45:39.849917 17723 solver.cpp:218] Iteration 9156 (2.31073 iter/s, 5.19317s/12 iters), loss = 0.0685612 +I0407 09:45:39.849963 17723 solver.cpp:237] Train net output #0: loss = 0.0685612 (* 1 = 0.0685612 loss) +I0407 09:45:39.849970 17723 sgd_solver.cpp:105] Iteration 9156, lr = 0.0025 +I0407 09:45:45.203910 17723 solver.cpp:218] Iteration 9168 (2.24136 iter/s, 5.35389s/12 iters), loss = 0.0314467 +I0407 09:45:45.203959 17723 solver.cpp:237] Train net output #0: loss = 0.0314467 (* 1 = 0.0314467 loss) +I0407 09:45:45.203967 17723 sgd_solver.cpp:105] Iteration 9168, lr = 0.0025 +I0407 09:45:49.980984 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 09:45:53.056861 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 09:45:56.966351 17723 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 09:45:56.966374 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:45:57.734620 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:01.315217 17723 solver.cpp:397] Test net output #0: accuracy = 0.500613 +I0407 09:46:01.315254 17723 solver.cpp:397] Test net output #1: loss = 2.87083 (* 1 = 2.87083 loss) +I0407 09:46:01.456651 17723 solver.cpp:218] Iteration 9180 (0.738346 iter/s, 16.2526s/12 iters), loss = 0.0410062 +I0407 09:46:01.456709 17723 solver.cpp:237] Train net output #0: loss = 0.0410063 (* 1 = 0.0410063 loss) +I0407 09:46:01.456719 17723 sgd_solver.cpp:105] Iteration 9180, lr = 0.0025 +I0407 09:46:05.818637 17723 solver.cpp:218] Iteration 9192 (2.75111 iter/s, 4.36188s/12 iters), loss = 0.0539353 +I0407 09:46:05.818681 17723 solver.cpp:237] Train net output #0: loss = 0.0539353 (* 1 = 0.0539353 loss) +I0407 09:46:05.818687 17723 sgd_solver.cpp:105] Iteration 9192, lr = 0.0025 +I0407 09:46:11.112088 17723 solver.cpp:218] Iteration 9204 (2.26699 iter/s, 5.29335s/12 iters), loss = 0.0593714 +I0407 09:46:11.112128 17723 solver.cpp:237] Train net output #0: loss = 0.0593714 (* 1 = 0.0593714 loss) +I0407 09:46:11.112134 17723 sgd_solver.cpp:105] Iteration 9204, lr = 0.0025 +I0407 09:46:11.180202 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:16.286877 17723 solver.cpp:218] Iteration 9216 (2.31898 iter/s, 5.17469s/12 iters), loss = 0.055399 +I0407 09:46:16.286928 17723 solver.cpp:237] Train net output #0: loss = 0.055399 (* 1 = 0.055399 loss) +I0407 09:46:16.286938 17723 sgd_solver.cpp:105] Iteration 9216, lr = 0.0025 +I0407 09:46:21.598384 17723 solver.cpp:218] Iteration 9228 (2.25929 iter/s, 5.3114s/12 iters), loss = 0.0815506 +I0407 09:46:21.598488 17723 solver.cpp:237] Train net output #0: loss = 0.0815506 (* 1 = 0.0815506 loss) +I0407 09:46:21.598497 17723 sgd_solver.cpp:105] Iteration 9228, lr = 0.0025 +I0407 09:46:26.790244 17723 solver.cpp:218] Iteration 9240 (2.31138 iter/s, 5.1917s/12 iters), loss = 0.113091 +I0407 09:46:26.790283 17723 solver.cpp:237] Train net output #0: loss = 0.113091 (* 1 = 0.113091 loss) +I0407 09:46:26.790290 17723 sgd_solver.cpp:105] Iteration 9240, lr = 0.0025 +I0407 09:46:32.045548 17723 solver.cpp:218] Iteration 9252 (2.28345 iter/s, 5.25521s/12 iters), loss = 0.0440905 +I0407 09:46:32.045601 17723 solver.cpp:237] Train net output #0: loss = 0.0440906 (* 1 = 0.0440906 loss) +I0407 09:46:32.045610 17723 sgd_solver.cpp:105] Iteration 9252, lr = 0.0025 +I0407 09:46:37.435591 17723 solver.cpp:218] Iteration 9264 (2.22637 iter/s, 5.38993s/12 iters), loss = 0.0450943 +I0407 09:46:37.435647 17723 solver.cpp:237] Train net output #0: loss = 0.0450943 (* 1 = 0.0450943 loss) +I0407 09:46:37.435657 17723 sgd_solver.cpp:105] Iteration 9264, lr = 0.0025 +I0407 09:46:42.498095 17723 solver.cpp:218] Iteration 9276 (2.37042 iter/s, 5.0624s/12 iters), loss = 0.0463423 +I0407 09:46:42.498140 17723 solver.cpp:237] Train net output #0: loss = 0.0463423 (* 1 = 0.0463423 loss) +I0407 09:46:42.498147 17723 sgd_solver.cpp:105] Iteration 9276, lr = 0.0025 +I0407 09:46:44.709722 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 09:46:48.255573 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 09:46:52.052065 17723 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 09:46:52.052150 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:46:52.771759 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:56.348345 17723 solver.cpp:397] Test net output #0: accuracy = 0.493873 +I0407 09:46:56.348384 17723 solver.cpp:397] Test net output #1: loss = 2.89948 (* 1 = 2.89948 loss) +I0407 09:46:58.355671 17723 solver.cpp:218] Iteration 9288 (0.756745 iter/s, 15.8574s/12 iters), loss = 0.0580616 +I0407 09:46:58.355718 17723 solver.cpp:237] Train net output #0: loss = 0.0580616 (* 1 = 0.0580616 loss) +I0407 09:46:58.355726 17723 sgd_solver.cpp:105] Iteration 9288, lr = 0.0025 +I0407 09:47:03.578850 17723 solver.cpp:218] Iteration 9300 (2.2975 iter/s, 5.22308s/12 iters), loss = 0.0614387 +I0407 09:47:03.578898 17723 solver.cpp:237] Train net output #0: loss = 0.0614387 (* 1 = 0.0614387 loss) +I0407 09:47:03.578907 17723 sgd_solver.cpp:105] Iteration 9300, lr = 0.0025 +I0407 09:47:05.930125 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:08.778828 17723 solver.cpp:218] Iteration 9312 (2.30775 iter/s, 5.19987s/12 iters), loss = 0.0929579 +I0407 09:47:08.778893 17723 solver.cpp:237] Train net output #0: loss = 0.092958 (* 1 = 0.092958 loss) +I0407 09:47:08.778904 17723 sgd_solver.cpp:105] Iteration 9312, lr = 0.0025 +I0407 09:47:14.093672 17723 solver.cpp:218] Iteration 9324 (2.25788 iter/s, 5.31473s/12 iters), loss = 0.0902088 +I0407 09:47:14.093708 17723 solver.cpp:237] Train net output #0: loss = 0.0902089 (* 1 = 0.0902089 loss) +I0407 09:47:14.093715 17723 sgd_solver.cpp:105] Iteration 9324, lr = 0.0025 +I0407 09:47:19.118669 17723 solver.cpp:218] Iteration 9336 (2.3881 iter/s, 5.02491s/12 iters), loss = 0.0722521 +I0407 09:47:19.118728 17723 solver.cpp:237] Train net output #0: loss = 0.0722521 (* 1 = 0.0722521 loss) +I0407 09:47:19.118739 17723 sgd_solver.cpp:105] Iteration 9336, lr = 0.0025 +I0407 09:47:24.371039 17723 solver.cpp:218] Iteration 9348 (2.28474 iter/s, 5.25225s/12 iters), loss = 0.0663222 +I0407 09:47:24.371176 17723 solver.cpp:237] Train net output #0: loss = 0.0663222 (* 1 = 0.0663222 loss) +I0407 09:47:24.371187 17723 sgd_solver.cpp:105] Iteration 9348, lr = 0.0025 +I0407 09:47:29.617692 17723 solver.cpp:218] Iteration 9360 (2.28725 iter/s, 5.24647s/12 iters), loss = 0.0783887 +I0407 09:47:29.617748 17723 solver.cpp:237] Train net output #0: loss = 0.0783888 (* 1 = 0.0783888 loss) +I0407 09:47:29.617758 17723 sgd_solver.cpp:105] Iteration 9360, lr = 0.0025 +I0407 09:47:34.855077 17723 solver.cpp:218] Iteration 9372 (2.29126 iter/s, 5.23728s/12 iters), loss = 0.206869 +I0407 09:47:34.855116 17723 solver.cpp:237] Train net output #0: loss = 0.206869 (* 1 = 0.206869 loss) +I0407 09:47:34.855124 17723 sgd_solver.cpp:105] Iteration 9372, lr = 0.0025 +I0407 09:47:39.377473 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 09:47:42.392143 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 09:47:46.212793 17723 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 09:47:46.212819 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:47:46.975258 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:50.810010 17723 solver.cpp:397] Test net output #0: accuracy = 0.495098 +I0407 09:47:50.810050 17723 solver.cpp:397] Test net output #1: loss = 2.88723 (* 1 = 2.88723 loss) +I0407 09:47:50.950294 17723 solver.cpp:218] Iteration 9384 (0.745571 iter/s, 16.095s/12 iters), loss = 0.124721 +I0407 09:47:50.950345 17723 solver.cpp:237] Train net output #0: loss = 0.124721 (* 1 = 0.124721 loss) +I0407 09:47:50.950354 17723 sgd_solver.cpp:105] Iteration 9384, lr = 0.0025 +I0407 09:47:55.432660 17723 solver.cpp:218] Iteration 9396 (2.67722 iter/s, 4.48226s/12 iters), loss = 0.0606289 +I0407 09:47:55.432809 17723 solver.cpp:237] Train net output #0: loss = 0.0606289 (* 1 = 0.0606289 loss) +I0407 09:47:55.432819 17723 sgd_solver.cpp:105] Iteration 9396, lr = 0.0025 +I0407 09:48:00.007591 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:00.760465 17723 solver.cpp:218] Iteration 9408 (2.25242 iter/s, 5.3276s/12 iters), loss = 0.126543 +I0407 09:48:00.760512 17723 solver.cpp:237] Train net output #0: loss = 0.126543 (* 1 = 0.126543 loss) +I0407 09:48:00.760519 17723 sgd_solver.cpp:105] Iteration 9408, lr = 0.0025 +I0407 09:48:05.956084 17723 solver.cpp:218] Iteration 9420 (2.30968 iter/s, 5.19552s/12 iters), loss = 0.0421727 +I0407 09:48:05.956130 17723 solver.cpp:237] Train net output #0: loss = 0.0421727 (* 1 = 0.0421727 loss) +I0407 09:48:05.956136 17723 sgd_solver.cpp:105] Iteration 9420, lr = 0.0025 +I0407 09:48:11.343521 17723 solver.cpp:218] Iteration 9432 (2.22745 iter/s, 5.38734s/12 iters), loss = 0.0700876 +I0407 09:48:11.343566 17723 solver.cpp:237] Train net output #0: loss = 0.0700876 (* 1 = 0.0700876 loss) +I0407 09:48:11.343573 17723 sgd_solver.cpp:105] Iteration 9432, lr = 0.0025 +I0407 09:48:16.362145 17723 solver.cpp:218] Iteration 9444 (2.39114 iter/s, 5.01852s/12 iters), loss = 0.0137207 +I0407 09:48:16.362190 17723 solver.cpp:237] Train net output #0: loss = 0.0137208 (* 1 = 0.0137208 loss) +I0407 09:48:16.362197 17723 sgd_solver.cpp:105] Iteration 9444, lr = 0.0025 +I0407 09:48:21.746049 17723 solver.cpp:218] Iteration 9456 (2.22891 iter/s, 5.3838s/12 iters), loss = 0.0681731 +I0407 09:48:21.746098 17723 solver.cpp:237] Train net output #0: loss = 0.0681731 (* 1 = 0.0681731 loss) +I0407 09:48:21.746105 17723 sgd_solver.cpp:105] Iteration 9456, lr = 0.0025 +I0407 09:48:27.030158 17723 solver.cpp:218] Iteration 9468 (2.271 iter/s, 5.28401s/12 iters), loss = 0.0955466 +I0407 09:48:27.030263 17723 solver.cpp:237] Train net output #0: loss = 0.0955466 (* 1 = 0.0955466 loss) +I0407 09:48:27.030272 17723 sgd_solver.cpp:105] Iteration 9468, lr = 0.0025 +I0407 09:48:32.331890 17723 solver.cpp:218] Iteration 9480 (2.26348 iter/s, 5.30157s/12 iters), loss = 0.0963865 +I0407 09:48:32.331945 17723 solver.cpp:237] Train net output #0: loss = 0.0963865 (* 1 = 0.0963865 loss) +I0407 09:48:32.331955 17723 sgd_solver.cpp:105] Iteration 9480, lr = 0.0025 +I0407 09:48:34.298873 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 09:48:37.315158 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 09:48:40.324957 17723 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 09:48:40.324976 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:48:41.012821 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:44.894554 17723 solver.cpp:397] Test net output #0: accuracy = 0.495098 +I0407 09:48:44.894584 17723 solver.cpp:397] Test net output #1: loss = 2.87377 (* 1 = 2.87377 loss) +I0407 09:48:46.882514 17723 solver.cpp:218] Iteration 9492 (0.824717 iter/s, 14.5505s/12 iters), loss = 0.0577979 +I0407 09:48:46.882556 17723 solver.cpp:237] Train net output #0: loss = 0.0577979 (* 1 = 0.0577979 loss) +I0407 09:48:46.882563 17723 sgd_solver.cpp:105] Iteration 9492, lr = 0.0025 +I0407 09:48:52.255434 17723 solver.cpp:218] Iteration 9504 (2.23346 iter/s, 5.37282s/12 iters), loss = 0.0724336 +I0407 09:48:52.255477 17723 solver.cpp:237] Train net output #0: loss = 0.0724336 (* 1 = 0.0724336 loss) +I0407 09:48:52.255484 17723 sgd_solver.cpp:105] Iteration 9504, lr = 0.0025 +I0407 09:48:53.738724 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:57.437254 17723 solver.cpp:218] Iteration 9516 (2.31583 iter/s, 5.18173s/12 iters), loss = 0.045154 +I0407 09:48:57.437369 17723 solver.cpp:237] Train net output #0: loss = 0.045154 (* 1 = 0.045154 loss) +I0407 09:48:57.437377 17723 sgd_solver.cpp:105] Iteration 9516, lr = 0.0025 +I0407 09:49:02.706758 17723 solver.cpp:218] Iteration 9528 (2.27733 iter/s, 5.26934s/12 iters), loss = 0.0407648 +I0407 09:49:02.706800 17723 solver.cpp:237] Train net output #0: loss = 0.0407648 (* 1 = 0.0407648 loss) +I0407 09:49:02.706807 17723 sgd_solver.cpp:105] Iteration 9528, lr = 0.0025 +I0407 09:49:07.979194 17723 solver.cpp:218] Iteration 9540 (2.27603 iter/s, 5.27234s/12 iters), loss = 0.0285192 +I0407 09:49:07.979243 17723 solver.cpp:237] Train net output #0: loss = 0.0285192 (* 1 = 0.0285192 loss) +I0407 09:49:07.979249 17723 sgd_solver.cpp:105] Iteration 9540, lr = 0.0025 +I0407 09:49:13.390933 17723 solver.cpp:218] Iteration 9552 (2.21744 iter/s, 5.41163s/12 iters), loss = 0.0553646 +I0407 09:49:13.390978 17723 solver.cpp:237] Train net output #0: loss = 0.0553647 (* 1 = 0.0553647 loss) +I0407 09:49:13.390986 17723 sgd_solver.cpp:105] Iteration 9552, lr = 0.0025 +I0407 09:49:18.667313 17723 solver.cpp:218] Iteration 9564 (2.27433 iter/s, 5.27628s/12 iters), loss = 0.0638919 +I0407 09:49:18.667376 17723 solver.cpp:237] Train net output #0: loss = 0.063892 (* 1 = 0.063892 loss) +I0407 09:49:18.667387 17723 sgd_solver.cpp:105] Iteration 9564, lr = 0.0025 +I0407 09:49:24.015942 17723 solver.cpp:218] Iteration 9576 (2.24362 iter/s, 5.34851s/12 iters), loss = 0.0733827 +I0407 09:49:24.016000 17723 solver.cpp:237] Train net output #0: loss = 0.0733827 (* 1 = 0.0733827 loss) +I0407 09:49:24.016011 17723 sgd_solver.cpp:105] Iteration 9576, lr = 0.0025 +I0407 09:49:28.826088 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 09:49:31.846828 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 09:49:34.183467 17723 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 09:49:34.183492 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:49:34.846658 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:38.822677 17723 solver.cpp:397] Test net output #0: accuracy = 0.488971 +I0407 09:49:38.822706 17723 solver.cpp:397] Test net output #1: loss = 2.91843 (* 1 = 2.91843 loss) +I0407 09:49:38.962823 17723 solver.cpp:218] Iteration 9588 (0.802853 iter/s, 14.9467s/12 iters), loss = 0.10464 +I0407 09:49:38.962873 17723 solver.cpp:237] Train net output #0: loss = 0.10464 (* 1 = 0.10464 loss) +I0407 09:49:38.962883 17723 sgd_solver.cpp:105] Iteration 9588, lr = 0.0025 +I0407 09:49:43.282608 17723 solver.cpp:218] Iteration 9600 (2.77797 iter/s, 4.31969s/12 iters), loss = 0.174178 +I0407 09:49:43.282644 17723 solver.cpp:237] Train net output #0: loss = 0.174178 (* 1 = 0.174178 loss) +I0407 09:49:43.282651 17723 sgd_solver.cpp:105] Iteration 9600, lr = 0.0025 +I0407 09:49:47.116397 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:48.666952 17723 solver.cpp:218] Iteration 9612 (2.22872 iter/s, 5.38425s/12 iters), loss = 0.0334187 +I0407 09:49:48.666996 17723 solver.cpp:237] Train net output #0: loss = 0.0334187 (* 1 = 0.0334187 loss) +I0407 09:49:48.667002 17723 sgd_solver.cpp:105] Iteration 9612, lr = 0.0025 +I0407 09:49:53.968523 17723 solver.cpp:218] Iteration 9624 (2.26352 iter/s, 5.30147s/12 iters), loss = 0.0923739 +I0407 09:49:53.968564 17723 solver.cpp:237] Train net output #0: loss = 0.0923739 (* 1 = 0.0923739 loss) +I0407 09:49:53.968571 17723 sgd_solver.cpp:105] Iteration 9624, lr = 0.0025 +I0407 09:49:59.240150 17723 solver.cpp:218] Iteration 9636 (2.27638 iter/s, 5.27153s/12 iters), loss = 0.0401453 +I0407 09:49:59.240288 17723 solver.cpp:237] Train net output #0: loss = 0.0401454 (* 1 = 0.0401454 loss) +I0407 09:49:59.240298 17723 sgd_solver.cpp:105] Iteration 9636, lr = 0.0025 +I0407 09:50:04.505216 17723 solver.cpp:218] Iteration 9648 (2.27926 iter/s, 5.26487s/12 iters), loss = 0.0420136 +I0407 09:50:04.505260 17723 solver.cpp:237] Train net output #0: loss = 0.0420137 (* 1 = 0.0420137 loss) +I0407 09:50:04.505267 17723 sgd_solver.cpp:105] Iteration 9648, lr = 0.0025 +I0407 09:50:09.699457 17723 solver.cpp:218] Iteration 9660 (2.3103 iter/s, 5.19414s/12 iters), loss = 0.0927962 +I0407 09:50:09.699515 17723 solver.cpp:237] Train net output #0: loss = 0.0927963 (* 1 = 0.0927963 loss) +I0407 09:50:09.699527 17723 sgd_solver.cpp:105] Iteration 9660, lr = 0.0025 +I0407 09:50:14.735728 17723 solver.cpp:218] Iteration 9672 (2.38277 iter/s, 5.03616s/12 iters), loss = 0.0321329 +I0407 09:50:14.735771 17723 solver.cpp:237] Train net output #0: loss = 0.0321329 (* 1 = 0.0321329 loss) +I0407 09:50:14.735778 17723 sgd_solver.cpp:105] Iteration 9672, lr = 0.0025 +I0407 09:50:19.878161 17723 solver.cpp:218] Iteration 9684 (2.33357 iter/s, 5.14233s/12 iters), loss = 0.0355899 +I0407 09:50:19.878214 17723 solver.cpp:237] Train net output #0: loss = 0.0355899 (* 1 = 0.0355899 loss) +I0407 09:50:19.878223 17723 sgd_solver.cpp:105] Iteration 9684, lr = 0.0025 +I0407 09:50:22.083540 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 09:50:25.007267 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 09:50:27.321645 17723 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 09:50:27.321662 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:50:27.887063 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:30.673586 17723 blocking_queue.cpp:49] Waiting for data +I0407 09:50:31.713925 17723 solver.cpp:397] Test net output #0: accuracy = 0.49326 +I0407 09:50:31.713958 17723 solver.cpp:397] Test net output #1: loss = 2.92592 (* 1 = 2.92592 loss) +I0407 09:50:33.662773 17723 solver.cpp:218] Iteration 9696 (0.870547 iter/s, 13.7844s/12 iters), loss = 0.0499936 +I0407 09:50:33.662820 17723 solver.cpp:237] Train net output #0: loss = 0.0499936 (* 1 = 0.0499936 loss) +I0407 09:50:33.662827 17723 sgd_solver.cpp:105] Iteration 9696, lr = 0.0025 +I0407 09:50:38.859174 17723 solver.cpp:218] Iteration 9708 (2.30933 iter/s, 5.1963s/12 iters), loss = 0.0629604 +I0407 09:50:38.859212 17723 solver.cpp:237] Train net output #0: loss = 0.0629605 (* 1 = 0.0629605 loss) +I0407 09:50:38.859220 17723 sgd_solver.cpp:105] Iteration 9708, lr = 0.0025 +I0407 09:50:39.604828 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:44.192976 17723 solver.cpp:218] Iteration 9720 (2.24984 iter/s, 5.33371s/12 iters), loss = 0.0416088 +I0407 09:50:44.193029 17723 solver.cpp:237] Train net output #0: loss = 0.0416088 (* 1 = 0.0416088 loss) +I0407 09:50:44.193039 17723 sgd_solver.cpp:105] Iteration 9720, lr = 0.0025 +I0407 09:50:49.538477 17723 solver.cpp:218] Iteration 9732 (2.24492 iter/s, 5.34539s/12 iters), loss = 0.0494114 +I0407 09:50:49.538524 17723 solver.cpp:237] Train net output #0: loss = 0.0494114 (* 1 = 0.0494114 loss) +I0407 09:50:49.538532 17723 sgd_solver.cpp:105] Iteration 9732, lr = 0.0025 +I0407 09:50:54.800907 17723 solver.cpp:218] Iteration 9744 (2.28036 iter/s, 5.26233s/12 iters), loss = 0.0887707 +I0407 09:50:54.800949 17723 solver.cpp:237] Train net output #0: loss = 0.0887708 (* 1 = 0.0887708 loss) +I0407 09:50:54.800957 17723 sgd_solver.cpp:105] Iteration 9744, lr = 0.0025 +I0407 09:51:00.214869 17723 solver.cpp:218] Iteration 9756 (2.21653 iter/s, 5.41386s/12 iters), loss = 0.024571 +I0407 09:51:00.214917 17723 solver.cpp:237] Train net output #0: loss = 0.0245711 (* 1 = 0.0245711 loss) +I0407 09:51:00.214926 17723 sgd_solver.cpp:105] Iteration 9756, lr = 0.0025 +I0407 09:51:05.596448 17723 solver.cpp:218] Iteration 9768 (2.22987 iter/s, 5.38148s/12 iters), loss = 0.0734758 +I0407 09:51:05.596580 17723 solver.cpp:237] Train net output #0: loss = 0.0734758 (* 1 = 0.0734758 loss) +I0407 09:51:05.596587 17723 sgd_solver.cpp:105] Iteration 9768, lr = 0.0025 +I0407 09:51:10.801898 17723 solver.cpp:218] Iteration 9780 (2.30536 iter/s, 5.20527s/12 iters), loss = 0.0384937 +I0407 09:51:10.801944 17723 solver.cpp:237] Train net output #0: loss = 0.0384937 (* 1 = 0.0384937 loss) +I0407 09:51:10.801950 17723 sgd_solver.cpp:105] Iteration 9780, lr = 0.0025 +I0407 09:51:15.516049 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 09:51:18.525466 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 09:51:20.835461 17723 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 09:51:20.835482 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:51:21.345643 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:25.138293 17723 solver.cpp:397] Test net output #0: accuracy = 0.503676 +I0407 09:51:25.138332 17723 solver.cpp:397] Test net output #1: loss = 2.91938 (* 1 = 2.91938 loss) +I0407 09:51:25.278546 17723 solver.cpp:218] Iteration 9792 (0.828931 iter/s, 14.4765s/12 iters), loss = 0.0366191 +I0407 09:51:25.278601 17723 solver.cpp:237] Train net output #0: loss = 0.0366192 (* 1 = 0.0366192 loss) +I0407 09:51:25.278611 17723 sgd_solver.cpp:105] Iteration 9792, lr = 0.0025 +I0407 09:51:29.532609 17723 solver.cpp:218] Iteration 9804 (2.8209 iter/s, 4.25396s/12 iters), loss = 0.13595 +I0407 09:51:29.532655 17723 solver.cpp:237] Train net output #0: loss = 0.13595 (* 1 = 0.13595 loss) +I0407 09:51:29.532662 17723 sgd_solver.cpp:105] Iteration 9804, lr = 0.0025 +I0407 09:51:32.654206 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:34.869617 17723 solver.cpp:218] Iteration 9816 (2.24849 iter/s, 5.33691s/12 iters), loss = 0.0536344 +I0407 09:51:34.869660 17723 solver.cpp:237] Train net output #0: loss = 0.0536344 (* 1 = 0.0536344 loss) +I0407 09:51:34.869668 17723 sgd_solver.cpp:105] Iteration 9816, lr = 0.0025 +I0407 09:51:40.188123 17723 solver.cpp:218] Iteration 9828 (2.25631 iter/s, 5.31841s/12 iters), loss = 0.0934296 +I0407 09:51:40.190120 17723 solver.cpp:237] Train net output #0: loss = 0.0934296 (* 1 = 0.0934296 loss) +I0407 09:51:40.190135 17723 sgd_solver.cpp:105] Iteration 9828, lr = 0.0025 +I0407 09:51:45.214416 17723 solver.cpp:218] Iteration 9840 (2.38841 iter/s, 5.02425s/12 iters), loss = 0.0298396 +I0407 09:51:45.214458 17723 solver.cpp:237] Train net output #0: loss = 0.0298396 (* 1 = 0.0298396 loss) +I0407 09:51:45.214465 17723 sgd_solver.cpp:105] Iteration 9840, lr = 0.0025 +I0407 09:51:50.453689 17723 solver.cpp:218] Iteration 9852 (2.29044 iter/s, 5.23917s/12 iters), loss = 0.016679 +I0407 09:51:50.453737 17723 solver.cpp:237] Train net output #0: loss = 0.016679 (* 1 = 0.016679 loss) +I0407 09:51:50.453744 17723 sgd_solver.cpp:105] Iteration 9852, lr = 0.0025 +I0407 09:51:55.569012 17723 solver.cpp:218] Iteration 9864 (2.34594 iter/s, 5.11522s/12 iters), loss = 0.0793174 +I0407 09:51:55.569061 17723 solver.cpp:237] Train net output #0: loss = 0.0793175 (* 1 = 0.0793175 loss) +I0407 09:51:55.569070 17723 sgd_solver.cpp:105] Iteration 9864, lr = 0.0025 +I0407 09:52:00.907660 17723 solver.cpp:218] Iteration 9876 (2.2478 iter/s, 5.33854s/12 iters), loss = 0.0554528 +I0407 09:52:00.907722 17723 solver.cpp:237] Train net output #0: loss = 0.0554528 (* 1 = 0.0554528 loss) +I0407 09:52:00.907733 17723 sgd_solver.cpp:105] Iteration 9876, lr = 0.0025 +I0407 09:52:06.288239 17723 solver.cpp:218] Iteration 9888 (2.23029 iter/s, 5.38046s/12 iters), loss = 0.0603135 +I0407 09:52:06.288303 17723 solver.cpp:237] Train net output #0: loss = 0.0603136 (* 1 = 0.0603136 loss) +I0407 09:52:06.288314 17723 sgd_solver.cpp:105] Iteration 9888, lr = 0.0025 +I0407 09:52:08.415422 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 09:52:11.459794 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 09:52:13.783414 17723 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 09:52:13.783433 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:52:14.266175 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:18.099858 17723 solver.cpp:397] Test net output #0: accuracy = 0.492647 +I0407 09:52:18.099893 17723 solver.cpp:397] Test net output #1: loss = 2.96577 (* 1 = 2.96577 loss) +I0407 09:52:20.086962 17723 solver.cpp:218] Iteration 9900 (0.869657 iter/s, 13.7985s/12 iters), loss = 0.0961151 +I0407 09:52:20.087007 17723 solver.cpp:237] Train net output #0: loss = 0.0961152 (* 1 = 0.0961152 loss) +I0407 09:52:20.087014 17723 sgd_solver.cpp:105] Iteration 9900, lr = 0.0025 +I0407 09:52:25.317467 17723 solver.cpp:218] Iteration 9912 (2.29428 iter/s, 5.2304s/12 iters), loss = 0.0405 +I0407 09:52:25.317517 17723 solver.cpp:237] Train net output #0: loss = 0.0405 (* 1 = 0.0405 loss) +I0407 09:52:25.317526 17723 sgd_solver.cpp:105] Iteration 9912, lr = 0.0025 +I0407 09:52:25.342501 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:30.608505 17723 solver.cpp:218] Iteration 9924 (2.26803 iter/s, 5.29093s/12 iters), loss = 0.0533124 +I0407 09:52:30.608548 17723 solver.cpp:237] Train net output #0: loss = 0.0533124 (* 1 = 0.0533124 loss) +I0407 09:52:30.608556 17723 sgd_solver.cpp:105] Iteration 9924, lr = 0.0025 +I0407 09:52:36.006469 17723 solver.cpp:218] Iteration 9936 (2.2231 iter/s, 5.39786s/12 iters), loss = 0.0971155 +I0407 09:52:36.006520 17723 solver.cpp:237] Train net output #0: loss = 0.0971155 (* 1 = 0.0971155 loss) +I0407 09:52:36.006529 17723 sgd_solver.cpp:105] Iteration 9936, lr = 0.0025 +I0407 09:52:41.365581 17723 solver.cpp:218] Iteration 9948 (2.23922 iter/s, 5.359s/12 iters), loss = 0.00808313 +I0407 09:52:41.365630 17723 solver.cpp:237] Train net output #0: loss = 0.0080832 (* 1 = 0.0080832 loss) +I0407 09:52:41.365638 17723 sgd_solver.cpp:105] Iteration 9948, lr = 0.0025 +I0407 09:52:46.646648 17723 solver.cpp:218] Iteration 9960 (2.27231 iter/s, 5.28097s/12 iters), loss = 0.072957 +I0407 09:52:46.646757 17723 solver.cpp:237] Train net output #0: loss = 0.072957 (* 1 = 0.072957 loss) +I0407 09:52:46.646765 17723 sgd_solver.cpp:105] Iteration 9960, lr = 0.0025 +I0407 09:52:51.704313 17723 solver.cpp:218] Iteration 9972 (2.37271 iter/s, 5.05751s/12 iters), loss = 0.0384849 +I0407 09:52:51.704349 17723 solver.cpp:237] Train net output #0: loss = 0.0384849 (* 1 = 0.0384849 loss) +I0407 09:52:51.704355 17723 sgd_solver.cpp:105] Iteration 9972, lr = 0.0025 +I0407 09:52:56.814761 17723 solver.cpp:218] Iteration 9984 (2.34817 iter/s, 5.11036s/12 iters), loss = 0.0435696 +I0407 09:52:56.814805 17723 solver.cpp:237] Train net output #0: loss = 0.0435697 (* 1 = 0.0435697 loss) +I0407 09:52:56.814812 17723 sgd_solver.cpp:105] Iteration 9984, lr = 0.0025 +I0407 09:53:01.505035 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 09:53:04.545049 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 09:53:06.851832 17723 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 09:53:06.851853 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:53:07.283064 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:11.242287 17723 solver.cpp:397] Test net output #0: accuracy = 0.495098 +I0407 09:53:11.242323 17723 solver.cpp:397] Test net output #1: loss = 2.90614 (* 1 = 2.90614 loss) +I0407 09:53:11.382380 17723 solver.cpp:218] Iteration 9996 (0.823754 iter/s, 14.5674s/12 iters), loss = 0.0421802 +I0407 09:53:11.382441 17723 solver.cpp:237] Train net output #0: loss = 0.0421802 (* 1 = 0.0421802 loss) +I0407 09:53:11.382452 17723 sgd_solver.cpp:105] Iteration 9996, lr = 0.0025 +I0407 09:53:15.727031 17723 solver.cpp:218] Iteration 10008 (2.76209 iter/s, 4.34454s/12 iters), loss = 0.0180749 +I0407 09:53:15.727074 17723 solver.cpp:237] Train net output #0: loss = 0.018075 (* 1 = 0.018075 loss) +I0407 09:53:15.727082 17723 sgd_solver.cpp:105] Iteration 10008, lr = 0.0025 +I0407 09:53:18.063906 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:21.164906 17723 solver.cpp:218] Iteration 10020 (2.20679 iter/s, 5.43777s/12 iters), loss = 0.0617642 +I0407 09:53:21.164952 17723 solver.cpp:237] Train net output #0: loss = 0.0617643 (* 1 = 0.0617643 loss) +I0407 09:53:21.164959 17723 sgd_solver.cpp:105] Iteration 10020, lr = 0.0025 +I0407 09:53:26.437064 17723 solver.cpp:218] Iteration 10032 (2.27615 iter/s, 5.27206s/12 iters), loss = 0.0127651 +I0407 09:53:26.437108 17723 solver.cpp:237] Train net output #0: loss = 0.0127652 (* 1 = 0.0127652 loss) +I0407 09:53:26.437114 17723 sgd_solver.cpp:105] Iteration 10032, lr = 0.0025 +I0407 09:53:31.643435 17723 solver.cpp:218] Iteration 10044 (2.30491 iter/s, 5.20627s/12 iters), loss = 0.0401396 +I0407 09:53:31.643486 17723 solver.cpp:237] Train net output #0: loss = 0.0401397 (* 1 = 0.0401397 loss) +I0407 09:53:31.643496 17723 sgd_solver.cpp:105] Iteration 10044, lr = 0.0025 +I0407 09:53:36.989925 17723 solver.cpp:218] Iteration 10056 (2.24451 iter/s, 5.34638s/12 iters), loss = 0.0535242 +I0407 09:53:36.989979 17723 solver.cpp:237] Train net output #0: loss = 0.0535242 (* 1 = 0.0535242 loss) +I0407 09:53:36.989987 17723 sgd_solver.cpp:105] Iteration 10056, lr = 0.0025 +I0407 09:53:42.385682 17723 solver.cpp:218] Iteration 10068 (2.22401 iter/s, 5.39565s/12 iters), loss = 0.103704 +I0407 09:53:42.385731 17723 solver.cpp:237] Train net output #0: loss = 0.103705 (* 1 = 0.103705 loss) +I0407 09:53:42.385738 17723 sgd_solver.cpp:105] Iteration 10068, lr = 0.0025 +I0407 09:53:47.726032 17723 solver.cpp:218] Iteration 10080 (2.24709 iter/s, 5.34025s/12 iters), loss = 0.121031 +I0407 09:53:47.726069 17723 solver.cpp:237] Train net output #0: loss = 0.121031 (* 1 = 0.121031 loss) +I0407 09:53:47.726076 17723 sgd_solver.cpp:105] Iteration 10080, lr = 0.0025 +I0407 09:53:52.864486 17723 solver.cpp:218] Iteration 10092 (2.33537 iter/s, 5.13836s/12 iters), loss = 0.0458972 +I0407 09:53:52.864595 17723 solver.cpp:237] Train net output #0: loss = 0.0458972 (* 1 = 0.0458972 loss) +I0407 09:53:52.864605 17723 sgd_solver.cpp:105] Iteration 10092, lr = 0.0025 +I0407 09:53:55.008265 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 09:53:58.046511 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 09:54:00.348387 17723 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 09:54:00.348408 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:54:00.748504 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:04.733564 17723 solver.cpp:397] Test net output #0: accuracy = 0.488358 +I0407 09:54:04.733600 17723 solver.cpp:397] Test net output #1: loss = 2.95048 (* 1 = 2.95048 loss) +I0407 09:54:06.673919 17723 solver.cpp:218] Iteration 10104 (0.868985 iter/s, 13.8092s/12 iters), loss = 0.0834106 +I0407 09:54:06.673966 17723 solver.cpp:237] Train net output #0: loss = 0.0834107 (* 1 = 0.0834107 loss) +I0407 09:54:06.673974 17723 sgd_solver.cpp:105] Iteration 10104, lr = 0.00125 +I0407 09:54:11.229705 17748 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:11.933039 17723 solver.cpp:218] Iteration 10116 (2.2818 iter/s, 5.25902s/12 iters), loss = 0.120213 +I0407 09:54:11.933087 17723 solver.cpp:237] Train net output #0: loss = 0.120213 (* 1 = 0.120213 loss) +I0407 09:54:11.933095 17723 sgd_solver.cpp:105] Iteration 10116, lr = 0.00125 +I0407 09:54:17.252871 17723 solver.cpp:218] Iteration 10128 (2.25575 iter/s, 5.31973s/12 iters), loss = 0.0222895 +I0407 09:54:17.252928 17723 solver.cpp:237] Train net output #0: loss = 0.0222896 (* 1 = 0.0222896 loss) +I0407 09:54:17.252934 17723 sgd_solver.cpp:105] Iteration 10128, lr = 0.00125 +I0407 09:54:22.660627 17723 solver.cpp:218] Iteration 10140 (2.21908 iter/s, 5.40764s/12 iters), loss = 0.107818 +I0407 09:54:22.660671 17723 solver.cpp:237] Train net output #0: loss = 0.107818 (* 1 = 0.107818 loss) +I0407 09:54:22.660678 17723 sgd_solver.cpp:105] Iteration 10140, lr = 0.00125 +I0407 09:54:27.931972 17723 solver.cpp:218] Iteration 10152 (2.2765 iter/s, 5.27125s/12 iters), loss = 0.0844372 +I0407 09:54:27.932093 17723 solver.cpp:237] Train net output #0: loss = 0.0844373 (* 1 = 0.0844373 loss) +I0407 09:54:27.932101 17723 sgd_solver.cpp:105] Iteration 10152, lr = 0.00125 +I0407 09:54:33.121032 17723 solver.cpp:218] Iteration 10164 (2.31264 iter/s, 5.18888s/12 iters), loss = 0.0443143 +I0407 09:54:33.121093 17723 solver.cpp:237] Train net output #0: loss = 0.0443144 (* 1 = 0.0443144 loss) +I0407 09:54:33.121102 17723 sgd_solver.cpp:105] Iteration 10164, lr = 0.00125 +I0407 09:54:38.157444 17723 solver.cpp:218] Iteration 10176 (2.3827 iter/s, 5.0363s/12 iters), loss = 0.0538164 +I0407 09:54:38.157490 17723 solver.cpp:237] Train net output #0: loss = 0.0538164 (* 1 = 0.0538164 loss) +I0407 09:54:38.157500 17723 sgd_solver.cpp:105] Iteration 10176, lr = 0.00125 +I0407 09:54:43.437409 17723 solver.cpp:218] Iteration 10188 (2.27279 iter/s, 5.27986s/12 iters), loss = 0.108054 +I0407 09:54:43.437450 17723 solver.cpp:237] Train net output #0: loss = 0.108054 (* 1 = 0.108054 loss) +I0407 09:54:43.437458 17723 sgd_solver.cpp:105] Iteration 10188, lr = 0.00125 +I0407 09:54:48.316004 17723 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 09:54:51.323153 17723 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 09:54:53.670011 17723 solver.cpp:310] Iteration 10200, loss = 0.0534418 +I0407 09:54:53.670040 17723 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 09:54:53.670045 17723 net.cpp:676] Ignoring source layer train-data +I0407 09:54:54.037020 17776 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:58.199604 17723 solver.cpp:397] Test net output #0: accuracy = 0.493873 +I0407 09:54:58.199721 17723 solver.cpp:397] Test net output #1: loss = 2.88337 (* 1 = 2.88337 loss) +I0407 09:54:58.199733 17723 solver.cpp:315] Optimization Done. +I0407 09:54:58.199738 17723 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/step-down/1e-2/33_0.75/caffe_output.log b/cars/lr-investigations/step-down/1e-2/33_0.75/caffe_output.log new file mode 100644 index 0000000..cd377d2 --- /dev/null +++ b/cars/lr-investigations/step-down/1e-2/33_0.75/caffe_output.log @@ -0,0 +1,4567 @@ +I0407 08:24:53.446125 18909 upgrade_proto.cpp:1082] Attempting to upgrade input file specified using deprecated 'solver_type' field (enum)': /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210407-082451-6191/solver.prototxt +I0407 08:24:53.446290 18909 upgrade_proto.cpp:1089] Successfully upgraded file specified using deprecated 'solver_type' field (enum) to 'type' field (string). +W0407 08:24:53.446295 18909 upgrade_proto.cpp:1091] Note that future Caffe releases will only support 'type' field (string) for a solver's type. +I0407 08:24:53.446359 18909 caffe.cpp:218] Using GPUs 2 +I0407 08:24:53.463285 18909 caffe.cpp:223] GPU 2: GeForce GTX TITAN X +I0407 08:24:53.690966 18909 solver.cpp:44] Initializing solver from parameters: +test_iter: 51 +test_interval: 102 +base_lr: 0.01 +display: 12 +max_iter: 10200 +lr_policy: "step" +gamma: 0.75 +momentum: 0.9 +weight_decay: 0.0001 +stepsize: 3366 +snapshot: 102 +snapshot_prefix: "snapshot" +solver_mode: GPU +device_id: 2 +net: "train_val.prototxt" +train_state { +level: 0 +stage: "" +} +type: "SGD" +I0407 08:24:53.691808 18909 solver.cpp:87] Creating training net from net file: train_val.prototxt +I0407 08:24:53.692472 18909 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer val-data +I0407 08:24:53.692487 18909 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy +I0407 08:24:53.692615 18909 net.cpp:51] Initializing net from parameters: +state { +phase: TRAIN +level: 0 +stage: "" +} +layer { +name: "train-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TRAIN +} +transform_param { +mirror: true +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db" +batch_size: 128 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 08:24:53.692700 18909 layer_factory.hpp:77] Creating layer train-data +I0407 08:24:53.694433 18909 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/train_db +I0407 08:24:53.694662 18909 net.cpp:84] Creating Layer train-data +I0407 08:24:53.694671 18909 net.cpp:380] train-data -> data +I0407 08:24:53.694690 18909 net.cpp:380] train-data -> label +I0407 08:24:53.694700 18909 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 08:24:53.699160 18909 data_layer.cpp:45] output data size: 128,3,227,227 +I0407 08:24:53.829603 18909 net.cpp:122] Setting up train-data +I0407 08:24:53.829623 18909 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0407 08:24:53.829627 18909 net.cpp:129] Top shape: 128 (128) +I0407 08:24:53.829630 18909 net.cpp:137] Memory required for data: 79149056 +I0407 08:24:53.829638 18909 layer_factory.hpp:77] Creating layer conv1 +I0407 08:24:53.829658 18909 net.cpp:84] Creating Layer conv1 +I0407 08:24:53.829661 18909 net.cpp:406] conv1 <- data +I0407 08:24:53.829672 18909 net.cpp:380] conv1 -> conv1 +I0407 08:24:54.242549 18909 net.cpp:122] Setting up conv1 +I0407 08:24:54.242569 18909 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:24:54.242573 18909 net.cpp:137] Memory required for data: 227833856 +I0407 08:24:54.242590 18909 layer_factory.hpp:77] Creating layer relu1 +I0407 08:24:54.242599 18909 net.cpp:84] Creating Layer relu1 +I0407 08:24:54.242602 18909 net.cpp:406] relu1 <- conv1 +I0407 08:24:54.242606 18909 net.cpp:367] relu1 -> conv1 (in-place) +I0407 08:24:54.242861 18909 net.cpp:122] Setting up relu1 +I0407 08:24:54.242869 18909 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:24:54.242871 18909 net.cpp:137] Memory required for data: 376518656 +I0407 08:24:54.242873 18909 layer_factory.hpp:77] Creating layer norm1 +I0407 08:24:54.242882 18909 net.cpp:84] Creating Layer norm1 +I0407 08:24:54.242902 18909 net.cpp:406] norm1 <- conv1 +I0407 08:24:54.242905 18909 net.cpp:380] norm1 -> norm1 +I0407 08:24:54.243310 18909 net.cpp:122] Setting up norm1 +I0407 08:24:54.243319 18909 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0407 08:24:54.243321 18909 net.cpp:137] Memory required for data: 525203456 +I0407 08:24:54.243324 18909 layer_factory.hpp:77] Creating layer pool1 +I0407 08:24:54.243330 18909 net.cpp:84] Creating Layer pool1 +I0407 08:24:54.243333 18909 net.cpp:406] pool1 <- norm1 +I0407 08:24:54.243337 18909 net.cpp:380] pool1 -> pool1 +I0407 08:24:54.243367 18909 net.cpp:122] Setting up pool1 +I0407 08:24:54.243372 18909 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0407 08:24:54.243374 18909 net.cpp:137] Memory required for data: 561035264 +I0407 08:24:54.243376 18909 layer_factory.hpp:77] Creating layer conv2 +I0407 08:24:54.243386 18909 net.cpp:84] Creating Layer conv2 +I0407 08:24:54.243388 18909 net.cpp:406] conv2 <- pool1 +I0407 08:24:54.243391 18909 net.cpp:380] conv2 -> conv2 +I0407 08:24:54.249159 18909 net.cpp:122] Setting up conv2 +I0407 08:24:54.249174 18909 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:24:54.249176 18909 net.cpp:137] Memory required for data: 656586752 +I0407 08:24:54.249184 18909 layer_factory.hpp:77] Creating layer relu2 +I0407 08:24:54.249191 18909 net.cpp:84] Creating Layer relu2 +I0407 08:24:54.249193 18909 net.cpp:406] relu2 <- conv2 +I0407 08:24:54.249199 18909 net.cpp:367] relu2 -> conv2 (in-place) +I0407 08:24:54.249675 18909 net.cpp:122] Setting up relu2 +I0407 08:24:54.249684 18909 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:24:54.249686 18909 net.cpp:137] Memory required for data: 752138240 +I0407 08:24:54.249688 18909 layer_factory.hpp:77] Creating layer norm2 +I0407 08:24:54.249696 18909 net.cpp:84] Creating Layer norm2 +I0407 08:24:54.249699 18909 net.cpp:406] norm2 <- conv2 +I0407 08:24:54.249703 18909 net.cpp:380] norm2 -> norm2 +I0407 08:24:54.250052 18909 net.cpp:122] Setting up norm2 +I0407 08:24:54.250059 18909 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0407 08:24:54.250061 18909 net.cpp:137] Memory required for data: 847689728 +I0407 08:24:54.250064 18909 layer_factory.hpp:77] Creating layer pool2 +I0407 08:24:54.250072 18909 net.cpp:84] Creating Layer pool2 +I0407 08:24:54.250073 18909 net.cpp:406] pool2 <- norm2 +I0407 08:24:54.250078 18909 net.cpp:380] pool2 -> pool2 +I0407 08:24:54.250105 18909 net.cpp:122] Setting up pool2 +I0407 08:24:54.250109 18909 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:24:54.250111 18909 net.cpp:137] Memory required for data: 869840896 +I0407 08:24:54.250113 18909 layer_factory.hpp:77] Creating layer conv3 +I0407 08:24:54.250123 18909 net.cpp:84] Creating Layer conv3 +I0407 08:24:54.250124 18909 net.cpp:406] conv3 <- pool2 +I0407 08:24:54.250128 18909 net.cpp:380] conv3 -> conv3 +I0407 08:24:54.260059 18909 net.cpp:122] Setting up conv3 +I0407 08:24:54.260077 18909 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:54.260079 18909 net.cpp:137] Memory required for data: 903067648 +I0407 08:24:54.260092 18909 layer_factory.hpp:77] Creating layer relu3 +I0407 08:24:54.260099 18909 net.cpp:84] Creating Layer relu3 +I0407 08:24:54.260102 18909 net.cpp:406] relu3 <- conv3 +I0407 08:24:54.260107 18909 net.cpp:367] relu3 -> conv3 (in-place) +I0407 08:24:54.260579 18909 net.cpp:122] Setting up relu3 +I0407 08:24:54.260587 18909 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:54.260591 18909 net.cpp:137] Memory required for data: 936294400 +I0407 08:24:54.260592 18909 layer_factory.hpp:77] Creating layer conv4 +I0407 08:24:54.260603 18909 net.cpp:84] Creating Layer conv4 +I0407 08:24:54.260605 18909 net.cpp:406] conv4 <- conv3 +I0407 08:24:54.260610 18909 net.cpp:380] conv4 -> conv4 +I0407 08:24:54.270813 18909 net.cpp:122] Setting up conv4 +I0407 08:24:54.270829 18909 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:54.270831 18909 net.cpp:137] Memory required for data: 969521152 +I0407 08:24:54.270839 18909 layer_factory.hpp:77] Creating layer relu4 +I0407 08:24:54.270848 18909 net.cpp:84] Creating Layer relu4 +I0407 08:24:54.270869 18909 net.cpp:406] relu4 <- conv4 +I0407 08:24:54.270874 18909 net.cpp:367] relu4 -> conv4 (in-place) +I0407 08:24:54.271193 18909 net.cpp:122] Setting up relu4 +I0407 08:24:54.271200 18909 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0407 08:24:54.271203 18909 net.cpp:137] Memory required for data: 1002747904 +I0407 08:24:54.271205 18909 layer_factory.hpp:77] Creating layer conv5 +I0407 08:24:54.271215 18909 net.cpp:84] Creating Layer conv5 +I0407 08:24:54.271217 18909 net.cpp:406] conv5 <- conv4 +I0407 08:24:54.271224 18909 net.cpp:380] conv5 -> conv5 +I0407 08:24:54.291848 18909 net.cpp:122] Setting up conv5 +I0407 08:24:54.291865 18909 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:24:54.291868 18909 net.cpp:137] Memory required for data: 1024899072 +I0407 08:24:54.291880 18909 layer_factory.hpp:77] Creating layer relu5 +I0407 08:24:54.291889 18909 net.cpp:84] Creating Layer relu5 +I0407 08:24:54.291893 18909 net.cpp:406] relu5 <- conv5 +I0407 08:24:54.291898 18909 net.cpp:367] relu5 -> conv5 (in-place) +I0407 08:24:54.292445 18909 net.cpp:122] Setting up relu5 +I0407 08:24:54.292454 18909 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0407 08:24:54.292456 18909 net.cpp:137] Memory required for data: 1047050240 +I0407 08:24:54.292459 18909 layer_factory.hpp:77] Creating layer pool5 +I0407 08:24:54.292466 18909 net.cpp:84] Creating Layer pool5 +I0407 08:24:54.292469 18909 net.cpp:406] pool5 <- conv5 +I0407 08:24:54.292474 18909 net.cpp:380] pool5 -> pool5 +I0407 08:24:54.292508 18909 net.cpp:122] Setting up pool5 +I0407 08:24:54.292513 18909 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0407 08:24:54.292515 18909 net.cpp:137] Memory required for data: 1051768832 +I0407 08:24:54.292517 18909 layer_factory.hpp:77] Creating layer fc6 +I0407 08:24:54.292526 18909 net.cpp:84] Creating Layer fc6 +I0407 08:24:54.292528 18909 net.cpp:406] fc6 <- pool5 +I0407 08:24:54.292532 18909 net.cpp:380] fc6 -> fc6 +I0407 08:24:54.624992 18909 net.cpp:122] Setting up fc6 +I0407 08:24:54.625012 18909 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:54.625015 18909 net.cpp:137] Memory required for data: 1053865984 +I0407 08:24:54.625023 18909 layer_factory.hpp:77] Creating layer relu6 +I0407 08:24:54.625031 18909 net.cpp:84] Creating Layer relu6 +I0407 08:24:54.625034 18909 net.cpp:406] relu6 <- fc6 +I0407 08:24:54.625041 18909 net.cpp:367] relu6 -> fc6 (in-place) +I0407 08:24:54.625700 18909 net.cpp:122] Setting up relu6 +I0407 08:24:54.625710 18909 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:54.625711 18909 net.cpp:137] Memory required for data: 1055963136 +I0407 08:24:54.625715 18909 layer_factory.hpp:77] Creating layer drop6 +I0407 08:24:54.625720 18909 net.cpp:84] Creating Layer drop6 +I0407 08:24:54.625722 18909 net.cpp:406] drop6 <- fc6 +I0407 08:24:54.625726 18909 net.cpp:367] drop6 -> fc6 (in-place) +I0407 08:24:54.625751 18909 net.cpp:122] Setting up drop6 +I0407 08:24:54.625756 18909 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:54.625757 18909 net.cpp:137] Memory required for data: 1058060288 +I0407 08:24:54.625759 18909 layer_factory.hpp:77] Creating layer fc7 +I0407 08:24:54.625766 18909 net.cpp:84] Creating Layer fc7 +I0407 08:24:54.625767 18909 net.cpp:406] fc7 <- fc6 +I0407 08:24:54.625772 18909 net.cpp:380] fc7 -> fc7 +I0407 08:24:54.777706 18909 net.cpp:122] Setting up fc7 +I0407 08:24:54.777724 18909 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:54.777727 18909 net.cpp:137] Memory required for data: 1060157440 +I0407 08:24:54.777735 18909 layer_factory.hpp:77] Creating layer relu7 +I0407 08:24:54.777743 18909 net.cpp:84] Creating Layer relu7 +I0407 08:24:54.777746 18909 net.cpp:406] relu7 <- fc7 +I0407 08:24:54.777751 18909 net.cpp:367] relu7 -> fc7 (in-place) +I0407 08:24:54.778127 18909 net.cpp:122] Setting up relu7 +I0407 08:24:54.778136 18909 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:54.778137 18909 net.cpp:137] Memory required for data: 1062254592 +I0407 08:24:54.778139 18909 layer_factory.hpp:77] Creating layer drop7 +I0407 08:24:54.778144 18909 net.cpp:84] Creating Layer drop7 +I0407 08:24:54.778163 18909 net.cpp:406] drop7 <- fc7 +I0407 08:24:54.778168 18909 net.cpp:367] drop7 -> fc7 (in-place) +I0407 08:24:54.778188 18909 net.cpp:122] Setting up drop7 +I0407 08:24:54.778192 18909 net.cpp:129] Top shape: 128 4096 (524288) +I0407 08:24:54.778194 18909 net.cpp:137] Memory required for data: 1064351744 +I0407 08:24:54.778196 18909 layer_factory.hpp:77] Creating layer fc8 +I0407 08:24:54.778204 18909 net.cpp:84] Creating Layer fc8 +I0407 08:24:54.778206 18909 net.cpp:406] fc8 <- fc7 +I0407 08:24:54.778210 18909 net.cpp:380] fc8 -> fc8 +I0407 08:24:54.785758 18909 net.cpp:122] Setting up fc8 +I0407 08:24:54.785776 18909 net.cpp:129] Top shape: 128 196 (25088) +I0407 08:24:54.785778 18909 net.cpp:137] Memory required for data: 1064452096 +I0407 08:24:54.785786 18909 layer_factory.hpp:77] Creating layer loss +I0407 08:24:54.785794 18909 net.cpp:84] Creating Layer loss +I0407 08:24:54.785796 18909 net.cpp:406] loss <- fc8 +I0407 08:24:54.785800 18909 net.cpp:406] loss <- label +I0407 08:24:54.785806 18909 net.cpp:380] loss -> loss +I0407 08:24:54.785815 18909 layer_factory.hpp:77] Creating layer loss +I0407 08:24:54.786468 18909 net.cpp:122] Setting up loss +I0407 08:24:54.786474 18909 net.cpp:129] Top shape: (1) +I0407 08:24:54.786478 18909 net.cpp:132] with loss weight 1 +I0407 08:24:54.786499 18909 net.cpp:137] Memory required for data: 1064452100 +I0407 08:24:54.786501 18909 net.cpp:198] loss needs backward computation. +I0407 08:24:54.786507 18909 net.cpp:198] fc8 needs backward computation. +I0407 08:24:54.786509 18909 net.cpp:198] drop7 needs backward computation. +I0407 08:24:54.786511 18909 net.cpp:198] relu7 needs backward computation. +I0407 08:24:54.786514 18909 net.cpp:198] fc7 needs backward computation. +I0407 08:24:54.786515 18909 net.cpp:198] drop6 needs backward computation. +I0407 08:24:54.786518 18909 net.cpp:198] relu6 needs backward computation. +I0407 08:24:54.786520 18909 net.cpp:198] fc6 needs backward computation. +I0407 08:24:54.786523 18909 net.cpp:198] pool5 needs backward computation. +I0407 08:24:54.786525 18909 net.cpp:198] relu5 needs backward computation. +I0407 08:24:54.786527 18909 net.cpp:198] conv5 needs backward computation. +I0407 08:24:54.786530 18909 net.cpp:198] relu4 needs backward computation. +I0407 08:24:54.786532 18909 net.cpp:198] conv4 needs backward computation. +I0407 08:24:54.786535 18909 net.cpp:198] relu3 needs backward computation. +I0407 08:24:54.786536 18909 net.cpp:198] conv3 needs backward computation. +I0407 08:24:54.786540 18909 net.cpp:198] pool2 needs backward computation. +I0407 08:24:54.786541 18909 net.cpp:198] norm2 needs backward computation. +I0407 08:24:54.786543 18909 net.cpp:198] relu2 needs backward computation. +I0407 08:24:54.786545 18909 net.cpp:198] conv2 needs backward computation. +I0407 08:24:54.786548 18909 net.cpp:198] pool1 needs backward computation. +I0407 08:24:54.786550 18909 net.cpp:198] norm1 needs backward computation. +I0407 08:24:54.786554 18909 net.cpp:198] relu1 needs backward computation. +I0407 08:24:54.786556 18909 net.cpp:198] conv1 needs backward computation. +I0407 08:24:54.786558 18909 net.cpp:200] train-data does not need backward computation. +I0407 08:24:54.786561 18909 net.cpp:242] This network produces output loss +I0407 08:24:54.786572 18909 net.cpp:255] Network initialization done. +I0407 08:24:54.787091 18909 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0407 08:24:54.787119 18909 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0407 08:24:54.787248 18909 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0407 08:24:54.787345 18909 layer_factory.hpp:77] Creating layer val-data +I0407 08:24:54.789166 18909 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/val_db +I0407 08:24:54.789405 18909 net.cpp:84] Creating Layer val-data +I0407 08:24:54.789414 18909 net.cpp:380] val-data -> data +I0407 08:24:54.789422 18909 net.cpp:380] val-data -> label +I0407 08:24:54.789427 18909 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-AIN-3/digits/jobs/20210401-115716-aaf7/mean.binaryproto +I0407 08:24:54.793125 18909 data_layer.cpp:45] output data size: 32,3,227,227 +I0407 08:24:54.839465 18909 net.cpp:122] Setting up val-data +I0407 08:24:54.839483 18909 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0407 08:24:54.839488 18909 net.cpp:129] Top shape: 32 (32) +I0407 08:24:54.839489 18909 net.cpp:137] Memory required for data: 19787264 +I0407 08:24:54.839494 18909 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0407 08:24:54.839505 18909 net.cpp:84] Creating Layer label_val-data_1_split +I0407 08:24:54.839509 18909 net.cpp:406] label_val-data_1_split <- label +I0407 08:24:54.839514 18909 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0407 08:24:54.839521 18909 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0407 08:24:54.839573 18909 net.cpp:122] Setting up label_val-data_1_split +I0407 08:24:54.839578 18909 net.cpp:129] Top shape: 32 (32) +I0407 08:24:54.839581 18909 net.cpp:129] Top shape: 32 (32) +I0407 08:24:54.839582 18909 net.cpp:137] Memory required for data: 19787520 +I0407 08:24:54.839584 18909 layer_factory.hpp:77] Creating layer conv1 +I0407 08:24:54.839594 18909 net.cpp:84] Creating Layer conv1 +I0407 08:24:54.839597 18909 net.cpp:406] conv1 <- data +I0407 08:24:54.839601 18909 net.cpp:380] conv1 -> conv1 +I0407 08:24:54.851976 18909 net.cpp:122] Setting up conv1 +I0407 08:24:54.851999 18909 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:24:54.852003 18909 net.cpp:137] Memory required for data: 56958720 +I0407 08:24:54.852020 18909 layer_factory.hpp:77] Creating layer relu1 +I0407 08:24:54.852030 18909 net.cpp:84] Creating Layer relu1 +I0407 08:24:54.852035 18909 net.cpp:406] relu1 <- conv1 +I0407 08:24:54.852042 18909 net.cpp:367] relu1 -> conv1 (in-place) +I0407 08:24:54.852435 18909 net.cpp:122] Setting up relu1 +I0407 08:24:54.852447 18909 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:24:54.852449 18909 net.cpp:137] Memory required for data: 94129920 +I0407 08:24:54.852453 18909 layer_factory.hpp:77] Creating layer norm1 +I0407 08:24:54.852464 18909 net.cpp:84] Creating Layer norm1 +I0407 08:24:54.852468 18909 net.cpp:406] norm1 <- conv1 +I0407 08:24:54.852475 18909 net.cpp:380] norm1 -> norm1 +I0407 08:24:54.853088 18909 net.cpp:122] Setting up norm1 +I0407 08:24:54.853101 18909 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0407 08:24:54.853104 18909 net.cpp:137] Memory required for data: 131301120 +I0407 08:24:54.853108 18909 layer_factory.hpp:77] Creating layer pool1 +I0407 08:24:54.853116 18909 net.cpp:84] Creating Layer pool1 +I0407 08:24:54.853121 18909 net.cpp:406] pool1 <- norm1 +I0407 08:24:54.853127 18909 net.cpp:380] pool1 -> pool1 +I0407 08:24:54.853168 18909 net.cpp:122] Setting up pool1 +I0407 08:24:54.853174 18909 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0407 08:24:54.853178 18909 net.cpp:137] Memory required for data: 140259072 +I0407 08:24:54.853181 18909 layer_factory.hpp:77] Creating layer conv2 +I0407 08:24:54.853193 18909 net.cpp:84] Creating Layer conv2 +I0407 08:24:54.853196 18909 net.cpp:406] conv2 <- pool1 +I0407 08:24:54.853230 18909 net.cpp:380] conv2 -> conv2 +I0407 08:24:54.862079 18909 net.cpp:122] Setting up conv2 +I0407 08:24:54.862102 18909 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:24:54.862105 18909 net.cpp:137] Memory required for data: 164146944 +I0407 08:24:54.862121 18909 layer_factory.hpp:77] Creating layer relu2 +I0407 08:24:54.862130 18909 net.cpp:84] Creating Layer relu2 +I0407 08:24:54.862134 18909 net.cpp:406] relu2 <- conv2 +I0407 08:24:54.862141 18909 net.cpp:367] relu2 -> conv2 (in-place) +I0407 08:24:54.862807 18909 net.cpp:122] Setting up relu2 +I0407 08:24:54.862819 18909 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:24:54.862823 18909 net.cpp:137] Memory required for data: 188034816 +I0407 08:24:54.862826 18909 layer_factory.hpp:77] Creating layer norm2 +I0407 08:24:54.862843 18909 net.cpp:84] Creating Layer norm2 +I0407 08:24:54.862848 18909 net.cpp:406] norm2 <- conv2 +I0407 08:24:54.862854 18909 net.cpp:380] norm2 -> norm2 +I0407 08:24:54.863541 18909 net.cpp:122] Setting up norm2 +I0407 08:24:54.863554 18909 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0407 08:24:54.863557 18909 net.cpp:137] Memory required for data: 211922688 +I0407 08:24:54.863561 18909 layer_factory.hpp:77] Creating layer pool2 +I0407 08:24:54.863569 18909 net.cpp:84] Creating Layer pool2 +I0407 08:24:54.863574 18909 net.cpp:406] pool2 <- norm2 +I0407 08:24:54.863579 18909 net.cpp:380] pool2 -> pool2 +I0407 08:24:54.863618 18909 net.cpp:122] Setting up pool2 +I0407 08:24:54.863624 18909 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:24:54.863628 18909 net.cpp:137] Memory required for data: 217460480 +I0407 08:24:54.863631 18909 layer_factory.hpp:77] Creating layer conv3 +I0407 08:24:54.863644 18909 net.cpp:84] Creating Layer conv3 +I0407 08:24:54.863648 18909 net.cpp:406] conv3 <- pool2 +I0407 08:24:54.863656 18909 net.cpp:380] conv3 -> conv3 +I0407 08:24:54.879355 18909 net.cpp:122] Setting up conv3 +I0407 08:24:54.879384 18909 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:54.879387 18909 net.cpp:137] Memory required for data: 225767168 +I0407 08:24:54.879403 18909 layer_factory.hpp:77] Creating layer relu3 +I0407 08:24:54.879415 18909 net.cpp:84] Creating Layer relu3 +I0407 08:24:54.879420 18909 net.cpp:406] relu3 <- conv3 +I0407 08:24:54.879429 18909 net.cpp:367] relu3 -> conv3 (in-place) +I0407 08:24:54.880100 18909 net.cpp:122] Setting up relu3 +I0407 08:24:54.880113 18909 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:54.880117 18909 net.cpp:137] Memory required for data: 234073856 +I0407 08:24:54.880122 18909 layer_factory.hpp:77] Creating layer conv4 +I0407 08:24:54.880136 18909 net.cpp:84] Creating Layer conv4 +I0407 08:24:54.880141 18909 net.cpp:406] conv4 <- conv3 +I0407 08:24:54.880148 18909 net.cpp:380] conv4 -> conv4 +I0407 08:24:54.894243 18909 net.cpp:122] Setting up conv4 +I0407 08:24:54.894265 18909 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:54.894269 18909 net.cpp:137] Memory required for data: 242380544 +I0407 08:24:54.894280 18909 layer_factory.hpp:77] Creating layer relu4 +I0407 08:24:54.894290 18909 net.cpp:84] Creating Layer relu4 +I0407 08:24:54.894295 18909 net.cpp:406] relu4 <- conv4 +I0407 08:24:54.894304 18909 net.cpp:367] relu4 -> conv4 (in-place) +I0407 08:24:54.894779 18909 net.cpp:122] Setting up relu4 +I0407 08:24:54.894791 18909 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0407 08:24:54.894795 18909 net.cpp:137] Memory required for data: 250687232 +I0407 08:24:54.894799 18909 layer_factory.hpp:77] Creating layer conv5 +I0407 08:24:54.894812 18909 net.cpp:84] Creating Layer conv5 +I0407 08:24:54.894817 18909 net.cpp:406] conv5 <- conv4 +I0407 08:24:54.894825 18909 net.cpp:380] conv5 -> conv5 +I0407 08:24:54.907004 18909 net.cpp:122] Setting up conv5 +I0407 08:24:54.907027 18909 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:24:54.907032 18909 net.cpp:137] Memory required for data: 256225024 +I0407 08:24:54.907048 18909 layer_factory.hpp:77] Creating layer relu5 +I0407 08:24:54.907059 18909 net.cpp:84] Creating Layer relu5 +I0407 08:24:54.907088 18909 net.cpp:406] relu5 <- conv5 +I0407 08:24:54.907097 18909 net.cpp:367] relu5 -> conv5 (in-place) +I0407 08:24:54.909761 18909 net.cpp:122] Setting up relu5 +I0407 08:24:54.909775 18909 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0407 08:24:54.909778 18909 net.cpp:137] Memory required for data: 261762816 +I0407 08:24:54.909783 18909 layer_factory.hpp:77] Creating layer pool5 +I0407 08:24:54.909798 18909 net.cpp:84] Creating Layer pool5 +I0407 08:24:54.909802 18909 net.cpp:406] pool5 <- conv5 +I0407 08:24:54.909809 18909 net.cpp:380] pool5 -> pool5 +I0407 08:24:54.909862 18909 net.cpp:122] Setting up pool5 +I0407 08:24:54.909869 18909 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0407 08:24:54.909873 18909 net.cpp:137] Memory required for data: 262942464 +I0407 08:24:54.909876 18909 layer_factory.hpp:77] Creating layer fc6 +I0407 08:24:54.909888 18909 net.cpp:84] Creating Layer fc6 +I0407 08:24:54.909891 18909 net.cpp:406] fc6 <- pool5 +I0407 08:24:54.909898 18909 net.cpp:380] fc6 -> fc6 +I0407 08:24:55.242172 18909 net.cpp:122] Setting up fc6 +I0407 08:24:55.242194 18909 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:55.242197 18909 net.cpp:137] Memory required for data: 263466752 +I0407 08:24:55.242205 18909 layer_factory.hpp:77] Creating layer relu6 +I0407 08:24:55.242214 18909 net.cpp:84] Creating Layer relu6 +I0407 08:24:55.242218 18909 net.cpp:406] relu6 <- fc6 +I0407 08:24:55.242223 18909 net.cpp:367] relu6 -> fc6 (in-place) +I0407 08:24:55.242905 18909 net.cpp:122] Setting up relu6 +I0407 08:24:55.242915 18909 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:55.242918 18909 net.cpp:137] Memory required for data: 263991040 +I0407 08:24:55.242920 18909 layer_factory.hpp:77] Creating layer drop6 +I0407 08:24:55.242925 18909 net.cpp:84] Creating Layer drop6 +I0407 08:24:55.242928 18909 net.cpp:406] drop6 <- fc6 +I0407 08:24:55.242931 18909 net.cpp:367] drop6 -> fc6 (in-place) +I0407 08:24:55.242955 18909 net.cpp:122] Setting up drop6 +I0407 08:24:55.242959 18909 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:55.242961 18909 net.cpp:137] Memory required for data: 264515328 +I0407 08:24:55.242964 18909 layer_factory.hpp:77] Creating layer fc7 +I0407 08:24:55.242970 18909 net.cpp:84] Creating Layer fc7 +I0407 08:24:55.242972 18909 net.cpp:406] fc7 <- fc6 +I0407 08:24:55.242976 18909 net.cpp:380] fc7 -> fc7 +I0407 08:24:55.390293 18909 net.cpp:122] Setting up fc7 +I0407 08:24:55.390312 18909 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:55.390316 18909 net.cpp:137] Memory required for data: 265039616 +I0407 08:24:55.390323 18909 layer_factory.hpp:77] Creating layer relu7 +I0407 08:24:55.390331 18909 net.cpp:84] Creating Layer relu7 +I0407 08:24:55.390336 18909 net.cpp:406] relu7 <- fc7 +I0407 08:24:55.390341 18909 net.cpp:367] relu7 -> fc7 (in-place) +I0407 08:24:55.390722 18909 net.cpp:122] Setting up relu7 +I0407 08:24:55.390731 18909 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:55.390734 18909 net.cpp:137] Memory required for data: 265563904 +I0407 08:24:55.390736 18909 layer_factory.hpp:77] Creating layer drop7 +I0407 08:24:55.390741 18909 net.cpp:84] Creating Layer drop7 +I0407 08:24:55.390744 18909 net.cpp:406] drop7 <- fc7 +I0407 08:24:55.390748 18909 net.cpp:367] drop7 -> fc7 (in-place) +I0407 08:24:55.390770 18909 net.cpp:122] Setting up drop7 +I0407 08:24:55.390774 18909 net.cpp:129] Top shape: 32 4096 (131072) +I0407 08:24:55.390776 18909 net.cpp:137] Memory required for data: 266088192 +I0407 08:24:55.390779 18909 layer_factory.hpp:77] Creating layer fc8 +I0407 08:24:55.390785 18909 net.cpp:84] Creating Layer fc8 +I0407 08:24:55.390787 18909 net.cpp:406] fc8 <- fc7 +I0407 08:24:55.390791 18909 net.cpp:380] fc8 -> fc8 +I0407 08:24:55.399226 18909 net.cpp:122] Setting up fc8 +I0407 08:24:55.399243 18909 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:24:55.399245 18909 net.cpp:137] Memory required for data: 266113280 +I0407 08:24:55.399252 18909 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0407 08:24:55.399260 18909 net.cpp:84] Creating Layer fc8_fc8_0_split +I0407 08:24:55.399263 18909 net.cpp:406] fc8_fc8_0_split <- fc8 +I0407 08:24:55.399288 18909 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0407 08:24:55.399296 18909 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0407 08:24:55.399329 18909 net.cpp:122] Setting up fc8_fc8_0_split +I0407 08:24:55.399333 18909 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:24:55.399335 18909 net.cpp:129] Top shape: 32 196 (6272) +I0407 08:24:55.399338 18909 net.cpp:137] Memory required for data: 266163456 +I0407 08:24:55.399339 18909 layer_factory.hpp:77] Creating layer accuracy +I0407 08:24:55.399345 18909 net.cpp:84] Creating Layer accuracy +I0407 08:24:55.399348 18909 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0407 08:24:55.399350 18909 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0407 08:24:55.399355 18909 net.cpp:380] accuracy -> accuracy +I0407 08:24:55.399361 18909 net.cpp:122] Setting up accuracy +I0407 08:24:55.399364 18909 net.cpp:129] Top shape: (1) +I0407 08:24:55.399365 18909 net.cpp:137] Memory required for data: 266163460 +I0407 08:24:55.399367 18909 layer_factory.hpp:77] Creating layer loss +I0407 08:24:55.399371 18909 net.cpp:84] Creating Layer loss +I0407 08:24:55.399374 18909 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0407 08:24:55.399376 18909 net.cpp:406] loss <- label_val-data_1_split_1 +I0407 08:24:55.399380 18909 net.cpp:380] loss -> loss +I0407 08:24:55.399386 18909 layer_factory.hpp:77] Creating layer loss +I0407 08:24:55.400666 18909 net.cpp:122] Setting up loss +I0407 08:24:55.400676 18909 net.cpp:129] Top shape: (1) +I0407 08:24:55.400678 18909 net.cpp:132] with loss weight 1 +I0407 08:24:55.400686 18909 net.cpp:137] Memory required for data: 266163464 +I0407 08:24:55.400688 18909 net.cpp:198] loss needs backward computation. +I0407 08:24:55.400692 18909 net.cpp:200] accuracy does not need backward computation. +I0407 08:24:55.400694 18909 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0407 08:24:55.400696 18909 net.cpp:198] fc8 needs backward computation. +I0407 08:24:55.400699 18909 net.cpp:198] drop7 needs backward computation. +I0407 08:24:55.400701 18909 net.cpp:198] relu7 needs backward computation. +I0407 08:24:55.400703 18909 net.cpp:198] fc7 needs backward computation. +I0407 08:24:55.400705 18909 net.cpp:198] drop6 needs backward computation. +I0407 08:24:55.400707 18909 net.cpp:198] relu6 needs backward computation. +I0407 08:24:55.400709 18909 net.cpp:198] fc6 needs backward computation. +I0407 08:24:55.400712 18909 net.cpp:198] pool5 needs backward computation. +I0407 08:24:55.400714 18909 net.cpp:198] relu5 needs backward computation. +I0407 08:24:55.400717 18909 net.cpp:198] conv5 needs backward computation. +I0407 08:24:55.400718 18909 net.cpp:198] relu4 needs backward computation. +I0407 08:24:55.400722 18909 net.cpp:198] conv4 needs backward computation. +I0407 08:24:55.400723 18909 net.cpp:198] relu3 needs backward computation. +I0407 08:24:55.400725 18909 net.cpp:198] conv3 needs backward computation. +I0407 08:24:55.400728 18909 net.cpp:198] pool2 needs backward computation. +I0407 08:24:55.400730 18909 net.cpp:198] norm2 needs backward computation. +I0407 08:24:55.400732 18909 net.cpp:198] relu2 needs backward computation. +I0407 08:24:55.400734 18909 net.cpp:198] conv2 needs backward computation. +I0407 08:24:55.400736 18909 net.cpp:198] pool1 needs backward computation. +I0407 08:24:55.400739 18909 net.cpp:198] norm1 needs backward computation. +I0407 08:24:55.400741 18909 net.cpp:198] relu1 needs backward computation. +I0407 08:24:55.400743 18909 net.cpp:198] conv1 needs backward computation. +I0407 08:24:55.400746 18909 net.cpp:200] label_val-data_1_split does not need backward computation. +I0407 08:24:55.400749 18909 net.cpp:200] val-data does not need backward computation. +I0407 08:24:55.400750 18909 net.cpp:242] This network produces output accuracy +I0407 08:24:55.400753 18909 net.cpp:242] This network produces output loss +I0407 08:24:55.400771 18909 net.cpp:255] Network initialization done. +I0407 08:24:55.400835 18909 solver.cpp:56] Solver scaffolding done. +I0407 08:24:55.401229 18909 caffe.cpp:248] Starting Optimization +I0407 08:24:55.401237 18909 solver.cpp:272] Solving +I0407 08:24:55.401250 18909 solver.cpp:273] Learning Rate Policy: step +I0407 08:24:55.413601 18909 solver.cpp:330] Iteration 0, Testing net (#0) +I0407 08:24:55.413612 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:24:55.518435 18909 blocking_queue.cpp:49] Waiting for data +I0407 08:24:59.684993 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:24:59.733503 18909 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0407 08:24:59.733533 18909 solver.cpp:397] Test net output #1: loss = 5.27729 (* 1 = 5.27729 loss) +I0407 08:24:59.883035 18909 solver.cpp:218] Iteration 0 (-2.00847e-21 iter/s, 4.4817s/12 iters), loss = 5.26914 +I0407 08:24:59.884596 18909 solver.cpp:237] Train net output #0: loss = 5.26914 (* 1 = 5.26914 loss) +I0407 08:24:59.884634 18909 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0407 08:25:04.045926 18909 solver.cpp:218] Iteration 12 (2.88372 iter/s, 4.16129s/12 iters), loss = 5.27688 +I0407 08:25:04.045977 18909 solver.cpp:237] Train net output #0: loss = 5.27688 (* 1 = 5.27688 loss) +I0407 08:25:04.045986 18909 sgd_solver.cpp:105] Iteration 12, lr = 0.01 +I0407 08:25:09.246789 18909 solver.cpp:218] Iteration 24 (2.30736 iter/s, 5.20076s/12 iters), loss = 5.27994 +I0407 08:25:09.246832 18909 solver.cpp:237] Train net output #0: loss = 5.27994 (* 1 = 5.27994 loss) +I0407 08:25:09.246840 18909 sgd_solver.cpp:105] Iteration 24, lr = 0.01 +I0407 08:25:14.514860 18909 solver.cpp:218] Iteration 36 (2.27792 iter/s, 5.26796s/12 iters), loss = 5.28565 +I0407 08:25:14.514911 18909 solver.cpp:237] Train net output #0: loss = 5.28565 (* 1 = 5.28565 loss) +I0407 08:25:14.514920 18909 sgd_solver.cpp:105] Iteration 36, lr = 0.01 +I0407 08:25:19.541229 18909 solver.cpp:218] Iteration 48 (2.38747 iter/s, 5.02625s/12 iters), loss = 5.28967 +I0407 08:25:19.541270 18909 solver.cpp:237] Train net output #0: loss = 5.28967 (* 1 = 5.28967 loss) +I0407 08:25:19.541275 18909 sgd_solver.cpp:105] Iteration 48, lr = 0.01 +I0407 08:25:24.643591 18909 solver.cpp:218] Iteration 60 (2.35191 iter/s, 5.10224s/12 iters), loss = 5.27589 +I0407 08:25:24.643736 18909 solver.cpp:237] Train net output #0: loss = 5.27589 (* 1 = 5.27589 loss) +I0407 08:25:24.643745 18909 sgd_solver.cpp:105] Iteration 60, lr = 0.01 +I0407 08:25:29.449539 18909 solver.cpp:218] Iteration 72 (2.49702 iter/s, 4.80573s/12 iters), loss = 5.32654 +I0407 08:25:29.449573 18909 solver.cpp:237] Train net output #0: loss = 5.32654 (* 1 = 5.32654 loss) +I0407 08:25:29.449579 18909 sgd_solver.cpp:105] Iteration 72, lr = 0.01 +I0407 08:25:34.305043 18909 solver.cpp:218] Iteration 84 (2.47148 iter/s, 4.85539s/12 iters), loss = 5.29483 +I0407 08:25:34.305080 18909 solver.cpp:237] Train net output #0: loss = 5.29483 (* 1 = 5.29483 loss) +I0407 08:25:34.305088 18909 sgd_solver.cpp:105] Iteration 84, lr = 0.01 +I0407 08:25:39.588158 18909 solver.cpp:218] Iteration 96 (2.27144 iter/s, 5.28299s/12 iters), loss = 5.28604 +I0407 08:25:39.588201 18909 solver.cpp:237] Train net output #0: loss = 5.28604 (* 1 = 5.28604 loss) +I0407 08:25:39.588207 18909 sgd_solver.cpp:105] Iteration 96, lr = 0.01 +I0407 08:25:41.406484 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:41.709051 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0407 08:25:44.851994 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0407 08:25:47.154729 18909 solver.cpp:330] Iteration 102, Testing net (#0) +I0407 08:25:47.154748 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:25:51.381033 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:25:51.458832 18909 solver.cpp:397] Test net output #0: accuracy = 0.00612745 +I0407 08:25:51.458860 18909 solver.cpp:397] Test net output #1: loss = 5.29078 (* 1 = 5.29078 loss) +I0407 08:25:53.396776 18909 solver.cpp:218] Iteration 108 (0.869039 iter/s, 13.8084s/12 iters), loss = 5.28906 +I0407 08:25:53.396818 18909 solver.cpp:237] Train net output #0: loss = 5.28906 (* 1 = 5.28906 loss) +I0407 08:25:53.396824 18909 sgd_solver.cpp:105] Iteration 108, lr = 0.01 +I0407 08:25:58.709408 18909 solver.cpp:218] Iteration 120 (2.25882 iter/s, 5.31251s/12 iters), loss = 5.26041 +I0407 08:25:58.709528 18909 solver.cpp:237] Train net output #0: loss = 5.26041 (* 1 = 5.26041 loss) +I0407 08:25:58.709537 18909 sgd_solver.cpp:105] Iteration 120, lr = 0.01 +I0407 08:26:03.975231 18909 solver.cpp:218] Iteration 132 (2.27892 iter/s, 5.26565s/12 iters), loss = 5.27281 +I0407 08:26:03.975282 18909 solver.cpp:237] Train net output #0: loss = 5.27281 (* 1 = 5.27281 loss) +I0407 08:26:03.975291 18909 sgd_solver.cpp:105] Iteration 132, lr = 0.01 +I0407 08:26:09.138406 18909 solver.cpp:218] Iteration 144 (2.32417 iter/s, 5.16313s/12 iters), loss = 5.26176 +I0407 08:26:09.138448 18909 solver.cpp:237] Train net output #0: loss = 5.26176 (* 1 = 5.26176 loss) +I0407 08:26:09.138455 18909 sgd_solver.cpp:105] Iteration 144, lr = 0.01 +I0407 08:26:14.071825 18909 solver.cpp:218] Iteration 156 (2.4324 iter/s, 4.9334s/12 iters), loss = 5.27569 +I0407 08:26:14.071867 18909 solver.cpp:237] Train net output #0: loss = 5.27569 (* 1 = 5.27569 loss) +I0407 08:26:14.071874 18909 sgd_solver.cpp:105] Iteration 156, lr = 0.01 +I0407 08:26:18.995432 18909 solver.cpp:218] Iteration 168 (2.43724 iter/s, 4.9236s/12 iters), loss = 5.22227 +I0407 08:26:18.995467 18909 solver.cpp:237] Train net output #0: loss = 5.22227 (* 1 = 5.22227 loss) +I0407 08:26:18.995473 18909 sgd_solver.cpp:105] Iteration 168, lr = 0.01 +I0407 08:26:24.269377 18909 solver.cpp:218] Iteration 180 (2.27534 iter/s, 5.27394s/12 iters), loss = 5.25716 +I0407 08:26:24.269415 18909 solver.cpp:237] Train net output #0: loss = 5.25716 (* 1 = 5.25716 loss) +I0407 08:26:24.269423 18909 sgd_solver.cpp:105] Iteration 180, lr = 0.01 +I0407 08:26:29.394939 18909 solver.cpp:218] Iteration 192 (2.34121 iter/s, 5.12555s/12 iters), loss = 5.10588 +I0407 08:26:29.395032 18909 solver.cpp:237] Train net output #0: loss = 5.10588 (* 1 = 5.10588 loss) +I0407 08:26:29.395041 18909 sgd_solver.cpp:105] Iteration 192, lr = 0.01 +I0407 08:26:33.652668 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:34.351610 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0407 08:26:37.370923 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0407 08:26:39.678953 18909 solver.cpp:330] Iteration 204, Testing net (#0) +I0407 08:26:39.678973 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:26:43.873870 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:26:43.997277 18909 solver.cpp:397] Test net output #0: accuracy = 0.00980392 +I0407 08:26:43.997314 18909 solver.cpp:397] Test net output #1: loss = 5.18832 (* 1 = 5.18832 loss) +I0407 08:26:44.135816 18909 solver.cpp:218] Iteration 204 (0.814063 iter/s, 14.7409s/12 iters), loss = 5.15635 +I0407 08:26:44.135870 18909 solver.cpp:237] Train net output #0: loss = 5.15635 (* 1 = 5.15635 loss) +I0407 08:26:44.135876 18909 sgd_solver.cpp:105] Iteration 204, lr = 0.01 +I0407 08:26:48.464151 18909 solver.cpp:218] Iteration 216 (2.77245 iter/s, 4.3283s/12 iters), loss = 5.23689 +I0407 08:26:48.464195 18909 solver.cpp:237] Train net output #0: loss = 5.23689 (* 1 = 5.23689 loss) +I0407 08:26:48.464203 18909 sgd_solver.cpp:105] Iteration 216, lr = 0.01 +I0407 08:26:53.334950 18909 solver.cpp:218] Iteration 228 (2.46368 iter/s, 4.87076s/12 iters), loss = 5.20522 +I0407 08:26:53.334995 18909 solver.cpp:237] Train net output #0: loss = 5.20522 (* 1 = 5.20522 loss) +I0407 08:26:53.335001 18909 sgd_solver.cpp:105] Iteration 228, lr = 0.01 +I0407 08:26:58.550078 18909 solver.cpp:218] Iteration 240 (2.30101 iter/s, 5.2151s/12 iters), loss = 5.17738 +I0407 08:26:58.550122 18909 solver.cpp:237] Train net output #0: loss = 5.17738 (* 1 = 5.17738 loss) +I0407 08:26:58.550129 18909 sgd_solver.cpp:105] Iteration 240, lr = 0.01 +I0407 08:27:03.659448 18909 solver.cpp:218] Iteration 252 (2.34864 iter/s, 5.10933s/12 iters), loss = 5.22431 +I0407 08:27:03.659593 18909 solver.cpp:237] Train net output #0: loss = 5.22431 (* 1 = 5.22431 loss) +I0407 08:27:03.659602 18909 sgd_solver.cpp:105] Iteration 252, lr = 0.01 +I0407 08:27:08.734985 18909 solver.cpp:218] Iteration 264 (2.36435 iter/s, 5.0754s/12 iters), loss = 5.09872 +I0407 08:27:08.735038 18909 solver.cpp:237] Train net output #0: loss = 5.09872 (* 1 = 5.09872 loss) +I0407 08:27:08.735049 18909 sgd_solver.cpp:105] Iteration 264, lr = 0.01 +I0407 08:27:13.729303 18909 solver.cpp:218] Iteration 276 (2.40275 iter/s, 4.99427s/12 iters), loss = 5.10072 +I0407 08:27:13.729344 18909 solver.cpp:237] Train net output #0: loss = 5.10072 (* 1 = 5.10072 loss) +I0407 08:27:13.729351 18909 sgd_solver.cpp:105] Iteration 276, lr = 0.01 +I0407 08:27:18.769338 18909 solver.cpp:218] Iteration 288 (2.38095 iter/s, 5.04s/12 iters), loss = 5.15828 +I0407 08:27:18.769381 18909 solver.cpp:237] Train net output #0: loss = 5.15828 (* 1 = 5.15828 loss) +I0407 08:27:18.769389 18909 sgd_solver.cpp:105] Iteration 288, lr = 0.01 +I0407 08:27:23.714174 18909 solver.cpp:218] Iteration 300 (2.4268 iter/s, 4.94479s/12 iters), loss = 5.23955 +I0407 08:27:23.714212 18909 solver.cpp:237] Train net output #0: loss = 5.23955 (* 1 = 5.23955 loss) +I0407 08:27:23.714221 18909 sgd_solver.cpp:105] Iteration 300, lr = 0.01 +I0407 08:27:24.763775 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:27:25.884775 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0407 08:27:30.228065 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0407 08:27:32.531729 18909 solver.cpp:330] Iteration 306, Testing net (#0) +I0407 08:27:32.531749 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:27:36.806000 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:27:36.963181 18909 solver.cpp:397] Test net output #0: accuracy = 0.00919118 +I0407 08:27:36.963224 18909 solver.cpp:397] Test net output #1: loss = 5.15591 (* 1 = 5.15591 loss) +I0407 08:27:38.839409 18909 solver.cpp:218] Iteration 312 (0.793377 iter/s, 15.1252s/12 iters), loss = 5.13614 +I0407 08:27:38.839457 18909 solver.cpp:237] Train net output #0: loss = 5.13614 (* 1 = 5.13614 loss) +I0407 08:27:38.839464 18909 sgd_solver.cpp:105] Iteration 312, lr = 0.01 +I0407 08:27:43.876626 18909 solver.cpp:218] Iteration 324 (2.38229 iter/s, 5.03717s/12 iters), loss = 5.20538 +I0407 08:27:43.876662 18909 solver.cpp:237] Train net output #0: loss = 5.20538 (* 1 = 5.20538 loss) +I0407 08:27:43.876668 18909 sgd_solver.cpp:105] Iteration 324, lr = 0.01 +I0407 08:27:49.121111 18909 solver.cpp:218] Iteration 336 (2.28813 iter/s, 5.24445s/12 iters), loss = 5.13817 +I0407 08:27:49.121153 18909 solver.cpp:237] Train net output #0: loss = 5.13817 (* 1 = 5.13817 loss) +I0407 08:27:49.121160 18909 sgd_solver.cpp:105] Iteration 336, lr = 0.01 +I0407 08:27:54.196094 18909 solver.cpp:218] Iteration 348 (2.36456 iter/s, 5.07494s/12 iters), loss = 5.10442 +I0407 08:27:54.196139 18909 solver.cpp:237] Train net output #0: loss = 5.10442 (* 1 = 5.10442 loss) +I0407 08:27:54.196146 18909 sgd_solver.cpp:105] Iteration 348, lr = 0.01 +I0407 08:27:59.464751 18909 solver.cpp:218] Iteration 360 (2.27764 iter/s, 5.2686s/12 iters), loss = 5.16098 +I0407 08:27:59.464798 18909 solver.cpp:237] Train net output #0: loss = 5.16098 (* 1 = 5.16098 loss) +I0407 08:27:59.464807 18909 sgd_solver.cpp:105] Iteration 360, lr = 0.01 +I0407 08:28:04.669459 18909 solver.cpp:218] Iteration 372 (2.30563 iter/s, 5.20465s/12 iters), loss = 5.13183 +I0407 08:28:04.669505 18909 solver.cpp:237] Train net output #0: loss = 5.13183 (* 1 = 5.13183 loss) +I0407 08:28:04.669512 18909 sgd_solver.cpp:105] Iteration 372, lr = 0.01 +I0407 08:28:09.890156 18909 solver.cpp:218] Iteration 384 (2.29857 iter/s, 5.22065s/12 iters), loss = 5.18489 +I0407 08:28:09.890293 18909 solver.cpp:237] Train net output #0: loss = 5.18489 (* 1 = 5.18489 loss) +I0407 08:28:09.890300 18909 sgd_solver.cpp:105] Iteration 384, lr = 0.01 +I0407 08:28:15.169957 18909 solver.cpp:218] Iteration 396 (2.27287 iter/s, 5.27966s/12 iters), loss = 5.09436 +I0407 08:28:15.170007 18909 solver.cpp:237] Train net output #0: loss = 5.09436 (* 1 = 5.09436 loss) +I0407 08:28:15.170017 18909 sgd_solver.cpp:105] Iteration 396, lr = 0.01 +I0407 08:28:18.312538 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:28:19.817685 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0407 08:28:24.775660 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0407 08:28:27.087543 18909 solver.cpp:330] Iteration 408, Testing net (#0) +I0407 08:28:27.087563 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:28:31.241082 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:28:31.446645 18909 solver.cpp:397] Test net output #0: accuracy = 0.0165441 +I0407 08:28:31.446689 18909 solver.cpp:397] Test net output #1: loss = 5.10432 (* 1 = 5.10432 loss) +I0407 08:28:31.588129 18909 solver.cpp:218] Iteration 408 (0.730899 iter/s, 16.4181s/12 iters), loss = 5.0937 +I0407 08:28:31.588189 18909 solver.cpp:237] Train net output #0: loss = 5.0937 (* 1 = 5.0937 loss) +I0407 08:28:31.588201 18909 sgd_solver.cpp:105] Iteration 408, lr = 0.01 +I0407 08:28:35.943629 18909 solver.cpp:218] Iteration 420 (2.75518 iter/s, 4.35543s/12 iters), loss = 5.05254 +I0407 08:28:35.943671 18909 solver.cpp:237] Train net output #0: loss = 5.05254 (* 1 = 5.05254 loss) +I0407 08:28:35.943679 18909 sgd_solver.cpp:105] Iteration 420, lr = 0.01 +I0407 08:28:41.239965 18909 solver.cpp:218] Iteration 432 (2.26574 iter/s, 5.29628s/12 iters), loss = 5.04143 +I0407 08:28:41.240077 18909 solver.cpp:237] Train net output #0: loss = 5.04143 (* 1 = 5.04143 loss) +I0407 08:28:41.240087 18909 sgd_solver.cpp:105] Iteration 432, lr = 0.01 +I0407 08:28:46.353274 18909 solver.cpp:218] Iteration 444 (2.34687 iter/s, 5.1132s/12 iters), loss = 5.10649 +I0407 08:28:46.353314 18909 solver.cpp:237] Train net output #0: loss = 5.10649 (* 1 = 5.10649 loss) +I0407 08:28:46.353322 18909 sgd_solver.cpp:105] Iteration 444, lr = 0.01 +I0407 08:28:51.327653 18909 solver.cpp:218] Iteration 456 (2.41239 iter/s, 4.97433s/12 iters), loss = 5.12691 +I0407 08:28:51.327693 18909 solver.cpp:237] Train net output #0: loss = 5.12691 (* 1 = 5.12691 loss) +I0407 08:28:51.327700 18909 sgd_solver.cpp:105] Iteration 456, lr = 0.01 +I0407 08:28:56.553457 18909 solver.cpp:218] Iteration 468 (2.29632 iter/s, 5.22575s/12 iters), loss = 5.05974 +I0407 08:28:56.553504 18909 solver.cpp:237] Train net output #0: loss = 5.05974 (* 1 = 5.05974 loss) +I0407 08:28:56.553512 18909 sgd_solver.cpp:105] Iteration 468, lr = 0.01 +I0407 08:29:01.820207 18909 solver.cpp:218] Iteration 480 (2.27847 iter/s, 5.26669s/12 iters), loss = 5.00257 +I0407 08:29:01.820247 18909 solver.cpp:237] Train net output #0: loss = 5.00257 (* 1 = 5.00257 loss) +I0407 08:29:01.820253 18909 sgd_solver.cpp:105] Iteration 480, lr = 0.01 +I0407 08:29:07.055286 18909 solver.cpp:218] Iteration 492 (2.29225 iter/s, 5.23503s/12 iters), loss = 5.10296 +I0407 08:29:07.055332 18909 solver.cpp:237] Train net output #0: loss = 5.10296 (* 1 = 5.10296 loss) +I0407 08:29:07.055341 18909 sgd_solver.cpp:105] Iteration 492, lr = 0.01 +I0407 08:29:12.343286 18909 solver.cpp:218] Iteration 504 (2.26931 iter/s, 5.28795s/12 iters), loss = 5.01734 +I0407 08:29:12.343406 18909 solver.cpp:237] Train net output #0: loss = 5.01734 (* 1 = 5.01734 loss) +I0407 08:29:12.343415 18909 sgd_solver.cpp:105] Iteration 504, lr = 0.01 +I0407 08:29:12.579136 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:29:14.478782 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0407 08:29:18.908002 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0407 08:29:21.322856 18909 solver.cpp:330] Iteration 510, Testing net (#0) +I0407 08:29:21.322877 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:29:25.563838 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:29:25.816754 18909 solver.cpp:397] Test net output #0: accuracy = 0.0245098 +I0407 08:29:25.816787 18909 solver.cpp:397] Test net output #1: loss = 5.04254 (* 1 = 5.04254 loss) +I0407 08:29:27.699345 18909 solver.cpp:218] Iteration 516 (0.781456 iter/s, 15.3559s/12 iters), loss = 5.01999 +I0407 08:29:27.699389 18909 solver.cpp:237] Train net output #0: loss = 5.01999 (* 1 = 5.01999 loss) +I0407 08:29:27.699395 18909 sgd_solver.cpp:105] Iteration 516, lr = 0.01 +I0407 08:29:32.887181 18909 solver.cpp:218] Iteration 528 (2.31313 iter/s, 5.18778s/12 iters), loss = 5.07922 +I0407 08:29:32.887218 18909 solver.cpp:237] Train net output #0: loss = 5.07922 (* 1 = 5.07922 loss) +I0407 08:29:32.887225 18909 sgd_solver.cpp:105] Iteration 528, lr = 0.01 +I0407 08:29:38.194589 18909 solver.cpp:218] Iteration 540 (2.26101 iter/s, 5.30736s/12 iters), loss = 4.97795 +I0407 08:29:38.194630 18909 solver.cpp:237] Train net output #0: loss = 4.97795 (* 1 = 4.97795 loss) +I0407 08:29:38.194638 18909 sgd_solver.cpp:105] Iteration 540, lr = 0.01 +I0407 08:29:43.387176 18909 solver.cpp:218] Iteration 552 (2.31101 iter/s, 5.19253s/12 iters), loss = 5.0968 +I0407 08:29:43.387318 18909 solver.cpp:237] Train net output #0: loss = 5.0968 (* 1 = 5.0968 loss) +I0407 08:29:43.387329 18909 sgd_solver.cpp:105] Iteration 552, lr = 0.01 +I0407 08:29:48.828922 18909 solver.cpp:218] Iteration 564 (2.20524 iter/s, 5.44159s/12 iters), loss = 4.98079 +I0407 08:29:48.828977 18909 solver.cpp:237] Train net output #0: loss = 4.98079 (* 1 = 4.98079 loss) +I0407 08:29:48.828986 18909 sgd_solver.cpp:105] Iteration 564, lr = 0.01 +I0407 08:29:54.102026 18909 solver.cpp:218] Iteration 576 (2.27573 iter/s, 5.27304s/12 iters), loss = 4.86677 +I0407 08:29:54.102067 18909 solver.cpp:237] Train net output #0: loss = 4.86677 (* 1 = 4.86677 loss) +I0407 08:29:54.102074 18909 sgd_solver.cpp:105] Iteration 576, lr = 0.01 +I0407 08:29:59.238054 18909 solver.cpp:218] Iteration 588 (2.33646 iter/s, 5.13597s/12 iters), loss = 4.95149 +I0407 08:29:59.238095 18909 solver.cpp:237] Train net output #0: loss = 4.95149 (* 1 = 4.95149 loss) +I0407 08:29:59.238102 18909 sgd_solver.cpp:105] Iteration 588, lr = 0.01 +I0407 08:30:04.526620 18909 solver.cpp:218] Iteration 600 (2.26907 iter/s, 5.28851s/12 iters), loss = 4.97912 +I0407 08:30:04.526664 18909 solver.cpp:237] Train net output #0: loss = 4.97912 (* 1 = 4.97912 loss) +I0407 08:30:04.526670 18909 sgd_solver.cpp:105] Iteration 600, lr = 0.01 +I0407 08:30:06.929245 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:30:09.309361 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0407 08:30:13.617555 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0407 08:30:16.687422 18909 solver.cpp:330] Iteration 612, Testing net (#0) +I0407 08:30:16.687448 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:30:20.684433 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:30:20.987848 18909 solver.cpp:397] Test net output #0: accuracy = 0.0324755 +I0407 08:30:20.987876 18909 solver.cpp:397] Test net output #1: loss = 4.94865 (* 1 = 4.94865 loss) +I0407 08:30:21.118643 18909 solver.cpp:218] Iteration 612 (0.723241 iter/s, 16.592s/12 iters), loss = 4.94902 +I0407 08:30:21.118683 18909 solver.cpp:237] Train net output #0: loss = 4.94902 (* 1 = 4.94902 loss) +I0407 08:30:21.118690 18909 sgd_solver.cpp:105] Iteration 612, lr = 0.01 +I0407 08:30:25.481866 18909 solver.cpp:218] Iteration 624 (2.7503 iter/s, 4.36317s/12 iters), loss = 4.89958 +I0407 08:30:25.481915 18909 solver.cpp:237] Train net output #0: loss = 4.89958 (* 1 = 4.89958 loss) +I0407 08:30:25.481925 18909 sgd_solver.cpp:105] Iteration 624, lr = 0.01 +I0407 08:30:30.499366 18909 solver.cpp:218] Iteration 636 (2.39166 iter/s, 5.01744s/12 iters), loss = 4.92922 +I0407 08:30:30.499405 18909 solver.cpp:237] Train net output #0: loss = 4.92922 (* 1 = 4.92922 loss) +I0407 08:30:30.499413 18909 sgd_solver.cpp:105] Iteration 636, lr = 0.01 +I0407 08:30:35.663058 18909 solver.cpp:218] Iteration 648 (2.32394 iter/s, 5.16364s/12 iters), loss = 4.80869 +I0407 08:30:35.663108 18909 solver.cpp:237] Train net output #0: loss = 4.80869 (* 1 = 4.80869 loss) +I0407 08:30:35.663118 18909 sgd_solver.cpp:105] Iteration 648, lr = 0.01 +I0407 08:30:40.713500 18909 solver.cpp:218] Iteration 660 (2.37606 iter/s, 5.05038s/12 iters), loss = 4.8592 +I0407 08:30:40.713539 18909 solver.cpp:237] Train net output #0: loss = 4.8592 (* 1 = 4.8592 loss) +I0407 08:30:40.713546 18909 sgd_solver.cpp:105] Iteration 660, lr = 0.01 +I0407 08:30:46.049242 18909 solver.cpp:218] Iteration 672 (2.249 iter/s, 5.33569s/12 iters), loss = 4.89137 +I0407 08:30:46.049369 18909 solver.cpp:237] Train net output #0: loss = 4.89137 (* 1 = 4.89137 loss) +I0407 08:30:46.049377 18909 sgd_solver.cpp:105] Iteration 672, lr = 0.01 +I0407 08:30:51.396562 18909 solver.cpp:218] Iteration 684 (2.24417 iter/s, 5.34719s/12 iters), loss = 4.84526 +I0407 08:30:51.396596 18909 solver.cpp:237] Train net output #0: loss = 4.84526 (* 1 = 4.84526 loss) +I0407 08:30:51.396602 18909 sgd_solver.cpp:105] Iteration 684, lr = 0.01 +I0407 08:30:52.143029 18909 blocking_queue.cpp:49] Waiting for data +I0407 08:30:56.440551 18909 solver.cpp:218] Iteration 696 (2.37909 iter/s, 5.04394s/12 iters), loss = 4.84902 +I0407 08:30:56.440595 18909 solver.cpp:237] Train net output #0: loss = 4.84902 (* 1 = 4.84902 loss) +I0407 08:30:56.440603 18909 sgd_solver.cpp:105] Iteration 696, lr = 0.01 +I0407 08:31:00.991729 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:01.401067 18909 solver.cpp:218] Iteration 708 (2.41913 iter/s, 4.96046s/12 iters), loss = 4.91176 +I0407 08:31:01.401104 18909 solver.cpp:237] Train net output #0: loss = 4.91176 (* 1 = 4.91176 loss) +I0407 08:31:01.401110 18909 sgd_solver.cpp:105] Iteration 708, lr = 0.01 +I0407 08:31:03.470782 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0407 08:31:07.834085 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0407 08:31:12.326385 18909 solver.cpp:330] Iteration 714, Testing net (#0) +I0407 08:31:12.326406 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:31:16.552656 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:31:16.866866 18909 solver.cpp:397] Test net output #0: accuracy = 0.0422794 +I0407 08:31:16.866896 18909 solver.cpp:397] Test net output #1: loss = 4.89296 (* 1 = 4.89296 loss) +I0407 08:31:18.704764 18909 solver.cpp:218] Iteration 720 (0.693495 iter/s, 17.3037s/12 iters), loss = 4.8486 +I0407 08:31:18.704805 18909 solver.cpp:237] Train net output #0: loss = 4.8486 (* 1 = 4.8486 loss) +I0407 08:31:18.704813 18909 sgd_solver.cpp:105] Iteration 720, lr = 0.01 +I0407 08:31:23.795153 18909 solver.cpp:218] Iteration 732 (2.35741 iter/s, 5.09034s/12 iters), loss = 4.76957 +I0407 08:31:23.795200 18909 solver.cpp:237] Train net output #0: loss = 4.76957 (* 1 = 4.76957 loss) +I0407 08:31:23.795209 18909 sgd_solver.cpp:105] Iteration 732, lr = 0.01 +I0407 08:31:28.896593 18909 solver.cpp:218] Iteration 744 (2.3523 iter/s, 5.10138s/12 iters), loss = 4.74374 +I0407 08:31:28.896636 18909 solver.cpp:237] Train net output #0: loss = 4.74374 (* 1 = 4.74374 loss) +I0407 08:31:28.896643 18909 sgd_solver.cpp:105] Iteration 744, lr = 0.01 +I0407 08:31:34.018491 18909 solver.cpp:218] Iteration 756 (2.34291 iter/s, 5.12184s/12 iters), loss = 4.70226 +I0407 08:31:34.018543 18909 solver.cpp:237] Train net output #0: loss = 4.70226 (* 1 = 4.70226 loss) +I0407 08:31:34.018554 18909 sgd_solver.cpp:105] Iteration 756, lr = 0.01 +I0407 08:31:39.367693 18909 solver.cpp:218] Iteration 768 (2.24335 iter/s, 5.34914s/12 iters), loss = 4.84433 +I0407 08:31:39.367728 18909 solver.cpp:237] Train net output #0: loss = 4.84433 (* 1 = 4.84433 loss) +I0407 08:31:39.367734 18909 sgd_solver.cpp:105] Iteration 768, lr = 0.01 +I0407 08:31:44.672726 18909 solver.cpp:218] Iteration 780 (2.26202 iter/s, 5.30499s/12 iters), loss = 4.69793 +I0407 08:31:44.672768 18909 solver.cpp:237] Train net output #0: loss = 4.69793 (* 1 = 4.69793 loss) +I0407 08:31:44.672775 18909 sgd_solver.cpp:105] Iteration 780, lr = 0.01 +I0407 08:31:49.846870 18909 solver.cpp:218] Iteration 792 (2.31925 iter/s, 5.17409s/12 iters), loss = 4.90535 +I0407 08:31:49.847014 18909 solver.cpp:237] Train net output #0: loss = 4.90535 (* 1 = 4.90535 loss) +I0407 08:31:49.847023 18909 sgd_solver.cpp:105] Iteration 792, lr = 0.01 +I0407 08:31:55.204731 18909 solver.cpp:218] Iteration 804 (2.23977 iter/s, 5.3577s/12 iters), loss = 4.81005 +I0407 08:31:55.204772 18909 solver.cpp:237] Train net output #0: loss = 4.81005 (* 1 = 4.81005 loss) +I0407 08:31:55.204779 18909 sgd_solver.cpp:105] Iteration 804, lr = 0.01 +I0407 08:31:56.976091 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:00.013485 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0407 08:32:04.413039 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0407 08:32:08.910208 18909 solver.cpp:330] Iteration 816, Testing net (#0) +I0407 08:32:08.910229 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:32:12.942332 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:13.288581 18909 solver.cpp:397] Test net output #0: accuracy = 0.0557598 +I0407 08:32:13.288609 18909 solver.cpp:397] Test net output #1: loss = 4.80912 (* 1 = 4.80912 loss) +I0407 08:32:13.429860 18909 solver.cpp:218] Iteration 816 (0.658433 iter/s, 18.2251s/12 iters), loss = 4.8184 +I0407 08:32:13.429903 18909 solver.cpp:237] Train net output #0: loss = 4.8184 (* 1 = 4.8184 loss) +I0407 08:32:13.429908 18909 sgd_solver.cpp:105] Iteration 816, lr = 0.01 +I0407 08:32:17.881173 18909 solver.cpp:218] Iteration 828 (2.69587 iter/s, 4.45126s/12 iters), loss = 4.70654 +I0407 08:32:17.881217 18909 solver.cpp:237] Train net output #0: loss = 4.70654 (* 1 = 4.70654 loss) +I0407 08:32:17.881224 18909 sgd_solver.cpp:105] Iteration 828, lr = 0.01 +I0407 08:32:23.019165 18909 solver.cpp:218] Iteration 840 (2.33557 iter/s, 5.13794s/12 iters), loss = 4.55595 +I0407 08:32:23.019268 18909 solver.cpp:237] Train net output #0: loss = 4.55595 (* 1 = 4.55595 loss) +I0407 08:32:23.019276 18909 sgd_solver.cpp:105] Iteration 840, lr = 0.01 +I0407 08:32:28.321099 18909 solver.cpp:218] Iteration 852 (2.26337 iter/s, 5.30182s/12 iters), loss = 4.64583 +I0407 08:32:28.321144 18909 solver.cpp:237] Train net output #0: loss = 4.64583 (* 1 = 4.64583 loss) +I0407 08:32:28.321153 18909 sgd_solver.cpp:105] Iteration 852, lr = 0.01 +I0407 08:32:33.670987 18909 solver.cpp:218] Iteration 864 (2.24306 iter/s, 5.34983s/12 iters), loss = 4.76054 +I0407 08:32:33.671027 18909 solver.cpp:237] Train net output #0: loss = 4.76054 (* 1 = 4.76054 loss) +I0407 08:32:33.671034 18909 sgd_solver.cpp:105] Iteration 864, lr = 0.01 +I0407 08:32:38.985553 18909 solver.cpp:218] Iteration 876 (2.25797 iter/s, 5.31451s/12 iters), loss = 4.71744 +I0407 08:32:38.985595 18909 solver.cpp:237] Train net output #0: loss = 4.71744 (* 1 = 4.71744 loss) +I0407 08:32:38.985602 18909 sgd_solver.cpp:105] Iteration 876, lr = 0.01 +I0407 08:32:44.305387 18909 solver.cpp:218] Iteration 888 (2.25573 iter/s, 5.31978s/12 iters), loss = 4.69972 +I0407 08:32:44.305430 18909 solver.cpp:237] Train net output #0: loss = 4.69972 (* 1 = 4.69972 loss) +I0407 08:32:44.305438 18909 sgd_solver.cpp:105] Iteration 888, lr = 0.01 +I0407 08:32:49.412542 18909 solver.cpp:218] Iteration 900 (2.34967 iter/s, 5.1071s/12 iters), loss = 4.62027 +I0407 08:32:49.412600 18909 solver.cpp:237] Train net output #0: loss = 4.62027 (* 1 = 4.62027 loss) +I0407 08:32:49.412611 18909 sgd_solver.cpp:105] Iteration 900, lr = 0.01 +I0407 08:32:53.511698 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:32:54.727604 18909 solver.cpp:218] Iteration 912 (2.25776 iter/s, 5.31499s/12 iters), loss = 4.63908 +I0407 08:32:54.727649 18909 solver.cpp:237] Train net output #0: loss = 4.63908 (* 1 = 4.63908 loss) +I0407 08:32:54.727655 18909 sgd_solver.cpp:105] Iteration 912, lr = 0.01 +I0407 08:32:56.780287 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0407 08:33:02.489454 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0407 08:33:06.242282 18909 solver.cpp:330] Iteration 918, Testing net (#0) +I0407 08:33:06.242300 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:33:10.223320 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:10.627023 18909 solver.cpp:397] Test net output #0: accuracy = 0.0557598 +I0407 08:33:10.627055 18909 solver.cpp:397] Test net output #1: loss = 4.62184 (* 1 = 4.62184 loss) +I0407 08:33:12.562079 18909 solver.cpp:218] Iteration 924 (0.672856 iter/s, 17.8344s/12 iters), loss = 4.54606 +I0407 08:33:12.562124 18909 solver.cpp:237] Train net output #0: loss = 4.54606 (* 1 = 4.54606 loss) +I0407 08:33:12.562130 18909 sgd_solver.cpp:105] Iteration 924, lr = 0.01 +I0407 08:33:17.579496 18909 solver.cpp:218] Iteration 936 (2.39169 iter/s, 5.01736s/12 iters), loss = 4.59142 +I0407 08:33:17.579535 18909 solver.cpp:237] Train net output #0: loss = 4.59142 (* 1 = 4.59142 loss) +I0407 08:33:17.579540 18909 sgd_solver.cpp:105] Iteration 936, lr = 0.01 +I0407 08:33:22.609216 18909 solver.cpp:218] Iteration 948 (2.38584 iter/s, 5.02967s/12 iters), loss = 4.63493 +I0407 08:33:22.609254 18909 solver.cpp:237] Train net output #0: loss = 4.63493 (* 1 = 4.63493 loss) +I0407 08:33:22.609261 18909 sgd_solver.cpp:105] Iteration 948, lr = 0.01 +I0407 08:33:27.921353 18909 solver.cpp:218] Iteration 960 (2.259 iter/s, 5.31208s/12 iters), loss = 4.53025 +I0407 08:33:27.921452 18909 solver.cpp:237] Train net output #0: loss = 4.53025 (* 1 = 4.53025 loss) +I0407 08:33:27.921459 18909 sgd_solver.cpp:105] Iteration 960, lr = 0.01 +I0407 08:33:33.161481 18909 solver.cpp:218] Iteration 972 (2.29007 iter/s, 5.24002s/12 iters), loss = 4.35052 +I0407 08:33:33.161518 18909 solver.cpp:237] Train net output #0: loss = 4.35052 (* 1 = 4.35052 loss) +I0407 08:33:33.161525 18909 sgd_solver.cpp:105] Iteration 972, lr = 0.01 +I0407 08:33:38.537822 18909 solver.cpp:218] Iteration 984 (2.23202 iter/s, 5.37629s/12 iters), loss = 4.46782 +I0407 08:33:38.537868 18909 solver.cpp:237] Train net output #0: loss = 4.46782 (* 1 = 4.46782 loss) +I0407 08:33:38.537876 18909 sgd_solver.cpp:105] Iteration 984, lr = 0.01 +I0407 08:33:43.800648 18909 solver.cpp:218] Iteration 996 (2.28017 iter/s, 5.26277s/12 iters), loss = 4.37728 +I0407 08:33:43.800690 18909 solver.cpp:237] Train net output #0: loss = 4.37728 (* 1 = 4.37728 loss) +I0407 08:33:43.800698 18909 sgd_solver.cpp:105] Iteration 996, lr = 0.01 +I0407 08:33:49.185688 18909 solver.cpp:218] Iteration 1008 (2.22842 iter/s, 5.38498s/12 iters), loss = 4.48882 +I0407 08:33:49.185734 18909 solver.cpp:237] Train net output #0: loss = 4.48882 (* 1 = 4.48882 loss) +I0407 08:33:49.185742 18909 sgd_solver.cpp:105] Iteration 1008, lr = 0.01 +I0407 08:33:50.253244 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:33:53.917649 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0407 08:33:57.282928 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0407 08:34:01.089439 18909 solver.cpp:330] Iteration 1020, Testing net (#0) +I0407 08:34:01.089540 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:34:05.031641 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:05.454741 18909 solver.cpp:397] Test net output #0: accuracy = 0.0667892 +I0407 08:34:05.454771 18909 solver.cpp:397] Test net output #1: loss = 4.48766 (* 1 = 4.48766 loss) +I0407 08:34:05.585134 18909 solver.cpp:218] Iteration 1020 (0.731734 iter/s, 16.3994s/12 iters), loss = 4.43421 +I0407 08:34:05.585173 18909 solver.cpp:237] Train net output #0: loss = 4.43421 (* 1 = 4.43421 loss) +I0407 08:34:05.585180 18909 sgd_solver.cpp:105] Iteration 1020, lr = 0.01 +I0407 08:34:09.936709 18909 solver.cpp:218] Iteration 1032 (2.75765 iter/s, 4.35152s/12 iters), loss = 4.69683 +I0407 08:34:09.936755 18909 solver.cpp:237] Train net output #0: loss = 4.69683 (* 1 = 4.69683 loss) +I0407 08:34:09.936764 18909 sgd_solver.cpp:105] Iteration 1032, lr = 0.01 +I0407 08:34:15.045397 18909 solver.cpp:218] Iteration 1044 (2.34897 iter/s, 5.10863s/12 iters), loss = 4.42711 +I0407 08:34:15.045440 18909 solver.cpp:237] Train net output #0: loss = 4.42711 (* 1 = 4.42711 loss) +I0407 08:34:15.045447 18909 sgd_solver.cpp:105] Iteration 1044, lr = 0.01 +I0407 08:34:20.224536 18909 solver.cpp:218] Iteration 1056 (2.31701 iter/s, 5.17909s/12 iters), loss = 4.45181 +I0407 08:34:20.224575 18909 solver.cpp:237] Train net output #0: loss = 4.45181 (* 1 = 4.45181 loss) +I0407 08:34:20.224582 18909 sgd_solver.cpp:105] Iteration 1056, lr = 0.01 +I0407 08:34:25.488938 18909 solver.cpp:218] Iteration 1068 (2.27948 iter/s, 5.26435s/12 iters), loss = 4.17971 +I0407 08:34:25.488987 18909 solver.cpp:237] Train net output #0: loss = 4.17971 (* 1 = 4.17971 loss) +I0407 08:34:25.488994 18909 sgd_solver.cpp:105] Iteration 1068, lr = 0.01 +I0407 08:34:30.525874 18909 solver.cpp:218] Iteration 1080 (2.38243 iter/s, 5.03688s/12 iters), loss = 4.18678 +I0407 08:34:30.525913 18909 solver.cpp:237] Train net output #0: loss = 4.18678 (* 1 = 4.18678 loss) +I0407 08:34:30.525920 18909 sgd_solver.cpp:105] Iteration 1080, lr = 0.01 +I0407 08:34:35.719673 18909 solver.cpp:218] Iteration 1092 (2.31047 iter/s, 5.19374s/12 iters), loss = 4.44617 +I0407 08:34:35.719830 18909 solver.cpp:237] Train net output #0: loss = 4.44617 (* 1 = 4.44617 loss) +I0407 08:34:35.719841 18909 sgd_solver.cpp:105] Iteration 1092, lr = 0.01 +I0407 08:34:41.096765 18909 solver.cpp:218] Iteration 1104 (2.23176 iter/s, 5.37693s/12 iters), loss = 4.34587 +I0407 08:34:41.096807 18909 solver.cpp:237] Train net output #0: loss = 4.34587 (* 1 = 4.34587 loss) +I0407 08:34:41.096814 18909 sgd_solver.cpp:105] Iteration 1104, lr = 0.01 +I0407 08:34:44.491161 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:46.457331 18909 solver.cpp:218] Iteration 1116 (2.23859 iter/s, 5.36052s/12 iters), loss = 4.27684 +I0407 08:34:46.457368 18909 solver.cpp:237] Train net output #0: loss = 4.27684 (* 1 = 4.27684 loss) +I0407 08:34:46.457374 18909 sgd_solver.cpp:105] Iteration 1116, lr = 0.01 +I0407 08:34:48.552853 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0407 08:34:51.634845 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0407 08:34:55.531057 18909 solver.cpp:330] Iteration 1122, Testing net (#0) +I0407 08:34:55.531085 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:34:59.428814 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:34:59.964624 18909 solver.cpp:397] Test net output #0: accuracy = 0.0851716 +I0407 08:34:59.964653 18909 solver.cpp:397] Test net output #1: loss = 4.40637 (* 1 = 4.40637 loss) +I0407 08:35:01.782903 18909 solver.cpp:218] Iteration 1128 (0.783007 iter/s, 15.3255s/12 iters), loss = 4.28853 +I0407 08:35:01.782943 18909 solver.cpp:237] Train net output #0: loss = 4.28853 (* 1 = 4.28853 loss) +I0407 08:35:01.782950 18909 sgd_solver.cpp:105] Iteration 1128, lr = 0.01 +I0407 08:35:06.920579 18909 solver.cpp:218] Iteration 1140 (2.33571 iter/s, 5.13762s/12 iters), loss = 4.24658 +I0407 08:35:06.920670 18909 solver.cpp:237] Train net output #0: loss = 4.24658 (* 1 = 4.24658 loss) +I0407 08:35:06.920676 18909 sgd_solver.cpp:105] Iteration 1140, lr = 0.01 +I0407 08:35:12.229413 18909 solver.cpp:218] Iteration 1152 (2.26043 iter/s, 5.30873s/12 iters), loss = 4.44317 +I0407 08:35:12.229454 18909 solver.cpp:237] Train net output #0: loss = 4.44317 (* 1 = 4.44317 loss) +I0407 08:35:12.229460 18909 sgd_solver.cpp:105] Iteration 1152, lr = 0.01 +I0407 08:35:17.384754 18909 solver.cpp:218] Iteration 1164 (2.32771 iter/s, 5.15528s/12 iters), loss = 4.35612 +I0407 08:35:17.384794 18909 solver.cpp:237] Train net output #0: loss = 4.35612 (* 1 = 4.35612 loss) +I0407 08:35:17.384801 18909 sgd_solver.cpp:105] Iteration 1164, lr = 0.01 +I0407 08:35:22.567008 18909 solver.cpp:218] Iteration 1176 (2.31562 iter/s, 5.1822s/12 iters), loss = 4.18856 +I0407 08:35:22.567049 18909 solver.cpp:237] Train net output #0: loss = 4.18856 (* 1 = 4.18856 loss) +I0407 08:35:22.567057 18909 sgd_solver.cpp:105] Iteration 1176, lr = 0.01 +I0407 08:35:27.702397 18909 solver.cpp:218] Iteration 1188 (2.33675 iter/s, 5.13533s/12 iters), loss = 4.16631 +I0407 08:35:27.702448 18909 solver.cpp:237] Train net output #0: loss = 4.16631 (* 1 = 4.16631 loss) +I0407 08:35:27.702457 18909 sgd_solver.cpp:105] Iteration 1188, lr = 0.01 +I0407 08:35:32.648262 18909 solver.cpp:218] Iteration 1200 (2.4263 iter/s, 4.9458s/12 iters), loss = 3.92867 +I0407 08:35:32.648305 18909 solver.cpp:237] Train net output #0: loss = 3.92867 (* 1 = 3.92867 loss) +I0407 08:35:32.648313 18909 sgd_solver.cpp:105] Iteration 1200, lr = 0.01 +I0407 08:35:37.944211 18909 solver.cpp:218] Iteration 1212 (2.26591 iter/s, 5.2959s/12 iters), loss = 4.08321 +I0407 08:35:37.944345 18909 solver.cpp:237] Train net output #0: loss = 4.08321 (* 1 = 4.08321 loss) +I0407 08:35:37.944355 18909 sgd_solver.cpp:105] Iteration 1212, lr = 0.01 +I0407 08:35:38.193097 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:42.877211 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0407 08:35:45.807178 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0407 08:35:49.204154 18909 solver.cpp:330] Iteration 1224, Testing net (#0) +I0407 08:35:49.204175 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:35:53.000830 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:35:53.501348 18909 solver.cpp:397] Test net output #0: accuracy = 0.0919118 +I0407 08:35:53.501380 18909 solver.cpp:397] Test net output #1: loss = 4.26581 (* 1 = 4.26581 loss) +I0407 08:35:53.637244 18909 solver.cpp:218] Iteration 1224 (0.764677 iter/s, 15.6929s/12 iters), loss = 4.1267 +I0407 08:35:53.638801 18909 solver.cpp:237] Train net output #0: loss = 4.1267 (* 1 = 4.1267 loss) +I0407 08:35:53.638814 18909 sgd_solver.cpp:105] Iteration 1224, lr = 0.01 +I0407 08:35:57.783308 18909 solver.cpp:218] Iteration 1236 (2.89541 iter/s, 4.1445s/12 iters), loss = 4.35856 +I0407 08:35:57.783361 18909 solver.cpp:237] Train net output #0: loss = 4.35856 (* 1 = 4.35856 loss) +I0407 08:35:57.783371 18909 sgd_solver.cpp:105] Iteration 1236, lr = 0.01 +I0407 08:36:02.914430 18909 solver.cpp:218] Iteration 1248 (2.3387 iter/s, 5.13106s/12 iters), loss = 4.06863 +I0407 08:36:02.914469 18909 solver.cpp:237] Train net output #0: loss = 4.06863 (* 1 = 4.06863 loss) +I0407 08:36:02.914476 18909 sgd_solver.cpp:105] Iteration 1248, lr = 0.01 +I0407 08:36:07.972375 18909 solver.cpp:218] Iteration 1260 (2.37253 iter/s, 5.05789s/12 iters), loss = 4.15148 +I0407 08:36:07.972484 18909 solver.cpp:237] Train net output #0: loss = 4.15148 (* 1 = 4.15148 loss) +I0407 08:36:07.972492 18909 sgd_solver.cpp:105] Iteration 1260, lr = 0.01 +I0407 08:36:13.258155 18909 solver.cpp:218] Iteration 1272 (2.27029 iter/s, 5.28566s/12 iters), loss = 4.13936 +I0407 08:36:13.258198 18909 solver.cpp:237] Train net output #0: loss = 4.13936 (* 1 = 4.13936 loss) +I0407 08:36:13.258205 18909 sgd_solver.cpp:105] Iteration 1272, lr = 0.01 +I0407 08:36:18.509671 18909 solver.cpp:218] Iteration 1284 (2.28508 iter/s, 5.25146s/12 iters), loss = 3.88732 +I0407 08:36:18.509714 18909 solver.cpp:237] Train net output #0: loss = 3.88732 (* 1 = 3.88732 loss) +I0407 08:36:18.509721 18909 sgd_solver.cpp:105] Iteration 1284, lr = 0.01 +I0407 08:36:23.790560 18909 solver.cpp:218] Iteration 1296 (2.27237 iter/s, 5.28083s/12 iters), loss = 4.14673 +I0407 08:36:23.790602 18909 solver.cpp:237] Train net output #0: loss = 4.14673 (* 1 = 4.14673 loss) +I0407 08:36:23.790609 18909 sgd_solver.cpp:105] Iteration 1296, lr = 0.01 +I0407 08:36:28.913527 18909 solver.cpp:218] Iteration 1308 (2.34242 iter/s, 5.12291s/12 iters), loss = 3.98784 +I0407 08:36:28.913585 18909 solver.cpp:237] Train net output #0: loss = 3.98784 (* 1 = 3.98784 loss) +I0407 08:36:28.913596 18909 sgd_solver.cpp:105] Iteration 1308, lr = 0.01 +I0407 08:36:31.534595 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:36:34.159427 18909 solver.cpp:218] Iteration 1320 (2.28753 iter/s, 5.24583s/12 iters), loss = 4.08556 +I0407 08:36:34.159483 18909 solver.cpp:237] Train net output #0: loss = 4.08556 (* 1 = 4.08556 loss) +I0407 08:36:34.159493 18909 sgd_solver.cpp:105] Iteration 1320, lr = 0.01 +I0407 08:36:36.221477 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0407 08:36:39.322978 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0407 08:36:42.041958 18909 solver.cpp:330] Iteration 1326, Testing net (#0) +I0407 08:36:42.041977 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:36:45.880625 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:36:46.441977 18909 solver.cpp:397] Test net output #0: accuracy = 0.115809 +I0407 08:36:46.442008 18909 solver.cpp:397] Test net output #1: loss = 4.0344 (* 1 = 4.0344 loss) +I0407 08:36:48.378702 18909 solver.cpp:218] Iteration 1332 (0.843928 iter/s, 14.2192s/12 iters), loss = 3.92272 +I0407 08:36:48.378754 18909 solver.cpp:237] Train net output #0: loss = 3.92272 (* 1 = 3.92272 loss) +I0407 08:36:48.378762 18909 sgd_solver.cpp:105] Iteration 1332, lr = 0.01 +I0407 08:36:53.601661 18909 solver.cpp:218] Iteration 1344 (2.29758 iter/s, 5.2229s/12 iters), loss = 3.96452 +I0407 08:36:53.601701 18909 solver.cpp:237] Train net output #0: loss = 3.96452 (* 1 = 3.96452 loss) +I0407 08:36:53.601707 18909 sgd_solver.cpp:105] Iteration 1344, lr = 0.01 +I0407 08:36:58.850152 18909 solver.cpp:218] Iteration 1356 (2.28639 iter/s, 5.24844s/12 iters), loss = 3.66031 +I0407 08:36:58.850198 18909 solver.cpp:237] Train net output #0: loss = 3.66031 (* 1 = 3.66031 loss) +I0407 08:36:58.850206 18909 sgd_solver.cpp:105] Iteration 1356, lr = 0.01 +I0407 08:37:04.243183 18909 solver.cpp:218] Iteration 1368 (2.22512 iter/s, 5.39297s/12 iters), loss = 3.70912 +I0407 08:37:04.243227 18909 solver.cpp:237] Train net output #0: loss = 3.70912 (* 1 = 3.70912 loss) +I0407 08:37:04.243233 18909 sgd_solver.cpp:105] Iteration 1368, lr = 0.01 +I0407 08:37:05.502876 18909 blocking_queue.cpp:49] Waiting for data +I0407 08:37:09.368405 18909 solver.cpp:218] Iteration 1380 (2.34139 iter/s, 5.12516s/12 iters), loss = 4.03042 +I0407 08:37:09.368518 18909 solver.cpp:237] Train net output #0: loss = 4.03042 (* 1 = 4.03042 loss) +I0407 08:37:09.368526 18909 sgd_solver.cpp:105] Iteration 1380, lr = 0.01 +I0407 08:37:14.375452 18909 solver.cpp:218] Iteration 1392 (2.39668 iter/s, 5.00693s/12 iters), loss = 3.82196 +I0407 08:37:14.375492 18909 solver.cpp:237] Train net output #0: loss = 3.82196 (* 1 = 3.82196 loss) +I0407 08:37:14.375499 18909 sgd_solver.cpp:105] Iteration 1392, lr = 0.01 +I0407 08:37:19.664686 18909 solver.cpp:218] Iteration 1404 (2.26878 iter/s, 5.28918s/12 iters), loss = 3.76069 +I0407 08:37:19.664736 18909 solver.cpp:237] Train net output #0: loss = 3.76069 (* 1 = 3.76069 loss) +I0407 08:37:19.664746 18909 sgd_solver.cpp:105] Iteration 1404, lr = 0.01 +I0407 08:37:24.322531 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:37:24.705174 18909 solver.cpp:218] Iteration 1416 (2.38075 iter/s, 5.04042s/12 iters), loss = 4.07466 +I0407 08:37:24.705229 18909 solver.cpp:237] Train net output #0: loss = 4.07466 (* 1 = 4.07466 loss) +I0407 08:37:24.705238 18909 sgd_solver.cpp:105] Iteration 1416, lr = 0.01 +I0407 08:37:29.396196 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0407 08:37:32.400676 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0407 08:37:34.994663 18909 solver.cpp:330] Iteration 1428, Testing net (#0) +I0407 08:37:34.994680 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:37:38.687460 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:37:39.267755 18909 solver.cpp:397] Test net output #0: accuracy = 0.128676 +I0407 08:37:39.267791 18909 solver.cpp:397] Test net output #1: loss = 3.90214 (* 1 = 3.90214 loss) +I0407 08:37:39.408813 18909 solver.cpp:218] Iteration 1428 (0.816127 iter/s, 14.7036s/12 iters), loss = 3.85901 +I0407 08:37:39.408943 18909 solver.cpp:237] Train net output #0: loss = 3.85901 (* 1 = 3.85901 loss) +I0407 08:37:39.408951 18909 sgd_solver.cpp:105] Iteration 1428, lr = 0.01 +I0407 08:37:43.606820 18909 solver.cpp:218] Iteration 1440 (2.8586 iter/s, 4.19786s/12 iters), loss = 3.86206 +I0407 08:37:43.606863 18909 solver.cpp:237] Train net output #0: loss = 3.86206 (* 1 = 3.86206 loss) +I0407 08:37:43.606870 18909 sgd_solver.cpp:105] Iteration 1440, lr = 0.01 +I0407 08:37:48.578547 18909 solver.cpp:218] Iteration 1452 (2.41368 iter/s, 4.97167s/12 iters), loss = 3.7143 +I0407 08:37:48.578593 18909 solver.cpp:237] Train net output #0: loss = 3.7143 (* 1 = 3.7143 loss) +I0407 08:37:48.578599 18909 sgd_solver.cpp:105] Iteration 1452, lr = 0.01 +I0407 08:37:53.803596 18909 solver.cpp:218] Iteration 1464 (2.29665 iter/s, 5.22499s/12 iters), loss = 3.59421 +I0407 08:37:53.803650 18909 solver.cpp:237] Train net output #0: loss = 3.59421 (* 1 = 3.59421 loss) +I0407 08:37:53.803663 18909 sgd_solver.cpp:105] Iteration 1464, lr = 0.01 +I0407 08:37:58.940379 18909 solver.cpp:218] Iteration 1476 (2.33612 iter/s, 5.13672s/12 iters), loss = 3.72046 +I0407 08:37:58.940423 18909 solver.cpp:237] Train net output #0: loss = 3.72046 (* 1 = 3.72046 loss) +I0407 08:37:58.940430 18909 sgd_solver.cpp:105] Iteration 1476, lr = 0.01 +I0407 08:38:04.165300 18909 solver.cpp:218] Iteration 1488 (2.29671 iter/s, 5.22486s/12 iters), loss = 3.8068 +I0407 08:38:04.165346 18909 solver.cpp:237] Train net output #0: loss = 3.8068 (* 1 = 3.8068 loss) +I0407 08:38:04.165354 18909 sgd_solver.cpp:105] Iteration 1488, lr = 0.01 +I0407 08:38:09.291998 18909 solver.cpp:218] Iteration 1500 (2.34072 iter/s, 5.12664s/12 iters), loss = 3.85763 +I0407 08:38:09.292040 18909 solver.cpp:237] Train net output #0: loss = 3.85763 (* 1 = 3.85763 loss) +I0407 08:38:09.292048 18909 sgd_solver.cpp:105] Iteration 1500, lr = 0.01 +I0407 08:38:14.504731 18909 solver.cpp:218] Iteration 1512 (2.30208 iter/s, 5.21267s/12 iters), loss = 3.64358 +I0407 08:38:14.504858 18909 solver.cpp:237] Train net output #0: loss = 3.64358 (* 1 = 3.64358 loss) +I0407 08:38:14.504868 18909 sgd_solver.cpp:105] Iteration 1512, lr = 0.01 +I0407 08:38:16.385906 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:38:19.708743 18909 solver.cpp:218] Iteration 1524 (2.30597 iter/s, 5.20387s/12 iters), loss = 3.67542 +I0407 08:38:19.708788 18909 solver.cpp:237] Train net output #0: loss = 3.67542 (* 1 = 3.67542 loss) +I0407 08:38:19.708796 18909 sgd_solver.cpp:105] Iteration 1524, lr = 0.01 +I0407 08:38:21.891424 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0407 08:38:24.896236 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0407 08:38:27.199142 18909 solver.cpp:330] Iteration 1530, Testing net (#0) +I0407 08:38:27.199164 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:38:30.950256 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:38:31.577188 18909 solver.cpp:397] Test net output #0: accuracy = 0.132353 +I0407 08:38:31.577224 18909 solver.cpp:397] Test net output #1: loss = 3.87442 (* 1 = 3.87442 loss) +I0407 08:38:33.434428 18909 solver.cpp:218] Iteration 1536 (0.874277 iter/s, 13.7256s/12 iters), loss = 3.3001 +I0407 08:38:33.434489 18909 solver.cpp:237] Train net output #0: loss = 3.3001 (* 1 = 3.3001 loss) +I0407 08:38:33.434501 18909 sgd_solver.cpp:105] Iteration 1536, lr = 0.01 +I0407 08:38:38.562131 18909 solver.cpp:218] Iteration 1548 (2.34026 iter/s, 5.12764s/12 iters), loss = 3.57126 +I0407 08:38:38.562182 18909 solver.cpp:237] Train net output #0: loss = 3.57126 (* 1 = 3.57126 loss) +I0407 08:38:38.562191 18909 sgd_solver.cpp:105] Iteration 1548, lr = 0.01 +I0407 08:38:43.874150 18909 solver.cpp:218] Iteration 1560 (2.25906 iter/s, 5.31195s/12 iters), loss = 3.59829 +I0407 08:38:43.874202 18909 solver.cpp:237] Train net output #0: loss = 3.59829 (* 1 = 3.59829 loss) +I0407 08:38:43.874212 18909 sgd_solver.cpp:105] Iteration 1560, lr = 0.01 +I0407 08:38:48.830854 18909 solver.cpp:218] Iteration 1572 (2.421 iter/s, 4.95664s/12 iters), loss = 3.62817 +I0407 08:38:48.831001 18909 solver.cpp:237] Train net output #0: loss = 3.62817 (* 1 = 3.62817 loss) +I0407 08:38:48.831010 18909 sgd_solver.cpp:105] Iteration 1572, lr = 0.01 +I0407 08:38:54.154482 18909 solver.cpp:218] Iteration 1584 (2.25417 iter/s, 5.32347s/12 iters), loss = 3.83293 +I0407 08:38:54.154527 18909 solver.cpp:237] Train net output #0: loss = 3.83293 (* 1 = 3.83293 loss) +I0407 08:38:54.154534 18909 sgd_solver.cpp:105] Iteration 1584, lr = 0.01 +I0407 08:38:59.586376 18909 solver.cpp:218] Iteration 1596 (2.2092 iter/s, 5.43183s/12 iters), loss = 3.62613 +I0407 08:38:59.586421 18909 solver.cpp:237] Train net output #0: loss = 3.62613 (* 1 = 3.62613 loss) +I0407 08:38:59.586428 18909 sgd_solver.cpp:105] Iteration 1596, lr = 0.01 +I0407 08:39:04.814441 18909 solver.cpp:218] Iteration 1608 (2.29533 iter/s, 5.228s/12 iters), loss = 3.32705 +I0407 08:39:04.814487 18909 solver.cpp:237] Train net output #0: loss = 3.32705 (* 1 = 3.32705 loss) +I0407 08:39:04.814493 18909 sgd_solver.cpp:105] Iteration 1608, lr = 0.01 +I0407 08:39:08.920547 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:10.133181 18909 solver.cpp:218] Iteration 1620 (2.2562 iter/s, 5.31869s/12 iters), loss = 3.6479 +I0407 08:39:10.133226 18909 solver.cpp:237] Train net output #0: loss = 3.6479 (* 1 = 3.6479 loss) +I0407 08:39:10.133234 18909 sgd_solver.cpp:105] Iteration 1620, lr = 0.01 +I0407 08:39:14.813300 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0407 08:39:17.802495 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0407 08:39:20.248541 18909 solver.cpp:330] Iteration 1632, Testing net (#0) +I0407 08:39:20.248611 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:39:23.899135 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:39:24.560593 18909 solver.cpp:397] Test net output #0: accuracy = 0.172181 +I0407 08:39:24.560627 18909 solver.cpp:397] Test net output #1: loss = 3.66804 (* 1 = 3.66804 loss) +I0407 08:39:24.699092 18909 solver.cpp:218] Iteration 1632 (0.823844 iter/s, 14.5659s/12 iters), loss = 3.57315 +I0407 08:39:24.699163 18909 solver.cpp:237] Train net output #0: loss = 3.57315 (* 1 = 3.57315 loss) +I0407 08:39:24.699172 18909 sgd_solver.cpp:105] Iteration 1632, lr = 0.01 +I0407 08:39:28.898574 18909 solver.cpp:218] Iteration 1644 (2.85755 iter/s, 4.19939s/12 iters), loss = 3.81998 +I0407 08:39:28.898619 18909 solver.cpp:237] Train net output #0: loss = 3.81998 (* 1 = 3.81998 loss) +I0407 08:39:28.898625 18909 sgd_solver.cpp:105] Iteration 1644, lr = 0.01 +I0407 08:39:34.172888 18909 solver.cpp:218] Iteration 1656 (2.2752 iter/s, 5.27425s/12 iters), loss = 3.59701 +I0407 08:39:34.172932 18909 solver.cpp:237] Train net output #0: loss = 3.59701 (* 1 = 3.59701 loss) +I0407 08:39:34.172940 18909 sgd_solver.cpp:105] Iteration 1656, lr = 0.01 +I0407 08:39:39.157470 18909 solver.cpp:218] Iteration 1668 (2.40745 iter/s, 4.98453s/12 iters), loss = 3.41643 +I0407 08:39:39.157511 18909 solver.cpp:237] Train net output #0: loss = 3.41643 (* 1 = 3.41643 loss) +I0407 08:39:39.157519 18909 sgd_solver.cpp:105] Iteration 1668, lr = 0.01 +I0407 08:39:43.862179 18909 solver.cpp:218] Iteration 1680 (2.55067 iter/s, 4.70465s/12 iters), loss = 3.29045 +I0407 08:39:43.862229 18909 solver.cpp:237] Train net output #0: loss = 3.29045 (* 1 = 3.29045 loss) +I0407 08:39:43.862238 18909 sgd_solver.cpp:105] Iteration 1680, lr = 0.01 +I0407 08:39:49.003814 18909 solver.cpp:218] Iteration 1692 (2.33392 iter/s, 5.14157s/12 iters), loss = 3.30254 +I0407 08:39:49.003856 18909 solver.cpp:237] Train net output #0: loss = 3.30254 (* 1 = 3.30254 loss) +I0407 08:39:49.003863 18909 sgd_solver.cpp:105] Iteration 1692, lr = 0.01 +I0407 08:39:54.261868 18909 solver.cpp:218] Iteration 1704 (2.28224 iter/s, 5.258s/12 iters), loss = 3.1161 +I0407 08:39:54.262001 18909 solver.cpp:237] Train net output #0: loss = 3.1161 (* 1 = 3.1161 loss) +I0407 08:39:54.262009 18909 sgd_solver.cpp:105] Iteration 1704, lr = 0.01 +I0407 08:39:59.559721 18909 solver.cpp:218] Iteration 1716 (2.26513 iter/s, 5.29771s/12 iters), loss = 3.50673 +I0407 08:39:59.559756 18909 solver.cpp:237] Train net output #0: loss = 3.50673 (* 1 = 3.50673 loss) +I0407 08:39:59.559762 18909 sgd_solver.cpp:105] Iteration 1716, lr = 0.01 +I0407 08:40:00.810302 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:04.957506 18909 solver.cpp:218] Iteration 1728 (2.22315 iter/s, 5.39774s/12 iters), loss = 3.19633 +I0407 08:40:04.957551 18909 solver.cpp:237] Train net output #0: loss = 3.19633 (* 1 = 3.19633 loss) +I0407 08:40:04.957557 18909 sgd_solver.cpp:105] Iteration 1728, lr = 0.01 +I0407 08:40:06.904307 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0407 08:40:09.915884 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0407 08:40:12.225296 18909 solver.cpp:330] Iteration 1734, Testing net (#0) +I0407 08:40:12.225313 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:40:15.942760 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:16.657688 18909 solver.cpp:397] Test net output #0: accuracy = 0.166054 +I0407 08:40:16.657716 18909 solver.cpp:397] Test net output #1: loss = 3.60102 (* 1 = 3.60102 loss) +I0407 08:40:18.614526 18909 solver.cpp:218] Iteration 1740 (0.878672 iter/s, 13.657s/12 iters), loss = 3.34369 +I0407 08:40:18.614573 18909 solver.cpp:237] Train net output #0: loss = 3.34369 (* 1 = 3.34369 loss) +I0407 08:40:18.614583 18909 sgd_solver.cpp:105] Iteration 1740, lr = 0.01 +I0407 08:40:23.965765 18909 solver.cpp:218] Iteration 1752 (2.2425 iter/s, 5.35117s/12 iters), loss = 3.2193 +I0407 08:40:23.965818 18909 solver.cpp:237] Train net output #0: loss = 3.2193 (* 1 = 3.2193 loss) +I0407 08:40:23.965827 18909 sgd_solver.cpp:105] Iteration 1752, lr = 0.01 +I0407 08:40:29.294097 18909 solver.cpp:218] Iteration 1764 (2.25214 iter/s, 5.32827s/12 iters), loss = 3.59592 +I0407 08:40:29.294194 18909 solver.cpp:237] Train net output #0: loss = 3.59592 (* 1 = 3.59592 loss) +I0407 08:40:29.294201 18909 sgd_solver.cpp:105] Iteration 1764, lr = 0.01 +I0407 08:40:34.610877 18909 solver.cpp:218] Iteration 1776 (2.25705 iter/s, 5.31667s/12 iters), loss = 2.97091 +I0407 08:40:34.610919 18909 solver.cpp:237] Train net output #0: loss = 2.97091 (* 1 = 2.97091 loss) +I0407 08:40:34.610925 18909 sgd_solver.cpp:105] Iteration 1776, lr = 0.01 +I0407 08:40:39.779012 18909 solver.cpp:218] Iteration 1788 (2.32195 iter/s, 5.16808s/12 iters), loss = 3.0157 +I0407 08:40:39.779055 18909 solver.cpp:237] Train net output #0: loss = 3.0157 (* 1 = 3.0157 loss) +I0407 08:40:39.779062 18909 sgd_solver.cpp:105] Iteration 1788, lr = 0.01 +I0407 08:40:45.103153 18909 solver.cpp:218] Iteration 1800 (2.25391 iter/s, 5.32409s/12 iters), loss = 2.9545 +I0407 08:40:45.103195 18909 solver.cpp:237] Train net output #0: loss = 2.9545 (* 1 = 2.9545 loss) +I0407 08:40:45.103202 18909 sgd_solver.cpp:105] Iteration 1800, lr = 0.01 +I0407 08:40:50.408190 18909 solver.cpp:218] Iteration 1812 (2.26202 iter/s, 5.30498s/12 iters), loss = 3.04894 +I0407 08:40:50.408244 18909 solver.cpp:237] Train net output #0: loss = 3.04894 (* 1 = 3.04894 loss) +I0407 08:40:50.408257 18909 sgd_solver.cpp:105] Iteration 1812, lr = 0.01 +I0407 08:40:53.684351 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:40:55.573658 18909 solver.cpp:218] Iteration 1824 (2.32316 iter/s, 5.16538s/12 iters), loss = 3.52252 +I0407 08:40:55.573709 18909 solver.cpp:237] Train net output #0: loss = 3.52252 (* 1 = 3.52252 loss) +I0407 08:40:55.573719 18909 sgd_solver.cpp:105] Iteration 1824, lr = 0.01 +I0407 08:41:00.089745 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0407 08:41:03.018630 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0407 08:41:05.327972 18909 solver.cpp:330] Iteration 1836, Testing net (#0) +I0407 08:41:05.327992 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:41:08.986714 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:09.725006 18909 solver.cpp:397] Test net output #0: accuracy = 0.185662 +I0407 08:41:09.725039 18909 solver.cpp:397] Test net output #1: loss = 3.47883 (* 1 = 3.47883 loss) +I0407 08:41:09.867164 18909 solver.cpp:218] Iteration 1836 (0.839546 iter/s, 14.2934s/12 iters), loss = 3.09731 +I0407 08:41:09.867233 18909 solver.cpp:237] Train net output #0: loss = 3.09731 (* 1 = 3.09731 loss) +I0407 08:41:09.867249 18909 sgd_solver.cpp:105] Iteration 1836, lr = 0.01 +I0407 08:41:14.055732 18909 solver.cpp:218] Iteration 1848 (2.86499 iter/s, 4.18849s/12 iters), loss = 3.16304 +I0407 08:41:14.055771 18909 solver.cpp:237] Train net output #0: loss = 3.16304 (* 1 = 3.16304 loss) +I0407 08:41:14.055779 18909 sgd_solver.cpp:105] Iteration 1848, lr = 0.01 +I0407 08:41:19.175828 18909 solver.cpp:218] Iteration 1860 (2.34373 iter/s, 5.12005s/12 iters), loss = 3.14732 +I0407 08:41:19.175861 18909 solver.cpp:237] Train net output #0: loss = 3.14732 (* 1 = 3.14732 loss) +I0407 08:41:19.175868 18909 sgd_solver.cpp:105] Iteration 1860, lr = 0.01 +I0407 08:41:24.407356 18909 solver.cpp:218] Iteration 1872 (2.29381 iter/s, 5.23148s/12 iters), loss = 3.12606 +I0407 08:41:24.407402 18909 solver.cpp:237] Train net output #0: loss = 3.12606 (* 1 = 3.12606 loss) +I0407 08:41:24.407408 18909 sgd_solver.cpp:105] Iteration 1872, lr = 0.01 +I0407 08:41:29.518249 18909 solver.cpp:218] Iteration 1884 (2.34795 iter/s, 5.11084s/12 iters), loss = 3.12018 +I0407 08:41:29.518287 18909 solver.cpp:237] Train net output #0: loss = 3.12018 (* 1 = 3.12018 loss) +I0407 08:41:29.518294 18909 sgd_solver.cpp:105] Iteration 1884, lr = 0.01 +I0407 08:41:34.819631 18909 solver.cpp:218] Iteration 1896 (2.26358 iter/s, 5.30133s/12 iters), loss = 3.18176 +I0407 08:41:34.819733 18909 solver.cpp:237] Train net output #0: loss = 3.18176 (* 1 = 3.18176 loss) +I0407 08:41:34.819741 18909 sgd_solver.cpp:105] Iteration 1896, lr = 0.01 +I0407 08:41:40.066103 18909 solver.cpp:218] Iteration 1908 (2.2873 iter/s, 5.24636s/12 iters), loss = 2.992 +I0407 08:41:40.066144 18909 solver.cpp:237] Train net output #0: loss = 2.992 (* 1 = 2.992 loss) +I0407 08:41:40.066151 18909 sgd_solver.cpp:105] Iteration 1908, lr = 0.01 +I0407 08:41:45.111968 18909 solver.cpp:218] Iteration 1920 (2.37821 iter/s, 5.04581s/12 iters), loss = 3.16304 +I0407 08:41:45.112010 18909 solver.cpp:237] Train net output #0: loss = 3.16304 (* 1 = 3.16304 loss) +I0407 08:41:45.112016 18909 sgd_solver.cpp:105] Iteration 1920, lr = 0.01 +I0407 08:41:45.398311 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:41:50.101686 18909 solver.cpp:218] Iteration 1932 (2.40497 iter/s, 4.98966s/12 iters), loss = 3.07386 +I0407 08:41:50.101729 18909 solver.cpp:237] Train net output #0: loss = 3.07386 (* 1 = 3.07386 loss) +I0407 08:41:50.101737 18909 sgd_solver.cpp:105] Iteration 1932, lr = 0.01 +I0407 08:41:52.198303 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0407 08:41:55.189647 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0407 08:41:57.487771 18909 solver.cpp:330] Iteration 1938, Testing net (#0) +I0407 08:41:57.487787 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:42:00.988802 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:01.776553 18909 solver.cpp:397] Test net output #0: accuracy = 0.206495 +I0407 08:42:01.776585 18909 solver.cpp:397] Test net output #1: loss = 3.42484 (* 1 = 3.42484 loss) +I0407 08:42:03.679085 18909 solver.cpp:218] Iteration 1944 (0.883825 iter/s, 13.5774s/12 iters), loss = 3.35422 +I0407 08:42:03.679128 18909 solver.cpp:237] Train net output #0: loss = 3.35422 (* 1 = 3.35422 loss) +I0407 08:42:03.679136 18909 sgd_solver.cpp:105] Iteration 1944, lr = 0.01 +I0407 08:42:08.860303 18909 solver.cpp:218] Iteration 1956 (2.31608 iter/s, 5.18116s/12 iters), loss = 3.02731 +I0407 08:42:08.860450 18909 solver.cpp:237] Train net output #0: loss = 3.02731 (* 1 = 3.02731 loss) +I0407 08:42:08.860460 18909 sgd_solver.cpp:105] Iteration 1956, lr = 0.01 +I0407 08:42:13.950778 18909 solver.cpp:218] Iteration 1968 (2.35742 iter/s, 5.09032s/12 iters), loss = 3.24317 +I0407 08:42:13.950816 18909 solver.cpp:237] Train net output #0: loss = 3.24317 (* 1 = 3.24317 loss) +I0407 08:42:13.950824 18909 sgd_solver.cpp:105] Iteration 1968, lr = 0.01 +I0407 08:42:19.186180 18909 solver.cpp:218] Iteration 1980 (2.29211 iter/s, 5.23535s/12 iters), loss = 2.81377 +I0407 08:42:19.186228 18909 solver.cpp:237] Train net output #0: loss = 2.81377 (* 1 = 2.81377 loss) +I0407 08:42:19.186237 18909 sgd_solver.cpp:105] Iteration 1980, lr = 0.01 +I0407 08:42:24.352289 18909 solver.cpp:218] Iteration 1992 (2.32286 iter/s, 5.16605s/12 iters), loss = 2.78403 +I0407 08:42:24.352339 18909 solver.cpp:237] Train net output #0: loss = 2.78403 (* 1 = 2.78403 loss) +I0407 08:42:24.352346 18909 sgd_solver.cpp:105] Iteration 1992, lr = 0.01 +I0407 08:42:29.711570 18909 solver.cpp:218] Iteration 2004 (2.23913 iter/s, 5.35922s/12 iters), loss = 2.93398 +I0407 08:42:29.711609 18909 solver.cpp:237] Train net output #0: loss = 2.93398 (* 1 = 2.93398 loss) +I0407 08:42:29.711616 18909 sgd_solver.cpp:105] Iteration 2004, lr = 0.01 +I0407 08:42:34.939903 18909 solver.cpp:218] Iteration 2016 (2.29521 iter/s, 5.22828s/12 iters), loss = 3.17681 +I0407 08:42:34.939949 18909 solver.cpp:237] Train net output #0: loss = 3.17681 (* 1 = 3.17681 loss) +I0407 08:42:34.939956 18909 sgd_solver.cpp:105] Iteration 2016, lr = 0.01 +I0407 08:42:37.536924 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:40.137146 18909 solver.cpp:218] Iteration 2028 (2.30894 iter/s, 5.19718s/12 iters), loss = 2.92145 +I0407 08:42:40.137251 18909 solver.cpp:237] Train net output #0: loss = 2.92145 (* 1 = 2.92145 loss) +I0407 08:42:40.137259 18909 sgd_solver.cpp:105] Iteration 2028, lr = 0.01 +I0407 08:42:44.697496 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0407 08:42:47.694605 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0407 08:42:50.017326 18909 solver.cpp:330] Iteration 2040, Testing net (#0) +I0407 08:42:50.017349 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:42:53.487653 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:42:54.302345 18909 solver.cpp:397] Test net output #0: accuracy = 0.1875 +I0407 08:42:54.302381 18909 solver.cpp:397] Test net output #1: loss = 3.56858 (* 1 = 3.56858 loss) +I0407 08:42:54.442399 18909 solver.cpp:218] Iteration 2040 (0.838859 iter/s, 14.3051s/12 iters), loss = 2.93901 +I0407 08:42:54.442441 18909 solver.cpp:237] Train net output #0: loss = 2.93901 (* 1 = 2.93901 loss) +I0407 08:42:54.442449 18909 sgd_solver.cpp:105] Iteration 2040, lr = 0.01 +I0407 08:42:58.675029 18909 solver.cpp:218] Iteration 2052 (2.83515 iter/s, 4.23258s/12 iters), loss = 3.07523 +I0407 08:42:58.675071 18909 solver.cpp:237] Train net output #0: loss = 3.07523 (* 1 = 3.07523 loss) +I0407 08:42:58.675081 18909 sgd_solver.cpp:105] Iteration 2052, lr = 0.01 +I0407 08:43:00.286960 18909 blocking_queue.cpp:49] Waiting for data +I0407 08:43:03.978462 18909 solver.cpp:218] Iteration 2064 (2.26271 iter/s, 5.30338s/12 iters), loss = 2.74338 +I0407 08:43:03.978507 18909 solver.cpp:237] Train net output #0: loss = 2.74338 (* 1 = 2.74338 loss) +I0407 08:43:03.978513 18909 sgd_solver.cpp:105] Iteration 2064, lr = 0.01 +I0407 08:43:09.209365 18909 solver.cpp:218] Iteration 2076 (2.29408 iter/s, 5.23085s/12 iters), loss = 2.76833 +I0407 08:43:09.209408 18909 solver.cpp:237] Train net output #0: loss = 2.76833 (* 1 = 2.76833 loss) +I0407 08:43:09.209414 18909 sgd_solver.cpp:105] Iteration 2076, lr = 0.01 +I0407 08:43:14.374475 18909 solver.cpp:218] Iteration 2088 (2.32331 iter/s, 5.16505s/12 iters), loss = 2.7922 +I0407 08:43:14.374614 18909 solver.cpp:237] Train net output #0: loss = 2.7922 (* 1 = 2.7922 loss) +I0407 08:43:14.374622 18909 sgd_solver.cpp:105] Iteration 2088, lr = 0.01 +I0407 08:43:19.232098 18909 solver.cpp:218] Iteration 2100 (2.47043 iter/s, 4.85746s/12 iters), loss = 2.99698 +I0407 08:43:19.232147 18909 solver.cpp:237] Train net output #0: loss = 2.99698 (* 1 = 2.99698 loss) +I0407 08:43:19.232156 18909 sgd_solver.cpp:105] Iteration 2100, lr = 0.01 +I0407 08:43:24.164584 18909 solver.cpp:218] Iteration 2112 (2.43288 iter/s, 4.93243s/12 iters), loss = 2.93332 +I0407 08:43:24.164624 18909 solver.cpp:237] Train net output #0: loss = 2.93332 (* 1 = 2.93332 loss) +I0407 08:43:24.164633 18909 sgd_solver.cpp:105] Iteration 2112, lr = 0.01 +I0407 08:43:29.069640 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:29.423715 18909 solver.cpp:218] Iteration 2124 (2.28177 iter/s, 5.25908s/12 iters), loss = 3.15727 +I0407 08:43:29.423758 18909 solver.cpp:237] Train net output #0: loss = 3.15727 (* 1 = 3.15727 loss) +I0407 08:43:29.423765 18909 sgd_solver.cpp:105] Iteration 2124, lr = 0.01 +I0407 08:43:34.813022 18909 solver.cpp:218] Iteration 2136 (2.22665 iter/s, 5.38925s/12 iters), loss = 2.8694 +I0407 08:43:34.813062 18909 solver.cpp:237] Train net output #0: loss = 2.8694 (* 1 = 2.8694 loss) +I0407 08:43:34.813069 18909 sgd_solver.cpp:105] Iteration 2136, lr = 0.01 +I0407 08:43:36.981134 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0407 08:43:40.283490 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0407 08:43:42.605515 18909 solver.cpp:330] Iteration 2142, Testing net (#0) +I0407 08:43:42.605535 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:43:46.072984 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:43:46.959872 18909 solver.cpp:397] Test net output #0: accuracy = 0.193627 +I0407 08:43:46.959919 18909 solver.cpp:397] Test net output #1: loss = 3.50335 (* 1 = 3.50335 loss) +I0407 08:43:48.804417 18909 solver.cpp:218] Iteration 2148 (0.857673 iter/s, 13.9913s/12 iters), loss = 3.00605 +I0407 08:43:48.804461 18909 solver.cpp:237] Train net output #0: loss = 3.00605 (* 1 = 3.00605 loss) +I0407 08:43:48.804468 18909 sgd_solver.cpp:105] Iteration 2148, lr = 0.01 +I0407 08:43:53.927563 18909 solver.cpp:218] Iteration 2160 (2.34233 iter/s, 5.1231s/12 iters), loss = 2.6693 +I0407 08:43:53.927605 18909 solver.cpp:237] Train net output #0: loss = 2.6693 (* 1 = 2.6693 loss) +I0407 08:43:53.927613 18909 sgd_solver.cpp:105] Iteration 2160, lr = 0.01 +I0407 08:43:59.123142 18909 solver.cpp:218] Iteration 2172 (2.30968 iter/s, 5.19552s/12 iters), loss = 2.76629 +I0407 08:43:59.123186 18909 solver.cpp:237] Train net output #0: loss = 2.76629 (* 1 = 2.76629 loss) +I0407 08:43:59.123193 18909 sgd_solver.cpp:105] Iteration 2172, lr = 0.01 +I0407 08:44:04.348997 18909 solver.cpp:218] Iteration 2184 (2.2963 iter/s, 5.2258s/12 iters), loss = 2.73041 +I0407 08:44:04.349041 18909 solver.cpp:237] Train net output #0: loss = 2.73041 (* 1 = 2.73041 loss) +I0407 08:44:04.349048 18909 sgd_solver.cpp:105] Iteration 2184, lr = 0.01 +I0407 08:44:09.703661 18909 solver.cpp:218] Iteration 2196 (2.24106 iter/s, 5.35461s/12 iters), loss = 2.53279 +I0407 08:44:09.703704 18909 solver.cpp:237] Train net output #0: loss = 2.53279 (* 1 = 2.53279 loss) +I0407 08:44:09.703713 18909 sgd_solver.cpp:105] Iteration 2196, lr = 0.01 +I0407 08:44:14.968674 18909 solver.cpp:218] Iteration 2208 (2.27922 iter/s, 5.26496s/12 iters), loss = 2.40554 +I0407 08:44:14.968711 18909 solver.cpp:237] Train net output #0: loss = 2.40554 (* 1 = 2.40554 loss) +I0407 08:44:14.968719 18909 sgd_solver.cpp:105] Iteration 2208, lr = 0.01 +I0407 08:44:20.004679 18909 solver.cpp:218] Iteration 2220 (2.38286 iter/s, 5.03596s/12 iters), loss = 2.57502 +I0407 08:44:20.004812 18909 solver.cpp:237] Train net output #0: loss = 2.57502 (* 1 = 2.57502 loss) +I0407 08:44:20.004818 18909 sgd_solver.cpp:105] Iteration 2220, lr = 0.01 +I0407 08:44:21.749486 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:44:24.926707 18909 solver.cpp:218] Iteration 2232 (2.43809 iter/s, 4.92188s/12 iters), loss = 2.64302 +I0407 08:44:24.926753 18909 solver.cpp:237] Train net output #0: loss = 2.64302 (* 1 = 2.64302 loss) +I0407 08:44:24.926761 18909 sgd_solver.cpp:105] Iteration 2232, lr = 0.01 +I0407 08:44:29.691283 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0407 08:44:33.274477 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0407 08:44:35.604383 18909 solver.cpp:330] Iteration 2244, Testing net (#0) +I0407 08:44:35.604406 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:44:39.011862 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:44:39.971120 18909 solver.cpp:397] Test net output #0: accuracy = 0.23223 +I0407 08:44:39.971150 18909 solver.cpp:397] Test net output #1: loss = 3.33331 (* 1 = 3.33331 loss) +I0407 08:44:40.112272 18909 solver.cpp:218] Iteration 2244 (0.790227 iter/s, 15.1855s/12 iters), loss = 2.43635 +I0407 08:44:40.112327 18909 solver.cpp:237] Train net output #0: loss = 2.43635 (* 1 = 2.43635 loss) +I0407 08:44:40.112335 18909 sgd_solver.cpp:105] Iteration 2244, lr = 0.01 +I0407 08:44:44.534963 18909 solver.cpp:218] Iteration 2256 (2.71332 iter/s, 4.42262s/12 iters), loss = 2.90881 +I0407 08:44:44.535006 18909 solver.cpp:237] Train net output #0: loss = 2.90881 (* 1 = 2.90881 loss) +I0407 08:44:44.535013 18909 sgd_solver.cpp:105] Iteration 2256, lr = 0.01 +I0407 08:44:49.837266 18909 solver.cpp:218] Iteration 2268 (2.26319 iter/s, 5.30224s/12 iters), loss = 2.48006 +I0407 08:44:49.837314 18909 solver.cpp:237] Train net output #0: loss = 2.48006 (* 1 = 2.48006 loss) +I0407 08:44:49.837322 18909 sgd_solver.cpp:105] Iteration 2268, lr = 0.01 +I0407 08:44:55.072234 18909 solver.cpp:218] Iteration 2280 (2.2923 iter/s, 5.23491s/12 iters), loss = 2.62445 +I0407 08:44:55.072341 18909 solver.cpp:237] Train net output #0: loss = 2.62445 (* 1 = 2.62445 loss) +I0407 08:44:55.072348 18909 sgd_solver.cpp:105] Iteration 2280, lr = 0.01 +I0407 08:45:00.477701 18909 solver.cpp:218] Iteration 2292 (2.22002 iter/s, 5.40535s/12 iters), loss = 2.8514 +I0407 08:45:00.477741 18909 solver.cpp:237] Train net output #0: loss = 2.8514 (* 1 = 2.8514 loss) +I0407 08:45:00.477747 18909 sgd_solver.cpp:105] Iteration 2292, lr = 0.01 +I0407 08:45:05.521572 18909 solver.cpp:218] Iteration 2304 (2.37915 iter/s, 5.04382s/12 iters), loss = 2.66288 +I0407 08:45:05.521627 18909 solver.cpp:237] Train net output #0: loss = 2.66288 (* 1 = 2.66288 loss) +I0407 08:45:05.521639 18909 sgd_solver.cpp:105] Iteration 2304, lr = 0.01 +I0407 08:45:10.826191 18909 solver.cpp:218] Iteration 2316 (2.26221 iter/s, 5.30456s/12 iters), loss = 2.47747 +I0407 08:45:10.826239 18909 solver.cpp:237] Train net output #0: loss = 2.47747 (* 1 = 2.47747 loss) +I0407 08:45:10.826247 18909 sgd_solver.cpp:105] Iteration 2316, lr = 0.01 +I0407 08:45:14.904224 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:45:16.064785 18909 solver.cpp:218] Iteration 2328 (2.29072 iter/s, 5.23853s/12 iters), loss = 2.28245 +I0407 08:45:16.064837 18909 solver.cpp:237] Train net output #0: loss = 2.28245 (* 1 = 2.28245 loss) +I0407 08:45:16.064846 18909 sgd_solver.cpp:105] Iteration 2328, lr = 0.01 +I0407 08:45:21.027252 18909 solver.cpp:218] Iteration 2340 (2.41818 iter/s, 4.96241s/12 iters), loss = 2.57201 +I0407 08:45:21.027298 18909 solver.cpp:237] Train net output #0: loss = 2.57201 (* 1 = 2.57201 loss) +I0407 08:45:21.027304 18909 sgd_solver.cpp:105] Iteration 2340, lr = 0.01 +I0407 08:45:23.228871 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0407 08:45:26.731387 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0407 08:45:29.055281 18909 solver.cpp:330] Iteration 2346, Testing net (#0) +I0407 08:45:29.055306 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:45:32.411362 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:45:33.343928 18909 solver.cpp:397] Test net output #0: accuracy = 0.22549 +I0407 08:45:33.343967 18909 solver.cpp:397] Test net output #1: loss = 3.39779 (* 1 = 3.39779 loss) +I0407 08:45:35.194123 18909 solver.cpp:218] Iteration 2352 (0.84705 iter/s, 14.1668s/12 iters), loss = 2.57304 +I0407 08:45:35.194157 18909 solver.cpp:237] Train net output #0: loss = 2.57304 (* 1 = 2.57304 loss) +I0407 08:45:35.194164 18909 sgd_solver.cpp:105] Iteration 2352, lr = 0.01 +I0407 08:45:40.295898 18909 solver.cpp:218] Iteration 2364 (2.35215 iter/s, 5.10172s/12 iters), loss = 2.25285 +I0407 08:45:40.295955 18909 solver.cpp:237] Train net output #0: loss = 2.25285 (* 1 = 2.25285 loss) +I0407 08:45:40.295965 18909 sgd_solver.cpp:105] Iteration 2364, lr = 0.01 +I0407 08:45:45.627336 18909 solver.cpp:218] Iteration 2376 (2.25083 iter/s, 5.33137s/12 iters), loss = 2.66739 +I0407 08:45:45.627372 18909 solver.cpp:237] Train net output #0: loss = 2.66739 (* 1 = 2.66739 loss) +I0407 08:45:45.627380 18909 sgd_solver.cpp:105] Iteration 2376, lr = 0.01 +I0407 08:45:51.016963 18909 solver.cpp:218] Iteration 2388 (2.22652 iter/s, 5.38958s/12 iters), loss = 2.48572 +I0407 08:45:51.017026 18909 solver.cpp:237] Train net output #0: loss = 2.48572 (* 1 = 2.48572 loss) +I0407 08:45:51.017037 18909 sgd_solver.cpp:105] Iteration 2388, lr = 0.01 +I0407 08:45:56.202379 18909 solver.cpp:218] Iteration 2400 (2.31422 iter/s, 5.18534s/12 iters), loss = 2.52155 +I0407 08:45:56.202420 18909 solver.cpp:237] Train net output #0: loss = 2.52155 (* 1 = 2.52155 loss) +I0407 08:45:56.202427 18909 sgd_solver.cpp:105] Iteration 2400, lr = 0.01 +I0407 08:46:01.451120 18909 solver.cpp:218] Iteration 2412 (2.28629 iter/s, 5.24869s/12 iters), loss = 2.43355 +I0407 08:46:01.451223 18909 solver.cpp:237] Train net output #0: loss = 2.43355 (* 1 = 2.43355 loss) +I0407 08:46:01.451231 18909 sgd_solver.cpp:105] Iteration 2412, lr = 0.01 +I0407 08:46:06.689493 18909 solver.cpp:218] Iteration 2424 (2.29084 iter/s, 5.23826s/12 iters), loss = 2.51327 +I0407 08:46:06.689533 18909 solver.cpp:237] Train net output #0: loss = 2.51327 (* 1 = 2.51327 loss) +I0407 08:46:06.689541 18909 sgd_solver.cpp:105] Iteration 2424, lr = 0.01 +I0407 08:46:07.794122 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:11.993356 18909 solver.cpp:218] Iteration 2436 (2.26252 iter/s, 5.30381s/12 iters), loss = 2.25521 +I0407 08:46:11.993398 18909 solver.cpp:237] Train net output #0: loss = 2.25521 (* 1 = 2.25521 loss) +I0407 08:46:11.993405 18909 sgd_solver.cpp:105] Iteration 2436, lr = 0.01 +I0407 08:46:16.630040 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0407 08:46:20.465237 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0407 08:46:22.792834 18909 solver.cpp:330] Iteration 2448, Testing net (#0) +I0407 08:46:22.792855 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:46:26.168071 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:46:27.131814 18909 solver.cpp:397] Test net output #0: accuracy = 0.257353 +I0407 08:46:27.131841 18909 solver.cpp:397] Test net output #1: loss = 3.27876 (* 1 = 3.27876 loss) +I0407 08:46:27.267554 18909 solver.cpp:218] Iteration 2448 (0.785641 iter/s, 15.2742s/12 iters), loss = 2.65092 +I0407 08:46:27.269131 18909 solver.cpp:237] Train net output #0: loss = 2.65092 (* 1 = 2.65092 loss) +I0407 08:46:27.269142 18909 sgd_solver.cpp:105] Iteration 2448, lr = 0.01 +I0407 08:46:31.561810 18909 solver.cpp:218] Iteration 2460 (2.79546 iter/s, 4.29267s/12 iters), loss = 2.64007 +I0407 08:46:31.562016 18909 solver.cpp:237] Train net output #0: loss = 2.64007 (* 1 = 2.64007 loss) +I0407 08:46:31.562027 18909 sgd_solver.cpp:105] Iteration 2460, lr = 0.01 +I0407 08:46:36.664909 18909 solver.cpp:218] Iteration 2472 (2.35161 iter/s, 5.10289s/12 iters), loss = 2.58532 +I0407 08:46:36.664949 18909 solver.cpp:237] Train net output #0: loss = 2.58532 (* 1 = 2.58532 loss) +I0407 08:46:36.664956 18909 sgd_solver.cpp:105] Iteration 2472, lr = 0.01 +I0407 08:46:41.850811 18909 solver.cpp:218] Iteration 2484 (2.31399 iter/s, 5.18585s/12 iters), loss = 1.8716 +I0407 08:46:41.850852 18909 solver.cpp:237] Train net output #0: loss = 1.8716 (* 1 = 1.8716 loss) +I0407 08:46:41.850857 18909 sgd_solver.cpp:105] Iteration 2484, lr = 0.01 +I0407 08:46:46.873422 18909 solver.cpp:218] Iteration 2496 (2.38923 iter/s, 5.02254s/12 iters), loss = 2.12852 +I0407 08:46:46.873481 18909 solver.cpp:237] Train net output #0: loss = 2.12852 (* 1 = 2.12852 loss) +I0407 08:46:46.873493 18909 sgd_solver.cpp:105] Iteration 2496, lr = 0.01 +I0407 08:46:52.048174 18909 solver.cpp:218] Iteration 2508 (2.31898 iter/s, 5.17468s/12 iters), loss = 2.35961 +I0407 08:46:52.048218 18909 solver.cpp:237] Train net output #0: loss = 2.35961 (* 1 = 2.35961 loss) +I0407 08:46:52.048225 18909 sgd_solver.cpp:105] Iteration 2508, lr = 0.01 +I0407 08:46:57.092680 18909 solver.cpp:218] Iteration 2520 (2.37885 iter/s, 5.04445s/12 iters), loss = 2.0332 +I0407 08:46:57.092725 18909 solver.cpp:237] Train net output #0: loss = 2.0332 (* 1 = 2.0332 loss) +I0407 08:46:57.092731 18909 sgd_solver.cpp:105] Iteration 2520, lr = 0.01 +I0407 08:47:00.464593 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:02.436739 18909 solver.cpp:218] Iteration 2532 (2.24551 iter/s, 5.34401s/12 iters), loss = 1.97736 +I0407 08:47:02.436854 18909 solver.cpp:237] Train net output #0: loss = 1.97736 (* 1 = 1.97736 loss) +I0407 08:47:02.436862 18909 sgd_solver.cpp:105] Iteration 2532, lr = 0.01 +I0407 08:47:07.680091 18909 solver.cpp:218] Iteration 2544 (2.28867 iter/s, 5.24323s/12 iters), loss = 2.11883 +I0407 08:47:07.680138 18909 solver.cpp:237] Train net output #0: loss = 2.11883 (* 1 = 2.11883 loss) +I0407 08:47:07.680146 18909 sgd_solver.cpp:105] Iteration 2544, lr = 0.01 +I0407 08:47:09.662534 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0407 08:47:14.193246 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0407 08:47:16.551986 18909 solver.cpp:330] Iteration 2550, Testing net (#0) +I0407 08:47:16.552004 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:47:19.846909 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:20.848598 18909 solver.cpp:397] Test net output #0: accuracy = 0.25 +I0407 08:47:20.848640 18909 solver.cpp:397] Test net output #1: loss = 3.24308 (* 1 = 3.24308 loss) +I0407 08:47:22.787698 18909 solver.cpp:218] Iteration 2556 (0.794304 iter/s, 15.1076s/12 iters), loss = 2.38268 +I0407 08:47:22.787734 18909 solver.cpp:237] Train net output #0: loss = 2.38268 (* 1 = 2.38268 loss) +I0407 08:47:22.787741 18909 sgd_solver.cpp:105] Iteration 2556, lr = 0.01 +I0407 08:47:28.133337 18909 solver.cpp:218] Iteration 2568 (2.24484 iter/s, 5.34558s/12 iters), loss = 2.0532 +I0407 08:47:28.133388 18909 solver.cpp:237] Train net output #0: loss = 2.0532 (* 1 = 2.0532 loss) +I0407 08:47:28.133396 18909 sgd_solver.cpp:105] Iteration 2568, lr = 0.01 +I0407 08:47:33.243041 18909 solver.cpp:218] Iteration 2580 (2.3485 iter/s, 5.10965s/12 iters), loss = 2.36438 +I0407 08:47:33.243167 18909 solver.cpp:237] Train net output #0: loss = 2.36438 (* 1 = 2.36438 loss) +I0407 08:47:33.243175 18909 sgd_solver.cpp:105] Iteration 2580, lr = 0.01 +I0407 08:47:38.390725 18909 solver.cpp:218] Iteration 2592 (2.33121 iter/s, 5.14754s/12 iters), loss = 2.21738 +I0407 08:47:38.390771 18909 solver.cpp:237] Train net output #0: loss = 2.21738 (* 1 = 2.21738 loss) +I0407 08:47:38.390779 18909 sgd_solver.cpp:105] Iteration 2592, lr = 0.01 +I0407 08:47:43.426760 18909 solver.cpp:218] Iteration 2604 (2.38285 iter/s, 5.03598s/12 iters), loss = 2.27526 +I0407 08:47:43.426805 18909 solver.cpp:237] Train net output #0: loss = 2.27526 (* 1 = 2.27526 loss) +I0407 08:47:43.426815 18909 sgd_solver.cpp:105] Iteration 2604, lr = 0.01 +I0407 08:47:48.634521 18909 solver.cpp:218] Iteration 2616 (2.30428 iter/s, 5.2077s/12 iters), loss = 2.0353 +I0407 08:47:48.634565 18909 solver.cpp:237] Train net output #0: loss = 2.0353 (* 1 = 2.0353 loss) +I0407 08:47:48.634572 18909 sgd_solver.cpp:105] Iteration 2616, lr = 0.01 +I0407 08:47:53.504789 18909 solver.cpp:218] Iteration 2628 (2.46396 iter/s, 4.87021s/12 iters), loss = 1.80986 +I0407 08:47:53.504834 18909 solver.cpp:237] Train net output #0: loss = 1.80986 (* 1 = 1.80986 loss) +I0407 08:47:53.504842 18909 sgd_solver.cpp:105] Iteration 2628, lr = 0.01 +I0407 08:47:53.970247 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:47:58.730860 18909 solver.cpp:218] Iteration 2640 (2.29621 iter/s, 5.22601s/12 iters), loss = 2.4848 +I0407 08:47:58.730901 18909 solver.cpp:237] Train net output #0: loss = 2.4848 (* 1 = 2.4848 loss) +I0407 08:47:58.730908 18909 sgd_solver.cpp:105] Iteration 2640, lr = 0.01 +I0407 08:48:03.481338 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0407 08:48:07.694335 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0407 08:48:11.873165 18909 solver.cpp:330] Iteration 2652, Testing net (#0) +I0407 08:48:11.873186 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:48:15.188526 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:16.243554 18909 solver.cpp:397] Test net output #0: accuracy = 0.276348 +I0407 08:48:16.243587 18909 solver.cpp:397] Test net output #1: loss = 3.16688 (* 1 = 3.16688 loss) +I0407 08:48:16.384773 18909 solver.cpp:218] Iteration 2652 (0.679738 iter/s, 17.6539s/12 iters), loss = 2.46868 +I0407 08:48:16.384838 18909 solver.cpp:237] Train net output #0: loss = 2.46868 (* 1 = 2.46868 loss) +I0407 08:48:16.384851 18909 sgd_solver.cpp:105] Iteration 2652, lr = 0.01 +I0407 08:48:20.630594 18909 solver.cpp:218] Iteration 2664 (2.82636 iter/s, 4.24574s/12 iters), loss = 2.40093 +I0407 08:48:20.630642 18909 solver.cpp:237] Train net output #0: loss = 2.40093 (* 1 = 2.40093 loss) +I0407 08:48:20.630651 18909 sgd_solver.cpp:105] Iteration 2664, lr = 0.01 +I0407 08:48:25.678526 18909 solver.cpp:218] Iteration 2676 (2.37724 iter/s, 5.04787s/12 iters), loss = 2.39632 +I0407 08:48:25.678565 18909 solver.cpp:237] Train net output #0: loss = 2.39632 (* 1 = 2.39632 loss) +I0407 08:48:25.678571 18909 sgd_solver.cpp:105] Iteration 2676, lr = 0.01 +I0407 08:48:30.833968 18909 solver.cpp:218] Iteration 2688 (2.32766 iter/s, 5.15539s/12 iters), loss = 2.33116 +I0407 08:48:30.834008 18909 solver.cpp:237] Train net output #0: loss = 2.33116 (* 1 = 2.33116 loss) +I0407 08:48:30.834015 18909 sgd_solver.cpp:105] Iteration 2688, lr = 0.01 +I0407 08:48:35.983392 18909 solver.cpp:218] Iteration 2700 (2.33038 iter/s, 5.14937s/12 iters), loss = 2.11049 +I0407 08:48:35.983494 18909 solver.cpp:237] Train net output #0: loss = 2.11049 (* 1 = 2.11049 loss) +I0407 08:48:35.983501 18909 sgd_solver.cpp:105] Iteration 2700, lr = 0.01 +I0407 08:48:41.346761 18909 solver.cpp:218] Iteration 2712 (2.23745 iter/s, 5.36326s/12 iters), loss = 2.22989 +I0407 08:48:41.346802 18909 solver.cpp:237] Train net output #0: loss = 2.22989 (* 1 = 2.22989 loss) +I0407 08:48:41.346808 18909 sgd_solver.cpp:105] Iteration 2712, lr = 0.01 +I0407 08:48:46.524515 18909 solver.cpp:218] Iteration 2724 (2.31763 iter/s, 5.1777s/12 iters), loss = 2.66377 +I0407 08:48:46.524559 18909 solver.cpp:237] Train net output #0: loss = 2.66377 (* 1 = 2.66377 loss) +I0407 08:48:46.524565 18909 sgd_solver.cpp:105] Iteration 2724, lr = 0.01 +I0407 08:48:49.285071 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:48:51.900947 18909 solver.cpp:218] Iteration 2736 (2.23199 iter/s, 5.37637s/12 iters), loss = 2.34164 +I0407 08:48:51.900995 18909 solver.cpp:237] Train net output #0: loss = 2.34164 (* 1 = 2.34164 loss) +I0407 08:48:51.901001 18909 sgd_solver.cpp:105] Iteration 2736, lr = 0.01 +I0407 08:48:57.128388 18909 solver.cpp:218] Iteration 2748 (2.2956 iter/s, 5.22738s/12 iters), loss = 2.17624 +I0407 08:48:57.128428 18909 solver.cpp:237] Train net output #0: loss = 2.17624 (* 1 = 2.17624 loss) +I0407 08:48:57.128435 18909 sgd_solver.cpp:105] Iteration 2748, lr = 0.01 +I0407 08:48:59.239233 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0407 08:49:03.605988 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0407 08:49:08.172111 18909 solver.cpp:330] Iteration 2754, Testing net (#0) +I0407 08:49:08.172205 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:49:11.135991 18909 blocking_queue.cpp:49] Waiting for data +I0407 08:49:11.368783 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:49:12.451671 18909 solver.cpp:397] Test net output #0: accuracy = 0.267157 +I0407 08:49:12.451721 18909 solver.cpp:397] Test net output #1: loss = 3.19212 (* 1 = 3.19212 loss) +I0407 08:49:14.291599 18909 solver.cpp:218] Iteration 2760 (0.699172 iter/s, 17.1632s/12 iters), loss = 2.40462 +I0407 08:49:14.291640 18909 solver.cpp:237] Train net output #0: loss = 2.40462 (* 1 = 2.40462 loss) +I0407 08:49:14.291646 18909 sgd_solver.cpp:105] Iteration 2760, lr = 0.01 +I0407 08:49:19.370707 18909 solver.cpp:218] Iteration 2772 (2.36264 iter/s, 5.07905s/12 iters), loss = 1.978 +I0407 08:49:19.370748 18909 solver.cpp:237] Train net output #0: loss = 1.978 (* 1 = 1.978 loss) +I0407 08:49:19.370754 18909 sgd_solver.cpp:105] Iteration 2772, lr = 0.01 +I0407 08:49:24.640534 18909 solver.cpp:218] Iteration 2784 (2.27714 iter/s, 5.26977s/12 iters), loss = 2.12126 +I0407 08:49:24.640575 18909 solver.cpp:237] Train net output #0: loss = 2.12126 (* 1 = 2.12126 loss) +I0407 08:49:24.640583 18909 sgd_solver.cpp:105] Iteration 2784, lr = 0.01 +I0407 08:49:29.767505 18909 solver.cpp:218] Iteration 2796 (2.34059 iter/s, 5.12692s/12 iters), loss = 2.2206 +I0407 08:49:29.767545 18909 solver.cpp:237] Train net output #0: loss = 2.2206 (* 1 = 2.2206 loss) +I0407 08:49:29.767551 18909 sgd_solver.cpp:105] Iteration 2796, lr = 0.01 +I0407 08:49:35.110628 18909 solver.cpp:218] Iteration 2808 (2.2459 iter/s, 5.34307s/12 iters), loss = 1.92523 +I0407 08:49:35.110672 18909 solver.cpp:237] Train net output #0: loss = 1.92523 (* 1 = 1.92523 loss) +I0407 08:49:35.110679 18909 sgd_solver.cpp:105] Iteration 2808, lr = 0.01 +I0407 08:49:40.407631 18909 solver.cpp:218] Iteration 2820 (2.26546 iter/s, 5.29694s/12 iters), loss = 2.07824 +I0407 08:49:40.407745 18909 solver.cpp:237] Train net output #0: loss = 2.07824 (* 1 = 2.07824 loss) +I0407 08:49:40.407754 18909 sgd_solver.cpp:105] Iteration 2820, lr = 0.01 +I0407 08:49:45.503518 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:49:45.824492 18909 solver.cpp:218] Iteration 2832 (2.21535 iter/s, 5.41674s/12 iters), loss = 2.08259 +I0407 08:49:45.824537 18909 solver.cpp:237] Train net output #0: loss = 2.08259 (* 1 = 2.08259 loss) +I0407 08:49:45.824543 18909 sgd_solver.cpp:105] Iteration 2832, lr = 0.01 +I0407 08:49:51.102432 18909 solver.cpp:218] Iteration 2844 (2.27364 iter/s, 5.27788s/12 iters), loss = 2.1771 +I0407 08:49:51.102475 18909 solver.cpp:237] Train net output #0: loss = 2.1771 (* 1 = 2.1771 loss) +I0407 08:49:51.102481 18909 sgd_solver.cpp:105] Iteration 2844, lr = 0.01 +I0407 08:49:55.719430 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0407 08:50:00.228973 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0407 08:50:03.986274 18909 solver.cpp:330] Iteration 2856, Testing net (#0) +I0407 08:50:03.986290 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:50:07.199664 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:08.312101 18909 solver.cpp:397] Test net output #0: accuracy = 0.289216 +I0407 08:50:08.312139 18909 solver.cpp:397] Test net output #1: loss = 3.00608 (* 1 = 3.00608 loss) +I0407 08:50:08.453001 18909 solver.cpp:218] Iteration 2856 (0.691622 iter/s, 17.3505s/12 iters), loss = 1.80395 +I0407 08:50:08.453042 18909 solver.cpp:237] Train net output #0: loss = 1.80395 (* 1 = 1.80395 loss) +I0407 08:50:08.453048 18909 sgd_solver.cpp:105] Iteration 2856, lr = 0.01 +I0407 08:50:12.757339 18909 solver.cpp:218] Iteration 2868 (2.78792 iter/s, 4.30428s/12 iters), loss = 2.07658 +I0407 08:50:12.757459 18909 solver.cpp:237] Train net output #0: loss = 2.07658 (* 1 = 2.07658 loss) +I0407 08:50:12.757468 18909 sgd_solver.cpp:105] Iteration 2868, lr = 0.01 +I0407 08:50:18.046439 18909 solver.cpp:218] Iteration 2880 (2.26887 iter/s, 5.28897s/12 iters), loss = 2.20526 +I0407 08:50:18.046479 18909 solver.cpp:237] Train net output #0: loss = 2.20526 (* 1 = 2.20526 loss) +I0407 08:50:18.046486 18909 sgd_solver.cpp:105] Iteration 2880, lr = 0.01 +I0407 08:50:23.168161 18909 solver.cpp:218] Iteration 2892 (2.34299 iter/s, 5.12167s/12 iters), loss = 2.12059 +I0407 08:50:23.168202 18909 solver.cpp:237] Train net output #0: loss = 2.12059 (* 1 = 2.12059 loss) +I0407 08:50:23.168210 18909 sgd_solver.cpp:105] Iteration 2892, lr = 0.01 +I0407 08:50:28.420154 18909 solver.cpp:218] Iteration 2904 (2.28487 iter/s, 5.25194s/12 iters), loss = 1.98397 +I0407 08:50:28.420197 18909 solver.cpp:237] Train net output #0: loss = 1.98397 (* 1 = 1.98397 loss) +I0407 08:50:28.420204 18909 sgd_solver.cpp:105] Iteration 2904, lr = 0.01 +I0407 08:50:33.451157 18909 solver.cpp:218] Iteration 2916 (2.38524 iter/s, 5.03095s/12 iters), loss = 1.67152 +I0407 08:50:33.451197 18909 solver.cpp:237] Train net output #0: loss = 1.67152 (* 1 = 1.67152 loss) +I0407 08:50:33.451203 18909 sgd_solver.cpp:105] Iteration 2916, lr = 0.01 +I0407 08:50:38.654767 18909 solver.cpp:218] Iteration 2928 (2.30611 iter/s, 5.20356s/12 iters), loss = 2.07739 +I0407 08:50:38.654814 18909 solver.cpp:237] Train net output #0: loss = 2.07739 (* 1 = 2.07739 loss) +I0407 08:50:38.654822 18909 sgd_solver.cpp:105] Iteration 2928, lr = 0.01 +I0407 08:50:40.483709 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:50:43.908747 18909 solver.cpp:218] Iteration 2940 (2.28401 iter/s, 5.25392s/12 iters), loss = 2.08847 +I0407 08:50:43.908854 18909 solver.cpp:237] Train net output #0: loss = 2.08847 (* 1 = 2.08847 loss) +I0407 08:50:43.908861 18909 sgd_solver.cpp:105] Iteration 2940, lr = 0.01 +I0407 08:50:49.176204 18909 solver.cpp:218] Iteration 2952 (2.27819 iter/s, 5.26734s/12 iters), loss = 1.67035 +I0407 08:50:49.176247 18909 solver.cpp:237] Train net output #0: loss = 1.67035 (* 1 = 1.67035 loss) +I0407 08:50:49.176255 18909 sgd_solver.cpp:105] Iteration 2952, lr = 0.01 +I0407 08:50:51.295105 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0407 08:50:54.340978 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0407 08:50:58.589184 18909 solver.cpp:330] Iteration 2958, Testing net (#0) +I0407 08:50:58.589205 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:51:01.933691 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:03.094729 18909 solver.cpp:397] Test net output #0: accuracy = 0.272672 +I0407 08:51:03.094763 18909 solver.cpp:397] Test net output #1: loss = 3.05308 (* 1 = 3.05308 loss) +I0407 08:51:04.988615 18909 solver.cpp:218] Iteration 2964 (0.7589 iter/s, 15.8124s/12 iters), loss = 1.85784 +I0407 08:51:04.988663 18909 solver.cpp:237] Train net output #0: loss = 1.85784 (* 1 = 1.85784 loss) +I0407 08:51:04.988670 18909 sgd_solver.cpp:105] Iteration 2964, lr = 0.01 +I0407 08:51:10.161931 18909 solver.cpp:218] Iteration 2976 (2.31962 iter/s, 5.17325s/12 iters), loss = 2.04021 +I0407 08:51:10.161975 18909 solver.cpp:237] Train net output #0: loss = 2.04021 (* 1 = 2.04021 loss) +I0407 08:51:10.161983 18909 sgd_solver.cpp:105] Iteration 2976, lr = 0.01 +I0407 08:51:15.495272 18909 solver.cpp:218] Iteration 2988 (2.25002 iter/s, 5.33329s/12 iters), loss = 2.19275 +I0407 08:51:15.495416 18909 solver.cpp:237] Train net output #0: loss = 2.19275 (* 1 = 2.19275 loss) +I0407 08:51:15.495424 18909 sgd_solver.cpp:105] Iteration 2988, lr = 0.01 +I0407 08:51:20.675276 18909 solver.cpp:218] Iteration 3000 (2.31667 iter/s, 5.17985s/12 iters), loss = 1.94793 +I0407 08:51:20.675318 18909 solver.cpp:237] Train net output #0: loss = 1.94793 (* 1 = 1.94793 loss) +I0407 08:51:20.675325 18909 sgd_solver.cpp:105] Iteration 3000, lr = 0.01 +I0407 08:51:25.896103 18909 solver.cpp:218] Iteration 3012 (2.29851 iter/s, 5.22077s/12 iters), loss = 1.83215 +I0407 08:51:25.896144 18909 solver.cpp:237] Train net output #0: loss = 1.83215 (* 1 = 1.83215 loss) +I0407 08:51:25.896152 18909 sgd_solver.cpp:105] Iteration 3012, lr = 0.01 +I0407 08:51:30.866384 18909 solver.cpp:218] Iteration 3024 (2.41438 iter/s, 4.97023s/12 iters), loss = 1.64171 +I0407 08:51:30.866421 18909 solver.cpp:237] Train net output #0: loss = 1.64171 (* 1 = 1.64171 loss) +I0407 08:51:30.866428 18909 sgd_solver.cpp:105] Iteration 3024, lr = 0.01 +I0407 08:51:35.158339 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:36.293049 18909 solver.cpp:218] Iteration 3036 (2.21132 iter/s, 5.42661s/12 iters), loss = 2.44861 +I0407 08:51:36.293092 18909 solver.cpp:237] Train net output #0: loss = 2.44861 (* 1 = 2.44861 loss) +I0407 08:51:36.293099 18909 sgd_solver.cpp:105] Iteration 3036, lr = 0.01 +I0407 08:51:41.384120 18909 solver.cpp:218] Iteration 3048 (2.35709 iter/s, 5.09102s/12 iters), loss = 1.8686 +I0407 08:51:41.384164 18909 solver.cpp:237] Train net output #0: loss = 1.8686 (* 1 = 1.8686 loss) +I0407 08:51:41.384172 18909 sgd_solver.cpp:105] Iteration 3048, lr = 0.01 +I0407 08:51:45.883678 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0407 08:51:48.898365 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0407 08:51:52.561473 18909 solver.cpp:330] Iteration 3060, Testing net (#0) +I0407 08:51:52.561497 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:51:55.694394 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:51:56.888916 18909 solver.cpp:397] Test net output #0: accuracy = 0.294118 +I0407 08:51:56.888949 18909 solver.cpp:397] Test net output #1: loss = 3.03055 (* 1 = 3.03055 loss) +I0407 08:51:57.029963 18909 solver.cpp:218] Iteration 3060 (0.766979 iter/s, 15.6458s/12 iters), loss = 2.05575 +I0407 08:51:57.030001 18909 solver.cpp:237] Train net output #0: loss = 2.05575 (* 1 = 2.05575 loss) +I0407 08:51:57.030007 18909 sgd_solver.cpp:105] Iteration 3060, lr = 0.01 +I0407 08:52:01.350841 18909 solver.cpp:218] Iteration 3072 (2.77725 iter/s, 4.32082s/12 iters), loss = 1.67569 +I0407 08:52:01.350888 18909 solver.cpp:237] Train net output #0: loss = 1.67569 (* 1 = 1.67569 loss) +I0407 08:52:01.350895 18909 sgd_solver.cpp:105] Iteration 3072, lr = 0.01 +I0407 08:52:06.368022 18909 solver.cpp:218] Iteration 3084 (2.39181 iter/s, 5.01713s/12 iters), loss = 1.84075 +I0407 08:52:06.368060 18909 solver.cpp:237] Train net output #0: loss = 1.84075 (* 1 = 1.84075 loss) +I0407 08:52:06.368068 18909 sgd_solver.cpp:105] Iteration 3084, lr = 0.01 +I0407 08:52:11.308408 18909 solver.cpp:218] Iteration 3096 (2.42899 iter/s, 4.94033s/12 iters), loss = 1.81027 +I0407 08:52:11.308459 18909 solver.cpp:237] Train net output #0: loss = 1.81027 (* 1 = 1.81027 loss) +I0407 08:52:11.308467 18909 sgd_solver.cpp:105] Iteration 3096, lr = 0.01 +I0407 08:52:16.407213 18909 solver.cpp:218] Iteration 3108 (2.35352 iter/s, 5.09874s/12 iters), loss = 1.86016 +I0407 08:52:16.407351 18909 solver.cpp:237] Train net output #0: loss = 1.86016 (* 1 = 1.86016 loss) +I0407 08:52:16.407358 18909 sgd_solver.cpp:105] Iteration 3108, lr = 0.01 +I0407 08:52:21.779764 18909 solver.cpp:218] Iteration 3120 (2.23364 iter/s, 5.3724s/12 iters), loss = 1.5661 +I0407 08:52:21.779801 18909 solver.cpp:237] Train net output #0: loss = 1.5661 (* 1 = 1.5661 loss) +I0407 08:52:21.779808 18909 sgd_solver.cpp:105] Iteration 3120, lr = 0.01 +I0407 08:52:26.788580 18909 solver.cpp:218] Iteration 3132 (2.3958 iter/s, 5.00877s/12 iters), loss = 2.00919 +I0407 08:52:26.788623 18909 solver.cpp:237] Train net output #0: loss = 2.00919 (* 1 = 2.00919 loss) +I0407 08:52:26.788630 18909 sgd_solver.cpp:105] Iteration 3132, lr = 0.01 +I0407 08:52:27.857321 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:32.046677 18909 solver.cpp:218] Iteration 3144 (2.28222 iter/s, 5.25804s/12 iters), loss = 1.82658 +I0407 08:52:32.046732 18909 solver.cpp:237] Train net output #0: loss = 1.82658 (* 1 = 1.82658 loss) +I0407 08:52:32.046741 18909 sgd_solver.cpp:105] Iteration 3144, lr = 0.01 +I0407 08:52:37.201274 18909 solver.cpp:218] Iteration 3156 (2.32805 iter/s, 5.15452s/12 iters), loss = 2.06181 +I0407 08:52:37.201321 18909 solver.cpp:237] Train net output #0: loss = 2.06181 (* 1 = 2.06181 loss) +I0407 08:52:37.201328 18909 sgd_solver.cpp:105] Iteration 3156, lr = 0.01 +I0407 08:52:39.264878 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0407 08:52:42.282070 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0407 08:52:44.580585 18909 solver.cpp:330] Iteration 3162, Testing net (#0) +I0407 08:52:44.580605 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:52:47.667594 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:52:48.974282 18909 solver.cpp:397] Test net output #0: accuracy = 0.284314 +I0407 08:52:48.974313 18909 solver.cpp:397] Test net output #1: loss = 3.06301 (* 1 = 3.06301 loss) +I0407 08:52:50.857430 18909 solver.cpp:218] Iteration 3168 (0.878728 iter/s, 13.6561s/12 iters), loss = 1.80512 +I0407 08:52:50.857467 18909 solver.cpp:237] Train net output #0: loss = 1.80512 (* 1 = 1.80512 loss) +I0407 08:52:50.857473 18909 sgd_solver.cpp:105] Iteration 3168, lr = 0.01 +I0407 08:52:56.058137 18909 solver.cpp:218] Iteration 3180 (2.3074 iter/s, 5.20065s/12 iters), loss = 2.30743 +I0407 08:52:56.058189 18909 solver.cpp:237] Train net output #0: loss = 2.30743 (* 1 = 2.30743 loss) +I0407 08:52:56.058199 18909 sgd_solver.cpp:105] Iteration 3180, lr = 0.01 +I0407 08:53:01.211863 18909 solver.cpp:218] Iteration 3192 (2.32844 iter/s, 5.15366s/12 iters), loss = 1.59202 +I0407 08:53:01.211907 18909 solver.cpp:237] Train net output #0: loss = 1.59202 (* 1 = 1.59202 loss) +I0407 08:53:01.211915 18909 sgd_solver.cpp:105] Iteration 3192, lr = 0.01 +I0407 08:53:06.639534 18909 solver.cpp:218] Iteration 3204 (2.21092 iter/s, 5.42762s/12 iters), loss = 1.90446 +I0407 08:53:06.639577 18909 solver.cpp:237] Train net output #0: loss = 1.90446 (* 1 = 1.90446 loss) +I0407 08:53:06.639586 18909 sgd_solver.cpp:105] Iteration 3204, lr = 0.01 +I0407 08:53:11.926613 18909 solver.cpp:218] Iteration 3216 (2.26971 iter/s, 5.28702s/12 iters), loss = 1.89727 +I0407 08:53:11.926658 18909 solver.cpp:237] Train net output #0: loss = 1.89727 (* 1 = 1.89727 loss) +I0407 08:53:11.926667 18909 sgd_solver.cpp:105] Iteration 3216, lr = 0.01 +I0407 08:53:17.217800 18909 solver.cpp:218] Iteration 3228 (2.26795 iter/s, 5.29113s/12 iters), loss = 1.62532 +I0407 08:53:17.217844 18909 solver.cpp:237] Train net output #0: loss = 1.62532 (* 1 = 1.62532 loss) +I0407 08:53:17.217852 18909 sgd_solver.cpp:105] Iteration 3228, lr = 0.01 +I0407 08:53:20.455715 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:53:22.338833 18909 solver.cpp:218] Iteration 3240 (2.3433 iter/s, 5.12098s/12 iters), loss = 1.59093 +I0407 08:53:22.338874 18909 solver.cpp:237] Train net output #0: loss = 1.59093 (* 1 = 1.59093 loss) +I0407 08:53:22.338881 18909 sgd_solver.cpp:105] Iteration 3240, lr = 0.01 +I0407 08:53:27.568737 18909 solver.cpp:218] Iteration 3252 (2.29452 iter/s, 5.22985s/12 iters), loss = 2.07068 +I0407 08:53:27.568774 18909 solver.cpp:237] Train net output #0: loss = 2.07068 (* 1 = 2.07068 loss) +I0407 08:53:27.568781 18909 sgd_solver.cpp:105] Iteration 3252, lr = 0.01 +I0407 08:53:32.258224 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0407 08:53:35.261322 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0407 08:53:37.575068 18909 solver.cpp:330] Iteration 3264, Testing net (#0) +I0407 08:53:37.575086 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:53:40.595942 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:53:41.880007 18909 solver.cpp:397] Test net output #0: accuracy = 0.292892 +I0407 08:53:41.880051 18909 solver.cpp:397] Test net output #1: loss = 3.06301 (* 1 = 3.06301 loss) +I0407 08:53:42.010805 18909 solver.cpp:218] Iteration 3264 (0.830908 iter/s, 14.442s/12 iters), loss = 1.79622 +I0407 08:53:42.010849 18909 solver.cpp:237] Train net output #0: loss = 1.79622 (* 1 = 1.79622 loss) +I0407 08:53:42.010856 18909 sgd_solver.cpp:105] Iteration 3264, lr = 0.01 +I0407 08:53:46.265254 18909 solver.cpp:218] Iteration 3276 (2.82061 iter/s, 4.2544s/12 iters), loss = 1.8918 +I0407 08:53:46.265295 18909 solver.cpp:237] Train net output #0: loss = 1.8918 (* 1 = 1.8918 loss) +I0407 08:53:46.265301 18909 sgd_solver.cpp:105] Iteration 3276, lr = 0.01 +I0407 08:53:51.489774 18909 solver.cpp:218] Iteration 3288 (2.29688 iter/s, 5.22448s/12 iters), loss = 1.6951 +I0407 08:53:51.489890 18909 solver.cpp:237] Train net output #0: loss = 1.6951 (* 1 = 1.6951 loss) +I0407 08:53:51.489898 18909 sgd_solver.cpp:105] Iteration 3288, lr = 0.01 +I0407 08:53:56.603929 18909 solver.cpp:218] Iteration 3300 (2.34649 iter/s, 5.11403s/12 iters), loss = 1.79948 +I0407 08:53:56.603969 18909 solver.cpp:237] Train net output #0: loss = 1.79948 (* 1 = 1.79948 loss) +I0407 08:53:56.603976 18909 sgd_solver.cpp:105] Iteration 3300, lr = 0.01 +I0407 08:54:01.846103 18909 solver.cpp:218] Iteration 3312 (2.28915 iter/s, 5.24212s/12 iters), loss = 1.87399 +I0407 08:54:01.846144 18909 solver.cpp:237] Train net output #0: loss = 1.87399 (* 1 = 1.87399 loss) +I0407 08:54:01.846151 18909 sgd_solver.cpp:105] Iteration 3312, lr = 0.01 +I0407 08:54:07.094355 18909 solver.cpp:218] Iteration 3324 (2.2865 iter/s, 5.2482s/12 iters), loss = 1.70353 +I0407 08:54:07.094393 18909 solver.cpp:237] Train net output #0: loss = 1.70353 (* 1 = 1.70353 loss) +I0407 08:54:07.094400 18909 sgd_solver.cpp:105] Iteration 3324, lr = 0.01 +I0407 08:54:12.253026 18909 solver.cpp:218] Iteration 3336 (2.3262 iter/s, 5.15862s/12 iters), loss = 1.93005 +I0407 08:54:12.253069 18909 solver.cpp:237] Train net output #0: loss = 1.93005 (* 1 = 1.93005 loss) +I0407 08:54:12.253077 18909 sgd_solver.cpp:105] Iteration 3336, lr = 0.01 +I0407 08:54:12.756201 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:54:17.552083 18909 solver.cpp:218] Iteration 3348 (2.26458 iter/s, 5.299s/12 iters), loss = 1.89086 +I0407 08:54:17.552122 18909 solver.cpp:237] Train net output #0: loss = 1.89086 (* 1 = 1.89086 loss) +I0407 08:54:17.552129 18909 sgd_solver.cpp:105] Iteration 3348, lr = 0.01 +I0407 08:54:22.814090 18909 solver.cpp:218] Iteration 3360 (2.28052 iter/s, 5.26195s/12 iters), loss = 1.69471 +I0407 08:54:22.814218 18909 solver.cpp:237] Train net output #0: loss = 1.69471 (* 1 = 1.69471 loss) +I0407 08:54:22.814227 18909 sgd_solver.cpp:105] Iteration 3360, lr = 0.01 +I0407 08:54:24.874722 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0407 08:54:27.894078 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0407 08:54:30.206312 18909 solver.cpp:330] Iteration 3366, Testing net (#0) +I0407 08:54:30.206333 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:54:33.194635 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:54:34.527006 18909 solver.cpp:397] Test net output #0: accuracy = 0.304534 +I0407 08:54:34.527051 18909 solver.cpp:397] Test net output #1: loss = 3.06667 (* 1 = 3.06667 loss) +I0407 08:54:36.415789 18909 solver.cpp:218] Iteration 3372 (0.882251 iter/s, 13.6016s/12 iters), loss = 1.74559 +I0407 08:54:36.415827 18909 solver.cpp:237] Train net output #0: loss = 1.74559 (* 1 = 1.74559 loss) +I0407 08:54:36.415833 18909 sgd_solver.cpp:105] Iteration 3372, lr = 0.0075 +I0407 08:54:41.478353 18909 solver.cpp:218] Iteration 3384 (2.37036 iter/s, 5.06252s/12 iters), loss = 1.58993 +I0407 08:54:41.478385 18909 solver.cpp:237] Train net output #0: loss = 1.58993 (* 1 = 1.58993 loss) +I0407 08:54:41.478391 18909 sgd_solver.cpp:105] Iteration 3384, lr = 0.0075 +I0407 08:54:46.619673 18909 solver.cpp:218] Iteration 3396 (2.33405 iter/s, 5.14127s/12 iters), loss = 1.65351 +I0407 08:54:46.619714 18909 solver.cpp:237] Train net output #0: loss = 1.65351 (* 1 = 1.65351 loss) +I0407 08:54:46.619722 18909 sgd_solver.cpp:105] Iteration 3396, lr = 0.0075 +I0407 08:54:51.813627 18909 solver.cpp:218] Iteration 3408 (2.3104 iter/s, 5.1939s/12 iters), loss = 1.4544 +I0407 08:54:51.813660 18909 solver.cpp:237] Train net output #0: loss = 1.4544 (* 1 = 1.4544 loss) +I0407 08:54:51.813668 18909 sgd_solver.cpp:105] Iteration 3408, lr = 0.0075 +I0407 08:54:56.958395 18909 solver.cpp:218] Iteration 3420 (2.33249 iter/s, 5.14472s/12 iters), loss = 1.72355 +I0407 08:54:56.958552 18909 solver.cpp:237] Train net output #0: loss = 1.72355 (* 1 = 1.72355 loss) +I0407 08:54:56.958562 18909 sgd_solver.cpp:105] Iteration 3420, lr = 0.0075 +I0407 08:55:02.283514 18909 solver.cpp:218] Iteration 3432 (2.25354 iter/s, 5.32496s/12 iters), loss = 1.52179 +I0407 08:55:02.283556 18909 solver.cpp:237] Train net output #0: loss = 1.52179 (* 1 = 1.52179 loss) +I0407 08:55:02.283563 18909 sgd_solver.cpp:105] Iteration 3432, lr = 0.0075 +I0407 08:55:05.038265 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:07.566911 18909 solver.cpp:218] Iteration 3444 (2.27129 iter/s, 5.28334s/12 iters), loss = 1.88339 +I0407 08:55:07.566956 18909 solver.cpp:237] Train net output #0: loss = 1.88339 (* 1 = 1.88339 loss) +I0407 08:55:07.566964 18909 sgd_solver.cpp:105] Iteration 3444, lr = 0.0075 +I0407 08:55:12.934366 18909 solver.cpp:218] Iteration 3456 (2.23572 iter/s, 5.3674s/12 iters), loss = 1.56278 +I0407 08:55:12.934409 18909 solver.cpp:237] Train net output #0: loss = 1.56278 (* 1 = 1.56278 loss) +I0407 08:55:12.934417 18909 sgd_solver.cpp:105] Iteration 3456, lr = 0.0075 +I0407 08:55:17.637266 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0407 08:55:20.656450 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0407 08:55:22.960994 18909 solver.cpp:330] Iteration 3468, Testing net (#0) +I0407 08:55:22.961012 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:55:23.384145 18909 blocking_queue.cpp:49] Waiting for data +I0407 08:55:25.912369 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:27.263276 18909 solver.cpp:397] Test net output #0: accuracy = 0.329044 +I0407 08:55:27.263384 18909 solver.cpp:397] Test net output #1: loss = 3.03669 (* 1 = 3.03669 loss) +I0407 08:55:27.394168 18909 solver.cpp:218] Iteration 3468 (0.829889 iter/s, 14.4598s/12 iters), loss = 1.7317 +I0407 08:55:27.394237 18909 solver.cpp:237] Train net output #0: loss = 1.7317 (* 1 = 1.7317 loss) +I0407 08:55:27.394246 18909 sgd_solver.cpp:105] Iteration 3468, lr = 0.0075 +I0407 08:55:31.638842 18909 solver.cpp:218] Iteration 3480 (2.82712 iter/s, 4.2446s/12 iters), loss = 1.43127 +I0407 08:55:31.638878 18909 solver.cpp:237] Train net output #0: loss = 1.43127 (* 1 = 1.43127 loss) +I0407 08:55:31.638885 18909 sgd_solver.cpp:105] Iteration 3480, lr = 0.0075 +I0407 08:55:36.849762 18909 solver.cpp:218] Iteration 3492 (2.30288 iter/s, 5.21087s/12 iters), loss = 1.33127 +I0407 08:55:36.849803 18909 solver.cpp:237] Train net output #0: loss = 1.33127 (* 1 = 1.33127 loss) +I0407 08:55:36.849809 18909 sgd_solver.cpp:105] Iteration 3492, lr = 0.0075 +I0407 08:55:42.105931 18909 solver.cpp:218] Iteration 3504 (2.28306 iter/s, 5.25611s/12 iters), loss = 1.5337 +I0407 08:55:42.105974 18909 solver.cpp:237] Train net output #0: loss = 1.5337 (* 1 = 1.5337 loss) +I0407 08:55:42.105981 18909 sgd_solver.cpp:105] Iteration 3504, lr = 0.0075 +I0407 08:55:47.293396 18909 solver.cpp:218] Iteration 3516 (2.31329 iter/s, 5.18741s/12 iters), loss = 1.17514 +I0407 08:55:47.293439 18909 solver.cpp:237] Train net output #0: loss = 1.17514 (* 1 = 1.17514 loss) +I0407 08:55:47.293447 18909 sgd_solver.cpp:105] Iteration 3516, lr = 0.0075 +I0407 08:55:52.425321 18909 solver.cpp:218] Iteration 3528 (2.33833 iter/s, 5.13187s/12 iters), loss = 1.24258 +I0407 08:55:52.425364 18909 solver.cpp:237] Train net output #0: loss = 1.24258 (* 1 = 1.24258 loss) +I0407 08:55:52.425370 18909 sgd_solver.cpp:105] Iteration 3528, lr = 0.0075 +I0407 08:55:57.435446 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:55:57.728919 18909 solver.cpp:218] Iteration 3540 (2.26264 iter/s, 5.30355s/12 iters), loss = 1.19826 +I0407 08:55:57.728950 18909 solver.cpp:237] Train net output #0: loss = 1.19826 (* 1 = 1.19826 loss) +I0407 08:55:57.728955 18909 sgd_solver.cpp:105] Iteration 3540, lr = 0.0075 +I0407 08:56:03.028204 18909 solver.cpp:218] Iteration 3552 (2.26447 iter/s, 5.29924s/12 iters), loss = 1.42551 +I0407 08:56:03.028242 18909 solver.cpp:237] Train net output #0: loss = 1.42551 (* 1 = 1.42551 loss) +I0407 08:56:03.028249 18909 sgd_solver.cpp:105] Iteration 3552, lr = 0.0075 +I0407 08:56:08.055550 18909 solver.cpp:218] Iteration 3564 (2.38697 iter/s, 5.02729s/12 iters), loss = 1.35197 +I0407 08:56:08.055596 18909 solver.cpp:237] Train net output #0: loss = 1.35197 (* 1 = 1.35197 loss) +I0407 08:56:08.055604 18909 sgd_solver.cpp:105] Iteration 3564, lr = 0.0075 +I0407 08:56:10.402330 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0407 08:56:13.377952 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0407 08:56:15.709666 18909 solver.cpp:330] Iteration 3570, Testing net (#0) +I0407 08:56:15.709690 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:56:18.669243 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:20.085443 18909 solver.cpp:397] Test net output #0: accuracy = 0.340074 +I0407 08:56:20.085479 18909 solver.cpp:397] Test net output #1: loss = 3.03079 (* 1 = 3.03079 loss) +I0407 08:56:22.074489 18909 solver.cpp:218] Iteration 3576 (0.855988 iter/s, 14.0189s/12 iters), loss = 1.6089 +I0407 08:56:22.074543 18909 solver.cpp:237] Train net output #0: loss = 1.6089 (* 1 = 1.6089 loss) +I0407 08:56:22.074553 18909 sgd_solver.cpp:105] Iteration 3576, lr = 0.0075 +I0407 08:56:27.113951 18909 solver.cpp:218] Iteration 3588 (2.38124 iter/s, 5.03939s/12 iters), loss = 1.18872 +I0407 08:56:27.114001 18909 solver.cpp:237] Train net output #0: loss = 1.18872 (* 1 = 1.18872 loss) +I0407 08:56:27.114009 18909 sgd_solver.cpp:105] Iteration 3588, lr = 0.0075 +I0407 08:56:32.371522 18909 solver.cpp:218] Iteration 3600 (2.28245 iter/s, 5.25751s/12 iters), loss = 1.07532 +I0407 08:56:32.371630 18909 solver.cpp:237] Train net output #0: loss = 1.07532 (* 1 = 1.07532 loss) +I0407 08:56:32.371639 18909 sgd_solver.cpp:105] Iteration 3600, lr = 0.0075 +I0407 08:56:37.613302 18909 solver.cpp:218] Iteration 3612 (2.28935 iter/s, 5.24166s/12 iters), loss = 1.31659 +I0407 08:56:37.613349 18909 solver.cpp:237] Train net output #0: loss = 1.31659 (* 1 = 1.31659 loss) +I0407 08:56:37.613356 18909 sgd_solver.cpp:105] Iteration 3612, lr = 0.0075 +I0407 08:56:42.760286 18909 solver.cpp:218] Iteration 3624 (2.33149 iter/s, 5.14693s/12 iters), loss = 0.993782 +I0407 08:56:42.760322 18909 solver.cpp:237] Train net output #0: loss = 0.993782 (* 1 = 0.993782 loss) +I0407 08:56:42.760329 18909 sgd_solver.cpp:105] Iteration 3624, lr = 0.0075 +I0407 08:56:48.089210 18909 solver.cpp:218] Iteration 3636 (2.25188 iter/s, 5.32887s/12 iters), loss = 1.38346 +I0407 08:56:48.089251 18909 solver.cpp:237] Train net output #0: loss = 1.38346 (* 1 = 1.38346 loss) +I0407 08:56:48.089258 18909 sgd_solver.cpp:105] Iteration 3636, lr = 0.0075 +I0407 08:56:49.993260 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:56:53.365195 18909 solver.cpp:218] Iteration 3648 (2.27448 iter/s, 5.27593s/12 iters), loss = 0.96667 +I0407 08:56:53.365238 18909 solver.cpp:237] Train net output #0: loss = 0.96667 (* 1 = 0.96667 loss) +I0407 08:56:53.365247 18909 sgd_solver.cpp:105] Iteration 3648, lr = 0.0075 +I0407 08:56:58.668052 18909 solver.cpp:218] Iteration 3660 (2.26295 iter/s, 5.3028s/12 iters), loss = 1.49067 +I0407 08:56:58.668097 18909 solver.cpp:237] Train net output #0: loss = 1.49067 (* 1 = 1.49067 loss) +I0407 08:56:58.668105 18909 sgd_solver.cpp:105] Iteration 3660, lr = 0.0075 +I0407 08:57:03.386319 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0407 08:57:06.445355 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0407 08:57:08.750068 18909 solver.cpp:330] Iteration 3672, Testing net (#0) +I0407 08:57:08.750090 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:57:11.652298 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:57:13.080188 18909 solver.cpp:397] Test net output #0: accuracy = 0.352328 +I0407 08:57:13.080219 18909 solver.cpp:397] Test net output #1: loss = 2.90975 (* 1 = 2.90975 loss) +I0407 08:57:13.219848 18909 solver.cpp:218] Iteration 3672 (0.824643 iter/s, 14.5517s/12 iters), loss = 1.2141 +I0407 08:57:13.219892 18909 solver.cpp:237] Train net output #0: loss = 1.2141 (* 1 = 1.2141 loss) +I0407 08:57:13.219899 18909 sgd_solver.cpp:105] Iteration 3672, lr = 0.0075 +I0407 08:57:17.433444 18909 solver.cpp:218] Iteration 3684 (2.84796 iter/s, 4.21354s/12 iters), loss = 1.12262 +I0407 08:57:17.433485 18909 solver.cpp:237] Train net output #0: loss = 1.12262 (* 1 = 1.12262 loss) +I0407 08:57:17.433492 18909 sgd_solver.cpp:105] Iteration 3684, lr = 0.0075 +I0407 08:57:22.338029 18909 solver.cpp:218] Iteration 3696 (2.44672 iter/s, 4.90453s/12 iters), loss = 1.19671 +I0407 08:57:22.338073 18909 solver.cpp:237] Train net output #0: loss = 1.19671 (* 1 = 1.19671 loss) +I0407 08:57:22.338078 18909 sgd_solver.cpp:105] Iteration 3696, lr = 0.0075 +I0407 08:57:27.643903 18909 solver.cpp:218] Iteration 3708 (2.26167 iter/s, 5.30582s/12 iters), loss = 1.1063 +I0407 08:57:27.643947 18909 solver.cpp:237] Train net output #0: loss = 1.1063 (* 1 = 1.1063 loss) +I0407 08:57:27.643955 18909 sgd_solver.cpp:105] Iteration 3708, lr = 0.0075 +I0407 08:57:32.999987 18909 solver.cpp:218] Iteration 3720 (2.24047 iter/s, 5.35603s/12 iters), loss = 1.12608 +I0407 08:57:33.000028 18909 solver.cpp:237] Train net output #0: loss = 1.12608 (* 1 = 1.12608 loss) +I0407 08:57:33.000034 18909 sgd_solver.cpp:105] Iteration 3720, lr = 0.0075 +I0407 08:57:38.376013 18909 solver.cpp:218] Iteration 3732 (2.23215 iter/s, 5.37597s/12 iters), loss = 0.964908 +I0407 08:57:38.376118 18909 solver.cpp:237] Train net output #0: loss = 0.964908 (* 1 = 0.964908 loss) +I0407 08:57:38.376127 18909 sgd_solver.cpp:105] Iteration 3732, lr = 0.0075 +I0407 08:57:42.618598 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:57:43.734673 18909 solver.cpp:218] Iteration 3744 (2.23942 iter/s, 5.35854s/12 iters), loss = 1.30128 +I0407 08:57:43.734720 18909 solver.cpp:237] Train net output #0: loss = 1.30128 (* 1 = 1.30128 loss) +I0407 08:57:43.734728 18909 sgd_solver.cpp:105] Iteration 3744, lr = 0.0075 +I0407 08:57:48.933629 18909 solver.cpp:218] Iteration 3756 (2.30818 iter/s, 5.19889s/12 iters), loss = 1.0275 +I0407 08:57:48.933686 18909 solver.cpp:237] Train net output #0: loss = 1.0275 (* 1 = 1.0275 loss) +I0407 08:57:48.933696 18909 sgd_solver.cpp:105] Iteration 3756, lr = 0.0075 +I0407 08:57:54.054332 18909 solver.cpp:218] Iteration 3768 (2.34346 iter/s, 5.12064s/12 iters), loss = 1.4046 +I0407 08:57:54.054374 18909 solver.cpp:237] Train net output #0: loss = 1.4046 (* 1 = 1.4046 loss) +I0407 08:57:54.054381 18909 sgd_solver.cpp:105] Iteration 3768, lr = 0.0075 +I0407 08:57:56.121235 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0407 08:57:59.226228 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0407 08:58:01.541841 18909 solver.cpp:330] Iteration 3774, Testing net (#0) +I0407 08:58:01.541864 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:58:04.436339 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:05.910517 18909 solver.cpp:397] Test net output #0: accuracy = 0.359069 +I0407 08:58:05.910554 18909 solver.cpp:397] Test net output #1: loss = 2.96636 (* 1 = 2.96636 loss) +I0407 08:58:07.736847 18909 solver.cpp:218] Iteration 3780 (0.877035 iter/s, 13.6825s/12 iters), loss = 1.15302 +I0407 08:58:07.736912 18909 solver.cpp:237] Train net output #0: loss = 1.15302 (* 1 = 1.15302 loss) +I0407 08:58:07.736922 18909 sgd_solver.cpp:105] Iteration 3780, lr = 0.0075 +I0407 08:58:12.634629 18909 solver.cpp:218] Iteration 3792 (2.45013 iter/s, 4.8977s/12 iters), loss = 1.0254 +I0407 08:58:12.634774 18909 solver.cpp:237] Train net output #0: loss = 1.0254 (* 1 = 1.0254 loss) +I0407 08:58:12.634783 18909 sgd_solver.cpp:105] Iteration 3792, lr = 0.0075 +I0407 08:58:17.614732 18909 solver.cpp:218] Iteration 3804 (2.40966 iter/s, 4.97995s/12 iters), loss = 1.08293 +I0407 08:58:17.614779 18909 solver.cpp:237] Train net output #0: loss = 1.08293 (* 1 = 1.08293 loss) +I0407 08:58:17.614789 18909 sgd_solver.cpp:105] Iteration 3804, lr = 0.0075 +I0407 08:58:22.756608 18909 solver.cpp:218] Iteration 3816 (2.3338 iter/s, 5.14182s/12 iters), loss = 1.08485 +I0407 08:58:22.756647 18909 solver.cpp:237] Train net output #0: loss = 1.08485 (* 1 = 1.08485 loss) +I0407 08:58:22.756654 18909 sgd_solver.cpp:105] Iteration 3816, lr = 0.0075 +I0407 08:58:27.727666 18909 solver.cpp:218] Iteration 3828 (2.414 iter/s, 4.97101s/12 iters), loss = 0.873985 +I0407 08:58:27.727725 18909 solver.cpp:237] Train net output #0: loss = 0.873985 (* 1 = 0.873985 loss) +I0407 08:58:27.727736 18909 sgd_solver.cpp:105] Iteration 3828, lr = 0.0075 +I0407 08:58:32.994033 18909 solver.cpp:218] Iteration 3840 (2.27864 iter/s, 5.2663s/12 iters), loss = 0.944611 +I0407 08:58:32.994074 18909 solver.cpp:237] Train net output #0: loss = 0.944611 (* 1 = 0.944611 loss) +I0407 08:58:32.994081 18909 sgd_solver.cpp:105] Iteration 3840, lr = 0.0075 +I0407 08:58:34.063532 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:38.137094 18909 solver.cpp:218] Iteration 3852 (2.33327 iter/s, 5.14301s/12 iters), loss = 0.947152 +I0407 08:58:38.137138 18909 solver.cpp:237] Train net output #0: loss = 0.947152 (* 1 = 0.947152 loss) +I0407 08:58:38.137145 18909 sgd_solver.cpp:105] Iteration 3852, lr = 0.0075 +I0407 08:58:43.448843 18909 solver.cpp:218] Iteration 3864 (2.25917 iter/s, 5.31169s/12 iters), loss = 1.16657 +I0407 08:58:43.448971 18909 solver.cpp:237] Train net output #0: loss = 1.16657 (* 1 = 1.16657 loss) +I0407 08:58:43.448982 18909 sgd_solver.cpp:105] Iteration 3864, lr = 0.0075 +I0407 08:58:47.871356 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0407 08:58:52.631271 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0407 08:58:54.949409 18909 solver.cpp:330] Iteration 3876, Testing net (#0) +I0407 08:58:54.949429 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:58:57.733754 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:58:59.242161 18909 solver.cpp:397] Test net output #0: accuracy = 0.364583 +I0407 08:58:59.242195 18909 solver.cpp:397] Test net output #1: loss = 2.97277 (* 1 = 2.97277 loss) +I0407 08:58:59.383061 18909 solver.cpp:218] Iteration 3876 (0.753102 iter/s, 15.9341s/12 iters), loss = 1.24788 +I0407 08:58:59.384625 18909 solver.cpp:237] Train net output #0: loss = 1.24788 (* 1 = 1.24788 loss) +I0407 08:58:59.384639 18909 sgd_solver.cpp:105] Iteration 3876, lr = 0.0075 +I0407 08:59:03.717058 18909 solver.cpp:218] Iteration 3888 (2.76981 iter/s, 4.33243s/12 iters), loss = 1.05002 +I0407 08:59:03.717108 18909 solver.cpp:237] Train net output #0: loss = 1.05002 (* 1 = 1.05002 loss) +I0407 08:59:03.717118 18909 sgd_solver.cpp:105] Iteration 3888, lr = 0.0075 +I0407 08:59:08.937734 18909 solver.cpp:218] Iteration 3900 (2.29858 iter/s, 5.22062s/12 iters), loss = 1.02323 +I0407 08:59:08.937780 18909 solver.cpp:237] Train net output #0: loss = 1.02323 (* 1 = 1.02323 loss) +I0407 08:59:08.937788 18909 sgd_solver.cpp:105] Iteration 3900, lr = 0.0075 +I0407 08:59:14.026305 18909 solver.cpp:218] Iteration 3912 (2.35825 iter/s, 5.08852s/12 iters), loss = 0.905362 +I0407 08:59:14.026446 18909 solver.cpp:237] Train net output #0: loss = 0.905362 (* 1 = 0.905362 loss) +I0407 08:59:14.026454 18909 sgd_solver.cpp:105] Iteration 3912, lr = 0.0075 +I0407 08:59:19.217384 18909 solver.cpp:218] Iteration 3924 (2.31173 iter/s, 5.19093s/12 iters), loss = 1.46318 +I0407 08:59:19.217427 18909 solver.cpp:237] Train net output #0: loss = 1.46318 (* 1 = 1.46318 loss) +I0407 08:59:19.217434 18909 sgd_solver.cpp:105] Iteration 3924, lr = 0.0075 +I0407 08:59:24.564013 18909 solver.cpp:218] Iteration 3936 (2.24443 iter/s, 5.34657s/12 iters), loss = 1.03497 +I0407 08:59:24.564054 18909 solver.cpp:237] Train net output #0: loss = 1.03497 (* 1 = 1.03497 loss) +I0407 08:59:24.564060 18909 sgd_solver.cpp:105] Iteration 3936, lr = 0.0075 +I0407 08:59:27.859062 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:59:29.623901 18909 solver.cpp:218] Iteration 3948 (2.37162 iter/s, 5.05983s/12 iters), loss = 1.12972 +I0407 08:59:29.623960 18909 solver.cpp:237] Train net output #0: loss = 1.12972 (* 1 = 1.12972 loss) +I0407 08:59:29.623970 18909 sgd_solver.cpp:105] Iteration 3948, lr = 0.0075 +I0407 08:59:34.577888 18909 solver.cpp:218] Iteration 3960 (2.42232 iter/s, 4.95392s/12 iters), loss = 1.03734 +I0407 08:59:34.577929 18909 solver.cpp:237] Train net output #0: loss = 1.03734 (* 1 = 1.03734 loss) +I0407 08:59:34.577936 18909 sgd_solver.cpp:105] Iteration 3960, lr = 0.0075 +I0407 08:59:39.660624 18909 solver.cpp:218] Iteration 3972 (2.36096 iter/s, 5.08269s/12 iters), loss = 0.938465 +I0407 08:59:39.660665 18909 solver.cpp:237] Train net output #0: loss = 0.938465 (* 1 = 0.938465 loss) +I0407 08:59:39.660671 18909 sgd_solver.cpp:105] Iteration 3972, lr = 0.0075 +I0407 08:59:41.775164 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0407 08:59:46.242806 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0407 08:59:49.215728 18909 solver.cpp:330] Iteration 3978, Testing net (#0) +I0407 08:59:49.215747 18909 net.cpp:676] Ignoring source layer train-data +I0407 08:59:52.086280 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 08:59:53.625763 18909 solver.cpp:397] Test net output #0: accuracy = 0.340074 +I0407 08:59:53.625798 18909 solver.cpp:397] Test net output #1: loss = 3.17033 (* 1 = 3.17033 loss) +I0407 08:59:55.376561 18909 solver.cpp:218] Iteration 3984 (0.763558 iter/s, 15.7159s/12 iters), loss = 0.937658 +I0407 08:59:55.376603 18909 solver.cpp:237] Train net output #0: loss = 0.937658 (* 1 = 0.937658 loss) +I0407 08:59:55.376610 18909 sgd_solver.cpp:105] Iteration 3984, lr = 0.0075 +I0407 09:00:00.519299 18909 solver.cpp:218] Iteration 3996 (2.33341 iter/s, 5.14268s/12 iters), loss = 0.983468 +I0407 09:00:00.519345 18909 solver.cpp:237] Train net output #0: loss = 0.983468 (* 1 = 0.983468 loss) +I0407 09:00:00.519352 18909 sgd_solver.cpp:105] Iteration 3996, lr = 0.0075 +I0407 09:00:05.520803 18909 solver.cpp:218] Iteration 4008 (2.39931 iter/s, 5.00145s/12 iters), loss = 0.990386 +I0407 09:00:05.520838 18909 solver.cpp:237] Train net output #0: loss = 0.990386 (* 1 = 0.990386 loss) +I0407 09:00:05.520844 18909 sgd_solver.cpp:105] Iteration 4008, lr = 0.0075 +I0407 09:00:10.764935 18909 solver.cpp:218] Iteration 4020 (2.28829 iter/s, 5.24409s/12 iters), loss = 1.1304 +I0407 09:00:10.764971 18909 solver.cpp:237] Train net output #0: loss = 1.1304 (* 1 = 1.1304 loss) +I0407 09:00:10.764978 18909 sgd_solver.cpp:105] Iteration 4020, lr = 0.0075 +I0407 09:00:16.023064 18909 solver.cpp:218] Iteration 4032 (2.2822 iter/s, 5.25808s/12 iters), loss = 1.03331 +I0407 09:00:16.023128 18909 solver.cpp:237] Train net output #0: loss = 1.03331 (* 1 = 1.03331 loss) +I0407 09:00:16.023140 18909 sgd_solver.cpp:105] Iteration 4032, lr = 0.0075 +I0407 09:00:21.161548 18909 solver.cpp:218] Iteration 4044 (2.33535 iter/s, 5.13842s/12 iters), loss = 1.27142 +I0407 09:00:21.161653 18909 solver.cpp:237] Train net output #0: loss = 1.27142 (* 1 = 1.27142 loss) +I0407 09:00:21.161659 18909 sgd_solver.cpp:105] Iteration 4044, lr = 0.0075 +I0407 09:00:21.683612 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:26.471684 18909 solver.cpp:218] Iteration 4056 (2.25988 iter/s, 5.31002s/12 iters), loss = 1.17647 +I0407 09:00:26.471721 18909 solver.cpp:237] Train net output #0: loss = 1.17647 (* 1 = 1.17647 loss) +I0407 09:00:26.471729 18909 sgd_solver.cpp:105] Iteration 4056, lr = 0.0075 +I0407 09:00:31.878566 18909 solver.cpp:218] Iteration 4068 (2.21941 iter/s, 5.40683s/12 iters), loss = 1.01778 +I0407 09:00:31.878603 18909 solver.cpp:237] Train net output #0: loss = 1.01778 (* 1 = 1.01778 loss) +I0407 09:00:31.878610 18909 sgd_solver.cpp:105] Iteration 4068, lr = 0.0075 +I0407 09:00:36.611243 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0407 09:00:41.433400 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0407 09:00:46.171864 18909 solver.cpp:330] Iteration 4080, Testing net (#0) +I0407 09:00:46.171883 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:00:48.923456 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:00:50.582633 18909 solver.cpp:397] Test net output #0: accuracy = 0.349877 +I0407 09:00:50.582667 18909 solver.cpp:397] Test net output #1: loss = 3.0175 (* 1 = 3.0175 loss) +I0407 09:00:50.717730 18909 solver.cpp:218] Iteration 4080 (0.636972 iter/s, 18.8391s/12 iters), loss = 1.30267 +I0407 09:00:50.717773 18909 solver.cpp:237] Train net output #0: loss = 1.30267 (* 1 = 1.30267 loss) +I0407 09:00:50.717780 18909 sgd_solver.cpp:105] Iteration 4080, lr = 0.0075 +I0407 09:00:55.055447 18909 solver.cpp:218] Iteration 4092 (2.76647 iter/s, 4.33766s/12 iters), loss = 0.664144 +I0407 09:00:55.055583 18909 solver.cpp:237] Train net output #0: loss = 0.664144 (* 1 = 0.664144 loss) +I0407 09:00:55.055593 18909 sgd_solver.cpp:105] Iteration 4092, lr = 0.0075 +I0407 09:01:00.172415 18909 solver.cpp:218] Iteration 4104 (2.34521 iter/s, 5.11682s/12 iters), loss = 1.15508 +I0407 09:01:00.172462 18909 solver.cpp:237] Train net output #0: loss = 1.15508 (* 1 = 1.15508 loss) +I0407 09:01:00.172470 18909 sgd_solver.cpp:105] Iteration 4104, lr = 0.0075 +I0407 09:01:05.292665 18909 solver.cpp:218] Iteration 4116 (2.34366 iter/s, 5.1202s/12 iters), loss = 1.07515 +I0407 09:01:05.292695 18909 solver.cpp:237] Train net output #0: loss = 1.07515 (* 1 = 1.07515 loss) +I0407 09:01:05.292702 18909 sgd_solver.cpp:105] Iteration 4116, lr = 0.0075 +I0407 09:01:10.459903 18909 solver.cpp:218] Iteration 4128 (2.32234 iter/s, 5.16719s/12 iters), loss = 1.0703 +I0407 09:01:10.459942 18909 solver.cpp:237] Train net output #0: loss = 1.0703 (* 1 = 1.0703 loss) +I0407 09:01:10.459949 18909 sgd_solver.cpp:105] Iteration 4128, lr = 0.0075 +I0407 09:01:15.654232 18909 solver.cpp:218] Iteration 4140 (2.31023 iter/s, 5.19428s/12 iters), loss = 1.28691 +I0407 09:01:15.654273 18909 solver.cpp:237] Train net output #0: loss = 1.28691 (* 1 = 1.28691 loss) +I0407 09:01:15.654279 18909 sgd_solver.cpp:105] Iteration 4140, lr = 0.0075 +I0407 09:01:18.437749 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:01:20.781065 18909 solver.cpp:218] Iteration 4152 (2.34065 iter/s, 5.12678s/12 iters), loss = 0.940004 +I0407 09:01:20.781111 18909 solver.cpp:237] Train net output #0: loss = 0.940004 (* 1 = 0.940004 loss) +I0407 09:01:20.781118 18909 sgd_solver.cpp:105] Iteration 4152, lr = 0.0075 +I0407 09:01:22.481479 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:01:26.188387 18909 solver.cpp:218] Iteration 4164 (2.21924 iter/s, 5.40727s/12 iters), loss = 1.04913 +I0407 09:01:26.188535 18909 solver.cpp:237] Train net output #0: loss = 1.04913 (* 1 = 1.04913 loss) +I0407 09:01:26.188544 18909 sgd_solver.cpp:105] Iteration 4164, lr = 0.0075 +I0407 09:01:31.303887 18909 solver.cpp:218] Iteration 4176 (2.34588 iter/s, 5.11534s/12 iters), loss = 1.03425 +I0407 09:01:31.303928 18909 solver.cpp:237] Train net output #0: loss = 1.03425 (* 1 = 1.03425 loss) +I0407 09:01:31.303936 18909 sgd_solver.cpp:105] Iteration 4176, lr = 0.0075 +I0407 09:01:33.366183 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0407 09:01:37.801595 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0407 09:01:42.785327 18909 solver.cpp:330] Iteration 4182, Testing net (#0) +I0407 09:01:42.785358 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:01:45.492543 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:01:47.108495 18909 solver.cpp:397] Test net output #0: accuracy = 0.356005 +I0407 09:01:47.108523 18909 solver.cpp:397] Test net output #1: loss = 2.93019 (* 1 = 2.93019 loss) +I0407 09:01:48.896194 18909 solver.cpp:218] Iteration 4188 (0.682118 iter/s, 17.5923s/12 iters), loss = 1.08528 +I0407 09:01:48.896239 18909 solver.cpp:237] Train net output #0: loss = 1.08528 (* 1 = 1.08528 loss) +I0407 09:01:48.896245 18909 sgd_solver.cpp:105] Iteration 4188, lr = 0.0075 +I0407 09:01:54.062582 18909 solver.cpp:218] Iteration 4200 (2.32273 iter/s, 5.16633s/12 iters), loss = 0.871497 +I0407 09:01:54.062619 18909 solver.cpp:237] Train net output #0: loss = 0.871497 (* 1 = 0.871497 loss) +I0407 09:01:54.062625 18909 sgd_solver.cpp:105] Iteration 4200, lr = 0.0075 +I0407 09:01:59.341028 18909 solver.cpp:218] Iteration 4212 (2.27342 iter/s, 5.2784s/12 iters), loss = 1.13575 +I0407 09:01:59.341122 18909 solver.cpp:237] Train net output #0: loss = 1.13575 (* 1 = 1.13575 loss) +I0407 09:01:59.341130 18909 sgd_solver.cpp:105] Iteration 4212, lr = 0.0075 +I0407 09:02:04.754338 18909 solver.cpp:218] Iteration 4224 (2.2168 iter/s, 5.4132s/12 iters), loss = 1.29587 +I0407 09:02:04.754382 18909 solver.cpp:237] Train net output #0: loss = 1.29587 (* 1 = 1.29587 loss) +I0407 09:02:04.754390 18909 sgd_solver.cpp:105] Iteration 4224, lr = 0.0075 +I0407 09:02:09.959323 18909 solver.cpp:218] Iteration 4236 (2.3055 iter/s, 5.20494s/12 iters), loss = 0.853384 +I0407 09:02:09.959357 18909 solver.cpp:237] Train net output #0: loss = 0.853384 (* 1 = 0.853384 loss) +I0407 09:02:09.959363 18909 sgd_solver.cpp:105] Iteration 4236, lr = 0.0075 +I0407 09:02:14.829854 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:02:15.099591 18909 solver.cpp:218] Iteration 4248 (2.33453 iter/s, 5.14022s/12 iters), loss = 0.949922 +I0407 09:02:15.099634 18909 solver.cpp:237] Train net output #0: loss = 0.949922 (* 1 = 0.949922 loss) +I0407 09:02:15.099642 18909 sgd_solver.cpp:105] Iteration 4248, lr = 0.0075 +I0407 09:02:20.349236 18909 solver.cpp:218] Iteration 4260 (2.28589 iter/s, 5.24959s/12 iters), loss = 0.931967 +I0407 09:02:20.349277 18909 solver.cpp:237] Train net output #0: loss = 0.931967 (* 1 = 0.931967 loss) +I0407 09:02:20.349284 18909 sgd_solver.cpp:105] Iteration 4260, lr = 0.0075 +I0407 09:02:25.422926 18909 solver.cpp:218] Iteration 4272 (2.36517 iter/s, 5.07364s/12 iters), loss = 0.683998 +I0407 09:02:25.422967 18909 solver.cpp:237] Train net output #0: loss = 0.683998 (* 1 = 0.683998 loss) +I0407 09:02:25.422974 18909 sgd_solver.cpp:105] Iteration 4272, lr = 0.0075 +I0407 09:02:30.060811 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0407 09:02:33.110190 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0407 09:02:38.232913 18909 solver.cpp:330] Iteration 4284, Testing net (#0) +I0407 09:02:38.232944 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:02:40.873529 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:02:42.519332 18909 solver.cpp:397] Test net output #0: accuracy = 0.357843 +I0407 09:02:42.519362 18909 solver.cpp:397] Test net output #1: loss = 2.98381 (* 1 = 2.98381 loss) +I0407 09:02:42.659924 18909 solver.cpp:218] Iteration 4284 (0.696179 iter/s, 17.237s/12 iters), loss = 1.01486 +I0407 09:02:42.661514 18909 solver.cpp:237] Train net output #0: loss = 1.01486 (* 1 = 1.01486 loss) +I0407 09:02:42.661530 18909 sgd_solver.cpp:105] Iteration 4284, lr = 0.0075 +I0407 09:02:46.855626 18909 solver.cpp:218] Iteration 4296 (2.86115 iter/s, 4.19412s/12 iters), loss = 1.00717 +I0407 09:02:46.855665 18909 solver.cpp:237] Train net output #0: loss = 1.00717 (* 1 = 1.00717 loss) +I0407 09:02:46.855671 18909 sgd_solver.cpp:105] Iteration 4296, lr = 0.0075 +I0407 09:02:51.884608 18909 solver.cpp:218] Iteration 4308 (2.3862 iter/s, 5.02892s/12 iters), loss = 0.869925 +I0407 09:02:51.884660 18909 solver.cpp:237] Train net output #0: loss = 0.869925 (* 1 = 0.869925 loss) +I0407 09:02:51.884670 18909 sgd_solver.cpp:105] Iteration 4308, lr = 0.0075 +I0407 09:02:56.967839 18909 solver.cpp:218] Iteration 4320 (2.36073 iter/s, 5.08317s/12 iters), loss = 0.802411 +I0407 09:02:56.967881 18909 solver.cpp:237] Train net output #0: loss = 0.802411 (* 1 = 0.802411 loss) +I0407 09:02:56.967888 18909 sgd_solver.cpp:105] Iteration 4320, lr = 0.0075 +I0407 09:03:02.207326 18909 solver.cpp:218] Iteration 4332 (2.29032 iter/s, 5.23943s/12 iters), loss = 0.985945 +I0407 09:03:02.207840 18909 solver.cpp:237] Train net output #0: loss = 0.985945 (* 1 = 0.985945 loss) +I0407 09:03:02.207849 18909 sgd_solver.cpp:105] Iteration 4332, lr = 0.0075 +I0407 09:03:07.438159 18909 solver.cpp:218] Iteration 4344 (2.29432 iter/s, 5.23031s/12 iters), loss = 0.879566 +I0407 09:03:07.438199 18909 solver.cpp:237] Train net output #0: loss = 0.879566 (* 1 = 0.879566 loss) +I0407 09:03:07.438206 18909 sgd_solver.cpp:105] Iteration 4344, lr = 0.0075 +I0407 09:03:09.464913 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:03:12.816144 18909 solver.cpp:218] Iteration 4356 (2.23134 iter/s, 5.37793s/12 iters), loss = 0.675248 +I0407 09:03:12.816186 18909 solver.cpp:237] Train net output #0: loss = 0.675248 (* 1 = 0.675248 loss) +I0407 09:03:12.816193 18909 sgd_solver.cpp:105] Iteration 4356, lr = 0.0075 +I0407 09:03:18.129079 18909 solver.cpp:218] Iteration 4368 (2.25866 iter/s, 5.31288s/12 iters), loss = 0.688681 +I0407 09:03:18.129122 18909 solver.cpp:237] Train net output #0: loss = 0.688681 (* 1 = 0.688681 loss) +I0407 09:03:18.129132 18909 sgd_solver.cpp:105] Iteration 4368, lr = 0.0075 +I0407 09:03:23.300576 18909 solver.cpp:218] Iteration 4380 (2.32044 iter/s, 5.17144s/12 iters), loss = 0.74488 +I0407 09:03:23.300616 18909 solver.cpp:237] Train net output #0: loss = 0.74488 (* 1 = 0.74488 loss) +I0407 09:03:23.300622 18909 sgd_solver.cpp:105] Iteration 4380, lr = 0.0075 +I0407 09:03:25.404467 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0407 09:03:28.433748 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0407 09:03:32.973129 18909 solver.cpp:330] Iteration 4386, Testing net (#0) +I0407 09:03:32.973233 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:03:35.590725 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:03:37.287932 18909 solver.cpp:397] Test net output #0: accuracy = 0.356005 +I0407 09:03:37.287958 18909 solver.cpp:397] Test net output #1: loss = 3.06065 (* 1 = 3.06065 loss) +I0407 09:03:39.246153 18909 solver.cpp:218] Iteration 4392 (0.752562 iter/s, 15.9455s/12 iters), loss = 0.986954 +I0407 09:03:39.246194 18909 solver.cpp:237] Train net output #0: loss = 0.986954 (* 1 = 0.986954 loss) +I0407 09:03:39.246202 18909 sgd_solver.cpp:105] Iteration 4392, lr = 0.0075 +I0407 09:03:43.999640 18909 solver.cpp:218] Iteration 4404 (2.52449 iter/s, 4.75343s/12 iters), loss = 0.704119 +I0407 09:03:43.999694 18909 solver.cpp:237] Train net output #0: loss = 0.704119 (* 1 = 0.704119 loss) +I0407 09:03:43.999704 18909 sgd_solver.cpp:105] Iteration 4404, lr = 0.0075 +I0407 09:03:48.909111 18909 solver.cpp:218] Iteration 4416 (2.44429 iter/s, 4.90941s/12 iters), loss = 0.849975 +I0407 09:03:48.909157 18909 solver.cpp:237] Train net output #0: loss = 0.849975 (* 1 = 0.849975 loss) +I0407 09:03:48.909164 18909 sgd_solver.cpp:105] Iteration 4416, lr = 0.0075 +I0407 09:03:53.945780 18909 solver.cpp:218] Iteration 4428 (2.38255 iter/s, 5.03661s/12 iters), loss = 0.888192 +I0407 09:03:53.945823 18909 solver.cpp:237] Train net output #0: loss = 0.888192 (* 1 = 0.888192 loss) +I0407 09:03:53.945830 18909 sgd_solver.cpp:105] Iteration 4428, lr = 0.0075 +I0407 09:03:59.070227 18909 solver.cpp:218] Iteration 4440 (2.34174 iter/s, 5.12439s/12 iters), loss = 0.719877 +I0407 09:03:59.070274 18909 solver.cpp:237] Train net output #0: loss = 0.719877 (* 1 = 0.719877 loss) +I0407 09:03:59.070281 18909 sgd_solver.cpp:105] Iteration 4440, lr = 0.0075 +I0407 09:04:03.349423 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:04.409894 18909 solver.cpp:218] Iteration 4452 (2.24736 iter/s, 5.33961s/12 iters), loss = 0.881093 +I0407 09:04:04.409936 18909 solver.cpp:237] Train net output #0: loss = 0.881093 (* 1 = 0.881093 loss) +I0407 09:04:04.409943 18909 sgd_solver.cpp:105] Iteration 4452, lr = 0.0075 +I0407 09:04:09.496322 18909 solver.cpp:218] Iteration 4464 (2.35925 iter/s, 5.08637s/12 iters), loss = 0.970719 +I0407 09:04:09.496363 18909 solver.cpp:237] Train net output #0: loss = 0.970719 (* 1 = 0.970719 loss) +I0407 09:04:09.496371 18909 sgd_solver.cpp:105] Iteration 4464, lr = 0.0075 +I0407 09:04:14.586140 18909 solver.cpp:218] Iteration 4476 (2.35767 iter/s, 5.08976s/12 iters), loss = 0.757568 +I0407 09:04:14.586202 18909 solver.cpp:237] Train net output #0: loss = 0.757568 (* 1 = 0.757568 loss) +I0407 09:04:14.586213 18909 sgd_solver.cpp:105] Iteration 4476, lr = 0.0075 +I0407 09:04:19.106967 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0407 09:04:22.127082 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0407 09:04:24.443948 18909 solver.cpp:330] Iteration 4488, Testing net (#0) +I0407 09:04:24.443967 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:04:26.966641 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:28.703778 18909 solver.cpp:397] Test net output #0: accuracy = 0.368873 +I0407 09:04:28.703811 18909 solver.cpp:397] Test net output #1: loss = 2.92694 (* 1 = 2.92694 loss) +I0407 09:04:28.838364 18909 solver.cpp:218] Iteration 4488 (0.841978 iter/s, 14.2522s/12 iters), loss = 1.01116 +I0407 09:04:28.838407 18909 solver.cpp:237] Train net output #0: loss = 1.01116 (* 1 = 1.01116 loss) +I0407 09:04:28.838413 18909 sgd_solver.cpp:105] Iteration 4488, lr = 0.0075 +I0407 09:04:33.237087 18909 solver.cpp:218] Iteration 4500 (2.7281 iter/s, 4.39866s/12 iters), loss = 0.892297 +I0407 09:04:33.237138 18909 solver.cpp:237] Train net output #0: loss = 0.892297 (* 1 = 0.892297 loss) +I0407 09:04:33.237147 18909 sgd_solver.cpp:105] Iteration 4500, lr = 0.0075 +I0407 09:04:38.508462 18909 solver.cpp:218] Iteration 4512 (2.27647 iter/s, 5.27132s/12 iters), loss = 0.890731 +I0407 09:04:38.508611 18909 solver.cpp:237] Train net output #0: loss = 0.890731 (* 1 = 0.890731 loss) +I0407 09:04:38.508620 18909 sgd_solver.cpp:105] Iteration 4512, lr = 0.0075 +I0407 09:04:43.793597 18909 solver.cpp:218] Iteration 4524 (2.27059 iter/s, 5.28498s/12 iters), loss = 0.772103 +I0407 09:04:43.793639 18909 solver.cpp:237] Train net output #0: loss = 0.772103 (* 1 = 0.772103 loss) +I0407 09:04:43.793645 18909 sgd_solver.cpp:105] Iteration 4524, lr = 0.0075 +I0407 09:04:49.150319 18909 solver.cpp:218] Iteration 4536 (2.2402 iter/s, 5.35667s/12 iters), loss = 0.776296 +I0407 09:04:49.150367 18909 solver.cpp:237] Train net output #0: loss = 0.776296 (* 1 = 0.776296 loss) +I0407 09:04:49.150375 18909 sgd_solver.cpp:105] Iteration 4536, lr = 0.0075 +I0407 09:04:54.267220 18909 solver.cpp:218] Iteration 4548 (2.3452 iter/s, 5.11684s/12 iters), loss = 0.607005 +I0407 09:04:54.267263 18909 solver.cpp:237] Train net output #0: loss = 0.607005 (* 1 = 0.607005 loss) +I0407 09:04:54.267271 18909 sgd_solver.cpp:105] Iteration 4548, lr = 0.0075 +I0407 09:04:55.523279 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:04:59.463119 18909 solver.cpp:218] Iteration 4560 (2.30954 iter/s, 5.19585s/12 iters), loss = 0.663034 +I0407 09:04:59.463158 18909 solver.cpp:237] Train net output #0: loss = 0.663034 (* 1 = 0.663034 loss) +I0407 09:04:59.463165 18909 sgd_solver.cpp:105] Iteration 4560, lr = 0.0075 +I0407 09:05:04.663460 18909 solver.cpp:218] Iteration 4572 (2.30756 iter/s, 5.20029s/12 iters), loss = 0.747478 +I0407 09:05:04.663507 18909 solver.cpp:237] Train net output #0: loss = 0.747478 (* 1 = 0.747478 loss) +I0407 09:05:04.663516 18909 sgd_solver.cpp:105] Iteration 4572, lr = 0.0075 +I0407 09:05:09.499915 18909 solver.cpp:218] Iteration 4584 (2.48118 iter/s, 4.8364s/12 iters), loss = 0.841175 +I0407 09:05:09.500054 18909 solver.cpp:237] Train net output #0: loss = 0.841175 (* 1 = 0.841175 loss) +I0407 09:05:09.500067 18909 sgd_solver.cpp:105] Iteration 4584, lr = 0.0075 +I0407 09:05:11.491297 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0407 09:05:14.521628 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0407 09:05:16.849433 18909 solver.cpp:330] Iteration 4590, Testing net (#0) +I0407 09:05:16.849462 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:05:19.435261 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:05:21.243232 18909 solver.cpp:397] Test net output #0: accuracy = 0.369485 +I0407 09:05:21.243263 18909 solver.cpp:397] Test net output #1: loss = 2.9457 (* 1 = 2.9457 loss) +I0407 09:05:23.062556 18909 solver.cpp:218] Iteration 4596 (0.884793 iter/s, 13.5625s/12 iters), loss = 0.884498 +I0407 09:05:23.062598 18909 solver.cpp:237] Train net output #0: loss = 0.884498 (* 1 = 0.884498 loss) +I0407 09:05:23.062605 18909 sgd_solver.cpp:105] Iteration 4596, lr = 0.0075 +I0407 09:05:28.295006 18909 solver.cpp:218] Iteration 4608 (2.29341 iter/s, 5.23239s/12 iters), loss = 0.890222 +I0407 09:05:28.295049 18909 solver.cpp:237] Train net output #0: loss = 0.890222 (* 1 = 0.890222 loss) +I0407 09:05:28.295058 18909 sgd_solver.cpp:105] Iteration 4608, lr = 0.0075 +I0407 09:05:33.559672 18909 solver.cpp:218] Iteration 4620 (2.27937 iter/s, 5.26461s/12 iters), loss = 0.78398 +I0407 09:05:33.559711 18909 solver.cpp:237] Train net output #0: loss = 0.78398 (* 1 = 0.78398 loss) +I0407 09:05:33.559718 18909 sgd_solver.cpp:105] Iteration 4620, lr = 0.0075 +I0407 09:05:38.758816 18909 solver.cpp:218] Iteration 4632 (2.3081 iter/s, 5.19909s/12 iters), loss = 0.729499 +I0407 09:05:38.758862 18909 solver.cpp:237] Train net output #0: loss = 0.729499 (* 1 = 0.729499 loss) +I0407 09:05:38.758868 18909 sgd_solver.cpp:105] Iteration 4632, lr = 0.0075 +I0407 09:05:43.996783 18909 solver.cpp:218] Iteration 4644 (2.29099 iter/s, 5.23791s/12 iters), loss = 0.788841 +I0407 09:05:43.996927 18909 solver.cpp:237] Train net output #0: loss = 0.788841 (* 1 = 0.788841 loss) +I0407 09:05:43.996935 18909 sgd_solver.cpp:105] Iteration 4644, lr = 0.0075 +I0407 09:05:47.324028 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:05:48.949359 18909 solver.cpp:218] Iteration 4656 (2.42306 iter/s, 4.95242s/12 iters), loss = 1.34682 +I0407 09:05:48.949402 18909 solver.cpp:237] Train net output #0: loss = 1.34682 (* 1 = 1.34682 loss) +I0407 09:05:48.949409 18909 sgd_solver.cpp:105] Iteration 4656, lr = 0.0075 +I0407 09:05:54.243060 18909 solver.cpp:218] Iteration 4668 (2.26687 iter/s, 5.29365s/12 iters), loss = 0.60337 +I0407 09:05:54.243104 18909 solver.cpp:237] Train net output #0: loss = 0.60337 (* 1 = 0.60337 loss) +I0407 09:05:54.243111 18909 sgd_solver.cpp:105] Iteration 4668, lr = 0.0075 +I0407 09:05:59.406746 18909 solver.cpp:218] Iteration 4680 (2.32395 iter/s, 5.16363s/12 iters), loss = 0.715676 +I0407 09:05:59.406781 18909 solver.cpp:237] Train net output #0: loss = 0.715676 (* 1 = 0.715676 loss) +I0407 09:05:59.406788 18909 sgd_solver.cpp:105] Iteration 4680, lr = 0.0075 +I0407 09:06:04.111312 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0407 09:06:07.157095 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0407 09:06:09.497275 18909 solver.cpp:330] Iteration 4692, Testing net (#0) +I0407 09:06:09.497295 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:06:12.007503 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:13.844782 18909 solver.cpp:397] Test net output #0: accuracy = 0.376226 +I0407 09:06:13.844810 18909 solver.cpp:397] Test net output #1: loss = 2.91796 (* 1 = 2.91796 loss) +I0407 09:06:13.985780 18909 solver.cpp:218] Iteration 4692 (0.823102 iter/s, 14.579s/12 iters), loss = 0.512291 +I0407 09:06:13.985822 18909 solver.cpp:237] Train net output #0: loss = 0.512291 (* 1 = 0.512291 loss) +I0407 09:06:13.985829 18909 sgd_solver.cpp:105] Iteration 4692, lr = 0.0075 +I0407 09:06:18.237632 18909 solver.cpp:218] Iteration 4704 (2.82234 iter/s, 4.25179s/12 iters), loss = 0.771275 +I0407 09:06:18.237743 18909 solver.cpp:237] Train net output #0: loss = 0.771275 (* 1 = 0.771275 loss) +I0407 09:06:18.237752 18909 sgd_solver.cpp:105] Iteration 4704, lr = 0.0075 +I0407 09:06:23.290203 18909 solver.cpp:218] Iteration 4716 (2.37508 iter/s, 5.05246s/12 iters), loss = 0.855019 +I0407 09:06:23.290241 18909 solver.cpp:237] Train net output #0: loss = 0.855019 (* 1 = 0.855019 loss) +I0407 09:06:23.290247 18909 sgd_solver.cpp:105] Iteration 4716, lr = 0.0075 +I0407 09:06:28.344552 18909 solver.cpp:218] Iteration 4728 (2.37422 iter/s, 5.0543s/12 iters), loss = 0.97865 +I0407 09:06:28.344609 18909 solver.cpp:237] Train net output #0: loss = 0.97865 (* 1 = 0.97865 loss) +I0407 09:06:28.344619 18909 sgd_solver.cpp:105] Iteration 4728, lr = 0.0075 +I0407 09:06:33.468806 18909 solver.cpp:218] Iteration 4740 (2.34184 iter/s, 5.12419s/12 iters), loss = 0.710836 +I0407 09:06:33.468863 18909 solver.cpp:237] Train net output #0: loss = 0.710836 (* 1 = 0.710836 loss) +I0407 09:06:33.468873 18909 sgd_solver.cpp:105] Iteration 4740, lr = 0.0075 +I0407 09:06:38.732852 18909 solver.cpp:218] Iteration 4752 (2.27965 iter/s, 5.26397s/12 iters), loss = 0.843112 +I0407 09:06:38.732918 18909 solver.cpp:237] Train net output #0: loss = 0.843112 (* 1 = 0.843112 loss) +I0407 09:06:38.732928 18909 sgd_solver.cpp:105] Iteration 4752, lr = 0.0075 +I0407 09:06:39.279430 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:06:44.007164 18909 solver.cpp:218] Iteration 4764 (2.27521 iter/s, 5.27423s/12 iters), loss = 0.871007 +I0407 09:06:44.007216 18909 solver.cpp:237] Train net output #0: loss = 0.871007 (* 1 = 0.871007 loss) +I0407 09:06:44.007227 18909 sgd_solver.cpp:105] Iteration 4764, lr = 0.0075 +I0407 09:06:49.301934 18909 solver.cpp:218] Iteration 4776 (2.26642 iter/s, 5.2947s/12 iters), loss = 0.798244 +I0407 09:06:49.302052 18909 solver.cpp:237] Train net output #0: loss = 0.798244 (* 1 = 0.798244 loss) +I0407 09:06:49.302062 18909 sgd_solver.cpp:105] Iteration 4776, lr = 0.0075 +I0407 09:06:54.606707 18909 solver.cpp:218] Iteration 4788 (2.26216 iter/s, 5.30465s/12 iters), loss = 0.82707 +I0407 09:06:54.606746 18909 solver.cpp:237] Train net output #0: loss = 0.82707 (* 1 = 0.82707 loss) +I0407 09:06:54.606752 18909 sgd_solver.cpp:105] Iteration 4788, lr = 0.0075 +I0407 09:06:56.655473 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0407 09:06:59.707448 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0407 09:07:02.019870 18909 solver.cpp:330] Iteration 4794, Testing net (#0) +I0407 09:07:02.019888 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:07:04.475586 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:06.336504 18909 solver.cpp:397] Test net output #0: accuracy = 0.400735 +I0407 09:07:06.336545 18909 solver.cpp:397] Test net output #1: loss = 2.89551 (* 1 = 2.89551 loss) +I0407 09:07:08.207720 18909 solver.cpp:218] Iteration 4800 (0.88229 iter/s, 13.601s/12 iters), loss = 0.808756 +I0407 09:07:08.207763 18909 solver.cpp:237] Train net output #0: loss = 0.808756 (* 1 = 0.808756 loss) +I0407 09:07:08.207772 18909 sgd_solver.cpp:105] Iteration 4800, lr = 0.0075 +I0407 09:07:13.435212 18909 solver.cpp:218] Iteration 4812 (2.29558 iter/s, 5.22744s/12 iters), loss = 0.766835 +I0407 09:07:13.435251 18909 solver.cpp:237] Train net output #0: loss = 0.766835 (* 1 = 0.766835 loss) +I0407 09:07:13.435259 18909 sgd_solver.cpp:105] Iteration 4812, lr = 0.0075 +I0407 09:07:18.584300 18909 solver.cpp:218] Iteration 4824 (2.33053 iter/s, 5.14904s/12 iters), loss = 0.731855 +I0407 09:07:18.584340 18909 solver.cpp:237] Train net output #0: loss = 0.731855 (* 1 = 0.731855 loss) +I0407 09:07:18.584347 18909 sgd_solver.cpp:105] Iteration 4824, lr = 0.0075 +I0407 09:07:23.932073 18909 solver.cpp:218] Iteration 4836 (2.24395 iter/s, 5.34772s/12 iters), loss = 0.834285 +I0407 09:07:23.932252 18909 solver.cpp:237] Train net output #0: loss = 0.834285 (* 1 = 0.834285 loss) +I0407 09:07:23.932268 18909 sgd_solver.cpp:105] Iteration 4836, lr = 0.0075 +I0407 09:07:26.167035 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:07:29.401837 18909 solver.cpp:218] Iteration 4848 (2.19395 iter/s, 5.46958s/12 iters), loss = 1.019 +I0407 09:07:29.401880 18909 solver.cpp:237] Train net output #0: loss = 1.019 (* 1 = 1.019 loss) +I0407 09:07:29.401887 18909 sgd_solver.cpp:105] Iteration 4848, lr = 0.0075 +I0407 09:07:32.156874 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:34.399542 18909 solver.cpp:218] Iteration 4860 (2.40113 iter/s, 4.99765s/12 iters), loss = 0.683903 +I0407 09:07:34.399582 18909 solver.cpp:237] Train net output #0: loss = 0.683903 (* 1 = 0.683903 loss) +I0407 09:07:34.399590 18909 sgd_solver.cpp:105] Iteration 4860, lr = 0.0075 +I0407 09:07:39.514894 18909 solver.cpp:218] Iteration 4872 (2.3459 iter/s, 5.1153s/12 iters), loss = 0.688409 +I0407 09:07:39.514940 18909 solver.cpp:237] Train net output #0: loss = 0.688409 (* 1 = 0.688409 loss) +I0407 09:07:39.514947 18909 sgd_solver.cpp:105] Iteration 4872, lr = 0.0075 +I0407 09:07:44.654048 18909 solver.cpp:218] Iteration 4884 (2.33504 iter/s, 5.1391s/12 iters), loss = 0.735153 +I0407 09:07:44.654093 18909 solver.cpp:237] Train net output #0: loss = 0.735153 (* 1 = 0.735153 loss) +I0407 09:07:44.654099 18909 sgd_solver.cpp:105] Iteration 4884, lr = 0.0075 +I0407 09:07:49.325937 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0407 09:07:52.351207 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0407 09:07:54.670504 18909 solver.cpp:330] Iteration 4896, Testing net (#0) +I0407 09:07:54.670624 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:07:57.070116 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:07:58.961844 18909 solver.cpp:397] Test net output #0: accuracy = 0.382966 +I0407 09:07:58.961889 18909 solver.cpp:397] Test net output #1: loss = 2.93271 (* 1 = 2.93271 loss) +I0407 09:07:59.097479 18909 solver.cpp:218] Iteration 4896 (0.83083 iter/s, 14.4434s/12 iters), loss = 0.805658 +I0407 09:07:59.097525 18909 solver.cpp:237] Train net output #0: loss = 0.805658 (* 1 = 0.805658 loss) +I0407 09:07:59.097534 18909 sgd_solver.cpp:105] Iteration 4896, lr = 0.0075 +I0407 09:08:03.439288 18909 solver.cpp:218] Iteration 4908 (2.76386 iter/s, 4.34176s/12 iters), loss = 0.637037 +I0407 09:08:03.439325 18909 solver.cpp:237] Train net output #0: loss = 0.637037 (* 1 = 0.637037 loss) +I0407 09:08:03.439332 18909 sgd_solver.cpp:105] Iteration 4908, lr = 0.0075 +I0407 09:08:08.419438 18909 solver.cpp:218] Iteration 4920 (2.40959 iter/s, 4.9801s/12 iters), loss = 0.747441 +I0407 09:08:08.419484 18909 solver.cpp:237] Train net output #0: loss = 0.747441 (* 1 = 0.747441 loss) +I0407 09:08:08.419492 18909 sgd_solver.cpp:105] Iteration 4920, lr = 0.0075 +I0407 09:08:13.545207 18909 solver.cpp:218] Iteration 4932 (2.34114 iter/s, 5.12571s/12 iters), loss = 0.625203 +I0407 09:08:13.545253 18909 solver.cpp:237] Train net output #0: loss = 0.625203 (* 1 = 0.625203 loss) +I0407 09:08:13.545260 18909 sgd_solver.cpp:105] Iteration 4932, lr = 0.0075 +I0407 09:08:18.846627 18909 solver.cpp:218] Iteration 4944 (2.26357 iter/s, 5.30137s/12 iters), loss = 0.656303 +I0407 09:08:18.846668 18909 solver.cpp:237] Train net output #0: loss = 0.656303 (* 1 = 0.656303 loss) +I0407 09:08:18.846675 18909 sgd_solver.cpp:105] Iteration 4944, lr = 0.0075 +I0407 09:08:23.846832 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:08:24.092769 18909 solver.cpp:218] Iteration 4956 (2.28742 iter/s, 5.24609s/12 iters), loss = 0.902723 +I0407 09:08:24.092813 18909 solver.cpp:237] Train net output #0: loss = 0.902723 (* 1 = 0.902723 loss) +I0407 09:08:24.092820 18909 sgd_solver.cpp:105] Iteration 4956, lr = 0.0075 +I0407 09:08:29.179009 18909 solver.cpp:218] Iteration 4968 (2.35933 iter/s, 5.08618s/12 iters), loss = 0.647595 +I0407 09:08:29.179133 18909 solver.cpp:237] Train net output #0: loss = 0.647595 (* 1 = 0.647595 loss) +I0407 09:08:29.179141 18909 sgd_solver.cpp:105] Iteration 4968, lr = 0.0075 +I0407 09:08:34.267084 18909 solver.cpp:218] Iteration 4980 (2.35852 iter/s, 5.08794s/12 iters), loss = 0.535918 +I0407 09:08:34.267136 18909 solver.cpp:237] Train net output #0: loss = 0.535918 (* 1 = 0.535918 loss) +I0407 09:08:34.267144 18909 sgd_solver.cpp:105] Iteration 4980, lr = 0.0075 +I0407 09:08:39.675374 18909 solver.cpp:218] Iteration 4992 (2.21884 iter/s, 5.40823s/12 iters), loss = 0.880998 +I0407 09:08:39.675415 18909 solver.cpp:237] Train net output #0: loss = 0.880998 (* 1 = 0.880998 loss) +I0407 09:08:39.675423 18909 sgd_solver.cpp:105] Iteration 4992, lr = 0.0075 +I0407 09:08:41.816429 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0407 09:08:44.883062 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0407 09:08:47.208345 18909 solver.cpp:330] Iteration 4998, Testing net (#0) +I0407 09:08:47.208364 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:08:49.570835 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:08:51.660631 18909 solver.cpp:397] Test net output #0: accuracy = 0.376838 +I0407 09:08:51.660681 18909 solver.cpp:397] Test net output #1: loss = 3.02967 (* 1 = 3.02967 loss) +I0407 09:08:53.625285 18909 solver.cpp:218] Iteration 5004 (0.860223 iter/s, 13.9499s/12 iters), loss = 0.634831 +I0407 09:08:53.625329 18909 solver.cpp:237] Train net output #0: loss = 0.634831 (* 1 = 0.634831 loss) +I0407 09:08:53.625336 18909 sgd_solver.cpp:105] Iteration 5004, lr = 0.0075 +I0407 09:08:58.708112 18909 solver.cpp:218] Iteration 5016 (2.36091 iter/s, 5.08278s/12 iters), loss = 0.555428 +I0407 09:08:58.708156 18909 solver.cpp:237] Train net output #0: loss = 0.555428 (* 1 = 0.555428 loss) +I0407 09:08:58.708164 18909 sgd_solver.cpp:105] Iteration 5016, lr = 0.0075 +I0407 09:09:03.860496 18909 solver.cpp:218] Iteration 5028 (2.32904 iter/s, 5.15233s/12 iters), loss = 0.551916 +I0407 09:09:03.860652 18909 solver.cpp:237] Train net output #0: loss = 0.551916 (* 1 = 0.551916 loss) +I0407 09:09:03.860661 18909 sgd_solver.cpp:105] Iteration 5028, lr = 0.0075 +I0407 09:09:09.041569 18909 solver.cpp:218] Iteration 5040 (2.31619 iter/s, 5.18091s/12 iters), loss = 0.669032 +I0407 09:09:09.041610 18909 solver.cpp:237] Train net output #0: loss = 0.669032 (* 1 = 0.669032 loss) +I0407 09:09:09.041618 18909 sgd_solver.cpp:105] Iteration 5040, lr = 0.0075 +I0407 09:09:14.317759 18909 solver.cpp:218] Iteration 5052 (2.27439 iter/s, 5.27614s/12 iters), loss = 0.616898 +I0407 09:09:14.317796 18909 solver.cpp:237] Train net output #0: loss = 0.616898 (* 1 = 0.616898 loss) +I0407 09:09:14.317803 18909 sgd_solver.cpp:105] Iteration 5052, lr = 0.0075 +I0407 09:09:16.254892 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:09:19.466871 18909 solver.cpp:218] Iteration 5064 (2.33052 iter/s, 5.14906s/12 iters), loss = 0.454311 +I0407 09:09:19.466908 18909 solver.cpp:237] Train net output #0: loss = 0.454311 (* 1 = 0.454311 loss) +I0407 09:09:19.466917 18909 sgd_solver.cpp:105] Iteration 5064, lr = 0.0075 +I0407 09:09:24.587448 18909 solver.cpp:218] Iteration 5076 (2.34351 iter/s, 5.12053s/12 iters), loss = 0.556705 +I0407 09:09:24.587491 18909 solver.cpp:237] Train net output #0: loss = 0.556705 (* 1 = 0.556705 loss) +I0407 09:09:24.587498 18909 sgd_solver.cpp:105] Iteration 5076, lr = 0.0075 +I0407 09:09:29.835821 18909 solver.cpp:218] Iteration 5088 (2.28644 iter/s, 5.24832s/12 iters), loss = 0.611163 +I0407 09:09:29.835865 18909 solver.cpp:237] Train net output #0: loss = 0.611163 (* 1 = 0.611163 loss) +I0407 09:09:29.835873 18909 sgd_solver.cpp:105] Iteration 5088, lr = 0.0075 +I0407 09:09:34.562556 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0407 09:09:37.553658 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0407 09:09:39.866351 18909 solver.cpp:330] Iteration 5100, Testing net (#0) +I0407 09:09:39.866379 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:09:42.233687 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:09:44.199792 18909 solver.cpp:397] Test net output #0: accuracy = 0.383578 +I0407 09:09:44.199836 18909 solver.cpp:397] Test net output #1: loss = 3.00782 (* 1 = 3.00782 loss) +I0407 09:09:44.330646 18909 solver.cpp:218] Iteration 5100 (0.827885 iter/s, 14.4948s/12 iters), loss = 0.67757 +I0407 09:09:44.330724 18909 solver.cpp:237] Train net output #0: loss = 0.67757 (* 1 = 0.67757 loss) +I0407 09:09:44.330739 18909 sgd_solver.cpp:105] Iteration 5100, lr = 0.0075 +I0407 09:09:48.419960 18909 solver.cpp:218] Iteration 5112 (2.93454 iter/s, 4.08923s/12 iters), loss = 0.708504 +I0407 09:09:48.420008 18909 solver.cpp:237] Train net output #0: loss = 0.708504 (* 1 = 0.708504 loss) +I0407 09:09:48.420017 18909 sgd_solver.cpp:105] Iteration 5112, lr = 0.0075 +I0407 09:09:53.625309 18909 solver.cpp:218] Iteration 5124 (2.30535 iter/s, 5.20529s/12 iters), loss = 0.774969 +I0407 09:09:53.625351 18909 solver.cpp:237] Train net output #0: loss = 0.774969 (* 1 = 0.774969 loss) +I0407 09:09:53.625358 18909 sgd_solver.cpp:105] Iteration 5124, lr = 0.0075 +I0407 09:09:58.948938 18909 solver.cpp:218] Iteration 5136 (2.25413 iter/s, 5.32357s/12 iters), loss = 0.817518 +I0407 09:09:58.948983 18909 solver.cpp:237] Train net output #0: loss = 0.817518 (* 1 = 0.817518 loss) +I0407 09:09:58.948989 18909 sgd_solver.cpp:105] Iteration 5136, lr = 0.0075 +I0407 09:10:04.053422 18909 solver.cpp:218] Iteration 5148 (2.3509 iter/s, 5.10443s/12 iters), loss = 0.749845 +I0407 09:10:04.053472 18909 solver.cpp:237] Train net output #0: loss = 0.749845 (* 1 = 0.749845 loss) +I0407 09:10:04.053479 18909 sgd_solver.cpp:105] Iteration 5148, lr = 0.0075 +I0407 09:10:08.273522 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:10:09.327509 18909 solver.cpp:218] Iteration 5160 (2.2753 iter/s, 5.27403s/12 iters), loss = 0.58623 +I0407 09:10:09.327553 18909 solver.cpp:237] Train net output #0: loss = 0.58623 (* 1 = 0.58623 loss) +I0407 09:10:09.327559 18909 sgd_solver.cpp:105] Iteration 5160, lr = 0.0075 +I0407 09:10:14.503969 18909 solver.cpp:218] Iteration 5172 (2.31821 iter/s, 5.17641s/12 iters), loss = 0.897655 +I0407 09:10:14.504009 18909 solver.cpp:237] Train net output #0: loss = 0.897655 (* 1 = 0.897655 loss) +I0407 09:10:14.504016 18909 sgd_solver.cpp:105] Iteration 5172, lr = 0.0075 +I0407 09:10:19.562238 18909 solver.cpp:218] Iteration 5184 (2.37238 iter/s, 5.05822s/12 iters), loss = 1.02256 +I0407 09:10:19.562281 18909 solver.cpp:237] Train net output #0: loss = 1.02256 (* 1 = 1.02256 loss) +I0407 09:10:19.562288 18909 sgd_solver.cpp:105] Iteration 5184, lr = 0.0075 +I0407 09:10:24.900012 18909 solver.cpp:218] Iteration 5196 (2.24815 iter/s, 5.33772s/12 iters), loss = 0.63007 +I0407 09:10:24.900050 18909 solver.cpp:237] Train net output #0: loss = 0.63007 (* 1 = 0.63007 loss) +I0407 09:10:24.900056 18909 sgd_solver.cpp:105] Iteration 5196, lr = 0.0075 +I0407 09:10:27.031152 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0407 09:10:30.070214 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0407 09:10:32.375844 18909 solver.cpp:330] Iteration 5202, Testing net (#0) +I0407 09:10:32.375864 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:10:34.724721 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:10:36.753857 18909 solver.cpp:397] Test net output #0: accuracy = 0.384804 +I0407 09:10:36.753893 18909 solver.cpp:397] Test net output #1: loss = 2.93068 (* 1 = 2.93068 loss) +I0407 09:10:38.556918 18909 solver.cpp:218] Iteration 5208 (0.878679 iter/s, 13.6569s/12 iters), loss = 0.554407 +I0407 09:10:38.557056 18909 solver.cpp:237] Train net output #0: loss = 0.554407 (* 1 = 0.554407 loss) +I0407 09:10:38.557066 18909 sgd_solver.cpp:105] Iteration 5208, lr = 0.0075 +I0407 09:10:43.804271 18909 solver.cpp:218] Iteration 5220 (2.28693 iter/s, 5.24721s/12 iters), loss = 0.519366 +I0407 09:10:43.804327 18909 solver.cpp:237] Train net output #0: loss = 0.519366 (* 1 = 0.519366 loss) +I0407 09:10:43.804337 18909 sgd_solver.cpp:105] Iteration 5220, lr = 0.0075 +I0407 09:10:49.134593 18909 solver.cpp:218] Iteration 5232 (2.2513 iter/s, 5.33026s/12 iters), loss = 0.889194 +I0407 09:10:49.134640 18909 solver.cpp:237] Train net output #0: loss = 0.889194 (* 1 = 0.889194 loss) +I0407 09:10:49.134649 18909 sgd_solver.cpp:105] Iteration 5232, lr = 0.0075 +I0407 09:10:54.479604 18909 solver.cpp:218] Iteration 5244 (2.24511 iter/s, 5.34495s/12 iters), loss = 0.71483 +I0407 09:10:54.479658 18909 solver.cpp:237] Train net output #0: loss = 0.71483 (* 1 = 0.71483 loss) +I0407 09:10:54.479668 18909 sgd_solver.cpp:105] Iteration 5244, lr = 0.0075 +I0407 09:10:59.841775 18909 solver.cpp:218] Iteration 5256 (2.23793 iter/s, 5.36211s/12 iters), loss = 0.628869 +I0407 09:10:59.841818 18909 solver.cpp:237] Train net output #0: loss = 0.628869 (* 1 = 0.628869 loss) +I0407 09:10:59.841825 18909 sgd_solver.cpp:105] Iteration 5256, lr = 0.0075 +I0407 09:11:01.309870 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:05.017958 18909 solver.cpp:218] Iteration 5268 (2.31833 iter/s, 5.17613s/12 iters), loss = 0.589184 +I0407 09:11:05.018005 18909 solver.cpp:237] Train net output #0: loss = 0.589184 (* 1 = 0.589184 loss) +I0407 09:11:05.018015 18909 sgd_solver.cpp:105] Iteration 5268, lr = 0.0075 +I0407 09:11:10.042558 18909 solver.cpp:218] Iteration 5280 (2.38828 iter/s, 5.02454s/12 iters), loss = 0.694608 +I0407 09:11:10.042647 18909 solver.cpp:237] Train net output #0: loss = 0.694608 (* 1 = 0.694608 loss) +I0407 09:11:10.042655 18909 sgd_solver.cpp:105] Iteration 5280, lr = 0.0075 +I0407 09:11:15.140708 18909 solver.cpp:218] Iteration 5292 (2.35384 iter/s, 5.09805s/12 iters), loss = 0.663682 +I0407 09:11:15.140753 18909 solver.cpp:237] Train net output #0: loss = 0.663682 (* 1 = 0.663682 loss) +I0407 09:11:15.140760 18909 sgd_solver.cpp:105] Iteration 5292, lr = 0.0075 +I0407 09:11:19.907752 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0407 09:11:22.983572 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0407 09:11:25.291469 18909 solver.cpp:330] Iteration 5304, Testing net (#0) +I0407 09:11:25.291491 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:11:27.508752 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:29.558902 18909 solver.cpp:397] Test net output #0: accuracy = 0.377451 +I0407 09:11:29.558936 18909 solver.cpp:397] Test net output #1: loss = 2.96781 (* 1 = 2.96781 loss) +I0407 09:11:29.694751 18909 solver.cpp:218] Iteration 5304 (0.824516 iter/s, 14.554s/12 iters), loss = 0.574747 +I0407 09:11:29.694797 18909 solver.cpp:237] Train net output #0: loss = 0.574747 (* 1 = 0.574747 loss) +I0407 09:11:29.694805 18909 sgd_solver.cpp:105] Iteration 5304, lr = 0.0075 +I0407 09:11:34.002720 18909 solver.cpp:218] Iteration 5316 (2.78557 iter/s, 4.30791s/12 iters), loss = 0.495699 +I0407 09:11:34.002764 18909 solver.cpp:237] Train net output #0: loss = 0.495699 (* 1 = 0.495699 loss) +I0407 09:11:34.002772 18909 sgd_solver.cpp:105] Iteration 5316, lr = 0.0075 +I0407 09:11:39.221218 18909 solver.cpp:218] Iteration 5328 (2.29954 iter/s, 5.21844s/12 iters), loss = 0.699801 +I0407 09:11:39.221257 18909 solver.cpp:237] Train net output #0: loss = 0.699801 (* 1 = 0.699801 loss) +I0407 09:11:39.221264 18909 sgd_solver.cpp:105] Iteration 5328, lr = 0.0075 +I0407 09:11:44.451462 18909 solver.cpp:218] Iteration 5340 (2.29437 iter/s, 5.23019s/12 iters), loss = 0.602265 +I0407 09:11:44.451663 18909 solver.cpp:237] Train net output #0: loss = 0.602265 (* 1 = 0.602265 loss) +I0407 09:11:44.451673 18909 sgd_solver.cpp:105] Iteration 5340, lr = 0.0075 +I0407 09:11:49.595697 18909 solver.cpp:218] Iteration 5352 (2.3328 iter/s, 5.14403s/12 iters), loss = 0.705663 +I0407 09:11:49.595739 18909 solver.cpp:237] Train net output #0: loss = 0.705663 (* 1 = 0.705663 loss) +I0407 09:11:49.595746 18909 sgd_solver.cpp:105] Iteration 5352, lr = 0.0075 +I0407 09:11:52.885476 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:11:54.559900 18909 solver.cpp:218] Iteration 5364 (2.41733 iter/s, 4.96415s/12 iters), loss = 0.71458 +I0407 09:11:54.559947 18909 solver.cpp:237] Train net output #0: loss = 0.71458 (* 1 = 0.71458 loss) +I0407 09:11:54.559955 18909 sgd_solver.cpp:105] Iteration 5364, lr = 0.0075 +I0407 09:11:59.889370 18909 solver.cpp:218] Iteration 5376 (2.25165 iter/s, 5.32941s/12 iters), loss = 0.6785 +I0407 09:11:59.889417 18909 solver.cpp:237] Train net output #0: loss = 0.6785 (* 1 = 0.6785 loss) +I0407 09:11:59.889423 18909 sgd_solver.cpp:105] Iteration 5376, lr = 0.0075 +I0407 09:12:05.009814 18909 solver.cpp:218] Iteration 5388 (2.34358 iter/s, 5.12038s/12 iters), loss = 0.478132 +I0407 09:12:05.009857 18909 solver.cpp:237] Train net output #0: loss = 0.478132 (* 1 = 0.478132 loss) +I0407 09:12:05.009865 18909 sgd_solver.cpp:105] Iteration 5388, lr = 0.0075 +I0407 09:12:10.097112 18909 solver.cpp:218] Iteration 5400 (2.35884 iter/s, 5.08725s/12 iters), loss = 0.517009 +I0407 09:12:10.097153 18909 solver.cpp:237] Train net output #0: loss = 0.517009 (* 1 = 0.517009 loss) +I0407 09:12:10.097159 18909 sgd_solver.cpp:105] Iteration 5400, lr = 0.0075 +I0407 09:12:12.055056 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0407 09:12:15.100328 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0407 09:12:17.426429 18909 solver.cpp:330] Iteration 5406, Testing net (#0) +I0407 09:12:17.426450 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:12:19.661351 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:21.878228 18909 solver.cpp:397] Test net output #0: accuracy = 0.376838 +I0407 09:12:21.878270 18909 solver.cpp:397] Test net output #1: loss = 3.04641 (* 1 = 3.04641 loss) +I0407 09:12:23.722762 18909 solver.cpp:218] Iteration 5412 (0.880695 iter/s, 13.6256s/12 iters), loss = 0.421359 +I0407 09:12:23.722823 18909 solver.cpp:237] Train net output #0: loss = 0.421359 (* 1 = 0.421359 loss) +I0407 09:12:23.722833 18909 sgd_solver.cpp:105] Iteration 5412, lr = 0.0075 +I0407 09:12:28.812083 18909 solver.cpp:218] Iteration 5424 (2.35791 iter/s, 5.08925s/12 iters), loss = 0.55378 +I0407 09:12:28.812126 18909 solver.cpp:237] Train net output #0: loss = 0.55378 (* 1 = 0.55378 loss) +I0407 09:12:28.812134 18909 sgd_solver.cpp:105] Iteration 5424, lr = 0.0075 +I0407 09:12:33.852993 18909 solver.cpp:218] Iteration 5436 (2.38055 iter/s, 5.04086s/12 iters), loss = 0.696992 +I0407 09:12:33.853029 18909 solver.cpp:237] Train net output #0: loss = 0.696992 (* 1 = 0.696992 loss) +I0407 09:12:33.853035 18909 sgd_solver.cpp:105] Iteration 5436, lr = 0.0075 +I0407 09:12:39.048712 18909 solver.cpp:218] Iteration 5448 (2.30961 iter/s, 5.19567s/12 iters), loss = 0.61326 +I0407 09:12:39.048753 18909 solver.cpp:237] Train net output #0: loss = 0.61326 (* 1 = 0.61326 loss) +I0407 09:12:39.048760 18909 sgd_solver.cpp:105] Iteration 5448, lr = 0.0075 +I0407 09:12:44.244240 18909 solver.cpp:218] Iteration 5460 (2.30971 iter/s, 5.19547s/12 iters), loss = 0.67075 +I0407 09:12:44.244287 18909 solver.cpp:237] Train net output #0: loss = 0.67075 (* 1 = 0.67075 loss) +I0407 09:12:44.244294 18909 sgd_solver.cpp:105] Iteration 5460, lr = 0.0075 +I0407 09:12:44.761328 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:12:49.470439 18909 solver.cpp:218] Iteration 5472 (2.29615 iter/s, 5.22615s/12 iters), loss = 0.688058 +I0407 09:12:49.470564 18909 solver.cpp:237] Train net output #0: loss = 0.688058 (* 1 = 0.688058 loss) +I0407 09:12:49.470572 18909 sgd_solver.cpp:105] Iteration 5472, lr = 0.0075 +I0407 09:12:54.935915 18909 solver.cpp:218] Iteration 5484 (2.19565 iter/s, 5.46535s/12 iters), loss = 0.620179 +I0407 09:12:54.935959 18909 solver.cpp:237] Train net output #0: loss = 0.620179 (* 1 = 0.620179 loss) +I0407 09:12:54.935967 18909 sgd_solver.cpp:105] Iteration 5484, lr = 0.0075 +I0407 09:13:00.193441 18909 solver.cpp:218] Iteration 5496 (2.28247 iter/s, 5.25747s/12 iters), loss = 0.757366 +I0407 09:13:00.193498 18909 solver.cpp:237] Train net output #0: loss = 0.757366 (* 1 = 0.757366 loss) +I0407 09:13:00.193507 18909 sgd_solver.cpp:105] Iteration 5496, lr = 0.0075 +I0407 09:13:05.129420 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0407 09:13:08.095355 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0407 09:13:10.441990 18909 solver.cpp:330] Iteration 5508, Testing net (#0) +I0407 09:13:10.442018 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:13:12.645679 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:13:14.777096 18909 solver.cpp:397] Test net output #0: accuracy = 0.393382 +I0407 09:13:14.777132 18909 solver.cpp:397] Test net output #1: loss = 2.92933 (* 1 = 2.92933 loss) +I0407 09:13:14.912438 18909 solver.cpp:218] Iteration 5508 (0.815276 iter/s, 14.7189s/12 iters), loss = 0.557848 +I0407 09:13:14.912494 18909 solver.cpp:237] Train net output #0: loss = 0.557848 (* 1 = 0.557848 loss) +I0407 09:13:14.912503 18909 sgd_solver.cpp:105] Iteration 5508, lr = 0.0075 +I0407 09:13:19.325345 18909 solver.cpp:218] Iteration 5520 (2.71934 iter/s, 4.41283s/12 iters), loss = 0.511502 +I0407 09:13:19.325403 18909 solver.cpp:237] Train net output #0: loss = 0.511502 (* 1 = 0.511502 loss) +I0407 09:13:19.325414 18909 sgd_solver.cpp:105] Iteration 5520, lr = 0.0075 +I0407 09:13:21.808619 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:13:24.402725 18909 solver.cpp:218] Iteration 5532 (2.36346 iter/s, 5.07731s/12 iters), loss = 0.733274 +I0407 09:13:24.402770 18909 solver.cpp:237] Train net output #0: loss = 0.733274 (* 1 = 0.733274 loss) +I0407 09:13:24.402777 18909 sgd_solver.cpp:105] Iteration 5532, lr = 0.0075 +I0407 09:13:29.519187 18909 solver.cpp:218] Iteration 5544 (2.3454 iter/s, 5.1164s/12 iters), loss = 0.586127 +I0407 09:13:29.519232 18909 solver.cpp:237] Train net output #0: loss = 0.586127 (* 1 = 0.586127 loss) +I0407 09:13:29.519239 18909 sgd_solver.cpp:105] Iteration 5544, lr = 0.0075 +I0407 09:13:34.526218 18909 solver.cpp:218] Iteration 5556 (2.39666 iter/s, 5.00698s/12 iters), loss = 0.83539 +I0407 09:13:34.526260 18909 solver.cpp:237] Train net output #0: loss = 0.83539 (* 1 = 0.83539 loss) +I0407 09:13:34.526268 18909 sgd_solver.cpp:105] Iteration 5556, lr = 0.0075 +I0407 09:13:37.334686 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:13:39.861212 18909 solver.cpp:218] Iteration 5568 (2.24932 iter/s, 5.33494s/12 iters), loss = 0.585889 +I0407 09:13:39.861251 18909 solver.cpp:237] Train net output #0: loss = 0.585889 (* 1 = 0.585889 loss) +I0407 09:13:39.861258 18909 sgd_solver.cpp:105] Iteration 5568, lr = 0.0075 +I0407 09:13:45.107592 18909 solver.cpp:218] Iteration 5580 (2.28731 iter/s, 5.24633s/12 iters), loss = 0.398424 +I0407 09:13:45.107633 18909 solver.cpp:237] Train net output #0: loss = 0.398424 (* 1 = 0.398424 loss) +I0407 09:13:45.107640 18909 sgd_solver.cpp:105] Iteration 5580, lr = 0.0075 +I0407 09:13:50.347739 18909 solver.cpp:218] Iteration 5592 (2.29004 iter/s, 5.24009s/12 iters), loss = 0.68935 +I0407 09:13:50.347780 18909 solver.cpp:237] Train net output #0: loss = 0.68935 (* 1 = 0.68935 loss) +I0407 09:13:50.347787 18909 sgd_solver.cpp:105] Iteration 5592, lr = 0.0075 +I0407 09:13:55.689018 18909 solver.cpp:218] Iteration 5604 (2.24667 iter/s, 5.34123s/12 iters), loss = 0.617857 +I0407 09:13:55.689175 18909 solver.cpp:237] Train net output #0: loss = 0.617857 (* 1 = 0.617857 loss) +I0407 09:13:55.689184 18909 sgd_solver.cpp:105] Iteration 5604, lr = 0.0075 +I0407 09:13:57.854391 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0407 09:14:00.901065 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0407 09:14:03.201722 18909 solver.cpp:330] Iteration 5610, Testing net (#0) +I0407 09:14:03.201740 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:14:05.392529 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:14:07.559535 18909 solver.cpp:397] Test net output #0: accuracy = 0.378064 +I0407 09:14:07.559561 18909 solver.cpp:397] Test net output #1: loss = 3.0789 (* 1 = 3.0789 loss) +I0407 09:14:09.311472 18909 solver.cpp:218] Iteration 5616 (0.880909 iter/s, 13.6223s/12 iters), loss = 0.573074 +I0407 09:14:09.311518 18909 solver.cpp:237] Train net output #0: loss = 0.573074 (* 1 = 0.573074 loss) +I0407 09:14:09.311525 18909 sgd_solver.cpp:105] Iteration 5616, lr = 0.0075 +I0407 09:14:14.606227 18909 solver.cpp:218] Iteration 5628 (2.26642 iter/s, 5.2947s/12 iters), loss = 0.397502 +I0407 09:14:14.606267 18909 solver.cpp:237] Train net output #0: loss = 0.397502 (* 1 = 0.397502 loss) +I0407 09:14:14.606274 18909 sgd_solver.cpp:105] Iteration 5628, lr = 0.0075 +I0407 09:14:19.753165 18909 solver.cpp:218] Iteration 5640 (2.33151 iter/s, 5.14689s/12 iters), loss = 0.677046 +I0407 09:14:19.753253 18909 solver.cpp:237] Train net output #0: loss = 0.677046 (* 1 = 0.677046 loss) +I0407 09:14:19.753262 18909 sgd_solver.cpp:105] Iteration 5640, lr = 0.0075 +I0407 09:14:24.941454 18909 solver.cpp:218] Iteration 5652 (2.31295 iter/s, 5.18819s/12 iters), loss = 0.686481 +I0407 09:14:24.941498 18909 solver.cpp:237] Train net output #0: loss = 0.686481 (* 1 = 0.686481 loss) +I0407 09:14:24.941504 18909 sgd_solver.cpp:105] Iteration 5652, lr = 0.0075 +I0407 09:14:30.003077 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:14:30.217314 18909 solver.cpp:218] Iteration 5664 (2.27453 iter/s, 5.27581s/12 iters), loss = 0.485666 +I0407 09:14:30.217357 18909 solver.cpp:237] Train net output #0: loss = 0.485666 (* 1 = 0.485666 loss) +I0407 09:14:30.217365 18909 sgd_solver.cpp:105] Iteration 5664, lr = 0.0075 +I0407 09:14:35.496120 18909 solver.cpp:218] Iteration 5676 (2.27326 iter/s, 5.27875s/12 iters), loss = 0.661848 +I0407 09:14:35.496167 18909 solver.cpp:237] Train net output #0: loss = 0.661848 (* 1 = 0.661848 loss) +I0407 09:14:35.496177 18909 sgd_solver.cpp:105] Iteration 5676, lr = 0.0075 +I0407 09:14:40.823469 18909 solver.cpp:218] Iteration 5688 (2.25255 iter/s, 5.32729s/12 iters), loss = 0.63738 +I0407 09:14:40.823511 18909 solver.cpp:237] Train net output #0: loss = 0.63738 (* 1 = 0.63738 loss) +I0407 09:14:40.823518 18909 sgd_solver.cpp:105] Iteration 5688, lr = 0.0075 +I0407 09:14:46.081475 18909 solver.cpp:218] Iteration 5700 (2.28226 iter/s, 5.25795s/12 iters), loss = 0.904269 +I0407 09:14:46.081529 18909 solver.cpp:237] Train net output #0: loss = 0.904269 (* 1 = 0.904269 loss) +I0407 09:14:46.081540 18909 sgd_solver.cpp:105] Iteration 5700, lr = 0.0075 +I0407 09:14:50.823405 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0407 09:14:53.846683 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0407 09:14:56.216985 18909 solver.cpp:330] Iteration 5712, Testing net (#0) +I0407 09:14:56.217006 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:14:58.301872 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:00.495174 18909 solver.cpp:397] Test net output #0: accuracy = 0.38848 +I0407 09:15:00.495348 18909 solver.cpp:397] Test net output #1: loss = 3.03556 (* 1 = 3.03556 loss) +I0407 09:15:00.631337 18909 solver.cpp:218] Iteration 5712 (0.824753 iter/s, 14.5498s/12 iters), loss = 0.687978 +I0407 09:15:00.631386 18909 solver.cpp:237] Train net output #0: loss = 0.687978 (* 1 = 0.687978 loss) +I0407 09:15:00.631395 18909 sgd_solver.cpp:105] Iteration 5712, lr = 0.0075 +I0407 09:15:04.918665 18909 solver.cpp:218] Iteration 5724 (2.79899 iter/s, 4.28727s/12 iters), loss = 0.432191 +I0407 09:15:04.918705 18909 solver.cpp:237] Train net output #0: loss = 0.432191 (* 1 = 0.432191 loss) +I0407 09:15:04.918712 18909 sgd_solver.cpp:105] Iteration 5724, lr = 0.0075 +I0407 09:15:10.168732 18909 solver.cpp:218] Iteration 5736 (2.28571 iter/s, 5.25002s/12 iters), loss = 0.418508 +I0407 09:15:10.168774 18909 solver.cpp:237] Train net output #0: loss = 0.418508 (* 1 = 0.418508 loss) +I0407 09:15:10.168781 18909 sgd_solver.cpp:105] Iteration 5736, lr = 0.0075 +I0407 09:15:15.301465 18909 solver.cpp:218] Iteration 5748 (2.33796 iter/s, 5.13267s/12 iters), loss = 0.520263 +I0407 09:15:15.301504 18909 solver.cpp:237] Train net output #0: loss = 0.520263 (* 1 = 0.520263 loss) +I0407 09:15:15.301512 18909 sgd_solver.cpp:105] Iteration 5748, lr = 0.0075 +I0407 09:15:20.241019 18909 solver.cpp:218] Iteration 5760 (2.42939 iter/s, 4.93951s/12 iters), loss = 0.428419 +I0407 09:15:20.241057 18909 solver.cpp:237] Train net output #0: loss = 0.428419 (* 1 = 0.428419 loss) +I0407 09:15:20.241063 18909 sgd_solver.cpp:105] Iteration 5760, lr = 0.0075 +I0407 09:15:22.281038 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:25.556058 18909 solver.cpp:218] Iteration 5772 (2.25776 iter/s, 5.31499s/12 iters), loss = 0.643615 +I0407 09:15:25.556100 18909 solver.cpp:237] Train net output #0: loss = 0.643615 (* 1 = 0.643615 loss) +I0407 09:15:25.556108 18909 sgd_solver.cpp:105] Iteration 5772, lr = 0.0075 +I0407 09:15:30.832808 18909 solver.cpp:218] Iteration 5784 (2.27415 iter/s, 5.2767s/12 iters), loss = 0.67449 +I0407 09:15:30.832903 18909 solver.cpp:237] Train net output #0: loss = 0.67449 (* 1 = 0.67449 loss) +I0407 09:15:30.832911 18909 sgd_solver.cpp:105] Iteration 5784, lr = 0.0075 +I0407 09:15:36.076740 18909 solver.cpp:218] Iteration 5796 (2.28841 iter/s, 5.24383s/12 iters), loss = 0.579372 +I0407 09:15:36.076786 18909 solver.cpp:237] Train net output #0: loss = 0.579372 (* 1 = 0.579372 loss) +I0407 09:15:36.076792 18909 sgd_solver.cpp:105] Iteration 5796, lr = 0.0075 +I0407 09:15:41.243134 18909 solver.cpp:218] Iteration 5808 (2.32273 iter/s, 5.16634s/12 iters), loss = 0.473914 +I0407 09:15:41.243180 18909 solver.cpp:237] Train net output #0: loss = 0.473914 (* 1 = 0.473914 loss) +I0407 09:15:41.243188 18909 sgd_solver.cpp:105] Iteration 5808, lr = 0.0075 +I0407 09:15:43.183692 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0407 09:15:46.255352 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0407 09:15:48.556108 18909 solver.cpp:330] Iteration 5814, Testing net (#0) +I0407 09:15:48.556128 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:15:50.635548 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:15:52.870038 18909 solver.cpp:397] Test net output #0: accuracy = 0.391544 +I0407 09:15:52.870088 18909 solver.cpp:397] Test net output #1: loss = 2.95603 (* 1 = 2.95603 loss) +I0407 09:15:54.711639 18909 solver.cpp:218] Iteration 5820 (0.890971 iter/s, 13.4685s/12 iters), loss = 0.506015 +I0407 09:15:54.711683 18909 solver.cpp:237] Train net output #0: loss = 0.506015 (* 1 = 0.506015 loss) +I0407 09:15:54.711690 18909 sgd_solver.cpp:105] Iteration 5820, lr = 0.0075 +I0407 09:15:59.897452 18909 solver.cpp:218] Iteration 5832 (2.31403 iter/s, 5.18576s/12 iters), loss = 0.511748 +I0407 09:15:59.897491 18909 solver.cpp:237] Train net output #0: loss = 0.511748 (* 1 = 0.511748 loss) +I0407 09:15:59.897498 18909 sgd_solver.cpp:105] Iteration 5832, lr = 0.0075 +I0407 09:16:04.844316 18909 solver.cpp:218] Iteration 5844 (2.42581 iter/s, 4.94681s/12 iters), loss = 0.363746 +I0407 09:16:04.844452 18909 solver.cpp:237] Train net output #0: loss = 0.363746 (* 1 = 0.363746 loss) +I0407 09:16:04.844460 18909 sgd_solver.cpp:105] Iteration 5844, lr = 0.0075 +I0407 09:16:10.146814 18909 solver.cpp:218] Iteration 5856 (2.26314 iter/s, 5.30236s/12 iters), loss = 0.390991 +I0407 09:16:10.146860 18909 solver.cpp:237] Train net output #0: loss = 0.390991 (* 1 = 0.390991 loss) +I0407 09:16:10.146868 18909 sgd_solver.cpp:105] Iteration 5856, lr = 0.0075 +I0407 09:16:14.451309 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:15.307210 18909 solver.cpp:218] Iteration 5868 (2.32543 iter/s, 5.16034s/12 iters), loss = 0.562269 +I0407 09:16:15.307256 18909 solver.cpp:237] Train net output #0: loss = 0.562269 (* 1 = 0.562269 loss) +I0407 09:16:15.307266 18909 sgd_solver.cpp:105] Iteration 5868, lr = 0.0075 +I0407 09:16:20.505381 18909 solver.cpp:218] Iteration 5880 (2.30853 iter/s, 5.19811s/12 iters), loss = 0.731516 +I0407 09:16:20.505440 18909 solver.cpp:237] Train net output #0: loss = 0.731516 (* 1 = 0.731516 loss) +I0407 09:16:20.505450 18909 sgd_solver.cpp:105] Iteration 5880, lr = 0.0075 +I0407 09:16:25.769635 18909 solver.cpp:218] Iteration 5892 (2.27955 iter/s, 5.26419s/12 iters), loss = 0.492674 +I0407 09:16:25.769675 18909 solver.cpp:237] Train net output #0: loss = 0.492674 (* 1 = 0.492674 loss) +I0407 09:16:25.769681 18909 sgd_solver.cpp:105] Iteration 5892, lr = 0.0075 +I0407 09:16:30.974262 18909 solver.cpp:218] Iteration 5904 (2.30567 iter/s, 5.20457s/12 iters), loss = 0.388936 +I0407 09:16:30.974323 18909 solver.cpp:237] Train net output #0: loss = 0.388936 (* 1 = 0.388936 loss) +I0407 09:16:30.974335 18909 sgd_solver.cpp:105] Iteration 5904, lr = 0.0075 +I0407 09:16:35.717682 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0407 09:16:38.745476 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0407 09:16:41.073179 18909 solver.cpp:330] Iteration 5916, Testing net (#0) +I0407 09:16:41.073200 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:16:43.097322 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:16:45.420416 18909 solver.cpp:397] Test net output #0: accuracy = 0.376226 +I0407 09:16:45.420450 18909 solver.cpp:397] Test net output #1: loss = 3.08595 (* 1 = 3.08595 loss) +I0407 09:16:45.561173 18909 solver.cpp:218] Iteration 5916 (0.822658 iter/s, 14.5869s/12 iters), loss = 0.583881 +I0407 09:16:45.561216 18909 solver.cpp:237] Train net output #0: loss = 0.583881 (* 1 = 0.583881 loss) +I0407 09:16:45.561223 18909 sgd_solver.cpp:105] Iteration 5916, lr = 0.0075 +I0407 09:16:49.830442 18909 solver.cpp:218] Iteration 5928 (2.81082 iter/s, 4.26922s/12 iters), loss = 0.817043 +I0407 09:16:49.830482 18909 solver.cpp:237] Train net output #0: loss = 0.817043 (* 1 = 0.817043 loss) +I0407 09:16:49.830488 18909 sgd_solver.cpp:105] Iteration 5928, lr = 0.0075 +I0407 09:16:54.946187 18909 solver.cpp:218] Iteration 5940 (2.34572 iter/s, 5.11569s/12 iters), loss = 0.610843 +I0407 09:16:54.946225 18909 solver.cpp:237] Train net output #0: loss = 0.610843 (* 1 = 0.610843 loss) +I0407 09:16:54.946233 18909 sgd_solver.cpp:105] Iteration 5940, lr = 0.0075 +I0407 09:16:59.806146 18909 solver.cpp:218] Iteration 5952 (2.46918 iter/s, 4.85991s/12 iters), loss = 0.547577 +I0407 09:16:59.806190 18909 solver.cpp:237] Train net output #0: loss = 0.547577 (* 1 = 0.547577 loss) +I0407 09:16:59.806197 18909 sgd_solver.cpp:105] Iteration 5952, lr = 0.0075 +I0407 09:17:05.122444 18909 solver.cpp:218] Iteration 5964 (2.25723 iter/s, 5.31625s/12 iters), loss = 0.683249 +I0407 09:17:05.122483 18909 solver.cpp:237] Train net output #0: loss = 0.683249 (* 1 = 0.683249 loss) +I0407 09:17:05.122490 18909 sgd_solver.cpp:105] Iteration 5964, lr = 0.0075 +I0407 09:17:06.546416 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:10.451325 18909 solver.cpp:218] Iteration 5976 (2.2519 iter/s, 5.32882s/12 iters), loss = 0.538545 +I0407 09:17:10.451368 18909 solver.cpp:237] Train net output #0: loss = 0.538545 (* 1 = 0.538545 loss) +I0407 09:17:10.451376 18909 sgd_solver.cpp:105] Iteration 5976, lr = 0.0075 +I0407 09:17:15.732849 18909 solver.cpp:218] Iteration 5988 (2.2721 iter/s, 5.28146s/12 iters), loss = 0.526032 +I0407 09:17:15.732913 18909 solver.cpp:237] Train net output #0: loss = 0.526032 (* 1 = 0.526032 loss) +I0407 09:17:15.732923 18909 sgd_solver.cpp:105] Iteration 5988, lr = 0.0075 +I0407 09:17:20.829659 18909 solver.cpp:218] Iteration 6000 (2.35445 iter/s, 5.09674s/12 iters), loss = 0.535947 +I0407 09:17:20.829704 18909 solver.cpp:237] Train net output #0: loss = 0.535947 (* 1 = 0.535947 loss) +I0407 09:17:20.829711 18909 sgd_solver.cpp:105] Iteration 6000, lr = 0.0075 +I0407 09:17:26.096010 18909 solver.cpp:218] Iteration 6012 (2.27865 iter/s, 5.26629s/12 iters), loss = 0.589924 +I0407 09:17:26.096055 18909 solver.cpp:237] Train net output #0: loss = 0.589924 (* 1 = 0.589924 loss) +I0407 09:17:26.096065 18909 sgd_solver.cpp:105] Iteration 6012, lr = 0.0075 +I0407 09:17:28.076558 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0407 09:17:31.085695 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0407 09:17:33.425632 18909 solver.cpp:330] Iteration 6018, Testing net (#0) +I0407 09:17:33.425650 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:17:35.490341 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:17:37.860873 18909 solver.cpp:397] Test net output #0: accuracy = 0.384804 +I0407 09:17:37.861014 18909 solver.cpp:397] Test net output #1: loss = 3.0437 (* 1 = 3.0437 loss) +I0407 09:17:39.744738 18909 solver.cpp:218] Iteration 6024 (0.879206 iter/s, 13.6487s/12 iters), loss = 0.285 +I0407 09:17:39.744801 18909 solver.cpp:237] Train net output #0: loss = 0.285 (* 1 = 0.285 loss) +I0407 09:17:39.744810 18909 sgd_solver.cpp:105] Iteration 6024, lr = 0.0075 +I0407 09:17:44.964196 18909 solver.cpp:218] Iteration 6036 (2.29912 iter/s, 5.21939s/12 iters), loss = 0.549387 +I0407 09:17:44.964246 18909 solver.cpp:237] Train net output #0: loss = 0.549387 (* 1 = 0.549387 loss) +I0407 09:17:44.964252 18909 sgd_solver.cpp:105] Iteration 6036, lr = 0.0075 +I0407 09:17:50.203867 18909 solver.cpp:218] Iteration 6048 (2.29025 iter/s, 5.23961s/12 iters), loss = 0.510609 +I0407 09:17:50.203905 18909 solver.cpp:237] Train net output #0: loss = 0.510609 (* 1 = 0.510609 loss) +I0407 09:17:50.203912 18909 sgd_solver.cpp:105] Iteration 6048, lr = 0.0075 +I0407 09:17:55.260741 18909 solver.cpp:218] Iteration 6060 (2.37303 iter/s, 5.05682s/12 iters), loss = 0.624052 +I0407 09:17:55.260784 18909 solver.cpp:237] Train net output #0: loss = 0.624052 (* 1 = 0.624052 loss) +I0407 09:17:55.260792 18909 sgd_solver.cpp:105] Iteration 6060, lr = 0.0075 +I0407 09:17:58.983722 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:00.561008 18909 solver.cpp:218] Iteration 6072 (2.26406 iter/s, 5.30021s/12 iters), loss = 0.331762 +I0407 09:18:00.561053 18909 solver.cpp:237] Train net output #0: loss = 0.331762 (* 1 = 0.331762 loss) +I0407 09:18:00.561060 18909 sgd_solver.cpp:105] Iteration 6072, lr = 0.0075 +I0407 09:18:05.636086 18909 solver.cpp:218] Iteration 6084 (2.36452 iter/s, 5.07502s/12 iters), loss = 0.627137 +I0407 09:18:05.636121 18909 solver.cpp:237] Train net output #0: loss = 0.627137 (* 1 = 0.627137 loss) +I0407 09:18:05.636126 18909 sgd_solver.cpp:105] Iteration 6084, lr = 0.0075 +I0407 09:18:10.839107 18909 solver.cpp:218] Iteration 6096 (2.30637 iter/s, 5.20298s/12 iters), loss = 0.537154 +I0407 09:18:10.839241 18909 solver.cpp:237] Train net output #0: loss = 0.537154 (* 1 = 0.537154 loss) +I0407 09:18:10.839249 18909 sgd_solver.cpp:105] Iteration 6096, lr = 0.0075 +I0407 09:18:16.077153 18909 solver.cpp:218] Iteration 6108 (2.29099 iter/s, 5.2379s/12 iters), loss = 0.465075 +I0407 09:18:16.077199 18909 solver.cpp:237] Train net output #0: loss = 0.465075 (* 1 = 0.465075 loss) +I0407 09:18:16.077208 18909 sgd_solver.cpp:105] Iteration 6108, lr = 0.0075 +I0407 09:18:20.721305 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0407 09:18:24.200022 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0407 09:18:26.515533 18909 solver.cpp:330] Iteration 6120, Testing net (#0) +I0407 09:18:26.515558 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:18:28.605229 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:31.168347 18909 solver.cpp:397] Test net output #0: accuracy = 0.372549 +I0407 09:18:31.168370 18909 solver.cpp:397] Test net output #1: loss = 3.1191 (* 1 = 3.1191 loss) +I0407 09:18:31.308892 18909 solver.cpp:218] Iteration 6120 (0.787831 iter/s, 15.2317s/12 iters), loss = 0.443712 +I0407 09:18:31.308943 18909 solver.cpp:237] Train net output #0: loss = 0.443712 (* 1 = 0.443712 loss) +I0407 09:18:31.308949 18909 sgd_solver.cpp:105] Iteration 6120, lr = 0.0075 +I0407 09:18:35.629664 18909 solver.cpp:218] Iteration 6132 (2.77732 iter/s, 4.32071s/12 iters), loss = 0.463564 +I0407 09:18:35.629701 18909 solver.cpp:237] Train net output #0: loss = 0.463564 (* 1 = 0.463564 loss) +I0407 09:18:35.629709 18909 sgd_solver.cpp:105] Iteration 6132, lr = 0.0075 +I0407 09:18:40.827005 18909 solver.cpp:218] Iteration 6144 (2.3089 iter/s, 5.19729s/12 iters), loss = 0.363448 +I0407 09:18:40.827045 18909 solver.cpp:237] Train net output #0: loss = 0.363448 (* 1 = 0.363448 loss) +I0407 09:18:40.827054 18909 sgd_solver.cpp:105] Iteration 6144, lr = 0.0075 +I0407 09:18:46.065747 18909 solver.cpp:218] Iteration 6156 (2.29065 iter/s, 5.23869s/12 iters), loss = 0.553091 +I0407 09:18:46.065829 18909 solver.cpp:237] Train net output #0: loss = 0.553091 (* 1 = 0.553091 loss) +I0407 09:18:46.065837 18909 sgd_solver.cpp:105] Iteration 6156, lr = 0.0075 +I0407 09:18:51.503684 18909 solver.cpp:218] Iteration 6168 (2.20676 iter/s, 5.43784s/12 iters), loss = 0.731338 +I0407 09:18:51.503739 18909 solver.cpp:237] Train net output #0: loss = 0.731338 (* 1 = 0.731338 loss) +I0407 09:18:51.503749 18909 sgd_solver.cpp:105] Iteration 6168, lr = 0.0075 +I0407 09:18:52.115320 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:18:56.792732 18909 solver.cpp:218] Iteration 6180 (2.26887 iter/s, 5.28898s/12 iters), loss = 0.570859 +I0407 09:18:56.792770 18909 solver.cpp:237] Train net output #0: loss = 0.570859 (* 1 = 0.570859 loss) +I0407 09:18:56.792778 18909 sgd_solver.cpp:105] Iteration 6180, lr = 0.0075 +I0407 09:19:02.195377 18909 solver.cpp:218] Iteration 6192 (2.22115 iter/s, 5.4026s/12 iters), loss = 0.719276 +I0407 09:19:02.195415 18909 solver.cpp:237] Train net output #0: loss = 0.719276 (* 1 = 0.719276 loss) +I0407 09:19:02.195421 18909 sgd_solver.cpp:105] Iteration 6192, lr = 0.0075 +I0407 09:19:07.464484 18909 solver.cpp:218] Iteration 6204 (2.27745 iter/s, 5.26906s/12 iters), loss = 0.718909 +I0407 09:19:07.464522 18909 solver.cpp:237] Train net output #0: loss = 0.718909 (* 1 = 0.718909 loss) +I0407 09:19:07.464529 18909 sgd_solver.cpp:105] Iteration 6204, lr = 0.0075 +I0407 09:19:12.948603 18909 solver.cpp:218] Iteration 6216 (2.18816 iter/s, 5.48407s/12 iters), loss = 0.455441 +I0407 09:19:12.948654 18909 solver.cpp:237] Train net output #0: loss = 0.455441 (* 1 = 0.455441 loss) +I0407 09:19:12.948663 18909 sgd_solver.cpp:105] Iteration 6216, lr = 0.0075 +I0407 09:19:14.986476 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0407 09:19:18.488683 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0407 09:19:20.812180 18909 solver.cpp:330] Iteration 6222, Testing net (#0) +I0407 09:19:20.812203 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:19:22.753994 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:19:24.014688 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:19:25.180404 18909 solver.cpp:397] Test net output #0: accuracy = 0.389706 +I0407 09:19:25.180433 18909 solver.cpp:397] Test net output #1: loss = 3.11036 (* 1 = 3.11036 loss) +I0407 09:19:27.191170 18909 solver.cpp:218] Iteration 6228 (0.842548 iter/s, 14.2425s/12 iters), loss = 0.695772 +I0407 09:19:27.191212 18909 solver.cpp:237] Train net output #0: loss = 0.695772 (* 1 = 0.695772 loss) +I0407 09:19:27.191218 18909 sgd_solver.cpp:105] Iteration 6228, lr = 0.0075 +I0407 09:19:32.358578 18909 solver.cpp:218] Iteration 6240 (2.32227 iter/s, 5.16735s/12 iters), loss = 0.463976 +I0407 09:19:32.358625 18909 solver.cpp:237] Train net output #0: loss = 0.463976 (* 1 = 0.463976 loss) +I0407 09:19:32.358633 18909 sgd_solver.cpp:105] Iteration 6240, lr = 0.0075 +I0407 09:19:37.408072 18909 solver.cpp:218] Iteration 6252 (2.3765 iter/s, 5.04944s/12 iters), loss = 0.767884 +I0407 09:19:37.408113 18909 solver.cpp:237] Train net output #0: loss = 0.767884 (* 1 = 0.767884 loss) +I0407 09:19:37.408118 18909 sgd_solver.cpp:105] Iteration 6252, lr = 0.0075 +I0407 09:19:42.548003 18909 solver.cpp:218] Iteration 6264 (2.33469 iter/s, 5.13988s/12 iters), loss = 0.652997 +I0407 09:19:42.548045 18909 solver.cpp:237] Train net output #0: loss = 0.652997 (* 1 = 0.652997 loss) +I0407 09:19:42.548051 18909 sgd_solver.cpp:105] Iteration 6264, lr = 0.0075 +I0407 09:19:45.328737 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:19:47.756618 18909 solver.cpp:218] Iteration 6276 (2.3039 iter/s, 5.20856s/12 iters), loss = 0.410192 +I0407 09:19:47.756662 18909 solver.cpp:237] Train net output #0: loss = 0.410192 (* 1 = 0.410192 loss) +I0407 09:19:47.756669 18909 sgd_solver.cpp:105] Iteration 6276, lr = 0.0075 +I0407 09:19:52.779266 18909 solver.cpp:218] Iteration 6288 (2.38921 iter/s, 5.02259s/12 iters), loss = 0.831363 +I0407 09:19:52.779378 18909 solver.cpp:237] Train net output #0: loss = 0.831363 (* 1 = 0.831363 loss) +I0407 09:19:52.779386 18909 sgd_solver.cpp:105] Iteration 6288, lr = 0.0075 +I0407 09:19:58.009688 18909 solver.cpp:218] Iteration 6300 (2.29432 iter/s, 5.2303s/12 iters), loss = 0.615826 +I0407 09:19:58.009727 18909 solver.cpp:237] Train net output #0: loss = 0.615826 (* 1 = 0.615826 loss) +I0407 09:19:58.009732 18909 sgd_solver.cpp:105] Iteration 6300, lr = 0.0075 +I0407 09:20:03.388778 18909 solver.cpp:218] Iteration 6312 (2.23088 iter/s, 5.37904s/12 iters), loss = 0.53934 +I0407 09:20:03.388820 18909 solver.cpp:237] Train net output #0: loss = 0.53934 (* 1 = 0.53934 loss) +I0407 09:20:03.388828 18909 sgd_solver.cpp:105] Iteration 6312, lr = 0.0075 +I0407 09:20:08.141109 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0407 09:20:11.816934 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0407 09:20:14.166821 18909 solver.cpp:330] Iteration 6324, Testing net (#0) +I0407 09:20:14.166841 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:20:16.090948 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:20:18.515950 18909 solver.cpp:397] Test net output #0: accuracy = 0.368873 +I0407 09:20:18.515983 18909 solver.cpp:397] Test net output #1: loss = 3.20594 (* 1 = 3.20594 loss) +I0407 09:20:18.656709 18909 solver.cpp:218] Iteration 6324 (0.785963 iter/s, 15.2679s/12 iters), loss = 0.44757 +I0407 09:20:18.656749 18909 solver.cpp:237] Train net output #0: loss = 0.44757 (* 1 = 0.44757 loss) +I0407 09:20:18.656756 18909 sgd_solver.cpp:105] Iteration 6324, lr = 0.0075 +I0407 09:20:23.133518 18909 solver.cpp:218] Iteration 6336 (2.68051 iter/s, 4.47676s/12 iters), loss = 0.443885 +I0407 09:20:23.133638 18909 solver.cpp:237] Train net output #0: loss = 0.443885 (* 1 = 0.443885 loss) +I0407 09:20:23.133646 18909 sgd_solver.cpp:105] Iteration 6336, lr = 0.0075 +I0407 09:20:28.296191 18909 solver.cpp:218] Iteration 6348 (2.32444 iter/s, 5.16254s/12 iters), loss = 0.656215 +I0407 09:20:28.296237 18909 solver.cpp:237] Train net output #0: loss = 0.656215 (* 1 = 0.656215 loss) +I0407 09:20:28.296245 18909 sgd_solver.cpp:105] Iteration 6348, lr = 0.0075 +I0407 09:20:33.499326 18909 solver.cpp:218] Iteration 6360 (2.30633 iter/s, 5.20307s/12 iters), loss = 0.566362 +I0407 09:20:33.499370 18909 solver.cpp:237] Train net output #0: loss = 0.566362 (* 1 = 0.566362 loss) +I0407 09:20:33.499378 18909 sgd_solver.cpp:105] Iteration 6360, lr = 0.0075 +I0407 09:20:38.509785 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:20:38.695281 18909 solver.cpp:218] Iteration 6372 (2.30951 iter/s, 5.19591s/12 iters), loss = 0.627591 +I0407 09:20:38.695318 18909 solver.cpp:237] Train net output #0: loss = 0.627591 (* 1 = 0.627591 loss) +I0407 09:20:38.695325 18909 sgd_solver.cpp:105] Iteration 6372, lr = 0.0075 +I0407 09:20:44.091137 18909 solver.cpp:218] Iteration 6384 (2.22395 iter/s, 5.39581s/12 iters), loss = 0.396767 +I0407 09:20:44.091181 18909 solver.cpp:237] Train net output #0: loss = 0.396767 (* 1 = 0.396767 loss) +I0407 09:20:44.091188 18909 sgd_solver.cpp:105] Iteration 6384, lr = 0.0075 +I0407 09:20:49.134068 18909 solver.cpp:218] Iteration 6396 (2.37959 iter/s, 5.04288s/12 iters), loss = 0.479671 +I0407 09:20:49.134106 18909 solver.cpp:237] Train net output #0: loss = 0.479671 (* 1 = 0.479671 loss) +I0407 09:20:49.134114 18909 sgd_solver.cpp:105] Iteration 6396, lr = 0.0075 +I0407 09:20:54.514120 18909 solver.cpp:218] Iteration 6408 (2.23048 iter/s, 5.38s/12 iters), loss = 0.779567 +I0407 09:20:54.514264 18909 solver.cpp:237] Train net output #0: loss = 0.779567 (* 1 = 0.779567 loss) +I0407 09:20:54.514274 18909 sgd_solver.cpp:105] Iteration 6408, lr = 0.0075 +I0407 09:20:59.787827 18909 solver.cpp:218] Iteration 6420 (2.2755 iter/s, 5.27356s/12 iters), loss = 0.570013 +I0407 09:20:59.787870 18909 solver.cpp:237] Train net output #0: loss = 0.570013 (* 1 = 0.570013 loss) +I0407 09:20:59.787878 18909 sgd_solver.cpp:105] Iteration 6420, lr = 0.0075 +I0407 09:21:01.923629 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0407 09:21:05.589895 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0407 09:21:08.037782 18909 solver.cpp:330] Iteration 6426, Testing net (#0) +I0407 09:21:08.037806 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:21:09.861238 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:12.377430 18909 solver.cpp:397] Test net output #0: accuracy = 0.372549 +I0407 09:21:12.377468 18909 solver.cpp:397] Test net output #1: loss = 3.173 (* 1 = 3.173 loss) +I0407 09:21:14.193275 18909 solver.cpp:218] Iteration 6432 (0.833021 iter/s, 14.4054s/12 iters), loss = 0.482697 +I0407 09:21:14.193320 18909 solver.cpp:237] Train net output #0: loss = 0.482697 (* 1 = 0.482697 loss) +I0407 09:21:14.193327 18909 sgd_solver.cpp:105] Iteration 6432, lr = 0.0075 +I0407 09:21:19.295528 18909 solver.cpp:218] Iteration 6444 (2.35193 iter/s, 5.1022s/12 iters), loss = 0.56175 +I0407 09:21:19.295568 18909 solver.cpp:237] Train net output #0: loss = 0.56175 (* 1 = 0.56175 loss) +I0407 09:21:19.295576 18909 sgd_solver.cpp:105] Iteration 6444, lr = 0.0075 +I0407 09:21:24.506661 18909 solver.cpp:218] Iteration 6456 (2.30279 iter/s, 5.21108s/12 iters), loss = 0.465126 +I0407 09:21:24.506702 18909 solver.cpp:237] Train net output #0: loss = 0.465126 (* 1 = 0.465126 loss) +I0407 09:21:24.506711 18909 sgd_solver.cpp:105] Iteration 6456, lr = 0.0075 +I0407 09:21:29.579052 18909 solver.cpp:218] Iteration 6468 (2.36577 iter/s, 5.07234s/12 iters), loss = 0.494729 +I0407 09:21:29.579192 18909 solver.cpp:237] Train net output #0: loss = 0.494729 (* 1 = 0.494729 loss) +I0407 09:21:29.579200 18909 sgd_solver.cpp:105] Iteration 6468, lr = 0.0075 +I0407 09:21:31.692610 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:21:35.014060 18909 solver.cpp:218] Iteration 6480 (2.20797 iter/s, 5.43486s/12 iters), loss = 0.598301 +I0407 09:21:35.014094 18909 solver.cpp:237] Train net output #0: loss = 0.598301 (* 1 = 0.598301 loss) +I0407 09:21:35.014101 18909 sgd_solver.cpp:105] Iteration 6480, lr = 0.0075 +I0407 09:21:40.397187 18909 solver.cpp:218] Iteration 6492 (2.22921 iter/s, 5.38308s/12 iters), loss = 0.502671 +I0407 09:21:40.397231 18909 solver.cpp:237] Train net output #0: loss = 0.502671 (* 1 = 0.502671 loss) +I0407 09:21:40.397238 18909 sgd_solver.cpp:105] Iteration 6492, lr = 0.0075 +I0407 09:21:45.577587 18909 solver.cpp:218] Iteration 6504 (2.31645 iter/s, 5.18034s/12 iters), loss = 0.403871 +I0407 09:21:45.577630 18909 solver.cpp:237] Train net output #0: loss = 0.403871 (* 1 = 0.403871 loss) +I0407 09:21:45.577638 18909 sgd_solver.cpp:105] Iteration 6504, lr = 0.0075 +I0407 09:21:50.851176 18909 solver.cpp:218] Iteration 6516 (2.27551 iter/s, 5.27353s/12 iters), loss = 0.729688 +I0407 09:21:50.851218 18909 solver.cpp:237] Train net output #0: loss = 0.729688 (* 1 = 0.729688 loss) +I0407 09:21:50.851227 18909 sgd_solver.cpp:105] Iteration 6516, lr = 0.0075 +I0407 09:21:55.479184 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0407 09:21:58.913913 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0407 09:22:01.230238 18909 solver.cpp:330] Iteration 6528, Testing net (#0) +I0407 09:22:01.230296 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:22:02.992995 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:05.510522 18909 solver.cpp:397] Test net output #0: accuracy = 0.375613 +I0407 09:22:05.510557 18909 solver.cpp:397] Test net output #1: loss = 3.17691 (* 1 = 3.17691 loss) +I0407 09:22:05.647996 18909 solver.cpp:218] Iteration 6528 (0.810987 iter/s, 14.7968s/12 iters), loss = 0.626187 +I0407 09:22:05.648037 18909 solver.cpp:237] Train net output #0: loss = 0.626187 (* 1 = 0.626187 loss) +I0407 09:22:05.648046 18909 sgd_solver.cpp:105] Iteration 6528, lr = 0.0075 +I0407 09:22:09.814312 18909 solver.cpp:218] Iteration 6540 (2.88028 iter/s, 4.16626s/12 iters), loss = 0.325392 +I0407 09:22:09.814357 18909 solver.cpp:237] Train net output #0: loss = 0.325392 (* 1 = 0.325392 loss) +I0407 09:22:09.814363 18909 sgd_solver.cpp:105] Iteration 6540, lr = 0.0075 +I0407 09:22:14.807616 18909 solver.cpp:218] Iteration 6552 (2.40324 iter/s, 4.99325s/12 iters), loss = 0.364593 +I0407 09:22:14.807660 18909 solver.cpp:237] Train net output #0: loss = 0.364593 (* 1 = 0.364593 loss) +I0407 09:22:14.807668 18909 sgd_solver.cpp:105] Iteration 6552, lr = 0.0075 +I0407 09:22:19.878429 18909 solver.cpp:218] Iteration 6564 (2.36651 iter/s, 5.07076s/12 iters), loss = 0.403276 +I0407 09:22:19.878477 18909 solver.cpp:237] Train net output #0: loss = 0.403276 (* 1 = 0.403276 loss) +I0407 09:22:19.878485 18909 sgd_solver.cpp:105] Iteration 6564, lr = 0.0075 +I0407 09:22:24.242220 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:22:25.073616 18909 solver.cpp:218] Iteration 6576 (2.30986 iter/s, 5.19512s/12 iters), loss = 0.547237 +I0407 09:22:25.073660 18909 solver.cpp:237] Train net output #0: loss = 0.547237 (* 1 = 0.547237 loss) +I0407 09:22:25.073668 18909 sgd_solver.cpp:105] Iteration 6576, lr = 0.0075 +I0407 09:22:30.288843 18909 solver.cpp:218] Iteration 6588 (2.30098 iter/s, 5.21517s/12 iters), loss = 0.470756 +I0407 09:22:30.288879 18909 solver.cpp:237] Train net output #0: loss = 0.470756 (* 1 = 0.470756 loss) +I0407 09:22:30.288892 18909 sgd_solver.cpp:105] Iteration 6588, lr = 0.0075 +I0407 09:22:35.556740 18909 solver.cpp:218] Iteration 6600 (2.27797 iter/s, 5.26785s/12 iters), loss = 0.640289 +I0407 09:22:35.556875 18909 solver.cpp:237] Train net output #0: loss = 0.640289 (* 1 = 0.640289 loss) +I0407 09:22:35.556888 18909 sgd_solver.cpp:105] Iteration 6600, lr = 0.0075 +I0407 09:22:40.856225 18909 solver.cpp:218] Iteration 6612 (2.26443 iter/s, 5.29934s/12 iters), loss = 0.578665 +I0407 09:22:40.856271 18909 solver.cpp:237] Train net output #0: loss = 0.578665 (* 1 = 0.578665 loss) +I0407 09:22:40.856278 18909 sgd_solver.cpp:105] Iteration 6612, lr = 0.0075 +I0407 09:22:46.004036 18909 solver.cpp:218] Iteration 6624 (2.33112 iter/s, 5.14775s/12 iters), loss = 0.320783 +I0407 09:22:46.004092 18909 solver.cpp:237] Train net output #0: loss = 0.320783 (* 1 = 0.320783 loss) +I0407 09:22:46.004102 18909 sgd_solver.cpp:105] Iteration 6624, lr = 0.0075 +I0407 09:22:48.069053 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0407 09:22:53.431874 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0407 09:22:56.097087 18909 solver.cpp:330] Iteration 6630, Testing net (#0) +I0407 09:22:56.097108 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:22:57.983381 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:00.546763 18909 solver.cpp:397] Test net output #0: accuracy = 0.403799 +I0407 09:23:00.546793 18909 solver.cpp:397] Test net output #1: loss = 3.04366 (* 1 = 3.04366 loss) +I0407 09:23:02.506475 18909 solver.cpp:218] Iteration 6636 (0.727168 iter/s, 16.5024s/12 iters), loss = 0.642502 +I0407 09:23:02.506525 18909 solver.cpp:237] Train net output #0: loss = 0.642502 (* 1 = 0.642502 loss) +I0407 09:23:02.506532 18909 sgd_solver.cpp:105] Iteration 6636, lr = 0.0075 +I0407 09:23:07.499742 18909 solver.cpp:218] Iteration 6648 (2.40327 iter/s, 4.99321s/12 iters), loss = 0.499126 +I0407 09:23:07.499883 18909 solver.cpp:237] Train net output #0: loss = 0.499126 (* 1 = 0.499126 loss) +I0407 09:23:07.499891 18909 sgd_solver.cpp:105] Iteration 6648, lr = 0.0075 +I0407 09:23:12.583089 18909 solver.cpp:218] Iteration 6660 (2.36072 iter/s, 5.08319s/12 iters), loss = 0.556012 +I0407 09:23:12.583148 18909 solver.cpp:237] Train net output #0: loss = 0.556012 (* 1 = 0.556012 loss) +I0407 09:23:12.583159 18909 sgd_solver.cpp:105] Iteration 6660, lr = 0.0075 +I0407 09:23:17.655776 18909 solver.cpp:218] Iteration 6672 (2.36564 iter/s, 5.07262s/12 iters), loss = 0.573209 +I0407 09:23:17.655820 18909 solver.cpp:237] Train net output #0: loss = 0.573209 (* 1 = 0.573209 loss) +I0407 09:23:17.655827 18909 sgd_solver.cpp:105] Iteration 6672, lr = 0.0075 +I0407 09:23:19.069213 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:23.050429 18909 solver.cpp:218] Iteration 6684 (2.22445 iter/s, 5.39459s/12 iters), loss = 0.517253 +I0407 09:23:23.050472 18909 solver.cpp:237] Train net output #0: loss = 0.517253 (* 1 = 0.517253 loss) +I0407 09:23:23.050478 18909 sgd_solver.cpp:105] Iteration 6684, lr = 0.0075 +I0407 09:23:28.506549 18909 solver.cpp:218] Iteration 6696 (2.19939 iter/s, 5.45607s/12 iters), loss = 0.487679 +I0407 09:23:28.506600 18909 solver.cpp:237] Train net output #0: loss = 0.487679 (* 1 = 0.487679 loss) +I0407 09:23:28.506610 18909 sgd_solver.cpp:105] Iteration 6696, lr = 0.0075 +I0407 09:23:33.813784 18909 solver.cpp:218] Iteration 6708 (2.26109 iter/s, 5.30717s/12 iters), loss = 0.721708 +I0407 09:23:33.813853 18909 solver.cpp:237] Train net output #0: loss = 0.721708 (* 1 = 0.721708 loss) +I0407 09:23:33.813864 18909 sgd_solver.cpp:105] Iteration 6708, lr = 0.0075 +I0407 09:23:38.943289 18909 solver.cpp:218] Iteration 6720 (2.33944 iter/s, 5.12943s/12 iters), loss = 0.422882 +I0407 09:23:38.943431 18909 solver.cpp:237] Train net output #0: loss = 0.422882 (* 1 = 0.422882 loss) +I0407 09:23:38.943440 18909 sgd_solver.cpp:105] Iteration 6720, lr = 0.0075 +I0407 09:23:43.417901 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0407 09:23:48.936679 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0407 09:23:51.429008 18909 solver.cpp:330] Iteration 6732, Testing net (#0) +I0407 09:23:51.429026 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:23:53.218485 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:23:55.869603 18909 solver.cpp:397] Test net output #0: accuracy = 0.400735 +I0407 09:23:55.869637 18909 solver.cpp:397] Test net output #1: loss = 3.01456 (* 1 = 3.01456 loss) +I0407 09:23:56.010331 18909 solver.cpp:218] Iteration 6732 (0.703115 iter/s, 17.0669s/12 iters), loss = 0.305626 +I0407 09:23:56.010381 18909 solver.cpp:237] Train net output #0: loss = 0.305626 (* 1 = 0.305626 loss) +I0407 09:23:56.010390 18909 sgd_solver.cpp:105] Iteration 6732, lr = 0.005625 +I0407 09:24:00.229698 18909 solver.cpp:218] Iteration 6744 (2.84408 iter/s, 4.21929s/12 iters), loss = 0.51884 +I0407 09:24:00.229758 18909 solver.cpp:237] Train net output #0: loss = 0.51884 (* 1 = 0.51884 loss) +I0407 09:24:00.229768 18909 sgd_solver.cpp:105] Iteration 6744, lr = 0.005625 +I0407 09:24:05.348471 18909 solver.cpp:218] Iteration 6756 (2.34434 iter/s, 5.11871s/12 iters), loss = 0.51582 +I0407 09:24:05.348528 18909 solver.cpp:237] Train net output #0: loss = 0.51582 (* 1 = 0.51582 loss) +I0407 09:24:05.348538 18909 sgd_solver.cpp:105] Iteration 6756, lr = 0.005625 +I0407 09:24:10.483454 18909 solver.cpp:218] Iteration 6768 (2.33694 iter/s, 5.13492s/12 iters), loss = 0.533038 +I0407 09:24:10.483590 18909 solver.cpp:237] Train net output #0: loss = 0.533038 (* 1 = 0.533038 loss) +I0407 09:24:10.483603 18909 sgd_solver.cpp:105] Iteration 6768, lr = 0.005625 +I0407 09:24:14.148906 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:15.811872 18909 solver.cpp:218] Iteration 6780 (2.25214 iter/s, 5.32827s/12 iters), loss = 0.546592 +I0407 09:24:15.811921 18909 solver.cpp:237] Train net output #0: loss = 0.546592 (* 1 = 0.546592 loss) +I0407 09:24:15.811929 18909 sgd_solver.cpp:105] Iteration 6780, lr = 0.005625 +I0407 09:24:21.100917 18909 solver.cpp:218] Iteration 6792 (2.26887 iter/s, 5.28898s/12 iters), loss = 0.576128 +I0407 09:24:21.100980 18909 solver.cpp:237] Train net output #0: loss = 0.576128 (* 1 = 0.576128 loss) +I0407 09:24:21.100991 18909 sgd_solver.cpp:105] Iteration 6792, lr = 0.005625 +I0407 09:24:26.262871 18909 solver.cpp:218] Iteration 6804 (2.32473 iter/s, 5.16188s/12 iters), loss = 0.386531 +I0407 09:24:26.262915 18909 solver.cpp:237] Train net output #0: loss = 0.386531 (* 1 = 0.386531 loss) +I0407 09:24:26.262923 18909 sgd_solver.cpp:105] Iteration 6804, lr = 0.005625 +I0407 09:24:31.403618 18909 solver.cpp:218] Iteration 6816 (2.33432 iter/s, 5.14069s/12 iters), loss = 0.362186 +I0407 09:24:31.403662 18909 solver.cpp:237] Train net output #0: loss = 0.362186 (* 1 = 0.362186 loss) +I0407 09:24:31.403669 18909 sgd_solver.cpp:105] Iteration 6816, lr = 0.005625 +I0407 09:24:36.625059 18909 solver.cpp:218] Iteration 6828 (2.29824 iter/s, 5.22139s/12 iters), loss = 0.278663 +I0407 09:24:36.625102 18909 solver.cpp:237] Train net output #0: loss = 0.278663 (* 1 = 0.278663 loss) +I0407 09:24:36.625108 18909 sgd_solver.cpp:105] Iteration 6828, lr = 0.005625 +I0407 09:24:38.676601 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0407 09:24:43.322432 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0407 09:24:45.625321 18909 solver.cpp:330] Iteration 6834, Testing net (#0) +I0407 09:24:45.625341 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:24:47.265457 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:24:49.906615 18909 solver.cpp:397] Test net output #0: accuracy = 0.407476 +I0407 09:24:49.906644 18909 solver.cpp:397] Test net output #1: loss = 3.0746 (* 1 = 3.0746 loss) +I0407 09:24:51.716488 18909 solver.cpp:218] Iteration 6840 (0.795156 iter/s, 15.0914s/12 iters), loss = 0.44101 +I0407 09:24:51.716531 18909 solver.cpp:237] Train net output #0: loss = 0.44101 (* 1 = 0.44101 loss) +I0407 09:24:51.716538 18909 sgd_solver.cpp:105] Iteration 6840, lr = 0.005625 +I0407 09:24:56.977624 18909 solver.cpp:218] Iteration 6852 (2.2809 iter/s, 5.26108s/12 iters), loss = 0.248074 +I0407 09:24:56.977669 18909 solver.cpp:237] Train net output #0: loss = 0.248074 (* 1 = 0.248074 loss) +I0407 09:24:56.977676 18909 sgd_solver.cpp:105] Iteration 6852, lr = 0.005625 +I0407 09:25:02.221283 18909 solver.cpp:218] Iteration 6864 (2.2885 iter/s, 5.24361s/12 iters), loss = 0.562145 +I0407 09:25:02.221326 18909 solver.cpp:237] Train net output #0: loss = 0.562145 (* 1 = 0.562145 loss) +I0407 09:25:02.221333 18909 sgd_solver.cpp:105] Iteration 6864, lr = 0.005625 +I0407 09:25:07.578928 18909 solver.cpp:218] Iteration 6876 (2.23981 iter/s, 5.35759s/12 iters), loss = 0.363155 +I0407 09:25:07.578971 18909 solver.cpp:237] Train net output #0: loss = 0.363155 (* 1 = 0.363155 loss) +I0407 09:25:07.578979 18909 sgd_solver.cpp:105] Iteration 6876, lr = 0.005625 +I0407 09:25:08.217388 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:25:12.755818 18909 solver.cpp:218] Iteration 6888 (2.31802 iter/s, 5.17684s/12 iters), loss = 0.497604 +I0407 09:25:12.755858 18909 solver.cpp:237] Train net output #0: loss = 0.497604 (* 1 = 0.497604 loss) +I0407 09:25:12.755864 18909 sgd_solver.cpp:105] Iteration 6888, lr = 0.005625 +I0407 09:25:17.796422 18909 solver.cpp:218] Iteration 6900 (2.38069 iter/s, 5.04055s/12 iters), loss = 0.34116 +I0407 09:25:17.798430 18909 solver.cpp:237] Train net output #0: loss = 0.34116 (* 1 = 0.34116 loss) +I0407 09:25:17.798439 18909 sgd_solver.cpp:105] Iteration 6900, lr = 0.005625 +I0407 09:25:23.163759 18909 solver.cpp:218] Iteration 6912 (2.23658 iter/s, 5.36532s/12 iters), loss = 0.422052 +I0407 09:25:23.163803 18909 solver.cpp:237] Train net output #0: loss = 0.422052 (* 1 = 0.422052 loss) +I0407 09:25:23.163810 18909 sgd_solver.cpp:105] Iteration 6912, lr = 0.005625 +I0407 09:25:28.377636 18909 solver.cpp:218] Iteration 6924 (2.30158 iter/s, 5.21382s/12 iters), loss = 0.545312 +I0407 09:25:28.377681 18909 solver.cpp:237] Train net output #0: loss = 0.545312 (* 1 = 0.545312 loss) +I0407 09:25:28.377687 18909 sgd_solver.cpp:105] Iteration 6924, lr = 0.005625 +I0407 09:25:33.270337 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0407 09:25:38.178755 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0407 09:25:40.523031 18909 solver.cpp:330] Iteration 6936, Testing net (#0) +I0407 09:25:40.523057 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:25:41.088801 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:25:42.112319 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:25:44.912473 18909 solver.cpp:397] Test net output #0: accuracy = 0.414828 +I0407 09:25:44.912523 18909 solver.cpp:397] Test net output #1: loss = 2.9347 (* 1 = 2.9347 loss) +I0407 09:25:45.053721 18909 solver.cpp:218] Iteration 6936 (0.719596 iter/s, 16.676s/12 iters), loss = 0.34186 +I0407 09:25:45.053777 18909 solver.cpp:237] Train net output #0: loss = 0.34186 (* 1 = 0.34186 loss) +I0407 09:25:45.053788 18909 sgd_solver.cpp:105] Iteration 6936, lr = 0.005625 +I0407 09:25:49.276479 18909 solver.cpp:218] Iteration 6948 (2.84179 iter/s, 4.22269s/12 iters), loss = 0.322713 +I0407 09:25:49.276619 18909 solver.cpp:237] Train net output #0: loss = 0.322713 (* 1 = 0.322713 loss) +I0407 09:25:49.276628 18909 sgd_solver.cpp:105] Iteration 6948, lr = 0.005625 +I0407 09:25:54.492280 18909 solver.cpp:218] Iteration 6960 (2.30077 iter/s, 5.21565s/12 iters), loss = 0.301025 +I0407 09:25:54.492331 18909 solver.cpp:237] Train net output #0: loss = 0.301025 (* 1 = 0.301025 loss) +I0407 09:25:54.492341 18909 sgd_solver.cpp:105] Iteration 6960, lr = 0.005625 +I0407 09:25:59.708591 18909 solver.cpp:218] Iteration 6972 (2.3005 iter/s, 5.21625s/12 iters), loss = 0.424632 +I0407 09:25:59.708633 18909 solver.cpp:237] Train net output #0: loss = 0.424632 (* 1 = 0.424632 loss) +I0407 09:25:59.708640 18909 sgd_solver.cpp:105] Iteration 6972, lr = 0.005625 +I0407 09:26:02.707109 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:05.079453 18909 solver.cpp:218] Iteration 6984 (2.2343 iter/s, 5.3708s/12 iters), loss = 0.311531 +I0407 09:26:05.079499 18909 solver.cpp:237] Train net output #0: loss = 0.311531 (* 1 = 0.311531 loss) +I0407 09:26:05.079506 18909 sgd_solver.cpp:105] Iteration 6984, lr = 0.005625 +I0407 09:26:10.326923 18909 solver.cpp:218] Iteration 6996 (2.28684 iter/s, 5.24741s/12 iters), loss = 0.32044 +I0407 09:26:10.326968 18909 solver.cpp:237] Train net output #0: loss = 0.32044 (* 1 = 0.32044 loss) +I0407 09:26:10.326975 18909 sgd_solver.cpp:105] Iteration 6996, lr = 0.005625 +I0407 09:26:15.586377 18909 solver.cpp:218] Iteration 7008 (2.28163 iter/s, 5.25939s/12 iters), loss = 0.456121 +I0407 09:26:15.586422 18909 solver.cpp:237] Train net output #0: loss = 0.456121 (* 1 = 0.456121 loss) +I0407 09:26:15.586431 18909 sgd_solver.cpp:105] Iteration 7008, lr = 0.005625 +I0407 09:26:20.707715 18909 solver.cpp:218] Iteration 7020 (2.34316 iter/s, 5.12128s/12 iters), loss = 0.505585 +I0407 09:26:20.707829 18909 solver.cpp:237] Train net output #0: loss = 0.505585 (* 1 = 0.505585 loss) +I0407 09:26:20.707839 18909 sgd_solver.cpp:105] Iteration 7020, lr = 0.005625 +I0407 09:26:25.758437 18909 solver.cpp:218] Iteration 7032 (2.37596 iter/s, 5.0506s/12 iters), loss = 0.424981 +I0407 09:26:25.758486 18909 solver.cpp:237] Train net output #0: loss = 0.424981 (* 1 = 0.424981 loss) +I0407 09:26:25.758494 18909 sgd_solver.cpp:105] Iteration 7032, lr = 0.005625 +I0407 09:26:28.013756 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0407 09:26:32.850987 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0407 09:26:35.159360 18909 solver.cpp:330] Iteration 7038, Testing net (#0) +I0407 09:26:35.159379 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:26:36.822669 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:39.517033 18909 solver.cpp:397] Test net output #0: accuracy = 0.403799 +I0407 09:26:39.517068 18909 solver.cpp:397] Test net output #1: loss = 3.04119 (* 1 = 3.04119 loss) +I0407 09:26:41.395906 18909 solver.cpp:218] Iteration 7044 (0.76739 iter/s, 15.6374s/12 iters), loss = 0.211778 +I0407 09:26:41.395949 18909 solver.cpp:237] Train net output #0: loss = 0.211778 (* 1 = 0.211778 loss) +I0407 09:26:41.395957 18909 sgd_solver.cpp:105] Iteration 7044, lr = 0.005625 +I0407 09:26:46.452929 18909 solver.cpp:218] Iteration 7056 (2.37296 iter/s, 5.05697s/12 iters), loss = 0.489384 +I0407 09:26:46.452967 18909 solver.cpp:237] Train net output #0: loss = 0.489384 (* 1 = 0.489384 loss) +I0407 09:26:46.452975 18909 sgd_solver.cpp:105] Iteration 7056, lr = 0.005625 +I0407 09:26:51.662437 18909 solver.cpp:218] Iteration 7068 (2.3035 iter/s, 5.20946s/12 iters), loss = 0.259383 +I0407 09:26:51.662523 18909 solver.cpp:237] Train net output #0: loss = 0.259383 (* 1 = 0.259383 loss) +I0407 09:26:51.662529 18909 sgd_solver.cpp:105] Iteration 7068, lr = 0.005625 +I0407 09:26:56.713378 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:26:56.875368 18909 solver.cpp:218] Iteration 7080 (2.30201 iter/s, 5.21283s/12 iters), loss = 0.294561 +I0407 09:26:56.875411 18909 solver.cpp:237] Train net output #0: loss = 0.294561 (* 1 = 0.294561 loss) +I0407 09:26:56.875418 18909 sgd_solver.cpp:105] Iteration 7080, lr = 0.005625 +I0407 09:27:02.101917 18909 solver.cpp:218] Iteration 7092 (2.296 iter/s, 5.22649s/12 iters), loss = 0.41455 +I0407 09:27:02.101964 18909 solver.cpp:237] Train net output #0: loss = 0.41455 (* 1 = 0.41455 loss) +I0407 09:27:02.101974 18909 sgd_solver.cpp:105] Iteration 7092, lr = 0.005625 +I0407 09:27:07.179414 18909 solver.cpp:218] Iteration 7104 (2.3634 iter/s, 5.07744s/12 iters), loss = 0.358198 +I0407 09:27:07.179456 18909 solver.cpp:237] Train net output #0: loss = 0.358198 (* 1 = 0.358198 loss) +I0407 09:27:07.179463 18909 sgd_solver.cpp:105] Iteration 7104, lr = 0.005625 +I0407 09:27:12.398569 18909 solver.cpp:218] Iteration 7116 (2.29925 iter/s, 5.2191s/12 iters), loss = 0.467294 +I0407 09:27:12.398614 18909 solver.cpp:237] Train net output #0: loss = 0.467294 (* 1 = 0.467294 loss) +I0407 09:27:12.398622 18909 sgd_solver.cpp:105] Iteration 7116, lr = 0.005625 +I0407 09:27:17.592062 18909 solver.cpp:218] Iteration 7128 (2.31061 iter/s, 5.19344s/12 iters), loss = 0.253499 +I0407 09:27:17.592103 18909 solver.cpp:237] Train net output #0: loss = 0.253499 (* 1 = 0.253499 loss) +I0407 09:27:17.592110 18909 sgd_solver.cpp:105] Iteration 7128, lr = 0.005625 +I0407 09:27:22.239125 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0407 09:27:27.247184 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0407 09:27:29.564316 18909 solver.cpp:330] Iteration 7140, Testing net (#0) +I0407 09:27:29.564334 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:27:31.081272 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:27:33.820284 18909 solver.cpp:397] Test net output #0: accuracy = 0.417892 +I0407 09:27:33.820317 18909 solver.cpp:397] Test net output #1: loss = 3.06299 (* 1 = 3.06299 loss) +I0407 09:27:33.960628 18909 solver.cpp:218] Iteration 7140 (0.733114 iter/s, 16.3685s/12 iters), loss = 0.245332 +I0407 09:27:33.960698 18909 solver.cpp:237] Train net output #0: loss = 0.245332 (* 1 = 0.245332 loss) +I0407 09:27:33.960706 18909 sgd_solver.cpp:105] Iteration 7140, lr = 0.005625 +I0407 09:27:38.187829 18909 solver.cpp:218] Iteration 7152 (2.83881 iter/s, 4.22712s/12 iters), loss = 0.472608 +I0407 09:27:38.187863 18909 solver.cpp:237] Train net output #0: loss = 0.472608 (* 1 = 0.472608 loss) +I0407 09:27:38.187870 18909 sgd_solver.cpp:105] Iteration 7152, lr = 0.005625 +I0407 09:27:43.314182 18909 solver.cpp:218] Iteration 7164 (2.34087 iter/s, 5.12631s/12 iters), loss = 0.472102 +I0407 09:27:43.314224 18909 solver.cpp:237] Train net output #0: loss = 0.472102 (* 1 = 0.472102 loss) +I0407 09:27:43.314230 18909 sgd_solver.cpp:105] Iteration 7164, lr = 0.005625 +I0407 09:27:48.283164 18909 solver.cpp:218] Iteration 7176 (2.41501 iter/s, 4.96893s/12 iters), loss = 0.261663 +I0407 09:27:48.283210 18909 solver.cpp:237] Train net output #0: loss = 0.261663 (* 1 = 0.261663 loss) +I0407 09:27:48.283218 18909 sgd_solver.cpp:105] Iteration 7176, lr = 0.005625 +I0407 09:27:50.521879 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:27:53.568648 18909 solver.cpp:218] Iteration 7188 (2.2704 iter/s, 5.28542s/12 iters), loss = 0.429956 +I0407 09:27:53.568758 18909 solver.cpp:237] Train net output #0: loss = 0.429956 (* 1 = 0.429956 loss) +I0407 09:27:53.568765 18909 sgd_solver.cpp:105] Iteration 7188, lr = 0.005625 +I0407 09:27:58.943545 18909 solver.cpp:218] Iteration 7200 (2.23265 iter/s, 5.37479s/12 iters), loss = 0.274663 +I0407 09:27:58.943580 18909 solver.cpp:237] Train net output #0: loss = 0.274663 (* 1 = 0.274663 loss) +I0407 09:27:58.943586 18909 sgd_solver.cpp:105] Iteration 7200, lr = 0.005625 +I0407 09:28:04.403636 18909 solver.cpp:218] Iteration 7212 (2.19779 iter/s, 5.46004s/12 iters), loss = 0.203687 +I0407 09:28:04.403681 18909 solver.cpp:237] Train net output #0: loss = 0.203687 (* 1 = 0.203687 loss) +I0407 09:28:04.403687 18909 sgd_solver.cpp:105] Iteration 7212, lr = 0.005625 +I0407 09:28:09.721698 18909 solver.cpp:218] Iteration 7224 (2.25648 iter/s, 5.31801s/12 iters), loss = 0.252773 +I0407 09:28:09.721737 18909 solver.cpp:237] Train net output #0: loss = 0.252773 (* 1 = 0.252773 loss) +I0407 09:28:09.721745 18909 sgd_solver.cpp:105] Iteration 7224, lr = 0.005625 +I0407 09:28:14.912415 18909 solver.cpp:218] Iteration 7236 (2.31184 iter/s, 5.19067s/12 iters), loss = 0.189507 +I0407 09:28:14.912452 18909 solver.cpp:237] Train net output #0: loss = 0.189507 (* 1 = 0.189507 loss) +I0407 09:28:14.912458 18909 sgd_solver.cpp:105] Iteration 7236, lr = 0.005625 +I0407 09:28:17.099151 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0407 09:28:21.575598 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0407 09:28:24.004953 18909 solver.cpp:330] Iteration 7242, Testing net (#0) +I0407 09:28:24.005067 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:28:25.578845 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:28:28.347136 18909 solver.cpp:397] Test net output #0: accuracy = 0.42402 +I0407 09:28:28.347170 18909 solver.cpp:397] Test net output #1: loss = 3.00307 (* 1 = 3.00307 loss) +I0407 09:28:30.158579 18909 solver.cpp:218] Iteration 7248 (0.787085 iter/s, 15.2461s/12 iters), loss = 0.465436 +I0407 09:28:30.158619 18909 solver.cpp:237] Train net output #0: loss = 0.465436 (* 1 = 0.465436 loss) +I0407 09:28:30.158627 18909 sgd_solver.cpp:105] Iteration 7248, lr = 0.005625 +I0407 09:28:35.482621 18909 solver.cpp:218] Iteration 7260 (2.25395 iter/s, 5.32399s/12 iters), loss = 0.318769 +I0407 09:28:35.482661 18909 solver.cpp:237] Train net output #0: loss = 0.318769 (* 1 = 0.318769 loss) +I0407 09:28:35.482668 18909 sgd_solver.cpp:105] Iteration 7260, lr = 0.005625 +I0407 09:28:40.817973 18909 solver.cpp:218] Iteration 7272 (2.24917 iter/s, 5.3353s/12 iters), loss = 0.309951 +I0407 09:28:40.818015 18909 solver.cpp:237] Train net output #0: loss = 0.309951 (* 1 = 0.309951 loss) +I0407 09:28:40.818022 18909 sgd_solver.cpp:105] Iteration 7272, lr = 0.005625 +I0407 09:28:45.380342 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:28:46.165014 18909 solver.cpp:218] Iteration 7284 (2.24425 iter/s, 5.34699s/12 iters), loss = 0.348565 +I0407 09:28:46.165055 18909 solver.cpp:237] Train net output #0: loss = 0.348565 (* 1 = 0.348565 loss) +I0407 09:28:46.165063 18909 sgd_solver.cpp:105] Iteration 7284, lr = 0.005625 +I0407 09:28:51.463702 18909 solver.cpp:218] Iteration 7296 (2.26473 iter/s, 5.29863s/12 iters), loss = 0.276324 +I0407 09:28:51.463742 18909 solver.cpp:237] Train net output #0: loss = 0.276324 (* 1 = 0.276324 loss) +I0407 09:28:51.463748 18909 sgd_solver.cpp:105] Iteration 7296, lr = 0.005625 +I0407 09:28:56.747776 18909 solver.cpp:218] Iteration 7308 (2.271 iter/s, 5.28402s/12 iters), loss = 0.248291 +I0407 09:28:56.747900 18909 solver.cpp:237] Train net output #0: loss = 0.248291 (* 1 = 0.248291 loss) +I0407 09:28:56.747910 18909 sgd_solver.cpp:105] Iteration 7308, lr = 0.005625 +I0407 09:29:02.208636 18909 solver.cpp:218] Iteration 7320 (2.19751 iter/s, 5.46073s/12 iters), loss = 0.206842 +I0407 09:29:02.208678 18909 solver.cpp:237] Train net output #0: loss = 0.206842 (* 1 = 0.206842 loss) +I0407 09:29:02.208685 18909 sgd_solver.cpp:105] Iteration 7320, lr = 0.005625 +I0407 09:29:07.504650 18909 solver.cpp:218] Iteration 7332 (2.26588 iter/s, 5.29596s/12 iters), loss = 0.202051 +I0407 09:29:07.504694 18909 solver.cpp:237] Train net output #0: loss = 0.202051 (* 1 = 0.202051 loss) +I0407 09:29:07.504700 18909 sgd_solver.cpp:105] Iteration 7332, lr = 0.005625 +I0407 09:29:12.448272 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0407 09:29:17.442889 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0407 09:29:19.778285 18909 solver.cpp:330] Iteration 7344, Testing net (#0) +I0407 09:29:19.778309 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:29:21.298053 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:24.186393 18909 solver.cpp:397] Test net output #0: accuracy = 0.415441 +I0407 09:29:24.186424 18909 solver.cpp:397] Test net output #1: loss = 2.99108 (* 1 = 2.99108 loss) +I0407 09:29:24.327303 18909 solver.cpp:218] Iteration 7344 (0.713326 iter/s, 16.8226s/12 iters), loss = 0.480422 +I0407 09:29:24.327375 18909 solver.cpp:237] Train net output #0: loss = 0.480422 (* 1 = 0.480422 loss) +I0407 09:29:24.327384 18909 sgd_solver.cpp:105] Iteration 7344, lr = 0.005625 +I0407 09:29:28.761519 18909 solver.cpp:218] Iteration 7356 (2.70628 iter/s, 4.43413s/12 iters), loss = 0.319154 +I0407 09:29:28.761654 18909 solver.cpp:237] Train net output #0: loss = 0.319154 (* 1 = 0.319154 loss) +I0407 09:29:28.761663 18909 sgd_solver.cpp:105] Iteration 7356, lr = 0.005625 +I0407 09:29:33.834453 18909 solver.cpp:218] Iteration 7368 (2.36556 iter/s, 5.07279s/12 iters), loss = 0.277412 +I0407 09:29:33.834488 18909 solver.cpp:237] Train net output #0: loss = 0.277412 (* 1 = 0.277412 loss) +I0407 09:29:33.834494 18909 sgd_solver.cpp:105] Iteration 7368, lr = 0.005625 +I0407 09:29:38.885766 18909 solver.cpp:218] Iteration 7380 (2.37564 iter/s, 5.05127s/12 iters), loss = 0.261359 +I0407 09:29:38.885802 18909 solver.cpp:237] Train net output #0: loss = 0.261359 (* 1 = 0.261359 loss) +I0407 09:29:38.885809 18909 sgd_solver.cpp:105] Iteration 7380, lr = 0.005625 +I0407 09:29:40.328688 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:29:44.288434 18909 solver.cpp:218] Iteration 7392 (2.22114 iter/s, 5.40262s/12 iters), loss = 0.266044 +I0407 09:29:44.288476 18909 solver.cpp:237] Train net output #0: loss = 0.266044 (* 1 = 0.266044 loss) +I0407 09:29:44.288484 18909 sgd_solver.cpp:105] Iteration 7392, lr = 0.005625 +I0407 09:29:49.512354 18909 solver.cpp:218] Iteration 7404 (2.29715 iter/s, 5.22386s/12 iters), loss = 0.2858 +I0407 09:29:49.512398 18909 solver.cpp:237] Train net output #0: loss = 0.2858 (* 1 = 0.2858 loss) +I0407 09:29:49.512405 18909 sgd_solver.cpp:105] Iteration 7404, lr = 0.005625 +I0407 09:29:54.846768 18909 solver.cpp:218] Iteration 7416 (2.24957 iter/s, 5.33436s/12 iters), loss = 0.237602 +I0407 09:29:54.846808 18909 solver.cpp:237] Train net output #0: loss = 0.237602 (* 1 = 0.237602 loss) +I0407 09:29:54.846815 18909 sgd_solver.cpp:105] Iteration 7416, lr = 0.005625 +I0407 09:30:00.149544 18909 solver.cpp:218] Iteration 7428 (2.26299 iter/s, 5.30272s/12 iters), loss = 0.301051 +I0407 09:30:00.149665 18909 solver.cpp:237] Train net output #0: loss = 0.301051 (* 1 = 0.301051 loss) +I0407 09:30:00.149674 18909 sgd_solver.cpp:105] Iteration 7428, lr = 0.005625 +I0407 09:30:05.505475 18909 solver.cpp:218] Iteration 7440 (2.24056 iter/s, 5.3558s/12 iters), loss = 0.198457 +I0407 09:30:05.505518 18909 solver.cpp:237] Train net output #0: loss = 0.198457 (* 1 = 0.198457 loss) +I0407 09:30:05.505525 18909 sgd_solver.cpp:105] Iteration 7440, lr = 0.005625 +I0407 09:30:07.601573 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0407 09:30:12.008152 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0407 09:30:14.328737 18909 solver.cpp:330] Iteration 7446, Testing net (#0) +I0407 09:30:14.328755 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:30:15.798522 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:30:18.677362 18909 solver.cpp:397] Test net output #0: accuracy = 0.435049 +I0407 09:30:18.677412 18909 solver.cpp:397] Test net output #1: loss = 2.99829 (* 1 = 2.99829 loss) +I0407 09:30:20.584571 18909 solver.cpp:218] Iteration 7452 (0.795806 iter/s, 15.0791s/12 iters), loss = 0.290827 +I0407 09:30:20.584610 18909 solver.cpp:237] Train net output #0: loss = 0.290827 (* 1 = 0.290827 loss) +I0407 09:30:20.584617 18909 sgd_solver.cpp:105] Iteration 7452, lr = 0.005625 +I0407 09:30:25.785892 18909 solver.cpp:218] Iteration 7464 (2.30713 iter/s, 5.20127s/12 iters), loss = 0.347845 +I0407 09:30:25.785933 18909 solver.cpp:237] Train net output #0: loss = 0.347845 (* 1 = 0.347845 loss) +I0407 09:30:25.785941 18909 sgd_solver.cpp:105] Iteration 7464, lr = 0.005625 +I0407 09:30:31.079104 18909 solver.cpp:218] Iteration 7476 (2.26708 iter/s, 5.29316s/12 iters), loss = 0.361665 +I0407 09:30:31.079253 18909 solver.cpp:237] Train net output #0: loss = 0.361665 (* 1 = 0.361665 loss) +I0407 09:30:31.079262 18909 sgd_solver.cpp:105] Iteration 7476, lr = 0.005625 +I0407 09:30:34.741719 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:30:36.345309 18909 solver.cpp:218] Iteration 7488 (2.27875 iter/s, 5.26604s/12 iters), loss = 0.428409 +I0407 09:30:36.345356 18909 solver.cpp:237] Train net output #0: loss = 0.428409 (* 1 = 0.428409 loss) +I0407 09:30:36.345363 18909 sgd_solver.cpp:105] Iteration 7488, lr = 0.005625 +I0407 09:30:41.545826 18909 solver.cpp:218] Iteration 7500 (2.30749 iter/s, 5.20046s/12 iters), loss = 0.270878 +I0407 09:30:41.545868 18909 solver.cpp:237] Train net output #0: loss = 0.270878 (* 1 = 0.270878 loss) +I0407 09:30:41.545876 18909 sgd_solver.cpp:105] Iteration 7500, lr = 0.005625 +I0407 09:30:46.663331 18909 solver.cpp:218] Iteration 7512 (2.34492 iter/s, 5.11746s/12 iters), loss = 0.204243 +I0407 09:30:46.663372 18909 solver.cpp:237] Train net output #0: loss = 0.204243 (* 1 = 0.204243 loss) +I0407 09:30:46.663378 18909 sgd_solver.cpp:105] Iteration 7512, lr = 0.005625 +I0407 09:30:51.961963 18909 solver.cpp:218] Iteration 7524 (2.26476 iter/s, 5.29858s/12 iters), loss = 0.129723 +I0407 09:30:51.962018 18909 solver.cpp:237] Train net output #0: loss = 0.129723 (* 1 = 0.129723 loss) +I0407 09:30:51.962028 18909 sgd_solver.cpp:105] Iteration 7524, lr = 0.005625 +I0407 09:30:57.168460 18909 solver.cpp:218] Iteration 7536 (2.30484 iter/s, 5.20643s/12 iters), loss = 0.225219 +I0407 09:30:57.168516 18909 solver.cpp:237] Train net output #0: loss = 0.225219 (* 1 = 0.225219 loss) +I0407 09:30:57.168526 18909 sgd_solver.cpp:105] Iteration 7536, lr = 0.005625 +I0407 09:31:01.724112 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0407 09:31:06.369804 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0407 09:31:08.792101 18909 solver.cpp:330] Iteration 7548, Testing net (#0) +I0407 09:31:08.792125 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:31:10.270416 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:31:13.188527 18909 solver.cpp:397] Test net output #0: accuracy = 0.409926 +I0407 09:31:13.188555 18909 solver.cpp:397] Test net output #1: loss = 3.10785 (* 1 = 3.10785 loss) +I0407 09:31:13.319926 18909 solver.cpp:218] Iteration 7548 (0.74297 iter/s, 16.1514s/12 iters), loss = 0.186569 +I0407 09:31:13.319980 18909 solver.cpp:237] Train net output #0: loss = 0.186569 (* 1 = 0.186569 loss) +I0407 09:31:13.319990 18909 sgd_solver.cpp:105] Iteration 7548, lr = 0.005625 +I0407 09:31:17.506117 18909 solver.cpp:218] Iteration 7560 (2.86661 iter/s, 4.18612s/12 iters), loss = 0.380522 +I0407 09:31:17.506158 18909 solver.cpp:237] Train net output #0: loss = 0.380522 (* 1 = 0.380522 loss) +I0407 09:31:17.506165 18909 sgd_solver.cpp:105] Iteration 7560, lr = 0.005625 +I0407 09:31:22.717955 18909 solver.cpp:218] Iteration 7572 (2.30247 iter/s, 5.21178s/12 iters), loss = 0.250777 +I0407 09:31:22.717995 18909 solver.cpp:237] Train net output #0: loss = 0.250777 (* 1 = 0.250777 loss) +I0407 09:31:22.718003 18909 sgd_solver.cpp:105] Iteration 7572, lr = 0.005625 +I0407 09:31:27.915546 18909 solver.cpp:218] Iteration 7584 (2.30879 iter/s, 5.19753s/12 iters), loss = 0.174987 +I0407 09:31:27.915588 18909 solver.cpp:237] Train net output #0: loss = 0.174987 (* 1 = 0.174987 loss) +I0407 09:31:27.915596 18909 sgd_solver.cpp:105] Iteration 7584, lr = 0.005625 +I0407 09:31:28.565348 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:31:33.299273 18909 solver.cpp:218] Iteration 7596 (2.22896 iter/s, 5.38367s/12 iters), loss = 0.36935 +I0407 09:31:33.299404 18909 solver.cpp:237] Train net output #0: loss = 0.36935 (* 1 = 0.36935 loss) +I0407 09:31:33.299412 18909 sgd_solver.cpp:105] Iteration 7596, lr = 0.005625 +I0407 09:31:38.485653 18909 solver.cpp:218] Iteration 7608 (2.31381 iter/s, 5.18624s/12 iters), loss = 0.187944 +I0407 09:31:38.485694 18909 solver.cpp:237] Train net output #0: loss = 0.187944 (* 1 = 0.187944 loss) +I0407 09:31:38.485702 18909 sgd_solver.cpp:105] Iteration 7608, lr = 0.005625 +I0407 09:31:43.704036 18909 solver.cpp:218] Iteration 7620 (2.29959 iter/s, 5.21832s/12 iters), loss = 0.401818 +I0407 09:31:43.704090 18909 solver.cpp:237] Train net output #0: loss = 0.401818 (* 1 = 0.401818 loss) +I0407 09:31:43.704100 18909 sgd_solver.cpp:105] Iteration 7620, lr = 0.005625 +I0407 09:31:46.265600 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:31:48.769737 18909 solver.cpp:218] Iteration 7632 (2.3689 iter/s, 5.06563s/12 iters), loss = 0.280554 +I0407 09:31:48.769784 18909 solver.cpp:237] Train net output #0: loss = 0.280554 (* 1 = 0.280554 loss) +I0407 09:31:48.769791 18909 sgd_solver.cpp:105] Iteration 7632, lr = 0.005625 +I0407 09:31:53.789608 18909 solver.cpp:218] Iteration 7644 (2.39053 iter/s, 5.01981s/12 iters), loss = 0.18287 +I0407 09:31:53.789649 18909 solver.cpp:237] Train net output #0: loss = 0.18287 (* 1 = 0.18287 loss) +I0407 09:31:53.789656 18909 sgd_solver.cpp:105] Iteration 7644, lr = 0.005625 +I0407 09:31:55.918885 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0407 09:32:00.348215 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0407 09:32:03.057031 18909 solver.cpp:330] Iteration 7650, Testing net (#0) +I0407 09:32:03.057051 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:32:04.380867 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:07.317329 18909 solver.cpp:397] Test net output #0: accuracy = 0.411765 +I0407 09:32:07.317361 18909 solver.cpp:397] Test net output #1: loss = 3.06508 (* 1 = 3.06508 loss) +I0407 09:32:09.079025 18909 solver.cpp:218] Iteration 7656 (0.784859 iter/s, 15.2894s/12 iters), loss = 0.259964 +I0407 09:32:09.079067 18909 solver.cpp:237] Train net output #0: loss = 0.259964 (* 1 = 0.259964 loss) +I0407 09:32:09.079075 18909 sgd_solver.cpp:105] Iteration 7656, lr = 0.005625 +I0407 09:32:14.272830 18909 solver.cpp:218] Iteration 7668 (2.31047 iter/s, 5.19375s/12 iters), loss = 0.180365 +I0407 09:32:14.272872 18909 solver.cpp:237] Train net output #0: loss = 0.180365 (* 1 = 0.180365 loss) +I0407 09:32:14.272878 18909 sgd_solver.cpp:105] Iteration 7668, lr = 0.005625 +I0407 09:32:19.449699 18909 solver.cpp:218] Iteration 7680 (2.31803 iter/s, 5.17682s/12 iters), loss = 0.199943 +I0407 09:32:19.449743 18909 solver.cpp:237] Train net output #0: loss = 0.199943 (* 1 = 0.199943 loss) +I0407 09:32:19.449750 18909 sgd_solver.cpp:105] Iteration 7680, lr = 0.005625 +I0407 09:32:22.397647 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:32:24.736901 18909 solver.cpp:218] Iteration 7692 (2.26966 iter/s, 5.28714s/12 iters), loss = 0.303151 +I0407 09:32:24.736945 18909 solver.cpp:237] Train net output #0: loss = 0.303151 (* 1 = 0.303151 loss) +I0407 09:32:24.736953 18909 sgd_solver.cpp:105] Iteration 7692, lr = 0.005625 +I0407 09:32:29.687458 18909 solver.cpp:218] Iteration 7704 (2.424 iter/s, 4.9505s/12 iters), loss = 0.310388 +I0407 09:32:29.687497 18909 solver.cpp:237] Train net output #0: loss = 0.310388 (* 1 = 0.310388 loss) +I0407 09:32:29.687505 18909 sgd_solver.cpp:105] Iteration 7704, lr = 0.005625 +I0407 09:32:34.871855 18909 solver.cpp:218] Iteration 7716 (2.31466 iter/s, 5.18434s/12 iters), loss = 0.504867 +I0407 09:32:34.871970 18909 solver.cpp:237] Train net output #0: loss = 0.504867 (* 1 = 0.504867 loss) +I0407 09:32:34.871978 18909 sgd_solver.cpp:105] Iteration 7716, lr = 0.005625 +I0407 09:32:39.979693 18909 solver.cpp:218] Iteration 7728 (2.34939 iter/s, 5.10771s/12 iters), loss = 0.129383 +I0407 09:32:39.979737 18909 solver.cpp:237] Train net output #0: loss = 0.129383 (* 1 = 0.129383 loss) +I0407 09:32:39.979745 18909 sgd_solver.cpp:105] Iteration 7728, lr = 0.005625 +I0407 09:32:45.224835 18909 solver.cpp:218] Iteration 7740 (2.28786 iter/s, 5.24509s/12 iters), loss = 0.145579 +I0407 09:32:45.224875 18909 solver.cpp:237] Train net output #0: loss = 0.145579 (* 1 = 0.145579 loss) +I0407 09:32:45.224889 18909 sgd_solver.cpp:105] Iteration 7740, lr = 0.005625 +I0407 09:32:49.995726 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0407 09:32:54.379142 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0407 09:32:57.518779 18909 solver.cpp:330] Iteration 7752, Testing net (#0) +I0407 09:32:57.518805 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:32:58.877022 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:01.838366 18909 solver.cpp:397] Test net output #0: accuracy = 0.403799 +I0407 09:33:01.838402 18909 solver.cpp:397] Test net output #1: loss = 3.18528 (* 1 = 3.18528 loss) +I0407 09:33:01.978210 18909 solver.cpp:218] Iteration 7752 (0.716276 iter/s, 16.7533s/12 iters), loss = 0.226276 +I0407 09:33:01.978255 18909 solver.cpp:237] Train net output #0: loss = 0.226276 (* 1 = 0.226276 loss) +I0407 09:33:01.978263 18909 sgd_solver.cpp:105] Iteration 7752, lr = 0.005625 +I0407 09:33:06.244251 18909 solver.cpp:218] Iteration 7764 (2.81295 iter/s, 4.26598s/12 iters), loss = 0.501565 +I0407 09:33:06.244346 18909 solver.cpp:237] Train net output #0: loss = 0.501565 (* 1 = 0.501565 loss) +I0407 09:33:06.244354 18909 sgd_solver.cpp:105] Iteration 7764, lr = 0.005625 +I0407 09:33:11.252337 18909 solver.cpp:218] Iteration 7776 (2.39618 iter/s, 5.00798s/12 iters), loss = 0.367811 +I0407 09:33:11.252384 18909 solver.cpp:237] Train net output #0: loss = 0.367811 (* 1 = 0.367811 loss) +I0407 09:33:11.252393 18909 sgd_solver.cpp:105] Iteration 7776, lr = 0.005625 +I0407 09:33:16.439018 18909 solver.cpp:218] Iteration 7788 (2.31365 iter/s, 5.18662s/12 iters), loss = 0.113237 +I0407 09:33:16.439064 18909 solver.cpp:237] Train net output #0: loss = 0.113237 (* 1 = 0.113237 loss) +I0407 09:33:16.439071 18909 sgd_solver.cpp:105] Iteration 7788, lr = 0.005625 +I0407 09:33:16.445807 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:21.777563 18909 solver.cpp:218] Iteration 7800 (2.24783 iter/s, 5.33849s/12 iters), loss = 0.25601 +I0407 09:33:21.777606 18909 solver.cpp:237] Train net output #0: loss = 0.256009 (* 1 = 0.256009 loss) +I0407 09:33:21.777613 18909 sgd_solver.cpp:105] Iteration 7800, lr = 0.005625 +I0407 09:33:27.148208 18909 solver.cpp:218] Iteration 7812 (2.23439 iter/s, 5.37059s/12 iters), loss = 0.202636 +I0407 09:33:27.148259 18909 solver.cpp:237] Train net output #0: loss = 0.202636 (* 1 = 0.202636 loss) +I0407 09:33:27.148267 18909 sgd_solver.cpp:105] Iteration 7812, lr = 0.005625 +I0407 09:33:32.342458 18909 solver.cpp:218] Iteration 7824 (2.31028 iter/s, 5.19419s/12 iters), loss = 0.187029 +I0407 09:33:32.342506 18909 solver.cpp:237] Train net output #0: loss = 0.187029 (* 1 = 0.187029 loss) +I0407 09:33:32.342514 18909 sgd_solver.cpp:105] Iteration 7824, lr = 0.005625 +I0407 09:33:37.589516 18909 solver.cpp:218] Iteration 7836 (2.28702 iter/s, 5.247s/12 iters), loss = 0.164357 +I0407 09:33:37.589640 18909 solver.cpp:237] Train net output #0: loss = 0.164357 (* 1 = 0.164357 loss) +I0407 09:33:37.589648 18909 sgd_solver.cpp:105] Iteration 7836, lr = 0.005625 +I0407 09:33:42.669394 18909 solver.cpp:218] Iteration 7848 (2.36233 iter/s, 5.07974s/12 iters), loss = 0.487799 +I0407 09:33:42.669440 18909 solver.cpp:237] Train net output #0: loss = 0.487799 (* 1 = 0.487799 loss) +I0407 09:33:42.669448 18909 sgd_solver.cpp:105] Iteration 7848, lr = 0.005625 +I0407 09:33:44.712956 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0407 09:33:49.142530 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0407 09:33:52.236481 18909 solver.cpp:330] Iteration 7854, Testing net (#0) +I0407 09:33:52.236502 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:33:53.576217 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:33:56.590081 18909 solver.cpp:397] Test net output #0: accuracy = 0.423407 +I0407 09:33:56.590111 18909 solver.cpp:397] Test net output #1: loss = 3.1398 (* 1 = 3.1398 loss) +I0407 09:33:58.478188 18909 solver.cpp:218] Iteration 7860 (0.759074 iter/s, 15.8087s/12 iters), loss = 0.231913 +I0407 09:33:58.478250 18909 solver.cpp:237] Train net output #0: loss = 0.231913 (* 1 = 0.231913 loss) +I0407 09:33:58.478260 18909 sgd_solver.cpp:105] Iteration 7860, lr = 0.005625 +I0407 09:34:03.664983 18909 solver.cpp:218] Iteration 7872 (2.3136 iter/s, 5.18673s/12 iters), loss = 0.229792 +I0407 09:34:03.665030 18909 solver.cpp:237] Train net output #0: loss = 0.229792 (* 1 = 0.229792 loss) +I0407 09:34:03.665040 18909 sgd_solver.cpp:105] Iteration 7872, lr = 0.005625 +I0407 09:34:08.846913 18909 solver.cpp:218] Iteration 7884 (2.31577 iter/s, 5.18187s/12 iters), loss = 0.188151 +I0407 09:34:08.847101 18909 solver.cpp:237] Train net output #0: loss = 0.188151 (* 1 = 0.188151 loss) +I0407 09:34:08.847113 18909 sgd_solver.cpp:105] Iteration 7884, lr = 0.005625 +I0407 09:34:11.067432 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:34:13.961644 18909 solver.cpp:218] Iteration 7896 (2.34625 iter/s, 5.11454s/12 iters), loss = 0.209415 +I0407 09:34:13.961689 18909 solver.cpp:237] Train net output #0: loss = 0.209415 (* 1 = 0.209415 loss) +I0407 09:34:13.961699 18909 sgd_solver.cpp:105] Iteration 7896, lr = 0.005625 +I0407 09:34:19.347750 18909 solver.cpp:218] Iteration 7908 (2.22798 iter/s, 5.38605s/12 iters), loss = 0.375408 +I0407 09:34:19.347803 18909 solver.cpp:237] Train net output #0: loss = 0.375408 (* 1 = 0.375408 loss) +I0407 09:34:19.347813 18909 sgd_solver.cpp:105] Iteration 7908, lr = 0.005625 +I0407 09:34:24.490937 18909 solver.cpp:218] Iteration 7920 (2.33321 iter/s, 5.14312s/12 iters), loss = 0.180082 +I0407 09:34:24.490995 18909 solver.cpp:237] Train net output #0: loss = 0.180082 (* 1 = 0.180082 loss) +I0407 09:34:24.491004 18909 sgd_solver.cpp:105] Iteration 7920, lr = 0.005625 +I0407 09:34:29.692591 18909 solver.cpp:218] Iteration 7932 (2.30699 iter/s, 5.20159s/12 iters), loss = 0.221935 +I0407 09:34:29.692633 18909 solver.cpp:237] Train net output #0: loss = 0.221935 (* 1 = 0.221935 loss) +I0407 09:34:29.692641 18909 sgd_solver.cpp:105] Iteration 7932, lr = 0.005625 +I0407 09:34:34.807685 18909 solver.cpp:218] Iteration 7944 (2.34602 iter/s, 5.11504s/12 iters), loss = 0.418384 +I0407 09:34:34.807734 18909 solver.cpp:237] Train net output #0: loss = 0.418384 (* 1 = 0.418384 loss) +I0407 09:34:34.807742 18909 sgd_solver.cpp:105] Iteration 7944, lr = 0.005625 +I0407 09:34:39.496907 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0407 09:34:43.914242 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0407 09:34:47.145591 18909 solver.cpp:330] Iteration 7956, Testing net (#0) +I0407 09:34:47.145612 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:34:48.518070 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:34:51.603652 18909 solver.cpp:397] Test net output #0: accuracy = 0.420956 +I0407 09:34:51.603694 18909 solver.cpp:397] Test net output #1: loss = 3.12395 (* 1 = 3.12395 loss) +I0407 09:34:51.740422 18909 solver.cpp:218] Iteration 7956 (0.708688 iter/s, 16.9327s/12 iters), loss = 0.321575 +I0407 09:34:51.741982 18909 solver.cpp:237] Train net output #0: loss = 0.321575 (* 1 = 0.321575 loss) +I0407 09:34:51.741998 18909 sgd_solver.cpp:105] Iteration 7956, lr = 0.005625 +I0407 09:34:56.153515 18909 solver.cpp:218] Iteration 7968 (2.72014 iter/s, 4.41153s/12 iters), loss = 0.217609 +I0407 09:34:56.153555 18909 solver.cpp:237] Train net output #0: loss = 0.217609 (* 1 = 0.217609 loss) +I0407 09:34:56.153563 18909 sgd_solver.cpp:105] Iteration 7968, lr = 0.005625 +I0407 09:35:01.442775 18909 solver.cpp:218] Iteration 7980 (2.26877 iter/s, 5.28921s/12 iters), loss = 0.296229 +I0407 09:35:01.442819 18909 solver.cpp:237] Train net output #0: loss = 0.296229 (* 1 = 0.296229 loss) +I0407 09:35:01.442826 18909 sgd_solver.cpp:105] Iteration 7980, lr = 0.005625 +I0407 09:35:05.702455 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:35:06.483996 18909 solver.cpp:218] Iteration 7992 (2.3804 iter/s, 5.04116s/12 iters), loss = 0.273584 +I0407 09:35:06.484041 18909 solver.cpp:237] Train net output #0: loss = 0.273584 (* 1 = 0.273584 loss) +I0407 09:35:06.484048 18909 sgd_solver.cpp:105] Iteration 7992, lr = 0.005625 +I0407 09:35:11.429091 18909 solver.cpp:218] Iteration 8004 (2.42667 iter/s, 4.94504s/12 iters), loss = 0.271677 +I0407 09:35:11.429564 18909 solver.cpp:237] Train net output #0: loss = 0.271677 (* 1 = 0.271677 loss) +I0407 09:35:11.429574 18909 sgd_solver.cpp:105] Iteration 8004, lr = 0.005625 +I0407 09:35:16.342511 18909 solver.cpp:218] Iteration 8016 (2.44253 iter/s, 4.91294s/12 iters), loss = 0.289144 +I0407 09:35:16.342552 18909 solver.cpp:237] Train net output #0: loss = 0.289144 (* 1 = 0.289144 loss) +I0407 09:35:16.342558 18909 sgd_solver.cpp:105] Iteration 8016, lr = 0.005625 +I0407 09:35:21.635011 18909 solver.cpp:218] Iteration 8028 (2.26739 iter/s, 5.29244s/12 iters), loss = 0.305915 +I0407 09:35:21.635068 18909 solver.cpp:237] Train net output #0: loss = 0.305915 (* 1 = 0.305915 loss) +I0407 09:35:21.635079 18909 sgd_solver.cpp:105] Iteration 8028, lr = 0.005625 +I0407 09:35:26.806394 18909 solver.cpp:218] Iteration 8040 (2.32049 iter/s, 5.17132s/12 iters), loss = 0.164493 +I0407 09:35:26.806438 18909 solver.cpp:237] Train net output #0: loss = 0.164493 (* 1 = 0.164493 loss) +I0407 09:35:26.806444 18909 sgd_solver.cpp:105] Iteration 8040, lr = 0.005625 +I0407 09:35:32.142421 18909 solver.cpp:218] Iteration 8052 (2.24889 iter/s, 5.33597s/12 iters), loss = 0.26348 +I0407 09:35:32.142467 18909 solver.cpp:237] Train net output #0: loss = 0.26348 (* 1 = 0.26348 loss) +I0407 09:35:32.142473 18909 sgd_solver.cpp:105] Iteration 8052, lr = 0.005625 +I0407 09:35:34.215658 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0407 09:35:38.602816 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0407 09:35:41.950814 18909 solver.cpp:330] Iteration 8058, Testing net (#0) +I0407 09:35:41.950891 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:35:43.106519 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:35:46.204782 18909 solver.cpp:397] Test net output #0: accuracy = 0.430147 +I0407 09:35:46.205207 18909 solver.cpp:397] Test net output #1: loss = 3.03304 (* 1 = 3.03304 loss) +I0407 09:35:48.128789 18909 solver.cpp:218] Iteration 8064 (0.750642 iter/s, 15.9863s/12 iters), loss = 0.461672 +I0407 09:35:48.128832 18909 solver.cpp:237] Train net output #0: loss = 0.461672 (* 1 = 0.461672 loss) +I0407 09:35:48.128841 18909 sgd_solver.cpp:105] Iteration 8064, lr = 0.005625 +I0407 09:35:53.099891 18909 solver.cpp:218] Iteration 8076 (2.41398 iter/s, 4.97105s/12 iters), loss = 0.252532 +I0407 09:35:53.099928 18909 solver.cpp:237] Train net output #0: loss = 0.252532 (* 1 = 0.252532 loss) +I0407 09:35:53.099936 18909 sgd_solver.cpp:105] Iteration 8076, lr = 0.005625 +I0407 09:35:58.290076 18909 solver.cpp:218] Iteration 8088 (2.31208 iter/s, 5.19013s/12 iters), loss = 0.272297 +I0407 09:35:58.290120 18909 solver.cpp:237] Train net output #0: loss = 0.272297 (* 1 = 0.272297 loss) +I0407 09:35:58.290128 18909 sgd_solver.cpp:105] Iteration 8088, lr = 0.005625 +I0407 09:35:59.755726 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:03.444545 18909 solver.cpp:218] Iteration 8100 (2.3281 iter/s, 5.15442s/12 iters), loss = 0.205077 +I0407 09:36:03.444586 18909 solver.cpp:237] Train net output #0: loss = 0.205077 (* 1 = 0.205077 loss) +I0407 09:36:03.444592 18909 sgd_solver.cpp:105] Iteration 8100, lr = 0.005625 +I0407 09:36:08.534972 18909 solver.cpp:218] Iteration 8112 (2.35739 iter/s, 5.09038s/12 iters), loss = 0.232268 +I0407 09:36:08.535012 18909 solver.cpp:237] Train net output #0: loss = 0.232268 (* 1 = 0.232268 loss) +I0407 09:36:08.535018 18909 sgd_solver.cpp:105] Iteration 8112, lr = 0.005625 +I0407 09:36:13.848917 18909 solver.cpp:218] Iteration 8124 (2.25823 iter/s, 5.31389s/12 iters), loss = 0.276885 +I0407 09:36:13.849043 18909 solver.cpp:237] Train net output #0: loss = 0.276885 (* 1 = 0.276885 loss) +I0407 09:36:13.849052 18909 sgd_solver.cpp:105] Iteration 8124, lr = 0.005625 +I0407 09:36:19.003058 18909 solver.cpp:218] Iteration 8136 (2.32829 iter/s, 5.15401s/12 iters), loss = 0.252619 +I0407 09:36:19.003098 18909 solver.cpp:237] Train net output #0: loss = 0.252619 (* 1 = 0.252619 loss) +I0407 09:36:19.003104 18909 sgd_solver.cpp:105] Iteration 8136, lr = 0.005625 +I0407 09:36:24.235940 18909 solver.cpp:218] Iteration 8148 (2.29322 iter/s, 5.23283s/12 iters), loss = 0.288456 +I0407 09:36:24.235981 18909 solver.cpp:237] Train net output #0: loss = 0.288456 (* 1 = 0.288456 loss) +I0407 09:36:24.235988 18909 sgd_solver.cpp:105] Iteration 8148, lr = 0.005625 +I0407 09:36:29.045956 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0407 09:36:33.948506 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0407 09:36:38.212651 18909 solver.cpp:330] Iteration 8160, Testing net (#0) +I0407 09:36:38.212671 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:36:39.434691 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:42.561657 18909 solver.cpp:397] Test net output #0: accuracy = 0.429534 +I0407 09:36:42.561683 18909 solver.cpp:397] Test net output #1: loss = 3.1183 (* 1 = 3.1183 loss) +I0407 09:36:42.702569 18909 solver.cpp:218] Iteration 8160 (0.649822 iter/s, 18.4666s/12 iters), loss = 0.260766 +I0407 09:36:42.702625 18909 solver.cpp:237] Train net output #0: loss = 0.260766 (* 1 = 0.260766 loss) +I0407 09:36:42.702633 18909 sgd_solver.cpp:105] Iteration 8160, lr = 0.005625 +I0407 09:36:46.979223 18909 solver.cpp:218] Iteration 8172 (2.80597 iter/s, 4.27659s/12 iters), loss = 0.208847 +I0407 09:36:46.979331 18909 solver.cpp:237] Train net output #0: loss = 0.208847 (* 1 = 0.208847 loss) +I0407 09:36:46.979339 18909 sgd_solver.cpp:105] Iteration 8172, lr = 0.005625 +I0407 09:36:52.185521 18909 solver.cpp:218] Iteration 8184 (2.30495 iter/s, 5.20618s/12 iters), loss = 0.219262 +I0407 09:36:52.185565 18909 solver.cpp:237] Train net output #0: loss = 0.219262 (* 1 = 0.219262 loss) +I0407 09:36:52.185573 18909 sgd_solver.cpp:105] Iteration 8184, lr = 0.005625 +I0407 09:36:55.771492 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:36:57.311161 18909 solver.cpp:218] Iteration 8196 (2.3412 iter/s, 5.12558s/12 iters), loss = 0.233021 +I0407 09:36:57.311221 18909 solver.cpp:237] Train net output #0: loss = 0.233021 (* 1 = 0.233021 loss) +I0407 09:36:57.311231 18909 sgd_solver.cpp:105] Iteration 8196, lr = 0.005625 +I0407 09:37:02.441479 18909 solver.cpp:218] Iteration 8208 (2.33907 iter/s, 5.13025s/12 iters), loss = 0.311603 +I0407 09:37:02.441540 18909 solver.cpp:237] Train net output #0: loss = 0.311603 (* 1 = 0.311603 loss) +I0407 09:37:02.441550 18909 sgd_solver.cpp:105] Iteration 8208, lr = 0.005625 +I0407 09:37:07.840138 18909 solver.cpp:218] Iteration 8220 (2.2228 iter/s, 5.39859s/12 iters), loss = 0.301721 +I0407 09:37:07.840195 18909 solver.cpp:237] Train net output #0: loss = 0.301721 (* 1 = 0.301721 loss) +I0407 09:37:07.840205 18909 sgd_solver.cpp:105] Iteration 8220, lr = 0.005625 +I0407 09:37:13.126957 18909 solver.cpp:218] Iteration 8232 (2.26983 iter/s, 5.28675s/12 iters), loss = 0.306118 +I0407 09:37:13.127020 18909 solver.cpp:237] Train net output #0: loss = 0.306118 (* 1 = 0.306118 loss) +I0407 09:37:13.127032 18909 sgd_solver.cpp:105] Iteration 8232, lr = 0.005625 +I0407 09:37:18.272212 18909 solver.cpp:218] Iteration 8244 (2.33227 iter/s, 5.14519s/12 iters), loss = 0.134083 +I0407 09:37:18.272341 18909 solver.cpp:237] Train net output #0: loss = 0.134083 (* 1 = 0.134083 loss) +I0407 09:37:18.272349 18909 sgd_solver.cpp:105] Iteration 8244, lr = 0.005625 +I0407 09:37:23.391866 18909 solver.cpp:218] Iteration 8256 (2.34397 iter/s, 5.11951s/12 iters), loss = 0.222741 +I0407 09:37:23.391906 18909 solver.cpp:237] Train net output #0: loss = 0.222741 (* 1 = 0.222741 loss) +I0407 09:37:23.391913 18909 sgd_solver.cpp:105] Iteration 8256, lr = 0.005625 +I0407 09:37:25.545218 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0407 09:37:30.369927 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0407 09:37:34.463104 18909 solver.cpp:330] Iteration 8262, Testing net (#0) +I0407 09:37:34.463124 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:37:35.627883 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:38.782112 18909 solver.cpp:397] Test net output #0: accuracy = 0.435049 +I0407 09:37:38.782140 18909 solver.cpp:397] Test net output #1: loss = 3.09974 (* 1 = 3.09974 loss) +I0407 09:37:40.748224 18909 solver.cpp:218] Iteration 8268 (0.691391 iter/s, 17.3563s/12 iters), loss = 0.257752 +I0407 09:37:40.748267 18909 solver.cpp:237] Train net output #0: loss = 0.257752 (* 1 = 0.257752 loss) +I0407 09:37:40.748275 18909 sgd_solver.cpp:105] Iteration 8268, lr = 0.005625 +I0407 09:37:46.006603 18909 solver.cpp:218] Iteration 8280 (2.2821 iter/s, 5.25833s/12 iters), loss = 0.282895 +I0407 09:37:46.006640 18909 solver.cpp:237] Train net output #0: loss = 0.282895 (* 1 = 0.282895 loss) +I0407 09:37:46.006647 18909 sgd_solver.cpp:105] Iteration 8280, lr = 0.005625 +I0407 09:37:51.307678 18909 solver.cpp:218] Iteration 8292 (2.26371 iter/s, 5.30103s/12 iters), loss = 0.3463 +I0407 09:37:51.307765 18909 solver.cpp:237] Train net output #0: loss = 0.3463 (* 1 = 0.3463 loss) +I0407 09:37:51.307773 18909 sgd_solver.cpp:105] Iteration 8292, lr = 0.005625 +I0407 09:37:52.028936 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:37:56.410215 18909 solver.cpp:218] Iteration 8304 (2.35182 iter/s, 5.10244s/12 iters), loss = 0.146025 +I0407 09:37:56.410271 18909 solver.cpp:237] Train net output #0: loss = 0.146025 (* 1 = 0.146025 loss) +I0407 09:37:56.410280 18909 sgd_solver.cpp:105] Iteration 8304, lr = 0.005625 +I0407 09:37:59.234477 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:38:01.585093 18909 solver.cpp:218] Iteration 8316 (2.31892 iter/s, 5.17481s/12 iters), loss = 0.259592 +I0407 09:38:01.585139 18909 solver.cpp:237] Train net output #0: loss = 0.259592 (* 1 = 0.259592 loss) +I0407 09:38:01.585145 18909 sgd_solver.cpp:105] Iteration 8316, lr = 0.005625 +I0407 09:38:06.791254 18909 solver.cpp:218] Iteration 8328 (2.30499 iter/s, 5.2061s/12 iters), loss = 0.249315 +I0407 09:38:06.791309 18909 solver.cpp:237] Train net output #0: loss = 0.249315 (* 1 = 0.249315 loss) +I0407 09:38:06.791318 18909 sgd_solver.cpp:105] Iteration 8328, lr = 0.005625 +I0407 09:38:12.023990 18909 solver.cpp:218] Iteration 8340 (2.29329 iter/s, 5.23266s/12 iters), loss = 0.279948 +I0407 09:38:12.024046 18909 solver.cpp:237] Train net output #0: loss = 0.279948 (* 1 = 0.279948 loss) +I0407 09:38:12.024055 18909 sgd_solver.cpp:105] Iteration 8340, lr = 0.005625 +I0407 09:38:17.116537 18909 solver.cpp:218] Iteration 8352 (2.35642 iter/s, 5.09248s/12 iters), loss = 0.363171 +I0407 09:38:17.116591 18909 solver.cpp:237] Train net output #0: loss = 0.363171 (* 1 = 0.363171 loss) +I0407 09:38:17.116600 18909 sgd_solver.cpp:105] Iteration 8352, lr = 0.005625 +I0407 09:38:21.639915 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0407 09:38:26.118021 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0407 09:38:29.494321 18909 solver.cpp:330] Iteration 8364, Testing net (#0) +I0407 09:38:29.494340 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:38:30.590116 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:38:33.880682 18909 solver.cpp:397] Test net output #0: accuracy = 0.429534 +I0407 09:38:33.880718 18909 solver.cpp:397] Test net output #1: loss = 2.9599 (* 1 = 2.9599 loss) +I0407 09:38:34.018894 18909 solver.cpp:218] Iteration 8364 (0.709963 iter/s, 16.9023s/12 iters), loss = 0.126699 +I0407 09:38:34.018935 18909 solver.cpp:237] Train net output #0: loss = 0.126699 (* 1 = 0.126699 loss) +I0407 09:38:34.018942 18909 sgd_solver.cpp:105] Iteration 8364, lr = 0.005625 +I0407 09:38:38.220233 18909 solver.cpp:218] Iteration 8376 (2.85627 iter/s, 4.20128s/12 iters), loss = 0.308438 +I0407 09:38:38.220275 18909 solver.cpp:237] Train net output #0: loss = 0.308438 (* 1 = 0.308438 loss) +I0407 09:38:38.220283 18909 sgd_solver.cpp:105] Iteration 8376, lr = 0.005625 +I0407 09:38:43.476584 18909 solver.cpp:218] Iteration 8388 (2.28298 iter/s, 5.25629s/12 iters), loss = 0.18553 +I0407 09:38:43.476640 18909 solver.cpp:237] Train net output #0: loss = 0.18553 (* 1 = 0.18553 loss) +I0407 09:38:43.476650 18909 sgd_solver.cpp:105] Iteration 8388, lr = 0.005625 +I0407 09:38:46.278936 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:38:48.612311 18909 solver.cpp:218] Iteration 8400 (2.3366 iter/s, 5.13566s/12 iters), loss = 0.190734 +I0407 09:38:48.612354 18909 solver.cpp:237] Train net output #0: loss = 0.190734 (* 1 = 0.190734 loss) +I0407 09:38:48.612361 18909 sgd_solver.cpp:105] Iteration 8400, lr = 0.005625 +I0407 09:38:53.703012 18909 solver.cpp:218] Iteration 8412 (2.35726 iter/s, 5.09065s/12 iters), loss = 0.314253 +I0407 09:38:53.703112 18909 solver.cpp:237] Train net output #0: loss = 0.314253 (* 1 = 0.314253 loss) +I0407 09:38:53.703120 18909 sgd_solver.cpp:105] Iteration 8412, lr = 0.005625 +I0407 09:38:58.917630 18909 solver.cpp:218] Iteration 8424 (2.30127 iter/s, 5.2145s/12 iters), loss = 0.253597 +I0407 09:38:58.917675 18909 solver.cpp:237] Train net output #0: loss = 0.253597 (* 1 = 0.253597 loss) +I0407 09:38:58.917683 18909 sgd_solver.cpp:105] Iteration 8424, lr = 0.005625 +I0407 09:39:04.233742 18909 solver.cpp:218] Iteration 8436 (2.25731 iter/s, 5.31606s/12 iters), loss = 0.385681 +I0407 09:39:04.233784 18909 solver.cpp:237] Train net output #0: loss = 0.385681 (* 1 = 0.385681 loss) +I0407 09:39:04.233791 18909 sgd_solver.cpp:105] Iteration 8436, lr = 0.005625 +I0407 09:39:09.519325 18909 solver.cpp:218] Iteration 8448 (2.27035 iter/s, 5.28552s/12 iters), loss = 0.557669 +I0407 09:39:09.519374 18909 solver.cpp:237] Train net output #0: loss = 0.557669 (* 1 = 0.557669 loss) +I0407 09:39:09.519381 18909 sgd_solver.cpp:105] Iteration 8448, lr = 0.005625 +I0407 09:39:14.567080 18909 solver.cpp:218] Iteration 8460 (2.37732 iter/s, 5.04769s/12 iters), loss = 0.213799 +I0407 09:39:14.567122 18909 solver.cpp:237] Train net output #0: loss = 0.213799 (* 1 = 0.213799 loss) +I0407 09:39:14.567129 18909 sgd_solver.cpp:105] Iteration 8460, lr = 0.005625 +I0407 09:39:16.768817 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0407 09:39:21.243180 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0407 09:39:24.877246 18909 solver.cpp:330] Iteration 8466, Testing net (#0) +I0407 09:39:24.877324 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:39:25.942864 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:29.280905 18909 solver.cpp:397] Test net output #0: accuracy = 0.440564 +I0407 09:39:29.280956 18909 solver.cpp:397] Test net output #1: loss = 3.02625 (* 1 = 3.02625 loss) +I0407 09:39:31.172194 18909 solver.cpp:218] Iteration 8472 (0.722671 iter/s, 16.6051s/12 iters), loss = 0.17695 +I0407 09:39:31.172238 18909 solver.cpp:237] Train net output #0: loss = 0.17695 (* 1 = 0.17695 loss) +I0407 09:39:31.172245 18909 sgd_solver.cpp:105] Iteration 8472, lr = 0.005625 +I0407 09:39:36.359061 18909 solver.cpp:218] Iteration 8484 (2.31357 iter/s, 5.1868s/12 iters), loss = 0.251825 +I0407 09:39:36.359119 18909 solver.cpp:237] Train net output #0: loss = 0.251825 (* 1 = 0.251825 loss) +I0407 09:39:36.359129 18909 sgd_solver.cpp:105] Iteration 8484, lr = 0.005625 +I0407 09:39:41.626307 18909 solver.cpp:218] Iteration 8496 (2.27826 iter/s, 5.26718s/12 iters), loss = 0.137 +I0407 09:39:41.626348 18909 solver.cpp:237] Train net output #0: loss = 0.137 (* 1 = 0.137 loss) +I0407 09:39:41.626355 18909 sgd_solver.cpp:105] Iteration 8496, lr = 0.005625 +I0407 09:39:41.661119 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:39:46.816956 18909 solver.cpp:218] Iteration 8508 (2.31187 iter/s, 5.1906s/12 iters), loss = 0.170881 +I0407 09:39:46.816994 18909 solver.cpp:237] Train net output #0: loss = 0.170881 (* 1 = 0.170881 loss) +I0407 09:39:46.817000 18909 sgd_solver.cpp:105] Iteration 8508, lr = 0.005625 +I0407 09:39:52.078408 18909 solver.cpp:218] Iteration 8520 (2.28076 iter/s, 5.2614s/12 iters), loss = 0.177371 +I0407 09:39:52.078454 18909 solver.cpp:237] Train net output #0: loss = 0.177371 (* 1 = 0.177371 loss) +I0407 09:39:52.078460 18909 sgd_solver.cpp:105] Iteration 8520, lr = 0.005625 +I0407 09:39:57.501907 18909 solver.cpp:218] Iteration 8532 (2.21262 iter/s, 5.42345s/12 iters), loss = 0.349598 +I0407 09:39:57.502013 18909 solver.cpp:237] Train net output #0: loss = 0.349598 (* 1 = 0.349598 loss) +I0407 09:39:57.502022 18909 sgd_solver.cpp:105] Iteration 8532, lr = 0.005625 +I0407 09:40:02.797627 18909 solver.cpp:218] Iteration 8544 (2.26603 iter/s, 5.29561s/12 iters), loss = 0.400722 +I0407 09:40:02.797667 18909 solver.cpp:237] Train net output #0: loss = 0.400722 (* 1 = 0.400722 loss) +I0407 09:40:02.797673 18909 sgd_solver.cpp:105] Iteration 8544, lr = 0.005625 +I0407 09:40:08.220908 18909 solver.cpp:218] Iteration 8556 (2.21271 iter/s, 5.42322s/12 iters), loss = 0.150132 +I0407 09:40:08.220952 18909 solver.cpp:237] Train net output #0: loss = 0.150132 (* 1 = 0.150132 loss) +I0407 09:40:08.220958 18909 sgd_solver.cpp:105] Iteration 8556, lr = 0.005625 +I0407 09:40:13.142616 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0407 09:40:17.483776 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0407 09:40:21.192162 18909 solver.cpp:330] Iteration 8568, Testing net (#0) +I0407 09:40:21.192188 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:40:22.187347 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:25.536914 18909 solver.cpp:397] Test net output #0: accuracy = 0.426471 +I0407 09:40:25.536944 18909 solver.cpp:397] Test net output #1: loss = 3.03139 (* 1 = 3.03139 loss) +I0407 09:40:25.677852 18909 solver.cpp:218] Iteration 8568 (0.687407 iter/s, 17.4569s/12 iters), loss = 0.221441 +I0407 09:40:25.677899 18909 solver.cpp:237] Train net output #0: loss = 0.221441 (* 1 = 0.221441 loss) +I0407 09:40:25.677908 18909 sgd_solver.cpp:105] Iteration 8568, lr = 0.005625 +I0407 09:40:30.059316 18909 solver.cpp:218] Iteration 8580 (2.73885 iter/s, 4.3814s/12 iters), loss = 0.196016 +I0407 09:40:30.059469 18909 solver.cpp:237] Train net output #0: loss = 0.196016 (* 1 = 0.196016 loss) +I0407 09:40:30.059480 18909 sgd_solver.cpp:105] Iteration 8580, lr = 0.005625 +I0407 09:40:35.214211 18909 solver.cpp:218] Iteration 8592 (2.32796 iter/s, 5.15474s/12 iters), loss = 0.178595 +I0407 09:40:35.214251 18909 solver.cpp:237] Train net output #0: loss = 0.178594 (* 1 = 0.178594 loss) +I0407 09:40:35.214259 18909 sgd_solver.cpp:105] Iteration 8592, lr = 0.005625 +I0407 09:40:37.340574 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:40:40.223839 18909 solver.cpp:218] Iteration 8604 (2.39542 iter/s, 5.00957s/12 iters), loss = 0.328247 +I0407 09:40:40.223894 18909 solver.cpp:237] Train net output #0: loss = 0.328247 (* 1 = 0.328247 loss) +I0407 09:40:40.223904 18909 sgd_solver.cpp:105] Iteration 8604, lr = 0.005625 +I0407 09:40:45.390594 18909 solver.cpp:218] Iteration 8616 (2.32257 iter/s, 5.16669s/12 iters), loss = 0.180544 +I0407 09:40:45.390630 18909 solver.cpp:237] Train net output #0: loss = 0.180544 (* 1 = 0.180544 loss) +I0407 09:40:45.390637 18909 sgd_solver.cpp:105] Iteration 8616, lr = 0.005625 +I0407 09:40:50.443785 18909 solver.cpp:218] Iteration 8628 (2.37476 iter/s, 5.05315s/12 iters), loss = 0.232184 +I0407 09:40:50.443816 18909 solver.cpp:237] Train net output #0: loss = 0.232184 (* 1 = 0.232184 loss) +I0407 09:40:50.443822 18909 sgd_solver.cpp:105] Iteration 8628, lr = 0.005625 +I0407 09:40:55.835254 18909 solver.cpp:218] Iteration 8640 (2.22576 iter/s, 5.39142s/12 iters), loss = 0.18369 +I0407 09:40:55.835314 18909 solver.cpp:237] Train net output #0: loss = 0.18369 (* 1 = 0.18369 loss) +I0407 09:40:55.835323 18909 sgd_solver.cpp:105] Iteration 8640, lr = 0.005625 +I0407 09:41:00.897866 18909 solver.cpp:218] Iteration 8652 (2.37035 iter/s, 5.06254s/12 iters), loss = 0.210544 +I0407 09:41:00.898039 18909 solver.cpp:237] Train net output #0: loss = 0.210544 (* 1 = 0.210544 loss) +I0407 09:41:00.898051 18909 sgd_solver.cpp:105] Iteration 8652, lr = 0.005625 +I0407 09:41:06.081899 18909 solver.cpp:218] Iteration 8664 (2.31488 iter/s, 5.18385s/12 iters), loss = 0.262643 +I0407 09:41:06.081956 18909 solver.cpp:237] Train net output #0: loss = 0.262643 (* 1 = 0.262643 loss) +I0407 09:41:06.081966 18909 sgd_solver.cpp:105] Iteration 8664, lr = 0.005625 +I0407 09:41:08.199262 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0407 09:41:13.210189 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0407 09:41:17.408215 18909 solver.cpp:330] Iteration 8670, Testing net (#0) +I0407 09:41:17.408232 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:41:18.348302 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:21.719856 18909 solver.cpp:397] Test net output #0: accuracy = 0.443627 +I0407 09:41:21.719892 18909 solver.cpp:397] Test net output #1: loss = 3.14066 (* 1 = 3.14066 loss) +I0407 09:41:23.643312 18909 solver.cpp:218] Iteration 8676 (0.683318 iter/s, 17.5614s/12 iters), loss = 0.236924 +I0407 09:41:23.643357 18909 solver.cpp:237] Train net output #0: loss = 0.236924 (* 1 = 0.236924 loss) +I0407 09:41:23.643363 18909 sgd_solver.cpp:105] Iteration 8676, lr = 0.005625 +I0407 09:41:28.701241 18909 solver.cpp:218] Iteration 8688 (2.37254 iter/s, 5.05787s/12 iters), loss = 0.302341 +I0407 09:41:28.701292 18909 solver.cpp:237] Train net output #0: loss = 0.302341 (* 1 = 0.302341 loss) +I0407 09:41:28.701300 18909 sgd_solver.cpp:105] Iteration 8688, lr = 0.005625 +I0407 09:41:33.288094 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:41:34.039355 18909 solver.cpp:218] Iteration 8700 (2.24801 iter/s, 5.33805s/12 iters), loss = 0.342909 +I0407 09:41:34.039398 18909 solver.cpp:237] Train net output #0: loss = 0.342909 (* 1 = 0.342909 loss) +I0407 09:41:34.039405 18909 sgd_solver.cpp:105] Iteration 8700, lr = 0.005625 +I0407 09:41:39.332006 18909 solver.cpp:218] Iteration 8712 (2.26732 iter/s, 5.2926s/12 iters), loss = 0.138496 +I0407 09:41:39.332044 18909 solver.cpp:237] Train net output #0: loss = 0.138496 (* 1 = 0.138496 loss) +I0407 09:41:39.332051 18909 sgd_solver.cpp:105] Iteration 8712, lr = 0.005625 +I0407 09:41:44.696658 18909 solver.cpp:218] Iteration 8724 (2.23689 iter/s, 5.3646s/12 iters), loss = 0.223032 +I0407 09:41:44.696698 18909 solver.cpp:237] Train net output #0: loss = 0.223032 (* 1 = 0.223032 loss) +I0407 09:41:44.696705 18909 sgd_solver.cpp:105] Iteration 8724, lr = 0.005625 +I0407 09:41:49.947311 18909 solver.cpp:218] Iteration 8736 (2.28545 iter/s, 5.2506s/12 iters), loss = 0.240716 +I0407 09:41:49.947351 18909 solver.cpp:237] Train net output #0: loss = 0.240716 (* 1 = 0.240716 loss) +I0407 09:41:49.947358 18909 sgd_solver.cpp:105] Iteration 8736, lr = 0.005625 +I0407 09:41:55.127774 18909 solver.cpp:218] Iteration 8748 (2.31642 iter/s, 5.18041s/12 iters), loss = 0.226418 +I0407 09:41:55.127815 18909 solver.cpp:237] Train net output #0: loss = 0.226418 (* 1 = 0.226418 loss) +I0407 09:41:55.127821 18909 sgd_solver.cpp:105] Iteration 8748, lr = 0.005625 +I0407 09:42:00.312176 18909 solver.cpp:218] Iteration 8760 (2.31466 iter/s, 5.18434s/12 iters), loss = 0.220798 +I0407 09:42:00.312237 18909 solver.cpp:237] Train net output #0: loss = 0.220798 (* 1 = 0.220798 loss) +I0407 09:42:00.312247 18909 sgd_solver.cpp:105] Iteration 8760, lr = 0.005625 +I0407 09:42:04.908416 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0407 09:42:09.457545 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0407 09:42:13.387979 18909 solver.cpp:330] Iteration 8772, Testing net (#0) +I0407 09:42:13.387997 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:42:14.296495 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:17.682286 18909 solver.cpp:397] Test net output #0: accuracy = 0.438726 +I0407 09:42:17.682335 18909 solver.cpp:397] Test net output #1: loss = 3.14062 (* 1 = 3.14062 loss) +I0407 09:42:17.820281 18909 solver.cpp:218] Iteration 8772 (0.685399 iter/s, 17.5081s/12 iters), loss = 0.2359 +I0407 09:42:17.820323 18909 solver.cpp:237] Train net output #0: loss = 0.2359 (* 1 = 0.2359 loss) +I0407 09:42:17.820330 18909 sgd_solver.cpp:105] Iteration 8772, lr = 0.005625 +I0407 09:42:22.069214 18909 solver.cpp:218] Iteration 8784 (2.82428 iter/s, 4.24887s/12 iters), loss = 0.362929 +I0407 09:42:22.069267 18909 solver.cpp:237] Train net output #0: loss = 0.362929 (* 1 = 0.362929 loss) +I0407 09:42:22.069276 18909 sgd_solver.cpp:105] Iteration 8784, lr = 0.005625 +I0407 09:42:27.178284 18909 solver.cpp:218] Iteration 8796 (2.34879 iter/s, 5.10901s/12 iters), loss = 0.254943 +I0407 09:42:27.178328 18909 solver.cpp:237] Train net output #0: loss = 0.254943 (* 1 = 0.254943 loss) +I0407 09:42:27.178337 18909 sgd_solver.cpp:105] Iteration 8796, lr = 0.005625 +I0407 09:42:28.620656 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:42:32.457252 18909 solver.cpp:218] Iteration 8808 (2.2732 iter/s, 5.27891s/12 iters), loss = 0.253114 +I0407 09:42:32.457307 18909 solver.cpp:237] Train net output #0: loss = 0.253114 (* 1 = 0.253114 loss) +I0407 09:42:32.457316 18909 sgd_solver.cpp:105] Iteration 8808, lr = 0.005625 +I0407 09:42:37.524258 18909 solver.cpp:218] Iteration 8820 (2.36829 iter/s, 5.06694s/12 iters), loss = 0.178188 +I0407 09:42:37.524343 18909 solver.cpp:237] Train net output #0: loss = 0.178188 (* 1 = 0.178188 loss) +I0407 09:42:37.524351 18909 sgd_solver.cpp:105] Iteration 8820, lr = 0.005625 +I0407 09:42:42.631518 18909 solver.cpp:218] Iteration 8832 (2.34964 iter/s, 5.10716s/12 iters), loss = 0.250362 +I0407 09:42:42.631561 18909 solver.cpp:237] Train net output #0: loss = 0.250362 (* 1 = 0.250362 loss) +I0407 09:42:42.631569 18909 sgd_solver.cpp:105] Iteration 8832, lr = 0.005625 +I0407 09:42:47.944144 18909 solver.cpp:218] Iteration 8844 (2.25879 iter/s, 5.31257s/12 iters), loss = 0.356022 +I0407 09:42:47.944197 18909 solver.cpp:237] Train net output #0: loss = 0.356022 (* 1 = 0.356022 loss) +I0407 09:42:47.944206 18909 sgd_solver.cpp:105] Iteration 8844, lr = 0.005625 +I0407 09:42:53.188422 18909 solver.cpp:218] Iteration 8856 (2.28824 iter/s, 5.24421s/12 iters), loss = 0.0999126 +I0407 09:42:53.188482 18909 solver.cpp:237] Train net output #0: loss = 0.0999126 (* 1 = 0.0999126 loss) +I0407 09:42:53.188491 18909 sgd_solver.cpp:105] Iteration 8856, lr = 0.005625 +I0407 09:42:58.319381 18909 solver.cpp:218] Iteration 8868 (2.33878 iter/s, 5.13089s/12 iters), loss = 0.305329 +I0407 09:42:58.319427 18909 solver.cpp:237] Train net output #0: loss = 0.305329 (* 1 = 0.305329 loss) +I0407 09:42:58.319433 18909 sgd_solver.cpp:105] Iteration 8868, lr = 0.005625 +I0407 09:43:00.407538 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0407 09:43:03.521708 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0407 09:43:07.749156 18909 solver.cpp:330] Iteration 8874, Testing net (#0) +I0407 09:43:07.749259 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:43:08.610695 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:12.065737 18909 solver.cpp:397] Test net output #0: accuracy = 0.439338 +I0407 09:43:12.065768 18909 solver.cpp:397] Test net output #1: loss = 3.07308 (* 1 = 3.07308 loss) +I0407 09:43:13.981765 18909 solver.cpp:218] Iteration 8880 (0.766169 iter/s, 15.6623s/12 iters), loss = 0.360523 +I0407 09:43:13.981829 18909 solver.cpp:237] Train net output #0: loss = 0.360523 (* 1 = 0.360523 loss) +I0407 09:43:13.981839 18909 sgd_solver.cpp:105] Iteration 8880, lr = 0.005625 +I0407 09:43:19.121464 18909 solver.cpp:218] Iteration 8892 (2.3348 iter/s, 5.13962s/12 iters), loss = 0.242488 +I0407 09:43:19.121515 18909 solver.cpp:237] Train net output #0: loss = 0.242488 (* 1 = 0.242488 loss) +I0407 09:43:19.121526 18909 sgd_solver.cpp:105] Iteration 8892, lr = 0.005625 +I0407 09:43:22.929644 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:43:24.491350 18909 solver.cpp:218] Iteration 8904 (2.23471 iter/s, 5.36983s/12 iters), loss = 0.231132 +I0407 09:43:24.491400 18909 solver.cpp:237] Train net output #0: loss = 0.231132 (* 1 = 0.231132 loss) +I0407 09:43:24.491408 18909 sgd_solver.cpp:105] Iteration 8904, lr = 0.005625 +I0407 09:43:29.731673 18909 solver.cpp:218] Iteration 8916 (2.28996 iter/s, 5.24027s/12 iters), loss = 0.166732 +I0407 09:43:29.731720 18909 solver.cpp:237] Train net output #0: loss = 0.166732 (* 1 = 0.166732 loss) +I0407 09:43:29.731727 18909 sgd_solver.cpp:105] Iteration 8916, lr = 0.005625 +I0407 09:43:35.178653 18909 solver.cpp:218] Iteration 8928 (2.20308 iter/s, 5.44693s/12 iters), loss = 0.174096 +I0407 09:43:35.178694 18909 solver.cpp:237] Train net output #0: loss = 0.174096 (* 1 = 0.174096 loss) +I0407 09:43:35.178699 18909 sgd_solver.cpp:105] Iteration 8928, lr = 0.005625 +I0407 09:43:40.316579 18909 solver.cpp:218] Iteration 8940 (2.3356 iter/s, 5.13788s/12 iters), loss = 0.188179 +I0407 09:43:40.316689 18909 solver.cpp:237] Train net output #0: loss = 0.188179 (* 1 = 0.188179 loss) +I0407 09:43:40.316699 18909 sgd_solver.cpp:105] Iteration 8940, lr = 0.005625 +I0407 09:43:45.561726 18909 solver.cpp:218] Iteration 8952 (2.28788 iter/s, 5.24503s/12 iters), loss = 0.155267 +I0407 09:43:45.561769 18909 solver.cpp:237] Train net output #0: loss = 0.155267 (* 1 = 0.155267 loss) +I0407 09:43:45.561776 18909 sgd_solver.cpp:105] Iteration 8952, lr = 0.005625 +I0407 09:43:50.848793 18909 solver.cpp:218] Iteration 8964 (2.26971 iter/s, 5.28701s/12 iters), loss = 0.163042 +I0407 09:43:50.848840 18909 solver.cpp:237] Train net output #0: loss = 0.163042 (* 1 = 0.163042 loss) +I0407 09:43:50.848847 18909 sgd_solver.cpp:105] Iteration 8964, lr = 0.005625 +I0407 09:43:55.588168 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0407 09:43:58.654796 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0407 09:44:02.125771 18909 solver.cpp:330] Iteration 8976, Testing net (#0) +I0407 09:44:02.125789 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:44:02.992620 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:06.451434 18909 solver.cpp:397] Test net output #0: accuracy = 0.442402 +I0407 09:44:06.451469 18909 solver.cpp:397] Test net output #1: loss = 3.03595 (* 1 = 3.03595 loss) +I0407 09:44:06.582075 18909 solver.cpp:218] Iteration 8976 (0.762717 iter/s, 15.7332s/12 iters), loss = 0.0846191 +I0407 09:44:06.582124 18909 solver.cpp:237] Train net output #0: loss = 0.0846191 (* 1 = 0.0846191 loss) +I0407 09:44:06.582134 18909 sgd_solver.cpp:105] Iteration 8976, lr = 0.005625 +I0407 09:44:10.898892 18909 solver.cpp:218] Iteration 8988 (2.77987 iter/s, 4.31675s/12 iters), loss = 0.206145 +I0407 09:44:10.899027 18909 solver.cpp:237] Train net output #0: loss = 0.206145 (* 1 = 0.206145 loss) +I0407 09:44:10.899036 18909 sgd_solver.cpp:105] Iteration 8988, lr = 0.005625 +I0407 09:44:14.112601 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:44:15.902319 18909 solver.cpp:218] Iteration 9000 (2.39843 iter/s, 5.00328s/12 iters), loss = 0.203864 +I0407 09:44:15.902382 18909 solver.cpp:237] Train net output #0: loss = 0.203864 (* 1 = 0.203864 loss) +I0407 09:44:15.902393 18909 sgd_solver.cpp:105] Iteration 9000, lr = 0.005625 +I0407 09:44:16.629146 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:21.242692 18909 solver.cpp:218] Iteration 9012 (2.24706 iter/s, 5.34031s/12 iters), loss = 0.210013 +I0407 09:44:21.242733 18909 solver.cpp:237] Train net output #0: loss = 0.210013 (* 1 = 0.210013 loss) +I0407 09:44:21.242738 18909 sgd_solver.cpp:105] Iteration 9012, lr = 0.005625 +I0407 09:44:26.583853 18909 solver.cpp:218] Iteration 9024 (2.24673 iter/s, 5.3411s/12 iters), loss = 0.266402 +I0407 09:44:26.583911 18909 solver.cpp:237] Train net output #0: loss = 0.266402 (* 1 = 0.266402 loss) +I0407 09:44:26.583921 18909 sgd_solver.cpp:105] Iteration 9024, lr = 0.005625 +I0407 09:44:31.896721 18909 solver.cpp:218] Iteration 9036 (2.2587 iter/s, 5.3128s/12 iters), loss = 0.160049 +I0407 09:44:31.896781 18909 solver.cpp:237] Train net output #0: loss = 0.160049 (* 1 = 0.160049 loss) +I0407 09:44:31.896791 18909 sgd_solver.cpp:105] Iteration 9036, lr = 0.005625 +I0407 09:44:37.204862 18909 solver.cpp:218] Iteration 9048 (2.26071 iter/s, 5.30807s/12 iters), loss = 0.150856 +I0407 09:44:37.204921 18909 solver.cpp:237] Train net output #0: loss = 0.150856 (* 1 = 0.150856 loss) +I0407 09:44:37.204931 18909 sgd_solver.cpp:105] Iteration 9048, lr = 0.005625 +I0407 09:44:42.509016 18909 solver.cpp:218] Iteration 9060 (2.26241 iter/s, 5.30408s/12 iters), loss = 0.102405 +I0407 09:44:42.509111 18909 solver.cpp:237] Train net output #0: loss = 0.102405 (* 1 = 0.102405 loss) +I0407 09:44:42.509120 18909 sgd_solver.cpp:105] Iteration 9060, lr = 0.005625 +I0407 09:44:47.870797 18909 solver.cpp:218] Iteration 9072 (2.23811 iter/s, 5.36167s/12 iters), loss = 0.329855 +I0407 09:44:47.870846 18909 solver.cpp:237] Train net output #0: loss = 0.329855 (* 1 = 0.329855 loss) +I0407 09:44:47.870853 18909 sgd_solver.cpp:105] Iteration 9072, lr = 0.005625 +I0407 09:44:49.819635 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0407 09:44:52.858330 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0407 09:44:55.159922 18909 solver.cpp:330] Iteration 9078, Testing net (#0) +I0407 09:44:55.159940 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:44:56.052620 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:44:59.730196 18909 solver.cpp:397] Test net output #0: accuracy = 0.433824 +I0407 09:44:59.730226 18909 solver.cpp:397] Test net output #1: loss = 2.96483 (* 1 = 2.96483 loss) +I0407 09:45:01.523880 18909 solver.cpp:218] Iteration 9084 (0.878926 iter/s, 13.653s/12 iters), loss = 0.173201 +I0407 09:45:01.523931 18909 solver.cpp:237] Train net output #0: loss = 0.173201 (* 1 = 0.173201 loss) +I0407 09:45:01.523938 18909 sgd_solver.cpp:105] Iteration 9084, lr = 0.005625 +I0407 09:45:06.573477 18909 solver.cpp:218] Iteration 9096 (2.37646 iter/s, 5.04953s/12 iters), loss = 0.254661 +I0407 09:45:06.573519 18909 solver.cpp:237] Train net output #0: loss = 0.254661 (* 1 = 0.254661 loss) +I0407 09:45:06.573526 18909 sgd_solver.cpp:105] Iteration 9096, lr = 0.005625 +I0407 09:45:09.616093 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:11.874336 18909 solver.cpp:218] Iteration 9108 (2.26381 iter/s, 5.3008s/12 iters), loss = 0.201404 +I0407 09:45:11.874397 18909 solver.cpp:237] Train net output #0: loss = 0.201404 (* 1 = 0.201404 loss) +I0407 09:45:11.874406 18909 sgd_solver.cpp:105] Iteration 9108, lr = 0.005625 +I0407 09:45:17.099834 18909 solver.cpp:218] Iteration 9120 (2.29646 iter/s, 5.22543s/12 iters), loss = 0.246664 +I0407 09:45:17.099961 18909 solver.cpp:237] Train net output #0: loss = 0.246664 (* 1 = 0.246664 loss) +I0407 09:45:17.099969 18909 sgd_solver.cpp:105] Iteration 9120, lr = 0.005625 +I0407 09:45:22.303951 18909 solver.cpp:218] Iteration 9132 (2.30593 iter/s, 5.20398s/12 iters), loss = 0.261723 +I0407 09:45:22.303992 18909 solver.cpp:237] Train net output #0: loss = 0.261723 (* 1 = 0.261723 loss) +I0407 09:45:22.303998 18909 sgd_solver.cpp:105] Iteration 9132, lr = 0.005625 +I0407 09:45:27.407775 18909 solver.cpp:218] Iteration 9144 (2.3512 iter/s, 5.10377s/12 iters), loss = 0.194845 +I0407 09:45:27.407819 18909 solver.cpp:237] Train net output #0: loss = 0.194845 (* 1 = 0.194845 loss) +I0407 09:45:27.407826 18909 sgd_solver.cpp:105] Iteration 9144, lr = 0.005625 +I0407 09:45:32.716081 18909 solver.cpp:218] Iteration 9156 (2.26063 iter/s, 5.30825s/12 iters), loss = 0.163679 +I0407 09:45:32.716128 18909 solver.cpp:237] Train net output #0: loss = 0.163679 (* 1 = 0.163679 loss) +I0407 09:45:32.716136 18909 sgd_solver.cpp:105] Iteration 9156, lr = 0.005625 +I0407 09:45:37.853251 18909 solver.cpp:218] Iteration 9168 (2.33594 iter/s, 5.13711s/12 iters), loss = 0.222489 +I0407 09:45:37.853296 18909 solver.cpp:237] Train net output #0: loss = 0.222489 (* 1 = 0.222489 loss) +I0407 09:45:37.853304 18909 sgd_solver.cpp:105] Iteration 9168, lr = 0.005625 +I0407 09:45:42.660089 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0407 09:45:45.665778 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0407 09:45:47.990618 18909 solver.cpp:330] Iteration 9180, Testing net (#0) +I0407 09:45:47.990691 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:45:48.739960 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:45:52.254101 18909 solver.cpp:397] Test net output #0: accuracy = 0.432598 +I0407 09:45:52.254137 18909 solver.cpp:397] Test net output #1: loss = 3.08599 (* 1 = 3.08599 loss) +I0407 09:45:52.394673 18909 solver.cpp:218] Iteration 9180 (0.825231 iter/s, 14.5414s/12 iters), loss = 0.442023 +I0407 09:45:52.394724 18909 solver.cpp:237] Train net output #0: loss = 0.442023 (* 1 = 0.442023 loss) +I0407 09:45:52.394731 18909 sgd_solver.cpp:105] Iteration 9180, lr = 0.005625 +I0407 09:45:56.693307 18909 solver.cpp:218] Iteration 9192 (2.79163 iter/s, 4.29856s/12 iters), loss = 0.104886 +I0407 09:45:56.693363 18909 solver.cpp:237] Train net output #0: loss = 0.104886 (* 1 = 0.104886 loss) +I0407 09:45:56.693374 18909 sgd_solver.cpp:105] Iteration 9192, lr = 0.005625 +I0407 09:46:02.243548 18909 solver.cpp:218] Iteration 9204 (2.1621 iter/s, 5.55017s/12 iters), loss = 0.107819 +I0407 09:46:02.243603 18909 solver.cpp:237] Train net output #0: loss = 0.107819 (* 1 = 0.107819 loss) +I0407 09:46:02.243613 18909 sgd_solver.cpp:105] Iteration 9204, lr = 0.005625 +I0407 09:46:02.305769 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:07.585045 18909 solver.cpp:218] Iteration 9216 (2.24659 iter/s, 5.34143s/12 iters), loss = 0.372836 +I0407 09:46:07.585100 18909 solver.cpp:237] Train net output #0: loss = 0.372836 (* 1 = 0.372836 loss) +I0407 09:46:07.585110 18909 sgd_solver.cpp:105] Iteration 9216, lr = 0.005625 +I0407 09:46:12.951727 18909 solver.cpp:218] Iteration 9228 (2.23605 iter/s, 5.36661s/12 iters), loss = 0.212301 +I0407 09:46:12.951786 18909 solver.cpp:237] Train net output #0: loss = 0.212301 (* 1 = 0.212301 loss) +I0407 09:46:12.951799 18909 sgd_solver.cpp:105] Iteration 9228, lr = 0.005625 +I0407 09:46:17.814852 18909 solver.cpp:218] Iteration 9240 (2.46758 iter/s, 4.86306s/12 iters), loss = 0.178775 +I0407 09:46:17.814895 18909 solver.cpp:237] Train net output #0: loss = 0.178775 (* 1 = 0.178775 loss) +I0407 09:46:17.814903 18909 sgd_solver.cpp:105] Iteration 9240, lr = 0.005625 +I0407 09:46:22.957826 18909 solver.cpp:218] Iteration 9252 (2.3333 iter/s, 5.14292s/12 iters), loss = 0.104574 +I0407 09:46:22.957937 18909 solver.cpp:237] Train net output #0: loss = 0.104574 (* 1 = 0.104574 loss) +I0407 09:46:22.957945 18909 sgd_solver.cpp:105] Iteration 9252, lr = 0.005625 +I0407 09:46:28.176661 18909 solver.cpp:218] Iteration 9264 (2.29942 iter/s, 5.21871s/12 iters), loss = 0.303381 +I0407 09:46:28.176707 18909 solver.cpp:237] Train net output #0: loss = 0.303381 (* 1 = 0.303381 loss) +I0407 09:46:28.176715 18909 sgd_solver.cpp:105] Iteration 9264, lr = 0.005625 +I0407 09:46:33.498973 18909 solver.cpp:218] Iteration 9276 (2.25469 iter/s, 5.32225s/12 iters), loss = 0.191831 +I0407 09:46:33.499022 18909 solver.cpp:237] Train net output #0: loss = 0.191831 (* 1 = 0.191831 loss) +I0407 09:46:33.499028 18909 sgd_solver.cpp:105] Iteration 9276, lr = 0.005625 +I0407 09:46:35.589277 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0407 09:46:38.612206 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0407 09:46:40.947947 18909 solver.cpp:330] Iteration 9282, Testing net (#0) +I0407 09:46:40.947968 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:46:41.667068 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:45.341190 18909 solver.cpp:397] Test net output #0: accuracy = 0.431373 +I0407 09:46:45.341231 18909 solver.cpp:397] Test net output #1: loss = 3.02929 (* 1 = 3.02929 loss) +I0407 09:46:47.271342 18909 solver.cpp:218] Iteration 9288 (0.871313 iter/s, 13.7723s/12 iters), loss = 0.0795449 +I0407 09:46:47.271382 18909 solver.cpp:237] Train net output #0: loss = 0.0795449 (* 1 = 0.0795449 loss) +I0407 09:46:47.271391 18909 sgd_solver.cpp:105] Iteration 9288, lr = 0.005625 +I0407 09:46:52.347396 18909 solver.cpp:218] Iteration 9300 (2.36406 iter/s, 5.076s/12 iters), loss = 0.27729 +I0407 09:46:52.347437 18909 solver.cpp:237] Train net output #0: loss = 0.27729 (* 1 = 0.27729 loss) +I0407 09:46:52.347445 18909 sgd_solver.cpp:105] Iteration 9300, lr = 0.005625 +I0407 09:46:54.666744 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:46:57.450927 18909 solver.cpp:218] Iteration 9312 (2.35134 iter/s, 5.10348s/12 iters), loss = 0.338448 +I0407 09:46:57.450968 18909 solver.cpp:237] Train net output #0: loss = 0.338448 (* 1 = 0.338448 loss) +I0407 09:46:57.450974 18909 sgd_solver.cpp:105] Iteration 9312, lr = 0.005625 +I0407 09:47:02.634285 18909 solver.cpp:218] Iteration 9324 (2.31512 iter/s, 5.18331s/12 iters), loss = 0.135123 +I0407 09:47:02.634326 18909 solver.cpp:237] Train net output #0: loss = 0.135123 (* 1 = 0.135123 loss) +I0407 09:47:02.634332 18909 sgd_solver.cpp:105] Iteration 9324, lr = 0.005625 +I0407 09:47:07.777781 18909 solver.cpp:218] Iteration 9336 (2.33307 iter/s, 5.14344s/12 iters), loss = 0.237445 +I0407 09:47:07.777832 18909 solver.cpp:237] Train net output #0: loss = 0.237445 (* 1 = 0.237445 loss) +I0407 09:47:07.777842 18909 sgd_solver.cpp:105] Iteration 9336, lr = 0.005625 +I0407 09:47:12.882704 18909 solver.cpp:218] Iteration 9348 (2.3507 iter/s, 5.10486s/12 iters), loss = 0.124948 +I0407 09:47:12.882751 18909 solver.cpp:237] Train net output #0: loss = 0.124948 (* 1 = 0.124948 loss) +I0407 09:47:12.882758 18909 sgd_solver.cpp:105] Iteration 9348, lr = 0.005625 +I0407 09:47:18.288916 18909 solver.cpp:218] Iteration 9360 (2.21969 iter/s, 5.40615s/12 iters), loss = 0.263526 +I0407 09:47:18.288964 18909 solver.cpp:237] Train net output #0: loss = 0.263526 (* 1 = 0.263526 loss) +I0407 09:47:18.288971 18909 sgd_solver.cpp:105] Iteration 9360, lr = 0.005625 +I0407 09:47:23.514544 18909 solver.cpp:218] Iteration 9372 (2.2964 iter/s, 5.22556s/12 iters), loss = 0.261916 +I0407 09:47:23.514590 18909 solver.cpp:237] Train net output #0: loss = 0.261916 (* 1 = 0.261916 loss) +I0407 09:47:23.514600 18909 sgd_solver.cpp:105] Iteration 9372, lr = 0.005625 +I0407 09:47:28.058113 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0407 09:47:31.118124 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0407 09:47:33.450984 18909 solver.cpp:330] Iteration 9384, Testing net (#0) +I0407 09:47:33.451012 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:47:34.170610 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:37.852901 18909 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 09:47:37.852934 18909 solver.cpp:397] Test net output #1: loss = 3.11885 (* 1 = 3.11885 loss) +I0407 09:47:37.989893 18909 solver.cpp:218] Iteration 9384 (0.828998 iter/s, 14.4753s/12 iters), loss = 0.178703 +I0407 09:47:37.991454 18909 solver.cpp:237] Train net output #0: loss = 0.178703 (* 1 = 0.178703 loss) +I0407 09:47:37.991468 18909 sgd_solver.cpp:105] Iteration 9384, lr = 0.005625 +I0407 09:47:42.341339 18909 solver.cpp:218] Iteration 9396 (2.7587 iter/s, 4.34988s/12 iters), loss = 0.23714 +I0407 09:47:42.341405 18909 solver.cpp:237] Train net output #0: loss = 0.23714 (* 1 = 0.23714 loss) +I0407 09:47:42.341416 18909 sgd_solver.cpp:105] Iteration 9396, lr = 0.005625 +I0407 09:47:46.937065 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:47:47.666149 18909 solver.cpp:218] Iteration 9408 (2.25363 iter/s, 5.32473s/12 iters), loss = 0.16089 +I0407 09:47:47.666205 18909 solver.cpp:237] Train net output #0: loss = 0.16089 (* 1 = 0.16089 loss) +I0407 09:47:47.666216 18909 sgd_solver.cpp:105] Iteration 9408, lr = 0.005625 +I0407 09:47:52.912724 18909 solver.cpp:218] Iteration 9420 (2.28724 iter/s, 5.2465s/12 iters), loss = 0.16894 +I0407 09:47:52.912787 18909 solver.cpp:237] Train net output #0: loss = 0.16894 (* 1 = 0.16894 loss) +I0407 09:47:52.912798 18909 sgd_solver.cpp:105] Iteration 9420, lr = 0.005625 +I0407 09:47:58.257464 18909 solver.cpp:218] Iteration 9432 (2.24523 iter/s, 5.34467s/12 iters), loss = 0.172854 +I0407 09:47:58.257566 18909 solver.cpp:237] Train net output #0: loss = 0.172854 (* 1 = 0.172854 loss) +I0407 09:47:58.257575 18909 sgd_solver.cpp:105] Iteration 9432, lr = 0.005625 +I0407 09:48:03.280361 18909 solver.cpp:218] Iteration 9444 (2.38911 iter/s, 5.02279s/12 iters), loss = 0.0997476 +I0407 09:48:03.280412 18909 solver.cpp:237] Train net output #0: loss = 0.0997476 (* 1 = 0.0997476 loss) +I0407 09:48:03.280421 18909 sgd_solver.cpp:105] Iteration 9444, lr = 0.005625 +I0407 09:48:08.335934 18909 solver.cpp:218] Iteration 9456 (2.37365 iter/s, 5.05551s/12 iters), loss = 0.220058 +I0407 09:48:08.335983 18909 solver.cpp:237] Train net output #0: loss = 0.220058 (* 1 = 0.220058 loss) +I0407 09:48:08.335989 18909 sgd_solver.cpp:105] Iteration 9456, lr = 0.005625 +I0407 09:48:13.374708 18909 solver.cpp:218] Iteration 9468 (2.38156 iter/s, 5.03871s/12 iters), loss = 0.193556 +I0407 09:48:13.374764 18909 solver.cpp:237] Train net output #0: loss = 0.193556 (* 1 = 0.193556 loss) +I0407 09:48:13.374774 18909 sgd_solver.cpp:105] Iteration 9468, lr = 0.005625 +I0407 09:48:18.400725 18909 solver.cpp:218] Iteration 9480 (2.38761 iter/s, 5.02595s/12 iters), loss = 0.293617 +I0407 09:48:18.400786 18909 solver.cpp:237] Train net output #0: loss = 0.293617 (* 1 = 0.293617 loss) +I0407 09:48:18.400800 18909 sgd_solver.cpp:105] Iteration 9480, lr = 0.005625 +I0407 09:48:20.349926 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0407 09:48:23.332769 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0407 09:48:25.631737 18909 solver.cpp:330] Iteration 9486, Testing net (#0) +I0407 09:48:25.631757 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:48:26.278945 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:29.919787 18909 solver.cpp:397] Test net output #0: accuracy = 0.442402 +I0407 09:48:29.919919 18909 solver.cpp:397] Test net output #1: loss = 3.14199 (* 1 = 3.14199 loss) +I0407 09:48:31.710043 18909 solver.cpp:218] Iteration 9492 (0.901628 iter/s, 13.3093s/12 iters), loss = 0.0977814 +I0407 09:48:31.710091 18909 solver.cpp:237] Train net output #0: loss = 0.0977814 (* 1 = 0.0977814 loss) +I0407 09:48:31.710098 18909 sgd_solver.cpp:105] Iteration 9492, lr = 0.005625 +I0407 09:48:36.885200 18909 solver.cpp:218] Iteration 9504 (2.3188 iter/s, 5.17509s/12 iters), loss = 0.226936 +I0407 09:48:36.885254 18909 solver.cpp:237] Train net output #0: loss = 0.226936 (* 1 = 0.226936 loss) +I0407 09:48:36.885263 18909 sgd_solver.cpp:105] Iteration 9504, lr = 0.005625 +I0407 09:48:38.358412 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:48:42.041029 18909 solver.cpp:218] Iteration 9516 (2.32749 iter/s, 5.15577s/12 iters), loss = 0.259434 +I0407 09:48:42.041071 18909 solver.cpp:237] Train net output #0: loss = 0.259434 (* 1 = 0.259434 loss) +I0407 09:48:42.041079 18909 sgd_solver.cpp:105] Iteration 9516, lr = 0.005625 +I0407 09:48:47.247258 18909 solver.cpp:218] Iteration 9528 (2.30495 iter/s, 5.20618s/12 iters), loss = 0.146199 +I0407 09:48:47.247296 18909 solver.cpp:237] Train net output #0: loss = 0.146199 (* 1 = 0.146199 loss) +I0407 09:48:47.247303 18909 sgd_solver.cpp:105] Iteration 9528, lr = 0.005625 +I0407 09:48:52.722577 18909 solver.cpp:218] Iteration 9540 (2.19168 iter/s, 5.47526s/12 iters), loss = 0.470241 +I0407 09:48:52.722635 18909 solver.cpp:237] Train net output #0: loss = 0.470241 (* 1 = 0.470241 loss) +I0407 09:48:52.722645 18909 sgd_solver.cpp:105] Iteration 9540, lr = 0.005625 +I0407 09:48:58.062920 18909 solver.cpp:218] Iteration 9552 (2.24708 iter/s, 5.34027s/12 iters), loss = 0.16219 +I0407 09:48:58.062981 18909 solver.cpp:237] Train net output #0: loss = 0.16219 (* 1 = 0.16219 loss) +I0407 09:48:58.062992 18909 sgd_solver.cpp:105] Iteration 9552, lr = 0.005625 +I0407 09:49:03.354588 18909 solver.cpp:218] Iteration 9564 (2.26775 iter/s, 5.2916s/12 iters), loss = 0.209062 +I0407 09:49:03.354717 18909 solver.cpp:237] Train net output #0: loss = 0.209062 (* 1 = 0.209062 loss) +I0407 09:49:03.354727 18909 sgd_solver.cpp:105] Iteration 9564, lr = 0.005625 +I0407 09:49:08.326486 18909 solver.cpp:218] Iteration 9576 (2.41363 iter/s, 4.97176s/12 iters), loss = 0.16189 +I0407 09:49:08.326535 18909 solver.cpp:237] Train net output #0: loss = 0.16189 (* 1 = 0.16189 loss) +I0407 09:49:08.326545 18909 sgd_solver.cpp:105] Iteration 9576, lr = 0.005625 +I0407 09:49:13.204504 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0407 09:49:16.253572 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0407 09:49:18.598901 18909 solver.cpp:330] Iteration 9588, Testing net (#0) +I0407 09:49:18.598920 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:49:19.231242 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:23.049615 18909 solver.cpp:397] Test net output #0: accuracy = 0.442402 +I0407 09:49:23.049644 18909 solver.cpp:397] Test net output #1: loss = 3.0502 (* 1 = 3.0502 loss) +I0407 09:49:23.187623 18909 solver.cpp:218] Iteration 9588 (0.807478 iter/s, 14.8611s/12 iters), loss = 0.199413 +I0407 09:49:23.187685 18909 solver.cpp:237] Train net output #0: loss = 0.199413 (* 1 = 0.199413 loss) +I0407 09:49:23.187693 18909 sgd_solver.cpp:105] Iteration 9588, lr = 0.005625 +I0407 09:49:27.436623 18909 solver.cpp:218] Iteration 9600 (2.82424 iter/s, 4.24892s/12 iters), loss = 0.123588 +I0407 09:49:27.436667 18909 solver.cpp:237] Train net output #0: loss = 0.123588 (* 1 = 0.123588 loss) +I0407 09:49:27.436676 18909 sgd_solver.cpp:105] Iteration 9600, lr = 0.005625 +I0407 09:49:31.208060 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:49:32.758841 18909 solver.cpp:218] Iteration 9612 (2.25473 iter/s, 5.32216s/12 iters), loss = 0.185798 +I0407 09:49:32.758883 18909 solver.cpp:237] Train net output #0: loss = 0.185798 (* 1 = 0.185798 loss) +I0407 09:49:32.758890 18909 sgd_solver.cpp:105] Iteration 9612, lr = 0.005625 +I0407 09:49:38.057530 18909 solver.cpp:218] Iteration 9624 (2.26473 iter/s, 5.29864s/12 iters), loss = 0.122547 +I0407 09:49:38.057662 18909 solver.cpp:237] Train net output #0: loss = 0.122547 (* 1 = 0.122547 loss) +I0407 09:49:38.057670 18909 sgd_solver.cpp:105] Iteration 9624, lr = 0.005625 +I0407 09:49:43.448112 18909 solver.cpp:218] Iteration 9636 (2.22616 iter/s, 5.39044s/12 iters), loss = 0.141388 +I0407 09:49:43.448172 18909 solver.cpp:237] Train net output #0: loss = 0.141388 (* 1 = 0.141388 loss) +I0407 09:49:43.448184 18909 sgd_solver.cpp:105] Iteration 9636, lr = 0.005625 +I0407 09:49:48.729271 18909 solver.cpp:218] Iteration 9648 (2.27226 iter/s, 5.28108s/12 iters), loss = 0.159064 +I0407 09:49:48.729324 18909 solver.cpp:237] Train net output #0: loss = 0.159064 (* 1 = 0.159064 loss) +I0407 09:49:48.729333 18909 sgd_solver.cpp:105] Iteration 9648, lr = 0.005625 +I0407 09:49:54.068056 18909 solver.cpp:218] Iteration 9660 (2.24773 iter/s, 5.33872s/12 iters), loss = 0.240868 +I0407 09:49:54.068096 18909 solver.cpp:237] Train net output #0: loss = 0.240868 (* 1 = 0.240868 loss) +I0407 09:49:54.068104 18909 sgd_solver.cpp:105] Iteration 9660, lr = 0.005625 +I0407 09:49:59.228662 18909 solver.cpp:218] Iteration 9672 (2.32533 iter/s, 5.16055s/12 iters), loss = 0.341613 +I0407 09:49:59.228704 18909 solver.cpp:237] Train net output #0: loss = 0.341613 (* 1 = 0.341613 loss) +I0407 09:49:59.228711 18909 sgd_solver.cpp:105] Iteration 9672, lr = 0.005625 +I0407 09:50:04.509424 18909 solver.cpp:218] Iteration 9684 (2.27242 iter/s, 5.28071s/12 iters), loss = 0.129969 +I0407 09:50:04.509475 18909 solver.cpp:237] Train net output #0: loss = 0.129969 (* 1 = 0.129969 loss) +I0407 09:50:04.509485 18909 sgd_solver.cpp:105] Iteration 9684, lr = 0.005625 +I0407 09:50:06.620254 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0407 09:50:09.656975 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0407 09:50:12.018877 18909 solver.cpp:330] Iteration 9690, Testing net (#0) +I0407 09:50:12.018895 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:50:12.572157 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:15.312074 18909 blocking_queue.cpp:49] Waiting for data +I0407 09:50:16.334609 18909 solver.cpp:397] Test net output #0: accuracy = 0.444853 +I0407 09:50:16.334645 18909 solver.cpp:397] Test net output #1: loss = 3.07648 (* 1 = 3.07648 loss) +I0407 09:50:18.151141 18909 solver.cpp:218] Iteration 9696 (0.879658 iter/s, 13.6417s/12 iters), loss = 0.208744 +I0407 09:50:18.151182 18909 solver.cpp:237] Train net output #0: loss = 0.208744 (* 1 = 0.208744 loss) +I0407 09:50:18.151190 18909 sgd_solver.cpp:105] Iteration 9696, lr = 0.005625 +I0407 09:50:23.328569 18909 solver.cpp:218] Iteration 9708 (2.31778 iter/s, 5.17737s/12 iters), loss = 0.167196 +I0407 09:50:23.328626 18909 solver.cpp:237] Train net output #0: loss = 0.167196 (* 1 = 0.167196 loss) +I0407 09:50:23.328636 18909 sgd_solver.cpp:105] Iteration 9708, lr = 0.005625 +I0407 09:50:24.073689 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:50:28.617316 18909 solver.cpp:218] Iteration 9720 (2.269 iter/s, 5.28868s/12 iters), loss = 0.160203 +I0407 09:50:28.617360 18909 solver.cpp:237] Train net output #0: loss = 0.160203 (* 1 = 0.160203 loss) +I0407 09:50:28.617368 18909 sgd_solver.cpp:105] Iteration 9720, lr = 0.005625 +I0407 09:50:33.987702 18909 solver.cpp:218] Iteration 9732 (2.2345 iter/s, 5.37033s/12 iters), loss = 0.158915 +I0407 09:50:33.987754 18909 solver.cpp:237] Train net output #0: loss = 0.158915 (* 1 = 0.158915 loss) +I0407 09:50:33.987763 18909 sgd_solver.cpp:105] Iteration 9732, lr = 0.005625 +I0407 09:50:39.369347 18909 solver.cpp:218] Iteration 9744 (2.22983 iter/s, 5.38159s/12 iters), loss = 0.129627 +I0407 09:50:39.369385 18909 solver.cpp:237] Train net output #0: loss = 0.129627 (* 1 = 0.129627 loss) +I0407 09:50:39.369392 18909 sgd_solver.cpp:105] Iteration 9744, lr = 0.005625 +I0407 09:50:44.705960 18909 solver.cpp:218] Iteration 9756 (2.24864 iter/s, 5.33656s/12 iters), loss = 0.226508 +I0407 09:50:44.706081 18909 solver.cpp:237] Train net output #0: loss = 0.226508 (* 1 = 0.226508 loss) +I0407 09:50:44.706089 18909 sgd_solver.cpp:105] Iteration 9756, lr = 0.005625 +I0407 09:50:49.957700 18909 solver.cpp:218] Iteration 9768 (2.28502 iter/s, 5.2516s/12 iters), loss = 0.0920589 +I0407 09:50:49.957742 18909 solver.cpp:237] Train net output #0: loss = 0.0920589 (* 1 = 0.0920589 loss) +I0407 09:50:49.957749 18909 sgd_solver.cpp:105] Iteration 9768, lr = 0.005625 +I0407 09:50:55.221223 18909 solver.cpp:218] Iteration 9780 (2.27986 iter/s, 5.26347s/12 iters), loss = 0.234899 +I0407 09:50:55.221261 18909 solver.cpp:237] Train net output #0: loss = 0.234899 (* 1 = 0.234899 loss) +I0407 09:50:55.221266 18909 sgd_solver.cpp:105] Iteration 9780, lr = 0.005625 +I0407 09:50:59.977290 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0407 09:51:03.042450 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0407 09:51:05.393352 18909 solver.cpp:330] Iteration 9792, Testing net (#0) +I0407 09:51:05.393375 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:51:05.947010 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:09.816021 18909 solver.cpp:397] Test net output #0: accuracy = 0.443627 +I0407 09:51:09.816059 18909 solver.cpp:397] Test net output #1: loss = 3.14378 (* 1 = 3.14378 loss) +I0407 09:51:09.947239 18909 solver.cpp:218] Iteration 9792 (0.814887 iter/s, 14.726s/12 iters), loss = 0.289478 +I0407 09:51:09.947299 18909 solver.cpp:237] Train net output #0: loss = 0.289478 (* 1 = 0.289478 loss) +I0407 09:51:09.947309 18909 sgd_solver.cpp:105] Iteration 9792, lr = 0.005625 +I0407 09:51:14.195281 18909 solver.cpp:218] Iteration 9804 (2.82488 iter/s, 4.24797s/12 iters), loss = 0.202162 +I0407 09:51:14.195329 18909 solver.cpp:237] Train net output #0: loss = 0.202162 (* 1 = 0.202162 loss) +I0407 09:51:14.195339 18909 sgd_solver.cpp:105] Iteration 9804, lr = 0.005625 +I0407 09:51:17.246909 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:51:19.428167 18909 solver.cpp:218] Iteration 9816 (2.29322 iter/s, 5.23283s/12 iters), loss = 0.0929877 +I0407 09:51:19.428228 18909 solver.cpp:237] Train net output #0: loss = 0.0929878 (* 1 = 0.0929878 loss) +I0407 09:51:19.428241 18909 sgd_solver.cpp:105] Iteration 9816, lr = 0.005625 +I0407 09:51:24.778620 18909 solver.cpp:218] Iteration 9828 (2.24283 iter/s, 5.35037s/12 iters), loss = 0.295189 +I0407 09:51:24.778676 18909 solver.cpp:237] Train net output #0: loss = 0.295189 (* 1 = 0.295189 loss) +I0407 09:51:24.778687 18909 sgd_solver.cpp:105] Iteration 9828, lr = 0.005625 +I0407 09:51:30.175743 18909 solver.cpp:218] Iteration 9840 (2.22343 iter/s, 5.39706s/12 iters), loss = 0.200449 +I0407 09:51:30.175786 18909 solver.cpp:237] Train net output #0: loss = 0.200449 (* 1 = 0.200449 loss) +I0407 09:51:30.175791 18909 sgd_solver.cpp:105] Iteration 9840, lr = 0.005625 +I0407 09:51:35.404920 18909 solver.cpp:218] Iteration 9852 (2.29484 iter/s, 5.22912s/12 iters), loss = 0.165602 +I0407 09:51:35.404963 18909 solver.cpp:237] Train net output #0: loss = 0.165602 (* 1 = 0.165602 loss) +I0407 09:51:35.404970 18909 sgd_solver.cpp:105] Iteration 9852, lr = 0.005625 +I0407 09:51:40.432570 18909 solver.cpp:218] Iteration 9864 (2.38683 iter/s, 5.02759s/12 iters), loss = 0.228029 +I0407 09:51:40.432616 18909 solver.cpp:237] Train net output #0: loss = 0.228029 (* 1 = 0.228029 loss) +I0407 09:51:40.432624 18909 sgd_solver.cpp:105] Iteration 9864, lr = 0.005625 +I0407 09:51:45.797204 18909 solver.cpp:218] Iteration 9876 (2.2369 iter/s, 5.36457s/12 iters), loss = 0.279353 +I0407 09:51:45.797256 18909 solver.cpp:237] Train net output #0: loss = 0.279353 (* 1 = 0.279353 loss) +I0407 09:51:45.797264 18909 sgd_solver.cpp:105] Iteration 9876, lr = 0.005625 +I0407 09:51:51.068944 18909 solver.cpp:218] Iteration 9888 (2.27632 iter/s, 5.27167s/12 iters), loss = 0.120874 +I0407 09:51:51.069080 18909 solver.cpp:237] Train net output #0: loss = 0.120874 (* 1 = 0.120874 loss) +I0407 09:51:51.069090 18909 sgd_solver.cpp:105] Iteration 9888, lr = 0.005625 +I0407 09:51:53.206029 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0407 09:51:56.204481 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0407 09:51:58.530241 18909 solver.cpp:330] Iteration 9894, Testing net (#0) +I0407 09:51:58.530262 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:51:59.062603 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:02.988929 18909 solver.cpp:397] Test net output #0: accuracy = 0.448529 +I0407 09:52:02.988965 18909 solver.cpp:397] Test net output #1: loss = 3.07265 (* 1 = 3.07265 loss) +I0407 09:52:04.890026 18909 solver.cpp:218] Iteration 9900 (0.868247 iter/s, 13.8209s/12 iters), loss = 0.161064 +I0407 09:52:04.890071 18909 solver.cpp:237] Train net output #0: loss = 0.161064 (* 1 = 0.161064 loss) +I0407 09:52:04.890079 18909 sgd_solver.cpp:105] Iteration 9900, lr = 0.005625 +I0407 09:52:10.028599 18909 solver.cpp:218] Iteration 9912 (2.33531 iter/s, 5.13851s/12 iters), loss = 0.244818 +I0407 09:52:10.028635 18909 solver.cpp:237] Train net output #0: loss = 0.244818 (* 1 = 0.244818 loss) +I0407 09:52:10.028642 18909 sgd_solver.cpp:105] Iteration 9912, lr = 0.005625 +I0407 09:52:10.117044 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:15.260073 18909 solver.cpp:218] Iteration 9924 (2.29383 iter/s, 5.23142s/12 iters), loss = 0.249776 +I0407 09:52:15.260123 18909 solver.cpp:237] Train net output #0: loss = 0.249776 (* 1 = 0.249776 loss) +I0407 09:52:15.260131 18909 sgd_solver.cpp:105] Iteration 9924, lr = 0.005625 +I0407 09:52:20.578462 18909 solver.cpp:218] Iteration 9936 (2.25635 iter/s, 5.31832s/12 iters), loss = 0.18153 +I0407 09:52:20.578518 18909 solver.cpp:237] Train net output #0: loss = 0.18153 (* 1 = 0.18153 loss) +I0407 09:52:20.578527 18909 sgd_solver.cpp:105] Iteration 9936, lr = 0.005625 +I0407 09:52:26.145967 18909 solver.cpp:218] Iteration 9948 (2.15539 iter/s, 5.56743s/12 iters), loss = 0.137598 +I0407 09:52:26.146155 18909 solver.cpp:237] Train net output #0: loss = 0.137598 (* 1 = 0.137598 loss) +I0407 09:52:26.146167 18909 sgd_solver.cpp:105] Iteration 9948, lr = 0.005625 +I0407 09:52:31.456761 18909 solver.cpp:218] Iteration 9960 (2.25963 iter/s, 5.31059s/12 iters), loss = 0.188014 +I0407 09:52:31.456810 18909 solver.cpp:237] Train net output #0: loss = 0.188014 (* 1 = 0.188014 loss) +I0407 09:52:31.456820 18909 sgd_solver.cpp:105] Iteration 9960, lr = 0.005625 +I0407 09:52:36.446873 18909 solver.cpp:218] Iteration 9972 (2.40478 iter/s, 4.99005s/12 iters), loss = 0.21529 +I0407 09:52:36.446918 18909 solver.cpp:237] Train net output #0: loss = 0.21529 (* 1 = 0.21529 loss) +I0407 09:52:36.446925 18909 sgd_solver.cpp:105] Iteration 9972, lr = 0.005625 +I0407 09:52:41.690053 18909 solver.cpp:218] Iteration 9984 (2.28871 iter/s, 5.24312s/12 iters), loss = 0.24727 +I0407 09:52:41.690105 18909 solver.cpp:237] Train net output #0: loss = 0.24727 (* 1 = 0.24727 loss) +I0407 09:52:41.690115 18909 sgd_solver.cpp:105] Iteration 9984, lr = 0.005625 +I0407 09:52:46.425839 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0407 09:52:49.373229 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0407 09:52:51.699702 18909 solver.cpp:330] Iteration 9996, Testing net (#0) +I0407 09:52:51.699720 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:52:52.141175 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:52:56.009310 18909 solver.cpp:397] Test net output #0: accuracy = 0.444853 +I0407 09:52:56.009344 18909 solver.cpp:397] Test net output #1: loss = 3.04074 (* 1 = 3.04074 loss) +I0407 09:52:56.145615 18909 solver.cpp:218] Iteration 9996 (0.830133 iter/s, 14.4555s/12 iters), loss = 0.209176 +I0407 09:52:56.145659 18909 solver.cpp:237] Train net output #0: loss = 0.209176 (* 1 = 0.209176 loss) +I0407 09:52:56.145668 18909 sgd_solver.cpp:105] Iteration 9996, lr = 0.005625 +I0407 09:53:00.425194 18909 solver.cpp:218] Iteration 10008 (2.80405 iter/s, 4.27952s/12 iters), loss = 0.23389 +I0407 09:53:00.425318 18909 solver.cpp:237] Train net output #0: loss = 0.23389 (* 1 = 0.23389 loss) +I0407 09:53:00.425325 18909 sgd_solver.cpp:105] Iteration 10008, lr = 0.005625 +I0407 09:53:02.794463 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:05.810750 18909 solver.cpp:218] Iteration 10020 (2.22824 iter/s, 5.38542s/12 iters), loss = 0.198896 +I0407 09:53:05.810791 18909 solver.cpp:237] Train net output #0: loss = 0.198896 (* 1 = 0.198896 loss) +I0407 09:53:05.810796 18909 sgd_solver.cpp:105] Iteration 10020, lr = 0.005625 +I0407 09:53:10.996168 18909 solver.cpp:218] Iteration 10032 (2.31421 iter/s, 5.18536s/12 iters), loss = 0.0884832 +I0407 09:53:10.996234 18909 solver.cpp:237] Train net output #0: loss = 0.0884833 (* 1 = 0.0884833 loss) +I0407 09:53:10.996244 18909 sgd_solver.cpp:105] Iteration 10032, lr = 0.005625 +I0407 09:53:16.291173 18909 solver.cpp:218] Iteration 10044 (2.26632 iter/s, 5.29493s/12 iters), loss = 0.237768 +I0407 09:53:16.291219 18909 solver.cpp:237] Train net output #0: loss = 0.237768 (* 1 = 0.237768 loss) +I0407 09:53:16.291226 18909 sgd_solver.cpp:105] Iteration 10044, lr = 0.005625 +I0407 09:53:21.331506 18909 solver.cpp:218] Iteration 10056 (2.38082 iter/s, 5.04027s/12 iters), loss = 0.153537 +I0407 09:53:21.331564 18909 solver.cpp:237] Train net output #0: loss = 0.153537 (* 1 = 0.153537 loss) +I0407 09:53:21.331575 18909 sgd_solver.cpp:105] Iteration 10056, lr = 0.005625 +I0407 09:53:26.674291 18909 solver.cpp:218] Iteration 10068 (2.24605 iter/s, 5.34272s/12 iters), loss = 0.199101 +I0407 09:53:26.674352 18909 solver.cpp:237] Train net output #0: loss = 0.199101 (* 1 = 0.199101 loss) +I0407 09:53:26.674363 18909 sgd_solver.cpp:105] Iteration 10068, lr = 0.005625 +I0407 09:53:32.122265 18909 solver.cpp:218] Iteration 10080 (2.20268 iter/s, 5.4479s/12 iters), loss = 0.222721 +I0407 09:53:32.122383 18909 solver.cpp:237] Train net output #0: loss = 0.222721 (* 1 = 0.222721 loss) +I0407 09:53:32.122393 18909 sgd_solver.cpp:105] Iteration 10080, lr = 0.005625 +I0407 09:53:37.413115 18909 solver.cpp:218] Iteration 10092 (2.26812 iter/s, 5.29073s/12 iters), loss = 0.216733 +I0407 09:53:37.413158 18909 solver.cpp:237] Train net output #0: loss = 0.216733 (* 1 = 0.216733 loss) +I0407 09:53:37.413167 18909 sgd_solver.cpp:105] Iteration 10092, lr = 0.005625 +I0407 09:53:39.501103 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0407 09:53:42.554699 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0407 09:53:44.869838 18909 solver.cpp:330] Iteration 10098, Testing net (#0) +I0407 09:53:44.869858 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:53:45.284348 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:49.188485 18909 solver.cpp:397] Test net output #0: accuracy = 0.452819 +I0407 09:53:49.188524 18909 solver.cpp:397] Test net output #1: loss = 3.05775 (* 1 = 3.05775 loss) +I0407 09:53:51.089424 18909 solver.cpp:218] Iteration 10104 (0.877433 iter/s, 13.6763s/12 iters), loss = 0.182965 +I0407 09:53:51.089476 18909 solver.cpp:237] Train net output #0: loss = 0.182965 (* 1 = 0.182965 loss) +I0407 09:53:51.089488 18909 sgd_solver.cpp:105] Iteration 10104, lr = 0.00421875 +I0407 09:53:55.572046 18933 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:53:56.230600 18909 solver.cpp:218] Iteration 10116 (2.33412 iter/s, 5.14111s/12 iters), loss = 0.0951014 +I0407 09:53:56.230641 18909 solver.cpp:237] Train net output #0: loss = 0.0951014 (* 1 = 0.0951014 loss) +I0407 09:53:56.230649 18909 sgd_solver.cpp:105] Iteration 10116, lr = 0.00421875 +I0407 09:54:01.375913 18909 solver.cpp:218] Iteration 10128 (2.33225 iter/s, 5.14526s/12 iters), loss = 0.177293 +I0407 09:54:01.375957 18909 solver.cpp:237] Train net output #0: loss = 0.177293 (* 1 = 0.177293 loss) +I0407 09:54:01.375965 18909 sgd_solver.cpp:105] Iteration 10128, lr = 0.00421875 +I0407 09:54:06.580251 18909 solver.cpp:218] Iteration 10140 (2.30579 iter/s, 5.20428s/12 iters), loss = 0.19273 +I0407 09:54:06.580380 18909 solver.cpp:237] Train net output #0: loss = 0.19273 (* 1 = 0.19273 loss) +I0407 09:54:06.580391 18909 sgd_solver.cpp:105] Iteration 10140, lr = 0.00421875 +I0407 09:54:11.807340 18909 solver.cpp:218] Iteration 10152 (2.29579 iter/s, 5.22695s/12 iters), loss = 0.278018 +I0407 09:54:11.807399 18909 solver.cpp:237] Train net output #0: loss = 0.278018 (* 1 = 0.278018 loss) +I0407 09:54:11.807410 18909 sgd_solver.cpp:105] Iteration 10152, lr = 0.00421875 +I0407 09:54:17.149788 18909 solver.cpp:218] Iteration 10164 (2.24619 iter/s, 5.34238s/12 iters), loss = 0.250607 +I0407 09:54:17.149852 18909 solver.cpp:237] Train net output #0: loss = 0.250607 (* 1 = 0.250607 loss) +I0407 09:54:17.149863 18909 sgd_solver.cpp:105] Iteration 10164, lr = 0.00421875 +I0407 09:54:22.536154 18909 solver.cpp:218] Iteration 10176 (2.22788 iter/s, 5.38629s/12 iters), loss = 0.162603 +I0407 09:54:22.536212 18909 solver.cpp:237] Train net output #0: loss = 0.162603 (* 1 = 0.162603 loss) +I0407 09:54:22.536222 18909 sgd_solver.cpp:105] Iteration 10176, lr = 0.00421875 +I0407 09:54:27.689064 18909 solver.cpp:218] Iteration 10188 (2.32881 iter/s, 5.15285s/12 iters), loss = 0.192119 +I0407 09:54:27.689106 18909 solver.cpp:237] Train net output #0: loss = 0.192119 (* 1 = 0.192119 loss) +I0407 09:54:27.689113 18909 sgd_solver.cpp:105] Iteration 10188, lr = 0.00421875 +I0407 09:54:32.519857 18909 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0407 09:54:35.598585 18909 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0407 09:54:37.962512 18909 solver.cpp:310] Iteration 10200, loss = 0.128787 +I0407 09:54:37.962589 18909 solver.cpp:330] Iteration 10200, Testing net (#0) +I0407 09:54:37.962596 18909 net.cpp:676] Ignoring source layer train-data +I0407 09:54:38.349792 18961 data_layer.cpp:73] Restarting data prefetching from start. +I0407 09:54:42.375211 18909 solver.cpp:397] Test net output #0: accuracy = 0.463848 +I0407 09:54:42.375262 18909 solver.cpp:397] Test net output #1: loss = 3.0052 (* 1 = 3.0052 loss) +I0407 09:54:42.375272 18909 solver.cpp:315] Optimization Done. +I0407 09:54:42.375279 18909 caffe.cpp:259] Optimization Done.

3DvP(1n6trK zb$EDGux)_O{m*8fkOx;vx;Lxk$^0REc*!Zei~Cqk){z$B7yy1ZtaOUKmJvfMHP}@4 zNWWsI)wuM!ufUs>+AsTKUc&)K3#>3PWO~(pO1ducL=JB@;zs_@O6$DFK^Bt$-QV=V z0hs7lDAB%Ho%K3+_R&@n2RNL)BqHJ*yxJW7gSgG^*?N40uzzzXgha@c#Fdp9BQ(TWZe2XlSk1@aZ;G@Yzm2*x5V~`(zSoAanUR=^k=#=U|I;{rZ*+MC+>2(nxa7I zWrjDvVcj93wYO*#U1}QXX54l`xqA{@|7C#G-I`7&xFkd)L>?6)fKO~_+-ixB9*e^D zOEnF2@5U`wzDK1Bs>A_&ZM^v<%5u&P3Wc^{tLxxk?=yWew3N@G8LqNVo)o2QnT}1O z{951sa5JTi^cdR^4{Y0>99Js{nXgTrlm$D(2;6>}=>CQ-S-19q;1#p`c_xxh-w;U`ty0c9f&Ju?+Uv zHWkvEL-$3&;uUAplMEP-qI?Im0jGm6ZiF7k^*FuaB@wcT#$i9g9dfAdim$8Nal? ze;s9==99yU9?3~FqI!ojsTDXhldeK9q~*L$bh7hSp}bC4cxU;?FvVQ;{l}nrQjZsR z(e@r+?R*&`4YVrA0m!7tzI-jTT+Zlgc*O^5C3l276A|D&QA5YxMG5m}hKHMgLT$hOG!-#q`6%v}kDDYb zr1fZl$W1e8(CH-03a<8&4Dx79ab$^ViV|-cZx33y|5Hbpi9{ImH^*$g9Jefqf7>J> znR{Hqj%$CFnZed{E=N1wgb~*yJ=fJF5!0Ndlhn3yeOKDdCBFc)ardF+#Nx40#S!v; zt58Zopu}|t|1LinsXM@N;IAs`m5=yYUoi%5u*Cs&`DU4^3T!7k1~}bqF&bk8q2C2G zW|6a1bilFqfkE7NTGX4aFtT_n&)87jo(1#o%LIH-9FD!Vq$r?~*jX4tP|M{*&S2C z`{ul(zIoycOdt`z-?`KimJRrQfOF&o*8thIG-aj+v8*9%cRh(X)nRoI7(fLql5#n8 zD*rLrJ$e6&CJnNVRs~rVG~f$?MSXH*oeWC9xmHc-suS(bdh`YK#`3syn;kmE zHKl{qbfGrR;*Cq#z!JV)trCDf-ZeN?m!4llhtth&Q}s66g+~TBUBA*iGtpCqHOiZ( z=g*k_EzhLuDXj<#1c=CALeSDf4*TY@I25g?IzD#R{*!6NA7W z4QreO>8ZZV6J@R#9Y~hrr01`D6XcKjjog<*m84c1!3v@pHqAe}oErWT1~-pQysaIH z@mzJdAu+668>!drcWezzE4BITF`HCFT1e4M?sO;kJZ8Q(k}XCk_@Vv%KW`TM#}j}w z0w`YHqrPR~Pv)A~f47SwsXB+wTYH#_*wN~J-R^6>JW4;{P{K;a4loY{hN*8|9cxK{ z`#Kb-k*#B9Yl441CX>bWBm@Gnn7gqR%2vMM=>-0|12Vb6R>l~VDDRT&+zB6!EXCsH zgBGY#{=McR7200}bWK_0xM9!f-r;qn>tTTNb#JpPF!W>lc+!U|2Da~u-SRCe*4>=* zk7A0AeJCU10lrVTn#W-fLpc+2SqH<^^fNq8Z^wudsLO2MHWG}`?GCexH` zDiHyPi4ZF>21i@0pxI&`w=zn~3bHU>8@(AXV-fceCwqc9RusnfSdbguJBDf1jxTrY{;F|Pgbo89!*u1-GKR%AWm=~NkDl6N-x zdpILKsRXpU=2Bx}W5;#|0AS}DbM&=F!+oW7 z^4&?rp26=IZ@l=W^{N2fdWwpu{SM#58btgz_(B5J$KlUH3g+5Vfi+^$HQ4(e$LaPn z&awTHV$sD^aUdhXp(l&}umtI>NmAlD`VUjw?lN2RZLJ+Rb0!p%?Cztcsq>Fj)DCVaby9diSa2YQwl7o$b2Q|v1Ux~!eW z%w&cjy257-$E@1}+&17-u-o)<`E(UIbg&Na6f|ttB*_581u9czh`3GBD*P%*Tkygq z;6^lT2ARh$k~dq1EfWGB1(}DPk~s-i>q4{{41!|5H3UCV0DW4VN~(2ye=y*!R_kKPlfllUQ9of&7R=|JKil?vt--J`)ck?yZNZv6H^71kpI+-O-@ zQumX>ntiFbTG1b;khP@5S0)5*ai~BSM5{ z2!slf(y%LNTx||jjB;oKUWX&VkoVn8_AF0+HRBCnT7vbbrPBfk62c|U_0%}{2IJf6 zssrsl>e&unT`CQt?Kb+PJDHQyx)@t(L*Cl*G_$MC)??WbIDZB1UpRxddP{>0-&H3R zcsBz`xty)jd@RhGF=&U_`E;vmFJ~uq;Ei#7>q=;cSQRF9?s03pPcOfDT_K$hOHh~* zCvURZFtbn9*({<{k*wC3s+Gs!eDDl-wvyEe^lDH}tlRF#?dlH_b3 z%yfEl7VI?pey=>k9v>jlAI&rv1}VBv>XLf&n##&Irs`hljVjn%KE8S*e4#Z3Y`P{? z0H~a_=tUIpto*zN;PibS2c8~YIiSn!<-B%$Q_)C)#8$xaWvmqgxZ!J)xkB?R zgwv+p^@)p2P%y)WUO9gs`p@@6{@PN;@%}189n#)r3XERB7*6rQ#PhB!XVZa% z_K^|{z};Vqx7sE4I`}lU-@h=0&R%`FW2JT4uA%@mqyc^j0<~$*}$kN2QRu%4;5Lb&X4IwP$TsUl|sP5 zmQ$>p`uUp7h7~8q;LWbVP}+`@lhGL4lh_`(Q>ynqiPe#9yvDxr-N7e39nVk2R@aA% zJOY5$6JfucL~=Cu+;FAid#1cXGh)6jB+{1E_602bIdf&C+sn3NSd&LI%*4YD1SPAb zVqO`}&CkGm!S{7IOtNckSHdVD|3BYo`7bOTt^xbdj zl?CmDH@rGk2fT8XPPY{-oRS$e#t$Zf;0!-ymeWg;Y);CC;&fP5ovxfpl#%|*8ZWu$o8|z*hux@{u4PTOdVkaZ%Jk!gvGqVd9)M2 z{BI$Vlb=+SY!EnQaY>0&lXD;u+a>(HuoU}kH2%009uMuJ1as0%n~;+ulC=D!V9F6; zpvF99wtPm0e4|ikc+!UqoAf)q1salo3(nG?xkzP)cS`F6q43M-miDSgV?;69DYLT3 z!q$vTCE)dTl%~S*$+B1YHU=edm!oBflL!1K_GX$_Mwtp&4uzgTe|7OW0#J~;CD zos=c#&l7Uz=yH*z($??s{ic4r`!Pf2A^=h%$54%4zKcoykSyB(4s*l4RHYxGm@O?L?vuG?UfuOYqZ)`tR*NMd0JJv;`~Fdq)1nmx8;#utz=4hvJ&=@(BQDsy;tGCUS_`{2c3XsL8WiOg@XEBr1<-8oYgB5_MM0N^3%WF)t7P) z?%L=-B3v9PdkO05D}T#eepvagtuZZ;8FswIC{Yx(kg z(`DxrM|YI*#yU~}(QuRI;_T%|#V2+>ae~1q%Tkt1KAkz3rWjx@+WZuH*ZB2249cIC zph!T-wruZ$%uE54R>4=4aL+3HFqJWr?38-DiZjaP+YI=XTf8=7jJ5Q|EBFIXyjO)w zm-yeBn$mJmQe>YGljtumzl8&EBk%29VFtjAff5Mo!&6XWH%(hLR7(J+<#wWWYpF9; z;CFvcQm?VipHYCxib)yXy0>huZ8%ax_4;Mobh|^Sg4BmwO6KLezu_@)F&(6Y{Fs07 zttt|s**c28A-|kALGscj%}D#cdI0Tr?`eotLlB%|X*mBmDQJ*t!1i!(!< zQN8)o-ucSMK`#B1v91XXABpD+qsybEVmu8h=+AWSQvebkyXB_3AH8ncVEe_4`Uk&P z`Wk8hk(Lw$Il`}pIox>n*f@xVIl+$}VGFwFQ!;)@$62yf0BzdPW!J_HK+WugFZ$>dS5y?blb@@&3hcS?z2MJA zIuLmRTmm=KVrB)%?@ZlCNx(%L+3@eJP2XA=^{8x_UTI~xVeXsp_yMTAqeXKCbeRKo znJ+p~>5b%oi*HfzbH`nu{|%@Gl8WCGPS@z-SxG6uKju!kQ^cJmcUDE|E+|o5J-~)B z!Fb$h&~*Bmzd;%v9A;tXV0LUz8;rrBEVjuk_lB`Lw%G{kxKvkgP;pSdT7xyi8Z zzW9^}Vm_iLBZIPv^WLY(-*wwL8#|{f=q<+IoGoMnP9BNJ*ZqC14nB?_*4Zz{ZlQ0? z$3FZ%b?8x3I!X?+Jb)^G!aWJJ>h2E|<%?DKSWI0Mt}r3zvHn!alyZ2O{8>aiN5%D` z86uK9wkLU3hC*nk6iV9t>M{9ZJt2|B$US8J1SH{<+QQ2K@vI2Q>#bzv+q0NG@El%T zitDLC*`EK^_27M%fB+8B>ucW;3hXj<10AYIcFDL_6HkSRjiV>U8PmlT?kt{1` z@0)%E2Dx87Sl%jkcxYrQ)ii_ksiJaw^xWb5(~Sq;w#*#!_F6SoR=%4)s#01yL%x&f zuZ%1V)L6N%sGEPWY^Bu{&Phf!SSW={ylxIx`A%(r?cA`I`s76SUO9Bjyr6*A&bPRffJ z1GQOU`i~A)Hl-RR6;C!kfuK1iSpt+4a4W~ZAz|j*TOkhsv(Q46uGr$G#bL1kbz2Ex zY5*+h?xy=%x)fz^zH_4YT7i=R7v2)^E~;Le{mJH^%qi2GYjuJlw zAx945kOJH0!~@1eiWgRIGf!JwT**%*H*8Nd)%9Ws@_2&i>uy1b#wW3Yo`(KkjjG36 zQ&Jg~aSU+8)zQ1}8*Xse$t6f0r{@GiX1OKR)@ReUJINS=-fA%Di8r!oaK4%dGl|>7 zr#z0PJ8<3f{?r^O3vKpv+R*ABM<5Ctx?Hox|L?TGuXYu1Yu(*ChNOh9m8GR@*Ar4n z27=4bHREwz#BIWO1HjqF`xIm*hYTN*vxmy~$OVLUrdXQk(zcsl%shfx1ja}1cI(6y9+R)6BWHBIyB>xpf5W!^X{WM+@~*t0+LXuJtBp_a(P$EqlW;get; z3pS0(I9KpFF}yS4dLw(>yTz?=OGg5BYWuNnJQR5?RZ00mBD}<97o7563np-F6vdD; z48xX{;mE0n8$Cr%rDrd{F`Up(@OA(*=@Waq{;}pzE$Pi3y+c?GwaxHb#*XkHp z+E+?+?k@KVi&E4Gic%@rPxQn&G(~?oFV3E2P*b`4&T8yLe8g{52G|1yw$^JTbWH6T zGbG*4{g=BAQc|HmUfpDc?bpe%##G?DvMs&rYNGZY@m=T3QkY!S50abH8n(8>gyw

T1vxO8oxgL=RNb zYrAm@#>S|X_nM4W;;3Xdx3A;(VBLN%?jj{w{3DT|!cJZB?u+1=E01?ZwU7d*)QXdU z1V+B4uL;Q)W|9%bQiaHWJGigoLK2vgd1d6(lIl@G%{I&`)v=`yHfk2NYM7{lD9~XT zZC)oOV-su0!s!({;dg(SMlE3NE% zfGsp$zxnM1vA;c)K_5qi_iA{A1YTN|?^|cICD8a`QrGNVcsRzKNrJU8d=c^7 z;A8*Smf%Rfad+R9wCd?^r&I}IL1ed8;F`JHIr+Jx(>p(C4Vw-wjuEk+myMY)*+}Cr zUfS#l84Q6nv;NVtZ1k9w+iwCxL>PUPFUc%P9OJx}4)8kdv&1PijV`tqru8G;QK=4` zL$Mh%tFOjh0;Ai zTa`bUMCk2Bnj0NdI?v=K^>-CVyehd=Au(7^7d~T4()!8h=GHP11`KTM_-cyCggr<%F=)gh|swAb&8}lys}fUOCfNUi?I0z;&DL z8IaMhZCZr+>*bOZ6 zXS~ZH_+yz%CS={)vC+mXL!4@!)SLc#VsJIE$jL{+*KNRD*Ws5Ts+Y7}aRv7HtHrT$ zkLozg<937Lj&XEm9x#XJL*ROXOI z?}vG+y*fwoQW}%zhpe3LtDrZHJ48NqW7#Js!z`6+y`tJId8xUZU1P5j>jrK+c6GC$ z1JG>}`y_(-s-&ejPG#g@sfOZm(37C}b+4X)8=8Uki_hU`B%XQ5p)!@!Htpzx?F6s7 zkJgM!FGZ*}Wu1oR@IiI?FL%zO1UYgyuD#rt#5o5%JDvSqAsr0th&!;qmD*M2c#_r% z?`&ef%KZ0y0u!y}g+*EQsj}uz*TRi-yjs-29Ip($;8{wSh&r9uDNBc!N*eJGiW=EWu7{n8 z(+$;?9<4D+^B1Cm7OPUbOI1=A`}>6Mz0wRsRzWWNNs*#*}}6*-%$#MT4>#Co#Yb~5021oD1LRX8R0>6mZl;{`Sdz0%l8+afu0CSza}1c zXx4Rwv~ga7KD?L!=~!8_PbRvoh;S9x!^N}+53Cf_?ybreo|A=5YPdG5?eC`58QkFe zDh)%#=$qNoMs(uDjFje57rUG(WBLwB$kMG@};Nbgp6q}oEq!Bzjku7Pg`(MMs5LE z!Zf4Z77jmkGplgyT>ar+>(IP(ouf(NJ-nE-Fb+p&%d0S5&Vd>OQyg zb7{Gob3y4^^-58`%j^aQ%PbQqZLD_lUWpbyOLZj{Fex9m`G;ha(W}p+hJ0H12mUsD zR8j^vx^J%})QU(%X_C6D)H6M8d?uM0#|ngh+^rF5F+$XnuZ3xo5nH2)xdt=k5B}93 z%MD$m0>K|TlpO=^teOGi2PbR&1eV_MYpw%lXDB;Jpnk8)_7YG}He$ERghH(r=kjVD z5j4CgM(n(#l>~UsPg-4-Y$5WDjWcewg|5wQg0vXbRFF&kI*<5siO|MjKRc4)I#?is zz<7(sitc$h)zl`IE%XJ~qR^}4)RPf`0QPm`HdUINRR_K1mPS4mkvD#pJ3_Sk*6DHC z2VRwfJ=Zk~N?vER2LOqq%+FQ@01FVwNvQ4okb~2mn(>`Q92NMSEEDuX^k@%K^IgPt zd_q(fI0VVgOVUv$iB7o~ep{-zk~WF+J}^=7-e(!svS(m3S#*2q@% z-7x&9g-UQk8m!l>xMFD9z?OnZ6Yh;I?LBfIn6`w^IRwBtOn!8LsQ_&_PR;6Un09bo zAEn#`!tc6r+(%*#F*7-jW7;rq&q&k7Uo}p2%(S)B1175H6|dIA{oM}hcRbQJyb$>! z9Y=zCHO0yAQ$FOr9fTi+yNj+;>(#rYHp|Vdn7=ui?V{B__Me4A>{kL(DGzX7-*McI2dxtyu$Gqos4Z zvSnf}-(5>%_oT`8{Rgpy`;7M+RlEq>m7X7&E3zZ1COb^xf#=(C??sAETDIFsx+~0} zaiqBR`<6h>onV<8nqqGv&brqGJJ;nD%f{4quOaaju23+?z)&}z@E`UjYF)mHo*e`J z7iL4efY_*IfJOg6t7c@gg+RNqlSDuQCLS zi=>@-u!%kBwhl25GJiI9d0gUk{~Bk6hW8RL#}0E*rV%-nPL+*5!JXB>b@1|V=s=hw zd5%Xy+aU@Ez3`*38%UA3Dh*;SW_H0zZzr$`(c<50j=Cv}NFUxm=RMG@cdUhZ&+roy zC=>K=IUx7@!~(xB2_bZ>Xty%&WLhWZe2EK8qN=6HaCIEPFDiY-J}p)bjEOp=-rls~ zY-V1@a%>4tMo8vGZ*K$B*x5^z22hRD(zc92-sDxGXBX>BVU5gJvoH`ZAceHDp-HaL zfwg0%KK#PRtkGJ^&Y}7%!XSVEY@rvY_^PtkS3sEjOs+T>U&u+ZY^aGxeb;()s z-BBmWjE^dQ!YNq$j-8ziPaatq90zON^+>83%@xwK{HyZu(#~>d z-wIi}Wrgfct~Z^sO=iISj?puHQ`f?-n1hb5>D-`$g9mQ5i9~w#IBDLm3;vW+L2C)hu9@=a-;7ns2WZc2_;m50dsmBZu*rynS{ zPyaB`C#T#r_^;Z=)zQCQfBAghD`e6WW>8aMZh&Tg;oXzp@wM<1=H*SN$gcI~HwB#q z9LsWhObffC1CkD7!tp5GU_NKw!~6EQn+FU_=)60+6m^%2245J~0v=!VxEY+Mk8QjB zZgO0=k!2h3ow=sN^PJHt9a{)* zuF?%BNr%=+`OD>p%Gdt=itMV`B}HAPo4a#*h9|kFvy^T=K0H5yNBg28*;(+K>bFPTIkR zd0>ExfrR6jZo}o3w+Bd(`OSm7w={zpa~_)W2}Y6}(~dZj%Zb50Ebp{j%ieI2IYw7EybmQ?x ztI_6}f4w|ubdPATtH1f&sQC4Q$PoKN!!0lP{In%b} zNzb;eW$o4q$?5oP?3^svIZ`&QIzG4_&BK*2Q0Ek;&&kR?U2QV&q-j@^GR&Mu$C!?-835#({m9*6y$hqszFQZxmb3evZ4IO?^IF;x4|pzO zVCS&Q%&$8$tfe{o_z&gf<)-H!;;w@#8gzWg8ay4jm7QeA%CpTt*=&DB3v)IVN^bjC zP3J$o{iUWIDmCqg`GCB7?Mdcd`lie^=XjwRTw%h%QL(eHl&(9==5%ne|Ddq*^QL`E z&+KC#%FMZhcH2%ym@|e^9E-GvWTK*->|Sr$((oKQ zs!u2B+PbwYEq_{;Y)`MYQf|(n(sei<0r|NJ`Og)@<;xFEsZ}#p~D24fz zvdrv5tZgf6Z+Gd6Ib&+y@Tq(q4x3?j-MSc~(Bz71e5h zA_JeJo$AV@uu#eg6CBIF2T$8(Jh~)1)&g#?73;`}Us+&B$ z;vU&tnm#{zwC*7}o6nPvSC`2l-8#$W?K!e?W2O1cS8RXRk!r(}=K9Pv*JpU|F6c7N z^a0bqiETTr$HnsHQGI2?;~&WUm0L|;%=B|xMz-G^v$9RYgFg5RrVnoJ3uxC0I>!6M zXk&Who+RfT-qYq1gfR%7r7b(YBjq{ieZVBlKhFF|Sc}sf#?y_~2qJcMm>zPO9m`!P z_bi(#W24?b)zI9HAaH?#>p7^&2!h#JSeG4Rhxf5d9>Tp5R`{Qs738bvckL6ljI!jH z=Vg376ZkCX_fyO=*ryg)+%W^ttwn#?y1iA(6*Fj*f|jY!G$aLG)4#K4?U|sg^OZ(BoS2E-DbY)a-yVo%?|1J3|Yo63SEl7zv`fwyo> z2x%(R<(jW!yRg6U-k0N{$POAo_CuPx5d=5`MNLK!EOQ!lokTLlk8V0Atfjg5Z!=?w zt+4vcQ$IXW#{6}byit<2Tt{hBly5^95TpIpxM0R6Z8V9u8i=0_?zQ1-=IvxMAzwJU zr~LffA@Y^U_sN2daP8_LQ8zZk@Y%2e^Jh7EyXAlbpOu#FmdhtAy2$RepON2QINUD1 zh1GDdn$G19-)LtN9hgxljm_u<+f`uQ10$c?a8fXnVGS-gUZDlI>(g=TvRz_0?GXUl z^>{_f3ex#cFsoX&&A9eIJ=Ib*);EZZh|1-s;^eueVxx_7Nxdm3|$OS?)d%y1SI1v452D0MzSjAz<$#t0f*4ox_wZ)P z$v4|>4P0q_FB_C_SwuKfii$$>n}f`Irn6R=XJ?c!!;shZ1EYO9PO@WRSGoA$;;wr(R?hGWo@Kv^KhG-4a*S2JrnNb`R(47oPu<$x1BxNa)i|=k+;*%8e?`MuV|S$ zOQOfNj+ouX>>Fml19y7U(ac|Gj&0<-%)UGK(CAfy5EzLpHC>cfB<*v9ZO0O>NWh5D zjqPHzihK^CFumIJl9gMw$&OOYsN)<)2uef)b8h7&yU3s}n8irgRZeVT%EA>=o{WSf zm~*khE|;AKG0t<=zGFJeQO}ipJDY)hakGCY^V_~>j$`_KNtU&hQtOqGrl7-{);Q{b z8+F;1q0*utY1%6D8<_3LOWNzMv@(6YM1Rwq73SK)d19WmnP<+WNZf6C2ida;GiTWU zgq_jLZ}*lB!*g^f>>_9PKizr=JvV=)tlzOydbH1%wdHfYYqTI0N)#p6oF9^i9*;bu zX&-wn!MKdXn(Imz#`Mh3DUjW}I@opvk0P_byUI)LIp>qS}(Go`7__O!hBamck_O7PcIv8U=D`)fH`L7{a{8l@_mwHy#gxB z&9SR!EtTdN=C^r2)|SF^4W1wXgILUJ?=0UbPnSF`+sh*7t!a-dcYDV+Cm{u`mf6sV z6rt__;i~Jy6%=v`SJ`&NfmzPVJz;XfdbE>xU_Ya6a}vikgI4fhLU^hp<340KwiOW< zZbx3xC-K3s`L6OE@$0=~QIS-%d{=f=q&;2`K2fy$_*l4QLHjwT4NUhTlIHp>+iJec zT<1nHTVlo>IliLpTBiL(j*sxt_XN|< z#M+{ywCVJol;)(*k7TLYHncI}wiTLdbo3#eS$oObHC%S?sW5$=Uh>eK6_VTT4eN&Q$V;}DotqA^znN=}L()8OJn~wZen<5F zXznQp>GARJ$q93fmg5>VujSwz%-sM}rjt;p4?6rgyP>=}z%_SQpS-8}@4)UZ+{vcTs z$&mtY~G|A?%WOU$+$P?w=?&t+{pEA&Rgs0lmgdfLJG~jN+Me2RJN6K4m?xV zZQm(vTA26qlk(z6t7J#+JliHY(5Ast1?NZG!WOc5m%0Dj`{VnueoC^eUEoO;0p4xV z`&p&=3_LlpO=w@t>34O;9TAzvImNMF-3&N$Z8RIb7K?f(y}c9M<_T znS9>luoj0#ko}P6ZUmXJXoGy^UvJopr*&bT{O$5%s;m(YuncN6krtM{ob~h5!de>N z2;vMY$aa6-|30wGsH}DY&Cdi5jLb&oc;%3uZLRwlhoozOD$O8&GKW~o5w4h?Z(#(OIx4GGx^8hP#;QT0R^O1Bt=n>hp z$DDU&(6VdgMW)e5$I^V%-dGa$hO?t`h0SSVW7y3g=SRbSCf^u7(k65~GmHs6^ya@v zvda{^zu3RsD~rvs>t|=TKALn+DtxR>t1>BT`>+(YUM73C8?DxU#&qD2JP#Wm{3iIu zXBWtQAOFif2c_#zHT!|Eh#)rh$se3(ubFqY-(%hK9idE_Iy7zMsw1zHX>WJ1*X7^7bhO=9{N~$hUYEk2584}Hfpn0c z3>zd_~t$G*LlATU%@^UhaIyxIA;rcOf{W|HKxjyH54XMUmC6cC9j>+kAAY-8}gEr=`5`19MG1VD#K!uJ=~*{ll)8 zn;#7SAVT*(vt&oBN5Y!XYVEn^d^7D#cs=2mp=D^_M@N45%8RZ0FcPaB z)~l_#9s<|sd~AKBM#ar8(K`3EtLy{wrKT*Ml)P<3ELTWN!W%Qv{F9F`IqhBqvFF0|9Jh%RK`yA{x`-yM| zv{N`2U3dy|IH1kSDOzgd{&%l3?QR+F&*?TMztgMIqU+=KIoQ4Sd?|wqy$8b3ih7uK z!E74_Yr9sNV~cjuepdj#5qXIaeu{m@pcU5(JSE-l0bHN$`aB|KIi~$K$9DHhb8IsV z6pA{|mb`B1P*xm|vZ&jBxEpX&xAy~cy;tITx93N{*b>|r&=rQc7ZA#GPWSJ~LvN)A zpbi)_gZrcDub6?ny+7LRPk$Hg;Rp6xB+GLDY4;QP%Yx4Z_iuy?Ty^?DIcCyxvZ;Kr zIp0iMWUdDocCl?0yU@<0H8}bpGjwbJkSyHxzTLJxt3PM;cieFP5c!&EBVPFA1)KW> zhBDkQ?6KW$27e*AKA-r(3G$i0K4^aP;ncmVa(%H3>@YyyTfW8iPq4zqik%B>`xUL+whhn}DhPf)|cd0qQ!;M<AQ*89yFZlS911`pOXMkn!M?DE>3`(y zlva6drF_jLvVQG>wz>Ms@%`mruLj|4RkXtIx_e)ETILk2kbVb0E$hlYwno5RIJSF& zJSks2zHe&Td0bESy9&%cl!p6Y&S9LdIB#9Q7{&(wcwBkxMfO^8pTYgw?q_(7Uexa@ z`NoLj?Y+@~eZg-P;@mAlKB0bQKQENhT^Y{ZYWh6rOJIdL7*`T`J8b)%+rs?jZgcIK z^DJ5J@=c}5YxAD8?Dc>-Jf>X>?^Wg7kmxfwuO0dA-Z1<5P*}r$UTAa=3|rx$wIF1- zMfXR;n)%%7&)P7eC}?YuYX#>C&Wqivv28)SfOBl__%m%^Z1(2IOkX{H4=P{xS-E8J zW#N+S;l*I6Y1`~A&9s+!?Pr_oAhLqyx{GDo`lHPFE?2hiapRVxoHW#Yw(G<4#;Ui? z`GLO71?K#y+NbZ-ajhIQue?&)DW9zH?dhiIbMgz5MtWbAO<{DK>4 zl)Tmp&5ay`$)0Ag7Eg@ofHuSWwvXwXiAS$GTz>Z0Gcs>!t5k!Z#_nXg3_Gg7yW~i@ zD!Qy+_z@&`#cU{Mhpb`4fYnlv#4if=_ott2FK7MwqnKvU@U?44%k_`E?;VeTQwDXB zH_X7~%tN}`%SLWOw zFzFW4DOf4LJojw*QQ972!Oh$ao-aCOtvojWP1A=vKz416bhg4n1<={bDO@Re6=u-C zqiUzYahcKigY_TDJBteCi^KcK18*<4$x~nb>1dm%Eqa||76r2>h=bl_I)D!Mv*^I( z6qwFiX-{*r3_4m^Wha__-Wdi5bjz28YvS5~XghG=^>>@j8xlBnm!h2R_Is+d!=e80 zZb%{)-MrteO`)v8wI4Yime3gJ<3j7eg@1oS=C1kBbdr#;FrCy3+1hdKFIc@*F8uRM zZyU^yMCxuIj=pJ{P1xt?Wb}Xgx-+V@ANc&6%RjQmwkD9zC>W@lZ7YM(B`N*8w3gxh zI?3bjtqhmIHUowhYot?tAG!U~VHw*G%mm&0{jRcL;{y5XbGu~eimDm026t;?ldSEk z*qJg8xMPRx@wZ-dgdF(uCu4(8JF5h*f)IHA;9NqoWBlg&9ox(~x!PQ#-R+<~j(xU4m_1 zwRyMEXovYt^P}dsz0)uw$S0L++DV*4HrEukH~KfG-o{+B2qSd{UW^vfvv2(St#IjYZ%52P*cnhUAoh<3&N)o_EZVTi91q-IOk0#+WIZjg zTssoi-u&cz`P<8jQ(v7(>@hk-+nMxl;{K0wI646XZvwmGg84|aEt*xbMy`JN8Cki` zv_p~W%28eaprzT~oqNjc>SssxZYK}E?Q&_DeoX?i#bGrAFd*d=7(GjIuEmoYo_AOe zd1v`%S+NP%p!t&Uo*e9(+ecHn!kmy-oV!f^J7nF-Zp$30dd{v;ceHCQ$OdTrQmh2}`?ij{?6WX1WN zTi!!T_e7Re_h{2h_gX`4%G=m}*Z9v2jTt!tg5Ubgkq5}CO*`eSrJGIFyk`E7wP)tFAwAkz<1bce3SSJ% z0C?b`5BSAlBjv6a1Fs647x3JkYOVp?v+=7qg&!rz{SYEqLn@w`t7rV*N?_V$LHb(o`!LQ?sUHSm@cUt9kj2J)C;9i6N zjMW$W?T&*7^!@7b{j9fR%lxW_|0vC2JRR@7ko_Jcz=`759WZ!I|G!h@k7JLrWhMhi zeP~-0-2BnujncJk(8<6B>iB;bA1VL2;yC&7S%c+!r^aVf9W4uU<>k~8fvyR1-<_z| z00Q3rWRuO1KM?D6o9p-1X+d(Wo~EOgBD}6KYm8-Cqo4x>kYFxKUT)^g1vk%(*gwY) zWoks+Ye5Oahs_vYnV;HAyoGmhgTrie@Ir7q#B&T>U;uITDCOG+Snq@C3?RU1QyYhO z?=59J1_cI?aN{rw8j#k+VsGHl4BjE(=E3k$y5Uq?V!!M%o2E19ZN5A=Z;f5C0gZ4J zxZT2QX=tdC|A#M{4$)52iGJjrl_>)V2s%9R&)z+Ai7X4VblcUALhNca-u6W6m~Ggz z=4|Pak3^^ObNlKk?^**0C?51#*}djG*}W+~+msgA94^zTFDgA&+T>Jq=zC_0Q$JknKFEePz2nZXJ3DYydH+ir9T&NP^XUa z_sfrw6KYt)K0n#foI{5M29WR^>D0Q=CT+$wjSf!w90~FE@%2T4(Fg;jC>zaj`@!TO z*&#Z!4s>iPYA}Gfr7>anu-j%0Ai>_1tlMEbT-#HwwF%oH``)Po?eeRcK-Tx8yB#fK z4;d@VR+@plJB;r9G3B`P50OibGv^N6tTAI5F&^Q2pP#=rZU6z^K+R>B$DjfOe(TZ? zFCDnL8)lmQUS^lqOv=|!O0Sd!BcpEs0c*F$joKCF@WKEBT~fGxFeFTy=FUl!s8`1? z&46~-?!xGwThjHUT_LD^xB0%!!)4o6&j11eNop#a{GFnpA68M>3I;}K!Gx#hZ}ACyTM+#SZ_g!JjuQf|KBFuDBLqwIbr%Q{%^ zEUYSZ#fb;n@VF?rYexrRFo2wCwg+@G_a1~a0M~v(i@*Q^u#v$Q4DQ}q4(r+33;;}f z1p^3h8ySLCG_VY9vH~vg!G5~y+Ah&+NG+)v?!Qe&8zDb8ZFs=8q?eQoKq5%DlqL)+ zj+>uYC@a^ReGjiI>{qni@Rzf71lyOe+YJK!M z&oh9)aN67cp27SnzBb?7+p%gKR{e-BDeLZy4j4ebd&+>+($@hAX=Mh{mdYZdXFt0S z;P=lX3?tZZ7^&>i%4QoefdAd+#z@(o==W4*MBjc=zH>m>9{|Z9oX!BRY4_df^ERjh zgy;nI@H2R1Fn|EJ;$1*O<}bxcY0EM$of{+EPrt8;Ybm9^YroT*R>c5f`-z?r2NN9t z1_}p`8$8=k;`?x}1_luC`@&y;{M{9SXDQydAHg6wC@qx<+a?Ac*?29r)z(OfQ@B;) z0Qt)WSI95UJ~h>T;(7~~a1IS1AoZvCfna;`&@YLwVnd}YS<%H_?~_d1ba13E4sTyf zmICxm;Qfuh(KY7`mS=u+lDU^SZ}9YY+DXGL$Ji3!9ovrCO7J<`md7`vYTaS46vns2TaaSrWJ`FWb0F zK4&@%hx9NFe)w?=elvL#fIc1LjRbNCWWvoFR*&BriCsQ46DJPrWY>AOpdm8_+!!%S zI~R@czooHY2nLg)CanbONO6bxj8)( zY>9onshI!2G_s%k?&2eZ858e2(DB9qA4`u#`R*wP*%GsI0l^<;*o0bvg&S_j0B*@? zlJ*8#9nl-N!x{|?57`x#;$U!I6Bx`O9K}0GGI#lA`QxQW+1w=nGx7ds{_*N!8^$sl zGcz7;kdeYaNMRkt&d{jhxNL+OP=`MioN)=$iODye`=YR(#vKoIu6mil8Q%V613EPB zbLr0q-;}Undns`3hQD=yX+I`@{xCZubxg|87Vo&F3I3>;`J3Cu94T*KcY4G)7r3mu z!6s&1BbyNr*6qGVNG2=g(Qs+pRc1gRjV;HYz?h1G)elb}C?gN*WIJXkFBs->D8zp# ze!TD;W+ZHTQf8HGw4LKjV5K1k2D7P9!thwZ3*@AMUF^&bI)JT^F**W_g||GF9;{V| z8w7k}+Q&=;tAP4x0q-sFx66;VgS4128rZjk&)CAYl@9$ z0$+WSGmb?*0VS^*VKVs;)A;${xOVV_6vLbnZtWnPoUpla#U;} zYVkC3^=~44(UgVe^WPtRkhwRXC=YxKgWjaQrm=kO(KkJ3Ka0V@qV?$FGQJ0l`sQwPlYrZWa{;-|g;WXp4R@dZ0|Z`eb=)Nz|J$eYCOP zb3O^$M!!9DpF$gPxoHFJHR)b7$D>_Qe1MDofHOYBqvYCf^%1nwQD8io`LlFranNpO zBCf&a9mr`DRt$L8eZuBx@-;K>Vs(x`7=8bA+0pXo_fC)-KX<70@N^u2_Sk^DG*Mu% z4F>fI8#?_i_96B4<{-G|whRu+RxDAUIzXudCGE_;csGstQ)tG0F5oIThYb8&3}$QyXeRRx|yvGx?dX&y!SIp%!tDeYTUfBu0ghH-;y z#{$Dqix^Is!sQM)-uYj;fpOdBxpTdy5HT<67o`g4&spVsl1E*&)xc^&Y zmw9b%m@_F#`q$Ijg1$X)=M!-H;oc9gcX)Dx0bN^J!=S}(Lh!elCoPjTxpq5V%xl zXdS!;YE5c3GXB{Y7p${0y-^-}cV+l24rZ$ycYgWUSl!_|eXgUQrs_7@ftaDI>2%$2 zo{Jj}Ea~U~pdgWjjy%zcW~Ib=G96_xfT8t5ATJJ-kjIFcAP zQ<#;z*`kwaXAu2OitrVqwcqK+KqQJy1nhkWW`O?gmNJZN0tV*So-?@mPM7^~F8FN0dAn{N;80Q-Y3p81lM-Zk&NDqtAfw}=9zR-VT<{x zSFSnLhB~?P!WvXUs_1RC3LalOzMou}GC-t3INk3r3A}Kk28Ae?eM%Yl9CmkteZq11 z?KA0R8UYM^IRAfi`XD>AvT)M5w#0zbH=a4;SR8cY@p?j@GJ{GG{#p#Qy}x=oI8L{X zIl_i+xd9*y9M_$fZWk^a-bZfwd^*n&_`fp;%i_p6nj+JW8Foc-If3Ap60$W6RfG4P z>)^RB>DVgYo(JJvSw`G>a>9Tvc91sX+S5`4o`8g$;o9}o*96DM7Qnm?qxKK)pCi99 z$N8K?yGs|-9v^4gwBljCLa!%tj+$%a$@k*+T(EB!UF9CuD5QX=Rz#Oj1`_PnR~CkGI3M z$G!&!43&B2x;UUip!+RPns&xJgrg4XoEmIm9}sqz{(V;_toN7=X%7D$_h~;5oii3z z2aLHe;((a@y?2-}fQI2GMfmi~griv`xl6r9)x#7zU(`cm8|nI<5n^AL&i> zHqd~#((PoLjXO(IhKM-kFYMP;%0)*XU>6hUSj)soX52=lx7lK<2%UBYNayv6bJ`K~ z%Om?@zoP2*xX+~DiF^kADerLX2)&)6Z;U*!qkQne2lCYWt7P_)P4=yC-Tju#jZH*V z`SlnzolmZ>fOB?5c;3TX$(1$)w+ac#FpbT};Xq=s>8NfpotYu+D{Z1chs_Fa z?i@AE6k+uQG}I^o1~D)E_!N1=+!RovJ~X2hw<-ze`|p9lD&jw*L^IY`$7!aMp6PS0 z!L{BcA;GLm`uE|%@vV~%lz9`*lGlDZTAusSNpf1~7L3oKK}UGNKfZiS%8mA-V|v?} z6qK1r&GtlhGi)?%qFF=d7UrgUOdoUO4Lk{8<;UP2AMDq;m3+9`>ztXthZoA2h~WzR z=LWex=wO{4CLnbLou+U@!au97k-0OBjm0efcTXK4#}DXabDYe-@hsbsOvls)MB~S! z*nuH_%l=;E&fzxOmiQ;VUD(cO2#Lirir@x5$LQi_(*VMc-d_Xdj zPP|*mC`#v6!OaUEO5i(Q2g!MWIJ)C{vM!QozA~zR+7&kP7CQ8Jue!m1@ZtCdIj@`Z zj|j5)!}BUicQfd8#zky1a=u`Ihk+h&1HPKBafj=iM1kQpitE7pJZIXUcbB2VgndXz z%fjmRF-@l513$X&U3vLqxKyVPUeY@cR(j_lh$fMZ@}-e+uae70rdPB|;hhH{{)=hu zo*B6C!6IBQ`0eU`%p(_V z4BC?L^El5YJcf=FUI<=j;f&u5$?~KZLUhXape!%}_fP2NvsK=6F;hOC! z!xTWs8o1$6b6nh)xa%?GZ!ayfhHQ5)Mmhd7>ExLJ1}hB4|77;d4LlKU1mYdv08B<8 z2UncK;Pc*!^q|Cfi`v{K5uDM)u`*>ih%@EeBdfih zUrB|%f~Ywy{S1S6+`q8ZI3Cfy1xUA*RnIp!xWZ?qd~2ljDnU8-7iY;GmkpCH=6v!E z9Pu+EDJAQ++gwp8%+KKdarr;ru=x@2Y21h0LhLh3G>a z)i)dn8t@w(3ZlOd>@>o!0ovIV?s%B8Ya4g{_?S1t&%rYZV6))$-~*2*^lvABeR%r2 zEpA5=X5WJxB|h-Fg?D814~xt;r@V1v58N-G z`Y?4*3N|6!h!9Ms!N3Tc4$jH%jUFHmeK*MAlc|q0Z)M!D^l%1G<>pRx;}b&c;N9X~ z;OP!*fb|#&XA9SDFSYfdL(|!Y|6~RXcA#V$Ogm7jW&lwgQA=l)xH{8D_>(H=IKT@g z6NrbyiZxOEIzWei)#hNp*U@woVa0WWJs%`hbe#@#gkXVX2FpFBb8zzo>D74r5UFTAdLCG#4~$;+XWUK0)eZj7n>w~LlkQPq zbiuKRc1$x3ei1I=je9bNJEc5y3>YM?-w~W&@Tx!_0?bq*i5~V7arV)fOC&O0W!=Yv zAA*bgAIA=pAD=l$zU&RO^KpkXA46wnxgVBP1JPZ0lm|S(nVEK!=zoh=$`+4MSi2_d^c+*Bf=+3&*=)_>~ZEMVN zzx>YE(-R8#a`!`~T)S;|XaJ65&*kuQDep)Bu$cEiR{`_k-Cos*PVMWX$IV-HWBBc2eh@J%g*R}`}BDK#pND>5wNr@(-s9- zBZ7U~{9_u{6U;!|53#Z#TZXFN5`X2l&n~dzgJm{kHjQhq5#HuJHv&s`uwQoK&uf1i z(PeA__B-{n-k-b?3!Mvqj_`~Qi2p%pS*6_gxuJFf6W3oKc=6fq_O~VTwmDpGB8Sc8 zskv)Q6uMg1ysl~KAiD)3L;fJRWvbiSwjt#sq&>2Lm z9ztyn?$O4^6r=8N9kd_bHzzggwb2Y#|4=1fISn#CyRaeLMF0F^-Hbf-HGVkocW&mQ zCO$JfFn&}AlC7q~lT1sC&Jx_s5v%Py2++C5a>akXEWHdOI@eXaC~6?+m`W9w?xP|d zyiD9W<_J3j0k060sAr;!y%`5Lpy&-FjsI#;hwjL$0AP6VLr36x8wDM-Ofx+3n_uwV z-NJp2;yiSK@5=tacY=^C4EzxqcIJ?{hYjM1qu}_T9~u&VVg~id9Rg31OU;e73>_A; zNuT-St5s&D9qXlG{?xP^(RVQui@^s<=QBo5=ws>*FCFemzRiUbuZs+UsF_yEg@c?+FtjoMr;H}yh9hw=&N~+_ z;E2WBdO!mh^H74+KBhM#jrmqAeTz&#oDz~F^1 za$goahj)wrh5Urx)ve7RRr&rSEUZV9@$@b1>qcs8NLm!jl(Q#qj`fN3MyP_cH z2x9PUl1}s0km=|?9c<`lZQN%13zr<*$KDV8S$`z$#6S`T2N)g#uwm)e6XkTzLw23Z zb70=Yidm_82ts^*dd|VJ%^r^c4CLp05*P~HcSk`o`3Jr|(s~T}Im;Z==f{r~a*a3; zE`rc3gek9gVF59zf{IQ0YX;aKg`O4meh_{R*KDwD@hyarAK^v62|Zz=xX@5L^B?;? zGcdQwPK^fBJ~9KjU|?*s`IyiB_3~q^7l}9H ztRIrG!>G&l*6uV3cS*I!0^GWVm$_5&#$2$=?WEus@n~jy(T=CtK?y zW*VdTGq!%+A1L|t`Vh_B??CL|w}bRkkyJ9{btW z9lqBG>erqOt5)`Cpv37gyyb#Qj1 zQw;pNkMB~7RZ}qY2Zr=$6L>rrFyQ`{GdhGD?h<46wTbG2@45PnK~=&T>dQ^$+;``I z^JMt4xu!AOiSPs%no(jI=Y|4FK;4Wi2CFVhd@7FNDXjc zJoe8c$2+DS!!pGnnuIWVK2LmNerm9R&MfL_+!+&;XrtaXo!mrl&HfMJ__nEj$rj7+!vf-#q9@-UvFQ3y8QJ^!%PhW1M_-(Q&L0+G%#LxZ(E}* z+BSG{-G1p&8QU)4?lt~BA~2{2--`FHx_^#6t}*<>@9L(6cNp?DeSdWP+`%m1zrK2` z^-6>R10~ux=OQ0%tI*kZAt&zq#M{w*^^K1|G52Pyl9LIi_s<`GFHFFT4NlmBTHM&2 zltG@SX_V^jrw$ldU-{{&^2T+i%c7glld0bwRqNk?R;CTWY7tm9qJNjTaRKL^TXkY` zYIP56e|#cf`iE)b1CGPe$RG_Y55pd##xLN9Q)bNLQxAgGe9~aaZ^uFAo;lt001R<1yvWD*E{)>C1ft0R`5c88-I&)GFd-EV3hHX z`^Cq`jrUzbgP$|tR0rCC=yim44}Iup9zV3Z%QnT&W$c2VOV8!Z!9+;fKojh&I~Q)g z@G#q-L3@w#@21_p?b&qxA@m2L3Cn?-Tt!H3l%(nJxtvfaZ;E(oyU8e&ShCxa;j{?y z;RN8ATBEho$Cg0_p75#HGXSq@b zDxNDLh#_||kSJ|Tc@4nZ#JOA}{06f{|GmPCEj68nXuJHKyJiFxgWEsnGUsMyeD`wH zUrlus0#HZjLzHMeQ>;DstQnX`2Q8Q_LGm*!%Zw6<0QZ)ti}thg*2)pR+u5Z7Vd$!I z5At8A;U*QlnM{RK!3B2CvcS`6`T}%Ll6F?`&Hp~m+K>f_2-R%l2&<-W) z7~o-`=LUQ(#HS&+&2y7?bu6)sM4%XCqeQ(Xd^-=8YK1`nJT`Y#YPszvzJEeBG1iXY zi)=FBedLQH`=&gh+%@Ui3dH=PL+K|M+*hz-)|Rl-2d^(IBmUNPXPD!6ggGYRHEh}w zbVSEJ93+!09(I5{d-cgO`-U@81DxQz4~~VOh%mbBb~FqB&YkH_Y>1NY$+mLyPHVIcRxQHcnTKmz zO^L*%Fy0|#&(Gas2|o)j56to*Hw*@0?0p4TRa?6*3L=sMN;e27-O?i60!mA>=#=j6 zMp{ac?nQSfUDAt21f)ws@=h=|`#)R!pZnZ6_nxz#XXAvq=9nYC@BQBI9b=7=?C-TD zXrHE|-H8jk&b|T#p5s&Vv}!qft{)bfaLM&f0o~8X>=u!_ z@(Erei{CDO@ulvqC$WimcUzd zlz5b`F3_HApRHW)@)QtaumUto-Sn`6n&_w9Zh{M|=FS#lH`f>J?`UZ;43;e|ZSU5Z z72QNdB!eq_Uo8C1=v7iGjmI=S5A4XOhOnv{gPRRTq<%qN-9b-$3}(6gD57aH-c~^~ zD{cLPY65Pj_uVG_Pdj@lK|V>|CFzeTJh!r1~v!l76I7|-eQ5&}3hCl*c6QqtD8ysb~BdxpR}_dc7Y%^h^|PqgvQ`Lt@w0yJd&(^yc@486u_;Wn9xLf|IZ*iM|V z3X)9aB0oj93&cIdXkay`{Z!qY!%gX|4FfwVqk4MAHs#`rDGnFm)dKzb@P-AcqoFw_ z>qFOX14V{Ngfga1PHHP$0{$FD;JI)crw@x$8M`=mFIZp}%ZlHLfBzU?L%Gaoal2yF)K=?$BsH351wnHNB)I#ey}b zseEH_E@{63lfu0$a}N<2g(3O);>gWc6XY2UCs>?{UW=6Khua;jcuS+|k5viS4saS! zV6^#O^DLeQ*3pa3_(7lCy=4c}%+!w^GkYtx!_Sw8Hu|YgMWb{t9`$DYS=&-*Kn2Se z^s}#PP37u03L_*MiQKe(xaeqWZF3)@Y)p?Y7A81PVehPzWkTi=LRnvb?5|!4(tsLu z8*F}w-cIa$2eY(=QpVOKe7J2F@nAQIy?nE8Yr)r|dJFq@t!FV5G@?S^ z=@%W`0spPXUfRU9Jm^~*d)zYz_pw%J7J1yZOCE5=!|L z(*C3*KC~Zd2C+aMJ!~^DmAWi+E=JbRyoa>v^F5e7irvi2@(I^rbtCSzYy~&HMRT_f* za~HGNf=3I5>(Y`AYF{V4sS&ez{m!gbL>6~w zmN>#pPpBW#_nGI-oeQs}51GX?SvSd?=@*XSZVghpH)`Q2&IPMXxe6am_krEZh-(~L<>&vY+ zyM!uakLq@_Havq@`HdPtLJ*c@5M(Pqhg8Bw^cs|oefRCxCL)czW$Kn)q<6dIVkotr zCc+*zK#7>Wdcuq%CV6=LdBsNczO@A#zUJi88$HBMm7YeLdNQ;4I`+^UvQeuTK^Vj# zRWw1jJ4ip6=4^bp;bAlSuxTu&KLWg{iUo}%!( zkwuLPx}c!5$GOenQ?;{eEs38zFA-39?_R$JoW*AA!LC+c(e3=OMfKD?*W_DkHszs7 zDKw?C>Y<{B27(m47gEZU13-nxR!{5h=ygQ$J|>=j#KL2ff{~;`-{1Ju|2 z>ax*fx$x!2NMQ4WF6+qqTgXCi?+8nh?zoC7m+~nhraC{ihmpp`!g$skwkbc|^osZ1 z2X`Z=(VHRpu97;)YKkB9V0kH1zCM0``W1f0sb(OI7|EHK`pT9^D|4Y zS`sc~QTtPGxVPGOmhKR84^FGs57Q>sv8C7bpzVC}upZ%rb$-86AU8YX>$X`Z$%t-7 z3}--85@nASjE`0;dA{Aj2&@{m$$*Y_7!?ir)EA;_NcjoIQ%=|#A4W$_n3~B=*r)3~ z!OLsI-8Ul21oiL@#ixCIrmPL0y-i|QGU`{<&RF!Nfc0$sx&{Ji4Ea?jv`7*L z^P2Wj$_Ph5^eF{0jE`2!+suMuCF`w~xzd{oH)-m{9mp}QyEUpGpc2wQ=tX~jt7aF9 zO(+I8ox`a9B@V5JdZ<4lV~z+!2^2#)q`nG{Lj@u{rWbbJSd>{|fJZG? zf(B#0X0IU;Da-4Hz)#9XnLY-r|9?46(Dt-`}H(PPzH z_UNlrH%VqdcAo7@Qn*QHiFGNK8% zvcC~5OQ#FGH&1v7lGs6_DT1!PP+1Qyx)q0DJt&m~YI^;RYSFy5T)A z9NVMtF@zqqo-M{$BW#9M-MDq`PIi$-eo*k04bf8f`+j~yvv1|2bWiX{ zo2K#PB)qC7(Vz|r(vEFPlh7(@``AlsBpkF{I>GRB)meHsQ}56_r4TOkq7&MwHrK#T zXB3CAh1SL8L5YyzeJB*JT5PJy{(KIgHL@x~EX>zJf64-yoxK|_Nes8Sn8K`Z3A89b z-uAhDf85NjUVu+g;hyV#s#)BKTqbJ0x003g?o4kKQ4am)(AVdCq%&ePtuwco9Pb?0 z#nsad=J88v2n|+OoH3if5_BF!#-zimgOHi{L4yowdG3pz4frFk1}31I>%eKBiy!gBGJ5+CM_IM8@Du^(WCeb%7M_-_Lu4~i z=_A3a)ofUrvMZ;V(m-ZPeb~LP;l^6-Gi-)ehC~+T#Sow#3Y_Y?p8eoiF%JA>bsEFx zWDLKKHfnNt7>7@{DW2D)o7@{!8`9J8-iI+Ap(jhRg5~MhPLHw&h9i@e9dAV&=G~hB)w?2&)j^ z&_FdpA6|9VZlC;8Mrh*Kapd&o^^J1PiM)@K-xN?5&kVa`pHjLwo0(TNsEQ~%+l}o` ze{F$Vxp^c)3vrN~wyL)^GMO$YbAPpVW)@ruKBAPFiK#aj7eROPN5m4E?6fR?@f^{m zj$vDTu;3GycQ|nJ&9HmaD zPS2&XKizjHibO)QzK51O=%3eLv*OQaX%DpB4E`LcbFRARY0)uA2P2J zor!F%DycEQbsN-^C~hpNK@R70n~mu+B1wo?q3!9M+BDfJJlE537{mu$56|}BHO9Iz zuG9m2*;ujKe@?Vp8ZTsn8TQ71(lwW)**!c()E^bs+_C~6@%-k@E-aIX8L<_$hk75z zSvTp9I3nV!VZ4b3&-J?_UI~%~z;`D4v#q8@%IxKWm^?|m2%zj1i2QY!eNF~pgpexp zP}U)|<>@BYmHThY=TUF@+^ke;S;yBMGIw)#OR%u%0+0CYW?4e_)DhEvvcqt@%PYEB zPrfcVVEhJ!1v?7gh2)cuh=eNsh&C+=n7Z7 zC1CG>!Gu_?U7S+*s;_E|`Cl#e6Xn6^zLw~i;6bXc2)3<0ap0fzl?A@^A=s>eOaES?r0TK7Tu({4o(R1w3G&JTNDTdorvWc5=;LeX$%$0V!c0aqDh31rqd4#HzwV>c` z@x>CtI`^qsN1Rj~La7vnuyH|$shj1&KFNEruZ`nL%#sB*msFVofCP`U4V>e|S2|I!R%~vX)eHE~Z-pwo2t$ABIbB zX!09t^ZR{ooHh3b;uStwG(sJCr#VglnX`Bx=ZS;Kn)sMoTEVoHf`hon@t%){`cVcJ zea-#%&yEPVm$`Iq0EeC5N~Hj{aRLwklP7=s1|la?Vx^UHEMfQDN-S69Ru**L?Y)oA zhRG6H$Yk(B&9ex;djSuS3;ds_YmpEG^EtTz6*lDinGDLTsiPfudTdq;~P;54?uoc80tEQCl``O0p ze!9ZcC%L@%CSAs@7x=CDxCTok1yOTZ^xN_G&Nn(R~Oe0K!$(vPX+7H2mwV zO_Xkx`|6qiwWV`Xo(?<~dl_tf+^o>kh|6>cc~g7H{4G4@^H|}icikOaKUqRE4zjcc zW4oE5l^4O`@f%b64U;*KB!eZy4_Mh|83OKblXVI%JBGb2e3{(e?!3UuG%vJyJTqCr z#nFQV^osmgG9yZh(cH9IY*TysD--NJtt|f)w7K>50~Y3b*x?Vfn+RJrhX)Fwkw)D; zP`cJegKQY|aKX0e&=lsbKEe_l@yv(Jb(jfE zI0v4AArseDwF z2P?^}3W+?=&bAk{wROo22T~Xu=vW0yH*PCBBm1KnsdyK#7d1>qCNK`A%r(Mu0^Vc& z%+pO^;4Y6Dnnud#dmI0?2VKAk(t&3ja`I*nn!4_u^XWnqv+_i@WT`}|g9dEsgQ4^OP8xEgDe`)xns0s))4AYpZ_e8>!>CSGpqh?FTD3LkgZpIv@&b&$uspsjx@S zpq;baFJF512`QXG$zg8!;ohPEzmA`o81OYn$wTVKLN*EwC`(N$!h8co&$~e;irAS| zxKnT!9V0UDeql-%6~pD_e2%<~O8vqc4S4=Jw2qhSUM8Q9-RpSlPq@&Yb;A@uxGd(? znRVGtE4whC`i2(jFIV3Gz0olA437+Uj3-{Ity`9-+wXL?tuDmhUh2%DsYw^EA^En4 zi5!D2N7c$q*L&JR#hM)r-BFfw(&VoheD^6(C1#3Ptf(+@C?ulyw_!u$cyVbi*50bH zDnP?k&Yh$VP^hxpd9VW19Qf=|`%Z`K8xh4cQLRtiTY}+n=q;mY9~kZJ54A`=e|m`F zGtN`a3ixDQ-%~!%i&J@H3fW(PR5{0^v)CTk;eX*r`g)}olYIs?$|UL?a_-TID;I`i zGm4S-Fw*tK>m>CQ6+Vc$-!+s=ks!^=qYp!@puL9AA^b*j;09W1%smBExKZ3e|w$vaH9{{E_8do&3Dryj`5+z zyLOW%$F$4`>4(!2?sP4Az9QP5xh#&@$C%EZbfe4{#r*2|;uJRaseKq0Y)UlC!x}l2i^Q-<>uhX*u_XXO{b$#1)Zh;6!{>94vLL8VcxO^bV zi1)D_B^-GfO2C=3WX2K^&N?TEe|5rCKZ^%-GW7@2LIf(F?}t^A#+CXjMaZ>^9c?v>R9C4SoRnyo^3 zl}&65XYl$O2Oc7NVqqP-2GxhU2>Yw772#J{(rhK>SikHnZ0&!At@OkFRUqibpAG#A zaClw4X1@PttG~p8?v~$S!81>&D@Zs%4LJE94Bg!NukN^d9hPzP&n@{C8?JihmAYL- z(qG*lf9ubcFF@x1^}yBZf#-j22`~&LH?K8apnHFUmI(M4_4`3Gu7KSS8qheb`KvO` zSFWGN!~eM@mwI%f%TRa}PSQmo zzCBE0D}hZl)zZg;@#W56&f@?+n%0VQX?=|Czw`jSkioRo-EUNSPu%}o;Wpp(pf3HA zMZ~*OfB>Cb0&XUlQEtPjQn3IFRX&&g-wgOrbM$B0Cx_c}HK-uT7zk!i0r8}6?AOiv zJSGBH9o&K8)wuCP9tM+}%hRs0s%$hOVUM~pyPhwbof$b@jv|=%cj!4-gp(H?alj=V ziaM|369oTM-$6R+(*%yX?DMO(HbC7v`1L=U>Z#J72Kc&gKZX)Sl&iZF>m?C?U;fT7 zKiKyWGJ}a@FZNa4f1*fyjC3t!(4Wk0>5eD!H%MD&8wPZTV=UY^{}IsVNGTw z9;E=YRl3{)LhSmxdd*&UnvPngJ%5=O89K0&bjeXv_D=srG!l3!G(}`N)vgs+%jGl( zL?Jt))E&Zfi^l6v&P~V&X4z$V=(VPHYcL60&zncuj^1VwLMYez|Gwu{FWyf)ZH8mq zIjVjj_#pW9wQPWSV_0+lCYi9V>91C#yDc8H zIsPSf`^x-a}PZ*a0-e7{vDP%NQFP(RlG2mX>d$E-*bSx6gBND;|u z1sc93x6rG!xS$lN^Sb+I!aUd--s+Wv`W`Q(@u?00x}Fc65W{VoATUXs@cU|kUsUB* zv~*0i?_NxVdF}N4oK}^V7j{!jcXUE87PeEysQ$xfv|aUi{tmbjW%3zv#unue`3~;Q zQ&!L1Aa)Iu$$KuXTp2-88*`lL+bzF`;Gq|uuSuVNW&kpdt*J2FjDX4LeVD49X$e{c z@Vj(WpZAp5eAQiJ59i5BQFTG~{_HxV9a&o`(jJaT5Hl=B9g)KzeZIdb2ET%voB~oF zy2k+)uZz>6X?rklba9RP@=Jw9JOp(P-xHH~A6O<`*=FyWyy#_wK;8R0?y+s5 znA1wySV7;V*5A_njB%Z;Eg0+vX+1S%fZX@XR`$^~;M@<| z^dDj$hh@)@F+FRjrzQVht=|iL@d2<*6tGEz{_iQ{xb34@d|;A@SqkCjukscM3Xst0 z4hV!>jI3&xNhCdfDWuLTUwzwbN%{j73*N&EJ+09*3?bc04@^JU1Ygei=lDoM!iT+uQnVS&{CN)#7ShRBV&B&*g=vd znv4zj=7PcE3j-J8z%@9l!;Hls716;dP+*h$-YazCs4IuVtNp4V!W_8Gd_}nZN%#K% zZr8rFlsWccB-))gW~#gqPa$KN3!Sl&i~^gn0qti}oQ};X+xj4q(Lq_C35!Wd-gk4T zRSla@eny4*!$CoG9J(jr`(0SQkwnHlj~A>D#Vr@a}IPF*H(&U87*FSCpig5 z*FGtN9?J&CCrQVKspoKe-ZOFUA~OG;qA=4S33c9&qbVbeHqp~u= zg4AP4jtM_%hoh8B+w4&e#~|s*XiA zA?-c#b?c}5gt6DS#ydV+Y{#H6DC>fy4?97(sF=(lF8ocERK@aA-BCq10=Zb^6ydxDpAl(I%cTmQm z)|TffW~gy1;qX|r)(`5Vr$wCNf_`h{nZzuVN{3-w%&gsW?Bw(|jr5j-*r|>Jg&$>u zZb^A4%ZoTBRtjUFr^zoJJ@xa1B>#P;?JwCdI~Vq2alNBNEIqLk=7mT?``R)3RxfHU zZR{fjkSeuq`D+~-G7#vI@UrBE%{`lb%%Q^02kIo-?O}Ra5tII{xSCe*mv|V~Do)=U z%G(-BNLY_hl*ck?ujX(p4Gk%Y)(-Nz&-(b>I4`+9*zO@u7*vTCX59 zYYM4h$_tprL+ql9ymNb}*U)~V^uU|!T{{j#^hygKvO<(@l=eY}6<99*N{MlmbcSME zp)jnA5XbrM{B?DHM}o-}Szx8_j43JUVPxy;_WQt0gL905=3~U`=6a+f2WQ>8(uGOl z8(9(ny;&CF8ekY40MJ|f=#J_tM&ea$jlZ==??D7@JT&~C+o4?-#fy-b%Wa@RM`;*K!zc4iPnENXohBQ=Za-gT7abN2b z?u5upVg)r8%zykOpU<%7%3XNqEB)8*@&O3f?+&Mj?Z|;?9i4%^*}d^U5YcB+&Zh2JCer6T)e>-61L39vAiyq3RATQHn@;dhzfngAXTEAbaQ4+Aw$ zQwY7gRR4ePyaopS>PNtgYd*!*3AE!;JBJZ6(V$w|Jike1u&F)Y)!sYfOi}~%J;#{# z&?*7ij~>_9KmZOAd(KOe1H*966^%bnV?ICvNl7Tqw?!fNc6fh}EBDhy@)52mEdaO3 zkPssSf`%w=In!S5Y0Ky;K>n`pMSjn4M%uX79|vzrhlv(?(Tzfr3;l{^?JjIdLWVq7QiDe~Wc>YtUX-w!09TmfeNEB-45WiDTl z$baZ5zc-ry_cDvGK}2A3h#l$iCBLD|ykJ3In+nI+Kl{KdtU6T(ChlRRP(Zf`xyeA( z3rvY9s?9w~yvteF>^`#0KMNMXQkvFcj_y2BSyfAKi8^MjMa2sy}>rVO= z$wK!KC(!&t=zc)pEp?H)>-AxBM18{#=SkxZn*EnnYwgo}8E{|Mdw zFDKV|It+;0(^{euxQXmTx<98`&(GJV5MuH4>=#e<$W(X;w>5QyTA|6O$J*W2V0w(< z=mos)!o>`SqXo0xeu}mqD8ib%w-FI#tQ1|!{!Mm_Osw7u%U6emgq3uOGz`k)MjJh8 zBSDdO;@B90ad3Xq(yok+>*mWBn-Y?_dPAhPdxI-y=T>Faxz*Lkz@Mj1C0>+S7h;ta zZ|50Lz6UDjkznblAIcsku#6Bd2cGZ~;MLY?2=VjayhCOR1T9Ajqh74&M8LJfZ zGbF;3y|YUU+a|^>jo7n(m#FWeYCrZ*j{#++I|UHUL)#25fH;parIK1BFu1-3(m%k( zVp~-$>k%8(>!ZUd9gwFDf`_{J4>?g9H9dC*mP$%nlrCW0;B*vO+12vBFG1UqHZLA+ zq1`*%J=L%MZ@}e6jK^!Mpc7s8EjoL#JLo=6UbB+f-zp zQ!07d3vQA+iKGb}5psqc9Ad2WNqfeO_xLW~(>NJ~qL{7cJc7D5tyRbRMpZ7ownE3# zC^LYx$LqQ_4YPUP!Bynce;2-9&b5z?Th`O%Fc4C}Lj_Sh9Cf1fNV&U|?CP=)r}mE) zVc0{&ov3?cGT#~u0cVFxBA6Jjr|jA4a_8Wb6_ay4@F9V_teyy2CiwXztMOPEHx((X zRTbnY33*kqblgU*VjRO1rz5FLMQaL-A?oxDhL8AnquX$#+poQ<<*u`7qf)O`vtE>@Sc1~yvW9L| zt1A^vK!4$L$9#~}N4BZE%X?j6p@_2hx={woe#muyGqrfq?*sBgB?ZposrjDXzqrs( zBME!^r`wn23pIZ8I>R9Kyw`vXec6CRYpm}Lk>^8&@xI1~1^;;avYgUe0YsEA3IzKX zj{mdPSJ2?03qI`S2e($~FaL$g_qfi`!vB-{7SM%)cP|^zk8xq{*I?MsE^aJr`QGAE z_&@Z~A8%illS0F6fvVFCD{n)F3HoT#wUNh$jBrgo;`c{2$!%U62b+MKUL>X(y)U;y zR8qH3+)J14^HcY|aZ#wo22fk!#9UbLO+PD@gMc;S%U3lLKSnIL^L9`RV|;9US=ilp zveIJbdE5z7kNfYj>3Jk3pA}9w4me*|rGj}i3Ic=*%UG#}>mS<1;A_2|_geL~PXAF& ziOc2dp?tFp0*OdR^U4#;ryVGytsz>ZkXP3Rj*G@3N5PZ7!ML>Z#>vu_gXNal=B)1p z783lyKmK_8vYh{mV}Bjw@iK~R|8Ot29|H@efBz4$=a089Tl@o{7BqhcP@jH=uAc}) z-?Kp@+C)}mg45v;A8g!tWc}J$gKHI{bDi6$pEAZ4x#xpg7D}SJj*X9#atA!xHfTnS zS~|kX7U~}0s&d}-G5(I*zX_*>F4$Je=VhyT6srN`twJWdC3$8F$x+7Cmw5lZF=ik|Kg}*`yL5Mb@OUoB!VL4W|*(XkY3r zbba!tpBkyt8ft9?_iD8GASt=)99<9jgBW~(SLBtF*4$e;3`0`xI0A86!d%*-28N_O z%*PM1;;i(hBUOe8Q3dL;NsA@={bDM|`AoR*J)yskKNmf8k6#d7D)4(~Gaa8hw%S!g z|6X!R$aVMwq#l2~eOW=b@+a35qYpo${!ikQ^5PGcCUXs$1(00^=CV0ZChmXWO+S(U zr@KDMz2ug^AHqv+dEM=+uKxRe|NoC$W=(C-bnNj*OmyBzXm<$x_hT4VF%35m!z?XP zhn-^($K&zQMK#k$eIi}Hhp-oT2IN0S=W*%gU`>Uh!CFgs&&b&DlxMkVwu97IV`pyu z@woL!B;pX)W3=z4OGYmJs$+`PbTXD(g)j4i@p`#QE(e&vK85_MC@qO`5xFXWNih!Q+6t!52IE7zPhHwSMvJ2j|uuElr_L0cXZ__YOHMNiuY=S z20|{9`Hii@Z_j?%W*IhNQ7$dp1f;=y$0{y@HmKSv5lO{t-0WjYRC%wJmml3F#dZDX zEJ2|HvHHlQ=#y1k(^@TwLmL7E&pt}YxY>UIf?wS;Ac(MT*>=LPL(VE;@vORL|56kLCC)gWPiZ9A7a7(VR7ZZHfQ-mB>72w zp?-R7|D!*K(`$3+pK{CpH_=v5hrT4crF^ZI5!m(BqBcN^0WMee7ozdGZ|H*!Oyp_-_E2SVo*v#~zV*m=zTa?xAE&4(H3r(YL}=^db{G#HVsV-c3{tsZ~K8t>M`!1xIzyFMABuC|Zu z)heQTzTviHh5W7(q@J$_0bbo$+-hv(;3shwP$DPvJ#|~MVS!Ys^~CH^ z*B#5#3tW(nhg4e34`nk};l@KN{5JGtXFT+v=B@aI=@nA|#NBOySkqNC21D(6CA}ie z7N5K)jHduh|30tl%!V7lKSLUSCO?D)DVvVAl0LsR=a2t@YQ0@59GeiHUpkTJyBJ8X zASDV2kQxw#U)}?zM`$38c34`&tW+->=(&4zFJkzj32DZNX@hKgPO){siK?(lPsVCXpLb#GP8ckq+VMHs? zN|EFA>mXRzdh1XPoF?7Lfy{J%#t!CAW^g2S!sb~QE=jsoqw5P{;nk*?!sLk!HfG{n zzytSwfJDY+QgokfS9I5JIfCYA7#&}RLOkZd6jVdih-HWhUG#fN6%M@(LyW34*dl35 zJyf>Yx|Pa4ar2CCcr03S%|abemOhq;?6Mlc%JzLbQ0!ICe0UpIoxAP6_Z&{V`w(M2 zd-pk?Z`XcR`BF9Hph~vTK4G4DH3GOZsaYh&Y84MTlxnbF?VhL7kH3wtp5HQ@Ym%ny zL!}WfSw$D2?6Vtt@qVv45Jz+&>tav{0R%Z>oRV9CNpPI*`pqIwy?5&Tyn#M$z^D5{hVe> zhVZ^Af|SUn*^$oC9BsS-wxQBUr>4Wxa?Eq(F;rfY{ZDd`Qzj6b+WqMHnG$yoooU*h z#nsBH9+iA-ycKiaeOwS`0lgz@X~j6#wCir+fUf^gK^-9r=RPxdzFG31VqGGJIOm|2 z2Fa{h+=aa~cbv6mYU}o%kxI7Su{^Te=3ZL#{^Pwp;y(3u4olP1+hF0%4h|1x-@)3t zd2LM>W@(7Y*UfI5b3xW8&o;{w#cLLp*1w?ln4Uc^-j(m0Ki!vWZ9e~mY1os(Ho zk}l5l#^7s^-AvXJhf<#btCl)h4~N;Fu}ZdeWeR@1v>cG)TP@7(_VMzr=6s5lPFSz` zU_6)5Gkp@M)Q7h&adxy03jI8dCG`c7Gh$2drTV8`Hs?yL<5A<3S)@(mmebKZ(pU4z zu~Vl}d8ApaK|sG1*0rxqCc_hk5U@IuPbLACoz?{JP(h&h+PJ_4fhZ?#R&5Qj!LFRR zly{i|$m_=i5a>D9;x^;+UCsEpst~I%0o?=DA&vrN zpImFzvYaJmZlBzx%Jh*rLzzv35k}Sg`J5MZZ3=W{y$W@{xq@|>N?qn=7AgYsn|h0$|{ z_zL+e>^=PW8(HW*E@oyU4ETa!Eq4XO$j#4tY<8EXL!bQ8q74_k+(PtzpjR z^m?jYy4S*M1`H4RZ8JW=q-!lGn(TC*Kv5@B6UrG4%T z*)jOl4F-w?{Nwmi{1*&^6)4wwuq*5Z7dPt$H=bgW43W&j5#m2=z_LC!7D z-#rR93$+{k2s#QhwK|CdVY*VTwr5YO8RAQ=dWNVCa($R+(L9&e-|+1>JyzH6t{r}B zc{cyiz!nK#S$?lOrQNzDuKXitnypVaIro6ONA3(RWb2zwFT^PRh&qi|x!XFvk2~os zJS}TI=h6_F%6)e})@#!qhsN_@4%^2MAa3IJ{s zUVqA_Ie%t47CWQ0uicQemzUDAXGNfz&d*=t!d0g~7KxI6a5PIl(R<>THYmq!B_MdF zrOh$3AH2!n`0c}T#pWiX<8l>XnC)9fqiS!gbv7CvBJMhkpgzYHLbiUq4rQ(XhKJ~b z9D(U+Da5v14;seoWg@{sD!#@Ue_V*p#{^^MbH6QeEVaUx)g4aR{1MG$&IeX+&R;F} zz7QVzauzE$kXgTfT)vsnH_;r}a=XNKamR1t)CY2YFtIG9$hnPj76(~9)85w!K~5N) zdli29Gs+OVV8mkh)$|Jcx$LUBWf3CRVh`yhKDWK-)6KG0-NWlmGkK>3nCUJZL6_2M z?J#4#Lx{K`cCR-3D*L(2*wXlE+8no|=$>=I(5vb6kAr#El`YPRc?Zl!*vW0o@1o~c zAmxDF_Hgw$=ndxq*zqk!*%yJ*1J4Ke|7M~XnzZEdSqA{Mu6J-d*j{Dos}@ZfZ}+Ll z*0~sxOzyusIB=q&k?8i8GWcjfn`p+!xn67Ts6DPO%yY7PE<#70{jFN`_dG($$ zII$tz8m5a^(`K$Sk5sOUUUqYCnYenug=nh=rV^G%>e&Qnul*;;qp{&W%K=3Xg_Tz(+9W(miiQ9 zY*#JIHV0(O0M>Te$@8>baI?J{^lZssgqeqZ%zV#u;vWK+;Wt$Q)X($+sANm4a|k8K zT?42$d1V%=G2Uv{zo|Le4E3d(FLYHHv!kG{YPOJ_g=51v3C9Zvlfm^Z=b^-3%xdA6 zb~33R#364?kgpK#K7mlx+ zdl{{o$6Q4t(Pw)y-D`d*gKxBg}+ErWU&TOX`c`1Nd3i zdLWVVKB3dp+9t35erK0bAA2m@jPW)+I1(c+(aEN=j<#-8Q(pa0k@eXYlk01>&9wN0 z^AUm?lXj`9l)kmM>OBr`KN@o2!+Mka>*|_DbsFr8$xV9*cYKFug&qnhb>{y0r*pAQ z!6o-)1%+~-s3W;e-Xf@y*|D#$V-JiOk7rrIFF3nh)&oJ9r(G7fCJX}?i{>-Uy7 z%Nx${L76rQG^eiJJUfMRWv)rneb1r716_veow{#Rx;?I0FP|t8-g^2E^ZS4{ZIJHy zVyOQ70hrgp6Qce#{a~eFu?x4`<}3r!UjFqgRNZV}fj91KZA}g(9TO$LwsG0{J@GR7b}xxCrfPD1Vgj^$4wcl%DD12b<|5@n!DI-t@(m@-=|Lhiprq4;ycq zf(0LOo%lnrA(|qg)7txo)8;j!YhAd5>H_{DT&$;%GO+{Xi5t8Oxte|FDUbv)keO=q zK5*i?q*Gsn`pb`f%q(|(Yrg&C+M3)4&;@rau?#!=&p=8?Oobn1C}L><^DC1uQ`xh%Z#91%#~OCpuE*Q+ddlRgF*Z|6` z=UEN6-;Vo=sn}}9xLW;~#*O+htz(Ht0JQ~n{1yd>eX{2t*IZo~6F+J?3tiAr`vLg& z3#avi9-F-Q>V`Akgy6G8NdMy2At`9|MB)g6ifsv==;UUh0oPTS?>yL-+R;a6ghB>mCiKMzIdtJ@X0Xh&?VY=1mqp8?)k& zm(KF_c@!qIWuS?I^@`rLdXvWt+!6EXlY+wYlEMyOzJz{BY``=n?BaODWjQ(| z-Ce&pnWuNZ4Egqjxjc!?S&t_I)FI1Y$Ozx+rWlGEma=@gwKzC4LG}Cm+SByzkLK#|o{V43aIoPN7Qf~TN zukE-(!_jcwY9mSeXC*ve_Yp3%bau?_{4mddp0!qH%%aI`ITi`asG~Q$RF9}?8aprM z1Z@v5+X;2@rRG}-k}j_rV~J56%`y)cJkdZcAd6qlFUb0@C|)ely4^te=&~`CvYC5k zG?3Z1Uq>|^TG$R+7T#uEeEgN)t zQff&=7A|8OAzW!f60Wr{dX79%!nrC5i}boLMF$$PnGxyk%ZyMCjWT#3h`-J4j)-HZ zGx!|V_;xT`aT+t^Y?;PUn#j{9ejM3OdjBbG(pQ%^Mh6C)eN~&CH5EFi9C@YMJ1VMO zMsXzV??YHv?KESPeYl>Iw~TP^@gZ8XnViz0 zB<$%g3Be+j9j{FC==95N7Mg&FW8~B= zWKy>Wa(yAjI~l=88oY*sl<#c4A5*6WE_);p?jE{zOFJLp8+icBsGn7^F{wA8VZk=R z=P4N!Jie$qhg)v7=N(O0nz}{62m2vmi~;1l;9SlPd~G%dSWUPIQP@|C2Mq2dnok;> zWo(TUE;dfu;E{qZXO+@gZJC+`L2imynmC$Y?mfqEwz)9Z zq9A>yI`&ZKS<1WBJg#rL{KD^o|;ky2_Y$E4g@+RWzp_zTu*Eq`l0VYkoW?vdE_RCLQp*~Syf${BD2&IOR! zV5J4agRp#QWJgaz6Ge_SnsppVS-lDCBg_uL44=G0F8$L;GkU*k;#6tI{i;-DUK87YOt}H{l<9@c(~*UG}WW_!O#av zGr~hk`PPyI5P|Yi$Jx z{E$TMQ$t|I?>l^SB>+~RoL;KtzWQLKm@fI=sS%obMnO@C z%{;RO6%hde0cDB^C?Nz4Lx6;kZfS5pKtSe6<}pMegfWSVfDj;rgainKAq<8PkRibk z5>9ZRv(No;&VBB^&vWmen_rcuDl4n%TWft)-#gTsx=V+o@U&7XpMEk)u@91z>`z{v zq(YeKW!8xh+uhNU-Nz7)bhIO=YF7l_I)Px=^)cy!goCd=fS>C7aM%-RZ<5%@Se*)i ziEp@Fke*j`>MJw668vfXG#x$L8yRo#qHsm$cY`1j zndhLAni3!_-pk(tt?QkT{^NGp-ldasn&(__VXWRFL=VtUiQ$7+BL2FXil%b3lSWv_ ze1MHo)EyoE&$2jDyvNGokyCz=_Pd&x(wG92Cd6t5@8glnT?VaB!=ynB)c#Mh)W6W{ zH)+3o4cAL)EnE6i>1Pj2{krkrhElrsf5<9Q{>j(F_Ymx_8~TW1-lTtaA@{ranCvuNCd4M=H0=dENmKqaPMR zX>EcY7oX6Xw$-)rm+OhtRL7L_PQTA@9!Y7en8LhfZkdC;tCak<%)UIt2T;JvSijUJ zglY_h5Gzs>Y}gIGR^^#>t3<~Vk+X@Sf&LA&2z!J#Np)~2La%68by;&M!dQX(87!L@980FFMDM2u^)KYiQ70hJrrw_J}7K)qJoynh!6KkF0#V^JUPe)I7q_4;mSn+gJT;KF=;uaHS#JQWl zHOsB{+qL4Fu+Ae`31z$r@y2pyO7_4zw4WqgP(KyQCL_rLKr3lM6_IKV+6{qiPW7=B zQoazT#565iOWBQqPE=Dzu}ZUfDi0?r+QlhD-$7uD)R|YTCje$q@1x}p8KH75`OCTA z&Ah^kh&de`O*B6;9f1wj_c&WG7*GZ&7G*OQ?Bt8B#EW89&-#0WKDA9TIUvQKKO-4^pQD zpLqg6)MPM9l8j+)lTqCv$3=#S8uqUp;in?i4CjCXzs#-^&bG`OS`P9C?E%&%%psqXe~@z6;QxU!Uj;!VcT zihF}FOBwloXCDl%x$d>D(ADSQVEX5myifVQiw{tZ`wp^Y*_cVEPm#?l2eD;so9&)m zykn*)))PUZZVI`m#=$gibp>gb3)730!u^3U zdDDW>sr!HxRKSE@*_Y0z4>Eb>i<`bHi-0AQk8R`CVr}sNT0n1dG!8VSPtZMZbJcah z7MtzBo%bP#-qeC3r9btv3!|D3YJzq=1oEB2dgEkMNA@th4reL;QYIH@jYi}t;MdM> z^$TmV7T*RUpRp;M&E6pVGwM*P3z_?&DRTD<{?u+i2aN1k4{y=HxFbM0?sgr9{t)u1WAvZQ8L%>po6(<8+i( z3vR}vr6NdAZV)x;fL*D9gtTt>c8E&uSMsdo7XYEHOv29#i`8n2_MVJ&?uOSq(A3kD z=4VR5ZVGEA5Y9XG>BWSFMQOBQ=}3LJWXdzN8Z?yy8UIbTjC^fWr!RB{%B1Vu3{l8r z_6Lh#&5tZnK_@8};Ao4Pz?s|VWWLa)7+FgJ1B4{jJ_~oH{`N!6i%hNynW)F(!yCeY z=t#dxuZ>!~0buup6%AJ0CY031e3CcIEPmq0?By?;FGdk+k??X5N4F#ky&fJmuLDx4 zMH1?~400h;)h}>shUo?kxa&f`!^VqHKy$BZ9BZa(5Y@~tU5^}%-62J(&)9{`Y~36s zvocrXp~N-mU@3y$)}ON6nN_wuIs4ILS*j%hZ%cB4N!z#Bw2zJ?UK<(G>AI6MDzuOGMq-K&-pf7O0opBvTyI zQ-t7LM#SxI&|}uqU~aAElF4wvM=E(t7eKgUqqO$)wlDxO?$a2f4DgJZKESz-ed?Zq z3yUFS0*&9L03Sqr`P})&WcdfgO1B)sB&sIMPeIAIN~PsZisuDOEQur-b|K%d(yFM^ z;k<^qL0iQD;@v38=d+?TUB_41z_ZMq7-iU`lg*f)qjZPmmxqN9Hl2LuEk>m8Y3ocY zh_L$dng5E1h(!f*)t3MAGYK9SR^9IH6blOR@*26yO>fdAmeF&4<-~;Z>18mVaA%#F zDDmgE3&4B5$}um@#j(cMw_f-guZ(R4uP6M&)cPn2t4qtyYB_Jxt^I>o!pV|JU&L;V z;9)o5KBQ7ZwW;2+XDV>bL7&ixiM}V>phvM=){YuemWn>%SE7@BssQ`e?60-7TBiaZ z_NpQb+EQm7T-fcRw^bR!pZL3P5)N24c&dKXSIxs{6f=vLb4KMjVdnXBip)!7P>deZT-7na#Z%japVNmM z#$pdDO5P5y&b$NbV@53|@t>VP{65?XD%v!WtrI?(HG7)qq@AbQjM?Tw%`zRf;OI)U zXiNZCvOM)kKhHPQ&(kjS+p%e} zwgonWD9PiagQ-Q-i0N=iu3(r7IK_SJBPzV0>TxXDeRlnEPuZegtjFec-RDM*&=dN> z19sSf(ij?+5I*C_5{moQ=X*5 z_1Z@RiaNY;7;O!WgQc1W*>yPDFW5}6Q!TTfxp&oy_38;1f;vlimq^udd5&7)u?`q& zgvIBDgueB_Sm?}e6AR5NAaB|x-voc9D@ZtNQVp#oX4x^Vm52+r#vJR82`k<&P;-}- zo-!d7izSXk-}OABo9xJ}ORP(%LNAjf%_cSJOTB@WMf(Af6DG_=@t&;bh`j$}qwXim#+!AhYc z7A1w}7QhW$V&-S^b=m47!oMq z$JGc&Tlw$+_p|pZgd-bJW%v9gz6X8B;u4j<)3b$cRaV~^LqDAAe5Jy(3rjw+WUjYR zicHKhx7-b~)CyHl!64HA9IBCnEu+RDfy=D0VWS13AK zxp6Jsd%$M(sA9`D*z5Om5KRB2RJH&OqwVzYO|@+XY^ZdJVFTN6a_vTAClpv8cX;s} zv9NlO=15f-ta~qh?o)@n+{jCev={4>6@A2;9`i48HxddCn#fB`OoEhrzL};cgSsv251j-u4T1Vwt^epP8`_*c_(q9Uh=0FD&i)l(_sg?k`}Bt zjxj*evEx)Aqt#Sd0}9+xyh3U~{xRVIsS!ALfGiJh#6UjGPF^T3<R&PX@j+5%Y+risim?cWNLQ(RPJAqR=moX z5ir(FRk&7+OB$*tQ_erqefo<`NhV+=LK9^3`6LRJft=0Oc5oXW4;<_F-K;dGviNxo zr%oaakbKeIv0oGtk^$q;zmj)~1<%H}$Haq4y3pg-Sj?63{jP*W);rlE9`a;K5Ku-`132{KpTC zJe06vF4C4515n@i`Y2`88M}#AZBF(2l2%`blwuQq%lz)xQFjS5vSmyoPB>eBOXtW@ zSG~zZd9UX;b1q+2c;dR~7>7J>Op`#QPXvS*av4l0BDVlVPgeYMZpmihQ_b%)J}IhO z@_WjS!Xu-1D1`83^!?&H0K$5yn57Wf#0^nt>P|{&Isilz@Bl>rRU{PzTb3p&e5%>W zA||*>6@?Xlq*U=9CTN@{m92ehvy_Y|<7P{>MH7Yc>RmhF%lu93krCn#W;-wT8v(`v z1m1bi=#fK$WJFw`;gsl(8!e`LI*J8?J$-8F=Qw8VxYD9gboPe>rY$_@V8_;L4IVejam=_%Ibh3T+y6L5GST=8 z$j>#xHNZ8}ee_OqaJY1_7O#(X1OhNhtQRZ=axblJ6y{yFG?y?d&kt7!}}&_x_@l{%QZbw|$< zYGiLis#w|bdT_6CV9nUx4z>2U`>K|UmxjLM??4LhxSpyoE>FXCfzN0jTM^=h{j^#p z9N444{JX9|@if#2KKI8q2V)$hVO~W%Y!_@Pjyyf%(628(u=po8!6#!C6Eh4eDh{Op zOESwO-r0Dw=gxBQ)ZmFy~@hSiBP z{k$q$Lq7R*RoT%0iW`U5bIuw-L`LjOG`5oM&40ZbTdS|L#LacO(=WC;}7M!?2W+v9+x&ZG3 z$v`RN7oq_t)wCqEEHrmkx07-&DG!S1Cp(y z+JUx?ivx}>V3x6 zyTrV_EmWJb4D#}5*tt+Dj^74PeOPRO)_PKtdHE^%d#RnU~eb_V^t}BvSs{pmb*|TxMQ;DAVh6c5LwF7S2529Ug0M}UZ4u;Gdrz! zEfjso9P^88S{T>ouBgVdt5$10waf^pSY@FKV)i@QaBuJI+=K|(W_9>=_6S$c65gO= zhre=y+f=9mj?oVlBA$pE#?Zda#n%}Oy{^{td6hnOaqWyRe6Ls_!)Sd&Gcz}^ZPVvu zRSmQU_q;y@FIfb5yr@U?UnKW#h1y#)(Kvjo{87BcuEnp=PH3E7XO?-KdX|6whXA#_ z#Rviw0yM-sKrj$z(l#z3lzsIlr$c|w87y9I_nScKJDQ2^#>@j{HMT~pcY`s-gVQ#} zgDMp?G?XKGN}e`g>s{X1Y~K~O&BYlorm%)59JbPW@>Pi|Y#lc_Oq}~nGqmU*t;f>=w#xSJR$wM=N52hn&4j)+Ohj2`0f1+Gpi`LO1NKdBd0YJj>zf7d1890|SScr{ z2%9p;wAJg}1`{+}j^G=@;G+x14xY1{`rgeIJ#`0X!(-ruMU05rC+zCj!uI=c`_r-t zx{ukE=u!0isFr1e5n0Ip1?Nqe3aViAaJUw@%x$ouFfOg=+`}x>5c#w$TdIrcO$&{n zCTYM!G~gC1y_$=jq|6zW-(>U2*0b#|5rgp)r-$t3&0Jj|gu406P?S0Sf>3y)Wx<}z zu^19vA9t5NKzr%Rs)9O$Hu`aturrT#!k4N-l0A8=k*R{81_qE(^hUm$;K+K2Hl=7ajz3s73ci8XW;XloAR zdQ4K{U`uA=6VZ}&2?r$k%{+zaHm_4-N<1hGphWBKP7v4wbPj0k4b3`-Oe?U&bj4?ywoHcTe_&^pV4hw$E*} zTFiHY=6jDatqt+&A;6d=HX9*SWw$qMA}#`0j)1rL?}c)6@rFf@q6}lzbK%iy;+TuRq<$ zvc;U;4kvjn*mX4`RTUi`T_jOU0!;J{z8Q#E@-!Po7ez!@$+7n;!g+uDmq9^gL+d|l z#KZ6Y1xEg_m5u)!FhSb<|8@oX|Ldkq`Y#HOzbP5pjcvsT3f2#_i5?(~%^X&`Ad-ii z7PXZ9TQ>KmSZhwb_to;_6^a~s3$NQy(P3Yy3dX`n77RwG5Y9ZLQR{(;UE!Bw&ld7X z(m4_96nB`FF;^ggf`>MRh?AvZUvZ{F%Rh zvfH+ENd?BLpZv+_ahb!_)K5mgsm!ODOS^-990_>~<$TFdv(rN_XQ95@(X3~UvgpN; zSd6q>-^u0S1e;Ui{a5IP??0>GpRBaoOSNLt{#(v~6s`AI`48KH{|WFuo>tIB zqrC3E(ntt=x%RhnXr&)){b_}BheGnNmfsTciFZ&0>fA96?0lkJ(I;>W9Y=h7LXSp+y+Jf8=zK2UVtaKsB2Ys}_i6lT zF2lD%Ib&wl!-w>*L?zuPk}#=QN{Qc~c?zGPv6)g%f%=$K>GF=c-P;2!5c&yx5iY zXW1d|3dpCy+Q8e#z6y%D%0(q*uv~F|YIZ!%J49ymy!T zy(ww$*nS2<(l^P8>YTS(SqBwC{*1stUR@J$nV*Mt{q^a=*uMbB!GjhBorcdZT1Q4M zT4a2m)G;on7<@OFW&k)a^Qxi_fZcg1o3QnR&Y9`=DZg{itv2!cw*I_1y4nvX6B@}Q zFHF#@=@*owMB&NEi4Via3+Y5nX5Zl5MekG2ol@3C+i(xPfdmVrrd_1aB&;MGay4Z4 z1|Rb9;Qn&!;1(E@K)N@hns)KecQUnw?)Ol_d^1hnKm2c$7vi=XEOY|DJ!0C>|MbSF z^a!aq^}+ZJkAq%d93*k;JDoH1ZExu65kmHS%C!$_@!MRlQ6L}jMo%}^JtVvICimDy zw+PQD!B2y}!nRY+=asi{QgzX|6lI0G{t{mrDK)9so_(zq`x!0ijz9QR7s`Ig>kMhu zI;aXq0OVB(@b$%a4!_2Kt0h&}_W@3tXhN_{z|0RXuad$q-_rT4>ub#bye6EOPE9!Y zG{Y-9z}@ZOWDxFNBKN!Wi%=7HND~hMZz>yUXrvsqt2Z_M_EhS@f`QN8F}7RR1DNy? zoy*Tx!Uw+(9nf^|cod8b8#}oZ*fruC3SxX{;6s|6+OBHr==&q*FLH}xR!Ge^ec3Z4aP15|T%F1`3I{`*<;@tK1&gCAaA zq)FPgSh?#zh-$IL%B|!eU*&DUdA+YI(?9IMQ(!3$z4w{>zYEg-KT45blhHTd7%s*x zZ;Y3Xi$BW886bYPmuk%u3~;!wRucPlr0T@PtOQPk>@5%_$J@i_zWI2#{y4td1Sg#; zQnrsSH}V%Pveev1s?E;i*Nz_52#}YXeX7wYgAV@cEHvY#du@(>_CPLAsxS`-S0&9l zY7MCjhLADKeJTM#9*#?IiOEt_TyIY=`0^Ml351a)wp)=#BHb)LDKP&jLu=m00;|i7 zeyE)OJW~?ehWSb7q+DOtk=|PE5(KNN=UrT1jq92hUKvvZqzHl&<4FfWD2b$)Xft3cy;&9TLBc@gz{_Ja6#^952T|vFGZ5l|$xoZ-?gF^t)+Gmp9zRF?HaZE`_${I*9Fv<>ZyD zu_f?5F3@++wag#c$2n_`3z3?dh2%qwq7>f_b!V%yZ?)V6Dk2~ecYr1ivIwE8YtlJW zfMJK8T=>*xsf~2O#>KghVldz3K#E*9f3zbSLdsa(brAdY%dwS`CgzC=DDZgP1K0as z!id9e02PO-+bX!hHiH{$mu#lr3s3NV1de125`4dhoB@-boRk^V=9qr`kOvZXY}aG& z;$^#WQ|A6$_ww6A24aw2%B%0+a}1nERjthyi+MrT%BFnM+jcjvTQL$ z{9K8EY@fEIj6&>2Y-HLS0a~S}fL0k6F7LQmt0%z2K>GdM#Yu&`oVN2PLn~&u(*gG7jO(4TZRJQ^6{BrQ6{4 z4JrL-I_o}Aa=$3j8ErwYf<$B*F>^1DZF{7fz!OLO z%Err{?f%MB)f_njqh|ejc|Tgd!aOys1=J34$~!XTqpT}^FKX~Um9^qJ74s$jGC>Us*^MS zcwgb+aN%>=fd`t;_IsMt`sPI|4zB!uvd|13fa4e@?aL1EK&ab%D9`0}_+K#PgR>+V z9yQVlo^w*lOZkIdqGqX%x&0I24aB>+Fzhg4&fRBI&sfW^QgYO%yXLGkyXLK3eSUlN z!F~s)%E9oFN*4zFs`f|?U{sf%-6t`r{e=_$paV0c9B@Ir`D`=rubd2rC$~fEM0Lgc z)l59@Mw~BpgDVa$6@5-11hG!#7>KW#gxzh6RDD3RUBjL?6=CGGPW%OH)x_Qp%eyh6 zPEGZ?meMG_RtauFYTtabAa$Yp=4Iq3z(=)w2r>*#vhsv5A;2*6coom8q@o^|zguBg zw?*#NouB-&8*&e!lq;Q6kN3l zKSTpsX4e9!w!6P_<=AL#{5{f;B%zOM3gag*#^)3^ib#TSfjOQNo)ob*agj?V+|j5C znQO3duG!$7ZsI?d+*;8~jlYh{JK=~wThze$J+^}0j8%@fd1YO9uteM<`>ayj z1!3_|Gb_QU0UFWjpYf+S(buFAFfv{AD<-Q9uE?N1H;tElPu16bm;I(z!2xY3)<>bo zabQv1?&Uaj_ktJZMvu=GeNa&tUj32U)(fWyVv+7qaN&IZ>SCIc& t9V<}nn}3K({zXh<{GV~24DJYa_d#xtIfY-g%G}G#wwE0)HCWww_-}>|SC#+( literal 0 HcmV?d00001 diff --git a/cars/lr-investigations/exponential/1e-2/0.7/original.prototxt b/cars/lr-investigations/exponential/1e-2/0.7/original.prototxt new file mode 100644 index 0000000..c9d0d1c --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.7/original.prototxt @@ -0,0 +1,388 @@ +name: "AlexNet" +layer { + name: "train-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "train" + } + transform_param { + mirror: true + crop_size: 227 + } + data_param { + batch_size: 128 + } +} +layer { + name: "val-data" + type: "Data" + top: "data" + top: "label" + include { + stage: "val" + } + transform_param { + crop_size: 227 + } + data_param { + batch_size: 32 + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "fc8" + bottom: "label" + top: "accuracy" + include { + stage: "val" + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8" + bottom: "label" + top: "loss" + exclude { + stage: "deploy" + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" + include { + stage: "deploy" + } +} diff --git a/cars/lr-investigations/exponential/1e-2/0.7/pred.csv b/cars/lr-investigations/exponential/1e-2/0.7/pred.csv new file mode 100644 index 0000000..f0fad28 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.7/pred.csv @@ -0,0 +1,1619 @@ +1 /scratch/Teaching/cars/car_ims/012117.jpg Jeep Grand Cherokee SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.02% Daewoo Nubira Wagon 2002 0.99% Dodge Caravan Minivan 1997 0.98% Ram C/V Cargo Van Minivan 2012 0.96% GMC Savana Van 2012 0.96% +2 /scratch/Teaching/cars/car_ims/008738.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 1.59% Honda Odyssey Minivan 2007 1.48% Ram C/V Cargo Van Minivan 2012 1.45% Mercedes-Benz Sprinter Van 2012 1.42% Dodge Caravan Minivan 1997 1.33% +3 /scratch/Teaching/cars/car_ims/015794.jpg Volkswagen Beetle Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.64% Mercedes-Benz S-Class Sedan 2012 1.48% Rolls-Royce Phantom Sedan 2012 1.28% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.28% Nissan Leaf Hatchback 2012 1.13% +4 /scratch/Teaching/cars/car_ims/004173.jpg Cadillac SRX SUV 2012 Fisker Karma Sedan 2012 2.36% Mercedes-Benz 300-Class Convertible 1993 1.86% Bugatti Veyron 16.4 Coupe 2009 1.8% Mercedes-Benz E-Class Sedan 2012 1.71% Bentley Mulsanne Sedan 2011 1.46% +5 /scratch/Teaching/cars/car_ims/005889.jpg Chevrolet Malibu Sedan 2007 Chevrolet TrailBlazer SS 2009 1.5% Cadillac Escalade EXT Crew Cab 2007 1.5% GMC Savana Van 2012 1.37% Jeep Liberty SUV 2012 1.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.23% +6 /scratch/Teaching/cars/car_ims/001393.jpg Audi 100 Wagon 1994 Mercedes-Benz S-Class Sedan 2012 1.75% Mercedes-Benz Sprinter Van 2012 1.53% Mercedes-Benz E-Class Sedan 2012 1.25% BMW X3 SUV 2012 1.12% Dodge Sprinter Cargo Van 2009 1.09% +7 /scratch/Teaching/cars/car_ims/001507.jpg Audi TT Hatchback 2011 Fisker Karma Sedan 2012 1.55% Hyundai Genesis Sedan 2012 1.47% Bentley Mulsanne Sedan 2011 1.4% Bugatti Veyron 16.4 Coupe 2009 1.34% MINI Cooper Roadster Convertible 2012 1.33% +8 /scratch/Teaching/cars/car_ims/002597.jpg BMW X5 SUV 2007 Chevrolet TrailBlazer SS 2009 1.1% Ford Expedition EL SUV 2009 0.94% Jeep Liberty SUV 2012 0.93% Chrysler 300 SRT-8 2010 0.92% Plymouth Neon Coupe 1999 0.89% +9 /scratch/Teaching/cars/car_ims/000071.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 1.96% Daewoo Nubira Wagon 2002 1.8% Plymouth Neon Coupe 1999 1.64% Dodge Caravan Minivan 1997 1.46% Chevrolet Avalanche Crew Cab 2012 1.31% +10 /scratch/Teaching/cars/car_ims/008059.jpg FIAT 500 Abarth 2012 Bentley Arnage Sedan 2009 1.69% HUMMER H2 SUT Crew Cab 2009 1.47% Jeep Patriot SUV 2012 1.35% FIAT 500 Abarth 2012 1.22% HUMMER H3T Crew Cab 2010 1.19% +11 /scratch/Teaching/cars/car_ims/001659.jpg Audi S5 Convertible 2012 Ford E-Series Wagon Van 2012 2.37% Dodge Caravan Minivan 1997 1.65% Isuzu Ascender SUV 2008 1.46% Chrysler Aspen SUV 2009 1.27% Chevrolet Avalanche Crew Cab 2012 1.23% +12 /scratch/Teaching/cars/car_ims/004557.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.23% FIAT 500 Convertible 2012 1.99% Mercedes-Benz S-Class Sedan 2012 1.94% Nissan Leaf Hatchback 2012 1.66% MINI Cooper Roadster Convertible 2012 1.49% +13 /scratch/Teaching/cars/car_ims/004311.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Cadillac Escalade EXT Crew Cab 2007 2.36% Ford Expedition EL SUV 2009 2.08% Bentley Arnage Sedan 2009 1.84% Land Rover Range Rover SUV 2012 1.72% Chevrolet TrailBlazer SS 2009 1.68% +14 /scratch/Teaching/cars/car_ims/006145.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.51% Chevrolet Silverado 2500HD Regular Cab 2012 1.5% GMC Savana Van 2012 1.44% Chevrolet Silverado 1500 Regular Cab 2012 1.34% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.27% +15 /scratch/Teaching/cars/car_ims/012832.jpg Lincoln Town Car Sedan 2011 Daewoo Nubira Wagon 2002 1.52% Plymouth Neon Coupe 1999 1.15% Chevrolet Sonic Sedan 2012 1.1% Dodge Caravan Minivan 1997 1.05% Rolls-Royce Phantom Sedan 2012 0.99% +16 /scratch/Teaching/cars/car_ims/006057.jpg Chevrolet Silverado 1500 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.43% Hyundai Santa Fe SUV 2012 1.22% Dodge Ram Pickup 3500 Crew Cab 2010 1.21% Jeep Grand Cherokee SUV 2012 1.15% Ford F-450 Super Duty Crew Cab 2012 1.13% +17 /scratch/Teaching/cars/car_ims/005195.jpg Chevrolet Avalanche Crew Cab 2012 Daewoo Nubira Wagon 2002 1.51% Plymouth Neon Coupe 1999 1.48% GMC Savana Van 2012 1.27% Jeep Liberty SUV 2012 1.15% Ford Expedition EL SUV 2009 1.12% +18 /scratch/Teaching/cars/car_ims/013970.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 1.68% Dodge Sprinter Cargo Van 2009 1.53% Mercedes-Benz Sprinter Van 2012 1.46% Mercedes-Benz S-Class Sedan 2012 1.34% Ram C/V Cargo Van Minivan 2012 1.21% +19 /scratch/Teaching/cars/car_ims/000910.jpg Audi RS 4 Convertible 2008 Fisker Karma Sedan 2012 2.86% Mercedes-Benz E-Class Sedan 2012 2.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.27% MINI Cooper Roadster Convertible 2012 1.9% Mercedes-Benz 300-Class Convertible 1993 1.75% +20 /scratch/Teaching/cars/car_ims/008161.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 1.69% Nissan Leaf Hatchback 2012 1.36% Ram C/V Cargo Van Minivan 2012 1.36% GMC Savana Van 2012 1.17% Daewoo Nubira Wagon 2002 1.15% +21 /scratch/Teaching/cars/car_ims/001019.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.95% Ford F-450 Super Duty Crew Cab 2012 1.54% Chevrolet TrailBlazer SS 2009 1.47% Land Rover Range Rover SUV 2012 1.46% Hyundai Santa Fe SUV 2012 1.45% +22 /scratch/Teaching/cars/car_ims/002588.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 3.06% FIAT 500 Abarth 2012 1.5% Land Rover Range Rover SUV 2012 1.44% Mercedes-Benz C-Class Sedan 2012 1.34% Cadillac SRX SUV 2012 1.28% +23 /scratch/Teaching/cars/car_ims/004884.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 1.2% Dodge Caravan Minivan 1997 1.17% Ford E-Series Wagon Van 2012 1.07% Isuzu Ascender SUV 2008 0.99% Honda Odyssey Minivan 2007 0.92% +24 /scratch/Teaching/cars/car_ims/001972.jpg Audi S4 Sedan 2007 MINI Cooper Roadster Convertible 2012 2.54% Mercedes-Benz S-Class Sedan 2012 1.63% Mercedes-Benz E-Class Sedan 2012 1.63% Bentley Mulsanne Sedan 2011 1.61% Hyundai Genesis Sedan 2012 1.55% +25 /scratch/Teaching/cars/car_ims/001030.jpg Audi A5 Coupe 2012 BMW X5 SUV 2007 1.67% Ford F-450 Super Duty Crew Cab 2012 1.59% Cadillac Escalade EXT Crew Cab 2007 1.58% Hyundai Santa Fe SUV 2012 1.56% Chrysler Aspen SUV 2009 1.42% +26 /scratch/Teaching/cars/car_ims/002376.jpg BMW 3 Series Wagon 2012 Ford E-Series Wagon Van 2012 1.48% Isuzu Ascender SUV 2008 1.35% Chrysler Aspen SUV 2009 1.16% Ford Expedition EL SUV 2009 1.04% Hyundai Santa Fe SUV 2012 0.99% +27 /scratch/Teaching/cars/car_ims/009940.jpg GMC Acadia SUV 2012 BMW X5 SUV 2007 2.14% Ford E-Series Wagon Van 2012 2.11% Audi S6 Sedan 2011 1.96% Hyundai Santa Fe SUV 2012 1.94% Ford F-450 Super Duty Crew Cab 2012 1.65% +28 /scratch/Teaching/cars/car_ims/012396.jpg Lamborghini Aventador Coupe 2012 Ferrari FF Coupe 2012 4.31% Ferrari 458 Italia Convertible 2012 4.17% Ferrari California Convertible 2012 3.19% Ferrari 458 Italia Coupe 2012 3.15% Chevrolet Cobalt SS 2010 3.12% +29 /scratch/Teaching/cars/car_ims/006287.jpg Chrysler Town and Country Minivan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.7% Chevrolet Silverado 2500HD Regular Cab 2012 1.45% Ford F-450 Super Duty Crew Cab 2012 1.44% Isuzu Ascender SUV 2008 1.32% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.3% +30 /scratch/Teaching/cars/car_ims/006286.jpg Chrysler Town and Country Minivan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.66% MINI Cooper Roadster Convertible 2012 1.49% Rolls-Royce Phantom Sedan 2012 1.41% Nissan Leaf Hatchback 2012 1.35% Mercedes-Benz S-Class Sedan 2012 1.31% +31 /scratch/Teaching/cars/car_ims/001090.jpg Audi TTS Coupe 2012 Audi A5 Coupe 2012 1.91% Audi S6 Sedan 2011 1.7% BMW X5 SUV 2007 1.65% Mercedes-Benz Sprinter Van 2012 1.41% Isuzu Ascender SUV 2008 1.39% +32 /scratch/Teaching/cars/car_ims/003162.jpg Bentley Continental Supersports Conv. Convertible 2012 FIAT 500 Convertible 2012 1.86% Geo Metro Convertible 1993 1.57% Hyundai Elantra Sedan 2007 1.45% Daewoo Nubira Wagon 2002 1.45% BMW M3 Coupe 2012 1.26% +33 /scratch/Teaching/cars/car_ims/009978.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 1.32% Dodge Ram Pickup 3500 Quad Cab 2009 1.23% Ferrari FF Coupe 2012 1.07% Chevrolet Silverado 1500 Regular Cab 2012 0.97% Honda Accord Coupe 2012 0.96% +34 /scratch/Teaching/cars/car_ims/013824.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 1.36% Ford E-Series Wagon Van 2012 1.13% Dodge Caravan Minivan 1997 1.11% Chevrolet Avalanche Crew Cab 2012 1.08% Ford Focus Sedan 2007 1.02% +35 /scratch/Teaching/cars/car_ims/003698.jpg Bugatti Veyron 16.4 Coupe 2009 GMC Savana Van 2012 2.04% Chevrolet Express Cargo Van 2007 1.17% Dodge Sprinter Cargo Van 2009 1.16% Ram C/V Cargo Van Minivan 2012 0.93% Mercedes-Benz Sprinter Van 2012 0.9% +36 /scratch/Teaching/cars/car_ims/007674.jpg Dodge Durango SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.57% Audi A5 Coupe 2012 1.43% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.3% GMC Savana Van 2012 1.29% Honda Accord Sedan 2012 1.22% +37 /scratch/Teaching/cars/car_ims/012705.jpg Land Rover LR2 SUV 2012 Ford E-Series Wagon Van 2012 1.45% Cadillac Escalade EXT Crew Cab 2007 1.41% Ford Expedition EL SUV 2009 1.31% Land Rover Range Rover SUV 2012 1.21% Dodge Ram Pickup 3500 Crew Cab 2010 1.2% +38 /scratch/Teaching/cars/car_ims/007644.jpg Dodge Durango SUV 2012 Bentley Arnage Sedan 2009 3.55% Cadillac Escalade EXT Crew Cab 2007 3.4% Ford F-450 Super Duty Crew Cab 2012 2.82% Land Rover Range Rover SUV 2012 2.74% Ford Expedition EL SUV 2009 2.45% +39 /scratch/Teaching/cars/car_ims/007457.jpg Dodge Dakota Club Cab 2007 Lamborghini Diablo Coupe 2001 4.57% Ferrari 458 Italia Convertible 2012 3.71% Aston Martin Virage Coupe 2012 3.65% McLaren MP4-12C Coupe 2012 3.3% Ferrari 458 Italia Coupe 2012 3.23% +40 /scratch/Teaching/cars/car_ims/005424.jpg Chevrolet Malibu Hybrid Sedan 2010 Mercedes-Benz 300-Class Convertible 1993 1.92% Mercedes-Benz E-Class Sedan 2012 1.62% AM General Hummer SUV 2000 1.55% Fisker Karma Sedan 2012 1.51% Ford GT Coupe 2006 1.45% +41 /scratch/Teaching/cars/car_ims/003712.jpg Bugatti Veyron 16.4 Coupe 2009 Chrysler 300 SRT-8 2010 1.16% Chevrolet Silverado 1500 Regular Cab 2012 1.15% GMC Savana Van 2012 1.13% Chevrolet TrailBlazer SS 2009 1.11% Dodge Ram Pickup 3500 Quad Cab 2009 1.09% +42 /scratch/Teaching/cars/car_ims/007814.jpg Dodge Charger Sedan 2012 Aston Martin Virage Coupe 2012 4.98% Chevrolet Corvette Convertible 2012 4.46% McLaren MP4-12C Coupe 2012 4.16% Ferrari 458 Italia Convertible 2012 3.78% Ferrari California Convertible 2012 3.34% +43 /scratch/Teaching/cars/car_ims/015765.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 1.09% Dodge Ram Pickup 3500 Quad Cab 2009 1.06% Chevrolet Silverado 2500HD Regular Cab 2012 1.03% Chevrolet Silverado 1500 Regular Cab 2012 0.98% Honda Accord Sedan 2012 0.98% +44 /scratch/Teaching/cars/car_ims/012091.jpg Jeep Liberty SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.07% Chevrolet Silverado 2500HD Regular Cab 2012 1.65% Chevrolet Silverado 1500 Regular Cab 2012 1.43% Chevrolet TrailBlazer SS 2009 1.36% Chrysler 300 SRT-8 2010 1.35% +45 /scratch/Teaching/cars/car_ims/015546.jpg Toyota 4Runner SUV 2012 GMC Savana Van 2012 1.23% Ford E-Series Wagon Van 2012 1.18% Dodge Caravan Minivan 1997 1.09% Hyundai Santa Fe SUV 2012 1.07% Hyundai Tucson SUV 2012 1.01% +46 /scratch/Teaching/cars/car_ims/012984.jpg Maybach Landaulet Convertible 2012 GMC Savana Van 2012 1.56% Dodge Ram Pickup 3500 Quad Cab 2009 1.1% Chevrolet Silverado 1500 Regular Cab 2012 1.02% Chevrolet Express Cargo Van 2007 0.88% Volkswagen Golf Hatchback 1991 0.87% +47 /scratch/Teaching/cars/car_ims/007744.jpg Dodge Durango SUV 2007 Dodge Caravan Minivan 1997 1.1% Daewoo Nubira Wagon 2002 1.05% Chrysler PT Cruiser Convertible 2008 1.02% Mercedes-Benz S-Class Sedan 2012 0.99% Ford E-Series Wagon Van 2012 0.98% +48 /scratch/Teaching/cars/car_ims/001459.jpg Audi 100 Wagon 1994 Mercedes-Benz S-Class Sedan 2012 2.5% MINI Cooper Roadster Convertible 2012 1.85% Mercedes-Benz Sprinter Van 2012 1.6% Mercedes-Benz E-Class Sedan 2012 1.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.21% +49 /scratch/Teaching/cars/car_ims/004803.jpg Chevrolet Camaro Convertible 2012 AM General Hummer SUV 2000 2.52% Aston Martin Virage Coupe 2012 2.45% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.18% McLaren MP4-12C Coupe 2012 2.06% Ferrari 458 Italia Coupe 2012 2.03% +50 /scratch/Teaching/cars/car_ims/013803.jpg Nissan Leaf Hatchback 2012 Ford E-Series Wagon Van 2012 1.55% BMW X5 SUV 2007 1.28% Dodge Caravan Minivan 1997 1.17% Mercedes-Benz S-Class Sedan 2012 1.11% Mercedes-Benz Sprinter Van 2012 1.08% +51 /scratch/Teaching/cars/car_ims/009797.jpg GMC Yukon Hybrid SUV 2012 Bentley Arnage Sedan 2009 2.48% Land Rover Range Rover SUV 2012 1.63% FIAT 500 Abarth 2012 1.43% Ford Expedition EL SUV 2009 1.4% Hyundai Genesis Sedan 2012 1.37% +52 /scratch/Teaching/cars/car_ims/014728.jpg Spyker C8 Convertible 2009 Mercedes-Benz E-Class Sedan 2012 2.33% Fisker Karma Sedan 2012 2.21% Mercedes-Benz 300-Class Convertible 1993 1.82% Bugatti Veyron 16.4 Coupe 2009 1.78% Chevrolet Corvette ZR1 2012 1.44% +53 /scratch/Teaching/cars/car_ims/007389.jpg Dodge Dakota Club Cab 2007 Hyundai Azera Sedan 2012 1.23% Hyundai Genesis Sedan 2012 1.17% Bentley Arnage Sedan 2009 1.08% Cadillac SRX SUV 2012 0.99% Dodge Challenger SRT8 2011 0.99% +54 /scratch/Teaching/cars/car_ims/011599.jpg Infiniti G Coupe IPL 2012 GMC Savana Van 2012 0.98% Chevrolet Silverado 1500 Regular Cab 2012 0.91% GMC Acadia SUV 2012 0.9% Chrysler 300 SRT-8 2010 0.9% Jeep Grand Cherokee SUV 2012 0.9% +55 /scratch/Teaching/cars/car_ims/006305.jpg Chrysler Town and Country Minivan 2012 Bentley Arnage Sedan 2009 2.64% Land Rover Range Rover SUV 2012 2.04% Cadillac Escalade EXT Crew Cab 2007 1.77% Ford Expedition EL SUV 2009 1.46% Cadillac SRX SUV 2012 1.44% +56 /scratch/Teaching/cars/car_ims/010055.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.73% Dodge Caliber Wagon 2007 1.07% Chevrolet Silverado 1500 Regular Cab 2012 1.05% Jeep Liberty SUV 2012 0.96% Volkswagen Golf Hatchback 1991 0.95% +57 /scratch/Teaching/cars/car_ims/014172.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.15% Chevrolet Silverado 1500 Extended Cab 2012 1.05% Chevrolet TrailBlazer SS 2009 1.03% +58 /scratch/Teaching/cars/car_ims/004832.jpg Chevrolet HHR SS 2010 McLaren MP4-12C Coupe 2012 2.79% Aston Martin Virage Coupe 2012 2.77% Ferrari 458 Italia Convertible 2012 2.37% Ferrari California Convertible 2012 2.36% Lamborghini Diablo Coupe 2001 2.29% +59 /scratch/Teaching/cars/car_ims/001935.jpg Audi S4 Sedan 2007 BMW 1 Series Coupe 2012 2.16% Dodge Caliber Wagon 2007 2.02% Ferrari FF Coupe 2012 1.71% GMC Savana Van 2012 1.54% Suzuki SX4 Hatchback 2012 1.48% +60 /scratch/Teaching/cars/car_ims/014928.jpg Suzuki Kizashi Sedan 2012 MINI Cooper Roadster Convertible 2012 1.72% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% Mercedes-Benz S-Class Sedan 2012 1.43% Rolls-Royce Phantom Sedan 2012 1.21% Mercedes-Benz E-Class Sedan 2012 1.16% +61 /scratch/Teaching/cars/car_ims/008224.jpg Ferrari FF Coupe 2012 Ford E-Series Wagon Van 2012 2.13% Dodge Caravan Minivan 1997 1.44% Dodge Challenger SRT8 2011 1.34% Chrysler Aspen SUV 2009 1.28% Isuzu Ascender SUV 2008 1.25% +62 /scratch/Teaching/cars/car_ims/005419.jpg Chevrolet Malibu Hybrid Sedan 2010 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.13% AM General Hummer SUV 2000 2.11% Dodge Caliber Wagon 2007 1.89% Audi TT RS Coupe 2012 1.82% HUMMER H2 SUT Crew Cab 2009 1.67% +63 /scratch/Teaching/cars/car_ims/000617.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 3.08% Land Rover Range Rover SUV 2012 1.59% FIAT 500 Abarth 2012 1.57% Chevrolet TrailBlazer SS 2009 1.54% Cadillac Escalade EXT Crew Cab 2007 1.43% +64 /scratch/Teaching/cars/car_ims/004587.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Mercedes-Benz E-Class Sedan 2012 3.04% Fisker Karma Sedan 2012 2.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.4% MINI Cooper Roadster Convertible 2012 2.28% Mercedes-Benz S-Class Sedan 2012 1.82% +65 /scratch/Teaching/cars/car_ims/014717.jpg Spyker C8 Convertible 2009 Aston Martin Virage Coupe 2012 4.41% Chevrolet Corvette Convertible 2012 3.6% AM General Hummer SUV 2000 3.21% Ferrari 458 Italia Coupe 2012 2.96% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.89% +66 /scratch/Teaching/cars/car_ims/014933.jpg Suzuki Kizashi Sedan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.14% Ford F-450 Super Duty Crew Cab 2012 1.1% Chrysler 300 SRT-8 2010 1.09% Mercedes-Benz C-Class Sedan 2012 1.05% Chevrolet Silverado 2500HD Regular Cab 2012 1.05% +67 /scratch/Teaching/cars/car_ims/015065.jpg Suzuki SX4 Hatchback 2012 Hyundai Genesis Sedan 2012 0.99% Dodge Ram Pickup 3500 Crew Cab 2010 0.92% Ford Expedition EL SUV 2009 0.91% Chrysler 300 SRT-8 2010 0.88% Land Rover Range Rover SUV 2012 0.87% +68 /scratch/Teaching/cars/car_ims/002362.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 1.58% HUMMER H2 SUT Crew Cab 2009 1.43% Chevrolet TrailBlazer SS 2009 1.31% Jeep Liberty SUV 2012 1.15% Cadillac Escalade EXT Crew Cab 2007 1.14% +69 /scratch/Teaching/cars/car_ims/001718.jpg Audi S5 Convertible 2012 Audi A5 Coupe 2012 1.52% Chevrolet Silverado 2500HD Regular Cab 2012 1.26% Mercedes-Benz Sprinter Van 2012 1.24% GMC Savana Van 2012 1.23% Dodge Sprinter Cargo Van 2009 1.18% +70 /scratch/Teaching/cars/car_ims/007698.jpg Dodge Durango SUV 2012 MINI Cooper Roadster Convertible 2012 3.33% Mercedes-Benz S-Class Sedan 2012 2.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.8% Mercedes-Benz Sprinter Van 2012 1.48% Mercedes-Benz E-Class Sedan 2012 1.32% +71 /scratch/Teaching/cars/car_ims/006352.jpg Chrysler 300 SRT-8 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.11% Cadillac Escalade EXT Crew Cab 2007 1.98% Chevrolet TrailBlazer SS 2009 1.93% Chrysler 300 SRT-8 2010 1.76% Ford Expedition EL SUV 2009 1.53% +72 /scratch/Teaching/cars/car_ims/008545.jpg Fisker Karma Sedan 2012 Chevrolet TrailBlazer SS 2009 2.14% Cadillac Escalade EXT Crew Cab 2007 2.0% Chrysler 300 SRT-8 2010 1.69% HUMMER H2 SUT Crew Cab 2009 1.67% Bentley Arnage Sedan 2009 1.65% +73 /scratch/Teaching/cars/car_ims/000555.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 1.99% Ram C/V Cargo Van Minivan 2012 1.33% Lincoln Town Car Sedan 2011 1.19% Dodge Sprinter Cargo Van 2009 1.15% Ferrari FF Coupe 2012 0.94% +74 /scratch/Teaching/cars/car_ims/010155.jpg Geo Metro Convertible 1993 GMC Savana Van 2012 1.57% Lincoln Town Car Sedan 2011 0.94% Chevrolet Express Cargo Van 2007 0.94% Ferrari FF Coupe 2012 0.86% Chevrolet Express Van 2007 0.86% +75 /scratch/Teaching/cars/car_ims/006070.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 2.05% Cadillac Escalade EXT Crew Cab 2007 1.84% BMW X5 SUV 2007 1.71% Hyundai Santa Fe SUV 2012 1.68% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.63% +76 /scratch/Teaching/cars/car_ims/010758.jpg Hyundai Santa Fe SUV 2012 Mercedes-Benz S-Class Sedan 2012 2.18% Mercedes-Benz Sprinter Van 2012 1.6% Acura TL Sedan 2012 1.29% Dodge Sprinter Cargo Van 2009 1.26% MINI Cooper Roadster Convertible 2012 1.23% +77 /scratch/Teaching/cars/car_ims/014203.jpg Porsche Panamera Sedan 2012 Bentley Arnage Sedan 2009 2.5% FIAT 500 Abarth 2012 1.32% Bugatti Veyron 16.4 Coupe 2009 1.27% Mercedes-Benz C-Class Sedan 2012 1.24% Bentley Mulsanne Sedan 2011 1.21% +78 /scratch/Teaching/cars/car_ims/006788.jpg Dodge Caliber Wagon 2012 Ferrari 458 Italia Convertible 2012 3.15% Ferrari 458 Italia Coupe 2012 2.82% Aston Martin Virage Coupe 2012 2.72% Chevrolet Corvette Convertible 2012 2.54% McLaren MP4-12C Coupe 2012 2.37% +79 /scratch/Teaching/cars/car_ims/005775.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Caliber Wagon 2007 3.24% BMW 1 Series Coupe 2012 3.08% Hyundai Elantra Sedan 2007 2.02% Hyundai Veloster Hatchback 2012 1.99% Volvo C30 Hatchback 2012 1.89% +80 /scratch/Teaching/cars/car_ims/013231.jpg Mercedes-Benz 300-Class Convertible 1993 GMC Savana Van 2012 1.78% Chevrolet Express Cargo Van 2007 1.04% Chevrolet Traverse SUV 2012 0.86% Lincoln Town Car Sedan 2011 0.85% Chevrolet Express Van 2007 0.84% +81 /scratch/Teaching/cars/car_ims/006212.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 2.55% Dodge Caravan Minivan 1997 1.54% Ram C/V Cargo Van Minivan 2012 1.53% Daewoo Nubira Wagon 2002 1.36% Lincoln Town Car Sedan 2011 1.32% +82 /scratch/Teaching/cars/car_ims/003269.jpg Bentley Mulsanne Sedan 2011 Chevrolet Silverado 2500HD Regular Cab 2012 1.36% Isuzu Ascender SUV 2008 1.34% Audi A5 Coupe 2012 1.29% GMC Savana Van 2012 1.25% BMW X5 SUV 2007 1.22% +83 /scratch/Teaching/cars/car_ims/000569.jpg Acura ZDX Hatchback 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.89% Chevrolet TrailBlazer SS 2009 1.87% Chrysler 300 SRT-8 2010 1.47% Cadillac Escalade EXT Crew Cab 2007 1.47% Chevrolet Silverado 1500 Regular Cab 2012 1.37% +84 /scratch/Teaching/cars/car_ims/013843.jpg Nissan NV Passenger Van 2012 Ford GT Coupe 2006 1.9% Spyker C8 Coupe 2009 1.41% Chevrolet HHR SS 2010 1.35% Dodge Caliber Wagon 2007 1.33% Geo Metro Convertible 1993 1.32% +85 /scratch/Teaching/cars/car_ims/002828.jpg BMW M5 Sedan 2010 Mercedes-Benz S-Class Sedan 2012 1.68% Mercedes-Benz Sprinter Van 2012 1.44% MINI Cooper Roadster Convertible 2012 1.2% Audi A5 Coupe 2012 1.07% BMW X3 SUV 2012 1.07% +86 /scratch/Teaching/cars/car_ims/015020.jpg Suzuki SX4 Hatchback 2012 GMC Savana Van 2012 1.51% Audi A5 Coupe 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.3% BMW X5 SUV 2007 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% +87 /scratch/Teaching/cars/car_ims/007528.jpg Dodge Magnum Wagon 2008 Bentley Arnage Sedan 2009 2.21% Ford Expedition EL SUV 2009 1.71% Land Rover Range Rover SUV 2012 1.67% Cadillac Escalade EXT Crew Cab 2007 1.65% Hyundai Genesis Sedan 2012 1.62% +88 /scratch/Teaching/cars/car_ims/001985.jpg Audi TT RS Coupe 2012 Mercedes-Benz Sprinter Van 2012 1.7% Dodge Sprinter Cargo Van 2009 1.66% Mercedes-Benz S-Class Sedan 2012 1.64% GMC Savana Van 2012 1.45% Audi A5 Coupe 2012 1.4% +89 /scratch/Teaching/cars/car_ims/002403.jpg BMW 3 Series Wagon 2012 AM General Hummer SUV 2000 1.61% HUMMER H2 SUT Crew Cab 2009 1.56% Dodge Caliber Wagon 2007 1.46% HUMMER H3T Crew Cab 2010 1.42% Bugatti Veyron 16.4 Coupe 2009 1.39% +90 /scratch/Teaching/cars/car_ims/014148.jpg Plymouth Neon Coupe 1999 Bugatti Veyron 16.4 Coupe 2009 1.05% Bentley Mulsanne Sedan 2011 0.94% Hyundai Genesis Sedan 2012 0.9% Fisker Karma Sedan 2012 0.89% Mercedes-Benz 300-Class Convertible 1993 0.89% +91 /scratch/Teaching/cars/car_ims/004645.jpg Chevrolet Traverse SUV 2012 Ferrari FF Coupe 2012 2.14% Geo Metro Convertible 1993 1.88% Ford GT Coupe 2006 1.71% BMW M3 Coupe 2012 1.63% Lamborghini Diablo Coupe 2001 1.53% +92 /scratch/Teaching/cars/car_ims/007318.jpg Dodge Dakota Crew Cab 2010 Plymouth Neon Coupe 1999 1.46% GMC Savana Van 2012 1.33% Dodge Ram Pickup 3500 Crew Cab 2010 1.32% Jeep Liberty SUV 2012 1.31% Ford Expedition EL SUV 2009 1.28% +93 /scratch/Teaching/cars/car_ims/001070.jpg Audi TTS Coupe 2012 Bentley Arnage Sedan 2009 2.86% Cadillac Escalade EXT Crew Cab 2007 2.54% Land Rover Range Rover SUV 2012 2.15% Chevrolet TrailBlazer SS 2009 2.06% Ford F-450 Super Duty Crew Cab 2012 1.86% +94 /scratch/Teaching/cars/car_ims/004489.jpg Chevrolet Corvette ZR1 2012 Bentley Arnage Sedan 2009 2.2% FIAT 500 Abarth 2012 1.49% Chevrolet TrailBlazer SS 2009 1.33% Jeep Patriot SUV 2012 1.29% Land Rover Range Rover SUV 2012 1.09% +95 /scratch/Teaching/cars/car_ims/013414.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 1.53% HUMMER H2 SUT Crew Cab 2009 1.51% Bugatti Veyron 16.4 Coupe 2009 1.25% FIAT 500 Abarth 2012 1.18% HUMMER H3T Crew Cab 2010 1.08% +96 /scratch/Teaching/cars/car_ims/008628.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.91% Chevrolet TrailBlazer SS 2009 1.76% Chrysler 300 SRT-8 2010 1.66% HUMMER H2 SUT Crew Cab 2009 1.59% Dodge Ram Pickup 3500 Quad Cab 2009 1.26% +97 /scratch/Teaching/cars/car_ims/012921.jpg MINI Cooper Roadster Convertible 2012 Ford E-Series Wagon Van 2012 1.65% Audi S6 Sedan 2011 1.27% BMW X5 SUV 2007 1.2% Hyundai Santa Fe SUV 2012 1.15% Mercedes-Benz S-Class Sedan 2012 1.15% +98 /scratch/Teaching/cars/car_ims/005304.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette Convertible 2012 5.98% Aston Martin Virage Coupe 2012 5.93% Ferrari 458 Italia Convertible 2012 5.83% McLaren MP4-12C Coupe 2012 4.95% Ferrari 458 Italia Coupe 2012 4.49% +99 /scratch/Teaching/cars/car_ims/000951.jpg Audi RS 4 Convertible 2008 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.05% Chevrolet TrailBlazer SS 2009 1.76% Chrysler 300 SRT-8 2010 1.63% HUMMER H2 SUT Crew Cab 2009 1.55% Cadillac Escalade EXT Crew Cab 2007 1.45% +100 /scratch/Teaching/cars/car_ims/006517.jpg Chrysler Crossfire Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.22% FIAT 500 Convertible 2012 1.85% Mercedes-Benz S-Class Sedan 2012 1.71% MINI Cooper Roadster Convertible 2012 1.54% Maybach Landaulet Convertible 2012 1.37% +101 /scratch/Teaching/cars/car_ims/007067.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.05% Cadillac Escalade EXT Crew Cab 2007 1.97% Chevrolet TrailBlazer SS 2009 1.58% Dodge Ram Pickup 3500 Crew Cab 2010 1.54% Chrysler 300 SRT-8 2010 1.52% +102 /scratch/Teaching/cars/car_ims/013445.jpg Mercedes-Benz E-Class Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.01% FIAT 500 Convertible 2012 1.92% Mercedes-Benz S-Class Sedan 2012 1.81% Bugatti Veyron 16.4 Convertible 2009 1.36% Dodge Sprinter Cargo Van 2009 1.35% +103 /scratch/Teaching/cars/car_ims/005331.jpg Chevrolet Cobalt SS 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.62% Chevrolet Silverado 2500HD Regular Cab 2012 1.36% Chevrolet Silverado 1500 Regular Cab 2012 1.26% Chevrolet Silverado 1500 Extended Cab 2012 1.26% Chrysler 300 SRT-8 2010 1.21% +104 /scratch/Teaching/cars/car_ims/005569.jpg Chevrolet Silverado 2500HD Regular Cab 2012 HUMMER H2 SUT Crew Cab 2009 3.94% Jeep Wrangler SUV 2012 3.44% AM General Hummer SUV 2000 2.81% HUMMER H3T Crew Cab 2010 2.8% Dodge Caliber Wagon 2007 2.36% +105 /scratch/Teaching/cars/car_ims/011571.jpg Infiniti G Coupe IPL 2012 Bentley Mulsanne Sedan 2011 1.43% Mercedes-Benz C-Class Sedan 2012 1.37% Audi S5 Convertible 2012 1.3% Mercedes-Benz SL-Class Coupe 2009 1.29% Bugatti Veyron 16.4 Coupe 2009 1.28% +106 /scratch/Teaching/cars/car_ims/015756.jpg Volkswagen Golf Hatchback 1991 Chevrolet Silverado 2500HD Regular Cab 2012 1.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.28% Ford F-450 Super Duty Crew Cab 2012 1.15% GMC Acadia SUV 2012 1.1% Chevrolet Silverado 1500 Regular Cab 2012 1.1% +107 /scratch/Teaching/cars/car_ims/001231.jpg Audi V8 Sedan 1994 Bentley Arnage Sedan 2009 3.38% Hyundai Genesis Sedan 2012 1.59% FIAT 500 Abarth 2012 1.54% Land Rover Range Rover SUV 2012 1.52% Mercedes-Benz C-Class Sedan 2012 1.49% +108 /scratch/Teaching/cars/car_ims/004435.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% FIAT 500 Convertible 2012 1.4% Mercedes-Benz S-Class Sedan 2012 1.33% MINI Cooper Roadster Convertible 2012 1.28% Bugatti Veyron 16.4 Convertible 2009 1.14% +109 /scratch/Teaching/cars/car_ims/006110.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 2500HD Regular Cab 2012 1.62% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.51% Ford F-450 Super Duty Crew Cab 2012 1.48% BMW X5 SUV 2007 1.38% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.38% +110 /scratch/Teaching/cars/car_ims/012879.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 2.8% Mercedes-Benz S-Class Sedan 2012 1.72% Hyundai Genesis Sedan 2012 1.53% Mercedes-Benz E-Class Sedan 2012 1.5% Bentley Mulsanne Sedan 2011 1.3% +111 /scratch/Teaching/cars/car_ims/015062.jpg Suzuki SX4 Hatchback 2012 Chevrolet Corvette Convertible 2012 2.87% Aston Martin Virage Coupe 2012 2.83% Ferrari 458 Italia Coupe 2012 2.67% BMW 1 Series Coupe 2012 2.66% Ferrari 458 Italia Convertible 2012 2.49% +112 /scratch/Teaching/cars/car_ims/009405.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 1.9% Dodge Caravan Minivan 1997 1.44% Ram C/V Cargo Van Minivan 2012 1.35% Lincoln Town Car Sedan 2011 1.2% Honda Odyssey Minivan 2007 1.19% +113 /scratch/Teaching/cars/car_ims/012882.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.21% Ram C/V Cargo Van Minivan 2012 1.17% MINI Cooper Roadster Convertible 2012 1.15% Mercedes-Benz Sprinter Van 2012 1.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.99% +114 /scratch/Teaching/cars/car_ims/010887.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 1.74% Dodge Caravan Minivan 1997 1.22% Daewoo Nubira Wagon 2002 1.19% Plymouth Neon Coupe 1999 0.96% Ford Focus Sedan 2007 0.96% +115 /scratch/Teaching/cars/car_ims/000441.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 20.92% Acura Integra Type R 2001 7.95% McLaren MP4-12C Coupe 2012 7.71% Aston Martin Virage Coupe 2012 7.4% Chevrolet Corvette Convertible 2012 6.31% +116 /scratch/Teaching/cars/car_ims/010536.jpg Honda Accord Coupe 2012 Hyundai Genesis Sedan 2012 1.39% Rolls-Royce Phantom Sedan 2012 1.38% MINI Cooper Roadster Convertible 2012 1.13% Hyundai Azera Sedan 2012 1.05% Dodge Challenger SRT8 2011 0.98% +117 /scratch/Teaching/cars/car_ims/013656.jpg Mercedes-Benz Sprinter Van 2012 Ram C/V Cargo Van Minivan 2012 1.74% GMC Savana Van 2012 1.55% Lincoln Town Car Sedan 2011 1.21% Dodge Sprinter Cargo Van 2009 1.09% Honda Odyssey Minivan 2007 1.01% +118 /scratch/Teaching/cars/car_ims/009218.jpg Ford F-150 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.98% Ford F-450 Super Duty Crew Cab 2012 1.64% Dodge Ram Pickup 3500 Crew Cab 2010 1.48% Land Rover Range Rover SUV 2012 1.48% Hyundai Santa Fe SUV 2012 1.44% +119 /scratch/Teaching/cars/car_ims/015198.jpg Tesla Model S Sedan 2012 Daewoo Nubira Wagon 2002 1.21% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.18% Bentley Continental Supersports Conv. Convertible 2012 1.08% Chrysler PT Cruiser Convertible 2008 1.05% Dodge Caravan Minivan 1997 1.04% +120 /scratch/Teaching/cars/car_ims/008421.jpg Ferrari 458 Italia Coupe 2012 Bentley Arnage Sedan 2009 4.22% FIAT 500 Abarth 2012 1.99% Hyundai Genesis Sedan 2012 1.61% Mercedes-Benz C-Class Sedan 2012 1.6% Bentley Mulsanne Sedan 2011 1.54% +121 /scratch/Teaching/cars/car_ims/013496.jpg Mercedes-Benz S-Class Sedan 2012 FIAT 500 Convertible 2012 4.71% Nissan Leaf Hatchback 2012 2.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.14% Daewoo Nubira Wagon 2002 2.0% Maybach Landaulet Convertible 2012 1.89% +122 /scratch/Teaching/cars/car_ims/009437.jpg Ford Focus Sedan 2007 Chevrolet TrailBlazer SS 2009 1.73% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.55% HUMMER H2 SUT Crew Cab 2009 1.54% Cadillac Escalade EXT Crew Cab 2007 1.34% Chevrolet Silverado 1500 Regular Cab 2012 1.32% +123 /scratch/Teaching/cars/car_ims/012516.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Lamborghini Diablo Coupe 2001 3.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.59% McLaren MP4-12C Coupe 2012 3.05% Ferrari 458 Italia Convertible 2012 2.98% Ferrari 458 Italia Coupe 2012 2.7% +124 /scratch/Teaching/cars/car_ims/015679.jpg Volkswagen Golf Hatchback 1991 Mercedes-Benz S-Class Sedan 2012 1.32% MINI Cooper Roadster Convertible 2012 1.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.99% Mercedes-Benz E-Class Sedan 2012 0.93% Mercedes-Benz Sprinter Van 2012 0.88% +125 /scratch/Teaching/cars/car_ims/002639.jpg BMW X6 SUV 2012 AM General Hummer SUV 2000 1.37% Dodge Caliber Wagon 2007 1.27% HUMMER H2 SUT Crew Cab 2009 1.25% Bugatti Veyron 16.4 Coupe 2009 1.22% HUMMER H3T Crew Cab 2010 1.18% +126 /scratch/Teaching/cars/car_ims/008918.jpg Ford Expedition EL SUV 2009 Bentley Arnage Sedan 2009 4.45% Land Rover Range Rover SUV 2012 2.78% Cadillac Escalade EXT Crew Cab 2007 2.12% Ford F-450 Super Duty Crew Cab 2012 2.07% Ford Expedition EL SUV 2009 1.99% +127 /scratch/Teaching/cars/car_ims/004135.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 2.25% Dodge Caravan Minivan 1997 1.05% Lincoln Town Car Sedan 2011 1.01% Ram C/V Cargo Van Minivan 2012 0.99% Chevrolet Avalanche Crew Cab 2012 0.98% +128 /scratch/Teaching/cars/car_ims/008676.jpg Ford Mustang Convertible 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.18% GMC Savana Van 2012 1.17% Chevrolet Silverado 1500 Regular Cab 2012 1.14% Dodge Ram Pickup 3500 Quad Cab 2009 1.1% GMC Acadia SUV 2012 1.04% +129 /scratch/Teaching/cars/car_ims/014637.jpg Scion xD Hatchback 2012 GMC Savana Van 2012 1.98% Ram C/V Cargo Van Minivan 2012 1.76% Daewoo Nubira Wagon 2002 1.5% Hyundai Elantra Sedan 2007 1.44% Lincoln Town Car Sedan 2011 1.31% +130 /scratch/Teaching/cars/car_ims/005759.jpg Chevrolet Monte Carlo Coupe 2007 FIAT 500 Convertible 2012 1.3% Nissan Leaf Hatchback 2012 1.1% Ram C/V Cargo Van Minivan 2012 1.04% Daewoo Nubira Wagon 2002 1.03% Hyundai Elantra Sedan 2007 0.95% +131 /scratch/Teaching/cars/car_ims/001181.jpg Audi R8 Coupe 2012 Hyundai Genesis Sedan 2012 1.25% Ford E-Series Wagon Van 2012 1.23% Dodge Ram Pickup 3500 Crew Cab 2010 1.21% Ford Expedition EL SUV 2009 1.18% Chrysler Aspen SUV 2009 1.13% +132 /scratch/Teaching/cars/car_ims/016126.jpg smart fortwo Convertible 2012 Chevrolet Corvette Convertible 2012 6.57% Lamborghini Diablo Coupe 2001 6.56% Aston Martin Virage Coupe 2012 6.44% McLaren MP4-12C Coupe 2012 5.41% Acura Integra Type R 2001 4.84% +133 /scratch/Teaching/cars/car_ims/016061.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 1.58% Ford Expedition EL SUV 2009 1.4% Hyundai Santa Fe SUV 2012 1.37% Dodge Ram Pickup 3500 Crew Cab 2010 1.31% Ford E-Series Wagon Van 2012 1.31% +134 /scratch/Teaching/cars/car_ims/004335.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 2.62% Chevrolet Silverado 1500 Regular Cab 2012 1.09% Chevrolet Silverado 2500HD Regular Cab 2012 1.01% Honda Accord Sedan 2012 0.99% Chevrolet Express Cargo Van 2007 0.99% +135 /scratch/Teaching/cars/car_ims/006750.jpg Dodge Caliber Wagon 2012 Ford GT Coupe 2006 1.42% Bugatti Veyron 16.4 Coupe 2009 1.38% AM General Hummer SUV 2000 1.33% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.31% Spyker C8 Convertible 2009 1.26% +136 /scratch/Teaching/cars/car_ims/000446.jpg Acura Integra Type R 2001 Chevrolet Corvette Convertible 2012 8.73% Aston Martin Virage Coupe 2012 7.82% AM General Hummer SUV 2000 4.85% Chevrolet Cobalt SS 2010 4.78% McLaren MP4-12C Coupe 2012 4.01% +137 /scratch/Teaching/cars/car_ims/010470.jpg Honda Odyssey Minivan 2007 Cadillac Escalade EXT Crew Cab 2007 1.37% Chevrolet TrailBlazer SS 2009 1.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.27% Chrysler 300 SRT-8 2010 1.22% Dodge Ram Pickup 3500 Crew Cab 2010 1.19% +138 /scratch/Teaching/cars/car_ims/002896.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 1.35% Dodge Sprinter Cargo Van 2009 0.97% Chevrolet Express Cargo Van 2007 0.94% Mercedes-Benz Sprinter Van 2012 0.94% Mercedes-Benz S-Class Sedan 2012 0.86% +139 /scratch/Teaching/cars/car_ims/002910.jpg BMW M6 Convertible 2010 Fisker Karma Sedan 2012 3.12% Mercedes-Benz E-Class Sedan 2012 2.59% Mercedes-Benz 300-Class Convertible 1993 2.39% Chevrolet Corvette ZR1 2012 2.03% Bugatti Veyron 16.4 Coupe 2009 1.71% +140 /scratch/Teaching/cars/car_ims/014739.jpg Spyker C8 Convertible 2009 Dodge Caliber Wagon 2007 1.04% GMC Savana Van 2012 0.94% Volkswagen Golf Hatchback 1991 0.9% Bugatti Veyron 16.4 Coupe 2009 0.89% HUMMER H3T Crew Cab 2010 0.83% +141 /scratch/Teaching/cars/car_ims/011972.jpg Jeep Wrangler SUV 2012 Bentley Arnage Sedan 2009 2.46% Cadillac Escalade EXT Crew Cab 2007 1.85% Chevrolet TrailBlazer SS 2009 1.83% Ford Expedition EL SUV 2009 1.66% Land Rover Range Rover SUV 2012 1.56% +142 /scratch/Teaching/cars/car_ims/015837.jpg Volkswagen Beetle Hatchback 2012 Dodge Caliber Wagon 2007 2.69% BMW 1 Series Coupe 2012 1.91% Suzuki SX4 Hatchback 2012 1.64% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.57% Dodge Charger Sedan 2012 1.43% +143 /scratch/Teaching/cars/car_ims/012094.jpg Jeep Liberty SUV 2012 GMC Savana Van 2012 1.59% Ram C/V Cargo Van Minivan 2012 1.43% Daewoo Nubira Wagon 2002 1.28% Lincoln Town Car Sedan 2011 1.22% Dodge Caravan Minivan 1997 1.06% +144 /scratch/Teaching/cars/car_ims/007379.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 2.23% Ferrari 458 Italia Convertible 2012 2.19% Ferrari California Convertible 2012 2.03% Ferrari 458 Italia Coupe 2012 2.02% Aston Martin Virage Coupe 2012 1.89% +145 /scratch/Teaching/cars/car_ims/012130.jpg Jeep Grand Cherokee SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.87% Chevrolet TrailBlazer SS 2009 1.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.5% Dodge Ram Pickup 3500 Crew Cab 2010 1.44% Chevrolet Avalanche Crew Cab 2012 1.35% +146 /scratch/Teaching/cars/car_ims/003988.jpg Buick Enclave SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.84% Bentley Arnage Sedan 2009 1.54% HUMMER H2 SUT Crew Cab 2009 1.46% AM General Hummer SUV 2000 1.34% Spyker C8 Convertible 2009 1.24% +147 /scratch/Teaching/cars/car_ims/009771.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.47% Cadillac Escalade EXT Crew Cab 2007 1.43% Chevrolet Avalanche Crew Cab 2012 1.33% Ford F-150 Regular Cab 2012 1.26% +148 /scratch/Teaching/cars/car_ims/007198.jpg Dodge Sprinter Cargo Van 2009 AM General Hummer SUV 2000 2.93% HUMMER H2 SUT Crew Cab 2009 2.88% HUMMER H3T Crew Cab 2010 2.24% Jeep Wrangler SUV 2012 1.87% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.82% +149 /scratch/Teaching/cars/car_ims/015552.jpg Toyota 4Runner SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.35% GMC Acadia SUV 2012 1.25% Ford F-450 Super Duty Crew Cab 2012 1.23% BMW X5 SUV 2007 1.21% Chrysler 300 SRT-8 2010 1.17% +150 /scratch/Teaching/cars/car_ims/010126.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 8.1% Ferrari 458 Italia Convertible 2012 5.19% McLaren MP4-12C Coupe 2012 4.24% Acura Integra Type R 2001 4.12% Ferrari California Convertible 2012 4.07% +151 /scratch/Teaching/cars/car_ims/006590.jpg Chrysler PT Cruiser Convertible 2008 FIAT 500 Convertible 2012 1.68% Ferrari FF Coupe 2012 1.39% Nissan Leaf Hatchback 2012 1.22% Geo Metro Convertible 1993 1.15% Ford GT Coupe 2006 1.14% +152 /scratch/Teaching/cars/car_ims/001275.jpg Audi V8 Sedan 1994 Cadillac Escalade EXT Crew Cab 2007 2.16% Ford F-450 Super Duty Crew Cab 2012 1.71% Hyundai Santa Fe SUV 2012 1.68% Ford Expedition EL SUV 2009 1.62% Land Rover Range Rover SUV 2012 1.55% +153 /scratch/Teaching/cars/car_ims/006732.jpg Dodge Caliber Wagon 2012 Chevrolet TrailBlazer SS 2009 2.07% Cadillac Escalade EXT Crew Cab 2007 1.97% Ford Expedition EL SUV 2009 1.82% Dodge Ram Pickup 3500 Crew Cab 2010 1.62% Chrysler 300 SRT-8 2010 1.4% +154 /scratch/Teaching/cars/car_ims/006313.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 2.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.16% Mercedes-Benz E-Class Sedan 2012 1.91% Fisker Karma Sedan 2012 1.76% Mercedes-Benz S-Class Sedan 2012 1.62% +155 /scratch/Teaching/cars/car_ims/006413.jpg Chrysler 300 SRT-8 2010 Ram C/V Cargo Van Minivan 2012 1.05% Daewoo Nubira Wagon 2002 1.02% FIAT 500 Convertible 2012 0.99% Nissan Leaf Hatchback 2012 0.95% Lincoln Town Car Sedan 2011 0.9% +156 /scratch/Teaching/cars/car_ims/002546.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 2.59% Bugatti Veyron 16.4 Coupe 2009 1.78% Bentley Mulsanne Sedan 2011 1.59% FIAT 500 Abarth 2012 1.46% Mercedes-Benz C-Class Sedan 2012 1.43% +157 /scratch/Teaching/cars/car_ims/003794.jpg Buick Regal GS 2012 Mercedes-Benz S-Class Sedan 2012 1.77% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% MINI Cooper Roadster Convertible 2012 1.54% Mercedes-Benz E-Class Sedan 2012 1.5% Fisker Karma Sedan 2012 1.3% +158 /scratch/Teaching/cars/car_ims/004370.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford Expedition EL SUV 2009 2.11% Dodge Ram Pickup 3500 Crew Cab 2010 1.66% Isuzu Ascender SUV 2008 1.61% Ford E-Series Wagon Van 2012 1.55% Cadillac Escalade EXT Crew Cab 2007 1.41% +159 /scratch/Teaching/cars/car_ims/012547.jpg Lamborghini Diablo Coupe 2001 Ferrari FF Coupe 2012 3.92% Ferrari 458 Italia Convertible 2012 3.55% Ferrari California Convertible 2012 2.89% McLaren MP4-12C Coupe 2012 2.81% Chevrolet Cobalt SS 2010 2.64% +160 /scratch/Teaching/cars/car_ims/003093.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 3.9% Ferrari California Convertible 2012 3.14% AM General Hummer SUV 2000 3.01% Ferrari 458 Italia Coupe 2012 2.94% Ferrari 458 Italia Convertible 2012 2.8% +161 /scratch/Teaching/cars/car_ims/011134.jpg Hyundai Elantra Sedan 2007 Mercedes-Benz S-Class Sedan 2012 1.54% Mercedes-Benz Sprinter Van 2012 1.35% MINI Cooper Roadster Convertible 2012 1.18% BMW X3 SUV 2012 0.97% Suzuki SX4 Sedan 2012 0.96% +162 /scratch/Teaching/cars/car_ims/000466.jpg Acura Integra Type R 2001 FIAT 500 Convertible 2012 4.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.6% Nissan Leaf Hatchback 2012 2.27% Maybach Landaulet Convertible 2012 1.86% Bugatti Veyron 16.4 Convertible 2009 1.56% +163 /scratch/Teaching/cars/car_ims/004251.jpg Cadillac Escalade EXT Crew Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.6% Land Rover Range Rover SUV 2012 1.89% Ford F-450 Super Duty Crew Cab 2012 1.87% Hyundai Santa Fe SUV 2012 1.74% Bentley Arnage Sedan 2009 1.73% +164 /scratch/Teaching/cars/car_ims/012043.jpg Jeep Liberty SUV 2012 Chevrolet TrailBlazer SS 2009 1.78% Bentley Arnage Sedan 2009 1.45% Jeep Patriot SUV 2012 1.33% HUMMER H2 SUT Crew Cab 2009 1.26% Jeep Liberty SUV 2012 1.26% +165 /scratch/Teaching/cars/car_ims/013956.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 1.9% Ferrari FF Coupe 2012 1.3% BMW 1 Series Coupe 2012 1.14% Hyundai Elantra Sedan 2007 1.11% BMW M3 Coupe 2012 0.95% +166 /scratch/Teaching/cars/car_ims/011227.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 1.17% Dodge Caravan Minivan 1997 1.06% Daewoo Nubira Wagon 2002 1.02% Ford E-Series Wagon Van 2012 0.91% Lincoln Town Car Sedan 2011 0.87% +167 /scratch/Teaching/cars/car_ims/009636.jpg GMC Terrain SUV 2012 Jeep Wrangler SUV 2012 2.3% HUMMER H2 SUT Crew Cab 2009 2.05% AM General Hummer SUV 2000 1.63% HUMMER H3T Crew Cab 2010 1.54% Dodge Caliber Wagon 2007 1.49% +168 /scratch/Teaching/cars/car_ims/001345.jpg Audi 100 Sedan 1994 Bentley Arnage Sedan 2009 1.64% Chevrolet TrailBlazer SS 2009 1.54% HUMMER H2 SUT Crew Cab 2009 1.46% Chrysler 300 SRT-8 2010 1.34% Cadillac Escalade EXT Crew Cab 2007 1.32% +169 /scratch/Teaching/cars/car_ims/006159.jpg Chrysler Aspen SUV 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.3% Chevrolet Silverado 2500HD Regular Cab 2012 1.29% Dodge Ram Pickup 3500 Quad Cab 2009 1.21% GMC Savana Van 2012 1.2% Chevrolet Silverado 1500 Regular Cab 2012 1.18% +170 /scratch/Teaching/cars/car_ims/014729.jpg Spyker C8 Convertible 2009 Mercedes-Benz S-Class Sedan 2012 1.65% Ram C/V Cargo Van Minivan 2012 1.58% Dodge Sprinter Cargo Van 2009 1.56% Mercedes-Benz Sprinter Van 2012 1.45% BMW ActiveHybrid 5 Sedan 2012 1.28% +171 /scratch/Teaching/cars/car_ims/003356.jpg Bentley Continental GT Coupe 2012 Aston Martin Virage Coupe 2012 3.36% Ferrari 458 Italia Convertible 2012 2.95% McLaren MP4-12C Coupe 2012 2.86% Chevrolet Corvette Convertible 2012 2.77% Ferrari California Convertible 2012 2.75% +172 /scratch/Teaching/cars/car_ims/000255.jpg Acura TL Type-S 2008 Ford F-450 Super Duty Crew Cab 2012 1.76% BMW X5 SUV 2007 1.69% Hyundai Santa Fe SUV 2012 1.43% Chrysler 300 SRT-8 2010 1.33% Toyota Sequoia SUV 2012 1.28% +173 /scratch/Teaching/cars/car_ims/001575.jpg Audi S6 Sedan 2011 Ford E-Series Wagon Van 2012 1.64% BMW X5 SUV 2007 1.39% Hyundai Santa Fe SUV 2012 1.36% Audi S6 Sedan 2011 1.35% GMC Savana Van 2012 1.31% +174 /scratch/Teaching/cars/car_ims/003495.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 1.12% Land Rover Range Rover SUV 2012 1.09% GMC Yukon Hybrid SUV 2012 1.05% Chrysler 300 SRT-8 2010 1.05% Mercedes-Benz C-Class Sedan 2012 0.95% +175 /scratch/Teaching/cars/car_ims/015738.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 2.03% Dodge Caliber Wagon 2007 1.26% Chevrolet Silverado 1500 Regular Cab 2012 1.11% Volkswagen Golf Hatchback 1991 1.09% BMW 1 Series Coupe 2012 1.08% +176 /scratch/Teaching/cars/car_ims/011241.jpg Hyundai Genesis Sedan 2012 GMC Savana Van 2012 1.3% Dodge Caravan Minivan 1997 1.22% Daewoo Nubira Wagon 2002 1.04% Lincoln Town Car Sedan 2011 0.93% Honda Odyssey Minivan 2007 0.93% +177 /scratch/Teaching/cars/car_ims/007077.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 1.67% GMC Savana Van 2012 1.29% Dodge Sprinter Cargo Van 2009 1.21% Acura TL Sedan 2012 1.12% Mercedes-Benz Sprinter Van 2012 1.05% +178 /scratch/Teaching/cars/car_ims/008495.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 27.57% Ferrari 458 Italia Convertible 2012 7.73% Audi RS 4 Convertible 2008 5.69% McLaren MP4-12C Coupe 2012 5.56% Acura Integra Type R 2001 4.08% +179 /scratch/Teaching/cars/car_ims/010613.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 1.58% Ford F-150 Regular Cab 2012 1.05% Chevrolet Avalanche Crew Cab 2012 1.01% Chevrolet Traverse SUV 2012 0.96% Chevrolet Silverado 1500 Regular Cab 2012 0.96% +180 /scratch/Teaching/cars/car_ims/006821.jpg Dodge Caliber Wagon 2007 Ferrari FF Coupe 2012 2.41% GMC Savana Van 2012 1.9% BMW 1 Series Coupe 2012 1.53% Honda Accord Coupe 2012 1.48% Hyundai Elantra Sedan 2007 1.4% +181 /scratch/Teaching/cars/car_ims/003406.jpg Bentley Continental GT Coupe 2007 Mercedes-Benz E-Class Sedan 2012 2.09% MINI Cooper Roadster Convertible 2012 1.78% Fisker Karma Sedan 2012 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.58% Mercedes-Benz S-Class Sedan 2012 1.35% +182 /scratch/Teaching/cars/car_ims/000523.jpg Acura ZDX Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.9% Audi S5 Convertible 2012 1.87% Fisker Karma Sedan 2012 1.78% Mercedes-Benz E-Class Sedan 2012 1.69% Chevrolet Corvette ZR1 2012 1.66% +183 /scratch/Teaching/cars/car_ims/010431.jpg Honda Odyssey Minivan 2012 Audi A5 Coupe 2012 1.28% BMW X5 SUV 2007 1.23% GMC Savana Van 2012 1.19% Mercedes-Benz Sprinter Van 2012 1.15% Chevrolet Silverado 2500HD Regular Cab 2012 1.1% +184 /scratch/Teaching/cars/car_ims/002193.jpg BMW 1 Series Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.02% FIAT 500 Convertible 2012 1.83% GMC Savana Van 2012 1.78% Lincoln Town Car Sedan 2011 1.4% Nissan Leaf Hatchback 2012 1.37% +185 /scratch/Teaching/cars/car_ims/002106.jpg BMW ActiveHybrid 5 Sedan 2012 GMC Savana Van 2012 2.75% Daewoo Nubira Wagon 2002 2.32% Ferrari FF Coupe 2012 2.24% Hyundai Elantra Sedan 2007 1.99% Plymouth Neon Coupe 1999 1.76% +186 /scratch/Teaching/cars/car_ims/009326.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 2.15% Ram C/V Cargo Van Minivan 2012 1.43% Dodge Sprinter Cargo Van 2009 1.34% Dodge Caravan Minivan 1997 1.32% Lincoln Town Car Sedan 2011 1.25% +187 /scratch/Teaching/cars/car_ims/004448.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 9.24% Chevrolet Corvette Convertible 2012 8.44% Aston Martin Virage Coupe 2012 7.43% Ferrari 458 Italia Convertible 2012 6.84% Acura Integra Type R 2001 6.26% +188 /scratch/Teaching/cars/car_ims/013876.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 1.66% Chevrolet Silverado 2500HD Regular Cab 2012 1.3% Ford F-150 Regular Cab 2012 1.24% BMW X5 SUV 2007 1.21% Isuzu Ascender SUV 2008 1.15% +189 /scratch/Teaching/cars/car_ims/009358.jpg Ford F-150 Regular Cab 2007 FIAT 500 Convertible 2012 1.57% Daewoo Nubira Wagon 2002 1.46% Ram C/V Cargo Van Minivan 2012 1.45% Lincoln Town Car Sedan 2011 1.32% Nissan Leaf Hatchback 2012 1.29% +190 /scratch/Teaching/cars/car_ims/014404.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Nissan Leaf Hatchback 2012 1.35% Daewoo Nubira Wagon 2002 1.33% Mercedes-Benz S-Class Sedan 2012 1.29% Dodge Caravan Minivan 1997 1.29% Suzuki SX4 Sedan 2012 1.27% +191 /scratch/Teaching/cars/car_ims/009561.jpg Ford Fiesta Sedan 2012 FIAT 500 Convertible 2012 2.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% Nissan Leaf Hatchback 2012 1.44% Maybach Landaulet Convertible 2012 1.37% Daewoo Nubira Wagon 2002 1.33% +192 /scratch/Teaching/cars/car_ims/011623.jpg Infiniti QX56 SUV 2011 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.22% Mercedes-Benz E-Class Sedan 2012 1.21% Mercedes-Benz S-Class Sedan 2012 1.19% MINI Cooper Roadster Convertible 2012 1.16% Mercedes-Benz Sprinter Van 2012 0.9% +193 /scratch/Teaching/cars/car_ims/009392.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 1.61% BMW 1 Series Coupe 2012 1.14% Dodge Caliber Wagon 2007 1.1% Dodge Ram Pickup 3500 Quad Cab 2009 1.06% Volkswagen Golf Hatchback 1991 1.05% +194 /scratch/Teaching/cars/car_ims/008462.jpg Ferrari 458 Italia Coupe 2012 FIAT 500 Convertible 2012 4.0% Nissan Leaf Hatchback 2012 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% Maybach Landaulet Convertible 2012 1.35% Hyundai Elantra Sedan 2007 1.29% +195 /scratch/Teaching/cars/car_ims/005643.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Mercedes-Benz S-Class Sedan 2012 0.97% Mercedes-Benz E-Class Sedan 2012 0.84% MINI Cooper Roadster Convertible 2012 0.84% Acura TL Sedan 2012 0.83% Rolls-Royce Phantom Sedan 2012 0.81% +196 /scratch/Teaching/cars/car_ims/016142.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 3.2% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.27% Nissan Leaf Hatchback 2012 1.76% Maybach Landaulet Convertible 2012 1.67% Bentley Continental Supersports Conv. Convertible 2012 1.5% +197 /scratch/Teaching/cars/car_ims/013939.jpg Nissan Juke Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.75% AM General Hummer SUV 2000 1.68% Audi TT RS Coupe 2012 1.62% Ford GT Coupe 2006 1.48% Ferrari 458 Italia Coupe 2012 1.46% +198 /scratch/Teaching/cars/car_ims/010662.jpg Honda Accord Sedan 2012 Ford E-Series Wagon Van 2012 1.1% Isuzu Ascender SUV 2008 1.08% GMC Savana Van 2012 0.99% Dodge Caravan Minivan 1997 0.94% Chevrolet Avalanche Crew Cab 2012 0.93% +199 /scratch/Teaching/cars/car_ims/011023.jpg Hyundai Sonata Hybrid Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.74% Dodge Sprinter Cargo Van 2009 1.66% Mercedes-Benz S-Class Sedan 2012 1.63% Audi A5 Coupe 2012 1.53% Ram C/V Cargo Van Minivan 2012 1.51% +200 /scratch/Teaching/cars/car_ims/005575.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 1.31% Mercedes-Benz C-Class Sedan 2012 1.19% Audi S6 Sedan 2011 1.15% BMW X5 SUV 2007 1.12% Chrysler 300 SRT-8 2010 1.1% +201 /scratch/Teaching/cars/car_ims/002201.jpg BMW 1 Series Coupe 2012 Chevrolet TrailBlazer SS 2009 1.25% Cadillac Escalade EXT Crew Cab 2007 1.25% Land Rover Range Rover SUV 2012 1.12% Ford Expedition EL SUV 2009 1.1% Dodge Ram Pickup 3500 Crew Cab 2010 1.05% +202 /scratch/Teaching/cars/car_ims/004506.jpg Chevrolet Corvette ZR1 2012 HUMMER H2 SUT Crew Cab 2009 1.88% Chevrolet Corvette ZR1 2012 1.88% Fisker Karma Sedan 2012 1.62% Mercedes-Benz E-Class Sedan 2012 1.51% Audi S5 Convertible 2012 1.36% +203 /scratch/Teaching/cars/car_ims/010099.jpg Geo Metro Convertible 1993 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.41% Dodge Caliber Wagon 2007 2.23% AM General Hummer SUV 2000 1.81% Dodge Charger SRT-8 2009 1.55% BMW 3 Series Sedan 2012 1.47% +204 /scratch/Teaching/cars/car_ims/014813.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 19.22% Ferrari 458 Italia Convertible 2012 7.02% McLaren MP4-12C Coupe 2012 5.87% Chevrolet HHR SS 2010 4.42% Ferrari 458 Italia Coupe 2012 3.99% +205 /scratch/Teaching/cars/car_ims/005180.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 2.82% Dodge Caravan Minivan 1997 1.39% Daewoo Nubira Wagon 2002 1.25% Chevrolet Express Van 2007 1.1% Hyundai Tucson SUV 2012 1.07% +206 /scratch/Teaching/cars/car_ims/015822.jpg Volkswagen Beetle Hatchback 2012 Geo Metro Convertible 1993 1.97% Acura Integra Type R 2001 1.56% Ferrari FF Coupe 2012 1.51% Lamborghini Diablo Coupe 2001 1.38% Volvo C30 Hatchback 2012 1.38% +207 /scratch/Teaching/cars/car_ims/008501.jpg Ferrari 458 Italia Coupe 2012 Lamborghini Diablo Coupe 2001 13.97% Acura Integra Type R 2001 6.52% McLaren MP4-12C Coupe 2012 6.25% Aston Martin Virage Coupe 2012 5.76% Ferrari California Convertible 2012 5.24% +208 /scratch/Teaching/cars/car_ims/003132.jpg Bentley Continental Supersports Conv. Convertible 2012 AM General Hummer SUV 2000 3.96% HUMMER H2 SUT Crew Cab 2009 3.4% HUMMER H3T Crew Cab 2010 2.61% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.95% Jeep Wrangler SUV 2012 1.88% +209 /scratch/Teaching/cars/car_ims/004268.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 1.38% Ram C/V Cargo Van Minivan 2012 1.34% Dodge Sprinter Cargo Van 2009 1.12% Mercedes-Benz Sprinter Van 2012 1.08% Mercedes-Benz S-Class Sedan 2012 1.07% +210 /scratch/Teaching/cars/car_ims/014799.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 9.6% Ferrari 458 Italia Convertible 2012 5.66% Aston Martin Virage Coupe 2012 5.55% Acura Integra Type R 2001 5.16% Chevrolet Corvette Convertible 2012 4.8% +211 /scratch/Teaching/cars/car_ims/009257.jpg Ford F-150 Regular Cab 2012 Ram C/V Cargo Van Minivan 2012 2.99% FIAT 500 Convertible 2012 2.68% GMC Savana Van 2012 2.58% Daewoo Nubira Wagon 2002 2.21% Nissan Leaf Hatchback 2012 2.05% +212 /scratch/Teaching/cars/car_ims/005514.jpg Chevrolet TrailBlazer SS 2009 Bentley Arnage Sedan 2009 3.7% FIAT 500 Abarth 2012 2.18% Land Rover Range Rover SUV 2012 1.49% Chrysler 300 SRT-8 2010 1.41% Jeep Patriot SUV 2012 1.41% +213 /scratch/Teaching/cars/car_ims/000813.jpg Aston Martin Virage Coupe 2012 Lamborghini Diablo Coupe 2001 16.73% Acura Integra Type R 2001 7.25% Aston Martin Virage Coupe 2012 7.15% McLaren MP4-12C Coupe 2012 5.85% Ferrari California Convertible 2012 4.93% +214 /scratch/Teaching/cars/car_ims/015343.jpg Toyota Camry Sedan 2012 HUMMER H2 SUT Crew Cab 2009 3.48% HUMMER H3T Crew Cab 2010 2.39% Dodge Caliber Wagon 2007 2.3% Jeep Wrangler SUV 2012 2.28% AM General Hummer SUV 2000 1.96% +215 /scratch/Teaching/cars/car_ims/014452.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 2.94% Bugatti Veyron 16.4 Coupe 2009 1.6% Fisker Karma Sedan 2012 1.52% Mercedes-Benz C-Class Sedan 2012 1.45% Bentley Mulsanne Sedan 2011 1.42% +216 /scratch/Teaching/cars/car_ims/005861.jpg Chevrolet Malibu Sedan 2007 BMW X5 SUV 2007 1.25% Land Rover Range Rover SUV 2012 1.17% Ford F-450 Super Duty Crew Cab 2012 1.15% Audi S6 Sedan 2011 1.13% Hyundai Santa Fe SUV 2012 1.13% +217 /scratch/Teaching/cars/car_ims/003121.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 1.28% Chevrolet Avalanche Crew Cab 2012 1.2% Cadillac Escalade EXT Crew Cab 2007 1.18% Ford F-150 Regular Cab 2012 1.17% Dodge Ram Pickup 3500 Crew Cab 2010 1.15% +218 /scratch/Teaching/cars/car_ims/003017.jpg BMW X3 SUV 2012 GMC Savana Van 2012 1.92% Chevrolet Express Van 2007 0.94% Dodge Caravan Minivan 1997 0.93% Chevrolet Express Cargo Van 2007 0.9% Daewoo Nubira Wagon 2002 0.88% +219 /scratch/Teaching/cars/car_ims/014597.jpg Scion xD Hatchback 2012 Ferrari 458 Italia Convertible 2012 3.06% Aston Martin Virage Coupe 2012 2.86% Ferrari 458 Italia Coupe 2012 2.76% BMW 1 Series Coupe 2012 2.67% Chevrolet Corvette Convertible 2012 2.65% +220 /scratch/Teaching/cars/car_ims/011717.jpg Isuzu Ascender SUV 2008 Audi A5 Coupe 2012 1.75% Audi S6 Sedan 2011 1.64% Chevrolet Silverado 2500HD Regular Cab 2012 1.61% Ford F-450 Super Duty Crew Cab 2012 1.47% Isuzu Ascender SUV 2008 1.47% +221 /scratch/Teaching/cars/car_ims/009772.jpg GMC Savana Van 2012 Ram C/V Cargo Van Minivan 2012 2.02% GMC Savana Van 2012 1.94% Mercedes-Benz Sprinter Van 2012 1.49% Dodge Sprinter Cargo Van 2009 1.49% Mercedes-Benz S-Class Sedan 2012 1.3% +222 /scratch/Teaching/cars/car_ims/003355.jpg Bentley Continental GT Coupe 2012 Aston Martin Virage Coupe 2012 2.45% Ferrari 458 Italia Coupe 2012 2.27% Dodge Caliber Wagon 2007 2.24% Chevrolet Corvette Convertible 2012 2.09% BMW 1 Series Coupe 2012 1.99% +223 /scratch/Teaching/cars/car_ims/008636.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 3.44% Mercedes-Benz C-Class Sedan 2012 2.21% Hyundai Genesis Sedan 2012 2.07% Audi S6 Sedan 2011 1.69% Land Rover Range Rover SUV 2012 1.58% +224 /scratch/Teaching/cars/car_ims/016134.jpg smart fortwo Convertible 2012 FIAT 500 Convertible 2012 3.06% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.96% Maybach Landaulet Convertible 2012 1.79% Nissan Leaf Hatchback 2012 1.68% Daewoo Nubira Wagon 2002 1.59% +225 /scratch/Teaching/cars/car_ims/006048.jpg Chevrolet Silverado 1500 Regular Cab 2012 Ferrari 458 Italia Coupe 2012 2.16% Dodge Caliber Wagon 2007 2.02% Aston Martin Virage Coupe 2012 1.98% Chevrolet Corvette Convertible 2012 1.95% Ferrari 458 Italia Convertible 2012 1.92% +226 /scratch/Teaching/cars/car_ims/001833.jpg Audi S4 Sedan 2012 Audi A5 Coupe 2012 1.72% Mercedes-Benz Sprinter Van 2012 1.59% Mercedes-Benz S-Class Sedan 2012 1.38% Dodge Sprinter Cargo Van 2009 1.33% Acura TL Sedan 2012 1.33% +227 /scratch/Teaching/cars/car_ims/007571.jpg Dodge Challenger SRT8 2011 Mercedes-Benz S-Class Sedan 2012 1.14% Audi A5 Coupe 2012 1.12% Mercedes-Benz C-Class Sedan 2012 1.07% Audi S6 Sedan 2011 1.01% Acura TL Sedan 2012 1.01% +228 /scratch/Teaching/cars/car_ims/001141.jpg Audi R8 Coupe 2012 Mercedes-Benz S-Class Sedan 2012 1.55% MINI Cooper Roadster Convertible 2012 1.38% Audi S6 Sedan 2011 1.23% Mercedes-Benz Sprinter Van 2012 1.14% Ford E-Series Wagon Van 2012 1.09% +229 /scratch/Teaching/cars/car_ims/006985.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 3.34% Chevrolet TrailBlazer SS 2009 2.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.33% Ford F-450 Super Duty Crew Cab 2012 2.22% Ford Expedition EL SUV 2009 2.21% +230 /scratch/Teaching/cars/car_ims/001795.jpg Audi S5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.21% Ford F-450 Super Duty Crew Cab 2012 1.93% Ford Expedition EL SUV 2009 1.87% Dodge Ram Pickup 3500 Crew Cab 2010 1.78% Chevrolet TrailBlazer SS 2009 1.75% +231 /scratch/Teaching/cars/car_ims/013009.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 1.42% Mercedes-Benz Sprinter Van 2012 1.29% Honda Odyssey Minivan 2007 1.19% Audi A5 Coupe 2012 1.16% Ram C/V Cargo Van Minivan 2012 1.14% +232 /scratch/Teaching/cars/car_ims/001230.jpg Audi V8 Sedan 1994 Acura TL Sedan 2012 1.25% Audi A5 Coupe 2012 1.12% Mercedes-Benz S-Class Sedan 2012 1.1% Mercedes-Benz Sprinter Van 2012 1.08% GMC Savana Van 2012 1.08% +233 /scratch/Teaching/cars/car_ims/014300.jpg Ram C/V Cargo Van Minivan 2012 Mercedes-Benz S-Class Sedan 2012 1.8% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.78% FIAT 500 Convertible 2012 1.63% MINI Cooper Roadster Convertible 2012 1.4% Bugatti Veyron 16.4 Convertible 2009 1.34% +234 /scratch/Teaching/cars/car_ims/014169.jpg Plymouth Neon Coupe 1999 Rolls-Royce Phantom Sedan 2012 1.14% MINI Cooper Roadster Convertible 2012 1.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.1% Hyundai Genesis Sedan 2012 0.99% Mercedes-Benz S-Class Sedan 2012 0.96% +235 /scratch/Teaching/cars/car_ims/013258.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 3.11% Ford F-450 Super Duty Crew Cab 2012 2.51% Ford Expedition EL SUV 2009 2.51% Dodge Ram Pickup 3500 Crew Cab 2010 2.4% Chevrolet TrailBlazer SS 2009 2.27% +236 /scratch/Teaching/cars/car_ims/015661.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 1.28% BMW X5 SUV 2007 1.18% Hyundai Santa Fe SUV 2012 1.17% Chevrolet Avalanche Crew Cab 2012 1.17% Ford F-150 Regular Cab 2012 1.16% +237 /scratch/Teaching/cars/car_ims/011790.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 1.79% Ram C/V Cargo Van Minivan 2012 1.68% Dodge Sprinter Cargo Van 2009 1.33% Lincoln Town Car Sedan 2011 1.14% FIAT 500 Convertible 2012 1.13% +238 /scratch/Teaching/cars/car_ims/007625.jpg Dodge Durango SUV 2012 Bentley Arnage Sedan 2009 1.87% FIAT 500 Abarth 2012 1.44% Jeep Patriot SUV 2012 1.35% Chevrolet TrailBlazer SS 2009 1.19% Lamborghini Reventon Coupe 2008 1.06% +239 /scratch/Teaching/cars/car_ims/000226.jpg Acura TL Sedan 2012 Bentley Arnage Sedan 2009 2.72% FIAT 500 Abarth 2012 1.8% Bugatti Veyron 16.4 Coupe 2009 1.57% Jeep Patriot SUV 2012 1.25% Lamborghini Reventon Coupe 2008 1.25% +240 /scratch/Teaching/cars/car_ims/011515.jpg Hyundai Azera Sedan 2012 Mercedes-Benz C-Class Sedan 2012 2.02% Bentley Arnage Sedan 2009 1.7% Fisker Karma Sedan 2012 1.68% Bentley Mulsanne Sedan 2011 1.62% MINI Cooper Roadster Convertible 2012 1.58% +241 /scratch/Teaching/cars/car_ims/002699.jpg BMW M3 Coupe 2012 Mercedes-Benz Sprinter Van 2012 1.76% GMC Savana Van 2012 1.71% Dodge Sprinter Cargo Van 2009 1.67% Ram C/V Cargo Van Minivan 2012 1.63% Mercedes-Benz S-Class Sedan 2012 1.54% +242 /scratch/Teaching/cars/car_ims/012239.jpg Jeep Compass SUV 2012 Ferrari 458 Italia Convertible 2012 4.65% Lamborghini Diablo Coupe 2001 4.41% Aston Martin Virage Coupe 2012 4.31% Ferrari California Convertible 2012 4.31% McLaren MP4-12C Coupe 2012 4.22% +243 /scratch/Teaching/cars/car_ims/010522.jpg Honda Accord Coupe 2012 Dodge Caliber Wagon 2007 2.27% BMW 1 Series Coupe 2012 2.1% Ferrari FF Coupe 2012 1.92% Ferrari 458 Italia Convertible 2012 1.6% Volvo C30 Hatchback 2012 1.59% +244 /scratch/Teaching/cars/car_ims/007178.jpg Dodge Sprinter Cargo Van 2009 MINI Cooper Roadster Convertible 2012 2.89% Mercedes-Benz S-Class Sedan 2012 2.63% Mercedes-Benz E-Class Sedan 2012 2.19% Audi S5 Convertible 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.59% +245 /scratch/Teaching/cars/car_ims/016121.jpg smart fortwo Convertible 2012 MINI Cooper Roadster Convertible 2012 1.99% Mercedes-Benz S-Class Sedan 2012 1.52% Mercedes-Benz E-Class Sedan 2012 1.22% Fisker Karma Sedan 2012 1.12% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.07% +246 /scratch/Teaching/cars/car_ims/014422.jpg Rolls-Royce Ghost Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.95% Dodge Sprinter Cargo Van 2009 1.46% GMC Savana Van 2012 1.38% FIAT 500 Convertible 2012 1.24% Mercedes-Benz S-Class Sedan 2012 1.23% +247 /scratch/Teaching/cars/car_ims/005261.jpg Chevrolet Avalanche Crew Cab 2012 Ford E-Series Wagon Van 2012 1.48% Land Rover Range Rover SUV 2012 1.44% Ford F-450 Super Duty Crew Cab 2012 1.43% Hyundai Santa Fe SUV 2012 1.43% Chrysler Aspen SUV 2009 1.36% +248 /scratch/Teaching/cars/car_ims/000853.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 7.63% Lamborghini Diablo Coupe 2001 6.21% AM General Hummer SUV 2000 5.22% Lamborghini Aventador Coupe 2012 4.98% Ferrari California Convertible 2012 4.52% +249 /scratch/Teaching/cars/car_ims/001391.jpg Audi 100 Wagon 1994 GMC Savana Van 2012 1.16% Hyundai Elantra Sedan 2007 0.86% Daewoo Nubira Wagon 2002 0.78% Chevrolet Express Cargo Van 2007 0.77% Buick Verano Sedan 2012 0.75% +250 /scratch/Teaching/cars/car_ims/009933.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 2.29% FIAT 500 Convertible 2012 1.81% Nissan Leaf Hatchback 2012 1.4% Lincoln Town Car Sedan 2011 1.35% GMC Savana Van 2012 1.31% +251 /scratch/Teaching/cars/car_ims/015495.jpg Toyota Corolla Sedan 2012 AM General Hummer SUV 2000 3.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.11% HUMMER H2 SUT Crew Cab 2009 1.95% Lamborghini Aventador Coupe 2012 1.92% Dodge Magnum Wagon 2008 1.89% +252 /scratch/Teaching/cars/car_ims/002817.jpg BMW M5 Sedan 2010 Ram C/V Cargo Van Minivan 2012 2.1% GMC Savana Van 2012 1.94% Dodge Sprinter Cargo Van 2009 1.45% Lincoln Town Car Sedan 2011 1.34% FIAT 500 Convertible 2012 1.27% +253 /scratch/Teaching/cars/car_ims/012192.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 1.62% Ram C/V Cargo Van Minivan 2012 1.57% Daewoo Nubira Wagon 2002 1.53% Dodge Caravan Minivan 1997 1.35% Lincoln Town Car Sedan 2011 1.27% +254 /scratch/Teaching/cars/car_ims/014214.jpg Porsche Panamera Sedan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.78% Ford F-450 Super Duty Crew Cab 2012 1.38% Chevrolet Silverado 2500HD Regular Cab 2012 1.31% GMC Acadia SUV 2012 1.28% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.27% +255 /scratch/Teaching/cars/car_ims/008646.jpg Ford F-450 Super Duty Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 2.07% Cadillac Escalade EXT Crew Cab 2007 2.03% Hyundai Santa Fe SUV 2012 1.98% BMW X5 SUV 2007 1.85% Ford F-150 Regular Cab 2012 1.75% +256 /scratch/Teaching/cars/car_ims/012906.jpg MINI Cooper Roadster Convertible 2012 MINI Cooper Roadster Convertible 2012 2.37% Mercedes-Benz S-Class Sedan 2012 1.51% Hyundai Genesis Sedan 2012 1.51% Bentley Mulsanne Sedan 2011 1.43% Fisker Karma Sedan 2012 1.41% +257 /scratch/Teaching/cars/car_ims/009128.jpg Ford GT Coupe 2006 Ford GT Coupe 2006 1.46% Dodge Caliber Wagon 2007 1.36% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.16% Bugatti Veyron 16.4 Coupe 2009 1.16% Mercedes-Benz 300-Class Convertible 1993 1.11% +258 /scratch/Teaching/cars/car_ims/007474.jpg Dodge Magnum Wagon 2008 Chrysler 300 SRT-8 2010 1.76% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.75% Chevrolet TrailBlazer SS 2009 1.72% Ford Expedition EL SUV 2009 1.61% Dodge Ram Pickup 3500 Crew Cab 2010 1.36% +259 /scratch/Teaching/cars/car_ims/014815.jpg Spyker C8 Coupe 2009 FIAT 500 Convertible 2012 1.19% Mercedes-Benz 300-Class Convertible 1993 1.05% Dodge Caliber Wagon 2007 0.98% Hyundai Elantra Sedan 2007 0.96% Mercedes-Benz E-Class Sedan 2012 0.96% +260 /scratch/Teaching/cars/car_ims/011980.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 2.19% Chevrolet Silverado 2500HD Regular Cab 2012 1.12% Honda Accord Sedan 2012 1.09% Chevrolet Silverado 1500 Regular Cab 2012 1.07% Chevrolet Express Cargo Van 2007 1.05% +261 /scratch/Teaching/cars/car_ims/003373.jpg Bentley Continental GT Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.77% FIAT 500 Convertible 2012 1.94% GMC Savana Van 2012 1.92% Dodge Sprinter Cargo Van 2009 1.58% Lincoln Town Car Sedan 2011 1.54% +262 /scratch/Teaching/cars/car_ims/006316.jpg Chrysler Town and Country Minivan 2012 Ford E-Series Wagon Van 2012 1.52% Dodge Caravan Minivan 1997 1.37% Isuzu Ascender SUV 2008 1.24% Chrysler Aspen SUV 2009 1.11% GMC Savana Van 2012 1.1% +263 /scratch/Teaching/cars/car_ims/014191.jpg Porsche Panamera Sedan 2012 GMC Savana Van 2012 0.92% Ford E-Series Wagon Van 2012 0.83% Honda Odyssey Minivan 2007 0.81% Dodge Caravan Minivan 1997 0.8% Chevrolet Traverse SUV 2012 0.78% +264 /scratch/Teaching/cars/car_ims/015602.jpg Volkswagen Golf Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.39% Mercedes-Benz E-Class Sedan 2012 1.34% Fisker Karma Sedan 2012 1.3% Mercedes-Benz 300-Class Convertible 1993 1.19% +265 /scratch/Teaching/cars/car_ims/009702.jpg GMC Terrain SUV 2012 Mercedes-Benz C-Class Sedan 2012 1.35% Bentley Arnage Sedan 2009 1.13% Chrysler 300 SRT-8 2010 1.12% Ford Expedition EL SUV 2009 1.07% Chevrolet TrailBlazer SS 2009 1.03% +266 /scratch/Teaching/cars/car_ims/007788.jpg Dodge Durango SUV 2007 Hyundai Genesis Sedan 2012 1.66% Bentley Arnage Sedan 2009 1.51% Hyundai Azera Sedan 2012 1.43% MINI Cooper Roadster Convertible 2012 1.4% Bentley Mulsanne Sedan 2011 1.29% +267 /scratch/Teaching/cars/car_ims/011684.jpg Isuzu Ascender SUV 2008 Ford F-450 Super Duty Crew Cab 2012 2.41% Audi S6 Sedan 2011 2.01% BMW X5 SUV 2007 1.96% Hyundai Santa Fe SUV 2012 1.92% Cadillac Escalade EXT Crew Cab 2007 1.7% +268 /scratch/Teaching/cars/car_ims/014740.jpg Spyker C8 Convertible 2009 Rolls-Royce Phantom Sedan 2012 1.3% Hyundai Genesis Sedan 2012 1.07% Rolls-Royce Ghost Sedan 2012 1.05% Bentley Continental GT Coupe 2007 1.02% Fisker Karma Sedan 2012 0.95% +269 /scratch/Teaching/cars/car_ims/003392.jpg Bentley Continental GT Coupe 2012 Bentley Arnage Sedan 2009 1.62% Hyundai Genesis Sedan 2012 1.36% Mercedes-Benz C-Class Sedan 2012 1.21% Bentley Mulsanne Sedan 2011 1.17% Land Rover Range Rover SUV 2012 1.11% +270 /scratch/Teaching/cars/car_ims/002205.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 2.89% BMW 1 Series Coupe 2012 2.86% Ferrari FF Coupe 2012 2.03% GMC Savana Van 2012 1.61% Honda Accord Coupe 2012 1.58% +271 /scratch/Teaching/cars/car_ims/012049.jpg Jeep Liberty SUV 2012 Isuzu Ascender SUV 2008 1.0% BMW X5 SUV 2007 0.98% Ford E-Series Wagon Van 2012 0.98% Hyundai Santa Fe SUV 2012 0.97% Ford Expedition EL SUV 2009 0.92% +272 /scratch/Teaching/cars/car_ims/008724.jpg Ford Mustang Convertible 2007 Chevrolet TrailBlazer SS 2009 1.52% Cadillac Escalade EXT Crew Cab 2007 1.49% Chrysler 300 SRT-8 2010 1.41% Ford Expedition EL SUV 2009 1.37% Land Rover Range Rover SUV 2012 1.35% +273 /scratch/Teaching/cars/car_ims/008524.jpg Fisker Karma Sedan 2012 Ford GT Coupe 2006 2.09% Spyker C8 Convertible 2009 1.64% Audi TT RS Coupe 2012 1.57% Lamborghini Diablo Coupe 2001 1.48% Chevrolet HHR SS 2010 1.37% +274 /scratch/Teaching/cars/car_ims/015516.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 1.28% Hyundai Genesis Sedan 2012 1.23% FIAT 500 Abarth 2012 1.04% Jeep Patriot SUV 2012 1.02% Land Rover Range Rover SUV 2012 0.98% +275 /scratch/Teaching/cars/car_ims/004373.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ford F-450 Super Duty Crew Cab 2012 1.48% Mercedes-Benz C-Class Sedan 2012 1.27% Audi S6 Sedan 2011 1.23% Chrysler 300 SRT-8 2010 1.19% BMW X5 SUV 2007 1.19% +276 /scratch/Teaching/cars/car_ims/008948.jpg Ford Edge SUV 2012 Ferrari 458 Italia Convertible 2012 2.82% Ferrari 458 Italia Coupe 2012 2.63% Aston Martin Virage Coupe 2012 2.33% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.3% Lamborghini Aventador Coupe 2012 2.29% +277 /scratch/Teaching/cars/car_ims/011319.jpg Hyundai Sonata Sedan 2012 FIAT 500 Convertible 2012 1.84% Ram C/V Cargo Van Minivan 2012 1.76% Daewoo Nubira Wagon 2002 1.41% Lincoln Town Car Sedan 2011 1.36% Nissan Leaf Hatchback 2012 1.35% +278 /scratch/Teaching/cars/car_ims/016185.jpg smart fortwo Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 1.88% Land Rover Range Rover SUV 2012 1.53% Chevrolet TrailBlazer SS 2009 1.42% Hyundai Santa Fe SUV 2012 1.4% Ford Expedition EL SUV 2009 1.38% +279 /scratch/Teaching/cars/car_ims/009506.jpg Ford E-Series Wagon Van 2012 BMW X5 SUV 2007 2.69% Audi S6 Sedan 2011 2.53% Hyundai Santa Fe SUV 2012 2.36% Ford E-Series Wagon Van 2012 2.36% Ford F-450 Super Duty Crew Cab 2012 2.33% +280 /scratch/Teaching/cars/car_ims/010110.jpg Geo Metro Convertible 1993 Dodge Caliber Wagon 2007 1.66% HUMMER H2 SUT Crew Cab 2009 1.37% Jeep Wrangler SUV 2012 1.23% HUMMER H3T Crew Cab 2010 1.19% Volkswagen Golf Hatchback 1991 1.17% +281 /scratch/Teaching/cars/car_ims/015510.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 2.18% Mercedes-Benz C-Class Sedan 2012 1.8% Hyundai Genesis Sedan 2012 1.72% Ford Expedition EL SUV 2009 1.64% Land Rover Range Rover SUV 2012 1.56% +282 /scratch/Teaching/cars/car_ims/008054.jpg Eagle Talon Hatchback 1998 Hyundai Genesis Sedan 2012 1.13% Bentley Arnage Sedan 2009 1.13% Land Rover Range Rover SUV 2012 1.1% Cadillac SRX SUV 2012 0.99% Bentley Mulsanne Sedan 2011 0.99% +283 /scratch/Teaching/cars/car_ims/005535.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Nissan Leaf Hatchback 2012 1.47% Ram C/V Cargo Van Minivan 2012 1.42% Mercedes-Benz S-Class Sedan 2012 1.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.34% FIAT 500 Convertible 2012 1.29% +284 /scratch/Teaching/cars/car_ims/009341.jpg Ford F-150 Regular Cab 2007 Ferrari 458 Italia Convertible 2012 3.35% Ferrari 458 Italia Coupe 2012 2.91% Chevrolet Corvette Convertible 2012 2.73% Chevrolet Cobalt SS 2010 2.72% Aston Martin Virage Coupe 2012 2.71% +285 /scratch/Teaching/cars/car_ims/014486.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 3.76% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.82% Mercedes-Benz 300-Class Convertible 1993 1.81% Mercedes-Benz E-Class Sedan 2012 1.8% Maybach Landaulet Convertible 2012 1.75% +286 /scratch/Teaching/cars/car_ims/007525.jpg Dodge Magnum Wagon 2008 Dodge Caliber Wagon 2007 2.49% Ferrari FF Coupe 2012 2.2% BMW 1 Series Coupe 2012 2.18% Hyundai Elantra Sedan 2007 1.73% Honda Accord Coupe 2012 1.72% +287 /scratch/Teaching/cars/car_ims/004555.jpg Chevrolet Corvette ZR1 2012 Bugatti Veyron 16.4 Coupe 2009 1.64% Bentley Arnage Sedan 2009 1.61% Mercedes-Benz E-Class Sedan 2012 1.25% FIAT 500 Abarth 2012 1.24% Hyundai Azera Sedan 2012 1.22% +288 /scratch/Teaching/cars/car_ims/012913.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.23% Ford E-Series Wagon Van 2012 1.13% BMW X5 SUV 2007 1.1% Audi S6 Sedan 2011 1.05% Isuzu Ascender SUV 2008 1.05% +289 /scratch/Teaching/cars/car_ims/009843.jpg GMC Yukon Hybrid SUV 2012 Bentley Arnage Sedan 2009 3.11% FIAT 500 Abarth 2012 1.72% Land Rover Range Rover SUV 2012 1.52% Chevrolet TrailBlazer SS 2009 1.39% Cadillac SRX SUV 2012 1.35% +290 /scratch/Teaching/cars/car_ims/008907.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 2.57% Chevrolet Silverado 1500 Regular Cab 2012 1.15% Ford F-150 Regular Cab 2012 1.13% Chevrolet Traverse SUV 2012 1.08% Chevrolet Avalanche Crew Cab 2012 1.08% +291 /scratch/Teaching/cars/car_ims/001105.jpg Audi TTS Coupe 2012 MINI Cooper Roadster Convertible 2012 2.41% Mercedes-Benz E-Class Sedan 2012 2.27% Mercedes-Benz S-Class Sedan 2012 2.05% Fisker Karma Sedan 2012 1.8% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.64% +292 /scratch/Teaching/cars/car_ims/013839.jpg Nissan Leaf Hatchback 2012 FIAT 500 Convertible 2012 4.33% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.09% Maybach Landaulet Convertible 2012 2.12% Nissan Leaf Hatchback 2012 1.87% Bentley Continental Supersports Conv. Convertible 2012 1.46% +293 /scratch/Teaching/cars/car_ims/005266.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.7% BMW X5 SUV 2007 1.58% Ford F-450 Super Duty Crew Cab 2012 1.58% Chevrolet Silverado 2500HD Regular Cab 2012 1.51% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.49% +294 /scratch/Teaching/cars/car_ims/007367.jpg Dodge Dakota Crew Cab 2010 Mercedes-Benz S-Class Sedan 2012 1.43% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.4% MINI Cooper Roadster Convertible 2012 1.31% FIAT 500 Convertible 2012 1.06% Mercedes-Benz E-Class Sedan 2012 1.05% +295 /scratch/Teaching/cars/car_ims/011359.jpg Hyundai Sonata Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 1.24% HUMMER H2 SUT Crew Cab 2009 1.19% Bentley Arnage Sedan 2009 1.09% Jeep Wrangler SUV 2012 1.07% FIAT 500 Abarth 2012 1.06% +296 /scratch/Teaching/cars/car_ims/014464.jpg Rolls-Royce Ghost Sedan 2012 FIAT 500 Convertible 2012 1.82% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.79% Nissan Leaf Hatchback 2012 1.59% Rolls-Royce Phantom Sedan 2012 1.59% Daewoo Nubira Wagon 2002 1.57% +297 /scratch/Teaching/cars/car_ims/006729.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 3.1% BMW 1 Series Coupe 2012 2.8% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.74% Aston Martin Virage Coupe 2012 1.73% McLaren MP4-12C Coupe 2012 1.73% +298 /scratch/Teaching/cars/car_ims/006580.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Avalanche Crew Cab 2012 1.54% GMC Savana Van 2012 1.48% Ford F-150 Regular Cab 2012 1.44% Isuzu Ascender SUV 2008 1.41% Hyundai Santa Fe SUV 2012 1.4% +299 /scratch/Teaching/cars/car_ims/006265.jpg Chrysler Sebring Convertible 2010 GMC Savana Van 2012 1.5% Chevrolet Avalanche Crew Cab 2012 1.23% Isuzu Ascender SUV 2008 1.14% Ford F-150 Regular Cab 2012 1.1% Chevrolet Silverado 1500 Extended Cab 2012 1.03% +300 /scratch/Teaching/cars/car_ims/015297.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 2.43% Chevrolet Avalanche Crew Cab 2012 1.4% Dodge Caravan Minivan 1997 1.25% Ford F-150 Regular Cab 2012 1.22% Hyundai Tucson SUV 2012 1.2% +301 /scratch/Teaching/cars/car_ims/011484.jpg Hyundai Azera Sedan 2012 AM General Hummer SUV 2000 1.33% HUMMER H2 SUT Crew Cab 2009 1.31% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.26% Jeep Wrangler SUV 2012 1.24% Bugatti Veyron 16.4 Coupe 2009 1.24% +302 /scratch/Teaching/cars/car_ims/003613.jpg Bugatti Veyron 16.4 Convertible 2009 Ford GT Coupe 2006 2.37% Mercedes-Benz 300-Class Convertible 1993 1.83% Spyker C8 Convertible 2009 1.74% Nissan 240SX Coupe 1998 1.63% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.51% +303 /scratch/Teaching/cars/car_ims/002787.jpg BMW M3 Coupe 2012 GMC Savana Van 2012 1.74% Chevrolet Silverado 2500HD Regular Cab 2012 1.07% Chevrolet Silverado 1500 Regular Cab 2012 1.05% Honda Accord Sedan 2012 0.99% Ford F-150 Regular Cab 2012 0.96% +304 /scratch/Teaching/cars/car_ims/000912.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 11.08% Ferrari 458 Italia Convertible 2012 6.86% McLaren MP4-12C Coupe 2012 5.85% Audi RS 4 Convertible 2008 4.63% Ferrari 458 Italia Coupe 2012 4.0% +305 /scratch/Teaching/cars/car_ims/013209.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 2.35% BMW 1 Series Coupe 2012 1.97% GMC Savana Van 2012 1.71% Ferrari FF Coupe 2012 1.63% Volkswagen Golf Hatchback 1991 1.36% +306 /scratch/Teaching/cars/car_ims/006547.jpg Chrysler PT Cruiser Convertible 2008 GMC Savana Van 2012 1.68% Mercedes-Benz Sprinter Van 2012 1.58% Dodge Caravan Minivan 1997 1.45% Ram C/V Cargo Van Minivan 2012 1.4% Mercedes-Benz S-Class Sedan 2012 1.36% +307 /scratch/Teaching/cars/car_ims/002290.jpg BMW 3 Series Sedan 2012 GMC Savana Van 2012 1.53% Dodge Caravan Minivan 1997 1.39% Ram C/V Cargo Van Minivan 2012 1.32% Lincoln Town Car Sedan 2011 1.21% Honda Odyssey Minivan 2007 1.19% +308 /scratch/Teaching/cars/car_ims/013562.jpg Mercedes-Benz S-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 4.16% Chevrolet Corvette Ron Fellows Edition Z06 2007 4.12% FIAT 500 Convertible 2012 4.06% Fisker Karma Sedan 2012 2.77% Mercedes-Benz S-Class Sedan 2012 2.37% +309 /scratch/Teaching/cars/car_ims/016027.jpg Volvo XC90 SUV 2007 Land Rover Range Rover SUV 2012 1.81% Cadillac Escalade EXT Crew Cab 2007 1.77% Bentley Arnage Sedan 2009 1.74% Ford F-450 Super Duty Crew Cab 2012 1.63% Chevrolet TrailBlazer SS 2009 1.47% +310 /scratch/Teaching/cars/car_ims/008859.jpg Ford Expedition EL SUV 2009 Ram C/V Cargo Van Minivan 2012 1.8% GMC Savana Van 2012 1.69% Daewoo Nubira Wagon 2002 1.38% Lincoln Town Car Sedan 2011 1.29% FIAT 500 Convertible 2012 1.28% +311 /scratch/Teaching/cars/car_ims/003480.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 2.64% Ford Expedition EL SUV 2009 2.25% Cadillac Escalade EXT Crew Cab 2007 2.14% Land Rover Range Rover SUV 2012 2.08% Dodge Ram Pickup 3500 Crew Cab 2010 1.92% +312 /scratch/Teaching/cars/car_ims/005221.jpg Chevrolet Avalanche Crew Cab 2012 Cadillac Escalade EXT Crew Cab 2007 2.03% Chevrolet TrailBlazer SS 2009 1.92% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.62% Ford Expedition EL SUV 2009 1.57% Dodge Ram Pickup 3500 Crew Cab 2010 1.42% +313 /scratch/Teaching/cars/car_ims/001094.jpg Audi TTS Coupe 2012 FIAT 500 Convertible 2012 2.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.88% Nissan Leaf Hatchback 2012 1.85% Ram C/V Cargo Van Minivan 2012 1.57% Daewoo Nubira Wagon 2002 1.51% +314 /scratch/Teaching/cars/car_ims/005591.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.34% GMC Savana Van 2012 1.34% Dodge Ram Pickup 3500 Quad Cab 2009 1.24% Honda Accord Sedan 2012 1.2% Chevrolet Silverado 1500 Regular Cab 2012 1.13% +315 /scratch/Teaching/cars/car_ims/013904.jpg Nissan NV Passenger Van 2012 Daewoo Nubira Wagon 2002 1.1% Chevrolet Sonic Sedan 2012 0.96% Rolls-Royce Phantom Sedan 2012 0.86% Plymouth Neon Coupe 1999 0.84% Hyundai Elantra Sedan 2007 0.83% +316 /scratch/Teaching/cars/car_ims/006434.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 1.33% Dodge Sprinter Cargo Van 2009 1.28% Ram C/V Cargo Van Minivan 2012 1.26% Mercedes-Benz Sprinter Van 2012 1.2% Mercedes-Benz S-Class Sedan 2012 1.15% +317 /scratch/Teaching/cars/car_ims/003946.jpg Buick Verano Sedan 2012 Dodge Caliber Wagon 2007 1.62% AM General Hummer SUV 2000 1.33% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.31% McLaren MP4-12C Coupe 2012 1.22% HUMMER H2 SUT Crew Cab 2009 1.21% +318 /scratch/Teaching/cars/car_ims/005945.jpg Chevrolet Silverado 1500 Extended Cab 2012 GMC Savana Van 2012 1.47% Chevrolet Silverado 2500HD Regular Cab 2012 1.35% Chevrolet Silverado 1500 Regular Cab 2012 1.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.22% Chevrolet Silverado 1500 Extended Cab 2012 1.16% +319 /scratch/Teaching/cars/car_ims/006819.jpg Dodge Caliber Wagon 2007 Bentley Arnage Sedan 2009 1.39% Jeep Patriot SUV 2012 1.2% FIAT 500 Abarth 2012 1.19% Chevrolet TrailBlazer SS 2009 1.06% Land Rover Range Rover SUV 2012 0.97% +320 /scratch/Teaching/cars/car_ims/010120.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 7.64% Aston Martin Virage Coupe 2012 5.37% AM General Hummer SUV 2000 4.62% Acura Integra Type R 2001 4.55% Ferrari California Convertible 2012 4.0% +321 /scratch/Teaching/cars/car_ims/004932.jpg Chevrolet Impala Sedan 2007 FIAT 500 Convertible 2012 2.08% Ford GT Coupe 2006 1.76% Mercedes-Benz 300-Class Convertible 1993 1.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.57% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.4% +322 /scratch/Teaching/cars/car_ims/000277.jpg Acura TL Type-S 2008 Bentley Arnage Sedan 2009 1.27% Hyundai Genesis Sedan 2012 1.2% Hyundai Azera Sedan 2012 1.16% Cadillac SRX SUV 2012 0.99% FIAT 500 Abarth 2012 0.96% +323 /scratch/Teaching/cars/car_ims/007678.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.37% Audi A5 Coupe 2012 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% Isuzu Ascender SUV 2008 1.12% Mercedes-Benz Sprinter Van 2012 1.08% +324 /scratch/Teaching/cars/car_ims/008349.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Diablo Coupe 2001 4.57% Ferrari 458 Italia Convertible 2012 4.26% Ferrari California Convertible 2012 3.79% Aston Martin Virage Coupe 2012 3.71% Lamborghini Aventador Coupe 2012 3.47% +325 /scratch/Teaching/cars/car_ims/003694.jpg Bugatti Veyron 16.4 Coupe 2009 Mercedes-Benz S-Class Sedan 2012 1.46% Mercedes-Benz Sprinter Van 2012 1.33% Dodge Sprinter Cargo Van 2009 1.28% Acura TL Sedan 2012 1.21% Audi A5 Coupe 2012 1.2% +326 /scratch/Teaching/cars/car_ims/010035.jpg GMC Savana Van 2012 BMW X5 SUV 2007 1.02% Ford E-Series Wagon Van 2012 1.01% Hyundai Genesis Sedan 2012 0.99% Dodge Challenger SRT8 2011 0.98% Land Rover Range Rover SUV 2012 0.96% +327 /scratch/Teaching/cars/car_ims/015965.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.26% Dodge Sprinter Cargo Van 2009 1.02% Mercedes-Benz Sprinter Van 2012 1.0% Honda Odyssey Minivan 2007 0.99% Mercedes-Benz S-Class Sedan 2012 0.96% +328 /scratch/Teaching/cars/car_ims/002291.jpg BMW 3 Series Sedan 2012 Dodge Caliber Wagon 2007 1.12% Chevrolet TrailBlazer SS 2009 0.93% Hyundai Elantra Sedan 2007 0.93% Jeep Patriot SUV 2012 0.85% GMC Savana Van 2012 0.85% +329 /scratch/Teaching/cars/car_ims/014383.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 3.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.83% Nissan Leaf Hatchback 2012 1.71% Ram C/V Cargo Van Minivan 2012 1.59% Bugatti Veyron 16.4 Convertible 2009 1.49% +330 /scratch/Teaching/cars/car_ims/001160.jpg Audi R8 Coupe 2012 Mercedes-Benz E-Class Sedan 2012 1.2% Fisker Karma Sedan 2012 1.18% Audi S5 Convertible 2012 1.17% Mercedes-Benz C-Class Sedan 2012 1.17% Acura TL Type-S 2008 1.11% +331 /scratch/Teaching/cars/car_ims/000145.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.8% Fisker Karma Sedan 2012 2.28% Chevrolet Corvette ZR1 2012 1.65% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.55% Audi S5 Convertible 2012 1.46% +332 /scratch/Teaching/cars/car_ims/012308.jpg Lamborghini Reventon Coupe 2008 GMC Savana Van 2012 1.1% Chrysler 300 SRT-8 2010 0.88% Volkswagen Golf Hatchback 1991 0.86% GMC Acadia SUV 2012 0.84% Chevrolet Silverado 1500 Regular Cab 2012 0.79% +333 /scratch/Teaching/cars/car_ims/012830.jpg Lincoln Town Car Sedan 2011 Bentley Arnage Sedan 2009 2.69% HUMMER H2 SUT Crew Cab 2009 1.84% Chrysler 300 SRT-8 2010 1.82% Chevrolet TrailBlazer SS 2009 1.64% Mercedes-Benz C-Class Sedan 2012 1.48% +334 /scratch/Teaching/cars/car_ims/014310.jpg Ram C/V Cargo Van Minivan 2012 Ford E-Series Wagon Van 2012 1.33% Audi S6 Sedan 2011 1.29% BMW X5 SUV 2007 1.17% Isuzu Ascender SUV 2008 1.16% Hyundai Santa Fe SUV 2012 1.16% +335 /scratch/Teaching/cars/car_ims/008263.jpg Ferrari California Convertible 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.76% Aston Martin Virage Coupe 2012 2.72% Ferrari 458 Italia Convertible 2012 2.64% McLaren MP4-12C Coupe 2012 2.59% Audi TT RS Coupe 2012 2.57% +336 /scratch/Teaching/cars/car_ims/005342.jpg Chevrolet Cobalt SS 2010 Ferrari California Convertible 2012 3.38% McLaren MP4-12C Coupe 2012 3.14% Aston Martin Virage Coupe 2012 2.91% Acura Integra Type R 2001 2.75% Ferrari 458 Italia Convertible 2012 2.75% +337 /scratch/Teaching/cars/car_ims/008726.jpg Ford Mustang Convertible 2007 Lamborghini Diablo Coupe 2001 3.69% Ferrari 458 Italia Convertible 2012 3.65% Ferrari California Convertible 2012 3.31% Aston Martin Virage Coupe 2012 3.13% Ferrari 458 Italia Coupe 2012 2.93% +338 /scratch/Teaching/cars/car_ims/008665.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 4.06% Land Rover Range Rover SUV 2012 2.63% Ford Expedition EL SUV 2009 2.39% Dodge Ram Pickup 3500 Crew Cab 2010 2.3% Cadillac Escalade EXT Crew Cab 2007 2.27% +339 /scratch/Teaching/cars/car_ims/002664.jpg BMW X6 SUV 2012 Jeep Patriot SUV 2012 1.12% Chevrolet TrailBlazer SS 2009 1.09% Ford Edge SUV 2012 1.0% Cadillac Escalade EXT Crew Cab 2007 1.0% Jeep Liberty SUV 2012 1.0% +340 /scratch/Teaching/cars/car_ims/000024.jpg AM General Hummer SUV 2000 Chevrolet TrailBlazer SS 2009 1.35% Cadillac Escalade EXT Crew Cab 2007 1.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.28% Ford F-450 Super Duty Crew Cab 2012 1.26% Ford Expedition EL SUV 2009 1.25% +341 /scratch/Teaching/cars/car_ims/015973.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.34% Dodge Sprinter Cargo Van 2009 1.29% Mercedes-Benz Sprinter Van 2012 1.09% Mercedes-Benz S-Class Sedan 2012 1.07% Ram C/V Cargo Van Minivan 2012 1.06% +342 /scratch/Teaching/cars/car_ims/014127.jpg Plymouth Neon Coupe 1999 Mercedes-Benz S-Class Sedan 2012 1.05% Suzuki SX4 Sedan 2012 0.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.96% Mercedes-Benz Sprinter Van 2012 0.93% Ram C/V Cargo Van Minivan 2012 0.91% +343 /scratch/Teaching/cars/car_ims/007476.jpg Dodge Magnum Wagon 2008 Lamborghini Diablo Coupe 2001 10.46% Aston Martin Virage Coupe 2012 5.06% Ferrari California Convertible 2012 5.0% McLaren MP4-12C Coupe 2012 4.6% Ferrari 458 Italia Convertible 2012 4.49% +344 /scratch/Teaching/cars/car_ims/015381.jpg Toyota Camry Sedan 2012 Ferrari 458 Italia Convertible 2012 3.35% Ferrari California Convertible 2012 3.16% Aston Martin Virage Coupe 2012 3.14% Ferrari 458 Italia Coupe 2012 3.02% McLaren MP4-12C Coupe 2012 2.64% +345 /scratch/Teaching/cars/car_ims/007769.jpg Dodge Durango SUV 2007 FIAT 500 Convertible 2012 2.67% Nissan Leaf Hatchback 2012 1.63% Ram C/V Cargo Van Minivan 2012 1.61% Daewoo Nubira Wagon 2002 1.43% Hyundai Elantra Sedan 2007 1.3% +346 /scratch/Teaching/cars/car_ims/009388.jpg Ford Focus Sedan 2007 Hyundai Genesis Sedan 2012 1.39% Bentley Arnage Sedan 2009 1.37% Rolls-Royce Phantom Sedan 2012 1.29% MINI Cooper Roadster Convertible 2012 1.28% Bentley Mulsanne Sedan 2011 1.2% +347 /scratch/Teaching/cars/car_ims/014738.jpg Spyker C8 Convertible 2009 FIAT 500 Convertible 2012 4.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.41% Nissan Leaf Hatchback 2012 2.2% Maybach Landaulet Convertible 2012 1.85% Bentley Continental Supersports Conv. Convertible 2012 1.65% +348 /scratch/Teaching/cars/car_ims/006310.jpg Chrysler Town and Country Minivan 2012 Hyundai Genesis Sedan 2012 1.26% Bentley Arnage Sedan 2009 1.06% Land Rover Range Rover SUV 2012 1.04% Audi V8 Sedan 1994 1.01% Cadillac SRX SUV 2012 0.99% +349 /scratch/Teaching/cars/car_ims/016167.jpg smart fortwo Convertible 2012 Mercedes-Benz S-Class Sedan 2012 2.08% Ram C/V Cargo Van Minivan 2012 1.8% Mercedes-Benz Sprinter Van 2012 1.52% Nissan Leaf Hatchback 2012 1.36% Suzuki SX4 Sedan 2012 1.33% +350 /scratch/Teaching/cars/car_ims/015279.jpg Toyota Sequoia SUV 2012 Rolls-Royce Phantom Sedan 2012 1.13% Hyundai Genesis Sedan 2012 1.07% MINI Cooper Roadster Convertible 2012 0.93% Isuzu Ascender SUV 2008 0.85% Ford E-Series Wagon Van 2012 0.84% +351 /scratch/Teaching/cars/car_ims/015944.jpg Volvo 240 Sedan 1993 Bentley Arnage Sedan 2009 1.57% Audi S6 Sedan 2011 1.38% Land Rover Range Rover SUV 2012 1.38% Hyundai Genesis Sedan 2012 1.34% Ford E-Series Wagon Van 2012 1.32% +352 /scratch/Teaching/cars/car_ims/015578.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 2.15% Cadillac Escalade EXT Crew Cab 2007 1.96% Land Rover Range Rover SUV 2012 1.74% Ford F-450 Super Duty Crew Cab 2012 1.68% Chevrolet TrailBlazer SS 2009 1.53% +353 /scratch/Teaching/cars/car_ims/009330.jpg Ford F-150 Regular Cab 2007 GMC Savana Van 2012 1.39% Chevrolet TrailBlazer SS 2009 1.29% Jeep Liberty SUV 2012 1.09% Plymouth Neon Coupe 1999 1.07% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.06% +354 /scratch/Teaching/cars/car_ims/003812.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 1.87% Chevrolet TrailBlazer SS 2009 1.83% Ford Expedition EL SUV 2009 1.51% Bentley Arnage Sedan 2009 1.48% Dodge Ram Pickup 3500 Crew Cab 2010 1.36% +355 /scratch/Teaching/cars/car_ims/003823.jpg Buick Rainier SUV 2007 Isuzu Ascender SUV 2008 1.09% BMW X5 SUV 2007 1.01% Ford E-Series Wagon Van 2012 1.01% Hyundai Santa Fe SUV 2012 0.94% Chrysler Aspen SUV 2009 0.89% +356 /scratch/Teaching/cars/car_ims/003564.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.85% Dodge Sprinter Cargo Van 2009 1.76% GMC Savana Van 2012 1.56% Mercedes-Benz S-Class Sedan 2012 1.46% Mercedes-Benz Sprinter Van 2012 1.45% +357 /scratch/Teaching/cars/car_ims/012659.jpg Land Rover Range Rover SUV 2012 Hyundai Genesis Sedan 2012 1.19% Ford E-Series Wagon Van 2012 1.15% Isuzu Ascender SUV 2008 1.11% Ford Expedition EL SUV 2009 1.03% Dodge Ram Pickup 3500 Crew Cab 2010 1.01% +358 /scratch/Teaching/cars/car_ims/015287.jpg Toyota Sequoia SUV 2012 Isuzu Ascender SUV 2008 1.24% BMW X5 SUV 2007 1.19% Ford F-450 Super Duty Crew Cab 2012 1.17% Hyundai Santa Fe SUV 2012 1.16% Cadillac Escalade EXT Crew Cab 2007 1.15% +359 /scratch/Teaching/cars/car_ims/009173.jpg Ford GT Coupe 2006 Lamborghini Diablo Coupe 2001 36.45% Ferrari 458 Italia Convertible 2012 5.48% McLaren MP4-12C Coupe 2012 5.41% Acura Integra Type R 2001 4.57% Chevrolet HHR SS 2010 3.84% +360 /scratch/Teaching/cars/car_ims/013266.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 2.53% Ford Expedition EL SUV 2009 2.19% Ford F-450 Super Duty Crew Cab 2012 2.16% Dodge Ram Pickup 3500 Crew Cab 2010 2.14% Bentley Arnage Sedan 2009 2.11% +361 /scratch/Teaching/cars/car_ims/004553.jpg Chevrolet Corvette ZR1 2012 GMC Savana Van 2012 1.21% Ram C/V Cargo Van Minivan 2012 0.96% Mercedes-Benz Sprinter Van 2012 0.86% Lincoln Town Car Sedan 2011 0.86% FIAT 500 Convertible 2012 0.84% +362 /scratch/Teaching/cars/car_ims/009374.jpg Ford F-150 Regular Cab 2007 Volvo XC90 SUV 2007 1.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.08% Chevrolet TrailBlazer SS 2009 1.05% HUMMER H2 SUT Crew Cab 2009 1.02% Dodge Ram Pickup 3500 Quad Cab 2009 1.01% +363 /scratch/Teaching/cars/car_ims/015096.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.3% Ram C/V Cargo Van Minivan 2012 1.28% Dodge Sprinter Cargo Van 2009 1.16% Dodge Caravan Minivan 1997 1.13% +364 /scratch/Teaching/cars/car_ims/008828.jpg Ford Freestar Minivan 2007 Ferrari FF Coupe 2012 2.43% GMC Savana Van 2012 1.57% Hyundai Elantra Sedan 2007 1.33% Honda Accord Coupe 2012 1.28% BMW 1 Series Coupe 2012 1.25% +365 /scratch/Teaching/cars/car_ims/013404.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 2.82% Mercedes-Benz E-Class Sedan 2012 2.3% Chevrolet Corvette ZR1 2012 2.24% Bugatti Veyron 16.4 Coupe 2009 1.99% Bentley Mulsanne Sedan 2011 1.61% +366 /scratch/Teaching/cars/car_ims/010800.jpg Hyundai Santa Fe SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.92% Chevrolet TrailBlazer SS 2009 1.72% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.64% Ford F-450 Super Duty Crew Cab 2012 1.59% Chrysler 300 SRT-8 2010 1.53% +367 /scratch/Teaching/cars/car_ims/014414.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 4.87% Nissan Leaf Hatchback 2012 2.22% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.2% Ram C/V Cargo Van Minivan 2012 1.86% Maybach Landaulet Convertible 2012 1.7% +368 /scratch/Teaching/cars/car_ims/002266.jpg BMW 1 Series Coupe 2012 HUMMER H2 SUT Crew Cab 2009 1.52% Dodge Caliber Wagon 2007 1.49% Jeep Wrangler SUV 2012 1.43% AM General Hummer SUV 2000 1.41% HUMMER H3T Crew Cab 2010 1.28% +369 /scratch/Teaching/cars/car_ims/009733.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.86% Ford F-150 Regular Cab 2012 1.36% Chevrolet Avalanche Crew Cab 2012 1.31% Hyundai Santa Fe SUV 2012 1.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.15% +370 /scratch/Teaching/cars/car_ims/003846.jpg Buick Rainier SUV 2007 Bentley Arnage Sedan 2009 1.57% Ford F-450 Super Duty Crew Cab 2012 1.49% Land Rover Range Rover SUV 2012 1.44% BMW X5 SUV 2007 1.35% Audi S6 Sedan 2011 1.33% +371 /scratch/Teaching/cars/car_ims/014244.jpg Porsche Panamera Sedan 2012 Mercedes-Benz S-Class Sedan 2012 0.92% GMC Savana Van 2012 0.91% Acura TL Sedan 2012 0.84% BMW X3 SUV 2012 0.79% Porsche Panamera Sedan 2012 0.75% +372 /scratch/Teaching/cars/car_ims/005903.jpg Chevrolet Malibu Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 1.05% Hyundai Santa Fe SUV 2012 1.02% Land Rover Range Rover SUV 2012 1.0% BMW X5 SUV 2007 0.99% Ford E-Series Wagon Van 2012 0.98% +373 /scratch/Teaching/cars/car_ims/000029.jpg AM General Hummer SUV 2000 Mercedes-Benz C-Class Sedan 2012 1.13% Volvo XC90 SUV 2007 1.04% GMC Acadia SUV 2012 1.02% Audi S5 Coupe 2012 1.01% Ford F-450 Super Duty Crew Cab 2012 1.01% +374 /scratch/Teaching/cars/car_ims/014423.jpg Rolls-Royce Ghost Sedan 2012 Ford Expedition EL SUV 2009 1.15% Cadillac Escalade EXT Crew Cab 2007 1.14% Chevrolet Avalanche Crew Cab 2012 1.12% Dodge Ram Pickup 3500 Crew Cab 2010 1.1% Dodge Caravan Minivan 1997 1.1% +375 /scratch/Teaching/cars/car_ims/011224.jpg Hyundai Genesis Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.48% Fisker Karma Sedan 2012 1.4% Bugatti Veyron 16.4 Coupe 2009 1.4% Bentley Mulsanne Sedan 2011 1.36% Mercedes-Benz SL-Class Coupe 2009 1.25% +376 /scratch/Teaching/cars/car_ims/001451.jpg Audi 100 Wagon 1994 Cadillac Escalade EXT Crew Cab 2007 1.89% Chevrolet TrailBlazer SS 2009 1.87% Ford Expedition EL SUV 2009 1.77% Dodge Ram Pickup 3500 Crew Cab 2010 1.59% Bentley Arnage Sedan 2009 1.48% +377 /scratch/Teaching/cars/car_ims/011438.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 1.89% Ram C/V Cargo Van Minivan 2012 1.75% Daewoo Nubira Wagon 2002 1.51% Dodge Caravan Minivan 1997 1.43% Hyundai Elantra Sedan 2007 1.34% +378 /scratch/Teaching/cars/car_ims/001650.jpg Audi S5 Convertible 2012 GMC Savana Van 2012 1.39% Chevrolet Silverado 2500HD Regular Cab 2012 1.38% Honda Accord Sedan 2012 1.25% Dodge Ram Pickup 3500 Quad Cab 2009 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.1% +379 /scratch/Teaching/cars/car_ims/007592.jpg Dodge Challenger SRT8 2011 Ford E-Series Wagon Van 2012 1.6% Isuzu Ascender SUV 2008 1.51% Audi S6 Sedan 2011 1.29% Hyundai Santa Fe SUV 2012 1.24% Chrysler Aspen SUV 2009 1.2% +380 /scratch/Teaching/cars/car_ims/002115.jpg BMW ActiveHybrid 5 Sedan 2012 Audi S6 Sedan 2011 1.11% Ford E-Series Wagon Van 2012 1.04% Audi A5 Coupe 2012 1.04% Ford F-450 Super Duty Crew Cab 2012 1.01% Isuzu Ascender SUV 2008 0.98% +381 /scratch/Teaching/cars/car_ims/011727.jpg Isuzu Ascender SUV 2008 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.36% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.25% Hyundai Santa Fe SUV 2012 1.22% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% Ford F-450 Super Duty Crew Cab 2012 1.18% +382 /scratch/Teaching/cars/car_ims/013469.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 4.04% Land Rover Range Rover SUV 2012 2.06% Mercedes-Benz C-Class Sedan 2012 1.74% Ford F-450 Super Duty Crew Cab 2012 1.71% Audi S6 Sedan 2011 1.6% +383 /scratch/Teaching/cars/car_ims/001052.jpg Audi TTS Coupe 2012 GMC Savana Van 2012 2.2% Ram C/V Cargo Van Minivan 2012 2.17% Dodge Sprinter Cargo Van 2009 1.45% Lincoln Town Car Sedan 2011 1.36% Honda Odyssey Minivan 2007 1.12% +384 /scratch/Teaching/cars/car_ims/009676.jpg GMC Terrain SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.11% Ford F-450 Super Duty Crew Cab 2012 1.57% Hyundai Santa Fe SUV 2012 1.55% Dodge Ram Pickup 3500 Crew Cab 2010 1.48% Ford F-150 Regular Cab 2012 1.42% +385 /scratch/Teaching/cars/car_ims/011540.jpg Hyundai Azera Sedan 2012 Daewoo Nubira Wagon 2002 1.58% Plymouth Neon Coupe 1999 1.29% GMC Savana Van 2012 1.17% Dodge Caravan Minivan 1997 1.09% Ford Freestar Minivan 2007 0.97% +386 /scratch/Teaching/cars/car_ims/004615.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Isuzu Ascender SUV 2008 1.2% Audi A5 Coupe 2012 1.12% Mercedes-Benz Sprinter Van 2012 1.01% Audi S6 Sedan 2011 1.0% Chevrolet Silverado 2500HD Regular Cab 2012 1.0% +387 /scratch/Teaching/cars/car_ims/009898.jpg GMC Acadia SUV 2012 Ford F-450 Super Duty Crew Cab 2012 1.92% Audi S6 Sedan 2011 1.75% Hyundai Santa Fe SUV 2012 1.61% BMW X5 SUV 2007 1.57% Land Rover Range Rover SUV 2012 1.49% +388 /scratch/Teaching/cars/car_ims/001026.jpg Audi A5 Coupe 2012 BMW X5 SUV 2007 1.3% BMW X3 SUV 2012 1.26% Mercedes-Benz S-Class Sedan 2012 1.26% Audi A5 Coupe 2012 1.13% Audi S5 Coupe 2012 1.12% +389 /scratch/Teaching/cars/car_ims/012162.jpg Jeep Grand Cherokee SUV 2012 GMC Savana Van 2012 2.14% Dodge Sprinter Cargo Van 2009 1.25% Ram C/V Cargo Van Minivan 2012 1.23% Mercedes-Benz Sprinter Van 2012 1.2% Dodge Caravan Minivan 1997 1.17% +390 /scratch/Teaching/cars/car_ims/011125.jpg Hyundai Elantra Sedan 2007 HUMMER H2 SUT Crew Cab 2009 1.59% AM General Hummer SUV 2000 1.45% Bugatti Veyron 16.4 Coupe 2009 1.36% Jeep Wrangler SUV 2012 1.35% HUMMER H3T Crew Cab 2010 1.27% +391 /scratch/Teaching/cars/car_ims/015324.jpg Toyota Sequoia SUV 2012 Ford E-Series Wagon Van 2012 2.02% GMC Savana Van 2012 1.84% Isuzu Ascender SUV 2008 1.61% Mercedes-Benz Sprinter Van 2012 1.58% BMW X5 SUV 2007 1.42% +392 /scratch/Teaching/cars/car_ims/004953.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 1.42% Isuzu Ascender SUV 2008 1.27% Chevrolet Avalanche Crew Cab 2012 1.22% Dodge Caravan Minivan 1997 1.12% Ford E-Series Wagon Van 2012 1.07% +393 /scratch/Teaching/cars/car_ims/011876.jpg Jeep Patriot SUV 2012 Ford GT Coupe 2006 1.28% Plymouth Neon Coupe 1999 1.26% Bugatti Veyron 16.4 Coupe 2009 1.24% Spyker C8 Coupe 2009 1.22% Daewoo Nubira Wagon 2002 1.22% +394 /scratch/Teaching/cars/car_ims/007754.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 0.82% BMW X3 SUV 2012 0.69% Isuzu Ascender SUV 2008 0.69% BMW X5 SUV 2007 0.67% Audi S6 Sedan 2011 0.67% +395 /scratch/Teaching/cars/car_ims/008589.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 2.64% Land Rover Range Rover SUV 2012 1.75% Cadillac Escalade EXT Crew Cab 2007 1.74% Chevrolet TrailBlazer SS 2009 1.65% Chrysler 300 SRT-8 2010 1.53% +396 /scratch/Teaching/cars/car_ims/008551.jpg Fisker Karma Sedan 2012 FIAT 500 Convertible 2012 1.15% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% Mercedes-Benz E-Class Sedan 2012 1.05% Nissan Leaf Hatchback 2012 0.98% Bentley Continental Supersports Conv. Convertible 2012 0.89% +397 /scratch/Teaching/cars/car_ims/010555.jpg Honda Accord Coupe 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.65% Ferrari 458 Italia Convertible 2012 2.4% Aston Martin Virage Coupe 2012 2.29% Ferrari California Convertible 2012 2.27% Ferrari 458 Italia Coupe 2012 2.24% +398 /scratch/Teaching/cars/car_ims/009647.jpg GMC Terrain SUV 2012 Bentley Arnage Sedan 2009 1.54% Bugatti Veyron 16.4 Coupe 2009 1.18% HUMMER H2 SUT Crew Cab 2009 1.16% Chevrolet TrailBlazer SS 2009 1.03% FIAT 500 Abarth 2012 1.01% +399 /scratch/Teaching/cars/car_ims/012971.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 2.42% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% Nissan Leaf Hatchback 2012 1.46% Maybach Landaulet Convertible 2012 1.31% Daewoo Nubira Wagon 2002 1.27% +400 /scratch/Teaching/cars/car_ims/013113.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 5.69% Chevrolet Corvette Convertible 2012 5.61% Ferrari 458 Italia Convertible 2012 4.35% Ferrari 458 Italia Coupe 2012 4.12% McLaren MP4-12C Coupe 2012 4.05% +401 /scratch/Teaching/cars/car_ims/006956.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 1.54% Chevrolet Avalanche Crew Cab 2012 1.09% Ford E-Series Wagon Van 2012 0.99% Dodge Caravan Minivan 1997 0.96% Honda Odyssey Minivan 2007 0.96% +402 /scratch/Teaching/cars/car_ims/010404.jpg Honda Odyssey Minivan 2012 Bentley Arnage Sedan 2009 3.6% FIAT 500 Abarth 2012 1.74% Land Rover Range Rover SUV 2012 1.66% Chrysler 300 SRT-8 2010 1.45% Chevrolet TrailBlazer SS 2009 1.44% +403 /scratch/Teaching/cars/car_ims/013135.jpg McLaren MP4-12C Coupe 2012 Dodge Caliber Wagon 2007 3.74% BMW 1 Series Coupe 2012 3.0% Ferrari FF Coupe 2012 2.48% McLaren MP4-12C Coupe 2012 1.99% Ferrari 458 Italia Convertible 2012 1.92% +404 /scratch/Teaching/cars/car_ims/011991.jpg Jeep Wrangler SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.36% Chevrolet Avalanche Crew Cab 2012 1.32% GMC Savana Van 2012 1.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.22% +405 /scratch/Teaching/cars/car_ims/002250.jpg BMW 1 Series Coupe 2012 Ferrari 458 Italia Convertible 2012 2.11% Ferrari 458 Italia Coupe 2012 1.85% Volvo C30 Hatchback 2012 1.84% Geo Metro Convertible 1993 1.79% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.76% +406 /scratch/Teaching/cars/car_ims/013497.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 0.88% Nissan Juke Hatchback 2012 0.79% Jeep Patriot SUV 2012 0.76% Jeep Compass SUV 2012 0.73% Volkswagen Golf Hatchback 1991 0.73% +407 /scratch/Teaching/cars/car_ims/011077.jpg Hyundai Elantra Sedan 2007 FIAT 500 Convertible 2012 2.18% Ram C/V Cargo Van Minivan 2012 1.9% GMC Savana Van 2012 1.42% Dodge Sprinter Cargo Van 2009 1.29% Nissan Leaf Hatchback 2012 1.27% +408 /scratch/Teaching/cars/car_ims/015949.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 1.48% Mercedes-Benz S-Class Sedan 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.37% Isuzu Ascender SUV 2008 1.19% Audi S6 Sedan 2011 1.16% +409 /scratch/Teaching/cars/car_ims/003900.jpg Buick Verano Sedan 2012 Ford GT Coupe 2006 1.56% FIAT 500 Convertible 2012 1.55% Daewoo Nubira Wagon 2002 1.3% Hyundai Elantra Sedan 2007 1.25% Chevrolet Sonic Sedan 2012 1.18% +410 /scratch/Teaching/cars/car_ims/009294.jpg Ford F-150 Regular Cab 2007 HUMMER H2 SUT Crew Cab 2009 1.7% HUMMER H3T Crew Cab 2010 1.47% AM General Hummer SUV 2000 1.41% Bentley Arnage Sedan 2009 1.24% Bugatti Veyron 16.4 Coupe 2009 1.16% +411 /scratch/Teaching/cars/car_ims/013363.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 2.54% HUMMER H2 SUT Crew Cab 2009 1.63% Audi S5 Convertible 2012 1.62% Fisker Karma Sedan 2012 1.62% Chevrolet Corvette ZR1 2012 1.57% +412 /scratch/Teaching/cars/car_ims/005909.jpg Chevrolet Malibu Sedan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.84% Ford F-450 Super Duty Crew Cab 2012 1.51% Chevrolet Silverado 2500HD Regular Cab 2012 1.41% Chrysler 300 SRT-8 2010 1.31% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.3% +413 /scratch/Teaching/cars/car_ims/012223.jpg Jeep Compass SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.62% MINI Cooper Roadster Convertible 2012 1.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.37% Mercedes-Benz Sprinter Van 2012 1.24% Suzuki SX4 Sedan 2012 1.15% +414 /scratch/Teaching/cars/car_ims/001412.jpg Audi 100 Wagon 1994 MINI Cooper Roadster Convertible 2012 1.94% Ford E-Series Wagon Van 2012 1.8% Audi S6 Sedan 2011 1.53% Hyundai Genesis Sedan 2012 1.49% Mercedes-Benz S-Class Sedan 2012 1.46% +415 /scratch/Teaching/cars/car_ims/012399.jpg Lamborghini Aventador Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.89% Honda Odyssey Minivan 2007 1.75% Dodge Caravan Minivan 1997 1.72% Mercedes-Benz Sprinter Van 2012 1.49% Daewoo Nubira Wagon 2002 1.38% +416 /scratch/Teaching/cars/car_ims/007952.jpg Dodge Charger SRT-8 2009 Chevrolet TrailBlazer SS 2009 1.68% HUMMER H2 SUT Crew Cab 2009 1.54% Bentley Arnage Sedan 2009 1.52% Chrysler 300 SRT-8 2010 1.34% Cadillac Escalade EXT Crew Cab 2007 1.07% +417 /scratch/Teaching/cars/car_ims/009266.jpg Ford F-150 Regular Cab 2012 Ford F-450 Super Duty Crew Cab 2012 1.37% Audi S6 Sedan 2011 1.31% Mercedes-Benz C-Class Sedan 2012 1.3% Volvo XC90 SUV 2007 1.2% Toyota Sequoia SUV 2012 1.2% +418 /scratch/Teaching/cars/car_ims/009440.jpg Ford Focus Sedan 2007 MINI Cooper Roadster Convertible 2012 2.44% Mercedes-Benz S-Class Sedan 2012 2.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.85% Mercedes-Benz E-Class Sedan 2012 1.45% Bugatti Veyron 16.4 Convertible 2009 1.2% +419 /scratch/Teaching/cars/car_ims/013751.jpg Mitsubishi Lancer Sedan 2012 Bentley Arnage Sedan 2009 3.36% FIAT 500 Abarth 2012 1.63% Hyundai Genesis Sedan 2012 1.52% Land Rover Range Rover SUV 2012 1.4% Mercedes-Benz C-Class Sedan 2012 1.33% +420 /scratch/Teaching/cars/car_ims/013403.jpg Mercedes-Benz SL-Class Coupe 2009 BMW X5 SUV 2007 1.57% Cadillac Escalade EXT Crew Cab 2007 1.52% Hyundai Santa Fe SUV 2012 1.46% Ford F-450 Super Duty Crew Cab 2012 1.42% Ford F-150 Regular Cab 2012 1.28% +421 /scratch/Teaching/cars/car_ims/005810.jpg Chevrolet Monte Carlo Coupe 2007 Bentley Arnage Sedan 2009 2.28% Chevrolet TrailBlazer SS 2009 1.76% HUMMER H2 SUT Crew Cab 2009 1.48% FIAT 500 Abarth 2012 1.43% Jeep Patriot SUV 2012 1.28% +422 /scratch/Teaching/cars/car_ims/000698.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 1.53% Audi A5 Coupe 2012 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.28% Honda Accord Sedan 2012 1.13% Chevrolet Silverado 1500 Regular Cab 2012 1.1% +423 /scratch/Teaching/cars/car_ims/002327.jpg BMW 3 Series Sedan 2012 Ferrari 458 Italia Convertible 2012 2.96% Ferrari California Convertible 2012 2.52% McLaren MP4-12C Coupe 2012 2.38% Ferrari 458 Italia Coupe 2012 2.35% Aston Martin Virage Coupe 2012 2.26% +424 /scratch/Teaching/cars/car_ims/005186.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 1.45% Ram C/V Cargo Van Minivan 2012 1.4% Lincoln Town Car Sedan 2011 1.23% Dodge Caravan Minivan 1997 1.16% Daewoo Nubira Wagon 2002 1.16% +425 /scratch/Teaching/cars/car_ims/002812.jpg BMW M5 Sedan 2010 AM General Hummer SUV 2000 2.17% HUMMER H2 SUT Crew Cab 2009 1.93% Mercedes-Benz 300-Class Convertible 1993 1.56% HUMMER H3T Crew Cab 2010 1.53% Bugatti Veyron 16.4 Coupe 2009 1.49% +426 /scratch/Teaching/cars/car_ims/014385.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.64% Mercedes-Benz S-Class Sedan 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.33% Dodge Caravan Minivan 1997 1.33% Honda Odyssey Minivan 2007 1.23% +427 /scratch/Teaching/cars/car_ims/009864.jpg GMC Acadia SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.13% Bentley Arnage Sedan 2009 1.74% Chevrolet TrailBlazer SS 2009 1.73% Land Rover Range Rover SUV 2012 1.67% Ford Expedition EL SUV 2009 1.63% +428 /scratch/Teaching/cars/car_ims/005652.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 1.9% Ram C/V Cargo Van Minivan 2012 1.58% Lincoln Town Car Sedan 2011 1.31% Honda Odyssey Minivan 2007 1.11% Dodge Sprinter Cargo Van 2009 1.1% +429 /scratch/Teaching/cars/car_ims/009984.jpg GMC Canyon Extended Cab 2012 Plymouth Neon Coupe 1999 1.32% Chevrolet TrailBlazer SS 2009 1.29% Daewoo Nubira Wagon 2002 1.28% Jeep Liberty SUV 2012 1.19% Ford Expedition EL SUV 2009 1.18% +430 /scratch/Teaching/cars/car_ims/014469.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 3.45% Land Rover Range Rover SUV 2012 2.5% Cadillac Escalade EXT Crew Cab 2007 1.99% Ford Expedition EL SUV 2009 1.89% Ford F-450 Super Duty Crew Cab 2012 1.77% +431 /scratch/Teaching/cars/car_ims/005406.jpg Chevrolet Malibu Hybrid Sedan 2010 Chevrolet Silverado 2500HD Regular Cab 2012 1.35% GMC Savana Van 2012 1.29% Chevrolet Silverado 1500 Regular Cab 2012 1.26% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% Chevrolet Silverado 1500 Extended Cab 2012 1.19% +432 /scratch/Teaching/cars/car_ims/003969.jpg Buick Enclave SUV 2012 GMC Savana Van 2012 2.01% Dodge Caravan Minivan 1997 1.18% Hyundai Tucson SUV 2012 1.07% Chevrolet Traverse SUV 2012 1.06% Chevrolet Avalanche Crew Cab 2012 1.04% +433 /scratch/Teaching/cars/car_ims/012313.jpg Lamborghini Reventon Coupe 2008 Bugatti Veyron 16.4 Coupe 2009 1.8% Mercedes-Benz E-Class Sedan 2012 1.61% Fisker Karma Sedan 2012 1.45% Bentley Mulsanne Sedan 2011 1.41% Chevrolet Corvette ZR1 2012 1.3% +434 /scratch/Teaching/cars/car_ims/014768.jpg Spyker C8 Coupe 2009 AM General Hummer SUV 2000 2.67% HUMMER H3T Crew Cab 2010 2.29% HUMMER H2 SUT Crew Cab 2009 2.2% Dodge Caliber Wagon 2007 2.1% Aston Martin Virage Coupe 2012 2.1% +435 /scratch/Teaching/cars/car_ims/002802.jpg BMW M5 Sedan 2010 Ford E-Series Wagon Van 2012 1.65% Isuzu Ascender SUV 2008 1.46% BMW X5 SUV 2007 1.35% Hyundai Santa Fe SUV 2012 1.23% Mercedes-Benz Sprinter Van 2012 1.17% +436 /scratch/Teaching/cars/car_ims/013139.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 23.18% McLaren MP4-12C Coupe 2012 6.09% Ferrari 458 Italia Convertible 2012 5.03% Acura Integra Type R 2001 4.66% Aston Martin Virage Coupe 2012 4.34% +437 /scratch/Teaching/cars/car_ims/004653.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 1.86% Chevrolet Avalanche Crew Cab 2012 1.36% Chevrolet Silverado 1500 Extended Cab 2012 1.24% Chevrolet Silverado 1500 Regular Cab 2012 1.24% Chevrolet Silverado 2500HD Regular Cab 2012 1.24% +438 /scratch/Teaching/cars/car_ims/004806.jpg Chevrolet Camaro Convertible 2012 Dodge Caliber Wagon 2007 2.22% BMW 1 Series Coupe 2012 2.14% Aston Martin Virage Coupe 2012 1.81% McLaren MP4-12C Coupe 2012 1.79% Ferrari 458 Italia Coupe 2012 1.73% +439 /scratch/Teaching/cars/car_ims/007292.jpg Dodge Journey SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.63% MINI Cooper Roadster Convertible 2012 1.41% Hyundai Genesis Sedan 2012 1.03% BMW X3 SUV 2012 1.03% Hyundai Azera Sedan 2012 1.01% +440 /scratch/Teaching/cars/car_ims/003526.jpg Bentley Continental Flying Spur Sedan 2007 Audi S6 Sedan 2011 1.18% Ford F-450 Super Duty Crew Cab 2012 1.16% BMW X5 SUV 2007 1.07% Volvo XC90 SUV 2007 1.07% Toyota Sequoia SUV 2012 1.03% +441 /scratch/Teaching/cars/car_ims/012011.jpg Jeep Wrangler SUV 2012 Aston Martin Virage Coupe 2012 4.54% Ferrari 458 Italia Convertible 2012 4.26% McLaren MP4-12C Coupe 2012 4.23% Ferrari 458 Italia Coupe 2012 4.15% Chevrolet Corvette Convertible 2012 3.46% +442 /scratch/Teaching/cars/car_ims/012291.jpg Lamborghini Reventon Coupe 2008 Cadillac Escalade EXT Crew Cab 2007 1.16% Ford Expedition EL SUV 2009 1.11% Daewoo Nubira Wagon 2002 1.07% Plymouth Neon Coupe 1999 1.06% Dodge Ram Pickup 3500 Crew Cab 2010 1.04% +443 /scratch/Teaching/cars/car_ims/013933.jpg Nissan Juke Hatchback 2012 Bentley Arnage Sedan 2009 1.55% FIAT 500 Abarth 2012 1.19% Land Rover Range Rover SUV 2012 1.13% Jeep Patriot SUV 2012 1.13% Chrysler 300 SRT-8 2010 1.07% +444 /scratch/Teaching/cars/car_ims/007158.jpg Dodge Sprinter Cargo Van 2009 Bentley Arnage Sedan 2009 1.83% Bentley Mulsanne Sedan 2011 1.3% Mercedes-Benz C-Class Sedan 2012 1.24% Hyundai Genesis Sedan 2012 1.17% Bugatti Veyron 16.4 Coupe 2009 1.09% +445 /scratch/Teaching/cars/car_ims/010652.jpg Honda Accord Sedan 2012 Bentley Arnage Sedan 2009 2.32% Bentley Mulsanne Sedan 2011 1.43% FIAT 500 Abarth 2012 1.27% Hyundai Genesis Sedan 2012 1.26% Mercedes-Benz C-Class Sedan 2012 1.26% +446 /scratch/Teaching/cars/car_ims/000416.jpg Acura Integra Type R 2001 Aston Martin Virage Coupe 2012 5.79% Chevrolet Corvette Convertible 2012 5.58% Ferrari 458 Italia Convertible 2012 5.57% McLaren MP4-12C Coupe 2012 5.35% Lamborghini Diablo Coupe 2001 5.29% +447 /scratch/Teaching/cars/car_ims/014945.jpg Suzuki Kizashi Sedan 2012 Aston Martin Virage Coupe 2012 2.45% Ferrari California Convertible 2012 2.38% Ferrari 458 Italia Convertible 2012 2.31% McLaren MP4-12C Coupe 2012 2.29% Ferrari 458 Italia Coupe 2012 2.23% +448 /scratch/Teaching/cars/car_ims/005530.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Mercedes-Benz E-Class Sedan 2012 2.01% Fisker Karma Sedan 2012 1.56% Mercedes-Benz S-Class Sedan 2012 1.55% MINI Cooper Roadster Convertible 2012 1.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.31% +449 /scratch/Teaching/cars/car_ims/001845.jpg Audi S4 Sedan 2012 GMC Savana Van 2012 2.05% Ram C/V Cargo Van Minivan 2012 1.81% Lincoln Town Car Sedan 2011 1.44% Dodge Caravan Minivan 1997 1.35% Honda Odyssey Minivan 2007 1.23% +450 /scratch/Teaching/cars/car_ims/004226.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet TrailBlazer SS 2009 0.95% Bentley Arnage Sedan 2009 0.93% Ford Expedition EL SUV 2009 0.88% Chrysler 300 SRT-8 2010 0.85% Hyundai Genesis Sedan 2012 0.83% +451 /scratch/Teaching/cars/car_ims/002516.jpg BMW 6 Series Convertible 2007 Audi A5 Coupe 2012 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.9% Acura TL Sedan 2012 0.88% Isuzu Ascender SUV 2008 0.88% Honda Accord Sedan 2012 0.86% +452 /scratch/Teaching/cars/car_ims/011648.jpg Infiniti QX56 SUV 2011 Mercedes-Benz S-Class Sedan 2012 1.65% Dodge Sprinter Cargo Van 2009 1.43% Mercedes-Benz Sprinter Van 2012 1.39% Ram C/V Cargo Van Minivan 2012 1.38% Mercedes-Benz E-Class Sedan 2012 1.34% +453 /scratch/Teaching/cars/car_ims/005093.jpg Chevrolet Sonic Sedan 2012 Dodge Caliber Wagon 2007 2.04% BMW 1 Series Coupe 2012 1.73% Ferrari 458 Italia Coupe 2012 1.72% Chevrolet Corvette Convertible 2012 1.67% Aston Martin Virage Coupe 2012 1.65% +454 /scratch/Teaching/cars/car_ims/008321.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 5.96% Ferrari California Convertible 2012 5.26% McLaren MP4-12C Coupe 2012 4.6% Aston Martin Virage Coupe 2012 4.0% Ferrari 458 Italia Coupe 2012 3.92% +455 /scratch/Teaching/cars/car_ims/014458.jpg Rolls-Royce Ghost Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.47% Ford F-450 Super Duty Crew Cab 2012 1.43% Land Rover Range Rover SUV 2012 1.39% Dodge Ram Pickup 3500 Crew Cab 2010 1.35% Ford Expedition EL SUV 2009 1.31% +456 /scratch/Teaching/cars/car_ims/011027.jpg Hyundai Sonata Hybrid Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 1.25% Dodge Caliber Wagon 2007 1.22% HUMMER H2 SUT Crew Cab 2009 1.1% AM General Hummer SUV 2000 1.1% HUMMER H3T Crew Cab 2010 1.1% +457 /scratch/Teaching/cars/car_ims/010038.jpg GMC Savana Van 2012 Cadillac Escalade EXT Crew Cab 2007 1.33% Land Rover Range Rover SUV 2012 1.31% Bentley Arnage Sedan 2009 1.14% Chevrolet TrailBlazer SS 2009 1.14% Chrysler 300 SRT-8 2010 1.14% +458 /scratch/Teaching/cars/car_ims/009238.jpg Ford F-150 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.78% Chevrolet TrailBlazer SS 2009 1.61% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% GMC Savana Van 2012 1.4% HUMMER H2 SUT Crew Cab 2009 1.23% +459 /scratch/Teaching/cars/car_ims/002093.jpg BMW ActiveHybrid 5 Sedan 2012 Mercedes-Benz E-Class Sedan 2012 0.98% Hyundai Azera Sedan 2012 0.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.85% Bugatti Veyron 16.4 Coupe 2009 0.83% Bentley Continental Supersports Conv. Convertible 2012 0.82% +460 /scratch/Teaching/cars/car_ims/007336.jpg Dodge Dakota Crew Cab 2010 Rolls-Royce Phantom Sedan 2012 1.71% Hyundai Genesis Sedan 2012 1.63% MINI Cooper Roadster Convertible 2012 1.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.5% Fisker Karma Sedan 2012 1.48% +461 /scratch/Teaching/cars/car_ims/011947.jpg Jeep Wrangler SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% MINI Cooper Roadster Convertible 2012 1.02% Ram C/V Cargo Van Minivan 2012 0.99% Suzuki SX4 Sedan 2012 0.99% +462 /scratch/Teaching/cars/car_ims/003886.jpg Buick Rainier SUV 2007 Mercedes-Benz 300-Class Convertible 1993 1.81% Ford GT Coupe 2006 1.58% AM General Hummer SUV 2000 1.43% HUMMER H2 SUT Crew Cab 2009 1.37% HUMMER H3T Crew Cab 2010 1.33% +463 /scratch/Teaching/cars/car_ims/013212.jpg Mercedes-Benz 300-Class Convertible 1993 Isuzu Ascender SUV 2008 1.38% Ford Expedition EL SUV 2009 1.12% Dodge Ram Pickup 3500 Crew Cab 2010 1.06% Chevrolet Silverado 2500HD Regular Cab 2012 1.06% Chevrolet Silverado 1500 Extended Cab 2012 0.99% +464 /scratch/Teaching/cars/car_ims/006447.jpg Chrysler Crossfire Convertible 2008 Audi S6 Sedan 2011 1.95% Ford F-450 Super Duty Crew Cab 2012 1.91% BMW X5 SUV 2007 1.74% Hyundai Santa Fe SUV 2012 1.61% Ford E-Series Wagon Van 2012 1.49% +465 /scratch/Teaching/cars/car_ims/014069.jpg Nissan 240SX Coupe 1998 Hyundai Genesis Sedan 2012 1.37% MINI Cooper Roadster Convertible 2012 1.34% Rolls-Royce Phantom Sedan 2012 1.13% Bentley Arnage Sedan 2009 1.11% Hyundai Azera Sedan 2012 1.07% +466 /scratch/Teaching/cars/car_ims/001355.jpg Audi 100 Sedan 1994 Mercedes-Benz E-Class Sedan 2012 1.56% Mercedes-Benz 300-Class Convertible 1993 1.49% Fisker Karma Sedan 2012 1.45% Ford GT Coupe 2006 1.35% Bugatti Veyron 16.4 Coupe 2009 1.26% +467 /scratch/Teaching/cars/car_ims/012077.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.49% Chevrolet TrailBlazer SS 2009 1.89% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.87% Ford Expedition EL SUV 2009 1.74% Ford F-450 Super Duty Crew Cab 2012 1.7% +468 /scratch/Teaching/cars/car_ims/005632.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.63% Chevrolet TrailBlazer SS 2009 1.38% Chrysler 300 SRT-8 2010 1.36% Cadillac Escalade EXT Crew Cab 2007 1.24% Chevrolet Silverado 1500 Regular Cab 2012 1.18% +469 /scratch/Teaching/cars/car_ims/000453.jpg Acura Integra Type R 2001 Chevrolet TrailBlazer SS 2009 1.46% Chrysler 300 SRT-8 2010 1.34% HUMMER H2 SUT Crew Cab 2009 1.25% Bentley Arnage Sedan 2009 1.08% Cadillac Escalade EXT Crew Cab 2007 1.07% +470 /scratch/Teaching/cars/car_ims/015438.jpg Toyota Corolla Sedan 2012 McLaren MP4-12C Coupe 2012 2.11% Ferrari 458 Italia Convertible 2012 1.98% Ferrari 458 Italia Coupe 2012 1.93% Aston Martin Virage Coupe 2012 1.91% Ferrari California Convertible 2012 1.91% +471 /scratch/Teaching/cars/car_ims/011934.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 1.35% BMW X5 SUV 2007 1.02% Hyundai Tucson SUV 2012 1.01% Dodge Caravan Minivan 1997 0.98% Isuzu Ascender SUV 2008 0.97% +472 /scratch/Teaching/cars/car_ims/007109.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Isuzu Ascender SUV 2008 1.53% Chevrolet Silverado 2500HD Regular Cab 2012 1.41% Chevrolet Avalanche Crew Cab 2012 1.34% Ford F-150 Regular Cab 2012 1.3% Hyundai Santa Fe SUV 2012 1.23% +473 /scratch/Teaching/cars/car_ims/001523.jpg Audi TT Hatchback 2011 MINI Cooper Roadster Convertible 2012 3.03% Mercedes-Benz S-Class Sedan 2012 2.94% Mercedes-Benz Sprinter Van 2012 1.86% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.74% Suzuki SX4 Sedan 2012 1.28% +474 /scratch/Teaching/cars/car_ims/012994.jpg Mazda Tribute SUV 2011 Hyundai Genesis Sedan 2012 1.36% Rolls-Royce Phantom Sedan 2012 1.3% MINI Cooper Roadster Convertible 2012 1.28% Fisker Karma Sedan 2012 1.28% Mercedes-Benz 300-Class Convertible 1993 1.16% +475 /scratch/Teaching/cars/car_ims/005420.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 0.93% Isuzu Ascender SUV 2008 0.88% Dodge Caravan Minivan 1997 0.85% Chevrolet Avalanche Crew Cab 2012 0.83% Ford Expedition EL SUV 2009 0.8% +476 /scratch/Teaching/cars/car_ims/003607.jpg Bugatti Veyron 16.4 Convertible 2009 Mercedes-Benz 300-Class Convertible 1993 1.12% Bugatti Veyron 16.4 Coupe 2009 1.03% Mercedes-Benz E-Class Sedan 2012 0.98% Fisker Karma Sedan 2012 0.95% Hyundai Azera Sedan 2012 0.88% +477 /scratch/Teaching/cars/car_ims/014653.jpg Scion xD Hatchback 2012 Hyundai Genesis Sedan 2012 1.53% MINI Cooper Roadster Convertible 2012 1.48% Rolls-Royce Phantom Sedan 2012 1.46% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.28% Fisker Karma Sedan 2012 1.13% +478 /scratch/Teaching/cars/car_ims/002912.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 2.38% Ram C/V Cargo Van Minivan 2012 2.08% Ferrari FF Coupe 2012 1.74% FIAT 500 Convertible 2012 1.42% Lincoln Town Car Sedan 2011 1.39% +479 /scratch/Teaching/cars/car_ims/011037.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 1.35% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% Dodge Ram Pickup 3500 Quad Cab 2009 1.11% Chevrolet Silverado 1500 Regular Cab 2012 1.11% Honda Accord Sedan 2012 1.11% +480 /scratch/Teaching/cars/car_ims/013104.jpg McLaren MP4-12C Coupe 2012 Isuzu Ascender SUV 2008 1.44% BMW X5 SUV 2007 1.3% GMC Savana Van 2012 1.21% Ford F-150 Regular Cab 2012 1.19% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% +481 /scratch/Teaching/cars/car_ims/003769.jpg Buick Regal GS 2012 Fisker Karma Sedan 2012 3.13% Mercedes-Benz 300-Class Convertible 1993 3.02% Mercedes-Benz E-Class Sedan 2012 2.74% HUMMER H2 SUT Crew Cab 2009 1.94% Chevrolet Corvette ZR1 2012 1.93% +482 /scratch/Teaching/cars/car_ims/006031.jpg Chevrolet Silverado 1500 Regular Cab 2012 HUMMER H2 SUT Crew Cab 2009 3.3% Jeep Wrangler SUV 2012 2.99% HUMMER H3T Crew Cab 2010 2.27% Dodge Caliber Wagon 2007 1.87% AM General Hummer SUV 2000 1.87% +483 /scratch/Teaching/cars/car_ims/002655.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 3.36% FIAT 500 Abarth 2012 1.69% Land Rover Range Rover SUV 2012 1.6% Chrysler 300 SRT-8 2010 1.43% Chevrolet TrailBlazer SS 2009 1.42% +484 /scratch/Teaching/cars/car_ims/014170.jpg Plymouth Neon Coupe 1999 Ferrari 458 Italia Convertible 2012 3.65% Ferrari 458 Italia Coupe 2012 3.26% Chevrolet Corvette Convertible 2012 3.17% Aston Martin Virage Coupe 2012 2.99% Ferrari California Convertible 2012 2.92% +485 /scratch/Teaching/cars/car_ims/006724.jpg Dodge Caliber Wagon 2012 Daewoo Nubira Wagon 2002 1.65% Dodge Caravan Minivan 1997 1.19% Plymouth Neon Coupe 1999 1.17% Nissan Leaf Hatchback 2012 1.06% Hyundai Elantra Sedan 2007 1.0% +486 /scratch/Teaching/cars/car_ims/002363.jpg BMW 3 Series Wagon 2012 Audi S6 Sedan 2011 1.28% Audi A5 Coupe 2012 1.28% Ford F-450 Super Duty Crew Cab 2012 1.18% Isuzu Ascender SUV 2008 1.15% Ford E-Series Wagon Van 2012 1.09% +487 /scratch/Teaching/cars/car_ims/000128.jpg Acura RL Sedan 2012 Bentley Arnage Sedan 2009 2.3% Hyundai Genesis Sedan 2012 1.74% Bentley Mulsanne Sedan 2011 1.43% Mercedes-Benz C-Class Sedan 2012 1.41% FIAT 500 Abarth 2012 1.28% +488 /scratch/Teaching/cars/car_ims/000984.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.45% Chevrolet TrailBlazer SS 2009 2.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.77% Chrysler 300 SRT-8 2010 1.68% HUMMER H2 SUT Crew Cab 2009 1.59% +489 /scratch/Teaching/cars/car_ims/007998.jpg Eagle Talon Hatchback 1998 GMC Savana Van 2012 1.92% Dodge Sprinter Cargo Van 2009 1.19% Ram C/V Cargo Van Minivan 2012 1.09% Chevrolet Express Cargo Van 2007 1.04% Honda Accord Sedan 2012 0.9% +490 /scratch/Teaching/cars/car_ims/013245.jpg Mercedes-Benz C-Class Sedan 2012 Bentley Arnage Sedan 2009 3.36% Ford F-450 Super Duty Crew Cab 2012 2.54% Land Rover Range Rover SUV 2012 2.48% Audi S6 Sedan 2011 2.12% Hyundai Santa Fe SUV 2012 1.94% +491 /scratch/Teaching/cars/car_ims/009214.jpg Ford F-150 Regular Cab 2012 Audi S6 Sedan 2011 1.67% Audi A5 Coupe 2012 1.58% Mercedes-Benz S-Class Sedan 2012 1.52% BMW X5 SUV 2007 1.47% Mercedes-Benz Sprinter Van 2012 1.36% +492 /scratch/Teaching/cars/car_ims/013574.jpg Mercedes-Benz S-Class Sedan 2012 GMC Savana Van 2012 1.01% Honda Odyssey Minivan 2007 1.0% Mercedes-Benz S-Class Sedan 2012 0.92% Mercedes-Benz Sprinter Van 2012 0.87% Dodge Caravan Minivan 1997 0.83% +493 /scratch/Teaching/cars/car_ims/015307.jpg Toyota Sequoia SUV 2012 Mercedes-Benz Sprinter Van 2012 1.61% Dodge Sprinter Cargo Van 2009 1.49% Mercedes-Benz S-Class Sedan 2012 1.41% GMC Savana Van 2012 1.39% Audi A5 Coupe 2012 1.32% +494 /scratch/Teaching/cars/car_ims/015848.jpg Volvo C30 Hatchback 2012 Ferrari 458 Italia Convertible 2012 5.49% Aston Martin Virage Coupe 2012 4.84% Ferrari California Convertible 2012 4.38% Ferrari 458 Italia Coupe 2012 4.32% Chevrolet Corvette Convertible 2012 4.25% +495 /scratch/Teaching/cars/car_ims/010136.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Coupe 2012 2.46% Ferrari 458 Italia Convertible 2012 2.43% Ferrari FF Coupe 2012 2.2% Dodge Caliber Wagon 2007 2.08% Ferrari California Convertible 2012 1.97% +496 /scratch/Teaching/cars/car_ims/003459.jpg Bentley Continental GT Coupe 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.02% Chevrolet TrailBlazer SS 2009 1.85% HUMMER H2 SUT Crew Cab 2009 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.59% Chrysler 300 SRT-8 2010 1.44% +497 /scratch/Teaching/cars/car_ims/015818.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Convertible 2012 2.97% Ferrari 458 Italia Coupe 2012 2.75% Geo Metro Convertible 1993 2.58% BMW 1 Series Coupe 2012 2.51% Chevrolet Corvette Convertible 2012 2.48% +498 /scratch/Teaching/cars/car_ims/007766.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.73% Ford Expedition EL SUV 2009 2.12% Dodge Ram Pickup 3500 Crew Cab 2010 1.95% Land Rover Range Rover SUV 2012 1.83% Chevrolet TrailBlazer SS 2009 1.74% +499 /scratch/Teaching/cars/car_ims/003391.jpg Bentley Continental GT Coupe 2012 MINI Cooper Roadster Convertible 2012 1.81% Mercedes-Benz S-Class Sedan 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.2% Hyundai Genesis Sedan 2012 1.1% Mercedes-Benz E-Class Sedan 2012 1.06% +500 /scratch/Teaching/cars/car_ims/007805.jpg Dodge Charger Sedan 2012 Aston Martin Virage Coupe 2012 2.55% McLaren MP4-12C Coupe 2012 2.42% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.38% Ferrari 458 Italia Coupe 2012 2.35% Audi TT RS Coupe 2012 2.35% +501 /scratch/Teaching/cars/car_ims/002965.jpg BMW X3 SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.64% MINI Cooper Roadster Convertible 2012 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.38% Mercedes-Benz E-Class Sedan 2012 1.31% Bugatti Veyron 16.4 Convertible 2009 0.99% +502 /scratch/Teaching/cars/car_ims/007262.jpg Dodge Journey SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.37% Isuzu Ascender SUV 2008 1.37% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% Ford F-450 Super Duty Crew Cab 2012 1.17% Audi A5 Coupe 2012 1.12% +503 /scratch/Teaching/cars/car_ims/005585.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Audi S6 Sedan 2011 1.94% Ford F-450 Super Duty Crew Cab 2012 1.88% Isuzu Ascender SUV 2008 1.64% Ford E-Series Wagon Van 2012 1.54% Hyundai Santa Fe SUV 2012 1.48% +504 /scratch/Teaching/cars/car_ims/015036.jpg Suzuki SX4 Hatchback 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.69% Dodge Caliber Wagon 2007 1.6% AM General Hummer SUV 2000 1.42% Jeep Wrangler SUV 2012 1.34% Aston Martin Virage Coupe 2012 1.33% +505 /scratch/Teaching/cars/car_ims/000892.jpg Audi RS 4 Convertible 2008 Cadillac Escalade EXT Crew Cab 2007 2.09% Ford Expedition EL SUV 2009 1.85% Chevrolet TrailBlazer SS 2009 1.76% Dodge Ram Pickup 3500 Crew Cab 2010 1.69% Land Rover Range Rover SUV 2012 1.33% +506 /scratch/Teaching/cars/car_ims/002195.jpg BMW 1 Series Coupe 2012 Lamborghini Diablo Coupe 2001 13.63% Aston Martin Virage Coupe 2012 5.68% McLaren MP4-12C Coupe 2012 5.19% Acura Integra Type R 2001 5.05% Ferrari California Convertible 2012 3.99% +507 /scratch/Teaching/cars/car_ims/000546.jpg Acura ZDX Hatchback 2012 GMC Savana Van 2012 1.38% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% Dodge Ram Pickup 3500 Quad Cab 2009 1.18% Honda Accord Sedan 2012 1.16% Chevrolet Silverado 1500 Extended Cab 2012 1.07% +508 /scratch/Teaching/cars/car_ims/001117.jpg Audi TTS Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.83% Mercedes-Benz S-Class Sedan 2012 1.71% Mercedes-Benz Sprinter Van 2012 1.65% Dodge Sprinter Cargo Van 2009 1.4% Volkswagen Golf Hatchback 2012 1.31% +509 /scratch/Teaching/cars/car_ims/014807.jpg Spyker C8 Coupe 2009 Ford E-Series Wagon Van 2012 1.13% Hyundai Genesis Sedan 2012 1.1% Audi S6 Sedan 2011 0.97% Hyundai Santa Fe SUV 2012 0.94% BMW X5 SUV 2007 0.94% +510 /scratch/Teaching/cars/car_ims/012191.jpg Jeep Grand Cherokee SUV 2012 Dodge Caliber Wagon 2007 2.9% BMW 1 Series Coupe 2012 2.24% Ferrari FF Coupe 2012 1.66% GMC Savana Van 2012 1.58% Volkswagen Golf Hatchback 1991 1.5% +511 /scratch/Teaching/cars/car_ims/007101.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 2.05% Ram C/V Cargo Van Minivan 2012 1.84% Lincoln Town Car Sedan 2011 1.35% Dodge Sprinter Cargo Van 2009 1.12% Daewoo Nubira Wagon 2002 1.09% +512 /scratch/Teaching/cars/car_ims/011872.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 2.26% Chevrolet Avalanche Crew Cab 2012 1.46% Isuzu Ascender SUV 2008 1.3% Ford F-150 Regular Cab 2012 1.26% Dodge Caravan Minivan 1997 1.22% +513 /scratch/Teaching/cars/car_ims/015234.jpg Tesla Model S Sedan 2012 Bentley Arnage Sedan 2009 1.25% Land Rover Range Rover SUV 2012 1.13% GMC Yukon Hybrid SUV 2012 1.08% Ford F-450 Super Duty Crew Cab 2012 1.01% Hyundai Santa Fe SUV 2012 1.01% +514 /scratch/Teaching/cars/car_ims/014883.jpg Suzuki Aerio Sedan 2007 Ram C/V Cargo Van Minivan 2012 2.43% GMC Savana Van 2012 2.05% FIAT 500 Convertible 2012 1.69% Lincoln Town Car Sedan 2011 1.51% Ferrari FF Coupe 2012 1.46% +515 /scratch/Teaching/cars/car_ims/009194.jpg Ford GT Coupe 2006 Daewoo Nubira Wagon 2002 1.54% FIAT 500 Convertible 2012 1.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.27% Dodge Caravan Minivan 1997 1.21% Nissan Leaf Hatchback 2012 1.2% +516 /scratch/Teaching/cars/car_ims/016080.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 2.22% Ferrari FF Coupe 2012 1.54% Ram C/V Cargo Van Minivan 2012 1.25% Daewoo Nubira Wagon 2002 1.18% Lincoln Town Car Sedan 2011 1.18% +517 /scratch/Teaching/cars/car_ims/008820.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.56% Chevrolet Avalanche Crew Cab 2012 0.97% Dodge Caravan Minivan 1997 0.94% Ford F-150 Regular Cab 2012 0.85% Ford Focus Sedan 2007 0.84% +518 /scratch/Teaching/cars/car_ims/008045.jpg Eagle Talon Hatchback 1998 Aston Martin Virage Coupe 2012 3.27% McLaren MP4-12C Coupe 2012 2.96% Ferrari California Convertible 2012 2.95% Lamborghini Diablo Coupe 2001 2.88% Ferrari 458 Italia Convertible 2012 2.55% +519 /scratch/Teaching/cars/car_ims/003819.jpg Buick Rainier SUV 2007 Aston Martin Virage Coupe 2012 4.01% Ferrari 458 Italia Convertible 2012 3.31% McLaren MP4-12C Coupe 2012 3.3% Ferrari California Convertible 2012 3.26% Ferrari 458 Italia Coupe 2012 3.1% +520 /scratch/Teaching/cars/car_ims/001680.jpg Audi S5 Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.43% FIAT 500 Convertible 2012 1.54% Mercedes-Benz S-Class Sedan 2012 1.51% GMC Savana Van 2012 1.43% Dodge Sprinter Cargo Van 2009 1.32% +521 /scratch/Teaching/cars/car_ims/012267.jpg Jeep Compass SUV 2012 Hyundai Santa Fe SUV 2012 1.92% Cadillac Escalade EXT Crew Cab 2007 1.89% Ford E-Series Wagon Van 2012 1.78% Ford F-450 Super Duty Crew Cab 2012 1.77% BMW X5 SUV 2007 1.73% +522 /scratch/Teaching/cars/car_ims/008598.jpg Ford F-450 Super Duty Crew Cab 2012 Isuzu Ascender SUV 2008 1.28% Ford E-Series Wagon Van 2012 1.26% GMC Savana Van 2012 1.08% BMW X5 SUV 2007 1.08% Hyundai Santa Fe SUV 2012 1.06% +523 /scratch/Teaching/cars/car_ims/000229.jpg Acura TL Sedan 2012 Bentley Arnage Sedan 2009 1.79% Mercedes-Benz C-Class Sedan 2012 1.45% Land Rover Range Rover SUV 2012 1.38% Chrysler 300 SRT-8 2010 1.37% BMW M6 Convertible 2010 1.19% +524 /scratch/Teaching/cars/car_ims/012148.jpg Jeep Grand Cherokee SUV 2012 Ford E-Series Wagon Van 2012 0.99% Mercedes-Benz Sprinter Van 2012 0.89% Audi A5 Coupe 2012 0.87% GMC Savana Van 2012 0.86% Isuzu Ascender SUV 2008 0.86% +525 /scratch/Teaching/cars/car_ims/000342.jpg Acura TSX Sedan 2012 Dodge Caliber Wagon 2007 1.55% GMC Savana Van 2012 1.41% BMW 1 Series Coupe 2012 1.19% Volkswagen Golf Hatchback 1991 1.07% Honda Accord Coupe 2012 1.07% +526 /scratch/Teaching/cars/car_ims/001909.jpg Audi S4 Sedan 2007 Audi S6 Sedan 2011 2.08% Ford E-Series Wagon Van 2012 1.63% Ford F-450 Super Duty Crew Cab 2012 1.61% BMW X5 SUV 2007 1.56% Hyundai Santa Fe SUV 2012 1.49% +527 /scratch/Teaching/cars/car_ims/012118.jpg Jeep Grand Cherokee SUV 2012 Mercedes-Benz E-Class Sedan 2012 0.89% Bugatti Veyron 16.4 Coupe 2009 0.8% Mercedes-Benz S-Class Sedan 2012 0.79% Mercedes-Benz 300-Class Convertible 1993 0.79% BMW X3 SUV 2012 0.79% +528 /scratch/Teaching/cars/car_ims/007485.jpg Dodge Magnum Wagon 2008 Chrysler 300 SRT-8 2010 1.51% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.35% Dodge Ram Pickup 3500 Crew Cab 2010 1.26% HUMMER H2 SUT Crew Cab 2009 1.24% Chevrolet TrailBlazer SS 2009 1.22% +529 /scratch/Teaching/cars/car_ims/009914.jpg GMC Acadia SUV 2012 Ram C/V Cargo Van Minivan 2012 2.31% GMC Savana Van 2012 1.51% Mercedes-Benz Sprinter Van 2012 1.34% Dodge Sprinter Cargo Van 2009 1.31% Lincoln Town Car Sedan 2011 1.26% +530 /scratch/Teaching/cars/car_ims/015487.jpg Toyota Corolla Sedan 2012 Ford E-Series Wagon Van 2012 1.62% Isuzu Ascender SUV 2008 1.45% BMW X5 SUV 2007 1.31% Audi S6 Sedan 2011 1.26% Hyundai Santa Fe SUV 2012 1.26% +531 /scratch/Teaching/cars/car_ims/015946.jpg Volvo 240 Sedan 1993 Ford F-450 Super Duty Crew Cab 2012 1.16% Ford Expedition EL SUV 2009 1.13% Isuzu Ascender SUV 2008 1.11% Hyundai Santa Fe SUV 2012 1.1% Cadillac Escalade EXT Crew Cab 2007 1.07% +532 /scratch/Teaching/cars/car_ims/008766.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.14% Chevrolet Silverado 2500HD Regular Cab 2012 1.02% Dodge Ram Pickup 3500 Quad Cab 2009 0.95% Audi A5 Coupe 2012 0.93% Audi S5 Coupe 2012 0.91% +533 /scratch/Teaching/cars/car_ims/012625.jpg Land Rover Range Rover SUV 2012 Dodge Caravan Minivan 1997 1.49% Mercedes-Benz Sprinter Van 2012 1.38% Ford E-Series Wagon Van 2012 1.35% Mercedes-Benz S-Class Sedan 2012 1.29% Hyundai Tucson SUV 2012 1.09% +534 /scratch/Teaching/cars/car_ims/013688.jpg Mitsubishi Lancer Sedan 2012 BMW X5 SUV 2007 1.66% Hyundai Santa Fe SUV 2012 1.5% GMC Savana Van 2012 1.45% Isuzu Ascender SUV 2008 1.36% Chevrolet Silverado 2500HD Regular Cab 2012 1.35% +535 /scratch/Teaching/cars/car_ims/013807.jpg Nissan Leaf Hatchback 2012 Ram C/V Cargo Van Minivan 2012 2.24% GMC Savana Van 2012 1.85% Dodge Sprinter Cargo Van 2009 1.82% Mercedes-Benz Sprinter Van 2012 1.41% Mercedes-Benz S-Class Sedan 2012 1.33% +536 /scratch/Teaching/cars/car_ims/013924.jpg Nissan Juke Hatchback 2012 GMC Savana Van 2012 1.49% Ram C/V Cargo Van Minivan 2012 1.29% Dodge Sprinter Cargo Van 2009 1.2% Mercedes-Benz S-Class Sedan 2012 1.09% Mercedes-Benz Sprinter Van 2012 1.09% +537 /scratch/Teaching/cars/car_ims/008198.jpg Ferrari FF Coupe 2012 Chevrolet TrailBlazer SS 2009 2.27% Cadillac Escalade EXT Crew Cab 2007 2.11% Chrysler 300 SRT-8 2010 1.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.83% Ford Expedition EL SUV 2009 1.81% +538 /scratch/Teaching/cars/car_ims/006493.jpg Chrysler Crossfire Convertible 2008 Daewoo Nubira Wagon 2002 1.55% FIAT 500 Convertible 2012 1.53% Ford GT Coupe 2006 1.45% Chevrolet Sonic Sedan 2012 1.44% Maybach Landaulet Convertible 2012 1.31% +539 /scratch/Teaching/cars/car_ims/003322.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 1.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.12% Chevrolet Silverado 2500HD Regular Cab 2012 1.11% Chevrolet Silverado 1500 Regular Cab 2012 1.09% Chevrolet Silverado 1500 Extended Cab 2012 1.0% +540 /scratch/Teaching/cars/car_ims/015298.jpg Toyota Sequoia SUV 2012 Bentley Arnage Sedan 2009 2.48% Hyundai Genesis Sedan 2012 1.78% Bentley Mulsanne Sedan 2011 1.54% Mercedes-Benz C-Class Sedan 2012 1.54% FIAT 500 Abarth 2012 1.37% +541 /scratch/Teaching/cars/car_ims/004771.jpg Chevrolet Camaro Convertible 2012 Lamborghini Diablo Coupe 2001 13.84% Ferrari 458 Italia Convertible 2012 6.34% McLaren MP4-12C Coupe 2012 4.73% Acura Integra Type R 2001 4.56% Ferrari California Convertible 2012 4.55% +542 /scratch/Teaching/cars/car_ims/011062.jpg Hyundai Sonata Hybrid Sedan 2012 Dodge Caliber Wagon 2007 2.34% GMC Savana Van 2012 1.68% BMW 1 Series Coupe 2012 1.65% Volkswagen Golf Hatchback 1991 1.23% Honda Accord Coupe 2012 1.21% +543 /scratch/Teaching/cars/car_ims/012742.jpg Land Rover LR2 SUV 2012 GMC Savana Van 2012 1.17% Lincoln Town Car Sedan 2011 0.87% Chevrolet Traverse SUV 2012 0.83% Honda Odyssey Minivan 2007 0.82% Dodge Caravan Minivan 1997 0.81% +544 /scratch/Teaching/cars/car_ims/015518.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 3.48% Land Rover Range Rover SUV 2012 1.98% Cadillac Escalade EXT Crew Cab 2007 1.58% Ford Expedition EL SUV 2009 1.54% FIAT 500 Abarth 2012 1.47% +545 /scratch/Teaching/cars/car_ims/013472.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 1.78% MINI Cooper Roadster Convertible 2012 1.63% Bentley Mulsanne Sedan 2011 1.6% Bugatti Veyron 16.4 Coupe 2009 1.47% Hyundai Genesis Sedan 2012 1.44% +546 /scratch/Teaching/cars/car_ims/003839.jpg Buick Rainier SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.69% Chevrolet TrailBlazer SS 2009 2.42% Chrysler 300 SRT-8 2010 2.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.02% HUMMER H2 SUT Crew Cab 2009 1.9% +547 /scratch/Teaching/cars/car_ims/007108.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.64% GMC Savana Van 2012 1.49% Cadillac Escalade EXT Crew Cab 2007 1.48% Chevrolet Avalanche Crew Cab 2012 1.46% Ford F-150 Regular Cab 2012 1.45% +548 /scratch/Teaching/cars/car_ims/007273.jpg Dodge Journey SUV 2012 Mercedes-Benz E-Class Sedan 2012 2.0% Fisker Karma Sedan 2012 1.82% Chevrolet Corvette ZR1 2012 1.74% Bugatti Veyron 16.4 Coupe 2009 1.53% Mercedes-Benz 300-Class Convertible 1993 1.46% +549 /scratch/Teaching/cars/car_ims/004666.jpg Chevrolet Traverse SUV 2012 Bentley Arnage Sedan 2009 1.39% Jeep Patriot SUV 2012 1.31% FIAT 500 Abarth 2012 1.27% Land Rover Range Rover SUV 2012 1.22% Cadillac Escalade EXT Crew Cab 2007 1.05% +550 /scratch/Teaching/cars/car_ims/010722.jpg Hyundai Veloster Hatchback 2012 Jeep Wrangler SUV 2012 2.76% Dodge Caliber Wagon 2007 2.7% HUMMER H2 SUT Crew Cab 2009 2.56% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.47% AM General Hummer SUV 2000 2.4% +551 /scratch/Teaching/cars/car_ims/000919.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 3.99% Fisker Karma Sedan 2012 2.6% Bugatti Veyron 16.4 Coupe 2009 2.16% Bentley Mulsanne Sedan 2011 2.1% Chevrolet Corvette ZR1 2012 1.94% +552 /scratch/Teaching/cars/car_ims/003108.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 11.58% Aston Martin Virage Coupe 2012 9.23% Acura Integra Type R 2001 6.46% McLaren MP4-12C Coupe 2012 6.36% Chevrolet Corvette Convertible 2012 6.18% +553 /scratch/Teaching/cars/car_ims/006228.jpg Chrysler Sebring Convertible 2010 FIAT 500 Convertible 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.17% Nissan Leaf Hatchback 2012 1.05% Lincoln Town Car Sedan 2011 1.04% +554 /scratch/Teaching/cars/car_ims/015713.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 1.06% Lincoln Town Car Sedan 2011 0.89% Honda Odyssey Minivan 2007 0.89% Isuzu Ascender SUV 2008 0.86% Ram C/V Cargo Van Minivan 2012 0.85% +555 /scratch/Teaching/cars/car_ims/003552.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.32% Dodge Caravan Minivan 1997 1.27% GMC Savana Van 2012 1.18% Mercedes-Benz Sprinter Van 2012 1.12% Honda Odyssey Minivan 2007 1.12% +556 /scratch/Teaching/cars/car_ims/005717.jpg Chevrolet Express Van 2007 Mercedes-Benz S-Class Sedan 2012 1.23% GMC Savana Van 2012 1.08% Mercedes-Benz Sprinter Van 2012 1.01% Acura TL Type-S 2008 0.95% Mercedes-Benz E-Class Sedan 2012 0.94% +557 /scratch/Teaching/cars/car_ims/009534.jpg Ford E-Series Wagon Van 2012 Hyundai Genesis Sedan 2012 1.34% Ford E-Series Wagon Van 2012 1.23% Dodge Challenger SRT8 2011 1.11% Hyundai Azera Sedan 2012 1.07% Chrysler PT Cruiser Convertible 2008 1.03% +558 /scratch/Teaching/cars/car_ims/003906.jpg Buick Verano Sedan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.32% Chevrolet TrailBlazer SS 2009 2.16% Chrysler 300 SRT-8 2010 1.86% HUMMER H2 SUT Crew Cab 2009 1.66% Cadillac Escalade EXT Crew Cab 2007 1.55% +559 /scratch/Teaching/cars/car_ims/015003.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 1.66% Audi A5 Coupe 2012 1.24% Isuzu Ascender SUV 2008 1.11% Mercedes-Benz Sprinter Van 2012 1.1% Honda Accord Sedan 2012 1.1% +560 /scratch/Teaching/cars/car_ims/002850.jpg BMW M5 Sedan 2010 Fisker Karma Sedan 2012 1.73% Chevrolet Corvette ZR1 2012 1.53% Bugatti Veyron 16.4 Coupe 2009 1.46% Mercedes-Benz 300-Class Convertible 1993 1.46% HUMMER H2 SUT Crew Cab 2009 1.45% +561 /scratch/Teaching/cars/car_ims/003100.jpg BMW Z4 Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 1.71% Chevrolet TrailBlazer SS 2009 1.57% Land Rover Range Rover SUV 2012 1.5% Bentley Arnage Sedan 2009 1.38% Ford Expedition EL SUV 2009 1.31% +562 /scratch/Teaching/cars/car_ims/014344.jpg Ram C/V Cargo Van Minivan 2012 Daewoo Nubira Wagon 2002 1.03% Hyundai Elantra Sedan 2007 0.99% Chevrolet Sonic Sedan 2012 0.93% Plymouth Neon Coupe 1999 0.9% Spyker C8 Coupe 2009 0.89% +563 /scratch/Teaching/cars/car_ims/004836.jpg Chevrolet HHR SS 2010 Bentley Arnage Sedan 2009 1.61% Hyundai Genesis Sedan 2012 1.46% Rolls-Royce Phantom Sedan 2012 1.14% Land Rover Range Rover SUV 2012 1.09% FIAT 500 Abarth 2012 1.05% +564 /scratch/Teaching/cars/car_ims/016180.jpg smart fortwo Convertible 2012 Audi A5 Coupe 2012 1.44% GMC Savana Van 2012 1.36% Isuzu Ascender SUV 2008 1.35% BMW X5 SUV 2007 1.33% Audi S6 Sedan 2011 1.3% +565 /scratch/Teaching/cars/car_ims/009217.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 2.23% Chevrolet Avalanche Crew Cab 2012 1.58% Ford F-150 Regular Cab 2012 1.5% BMW X5 SUV 2007 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.23% +566 /scratch/Teaching/cars/car_ims/008334.jpg Ferrari California Convertible 2012 Lamborghini Diablo Coupe 2001 9.25% Aston Martin Virage Coupe 2012 4.85% McLaren MP4-12C Coupe 2012 4.84% Ferrari California Convertible 2012 4.83% Ferrari 458 Italia Convertible 2012 4.7% +567 /scratch/Teaching/cars/car_ims/015474.jpg Toyota Corolla Sedan 2012 Dodge Caliber Wagon 2007 1.99% Ferrari FF Coupe 2012 1.94% Hyundai Elantra Sedan 2007 1.43% BMW 1 Series Coupe 2012 1.32% Honda Accord Coupe 2012 1.18% +568 /scratch/Teaching/cars/car_ims/016106.jpg smart fortwo Convertible 2012 GMC Savana Van 2012 1.63% FIAT 500 Convertible 2012 1.59% Ram C/V Cargo Van Minivan 2012 1.5% Ferrari FF Coupe 2012 1.41% Hyundai Elantra Sedan 2007 1.33% +569 /scratch/Teaching/cars/car_ims/004993.jpg Chevrolet Tahoe Hybrid SUV 2012 Ram C/V Cargo Van Minivan 2012 2.43% GMC Savana Van 2012 2.19% Dodge Sprinter Cargo Van 2009 1.57% Lincoln Town Car Sedan 2011 1.41% FIAT 500 Convertible 2012 1.26% +570 /scratch/Teaching/cars/car_ims/000765.jpg Aston Martin Virage Convertible 2012 FIAT 500 Convertible 2012 2.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.85% Mercedes-Benz E-Class Sedan 2012 1.84% Maybach Landaulet Convertible 2012 1.61% Mercedes-Benz S-Class Sedan 2012 1.53% +571 /scratch/Teaching/cars/car_ims/009609.jpg Ford Fiesta Sedan 2012 HUMMER H2 SUT Crew Cab 2009 2.45% Dodge Caliber Wagon 2007 2.14% AM General Hummer SUV 2000 1.93% HUMMER H3T Crew Cab 2010 1.87% Jeep Wrangler SUV 2012 1.78% +572 /scratch/Teaching/cars/car_ims/006166.jpg Chrysler Aspen SUV 2009 Ford E-Series Wagon Van 2012 0.97% Isuzu Ascender SUV 2008 0.92% Dodge Caravan Minivan 1997 0.9% GMC Savana Van 2012 0.86% Chrysler Aspen SUV 2009 0.85% +573 /scratch/Teaching/cars/car_ims/009438.jpg Ford Focus Sedan 2007 Mercedes-Benz Sprinter Van 2012 1.91% Audi A5 Coupe 2012 1.69% Mercedes-Benz S-Class Sedan 2012 1.53% Dodge Sprinter Cargo Van 2009 1.36% GMC Savana Van 2012 1.33% +574 /scratch/Teaching/cars/car_ims/008504.jpg Fisker Karma Sedan 2012 GMC Savana Van 2012 1.2% BMW X5 SUV 2007 1.06% Chevrolet Silverado 2500HD Regular Cab 2012 1.05% BMW X3 SUV 2012 1.02% Audi A5 Coupe 2012 0.97% +575 /scratch/Teaching/cars/car_ims/002457.jpg BMW 6 Series Convertible 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.28% Ford F-150 Regular Cab 2012 1.14% GMC Savana Van 2012 1.11% Cadillac Escalade EXT Crew Cab 2007 1.09% Chevrolet Silverado 1500 Regular Cab 2012 1.09% +576 /scratch/Teaching/cars/car_ims/013755.jpg Mitsubishi Lancer Sedan 2012 Lamborghini Diablo Coupe 2001 20.87% Aston Martin Virage Coupe 2012 6.96% Acura Integra Type R 2001 6.82% McLaren MP4-12C Coupe 2012 6.82% Ferrari 458 Italia Convertible 2012 5.28% +577 /scratch/Teaching/cars/car_ims/001706.jpg Audi S5 Convertible 2012 Dodge Caliber Wagon 2007 2.21% BMW 1 Series Coupe 2012 1.35% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.15% HUMMER H3T Crew Cab 2010 1.12% Suzuki SX4 Hatchback 2012 1.09% +578 /scratch/Teaching/cars/car_ims/000395.jpg Acura TSX Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.51% FIAT 500 Convertible 2012 1.25% Nissan Leaf Hatchback 2012 1.2% Rolls-Royce Phantom Sedan 2012 1.15% Suzuki SX4 Sedan 2012 1.15% +579 /scratch/Teaching/cars/car_ims/014349.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 1.3% Chevrolet Silverado 1500 Extended Cab 2012 0.98% Chevrolet Avalanche Crew Cab 2012 0.97% Isuzu Ascender SUV 2008 0.97% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.97% +580 /scratch/Teaching/cars/car_ims/004627.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 2.89% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.6% Mercedes-Benz S-Class Sedan 2012 1.69% Nissan Leaf Hatchback 2012 1.58% Maybach Landaulet Convertible 2012 1.54% +581 /scratch/Teaching/cars/car_ims/008247.jpg Ferrari FF Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.47% Chevrolet TrailBlazer SS 2009 1.44% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.24% Hyundai Santa Fe SUV 2012 1.21% +582 /scratch/Teaching/cars/car_ims/013470.jpg Mercedes-Benz E-Class Sedan 2012 Mercedes-Benz S-Class Sedan 2012 2.58% Ram C/V Cargo Van Minivan 2012 1.79% MINI Cooper Roadster Convertible 2012 1.75% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% FIAT 500 Convertible 2012 1.57% +583 /scratch/Teaching/cars/car_ims/015022.jpg Suzuki SX4 Hatchback 2012 Audi TT RS Coupe 2012 1.91% Ford GT Coupe 2006 1.88% Lamborghini Diablo Coupe 2001 1.8% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.72% Chevrolet HHR SS 2010 1.72% +584 /scratch/Teaching/cars/car_ims/008559.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 2.71% Mercedes-Benz C-Class Sedan 2012 1.39% Bentley Mulsanne Sedan 2011 1.37% Hyundai Genesis Sedan 2012 1.32% Bugatti Veyron 16.4 Coupe 2009 1.3% +585 /scratch/Teaching/cars/car_ims/003568.jpg Bentley Continental Flying Spur Sedan 2007 Isuzu Ascender SUV 2008 1.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.98% Jeep Grand Cherokee SUV 2012 0.96% Chrysler 300 SRT-8 2010 0.96% Dodge Ram Pickup 3500 Crew Cab 2010 0.93% +586 /scratch/Teaching/cars/car_ims/002865.jpg BMW M5 Sedan 2010 Bentley Arnage Sedan 2009 1.64% Audi S6 Sedan 2011 1.46% Hyundai Genesis Sedan 2012 1.41% Mercedes-Benz C-Class Sedan 2012 1.4% Bentley Mulsanne Sedan 2011 1.29% +587 /scratch/Teaching/cars/car_ims/005797.jpg Chevrolet Monte Carlo Coupe 2007 FIAT 500 Convertible 2012 1.12% Hyundai Elantra Sedan 2007 1.01% Nissan Leaf Hatchback 2012 0.94% Daewoo Nubira Wagon 2002 0.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.86% +588 /scratch/Teaching/cars/car_ims/015378.jpg Toyota Camry Sedan 2012 MINI Cooper Roadster Convertible 2012 1.81% Mercedes-Benz S-Class Sedan 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.21% Mercedes-Benz E-Class Sedan 2012 1.15% Hyundai Genesis Sedan 2012 1.06% +589 /scratch/Teaching/cars/car_ims/004432.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 1.72% Jeep Liberty SUV 2012 1.31% Plymouth Neon Coupe 1999 1.11% Dodge Caliber Wagon 2007 1.03% Eagle Talon Hatchback 1998 1.02% +590 /scratch/Teaching/cars/car_ims/001529.jpg Audi TT Hatchback 2011 Isuzu Ascender SUV 2008 1.88% Ford E-Series Wagon Van 2012 1.84% BMW X5 SUV 2007 1.74% Audi S6 Sedan 2011 1.74% Hyundai Santa Fe SUV 2012 1.67% +591 /scratch/Teaching/cars/car_ims/008896.jpg Ford Expedition EL SUV 2009 Bentley Arnage Sedan 2009 3.5% Bugatti Veyron 16.4 Coupe 2009 2.33% Fisker Karma Sedan 2012 2.04% Bentley Mulsanne Sedan 2011 1.67% Mercedes-Benz 300-Class Convertible 1993 1.58% +592 /scratch/Teaching/cars/car_ims/014448.jpg Rolls-Royce Ghost Sedan 2012 Bentley Arnage Sedan 2009 3.28% FIAT 500 Abarth 2012 1.76% Land Rover Range Rover SUV 2012 1.71% Chevrolet TrailBlazer SS 2009 1.37% Ford Expedition EL SUV 2009 1.36% +593 /scratch/Teaching/cars/car_ims/004929.jpg Chevrolet Impala Sedan 2007 Hyundai Elantra Sedan 2007 1.65% FIAT 500 Convertible 2012 1.52% Ferrari FF Coupe 2012 1.44% Geo Metro Convertible 1993 1.43% Dodge Caliber Wagon 2007 1.34% +594 /scratch/Teaching/cars/car_ims/005217.jpg Chevrolet Avalanche Crew Cab 2012 GMC Savana Van 2012 1.89% Chevrolet Silverado 2500HD Regular Cab 2012 1.29% Chevrolet Silverado 1500 Regular Cab 2012 1.24% Honda Accord Sedan 2012 1.17% Audi A5 Coupe 2012 1.08% +595 /scratch/Teaching/cars/car_ims/015873.jpg Volvo C30 Hatchback 2012 Mercedes-Benz 300-Class Convertible 1993 2.02% Bugatti Veyron 16.4 Coupe 2009 1.87% Fisker Karma Sedan 2012 1.53% Ford GT Coupe 2006 1.48% Spyker C8 Convertible 2009 1.34% +596 /scratch/Teaching/cars/car_ims/000758.jpg Aston Martin Virage Convertible 2012 Ford Expedition EL SUV 2009 1.17% Cadillac Escalade EXT Crew Cab 2007 1.12% Dodge Ram Pickup 3500 Crew Cab 2010 1.04% Ford E-Series Wagon Van 2012 1.01% Isuzu Ascender SUV 2008 1.01% +597 /scratch/Teaching/cars/car_ims/002913.jpg BMW M6 Convertible 2010 Bentley Arnage Sedan 2009 1.99% Bugatti Veyron 16.4 Coupe 2009 1.57% Bentley Mulsanne Sedan 2011 1.55% Mercedes-Benz E-Class Sedan 2012 1.54% Fisker Karma Sedan 2012 1.37% +598 /scratch/Teaching/cars/car_ims/012741.jpg Land Rover LR2 SUV 2012 Daewoo Nubira Wagon 2002 1.28% Ram C/V Cargo Van Minivan 2012 1.27% Dodge Caravan Minivan 1997 1.21% Honda Odyssey Minivan 2007 1.16% Ford Focus Sedan 2007 1.04% +599 /scratch/Teaching/cars/car_ims/002523.jpg BMW 6 Series Convertible 2007 Chrysler 300 SRT-8 2010 1.22% Mercedes-Benz C-Class Sedan 2012 1.02% Hyundai Genesis Sedan 2012 0.97% BMW M6 Convertible 2010 0.93% Dodge Durango SUV 2012 0.93% +600 /scratch/Teaching/cars/car_ims/007048.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ford F-450 Super Duty Crew Cab 2012 2.09% BMW X5 SUV 2007 1.94% Cadillac Escalade EXT Crew Cab 2007 1.82% Hyundai Santa Fe SUV 2012 1.81% Chrysler Aspen SUV 2009 1.56% +601 /scratch/Teaching/cars/car_ims/006641.jpg Daewoo Nubira Wagon 2002 Ford E-Series Wagon Van 2012 1.58% GMC Savana Van 2012 1.4% Dodge Caravan Minivan 1997 1.36% Isuzu Ascender SUV 2008 1.32% Chevrolet Avalanche Crew Cab 2012 1.24% +602 /scratch/Teaching/cars/car_ims/015522.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 2.22% Fisker Karma Sedan 2012 1.7% Bentley Mulsanne Sedan 2011 1.58% Mercedes-Benz C-Class Sedan 2012 1.58% Bugatti Veyron 16.4 Coupe 2009 1.46% +603 /scratch/Teaching/cars/car_ims/004214.jpg Cadillac SRX SUV 2012 GMC Savana Van 2012 1.29% Ferrari FF Coupe 2012 1.13% Dodge Ram Pickup 3500 Quad Cab 2009 1.11% Chevrolet Silverado 1500 Regular Cab 2012 1.06% Honda Accord Coupe 2012 0.96% +604 /scratch/Teaching/cars/car_ims/016144.jpg smart fortwo Convertible 2012 Bentley Arnage Sedan 2009 3.22% Land Rover Range Rover SUV 2012 1.69% FIAT 500 Abarth 2012 1.57% Chevrolet TrailBlazer SS 2009 1.5% HUMMER H2 SUT Crew Cab 2009 1.49% +605 /scratch/Teaching/cars/car_ims/001971.jpg Audi S4 Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 1.3% GMC Savana Van 2012 1.24% Audi A5 Coupe 2012 1.15% Honda Accord Sedan 2012 1.11% Chevrolet Silverado 1500 Regular Cab 2012 1.06% +606 /scratch/Teaching/cars/car_ims/009309.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 1.68% Hyundai Santa Fe SUV 2012 1.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.44% Chevrolet Avalanche Crew Cab 2012 1.41% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.39% +607 /scratch/Teaching/cars/car_ims/000893.jpg Audi RS 4 Convertible 2008 BMW X5 SUV 2007 1.73% Hyundai Santa Fe SUV 2012 1.62% Ford E-Series Wagon Van 2012 1.49% Cadillac Escalade EXT Crew Cab 2007 1.37% Ford F-450 Super Duty Crew Cab 2012 1.33% +608 /scratch/Teaching/cars/car_ims/005124.jpg Chevrolet Sonic Sedan 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.43% GMC Savana Van 2012 1.38% Audi A5 Coupe 2012 1.36% Chevrolet Silverado 1500 Regular Cab 2012 1.19% Honda Accord Sedan 2012 1.14% +609 /scratch/Teaching/cars/car_ims/006393.jpg Chrysler 300 SRT-8 2010 Plymouth Neon Coupe 1999 1.18% Daewoo Nubira Wagon 2002 1.02% Jeep Liberty SUV 2012 1.02% Chevrolet TrailBlazer SS 2009 0.98% GMC Savana Van 2012 0.95% +610 /scratch/Teaching/cars/car_ims/000591.jpg Aston Martin V8 Vantage Convertible 2012 Audi TT RS Coupe 2012 1.84% Ford GT Coupe 2006 1.64% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.62% Volvo C30 Hatchback 2012 1.62% Geo Metro Convertible 1993 1.55% +611 /scratch/Teaching/cars/car_ims/010263.jpg HUMMER H3T Crew Cab 2010 Chevrolet TrailBlazer SS 2009 2.07% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.7% Cadillac Escalade EXT Crew Cab 2007 1.62% Ford Expedition EL SUV 2009 1.52% Dodge Ram Pickup 3500 Crew Cab 2010 1.42% +612 /scratch/Teaching/cars/car_ims/006805.jpg Dodge Caliber Wagon 2007 AM General Hummer SUV 2000 2.36% Lamborghini Diablo Coupe 2001 2.32% Audi TT RS Coupe 2012 1.95% McLaren MP4-12C Coupe 2012 1.92% Lamborghini Aventador Coupe 2012 1.86% +613 /scratch/Teaching/cars/car_ims/013816.jpg Nissan Leaf Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.35% Hyundai Azera Sedan 2012 1.04% Hyundai Genesis Sedan 2012 1.01% Ford GT Coupe 2006 1.0% Lamborghini Reventon Coupe 2008 1.0% +614 /scratch/Teaching/cars/car_ims/000652.jpg Aston Martin V8 Vantage Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 2.49% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.08% Chevrolet TrailBlazer SS 2009 2.06% Chrysler 300 SRT-8 2010 1.77% Dodge Ram Pickup 3500 Crew Cab 2010 1.72% +615 /scratch/Teaching/cars/car_ims/005034.jpg Chevrolet Tahoe Hybrid SUV 2012 Audi S6 Sedan 2011 1.73% Ford E-Series Wagon Van 2012 1.54% Hyundai Genesis Sedan 2012 1.47% BMW X5 SUV 2007 1.42% Bentley Arnage Sedan 2009 1.33% +616 /scratch/Teaching/cars/car_ims/004339.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 2.5% BMW 1 Series Coupe 2012 1.71% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.57% Suzuki SX4 Hatchback 2012 1.55% Jeep Wrangler SUV 2012 1.46% +617 /scratch/Teaching/cars/car_ims/013997.jpg Nissan Juke Hatchback 2012 Cadillac Escalade EXT Crew Cab 2007 1.16% Hyundai Santa Fe SUV 2012 1.06% Isuzu Ascender SUV 2008 1.06% Ford F-150 Regular Cab 2012 1.04% BMW X5 SUV 2007 1.0% +618 /scratch/Teaching/cars/car_ims/004603.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Ford GT Coupe 2006 1.12% FIAT 500 Convertible 2012 1.08% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.06% Mercedes-Benz 300-Class Convertible 1993 1.05% Bugatti Veyron 16.4 Coupe 2009 1.0% +619 /scratch/Teaching/cars/car_ims/010145.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Convertible 2012 2.73% McLaren MP4-12C Coupe 2012 2.62% Ferrari 458 Italia Coupe 2012 2.62% Ferrari California Convertible 2012 2.57% Aston Martin Virage Coupe 2012 2.43% +620 /scratch/Teaching/cars/car_ims/002622.jpg BMW X6 SUV 2012 Ram C/V Cargo Van Minivan 2012 1.91% Dodge Sprinter Cargo Van 2009 1.76% GMC Savana Van 2012 1.66% Mercedes-Benz Sprinter Van 2012 1.52% Mercedes-Benz S-Class Sedan 2012 1.45% +621 /scratch/Teaching/cars/car_ims/006477.jpg Chrysler Crossfire Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.8% FIAT 500 Convertible 2012 1.73% Maybach Landaulet Convertible 2012 1.59% Ford GT Coupe 2006 1.47% Mercedes-Benz 300-Class Convertible 1993 1.31% +622 /scratch/Teaching/cars/car_ims/011090.jpg Hyundai Elantra Sedan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.91% Cadillac Escalade EXT Crew Cab 2007 1.49% Chrysler 300 SRT-8 2010 1.47% Ford F-450 Super Duty Crew Cab 2012 1.45% Jeep Grand Cherokee SUV 2012 1.43% +623 /scratch/Teaching/cars/car_ims/007581.jpg Dodge Challenger SRT8 2011 HUMMER H2 SUT Crew Cab 2009 1.77% Dodge Caliber Wagon 2007 1.64% Jeep Wrangler SUV 2012 1.44% HUMMER H3T Crew Cab 2010 1.4% AM General Hummer SUV 2000 1.39% +624 /scratch/Teaching/cars/car_ims/009268.jpg Ford F-150 Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 3.0% Ford F-450 Super Duty Crew Cab 2012 2.43% Dodge Ram Pickup 3500 Crew Cab 2010 1.95% Chevrolet TrailBlazer SS 2009 1.82% Land Rover Range Rover SUV 2012 1.77% +625 /scratch/Teaching/cars/car_ims/006895.jpg Dodge Caravan Minivan 1997 Ferrari FF Coupe 2012 2.76% BMW 1 Series Coupe 2012 1.8% Geo Metro Convertible 1993 1.78% Hyundai Elantra Sedan 2007 1.65% BMW M3 Coupe 2012 1.61% +626 /scratch/Teaching/cars/car_ims/010704.jpg Hyundai Veloster Hatchback 2012 GMC Savana Van 2012 2.04% BMW X5 SUV 2007 1.12% Chevrolet Avalanche Crew Cab 2012 1.12% Ford F-150 Regular Cab 2012 1.11% Chevrolet Silverado 2500HD Regular Cab 2012 1.04% +627 /scratch/Teaching/cars/car_ims/006608.jpg Chrysler PT Cruiser Convertible 2008 Dodge Caravan Minivan 1997 1.51% Daewoo Nubira Wagon 2002 1.31% GMC Savana Van 2012 1.21% Honda Odyssey Minivan 2007 1.21% Ford Freestar Minivan 2007 1.15% +628 /scratch/Teaching/cars/car_ims/004696.jpg Chevrolet Traverse SUV 2012 Audi A5 Coupe 2012 1.45% Chevrolet Silverado 2500HD Regular Cab 2012 1.36% BMW X5 SUV 2007 1.32% Ford F-450 Super Duty Crew Cab 2012 1.22% Isuzu Ascender SUV 2008 1.22% +629 /scratch/Teaching/cars/car_ims/009757.jpg GMC Savana Van 2012 Bentley Arnage Sedan 2009 1.97% FIAT 500 Abarth 2012 1.58% Bugatti Veyron 16.4 Coupe 2009 1.35% Jeep Patriot SUV 2012 1.21% Lamborghini Reventon Coupe 2008 1.13% +630 /scratch/Teaching/cars/car_ims/003003.jpg BMW X3 SUV 2012 AM General Hummer SUV 2000 5.03% Lamborghini Diablo Coupe 2001 4.01% Aston Martin Virage Coupe 2012 3.95% Acura Integra Type R 2001 3.08% Ferrari California Convertible 2012 3.03% +631 /scratch/Teaching/cars/car_ims/014395.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 1.25% Ford GT Coupe 2006 1.21% Mercedes-Benz 300-Class Convertible 1993 1.11% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.1% Spyker C8 Coupe 2009 1.09% +632 /scratch/Teaching/cars/car_ims/002554.jpg BMW X5 SUV 2007 Bentley Arnage Sedan 2009 1.27% Land Rover Range Rover SUV 2012 1.16% Ford E-Series Wagon Van 2012 1.12% Cadillac SRX SUV 2012 1.11% BMW X5 SUV 2007 1.08% +633 /scratch/Teaching/cars/car_ims/013908.jpg Nissan NV Passenger Van 2012 Cadillac Escalade EXT Crew Cab 2007 2.01% Chevrolet TrailBlazer SS 2009 1.45% Dodge Ram Pickup 3500 Crew Cab 2010 1.37% Ford F-150 Regular Cab 2012 1.36% GMC Savana Van 2012 1.35% +634 /scratch/Teaching/cars/car_ims/014579.jpg Rolls-Royce Phantom Sedan 2012 Mercedes-Benz C-Class Sedan 2012 1.93% Infiniti G Coupe IPL 2012 1.79% Toyota Sequoia SUV 2012 1.54% Bentley Arnage Sedan 2009 1.5% Land Rover Range Rover SUV 2012 1.44% +635 /scratch/Teaching/cars/car_ims/014999.jpg Suzuki Kizashi Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 2.14% BMW X5 SUV 2007 1.96% Hyundai Santa Fe SUV 2012 1.78% Cadillac Escalade EXT Crew Cab 2007 1.57% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.53% +636 /scratch/Teaching/cars/car_ims/008716.jpg Ford Mustang Convertible 2007 Ferrari 458 Italia Coupe 2012 2.63% Ferrari 458 Italia Convertible 2012 2.45% Geo Metro Convertible 1993 2.39% Ferrari California Convertible 2012 2.25% Volvo C30 Hatchback 2012 2.17% +637 /scratch/Teaching/cars/car_ims/004416.jpg Chevrolet Corvette Convertible 2012 AM General Hummer SUV 2000 9.79% Aston Martin Virage Coupe 2012 6.19% Lamborghini Diablo Coupe 2001 5.32% McLaren MP4-12C Coupe 2012 4.64% Acura Integra Type R 2001 4.17% +638 /scratch/Teaching/cars/car_ims/002442.jpg BMW 3 Series Wagon 2012 GMC Savana Van 2012 2.26% Ram C/V Cargo Van Minivan 2012 2.06% Ferrari FF Coupe 2012 1.62% FIAT 500 Convertible 2012 1.42% Lincoln Town Car Sedan 2011 1.4% +639 /scratch/Teaching/cars/car_ims/003992.jpg Buick Enclave SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.87% Chevrolet Silverado 1500 Regular Cab 2012 1.45% Chevrolet Silverado 2500HD Regular Cab 2012 1.38% GMC Savana Van 2012 1.27% Chevrolet Silverado 1500 Extended Cab 2012 1.26% +640 /scratch/Teaching/cars/car_ims/006082.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 2.3% BMW 1 Series Coupe 2012 1.96% Ferrari 458 Italia Coupe 2012 1.93% Aston Martin Virage Coupe 2012 1.87% Ferrari 458 Italia Convertible 2012 1.8% +641 /scratch/Teaching/cars/car_ims/011625.jpg Infiniti QX56 SUV 2011 Ford E-Series Wagon Van 2012 1.64% Audi S6 Sedan 2011 1.5% Audi A5 Coupe 2012 1.35% BMW X5 SUV 2007 1.23% Hyundai Santa Fe SUV 2012 1.2% +642 /scratch/Teaching/cars/car_ims/006980.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Cadillac Escalade EXT Crew Cab 2007 2.12% Bentley Arnage Sedan 2009 1.86% Chevrolet TrailBlazer SS 2009 1.73% Land Rover Range Rover SUV 2012 1.7% Chrysler 300 SRT-8 2010 1.53% +643 /scratch/Teaching/cars/car_ims/008322.jpg Ferrari California Convertible 2012 Ferrari 458 Italia Convertible 2012 5.05% McLaren MP4-12C Coupe 2012 4.35% Ferrari California Convertible 2012 4.05% Geo Metro Convertible 1993 3.85% Audi RS 4 Convertible 2008 3.62% +644 /scratch/Teaching/cars/car_ims/009348.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.08% Chevrolet TrailBlazer SS 2009 1.99% Ford Expedition EL SUV 2009 1.91% Dodge Ram Pickup 3500 Crew Cab 2010 1.72% Chrysler 300 SRT-8 2010 1.42% +645 /scratch/Teaching/cars/car_ims/011815.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 2.25% Ferrari FF Coupe 2012 1.76% Ram C/V Cargo Van Minivan 2012 1.61% Dodge Sprinter Cargo Van 2009 1.17% Hyundai Elantra Sedan 2007 1.14% +646 /scratch/Teaching/cars/car_ims/004434.jpg Chevrolet Corvette Convertible 2012 HUMMER H2 SUT Crew Cab 2009 4.96% Jeep Wrangler SUV 2012 3.7% AM General Hummer SUV 2000 3.67% HUMMER H3T Crew Cab 2010 3.58% Chevrolet Corvette Convertible 2012 2.35% +647 /scratch/Teaching/cars/car_ims/010411.jpg Honda Odyssey Minivan 2012 Mercedes-Benz E-Class Sedan 2012 1.09% Bugatti Veyron 16.4 Coupe 2009 1.08% Bentley Mulsanne Sedan 2011 1.02% Hyundai Azera Sedan 2012 1.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.97% +648 /scratch/Teaching/cars/car_ims/003908.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 1.42% Dodge Ram Pickup 3500 Quad Cab 2009 1.08% Dodge Caliber Wagon 2007 0.9% GMC Canyon Extended Cab 2012 0.85% Chevrolet Corvette ZR1 2012 0.85% +649 /scratch/Teaching/cars/car_ims/015223.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 1.94% Chevrolet Avalanche Crew Cab 2012 1.34% Chevrolet Silverado 1500 Extended Cab 2012 1.28% Chevrolet Silverado 1500 Regular Cab 2012 1.27% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% +650 /scratch/Teaching/cars/car_ims/011392.jpg Hyundai Elantra Touring Hatchback 2012 GMC Savana Van 2012 2.25% Chevrolet Silverado 1500 Regular Cab 2012 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 1.25% Honda Accord Sedan 2012 1.12% Chevrolet Express Cargo Van 2007 1.07% +651 /scratch/Teaching/cars/car_ims/015246.jpg Tesla Model S Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.0% Fisker Karma Sedan 2012 1.63% Acura TL Type-S 2008 1.21% Mercedes-Benz SL-Class Coupe 2009 1.19% Chevrolet Corvette ZR1 2012 1.19% +652 /scratch/Teaching/cars/car_ims/000143.jpg Acura RL Sedan 2012 Bentley Arnage Sedan 2009 2.29% FIAT 500 Abarth 2012 1.44% Jeep Patriot SUV 2012 1.25% Land Rover Range Rover SUV 2012 1.16% HUMMER H2 SUT Crew Cab 2009 1.15% +653 /scratch/Teaching/cars/car_ims/009657.jpg GMC Terrain SUV 2012 FIAT 500 Convertible 2012 1.89% Ram C/V Cargo Van Minivan 2012 1.58% Nissan Leaf Hatchback 2012 1.31% Daewoo Nubira Wagon 2002 1.3% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.24% +654 /scratch/Teaching/cars/car_ims/009563.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 2.35% Dodge Sprinter Cargo Van 2009 1.54% Ram C/V Cargo Van Minivan 2012 1.47% Mercedes-Benz Sprinter Van 2012 1.24% Audi A5 Coupe 2012 1.22% +655 /scratch/Teaching/cars/car_ims/004966.jpg Chevrolet Impala Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 2.11% Chevrolet TrailBlazer SS 2009 2.04% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.81% Chrysler 300 SRT-8 2010 1.79% HUMMER H2 SUT Crew Cab 2009 1.57% +656 /scratch/Teaching/cars/car_ims/014411.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 1.72% Dodge Caravan Minivan 1997 1.4% Ram C/V Cargo Van Minivan 2012 1.32% Lincoln Town Car Sedan 2011 1.3% Honda Odyssey Minivan 2007 1.16% +657 /scratch/Teaching/cars/car_ims/004441.jpg Chevrolet Corvette Convertible 2012 Lamborghini Diablo Coupe 2001 21.07% Acura Integra Type R 2001 8.41% Aston Martin Virage Coupe 2012 8.08% McLaren MP4-12C Coupe 2012 6.11% Chevrolet Corvette Convertible 2012 4.67% +658 /scratch/Teaching/cars/car_ims/011300.jpg Hyundai Sonata Sedan 2012 Isuzu Ascender SUV 2008 1.25% Ford E-Series Wagon Van 2012 1.21% Chevrolet Avalanche Crew Cab 2012 1.13% Cadillac Escalade EXT Crew Cab 2007 1.09% Ford Expedition EL SUV 2009 1.07% +659 /scratch/Teaching/cars/car_ims/002102.jpg BMW ActiveHybrid 5 Sedan 2012 Ford E-Series Wagon Van 2012 2.02% Cadillac Escalade EXT Crew Cab 2007 2.01% Land Rover Range Rover SUV 2012 1.69% Ford Expedition EL SUV 2009 1.66% Hyundai Santa Fe SUV 2012 1.62% +660 /scratch/Teaching/cars/car_ims/008892.jpg Ford Expedition EL SUV 2009 Mercedes-Benz S-Class Sedan 2012 1.35% Mercedes-Benz Sprinter Van 2012 1.25% Honda Odyssey Minivan 2007 0.96% Dodge Caravan Minivan 1997 0.94% Acura TL Sedan 2012 0.92% +661 /scratch/Teaching/cars/car_ims/000600.jpg Aston Martin V8 Vantage Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.15% GMC Savana Van 2012 1.74% FIAT 500 Convertible 2012 1.47% Lincoln Town Car Sedan 2011 1.38% Ferrari FF Coupe 2012 1.34% +662 /scratch/Teaching/cars/car_ims/004782.jpg Chevrolet Camaro Convertible 2012 Dodge Caliber Wagon 2007 2.0% Volkswagen Golf Hatchback 1991 1.39% BMW 1 Series Coupe 2012 1.35% HUMMER H3T Crew Cab 2010 1.25% HUMMER H2 SUT Crew Cab 2009 1.16% +663 /scratch/Teaching/cars/car_ims/012429.jpg Lamborghini Aventador Coupe 2012 Bentley Arnage Sedan 2009 3.25% Land Rover Range Rover SUV 2012 1.89% Cadillac Escalade EXT Crew Cab 2007 1.85% Chevrolet TrailBlazer SS 2009 1.85% Ford Expedition EL SUV 2009 1.68% +664 /scratch/Teaching/cars/car_ims/007575.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 4.86% FIAT 500 Abarth 2012 1.99% Land Rover Range Rover SUV 2012 1.88% Hyundai Genesis Sedan 2012 1.73% Cadillac SRX SUV 2012 1.59% +665 /scratch/Teaching/cars/car_ims/006747.jpg Dodge Caliber Wagon 2012 AM General Hummer SUV 2000 2.36% Lamborghini Diablo Coupe 2001 2.32% Audi TT RS Coupe 2012 1.95% McLaren MP4-12C Coupe 2012 1.92% Lamborghini Aventador Coupe 2012 1.86% +666 /scratch/Teaching/cars/car_ims/011650.jpg Infiniti QX56 SUV 2011 Mercedes-Benz S-Class Sedan 2012 1.8% Mercedes-Benz Sprinter Van 2012 1.63% MINI Cooper Roadster Convertible 2012 1.34% Audi A5 Coupe 2012 1.23% BMW X3 SUV 2012 1.23% +667 /scratch/Teaching/cars/car_ims/010408.jpg Honda Odyssey Minivan 2012 MINI Cooper Roadster Convertible 2012 3.28% Mercedes-Benz E-Class Sedan 2012 2.7% Mercedes-Benz S-Class Sedan 2012 2.63% Fisker Karma Sedan 2012 2.14% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.03% +668 /scratch/Teaching/cars/car_ims/002225.jpg BMW 1 Series Coupe 2012 Dodge Caliber Wagon 2007 2.06% BMW 1 Series Coupe 2012 1.84% McLaren MP4-12C Coupe 2012 1.6% Audi RS 4 Convertible 2008 1.52% Dodge Charger SRT-8 2009 1.48% +669 /scratch/Teaching/cars/car_ims/012883.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 5.28% Mercedes-Benz E-Class Sedan 2012 5.2% Chevrolet Corvette ZR1 2012 2.97% Mercedes-Benz 300-Class Convertible 1993 2.84% Bugatti Veyron 16.4 Coupe 2009 2.82% +670 /scratch/Teaching/cars/car_ims/013917.jpg Nissan NV Passenger Van 2012 Mercedes-Benz S-Class Sedan 2012 0.85% BMW X3 SUV 2012 0.8% Hyundai Genesis Sedan 2012 0.79% Mercedes-Benz C-Class Sedan 2012 0.78% Mercedes-Benz E-Class Sedan 2012 0.75% +671 /scratch/Teaching/cars/car_ims/009827.jpg GMC Yukon Hybrid SUV 2012 Hyundai Santa Fe SUV 2012 0.96% Jeep Grand Cherokee SUV 2012 0.96% BMW X5 SUV 2007 0.94% GMC Acadia SUV 2012 0.94% Cadillac Escalade EXT Crew Cab 2007 0.91% +672 /scratch/Teaching/cars/car_ims/014721.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 1.59% Ram C/V Cargo Van Minivan 2012 1.46% FIAT 500 Convertible 2012 1.27% Dodge Sprinter Cargo Van 2009 1.19% Hyundai Elantra Sedan 2007 1.16% +673 /scratch/Teaching/cars/car_ims/001746.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.92% GMC Savana Van 2012 1.69% Ferrari FF Coupe 2012 1.35% Lincoln Town Car Sedan 2011 1.26% Dodge Sprinter Cargo Van 2009 1.2% +674 /scratch/Teaching/cars/car_ims/015475.jpg Toyota Corolla Sedan 2012 Bentley Arnage Sedan 2009 1.78% Mercedes-Benz C-Class Sedan 2012 1.76% Land Rover Range Rover SUV 2012 1.56% Chrysler 300 SRT-8 2010 1.36% Toyota 4Runner SUV 2012 1.32% +675 /scratch/Teaching/cars/car_ims/013396.jpg Mercedes-Benz SL-Class Coupe 2009 Chevrolet Silverado 2500HD Regular Cab 2012 1.4% Audi A5 Coupe 2012 1.29% Dodge Ram Pickup 3500 Quad Cab 2009 1.21% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% Honda Accord Sedan 2012 1.15% +676 /scratch/Teaching/cars/car_ims/004427.jpg Chevrolet Corvette Convertible 2012 Dodge Caliber Wagon 2007 3.3% BMW 1 Series Coupe 2012 2.6% Hyundai Veloster Hatchback 2012 2.13% Volvo C30 Hatchback 2012 2.09% Geo Metro Convertible 1993 1.95% +677 /scratch/Teaching/cars/car_ims/010890.jpg Hyundai Tucson SUV 2012 Dodge Caliber Wagon 2007 2.44% BMW 1 Series Coupe 2012 1.62% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.45% Suzuki SX4 Hatchback 2012 1.36% Dodge Charger SRT-8 2009 1.35% +678 /scratch/Teaching/cars/car_ims/013957.jpg Nissan Juke Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 1.53% MINI Cooper Roadster Convertible 2012 1.24% Audi S5 Convertible 2012 1.1% BMW X3 SUV 2012 1.08% Mercedes-Benz SL-Class Coupe 2009 1.02% +679 /scratch/Teaching/cars/car_ims/012211.jpg Jeep Compass SUV 2012 Mercedes-Benz C-Class Sedan 2012 1.66% Bentley Arnage Sedan 2009 1.41% Infiniti G Coupe IPL 2012 1.32% BMW M6 Convertible 2010 1.23% Fisker Karma Sedan 2012 1.2% +680 /scratch/Teaching/cars/car_ims/014328.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 2.34% Ram C/V Cargo Van Minivan 2012 2.13% Lincoln Town Car Sedan 2011 1.51% Dodge Sprinter Cargo Van 2009 1.45% Honda Odyssey Minivan 2007 1.16% +681 /scratch/Teaching/cars/car_ims/001464.jpg Audi 100 Wagon 1994 MINI Cooper Roadster Convertible 2012 2.37% Mercedes-Benz S-Class Sedan 2012 1.91% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% Mercedes-Benz E-Class Sedan 2012 1.22% Hyundai Genesis Sedan 2012 1.18% +682 /scratch/Teaching/cars/car_ims/010220.jpg HUMMER H3T Crew Cab 2010 Ferrari 458 Italia Convertible 2012 4.46% McLaren MP4-12C Coupe 2012 4.18% Aston Martin Virage Coupe 2012 3.35% BMW 1 Series Coupe 2012 3.35% Ferrari California Convertible 2012 3.23% +683 /scratch/Teaching/cars/car_ims/009050.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 2.34% Ram C/V Cargo Van Minivan 2012 1.74% Dodge Sprinter Cargo Van 2009 1.59% Mercedes-Benz Sprinter Van 2012 1.53% Volkswagen Golf Hatchback 2012 1.33% +684 /scratch/Teaching/cars/car_ims/008465.jpg Ferrari 458 Italia Coupe 2012 HUMMER H2 SUT Crew Cab 2009 2.44% Dodge Caliber Wagon 2007 1.87% HUMMER H3T Crew Cab 2010 1.79% AM General Hummer SUV 2000 1.73% Jeep Wrangler SUV 2012 1.71% +685 /scratch/Teaching/cars/car_ims/010568.jpg Honda Accord Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.6% Chevrolet TrailBlazer SS 2009 1.55% Chrysler 300 SRT-8 2010 1.54% HUMMER H2 SUT Crew Cab 2009 1.46% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.35% +686 /scratch/Teaching/cars/car_ims/002226.jpg BMW 1 Series Coupe 2012 Audi S6 Sedan 2011 1.1% Hyundai Genesis Sedan 2012 1.08% BMW X5 SUV 2007 1.07% Ford E-Series Wagon Van 2012 1.06% Bentley Arnage Sedan 2009 0.96% +687 /scratch/Teaching/cars/car_ims/005122.jpg Chevrolet Sonic Sedan 2012 HUMMER H2 SUT Crew Cab 2009 1.74% AM General Hummer SUV 2000 1.73% HUMMER H3T Crew Cab 2010 1.46% Bugatti Veyron 16.4 Coupe 2009 1.43% Jeep Wrangler SUV 2012 1.39% +688 /scratch/Teaching/cars/car_ims/007993.jpg Eagle Talon Hatchback 1998 Ferrari 458 Italia Convertible 2012 3.29% Ferrari FF Coupe 2012 3.07% Ferrari California Convertible 2012 3.02% Geo Metro Convertible 1993 2.93% McLaren MP4-12C Coupe 2012 2.87% +689 /scratch/Teaching/cars/car_ims/016051.jpg Volvo XC90 SUV 2007 BMW X5 SUV 2007 1.48% GMC Savana Van 2012 1.34% Hyundai Santa Fe SUV 2012 1.34% Ford F-150 Regular Cab 2012 1.24% Chevrolet Avalanche Crew Cab 2012 1.23% +690 /scratch/Teaching/cars/car_ims/000033.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 4.1% Chevrolet TrailBlazer SS 2009 3.08% Ford Expedition EL SUV 2009 2.51% Dodge Ram Pickup 3500 Crew Cab 2010 2.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.26% +691 /scratch/Teaching/cars/car_ims/015077.jpg Suzuki SX4 Hatchback 2012 Lamborghini Diablo Coupe 2001 4.05% McLaren MP4-12C Coupe 2012 3.62% Ferrari California Convertible 2012 3.6% Aston Martin Virage Coupe 2012 3.57% Acura Integra Type R 2001 3.09% +692 /scratch/Teaching/cars/car_ims/011526.jpg Hyundai Azera Sedan 2012 Bentley Arnage Sedan 2009 0.97% Land Rover Range Rover SUV 2012 0.9% Jeep Compass SUV 2012 0.9% Chrysler 300 SRT-8 2010 0.9% FIAT 500 Abarth 2012 0.9% +693 /scratch/Teaching/cars/car_ims/015147.jpg Suzuki SX4 Sedan 2012 FIAT 500 Convertible 2012 2.11% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.94% Maybach Landaulet Convertible 2012 1.7% Nissan Leaf Hatchback 2012 1.37% Daewoo Nubira Wagon 2002 1.22% +694 /scratch/Teaching/cars/car_ims/014145.jpg Plymouth Neon Coupe 1999 Bentley Arnage Sedan 2009 2.05% Bugatti Veyron 16.4 Coupe 2009 1.54% FIAT 500 Abarth 2012 1.46% Bentley Mulsanne Sedan 2011 1.31% Hyundai Genesis Sedan 2012 1.24% +695 /scratch/Teaching/cars/car_ims/007728.jpg Dodge Durango SUV 2007 GMC Savana Van 2012 1.8% Chevrolet Avalanche Crew Cab 2012 1.47% Isuzu Ascender SUV 2008 1.41% Hyundai Santa Fe SUV 2012 1.38% Ford F-150 Regular Cab 2012 1.34% +696 /scratch/Teaching/cars/car_ims/014074.jpg Nissan 240SX Coupe 1998 Ferrari 458 Italia Convertible 2012 2.38% Ferrari California Convertible 2012 2.24% Geo Metro Convertible 1993 2.22% Ferrari 458 Italia Coupe 2012 2.18% Ferrari FF Coupe 2012 1.96% +697 /scratch/Teaching/cars/car_ims/015644.jpg Volkswagen Golf Hatchback 2012 Ford E-Series Wagon Van 2012 1.55% Chrysler PT Cruiser Convertible 2008 1.28% Dodge Caravan Minivan 1997 1.22% Dodge Challenger SRT8 2011 1.2% Rolls-Royce Phantom Sedan 2012 1.18% +698 /scratch/Teaching/cars/car_ims/014953.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 1.28% Chevrolet Silverado 2500HD Regular Cab 2012 0.94% Chevrolet Silverado 1500 Extended Cab 2012 0.94% Chevrolet Silverado 1500 Regular Cab 2012 0.93% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.88% +699 /scratch/Teaching/cars/car_ims/000732.jpg Aston Martin V8 Vantage Coupe 2012 Bentley Arnage Sedan 2009 2.83% FIAT 500 Abarth 2012 1.63% Bugatti Veyron 16.4 Coupe 2009 1.26% Chrysler 300 SRT-8 2010 1.25% Chevrolet TrailBlazer SS 2009 1.24% +700 /scratch/Teaching/cars/car_ims/012590.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 11.09% Aston Martin Virage Coupe 2012 9.05% Acura Integra Type R 2001 7.69% Chevrolet Corvette Convertible 2012 6.57% McLaren MP4-12C Coupe 2012 5.65% +701 /scratch/Teaching/cars/car_ims/008074.jpg FIAT 500 Abarth 2012 BMW X3 SUV 2012 1.31% Audi S5 Coupe 2012 1.25% Audi A5 Coupe 2012 1.17% BMW X5 SUV 2007 1.16% Mercedes-Benz S-Class Sedan 2012 1.14% +702 /scratch/Teaching/cars/car_ims/014033.jpg Nissan 240SX Coupe 1998 Mercedes-Benz 300-Class Convertible 1993 1.07% Bugatti Veyron 16.4 Coupe 2009 1.06% Ford GT Coupe 2006 1.0% Spyker C8 Convertible 2009 0.91% Volvo 240 Sedan 1993 0.89% +703 /scratch/Teaching/cars/car_ims/014859.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz S-Class Sedan 2012 1.4% Mercedes-Benz Sprinter Van 2012 1.32% Ram C/V Cargo Van Minivan 2012 1.21% Dodge Sprinter Cargo Van 2009 1.17% BMW ActiveHybrid 5 Sedan 2012 1.09% +704 /scratch/Teaching/cars/car_ims/008489.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Coupe 2012 2.37% Ferrari 458 Italia Coupe 2012 2.28% Ferrari California Convertible 2012 2.24% Ferrari 458 Italia Convertible 2012 2.24% Dodge Caliber Wagon 2007 2.18% +705 /scratch/Teaching/cars/car_ims/002980.jpg BMW X3 SUV 2012 GMC Savana Van 2012 2.0% Ram C/V Cargo Van Minivan 2012 1.8% Dodge Sprinter Cargo Van 2009 1.45% Lincoln Town Car Sedan 2011 1.31% Honda Odyssey Minivan 2007 1.09% +706 /scratch/Teaching/cars/car_ims/010980.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 1.98% Chevrolet Express Cargo Van 2007 1.12% Dodge Sprinter Cargo Van 2009 0.97% Ferrari FF Coupe 2012 0.92% Honda Accord Sedan 2012 0.87% +707 /scratch/Teaching/cars/car_ims/011681.jpg Isuzu Ascender SUV 2008 Mercedes-Benz S-Class Sedan 2012 1.9% Mercedes-Benz Sprinter Van 2012 1.43% BMW X3 SUV 2012 1.31% Audi A5 Coupe 2012 1.2% MINI Cooper Roadster Convertible 2012 1.2% +708 /scratch/Teaching/cars/car_ims/014655.jpg Scion xD Hatchback 2012 Ferrari FF Coupe 2012 2.61% Volvo C30 Hatchback 2012 1.68% Hyundai Elantra Sedan 2007 1.68% Ferrari 458 Italia Coupe 2012 1.65% Ferrari 458 Italia Convertible 2012 1.63% +709 /scratch/Teaching/cars/car_ims/014848.jpg Suzuki Aerio Sedan 2007 GMC Savana Van 2012 1.14% Mercedes-Benz Sprinter Van 2012 1.11% Mercedes-Benz S-Class Sedan 2012 0.96% Dodge Caravan Minivan 1997 0.96% Suzuki SX4 Sedan 2012 0.93% +710 /scratch/Teaching/cars/car_ims/001427.jpg Audi 100 Wagon 1994 Chevrolet Silverado 2500HD Regular Cab 2012 1.1% Audi S5 Coupe 2012 1.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.99% Audi A5 Coupe 2012 0.98% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.96% +711 /scratch/Teaching/cars/car_ims/011775.jpg Jaguar XK XKR 2012 GMC Savana Van 2012 1.93% Ram C/V Cargo Van Minivan 2012 1.59% Dodge Sprinter Cargo Van 2009 1.44% Lincoln Town Car Sedan 2011 1.15% Honda Odyssey Minivan 2007 1.14% +712 /scratch/Teaching/cars/car_ims/000818.jpg Aston Martin Virage Coupe 2012 Ferrari FF Coupe 2012 4.86% Ferrari 458 Italia Convertible 2012 4.12% McLaren MP4-12C Coupe 2012 3.7% BMW 1 Series Coupe 2012 3.38% Ferrari California Convertible 2012 3.3% +713 /scratch/Teaching/cars/car_ims/000009.jpg AM General Hummer SUV 2000 GMC Savana Van 2012 2.41% BMW 1 Series Coupe 2012 1.79% Ferrari FF Coupe 2012 1.64% Dodge Caliber Wagon 2007 1.55% Volkswagen Golf Hatchback 1991 1.07% +714 /scratch/Teaching/cars/car_ims/013636.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz S-Class Sedan 2012 1.91% MINI Cooper Roadster Convertible 2012 1.7% Mercedes-Benz Sprinter Van 2012 1.52% Suzuki SX4 Sedan 2012 1.08% Audi S6 Sedan 2011 1.07% +715 /scratch/Teaching/cars/car_ims/008656.jpg Ford F-450 Super Duty Crew Cab 2012 AM General Hummer SUV 2000 2.14% Ford GT Coupe 2006 2.01% Spyker C8 Convertible 2009 1.67% Mercedes-Benz 300-Class Convertible 1993 1.58% HUMMER H3T Crew Cab 2010 1.52% +716 /scratch/Teaching/cars/car_ims/011167.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 4.34% BMW M3 Coupe 2012 2.61% BMW 1 Series Coupe 2012 2.43% Ferrari 458 Italia Convertible 2012 2.39% Geo Metro Convertible 1993 2.37% +717 /scratch/Teaching/cars/car_ims/012951.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 1.81% Ford GT Coupe 2006 1.71% Geo Metro Convertible 1993 1.69% Ferrari FF Coupe 2012 1.66% BMW M3 Coupe 2012 1.52% +718 /scratch/Teaching/cars/car_ims/010140.jpg Geo Metro Convertible 1993 Aston Martin Virage Coupe 2012 2.82% Chevrolet Corvette Convertible 2012 2.78% Ferrari 458 Italia Coupe 2012 2.67% Ferrari 458 Italia Convertible 2012 2.61% Ferrari California Convertible 2012 2.41% +719 /scratch/Teaching/cars/car_ims/013084.jpg McLaren MP4-12C Coupe 2012 BMW 1 Series Coupe 2012 1.95% Dodge Caliber Wagon 2007 1.89% Geo Metro Convertible 1993 1.78% McLaren MP4-12C Coupe 2012 1.78% Ferrari California Convertible 2012 1.65% +720 /scratch/Teaching/cars/car_ims/007168.jpg Dodge Sprinter Cargo Van 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.11% Mercedes-Benz S-Class Sedan 2012 1.08% Mercedes-Benz E-Class Sedan 2012 1.01% Mercedes-Benz 300-Class Convertible 1993 0.87% Bugatti Veyron 16.4 Coupe 2009 0.85% +721 /scratch/Teaching/cars/car_ims/013590.jpg Mercedes-Benz Sprinter Van 2012 FIAT 500 Convertible 2012 2.11% Ferrari FF Coupe 2012 2.03% Ram C/V Cargo Van Minivan 2012 1.9% GMC Savana Van 2012 1.83% Hyundai Elantra Sedan 2007 1.46% +722 /scratch/Teaching/cars/car_ims/015424.jpg Toyota Corolla Sedan 2012 Mercedes-Benz Sprinter Van 2012 1.64% Mercedes-Benz S-Class Sedan 2012 1.63% Ford E-Series Wagon Van 2012 1.51% MINI Cooper Roadster Convertible 2012 1.21% Dodge Caravan Minivan 1997 1.2% +723 /scratch/Teaching/cars/car_ims/012976.jpg Maybach Landaulet Convertible 2012 Hyundai Elantra Sedan 2007 1.07% GMC Savana Van 2012 0.98% Daewoo Nubira Wagon 2002 0.95% Dodge Caliber Wagon 2007 0.89% Chevrolet Sonic Sedan 2012 0.89% +724 /scratch/Teaching/cars/car_ims/006812.jpg Dodge Caliber Wagon 2007 Geo Metro Convertible 1993 1.65% Ford GT Coupe 2006 1.64% Hyundai Elantra Sedan 2007 1.64% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.61% FIAT 500 Convertible 2012 1.56% +725 /scratch/Teaching/cars/car_ims/000349.jpg Acura TSX Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.59% GMC Savana Van 2012 1.39% Mercedes-Benz Sprinter Van 2012 1.23% Honda Odyssey Minivan 2007 1.21% Audi A5 Coupe 2012 1.19% +726 /scratch/Teaching/cars/car_ims/013355.jpg Mercedes-Benz SL-Class Coupe 2009 MINI Cooper Roadster Convertible 2012 2.27% Mercedes-Benz S-Class Sedan 2012 1.68% Mercedes-Benz E-Class Sedan 2012 1.4% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% Hyundai Genesis Sedan 2012 1.16% +727 /scratch/Teaching/cars/car_ims/001618.jpg Audi S6 Sedan 2011 Audi S6 Sedan 2011 2.44% Ford E-Series Wagon Van 2012 1.92% Audi A5 Coupe 2012 1.57% BMW X5 SUV 2007 1.57% Mercedes-Benz S-Class Sedan 2012 1.41% +728 /scratch/Teaching/cars/car_ims/001863.jpg Audi S4 Sedan 2012 MINI Cooper Roadster Convertible 2012 2.29% Mercedes-Benz E-Class Sedan 2012 1.8% Mercedes-Benz S-Class Sedan 2012 1.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.66% Bentley Mulsanne Sedan 2011 1.36% +729 /scratch/Teaching/cars/car_ims/015511.jpg Toyota 4Runner SUV 2012 Ford F-450 Super Duty Crew Cab 2012 1.86% Cadillac Escalade EXT Crew Cab 2007 1.7% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.68% BMW X5 SUV 2007 1.67% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.57% +730 /scratch/Teaching/cars/car_ims/008480.jpg Ferrari 458 Italia Coupe 2012 Bentley Arnage Sedan 2009 3.76% Land Rover Range Rover SUV 2012 1.98% Cadillac Escalade EXT Crew Cab 2007 1.82% FIAT 500 Abarth 2012 1.75% Chevrolet TrailBlazer SS 2009 1.69% +731 /scratch/Teaching/cars/car_ims/002609.jpg BMW X5 SUV 2007 Audi S6 Sedan 2011 2.19% BMW X5 SUV 2007 1.98% Hyundai Santa Fe SUV 2012 1.75% Ford F-450 Super Duty Crew Cab 2012 1.71% Ford E-Series Wagon Van 2012 1.64% +732 /scratch/Teaching/cars/car_ims/003279.jpg Bentley Mulsanne Sedan 2011 BMW X5 SUV 2007 1.27% Ford F-450 Super Duty Crew Cab 2012 1.23% Audi S6 Sedan 2011 1.2% Audi S5 Coupe 2012 1.14% Volvo XC90 SUV 2007 1.1% +733 /scratch/Teaching/cars/car_ims/010913.jpg Hyundai Tucson SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.35% Mercedes-Benz Sprinter Van 2012 1.22% MINI Cooper Roadster Convertible 2012 1.13% Audi A5 Coupe 2012 1.02% BMW X3 SUV 2012 0.98% +734 /scratch/Teaching/cars/car_ims/004762.jpg Chevrolet Camaro Convertible 2012 Bentley Arnage Sedan 2009 3.43% Mercedes-Benz C-Class Sedan 2012 2.09% Land Rover Range Rover SUV 2012 1.75% Chrysler 300 SRT-8 2010 1.53% Toyota 4Runner SUV 2012 1.52% +735 /scratch/Teaching/cars/car_ims/009327.jpg Ford F-150 Regular Cab 2007 Chevrolet TrailBlazer SS 2009 1.84% HUMMER H2 SUT Crew Cab 2009 1.77% HUMMER H3T Crew Cab 2010 1.38% Jeep Liberty SUV 2012 1.31% Cadillac Escalade EXT Crew Cab 2007 1.29% +736 /scratch/Teaching/cars/car_ims/003600.jpg Bugatti Veyron 16.4 Convertible 2009 FIAT 500 Convertible 2012 1.64% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.52% Mercedes-Benz S-Class Sedan 2012 1.28% Nissan Leaf Hatchback 2012 1.26% Ram C/V Cargo Van Minivan 2012 1.26% +737 /scratch/Teaching/cars/car_ims/003857.jpg Buick Rainier SUV 2007 Mercedes-Benz C-Class Sedan 2012 1.11% Audi S6 Sedan 2011 1.08% BMW X5 SUV 2007 1.04% Bentley Mulsanne Sedan 2011 1.01% Land Rover Range Rover SUV 2012 1.01% +738 /scratch/Teaching/cars/car_ims/014370.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 GMC Savana Van 2012 1.68% Dodge Sprinter Cargo Van 2009 1.26% Ram C/V Cargo Van Minivan 2012 1.16% Chevrolet Express Cargo Van 2007 1.11% Mercedes-Benz Sprinter Van 2012 0.99% +739 /scratch/Teaching/cars/car_ims/002307.jpg BMW 3 Series Sedan 2012 Ferrari California Convertible 2012 2.79% Lamborghini Diablo Coupe 2001 2.77% Aston Martin Virage Coupe 2012 2.72% McLaren MP4-12C Coupe 2012 2.71% Ferrari 458 Italia Coupe 2012 2.35% +740 /scratch/Teaching/cars/car_ims/015777.jpg Volkswagen Beetle Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 2.11% MINI Cooper Roadster Convertible 2012 1.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.35% Mercedes-Benz Sprinter Van 2012 1.31% Suzuki SX4 Sedan 2012 1.15% +741 /scratch/Teaching/cars/car_ims/001337.jpg Audi 100 Sedan 1994 Cadillac Escalade EXT Crew Cab 2007 1.51% Ford E-Series Wagon Van 2012 1.33% Ford Expedition EL SUV 2009 1.28% Dodge Ram Pickup 3500 Crew Cab 2010 1.17% Land Rover Range Rover SUV 2012 1.15% +742 /scratch/Teaching/cars/car_ims/007051.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Bentley Arnage Sedan 2009 3.4% Hyundai Genesis Sedan 2012 1.99% Land Rover Range Rover SUV 2012 1.73% Mercedes-Benz C-Class Sedan 2012 1.6% Ford Expedition EL SUV 2009 1.46% +743 /scratch/Teaching/cars/car_ims/013230.jpg Mercedes-Benz 300-Class Convertible 1993 Lamborghini Diablo Coupe 2001 8.14% Ferrari 458 Italia Convertible 2012 4.62% Chevrolet HHR SS 2010 3.92% Ferrari 458 Italia Coupe 2012 3.72% Ferrari California Convertible 2012 3.7% +744 /scratch/Teaching/cars/car_ims/007872.jpg Dodge Charger Sedan 2012 AM General Hummer SUV 2000 3.96% Aston Martin Virage Coupe 2012 3.53% McLaren MP4-12C Coupe 2012 2.75% Ferrari California Convertible 2012 2.65% Ferrari 458 Italia Coupe 2012 2.61% +745 /scratch/Teaching/cars/car_ims/006685.jpg Daewoo Nubira Wagon 2002 Ford Expedition EL SUV 2009 1.16% Plymouth Neon Coupe 1999 1.15% Chevrolet TrailBlazer SS 2009 1.11% Dodge Ram Pickup 3500 Crew Cab 2010 1.09% GMC Savana Van 2012 1.05% +746 /scratch/Teaching/cars/car_ims/015192.jpg Tesla Model S Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.15% GMC Savana Van 2012 1.62% FIAT 500 Convertible 2012 1.41% Lincoln Town Car Sedan 2011 1.29% Dodge Sprinter Cargo Van 2009 1.27% +747 /scratch/Teaching/cars/car_ims/013967.jpg Nissan Juke Hatchback 2012 BMW X5 SUV 2007 1.18% Toyota Sequoia SUV 2012 1.05% Land Rover Range Rover SUV 2012 1.03% GMC Yukon Hybrid SUV 2012 1.03% Hyundai Santa Fe SUV 2012 0.99% +748 /scratch/Teaching/cars/car_ims/002079.jpg BMW ActiveHybrid 5 Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.65% Mercedes-Benz S-Class Sedan 2012 1.5% Dodge Sprinter Cargo Van 2009 1.35% Acura TL Sedan 2012 1.25% Mercedes-Benz Sprinter Van 2012 1.23% +749 /scratch/Teaching/cars/car_ims/016002.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 2.07% Ford F-150 Regular Cab 2012 1.36% Chevrolet Silverado 1500 Regular Cab 2012 1.32% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% Chevrolet Avalanche Crew Cab 2012 1.25% +750 /scratch/Teaching/cars/car_ims/007936.jpg Dodge Charger SRT-8 2009 Bentley Arnage Sedan 2009 2.6% Fisker Karma Sedan 2012 2.05% Bugatti Veyron 16.4 Coupe 2009 1.9% Mercedes-Benz 300-Class Convertible 1993 1.51% Bentley Mulsanne Sedan 2011 1.49% +751 /scratch/Teaching/cars/car_ims/010130.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Convertible 2012 2.56% Chevrolet HHR SS 2010 2.32% Ferrari 458 Italia Coupe 2012 2.3% Lamborghini Diablo Coupe 2001 2.26% Geo Metro Convertible 1993 2.24% +752 /scratch/Teaching/cars/car_ims/003523.jpg Bentley Continental Flying Spur Sedan 2007 Fisker Karma Sedan 2012 1.58% Mercedes-Benz 300-Class Convertible 1993 1.37% Rolls-Royce Phantom Sedan 2012 1.34% Hyundai Genesis Sedan 2012 1.28% Ford GT Coupe 2006 1.25% +753 /scratch/Teaching/cars/car_ims/015824.jpg Volkswagen Beetle Hatchback 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.3% Chevrolet TrailBlazer SS 2009 1.21% Chevrolet Silverado 1500 Regular Cab 2012 1.13% Dodge Ram Pickup 3500 Quad Cab 2009 1.08% GMC Savana Van 2012 1.07% +754 /scratch/Teaching/cars/car_ims/008826.jpg Ford Freestar Minivan 2007 FIAT 500 Convertible 2012 1.64% Daewoo Nubira Wagon 2002 1.34% Hyundai Elantra Sedan 2007 1.2% Nissan Leaf Hatchback 2012 1.17% Ram C/V Cargo Van Minivan 2012 1.12% +755 /scratch/Teaching/cars/car_ims/001420.jpg Audi 100 Wagon 1994 Chevrolet TrailBlazer SS 2009 1.79% Ford Expedition EL SUV 2009 1.57% Chrysler 300 SRT-8 2010 1.49% Cadillac Escalade EXT Crew Cab 2007 1.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% +756 /scratch/Teaching/cars/car_ims/013730.jpg Mitsubishi Lancer Sedan 2012 AM General Hummer SUV 2000 6.09% Lamborghini Diablo Coupe 2001 3.9% Aston Martin Virage Coupe 2012 3.71% Acura Integra Type R 2001 2.96% HUMMER H2 SUT Crew Cab 2009 2.69% +757 /scratch/Teaching/cars/car_ims/004698.jpg Chevrolet Traverse SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.19% Ford F-450 Super Duty Crew Cab 2012 2.06% Land Rover Range Rover SUV 2012 1.88% Hyundai Santa Fe SUV 2012 1.86% Chevrolet TrailBlazer SS 2009 1.67% +758 /scratch/Teaching/cars/car_ims/003921.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 1.98% Ferrari FF Coupe 2012 1.3% Hyundai Elantra Sedan 2007 1.2% Ram C/V Cargo Van Minivan 2012 1.19% BMW 1 Series Coupe 2012 1.17% +759 /scratch/Teaching/cars/car_ims/002297.jpg BMW 3 Series Sedan 2012 HUMMER H2 SUT Crew Cab 2009 1.6% Chevrolet TrailBlazer SS 2009 1.53% Chrysler 300 SRT-8 2010 1.3% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% Cadillac Escalade EXT Crew Cab 2007 1.23% +760 /scratch/Teaching/cars/car_ims/008484.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Coupe 2012 3.52% Lamborghini Aventador Coupe 2012 3.04% Ferrari 458 Italia Convertible 2012 2.83% AM General Hummer SUV 2000 2.78% McLaren MP4-12C Coupe 2012 2.72% +761 /scratch/Teaching/cars/car_ims/014198.jpg Porsche Panamera Sedan 2012 Infiniti G Coupe IPL 2012 1.03% Mercedes-Benz C-Class Sedan 2012 0.98% Chevrolet Corvette ZR1 2012 0.92% Toyota Sequoia SUV 2012 0.89% BMW X3 SUV 2012 0.88% +762 /scratch/Teaching/cars/car_ims/010816.jpg Hyundai Santa Fe SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.64% Mercedes-Benz Sprinter Van 2012 1.23% MINI Cooper Roadster Convertible 2012 1.13% Suzuki SX4 Sedan 2012 1.02% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.99% +763 /scratch/Teaching/cars/car_ims/007710.jpg Dodge Durango SUV 2007 BMW X5 SUV 2007 1.7% Audi A5 Coupe 2012 1.54% Isuzu Ascender SUV 2008 1.48% GMC Savana Van 2012 1.45% Hyundai Santa Fe SUV 2012 1.35% +764 /scratch/Teaching/cars/car_ims/006589.jpg Chrysler PT Cruiser Convertible 2008 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.21% FIAT 500 Convertible 2012 2.87% Mercedes-Benz E-Class Sedan 2012 2.07% MINI Cooper Roadster Convertible 2012 1.92% Mercedes-Benz S-Class Sedan 2012 1.87% +765 /scratch/Teaching/cars/car_ims/008316.jpg Ferrari California Convertible 2012 Aston Martin Virage Coupe 2012 3.3% McLaren MP4-12C Coupe 2012 2.88% Ferrari California Convertible 2012 2.75% Ferrari 458 Italia Convertible 2012 2.74% Ferrari 458 Italia Coupe 2012 2.67% +766 /scratch/Teaching/cars/car_ims/006133.jpg Chrysler Aspen SUV 2009 Bentley Arnage Sedan 2009 2.87% Hyundai Genesis Sedan 2012 1.89% Mercedes-Benz C-Class Sedan 2012 1.61% Ford Expedition EL SUV 2009 1.4% Rolls-Royce Phantom Sedan 2012 1.39% +767 /scratch/Teaching/cars/car_ims/002056.jpg BMW ActiveHybrid 5 Sedan 2012 Hyundai Santa Fe SUV 2012 2.03% Ford F-450 Super Duty Crew Cab 2012 1.79% BMW X5 SUV 2007 1.75% Ford E-Series Wagon Van 2012 1.68% Isuzu Ascender SUV 2008 1.64% +768 /scratch/Teaching/cars/car_ims/012823.jpg Lincoln Town Car Sedan 2011 Bentley Arnage Sedan 2009 1.74% Land Rover Range Rover SUV 2012 1.34% Cadillac Escalade EXT Crew Cab 2007 1.29% Chevrolet TrailBlazer SS 2009 1.29% Ford Expedition EL SUV 2009 1.26% +769 /scratch/Teaching/cars/car_ims/001121.jpg Audi TTS Coupe 2012 AM General Hummer SUV 2000 6.73% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.3% Aston Martin Virage Coupe 2012 3.85% HUMMER H2 SUT Crew Cab 2009 2.91% Lamborghini Aventador Coupe 2012 2.84% +770 /scratch/Teaching/cars/car_ims/013075.jpg McLaren MP4-12C Coupe 2012 Ferrari 458 Italia Convertible 2012 6.52% McLaren MP4-12C Coupe 2012 5.24% Ferrari California Convertible 2012 4.8% Aston Martin Virage Coupe 2012 4.38% Ferrari FF Coupe 2012 4.07% +771 /scratch/Teaching/cars/car_ims/012908.jpg MINI Cooper Roadster Convertible 2012 Fisker Karma Sedan 2012 1.58% Bugatti Veyron 16.4 Coupe 2009 1.48% Mercedes-Benz 300-Class Convertible 1993 1.45% Ford GT Coupe 2006 1.27% Bentley Mulsanne Sedan 2011 1.26% +772 /scratch/Teaching/cars/car_ims/005847.jpg Chevrolet Malibu Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 1.89% Chevrolet TrailBlazer SS 2009 1.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.42% HUMMER H2 SUT Crew Cab 2009 1.37% Land Rover Range Rover SUV 2012 1.33% +773 /scratch/Teaching/cars/car_ims/012960.jpg Maybach Landaulet Convertible 2012 Fisker Karma Sedan 2012 1.44% Bugatti Veyron 16.4 Coupe 2009 1.33% Mercedes-Benz 300-Class Convertible 1993 1.23% Mercedes-Benz E-Class Sedan 2012 1.2% Bentley Mulsanne Sedan 2011 1.13% +774 /scratch/Teaching/cars/car_ims/000627.jpg Aston Martin V8 Vantage Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.18% GMC Savana Van 2012 1.75% Lincoln Town Car Sedan 2011 1.38% Dodge Sprinter Cargo Van 2009 1.31% FIAT 500 Convertible 2012 1.24% +775 /scratch/Teaching/cars/car_ims/005723.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.48% Chevrolet Express Cargo Van 2007 1.24% Dodge Sprinter Cargo Van 2009 1.23% Chevrolet Silverado 2500HD Regular Cab 2012 1.07% Honda Accord Sedan 2012 1.06% +776 /scratch/Teaching/cars/car_ims/011465.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.99% Fisker Karma Sedan 2012 1.96% Mercedes-Benz E-Class Sedan 2012 1.96% Mercedes-Benz 300-Class Convertible 1993 1.64% Acura ZDX Hatchback 2012 1.54% +777 /scratch/Teaching/cars/car_ims/004650.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 2.8% Ferrari FF Coupe 2012 1.23% Ram C/V Cargo Van Minivan 2012 1.19% BMW 1 Series Coupe 2012 1.15% Daewoo Nubira Wagon 2002 1.07% +778 /scratch/Teaching/cars/car_ims/014580.jpg Rolls-Royce Phantom Sedan 2012 Bentley Arnage Sedan 2009 2.39% Chevrolet TrailBlazer SS 2009 1.75% FIAT 500 Abarth 2012 1.64% Jeep Patriot SUV 2012 1.51% Cadillac Escalade EXT Crew Cab 2007 1.4% +779 /scratch/Teaching/cars/car_ims/006959.jpg Dodge Caravan Minivan 1997 Mercedes-Benz S-Class Sedan 2012 1.77% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.53% MINI Cooper Roadster Convertible 2012 1.35% FIAT 500 Convertible 2012 1.35% Bugatti Veyron 16.4 Convertible 2009 1.23% +780 /scratch/Teaching/cars/car_ims/000632.jpg Aston Martin V8 Vantage Convertible 2012 Daewoo Nubira Wagon 2002 1.54% FIAT 500 Convertible 2012 1.5% Nissan Leaf Hatchback 2012 1.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.32% Maybach Landaulet Convertible 2012 1.32% +781 /scratch/Teaching/cars/car_ims/003032.jpg BMW Z4 Convertible 2012 Aston Martin Virage Coupe 2012 3.71% Ferrari California Convertible 2012 3.65% Ferrari 458 Italia Convertible 2012 3.12% Ferrari 458 Italia Coupe 2012 2.92% McLaren MP4-12C Coupe 2012 2.79% +782 /scratch/Teaching/cars/car_ims/006364.jpg Chrysler 300 SRT-8 2010 FIAT 500 Convertible 2012 2.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.47% Maybach Landaulet Convertible 2012 1.71% Nissan Leaf Hatchback 2012 1.39% Bugatti Veyron 16.4 Convertible 2009 1.27% +783 /scratch/Teaching/cars/car_ims/007496.jpg Dodge Magnum Wagon 2008 Lamborghini Diablo Coupe 2001 3.96% Aston Martin Virage Coupe 2012 3.49% McLaren MP4-12C Coupe 2012 3.2% Ferrari California Convertible 2012 3.09% Audi TT RS Coupe 2012 2.93% +784 /scratch/Teaching/cars/car_ims/008279.jpg Ferrari California Convertible 2012 Aston Martin Virage Coupe 2012 3.37% Chevrolet Corvette Convertible 2012 3.35% Ferrari 458 Italia Coupe 2012 3.08% Ferrari 458 Italia Convertible 2012 2.9% Chevrolet Cobalt SS 2010 2.63% +785 /scratch/Teaching/cars/car_ims/008861.jpg Ford Expedition EL SUV 2009 Ford Expedition EL SUV 2009 1.84% Cadillac Escalade EXT Crew Cab 2007 1.55% Dodge Ram Pickup 3500 Crew Cab 2010 1.52% Isuzu Ascender SUV 2008 1.51% Chevrolet TrailBlazer SS 2009 1.34% +786 /scratch/Teaching/cars/car_ims/010412.jpg Honda Odyssey Minivan 2012 MINI Cooper Roadster Convertible 2012 1.55% Mercedes-Benz S-Class Sedan 2012 1.34% Rolls-Royce Phantom Sedan 2012 1.17% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.14% Hyundai Genesis Sedan 2012 1.06% +787 /scratch/Teaching/cars/car_ims/001203.jpg Audi R8 Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.86% GMC Savana Van 2012 1.68% Dodge Sprinter Cargo Van 2009 1.25% Lincoln Town Car Sedan 2011 1.19% FIAT 500 Convertible 2012 1.14% +788 /scratch/Teaching/cars/car_ims/003807.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 1.72% Chevrolet Avalanche Crew Cab 2012 1.15% Ford F-150 Regular Cab 2012 0.99% Dodge Caravan Minivan 1997 0.97% Isuzu Ascender SUV 2008 0.97% +789 /scratch/Teaching/cars/car_ims/008503.jpg Fisker Karma Sedan 2012 Chevrolet TrailBlazer SS 2009 1.19% HUMMER H2 SUT Crew Cab 2009 1.07% Bentley Arnage Sedan 2009 1.05% Chrysler 300 SRT-8 2010 1.01% Cadillac Escalade EXT Crew Cab 2007 0.97% +790 /scratch/Teaching/cars/car_ims/012426.jpg Lamborghini Aventador Coupe 2012 GMC Savana Van 2012 1.12% Mercedes-Benz S-Class Sedan 2012 1.09% Mercedes-Benz Sprinter Van 2012 1.08% Ford E-Series Wagon Van 2012 1.07% Honda Odyssey Minivan 2007 1.0% +791 /scratch/Teaching/cars/car_ims/001176.jpg Audi R8 Coupe 2012 Bentley Arnage Sedan 2009 2.41% Land Rover Range Rover SUV 2012 1.74% Cadillac SRX SUV 2012 1.43% GMC Yukon Hybrid SUV 2012 1.42% Cadillac Escalade EXT Crew Cab 2007 1.4% +792 /scratch/Teaching/cars/car_ims/002185.jpg BMW 1 Series Convertible 2012 Cadillac Escalade EXT Crew Cab 2007 1.77% Ford E-Series Wagon Van 2012 1.65% Ford Expedition EL SUV 2009 1.63% Land Rover Range Rover SUV 2012 1.41% Dodge Ram Pickup 3500 Crew Cab 2010 1.36% +793 /scratch/Teaching/cars/car_ims/003826.jpg Buick Rainier SUV 2007 GMC Savana Van 2012 1.81% Chevrolet Silverado 1500 Regular Cab 2012 1.2% Chevrolet Silverado 2500HD Regular Cab 2012 0.99% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.99% Dodge Ram Pickup 3500 Quad Cab 2009 0.96% +794 /scratch/Teaching/cars/car_ims/010670.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 1.65% BMW X5 SUV 2007 1.25% Isuzu Ascender SUV 2008 1.24% Chevrolet Avalanche Crew Cab 2012 1.23% Ford E-Series Wagon Van 2012 1.19% +795 /scratch/Teaching/cars/car_ims/007448.jpg Dodge Dakota Club Cab 2007 Cadillac Escalade EXT Crew Cab 2007 3.29% Chevrolet TrailBlazer SS 2009 3.09% Ford Expedition EL SUV 2009 2.6% Dodge Ram Pickup 3500 Crew Cab 2010 2.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.18% +796 /scratch/Teaching/cars/car_ims/000723.jpg Aston Martin V8 Vantage Coupe 2012 BMW 1 Series Coupe 2012 2.27% Dodge Caliber Wagon 2007 2.0% Aston Martin Virage Coupe 2012 1.99% McLaren MP4-12C Coupe 2012 1.99% Chevrolet Corvette Convertible 2012 1.92% +797 /scratch/Teaching/cars/car_ims/009184.jpg Ford GT Coupe 2006 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.91% FIAT 500 Convertible 2012 2.23% MINI Cooper Roadster Convertible 2012 1.87% Maybach Landaulet Convertible 2012 1.66% Mercedes-Benz S-Class Sedan 2012 1.66% +798 /scratch/Teaching/cars/car_ims/000066.jpg AM General Hummer SUV 2000 AM General Hummer SUV 2000 5.56% HUMMER H2 SUT Crew Cab 2009 5.08% Mercedes-Benz 300-Class Convertible 1993 3.71% Mercedes-Benz E-Class Sedan 2012 2.78% HUMMER H3T Crew Cab 2010 2.71% +799 /scratch/Teaching/cars/car_ims/012992.jpg Mazda Tribute SUV 2011 Bentley Arnage Sedan 2009 1.84% Chrysler 300 SRT-8 2010 1.5% Land Rover Range Rover SUV 2012 1.48% Ford F-450 Super Duty Crew Cab 2012 1.28% Mercedes-Benz C-Class Sedan 2012 1.27% +800 /scratch/Teaching/cars/car_ims/013728.jpg Mitsubishi Lancer Sedan 2012 Daewoo Nubira Wagon 2002 1.04% Dodge Caravan Minivan 1997 0.91% GMC Savana Van 2012 0.86% Ram C/V Cargo Van Minivan 2012 0.86% Suzuki SX4 Sedan 2012 0.86% +801 /scratch/Teaching/cars/car_ims/009624.jpg Ford Fiesta Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 2.9% Bentley Arnage Sedan 2009 2.49% Chevrolet TrailBlazer SS 2009 2.28% Ford Expedition EL SUV 2009 2.04% Land Rover Range Rover SUV 2012 1.99% +802 /scratch/Teaching/cars/car_ims/008594.jpg Ford F-450 Super Duty Crew Cab 2012 Fisker Karma Sedan 2012 1.18% Mercedes-Benz C-Class Sedan 2012 1.09% Hyundai Genesis Sedan 2012 1.07% Bentley Mulsanne Sedan 2011 1.03% Bugatti Veyron 16.4 Coupe 2009 0.91% +803 /scratch/Teaching/cars/car_ims/005287.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 9.1% McLaren MP4-12C Coupe 2012 6.13% Aston Martin Virage Coupe 2012 5.68% Ferrari 458 Italia Convertible 2012 5.52% Acura Integra Type R 2001 4.63% +804 /scratch/Teaching/cars/car_ims/000508.jpg Acura ZDX Hatchback 2012 Dodge Sprinter Cargo Van 2009 1.81% Ram C/V Cargo Van Minivan 2012 1.66% GMC Savana Van 2012 1.63% Mercedes-Benz Sprinter Van 2012 1.6% Mercedes-Benz S-Class Sedan 2012 1.51% +805 /scratch/Teaching/cars/car_ims/005798.jpg Chevrolet Monte Carlo Coupe 2007 Ferrari 458 Italia Convertible 2012 2.72% Ferrari 458 Italia Coupe 2012 2.53% Geo Metro Convertible 1993 2.4% Ferrari California Convertible 2012 2.38% Volvo C30 Hatchback 2012 2.25% +806 /scratch/Teaching/cars/car_ims/013129.jpg McLaren MP4-12C Coupe 2012 Ferrari 458 Italia Convertible 2012 2.35% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.11% Ferrari 458 Italia Coupe 2012 2.03% Volvo C30 Hatchback 2012 2.02% Ferrari California Convertible 2012 1.95% +807 /scratch/Teaching/cars/car_ims/008759.jpg Ford Mustang Convertible 2007 Cadillac Escalade EXT Crew Cab 2007 2.56% Hyundai Santa Fe SUV 2012 1.91% Ford E-Series Wagon Van 2012 1.84% Dodge Ram Pickup 3500 Crew Cab 2010 1.74% Ford Expedition EL SUV 2009 1.71% +808 /scratch/Teaching/cars/car_ims/010445.jpg Honda Odyssey Minivan 2007 Bentley Arnage Sedan 2009 1.5% Bugatti Veyron 16.4 Coupe 2009 1.42% FIAT 500 Abarth 2012 1.35% Lamborghini Reventon Coupe 2008 1.13% Jeep Patriot SUV 2012 1.08% +809 /scratch/Teaching/cars/car_ims/005005.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 1.51% Bentley Arnage Sedan 2009 1.45% Jeep Patriot SUV 2012 1.11% HUMMER H2 SUT Crew Cab 2009 1.08% FIAT 500 Abarth 2012 1.05% +810 /scratch/Teaching/cars/car_ims/015755.jpg Volkswagen Golf Hatchback 1991 Aston Martin Virage Coupe 2012 4.13% Ferrari California Convertible 2012 3.51% McLaren MP4-12C Coupe 2012 3.49% Chevrolet Corvette Convertible 2012 3.41% Ferrari 458 Italia Coupe 2012 3.22% +811 /scratch/Teaching/cars/car_ims/005182.jpg Chevrolet Express Cargo Van 2007 GMC Savana Van 2012 1.14% Dodge Caravan Minivan 1997 1.01% Daewoo Nubira Wagon 2002 0.91% Jeep Liberty SUV 2012 0.85% Ford E-Series Wagon Van 2012 0.85% +812 /scratch/Teaching/cars/car_ims/003909.jpg Buick Verano Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.9% GMC Savana Van 2012 1.78% FIAT 500 Convertible 2012 1.54% Dodge Sprinter Cargo Van 2009 1.37% Hyundai Elantra Sedan 2007 1.23% +813 /scratch/Teaching/cars/car_ims/004818.jpg Chevrolet HHR SS 2010 Ferrari California Convertible 2012 2.29% Lamborghini Diablo Coupe 2001 2.1% Chevrolet HHR SS 2010 1.98% Volvo C30 Hatchback 2012 1.92% Aston Martin Virage Coupe 2012 1.9% +814 /scratch/Teaching/cars/car_ims/005640.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 GMC Savana Van 2012 1.82% Ford E-Series Wagon Van 2012 1.72% Isuzu Ascender SUV 2008 1.54% Chevrolet Avalanche Crew Cab 2012 1.47% Hyundai Santa Fe SUV 2012 1.37% +815 /scratch/Teaching/cars/car_ims/011143.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 2.41% BMW 1 Series Coupe 2012 1.58% HUMMER H2 SUT Crew Cab 2009 1.52% HUMMER H3T Crew Cab 2010 1.41% Suzuki SX4 Hatchback 2012 1.39% +816 /scratch/Teaching/cars/car_ims/009085.jpg Ford Ranger SuperCab 2011 Mercedes-Benz Sprinter Van 2012 1.71% Ram C/V Cargo Van Minivan 2012 1.5% GMC Savana Van 2012 1.48% Mercedes-Benz S-Class Sedan 2012 1.41% Dodge Sprinter Cargo Van 2009 1.37% +817 /scratch/Teaching/cars/car_ims/011897.jpg Jeep Patriot SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.71% Ford F-450 Super Duty Crew Cab 2012 1.6% Land Rover Range Rover SUV 2012 1.53% Chrysler 300 SRT-8 2010 1.47% Chevrolet TrailBlazer SS 2009 1.43% +818 /scratch/Teaching/cars/car_ims/013878.jpg Nissan NV Passenger Van 2012 Mercedes-Benz Sprinter Van 2012 1.29% Ford E-Series Wagon Van 2012 1.24% Audi S6 Sedan 2011 1.24% Mercedes-Benz S-Class Sedan 2012 1.22% Audi A5 Coupe 2012 1.14% +819 /scratch/Teaching/cars/car_ims/008951.jpg Ford Edge SUV 2012 BMW X5 SUV 2007 1.22% Mercedes-Benz S-Class Sedan 2012 0.95% Hyundai Santa Fe SUV 2012 0.9% Isuzu Ascender SUV 2008 0.89% Ford E-Series Wagon Van 2012 0.83% +820 /scratch/Teaching/cars/car_ims/005235.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.12% Ford F-450 Super Duty Crew Cab 2012 1.74% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.58% Chrysler 300 SRT-8 2010 1.5% Cadillac Escalade EXT Crew Cab 2007 1.49% +821 /scratch/Teaching/cars/car_ims/009642.jpg GMC Terrain SUV 2012 Ford E-Series Wagon Van 2012 1.33% Mercedes-Benz S-Class Sedan 2012 1.12% Audi S6 Sedan 2011 1.1% MINI Cooper Roadster Convertible 2012 1.03% Hyundai Genesis Sedan 2012 1.01% +822 /scratch/Teaching/cars/car_ims/015583.jpg Volkswagen Golf Hatchback 2012 Rolls-Royce Phantom Sedan 2012 1.86% Hyundai Genesis Sedan 2012 1.33% MINI Cooper Roadster Convertible 2012 1.31% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.21% Bentley Continental GT Coupe 2007 1.1% +823 /scratch/Teaching/cars/car_ims/007324.jpg Dodge Dakota Crew Cab 2010 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.99% Ferrari 458 Italia Coupe 2012 1.95% Aston Martin Virage Coupe 2012 1.84% Dodge Caliber Wagon 2007 1.79% Volvo C30 Hatchback 2012 1.75% +824 /scratch/Teaching/cars/car_ims/004568.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.3% FIAT 500 Convertible 2012 1.09% Maybach Landaulet Convertible 2012 0.92% Mercedes-Benz S-Class Sedan 2012 0.91% Bugatti Veyron 16.4 Coupe 2009 0.9% +825 /scratch/Teaching/cars/car_ims/009680.jpg GMC Terrain SUV 2012 Bentley Arnage Sedan 2009 1.69% Ford Expedition EL SUV 2009 1.51% Dodge Ram Pickup 3500 Crew Cab 2010 1.38% Chevrolet TrailBlazer SS 2009 1.38% Land Rover Range Rover SUV 2012 1.3% +826 /scratch/Teaching/cars/car_ims/002483.jpg BMW 6 Series Convertible 2007 MINI Cooper Roadster Convertible 2012 2.47% Mercedes-Benz E-Class Sedan 2012 2.13% Fisker Karma Sedan 2012 2.03% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.7% Bentley Mulsanne Sedan 2011 1.68% +827 /scratch/Teaching/cars/car_ims/012401.jpg Lamborghini Aventador Coupe 2012 Fisker Karma Sedan 2012 1.06% Mercedes-Benz C-Class Sedan 2012 1.01% Hyundai Genesis Sedan 2012 1.0% Bentley Mulsanne Sedan 2011 0.94% Mercedes-Benz SL-Class Coupe 2009 0.92% +828 /scratch/Teaching/cars/car_ims/015111.jpg Suzuki SX4 Sedan 2012 GMC Savana Van 2012 1.29% Hyundai Elantra Sedan 2007 1.15% Suzuki SX4 Hatchback 2012 0.97% Dodge Caliber Wagon 2007 0.9% Daewoo Nubira Wagon 2002 0.88% +829 /scratch/Teaching/cars/car_ims/006490.jpg Chrysler Crossfire Convertible 2008 FIAT 500 Convertible 2012 2.97% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.73% Maybach Landaulet Convertible 2012 2.12% Nissan Leaf Hatchback 2012 1.7% Ford GT Coupe 2006 1.44% +830 /scratch/Teaching/cars/car_ims/009972.jpg GMC Canyon Extended Cab 2012 FIAT 500 Convertible 2012 2.96% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.54% Maybach Landaulet Convertible 2012 1.73% Nissan Leaf Hatchback 2012 1.64% MINI Cooper Roadster Convertible 2012 1.32% +831 /scratch/Teaching/cars/car_ims/015504.jpg Toyota 4Runner SUV 2012 Ford F-450 Super Duty Crew Cab 2012 2.51% Cadillac Escalade EXT Crew Cab 2007 2.29% Hyundai Santa Fe SUV 2012 2.18% Ford E-Series Wagon Van 2012 2.03% BMW X5 SUV 2007 1.96% +832 /scratch/Teaching/cars/car_ims/000020.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 3.22% Chevrolet TrailBlazer SS 2009 2.52% Ford Expedition EL SUV 2009 1.88% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.78% Dodge Ram Pickup 3500 Crew Cab 2010 1.78% +833 /scratch/Teaching/cars/car_ims/013888.jpg Nissan NV Passenger Van 2012 Bugatti Veyron 16.4 Coupe 2009 1.39% Nissan Juke Hatchback 2012 1.17% Jeep Wrangler SUV 2012 1.11% Dodge Caliber Wagon 2007 1.07% Jeep Patriot SUV 2012 1.06% +834 /scratch/Teaching/cars/car_ims/014080.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.29% Chevrolet Silverado 2500HD Regular Cab 2012 1.2% Chevrolet Silverado 1500 Regular Cab 2012 1.18% Dodge Ram Pickup 3500 Quad Cab 2009 1.1% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.06% +835 /scratch/Teaching/cars/car_ims/006105.jpg Chrysler Aspen SUV 2009 Ford Expedition EL SUV 2009 1.5% Isuzu Ascender SUV 2008 1.35% Cadillac Escalade EXT Crew Cab 2007 1.32% Dodge Ram Pickup 3500 Crew Cab 2010 1.27% Ford E-Series Wagon Van 2012 1.16% +836 /scratch/Teaching/cars/car_ims/000567.jpg Acura ZDX Hatchback 2012 Ferrari FF Coupe 2012 2.19% Ram C/V Cargo Van Minivan 2012 1.83% FIAT 500 Convertible 2012 1.82% GMC Savana Van 2012 1.78% Nissan Leaf Hatchback 2012 1.36% +837 /scratch/Teaching/cars/car_ims/004196.jpg Cadillac SRX SUV 2012 Ford E-Series Wagon Van 2012 1.06% Rolls-Royce Phantom Sedan 2012 1.02% MINI Cooper Roadster Convertible 2012 1.02% Mercedes-Benz S-Class Sedan 2012 1.0% Dodge Caravan Minivan 1997 0.98% +838 /scratch/Teaching/cars/car_ims/009663.jpg GMC Terrain SUV 2012 GMC Savana Van 2012 1.68% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.57% Cadillac Escalade EXT Crew Cab 2007 1.4% Chevrolet Silverado 1500 Regular Cab 2012 1.4% Ford F-150 Regular Cab 2012 1.38% +839 /scratch/Teaching/cars/car_ims/001143.jpg Audi R8 Coupe 2012 Chevrolet Silverado 1500 Regular Cab 2012 1.16% GMC Savana Van 2012 1.12% Chevrolet Silverado 1500 Extended Cab 2012 1.1% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.09% Dodge Ram Pickup 3500 Quad Cab 2009 0.94% +840 /scratch/Teaching/cars/car_ims/009447.jpg Ford Focus Sedan 2007 Bugatti Veyron 16.4 Coupe 2009 1.13% Dodge Caliber Wagon 2007 1.09% Jeep Patriot SUV 2012 1.07% Dodge Charger SRT-8 2009 1.0% Hyundai Sonata Sedan 2012 0.96% +841 /scratch/Teaching/cars/car_ims/015480.jpg Toyota Corolla Sedan 2012 AM General Hummer SUV 2000 2.34% Aston Martin Virage Coupe 2012 2.26% HUMMER H3T Crew Cab 2010 1.95% HUMMER H2 SUT Crew Cab 2009 1.92% Ferrari California Convertible 2012 1.87% +842 /scratch/Teaching/cars/car_ims/010121.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 5.28% Aston Martin Virage Coupe 2012 4.7% Acura Integra Type R 2001 4.42% Chevrolet Corvette Convertible 2012 4.34% McLaren MP4-12C Coupe 2012 4.18% +843 /scratch/Teaching/cars/car_ims/007070.jpg Dodge Ram Pickup 3500 Quad Cab 2009 GMC Savana Van 2012 1.27% Ford E-Series Wagon Van 2012 1.19% Isuzu Ascender SUV 2008 1.17% Chevrolet Avalanche Crew Cab 2012 1.16% Chevrolet Silverado 1500 Extended Cab 2012 1.0% +844 /scratch/Teaching/cars/car_ims/004134.jpg Cadillac SRX SUV 2012 Hyundai Elantra Sedan 2007 1.6% Dodge Caliber Wagon 2007 1.36% Plymouth Neon Coupe 1999 1.27% Daewoo Nubira Wagon 2002 1.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.19% +845 /scratch/Teaching/cars/car_ims/013374.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 2.93% Mercedes-Benz 300-Class Convertible 1993 2.56% Fisker Karma Sedan 2012 2.52% HUMMER H2 SUT Crew Cab 2009 1.97% Bugatti Veyron 16.4 Coupe 2009 1.8% +846 /scratch/Teaching/cars/car_ims/001167.jpg Audi R8 Coupe 2012 MINI Cooper Roadster Convertible 2012 2.1% Mercedes-Benz S-Class Sedan 2012 1.5% Hyundai Genesis Sedan 2012 1.43% Audi S6 Sedan 2011 1.3% Rolls-Royce Phantom Sedan 2012 1.23% +847 /scratch/Teaching/cars/car_ims/006421.jpg Chrysler 300 SRT-8 2010 GMC Savana Van 2012 1.64% Chevrolet Express Van 2007 0.9% Chevrolet Express Cargo Van 2007 0.89% Chevrolet Malibu Sedan 2007 0.82% Chevrolet Silverado 1500 Regular Cab 2012 0.82% +848 /scratch/Teaching/cars/car_ims/002925.jpg BMW M6 Convertible 2010 Ram C/V Cargo Van Minivan 2012 1.85% GMC Savana Van 2012 1.38% FIAT 500 Convertible 2012 1.33% Lincoln Town Car Sedan 2011 1.27% Nissan Leaf Hatchback 2012 1.23% +849 /scratch/Teaching/cars/car_ims/009373.jpg Ford F-150 Regular Cab 2007 Dodge Caliber Wagon 2007 2.59% BMW 1 Series Coupe 2012 2.21% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.2% Jeep Wrangler SUV 2012 2.09% Chevrolet Corvette Convertible 2012 2.01% +850 /scratch/Teaching/cars/car_ims/003176.jpg Bentley Continental Supersports Conv. Convertible 2012 GMC Savana Van 2012 1.82% Ferrari FF Coupe 2012 1.72% Ram C/V Cargo Van Minivan 2012 1.71% FIAT 500 Convertible 2012 1.57% Nissan Leaf Hatchback 2012 1.29% +851 /scratch/Teaching/cars/car_ims/007264.jpg Dodge Journey SUV 2012 GMC Savana Van 2012 1.21% Daewoo Nubira Wagon 2002 0.98% Hyundai Elantra Sedan 2007 0.98% Dodge Caravan Minivan 1997 0.89% Plymouth Neon Coupe 1999 0.85% +852 /scratch/Teaching/cars/car_ims/015908.jpg Volvo C30 Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 0.91% MINI Cooper Roadster Convertible 2012 0.89% Bentley Mulsanne Sedan 2011 0.84% Hyundai Genesis Sedan 2012 0.82% Hyundai Azera Sedan 2012 0.81% +853 /scratch/Teaching/cars/car_ims/014023.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.87% Chevrolet Silverado 2500HD Regular Cab 2012 1.01% Chevrolet Avalanche Crew Cab 2012 0.96% Ford F-150 Regular Cab 2012 0.92% BMW X5 SUV 2007 0.9% +854 /scratch/Teaching/cars/car_ims/015655.jpg Volkswagen Golf Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.53% Bentley Arnage Sedan 2009 1.39% Hyundai Genesis Sedan 2012 1.37% Bentley Mulsanne Sedan 2011 1.32% Fisker Karma Sedan 2012 1.22% +855 /scratch/Teaching/cars/car_ims/007139.jpg Dodge Sprinter Cargo Van 2009 Dodge Caliber Wagon 2007 2.26% Aston Martin Virage Coupe 2012 2.04% Ferrari 458 Italia Coupe 2012 1.89% BMW 1 Series Coupe 2012 1.76% HUMMER H3T Crew Cab 2010 1.74% +856 /scratch/Teaching/cars/car_ims/006712.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 3.4% Ram C/V Cargo Van Minivan 2012 2.5% Lincoln Town Car Sedan 2011 1.81% Daewoo Nubira Wagon 2002 1.36% Dodge Caravan Minivan 1997 1.33% +857 /scratch/Teaching/cars/car_ims/006965.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 4.23% Land Rover Range Rover SUV 2012 2.06% Chrysler 300 SRT-8 2010 1.95% Chevrolet TrailBlazer SS 2009 1.93% Ford Expedition EL SUV 2009 1.64% +858 /scratch/Teaching/cars/car_ims/008228.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 4.58% BMW 1 Series Coupe 2012 2.19% Hyundai Elantra Sedan 2007 1.89% Honda Accord Coupe 2012 1.75% Geo Metro Convertible 1993 1.62% +859 /scratch/Teaching/cars/car_ims/001966.jpg Audi S4 Sedan 2007 Bentley Arnage Sedan 2009 1.96% Hyundai Genesis Sedan 2012 1.27% Land Rover Range Rover SUV 2012 1.21% Mercedes-Benz C-Class Sedan 2012 1.15% Ford Expedition EL SUV 2009 1.13% +860 /scratch/Teaching/cars/car_ims/000398.jpg Acura TSX Sedan 2012 GMC Savana Van 2012 2.35% Ram C/V Cargo Van Minivan 2012 1.64% Lincoln Town Car Sedan 2011 1.44% Honda Odyssey Minivan 2007 1.31% Dodge Sprinter Cargo Van 2009 1.3% +861 /scratch/Teaching/cars/car_ims/010351.jpg HUMMER H2 SUT Crew Cab 2009 Isuzu Ascender SUV 2008 1.2% GMC Savana Van 2012 1.1% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.09% Hyundai Santa Fe SUV 2012 1.07% Jeep Grand Cherokee SUV 2012 1.06% +862 /scratch/Teaching/cars/car_ims/012458.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 AM General Hummer SUV 2000 1.68% Bugatti Veyron 16.4 Coupe 2009 1.57% HUMMER H2 SUT Crew Cab 2009 1.42% Ford GT Coupe 2006 1.37% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.35% +863 /scratch/Teaching/cars/car_ims/011103.jpg Hyundai Elantra Sedan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.59% GMC Savana Van 2012 1.49% Chevrolet Silverado 2500HD Regular Cab 2012 1.46% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.38% Chevrolet Silverado 1500 Regular Cab 2012 1.34% +864 /scratch/Teaching/cars/car_ims/004419.jpg Chevrolet Corvette Convertible 2012 MINI Cooper Roadster Convertible 2012 2.87% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.67% Mercedes-Benz S-Class Sedan 2012 2.43% Mercedes-Benz E-Class Sedan 2012 2.26% Fisker Karma Sedan 2012 1.8% +865 /scratch/Teaching/cars/car_ims/006967.jpg Dodge Ram Pickup 3500 Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 2.35% AM General Hummer SUV 2000 2.2% Jeep Wrangler SUV 2012 1.84% Mercedes-Benz 300-Class Convertible 1993 1.67% HUMMER H3T Crew Cab 2010 1.61% +866 /scratch/Teaching/cars/car_ims/004018.jpg Buick Enclave SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.5% FIAT 500 Convertible 2012 2.24% Maybach Landaulet Convertible 2012 1.65% MINI Cooper Roadster Convertible 2012 1.47% Nissan Leaf Hatchback 2012 1.34% +867 /scratch/Teaching/cars/car_ims/012576.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 12.34% Ferrari 458 Italia Convertible 2012 6.98% McLaren MP4-12C Coupe 2012 6.54% Aston Martin Virage Coupe 2012 5.73% Chevrolet Corvette Convertible 2012 5.69% +868 /scratch/Teaching/cars/car_ims/013596.jpg Mercedes-Benz Sprinter Van 2012 Bentley Arnage Sedan 2009 1.45% Land Rover Range Rover SUV 2012 1.37% Cadillac Escalade EXT Crew Cab 2007 1.28% GMC Yukon Hybrid SUV 2012 1.22% Ford E-Series Wagon Van 2012 1.19% +869 /scratch/Teaching/cars/car_ims/011106.jpg Hyundai Elantra Sedan 2007 Dodge Caliber Wagon 2007 1.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.37% Suzuki SX4 Hatchback 2012 1.31% BMW 1 Series Coupe 2012 1.21% BMW 3 Series Sedan 2012 1.17% +870 /scratch/Teaching/cars/car_ims/002486.jpg BMW 6 Series Convertible 2007 Mercedes-Benz 300-Class Convertible 1993 1.85% Ford GT Coupe 2006 1.61% Bugatti Veyron 16.4 Coupe 2009 1.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.45% Spyker C8 Convertible 2009 1.45% +871 /scratch/Teaching/cars/car_ims/011343.jpg Hyundai Sonata Sedan 2012 Ford E-Series Wagon Van 2012 1.57% Isuzu Ascender SUV 2008 1.29% Hyundai Santa Fe SUV 2012 1.26% Chevrolet Avalanche Crew Cab 2012 1.16% GMC Savana Van 2012 1.14% +872 /scratch/Teaching/cars/car_ims/011861.jpg Jeep Patriot SUV 2012 Isuzu Ascender SUV 2008 1.15% Audi S6 Sedan 2011 1.02% Rolls-Royce Phantom Sedan 2012 0.99% Mercedes-Benz C-Class Sedan 2012 0.97% Audi A5 Coupe 2012 0.94% +873 /scratch/Teaching/cars/car_ims/012238.jpg Jeep Compass SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.97% Land Rover Range Rover SUV 2012 1.58% Bentley Arnage Sedan 2009 1.55% Chevrolet TrailBlazer SS 2009 1.47% Ford Expedition EL SUV 2009 1.44% +874 /scratch/Teaching/cars/car_ims/005355.jpg Chevrolet Cobalt SS 2010 Lamborghini Diablo Coupe 2001 19.69% Acura Integra Type R 2001 9.17% Aston Martin Virage Coupe 2012 8.39% McLaren MP4-12C Coupe 2012 5.9% Chevrolet Corvette Convertible 2012 5.6% +875 /scratch/Teaching/cars/car_ims/003970.jpg Buick Enclave SUV 2012 Isuzu Ascender SUV 2008 1.28% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.24% Chevrolet Silverado 2500HD Regular Cab 2012 1.21% Ford F-450 Super Duty Crew Cab 2012 1.21% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.2% +876 /scratch/Teaching/cars/car_ims/003067.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 10.62% Ferrari 458 Italia Convertible 2012 8.46% Chevrolet Corvette Convertible 2012 8.16% Aston Martin Virage Coupe 2012 7.9% Acura Integra Type R 2001 7.27% +877 /scratch/Teaching/cars/car_ims/009449.jpg Ford Focus Sedan 2007 Aston Martin Virage Coupe 2012 3.63% Ferrari 458 Italia Convertible 2012 3.49% Chevrolet Corvette Convertible 2012 3.41% Ferrari California Convertible 2012 3.23% McLaren MP4-12C Coupe 2012 3.15% +878 /scratch/Teaching/cars/car_ims/004934.jpg Chevrolet Impala Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.58% GMC Savana Van 2012 1.49% FIAT 500 Convertible 2012 1.46% Nissan Leaf Hatchback 2012 1.26% Lincoln Town Car Sedan 2011 1.24% +879 /scratch/Teaching/cars/car_ims/004901.jpg Chevrolet Impala Sedan 2007 GMC Savana Van 2012 2.21% Chevrolet Silverado 1500 Regular Cab 2012 1.2% Chevrolet Silverado 2500HD Regular Cab 2012 1.15% Chevrolet Avalanche Crew Cab 2012 1.12% Chevrolet Silverado 1500 Extended Cab 2012 1.1% +880 /scratch/Teaching/cars/car_ims/001385.jpg Audi 100 Wagon 1994 Mercedes-Benz S-Class Sedan 2012 1.33% Audi A5 Coupe 2012 1.24% Dodge Sprinter Cargo Van 2009 1.24% Acura TL Sedan 2012 1.21% Mercedes-Benz Sprinter Van 2012 1.2% +881 /scratch/Teaching/cars/car_ims/005731.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 1.34% Mercedes-Benz S-Class Sedan 2012 0.92% Chevrolet Express Cargo Van 2007 0.92% Dodge Sprinter Cargo Van 2009 0.91% Mercedes-Benz Sprinter Van 2012 0.83% +882 /scratch/Teaching/cars/car_ims/014791.jpg Spyker C8 Coupe 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.75% Rolls-Royce Phantom Sedan 2012 1.49% Maybach Landaulet Convertible 2012 1.32% Hyundai Genesis Sedan 2012 1.27% Ford GT Coupe 2006 1.18% +883 /scratch/Teaching/cars/car_ims/006018.jpg Chevrolet Silverado 1500 Regular Cab 2012 Dodge Caliber Wagon 2007 2.38% BMW 1 Series Coupe 2012 2.37% Suzuki SX4 Hatchback 2012 1.72% Hyundai Elantra Sedan 2007 1.57% Ferrari FF Coupe 2012 1.52% +884 /scratch/Teaching/cars/car_ims/000789.jpg Aston Martin Virage Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.69% Mercedes-Benz Sprinter Van 2012 1.48% BMW X3 SUV 2012 1.28% Audi A5 Coupe 2012 1.17% Dodge Sprinter Cargo Van 2009 1.12% +885 /scratch/Teaching/cars/car_ims/001233.jpg Audi V8 Sedan 1994 Bugatti Veyron 16.4 Coupe 2009 1.67% Fisker Karma Sedan 2012 1.54% HUMMER H2 SUT Crew Cab 2009 1.53% Mercedes-Benz 300-Class Convertible 1993 1.52% Chevrolet Corvette ZR1 2012 1.44% +886 /scratch/Teaching/cars/car_ims/014230.jpg Porsche Panamera Sedan 2012 MINI Cooper Roadster Convertible 2012 2.07% Mercedes-Benz S-Class Sedan 2012 1.9% Mercedes-Benz E-Class Sedan 2012 1.83% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.57% Audi S5 Convertible 2012 1.36% +887 /scratch/Teaching/cars/car_ims/007378.jpg Dodge Dakota Crew Cab 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.44% Chevrolet Silverado 2500HD Regular Cab 2012 1.33% GMC Savana Van 2012 1.3% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.27% Ford F-450 Super Duty Crew Cab 2012 1.27% +888 /scratch/Teaching/cars/car_ims/007154.jpg Dodge Sprinter Cargo Van 2009 Bentley Arnage Sedan 2009 1.86% Land Rover Range Rover SUV 2012 1.56% Cadillac Escalade EXT Crew Cab 2007 1.25% Ford Expedition EL SUV 2009 1.2% GMC Yukon Hybrid SUV 2012 1.2% +889 /scratch/Teaching/cars/car_ims/009739.jpg GMC Savana Van 2012 AM General Hummer SUV 2000 4.94% Aston Martin Virage Coupe 2012 2.82% Lamborghini Diablo Coupe 2001 2.76% Audi TT RS Coupe 2012 2.62% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.61% +890 /scratch/Teaching/cars/car_ims/014264.jpg Porsche Panamera Sedan 2012 Fisker Karma Sedan 2012 1.94% Bugatti Veyron 16.4 Coupe 2009 1.92% Bentley Arnage Sedan 2009 1.71% Mercedes-Benz E-Class Sedan 2012 1.64% Chevrolet Corvette ZR1 2012 1.55% +891 /scratch/Teaching/cars/car_ims/012998.jpg Mazda Tribute SUV 2011 Cadillac Escalade EXT Crew Cab 2007 2.59% Ford Expedition EL SUV 2009 2.0% Dodge Ram Pickup 3500 Crew Cab 2010 1.86% Hyundai Santa Fe SUV 2012 1.7% Chevrolet TrailBlazer SS 2009 1.62% +892 /scratch/Teaching/cars/car_ims/015916.jpg Volvo C30 Hatchback 2012 McLaren MP4-12C Coupe 2012 3.37% Lamborghini Diablo Coupe 2001 3.3% Aston Martin Virage Coupe 2012 3.24% Ferrari 458 Italia Convertible 2012 2.9% Ferrari 458 Italia Coupe 2012 2.86% +893 /scratch/Teaching/cars/car_ims/001148.jpg Audi R8 Coupe 2012 Chevrolet TrailBlazer SS 2009 1.33% Ford Expedition EL SUV 2009 1.17% GMC Savana Van 2012 1.14% Jeep Liberty SUV 2012 1.13% Plymouth Neon Coupe 1999 1.11% +894 /scratch/Teaching/cars/car_ims/007607.jpg Dodge Challenger SRT8 2011 Rolls-Royce Phantom Sedan 2012 1.69% Hyundai Genesis Sedan 2012 1.49% Bentley Continental GT Coupe 2007 1.27% MINI Cooper Roadster Convertible 2012 1.25% Bugatti Veyron 16.4 Coupe 2009 1.21% +895 /scratch/Teaching/cars/car_ims/009813.jpg GMC Yukon Hybrid SUV 2012 GMC Savana Van 2012 3.2% Ram C/V Cargo Van Minivan 2012 2.11% Lincoln Town Car Sedan 2011 1.68% Dodge Caravan Minivan 1997 1.37% Dodge Sprinter Cargo Van 2009 1.25% +896 /scratch/Teaching/cars/car_ims/004076.jpg Cadillac CTS-V Sedan 2012 Chevrolet TrailBlazer SS 2009 1.69% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.59% Cadillac Escalade EXT Crew Cab 2007 1.43% Ford Expedition EL SUV 2009 1.32% Chrysler 300 SRT-8 2010 1.27% +897 /scratch/Teaching/cars/car_ims/003788.jpg Buick Regal GS 2012 GMC Savana Van 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 0.98% BMW X5 SUV 2007 0.91% GMC Acadia SUV 2012 0.9% Ford F-150 Regular Cab 2012 0.89% +898 /scratch/Teaching/cars/car_ims/014521.jpg Rolls-Royce Phantom Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.42% GMC Savana Van 2012 1.28% Honda Odyssey Minivan 2007 1.21% Dodge Caravan Minivan 1997 1.2% Mercedes-Benz Sprinter Van 2012 1.17% +899 /scratch/Teaching/cars/car_ims/009619.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 2.27% Chevrolet Avalanche Crew Cab 2012 1.38% Dodge Caravan Minivan 1997 1.36% Ford F-150 Regular Cab 2012 1.22% Hyundai Tucson SUV 2012 1.18% +900 /scratch/Teaching/cars/car_ims/009020.jpg Ford Edge SUV 2012 Dodge Caliber Wagon 2007 2.34% BMW 1 Series Coupe 2012 1.85% GMC Savana Van 2012 1.72% Ferrari FF Coupe 2012 1.69% Honda Accord Coupe 2012 1.53% +901 /scratch/Teaching/cars/car_ims/005526.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Cadillac Escalade EXT Crew Cab 2007 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.51% Ford Expedition EL SUV 2009 1.43% Chevrolet TrailBlazer SS 2009 1.26% Chevrolet Avalanche Crew Cab 2012 1.24% +902 /scratch/Teaching/cars/car_ims/008575.jpg Fisker Karma Sedan 2012 Chrysler 300 SRT-8 2010 1.1% Land Rover Range Rover SUV 2012 1.05% HUMMER H2 SUT Crew Cab 2009 1.01% Mercedes-Benz C-Class Sedan 2012 1.0% Bentley Arnage Sedan 2009 0.98% +903 /scratch/Teaching/cars/car_ims/007366.jpg Dodge Dakota Crew Cab 2010 AM General Hummer SUV 2000 4.1% HUMMER H2 SUT Crew Cab 2009 2.95% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.49% HUMMER H3T Crew Cab 2010 2.43% Aston Martin Virage Coupe 2012 2.14% +904 /scratch/Teaching/cars/car_ims/006213.jpg Chrysler Sebring Convertible 2010 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.82% Maybach Landaulet Convertible 2012 1.31% FIAT 500 Convertible 2012 1.28% Mercedes-Benz 300-Class Convertible 1993 1.26% Rolls-Royce Phantom Sedan 2012 1.24% +905 /scratch/Teaching/cars/car_ims/010402.jpg Honda Odyssey Minivan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.86% Chevrolet TrailBlazer SS 2009 1.73% Chrysler 300 SRT-8 2010 1.57% Ford Expedition EL SUV 2009 1.46% Chevrolet Silverado 2500HD Regular Cab 2012 1.37% +906 /scratch/Teaching/cars/car_ims/015604.jpg Volkswagen Golf Hatchback 2012 Dodge Caravan Minivan 1997 0.88% Suzuki SX4 Sedan 2012 0.82% Mercedes-Benz S-Class Sedan 2012 0.82% Hyundai Genesis Sedan 2012 0.8% Chrysler PT Cruiser Convertible 2008 0.79% +907 /scratch/Teaching/cars/car_ims/007699.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 1.22% Chevrolet Silverado 1500 Extended Cab 2012 0.92% Chevrolet Silverado 1500 Regular Cab 2012 0.9% Chevrolet Silverado 2500HD Regular Cab 2012 0.87% Chevrolet Avalanche Crew Cab 2012 0.83% +908 /scratch/Teaching/cars/car_ims/009072.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 2.31% Ram C/V Cargo Van Minivan 2012 1.81% Dodge Sprinter Cargo Van 2009 1.41% Lincoln Town Car Sedan 2011 1.36% Ferrari FF Coupe 2012 1.14% +909 /scratch/Teaching/cars/car_ims/008015.jpg Eagle Talon Hatchback 1998 Ford F-450 Super Duty Crew Cab 2012 1.83% BMW X5 SUV 2007 1.79% Audi S6 Sedan 2011 1.5% Volvo XC90 SUV 2007 1.45% Hyundai Santa Fe SUV 2012 1.45% +910 /scratch/Teaching/cars/car_ims/009026.jpg Ford Ranger SuperCab 2011 Chevrolet TrailBlazer SS 2009 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.63% Chrysler 300 SRT-8 2010 1.22% Chevrolet Silverado 1500 Regular Cab 2012 1.22% Cadillac Escalade EXT Crew Cab 2007 1.18% +911 /scratch/Teaching/cars/car_ims/004421.jpg Chevrolet Corvette Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.24% Mercedes-Benz E-Class Sedan 2012 1.24% MINI Cooper Roadster Convertible 2012 1.2% Fisker Karma Sedan 2012 1.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.0% +912 /scratch/Teaching/cars/car_ims/008106.jpg FIAT 500 Abarth 2012 Ford Expedition EL SUV 2009 0.93% Chevrolet TrailBlazer SS 2009 0.92% Hyundai Genesis Sedan 2012 0.89% Chrysler 300 SRT-8 2010 0.89% Dodge Ram Pickup 3500 Crew Cab 2010 0.85% +913 /scratch/Teaching/cars/car_ims/003418.jpg Bentley Continental GT Coupe 2007 Daewoo Nubira Wagon 2002 1.84% FIAT 500 Convertible 2012 1.47% Nissan Leaf Hatchback 2012 1.37% Dodge Caravan Minivan 1997 1.23% Ram C/V Cargo Van Minivan 2012 1.17% +914 /scratch/Teaching/cars/car_ims/005333.jpg Chevrolet Cobalt SS 2010 Aston Martin Virage Coupe 2012 3.82% Chevrolet Corvette Convertible 2012 3.52% Ferrari 458 Italia Convertible 2012 3.42% Chevrolet Cobalt SS 2010 3.27% Ferrari California Convertible 2012 3.17% +915 /scratch/Teaching/cars/car_ims/000917.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 11.41% Chevrolet Corvette Convertible 2012 7.0% Acura Integra Type R 2001 6.97% Aston Martin Virage Coupe 2012 6.77% Ferrari 458 Italia Convertible 2012 5.89% +916 /scratch/Teaching/cars/car_ims/004408.jpg Chevrolet Corvette Convertible 2012 GMC Savana Van 2012 1.26% Honda Accord Sedan 2012 1.05% Dodge Ram Pickup 3500 Quad Cab 2009 1.05% Chevrolet Silverado 2500HD Regular Cab 2012 1.01% Audi A5 Coupe 2012 0.99% +917 /scratch/Teaching/cars/car_ims/012045.jpg Jeep Liberty SUV 2012 HUMMER H2 SUT Crew Cab 2009 1.63% Chevrolet TrailBlazer SS 2009 1.4% HUMMER H3T Crew Cab 2010 1.13% Bentley Arnage Sedan 2009 1.07% Chrysler 300 SRT-8 2010 1.06% +918 /scratch/Teaching/cars/car_ims/009074.jpg Ford Ranger SuperCab 2011 Ford F-450 Super Duty Crew Cab 2012 1.41% BMW X5 SUV 2007 1.38% Hyundai Santa Fe SUV 2012 1.32% Isuzu Ascender SUV 2008 1.24% Chrysler Aspen SUV 2009 1.22% +919 /scratch/Teaching/cars/car_ims/006203.jpg Chrysler Sebring Convertible 2010 AM General Hummer SUV 2000 1.56% Mercedes-Benz 300-Class Convertible 1993 1.54% Mercedes-Benz E-Class Sedan 2012 1.44% HUMMER H2 SUT Crew Cab 2009 1.42% Fisker Karma Sedan 2012 1.34% +920 /scratch/Teaching/cars/car_ims/011446.jpg Hyundai Elantra Touring Hatchback 2012 Geo Metro Convertible 1993 2.01% Ford GT Coupe 2006 1.85% Lamborghini Diablo Coupe 2001 1.67% FIAT 500 Convertible 2012 1.61% Chevrolet HHR SS 2010 1.53% +921 /scratch/Teaching/cars/car_ims/009880.jpg GMC Acadia SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% Chevrolet Silverado 2500HD Regular Cab 2012 1.35% Ford F-450 Super Duty Crew Cab 2012 1.33% BMW X5 SUV 2007 1.27% GMC Acadia SUV 2012 1.23% +922 /scratch/Teaching/cars/car_ims/013039.jpg Mazda Tribute SUV 2011 Ford E-Series Wagon Van 2012 1.53% Audi S6 Sedan 2011 1.26% Hyundai Genesis Sedan 2012 1.24% Chrysler Aspen SUV 2009 1.19% BMW X5 SUV 2007 1.17% +923 /scratch/Teaching/cars/car_ims/008658.jpg Ford F-450 Super Duty Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 1.41% Jeep Wrangler SUV 2012 1.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.01% BMW X6 SUV 2012 1.0% Dodge Ram Pickup 3500 Quad Cab 2009 0.98% +924 /scratch/Teaching/cars/car_ims/009235.jpg Ford F-150 Regular Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.7% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.42% Cadillac Escalade EXT Crew Cab 2007 1.41% Ford F-450 Super Duty Crew Cab 2012 1.39% Jeep Grand Cherokee SUV 2012 1.35% +925 /scratch/Teaching/cars/car_ims/007739.jpg Dodge Durango SUV 2007 Ford E-Series Wagon Van 2012 1.4% Isuzu Ascender SUV 2008 1.25% Honda Odyssey Minivan 2007 1.04% Chevrolet Avalanche Crew Cab 2012 1.03% Dodge Caravan Minivan 1997 1.01% +926 /scratch/Teaching/cars/car_ims/002147.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 2.15% Ferrari FF Coupe 2012 1.79% BMW 1 Series Coupe 2012 1.26% Plymouth Neon Coupe 1999 1.19% Honda Accord Coupe 2012 1.18% +927 /scratch/Teaching/cars/car_ims/016030.jpg Volvo XC90 SUV 2007 HUMMER H2 SUT Crew Cab 2009 1.51% Dodge Ram Pickup 3500 Quad Cab 2009 1.34% Jeep Wrangler SUV 2012 1.32% Volkswagen Golf Hatchback 1991 1.15% BMW X6 SUV 2012 1.12% +928 /scratch/Teaching/cars/car_ims/003296.jpg Bentley Mulsanne Sedan 2011 GMC Savana Van 2012 1.36% Chevrolet Silverado 2500HD Regular Cab 2012 1.22% Chevrolet Silverado 1500 Regular Cab 2012 1.08% Audi A5 Coupe 2012 1.03% Honda Accord Sedan 2012 1.02% +929 /scratch/Teaching/cars/car_ims/010208.jpg HUMMER H3T Crew Cab 2010 Lamborghini Diablo Coupe 2001 10.85% Ferrari 458 Italia Convertible 2012 6.14% McLaren MP4-12C Coupe 2012 5.21% Ferrari California Convertible 2012 4.36% Aston Martin Virage Coupe 2012 4.22% +930 /scratch/Teaching/cars/car_ims/005686.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.9% Chevrolet Silverado 1500 Regular Cab 2012 1.29% Ford F-150 Regular Cab 2012 1.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.14% Chevrolet Silverado 1500 Extended Cab 2012 1.13% +931 /scratch/Teaching/cars/car_ims/001115.jpg Audi TTS Coupe 2012 Bentley Arnage Sedan 2009 1.41% Cadillac Escalade EXT Crew Cab 2007 1.36% Chevrolet TrailBlazer SS 2009 1.34% Land Rover Range Rover SUV 2012 1.26% Jeep Patriot SUV 2012 1.14% +932 /scratch/Teaching/cars/car_ims/012283.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 1.35% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% Honda Accord Sedan 2012 1.11% Chevrolet Silverado 1500 Regular Cab 2012 1.07% Audi A5 Coupe 2012 1.03% +933 /scratch/Teaching/cars/car_ims/012179.jpg Jeep Grand Cherokee SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.74% Chevrolet TrailBlazer SS 2009 2.22% Ford Expedition EL SUV 2009 1.85% Dodge Ram Pickup 3500 Crew Cab 2010 1.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.63% +934 /scratch/Teaching/cars/car_ims/012403.jpg Lamborghini Aventador Coupe 2012 Lamborghini Diablo Coupe 2001 10.45% Ferrari 458 Italia Convertible 2012 5.38% McLaren MP4-12C Coupe 2012 4.68% Chevrolet HHR SS 2010 3.92% Ferrari 458 Italia Coupe 2012 3.74% +935 /scratch/Teaching/cars/car_ims/003556.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 2.07% Land Rover Range Rover SUV 2012 1.74% Chrysler 300 SRT-8 2010 1.52% Ford F-450 Super Duty Crew Cab 2012 1.46% Cadillac Escalade EXT Crew Cab 2007 1.45% +936 /scratch/Teaching/cars/car_ims/000637.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 1.41% FIAT 500 Abarth 2012 1.28% Jeep Patriot SUV 2012 1.22% Bugatti Veyron 16.4 Coupe 2009 1.15% Lamborghini Reventon Coupe 2008 1.03% +937 /scratch/Teaching/cars/car_ims/008797.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.49% Chevrolet Silverado 1500 Regular Cab 2012 1.13% Chevrolet Silverado 1500 Extended Cab 2012 1.03% Dodge Ram Pickup 3500 Quad Cab 2009 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.98% +938 /scratch/Teaching/cars/car_ims/007510.jpg Dodge Magnum Wagon 2008 Bugatti Veyron 16.4 Coupe 2009 0.94% Hyundai Azera Sedan 2012 0.91% Daewoo Nubira Wagon 2002 0.88% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.88% Chrysler PT Cruiser Convertible 2008 0.88% +939 /scratch/Teaching/cars/car_ims/011048.jpg Hyundai Sonata Hybrid Sedan 2012 FIAT 500 Convertible 2012 3.32% Nissan Leaf Hatchback 2012 2.0% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.95% Maybach Landaulet Convertible 2012 1.87% Daewoo Nubira Wagon 2002 1.81% +940 /scratch/Teaching/cars/car_ims/000228.jpg Acura TL Sedan 2012 FIAT 500 Convertible 2012 2.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.77% Mercedes-Benz S-Class Sedan 2012 1.64% Bugatti Veyron 16.4 Convertible 2009 1.38% Nissan Leaf Hatchback 2012 1.35% +941 /scratch/Teaching/cars/car_ims/007213.jpg Dodge Sprinter Cargo Van 2009 Dodge Caravan Minivan 1997 1.32% Ram C/V Cargo Van Minivan 2012 1.3% Mercedes-Benz Sprinter Van 2012 1.29% Ford E-Series Wagon Van 2012 1.24% Mercedes-Benz S-Class Sedan 2012 1.13% +942 /scratch/Teaching/cars/car_ims/006041.jpg Chevrolet Silverado 1500 Regular Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.8% Cadillac Escalade EXT Crew Cab 2007 1.79% Ford Expedition EL SUV 2009 1.61% Dodge Ram Pickup 3500 Crew Cab 2010 1.54% Chevrolet TrailBlazer SS 2009 1.46% +943 /scratch/Teaching/cars/car_ims/010693.jpg Hyundai Veloster Hatchback 2012 Mercedes-Benz E-Class Sedan 2012 1.08% Chevrolet Corvette ZR1 2012 1.03% Volkswagen Golf Hatchback 1991 0.99% Bugatti Veyron 16.4 Coupe 2009 0.96% Mercedes-Benz 300-Class Convertible 1993 0.93% +944 /scratch/Teaching/cars/car_ims/013371.jpg Mercedes-Benz SL-Class Coupe 2009 Fisker Karma Sedan 2012 3.9% Mercedes-Benz E-Class Sedan 2012 2.89% Bugatti Veyron 16.4 Coupe 2009 2.28% Chevrolet Corvette ZR1 2012 2.17% Bentley Mulsanne Sedan 2011 2.02% +945 /scratch/Teaching/cars/car_ims/002175.jpg BMW 1 Series Convertible 2012 GMC Savana Van 2012 1.33% Ram C/V Cargo Van Minivan 2012 1.3% Honda Odyssey Minivan 2007 1.12% Lincoln Town Car Sedan 2011 1.11% Audi A5 Coupe 2012 1.02% +946 /scratch/Teaching/cars/car_ims/013290.jpg Mercedes-Benz C-Class Sedan 2012 HUMMER H2 SUT Crew Cab 2009 1.35% GMC Savana Van 2012 1.05% Dodge Ram Pickup 3500 Quad Cab 2009 1.04% HUMMER H3T Crew Cab 2010 1.02% BMW X6 SUV 2012 1.02% +947 /scratch/Teaching/cars/car_ims/003560.jpg Bentley Continental Flying Spur Sedan 2007 Ram C/V Cargo Van Minivan 2012 2.69% GMC Savana Van 2012 1.62% FIAT 500 Convertible 2012 1.55% Nissan Leaf Hatchback 2012 1.5% Lincoln Town Car Sedan 2011 1.5% +948 /scratch/Teaching/cars/car_ims/010817.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 1.44% HUMMER H2 SUT Crew Cab 2009 1.44% Jeep Wrangler SUV 2012 1.4% Volkswagen Golf Hatchback 1991 1.32% BMW X6 SUV 2012 1.21% +949 /scratch/Teaching/cars/car_ims/004769.jpg Chevrolet Camaro Convertible 2012 Ram C/V Cargo Van Minivan 2012 1.88% Mercedes-Benz S-Class Sedan 2012 1.77% Dodge Sprinter Cargo Van 2009 1.76% Mercedes-Benz Sprinter Van 2012 1.73% GMC Savana Van 2012 1.41% +950 /scratch/Teaching/cars/car_ims/014713.jpg Spyker C8 Convertible 2009 Bentley Arnage Sedan 2009 2.16% HUMMER H2 SUT Crew Cab 2009 2.04% Bugatti Veyron 16.4 Coupe 2009 1.81% Jeep Wrangler SUV 2012 1.58% AM General Hummer SUV 2000 1.5% +951 /scratch/Teaching/cars/car_ims/001087.jpg Audi TTS Coupe 2012 Bentley Arnage Sedan 2009 3.16% Hyundai Genesis Sedan 2012 1.8% Mercedes-Benz C-Class Sedan 2012 1.73% Chrysler 300 SRT-8 2010 1.51% BMW M6 Convertible 2010 1.41% +952 /scratch/Teaching/cars/car_ims/008190.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 2.58% FIAT 500 Convertible 2012 1.81% GMC Savana Van 2012 1.77% Ram C/V Cargo Van Minivan 2012 1.66% Hyundai Elantra Sedan 2007 1.59% +953 /scratch/Teaching/cars/car_ims/002508.jpg BMW 6 Series Convertible 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.6% Ford F-450 Super Duty Crew Cab 2012 1.58% Chevrolet Silverado 2500HD Regular Cab 2012 1.47% Isuzu Ascender SUV 2008 1.39% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.35% +954 /scratch/Teaching/cars/car_ims/006276.jpg Chrysler Town and Country Minivan 2012 Mercedes-Benz E-Class Sedan 2012 2.07% MINI Cooper Roadster Convertible 2012 2.05% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.72% Mercedes-Benz S-Class Sedan 2012 1.67% Fisker Karma Sedan 2012 1.56% +955 /scratch/Teaching/cars/car_ims/008633.jpg Ford F-450 Super Duty Crew Cab 2012 Bentley Arnage Sedan 2009 4.06% Cadillac Escalade EXT Crew Cab 2007 3.42% Land Rover Range Rover SUV 2012 2.95% Chevrolet TrailBlazer SS 2009 2.58% Ford Expedition EL SUV 2009 2.3% +956 /scratch/Teaching/cars/car_ims/009557.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 2.26% BMW 1 Series Coupe 2012 1.97% Ferrari FF Coupe 2012 1.9% Honda Accord Coupe 2012 1.63% GMC Savana Van 2012 1.52% +957 /scratch/Teaching/cars/car_ims/006446.jpg Chrysler Crossfire Convertible 2008 Chevrolet Silverado 2500HD Regular Cab 2012 1.34% GMC Savana Van 2012 1.29% Chevrolet Silverado 1500 Extended Cab 2012 1.25% Chevrolet Silverado 1500 Regular Cab 2012 1.16% Dodge Ram Pickup 3500 Quad Cab 2009 1.09% +958 /scratch/Teaching/cars/car_ims/010714.jpg Hyundai Veloster Hatchback 2012 Ferrari 458 Italia Convertible 2012 4.39% Lamborghini Diablo Coupe 2001 4.3% McLaren MP4-12C Coupe 2012 3.74% Geo Metro Convertible 1993 3.52% Chevrolet Corvette Convertible 2012 3.37% +959 /scratch/Teaching/cars/car_ims/013880.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 2.11% Ram C/V Cargo Van Minivan 2012 2.0% Dodge Sprinter Cargo Van 2009 1.73% Mercedes-Benz Sprinter Van 2012 1.41% Audi A5 Coupe 2012 1.25% +960 /scratch/Teaching/cars/car_ims/016170.jpg smart fortwo Convertible 2012 Lamborghini Diablo Coupe 2001 6.77% Ferrari 458 Italia Convertible 2012 4.51% McLaren MP4-12C Coupe 2012 3.83% Geo Metro Convertible 1993 3.73% Ferrari 458 Italia Coupe 2012 3.4% +961 /scratch/Teaching/cars/car_ims/004672.jpg Chevrolet Traverse SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.08% Hyundai Genesis Sedan 2012 1.03% Ford E-Series Wagon Van 2012 1.02% Hyundai Azera Sedan 2012 0.99% BMW X5 SUV 2007 0.88% +962 /scratch/Teaching/cars/car_ims/001197.jpg Audi R8 Coupe 2012 Mercedes-Benz E-Class Sedan 2012 1.61% MINI Cooper Roadster Convertible 2012 1.43% Mercedes-Benz S-Class Sedan 2012 1.31% Mercedes-Benz SL-Class Coupe 2009 1.25% Fisker Karma Sedan 2012 1.18% +963 /scratch/Teaching/cars/car_ims/012142.jpg Jeep Grand Cherokee SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.63% Chevrolet TrailBlazer SS 2009 1.62% Chevrolet Silverado 1500 Regular Cab 2012 1.44% Chrysler 300 SRT-8 2010 1.39% Ford Expedition EL SUV 2009 1.37% +964 /scratch/Teaching/cars/car_ims/001506.jpg Audi TT Hatchback 2011 Ram C/V Cargo Van Minivan 2012 1.57% Mercedes-Benz S-Class Sedan 2012 1.31% FIAT 500 Convertible 2012 1.28% Mercedes-Benz Sprinter Van 2012 1.17% Lincoln Town Car Sedan 2011 1.16% +965 /scratch/Teaching/cars/car_ims/007421.jpg Dodge Dakota Club Cab 2007 GMC Savana Van 2012 2.2% Ram C/V Cargo Van Minivan 2012 2.17% Lincoln Town Car Sedan 2011 1.44% FIAT 500 Convertible 2012 1.41% Dodge Sprinter Cargo Van 2009 1.33% +966 /scratch/Teaching/cars/car_ims/012202.jpg Jeep Grand Cherokee SUV 2012 FIAT 500 Convertible 2012 3.18% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.16% Mercedes-Benz S-Class Sedan 2012 1.7% MINI Cooper Roadster Convertible 2012 1.53% Nissan Leaf Hatchback 2012 1.45% +967 /scratch/Teaching/cars/car_ims/002656.jpg BMW X6 SUV 2012 Ferrari 458 Italia Convertible 2012 2.92% Aston Martin Virage Coupe 2012 2.9% Ferrari California Convertible 2012 2.81% Ferrari 458 Italia Coupe 2012 2.62% Lamborghini Aventador Coupe 2012 2.35% +968 /scratch/Teaching/cars/car_ims/013926.jpg Nissan Juke Hatchback 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.32% FIAT 500 Convertible 2012 1.43% Mercedes-Benz S-Class Sedan 2012 1.36% MINI Cooper Roadster Convertible 2012 1.3% Mercedes-Benz E-Class Sedan 2012 1.26% +969 /scratch/Teaching/cars/car_ims/013382.jpg Mercedes-Benz SL-Class Coupe 2009 Mercedes-Benz E-Class Sedan 2012 3.6% Fisker Karma Sedan 2012 2.95% Chevrolet Corvette ZR1 2012 2.6% HUMMER H2 SUT Crew Cab 2009 2.18% Audi S5 Convertible 2012 1.96% +970 /scratch/Teaching/cars/car_ims/003445.jpg Bentley Continental GT Coupe 2007 Lamborghini Diablo Coupe 2001 5.54% Ferrari 458 Italia Convertible 2012 3.11% Chevrolet HHR SS 2010 3.02% McLaren MP4-12C Coupe 2012 2.76% Lamborghini Aventador Coupe 2012 2.56% +971 /scratch/Teaching/cars/car_ims/003412.jpg Bentley Continental GT Coupe 2007 Bentley Arnage Sedan 2009 1.61% Bugatti Veyron 16.4 Coupe 2009 1.26% FIAT 500 Abarth 2012 1.12% Rolls-Royce Phantom Sedan 2012 1.05% Mercedes-Benz 300-Class Convertible 1993 1.04% +972 /scratch/Teaching/cars/car_ims/009981.jpg GMC Canyon Extended Cab 2012 Dodge Caliber Wagon 2007 2.11% Suzuki SX4 Hatchback 2012 1.71% Jeep Wrangler SUV 2012 1.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.47% BMW 1 Series Coupe 2012 1.47% +973 /scratch/Teaching/cars/car_ims/000490.jpg Acura Integra Type R 2001 AM General Hummer SUV 2000 5.12% HUMMER H2 SUT Crew Cab 2009 4.96% HUMMER H3T Crew Cab 2010 3.11% Jeep Wrangler SUV 2012 2.77% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.3% +974 /scratch/Teaching/cars/car_ims/004062.jpg Cadillac CTS-V Sedan 2012 Audi TT RS Coupe 2012 1.66% Volvo C30 Hatchback 2012 1.49% Ferrari California Convertible 2012 1.46% Chevrolet HHR SS 2010 1.45% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.45% +975 /scratch/Teaching/cars/car_ims/007422.jpg Dodge Dakota Club Cab 2007 HUMMER H2 SUT Crew Cab 2009 1.79% AM General Hummer SUV 2000 1.53% Mercedes-Benz 300-Class Convertible 1993 1.45% HUMMER H3T Crew Cab 2010 1.4% Fisker Karma Sedan 2012 1.33% +976 /scratch/Teaching/cars/car_ims/002178.jpg BMW 1 Series Convertible 2012 Lamborghini Diablo Coupe 2001 6.9% McLaren MP4-12C Coupe 2012 3.82% Ferrari California Convertible 2012 3.68% Acura Integra Type R 2001 3.42% Ferrari 458 Italia Convertible 2012 3.14% +977 /scratch/Teaching/cars/car_ims/004266.jpg Cadillac Escalade EXT Crew Cab 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.81% Chevrolet Silverado 2500HD Regular Cab 2012 1.63% Isuzu Ascender SUV 2008 1.37% Chevrolet Silverado 1500 Extended Cab 2012 1.28% Chevrolet Silverado 1500 Regular Cab 2012 1.24% +978 /scratch/Teaching/cars/car_ims/015188.jpg Tesla Model S Sedan 2012 Bentley Arnage Sedan 2009 1.75% Chevrolet TrailBlazer SS 2009 1.62% Chrysler 300 SRT-8 2010 1.54% Ford Expedition EL SUV 2009 1.32% BMW M6 Convertible 2010 1.21% +979 /scratch/Teaching/cars/car_ims/002002.jpg Audi TT RS Coupe 2012 Aston Martin Virage Coupe 2012 4.31% AM General Hummer SUV 2000 3.93% Lamborghini Gallardo LP 570-4 Superleggera 2012 3.19% Lamborghini Aventador Coupe 2012 3.14% Ferrari 458 Italia Coupe 2012 3.07% +980 /scratch/Teaching/cars/car_ims/008840.jpg Ford Freestar Minivan 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.94% Chevrolet TrailBlazer SS 2009 1.57% Chrysler 300 SRT-8 2010 1.52% Ford Expedition EL SUV 2009 1.38% Cadillac Escalade EXT Crew Cab 2007 1.35% +981 /scratch/Teaching/cars/car_ims/004274.jpg Cadillac Escalade EXT Crew Cab 2007 Hyundai Genesis Sedan 2012 1.05% Mercedes-Benz S-Class Sedan 2012 1.0% Hyundai Azera Sedan 2012 0.97% BMW X5 SUV 2007 0.9% Chrysler PT Cruiser Convertible 2008 0.9% +982 /scratch/Teaching/cars/car_ims/008583.jpg Fisker Karma Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.64% MINI Cooper Roadster Convertible 2012 1.38% Mercedes-Benz E-Class Sedan 2012 1.18% Acura TL Sedan 2012 1.0% BMW X3 SUV 2012 0.97% +983 /scratch/Teaching/cars/car_ims/012221.jpg Jeep Compass SUV 2012 Ford F-450 Super Duty Crew Cab 2012 1.16% Hyundai Santa Fe SUV 2012 1.15% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.11% BMW X5 SUV 2007 1.06% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.04% +984 /scratch/Teaching/cars/car_ims/015598.jpg Volkswagen Golf Hatchback 2012 Dodge Caliber Wagon 2007 2.59% BMW 1 Series Coupe 2012 1.86% Ferrari FF Coupe 2012 1.75% Honda Accord Coupe 2012 1.58% Ferrari 458 Italia Coupe 2012 1.52% +985 /scratch/Teaching/cars/car_ims/002822.jpg BMW M5 Sedan 2010 Bentley Arnage Sedan 2009 3.42% FIAT 500 Abarth 2012 1.76% Land Rover Range Rover SUV 2012 1.4% Chrysler 300 SRT-8 2010 1.39% Mercedes-Benz C-Class Sedan 2012 1.3% +986 /scratch/Teaching/cars/car_ims/006494.jpg Chrysler Crossfire Convertible 2008 Cadillac Escalade EXT Crew Cab 2007 3.58% Ford Expedition EL SUV 2009 2.41% Bentley Arnage Sedan 2009 2.32% Chevrolet TrailBlazer SS 2009 2.24% Dodge Ram Pickup 3500 Crew Cab 2010 2.24% +987 /scratch/Teaching/cars/car_ims/014565.jpg Rolls-Royce Phantom Sedan 2012 Dodge Ram Pickup 3500 Crew Cab 2010 1.36% Jeep Patriot SUV 2012 1.35% Land Rover Range Rover SUV 2012 1.2% Jeep Liberty SUV 2012 1.19% Bentley Arnage Sedan 2009 1.17% +988 /scratch/Teaching/cars/car_ims/002923.jpg BMW M6 Convertible 2010 Chevrolet TrailBlazer SS 2009 1.84% Cadillac Escalade EXT Crew Cab 2007 1.61% Bentley Arnage Sedan 2009 1.38% Chrysler 300 SRT-8 2010 1.36% Ford Expedition EL SUV 2009 1.27% +989 /scratch/Teaching/cars/car_ims/003244.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 3.27% Cadillac Escalade EXT Crew Cab 2007 3.02% Chevrolet TrailBlazer SS 2009 2.39% Land Rover Range Rover SUV 2012 2.37% Ford Expedition EL SUV 2009 2.02% +990 /scratch/Teaching/cars/car_ims/006647.jpg Daewoo Nubira Wagon 2002 Daewoo Nubira Wagon 2002 1.1% Plymouth Neon Coupe 1999 1.04% Ferrari FF Coupe 2012 0.96% Hyundai Elantra Sedan 2007 0.94% Ford GT Coupe 2006 0.88% +991 /scratch/Teaching/cars/car_ims/001498.jpg Audi TT Hatchback 2011 Ford E-Series Wagon Van 2012 1.26% Audi S6 Sedan 2011 1.22% BMW X5 SUV 2007 1.17% Isuzu Ascender SUV 2008 1.13% Hyundai Santa Fe SUV 2012 1.12% +992 /scratch/Teaching/cars/car_ims/000974.jpg Audi A5 Coupe 2012 Mercedes-Benz S-Class Sedan 2012 1.58% Ford E-Series Wagon Van 2012 1.21% Mercedes-Benz Sprinter Van 2012 1.21% MINI Cooper Roadster Convertible 2012 1.19% Audi S6 Sedan 2011 1.06% +993 /scratch/Teaching/cars/car_ims/009660.jpg GMC Terrain SUV 2012 Mercedes-Benz E-Class Sedan 2012 1.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% Mercedes-Benz S-Class Sedan 2012 0.99% MINI Cooper Roadster Convertible 2012 0.96% Tesla Model S Sedan 2012 0.92% +994 /scratch/Teaching/cars/car_ims/010604.jpg Honda Accord Sedan 2012 GMC Savana Van 2012 1.63% Dodge Sprinter Cargo Van 2009 1.26% Mercedes-Benz Sprinter Van 2012 1.23% Audi A5 Coupe 2012 1.17% Mercedes-Benz S-Class Sedan 2012 1.01% +995 /scratch/Teaching/cars/car_ims/007023.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 4.21% Land Rover Range Rover SUV 2012 2.48% Ford F-450 Super Duty Crew Cab 2012 1.92% Cadillac Escalade EXT Crew Cab 2007 1.79% Chrysler 300 SRT-8 2010 1.74% +996 /scratch/Teaching/cars/car_ims/014533.jpg Rolls-Royce Phantom Sedan 2012 FIAT 500 Convertible 2012 3.47% Nissan Leaf Hatchback 2012 1.94% Daewoo Nubira Wagon 2002 1.58% Maybach Landaulet Convertible 2012 1.53% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.39% +997 /scratch/Teaching/cars/car_ims/016011.jpg Volvo 240 Sedan 1993 Cadillac Escalade EXT Crew Cab 2007 1.95% Ford Expedition EL SUV 2009 1.55% Dodge Ram Pickup 3500 Crew Cab 2010 1.52% Land Rover Range Rover SUV 2012 1.38% Ford F-450 Super Duty Crew Cab 2012 1.37% +998 /scratch/Teaching/cars/car_ims/007080.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Dodge Caliber Wagon 2007 1.5% HUMMER H2 SUT Crew Cab 2009 1.2% HUMMER H3T Crew Cab 2010 1.13% BMW X6 SUV 2012 1.12% Volkswagen Golf Hatchback 1991 1.11% +999 /scratch/Teaching/cars/car_ims/011700.jpg Isuzu Ascender SUV 2008 Chevrolet Silverado 2500HD Regular Cab 2012 1.35% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.22% Dodge Ram Pickup 3500 Quad Cab 2009 1.22% GMC Acadia SUV 2012 1.12% Audi S5 Coupe 2012 1.09% +1000 /scratch/Teaching/cars/car_ims/005453.jpg Chevrolet TrailBlazer SS 2009 Bentley Arnage Sedan 2009 2.25% Cadillac Escalade EXT Crew Cab 2007 1.91% Land Rover Range Rover SUV 2012 1.77% Ford Expedition EL SUV 2009 1.76% Dodge Ram Pickup 3500 Crew Cab 2010 1.75% +1001 /scratch/Teaching/cars/car_ims/004598.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Bentley Arnage Sedan 2009 1.65% Hyundai Genesis Sedan 2012 1.47% Bugatti Veyron 16.4 Coupe 2009 1.33% Rolls-Royce Phantom Sedan 2012 1.28% Fisker Karma Sedan 2012 1.26% +1002 /scratch/Teaching/cars/car_ims/008155.jpg FIAT 500 Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.42% FIAT 500 Convertible 2012 2.6% Mercedes-Benz E-Class Sedan 2012 1.88% Mercedes-Benz S-Class Sedan 2012 1.7% MINI Cooper Roadster Convertible 2012 1.7% +1003 /scratch/Teaching/cars/car_ims/012847.jpg Lincoln Town Car Sedan 2011 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.5% Chevrolet TrailBlazer SS 2009 1.28% Chrysler 300 SRT-8 2010 1.26% Dodge Ram Pickup 3500 Quad Cab 2009 1.24% Chevrolet Silverado 1500 Regular Cab 2012 1.18% +1004 /scratch/Teaching/cars/car_ims/012355.jpg Lamborghini Reventon Coupe 2008 Dodge Caravan Minivan 1997 0.93% Hyundai Azera Sedan 2012 0.88% Daewoo Nubira Wagon 2002 0.84% GMC Savana Van 2012 0.82% Chrysler PT Cruiser Convertible 2008 0.82% +1005 /scratch/Teaching/cars/car_ims/000141.jpg Acura RL Sedan 2012 Audi A5 Coupe 2012 1.68% Audi S6 Sedan 2011 1.6% Audi S5 Coupe 2012 1.3% Mercedes-Benz S-Class Sedan 2012 1.28% Mercedes-Benz Sprinter Van 2012 1.27% +1006 /scratch/Teaching/cars/car_ims/014822.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 14.36% McLaren MP4-12C Coupe 2012 6.38% Ferrari 458 Italia Convertible 2012 6.17% Acura Integra Type R 2001 4.59% Aston Martin Virage Coupe 2012 4.58% +1007 /scratch/Teaching/cars/car_ims/007071.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.04% Chevrolet Silverado 2500HD Regular Cab 2012 1.46% Chrysler 300 SRT-8 2010 1.39% Chevrolet Silverado 1500 Regular Cab 2012 1.36% GMC Acadia SUV 2012 1.34% +1008 /scratch/Teaching/cars/car_ims/005872.jpg Chevrolet Malibu Sedan 2007 FIAT 500 Convertible 2012 2.57% Ford GT Coupe 2006 1.82% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.65% Maybach Landaulet Convertible 2012 1.64% Nissan Leaf Hatchback 2012 1.48% +1009 /scratch/Teaching/cars/car_ims/008052.jpg Eagle Talon Hatchback 1998 HUMMER H2 SUT Crew Cab 2009 1.46% Fisker Karma Sedan 2012 1.45% Chevrolet Corvette ZR1 2012 1.3% Mercedes-Benz 300-Class Convertible 1993 1.23% Mercedes-Benz C-Class Sedan 2012 1.2% +1010 /scratch/Teaching/cars/car_ims/010944.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 1.79% Chevrolet Express Van 2007 0.93% Ford F-150 Regular Cab 2012 0.91% Dodge Caravan Minivan 1997 0.85% Hyundai Tucson SUV 2012 0.84% +1011 /scratch/Teaching/cars/car_ims/000392.jpg Acura TSX Sedan 2012 MINI Cooper Roadster Convertible 2012 1.71% Hyundai Genesis Sedan 2012 1.55% Bentley Mulsanne Sedan 2011 1.32% Bentley Arnage Sedan 2009 1.19% Mercedes-Benz S-Class Sedan 2012 1.15% +1012 /scratch/Teaching/cars/car_ims/002633.jpg BMW X6 SUV 2012 GMC Savana Van 2012 1.69% Dodge Caliber Wagon 2007 1.56% BMW 1 Series Coupe 2012 1.25% Volkswagen Golf Hatchback 1991 1.21% Dodge Ram Pickup 3500 Quad Cab 2009 1.19% +1013 /scratch/Teaching/cars/car_ims/003169.jpg Bentley Continental Supersports Conv. Convertible 2012 Mercedes-Benz Sprinter Van 2012 2.7% Mercedes-Benz S-Class Sedan 2012 2.53% MINI Cooper Roadster Convertible 2012 2.07% Ram C/V Cargo Van Minivan 2012 1.94% Audi A5 Coupe 2012 1.75% +1014 /scratch/Teaching/cars/car_ims/004231.jpg Cadillac Escalade EXT Crew Cab 2007 Bentley Arnage Sedan 2009 2.78% Chevrolet TrailBlazer SS 2009 1.79% FIAT 500 Abarth 2012 1.7% Land Rover Range Rover SUV 2012 1.68% Jeep Patriot SUV 2012 1.63% +1015 /scratch/Teaching/cars/car_ims/005814.jpg Chevrolet Monte Carlo Coupe 2007 Plymouth Neon Coupe 1999 1.1% Chevrolet TrailBlazer SS 2009 1.08% Daewoo Nubira Wagon 2002 0.98% Jeep Liberty SUV 2012 0.94% Jeep Patriot SUV 2012 0.92% +1016 /scratch/Teaching/cars/car_ims/002179.jpg BMW 1 Series Convertible 2012 FIAT 500 Convertible 2012 1.91% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% Mercedes-Benz S-Class Sedan 2012 1.49% Nissan Leaf Hatchback 2012 1.44% Ram C/V Cargo Van Minivan 2012 1.31% +1017 /scratch/Teaching/cars/car_ims/002834.jpg BMW M5 Sedan 2010 GMC Savana Van 2012 1.79% Mercedes-Benz Sprinter Van 2012 1.62% Dodge Sprinter Cargo Van 2009 1.39% Audi A5 Coupe 2012 1.3% Ford E-Series Wagon Van 2012 1.28% +1018 /scratch/Teaching/cars/car_ims/015390.jpg Toyota Camry Sedan 2012 Geo Metro Convertible 1993 2.24% Audi TT RS Coupe 2012 2.07% McLaren MP4-12C Coupe 2012 1.99% Chevrolet HHR SS 2010 1.94% Volvo C30 Hatchback 2012 1.87% +1019 /scratch/Teaching/cars/car_ims/009812.jpg GMC Yukon Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 1.93% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.66% Chrysler 300 SRT-8 2010 1.6% Ford Expedition EL SUV 2009 1.56% Cadillac Escalade EXT Crew Cab 2007 1.54% +1020 /scratch/Teaching/cars/car_ims/003228.jpg Bentley Arnage Sedan 2009 Bentley Arnage Sedan 2009 1.16% HUMMER H2 SUT Crew Cab 2009 1.08% Chrysler 300 SRT-8 2010 1.08% BMW M6 Convertible 2010 1.02% Jeep Patriot SUV 2012 1.01% +1021 /scratch/Teaching/cars/car_ims/011527.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 3.22% FIAT 500 Convertible 2012 2.45% Maybach Landaulet Convertible 2012 1.77% Nissan Leaf Hatchback 2012 1.72% MINI Cooper Roadster Convertible 2012 1.59% +1022 /scratch/Teaching/cars/car_ims/015630.jpg Volkswagen Golf Hatchback 2012 Mercedes-Benz S-Class Sedan 2012 1.43% Mercedes-Benz Sprinter Van 2012 1.24% Honda Odyssey Minivan 2007 0.95% Suzuki SX4 Sedan 2012 0.93% GMC Savana Van 2012 0.92% +1023 /scratch/Teaching/cars/car_ims/010264.jpg HUMMER H3T Crew Cab 2010 Ferrari 458 Italia Convertible 2012 3.04% Dodge Charger SRT-8 2009 2.63% Ferrari California Convertible 2012 2.57% Ferrari 458 Italia Coupe 2012 2.46% Aston Martin Virage Coupe 2012 2.46% +1024 /scratch/Teaching/cars/car_ims/009295.jpg Ford F-150 Regular Cab 2007 Aston Martin Virage Coupe 2012 2.82% Chevrolet Corvette Convertible 2012 2.75% Ferrari 458 Italia Coupe 2012 2.62% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.33% AM General Hummer SUV 2000 2.29% +1025 /scratch/Teaching/cars/car_ims/013922.jpg Nissan Juke Hatchback 2012 Jeep Patriot SUV 2012 0.86% Chevrolet Sonic Sedan 2012 0.86% Chevrolet TrailBlazer SS 2009 0.84% BMW M6 Convertible 2010 0.83% Daewoo Nubira Wagon 2002 0.81% +1026 /scratch/Teaching/cars/car_ims/013465.jpg Mercedes-Benz E-Class Sedan 2012 Bentley Arnage Sedan 2009 1.67% Mercedes-Benz C-Class Sedan 2012 1.32% Land Rover Range Rover SUV 2012 1.28% Hyundai Genesis Sedan 2012 1.25% Cadillac SRX SUV 2012 1.18% +1027 /scratch/Teaching/cars/car_ims/009411.jpg Ford Focus Sedan 2007 GMC Savana Van 2012 2.12% Chevrolet Silverado 2500HD Regular Cab 2012 1.26% Chevrolet Avalanche Crew Cab 2012 1.2% Ford F-150 Regular Cab 2012 1.19% Chevrolet Silverado 1500 Regular Cab 2012 1.16% +1028 /scratch/Teaching/cars/car_ims/007733.jpg Dodge Durango SUV 2007 Isuzu Ascender SUV 2008 1.2% Chevrolet Silverado 2500HD Regular Cab 2012 1.16% Ford E-Series Wagon Van 2012 1.11% BMW X5 SUV 2007 1.08% Hyundai Santa Fe SUV 2012 1.07% +1029 /scratch/Teaching/cars/car_ims/011307.jpg Hyundai Sonata Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.61% Mercedes-Benz S-Class Sedan 2012 1.58% MINI Cooper Roadster Convertible 2012 1.41% Mercedes-Benz E-Class Sedan 2012 1.12% Bugatti Veyron 16.4 Convertible 2009 1.08% +1030 /scratch/Teaching/cars/car_ims/004403.jpg Chevrolet Corvette Convertible 2012 MINI Cooper Roadster Convertible 2012 1.7% Mercedes-Benz S-Class Sedan 2012 1.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.55% Mercedes-Benz E-Class Sedan 2012 1.13% Bugatti Veyron 16.4 Convertible 2009 1.01% +1031 /scratch/Teaching/cars/car_ims/000219.jpg Acura TL Sedan 2012 Fisker Karma Sedan 2012 3.55% Mercedes-Benz E-Class Sedan 2012 2.62% Mercedes-Benz 300-Class Convertible 1993 2.2% Bugatti Veyron 16.4 Coupe 2009 1.91% MINI Cooper Roadster Convertible 2012 1.87% +1032 /scratch/Teaching/cars/car_ims/010368.jpg Honda Odyssey Minivan 2012 FIAT 500 Convertible 2012 3.28% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.0% Ram C/V Cargo Van Minivan 2012 1.76% Nissan Leaf Hatchback 2012 1.74% Mercedes-Benz S-Class Sedan 2012 1.65% +1033 /scratch/Teaching/cars/car_ims/011290.jpg Hyundai Genesis Sedan 2012 Audi A5 Coupe 2012 1.19% BMW X5 SUV 2007 1.13% Mercedes-Benz S-Class Sedan 2012 1.09% Mercedes-Benz Sprinter Van 2012 1.07% Ford E-Series Wagon Van 2012 1.06% +1034 /scratch/Teaching/cars/car_ims/003115.jpg Bentley Continental Supersports Conv. Convertible 2012 FIAT 500 Convertible 2012 1.98% Ram C/V Cargo Van Minivan 2012 1.49% Nissan Leaf Hatchback 2012 1.35% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.28% Maybach Landaulet Convertible 2012 1.16% +1035 /scratch/Teaching/cars/car_ims/000002.jpg AM General Hummer SUV 2000 Aston Martin Virage Coupe 2012 7.46% AM General Hummer SUV 2000 6.52% Chevrolet Corvette Convertible 2012 4.57% McLaren MP4-12C Coupe 2012 4.45% Acura Integra Type R 2001 4.24% +1036 /scratch/Teaching/cars/car_ims/009463.jpg Ford Focus Sedan 2007 Chevrolet Silverado 2500HD Regular Cab 2012 1.49% GMC Savana Van 2012 1.41% Chevrolet Silverado 1500 Regular Cab 2012 1.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.35% Dodge Ram Pickup 3500 Quad Cab 2009 1.23% +1037 /scratch/Teaching/cars/car_ims/008366.jpg Ferrari 458 Italia Convertible 2012 Lamborghini Diablo Coupe 2001 8.27% Ferrari 458 Italia Convertible 2012 5.32% McLaren MP4-12C Coupe 2012 4.87% Aston Martin Virage Coupe 2012 4.43% Acura Integra Type R 2001 4.05% +1038 /scratch/Teaching/cars/car_ims/007368.jpg Dodge Dakota Crew Cab 2010 Ford Expedition EL SUV 2009 1.69% Dodge Ram Pickup 3500 Crew Cab 2010 1.61% Cadillac Escalade EXT Crew Cab 2007 1.6% Chevrolet TrailBlazer SS 2009 1.43% Chrysler 300 SRT-8 2010 1.24% +1039 /scratch/Teaching/cars/car_ims/014075.jpg Nissan 240SX Coupe 1998 FIAT 500 Convertible 2012 2.88% Ram C/V Cargo Van Minivan 2012 1.9% Nissan Leaf Hatchback 2012 1.64% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.59% Bugatti Veyron 16.4 Convertible 2009 1.32% +1040 /scratch/Teaching/cars/car_ims/015807.jpg Volkswagen Beetle Hatchback 2012 GMC Savana Van 2012 1.15% Dodge Caliber Wagon 2007 0.91% Ferrari FF Coupe 2012 0.85% Hyundai Elantra Sedan 2007 0.84% Eagle Talon Hatchback 1998 0.82% +1041 /scratch/Teaching/cars/car_ims/012874.jpg MINI Cooper Roadster Convertible 2012 Ford E-Series Wagon Van 2012 2.58% Isuzu Ascender SUV 2008 1.9% Ford Expedition EL SUV 2009 1.5% Hyundai Santa Fe SUV 2012 1.4% Chrysler Aspen SUV 2009 1.4% +1042 /scratch/Teaching/cars/car_ims/005741.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 1.45% Chevrolet Silverado 2500HD Regular Cab 2012 0.93% Chevrolet Silverado 1500 Regular Cab 2012 0.91% Ford F-150 Regular Cab 2012 0.88% Chevrolet Silverado 1500 Extended Cab 2012 0.86% +1043 /scratch/Teaching/cars/car_ims/006241.jpg Chrysler Sebring Convertible 2010 MINI Cooper Roadster Convertible 2012 2.05% Mercedes-Benz S-Class Sedan 2012 1.55% Mercedes-Benz E-Class Sedan 2012 1.44% Bentley Mulsanne Sedan 2011 1.4% Hyundai Genesis Sedan 2012 1.32% +1044 /scratch/Teaching/cars/car_ims/016097.jpg Volvo XC90 SUV 2007 Mercedes-Benz S-Class Sedan 2012 1.79% MINI Cooper Roadster Convertible 2012 1.67% Audi A5 Coupe 2012 1.57% Mercedes-Benz Sprinter Van 2012 1.48% Audi S6 Sedan 2011 1.45% +1045 /scratch/Teaching/cars/car_ims/006340.jpg Chrysler Town and Country Minivan 2012 Ford E-Series Wagon Van 2012 1.51% Audi S6 Sedan 2011 1.43% Hyundai Genesis Sedan 2012 1.41% MINI Cooper Roadster Convertible 2012 1.3% Mercedes-Benz S-Class Sedan 2012 1.27% +1046 /scratch/Teaching/cars/car_ims/014079.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.73% Ram C/V Cargo Van Minivan 2012 1.59% Lincoln Town Car Sedan 2011 1.25% Hyundai Elantra Sedan 2007 1.19% Nissan Leaf Hatchback 2012 1.09% +1047 /scratch/Teaching/cars/car_ims/009567.jpg Ford Fiesta Sedan 2012 GMC Savana Van 2012 2.12% BMW 1 Series Coupe 2012 1.42% Ferrari FF Coupe 2012 1.4% Hyundai Elantra Sedan 2007 1.35% Ram C/V Cargo Van Minivan 2012 1.1% +1048 /scratch/Teaching/cars/car_ims/015538.jpg Toyota 4Runner SUV 2012 Bentley Arnage Sedan 2009 1.61% Ford F-450 Super Duty Crew Cab 2012 1.51% Mercedes-Benz C-Class Sedan 2012 1.48% Land Rover Range Rover SUV 2012 1.37% Audi S6 Sedan 2011 1.37% +1049 /scratch/Teaching/cars/car_ims/013973.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 2.08% Ferrari 458 Italia Coupe 2012 2.02% Aston Martin Virage Coupe 2012 1.75% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.74% Ferrari 458 Italia Convertible 2012 1.72% +1050 /scratch/Teaching/cars/car_ims/012102.jpg Jeep Liberty SUV 2012 Hyundai Genesis Sedan 2012 1.14% Dodge Challenger SRT8 2011 0.98% Ford E-Series Wagon Van 2012 0.97% Hyundai Azera Sedan 2012 0.96% Land Rover Range Rover SUV 2012 0.89% +1051 /scratch/Teaching/cars/car_ims/008870.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 1.63% Chevrolet Silverado 2500HD Regular Cab 2012 0.98% Chevrolet Express Cargo Van 2007 0.97% Honda Odyssey Minivan 2007 0.96% Lincoln Town Car Sedan 2011 0.94% +1052 /scratch/Teaching/cars/car_ims/004459.jpg Chevrolet Corvette Convertible 2012 FIAT 500 Convertible 2012 2.58% Ram C/V Cargo Van Minivan 2012 1.57% Nissan Leaf Hatchback 2012 1.55% Daewoo Nubira Wagon 2002 1.55% Hyundai Elantra Sedan 2007 1.43% +1053 /scratch/Teaching/cars/car_ims/005611.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Mercedes-Benz E-Class Sedan 2012 1.51% Mercedes-Benz 300-Class Convertible 1993 1.36% Fisker Karma Sedan 2012 1.23% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.17% Bugatti Veyron 16.4 Coupe 2009 1.12% +1054 /scratch/Teaching/cars/car_ims/016149.jpg smart fortwo Convertible 2012 Ford E-Series Wagon Van 2012 1.8% MINI Cooper Roadster Convertible 2012 1.68% Audi S6 Sedan 2011 1.42% Mercedes-Benz S-Class Sedan 2012 1.37% Hyundai Genesis Sedan 2012 1.29% +1055 /scratch/Teaching/cars/car_ims/012076.jpg Jeep Liberty SUV 2012 Bentley Arnage Sedan 2009 4.53% Cadillac Escalade EXT Crew Cab 2007 4.38% Land Rover Range Rover SUV 2012 3.41% Ford Expedition EL SUV 2009 3.39% Dodge Ram Pickup 3500 Crew Cab 2010 2.77% +1056 /scratch/Teaching/cars/car_ims/012761.jpg Land Rover LR2 SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.87% Hyundai Santa Fe SUV 2012 1.37% Ford F-450 Super Duty Crew Cab 2012 1.37% Land Rover Range Rover SUV 2012 1.32% Dodge Ram Pickup 3500 Crew Cab 2010 1.28% +1057 /scratch/Teaching/cars/car_ims/003792.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 1.51% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% Mercedes-Benz S-Class Sedan 2012 1.45% Nissan Leaf Hatchback 2012 1.34% Ram C/V Cargo Van Minivan 2012 1.19% +1058 /scratch/Teaching/cars/car_ims/014273.jpg Porsche Panamera Sedan 2012 AM General Hummer SUV 2000 3.64% HUMMER H2 SUT Crew Cab 2009 3.16% Mercedes-Benz 300-Class Convertible 1993 2.24% HUMMER H3T Crew Cab 2010 2.16% Chevrolet Corvette ZR1 2012 1.75% +1059 /scratch/Teaching/cars/car_ims/007323.jpg Dodge Dakota Crew Cab 2010 GMC Savana Van 2012 2.12% Chevrolet Silverado 1500 Regular Cab 2012 1.45% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.38% Ford F-150 Regular Cab 2012 1.25% Chevrolet Silverado 1500 Extended Cab 2012 1.18% +1060 /scratch/Teaching/cars/car_ims/004675.jpg Chevrolet Traverse SUV 2012 GMC Savana Van 2012 1.69% Cadillac Escalade EXT Crew Cab 2007 1.6% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.37% Ford F-150 Regular Cab 2012 1.37% Chevrolet Avalanche Crew Cab 2012 1.34% +1061 /scratch/Teaching/cars/car_ims/008262.jpg Ferrari California Convertible 2012 Aston Martin Virage Coupe 2012 2.97% Ferrari 458 Italia Convertible 2012 2.96% Ferrari California Convertible 2012 2.92% Ferrari 458 Italia Coupe 2012 2.87% Chevrolet Cobalt SS 2010 2.53% +1062 /scratch/Teaching/cars/car_ims/006998.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Isuzu Ascender SUV 2008 1.69% Ford F-450 Super Duty Crew Cab 2012 1.57% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.47% Ford E-Series Wagon Van 2012 1.44% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.44% +1063 /scratch/Teaching/cars/car_ims/008120.jpg FIAT 500 Convertible 2012 Rolls-Royce Phantom Sedan 2012 1.54% Hyundai Genesis Sedan 2012 1.45% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.33% Bentley Continental GT Coupe 2007 1.11% MINI Cooper Roadster Convertible 2012 1.1% +1064 /scratch/Teaching/cars/car_ims/009140.jpg Ford GT Coupe 2006 GMC Savana Van 2012 1.66% Chevrolet Silverado 1500 Regular Cab 2012 1.26% Dodge Ram Pickup 3500 Quad Cab 2009 1.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.13% Chevrolet Silverado 1500 Extended Cab 2012 1.06% +1065 /scratch/Teaching/cars/car_ims/007690.jpg Dodge Durango SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.12% Chevrolet TrailBlazer SS 2009 1.06% Ford Expedition EL SUV 2009 1.02% GMC Savana Van 2012 1.01% Dodge Ram Pickup 3500 Crew Cab 2010 1.01% +1066 /scratch/Teaching/cars/car_ims/001313.jpg Audi 100 Sedan 1994 Chevrolet Silverado 2500HD Regular Cab 2012 1.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.12% Dodge Ram Pickup 3500 Quad Cab 2009 1.07% GMC Acadia SUV 2012 1.02% Audi S5 Coupe 2012 1.01% +1067 /scratch/Teaching/cars/car_ims/008110.jpg FIAT 500 Convertible 2012 MINI Cooper Roadster Convertible 2012 2.39% Rolls-Royce Phantom Sedan 2012 1.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.54% Mercedes-Benz S-Class Sedan 2012 1.38% Mercedes-Benz E-Class Sedan 2012 1.35% +1068 /scratch/Teaching/cars/car_ims/000989.jpg Audi A5 Coupe 2012 Mercedes-Benz Sprinter Van 2012 2.02% Audi A5 Coupe 2012 1.85% Mercedes-Benz S-Class Sedan 2012 1.69% Dodge Sprinter Cargo Van 2009 1.53% BMW X5 SUV 2007 1.34% +1069 /scratch/Teaching/cars/car_ims/007554.jpg Dodge Challenger SRT8 2011 Mercedes-Benz S-Class Sedan 2012 2.17% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.12% MINI Cooper Roadster Convertible 2012 2.02% FIAT 500 Convertible 2012 1.86% Mercedes-Benz E-Class Sedan 2012 1.85% +1070 /scratch/Teaching/cars/car_ims/013859.jpg Nissan NV Passenger Van 2012 Audi A5 Coupe 2012 1.65% Mercedes-Benz Sprinter Van 2012 1.64% Mercedes-Benz S-Class Sedan 2012 1.47% Dodge Sprinter Cargo Van 2009 1.29% Acura TL Sedan 2012 1.16% +1071 /scratch/Teaching/cars/car_ims/011773.jpg Jaguar XK XKR 2012 Bentley Arnage Sedan 2009 1.29% FIAT 500 Abarth 2012 1.16% Bugatti Veyron 16.4 Coupe 2009 1.09% Lamborghini Reventon Coupe 2008 1.09% Jeep Patriot SUV 2012 1.06% +1072 /scratch/Teaching/cars/car_ims/015588.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 1.39% Chevrolet Express Cargo Van 2007 1.0% Dodge Sprinter Cargo Van 2009 0.94% Mercedes-Benz Sprinter Van 2012 0.9% Honda Accord Sedan 2012 0.81% +1073 /scratch/Teaching/cars/car_ims/000592.jpg Aston Martin V8 Vantage Convertible 2012 Ford GT Coupe 2006 1.5% Bugatti Veyron 16.4 Coupe 2009 1.23% Spyker C8 Convertible 2009 1.17% Mercedes-Benz 300-Class Convertible 1993 1.08% Spyker C8 Coupe 2009 1.06% +1074 /scratch/Teaching/cars/car_ims/014017.jpg Nissan 240SX Coupe 1998 Cadillac Escalade EXT Crew Cab 2007 2.54% Ford F-450 Super Duty Crew Cab 2012 2.1% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.97% Hyundai Santa Fe SUV 2012 1.9% Dodge Ram Pickup 3500 Crew Cab 2010 1.81% +1075 /scratch/Teaching/cars/car_ims/007508.jpg Dodge Magnum Wagon 2008 AM General Hummer SUV 2000 2.53% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.35% Audi TT RS Coupe 2012 2.02% HUMMER H2 SUT Crew Cab 2009 1.78% Aston Martin Virage Coupe 2012 1.75% +1076 /scratch/Teaching/cars/car_ims/014750.jpg Spyker C8 Convertible 2009 Mercedes-Benz E-Class Sedan 2012 1.72% Fisker Karma Sedan 2012 1.67% MINI Cooper Roadster Convertible 2012 1.61% Bugatti Veyron 16.4 Coupe 2009 1.26% Mercedes-Benz S-Class Sedan 2012 1.26% +1077 /scratch/Teaching/cars/car_ims/009180.jpg Ford GT Coupe 2006 MINI Cooper Roadster Convertible 2012 1.45% Hyundai Genesis Sedan 2012 1.26% Mercedes-Benz S-Class Sedan 2012 1.19% Mercedes-Benz C-Class Sedan 2012 1.17% Rolls-Royce Phantom Sedan 2012 1.08% +1078 /scratch/Teaching/cars/car_ims/000686.jpg Aston Martin V8 Vantage Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.99% GMC Savana Van 2012 1.38% FIAT 500 Convertible 2012 1.3% Dodge Sprinter Cargo Van 2009 1.28% Lincoln Town Car Sedan 2011 1.24% +1079 /scratch/Teaching/cars/car_ims/004701.jpg Chevrolet Traverse SUV 2012 Bentley Arnage Sedan 2009 2.8% Land Rover Range Rover SUV 2012 1.55% Cadillac Escalade EXT Crew Cab 2007 1.48% FIAT 500 Abarth 2012 1.43% Ford Expedition EL SUV 2009 1.41% +1080 /scratch/Teaching/cars/car_ims/011950.jpg Jeep Wrangler SUV 2012 FIAT 500 Convertible 2012 1.75% Ford GT Coupe 2006 1.53% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.31% Maybach Landaulet Convertible 2012 1.3% Spyker C8 Coupe 2009 1.27% +1081 /scratch/Teaching/cars/car_ims/015611.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 1.96% Chevrolet Silverado 2500HD Regular Cab 2012 1.26% Audi A5 Coupe 2012 1.22% Mercedes-Benz Sprinter Van 2012 1.16% Dodge Sprinter Cargo Van 2009 1.12% +1082 /scratch/Teaching/cars/car_ims/004995.jpg Chevrolet Tahoe Hybrid SUV 2012 FIAT 500 Convertible 2012 1.6% Ford GT Coupe 2006 1.42% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.32% Mercedes-Benz 300-Class Convertible 1993 1.25% Maybach Landaulet Convertible 2012 1.17% +1083 /scratch/Teaching/cars/car_ims/003748.jpg Buick Regal GS 2012 Daewoo Nubira Wagon 2002 2.63% Dodge Caravan Minivan 1997 1.63% GMC Savana Van 2012 1.61% FIAT 500 Convertible 2012 1.59% Ram C/V Cargo Van Minivan 2012 1.59% +1084 /scratch/Teaching/cars/car_ims/015992.jpg Volvo 240 Sedan 1993 Ford E-Series Wagon Van 2012 1.81% Ford Expedition EL SUV 2009 1.7% Cadillac Escalade EXT Crew Cab 2007 1.7% Isuzu Ascender SUV 2008 1.51% Dodge Ram Pickup 3500 Crew Cab 2010 1.45% +1085 /scratch/Teaching/cars/car_ims/008030.jpg Eagle Talon Hatchback 1998 Ford F-450 Super Duty Crew Cab 2012 1.37% Mercedes-Benz C-Class Sedan 2012 1.36% Land Rover Range Rover SUV 2012 1.35% Bentley Arnage Sedan 2009 1.32% Dodge Ram Pickup 3500 Crew Cab 2010 1.29% +1086 /scratch/Teaching/cars/car_ims/002055.jpg BMW ActiveHybrid 5 Sedan 2012 Audi A5 Coupe 2012 1.14% Acura TL Sedan 2012 1.05% Audi S5 Coupe 2012 1.01% Mercedes-Benz S-Class Sedan 2012 0.98% Chevrolet Silverado 2500HD Regular Cab 2012 0.97% +1087 /scratch/Teaching/cars/car_ims/015999.jpg Volvo 240 Sedan 1993 Cadillac Escalade EXT Crew Cab 2007 1.27% Hyundai Santa Fe SUV 2012 1.16% Isuzu Ascender SUV 2008 1.14% Ford Expedition EL SUV 2009 1.12% Jeep Grand Cherokee SUV 2012 1.1% +1088 /scratch/Teaching/cars/car_ims/009576.jpg Ford Fiesta Sedan 2012 Dodge Caliber Wagon 2007 2.86% BMW 1 Series Coupe 2012 1.88% HUMMER H2 SUT Crew Cab 2009 1.88% Jeep Wrangler SUV 2012 1.79% HUMMER H3T Crew Cab 2010 1.67% +1089 /scratch/Teaching/cars/car_ims/015026.jpg Suzuki SX4 Hatchback 2012 Dodge Caliber Wagon 2007 2.15% Ferrari FF Coupe 2012 2.07% BMW 1 Series Coupe 2012 1.96% Aston Martin Virage Coupe 2012 1.75% Ferrari 458 Italia Convertible 2012 1.65% +1090 /scratch/Teaching/cars/car_ims/001039.jpg Audi A5 Coupe 2012 Mercedes-Benz E-Class Sedan 2012 2.27% Audi S5 Convertible 2012 1.82% Mercedes-Benz S-Class Sedan 2012 1.67% Chevrolet Corvette ZR1 2012 1.65% BMW X3 SUV 2012 1.5% +1091 /scratch/Teaching/cars/car_ims/013301.jpg Mercedes-Benz C-Class Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.59% MINI Cooper Roadster Convertible 2012 2.52% Mercedes-Benz S-Class Sedan 2012 1.84% FIAT 500 Convertible 2012 1.63% Rolls-Royce Phantom Sedan 2012 1.57% +1092 /scratch/Teaching/cars/car_ims/008407.jpg Ferrari 458 Italia Convertible 2012 FIAT 500 Convertible 2012 3.28% Nissan Leaf Hatchback 2012 1.63% Maybach Landaulet Convertible 2012 1.55% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.54% Ram C/V Cargo Van Minivan 2012 1.29% +1093 /scratch/Teaching/cars/car_ims/000568.jpg Acura ZDX Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.59% Ford GT Coupe 2006 1.44% Spyker C8 Convertible 2009 1.25% Mercedes-Benz 300-Class Convertible 1993 1.1% Bentley Arnage Sedan 2009 1.02% +1094 /scratch/Teaching/cars/car_ims/010012.jpg GMC Canyon Extended Cab 2012 GMC Savana Van 2012 1.41% Mercedes-Benz Sprinter Van 2012 1.28% Mercedes-Benz S-Class Sedan 2012 1.25% Audi A5 Coupe 2012 1.25% Dodge Sprinter Cargo Van 2009 1.24% +1095 /scratch/Teaching/cars/car_ims/013059.jpg McLaren MP4-12C Coupe 2012 Aston Martin Virage Coupe 2012 9.85% Chevrolet Corvette Convertible 2012 8.7% Acura Integra Type R 2001 5.93% McLaren MP4-12C Coupe 2012 5.78% Chevrolet Cobalt SS 2010 5.02% +1096 /scratch/Teaching/cars/car_ims/009753.jpg GMC Savana Van 2012 Isuzu Ascender SUV 2008 1.66% Ford E-Series Wagon Van 2012 1.39% BMW X5 SUV 2007 1.33% Hyundai Santa Fe SUV 2012 1.29% Chevrolet Avalanche Crew Cab 2012 1.28% +1097 /scratch/Teaching/cars/car_ims/010563.jpg Honda Accord Coupe 2012 Ford GT Coupe 2006 2.2% BMW Z4 Convertible 2012 2.12% Lamborghini Aventador Coupe 2012 2.06% Audi TT RS Coupe 2012 1.93% Dodge Magnum Wagon 2008 1.77% +1098 /scratch/Teaching/cars/car_ims/004714.jpg Chevrolet Traverse SUV 2012 Ford E-Series Wagon Van 2012 1.6% Dodge Caravan Minivan 1997 1.41% Isuzu Ascender SUV 2008 1.27% Mercedes-Benz Sprinter Van 2012 1.23% Honda Odyssey Minivan 2007 1.15% +1099 /scratch/Teaching/cars/car_ims/002407.jpg BMW 3 Series Wagon 2012 Daewoo Nubira Wagon 2002 1.83% Plymouth Neon Coupe 1999 1.81% Hyundai Elantra Sedan 2007 1.19% Dodge Caravan Minivan 1997 1.17% Chevrolet Sonic Sedan 2012 1.12% +1100 /scratch/Teaching/cars/car_ims/015130.jpg Suzuki SX4 Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.34% Ram C/V Cargo Van Minivan 2012 1.25% Mercedes-Benz Sprinter Van 2012 1.16% Dodge Caravan Minivan 1997 1.14% GMC Savana Van 2012 1.06% +1101 /scratch/Teaching/cars/car_ims/008515.jpg Fisker Karma Sedan 2012 Ford E-Series Wagon Van 2012 2.01% Hyundai Genesis Sedan 2012 1.57% Ford Expedition EL SUV 2009 1.54% Audi S6 Sedan 2011 1.38% Dodge Challenger SRT8 2011 1.36% +1102 /scratch/Teaching/cars/car_ims/012610.jpg Land Rover Range Rover SUV 2012 Plymouth Neon Coupe 1999 1.37% Daewoo Nubira Wagon 2002 1.31% Jeep Liberty SUV 2012 1.29% GMC Savana Van 2012 1.18% Chevrolet TrailBlazer SS 2009 1.08% +1103 /scratch/Teaching/cars/car_ims/004795.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.36% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.26% Dodge Ram Pickup 3500 Quad Cab 2009 1.21% GMC Acadia SUV 2012 1.09% Chevrolet Silverado 1500 Regular Cab 2012 1.08% +1104 /scratch/Teaching/cars/car_ims/006544.jpg Chrysler PT Cruiser Convertible 2008 Mercedes-Benz S-Class Sedan 2012 1.61% Mercedes-Benz Sprinter Van 2012 1.39% Ram C/V Cargo Van Minivan 2012 1.28% Honda Odyssey Minivan 2007 1.24% Suzuki SX4 Sedan 2012 1.19% +1105 /scratch/Teaching/cars/car_ims/001975.jpg Audi S4 Sedan 2007 BMW X5 SUV 2007 1.59% Bentley Arnage Sedan 2009 1.57% Land Rover Range Rover SUV 2012 1.56% Chrysler Aspen SUV 2009 1.52% Hyundai Genesis Sedan 2012 1.52% +1106 /scratch/Teaching/cars/car_ims/000017.jpg AM General Hummer SUV 2000 Cadillac Escalade EXT Crew Cab 2007 1.78% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.75% Chevrolet TrailBlazer SS 2009 1.61% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.39% Ford Expedition EL SUV 2009 1.37% +1107 /scratch/Teaching/cars/car_ims/012250.jpg Jeep Compass SUV 2012 GMC Savana Van 2012 0.98% BMW X3 SUV 2012 0.81% GMC Acadia SUV 2012 0.81% Mercedes-Benz S-Class Sedan 2012 0.77% Isuzu Ascender SUV 2008 0.76% +1108 /scratch/Teaching/cars/car_ims/009230.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 1.84% Dodge Sprinter Cargo Van 2009 1.39% Mercedes-Benz Sprinter Van 2012 1.28% Ram C/V Cargo Van Minivan 2012 1.16% Audi A5 Coupe 2012 1.16% +1109 /scratch/Teaching/cars/car_ims/009058.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 1.41% Ram C/V Cargo Van Minivan 2012 1.18% Lincoln Town Car Sedan 2011 1.0% Dodge Sprinter Cargo Van 2009 0.97% Honda Odyssey Minivan 2007 0.97% +1110 /scratch/Teaching/cars/car_ims/015778.jpg Volkswagen Beetle Hatchback 2012 Ram C/V Cargo Van Minivan 2012 1.61% GMC Savana Van 2012 1.37% Dodge Sprinter Cargo Van 2009 1.17% Lincoln Town Car Sedan 2011 1.07% Mercedes-Benz S-Class Sedan 2012 1.01% +1111 /scratch/Teaching/cars/car_ims/005742.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.31% Chevrolet Avalanche Crew Cab 2012 1.19% Chevrolet Traverse SUV 2012 1.1% Dodge Caravan Minivan 1997 1.09% Ford F-150 Regular Cab 2012 1.09% +1112 /scratch/Teaching/cars/car_ims/005803.jpg Chevrolet Monte Carlo Coupe 2007 Dodge Caliber Wagon 2007 1.05% Nissan Juke Hatchback 2012 0.9% Bugatti Veyron 16.4 Coupe 2009 0.9% Jeep Patriot SUV 2012 0.89% Daewoo Nubira Wagon 2002 0.89% +1113 /scratch/Teaching/cars/car_ims/004059.jpg Cadillac CTS-V Sedan 2012 GMC Savana Van 2012 1.0% Dodge Caravan Minivan 1997 0.87% Daewoo Nubira Wagon 2002 0.85% Volvo 240 Sedan 1993 0.78% Chevrolet Express Cargo Van 2007 0.78% +1114 /scratch/Teaching/cars/car_ims/010921.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 1.83% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.48% Chevrolet Silverado 1500 Regular Cab 2012 1.41% Chevrolet Silverado 1500 Extended Cab 2012 1.4% Chevrolet Avalanche Crew Cab 2012 1.38% +1115 /scratch/Teaching/cars/car_ims/001738.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 2.04% Ferrari FF Coupe 2012 1.12% BMW 1 Series Coupe 2012 1.08% Chevrolet Express Van 2007 0.98% Chevrolet Express Cargo Van 2007 0.95% +1116 /scratch/Teaching/cars/car_ims/015727.jpg Volkswagen Golf Hatchback 1991 GMC Savana Van 2012 1.74% Dodge Caravan Minivan 1997 1.26% Daewoo Nubira Wagon 2002 1.09% Hyundai Tucson SUV 2012 1.06% Ford Freestar Minivan 2007 1.0% +1117 /scratch/Teaching/cars/car_ims/011005.jpg Hyundai Veracruz SUV 2012 Ram C/V Cargo Van Minivan 2012 2.29% GMC Savana Van 2012 1.66% Dodge Sprinter Cargo Van 2009 1.45% FIAT 500 Convertible 2012 1.33% Lincoln Town Car Sedan 2011 1.31% +1118 /scratch/Teaching/cars/car_ims/012806.jpg Lincoln Town Car Sedan 2011 Jeep Patriot SUV 2012 1.07% Cadillac Escalade EXT Crew Cab 2007 1.05% Jeep Liberty SUV 2012 1.01% Ford Expedition EL SUV 2009 1.0% Dodge Ram Pickup 3500 Crew Cab 2010 0.99% +1119 /scratch/Teaching/cars/car_ims/011874.jpg Jeep Patriot SUV 2012 Mercedes-Benz E-Class Sedan 2012 1.66% Bugatti Veyron 16.4 Coupe 2009 1.56% Mercedes-Benz 300-Class Convertible 1993 1.55% Fisker Karma Sedan 2012 1.43% HUMMER H2 SUT Crew Cab 2009 1.33% +1120 /scratch/Teaching/cars/car_ims/013938.jpg Nissan Juke Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.1% Nissan Juke Hatchback 2012 0.97% Hyundai Azera Sedan 2012 0.91% Lamborghini Reventon Coupe 2008 0.89% Jeep Compass SUV 2012 0.88% +1121 /scratch/Teaching/cars/car_ims/001564.jpg Audi S6 Sedan 2011 Bentley Arnage Sedan 2009 3.85% Land Rover Range Rover SUV 2012 2.26% Mercedes-Benz C-Class Sedan 2012 1.95% Chrysler 300 SRT-8 2010 1.76% Hyundai Genesis Sedan 2012 1.62% +1122 /scratch/Teaching/cars/car_ims/008698.jpg Ford Mustang Convertible 2007 MINI Cooper Roadster Convertible 2012 1.62% Hyundai Genesis Sedan 2012 1.58% Bentley Mulsanne Sedan 2011 1.36% Fisker Karma Sedan 2012 1.35% Bugatti Veyron 16.4 Coupe 2009 1.32% +1123 /scratch/Teaching/cars/car_ims/005863.jpg Chevrolet Malibu Sedan 2007 GMC Savana Van 2012 1.53% Dodge Caravan Minivan 1997 1.51% Ford E-Series Wagon Van 2012 1.12% Hyundai Tucson SUV 2012 1.11% Chevrolet Avalanche Crew Cab 2012 1.01% +1124 /scratch/Teaching/cars/car_ims/000378.jpg Acura TSX Sedan 2012 Infiniti G Coupe IPL 2012 0.96% Chevrolet Corvette ZR1 2012 0.96% Dodge Ram Pickup 3500 Quad Cab 2009 0.95% Mercedes-Benz C-Class Sedan 2012 0.94% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.93% +1125 /scratch/Teaching/cars/car_ims/006093.jpg Chevrolet Silverado 1500 Regular Cab 2012 GMC Savana Van 2012 1.73% Dodge Sprinter Cargo Van 2009 1.27% Audi A5 Coupe 2012 1.24% Chevrolet Silverado 2500HD Regular Cab 2012 1.18% Mercedes-Benz Sprinter Van 2012 1.17% +1126 /scratch/Teaching/cars/car_ims/015490.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 0.87% Honda Odyssey Minivan 2007 0.84% Dodge Caravan Minivan 1997 0.81% Chevrolet Traverse SUV 2012 0.79% Daewoo Nubira Wagon 2002 0.75% +1127 /scratch/Teaching/cars/car_ims/015847.jpg Volvo C30 Hatchback 2012 Ferrari 458 Italia Convertible 2012 4.23% McLaren MP4-12C Coupe 2012 4.04% Aston Martin Virage Coupe 2012 3.84% Ferrari 458 Italia Coupe 2012 3.64% Chevrolet Corvette Convertible 2012 3.31% +1128 /scratch/Teaching/cars/car_ims/005267.jpg Chevrolet Avalanche Crew Cab 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.55% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% Dodge Ram Pickup 3500 Quad Cab 2009 1.28% Chevrolet Silverado 1500 Regular Cab 2012 1.28% Honda Accord Sedan 2012 1.2% +1129 /scratch/Teaching/cars/car_ims/014061.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 0.89% Rolls-Royce Phantom Sedan 2012 0.88% Volvo 240 Sedan 1993 0.79% Lincoln Town Car Sedan 2011 0.75% Chevrolet Sonic Sedan 2012 0.74% +1130 /scratch/Teaching/cars/car_ims/003691.jpg Bugatti Veyron 16.4 Coupe 2009 Chevrolet TrailBlazer SS 2009 2.07% Bentley Arnage Sedan 2009 1.93% Chrysler 300 SRT-8 2010 1.86% Ford Expedition EL SUV 2009 1.71% HUMMER H2 SUT Crew Cab 2009 1.34% +1131 /scratch/Teaching/cars/car_ims/009509.jpg Ford E-Series Wagon Van 2012 Ford E-Series Wagon Van 2012 2.4% Hyundai Santa Fe SUV 2012 1.9% BMW X5 SUV 2007 1.72% Audi S6 Sedan 2011 1.67% Isuzu Ascender SUV 2008 1.64% +1132 /scratch/Teaching/cars/car_ims/006354.jpg Chrysler 300 SRT-8 2010 Ford GT Coupe 2006 2.35% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.67% Audi TT RS Coupe 2012 1.54% Volvo C30 Hatchback 2012 1.43% Lamborghini Aventador Coupe 2012 1.43% +1133 /scratch/Teaching/cars/car_ims/007736.jpg Dodge Durango SUV 2007 Bentley Arnage Sedan 2009 4.55% Fisker Karma Sedan 2012 2.25% Hyundai Genesis Sedan 2012 2.16% Mercedes-Benz C-Class Sedan 2012 2.16% Bentley Mulsanne Sedan 2011 1.84% +1134 /scratch/Teaching/cars/car_ims/010883.jpg Hyundai Tucson SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.35% Hyundai Genesis Sedan 2012 1.22% Hyundai Azera Sedan 2012 1.21% Fisker Karma Sedan 2012 1.15% Mercedes-Benz E-Class Sedan 2012 1.15% +1135 /scratch/Teaching/cars/car_ims/014271.jpg Porsche Panamera Sedan 2012 FIAT 500 Convertible 2012 1.74% Daewoo Nubira Wagon 2002 1.62% Nissan Leaf Hatchback 2012 1.34% Geo Metro Convertible 1993 1.18% Maybach Landaulet Convertible 2012 1.18% +1136 /scratch/Teaching/cars/car_ims/002762.jpg BMW M3 Coupe 2012 Audi A5 Coupe 2012 1.77% Mercedes-Benz Sprinter Van 2012 1.72% Dodge Sprinter Cargo Van 2009 1.62% GMC Savana Van 2012 1.58% Mercedes-Benz S-Class Sedan 2012 1.47% +1137 /scratch/Teaching/cars/car_ims/011888.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 2.72% Chevrolet Avalanche Crew Cab 2012 1.2% Ford F-150 Regular Cab 2012 1.2% Chevrolet Silverado 1500 Regular Cab 2012 1.18% Chevrolet Silverado 1500 Extended Cab 2012 1.13% +1138 /scratch/Teaching/cars/car_ims/000751.jpg Aston Martin Virage Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.01% GMC Savana Van 2012 1.43% Dodge Sprinter Cargo Van 2009 1.39% Mercedes-Benz S-Class Sedan 2012 1.3% Lincoln Town Car Sedan 2011 1.25% +1139 /scratch/Teaching/cars/car_ims/007403.jpg Dodge Dakota Club Cab 2007 Bentley Arnage Sedan 2009 2.11% HUMMER H2 SUT Crew Cab 2009 1.59% Bugatti Veyron 16.4 Coupe 2009 1.49% FIAT 500 Abarth 2012 1.4% Fisker Karma Sedan 2012 1.31% +1140 /scratch/Teaching/cars/car_ims/009025.jpg Ford Ranger SuperCab 2011 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.33% GMC Savana Van 2012 1.27% Chevrolet Silverado 1500 Regular Cab 2012 1.27% Dodge Ram Pickup 3500 Quad Cab 2009 1.26% Chevrolet Silverado 2500HD Regular Cab 2012 1.18% +1141 /scratch/Teaching/cars/car_ims/013509.jpg Mercedes-Benz S-Class Sedan 2012 Bentley Arnage Sedan 2009 1.09% Hyundai Genesis Sedan 2012 1.05% Land Rover Range Rover SUV 2012 0.95% Jeep Patriot SUV 2012 0.93% Dodge Ram Pickup 3500 Crew Cab 2010 0.92% +1142 /scratch/Teaching/cars/car_ims/001054.jpg Audi TTS Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.37% GMC Savana Van 2012 1.3% Dodge Ram Pickup 3500 Crew Cab 2010 1.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.23% Chevrolet Avalanche Crew Cab 2012 1.22% +1143 /scratch/Teaching/cars/car_ims/014942.jpg Suzuki Kizashi Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.3% Dodge Sprinter Cargo Van 2009 1.72% Mercedes-Benz S-Class Sedan 2012 1.61% Mercedes-Benz Sprinter Van 2012 1.52% GMC Savana Van 2012 1.5% +1144 /scratch/Teaching/cars/car_ims/008194.jpg Ferrari FF Coupe 2012 Rolls-Royce Phantom Sedan 2012 0.88% Hyundai Genesis Sedan 2012 0.83% Audi V8 Sedan 1994 0.82% Bentley Continental GT Coupe 2007 0.82% BMW M6 Convertible 2010 0.8% +1145 /scratch/Teaching/cars/car_ims/006466.jpg Chrysler Crossfire Convertible 2008 MINI Cooper Roadster Convertible 2012 1.61% Fisker Karma Sedan 2012 1.37% Mercedes-Benz E-Class Sedan 2012 1.34% Mercedes-Benz S-Class Sedan 2012 1.23% Mercedes-Benz C-Class Sedan 2012 1.16% +1146 /scratch/Teaching/cars/car_ims/013641.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 1.33% Mercedes-Benz S-Class Sedan 2012 1.16% Audi A5 Coupe 2012 1.16% Ram C/V Cargo Van Minivan 2012 1.13% GMC Savana Van 2012 1.13% +1147 /scratch/Teaching/cars/car_ims/013204.jpg Mercedes-Benz 300-Class Convertible 1993 AM General Hummer SUV 2000 3.86% HUMMER H2 SUT Crew Cab 2009 2.23% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.0% HUMMER H3T Crew Cab 2010 1.99% Aston Martin Virage Coupe 2012 1.9% +1148 /scratch/Teaching/cars/car_ims/000208.jpg Acura TL Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.25% Acura TL Sedan 2012 1.12% BMW X3 SUV 2012 1.1% Mercedes-Benz Sprinter Van 2012 1.06% Audi A5 Coupe 2012 1.05% +1149 /scratch/Teaching/cars/car_ims/015286.jpg Toyota Sequoia SUV 2012 Ram C/V Cargo Van Minivan 2012 2.37% GMC Savana Van 2012 2.18% FIAT 500 Convertible 2012 1.78% Hyundai Elantra Sedan 2007 1.65% Daewoo Nubira Wagon 2002 1.58% +1150 /scratch/Teaching/cars/car_ims/009923.jpg GMC Acadia SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.4% Mercedes-Benz 300-Class Convertible 1993 1.07% HUMMER H2 SUT Crew Cab 2009 1.03% Bentley Arnage Sedan 2009 1.03% Ford GT Coupe 2006 0.98% +1151 /scratch/Teaching/cars/car_ims/003545.jpg Bentley Continental Flying Spur Sedan 2007 Bentley Arnage Sedan 2009 2.06% Cadillac Escalade EXT Crew Cab 2007 2.05% Chrysler 300 SRT-8 2010 1.83% Land Rover Range Rover SUV 2012 1.82% Chevrolet TrailBlazer SS 2009 1.76% +1152 /scratch/Teaching/cars/car_ims/009202.jpg Ford F-150 Regular Cab 2012 BMW X5 SUV 2007 1.24% Hyundai Santa Fe SUV 2012 1.12% Isuzu Ascender SUV 2008 1.11% Ford F-150 Regular Cab 2012 1.05% GMC Savana Van 2012 1.04% +1153 /scratch/Teaching/cars/car_ims/009857.jpg GMC Yukon Hybrid SUV 2012 Cadillac Escalade EXT Crew Cab 2007 2.24% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.15% Chevrolet TrailBlazer SS 2009 1.9% Chrysler 300 SRT-8 2010 1.86% Ford F-450 Super Duty Crew Cab 2012 1.77% +1154 /scratch/Teaching/cars/car_ims/015306.jpg Toyota Sequoia SUV 2012 Fisker Karma Sedan 2012 2.07% Mercedes-Benz E-Class Sedan 2012 1.74% Chevrolet Corvette ZR1 2012 1.7% Audi S5 Convertible 2012 1.59% Bentley Mulsanne Sedan 2011 1.56% +1155 /scratch/Teaching/cars/car_ims/010908.jpg Hyundai Tucson SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.93% FIAT 500 Convertible 2012 1.7% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.57% MINI Cooper Roadster Convertible 2012 1.46% Ram C/V Cargo Van Minivan 2012 1.42% +1156 /scratch/Teaching/cars/car_ims/011179.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 1.87% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.42% Chevrolet Silverado 1500 Regular Cab 2012 1.39% Chevrolet TrailBlazer SS 2009 1.2% Cadillac Escalade EXT Crew Cab 2007 1.17% +1157 /scratch/Teaching/cars/car_ims/003435.jpg Bentley Continental GT Coupe 2007 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.41% FIAT 500 Convertible 2012 2.34% Mercedes-Benz S-Class Sedan 2012 1.54% Maybach Landaulet Convertible 2012 1.48% MINI Cooper Roadster Convertible 2012 1.35% +1158 /scratch/Teaching/cars/car_ims/009602.jpg Ford Fiesta Sedan 2012 Bentley Arnage Sedan 2009 1.23% FIAT 500 Abarth 2012 1.19% Jeep Patriot SUV 2012 1.17% Hyundai Azera Sedan 2012 1.08% Cadillac SRX SUV 2012 1.07% +1159 /scratch/Teaching/cars/car_ims/013038.jpg Mazda Tribute SUV 2011 GMC Savana Van 2012 2.35% Ram C/V Cargo Van Minivan 2012 1.6% Dodge Sprinter Cargo Van 2009 1.32% Lincoln Town Car Sedan 2011 1.24% Honda Accord Sedan 2012 1.15% +1160 /scratch/Teaching/cars/car_ims/005572.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 2.07% Chevrolet Express Cargo Van 2007 1.09% Chevrolet Silverado 1500 Regular Cab 2012 1.07% Chevrolet Express Van 2007 0.96% Chevrolet Silverado 1500 Extended Cab 2012 0.93% +1161 /scratch/Teaching/cars/car_ims/000093.jpg Acura RL Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.9% GMC Savana Van 2012 1.83% Dodge Sprinter Cargo Van 2009 1.33% Lincoln Town Car Sedan 2011 1.17% Mercedes-Benz Sprinter Van 2012 1.09% +1162 /scratch/Teaching/cars/car_ims/006588.jpg Chrysler PT Cruiser Convertible 2008 Lamborghini Diablo Coupe 2001 6.11% Aston Martin Virage Coupe 2012 4.23% McLaren MP4-12C Coupe 2012 4.01% Acura Integra Type R 2001 3.83% Ferrari California Convertible 2012 3.83% +1163 /scratch/Teaching/cars/car_ims/004105.jpg Cadillac CTS-V Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.5% Mercedes-Benz E-Class Sedan 2012 1.39% Bugatti Veyron 16.4 Coupe 2009 1.27% Mercedes-Benz S-Class Sedan 2012 1.23% FIAT 500 Convertible 2012 1.11% +1164 /scratch/Teaching/cars/car_ims/015664.jpg Volkswagen Golf Hatchback 2012 GMC Savana Van 2012 2.02% Daewoo Nubira Wagon 2002 1.38% Plymouth Neon Coupe 1999 1.29% Ferrari FF Coupe 2012 1.19% Ford Focus Sedan 2007 1.13% +1165 /scratch/Teaching/cars/car_ims/013306.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 2.98% Chevrolet TrailBlazer SS 2009 2.58% Bentley Arnage Sedan 2009 2.57% Land Rover Range Rover SUV 2012 2.18% Ford Expedition EL SUV 2009 2.1% +1166 /scratch/Teaching/cars/car_ims/002824.jpg BMW M5 Sedan 2010 AM General Hummer SUV 2000 1.96% HUMMER H2 SUT Crew Cab 2009 1.67% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.53% Bugatti Veyron 16.4 Coupe 2009 1.46% HUMMER H3T Crew Cab 2010 1.39% +1167 /scratch/Teaching/cars/car_ims/004726.jpg Chevrolet Camaro Convertible 2012 Ferrari FF Coupe 2012 2.78% Dodge Caliber Wagon 2007 1.76% BMW 1 Series Coupe 2012 1.76% Honda Accord Coupe 2012 1.73% Hyundai Elantra Sedan 2007 1.63% +1168 /scratch/Teaching/cars/car_ims/007118.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ferrari 458 Italia Convertible 2012 2.32% Ferrari FF Coupe 2012 2.26% Chevrolet Cobalt SS 2010 2.2% Chevrolet Corvette Convertible 2012 2.14% Ferrari 458 Italia Coupe 2012 2.12% +1169 /scratch/Teaching/cars/car_ims/014786.jpg Spyker C8 Coupe 2009 MINI Cooper Roadster Convertible 2012 2.44% Mercedes-Benz S-Class Sedan 2012 2.16% Mercedes-Benz E-Class Sedan 2012 1.94% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.9% Fisker Karma Sedan 2012 1.47% +1170 /scratch/Teaching/cars/car_ims/013280.jpg Mercedes-Benz C-Class Sedan 2012 Ford GT Coupe 2006 2.42% Spyker C8 Convertible 2009 1.81% Bugatti Veyron 16.4 Coupe 2009 1.72% Lamborghini Diablo Coupe 2001 1.67% Spyker C8 Coupe 2009 1.44% +1171 /scratch/Teaching/cars/car_ims/010762.jpg Hyundai Santa Fe SUV 2012 BMW X5 SUV 2007 1.59% Hyundai Santa Fe SUV 2012 1.49% Ford E-Series Wagon Van 2012 1.48% Isuzu Ascender SUV 2008 1.13% Chrysler Aspen SUV 2009 1.13% +1172 /scratch/Teaching/cars/car_ims/015885.jpg Volvo C30 Hatchback 2012 AM General Hummer SUV 2000 3.04% HUMMER H2 SUT Crew Cab 2009 2.74% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.74% HUMMER H3T Crew Cab 2010 2.38% Dodge Caliber Wagon 2007 2.2% +1173 /scratch/Teaching/cars/car_ims/010409.jpg Honda Odyssey Minivan 2012 Daewoo Nubira Wagon 2002 1.52% Nissan Leaf Hatchback 2012 1.27% FIAT 500 Convertible 2012 1.26% Dodge Caravan Minivan 1997 1.25% Bentley Continental Supersports Conv. Convertible 2012 1.14% +1174 /scratch/Teaching/cars/car_ims/012344.jpg Lamborghini Reventon Coupe 2008 Chevrolet Silverado 2500HD Regular Cab 2012 1.17% Audi A5 Coupe 2012 1.07% Dodge Ram Pickup 3500 Quad Cab 2009 1.07% Honda Accord Sedan 2012 1.02% Audi S5 Coupe 2012 1.01% +1175 /scratch/Teaching/cars/car_ims/001648.jpg Audi S5 Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.69% FIAT 500 Convertible 2012 2.65% GMC Savana Van 2012 1.64% Nissan Leaf Hatchback 2012 1.55% Dodge Sprinter Cargo Van 2009 1.45% +1176 /scratch/Teaching/cars/car_ims/005555.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.27% FIAT 500 Convertible 2012 1.16% Nissan Leaf Hatchback 2012 1.15% Ram C/V Cargo Van Minivan 2012 1.1% Suzuki SX4 Sedan 2012 1.1% +1177 /scratch/Teaching/cars/car_ims/006375.jpg Chrysler 300 SRT-8 2010 Chevrolet TrailBlazer SS 2009 2.15% Cadillac Escalade EXT Crew Cab 2007 2.06% Chrysler 300 SRT-8 2010 1.81% Ford Expedition EL SUV 2009 1.8% Dodge Ram Pickup 3500 Crew Cab 2010 1.73% +1178 /scratch/Teaching/cars/car_ims/015238.jpg Tesla Model S Sedan 2012 GMC Savana Van 2012 1.96% Ferrari FF Coupe 2012 1.62% Ram C/V Cargo Van Minivan 2012 1.2% BMW 1 Series Coupe 2012 1.19% Dodge Sprinter Cargo Van 2009 1.15% +1179 /scratch/Teaching/cars/car_ims/004215.jpg Cadillac SRX SUV 2012 Bentley Arnage Sedan 2009 2.19% Hyundai Genesis Sedan 2012 1.66% Mercedes-Benz C-Class Sedan 2012 1.4% Land Rover Range Rover SUV 2012 1.23% Ford Expedition EL SUV 2009 1.22% +1180 /scratch/Teaching/cars/car_ims/001301.jpg Audi 100 Sedan 1994 MINI Cooper Roadster Convertible 2012 2.62% Mercedes-Benz S-Class Sedan 2012 2.42% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.31% Mercedes-Benz E-Class Sedan 2012 2.15% Mercedes-Benz SL-Class Coupe 2009 1.36% +1181 /scratch/Teaching/cars/car_ims/012479.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Ferrari FF Coupe 2012 5.44% Ferrari California Convertible 2012 4.34% Ferrari 458 Italia Convertible 2012 4.08% McLaren MP4-12C Coupe 2012 3.91% Lamborghini Diablo Coupe 2001 3.77% +1182 /scratch/Teaching/cars/car_ims/011568.jpg Infiniti G Coupe IPL 2012 Ram C/V Cargo Van Minivan 2012 2.09% GMC Savana Van 2012 1.87% Ferrari FF Coupe 2012 1.85% FIAT 500 Convertible 2012 1.62% Lincoln Town Car Sedan 2011 1.36% +1183 /scratch/Teaching/cars/car_ims/010848.jpg Hyundai Tucson SUV 2012 Isuzu Ascender SUV 2008 0.88% Dodge Ram Pickup 3500 Crew Cab 2010 0.88% Chrysler Aspen SUV 2009 0.85% Dodge Caravan Minivan 1997 0.84% Land Rover Range Rover SUV 2012 0.83% +1184 /scratch/Teaching/cars/car_ims/014995.jpg Suzuki Kizashi Sedan 2012 Mercedes-Benz C-Class Sedan 2012 1.28% Audi S6 Sedan 2011 1.26% BMW X5 SUV 2007 1.23% Toyota Sequoia SUV 2012 1.19% Audi S5 Convertible 2012 1.12% +1185 /scratch/Teaching/cars/car_ims/011881.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.56% Chevrolet Silverado 1500 Regular Cab 2012 1.35% Chevrolet TrailBlazer SS 2009 1.33% Chevrolet Silverado 2500HD Regular Cab 2012 1.31% Chrysler 300 SRT-8 2010 1.31% +1186 /scratch/Teaching/cars/car_ims/011410.jpg Hyundai Elantra Touring Hatchback 2012 BMW X5 SUV 2007 1.2% GMC Savana Van 2012 1.14% Chevrolet Silverado 2500HD Regular Cab 2012 1.13% Audi A5 Coupe 2012 1.1% GMC Acadia SUV 2012 1.04% +1187 /scratch/Teaching/cars/car_ims/010039.jpg GMC Savana Van 2012 GMC Savana Van 2012 1.82% Ford F-150 Regular Cab 2012 1.03% Chevrolet Avalanche Crew Cab 2012 1.0% Hyundai Santa Fe SUV 2012 0.97% Jeep Liberty SUV 2012 0.92% +1188 /scratch/Teaching/cars/car_ims/013224.jpg Mercedes-Benz 300-Class Convertible 1993 Mercedes-Benz 300-Class Convertible 1993 1.67% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% Fisker Karma Sedan 2012 1.59% Ford GT Coupe 2006 1.53% Bugatti Veyron 16.4 Coupe 2009 1.4% +1189 /scratch/Teaching/cars/car_ims/003997.jpg Buick Enclave SUV 2012 Bentley Arnage Sedan 2009 1.28% Hyundai Genesis Sedan 2012 1.17% Bentley Mulsanne Sedan 2011 1.06% Mercedes-Benz C-Class Sedan 2012 0.99% Hyundai Azera Sedan 2012 0.96% +1190 /scratch/Teaching/cars/car_ims/015619.jpg Volkswagen Golf Hatchback 2012 Bentley Arnage Sedan 2009 1.58% Ford Expedition EL SUV 2009 1.44% Land Rover Range Rover SUV 2012 1.39% Cadillac Escalade EXT Crew Cab 2007 1.34% Dodge Ram Pickup 3500 Crew Cab 2010 1.29% +1191 /scratch/Teaching/cars/car_ims/004153.jpg Cadillac SRX SUV 2012 MINI Cooper Roadster Convertible 2012 1.72% Hyundai Genesis Sedan 2012 1.54% Audi S6 Sedan 2011 1.5% Bentley Arnage Sedan 2009 1.4% Bentley Mulsanne Sedan 2011 1.39% +1192 /scratch/Teaching/cars/car_ims/010746.jpg Hyundai Veloster Hatchback 2012 AM General Hummer SUV 2000 11.76% HUMMER H2 SUT Crew Cab 2009 6.13% Aston Martin Virage Coupe 2012 5.16% HUMMER H3T Crew Cab 2010 3.99% Chevrolet Corvette Convertible 2012 3.79% +1193 /scratch/Teaching/cars/car_ims/001152.jpg Audi R8 Coupe 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.03% Cadillac Escalade EXT Crew Cab 2007 1.65% Chevrolet TrailBlazer SS 2009 1.58% Chrysler 300 SRT-8 2010 1.48% Jeep Grand Cherokee SUV 2012 1.4% +1194 /scratch/Teaching/cars/car_ims/013711.jpg Mitsubishi Lancer Sedan 2012 Ford GT Coupe 2006 2.12% FIAT 500 Convertible 2012 1.63% Spyker C8 Convertible 2009 1.51% Spyker C8 Coupe 2009 1.48% Mercedes-Benz 300-Class Convertible 1993 1.33% +1195 /scratch/Teaching/cars/car_ims/012074.jpg Jeep Liberty SUV 2012 Cadillac Escalade EXT Crew Cab 2007 5.15% Ford Expedition EL SUV 2009 2.83% Ford F-450 Super Duty Crew Cab 2012 2.72% Chevrolet TrailBlazer SS 2009 2.63% Dodge Ram Pickup 3500 Crew Cab 2010 2.61% +1196 /scratch/Teaching/cars/car_ims/006280.jpg Chrysler Town and Country Minivan 2012 MINI Cooper Roadster Convertible 2012 1.34% Rolls-Royce Phantom Sedan 2012 1.3% Hyundai Genesis Sedan 2012 1.28% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% Mercedes-Benz E-Class Sedan 2012 1.07% +1197 /scratch/Teaching/cars/car_ims/005720.jpg Chevrolet Express Van 2007 Hyundai Genesis Sedan 2012 0.96% Dodge Challenger SRT8 2011 0.94% Ford E-Series Wagon Van 2012 0.89% Hyundai Azera Sedan 2012 0.88% Bentley Arnage Sedan 2009 0.84% +1198 /scratch/Teaching/cars/car_ims/012588.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 37.24% McLaren MP4-12C Coupe 2012 7.24% Ferrari 458 Italia Convertible 2012 6.78% Acura Integra Type R 2001 5.93% Aston Martin Virage Coupe 2012 4.71% +1199 /scratch/Teaching/cars/car_ims/005327.jpg Chevrolet Cobalt SS 2010 Chevrolet Corvette Convertible 2012 3.18% Aston Martin Virage Coupe 2012 3.03% Ferrari 458 Italia Coupe 2012 2.45% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.31% Ferrari 458 Italia Convertible 2012 2.22% +1200 /scratch/Teaching/cars/car_ims/014640.jpg Scion xD Hatchback 2012 MINI Cooper Roadster Convertible 2012 1.69% Hyundai Genesis Sedan 2012 1.55% Mercedes-Benz E-Class Sedan 2012 1.5% Rolls-Royce Phantom Sedan 2012 1.37% Bentley Mulsanne Sedan 2011 1.37% +1201 /scratch/Teaching/cars/car_ims/004163.jpg Cadillac SRX SUV 2012 Jeep Wrangler SUV 2012 1.77% HUMMER H2 SUT Crew Cab 2009 1.71% Dodge Caliber Wagon 2007 1.52% HUMMER H3T Crew Cab 2010 1.35% AM General Hummer SUV 2000 1.35% +1202 /scratch/Teaching/cars/car_ims/000148.jpg Acura RL Sedan 2012 Mercedes-Benz E-Class Sedan 2012 1.58% FIAT 500 Convertible 2012 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.41% Mercedes-Benz S-Class Sedan 2012 1.15% MINI Cooper Roadster Convertible 2012 1.13% +1203 /scratch/Teaching/cars/car_ims/006869.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 1.81% Hyundai Elantra Sedan 2007 1.22% BMW 1 Series Coupe 2012 1.13% Ferrari FF Coupe 2012 1.08% Honda Accord Coupe 2012 1.06% +1204 /scratch/Teaching/cars/car_ims/001861.jpg Audi S4 Sedan 2012 Bentley Arnage Sedan 2009 1.42% Mercedes-Benz C-Class Sedan 2012 1.33% Hyundai Genesis Sedan 2012 1.3% Bentley Mulsanne Sedan 2011 1.18% Land Rover Range Rover SUV 2012 1.15% +1205 /scratch/Teaching/cars/car_ims/008282.jpg Ferrari California Convertible 2012 Dodge Caliber Wagon 2007 2.92% BMW 1 Series Coupe 2012 2.81% Ferrari 458 Italia Coupe 2012 2.33% Ferrari 458 Italia Convertible 2012 2.08% Aston Martin Virage Coupe 2012 2.03% +1206 /scratch/Teaching/cars/car_ims/000155.jpg Acura TL Sedan 2012 GMC Savana Van 2012 1.56% Mercedes-Benz Sprinter Van 2012 1.41% Mercedes-Benz S-Class Sedan 2012 1.29% Audi A5 Coupe 2012 1.21% Dodge Sprinter Cargo Van 2009 1.16% +1207 /scratch/Teaching/cars/car_ims/004388.jpg Chevrolet Corvette Convertible 2012 Chevrolet Corvette Convertible 2012 7.6% Aston Martin Virage Coupe 2012 7.15% Chevrolet Cobalt SS 2010 4.74% Acura Integra Type R 2001 4.68% Ferrari 458 Italia Convertible 2012 4.53% +1208 /scratch/Teaching/cars/car_ims/006706.jpg Daewoo Nubira Wagon 2002 FIAT 500 Convertible 2012 2.09% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.76% Nissan Leaf Hatchback 2012 1.53% Maybach Landaulet Convertible 2012 1.38% Rolls-Royce Phantom Sedan 2012 1.37% +1209 /scratch/Teaching/cars/car_ims/005698.jpg Chevrolet Express Van 2007 GMC Savana Van 2012 2.21% Ford F-150 Regular Cab 2012 1.22% Chevrolet Avalanche Crew Cab 2012 1.21% Dodge Caravan Minivan 1997 1.18% Hyundai Tucson SUV 2012 1.12% +1210 /scratch/Teaching/cars/car_ims/005502.jpg Chevrolet TrailBlazer SS 2009 HUMMER H2 SUT Crew Cab 2009 1.55% Dodge Caliber Wagon 2007 1.28% HUMMER H3T Crew Cab 2010 1.25% Chevrolet TrailBlazer SS 2009 1.11% Jeep Wrangler SUV 2012 1.02% +1211 /scratch/Teaching/cars/car_ims/002873.jpg BMW M6 Convertible 2010 GMC Savana Van 2012 1.47% Dodge Ram Pickup 3500 Quad Cab 2009 1.22% Chevrolet Silverado 1500 Regular Cab 2012 1.12% Chevrolet Silverado 2500HD Regular Cab 2012 1.02% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.01% +1212 /scratch/Teaching/cars/car_ims/000206.jpg Acura TL Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.92% FIAT 500 Convertible 2012 1.65% MINI Cooper Roadster Convertible 2012 1.48% Mercedes-Benz S-Class Sedan 2012 1.33% Nissan Leaf Hatchback 2012 1.27% +1213 /scratch/Teaching/cars/car_ims/000956.jpg Audi RS 4 Convertible 2008 Lamborghini Diablo Coupe 2001 14.02% Aston Martin Virage Coupe 2012 7.23% Acura Integra Type R 2001 7.2% Ferrari 458 Italia Convertible 2012 5.47% McLaren MP4-12C Coupe 2012 5.37% +1214 /scratch/Teaching/cars/car_ims/005301.jpg Chevrolet Cobalt SS 2010 Aston Martin Virage Coupe 2012 6.36% Lamborghini Diablo Coupe 2001 5.93% Chevrolet Corvette Convertible 2012 5.53% Ferrari 458 Italia Convertible 2012 4.73% McLaren MP4-12C Coupe 2012 4.5% +1215 /scratch/Teaching/cars/car_ims/009658.jpg GMC Terrain SUV 2012 MINI Cooper Roadster Convertible 2012 1.54% Hyundai Genesis Sedan 2012 1.41% Rolls-Royce Phantom Sedan 2012 1.39% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.29% Bugatti Veyron 16.4 Coupe 2009 1.21% +1216 /scratch/Teaching/cars/car_ims/001969.jpg Audi S4 Sedan 2007 Lamborghini Diablo Coupe 2001 2.66% Ferrari California Convertible 2012 2.35% McLaren MP4-12C Coupe 2012 2.26% Lamborghini Aventador Coupe 2012 2.22% Chevrolet HHR SS 2010 2.17% +1217 /scratch/Teaching/cars/car_ims/003042.jpg BMW Z4 Convertible 2012 Lamborghini Diablo Coupe 2001 12.2% McLaren MP4-12C Coupe 2012 6.03% Ferrari 458 Italia Convertible 2012 5.68% Aston Martin Virage Coupe 2012 5.07% Acura Integra Type R 2001 4.71% +1218 /scratch/Teaching/cars/car_ims/014243.jpg Porsche Panamera Sedan 2012 Bentley Arnage Sedan 2009 2.49% Hyundai Genesis Sedan 2012 1.71% FIAT 500 Abarth 2012 1.31% Land Rover Range Rover SUV 2012 1.26% Mercedes-Benz C-Class Sedan 2012 1.23% +1219 /scratch/Teaching/cars/car_ims/005431.jpg Chevrolet Malibu Hybrid Sedan 2010 GMC Savana Van 2012 1.69% Ford F-150 Regular Cab 2012 1.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.39% Chevrolet Avalanche Crew Cab 2012 1.38% Chevrolet Silverado 1500 Regular Cab 2012 1.37% +1220 /scratch/Teaching/cars/car_ims/002433.jpg BMW 3 Series Wagon 2012 Ferrari 458 Italia Convertible 2012 4.29% Ferrari FF Coupe 2012 3.55% McLaren MP4-12C Coupe 2012 3.26% BMW 1 Series Coupe 2012 3.18% Ferrari 458 Italia Coupe 2012 3.14% +1221 /scratch/Teaching/cars/car_ims/006663.jpg Daewoo Nubira Wagon 2002 HUMMER H2 SUT Crew Cab 2009 1.09% Chevrolet TrailBlazer SS 2009 1.07% Chrysler 300 SRT-8 2010 1.03% Jeep Patriot SUV 2012 0.99% Volkswagen Golf Hatchback 1991 0.97% +1222 /scratch/Teaching/cars/car_ims/007433.jpg Dodge Dakota Club Cab 2007 Chevrolet Silverado 2500HD Regular Cab 2012 1.37% GMC Savana Van 2012 1.33% Honda Accord Sedan 2012 1.13% Dodge Ram Pickup 3500 Quad Cab 2009 1.12% Chevrolet Silverado 1500 Regular Cab 2012 1.08% +1223 /scratch/Teaching/cars/car_ims/011964.jpg Jeep Wrangler SUV 2012 AM General Hummer SUV 2000 3.13% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.79% HUMMER H2 SUT Crew Cab 2009 2.23% HUMMER H3T Crew Cab 2010 1.92% Jeep Wrangler SUV 2012 1.69% +1224 /scratch/Teaching/cars/car_ims/012047.jpg Jeep Liberty SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.58% HUMMER H2 SUT Crew Cab 2009 1.47% AM General Hummer SUV 2000 1.32% Mercedes-Benz 300-Class Convertible 1993 1.23% HUMMER H3T Crew Cab 2010 1.17% +1225 /scratch/Teaching/cars/car_ims/008226.jpg Ferrari FF Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.55% FIAT 500 Convertible 2012 1.88% GMC Savana Van 2012 1.52% Dodge Sprinter Cargo Van 2009 1.5% Nissan Leaf Hatchback 2012 1.35% +1226 /scratch/Teaching/cars/car_ims/001270.jpg Audi V8 Sedan 1994 Bentley Arnage Sedan 2009 2.05% Rolls-Royce Phantom Sedan 2012 1.59% Hyundai Genesis Sedan 2012 1.46% Ford Expedition EL SUV 2009 1.19% Chrysler 300 SRT-8 2010 1.19% +1227 /scratch/Teaching/cars/car_ims/004621.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 3.86% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.15% Maybach Landaulet Convertible 2012 1.81% Mercedes-Benz E-Class Sedan 2012 1.62% Nissan Leaf Hatchback 2012 1.56% +1228 /scratch/Teaching/cars/car_ims/000674.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 1.5% Chevrolet Silverado 2500HD Regular Cab 2012 1.0% Chevrolet Silverado 1500 Regular Cab 2012 0.97% Dodge Ram Pickup 3500 Quad Cab 2009 0.91% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.89% +1229 /scratch/Teaching/cars/car_ims/000047.jpg AM General Hummer SUV 2000 Ferrari 458 Italia Convertible 2012 5.37% McLaren MP4-12C Coupe 2012 4.65% Lamborghini Diablo Coupe 2001 4.11% Aston Martin Virage Coupe 2012 3.99% Ferrari 458 Italia Coupe 2012 3.91% +1230 /scratch/Teaching/cars/car_ims/007641.jpg Dodge Durango SUV 2012 Aston Martin Virage Coupe 2012 2.51% Ferrari 458 Italia Coupe 2012 2.25% Ferrari California Convertible 2012 2.07% AM General Hummer SUV 2000 2.02% Ferrari 458 Italia Convertible 2012 2.01% +1231 /scratch/Teaching/cars/car_ims/004064.jpg Cadillac CTS-V Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 3.16% Bentley Arnage Sedan 2009 2.61% Ford Expedition EL SUV 2009 2.52% Ford F-450 Super Duty Crew Cab 2012 2.4% Land Rover Range Rover SUV 2012 2.35% +1232 /scratch/Teaching/cars/car_ims/011299.jpg Hyundai Sonata Sedan 2012 MINI Cooper Roadster Convertible 2012 2.29% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.27% Mercedes-Benz S-Class Sedan 2012 2.26% Mercedes-Benz E-Class Sedan 2012 1.83% FIAT 500 Convertible 2012 1.31% +1233 /scratch/Teaching/cars/car_ims/006658.jpg Daewoo Nubira Wagon 2002 FIAT 500 Convertible 2012 1.44% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.39% Nissan Leaf Hatchback 2012 1.34% Suzuki SX4 Sedan 2012 1.26% Mercedes-Benz S-Class Sedan 2012 1.23% +1234 /scratch/Teaching/cars/car_ims/002584.jpg BMW X5 SUV 2007 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% Dodge Ram Pickup 3500 Quad Cab 2009 1.09% GMC Acadia SUV 2012 1.08% Chevrolet Silverado 2500HD Regular Cab 2012 1.03% Chevrolet Silverado 1500 Regular Cab 2012 1.01% +1235 /scratch/Teaching/cars/car_ims/003177.jpg Bentley Continental Supersports Conv. Convertible 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.92% FIAT 500 Convertible 2012 2.29% Mercedes-Benz S-Class Sedan 2012 1.76% MINI Cooper Roadster Convertible 2012 1.76% Mercedes-Benz E-Class Sedan 2012 1.72% +1236 /scratch/Teaching/cars/car_ims/011552.jpg Infiniti G Coupe IPL 2012 Ford E-Series Wagon Van 2012 1.19% Audi S6 Sedan 2011 1.18% Hyundai Genesis Sedan 2012 1.12% MINI Cooper Roadster Convertible 2012 1.02% Mercedes-Benz S-Class Sedan 2012 0.98% +1237 /scratch/Teaching/cars/car_ims/003529.jpg Bentley Continental Flying Spur Sedan 2007 BMW X5 SUV 2007 1.36% Ford F-450 Super Duty Crew Cab 2012 1.31% Cadillac Escalade EXT Crew Cab 2007 1.17% HUMMER H2 SUT Crew Cab 2009 1.17% Volvo XC90 SUV 2007 1.17% +1238 /scratch/Teaching/cars/car_ims/016015.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.09% Mercedes-Benz S-Class Sedan 2012 0.99% Mercedes-Benz Sprinter Van 2012 0.96% Ram C/V Cargo Van Minivan 2012 0.93% Volkswagen Golf Hatchback 2012 0.89% +1239 /scratch/Teaching/cars/car_ims/009160.jpg Ford GT Coupe 2006 HUMMER H2 SUT Crew Cab 2009 2.03% HUMMER H3T Crew Cab 2010 1.45% AM General Hummer SUV 2000 1.41% Jeep Wrangler SUV 2012 1.32% Bentley Arnage Sedan 2009 1.2% +1240 /scratch/Teaching/cars/car_ims/007978.jpg Eagle Talon Hatchback 1998 Cadillac Escalade EXT Crew Cab 2007 1.65% Chevrolet TrailBlazer SS 2009 1.52% GMC Savana Van 2012 1.29% Jeep Liberty SUV 2012 1.27% Dodge Ram Pickup 3500 Crew Cab 2010 1.16% +1241 /scratch/Teaching/cars/car_ims/004731.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.54% Chrysler 300 SRT-8 2010 1.22% Ford F-450 Super Duty Crew Cab 2012 1.21% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% Isuzu Ascender SUV 2008 1.16% +1242 /scratch/Teaching/cars/car_ims/004773.jpg Chevrolet Camaro Convertible 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.18% GMC Savana Van 2012 1.15% Audi A5 Coupe 2012 1.07% Audi S6 Sedan 2011 1.05% Isuzu Ascender SUV 2008 1.04% +1243 /scratch/Teaching/cars/car_ims/008087.jpg FIAT 500 Abarth 2012 Chevrolet Corvette ZR1 2012 1.37% HUMMER H2 SUT Crew Cab 2009 1.34% Bugatti Veyron 16.4 Coupe 2009 1.24% Mercedes-Benz 300-Class Convertible 1993 1.1% Fisker Karma Sedan 2012 1.07% +1244 /scratch/Teaching/cars/car_ims/004574.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 Ford E-Series Wagon Van 2012 1.5% Audi S6 Sedan 2011 1.29% Mercedes-Benz Sprinter Van 2012 1.11% Hyundai Santa Fe SUV 2012 1.11% Audi A5 Coupe 2012 1.11% +1245 /scratch/Teaching/cars/car_ims/008917.jpg Ford Expedition EL SUV 2009 Bentley Arnage Sedan 2009 1.34% Jeep Patriot SUV 2012 1.21% HUMMER H2 SUT Crew Cab 2009 1.19% Bugatti Veyron 16.4 Coupe 2009 1.14% HUMMER H3T Crew Cab 2010 1.04% +1246 /scratch/Teaching/cars/car_ims/010032.jpg GMC Savana Van 2012 Daewoo Nubira Wagon 2002 1.73% FIAT 500 Convertible 2012 1.59% Ram C/V Cargo Van Minivan 2012 1.57% Nissan Leaf Hatchback 2012 1.36% Dodge Caravan Minivan 1997 1.35% +1247 /scratch/Teaching/cars/car_ims/009014.jpg Ford Edge SUV 2012 Cadillac Escalade EXT Crew Cab 2007 3.46% Chevrolet TrailBlazer SS 2009 2.95% Ford Expedition EL SUV 2009 2.14% Dodge Ram Pickup 3500 Crew Cab 2010 2.1% Bentley Arnage Sedan 2009 2.06% +1248 /scratch/Teaching/cars/car_ims/002645.jpg BMW X6 SUV 2012 Cadillac Escalade EXT Crew Cab 2007 1.61% GMC Savana Van 2012 1.45% Ford F-150 Regular Cab 2012 1.35% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.23% Hyundai Santa Fe SUV 2012 1.2% +1249 /scratch/Teaching/cars/car_ims/008094.jpg FIAT 500 Abarth 2012 Cadillac Escalade EXT Crew Cab 2007 2.49% Chevrolet TrailBlazer SS 2009 2.44% Bentley Arnage Sedan 2009 2.33% Land Rover Range Rover SUV 2012 1.89% Ford Expedition EL SUV 2009 1.85% +1250 /scratch/Teaching/cars/car_ims/009876.jpg GMC Acadia SUV 2012 Bentley Arnage Sedan 2009 2.25% Land Rover Range Rover SUV 2012 1.52% FIAT 500 Abarth 2012 1.29% GMC Yukon Hybrid SUV 2012 1.24% Cadillac Escalade EXT Crew Cab 2007 1.22% +1251 /scratch/Teaching/cars/car_ims/003933.jpg Buick Verano Sedan 2012 Ferrari FF Coupe 2012 1.54% GMC Savana Van 2012 1.5% Ram C/V Cargo Van Minivan 2012 1.41% FIAT 500 Convertible 2012 1.16% Dodge Sprinter Cargo Van 2009 1.12% +1252 /scratch/Teaching/cars/car_ims/001216.jpg Audi V8 Sedan 1994 Bentley Arnage Sedan 2009 1.87% Bugatti Veyron 16.4 Coupe 2009 1.43% Bentley Mulsanne Sedan 2011 1.27% FIAT 500 Abarth 2012 1.24% Fisker Karma Sedan 2012 1.19% +1253 /scratch/Teaching/cars/car_ims/006426.jpg Chrysler 300 SRT-8 2010 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.45% Ford F-450 Super Duty Crew Cab 2012 1.15% Chrysler 300 SRT-8 2010 1.12% GMC Acadia SUV 2012 1.11% Chevrolet Silverado 1500 Regular Cab 2012 1.09% +1254 /scratch/Teaching/cars/car_ims/003740.jpg Buick Regal GS 2012 FIAT 500 Convertible 2012 3.07% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.09% Ram C/V Cargo Van Minivan 2012 2.09% Nissan Leaf Hatchback 2012 1.88% Mercedes-Benz S-Class Sedan 2012 1.76% +1255 /scratch/Teaching/cars/car_ims/000430.jpg Acura Integra Type R 2001 Lamborghini Diablo Coupe 2001 13.31% McLaren MP4-12C Coupe 2012 5.97% Aston Martin Virage Coupe 2012 5.36% Ferrari 458 Italia Convertible 2012 4.9% Acura Integra Type R 2001 4.57% +1256 /scratch/Teaching/cars/car_ims/014909.jpg Suzuki Aerio Sedan 2007 Mercedes-Benz 300-Class Convertible 1993 1.49% AM General Hummer SUV 2000 1.44% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.26% HUMMER H2 SUT Crew Cab 2009 1.22% Ford GT Coupe 2006 1.22% +1257 /scratch/Teaching/cars/car_ims/014372.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 FIAT 500 Convertible 2012 2.37% Nissan Leaf Hatchback 2012 1.45% Ram C/V Cargo Van Minivan 2012 1.19% Maybach Landaulet Convertible 2012 1.17% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.14% +1258 /scratch/Teaching/cars/car_ims/001836.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.34% GMC Savana Van 2012 2.33% FIAT 500 Convertible 2012 1.94% Hyundai Elantra Sedan 2007 1.52% Dodge Sprinter Cargo Van 2009 1.47% +1259 /scratch/Teaching/cars/car_ims/010997.jpg Hyundai Veracruz SUV 2012 GMC Savana Van 2012 1.31% Jeep Liberty SUV 2012 1.18% Dodge Ram Pickup 3500 Crew Cab 2010 1.12% Chevrolet TrailBlazer SS 2009 1.04% Ford F-150 Regular Cab 2012 1.03% +1260 /scratch/Teaching/cars/car_ims/004286.jpg Cadillac Escalade EXT Crew Cab 2007 GMC Savana Van 2012 2.15% Dodge Caravan Minivan 1997 2.0% Ford E-Series Wagon Van 2012 1.9% Chevrolet Avalanche Crew Cab 2012 1.53% Ram C/V Cargo Van Minivan 2012 1.44% +1261 /scratch/Teaching/cars/car_ims/007124.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Chevrolet Silverado 2500HD Regular Cab 2012 1.48% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.43% Ford F-450 Super Duty Crew Cab 2012 1.32% BMW X5 SUV 2007 1.3% Chevrolet Silverado 1500 Regular Cab 2012 1.24% +1262 /scratch/Teaching/cars/car_ims/007215.jpg Dodge Journey SUV 2012 FIAT 500 Convertible 2012 1.93% Hyundai Elantra Sedan 2007 1.43% Daewoo Nubira Wagon 2002 1.3% Nissan Leaf Hatchback 2012 1.22% Ford GT Coupe 2006 1.15% +1263 /scratch/Teaching/cars/car_ims/010212.jpg HUMMER H3T Crew Cab 2010 HUMMER H2 SUT Crew Cab 2009 4.49% AM General Hummer SUV 2000 4.47% HUMMER H3T Crew Cab 2010 3.29% Jeep Wrangler SUV 2012 2.86% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.28% +1264 /scratch/Teaching/cars/car_ims/001513.jpg Audi TT Hatchback 2011 HUMMER H2 SUT Crew Cab 2009 1.7% Chevrolet TrailBlazer SS 2009 1.47% Chrysler 300 SRT-8 2010 1.17% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.16% HUMMER H3T Crew Cab 2010 1.15% +1265 /scratch/Teaching/cars/car_ims/001712.jpg Audi S5 Convertible 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.45% Dodge Ram Pickup 3500 Quad Cab 2009 1.32% Chevrolet Silverado 2500HD Regular Cab 2012 1.27% Chevrolet Silverado 1500 Regular Cab 2012 1.23% GMC Savana Van 2012 1.18% +1266 /scratch/Teaching/cars/car_ims/002494.jpg BMW 6 Series Convertible 2007 Bentley Arnage Sedan 2009 1.36% Hyundai Genesis Sedan 2012 1.29% Ford Expedition EL SUV 2009 1.23% Land Rover Range Rover SUV 2012 1.17% Dodge Ram Pickup 3500 Crew Cab 2010 1.16% +1267 /scratch/Teaching/cars/car_ims/008811.jpg Ford Freestar Minivan 2007 FIAT 500 Convertible 2012 2.05% Ram C/V Cargo Van Minivan 2012 1.81% Nissan Leaf Hatchback 2012 1.68% Daewoo Nubira Wagon 2002 1.56% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.39% +1268 /scratch/Teaching/cars/car_ims/010732.jpg Hyundai Veloster Hatchback 2012 Lamborghini Diablo Coupe 2001 19.53% Ferrari 458 Italia Convertible 2012 6.78% McLaren MP4-12C Coupe 2012 6.06% Aston Martin Virage Coupe 2012 5.5% Acura Integra Type R 2001 5.2% +1269 /scratch/Teaching/cars/car_ims/012382.jpg Lamborghini Aventador Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.92% GMC Savana Van 2012 1.43% Lincoln Town Car Sedan 2011 1.31% FIAT 500 Convertible 2012 1.23% Nissan Leaf Hatchback 2012 1.17% +1270 /scratch/Teaching/cars/car_ims/010739.jpg Hyundai Veloster Hatchback 2012 Cadillac Escalade EXT Crew Cab 2007 2.14% Dodge Ram Pickup 3500 Crew Cab 2010 1.82% Ford Expedition EL SUV 2009 1.82% Chevrolet TrailBlazer SS 2009 1.64% Jeep Liberty SUV 2012 1.48% +1271 /scratch/Teaching/cars/car_ims/008547.jpg Fisker Karma Sedan 2012 Lamborghini Diablo Coupe 2001 5.7% Chevrolet HHR SS 2010 2.67% McLaren MP4-12C Coupe 2012 2.64% Ferrari 458 Italia Convertible 2012 2.59% Acura Integra Type R 2001 2.47% +1272 /scratch/Teaching/cars/car_ims/003323.jpg Bentley Mulsanne Sedan 2011 Mercedes-Benz S-Class Sedan 2012 2.35% MINI Cooper Roadster Convertible 2012 2.27% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.77% Mercedes-Benz E-Class Sedan 2012 1.76% Bugatti Veyron 16.4 Convertible 2009 1.31% +1273 /scratch/Teaching/cars/car_ims/016077.jpg Volvo XC90 SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.57% Bentley Arnage Sedan 2009 2.49% Chevrolet TrailBlazer SS 2009 2.27% Ford Expedition EL SUV 2009 1.88% Land Rover Range Rover SUV 2012 1.83% +1274 /scratch/Teaching/cars/car_ims/000085.jpg AM General Hummer SUV 2000 Aston Martin Virage Coupe 2012 5.07% McLaren MP4-12C Coupe 2012 4.28% Lamborghini Gallardo LP 570-4 Superleggera 2012 4.15% Chevrolet Corvette Convertible 2012 4.05% Ferrari 458 Italia Convertible 2012 3.85% +1275 /scratch/Teaching/cars/car_ims/005924.jpg Chevrolet Malibu Sedan 2007 Cadillac Escalade EXT Crew Cab 2007 1.58% GMC Savana Van 2012 1.23% Chevrolet Avalanche Crew Cab 2012 1.22% Ford F-150 Regular Cab 2012 1.22% Dodge Ram Pickup 3500 Crew Cab 2010 1.2% +1276 /scratch/Teaching/cars/car_ims/003140.jpg Bentley Continental Supersports Conv. Convertible 2012 FIAT 500 Convertible 2012 3.63% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.18% Maybach Landaulet Convertible 2012 1.98% Nissan Leaf Hatchback 2012 1.8% MINI Cooper Roadster Convertible 2012 1.73% +1277 /scratch/Teaching/cars/car_ims/002722.jpg BMW M3 Coupe 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.61% Chevrolet TrailBlazer SS 2009 1.33% Chevrolet Silverado 1500 Regular Cab 2012 1.26% Chrysler 300 SRT-8 2010 1.24% Dodge Ram Pickup 3500 Quad Cab 2009 1.21% +1278 /scratch/Teaching/cars/car_ims/013259.jpg Mercedes-Benz C-Class Sedan 2012 Mercedes-Benz E-Class Sedan 2012 2.67% Fisker Karma Sedan 2012 2.57% Chevrolet Corvette ZR1 2012 1.98% MINI Cooper Roadster Convertible 2012 1.94% Audi S5 Convertible 2012 1.73% +1279 /scratch/Teaching/cars/car_ims/011274.jpg Hyundai Genesis Sedan 2012 Bentley Arnage Sedan 2009 2.27% Hyundai Genesis Sedan 2012 1.56% Land Rover Range Rover SUV 2012 1.56% Audi S6 Sedan 2011 1.5% Mercedes-Benz C-Class Sedan 2012 1.43% +1280 /scratch/Teaching/cars/car_ims/008990.jpg Ford Edge SUV 2012 Daewoo Nubira Wagon 2002 1.02% Dodge Caravan Minivan 1997 1.01% Jeep Patriot SUV 2012 1.0% Nissan Juke Hatchback 2012 0.9% Hyundai Azera Sedan 2012 0.88% +1281 /scratch/Teaching/cars/car_ims/003079.jpg BMW Z4 Convertible 2012 FIAT 500 Convertible 2012 2.62% Ram C/V Cargo Van Minivan 2012 1.59% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.55% Mercedes-Benz S-Class Sedan 2012 1.4% Nissan Leaf Hatchback 2012 1.38% +1282 /scratch/Teaching/cars/car_ims/006904.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 1.68% Ferrari FF Coupe 2012 1.62% BMW 1 Series Coupe 2012 1.54% Dodge Caliber Wagon 2007 1.53% Hyundai Elantra Sedan 2007 1.17% +1283 /scratch/Teaching/cars/car_ims/012720.jpg Land Rover LR2 SUV 2012 AM General Hummer SUV 2000 5.29% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.9% HUMMER H2 SUT Crew Cab 2009 2.89% HUMMER H3T Crew Cab 2010 2.48% Aston Martin Virage Coupe 2012 2.43% +1284 /scratch/Teaching/cars/car_ims/012469.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Jeep Wrangler SUV 2012 1.39% HUMMER H2 SUT Crew Cab 2009 1.28% BMW X6 SUV 2012 1.14% Jeep Compass SUV 2012 1.1% Chevrolet Corvette ZR1 2012 1.07% +1285 /scratch/Teaching/cars/car_ims/006501.jpg Chrysler Crossfire Convertible 2008 Chevrolet TrailBlazer SS 2009 1.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.46% Ford Expedition EL SUV 2009 1.41% Chrysler 300 SRT-8 2010 1.39% Chevrolet Silverado 1500 Regular Cab 2012 1.39% +1286 /scratch/Teaching/cars/car_ims/009232.jpg Ford F-150 Regular Cab 2012 BMW X5 SUV 2007 1.02% Ford E-Series Wagon Van 2012 0.98% Hyundai Tucson SUV 2012 0.95% Chrysler Aspen SUV 2009 0.93% Dodge Caravan Minivan 1997 0.92% +1287 /scratch/Teaching/cars/car_ims/001116.jpg Audi TTS Coupe 2012 HUMMER H2 SUT Crew Cab 2009 2.85% AM General Hummer SUV 2000 2.24% HUMMER H3T Crew Cab 2010 1.87% Jeep Wrangler SUV 2012 1.7% Chevrolet Corvette ZR1 2012 1.58% +1288 /scratch/Teaching/cars/car_ims/012692.jpg Land Rover LR2 SUV 2012 Ford E-Series Wagon Van 2012 1.75% Mercedes-Benz S-Class Sedan 2012 1.42% Mercedes-Benz Sprinter Van 2012 1.4% Chrysler PT Cruiser Convertible 2008 1.25% MINI Cooper Roadster Convertible 2012 1.19% +1289 /scratch/Teaching/cars/car_ims/002661.jpg BMW X6 SUV 2012 HUMMER H2 SUT Crew Cab 2009 1.74% Bugatti Veyron 16.4 Coupe 2009 1.54% Bentley Arnage Sedan 2009 1.44% Fisker Karma Sedan 2012 1.39% Chevrolet Corvette ZR1 2012 1.34% +1290 /scratch/Teaching/cars/car_ims/014596.jpg Scion xD Hatchback 2012 Dodge Caravan Minivan 1997 1.32% Ford E-Series Wagon Van 2012 1.22% Daewoo Nubira Wagon 2002 1.06% Hyundai Tucson SUV 2012 1.04% Ford Freestar Minivan 2007 0.99% +1291 /scratch/Teaching/cars/car_ims/008508.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 3.63% FIAT 500 Abarth 2012 2.0% Bugatti Veyron 16.4 Coupe 2009 1.69% Hyundai Genesis Sedan 2012 1.56% Bentley Mulsanne Sedan 2011 1.44% +1292 /scratch/Teaching/cars/car_ims/004323.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Audi S6 Sedan 2011 2.15% Ford E-Series Wagon Van 2012 2.15% BMW X5 SUV 2007 2.09% Ford F-450 Super Duty Crew Cab 2012 1.8% Hyundai Santa Fe SUV 2012 1.63% +1293 /scratch/Teaching/cars/car_ims/014085.jpg Nissan 240SX Coupe 1998 GMC Savana Van 2012 1.11% Ram C/V Cargo Van Minivan 2012 0.76% Lincoln Town Car Sedan 2011 0.72% Volvo 240 Sedan 1993 0.71% Chevrolet Silverado 1500 Regular Cab 2012 0.71% +1294 /scratch/Teaching/cars/car_ims/010191.jpg HUMMER H3T Crew Cab 2010 Bentley Arnage Sedan 2009 1.14% Ford Edge SUV 2012 0.91% HUMMER H2 SUT Crew Cab 2009 0.88% Chevrolet Corvette ZR1 2012 0.88% BMW M6 Convertible 2010 0.86% +1295 /scratch/Teaching/cars/car_ims/009119.jpg Ford GT Coupe 2006 Ferrari 458 Italia Convertible 2012 2.76% Ferrari 458 Italia Coupe 2012 2.75% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.49% Aston Martin Virage Coupe 2012 2.36% Lamborghini Aventador Coupe 2012 2.34% +1296 /scratch/Teaching/cars/car_ims/002119.jpg BMW ActiveHybrid 5 Sedan 2012 FIAT 500 Convertible 2012 2.86% Daewoo Nubira Wagon 2002 2.29% Nissan Leaf Hatchback 2012 1.99% Hyundai Elantra Sedan 2007 1.57% Maybach Landaulet Convertible 2012 1.45% +1297 /scratch/Teaching/cars/car_ims/001378.jpg Audi 100 Sedan 1994 BMW X5 SUV 2007 1.4% Ford F-450 Super Duty Crew Cab 2012 1.27% Land Rover Range Rover SUV 2012 1.24% Hyundai Santa Fe SUV 2012 1.2% Audi S6 Sedan 2011 1.08% +1298 /scratch/Teaching/cars/car_ims/014277.jpg Ram C/V Cargo Van Minivan 2012 Ford E-Series Wagon Van 2012 1.52% Dodge Caravan Minivan 1997 1.39% Mercedes-Benz Sprinter Van 2012 1.38% Mercedes-Benz S-Class Sedan 2012 1.33% Honda Odyssey Minivan 2007 1.12% +1299 /scratch/Teaching/cars/car_ims/001048.jpg Audi TTS Coupe 2012 Ford Expedition EL SUV 2009 1.23% Dodge Ram Pickup 3500 Crew Cab 2010 1.15% Cadillac Escalade EXT Crew Cab 2007 1.13% Chevrolet TrailBlazer SS 2009 1.11% Chevrolet Avalanche Crew Cab 2012 0.97% +1300 /scratch/Teaching/cars/car_ims/011379.jpg Hyundai Elantra Touring Hatchback 2012 AM General Hummer SUV 2000 2.62% HUMMER H3T Crew Cab 2010 2.43% Aston Martin Virage Coupe 2012 2.4% HUMMER H2 SUT Crew Cab 2009 2.33% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.08% +1301 /scratch/Teaching/cars/car_ims/000289.jpg Acura TL Type-S 2008 FIAT 500 Convertible 2012 3.89% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.16% Mercedes-Benz S-Class Sedan 2012 2.5% MINI Cooper Roadster Convertible 2012 2.3% Bugatti Veyron 16.4 Convertible 2009 1.76% +1302 /scratch/Teaching/cars/car_ims/008798.jpg Ford Freestar Minivan 2007 GMC Savana Van 2012 1.8% Lincoln Town Car Sedan 2011 1.0% Chevrolet Silverado 1500 Regular Cab 2012 0.99% Chevrolet Silverado 1500 Extended Cab 2012 0.98% Ram C/V Cargo Van Minivan 2012 0.95% +1303 /scratch/Teaching/cars/car_ims/012540.jpg Lamborghini Diablo Coupe 2001 Lamborghini Diablo Coupe 2001 5.2% Ferrari 458 Italia Convertible 2012 4.41% McLaren MP4-12C Coupe 2012 4.08% Aston Martin Virage Coupe 2012 3.9% Ferrari 458 Italia Coupe 2012 3.32% +1304 /scratch/Teaching/cars/car_ims/007703.jpg Dodge Durango SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.38% Chevrolet Silverado 2500HD Regular Cab 2012 1.35% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.29% Ford F-450 Super Duty Crew Cab 2012 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.21% +1305 /scratch/Teaching/cars/car_ims/012505.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Ferrari 458 Italia Convertible 2012 8.92% McLaren MP4-12C Coupe 2012 7.69% Lamborghini Diablo Coupe 2001 6.35% Chevrolet Corvette Convertible 2012 6.26% Aston Martin Virage Coupe 2012 6.26% +1306 /scratch/Teaching/cars/car_ims/015699.jpg Volkswagen Golf Hatchback 1991 Bugatti Veyron 16.4 Coupe 2009 1.59% Jeep Patriot SUV 2012 1.25% Bentley Arnage Sedan 2009 1.22% Ford GT Coupe 2006 1.18% Dodge Caliber Wagon 2007 1.16% +1307 /scratch/Teaching/cars/car_ims/001763.jpg Audi S5 Coupe 2012 FIAT 500 Convertible 2012 2.02% Ram C/V Cargo Van Minivan 2012 1.56% Nissan Leaf Hatchback 2012 1.41% Mercedes-Benz S-Class Sedan 2012 1.37% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.34% +1308 /scratch/Teaching/cars/car_ims/013750.jpg Mitsubishi Lancer Sedan 2012 Dodge Caliber Wagon 2007 2.26% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.77% Suzuki SX4 Hatchback 2012 1.53% BMW 1 Series Coupe 2012 1.49% Volvo C30 Hatchback 2012 1.34% +1309 /scratch/Teaching/cars/car_ims/002060.jpg BMW ActiveHybrid 5 Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.25% FIAT 500 Convertible 2012 1.86% Maybach Landaulet Convertible 2012 1.62% Mercedes-Benz E-Class Sedan 2012 1.36% Fisker Karma Sedan 2012 1.35% +1310 /scratch/Teaching/cars/car_ims/008410.jpg Ferrari 458 Italia Convertible 2012 Ferrari 458 Italia Convertible 2012 3.66% Ferrari 458 Italia Coupe 2012 2.81% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.78% Lamborghini Aventador Coupe 2012 2.78% Lamborghini Diablo Coupe 2001 2.77% +1311 /scratch/Teaching/cars/car_ims/009147.jpg Ford GT Coupe 2006 Dodge Caliber Wagon 2007 2.93% BMW 1 Series Coupe 2012 2.78% Ferrari FF Coupe 2012 2.11% Suzuki SX4 Hatchback 2012 1.6% Honda Accord Coupe 2012 1.47% +1312 /scratch/Teaching/cars/car_ims/011104.jpg Hyundai Elantra Sedan 2007 AM General Hummer SUV 2000 2.5% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.99% HUMMER H2 SUT Crew Cab 2009 1.82% HUMMER H3T Crew Cab 2010 1.62% Lamborghini Aventador Coupe 2012 1.51% +1313 /scratch/Teaching/cars/car_ims/000769.jpg Aston Martin Virage Convertible 2012 Ford GT Coupe 2006 2.07% Lamborghini Diablo Coupe 2001 2.02% Spyker C8 Convertible 2009 1.56% Dodge Charger SRT-8 2009 1.42% Bugatti Veyron 16.4 Coupe 2009 1.41% +1314 /scratch/Teaching/cars/car_ims/014094.jpg Nissan 240SX Coupe 1998 Ram C/V Cargo Van Minivan 2012 1.54% Nissan Leaf Hatchback 2012 1.23% Mercedes-Benz S-Class Sedan 2012 1.2% Honda Odyssey Minivan 2007 1.17% Lincoln Town Car Sedan 2011 1.16% +1315 /scratch/Teaching/cars/car_ims/011535.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.74% FIAT 500 Convertible 2012 2.55% Nissan Leaf Hatchback 2012 1.88% Maybach Landaulet Convertible 2012 1.73% Bentley Continental Supersports Conv. Convertible 2012 1.53% +1316 /scratch/Teaching/cars/car_ims/015564.jpg Toyota 4Runner SUV 2012 Toyota Sequoia SUV 2012 1.21% Infiniti G Coupe IPL 2012 1.2% Audi S5 Coupe 2012 1.17% Audi S6 Sedan 2011 1.15% Mercedes-Benz C-Class Sedan 2012 1.13% +1317 /scratch/Teaching/cars/car_ims/014217.jpg Porsche Panamera Sedan 2012 Ford E-Series Wagon Van 2012 1.4% Audi S6 Sedan 2011 1.36% MINI Cooper Roadster Convertible 2012 1.13% Hyundai Genesis Sedan 2012 1.12% Mercedes-Benz S-Class Sedan 2012 1.06% +1318 /scratch/Teaching/cars/car_ims/008660.jpg Ford F-450 Super Duty Crew Cab 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.68% Ford Expedition EL SUV 2009 1.59% Cadillac Escalade EXT Crew Cab 2007 1.57% Chevrolet TrailBlazer SS 2009 1.55% Chevrolet Silverado 2500HD Regular Cab 2012 1.36% +1319 /scratch/Teaching/cars/car_ims/011270.jpg Hyundai Genesis Sedan 2012 Ram C/V Cargo Van Minivan 2012 2.33% GMC Savana Van 2012 2.13% Dodge Sprinter Cargo Van 2009 1.63% Lincoln Town Car Sedan 2011 1.36% FIAT 500 Convertible 2012 1.21% +1320 /scratch/Teaching/cars/car_ims/013974.jpg Nissan Juke Hatchback 2012 Dodge Caliber Wagon 2007 2.17% HUMMER H2 SUT Crew Cab 2009 1.89% Volkswagen Golf Hatchback 1991 1.58% HUMMER H3T Crew Cab 2010 1.49% Jeep Wrangler SUV 2012 1.45% +1321 /scratch/Teaching/cars/car_ims/007285.jpg Dodge Journey SUV 2012 Ford F-450 Super Duty Crew Cab 2012 1.7% Hyundai Santa Fe SUV 2012 1.62% Isuzu Ascender SUV 2008 1.6% Audi S6 Sedan 2011 1.6% BMW X5 SUV 2007 1.48% +1322 /scratch/Teaching/cars/car_ims/005881.jpg Chevrolet Malibu Sedan 2007 BMW X5 SUV 2007 0.99% Isuzu Ascender SUV 2008 0.91% Jeep Grand Cherokee SUV 2012 0.88% Hyundai Santa Fe SUV 2012 0.86% Chrysler Aspen SUV 2009 0.84% +1323 /scratch/Teaching/cars/car_ims/002050.jpg Audi TT RS Coupe 2012 FIAT 500 Convertible 2012 4.5% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.27% Nissan Leaf Hatchback 2012 2.2% Ram C/V Cargo Van Minivan 2012 1.66% Bugatti Veyron 16.4 Convertible 2009 1.6% +1324 /scratch/Teaching/cars/car_ims/000887.jpg Audi RS 4 Convertible 2008 Bentley Arnage Sedan 2009 4.17% Land Rover Range Rover SUV 2012 2.12% Chevrolet TrailBlazer SS 2009 2.03% Cadillac Escalade EXT Crew Cab 2007 2.02% Ford Expedition EL SUV 2009 1.81% +1325 /scratch/Teaching/cars/car_ims/014762.jpg Spyker C8 Coupe 2009 Lamborghini Diablo Coupe 2001 7.65% McLaren MP4-12C Coupe 2012 3.38% Chevrolet HHR SS 2010 3.22% Ferrari California Convertible 2012 3.14% Lamborghini Aventador Coupe 2012 2.9% +1326 /scratch/Teaching/cars/car_ims/000494.jpg Acura ZDX Hatchback 2012 FIAT 500 Convertible 2012 1.32% Hyundai Elantra Sedan 2007 1.15% Ram C/V Cargo Van Minivan 2012 1.03% Mercedes-Benz E-Class Sedan 2012 0.98% GMC Savana Van 2012 0.98% +1327 /scratch/Teaching/cars/car_ims/006450.jpg Chrysler Crossfire Convertible 2008 Geo Metro Convertible 1993 1.82% Ford GT Coupe 2006 1.69% FIAT 500 Convertible 2012 1.68% Hyundai Elantra Sedan 2007 1.67% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.43% +1328 /scratch/Teaching/cars/car_ims/010301.jpg HUMMER H2 SUT Crew Cab 2009 Aston Martin Virage Coupe 2012 3.1% Chevrolet Corvette Convertible 2012 3.02% BMW 1 Series Coupe 2012 2.99% Dodge Caliber Wagon 2007 2.8% Ferrari 458 Italia Coupe 2012 2.62% +1329 /scratch/Teaching/cars/car_ims/013990.jpg Nissan Juke Hatchback 2012 Hyundai Elantra Sedan 2007 1.58% Geo Metro Convertible 1993 1.56% Dodge Caliber Wagon 2007 1.44% Volvo C30 Hatchback 2012 1.32% Ford GT Coupe 2006 1.26% +1330 /scratch/Teaching/cars/car_ims/004935.jpg Chevrolet Impala Sedan 2007 Ram C/V Cargo Van Minivan 2012 1.16% Daewoo Nubira Wagon 2002 1.05% Nissan Leaf Hatchback 2012 1.01% Honda Odyssey Minivan 2007 0.95% Lincoln Town Car Sedan 2011 0.94% +1331 /scratch/Teaching/cars/car_ims/013528.jpg Mercedes-Benz S-Class Sedan 2012 MINI Cooper Roadster Convertible 2012 2.81% Fisker Karma Sedan 2012 2.61% Mercedes-Benz E-Class Sedan 2012 2.42% Mercedes-Benz S-Class Sedan 2012 2.12% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.84% +1332 /scratch/Teaching/cars/car_ims/007439.jpg Dodge Dakota Club Cab 2007 Fisker Karma Sedan 2012 2.28% Mercedes-Benz E-Class Sedan 2012 2.21% Chevrolet Corvette ZR1 2012 2.04% Audi S5 Convertible 2012 1.82% Mercedes-Benz C-Class Sedan 2012 1.71% +1333 /scratch/Teaching/cars/car_ims/008494.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 4.19% Ferrari California Convertible 2012 3.69% Ferrari FF Coupe 2012 3.65% McLaren MP4-12C Coupe 2012 3.34% Ferrari 458 Italia Coupe 2012 3.13% +1334 /scratch/Teaching/cars/car_ims/008964.jpg Ford Edge SUV 2012 GMC Savana Van 2012 1.39% Chevrolet Silverado 2500HD Regular Cab 2012 1.33% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% Chevrolet Silverado 1500 Regular Cab 2012 1.28% Dodge Ram Pickup 3500 Quad Cab 2009 1.27% +1335 /scratch/Teaching/cars/car_ims/000062.jpg AM General Hummer SUV 2000 Bentley Arnage Sedan 2009 1.84% Land Rover Range Rover SUV 2012 1.69% Hyundai Genesis Sedan 2012 1.48% Cadillac Escalade EXT Crew Cab 2007 1.39% Ford Expedition EL SUV 2009 1.37% +1336 /scratch/Teaching/cars/car_ims/003985.jpg Buick Enclave SUV 2012 MINI Cooper Roadster Convertible 2012 1.79% Mercedes-Benz E-Class Sedan 2012 1.65% Fisker Karma Sedan 2012 1.62% Bentley Mulsanne Sedan 2011 1.42% Mercedes-Benz S-Class Sedan 2012 1.38% +1337 /scratch/Teaching/cars/car_ims/009512.jpg Ford E-Series Wagon Van 2012 Cadillac Escalade EXT Crew Cab 2007 1.57% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.49% GMC Savana Van 2012 1.46% Chevrolet Avalanche Crew Cab 2012 1.32% Ford F-150 Regular Cab 2012 1.31% +1338 /scratch/Teaching/cars/car_ims/015320.jpg Toyota Sequoia SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.25% GMC Savana Van 2012 1.25% BMW X5 SUV 2007 1.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.16% Ford F-150 Regular Cab 2012 1.15% +1339 /scratch/Teaching/cars/car_ims/002971.jpg BMW X3 SUV 2012 Bentley Arnage Sedan 2009 3.06% Mercedes-Benz C-Class Sedan 2012 1.76% Hyundai Genesis Sedan 2012 1.58% Bentley Mulsanne Sedan 2011 1.51% Land Rover Range Rover SUV 2012 1.41% +1340 /scratch/Teaching/cars/car_ims/003780.jpg Buick Regal GS 2012 Bugatti Veyron 16.4 Coupe 2009 1.38% Ford GT Coupe 2006 1.03% Nissan Juke Hatchback 2012 1.03% FIAT 500 Abarth 2012 0.99% Spyker C8 Convertible 2009 0.96% +1341 /scratch/Teaching/cars/car_ims/011908.jpg Jeep Patriot SUV 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.75% Chevrolet Silverado 2500HD Regular Cab 2012 1.48% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.43% Ford F-450 Super Duty Crew Cab 2012 1.42% Chevrolet Silverado 1500 Regular Cab 2012 1.34% +1342 /scratch/Teaching/cars/car_ims/009296.jpg Ford F-150 Regular Cab 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 1.96% Volvo C30 Hatchback 2012 1.9% Chevrolet HHR SS 2010 1.82% Dodge Caliber Wagon 2007 1.8% Ford GT Coupe 2006 1.71% +1343 /scratch/Teaching/cars/car_ims/014367.jpg Rolls-Royce Phantom Drophead Coupe Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.05% Mercedes-Benz E-Class Sedan 2012 1.03% MINI Cooper Roadster Convertible 2012 0.96% Fisker Karma Sedan 2012 0.93% Bugatti Veyron 16.4 Coupe 2009 0.9% +1344 /scratch/Teaching/cars/car_ims/012525.jpg Lamborghini Diablo Coupe 2001 Ferrari 458 Italia Convertible 2012 4.66% McLaren MP4-12C Coupe 2012 3.75% Audi RS 4 Convertible 2008 3.63% Ferrari 458 Italia Coupe 2012 3.46% BMW 1 Series Coupe 2012 3.18% +1345 /scratch/Teaching/cars/car_ims/003869.jpg Buick Rainier SUV 2007 Ferrari FF Coupe 2012 2.83% BMW 1 Series Coupe 2012 1.65% BMW M3 Coupe 2012 1.61% Dodge Caliber Wagon 2007 1.38% Audi RS 4 Convertible 2008 1.32% +1346 /scratch/Teaching/cars/car_ims/012241.jpg Jeep Compass SUV 2012 FIAT 500 Convertible 2012 1.82% Ram C/V Cargo Van Minivan 2012 1.56% Nissan Leaf Hatchback 2012 1.55% Daewoo Nubira Wagon 2002 1.44% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.38% +1347 /scratch/Teaching/cars/car_ims/003232.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.37% Chevrolet Silverado 2500HD Regular Cab 2012 1.72% Chrysler 300 SRT-8 2010 1.71% Ford F-450 Super Duty Crew Cab 2012 1.7% GMC Acadia SUV 2012 1.48% +1348 /scratch/Teaching/cars/car_ims/006218.jpg Chrysler Sebring Convertible 2010 Ford E-Series Wagon Van 2012 1.55% Mercedes-Benz Sprinter Van 2012 1.28% Mercedes-Benz S-Class Sedan 2012 1.24% Audi S6 Sedan 2011 1.2% Isuzu Ascender SUV 2008 1.18% +1349 /scratch/Teaching/cars/car_ims/011792.jpg Jaguar XK XKR 2012 Dodge Caliber Wagon 2007 2.71% Aston Martin Virage Coupe 2012 2.4% BMW 1 Series Coupe 2012 2.17% Ferrari 458 Italia Coupe 2012 2.16% Chevrolet Corvette Convertible 2012 1.94% +1350 /scratch/Teaching/cars/car_ims/004319.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Dodge Caliber Wagon 2007 3.39% BMW 1 Series Coupe 2012 2.65% Suzuki SX4 Hatchback 2012 1.82% Honda Accord Coupe 2012 1.73% GMC Savana Van 2012 1.59% +1351 /scratch/Teaching/cars/car_ims/012092.jpg Jeep Liberty SUV 2012 Hyundai Santa Fe SUV 2012 1.55% Cadillac Escalade EXT Crew Cab 2007 1.53% Ford F-450 Super Duty Crew Cab 2012 1.43% Isuzu Ascender SUV 2008 1.41% Ford Expedition EL SUV 2009 1.39% +1352 /scratch/Teaching/cars/car_ims/015334.jpg Toyota Camry Sedan 2012 Ford E-Series Wagon Van 2012 1.21% Mercedes-Benz Sprinter Van 2012 1.19% Mercedes-Benz S-Class Sedan 2012 1.1% BMW X5 SUV 2007 1.04% Isuzu Ascender SUV 2008 0.99% +1353 /scratch/Teaching/cars/car_ims/010831.jpg Hyundai Santa Fe SUV 2012 Dodge Caliber Wagon 2007 1.87% Jeep Wrangler SUV 2012 1.3% Volkswagen Golf Hatchback 1991 1.28% GMC Savana Van 2012 1.19% BMW 1 Series Coupe 2012 1.19% +1354 /scratch/Teaching/cars/car_ims/009879.jpg GMC Acadia SUV 2012 Bentley Arnage Sedan 2009 3.35% Land Rover Range Rover SUV 2012 2.0% FIAT 500 Abarth 2012 1.53% Chrysler 300 SRT-8 2010 1.49% Cadillac Escalade EXT Crew Cab 2007 1.43% +1355 /scratch/Teaching/cars/car_ims/014688.jpg Spyker C8 Convertible 2009 GMC Savana Van 2012 1.3% Chevrolet Silverado 2500HD Regular Cab 2012 1.19% GMC Acadia SUV 2012 1.12% Chevrolet Silverado 1500 Regular Cab 2012 1.04% Dodge Ram Pickup 3500 Quad Cab 2009 1.03% +1356 /scratch/Teaching/cars/car_ims/008883.jpg Ford Expedition EL SUV 2009 Chevrolet Silverado 2500HD Regular Cab 2012 1.53% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.51% Ford F-450 Super Duty Crew Cab 2012 1.37% GMC Acadia SUV 2012 1.27% Isuzu Ascender SUV 2008 1.23% +1357 /scratch/Teaching/cars/car_ims/003755.jpg Buick Regal GS 2012 Dodge Caliber Wagon 2007 1.72% AM General Hummer SUV 2000 1.62% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.48% HUMMER H2 SUT Crew Cab 2009 1.48% HUMMER H3T Crew Cab 2010 1.36% +1358 /scratch/Teaching/cars/car_ims/013132.jpg McLaren MP4-12C Coupe 2012 Lamborghini Diablo Coupe 2001 2.8% AM General Hummer SUV 2000 2.41% Aston Martin Virage Coupe 2012 2.36% McLaren MP4-12C Coupe 2012 2.3% Lamborghini Aventador Coupe 2012 2.26% +1359 /scratch/Teaching/cars/car_ims/005564.jpg Chevrolet Silverado 2500HD Regular Cab 2012 Dodge Caliber Wagon 2007 1.47% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.36% HUMMER H2 SUT Crew Cab 2009 1.36% AM General Hummer SUV 2000 1.3% HUMMER H3T Crew Cab 2010 1.24% +1360 /scratch/Teaching/cars/car_ims/015454.jpg Toyota Corolla Sedan 2012 Mercedes-Benz C-Class Sedan 2012 1.33% Audi S6 Sedan 2011 1.31% Ford F-450 Super Duty Crew Cab 2012 1.29% Audi S5 Coupe 2012 1.17% BMW X5 SUV 2007 1.16% +1361 /scratch/Teaching/cars/car_ims/006504.jpg Chrysler Crossfire Convertible 2008 Mercedes-Benz E-Class Sedan 2012 1.92% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.54% Bugatti Veyron 16.4 Coupe 2009 1.53% Fisker Karma Sedan 2012 1.51% Bentley Mulsanne Sedan 2011 1.24% +1362 /scratch/Teaching/cars/car_ims/004983.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 1.52% Ford Expedition EL SUV 2009 1.5% Bentley Arnage Sedan 2009 1.36% Chrysler 300 SRT-8 2010 1.33% Cadillac Escalade EXT Crew Cab 2007 1.23% +1363 /scratch/Teaching/cars/car_ims/012376.jpg Lamborghini Aventador Coupe 2012 Lamborghini Diablo Coupe 2001 14.29% Ferrari 458 Italia Convertible 2012 4.89% McLaren MP4-12C Coupe 2012 4.74% Ferrari California Convertible 2012 4.34% Acura Integra Type R 2001 4.26% +1364 /scratch/Teaching/cars/car_ims/014072.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 3.91% Hyundai Genesis Sedan 2012 1.76% Land Rover Range Rover SUV 2012 1.75% Chrysler 300 SRT-8 2010 1.68% Chevrolet TrailBlazer SS 2009 1.67% +1365 /scratch/Teaching/cars/car_ims/014702.jpg Spyker C8 Convertible 2009 Bentley Arnage Sedan 2009 2.96% Mercedes-Benz C-Class Sedan 2012 1.6% Bentley Mulsanne Sedan 2011 1.51% Hyundai Genesis Sedan 2012 1.49% Bugatti Veyron 16.4 Coupe 2009 1.29% +1366 /scratch/Teaching/cars/car_ims/002465.jpg BMW 6 Series Convertible 2007 Cadillac Escalade EXT Crew Cab 2007 1.9% Chevrolet TrailBlazer SS 2009 1.81% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.68% Chrysler 300 SRT-8 2010 1.44% Ford F-450 Super Duty Crew Cab 2012 1.43% +1367 /scratch/Teaching/cars/car_ims/003962.jpg Buick Verano Sedan 2012 GMC Savana Van 2012 1.57% Mercedes-Benz Sprinter Van 2012 1.34% Audi A5 Coupe 2012 1.29% Dodge Sprinter Cargo Van 2009 1.25% Ram C/V Cargo Van Minivan 2012 1.13% +1368 /scratch/Teaching/cars/car_ims/009088.jpg Ford Ranger SuperCab 2011 Mercedes-Benz S-Class Sedan 2012 1.56% Mercedes-Benz Sprinter Van 2012 1.37% MINI Cooper Roadster Convertible 2012 1.33% Audi A5 Coupe 2012 1.06% Ford E-Series Wagon Van 2012 1.05% +1369 /scratch/Teaching/cars/car_ims/011008.jpg Hyundai Veracruz SUV 2012 Chrysler 300 SRT-8 2010 1.16% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.1% Dodge Ram Pickup 3500 Crew Cab 2010 1.03% Chevrolet Silverado 1500 Regular Cab 2012 1.02% Jeep Grand Cherokee SUV 2012 0.97% +1370 /scratch/Teaching/cars/car_ims/000220.jpg Acura TL Sedan 2012 MINI Cooper Roadster Convertible 2012 2.12% Mercedes-Benz E-Class Sedan 2012 1.72% Fisker Karma Sedan 2012 1.63% Mercedes-Benz S-Class Sedan 2012 1.58% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.49% +1371 /scratch/Teaching/cars/car_ims/002755.jpg BMW M3 Coupe 2012 MINI Cooper Roadster Convertible 2012 1.34% Mercedes-Benz E-Class Sedan 2012 1.28% Hyundai Genesis Sedan 2012 1.24% Bugatti Veyron 16.4 Coupe 2009 1.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.23% +1372 /scratch/Teaching/cars/car_ims/008438.jpg Ferrari 458 Italia Coupe 2012 Ferrari 458 Italia Convertible 2012 3.04% Ferrari California Convertible 2012 2.94% McLaren MP4-12C Coupe 2012 2.65% Aston Martin Virage Coupe 2012 2.58% Ferrari 458 Italia Coupe 2012 2.55% +1373 /scratch/Teaching/cars/car_ims/014284.jpg Ram C/V Cargo Van Minivan 2012 GMC Savana Van 2012 1.82% Chevrolet Express Cargo Van 2007 1.11% Dodge Sprinter Cargo Van 2009 1.09% Mercedes-Benz Sprinter Van 2012 1.01% Audi A5 Coupe 2012 0.98% +1374 /scratch/Teaching/cars/car_ims/015029.jpg Suzuki SX4 Hatchback 2012 FIAT 500 Convertible 2012 2.72% Ram C/V Cargo Van Minivan 2012 1.91% Nissan Leaf Hatchback 2012 1.76% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.56% Bugatti Veyron 16.4 Convertible 2009 1.32% +1375 /scratch/Teaching/cars/car_ims/002875.jpg BMW M6 Convertible 2010 Cadillac Escalade EXT Crew Cab 2007 3.07% Ford F-450 Super Duty Crew Cab 2012 2.41% Chevrolet TrailBlazer SS 2009 2.04% Dodge Ram Pickup 3500 Crew Cab 2010 2.02% Ford Expedition EL SUV 2009 2.0% +1376 /scratch/Teaching/cars/car_ims/010491.jpg Honda Odyssey Minivan 2007 GMC Savana Van 2012 1.53% Chevrolet Silverado 1500 Regular Cab 2012 1.4% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.34% Chevrolet Silverado 1500 Extended Cab 2012 1.16% Chevrolet Silverado 2500HD Regular Cab 2012 1.14% +1377 /scratch/Teaching/cars/car_ims/001402.jpg Audi 100 Wagon 1994 Lamborghini Diablo Coupe 2001 2.32% Ford GT Coupe 2006 2.18% Chevrolet HHR SS 2010 2.14% Audi TT RS Coupe 2012 2.03% Lamborghini Gallardo LP 570-4 Superleggera 2012 2.01% +1378 /scratch/Teaching/cars/car_ims/012673.jpg Land Rover Range Rover SUV 2012 Bentley Arnage Sedan 2009 2.92% Land Rover Range Rover SUV 2012 2.43% Cadillac Escalade EXT Crew Cab 2007 2.28% Ford F-450 Super Duty Crew Cab 2012 2.11% Chevrolet TrailBlazer SS 2009 1.8% +1379 /scratch/Teaching/cars/car_ims/009875.jpg GMC Acadia SUV 2012 FIAT 500 Convertible 2012 4.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.52% Nissan Leaf Hatchback 2012 2.07% Maybach Landaulet Convertible 2012 1.98% Mercedes-Benz S-Class Sedan 2012 1.87% +1380 /scratch/Teaching/cars/car_ims/001290.jpg Audi V8 Sedan 1994 Audi S6 Sedan 2011 2.18% Audi A5 Coupe 2012 1.75% BMW X3 SUV 2012 1.53% Audi S5 Coupe 2012 1.5% Mercedes-Benz S-Class Sedan 2012 1.48% +1381 /scratch/Teaching/cars/car_ims/002698.jpg BMW X6 SUV 2012 Dodge Caliber Wagon 2007 1.59% HUMMER H3T Crew Cab 2010 1.27% HUMMER H2 SUT Crew Cab 2009 1.25% BMW X6 SUV 2012 1.13% Volkswagen Golf Hatchback 1991 1.11% +1382 /scratch/Teaching/cars/car_ims/000107.jpg Acura RL Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.98% MINI Cooper Roadster Convertible 2012 1.45% Mercedes-Benz Sprinter Van 2012 1.25% Ram C/V Cargo Van Minivan 2012 1.08% BMW X3 SUV 2012 1.05% +1383 /scratch/Teaching/cars/car_ims/002390.jpg BMW 3 Series Wagon 2012 Audi A5 Coupe 2012 1.85% Mercedes-Benz Sprinter Van 2012 1.5% Mercedes-Benz S-Class Sedan 2012 1.49% Acura TL Sedan 2012 1.33% Audi S6 Sedan 2011 1.31% +1384 /scratch/Teaching/cars/car_ims/009104.jpg Ford Ranger SuperCab 2011 GMC Savana Van 2012 1.21% Daewoo Nubira Wagon 2002 0.84% Hyundai Elantra Sedan 2007 0.83% Chevrolet Express Cargo Van 2007 0.81% Dodge Caravan Minivan 1997 0.76% +1385 /scratch/Teaching/cars/car_ims/015276.jpg Toyota Sequoia SUV 2012 GMC Savana Van 2012 1.56% Ram C/V Cargo Van Minivan 2012 1.26% Mercedes-Benz Sprinter Van 2012 1.17% Dodge Caravan Minivan 1997 1.17% Honda Odyssey Minivan 2007 1.16% +1386 /scratch/Teaching/cars/car_ims/005523.jpg Chevrolet Silverado 2500HD Regular Cab 2012 GMC Savana Van 2012 3.15% Ram C/V Cargo Van Minivan 2012 1.8% Lincoln Town Car Sedan 2011 1.48% Dodge Sprinter Cargo Van 2009 1.34% Chevrolet Express Cargo Van 2007 1.06% +1387 /scratch/Teaching/cars/car_ims/011279.jpg Hyundai Genesis Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 0.96% Daewoo Nubira Wagon 2002 0.92% Chrysler PT Cruiser Convertible 2008 0.89% Suzuki SX4 Sedan 2012 0.86% Nissan Leaf Hatchback 2012 0.86% +1388 /scratch/Teaching/cars/car_ims/004537.jpg Chevrolet Corvette ZR1 2012 Ferrari FF Coupe 2012 1.68% Dodge Caliber Wagon 2007 1.4% BMW 1 Series Coupe 2012 1.39% Honda Accord Coupe 2012 1.26% GMC Savana Van 2012 1.23% +1389 /scratch/Teaching/cars/car_ims/003789.jpg Buick Regal GS 2012 Bentley Arnage Sedan 2009 3.52% Mercedes-Benz C-Class Sedan 2012 1.92% Fisker Karma Sedan 2012 1.69% Chevrolet Corvette ZR1 2012 1.57% Bentley Mulsanne Sedan 2011 1.51% +1390 /scratch/Teaching/cars/car_ims/014512.jpg Rolls-Royce Phantom Sedan 2012 Bentley Arnage Sedan 2009 2.05% FIAT 500 Abarth 2012 1.51% HUMMER H2 SUT Crew Cab 2009 1.36% Jeep Patriot SUV 2012 1.24% Bugatti Veyron 16.4 Coupe 2009 1.21% +1391 /scratch/Teaching/cars/car_ims/015459.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 2.06% Ram C/V Cargo Van Minivan 2012 1.68% Daewoo Nubira Wagon 2002 1.49% Lincoln Town Car Sedan 2011 1.4% Hyundai Elantra Sedan 2007 1.35% +1392 /scratch/Teaching/cars/car_ims/008952.jpg Ford Edge SUV 2012 Bentley Arnage Sedan 2009 2.61% FIAT 500 Abarth 2012 1.46% Hyundai Genesis Sedan 2012 1.45% Land Rover Range Rover SUV 2012 1.43% Ford Expedition EL SUV 2009 1.34% +1393 /scratch/Teaching/cars/car_ims/011166.jpg Hyundai Accent Sedan 2012 MINI Cooper Roadster Convertible 2012 1.51% Mercedes-Benz S-Class Sedan 2012 1.34% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.19% Hyundai Genesis Sedan 2012 1.18% Bentley Mulsanne Sedan 2011 1.09% +1394 /scratch/Teaching/cars/car_ims/007727.jpg Dodge Durango SUV 2007 Ram C/V Cargo Van Minivan 2012 2.97% GMC Savana Van 2012 2.18% Daewoo Nubira Wagon 2002 1.87% Dodge Caravan Minivan 1997 1.84% Lincoln Town Car Sedan 2011 1.82% +1395 /scratch/Teaching/cars/car_ims/005110.jpg Chevrolet Sonic Sedan 2012 BMW 1 Series Coupe 2012 3.24% Ferrari FF Coupe 2012 2.82% Dodge Caliber Wagon 2007 2.74% Honda Accord Coupe 2012 2.1% Hyundai Elantra Sedan 2007 2.09% +1396 /scratch/Teaching/cars/car_ims/012339.jpg Lamborghini Reventon Coupe 2008 Mercedes-Benz C-Class Sedan 2012 1.04% Chrysler 300 SRT-8 2010 0.99% Isuzu Ascender SUV 2008 0.99% Ford Expedition EL SUV 2009 0.98% Ford F-450 Super Duty Crew Cab 2012 0.94% +1397 /scratch/Teaching/cars/car_ims/006699.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 1.29% Ferrari FF Coupe 2012 0.85% Mercedes-Benz 300-Class Convertible 1993 0.81% Eagle Talon Hatchback 1998 0.78% Volkswagen Golf Hatchback 1991 0.78% +1398 /scratch/Teaching/cars/car_ims/008420.jpg Ferrari 458 Italia Coupe 2012 Ferrari California Convertible 2012 2.85% Aston Martin Virage Coupe 2012 2.47% Ferrari 458 Italia Coupe 2012 2.27% Ferrari 458 Italia Convertible 2012 2.17% Volvo C30 Hatchback 2012 2.1% +1399 /scratch/Teaching/cars/car_ims/010390.jpg Honda Odyssey Minivan 2012 Ford F-450 Super Duty Crew Cab 2012 1.56% Cadillac Escalade EXT Crew Cab 2007 1.45% Hyundai Santa Fe SUV 2012 1.41% BMW X5 SUV 2007 1.38% Volvo XC90 SUV 2007 1.36% +1400 /scratch/Teaching/cars/car_ims/014792.jpg Spyker C8 Coupe 2009 MINI Cooper Roadster Convertible 2012 1.2% Mercedes-Benz S-Class Sedan 2012 1.14% Rolls-Royce Phantom Sedan 2012 0.97% Audi S6 Sedan 2011 0.94% Mercedes-Benz Sprinter Van 2012 0.93% +1401 /scratch/Teaching/cars/car_ims/000454.jpg Acura Integra Type R 2001 Mercedes-Benz Sprinter Van 2012 1.69% Mercedes-Benz S-Class Sedan 2012 1.54% Dodge Sprinter Cargo Van 2009 1.46% Ram C/V Cargo Van Minivan 2012 1.42% Audi A5 Coupe 2012 1.37% +1402 /scratch/Teaching/cars/car_ims/010181.jpg Geo Metro Convertible 1993 FIAT 500 Convertible 2012 2.94% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.19% Maybach Landaulet Convertible 2012 1.88% Nissan Leaf Hatchback 2012 1.5% Ford GT Coupe 2006 1.44% +1403 /scratch/Teaching/cars/car_ims/005233.jpg Chevrolet Avalanche Crew Cab 2012 HUMMER H2 SUT Crew Cab 2009 1.71% Chevrolet TrailBlazer SS 2009 1.38% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.29% Chevrolet Silverado 1500 Regular Cab 2012 1.18% GMC Savana Van 2012 1.13% +1404 /scratch/Teaching/cars/car_ims/015663.jpg Volkswagen Golf Hatchback 2012 FIAT 500 Convertible 2012 3.38% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.97% Mercedes-Benz S-Class Sedan 2012 2.31% MINI Cooper Roadster Convertible 2012 1.99% Nissan Leaf Hatchback 2012 1.9% +1405 /scratch/Teaching/cars/car_ims/008991.jpg Ford Edge SUV 2012 Mercedes-Benz S-Class Sedan 2012 1.85% FIAT 500 Convertible 2012 1.64% Ram C/V Cargo Van Minivan 2012 1.61% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.6% MINI Cooper Roadster Convertible 2012 1.55% +1406 /scratch/Teaching/cars/car_ims/001612.jpg Audi S6 Sedan 2011 Ford F-450 Super Duty Crew Cab 2012 1.69% Audi S6 Sedan 2011 1.52% BMW X5 SUV 2007 1.51% Hyundai Santa Fe SUV 2012 1.4% Isuzu Ascender SUV 2008 1.3% +1407 /scratch/Teaching/cars/car_ims/001454.jpg Audi 100 Wagon 1994 Mercedes-Benz S-Class Sedan 2012 1.3% MINI Cooper Roadster Convertible 2012 1.19% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.12% Suzuki SX4 Sedan 2012 0.95% Nissan Leaf Hatchback 2012 0.95% +1408 /scratch/Teaching/cars/car_ims/010958.jpg Hyundai Veracruz SUV 2012 BMW X5 SUV 2007 1.55% Ford F-450 Super Duty Crew Cab 2012 1.22% Hyundai Santa Fe SUV 2012 1.21% Isuzu Ascender SUV 2008 1.19% Jeep Grand Cherokee SUV 2012 1.19% +1409 /scratch/Teaching/cars/car_ims/001015.jpg Audi A5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 2.11% GMC Savana Van 2012 2.01% Mercedes-Benz Sprinter Van 2012 1.51% Dodge Sprinter Cargo Van 2009 1.48% Volkswagen Golf Hatchback 2012 1.39% +1410 /scratch/Teaching/cars/car_ims/007609.jpg Dodge Challenger SRT8 2011 Bentley Arnage Sedan 2009 1.86% Cadillac Escalade EXT Crew Cab 2007 1.58% Land Rover Range Rover SUV 2012 1.48% Chevrolet TrailBlazer SS 2009 1.43% HUMMER H2 SUT Crew Cab 2009 1.33% +1411 /scratch/Teaching/cars/car_ims/014554.jpg Rolls-Royce Phantom Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 1.4% BMW X5 SUV 2007 1.37% Land Rover Range Rover SUV 2012 1.29% Cadillac Escalade EXT Crew Cab 2007 1.26% Hyundai Santa Fe SUV 2012 1.19% +1412 /scratch/Teaching/cars/car_ims/015356.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 1.22% Chevrolet Silverado 2500HD Regular Cab 2012 1.06% Honda Accord Sedan 2012 0.95% Chevrolet Express Cargo Van 2007 0.92% Chevrolet Silverado 1500 Regular Cab 2012 0.9% +1413 /scratch/Teaching/cars/car_ims/011019.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 2.09% Ram C/V Cargo Van Minivan 2012 1.52% Ferrari FF Coupe 2012 1.42% Lincoln Town Car Sedan 2011 1.27% Daewoo Nubira Wagon 2002 1.13% +1414 /scratch/Teaching/cars/car_ims/012852.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 1.41% Chevrolet Avalanche Crew Cab 2012 1.08% Isuzu Ascender SUV 2008 1.02% Chevrolet Silverado 1500 Extended Cab 2012 1.02% Ford F-150 Regular Cab 2012 0.95% +1415 /scratch/Teaching/cars/car_ims/005882.jpg Chevrolet Malibu Sedan 2007 FIAT 500 Convertible 2012 2.04% Ram C/V Cargo Van Minivan 2012 1.53% Nissan Leaf Hatchback 2012 1.52% Daewoo Nubira Wagon 2002 1.49% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.2% +1416 /scratch/Teaching/cars/car_ims/002331.jpg BMW 3 Series Sedan 2012 Rolls-Royce Phantom Sedan 2012 1.35% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.32% FIAT 500 Convertible 2012 1.31% Nissan Leaf Hatchback 2012 1.29% Daewoo Nubira Wagon 2002 1.21% +1417 /scratch/Teaching/cars/car_ims/008134.jpg FIAT 500 Convertible 2012 Lamborghini Diablo Coupe 2001 4.86% Acura Integra Type R 2001 3.31% Ferrari California Convertible 2012 3.09% McLaren MP4-12C Coupe 2012 2.72% Aston Martin Virage Coupe 2012 2.53% +1418 /scratch/Teaching/cars/car_ims/012487.jpg Lamborghini Gallardo LP 570-4 Superleggera 2012 Aston Martin Virage Coupe 2012 5.37% Ferrari California Convertible 2012 3.71% Acura Integra Type R 2001 3.7% McLaren MP4-12C Coupe 2012 3.59% Lamborghini Diablo Coupe 2001 3.23% +1419 /scratch/Teaching/cars/car_ims/005011.jpg Chevrolet Tahoe Hybrid SUV 2012 Ford E-Series Wagon Van 2012 1.9% Cadillac Escalade EXT Crew Cab 2007 1.68% Hyundai Santa Fe SUV 2012 1.62% Chrysler Aspen SUV 2009 1.45% Isuzu Ascender SUV 2008 1.44% +1420 /scratch/Teaching/cars/car_ims/004372.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 GMC Savana Van 2012 1.84% Plymouth Neon Coupe 1999 1.09% Daewoo Nubira Wagon 2002 1.07% Chevrolet Silverado 1500 Regular Cab 2012 1.04% Chevrolet Silverado 1500 Extended Cab 2012 1.03% +1421 /scratch/Teaching/cars/car_ims/000857.jpg Aston Martin Virage Coupe 2012 Lamborghini Diablo Coupe 2001 10.72% Ferrari 458 Italia Convertible 2012 6.58% Aston Martin Virage Coupe 2012 5.08% McLaren MP4-12C Coupe 2012 4.87% Chevrolet Corvette Convertible 2012 4.66% +1422 /scratch/Teaching/cars/car_ims/001844.jpg Audi S4 Sedan 2012 Ram C/V Cargo Van Minivan 2012 1.95% GMC Savana Van 2012 1.87% Ferrari FF Coupe 2012 1.48% Lincoln Town Car Sedan 2011 1.31% Dodge Sprinter Cargo Van 2009 1.26% +1423 /scratch/Teaching/cars/car_ims/009420.jpg Ford Focus Sedan 2007 FIAT 500 Convertible 2012 3.36% Ram C/V Cargo Van Minivan 2012 2.21% Nissan Leaf Hatchback 2012 2.03% Daewoo Nubira Wagon 2002 1.73% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.43% +1424 /scratch/Teaching/cars/car_ims/003218.jpg Bentley Arnage Sedan 2009 Chevrolet Silverado 1500 Classic Extended Cab 2007 2.0% Chevrolet TrailBlazer SS 2009 1.94% Chrysler 300 SRT-8 2010 1.76% Ford Expedition EL SUV 2009 1.64% Dodge Ram Pickup 3500 Crew Cab 2010 1.41% +1425 /scratch/Teaching/cars/car_ims/009866.jpg GMC Acadia SUV 2012 Daewoo Nubira Wagon 2002 1.36% Hyundai Elantra Sedan 2007 1.35% Spyker C8 Coupe 2009 1.03% FIAT 500 Convertible 2012 1.03% Plymouth Neon Coupe 1999 0.97% +1426 /scratch/Teaching/cars/car_ims/009886.jpg GMC Acadia SUV 2012 Land Rover Range Rover SUV 2012 1.41% Bentley Arnage Sedan 2009 1.37% Cadillac Escalade EXT Crew Cab 2007 1.29% Dodge Ram Pickup 3500 Crew Cab 2010 1.28% Ford Expedition EL SUV 2009 1.23% +1427 /scratch/Teaching/cars/car_ims/003624.jpg Bugatti Veyron 16.4 Convertible 2009 Lamborghini Diablo Coupe 2001 6.71% Acura Integra Type R 2001 3.12% McLaren MP4-12C Coupe 2012 3.08% Ferrari California Convertible 2012 3.03% Aston Martin Virage Coupe 2012 2.95% +1428 /scratch/Teaching/cars/car_ims/008311.jpg Ferrari California Convertible 2012 Dodge Caliber Wagon 2007 2.46% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.84% Ford GT Coupe 2006 1.74% Spyker C8 Coupe 2009 1.62% BMW 1 Series Coupe 2012 1.41% +1429 /scratch/Teaching/cars/car_ims/014188.jpg Porsche Panamera Sedan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.53% Chrysler 300 SRT-8 2010 1.25% Chevrolet Silverado 2500HD Regular Cab 2012 1.2% Jeep Grand Cherokee SUV 2012 1.17% Ford F-450 Super Duty Crew Cab 2012 1.15% +1430 /scratch/Teaching/cars/car_ims/008213.jpg Ferrari FF Coupe 2012 Dodge Caliber Wagon 2007 1.61% Hyundai Elantra Sedan 2007 1.32% Geo Metro Convertible 1993 1.28% Ford GT Coupe 2006 1.28% Suzuki SX4 Hatchback 2012 1.17% +1431 /scratch/Teaching/cars/car_ims/011930.jpg Jeep Patriot SUV 2012 GMC Savana Van 2012 1.38% Chevrolet Silverado 2500HD Regular Cab 2012 1.23% Chevrolet Silverado 1500 Regular Cab 2012 1.16% Ford F-150 Regular Cab 2012 1.16% Isuzu Ascender SUV 2008 1.14% +1432 /scratch/Teaching/cars/car_ims/006592.jpg Chrysler PT Cruiser Convertible 2008 Fisker Karma Sedan 2012 1.91% Bentley Arnage Sedan 2009 1.72% Bugatti Veyron 16.4 Coupe 2009 1.71% Mercedes-Benz E-Class Sedan 2012 1.7% Chevrolet Corvette ZR1 2012 1.57% +1433 /scratch/Teaching/cars/car_ims/002670.jpg BMW X6 SUV 2012 Ferrari FF Coupe 2012 1.65% Hyundai Elantra Sedan 2007 1.59% Geo Metro Convertible 1993 1.57% BMW 1 Series Coupe 2012 1.54% BMW M3 Coupe 2012 1.51% +1434 /scratch/Teaching/cars/car_ims/012748.jpg Land Rover LR2 SUV 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.39% Fisker Karma Sedan 2012 1.31% MINI Cooper Roadster Convertible 2012 1.28% Mercedes-Benz E-Class Sedan 2012 1.25% Mercedes-Benz 300-Class Convertible 1993 1.15% +1435 /scratch/Teaching/cars/car_ims/014923.jpg Suzuki Kizashi Sedan 2012 Bentley Mulsanne Sedan 2011 1.16% MINI Cooper Roadster Convertible 2012 1.16% Hyundai Genesis Sedan 2012 1.08% Mercedes-Benz E-Class Sedan 2012 1.05% Bentley Arnage Sedan 2009 1.04% +1436 /scratch/Teaching/cars/car_ims/004479.jpg Chevrolet Corvette ZR1 2012 Lamborghini Gallardo LP 570-4 Superleggera 2012 3.17% McLaren MP4-12C Coupe 2012 2.79% Ferrari 458 Italia Convertible 2012 2.69% Ferrari 458 Italia Coupe 2012 2.53% Dodge Caliber Wagon 2007 2.36% +1437 /scratch/Teaching/cars/car_ims/011339.jpg Hyundai Sonata Sedan 2012 HUMMER H2 SUT Crew Cab 2009 1.9% AM General Hummer SUV 2000 1.85% HUMMER H3T Crew Cab 2010 1.58% Jeep Wrangler SUV 2012 1.46% Dodge Caliber Wagon 2007 1.42% +1438 /scratch/Teaching/cars/car_ims/012004.jpg Jeep Wrangler SUV 2012 Dodge Caliber Wagon 2007 1.59% Hyundai Elantra Sedan 2007 1.49% Suzuki SX4 Hatchback 2012 1.3% BMW 1 Series Coupe 2012 1.26% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.22% +1439 /scratch/Teaching/cars/car_ims/015148.jpg Suzuki SX4 Sedan 2012 Audi A5 Coupe 2012 1.47% GMC Savana Van 2012 1.43% Mercedes-Benz Sprinter Van 2012 1.3% Isuzu Ascender SUV 2008 1.29% Chevrolet Silverado 2500HD Regular Cab 2012 1.18% +1440 /scratch/Teaching/cars/car_ims/002682.jpg BMW X6 SUV 2012 Chevrolet Silverado 2500HD Regular Cab 2012 1.6% Audi A5 Coupe 2012 1.56% Isuzu Ascender SUV 2008 1.49% BMW X5 SUV 2007 1.3% Ford F-450 Super Duty Crew Cab 2012 1.2% +1441 /scratch/Teaching/cars/car_ims/012905.jpg MINI Cooper Roadster Convertible 2012 Mercedes-Benz S-Class Sedan 2012 1.8% Mercedes-Benz Sprinter Van 2012 1.4% MINI Cooper Roadster Convertible 2012 1.22% Suzuki SX4 Sedan 2012 1.09% Honda Odyssey Minivan 2007 1.02% +1442 /scratch/Teaching/cars/car_ims/009970.jpg GMC Canyon Extended Cab 2012 Ford F-450 Super Duty Crew Cab 2012 1.69% Hyundai Santa Fe SUV 2012 1.65% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.62% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.56% BMW X5 SUV 2007 1.52% +1443 /scratch/Teaching/cars/car_ims/006480.jpg Chrysler Crossfire Convertible 2008 Dodge Ram Pickup 3500 Crew Cab 2010 1.38% GMC Savana Van 2012 1.31% Cadillac Escalade EXT Crew Cab 2007 1.2% Jeep Liberty SUV 2012 1.19% Chevrolet TrailBlazer SS 2009 1.17% +1444 /scratch/Teaching/cars/car_ims/000325.jpg Acura TSX Sedan 2012 Mercedes-Benz C-Class Sedan 2012 1.86% Bentley Arnage Sedan 2009 1.71% Audi S6 Sedan 2011 1.57% Infiniti G Coupe IPL 2012 1.54% Audi S5 Convertible 2012 1.52% +1445 /scratch/Teaching/cars/car_ims/000405.jpg Acura Integra Type R 2001 Aston Martin Virage Coupe 2012 5.75% Lamborghini Diablo Coupe 2001 5.19% Chevrolet Corvette Convertible 2012 4.68% Acura Integra Type R 2001 4.51% McLaren MP4-12C Coupe 2012 4.46% +1446 /scratch/Teaching/cars/car_ims/014665.jpg Scion xD Hatchback 2012 Bugatti Veyron 16.4 Coupe 2009 1.79% Bentley Arnage Sedan 2009 1.6% FIAT 500 Abarth 2012 1.29% HUMMER H2 SUT Crew Cab 2009 1.2% Nissan Juke Hatchback 2012 1.17% +1447 /scratch/Teaching/cars/car_ims/006913.jpg Dodge Caravan Minivan 1997 Audi A5 Coupe 2012 1.23% GMC Savana Van 2012 1.22% Acura TL Sedan 2012 1.17% Dodge Sprinter Cargo Van 2009 1.16% Mercedes-Benz S-Class Sedan 2012 1.14% +1448 /scratch/Teaching/cars/car_ims/013848.jpg Nissan NV Passenger Van 2012 GMC Savana Van 2012 1.63% Chevrolet Silverado 1500 Regular Cab 2012 1.32% Chevrolet Silverado 1500 Extended Cab 2012 1.26% Eagle Talon Hatchback 1998 1.21% Ferrari FF Coupe 2012 1.06% +1449 /scratch/Teaching/cars/car_ims/012668.jpg Land Rover Range Rover SUV 2012 Chevrolet TrailBlazer SS 2009 2.46% Cadillac Escalade EXT Crew Cab 2007 2.23% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.12% Chrysler 300 SRT-8 2010 1.98% HUMMER H2 SUT Crew Cab 2009 1.82% +1450 /scratch/Teaching/cars/car_ims/015840.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Convertible 2012 2.91% Geo Metro Convertible 1993 2.58% Ferrari 458 Italia Coupe 2012 2.57% Chevrolet HHR SS 2010 2.53% Lamborghini Diablo Coupe 2001 2.51% +1451 /scratch/Teaching/cars/car_ims/008207.jpg Ferrari FF Coupe 2012 Ferrari FF Coupe 2012 6.25% BMW 1 Series Coupe 2012 2.53% Geo Metro Convertible 1993 2.3% BMW M3 Coupe 2012 2.14% Honda Accord Coupe 2012 1.96% +1452 /scratch/Teaching/cars/car_ims/009360.jpg Ford F-150 Regular Cab 2007 Cadillac Escalade EXT Crew Cab 2007 2.42% Chevrolet TrailBlazer SS 2009 1.99% Bentley Arnage Sedan 2009 1.9% Land Rover Range Rover SUV 2012 1.87% Ford Expedition EL SUV 2009 1.77% +1453 /scratch/Teaching/cars/car_ims/003473.jpg Bentley Continental GT Coupe 2007 Ferrari FF Coupe 2012 3.68% Ferrari 458 Italia Convertible 2012 3.04% BMW 1 Series Coupe 2012 2.93% McLaren MP4-12C Coupe 2012 2.69% BMW M3 Coupe 2012 2.39% +1454 /scratch/Teaching/cars/car_ims/003444.jpg Bentley Continental GT Coupe 2007 GMC Savana Van 2012 0.92% Daewoo Nubira Wagon 2002 0.89% Hyundai Elantra Sedan 2007 0.79% Dodge Caravan Minivan 1997 0.78% Chrysler PT Cruiser Convertible 2008 0.73% +1455 /scratch/Teaching/cars/car_ims/004542.jpg Chevrolet Corvette ZR1 2012 Daewoo Nubira Wagon 2002 1.25% Rolls-Royce Phantom Sedan 2012 1.0% Chevrolet Sonic Sedan 2012 0.99% Dodge Caravan Minivan 1997 0.91% Nissan Leaf Hatchback 2012 0.91% +1456 /scratch/Teaching/cars/car_ims/013201.jpg Mercedes-Benz 300-Class Convertible 1993 Dodge Caliber Wagon 2007 1.94% BMW 1 Series Coupe 2012 1.25% Volvo C30 Hatchback 2012 1.15% Suzuki SX4 Hatchback 2012 1.12% Hyundai Elantra Sedan 2007 1.1% +1457 /scratch/Teaching/cars/car_ims/014143.jpg Plymouth Neon Coupe 1999 GMC Savana Van 2012 1.94% Audi A5 Coupe 2012 1.5% Dodge Sprinter Cargo Van 2009 1.38% Mercedes-Benz Sprinter Van 2012 1.34% Honda Accord Sedan 2012 1.16% +1458 /scratch/Teaching/cars/car_ims/016125.jpg smart fortwo Convertible 2012 Chevrolet TrailBlazer SS 2009 1.35% Jeep Liberty SUV 2012 1.2% GMC Savana Van 2012 1.09% Jeep Patriot SUV 2012 1.07% Dodge Ram Pickup 3500 Crew Cab 2010 1.03% +1459 /scratch/Teaching/cars/car_ims/015945.jpg Volvo 240 Sedan 1993 GMC Savana Van 2012 1.83% Chevrolet Silverado 1500 Regular Cab 2012 1.19% Plymouth Neon Coupe 1999 1.1% Chevrolet Silverado 1500 Extended Cab 2012 1.07% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.01% +1460 /scratch/Teaching/cars/car_ims/011783.jpg Jaguar XK XKR 2012 Bentley Arnage Sedan 2009 2.07% FIAT 500 Abarth 2012 1.63% Jeep Patriot SUV 2012 1.41% Hyundai Azera Sedan 2012 1.18% Jeep Compass SUV 2012 1.12% +1461 /scratch/Teaching/cars/car_ims/007800.jpg Dodge Charger Sedan 2012 Aston Martin Virage Coupe 2012 11.76% Chevrolet Corvette Convertible 2012 10.47% Lamborghini Diablo Coupe 2001 7.97% Ferrari 458 Italia Convertible 2012 7.45% Acura Integra Type R 2001 7.3% +1462 /scratch/Teaching/cars/car_ims/002900.jpg BMW M6 Convertible 2010 Bugatti Veyron 16.4 Coupe 2009 1.01% Ford GT Coupe 2006 0.99% Mercedes-Benz 300-Class Convertible 1993 0.97% Spyker C8 Coupe 2009 0.95% Chevrolet Corvette Ron Fellows Edition Z06 2007 0.87% +1463 /scratch/Teaching/cars/car_ims/007606.jpg Dodge Challenger SRT8 2011 Hyundai Genesis Sedan 2012 1.7% Bentley Arnage Sedan 2009 1.69% Mercedes-Benz C-Class Sedan 2012 1.57% Fisker Karma Sedan 2012 1.38% Rolls-Royce Phantom Sedan 2012 1.31% +1464 /scratch/Teaching/cars/car_ims/012979.jpg Maybach Landaulet Convertible 2012 FIAT 500 Convertible 2012 4.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.38% Maybach Landaulet Convertible 2012 2.33% Nissan Leaf Hatchback 2012 2.15% Bugatti Veyron 16.4 Convertible 2009 1.7% +1465 /scratch/Teaching/cars/car_ims/009732.jpg GMC Savana Van 2012 Ferrari FF Coupe 2012 1.86% Dodge Caliber Wagon 2007 1.86% BMW 1 Series Coupe 2012 1.63% Hyundai Elantra Sedan 2007 1.59% Honda Accord Coupe 2012 1.56% +1466 /scratch/Teaching/cars/car_ims/011633.jpg Infiniti QX56 SUV 2011 Mercedes-Benz S-Class Sedan 2012 1.6% Ram C/V Cargo Van Minivan 2012 1.57% Mercedes-Benz Sprinter Van 2012 1.3% Dodge Sprinter Cargo Van 2009 1.2% Acura TL Sedan 2012 1.13% +1467 /scratch/Teaching/cars/car_ims/013761.jpg Nissan Leaf Hatchback 2012 GMC Savana Van 2012 1.84% Ram C/V Cargo Van Minivan 2012 1.3% Dodge Sprinter Cargo Van 2009 1.27% Chevrolet Express Cargo Van 2007 1.02% BMW 1 Series Convertible 2012 0.97% +1468 /scratch/Teaching/cars/car_ims/004228.jpg Cadillac Escalade EXT Crew Cab 2007 Mercedes-Benz S-Class Sedan 2012 2.32% Ram C/V Cargo Van Minivan 2012 1.87% MINI Cooper Roadster Convertible 2012 1.77% Mercedes-Benz Sprinter Van 2012 1.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.51% +1469 /scratch/Teaching/cars/car_ims/011529.jpg Hyundai Azera Sedan 2012 Bentley Arnage Sedan 2009 3.77% FIAT 500 Abarth 2012 1.82% Land Rover Range Rover SUV 2012 1.74% Hyundai Genesis Sedan 2012 1.7% Mercedes-Benz C-Class Sedan 2012 1.55% +1470 /scratch/Teaching/cars/car_ims/011960.jpg Jeep Wrangler SUV 2012 GMC Savana Van 2012 1.16% Isuzu Ascender SUV 2008 1.1% Chevrolet Silverado 1500 Extended Cab 2012 1.03% Honda Odyssey Minivan 2007 0.99% Chevrolet Silverado 2500HD Regular Cab 2012 0.98% +1471 /scratch/Teaching/cars/car_ims/015080.jpg Suzuki SX4 Hatchback 2012 Mercedes-Benz Sprinter Van 2012 2.31% Mercedes-Benz S-Class Sedan 2012 1.9% Dodge Sprinter Cargo Van 2009 1.89% Audi A5 Coupe 2012 1.75% GMC Savana Van 2012 1.6% +1472 /scratch/Teaching/cars/car_ims/015270.jpg Toyota Sequoia SUV 2012 MINI Cooper Roadster Convertible 2012 1.85% Mercedes-Benz S-Class Sedan 2012 1.56% Hyundai Genesis Sedan 2012 1.46% Bentley Mulsanne Sedan 2011 1.42% Hyundai Azera Sedan 2012 1.33% +1473 /scratch/Teaching/cars/car_ims/006000.jpg Chevrolet Silverado 1500 Extended Cab 2012 Bentley Arnage Sedan 2009 2.35% FIAT 500 Abarth 2012 1.39% Land Rover Range Rover SUV 2012 1.33% Cadillac SRX SUV 2012 1.21% GMC Yukon Hybrid SUV 2012 1.14% +1474 /scratch/Teaching/cars/car_ims/006961.jpg Dodge Caravan Minivan 1997 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.78% FIAT 500 Convertible 2012 1.45% Maybach Landaulet Convertible 2012 1.37% Nissan Leaf Hatchback 2012 1.18% Rolls-Royce Phantom Sedan 2012 1.17% +1475 /scratch/Teaching/cars/car_ims/013612.jpg Mercedes-Benz Sprinter Van 2012 GMC Savana Van 2012 1.5% Mercedes-Benz Sprinter Van 2012 1.28% Dodge Sprinter Cargo Van 2009 1.17% Honda Odyssey Minivan 2007 1.13% Audi A5 Coupe 2012 1.07% +1476 /scratch/Teaching/cars/car_ims/010690.jpg Hyundai Veloster Hatchback 2012 Dodge Caliber Wagon 2007 1.91% Hyundai Elantra Sedan 2007 1.55% BMW 1 Series Coupe 2012 1.35% Daewoo Nubira Wagon 2002 1.27% Plymouth Neon Coupe 1999 1.25% +1477 /scratch/Teaching/cars/car_ims/009412.jpg Ford Focus Sedan 2007 Land Rover Range Rover SUV 2012 1.12% Jeep Grand Cherokee SUV 2012 1.05% Hyundai Santa Fe SUV 2012 1.01% Ford F-450 Super Duty Crew Cab 2012 1.01% Dodge Ram Pickup 3500 Crew Cab 2010 0.98% +1478 /scratch/Teaching/cars/car_ims/015218.jpg Tesla Model S Sedan 2012 HUMMER H2 SUT Crew Cab 2009 1.41% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.2% Dodge Ram Pickup 3500 Quad Cab 2009 1.15% Chrysler 300 SRT-8 2010 1.09% Chevrolet Corvette ZR1 2012 1.08% +1479 /scratch/Teaching/cars/car_ims/008775.jpg Ford Freestar Minivan 2007 Dodge Caliber Wagon 2007 1.72% Hyundai Elantra Sedan 2007 1.17% Plymouth Neon Coupe 1999 1.02% BMW 1 Series Coupe 2012 1.01% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.0% +1480 /scratch/Teaching/cars/car_ims/015101.jpg Suzuki SX4 Sedan 2012 Daewoo Nubira Wagon 2002 2.09% Dodge Caravan Minivan 1997 1.42% GMC Savana Van 2012 1.33% Plymouth Neon Coupe 1999 1.32% Hyundai Elantra Sedan 2007 1.29% +1481 /scratch/Teaching/cars/car_ims/000576.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 2.01% Bugatti Veyron 16.4 Coupe 2009 1.73% FIAT 500 Abarth 2012 1.37% Bentley Mulsanne Sedan 2011 1.35% Fisker Karma Sedan 2012 1.24% +1482 /scratch/Teaching/cars/car_ims/012289.jpg Lamborghini Reventon Coupe 2008 Bugatti Veyron 16.4 Coupe 2009 1.15% FIAT 500 Abarth 2012 1.11% Bentley Arnage Sedan 2009 1.1% Hyundai Azera Sedan 2012 1.1% Bentley Mulsanne Sedan 2011 0.99% +1483 /scratch/Teaching/cars/car_ims/009430.jpg Ford Focus Sedan 2007 Fisker Karma Sedan 2012 1.86% Mercedes-Benz 300-Class Convertible 1993 1.63% Bugatti Veyron 16.4 Coupe 2009 1.56% Bentley Arnage Sedan 2009 1.46% Hyundai Genesis Sedan 2012 1.38% +1484 /scratch/Teaching/cars/car_ims/016136.jpg smart fortwo Convertible 2012 Bentley Arnage Sedan 2009 1.55% Fisker Karma Sedan 2012 1.19% Bentley Mulsanne Sedan 2011 1.17% Mercedes-Benz C-Class Sedan 2012 1.15% Bugatti Veyron 16.4 Coupe 2009 1.13% +1485 /scratch/Teaching/cars/car_ims/011715.jpg Isuzu Ascender SUV 2008 Bentley Arnage Sedan 2009 2.05% Fisker Karma Sedan 2012 1.69% Mercedes-Benz C-Class Sedan 2012 1.64% Bugatti Veyron 16.4 Coupe 2009 1.49% Bentley Mulsanne Sedan 2011 1.49% +1486 /scratch/Teaching/cars/car_ims/014341.jpg Ram C/V Cargo Van Minivan 2012 Hyundai Azera Sedan 2012 1.02% Bentley Mulsanne Sedan 2011 1.0% Hyundai Genesis Sedan 2012 0.96% Cadillac SRX SUV 2012 0.95% Jeep Compass SUV 2012 0.95% +1487 /scratch/Teaching/cars/car_ims/011329.jpg Hyundai Sonata Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.65% Ford F-450 Super Duty Crew Cab 2012 1.6% Hyundai Santa Fe SUV 2012 1.53% Ford E-Series Wagon Van 2012 1.47% Land Rover Range Rover SUV 2012 1.38% +1488 /scratch/Teaching/cars/car_ims/001727.jpg Audi S5 Coupe 2012 Dodge Caliber Wagon 2007 2.17% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.45% BMW 1 Series Coupe 2012 1.36% BMW 3 Series Sedan 2012 1.21% Suzuki SX4 Hatchback 2012 1.19% +1489 /scratch/Teaching/cars/car_ims/009223.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 2.81% Dodge Sprinter Cargo Van 2009 1.54% Mercedes-Benz Sprinter Van 2012 1.51% Audi A5 Coupe 2012 1.37% Chevrolet Express Cargo Van 2007 1.2% +1490 /scratch/Teaching/cars/car_ims/011174.jpg Hyundai Accent Sedan 2012 GMC Savana Van 2012 2.21% Ferrari FF Coupe 2012 2.03% Ram C/V Cargo Van Minivan 2012 1.84% Dodge Sprinter Cargo Van 2009 1.26% Lincoln Town Car Sedan 2011 1.26% +1491 /scratch/Teaching/cars/car_ims/006627.jpg Daewoo Nubira Wagon 2002 GMC Savana Van 2012 1.03% Daewoo Nubira Wagon 2002 0.9% Jeep Liberty SUV 2012 0.79% Dodge Caravan Minivan 1997 0.78% Volvo 240 Sedan 1993 0.77% +1492 /scratch/Teaching/cars/car_ims/013292.jpg Mercedes-Benz C-Class Sedan 2012 Cadillac Escalade EXT Crew Cab 2007 1.81% Ford E-Series Wagon Van 2012 1.67% Bentley Arnage Sedan 2009 1.66% Ford Expedition EL SUV 2009 1.66% Land Rover Range Rover SUV 2012 1.52% +1493 /scratch/Teaching/cars/car_ims/008722.jpg Ford Mustang Convertible 2007 Lamborghini Gallardo LP 570-4 Superleggera 2012 2.3% Dodge Caliber Wagon 2007 2.17% Ferrari 458 Italia Coupe 2012 2.03% Volvo C30 Hatchback 2012 1.85% Ferrari 458 Italia Convertible 2012 1.73% +1494 /scratch/Teaching/cars/car_ims/004986.jpg Chevrolet Tahoe Hybrid SUV 2012 MINI Cooper Roadster Convertible 2012 1.54% Mercedes-Benz S-Class Sedan 2012 1.49% Hyundai Genesis Sedan 2012 1.24% Rolls-Royce Phantom Sedan 2012 1.06% Acura TL Sedan 2012 1.0% +1495 /scratch/Teaching/cars/car_ims/007960.jpg Dodge Charger SRT-8 2009 Ferrari 458 Italia Convertible 2012 4.42% Aston Martin Virage Coupe 2012 4.09% Chevrolet Corvette Convertible 2012 3.79% McLaren MP4-12C Coupe 2012 3.5% Ferrari California Convertible 2012 3.4% +1496 /scratch/Teaching/cars/car_ims/016023.jpg Volvo XC90 SUV 2007 GMC Savana Van 2012 1.06% Chevrolet Silverado 1500 Classic Extended Cab 2007 0.94% Chrysler 300 SRT-8 2010 0.94% Cadillac Escalade EXT Crew Cab 2007 0.88% Chevrolet Silverado 1500 Regular Cab 2012 0.88% +1497 /scratch/Teaching/cars/car_ims/011732.jpg Isuzu Ascender SUV 2008 Mercedes-Benz C-Class Sedan 2012 1.42% Infiniti G Coupe IPL 2012 1.23% MINI Cooper Roadster Convertible 2012 1.23% Audi S6 Sedan 2011 1.11% Fisker Karma Sedan 2012 1.11% +1498 /scratch/Teaching/cars/car_ims/006880.jpg Dodge Caravan Minivan 1997 Dodge Ram Pickup 3500 Quad Cab 2009 1.0% GMC Acadia SUV 2012 0.92% Chevrolet Corvette ZR1 2012 0.89% Chrysler 300 SRT-8 2010 0.89% Mercedes-Benz C-Class Sedan 2012 0.89% +1499 /scratch/Teaching/cars/car_ims/010117.jpg Geo Metro Convertible 1993 Ferrari 458 Italia Convertible 2012 3.7% Ferrari California Convertible 2012 3.0% Ferrari 458 Italia Coupe 2012 2.98% Aston Martin Virage Coupe 2012 2.89% McLaren MP4-12C Coupe 2012 2.86% +1500 /scratch/Teaching/cars/car_ims/015476.jpg Toyota Corolla Sedan 2012 GMC Savana Van 2012 1.86% Dodge Sprinter Cargo Van 2009 1.54% Mercedes-Benz Sprinter Van 2012 1.41% Audi A5 Coupe 2012 1.38% Ram C/V Cargo Van Minivan 2012 1.23% +1501 /scratch/Teaching/cars/car_ims/000812.jpg Aston Martin Virage Coupe 2012 Aston Martin Virage Coupe 2012 4.98% Chevrolet Corvette Convertible 2012 4.57% Ferrari 458 Italia Convertible 2012 4.04% McLaren MP4-12C Coupe 2012 3.87% Ferrari 458 Italia Coupe 2012 3.78% +1502 /scratch/Teaching/cars/car_ims/006900.jpg Dodge Caravan Minivan 1997 GMC Savana Van 2012 2.41% Ferrari FF Coupe 2012 2.08% BMW 1 Series Coupe 2012 1.82% Honda Accord Coupe 2012 1.22% Dodge Caliber Wagon 2007 1.21% +1503 /scratch/Teaching/cars/car_ims/003161.jpg Bentley Continental Supersports Conv. Convertible 2012 Ram C/V Cargo Van Minivan 2012 2.65% GMC Savana Van 2012 2.0% Dodge Sprinter Cargo Van 2009 1.64% Lincoln Town Car Sedan 2011 1.44% FIAT 500 Convertible 2012 1.32% +1504 /scratch/Teaching/cars/car_ims/006498.jpg Chrysler Crossfire Convertible 2008 Ram C/V Cargo Van Minivan 2012 2.19% GMC Savana Van 2012 1.85% Dodge Sprinter Cargo Van 2009 1.69% Mercedes-Benz Sprinter Van 2012 1.47% Mercedes-Benz S-Class Sedan 2012 1.28% +1505 /scratch/Teaching/cars/car_ims/013583.jpg Mercedes-Benz Sprinter Van 2012 BMW X5 SUV 2007 1.35% Ford E-Series Wagon Van 2012 1.22% Hyundai Santa Fe SUV 2012 1.15% Land Rover Range Rover SUV 2012 1.09% Chrysler Aspen SUV 2009 1.07% +1506 /scratch/Teaching/cars/car_ims/009838.jpg GMC Yukon Hybrid SUV 2012 Ford E-Series Wagon Van 2012 1.48% Isuzu Ascender SUV 2008 1.36% BMW X5 SUV 2007 1.32% Mercedes-Benz S-Class Sedan 2012 1.28% Mercedes-Benz Sprinter Van 2012 1.17% +1507 /scratch/Teaching/cars/car_ims/015092.jpg Suzuki SX4 Hatchback 2012 Ferrari 458 Italia Convertible 2012 2.91% McLaren MP4-12C Coupe 2012 2.77% Ferrari 458 Italia Coupe 2012 2.64% Ferrari California Convertible 2012 2.43% Aston Martin Virage Coupe 2012 2.38% +1508 /scratch/Teaching/cars/car_ims/007177.jpg Dodge Sprinter Cargo Van 2009 GMC Savana Van 2012 1.96% Mercedes-Benz Sprinter Van 2012 1.81% Dodge Sprinter Cargo Van 2009 1.71% Ram C/V Cargo Van Minivan 2012 1.5% Mercedes-Benz S-Class Sedan 2012 1.32% +1509 /scratch/Teaching/cars/car_ims/007289.jpg Dodge Journey SUV 2012 Mercedes-Benz S-Class Sedan 2012 2.32% Mercedes-Benz Sprinter Van 2012 2.12% MINI Cooper Roadster Convertible 2012 1.68% Ram C/V Cargo Van Minivan 2012 1.58% Audi A5 Coupe 2012 1.35% +1510 /scratch/Teaching/cars/car_ims/007647.jpg Dodge Durango SUV 2012 GMC Savana Van 2012 2.25% Chevrolet Avalanche Crew Cab 2012 1.27% Dodge Caravan Minivan 1997 1.19% Hyundai Tucson SUV 2012 1.1% Ford F-150 Regular Cab 2012 1.09% +1511 /scratch/Teaching/cars/car_ims/015449.jpg Toyota Corolla Sedan 2012 Mercedes-Benz S-Class Sedan 2012 1.81% MINI Cooper Roadster Convertible 2012 1.52% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.45% Bugatti Veyron 16.4 Convertible 2009 1.13% Mercedes-Benz Sprinter Van 2012 1.1% +1512 /scratch/Teaching/cars/car_ims/004145.jpg Cadillac SRX SUV 2012 Ford F-450 Super Duty Crew Cab 2012 1.64% BMW X5 SUV 2007 1.42% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.41% Volvo XC90 SUV 2007 1.27% GMC Acadia SUV 2012 1.27% +1513 /scratch/Teaching/cars/car_ims/015083.jpg Suzuki SX4 Hatchback 2012 Ford Expedition EL SUV 2009 1.24% Bentley Arnage Sedan 2009 1.24% Hyundai Genesis Sedan 2012 1.18% Rolls-Royce Phantom Sedan 2012 1.17% Dodge Ram Pickup 3500 Crew Cab 2010 1.12% +1514 /scratch/Teaching/cars/car_ims/001774.jpg Audi S5 Coupe 2012 GMC Savana Van 2012 2.11% Chevrolet Silverado 1500 Extended Cab 2012 1.16% Ram C/V Cargo Van Minivan 2012 1.15% Lincoln Town Car Sedan 2011 1.14% Chevrolet Silverado 2500HD Regular Cab 2012 1.1% +1515 /scratch/Teaching/cars/car_ims/010206.jpg HUMMER H3T Crew Cab 2010 Bentley Arnage Sedan 2009 1.74% Land Rover Range Rover SUV 2012 1.67% Cadillac Escalade EXT Crew Cab 2007 1.51% Chrysler 300 SRT-8 2010 1.45% Chevrolet TrailBlazer SS 2009 1.44% +1516 /scratch/Teaching/cars/car_ims/008923.jpg Ford Expedition EL SUV 2009 Audi A5 Coupe 2012 0.98% Audi S6 Sedan 2011 0.93% Ford E-Series Wagon Van 2012 0.91% GMC Savana Van 2012 0.88% BMW X5 SUV 2007 0.87% +1517 /scratch/Teaching/cars/car_ims/002014.jpg Audi TT RS Coupe 2012 Lamborghini Diablo Coupe 2001 4.62% Ferrari 458 Italia Convertible 2012 4.54% Lamborghini Aventador Coupe 2012 3.67% Ferrari 458 Italia Coupe 2012 3.59% Aston Martin Virage Coupe 2012 3.59% +1518 /scratch/Teaching/cars/car_ims/011188.jpg Hyundai Accent Sedan 2012 Ferrari FF Coupe 2012 2.13% Ferrari 458 Italia Coupe 2012 2.01% Ferrari 458 Italia Convertible 2012 1.9% Ferrari California Convertible 2012 1.9% Dodge Caliber Wagon 2007 1.81% +1519 /scratch/Teaching/cars/car_ims/015046.jpg Suzuki SX4 Hatchback 2012 HUMMER H2 SUT Crew Cab 2009 1.61% Bentley Arnage Sedan 2009 1.44% Chevrolet TrailBlazer SS 2009 1.44% Chrysler 300 SRT-8 2010 1.42% Land Rover Range Rover SUV 2012 1.4% +1520 /scratch/Teaching/cars/car_ims/008104.jpg FIAT 500 Abarth 2012 Chevrolet TrailBlazer SS 2009 2.05% Cadillac Escalade EXT Crew Cab 2007 1.99% Chrysler 300 SRT-8 2010 1.9% Ford F-450 Super Duty Crew Cab 2012 1.84% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.78% +1521 /scratch/Teaching/cars/car_ims/010880.jpg Hyundai Tucson SUV 2012 GMC Savana Van 2012 1.41% Ferrari FF Coupe 2012 1.28% Plymouth Neon Coupe 1999 1.27% BMW 1 Series Coupe 2012 1.07% Daewoo Nubira Wagon 2002 0.98% +1522 /scratch/Teaching/cars/car_ims/014073.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 2.15% Hyundai Genesis Sedan 2012 1.92% Rolls-Royce Phantom Sedan 2012 1.88% Bentley Continental GT Coupe 2007 1.35% Chrysler 300 SRT-8 2010 1.32% +1523 /scratch/Teaching/cars/car_ims/000739.jpg Aston Martin V8 Vantage Coupe 2012 GMC Savana Van 2012 1.47% Ram C/V Cargo Van Minivan 2012 1.16% Audi A5 Coupe 2012 1.04% Dodge Sprinter Cargo Van 2009 1.03% Mercedes-Benz Sprinter Van 2012 1.01% +1524 /scratch/Teaching/cars/car_ims/007972.jpg Eagle Talon Hatchback 1998 Ford GT Coupe 2006 1.91% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.57% FIAT 500 Convertible 2012 1.53% Audi TT RS Coupe 2012 1.53% Lamborghini Aventador Coupe 2012 1.52% +1525 /scratch/Teaching/cars/car_ims/001931.jpg Audi S4 Sedan 2007 Ferrari 458 Italia Convertible 2012 2.52% Ferrari FF Coupe 2012 2.39% Ferrari 458 Italia Coupe 2012 2.33% Ferrari California Convertible 2012 2.25% Aston Martin Virage Coupe 2012 2.17% +1526 /scratch/Teaching/cars/car_ims/011269.jpg Hyundai Genesis Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 1.41% Land Rover Range Rover SUV 2012 1.35% Chrysler 300 SRT-8 2010 1.3% Mercedes-Benz C-Class Sedan 2012 1.29% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.22% +1527 /scratch/Teaching/cars/car_ims/014691.jpg Spyker C8 Convertible 2009 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.24% Mercedes-Benz S-Class Sedan 2012 1.11% FIAT 500 Convertible 2012 1.11% Mercedes-Benz E-Class Sedan 2012 1.06% Bugatti Veyron 16.4 Convertible 2009 0.99% +1528 /scratch/Teaching/cars/car_ims/008526.jpg Fisker Karma Sedan 2012 Hyundai Genesis Sedan 2012 1.43% Bentley Mulsanne Sedan 2011 1.3% Fisker Karma Sedan 2012 1.29% Bentley Arnage Sedan 2009 1.23% Bugatti Veyron 16.4 Coupe 2009 1.16% +1529 /scratch/Teaching/cars/car_ims/014456.jpg Rolls-Royce Ghost Sedan 2012 GMC Savana Van 2012 1.53% Chevrolet Avalanche Crew Cab 2012 1.22% Isuzu Ascender SUV 2008 1.14% Chevrolet Silverado 1500 Extended Cab 2012 1.07% Ford F-150 Regular Cab 2012 1.03% +1530 /scratch/Teaching/cars/car_ims/001760.jpg Audi S5 Coupe 2012 Ram C/V Cargo Van Minivan 2012 1.22% GMC Savana Van 2012 1.14% Honda Odyssey Minivan 2007 1.07% Volkswagen Golf Hatchback 2012 1.02% Dodge Caravan Minivan 1997 0.97% +1531 /scratch/Teaching/cars/car_ims/011603.jpg Infiniti G Coupe IPL 2012 MINI Cooper Roadster Convertible 2012 2.23% Mercedes-Benz E-Class Sedan 2012 1.86% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.73% Mercedes-Benz S-Class Sedan 2012 1.54% Mercedes-Benz SL-Class Coupe 2009 1.31% +1532 /scratch/Teaching/cars/car_ims/000210.jpg Acura TL Sedan 2012 HUMMER H2 SUT Crew Cab 2009 2.27% Volkswagen Golf Hatchback 1991 1.74% HUMMER H3T Crew Cab 2010 1.64% Jeep Wrangler SUV 2012 1.54% Dodge Caliber Wagon 2007 1.5% +1533 /scratch/Teaching/cars/car_ims/015090.jpg Suzuki SX4 Hatchback 2012 McLaren MP4-12C Coupe 2012 3.39% Ferrari 458 Italia Convertible 2012 3.38% Lamborghini Diablo Coupe 2001 3.36% Aston Martin Virage Coupe 2012 3.27% Ferrari 458 Italia Coupe 2012 2.95% +1534 /scratch/Teaching/cars/car_ims/005019.jpg Chevrolet Tahoe Hybrid SUV 2012 Chevrolet TrailBlazer SS 2009 2.08% Chevrolet Silverado 1500 Classic Extended Cab 2007 2.0% HUMMER H2 SUT Crew Cab 2009 1.8% Chrysler 300 SRT-8 2010 1.69% Cadillac Escalade EXT Crew Cab 2007 1.42% +1535 /scratch/Teaching/cars/car_ims/007715.jpg Dodge Durango SUV 2007 Hyundai Genesis Sedan 2012 0.8% Mercedes-Benz S-Class Sedan 2012 0.78% Audi V8 Sedan 1994 0.74% Mercedes-Benz 300-Class Convertible 1993 0.72% Volvo 240 Sedan 1993 0.72% +1536 /scratch/Teaching/cars/car_ims/005418.jpg Chevrolet Malibu Hybrid Sedan 2010 Hyundai Genesis Sedan 2012 1.41% Ford E-Series Wagon Van 2012 1.36% Dodge Challenger SRT8 2011 1.2% Chrysler Aspen SUV 2009 1.06% Rolls-Royce Phantom Sedan 2012 1.06% +1537 /scratch/Teaching/cars/car_ims/012690.jpg Land Rover Range Rover SUV 2012 Bentley Arnage Sedan 2009 4.23% FIAT 500 Abarth 2012 1.84% Mercedes-Benz C-Class Sedan 2012 1.59% Hyundai Genesis Sedan 2012 1.57% Land Rover Range Rover SUV 2012 1.5% +1538 /scratch/Teaching/cars/car_ims/007134.jpg Dodge Ram Pickup 3500 Quad Cab 2009 Ram C/V Cargo Van Minivan 2012 2.09% GMC Savana Van 2012 1.71% Lincoln Town Car Sedan 2011 1.4% Dodge Sprinter Cargo Van 2009 1.11% Honda Odyssey Minivan 2007 1.01% +1539 /scratch/Teaching/cars/car_ims/013235.jpg Mercedes-Benz 300-Class Convertible 1993 Cadillac Escalade EXT Crew Cab 2007 1.5% GMC Savana Van 2012 1.16% Jeep Liberty SUV 2012 1.15% Ford Expedition EL SUV 2009 1.12% Dodge Durango SUV 2007 1.12% +1540 /scratch/Teaching/cars/car_ims/008464.jpg Ferrari 458 Italia Coupe 2012 AM General Hummer SUV 2000 16.47% Aston Martin Virage Coupe 2012 6.85% HUMMER H2 SUT Crew Cab 2009 5.49% Lamborghini Diablo Coupe 2001 3.82% Chevrolet Corvette Convertible 2012 3.77% +1541 /scratch/Teaching/cars/car_ims/012425.jpg Lamborghini Aventador Coupe 2012 Fisker Karma Sedan 2012 2.07% Mercedes-Benz E-Class Sedan 2012 1.52% Mercedes-Benz C-Class Sedan 2012 1.42% MINI Cooper Roadster Convertible 2012 1.42% Mercedes-Benz 300-Class Convertible 1993 1.39% +1542 /scratch/Teaching/cars/car_ims/006779.jpg Dodge Caliber Wagon 2012 Dodge Caliber Wagon 2007 2.37% Ferrari 458 Italia Convertible 2012 1.77% BMW 1 Series Coupe 2012 1.77% Ferrari 458 Italia Coupe 2012 1.75% Volvo C30 Hatchback 2012 1.6% +1543 /scratch/Teaching/cars/car_ims/009242.jpg Ford F-150 Regular Cab 2012 Ram C/V Cargo Van Minivan 2012 1.27% GMC Savana Van 2012 1.27% Dodge Caravan Minivan 1997 1.24% Daewoo Nubira Wagon 2002 1.15% Mercedes-Benz Sprinter Van 2012 1.11% +1544 /scratch/Teaching/cars/car_ims/000614.jpg Aston Martin V8 Vantage Convertible 2012 Bentley Arnage Sedan 2009 1.26% Bugatti Veyron 16.4 Coupe 2009 1.14% FIAT 500 Abarth 2012 1.01% Jeep Patriot SUV 2012 0.97% Hyundai Azera Sedan 2012 0.96% +1545 /scratch/Teaching/cars/car_ims/010172.jpg Geo Metro Convertible 1993 Lamborghini Diablo Coupe 2001 5.83% Aston Martin Virage Coupe 2012 4.64% McLaren MP4-12C Coupe 2012 4.46% Ferrari 458 Italia Convertible 2012 4.05% Chevrolet Corvette Convertible 2012 4.01% +1546 /scratch/Teaching/cars/car_ims/002685.jpg BMW X6 SUV 2012 Mercedes-Benz S-Class Sedan 2012 2.69% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.6% MINI Cooper Roadster Convertible 2012 2.31% FIAT 500 Convertible 2012 1.81% Mercedes-Benz E-Class Sedan 2012 1.54% +1547 /scratch/Teaching/cars/car_ims/006255.jpg Chrysler Sebring Convertible 2010 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.63% FIAT 500 Convertible 2012 1.24% Nissan Leaf Hatchback 2012 1.21% Daewoo Nubira Wagon 2002 1.18% Maybach Landaulet Convertible 2012 1.14% +1548 /scratch/Teaching/cars/car_ims/010701.jpg Hyundai Veloster Hatchback 2012 Ferrari 458 Italia Convertible 2012 3.29% McLaren MP4-12C Coupe 2012 2.84% Ferrari 458 Italia Coupe 2012 2.81% Geo Metro Convertible 1993 2.73% Chevrolet Corvette Convertible 2012 2.71% +1549 /scratch/Teaching/cars/car_ims/008937.jpg Ford Expedition EL SUV 2009 GMC Savana Van 2012 1.67% Ram C/V Cargo Van Minivan 2012 1.52% Lincoln Town Car Sedan 2011 1.22% Mercedes-Benz Sprinter Van 2012 1.17% Honda Odyssey Minivan 2007 1.12% +1550 /scratch/Teaching/cars/car_ims/011221.jpg Hyundai Genesis Sedan 2012 Daewoo Nubira Wagon 2002 1.06% Nissan Leaf Hatchback 2012 1.01% Bentley Continental Supersports Conv. Convertible 2012 0.99% Rolls-Royce Phantom Sedan 2012 0.92% Hyundai Elantra Sedan 2007 0.91% +1551 /scratch/Teaching/cars/car_ims/000611.jpg Aston Martin V8 Vantage Convertible 2012 GMC Savana Van 2012 2.11% Ram C/V Cargo Van Minivan 2012 1.48% Dodge Sprinter Cargo Van 2009 1.26% Mercedes-Benz Sprinter Van 2012 1.09% Volkswagen Golf Hatchback 2012 1.06% +1552 /scratch/Teaching/cars/car_ims/009229.jpg Ford F-150 Regular Cab 2012 GMC Savana Van 2012 2.76% Dodge Sprinter Cargo Van 2009 1.62% Ram C/V Cargo Van Minivan 2012 1.34% Mercedes-Benz Sprinter Van 2012 1.34% Chevrolet Express Cargo Van 2007 1.26% +1553 /scratch/Teaching/cars/car_ims/013895.jpg Nissan NV Passenger Van 2012 Ford E-Series Wagon Van 2012 1.19% Hyundai Azera Sedan 2012 1.1% Hyundai Genesis Sedan 2012 1.09% Dodge Challenger SRT8 2011 1.02% Dodge Caravan Minivan 1997 0.99% +1554 /scratch/Teaching/cars/car_ims/001569.jpg Audi S6 Sedan 2011 Mercedes-Benz S-Class Sedan 2012 2.06% Mercedes-Benz Sprinter Van 2012 1.99% Ram C/V Cargo Van Minivan 2012 1.77% Dodge Sprinter Cargo Van 2009 1.55% GMC Savana Van 2012 1.53% +1555 /scratch/Teaching/cars/car_ims/006173.jpg Chrysler Aspen SUV 2009 Chevrolet Avalanche Crew Cab 2012 1.64% Cadillac Escalade EXT Crew Cab 2007 1.63% Dodge Ram Pickup 3500 Crew Cab 2010 1.6% Ford F-150 Regular Cab 2012 1.57% Hyundai Santa Fe SUV 2012 1.37% +1556 /scratch/Teaching/cars/car_ims/001960.jpg Audi S4 Sedan 2007 Bentley Arnage Sedan 2009 3.49% Hyundai Genesis Sedan 2012 1.9% FIAT 500 Abarth 2012 1.66% Mercedes-Benz C-Class Sedan 2012 1.53% Bentley Mulsanne Sedan 2011 1.46% +1557 /scratch/Teaching/cars/car_ims/013514.jpg Mercedes-Benz S-Class Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 1.99% Mercedes-Benz E-Class Sedan 2012 1.98% Fisker Karma Sedan 2012 1.87% Mercedes-Benz 300-Class Convertible 1993 1.65% FIAT 500 Convertible 2012 1.43% +1558 /scratch/Teaching/cars/car_ims/003636.jpg Bugatti Veyron 16.4 Convertible 2009 FIAT 500 Convertible 2012 2.68% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.39% Mercedes-Benz S-Class Sedan 2012 1.88% Nissan Leaf Hatchback 2012 1.55% MINI Cooper Roadster Convertible 2012 1.51% +1559 /scratch/Teaching/cars/car_ims/013698.jpg Mitsubishi Lancer Sedan 2012 Ford F-450 Super Duty Crew Cab 2012 1.46% Isuzu Ascender SUV 2008 1.37% Audi S6 Sedan 2011 1.27% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.25% Hyundai Santa Fe SUV 2012 1.19% +1560 /scratch/Teaching/cars/car_ims/009760.jpg GMC Savana Van 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.38% GMC Acadia SUV 2012 1.3% Ford F-450 Super Duty Crew Cab 2012 1.27% BMW X5 SUV 2007 1.24% Chrysler 300 SRT-8 2010 1.19% +1561 /scratch/Teaching/cars/car_ims/008162.jpg FIAT 500 Convertible 2012 FIAT 500 Convertible 2012 5.1% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.29% Nissan Leaf Hatchback 2012 2.24% Maybach Landaulet Convertible 2012 1.85% Daewoo Nubira Wagon 2002 1.63% +1562 /scratch/Teaching/cars/car_ims/014001.jpg Nissan Juke Hatchback 2012 Ford F-450 Super Duty Crew Cab 2012 1.67% Audi S6 Sedan 2011 1.66% BMW X5 SUV 2007 1.5% Hyundai Santa Fe SUV 2012 1.38% Volvo XC90 SUV 2007 1.33% +1563 /scratch/Teaching/cars/car_ims/011483.jpg Hyundai Azera Sedan 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.5% FIAT 500 Convertible 2012 2.01% Mercedes-Benz S-Class Sedan 2012 1.69% MINI Cooper Roadster Convertible 2012 1.55% Maybach Landaulet Convertible 2012 1.42% +1564 /scratch/Teaching/cars/car_ims/011017.jpg Hyundai Sonata Hybrid Sedan 2012 GMC Savana Van 2012 1.52% Mercedes-Benz Sprinter Van 2012 1.33% Dodge Sprinter Cargo Van 2009 1.23% Audi A5 Coupe 2012 1.09% Mercedes-Benz S-Class Sedan 2012 1.03% +1565 /scratch/Teaching/cars/car_ims/012165.jpg Jeep Grand Cherokee SUV 2012 Isuzu Ascender SUV 2008 1.21% Audi A5 Coupe 2012 1.07% Ford E-Series Wagon Van 2012 1.02% Chevrolet Silverado 2500HD Regular Cab 2012 0.99% Audi S6 Sedan 2011 0.94% +1566 /scratch/Teaching/cars/car_ims/001027.jpg Audi A5 Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 2.22% Chevrolet TrailBlazer SS 2009 1.88% Land Rover Range Rover SUV 2012 1.72% Ford Expedition EL SUV 2009 1.71% Dodge Ram Pickup 3500 Crew Cab 2010 1.6% +1567 /scratch/Teaching/cars/car_ims/001665.jpg Audi S5 Convertible 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.34% Chevrolet Silverado 2500HD Regular Cab 2012 1.23% GMC Acadia SUV 2012 1.12% Ford F-450 Super Duty Crew Cab 2012 1.1% Mercedes-Benz C-Class Sedan 2012 1.07% +1568 /scratch/Teaching/cars/car_ims/005675.jpg Chevrolet Silverado 1500 Classic Extended Cab 2007 Ford E-Series Wagon Van 2012 1.23% Cadillac Escalade EXT Crew Cab 2007 1.19% Ford Expedition EL SUV 2009 1.07% Chrysler Aspen SUV 2009 1.07% Hyundai Santa Fe SUV 2012 1.06% +1569 /scratch/Teaching/cars/car_ims/015576.jpg Toyota 4Runner SUV 2012 Bugatti Veyron 16.4 Coupe 2009 1.71% Mercedes-Benz 300-Class Convertible 1993 1.69% HUMMER H2 SUT Crew Cab 2009 1.58% Fisker Karma Sedan 2012 1.43% AM General Hummer SUV 2000 1.42% +1570 /scratch/Teaching/cars/car_ims/013128.jpg McLaren MP4-12C Coupe 2012 Geo Metro Convertible 1993 3.12% Lamborghini Diablo Coupe 2001 2.79% Ferrari 458 Italia Convertible 2012 2.3% Ford GT Coupe 2006 2.23% McLaren MP4-12C Coupe 2012 2.22% +1571 /scratch/Teaching/cars/car_ims/007383.jpg Dodge Dakota Crew Cab 2010 Dodge Caliber Wagon 2007 2.7% BMW 1 Series Coupe 2012 2.38% Ferrari FF Coupe 2012 2.38% Honda Accord Coupe 2012 1.9% Ferrari 458 Italia Coupe 2012 1.88% +1572 /scratch/Teaching/cars/car_ims/006760.jpg Dodge Caliber Wagon 2012 GMC Savana Van 2012 1.24% Isuzu Ascender SUV 2008 1.16% Ford E-Series Wagon Van 2012 1.04% Chevrolet Avalanche Crew Cab 2012 0.95% Dodge Caravan Minivan 1997 0.93% +1573 /scratch/Teaching/cars/car_ims/005733.jpg Chevrolet Express Van 2007 Bentley Arnage Sedan 2009 1.58% Chevrolet TrailBlazer SS 2009 1.21% Ford Expedition EL SUV 2009 1.1% Chrysler 300 SRT-8 2010 1.06% Rolls-Royce Phantom Sedan 2012 1.05% +1574 /scratch/Teaching/cars/car_ims/003803.jpg Buick Regal GS 2012 Rolls-Royce Phantom Sedan 2012 0.96% Ford E-Series Wagon Van 2012 0.96% MINI Cooper Roadster Convertible 2012 0.92% Mercedes-Benz S-Class Sedan 2012 0.92% Audi S6 Sedan 2011 0.89% +1575 /scratch/Teaching/cars/car_ims/008956.jpg Ford Edge SUV 2012 Mercedes-Benz Sprinter Van 2012 2.15% Audi A5 Coupe 2012 1.95% Dodge Sprinter Cargo Van 2009 1.78% Mercedes-Benz S-Class Sedan 2012 1.78% GMC Savana Van 2012 1.41% +1576 /scratch/Teaching/cars/car_ims/014087.jpg Nissan 240SX Coupe 1998 Bentley Arnage Sedan 2009 2.14% Mercedes-Benz C-Class Sedan 2012 1.9% Land Rover Range Rover SUV 2012 1.41% Chrysler 300 SRT-8 2010 1.4% Toyota 4Runner SUV 2012 1.39% +1577 /scratch/Teaching/cars/car_ims/008802.jpg Ford Freestar Minivan 2007 Ram C/V Cargo Van Minivan 2012 1.37% GMC Savana Van 2012 1.24% Dodge Caravan Minivan 1997 1.16% Lincoln Town Car Sedan 2011 1.13% Daewoo Nubira Wagon 2002 1.09% +1578 /scratch/Teaching/cars/car_ims/013409.jpg Mercedes-Benz E-Class Sedan 2012 Chevrolet Silverado 1500 Classic Extended Cab 2007 1.37% Chevrolet Silverado 2500HD Regular Cab 2012 1.18% GMC Acadia SUV 2012 1.15% Chevrolet Silverado 1500 Hybrid Crew Cab 2012 1.08% Dodge Ram Pickup 3500 Quad Cab 2009 1.08% +1579 /scratch/Teaching/cars/car_ims/004847.jpg Chevrolet HHR SS 2010 BMW 1 Series Coupe 2012 2.84% Dodge Caliber Wagon 2007 2.55% BMW M3 Coupe 2012 2.51% Ferrari FF Coupe 2012 2.5% Geo Metro Convertible 1993 2.48% +1580 /scratch/Teaching/cars/car_ims/003903.jpg Buick Verano Sedan 2012 FIAT 500 Convertible 2012 2.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.04% Mercedes-Benz S-Class Sedan 2012 1.87% Bugatti Veyron 16.4 Convertible 2009 1.45% Nissan Leaf Hatchback 2012 1.38% +1581 /scratch/Teaching/cars/car_ims/009008.jpg Ford Edge SUV 2012 HUMMER H2 SUT Crew Cab 2009 3.12% Jeep Wrangler SUV 2012 2.57% HUMMER H3T Crew Cab 2010 2.21% AM General Hummer SUV 2000 2.13% Dodge Caliber Wagon 2007 2.04% +1582 /scratch/Teaching/cars/car_ims/001253.jpg Audi V8 Sedan 1994 Ford GT Coupe 2006 1.6% Chevrolet Sonic Sedan 2012 1.29% Spyker C8 Coupe 2009 1.24% Bugatti Veyron 16.4 Coupe 2009 1.22% Daewoo Nubira Wagon 2002 1.21% +1583 /scratch/Teaching/cars/car_ims/008715.jpg Ford Mustang Convertible 2007 GMC Savana Van 2012 1.76% Ram C/V Cargo Van Minivan 2012 1.63% Dodge Sprinter Cargo Van 2009 1.25% Lincoln Town Car Sedan 2011 1.12% Honda Accord Sedan 2012 1.1% +1584 /scratch/Teaching/cars/car_ims/004985.jpg Chevrolet Tahoe Hybrid SUV 2012 FIAT 500 Convertible 2012 3.24% Chevrolet Corvette Ron Fellows Edition Z06 2007 3.14% Maybach Landaulet Convertible 2012 2.37% Nissan Leaf Hatchback 2012 1.88% Bentley Continental Supersports Conv. Convertible 2012 1.44% +1585 /scratch/Teaching/cars/car_ims/015428.jpg Toyota Corolla Sedan 2012 Dodge Caravan Minivan 1997 1.18% Daewoo Nubira Wagon 2002 1.01% Ford E-Series Wagon Van 2012 1.0% GMC Savana Van 2012 1.0% Honda Odyssey Minivan 2007 0.96% +1586 /scratch/Teaching/cars/car_ims/001193.jpg Audi R8 Coupe 2012 Bentley Arnage Sedan 2009 2.32% Hyundai Genesis Sedan 2012 1.97% Rolls-Royce Phantom Sedan 2012 1.9% Fisker Karma Sedan 2012 1.76% Bugatti Veyron 16.4 Coupe 2009 1.56% +1587 /scratch/Teaching/cars/car_ims/007763.jpg Dodge Durango SUV 2007 Cadillac Escalade EXT Crew Cab 2007 2.3% Chevrolet TrailBlazer SS 2009 1.91% Ford Expedition EL SUV 2009 1.57% Dodge Ram Pickup 3500 Crew Cab 2010 1.56% Land Rover Range Rover SUV 2012 1.52% +1588 /scratch/Teaching/cars/car_ims/010777.jpg Hyundai Santa Fe SUV 2012 Land Rover Range Rover SUV 2012 1.9% Ford F-450 Super Duty Crew Cab 2012 1.85% Cadillac Escalade EXT Crew Cab 2007 1.81% Bentley Arnage Sedan 2009 1.78% Chevrolet TrailBlazer SS 2009 1.57% +1589 /scratch/Teaching/cars/car_ims/001538.jpg Audi TT Hatchback 2011 Mercedes-Benz C-Class Sedan 2012 1.16% Ford F-450 Super Duty Crew Cab 2012 1.12% GMC Acadia SUV 2012 1.1% Audi S5 Coupe 2012 1.09% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.06% +1590 /scratch/Teaching/cars/car_ims/013652.jpg Mercedes-Benz Sprinter Van 2012 Mercedes-Benz Sprinter Van 2012 1.8% Mercedes-Benz S-Class Sedan 2012 1.45% GMC Savana Van 2012 1.39% Dodge Sprinter Cargo Van 2009 1.26% Ram C/V Cargo Van Minivan 2012 1.22% +1591 /scratch/Teaching/cars/car_ims/008561.jpg Fisker Karma Sedan 2012 Bentley Arnage Sedan 2009 2.12% Fisker Karma Sedan 2012 1.58% Hyundai Genesis Sedan 2012 1.55% Bentley Mulsanne Sedan 2011 1.45% Mercedes-Benz C-Class Sedan 2012 1.42% +1592 /scratch/Teaching/cars/car_ims/014119.jpg Plymouth Neon Coupe 1999 Mercedes-Benz S-Class Sedan 2012 2.27% Mercedes-Benz Sprinter Van 2012 2.05% Dodge Sprinter Cargo Van 2009 1.79% Ram C/V Cargo Van Minivan 2012 1.66% Audi A5 Coupe 2012 1.57% +1593 /scratch/Teaching/cars/car_ims/009661.jpg GMC Terrain SUV 2012 Volkswagen Golf Hatchback 1991 0.96% Chevrolet Corvette ZR1 2012 0.95% Mercedes-Benz 300-Class Convertible 1993 0.95% HUMMER H2 SUT Crew Cab 2009 0.91% Bugatti Veyron 16.4 Coupe 2009 0.89% +1594 /scratch/Teaching/cars/car_ims/003797.jpg Buick Regal GS 2012 HUMMER H2 SUT Crew Cab 2009 1.7% AM General Hummer SUV 2000 1.54% Dodge Caliber Wagon 2007 1.52% HUMMER H3T Crew Cab 2010 1.44% Jeep Wrangler SUV 2012 1.35% +1595 /scratch/Teaching/cars/car_ims/004624.jpg Chevrolet Corvette Ron Fellows Edition Z06 2007 FIAT 500 Convertible 2012 7.1% Nissan Leaf Hatchback 2012 2.57% Chevrolet Corvette Ron Fellows Edition Z06 2007 2.27% Maybach Landaulet Convertible 2012 2.05% Daewoo Nubira Wagon 2002 1.99% +1596 /scratch/Teaching/cars/car_ims/012206.jpg Jeep Compass SUV 2012 Ford E-Series Wagon Van 2012 1.21% Hyundai Genesis Sedan 2012 1.19% Rolls-Royce Phantom Sedan 2012 1.14% Isuzu Ascender SUV 2008 1.03% Ford Expedition EL SUV 2009 0.94% +1597 /scratch/Teaching/cars/car_ims/000959.jpg Audi A5 Coupe 2012 MINI Cooper Roadster Convertible 2012 2.32% Mercedes-Benz S-Class Sedan 2012 1.97% Mercedes-Benz E-Class Sedan 2012 1.54% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.48% Bentley Mulsanne Sedan 2011 1.31% +1598 /scratch/Teaching/cars/car_ims/001742.jpg Audi S5 Coupe 2012 Mercedes-Benz S-Class Sedan 2012 1.74% Mercedes-Benz Sprinter Van 2012 1.45% BMW X3 SUV 2012 1.44% Audi A5 Coupe 2012 1.44% Audi S5 Convertible 2012 1.31% +1599 /scratch/Teaching/cars/car_ims/010453.jpg Honda Odyssey Minivan 2007 Chrysler 300 SRT-8 2010 1.17% Chevrolet TrailBlazer SS 2009 1.08% HUMMER H2 SUT Crew Cab 2009 1.08% Land Rover Range Rover SUV 2012 1.03% Cadillac Escalade EXT Crew Cab 2007 1.03% +1600 /scratch/Teaching/cars/car_ims/014991.jpg Suzuki Kizashi Sedan 2012 GMC Savana Van 2012 2.45% Dodge Caravan Minivan 1997 1.12% Lincoln Town Car Sedan 2011 1.03% Chevrolet Avalanche Crew Cab 2012 1.03% Chevrolet Traverse SUV 2012 1.01% +1601 /scratch/Teaching/cars/car_ims/006866.jpg Dodge Caliber Wagon 2007 Dodge Caliber Wagon 2007 2.38% BMW 1 Series Coupe 2012 1.41% Honda Accord Coupe 2012 1.26% Lamborghini Gallardo LP 570-4 Superleggera 2012 1.24% HUMMER H3T Crew Cab 2010 1.23% +1602 /scratch/Teaching/cars/car_ims/002615.jpg BMW X6 SUV 2012 Bentley Arnage Sedan 2009 3.16% Land Rover Range Rover SUV 2012 2.01% Hyundai Genesis Sedan 2012 1.59% Cadillac SRX SUV 2012 1.53% GMC Yukon Hybrid SUV 2012 1.48% +1603 /scratch/Teaching/cars/car_ims/014002.jpg Nissan Juke Hatchback 2012 FIAT 500 Convertible 2012 1.68% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.47% Mercedes-Benz S-Class Sedan 2012 1.3% Nissan Leaf Hatchback 2012 1.18% Mercedes-Benz E-Class Sedan 2012 1.17% +1604 /scratch/Teaching/cars/car_ims/010528.jpg Honda Accord Coupe 2012 Cadillac Escalade EXT Crew Cab 2007 1.7% Ford F-450 Super Duty Crew Cab 2012 1.54% BMW X5 SUV 2007 1.47% Hyundai Santa Fe SUV 2012 1.39% Dodge Ram Pickup 3500 Crew Cab 2010 1.36% +1605 /scratch/Teaching/cars/car_ims/015780.jpg Volkswagen Beetle Hatchback 2012 Ferrari 458 Italia Convertible 2012 3.72% Chevrolet Corvette Convertible 2012 3.05% Ferrari 458 Italia Coupe 2012 3.02% Aston Martin Virage Coupe 2012 3.01% McLaren MP4-12C Coupe 2012 2.89% +1606 /scratch/Teaching/cars/car_ims/000119.jpg Acura RL Sedan 2012 Bugatti Veyron 16.4 Coupe 2009 1.7% Ford GT Coupe 2006 1.25% Spyker C8 Convertible 2009 1.21% AM General Hummer SUV 2000 1.19% Bentley Arnage Sedan 2009 1.12% +1607 /scratch/Teaching/cars/car_ims/000214.jpg Acura TL Sedan 2012 Audi S6 Sedan 2011 1.45% BMW X5 SUV 2007 1.38% Ford F-450 Super Duty Crew Cab 2012 1.27% Toyota Sequoia SUV 2012 1.24% Mercedes-Benz C-Class Sedan 2012 1.21% +1608 /scratch/Teaching/cars/car_ims/005466.jpg Chevrolet TrailBlazer SS 2009 Cadillac Escalade EXT Crew Cab 2007 1.43% Chevrolet TrailBlazer SS 2009 1.39% Dodge Ram Pickup 3500 Crew Cab 2010 1.21% Chrysler 300 SRT-8 2010 1.17% HUMMER H2 SUT Crew Cab 2009 1.12% +1609 /scratch/Teaching/cars/car_ims/011729.jpg Isuzu Ascender SUV 2008 BMW X5 SUV 2007 1.85% Ford E-Series Wagon Van 2012 1.77% Hyundai Santa Fe SUV 2012 1.69% Audi S6 Sedan 2011 1.59% Ford F-450 Super Duty Crew Cab 2012 1.48% +1610 /scratch/Teaching/cars/car_ims/015370.jpg Toyota Camry Sedan 2012 GMC Savana Van 2012 1.62% Chevrolet Silverado 1500 Regular Cab 2012 1.2% Chevrolet Silverado 1500 Classic Extended Cab 2007 1.15% Volkswagen Golf Hatchback 1991 1.1% Dodge Ram Pickup 3500 Quad Cab 2009 1.07% +1611 /scratch/Teaching/cars/car_ims/011835.jpg Jaguar XK XKR 2012 Chevrolet Corvette Ron Fellows Edition Z06 2007 2.31% FIAT 500 Convertible 2012 2.26% Mercedes-Benz S-Class Sedan 2012 1.49% Maybach Landaulet Convertible 2012 1.29% Mercedes-Benz E-Class Sedan 2012 1.26% +1612 /scratch/Teaching/cars/car_ims/003714.jpg Bugatti Veyron 16.4 Coupe 2009 Jeep Patriot SUV 2012 1.38% Dodge Caliber Wagon 2007 1.31% Chevrolet TrailBlazer SS 2009 1.17% Jeep Liberty SUV 2012 1.15% Audi RS 4 Convertible 2008 1.13% +1613 /scratch/Teaching/cars/car_ims/008459.jpg Ferrari 458 Italia Coupe 2012 Aston Martin Virage Coupe 2012 7.9% Lamborghini Diablo Coupe 2001 7.52% Chevrolet Corvette Convertible 2012 7.04% Acura Integra Type R 2001 6.2% McLaren MP4-12C Coupe 2012 6.17% +1614 /scratch/Teaching/cars/car_ims/015939.jpg Volvo 240 Sedan 1993 MINI Cooper Roadster Convertible 2012 2.14% Mercedes-Benz S-Class Sedan 2012 2.14% Mercedes-Benz E-Class Sedan 2012 1.68% Chevrolet Corvette Ron Fellows Edition Z06 2007 1.68% Acura ZDX Hatchback 2012 1.21% +1615 /scratch/Teaching/cars/car_ims/007031.jpg Dodge Ram Pickup 3500 Crew Cab 2010 Bentley Arnage Sedan 2009 2.34% Hyundai Genesis Sedan 2012 1.66% Mercedes-Benz C-Class Sedan 2012 1.59% Land Rover Range Rover SUV 2012 1.26% Ford Expedition EL SUV 2009 1.19% +1616 /scratch/Teaching/cars/car_ims/005796.jpg Chevrolet Monte Carlo Coupe 2007 Ram C/V Cargo Van Minivan 2012 1.84% GMC Savana Van 2012 1.67% FIAT 500 Convertible 2012 1.36% Lincoln Town Car Sedan 2011 1.28% Nissan Leaf Hatchback 2012 1.13% +1617 /scratch/Teaching/cars/car_ims/012842.jpg Lincoln Town Car Sedan 2011 GMC Savana Van 2012 1.51% Ram C/V Cargo Van Minivan 2012 1.33% Dodge Sprinter Cargo Van 2009 1.25% Audi A5 Coupe 2012 1.15% Mercedes-Benz Sprinter Van 2012 1.09% +1618 /scratch/Teaching/cars/car_ims/004377.jpg Chevrolet Silverado 1500 Hybrid Crew Cab 2012 Ferrari FF Coupe 2012 2.27% BMW 1 Series Coupe 2012 2.17% Ferrari 458 Italia Convertible 2012 1.93% McLaren MP4-12C Coupe 2012 1.87% Dodge Caliber Wagon 2007 1.78% +1619 /scratch/Teaching/cars/car_ims/003059.jpg BMW Z4 Convertible 2012 Fisker Karma Sedan 2012 2.83% Mercedes-Benz E-Class Sedan 2012 2.25% MINI Cooper Roadster Convertible 2012 1.67% Bugatti Veyron 16.4 Coupe 2009 1.66% Mercedes-Benz 300-Class Convertible 1993 1.61% \ No newline at end of file diff --git a/cars/lr-investigations/exponential/1e-2/0.7/small.png b/cars/lr-investigations/exponential/1e-2/0.7/small.png new file mode 100644 index 0000000000000000000000000000000000000000..1fd20aaf4052a2247c0c771bde5831378c324f6e GIT binary patch literal 77651 zcmcG#1yq~O_b!S%g+ie%?i6pKxCAR+pm=Z!g;HDt1PE3rrMOe9E$&XSpv4Om_uvk} z0tCy+C%^wa=iGDFx@X;c-?dmtm^bfaW41fq_A)s-mcafq_Gf zfq}J4fQSAMzDT|)`UTTNM_C@DVuWrN{Q<{L?zJ2SMs+Oltraf%Goh;r&;tYGLHA#O zn0+oqHW(PFd{sp`Js`B*ryzZKSVa+op( z8-wrUv7AZ%7s2A1$i!` z;X4!IrOk4L&+<0xMa}an*?;bxWF+9$FlILK{G+=({|LxTo7Y^cDEkl05G+c~;_B z)4}d+JX3~d*=1z?s6JNBlzQ0#k}1}5`7&_z|}BI#)k5?gTuu9p+U{qIRf(!+znB@ zT8S^sF7mMOp;%<|DVIFwTC8NL@;<(s$%bsAqK2t{jedv^ca-UMP75O9KF7JHuAR8e z;ToOQ(UrFe?CPGR>3TpQm#?qy-fVPq^i;h~7e1pu(?X+5>X1OYX;*i*7hn4Mtaa>w zDrXj3VW#`%3T8_3D&Mt8PMf2}CPAn9muBi5FGWNKg+`@V3v&XS=|GEa%_$mwh$%z; zj+0D}kw3yVgJ+`vfj4j7B*e#mbLh`IJ$2`L_AG9QzeNK*fu2sOa0u$=blSvaHvuBh zep_=t5bLzh&Scii_fdO@jbSut?=>)?Y~OT%PM2-_^M?Uda8+LpCY#4_T=}?fgxz6( z=Tl;tGGOgi5!pW$q45noiLxl79c+`nrtrz-C*k$!%rag4b9gBCkGWYNJ5%4#>^Ct+ zJfI)1JjmIoL$ZA3>6!T+j)Tc=%bI8jp#IN%qyxH0w@={>mU55jQtC^i+$xt^{4fXREEJ zAOmI7(+2kM-)r|dySi3Yuv0!@lqs9mtO_ry}ceX z?z};Rsa4jYBeg4ol~r#I4DWGfypzoq^t>T={XNT1NhM#rctOHFi$jm?{oo)p#z{wq zB9us^BZ$OlC^sa4f|By7UKOT9rI`0qz2{`1xOIG?L>E@=oiaQ7f<=~$Y<|7SPD5?0 zXL+zUe6%(n^NePKf`T6H7n156#wWc%X3)*~U2+d-kK(KJX6@VT6FlI?0Kfm&&F<>o z=X?77HgHu!uVWE3i z9I(GSsKHAj3q7?83_)94wq`84uAD@D{4rL7#NyOr4PuuG(z7mAWY^98Ly8x&F}RtG zuGzWYI{$j+yLayra&juwZFJn+svl8N?NX$N2Lqj*D_#l<@6rh7mz1d0JDHe#tze!Q zgKlnaHY*m0(LI=INKTfyp!y*v$3%i|H7RxIuS-av;Ns<-WEU*X&6QPCSNDq4ux_{7 zdGQ}Y`g;%$|G7w?U=#m40WU2vv--Ie??T#?X3Bu9rG}N$!Zs8MqAW=Ii%a&}MZ&b7 zob}RivLumdt_OJd`1{6!n2~TAT3U8yW;rbEr<9G@?qQ0rUa8vH@alCmYRn|49*EB35735&giM~OZ!!C__C7i}IVs6%bCa@T0NcGh z=;`TsUSvt>Nir*5MJCaps;Y{H1qQa@-xgQZ(6G_&#M^0In|-I&eQCIxZ>2V2Ww9_YU8XiouWJh=0gAODymh(hHS&A1Btm!NJI12Gj$CN zIFLwWvmyu8KF zveaXdW%82(vx$DcGlXl<1Z$?ifu7z3m=(lAa40J%60Ea;P1qCniSR#;9(PqyUHyiF zf`aXN+zU5JCS?^py(C2?r9B!!%q8ABCr{5hG(dLH##Wu%+uvsw5i#iM>hk1E?+FYI zh--cE?3oIEyA4Bv=v$44jEt4@bF_UPTh$0PwH0D(dMEfKCQf0}Wm8ooJan|1|Dl|6< znE$rnzNds2X?nO6#_!+1(SF3#hZSQ+*KI@X&YSDxcEk>@LI<>SulUr+gJ3#hF~EwH zoPsqD9yNE~+uHu-R!y&JZ-9G+>h$QPo^G|74HB>T!Y9CPTTOLlbmCa&|7Q#=_Y?E# z8T5MtIqZv@7xAg!E)Ua_Iqnt6{^Q2vtb$clueL5(tF&3EBo$L$zn*yaPw-(8eAk0Z zJz0YXWPi$lr11M)nVYKVIG|<~_@5}!tz>E`$LA2|RfABe2rCx^@ce?f%JF5915?Zb z*xKd2F1!aUU9Dy_URa0on*P*I?aveU*y>+w@<5Y}x`sy5uc*iBX#AkD&Y_W(J1_F` zrQS@O{d?FzBIiCuIvQo)=S76;86CumwOCkL^%r6o0p{o%YVAf-e9yMfoL6VriIpzy zQGoWG15uJT42RsMVhBU^2N7E}wQ2vk`R%YTzBMvT3JrFKmnzq3iHWR+=Dzv-$VS`W zG{82$dj5Z%LL~@zKsTB$%#B6-L2|%zSJ@KN#GpWBgi0ElSQ2!U^!lsFZi0&#fiDxq z-`|LqBH>LF?ZP64Vq<;i?OIRQY2zy09wCzneNgd~IAMm1=kaby;7YK{-_!h35KUCe z1Vhzvyy}%k940jk2ZOQN>3og0PVruiNCNJT@A);F1_ROz;!jSeZTm|$X*a?#aj5zO z@yQsH0&XtQBlTSAz(g>C>lzx=%*?XTa%-PPaPxSzyTmC=vk=Yl7e`Ax|KM}wp7d{g z8lZL82a`(?(GJ-s}28yY;@rlzLx$;mv2{-lx; z?x_YRC#Szc*-c7nD%yB!u3~x%1_lObV!#c4UWaZhNB>GSHMP8|s=t5`5`x9W$2Y|; z7=0K1O>_;5IA{gy2;(Q?QmPP}`gDP2fY@NPm%0}C0X>p1H=0gjN7fo zO}o+ZHEOfVqK$jz4)GdkxY~F9^dATP{wE?BH`E-0qC^hE%~LZ&)aLXTo>f9y454@L z<8SwnAOug5!2ie07K-jN@P1gbf)UGv?b)q0A%Pod4CHPNd>XjKj1ZzX0|L`Gwzts; z&@(mVef8=UnlY^`Q@(!XdHwn|8Xv_aB|1(E)6)g$h*{_2>)XU1&-EZeq2B4;yL>bc zkP|4N8>i8zDbLGOBqAn8GX*zVV~>yPpus!q^2CpXmqc6DES=6#vPgZp6TDJojQ23( zs#P)PrxMFVAdhvyy(xgp!Tc3grTu%TM$(=q&7LySz_- z&fxb>Z$}qKn>pe$@3K#}l<8?^SwM*fe=}T|@U;)Hi^6=e(v>iVKlxK6ZGJ`k#Q8tg zQ4++V(y93?SJE3=lDM={8_7HB{McI0RUDg0d%{=4 zdlNXIHl<$-bcZzbe{SFHkbBp#=&>z0=jxKeR{Ggypcxd(+j7RhC`79i8>ATqEV7u) zp3G6#iDe!8j9I}LU|$TCr^BZP0=!&~$|hnH87*F@rxKt+JOHn17f9dK?C6m$J`Bcr ztI`u@Eh;8v^cVj9XJ%)g5fTzoJn2vSNgv0`#?7sUW?^(F405KP7m<)KMo%p|vIpfk zA`l1)T3Q|}D=T!y^cJnKRhFMTdXyJqAxJhr`=a1eY^>qo0qJ^^u)}o!-c+gAYm3c+ z>mZVSKvoTff@C8)Nm^NcS-hOYK5!*&X5+A}R(=1&%3kra-r^QwTj}A&NI1!Zo$MEx z2dKjoK>MH#F#G?Bw|NP5N&GLRf6no-t5@JLmEM!gm#QZGHErL)yrL$HDMb+g0*yuYA-?9xe4ak}81o0K8NaI3ri+0@_CEI~8Z!sD z2+j^+Yv#Xl!KQ*z@0V7VRv1#)#NYUcH_E@>a|9dEm(4XRxi1gB0Vo6^+BGjVaP87w z!l7~!4;Z((9Zsyf@+_x(oBxgF-km;2?`?l)jueplbOamZE)H@|l+!=n}} z^vsnAWvkgV^*v6wiNT?=eBDcfyxhL$YX@G_BDdL5Nf83RM!jJ%ZqiR@x#Rm#sv$py zCaIG;;~CW~jk1Qn_Hfx|{~xf)f8x;pUMH=Rx$~~j9l}=yiZBLdHhfyW^YeUpAu5_* zAvVCUMx^}@p&|^lzmKseLYYu4NSX9~)@O0lUpcllB$T%}Mv~_uYd7Q78RL_R9?c|T z9#XtGVHC8T_lp#}C!-KXnv1_Y!Ypa6w(1)=nsYX` zq>AO)4jh79;;9#hXc3Bl#~m2*4B{nNVWZku}D9WYIQalfl77YJku1&2m1CL zjYI_b0MNo&EN9y$hwiV-qs2$2oh#aQ@k;}%4{MssAGJvF9)%l)d`g#EaKJ%K`8 zZsxkdd%+laG0n44xe22zjFs&iUA|49eAzS}*3k}B~c=Fjsrb?f>3~W9PXwwC#|G-U^Ckcuy7SfL> z+4vF4sOq?5)U-OPud_7veb1%kSPXe~bQB!ne9N17{L*SzQI#Zv9sKoDJ$W6{+z@q{ zKr{>XsXUPRX+pt5G09Ke2E5Trm%8$s87X_5mB0%y7g1khQSc)D8(8uE^<+@4%C<(s z)aFIM5k2JcN6x+Ru{9lnGcoH`T|uj19MzmSejy6Y6u9{q;^Xy#gRuKt(&$b?>Ik`8 zLv*U99ekn;Afw0ii*)pggc~D8&-80nIZFfq`Rze@&d~U4_06bJ|2O>LTS4TOIxI=+ z0pz>I(vlYHMzb*&OX|!!+J8Hq#f(O(ETXGfsL`9#+M>Yne^Up5V42d;{Z$Cq;(a;c zio*L}7js_D-&KBJw$sLB@YxKocWB&hj`>gG7#jT1%5v^D(%rw+!EFD2OGMS%-yD}- zDw;GpaZB1Fso)ge|IKW_XKoELpomfMlJ1>>Li{@CsnWjF=}?WpQ1?63WIewC+!q*l zejV#stnOjba?5;)ZMMgMxzzT-K8z4uIXYe3N1kRWN7)Rb?vx9RV+HOHUvn*Y6E9f) zU5JQpVj}m7_^)bG26SOzw!{|O?5fmoQ>Yzm7I-;+bNw{rU(tV2IV5H9EnsM92rbpz z#OO+#cz6)u+cqRvR__<)=Z(!20_yXRt*1t>r&&MNa6w`#4vYV9(vGH$`|^gYWNq0h zIlJD8=7v-u7CjM6&zWSQUPqp06v!Kg`qR>1?Wy=9U|DG6G5Et=SAqIHpSw><;71kp zrTpu{qj?!|!v}`uoKE1>9U1^Rn4lsx_c=_6vO(V|@z84_KfmqO5#LWk{^6!Ezf7K0 zuCHv*Cqa|djg-oex;oHcWz@o^+y3{NZ+1MbH4c@g$Ox%9{fVMM*4MfV)dBdlO=3sj zRWsz#)>~oA3W*L$P&T>V&%IdR4SyBWtUSdb#dS{^3 z7(L;T5p|Jo1QMfWuj4btPc)jGx4Z;Fi#ko$S_`oxHJF5qUx(URV*++5=4D<{U~8t1 zX+c@a!K0}cy-%kh0u;*K{&yb)vgEi8v8SmKTl=E{$|*8_k++A3?Zuho`12R4{j-M@ zzFpW9Pv(V~P8!RpxW$Jor7ixjOud#)1&B#xp3aCi3v@p@y1(d+aNim=Pe}*K@D!r1 zUbPF!C<)t;}%-* zLpK^t_R+b|=gn0o66jdr_MgU!BFm6QJ9P&oQ^qKz@N=${1oA^kvV~+~9d?$m7LhO1 zXstk*R`1%PT=5ZH9^BW+z^8*9Hw3x#Yg~HVC2z`TqP*{eTy%rQiB=57r&ioVJ@UUa zNsy@E;hr_VdAj>Pqd=WME2et<_D}TqPlsr_<-1pA`zAj;a$YuEW@eF-Px3OmH8pQg zJVFE~)jKBTLt0)R`MLclDV3i6E|CGn(`e%YtU&lCy%mP|!m*BqVF;UIy(3V7_j|I9 zqK@vQLba03J%E$$oR?eQ4eXb+Bymndax9!2{-`>Fp1$T9_5*UAQ`kzjrysP5D!aHs zM8O9d%i))=F55V0?;B0r8*a!LZsAWzI>!2gfGSY;70Z?3^@gDU0jK~ZP(b6p?JVfJ zg7w&a6We4{o7kf|4g#sgL;jUG0#8z%PGyhqmz?=Ydxu)~&b6f5>LySgir63X$8+f1 zi@s(o;e4Xo@O9N&tsuv?w4?sx3j$Qy@_L49^CPzw9sWV<15V0w>G>R#{~2%k3udKMB^fqy1s0Bj*YtFY(gS-y z00ek(aF+Oltk4P|^eLgtdhgHI33fhawHdmv|C_pJv+XDXFO+Vh<76BEaTZ%6Z~Axj z9B9@QetvPef+iiHpwDYU)5YLGSI)u$>aUcs=!+yV`yMQ-({O$57a1L$Tvhc)DC@cx zvN3e_Zs|-Z(_22%2IkX@gHL*N3+h&I8HftRA}GxNHNdg&w{Bl_Lz*p9;*wy|ew;1k z(q>`GB9QjN9O`lJnf@Npq=e1pLPA8O(+9WAbve-^^iFd~9*BICAP!lJ%ii`2T{**T zAJng%x7<~YbRSV&-;9BLL+#PnNg<MSzqNHkg0q#rN4AKT->r||ex@AkZ$-Qr)n;2_+`nNsGc^WFIqx6n+8OT{8m zvG^8&AZofP76jf#rB03GYalOY;yuBjxF#0YKFA%!AC8K`3Bo6n^emS2BnhwaaIMp5 zN4);QlPLQ4Vgb72{_q3QB1<`@(VXU91M%%_Lz|_EcifgA^B<}FM1*Ei)U&EX4(DKH zDI1Fjn{=D@CKKawYkM|yp053$#ipA_dO^7zLFV{k%yRd!yWjLoeP!7d+OB3Qi-B0R z(^8^&>f>>t!qw3({rQU#C3$0bp6#&TQaZq zPSU1`3gj6|FJYjUI%01|%0Qb72wAp8BnMo&DbXy3J#o}t{RP_FILK+|1%Pc+Z&~3A zz%#f`(=l{L@41)QRif8$b12b^>7N^^hQE^?9@D!-D<|mFFTR@~nf^}_%mk*Rl&IH&fVkHfYa!wfYh`*KwNi=OPpq(n7w4&H`HWD zSZ^Cg=L>cUa(CG-ikw63vQ(P>=T9#uDBN9TQQb;jq?KM$U9o~M0UZX}V;s3{3;doZtFz8w*&>lZBxD%r%? z@v*k;hFb($Y|=c5Zh_E!I1D(xM}ADSS$+eBL43>Qx5@)F`SNAE_{tLR_PTNJjCD>; z?V~dhwW(9?bQ-mH?R=6OYp~X7_@!|of@BM@}KS?d?Y1;V4nLEcJd@U-&QbOm-c2uOllR|KF z=Sgye--z?h?^E1jiYGgg$A)hMDj_yzkHfJSi%ybvo(g%tuufE*m&`m3?fVQK7Eo$g z-RdkXZ~pe`2z(-q)0KGOD;m%%~rCr(K#y2ZA&><(+hKZ=CzuD^l?L zVEmW7*?A6l+Z8QG=!J50RYLVj#}^c|_`OSEgD0?{@$xa=bCneL-}ZgQ>7)<8$x+Z! z^AK}rCI(&Xu!4*v7S_sRtRrw{t4q@9cXL93vt9OTZ5^7!;Bm^L-2LxeDL?pum6 z&Z`Rzg7f9zOEzvcwJna{`kSN+XiobIQojm&O+kbD{3ZHEyCPG_q@a(n5O4gr0Rj6p zL7C5&t9em>km$A=K-`daj;vwL5Qg|6Yi=wHbk% zoGrGq0miPNGeUr`os7)b_mMAD_PdPkPbo8{W;r_f20 znfr)S8NC^UR=j}VQ>~0i!P%ch&%L^L-n-hhxHj@wP+dbfIr{q3sw}1=%QIz<9)B?`RhKSdZXY_;sCxG|72g?&r+CT%&qfdKiluIk z7&qcU4Dp;YKJvZFF{xbEEtQ*I-V#&Z>0p}6q7{YrV}Cp(k#IM?B^+-IiI@mUP2 z)N00Y7DWk3U}eu|X*!VmW-1zErw6NjCQNO2xl=LoZ^JdApM;w~U)qMn)+ZQwgzs8; zck_n1IP;FjpJRAc|9bh;w=Y^h^!-M``??rkiz@!7Lq0JgMhwpAHDw2m7ko1wgZDp+ zwC8{m&ls{rY|%KI~*x_Kr*7C;)wCQdORbdb)(K(Sv zEQyPlVDnkXl({5~#W4ZT6w`0}uJ0j^UMgdqU5|#AZZh;^lI~@zx}_Zo8>5;|Ms>v4G2sTMFzv%mK_Hhpxft9! zCzVgA`X-~mP^aBR%o3aZCv76w!NUXyA=|GQ5|KM;*^U9R06qepX36s9DiY$X{eej9 zNv1Wp2_Olf1^0A9eh4sp0}ydPc1S{{nK%br-ikatUFlK@wBg&71mo^w zaOdSZaiKMN2@f6yCYU$&I%f(dYl+w)luP#Qv`@Z8~waXPqMyJmC3wMAp@`X(58^J2e5 z1!ho}e!`#Ny-zt}dY@7}G2oF~4P7W++4z~bc{-4OdS(YwwOgbvy#qfeK>4j&Y))?I zPK^p21j=4T5QQ~f_(9^xg^@jAV^H;EYw&DxoT@Qm znKur!2S_j+q|<4e5!RL&r4hT|Z2q`scXc(^_d$L1i8ieXpmc=*<4?}a9;=N+9122OJ2ZhbvD3hz++;exFev9a;ks##oO5y zf2Jdg7Z&{W5^2hz>{PR4^m6Qt|FwW)`uy-ANclrKe0;!w6RVTb->wRKIgN6BQL(xa6W>OxLZ{~ca9hc>wWInNz#5toyKLf{Nfj+> zJ7I4No*eNrKl5v!LVAK|3XDSG(V~2N-cW@;D%~_pdJneuhj7Qli~<__4=xE@)dA}F zpWwJy*gKCnzYr!zX{B45^<_++a$B?*{KUl(R<*RtL)^1YCYfnn1&Eq#mj(OVI`2&S zY4R`vI22jB!;2)c3ArsRk>ccFZfPuhNRoNJbPIu(%(64oBqh- z9Db%PHs&WwzaIH8vbg{fH-?Br$uQdqNSMS(j-cvm1^U`W7ghU$?4H486|CNs^MY5r zb`N#}vlUj(v`ZC8gYG(44$I8(LM@QW(AM14*QWkzHB!eParf*x-mgf0{VdfWe^iHO zW6f4|Sam%Dv0Z(H+*{*P3NgPLF}FcHj7fkn2y!dqw1KvH|1lwS{XgDrg41->{Nm%hu+~!tV=| z`93DEKUVLa+I0FAlXF2yNzC z{XK#X!XM7@skv*}J;sUR575g~y@v^`u{X<8q0wdh%+|Ps+_g zyF0z!h#aONRF(d6d1b;e;oMS+kC+L^pg!lVtbv73OzGlol4RpDmsTq(j9US`?kH|r zKkO%HdT(hqHky=prL(foY&t`s-k?9k30vpMzCa%D6eQK{DvXHN-+S3^^OP&K z)UUDTS`hjB0@hEf?^1M{PC1(7GICRpNe8Ln#!hLI`nfLW+qUO5HJw&}nhdmv&kd@G z=^eSg+_>i3-*8o_)+b5|+5*k`N!P^0OaSW%Vio$- zImWz_7fy*CL9*i3YZSmI9?4Vu);6mrZl}kRWP{;Zw3A;_H;QbU0=E#S9~0YiQFTLq z75#s}rMMXxZnXo#c{I(LbJ9yLdtC0f8zAljg1aQ*FtT*nw$Bv37+3I zuC?nd>G9cD+wZ}j&`t*oa)l^-{VX~VLk8+k7aB<_)oj}9$9N2)La&$W6Mpuy=z2^1 zE_lj9T->VJRQymaUBeceq73mb01nTN+Gex|Sj?mMx<6_LjMfH8x z5Ct8g07u4@T5hBGEznMTm$to&v`-P~>x9iIfK=Q3B zy-9xKg|)?1T&s0fC+P`a#E0h5m0YW=4{dQGO=UWXyjg*;p!! zdKKvt?rswEyimJ)EgM|CyIh2^5Z%o20xTDc^gF7iw|i9Az*LJZl#a;ZeBOw1VxMLT zt!C4=1v}Dy_~~WB?`cr$^tEVA;`DW`pW}d}{Ww2Tu>sf)`GGLYc;e zC>FObHt};f5yG5kkBE)qr4qlyDoc}hZ~fkAOWXa)eu)$DK9T-HpzWUBMgwl67x7ga zWF-KpJO{7=A9~lnB;9@hhs!#@tGEUq16M}_o#(eV8j$Gwau2U;BK|5D4@@tau=7i4 zrew8hRAl(I(S%uEXseuS5`N}?V?qk5)1c^sdZtTTeZQTMXt$)+DMYm25FP0{)xeKs z2=~)CZe(O8J}m6I%ljueHv7gS=78I2*d|k6YnBUg=~-eX6*9XYB1sR4I;`xMv|zWz z*GrgAXVJbe?aH(BzBNF}8BoC_R3j>#)ub_pC4#mEe@DKT`ltIX4ue7M5#7xwd0{ug z1=nQs!R4K ziub1Q5uDE;>wZ-8u1ta&V`2bsc_UiZe#%N14N+kEe$hW!y*}l;I=E|CGPA+2(a)!|SY)3FHzDdqi)(0OsQi_F z$JmMobnTwzr&}bb{#ialCiiA=1Z9KN~hSjum&oOK1OXZJj{^T%o zy~W)F?-GXA7V>0!w{Zvp=?#zAv#!3t7Xo4Nz+C#@_7rpeO~YTl{=oYqnk@`mzCE^X zx;Q~l&_yH8H1}`a6TC>plrs-2T3QKsGeyLWH*4kFF`Yi`zZ{8x`!80cbj!KA7B2cD zBXsm~3M)eGG^EhJ#QV&Y9d9|Qz3-aBQ^hF6%QR-ro|IaVZu-(!smJc!#OtWo#ov8i z=mL9t>SIuQ(LDoi@-Mp;-{F<(o0cwE@k~ckUltE0>EnT|@(MY-Dlcck=-LX(Z{Ttd z=LAH6sZExUovNu`k;W%d!{FazKcxttUWQ+fNGwp4pPiEP*g?PdaEeD@ku(^j9cPA{e$;;$jHLwH@wE@SB}aWslQ9HeGoXs!wK$LcR`Z znerF1=M?04$pLo0jYpIRHy{G(+}6;0?wxMTSU=0|gXyx5Tc@1iC4w=bE+eRdR+Fdv zQ=}1_KBWN2R-F$LJO|qZxS;wz3~3_|%0>sLIK2U*t72FBot2Zm46e~l0jr058S4#) zKgi1Or?tv29ou@JvK>a)8g0kqPdD*u<8}ei>%uAQtlLko8ONWNnNQeeb+=T@ILy>+ zy6+2DwBsMvtevmhEKwB}oe5TegJ{KfE(4HB0;M&y6$)YkGa@r;hn&{$z`K#tc2t!q zn^6B7iuzjmz(UTU9KFuAF}qnY}3Ymq56&+L1Smz8B_tF>o~ z>I`rAAwwr#V`e5@)2Z6bt9DT-^4JHuM^)ampg4nV7z_LW-t2*$HNDb&NV$(iIcwvE z5minc?(jRu>^XVQl9TEC0J#WkA-wEjA0@Bnt@MnE9DGwbx}bOQU&bXbaaP!_hS=Ma z#yYg8fiKrY+VZ_z|^*(;1`v zS7W*xvWu}^uR*V=U~xRQ+5GLMGRlEh^JL)G$0YKBffu7wqsh_9HMawsd(M@drm_qz zw=dG4+lJIhE^H2s1_DVvrK}1FY`RL$a6Q;%=X?%c;-5fwwYz$Ro!@J z#$XedU3mTG?#$}xr(_tTNAc716_4Mp@(FTm0tr7IHsRohl7k9Q8b7w{XW6)seV$4gYn&E4QsfPZn;(8qL<7M zyd9ZKPzxTAQi);MqR}(d(%sK6PC!M@;c3L#eQpR9&wcG$KQC<~?)u|?n80<*byL-K zK+}D?fYIH@qe$vMNKd_G7D!Xzx2bP*tfJD8#79$9yLM*1-kDtB=;Eu186{rjf7x&_F?^t6{i8vpk!?lh6Nx;ciSYFhLWv4%Ns zj0UL*>2C@u4##!sP3cH0T5P@%3K+xkx2Hz4GeD46xL=vxt|_6ngEdH4*Aoq6UwAmKbJCg{?aLO+*^EZ7O5x{O6au9}eFI*oHcebvsjL_GEXeLx?b-mB z@_BAi0HpSMjuOuRA_4Q#_;FWx2e1Fou}Ro25a{A_xIVMtAmGXP9uu!0B87_G+YXt> zLaqrd;j6^axECDoHfbE*Q`!b-X3I;gZ^n<_>KF7ig?v=$-FGO=*;=xwkx^dE-_zS3 z9t%6FRHaYkhCo+F6KJwZu&UEhBU0m$7j^f;2;~q(=m`DT?dnX~XunsV1TT`1kbWk> zE?d)K<>Tm!XKxz^*VoJM#s=JdMiG14xm7fgVn+f75p_4n^V9m<*fQvTwyVkR*QJ6pS>*?uH>eQ(7 z$-|S=*eH~n4F~;*hX8!{o`z)hgofnjiMXwF7JEKII&sjs*)fqwZ(YKFGtsa_wp}z6 z?z)WakAG}-9QHH})w+?h=hJQ3x1c{!nIJh1*9KTKohOQ#ZS!am$lmVMF&5{Xw5)(m zr;RSKztX9!0}A7W3rwBI^W-GUTy)(y9B)u>}Yq^1wWIzYI=A4G9- zAZ_O}3APA<3ctM)h8YZ;DL2w=5$B9%y!FLk*<8+HogVSVT2{5KyxzgII)Lf`=ThYa zK^gk+7|*F(`96*Cy9+@6$e%l*t{{ZV`4C zX?w8@>j}UQnR+_uJmWQ{>#+1{&zKZCBCs;Y>63efNriJVZ453J9+OeOqZ4%g>Xmh$ ziUz1NubBi=2O$(P3lTuv1wLmooS6waYGMwNSj$@ttu)DblZP;E`2sj$wtujr_JM%l z(Y^bLz|<&#cfcxODYPd@W-eva@l9~)o&tDt?X{u0vi4=U!jDWL8$|JC@mJO+I6NNS z78pf`-srhb82pvGl#z%)YQ;ao;|C{tGeeWjEr`vti&f^P29|;1qq4-nK^_gB?G<{5 zqmOOTZnzj)F7qo#Vv7qaK!2`saAa=MB?8LRD2B+nRHA#dd|=ln>+?KHY`J^i(#YG)3V4 z^ECeAWr=W4!=$#~R8~D%5J$6JVoi>n#a!%zQr7P)&lo1`fTkpJbY&t*|Y0i|%n z<Qp1_p7=f0r#iwW|D>aKl0b2InQI-DzWxTx2GUiwpjuD9sX(Zftvheo`Caca)s zcrbc9%cac1Y&9EG4}_fPO~9gf*T=cX!*yv-q~AP{e4ri>1#bwwP!QVuvd%da6Dm;B z0$M&sGO4V3N^D*jx)|#EwY`qX;vFh97XYC|Va-Mt2U3_vgKII*j`prX-b+awF^c#X z*-l)oIi|B^O@nsBlCWzEi?=&S=%!_*J09|^Rx_%BgW#~1^(x_x+WYL><5>1F8dGG= z`z{vM&nh~7?6$5~<8w08G)c(0r5{3ibog4;5<-W2n#lrLht_2mfPrgC8a5w|%aK%C zTkDkv?|=Mwvs`?cr9nk+v-q^njC8pFB!A*5^I!88Tm?L_(#-APH?zZzMAErOITT{a3*5AhH9>SNt zfx77j-K^Fpmn=2R5V$bqRy&+GFQk_r+nu46$2l$t=LLqMHbt$qf2VlS-B_f-Lc@+^ znKW}+RHk%t1o!5;60Du90CSyR8VmHK2t7E4@&+{}ZC;;YezOHL`70dp#Xq?*_!j7& zXq1C6B8=g_1jlqP^;NAr7pB~>EQK!;{)95eJ$$)EPk2tG`E#{`&ozQ7o1@f+po1R}u86xyZp zDzm%@5)hmDt(KXOrI4RWRiR6Hv2xX%x6&~&4@yyMH;d8t89&@&5HMN7 z$XD9X?J5GHR@X+_ZC&_^Nh*fdArZkv8#ujI7${-Pp{D)597pNu$YoUtr{IE>;A6TO zl*uym>%(_mE%^hxl8^CI;NRQp%l*D)sII7k*ERN~^NsG{WX->!h$Olf`X3(L9O+sX za64;b+Hzk}EQ%XAXQbw*@LGCj30wti^_cUHCg~SF9f7V$hInW%tx9+WoEHnJEX@)S zI3~-MlC2ZlN=k#@8Cqrp!u<2J@5>9V!Rq2ieBzIi zf2i}PEyomF1dR}}z@TCmIUExdoGL1w#S+Yr64&H|p~jNRO4?^FsQY^wXSiLS+yZhh zm{j=k=EA8gLGD zIV_NdY@U7S#dnpmGl$h!f3b;58I%CBUpgK%-=s8(C>Zd;m_$jKiey76XVk;5ROKEI z>KaP1mrfWCp|b8Fr#tUr83?&C3bHDJb(-aTmy^bz$ht}1M0!c;fmOAcM<9y_hGym8 ze?b)^dioo;Atn`Hca0hMW6zG+BKHoYzmc&Z0@M_}k`iILT3yOFHxcu$U;yiDm%h+% z#NIi0`bVX`1V}0UgWG3^KO{86=UuhW!8^js@W2mMhpHTG9}uy2dDNF8*9wd&U;;JL&9^YC4;Ba2( zK7W0Ee<&eso}X@trv=U*&|k7NA08fCxQ@f)9l|&n67)wulx38 zal#}w1y1`tI7?e8zc66_0hmIVAhsi*Gy8-M*@Czrg!vU12yZ>f9Yw=rr6`Dpz)&j zWS_X;o<$kAz~aW3jEv7KRjmp^-(#%fqWXlDuF;C73|SHaEFGjL+SWj`7`lVcMrIOEj9`owk zms@bZ4KR?4Uz(w8vC0xJ=(;x6d`S0%B~gJt@i-=N!}7*FXZvvnST3X!+X-JULEfUu zoOb95mOKsn^Zv`zFoEH#5H-&)yCcw)HcxN7!MduUGC2C!Wb>uM{+%bRzRSsKm>X)<4%!{w)*kb$u7YXd8_9?jC`SMkdfewypPNgduzuUX5Z`ha{~Fn{Ad;z?N!aSX4*}t)1m8bH8wcx} ziDvlA1~5^J%8A0A2RD+CiOjDX(@l*f?-cG+)K@YXThDsV{Nq{zGjref=W~6ocwg7c|2E63 z0?ucQQ8E~QoL;4(pNt^Ql?=7^DTkdN>3Bq8+8k7ye99?X1`J~ZkIy;#8(*n9KWKj}V&qH7Iy97^@pE$UxeZ4Yk6= z-tfDE$@(u>_X9zcOby9S>l5%4idR6{p`@mNI`>37?R_J&!JD}5=F0_OAAqO`WVUVK z&$j*dhe56UHFxJ4CX_s~9Uk|`CisI!thi?e)0-^bv(DZJj**#1chzs95^1^I8#Xv) zTbo^0o8A>6uN}6%$HmAduH#Ya7BnYgl0rSJJ|W28z)4JheOfJ8@HwKlbqrQPw&9XX z*S6l9Mne%K9|uOkDn|NY1oLi^@>WvvWB)lqlSHh;|h104Ge3ZqVEsYFt5IdzWV16rth!5s!tg z48y^A2Sg)E$455yX~+$S7uHkb?w)#hEc<$k)Um#MqqgEs$%TAFbtd}{qjc;X3Gq$NcqZj6ax$RgNbbcWTkDk zXWeN$DxKyEJvr>kD2`R^I)0A*GcplxHaH$gUXI(1q$p>9a?z~ukHaLsTKY8G4Yjpj zoI~0;;U{M)&YbpRfEyaiFtWe8#znt)rX#?QUx1?T_`nu-^=n`%~(#Q9UeQIvagv)aG3q)4Yg*}%p6^-GG+~b#j^w6qDNrG8wBysGj##(_ zQSJPSU5!5KrZ~}jY-gI^ptvN7xwpPa<3sE;-gfo|wc{b?j{GXfOsQU_(b91hPfoQB z-(BtA&Y{1!@q(sRTul!IYMo{o3C>ZuO{T2>VXdC8e9Q=Gg}PCV982A6lR~y*V%I+> zd4$){>Px=ebEQ0$$4tX%L&<>4rs}(<>6)X!8}0Sg{WTSnW>iofZ0DYP=T;waoz7h<8+~#lzg|rl$oC08)^js!W#2n0 zF=eSG5a>KBak-EW_b`FZ;Bm$zKS*WnF-a+HHkjEMkJ_G7Ai9vgI?#$#*#yK!;l+ae z+ce>8O4Y0~-K@6qsc$`Ko@;5W3#KGF`&{g$9Io4c-4v63afFLM&*zi%{$wUS)fG(I zsLw;7kSF;=iyZXAEwsLxtRz6xtu)r-oUyKdTMl+QO*-uA3DhN`)=9k$@EZmk=BDl$ zT=wgvJIZ`GZ`+c7)8MwzkOFmKgoQ1`>>qz^y-SS82JzMhuty`G#dP+I3D;_(k9AaYA<+)$G92YL^MMLAII@;b-mWJRZaHfCMEk0AR z{J>P;Q-8ecofS{jSShY+0Oag5L1o)tLezSaDw~;@I_2U`gxqs9717(u+~TG_JH2h) z{vg0BCBEVE`Ib+auKLQc$075csAJxtXLu!g_O>GyIcgPCzD7}PX4Xuoqa0o*E)nI5 z$%WtvoG#CsjG#+*e@b#-&7?t#XGvZ|U|v8vJb{)b8GsF9lHWZmg$%ex|X}9 z&-ksr-p~T%$EO9;fHwRUL|ISj_?Er;q(J`VTqXV#38yaq<@4KExNG+|t@3pk!%;$q zkLxZ6*%G<4UkRCRd3r+hs8*ca!=FjgQAL2}Ze7;tvRwsikULzsn3*tbf6X)_;@)Vm z>#hypVsrx4xC@?K&69dNC8yT{o!8YB5D?{$xee3?q551Ib zX%}vqRStZgUEL+0qqHybyiUJ`^a7MVci25T!r@>A&CHdW#^@;)YIEiVtz)0UqdV4J zx5uwrZL5xYtEY|G5Qo|7K)D`D36!Mqcmp?I@REW;KGEyqS)x~pdCje7z(^}#sDq4_ zR!YeloIm0LbV2e+18!&cGOVc1JrK|?NAjnQ(Wqj$N~jZ(@68BG2uBLwf_NhDcW%uT zE*A*CpSJnZslAdRGV8`qH;x}<~xR;BK?!XWea1*+#hOd6(F|b^YLLJu;)t!%7-@ zun6+=vJs^ewqRkkr=I!dtb&Fn5o#<)+n}T6V~sY_)3>eriU)a(?-IpoaXfse7?;KI3Waf?_~4di()_1dw^{x1 zEBQ~uBlSns5XyZVc6PJE=cs7N{P>GINTawoHX~o8?RJ?LjFjj3_g*gT|G=IoMbAi3 z{kFE*Oun+B)*olP+prY1W!>Wzn~DF8_r^7gldMNoPr-}{Az zaLt;OW4o-33XvbQ3yUMsx0UvMHpT>v-WE+c?+UpbeKuJX=|LLdZ3h>pO+t~31@$t5 z#hc)*L;FV6c9S`8O)YF47t7HMEuQC-!{2>8YKMe;rqmPxf(w3zcfD?Q3*!Wf>vg$Q zye6)$b|z^TJL8f?P69>fSdbw0I4`eD*^q-V-RnBM^cW(imW&xZWZZ;QAMt#vF&2DH z3|eO5aKftc+$B6A4t~<~*P4(3^sv|wnPzG=+3n^R*0x4X?z}6WrqR=|Z6ER2%A$o# z^W=$zh0lv2*1hrU+ro?;svTTHu8mrJhf0T@jrwXB*gqZ;;P|LwJ5Lpmy;+pO6J{l3 z=Tu)=G256WHSmDh7kibm5_>7xRb6nHHw);e>UJMBo8we0WbZBH?{)HPqkzo^f(ay7 z8(_z4W%oTEO0bw~jZU9D%G{f(Ap-JaDHrRI(gI6b+Zl= z@5b2CxHX4cr#|z9Ea3PVqKfTkT>tpKG+mPHy)A$)pAhArLFXj26PSoYEKV&FcD#`I zjRG+U!3nncQQ9`fuyd?(>4)xNile`_k#Ct?rlUtkM#<1wzsr}WLHowdtkS#ZstpE% zPlPrN$B#sts`yj62G-Lb*HlA4XkO9d;8qD=rD?D{TxOdRAs*XPd_eZ?)mv*0Rp{eET-78wU~2`;(n6Tmt7l&6?Rfa181} zMA^ozvzN~xnV0v94*c8r`g^42K4e7_rQ7UAvD^0);Jq1LZ;vJ>pr!&ZN*`vL9VQVx zABgPn92LYQxjR+l+d@1%>m(nj<<`AYZ@Gmt_T6!xKca`gdOK1~Zr3d60cwO`T@0Q{ z3NgLfKr)CvB$KQpWHn~~%=Z>F&QjiG=g_WjV3PUKJPmA{l1+6_ciPGa20Ep8Y^+U9 zdyore^1N)<-iwJ(iv^h{71^H~s(B5!gE*hPQexV=i%MwA4!K3SqN5_O(ATs6PuE)( zGEtm;^=~|#)69b&@SsxIE?|zDZjL#f&rTY7RcmjuXA{B zu7;-o%x8iClUjB}sz$+;cwmLJ`UvGQ`02h!Mt>$A>pSy02> ze^{PMrfr)BGMC?re)L3V9j_Y7+ThN~dZMvxae9$I&3`mAaj#0_*q2;j%ASvyZ_exb zNB$m~`NMVipu^faP1>U;qMj}z2aKHzJ8`avVN0bP`F ztBUWg56r~j$H}|ufum!p{iZ_iA0yum8R&mgoN2}ap}XcJn_8I0Yf^G3LZXEcZSh_w z&((s8D=L)s_VyMp_BkVauGBNoKY1IVL&8)0&rW+POmqkGGvfPSMxCqmj%Hu&VykBm zoU~l?t5qj*o;24@t_KmN)9Y$)-a$^>Yr~-GI@+3CT50I)*4b#7?};Cfjp66Cx1?CZ z5$zrFy7;tdZg;6sb$cSGB?ZQ?pQSpW?ng5_ly=YJjfaa`WKVhy7+2%mFkfIVZiBqJxMci(8w|81Jj*AOqd8mS^IVbUcv@lD}apCy~*H+`4;Vr$ngSSsZw))Houa+anf7UDDRTj3Bn&h`W3#mI* zgB`AAgX&A}J+rcLKik{d&(Vx1@gi&U#qx}0#Yoa_nQdI?>^9KtQydksez$*+?rhn< zF2lJpb^Qi%&-Xg#$?wBNQ=RGsPDPWa_EWZ}ap&AO>cj21O6bxU!#_l(lp5vTvaxpo2Q+dpMKcfH&+XwEpg1|s z5H9i9@q)SJtUQ@IpV;cL+HiFpx7LaG<9oQyZt&9AaCUWKri?QMX3{izX3@E^u<0{} zw`g*G*tA$#%28gT-$FHac=@h5P5U>6*xI-cP%o!$D&3CFdif2$ z2lUFtqx~s&Sy|L(x9Fs?oeW;zsgeQ~2 zk2Q33IMC40?8c4arNzaM$<% zrk{nR3GwQ1faNEiNv8?2zp`r3t9PC8N8R|;uq!uf4!ttNIcWi!b=|FI#7FAbOE#Oq zJL}3!`SL%$>D@{*yyPEtXPG)KP8sMiOQNPdn; zQ#&owW)CCMK^iD1JPzIR^5OR!N^Nt!VxN??yVaoZv97A1aA-j~B=db>-~81reSmHo zY;RkWRw7igxIW0$8SQl?pHj2lG7g8KGpDyVaro?Xe|d#V1M3bx;RCjoCgU_SHU7RT zzAa4Dxi6dGofF$VtPST*H{xId8%TBDOB^9wem?q+Gi?(MNN`QWdh(K$c?RZ*;C6#+ z$>H?Apr1*`(e^Co$jAu({dg9B4~N%CZP@O*9&H($(6?$#w`D4JC`58Uwd|NsmN#Qu zp&zZJr5I8u@76EszEjM&qc`(5HO2;4%!Eu-0o&as@9KDq^foSTqFIjAHWEL% z`8W^9-gzRPg!sEiSu$aXtK#s)Tg;W{v6$%B&~*`OaCo*Cp@)0chezIL=kfBfr72G| z9%zi>psK2AyY5BJ68TkVH#kY#*;RanP+gAgVEB-@H)AOTEBnO^^rz;PxVcab%LE-7 zU$`&A9zA_w)iNipZP&)D@8jq>R&iHkEWr$CNj~EofBDE+Dxj!iVgA+@t*OM(GBZPa&9Qd*rtGwkWUnKPV0hc7 zA^F>UTS2cE;f~{o@_ABy(t$5+y>#UZU3#LT6oOmGaUu_R|{hGS90?vgZAY*4ZMV z-iY|VXrL*$w0VO{!vnjK3Y8n^C4XGEW>G1+GBbC60zRB}9GF3N5Aw8KB0r?q#yJa5 zIMuk49w5JK)7HCdwk)YTZ^zxa@W#F1P|%Zp+k~jv?1WgXN zZ2BQB*J+N^^D(xds?mB9GZ zFGPeyP(w?cSwA6|H&}KmW#7#B&vN(h4)LR&j>o`UvO1GArqN4}hBI=(`S9J)b$P9U zuz}j{dG4Y?im!)2*X3*V)ES@pm2vI8hIqFUrT}2}foyD$5%t~1y0eJMtlGWSSNyTW z-WR9!0cPG+1U?w%kq$>ys3GNi?Jb_Wf{r|s=|R@d=25sIyF%`*NH(RkGgzdTY#{7XOO*~HK;+ZPkkr1 zsz8+E^27G!EE34rHV8(PLS)+v+V^CK%j+JG@*G+urH%S-Yx=F0rVc$hywnY#>PgpS zRRbM={^C2#3%!KcqLFRqM(XL+GWHSw zHdt>OOQ{qEb!N}g!K&sK8oIbD%!TC}sg{8RzHz+X19DGJ-DbTepd@$xxMRN&do;x< zrKsg?+)2X6@2uM-SUbg%cT@+*C-scG#&1I&#YJX^hpHeQH`iYP6HCG)+!(|CvtR3C z^Z24KG^Srj&RDOWHX*0D-RpuR&|Qno^6)&JPT|Nst>b-*TtZiycIzz2`od-{>WZ?Y zFhOwHD!s=zH*ZNjhZ>LM%9E$Jw-p;l0rOc35a8Woo4~4M5wzyA>-;iUdHjI%+e7~b zDRsYq;5@RNLaUSRHL(XO-k}Q8nLf{(zq>Y+SLM@lzv0%a z2OFR#_f&56;@Zu+w5I-8>8_t8{Ho_{?>Q>ZIhuplyg!pHy+BL95{F&AslV(`{3HW? zs|ZMUBFU^@H$9B1(5WAGS_z&^SR4FaH|sG@fs0`zop)} zKw$Tfdw4q_12yi-aJIHfN)gG^`PD!QhBt}iOeJMm5$X!-vEzM|Z!^Z0_u)rPn!O_W z(y!-JR|*F{x32467;0Sm-MPAWY!6P_n!oKQ#5P18{_sTNxhw(QB8o%aU}I|CGK+B>a>Nu#B$vRM1rEjPcG!HUYsj0 zC8c;&sgzPXzb=AGbk~c`zCF(Qh?=~1VHy#50wqDvdSb1+s)N%?5l4_%CBi1T7Jsz(? zV6ezD+AADw0+k<#g%vRW=o;}x1;VKLi&-M!F6JmnM;$_I^@`I0va@Dmue<}8^@-j# zP3&*{yo|C-gd~=c-bbBYCo@O8kIV;WXGH>PfN{alt!q~`9oL%ky(#k{g~;mkEg?lo zPeS*IyCUtIs=d_YcQE0e_6DQJ_?5_!18BGXr%^mmiyzW;KJJy^+h5_Nf)Xw#wy!G6 zH1z5oUqog5)QYYoVp1YT2PYuQ4Ep-I&Y&(h_Y1gLOWws1k(KR@L?yh{gBKo~ft+D5 zIGTYhOR?>>WtTLPNs0@24i5~yDqOFl2Y%B?9m zN}Pv^pcT{BTbJw+rior|)3Ix0R;%sQ<{1yEWnR8qf1q+pb{wKjSd)HrOi?Y+y5+S5 z$d>OU)Y+wu=yNY!kU&`!ea0W=_}-Z_PmCkm3p+q_;urm{$i^fB_UbJ=X|Ki_27Ok8 z1>+_51l=))EneE>cZ>OMZz6iG(poIb1@-o|c$LbhZ+7DK0}1T#^e%XZ2N1~zOF@{~N)dv7p-$uzU zjI?oqTu24j_C*RHU39g;P`F#4YvcNxWkb;)YW%>-pyAx5ws3UJBP0-g_u$)wAY!ZM z&r_&)BSyf$4+&MM-4Of{Pme2=YogFLc_tn-bBjlMU(Q?|jv@t#p|y8k@t~zHNLs&) zkA6^i-^Uw7@N&zaGSDk6o{PHB;3ypU7vB$X6VV)25;ZU(j@ zBV&8>lYs=spNNPqTk<$~+B9N=a*w#0s)c3P%Lr~)^cs*JP!(@uBHNr;HR|C^<(_rD zn2$TRnvNo&7DGyvlr5CF)idprn(}bD>%NvQWB69{ixlmWfgQmBN@-2borL9U({_CN zqI5}L)z&$T9wg705syM$FL#DB`_NGA5g#9)Hc)@Hc)`k}fW@}iX{}Gu$PJ*goweU` z_p5ZmSLRV=r0<3u1SWF!5K%I$N~YgI?X``kJe7ydu%emMa$s4E`rglJlZQt(_&_h9TSSx6fgxF4k(+;zR2^3bwh}_vl5!|6%v)UWu z*bk_96I*%9oNXF0zhujN@3O5WG?CRxiaID&*T!TaR@=>y-RT2yy*rWLymg`c=8v~; z&xD;`t+I0q@I^F(Dag%q_qb7({r!Kd`?_p&*GjnYWRVg@=;BnL3cg^a* z6RvxYq;JdrhP&{?;f(T@eqX+uxj4PuMYkB*UUrM)7O`(QLX+sfuZy;Q1sm9nMIWUL7_}N9^*<@xaxSDo6OleQod@$JR>tT6#6TV zr6UGOc*Y?bFq(F(&q|(vwlV<)#7u84oqN2pKXxGX6m9?ifGxI zl>1_(pes~q{`$Gk9phT$H092S-3CJ(fF1$wC}Dj3m{>hSKewnzc5mN=h8=rh41_7+=n=y3g&l2Ua8LX%s{c}Gulx*=zKfetU8^ymzTpyQ91kk6MzA+ zv$r3Cd0gqSTjV{#gur5g-cXpiJ*t_1)>Or_k|vP!!0ozTGM;9W5Kw&GtwEkl7ir`1wcvlGGT^#W8FtzLbmn_Lt}#2ZtLjk z+qfN7i6_SJ+2u4uh$r0M14bk$aT`U3-RC6*yKiCBh5U#Vc)W3tR+(f|b44c8fWcuS z@S{lp2>Q)##~rt#^*G$^BL7^I#6ato>Q!-F+&_>67k>9Hx^%i_N@vX|A03AsF~c5x zZCyD+8A`#Ke2;19ZA!(D;oB^xI@X{yiBCb`GkJ;evF{uagzjf3$Cgwl>CqwK5YY_} zB~YzQ82?v1&s`N>;SQSe`Q9`Swg#8o`%jdY$G208?H(tL70zx!)KWgh#UOHJ)nu5) z#Fjw&ZE+hnEvdjF+HN)X1AMrSd-ovQ2TNFk;>q_Pb4o$;z6e4PihMdbldu+_v{e#} zc2?NBVq)34%0<$8f3fGhomx73;WvJgD$t37qNMmyyIu6GmY~9w!xnO^(>%}HUr9bZ2EdWfvF_i#$8_m5cA!WxJ|-) zQ_Z(wB9ICI^r6w{TrU3NLs;>^*~YV`?9ZHIo&)j(jIxTBWTflDbjOW4PAqK)R`eP4 z*MrS5Oc7zJ+!DY*|GOh#Ah{$zSk=`fH3D9ML==&;&_OrHD~)Cvn=Lh8URM6jioo&G z>&qe;L{GcVY;wmboV*eI7Hhn9T5L z#HKNiQ?BLg!E(Cpj8l&|H&;%anFeGP^$iV#%OkxuIB5PY)>UNK^bbgkxWi^1pN%?r zTPOo8to4|;WU_e=F=D!XTCdao2^lxT(yr{yIQM!EYfEp#uGedgbkl^+2_J7DWIauH z`qid?YbOD?VdMhNia;46SH|$W4+_Sx-{!Z82^N5@^L<9B9z-P~gtqC{viS8Y4HgR` z0;nz?f}(~wjRSb8$2>d$W5D;E=Y}h$0VKc+{sLnmBPDeRku^6peYJv-!W5`w6kri` z8of*+BBjle*i$3b(KU5hukfdZ-3OK-3&OyDq6IJm4{20 zBqH#4&=+40n?{8=8qtNIRo&8q%a;l+dwKvIF1|)d3yX?c`}J}$LES#XhDOv+a9Gxt zLqneZp{X@WNhgO< z>RoLEgU|H8!@oqrBlGfp3keGweqxARukmhjb@g3HaPVNYA#!xZ$mpnyg+-BnK)~7? zt`Go>MD1drs2IuT2^FBX{+d85B&1VaS>qG2vS;Wa5_m{envFLJlM$)!g7wEn_iNJx z2L=Hf6Ci8&h9mJ~9En1nGBbw&KE7Mo35q0{xV#M&5wUk^szDyuok$B=i6@ zFa>AlT0Y^EJ1p4p^;3~evahpC)hY?JfDb!kiE4wI_S<1sT_->2 zd4-|nx@)t&a-1r6Jpg2C$AyXMPm?4DRY$`QqYWwT*oH?&^2up_LWX`4ULr9v>gqIr z<>&C5?f*ykQcr)NV7Zv1(Cb-_a(oi9)GVz*-gS3|3%+cJhLLa^&VNDdmcB%8$>sjk zLK(w1Z{L1m(`i%(kSqYtk4ygx>IgV9GxLTjBcCP!T>HmgcK);T{+BCw@E)hG`m5|RG?r1E2uN|Y(-~S#eztqS+rn!(jyP@l4P1c zBwPy^&5jQcV*vYuAlvzE-h1$X5#Wd6BZkX&ef(+PeNx_;5TSNHRHUo4;YRt-O}a%9 zu-$JkF5dg7I3Mm!iS@)Bu1y+^+i7pU=s4FDH_isc+hV{*K)eDcFmc!rC`ghD!E?_# zkGPV(LJ1b9V7BC>oSt7e2gB}QY_?&<^#3mOy6dFoUeUbB_kFaQ6-o)Z`u+&P*yd!7 z0)Wy%!NASK82?;dt-8Lxp4HT(JsQazgh%z-@+Y_o4BFN){YfV4;rzLB`1tr#CVx!H z9O>QA@Br@8Dt;pD`}a@%c+V6D2Z>#L0=g~gp2!%sH)(iiPAF>7Ocr0W^^^!j>t^z~ zH5i`U=GdI7Q-;@Xl;}_ymR3}7K?ep#0fby_t@``-?*Y@>-pU408pTu&~s31A!kFk32DaBP|_r|G|TGfE}Z#NS&RX4X|U% zXCEF&sOx1)R9I`$M0>Ot9zLnFGmBevaC#XI*$iAXw~BYHcnKd@|7>2br`Q1CFLbDW z-M~ez3S_KUPU-N`3iN8$uc;)LS~HQ1rk>G4#>U2!iQ{wIzbK009CWN@875TDxO+7- zmLs!GBWL3SM^Tfob4iF@Fh>>6yKh6@zyA)&oGpHrJwxC| zJb(UNWilt{$PtI>Q1zc$(05R<#@=&@a7Ccve>XB(d7Zdj=l&LgoWl?N8V)^vkfQgSlz ziEXmdV9hj{wH%`Ty)`$pe(Y47S5=Jl22zV2l(T z6Qlc2F7)Pk{xx|2Z=mD>EGbf_?(S}SVPRchz5e*|mYId+I|COEO6Am)mZ_N;uxVbZ zs>Yg4g27LLMe-jg1FV44{66q|R^(_4%0@o#R+7}pUzv{f*3qxK=je>6Xa zgNq9T{22UMK-}^2`Ey@XbS_3Kj73afgGU2#2Y^q^NDcsh2oH|~P7Z`?#H?~=SWl+Acvg$2L%=G`;}%OkNXKe z{?9HH;qPK>WR}6hdfVSfAG=C(0mCzaGeaf(?oZ;Ve6BKZBfC%rr>2Tz4Db9*fyf%u zK#(UMtmsr=+stxfG_i?W?BZJ!UBH9I*x&Ax#mJwo)aF+}a)*OIg z<>mFp^-A+b*D*;}D2>RtkAC3VO#N0yKtRx*;VU=zNN=T8XmyN{f#DIrmit?rOve8E z|2IvB1K{7@zA@;!qG+GN#qnYM@z6jwM@1wSR>RQV_{Rgcp06uGwVGeBNZ3;99u597 z=4aUw72DbjcE?-O#xyrhR2rjc{idl~$7)|yYb!Evr~t25UMkJ>yve{ja@KLPl288k zueK{{$d@Q>GIs&vfwW@XHO)SA-U=g^95#w% zOaOTZNRpJ^yeRxChaYP&PBt)^4finCGdPeN zg_pNJ{|RwOSVR%s5rp&ENYR^|7I5y)4FFMwQYJ!7kZOUJk|E=et? zr65U$MfRd>SUr3Zh%ik5WVknkGXCF#P~0Y7O9hy42dWhu*4Z}Pk@K94jDezP$r%Q% z{XQOp<#I1yz6Bt@#F3c@o2T&hEiC|x62yR-Y=^Bao_TXR4-f-bjy`aPm8NH>wi-$Oq? zT1UZJ139CiA6Y1#KeregV&)w^83TP3a{SkM&}n2zF}MG*CuH3A>qPk*_h)kqi!IAo zT0VFC>xW++@~|-Et5ZzQqtLvje;zOhb#nUm(+2q`k^#4Og=x;XU|HdQ#2DSTt zL7__{r>}kFCPF4BM5v}Fa|C(pqTm(Ql$$I!6{YGmscDM?A=$= zaA-A{D?F1uXQFGKz5w!W`JMZzBQOP4dZVpXN{{fyR%D^BgRKhvh%4&-<(~J_O&GV$ zSiqrdAg?kwjRy{rwA`uE3?jMTQ8>sG9f3 zHNm|vhp5Un) z?-t?J>*8Ul4%{ds<)J?u&~)H$8rWj0h6OaX%X??IA-?8d_oNe2k29*uaCbT(7lXb| zO{0!wN4tgyJ-<-af+_~qfK$Sso|u%5%MxMTMoGhk5T)}R(&bBQO~a0?c*A_Rkf#3f zL2jRga)ws3F!{^2md?dWX0vO`_cX8X0^WVr63k%u^-!3*yV>E97es!@nQaxBmk2?u9vg z?u?E)l2s;ZpD<=X~Uo_br4AvW+o^N5peF3ugaxW_mLX{}Y{wxqV*x$*!`iq48=t zDd9Od3Np6Vou66Q#}(LS0xN>e2jvGsh@#=u3gfLwU*``fBVr!z%o#zQfj z(Fmy#aTPTy{fj2Xjx$p~m53i1$YHhFcL9R2lq10BmWHQbkW@5HVuS=ouEbFR83_Br z-s3UCPpq!u?XUi2Jo?gaGmRI@f5~^L8|bM2ZMw_Ytz}-SS$OpGq=hSkM#WQ?MT=+X zooRGj5M*DhD`Bb8ps^<0wg7_-KY($Mcfa5n`YDRe>i=D=n$MC!QuZ~+^(gP5JgNAu$Jo7qtS37^UmD0_tE#FNSOTO~pwbd}#LmeH z)L}XRQ4YAci2SQ1_1^72+0`#!zRW5sQv_12zP`xJ?Cc|m5*fNeLgF07!@Q{X6laoR ze`L8yV-dv#C70Vh6eZnpq^j|38p+@{3NCB`H&y)CZ%QeN|6C31s6>3(`#MpY_r%ph zPqFIZU35UoO1qR2^UvRD7-oZt-kraQA7%^a{ZMj>#R$~A+x!2$LZDwQj=0bZ35fzQ zg|KI13C$3Y8e-pH?gL5=rft4xT=vVdKtX@Z`q}#ztRrjz=S!~%_0(JBM)8nQ0QJGw zuV1Bri3>oI=Rb%%fCGU>8Q35ylj!Js6-K{`e}nq%<)H=%y>|e}qGhN(=eQqGz|JTo zBO^l;FK}^^(qReVG$=REib=R zR*nH~NkKt@$|ShDdJR#*($vu@kuiMVKCfu0slgi@P`F6&ck^ce)>mh$L6qDD+uhh# z7!XMQyxwo#Kmq*c&3VkS1a)n~5}!T19{58L@t7sMr@KFUFS@_9%rm*ai%iZ(G{mj}f$ZPLZur<7~E0Km}U+Mq1RbpV_2)IK+s>toP67n%ahyZfa~dcIwYMFfAv+I11o0d$zjx2BIV0^J8qRw5Mk? zut7RHI+RpYvSbWN(T(fs>b?&TX8}v_7X#YzrbHhX9}h@!e%L%ynSA~FHIUmv`v;~c zFcb2JUCoPU+8A+)PK>sEHq-Z)|K(ui=QrAz20TD|RN^9t>bTP9bPDWtA2c;o!%J{U z`baX4x^?WYMD^;>aP`vSYmFM0fUH$px8+WsAY$aAmNMmQfp>_+x)}K73dNez@BSem zDG5xUZP6ZyK!11euVnq@!Ida>{^BoQAfyN-Gz5cv&nG1$C1u3L{Sgl3$KvK@owo)C z3_uBXG+G*A@S$XWzP`h|GRuH3+IjyMX;okaCkC0zFqR{vNO|GpDr^SlsDE!Uo4>fm zM(FDFCdW(*;#9R}1iZ7ZR8CtM@}ab>EH-eci9)n3&$Ji0d(TC>Z-v@M=D#l5NHtckXvDpxQ zVbm7k6WU3gikU?&s6fx*@?M&*qv6q)-1bVOV#u5R)Sng9PX;08$gTAPpl~$d9*PIW z2iGZ7z-og=J8q*#72UrrB}qN+1bsQ;LgZu-xvs$8g6w;Tx#BJC^|bRyg}!8G2EKA+ z(|@59nX&Ejk4|2u%{#ByO^;m}%^arvsWwl>HkE>b>y6M(6Xv5L$1UYTN4+PtdP_N%M}WG|u!sMDSR~o@y}r z-QghaFMo(#ldRH)OEvWDtj^f~=RSD1_??VnYT08!7*KfOz?U1owE{VCYz@cb*MOKT z%XmRhGFlX&UkcNY8KqW$<(5Vpjq@Cs_hJ5e+<8xeled9K((ch94MLVwJL;Jftk7|t zsI$+Vavare68g2@BpyWI5H;RZgscQhdoBqFL;Nu%^wz`z57PnNTGt`>(HFoNSZH!0 zt303>GsQ<3m{i^bwDF5+AWojR4+~|1be=rVQy!5 zatj>Yo6O0|Shr8}CPEaQuvHJwGQo-`B)B&>Q6T!~1Ca>ozBA6zL*Hkq-*@k?%1(Hy*&1}ICr?LmQUC6CEatonRMTPNb_eIf1{fEn2p`_4e%K#~->ci$jqjoz`NpLaD+CLpbNd76Q zx`<-i6SCInF1q5(pF!8VDlt7Iez6m`6D+p8?5k-jmE0bjaYU@^M@LoHnE8%&~K>=L|@f960lTJ#q9xgq^P&Zqd{U_`Nb& zgox#jD`LJzO2=n|LW^8y9D8)pMB(nza<^95dBk;59cal7q(+r62Q;u;DuizIkf6y) zdwQ`MO!30ul5sV)wdeYd&2r#)%B0Aj^8Q6&|c7{=O)o`mn1%B%NdQ z99s9~iICd%q5Lps3}Bh)&Ar?3KKr2AJb8@&#zEuhd*3_1m$<)mJs#UlIZhzDeHZ9m zC8CfWD+=wI77hH?b7GkexcaU|3M6vBtD*RuTq0Z=FbJs;fp}O*kep&$^+$utr`nH$ z_oaW2v;{{??m7`CwSEB~;@>SxYk01h{$Fw9Qd$0y8z)c)?j-L8M_<`=BIEG?>l-6& ztqqEb`ehLC{i^|IuieS*KT4f9c}`-O@Mw9yE)z!M-_5X-bMV4;=emW0^(*fAtW#g) zu;Q_Ex-&Ih?)68U`IqX&yJ0{wDHJbKO9kYFK6m|lfnh%IEddR(iY342g)^WX>Pr*U zT<%Lo2t9q#und=b6K}+Ya}h1scQuVt*?>ncRGocSGSqoh@{Hxu_0#9jkdUa_+GjxA zjp%KqG>j-Kdno<#Wi&$cES3XYRUQ}z+fZPN12arNL&7+d%Kyg80L0%}e^JZuJbn5) zzN_j6whp+}XSBeP+!s$+gX3NkEP6B;9(U2U|7d6RS03%&_&fUml~tGKQTQXeV zWuO#a1EIK>(nZ8*_B(T;<2BalfK!fvORfmCCYYNS0&-z#H@5~LM8l;LDw_CNTejSu zY5M+C%42N#1L$UwHFk7x$oor@%ktg3K?bhk?Cck*R5oeU3RlV`hEsL2Pp6U@pl7j{ z9j*V?qKO5bfhaY$rKYB4p?OzTbTmFQ8yld@&CkdXc_||Ui2V#&+R|r~NEW4F)O*<6 zzlVVivWTV!WP1D0{BoZ`E_#0~7C!XFV!0^73Q>4VXVWSTu(N*mg#L^c*O#C&p!Y=$ zef;sr;AAZ(O-iq|p$V(#uEzh^al)?#JeWTkPF?^pt9&s>131>_@di7>?S_s@X&c#4uTG9%*}7?3goNNu1%aGYqoWl_2O zn}jLkGJAA?0NEt>Z|={#ckcj5!zV3m_UryQL{ysD_}%XHIW0mzQS&EafPom7x|&`$ zEp?4{?(KfVT{b^bz$Y7XcbnzU?bjA`nHS%?IhW-rtKFujE=(_qJ7$X56oCA}E zZP!P3$_xC!WF2}EC4{_J%>bBmj*jl(#>^k*=;<>-1$>$g0{j3qHJ~pujeBp-wF9^E z{Q2{oN(~JSa7^_-r}UBqR8P&FJ;eONp8rmv1E{iTgW=#|TP67cq0LHTiI%ij*@4(Z7YwNoB!X4=OA5u4rI0E>?; z0%+lt&MX>_iocW$oK<|#MkL9drbOLQUb4f$;G-IngD2A|k9>=V%8C38YZQ>CBhSTo zOgA3KT=pxktW*VT7%=n{(D&!pe}2t#`K5Efu1@iQ=P-kHoaUzuGr#oJ#z0y5mE&JA z)2Wv)$-sRe%F*|ZFP@f+2bq>?c;ukvfG0t$`2?l?b1LJCr@@l}?^0gSMAMf};d)D# zQCA10^UA8!UZzYp_asTp7uBtzF!EULe;8cd?uxh#`OmoPk34`H3Zt=e-uUxaUbSDo zhym*p*5j+~O;?Iu{1iwUp4$8@jk|~-1#9o>k`^j!LInT1bN1Jk;*;L9 z=i9_Nf1hOeJ|78+2?1U=M<|l32A#oMXq1z9m7XW zqfWn*zA$Q}_mbd7GIc2xy|-<(Yhy8{!tMcLW8}>5>icucY*xMMOb!XvkDAl?uz!?D zFaL`Ah)|ZFp04<}>O)1vV1VlK@$sREt*xoe5nS!Wno07S#T!J0bHEcxp||&MN%7Yb z!FkPpxLfrw6Qm-vrxYhfMn(V2 zFvby`O&=ljEtBl)UxOAQ;yQY;s1z@O3LnOS*cW&24<* zGmxd(EA(F_2Aik<2_1>#s-kbt|Dr(!Du?l35>y|6sq-0?+_LRS%vH0AFC@G?QrJkx zNYWmyw7Pm|%O8IL_bBYOYy{jRP{^t1>PDO-CkO5kwCfZqT&yk&n0m=uQJoMGq8w}d zrQ`_;3i?|mPit!{puIC3(I3UNcFTYqrie(Gr8Pq5{;8l5w3yVmbsZa>>faRj@`T%w zXyNzPCkb7Q;WbWUtw##}$S0DI0WX-}t4g!-L0v1Lj9xZ3lSA8?NigbW%v2JEiH7fl zsCcRVO!BWrwr`mIW?TBaqPdzgtr%vr+K!ALp3ZlT`kAQv4@yD^%zuX@M3G-a%@ywV zwxF8N)GU|Dyz_eHBn+QpA=~ud%VN`?gn#}|n8D-OQ_#EcbQ95U6e_200lIBPuu_HJ zov)lAf&RUzk7XeG$1131h|(FGVQ*AhRzE!W?(P~YH0)h@VbWTL4SE4 zBttvua*n>XNm7LCo5QSiW zgKKU2BH(Xzbx7HG0 z*4ICeITIH|@tXXq@G;`g`MntN5eF*vsW$oTRa-X#zsw?nI?anT#KHm+yIN_0R3A zB}dnA?6H^ENe0P;0)7F3j;>2nuCAr7hqOm8eVZCO!^@fT$Ss)9nI&{Y0#&(}N0y-W z=s5A!XQw;e=~mW8^HUZ(TjlL!3e0K-3<`{X zs?kP7h;i>F6|KE3i8%eS8saG(bxS?u%b_eErz{Lb3e~+4?@MHDm?vlgNQG4bHBm8QkN%fnJu{V$y093nXj@h z@3FY)(P|u{lE9NtnvQ&*#4(so)pq5<&i-1$?lF3!@1?Dqd9kK0da-&z`Ev>2hl+3`8G zGG8>b1lWmZe#3$k68@tKhl_DpnIwv?l zz2OLjRu!67;rO1HgQtm3e71gtP_U2x=rUg3?(6IO^t8elJRm^73I>CLkIVJnS(#X@ zqE!tb9!p9}0>?OMvub4?O%v_7&TFL<2;kr^-h;WC2 z0+DNi=*n`3)YDo{W#YI4pqSY`_dNA}49crDl+nPTj%gSSI)C1Hxzzd zv&5gkX%kmBT^omQWIcqE>pF`Q1%QUDj5%Bk=kca z7;JGK%+eSc9Gq37?KmLd(`#4I=q-*@8kjmLLKgl)8;2(zTVCGgICVSl#_$T5d;u(C zqQWT_psRbpWLzdhC(7)?fysn2Ys&qN-}`lQdrt8l{qihvo|-$Kw)OUChDFWe%tE8j z&9RrSaX|GqrOXi*?sEX?q6X>-XW++kg1IXU=g;rzK2L4&Rt{&akZ@o4UhdG+GMjpd z9q6pV=!zLN+Mt)lc@qF6GjenLEO7gjYKPZSAA5p?dlo$d15WpOOEtT!>W_~pDQp#% z&$H*=#p`t?%Sh!ddUP!|TYJ1z0keuiQx(*OZ&*E|WutcH;pRTY-Exag=*Y20#m3Ts zT~Ai*Sa*`XdC*4w=!S+e&!m3__j30!+Af7(;thnVrq;sV@|NHaILP{~GN7c>Cm6AnWLS{sdSOjvPbx>0W?iUp!RhIhC%< z+WK1-NvVQA7)j|E8rkR4pdQH@N=7X>y<-Jr0cd625YZHIIpL5Z?#>QM|`tKDN z&o}d)^3-|6KCyzGfP!b5`8>EqN zM_rnx<17&9IRgD}!%24gkD0Yeg4Qnqe+duFJ;V7G4NGasC>W>_WKR|hw?yDJ#e_AvV@0#q?E#^tBHGR=MXux@ES}1?jxwQ6e0tl@OpLmpQ zxDy`yvz*io!Ds__y~2ti#D~YoZw97%g=*S3Y052>3o?(vsXD*?TrN{xA+m_f$+*I! zgN*+9S*D{~W3BC@R^}-ZCt{Y^)mHMYQjA(I_!Cage8iqwRLu8jQQfG$c}n~^lI8R- zA93Rj1^=~kVi4D_F}Ia~jrV_QBWEl0=FnpfBvqF*Ig{yWcS_5NBNEMVHu*6xV4U6P zI2&{n@1$obhAl#u!L?v^?+2 zzQ{kMZ?0Y{y~1NyR8G%h0K9s}-yP51eSC5$>S{)L`4Her0z2%xq2?)N-Acv7&yUSK zC9g6@!y;(|hKrOpH!E1ac~8t!+L^buw$ib0*Q37ZxW5@Ivs1<-hV7X>3GKOo1oWx1 z`maOC$f#&$(gR&?-zJrRanW8OtCk~&HU$jAAjY=odoHo53QyvBb6ihzx4b%vGsKs{ z5R{yNZ|C)INniZ*EB8x0Yjkvt$3R$nrlO4gRK7~})1lDjas9Psy|5R-y$X`~*D>}!=$3Zw8uXIUR87pf8$#g4qHX@G2XbEhpFCrr- zv9j?}h-$L%zUa$`n)xVVTQq_M#siZNFnw#dHDD+9H-`+DFs4N*hKdp zaOD~pKV)Vs*aku{+;)!ZVs`@Yz^Y(SjDFPxvqym-ON07vCAa{}sXrxqJ*E&^Ay$vn z0Ou5R6({sGHY!x`F*{e{1ldxg3asmm)d*&rJc;aJ_QCT0R_~7KDTk2)<9_N5PF~(} zkn@0nVZecBg6?D9gu`IZ^3biwI1=ml9CqG!QbS(DFV7l)qD#LD<#+Z>EA>XdkvC{( zg3qESM$w~kMlay`$k_dfsqpcvqR2h^+W5+eG~T8cV0P_z{mu`mnP01PZLTH+n+gwD z=pSay>lO`{I%}O@*lubwkx*N(7xOdj0#K%|5Y__Vhz{5Jj_Aq{~tHsb5&2WqbV>R&dRB<^-4&lFStn*1oS!-Km3f}q#_?nX|4 zwp`$#HHw_U!{94dC+j(%3k(KsNw3>;{uOo$5^6I&>wK4*sl&Tf0ymuMp&$4x2kfgX zW`C8Xw=}b?tUiGl(oLDUYT1 z-H8%|0ELBdDLepm3NxTpjmJ8PB$0eO|uNUOD?$o6qNj$0r+fpwAmp{7jKBa z4kxPwhDA)gPsbfqXC0lLz*F4{HmooYqWI}hno4wMY)6I&JlRt)04VK%T~GV?hSjf> z?bu_GeIIR0qQ8c)6uug$z4<)5BBC7=aY{>q0hq?c`BU;oxf9F9i@@?Ve2)Dx3Y{?0 z3iFEl&oeJk{*6uKe^Gz^3b?r=dk6-nO#1KSO=Czk+BYQk^CrL?B@iqsoksb=KsVqT z96;$_Y1hjNf6;eQEYbfY!_hU|`fK+6r$6pw);C}eeOshb|9D>2^z(xk0`hnN{+stY zr0t(ncegE3MFPzJpHOZG|4ujl8dw4R^3kK5RTbSsn>?Zl8CAO?J#Pf2P+3J?J$V#Z ze(h-C`Qu9~D;U#Lw?UmmbX7<3Xn5xe>rt{_v?;{S3XVc zb6w9|5(l};c#(NsL1AGxsK#6-D#wy#{6P4zo_vJ+eWR>GP1ZW!Mr=W#PL;dlnkZ0S z=wWMW+N0H7e&5`SCrIfTR$Pf8$G&D_`sTaJdfz9HK4BVaMy%RlwUhN^34WIO0UnN5 zepePbCN8rww)ty$RjQT`h{+r1y@%r)OEp|Z+J_aVAO@r8NiohB84JQ1U1Lu4?`_j== zRNTI^Xd@xc!^`L`UwPh;YkyM1BnYRMtTfK5?U|l|3RZe4`+1Tt9m;jK^O0=N`aFp|4?3>Qiuj(JW zT-Iyy3;4ku+&Q|+|2P_bc-O#bz?QTUqoys-ozD@ZiVK!L%mg>^A}V zQ%ttGu6A7??*p>~Xb~sZ#3#j9&fu*EMn+3&|7yg!tc<^;&(|_}SSCU}|5pTq%oI=n zbhhNKv9w^W!#@{;wo|eCG(0lLm80!cq4xAFr0`!6)$DFteZqghyX=7kP`r8s^_20* zXg*e#T`3`!n$-Sz|37kE1uY{lJ$3ayO4EtYS)yKxRJ>|b~$Ibyvxk{67yerm{|4%@v zNM@Q&{mP*KO#%8}E2lZ49P1pv{z9GqOymuH;%Lu+HpOA8KS_3*F@sSKF-0tcxVFso z{rKT(TIC8NtHWYXQl)hp4aiG`1t-cKA~D*oCh@7F>w9nm~4f4rdwI2pj+BM?Yj!zrG)XCY3yZHlK`qF$@GRHddi66=Kq zDc|iJFqyS2OXDhpm3;mbkc(CT0;gpVt#Fs_RL@7juRx6oDhX}fO2t<+V_k7K3rkA+ zVy|2Sb%4%h>;C?J4&jP42XrX$0kAI}nQUv>3#{ok)g=K38PpPKfyaY`ckQiAb#&xG z8!-NTE)o66{_-U;Re?(Q$-N0sQY1q_(hr(I_m7$`#FxQbVHBGXDLw6(JN8ExN$dsw zazh|1w;Jg8I!|W&bf^ zD=tGkB^XutKig~y1AN8RtN{GZ$C4f%f5 zSgqLY)-T-Yt{`(N=l2Gkrsc;wOwOyY?3Zj==l&HX$y>ikVrDyUK512%F%p{r@G$&Z zZbd6Ox=@H4czkl^LToa=(1C)D;y3bs1M+XcEVcfz`@}}*!k$Zknc% z1qv50Jj9y)KiEf#?|rwBmtXW|Gc?q`lc_UbbV9niYcl-xra%|0pr@8qW5I~loZ~@} z2x91AcNJB%CWqa^k~-9CbAV;F()O)DFT~}rg>Ueo{0+vx2YCIc_#XqWcLy%~L2+PP z_l`;bTUx2(r!gE2dVM07!9b%sH7L>Ns<8P;x^GRPD+cO|b~Lpx7klusyG1f~ZeBK` z>Qm0SquW6zTHN92f?rp9m&9D?16x^t9;VmDc)`dX1`tjIm&%8uyFpGdV+;5AM%Eu; zx6Vi=y9(CjanI|YKl*c$1VgBrh+O?&x&i#%_hW4}cE#xv?+3ncMSpiO@EcpdlrTJ6 zEIKju6H)CEcSsEp_%Glq{l*dhaTYQ&tWC(}cPb}KVCHK|L9dFKjAmzH_craoNanAS zBX-6K5f53^HWB4Ry&Ujn#+otee=-;mq$yFxzV#amB`zs{SuJAdRGx{PCCn)eeLU zD#dxnQTv|*m_C~ zYWzNqj%e)9s*~a@2}-dT@Ia%s^?9lgHNOmqllsXEFR^mW{5wY_NF%aQBJ;n7LRs4X zzmNO#w{YmuKL2J+ETZn4d9;HB?WkG;IsCu8S^}k#^c}m89-u1$I`>K^PLPpr^fy+f zr3DdlGIl*8+d|97M}pYHTFT<*_hr`5zN1U~H*jfV zM*2UOd_!y0m@)XTD2)DHpYgA3G@sxO?&og(BDsb|W)3_C1pvQRX=je!*BsrsZPb2J z-7Hd)RrPX~lDcCZQ1=i~jg6`PbY&NyC=qpG65J5~--JjE|Pvlx%3r;r=LAcL6w0s|kmH6(8?Krt3VNSCuBDEQccpdwz`CNGEOCQod#IHX1 z>KEm9*s^ejw{Csz!DG)ffqoi`$u-Ky>6a*pag1)WV?zmVfPX3?vxu8x^Y3@wIuyju z+ge_v!&uAh2dvh}I$^sQEX9?GT(1r&U0p-$ISc}yDDbVnQ`x+3U`=9<@Z_p%hz@YzrS&U1&&RwUdfC(GWZNv)N$q5bG%$zeWPBX{A%4F#KWEWu=H`G{ z;OyO7f5O{<==98nZDYLjq1t(~C%t|@X4M|Ar?{33er|s!iR-q|bMe~4930mQp7;vC z!IR+Rb%1_)pNU#Ed_Q}Ps;YOH7yo4%E3u5_s_P>ptHJKaUxlkrmac3KLK9pFrOdYo zEi%0iZJ~tMWBWUMQ?@PnIdzG`#-UFR=e4>WWAN0AxozDI=t_)a z#tcQ-PJw9MvKZY&TJXUcR$=@Yd@0xpi$kdHC%gAxq{Jn6<&an(RGsVBm93WuEItat z8vA3Bu;zwW?_?Xd^X!zI=c=-texeAwS7B;yde_NN&Q)|`0bCN~=Y=orEAA8PaAU84se%n}gMF!>~y6plYmP zEsp+teEmkf?b?1uesk3B8l`JWz@bxB?+zW_?B{rUK)-BJa^$wj;V?$SaaL$;w99qZ z()L0<-)BC@iNm7B$8bAex0#)#8r|IPJNW9}57@XvsgNDc={G<|1>LI!V>PsEJDj~QwXrWy zxa2t;178YjS(H>cL4ejE(nZ<#2D^*g;fv#SbQ1$x&NDUGed`BOhnL{J<{>UV$Y&F6 zGTwMOj>>y&ql6b@(0#WDQV!^^wsi-xXK8De3T;OxlXL9)7wxtbi_YM@%hKX(4M*bn za7r_uuW5LhR)nLo-`K^~tKj!P1oY{ptheN~EUH)-T33FDy|lAT{?0%>Z8C~OxF?U@ zTNBIo@{B|^h7)89Z8;XNV`~;>59EtY@zOQ|D+I$%xvI%Gh=ZRkh^TG0!%;$gcT;^lDaGr73Yik~`&4sk*5f56M6Xze#J7VUTAWQqgVWiV=(p?i3ikh~Hy``khcC#xlEg@x_-dZ_GQl?m$yio`#+04fPMlQ+4~k3+NjZbXb$a!;0Kf%H#wS zBzonRmSk{Y_|PohI`qv8bvyEAhnS9q-ic25q~l&$enHN-40hqnHC8oT4O)x-q(sSt z%%Kw)m)Db zJ3CPk-pVlE_Kta=jR83uKJ@uTmHtd-2C0^+<0zynWjHsD^L|?YMF<>NVb;5ILcoGd`9eQe8G|1q?oYvbV`Q6YX2G>^RxZU|n)#g?Cl z*)L*#Z87z}x)@q5Jgu@*=Xxx_6E<@IuRH!@)-^S@XoUK4#0hJk&iF3y= z>|(h?HjpGTk*eJjg=9=xlL^%+D1s|VuKY6;pM?0`0h>)l|I&gTV@z?d3pX`yK(AJp z2Us@uRV7T~!*%WHOP)(Is)x41m^GdExAFGtk*X`m z809X}+Q4P_-sxN11pJ(pRm9|*rCFk9=<65;ZF^VT@;4sSvH;=v+XSeeRxHyhQ(Bie!~ozD|}ae#-E#dD1r_f;C8}G!+8+)oqAn$a@xW(U*3)04Od;xx+#3$GDHR0fw1zbOOQt0Oe+i9HbdIo%ORlMFURK; zx#OvJ+wBL2;fvUffMCezxN>Bae!J|=dboNmW~0TGQA*0@q>mO7oJ}%WnG`+avO{GSb7GY~Khjn{M!M|TRT(MSu z+EQ02HOES7yADLbO7N-e~-o7?zM@?GTl>9eG3+fR`Z zgeV&d+xE5UgU5k*s*s@OxK=i?8btBs7vqIJNYf`=O0jUqR7GLMf5T-nx|O>WAAX{=V@e-D@6N zC$EUAatA#(u_<|z>~oMz8l1?-{!|DZZ0pH)jZ}IcjqJPYn^;x|ac}lak?J;Vvt|uZPj^f;-lqHJoPEy%MWb6>0}sw|~5o!U%z;g+!9oF%2y-cd83Zc&%K!N@^nf;prd4NVwg_#`bMpu|9YFc3rz= zC5)oi)1{+6fFi0K_e@`sRM%tLzrQ}FAqx9Z^Mnd~ ziiAsgl>$?m<3gbG=d0V5>=u_2c&J$iPFz%RoRy4JNJ-xgw2EkG@7qF#MieDA+;~TF zC60tF4Q_Z`o>Wvw<3P#Kzj|qOXslL#J2zWSIRdV1=Vo7{o+$hwCHtoAB>8--Yh#Q` zTmlt+jhB00%0{GS)2-n{RxxcgHV+7LO{Y$G>N=cDD_b-hdhedMr1cd#(my=BhQiGQ z;tHpb6P~dAyqjkS$ct5q-A{C;)P+DHxI{+zOP#;ay{-sf@fVNB4K`K zso*AN3U}w`gwUI++K|Ce%1PN(@rc5J5k_VcT>5Av>#oW`)i>1I4z%}Rj15f6Y)3Fp zZfL<=H`S9oaH3{Sj|hD2Hz7j(=srgKv6xkRq1=$zpuso@dzx3~jzh+xZixykcw8MK znSO^53<(+2OfWolm(HH_v}KPjG`70k3XZ>I>lB;TUfnR+$0$E0TXxU2IY;j+{Zi*0 z%abaTQ!TPJOe)YIxcZ{HHY{qu{SD}%8TarVyHWf#FoQ)TrChMVf6deyzT2ewIWpKj&}^#@oBk$%#yW5^W1;WQzJG1Ze;@@GsHKNGQ z(HTSY!{KE1)}P>Z<>qary-G=8i|+;Dud>mkNi^9=D5Lun*^QV*)q{3An1)_1SE56! z?#>svNQ8r5xPnYS<4{gdb?-L^e?ebvnfZLKz3buI*(p7aaa5i{{MI>%bpa6t~78DWtm*}R-g%~u1tR_*rrS2mFH zr2T8dT#?~~o#pJU&efQfxKlM`^fm=ai$+)}bC!*dK@?ZNeEdvCKj*>n?aobO3*~{k zp5i0bD;W-Yf!yBZmUNp?Mr6&lbh?b;;}qIrF8v9r4U=m_YaxS17PCfJMzyJ%GjaQ^ zo3dnkiKMuaFw8}!B_zZ~=*vsD(?(U+V|GH@vF)Q0185fOij!vxG&K$9!#+LMb=SWv zPE&R1xqikop>>rMh}O@PkH+0(a3Q*R)?$ObUZ+!ap`>N*_0 z`eBQO7k4$p=$6yCFJ5Kf&`o?jIKmkI>BKP7$V4k!Z|7$J*acr{5qT5HRhfH8(vW#t z6MUYM1JZ+gDrNt>^E{;@+T&);MsfGSbVA6{k-7Dq0zFsy-b4 z2$@l+t&vt@hSKv6#`htbF9zL}LN4n?+|C+s$RA%!8o#baKH$m40IC@Rcjisn%pW*pnA}YzOTr4Kjq{Cf!VZ_g)(64^Xo+TG$02g3R zDk@$a;A$MRmnp&a`))b^_{hFzA8~F2wwpp%Y}h^|r1OJL#((g_Q+YBIt>TKTs@hr& z4gOeFHH)DJ!%HfOGYKJ@(05pgL?hYv?LlN^;r@1&`P(sl367#Q~- zUb!xH4h_Fq(+XRt07@Z!(F-+j#bS{f14+8!R~EhG4Kd;s5|LF?G2(^N%=6!L2-(+n z)CQ1$uz9r!$!L`eL*9B%CO@fnq#NU8lP}kb@#1nk^p!ER{Wf^H<92Er#)k=MBshT2 z;c)h4fwq@E*N!^58D5z{$VH<)mOGRr#16i*3=YzvGIil;ivy)G&f5}uN(pGOfCbb7 zH3$ulJ2(T)Ad>SYZ89?9=ZtLAPI{qkR`gPh9@?hqA>{g^au7pG^|{<;<~dsT2t4Gs zA(A{>!LIvhgebbJku|GOm4&C@l++@&O(M~KH+AZf5)9cKGU}OM&W>Lf$#tx)s%cOR z*zzmmJxx0dmmS4jvMJjQY;ot3cM~-!jaU&+o6q&7nHr$G4&m}ieVi{`J(~WIHO`(f z9HrT|HFRw-H)8fB`al^A(+p#lmDrRuLB+p|xQ6x)9r8wh&xVzsWM^h6+h%ouJ0Ilx z9qJ#B;e>SHX^0Q%uanxJjxKD+btn-`H;s}ToF!C3YB0O_sW0-K8A1|kA|a!nW<4EC zQTmHDpB2h`*=k^=R13Y{v&UA_Z5qaw$`a$3&Ns~$4@q3U7z^5(qraGhnGS`hSpS=! zEx1(BniU5oEcqh^gr&E(Qj_vGlX{f2X-GJ<+bi!FM$M_C6_jhG$BgVB8IUflUo26R#k!}QI;YwGzms#YZ+<44)W%S5EnKii9Pw=HYWXD;da-B;R_@MAYlDWb#&>K%}hu#N_g zFQsQF@2S8Z(y&ko3+hD_Wgl>SPRf{5fiEO0(%l;VAaptVy7^G5dx&4LNPl$)OG|l{ z6yY2cnyYoKWkqr%dih4bRy~l1nC1IW1Y!qy0{ta5UyNi(2o z#44{L>azOjpTZ^j>$f6Dwne()-*d&iC%Guea~G4Kdg2zxJKcJuh*KdH$C0^xNmVyz zap;zsJeT=d4wd42D#xQQX?x~3z3ZV>we-%F=IB^vtygx9IJ**A>1DB^aw299|9wxf zO3S2COM>6OO{1}b##}8$7rCvdv0u)wS8UjHQ>IsqoIn$XA`sB$!g&zE2i;sD)05BT z;mVOx!-ZtozI-N9i5b`o-h;HjZ%#ixJSiH2MWsIatVNOu+cs`55C3t3AVXnmUufq$ zAfdq>rLG%^31hn!aX(WxV0|JWE=Oz_{`f;iic7}wm}+@8+%!d`uwB#KI={sWM}-uu z509;DFgBdM+gq0Em7Njb%TL`?p@oYxi?`y;O~mRnYOQc!WZok@!g*@)Ngg1boGV%l zkJHSLYa>4G{Jd}|`?S7zJhO<39XH9fl-A<$73&u1L`ngi3+&S-TSle1PLkMDnSQ(6 zGb2?RxCC9Kd(LQj;+c*?u>IrFLuS%Up-uz&*BnuX<;h~h)G3-aUWNp;jBb4vD^Juz zix30M+P%a6HMdBlwL@&1-UE3JS^cW`OPsk6aFX^IcMAWo>TrA_pGV~F`s6*hA8JF1 z?kPszvCQ|(`OAHa*Dz29Oq{QP=dxO_VVYHD#8;HaQgy~t5@f80zFe+KQ%whK8Yju( zU5=HFd##5_J(-B3%99(!?{2Dv^jha}8YlYkV{+rAk)Eis7}a3^3OAPGVd$OS`SFLF zAJa$kt=?`@bJ}OMv>@$tMrs5@#-mXNDSN;Kb<)POu{xILS0ZCh-otZVj&wfr%0EWj zm4oYN(RlE9HtH}f-~8|(JbM9_gV#-S#rQ>~+_7xPScuUfwoy+gN=SN3aA+ONt*tpwf zHeA?BB3Wrr-JAXRQKqitr%7W;h9&PDgzk?xeMyU~)%0GUP43$&6iZoQd_!#+;e2VZ z$+iA_@!LBYi)VC83{^g1E=e+=->@L@OS_+}G3~JJhvp_>moPf0HsBQHFolwI;wr_8 zDar(yynqUG4x9%3d`<(^9!phgwL3_)VXDta-7g$&*uF_{2|*Y4OC@y z7I&7^e6Wp;i6;l1!s9I-4fT^gw!{xob)3F!kIpqvLvB zh6PijLrqX=b;I~J^`ey7^&E7cqr`3Bm+pJ8Q6xut5t9;{ib7+?<2`(mx`jSuNy=>lIcH~>9mQiiL&8SiF<-r1jp|TtN1oEvpkLZE@=LE zJ!*wnhWcV;BqO!Hp1{MH43HLB6(`RMi5cnJE_;kC8{3fNR*iN?ITjLIiraZa;aemH;P}2VU1Fajxb~Y zF=hC5Pc~9D;bVHG8nC+T5Zx@%OqJB}WD@iEf~-MA+H}}>Fhn1>U}86!q4z+WQ~_g= zZJBmM#lV_@<;r1HuipQRFrzkS!!X7 zY^L6n(|T@5WzVYix-bFEMdOq6JfXIdemMwNH>8#wf-S=N^0xdJ^`RcmNr6W&b#4sL zgn3G?zlHS$jVFV0JMl|Pn_m60uB9NrVdF+@%ni+Tr!SAUX*?Ffu%UW|YlazJa$~pD z1}@OxWSF2x@$^MqDXr{YV-GGg6#CVah-*$NCvoXJVuZj~q&Y1RGE+N}D%rCi(TcQc{; zp`ZRvPFPg`m@#4iZB!%+F@Ma4F{jAOJ-nO!`4dSg?!j%m4Niu_#vAoy4W~kyC-hD( z!kTg=-KytF8v_b{K1zq#@UZCe+i|F5y#Z%dl%Iyk7B)x%*Jt=WlC(no3P{(4W8$Ixk1>L*PV@;|Oo`+7=b z4RvNCzvgoKJ+{gXR?X_XU*F1d%YR<-81*HHYLXeQic#Iu+=wCh$>9XacJ&B+4oF*X(2<_-*nqQDGDju8h$(P78HP0mDpJ6h<&C^Or}U>7Pu%5k=xGVJndg6HnC+iO+x?Q{kx&9jo|K+LbG}W;;qFFDCe*_Pa|jz=9}I4og-qwllj@ZG zM6+o;olRH4Rh1T?@$+YtX}Fh!Z{NOyS-B@F$)bavJ($#ZNq_5ZHdJxDu=YyA8;XFO zhn&;wI0O07VJ$LxrO1Ve!>Q#SHV%G9_t764}zT4S@9n1|K3nV!$ zd0RAE(`S&8B4EeAtoPn^O_@%mrWbHn%9!DS(~Rk!nf=tTvgk+HGCsu92q|2nq0yR2 zs5p5`?RdGcydC2b0=Noi71uI=VSy!mi3G)+` z^(X@hGg2WfR@RS*qw zEal->-Lf@awQK4_#^kCL(W@c&u7iVMTe*urg>FT3#S7|UsW@zFBo!5+^lNS2MpP}G z)2)(8uD0n)A=oXbp}Ee63U#2no;#oZNL;jO^^q|f&*4rN&-{g$)sfoq7{gKHLF0xQ z7u0p=5OaWA*|5x@Gp7B^%eanKd7a$oQTp*W-VE`CR<`RS6+HIq>(CTm#?))(qSFKdz%k zR8OuXbx?m2U+42Ej=H|vgh_Bza+Rt4A!E@Ek@)+8q!Mk^&F788Sv-)JIM($Z{K3K% zE2%y(cCsB^`j($`Cm3G2#MD$P`E}y(h8y*k{;Oo630!nbG((yi-_&yQ)vuWqN2@~> z>u1F-81CGV+X+U3)GTK$B%U!a9!G--?8QCC1t;{B^}*^Gm`WbJZcI!0=A7Kk zy|3>=)C5qQA#q=v;>M^`1nX9N>3k@Ja*dO#Pd*sfM+nwo+{*lDID*LG2WawTNNo?O3G5YS7??&@eIwj8 z)lG5RBaDHkVmU}KG~kAd#|;}c>EY31Ks^Klia>N4bF(Sj9~QNQnq@nz29h~P1n%2m z6WcyeC*B46I_y$<_#Kz3w6x~fE6>5mrExL%o`z|yM{bheY7Jmpah3S5RE&<-{lM@8 z@j}#-?cxJe@$yS%*Ank9vn)h9mfNhI9NsuTKff%$sJ0{aN=7kk#c2eAfU*&ml!0(& zulYg)Eyo}G)8ukXYDdFVmYET|FQ>qhFboX5P;nC-#gE!KVwI|#&l~l9w-$fQYjYEG zg3`^L{z@Bf+Qlhy+4bYZaXy6IHaRSi^=DFqs1dch3HUMtkf$yTd;Qf%}Faf^DjBmLv`%~>~bFV-4 zrr%fQA68)CuvaHv6&UifoxJnqIz^bw-drS*iSiniT#g@-#eTO2vJcqCTg&or*s}G= z*qFlwbB_-KEY0`Wn-g#n3=6~mtG)A%YN}iRJT`n45S3R^5U{+01qc>ES`ZZxX)4mI z(u5>*LQPQd1rd=~5D)@HK|p#v0 zJhb<;O~qGnsFhO;6WFjGmsYQ{N9|&~s(E;Rr$kZH^z@XK{g`cFNq=q6#FOnU&?omU z(~4>WFbXAv(eIS}WHOB~+VcW^whH zXhq$aUjPPkYT=aP8J6gZ)HuLQBJbY5%=H7;oVM>E@Go&(+sC$WbCdmm5ep8!zobE- zNzbi{I%Wd#!?x%PCWJuyF$oB3>X@#zO*as#@Ewv|oBsY0EBPaG4s_!QM!A?tfG(o+ zZ3x0ch@7@dnd4|gI1Yr_JG&KfEZsTS@OI=gI+OKc8}a zn(ev=xsU^|>MlqkpB8+SW$HFZqJ1IUs@Dw&G>hmq%G031A7`rIaQ(Fp=z+s6ulc86 z5V%K2e8V^Yz$^fpbk#>1Y%Iu2G<67VCC=%03ZaZ#s4}9GP-Oy8H_R6NikjjXxK4_J z7q$J)u93k8)#jOu+HPHpf&q3Qp{g58(t1GlF9>}&>nG%8glR;T3;lE;K=KQ=is4omv)vU5<3 zZnMq(>$K_d?=H~f-m3=)wIQBiwgo3dNXG~2sqteM5T6e_$4f%RzxTV$9GH1|MW~r1I~i%~q6yY* zt8ylP@@xa$*G`!cO`&UIfR+KLl_}kpGO2oRXXcWKw7F1HR6$}%5yq=7fhlpLUY!;& zY*Q1)e5TWwHebpxhnOvIz(0{Z%u`?sCnGiDzuBb1e)V%6!2*ua;LleWRuw~{1==H? zQeX+=@Jl-VRU%}7IhBp=6F&=6xQF*F^dL>;wE_g%uZ1ZNKc?Q(Khyde=sA~VDxmg5_qHAg z*0SDwtQBbQ#Z#q9vR3Mm?S0NWC&i4Oni}J!WCsMgAi=3|ydVInr}+>)2y+CsXIn&I z3ax1oA}iuz37<_M)~HiK3GeF^3cnpxak{Rg(m#X$DxoNCZIhbn@Db;P8;QTrIUI8Q zr)!|Euac(Bby}?*O=UMxTeEs}-Z}i@N{v|Z`*y`}@7WbDA&TMy(@!5#@_hgFZb9vZ zn^L;0IkIekhUb|cncGrweGV@{j#e6^*hnd27X145Jk$!7bFoN zNL3>(eCg>Hh4>JHDaRzR?}rcq+P$E%)J-9HSil)xK@^p%j$p0~UX1YD%> zRgS9TWWS03jCdRaU2b>Ner%ZO^=-lGT{)7vx9#Z`?@B3g{gck!LF~MQL!@KoKw8$m zTj|OUT|@h1w*sO+S3SzTcBXI^mGQ_R7@#L9ii9o5?U;UX-Z9~DW4eVG1m#hbjg&e* zwkx`)!2lWa=ILQK(rEa|y$8hNPG(h|=HW@>Vdc)SrN*BrhJo)XL$e`5jsTVncq7Ix zubjb%ePW+jZdS(n-@-VDjo%)A_{5mEnp`W=YjiS+cJ+IkGU5Zi-RyCPG0mM5U2x;p zuJTz)77(QnKUKLXpZnfPI1_y8W4Xs8g3Hav#MxRI50RSKnfauqG_}3M?yO%+X?{E7rLClOM=4ELrrQ4R{l5d3SYyFAu zvT`8z!*-ET22C&CRvTJyrXFV+;6K@Z0r8d|v_BRGzV-Cq!mVlsIp4FhBJD1};h%mj zoIHBBq|=lpeMX|FNWGaG(UpAvmLL%K&noD^-lYg09&*F>sw0>!X(Z7 z>6+{Ps+w<_;m7I$D?D+-@sVa&v#I9oDpQHezVEV~yfb@P&gr?r!+#C^QkO&;Fs|m2 zqkoA#PhcfKDm4I%Q)J`wTM;il*19Mu8N0IrJ;;U-s<3z4o7z~DhgD}z6acpJTt77f ziaJh91-{-$mQYHB(;!T-y!Y=P#c7jGza#s%$0H@rpZ}fy^tVCqU$83MMgKzU*e>~( z0Lkr=r~izR0;Uluo@E1}L`iZ=7tfEJ@ptGPN$9RjR)U$spyz>2FbMiDWr|9yA zG-Q8Y045&?rT+uBwY?2K?d+DvSBF9s&NaNtKI|E~b|cyoQmZz#xJ7xA(SL>P?P$9q zj|sXQ;4Wxz2Dl<^E3VC3#fs`Ef*k=R%$DD-Qf4nXSy+w1@UpBq-nEG*!{cS zIy!&Wuv}w%*RqfHUQHe9#VFfs93VUvi8HfG-elVuxr&IRCDMRLGu^vYshr(=1R{G* zAFItap;?fpfzgYbXuj!~H8kcIK2i8wL6YL7j~FfFn4;`De96c59H@m&Iw_cwD+#n2 zT~So`R;ZAU4Lp_#H>a8{ApLGkVFJt{N z##2+zp}+J^x)!k&UM(pO-ctMhLeX@NH6+g=Ilk(Y&yi@;Vqw6;>5=%`dn`ZeHcPzrOXHukh?;PF*ZCCQQ*`UpRbRd^j@eiS)^U(l#C4&*%#Gi=9n1>l7 z{V%3utOa{MdPa3>uV~A_)c0z^xb|VBH}y;Lp!B+)6mzKV`i!+ZUs!{kcAUuJz+Q*)yF{=e z82?ADS=YIh&@`<-_48L0r(pI|-XXzt2d@4Z>S8ZUYC9nQ&R zc5P&Y7@MkA-29#?YcON!qw_J*7*y^j6a$UKP0bip zIe}(sI+8}-X6(?I_XJ4|ES!6ZZ2Q1<-=*Guq`KAGu|zFAQsY;5SyhAU8#{Y&=MXAG z3Aa%f#;*IbKSg4$D)afG==>WNx>N?IzY!PC%G_LkuEh`>loM=Sy>vkob2m_YJf~EEdkLa)ex8TkH7@^E;af ztDR@C&GkJhf%xUpu|ZS!okeM9#L*5=aU2@2w)y!?OhKk$n`LjmF32mHpU5y zwm%bKlNUk=F}s4S8q`PmEtexoHbvy}PBFHf#!T;d){SgQjuwo_2jVE1Ya6Q-rLg?+N^1@K#v*_Os?$ z_CJl(Il#{bwZwRfeeq0G0n8vm)EK03p>gXjV&bd*s&WfVFhU(3QB;3b~B^vTF?@6NMPU8W<~E2YlHtW1vD5 z!_Bt_wjkC)%WL(&$)ButDmhWnAcnaA)9%okgEX=O8T@k(dGpJCy83sgz4kQBE1CDRl29U-n(9TwFK=GJPg324)BWkV!VDAEtb~-X+*~X84Xvx zIQGcrZq;5ba8WNB(~rKUaZ`Ia3LU@Y)jHDFx-_(%@Q4mCu0l&}pOVtr~2=+1Mw%_uSyoO~Z_ukD}K(>c75JGOWH1F!EzuNr}s@)0NYj z31{kgt1b3L0bvBnf@BDoJvu?yg}rE6^I1ACPZt@>%nMH9qB2$oJ)q8*2MT7lN52F-hL%Jd!)ur`DI-6}~W0k*7Q&n(g&#Fx36*cQ`;d7BXZp)@YEHJ^&0V5(dpnUR7O^_tKM5bM50}%e`7|2z*s-?0VL}tP zT3!RENGeu3l%&oCw#R}^I&9CG)SyV6&xu{-UoE=3)huF@=4oCg(`SOF*PWtaftwb^ zV1KBQw3C>cV2&tR(N8t@QRZYZ_qBO7`eWO^{^QmBd2&liwfY%$O9$5@;hTFVKX`2Y zs})*%1fHlF7RRk=<89<=5N414@eTI2>r|FA=5A2lC2LuZU5HVL2u&{|aPrttI?aeB zPO-&(pLEJTu^-QT^9b*=o_20-{7$g4Z#LK_S_@y18`=esU+rW40B5MiE;KlJg+Ft{ zDRk=71L=cPyN}b$3|YULs_?BeiqXQMEjuXSoW0{_GU^i?{{vauW0$OABzRac!|t$r z`{Cz;#J!ZpqL%ucpC{##_p$C=bsTtM9zCv}rIW~=+iR5?B72LJFhJ;lWd zYVTJHL)f@oZ8XgN(B)T@|Mh8L2BWz&lJ030%YO7`$n zj}PLmuY2a~_Yb>d5kENlcl=E5 zD46LA2(Kb_IA>osxT?l(6a892UC#OTr2J)vkwee9liA>FSMAgc+N==Ab580`#AI(I zILM#BQ-m&QeQ(hA5Yh1q6k40rlGy?Jynht(z+1QDXuuSOCwG(HR zOj4)SpF==sF+_0Ii`hJfgX2R$76O5tBb#5!o?Ko@3Vu}n%|u1w-mE+dzuAAK{||er zAo2%HoUDhOjMw*z)g$?UW6W_ih7kewn>P|EXW3if;pR&tTr*~C|!O> zx>VNn(w>t7O2Ko6HtAnKR0IV~qkC?vrTec&HQeb-X;2?nVUI16^uuv55j@Gt*Zi10!)1ge@DarpPt$M-#6F%|25j~5&vFu**^5|R;{K) z)cIiV={dTx#$x%%_N;qz5X+P?nZHs$T==1nveElh)28_EkLzdM~9hfvhE$ zqNBPwyjzH?ywu^^eNfH|6}4y5L0=cHy-L8hZQ=&0*=<`jJ(<7`ADREAj(=8t$nyQm zOs(!e1Dxz(E=DbMuENzcKmbCx9jyy3((g zg$0;vTf!lb>WG1&ZsaJ~)eiP(v26jKy?K$f3(-EbsGe@Ouyppfae$4wY7x$|fH#Y% z4r`1p9stt6Y!UF$ym_~x;^Lm-TG|ERw1!noiB)(w9p!p`3a0iXmh=JSF2K)qOt$rn*7~1orD2M7?tHnecL3PD zfAF9GGji`gCnf+^O4X_XJ$pl|CA+R}lzQ_?ZQX&1o0|t^Xe#zwjgF7%dxBg1=sB5d z(0{tls={?W^kwHA-Y$e*(AMgd==M#O6w}JK|M~Z3^v}g@wtn5Y^>ojGIDhV5rTax} zmtvDdIl2aD3$f<=`gBpzG-cFz4r4$u?keSU-ovkmpQw-+Ah7?=3$|rs19;&K5sIgy@hOErA#ritGt{)J%f5sQR99ll<7=T(pmCc z2ietzA)N=S9n!i0C{@bVWarVp&ai~?+T@AwqL8&)$+g`^*!AYwElp&&djHpB{>noK zNb#*Y#PN)GdBT%r!F?jaf|NeTQh2mT?XzM~a*I>3>7BQE!gH6goo*6)A$D4-;4Be9 zc715kQM;1Kv13TVS+$F8=+8S#l(Uu=eAD&1}r!jVea6**fC|jZQh} z6u6hle68Es8@`_%6jQ)@6xUl&R(n=Kj;wmw2hCu)7L>@SFW=19R=(!1@>_spYmzc{ zHp7~zEi5%N>*v%8h%6~_Rw^YPpSK=JWn$xz@K$@T9ke`_ATM>(`N`#Hi_x-;=X0qC z65Iu*F`C_N$hulIR65@T5QPAVp#Y$$DX^LZIe@1)n5$gWeXvg7aO|kL%WtSlCy$|K zm#L3M#6^n~jJiwuC}k9=exeJsUf8!nLrv{ihUm!vieiA|bGnSQttY%3e+1CV3=Ex< zwXgYe5cFndHTF}F$1zpI>)B>@i67qp+8Q7&NmU)15zTrdHVc}#<+$TL4O>`N!&1Q3 z2Bb);pZs*IJiCTa+5jN7ZZIPIcQqdX^ReF@zhrh4p#)UHlf(=U1r}4+y+iV? z+omxTH|Jo!FGnl1`Z}Huz_S%q7`=)hV|8T`T-Tgj3`1 zTQ~g{_Wk5p4?v^<-Bjv#@9E#2*^>&IrtKC3HeCe{l1oj~4wjz%l{wMshFfUPd>(*!P`NA)ot)3!q-+-r0BIYA%v%K#81@J!lXh zF*lhC?sNEgq0Cv1b(Pm*b}Dm+)k|7Ri2aKG6y~ot*ddj%W&x<-14XZ^ z@}Exv`v=aI{WwRR0IDdv2n+H3m2EQ-@9WVP&3c!zcXv@7Nc-#|vCA<@3!gxtckCun z?tjruwA~t&pUdkXi<&a~;3;>GOLFIozQ5$zo}zd*B^f@~KKmY%FY5yr0~FM4YjLcm zNwW11ANPcWd$s~pg5k43_kCCDH8a;jbGpkZ9Nck-|sgo z9@h&$bUV_(Gn+VdJ|ON;EWtc|oToG0dG2(?XU{0kkh4v;=dNhl6|!48IPkGCWAEX~ z7auvUqkm;xI#KbNZ0nMt{n{R|ygq=qEZs1EUOJ0>UgWsix9^v(-Jc05?=cmGwtEDn zi{P{2sX%+L?Q81bbSe#J<9|DO(@`f==gU3H)h%SPsTZu-ZwF(khovKJ>;6 zu#fL%y-cv(!U0>dXfx-}uBJ;g74eb3e+ZA?=5E&P|C<1GOw|`q$bi59L1x@4`adk` z{6FPpcS`ziAOsq(*)F+Jm)NZf;+yo_;i3s+-%|L-2LPPIg22sU4$X`|w#MM|C|h1& z!d^FdfyO@uwm_m&MP=rAtr~yJfhZ6rJ5Gj8)`KpbF@Q15@yD-EER+Cpu7i@fhIFZJ z46(-IWgc@aN%>Meu?Q;*>fPGe1pK_Y&6Ldj33p{lecT%HgOdWOeGZgWV$6Ii=)0Ie z;~Zdk1e9DU^kg!n&4T=$9&>n4x+FB1w+sF=v1Ph|M$>?@5<3~jvcH>>7ga)kn4~gV zLnR8oiGOuVQfPprFnGUw$!qbT8^*?S8jmY~h+2@3ut(kL8LN8)o(^xhQm?xgV^{m+ zR!QlBL)O`#S6ecq$~6FHx*XQ@{)km~n>h*rjm2or#3)VqYnG2DIn)h$*30tudHgIF z#Bp!NVpo=74FZ$!RL+}(o}w}h^AyTzvI4wCe22hQiR-FmCmortQD%+6(b5U5wN zsG*yni6us&ABJgKC*89^xL2BtO~n*46O6Ed!|fsRTxY^!`z~xwdDBrjIe#01<=9sd z!UR*Xgh0QW_B>rvDzrIi@BHn0d-jP=-dt~6`1i*UFvk<6t-2VP7RG<)6)})}BTciO zTVo#jBP(Y90S{NR%xJ9)7q6MW4Y4fmG1m^0HQX6zNq1W~5dvD8CT*mW=by=>aa>QV zH(BGB5z8>oC9lmjYYQ2^j@M7bcauevyC62%0fI@2n+vQV`Y)@KCAE%Du%xSE!!HpN zU9Qub|niwzRt9xcLV{Kf@b_Mu{Q5Pbs`R z5#1$J=*&8)MNu*3CI&=;b!+7?t<6cx~Z*ldiG5Ox0qbSsyt2OMX8%K4I8N;=b zHmKK<5Wp5TIS7NF31ow8#lYE7M{C&1gYA#-#RUqLYe>V25crISThFS3hkk_z zJ|OcVgbIDVS#cYyw~Een@{+nMs1kMD)cht=j-tblnh^U!ys{N?KDx;zQN?mS*Q7f2 z?njm~P(xpbhL7PLKXtTV9G|1j?S_b<} zcSIDTBX0w&s(j!8WFKD*!guh<^P+bUFA<1nOvV9GBpuG?f(Pf3%Pn^6i5LAEVt*Ra zG*%H-CF9H{xd)PW>9nT11&bvR?vI;9hf9_WQb#HFC)G=11i1l`BxD@MYR~fd--ei~ zfX!(=E+n9ohZ$+jQK`_bZ}tE!>W&>T@Wj}_B9sv(RPmnjZ=Dyq8>&f!u+S2zMTh<) zlwW@ZF!=F9dYf>-_Q30$N??`NDD5xc<{?sM!G?S9*mE+vbd}&@u2opwKJ9>M=V?OQ zZf{tZ5opCy8Tlo&%RC%|@D|B>X;56MOMsEl665bU7UZdhmlkHk{NkZ8fOAj+5zk3OOuPuI$2NM<#4Xt~DhCvz zu9f#&gPq{?P>Ait?wn3_f7hnx`Q!SMF-NVs^)A3BIk7jXX@Q=V)2u}7e57vlcEb+I zqe9nrR+KQLrpW6Z&c19ZGa`ZXIJ8kkQ*EWm3$byE-tckELvetx6E}%tVAoBDn#m9P z!%*Qx+~Aer&u*u0A#SnZWR0=8FfKVi0=+VZgMi~y-+AD{7EBH;{7AuUUq+Y-1 zGp>%~zG7g*7Q-}3u9YFfy3cr)2Q0lF2RiJ?+nK97QXmyQMo^QM#WNIaVCQY}uXbx2 z{-R{jw4#gqY$>y!P$IsD&PoZ$2+ej?FhTDyZM1kpe(O-Z?+4o&N^wgf!G=VzqetY% zOjYG*PpUjsSw#}3-cDJr?vrh#C+;Dt4nKc4bx<#3)DdE$Xw#lUu9XSgTpe98dG28U zw*16tYr*@$1w+Ddk7GF;y~|Y(&{*MTh5C?qw$y#_yTPf0(JlvLk_SK8F`Db$D4|8H zP|3o%icUrkduW(Kw_60&>RExOYM(ECmb(@)c17TtA24!0&6|k-3g2v1)Tm?cgKYSx z+xbAV6iULY>_T)SlzER&aGjNjJ(BKYs;Lgp(rjhFqBTv`^LY*3=Gvo=DKm;#8|_c> zB5tTj!s>`R&Of9q-2&4m0WKq?BK=1%XyCFQvMmMHZE``E zdWgKiz_?a{u)0o99Ly3^<#TFW%M|KEvM`!?`p_y^SmDU^X$aSgUT=&fB4%L(7J8(ozN&W3yM8HB2p(2K6WciYemWt~z2@qIm+jSD^9J z)+)Cw=Jdr{5_Hm3if>c@dvAblF0fX0d1HlX#QQv<8(lH`d|Hx!=x0x>rbXvvsDCRcR4!NBQq*3hOI zEP0%-LnrZG00YoXEGLQf$Y93>ki%?_1L{iHB*_(`i1rE)U62|8>q}AW_!+;-2Vol%H5=KGC$P+z`e_`}pe zB|7OV9Ku#718{&c;m7(Blw%4J-WiZG<%Q731L3nagaANUMU$W=VQd5VrcAbM^d14j zqkw1Y_`tyM{rnY3(OHH~Q$3wHqF#Va-DBojQc2pSybSAiixmA8b7AIo=g!kkBXTiT zek%%(lchS;N=u2W;CWw!&JYCw(-k^8U#god z1eEkc7rC}p9s_F~f{@@*s?687Zdn;WghP4-espd5d$Kiqs!A|J#7fJXtXS;ETakXw zFN{oR)lgVigjq>Qqi6kh#={@7hlsu91QUW4MUH6I$yOn?wh>0Yb8IM|ipG*aK4Px{ z)1lixB}DmE_Z6$1sFJ4nb_l;N~%2MGvry=aJuHZn_L<4Mes+=lr~ z2^^~_L{-gyfvrc`eV?`Z>jBQELxRrfv&NYv%#_V%=}$)$bW1lhOYk#0>McBXA|2A} zxqiCl+K~g_A{xd%b&h^oic|@m^^0}yJX)StzRqFWkgmwxd!1xaIlL5V4b?$>%N9w$ zgy$E&u_T&$K0t7vU!jqg^eKV2Tt_k`nWao_5;>J=W2$(DW{YiPdM|XR#tn|_iks6i zMZrqf7eX3WWqUo2>9!4^>~NOO7C?@vZRh=I2XoZJW|aYl@Yig~LA|l7ObOM#F*_Fn z)%l88xhpy1BhR&|j%0k@@O+1|xy7<)Xdpv^tm&4g)lYbW>2KWfwSDw43UIN$SdB>I zg19bUv5rksuQnN6w`ZXhOtNCS5#jjQoh-VU zFq3a10b58A9r-dtAW1Q`aEl;Sn;|Rh z980x?slIVhxc-BPy62*7a1^z)cPykHAJTm8sBLJ~$Yc>A=~BPj1z9%m|7SN1b;Hw45;^rmX;Q^hxgyG@_F#iFep2k>u51 z(E}D(RoDYD&`>fZA?U-{Bl=MX4+s@Q!EU;Lu&D9P!6!r{g4Q(J|L`ykRH*E>>ntQC z$Ib>76y@1FOR-O2K@@*Z&RQG3YBb-Y7RIP>C?^eec)j`ON$6P0q}iNChP|7reFMRR zgaz)T*8ZD->FzB-aQFoENoRpXSE@Rcg=<~nEfqMn?ZSFD+1p4z+4=I?)Y09vptajL ze?$?3>fBol#y0J`h;4m%j;KTNjIi`j^=}D~U(Gec{ol&JK$_P6C@1iA;6L)HwI4S)wY4}R@b9CX jwh#R;S5D4UY|1!y&Du)g+<-m00s{KF# data +I0408 15:34:34.322448 27193 net.cpp:380] train-data -> label +I0408 15:34:34.322466 27193 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 15:34:34.330838 27193 data_layer.cpp:45] output data size: 128,3,227,227 +I0408 15:34:34.482754 27193 net.cpp:122] Setting up train-data +I0408 15:34:34.482779 27193 net.cpp:129] Top shape: 128 3 227 227 (19787136) +I0408 15:34:34.482784 27193 net.cpp:129] Top shape: 128 (128) +I0408 15:34:34.482787 27193 net.cpp:137] Memory required for data: 79149056 +I0408 15:34:34.482797 27193 layer_factory.hpp:77] Creating layer conv1 +I0408 15:34:34.482820 27193 net.cpp:84] Creating Layer conv1 +I0408 15:34:34.482825 27193 net.cpp:406] conv1 <- data +I0408 15:34:34.482837 27193 net.cpp:380] conv1 -> conv1 +I0408 15:34:35.056412 27193 net.cpp:122] Setting up conv1 +I0408 15:34:35.056434 27193 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 15:34:35.056438 27193 net.cpp:137] Memory required for data: 227833856 +I0408 15:34:35.056459 27193 layer_factory.hpp:77] Creating layer relu1 +I0408 15:34:35.056470 27193 net.cpp:84] Creating Layer relu1 +I0408 15:34:35.056474 27193 net.cpp:406] relu1 <- conv1 +I0408 15:34:35.056481 27193 net.cpp:367] relu1 -> conv1 (in-place) +I0408 15:34:35.056790 27193 net.cpp:122] Setting up relu1 +I0408 15:34:35.056799 27193 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 15:34:35.056802 27193 net.cpp:137] Memory required for data: 376518656 +I0408 15:34:35.056807 27193 layer_factory.hpp:77] Creating layer norm1 +I0408 15:34:35.056815 27193 net.cpp:84] Creating Layer norm1 +I0408 15:34:35.056819 27193 net.cpp:406] norm1 <- conv1 +I0408 15:34:35.056846 27193 net.cpp:380] norm1 -> norm1 +I0408 15:34:35.057324 27193 net.cpp:122] Setting up norm1 +I0408 15:34:35.057335 27193 net.cpp:129] Top shape: 128 96 55 55 (37171200) +I0408 15:34:35.057339 27193 net.cpp:137] Memory required for data: 525203456 +I0408 15:34:35.057343 27193 layer_factory.hpp:77] Creating layer pool1 +I0408 15:34:35.057353 27193 net.cpp:84] Creating Layer pool1 +I0408 15:34:35.057356 27193 net.cpp:406] pool1 <- norm1 +I0408 15:34:35.057363 27193 net.cpp:380] pool1 -> pool1 +I0408 15:34:35.057399 27193 net.cpp:122] Setting up pool1 +I0408 15:34:35.057406 27193 net.cpp:129] Top shape: 128 96 27 27 (8957952) +I0408 15:34:35.057410 27193 net.cpp:137] Memory required for data: 561035264 +I0408 15:34:35.057413 27193 layer_factory.hpp:77] Creating layer conv2 +I0408 15:34:35.057423 27193 net.cpp:84] Creating Layer conv2 +I0408 15:34:35.057427 27193 net.cpp:406] conv2 <- pool1 +I0408 15:34:35.057432 27193 net.cpp:380] conv2 -> conv2 +I0408 15:34:35.064498 27193 net.cpp:122] Setting up conv2 +I0408 15:34:35.064512 27193 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 15:34:35.064517 27193 net.cpp:137] Memory required for data: 656586752 +I0408 15:34:35.064525 27193 layer_factory.hpp:77] Creating layer relu2 +I0408 15:34:35.064532 27193 net.cpp:84] Creating Layer relu2 +I0408 15:34:35.064536 27193 net.cpp:406] relu2 <- conv2 +I0408 15:34:35.064543 27193 net.cpp:367] relu2 -> conv2 (in-place) +I0408 15:34:35.064996 27193 net.cpp:122] Setting up relu2 +I0408 15:34:35.065007 27193 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 15:34:35.065011 27193 net.cpp:137] Memory required for data: 752138240 +I0408 15:34:35.065014 27193 layer_factory.hpp:77] Creating layer norm2 +I0408 15:34:35.065022 27193 net.cpp:84] Creating Layer norm2 +I0408 15:34:35.065026 27193 net.cpp:406] norm2 <- conv2 +I0408 15:34:35.065032 27193 net.cpp:380] norm2 -> norm2 +I0408 15:34:35.065343 27193 net.cpp:122] Setting up norm2 +I0408 15:34:35.065351 27193 net.cpp:129] Top shape: 128 256 27 27 (23887872) +I0408 15:34:35.065356 27193 net.cpp:137] Memory required for data: 847689728 +I0408 15:34:35.065359 27193 layer_factory.hpp:77] Creating layer pool2 +I0408 15:34:35.065366 27193 net.cpp:84] Creating Layer pool2 +I0408 15:34:35.065371 27193 net.cpp:406] pool2 <- norm2 +I0408 15:34:35.065376 27193 net.cpp:380] pool2 -> pool2 +I0408 15:34:35.065403 27193 net.cpp:122] Setting up pool2 +I0408 15:34:35.065408 27193 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 15:34:35.065412 27193 net.cpp:137] Memory required for data: 869840896 +I0408 15:34:35.065415 27193 layer_factory.hpp:77] Creating layer conv3 +I0408 15:34:35.065423 27193 net.cpp:84] Creating Layer conv3 +I0408 15:34:35.065428 27193 net.cpp:406] conv3 <- pool2 +I0408 15:34:35.065433 27193 net.cpp:380] conv3 -> conv3 +I0408 15:34:35.076141 27193 net.cpp:122] Setting up conv3 +I0408 15:34:35.076156 27193 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:35.076160 27193 net.cpp:137] Memory required for data: 903067648 +I0408 15:34:35.076170 27193 layer_factory.hpp:77] Creating layer relu3 +I0408 15:34:35.076179 27193 net.cpp:84] Creating Layer relu3 +I0408 15:34:35.076182 27193 net.cpp:406] relu3 <- conv3 +I0408 15:34:35.076189 27193 net.cpp:367] relu3 -> conv3 (in-place) +I0408 15:34:35.076640 27193 net.cpp:122] Setting up relu3 +I0408 15:34:35.076651 27193 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:35.076655 27193 net.cpp:137] Memory required for data: 936294400 +I0408 15:34:35.076659 27193 layer_factory.hpp:77] Creating layer conv4 +I0408 15:34:35.076668 27193 net.cpp:84] Creating Layer conv4 +I0408 15:34:35.076673 27193 net.cpp:406] conv4 <- conv3 +I0408 15:34:35.076678 27193 net.cpp:380] conv4 -> conv4 +I0408 15:34:35.087776 27193 net.cpp:122] Setting up conv4 +I0408 15:34:35.087790 27193 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:35.087795 27193 net.cpp:137] Memory required for data: 969521152 +I0408 15:34:35.087802 27193 layer_factory.hpp:77] Creating layer relu4 +I0408 15:34:35.087811 27193 net.cpp:84] Creating Layer relu4 +I0408 15:34:35.087833 27193 net.cpp:406] relu4 <- conv4 +I0408 15:34:35.087839 27193 net.cpp:367] relu4 -> conv4 (in-place) +I0408 15:34:35.088197 27193 net.cpp:122] Setting up relu4 +I0408 15:34:35.088207 27193 net.cpp:129] Top shape: 128 384 13 13 (8306688) +I0408 15:34:35.088209 27193 net.cpp:137] Memory required for data: 1002747904 +I0408 15:34:35.088213 27193 layer_factory.hpp:77] Creating layer conv5 +I0408 15:34:35.088223 27193 net.cpp:84] Creating Layer conv5 +I0408 15:34:35.088227 27193 net.cpp:406] conv5 <- conv4 +I0408 15:34:35.088234 27193 net.cpp:380] conv5 -> conv5 +I0408 15:34:35.097184 27193 net.cpp:122] Setting up conv5 +I0408 15:34:35.097196 27193 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 15:34:35.097200 27193 net.cpp:137] Memory required for data: 1024899072 +I0408 15:34:35.097211 27193 layer_factory.hpp:77] Creating layer relu5 +I0408 15:34:35.097218 27193 net.cpp:84] Creating Layer relu5 +I0408 15:34:35.097223 27193 net.cpp:406] relu5 <- conv5 +I0408 15:34:35.097229 27193 net.cpp:367] relu5 -> conv5 (in-place) +I0408 15:34:35.097743 27193 net.cpp:122] Setting up relu5 +I0408 15:34:35.097754 27193 net.cpp:129] Top shape: 128 256 13 13 (5537792) +I0408 15:34:35.097756 27193 net.cpp:137] Memory required for data: 1047050240 +I0408 15:34:35.097760 27193 layer_factory.hpp:77] Creating layer pool5 +I0408 15:34:35.097769 27193 net.cpp:84] Creating Layer pool5 +I0408 15:34:35.097771 27193 net.cpp:406] pool5 <- conv5 +I0408 15:34:35.097779 27193 net.cpp:380] pool5 -> pool5 +I0408 15:34:35.097816 27193 net.cpp:122] Setting up pool5 +I0408 15:34:35.097822 27193 net.cpp:129] Top shape: 128 256 6 6 (1179648) +I0408 15:34:35.097826 27193 net.cpp:137] Memory required for data: 1051768832 +I0408 15:34:35.097829 27193 layer_factory.hpp:77] Creating layer fc6 +I0408 15:34:35.097841 27193 net.cpp:84] Creating Layer fc6 +I0408 15:34:35.097844 27193 net.cpp:406] fc6 <- pool5 +I0408 15:34:35.097849 27193 net.cpp:380] fc6 -> fc6 +I0408 15:34:35.461639 27193 net.cpp:122] Setting up fc6 +I0408 15:34:35.461659 27193 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:35.461663 27193 net.cpp:137] Memory required for data: 1053865984 +I0408 15:34:35.461673 27193 layer_factory.hpp:77] Creating layer relu6 +I0408 15:34:35.461683 27193 net.cpp:84] Creating Layer relu6 +I0408 15:34:35.461688 27193 net.cpp:406] relu6 <- fc6 +I0408 15:34:35.461694 27193 net.cpp:367] relu6 -> fc6 (in-place) +I0408 15:34:35.462340 27193 net.cpp:122] Setting up relu6 +I0408 15:34:35.462350 27193 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:35.462353 27193 net.cpp:137] Memory required for data: 1055963136 +I0408 15:34:35.462357 27193 layer_factory.hpp:77] Creating layer drop6 +I0408 15:34:35.462364 27193 net.cpp:84] Creating Layer drop6 +I0408 15:34:35.462368 27193 net.cpp:406] drop6 <- fc6 +I0408 15:34:35.462373 27193 net.cpp:367] drop6 -> fc6 (in-place) +I0408 15:34:35.462400 27193 net.cpp:122] Setting up drop6 +I0408 15:34:35.462405 27193 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:35.462409 27193 net.cpp:137] Memory required for data: 1058060288 +I0408 15:34:35.462411 27193 layer_factory.hpp:77] Creating layer fc7 +I0408 15:34:35.462420 27193 net.cpp:84] Creating Layer fc7 +I0408 15:34:35.462424 27193 net.cpp:406] fc7 <- fc6 +I0408 15:34:35.462428 27193 net.cpp:380] fc7 -> fc7 +I0408 15:34:35.694792 27193 net.cpp:122] Setting up fc7 +I0408 15:34:35.694818 27193 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:35.694823 27193 net.cpp:137] Memory required for data: 1060157440 +I0408 15:34:35.694835 27193 layer_factory.hpp:77] Creating layer relu7 +I0408 15:34:35.694846 27193 net.cpp:84] Creating Layer relu7 +I0408 15:34:35.694851 27193 net.cpp:406] relu7 <- fc7 +I0408 15:34:35.694859 27193 net.cpp:367] relu7 -> fc7 (in-place) +I0408 15:34:35.695616 27193 net.cpp:122] Setting up relu7 +I0408 15:34:35.695628 27193 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:35.695633 27193 net.cpp:137] Memory required for data: 1062254592 +I0408 15:34:35.695637 27193 layer_factory.hpp:77] Creating layer drop7 +I0408 15:34:35.695645 27193 net.cpp:84] Creating Layer drop7 +I0408 15:34:35.695672 27193 net.cpp:406] drop7 <- fc7 +I0408 15:34:35.695680 27193 net.cpp:367] drop7 -> fc7 (in-place) +I0408 15:34:35.695710 27193 net.cpp:122] Setting up drop7 +I0408 15:34:35.695717 27193 net.cpp:129] Top shape: 128 4096 (524288) +I0408 15:34:35.695721 27193 net.cpp:137] Memory required for data: 1064351744 +I0408 15:34:35.695724 27193 layer_factory.hpp:77] Creating layer fc8 +I0408 15:34:35.695734 27193 net.cpp:84] Creating Layer fc8 +I0408 15:34:35.695739 27193 net.cpp:406] fc8 <- fc7 +I0408 15:34:35.695746 27193 net.cpp:380] fc8 -> fc8 +I0408 15:34:35.706001 27193 net.cpp:122] Setting up fc8 +I0408 15:34:35.706013 27193 net.cpp:129] Top shape: 128 196 (25088) +I0408 15:34:35.706017 27193 net.cpp:137] Memory required for data: 1064452096 +I0408 15:34:35.706025 27193 layer_factory.hpp:77] Creating layer loss +I0408 15:34:35.706034 27193 net.cpp:84] Creating Layer loss +I0408 15:34:35.706038 27193 net.cpp:406] loss <- fc8 +I0408 15:34:35.706044 27193 net.cpp:406] loss <- label +I0408 15:34:35.706053 27193 net.cpp:380] loss -> loss +I0408 15:34:35.706063 27193 layer_factory.hpp:77] Creating layer loss +I0408 15:34:35.706804 27193 net.cpp:122] Setting up loss +I0408 15:34:35.706815 27193 net.cpp:129] Top shape: (1) +I0408 15:34:35.706820 27193 net.cpp:132] with loss weight 1 +I0408 15:34:35.706840 27193 net.cpp:137] Memory required for data: 1064452100 +I0408 15:34:35.706845 27193 net.cpp:198] loss needs backward computation. +I0408 15:34:35.706852 27193 net.cpp:198] fc8 needs backward computation. +I0408 15:34:35.706857 27193 net.cpp:198] drop7 needs backward computation. +I0408 15:34:35.706861 27193 net.cpp:198] relu7 needs backward computation. +I0408 15:34:35.706864 27193 net.cpp:198] fc7 needs backward computation. +I0408 15:34:35.706869 27193 net.cpp:198] drop6 needs backward computation. +I0408 15:34:35.706872 27193 net.cpp:198] relu6 needs backward computation. +I0408 15:34:35.706876 27193 net.cpp:198] fc6 needs backward computation. +I0408 15:34:35.706881 27193 net.cpp:198] pool5 needs backward computation. +I0408 15:34:35.706885 27193 net.cpp:198] relu5 needs backward computation. +I0408 15:34:35.706889 27193 net.cpp:198] conv5 needs backward computation. +I0408 15:34:35.706893 27193 net.cpp:198] relu4 needs backward computation. +I0408 15:34:35.706897 27193 net.cpp:198] conv4 needs backward computation. +I0408 15:34:35.706902 27193 net.cpp:198] relu3 needs backward computation. +I0408 15:34:35.706905 27193 net.cpp:198] conv3 needs backward computation. +I0408 15:34:35.706910 27193 net.cpp:198] pool2 needs backward computation. +I0408 15:34:35.706914 27193 net.cpp:198] norm2 needs backward computation. +I0408 15:34:35.706918 27193 net.cpp:198] relu2 needs backward computation. +I0408 15:34:35.706923 27193 net.cpp:198] conv2 needs backward computation. +I0408 15:34:35.706928 27193 net.cpp:198] pool1 needs backward computation. +I0408 15:34:35.706931 27193 net.cpp:198] norm1 needs backward computation. +I0408 15:34:35.706935 27193 net.cpp:198] relu1 needs backward computation. +I0408 15:34:35.706939 27193 net.cpp:198] conv1 needs backward computation. +I0408 15:34:35.706943 27193 net.cpp:200] train-data does not need backward computation. +I0408 15:34:35.706948 27193 net.cpp:242] This network produces output loss +I0408 15:34:35.706965 27193 net.cpp:255] Network initialization done. +I0408 15:34:35.707547 27193 solver.cpp:172] Creating test net (#0) specified by net file: train_val.prototxt +I0408 15:34:35.707584 27193 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer train-data +I0408 15:34:35.707764 27193 net.cpp:51] Initializing net from parameters: +state { +phase: TEST +} +layer { +name: "val-data" +type: "Data" +top: "data" +top: "label" +include { +phase: TEST +} +transform_param { +crop_size: 227 +mean_file: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto" +} +data_param { +source: "/mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db" +batch_size: 32 +backend: LMDB +} +} +layer { +name: "conv1" +type: "Convolution" +bottom: "data" +top: "conv1" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 96 +kernel_size: 11 +stride: 4 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu1" +type: "ReLU" +bottom: "conv1" +top: "conv1" +} +layer { +name: "norm1" +type: "LRN" +bottom: "conv1" +top: "norm1" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool1" +type: "Pooling" +bottom: "norm1" +top: "pool1" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv2" +type: "Convolution" +bottom: "pool1" +top: "conv2" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 2 +kernel_size: 5 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu2" +type: "ReLU" +bottom: "conv2" +top: "conv2" +} +layer { +name: "norm2" +type: "LRN" +bottom: "conv2" +top: "norm2" +lrn_param { +local_size: 5 +alpha: 0.0001 +beta: 0.75 +} +} +layer { +name: "pool2" +type: "Pooling" +bottom: "norm2" +top: "pool2" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "conv3" +type: "Convolution" +bottom: "pool2" +top: "conv3" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "relu3" +type: "ReLU" +bottom: "conv3" +top: "conv3" +} +layer { +name: "conv4" +type: "Convolution" +bottom: "conv3" +top: "conv4" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 384 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu4" +type: "ReLU" +bottom: "conv4" +top: "conv4" +} +layer { +name: "conv5" +type: "Convolution" +bottom: "conv4" +top: "conv5" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +convolution_param { +num_output: 256 +pad: 1 +kernel_size: 3 +group: 2 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu5" +type: "ReLU" +bottom: "conv5" +top: "conv5" +} +layer { +name: "pool5" +type: "Pooling" +bottom: "conv5" +top: "pool5" +pooling_param { +pool: MAX +kernel_size: 3 +stride: 2 +} +} +layer { +name: "fc6" +type: "InnerProduct" +bottom: "pool5" +top: "fc6" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu6" +type: "ReLU" +bottom: "fc6" +top: "fc6" +} +layer { +name: "drop6" +type: "Dropout" +bottom: "fc6" +top: "fc6" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc7" +type: "InnerProduct" +bottom: "fc6" +top: "fc7" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 4096 +weight_filler { +type: "gaussian" +std: 0.005 +} +bias_filler { +type: "constant" +value: 0.1 +} +} +} +layer { +name: "relu7" +type: "ReLU" +bottom: "fc7" +top: "fc7" +} +layer { +name: "drop7" +type: "Dropout" +bottom: "fc7" +top: "fc7" +dropout_param { +dropout_ratio: 0.5 +} +} +layer { +name: "fc8" +type: "InnerProduct" +bottom: "fc7" +top: "fc8" +param { +lr_mult: 1 +decay_mult: 1 +} +param { +lr_mult: 2 +decay_mult: 0 +} +inner_product_param { +num_output: 196 +weight_filler { +type: "gaussian" +std: 0.01 +} +bias_filler { +type: "constant" +value: 0 +} +} +} +layer { +name: "accuracy" +type: "Accuracy" +bottom: "fc8" +bottom: "label" +top: "accuracy" +include { +phase: TEST +} +} +layer { +name: "loss" +type: "SoftmaxWithLoss" +bottom: "fc8" +bottom: "label" +top: "loss" +} +I0408 15:34:35.707888 27193 layer_factory.hpp:77] Creating layer val-data +I0408 15:34:35.709761 27193 db_lmdb.cpp:35] Opened lmdb /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/val_db +I0408 15:34:35.709985 27193 net.cpp:84] Creating Layer val-data +I0408 15:34:35.709998 27193 net.cpp:380] val-data -> data +I0408 15:34:35.710008 27193 net.cpp:380] val-data -> label +I0408 15:34:35.710016 27193 data_transformer.cpp:25] Loading mean file from: /mnt/bigdisk/DIGITS-MAN-2/digits/jobs/20210407-214532-d396/mean.binaryproto +I0408 15:34:35.714972 27193 data_layer.cpp:45] output data size: 32,3,227,227 +I0408 15:34:35.748775 27193 net.cpp:122] Setting up val-data +I0408 15:34:35.748798 27193 net.cpp:129] Top shape: 32 3 227 227 (4946784) +I0408 15:34:35.748803 27193 net.cpp:129] Top shape: 32 (32) +I0408 15:34:35.748806 27193 net.cpp:137] Memory required for data: 19787264 +I0408 15:34:35.748813 27193 layer_factory.hpp:77] Creating layer label_val-data_1_split +I0408 15:34:35.748826 27193 net.cpp:84] Creating Layer label_val-data_1_split +I0408 15:34:35.748831 27193 net.cpp:406] label_val-data_1_split <- label +I0408 15:34:35.748838 27193 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_0 +I0408 15:34:35.748848 27193 net.cpp:380] label_val-data_1_split -> label_val-data_1_split_1 +I0408 15:34:35.748898 27193 net.cpp:122] Setting up label_val-data_1_split +I0408 15:34:35.748904 27193 net.cpp:129] Top shape: 32 (32) +I0408 15:34:35.748908 27193 net.cpp:129] Top shape: 32 (32) +I0408 15:34:35.748911 27193 net.cpp:137] Memory required for data: 19787520 +I0408 15:34:35.748915 27193 layer_factory.hpp:77] Creating layer conv1 +I0408 15:34:35.748927 27193 net.cpp:84] Creating Layer conv1 +I0408 15:34:35.748931 27193 net.cpp:406] conv1 <- data +I0408 15:34:35.748937 27193 net.cpp:380] conv1 -> conv1 +I0408 15:34:35.754885 27193 net.cpp:122] Setting up conv1 +I0408 15:34:35.754897 27193 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 15:34:35.754901 27193 net.cpp:137] Memory required for data: 56958720 +I0408 15:34:35.754912 27193 layer_factory.hpp:77] Creating layer relu1 +I0408 15:34:35.754920 27193 net.cpp:84] Creating Layer relu1 +I0408 15:34:35.754923 27193 net.cpp:406] relu1 <- conv1 +I0408 15:34:35.754928 27193 net.cpp:367] relu1 -> conv1 (in-place) +I0408 15:34:35.755250 27193 net.cpp:122] Setting up relu1 +I0408 15:34:35.755259 27193 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 15:34:35.755262 27193 net.cpp:137] Memory required for data: 94129920 +I0408 15:34:35.755266 27193 layer_factory.hpp:77] Creating layer norm1 +I0408 15:34:35.755275 27193 net.cpp:84] Creating Layer norm1 +I0408 15:34:35.755278 27193 net.cpp:406] norm1 <- conv1 +I0408 15:34:35.755285 27193 net.cpp:380] norm1 -> norm1 +I0408 15:34:35.755781 27193 net.cpp:122] Setting up norm1 +I0408 15:34:35.755792 27193 net.cpp:129] Top shape: 32 96 55 55 (9292800) +I0408 15:34:35.755795 27193 net.cpp:137] Memory required for data: 131301120 +I0408 15:34:35.755800 27193 layer_factory.hpp:77] Creating layer pool1 +I0408 15:34:35.755807 27193 net.cpp:84] Creating Layer pool1 +I0408 15:34:35.755811 27193 net.cpp:406] pool1 <- norm1 +I0408 15:34:35.755817 27193 net.cpp:380] pool1 -> pool1 +I0408 15:34:35.755848 27193 net.cpp:122] Setting up pool1 +I0408 15:34:35.755853 27193 net.cpp:129] Top shape: 32 96 27 27 (2239488) +I0408 15:34:35.755857 27193 net.cpp:137] Memory required for data: 140259072 +I0408 15:34:35.755861 27193 layer_factory.hpp:77] Creating layer conv2 +I0408 15:34:35.755868 27193 net.cpp:84] Creating Layer conv2 +I0408 15:34:35.755872 27193 net.cpp:406] conv2 <- pool1 +I0408 15:34:35.755897 27193 net.cpp:380] conv2 -> conv2 +I0408 15:34:35.765105 27193 net.cpp:122] Setting up conv2 +I0408 15:34:35.765120 27193 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 15:34:35.765125 27193 net.cpp:137] Memory required for data: 164146944 +I0408 15:34:35.765134 27193 layer_factory.hpp:77] Creating layer relu2 +I0408 15:34:35.765143 27193 net.cpp:84] Creating Layer relu2 +I0408 15:34:35.765148 27193 net.cpp:406] relu2 <- conv2 +I0408 15:34:35.765153 27193 net.cpp:367] relu2 -> conv2 (in-place) +I0408 15:34:35.765713 27193 net.cpp:122] Setting up relu2 +I0408 15:34:35.765724 27193 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 15:34:35.765728 27193 net.cpp:137] Memory required for data: 188034816 +I0408 15:34:35.765733 27193 layer_factory.hpp:77] Creating layer norm2 +I0408 15:34:35.765743 27193 net.cpp:84] Creating Layer norm2 +I0408 15:34:35.765748 27193 net.cpp:406] norm2 <- conv2 +I0408 15:34:35.765753 27193 net.cpp:380] norm2 -> norm2 +I0408 15:34:35.766348 27193 net.cpp:122] Setting up norm2 +I0408 15:34:35.766358 27193 net.cpp:129] Top shape: 32 256 27 27 (5971968) +I0408 15:34:35.766362 27193 net.cpp:137] Memory required for data: 211922688 +I0408 15:34:35.766366 27193 layer_factory.hpp:77] Creating layer pool2 +I0408 15:34:35.766373 27193 net.cpp:84] Creating Layer pool2 +I0408 15:34:35.766377 27193 net.cpp:406] pool2 <- norm2 +I0408 15:34:35.766383 27193 net.cpp:380] pool2 -> pool2 +I0408 15:34:35.766415 27193 net.cpp:122] Setting up pool2 +I0408 15:34:35.766422 27193 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 15:34:35.766424 27193 net.cpp:137] Memory required for data: 217460480 +I0408 15:34:35.766428 27193 layer_factory.hpp:77] Creating layer conv3 +I0408 15:34:35.766438 27193 net.cpp:84] Creating Layer conv3 +I0408 15:34:35.766443 27193 net.cpp:406] conv3 <- pool2 +I0408 15:34:35.766448 27193 net.cpp:380] conv3 -> conv3 +I0408 15:34:35.778532 27193 net.cpp:122] Setting up conv3 +I0408 15:34:35.778548 27193 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:35.778551 27193 net.cpp:137] Memory required for data: 225767168 +I0408 15:34:35.778564 27193 layer_factory.hpp:77] Creating layer relu3 +I0408 15:34:35.778573 27193 net.cpp:84] Creating Layer relu3 +I0408 15:34:35.778578 27193 net.cpp:406] relu3 <- conv3 +I0408 15:34:35.778584 27193 net.cpp:367] relu3 -> conv3 (in-place) +I0408 15:34:35.779296 27193 net.cpp:122] Setting up relu3 +I0408 15:34:35.779309 27193 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:35.779311 27193 net.cpp:137] Memory required for data: 234073856 +I0408 15:34:35.779315 27193 layer_factory.hpp:77] Creating layer conv4 +I0408 15:34:35.779327 27193 net.cpp:84] Creating Layer conv4 +I0408 15:34:35.779331 27193 net.cpp:406] conv4 <- conv3 +I0408 15:34:35.779337 27193 net.cpp:380] conv4 -> conv4 +I0408 15:34:35.789572 27193 net.cpp:122] Setting up conv4 +I0408 15:34:35.789584 27193 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:35.789587 27193 net.cpp:137] Memory required for data: 242380544 +I0408 15:34:35.789595 27193 layer_factory.hpp:77] Creating layer relu4 +I0408 15:34:35.789606 27193 net.cpp:84] Creating Layer relu4 +I0408 15:34:35.789610 27193 net.cpp:406] relu4 <- conv4 +I0408 15:34:35.789615 27193 net.cpp:367] relu4 -> conv4 (in-place) +I0408 15:34:35.790004 27193 net.cpp:122] Setting up relu4 +I0408 15:34:35.790014 27193 net.cpp:129] Top shape: 32 384 13 13 (2076672) +I0408 15:34:35.790017 27193 net.cpp:137] Memory required for data: 250687232 +I0408 15:34:35.790020 27193 layer_factory.hpp:77] Creating layer conv5 +I0408 15:34:35.790030 27193 net.cpp:84] Creating Layer conv5 +I0408 15:34:35.790035 27193 net.cpp:406] conv5 <- conv4 +I0408 15:34:35.790042 27193 net.cpp:380] conv5 -> conv5 +I0408 15:34:35.802616 27193 net.cpp:122] Setting up conv5 +I0408 15:34:35.802634 27193 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 15:34:35.802639 27193 net.cpp:137] Memory required for data: 256225024 +I0408 15:34:35.802651 27193 layer_factory.hpp:77] Creating layer relu5 +I0408 15:34:35.802659 27193 net.cpp:84] Creating Layer relu5 +I0408 15:34:35.802664 27193 net.cpp:406] relu5 <- conv5 +I0408 15:34:35.802688 27193 net.cpp:367] relu5 -> conv5 (in-place) +I0408 15:34:35.803216 27193 net.cpp:122] Setting up relu5 +I0408 15:34:35.803227 27193 net.cpp:129] Top shape: 32 256 13 13 (1384448) +I0408 15:34:35.803231 27193 net.cpp:137] Memory required for data: 261762816 +I0408 15:34:35.803236 27193 layer_factory.hpp:77] Creating layer pool5 +I0408 15:34:35.803246 27193 net.cpp:84] Creating Layer pool5 +I0408 15:34:35.803251 27193 net.cpp:406] pool5 <- conv5 +I0408 15:34:35.803256 27193 net.cpp:380] pool5 -> pool5 +I0408 15:34:35.803297 27193 net.cpp:122] Setting up pool5 +I0408 15:34:35.803303 27193 net.cpp:129] Top shape: 32 256 6 6 (294912) +I0408 15:34:35.803308 27193 net.cpp:137] Memory required for data: 262942464 +I0408 15:34:35.803310 27193 layer_factory.hpp:77] Creating layer fc6 +I0408 15:34:35.803318 27193 net.cpp:84] Creating Layer fc6 +I0408 15:34:35.803321 27193 net.cpp:406] fc6 <- pool5 +I0408 15:34:35.803328 27193 net.cpp:380] fc6 -> fc6 +I0408 15:34:36.189455 27193 net.cpp:122] Setting up fc6 +I0408 15:34:36.189476 27193 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:36.189481 27193 net.cpp:137] Memory required for data: 263466752 +I0408 15:34:36.189489 27193 layer_factory.hpp:77] Creating layer relu6 +I0408 15:34:36.189498 27193 net.cpp:84] Creating Layer relu6 +I0408 15:34:36.189503 27193 net.cpp:406] relu6 <- fc6 +I0408 15:34:36.189509 27193 net.cpp:367] relu6 -> fc6 (in-place) +I0408 15:34:36.190402 27193 net.cpp:122] Setting up relu6 +I0408 15:34:36.190413 27193 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:36.190418 27193 net.cpp:137] Memory required for data: 263991040 +I0408 15:34:36.190421 27193 layer_factory.hpp:77] Creating layer drop6 +I0408 15:34:36.190428 27193 net.cpp:84] Creating Layer drop6 +I0408 15:34:36.190433 27193 net.cpp:406] drop6 <- fc6 +I0408 15:34:36.190438 27193 net.cpp:367] drop6 -> fc6 (in-place) +I0408 15:34:36.190466 27193 net.cpp:122] Setting up drop6 +I0408 15:34:36.190472 27193 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:36.190475 27193 net.cpp:137] Memory required for data: 264515328 +I0408 15:34:36.190479 27193 layer_factory.hpp:77] Creating layer fc7 +I0408 15:34:36.190486 27193 net.cpp:84] Creating Layer fc7 +I0408 15:34:36.190490 27193 net.cpp:406] fc7 <- fc6 +I0408 15:34:36.190495 27193 net.cpp:380] fc7 -> fc7 +I0408 15:34:36.362629 27193 net.cpp:122] Setting up fc7 +I0408 15:34:36.362650 27193 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:36.362654 27193 net.cpp:137] Memory required for data: 265039616 +I0408 15:34:36.362664 27193 layer_factory.hpp:77] Creating layer relu7 +I0408 15:34:36.362673 27193 net.cpp:84] Creating Layer relu7 +I0408 15:34:36.362679 27193 net.cpp:406] relu7 <- fc7 +I0408 15:34:36.362685 27193 net.cpp:367] relu7 -> fc7 (in-place) +I0408 15:34:36.363142 27193 net.cpp:122] Setting up relu7 +I0408 15:34:36.363152 27193 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:36.363154 27193 net.cpp:137] Memory required for data: 265563904 +I0408 15:34:36.363158 27193 layer_factory.hpp:77] Creating layer drop7 +I0408 15:34:36.363166 27193 net.cpp:84] Creating Layer drop7 +I0408 15:34:36.363170 27193 net.cpp:406] drop7 <- fc7 +I0408 15:34:36.363175 27193 net.cpp:367] drop7 -> fc7 (in-place) +I0408 15:34:36.363201 27193 net.cpp:122] Setting up drop7 +I0408 15:34:36.363206 27193 net.cpp:129] Top shape: 32 4096 (131072) +I0408 15:34:36.363209 27193 net.cpp:137] Memory required for data: 266088192 +I0408 15:34:36.363214 27193 layer_factory.hpp:77] Creating layer fc8 +I0408 15:34:36.363220 27193 net.cpp:84] Creating Layer fc8 +I0408 15:34:36.363225 27193 net.cpp:406] fc8 <- fc7 +I0408 15:34:36.363230 27193 net.cpp:380] fc8 -> fc8 +I0408 15:34:36.371691 27193 net.cpp:122] Setting up fc8 +I0408 15:34:36.371701 27193 net.cpp:129] Top shape: 32 196 (6272) +I0408 15:34:36.371706 27193 net.cpp:137] Memory required for data: 266113280 +I0408 15:34:36.371711 27193 layer_factory.hpp:77] Creating layer fc8_fc8_0_split +I0408 15:34:36.371721 27193 net.cpp:84] Creating Layer fc8_fc8_0_split +I0408 15:34:36.371723 27193 net.cpp:406] fc8_fc8_0_split <- fc8 +I0408 15:34:36.371747 27193 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_0 +I0408 15:34:36.371754 27193 net.cpp:380] fc8_fc8_0_split -> fc8_fc8_0_split_1 +I0408 15:34:36.371791 27193 net.cpp:122] Setting up fc8_fc8_0_split +I0408 15:34:36.371796 27193 net.cpp:129] Top shape: 32 196 (6272) +I0408 15:34:36.371800 27193 net.cpp:129] Top shape: 32 196 (6272) +I0408 15:34:36.371803 27193 net.cpp:137] Memory required for data: 266163456 +I0408 15:34:36.371806 27193 layer_factory.hpp:77] Creating layer accuracy +I0408 15:34:36.371814 27193 net.cpp:84] Creating Layer accuracy +I0408 15:34:36.371816 27193 net.cpp:406] accuracy <- fc8_fc8_0_split_0 +I0408 15:34:36.371821 27193 net.cpp:406] accuracy <- label_val-data_1_split_0 +I0408 15:34:36.371827 27193 net.cpp:380] accuracy -> accuracy +I0408 15:34:36.371834 27193 net.cpp:122] Setting up accuracy +I0408 15:34:36.371838 27193 net.cpp:129] Top shape: (1) +I0408 15:34:36.371841 27193 net.cpp:137] Memory required for data: 266163460 +I0408 15:34:36.371845 27193 layer_factory.hpp:77] Creating layer loss +I0408 15:34:36.371850 27193 net.cpp:84] Creating Layer loss +I0408 15:34:36.371853 27193 net.cpp:406] loss <- fc8_fc8_0_split_1 +I0408 15:34:36.371858 27193 net.cpp:406] loss <- label_val-data_1_split_1 +I0408 15:34:36.371863 27193 net.cpp:380] loss -> loss +I0408 15:34:36.371871 27193 layer_factory.hpp:77] Creating layer loss +I0408 15:34:36.372524 27193 net.cpp:122] Setting up loss +I0408 15:34:36.372532 27193 net.cpp:129] Top shape: (1) +I0408 15:34:36.372535 27193 net.cpp:132] with loss weight 1 +I0408 15:34:36.372546 27193 net.cpp:137] Memory required for data: 266163464 +I0408 15:34:36.372550 27193 net.cpp:198] loss needs backward computation. +I0408 15:34:36.372555 27193 net.cpp:200] accuracy does not need backward computation. +I0408 15:34:36.372560 27193 net.cpp:198] fc8_fc8_0_split needs backward computation. +I0408 15:34:36.372563 27193 net.cpp:198] fc8 needs backward computation. +I0408 15:34:36.372566 27193 net.cpp:198] drop7 needs backward computation. +I0408 15:34:36.372570 27193 net.cpp:198] relu7 needs backward computation. +I0408 15:34:36.372573 27193 net.cpp:198] fc7 needs backward computation. +I0408 15:34:36.372576 27193 net.cpp:198] drop6 needs backward computation. +I0408 15:34:36.372581 27193 net.cpp:198] relu6 needs backward computation. +I0408 15:34:36.372583 27193 net.cpp:198] fc6 needs backward computation. +I0408 15:34:36.372587 27193 net.cpp:198] pool5 needs backward computation. +I0408 15:34:36.372591 27193 net.cpp:198] relu5 needs backward computation. +I0408 15:34:36.372594 27193 net.cpp:198] conv5 needs backward computation. +I0408 15:34:36.372598 27193 net.cpp:198] relu4 needs backward computation. +I0408 15:34:36.372601 27193 net.cpp:198] conv4 needs backward computation. +I0408 15:34:36.372606 27193 net.cpp:198] relu3 needs backward computation. +I0408 15:34:36.372608 27193 net.cpp:198] conv3 needs backward computation. +I0408 15:34:36.372612 27193 net.cpp:198] pool2 needs backward computation. +I0408 15:34:36.372617 27193 net.cpp:198] norm2 needs backward computation. +I0408 15:34:36.372622 27193 net.cpp:198] relu2 needs backward computation. +I0408 15:34:36.372625 27193 net.cpp:198] conv2 needs backward computation. +I0408 15:34:36.372629 27193 net.cpp:198] pool1 needs backward computation. +I0408 15:34:36.372633 27193 net.cpp:198] norm1 needs backward computation. +I0408 15:34:36.372637 27193 net.cpp:198] relu1 needs backward computation. +I0408 15:34:36.372640 27193 net.cpp:198] conv1 needs backward computation. +I0408 15:34:36.372644 27193 net.cpp:200] label_val-data_1_split does not need backward computation. +I0408 15:34:36.372648 27193 net.cpp:200] val-data does not need backward computation. +I0408 15:34:36.372651 27193 net.cpp:242] This network produces output accuracy +I0408 15:34:36.372655 27193 net.cpp:242] This network produces output loss +I0408 15:34:36.372673 27193 net.cpp:255] Network initialization done. +I0408 15:34:36.372745 27193 solver.cpp:56] Solver scaffolding done. +I0408 15:34:36.373206 27193 caffe.cpp:248] Starting Optimization +I0408 15:34:36.373215 27193 solver.cpp:272] Solving +I0408 15:34:36.373227 27193 solver.cpp:273] Learning Rate Policy: exp +I0408 15:34:36.374596 27193 solver.cpp:330] Iteration 0, Testing net (#0) +I0408 15:34:36.374606 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:34:36.458696 27193 blocking_queue.cpp:49] Waiting for data +I0408 15:34:40.775729 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:34:40.820547 27193 solver.cpp:397] Test net output #0: accuracy = 0.00490196 +I0408 15:34:40.820586 27193 solver.cpp:397] Test net output #1: loss = 5.2813 (* 1 = 5.2813 loss) +I0408 15:34:40.916071 27193 solver.cpp:218] Iteration 0 (-1.06017e-35 iter/s, 4.54266s/12 iters), loss = 5.27974 +I0408 15:34:40.917590 27193 solver.cpp:237] Train net output #0: loss = 5.27974 (* 1 = 5.27974 loss) +I0408 15:34:40.917613 27193 sgd_solver.cpp:105] Iteration 0, lr = 0.01 +I0408 15:34:44.820722 27193 solver.cpp:218] Iteration 12 (3.07457 iter/s, 3.90299s/12 iters), loss = 5.28776 +I0408 15:34:44.820768 27193 solver.cpp:237] Train net output #0: loss = 5.28776 (* 1 = 5.28776 loss) +I0408 15:34:44.820780 27193 sgd_solver.cpp:105] Iteration 12, lr = 0.00974089 +I0408 15:34:49.943226 27193 solver.cpp:218] Iteration 24 (2.34271 iter/s, 5.12228s/12 iters), loss = 5.29691 +I0408 15:34:49.943279 27193 solver.cpp:237] Train net output #0: loss = 5.29691 (* 1 = 5.29691 loss) +I0408 15:34:49.943290 27193 sgd_solver.cpp:105] Iteration 24, lr = 0.0094885 +I0408 15:34:54.913389 27193 solver.cpp:218] Iteration 36 (2.41451 iter/s, 4.96995s/12 iters), loss = 5.29374 +I0408 15:34:54.913425 27193 solver.cpp:237] Train net output #0: loss = 5.29374 (* 1 = 5.29374 loss) +I0408 15:34:54.913434 27193 sgd_solver.cpp:105] Iteration 36, lr = 0.00924265 +I0408 15:34:59.915939 27193 solver.cpp:218] Iteration 48 (2.39888 iter/s, 5.00234s/12 iters), loss = 5.31026 +I0408 15:34:59.915984 27193 solver.cpp:237] Train net output #0: loss = 5.31026 (* 1 = 5.31026 loss) +I0408 15:34:59.915997 27193 sgd_solver.cpp:105] Iteration 48, lr = 0.00900317 +I0408 15:35:04.932297 27193 solver.cpp:218] Iteration 60 (2.39228 iter/s, 5.01614s/12 iters), loss = 5.30859 +I0408 15:35:04.932387 27193 solver.cpp:237] Train net output #0: loss = 5.30859 (* 1 = 5.30859 loss) +I0408 15:35:04.932399 27193 sgd_solver.cpp:105] Iteration 60, lr = 0.00876989 +I0408 15:35:09.988570 27193 solver.cpp:218] Iteration 72 (2.37341 iter/s, 5.05601s/12 iters), loss = 5.29999 +I0408 15:35:09.988617 27193 solver.cpp:237] Train net output #0: loss = 5.29999 (* 1 = 5.29999 loss) +I0408 15:35:09.988628 27193 sgd_solver.cpp:105] Iteration 72, lr = 0.00854266 +I0408 15:35:14.986745 27193 solver.cpp:218] Iteration 84 (2.40098 iter/s, 4.99795s/12 iters), loss = 5.31279 +I0408 15:35:14.986788 27193 solver.cpp:237] Train net output #0: loss = 5.31279 (* 1 = 5.31279 loss) +I0408 15:35:14.986799 27193 sgd_solver.cpp:105] Iteration 84, lr = 0.00832132 +I0408 15:35:20.016067 27193 solver.cpp:218] Iteration 96 (2.38611 iter/s, 5.0291s/12 iters), loss = 5.31598 +I0408 15:35:20.016113 27193 solver.cpp:237] Train net output #0: loss = 5.31598 (* 1 = 5.31598 loss) +I0408 15:35:20.016124 27193 sgd_solver.cpp:105] Iteration 96, lr = 0.00810571 +I0408 15:35:21.742343 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:35:22.053905 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_102.caffemodel +I0408 15:35:25.141510 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_102.solverstate +I0408 15:35:27.486174 27193 solver.cpp:330] Iteration 102, Testing net (#0) +I0408 15:35:27.486202 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:35:31.925240 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:35:32.002173 27193 solver.cpp:397] Test net output #0: accuracy = 0.00551471 +I0408 15:35:32.002218 27193 solver.cpp:397] Test net output #1: loss = 5.28799 (* 1 = 5.28799 loss) +I0408 15:35:33.952040 27193 solver.cpp:218] Iteration 108 (0.861113 iter/s, 13.9355s/12 iters), loss = 5.30747 +I0408 15:35:33.952096 27193 solver.cpp:237] Train net output #0: loss = 5.30747 (* 1 = 5.30747 loss) +I0408 15:35:33.952108 27193 sgd_solver.cpp:105] Iteration 108, lr = 0.00789568 +I0408 15:35:38.969336 27193 solver.cpp:218] Iteration 120 (2.39184 iter/s, 5.01706s/12 iters), loss = 5.27273 +I0408 15:35:38.969460 27193 solver.cpp:237] Train net output #0: loss = 5.27273 (* 1 = 5.27273 loss) +I0408 15:35:38.969471 27193 sgd_solver.cpp:105] Iteration 120, lr = 0.0076911 +I0408 15:35:43.973073 27193 solver.cpp:218] Iteration 132 (2.39835 iter/s, 5.00344s/12 iters), loss = 5.24861 +I0408 15:35:43.973121 27193 solver.cpp:237] Train net output #0: loss = 5.24861 (* 1 = 5.24861 loss) +I0408 15:35:43.973132 27193 sgd_solver.cpp:105] Iteration 132, lr = 0.00749182 +I0408 15:35:48.991621 27193 solver.cpp:218] Iteration 144 (2.39124 iter/s, 5.01832s/12 iters), loss = 5.31217 +I0408 15:35:48.991674 27193 solver.cpp:237] Train net output #0: loss = 5.31217 (* 1 = 5.31217 loss) +I0408 15:35:48.991688 27193 sgd_solver.cpp:105] Iteration 144, lr = 0.0072977 +I0408 15:35:54.010113 27193 solver.cpp:218] Iteration 156 (2.39127 iter/s, 5.01826s/12 iters), loss = 5.26583 +I0408 15:35:54.010164 27193 solver.cpp:237] Train net output #0: loss = 5.26583 (* 1 = 5.26583 loss) +I0408 15:35:54.010176 27193 sgd_solver.cpp:105] Iteration 156, lr = 0.00710862 +I0408 15:35:59.260608 27193 solver.cpp:218] Iteration 168 (2.2856 iter/s, 5.25026s/12 iters), loss = 5.2632 +I0408 15:35:59.260661 27193 solver.cpp:237] Train net output #0: loss = 5.2632 (* 1 = 5.2632 loss) +I0408 15:35:59.260672 27193 sgd_solver.cpp:105] Iteration 168, lr = 0.00692443 +I0408 15:36:04.314533 27193 solver.cpp:218] Iteration 180 (2.3745 iter/s, 5.05369s/12 iters), loss = 5.26804 +I0408 15:36:04.314584 27193 solver.cpp:237] Train net output #0: loss = 5.26804 (* 1 = 5.26804 loss) +I0408 15:36:04.314595 27193 sgd_solver.cpp:105] Iteration 180, lr = 0.00674501 +I0408 15:36:09.292935 27193 solver.cpp:218] Iteration 192 (2.41052 iter/s, 4.97818s/12 iters), loss = 5.27833 +I0408 15:36:09.293038 27193 solver.cpp:237] Train net output #0: loss = 5.27833 (* 1 = 5.27833 loss) +I0408 15:36:09.293048 27193 sgd_solver.cpp:105] Iteration 192, lr = 0.00657025 +I0408 15:36:13.401823 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:36:14.102036 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_204.caffemodel +I0408 15:36:17.766530 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_204.solverstate +I0408 15:36:20.738878 27193 solver.cpp:330] Iteration 204, Testing net (#0) +I0408 15:36:20.738903 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:36:25.224051 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:36:25.347056 27193 solver.cpp:397] Test net output #0: accuracy = 0.00857843 +I0408 15:36:25.347090 27193 solver.cpp:397] Test net output #1: loss = 5.25685 (* 1 = 5.25685 loss) +I0408 15:36:25.437870 27193 solver.cpp:218] Iteration 204 (0.743297 iter/s, 16.1443s/12 iters), loss = 5.23209 +I0408 15:36:25.437913 27193 solver.cpp:237] Train net output #0: loss = 5.23209 (* 1 = 5.23209 loss) +I0408 15:36:25.437923 27193 sgd_solver.cpp:105] Iteration 204, lr = 0.00640001 +I0408 15:36:29.999847 27193 solver.cpp:218] Iteration 216 (2.63056 iter/s, 4.56177s/12 iters), loss = 5.22029 +I0408 15:36:29.999888 27193 solver.cpp:237] Train net output #0: loss = 5.22029 (* 1 = 5.22029 loss) +I0408 15:36:29.999899 27193 sgd_solver.cpp:105] Iteration 216, lr = 0.00623418 +I0408 15:36:35.247198 27193 solver.cpp:218] Iteration 228 (2.28697 iter/s, 5.24712s/12 iters), loss = 5.19211 +I0408 15:36:35.247248 27193 solver.cpp:237] Train net output #0: loss = 5.19211 (* 1 = 5.19211 loss) +I0408 15:36:35.247260 27193 sgd_solver.cpp:105] Iteration 228, lr = 0.00607265 +I0408 15:36:40.176069 27193 solver.cpp:218] Iteration 240 (2.43475 iter/s, 4.92864s/12 iters), loss = 5.25695 +I0408 15:36:40.176216 27193 solver.cpp:237] Train net output #0: loss = 5.25695 (* 1 = 5.25695 loss) +I0408 15:36:40.176230 27193 sgd_solver.cpp:105] Iteration 240, lr = 0.0059153 +I0408 15:36:45.228608 27193 solver.cpp:218] Iteration 252 (2.3752 iter/s, 5.05222s/12 iters), loss = 5.1704 +I0408 15:36:45.228658 27193 solver.cpp:237] Train net output #0: loss = 5.1704 (* 1 = 5.1704 loss) +I0408 15:36:45.228670 27193 sgd_solver.cpp:105] Iteration 252, lr = 0.00576203 +I0408 15:36:50.209460 27193 solver.cpp:218] Iteration 264 (2.40934 iter/s, 4.98062s/12 iters), loss = 5.24711 +I0408 15:36:50.209514 27193 solver.cpp:237] Train net output #0: loss = 5.24711 (* 1 = 5.24711 loss) +I0408 15:36:50.209527 27193 sgd_solver.cpp:105] Iteration 264, lr = 0.00561274 +I0408 15:36:55.238564 27193 solver.cpp:218] Iteration 276 (2.38622 iter/s, 5.02887s/12 iters), loss = 5.20421 +I0408 15:36:55.238620 27193 solver.cpp:237] Train net output #0: loss = 5.20421 (* 1 = 5.20421 loss) +I0408 15:36:55.238631 27193 sgd_solver.cpp:105] Iteration 276, lr = 0.00546731 +I0408 15:37:00.194461 27193 solver.cpp:218] Iteration 288 (2.42147 iter/s, 4.95567s/12 iters), loss = 5.07568 +I0408 15:37:00.194514 27193 solver.cpp:237] Train net output #0: loss = 5.07568 (* 1 = 5.07568 loss) +I0408 15:37:00.194525 27193 sgd_solver.cpp:105] Iteration 288, lr = 0.00532565 +I0408 15:37:05.249792 27193 solver.cpp:218] Iteration 300 (2.37384 iter/s, 5.0551s/12 iters), loss = 5.16469 +I0408 15:37:05.249843 27193 solver.cpp:237] Train net output #0: loss = 5.16469 (* 1 = 5.16469 loss) +I0408 15:37:05.249855 27193 sgd_solver.cpp:105] Iteration 300, lr = 0.00518766 +I0408 15:37:06.254882 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:37:07.317070 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_306.caffemodel +I0408 15:37:11.228960 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_306.solverstate +I0408 15:37:14.140661 27193 solver.cpp:330] Iteration 306, Testing net (#0) +I0408 15:37:14.140683 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:37:18.443226 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:37:18.600849 27193 solver.cpp:397] Test net output #0: accuracy = 0.00735294 +I0408 15:37:18.600898 27193 solver.cpp:397] Test net output #1: loss = 5.15756 (* 1 = 5.15756 loss) +I0408 15:37:20.601107 27193 solver.cpp:218] Iteration 312 (0.781721 iter/s, 15.3507s/12 iters), loss = 5.14976 +I0408 15:37:20.601166 27193 solver.cpp:237] Train net output #0: loss = 5.14976 (* 1 = 5.14976 loss) +I0408 15:37:20.601178 27193 sgd_solver.cpp:105] Iteration 312, lr = 0.00505324 +I0408 15:37:26.050503 27193 solver.cpp:218] Iteration 324 (2.20218 iter/s, 5.44915s/12 iters), loss = 5.1871 +I0408 15:37:26.050549 27193 solver.cpp:237] Train net output #0: loss = 5.1871 (* 1 = 5.1871 loss) +I0408 15:37:26.050560 27193 sgd_solver.cpp:105] Iteration 324, lr = 0.00492231 +I0408 15:37:31.556349 27193 solver.cpp:218] Iteration 336 (2.17959 iter/s, 5.50561s/12 iters), loss = 5.11462 +I0408 15:37:31.556396 27193 solver.cpp:237] Train net output #0: loss = 5.11462 (* 1 = 5.11462 loss) +I0408 15:37:31.556408 27193 sgd_solver.cpp:105] Iteration 336, lr = 0.00479477 +I0408 15:37:36.633641 27193 solver.cpp:218] Iteration 348 (2.36357 iter/s, 5.07707s/12 iters), loss = 5.11915 +I0408 15:37:36.633688 27193 solver.cpp:237] Train net output #0: loss = 5.11915 (* 1 = 5.11915 loss) +I0408 15:37:36.633699 27193 sgd_solver.cpp:105] Iteration 348, lr = 0.00467054 +I0408 15:37:41.541110 27193 solver.cpp:218] Iteration 360 (2.44536 iter/s, 4.90725s/12 iters), loss = 5.17262 +I0408 15:37:41.541214 27193 solver.cpp:237] Train net output #0: loss = 5.17262 (* 1 = 5.17262 loss) +I0408 15:37:41.541229 27193 sgd_solver.cpp:105] Iteration 360, lr = 0.00454952 +I0408 15:37:46.540627 27193 solver.cpp:218] Iteration 372 (2.40037 iter/s, 4.99924s/12 iters), loss = 5.10135 +I0408 15:37:46.540679 27193 solver.cpp:237] Train net output #0: loss = 5.10135 (* 1 = 5.10135 loss) +I0408 15:37:46.540693 27193 sgd_solver.cpp:105] Iteration 372, lr = 0.00443164 +I0408 15:37:51.497189 27193 solver.cpp:218] Iteration 384 (2.42114 iter/s, 4.95634s/12 iters), loss = 5.15699 +I0408 15:37:51.497231 27193 solver.cpp:237] Train net output #0: loss = 5.15699 (* 1 = 5.15699 loss) +I0408 15:37:51.497242 27193 sgd_solver.cpp:105] Iteration 384, lr = 0.00431681 +I0408 15:37:56.559881 27193 solver.cpp:218] Iteration 396 (2.37038 iter/s, 5.06247s/12 iters), loss = 5.0584 +I0408 15:37:56.559924 27193 solver.cpp:237] Train net output #0: loss = 5.0584 (* 1 = 5.0584 loss) +I0408 15:37:56.559934 27193 sgd_solver.cpp:105] Iteration 396, lr = 0.00420496 +I0408 15:37:59.720813 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:01.146488 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_408.caffemodel +I0408 15:38:05.233217 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_408.solverstate +I0408 15:38:08.236284 27193 solver.cpp:330] Iteration 408, Testing net (#0) +I0408 15:38:08.236311 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:38:12.539934 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:12.744411 27193 solver.cpp:397] Test net output #0: accuracy = 0.0104167 +I0408 15:38:12.744462 27193 solver.cpp:397] Test net output #1: loss = 5.11109 (* 1 = 5.11109 loss) +I0408 15:38:12.835945 27193 solver.cpp:218] Iteration 408 (0.737306 iter/s, 16.2755s/12 iters), loss = 5.19118 +I0408 15:38:12.835995 27193 solver.cpp:237] Train net output #0: loss = 5.19118 (* 1 = 5.19118 loss) +I0408 15:38:12.836005 27193 sgd_solver.cpp:105] Iteration 408, lr = 0.00409601 +I0408 15:38:17.104912 27193 solver.cpp:218] Iteration 420 (2.81112 iter/s, 4.26876s/12 iters), loss = 5.17186 +I0408 15:38:17.104967 27193 solver.cpp:237] Train net output #0: loss = 5.17186 (* 1 = 5.17186 loss) +I0408 15:38:17.104979 27193 sgd_solver.cpp:105] Iteration 420, lr = 0.00398988 +I0408 15:38:22.128441 27193 solver.cpp:218] Iteration 432 (2.38887 iter/s, 5.02329s/12 iters), loss = 5.09877 +I0408 15:38:22.128499 27193 solver.cpp:237] Train net output #0: loss = 5.09877 (* 1 = 5.09877 loss) +I0408 15:38:22.128512 27193 sgd_solver.cpp:105] Iteration 432, lr = 0.0038865 +I0408 15:38:27.220288 27193 solver.cpp:218] Iteration 444 (2.35682 iter/s, 5.09161s/12 iters), loss = 5.08502 +I0408 15:38:27.220347 27193 solver.cpp:237] Train net output #0: loss = 5.08502 (* 1 = 5.08502 loss) +I0408 15:38:27.220360 27193 sgd_solver.cpp:105] Iteration 444, lr = 0.0037858 +I0408 15:38:32.303799 27193 solver.cpp:218] Iteration 456 (2.36068 iter/s, 5.08327s/12 iters), loss = 5.14396 +I0408 15:38:32.303851 27193 solver.cpp:237] Train net output #0: loss = 5.14396 (* 1 = 5.14396 loss) +I0408 15:38:32.303864 27193 sgd_solver.cpp:105] Iteration 456, lr = 0.00368771 +I0408 15:38:37.281925 27193 solver.cpp:218] Iteration 468 (2.41066 iter/s, 4.9779s/12 iters), loss = 5.13936 +I0408 15:38:37.281980 27193 solver.cpp:237] Train net output #0: loss = 5.13936 (* 1 = 5.13936 loss) +I0408 15:38:37.281989 27193 sgd_solver.cpp:105] Iteration 468, lr = 0.00359216 +I0408 15:38:42.324338 27193 solver.cpp:218] Iteration 480 (2.37992 iter/s, 5.04218s/12 iters), loss = 5.08699 +I0408 15:38:42.324384 27193 solver.cpp:237] Train net output #0: loss = 5.08699 (* 1 = 5.08699 loss) +I0408 15:38:42.324394 27193 sgd_solver.cpp:105] Iteration 480, lr = 0.00349908 +I0408 15:38:47.329768 27193 solver.cpp:218] Iteration 492 (2.3975 iter/s, 5.00521s/12 iters), loss = 5.07265 +I0408 15:38:47.329865 27193 solver.cpp:237] Train net output #0: loss = 5.07265 (* 1 = 5.07265 loss) +I0408 15:38:47.329875 27193 sgd_solver.cpp:105] Iteration 492, lr = 0.00340842 +I0408 15:38:52.304069 27193 solver.cpp:218] Iteration 504 (2.41253 iter/s, 4.97403s/12 iters), loss = 5.11378 +I0408 15:38:52.304133 27193 solver.cpp:237] Train net output #0: loss = 5.11378 (* 1 = 5.11378 loss) +I0408 15:38:52.304147 27193 sgd_solver.cpp:105] Iteration 504, lr = 0.0033201 +I0408 15:38:52.550977 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:38:54.370126 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_510.caffemodel +I0408 15:38:57.993546 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_510.solverstate +I0408 15:39:00.695324 27193 solver.cpp:330] Iteration 510, Testing net (#0) +I0408 15:39:00.695353 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:39:05.051079 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:05.289454 27193 solver.cpp:397] Test net output #0: accuracy = 0.0134804 +I0408 15:39:05.289505 27193 solver.cpp:397] Test net output #1: loss = 5.07142 (* 1 = 5.07142 loss) +I0408 15:39:07.323268 27193 solver.cpp:218] Iteration 516 (0.799007 iter/s, 15.0186s/12 iters), loss = 5.01534 +I0408 15:39:07.323330 27193 solver.cpp:237] Train net output #0: loss = 5.01534 (* 1 = 5.01534 loss) +I0408 15:39:07.323346 27193 sgd_solver.cpp:105] Iteration 516, lr = 0.00323408 +I0408 15:39:12.358891 27193 solver.cpp:218] Iteration 528 (2.38313 iter/s, 5.03538s/12 iters), loss = 5.1071 +I0408 15:39:12.358934 27193 solver.cpp:237] Train net output #0: loss = 5.1071 (* 1 = 5.1071 loss) +I0408 15:39:12.358943 27193 sgd_solver.cpp:105] Iteration 528, lr = 0.00315028 +I0408 15:39:17.425827 27193 solver.cpp:218] Iteration 540 (2.3684 iter/s, 5.06671s/12 iters), loss = 4.99626 +I0408 15:39:17.426096 27193 solver.cpp:237] Train net output #0: loss = 4.99626 (* 1 = 4.99626 loss) +I0408 15:39:17.426120 27193 sgd_solver.cpp:105] Iteration 540, lr = 0.00306866 +I0408 15:39:22.449681 27193 solver.cpp:218] Iteration 552 (2.38881 iter/s, 5.02343s/12 iters), loss = 5.07179 +I0408 15:39:22.449728 27193 solver.cpp:237] Train net output #0: loss = 5.07179 (* 1 = 5.07179 loss) +I0408 15:39:22.449741 27193 sgd_solver.cpp:105] Iteration 552, lr = 0.00298915 +I0408 15:39:27.513610 27193 solver.cpp:218] Iteration 564 (2.3698 iter/s, 5.06371s/12 iters), loss = 5.0203 +I0408 15:39:27.513654 27193 solver.cpp:237] Train net output #0: loss = 5.0203 (* 1 = 5.0203 loss) +I0408 15:39:27.513664 27193 sgd_solver.cpp:105] Iteration 564, lr = 0.0029117 +I0408 15:39:32.532497 27193 solver.cpp:218] Iteration 576 (2.39108 iter/s, 5.01866s/12 iters), loss = 5.03791 +I0408 15:39:32.532554 27193 solver.cpp:237] Train net output #0: loss = 5.03791 (* 1 = 5.03791 loss) +I0408 15:39:32.532567 27193 sgd_solver.cpp:105] Iteration 576, lr = 0.00283625 +I0408 15:39:37.594310 27193 solver.cpp:218] Iteration 588 (2.3708 iter/s, 5.06159s/12 iters), loss = 4.96886 +I0408 15:39:37.594347 27193 solver.cpp:237] Train net output #0: loss = 4.96886 (* 1 = 4.96886 loss) +I0408 15:39:37.594354 27193 sgd_solver.cpp:105] Iteration 588, lr = 0.00276276 +I0408 15:39:42.694834 27193 solver.cpp:218] Iteration 600 (2.3528 iter/s, 5.10031s/12 iters), loss = 5.06433 +I0408 15:39:42.694882 27193 solver.cpp:237] Train net output #0: loss = 5.06433 (* 1 = 5.06433 loss) +I0408 15:39:42.694895 27193 sgd_solver.cpp:105] Iteration 600, lr = 0.00269118 +I0408 15:39:45.114980 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:47.238818 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_612.caffemodel +I0408 15:39:50.927740 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_612.solverstate +I0408 15:39:53.822479 27193 solver.cpp:330] Iteration 612, Testing net (#0) +I0408 15:39:53.822504 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:39:57.981182 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:39:58.266039 27193 solver.cpp:397] Test net output #0: accuracy = 0.0232843 +I0408 15:39:58.266072 27193 solver.cpp:397] Test net output #1: loss = 5.03256 (* 1 = 5.03256 loss) +I0408 15:39:58.358556 27193 solver.cpp:218] Iteration 612 (0.766129 iter/s, 15.6632s/12 iters), loss = 5.0318 +I0408 15:39:58.358595 27193 solver.cpp:237] Train net output #0: loss = 5.0318 (* 1 = 5.0318 loss) +I0408 15:39:58.358603 27193 sgd_solver.cpp:105] Iteration 612, lr = 0.00262145 +I0408 15:40:02.663014 27193 solver.cpp:218] Iteration 624 (2.78793 iter/s, 4.30426s/12 iters), loss = 5.05798 +I0408 15:40:02.663064 27193 solver.cpp:237] Train net output #0: loss = 5.05798 (* 1 = 5.05798 loss) +I0408 15:40:02.663077 27193 sgd_solver.cpp:105] Iteration 624, lr = 0.00255353 +I0408 15:40:07.680668 27193 solver.cpp:218] Iteration 636 (2.39166 iter/s, 5.01743s/12 iters), loss = 4.89059 +I0408 15:40:07.680717 27193 solver.cpp:237] Train net output #0: loss = 4.89059 (* 1 = 4.89059 loss) +I0408 15:40:07.680728 27193 sgd_solver.cpp:105] Iteration 636, lr = 0.00248736 +I0408 15:40:12.757896 27193 solver.cpp:218] Iteration 648 (2.3636 iter/s, 5.07699s/12 iters), loss = 5.06875 +I0408 15:40:12.757973 27193 solver.cpp:237] Train net output #0: loss = 5.06875 (* 1 = 5.06875 loss) +I0408 15:40:12.757987 27193 sgd_solver.cpp:105] Iteration 648, lr = 0.00242291 +I0408 15:40:17.804461 27193 solver.cpp:218] Iteration 660 (2.37796 iter/s, 5.04633s/12 iters), loss = 4.99525 +I0408 15:40:17.804512 27193 solver.cpp:237] Train net output #0: loss = 4.99525 (* 1 = 4.99525 loss) +I0408 15:40:17.804523 27193 sgd_solver.cpp:105] Iteration 660, lr = 0.00236013 +I0408 15:40:22.892882 27193 solver.cpp:218] Iteration 672 (2.3584 iter/s, 5.0882s/12 iters), loss = 4.99085 +I0408 15:40:22.893020 27193 solver.cpp:237] Train net output #0: loss = 4.99085 (* 1 = 4.99085 loss) +I0408 15:40:22.893033 27193 sgd_solver.cpp:105] Iteration 672, lr = 0.00229898 +I0408 15:40:27.909168 27193 solver.cpp:218] Iteration 684 (2.39236 iter/s, 5.01598s/12 iters), loss = 4.78951 +I0408 15:40:27.909219 27193 solver.cpp:237] Train net output #0: loss = 4.78951 (* 1 = 4.78951 loss) +I0408 15:40:27.909230 27193 sgd_solver.cpp:105] Iteration 684, lr = 0.00223941 +I0408 15:40:28.687543 27193 blocking_queue.cpp:49] Waiting for data +I0408 15:40:32.945453 27193 solver.cpp:218] Iteration 696 (2.38281 iter/s, 5.03606s/12 iters), loss = 5.02446 +I0408 15:40:32.945499 27193 solver.cpp:237] Train net output #0: loss = 5.02446 (* 1 = 5.02446 loss) +I0408 15:40:32.945510 27193 sgd_solver.cpp:105] Iteration 696, lr = 0.00218139 +I0408 15:40:37.607786 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:40:37.990761 27193 solver.cpp:218] Iteration 708 (2.37855 iter/s, 5.04509s/12 iters), loss = 5.03518 +I0408 15:40:37.990798 27193 solver.cpp:237] Train net output #0: loss = 5.03518 (* 1 = 5.03518 loss) +I0408 15:40:37.990808 27193 sgd_solver.cpp:105] Iteration 708, lr = 0.00212487 +I0408 15:40:40.043642 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_714.caffemodel +I0408 15:40:44.049307 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_714.solverstate +I0408 15:40:46.766535 27193 solver.cpp:330] Iteration 714, Testing net (#0) +I0408 15:40:46.766554 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:40:50.916579 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:40:51.236521 27193 solver.cpp:397] Test net output #0: accuracy = 0.03125 +I0408 15:40:51.236569 27193 solver.cpp:397] Test net output #1: loss = 4.98769 (* 1 = 4.98769 loss) +I0408 15:40:52.997330 27193 solver.cpp:218] Iteration 720 (0.799678 iter/s, 15.006s/12 iters), loss = 5.08431 +I0408 15:40:52.997453 27193 solver.cpp:237] Train net output #0: loss = 5.08431 (* 1 = 5.08431 loss) +I0408 15:40:52.997467 27193 sgd_solver.cpp:105] Iteration 720, lr = 0.00206981 +I0408 15:40:58.111779 27193 solver.cpp:218] Iteration 732 (2.34643 iter/s, 5.11415s/12 iters), loss = 4.84309 +I0408 15:40:58.111830 27193 solver.cpp:237] Train net output #0: loss = 4.84309 (* 1 = 4.84309 loss) +I0408 15:40:58.111842 27193 sgd_solver.cpp:105] Iteration 732, lr = 0.00201618 +I0408 15:41:03.400434 27193 solver.cpp:218] Iteration 744 (2.26911 iter/s, 5.28842s/12 iters), loss = 4.9884 +I0408 15:41:03.400487 27193 solver.cpp:237] Train net output #0: loss = 4.9884 (* 1 = 4.9884 loss) +I0408 15:41:03.400501 27193 sgd_solver.cpp:105] Iteration 744, lr = 0.00196394 +I0408 15:41:08.444270 27193 solver.cpp:218] Iteration 756 (2.37925 iter/s, 5.04361s/12 iters), loss = 5.03567 +I0408 15:41:08.444316 27193 solver.cpp:237] Train net output #0: loss = 5.03567 (* 1 = 5.03567 loss) +I0408 15:41:08.444327 27193 sgd_solver.cpp:105] Iteration 756, lr = 0.00191306 +I0408 15:41:13.521687 27193 solver.cpp:218] Iteration 768 (2.36351 iter/s, 5.0772s/12 iters), loss = 5.01345 +I0408 15:41:13.521730 27193 solver.cpp:237] Train net output #0: loss = 5.01345 (* 1 = 5.01345 loss) +I0408 15:41:13.521741 27193 sgd_solver.cpp:105] Iteration 768, lr = 0.00186349 +I0408 15:41:18.684661 27193 solver.cpp:218] Iteration 780 (2.32434 iter/s, 5.16275s/12 iters), loss = 4.9995 +I0408 15:41:18.684711 27193 solver.cpp:237] Train net output #0: loss = 4.9995 (* 1 = 4.9995 loss) +I0408 15:41:18.684723 27193 sgd_solver.cpp:105] Iteration 780, lr = 0.0018152 +I0408 15:41:23.742996 27193 solver.cpp:218] Iteration 792 (2.37243 iter/s, 5.05811s/12 iters), loss = 4.83303 +I0408 15:41:23.743167 27193 solver.cpp:237] Train net output #0: loss = 4.83303 (* 1 = 4.83303 loss) +I0408 15:41:23.743182 27193 sgd_solver.cpp:105] Iteration 792, lr = 0.00176817 +I0408 15:41:28.829126 27193 solver.cpp:218] Iteration 804 (2.35951 iter/s, 5.08579s/12 iters), loss = 4.93262 +I0408 15:41:28.829172 27193 solver.cpp:237] Train net output #0: loss = 4.93262 (* 1 = 4.93262 loss) +I0408 15:41:28.829186 27193 sgd_solver.cpp:105] Iteration 804, lr = 0.00172236 +I0408 15:41:30.599849 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:41:33.377557 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_816.caffemodel +I0408 15:41:36.419186 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_816.solverstate +I0408 15:41:38.741168 27193 solver.cpp:330] Iteration 816, Testing net (#0) +I0408 15:41:38.741192 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:41:42.860889 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:41:43.216511 27193 solver.cpp:397] Test net output #0: accuracy = 0.0300245 +I0408 15:41:43.216553 27193 solver.cpp:397] Test net output #1: loss = 4.94983 (* 1 = 4.94983 loss) +I0408 15:41:43.307627 27193 solver.cpp:218] Iteration 816 (0.828845 iter/s, 14.478s/12 iters), loss = 5.00052 +I0408 15:41:43.307675 27193 solver.cpp:237] Train net output #0: loss = 5.00052 (* 1 = 5.00052 loss) +I0408 15:41:43.307685 27193 sgd_solver.cpp:105] Iteration 816, lr = 0.00167773 +I0408 15:41:47.719312 27193 solver.cpp:218] Iteration 828 (2.72018 iter/s, 4.41148s/12 iters), loss = 5.06232 +I0408 15:41:47.719364 27193 solver.cpp:237] Train net output #0: loss = 5.06232 (* 1 = 5.06232 loss) +I0408 15:41:47.719375 27193 sgd_solver.cpp:105] Iteration 828, lr = 0.00163426 +I0408 15:41:52.714390 27193 solver.cpp:218] Iteration 840 (2.40247 iter/s, 4.99485s/12 iters), loss = 4.82518 +I0408 15:41:52.714435 27193 solver.cpp:237] Train net output #0: loss = 4.82518 (* 1 = 4.82518 loss) +I0408 15:41:52.714445 27193 sgd_solver.cpp:105] Iteration 840, lr = 0.00159191 +I0408 15:41:57.727634 27193 solver.cpp:218] Iteration 852 (2.39376 iter/s, 5.01302s/12 iters), loss = 4.84099 +I0408 15:41:57.727759 27193 solver.cpp:237] Train net output #0: loss = 4.84099 (* 1 = 4.84099 loss) +I0408 15:41:57.727771 27193 sgd_solver.cpp:105] Iteration 852, lr = 0.00155067 +I0408 15:42:02.891170 27193 solver.cpp:218] Iteration 864 (2.32412 iter/s, 5.16324s/12 iters), loss = 4.93514 +I0408 15:42:02.891212 27193 solver.cpp:237] Train net output #0: loss = 4.93514 (* 1 = 4.93514 loss) +I0408 15:42:02.891222 27193 sgd_solver.cpp:105] Iteration 864, lr = 0.00151049 +I0408 15:42:08.253749 27193 solver.cpp:218] Iteration 876 (2.23783 iter/s, 5.36235s/12 iters), loss = 4.98477 +I0408 15:42:08.253804 27193 solver.cpp:237] Train net output #0: loss = 4.98477 (* 1 = 4.98477 loss) +I0408 15:42:08.253816 27193 sgd_solver.cpp:105] Iteration 876, lr = 0.00147135 +I0408 15:42:13.291193 27193 solver.cpp:218] Iteration 888 (2.38227 iter/s, 5.03722s/12 iters), loss = 4.77783 +I0408 15:42:13.291246 27193 solver.cpp:237] Train net output #0: loss = 4.77783 (* 1 = 4.77783 loss) +I0408 15:42:13.291258 27193 sgd_solver.cpp:105] Iteration 888, lr = 0.00143323 +I0408 15:42:18.361294 27193 solver.cpp:218] Iteration 900 (2.36692 iter/s, 5.06988s/12 iters), loss = 4.90973 +I0408 15:42:18.361341 27193 solver.cpp:237] Train net output #0: loss = 4.90973 (* 1 = 4.90973 loss) +I0408 15:42:18.361351 27193 sgd_solver.cpp:105] Iteration 900, lr = 0.00139609 +I0408 15:42:22.206707 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:23.358639 27193 solver.cpp:218] Iteration 912 (2.40138 iter/s, 4.99713s/12 iters), loss = 4.75195 +I0408 15:42:23.358675 27193 solver.cpp:237] Train net output #0: loss = 4.75195 (* 1 = 4.75195 loss) +I0408 15:42:23.358683 27193 sgd_solver.cpp:105] Iteration 912, lr = 0.00135992 +I0408 15:42:25.438169 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_918.caffemodel +I0408 15:42:28.484453 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_918.solverstate +I0408 15:42:31.241998 27193 solver.cpp:330] Iteration 918, Testing net (#0) +I0408 15:42:31.242027 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:42:35.453254 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:42:35.855175 27193 solver.cpp:397] Test net output #0: accuracy = 0.0343137 +I0408 15:42:35.855224 27193 solver.cpp:397] Test net output #1: loss = 4.91821 (* 1 = 4.91821 loss) +I0408 15:42:37.805128 27193 solver.cpp:218] Iteration 924 (0.830681 iter/s, 14.446s/12 iters), loss = 4.95514 +I0408 15:42:37.805184 27193 solver.cpp:237] Train net output #0: loss = 4.95514 (* 1 = 4.95514 loss) +I0408 15:42:37.805197 27193 sgd_solver.cpp:105] Iteration 924, lr = 0.00132468 +I0408 15:42:42.886759 27193 solver.cpp:218] Iteration 936 (2.36155 iter/s, 5.0814s/12 iters), loss = 4.92119 +I0408 15:42:42.886804 27193 solver.cpp:237] Train net output #0: loss = 4.92119 (* 1 = 4.92119 loss) +I0408 15:42:42.886816 27193 sgd_solver.cpp:105] Iteration 936, lr = 0.00129036 +I0408 15:42:48.069846 27193 solver.cpp:218] Iteration 948 (2.31532 iter/s, 5.18286s/12 iters), loss = 4.79745 +I0408 15:42:48.069898 27193 solver.cpp:237] Train net output #0: loss = 4.79745 (* 1 = 4.79745 loss) +I0408 15:42:48.069911 27193 sgd_solver.cpp:105] Iteration 948, lr = 0.00125692 +I0408 15:42:53.144537 27193 solver.cpp:218] Iteration 960 (2.36478 iter/s, 5.07447s/12 iters), loss = 4.75797 +I0408 15:42:53.144584 27193 solver.cpp:237] Train net output #0: loss = 4.75797 (* 1 = 4.75797 loss) +I0408 15:42:53.144595 27193 sgd_solver.cpp:105] Iteration 960, lr = 0.00122436 +I0408 15:42:58.199388 27193 solver.cpp:218] Iteration 972 (2.37406 iter/s, 5.05463s/12 iters), loss = 4.92614 +I0408 15:42:58.199442 27193 solver.cpp:237] Train net output #0: loss = 4.92614 (* 1 = 4.92614 loss) +I0408 15:42:58.199455 27193 sgd_solver.cpp:105] Iteration 972, lr = 0.00119263 +I0408 15:43:03.224015 27193 solver.cpp:218] Iteration 984 (2.38834 iter/s, 5.0244s/12 iters), loss = 4.83474 +I0408 15:43:03.224120 27193 solver.cpp:237] Train net output #0: loss = 4.83474 (* 1 = 4.83474 loss) +I0408 15:43:03.224133 27193 sgd_solver.cpp:105] Iteration 984, lr = 0.00116173 +I0408 15:43:08.388700 27193 solver.cpp:218] Iteration 996 (2.3236 iter/s, 5.16441s/12 iters), loss = 4.75217 +I0408 15:43:08.388741 27193 solver.cpp:237] Train net output #0: loss = 4.75217 (* 1 = 4.75217 loss) +I0408 15:43:08.388749 27193 sgd_solver.cpp:105] Iteration 996, lr = 0.00113163 +I0408 15:43:13.438302 27193 solver.cpp:218] Iteration 1008 (2.37653 iter/s, 5.04939s/12 iters), loss = 4.91473 +I0408 15:43:13.438346 27193 solver.cpp:237] Train net output #0: loss = 4.91473 (* 1 = 4.91473 loss) +I0408 15:43:13.438356 27193 sgd_solver.cpp:105] Iteration 1008, lr = 0.00110231 +I0408 15:43:14.546811 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:43:18.062523 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1020.caffemodel +I0408 15:43:21.606719 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1020.solverstate +I0408 15:43:23.939296 27193 solver.cpp:330] Iteration 1020, Testing net (#0) +I0408 15:43:23.939322 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:43:27.940160 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:43:28.372856 27193 solver.cpp:397] Test net output #0: accuracy = 0.0392157 +I0408 15:43:28.372905 27193 solver.cpp:397] Test net output #1: loss = 4.8821 (* 1 = 4.8821 loss) +I0408 15:43:28.464366 27193 solver.cpp:218] Iteration 1020 (0.798641 iter/s, 15.0255s/12 iters), loss = 4.72571 +I0408 15:43:28.464423 27193 solver.cpp:237] Train net output #0: loss = 4.72571 (* 1 = 4.72571 loss) +I0408 15:43:28.464434 27193 sgd_solver.cpp:105] Iteration 1020, lr = 0.00107375 +I0408 15:43:33.069506 27193 solver.cpp:218] Iteration 1032 (2.60591 iter/s, 4.60492s/12 iters), loss = 4.82018 +I0408 15:43:33.069562 27193 solver.cpp:237] Train net output #0: loss = 4.82018 (* 1 = 4.82018 loss) +I0408 15:43:33.069574 27193 sgd_solver.cpp:105] Iteration 1032, lr = 0.00104593 +I0408 15:43:38.286413 27193 solver.cpp:218] Iteration 1044 (2.30032 iter/s, 5.21667s/12 iters), loss = 4.93542 +I0408 15:43:38.286558 27193 solver.cpp:237] Train net output #0: loss = 4.93542 (* 1 = 4.93542 loss) +I0408 15:43:38.286571 27193 sgd_solver.cpp:105] Iteration 1044, lr = 0.00101883 +I0408 15:43:43.379740 27193 solver.cpp:218] Iteration 1056 (2.35617 iter/s, 5.09301s/12 iters), loss = 4.77196 +I0408 15:43:43.379793 27193 solver.cpp:237] Train net output #0: loss = 4.77196 (* 1 = 4.77196 loss) +I0408 15:43:43.379804 27193 sgd_solver.cpp:105] Iteration 1056, lr = 0.000992428 +I0408 15:43:48.398460 27193 solver.cpp:218] Iteration 1068 (2.39115 iter/s, 5.0185s/12 iters), loss = 4.90067 +I0408 15:43:48.398504 27193 solver.cpp:237] Train net output #0: loss = 4.90067 (* 1 = 4.90067 loss) +I0408 15:43:48.398514 27193 sgd_solver.cpp:105] Iteration 1068, lr = 0.000966713 +I0408 15:43:53.481282 27193 solver.cpp:218] Iteration 1080 (2.361 iter/s, 5.0826s/12 iters), loss = 4.74138 +I0408 15:43:53.481343 27193 solver.cpp:237] Train net output #0: loss = 4.74138 (* 1 = 4.74138 loss) +I0408 15:43:53.481355 27193 sgd_solver.cpp:105] Iteration 1080, lr = 0.000941665 +I0408 15:43:58.780347 27193 solver.cpp:218] Iteration 1092 (2.26465 iter/s, 5.29883s/12 iters), loss = 4.79281 +I0408 15:43:58.780390 27193 solver.cpp:237] Train net output #0: loss = 4.79281 (* 1 = 4.79281 loss) +I0408 15:43:58.780402 27193 sgd_solver.cpp:105] Iteration 1092, lr = 0.000917266 +I0408 15:44:03.886440 27193 solver.cpp:218] Iteration 1104 (2.35024 iter/s, 5.10587s/12 iters), loss = 4.86858 +I0408 15:44:03.886492 27193 solver.cpp:237] Train net output #0: loss = 4.86858 (* 1 = 4.86858 loss) +I0408 15:44:03.886503 27193 sgd_solver.cpp:105] Iteration 1104, lr = 0.000893499 +I0408 15:44:07.073783 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:44:08.971601 27193 solver.cpp:218] Iteration 1116 (2.35991 iter/s, 5.08493s/12 iters), loss = 4.89667 +I0408 15:44:08.971688 27193 solver.cpp:237] Train net output #0: loss = 4.89667 (* 1 = 4.89667 loss) +I0408 15:44:08.971700 27193 sgd_solver.cpp:105] Iteration 1116, lr = 0.000870348 +I0408 15:44:11.097810 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1122.caffemodel +I0408 15:44:14.207808 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1122.solverstate +I0408 15:44:16.496073 27193 solver.cpp:330] Iteration 1122, Testing net (#0) +I0408 15:44:16.496094 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:44:20.472355 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:44:20.950518 27193 solver.cpp:397] Test net output #0: accuracy = 0.0441176 +I0408 15:44:20.950567 27193 solver.cpp:397] Test net output #1: loss = 4.85047 (* 1 = 4.85047 loss) +I0408 15:44:22.742774 27193 solver.cpp:218] Iteration 1128 (0.871419 iter/s, 13.7706s/12 iters), loss = 4.87524 +I0408 15:44:22.742816 27193 solver.cpp:237] Train net output #0: loss = 4.87524 (* 1 = 4.87524 loss) +I0408 15:44:22.742825 27193 sgd_solver.cpp:105] Iteration 1128, lr = 0.000847797 +I0408 15:44:27.793644 27193 solver.cpp:218] Iteration 1140 (2.37593 iter/s, 5.05066s/12 iters), loss = 4.85915 +I0408 15:44:27.793684 27193 solver.cpp:237] Train net output #0: loss = 4.85915 (* 1 = 4.85915 loss) +I0408 15:44:27.793694 27193 sgd_solver.cpp:105] Iteration 1140, lr = 0.00082583 +I0408 15:44:32.853726 27193 solver.cpp:218] Iteration 1152 (2.3716 iter/s, 5.05987s/12 iters), loss = 4.85951 +I0408 15:44:32.853768 27193 solver.cpp:237] Train net output #0: loss = 4.85951 (* 1 = 4.85951 loss) +I0408 15:44:32.853778 27193 sgd_solver.cpp:105] Iteration 1152, lr = 0.000804433 +I0408 15:44:38.194855 27193 solver.cpp:218] Iteration 1164 (2.24681 iter/s, 5.34091s/12 iters), loss = 4.75607 +I0408 15:44:38.194900 27193 solver.cpp:237] Train net output #0: loss = 4.75607 (* 1 = 4.75607 loss) +I0408 15:44:38.194909 27193 sgd_solver.cpp:105] Iteration 1164, lr = 0.000783589 +I0408 15:44:43.552022 27193 solver.cpp:218] Iteration 1176 (2.24009 iter/s, 5.35694s/12 iters), loss = 4.75425 +I0408 15:44:43.552175 27193 solver.cpp:237] Train net output #0: loss = 4.75425 (* 1 = 4.75425 loss) +I0408 15:44:43.552188 27193 sgd_solver.cpp:105] Iteration 1176, lr = 0.000763286 +I0408 15:44:48.992050 27193 solver.cpp:218] Iteration 1188 (2.20601 iter/s, 5.4397s/12 iters), loss = 4.78282 +I0408 15:44:48.992092 27193 solver.cpp:237] Train net output #0: loss = 4.78282 (* 1 = 4.78282 loss) +I0408 15:44:48.992101 27193 sgd_solver.cpp:105] Iteration 1188, lr = 0.000743509 +I0408 15:44:54.030033 27193 solver.cpp:218] Iteration 1200 (2.38201 iter/s, 5.03777s/12 iters), loss = 4.88353 +I0408 15:44:54.030082 27193 solver.cpp:237] Train net output #0: loss = 4.88353 (* 1 = 4.88353 loss) +I0408 15:44:54.030093 27193 sgd_solver.cpp:105] Iteration 1200, lr = 0.000724244 +I0408 15:44:59.055526 27193 solver.cpp:218] Iteration 1212 (2.38793 iter/s, 5.02527s/12 iters), loss = 4.76906 +I0408 15:44:59.055572 27193 solver.cpp:237] Train net output #0: loss = 4.76906 (* 1 = 4.76906 loss) +I0408 15:44:59.055583 27193 sgd_solver.cpp:105] Iteration 1212, lr = 0.000705479 +I0408 15:44:59.334343 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:03.871029 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1224.caffemodel +I0408 15:45:06.856504 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1224.solverstate +I0408 15:45:10.336797 27193 solver.cpp:330] Iteration 1224, Testing net (#0) +I0408 15:45:10.336825 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:45:14.301313 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:14.814646 27193 solver.cpp:397] Test net output #0: accuracy = 0.0441176 +I0408 15:45:14.814687 27193 solver.cpp:397] Test net output #1: loss = 4.82228 (* 1 = 4.82228 loss) +I0408 15:45:14.906195 27193 solver.cpp:218] Iteration 1224 (0.757093 iter/s, 15.8501s/12 iters), loss = 4.7284 +I0408 15:45:14.906237 27193 solver.cpp:237] Train net output #0: loss = 4.7284 (* 1 = 4.7284 loss) +I0408 15:45:14.906246 27193 sgd_solver.cpp:105] Iteration 1224, lr = 0.000687199 +I0408 15:45:19.295542 27193 solver.cpp:218] Iteration 1236 (2.73402 iter/s, 4.38914s/12 iters), loss = 4.96666 +I0408 15:45:19.295600 27193 solver.cpp:237] Train net output #0: loss = 4.96666 (* 1 = 4.96666 loss) +I0408 15:45:19.295612 27193 sgd_solver.cpp:105] Iteration 1236, lr = 0.000669394 +I0408 15:45:24.402418 27193 solver.cpp:218] Iteration 1248 (2.34988 iter/s, 5.10664s/12 iters), loss = 4.68919 +I0408 15:45:24.402470 27193 solver.cpp:237] Train net output #0: loss = 4.68919 (* 1 = 4.68919 loss) +I0408 15:45:24.402480 27193 sgd_solver.cpp:105] Iteration 1248, lr = 0.000652049 +I0408 15:45:29.746449 27193 solver.cpp:218] Iteration 1260 (2.24559 iter/s, 5.3438s/12 iters), loss = 4.69055 +I0408 15:45:29.746495 27193 solver.cpp:237] Train net output #0: loss = 4.69055 (* 1 = 4.69055 loss) +I0408 15:45:29.746506 27193 sgd_solver.cpp:105] Iteration 1260, lr = 0.000635154 +I0408 15:45:35.242317 27193 solver.cpp:218] Iteration 1272 (2.18355 iter/s, 5.49563s/12 iters), loss = 4.68256 +I0408 15:45:35.242367 27193 solver.cpp:237] Train net output #0: loss = 4.68256 (* 1 = 4.68256 loss) +I0408 15:45:35.242378 27193 sgd_solver.cpp:105] Iteration 1272, lr = 0.000618697 +I0408 15:45:40.378989 27193 solver.cpp:218] Iteration 1284 (2.33625 iter/s, 5.13645s/12 iters), loss = 4.73783 +I0408 15:45:40.379042 27193 solver.cpp:237] Train net output #0: loss = 4.73783 (* 1 = 4.73783 loss) +I0408 15:45:40.379055 27193 sgd_solver.cpp:105] Iteration 1284, lr = 0.000602667 +I0408 15:45:45.652169 27193 solver.cpp:218] Iteration 1296 (2.27577 iter/s, 5.27295s/12 iters), loss = 4.65095 +I0408 15:45:45.652303 27193 solver.cpp:237] Train net output #0: loss = 4.65095 (* 1 = 4.65095 loss) +I0408 15:45:45.652314 27193 sgd_solver.cpp:105] Iteration 1296, lr = 0.000587051 +I0408 15:45:51.172502 27193 solver.cpp:218] Iteration 1308 (2.17391 iter/s, 5.52001s/12 iters), loss = 4.83614 +I0408 15:45:51.172545 27193 solver.cpp:237] Train net output #0: loss = 4.83614 (* 1 = 4.83614 loss) +I0408 15:45:51.172554 27193 sgd_solver.cpp:105] Iteration 1308, lr = 0.00057184 +I0408 15:45:53.855134 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:45:56.408708 27193 solver.cpp:218] Iteration 1320 (2.29183 iter/s, 5.23599s/12 iters), loss = 4.72569 +I0408 15:45:56.408748 27193 solver.cpp:237] Train net output #0: loss = 4.72569 (* 1 = 4.72569 loss) +I0408 15:45:56.408758 27193 sgd_solver.cpp:105] Iteration 1320, lr = 0.000557024 +I0408 15:45:58.552749 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1326.caffemodel +I0408 15:46:03.598701 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1326.solverstate +I0408 15:46:06.420948 27193 solver.cpp:330] Iteration 1326, Testing net (#0) +I0408 15:46:06.420974 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:46:10.439240 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:46:10.998093 27193 solver.cpp:397] Test net output #0: accuracy = 0.0477941 +I0408 15:46:10.998136 27193 solver.cpp:397] Test net output #1: loss = 4.78645 (* 1 = 4.78645 loss) +I0408 15:46:13.011559 27193 solver.cpp:218] Iteration 1332 (0.722793 iter/s, 16.6023s/12 iters), loss = 4.5756 +I0408 15:46:13.011602 27193 solver.cpp:237] Train net output #0: loss = 4.5756 (* 1 = 4.5756 loss) +I0408 15:46:13.011611 27193 sgd_solver.cpp:105] Iteration 1332, lr = 0.000542591 +I0408 15:46:18.413189 27193 solver.cpp:218] Iteration 1344 (2.22165 iter/s, 5.4014s/12 iters), loss = 4.64198 +I0408 15:46:18.413285 27193 solver.cpp:237] Train net output #0: loss = 4.64198 (* 1 = 4.64198 loss) +I0408 15:46:18.413295 27193 sgd_solver.cpp:105] Iteration 1344, lr = 0.000528532 +I0408 15:46:23.495425 27193 solver.cpp:218] Iteration 1356 (2.36129 iter/s, 5.08196s/12 iters), loss = 4.80706 +I0408 15:46:23.495472 27193 solver.cpp:237] Train net output #0: loss = 4.80706 (* 1 = 4.80706 loss) +I0408 15:46:23.495481 27193 sgd_solver.cpp:105] Iteration 1356, lr = 0.000514838 +I0408 15:46:28.590737 27193 solver.cpp:218] Iteration 1368 (2.35521 iter/s, 5.09509s/12 iters), loss = 4.75032 +I0408 15:46:28.590781 27193 solver.cpp:237] Train net output #0: loss = 4.75032 (* 1 = 4.75032 loss) +I0408 15:46:28.590791 27193 sgd_solver.cpp:105] Iteration 1368, lr = 0.000501498 +I0408 15:46:29.820401 27193 blocking_queue.cpp:49] Waiting for data +I0408 15:46:33.678488 27193 solver.cpp:218] Iteration 1380 (2.35871 iter/s, 5.08753s/12 iters), loss = 4.55236 +I0408 15:46:33.678537 27193 solver.cpp:237] Train net output #0: loss = 4.55236 (* 1 = 4.55236 loss) +I0408 15:46:33.678547 27193 sgd_solver.cpp:105] Iteration 1380, lr = 0.000488504 +I0408 15:46:38.819430 27193 solver.cpp:218] Iteration 1392 (2.33431 iter/s, 5.14071s/12 iters), loss = 4.52443 +I0408 15:46:38.819486 27193 solver.cpp:237] Train net output #0: loss = 4.52443 (* 1 = 4.52443 loss) +I0408 15:46:38.819500 27193 sgd_solver.cpp:105] Iteration 1392, lr = 0.000475846 +I0408 15:46:43.946739 27193 solver.cpp:218] Iteration 1404 (2.34051 iter/s, 5.12708s/12 iters), loss = 4.71614 +I0408 15:46:43.946779 27193 solver.cpp:237] Train net output #0: loss = 4.71614 (* 1 = 4.71614 loss) +I0408 15:46:43.946789 27193 sgd_solver.cpp:105] Iteration 1404, lr = 0.000463517 +I0408 15:46:48.670794 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:46:49.021471 27193 solver.cpp:218] Iteration 1416 (2.36476 iter/s, 5.07452s/12 iters), loss = 4.6916 +I0408 15:46:49.021507 27193 solver.cpp:237] Train net output #0: loss = 4.6916 (* 1 = 4.6916 loss) +I0408 15:46:49.021517 27193 sgd_solver.cpp:105] Iteration 1416, lr = 0.000451507 +I0408 15:46:53.631373 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1428.caffemodel +I0408 15:46:59.282817 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1428.solverstate +I0408 15:47:03.375217 27193 solver.cpp:330] Iteration 1428, Testing net (#0) +I0408 15:47:03.375243 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:47:07.317054 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:47:07.908859 27193 solver.cpp:397] Test net output #0: accuracy = 0.0490196 +I0408 15:47:07.908908 27193 solver.cpp:397] Test net output #1: loss = 4.74899 (* 1 = 4.74899 loss) +I0408 15:47:07.998531 27193 solver.cpp:218] Iteration 1428 (0.632364 iter/s, 18.9764s/12 iters), loss = 4.8978 +I0408 15:47:07.998581 27193 solver.cpp:237] Train net output #0: loss = 4.8978 (* 1 = 4.8978 loss) +I0408 15:47:07.998594 27193 sgd_solver.cpp:105] Iteration 1428, lr = 0.000439808 +I0408 15:47:12.592700 27193 solver.cpp:218] Iteration 1440 (2.61213 iter/s, 4.59396s/12 iters), loss = 4.59927 +I0408 15:47:12.592747 27193 solver.cpp:237] Train net output #0: loss = 4.59927 (* 1 = 4.59927 loss) +I0408 15:47:12.592759 27193 sgd_solver.cpp:105] Iteration 1440, lr = 0.000428412 +I0408 15:47:17.703950 27193 solver.cpp:218] Iteration 1452 (2.34786 iter/s, 5.11103s/12 iters), loss = 4.71031 +I0408 15:47:17.703991 27193 solver.cpp:237] Train net output #0: loss = 4.71031 (* 1 = 4.71031 loss) +I0408 15:47:17.704000 27193 sgd_solver.cpp:105] Iteration 1452, lr = 0.000417312 +I0408 15:47:22.858747 27193 solver.cpp:218] Iteration 1464 (2.32803 iter/s, 5.15457s/12 iters), loss = 4.73418 +I0408 15:47:22.858966 27193 solver.cpp:237] Train net output #0: loss = 4.73418 (* 1 = 4.73418 loss) +I0408 15:47:22.858979 27193 sgd_solver.cpp:105] Iteration 1464, lr = 0.000406499 +I0408 15:47:28.106755 27193 solver.cpp:218] Iteration 1476 (2.28675 iter/s, 5.24761s/12 iters), loss = 4.74075 +I0408 15:47:28.106799 27193 solver.cpp:237] Train net output #0: loss = 4.74075 (* 1 = 4.74075 loss) +I0408 15:47:28.106810 27193 sgd_solver.cpp:105] Iteration 1476, lr = 0.000395967 +I0408 15:47:33.168926 27193 solver.cpp:218] Iteration 1488 (2.37063 iter/s, 5.06195s/12 iters), loss = 4.7345 +I0408 15:47:33.168972 27193 solver.cpp:237] Train net output #0: loss = 4.7345 (* 1 = 4.7345 loss) +I0408 15:47:33.168983 27193 sgd_solver.cpp:105] Iteration 1488, lr = 0.000385707 +I0408 15:47:38.277545 27193 solver.cpp:218] Iteration 1500 (2.34908 iter/s, 5.10839s/12 iters), loss = 4.56937 +I0408 15:47:38.277604 27193 solver.cpp:237] Train net output #0: loss = 4.56937 (* 1 = 4.56937 loss) +I0408 15:47:38.277617 27193 sgd_solver.cpp:105] Iteration 1500, lr = 0.000375713 +I0408 15:47:43.709810 27193 solver.cpp:218] Iteration 1512 (2.20912 iter/s, 5.43202s/12 iters), loss = 4.66302 +I0408 15:47:43.709861 27193 solver.cpp:237] Train net output #0: loss = 4.66302 (* 1 = 4.66302 loss) +I0408 15:47:43.709872 27193 sgd_solver.cpp:105] Iteration 1512, lr = 0.000365978 +I0408 15:47:45.687863 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:47:49.110721 27193 solver.cpp:218] Iteration 1524 (2.22194 iter/s, 5.40068s/12 iters), loss = 4.76405 +I0408 15:47:49.110771 27193 solver.cpp:237] Train net output #0: loss = 4.76405 (* 1 = 4.76405 loss) +I0408 15:47:49.110782 27193 sgd_solver.cpp:105] Iteration 1524, lr = 0.000356496 +I0408 15:47:51.171478 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1530.caffemodel +I0408 15:47:58.199376 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1530.solverstate +I0408 15:48:02.000728 27193 solver.cpp:330] Iteration 1530, Testing net (#0) +I0408 15:48:02.000756 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:48:05.803820 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:06.442109 27193 solver.cpp:397] Test net output #0: accuracy = 0.0539216 +I0408 15:48:06.442157 27193 solver.cpp:397] Test net output #1: loss = 4.72949 (* 1 = 4.72949 loss) +I0408 15:48:08.318817 27193 solver.cpp:218] Iteration 1536 (0.624759 iter/s, 19.2074s/12 iters), loss = 4.71931 +I0408 15:48:08.318876 27193 solver.cpp:237] Train net output #0: loss = 4.71931 (* 1 = 4.71931 loss) +I0408 15:48:08.318888 27193 sgd_solver.cpp:105] Iteration 1536, lr = 0.000347259 +I0408 15:48:13.347069 27193 solver.cpp:218] Iteration 1548 (2.38663 iter/s, 5.02802s/12 iters), loss = 4.42848 +I0408 15:48:13.347126 27193 solver.cpp:237] Train net output #0: loss = 4.42848 (* 1 = 4.42848 loss) +I0408 15:48:13.347139 27193 sgd_solver.cpp:105] Iteration 1548, lr = 0.000338261 +I0408 15:48:18.501448 27193 solver.cpp:218] Iteration 1560 (2.32822 iter/s, 5.15415s/12 iters), loss = 4.62149 +I0408 15:48:18.501495 27193 solver.cpp:237] Train net output #0: loss = 4.62149 (* 1 = 4.62149 loss) +I0408 15:48:18.501507 27193 sgd_solver.cpp:105] Iteration 1560, lr = 0.000329496 +I0408 15:48:23.660862 27193 solver.cpp:218] Iteration 1572 (2.32595 iter/s, 5.15919s/12 iters), loss = 4.69352 +I0408 15:48:23.660908 27193 solver.cpp:237] Train net output #0: loss = 4.69352 (* 1 = 4.69352 loss) +I0408 15:48:23.660920 27193 sgd_solver.cpp:105] Iteration 1572, lr = 0.000320959 +I0408 15:48:28.774264 27193 solver.cpp:218] Iteration 1584 (2.34688 iter/s, 5.11318s/12 iters), loss = 4.73624 +I0408 15:48:28.774400 27193 solver.cpp:237] Train net output #0: loss = 4.73624 (* 1 = 4.73624 loss) +I0408 15:48:28.774418 27193 sgd_solver.cpp:105] Iteration 1584, lr = 0.000312643 +I0408 15:48:33.988585 27193 solver.cpp:218] Iteration 1596 (2.30149 iter/s, 5.21401s/12 iters), loss = 4.64384 +I0408 15:48:33.988636 27193 solver.cpp:237] Train net output #0: loss = 4.64384 (* 1 = 4.64384 loss) +I0408 15:48:33.988648 27193 sgd_solver.cpp:105] Iteration 1596, lr = 0.000304542 +I0408 15:48:39.104511 27193 solver.cpp:218] Iteration 1608 (2.34572 iter/s, 5.1157s/12 iters), loss = 4.61618 +I0408 15:48:39.104554 27193 solver.cpp:237] Train net output #0: loss = 4.61618 (* 1 = 4.61618 loss) +I0408 15:48:39.104566 27193 sgd_solver.cpp:105] Iteration 1608, lr = 0.000296651 +I0408 15:48:43.349793 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:48:44.523947 27193 solver.cpp:218] Iteration 1620 (2.21435 iter/s, 5.41921s/12 iters), loss = 4.50672 +I0408 15:48:44.523995 27193 solver.cpp:237] Train net output #0: loss = 4.50672 (* 1 = 4.50672 loss) +I0408 15:48:44.524006 27193 sgd_solver.cpp:105] Iteration 1620, lr = 0.000288965 +I0408 15:48:49.160468 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1632.caffemodel +I0408 15:48:57.237262 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1632.solverstate +I0408 15:49:00.913883 27193 solver.cpp:330] Iteration 1632, Testing net (#0) +I0408 15:49:00.913939 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:49:04.724952 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:49:05.396684 27193 solver.cpp:397] Test net output #0: accuracy = 0.0551471 +I0408 15:49:05.396726 27193 solver.cpp:397] Test net output #1: loss = 4.71085 (* 1 = 4.71085 loss) +I0408 15:49:05.487841 27193 solver.cpp:218] Iteration 1632 (0.572433 iter/s, 20.9632s/12 iters), loss = 4.66336 +I0408 15:49:05.487888 27193 solver.cpp:237] Train net output #0: loss = 4.66336 (* 1 = 4.66336 loss) +I0408 15:49:05.487898 27193 sgd_solver.cpp:105] Iteration 1632, lr = 0.000281478 +I0408 15:49:10.093133 27193 solver.cpp:218] Iteration 1644 (2.60582 iter/s, 4.60508s/12 iters), loss = 4.64399 +I0408 15:49:10.093185 27193 solver.cpp:237] Train net output #0: loss = 4.64399 (* 1 = 4.64399 loss) +I0408 15:49:10.093197 27193 sgd_solver.cpp:105] Iteration 1644, lr = 0.000274184 +I0408 15:49:15.364133 27193 solver.cpp:218] Iteration 1656 (2.27671 iter/s, 5.27077s/12 iters), loss = 4.6803 +I0408 15:49:15.364182 27193 solver.cpp:237] Train net output #0: loss = 4.6803 (* 1 = 4.6803 loss) +I0408 15:49:15.364192 27193 sgd_solver.cpp:105] Iteration 1656, lr = 0.00026708 +I0408 15:49:20.586068 27193 solver.cpp:218] Iteration 1668 (2.2981 iter/s, 5.2217s/12 iters), loss = 4.47175 +I0408 15:49:20.586122 27193 solver.cpp:237] Train net output #0: loss = 4.47175 (* 1 = 4.47175 loss) +I0408 15:49:20.586133 27193 sgd_solver.cpp:105] Iteration 1668, lr = 0.00026016 +I0408 15:49:25.670821 27193 solver.cpp:218] Iteration 1680 (2.3601 iter/s, 5.08452s/12 iters), loss = 4.55878 +I0408 15:49:25.670876 27193 solver.cpp:237] Train net output #0: loss = 4.55878 (* 1 = 4.55878 loss) +I0408 15:49:25.670887 27193 sgd_solver.cpp:105] Iteration 1680, lr = 0.000253419 +I0408 15:49:31.125108 27193 solver.cpp:218] Iteration 1692 (2.2002 iter/s, 5.45404s/12 iters), loss = 4.7345 +I0408 15:49:31.125221 27193 solver.cpp:237] Train net output #0: loss = 4.7345 (* 1 = 4.7345 loss) +I0408 15:49:31.125233 27193 sgd_solver.cpp:105] Iteration 1692, lr = 0.000246853 +I0408 15:49:36.214128 27193 solver.cpp:218] Iteration 1704 (2.35815 iter/s, 5.08873s/12 iters), loss = 4.48659 +I0408 15:49:36.214184 27193 solver.cpp:237] Train net output #0: loss = 4.48659 (* 1 = 4.48659 loss) +I0408 15:49:36.214196 27193 sgd_solver.cpp:105] Iteration 1704, lr = 0.000240457 +I0408 15:49:41.358309 27193 solver.cpp:218] Iteration 1716 (2.33284 iter/s, 5.14395s/12 iters), loss = 4.62753 +I0408 15:49:41.358355 27193 solver.cpp:237] Train net output #0: loss = 4.62753 (* 1 = 4.62753 loss) +I0408 15:49:41.358364 27193 sgd_solver.cpp:105] Iteration 1716, lr = 0.000234226 +I0408 15:49:42.421144 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:49:46.427062 27193 solver.cpp:218] Iteration 1728 (2.36755 iter/s, 5.06853s/12 iters), loss = 4.61505 +I0408 15:49:46.427111 27193 solver.cpp:237] Train net output #0: loss = 4.61505 (* 1 = 4.61505 loss) +I0408 15:49:46.427124 27193 sgd_solver.cpp:105] Iteration 1728, lr = 0.000228157 +I0408 15:49:48.503794 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1734.caffemodel +I0408 15:49:56.369580 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1734.solverstate +I0408 15:50:01.725497 27193 solver.cpp:330] Iteration 1734, Testing net (#0) +I0408 15:50:01.725548 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:50:05.621894 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:50:06.331372 27193 solver.cpp:397] Test net output #0: accuracy = 0.0557598 +I0408 15:50:06.331415 27193 solver.cpp:397] Test net output #1: loss = 4.6974 (* 1 = 4.6974 loss) +I0408 15:50:08.121150 27193 solver.cpp:218] Iteration 1740 (0.553165 iter/s, 21.6933s/12 iters), loss = 4.61444 +I0408 15:50:08.121217 27193 solver.cpp:237] Train net output #0: loss = 4.61444 (* 1 = 4.61444 loss) +I0408 15:50:08.121228 27193 sgd_solver.cpp:105] Iteration 1740, lr = 0.000222246 +I0408 15:50:13.179740 27193 solver.cpp:218] Iteration 1752 (2.37232 iter/s, 5.05835s/12 iters), loss = 4.62211 +I0408 15:50:13.179790 27193 solver.cpp:237] Train net output #0: loss = 4.62211 (* 1 = 4.62211 loss) +I0408 15:50:13.179802 27193 sgd_solver.cpp:105] Iteration 1752, lr = 0.000216487 +I0408 15:50:18.124828 27193 solver.cpp:218] Iteration 1764 (2.42676 iter/s, 4.94486s/12 iters), loss = 4.53452 +I0408 15:50:18.124882 27193 solver.cpp:237] Train net output #0: loss = 4.53452 (* 1 = 4.53452 loss) +I0408 15:50:18.124894 27193 sgd_solver.cpp:105] Iteration 1764, lr = 0.000210878 +I0408 15:50:23.132436 27193 solver.cpp:218] Iteration 1776 (2.39646 iter/s, 5.00738s/12 iters), loss = 4.66167 +I0408 15:50:23.132485 27193 solver.cpp:237] Train net output #0: loss = 4.66167 (* 1 = 4.66167 loss) +I0408 15:50:23.132498 27193 sgd_solver.cpp:105] Iteration 1776, lr = 0.000205414 +I0408 15:50:28.184172 27193 solver.cpp:218] Iteration 1788 (2.37553 iter/s, 5.05151s/12 iters), loss = 4.64941 +I0408 15:50:28.184214 27193 solver.cpp:237] Train net output #0: loss = 4.64941 (* 1 = 4.64941 loss) +I0408 15:50:28.184223 27193 sgd_solver.cpp:105] Iteration 1788, lr = 0.000200092 +I0408 15:50:33.178711 27193 solver.cpp:218] Iteration 1800 (2.40273 iter/s, 4.99432s/12 iters), loss = 4.55201 +I0408 15:50:33.178839 27193 solver.cpp:237] Train net output #0: loss = 4.55201 (* 1 = 4.55201 loss) +I0408 15:50:33.178853 27193 sgd_solver.cpp:105] Iteration 1800, lr = 0.000194907 +I0408 15:50:38.256536 27193 solver.cpp:218] Iteration 1812 (2.36336 iter/s, 5.07752s/12 iters), loss = 4.70812 +I0408 15:50:38.256589 27193 solver.cpp:237] Train net output #0: loss = 4.70812 (* 1 = 4.70812 loss) +I0408 15:50:38.256599 27193 sgd_solver.cpp:105] Iteration 1812, lr = 0.000189857 +I0408 15:50:41.510666 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:50:43.273659 27193 solver.cpp:218] Iteration 1824 (2.39192 iter/s, 5.0169s/12 iters), loss = 4.6755 +I0408 15:50:43.273715 27193 solver.cpp:237] Train net output #0: loss = 4.6755 (* 1 = 4.6755 loss) +I0408 15:50:43.273728 27193 sgd_solver.cpp:105] Iteration 1824, lr = 0.000184938 +I0408 15:50:47.920228 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1836.caffemodel +I0408 15:50:57.468475 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1836.solverstate +I0408 15:51:02.323087 27193 solver.cpp:330] Iteration 1836, Testing net (#0) +I0408 15:51:02.323115 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:51:06.045545 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:51:06.800053 27193 solver.cpp:397] Test net output #0: accuracy = 0.0637255 +I0408 15:51:06.800098 27193 solver.cpp:397] Test net output #1: loss = 4.6752 (* 1 = 4.6752 loss) +I0408 15:51:06.891444 27193 solver.cpp:218] Iteration 1836 (0.508109 iter/s, 23.617s/12 iters), loss = 4.66695 +I0408 15:51:06.891500 27193 solver.cpp:237] Train net output #0: loss = 4.66695 (* 1 = 4.66695 loss) +I0408 15:51:06.891511 27193 sgd_solver.cpp:105] Iteration 1836, lr = 0.000180146 +I0408 15:51:11.092012 27193 solver.cpp:218] Iteration 1848 (2.8569 iter/s, 4.20036s/12 iters), loss = 4.55047 +I0408 15:51:11.092064 27193 solver.cpp:237] Train net output #0: loss = 4.55047 (* 1 = 4.55047 loss) +I0408 15:51:11.092077 27193 sgd_solver.cpp:105] Iteration 1848, lr = 0.000175478 +I0408 15:51:16.142396 27193 solver.cpp:218] Iteration 1860 (2.37617 iter/s, 5.05015s/12 iters), loss = 4.59259 +I0408 15:51:16.142446 27193 solver.cpp:237] Train net output #0: loss = 4.59259 (* 1 = 4.59259 loss) +I0408 15:51:16.142457 27193 sgd_solver.cpp:105] Iteration 1860, lr = 0.000170931 +I0408 15:51:21.251238 27193 solver.cpp:218] Iteration 1872 (2.34897 iter/s, 5.10862s/12 iters), loss = 4.64752 +I0408 15:51:21.251276 27193 solver.cpp:237] Train net output #0: loss = 4.64752 (* 1 = 4.64752 loss) +I0408 15:51:21.251284 27193 sgd_solver.cpp:105] Iteration 1872, lr = 0.000166502 +I0408 15:51:26.356333 27193 solver.cpp:218] Iteration 1884 (2.3507 iter/s, 5.10487s/12 iters), loss = 4.61385 +I0408 15:51:26.356385 27193 solver.cpp:237] Train net output #0: loss = 4.61385 (* 1 = 4.61385 loss) +I0408 15:51:26.356397 27193 sgd_solver.cpp:105] Iteration 1884, lr = 0.000162188 +I0408 15:51:31.666818 27193 solver.cpp:218] Iteration 1896 (2.25978 iter/s, 5.31025s/12 iters), loss = 4.54468 +I0408 15:51:31.666872 27193 solver.cpp:237] Train net output #0: loss = 4.54468 (* 1 = 4.54468 loss) +I0408 15:51:31.666883 27193 sgd_solver.cpp:105] Iteration 1896, lr = 0.000157986 +I0408 15:51:37.048951 27193 solver.cpp:218] Iteration 1908 (2.2297 iter/s, 5.3819s/12 iters), loss = 4.70838 +I0408 15:51:37.049105 27193 solver.cpp:237] Train net output #0: loss = 4.70838 (* 1 = 4.70838 loss) +I0408 15:51:37.049118 27193 sgd_solver.cpp:105] Iteration 1908, lr = 0.000153892 +I0408 15:51:42.228231 27193 solver.cpp:218] Iteration 1920 (2.31707 iter/s, 5.17895s/12 iters), loss = 4.70514 +I0408 15:51:42.228286 27193 solver.cpp:237] Train net output #0: loss = 4.70514 (* 1 = 4.70514 loss) +I0408 15:51:42.228298 27193 sgd_solver.cpp:105] Iteration 1920, lr = 0.000149905 +I0408 15:51:42.545177 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:51:47.338011 27193 solver.cpp:218] Iteration 1932 (2.34854 iter/s, 5.10955s/12 iters), loss = 4.46562 +I0408 15:51:47.338052 27193 solver.cpp:237] Train net output #0: loss = 4.46562 (* 1 = 4.46562 loss) +I0408 15:51:47.338061 27193 sgd_solver.cpp:105] Iteration 1932, lr = 0.000146021 +I0408 15:51:49.404646 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_1938.caffemodel +I0408 15:51:56.942385 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_1938.solverstate +I0408 15:52:01.675570 27193 solver.cpp:330] Iteration 1938, Testing net (#0) +I0408 15:52:01.675595 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:52:05.255375 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:06.044534 27193 solver.cpp:397] Test net output #0: accuracy = 0.0655637 +I0408 15:52:06.044570 27193 solver.cpp:397] Test net output #1: loss = 4.66237 (* 1 = 4.66237 loss) +I0408 15:52:07.801395 27193 solver.cpp:218] Iteration 1944 (0.586434 iter/s, 20.4627s/12 iters), loss = 4.63903 +I0408 15:52:07.801483 27193 solver.cpp:237] Train net output #0: loss = 4.63903 (* 1 = 4.63903 loss) +I0408 15:52:07.801494 27193 sgd_solver.cpp:105] Iteration 1944, lr = 0.000142237 +I0408 15:52:12.998930 27193 solver.cpp:218] Iteration 1956 (2.3089 iter/s, 5.19727s/12 iters), loss = 4.51481 +I0408 15:52:12.998968 27193 solver.cpp:237] Train net output #0: loss = 4.51481 (* 1 = 4.51481 loss) +I0408 15:52:12.998977 27193 sgd_solver.cpp:105] Iteration 1956, lr = 0.000138552 +I0408 15:52:18.197302 27193 solver.cpp:218] Iteration 1968 (2.30851 iter/s, 5.19815s/12 iters), loss = 4.51942 +I0408 15:52:18.197356 27193 solver.cpp:237] Train net output #0: loss = 4.51942 (* 1 = 4.51942 loss) +I0408 15:52:18.197368 27193 sgd_solver.cpp:105] Iteration 1968, lr = 0.000134962 +I0408 15:52:23.511373 27193 solver.cpp:218] Iteration 1980 (2.25826 iter/s, 5.31384s/12 iters), loss = 4.6137 +I0408 15:52:23.511417 27193 solver.cpp:237] Train net output #0: loss = 4.6137 (* 1 = 4.6137 loss) +I0408 15:52:23.511428 27193 sgd_solver.cpp:105] Iteration 1980, lr = 0.000131465 +I0408 15:52:28.900899 27193 solver.cpp:218] Iteration 1992 (2.22664 iter/s, 5.38929s/12 iters), loss = 4.5401 +I0408 15:52:28.900955 27193 solver.cpp:237] Train net output #0: loss = 4.5401 (* 1 = 4.5401 loss) +I0408 15:52:28.900969 27193 sgd_solver.cpp:105] Iteration 1992, lr = 0.000128059 +I0408 15:52:34.380602 27193 solver.cpp:218] Iteration 2004 (2.19 iter/s, 5.47946s/12 iters), loss = 4.60531 +I0408 15:52:34.380647 27193 solver.cpp:237] Train net output #0: loss = 4.60531 (* 1 = 4.60531 loss) +I0408 15:52:34.380659 27193 sgd_solver.cpp:105] Iteration 2004, lr = 0.000124741 +I0408 15:52:39.504005 27193 solver.cpp:218] Iteration 2016 (2.34229 iter/s, 5.12319s/12 iters), loss = 4.54941 +I0408 15:52:39.504101 27193 solver.cpp:237] Train net output #0: loss = 4.54941 (* 1 = 4.54941 loss) +I0408 15:52:39.504109 27193 sgd_solver.cpp:105] Iteration 2016, lr = 0.000121509 +I0408 15:52:42.140806 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:52:44.599658 27193 solver.cpp:218] Iteration 2028 (2.35508 iter/s, 5.09538s/12 iters), loss = 4.52115 +I0408 15:52:44.599709 27193 solver.cpp:237] Train net output #0: loss = 4.52115 (* 1 = 4.52115 loss) +I0408 15:52:44.599720 27193 sgd_solver.cpp:105] Iteration 2028, lr = 0.00011836 +I0408 15:52:49.433173 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2040.caffemodel +I0408 15:52:58.157426 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2040.solverstate +I0408 15:53:00.566745 27193 solver.cpp:330] Iteration 2040, Testing net (#0) +I0408 15:53:00.566768 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:53:04.197790 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:05.032539 27193 solver.cpp:397] Test net output #0: accuracy = 0.0716912 +I0408 15:53:05.032588 27193 solver.cpp:397] Test net output #1: loss = 4.63871 (* 1 = 4.63871 loss) +I0408 15:53:05.124089 27193 solver.cpp:218] Iteration 2040 (0.58469 iter/s, 20.5237s/12 iters), loss = 4.43931 +I0408 15:53:05.124140 27193 solver.cpp:237] Train net output #0: loss = 4.43931 (* 1 = 4.43931 loss) +I0408 15:53:05.124150 27193 sgd_solver.cpp:105] Iteration 2040, lr = 0.000115293 +I0408 15:53:09.551481 27193 solver.cpp:218] Iteration 2052 (2.71052 iter/s, 4.42719s/12 iters), loss = 4.46167 +I0408 15:53:09.551590 27193 solver.cpp:237] Train net output #0: loss = 4.46167 (* 1 = 4.46167 loss) +I0408 15:53:09.551601 27193 sgd_solver.cpp:105] Iteration 2052, lr = 0.000112306 +I0408 15:53:11.197654 27193 blocking_queue.cpp:49] Waiting for data +I0408 15:53:14.641623 27193 solver.cpp:218] Iteration 2064 (2.35763 iter/s, 5.08986s/12 iters), loss = 4.63528 +I0408 15:53:14.641664 27193 solver.cpp:237] Train net output #0: loss = 4.63528 (* 1 = 4.63528 loss) +I0408 15:53:14.641674 27193 sgd_solver.cpp:105] Iteration 2064, lr = 0.000109396 +I0408 15:53:20.132102 27193 solver.cpp:218] Iteration 2076 (2.18569 iter/s, 5.49025s/12 iters), loss = 4.6939 +I0408 15:53:20.132149 27193 solver.cpp:237] Train net output #0: loss = 4.6939 (* 1 = 4.6939 loss) +I0408 15:53:20.132158 27193 sgd_solver.cpp:105] Iteration 2076, lr = 0.000106562 +I0408 15:53:25.148581 27193 solver.cpp:218] Iteration 2088 (2.39222 iter/s, 5.01625s/12 iters), loss = 4.39115 +I0408 15:53:25.148633 27193 solver.cpp:237] Train net output #0: loss = 4.39115 (* 1 = 4.39115 loss) +I0408 15:53:25.148644 27193 sgd_solver.cpp:105] Iteration 2088, lr = 0.000103801 +I0408 15:53:30.266449 27193 solver.cpp:218] Iteration 2100 (2.34483 iter/s, 5.11764s/12 iters), loss = 4.4594 +I0408 15:53:30.266494 27193 solver.cpp:237] Train net output #0: loss = 4.4594 (* 1 = 4.4594 loss) +I0408 15:53:30.266505 27193 sgd_solver.cpp:105] Iteration 2100, lr = 0.000101111 +I0408 15:53:35.469539 27193 solver.cpp:218] Iteration 2112 (2.30642 iter/s, 5.20287s/12 iters), loss = 4.51787 +I0408 15:53:35.469581 27193 solver.cpp:237] Train net output #0: loss = 4.51787 (* 1 = 4.51787 loss) +I0408 15:53:35.469590 27193 sgd_solver.cpp:105] Iteration 2112, lr = 9.84913e-05 +I0408 15:53:40.255571 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:53:40.585515 27193 solver.cpp:218] Iteration 2124 (2.34569 iter/s, 5.11576s/12 iters), loss = 4.44392 +I0408 15:53:40.585554 27193 solver.cpp:237] Train net output #0: loss = 4.44392 (* 1 = 4.44392 loss) +I0408 15:53:40.585562 27193 sgd_solver.cpp:105] Iteration 2124, lr = 9.59393e-05 +I0408 15:53:45.609334 27193 solver.cpp:218] Iteration 2136 (2.38872 iter/s, 5.02361s/12 iters), loss = 4.78913 +I0408 15:53:45.609369 27193 solver.cpp:237] Train net output #0: loss = 4.78913 (* 1 = 4.78913 loss) +I0408 15:53:45.609375 27193 sgd_solver.cpp:105] Iteration 2136, lr = 9.34535e-05 +I0408 15:53:47.634644 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2142.caffemodel +I0408 15:53:54.315920 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2142.solverstate +I0408 15:54:00.353562 27193 solver.cpp:330] Iteration 2142, Testing net (#0) +I0408 15:54:00.353590 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:54:03.975693 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:54:04.840762 27193 solver.cpp:397] Test net output #0: accuracy = 0.0680147 +I0408 15:54:04.840809 27193 solver.cpp:397] Test net output #1: loss = 4.63869 (* 1 = 4.63869 loss) +I0408 15:54:06.828184 27193 solver.cpp:218] Iteration 2148 (0.565554 iter/s, 21.2181s/12 iters), loss = 4.51113 +I0408 15:54:06.828238 27193 solver.cpp:237] Train net output #0: loss = 4.51113 (* 1 = 4.51113 loss) +I0408 15:54:06.828251 27193 sgd_solver.cpp:105] Iteration 2148, lr = 9.10321e-05 +I0408 15:54:11.954946 27193 solver.cpp:218] Iteration 2160 (2.34076 iter/s, 5.12653s/12 iters), loss = 4.50419 +I0408 15:54:11.955075 27193 solver.cpp:237] Train net output #0: loss = 4.50419 (* 1 = 4.50419 loss) +I0408 15:54:11.955087 27193 sgd_solver.cpp:105] Iteration 2160, lr = 8.86734e-05 +I0408 15:54:17.210353 27193 solver.cpp:218] Iteration 2172 (2.2835 iter/s, 5.25509s/12 iters), loss = 4.64512 +I0408 15:54:17.210412 27193 solver.cpp:237] Train net output #0: loss = 4.64512 (* 1 = 4.64512 loss) +I0408 15:54:17.210425 27193 sgd_solver.cpp:105] Iteration 2172, lr = 8.63758e-05 +I0408 15:54:22.340440 27193 solver.cpp:218] Iteration 2184 (2.33925 iter/s, 5.12985s/12 iters), loss = 4.49609 +I0408 15:54:22.340487 27193 solver.cpp:237] Train net output #0: loss = 4.49609 (* 1 = 4.49609 loss) +I0408 15:54:22.340497 27193 sgd_solver.cpp:105] Iteration 2184, lr = 8.41377e-05 +I0408 15:54:27.754024 27193 solver.cpp:218] Iteration 2196 (2.21674 iter/s, 5.41334s/12 iters), loss = 4.59461 +I0408 15:54:27.754078 27193 solver.cpp:237] Train net output #0: loss = 4.59461 (* 1 = 4.59461 loss) +I0408 15:54:27.754089 27193 sgd_solver.cpp:105] Iteration 2196, lr = 8.19577e-05 +I0408 15:54:33.262693 27193 solver.cpp:218] Iteration 2208 (2.17848 iter/s, 5.50842s/12 iters), loss = 4.41699 +I0408 15:54:33.262738 27193 solver.cpp:237] Train net output #0: loss = 4.41699 (* 1 = 4.41699 loss) +I0408 15:54:33.262748 27193 sgd_solver.cpp:105] Iteration 2208, lr = 7.98341e-05 +I0408 15:54:38.300498 27193 solver.cpp:218] Iteration 2220 (2.38209 iter/s, 5.03758s/12 iters), loss = 4.46272 +I0408 15:54:38.300544 27193 solver.cpp:237] Train net output #0: loss = 4.46272 (* 1 = 4.46272 loss) +I0408 15:54:38.300554 27193 sgd_solver.cpp:105] Iteration 2220, lr = 7.77656e-05 +I0408 15:54:40.174654 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:54:43.484160 27193 solver.cpp:218] Iteration 2232 (2.31507 iter/s, 5.18343s/12 iters), loss = 4.69859 +I0408 15:54:43.484279 27193 solver.cpp:237] Train net output #0: loss = 4.69859 (* 1 = 4.69859 loss) +I0408 15:54:43.484292 27193 sgd_solver.cpp:105] Iteration 2232, lr = 7.57506e-05 +I0408 15:54:48.111991 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2244.caffemodel +I0408 15:54:51.668383 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2244.solverstate +I0408 15:54:59.280913 27193 solver.cpp:330] Iteration 2244, Testing net (#0) +I0408 15:54:59.280942 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:55:02.875727 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:03.787766 27193 solver.cpp:397] Test net output #0: accuracy = 0.0680147 +I0408 15:55:03.787817 27193 solver.cpp:397] Test net output #1: loss = 4.63221 (* 1 = 4.63221 loss) +I0408 15:55:03.879436 27193 solver.cpp:218] Iteration 2244 (0.588394 iter/s, 20.3945s/12 iters), loss = 4.66862 +I0408 15:55:03.879519 27193 solver.cpp:237] Train net output #0: loss = 4.66862 (* 1 = 4.66862 loss) +I0408 15:55:03.879536 27193 sgd_solver.cpp:105] Iteration 2244, lr = 7.37879e-05 +I0408 15:55:08.137893 27193 solver.cpp:218] Iteration 2256 (2.81808 iter/s, 4.25822s/12 iters), loss = 4.3408 +I0408 15:55:08.137966 27193 solver.cpp:237] Train net output #0: loss = 4.3408 (* 1 = 4.3408 loss) +I0408 15:55:08.137979 27193 sgd_solver.cpp:105] Iteration 2256, lr = 7.1876e-05 +I0408 15:55:13.108029 27193 solver.cpp:218] Iteration 2268 (2.41454 iter/s, 4.9699s/12 iters), loss = 4.46868 +I0408 15:55:13.108088 27193 solver.cpp:237] Train net output #0: loss = 4.46868 (* 1 = 4.46868 loss) +I0408 15:55:13.108098 27193 sgd_solver.cpp:105] Iteration 2268, lr = 7.00137e-05 +I0408 15:55:18.139170 27193 solver.cpp:218] Iteration 2280 (2.38525 iter/s, 5.03091s/12 iters), loss = 4.58776 +I0408 15:55:18.139328 27193 solver.cpp:237] Train net output #0: loss = 4.58776 (* 1 = 4.58776 loss) +I0408 15:55:18.139339 27193 sgd_solver.cpp:105] Iteration 2280, lr = 6.81996e-05 +I0408 15:55:23.098110 27193 solver.cpp:218] Iteration 2292 (2.42003 iter/s, 4.95861s/12 iters), loss = 4.60146 +I0408 15:55:23.098173 27193 solver.cpp:237] Train net output #0: loss = 4.60146 (* 1 = 4.60146 loss) +I0408 15:55:23.098186 27193 sgd_solver.cpp:105] Iteration 2292, lr = 6.64325e-05 +I0408 15:55:28.113245 27193 solver.cpp:218] Iteration 2304 (2.39287 iter/s, 5.0149s/12 iters), loss = 4.58837 +I0408 15:55:28.113307 27193 solver.cpp:237] Train net output #0: loss = 4.58837 (* 1 = 4.58837 loss) +I0408 15:55:28.113319 27193 sgd_solver.cpp:105] Iteration 2304, lr = 6.47112e-05 +I0408 15:55:33.133282 27193 solver.cpp:218] Iteration 2316 (2.39053 iter/s, 5.0198s/12 iters), loss = 4.43997 +I0408 15:55:33.133338 27193 solver.cpp:237] Train net output #0: loss = 4.43997 (* 1 = 4.43997 loss) +I0408 15:55:33.133349 27193 sgd_solver.cpp:105] Iteration 2316, lr = 6.30345e-05 +I0408 15:55:37.064093 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:38.133177 27193 solver.cpp:218] Iteration 2328 (2.40016 iter/s, 4.99967s/12 iters), loss = 4.57533 +I0408 15:55:38.133219 27193 solver.cpp:237] Train net output #0: loss = 4.57533 (* 1 = 4.57533 loss) +I0408 15:55:38.133230 27193 sgd_solver.cpp:105] Iteration 2328, lr = 6.14012e-05 +I0408 15:55:43.131928 27193 solver.cpp:218] Iteration 2340 (2.4007 iter/s, 4.99853s/12 iters), loss = 4.48649 +I0408 15:55:43.131985 27193 solver.cpp:237] Train net output #0: loss = 4.48649 (* 1 = 4.48649 loss) +I0408 15:55:43.131997 27193 sgd_solver.cpp:105] Iteration 2340, lr = 5.98103e-05 +I0408 15:55:45.150964 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2346.caffemodel +I0408 15:55:48.329316 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2346.solverstate +I0408 15:55:53.548435 27193 solver.cpp:330] Iteration 2346, Testing net (#0) +I0408 15:55:53.548461 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:55:57.097895 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:55:58.054467 27193 solver.cpp:397] Test net output #0: accuracy = 0.067402 +I0408 15:55:58.054507 27193 solver.cpp:397] Test net output #1: loss = 4.62901 (* 1 = 4.62901 loss) +I0408 15:56:00.081681 27193 solver.cpp:218] Iteration 2352 (0.708 iter/s, 16.9491s/12 iters), loss = 4.53113 +I0408 15:56:00.081727 27193 solver.cpp:237] Train net output #0: loss = 4.53113 (* 1 = 4.53113 loss) +I0408 15:56:00.081738 27193 sgd_solver.cpp:105] Iteration 2352, lr = 5.82606e-05 +I0408 15:56:05.539927 27193 solver.cpp:218] Iteration 2364 (2.1986 iter/s, 5.45802s/12 iters), loss = 4.56705 +I0408 15:56:05.539963 27193 solver.cpp:237] Train net output #0: loss = 4.56705 (* 1 = 4.56705 loss) +I0408 15:56:05.539973 27193 sgd_solver.cpp:105] Iteration 2364, lr = 5.6751e-05 +I0408 15:56:11.075206 27193 solver.cpp:218] Iteration 2376 (2.168 iter/s, 5.53505s/12 iters), loss = 4.36672 +I0408 15:56:11.075253 27193 solver.cpp:237] Train net output #0: loss = 4.36672 (* 1 = 4.36672 loss) +I0408 15:56:11.075263 27193 sgd_solver.cpp:105] Iteration 2376, lr = 5.52806e-05 +I0408 15:56:16.183120 27193 solver.cpp:218] Iteration 2388 (2.3494 iter/s, 5.10768s/12 iters), loss = 4.45477 +I0408 15:56:16.183173 27193 solver.cpp:237] Train net output #0: loss = 4.45477 (* 1 = 4.45477 loss) +I0408 15:56:16.183184 27193 sgd_solver.cpp:105] Iteration 2388, lr = 5.38482e-05 +I0408 15:56:21.656038 27193 solver.cpp:218] Iteration 2400 (2.19271 iter/s, 5.47268s/12 iters), loss = 4.64418 +I0408 15:56:21.656155 27193 solver.cpp:237] Train net output #0: loss = 4.64418 (* 1 = 4.64418 loss) +I0408 15:56:21.656169 27193 sgd_solver.cpp:105] Iteration 2400, lr = 5.2453e-05 +I0408 15:56:27.169358 27193 solver.cpp:218] Iteration 2412 (2.17667 iter/s, 5.51301s/12 iters), loss = 4.47164 +I0408 15:56:27.169407 27193 solver.cpp:237] Train net output #0: loss = 4.47164 (* 1 = 4.47164 loss) +I0408 15:56:27.169418 27193 sgd_solver.cpp:105] Iteration 2412, lr = 5.10939e-05 +I0408 15:56:32.729707 27193 solver.cpp:218] Iteration 2424 (2.15823 iter/s, 5.56011s/12 iters), loss = 4.49166 +I0408 15:56:32.729740 27193 solver.cpp:237] Train net output #0: loss = 4.49166 (* 1 = 4.49166 loss) +I0408 15:56:32.729748 27193 sgd_solver.cpp:105] Iteration 2424, lr = 4.977e-05 +I0408 15:56:33.910737 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:38.246556 27193 solver.cpp:218] Iteration 2436 (2.17524 iter/s, 5.51663s/12 iters), loss = 4.39025 +I0408 15:56:38.246595 27193 solver.cpp:237] Train net output #0: loss = 4.39025 (* 1 = 4.39025 loss) +I0408 15:56:38.246604 27193 sgd_solver.cpp:105] Iteration 2436, lr = 4.84805e-05 +I0408 15:56:43.266127 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2448.caffemodel +I0408 15:56:47.400380 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2448.solverstate +I0408 15:56:51.160475 27193 solver.cpp:330] Iteration 2448, Testing net (#0) +I0408 15:56:51.160497 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:56:54.576107 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:56:55.557735 27193 solver.cpp:397] Test net output #0: accuracy = 0.0698529 +I0408 15:56:55.557785 27193 solver.cpp:397] Test net output #1: loss = 4.61844 (* 1 = 4.61844 loss) +I0408 15:56:55.649422 27193 solver.cpp:218] Iteration 2448 (0.689566 iter/s, 17.4023s/12 iters), loss = 4.4699 +I0408 15:56:55.649473 27193 solver.cpp:237] Train net output #0: loss = 4.4699 (* 1 = 4.4699 loss) +I0408 15:56:55.649484 27193 sgd_solver.cpp:105] Iteration 2448, lr = 4.72243e-05 +I0408 15:57:00.258088 27193 solver.cpp:218] Iteration 2460 (2.60391 iter/s, 4.60846s/12 iters), loss = 4.58725 +I0408 15:57:00.258134 27193 solver.cpp:237] Train net output #0: loss = 4.58725 (* 1 = 4.58725 loss) +I0408 15:57:00.258144 27193 sgd_solver.cpp:105] Iteration 2460, lr = 4.60007e-05 +I0408 15:57:05.771492 27193 solver.cpp:218] Iteration 2472 (2.17661 iter/s, 5.51317s/12 iters), loss = 4.60548 +I0408 15:57:05.771538 27193 solver.cpp:237] Train net output #0: loss = 4.60548 (* 1 = 4.60548 loss) +I0408 15:57:05.771548 27193 sgd_solver.cpp:105] Iteration 2472, lr = 4.48088e-05 +I0408 15:57:11.138346 27193 solver.cpp:218] Iteration 2484 (2.23604 iter/s, 5.36662s/12 iters), loss = 4.62771 +I0408 15:57:11.138401 27193 solver.cpp:237] Train net output #0: loss = 4.62771 (* 1 = 4.62771 loss) +I0408 15:57:11.138413 27193 sgd_solver.cpp:105] Iteration 2484, lr = 4.36478e-05 +I0408 15:57:16.436349 27193 solver.cpp:218] Iteration 2496 (2.26511 iter/s, 5.29777s/12 iters), loss = 4.5318 +I0408 15:57:16.436393 27193 solver.cpp:237] Train net output #0: loss = 4.5318 (* 1 = 4.5318 loss) +I0408 15:57:16.436401 27193 sgd_solver.cpp:105] Iteration 2496, lr = 4.25168e-05 +I0408 15:57:21.541993 27193 solver.cpp:218] Iteration 2508 (2.35044 iter/s, 5.10542s/12 iters), loss = 4.46752 +I0408 15:57:21.542044 27193 solver.cpp:237] Train net output #0: loss = 4.46752 (* 1 = 4.46752 loss) +I0408 15:57:21.542057 27193 sgd_solver.cpp:105] Iteration 2508, lr = 4.14152e-05 +I0408 15:57:26.723942 27193 solver.cpp:218] Iteration 2520 (2.31583 iter/s, 5.18172s/12 iters), loss = 4.63666 +I0408 15:57:26.725217 27193 solver.cpp:237] Train net output #0: loss = 4.63666 (* 1 = 4.63666 loss) +I0408 15:57:26.725231 27193 sgd_solver.cpp:105] Iteration 2520, lr = 4.03421e-05 +I0408 15:57:30.008441 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:57:31.985327 27193 solver.cpp:218] Iteration 2532 (2.2814 iter/s, 5.25993s/12 iters), loss = 4.67806 +I0408 15:57:31.985368 27193 solver.cpp:237] Train net output #0: loss = 4.67806 (* 1 = 4.67806 loss) +I0408 15:57:31.985378 27193 sgd_solver.cpp:105] Iteration 2532, lr = 3.92968e-05 +I0408 15:57:37.518605 27193 solver.cpp:218] Iteration 2544 (2.16879 iter/s, 5.53304s/12 iters), loss = 4.59243 +I0408 15:57:37.518657 27193 solver.cpp:237] Train net output #0: loss = 4.59243 (* 1 = 4.59243 loss) +I0408 15:57:37.518668 27193 sgd_solver.cpp:105] Iteration 2544, lr = 3.82786e-05 +I0408 15:57:39.702343 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2550.caffemodel +I0408 15:57:42.707698 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2550.solverstate +I0408 15:57:46.585103 27193 solver.cpp:330] Iteration 2550, Testing net (#0) +I0408 15:57:46.585129 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:57:50.058784 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:57:51.083776 27193 solver.cpp:397] Test net output #0: accuracy = 0.0716912 +I0408 15:57:51.083827 27193 solver.cpp:397] Test net output #1: loss = 4.61775 (* 1 = 4.61775 loss) +I0408 15:57:52.933224 27193 solver.cpp:218] Iteration 2556 (0.77851 iter/s, 15.4141s/12 iters), loss = 4.5286 +I0408 15:57:52.933275 27193 solver.cpp:237] Train net output #0: loss = 4.5286 (* 1 = 4.5286 loss) +I0408 15:57:52.933287 27193 sgd_solver.cpp:105] Iteration 2556, lr = 3.72868e-05 +I0408 15:57:58.010155 27193 solver.cpp:218] Iteration 2568 (2.36374 iter/s, 5.0767s/12 iters), loss = 4.42827 +I0408 15:57:58.014354 27193 solver.cpp:237] Train net output #0: loss = 4.42827 (* 1 = 4.42827 loss) +I0408 15:57:58.014366 27193 sgd_solver.cpp:105] Iteration 2568, lr = 3.63207e-05 +I0408 15:58:03.172623 27193 solver.cpp:218] Iteration 2580 (2.32644 iter/s, 5.15809s/12 iters), loss = 4.56468 +I0408 15:58:03.172673 27193 solver.cpp:237] Train net output #0: loss = 4.56468 (* 1 = 4.56468 loss) +I0408 15:58:03.172685 27193 sgd_solver.cpp:105] Iteration 2580, lr = 3.53796e-05 +I0408 15:58:08.359928 27193 solver.cpp:218] Iteration 2592 (2.31344 iter/s, 5.18708s/12 iters), loss = 4.55433 +I0408 15:58:08.359975 27193 solver.cpp:237] Train net output #0: loss = 4.55433 (* 1 = 4.55433 loss) +I0408 15:58:08.359987 27193 sgd_solver.cpp:105] Iteration 2592, lr = 3.44629e-05 +I0408 15:58:13.517191 27193 solver.cpp:218] Iteration 2604 (2.32692 iter/s, 5.15704s/12 iters), loss = 4.51419 +I0408 15:58:13.517242 27193 solver.cpp:237] Train net output #0: loss = 4.51419 (* 1 = 4.51419 loss) +I0408 15:58:13.517256 27193 sgd_solver.cpp:105] Iteration 2604, lr = 3.35699e-05 +I0408 15:58:18.660750 27193 solver.cpp:218] Iteration 2616 (2.33312 iter/s, 5.14333s/12 iters), loss = 4.68027 +I0408 15:58:18.660799 27193 solver.cpp:237] Train net output #0: loss = 4.68027 (* 1 = 4.68027 loss) +I0408 15:58:18.660810 27193 sgd_solver.cpp:105] Iteration 2616, lr = 3.27001e-05 +I0408 15:58:23.808667 27193 solver.cpp:218] Iteration 2628 (2.33114 iter/s, 5.1477s/12 iters), loss = 4.5818 +I0408 15:58:23.808709 27193 solver.cpp:237] Train net output #0: loss = 4.5818 (* 1 = 4.5818 loss) +I0408 15:58:23.808719 27193 sgd_solver.cpp:105] Iteration 2628, lr = 3.18529e-05 +I0408 15:58:24.268523 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:58:29.010694 27193 solver.cpp:218] Iteration 2640 (2.30689 iter/s, 5.2018s/12 iters), loss = 4.3523 +I0408 15:58:29.011826 27193 solver.cpp:237] Train net output #0: loss = 4.3523 (* 1 = 4.3523 loss) +I0408 15:58:29.011840 27193 sgd_solver.cpp:105] Iteration 2640, lr = 3.10275e-05 +I0408 15:58:33.718104 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2652.caffemodel +I0408 15:58:37.075052 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2652.solverstate +I0408 15:58:40.686602 27193 solver.cpp:330] Iteration 2652, Testing net (#0) +I0408 15:58:40.686623 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:58:44.192899 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:58:45.274612 27193 solver.cpp:397] Test net output #0: accuracy = 0.0698529 +I0408 15:58:45.274658 27193 solver.cpp:397] Test net output #1: loss = 4.62028 (* 1 = 4.62028 loss) +I0408 15:58:45.363441 27193 solver.cpp:218] Iteration 2652 (0.733896 iter/s, 16.3511s/12 iters), loss = 4.49603 +I0408 15:58:45.363488 27193 solver.cpp:237] Train net output #0: loss = 4.49603 (* 1 = 4.49603 loss) +I0408 15:58:45.363500 27193 sgd_solver.cpp:105] Iteration 2652, lr = 3.02236e-05 +I0408 15:58:49.930785 27193 solver.cpp:218] Iteration 2664 (2.62747 iter/s, 4.56713s/12 iters), loss = 4.47369 +I0408 15:58:49.930836 27193 solver.cpp:237] Train net output #0: loss = 4.47369 (* 1 = 4.47369 loss) +I0408 15:58:49.930850 27193 sgd_solver.cpp:105] Iteration 2664, lr = 2.94405e-05 +I0408 15:58:55.044236 27193 solver.cpp:218] Iteration 2676 (2.34686 iter/s, 5.11322s/12 iters), loss = 4.48652 +I0408 15:58:55.044286 27193 solver.cpp:237] Train net output #0: loss = 4.48652 (* 1 = 4.48652 loss) +I0408 15:58:55.044297 27193 sgd_solver.cpp:105] Iteration 2676, lr = 2.86777e-05 +I0408 15:59:00.192853 27193 solver.cpp:218] Iteration 2688 (2.33083 iter/s, 5.14839s/12 iters), loss = 4.45438 +I0408 15:59:00.193018 27193 solver.cpp:237] Train net output #0: loss = 4.45438 (* 1 = 4.45438 loss) +I0408 15:59:00.193032 27193 sgd_solver.cpp:105] Iteration 2688, lr = 2.79346e-05 +I0408 15:59:05.347012 27193 solver.cpp:218] Iteration 2700 (2.32837 iter/s, 5.15382s/12 iters), loss = 4.39678 +I0408 15:59:05.347056 27193 solver.cpp:237] Train net output #0: loss = 4.39678 (* 1 = 4.39678 loss) +I0408 15:59:05.347066 27193 sgd_solver.cpp:105] Iteration 2700, lr = 2.72108e-05 +I0408 15:59:10.453608 27193 solver.cpp:218] Iteration 2712 (2.35 iter/s, 5.10638s/12 iters), loss = 4.41835 +I0408 15:59:10.453655 27193 solver.cpp:237] Train net output #0: loss = 4.41835 (* 1 = 4.41835 loss) +I0408 15:59:10.453666 27193 sgd_solver.cpp:105] Iteration 2712, lr = 2.65058e-05 +I0408 15:59:15.649228 27193 solver.cpp:218] Iteration 2724 (2.30974 iter/s, 5.19539s/12 iters), loss = 4.49914 +I0408 15:59:15.649278 27193 solver.cpp:237] Train net output #0: loss = 4.49914 (* 1 = 4.49914 loss) +I0408 15:59:15.649291 27193 sgd_solver.cpp:105] Iteration 2724, lr = 2.5819e-05 +I0408 15:59:18.290072 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:59:20.798949 27193 solver.cpp:218] Iteration 2736 (2.33033 iter/s, 5.1495s/12 iters), loss = 4.47208 +I0408 15:59:20.798993 27193 solver.cpp:237] Train net output #0: loss = 4.47208 (* 1 = 4.47208 loss) +I0408 15:59:20.799003 27193 sgd_solver.cpp:105] Iteration 2736, lr = 2.515e-05 +I0408 15:59:25.840209 27193 solver.cpp:218] Iteration 2748 (2.38046 iter/s, 5.04105s/12 iters), loss = 4.38839 +I0408 15:59:25.840253 27193 solver.cpp:237] Train net output #0: loss = 4.38839 (* 1 = 4.38839 loss) +I0408 15:59:25.840263 27193 sgd_solver.cpp:105] Iteration 2748, lr = 2.44984e-05 +I0408 15:59:27.929316 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2754.caffemodel +I0408 15:59:32.628628 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2754.solverstate +I0408 15:59:36.502288 27193 solver.cpp:330] Iteration 2754, Testing net (#0) +I0408 15:59:36.502315 27193 net.cpp:676] Ignoring source layer train-data +I0408 15:59:39.619326 27193 blocking_queue.cpp:49] Waiting for data +I0408 15:59:39.855134 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 15:59:40.961629 27193 solver.cpp:397] Test net output #0: accuracy = 0.0710784 +I0408 15:59:40.961676 27193 solver.cpp:397] Test net output #1: loss = 4.6191 (* 1 = 4.6191 loss) +I0408 15:59:42.893980 27193 solver.cpp:218] Iteration 2760 (0.703682 iter/s, 17.0532s/12 iters), loss = 4.42487 +I0408 15:59:42.894024 27193 solver.cpp:237] Train net output #0: loss = 4.42487 (* 1 = 4.42487 loss) +I0408 15:59:42.894035 27193 sgd_solver.cpp:105] Iteration 2760, lr = 2.38636e-05 +I0408 15:59:48.045447 27193 solver.cpp:218] Iteration 2772 (2.32953 iter/s, 5.15125s/12 iters), loss = 4.54997 +I0408 15:59:48.045485 27193 solver.cpp:237] Train net output #0: loss = 4.54997 (* 1 = 4.54997 loss) +I0408 15:59:48.045495 27193 sgd_solver.cpp:105] Iteration 2772, lr = 2.32453e-05 +I0408 15:59:53.321768 27193 solver.cpp:218] Iteration 2784 (2.27441 iter/s, 5.27609s/12 iters), loss = 4.5998 +I0408 15:59:53.321828 27193 solver.cpp:237] Train net output #0: loss = 4.5998 (* 1 = 4.5998 loss) +I0408 15:59:53.321841 27193 sgd_solver.cpp:105] Iteration 2784, lr = 2.2643e-05 +I0408 15:59:58.841008 27193 solver.cpp:218] Iteration 2796 (2.17431 iter/s, 5.51899s/12 iters), loss = 4.36922 +I0408 15:59:58.841056 27193 solver.cpp:237] Train net output #0: loss = 4.36922 (* 1 = 4.36922 loss) +I0408 15:59:58.841068 27193 sgd_solver.cpp:105] Iteration 2796, lr = 2.20563e-05 +I0408 16:00:04.330860 27193 solver.cpp:218] Iteration 2808 (2.18595 iter/s, 5.48962s/12 iters), loss = 4.40913 +I0408 16:00:04.330984 27193 solver.cpp:237] Train net output #0: loss = 4.40913 (* 1 = 4.40913 loss) +I0408 16:00:04.330996 27193 sgd_solver.cpp:105] Iteration 2808, lr = 2.14848e-05 +I0408 16:00:09.430655 27193 solver.cpp:218] Iteration 2820 (2.35317 iter/s, 5.0995s/12 iters), loss = 4.50415 +I0408 16:00:09.430699 27193 solver.cpp:237] Train net output #0: loss = 4.50415 (* 1 = 4.50415 loss) +I0408 16:00:09.430711 27193 sgd_solver.cpp:105] Iteration 2820, lr = 2.09281e-05 +I0408 16:00:14.329457 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:00:14.645288 27193 solver.cpp:218] Iteration 2832 (2.30131 iter/s, 5.21441s/12 iters), loss = 4.46083 +I0408 16:00:14.645335 27193 solver.cpp:237] Train net output #0: loss = 4.46083 (* 1 = 4.46083 loss) +I0408 16:00:14.645347 27193 sgd_solver.cpp:105] Iteration 2832, lr = 2.03859e-05 +I0408 16:00:20.183917 27193 solver.cpp:218] Iteration 2844 (2.1667 iter/s, 5.53839s/12 iters), loss = 4.72791 +I0408 16:00:20.183971 27193 solver.cpp:237] Train net output #0: loss = 4.72791 (* 1 = 4.72791 loss) +I0408 16:00:20.183984 27193 sgd_solver.cpp:105] Iteration 2844, lr = 1.98576e-05 +I0408 16:00:24.997403 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2856.caffemodel +I0408 16:00:29.390904 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2856.solverstate +I0408 16:00:31.981942 27193 solver.cpp:330] Iteration 2856, Testing net (#0) +I0408 16:00:31.981984 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:00:35.225565 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:00:36.366130 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:00:36.366178 27193 solver.cpp:397] Test net output #1: loss = 4.61721 (* 1 = 4.61721 loss) +I0408 16:00:36.457762 27193 solver.cpp:218] Iteration 2856 (0.737406 iter/s, 16.2733s/12 iters), loss = 4.35286 +I0408 16:00:36.457813 27193 solver.cpp:237] Train net output #0: loss = 4.35286 (* 1 = 4.35286 loss) +I0408 16:00:36.457826 27193 sgd_solver.cpp:105] Iteration 2856, lr = 1.93431e-05 +I0408 16:00:41.033866 27193 solver.cpp:218] Iteration 2868 (2.62244 iter/s, 4.57589s/12 iters), loss = 4.46628 +I0408 16:00:41.033913 27193 solver.cpp:237] Train net output #0: loss = 4.46628 (* 1 = 4.46628 loss) +I0408 16:00:41.033926 27193 sgd_solver.cpp:105] Iteration 2868, lr = 1.88419e-05 +I0408 16:00:46.558071 27193 solver.cpp:218] Iteration 2880 (2.17235 iter/s, 5.52397s/12 iters), loss = 4.55804 +I0408 16:00:46.558118 27193 solver.cpp:237] Train net output #0: loss = 4.55804 (* 1 = 4.55804 loss) +I0408 16:00:46.558131 27193 sgd_solver.cpp:105] Iteration 2880, lr = 1.83537e-05 +I0408 16:00:51.728674 27193 solver.cpp:218] Iteration 2892 (2.32092 iter/s, 5.17037s/12 iters), loss = 4.45739 +I0408 16:00:51.728726 27193 solver.cpp:237] Train net output #0: loss = 4.45739 (* 1 = 4.45739 loss) +I0408 16:00:51.728739 27193 sgd_solver.cpp:105] Iteration 2892, lr = 1.78782e-05 +I0408 16:00:56.867337 27193 solver.cpp:218] Iteration 2904 (2.33534 iter/s, 5.13844s/12 iters), loss = 4.57323 +I0408 16:00:56.867383 27193 solver.cpp:237] Train net output #0: loss = 4.57323 (* 1 = 4.57323 loss) +I0408 16:00:56.867393 27193 sgd_solver.cpp:105] Iteration 2904, lr = 1.74149e-05 +I0408 16:01:01.826628 27193 solver.cpp:218] Iteration 2916 (2.41981 iter/s, 4.95907s/12 iters), loss = 4.41924 +I0408 16:01:01.826671 27193 solver.cpp:237] Train net output #0: loss = 4.41924 (* 1 = 4.41924 loss) +I0408 16:01:01.826680 27193 sgd_solver.cpp:105] Iteration 2916, lr = 1.69637e-05 +I0408 16:01:06.943243 27193 solver.cpp:218] Iteration 2928 (2.3454 iter/s, 5.1164s/12 iters), loss = 4.52532 +I0408 16:01:06.943341 27193 solver.cpp:237] Train net output #0: loss = 4.52532 (* 1 = 4.52532 loss) +I0408 16:01:06.943349 27193 sgd_solver.cpp:105] Iteration 2928, lr = 1.65242e-05 +I0408 16:01:08.821157 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:12.063153 27193 solver.cpp:218] Iteration 2940 (2.34392 iter/s, 5.11963s/12 iters), loss = 4.5656 +I0408 16:01:12.063195 27193 solver.cpp:237] Train net output #0: loss = 4.5656 (* 1 = 4.5656 loss) +I0408 16:01:12.063205 27193 sgd_solver.cpp:105] Iteration 2940, lr = 1.6096e-05 +I0408 16:01:17.142968 27193 solver.cpp:218] Iteration 2952 (2.36239 iter/s, 5.0796s/12 iters), loss = 4.52522 +I0408 16:01:17.143018 27193 solver.cpp:237] Train net output #0: loss = 4.52522 (* 1 = 4.52522 loss) +I0408 16:01:17.143029 27193 sgd_solver.cpp:105] Iteration 2952, lr = 1.5679e-05 +I0408 16:01:19.188431 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_2958.caffemodel +I0408 16:01:23.795394 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_2958.solverstate +I0408 16:01:26.128083 27193 solver.cpp:330] Iteration 2958, Testing net (#0) +I0408 16:01:26.128109 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:01:29.780649 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:01:30.988524 27193 solver.cpp:397] Test net output #0: accuracy = 0.0710784 +I0408 16:01:30.988569 27193 solver.cpp:397] Test net output #1: loss = 4.60722 (* 1 = 4.60722 loss) +I0408 16:01:32.816083 27193 solver.cpp:218] Iteration 2964 (0.76567 iter/s, 15.6725s/12 iters), loss = 4.30217 +I0408 16:01:32.816148 27193 solver.cpp:237] Train net output #0: loss = 4.30217 (* 1 = 4.30217 loss) +I0408 16:01:32.816160 27193 sgd_solver.cpp:105] Iteration 2964, lr = 1.52727e-05 +I0408 16:01:38.094417 27193 solver.cpp:218] Iteration 2976 (2.27355 iter/s, 5.27808s/12 iters), loss = 4.47194 +I0408 16:01:38.094532 27193 solver.cpp:237] Train net output #0: loss = 4.47194 (* 1 = 4.47194 loss) +I0408 16:01:38.094543 27193 sgd_solver.cpp:105] Iteration 2976, lr = 1.4877e-05 +I0408 16:01:43.166838 27193 solver.cpp:218] Iteration 2988 (2.36587 iter/s, 5.07214s/12 iters), loss = 4.69512 +I0408 16:01:43.166887 27193 solver.cpp:237] Train net output #0: loss = 4.69512 (* 1 = 4.69512 loss) +I0408 16:01:43.166898 27193 sgd_solver.cpp:105] Iteration 2988, lr = 1.44915e-05 +I0408 16:01:48.329596 27193 solver.cpp:218] Iteration 3000 (2.32444 iter/s, 5.16253s/12 iters), loss = 4.48092 +I0408 16:01:48.329640 27193 solver.cpp:237] Train net output #0: loss = 4.48092 (* 1 = 4.48092 loss) +I0408 16:01:48.329650 27193 sgd_solver.cpp:105] Iteration 3000, lr = 1.4116e-05 +I0408 16:01:53.667162 27193 solver.cpp:218] Iteration 3012 (2.24831 iter/s, 5.33734s/12 iters), loss = 4.48532 +I0408 16:01:53.667207 27193 solver.cpp:237] Train net output #0: loss = 4.48532 (* 1 = 4.48532 loss) +I0408 16:01:53.667215 27193 sgd_solver.cpp:105] Iteration 3012, lr = 1.37503e-05 +I0408 16:01:58.808161 27193 solver.cpp:218] Iteration 3024 (2.33428 iter/s, 5.14077s/12 iters), loss = 4.34497 +I0408 16:01:58.808218 27193 solver.cpp:237] Train net output #0: loss = 4.34497 (* 1 = 4.34497 loss) +I0408 16:01:58.808228 27193 sgd_solver.cpp:105] Iteration 3024, lr = 1.3394e-05 +I0408 16:02:02.917728 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:03.935660 27193 solver.cpp:218] Iteration 3036 (2.34043 iter/s, 5.12726s/12 iters), loss = 4.51934 +I0408 16:02:03.935714 27193 solver.cpp:237] Train net output #0: loss = 4.51934 (* 1 = 4.51934 loss) +I0408 16:02:03.935725 27193 sgd_solver.cpp:105] Iteration 3036, lr = 1.3047e-05 +I0408 16:02:08.866912 27193 solver.cpp:218] Iteration 3048 (2.43357 iter/s, 4.93103s/12 iters), loss = 4.56579 +I0408 16:02:08.867031 27193 solver.cpp:237] Train net output #0: loss = 4.56579 (* 1 = 4.56579 loss) +I0408 16:02:08.867044 27193 sgd_solver.cpp:105] Iteration 3048, lr = 1.27089e-05 +I0408 16:02:13.479039 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3060.caffemodel +I0408 16:02:18.918154 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3060.solverstate +I0408 16:02:21.372462 27193 solver.cpp:330] Iteration 3060, Testing net (#0) +I0408 16:02:21.372488 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:02:24.667529 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:02:25.885886 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:02:25.885931 27193 solver.cpp:397] Test net output #1: loss = 4.60259 (* 1 = 4.60259 loss) +I0408 16:02:25.977236 27193 solver.cpp:218] Iteration 3060 (0.701359 iter/s, 17.1096s/12 iters), loss = 4.53374 +I0408 16:02:25.977286 27193 solver.cpp:237] Train net output #0: loss = 4.53374 (* 1 = 4.53374 loss) +I0408 16:02:25.977298 27193 sgd_solver.cpp:105] Iteration 3060, lr = 1.23796e-05 +I0408 16:02:30.090097 27193 solver.cpp:218] Iteration 3072 (2.91781 iter/s, 4.11267s/12 iters), loss = 4.47386 +I0408 16:02:30.090147 27193 solver.cpp:237] Train net output #0: loss = 4.47386 (* 1 = 4.47386 loss) +I0408 16:02:30.090159 27193 sgd_solver.cpp:105] Iteration 3072, lr = 1.20588e-05 +I0408 16:02:35.233912 27193 solver.cpp:218] Iteration 3084 (2.333 iter/s, 5.14359s/12 iters), loss = 4.34963 +I0408 16:02:35.233973 27193 solver.cpp:237] Train net output #0: loss = 4.34963 (* 1 = 4.34963 loss) +I0408 16:02:35.233985 27193 sgd_solver.cpp:105] Iteration 3084, lr = 1.17464e-05 +I0408 16:02:40.095969 27193 solver.cpp:218] Iteration 3096 (2.4682 iter/s, 4.86184s/12 iters), loss = 4.51555 +I0408 16:02:40.096108 27193 solver.cpp:237] Train net output #0: loss = 4.51555 (* 1 = 4.51555 loss) +I0408 16:02:40.096122 27193 sgd_solver.cpp:105] Iteration 3096, lr = 1.1442e-05 +I0408 16:02:45.110456 27193 solver.cpp:218] Iteration 3108 (2.39321 iter/s, 5.01418s/12 iters), loss = 4.58048 +I0408 16:02:45.110504 27193 solver.cpp:237] Train net output #0: loss = 4.58048 (* 1 = 4.58048 loss) +I0408 16:02:45.110517 27193 sgd_solver.cpp:105] Iteration 3108, lr = 1.11456e-05 +I0408 16:02:50.537937 27193 solver.cpp:218] Iteration 3120 (2.21107 iter/s, 5.42725s/12 iters), loss = 4.44124 +I0408 16:02:50.537990 27193 solver.cpp:237] Train net output #0: loss = 4.44124 (* 1 = 4.44124 loss) +I0408 16:02:50.538005 27193 sgd_solver.cpp:105] Iteration 3120, lr = 1.08568e-05 +I0408 16:02:55.693228 27193 solver.cpp:218] Iteration 3132 (2.32781 iter/s, 5.15506s/12 iters), loss = 4.54115 +I0408 16:02:55.693272 27193 solver.cpp:237] Train net output #0: loss = 4.54115 (* 1 = 4.54115 loss) +I0408 16:02:55.693281 27193 sgd_solver.cpp:105] Iteration 3132, lr = 1.05755e-05 +I0408 16:02:56.823297 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:00.872664 27193 solver.cpp:218] Iteration 3144 (2.31695 iter/s, 5.17921s/12 iters), loss = 4.42964 +I0408 16:03:00.872711 27193 solver.cpp:237] Train net output #0: loss = 4.42964 (* 1 = 4.42964 loss) +I0408 16:03:00.872723 27193 sgd_solver.cpp:105] Iteration 3144, lr = 1.03015e-05 +I0408 16:03:06.000718 27193 solver.cpp:218] Iteration 3156 (2.34018 iter/s, 5.12782s/12 iters), loss = 4.49021 +I0408 16:03:06.000778 27193 solver.cpp:237] Train net output #0: loss = 4.49021 (* 1 = 4.49021 loss) +I0408 16:03:06.000795 27193 sgd_solver.cpp:105] Iteration 3156, lr = 1.00345e-05 +I0408 16:03:08.036056 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3162.caffemodel +I0408 16:03:13.189078 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3162.solverstate +I0408 16:03:15.670692 27193 solver.cpp:330] Iteration 3162, Testing net (#0) +I0408 16:03:15.670719 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:03:18.886529 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:20.153424 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:03:20.153470 27193 solver.cpp:397] Test net output #1: loss = 4.6049 (* 1 = 4.6049 loss) +I0408 16:03:22.015756 27193 solver.cpp:218] Iteration 3168 (0.749323 iter/s, 16.0145s/12 iters), loss = 4.60485 +I0408 16:03:22.015806 27193 solver.cpp:237] Train net output #0: loss = 4.60485 (* 1 = 4.60485 loss) +I0408 16:03:22.015817 27193 sgd_solver.cpp:105] Iteration 3168, lr = 9.77455e-06 +I0408 16:03:27.201548 27193 solver.cpp:218] Iteration 3180 (2.31412 iter/s, 5.18556s/12 iters), loss = 4.60954 +I0408 16:03:27.201607 27193 solver.cpp:237] Train net output #0: loss = 4.60954 (* 1 = 4.60954 loss) +I0408 16:03:27.201619 27193 sgd_solver.cpp:105] Iteration 3180, lr = 9.52128e-06 +I0408 16:03:32.370584 27193 solver.cpp:218] Iteration 3192 (2.32162 iter/s, 5.1688s/12 iters), loss = 4.497 +I0408 16:03:32.370633 27193 solver.cpp:237] Train net output #0: loss = 4.497 (* 1 = 4.497 loss) +I0408 16:03:32.370644 27193 sgd_solver.cpp:105] Iteration 3192, lr = 9.27458e-06 +I0408 16:03:37.397109 27193 solver.cpp:218] Iteration 3204 (2.38744 iter/s, 5.0263s/12 iters), loss = 4.45239 +I0408 16:03:37.397167 27193 solver.cpp:237] Train net output #0: loss = 4.45239 (* 1 = 4.45239 loss) +I0408 16:03:37.397179 27193 sgd_solver.cpp:105] Iteration 3204, lr = 9.03427e-06 +I0408 16:03:42.488557 27193 solver.cpp:218] Iteration 3216 (2.357 iter/s, 5.09122s/12 iters), loss = 4.46671 +I0408 16:03:42.488605 27193 solver.cpp:237] Train net output #0: loss = 4.46671 (* 1 = 4.46671 loss) +I0408 16:03:42.488615 27193 sgd_solver.cpp:105] Iteration 3216, lr = 8.80019e-06 +I0408 16:03:47.629107 27193 solver.cpp:218] Iteration 3228 (2.33448 iter/s, 5.14032s/12 iters), loss = 4.61983 +I0408 16:03:47.629226 27193 solver.cpp:237] Train net output #0: loss = 4.61983 (* 1 = 4.61983 loss) +I0408 16:03:47.629237 27193 sgd_solver.cpp:105] Iteration 3228, lr = 8.57217e-06 +I0408 16:03:50.921994 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:03:52.687582 27193 solver.cpp:218] Iteration 3240 (2.37239 iter/s, 5.05818s/12 iters), loss = 4.57707 +I0408 16:03:52.687628 27193 solver.cpp:237] Train net output #0: loss = 4.57707 (* 1 = 4.57707 loss) +I0408 16:03:52.687638 27193 sgd_solver.cpp:105] Iteration 3240, lr = 8.35006e-06 +I0408 16:03:57.816572 27193 solver.cpp:218] Iteration 3252 (2.33975 iter/s, 5.12876s/12 iters), loss = 4.47189 +I0408 16:03:57.816639 27193 solver.cpp:237] Train net output #0: loss = 4.47189 (* 1 = 4.47189 loss) +I0408 16:03:57.816654 27193 sgd_solver.cpp:105] Iteration 3252, lr = 8.13371e-06 +I0408 16:04:02.326437 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3264.caffemodel +I0408 16:04:06.846683 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3264.solverstate +I0408 16:04:10.026147 27193 solver.cpp:330] Iteration 3264, Testing net (#0) +I0408 16:04:10.026171 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:04:13.248050 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:04:14.552932 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:04:14.552981 27193 solver.cpp:397] Test net output #1: loss = 4.607 (* 1 = 4.607 loss) +I0408 16:04:14.644575 27193 solver.cpp:218] Iteration 3264 (0.713123 iter/s, 16.8274s/12 iters), loss = 4.59486 +I0408 16:04:14.644629 27193 solver.cpp:237] Train net output #0: loss = 4.59486 (* 1 = 4.59486 loss) +I0408 16:04:14.644640 27193 sgd_solver.cpp:105] Iteration 3264, lr = 7.92296e-06 +I0408 16:04:18.824215 27193 solver.cpp:218] Iteration 3276 (2.8712 iter/s, 4.17944s/12 iters), loss = 4.42731 +I0408 16:04:18.824322 27193 solver.cpp:237] Train net output #0: loss = 4.42731 (* 1 = 4.42731 loss) +I0408 16:04:18.824335 27193 sgd_solver.cpp:105] Iteration 3276, lr = 7.71767e-06 +I0408 16:04:23.911916 27193 solver.cpp:218] Iteration 3288 (2.35876 iter/s, 5.08742s/12 iters), loss = 4.45494 +I0408 16:04:23.911953 27193 solver.cpp:237] Train net output #0: loss = 4.45494 (* 1 = 4.45494 loss) +I0408 16:04:23.911962 27193 sgd_solver.cpp:105] Iteration 3288, lr = 7.5177e-06 +I0408 16:04:28.937997 27193 solver.cpp:218] Iteration 3300 (2.38765 iter/s, 5.02587s/12 iters), loss = 4.45477 +I0408 16:04:28.938045 27193 solver.cpp:237] Train net output #0: loss = 4.45477 (* 1 = 4.45477 loss) +I0408 16:04:28.938056 27193 sgd_solver.cpp:105] Iteration 3300, lr = 7.32292e-06 +I0408 16:04:34.146591 27193 solver.cpp:218] Iteration 3312 (2.30399 iter/s, 5.20836s/12 iters), loss = 4.4926 +I0408 16:04:34.146651 27193 solver.cpp:237] Train net output #0: loss = 4.4926 (* 1 = 4.4926 loss) +I0408 16:04:34.146662 27193 sgd_solver.cpp:105] Iteration 3312, lr = 7.13317e-06 +I0408 16:04:39.278342 27193 solver.cpp:218] Iteration 3324 (2.33849 iter/s, 5.13151s/12 iters), loss = 4.55513 +I0408 16:04:39.278396 27193 solver.cpp:237] Train net output #0: loss = 4.55513 (* 1 = 4.55513 loss) +I0408 16:04:39.278407 27193 sgd_solver.cpp:105] Iteration 3324, lr = 6.94835e-06 +I0408 16:04:44.428896 27193 solver.cpp:218] Iteration 3336 (2.32995 iter/s, 5.15032s/12 iters), loss = 4.58934 +I0408 16:04:44.428941 27193 solver.cpp:237] Train net output #0: loss = 4.58934 (* 1 = 4.58934 loss) +I0408 16:04:44.428952 27193 sgd_solver.cpp:105] Iteration 3336, lr = 6.76831e-06 +I0408 16:04:44.902462 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:04:49.496199 27193 solver.cpp:218] Iteration 3348 (2.36823 iter/s, 5.06708s/12 iters), loss = 4.41275 +I0408 16:04:49.496342 27193 solver.cpp:237] Train net output #0: loss = 4.41275 (* 1 = 4.41275 loss) +I0408 16:04:49.496354 27193 sgd_solver.cpp:105] Iteration 3348, lr = 6.59294e-06 +I0408 16:04:54.598798 27193 solver.cpp:218] Iteration 3360 (2.35189 iter/s, 5.10229s/12 iters), loss = 4.61212 +I0408 16:04:54.598834 27193 solver.cpp:237] Train net output #0: loss = 4.61212 (* 1 = 4.61212 loss) +I0408 16:04:54.598843 27193 sgd_solver.cpp:105] Iteration 3360, lr = 6.42212e-06 +I0408 16:04:56.860031 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3366.caffemodel +I0408 16:05:00.166312 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3366.solverstate +I0408 16:05:02.493292 27193 solver.cpp:330] Iteration 3366, Testing net (#0) +I0408 16:05:02.493319 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:05:05.571944 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:06.915151 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:05:06.915199 27193 solver.cpp:397] Test net output #1: loss = 4.60741 (* 1 = 4.60741 loss) +I0408 16:05:08.821856 27193 solver.cpp:218] Iteration 3372 (0.843731 iter/s, 14.2225s/12 iters), loss = 4.45404 +I0408 16:05:08.821903 27193 solver.cpp:237] Train net output #0: loss = 4.45404 (* 1 = 4.45404 loss) +I0408 16:05:08.821913 27193 sgd_solver.cpp:105] Iteration 3372, lr = 6.25572e-06 +I0408 16:05:13.883669 27193 solver.cpp:218] Iteration 3384 (2.3708 iter/s, 5.06158s/12 iters), loss = 4.38915 +I0408 16:05:13.883723 27193 solver.cpp:237] Train net output #0: loss = 4.38915 (* 1 = 4.38915 loss) +I0408 16:05:13.883734 27193 sgd_solver.cpp:105] Iteration 3384, lr = 6.09363e-06 +I0408 16:05:18.898555 27193 solver.cpp:218] Iteration 3396 (2.39299 iter/s, 5.01466s/12 iters), loss = 4.48002 +I0408 16:05:18.898600 27193 solver.cpp:237] Train net output #0: loss = 4.48002 (* 1 = 4.48002 loss) +I0408 16:05:18.898610 27193 sgd_solver.cpp:105] Iteration 3396, lr = 5.93574e-06 +I0408 16:05:24.017359 27193 solver.cpp:218] Iteration 3408 (2.3444 iter/s, 5.11858s/12 iters), loss = 4.52419 +I0408 16:05:24.017457 27193 solver.cpp:237] Train net output #0: loss = 4.52419 (* 1 = 4.52419 loss) +I0408 16:05:24.017467 27193 sgd_solver.cpp:105] Iteration 3408, lr = 5.78194e-06 +I0408 16:05:29.212039 27193 solver.cpp:218] Iteration 3420 (2.31018 iter/s, 5.1944s/12 iters), loss = 4.35939 +I0408 16:05:29.212088 27193 solver.cpp:237] Train net output #0: loss = 4.35939 (* 1 = 4.35939 loss) +I0408 16:05:29.212101 27193 sgd_solver.cpp:105] Iteration 3420, lr = 5.63213e-06 +I0408 16:05:34.657989 27193 solver.cpp:218] Iteration 3432 (2.20357 iter/s, 5.44571s/12 iters), loss = 4.47477 +I0408 16:05:34.658035 27193 solver.cpp:237] Train net output #0: loss = 4.47477 (* 1 = 4.47477 loss) +I0408 16:05:34.658043 27193 sgd_solver.cpp:105] Iteration 3432, lr = 5.4862e-06 +I0408 16:05:37.413919 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:39.790796 27193 solver.cpp:218] Iteration 3444 (2.338 iter/s, 5.13258s/12 iters), loss = 4.38901 +I0408 16:05:39.790838 27193 solver.cpp:237] Train net output #0: loss = 4.38901 (* 1 = 4.38901 loss) +I0408 16:05:39.790848 27193 sgd_solver.cpp:105] Iteration 3444, lr = 5.34405e-06 +I0408 16:05:44.931720 27193 solver.cpp:218] Iteration 3456 (2.33431 iter/s, 5.1407s/12 iters), loss = 4.33927 +I0408 16:05:44.931769 27193 solver.cpp:237] Train net output #0: loss = 4.33927 (* 1 = 4.33927 loss) +I0408 16:05:44.931779 27193 sgd_solver.cpp:105] Iteration 3456, lr = 5.20558e-06 +I0408 16:05:49.607254 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3468.caffemodel +I0408 16:05:52.641436 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3468.solverstate +I0408 16:05:54.971338 27193 solver.cpp:330] Iteration 3468, Testing net (#0) +I0408 16:05:54.975493 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:05:55.449611 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:05:58.076346 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:05:59.464007 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:05:59.464056 27193 solver.cpp:397] Test net output #1: loss = 4.60484 (* 1 = 4.60484 loss) +I0408 16:05:59.555496 27193 solver.cpp:218] Iteration 3468 (0.820611 iter/s, 14.6232s/12 iters), loss = 4.42649 +I0408 16:05:59.555547 27193 solver.cpp:237] Train net output #0: loss = 4.42649 (* 1 = 4.42649 loss) +I0408 16:05:59.555558 27193 sgd_solver.cpp:105] Iteration 3468, lr = 5.0707e-06 +I0408 16:06:04.064988 27193 solver.cpp:218] Iteration 3480 (2.66118 iter/s, 4.50928s/12 iters), loss = 4.60152 +I0408 16:06:04.065042 27193 solver.cpp:237] Train net output #0: loss = 4.60152 (* 1 = 4.60152 loss) +I0408 16:06:04.065052 27193 sgd_solver.cpp:105] Iteration 3480, lr = 4.93932e-06 +I0408 16:06:09.190361 27193 solver.cpp:218] Iteration 3492 (2.3414 iter/s, 5.12514s/12 iters), loss = 4.62258 +I0408 16:06:09.190413 27193 solver.cpp:237] Train net output #0: loss = 4.62258 (* 1 = 4.62258 loss) +I0408 16:06:09.190425 27193 sgd_solver.cpp:105] Iteration 3492, lr = 4.81134e-06 +I0408 16:06:14.425290 27193 solver.cpp:218] Iteration 3504 (2.2924 iter/s, 5.2347s/12 iters), loss = 4.29951 +I0408 16:06:14.425336 27193 solver.cpp:237] Train net output #0: loss = 4.29951 (* 1 = 4.29951 loss) +I0408 16:06:14.425348 27193 sgd_solver.cpp:105] Iteration 3504, lr = 4.68667e-06 +I0408 16:06:19.463403 27193 solver.cpp:218] Iteration 3516 (2.38195 iter/s, 5.03789s/12 iters), loss = 4.29581 +I0408 16:06:19.463455 27193 solver.cpp:237] Train net output #0: loss = 4.29581 (* 1 = 4.29581 loss) +I0408 16:06:19.463467 27193 sgd_solver.cpp:105] Iteration 3516, lr = 4.56524e-06 +I0408 16:06:24.595407 27193 solver.cpp:218] Iteration 3528 (2.33837 iter/s, 5.13178s/12 iters), loss = 4.52488 +I0408 16:06:24.595440 27193 solver.cpp:237] Train net output #0: loss = 4.52488 (* 1 = 4.52488 loss) +I0408 16:06:24.595449 27193 sgd_solver.cpp:105] Iteration 3528, lr = 4.44695e-06 +I0408 16:06:29.431906 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:06:29.692039 27193 solver.cpp:218] Iteration 3540 (2.35459 iter/s, 5.09642s/12 iters), loss = 4.42874 +I0408 16:06:29.692085 27193 solver.cpp:237] Train net output #0: loss = 4.42874 (* 1 = 4.42874 loss) +I0408 16:06:29.692096 27193 sgd_solver.cpp:105] Iteration 3540, lr = 4.33173e-06 +I0408 16:06:34.735294 27193 solver.cpp:218] Iteration 3552 (2.37952 iter/s, 5.04304s/12 iters), loss = 4.67366 +I0408 16:06:34.735339 27193 solver.cpp:237] Train net output #0: loss = 4.67366 (* 1 = 4.67366 loss) +I0408 16:06:34.735349 27193 sgd_solver.cpp:105] Iteration 3552, lr = 4.21949e-06 +I0408 16:06:39.939747 27193 solver.cpp:218] Iteration 3564 (2.30582 iter/s, 5.20423s/12 iters), loss = 4.394 +I0408 16:06:39.939798 27193 solver.cpp:237] Train net output #0: loss = 4.394 (* 1 = 4.394 loss) +I0408 16:06:39.939811 27193 sgd_solver.cpp:105] Iteration 3564, lr = 4.11016e-06 +I0408 16:06:42.008625 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3570.caffemodel +I0408 16:06:45.038390 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3570.solverstate +I0408 16:06:48.110572 27193 solver.cpp:330] Iteration 3570, Testing net (#0) +I0408 16:06:48.110594 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:06:51.137683 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:06:52.559422 27193 solver.cpp:397] Test net output #0: accuracy = 0.0710784 +I0408 16:06:52.559471 27193 solver.cpp:397] Test net output #1: loss = 4.60794 (* 1 = 4.60794 loss) +I0408 16:06:54.537905 27193 solver.cpp:218] Iteration 3576 (0.822051 iter/s, 14.5976s/12 iters), loss = 4.50159 +I0408 16:06:54.537952 27193 solver.cpp:237] Train net output #0: loss = 4.50159 (* 1 = 4.50159 loss) +I0408 16:06:54.537984 27193 sgd_solver.cpp:105] Iteration 3576, lr = 4.00366e-06 +I0408 16:07:00.055406 27193 solver.cpp:218] Iteration 3588 (2.17499 iter/s, 5.51726s/12 iters), loss = 4.46988 +I0408 16:07:00.055543 27193 solver.cpp:237] Train net output #0: loss = 4.46988 (* 1 = 4.46988 loss) +I0408 16:07:00.055553 27193 sgd_solver.cpp:105] Iteration 3588, lr = 3.89993e-06 +I0408 16:07:05.575657 27193 solver.cpp:218] Iteration 3600 (2.17394 iter/s, 5.51993s/12 iters), loss = 4.48369 +I0408 16:07:05.575695 27193 solver.cpp:237] Train net output #0: loss = 4.48369 (* 1 = 4.48369 loss) +I0408 16:07:05.575706 27193 sgd_solver.cpp:105] Iteration 3600, lr = 3.79888e-06 +I0408 16:07:11.014559 27193 solver.cpp:218] Iteration 3612 (2.20642 iter/s, 5.43867s/12 iters), loss = 4.55048 +I0408 16:07:11.014612 27193 solver.cpp:237] Train net output #0: loss = 4.55048 (* 1 = 4.55048 loss) +I0408 16:07:11.014626 27193 sgd_solver.cpp:105] Iteration 3612, lr = 3.70045e-06 +I0408 16:07:16.093299 27193 solver.cpp:218] Iteration 3624 (2.3629 iter/s, 5.07851s/12 iters), loss = 4.51802 +I0408 16:07:16.093349 27193 solver.cpp:237] Train net output #0: loss = 4.51802 (* 1 = 4.51802 loss) +I0408 16:07:16.093361 27193 sgd_solver.cpp:105] Iteration 3624, lr = 3.60457e-06 +I0408 16:07:21.250123 27193 solver.cpp:218] Iteration 3636 (2.32712 iter/s, 5.1566s/12 iters), loss = 4.57597 +I0408 16:07:21.250167 27193 solver.cpp:237] Train net output #0: loss = 4.57597 (* 1 = 4.57597 loss) +I0408 16:07:21.250178 27193 sgd_solver.cpp:105] Iteration 3636, lr = 3.51117e-06 +I0408 16:07:23.178972 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:07:26.375742 27193 solver.cpp:218] Iteration 3648 (2.34128 iter/s, 5.1254s/12 iters), loss = 4.49535 +I0408 16:07:26.375792 27193 solver.cpp:237] Train net output #0: loss = 4.49535 (* 1 = 4.49535 loss) +I0408 16:07:26.375803 27193 sgd_solver.cpp:105] Iteration 3648, lr = 3.42019e-06 +I0408 16:07:31.511957 27193 solver.cpp:218] Iteration 3660 (2.33645 iter/s, 5.13599s/12 iters), loss = 4.55897 +I0408 16:07:31.512063 27193 solver.cpp:237] Train net output #0: loss = 4.55897 (* 1 = 4.55897 loss) +I0408 16:07:31.512076 27193 sgd_solver.cpp:105] Iteration 3660, lr = 3.33157e-06 +I0408 16:07:36.097345 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3672.caffemodel +I0408 16:07:39.263444 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3672.solverstate +I0408 16:07:41.594700 27193 solver.cpp:330] Iteration 3672, Testing net (#0) +I0408 16:07:41.594727 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:07:44.629817 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:07:46.124059 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:07:46.124109 27193 solver.cpp:397] Test net output #1: loss = 4.60709 (* 1 = 4.60709 loss) +I0408 16:07:46.215842 27193 solver.cpp:218] Iteration 3672 (0.816144 iter/s, 14.7033s/12 iters), loss = 4.20843 +I0408 16:07:46.215893 27193 solver.cpp:237] Train net output #0: loss = 4.20843 (* 1 = 4.20843 loss) +I0408 16:07:46.215905 27193 sgd_solver.cpp:105] Iteration 3672, lr = 3.24525e-06 +I0408 16:07:50.448549 27193 solver.cpp:218] Iteration 3684 (2.8352 iter/s, 4.23251s/12 iters), loss = 4.48568 +I0408 16:07:50.448606 27193 solver.cpp:237] Train net output #0: loss = 4.48568 (* 1 = 4.48568 loss) +I0408 16:07:50.448622 27193 sgd_solver.cpp:105] Iteration 3684, lr = 3.16117e-06 +I0408 16:07:55.678848 27193 solver.cpp:218] Iteration 3696 (2.29443 iter/s, 5.23007s/12 iters), loss = 4.61028 +I0408 16:07:55.678890 27193 solver.cpp:237] Train net output #0: loss = 4.61028 (* 1 = 4.61028 loss) +I0408 16:07:55.678898 27193 sgd_solver.cpp:105] Iteration 3696, lr = 3.07926e-06 +I0408 16:08:00.827729 27193 solver.cpp:218] Iteration 3708 (2.3307 iter/s, 5.14866s/12 iters), loss = 4.48122 +I0408 16:08:00.827778 27193 solver.cpp:237] Train net output #0: loss = 4.48122 (* 1 = 4.48122 loss) +I0408 16:08:00.827790 27193 sgd_solver.cpp:105] Iteration 3708, lr = 2.99947e-06 +I0408 16:08:05.898069 27193 solver.cpp:218] Iteration 3720 (2.36681 iter/s, 5.07012s/12 iters), loss = 4.51982 +I0408 16:08:05.898231 27193 solver.cpp:237] Train net output #0: loss = 4.51982 (* 1 = 4.51982 loss) +I0408 16:08:05.898244 27193 sgd_solver.cpp:105] Iteration 3720, lr = 2.92175e-06 +I0408 16:08:10.945111 27193 solver.cpp:218] Iteration 3732 (2.37779 iter/s, 5.04671s/12 iters), loss = 4.4614 +I0408 16:08:10.945169 27193 solver.cpp:237] Train net output #0: loss = 4.4614 (* 1 = 4.4614 loss) +I0408 16:08:10.945181 27193 sgd_solver.cpp:105] Iteration 3732, lr = 2.84605e-06 +I0408 16:08:15.033921 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:08:15.975467 27193 solver.cpp:218] Iteration 3744 (2.38563 iter/s, 5.03013s/12 iters), loss = 4.43733 +I0408 16:08:15.975517 27193 solver.cpp:237] Train net output #0: loss = 4.43733 (* 1 = 4.43733 loss) +I0408 16:08:15.975529 27193 sgd_solver.cpp:105] Iteration 3744, lr = 2.77231e-06 +I0408 16:08:21.126211 27193 solver.cpp:218] Iteration 3756 (2.32986 iter/s, 5.15051s/12 iters), loss = 4.58425 +I0408 16:08:21.126264 27193 solver.cpp:237] Train net output #0: loss = 4.58425 (* 1 = 4.58425 loss) +I0408 16:08:21.126276 27193 sgd_solver.cpp:105] Iteration 3756, lr = 2.70048e-06 +I0408 16:08:26.683559 27193 solver.cpp:218] Iteration 3768 (2.1594 iter/s, 5.5571s/12 iters), loss = 4.49338 +I0408 16:08:26.683609 27193 solver.cpp:237] Train net output #0: loss = 4.49338 (* 1 = 4.49338 loss) +I0408 16:08:26.683619 27193 sgd_solver.cpp:105] Iteration 3768, lr = 2.63051e-06 +I0408 16:08:28.775177 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3774.caffemodel +I0408 16:08:31.799906 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3774.solverstate +I0408 16:08:34.135659 27193 solver.cpp:330] Iteration 3774, Testing net (#0) +I0408 16:08:34.135687 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:08:37.067557 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:08:38.632447 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:08:38.632496 27193 solver.cpp:397] Test net output #1: loss = 4.60837 (* 1 = 4.60837 loss) +I0408 16:08:40.619222 27193 solver.cpp:218] Iteration 3780 (0.861131 iter/s, 13.9352s/12 iters), loss = 4.45049 +I0408 16:08:40.619271 27193 solver.cpp:237] Train net output #0: loss = 4.45049 (* 1 = 4.45049 loss) +I0408 16:08:40.619283 27193 sgd_solver.cpp:105] Iteration 3780, lr = 2.56235e-06 +I0408 16:08:45.981263 27193 solver.cpp:218] Iteration 3792 (2.23805 iter/s, 5.36181s/12 iters), loss = 4.4293 +I0408 16:08:45.981304 27193 solver.cpp:237] Train net output #0: loss = 4.4293 (* 1 = 4.4293 loss) +I0408 16:08:45.981314 27193 sgd_solver.cpp:105] Iteration 3792, lr = 2.49596e-06 +I0408 16:08:51.040874 27193 solver.cpp:218] Iteration 3804 (2.37183 iter/s, 5.05939s/12 iters), loss = 4.44989 +I0408 16:08:51.040922 27193 solver.cpp:237] Train net output #0: loss = 4.44989 (* 1 = 4.44989 loss) +I0408 16:08:51.040935 27193 sgd_solver.cpp:105] Iteration 3804, lr = 2.43128e-06 +I0408 16:08:56.355239 27193 solver.cpp:218] Iteration 3816 (2.25813 iter/s, 5.31414s/12 iters), loss = 4.54977 +I0408 16:08:56.355285 27193 solver.cpp:237] Train net output #0: loss = 4.54977 (* 1 = 4.54977 loss) +I0408 16:08:56.355296 27193 sgd_solver.cpp:105] Iteration 3816, lr = 2.36829e-06 +I0408 16:09:01.847818 27193 solver.cpp:218] Iteration 3828 (2.18486 iter/s, 5.49235s/12 iters), loss = 4.41314 +I0408 16:09:01.847854 27193 solver.cpp:237] Train net output #0: loss = 4.41314 (* 1 = 4.41314 loss) +I0408 16:09:01.847862 27193 sgd_solver.cpp:105] Iteration 3828, lr = 2.30692e-06 +I0408 16:09:07.008183 27193 solver.cpp:218] Iteration 3840 (2.32551 iter/s, 5.16015s/12 iters), loss = 4.58426 +I0408 16:09:07.008224 27193 solver.cpp:237] Train net output #0: loss = 4.58426 (* 1 = 4.58426 loss) +I0408 16:09:07.008232 27193 sgd_solver.cpp:105] Iteration 3840, lr = 2.24715e-06 +I0408 16:09:08.166075 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:12.424391 27193 solver.cpp:218] Iteration 3852 (2.21567 iter/s, 5.41598s/12 iters), loss = 4.37688 +I0408 16:09:12.424433 27193 solver.cpp:237] Train net output #0: loss = 4.37688 (* 1 = 4.37688 loss) +I0408 16:09:12.424443 27193 sgd_solver.cpp:105] Iteration 3852, lr = 2.18893e-06 +I0408 16:09:17.908305 27193 solver.cpp:218] Iteration 3864 (2.18831 iter/s, 5.48368s/12 iters), loss = 4.36808 +I0408 16:09:17.908352 27193 solver.cpp:237] Train net output #0: loss = 4.36808 (* 1 = 4.36808 loss) +I0408 16:09:17.908365 27193 sgd_solver.cpp:105] Iteration 3864, lr = 2.13221e-06 +I0408 16:09:22.840831 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3876.caffemodel +I0408 16:09:25.836222 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3876.solverstate +I0408 16:09:28.156596 27193 solver.cpp:330] Iteration 3876, Testing net (#0) +I0408 16:09:28.156625 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:09:31.239039 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:09:32.896575 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:09:32.896623 27193 solver.cpp:397] Test net output #1: loss = 4.60831 (* 1 = 4.60831 loss) +I0408 16:09:32.988493 27193 solver.cpp:218] Iteration 3876 (0.795775 iter/s, 15.0796s/12 iters), loss = 4.61924 +I0408 16:09:32.988538 27193 solver.cpp:237] Train net output #0: loss = 4.61924 (* 1 = 4.61924 loss) +I0408 16:09:32.988548 27193 sgd_solver.cpp:105] Iteration 3876, lr = 2.07696e-06 +I0408 16:09:37.369724 27193 solver.cpp:218] Iteration 3888 (2.73908 iter/s, 4.38103s/12 iters), loss = 4.52569 +I0408 16:09:37.369776 27193 solver.cpp:237] Train net output #0: loss = 4.52569 (* 1 = 4.52569 loss) +I0408 16:09:37.369788 27193 sgd_solver.cpp:105] Iteration 3888, lr = 2.02315e-06 +I0408 16:09:42.469527 27193 solver.cpp:218] Iteration 3900 (2.35314 iter/s, 5.09958s/12 iters), loss = 4.56308 +I0408 16:09:42.469640 27193 solver.cpp:237] Train net output #0: loss = 4.56308 (* 1 = 4.56308 loss) +I0408 16:09:42.469655 27193 sgd_solver.cpp:105] Iteration 3900, lr = 1.97073e-06 +I0408 16:09:47.524556 27193 solver.cpp:218] Iteration 3912 (2.37401 iter/s, 5.05475s/12 iters), loss = 4.47488 +I0408 16:09:47.524606 27193 solver.cpp:237] Train net output #0: loss = 4.47488 (* 1 = 4.47488 loss) +I0408 16:09:47.524618 27193 sgd_solver.cpp:105] Iteration 3912, lr = 1.91966e-06 +I0408 16:09:52.624481 27193 solver.cpp:218] Iteration 3924 (2.35308 iter/s, 5.0997s/12 iters), loss = 4.38995 +I0408 16:09:52.624528 27193 solver.cpp:237] Train net output #0: loss = 4.38995 (* 1 = 4.38995 loss) +I0408 16:09:52.624538 27193 sgd_solver.cpp:105] Iteration 3924, lr = 1.86993e-06 +I0408 16:09:57.767606 27193 solver.cpp:218] Iteration 3936 (2.33331 iter/s, 5.1429s/12 iters), loss = 4.57141 +I0408 16:09:57.767647 27193 solver.cpp:237] Train net output #0: loss = 4.57141 (* 1 = 4.57141 loss) +I0408 16:09:57.767657 27193 sgd_solver.cpp:105] Iteration 3936, lr = 1.82147e-06 +I0408 16:10:01.219203 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:02.884866 27193 solver.cpp:218] Iteration 3948 (2.3451 iter/s, 5.11704s/12 iters), loss = 4.56378 +I0408 16:10:02.884917 27193 solver.cpp:237] Train net output #0: loss = 4.56378 (* 1 = 4.56378 loss) +I0408 16:10:02.884927 27193 sgd_solver.cpp:105] Iteration 3948, lr = 1.77428e-06 +I0408 16:10:07.909471 27193 solver.cpp:218] Iteration 3960 (2.38835 iter/s, 5.02438s/12 iters), loss = 4.59822 +I0408 16:10:07.909518 27193 solver.cpp:237] Train net output #0: loss = 4.59822 (* 1 = 4.59822 loss) +I0408 16:10:07.909528 27193 sgd_solver.cpp:105] Iteration 3960, lr = 1.72831e-06 +I0408 16:10:13.080525 27193 solver.cpp:218] Iteration 3972 (2.32071 iter/s, 5.17083s/12 iters), loss = 4.54631 +I0408 16:10:13.080636 27193 solver.cpp:237] Train net output #0: loss = 4.54631 (* 1 = 4.54631 loss) +I0408 16:10:13.080649 27193 sgd_solver.cpp:105] Iteration 3972, lr = 1.68353e-06 +I0408 16:10:15.173099 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_3978.caffemodel +I0408 16:10:20.546730 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_3978.solverstate +I0408 16:10:23.237795 27193 solver.cpp:330] Iteration 3978, Testing net (#0) +I0408 16:10:23.237819 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:10:26.123452 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:10:27.706233 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:10:27.706277 27193 solver.cpp:397] Test net output #1: loss = 4.6082 (* 1 = 4.6082 loss) +I0408 16:10:29.528272 27193 solver.cpp:218] Iteration 3984 (0.729612 iter/s, 16.4471s/12 iters), loss = 4.44728 +I0408 16:10:29.528311 27193 solver.cpp:237] Train net output #0: loss = 4.44728 (* 1 = 4.44728 loss) +I0408 16:10:29.528321 27193 sgd_solver.cpp:105] Iteration 3984, lr = 1.6399e-06 +I0408 16:10:35.046710 27193 solver.cpp:218] Iteration 3996 (2.17462 iter/s, 5.51821s/12 iters), loss = 4.67063 +I0408 16:10:35.046761 27193 solver.cpp:237] Train net output #0: loss = 4.67063 (* 1 = 4.67063 loss) +I0408 16:10:35.046773 27193 sgd_solver.cpp:105] Iteration 3996, lr = 1.59741e-06 +I0408 16:10:40.188675 27193 solver.cpp:218] Iteration 4008 (2.33384 iter/s, 5.14173s/12 iters), loss = 4.52871 +I0408 16:10:40.188732 27193 solver.cpp:237] Train net output #0: loss = 4.52871 (* 1 = 4.52871 loss) +I0408 16:10:40.188745 27193 sgd_solver.cpp:105] Iteration 4008, lr = 1.55602e-06 +I0408 16:10:45.298907 27193 solver.cpp:218] Iteration 4020 (2.34834 iter/s, 5.11s/12 iters), loss = 4.64006 +I0408 16:10:45.299010 27193 solver.cpp:237] Train net output #0: loss = 4.64006 (* 1 = 4.64006 loss) +I0408 16:10:45.299023 27193 sgd_solver.cpp:105] Iteration 4020, lr = 1.51571e-06 +I0408 16:10:50.485402 27193 solver.cpp:218] Iteration 4032 (2.31383 iter/s, 5.18622s/12 iters), loss = 4.65233 +I0408 16:10:50.485451 27193 solver.cpp:237] Train net output #0: loss = 4.65233 (* 1 = 4.65233 loss) +I0408 16:10:50.485463 27193 sgd_solver.cpp:105] Iteration 4032, lr = 1.47643e-06 +I0408 16:10:55.948169 27193 solver.cpp:218] Iteration 4044 (2.19678 iter/s, 5.46253s/12 iters), loss = 4.6148 +I0408 16:10:55.948210 27193 solver.cpp:237] Train net output #0: loss = 4.6148 (* 1 = 4.6148 loss) +I0408 16:10:55.948220 27193 sgd_solver.cpp:105] Iteration 4044, lr = 1.43818e-06 +I0408 16:10:56.480057 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:01.096462 27193 solver.cpp:218] Iteration 4056 (2.33097 iter/s, 5.14807s/12 iters), loss = 4.42658 +I0408 16:11:01.096516 27193 solver.cpp:237] Train net output #0: loss = 4.42658 (* 1 = 4.42658 loss) +I0408 16:11:01.096529 27193 sgd_solver.cpp:105] Iteration 4056, lr = 1.40091e-06 +I0408 16:11:06.157249 27193 solver.cpp:218] Iteration 4068 (2.37128 iter/s, 5.06056s/12 iters), loss = 4.64259 +I0408 16:11:06.157297 27193 solver.cpp:237] Train net output #0: loss = 4.64259 (* 1 = 4.64259 loss) +I0408 16:11:06.157308 27193 sgd_solver.cpp:105] Iteration 4068, lr = 1.36462e-06 +I0408 16:11:10.906839 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4080.caffemodel +I0408 16:11:14.561228 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4080.solverstate +I0408 16:11:19.662303 27193 solver.cpp:330] Iteration 4080, Testing net (#0) +I0408 16:11:19.662392 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:11:22.659371 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:24.315048 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:11:24.315095 27193 solver.cpp:397] Test net output #1: loss = 4.60958 (* 1 = 4.60958 loss) +I0408 16:11:24.406572 27193 solver.cpp:218] Iteration 4080 (0.657582 iter/s, 18.2487s/12 iters), loss = 4.42098 +I0408 16:11:24.406627 27193 solver.cpp:237] Train net output #0: loss = 4.42098 (* 1 = 4.42098 loss) +I0408 16:11:24.406639 27193 sgd_solver.cpp:105] Iteration 4080, lr = 1.32926e-06 +I0408 16:11:29.011552 27193 solver.cpp:218] Iteration 4092 (2.606 iter/s, 4.60476s/12 iters), loss = 4.46206 +I0408 16:11:29.011603 27193 solver.cpp:237] Train net output #0: loss = 4.46206 (* 1 = 4.46206 loss) +I0408 16:11:29.011616 27193 sgd_solver.cpp:105] Iteration 4092, lr = 1.29482e-06 +I0408 16:11:34.564052 27193 solver.cpp:218] Iteration 4104 (2.16128 iter/s, 5.55226s/12 iters), loss = 4.47516 +I0408 16:11:34.564100 27193 solver.cpp:237] Train net output #0: loss = 4.47516 (* 1 = 4.47516 loss) +I0408 16:11:34.564110 27193 sgd_solver.cpp:105] Iteration 4104, lr = 1.26127e-06 +I0408 16:11:39.902667 27193 solver.cpp:218] Iteration 4116 (2.24787 iter/s, 5.33839s/12 iters), loss = 4.43347 +I0408 16:11:39.902711 27193 solver.cpp:237] Train net output #0: loss = 4.43347 (* 1 = 4.43347 loss) +I0408 16:11:39.902721 27193 sgd_solver.cpp:105] Iteration 4116, lr = 1.22859e-06 +I0408 16:11:44.979580 27193 solver.cpp:218] Iteration 4128 (2.36374 iter/s, 5.07669s/12 iters), loss = 4.43082 +I0408 16:11:44.979629 27193 solver.cpp:237] Train net output #0: loss = 4.43082 (* 1 = 4.43082 loss) +I0408 16:11:44.979642 27193 sgd_solver.cpp:105] Iteration 4128, lr = 1.19675e-06 +I0408 16:11:50.435484 27193 solver.cpp:218] Iteration 4140 (2.19955 iter/s, 5.45567s/12 iters), loss = 4.51297 +I0408 16:11:50.435592 27193 solver.cpp:237] Train net output #0: loss = 4.51297 (* 1 = 4.51297 loss) +I0408 16:11:50.435608 27193 sgd_solver.cpp:105] Iteration 4140, lr = 1.16575e-06 +I0408 16:11:53.322373 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:11:55.760319 27193 solver.cpp:218] Iteration 4152 (2.25371 iter/s, 5.32455s/12 iters), loss = 4.27165 +I0408 16:11:55.760367 27193 solver.cpp:237] Train net output #0: loss = 4.27165 (* 1 = 4.27165 loss) +I0408 16:11:55.760380 27193 sgd_solver.cpp:105] Iteration 4152, lr = 1.13554e-06 +I0408 16:11:57.394834 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:12:00.951879 27193 solver.cpp:218] Iteration 4164 (2.31155 iter/s, 5.19133s/12 iters), loss = 4.40066 +I0408 16:12:00.951927 27193 solver.cpp:237] Train net output #0: loss = 4.40066 (* 1 = 4.40066 loss) +I0408 16:12:00.951941 27193 sgd_solver.cpp:105] Iteration 4164, lr = 1.10612e-06 +I0408 16:12:06.477267 27193 solver.cpp:218] Iteration 4176 (2.17189 iter/s, 5.52515s/12 iters), loss = 4.48958 +I0408 16:12:06.477316 27193 solver.cpp:237] Train net output #0: loss = 4.48958 (* 1 = 4.48958 loss) +I0408 16:12:06.477329 27193 sgd_solver.cpp:105] Iteration 4176, lr = 1.07746e-06 +I0408 16:12:08.732044 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4182.caffemodel +I0408 16:12:11.776319 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4182.solverstate +I0408 16:12:14.110831 27193 solver.cpp:330] Iteration 4182, Testing net (#0) +I0408 16:12:14.110857 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:12:16.978355 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:18.679247 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:12:18.679287 27193 solver.cpp:397] Test net output #1: loss = 4.60377 (* 1 = 4.60377 loss) +I0408 16:12:20.507710 27193 solver.cpp:218] Iteration 4188 (0.855314 iter/s, 14.0299s/12 iters), loss = 4.51965 +I0408 16:12:20.507870 27193 solver.cpp:237] Train net output #0: loss = 4.51965 (* 1 = 4.51965 loss) +I0408 16:12:20.507882 27193 sgd_solver.cpp:105] Iteration 4188, lr = 1.04954e-06 +I0408 16:12:25.576478 27193 solver.cpp:218] Iteration 4200 (2.3676 iter/s, 5.06843s/12 iters), loss = 4.52737 +I0408 16:12:25.576524 27193 solver.cpp:237] Train net output #0: loss = 4.52737 (* 1 = 4.52737 loss) +I0408 16:12:25.576531 27193 sgd_solver.cpp:105] Iteration 4200, lr = 1.02235e-06 +I0408 16:12:30.655052 27193 solver.cpp:218] Iteration 4212 (2.36297 iter/s, 5.07835s/12 iters), loss = 4.23531 +I0408 16:12:30.655093 27193 solver.cpp:237] Train net output #0: loss = 4.23531 (* 1 = 4.23531 loss) +I0408 16:12:30.655102 27193 sgd_solver.cpp:105] Iteration 4212, lr = 9.95856e-07 +I0408 16:12:35.917265 27193 solver.cpp:218] Iteration 4224 (2.28051 iter/s, 5.26199s/12 iters), loss = 4.38731 +I0408 16:12:35.917306 27193 solver.cpp:237] Train net output #0: loss = 4.38731 (* 1 = 4.38731 loss) +I0408 16:12:35.917316 27193 sgd_solver.cpp:105] Iteration 4224, lr = 9.70053e-07 +I0408 16:12:41.219671 27193 solver.cpp:218] Iteration 4236 (2.26322 iter/s, 5.30218s/12 iters), loss = 4.50328 +I0408 16:12:41.219718 27193 solver.cpp:237] Train net output #0: loss = 4.50328 (* 1 = 4.50328 loss) +I0408 16:12:41.219729 27193 sgd_solver.cpp:105] Iteration 4236, lr = 9.44919e-07 +I0408 16:12:46.513723 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:12:46.770804 27193 solver.cpp:218] Iteration 4248 (2.16181 iter/s, 5.55089s/12 iters), loss = 4.48288 +I0408 16:12:46.770856 27193 solver.cpp:237] Train net output #0: loss = 4.48288 (* 1 = 4.48288 loss) +I0408 16:12:46.770867 27193 sgd_solver.cpp:105] Iteration 4248, lr = 9.20435e-07 +I0408 16:12:52.124577 27193 solver.cpp:218] Iteration 4260 (2.24151 iter/s, 5.35354s/12 iters), loss = 4.64603 +I0408 16:12:52.124644 27193 solver.cpp:237] Train net output #0: loss = 4.64603 (* 1 = 4.64603 loss) +I0408 16:12:52.124653 27193 sgd_solver.cpp:105] Iteration 4260, lr = 8.96586e-07 +I0408 16:12:57.222880 27193 solver.cpp:218] Iteration 4272 (2.35384 iter/s, 5.09806s/12 iters), loss = 4.32214 +I0408 16:12:57.222924 27193 solver.cpp:237] Train net output #0: loss = 4.32214 (* 1 = 4.32214 loss) +I0408 16:12:57.222934 27193 sgd_solver.cpp:105] Iteration 4272, lr = 8.73355e-07 +I0408 16:13:01.793764 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4284.caffemodel +I0408 16:13:04.829216 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4284.solverstate +I0408 16:13:07.155072 27193 solver.cpp:330] Iteration 4284, Testing net (#0) +I0408 16:13:07.155099 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:13:09.836107 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:13:11.534422 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:13:11.534467 27193 solver.cpp:397] Test net output #1: loss = 4.60902 (* 1 = 4.60902 loss) +I0408 16:13:11.626127 27193 solver.cpp:218] Iteration 4284 (0.833175 iter/s, 14.4027s/12 iters), loss = 4.52576 +I0408 16:13:11.626184 27193 solver.cpp:237] Train net output #0: loss = 4.52576 (* 1 = 4.52576 loss) +I0408 16:13:11.626195 27193 sgd_solver.cpp:105] Iteration 4284, lr = 8.50726e-07 +I0408 16:13:15.930140 27193 solver.cpp:218] Iteration 4296 (2.78823 iter/s, 4.30381s/12 iters), loss = 4.51241 +I0408 16:13:15.930186 27193 solver.cpp:237] Train net output #0: loss = 4.51241 (* 1 = 4.51241 loss) +I0408 16:13:15.930195 27193 sgd_solver.cpp:105] Iteration 4296, lr = 8.28683e-07 +I0408 16:13:21.000222 27193 solver.cpp:218] Iteration 4308 (2.36693 iter/s, 5.06986s/12 iters), loss = 4.4867 +I0408 16:13:21.000262 27193 solver.cpp:237] Train net output #0: loss = 4.4867 (* 1 = 4.4867 loss) +I0408 16:13:21.000272 27193 sgd_solver.cpp:105] Iteration 4308, lr = 8.07212e-07 +I0408 16:13:26.086823 27193 solver.cpp:218] Iteration 4320 (2.35924 iter/s, 5.08639s/12 iters), loss = 4.56089 +I0408 16:13:26.086921 27193 solver.cpp:237] Train net output #0: loss = 4.56089 (* 1 = 4.56089 loss) +I0408 16:13:26.086930 27193 sgd_solver.cpp:105] Iteration 4320, lr = 7.86297e-07 +I0408 16:13:31.233247 27193 solver.cpp:218] Iteration 4332 (2.33184 iter/s, 5.14614s/12 iters), loss = 4.55202 +I0408 16:13:31.233299 27193 solver.cpp:237] Train net output #0: loss = 4.55202 (* 1 = 4.55202 loss) +I0408 16:13:31.233310 27193 sgd_solver.cpp:105] Iteration 4332, lr = 7.65923e-07 +I0408 16:13:36.510051 27193 solver.cpp:218] Iteration 4344 (2.2742 iter/s, 5.27657s/12 iters), loss = 4.4742 +I0408 16:13:36.510103 27193 solver.cpp:237] Train net output #0: loss = 4.4742 (* 1 = 4.4742 loss) +I0408 16:13:36.510115 27193 sgd_solver.cpp:105] Iteration 4344, lr = 7.46078e-07 +I0408 16:13:38.451599 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:13:41.661002 27193 solver.cpp:218] Iteration 4356 (2.32977 iter/s, 5.15072s/12 iters), loss = 4.58341 +I0408 16:13:41.661049 27193 solver.cpp:237] Train net output #0: loss = 4.58341 (* 1 = 4.58341 loss) +I0408 16:13:41.661062 27193 sgd_solver.cpp:105] Iteration 4356, lr = 7.26746e-07 +I0408 16:13:46.723147 27193 solver.cpp:218] Iteration 4368 (2.37064 iter/s, 5.06192s/12 iters), loss = 4.55251 +I0408 16:13:46.723197 27193 solver.cpp:237] Train net output #0: loss = 4.55251 (* 1 = 4.55251 loss) +I0408 16:13:46.723209 27193 sgd_solver.cpp:105] Iteration 4368, lr = 7.07916e-07 +I0408 16:13:51.811717 27193 solver.cpp:218] Iteration 4380 (2.35833 iter/s, 5.08834s/12 iters), loss = 4.33618 +I0408 16:13:51.811764 27193 solver.cpp:237] Train net output #0: loss = 4.33618 (* 1 = 4.33618 loss) +I0408 16:13:51.811774 27193 sgd_solver.cpp:105] Iteration 4380, lr = 6.89574e-07 +I0408 16:13:53.851742 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4386.caffemodel +I0408 16:13:56.843470 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4386.solverstate +I0408 16:14:00.277238 27193 solver.cpp:330] Iteration 4386, Testing net (#0) +I0408 16:14:00.277263 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:14:02.947734 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:04.691499 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:14:04.691547 27193 solver.cpp:397] Test net output #1: loss = 4.60721 (* 1 = 4.60721 loss) +I0408 16:14:06.572959 27193 solver.cpp:218] Iteration 4392 (0.812969 iter/s, 14.7607s/12 iters), loss = 4.48205 +I0408 16:14:06.573006 27193 solver.cpp:237] Train net output #0: loss = 4.48205 (* 1 = 4.48205 loss) +I0408 16:14:06.573015 27193 sgd_solver.cpp:105] Iteration 4392, lr = 6.71706e-07 +I0408 16:14:11.662407 27193 solver.cpp:218] Iteration 4404 (2.35792 iter/s, 5.08922s/12 iters), loss = 4.65905 +I0408 16:14:11.662456 27193 solver.cpp:237] Train net output #0: loss = 4.65905 (* 1 = 4.65905 loss) +I0408 16:14:11.662467 27193 sgd_solver.cpp:105] Iteration 4404, lr = 6.54302e-07 +I0408 16:14:16.725106 27193 solver.cpp:218] Iteration 4416 (2.37038 iter/s, 5.06248s/12 iters), loss = 4.51465 +I0408 16:14:16.725143 27193 solver.cpp:237] Train net output #0: loss = 4.51465 (* 1 = 4.51465 loss) +I0408 16:14:16.725153 27193 sgd_solver.cpp:105] Iteration 4416, lr = 6.37349e-07 +I0408 16:14:21.891317 27193 solver.cpp:218] Iteration 4428 (2.32288 iter/s, 5.166s/12 iters), loss = 4.53304 +I0408 16:14:21.891355 27193 solver.cpp:237] Train net output #0: loss = 4.53304 (* 1 = 4.53304 loss) +I0408 16:14:21.891362 27193 sgd_solver.cpp:105] Iteration 4428, lr = 6.20835e-07 +I0408 16:14:27.033445 27193 solver.cpp:218] Iteration 4440 (2.33377 iter/s, 5.1419s/12 iters), loss = 4.41153 +I0408 16:14:27.033550 27193 solver.cpp:237] Train net output #0: loss = 4.41153 (* 1 = 4.41153 loss) +I0408 16:14:27.033560 27193 sgd_solver.cpp:105] Iteration 4440, lr = 6.04749e-07 +I0408 16:14:31.251487 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:32.261108 27193 solver.cpp:218] Iteration 4452 (2.29561 iter/s, 5.22738s/12 iters), loss = 4.58107 +I0408 16:14:32.261152 27193 solver.cpp:237] Train net output #0: loss = 4.58107 (* 1 = 4.58107 loss) +I0408 16:14:32.261162 27193 sgd_solver.cpp:105] Iteration 4452, lr = 5.89079e-07 +I0408 16:14:37.409896 27193 solver.cpp:218] Iteration 4464 (2.33075 iter/s, 5.14857s/12 iters), loss = 4.48237 +I0408 16:14:37.409945 27193 solver.cpp:237] Train net output #0: loss = 4.48237 (* 1 = 4.48237 loss) +I0408 16:14:37.409973 27193 sgd_solver.cpp:105] Iteration 4464, lr = 5.73816e-07 +I0408 16:14:42.672848 27193 solver.cpp:218] Iteration 4476 (2.28019 iter/s, 5.26272s/12 iters), loss = 4.52124 +I0408 16:14:42.672905 27193 solver.cpp:237] Train net output #0: loss = 4.52124 (* 1 = 4.52124 loss) +I0408 16:14:42.672919 27193 sgd_solver.cpp:105] Iteration 4476, lr = 5.58948e-07 +I0408 16:14:47.166754 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4488.caffemodel +I0408 16:14:50.930143 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4488.solverstate +I0408 16:14:53.276595 27193 solver.cpp:330] Iteration 4488, Testing net (#0) +I0408 16:14:53.276618 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:14:55.979393 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:14:57.755621 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:14:57.755790 27193 solver.cpp:397] Test net output #1: loss = 4.6091 (* 1 = 4.6091 loss) +I0408 16:14:57.847518 27193 solver.cpp:218] Iteration 4488 (0.79082 iter/s, 15.1741s/12 iters), loss = 4.40458 +I0408 16:14:57.847571 27193 solver.cpp:237] Train net output #0: loss = 4.40458 (* 1 = 4.40458 loss) +I0408 16:14:57.847582 27193 sgd_solver.cpp:105] Iteration 4488, lr = 5.44465e-07 +I0408 16:15:02.129467 27193 solver.cpp:218] Iteration 4500 (2.80259 iter/s, 4.28175s/12 iters), loss = 4.33526 +I0408 16:15:02.129514 27193 solver.cpp:237] Train net output #0: loss = 4.33526 (* 1 = 4.33526 loss) +I0408 16:15:02.129523 27193 sgd_solver.cpp:105] Iteration 4500, lr = 5.30358e-07 +I0408 16:15:07.230291 27193 solver.cpp:218] Iteration 4512 (2.35266 iter/s, 5.1006s/12 iters), loss = 4.29353 +I0408 16:15:07.230338 27193 solver.cpp:237] Train net output #0: loss = 4.29353 (* 1 = 4.29353 loss) +I0408 16:15:07.230350 27193 sgd_solver.cpp:105] Iteration 4512, lr = 5.16616e-07 +I0408 16:15:12.397428 27193 solver.cpp:218] Iteration 4524 (2.32247 iter/s, 5.16691s/12 iters), loss = 4.61605 +I0408 16:15:12.397487 27193 solver.cpp:237] Train net output #0: loss = 4.61605 (* 1 = 4.61605 loss) +I0408 16:15:12.397501 27193 sgd_solver.cpp:105] Iteration 4524, lr = 5.0323e-07 +I0408 16:15:17.487573 27193 solver.cpp:218] Iteration 4536 (2.3576 iter/s, 5.08991s/12 iters), loss = 4.44271 +I0408 16:15:17.487615 27193 solver.cpp:237] Train net output #0: loss = 4.44271 (* 1 = 4.44271 loss) +I0408 16:15:17.487625 27193 sgd_solver.cpp:105] Iteration 4536, lr = 4.90191e-07 +I0408 16:15:22.602959 27193 solver.cpp:218] Iteration 4548 (2.34611 iter/s, 5.11486s/12 iters), loss = 4.55012 +I0408 16:15:22.603040 27193 solver.cpp:237] Train net output #0: loss = 4.55012 (* 1 = 4.55012 loss) +I0408 16:15:22.603051 27193 sgd_solver.cpp:105] Iteration 4548, lr = 4.7749e-07 +I0408 16:15:23.863665 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:15:27.621421 27193 solver.cpp:218] Iteration 4560 (2.39129 iter/s, 5.01821s/12 iters), loss = 4.41847 +I0408 16:15:27.621471 27193 solver.cpp:237] Train net output #0: loss = 4.41847 (* 1 = 4.41847 loss) +I0408 16:15:27.621482 27193 sgd_solver.cpp:105] Iteration 4560, lr = 4.65118e-07 +I0408 16:15:32.642763 27193 solver.cpp:218] Iteration 4572 (2.3899 iter/s, 5.02112s/12 iters), loss = 4.50558 +I0408 16:15:32.642917 27193 solver.cpp:237] Train net output #0: loss = 4.50558 (* 1 = 4.50558 loss) +I0408 16:15:32.642930 27193 sgd_solver.cpp:105] Iteration 4572, lr = 4.53067e-07 +I0408 16:15:37.619211 27193 solver.cpp:218] Iteration 4584 (2.41152 iter/s, 4.97612s/12 iters), loss = 4.68747 +I0408 16:15:37.619264 27193 solver.cpp:237] Train net output #0: loss = 4.68747 (* 1 = 4.68747 loss) +I0408 16:15:37.619275 27193 sgd_solver.cpp:105] Iteration 4584, lr = 4.41328e-07 +I0408 16:15:39.646220 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4590.caffemodel +I0408 16:15:42.687536 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4590.solverstate +I0408 16:15:45.428493 27193 solver.cpp:330] Iteration 4590, Testing net (#0) +I0408 16:15:45.428519 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:15:48.081884 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:15:49.904302 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:15:49.904353 27193 solver.cpp:397] Test net output #1: loss = 4.60273 (* 1 = 4.60273 loss) +I0408 16:15:51.805516 27193 solver.cpp:218] Iteration 4596 (0.845918 iter/s, 14.1858s/12 iters), loss = 4.57488 +I0408 16:15:51.805572 27193 solver.cpp:237] Train net output #0: loss = 4.57488 (* 1 = 4.57488 loss) +I0408 16:15:51.805584 27193 sgd_solver.cpp:105] Iteration 4596, lr = 4.29893e-07 +I0408 16:15:56.879492 27193 solver.cpp:218] Iteration 4608 (2.36512 iter/s, 5.07374s/12 iters), loss = 4.49427 +I0408 16:15:56.879547 27193 solver.cpp:237] Train net output #0: loss = 4.49427 (* 1 = 4.49427 loss) +I0408 16:15:56.879560 27193 sgd_solver.cpp:105] Iteration 4608, lr = 4.18754e-07 +I0408 16:16:01.967337 27193 solver.cpp:218] Iteration 4620 (2.35867 iter/s, 5.08761s/12 iters), loss = 4.53496 +I0408 16:16:01.967391 27193 solver.cpp:237] Train net output #0: loss = 4.53496 (* 1 = 4.53496 loss) +I0408 16:16:01.967403 27193 sgd_solver.cpp:105] Iteration 4620, lr = 4.07904e-07 +I0408 16:16:07.110522 27193 solver.cpp:218] Iteration 4632 (2.33329 iter/s, 5.14296s/12 iters), loss = 4.29257 +I0408 16:16:07.110680 27193 solver.cpp:237] Train net output #0: loss = 4.29257 (* 1 = 4.29257 loss) +I0408 16:16:07.110693 27193 sgd_solver.cpp:105] Iteration 4632, lr = 3.97335e-07 +I0408 16:16:12.341267 27193 solver.cpp:218] Iteration 4644 (2.29428 iter/s, 5.23041s/12 iters), loss = 4.61536 +I0408 16:16:12.341321 27193 solver.cpp:237] Train net output #0: loss = 4.61536 (* 1 = 4.61536 loss) +I0408 16:16:12.341333 27193 sgd_solver.cpp:105] Iteration 4644, lr = 3.8704e-07 +I0408 16:16:15.724392 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:16:17.347769 27193 solver.cpp:218] Iteration 4656 (2.39699 iter/s, 5.00628s/12 iters), loss = 4.60793 +I0408 16:16:17.347806 27193 solver.cpp:237] Train net output #0: loss = 4.60793 (* 1 = 4.60793 loss) +I0408 16:16:17.347816 27193 sgd_solver.cpp:105] Iteration 4656, lr = 3.77011e-07 +I0408 16:16:22.709872 27193 solver.cpp:218] Iteration 4668 (2.23802 iter/s, 5.36188s/12 iters), loss = 4.56698 +I0408 16:16:22.709915 27193 solver.cpp:237] Train net output #0: loss = 4.56698 (* 1 = 4.56698 loss) +I0408 16:16:22.709926 27193 sgd_solver.cpp:105] Iteration 4668, lr = 3.67243e-07 +I0408 16:16:28.223353 27193 solver.cpp:218] Iteration 4680 (2.17657 iter/s, 5.51325s/12 iters), loss = 4.49668 +I0408 16:16:28.223389 27193 solver.cpp:237] Train net output #0: loss = 4.49668 (* 1 = 4.49668 loss) +I0408 16:16:28.223398 27193 sgd_solver.cpp:105] Iteration 4680, lr = 3.57727e-07 +I0408 16:16:32.936291 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4692.caffemodel +I0408 16:16:35.999460 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4692.solverstate +I0408 16:16:38.313869 27193 solver.cpp:330] Iteration 4692, Testing net (#0) +I0408 16:16:38.313952 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:16:40.936262 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:16:42.791749 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:16:42.791792 27193 solver.cpp:397] Test net output #1: loss = 4.61077 (* 1 = 4.61077 loss) +I0408 16:16:42.883364 27193 solver.cpp:218] Iteration 4692 (0.818583 iter/s, 14.6595s/12 iters), loss = 4.44353 +I0408 16:16:42.883415 27193 solver.cpp:237] Train net output #0: loss = 4.44353 (* 1 = 4.44353 loss) +I0408 16:16:42.883425 27193 sgd_solver.cpp:105] Iteration 4692, lr = 3.48458e-07 +I0408 16:16:47.152046 27193 solver.cpp:218] Iteration 4704 (2.81131 iter/s, 4.26848s/12 iters), loss = 4.57575 +I0408 16:16:47.152092 27193 solver.cpp:237] Train net output #0: loss = 4.57575 (* 1 = 4.57575 loss) +I0408 16:16:47.152102 27193 sgd_solver.cpp:105] Iteration 4704, lr = 3.3943e-07 +I0408 16:16:52.275914 27193 solver.cpp:218] Iteration 4716 (2.34208 iter/s, 5.12365s/12 iters), loss = 4.54025 +I0408 16:16:52.275954 27193 solver.cpp:237] Train net output #0: loss = 4.54025 (* 1 = 4.54025 loss) +I0408 16:16:52.275962 27193 sgd_solver.cpp:105] Iteration 4716, lr = 3.30635e-07 +I0408 16:16:57.423044 27193 solver.cpp:218] Iteration 4728 (2.3315 iter/s, 5.14691s/12 iters), loss = 4.59082 +I0408 16:16:57.423090 27193 solver.cpp:237] Train net output #0: loss = 4.59082 (* 1 = 4.59082 loss) +I0408 16:16:57.423101 27193 sgd_solver.cpp:105] Iteration 4728, lr = 3.22068e-07 +I0408 16:17:02.439074 27193 solver.cpp:218] Iteration 4740 (2.39243 iter/s, 5.01581s/12 iters), loss = 4.5948 +I0408 16:17:02.439110 27193 solver.cpp:237] Train net output #0: loss = 4.5948 (* 1 = 4.5948 loss) +I0408 16:17:02.439119 27193 sgd_solver.cpp:105] Iteration 4740, lr = 3.13723e-07 +I0408 16:17:07.899756 27193 solver.cpp:218] Iteration 4752 (2.19762 iter/s, 5.46045s/12 iters), loss = 4.60939 +I0408 16:17:07.899806 27193 solver.cpp:237] Train net output #0: loss = 4.60939 (* 1 = 4.60939 loss) +I0408 16:17:07.899817 27193 sgd_solver.cpp:105] Iteration 4752, lr = 3.05594e-07 +I0408 16:17:08.492823 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:17:13.116583 27193 solver.cpp:218] Iteration 4764 (2.30035 iter/s, 5.2166s/12 iters), loss = 4.49223 +I0408 16:17:13.116631 27193 solver.cpp:237] Train net output #0: loss = 4.49223 (* 1 = 4.49223 loss) +I0408 16:17:13.116643 27193 sgd_solver.cpp:105] Iteration 4764, lr = 2.97676e-07 +I0408 16:17:18.288621 27193 solver.cpp:218] Iteration 4776 (2.32027 iter/s, 5.17181s/12 iters), loss = 4.57633 +I0408 16:17:18.288676 27193 solver.cpp:237] Train net output #0: loss = 4.57633 (* 1 = 4.57633 loss) +I0408 16:17:18.288692 27193 sgd_solver.cpp:105] Iteration 4776, lr = 2.89963e-07 +I0408 16:17:23.389199 27193 solver.cpp:218] Iteration 4788 (2.35278 iter/s, 5.10035s/12 iters), loss = 4.39698 +I0408 16:17:23.389241 27193 solver.cpp:237] Train net output #0: loss = 4.39698 (* 1 = 4.39698 loss) +I0408 16:17:23.389252 27193 sgd_solver.cpp:105] Iteration 4788, lr = 2.8245e-07 +I0408 16:17:25.555550 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4794.caffemodel +I0408 16:17:28.538903 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4794.solverstate +I0408 16:17:30.847435 27193 solver.cpp:330] Iteration 4794, Testing net (#0) +I0408 16:17:30.847460 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:17:33.418790 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:17:35.320524 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:17:35.320571 27193 solver.cpp:397] Test net output #1: loss = 4.60432 (* 1 = 4.60432 loss) +I0408 16:17:37.312188 27193 solver.cpp:218] Iteration 4800 (0.861915 iter/s, 13.9225s/12 iters), loss = 4.39831 +I0408 16:17:37.312234 27193 solver.cpp:237] Train net output #0: loss = 4.39831 (* 1 = 4.39831 loss) +I0408 16:17:37.312247 27193 sgd_solver.cpp:105] Iteration 4800, lr = 2.75132e-07 +I0408 16:17:42.564932 27193 solver.cpp:218] Iteration 4812 (2.28462 iter/s, 5.25251s/12 iters), loss = 4.46748 +I0408 16:17:42.565048 27193 solver.cpp:237] Train net output #0: loss = 4.46748 (* 1 = 4.46748 loss) +I0408 16:17:42.565061 27193 sgd_solver.cpp:105] Iteration 4812, lr = 2.68003e-07 +I0408 16:17:48.013809 27193 solver.cpp:218] Iteration 4824 (2.20241 iter/s, 5.44858s/12 iters), loss = 4.59368 +I0408 16:17:48.013854 27193 solver.cpp:237] Train net output #0: loss = 4.59368 (* 1 = 4.59368 loss) +I0408 16:17:48.013866 27193 sgd_solver.cpp:105] Iteration 4824, lr = 2.61059e-07 +I0408 16:17:53.538754 27193 solver.cpp:218] Iteration 4836 (2.17206 iter/s, 5.52471s/12 iters), loss = 4.45732 +I0408 16:17:53.538787 27193 solver.cpp:237] Train net output #0: loss = 4.45732 (* 1 = 4.45732 loss) +I0408 16:17:53.538798 27193 sgd_solver.cpp:105] Iteration 4836, lr = 2.54294e-07 +I0408 16:17:55.788727 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:17:59.078522 27193 solver.cpp:218] Iteration 4848 (2.16624 iter/s, 5.53954s/12 iters), loss = 4.51076 +I0408 16:17:59.078562 27193 solver.cpp:237] Train net output #0: loss = 4.51076 (* 1 = 4.51076 loss) +I0408 16:17:59.078573 27193 sgd_solver.cpp:105] Iteration 4848, lr = 2.47706e-07 +I0408 16:18:01.985446 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:18:04.330504 27193 solver.cpp:218] Iteration 4860 (2.28495 iter/s, 5.25176s/12 iters), loss = 4.30741 +I0408 16:18:04.330549 27193 solver.cpp:237] Train net output #0: loss = 4.30741 (* 1 = 4.30741 loss) +I0408 16:18:04.330559 27193 sgd_solver.cpp:105] Iteration 4860, lr = 2.41287e-07 +I0408 16:18:09.449430 27193 solver.cpp:218] Iteration 4872 (2.34434 iter/s, 5.11871s/12 iters), loss = 4.4124 +I0408 16:18:09.449467 27193 solver.cpp:237] Train net output #0: loss = 4.4124 (* 1 = 4.4124 loss) +I0408 16:18:09.449476 27193 sgd_solver.cpp:105] Iteration 4872, lr = 2.35036e-07 +I0408 16:18:14.481683 27193 solver.cpp:218] Iteration 4884 (2.38472 iter/s, 5.03204s/12 iters), loss = 4.43735 +I0408 16:18:14.481803 27193 solver.cpp:237] Train net output #0: loss = 4.43735 (* 1 = 4.43735 loss) +I0408 16:18:14.481812 27193 sgd_solver.cpp:105] Iteration 4884, lr = 2.28946e-07 +I0408 16:18:19.256783 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4896.caffemodel +I0408 16:18:22.726187 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4896.solverstate +I0408 16:18:25.062019 27193 solver.cpp:330] Iteration 4896, Testing net (#0) +I0408 16:18:25.062045 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:18:27.600827 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:18:29.536931 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:18:29.536972 27193 solver.cpp:397] Test net output #1: loss = 4.60283 (* 1 = 4.60283 loss) +I0408 16:18:29.628109 27193 solver.cpp:218] Iteration 4896 (0.792299 iter/s, 15.1458s/12 iters), loss = 4.62744 +I0408 16:18:29.628149 27193 solver.cpp:237] Train net output #0: loss = 4.62744 (* 1 = 4.62744 loss) +I0408 16:18:29.628159 27193 sgd_solver.cpp:105] Iteration 4896, lr = 2.23014e-07 +I0408 16:18:33.915422 27193 solver.cpp:218] Iteration 4908 (2.79908 iter/s, 4.28712s/12 iters), loss = 4.51054 +I0408 16:18:33.915465 27193 solver.cpp:237] Train net output #0: loss = 4.51054 (* 1 = 4.51054 loss) +I0408 16:18:33.915477 27193 sgd_solver.cpp:105] Iteration 4908, lr = 2.17235e-07 +I0408 16:18:39.407423 27193 solver.cpp:218] Iteration 4920 (2.18509 iter/s, 5.49176s/12 iters), loss = 4.39193 +I0408 16:18:39.407467 27193 solver.cpp:237] Train net output #0: loss = 4.39193 (* 1 = 4.39193 loss) +I0408 16:18:39.407480 27193 sgd_solver.cpp:105] Iteration 4920, lr = 2.11606e-07 +I0408 16:18:44.717252 27193 solver.cpp:218] Iteration 4932 (2.26006 iter/s, 5.3096s/12 iters), loss = 4.50383 +I0408 16:18:44.717348 27193 solver.cpp:237] Train net output #0: loss = 4.50383 (* 1 = 4.50383 loss) +I0408 16:18:44.717357 27193 sgd_solver.cpp:105] Iteration 4932, lr = 2.06124e-07 +I0408 16:18:50.204493 27193 solver.cpp:218] Iteration 4944 (2.18701 iter/s, 5.48695s/12 iters), loss = 4.52323 +I0408 16:18:50.204545 27193 solver.cpp:237] Train net output #0: loss = 4.52323 (* 1 = 4.52323 loss) +I0408 16:18:50.204555 27193 sgd_solver.cpp:105] Iteration 4944, lr = 2.00783e-07 +I0408 16:18:55.498342 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:18:55.708233 27193 solver.cpp:218] Iteration 4956 (2.18043 iter/s, 5.50349s/12 iters), loss = 4.48432 +I0408 16:18:55.708284 27193 solver.cpp:237] Train net output #0: loss = 4.48432 (* 1 = 4.48432 loss) +I0408 16:18:55.708297 27193 sgd_solver.cpp:105] Iteration 4956, lr = 1.9558e-07 +I0408 16:19:01.203933 27193 solver.cpp:218] Iteration 4968 (2.18362 iter/s, 5.49545s/12 iters), loss = 4.55731 +I0408 16:19:01.203979 27193 solver.cpp:237] Train net output #0: loss = 4.55731 (* 1 = 4.55731 loss) +I0408 16:19:01.203992 27193 sgd_solver.cpp:105] Iteration 4968, lr = 1.90513e-07 +I0408 16:19:06.246287 27193 solver.cpp:218] Iteration 4980 (2.37995 iter/s, 5.04213s/12 iters), loss = 4.33163 +I0408 16:19:06.246340 27193 solver.cpp:237] Train net output #0: loss = 4.33163 (* 1 = 4.33163 loss) +I0408 16:19:06.246351 27193 sgd_solver.cpp:105] Iteration 4980, lr = 1.85577e-07 +I0408 16:19:11.272101 27193 solver.cpp:218] Iteration 4992 (2.38778 iter/s, 5.02559s/12 iters), loss = 4.44983 +I0408 16:19:11.272147 27193 solver.cpp:237] Train net output #0: loss = 4.44983 (* 1 = 4.44983 loss) +I0408 16:19:11.272158 27193 sgd_solver.cpp:105] Iteration 4992, lr = 1.80768e-07 +I0408 16:19:13.363337 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_4998.caffemodel +I0408 16:19:16.344959 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_4998.solverstate +I0408 16:19:18.648552 27193 solver.cpp:330] Iteration 4998, Testing net (#0) +I0408 16:19:18.648576 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:19:21.097003 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:19:23.069778 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:19:23.069828 27193 solver.cpp:397] Test net output #1: loss = 4.60841 (* 1 = 4.60841 loss) +I0408 16:19:25.052259 27193 solver.cpp:218] Iteration 5004 (0.870849 iter/s, 13.7797s/12 iters), loss = 4.46237 +I0408 16:19:25.052299 27193 solver.cpp:237] Train net output #0: loss = 4.46237 (* 1 = 4.46237 loss) +I0408 16:19:25.052307 27193 sgd_solver.cpp:105] Iteration 5004, lr = 1.76084e-07 +I0408 16:19:30.540019 27193 solver.cpp:218] Iteration 5016 (2.18678 iter/s, 5.48753s/12 iters), loss = 4.42043 +I0408 16:19:30.540068 27193 solver.cpp:237] Train net output #0: loss = 4.42043 (* 1 = 4.42043 loss) +I0408 16:19:30.540081 27193 sgd_solver.cpp:105] Iteration 5016, lr = 1.71522e-07 +I0408 16:19:35.789361 27193 solver.cpp:218] Iteration 5028 (2.2861 iter/s, 5.24911s/12 iters), loss = 4.57864 +I0408 16:19:35.789403 27193 solver.cpp:237] Train net output #0: loss = 4.57864 (* 1 = 4.57864 loss) +I0408 16:19:35.789415 27193 sgd_solver.cpp:105] Iteration 5028, lr = 1.67078e-07 +I0408 16:19:40.718614 27193 solver.cpp:218] Iteration 5040 (2.43453 iter/s, 4.92908s/12 iters), loss = 4.55516 +I0408 16:19:40.718658 27193 solver.cpp:237] Train net output #0: loss = 4.55516 (* 1 = 4.55516 loss) +I0408 16:19:40.718670 27193 sgd_solver.cpp:105] Iteration 5040, lr = 1.62749e-07 +I0408 16:19:46.032153 27193 solver.cpp:218] Iteration 5052 (2.25845 iter/s, 5.31337s/12 iters), loss = 4.56848 +I0408 16:19:46.032207 27193 solver.cpp:237] Train net output #0: loss = 4.56848 (* 1 = 4.56848 loss) +I0408 16:19:46.032220 27193 sgd_solver.cpp:105] Iteration 5052, lr = 1.58532e-07 +I0408 16:19:47.975561 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:19:51.129182 27193 solver.cpp:218] Iteration 5064 (2.35439 iter/s, 5.09686s/12 iters), loss = 4.57628 +I0408 16:19:51.129230 27193 solver.cpp:237] Train net output #0: loss = 4.57628 (* 1 = 4.57628 loss) +I0408 16:19:51.129241 27193 sgd_solver.cpp:105] Iteration 5064, lr = 1.54424e-07 +I0408 16:19:56.240782 27193 solver.cpp:218] Iteration 5076 (2.34768 iter/s, 5.11144s/12 iters), loss = 4.47215 +I0408 16:19:56.240826 27193 solver.cpp:237] Train net output #0: loss = 4.47215 (* 1 = 4.47215 loss) +I0408 16:19:56.240837 27193 sgd_solver.cpp:105] Iteration 5076, lr = 1.50423e-07 +I0408 16:20:01.190982 27193 solver.cpp:218] Iteration 5088 (2.42422 iter/s, 4.95004s/12 iters), loss = 4.36396 +I0408 16:20:01.191027 27193 solver.cpp:237] Train net output #0: loss = 4.36396 (* 1 = 4.36396 loss) +I0408 16:20:01.191040 27193 sgd_solver.cpp:105] Iteration 5088, lr = 1.46525e-07 +I0408 16:20:05.857035 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5100.caffemodel +I0408 16:20:09.847388 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5100.solverstate +I0408 16:20:12.178990 27193 solver.cpp:330] Iteration 5100, Testing net (#0) +I0408 16:20:12.179015 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:20:14.626132 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:20:16.645161 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:20:16.645208 27193 solver.cpp:397] Test net output #1: loss = 4.60722 (* 1 = 4.60722 loss) +I0408 16:20:16.736429 27193 solver.cpp:218] Iteration 5100 (0.771949 iter/s, 15.5451s/12 iters), loss = 4.52786 +I0408 16:20:16.736477 27193 solver.cpp:237] Train net output #0: loss = 4.52786 (* 1 = 4.52786 loss) +I0408 16:20:16.736487 27193 sgd_solver.cpp:105] Iteration 5100, lr = 1.42729e-07 +I0408 16:20:21.198047 27193 solver.cpp:218] Iteration 5112 (2.6897 iter/s, 4.46146s/12 iters), loss = 4.55132 +I0408 16:20:21.198190 27193 solver.cpp:237] Train net output #0: loss = 4.55132 (* 1 = 4.55132 loss) +I0408 16:20:21.198204 27193 sgd_solver.cpp:105] Iteration 5112, lr = 1.39031e-07 +I0408 16:20:26.225787 27193 solver.cpp:218] Iteration 5124 (2.38688 iter/s, 5.02748s/12 iters), loss = 4.41973 +I0408 16:20:26.225831 27193 solver.cpp:237] Train net output #0: loss = 4.41973 (* 1 = 4.41973 loss) +I0408 16:20:26.225841 27193 sgd_solver.cpp:105] Iteration 5124, lr = 1.35428e-07 +I0408 16:20:31.321247 27193 solver.cpp:218] Iteration 5136 (2.35511 iter/s, 5.0953s/12 iters), loss = 4.44725 +I0408 16:20:31.321293 27193 solver.cpp:237] Train net output #0: loss = 4.44725 (* 1 = 4.44725 loss) +I0408 16:20:31.321305 27193 sgd_solver.cpp:105] Iteration 5136, lr = 1.31919e-07 +I0408 16:20:36.431542 27193 solver.cpp:218] Iteration 5148 (2.34828 iter/s, 5.11013s/12 iters), loss = 4.48652 +I0408 16:20:36.431587 27193 solver.cpp:237] Train net output #0: loss = 4.48652 (* 1 = 4.48652 loss) +I0408 16:20:36.431599 27193 sgd_solver.cpp:105] Iteration 5148, lr = 1.28501e-07 +I0408 16:20:40.600407 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:20:41.550220 27193 solver.cpp:218] Iteration 5160 (2.34443 iter/s, 5.11851s/12 iters), loss = 4.48576 +I0408 16:20:41.550266 27193 solver.cpp:237] Train net output #0: loss = 4.48576 (* 1 = 4.48576 loss) +I0408 16:20:41.550276 27193 sgd_solver.cpp:105] Iteration 5160, lr = 1.25172e-07 +I0408 16:20:46.724107 27193 solver.cpp:218] Iteration 5172 (2.31941 iter/s, 5.17372s/12 iters), loss = 4.34918 +I0408 16:20:46.724148 27193 solver.cpp:237] Train net output #0: loss = 4.34918 (* 1 = 4.34918 loss) +I0408 16:20:46.724159 27193 sgd_solver.cpp:105] Iteration 5172, lr = 1.21928e-07 +I0408 16:20:51.780359 27193 solver.cpp:218] Iteration 5184 (2.37337 iter/s, 5.05609s/12 iters), loss = 4.59807 +I0408 16:20:51.780452 27193 solver.cpp:237] Train net output #0: loss = 4.59807 (* 1 = 4.59807 loss) +I0408 16:20:51.780464 27193 sgd_solver.cpp:105] Iteration 5184, lr = 1.18769e-07 +I0408 16:20:56.840814 27193 solver.cpp:218] Iteration 5196 (2.37143 iter/s, 5.06024s/12 iters), loss = 4.44108 +I0408 16:20:56.840867 27193 solver.cpp:237] Train net output #0: loss = 4.44108 (* 1 = 4.44108 loss) +I0408 16:20:56.840878 27193 sgd_solver.cpp:105] Iteration 5196, lr = 1.15692e-07 +I0408 16:20:58.909862 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5202.caffemodel +I0408 16:21:01.968586 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5202.solverstate +I0408 16:21:04.296209 27193 solver.cpp:330] Iteration 5202, Testing net (#0) +I0408 16:21:04.296232 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:21:06.662053 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:21:08.719789 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:21:08.719837 27193 solver.cpp:397] Test net output #1: loss = 4.60623 (* 1 = 4.60623 loss) +I0408 16:21:10.636296 27193 solver.cpp:218] Iteration 5208 (0.869873 iter/s, 13.7951s/12 iters), loss = 4.25195 +I0408 16:21:10.636345 27193 solver.cpp:237] Train net output #0: loss = 4.25195 (* 1 = 4.25195 loss) +I0408 16:21:10.636358 27193 sgd_solver.cpp:105] Iteration 5208, lr = 1.12694e-07 +I0408 16:21:15.703466 27193 solver.cpp:218] Iteration 5220 (2.36827 iter/s, 5.067s/12 iters), loss = 4.43078 +I0408 16:21:15.703516 27193 solver.cpp:237] Train net output #0: loss = 4.43078 (* 1 = 4.43078 loss) +I0408 16:21:15.703526 27193 sgd_solver.cpp:105] Iteration 5220, lr = 1.09774e-07 +I0408 16:21:20.927467 27193 solver.cpp:218] Iteration 5232 (2.29717 iter/s, 5.22383s/12 iters), loss = 4.70393 +I0408 16:21:20.927510 27193 solver.cpp:237] Train net output #0: loss = 4.70393 (* 1 = 4.70393 loss) +I0408 16:21:20.927521 27193 sgd_solver.cpp:105] Iteration 5232, lr = 1.0693e-07 +I0408 16:21:26.289345 27193 solver.cpp:218] Iteration 5244 (2.23809 iter/s, 5.3617s/12 iters), loss = 4.39747 +I0408 16:21:26.289484 27193 solver.cpp:237] Train net output #0: loss = 4.39747 (* 1 = 4.39747 loss) +I0408 16:21:26.289497 27193 sgd_solver.cpp:105] Iteration 5244, lr = 1.04159e-07 +I0408 16:21:31.335438 27193 solver.cpp:218] Iteration 5256 (2.3782 iter/s, 5.04583s/12 iters), loss = 4.48928 +I0408 16:21:31.335482 27193 solver.cpp:237] Train net output #0: loss = 4.48928 (* 1 = 4.48928 loss) +I0408 16:21:31.335494 27193 sgd_solver.cpp:105] Iteration 5256, lr = 1.0146e-07 +I0408 16:21:32.665166 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:21:36.410812 27193 solver.cpp:218] Iteration 5268 (2.36444 iter/s, 5.0752s/12 iters), loss = 4.34401 +I0408 16:21:36.410857 27193 solver.cpp:237] Train net output #0: loss = 4.34401 (* 1 = 4.34401 loss) +I0408 16:21:36.410869 27193 sgd_solver.cpp:105] Iteration 5268, lr = 9.88315e-08 +I0408 16:21:41.482151 27193 solver.cpp:218] Iteration 5280 (2.36632 iter/s, 5.07117s/12 iters), loss = 4.49195 +I0408 16:21:41.482195 27193 solver.cpp:237] Train net output #0: loss = 4.49195 (* 1 = 4.49195 loss) +I0408 16:21:41.482206 27193 sgd_solver.cpp:105] Iteration 5280, lr = 9.62708e-08 +I0408 16:21:46.517128 27193 solver.cpp:218] Iteration 5292 (2.38341 iter/s, 5.03481s/12 iters), loss = 4.59702 +I0408 16:21:46.517174 27193 solver.cpp:237] Train net output #0: loss = 4.59702 (* 1 = 4.59702 loss) +I0408 16:21:46.517185 27193 sgd_solver.cpp:105] Iteration 5292, lr = 9.37763e-08 +I0408 16:21:51.100358 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5304.caffemodel +I0408 16:21:54.198627 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5304.solverstate +I0408 16:21:56.537238 27193 solver.cpp:330] Iteration 5304, Testing net (#0) +I0408 16:21:56.537317 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:21:58.910456 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:22:01.022094 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:22:01.022141 27193 solver.cpp:397] Test net output #1: loss = 4.60792 (* 1 = 4.60792 loss) +I0408 16:22:01.113423 27193 solver.cpp:218] Iteration 5304 (0.822148 iter/s, 14.5959s/12 iters), loss = 4.40913 +I0408 16:22:01.113473 27193 solver.cpp:237] Train net output #0: loss = 4.40913 (* 1 = 4.40913 loss) +I0408 16:22:01.113484 27193 sgd_solver.cpp:105] Iteration 5304, lr = 9.13465e-08 +I0408 16:22:05.704254 27193 solver.cpp:218] Iteration 5316 (2.614 iter/s, 4.59067s/12 iters), loss = 4.40597 +I0408 16:22:05.704298 27193 solver.cpp:237] Train net output #0: loss = 4.40597 (* 1 = 4.40597 loss) +I0408 16:22:05.704310 27193 sgd_solver.cpp:105] Iteration 5316, lr = 8.89797e-08 +I0408 16:22:11.170578 27193 solver.cpp:218] Iteration 5328 (2.19533 iter/s, 5.46614s/12 iters), loss = 4.47927 +I0408 16:22:11.170625 27193 solver.cpp:237] Train net output #0: loss = 4.47927 (* 1 = 4.47927 loss) +I0408 16:22:11.170637 27193 sgd_solver.cpp:105] Iteration 5328, lr = 8.66742e-08 +I0408 16:22:16.531426 27193 solver.cpp:218] Iteration 5340 (2.23853 iter/s, 5.36066s/12 iters), loss = 4.24561 +I0408 16:22:16.531478 27193 solver.cpp:237] Train net output #0: loss = 4.24561 (* 1 = 4.24561 loss) +I0408 16:22:16.531491 27193 sgd_solver.cpp:105] Iteration 5340, lr = 8.44284e-08 +I0408 16:22:21.628628 27193 solver.cpp:218] Iteration 5352 (2.35432 iter/s, 5.09702s/12 iters), loss = 4.46172 +I0408 16:22:21.628676 27193 solver.cpp:237] Train net output #0: loss = 4.46172 (* 1 = 4.46172 loss) +I0408 16:22:21.628687 27193 sgd_solver.cpp:105] Iteration 5352, lr = 8.22408e-08 +I0408 16:22:25.074231 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:22:26.685914 27193 solver.cpp:218] Iteration 5364 (2.3729 iter/s, 5.05711s/12 iters), loss = 4.53122 +I0408 16:22:26.686062 27193 solver.cpp:237] Train net output #0: loss = 4.53122 (* 1 = 4.53122 loss) +I0408 16:22:26.686076 27193 sgd_solver.cpp:105] Iteration 5364, lr = 8.01099e-08 +I0408 16:22:31.724510 27193 solver.cpp:218] Iteration 5376 (2.38175 iter/s, 5.03832s/12 iters), loss = 4.53624 +I0408 16:22:31.724558 27193 solver.cpp:237] Train net output #0: loss = 4.53624 (* 1 = 4.53624 loss) +I0408 16:22:31.724570 27193 sgd_solver.cpp:105] Iteration 5376, lr = 7.80342e-08 +I0408 16:22:36.942257 27193 solver.cpp:218] Iteration 5388 (2.29992 iter/s, 5.21757s/12 iters), loss = 4.46804 +I0408 16:22:36.942302 27193 solver.cpp:237] Train net output #0: loss = 4.46804 (* 1 = 4.46804 loss) +I0408 16:22:36.942314 27193 sgd_solver.cpp:105] Iteration 5388, lr = 7.60123e-08 +I0408 16:22:42.419517 27193 solver.cpp:218] Iteration 5400 (2.19095 iter/s, 5.47708s/12 iters), loss = 4.42272 +I0408 16:22:42.419564 27193 solver.cpp:237] Train net output #0: loss = 4.42272 (* 1 = 4.42272 loss) +I0408 16:22:42.419576 27193 sgd_solver.cpp:105] Iteration 5400, lr = 7.40428e-08 +I0408 16:22:44.511622 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5406.caffemodel +I0408 16:22:48.428463 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5406.solverstate +I0408 16:22:50.763633 27193 solver.cpp:330] Iteration 5406, Testing net (#0) +I0408 16:22:50.763657 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:22:53.101043 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:22:55.241369 27193 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0408 16:22:55.241416 27193 solver.cpp:397] Test net output #1: loss = 4.60078 (* 1 = 4.60078 loss) +I0408 16:22:57.056625 27193 solver.cpp:218] Iteration 5412 (0.819857 iter/s, 14.6367s/12 iters), loss = 4.52523 +I0408 16:22:57.056728 27193 solver.cpp:237] Train net output #0: loss = 4.52523 (* 1 = 4.52523 loss) +I0408 16:22:57.056740 27193 sgd_solver.cpp:105] Iteration 5412, lr = 7.21243e-08 +I0408 16:23:01.989500 27193 solver.cpp:218] Iteration 5424 (2.43277 iter/s, 4.93265s/12 iters), loss = 4.46879 +I0408 16:23:01.989552 27193 solver.cpp:237] Train net output #0: loss = 4.46879 (* 1 = 4.46879 loss) +I0408 16:23:01.989563 27193 sgd_solver.cpp:105] Iteration 5424, lr = 7.02556e-08 +I0408 16:23:06.937275 27193 solver.cpp:218] Iteration 5436 (2.42542 iter/s, 4.9476s/12 iters), loss = 4.56521 +I0408 16:23:06.937310 27193 solver.cpp:237] Train net output #0: loss = 4.56521 (* 1 = 4.56521 loss) +I0408 16:23:06.937319 27193 sgd_solver.cpp:105] Iteration 5436, lr = 6.84352e-08 +I0408 16:23:12.315551 27193 solver.cpp:218] Iteration 5448 (2.23127 iter/s, 5.3781s/12 iters), loss = 4.56021 +I0408 16:23:12.315591 27193 solver.cpp:237] Train net output #0: loss = 4.56021 (* 1 = 4.56021 loss) +I0408 16:23:12.315601 27193 sgd_solver.cpp:105] Iteration 5448, lr = 6.6662e-08 +I0408 16:23:17.408427 27193 solver.cpp:218] Iteration 5460 (2.35631 iter/s, 5.0927s/12 iters), loss = 4.56973 +I0408 16:23:17.408473 27193 solver.cpp:237] Train net output #0: loss = 4.56973 (* 1 = 4.56973 loss) +I0408 16:23:17.408484 27193 sgd_solver.cpp:105] Iteration 5460, lr = 6.49348e-08 +I0408 16:23:17.969339 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:23:22.473979 27193 solver.cpp:218] Iteration 5472 (2.36903 iter/s, 5.06537s/12 iters), loss = 4.51807 +I0408 16:23:22.474022 27193 solver.cpp:237] Train net output #0: loss = 4.51807 (* 1 = 4.51807 loss) +I0408 16:23:22.474033 27193 sgd_solver.cpp:105] Iteration 5472, lr = 6.32523e-08 +I0408 16:23:27.718153 27193 solver.cpp:218] Iteration 5484 (2.28833 iter/s, 5.244s/12 iters), loss = 4.56095 +I0408 16:23:27.718245 27193 solver.cpp:237] Train net output #0: loss = 4.56095 (* 1 = 4.56095 loss) +I0408 16:23:27.718253 27193 sgd_solver.cpp:105] Iteration 5484, lr = 6.16134e-08 +I0408 16:23:32.836633 27193 solver.cpp:218] Iteration 5496 (2.34455 iter/s, 5.11826s/12 iters), loss = 4.34496 +I0408 16:23:32.836673 27193 solver.cpp:237] Train net output #0: loss = 4.34496 (* 1 = 4.34496 loss) +I0408 16:23:32.836681 27193 sgd_solver.cpp:105] Iteration 5496, lr = 6.00169e-08 +I0408 16:23:37.564496 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5508.caffemodel +I0408 16:23:40.617436 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5508.solverstate +I0408 16:23:42.953701 27193 solver.cpp:330] Iteration 5508, Testing net (#0) +I0408 16:23:42.953728 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:23:45.213331 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:23:47.404983 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:23:47.405031 27193 solver.cpp:397] Test net output #1: loss = 4.61221 (* 1 = 4.61221 loss) +I0408 16:23:47.496408 27193 solver.cpp:218] Iteration 5508 (0.818589 iter/s, 14.6594s/12 iters), loss = 4.38233 +I0408 16:23:47.496459 27193 solver.cpp:237] Train net output #0: loss = 4.38233 (* 1 = 4.38233 loss) +I0408 16:23:47.496470 27193 sgd_solver.cpp:105] Iteration 5508, lr = 5.84619e-08 +I0408 16:23:52.097378 27193 solver.cpp:218] Iteration 5520 (2.60824 iter/s, 4.6008s/12 iters), loss = 4.40892 +I0408 16:23:52.097419 27193 solver.cpp:237] Train net output #0: loss = 4.40892 (* 1 = 4.40892 loss) +I0408 16:23:52.097427 27193 sgd_solver.cpp:105] Iteration 5520, lr = 5.69471e-08 +I0408 16:23:54.626727 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:23:57.220754 27193 solver.cpp:218] Iteration 5532 (2.34229 iter/s, 5.1232s/12 iters), loss = 4.55713 +I0408 16:23:57.220798 27193 solver.cpp:237] Train net output #0: loss = 4.55713 (* 1 = 4.55713 loss) +I0408 16:23:57.220810 27193 sgd_solver.cpp:105] Iteration 5532, lr = 5.54715e-08 +I0408 16:24:02.300246 27193 solver.cpp:218] Iteration 5544 (2.36253 iter/s, 5.0793s/12 iters), loss = 4.35935 +I0408 16:24:02.300390 27193 solver.cpp:237] Train net output #0: loss = 4.35935 (* 1 = 4.35935 loss) +I0408 16:24:02.300413 27193 sgd_solver.cpp:105] Iteration 5544, lr = 5.40343e-08 +I0408 16:24:07.373678 27193 solver.cpp:218] Iteration 5556 (2.36538 iter/s, 5.07317s/12 iters), loss = 4.51421 +I0408 16:24:07.373723 27193 solver.cpp:237] Train net output #0: loss = 4.51421 (* 1 = 4.51421 loss) +I0408 16:24:07.373734 27193 sgd_solver.cpp:105] Iteration 5556, lr = 5.26342e-08 +I0408 16:24:10.223970 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:24:12.736359 27193 solver.cpp:218] Iteration 5568 (2.23776 iter/s, 5.36249s/12 iters), loss = 4.41587 +I0408 16:24:12.736402 27193 solver.cpp:237] Train net output #0: loss = 4.41587 (* 1 = 4.41587 loss) +I0408 16:24:12.736413 27193 sgd_solver.cpp:105] Iteration 5568, lr = 5.12704e-08 +I0408 16:24:18.266356 27193 solver.cpp:218] Iteration 5580 (2.17006 iter/s, 5.52981s/12 iters), loss = 4.30533 +I0408 16:24:18.266402 27193 solver.cpp:237] Train net output #0: loss = 4.30533 (* 1 = 4.30533 loss) +I0408 16:24:18.266412 27193 sgd_solver.cpp:105] Iteration 5580, lr = 4.9942e-08 +I0408 16:24:23.339452 27193 solver.cpp:218] Iteration 5592 (2.3655 iter/s, 5.07291s/12 iters), loss = 4.49513 +I0408 16:24:23.339499 27193 solver.cpp:237] Train net output #0: loss = 4.49513 (* 1 = 4.49513 loss) +I0408 16:24:23.339511 27193 sgd_solver.cpp:105] Iteration 5592, lr = 4.8648e-08 +I0408 16:24:28.448187 27193 solver.cpp:218] Iteration 5604 (2.349 iter/s, 5.10855s/12 iters), loss = 4.58671 +I0408 16:24:28.448227 27193 solver.cpp:237] Train net output #0: loss = 4.58671 (* 1 = 4.58671 loss) +I0408 16:24:28.448237 27193 sgd_solver.cpp:105] Iteration 5604, lr = 4.73875e-08 +I0408 16:24:30.506943 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5610.caffemodel +I0408 16:24:33.567351 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5610.solverstate +I0408 16:24:35.903726 27193 solver.cpp:330] Iteration 5610, Testing net (#0) +I0408 16:24:35.903750 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:24:38.161576 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:24:40.384606 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:24:40.384657 27193 solver.cpp:397] Test net output #1: loss = 4.60431 (* 1 = 4.60431 loss) +I0408 16:24:42.207139 27193 solver.cpp:218] Iteration 5616 (0.872185 iter/s, 13.7586s/12 iters), loss = 4.57536 +I0408 16:24:42.207187 27193 solver.cpp:237] Train net output #0: loss = 4.57536 (* 1 = 4.57536 loss) +I0408 16:24:42.207198 27193 sgd_solver.cpp:105] Iteration 5616, lr = 4.61596e-08 +I0408 16:24:47.549568 27193 solver.cpp:218] Iteration 5628 (2.24625 iter/s, 5.34224s/12 iters), loss = 4.40186 +I0408 16:24:47.549612 27193 solver.cpp:237] Train net output #0: loss = 4.40186 (* 1 = 4.40186 loss) +I0408 16:24:47.549624 27193 sgd_solver.cpp:105] Iteration 5628, lr = 4.49636e-08 +I0408 16:24:52.604576 27193 solver.cpp:218] Iteration 5640 (2.37397 iter/s, 5.05483s/12 iters), loss = 4.58526 +I0408 16:24:52.604609 27193 solver.cpp:237] Train net output #0: loss = 4.58526 (* 1 = 4.58526 loss) +I0408 16:24:52.604619 27193 sgd_solver.cpp:105] Iteration 5640, lr = 4.37986e-08 +I0408 16:24:57.705153 27193 solver.cpp:218] Iteration 5652 (2.35276 iter/s, 5.1004s/12 iters), loss = 4.52253 +I0408 16:24:57.705190 27193 solver.cpp:237] Train net output #0: loss = 4.52253 (* 1 = 4.52253 loss) +I0408 16:24:57.705199 27193 sgd_solver.cpp:105] Iteration 5652, lr = 4.26637e-08 +I0408 16:25:02.610522 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:25:02.782721 27193 solver.cpp:218] Iteration 5664 (2.36342 iter/s, 5.07739s/12 iters), loss = 4.3376 +I0408 16:25:02.782768 27193 solver.cpp:237] Train net output #0: loss = 4.3376 (* 1 = 4.3376 loss) +I0408 16:25:02.782778 27193 sgd_solver.cpp:105] Iteration 5664, lr = 4.15583e-08 +I0408 16:25:07.856485 27193 solver.cpp:218] Iteration 5676 (2.3652 iter/s, 5.07358s/12 iters), loss = 4.54778 +I0408 16:25:07.856591 27193 solver.cpp:237] Train net output #0: loss = 4.54778 (* 1 = 4.54778 loss) +I0408 16:25:07.856603 27193 sgd_solver.cpp:105] Iteration 5676, lr = 4.04815e-08 +I0408 16:25:12.960952 27193 solver.cpp:218] Iteration 5688 (2.351 iter/s, 5.10422s/12 iters), loss = 4.2793 +I0408 16:25:12.960996 27193 solver.cpp:237] Train net output #0: loss = 4.2793 (* 1 = 4.2793 loss) +I0408 16:25:12.961009 27193 sgd_solver.cpp:105] Iteration 5688, lr = 3.94326e-08 +I0408 16:25:18.323892 27193 solver.cpp:218] Iteration 5700 (2.23766 iter/s, 5.36275s/12 iters), loss = 4.3818 +I0408 16:25:18.323930 27193 solver.cpp:237] Train net output #0: loss = 4.3818 (* 1 = 4.3818 loss) +I0408 16:25:18.323940 27193 sgd_solver.cpp:105] Iteration 5700, lr = 3.84109e-08 +I0408 16:25:23.293401 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5712.caffemodel +I0408 16:25:26.345813 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5712.solverstate +I0408 16:25:29.062108 27193 solver.cpp:330] Iteration 5712, Testing net (#0) +I0408 16:25:29.062134 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:25:31.348399 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:25:33.627910 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:25:33.627959 27193 solver.cpp:397] Test net output #1: loss = 4.60959 (* 1 = 4.60959 loss) +I0408 16:25:33.719231 27193 solver.cpp:218] Iteration 5712 (0.779479 iter/s, 15.3949s/12 iters), loss = 4.59174 +I0408 16:25:33.719282 27193 solver.cpp:237] Train net output #0: loss = 4.59174 (* 1 = 4.59174 loss) +I0408 16:25:33.719295 27193 sgd_solver.cpp:105] Iteration 5712, lr = 3.74156e-08 +I0408 16:25:37.948696 27193 solver.cpp:218] Iteration 5724 (2.83736 iter/s, 4.22929s/12 iters), loss = 4.40654 +I0408 16:25:37.948808 27193 solver.cpp:237] Train net output #0: loss = 4.40654 (* 1 = 4.40654 loss) +I0408 16:25:37.948822 27193 sgd_solver.cpp:105] Iteration 5724, lr = 3.64462e-08 +I0408 16:25:43.044870 27193 solver.cpp:218] Iteration 5736 (2.35482 iter/s, 5.09593s/12 iters), loss = 4.62906 +I0408 16:25:43.044909 27193 solver.cpp:237] Train net output #0: loss = 4.62906 (* 1 = 4.62906 loss) +I0408 16:25:43.044919 27193 sgd_solver.cpp:105] Iteration 5736, lr = 3.55018e-08 +I0408 16:25:48.117257 27193 solver.cpp:218] Iteration 5748 (2.36584 iter/s, 5.0722s/12 iters), loss = 4.49383 +I0408 16:25:48.117316 27193 solver.cpp:237] Train net output #0: loss = 4.49383 (* 1 = 4.49383 loss) +I0408 16:25:48.117331 27193 sgd_solver.cpp:105] Iteration 5748, lr = 3.4582e-08 +I0408 16:25:53.192077 27193 solver.cpp:218] Iteration 5760 (2.36471 iter/s, 5.07462s/12 iters), loss = 4.5769 +I0408 16:25:53.192123 27193 solver.cpp:237] Train net output #0: loss = 4.5769 (* 1 = 4.5769 loss) +I0408 16:25:53.192135 27193 sgd_solver.cpp:105] Iteration 5760, lr = 3.36859e-08 +I0408 16:25:55.152909 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:25:58.108672 27193 solver.cpp:218] Iteration 5772 (2.44081 iter/s, 4.91641s/12 iters), loss = 4.53723 +I0408 16:25:58.108731 27193 solver.cpp:237] Train net output #0: loss = 4.53723 (* 1 = 4.53723 loss) +I0408 16:25:58.108747 27193 sgd_solver.cpp:105] Iteration 5772, lr = 3.28131e-08 +I0408 16:26:03.143020 27193 solver.cpp:218] Iteration 5784 (2.38372 iter/s, 5.03415s/12 iters), loss = 4.51592 +I0408 16:26:03.143064 27193 solver.cpp:237] Train net output #0: loss = 4.51592 (* 1 = 4.51592 loss) +I0408 16:26:03.143075 27193 sgd_solver.cpp:105] Iteration 5784, lr = 3.19629e-08 +I0408 16:26:08.253039 27193 solver.cpp:218] Iteration 5796 (2.34842 iter/s, 5.10983s/12 iters), loss = 4.28165 +I0408 16:26:08.253161 27193 solver.cpp:237] Train net output #0: loss = 4.28165 (* 1 = 4.28165 loss) +I0408 16:26:08.253175 27193 sgd_solver.cpp:105] Iteration 5796, lr = 3.11347e-08 +I0408 16:26:13.342013 27193 solver.cpp:218] Iteration 5808 (2.35816 iter/s, 5.08871s/12 iters), loss = 4.50119 +I0408 16:26:13.342072 27193 solver.cpp:237] Train net output #0: loss = 4.50119 (* 1 = 4.50119 loss) +I0408 16:26:13.342088 27193 sgd_solver.cpp:105] Iteration 5808, lr = 3.0328e-08 +I0408 16:26:15.415208 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5814.caffemodel +I0408 16:26:18.516983 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5814.solverstate +I0408 16:26:21.841890 27193 solver.cpp:330] Iteration 5814, Testing net (#0) +I0408 16:26:21.841917 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:26:24.025275 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:26:26.318379 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:26:26.318426 27193 solver.cpp:397] Test net output #1: loss = 4.60645 (* 1 = 4.60645 loss) +I0408 16:26:28.295828 27193 solver.cpp:218] Iteration 5820 (0.802495 iter/s, 14.9534s/12 iters), loss = 4.54479 +I0408 16:26:28.295881 27193 solver.cpp:237] Train net output #0: loss = 4.54479 (* 1 = 4.54479 loss) +I0408 16:26:28.295893 27193 sgd_solver.cpp:105] Iteration 5820, lr = 2.95422e-08 +I0408 16:26:33.367738 27193 solver.cpp:218] Iteration 5832 (2.36607 iter/s, 5.07171s/12 iters), loss = 4.41248 +I0408 16:26:33.367789 27193 solver.cpp:237] Train net output #0: loss = 4.41248 (* 1 = 4.41248 loss) +I0408 16:26:33.367801 27193 sgd_solver.cpp:105] Iteration 5832, lr = 2.87767e-08 +I0408 16:26:38.467913 27193 solver.cpp:218] Iteration 5844 (2.35296 iter/s, 5.09997s/12 iters), loss = 4.48911 +I0408 16:26:38.468050 27193 solver.cpp:237] Train net output #0: loss = 4.48911 (* 1 = 4.48911 loss) +I0408 16:26:38.468061 27193 sgd_solver.cpp:105] Iteration 5844, lr = 2.80311e-08 +I0408 16:26:43.562219 27193 solver.cpp:218] Iteration 5856 (2.3557 iter/s, 5.09403s/12 iters), loss = 4.4845 +I0408 16:26:43.562266 27193 solver.cpp:237] Train net output #0: loss = 4.4845 (* 1 = 4.4845 loss) +I0408 16:26:43.562278 27193 sgd_solver.cpp:105] Iteration 5856, lr = 2.73048e-08 +I0408 16:26:47.762197 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:26:48.589120 27193 solver.cpp:218] Iteration 5868 (2.38725 iter/s, 5.02671s/12 iters), loss = 4.55619 +I0408 16:26:48.589166 27193 solver.cpp:237] Train net output #0: loss = 4.55619 (* 1 = 4.55619 loss) +I0408 16:26:48.589179 27193 sgd_solver.cpp:105] Iteration 5868, lr = 2.65973e-08 +I0408 16:26:53.802035 27193 solver.cpp:218] Iteration 5880 (2.30206 iter/s, 5.21272s/12 iters), loss = 4.5046 +I0408 16:26:53.802079 27193 solver.cpp:237] Train net output #0: loss = 4.5046 (* 1 = 4.5046 loss) +I0408 16:26:53.802091 27193 sgd_solver.cpp:105] Iteration 5880, lr = 2.59082e-08 +I0408 16:26:58.910082 27193 solver.cpp:218] Iteration 5892 (2.34932 iter/s, 5.10786s/12 iters), loss = 4.55107 +I0408 16:26:58.910128 27193 solver.cpp:237] Train net output #0: loss = 4.55107 (* 1 = 4.55107 loss) +I0408 16:26:58.910138 27193 sgd_solver.cpp:105] Iteration 5892, lr = 2.52369e-08 +I0408 16:27:03.971207 27193 solver.cpp:218] Iteration 5904 (2.3711 iter/s, 5.06094s/12 iters), loss = 4.48669 +I0408 16:27:03.971254 27193 solver.cpp:237] Train net output #0: loss = 4.48669 (* 1 = 4.48669 loss) +I0408 16:27:03.971266 27193 sgd_solver.cpp:105] Iteration 5904, lr = 2.4583e-08 +I0408 16:27:08.555034 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_5916.caffemodel +I0408 16:27:12.260505 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_5916.solverstate +I0408 16:27:15.557915 27193 solver.cpp:330] Iteration 5916, Testing net (#0) +I0408 16:27:15.557943 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:27:17.683869 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:27:20.011857 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:27:20.011901 27193 solver.cpp:397] Test net output #1: loss = 4.60365 (* 1 = 4.60365 loss) +I0408 16:27:20.103457 27193 solver.cpp:218] Iteration 5916 (0.743874 iter/s, 16.1318s/12 iters), loss = 4.29791 +I0408 16:27:20.103503 27193 solver.cpp:237] Train net output #0: loss = 4.29791 (* 1 = 4.29791 loss) +I0408 16:27:20.103513 27193 sgd_solver.cpp:105] Iteration 5916, lr = 2.3946e-08 +I0408 16:27:24.633662 27193 solver.cpp:218] Iteration 5928 (2.64899 iter/s, 4.53003s/12 iters), loss = 4.37581 +I0408 16:27:24.633709 27193 solver.cpp:237] Train net output #0: loss = 4.37581 (* 1 = 4.37581 loss) +I0408 16:27:24.633720 27193 sgd_solver.cpp:105] Iteration 5928, lr = 2.33256e-08 +I0408 16:27:29.730214 27193 solver.cpp:218] Iteration 5940 (2.35462 iter/s, 5.09636s/12 iters), loss = 4.68569 +I0408 16:27:29.730254 27193 solver.cpp:237] Train net output #0: loss = 4.68569 (* 1 = 4.68569 loss) +I0408 16:27:29.730264 27193 sgd_solver.cpp:105] Iteration 5940, lr = 2.27212e-08 +I0408 16:27:34.996927 27193 solver.cpp:218] Iteration 5952 (2.27855 iter/s, 5.26651s/12 iters), loss = 4.33319 +I0408 16:27:34.996975 27193 solver.cpp:237] Train net output #0: loss = 4.33319 (* 1 = 4.33319 loss) +I0408 16:27:34.996986 27193 sgd_solver.cpp:105] Iteration 5952, lr = 2.21325e-08 +I0408 16:27:40.323433 27193 solver.cpp:218] Iteration 5964 (2.25297 iter/s, 5.3263s/12 iters), loss = 4.38939 +I0408 16:27:40.323559 27193 solver.cpp:237] Train net output #0: loss = 4.38939 (* 1 = 4.38939 loss) +I0408 16:27:40.323577 27193 sgd_solver.cpp:105] Iteration 5964, lr = 2.1559e-08 +I0408 16:27:41.665269 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:27:45.431747 27193 solver.cpp:218] Iteration 5976 (2.34924 iter/s, 5.10804s/12 iters), loss = 4.27155 +I0408 16:27:45.431797 27193 solver.cpp:237] Train net output #0: loss = 4.27155 (* 1 = 4.27155 loss) +I0408 16:27:45.431809 27193 sgd_solver.cpp:105] Iteration 5976, lr = 2.10004e-08 +I0408 16:27:50.662024 27193 solver.cpp:218] Iteration 5988 (2.29442 iter/s, 5.23008s/12 iters), loss = 4.53687 +I0408 16:27:50.662076 27193 solver.cpp:237] Train net output #0: loss = 4.53687 (* 1 = 4.53687 loss) +I0408 16:27:50.662086 27193 sgd_solver.cpp:105] Iteration 5988, lr = 2.04563e-08 +I0408 16:27:56.160012 27193 solver.cpp:218] Iteration 6000 (2.1827 iter/s, 5.49778s/12 iters), loss = 4.62165 +I0408 16:27:56.160046 27193 solver.cpp:237] Train net output #0: loss = 4.62165 (* 1 = 4.62165 loss) +I0408 16:27:56.160053 27193 sgd_solver.cpp:105] Iteration 6000, lr = 1.99262e-08 +I0408 16:28:01.207567 27193 solver.cpp:218] Iteration 6012 (2.37748 iter/s, 5.04737s/12 iters), loss = 4.35141 +I0408 16:28:01.207615 27193 solver.cpp:237] Train net output #0: loss = 4.35141 (* 1 = 4.35141 loss) +I0408 16:28:01.207628 27193 sgd_solver.cpp:105] Iteration 6012, lr = 1.94099e-08 +I0408 16:28:03.262020 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6018.caffemodel +I0408 16:28:06.305600 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6018.solverstate +I0408 16:28:08.663228 27193 solver.cpp:330] Iteration 6018, Testing net (#0) +I0408 16:28:08.663252 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:28:10.715317 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:28:13.086661 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:28:13.086709 27193 solver.cpp:397] Test net output #1: loss = 4.60333 (* 1 = 4.60333 loss) +I0408 16:28:14.863242 27193 solver.cpp:218] Iteration 6024 (0.878783 iter/s, 13.6553s/12 iters), loss = 4.54595 +I0408 16:28:14.863283 27193 solver.cpp:237] Train net output #0: loss = 4.54595 (* 1 = 4.54595 loss) +I0408 16:28:14.863294 27193 sgd_solver.cpp:105] Iteration 6024, lr = 1.8907e-08 +I0408 16:28:20.149415 27193 solver.cpp:218] Iteration 6036 (2.27016 iter/s, 5.28597s/12 iters), loss = 4.46021 +I0408 16:28:20.149471 27193 solver.cpp:237] Train net output #0: loss = 4.46021 (* 1 = 4.46021 loss) +I0408 16:28:20.149484 27193 sgd_solver.cpp:105] Iteration 6036, lr = 1.84171e-08 +I0408 16:28:25.362740 27193 solver.cpp:218] Iteration 6048 (2.30188 iter/s, 5.21312s/12 iters), loss = 4.43295 +I0408 16:28:25.362783 27193 solver.cpp:237] Train net output #0: loss = 4.43295 (* 1 = 4.43295 loss) +I0408 16:28:25.362794 27193 sgd_solver.cpp:105] Iteration 6048, lr = 1.79399e-08 +I0408 16:28:30.472935 27193 solver.cpp:218] Iteration 6060 (2.34834 iter/s, 5.11s/12 iters), loss = 4.51225 +I0408 16:28:30.472980 27193 solver.cpp:237] Train net output #0: loss = 4.51225 (* 1 = 4.51225 loss) +I0408 16:28:30.472991 27193 sgd_solver.cpp:105] Iteration 6060, lr = 1.74751e-08 +I0408 16:28:33.984760 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:28:35.589979 27193 solver.cpp:218] Iteration 6072 (2.34519 iter/s, 5.11685s/12 iters), loss = 4.6064 +I0408 16:28:35.590019 27193 solver.cpp:237] Train net output #0: loss = 4.6064 (* 1 = 4.6064 loss) +I0408 16:28:35.590029 27193 sgd_solver.cpp:105] Iteration 6072, lr = 1.70223e-08 +I0408 16:28:40.731047 27193 solver.cpp:218] Iteration 6084 (2.33423 iter/s, 5.14087s/12 iters), loss = 4.56349 +I0408 16:28:40.731164 27193 solver.cpp:237] Train net output #0: loss = 4.56349 (* 1 = 4.56349 loss) +I0408 16:28:40.731178 27193 sgd_solver.cpp:105] Iteration 6084, lr = 1.65813e-08 +I0408 16:28:45.870893 27193 solver.cpp:218] Iteration 6096 (2.33482 iter/s, 5.13958s/12 iters), loss = 4.36403 +I0408 16:28:45.870939 27193 solver.cpp:237] Train net output #0: loss = 4.36403 (* 1 = 4.36403 loss) +I0408 16:28:45.870950 27193 sgd_solver.cpp:105] Iteration 6096, lr = 1.61516e-08 +I0408 16:28:50.962499 27193 solver.cpp:218] Iteration 6108 (2.35691 iter/s, 5.09141s/12 iters), loss = 4.44593 +I0408 16:28:50.962544 27193 solver.cpp:237] Train net output #0: loss = 4.44593 (* 1 = 4.44593 loss) +I0408 16:28:50.962555 27193 sgd_solver.cpp:105] Iteration 6108, lr = 1.57331e-08 +I0408 16:28:55.642967 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6120.caffemodel +I0408 16:28:58.684162 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6120.solverstate +I0408 16:29:01.021245 27193 solver.cpp:330] Iteration 6120, Testing net (#0) +I0408 16:29:01.021268 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:29:03.077419 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:29:05.482120 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:29:05.482167 27193 solver.cpp:397] Test net output #1: loss = 4.60228 (* 1 = 4.60228 loss) +I0408 16:29:05.573463 27193 solver.cpp:218] Iteration 6120 (0.821327 iter/s, 14.6105s/12 iters), loss = 4.63966 +I0408 16:29:05.573514 27193 solver.cpp:237] Train net output #0: loss = 4.63966 (* 1 = 4.63966 loss) +I0408 16:29:05.573526 27193 sgd_solver.cpp:105] Iteration 6120, lr = 1.53255e-08 +I0408 16:29:09.869110 27193 solver.cpp:218] Iteration 6132 (2.79364 iter/s, 4.29547s/12 iters), loss = 4.47251 +I0408 16:29:09.869156 27193 solver.cpp:237] Train net output #0: loss = 4.47251 (* 1 = 4.47251 loss) +I0408 16:29:09.869168 27193 sgd_solver.cpp:105] Iteration 6132, lr = 1.49284e-08 +I0408 16:29:14.972100 27193 solver.cpp:218] Iteration 6144 (2.35165 iter/s, 5.1028s/12 iters), loss = 4.65239 +I0408 16:29:14.972229 27193 solver.cpp:237] Train net output #0: loss = 4.65239 (* 1 = 4.65239 loss) +I0408 16:29:14.972239 27193 sgd_solver.cpp:105] Iteration 6144, lr = 1.45416e-08 +I0408 16:29:20.112799 27193 solver.cpp:218] Iteration 6156 (2.33444 iter/s, 5.14042s/12 iters), loss = 4.602 +I0408 16:29:20.112844 27193 solver.cpp:237] Train net output #0: loss = 4.602 (* 1 = 4.602 loss) +I0408 16:29:20.112855 27193 sgd_solver.cpp:105] Iteration 6156, lr = 1.41648e-08 +I0408 16:29:25.240741 27193 solver.cpp:218] Iteration 6168 (2.34021 iter/s, 5.12774s/12 iters), loss = 4.66594 +I0408 16:29:25.240787 27193 solver.cpp:237] Train net output #0: loss = 4.66594 (* 1 = 4.66594 loss) +I0408 16:29:25.240798 27193 sgd_solver.cpp:105] Iteration 6168, lr = 1.37978e-08 +I0408 16:29:25.862360 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:29:30.329274 27193 solver.cpp:218] Iteration 6180 (2.35833 iter/s, 5.08834s/12 iters), loss = 4.56264 +I0408 16:29:30.329319 27193 solver.cpp:237] Train net output #0: loss = 4.56264 (* 1 = 4.56264 loss) +I0408 16:29:30.329331 27193 sgd_solver.cpp:105] Iteration 6180, lr = 1.34403e-08 +I0408 16:29:35.445470 27193 solver.cpp:218] Iteration 6192 (2.34558 iter/s, 5.116s/12 iters), loss = 4.6396 +I0408 16:29:35.445511 27193 solver.cpp:237] Train net output #0: loss = 4.6396 (* 1 = 4.6396 loss) +I0408 16:29:35.445521 27193 sgd_solver.cpp:105] Iteration 6192, lr = 1.3092e-08 +I0408 16:29:40.590138 27193 solver.cpp:218] Iteration 6204 (2.3326 iter/s, 5.14448s/12 iters), loss = 4.38791 +I0408 16:29:40.590183 27193 solver.cpp:237] Train net output #0: loss = 4.38791 (* 1 = 4.38791 loss) +I0408 16:29:40.590193 27193 sgd_solver.cpp:105] Iteration 6204, lr = 1.27528e-08 +I0408 16:29:45.724797 27193 solver.cpp:218] Iteration 6216 (2.33715 iter/s, 5.13446s/12 iters), loss = 4.30752 +I0408 16:29:45.724920 27193 solver.cpp:237] Train net output #0: loss = 4.30752 (* 1 = 4.30752 loss) +I0408 16:29:45.724932 27193 sgd_solver.cpp:105] Iteration 6216, lr = 1.24224e-08 +I0408 16:29:47.823065 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6222.caffemodel +I0408 16:29:50.859999 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6222.solverstate +I0408 16:29:53.187700 27193 solver.cpp:330] Iteration 6222, Testing net (#0) +I0408 16:29:53.187724 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:29:55.187355 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:29:56.463342 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:29:57.637084 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:29:57.637130 27193 solver.cpp:397] Test net output #1: loss = 4.60752 (* 1 = 4.60752 loss) +I0408 16:29:59.640286 27193 solver.cpp:218] Iteration 6228 (0.86238 iter/s, 13.915s/12 iters), loss = 4.47783 +I0408 16:29:59.640331 27193 solver.cpp:237] Train net output #0: loss = 4.47783 (* 1 = 4.47783 loss) +I0408 16:29:59.640343 27193 sgd_solver.cpp:105] Iteration 6228, lr = 1.21005e-08 +I0408 16:30:04.764235 27193 solver.cpp:218] Iteration 6240 (2.34203 iter/s, 5.12375s/12 iters), loss = 4.59462 +I0408 16:30:04.764277 27193 solver.cpp:237] Train net output #0: loss = 4.59462 (* 1 = 4.59462 loss) +I0408 16:30:04.764288 27193 sgd_solver.cpp:105] Iteration 6240, lr = 1.1787e-08 +I0408 16:30:09.845319 27193 solver.cpp:218] Iteration 6252 (2.36179 iter/s, 5.08089s/12 iters), loss = 4.37929 +I0408 16:30:09.845363 27193 solver.cpp:237] Train net output #0: loss = 4.37929 (* 1 = 4.37929 loss) +I0408 16:30:09.845374 27193 sgd_solver.cpp:105] Iteration 6252, lr = 1.14816e-08 +I0408 16:30:14.916920 27193 solver.cpp:218] Iteration 6264 (2.36621 iter/s, 5.07141s/12 iters), loss = 4.53236 +I0408 16:30:14.916965 27193 solver.cpp:237] Train net output #0: loss = 4.53236 (* 1 = 4.53236 loss) +I0408 16:30:14.916975 27193 sgd_solver.cpp:105] Iteration 6264, lr = 1.11841e-08 +I0408 16:30:17.753155 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:30:20.077101 27193 solver.cpp:218] Iteration 6276 (2.32559 iter/s, 5.15998s/12 iters), loss = 4.41006 +I0408 16:30:20.077147 27193 solver.cpp:237] Train net output #0: loss = 4.41006 (* 1 = 4.41006 loss) +I0408 16:30:20.077158 27193 sgd_solver.cpp:105] Iteration 6276, lr = 1.08943e-08 +I0408 16:30:25.212997 27193 solver.cpp:218] Iteration 6288 (2.33659 iter/s, 5.1357s/12 iters), loss = 4.47763 +I0408 16:30:25.213042 27193 solver.cpp:237] Train net output #0: loss = 4.47763 (* 1 = 4.47763 loss) +I0408 16:30:25.213052 27193 sgd_solver.cpp:105] Iteration 6288, lr = 1.0612e-08 +I0408 16:30:30.320366 27193 solver.cpp:218] Iteration 6300 (2.34963 iter/s, 5.10718s/12 iters), loss = 4.41282 +I0408 16:30:30.320406 27193 solver.cpp:237] Train net output #0: loss = 4.41282 (* 1 = 4.41282 loss) +I0408 16:30:30.320418 27193 sgd_solver.cpp:105] Iteration 6300, lr = 1.03371e-08 +I0408 16:30:35.253741 27193 solver.cpp:218] Iteration 6312 (2.43251 iter/s, 4.93318s/12 iters), loss = 4.59614 +I0408 16:30:35.253788 27193 solver.cpp:237] Train net output #0: loss = 4.59614 (* 1 = 4.59614 loss) +I0408 16:30:35.253800 27193 sgd_solver.cpp:105] Iteration 6312, lr = 1.00692e-08 +I0408 16:30:39.871369 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6324.caffemodel +I0408 16:30:42.928097 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6324.solverstate +I0408 16:30:45.250576 27193 solver.cpp:330] Iteration 6324, Testing net (#0) +I0408 16:30:45.250599 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:30:47.223742 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:30:49.707835 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:30:49.707913 27193 solver.cpp:397] Test net output #1: loss = 4.60313 (* 1 = 4.60313 loss) +I0408 16:30:49.796277 27193 solver.cpp:218] Iteration 6324 (0.825192 iter/s, 14.5421s/12 iters), loss = 4.59867 +I0408 16:30:49.796334 27193 solver.cpp:237] Train net output #0: loss = 4.59867 (* 1 = 4.59867 loss) +I0408 16:30:49.796344 27193 sgd_solver.cpp:105] Iteration 6324, lr = 9.80832e-09 +I0408 16:30:54.302433 27193 solver.cpp:218] Iteration 6336 (2.66314 iter/s, 4.50596s/12 iters), loss = 4.40134 +I0408 16:30:54.302479 27193 solver.cpp:237] Train net output #0: loss = 4.40134 (* 1 = 4.40134 loss) +I0408 16:30:54.302490 27193 sgd_solver.cpp:105] Iteration 6336, lr = 9.55418e-09 +I0408 16:30:59.402817 27193 solver.cpp:218] Iteration 6348 (2.35285 iter/s, 5.10019s/12 iters), loss = 4.61536 +I0408 16:30:59.402860 27193 solver.cpp:237] Train net output #0: loss = 4.61536 (* 1 = 4.61536 loss) +I0408 16:30:59.402871 27193 sgd_solver.cpp:105] Iteration 6348, lr = 9.30662e-09 +I0408 16:31:04.425339 27193 solver.cpp:218] Iteration 6360 (2.38933 iter/s, 5.02233s/12 iters), loss = 4.53884 +I0408 16:31:04.425377 27193 solver.cpp:237] Train net output #0: loss = 4.53884 (* 1 = 4.53884 loss) +I0408 16:31:04.425385 27193 sgd_solver.cpp:105] Iteration 6360, lr = 9.06548e-09 +I0408 16:31:09.355182 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:31:09.497336 27193 solver.cpp:218] Iteration 6372 (2.36602 iter/s, 5.07181s/12 iters), loss = 4.49093 +I0408 16:31:09.497372 27193 solver.cpp:237] Train net output #0: loss = 4.49093 (* 1 = 4.49093 loss) +I0408 16:31:09.497382 27193 sgd_solver.cpp:105] Iteration 6372, lr = 8.83059e-09 +I0408 16:31:14.800593 27193 solver.cpp:218] Iteration 6384 (2.26284 iter/s, 5.30306s/12 iters), loss = 4.47754 +I0408 16:31:14.800634 27193 solver.cpp:237] Train net output #0: loss = 4.47754 (* 1 = 4.47754 loss) +I0408 16:31:14.800645 27193 sgd_solver.cpp:105] Iteration 6384, lr = 8.60179e-09 +I0408 16:31:20.102483 27193 solver.cpp:218] Iteration 6396 (2.26343 iter/s, 5.30169s/12 iters), loss = 4.29965 +I0408 16:31:20.102612 27193 solver.cpp:237] Train net output #0: loss = 4.29965 (* 1 = 4.29965 loss) +I0408 16:31:20.102622 27193 sgd_solver.cpp:105] Iteration 6396, lr = 8.37891e-09 +I0408 16:31:25.252049 27193 solver.cpp:218] Iteration 6408 (2.33042 iter/s, 5.14928s/12 iters), loss = 4.35047 +I0408 16:31:25.252095 27193 solver.cpp:237] Train net output #0: loss = 4.35047 (* 1 = 4.35047 loss) +I0408 16:31:25.252106 27193 sgd_solver.cpp:105] Iteration 6408, lr = 8.16181e-09 +I0408 16:31:30.562574 27193 solver.cpp:218] Iteration 6420 (2.25975 iter/s, 5.31032s/12 iters), loss = 4.50813 +I0408 16:31:30.562613 27193 solver.cpp:237] Train net output #0: loss = 4.50813 (* 1 = 4.50813 loss) +I0408 16:31:30.562620 27193 sgd_solver.cpp:105] Iteration 6420, lr = 7.95033e-09 +I0408 16:31:32.568548 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6426.caffemodel +I0408 16:31:35.561754 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6426.solverstate +I0408 16:31:37.889438 27193 solver.cpp:330] Iteration 6426, Testing net (#0) +I0408 16:31:37.889462 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:31:39.756872 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:31:42.287951 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:31:42.287999 27193 solver.cpp:397] Test net output #1: loss = 4.60686 (* 1 = 4.60686 loss) +I0408 16:31:44.308146 27193 solver.cpp:218] Iteration 6432 (0.873036 iter/s, 13.7451s/12 iters), loss = 4.40905 +I0408 16:31:44.308194 27193 solver.cpp:237] Train net output #0: loss = 4.40905 (* 1 = 4.40905 loss) +I0408 16:31:44.308207 27193 sgd_solver.cpp:105] Iteration 6432, lr = 7.74433e-09 +I0408 16:31:49.794802 27193 solver.cpp:218] Iteration 6444 (2.18721 iter/s, 5.48644s/12 iters), loss = 4.51455 +I0408 16:31:49.794864 27193 solver.cpp:237] Train net output #0: loss = 4.51455 (* 1 = 4.51455 loss) +I0408 16:31:49.794878 27193 sgd_solver.cpp:105] Iteration 6444, lr = 7.54368e-09 +I0408 16:31:55.284668 27193 solver.cpp:218] Iteration 6456 (2.18594 iter/s, 5.48964s/12 iters), loss = 4.61731 +I0408 16:31:55.284775 27193 solver.cpp:237] Train net output #0: loss = 4.61731 (* 1 = 4.61731 loss) +I0408 16:31:55.284788 27193 sgd_solver.cpp:105] Iteration 6456, lr = 7.34821e-09 +I0408 16:32:00.479015 27193 solver.cpp:218] Iteration 6468 (2.31032 iter/s, 5.19408s/12 iters), loss = 4.63176 +I0408 16:32:00.479065 27193 solver.cpp:237] Train net output #0: loss = 4.63176 (* 1 = 4.63176 loss) +I0408 16:32:00.479077 27193 sgd_solver.cpp:105] Iteration 6468, lr = 7.15782e-09 +I0408 16:32:02.558854 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:32:05.611259 27193 solver.cpp:218] Iteration 6480 (2.33825 iter/s, 5.13204s/12 iters), loss = 4.51698 +I0408 16:32:05.611302 27193 solver.cpp:237] Train net output #0: loss = 4.51698 (* 1 = 4.51698 loss) +I0408 16:32:05.611313 27193 sgd_solver.cpp:105] Iteration 6480, lr = 6.97236e-09 +I0408 16:32:10.674576 27193 solver.cpp:218] Iteration 6492 (2.37008 iter/s, 5.06312s/12 iters), loss = 4.41326 +I0408 16:32:10.674620 27193 solver.cpp:237] Train net output #0: loss = 4.41326 (* 1 = 4.41326 loss) +I0408 16:32:10.674631 27193 sgd_solver.cpp:105] Iteration 6492, lr = 6.7917e-09 +I0408 16:32:15.810330 27193 solver.cpp:218] Iteration 6504 (2.33665 iter/s, 5.13555s/12 iters), loss = 4.35685 +I0408 16:32:15.810375 27193 solver.cpp:237] Train net output #0: loss = 4.35685 (* 1 = 4.35685 loss) +I0408 16:32:15.810387 27193 sgd_solver.cpp:105] Iteration 6504, lr = 6.61572e-09 +I0408 16:32:21.245097 27193 solver.cpp:218] Iteration 6516 (2.20809 iter/s, 5.43455s/12 iters), loss = 4.5163 +I0408 16:32:21.245146 27193 solver.cpp:237] Train net output #0: loss = 4.5163 (* 1 = 4.5163 loss) +I0408 16:32:21.245158 27193 sgd_solver.cpp:105] Iteration 6516, lr = 6.44431e-09 +I0408 16:32:25.907410 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6528.caffemodel +I0408 16:32:28.957850 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6528.solverstate +I0408 16:32:31.293684 27193 solver.cpp:330] Iteration 6528, Testing net (#0) +I0408 16:32:31.293710 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:32:33.194507 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:32:35.863139 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:32:35.863186 27193 solver.cpp:397] Test net output #1: loss = 4.61103 (* 1 = 4.61103 loss) +I0408 16:32:35.953999 27193 solver.cpp:218] Iteration 6528 (0.815859 iter/s, 14.7084s/12 iters), loss = 4.57103 +I0408 16:32:35.954056 27193 solver.cpp:237] Train net output #0: loss = 4.57103 (* 1 = 4.57103 loss) +I0408 16:32:35.954069 27193 sgd_solver.cpp:105] Iteration 6528, lr = 6.27733e-09 +I0408 16:32:40.454840 27193 solver.cpp:218] Iteration 6540 (2.66629 iter/s, 4.50064s/12 iters), loss = 4.40541 +I0408 16:32:40.454890 27193 solver.cpp:237] Train net output #0: loss = 4.40541 (* 1 = 4.40541 loss) +I0408 16:32:40.454900 27193 sgd_solver.cpp:105] Iteration 6540, lr = 6.11468e-09 +I0408 16:32:45.850446 27193 solver.cpp:218] Iteration 6552 (2.22412 iter/s, 5.39539s/12 iters), loss = 4.58417 +I0408 16:32:45.850492 27193 solver.cpp:237] Train net output #0: loss = 4.58417 (* 1 = 4.58417 loss) +I0408 16:32:45.850503 27193 sgd_solver.cpp:105] Iteration 6552, lr = 5.95625e-09 +I0408 16:32:50.867393 27193 solver.cpp:218] Iteration 6564 (2.39199 iter/s, 5.01674s/12 iters), loss = 4.39049 +I0408 16:32:50.867440 27193 solver.cpp:237] Train net output #0: loss = 4.39049 (* 1 = 4.39049 loss) +I0408 16:32:50.867452 27193 sgd_solver.cpp:105] Iteration 6564, lr = 5.80192e-09 +I0408 16:32:55.203734 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:32:55.963305 27193 solver.cpp:218] Iteration 6576 (2.35492 iter/s, 5.09571s/12 iters), loss = 4.49177 +I0408 16:32:55.963418 27193 solver.cpp:237] Train net output #0: loss = 4.49177 (* 1 = 4.49177 loss) +I0408 16:32:55.963431 27193 sgd_solver.cpp:105] Iteration 6576, lr = 5.65159e-09 +I0408 16:33:01.052239 27193 solver.cpp:218] Iteration 6588 (2.35818 iter/s, 5.08867s/12 iters), loss = 4.45976 +I0408 16:33:01.052286 27193 solver.cpp:237] Train net output #0: loss = 4.45976 (* 1 = 4.45976 loss) +I0408 16:33:01.052299 27193 sgd_solver.cpp:105] Iteration 6588, lr = 5.50515e-09 +I0408 16:33:06.135293 27193 solver.cpp:218] Iteration 6600 (2.36088 iter/s, 5.08285s/12 iters), loss = 4.42979 +I0408 16:33:06.135337 27193 solver.cpp:237] Train net output #0: loss = 4.42979 (* 1 = 4.42979 loss) +I0408 16:33:06.135349 27193 sgd_solver.cpp:105] Iteration 6600, lr = 5.36251e-09 +I0408 16:33:11.218256 27193 solver.cpp:218] Iteration 6612 (2.36092 iter/s, 5.08276s/12 iters), loss = 4.47477 +I0408 16:33:11.218302 27193 solver.cpp:237] Train net output #0: loss = 4.47477 (* 1 = 4.47477 loss) +I0408 16:33:11.218314 27193 sgd_solver.cpp:105] Iteration 6612, lr = 5.22356e-09 +I0408 16:33:16.362416 27193 solver.cpp:218] Iteration 6624 (2.33283 iter/s, 5.14396s/12 iters), loss = 4.41984 +I0408 16:33:16.362463 27193 solver.cpp:237] Train net output #0: loss = 4.41984 (* 1 = 4.41984 loss) +I0408 16:33:16.362474 27193 sgd_solver.cpp:105] Iteration 6624, lr = 5.08822e-09 +I0408 16:33:18.417848 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6630.caffemodel +I0408 16:33:21.475427 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6630.solverstate +I0408 16:33:23.812764 27193 solver.cpp:330] Iteration 6630, Testing net (#0) +I0408 16:33:23.812790 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:33:25.675261 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:33:28.274633 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:33:28.274813 27193 solver.cpp:397] Test net output #1: loss = 4.60657 (* 1 = 4.60657 loss) +I0408 16:33:30.291043 27193 solver.cpp:218] Iteration 6636 (0.861564 iter/s, 13.9282s/12 iters), loss = 4.41269 +I0408 16:33:30.291117 27193 solver.cpp:237] Train net output #0: loss = 4.41269 (* 1 = 4.41269 loss) +I0408 16:33:30.291132 27193 sgd_solver.cpp:105] Iteration 6636, lr = 4.95638e-09 +I0408 16:33:35.832535 27193 solver.cpp:218] Iteration 6648 (2.16557 iter/s, 5.54126s/12 iters), loss = 4.6847 +I0408 16:33:35.832572 27193 solver.cpp:237] Train net output #0: loss = 4.6847 (* 1 = 4.6847 loss) +I0408 16:33:35.832581 27193 sgd_solver.cpp:105] Iteration 6648, lr = 4.82796e-09 +I0408 16:33:41.038374 27193 solver.cpp:218] Iteration 6660 (2.30519 iter/s, 5.20564s/12 iters), loss = 4.47176 +I0408 16:33:41.038411 27193 solver.cpp:237] Train net output #0: loss = 4.47176 (* 1 = 4.47176 loss) +I0408 16:33:41.038420 27193 sgd_solver.cpp:105] Iteration 6660, lr = 4.70286e-09 +I0408 16:33:46.144554 27193 solver.cpp:218] Iteration 6672 (2.35019 iter/s, 5.10598s/12 iters), loss = 4.57342 +I0408 16:33:46.144591 27193 solver.cpp:237] Train net output #0: loss = 4.57342 (* 1 = 4.57342 loss) +I0408 16:33:46.144600 27193 sgd_solver.cpp:105] Iteration 6672, lr = 4.58101e-09 +I0408 16:33:47.473100 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:33:51.303365 27193 solver.cpp:218] Iteration 6684 (2.32621 iter/s, 5.15862s/12 iters), loss = 4.30533 +I0408 16:33:51.303400 27193 solver.cpp:237] Train net output #0: loss = 4.30533 (* 1 = 4.30533 loss) +I0408 16:33:51.303408 27193 sgd_solver.cpp:105] Iteration 6684, lr = 4.46231e-09 +I0408 16:33:56.577067 27193 solver.cpp:218] Iteration 6696 (2.27553 iter/s, 5.27351s/12 iters), loss = 4.58128 +I0408 16:33:56.577106 27193 solver.cpp:237] Train net output #0: loss = 4.58128 (* 1 = 4.58128 loss) +I0408 16:33:56.577116 27193 sgd_solver.cpp:105] Iteration 6696, lr = 4.34669e-09 +I0408 16:34:02.027248 27193 solver.cpp:218] Iteration 6708 (2.20185 iter/s, 5.44997s/12 iters), loss = 4.62421 +I0408 16:34:02.027354 27193 solver.cpp:237] Train net output #0: loss = 4.62421 (* 1 = 4.62421 loss) +I0408 16:34:02.027366 27193 sgd_solver.cpp:105] Iteration 6708, lr = 4.23407e-09 +I0408 16:34:07.537761 27193 solver.cpp:218] Iteration 6720 (2.17776 iter/s, 5.51024s/12 iters), loss = 4.45597 +I0408 16:34:07.537798 27193 solver.cpp:237] Train net output #0: loss = 4.45597 (* 1 = 4.45597 loss) +I0408 16:34:07.537807 27193 sgd_solver.cpp:105] Iteration 6720, lr = 4.12436e-09 +I0408 16:34:12.143082 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6732.caffemodel +I0408 16:34:15.182842 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6732.solverstate +I0408 16:34:17.693209 27193 solver.cpp:330] Iteration 6732, Testing net (#0) +I0408 16:34:17.693235 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:34:19.516326 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:34:22.158798 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:34:22.158849 27193 solver.cpp:397] Test net output #1: loss = 4.60206 (* 1 = 4.60206 loss) +I0408 16:34:22.250200 27193 solver.cpp:218] Iteration 6732 (0.815663 iter/s, 14.712s/12 iters), loss = 4.51227 +I0408 16:34:22.250262 27193 solver.cpp:237] Train net output #0: loss = 4.51227 (* 1 = 4.51227 loss) +I0408 16:34:22.250274 27193 sgd_solver.cpp:105] Iteration 6732, lr = 4.0175e-09 +I0408 16:34:26.655844 27193 solver.cpp:218] Iteration 6744 (2.7239 iter/s, 4.40544s/12 iters), loss = 4.53503 +I0408 16:34:26.655894 27193 solver.cpp:237] Train net output #0: loss = 4.53503 (* 1 = 4.53503 loss) +I0408 16:34:26.655903 27193 sgd_solver.cpp:105] Iteration 6744, lr = 3.9134e-09 +I0408 16:34:31.906769 27193 solver.cpp:218] Iteration 6756 (2.28541 iter/s, 5.25071s/12 iters), loss = 4.39754 +I0408 16:34:31.906817 27193 solver.cpp:237] Train net output #0: loss = 4.39754 (* 1 = 4.39754 loss) +I0408 16:34:31.906829 27193 sgd_solver.cpp:105] Iteration 6756, lr = 3.812e-09 +I0408 16:34:36.960134 27193 solver.cpp:218] Iteration 6768 (2.37475 iter/s, 5.05316s/12 iters), loss = 4.52026 +I0408 16:34:36.962623 27193 solver.cpp:237] Train net output #0: loss = 4.52026 (* 1 = 4.52026 loss) +I0408 16:34:36.962635 27193 sgd_solver.cpp:105] Iteration 6768, lr = 3.71323e-09 +I0408 16:34:40.550762 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:34:42.080868 27193 solver.cpp:218] Iteration 6780 (2.34463 iter/s, 5.11809s/12 iters), loss = 4.5985 +I0408 16:34:42.080919 27193 solver.cpp:237] Train net output #0: loss = 4.5985 (* 1 = 4.5985 loss) +I0408 16:34:42.080931 27193 sgd_solver.cpp:105] Iteration 6780, lr = 3.61702e-09 +I0408 16:34:47.175865 27193 solver.cpp:218] Iteration 6792 (2.35535 iter/s, 5.09479s/12 iters), loss = 4.47694 +I0408 16:34:47.175906 27193 solver.cpp:237] Train net output #0: loss = 4.47694 (* 1 = 4.47694 loss) +I0408 16:34:47.175916 27193 sgd_solver.cpp:105] Iteration 6792, lr = 3.5233e-09 +I0408 16:34:52.299461 27193 solver.cpp:218] Iteration 6804 (2.3422 iter/s, 5.12339s/12 iters), loss = 4.46964 +I0408 16:34:52.299505 27193 solver.cpp:237] Train net output #0: loss = 4.46964 (* 1 = 4.46964 loss) +I0408 16:34:52.299516 27193 sgd_solver.cpp:105] Iteration 6804, lr = 3.43201e-09 +I0408 16:34:57.437860 27193 solver.cpp:218] Iteration 6816 (2.33545 iter/s, 5.13819s/12 iters), loss = 4.46089 +I0408 16:34:57.437917 27193 solver.cpp:237] Train net output #0: loss = 4.46089 (* 1 = 4.46089 loss) +I0408 16:34:57.437932 27193 sgd_solver.cpp:105] Iteration 6816, lr = 3.34308e-09 +I0408 16:35:02.720722 27193 solver.cpp:218] Iteration 6828 (2.27159 iter/s, 5.28265s/12 iters), loss = 4.52717 +I0408 16:35:02.720769 27193 solver.cpp:237] Train net output #0: loss = 4.52717 (* 1 = 4.52717 loss) +I0408 16:35:02.720780 27193 sgd_solver.cpp:105] Iteration 6828, lr = 3.25646e-09 +I0408 16:35:04.711894 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6834.caffemodel +I0408 16:35:07.757092 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6834.solverstate +I0408 16:35:10.098258 27193 solver.cpp:330] Iteration 6834, Testing net (#0) +I0408 16:35:10.098282 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:35:11.967984 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:35:14.651461 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:35:14.651490 27193 solver.cpp:397] Test net output #1: loss = 4.60693 (* 1 = 4.60693 loss) +I0408 16:35:16.695681 27193 solver.cpp:218] Iteration 6840 (0.858707 iter/s, 13.9745s/12 iters), loss = 4.4803 +I0408 16:35:16.695734 27193 solver.cpp:237] Train net output #0: loss = 4.4803 (* 1 = 4.4803 loss) +I0408 16:35:16.695744 27193 sgd_solver.cpp:105] Iteration 6840, lr = 3.17209e-09 +I0408 16:35:22.201917 27193 solver.cpp:218] Iteration 6852 (2.17943 iter/s, 5.50602s/12 iters), loss = 4.67868 +I0408 16:35:22.201974 27193 solver.cpp:237] Train net output #0: loss = 4.67868 (* 1 = 4.67868 loss) +I0408 16:35:22.201985 27193 sgd_solver.cpp:105] Iteration 6852, lr = 3.0899e-09 +I0408 16:35:27.394825 27193 solver.cpp:218] Iteration 6864 (2.31093 iter/s, 5.19271s/12 iters), loss = 4.50976 +I0408 16:35:27.394868 27193 solver.cpp:237] Train net output #0: loss = 4.50976 (* 1 = 4.50976 loss) +I0408 16:35:27.394879 27193 sgd_solver.cpp:105] Iteration 6864, lr = 3.00984e-09 +I0408 16:35:32.450868 27193 solver.cpp:218] Iteration 6876 (2.37349 iter/s, 5.05584s/12 iters), loss = 4.59306 +I0408 16:35:32.450911 27193 solver.cpp:237] Train net output #0: loss = 4.59306 (* 1 = 4.59306 loss) +I0408 16:35:32.450922 27193 sgd_solver.cpp:105] Iteration 6876, lr = 2.93185e-09 +I0408 16:35:33.073781 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:35:37.533618 27193 solver.cpp:218] Iteration 6888 (2.36102 iter/s, 5.08255s/12 iters), loss = 4.52473 +I0408 16:35:37.533660 27193 solver.cpp:237] Train net output #0: loss = 4.52473 (* 1 = 4.52473 loss) +I0408 16:35:37.533671 27193 sgd_solver.cpp:105] Iteration 6888, lr = 2.85588e-09 +I0408 16:35:42.630381 27193 solver.cpp:218] Iteration 6900 (2.35453 iter/s, 5.09656s/12 iters), loss = 4.62427 +I0408 16:35:42.630538 27193 solver.cpp:237] Train net output #0: loss = 4.62427 (* 1 = 4.62427 loss) +I0408 16:35:42.630550 27193 sgd_solver.cpp:105] Iteration 6900, lr = 2.78189e-09 +I0408 16:35:47.730756 27193 solver.cpp:218] Iteration 6912 (2.35291 iter/s, 5.10006s/12 iters), loss = 4.34161 +I0408 16:35:47.730800 27193 solver.cpp:237] Train net output #0: loss = 4.34161 (* 1 = 4.34161 loss) +I0408 16:35:47.730813 27193 sgd_solver.cpp:105] Iteration 6912, lr = 2.70981e-09 +I0408 16:35:52.899680 27193 solver.cpp:218] Iteration 6924 (2.32166 iter/s, 5.16872s/12 iters), loss = 4.25648 +I0408 16:35:52.899726 27193 solver.cpp:237] Train net output #0: loss = 4.25648 (* 1 = 4.25648 loss) +I0408 16:35:52.899739 27193 sgd_solver.cpp:105] Iteration 6924, lr = 2.63959e-09 +I0408 16:35:57.586853 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_6936.caffemodel +I0408 16:36:00.629523 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_6936.solverstate +I0408 16:36:03.023772 27193 solver.cpp:330] Iteration 6936, Testing net (#0) +I0408 16:36:03.023798 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:36:03.685748 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:36:04.763808 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:36:07.495702 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:36:07.495749 27193 solver.cpp:397] Test net output #1: loss = 4.60902 (* 1 = 4.60902 loss) +I0408 16:36:07.587206 27193 solver.cpp:218] Iteration 6936 (0.817047 iter/s, 14.687s/12 iters), loss = 4.51131 +I0408 16:36:07.587253 27193 solver.cpp:237] Train net output #0: loss = 4.51131 (* 1 = 4.51131 loss) +I0408 16:36:07.587265 27193 sgd_solver.cpp:105] Iteration 6936, lr = 2.5712e-09 +I0408 16:36:12.177042 27193 solver.cpp:218] Iteration 6948 (2.61458 iter/s, 4.58965s/12 iters), loss = 4.46246 +I0408 16:36:12.177079 27193 solver.cpp:237] Train net output #0: loss = 4.46246 (* 1 = 4.46246 loss) +I0408 16:36:12.177088 27193 sgd_solver.cpp:105] Iteration 6948, lr = 2.50458e-09 +I0408 16:36:17.510946 27193 solver.cpp:218] Iteration 6960 (2.24985 iter/s, 5.33369s/12 iters), loss = 4.52807 +I0408 16:36:17.511059 27193 solver.cpp:237] Train net output #0: loss = 4.52807 (* 1 = 4.52807 loss) +I0408 16:36:17.511072 27193 sgd_solver.cpp:105] Iteration 6960, lr = 2.43968e-09 +I0408 16:36:22.622961 27193 solver.cpp:218] Iteration 6972 (2.34754 iter/s, 5.11174s/12 iters), loss = 4.49648 +I0408 16:36:22.623008 27193 solver.cpp:237] Train net output #0: loss = 4.49648 (* 1 = 4.49648 loss) +I0408 16:36:22.623019 27193 sgd_solver.cpp:105] Iteration 6972, lr = 2.37647e-09 +I0408 16:36:25.345872 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:36:27.758618 27193 solver.cpp:218] Iteration 6984 (2.3367 iter/s, 5.13545s/12 iters), loss = 4.51205 +I0408 16:36:27.758654 27193 solver.cpp:237] Train net output #0: loss = 4.51205 (* 1 = 4.51205 loss) +I0408 16:36:27.758662 27193 sgd_solver.cpp:105] Iteration 6984, lr = 2.31489e-09 +I0408 16:36:32.870486 27193 solver.cpp:218] Iteration 6996 (2.34757 iter/s, 5.11167s/12 iters), loss = 4.48853 +I0408 16:36:32.870532 27193 solver.cpp:237] Train net output #0: loss = 4.48853 (* 1 = 4.48853 loss) +I0408 16:36:32.870543 27193 sgd_solver.cpp:105] Iteration 6996, lr = 2.25491e-09 +I0408 16:36:37.926329 27193 solver.cpp:218] Iteration 7008 (2.37359 iter/s, 5.05564s/12 iters), loss = 4.51319 +I0408 16:36:37.926367 27193 solver.cpp:237] Train net output #0: loss = 4.51319 (* 1 = 4.51319 loss) +I0408 16:36:37.926376 27193 sgd_solver.cpp:105] Iteration 7008, lr = 2.19649e-09 +I0408 16:36:42.963706 27193 solver.cpp:218] Iteration 7020 (2.38228 iter/s, 5.03718s/12 iters), loss = 4.59405 +I0408 16:36:42.963752 27193 solver.cpp:237] Train net output #0: loss = 4.59405 (* 1 = 4.59405 loss) +I0408 16:36:42.963764 27193 sgd_solver.cpp:105] Iteration 7020, lr = 2.13958e-09 +I0408 16:36:48.053469 27193 solver.cpp:218] Iteration 7032 (2.35777 iter/s, 5.08956s/12 iters), loss = 4.53337 +I0408 16:36:48.053630 27193 solver.cpp:237] Train net output #0: loss = 4.53337 (* 1 = 4.53337 loss) +I0408 16:36:48.053644 27193 sgd_solver.cpp:105] Iteration 7032, lr = 2.08414e-09 +I0408 16:36:50.093948 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7038.caffemodel +I0408 16:36:53.116529 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7038.solverstate +I0408 16:36:55.437332 27193 solver.cpp:330] Iteration 7038, Testing net (#0) +I0408 16:36:55.437355 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:36:57.032274 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:36:59.793045 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:36:59.793078 27193 solver.cpp:397] Test net output #1: loss = 4.60466 (* 1 = 4.60466 loss) +I0408 16:37:01.724870 27193 solver.cpp:218] Iteration 7044 (0.877781 iter/s, 13.6708s/12 iters), loss = 4.36247 +I0408 16:37:01.724912 27193 solver.cpp:237] Train net output #0: loss = 4.36247 (* 1 = 4.36247 loss) +I0408 16:37:01.724923 27193 sgd_solver.cpp:105] Iteration 7044, lr = 2.03014e-09 +I0408 16:37:06.709110 27193 solver.cpp:218] Iteration 7056 (2.40768 iter/s, 4.98404s/12 iters), loss = 4.58049 +I0408 16:37:06.709148 27193 solver.cpp:237] Train net output #0: loss = 4.58049 (* 1 = 4.58049 loss) +I0408 16:37:06.709157 27193 sgd_solver.cpp:105] Iteration 7056, lr = 1.97754e-09 +I0408 16:37:11.782315 27193 solver.cpp:218] Iteration 7068 (2.36546 iter/s, 5.07301s/12 iters), loss = 4.56856 +I0408 16:37:11.782348 27193 solver.cpp:237] Train net output #0: loss = 4.56856 (* 1 = 4.56856 loss) +I0408 16:37:11.782357 27193 sgd_solver.cpp:105] Iteration 7068, lr = 1.9263e-09 +I0408 16:37:16.739787 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:37:16.849862 27193 solver.cpp:218] Iteration 7080 (2.3681 iter/s, 5.06735s/12 iters), loss = 4.46777 +I0408 16:37:16.849902 27193 solver.cpp:237] Train net output #0: loss = 4.46777 (* 1 = 4.46777 loss) +I0408 16:37:16.849911 27193 sgd_solver.cpp:105] Iteration 7080, lr = 1.87639e-09 +I0408 16:37:21.929303 27193 solver.cpp:218] Iteration 7092 (2.36256 iter/s, 5.07924s/12 iters), loss = 4.50047 +I0408 16:37:21.929410 27193 solver.cpp:237] Train net output #0: loss = 4.50047 (* 1 = 4.50047 loss) +I0408 16:37:21.929419 27193 sgd_solver.cpp:105] Iteration 7092, lr = 1.82777e-09 +I0408 16:37:27.024704 27193 solver.cpp:218] Iteration 7104 (2.35519 iter/s, 5.09513s/12 iters), loss = 4.40506 +I0408 16:37:27.024749 27193 solver.cpp:237] Train net output #0: loss = 4.40506 (* 1 = 4.40506 loss) +I0408 16:37:27.024761 27193 sgd_solver.cpp:105] Iteration 7104, lr = 1.78041e-09 +I0408 16:37:32.041131 27193 solver.cpp:218] Iteration 7116 (2.39224 iter/s, 5.01623s/12 iters), loss = 4.36536 +I0408 16:37:32.041167 27193 solver.cpp:237] Train net output #0: loss = 4.36536 (* 1 = 4.36536 loss) +I0408 16:37:32.041177 27193 sgd_solver.cpp:105] Iteration 7116, lr = 1.73428e-09 +I0408 16:37:37.157992 27193 solver.cpp:218] Iteration 7128 (2.34528 iter/s, 5.11666s/12 iters), loss = 4.55297 +I0408 16:37:37.158030 27193 solver.cpp:237] Train net output #0: loss = 4.55297 (* 1 = 4.55297 loss) +I0408 16:37:37.158037 27193 sgd_solver.cpp:105] Iteration 7128, lr = 1.68934e-09 +I0408 16:37:41.748911 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7140.caffemodel +I0408 16:37:44.805881 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7140.solverstate +I0408 16:37:47.151131 27193 solver.cpp:330] Iteration 7140, Testing net (#0) +I0408 16:37:47.151162 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:37:48.819269 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:37:51.621685 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:37:51.621729 27193 solver.cpp:397] Test net output #1: loss = 4.60779 (* 1 = 4.60779 loss) +I0408 16:37:51.713181 27193 solver.cpp:218] Iteration 7140 (0.824475 iter/s, 14.5547s/12 iters), loss = 4.41445 +I0408 16:37:51.713219 27193 solver.cpp:237] Train net output #0: loss = 4.41445 (* 1 = 4.41445 loss) +I0408 16:37:51.713229 27193 sgd_solver.cpp:105] Iteration 7140, lr = 1.64557e-09 +I0408 16:37:56.312098 27193 solver.cpp:218] Iteration 7152 (2.60942 iter/s, 4.59873s/12 iters), loss = 4.54572 +I0408 16:37:56.312247 27193 solver.cpp:237] Train net output #0: loss = 4.54572 (* 1 = 4.54572 loss) +I0408 16:37:56.312258 27193 sgd_solver.cpp:105] Iteration 7152, lr = 1.60293e-09 +I0408 16:38:01.580277 27193 solver.cpp:218] Iteration 7164 (2.27796 iter/s, 5.26787s/12 iters), loss = 4.59793 +I0408 16:38:01.580312 27193 solver.cpp:237] Train net output #0: loss = 4.59793 (* 1 = 4.59793 loss) +I0408 16:38:01.580319 27193 sgd_solver.cpp:105] Iteration 7164, lr = 1.5614e-09 +I0408 16:38:06.769603 27193 solver.cpp:218] Iteration 7176 (2.31253 iter/s, 5.18912s/12 iters), loss = 4.57815 +I0408 16:38:06.769646 27193 solver.cpp:237] Train net output #0: loss = 4.57815 (* 1 = 4.57815 loss) +I0408 16:38:06.769657 27193 sgd_solver.cpp:105] Iteration 7176, lr = 1.52094e-09 +I0408 16:38:08.939502 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:38:11.898386 27193 solver.cpp:218] Iteration 7188 (2.33983 iter/s, 5.12858s/12 iters), loss = 4.48608 +I0408 16:38:11.898427 27193 solver.cpp:237] Train net output #0: loss = 4.48608 (* 1 = 4.48608 loss) +I0408 16:38:11.898439 27193 sgd_solver.cpp:105] Iteration 7188, lr = 1.48153e-09 +I0408 16:38:16.976099 27193 solver.cpp:218] Iteration 7200 (2.36337 iter/s, 5.0775s/12 iters), loss = 4.41631 +I0408 16:38:16.976145 27193 solver.cpp:237] Train net output #0: loss = 4.41631 (* 1 = 4.41631 loss) +I0408 16:38:16.976155 27193 sgd_solver.cpp:105] Iteration 7200, lr = 1.44315e-09 +I0408 16:38:22.123211 27193 solver.cpp:218] Iteration 7212 (2.3315 iter/s, 5.14691s/12 iters), loss = 4.37323 +I0408 16:38:22.123253 27193 solver.cpp:237] Train net output #0: loss = 4.37323 (* 1 = 4.37323 loss) +I0408 16:38:22.123265 27193 sgd_solver.cpp:105] Iteration 7212, lr = 1.40575e-09 +I0408 16:38:27.261745 27193 solver.cpp:218] Iteration 7224 (2.33539 iter/s, 5.13833s/12 iters), loss = 4.53587 +I0408 16:38:27.261862 27193 solver.cpp:237] Train net output #0: loss = 4.53587 (* 1 = 4.53587 loss) +I0408 16:38:27.261874 27193 sgd_solver.cpp:105] Iteration 7224, lr = 1.36933e-09 +I0408 16:38:32.260511 27193 solver.cpp:218] Iteration 7236 (2.40072 iter/s, 4.99849s/12 iters), loss = 4.62548 +I0408 16:38:32.260560 27193 solver.cpp:237] Train net output #0: loss = 4.62548 (* 1 = 4.62548 loss) +I0408 16:38:32.260571 27193 sgd_solver.cpp:105] Iteration 7236, lr = 1.33385e-09 +I0408 16:38:34.266516 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7242.caffemodel +I0408 16:38:38.027192 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7242.solverstate +I0408 16:38:44.059211 27193 solver.cpp:330] Iteration 7242, Testing net (#0) +I0408 16:38:44.059247 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:38:45.677281 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:38:48.518221 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:38:48.518260 27193 solver.cpp:397] Test net output #1: loss = 4.6049 (* 1 = 4.6049 loss) +I0408 16:38:50.502737 27193 solver.cpp:218] Iteration 7248 (0.657836 iter/s, 18.2416s/12 iters), loss = 4.43772 +I0408 16:38:50.502785 27193 solver.cpp:237] Train net output #0: loss = 4.43772 (* 1 = 4.43772 loss) +I0408 16:38:50.502796 27193 sgd_solver.cpp:105] Iteration 7248, lr = 1.29929e-09 +I0408 16:38:55.601250 27193 solver.cpp:218] Iteration 7260 (2.35372 iter/s, 5.0983s/12 iters), loss = 4.44606 +I0408 16:38:55.601295 27193 solver.cpp:237] Train net output #0: loss = 4.44606 (* 1 = 4.44606 loss) +I0408 16:38:55.601306 27193 sgd_solver.cpp:105] Iteration 7260, lr = 1.26562e-09 +I0408 16:39:00.665603 27193 solver.cpp:218] Iteration 7272 (2.3696 iter/s, 5.06415s/12 iters), loss = 4.46318 +I0408 16:39:00.665758 27193 solver.cpp:237] Train net output #0: loss = 4.46318 (* 1 = 4.46318 loss) +I0408 16:39:00.665771 27193 sgd_solver.cpp:105] Iteration 7272, lr = 1.23283e-09 +I0408 16:39:04.959578 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:39:05.718863 27193 solver.cpp:218] Iteration 7284 (2.37485 iter/s, 5.05295s/12 iters), loss = 4.61132 +I0408 16:39:05.718922 27193 solver.cpp:237] Train net output #0: loss = 4.61132 (* 1 = 4.61132 loss) +I0408 16:39:05.718935 27193 sgd_solver.cpp:105] Iteration 7284, lr = 1.20089e-09 +I0408 16:39:10.862504 27193 solver.cpp:218] Iteration 7296 (2.33308 iter/s, 5.14342s/12 iters), loss = 4.46533 +I0408 16:39:10.862546 27193 solver.cpp:237] Train net output #0: loss = 4.46533 (* 1 = 4.46533 loss) +I0408 16:39:10.862558 27193 sgd_solver.cpp:105] Iteration 7296, lr = 1.16977e-09 +I0408 16:39:15.903180 27193 solver.cpp:218] Iteration 7308 (2.38073 iter/s, 5.04047s/12 iters), loss = 4.51244 +I0408 16:39:15.903218 27193 solver.cpp:237] Train net output #0: loss = 4.51244 (* 1 = 4.51244 loss) +I0408 16:39:15.903226 27193 sgd_solver.cpp:105] Iteration 7308, lr = 1.13946e-09 +I0408 16:39:20.918592 27193 solver.cpp:218] Iteration 7320 (2.39272 iter/s, 5.01521s/12 iters), loss = 4.3899 +I0408 16:39:20.918638 27193 solver.cpp:237] Train net output #0: loss = 4.3899 (* 1 = 4.3899 loss) +I0408 16:39:20.918650 27193 sgd_solver.cpp:105] Iteration 7320, lr = 1.10994e-09 +I0408 16:39:25.921317 27193 solver.cpp:218] Iteration 7332 (2.39879 iter/s, 5.00252s/12 iters), loss = 4.34326 +I0408 16:39:25.921365 27193 solver.cpp:237] Train net output #0: loss = 4.34326 (* 1 = 4.34326 loss) +I0408 16:39:25.921377 27193 sgd_solver.cpp:105] Iteration 7332, lr = 1.08118e-09 +I0408 16:39:30.444423 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7344.caffemodel +I0408 16:39:33.477550 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7344.solverstate +I0408 16:39:35.816216 27193 solver.cpp:330] Iteration 7344, Testing net (#0) +I0408 16:39:35.816246 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:39:37.368619 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:39:40.245020 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:39:40.245067 27193 solver.cpp:397] Test net output #1: loss = 4.60056 (* 1 = 4.60056 loss) +I0408 16:39:40.336259 27193 solver.cpp:218] Iteration 7344 (0.832497 iter/s, 14.4145s/12 iters), loss = 4.37105 +I0408 16:39:40.336298 27193 solver.cpp:237] Train net output #0: loss = 4.37105 (* 1 = 4.37105 loss) +I0408 16:39:40.336309 27193 sgd_solver.cpp:105] Iteration 7344, lr = 1.05317e-09 +I0408 16:39:44.954036 27193 solver.cpp:218] Iteration 7356 (2.59876 iter/s, 4.61759s/12 iters), loss = 4.66849 +I0408 16:39:44.954078 27193 solver.cpp:237] Train net output #0: loss = 4.66849 (* 1 = 4.66849 loss) +I0408 16:39:44.954088 27193 sgd_solver.cpp:105] Iteration 7356, lr = 1.02588e-09 +I0408 16:39:50.070178 27193 solver.cpp:218] Iteration 7368 (2.34561 iter/s, 5.11594s/12 iters), loss = 4.37907 +I0408 16:39:50.070211 27193 solver.cpp:237] Train net output #0: loss = 4.37907 (* 1 = 4.37907 loss) +I0408 16:39:50.070220 27193 sgd_solver.cpp:105] Iteration 7368, lr = 9.99297e-10 +I0408 16:39:55.166134 27193 solver.cpp:218] Iteration 7380 (2.3549 iter/s, 5.09576s/12 iters), loss = 4.44801 +I0408 16:39:55.166177 27193 solver.cpp:237] Train net output #0: loss = 4.44801 (* 1 = 4.44801 loss) +I0408 16:39:55.166186 27193 sgd_solver.cpp:105] Iteration 7380, lr = 9.73404e-10 +I0408 16:39:56.579186 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:40:00.304463 27193 solver.cpp:218] Iteration 7392 (2.33548 iter/s, 5.13812s/12 iters), loss = 4.4035 +I0408 16:40:00.304512 27193 solver.cpp:237] Train net output #0: loss = 4.4035 (* 1 = 4.4035 loss) +I0408 16:40:00.304523 27193 sgd_solver.cpp:105] Iteration 7392, lr = 9.48183e-10 +I0408 16:40:05.415539 27193 solver.cpp:218] Iteration 7404 (2.34794 iter/s, 5.11087s/12 iters), loss = 4.46603 +I0408 16:40:05.415688 27193 solver.cpp:237] Train net output #0: loss = 4.46603 (* 1 = 4.46603 loss) +I0408 16:40:05.415702 27193 sgd_solver.cpp:105] Iteration 7404, lr = 9.23615e-10 +I0408 16:40:10.494657 27193 solver.cpp:218] Iteration 7416 (2.36276 iter/s, 5.07881s/12 iters), loss = 4.61843 +I0408 16:40:10.494701 27193 solver.cpp:237] Train net output #0: loss = 4.61843 (* 1 = 4.61843 loss) +I0408 16:40:10.494712 27193 sgd_solver.cpp:105] Iteration 7416, lr = 8.99684e-10 +I0408 16:40:15.487704 27193 solver.cpp:218] Iteration 7428 (2.40344 iter/s, 4.99285s/12 iters), loss = 4.44603 +I0408 16:40:15.487746 27193 solver.cpp:237] Train net output #0: loss = 4.44603 (* 1 = 4.44603 loss) +I0408 16:40:15.487756 27193 sgd_solver.cpp:105] Iteration 7428, lr = 8.76373e-10 +I0408 16:40:20.539645 27193 solver.cpp:218] Iteration 7440 (2.37542 iter/s, 5.05174s/12 iters), loss = 4.64562 +I0408 16:40:20.539688 27193 solver.cpp:237] Train net output #0: loss = 4.64562 (* 1 = 4.64562 loss) +I0408 16:40:20.539700 27193 sgd_solver.cpp:105] Iteration 7440, lr = 8.53665e-10 +I0408 16:40:22.653445 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7446.caffemodel +I0408 16:40:25.676321 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7446.solverstate +I0408 16:40:28.864066 27193 solver.cpp:330] Iteration 7446, Testing net (#0) +I0408 16:40:28.864099 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:40:30.347617 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:40:33.271134 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:40:33.271168 27193 solver.cpp:397] Test net output #1: loss = 4.60413 (* 1 = 4.60413 loss) +I0408 16:40:35.160092 27193 solver.cpp:218] Iteration 7452 (0.820796 iter/s, 14.62s/12 iters), loss = 4.47138 +I0408 16:40:35.160140 27193 solver.cpp:237] Train net output #0: loss = 4.47138 (* 1 = 4.47138 loss) +I0408 16:40:35.160151 27193 sgd_solver.cpp:105] Iteration 7452, lr = 8.31546e-10 +I0408 16:40:40.228690 27193 solver.cpp:218] Iteration 7464 (2.36762 iter/s, 5.06839s/12 iters), loss = 4.37803 +I0408 16:40:40.228806 27193 solver.cpp:237] Train net output #0: loss = 4.37803 (* 1 = 4.37803 loss) +I0408 16:40:40.228819 27193 sgd_solver.cpp:105] Iteration 7464, lr = 8.10001e-10 +I0408 16:40:45.173200 27193 solver.cpp:218] Iteration 7476 (2.42707 iter/s, 4.94424s/12 iters), loss = 4.60591 +I0408 16:40:45.173245 27193 solver.cpp:237] Train net output #0: loss = 4.60591 (* 1 = 4.60591 loss) +I0408 16:40:45.173257 27193 sgd_solver.cpp:105] Iteration 7476, lr = 7.89013e-10 +I0408 16:40:48.710882 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:40:50.232906 27193 solver.cpp:218] Iteration 7488 (2.37178 iter/s, 5.0595s/12 iters), loss = 4.45741 +I0408 16:40:50.232951 27193 solver.cpp:237] Train net output #0: loss = 4.45741 (* 1 = 4.45741 loss) +I0408 16:40:50.232964 27193 sgd_solver.cpp:105] Iteration 7488, lr = 7.68569e-10 +I0408 16:40:55.566093 27193 solver.cpp:218] Iteration 7500 (2.25015 iter/s, 5.33297s/12 iters), loss = 4.47546 +I0408 16:40:55.566138 27193 solver.cpp:237] Train net output #0: loss = 4.47546 (* 1 = 4.47546 loss) +I0408 16:40:55.566148 27193 sgd_solver.cpp:105] Iteration 7500, lr = 7.48655e-10 +I0408 16:41:00.920428 27193 solver.cpp:218] Iteration 7512 (2.24126 iter/s, 5.35412s/12 iters), loss = 4.56511 +I0408 16:41:00.920475 27193 solver.cpp:237] Train net output #0: loss = 4.56511 (* 1 = 4.56511 loss) +I0408 16:41:00.920487 27193 sgd_solver.cpp:105] Iteration 7512, lr = 7.29257e-10 +I0408 16:41:05.993695 27193 solver.cpp:218] Iteration 7524 (2.36544 iter/s, 5.07306s/12 iters), loss = 4.49467 +I0408 16:41:05.993739 27193 solver.cpp:237] Train net output #0: loss = 4.49467 (* 1 = 4.49467 loss) +I0408 16:41:05.993750 27193 sgd_solver.cpp:105] Iteration 7524, lr = 7.10362e-10 +I0408 16:41:10.973286 27193 solver.cpp:218] Iteration 7536 (2.40993 iter/s, 4.97939s/12 iters), loss = 4.38515 +I0408 16:41:10.973443 27193 solver.cpp:237] Train net output #0: loss = 4.38515 (* 1 = 4.38515 loss) +I0408 16:41:10.973455 27193 sgd_solver.cpp:105] Iteration 7536, lr = 6.91956e-10 +I0408 16:41:15.542191 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7548.caffemodel +I0408 16:41:18.567250 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7548.solverstate +I0408 16:41:21.055131 27193 solver.cpp:330] Iteration 7548, Testing net (#0) +I0408 16:41:21.055151 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:41:22.543859 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:41:25.497066 27193 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0408 16:41:25.497102 27193 solver.cpp:397] Test net output #1: loss = 4.60052 (* 1 = 4.60052 loss) +I0408 16:41:25.588551 27193 solver.cpp:218] Iteration 7548 (0.821093 iter/s, 14.6147s/12 iters), loss = 4.49431 +I0408 16:41:25.588615 27193 solver.cpp:237] Train net output #0: loss = 4.49431 (* 1 = 4.49431 loss) +I0408 16:41:25.588629 27193 sgd_solver.cpp:105] Iteration 7548, lr = 6.74027e-10 +I0408 16:41:29.812855 27193 solver.cpp:218] Iteration 7560 (2.84084 iter/s, 4.22411s/12 iters), loss = 4.64177 +I0408 16:41:29.812901 27193 solver.cpp:237] Train net output #0: loss = 4.64177 (* 1 = 4.64177 loss) +I0408 16:41:29.812911 27193 sgd_solver.cpp:105] Iteration 7560, lr = 6.56563e-10 +I0408 16:41:34.939630 27193 solver.cpp:218] Iteration 7572 (2.34075 iter/s, 5.12656s/12 iters), loss = 4.53953 +I0408 16:41:34.939679 27193 solver.cpp:237] Train net output #0: loss = 4.53953 (* 1 = 4.53953 loss) +I0408 16:41:34.939690 27193 sgd_solver.cpp:105] Iteration 7572, lr = 6.39551e-10 +I0408 16:41:39.998574 27193 solver.cpp:218] Iteration 7584 (2.37213 iter/s, 5.05873s/12 iters), loss = 4.60782 +I0408 16:41:39.998622 27193 solver.cpp:237] Train net output #0: loss = 4.60782 (* 1 = 4.60782 loss) +I0408 16:41:39.998634 27193 sgd_solver.cpp:105] Iteration 7584, lr = 6.2298e-10 +I0408 16:41:40.655349 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:41:45.122767 27193 solver.cpp:218] Iteration 7596 (2.34193 iter/s, 5.12398s/12 iters), loss = 4.50915 +I0408 16:41:45.122896 27193 solver.cpp:237] Train net output #0: loss = 4.50915 (* 1 = 4.50915 loss) +I0408 16:41:45.122910 27193 sgd_solver.cpp:105] Iteration 7596, lr = 6.06838e-10 +I0408 16:41:50.327105 27193 solver.cpp:218] Iteration 7608 (2.3059 iter/s, 5.20404s/12 iters), loss = 4.58807 +I0408 16:41:50.327147 27193 solver.cpp:237] Train net output #0: loss = 4.58807 (* 1 = 4.58807 loss) +I0408 16:41:50.327158 27193 sgd_solver.cpp:105] Iteration 7608, lr = 5.91114e-10 +I0408 16:41:55.730702 27193 solver.cpp:218] Iteration 7620 (2.22083 iter/s, 5.40338s/12 iters), loss = 4.44764 +I0408 16:41:55.730744 27193 solver.cpp:237] Train net output #0: loss = 4.44764 (* 1 = 4.44764 loss) +I0408 16:41:55.730754 27193 sgd_solver.cpp:105] Iteration 7620, lr = 5.75798e-10 +I0408 16:41:58.195233 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:42:00.770105 27193 solver.cpp:218] Iteration 7632 (2.38133 iter/s, 5.0392s/12 iters), loss = 4.40832 +I0408 16:42:00.770141 27193 solver.cpp:237] Train net output #0: loss = 4.40832 (* 1 = 4.40832 loss) +I0408 16:42:00.770150 27193 sgd_solver.cpp:105] Iteration 7632, lr = 5.60879e-10 +I0408 16:42:05.904268 27193 solver.cpp:218] Iteration 7644 (2.33738 iter/s, 5.13396s/12 iters), loss = 4.46114 +I0408 16:42:05.904300 27193 solver.cpp:237] Train net output #0: loss = 4.46114 (* 1 = 4.46114 loss) +I0408 16:42:05.904309 27193 sgd_solver.cpp:105] Iteration 7644, lr = 5.46346e-10 +I0408 16:42:08.195484 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7650.caffemodel +I0408 16:42:11.266041 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7650.solverstate +I0408 16:42:14.896533 27193 solver.cpp:330] Iteration 7650, Testing net (#0) +I0408 16:42:14.896562 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:42:16.371613 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:42:19.372133 27193 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0408 16:42:19.372179 27193 solver.cpp:397] Test net output #1: loss = 4.59966 (* 1 = 4.59966 loss) +I0408 16:42:21.368474 27193 solver.cpp:218] Iteration 7656 (0.776011 iter/s, 15.4637s/12 iters), loss = 4.51898 +I0408 16:42:21.368521 27193 solver.cpp:237] Train net output #0: loss = 4.51898 (* 1 = 4.51898 loss) +I0408 16:42:21.368532 27193 sgd_solver.cpp:105] Iteration 7656, lr = 5.3219e-10 +I0408 16:42:26.327591 27193 solver.cpp:218] Iteration 7668 (2.41989 iter/s, 4.9589s/12 iters), loss = 4.51285 +I0408 16:42:26.327636 27193 solver.cpp:237] Train net output #0: loss = 4.51285 (* 1 = 4.51285 loss) +I0408 16:42:26.327646 27193 sgd_solver.cpp:105] Iteration 7668, lr = 5.18401e-10 +I0408 16:42:31.422451 27193 solver.cpp:218] Iteration 7680 (2.35541 iter/s, 5.09465s/12 iters), loss = 4.47667 +I0408 16:42:31.422492 27193 solver.cpp:237] Train net output #0: loss = 4.47667 (* 1 = 4.47667 loss) +I0408 16:42:31.422502 27193 sgd_solver.cpp:105] Iteration 7680, lr = 5.04969e-10 +I0408 16:42:34.196934 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:42:36.415339 27193 solver.cpp:218] Iteration 7692 (2.40352 iter/s, 4.99269s/12 iters), loss = 4.51678 +I0408 16:42:36.415374 27193 solver.cpp:237] Train net output #0: loss = 4.51678 (* 1 = 4.51678 loss) +I0408 16:42:36.415382 27193 sgd_solver.cpp:105] Iteration 7692, lr = 4.91885e-10 +I0408 16:42:41.518543 27193 solver.cpp:218] Iteration 7704 (2.35156 iter/s, 5.103s/12 iters), loss = 4.38087 +I0408 16:42:41.518584 27193 solver.cpp:237] Train net output #0: loss = 4.38087 (* 1 = 4.38087 loss) +I0408 16:42:41.518592 27193 sgd_solver.cpp:105] Iteration 7704, lr = 4.7914e-10 +I0408 16:42:46.838634 27193 solver.cpp:218] Iteration 7716 (2.25569 iter/s, 5.31988s/12 iters), loss = 4.50469 +I0408 16:42:46.838748 27193 solver.cpp:237] Train net output #0: loss = 4.50469 (* 1 = 4.50469 loss) +I0408 16:42:46.838758 27193 sgd_solver.cpp:105] Iteration 7716, lr = 4.66725e-10 +I0408 16:42:51.925179 27193 solver.cpp:218] Iteration 7728 (2.35929 iter/s, 5.08627s/12 iters), loss = 4.58221 +I0408 16:42:51.925225 27193 solver.cpp:237] Train net output #0: loss = 4.58221 (* 1 = 4.58221 loss) +I0408 16:42:51.925235 27193 sgd_solver.cpp:105] Iteration 7728, lr = 4.54632e-10 +I0408 16:42:56.948824 27193 solver.cpp:218] Iteration 7740 (2.3888 iter/s, 5.02344s/12 iters), loss = 4.7769 +I0408 16:42:56.948869 27193 solver.cpp:237] Train net output #0: loss = 4.7769 (* 1 = 4.7769 loss) +I0408 16:42:56.948880 27193 sgd_solver.cpp:105] Iteration 7740, lr = 4.42852e-10 +I0408 16:43:01.476583 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7752.caffemodel +I0408 16:43:04.521544 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7752.solverstate +I0408 16:43:09.341605 27193 solver.cpp:330] Iteration 7752, Testing net (#0) +I0408 16:43:09.341639 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:43:10.772943 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:43:13.807792 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:43:13.807837 27193 solver.cpp:397] Test net output #1: loss = 4.60869 (* 1 = 4.60869 loss) +I0408 16:43:13.899469 27193 solver.cpp:218] Iteration 7752 (0.707961 iter/s, 16.9501s/12 iters), loss = 4.41058 +I0408 16:43:13.899538 27193 solver.cpp:237] Train net output #0: loss = 4.41058 (* 1 = 4.41058 loss) +I0408 16:43:13.899555 27193 sgd_solver.cpp:105] Iteration 7752, lr = 4.31378e-10 +I0408 16:43:18.143169 27193 solver.cpp:218] Iteration 7764 (2.82785 iter/s, 4.2435s/12 iters), loss = 4.59921 +I0408 16:43:18.143321 27193 solver.cpp:237] Train net output #0: loss = 4.59921 (* 1 = 4.59921 loss) +I0408 16:43:18.143332 27193 sgd_solver.cpp:105] Iteration 7764, lr = 4.20201e-10 +I0408 16:43:23.097044 27193 solver.cpp:218] Iteration 7776 (2.4225 iter/s, 4.95356s/12 iters), loss = 4.61045 +I0408 16:43:23.097085 27193 solver.cpp:237] Train net output #0: loss = 4.61045 (* 1 = 4.61045 loss) +I0408 16:43:23.097095 27193 sgd_solver.cpp:105] Iteration 7776, lr = 4.09313e-10 +I0408 16:43:28.102160 27193 solver.cpp:218] Iteration 7788 (2.39764 iter/s, 5.00491s/12 iters), loss = 4.48153 +I0408 16:43:28.102210 27193 solver.cpp:237] Train net output #0: loss = 4.48153 (* 1 = 4.48153 loss) +I0408 16:43:28.102221 27193 sgd_solver.cpp:105] Iteration 7788, lr = 3.98707e-10 +I0408 16:43:28.110339 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:43:33.094364 27193 solver.cpp:218] Iteration 7800 (2.40385 iter/s, 4.992s/12 iters), loss = 4.47946 +I0408 16:43:33.094413 27193 solver.cpp:237] Train net output #0: loss = 4.47946 (* 1 = 4.47946 loss) +I0408 16:43:33.094422 27193 sgd_solver.cpp:105] Iteration 7800, lr = 3.88377e-10 +I0408 16:43:38.026414 27193 solver.cpp:218] Iteration 7812 (2.43317 iter/s, 4.93184s/12 iters), loss = 4.44266 +I0408 16:43:38.026459 27193 solver.cpp:237] Train net output #0: loss = 4.44266 (* 1 = 4.44266 loss) +I0408 16:43:38.026468 27193 sgd_solver.cpp:105] Iteration 7812, lr = 3.78314e-10 +I0408 16:43:43.101284 27193 solver.cpp:218] Iteration 7824 (2.36469 iter/s, 5.07466s/12 iters), loss = 4.42084 +I0408 16:43:43.101333 27193 solver.cpp:237] Train net output #0: loss = 4.42084 (* 1 = 4.42084 loss) +I0408 16:43:43.101344 27193 sgd_solver.cpp:105] Iteration 7824, lr = 3.68511e-10 +I0408 16:43:48.183269 27193 solver.cpp:218] Iteration 7836 (2.36138 iter/s, 5.08178s/12 iters), loss = 4.63802 +I0408 16:43:48.183378 27193 solver.cpp:237] Train net output #0: loss = 4.63802 (* 1 = 4.63802 loss) +I0408 16:43:48.183390 27193 sgd_solver.cpp:105] Iteration 7836, lr = 3.58963e-10 +I0408 16:43:53.192937 27193 solver.cpp:218] Iteration 7848 (2.3955 iter/s, 5.0094s/12 iters), loss = 4.28259 +I0408 16:43:53.192981 27193 solver.cpp:237] Train net output #0: loss = 4.28259 (* 1 = 4.28259 loss) +I0408 16:43:53.192992 27193 sgd_solver.cpp:105] Iteration 7848, lr = 3.49662e-10 +I0408 16:43:55.211064 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7854.caffemodel +I0408 16:43:58.278615 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7854.solverstate +I0408 16:44:00.939395 27193 solver.cpp:330] Iteration 7854, Testing net (#0) +I0408 16:44:00.939421 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:44:02.321740 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:44:05.403915 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:44:05.403964 27193 solver.cpp:397] Test net output #1: loss = 4.60518 (* 1 = 4.60518 loss) +I0408 16:44:07.377166 27193 solver.cpp:218] Iteration 7860 (0.846039 iter/s, 14.1838s/12 iters), loss = 4.52238 +I0408 16:44:07.377218 27193 solver.cpp:237] Train net output #0: loss = 4.52238 (* 1 = 4.52238 loss) +I0408 16:44:07.377229 27193 sgd_solver.cpp:105] Iteration 7860, lr = 3.40602e-10 +I0408 16:44:12.431607 27193 solver.cpp:218] Iteration 7872 (2.37425 iter/s, 5.05423s/12 iters), loss = 4.64144 +I0408 16:44:12.431656 27193 solver.cpp:237] Train net output #0: loss = 4.64144 (* 1 = 4.64144 loss) +I0408 16:44:12.431668 27193 sgd_solver.cpp:105] Iteration 7872, lr = 3.31777e-10 +I0408 16:44:17.526294 27193 solver.cpp:218] Iteration 7884 (2.35549 iter/s, 5.09448s/12 iters), loss = 4.53832 +I0408 16:44:17.526340 27193 solver.cpp:237] Train net output #0: loss = 4.53832 (* 1 = 4.53832 loss) +I0408 16:44:17.526350 27193 sgd_solver.cpp:105] Iteration 7884, lr = 3.2318e-10 +I0408 16:44:19.635161 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:44:22.461328 27193 solver.cpp:218] Iteration 7896 (2.43169 iter/s, 4.93483s/12 iters), loss = 4.36714 +I0408 16:44:22.461369 27193 solver.cpp:237] Train net output #0: loss = 4.36714 (* 1 = 4.36714 loss) +I0408 16:44:22.461380 27193 sgd_solver.cpp:105] Iteration 7896, lr = 3.14807e-10 +I0408 16:44:27.582329 27193 solver.cpp:218] Iteration 7908 (2.34339 iter/s, 5.1208s/12 iters), loss = 4.40653 +I0408 16:44:27.582366 27193 solver.cpp:237] Train net output #0: loss = 4.40653 (* 1 = 4.40653 loss) +I0408 16:44:27.582374 27193 sgd_solver.cpp:105] Iteration 7908, lr = 3.0665e-10 +I0408 16:44:32.705338 27193 solver.cpp:218] Iteration 7920 (2.34247 iter/s, 5.12281s/12 iters), loss = 4.28464 +I0408 16:44:32.705382 27193 solver.cpp:237] Train net output #0: loss = 4.28464 (* 1 = 4.28464 loss) +I0408 16:44:32.705394 27193 sgd_solver.cpp:105] Iteration 7920, lr = 2.98704e-10 +I0408 16:44:38.039374 27193 solver.cpp:218] Iteration 7932 (2.24979 iter/s, 5.33382s/12 iters), loss = 4.57661 +I0408 16:44:38.039418 27193 solver.cpp:237] Train net output #0: loss = 4.57661 (* 1 = 4.57661 loss) +I0408 16:44:38.039430 27193 sgd_solver.cpp:105] Iteration 7932, lr = 2.90965e-10 +I0408 16:44:43.187691 27193 solver.cpp:218] Iteration 7944 (2.33095 iter/s, 5.14811s/12 iters), loss = 4.51269 +I0408 16:44:43.187737 27193 solver.cpp:237] Train net output #0: loss = 4.51269 (* 1 = 4.51269 loss) +I0408 16:44:43.187748 27193 sgd_solver.cpp:105] Iteration 7944, lr = 2.83426e-10 +I0408 16:44:47.760149 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_7956.caffemodel +I0408 16:44:51.659884 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_7956.solverstate +I0408 16:44:55.926062 27193 solver.cpp:330] Iteration 7956, Testing net (#0) +I0408 16:44:55.926095 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:44:57.275797 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:45:00.393457 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:45:00.393504 27193 solver.cpp:397] Test net output #1: loss = 4.60217 (* 1 = 4.60217 loss) +I0408 16:45:00.484972 27193 solver.cpp:218] Iteration 7956 (0.693774 iter/s, 17.2967s/12 iters), loss = 4.2832 +I0408 16:45:00.485019 27193 solver.cpp:237] Train net output #0: loss = 4.2832 (* 1 = 4.2832 loss) +I0408 16:45:00.485031 27193 sgd_solver.cpp:105] Iteration 7956, lr = 2.76082e-10 +I0408 16:45:04.856139 27193 solver.cpp:218] Iteration 7968 (2.74538 iter/s, 4.37098s/12 iters), loss = 4.56346 +I0408 16:45:04.856174 27193 solver.cpp:237] Train net output #0: loss = 4.56346 (* 1 = 4.56346 loss) +I0408 16:45:04.856184 27193 sgd_solver.cpp:105] Iteration 7968, lr = 2.68929e-10 +I0408 16:45:09.934208 27193 solver.cpp:218] Iteration 7980 (2.36319 iter/s, 5.07787s/12 iters), loss = 4.44257 +I0408 16:45:09.934245 27193 solver.cpp:237] Train net output #0: loss = 4.44257 (* 1 = 4.44257 loss) +I0408 16:45:09.934254 27193 sgd_solver.cpp:105] Iteration 7980, lr = 2.61961e-10 +I0408 16:45:14.242854 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:45:14.973943 27193 solver.cpp:218] Iteration 7992 (2.38117 iter/s, 5.03953s/12 iters), loss = 4.51652 +I0408 16:45:14.973987 27193 solver.cpp:237] Train net output #0: loss = 4.51652 (* 1 = 4.51652 loss) +I0408 16:45:14.973996 27193 sgd_solver.cpp:105] Iteration 7992, lr = 2.55173e-10 +I0408 16:45:20.310420 27193 solver.cpp:218] Iteration 8004 (2.24877 iter/s, 5.33626s/12 iters), loss = 4.51517 +I0408 16:45:20.310457 27193 solver.cpp:237] Train net output #0: loss = 4.51517 (* 1 = 4.51517 loss) +I0408 16:45:20.310465 27193 sgd_solver.cpp:105] Iteration 8004, lr = 2.48561e-10 +I0408 16:45:25.351531 27193 solver.cpp:218] Iteration 8016 (2.38052 iter/s, 5.04091s/12 iters), loss = 4.47427 +I0408 16:45:25.351670 27193 solver.cpp:237] Train net output #0: loss = 4.47427 (* 1 = 4.47427 loss) +I0408 16:45:25.351683 27193 sgd_solver.cpp:105] Iteration 8016, lr = 2.42121e-10 +I0408 16:45:30.379937 27193 solver.cpp:218] Iteration 8028 (2.38658 iter/s, 5.02811s/12 iters), loss = 4.45774 +I0408 16:45:30.379985 27193 solver.cpp:237] Train net output #0: loss = 4.45774 (* 1 = 4.45774 loss) +I0408 16:45:30.379997 27193 sgd_solver.cpp:105] Iteration 8028, lr = 2.35848e-10 +I0408 16:45:35.408221 27193 solver.cpp:218] Iteration 8040 (2.3866 iter/s, 5.02807s/12 iters), loss = 4.41199 +I0408 16:45:35.408267 27193 solver.cpp:237] Train net output #0: loss = 4.41199 (* 1 = 4.41199 loss) +I0408 16:45:35.408278 27193 sgd_solver.cpp:105] Iteration 8040, lr = 2.29737e-10 +I0408 16:45:40.450712 27193 solver.cpp:218] Iteration 8052 (2.37987 iter/s, 5.04228s/12 iters), loss = 4.43991 +I0408 16:45:40.450764 27193 solver.cpp:237] Train net output #0: loss = 4.43991 (* 1 = 4.43991 loss) +I0408 16:45:40.450778 27193 sgd_solver.cpp:105] Iteration 8052, lr = 2.23784e-10 +I0408 16:45:42.496062 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8058.caffemodel +I0408 16:45:45.995987 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8058.solverstate +I0408 16:45:50.170462 27193 solver.cpp:330] Iteration 8058, Testing net (#0) +I0408 16:45:50.170495 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:45:51.473798 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:45:54.737056 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:45:54.737104 27193 solver.cpp:397] Test net output #1: loss = 4.60745 (* 1 = 4.60745 loss) +I0408 16:45:56.702154 27193 solver.cpp:218] Iteration 8064 (0.738421 iter/s, 16.2509s/12 iters), loss = 4.6026 +I0408 16:45:56.702267 27193 solver.cpp:237] Train net output #0: loss = 4.6026 (* 1 = 4.6026 loss) +I0408 16:45:56.702280 27193 sgd_solver.cpp:105] Iteration 8064, lr = 2.17986e-10 +I0408 16:46:02.129283 27193 solver.cpp:218] Iteration 8076 (2.21123 iter/s, 5.42684s/12 iters), loss = 4.36809 +I0408 16:46:02.129334 27193 solver.cpp:237] Train net output #0: loss = 4.36809 (* 1 = 4.36809 loss) +I0408 16:46:02.129346 27193 sgd_solver.cpp:105] Iteration 8076, lr = 2.12338e-10 +I0408 16:46:07.653313 27193 solver.cpp:218] Iteration 8088 (2.17242 iter/s, 5.5238s/12 iters), loss = 4.417 +I0408 16:46:07.653358 27193 solver.cpp:237] Train net output #0: loss = 4.417 (* 1 = 4.417 loss) +I0408 16:46:07.653370 27193 sgd_solver.cpp:105] Iteration 8088, lr = 2.06836e-10 +I0408 16:46:09.088186 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:46:12.660933 27193 solver.cpp:218] Iteration 8100 (2.39645 iter/s, 5.00741s/12 iters), loss = 4.36848 +I0408 16:46:12.660972 27193 solver.cpp:237] Train net output #0: loss = 4.36848 (* 1 = 4.36848 loss) +I0408 16:46:12.660982 27193 sgd_solver.cpp:105] Iteration 8100, lr = 2.01477e-10 +I0408 16:46:17.929096 27193 solver.cpp:218] Iteration 8112 (2.27792 iter/s, 5.26795s/12 iters), loss = 4.56197 +I0408 16:46:17.929138 27193 solver.cpp:237] Train net output #0: loss = 4.56197 (* 1 = 4.56197 loss) +I0408 16:46:17.929149 27193 sgd_solver.cpp:105] Iteration 8112, lr = 1.96256e-10 +I0408 16:46:23.219404 27193 solver.cpp:218] Iteration 8124 (2.26839 iter/s, 5.29009s/12 iters), loss = 4.66462 +I0408 16:46:23.219449 27193 solver.cpp:237] Train net output #0: loss = 4.66462 (* 1 = 4.66462 loss) +I0408 16:46:23.219461 27193 sgd_solver.cpp:105] Iteration 8124, lr = 1.91171e-10 +I0408 16:46:28.264139 27193 solver.cpp:218] Iteration 8136 (2.37882 iter/s, 5.04452s/12 iters), loss = 4.46 +I0408 16:46:28.264243 27193 solver.cpp:237] Train net output #0: loss = 4.46 (* 1 = 4.46 loss) +I0408 16:46:28.264256 27193 sgd_solver.cpp:105] Iteration 8136, lr = 1.86218e-10 +I0408 16:46:33.339464 27193 solver.cpp:218] Iteration 8148 (2.3645 iter/s, 5.07506s/12 iters), loss = 4.55439 +I0408 16:46:33.339501 27193 solver.cpp:237] Train net output #0: loss = 4.55439 (* 1 = 4.55439 loss) +I0408 16:46:33.339510 27193 sgd_solver.cpp:105] Iteration 8148, lr = 1.81393e-10 +I0408 16:46:37.881597 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8160.caffemodel +I0408 16:46:40.930727 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8160.solverstate +I0408 16:46:45.719624 27193 solver.cpp:330] Iteration 8160, Testing net (#0) +I0408 16:46:45.719658 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:46:47.120231 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:46:50.520329 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:46:50.520367 27193 solver.cpp:397] Test net output #1: loss = 4.60204 (* 1 = 4.60204 loss) +I0408 16:46:50.611677 27193 solver.cpp:218] Iteration 8160 (0.694781 iter/s, 17.2716s/12 iters), loss = 4.48735 +I0408 16:46:50.611732 27193 solver.cpp:237] Train net output #0: loss = 4.48735 (* 1 = 4.48735 loss) +I0408 16:46:50.611743 27193 sgd_solver.cpp:105] Iteration 8160, lr = 1.76693e-10 +I0408 16:46:54.781015 27193 solver.cpp:218] Iteration 8172 (2.87829 iter/s, 4.16914s/12 iters), loss = 4.34024 +I0408 16:46:54.781062 27193 solver.cpp:237] Train net output #0: loss = 4.34024 (* 1 = 4.34024 loss) +I0408 16:46:54.781075 27193 sgd_solver.cpp:105] Iteration 8172, lr = 1.72115e-10 +I0408 16:46:59.836416 27193 solver.cpp:218] Iteration 8184 (2.3738 iter/s, 5.05518s/12 iters), loss = 4.55996 +I0408 16:46:59.836571 27193 solver.cpp:237] Train net output #0: loss = 4.55996 (* 1 = 4.55996 loss) +I0408 16:46:59.836585 27193 sgd_solver.cpp:105] Iteration 8184, lr = 1.67655e-10 +I0408 16:47:03.438459 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:47:04.861816 27193 solver.cpp:218] Iteration 8196 (2.38802 iter/s, 5.02508s/12 iters), loss = 4.37941 +I0408 16:47:04.861863 27193 solver.cpp:237] Train net output #0: loss = 4.37941 (* 1 = 4.37941 loss) +I0408 16:47:04.861876 27193 sgd_solver.cpp:105] Iteration 8196, lr = 1.63311e-10 +I0408 16:47:10.017343 27193 solver.cpp:218] Iteration 8208 (2.32769 iter/s, 5.15532s/12 iters), loss = 4.38092 +I0408 16:47:10.017376 27193 solver.cpp:237] Train net output #0: loss = 4.38092 (* 1 = 4.38092 loss) +I0408 16:47:10.017385 27193 sgd_solver.cpp:105] Iteration 8208, lr = 1.59079e-10 +I0408 16:47:15.106892 27193 solver.cpp:218] Iteration 8220 (2.35787 iter/s, 5.08935s/12 iters), loss = 4.47026 +I0408 16:47:15.106931 27193 solver.cpp:237] Train net output #0: loss = 4.47026 (* 1 = 4.47026 loss) +I0408 16:47:15.106941 27193 sgd_solver.cpp:105] Iteration 8220, lr = 1.54958e-10 +I0408 16:47:20.176076 27193 solver.cpp:218] Iteration 8232 (2.36734 iter/s, 5.06898s/12 iters), loss = 4.58811 +I0408 16:47:20.176112 27193 solver.cpp:237] Train net output #0: loss = 4.58811 (* 1 = 4.58811 loss) +I0408 16:47:20.176120 27193 sgd_solver.cpp:105] Iteration 8232, lr = 1.50943e-10 +I0408 16:47:25.688668 27193 solver.cpp:218] Iteration 8244 (2.17692 iter/s, 5.51237s/12 iters), loss = 4.48075 +I0408 16:47:25.688704 27193 solver.cpp:237] Train net output #0: loss = 4.48075 (* 1 = 4.48075 loss) +I0408 16:47:25.688714 27193 sgd_solver.cpp:105] Iteration 8244, lr = 1.47032e-10 +I0408 16:47:31.048727 27193 solver.cpp:218] Iteration 8256 (2.23887 iter/s, 5.35985s/12 iters), loss = 4.4805 +I0408 16:47:31.048827 27193 solver.cpp:237] Train net output #0: loss = 4.4805 (* 1 = 4.4805 loss) +I0408 16:47:31.048838 27193 sgd_solver.cpp:105] Iteration 8256, lr = 1.43222e-10 +I0408 16:47:33.098875 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8262.caffemodel +I0408 16:47:38.261788 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8262.solverstate +I0408 16:47:42.003681 27193 solver.cpp:330] Iteration 8262, Testing net (#0) +I0408 16:47:42.003715 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:47:43.240193 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:47:46.468693 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:47:46.468740 27193 solver.cpp:397] Test net output #1: loss = 4.60523 (* 1 = 4.60523 loss) +I0408 16:47:48.468571 27193 solver.cpp:218] Iteration 8268 (0.688895 iter/s, 17.4192s/12 iters), loss = 4.80339 +I0408 16:47:48.468617 27193 solver.cpp:237] Train net output #0: loss = 4.80339 (* 1 = 4.80339 loss) +I0408 16:47:48.468628 27193 sgd_solver.cpp:105] Iteration 8268, lr = 1.39511e-10 +I0408 16:47:53.623446 27193 solver.cpp:218] Iteration 8280 (2.32799 iter/s, 5.15466s/12 iters), loss = 4.50717 +I0408 16:47:53.623490 27193 solver.cpp:237] Train net output #0: loss = 4.50717 (* 1 = 4.50717 loss) +I0408 16:47:53.623502 27193 sgd_solver.cpp:105] Iteration 8280, lr = 1.35896e-10 +I0408 16:47:58.704560 27193 solver.cpp:218] Iteration 8292 (2.36178 iter/s, 5.08091s/12 iters), loss = 4.59619 +I0408 16:47:58.704605 27193 solver.cpp:237] Train net output #0: loss = 4.59619 (* 1 = 4.59619 loss) +I0408 16:47:58.704617 27193 sgd_solver.cpp:105] Iteration 8292, lr = 1.32375e-10 +I0408 16:47:59.385586 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:48:03.749516 27193 solver.cpp:218] Iteration 8304 (2.37871 iter/s, 5.04475s/12 iters), loss = 4.61357 +I0408 16:48:03.749660 27193 solver.cpp:237] Train net output #0: loss = 4.61357 (* 1 = 4.61357 loss) +I0408 16:48:03.749672 27193 sgd_solver.cpp:105] Iteration 8304, lr = 1.28945e-10 +I0408 16:48:06.644294 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:48:08.780822 27193 solver.cpp:218] Iteration 8316 (2.38521 iter/s, 5.031s/12 iters), loss = 4.64032 +I0408 16:48:08.780871 27193 solver.cpp:237] Train net output #0: loss = 4.64032 (* 1 = 4.64032 loss) +I0408 16:48:08.780884 27193 sgd_solver.cpp:105] Iteration 8316, lr = 1.25604e-10 +I0408 16:48:13.817586 27193 solver.cpp:218] Iteration 8328 (2.38258 iter/s, 5.03655s/12 iters), loss = 4.42748 +I0408 16:48:13.817631 27193 solver.cpp:237] Train net output #0: loss = 4.42748 (* 1 = 4.42748 loss) +I0408 16:48:13.817642 27193 sgd_solver.cpp:105] Iteration 8328, lr = 1.2235e-10 +I0408 16:48:18.835481 27193 solver.cpp:218] Iteration 8340 (2.39154 iter/s, 5.01769s/12 iters), loss = 4.46053 +I0408 16:48:18.835523 27193 solver.cpp:237] Train net output #0: loss = 4.46053 (* 1 = 4.46053 loss) +I0408 16:48:18.835534 27193 sgd_solver.cpp:105] Iteration 8340, lr = 1.19179e-10 +I0408 16:48:24.167932 27193 solver.cpp:218] Iteration 8352 (2.25046 iter/s, 5.33224s/12 iters), loss = 4.3702 +I0408 16:48:24.167980 27193 solver.cpp:237] Train net output #0: loss = 4.3702 (* 1 = 4.3702 loss) +I0408 16:48:24.167992 27193 sgd_solver.cpp:105] Iteration 8352, lr = 1.16091e-10 +I0408 16:48:29.157987 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8364.caffemodel +I0408 16:48:34.869258 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8364.solverstate +I0408 16:48:39.010013 27193 solver.cpp:330] Iteration 8364, Testing net (#0) +I0408 16:48:39.010038 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:48:40.204023 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:48:43.479893 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:48:43.479945 27193 solver.cpp:397] Test net output #1: loss = 4.61022 (* 1 = 4.61022 loss) +I0408 16:48:43.570968 27193 solver.cpp:218] Iteration 8364 (0.618481 iter/s, 19.4024s/12 iters), loss = 4.46314 +I0408 16:48:43.571025 27193 solver.cpp:237] Train net output #0: loss = 4.46314 (* 1 = 4.46314 loss) +I0408 16:48:43.571039 27193 sgd_solver.cpp:105] Iteration 8364, lr = 1.13083e-10 +I0408 16:48:47.786523 27193 solver.cpp:218] Iteration 8376 (2.84673 iter/s, 4.21536s/12 iters), loss = 4.47075 +I0408 16:48:47.786567 27193 solver.cpp:237] Train net output #0: loss = 4.47075 (* 1 = 4.47075 loss) +I0408 16:48:47.786577 27193 sgd_solver.cpp:105] Iteration 8376, lr = 1.10153e-10 +I0408 16:48:52.866752 27193 solver.cpp:218] Iteration 8388 (2.3622 iter/s, 5.08002s/12 iters), loss = 4.57159 +I0408 16:48:52.866803 27193 solver.cpp:237] Train net output #0: loss = 4.57159 (* 1 = 4.57159 loss) +I0408 16:48:52.866816 27193 sgd_solver.cpp:105] Iteration 8388, lr = 1.07299e-10 +I0408 16:48:55.720675 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:48:57.923883 27193 solver.cpp:218] Iteration 8400 (2.37299 iter/s, 5.05692s/12 iters), loss = 4.51665 +I0408 16:48:57.923928 27193 solver.cpp:237] Train net output #0: loss = 4.51665 (* 1 = 4.51665 loss) +I0408 16:48:57.923938 27193 sgd_solver.cpp:105] Iteration 8400, lr = 1.04519e-10 +I0408 16:49:03.133445 27193 solver.cpp:218] Iteration 8412 (2.30355 iter/s, 5.20935s/12 iters), loss = 4.53335 +I0408 16:49:03.133486 27193 solver.cpp:237] Train net output #0: loss = 4.53335 (* 1 = 4.53335 loss) +I0408 16:49:03.133493 27193 sgd_solver.cpp:105] Iteration 8412, lr = 1.01811e-10 +I0408 16:49:08.355573 27193 solver.cpp:218] Iteration 8424 (2.29801 iter/s, 5.22192s/12 iters), loss = 4.47205 +I0408 16:49:08.355713 27193 solver.cpp:237] Train net output #0: loss = 4.47205 (* 1 = 4.47205 loss) +I0408 16:49:08.355726 27193 sgd_solver.cpp:105] Iteration 8424, lr = 9.9173e-11 +I0408 16:49:13.788719 27193 solver.cpp:218] Iteration 8436 (2.20879 iter/s, 5.43283s/12 iters), loss = 4.57369 +I0408 16:49:13.788762 27193 solver.cpp:237] Train net output #0: loss = 4.57369 (* 1 = 4.57369 loss) +I0408 16:49:13.788772 27193 sgd_solver.cpp:105] Iteration 8436, lr = 9.66034e-11 +I0408 16:49:18.843511 27193 solver.cpp:218] Iteration 8448 (2.37408 iter/s, 5.05458s/12 iters), loss = 4.63006 +I0408 16:49:18.843552 27193 solver.cpp:237] Train net output #0: loss = 4.63006 (* 1 = 4.63006 loss) +I0408 16:49:18.843562 27193 sgd_solver.cpp:105] Iteration 8448, lr = 9.41003e-11 +I0408 16:49:23.887063 27193 solver.cpp:218] Iteration 8460 (2.37937 iter/s, 5.04335s/12 iters), loss = 4.44075 +I0408 16:49:23.887106 27193 solver.cpp:237] Train net output #0: loss = 4.44075 (* 1 = 4.44075 loss) +I0408 16:49:23.887117 27193 sgd_solver.cpp:105] Iteration 8460, lr = 9.16621e-11 +I0408 16:49:25.928495 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8466.caffemodel +I0408 16:49:30.340301 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8466.solverstate +I0408 16:49:33.281808 27193 solver.cpp:330] Iteration 8466, Testing net (#0) +I0408 16:49:33.281834 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:49:34.429860 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:49:37.741952 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:49:37.742017 27193 solver.cpp:397] Test net output #1: loss = 4.60683 (* 1 = 4.60683 loss) +I0408 16:49:39.741611 27193 solver.cpp:218] Iteration 8472 (0.756906 iter/s, 15.854s/12 iters), loss = 4.6796 +I0408 16:49:39.741716 27193 solver.cpp:237] Train net output #0: loss = 4.6796 (* 1 = 4.6796 loss) +I0408 16:49:39.741729 27193 sgd_solver.cpp:105] Iteration 8472, lr = 8.92871e-11 +I0408 16:49:44.889088 27193 solver.cpp:218] Iteration 8484 (2.33136 iter/s, 5.14721s/12 iters), loss = 4.65251 +I0408 16:49:44.889133 27193 solver.cpp:237] Train net output #0: loss = 4.65251 (* 1 = 4.65251 loss) +I0408 16:49:44.889145 27193 sgd_solver.cpp:105] Iteration 8484, lr = 8.69736e-11 +I0408 16:49:49.983314 27193 solver.cpp:218] Iteration 8496 (2.3557 iter/s, 5.09402s/12 iters), loss = 4.47986 +I0408 16:49:49.983351 27193 solver.cpp:237] Train net output #0: loss = 4.47986 (* 1 = 4.47986 loss) +I0408 16:49:49.983361 27193 sgd_solver.cpp:105] Iteration 8496, lr = 8.47201e-11 +I0408 16:49:50.034143 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:49:55.111804 27193 solver.cpp:218] Iteration 8508 (2.33996 iter/s, 5.12829s/12 iters), loss = 4.46242 +I0408 16:49:55.111840 27193 solver.cpp:237] Train net output #0: loss = 4.46242 (* 1 = 4.46242 loss) +I0408 16:49:55.111850 27193 sgd_solver.cpp:105] Iteration 8508, lr = 8.2525e-11 +I0408 16:50:00.442229 27193 solver.cpp:218] Iteration 8520 (2.25132 iter/s, 5.33022s/12 iters), loss = 4.40591 +I0408 16:50:00.442277 27193 solver.cpp:237] Train net output #0: loss = 4.40591 (* 1 = 4.40591 loss) +I0408 16:50:00.442291 27193 sgd_solver.cpp:105] Iteration 8520, lr = 8.03867e-11 +I0408 16:50:05.556627 27193 solver.cpp:218] Iteration 8532 (2.34641 iter/s, 5.11419s/12 iters), loss = 4.37712 +I0408 16:50:05.556672 27193 solver.cpp:237] Train net output #0: loss = 4.37712 (* 1 = 4.37712 loss) +I0408 16:50:05.556684 27193 sgd_solver.cpp:105] Iteration 8532, lr = 7.83038e-11 +I0408 16:50:10.647460 27193 solver.cpp:218] Iteration 8544 (2.35727 iter/s, 5.09063s/12 iters), loss = 4.6384 +I0408 16:50:10.648325 27193 solver.cpp:237] Train net output #0: loss = 4.6384 (* 1 = 4.6384 loss) +I0408 16:50:10.648335 27193 sgd_solver.cpp:105] Iteration 8544, lr = 7.62749e-11 +I0408 16:50:15.856528 27193 solver.cpp:218] Iteration 8556 (2.30414 iter/s, 5.20803s/12 iters), loss = 4.45385 +I0408 16:50:15.856573 27193 solver.cpp:237] Train net output #0: loss = 4.45385 (* 1 = 4.45385 loss) +I0408 16:50:15.856585 27193 sgd_solver.cpp:105] Iteration 8556, lr = 7.42986e-11 +I0408 16:50:20.540915 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8568.caffemodel +I0408 16:50:26.027669 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8568.solverstate +I0408 16:50:28.604454 27193 solver.cpp:330] Iteration 8568, Testing net (#0) +I0408 16:50:28.604481 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:50:29.705775 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:50:33.063639 27193 solver.cpp:397] Test net output #0: accuracy = 0.0735294 +I0408 16:50:33.063688 27193 solver.cpp:397] Test net output #1: loss = 4.60891 (* 1 = 4.60891 loss) +I0408 16:50:33.153916 27193 solver.cpp:218] Iteration 8568 (0.69377 iter/s, 17.2968s/12 iters), loss = 4.61367 +I0408 16:50:33.153981 27193 solver.cpp:237] Train net output #0: loss = 4.61367 (* 1 = 4.61367 loss) +I0408 16:50:33.153993 27193 sgd_solver.cpp:105] Iteration 8568, lr = 7.23735e-11 +I0408 16:50:37.444799 27193 solver.cpp:218] Iteration 8580 (2.79676 iter/s, 4.29067s/12 iters), loss = 4.65391 +I0408 16:50:37.444847 27193 solver.cpp:237] Train net output #0: loss = 4.65391 (* 1 = 4.65391 loss) +I0408 16:50:37.444859 27193 sgd_solver.cpp:105] Iteration 8580, lr = 7.04983e-11 +I0408 16:50:42.530203 27193 solver.cpp:218] Iteration 8592 (2.35979 iter/s, 5.08519s/12 iters), loss = 4.54451 +I0408 16:50:42.530324 27193 solver.cpp:237] Train net output #0: loss = 4.54451 (* 1 = 4.54451 loss) +I0408 16:50:42.530336 27193 sgd_solver.cpp:105] Iteration 8592, lr = 6.86716e-11 +I0408 16:50:44.693236 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:50:47.518816 27193 solver.cpp:218] Iteration 8604 (2.40561 iter/s, 4.98833s/12 iters), loss = 4.50324 +I0408 16:50:47.518863 27193 solver.cpp:237] Train net output #0: loss = 4.50324 (* 1 = 4.50324 loss) +I0408 16:50:47.518875 27193 sgd_solver.cpp:105] Iteration 8604, lr = 6.68923e-11 +I0408 16:50:52.588151 27193 solver.cpp:218] Iteration 8616 (2.36727 iter/s, 5.06912s/12 iters), loss = 4.38528 +I0408 16:50:52.588196 27193 solver.cpp:237] Train net output #0: loss = 4.38528 (* 1 = 4.38528 loss) +I0408 16:50:52.588207 27193 sgd_solver.cpp:105] Iteration 8616, lr = 6.51591e-11 +I0408 16:50:57.659199 27193 solver.cpp:218] Iteration 8628 (2.36647 iter/s, 5.07084s/12 iters), loss = 4.38791 +I0408 16:50:57.659241 27193 solver.cpp:237] Train net output #0: loss = 4.38791 (* 1 = 4.38791 loss) +I0408 16:50:57.659252 27193 sgd_solver.cpp:105] Iteration 8628, lr = 6.34708e-11 +I0408 16:51:02.739727 27193 solver.cpp:218] Iteration 8640 (2.36206 iter/s, 5.08032s/12 iters), loss = 4.47424 +I0408 16:51:02.739766 27193 solver.cpp:237] Train net output #0: loss = 4.47424 (* 1 = 4.47424 loss) +I0408 16:51:02.739778 27193 sgd_solver.cpp:105] Iteration 8640, lr = 6.18262e-11 +I0408 16:51:08.161458 27193 solver.cpp:218] Iteration 8652 (2.2134 iter/s, 5.42152s/12 iters), loss = 4.5829 +I0408 16:51:08.161502 27193 solver.cpp:237] Train net output #0: loss = 4.5829 (* 1 = 4.5829 loss) +I0408 16:51:08.161514 27193 sgd_solver.cpp:105] Iteration 8652, lr = 6.02243e-11 +I0408 16:51:13.646031 27193 solver.cpp:218] Iteration 8664 (2.18804 iter/s, 5.48435s/12 iters), loss = 4.37804 +I0408 16:51:13.646175 27193 solver.cpp:237] Train net output #0: loss = 4.37804 (* 1 = 4.37804 loss) +I0408 16:51:13.646188 27193 sgd_solver.cpp:105] Iteration 8664, lr = 5.86638e-11 +I0408 16:51:15.682231 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8670.caffemodel +I0408 16:51:19.800472 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8670.solverstate +I0408 16:51:22.133335 27193 solver.cpp:330] Iteration 8670, Testing net (#0) +I0408 16:51:22.133363 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:51:23.210000 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:51:26.601689 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:51:26.601738 27193 solver.cpp:397] Test net output #1: loss = 4.60556 (* 1 = 4.60556 loss) +I0408 16:51:28.638135 27193 solver.cpp:218] Iteration 8676 (0.800454 iter/s, 14.9915s/12 iters), loss = 4.48559 +I0408 16:51:28.638183 27193 solver.cpp:237] Train net output #0: loss = 4.48559 (* 1 = 4.48559 loss) +I0408 16:51:28.638195 27193 sgd_solver.cpp:105] Iteration 8676, lr = 5.71438e-11 +I0408 16:51:33.751394 27193 solver.cpp:218] Iteration 8688 (2.34694 iter/s, 5.11304s/12 iters), loss = 4.42318 +I0408 16:51:33.751438 27193 solver.cpp:237] Train net output #0: loss = 4.42318 (* 1 = 4.42318 loss) +I0408 16:51:33.751449 27193 sgd_solver.cpp:105] Iteration 8688, lr = 5.56632e-11 +I0408 16:51:38.152796 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:51:38.858196 27193 solver.cpp:218] Iteration 8700 (2.34991 iter/s, 5.10659s/12 iters), loss = 4.55916 +I0408 16:51:38.858242 27193 solver.cpp:237] Train net output #0: loss = 4.55916 (* 1 = 4.55916 loss) +I0408 16:51:38.858253 27193 sgd_solver.cpp:105] Iteration 8700, lr = 5.42209e-11 +I0408 16:51:44.004755 27193 solver.cpp:218] Iteration 8712 (2.33175 iter/s, 5.14635s/12 iters), loss = 4.57343 +I0408 16:51:44.006639 27193 solver.cpp:237] Train net output #0: loss = 4.57343 (* 1 = 4.57343 loss) +I0408 16:51:44.006651 27193 sgd_solver.cpp:105] Iteration 8712, lr = 5.2816e-11 +I0408 16:51:49.125226 27193 solver.cpp:218] Iteration 8724 (2.34447 iter/s, 5.11842s/12 iters), loss = 4.36375 +I0408 16:51:49.125274 27193 solver.cpp:237] Train net output #0: loss = 4.36375 (* 1 = 4.36375 loss) +I0408 16:51:49.125285 27193 sgd_solver.cpp:105] Iteration 8724, lr = 5.14475e-11 +I0408 16:51:54.114282 27193 solver.cpp:218] Iteration 8736 (2.40537 iter/s, 4.98885s/12 iters), loss = 4.34526 +I0408 16:51:54.114327 27193 solver.cpp:237] Train net output #0: loss = 4.34526 (* 1 = 4.34526 loss) +I0408 16:51:54.114338 27193 sgd_solver.cpp:105] Iteration 8736, lr = 5.01145e-11 +I0408 16:51:59.276058 27193 solver.cpp:218] Iteration 8748 (2.32488 iter/s, 5.16156s/12 iters), loss = 4.40494 +I0408 16:51:59.276104 27193 solver.cpp:237] Train net output #0: loss = 4.40494 (* 1 = 4.40494 loss) +I0408 16:51:59.276115 27193 sgd_solver.cpp:105] Iteration 8748, lr = 4.8816e-11 +I0408 16:52:04.381937 27193 solver.cpp:218] Iteration 8760 (2.35033 iter/s, 5.10567s/12 iters), loss = 4.48773 +I0408 16:52:04.381983 27193 solver.cpp:237] Train net output #0: loss = 4.48773 (* 1 = 4.48773 loss) +I0408 16:52:04.381994 27193 sgd_solver.cpp:105] Iteration 8760, lr = 4.75512e-11 +I0408 16:52:08.983302 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8772.caffemodel +I0408 16:52:13.014247 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8772.solverstate +I0408 16:52:15.347986 27193 solver.cpp:330] Iteration 8772, Testing net (#0) +I0408 16:52:15.348063 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:52:16.382899 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:52:19.820739 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:52:19.820778 27193 solver.cpp:397] Test net output #1: loss = 4.60883 (* 1 = 4.60883 loss) +I0408 16:52:19.912222 27193 solver.cpp:218] Iteration 8772 (0.77271 iter/s, 15.5298s/12 iters), loss = 4.52627 +I0408 16:52:19.912261 27193 solver.cpp:237] Train net output #0: loss = 4.52627 (* 1 = 4.52627 loss) +I0408 16:52:19.912271 27193 sgd_solver.cpp:105] Iteration 8772, lr = 4.63191e-11 +I0408 16:52:24.472766 27193 solver.cpp:218] Iteration 8784 (2.63137 iter/s, 4.56036s/12 iters), loss = 4.42382 +I0408 16:52:24.472810 27193 solver.cpp:237] Train net output #0: loss = 4.42382 (* 1 = 4.42382 loss) +I0408 16:52:24.472821 27193 sgd_solver.cpp:105] Iteration 8784, lr = 4.51189e-11 +I0408 16:52:29.865581 27193 solver.cpp:218] Iteration 8796 (2.22528 iter/s, 5.39259s/12 iters), loss = 4.4459 +I0408 16:52:29.865630 27193 solver.cpp:237] Train net output #0: loss = 4.4459 (* 1 = 4.4459 loss) +I0408 16:52:29.865641 27193 sgd_solver.cpp:105] Iteration 8796, lr = 4.39499e-11 +I0408 16:52:31.444232 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:52:35.010602 27193 solver.cpp:218] Iteration 8808 (2.33245 iter/s, 5.14481s/12 iters), loss = 4.41138 +I0408 16:52:35.010645 27193 solver.cpp:237] Train net output #0: loss = 4.41138 (* 1 = 4.41138 loss) +I0408 16:52:35.010655 27193 sgd_solver.cpp:105] Iteration 8808, lr = 4.28111e-11 +I0408 16:52:40.047235 27193 solver.cpp:218] Iteration 8820 (2.38265 iter/s, 5.03642s/12 iters), loss = 4.60961 +I0408 16:52:40.047281 27193 solver.cpp:237] Train net output #0: loss = 4.60961 (* 1 = 4.60961 loss) +I0408 16:52:40.047292 27193 sgd_solver.cpp:105] Iteration 8820, lr = 4.17019e-11 +I0408 16:52:45.123827 27193 solver.cpp:218] Iteration 8832 (2.36389 iter/s, 5.07638s/12 iters), loss = 4.57143 +I0408 16:52:45.123873 27193 solver.cpp:237] Train net output #0: loss = 4.57143 (* 1 = 4.57143 loss) +I0408 16:52:45.123884 27193 sgd_solver.cpp:105] Iteration 8832, lr = 4.06213e-11 +I0408 16:52:50.162060 27193 solver.cpp:218] Iteration 8844 (2.38189 iter/s, 5.03802s/12 iters), loss = 4.47819 +I0408 16:52:50.162210 27193 solver.cpp:237] Train net output #0: loss = 4.47819 (* 1 = 4.47819 loss) +I0408 16:52:50.162225 27193 sgd_solver.cpp:105] Iteration 8844, lr = 3.95688e-11 +I0408 16:52:55.229676 27193 solver.cpp:218] Iteration 8856 (2.36812 iter/s, 5.0673s/12 iters), loss = 4.54805 +I0408 16:52:55.229722 27193 solver.cpp:237] Train net output #0: loss = 4.54805 (* 1 = 4.54805 loss) +I0408 16:52:55.229733 27193 sgd_solver.cpp:105] Iteration 8856, lr = 3.85436e-11 +I0408 16:53:00.264580 27193 solver.cpp:218] Iteration 8868 (2.38346 iter/s, 5.03469s/12 iters), loss = 4.47282 +I0408 16:53:00.264632 27193 solver.cpp:237] Train net output #0: loss = 4.47282 (* 1 = 4.47282 loss) +I0408 16:53:00.264644 27193 sgd_solver.cpp:105] Iteration 8868, lr = 3.75449e-11 +I0408 16:53:02.344261 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8874.caffemodel +I0408 16:53:05.400054 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8874.solverstate +I0408 16:53:07.738237 27193 solver.cpp:330] Iteration 8874, Testing net (#0) +I0408 16:53:07.738263 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:53:08.705013 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:53:12.334209 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:53:12.334259 27193 solver.cpp:397] Test net output #1: loss = 4.60111 (* 1 = 4.60111 loss) +I0408 16:53:14.121484 27193 solver.cpp:218] Iteration 8880 (0.866024 iter/s, 13.8564s/12 iters), loss = 4.34285 +I0408 16:53:14.121526 27193 solver.cpp:237] Train net output #0: loss = 4.34285 (* 1 = 4.34285 loss) +I0408 16:53:14.121536 27193 sgd_solver.cpp:105] Iteration 8880, lr = 3.65721e-11 +I0408 16:53:19.186627 27193 solver.cpp:218] Iteration 8892 (2.36923 iter/s, 5.06494s/12 iters), loss = 4.6088 +I0408 16:53:19.186669 27193 solver.cpp:237] Train net output #0: loss = 4.6088 (* 1 = 4.6088 loss) +I0408 16:53:19.186681 27193 sgd_solver.cpp:105] Iteration 8892, lr = 3.56245e-11 +I0408 16:53:22.889014 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:53:24.351728 27193 solver.cpp:218] Iteration 8904 (2.32338 iter/s, 5.16489s/12 iters), loss = 4.51584 +I0408 16:53:24.351771 27193 solver.cpp:237] Train net output #0: loss = 4.51584 (* 1 = 4.51584 loss) +I0408 16:53:24.351781 27193 sgd_solver.cpp:105] Iteration 8904, lr = 3.47014e-11 +I0408 16:53:29.451269 27193 solver.cpp:218] Iteration 8916 (2.35325 iter/s, 5.09933s/12 iters), loss = 4.30704 +I0408 16:53:29.451314 27193 solver.cpp:237] Train net output #0: loss = 4.30704 (* 1 = 4.30704 loss) +I0408 16:53:29.451325 27193 sgd_solver.cpp:105] Iteration 8916, lr = 3.38023e-11 +I0408 16:53:34.940600 27193 solver.cpp:218] Iteration 8928 (2.18615 iter/s, 5.48911s/12 iters), loss = 4.46504 +I0408 16:53:34.940649 27193 solver.cpp:237] Train net output #0: loss = 4.46504 (* 1 = 4.46504 loss) +I0408 16:53:34.940659 27193 sgd_solver.cpp:105] Iteration 8928, lr = 3.29265e-11 +I0408 16:53:40.349866 27193 solver.cpp:218] Iteration 8940 (2.21851 iter/s, 5.40904s/12 iters), loss = 4.52444 +I0408 16:53:40.349910 27193 solver.cpp:237] Train net output #0: loss = 4.52444 (* 1 = 4.52444 loss) +I0408 16:53:40.349921 27193 sgd_solver.cpp:105] Iteration 8940, lr = 3.20733e-11 +I0408 16:53:45.508860 27193 solver.cpp:218] Iteration 8952 (2.32613 iter/s, 5.15878s/12 iters), loss = 4.43596 +I0408 16:53:45.508908 27193 solver.cpp:237] Train net output #0: loss = 4.43596 (* 1 = 4.43596 loss) +I0408 16:53:45.508921 27193 sgd_solver.cpp:105] Iteration 8952, lr = 3.12423e-11 +I0408 16:53:50.622609 27193 solver.cpp:218] Iteration 8964 (2.34671 iter/s, 5.11354s/12 iters), loss = 4.49226 +I0408 16:53:50.622646 27193 solver.cpp:237] Train net output #0: loss = 4.49226 (* 1 = 4.49226 loss) +I0408 16:53:50.622655 27193 sgd_solver.cpp:105] Iteration 8964, lr = 3.04328e-11 +I0408 16:53:55.392606 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_8976.caffemodel +I0408 16:53:58.420325 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_8976.solverstate +I0408 16:54:00.750833 27193 solver.cpp:330] Iteration 8976, Testing net (#0) +I0408 16:54:00.750859 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:54:01.780903 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:54:05.338644 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:54:05.338693 27193 solver.cpp:397] Test net output #1: loss = 4.60674 (* 1 = 4.60674 loss) +I0408 16:54:05.430044 27193 solver.cpp:218] Iteration 8976 (0.810431 iter/s, 14.8069s/12 iters), loss = 4.88011 +I0408 16:54:05.430096 27193 solver.cpp:237] Train net output #0: loss = 4.88011 (* 1 = 4.88011 loss) +I0408 16:54:05.430107 27193 sgd_solver.cpp:105] Iteration 8976, lr = 2.96443e-11 +I0408 16:54:09.688771 27193 solver.cpp:218] Iteration 8988 (2.81787 iter/s, 4.25854s/12 iters), loss = 4.49308 +I0408 16:54:09.688812 27193 solver.cpp:237] Train net output #0: loss = 4.49308 (* 1 = 4.49308 loss) +I0408 16:54:09.688822 27193 sgd_solver.cpp:105] Iteration 8988, lr = 2.88762e-11 +I0408 16:54:13.067759 27193 blocking_queue.cpp:49] Waiting for data +I0408 16:54:14.797158 27193 solver.cpp:218] Iteration 9000 (2.34917 iter/s, 5.10818s/12 iters), loss = 4.52761 +I0408 16:54:14.797204 27193 solver.cpp:237] Train net output #0: loss = 4.52761 (* 1 = 4.52761 loss) +I0408 16:54:14.797214 27193 sgd_solver.cpp:105] Iteration 9000, lr = 2.8128e-11 +I0408 16:54:15.531313 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:54:19.936095 27193 solver.cpp:218] Iteration 9012 (2.33521 iter/s, 5.13873s/12 iters), loss = 4.62596 +I0408 16:54:19.936136 27193 solver.cpp:237] Train net output #0: loss = 4.62596 (* 1 = 4.62596 loss) +I0408 16:54:19.936147 27193 sgd_solver.cpp:105] Iteration 9012, lr = 2.73992e-11 +I0408 16:54:25.215159 27193 solver.cpp:218] Iteration 9024 (2.27322 iter/s, 5.27886s/12 iters), loss = 4.63488 +I0408 16:54:25.215204 27193 solver.cpp:237] Train net output #0: loss = 4.63488 (* 1 = 4.63488 loss) +I0408 16:54:25.215216 27193 sgd_solver.cpp:105] Iteration 9024, lr = 2.66892e-11 +I0408 16:54:30.226260 27193 solver.cpp:218] Iteration 9036 (2.39478 iter/s, 5.0109s/12 iters), loss = 4.41475 +I0408 16:54:30.226409 27193 solver.cpp:237] Train net output #0: loss = 4.41475 (* 1 = 4.41475 loss) +I0408 16:54:30.226423 27193 sgd_solver.cpp:105] Iteration 9036, lr = 2.59977e-11 +I0408 16:54:35.322327 27193 solver.cpp:218] Iteration 9048 (2.3549 iter/s, 5.09576s/12 iters), loss = 4.40349 +I0408 16:54:35.322368 27193 solver.cpp:237] Train net output #0: loss = 4.40349 (* 1 = 4.40349 loss) +I0408 16:54:35.322379 27193 sgd_solver.cpp:105] Iteration 9048, lr = 2.53241e-11 +I0408 16:54:40.677500 27193 solver.cpp:218] Iteration 9060 (2.24091 iter/s, 5.35496s/12 iters), loss = 4.43619 +I0408 16:54:40.677552 27193 solver.cpp:237] Train net output #0: loss = 4.43619 (* 1 = 4.43619 loss) +I0408 16:54:40.677563 27193 sgd_solver.cpp:105] Iteration 9060, lr = 2.46679e-11 +I0408 16:54:46.243484 27193 solver.cpp:218] Iteration 9072 (2.15604 iter/s, 5.56575s/12 iters), loss = 4.52332 +I0408 16:54:46.243530 27193 solver.cpp:237] Train net output #0: loss = 4.52332 (* 1 = 4.52332 loss) +I0408 16:54:46.243543 27193 sgd_solver.cpp:105] Iteration 9072, lr = 2.40288e-11 +I0408 16:54:48.511067 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9078.caffemodel +I0408 16:54:52.528714 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9078.solverstate +I0408 16:54:54.861439 27193 solver.cpp:330] Iteration 9078, Testing net (#0) +I0408 16:54:54.861466 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:54:55.772284 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:54:59.338318 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:54:59.338366 27193 solver.cpp:397] Test net output #1: loss = 4.60905 (* 1 = 4.60905 loss) +I0408 16:55:01.209292 27193 solver.cpp:218] Iteration 9084 (0.801854 iter/s, 14.9653s/12 iters), loss = 4.37931 +I0408 16:55:01.209403 27193 solver.cpp:237] Train net output #0: loss = 4.37931 (* 1 = 4.37931 loss) +I0408 16:55:01.209417 27193 sgd_solver.cpp:105] Iteration 9084, lr = 2.34062e-11 +I0408 16:55:06.222435 27193 solver.cpp:218] Iteration 9096 (2.39384 iter/s, 5.01288s/12 iters), loss = 4.56534 +I0408 16:55:06.222482 27193 solver.cpp:237] Train net output #0: loss = 4.56534 (* 1 = 4.56534 loss) +I0408 16:55:06.222493 27193 sgd_solver.cpp:105] Iteration 9096, lr = 2.27997e-11 +I0408 16:55:09.195675 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:55:11.277833 27193 solver.cpp:218] Iteration 9108 (2.3738 iter/s, 5.05519s/12 iters), loss = 4.61088 +I0408 16:55:11.277878 27193 solver.cpp:237] Train net output #0: loss = 4.61088 (* 1 = 4.61088 loss) +I0408 16:55:11.277890 27193 sgd_solver.cpp:105] Iteration 9108, lr = 2.22089e-11 +I0408 16:55:16.319624 27193 solver.cpp:218] Iteration 9120 (2.3802 iter/s, 5.04158s/12 iters), loss = 4.4176 +I0408 16:55:16.319672 27193 solver.cpp:237] Train net output #0: loss = 4.4176 (* 1 = 4.4176 loss) +I0408 16:55:16.319684 27193 sgd_solver.cpp:105] Iteration 9120, lr = 2.16335e-11 +I0408 16:55:21.467120 27193 solver.cpp:218] Iteration 9132 (2.33133 iter/s, 5.14728s/12 iters), loss = 4.41119 +I0408 16:55:21.467165 27193 solver.cpp:237] Train net output #0: loss = 4.41119 (* 1 = 4.41119 loss) +I0408 16:55:21.467176 27193 sgd_solver.cpp:105] Iteration 9132, lr = 2.1073e-11 +I0408 16:55:26.664191 27193 solver.cpp:218] Iteration 9144 (2.30909 iter/s, 5.19686s/12 iters), loss = 4.50215 +I0408 16:55:26.664240 27193 solver.cpp:237] Train net output #0: loss = 4.50215 (* 1 = 4.50215 loss) +I0408 16:55:26.664252 27193 sgd_solver.cpp:105] Iteration 9144, lr = 2.0527e-11 +I0408 16:55:32.098484 27193 solver.cpp:218] Iteration 9156 (2.20829 iter/s, 5.43407s/12 iters), loss = 4.48387 +I0408 16:55:32.098594 27193 solver.cpp:237] Train net output #0: loss = 4.48387 (* 1 = 4.48387 loss) +I0408 16:55:32.098608 27193 sgd_solver.cpp:105] Iteration 9156, lr = 1.99951e-11 +I0408 16:55:37.199944 27193 solver.cpp:218] Iteration 9168 (2.35239 iter/s, 5.10119s/12 iters), loss = 4.49282 +I0408 16:55:37.199985 27193 solver.cpp:237] Train net output #0: loss = 4.49282 (* 1 = 4.49282 loss) +I0408 16:55:37.199995 27193 sgd_solver.cpp:105] Iteration 9168, lr = 1.9477e-11 +I0408 16:55:41.928153 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9180.caffemodel +I0408 16:55:44.958436 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9180.solverstate +I0408 16:55:47.292855 27193 solver.cpp:330] Iteration 9180, Testing net (#0) +I0408 16:55:47.292881 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:55:48.160096 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:55:51.760929 27193 solver.cpp:397] Test net output #0: accuracy = 0.0741422 +I0408 16:55:51.760977 27193 solver.cpp:397] Test net output #1: loss = 4.602 (* 1 = 4.602 loss) +I0408 16:55:51.852545 27193 solver.cpp:218] Iteration 9180 (0.818994 iter/s, 14.6521s/12 iters), loss = 4.633 +I0408 16:55:51.852600 27193 solver.cpp:237] Train net output #0: loss = 4.633 (* 1 = 4.633 loss) +I0408 16:55:51.852613 27193 sgd_solver.cpp:105] Iteration 9180, lr = 1.89723e-11 +I0408 16:55:56.042424 27193 solver.cpp:218] Iteration 9192 (2.86417 iter/s, 4.18969s/12 iters), loss = 4.54277 +I0408 16:55:56.042467 27193 solver.cpp:237] Train net output #0: loss = 4.54277 (* 1 = 4.54277 loss) +I0408 16:55:56.042479 27193 sgd_solver.cpp:105] Iteration 9192, lr = 1.84808e-11 +I0408 16:56:01.088196 27193 solver.cpp:218] Iteration 9204 (2.37833 iter/s, 5.04557s/12 iters), loss = 4.45228 +I0408 16:56:01.088239 27193 solver.cpp:237] Train net output #0: loss = 4.45228 (* 1 = 4.45228 loss) +I0408 16:56:01.088251 27193 sgd_solver.cpp:105] Iteration 9204, lr = 1.80019e-11 +I0408 16:56:01.167338 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:56:06.026691 27193 solver.cpp:218] Iteration 9216 (2.42999 iter/s, 4.93829s/12 iters), loss = 4.43534 +I0408 16:56:06.026823 27193 solver.cpp:237] Train net output #0: loss = 4.43534 (* 1 = 4.43534 loss) +I0408 16:56:06.026835 27193 sgd_solver.cpp:105] Iteration 9216, lr = 1.75355e-11 +I0408 16:56:11.116782 27193 solver.cpp:218] Iteration 9228 (2.35766 iter/s, 5.0898s/12 iters), loss = 4.3691 +I0408 16:56:11.116827 27193 solver.cpp:237] Train net output #0: loss = 4.3691 (* 1 = 4.3691 loss) +I0408 16:56:11.116838 27193 sgd_solver.cpp:105] Iteration 9228, lr = 1.70811e-11 +I0408 16:56:16.541268 27193 solver.cpp:218] Iteration 9240 (2.21228 iter/s, 5.42427s/12 iters), loss = 4.31208 +I0408 16:56:16.541316 27193 solver.cpp:237] Train net output #0: loss = 4.31208 (* 1 = 4.31208 loss) +I0408 16:56:16.541327 27193 sgd_solver.cpp:105] Iteration 9240, lr = 1.66385e-11 +I0408 16:56:21.790753 27193 solver.cpp:218] Iteration 9252 (2.28603 iter/s, 5.24927s/12 iters), loss = 4.64808 +I0408 16:56:21.790802 27193 solver.cpp:237] Train net output #0: loss = 4.64808 (* 1 = 4.64808 loss) +I0408 16:56:21.790814 27193 sgd_solver.cpp:105] Iteration 9252, lr = 1.62074e-11 +I0408 16:56:26.870342 27193 solver.cpp:218] Iteration 9264 (2.36249 iter/s, 5.07938s/12 iters), loss = 4.40606 +I0408 16:56:26.870383 27193 solver.cpp:237] Train net output #0: loss = 4.40606 (* 1 = 4.40606 loss) +I0408 16:56:26.870393 27193 sgd_solver.cpp:105] Iteration 9264, lr = 1.57875e-11 +I0408 16:56:31.975381 27193 solver.cpp:218] Iteration 9276 (2.35071 iter/s, 5.10484s/12 iters), loss = 4.5628 +I0408 16:56:31.975425 27193 solver.cpp:237] Train net output #0: loss = 4.5628 (* 1 = 4.5628 loss) +I0408 16:56:31.975435 27193 sgd_solver.cpp:105] Iteration 9276, lr = 1.53784e-11 +I0408 16:56:34.034907 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9282.caffemodel +I0408 16:56:37.609793 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9282.solverstate +I0408 16:56:39.950565 27193 solver.cpp:330] Iteration 9282, Testing net (#0) +I0408 16:56:39.950589 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:56:40.774657 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:56:44.428355 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:56:44.428402 27193 solver.cpp:397] Test net output #1: loss = 4.61293 (* 1 = 4.61293 loss) +I0408 16:56:46.433233 27193 solver.cpp:218] Iteration 9288 (0.830027 iter/s, 14.4574s/12 iters), loss = 4.52131 +I0408 16:56:46.433279 27193 solver.cpp:237] Train net output #0: loss = 4.52131 (* 1 = 4.52131 loss) +I0408 16:56:46.433290 27193 sgd_solver.cpp:105] Iteration 9288, lr = 1.498e-11 +I0408 16:56:51.639375 27193 solver.cpp:218] Iteration 9300 (2.30506 iter/s, 5.20593s/12 iters), loss = 4.63992 +I0408 16:56:51.639420 27193 solver.cpp:237] Train net output #0: loss = 4.63992 (* 1 = 4.63992 loss) +I0408 16:56:51.639430 27193 sgd_solver.cpp:105] Iteration 9300, lr = 1.45918e-11 +I0408 16:56:53.881580 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:56:56.735462 27193 solver.cpp:218] Iteration 9312 (2.35484 iter/s, 5.09588s/12 iters), loss = 4.56341 +I0408 16:56:56.735505 27193 solver.cpp:237] Train net output #0: loss = 4.56341 (* 1 = 4.56341 loss) +I0408 16:56:56.735517 27193 sgd_solver.cpp:105] Iteration 9312, lr = 1.42137e-11 +I0408 16:57:01.828573 27193 solver.cpp:218] Iteration 9324 (2.35622 iter/s, 5.09291s/12 iters), loss = 4.45953 +I0408 16:57:01.828608 27193 solver.cpp:237] Train net output #0: loss = 4.45953 (* 1 = 4.45953 loss) +I0408 16:57:01.828617 27193 sgd_solver.cpp:105] Iteration 9324, lr = 1.38455e-11 +I0408 16:57:06.842854 27193 solver.cpp:218] Iteration 9336 (2.39326 iter/s, 5.01409s/12 iters), loss = 4.31774 +I0408 16:57:06.842890 27193 solver.cpp:237] Train net output #0: loss = 4.31774 (* 1 = 4.31774 loss) +I0408 16:57:06.842900 27193 sgd_solver.cpp:105] Iteration 9336, lr = 1.34867e-11 +I0408 16:57:11.943785 27193 solver.cpp:218] Iteration 9348 (2.3526 iter/s, 5.10074s/12 iters), loss = 4.61208 +I0408 16:57:11.943902 27193 solver.cpp:237] Train net output #0: loss = 4.61208 (* 1 = 4.61208 loss) +I0408 16:57:11.943910 27193 sgd_solver.cpp:105] Iteration 9348, lr = 1.31373e-11 +I0408 16:57:17.472636 27193 solver.cpp:218] Iteration 9360 (2.17055 iter/s, 5.52856s/12 iters), loss = 4.45627 +I0408 16:57:17.472688 27193 solver.cpp:237] Train net output #0: loss = 4.45627 (* 1 = 4.45627 loss) +I0408 16:57:17.472702 27193 sgd_solver.cpp:105] Iteration 9360, lr = 1.27969e-11 +I0408 16:57:22.590517 27193 solver.cpp:218] Iteration 9372 (2.34482 iter/s, 5.11767s/12 iters), loss = 4.3045 +I0408 16:57:22.590560 27193 solver.cpp:237] Train net output #0: loss = 4.3045 (* 1 = 4.3045 loss) +I0408 16:57:22.590572 27193 sgd_solver.cpp:105] Iteration 9372, lr = 1.24653e-11 +I0408 16:57:27.188896 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9384.caffemodel +I0408 16:57:30.281373 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9384.solverstate +I0408 16:57:32.606954 27193 solver.cpp:330] Iteration 9384, Testing net (#0) +I0408 16:57:32.606981 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:57:33.398360 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:57:37.075866 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:57:37.075915 27193 solver.cpp:397] Test net output #1: loss = 4.6041 (* 1 = 4.6041 loss) +I0408 16:57:37.167441 27193 solver.cpp:218] Iteration 9384 (0.823246 iter/s, 14.5764s/12 iters), loss = 4.42004 +I0408 16:57:37.167487 27193 solver.cpp:237] Train net output #0: loss = 4.42004 (* 1 = 4.42004 loss) +I0408 16:57:37.167498 27193 sgd_solver.cpp:105] Iteration 9384, lr = 1.21423e-11 +I0408 16:57:41.567252 27193 solver.cpp:218] Iteration 9396 (2.72751 iter/s, 4.39962s/12 iters), loss = 4.51628 +I0408 16:57:41.567291 27193 solver.cpp:237] Train net output #0: loss = 4.51628 (* 1 = 4.51628 loss) +I0408 16:57:41.567301 27193 sgd_solver.cpp:105] Iteration 9396, lr = 1.18277e-11 +I0408 16:57:45.966398 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:57:46.635056 27193 solver.cpp:218] Iteration 9408 (2.36799 iter/s, 5.0676s/12 iters), loss = 4.58041 +I0408 16:57:46.635100 27193 solver.cpp:237] Train net output #0: loss = 4.58041 (* 1 = 4.58041 loss) +I0408 16:57:46.635113 27193 sgd_solver.cpp:105] Iteration 9408, lr = 1.15212e-11 +I0408 16:57:51.720304 27193 solver.cpp:218] Iteration 9420 (2.35986 iter/s, 5.08504s/12 iters), loss = 4.69954 +I0408 16:57:51.720348 27193 solver.cpp:237] Train net output #0: loss = 4.69954 (* 1 = 4.69954 loss) +I0408 16:57:51.720360 27193 sgd_solver.cpp:105] Iteration 9420, lr = 1.12227e-11 +I0408 16:57:57.020165 27193 solver.cpp:218] Iteration 9432 (2.2643 iter/s, 5.29965s/12 iters), loss = 4.32433 +I0408 16:57:57.020212 27193 solver.cpp:237] Train net output #0: loss = 4.32433 (* 1 = 4.32433 loss) +I0408 16:57:57.020224 27193 sgd_solver.cpp:105] Iteration 9432, lr = 1.09319e-11 +I0408 16:58:02.440804 27193 solver.cpp:218] Iteration 9444 (2.21385 iter/s, 5.42041s/12 iters), loss = 4.47061 +I0408 16:58:02.440850 27193 solver.cpp:237] Train net output #0: loss = 4.47061 (* 1 = 4.47061 loss) +I0408 16:58:02.440861 27193 sgd_solver.cpp:105] Iteration 9444, lr = 1.06487e-11 +I0408 16:58:07.546167 27193 solver.cpp:218] Iteration 9456 (2.35056 iter/s, 5.10516s/12 iters), loss = 4.46817 +I0408 16:58:07.546211 27193 solver.cpp:237] Train net output #0: loss = 4.46817 (* 1 = 4.46817 loss) +I0408 16:58:07.546221 27193 sgd_solver.cpp:105] Iteration 9456, lr = 1.03728e-11 +I0408 16:58:12.824398 27193 solver.cpp:218] Iteration 9468 (2.27358 iter/s, 5.27802s/12 iters), loss = 4.4607 +I0408 16:58:12.824441 27193 solver.cpp:237] Train net output #0: loss = 4.4607 (* 1 = 4.4607 loss) +I0408 16:58:12.824452 27193 sgd_solver.cpp:105] Iteration 9468, lr = 1.0104e-11 +I0408 16:58:17.898872 27193 solver.cpp:218] Iteration 9480 (2.36487 iter/s, 5.07427s/12 iters), loss = 4.6057 +I0408 16:58:17.900964 27193 solver.cpp:237] Train net output #0: loss = 4.6057 (* 1 = 4.6057 loss) +I0408 16:58:17.900979 27193 sgd_solver.cpp:105] Iteration 9480, lr = 9.8422e-12 +I0408 16:58:19.953650 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9486.caffemodel +I0408 16:58:23.933185 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9486.solverstate +I0408 16:58:26.314612 27193 solver.cpp:330] Iteration 9486, Testing net (#0) +I0408 16:58:26.314636 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:58:27.032685 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:58:30.836994 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 16:58:30.837040 27193 solver.cpp:397] Test net output #1: loss = 4.60412 (* 1 = 4.60412 loss) +I0408 16:58:32.853055 27193 solver.cpp:218] Iteration 9492 (0.802588 iter/s, 14.9516s/12 iters), loss = 4.43222 +I0408 16:58:32.853106 27193 solver.cpp:237] Train net output #0: loss = 4.43222 (* 1 = 4.43222 loss) +I0408 16:58:32.853117 27193 sgd_solver.cpp:105] Iteration 9492, lr = 9.58719e-12 +I0408 16:58:38.040676 27193 solver.cpp:218] Iteration 9504 (2.3133 iter/s, 5.18741s/12 iters), loss = 4.37912 +I0408 16:58:38.040720 27193 solver.cpp:237] Train net output #0: loss = 4.37912 (* 1 = 4.37912 loss) +I0408 16:58:38.040732 27193 sgd_solver.cpp:105] Iteration 9504, lr = 9.33878e-12 +I0408 16:58:39.525240 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:58:43.099529 27193 solver.cpp:218] Iteration 9516 (2.37218 iter/s, 5.05865s/12 iters), loss = 4.37128 +I0408 16:58:43.099573 27193 solver.cpp:237] Train net output #0: loss = 4.37128 (* 1 = 4.37128 loss) +I0408 16:58:43.099584 27193 sgd_solver.cpp:105] Iteration 9516, lr = 9.0968e-12 +I0408 16:58:48.302140 27193 solver.cpp:218] Iteration 9528 (2.30663 iter/s, 5.2024s/12 iters), loss = 4.62514 +I0408 16:58:48.302268 27193 solver.cpp:237] Train net output #0: loss = 4.62514 (* 1 = 4.62514 loss) +I0408 16:58:48.302281 27193 sgd_solver.cpp:105] Iteration 9528, lr = 8.8611e-12 +I0408 16:58:53.482739 27193 solver.cpp:218] Iteration 9540 (2.31647 iter/s, 5.18031s/12 iters), loss = 4.49078 +I0408 16:58:53.482786 27193 solver.cpp:237] Train net output #0: loss = 4.49078 (* 1 = 4.49078 loss) +I0408 16:58:53.482798 27193 sgd_solver.cpp:105] Iteration 9540, lr = 8.63151e-12 +I0408 16:58:58.594856 27193 solver.cpp:218] Iteration 9552 (2.34746 iter/s, 5.11191s/12 iters), loss = 4.49515 +I0408 16:58:58.594897 27193 solver.cpp:237] Train net output #0: loss = 4.49515 (* 1 = 4.49515 loss) +I0408 16:58:58.594908 27193 sgd_solver.cpp:105] Iteration 9552, lr = 8.40786e-12 +I0408 16:59:03.843016 27193 solver.cpp:218] Iteration 9564 (2.28661 iter/s, 5.24795s/12 iters), loss = 4.46884 +I0408 16:59:03.843063 27193 solver.cpp:237] Train net output #0: loss = 4.46884 (* 1 = 4.46884 loss) +I0408 16:59:03.843075 27193 sgd_solver.cpp:105] Iteration 9564, lr = 8.19001e-12 +I0408 16:59:09.159368 27193 solver.cpp:218] Iteration 9576 (2.25728 iter/s, 5.31613s/12 iters), loss = 4.47373 +I0408 16:59:09.159399 27193 solver.cpp:237] Train net output #0: loss = 4.47373 (* 1 = 4.47373 loss) +I0408 16:59:09.159407 27193 sgd_solver.cpp:105] Iteration 9576, lr = 7.9778e-12 +I0408 16:59:13.773216 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9588.caffemodel +I0408 16:59:16.755321 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9588.solverstate +I0408 16:59:19.086458 27193 solver.cpp:330] Iteration 9588, Testing net (#0) +I0408 16:59:19.086586 27193 net.cpp:676] Ignoring source layer train-data +I0408 16:59:19.779719 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:59:23.542052 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 16:59:23.542102 27193 solver.cpp:397] Test net output #1: loss = 4.60252 (* 1 = 4.60252 loss) +I0408 16:59:23.630739 27193 solver.cpp:218] Iteration 9588 (0.829251 iter/s, 14.4709s/12 iters), loss = 4.33667 +I0408 16:59:23.630780 27193 solver.cpp:237] Train net output #0: loss = 4.33667 (* 1 = 4.33667 loss) +I0408 16:59:23.630790 27193 sgd_solver.cpp:105] Iteration 9588, lr = 7.77109e-12 +I0408 16:59:28.066905 27193 solver.cpp:218] Iteration 9600 (2.70515 iter/s, 4.43598s/12 iters), loss = 4.55297 +I0408 16:59:28.066948 27193 solver.cpp:237] Train net output #0: loss = 4.55297 (* 1 = 4.55297 loss) +I0408 16:59:28.066960 27193 sgd_solver.cpp:105] Iteration 9600, lr = 7.56974e-12 +I0408 16:59:31.726902 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 16:59:33.166635 27193 solver.cpp:218] Iteration 9612 (2.35316 iter/s, 5.09952s/12 iters), loss = 4.48176 +I0408 16:59:33.166671 27193 solver.cpp:237] Train net output #0: loss = 4.48176 (* 1 = 4.48176 loss) +I0408 16:59:33.166678 27193 sgd_solver.cpp:105] Iteration 9612, lr = 7.3736e-12 +I0408 16:59:38.229138 27193 solver.cpp:218] Iteration 9624 (2.37046 iter/s, 5.0623s/12 iters), loss = 4.50039 +I0408 16:59:38.229187 27193 solver.cpp:237] Train net output #0: loss = 4.50039 (* 1 = 4.50039 loss) +I0408 16:59:38.229197 27193 sgd_solver.cpp:105] Iteration 9624, lr = 7.18255e-12 +I0408 16:59:43.294006 27193 solver.cpp:218] Iteration 9636 (2.36936 iter/s, 5.06466s/12 iters), loss = 4.50853 +I0408 16:59:43.294049 27193 solver.cpp:237] Train net output #0: loss = 4.50853 (* 1 = 4.50853 loss) +I0408 16:59:43.294060 27193 sgd_solver.cpp:105] Iteration 9636, lr = 6.99644e-12 +I0408 16:59:48.370785 27193 solver.cpp:218] Iteration 9648 (2.3638 iter/s, 5.07658s/12 iters), loss = 4.54178 +I0408 16:59:48.370821 27193 solver.cpp:237] Train net output #0: loss = 4.54178 (* 1 = 4.54178 loss) +I0408 16:59:48.370831 27193 sgd_solver.cpp:105] Iteration 9648, lr = 6.81516e-12 +I0408 16:59:53.319612 27193 solver.cpp:218] Iteration 9660 (2.42491 iter/s, 4.94863s/12 iters), loss = 4.47618 +I0408 16:59:53.319685 27193 solver.cpp:237] Train net output #0: loss = 4.47618 (* 1 = 4.47618 loss) +I0408 16:59:53.319697 27193 sgd_solver.cpp:105] Iteration 9660, lr = 6.63858e-12 +I0408 16:59:58.481665 27193 solver.cpp:218] Iteration 9672 (2.32476 iter/s, 5.16182s/12 iters), loss = 4.58055 +I0408 16:59:58.481709 27193 solver.cpp:237] Train net output #0: loss = 4.58055 (* 1 = 4.58055 loss) +I0408 16:59:58.481721 27193 sgd_solver.cpp:105] Iteration 9672, lr = 6.46657e-12 +I0408 17:00:03.605809 27193 solver.cpp:218] Iteration 9684 (2.34195 iter/s, 5.12394s/12 iters), loss = 4.73246 +I0408 17:00:03.605857 27193 solver.cpp:237] Train net output #0: loss = 4.73246 (* 1 = 4.73246 loss) +I0408 17:00:03.605868 27193 sgd_solver.cpp:105] Iteration 9684, lr = 6.29902e-12 +I0408 17:00:05.709286 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9690.caffemodel +I0408 17:00:08.811535 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9690.solverstate +I0408 17:00:11.142601 27193 solver.cpp:330] Iteration 9690, Testing net (#0) +I0408 17:00:11.142628 27193 net.cpp:676] Ignoring source layer train-data +I0408 17:00:11.784657 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:00:14.607648 27193 blocking_queue.cpp:49] Waiting for data +I0408 17:00:15.594594 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 17:00:15.594640 27193 solver.cpp:397] Test net output #1: loss = 4.61007 (* 1 = 4.61007 loss) +I0408 17:00:17.556022 27193 solver.cpp:218] Iteration 9696 (0.860231 iter/s, 13.9497s/12 iters), loss = 4.38908 +I0408 17:00:17.556067 27193 solver.cpp:237] Train net output #0: loss = 4.38908 (* 1 = 4.38908 loss) +I0408 17:00:17.556078 27193 sgd_solver.cpp:105] Iteration 9696, lr = 6.13581e-12 +I0408 17:00:22.660507 27193 solver.cpp:218] Iteration 9708 (2.35097 iter/s, 5.10427s/12 iters), loss = 4.5884 +I0408 17:00:22.660553 27193 solver.cpp:237] Train net output #0: loss = 4.5884 (* 1 = 4.5884 loss) +I0408 17:00:22.660564 27193 sgd_solver.cpp:105] Iteration 9708, lr = 5.97682e-12 +I0408 17:00:23.414121 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:00:27.708109 27193 solver.cpp:218] Iteration 9720 (2.37747 iter/s, 5.04739s/12 iters), loss = 4.54045 +I0408 17:00:27.708158 27193 solver.cpp:237] Train net output #0: loss = 4.54045 (* 1 = 4.54045 loss) +I0408 17:00:27.708168 27193 sgd_solver.cpp:105] Iteration 9720, lr = 5.82196e-12 +I0408 17:00:32.854161 27193 solver.cpp:218] Iteration 9732 (2.33198 iter/s, 5.14584s/12 iters), loss = 4.63809 +I0408 17:00:32.854208 27193 solver.cpp:237] Train net output #0: loss = 4.63809 (* 1 = 4.63809 loss) +I0408 17:00:32.854219 27193 sgd_solver.cpp:105] Iteration 9732, lr = 5.67111e-12 +I0408 17:00:37.869062 27193 solver.cpp:218] Iteration 9744 (2.39297 iter/s, 5.01469s/12 iters), loss = 4.37199 +I0408 17:00:37.869112 27193 solver.cpp:237] Train net output #0: loss = 4.37199 (* 1 = 4.37199 loss) +I0408 17:00:37.869123 27193 sgd_solver.cpp:105] Iteration 9744, lr = 5.52417e-12 +I0408 17:00:42.934900 27193 solver.cpp:218] Iteration 9756 (2.36891 iter/s, 5.06563s/12 iters), loss = 4.42213 +I0408 17:00:42.934943 27193 solver.cpp:237] Train net output #0: loss = 4.42213 (* 1 = 4.42213 loss) +I0408 17:00:42.934955 27193 sgd_solver.cpp:105] Iteration 9756, lr = 5.38104e-12 +I0408 17:00:47.959026 27193 solver.cpp:218] Iteration 9768 (2.38857 iter/s, 5.02392s/12 iters), loss = 4.45883 +I0408 17:00:47.959071 27193 solver.cpp:237] Train net output #0: loss = 4.45883 (* 1 = 4.45883 loss) +I0408 17:00:47.959081 27193 sgd_solver.cpp:105] Iteration 9768, lr = 5.24161e-12 +I0408 17:00:53.032418 27193 solver.cpp:218] Iteration 9780 (2.36538 iter/s, 5.07318s/12 iters), loss = 4.53484 +I0408 17:00:53.032464 27193 solver.cpp:237] Train net output #0: loss = 4.53484 (* 1 = 4.53484 loss) +I0408 17:00:53.032474 27193 sgd_solver.cpp:105] Iteration 9780, lr = 5.1058e-12 +I0408 17:00:57.904760 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9792.caffemodel +I0408 17:01:00.934283 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9792.solverstate +I0408 17:01:03.340577 27193 solver.cpp:330] Iteration 9792, Testing net (#0) +I0408 17:01:03.340603 27193 net.cpp:676] Ignoring source layer train-data +I0408 17:01:03.950644 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:01:07.808048 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 17:01:07.808095 27193 solver.cpp:397] Test net output #1: loss = 4.60267 (* 1 = 4.60267 loss) +I0408 17:01:07.899291 27193 solver.cpp:218] Iteration 9792 (0.807191 iter/s, 14.8664s/12 iters), loss = 4.4819 +I0408 17:01:07.899339 27193 solver.cpp:237] Train net output #0: loss = 4.4819 (* 1 = 4.4819 loss) +I0408 17:01:07.899351 27193 sgd_solver.cpp:105] Iteration 9792, lr = 4.9735e-12 +I0408 17:01:12.156513 27193 solver.cpp:218] Iteration 9804 (2.81887 iter/s, 4.25703s/12 iters), loss = 4.68578 +I0408 17:01:12.156559 27193 solver.cpp:237] Train net output #0: loss = 4.68578 (* 1 = 4.68578 loss) +I0408 17:01:12.156571 27193 sgd_solver.cpp:105] Iteration 9804, lr = 4.84464e-12 +I0408 17:01:15.156642 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:01:17.254324 27193 solver.cpp:218] Iteration 9816 (2.35405 iter/s, 5.0976s/12 iters), loss = 4.64873 +I0408 17:01:17.254369 27193 solver.cpp:237] Train net output #0: loss = 4.64873 (* 1 = 4.64873 loss) +I0408 17:01:17.254392 27193 sgd_solver.cpp:105] Iteration 9816, lr = 4.71911e-12 +I0408 17:01:22.274540 27193 solver.cpp:218] Iteration 9828 (2.39043 iter/s, 5.02001s/12 iters), loss = 4.42926 +I0408 17:01:22.274583 27193 solver.cpp:237] Train net output #0: loss = 4.42926 (* 1 = 4.42926 loss) +I0408 17:01:22.274595 27193 sgd_solver.cpp:105] Iteration 9828, lr = 4.59684e-12 +I0408 17:01:27.317632 27193 solver.cpp:218] Iteration 9840 (2.37959 iter/s, 5.04288s/12 iters), loss = 4.4811 +I0408 17:01:27.317678 27193 solver.cpp:237] Train net output #0: loss = 4.4811 (* 1 = 4.4811 loss) +I0408 17:01:27.317690 27193 sgd_solver.cpp:105] Iteration 9840, lr = 4.47773e-12 +I0408 17:01:32.666918 27193 solver.cpp:218] Iteration 9852 (2.24338 iter/s, 5.34906s/12 iters), loss = 4.55394 +I0408 17:01:32.667065 27193 solver.cpp:237] Train net output #0: loss = 4.55394 (* 1 = 4.55394 loss) +I0408 17:01:32.667079 27193 sgd_solver.cpp:105] Iteration 9852, lr = 4.36171e-12 +I0408 17:01:37.830734 27193 solver.cpp:218] Iteration 9864 (2.324 iter/s, 5.1635s/12 iters), loss = 4.42274 +I0408 17:01:37.830785 27193 solver.cpp:237] Train net output #0: loss = 4.42274 (* 1 = 4.42274 loss) +I0408 17:01:37.830797 27193 sgd_solver.cpp:105] Iteration 9864, lr = 4.24869e-12 +I0408 17:01:42.924527 27193 solver.cpp:218] Iteration 9876 (2.35591 iter/s, 5.09358s/12 iters), loss = 4.5582 +I0408 17:01:42.924572 27193 solver.cpp:237] Train net output #0: loss = 4.5582 (* 1 = 4.5582 loss) +I0408 17:01:42.924583 27193 sgd_solver.cpp:105] Iteration 9876, lr = 4.13861e-12 +I0408 17:01:48.062638 27193 solver.cpp:218] Iteration 9888 (2.33558 iter/s, 5.1379s/12 iters), loss = 4.62953 +I0408 17:01:48.062682 27193 solver.cpp:237] Train net output #0: loss = 4.62953 (* 1 = 4.62953 loss) +I0408 17:01:48.062693 27193 sgd_solver.cpp:105] Iteration 9888, lr = 4.03138e-12 +I0408 17:01:50.168607 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9894.caffemodel +I0408 17:01:54.149698 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9894.solverstate +I0408 17:01:56.541579 27193 solver.cpp:330] Iteration 9894, Testing net (#0) +I0408 17:01:56.541602 27193 net.cpp:676] Ignoring source layer train-data +I0408 17:01:57.071242 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:02:00.946739 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 17:02:00.946774 27193 solver.cpp:397] Test net output #1: loss = 4.60519 (* 1 = 4.60519 loss) +I0408 17:02:02.968914 27193 solver.cpp:218] Iteration 9900 (0.805057 iter/s, 14.9058s/12 iters), loss = 4.55279 +I0408 17:02:02.969010 27193 solver.cpp:237] Train net output #0: loss = 4.55279 (* 1 = 4.55279 loss) +I0408 17:02:02.969019 27193 sgd_solver.cpp:105] Iteration 9900, lr = 3.92692e-12 +I0408 17:02:08.289611 27193 solver.cpp:218] Iteration 9912 (2.25546 iter/s, 5.32043s/12 iters), loss = 4.48428 +I0408 17:02:08.289664 27193 solver.cpp:237] Train net output #0: loss = 4.48428 (* 1 = 4.48428 loss) +I0408 17:02:08.289675 27193 sgd_solver.cpp:105] Iteration 9912, lr = 3.82517e-12 +I0408 17:02:08.405836 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:02:13.404232 27193 solver.cpp:218] Iteration 9924 (2.34632 iter/s, 5.1144s/12 iters), loss = 4.3918 +I0408 17:02:13.404289 27193 solver.cpp:237] Train net output #0: loss = 4.3918 (* 1 = 4.3918 loss) +I0408 17:02:13.404302 27193 sgd_solver.cpp:105] Iteration 9924, lr = 3.72606e-12 +I0408 17:02:18.503793 27193 solver.cpp:218] Iteration 9936 (2.35325 iter/s, 5.09934s/12 iters), loss = 4.42968 +I0408 17:02:18.503837 27193 solver.cpp:237] Train net output #0: loss = 4.42968 (* 1 = 4.42968 loss) +I0408 17:02:18.503849 27193 sgd_solver.cpp:105] Iteration 9936, lr = 3.62952e-12 +I0408 17:02:23.694406 27193 solver.cpp:218] Iteration 9948 (2.31196 iter/s, 5.1904s/12 iters), loss = 4.35759 +I0408 17:02:23.694454 27193 solver.cpp:237] Train net output #0: loss = 4.35759 (* 1 = 4.35759 loss) +I0408 17:02:23.694466 27193 sgd_solver.cpp:105] Iteration 9948, lr = 3.53547e-12 +I0408 17:02:28.701360 27193 solver.cpp:218] Iteration 9960 (2.39677 iter/s, 5.00674s/12 iters), loss = 4.68561 +I0408 17:02:28.701402 27193 solver.cpp:237] Train net output #0: loss = 4.68561 (* 1 = 4.68561 loss) +I0408 17:02:28.701413 27193 sgd_solver.cpp:105] Iteration 9960, lr = 3.44387e-12 +I0408 17:02:33.788434 27193 solver.cpp:218] Iteration 9972 (2.35901 iter/s, 5.08687s/12 iters), loss = 4.45694 +I0408 17:02:33.788558 27193 solver.cpp:237] Train net output #0: loss = 4.45694 (* 1 = 4.45694 loss) +I0408 17:02:33.788570 27193 sgd_solver.cpp:105] Iteration 9972, lr = 3.35463e-12 +I0408 17:02:39.123100 27193 solver.cpp:218] Iteration 9984 (2.24956 iter/s, 5.33437s/12 iters), loss = 4.45898 +I0408 17:02:39.123142 27193 solver.cpp:237] Train net output #0: loss = 4.45898 (* 1 = 4.45898 loss) +I0408 17:02:39.123153 27193 sgd_solver.cpp:105] Iteration 9984, lr = 3.26771e-12 +I0408 17:02:43.930959 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_9996.caffemodel +I0408 17:02:46.956656 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_9996.solverstate +I0408 17:02:49.283604 27193 solver.cpp:330] Iteration 9996, Testing net (#0) +I0408 17:02:49.283630 27193 net.cpp:676] Ignoring source layer train-data +I0408 17:02:49.797945 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:02:53.735044 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 17:02:53.735091 27193 solver.cpp:397] Test net output #1: loss = 4.60476 (* 1 = 4.60476 loss) +I0408 17:02:53.826309 27193 solver.cpp:218] Iteration 9996 (0.816176 iter/s, 14.7027s/12 iters), loss = 4.52913 +I0408 17:02:53.826359 27193 solver.cpp:237] Train net output #0: loss = 4.52913 (* 1 = 4.52913 loss) +I0408 17:02:53.826371 27193 sgd_solver.cpp:105] Iteration 9996, lr = 3.18305e-12 +I0408 17:02:58.301800 27193 solver.cpp:218] Iteration 10008 (2.68139 iter/s, 4.47529s/12 iters), loss = 4.50072 +I0408 17:02:58.301846 27193 solver.cpp:237] Train net output #0: loss = 4.50072 (* 1 = 4.50072 loss) +I0408 17:02:58.301856 27193 sgd_solver.cpp:105] Iteration 10008, lr = 3.10057e-12 +I0408 17:03:00.560714 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:03:03.403201 27193 solver.cpp:218] Iteration 10020 (2.35239 iter/s, 5.10119s/12 iters), loss = 4.43599 +I0408 17:03:03.403244 27193 solver.cpp:237] Train net output #0: loss = 4.43599 (* 1 = 4.43599 loss) +I0408 17:03:03.403255 27193 sgd_solver.cpp:105] Iteration 10020, lr = 3.02023e-12 +I0408 17:03:08.495762 27193 solver.cpp:218] Iteration 10032 (2.35647 iter/s, 5.09235s/12 iters), loss = 4.47191 +I0408 17:03:08.495867 27193 solver.cpp:237] Train net output #0: loss = 4.47191 (* 1 = 4.47191 loss) +I0408 17:03:08.495879 27193 sgd_solver.cpp:105] Iteration 10032, lr = 2.94198e-12 +I0408 17:03:13.538801 27193 solver.cpp:218] Iteration 10044 (2.37964 iter/s, 5.04277s/12 iters), loss = 4.33616 +I0408 17:03:13.538849 27193 solver.cpp:237] Train net output #0: loss = 4.33616 (* 1 = 4.33616 loss) +I0408 17:03:13.538861 27193 sgd_solver.cpp:105] Iteration 10044, lr = 2.86575e-12 +I0408 17:03:18.585387 27193 solver.cpp:218] Iteration 10056 (2.37795 iter/s, 5.04636s/12 iters), loss = 4.6865 +I0408 17:03:18.585445 27193 solver.cpp:237] Train net output #0: loss = 4.6865 (* 1 = 4.6865 loss) +I0408 17:03:18.585456 27193 sgd_solver.cpp:105] Iteration 10056, lr = 2.7915e-12 +I0408 17:03:24.053393 27193 solver.cpp:218] Iteration 10068 (2.19468 iter/s, 5.46778s/12 iters), loss = 4.51703 +I0408 17:03:24.053429 27193 solver.cpp:237] Train net output #0: loss = 4.51703 (* 1 = 4.51703 loss) +I0408 17:03:24.053437 27193 sgd_solver.cpp:105] Iteration 10068, lr = 2.71917e-12 +I0408 17:03:29.576660 27193 solver.cpp:218] Iteration 10080 (2.17271 iter/s, 5.52305s/12 iters), loss = 4.25818 +I0408 17:03:29.576704 27193 solver.cpp:237] Train net output #0: loss = 4.25818 (* 1 = 4.25818 loss) +I0408 17:03:29.576715 27193 sgd_solver.cpp:105] Iteration 10080, lr = 2.64871e-12 +I0408 17:03:34.686455 27193 solver.cpp:218] Iteration 10092 (2.34853 iter/s, 5.10959s/12 iters), loss = 4.29372 +I0408 17:03:34.686496 27193 solver.cpp:237] Train net output #0: loss = 4.29372 (* 1 = 4.29372 loss) +I0408 17:03:34.686508 27193 sgd_solver.cpp:105] Iteration 10092, lr = 2.58008e-12 +I0408 17:03:36.704762 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10098.caffemodel +I0408 17:03:39.753409 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10098.solverstate +I0408 17:03:42.081080 27193 solver.cpp:330] Iteration 10098, Testing net (#0) +I0408 17:03:42.081110 27193 net.cpp:676] Ignoring source layer train-data +I0408 17:03:42.564541 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:03:46.543206 27193 solver.cpp:397] Test net output #0: accuracy = 0.0729167 +I0408 17:03:46.543233 27193 solver.cpp:397] Test net output #1: loss = 4.61042 (* 1 = 4.61042 loss) +I0408 17:03:48.570607 27193 solver.cpp:218] Iteration 10104 (0.864324 iter/s, 13.8837s/12 iters), loss = 4.52847 +I0408 17:03:48.570654 27193 solver.cpp:237] Train net output #0: loss = 4.52847 (* 1 = 4.52847 loss) +I0408 17:03:48.570665 27193 sgd_solver.cpp:105] Iteration 10104, lr = 2.51323e-12 +I0408 17:03:53.406669 27204 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:03:54.094753 27193 solver.cpp:218] Iteration 10116 (2.17237 iter/s, 5.52392s/12 iters), loss = 4.41373 +I0408 17:03:54.094797 27193 solver.cpp:237] Train net output #0: loss = 4.41373 (* 1 = 4.41373 loss) +I0408 17:03:54.094810 27193 sgd_solver.cpp:105] Iteration 10116, lr = 2.44811e-12 +I0408 17:03:59.501355 27193 solver.cpp:218] Iteration 10128 (2.2196 iter/s, 5.40638s/12 iters), loss = 4.56794 +I0408 17:03:59.501402 27193 solver.cpp:237] Train net output #0: loss = 4.56794 (* 1 = 4.56794 loss) +I0408 17:03:59.501415 27193 sgd_solver.cpp:105] Iteration 10128, lr = 2.38468e-12 +I0408 17:04:04.826126 27193 solver.cpp:218] Iteration 10140 (2.25371 iter/s, 5.32456s/12 iters), loss = 4.45736 +I0408 17:04:04.826179 27193 solver.cpp:237] Train net output #0: loss = 4.45736 (* 1 = 4.45736 loss) +I0408 17:04:04.826190 27193 sgd_solver.cpp:105] Iteration 10140, lr = 2.32289e-12 +I0408 17:04:10.002795 27193 solver.cpp:218] Iteration 10152 (2.31819 iter/s, 5.17645s/12 iters), loss = 4.35751 +I0408 17:04:10.002923 27193 solver.cpp:237] Train net output #0: loss = 4.35751 (* 1 = 4.35751 loss) +I0408 17:04:10.002936 27193 sgd_solver.cpp:105] Iteration 10152, lr = 2.2627e-12 +I0408 17:04:15.097347 27193 solver.cpp:218] Iteration 10164 (2.35559 iter/s, 5.09426s/12 iters), loss = 4.56427 +I0408 17:04:15.097388 27193 solver.cpp:237] Train net output #0: loss = 4.56427 (* 1 = 4.56427 loss) +I0408 17:04:15.097398 27193 sgd_solver.cpp:105] Iteration 10164, lr = 2.20408e-12 +I0408 17:04:20.125466 27193 solver.cpp:218] Iteration 10176 (2.38667 iter/s, 5.02792s/12 iters), loss = 4.49964 +I0408 17:04:20.125506 27193 solver.cpp:237] Train net output #0: loss = 4.49964 (* 1 = 4.49964 loss) +I0408 17:04:20.125519 27193 sgd_solver.cpp:105] Iteration 10176, lr = 2.14697e-12 +I0408 17:04:25.241578 27193 solver.cpp:218] Iteration 10188 (2.34563 iter/s, 5.1159s/12 iters), loss = 4.44243 +I0408 17:04:25.241611 27193 solver.cpp:237] Train net output #0: loss = 4.44243 (* 1 = 4.44243 loss) +I0408 17:04:25.241618 27193 sgd_solver.cpp:105] Iteration 10188, lr = 2.09134e-12 +I0408 17:04:29.843309 27193 solver.cpp:447] Snapshotting to binary proto file snapshot_iter_10200.caffemodel +I0408 17:04:32.822891 27193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot_iter_10200.solverstate +I0408 17:04:35.176980 27193 solver.cpp:310] Iteration 10200, loss = 4.40829 +I0408 17:04:35.177006 27193 solver.cpp:330] Iteration 10200, Testing net (#0) +I0408 17:04:35.177011 27193 net.cpp:676] Ignoring source layer train-data +I0408 17:04:35.555248 27205 data_layer.cpp:73] Restarting data prefetching from start. +I0408 17:04:39.545745 27193 solver.cpp:397] Test net output #0: accuracy = 0.0723039 +I0408 17:04:39.545780 27193 solver.cpp:397] Test net output #1: loss = 4.61144 (* 1 = 4.61144 loss) +I0408 17:04:39.545789 27193 solver.cpp:315] Optimization Done. +I0408 17:04:39.545794 27193 caffe.cpp:259] Optimization Done. diff --git a/cars/lr-investigations/exponential/1e-2/0.8/conf.csv b/cars/lr-investigations/exponential/1e-2/0.8/conf.csv new file mode 100644 index 0000000..c02c982 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.8/conf.csv @@ -0,0 +1,197 @@ +,AM General Hummer SUV 2000,Acura RL Sedan 2012,Acura TL Sedan 2012,Acura TL Type-S 2008,Acura TSX Sedan 2012,Acura Integra Type R 2001,Acura ZDX Hatchback 2012,Aston Martin V8 Vantage Convertible 2012,Aston Martin V8 Vantage Coupe 2012,Aston Martin Virage Convertible 2012,Aston Martin Virage Coupe 2012,Audi RS 4 Convertible 2008,Audi A5 Coupe 2012,Audi TTS Coupe 2012,Audi R8 Coupe 2012,Audi V8 Sedan 1994,Audi 100 Sedan 1994,Audi 100 Wagon 1994,Audi TT Hatchback 2011,Audi S6 Sedan 2011,Audi S5 Convertible 2012,Audi S5 Coupe 2012,Audi S4 Sedan 2012,Audi S4 Sedan 2007,Audi TT RS Coupe 2012,BMW ActiveHybrid 5 Sedan 2012,BMW 1 Series Convertible 2012,BMW 1 Series Coupe 2012,BMW 3 Series Sedan 2012,BMW 3 Series Wagon 2012,BMW 6 Series Convertible 2007,BMW X5 SUV 2007,BMW X6 SUV 2012,BMW M3 Coupe 2012,BMW M5 Sedan 2010,BMW M6 Convertible 2010,BMW X3 SUV 2012,BMW Z4 Convertible 2012,Bentley Continental Supersports Conv. Convertible 2012,Bentley Arnage Sedan 2009,Bentley Mulsanne Sedan 2011,Bentley Continental GT Coupe 2012,Bentley Continental GT Coupe 2007,Bentley Continental Flying Spur Sedan 2007,Bugatti Veyron 16.4 Convertible 2009,Bugatti Veyron 16.4 Coupe 2009,Buick Regal GS 2012,Buick Rainier SUV 2007,Buick Verano Sedan 2012,Buick Enclave SUV 2012,Cadillac CTS-V Sedan 2012,Cadillac SRX SUV 2012,Cadillac Escalade EXT Crew Cab 2007,Chevrolet Silverado 1500 Hybrid Crew Cab 2012,Chevrolet Corvette Convertible 2012,Chevrolet Corvette ZR1 2012,Chevrolet Corvette Ron Fellows Edition Z06 2007,Chevrolet Traverse SUV 2012,Chevrolet Camaro Convertible 2012,Chevrolet HHR SS 2010,Chevrolet Impala Sedan 2007,Chevrolet Tahoe Hybrid SUV 2012,Chevrolet Sonic Sedan 2012,Chevrolet Express Cargo Van 2007,Chevrolet Avalanche Crew Cab 2012,Chevrolet Cobalt SS 2010,Chevrolet Malibu Hybrid Sedan 2010,Chevrolet TrailBlazer SS 2009,Chevrolet Silverado 2500HD Regular Cab 2012,Chevrolet Silverado 1500 Classic Extended Cab 2007,Chevrolet Express Van 2007,Chevrolet Monte Carlo Coupe 2007,Chevrolet Malibu Sedan 2007,Chevrolet Silverado 1500 Extended Cab 2012,Chevrolet Silverado 1500 Regular Cab 2012,Chrysler Aspen SUV 2009,Chrysler Sebring Convertible 2010,Chrysler Town and Country Minivan 2012,Chrysler 300 SRT-8 2010,Chrysler Crossfire Convertible 2008,Chrysler PT Cruiser Convertible 2008,Daewoo Nubira Wagon 2002,Dodge Caliber Wagon 2012,Dodge Caliber Wagon 2007,Dodge Caravan Minivan 1997,Dodge Ram Pickup 3500 Crew Cab 2010,Dodge Ram Pickup 3500 Quad Cab 2009,Dodge Sprinter Cargo Van 2009,Dodge Journey SUV 2012,Dodge Dakota Crew Cab 2010,Dodge Dakota Club Cab 2007,Dodge Magnum Wagon 2008,Dodge Challenger SRT8 2011,Dodge Durango SUV 2012,Dodge Durango SUV 2007,Dodge Charger Sedan 2012,Dodge Charger SRT-8 2009,Eagle Talon Hatchback 1998,FIAT 500 Abarth 2012,FIAT 500 Convertible 2012,Ferrari FF Coupe 2012,Ferrari California Convertible 2012,Ferrari 458 Italia Convertible 2012,Ferrari 458 Italia Coupe 2012,Fisker Karma Sedan 2012,Ford F-450 Super Duty Crew Cab 2012,Ford Mustang Convertible 2007,Ford Freestar Minivan 2007,Ford Expedition EL SUV 2009,Ford Edge SUV 2012,Ford Ranger SuperCab 2011,Ford GT Coupe 2006,Ford F-150 Regular Cab 2012,Ford F-150 Regular Cab 2007,Ford Focus Sedan 2007,Ford E-Series Wagon Van 2012,Ford Fiesta Sedan 2012,GMC Terrain SUV 2012,GMC Savana Van 2012,GMC Yukon Hybrid SUV 2012,GMC Acadia SUV 2012,GMC Canyon Extended Cab 2012,Geo Metro Convertible 1993,HUMMER H3T Crew Cab 2010,HUMMER H2 SUT Crew Cab 2009,Honda Odyssey Minivan 2012,Honda Odyssey Minivan 2007,Honda Accord Coupe 2012,Honda Accord Sedan 2012,Hyundai Veloster Hatchback 2012,Hyundai Santa Fe SUV 2012,Hyundai Tucson SUV 2012,Hyundai Veracruz SUV 2012,Hyundai Sonata Hybrid Sedan 2012,Hyundai Elantra Sedan 2007,Hyundai Accent Sedan 2012,Hyundai Genesis Sedan 2012,Hyundai Sonata Sedan 2012,Hyundai Elantra Touring Hatchback 2012,Hyundai Azera Sedan 2012,Infiniti G Coupe IPL 2012,Infiniti QX56 SUV 2011,Isuzu Ascender SUV 2008,Jaguar XK XKR 2012,Jeep Patriot SUV 2012,Jeep Wrangler SUV 2012,Jeep Liberty SUV 2012,Jeep Grand Cherokee SUV 2012,Jeep Compass SUV 2012,Lamborghini Reventon Coupe 2008,Lamborghini Aventador Coupe 2012,Lamborghini Gallardo LP 570-4 Superleggera 2012,Lamborghini Diablo Coupe 2001,Land Rover Range Rover SUV 2012,Land Rover LR2 SUV 2012,Lincoln Town Car Sedan 2011,MINI Cooper Roadster Convertible 2012,Maybach Landaulet Convertible 2012,Mazda Tribute SUV 2011,McLaren MP4-12C Coupe 2012,Mercedes-Benz 300-Class Convertible 1993,Mercedes-Benz C-Class Sedan 2012,Mercedes-Benz SL-Class Coupe 2009,Mercedes-Benz E-Class Sedan 2012,Mercedes-Benz S-Class Sedan 2012,Mercedes-Benz Sprinter Van 2012,Mitsubishi Lancer Sedan 2012,Nissan Leaf Hatchback 2012,Nissan NV Passenger Van 2012,Nissan Juke Hatchback 2012,Nissan 240SX Coupe 1998,Plymouth Neon Coupe 1999,Porsche Panamera Sedan 2012,Ram C/V Cargo Van Minivan 2012,Rolls-Royce Phantom Drophead Coupe Convertible 2012,Rolls-Royce Ghost Sedan 2012,Rolls-Royce Phantom Sedan 2012,Scion xD Hatchback 2012,Spyker C8 Convertible 2009,Spyker C8 Coupe 2009,Suzuki Aerio Sedan 2007,Suzuki Kizashi Sedan 2012,Suzuki SX4 Hatchback 2012,Suzuki SX4 Sedan 2012,Tesla Model S Sedan 2012,Toyota Sequoia SUV 2012,Toyota Camry Sedan 2012,Toyota Corolla Sedan 2012,Toyota 4Runner SUV 2012,Volkswagen Golf Hatchback 2012,Volkswagen Golf Hatchback 1991,Volkswagen Beetle Hatchback 2012,Volvo C30 Hatchback 2012,Volvo 240 Sedan 1993,Volvo XC90 SUV 2007,smart fortwo Convertible 2012,Per-class accuracy +AM General Hummer SUV 2000,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Acura RL Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Sedan 2012,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TL Type-S 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura TSX Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Acura Integra Type R 2001,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2222 +Acura ZDX Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin V8 Vantage Coupe 2012,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Aston Martin Virage Coupe 2012,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6 +Audi RS 4 Convertible 2008,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Audi A5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TTS Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi R8 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi V8 Sedan 1994,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Audi 100 Sedan 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi 100 Wagon 1994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +Audi TT Hatchback 2011,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S6 Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S5 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi S4 Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Audi TT RS Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW ActiveHybrid 5 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Convertible 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 1 Series Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2857 +BMW 3 Series Sedan 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 3 Series Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW 6 Series Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X5 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +BMW X6 SUV 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M3 Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M5 Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW M6 Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW X3 SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +BMW Z4 Convertible 2012,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Supersports Conv. Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Arnage Sedan 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Mulsanne Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental GT Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bentley Continental Flying Spur Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Bugatti Veyron 16.4 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.2 +Bugatti Veyron 16.4 Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Regal GS 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Rainier SUV 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Verano Sedan 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Buick Enclave SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac CTS-V Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac SRX SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Cadillac Escalade EXT Crew Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.25 +Chevrolet Silverado 1500 Hybrid Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Corvette Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1538 +Chevrolet Corvette ZR1 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Chevrolet Corvette Ron Fellows Edition Z06 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3 +Chevrolet Traverse SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Chevrolet Camaro Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet HHR SS 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Impala Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Tahoe Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Chevrolet Sonic Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Cargo Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Avalanche Crew Cab 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Cobalt SS 2010,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Chevrolet Malibu Hybrid Sedan 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +Chevrolet TrailBlazer SS 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 2500HD Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1818 +Chevrolet Silverado 1500 Classic Extended Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Express Van 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Monte Carlo Coupe 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Malibu Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chevrolet Silverado 1500 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler Aspen SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 +Chrysler Sebring Convertible 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +Chrysler Town and Country Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler 300 SRT-8 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Chrysler Crossfire Convertible 2008,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Chrysler PT Cruiser Convertible 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Daewoo Nubira Wagon 2002,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Caliber Wagon 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.6667 +Dodge Caravan Minivan 1997,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Ram Pickup 3500 Crew Cab 2010,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Dodge Ram Pickup 3500 Quad Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,1,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Sprinter Cargo Van 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Journey SUV 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Crew Cab 2010,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Dakota Club Cab 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Magnum Wagon 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Challenger SRT8 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Durango SUV 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Dodge Charger Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Dodge Charger SRT-8 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Eagle Talon Hatchback 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +FIAT 500 Abarth 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +FIAT 500 Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari FF Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Ferrari California Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.4444 +Ferrari 458 Italia Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Ferrari 458 Italia Coupe 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Fisker Karma Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 +Ford F-450 Super Duty Crew Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Ford Mustang Convertible 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Freestar Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Ford Expedition EL SUV 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Ford Edge SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Ford Ranger SuperCab 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford GT Coupe 2006,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford F-150 Regular Cab 2007,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford Focus Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ford E-Series Wagon Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75 +Ford Fiesta Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Terrain SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +GMC Savana Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0.2308 +GMC Yukon Hybrid SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Acadia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +GMC Canyon Extended Cab 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Geo Metro Convertible 1993,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.1538 +HUMMER H3T Crew Cab 2010,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +HUMMER H2 SUT Crew Cab 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5 +Honda Odyssey Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +Honda Odyssey Minivan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Honda Accord Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veloster Hatchback 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1111 +Hyundai Santa Fe SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Hyundai Tucson SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Veracruz SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Hybrid Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Elantra Sedan 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Hyundai Accent Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Genesis Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Sonata Sedan 2012,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +Hyundai Elantra Touring Hatchback 2012,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Hyundai Azera Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti G Coupe IPL 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Infiniti QX56 SUV 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Isuzu Ascender SUV 2008,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jaguar XK XKR 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Patriot SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Wrangler SUV 2012,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Liberty SUV 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0909 +Jeep Grand Cherokee SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Jeep Compass SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Reventon Coupe 2008,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1429 +Lamborghini Aventador Coupe 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lamborghini Gallardo LP 570-4 Superleggera 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Lamborghini Diablo Coupe 2001,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Land Rover Range Rover SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Land Rover LR2 SUV 2012,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Lincoln Town Car Sedan 2011,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +MINI Cooper Roadster Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.3333 +Maybach Landaulet Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Mazda Tribute SUV 2011,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 +McLaren MP4-12C Coupe 2012,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1 +Mercedes-Benz 300-Class Convertible 1993,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz C-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz SL-Class Coupe 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz E-Class Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz S-Class Sedan 2012,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Mercedes-Benz Sprinter Van 2012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.625 +Mitsubishi Lancer Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Leaf Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1667 +Nissan NV Passenger Van 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan Juke Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Nissan 240SX Coupe 1998,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Plymouth Neon Coupe 1999,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0 +Porsche Panamera Sedan 2012,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Ram C/V Cargo Van Minivan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.125 +Rolls-Royce Phantom Drophead Coupe Convertible 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Ghost Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Rolls-Royce Phantom Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Scion xD Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Spyker C8 Convertible 2009,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0.0833 +Spyker C8 Coupe 2009,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Aerio Sedan 2007,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki Kizashi Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Suzuki SX4 Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Tesla Model S Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Sequoia SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota Camry Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 +Toyota Corolla Sedan 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Toyota 4Runner SUV 2012,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 2012,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Golf Hatchback 1991,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volkswagen Beetle Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo C30 Hatchback 2012,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +Volvo 240 Sedan 1993,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0.0833 +Volvo XC90 SUV 2007,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 +smart fortwo Convertible 2012,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 diff --git a/cars/lr-investigations/exponential/1e-2/0.8/deploy.prototxt b/cars/lr-investigations/exponential/1e-2/0.8/deploy.prototxt new file mode 100644 index 0000000..d7f4b54 --- /dev/null +++ b/cars/lr-investigations/exponential/1e-2/0.8/deploy.prototxt @@ -0,0 +1,341 @@ +input: "data" +input_shape { + dim: 1 + dim: 3 + dim: 227 + dim: 227 +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 96 + kernel_size: 11 + stride: 4 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" +} +layer { + name: "norm1" + type: "LRN" + bottom: "conv1" + top: "norm1" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "norm1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv2" + type: "Convolution" + bottom: "pool1" + top: "conv2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 2 + kernel_size: 5 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu2" + type: "ReLU" + bottom: "conv2" + top: "conv2" +} +layer { + name: "norm2" + type: "LRN" + bottom: "conv2" + top: "norm2" + lrn_param { + local_size: 5 + alpha: 9.99999974738e-05 + beta: 0.75 + } +} +layer { + name: "pool2" + type: "Pooling" + bottom: "norm2" + top: "pool2" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "relu3" + type: "ReLU" + bottom: "conv3" + top: "conv3" +} +layer { + name: "conv4" + type: "Convolution" + bottom: "conv3" + top: "conv4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 384 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu4" + type: "ReLU" + bottom: "conv4" + top: "conv4" +} +layer { + name: "conv5" + type: "Convolution" + bottom: "conv4" + top: "conv5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 256 + pad: 1 + kernel_size: 3 + group: 2 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu5" + type: "ReLU" + bottom: "conv5" + top: "conv5" +} +layer { + name: "pool5" + type: "Pooling" + bottom: "conv5" + top: "pool5" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} +layer { + name: "fc6" + type: "InnerProduct" + bottom: "pool5" + top: "fc6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu6" + type: "ReLU" + bottom: "fc6" + top: "fc6" +} +layer { + name: "drop6" + type: "Dropout" + bottom: "fc6" + top: "fc6" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc7" + type: "InnerProduct" + bottom: "fc6" + top: "fc7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 4096 + weight_filler { + type: "gaussian" + std: 0.00499999988824 + } + bias_filler { + type: "constant" + value: 0.10000000149 + } + } +} +layer { + name: "relu7" + type: "ReLU" + bottom: "fc7" + top: "fc7" +} +layer { + name: "drop7" + type: "Dropout" + bottom: "fc7" + top: "fc7" + dropout_param { + dropout_ratio: 0.5 + } +} +layer { + name: "fc8" + type: "InnerProduct" + bottom: "fc7" + top: "fc8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + inner_product_param { + num_output: 196 + weight_filler { + type: "gaussian" + std: 0.00999999977648 + } + bias_filler { + type: "constant" + value: 0.0 + } + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "fc8" + top: "softmax" +} diff --git a/cars/lr-investigations/exponential/1e-2/0.8/large.png b/cars/lr-investigations/exponential/1e-2/0.8/large.png new file mode 100644 index 0000000000000000000000000000000000000000..23310c5f0b9ac1feb1ffc71347afa8778a69b548 GIT binary patch literal 82466 zcmeFYbyU>t_CBm4prq0vp-6W(14>9UbobDmN(?F@(gH*G3`6Ho(jwj6r666>Iq(k8 z`98`7gb} zl4c2FVi`6Z3ZNwF10}Pb*N18I!lI(qgScPH+V)@x!tQR~0TqPJ=Q6ZRv>(mL{`^Xe zg)r4y{_|V1kHXAmE10cZIDdWxnRoEsrH~jcd7y@W|JP)ctW$NyoLJ07_gdQ`FYh)Z zGANGbpC86)CHm?`@kZutodigyrSHdBTn-`B_P*dTY#2>0)H~!9_lYu6AY`rWaI{_2 z0~BIXb`Z!c;I%tv3oyTW5Bd&ZL%T5}Kf~|+8la1D-OBTeCjQ+`8O~L%E{MyWV3<`Z zS)#85ySg+*aqwirT+1$19%++?Gy#ZId_49@kQf}9^PDXXjY?JPiOPBzJhRHT+sr#4 z)C$I2X4J@4siNTqxBT;O2LJEJX^@eR6&uvJY;6yq*}N?t`qXErpKEBs*JRK*0RBnC z2syCm`usFrIAUKA)I)Sh_1CwKKi-=3EvaBsO?PO9F;&9qsIg*tDaNX3&N1s7x!Pq9 zSNnJ5!c9=G@_#(`f8O$mBe`b&Y$Qfh4O+5Ox-=}m1i5IFY-#Yej|`AFGhS@2<@fy2 z2Zgo!m<+;mHAmx@ zyeP+~D3rT@AH51tCGME-*1V1pxZ>ZKSBCRM_q>IOQZb&b{J*=gmB+>OUm}Q+zv#*| z6gP5p`#&A;KYW6T_qylzYvnRM`33oHEZOSww{bK|4^pZ}eW11I19YGdk7(Eo4apHP8Hh(FKz{|kQnKE(pC!b{MnKNj@MLHd2# z;XA-uJN`;c*UsA)a!-!nUlGR6-DJ^0JHC=CmJ?1|c` zbQ(rs14D0t#Vj1QQNoFP+_~y`G+(w+4eIiMawUXm`~)V{uPJ+ z_p9JtgM6i~qV}!Te|2-55HftaaU~sQh1p8tUgkfLyt_2{SDXsz$w#D1e2k~zwR!!u z{AVIJm`i-Nv-oW48U)zPEs_#Yg$|EJ4X{b>xBN~qoLHJpwe#U1jQ&hDv8WQhdA!$H z*im3UH(p>|;UW}lv7JcEFQ?J0BlLYE4?tzox+A zx@Gm)?tXudE-nuLQtr4q$+W>-?HGUi;J|=s;=5QR9xVO2CaR+p~q6xbOc`kdiRL4D3D@T)bAhvF%b+x7ioXvaMy=|EF9=?y{DE1B z?y`nL(FJb1&UMlfi_){u?y^O*$Dd~9LaG*_Uk*l@I5+R$QdA^5-S`RYs1C-I()4xZ ztOXb`(D45ARQs3*SEI)`AARP2ac{7%EaQ3demK%FlO|%$0r2LDn>sU~Z9Hf0NFNeA z^1*yW1*Q$>$R1TNkr^l0nszSh4uj^kDHEC4vc)-^J=x(n=0R7ukpjBbGiA*%u>fyC zGX#g+^M~Ueo5JQi;=hjlW)iHJWfQyjoEPT6ZD;8Jn^OMvuj+ocsc6I#q2vokte)?A zqxr138O-VF!iHkW92wY7n{qJBNTNM431M4AW93;kx(tm_0!N8En$cpdz<8{o%4o(5u*;E|vW@Qq1^H3(iP~jbubGz(7mKCJw+~@p@Rqb<@1R^;{ySOaI zL1$U+VSTm7e=>0t^}fq&Se-!5cNOaCafrfy^zo!tX0B_cnThY9i@aSMiZOCkr`%{A zKWR@nTqs8#wRI|AJPoNPwbJ39f5=DUF)^k6yVMdpW_5+#g^=3Adrzl?dW5H9Mg&b{ zm{~Joup+n7cDB7m+8`c=CIUOkF!Yqu(cIC=QKZRWMF!}f0h~xk+3VPj6!chEyVOc? zmK}XQTMW9atDOksS{j4V_VaNXQjSWX13TOh9v0e zHDy0oZJ&;sd!0K9`Wrwa(#9BZY(JyqvHXN&S$`2|RSC1V(+`cV?|5W1ky(OFRuL^Q zXa&Dcb#-gMV!H2W7hg{O)t>&9Cd`3A9PFfVaTTwk`LqzQvI0RElR7_;wpM>p<(%!} zX_vrh1~B*dyT@nXRF8J)td5X+^+nZi(A(+MU}^n>hzDl;gNUE)o&AJpfW_S9vF(8U z>MmpK8Pa=(vyo1FdKq>6d6FsBW7%U`s%kySn9PpzMlbTpi41)3wDQG=)#L8~CA?HD z>im9(kfwcEEDRVEz3Y?qI3#vy*9~SsbKtO*r<96RMuG@$WU}9&T1b<|z?puVY zd4``w+yOb%8e_cTe{D9097oNWLp>}7o1OvGiI^h-Z`ww2NX#&BiZcd!& z!?ni3JzZWzG&c99FGbW>OBSHO`^@DRYeZ>Z-VvD3C+q^2wTHF{b%y&h2I5!nv8$&_ zbt7#0u9o>0Rk^Qqtb-VsA^Uzy)Rmmb9;f~&u>qNdjaP5=Wo_uxUXS2Rqq{@};WrI|GhrPcP*I_cW6P3esxF)3nJfMpjGnCkj8P4z54rK{o6 z*KI7|BnGj~#isaD^s(Vaw(iBRi_!H;5fCWt_bEow-`3eB8?3E0bOYP&>cFuEJLbAf zPyT|#DP4u4s}^Hyo0!8Gv~Al0%NcqJTOIwrM>?v*Xk)4w`M154Hkc?nM@umzfE^vm_)f=zDF`#VWIc3^EdNp zzsm{;eU;xvruWQUQ9oyA1{&?3M-MOd|5_p}&FGXVd7#uY(EEsA@eP58-n%baPw8$X zc($U7FGqLeI`RJAY`oX{(j~70M35C;G@eB|@%mbviZm()ldn_=1ddq9tnUmn#h zbN71|7NZd-=_)O$BPSJiGQ0+|{JLK!^M0u@Vin_^+=a_E8A(!}<^YS`X=4@I$ha~F_CND3JL>hJyD5@1-`f~bRX8!bLox0|TNT~drlJEvUlf4ejx!ukI z{d($Z+{XT4a!*}1VC!UL#1S)JZ(Mz>yaYBUv=?Dp=~3v3lc`swe$?AIzeDl6GrJ9% z`%AhH3r|@!Y>x+s>Sf0=)#a19%5sh9Q0Ckb=eByxKIivVp-o1^PMf2uSnp%WuBM{C zh2)RBpjQsHwnVYpRIeE>C4GCQW)@2x8;w-oBJQX33$us)#?1-(A$x^tJdxnk=5a9Q z@GY#&`i#X!ZAnOI8)BcUJ>$SF_PzG2UtL{U)ET4NAUUj83S;XkwSRz!RkMs7>P`(Iy*F{6W*{meb56DT3 z>CJ!PCWfq<(f-(#`OL@iaagzmgldJ=<>+Z zh)=%+ksn_VYWjE_y-?`xi{3-iQe>QpV(Yv3@%8WJGHyWRy(qu>&$9gsmXn`K*41K- z>*i+fS?rV$%_JiNuaDdDAql{^12+Yr$CXzo`zd34yfLi`$1K>o^30u04B>T}(`VF} z4{j&m+ix*GsKve(WhZhWZj+G%YCEMH(TUW*Atuiz_5%c9&) z%}T{``8rDYX&I>NtYk=!mQh^*Ox_hQ%tAU?Zi)#^fbY9-pn9%cphHpsQ^~dxR@-ik zG2-EByGBoF*1`S-=|FB4fIaKx(!Q}s?j9a5YXNYAE%xSu{{0v09r&91mm}_EDwMG|Zsf?F(%T*D~jSNf$P>;AN%r z@-$iF$DflK&%N7U?e}#L>Qp=-B{#Cj@^EIVI1ys@Bz9f7hQ{C;Lq!9?NeT=zs&<;J zv9Ev%-;$s0!BKhI?tBB%YTJWPC)q|4{VmY`@x;gp|3fxqd<^)svdh?=0`q1!p4ik! zbc*>IF4qq?r0zi@$!K;6G1SLeDwzEbk0DJP7(Km@bQoCzujdY#L0aH+bHzc}7q?Mn zRJ#Qn$Sg_~>(O`$;Dal8IenhU=WATbo!F}`lKZ;qZ_5YX!23%#-`D+hAAU8}5V<;H zx@l(s#>ub+1jM+XlH*!#tTVEeCmzeyox&blOGpa`Cj(U!2o;P1XyDGZp$CW_4K6Dh zddF=xb6O+5D z)_A#J&v=>7EJ=Y$QmtsQ>wVv8U*O_Ui9pi97q%!gl*S)ISZ>{|Tbd__6x3!yGEm(33EfkadW9mGB^*F)UporLKu9q2W~-o)cP1v)yA&l@VVLC)lcY^h5TKCV zj|1np!SU6n3ABgC)I+!-MAo%4Z|jH^y4+A2iyn&_O^u~!@obtoz}LO%^7SFftZ3TF1f#lLrAr26hts`N`7U z-C@inOF}@7tj2u317t!~A%~*OsVwpO@Nn3ActWlMeOuA7?~YCbbIGf3&Puu<0D@~v z$@0IG=2lnuRi4|i!I-m>7VD^D|M1veoCe+Ze3b;Bm5un_W6PvRl#T#b09`54e~`wNB!q!SN2FmXmCKb=~QGcaU2*R=}{Q z&Ao2R3$49mqs{)xm(f9b*1xGS)FqV}K$d1uKM8Y2q2)_XI}XJ$sR}!|<-@UMxB-3- z4*_VYcc_*hQ>~|`lPQtZ8esqU!Ox+U<|BA*5}jpEq9kqD#Et@N7nfDHRL;QGwJ=UT zb1}goH$@^zrubuI>KJ$|+oQP;ahMnC(5!lfWAkpk4nBl`38TsX&-ECf(AEqBYId~^_qv?OwttT8s zS3(cf6e6IXV@DteuMB#{UwuJo%nVhSaOZ|Nb!~AO^4W`^mC*>5DW&q293btCd~=~Y zt$0ezQgLR{yF0_7RKa=kyvw!+p=k%T31AZ`>jp8I_|ALx?ft)RosYSST;YR@#i{hB_ zBU;b7n4MrMrtzOYoJmF!-x%1mrt|4R!HCxX+OMNja@Y6VN4fB)*dN82lMo9m+w%6Hs)gvY|)3)APZRl$#xYt&x&2oBp2SelNt&Fra# z_>`*ojql}Iw*G(^Y!T~|pK{4C)>{Oi@LU1Vw`e!X)+D$IvvP(~b1LV|N~F;B8U^$0 z=-_4ip$fD0iTrtV&tu8v&bry`&X4vGW3d!meckt10V-T1P7BTegk+-!H11*odz4-_ z3Vo#3_zfyuL&>3%`g178tkF}zxPjOVWM-_oJ04b-PGQ}Iid;_mo&qUU2r-vz1BgDA zk9=RfkEiAbV!cxcRjufOJlT`zXlS7I7ji5%qVpMl5MTGkxemGh%T}|U%Dt^9Bix10 z`rkFQSc4Xe?9lFB?~$zVCwfrhCx4DrqX=>0z}jXLv4qc9UqpUTe^`D(M;6%zJZVz# zu<4)I1lT_S4pH6b7jeRD*SQFSF4X|%vFO{mWk$jIy2Fd4nQH+CQl+Yf^!D`{bNfOF zcgN-=y6@fC$v}C7jrRn{v1wNQD%b8}3;$*V0Bg{s(0ld|O8f1P2|n7b>x}Cf_>Z0R z^{lj|Lh77aepq_B)>kGb?sD<&6tUESJ`Jqw*mn_>aEm0_#xbvbCg#&(EV-i5gf47( z_ z9Hm;#IQ9kAdN$Y8KO9-R_oZVU>oaH;PrYM;l?m0n6_Dv@#oKP}W)(HgGbI|l=Rq@I zs{Y2w!|=)wg=I$Oa5ln1utfk`w`n%#k-ZFmuU==iLK!IIbiZiE4BemoK^)Jiq)#N9 zs@H!gl|j~1GX424x?i7@(Qmfj{X-4My9E-iVlnD-ue-(bX)H9(qMtdoX!%)#y{Iea z6j9(F>v=vc`8KDtnhk)`i*tG8T@PHJ<5~R_qGp5QU=T7}*az5^uc_#*T50C?QIV>l z;xtcoU}r4T67#Yjj~lca+AK`;sV7qbUKClaPp-I;rBF7l23FE5j};LUeRt6yq7|P< z`Vl^hHx;Gg^q)+}jHgERJ@hm+#acO2Y=A#DLs0YkPWiXC?c9!WvvR8AnBc~@6Fb#x z3|`bdnX@;73DzPSR<9dK6g%y8n@KYVy_X94XCAi)B2ujqV{x^? zsUIo}eoTxNT%5soHA@3Zrj=7pf^y44BfK!Vv_3%CJ|d*Yt#=;cSJ!!LNs+5Qx1SU~ z;U%eBsslRN`R`9N>BsUUd{m-&p?PS#L0tj(AsQ-g%oLczph;yB@Xh>KrKUctU@fWB zBlJH=lS~wHt;(r??6F{?ta;8?Y=W?FPkuTl52~})77;Eyo?|=do=vOSzH%F<316ddh zxP^$$c0KDgY-^)8;AL0kb_r~ke0HyLbpUBB4B9xLyrf2kw1IqgJR^0anS$Oq5&9tx zx-xBo4|qNn11bFJdf`N{(MQI>PPbcq`@0Y?!p%04YL0m2JNItt&w$qAVApq!sCwUHEr8tU7x|fiC@`Q zkm6x_ycelsJ)x@A=MW}$?^Nc`(D{lI)pq1atQu*}VQE&szD^$6?vv~sdKo^-ZWv)s zdgKVeVw|ZydjM~(>K1@J{WN)Z!IfF&JtRRZ+6}J?La*D%F6mv_6bRls6>apKFo2{^ z>PwUo8rh*(8Si?Iljn{#*5Hg${?XyLVuVj6&~T zf@8wy`T-l$+vWtPHPsNM;XTikd#Na&$+ab8_6?DCLYE@>7S+p)@RHVKu8wPdAHAc+ z97l%rp#VY_I``n6=FNCjB(iHsGI>STo#|x_ACMyUS2!>59n&TdhB@BX6!uxjzW!j__}l`lKUVd!ecccXK0=d)wUfICS5^=z3tUnz?NncNlWkO?Ea#N zWyI=XEDkQ3-&)y;jo$seV{~h1oXWntUjmZH+m8Jg&!PmajfQxwe7F4jC}#EL1L(tJ zwi&;-(0h07v|yD;CAFMHqpDH2EZs(pnnW&Q8f_#TT)h6Hg0i>sd%t|4?K$4oVeLnm zS5lICG38r^`zYy!I@6}7mqYPg9-DsBKH)L-cmjqp>*K1wjA916*#hn0gnxYWbru&-o*|2|5(AocH<9QZ z>G?l&KE}IoG0Ph}_A|qas;TsfWB3VDYl5%?`uTV2H8g#hi~+hzu(i6X3*p-M5pz`q zhW6C6n5xV+|<^5C!#6azwyisWn3Qv=yIhI*uq zY_@LHVMRJjp2sjq^$&qt(s;lW3^u%^LfU_$M|B)x?aw)5S2RX5pna)gw>&oOrh~6; zulG%*Aban%7j|QlnJNpi$+Dge+kA9^?{at_Tb;~gE+^S9d_>8%?+@u+gN$0Fo*Ugk z&>E7Lk=IwYJd+<&{(bvxU-tu602yf`g-*6`;N=uQW_C2Yvt`t9cTW{hU1gqjXvvOY ziUPgRUD!y4`^FFFxu(qcs$hfJ#}A}|RXic_D$-Z5E!oVYFXyp(N1JDH1K70>$1*h) zL-9go8eVe<7E{BWo6^;F054Dq_l&dK8F>73?0P&xdW;pA2nqDnWNSmE-9*!Rk{s11X{0pT|S6W{#|R z1wN?Llal@`aHaO~eEFj6xoK8ExG+;3Sws`{%iraUi2tMMa}`Z;2f$~kTfJU|QbH;o z<&0nc-%-nb9kD9MJt!)u*1T8r(F->*6uU6B1_h7P*#vMhatnr1mrjE7groeiaZ2fg z%3@iR&gmu{48$YjpWOvXC3!^( zpv$;x*HfgNQr*O}$i?F47Q<1MGJ!;y3CPJI1g-wd$WM40^f}rdM4==S$(xOOB>-aq z4mEk>XRtv-nio|MgnpBe#g7Ix7YN+{d9G-nK6ycG$v_6lGZ`-@Q3mIcHo7~CUM$6{ zjKP31ERRX)FvW?NiAuNzZ|YK$HGwTa_P&dk{*M^13XK}OM4HH^3G3&PA1%!w(l-sRzha@58^ z2?VD0$`UI*E0tiBv6aRhkMGvEpT5hOyjG&Kiug>gYnB_SmFUUo6{bQoJPedI-+Jef zTRm?boKkS@?5M@?VV~Gy+qH|whwVM;f%*D@tM&zUQn&p z!8rQOJMVY~9f5Hw&T8q`-WqcHJlhUEWpVhS{GuA`s9xctxk9G&{Lia+E!(3sqm7!& zx?n#U_rCABcYD`<<&0vhm|Y&pe6oC!{bkB#CM8)$_;OaGXS0*Ze-szdH|NR$+Lcfo zbB03VUNU+12SUn=0qBQ)RAFMFg;%`v6JV5%M*V_*v+>1o3R1czygrCJ<3tGQym4cB zzL~1C(U-HU%TUn7+uxOJaoBpr?lI#|2r~AAXHsLCiZ&6wy5Vp9Ij*C8xz3&EyWVe8O;x#%L&trkA_NT(H zpGvFP@%D&LMIP|{5FpIXJ4>siUsJvCon4%ubdWGQVCJ{ui71%Vl^uR)kZ2cIvm6f znF1qEP+SX|$zU$$^};K~YHC!5DD8jskNz{KvBvzlUKu3JY`ON7EZm1Cd-A;+Th)_oSEO zcQY$YQWR|UbZuCAAN8KXm7v5Q`1P>M^aZ*V-q}B0$epv)WTt-JA=4{I9J|b9uPUfu z5Wom>Xx5G2NGZu3W7kpJoOuU9n3J{dH3d@(?>r6-^TPD&C%*A-y0Q>Syke#w_YXwa zi@m_V-glmH8FGV33HzgOT6D{a7QCpnYki~F8uh_VdXlJNh>V8LZVc*pSKy2B z!CuBd=&s;Y(3$o8g86&|nFm;7)6rlfQyR5MNQ7Onx9SvKkHZACPFynIm^uFs!JvlQtxU!x3%M9qwl)*=DZ(J*Vbv)}zraf=z>9#dH0>2WP+Gwrj=cU-w z%fcDS7K#Ym4H+*$D_l<fSrs*06b!(O^yt*(Q#zd5SsWf`s zb~M4?I~8?+Ih@)oXlUE#19q6%+EwcJaSbG6MlPnQcv4fcD)L(OOv%jVwf=hO(eBG@ z8RFv#tVo3?+5;PZS%staK+106&gGfx*vFv3Pm4OKkK!eSp%%J`-do5}W;wdGQvH5*Hs^v}FvZCiRszZu*cLOp-e;!H9Wz*w9E(7p|f z;NFIa%k}Na>&%IlohV9Z(GtQD_+IESQDvt(hKBYwloF66<8OitoB@a$Pb9(U0>$$q z;{;KZF!>#d(h61x4sWJ0qedrX-y7*}7GCw%P(k36)-+U&pE@|_pUz(Zp~gg^su;7j zKfex-Icuotm#OBK@cHGu_E~k=x2f~v_>xZ(K`o@-aCnA-bER@%YV-%e?cu9aO+Kw4 zJ;6^Q1pPD1>@0NslsYx=-r31A7J&!JGi3w}^DQo?6qoLTRbN8VZ7wln_UaQy1mSv6_g5%)NeayARl| zbCt$pPC7*CzL=SN?K5+IfA~|cfyOb9b_0=GlM;o|%<&yZMfTTbSmc__ai%Dl+y|Vx zSXY4T64^k|FWKyrz?KysVgxjQvMR1&$YKIclJBD?tO$0X8r0a3ZQkoESo1Z7mdYP> z%LOVk))Bec+?=TBtZdBQyEJ1aPGS1h`DXjR$V~(Q6jDdZXs7AUyW{4XYbFtoT5yZX zn1m3R7v(=t7*hrH2~g!nkYX5Nd})rZqgn}hPfpm&Dywbw=Ask+bVWpAEDF7SoU~=; zS6$R~PLAp|LobYY`MdO5F1o=+kV!(XI*^Dw54XG(bT$QtICZwn#>UWZ^$nB9_P=S+ z<8%_(=?&m@c|WX^a(qQr(^kyDwPiZPQuD08h*WyNI}>Z%(G~zPl=Wg#&oF!3pi5jwp zBK$JDgCUJxi8yu1HO-h>s&=$^fZ%)FyYn&Jg>s`HfU&H1WPOxz#-&JHkx&$rP*B~W zmK>txNrtrk0UJA=Z8~aArrB1NUTta8{-qnFhZ&7=Hd*Rme<`RxiJ|92O{2lL;|5d< z#YY96#sPH%Q6oC8jYuGe4aLEYbjU@>zzwo$;kH+bV&ux#I%QU{jMp!F)4V6eGYptJ z>Sn7g3@12lZDDOc>sHyziCeFxURMo7NFz0Kny3s7%_hPWWWA{8Po|&PP9N7Ns=@pk zK67VZt-c~UXIN+S=)2g*Q~D8Y`%GLERfl+;hN}0@-KZNyJtNqFoNRIhM`}gf0%6)= zK6Vnj_^A2WXYG4TNznZ{ID5Valz(q;BJ+I_4KBo9N9u48!wqe`1+|;i7`l6!>^X#5 zP`NFVoE&U5#HWixSub~V*z3g3Nrol2s^tA;NAIXMjvDHFr`9$7u|pop8}rNF{4uz7 z!!yrkLz*Qe8}hiCK$++&dU1>+#35YCEMFV)$j7;-#piA;&mkjS$3d?wHgZ3Uev|O z-jwhXzvTC|KL}^EF13d~*Qi!2DwL9`p?{Le#s+TN7Sg|) z26%i(PNfAg}Uk5CWR3wa($3N}#D3E3>+mB2KCW2dZMtOV86Cc!v5v}1oaQn*OtX2#26!ecBU8{z|G z+V-cN*A8!f`tsvc>3ecMF_#40&$^{)!V;3mrXx2OTSoR5k#c`r*lH)27h({RM9ue9 z0>r@#{k{eGjowDS1%^F!8!hknJYGY?-f63g>6eSQk4j%{M)J!r{?K*fE3~s!7{B+D zQA=^U-Ur1q6?)s;?_Qj)xo@cXoITG{33|T41LMN%j?fR)e`4)qOue$w(OX$B@=iQK zZRR3CqhsP4QdLhXlUtKBr(_>pTp{Ss>4`+J8toqv^O;XPNJiLV!7U9sFBae2z$a@O zR8*D7pKfJlKMnvnp4cc99CNqpJW)jzSgDs_!)LwtImK0rS^f;BX*%`#K{T38=~W>< z5s5EQ?V((J-dg85I~7PaT=z`OH^jjG=0eLcFKb6%y~^W#(Pe~sytI09s?Fo7EZR}- ztxm$V%Cb2`QFqW6*tQ-9k=IQ%U6VH${A?!@S4V+3zSR}&V)Vf)hY4&&)RaEoR;#cP zCXJMaGo7}y;1n*3rH_KBSqE&?L-Z$!mLWE?HK#?4TQcYtd1elGfWIwZ*8!zSfMnzxd z=Av0o-8PKi_)53Twpj_bc(Abu3b`0wYPH>3UnpH2{*{qHHU4&>{NsVU!%C(cbRw2DNo@4{c#B>(%qbEqqN3k$HxwyUd%2A>w2^s6BWCC)`^ zH4~)phpr;)=jp9^X8Y`C_$x-{4KhX8eN@2Rgu|<@Gve@LBw%7>-ee#at}-Y~oUdtE z#O|p`t~ZsaY#j=|uBM)t!$y&Ps!a%NOJp);G#w*Op$iq53$^*Msl3_mJbK#y#}YM) z9`rrD>oqNonUPs_F`W@FqZ$_EC&d)@h;!_@MpBVn3(gC=ffL2aX)x_5*z(;Nf~!6F z4fp3=QEE$?bxHCqYWVFitd2>;+xzySz|#2%q;~6xNZGZWf`M;yUWQe`w`T&MmEN?7 z=~r8m-?nY*>GG#)3DHJ*my`1w$e_K^qvFwxT-=*jtjKi&`;A$84V#G*y@S2TeQ!0{ z?#1>)R_2m#(h5ZqBiGtc@3yb7JmWVRl_K&^Jf9RM1A?7)sHVrxVC^)+ff}ejPhpF7C;kt5~KNS~_QHvZj3Rkq*8S1TI%T(uqyjgMh#|^8MyrA%ZOK=QTPi$YiT}7?1NEnGatQo-!C=oBXo94Www|HAe!@k`P%S=d} zVgBZKo9xz}>J8%G|K9QBC>f>Z_TV|bj&Ycam5qute#Lpy^x~v~>G2o!wby;AXzfQS zvDz9@2@Hy-!Vs7h>4F-+>%X&T#Fk5cE<*0Q-QaKH8)H0Ik| zn%1UsDnkJ}JJIzH#(sYN!Vvd7@~UEe6Snm^tdE(iYedN;6l2${irI6O;BsQj77f(Hm?j&DiHT+>xsubtWBg6 zmB^@-Qo#a}Nc$-fjmzNN-jT zL=3I{KMrO-#JMr5bA|<4B$>6Snu_noBzAop#|OD~j0%|=P(BN5X*3ytIdQ7QfTZ+r zAq2ht2D-3N;g1mp>aT-zfHP0cIh07laG5GeoyA{IP0Hw@Z_r*UGL|Qb90D{@F#6-I z$FE%63|b8hsC46(?mY=Ic9Pdd=^0EFftk|c1i$v0>onNU$>6(tQRSNG)0(dxpRXsz zQ_J-pET>FI59WVC6S=9^@wYQK7&vw`mYHbzaU>H^yT{R{l{;QZa~^C9uUaq{QupfLr{Ba9F9W>A z4vN$f5Kn_wAK?95YYP8flPfMNRX3SA7WjkY!yEA?ZbOWIpZBX6_(xMz_>uaw>mPdA{VamVhZU#oiz-(V+81rLRAK{Mhj%S-XF4B$A|TvI^dCvK?3f^jDDE1SjbCa96ER&Z zj`eHocndoz1pggRg>)YXg6 z9ga6|oz9UYKGxTwm7MN0J4&a{tHojJhXTX%vAcMBUot`v|=9=;h$tAhb@uAjHJA!jt=bKbVdN(Cw zFM<}!o#w07L(z)CtA_B7sdB4FU-3w|ryO4hyByIRt;GXY_u+w1|)duhLJ!7iokBJ{(%b$Arkr zRmRICsH>uPr zZZ>T`;hA}K<*;Fm=)<35Tx37vSiGcX6;!O|g`Af=lzx%Zj)-1~c469jgnRAIWpsuN zLbXt@q$n@VMnw_*%nc-Ew!*fRrjz&dNHD6)oj+ zQ{Mc0Vqcx1E_6E3Mmy{Bwu~jjlOqps)5}wLfJ{R00qbWKm@!aSIO4ND*8vBZKWR^M zG%&1M5tzfMN+=aPLbUjtZ@iCwei`lfmfw9t$omfpcn7`LKJY z)Q{XbWz0H$N>;iX>NJSHoMXOdd^y&j&nzrQcC-h~{B{ zX2Cu$ME6ib4>O|RxrUupNoC!}VUMOBw4_V*ab{;~V4O@zv98nx$n)_-!>B3LmC&r2 zno2=CtTmq)1+qNMU)PL9U+_vh(V3HjV~ zKcG}+foD$TVBxm{W1Oct$jj|sl(o0=xo z*|8iuOvT<_>Z9Z|N&c|+V@sUjsWF}IV^8Dd_E;(`=X6dcz>R8-ZDV|I1#B{U&P z+2t?emsnNGGM?5|9H$-a3EWiM;{l4U-(lSFPnG=eIm*?F0)Qsj7LspB8tcCTujsQ= zmFor4%qH2q8*HI~#5z0d`IBA^qS&%%Hy*p;tNMj(Y~vfbxx-y_rM1Xq+wQCouZZ=A zy0zgjabrk4X5Ci%+ui+2{tNfy8h7fd;<5Pj?W^bGoXY~}&ivbqJuKp~`o1m49J^oP zmA{z14bW&fuM>^a4hxLv-Wa+1D>s=S8@Ir3R*$ULV=xk?_``sT0kFsJ={eyInn`#K z4l}rw9-jSWzMB>FCPRu9X(zv4cXrxJj^6b`#TPLwn+L9UZsj4f%(`t&mC5w}p2l#M zkB(1i&1eph{Yhz-wUtEd9zWU_k}nLQMdIQz^x+ zO+Mjbz)9tTSUG2?>gDq@yLSc=^(n{f+b~E>je<#sr>ZPA%59^j`K@tc?j!O&i=_)D ze+nj-4cF!l6uco3A3lG`^4Q?THFH^>|J7h8{QXl&Zq%h|1v{N`>paIXe9A%*`DW&!DR8z zQ}I@nCIe0zlx9o2<~#*JI}(8<8=7GsO=ev5u&3zhXWR} zwc{R_cc-C`PsgbG-NXbfp#JP?jzK7$Oj5S)@R~|yv)7d!;H3w+@o*(EXNF@*`RR8r zhx~Jh8q$70GLtO+p7w09OO6sKuH<)-2dB?pha+;KpmO zc9M?juYZYK3zRL&9Ca)%4qf)9Kkkg2zq|ull92c$uzp0PlcpVJH=ZH8$M(7tjN!J& z{?n!|}{|^8#LC?Nm&AH~e^C&wnTh7@Q?pjE#Dz=hyw%91QvhM!zPt(M$qwShl zYm~c)CjZsdu8FzXWi4qy$69j!_u@Y<(oZX9(xLrgp0)Ery1sJ*8M{!?{Uve#rY{ZM z2hllI=>IN!Nsco>tw~zfKP28WCN!R*Z$_!V2kVBOr%#mgF~u1*&!Fp?U1!%EpcI?A zO{{Hf)O^8-)) z6rHr5N(39wXBWRn{~5cVev@%ba9#nrOiap7Z?}e?p8mA_UNEThAZlH)H4Xf360O<0 zfvQwUr9&~(DJPi!c@+us(t2O&qe>tzkuvw5E>kPt+^rrZ#w1cwY?7RuV$!C-A_fCd zR$i8z#N!W(rERH>yH7ADSxhWiP)tmon79QgJts^2KrTg>SWbZ`N5dZ*6(?|rDx5a6er#fOCOXIH%+8nX^uH}Ft;S-rXuBXCM753Qk_cC zv}X5S%A%d(Ip<#ovZQ8z?(h+kJqQQC4}1631P=T%3FjlZpeG z2ZU&fNjO%sb1>@>z&X?_Q%_D#vB*XVr3ZF_6_t`IQTxj6rDY6u=3$j1uSWp8V(#NF z6JI9$dK?tjL!57jU^LY#Ra<;A+mgGGKdhMCUlkA&LGhj(u@Djq$zWa*J=nV~eZS&Y z+L-F}E7gSAz0#6Jq@AMC*p6m?SEbP)4?O$aneP<+LxuF~`UEcdXJ;X4z8h z18rsF!Hwd`G@*)zkYjRug6JC(Le~RUX}XmFey>}NZmxS2i_ER5&Msh{xE47F+fsEg z!R_C^rgRBI+VPmu^C>FUF~6@{rY`N;+=2ES$`#{MwEU}-T!I=mTtKsTIM!Bq>9r{9 zKpW8(vcz@I5V8~BRc5wJ1{92?ih-`wy?zar*RqU7-9(&vC3Yf>5@Ib{L3p+FwE7+TeHhXYDuon0P81>_`{3s4HLpVcs5E zyE9uXH0Q~2N>L-R8LeK|Se&0YPjP&wH!MlDE5?K!8}89kF;(ecX1W;ra>R8If7*Ql z(7tOW*OGlZ`i|H@0^_u+5qrm6DY50Mu`*{Myb zea(v0pkf&*_c1Gfqs*Y=ZW7EcCl*b8MLUX@f6)|AJ#<9mIx@*DeIL}hb(&}WxF zBCq{bA5InRQ5<_zrdUu<5aYYkKJqdvP$m|n;`-GnRhHf!&_!N9d>@pBimW|7#P6Ob zA7f+Z&qvRo&sTipT2S|I+@HEv?=HuZ-RZlfMdGSGTWI0lf5fZ0)k#3MUlPaPv36DY zdn>kO)3&Syu4^0{EK84c{0g92md#SJc&=c)eC)}YMNcg2IE?N*IG zo%%MZMITHR_mTMRy5-AJo*S*sB^}6&jNdWoFPvi$0`%S^D^xDB5@pu|iIz zsA$nEu0^;NSlNWK zPQM`jHXqvT+F(kEPM{jeH9~DH(pVc6h!XdFZOX}sC(5zL1H_B#*mO6|+TmF3VIB~Z z(UR^J_c8jll&lo`e$|hZndiP&a6Iw?vjMRlMk$;%L9T5f`v!jz;N zyEK#i>iG4OY1v+9UR0-4eX3ukj_i|heuc4y!#pWZ{6)p?cU`w&c3BxG52(KKGtpNb zjGj(`Sf>w93{VjjT;$xX@ruo>YDgX_gE?U_l^4KNev}mpdjzafpg!-ZzVfkpFFMV?9<_GrEMZfgI}P#H^V)!?s;qS zqF)13`QiFK50L&(&s5QOFXj9wNu@4^1Th4{6X6TzgTY))Qi24ei&fwn(4=ULD%gxb>C}t zjp&8$FUTDj9hl|ot}YonE}-na-Q;5^$e<_#jbFV(y5=Z)*Xm8(Yjl^pELb!_NrAz6 zM_M6$;?=cLnDtW)cM}b-9}WEYO{U0L4j7JL%=!tziQd+5tT<+cS@)9@{n`o&S}Y&; z_#uN+!%3ORDyEyvR#XLDE^>8t5i0V_M{)Zj4mhoI3$%^uzt0HvK*vq`v0<8QvfnepwsRshSo&WkY+I}!Y`q+;f*i)AJ!XIX@8}_8S z6bMi#EFEUKzFhI%boyuAKI&MvERDL|GGo&h+E8#HXx7s|Eu~NXS|=CID)^DE$nYW| zHd+Q8gQ7%Hpz=d>x>o0FfpmupHo5&JVY)i>=Vf%r2*QLETc6(4Q9eEr<%bE*BLjKL zJthRPQBibp+iEoA!sd4T6boJXf!{{libsF?mA3CHPr0d$?RQz$F3qc#lJAWX-xWxn zOHm11cbR2Ue&^?NLJGaO@_$fFNyoAYyW*EMyewpKfD-=6x?eO*d$V?(Me)&z z^zjYdWSblM^AcK&hvzk)BcD3orG0SN3ioN34Cb^VLH#WbK26h-IkN;QOKRUkBFY+7|2;!?u zooBD#C)*P4qxi~W#dl4U&x5SJ-6?a2rSw8TF)QmsK*o-VujE(&+|u$EsT{+O7Gwii z!3-M8Ed|Vp?`wM>CB`PoT}pL5R;Nv&*wT)I6FZO>*S}aketXKAP>@Aa201BB=;oF; z%Bb=x)id0fV#_!?@o)o~yQDs?*twfTv!ENgRg}9r|6BYeWd$`$4KXpiqs?vf-o#yW zAT^PK*`?$zSlgzXXjPt-VF_ex>n}~$<*t5onzcI?olc2WexyL0wyT*_igFG%7q92g zC2cFqHuBe&zvOjMl!`A!S2ns*me_HEMFe)fvGe@vI_KI_N?S_XbDFduLBM9jOlVLk znaWlFOSBJ1?ocQ~_6o!~i7G#yVv?K~H96v*%G%YNnpR7uAs1L?!UM$nV#@p_+N2Xr zA3N+9)xSvYJYxqM7Ca~s%sD5|v4Dal%B2l1rAmp_DUefj`A-lyo&j-_DM z{!ZfBwwC>5qsqxLWpu4_Nzx?!?`=*HXIL3s-Q;T5J^In2k6cPt>~g}o0;bKEx3}CN z;JUe!rbz1_MY)7>l#tbq*6%$i=0VoZY}GQcloGYrZRwC3FJ04uL0A-6eRWLoa<{2@ zMh(h2)I>hMuXh7!-SW}&<+4u*UL{-MS)hP&0D%d=(sh%N2xogZ61B}=L$-w^1b*@C&oyw z7`yAmT^Q=uFt#k)dWb4jUq~r2PXB@X^Rp}Nwrj}NvzDgqfxCzmd>+6xqjB7oLf!}E zxcKIPURKH4quIgM~jvJ#^j-rE^j>|pz+S0-1)UAFMmu2J^i+&Tw z=Crq($u;SMdKbvY=;IOB3G;=hIA;^Le(C!3Xvat8nEd2-YiaH}agT`pZNyEYubeT= zeizYGU7n)z>s%(+IXZA7gzF`&h+rKI*UP?jta-2rD?d&kSov{$a4g+kZu(>vP11rj zVbJ^dU#EpF{M*(n>*@D6e%TJX>vJne82ta`s zTor)|75EJD>BApcDFzx3{?(N+rb_7qnW_`uJ?dN(FZXXPP2=?EOC`k6ga>=c6rhm7 z&_55ju0ejv4@~ORgaWjxQChlFD0H0%O6Q#p@F#|X1UbhM^Woud7s%h&f7|iVw!a1U ztGI8~IhGgSp=XLI5ibU)1{J8aI36=N6<%91^lZD9KX6Ubvsc{TyODHR0_s{|&_w(d zF!ZM-T58jv3{(~y6Ge#?CsV}=JER}-b0eMj5RfV4H+aku7O^m_ zPR*09pfUeGT|RHN87%lKmfuA;b?i#tSd%h#Tr3xKeVSFK z53cVZ-=prE*s?R};*LQ&ty)XEvhkJjHKb+Jt)IF#tU&Er&!W`_meInsrD)TdZq!o9 z>8HCb>zaCxkCkpz0E2jR;ud=8!t>;!73i;n*wV8pDsd~7j;cdfHt8o_xHj!gqu~hn zXEzu5zB03@cGZ2fVVhWN*b^Rrdrfy&i%wcgcXZ33Ud?(*GiMX{_rk|})xK5Kuxvwm zy35mYQmKPjJeY(uYq*InY#*ei6`E4B(p_k|xOba~`?~836G^4k1qqcViAmXJv4E^D zEt}BB5cz+V1-Kmr(8e2?sfNt+mU&b;>4{oPArQJULI`xNq5L8Z^w{aP>t$v6eF}ujTKl|X#fNJK zSF2SU%hJ}hc8nBz+)%_M&!@y1R(u6q)AosX)1*0$vRjWs1PjEsXG|7yswv|WxLa;e z^oLdGnln>q+3scXeuw$HjvBjFT#XpfK5}Fqeu-FwRitQfTqAGoEM=yE;`yVQlWFrV zaec+2Nzqu`f4__S50-^}{&&Cpu9DP%zPWq^-S_!MnFXbB74e??Etw#gA+Cp_a!!Am zaI+IvNcG=Q@mnad>i42Q-9*jHx1c@iFQiqQOH-ZlC8VsDZaqM)YnGu(HD;P_^3 zT1Qpt{YnS(R?CHLrWl9TK4Zo2x#GPUG6iaEsfD7g33WP{{KK?S2>IV~!OVzm2$7NXe`2Ls+@KGh-V4_>Wk7W?Dh=F`wKh#w)}&QN&mJ zUGxi^=-Rg3>4P5{yZSXHD}3k9+&Q!*Z8gQ`)}%vwo5* zh%)NXg*EP^uVy-PKlEpCRR(aofXiN!a!o=pg*rVqL1t@FT-1F%P2TOqp32yM39Wkc z8M|g7^YfI4Y|6r~hr1M%Uda=g~GUkLrjkRd+y<3!|w?2LJ7w3wd+;wQ)KKf>4KD-B**Udl}-=64sf15UKvC2 zl|_3?+(>8D>nLN6RZglbUk}~Kal5H^_rF4Mrv`Nz6lPfsFcz&nuvWIqKz22H^S6UC zvsMc+hw4(l0__sV-l}?Ox~W@TxdAk8-Z<*pwl9^8b28AFoGR;S&i29-8%I0ai;fwk zTGbJU!RnSQFfhG#RU5erff9A_!mrDv;sZc~j(UEe!^{sX$aQcW81NM8^YONyy;{81 z&>}+v#3acNr1MfKUlj+%6y*eX6JfUv$JP znX+Q1OlPR#lIXvER#U5U4}FV0fmQFl!49ydNEP2VZpn7fsN8W8QU`m1MW~u9U(}{r zNb#YA0SUX&O`iOXJ{1dA1=K=_^o`VYGv~IYyzMuJE#v^QoqU5`+3gKz@3KKuefM27 z^~$M~vELm8FD)}yE?7P}_kC)b{RX9Px=~EB%1etSFS2&`rL>JVQmKp!=ow8et!g;C ziy&)HFRGDqyQks;9oefq_!-VWI}p?0uc-^4brC6dyoWeBi1e<=^Yy z)}_^puB1}w)+9#XY0y)mUP`##1FuL6tqv<-LCp=Hle&X&7m z9j<#%oagj2P;@lT`VXb9eSi)uALLSe;NHG#zC{ocF#j0Uo;!KDtRuJ{16*IV}#7G1bzpP%=+ES2Kp*|AHh|GP8j z>7SNRKrC#&I`2FB zEozwcvN(@B=+MeRlzp%jU8&M&iuWqHmCx-<@AiF_Vh&joeq=Ax$AFhEZ%H*0TT;rZ z$0&8p!?J|p1I)1d44r%1-AnKHd7n-zZ7ph5YI!ABWSD^U5q86M#RsTc!95{|lIYWO zK6MlyKy~IeIfvR%qs*7-qq9GvDOXIPkNe*$`WI_VEhENXJpeNn?r9rulCGEGEjJ*u zC_v$X``uK0fG00#Dg&OwaxQP{?Uc3pIZEGft5kddETo}4S3rT0x4#>mEB?#c<0w9W zO2v)w0OP=+6;D&G?0aP$iaM}jyEA^?(EJAa-?{&zDmhn6nU>FW2h3IEWmc!u^>$_BvXt)_Pv8GzjdW?neXwvz8+mQ9(8u?|lFqy&eX89+ul9OXDm_r@iVu(& z=gfJa@W|Y8t}H>_itc$0z%G5w?0<_kG+6ePsH=V!iVuKxdPuyUw&8Xz+2+#rwxsh*zef!Y-9%BFo~CEMju#8s@p9wr z{MMH80*a3G&DYt-bzMmDfsHS0mg&H~_m8=?Ly8aZ{vT`Qj=fIi&a)|f<1I9(%RpK8 zntOqD8|q4{vSwv0%VRxVYxxrKQURX6D{U{~uyPm$*6dyoY76K?d?rD3EE10sG z68q1&jcClpW2j}^zbQ@h_ZaV?>@b1CqjvU#VTunE+$YPIceWKDAV7ahw`>O}I?xBD zZMa2_X|2jQ$_1d>0NT5*_yCv>AZDK&|3v#t%&SFTp8qA~ta*;o*4-UaeCQyCUESn{ z^7ST}Z_%g=zj6g6*5l?u(SfzMRlNb#YQmsLUbqqDA=B}=9FFhO>v zdZp{hK>hEIPmzibuz1Ts`e52x`hMOPnMmQu?-xsjNAAYld=($360H1SPDr37)NNQLrm|G5GqNX`b(0!poxxmp@larLp`#{!h$o^LHG31y z-)IGiLiz02WwdFp)$vD(V}9f6w$dEd`mF$EWI4P03M{JJ1F1FP?)&Q0P}(oGkOlgC z^_=J~>IPs#MBaaKTbQ?(~_xzQ$i-a;4Jc>AyXqf2&XmI#}scEn|JB zdhfkwHKcFva3W~u$89~FRHXSaODsORy*N3vCfT~*y4GG`QV8o6-6Fv}O+A&J&Tosg z0XrB?D|Xe8=8Xe7)v}+oxUjV|aOxny74Vvbfclk6Qj6-=LSe8N#Bg3p?oL@a*6wo5 zPtBBRCQy1{(d)*s6T)Og|2_p2jB#R-05FkP3deb(&7b}1A2K37c6k9@CTf<$J>tIF z($z{mheG^8N%{IDCzA<)YnvBa(+eKjO2v79)(fPQ)UkpSJJ;UYU32QVwpRLT2eYmw zx=^ll7K`#;BPQDuGqJ$Rz=GR4e<+L8d$Ge9LKnS!9H95F>p)-J(pf&G)23!Q%OqdC z4+;f6>w^M2@g~SjFm~ZK+IApamMT-hImV8^4tADdu`z5>lHAelFnofn>!^$uu!f2R z+7L2XfyB7zP@9TG^YYE9U!#6BWuZI6k_lw_(5U%xVuc_seM)witaIl(^ePHzBiD6`CSIA4hMZc`hL(;vG#fbdh&WyLb#Z^6eV}m3L26dGnL+7+(&XQE;CP3Euccb(DpbD)E2$8< ziIkgGS1kOkJ^}$OBLTN%fHcZ)Pj)PP6%T&1fJV;PL-V#YrhSL3z6S1yNCp1-m2IW# zZAga3;bWr&3u%)~IW{?STiW=3!toXERBnfK8J&aQV648!rFsz!^#h)*l6C|*=0G}Jau97kU|0_>TgVP zXJ0WVggWQ6a5VS8teYSer9vq-3WFM)&QnBq{xZZk;uTbC;`a9UbljEop0_|mu|uWPV4xMjX2kYUk4H7 z57-kqxF=z9WzwOJGTp}yn4^nTZ&Ecml&z;AhW@z3HE1r=2EBqNonGLW%^e(kkG^Ax z%TXpVMy6+d@`7eE?Il1=6AVCIUzj8nM7n~?oDe$aZe9bTZ)U3aDkamoEvw14VVg&Y2aR^XGwx#4; zzb8$64%a70iLsVt3GP1xT~_ywD=nmWEhK&M)3IW5T&+w(SpNj&WoS2Fyf3`HMP8J` znoCF3VMXVt!JPAk6#{;1#BVD|d1hfEiTdH7FA%)=}E~&ixZtfNu`1O3+A=?Gc-?;_~m`lS|>E+*7NEaUT?brB#|lPTvMU9$_q51BUYOO>u&D*bC@ zg0c_0d*obkp5cofrHIGatTq5}Ph4dzCaTzq_48U)k;?U=03|v=--Gx&?@U=OOP9i5 z>*qcDK63ywFvkh2E_$~(mU0B?(9k=WNUAnps*s$gC7ik-gJQii#YLBAKx z4GVQYnD>P~o_GO^6&+KQJFa%q}m?<5A~i9yfNU;X3o|B`rc@ zrTMFIwk1qKm>W>8FEZNmnw`kVLY5NS{Za^6e!z7Z=;PaUUEIp23tCsBZVfHDI~07( z>i)$2u~J(31Zc$X%VnPduI^}Wo`~b?*RBR_)!bJUa0@9smOI1G3%AMhS1gINDJCe) zT-WSx&9-K8?^p9>%3n8;ua}pl?^9xKWz8FiuI*%5MMN6I3L^fqK4uHNQmtleX6l8D#zKF?Hcn4=3Uu@sRuE_EWEXP5fn7QKox_O&{eYqaB? z{97r*6oF%z<`#bCNXMrBP~V@XIt8n9vGod`yn1D8xpRXZb(E-^=++)8_JaGFt%X9XiZ4n*HYCB+Ud|)VkmP`?L{WY&*~v5-jZu&ZGspK z1m!M(IT^+GJbqr&&_od;*_WP6yXl~wjIcjZeS>NyarRWr_poWCc8>jy4khFm_X{_yWys!P)EL8JFbOV zEE&bt{q7wd#a(AKuq{Fa=I@HS^-Mr243ukwPT5M{RyHOd|Fw<=j#>~l0aC2lnJWE_ zJJ(Zzb;D(%qb5C=pbYzIDP_tw7tF`P!8~@Wj(7^V53mTuLR(%(QNQVQD~KjYii@In z&D|(FHz*aLCQx1?j)QAaW!&d_UA03jmd%N+vb2Hg43sSv&N)E&i8wtQ_qr{D%$++g zMXMKHiW;y$w54{>jHjo6T1+GV-awCkw@_MBV0Z0`4mC9?g|`h@05&!(hV(k(A^>aG z)A_t9`H9OSWr4CjgJVbA(PK^l#DYS-5}QM|WF~ za0T%V#-dHXG)f-xHXNXHUY|xCo}Cb;AaY~<9u`s$eX~G5)=?V|SUjq8MPK>!Ma`wP z7pNoJWo=uro}X2o8|R>rnGB%sfjioZzpap^j%s&E6@1^<-l-iunur9lL(pB6VTjZ3 z^XgP8sqKuzeR0I));z+pToc&i0{Seapn~-X;&j2B-&*)s2LS5@pv&Lvv(^0&>Ar|W z35;p#SVZ~I*^RaDu%8c=g=fhY>sSl25HR~2#l&Shr4?0^D#>(Z2P?3z+1-1!WnfxL zUTs)fy0Y&Y^le@_;xXwc*JWJ}uu!V6xpuyHSc)UR`59J*UNqFZtLM}Wa!F)eQB1`_1R0UIj7lg7M9SxY6FFs z8Y^Wf&P}#&?Hm(`;?QHJq z1`)erqZ>NHMAMuY=)lJryOJiDI3pGZCK?5y7WXPf2?iTA;HX^?9ThhPhZ!Rd9t$5Y z)BuZXI_&2qu7I8Dy50BnJZX}uow9grRpRa4pGaD7FWi#_C{7|z&`R104_F-3vrX-H zNaca`yMbUp?#lk^v19wk%AKOEh0nBJ`VC4Bas2xE2v%qc6xH7JiAtn}5xCdf=|SW| zftp}Ik2eJ!Ib~OGL--$rA*L*nBxJS+R z24w%y9XrUTQb*KbL4u%)0E)tNEt3_1Yf&WhNmG8xKQKWo>^nR=UbagFKm*u4!j7B5 z%fbQ^Nle!A>~^U*zm;1VrP@VN?q?myO7;~Ri1H7=>X*l@uv-y!F5UeR`ZWZNe)9aL z(v=1vrTKu4HA8)pYCG1hC(c9s;R_8>A!w{8p>wxN)8Yc{RwP{it#Ou%{A&x!u>+!j^oj-GDUK(wic#e(14*lDIAUv3bQK>Sq>HVIILq-T(Houst5L0 zDmPgG_b%M``$eCD5_Q=x7>BI)T@5Oiq>6Uzt!wPv=&(j3>gt;7@uh%QkU<=On8nUv zuvf^ST}|s=s8%YTE^bpjG$t1WES0YN=pTA+>@ukkLmUQEF;*B^gkKAbaZ4;EqG~gE z+c_;QOI-B*aLIZRZYmR2y50T^&^NWKr3HRAeh$Ip0bHbCxuQ+J=db2)k*JWYl-cGv zg)gbpTuO~Aru7S~LcK7L@5O#CL$TfPyVc4%n=`N&MyxD7W>$XZ7mCp(`XIE&SH-pM zIbsUk{@EP5?<-45h+yw(agTPt^N?uk;&jnhz`eZvGZW~7|NbfCNkIOpm74B}USlyb zg8@^4WnEAEPkbSi?RWNayZ?Z%|FM+86(ejasQxUH<)A*_a_&_N(~1s6YTrt6@xGzp z-lly&;thrf|LSn1oz0}>J7gT2uV!tefnSF!n8DPQyJXC&_x@Nb-Dgz*Vys6(^EYuF zop!@0Soy&e8^|=`Cs1NwM@7eUH7STlot(8GwR*0UOsj)YJ6Pa}bDM;AMb+X}1xr#u z8;l7k;%1=y<=*aeS=;K;uN@^OGjk zwNPIY{$=?MnAipJQh-RrS6Oio+^E4#4S?_gcdS=z?86wlz)&n;G__AyEq4pETcZZH zmo9JR3fQW<3}8{K)7*}!0TX>aLx*(`4rAs!X$ip_6IV%})UazQK86XW*EK%P_HRae zQSA-a9cGiDzn$7rp%38KbgnHHJF(7T8DIa(ICpzD>pI~R1NWDqJz5Jy^*ltFHYW%62W=*JDD`&ja?;@; zRUTsEv>i5HmZ;w^CU~Z03wH33NhO4_=s1{eweL&X>I-@6Ju1i|TmZZ*QE<#yT>rIt zk5mvj;Jw!Sk;w(yl~#-ef%`N=b=AM1om&B(9h8MyegT^CYjBt7`|2O`=;(#oeQO;D zEY_a?WqIg6z@iN6GQ=a&E#NANMHGNSZu~$ih%4?-OW|gHmqkFv5AXu-k91Gxcduij zR}i=c9raiO0<~C0CMj6Mfb{Gfdg_NI($pE&OX@xh#jC){i)$~>$d&=_i$NE-0~&`2 z$xXio4!4TQ@cFH(QdQBnOZA8SHYl@Rx7{Ih%z(%-#vtHYY>3zPriGiwt2P4@eFW7; zSr96oPeBSQHSR(Abn~aP<$Z=DM6Yn?=W|2BJ)xAkNxZJm7a&K3_hptKP~w;WxMN0y zR8EEx34IpalAtvHHneGCy$5Fcrd0_*;9-T{=M6f)sXgA92j|pbDX9~-=n}FV`OhY5 z@Wd~4**nu|xoL@40OrDSwJp!BhDD$kNjJlwP|$JvdPA|~CMY+Hc0u8xW1k*2f|QaLC4x(Fz8uulJ%=;O0 z90zs%L@7SvB?m0@AGOEOU1GdNJrer0*6&Y!o{M``x#r@YMWz%JGj@?lmZ8YiW)afr zLRxELgUo*6EZb$Tnvki!p%4ixmSH&WOj$!e8go*`A*DnY*HHzh_Ir(XJmHV>W9D!Q zTrrZu!*6Y;kynTzK-?(u&+|RZ@yfBx_7Vww*BO|L+{48(MYK9N#2rwki3%(V%#PX& zc!@g9`C-zI5-uF@{hjhqFIl3F9dE?MKzc8fY5D z$s1L6%v0ezieteJ$K506iD#T2(9Iv8b8!m56o!2Nm(HvMX%RY)iLi8^&OVtB_Q3`5QG!ypCeJFwDsD-4C{BX zkb-5+^Ov=h_58rEAsRdurBL`dmOs{UK$)~=mwTZV5bfCvaH%GfuvTbjFJJ&-8t9ll z`(}HNWQC$XZ{BB6UK9lS8n~Y6gx}kNkOe}D=uckwZH4IHt#c14dhNrPg)LktPI`p- z`CF*i1upE*A;sz4wh8hU>GCDM)&BmyshPF{%nil_orwfs>?WvYGs)HMzv>R9B+ zpq4Jw2i(^h3mC-UfV-f53a;;jVm$Own+n>FDy}0^1FH=eUAcj;dGWGVF2z8&J4YZ) zZps=3eFCgkyvR>U=%s|l(daTSp{xKr_+kE5`;mb-AsK&4T#r>d54koBbcMbf`{IQz zE)>22dfX0lyB<~s_E?#rluGignh*r)`bO$EbgXX+(6)owVeb!FnuM^APaMOtt%vAc z!*aK%D1~D|z?E^xMa@G$KY7J2sptwnzR0LO1qJG=UBH4vzlO@~sxato%{uFLyAuSM zL12+#1o6%O{l#1>m@8y%A0y^@FBD>&0$%Pb?-^DWW<3&mo7dC-fN zn7UkcTXkE02ke+!&PBft!H+fIlB8ozjm$!EZR5R;`iy2AW zE3&v+*Qs*w`OWCXeyyZmCQ8%`0|L1rkd+GP2D~O-a64$Ln|TTqz6MgKaZT#M0E1TNouHFQuw1IMI=gSzU8$M!0!<| zRfso$5_KI+1TiSXx7ETq=E5!(oRqy5<^nZ2UMVj0^KgC#>29TOw|E&laSJvffG5eg z6NqB~u;|j=uN0VIs@=!Zb^t3K4DQH4p<~v8Qqoma76vZzRLk@wt#|jd(d% zoL7DeBx_g6X`>d#L5J0y$)sBBs5Wb6wW%Q{ySPUYJ%58ZuJA>X1J*t;amS(=Sx_9@ z#|I^k3gU)WyzZCg9`{kWOOpG0G5Jjq6Jc~i*i|eDugN)-lVL&s?4QMC7wKNDz{TO$ z6!)E;0vRCi;lH{%fu>=-A{92`Rq<= zTR5KjRSnfHSM5ll%io<&&xrn6AELq)g>GCfA)1m|BC3!NHX6Li=it;=g}&4L?tttE zTmgs$2nhW8#8om5ihj@G(}-_k-78Q&q)FGLrqz-~RUHQujMislyEVpYl{(oZKP7;^ z;ByGjrEmX5_k4*B09Z>z%f*!&>wK%&)?F6bHP9ZSEpFTs`JQ$NzuxV|{6)=kyevnp z-_d?du-m>b_4}m27!Ts7HyFnle%;*1ht$Acc+VBAV}#ti`l9^6W{1p}V*fm>+Mwt% z1NNIS<8&@-=T7+w3u1MCu;9?=Z)lg+c%`4O`x>ME+u|LR?2+vTmkLhqzdXYzd)?Vk4AS3E zp#O8OpNs=j$?glpM{1Q%3bh08d(auPJlj*~tF7P9%*mB=UCa~Bej!1OHBO8XQMzB2 zVDogyk4xx>P2uyNQ}OnTUPp6jFm)9T4wfIo!!7ukX z6(|daUEJK|igHC;XE)MYVd2p;76Q**4Ea?7>APO8gf&SrJ9;d7ep;|Cq>09{;#|JG zO{L=u$lV`sUdyWV{`DQgI(LN?3>9exG5A>}wBZPRIDYAN`dkYN2vB#MI;M+BQsEZ` z3Tt;SAQc~%$kdh&$`2M`VfDi01-G{kVWufgagQ;X$*>1?>0abvdWi`&vKfE_TKozH zCe^2>!x@Es#AZ)LqGP?JS#Cy1zy7@&JLQakACnyWz+Sl{EI%Oya&)$WP@wBXk6 zYDd$0Vg9Cl($&LjQld{P;nO!*Cd>vymk+rtt*xzT_E%gj{H@i?GfWvh;e_9GbhkK zF5Lu0eVOLUQ;@5PqMyCc*Ohjj3rHPtiA@VBH7BWWE3oW4AcX4gl%=G)=ahoVy@(f| z75_tSrtH+_%yid6+X3U7sn|kYzsF~-+eaOTPYB!52XHlY++2dvZPK(Bvtm9t=VyJl z)}aW@SRKo^A8_U<;-gMBJ}Y5>+K@mQTKIcl^)FC_TEC~CLnOKB>9&F1SNCq}wj91T z%q_NXpq)Oe2cMV6=e{PYZq7fvET9n_T_Ubkl=z%#2P&4B4lL)CzT(=C{-*Vz4LKY8 zHM33rfPTd_CnLJOR|C4LgSrOd{pKlX%-YM!55+N6e$05LDyDXIL)wM0z-!ml}Zuwk2yX#ULpx&r{_J}wd8Oy2QV`z5$e$a%k(WSI$D}b z=i27e@B>D@I8f$x7@#qc?^?g2oXjm8ayFeS7Jcwz{pG&yRLx$Dl`ZcK435G=-6NtD z_e*{$?9?FR#1gR1NuS(?7Jl~EU=gAMEqU+iT5n8>k8uqeUOObxoKQQy>$}vJCgv#R z0BZzN1lVCf-v0Q|?v-`SK{0tZl`(Lka1r@Zgt$-!YYfW4>MJd!W(a$H`r!HwbcXnT zm4eNcuC!?H`*zpH>nz%8H75|6}ZgiO}$N|FBecn)qgN;YTP=Ioe+ zIDW(CaoWFaFEFu)i3(`L1)f(QF+RF{d-%c(>3z)|ZJ+=jnMd(pS9EpkFC9GgrElfqG(ryf?-EP5az%9jk}TT8)!20@>md&;7bA z%*@v!NPERXqNZ4wV0_&C!yT$c}HHreUiS%RgQi_>}fO@}orps(LC=r)LwGT_7 z5fuHdy@Y}Z`+GK4AN@(D@LeYREu;&!z;#rA4s|M;E^pTBcl4?svS#S~ z{6s_9=`iG?X7t8Y2>vS0Lo|E@4VQ$@7th-d?FSg|0Tz&Ifof)cD{pTG=)l@XErg+5 zf?HvJ$P6tu7*n3Rw2&J)_VFSHi$tDF=!8581unP2yRpbOmHifhuy`e9N;vZcWd$;4 z{XV+#{h3mkDbYkHQ?!b@-v8?Xw8M^9e%AT|ET*9>^HMy8J!hV_sN+39+t&t`rpkiR zTuY$u07@yN?m@U90VuNHx~3i7+`XQaAx?bU%-n(iq$&vY8Rj5uHpngk>&1-|;G zi$ouL-&qZ5&F=8=$V*Y?rL;L!(Ppzpn;A6eDWbt$#2{Pq8v5>=YpCiox@tqvc@PDk z>|$5yQr-S@X`LEl1w)1mkrNy9k715B2ug&>2TYJrqEni_2D|WLk-0mC)*A~0$F<_{ z!QeK}?sT_`$N24$w|1icT+uo#1BP-V`9C{?yxY86-6K|cYxla+)HE^9R6YbkgN#z- zs1@9t4f{irDQhw6zVE^ogRYmYN?K-4C{_y04VAef(&Z`hLsP>(?BW*m*T_H3KF=sz#Ms~V=pw)()AHXIeV46#QDRlQ@6D@~rk*m+P^3m{p{xZIy4#^iB-trC)GljV z`-zJg`dRb$y{BKaeN}LrOOmcw7BizITg*%rGcz+YGlRvlz+%Z_W@cuzn3-8EX1aYm zvpcg9vuB@fKm5^(=*Y^-O88Zk^?gYuTH6YyTca`qQj9?(ZHEwA_&=G0Q88S?a<5GH zOLss01OPk!8g>DPzt9Y+j*Dqv&#kG6we>Lk`Y?)yIu+&&vil8@-jdM9kta*}LdAXV z4|5SrSBH?)gwSY6-f`x%psrj#anWhz%sNiUy*1_>B15bL*ukvjQ_45?b%{&)tGWCt z2LoC8fmhdC(5XH-TbNpRtN(yp*v(7SK9{e&&mkU5_ok?#pAg~`eQOVstc_5 z*o#U-4MOhb>|r30?Cel4NXNGUAfY0gKSPo7a$YvO>H^2YL)zk8Y1wJxP&9i11BOQ4 zfq5iFcE+_0)4RHVA!QkQQ?`zNo{SnqiPeuz`MXeTzly4d_e^yyO2Aj{U`0*MT9}Xo z2ri8C_aO{7iPt@9G}W1+*+j@{7x+rfXkZHgZw*-62|ZWLG!dzhvhQod3QTonH-1n1 zuToy4A6nZntzObK8)07XN*-UC_HheQK@#Y3G`7!!EnqyTb_pw@sdUU^E6P9FJ_pjB zen8s5QF75V`Yp#i`&h_rvCHL7&&5nc8Gr4?cl&h~_Z_7g-Ij%7+TbK51HYUpI$@~a z*rnoItl=X5op^T_0r3_|3LTk38Ool*UD}F&=m1h+2_2p*+vgh)R{}b7NFv!onH-T$ zS6y+B!!6$J701O8V@>{Whi~Xqs<5v2bHqOo*G+uQjp!U{A!AsHTamjU$FOPkU~>bp zSy0?(;V7iExk&L$JhsjVcVrImDq1C1)hPNcZW#^3x-%r7KP